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ADVERTISEMENT. 

The Committee appointed by the Royal Society to du’ect the publication of the 

Philosophical Transactions take this opportunity to acquaint the puhhc that it ful]}?- 

appears, as well from the Council-books and Journals of the Society as from repeated 

declarations which have been made in several foi’mer Transactions, that the printing of 

them was always, from time to time, the single act of the respective Secretaries till 

the Forty-seventh Volume; the Society, as a Body, never interesting themselves any 

further in their pubhcation than by occasionally recommending the revival of them to 

some of their Secretaries, when, from the particular circumstances of their affairs, the 

Transactions had happened for any length of time to be intermitted. And this seems 

principally to have been done with a view to satisfy the public that their usual 

meetings were then continued, for the improvement of knowledge and benefit of 

mankind : the great ends of their first institution by the Boyal Charters, and which 

they have ever since steadily pursued. 

But the Society being of late years greatly enlarged, and their communications moi’e 

numerous, it was thought advisable that a Committee of their members should be 

appointed to reconsider the papers read before them, and select out of them such as 

they should judge most proper for publication in the future Tjxmsactions; which was 

accordingly done upon the 26th of March, 1752. And the grounds of their choice are, 

and wall continue to be, the importance and singularity of the subjects, or the 

advantageous manner of treating them ; without pretendijig to answer for the 

certainty of the facts, or propriety of the reasonings contained in the several papers 

so pubhshed, which must still rest on the credit or judgment of their respective 

authors. 

It is likewise necessaiy on this occasion to remark, that it is an established rule of 

the Society, to which they will always adliere, never to give their opinion, as a Body, 
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upon any subject, either of Nature or Art, that comes before them. And therefore the 

thanks, which are frequently proposed from the Chair, to be given to the authors of 

such papers as are read at their accustomed meetings, or to the persons through whose 

hands they received them, are to be considered in no other light than as a matter of 

civility, in return for the respect shown to the Society by those communications. The 

like also is to be said with regard to the several projects, inventions, and curiosities of 

various kinds, which are often exhibited to the Society; the authors whereof, or those 

who exhibit them, frequently take the hberty to report, and even to certify in the 

public newspapers, that they have met with the highest applause and approbation. 

And therefore it is ho])ed that no regard will hereafter be pidd to such reports and 

public notices; which in some instances have been too lightly credited, to the 

dishonour of the Society. 
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' A. City and Guilds of Londou Institute. 

p. “ Electrician,” Editor of the. 
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AB. Geological Society. 

AB. Geological Survey of Great Britain. 
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A. Institution of Naval Architects. 
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B. Linnean Society. 
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p. London Library. 

A. Mathematical Society. 

p. Meteorological Office. 
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[ ] 
England and Wales (continued). 

London (continued), 

p. Physical Society. 

p. Qnekett Microscopical Club. 

p. Royal Agricultural Society. 

A. Royal Asti’onomical Society. 

B. Royal College of Physicians. 

B. Royal College of Surgeons. 

p. Royal Engineers (for Libraries abroad, six 

copies). 

AB. Royal Engineers. Head Quarters Library. 

p>. Royal Geographical Society. 

p. Royal Horticultural Society. 

p. Royal Institute of British Architects. 

AB. Royal Institution of Great Britain. 

B. Royal Medical and Chirurgical Society, 

p. Royal i\Ieteorological Society. 

p. Royal Micro.scopical Society. 

p. Royal Statistical Society. 

AB. Royal United Service Institution. 

AB. Society of Arts. 

p. Society of Biblical Archteology. 

p. Society of Chemical Industry (London 

Section). 
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AB. The Queen’s Library. 

AB. The War Office. 

AB. University College, 

p. Victoria Institute. 

B. Zoological Society. 

Manchester. 

AB. Free Library. 

AB. Literary and Philosophical Society, 

p. Geological Society. 

AB. Owens College. 

Netley. 

p. Royal Victoria Hospital. 

Newcastle. 

AB. Free Library. 
%/ 

p. North of England Institute of Mining and 
Mechanical Engineers. 

p. Society of Chemical Industry (Newcastle 

Section). 

Norwich. 

p. Norfolk and Norwich Literary Institution. 

Nottingham. 

AB. Free Public Library. 

Oxford. 

p. Ashmolean Society. 

AB. Radcliife Library. 

A. Radcliffe Observatory. 

England and Wales (continued). 

Penzance. 

p. Geological Society of Cornwall. 

Plymouth. 

B. Marine Biological Association, 

p. Plymouth Institution. 

Richmond. 

A. “ Kevv ” Observatory. 

Salford. 

p. Royal Museum and Library. 

Stonyhurst. 

p. The College. 

Swansea. 

AB. Royal Institution. 

Woolwich. 

AB. Royal Artilleiy Library. 

Finland, 
j Helsingfors. 

' p. Societas pro Fauna et Flora Fennica. 

1 AB. Societe des Sciences. 

France. 
Bordeaux. 

p. Academic des Sciences. 

p. Faculte des Sciences, 

p. Societe de Medecine et de Chirurgie. 

j p. Societe des Sciences Physiques et 

N aturelles. 
Caen. 

p. Societe Linneenne de Normandie. 

Cherbourg. 

p. Societe des Sciences Naturelles. 

Dijon. 

p. Academic des Sciences. 

Lille. 

p. Faculte des Sciences. 

Lyons. 
AB. Academic des Sciences, Belles-Letti’eset Arts. 

AB. Universite. 

]\Iarseilles. 

AB. Faculte des Sciences. 

Montpellier. 

AB. Academic des Sciences et Lettres. 

B. Faculte de Medeciue. 

Nantes. 

p. Societe des Sciences Naturelles de I’Ouest 

de la France. 
Paris. 

AB. Academic des Sciences de I’Institut. 

p. Association Frangaise pour I’Avancement 

des Sciences. 

p. Bureau des Longitudes. 

A. Bureau Inteniational des Poids et Mesures. 

i p. Commission des Annales des Pouts et 

! Chaussees. 

; p. Conservatoire des Arts et Metiers. 
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France (continued). 

Paris (continued). 

p. Cosmos (M. l’Abbe Valette). 

AB. Depot de la Marine. 

AB. Ecole des Mines. 

AT!. Ecole Normale Superieure. 

AB. iScole Polyteclinique. 

AB. Faculte des Sciences de la Sorbonne. 

AB. Jardin des Plantes. 

p. L’Blectricien. 

1. L’Observatoire. 

p. Revue Scientifique (Mons. H. de Vartgny). 

p. Societe de Biologic. 

AB. Societe d’Encouragement pour I’lndustrie 

Rationale. 

AB. Societe de Geographic. 

p. Societe de Physique. 

B. Societe Entomologique. 

AB. Societe Geologique. 

p. Societe Mathematique. 

p. Societe Meteorologique de Fi’ance. 

Toulouse. 

AB. Academie des Sciences. 

A. Faculte des Sciences. 

Germany. 
Berlin. 

A. Deutsche Ohemische Gesellschaft. 

A. Die Sternwarte. 

p. Gesellschaft fiir Erdkunde. 

AB. Konigliche Preussische Akademie der 

Wissenschaften. 

A. Physikalische Gesellschaft. 

Bonn. 

AB. Universitat. 

Bi’emen. 

p. Naturwisseuschaftlicher Yerein. 

Breslau. 

p. Schlesische Gesellschaft fiir Yaterliindische 
Kultur. 

Brunswick. 

p>. Yerein fiir Raturwdssenschaft. 

Carlsruhe. See Karlsruhe. 

Charlottenburg. 

A. Physikalisch-Technische Reichsanstalt. 

Danzig. 

AB. Naturforschende Gesellschaft. 

Dresden. 

p. Yerein fiir Erdkunde. 

Emden. 

p. Raturforschende Gesellschaft. 

Erlangen. 

AB. Physikalisch-Medicinische Societiit. 

Frankfurt-am-Main. 

AB. Senckenbergische Raturforschende Gesell¬ 

schaft. 

Germany (continued). 

Frankfurt-am-Main (continued). 

p. Zoologische Gesellschaft. 

Prankfurt-am-Oder. 

p. Raturwissenschaftlicher Yerein. 

F reibiTrg-i m-Breisgau. 

AB. Univer.sitat. 

Giessen. 

AB. Grossherzogliche Universitat. 

Gdrlitz. 

p. Raturforschende Gesellschaft. 

Gottingen. 

AB., Konigliche Gesellschaft der Wissenschaften. 

Halle. 

AB. Kaiserliche Leopoldino - Carolinische 

Deutsche Akademie der Ratui’forscher. 

p. Raturwissenschaftlicher Yerein fiir Sach¬ 

sen und Thiiringen. 

Hamburg. 

p. Raturhistonsches Museum. 

AB. Raturwissenschaftlicher Yerein. 

Heidelberg. 

p. Raturhistorisch-Medizinisclier Yerein. 

AB. Universitat. 

Jena. 

AB. Medicinisch-Raturwissenschaftliche Gesell¬ 

schaft. 

Karlsruhe. 

A. Grossherzogliche Sternwarte. ' 

p). Technische Hochschule. 

Kiel. 

p. Raturwissenschaftlicher Yerein fiir 

Schleswig-Holstein. 

A. Sternwai’te. 

AB. Universitat. 

Konigsberg. 

AB. Konigliche Physikalisch - Okonomische 

Gesellschaft. 

Leipsic. 

pi. Annalen der Physik und Chemie. 

AB. Konigliche Sachsische Gesellschaft der 

Wissenschaften. 

Magdeburg. 

p. Raturwissenschaftlicher Yerein. 

Marbui’g. 

AB. Universitat. 

Munich. 

AB. Konigliche Bayerische Akademie der 

Wissenschaften. 

p). Zeitschrift fiir Biologic. 

Munster. 

AB. Konigliche Theologische und Philo- 

sophische Akademie. 
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Germany (continued). 

Potsdam. 

A. AstropLysikalisclie.s Observatorinm. 

Rostock. 

AB. Universitiit. 

Strasburg. 

AB. Universitiit. 

Tiibingen. 

AB. Universitat. 

Yfiirzbnrg. 

AB. Physikaliscb-Medicinisclie Gesellscbaft. 

Greece. 
Athens. 

A. jSTational Observatory, 

Holland. (See Netherlands.) 

Hungary. 
Bnda-pest. 

p. Konigl. Ungariscbe Geologisclio Anstalt. 

AB. A Magyar Tndds Tarsasag. Die Ungariscbe 

Akademie der Wissenscbaften. 

Hermannstadt. 

p. Siebenbiirgischer Verein fiir die Natur- 

wissenscbaften. 

Klausenbnrg. 

AB. Az Erdelyi Muzeum. Das Siebenbiirgiscbe 

Museum. 

Scbemnitz. 

p. K. Ungariscbe Berg- und Foi’st-Akademie, 

India. 
Bombay. 

AB. Elphinstone College, 

p. Royal Asiatic Society (Bombay Branch). 

Calcutta. ' 

AB. Asiatic Society of Bengal. 

AB. Geological Museum. 

p. Great Trigonometrical Survey of India. 

AB. Indian Museum. 

p. The Meteorological Reporter to the 

Government of India. 

Madras. 

B. Central Museum. 

A. Observatory. 

Roorkee. 

p. Roorkee College. 

Ireland. 

Armagh. 

A. Observatory. 

Belfast. 

AB. Queen’s College. 

Cork. 

p. Philosophical Society. 

AB. Queen’s College. 

Ireland (continued). 

Dublin. 

A. Observatory. 

AB. National Library of Ireland. 

B. Royal College of Surgeons in Ireland. 

AB. Royal Dublin Society. 

AB. Royal Irish Academy. 

Galway. 

AB. Queen’s College. 

Italy. 
Acireale. 

p. Accademia di Scienze, Lettere ed Arti. 

Bologna. 

AB. Accademia delle Scienze dell’ Istitnto. 

Catania. 

AB. Accademia Gioenia di Scienze Naturali. 

Florence. 

p. Bibiioteca Nazionale Centrale 

AB. Museo Botanico. 

p. Reale Istitnto di Studi Superioi'i. 

Genoa. 

p. Societa Ligustica di Scienze Naturali e 

Geografiche. 

Milan. 

AB. Reale Istituto Lombardo di Scienze, 

Lettere ed Arti. 

AB. Societa Italiana di Scienze Naturali. 

Modena. 

p. Le Stazioni Sperimentali Agrarie Italiane. 

Naples. 

p. Societa di Naturalisti. 

AB. Societa Reale, Accademia delle Scienze. 

B. Stazione Zoologica (Dr. Dohrn). 

Padua. 

p. University. 

Palermo. 

A. Circolo Mateinatico. 

AB. Consiglio di Perfezionamento (Societa di 

Scienze Naturali ed Economiche). 

A. Reale Osservatorio. 

Pisa. 

p. II Nuovo Cimento. 

p. Societa Toscana di Scienze Naturali. 

Rome. 

p. Accademia PontiScia de’ Nuovi Lincei. 

p. Rassegna delle Scienze Geologiche in Italia. 

A. Reale Ufficio Centrale di Meteorologia e di 

Geodinamica, Collegio Romano. 

AB. Reale Accademia dei Lincei. 

p. R. Comitato Geologico d’ Italia. 

A. Specola Yaticana. 

AB. Societa Italiana delle Scienze. 

Siena. 

p. Reale Accademia dei Fisiocritici. 
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Turin. 

p. Laboi’atorio di Fisiologia. 

AB. Reale Accademia delle Scienze. 

Venice. 

p. AteneO Veneto. 

AB. Reale Istitnto Veneto di Scienze, Lettere 

ed Arti. 

Japan, 
Tokio. 

AB. Imperial Univer.sity. 

p. A.siatic Society of Japan. 

Java. 
Buitenzorg. 

p. Jardin Botaniqne. 

Luxembourg. 
Luxembourg. 

p. Societe de.s Sciences "Maturelles. 

Malta. 
p. Public Library. 

Mauritius, 
p. Royal Society of Arts and Sciences. 

Netherlands. 
Amsterdam. 

AB. Koninklijke Akademie ran Wetenscbappen. 

p. K. Zoologiscb G enootscbap ‘ Natnra Artis 

Magistra.’ 

Delft. 

p. Ecole Polytecbniqne. 

Haarlem. 

AB. Hollandscbe Maatschappij der Weten¬ 

scbappen. 

p. Mnsee Teyler. 

Leyden. 

AB. University. 

Rotterdam. 

AB. Bataafscb Glenootschap der Proefonder- 

viudelijke Wijsbegeerte. 

Utrecht. 

AB. Pi’ovinciaal Geuootschap van Kunsten en 

W etenschappen. 

New Zealand. 
Wellington. 

AB. New Zealand Institute. 

Norway. 
Bergen. 

AB. Bergenske Museum. 

Christiania. 

AB. Kongelige Norske Pi’ederiks Universitet. 

Tromsoe. 

p. Museum. 

Trondhjem. 

AB. Kongelige Norske Videnskabers Selskab. 

Portugal. 
Coimbra. 

AB. Universidade. 

Lisbon. 

AB. Academia Real das Sciencias. 

p. Sec9ao dos Trabalbos Geologicos de Portugal. 

Oporto. 

! p. Annaes de Sciencias Natnraes. 

I Russia. 
I Dorpat. 

j AB. Universite. 

I Irkutsk. 
I 

p. Societe Imperiale Rnsse de Geogi’aphie 

(Section de la Siberie Orientale). 

Kazan. 

AB. Imperatorsky Kazansky Universitet. 

p. Societe Physico-Itlathematique. 

Kharkoff. 

p. Section Medicale de la Societe des Sciences 

Experimentales, Universite de Kharkow. 

KiefF. 

p. Societe des Naturalistes. 

Moscow. 

AB. Le Mnsee Public. 

B. Societe Imperiale des Naturalistes. 

Odessa. 

p. Societe des Naturalistes de la Nouvelle- 

Rnssie. 

Pnlkowa. 

A. Nikolai Hanpt-Sternwarte. 

St. Petersburg. 

AB. Academic Imperiale des Sciences. 

B. Archives des Sciences Biologiqnes. 

AB. Comite Geologique. 

p. Compass Observatory. 

I A. Observatoire Physique Central. 

[ Scotland. 
Aberdeen. 

AB. University. 

Edinburgh. 

p. Geological Society. 

p. Royal College of Physicians (Research 

Laboratory). 

p. Royal Medical Society. 

A. Royal Observatory, 

p. Royal Physical Society, 

p. Royal Scottish Society of Arts 

AB Royal Society. 

Glasgow. 

AB. Mitchell Free Library, 

p. Natural History Society, 

p. Philosophical Society. 

I Servia. 
Belgrade. 

p. Academie Royale de Serbie. 
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Sicily. (See Italy.) 

Spain. 

Cadiz. 

A. Institute y Observatorio de Marina de San 

Fernando. 

Madrid. 

p. Comisidn del Mapa Geoldgico de Espana. 

AB. Real Academia de Ciencias. 

Sweden. 

Gottenbnrg. 

AB. Kong]. Vetenskaps och Vitterkets SamMIle. 

Lnnd. 

AB. Universitet. 

Stockholm. 

A. Acta Matliematica. 

AB. Kongliga Svenska Vetenskaps-Akademie. 

AB. Sveriges Geologiska Undersokning. 

Upsala. 

AB. Universitet. 

Switzerland. 

Basel. 

p. Natnrforschende Gesellschaft. 

Bern. 

AB. Allg. Schweizerische Gesellschaft. 

p. Natnrforschende Gesellschaft. 

Geneva. 

AB. Societe de Physique et d’Histoii’e Katurelle. 

AB. Institut Rational Genevois. 

Lausanne. 

p. Societe Vaudoise des Sciences Ratui’elles. 

ReuchMel. 

p. Societe des Sciences Naturelles. 

Zurich. 

AB. Das Schweizerische Polytechnikum. 

p. Naturforschende Gesellschaft. 

p. Sternwarte. 

Tasmania. 

Hobart. 

p. Royal Society of Tasmania. 

United States. 

Albany. 

AB. New York State Library. 

Annapolis. 

AB. Naval Academy. 

Austin. 

p. Texas Academy of Sciences. 

Baltimore. 

AB. Johns Hopkins University. 

Berkeley. 

p. University of California. 

United States (continued). 

Boston. 

AB. American Academy of Sciences. 

B. Boston Society of Natural History. 

A. Technological Institute. 

Brooklyn. 

AB, Brooklyn Library. 

Cambridge. 

AB. Harvard University. 

B. Museum of Comparative Zoology. 

Chapel Hill (N.C.). 

p. Elisha Mitchell Scientific Society. 

Charleston. 

p. Elliott Society of Science and Art of South 

Carolina. 

Chicago. 

AB. Academy of Sciences. 

p. Field Columbian Museum. 

p. Journal of Comparative Neurology. 

Davenport (Iowa). 

f. Academy of Natural Sciences. 

Ithaca (N.Y.). 

p. Physical Review (Cornell University). 

Madison, 

p. Wisconsin Academy of Sciences. 

Mount Hamilton (California). 

A. Lick Observatory. 

New Haven (Conn.). 

AB. American Journal of Science. 

AB. Connecticut Academy of Arts and Sciences. 

New York. 

p. American Geographical Society. 

p. American Mathematical Society. 

p. Amei-ican Museum of Natural History. 

p. New York Academy of Sciences. 

p. New York Medical Journal. 

p. School of Mines, Columbia College. 

Philadelphia. 

AB. Academy of Natural Sciences. 

AB. American Philosophical Society. 

p. Franklin Institute. 

p. Wagner Free Institute of Science. 

Rochester (N.Y.). 

p. Academy of Science. 

St. Louis. 

p. Academy of Science. 

Salem (Mass.). 

p. American Association for the Advance¬ 

ment of Science. 

AB. Essex Institute. 

San Francisco. 

AB. California Academy of Sciences. 
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United States (continued). 

Wasliington. 

AB. Patent Office. 

AB. Smithsonian Institution. 

AB. United States Coast Survey. 

B. United States Commission of Fish and 

Fisheries. 

AB. United States Geological Sni'T'ey. 

United States (continued). 

Washicgton (continued). 

AB. United States Naval Observatory. 

p. United States Department of Agiicultnre. 

A. United States Department of Agriculture 

(Weather Bui’eau). 

West Point (N.Y.) 

AB. United States Military Academy. 
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Adjudication of the Medals of the Royal Society for the year 1898, 
by the President and Council. 

The Copley Medal to Sir William Huggins, F.R.S., for his Researches in 

Spectrum Analysis applied to the Heavenly Bodies. 

The Rumford Medal to Oliver Joseph Lodge, F.R.S., for his Researches in 

Radiation and in the relations between Matter and Ether. 

A Royal Medal to Walter Gardiner, F.R.S., for his Researches on the 

Protoplasmic Connection of the Cells of Vegetable Tissues and on the Minute 

Histology of Plants. 

A Royal Medal to the Rev. John Kerr, LL.D., F.R.S., for his Researches on 

the Optical Effect of Electrical Stress and on the Reflection of Light at the Surface 

of a Magnetized Body. 

The Davy Medal to Johannes Wislicenus, For.Mem.R.S., for his Contributions 

to Organic Chemistry, especially in the Domain of Stereochemical Isomerism. 

The Darwin Medal to Karl Pearson, F.R.S., for his work on the Quantitative 

Treatment of Biological Problems. 

The Bakerian Lecture for 1899, “The Crystalline Stmcture of Metals,” was 

delivered by Professor J. A. Ewing, F.R.S., and Mr. W. Rosenhain on May 18, 

1899. 

The Croonian Lecture for 1899, “ On the Relation of Motion on Animals and 

Plants to the Electrical Phenomena which are associated with it,” was delivered by 

Professor Burdon Sanderson, F.R.S., on March 16, 1899. 
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PHILOSOPHICAL TRAx^SACTIONS. 

I. On the Co7inexion of Algebraic Functions ivith Automorpliic Fimctions. 

By E. T. Whittaker, B.A., Fellow of Trinity College, Cambridge. 

Communicated by Professor A. R. Forsyth, Sc.D., F.P.S. 

Received April 23,—Read May 12, 1898. 

It is well known that if 

§ 1. Fntrod'uction. 

f{u, «) = 0 . (1) 

is the equation of an algebraic curve of genus {genre, Ceschlecht) zero, then u and 2 

can be expressed as rational functions of a single variable t. If, however, the genus 

of the curve (1) is unity, u and 2 can be expressed as uniform elliptic functions of a 

variable t. 

The natural extension of these results was effected in 1881 by the discovery of 

automorphic functions; whatever be the genus of the curve (1), u and 2; can be 

expressed as uniform automorphic functions of a new variable. 

This result is of great importance in the study of algebraic functions. Instead of 

taking z as the independent variable, and studying functions of « on the Riemann 

surface corresponding to the equation (1), we can take t as the independent variable, 

and consider the functions in the plane of L We thus avoid the multiformity of the 

problem, and can apply the simpler and more developed theory of uniform functions. 

Comparatively little of the published work on automorphic functions, however, has 

been written in connexion with the uniformisation of algebraic forms ; in describing 

either groups applicable for the purpose, or the analytical connexions which exist 

between u, z, and t. The only automorphic functions known hitherto which have 

been applied to uniformise forms whose genus is greater than unity, are those given 

by certain sub-groups of the modular group (which will only uniformise special 

curves, containing no arbitrary constants), and those in vi^hich the fundamental 

polygon is the space outside a number of non-intersecting circles. These latter have 
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MR. E. T. WHITTAKER ON THE CONNEXION OF 2 

been studied by Schottky,'" Weber,! and Burnside,;|; and are capable of uniformising 

any algebraic form. As, however, the fundamental polygon is multiply-connected, 

the Abelian Integrals of the first kind, and the factorial functions associated with the 

ajo’ebraic form, are not uniform functions of the new variable. 

With regard to the analytical connexion between the uniformising variable t and 

the variables u, z, of the algebraic form, Poincare proved that if 2 is an automorphic 

function of t, then {t, z] is another automorphic function of the same group, where 

{t, z} is the Schwarzian derivative, t therefore satisfies a difierential equation of 

the form 
{t,z} = 4>{u, z), 

where (Jj (u, z) is some rational function of u and 2. Schottky and Weber have 

determined (p [u, z), save for a number of undetermined constants, for the groups 

found by them, and Klein § has obtained more general results, applying to any 

algebraic equation, but with a certain number of undetermined constants left in <^. 

The problem has been formulated by Klein as one of conformal representation. 

The algebraic form which is given by 

f{i(, 2) = 0 

can be represented on a lliemann surface of class ^3, so that, corresponding to every 

pair of values {u, z) of the form, there is a place on the surface. By drawing 2p cuts 

we can make this surface simply-connected. Now let 2 be regarded as a function 

of a new variable t, having the following properties :— 

1°. The dissected Biemann surface is to be conformally represented on a plane 

area in the ^-plane, bounded by Ajj curvilinear sides (namely, the conformal repre¬ 

sentations of the cuts, each cut giving two sides). 

2°. Of the two sides of the i-area which correspond to any cut, one is to be 

derivable from the other by a projective substitution 

[f 
\ ’ + dj ' 

3°. The group formed by the combination and repetition of these 2p substitutions 

is to be discontinuous. 

A¥hen a variable t has been found satisfying these conditions, u and 2 will be uniform 

automorphic functions of t; and we know by the existence-theorem of Poincare and 

Klein that such a variable does exist, although the existence-theorem does not 

connect it analytically with 2 and u. The primaiy result of the present paper is, 

that the uniformisation of any algebraic form can be effected by automoiq^hic func- 

• * * * § ‘Crelle,’voL lOI, 1897, p. 227. 

t ‘ Goltinger Nachrichten,’ 1886, p. 359. 

t ‘ Proc. Loud. MatE. Soc.,’ vol. 23, 1891, p. 49. 

§ ‘ Jaliresbei’icEt der Deutsclien Llatliematiker-Yei'eiDiguug,’ 1894-5, p. 91. 
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tions of certain kinds of groups, which are described in § 3. These are either groups 

whose generating substitutions are of period two, or sub-groups of such groups, 

This theorem is made to depend on the well-known theorem that any algebraic form 

can, by birational transformation, be represented on a Riemann surface with only 

simple branch-j)oints. A method is given for the division of the Aplane into 

polygons, corresponding to a group generated by real substitutions of period two, 

whose double points are not on the real axis ; and the genus of the group is found. 

The group is of the kind called by Poincare Fuchsian; the polygons into which the 

plane is divided are simply-connected, and cover completely the half of the Aplane 

which is above the real axis. P^esults are deduced relating to the possibility of 

uiiiformising any algebraic functions by automorphic functions of such groups, and 

the analytical connexion of the uniformising variable with the variables of the form. 

In § 2, certain pi'operties of substitutions of period two are found, which are of use 

later. These substitutions are for brevity termed “self-inverse'' substitutions, owing 

to the fact that they are the same as their inverse substitutions. 

In § 3, a method is given for carrying out the division of the ])lane into polygons, 

corresponding to a group generated by a given set of self-inverse substitutions. It is 

proved that the genus of the group is zero, although the group has sub-groups whose 

genus is greater than zero. 

In § 4, the automorphic functions of the group are introduced. Since the group is 

of genus zero, these automorphic functions are all rational algebraic functions of one 

of them ; the conformal representation of the polygons in the Uplane on the plane of 

this variable is considered. It is shown that the functions which have been obtained 

solve the following problem of conformal representation :—-Draw from any point P) 

in the jilane of a variable 2, lines (not necessarily straight) to any other points 

A, B, C. . . . This set of rays is to be regarded as the boundary of the s-plane, and 

the problem is, to conformally represent the z-plane, thus bounded, on a simply- 

connected region in the plane of a variable t, in such a way that each of the lines 

PA, PB, PC, . . . gives rise to two distinct lines of the boundary of the Uregion ; and 

one of these lines is derivable from the other by a projective substitution 

’ ct + dj ' 

The uniformisation of algebraic functions is afterwards made to depend on this 

problem of conformal representation. 

In § 5, the analytical relation between the variables « and t is discussed. It is 

shown that they are connected by a differential equation which is a particular case 

of what has been named by Klein the “ generalised Lames equation,” and has been 

connected by Bocher with the differential equations of harmonic analysis. 

In § 6, the functions which have been obtained are applied to the uniformising of 

algebraic forms. The differential equation in the hyperelliptic case is found to be the 

B 2 
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same as Klein’s “ unverzweigt ” differential equation for hyperelliptic forms, save 

that a number of constants left arbitrary in Klein’s equation are found to be zero. 

The conditions that 2/9 arbitrarily given substitutions may generate the group corres¬ 

ponding to a hyperelliptic equation of genus jj are found. 

In § 7, the consideration of the constants left undetermined in the differential 

equation of § 5 is resumed. If an algebraic form of genus p be given, the uniformising 

variable is one of variables, which are here termed “ quasi-imiformising.” Any 

quasi-uniformising variable affords a solution of the problem of conformally repre¬ 

senting the Ptiemann surface of the form on a plane area vPose sides are derived 

from each other in pairs by projective substitutions. The differential equations 

connecting the uniformising witli the quasi-uniformising variables of a given algebraic 

foi'in are obtained. 

§ 2. Properties of Self-inverse Substitutions. 

A projective substitution of a variable t is denoted by 

where we can always suppose that ad — 6c = 1. 

The substitutions, from which the groups considered in this paper are generated, 

are such that 
ct -j- f/ = 0. 

Such a substitution is elliptic and of period two ; its multiplier is — 1, and it is its 

own inverse substitution. For brevity we shall call such substitutions self-inverse.” 

Thus, if S denotes any self-inverse substitution, we have 

S“ = 1, and S = S-I 

If T he any substitution, and S be a self-inverse substitution, then T“^ST is a self¬ 

inverse substitution. For the multiplier of a substitution is unaffected by the trans¬ 

formation which chano’es S into T“'ST. 

If there be any number of self-inverse substitutions, and a, substitution be formed 

from them, then the substitution inverse to this is formed by taking the same substitu¬ 

tions in the reverse order. For if S^,, S,, . . ., are self-inverse substitutions, then 

obviously 

So if 

then 

. . . S„S,S„.S,,S,S.S,S,S, = 1 

T =:• S,S,... S„S.S„, 

T-' = SA.B.... S,S,S,, 
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The group formed hy the combination and rep)etitio7i of any tivo p>rojective substitu¬ 

tions can be obtained as a self-conjugate sub-group of a group generated by three self¬ 

inverse substitutions. 

For let 

(f 
^ ’ i.t + s, / 

and 
u.y + (3-1 

id + \ / 

be the given substitutions ; let 

S, - t, 
('d + 

cy. ^2 = b 
a.y + 1)., 

Cot ((o 

a.y + h.. 

’ cJ — «... 

be three self-inverse substitutions ; then we have 

and 

(aiC(.. + fibi) t -f (ftAi — afi.p 

- a.fP) t + {a^Uo + h^cl) 

{a./Cs + ^ + (»-A — 

(aoC-i — t + + bed ■ 

The equations to be satisfied by the coefficients of S3, in order that we may have 

reduce to 

SgS, = T,, and S3S2 = T9, 

(«! — 81) «3 fi- yfi + ^iCg = 0 

(a.2 — 82) fflg 'y.fs + A2C3 = 0 

These equations always admit of a solution for the ratios ag : 63 : C3, if the substitu¬ 

tions Tj and To are distinct. Thus, the substitution S3 is determinate ; and then S, 

and So can be uniquely determined from the equations 

S, = S3T., S.2 = S3T.2. 

[Added June 2. In view of the subsequent limitations to substitutions for which 

-b be is negative, it should be noticed that these equations may give either a positive 

or a negative value for cd -f- 6c.] 

Now let G denote the group formed from the generating substitutions Sj, So, S3, 

and let H denote the group formed from the generating substitutions Tj and To. 
As Ti and T2 are themselves substitutions of the group G, the group H will be 

either the same as G, or a sub-group of it. We shall now show that H, is a self¬ 

conjugate sub-group of G. 

Since S^ = 1, and S^. = S,7b any substitution of G can be represented in the form 

S = S^S.^Sj.S,. . . S,,, v/here 2^’ q, r, s, . . . v = 1, 2, 3. 
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But 
Q Q _ '•p-l'T' Q Q _ T-' 
^1^2 — -Ai -A-J, D1O3 — i, , 

QQ _ 'T-l QQ _ 'T' 
^2^53 - ±2 , ^3^1 — -Ai, 

5351 TT^Tj, 

5352 = T,. 

Therefore every yjair S,,S, can be expressed in terms of Tj and To. 

So if the number of substitutions in % is even, the whole substitution can be 

expressed in the form 

V = TrrfTjTI . . • 

i.e., it is a substitution of the group H. 

But if the number of substitutions in S is odd, there will be one substitution S,, 

left at tlie end unpaired. Now 

so m any case 

s. = Tr’S3, S2 - T2-tS3, S3 - S3, 

S = TtTfTiT?2 . . . Tr.S.3. 

So is always eitlier a sul)stitution of H, or else the ])roduct of S3 and a substitution 

of H. 

Now let S/i be any substitution of H, and S,, any substitution of G. 

Then Sy^S/,S^ evidently contains, when decomposed into the substitutions S,, So, S3, 

an even number of them ; for S/^ contains an even number, and Sy' and Sj, each 

contain the same number. Therefore Sy’S/,S„ is a substitution of the group IT ; which 

establishes the required result, namely, that H is a self-conjugate sub-group. 

As an example of this theorem, consider tlie modular group generated by the 

substitutions 

(b ^ + 1) and (^b — 

This is a self-conjugate sub-group of the group formed from the three self-inverse 

substitutions 

- 1), (b-), (b - t). 

As another example, take the group which occurs in the theory of elliptic functions, 

which is formed from the generating ’distitutions 

(b t 4- 2iv^), (b t + 2w.,). 

This is a self-conjugate sub-group of the group formed from the three self-inverse 

substitutions 

(b c — 2'«Cj — t), (b c — 2u)2 — t), (b c — t) 

where c is an arbitrary constant. 
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Ill this exceptional case, an arbitrary constant, c, is introduced. Ihe reason is, 

that the quantities «! — 8i, — §2) Yu Ji-, all vanish, so the two equations for deter¬ 

mining CG '.h-i'.Ci reduce to the single equation 

C3 = 0. 

Any group of substitutions ivhicli is formed from (^ + l) self inverse substitutions 

as generating substitutions, alivays contains a self-conjugate sub-group luhich can be 

generated from h substitutions. 

For let G he a group formed from (Z; -{- 1) self-inverse substitutions Sj, S2, S3,... S^.+ i. 

Then, as before, any substitution of G can be written in the form 

Now let 

Then 

s = s,s s,,s,s,... s,. 

±1 - -L2 - ^/u + 1^^25 • • • -L/r - 

S,S, = SA-.iS..iS, = lf% 

Therefore, if the number of substitutions in S is even, % can be expressed in 

the form 
V _ T’-rp 'T'-rp '^p 

SO N is a substitution of the group generated from Tj, T2, . . . d\., 

If the number of substitutions in 2 is odd, we have, therefore. 

and as 

we have, in this case, 

2 = T;T^... T^S,, 

Q _ T-iQ 10,. — i,. 

v* _ '■ps'T-iQ! 
^ — J. pX q • • • O/; q. 1 • 

So any substitution of the group G can be expressed either in the form 2^, or in the 

form 2^,Si+i, where 2^, is a substitution of the group H, which is formed from 

Ti, To, . . . Tj. And as in the case k = 2, which has been already discussed, we see 

that H is a self-conjugate sub-group of G. 

[Added June 2, 1898.—H may, of course, coincide with G; I am indebted to 

Professor Burnside for the example, 

Sr = 1, Si = 1, Si = 1, (S.S2S3)^ = 1, 

in which this happens.] 

To find the conditions that a group H, generated from any k arbitrary projective 

substitutions, Ti, To, . . . Tj., may in this way be a self-conjugate sub-group of a group 

G formed from (Z: -j- 1) self-inverse substitutions. 
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Let 

Let 

Then 

/ M 

V ’ 7./ + K) 

S i'+i — 

at + h\ 

ct — «/ 
and let S, s,. +1 T, 

S, 
{go.,. + 57,,) t + + h g,.)\ 
(c«,. - «7d t + {cl3, — a S,)/ 

If this is a self-inverse substitution, we have 

a (a,. — 8,.) + + c/3,. = 0. 

Thus the coefficients of the substitution S^+i must satisfy the conditions 

(«! — 8i) a + yib + /3iC = 0" 

(a, — 82) Cl -j- 72^ d“ = 0 

. 

(%• ~ Si) + y^b + /3i,.c — 0 ^ 

The elimination of a :b : c, from these equations gives {k — 2) conditions between 

the coefficients of the substitutions T. 

[Added June 2, 1898.—These conditions are sufficient, but are not actually neces¬ 

sary, as it may be possible to generate the group from a different set of substitutions, 

for which these conditions are satisfied, although they may not be satisfied by 

T.T2, ...T,.] . 

We shall, later, take k = 2'p, and show that these (2p — 2) conditions must be 

satisfied by the coefficients of 2j9 substitutions, whose group gives rise to automorphic 

functions which uniformise a hyperelliptic form of genus p. 

§ 3. The Division of the t-plane, corresponding to a group formed of Self-inverse 

Substitutions with Real Coefficients. 

A method will now be given for dividing the i-plane into regions, corresponding to 

a group generated from a given set of self-inverse substitutions. These regions are 

to be derivable from each other by applying the substitutions of the group. 

Let 

ct — a 
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be a self-inverse substitution with real coeflBcients a, h, c. Then the substitution 

transforms real values of t into other real values, so the real axis in the i-plane is 

unaffected by the substitution. If (cr-j- he) is negative, it is easily seen that the part 

of the ^-plane above the real axis transforms into itself; if be) is positive, the 

part of the ^-plane above the real axis transforms into the part below the real axis. 

We shall suppose that our groups are generated only from the former kind of substi¬ 

tutions, so we need only consider the half of the ^-plane above the real axis. 

Assuming then throughout that {a^-\-he) is negative for the substitution considered’ 

it is obvious that the double points of the substitution are conjugate complex 

quantities; for the double points are the roots of the equation 

et"^ — 2at — 6 = 0. 

Now draw any circle through the double points of the substitution. This circle cuts 

the real axis orthogonally. 

Then the substitution transforms the parts of the t-plane outside and inside this 

eirele into eaeh other. 

For, let the double points be 

^ = y + ih, and t — y — ih, 

and let t' be the point into which any point t is transformed. Then the substitution 

may be written 

t' — y + ih   t — y -\- ih 

t' — y — ih t' — y — ih 

This shows that the angle subtended by t at the double ])oints is changed into its 

supplement by the transformation ; and therefore the circumferences of all circles 

through the double points transform into themselves, the part on one side of the 

double points transforming into the part on the other side of them. By considering 

the whole plane as made up of the circumferences of circles through the double 

points, we obtain the theorem. 

Now consider the infinite group generated from a number [n + 2) of these self¬ 

inverse substitutions. 

Cyt — 

which satisfy the relation 

b»2 — [t, 
+ b.i' 

c4 — «„ 
s,. !^ ~t ^L+2 

V Cj+2^ n+'l. 

S1S2S3. . . S„,,2= 1. 

If n — 1, we find that it is inqjossible to satisfy this relation by self-inverse 

substitutions with conjugate complex double points ; and if u = 2, it will be seen later 

VOL. CXCII.—A. C 
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that the method about to be given for the division of the plane into regions breaks 

down ; but if n > 2, the relation can he satisfied, in an infinite number of ways, by 

substitutions of the required kind. A worked-out example is given below. 

[Added June 2, 1898.—The possibility of the construction given below depends on 

the satisfying of certain inequalities among the constants of the substitutions ; as in 

general, when the construction described is carried out, the sides of the polygon may 

cross each other.] 

Now let Di, D2,. . . D„+2 be those double points, of the substitutions Sj, Sj, S3, .. . S,i+2 

respectively, which are above the real axis. 

Let Cl be the point derived from 1)^+2 by applying the substitution Si ; or, as we 

can write it, let 

Cl = Si (D„,2). 

Similarly, let 

C2 = S2 (Cl), C3 = S3 (C2), . . . , C,.,1 = S,.,1 (CJ. 

Then 

C„+1 = S,,+iS„. . . S2S1 (D„+2) 

= S,,+2 (D^+o), since S1S2 . . . S,,+2 = L 

— D',1 + 2* 

Now, by the last theorem, any point, and the point which is derived from it 

by a self-inverse substitution, lie on a circle through the double points of the 

substitution. 

Therefore D„4.2DiCi lie on a circle orthogonal to the i-eal axis. 

Similarly C1D2C2, C2D3C3, . . ., C,iD„+iC,j+i, all lie on circles orthogonal to the 

real axis. 

Therefore a curvilinear ^jolygon can he formed, whose {n + 1) sides are arcs of 

circles orthogonal to the real axis and pass through the points Dj, D2, D3, . . . D„+i, 

respectively, and ivhose corners are the points I)„+2) Ci, C2, . . . C,j. 

Now suppose we transform the polygon by the substitution S„ where r = 1, 2, 

. . . (n-|- 1). We obtain another polygon, likewise formed of arcs of circles 

orthogonal to the real axis, and having contact with the original polygon along the 

side C,._iD,,C,.. The side of this new polygon which is the conformal representation 

of C^_iD^C^ passes through the double points of the self-inverse substitution S^.S^S,.; 

and on applying this substitution to the new polygon, we obtain a third polygon, 

having contact with the second along the side which is the conformal representation 

of Cp_iD^C^. In this way we can, as every new polygon is formed, surround it with 

other polygons, each having one side in common with it. 

Now consider what happens at any angular point of the polygon, say D,j+2) when 

we derive polygons in this way. If we derive a fresh polygon by applying the 

substitution Si, the derived polygon adjoins the original one along the side D„+2Ci. 

It now we derive a fresh polygon from the original one by applying the substi- 
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tiition S1S2, this second derived polygon adjoins the first along its free side 

through D,,i+2- If again we derive a fresh polygon from the original one by 

applying the substitution 818,83, this third derived polygon adjoins the second 

along its free side through Proceeding round 1)^+2 this way, we obtain 

at last a polygon which is derived from the original one by the substitution 

8„,iS,... . 82Si8.,i8,, ... S281. 

But since 
8»+iS„. . . 82S, = S,+2, and S'^+2 = 1, 

this is the identical substitution; in other words, the 2[n polygon as we go 

round A is the original polygon. 

In the same way we can prove, that at every corner 2 (tz + 1) polygons meet. 

The sides of the polygons are all ^lortions of circles orthogonal to the real axis. As 

we approach the real axis, the polygons become smaller and more crowded together. 

If from the original polygon we derive others, hy transforming it loith all the 

substitutions of the group generated hy 8], 82, . . . 8,1 + 0, loe cover the half-plane once 

and only once. 80 the original polygon is a “ fundamental region ” for the group of 

substitutions 

In the annexed figure, the polygons in a portion of the plane are drawn to scale 

for the group formed from the substitutions 

3 

253^ - 2061\ 

33^ - 253 / ’ 

Q _ 132i - 1675\ 28U - 4786\ 

“ V ’ 11^ - 132 / ’ ~ V’ lit - 281 j ’ 

which are self-inverse substitutions satisfying the required relation 

8,8.283848386 = 1. 

Here n, = 4 ; the double points are given by 

D, = 5 + 7i, D.2 = 2 i, D3 = 5 4- 2i, D4 = 1)5= 12 -f- x/jji- 

The vertex at the intersection of the 8, and 82 circles is at the point t = 1 i. 

8ince the polygons are conformal representations of each other, they are equi¬ 

angular to each other. 

From the construction of the polygon, all the angular points are equivalent in 

respect of the group. 

The sum of the angles round any vertex is 27r; but these angles are the conformal 

representations of the angles of a polygon, taken twice. Hence the sum of the angles 

of any polygon is n. 
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Let t=u^iv, if we measure the distance between two points, in the non- 

r I dt I 
Euclidian sense, by I taken along the circle orthogonal to the real axis and joining 

the points, then we can easily prove that the lengths of corresponding sides of the 

polygons are in this sense all equal; if we measure the area of any region by 

taken over that region, we can show that the areas of all the polygons are also in 

this sense equal; and the areas and lengths of corresponding regions and lines in the 

polygons are all equal. The substitutions by ivhich the polygons ai'e derived from 

each other are, in this non-Eiiclidian sense, simple displacements, which leave their 

dimensions unchanged. All the theorems of Lobatchewski’s geometry hold if, where 

Lobatchewski uses the word “ straight line,” we understand “ circle orthogonal to 

the real axis.” 

Thus, in non-Euclidian phraseology, we can say that the network of polygons has 

been obtained by drawing a rectilinear polygon of (n + 1) sides, deriving new poly¬ 

gons from it by turning the polygon through an angle tt round the middle points of 

its sides, and deriving fresh polygons from these by the same process, until the whole 

non-Euclidian plane is covered. This enables us to see that our figure is the naturcd 

extension of the division of a ivhole plane into parallelograms, so familiar in the theory 

of elliptic functions. For that division can be obtained by drawing any rectilinear 

triangle in the Euclidian plane, deriving fresh triangles by turning it through an 

angle tt round the middle points of its sides, and deriving new triangles from 

these by the same process, until the whole Euclidian plane is covered. The groups 

for which the elliptic functions are automorphic are sub-groups of the groups so 

obtained ; and similarly the groups, whose automorphic functions are required in the 

uniformisation of algebraic forms of genus higher than unity, are sub-groups of the 

group we have found. The reason why we have to pass from Euclidian to non- 

Euclidian geometry is, that in the Euclidian plane it is impossible to obtain a recti¬ 

linear figure with more sides than three, the sum of whose angles is tt. 

If to the original polygon we apply the substitution S.„+i, the point is 

unchanged, and the arcs D,j+2D„+i and D„+iC,i are transformed into each other. So 

the parts of the boundary of the polygon which correspond to each other in the 

transformations of the group are D„+2D,j+i to C,jD„+i, C^D,, to . . ., CiDj to 

E,i+2Di> respectively. If now we suppose the polygon lifted up from the plane, and 

these corresjjonding arcs pieced together, we obtain a simple closed surface, without 

multiple connectivity. 

Therefore the genus (genre, Geschlecht) of the group (as defined by Poincare) is 

zero. The group however may have, a,nd will in fact be proved to have, sub¬ 

groups whose genua is greater than zero. 
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§ 4, The Automorphic Functions of the Group. 

i^’i'om the fact which has jnst been proved, that the genus of all groups of the 

kind v/e have found is zero, we know that the algebraic relation between any two 

automorphic functions of the group is of genus zero ; therefore all the automorphic 

functions of the group can he expressed as rational functions of a certain one of them. 

We shall denote this one by 2. 

First, let us see what degree of arbitrariness there is in the choice of the function z. 

If a, b, c, d, are any four constants (which can without loss of generality be taken 

to satisfy the relation ad — he = 1), then 

az + b 

cz + d 

is another such, function as 2. Hence the function 2 contains three distinct arbitrary 

constants. 

2 takes every value once, and only once, in each polygon of the figure. The three 

arbitrary constants may be taken to be the place of its zero, the place of its infinity, 

and a multiplicative constant. 

Now consider the conformal representation of a t-polygon on the z-plane. 

The function 2 takes every value once in the polygon ; therefore the conformal 

representation of the polygon will cover the whole 2-plane. Also, 2 takes the same 

value, say at each of the corners of the polygon ; suppose that 2 takes the 

values Ci, c..) 63, . . . e,i+i, at the points D,, Dj, D3, . . . D,j+i, respectively. 

As t describes the boundary of the polygon, beginning at D„+2, 2: begins with the 

value c„+2 and varies until, at Di, the value Cj is reached ; then, retracing the same 

series of values, 2 returns to the value 6^+2 at C]. Then at D2 the value eo is reached, 

and at C2 2 takes the value 6,^+0 again ; and so on round the polygon. 

Thus the conformal representation of the boundary of the polygon is a series 

of lines (not necessarily straight), radiating from the point e-,+2 to the points 

03,. . „ in succession. The polygon corresponds to the whole z-plane, ivith 

this regarded as boundary. tSmall arbitrary variations in the form of the lines 

radiating from e.^^o to c,, e.,, . . . e„+i, merely correspond to small arbitrary variations 

in the boundary of the polygon. 

Thus we see the nature of the solution of the problem: To conformally represent the 

whole plane of a, variable 2, bounded by a set of finite lines radiating from a point, on 

a curvilinear polygon in the plane of a variable t; this polygon being the fundamental 

region of an infinite discontinuous group of real projective substitutions of the 

variable t, and 2 being an automorphic function of the group. 

We may note that dz/dt is zero at each of the double points. For if t and t' are 

two points very near a double point, which are transformed into each other by the 

substitution corresponding to the point, we have approximately 

dt' = — dt. 
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Thus dz/dt has values equal in magnitude, but opposite in sign, at the points 

t and t'; and therefore, making t and t' to coalesce in the double point, dz/dt is zero 

at the double point. 

Let us now enumerate the constants at our disposal, in order to see the corre¬ 

spondence between the arrangement in the 2:-plane and the group of substitutions. 

The ^-figure is determined by n + 2 self-inverse substitutions. Si, S2, . . . S,j+2, 

satisfying the relation 

S1S2S3 . . . S„ + 2 = 1.(!)• 

There are three real constants, a, b, c, in each substitution, 

relation 

+ 6c = — 1, 

But by reason of the 

these three are only equivalent to two. Thus from the {n + 2) substitutions we 

get (2?^ + 4) real constants. 

The relation (1) defines three of these constants in terms of the rest. Also, this 

group is not essentially different from one which is obtained by transforming it with 

any real substitution, which shows that three more of the constants are non-essential. 

So there are altogether {2n — 2) essential real constants involved in the ^-figure. 

Now considering the 2;-plane, there are 7i 2 points Cj, 62, ... e,i ^21 and each of 

these is defined by two real co-ordinates, giving 2n 4 as the number of real 

constants. But we can make a homographic transformation of the plane, so as to 

transform any three of the points into three arbitrary points. This shows that 6 of 

the constants can be disregarded as non-essential. So we have (2n — 2) essential 

constants in the 2-figure. 

Hence the number of essenticd constants is the same in the z-fgure as in the 

t-figure. 

[Added June 2, 1898,—This does not in itself prove that for every 2-figure there 

exists a corresponding ^-figure; but the general existence-theorem of Poincare and 

Klein can be applied to complete the proof.] 

Hitherto we have derived the 2-figure from the t-figure. The next section is 

chiefly concerned with the converse problem of deriving the Cfigure from the 

2-figure. 

§ 5. The Analytical Relations betiveen 2 and t. 

The analytical relations between 2 and t are of two kinds; (a) those which express 

2 ill terms of t and the constants of the substitutions, and {A) those which express 

t in terms of 2 and the quantities Ci, €2, .. . e.^ + 2- 

The Thetafuchsian series of Poincare solve the first problem for all classes of 

automorphic functions. We shall therefore only discuss relations of the kind (/3). 

As any quantity of the form {at + b)l{ct -fi cV), where a, 6, c, d, are arbitrary real 
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constants, is a solution of the problem (/3) equally with t, we shall expect t to be 

given by a differential equation of which the general integral is [at + h)l{ct + d) ; 

in other words, by a differential equation of the form 

z} = R(2;), 

where E, [z] is some function of 2, aijd 

^ ^ (dzidty ^ (dzjdty 

is a Schwarzian derivative. 

As [t, z} is unaltered by a change of t into {at + h)/{ct + d), R (2) is an auto- 

morphlc function of the group, and therefore R (2) is a rational function of z. 

We have to find R (2). 

Considering the conformal representation, we see that 2 and t are regular functions 

of each other, except near the points 2 = Cj, C2, . . . e.^+o, co. Hence, except at these 

special points, 2} is a regular function of 2, and we shall not get an infinity of 

R (2). As 2 is a uniform automoiqDhic function of t, — is infinite only at 2 = 00. 

Near 2 = 00 (supposing for the present that no one of the quantities Ci, Co, .. . 

is infinite), 2 and t are uniform functions of each other, so 

2 == y—-7 h -{■ c {t — ty where a is not zero. 
t 

This gives 

Hence at 2 = 00, ^ 2} must be zero to at least the order 

Near 2 = c,., 2 is a uniform function of t, but dz/dt is zero. So near this point, 

z — e, = c {t — tof d {t — tof + . . ., 

where c is not zero, since t has at the point a simple branch-point, considered as 

a function of 2. 

This gives 

2 ~ 16cH^ - t,y + • • • — 16 (0 - ef + • • • 

Thus the only infinities of the rational function R (2) are at the points Cj, 6-2,. ■ 

and these points are poles of the kind just found. 

Hence 

R(2) = -a-"s , 
r=i y - 

+ 
h+2 

V 

r=:l 

^)l + 2 j 
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where P (2) is a polynomial in 2, and a’s are constants. Now at 2 = 00 we must 

have a zero of at least the orcler-y. Hence P (2) = 0 ; and since near 2 = 00, R (z) 

can be expanded in the form 

n+2 / 

Pv (z) — -/e S ( ,2 4- -f + . ■ 
r=i \ ^ r=l 

\ \ I I I 1 \ 

by equating to zero the coefficients of—, —, and —, respectively, we obtain 

n+2 

N a,.. — 
r=l 

0, 

n+2 

V 
r=l 

a+2 

V 
)■=! 

cL.e, = — 
3 (n +^) 

^ 16^’ 

a,,ey = 
a+2 

— A V f 
r=l 

These conditions enable us to write R (2) in the form 

p _ .s 1 , 3 - (^ + ^ + C/" ^ + . . . + 
(Z) — 1 tj X2 -Tie 

r=l(« - CT (2 - Cl) (s - C2) . . . (2 - e„+2) 

where Ci, c.2, . . . c,i_i are constants as yet undetermined. 

Hence the requh'ed analytical relation beftveen t and 2 is 

'll d* 2 
JL 5 / 'y\ - N' - -I- 

{n + 2) 2” + • 2” ^ + Ci2’' ^ + ... + c„_i 

(2 - Cl) (2 - Cg) ... (2 - e„+2) 

It will be seen that this is the differential equation for the quotient of two 

solutions of a linear differential equation of the second order with (n + 2) singu¬ 

larities, at each of which the exponent-difference is Such linear differential 

equations have been studied by Klein,"^ as being the generalisation of Lame’s 

equation; and Bocher’s book, ‘ Ueber die Reihenentwickelungen der Potential- 

Theorie’ (Leipsic, Teubner, 1894), is chiefly concerned with them. Bocher proves 

that the differential equations of harmonic analysis are limiting cases of them. 

We can trayisform this equation to a simpler form. 

Put 
C dz 

~~ J v/(2 - Cl) (2 — c,) ... (2 — c^+a) ’ 
w 

so w is a known function of 2. 

VOL. CXCII. 

* ‘ Gottinger Nachricliten,’ 1890, pp. 85-95. 

D 
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Then the differential equation becomes 

Hb ^ ^ 2e, .2" ' + “ + cZ22" * + ... + <_i, 

where c^i, do, . . . d,,,_i, are new undetermined constants replacing the c’s. 

This can be written 

^ — S (n + 1) dz/dw + “ + . . . + Ln-i, 

1 ^ .. n — 2 1 

= = 8 (n + 1) ^5^^* + + ■ • • + 

tr = {z — ei) {z — Co) . . . {z — e,,+o), 

or 

(i)7 

where 

arid where k^, ko, . . . k,i_i are new undetermined constants, replacing di, c^,. . . <:4-i- 

Ifzh .as its injiyiity at a double point of one of the substitutions, we get a slightly 

different form of the equation. 

In this case, one of the e’s is infinite. Let 6,^+2 = o®- Then, near z = oo, the 

expansions are of the form 

z = 
{t - h) 

2 T* . . . and II (z) — -f- . . . , 

whence, by the same reasoning as before, M^e find that 

/l+ 1 
i {t, z} = A 2 

Put 

L_ 3 — wz” ^ ^ + • • • + C»-1 

,.= 1 (z - e,.f ^ ® (z - ej (z — e.) • ■ • (2 — e„+,) 

dz 
IV 

=f v/(z - ek) (z - e.) ... (2 - ««+i) 

Then the equation becomes 

{t, iv] = —^ + dd" " + da^^ ^ + f-u 

where again the quantities c/j, dg? • . • <^,i-i> are undetermined constants. 

This can be written 

i {b = o'/A + .. • + 7 

or, 

where 

8 (?i + 1) dzjdw 

n — 2 1 dhi 
- fi- kiZ'^ ^ + ^2^^” * + ...+ I'n-i . . . (2), 

8 {n + 1) u dw 

xd = (z — Cl) (z — e,)... (2 — e„+i). 
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The differential equations (1) and (2) determine t in terms of z in the tivo cases 

respectively. 

The constants ho, . . . are as yet undetermined. The reason is, that we 

have not yet made any use of the condition which in fact does determine them ; 

namely, that all the projective substitutions, w^hich t undergoes when the independent 

variable 2 of the differential equation describes a circuit round one of the singularities, 

are such as to leave unchanged a certain circle. This circle is, in the figure we have 

drawn, the real axis of the variable t, which is unchanged by all the substitutions of 

the group ; but it may more generally be any circle in the ^-plane. This condition 

will be shown in § 7 to be equivalent to the determination of [n — 1) complex 

quantities, which are the constants h^, ho, . . . h,^_i. But a further consideration of 

this is deferred to § 7. For the present we shall suppose h^, ho, . . . /c„_i determined in 

such a way as to give the required representation. 

§ 6. Application of the Preceding Theory to the Uniformising of Algebraic Forms. 

We have proved that the genus of groups of the kind we have found is zero, and 

hence the automorphic functions of the group as it stands will not uniformise 

algebraic forms whose genus is greater than zero. But we can find sub-groups of 

the original group, and these will be found to be of genus greater than zero. 

The process of deriving these sub-groups is analogous to the method of building 

up a Riemann surface of any genus by superposing a number of plane sheets and 

connecting them along branch lines. We ioin tos^ether a certain number of tlie 

polygons in the figure, and regard them as forming one new polygon. This will, in 

certain cases, be the fundamental polygon of a sub-group of the original group, and 

may have a genus greater than zero. 

Consider a double polygon, made up by taking together the original polygon, and 

the polygon derived from it by transforming with the substitution S„+i, and erasing 

the boundary which separates them. The new polygon has 2n-sides. By erasing 

all the lines corresponding to the line already erased, we obtain a division of the 

half-plane into 2w-gons. The opposite sides of the 2n-gon are easily seen to be 

transformed into each other by the n substitutions 

_ Q Q _ Q Q _ Q Q 

respectively. 

This 2n-go7i is a ^‘fundamental regioii'ffor the group generated from the substi¬ 

tutions Tj, T2, . . . T„. We proved in § 2 that the group generated by Tj, T2, . . . T„,, 

is a self-conjugate sub-group of the group formed by Si, S2, . . . S,,+2; and that any 

substitution of the latter group is equivalent to a substitution of the former group 

acting on either the identical substitution or on S„+i. This corresponds to the fact 

that a point in any of the derived 2n-gons cam be obtained by transformation with 

D 2 
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the substitutions T from a point in either the original (n + l-)-gon or the (n + l)-goii 

derived from this by the substitution S,i+i. 

We have, therefore, obtained a new division of the half-plane into 2n-gons, and 

found the group of substitutions corresponding to it. We can now find the genus p 

of this group. 

The opposite sides of the 2?i-gon are transformed into each other by substitutions 

of the group. If we suppose the 2n-gon iifted up from the plane, and opposite sides 

pieced together, we obtain a surface of connectivity (^^ + 1). If n is even, this 

surface is of genus p where n ~ 2p. In what follows we shall suppose n even. 

Hence, the algebraic relation hetiveen any two automorphic functions of this group 

is, in general, of genus p = ^n. 

The function 2:, which has been obtained, takes every value once in each 

[n + 1 )-gon ; and therefore it takes every value twice in each 27?,-gon. But this is 

the condition that the algebraic form, made up of the automorphic functions of the 

group, should be hyperelliptic. 

Hence, the algebraic form, which is made up of the automoiphic functions of the 

group, is hyperelliptic, and of genus ^n ; and, as 2; is a variable which takes every 

value twice in each polygon, the form consists of rational functions of 2; and u, where 

u is a function of 2 defined by an equation 

id = (z - cq) (z — a,) ... (2 — rq+2), 

where tq, a.,, . . . a^+z are constants to be determined. But the function 

\/{2 — edj (2 — e.,) . . . (z — 

is an automorphic function of the group, for it has the same value, save for a change 

of sign, at corresponding points in adjacent {n + l)-gons, and therefore the same 

value at corresponding points in different 2n-gons. 

Hence 
Cii = Cl, a~i 62, . . . Ctn+2 — ^n + 2> 

and we see that the automorphic functions of the group generated from the substitu¬ 

tions Ti, T2, . . . T„ are the algebraic functions of the form defined by the equation 

IT = (2 — Cl) (z — e,) . . . (z — e„+2). 

Thus we have the solution of the problem, “ To fnd a variable of which the 

functions rational on the Riemann surface of the equation 

%d = (z — Cl) (z — e.^ . . . (z — e„+o) 

are uniform functions.” 
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We could have foreseen this by regarding the problem as one of conformal repre¬ 

sentation. The algebraic functions can be regarded as uniform functions on a 

Riemann surface which covers the 2-plane twice, the branch-points being at the 

points Cl, Co, . . . Now join the point e.^+2 to each of the points Ci, eo, Cg,. . . 

Then each of the sheets, regarded as an infinite plane bounded by these lines, is 

represented conformally on one of the [n -j- l)-gons in the f-plane; by taking two 

adjacent (r/, l)-gons, we obtain a 2n-gon, which corresponds to the fact that by 

taking the two 2-planes, and connecting them along the line e.^+2^n+i, we obtain the 

Riemann surface as dissected by n cross-cuts. 

The analytical connexion between the variables in a hyperelleptic form and the 

uniformising variable t is therefore given by the equations of § 5. It can be shown 

that the differential equation found there is, as might he expected, one of Klein’s'^ 

“ unverzweigt differential equations for hyperelliptic forms. It can be obtained by 

equating (p — 2) of the arbitrary constants in Klein’s equation to zero. 

There are p integrals of the first kind connected with the form. It is easily 

proved that if v is one of them, then v undergoes a projective substitution of the 

form 
{v, c — v), 

where c is a constant, when t is transformed by one of the generating substitutions 

of the group. 

The theory of Abelian integrals of the form can be developed with t as independent 

variable ; but developments of this kind are outside the scope of this paper. 

One consequence of the results just obtained is that we can find the conditions that 

2p arhitrarily given projective substitutions may generate the group corresponding to 

a hyperelliptic equation of genus p. 

Let the substitutions be Ti, R . . . Ih^, where 

rp _ (, 
’• ~ V’ + dj • 

On comparing the results of this section with those of § 2, we see that the condi¬ 

tions may he expressed in the form 

a^ dy. by Cy 

cq dg bg Cg 

di bi c^ 

[Added June 3, 1898.—These conditions are not, however, proved to be strictly 

necessary, since the group may be generated by another set of substitutions to which 

these conditions apply, although they do not apply to Th, T.,, . • . T2^. And the 

= 0, (r, s, = 1, 2, 3,. . . 2p). 

* ‘ Gofctinger Nacliricliten,’ 1890, p. 85. 
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inequalities expressing the conditions that the sides of the generating polygon do 

not cross must also he satisfied.] 

In all our work hitherto it has been assumed that p>l. Tlie case p = 1 is excep¬ 

tional; algebraic forms of genus unity cannot be uniformised by groups of the kind 

we have found. For if the construction which has been given were possible for 1, 

we should have, as the fundamental jDolygon of the group, a triangle whose sides are, 

in the non-Euclidian sense, straight lines, and the sum of whose angles is tt. But 

this is impossible, for in Lobatchewski’s geometry the sum of the angles of a 

triangle is always less than tt. When the sum is equal to tt we arrive at the limiting 

case of Euclidian geometry. Therefore the construction fails, and w^e have to devise 

instead a construction in which Euclidian geometry replaces non-Euclidian. We take 

four substitutions, So, S3, S4, satisfying the relation 

S,S2S3S4 = 1, 

which are self-inverse and leave the Euclidian absolute unchanged, i.e., w'hich are all 

of the type 
{t, c — t), 

where c is a complex constant. By reasoning exactly analogous to that in ^ 3, we 

see that these substitutions generate a group, to which corresponds a division of the 

plane into rectilinear triangles. The sub-group which is got by taking adjacent 

triangles in pairs gives a division of the plane into parallelograms ; aiid this is the 

well-known group of the doubly-^iieriodic functions, which uniformise algebraic curves 

of genus unity. 

The following shows how the former construction breaks down in this case. 

If possible, let Sj, S2, S3, S4, be four self-inverse substitutions with real coefficients 

satisfying the relation 
S1S2S3S4 = 1. 

Then if 

S, = 

we have 

/ aj, -f 1},\ 

V’ Crt - aJ ’ 

S1S2S3(0 

(aiCCoa^ 4- aJ)Xg -|- a^^h-^c., — t -j- -h 

(Ci«2®3 + <^\b-fz ~ t -f- {c^ctobs — cj).,as — — a^a.^a^ ’ 

This has to be a self-inverse substitution, since S4 is self-inverse. 

So 
aJo-Ps + ~ «2?>iC3 + epijbz — — apohs = 0, 

02 O3 

h 

Cl C2 C3 
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Let + tSy and y,. — iS,^ be the double points of S,., 

then 
a, = y„ b,= — (yl + Sf.), a. 

Therefore 

1. 

yi + Si 72 + §2 y\ + S3 

ri 72 73 

1 1 1 

= 0. 

This shows that the double points of all three substitutions lie on a circle 

orthogonal to the real axis. Since S2S3S4 is a self-inverse substitution, the double 

points of S4 lie on the same circle. 

Hence, if we attempt to construct the fundamental polygon, we find that all its 

angular points lie on the same circle orthogonal to the real axis, and therefore all its 

sides coalesce, and its area is zero. This explains why tlie method fails in this case. 

We now proceed to the uniformisation of algebraic forms ivhich are not hyper- 

elliptic. These only occur when the genus is greater than two. 

If we are given any algebraic form of genus ^0, it is known that it can by birational 

transformation be represented on a Liemann surface of which all the branch-points 

are simple, f.e., only two sheets interchange at any branch-point. 

Let f{u, 2) = 0 be an algebraic equation corresponding to this surface. Suppose 

the branch-points are at the values of z for which z = Cj, e-i, e^, . . . + respectively. 

It may of course happen that for some of these values of z there are several branch¬ 

points superposed on each other on the Riemann surface. 

Now in the z-plane, join the point c,j + 2 fo each of the points Cj, 62? • • • + and 

conformally represent this, in the plane of a variable t, on the fundamental polygon 

of a group from {n -j- 2) self-inverse substitutions, as before explained. 

Then, as before, z is a uniform function of t. At each of the points z = Cj, 63, . . . 

e,,+ 2, say e,., u is expansible in a series of ascending powers of either (z — e,.)" or 

(z — e,.), according as the point z = e., happens to be a branch-point or not in the 

sheet in which the point is situated. But near this point (z — ef is expansible in a 

power-series in terms of {t — to), where to is the value of t at the point; so in either 

case, u is expansible as a series of ascending powers of {t — to) ; that is, u has no 

branch-point, considered as a function of t, at this point. 

But since z is a uniform function of t, the only points where u can have branch¬ 

points, considered as a function of t, are the points where u has branch-points 

considered as a function of z; that is, the points Ci, e-i, . . . e,^ + 2. Hence, m is a 

uniform function of t. 

Thus, any algebraic curve can be uniformised by means of groups of substitutions 

formed from self-inverse substitutions. 

It will be seen that a great similarity exists between the place occupied by self¬ 

inverse substitutions, in the theory of groups of projective substitutions, and the 
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place occupied by branch-points at which only two branches interchange, in the 

theory of Riernann surfaces ; the usefulness of the method of self-inverse substi¬ 

tutions depends on the fact that algebraic forms can be represented on Pdemann 

surfaces with only simple branch-points. 

Algebraic functions are not, however, the only ones which can be uniformised. 

Poincahe"^ has proved a general existence-theorem that, if Ui, u^, . . . are any 

multiform analytical functions of a variable 2, a variable t always exists, such that 

2, Uy, U2, . . . u,,^, are uniform functions of t. The existence-theorem, however, does 

not connect t analytically with the other variables. If Ui, U2, . . . u^, are transcen¬ 

dental functions of 2, their multiformity will not in general be capable of beiug 

expressed by simple branch-points, and so the groups generated by self-inverse 

substitutions cannot be used. 

§ 7. The Undetermined Constants in the Differential Equation connecting 2 and t. 

In § 5, certain constants Jci, E, . . . in the differential equation connecting 

2 and t, were left undetermined. It was there explained that they are to be 

determined by the consideration that the group of substitutions of t leaves unchanged 

a fundamental circle. In general, however, arbitrary constants occurring in similar 

differential equations cannot be determined by this consideration, as the group may 

be “ Kleinian,” i.e., it may not conserve a fundamental circle. The following dis¬ 

cussion approaches the subject from this more general point of view. 

The Riemann surface, corresponding to the algebraic form f{u, 2) = 0, can be 

made simply-connected by drawing 2p cuts, and the problem of finding the uni- 

formising variable t can be divided into two parts, as follows : — 

1. Finding all the variables r, which are such that the dissected Riemann surface 

is represented on the r-plane by a curvilinear polygon, whose iqj sides can be 

derived from each other in pairs by projective substitutions of r. 

2. Selecting from among these variables r, a variable t, which is such that the 

group generated from these projective substitutions is a discontinuous group. 

We shall call the variables r quasi-uniformising variables, to distinguish them 

from the true uniformising variable t. 

In the case of the groups we have found, the differential equation of ^ 5 gives 

the quasi-uniformising variables; the determination of E, . . . is equivcdent 

to selecting the uniformising variable from among them. 

In this section the connexion between the uniformising and quasi-uniformising 

variables is considered for more general groups. 

As an example of the nature of quasi-uniformising variables, take the algebraic 

equation 
= 42® — g^z — P'3. 

* ‘Bulletin de la Societe Math, de France,’ 1883, vol. 11, p. 112. 
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To this corresponds a Rieraann surface of two sheets, which can be resolved 

by two cuts into a simply-connected surface. 

Let P be the Weierstarssian elliptic tnnction associated with this curve ; 

and 'iDi, IV2, its periods. 

Consider u and 2 as functions of t, where 

u = P' (log r), 2 = P (log t). 

In the T-plane, form a curvilinear parallelogram ABCD, of which the side CB 

is derived from AD by the projective substitution 

(t, e-r), 

and the side CD is derived from AB by the projective substitution 

(t, e^-^r). 

Then wdthin this parallelogram ABCL), the dissected Biemann surface corre¬ 

sponding to the curve 
= 4z^ — C/2Z — ^3 

is conformally represented ; the sides AD, CB of the parallelogram correspond to 

the two edges of one cross-cut, and the sides AB, CD to the other ; and, as we have 

seen, the opposite sides of the parallelogram are derived from each other by projective 

substitutions. But in spite of this, u and 2 are not uniform functions of t. The 

reason is, that t is only a quasi-uniformising variable ; when w^e derive all possible 

polygons from ABCD by applying the group of substitutions generated from 

(r, and (r, 

the polygons so derived cover the plane more than once. 

The connexion between the uniformising and quasi-uniformising variables for any 

algebraic form is given by the following theorems. 

I/t is a uniformising variable of an equation 

f{u, 2) = 0, 

and T is any holomorpMc Thetafuchsian function of t of order two, then the quotient 

of any tivo solutions of the differential equation 

d'v 

dd + Tv = 0 (1) 

IS a quasi-uniformising variable. 

The term “ holomorphic Thetafuchsian function ol‘ order two ” may require some 

explanation. 

VOL. cxcii.—A. E 
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Let (t, 
at + h 

ct A cl 
be any one of the substitutions of the group associated with the 

given uniformising variable t. Then a Thetafuchsian function T of order m is such that 

We have said that T is to be holomorphic (except at the singularities of the group). 

Such functions exist ; for instance, if w be an Abelian integral of the first kind 

associated with the curve, then diu/dt is a holomorphic Thetafuchsian function of 

order one, and (dwjdtY is a holomorphic Thetafuchsian function of order two. 

To prove the theorem, let 
r = v,/v2, ■ 

where and Vo are any two solutions of (1). Then Vi and ty have singularities, 

considered as functions of t, only where T has singularities. But in any one of the 

polygons in the ^-plane, T has no singularities. Therefore, and V2 are holomorphic 

functions of t (except at the essential singularities of the group, which for the 

present we do not consider). 

Also, Vi and dv^dt cannot be zero together at any point ; for if they were, by 

equation (l), would be permanently zero. Similarly for Vj. 

Therefore, at all points p within any one of the polygons in the ^-plane, we have 

expansions beginning with 

Vi = cd {t — to) + .. ., 

where c and d are not both zero, and 

V2 — e -{-/{t — to)+ , 

where e and f are not both zero. 

And we may not have d andzero together, as and n, are independent solutions 

of the differential e(]uation. 

So, at all points except the singularities of the group. 

gives either 

or, 

or. 

_ C cl (t — tp) + ■ . . 

e + f {t — to) + ..• 

T = A + B (^ — ^o) + ■ • • 5 

T — A {t — ^o) “b B (^ — ^o)^ + • • • 5 

— f f + B + C(^ — ^o) + -- « I 
T 
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In all these cases t and t are uniform functions of each other, near the point 

considered. So u and 2 are, near the point, uniform functions of r. This is easily 

seen to be true also of ^ = 00. 

Now, let accented letters denote the effect of opei’ating on t with a substitution 

of the group. 

We have 

at h\ 

ct d) 

d^ 

df^ 
+ TV == 0. 

Now T' 

Then 

{ct + d)^T. Write v = 

dhi' / ^ d \ / . d 
d — + d) — <1 {ct + d) — 

dt dt 

Therefore 

or 

(ct + Ciy |f + (ct + rffTf = 0, 

df 
+ = 0. 

So ^ = Avi + Br2, where A and B are constants, and 

Therefore 

or 

_A-Ti + Bvj 

ct d 

v\ _ Ajt'i + Bi-r., 
V., BoV) 

AjT + Bj 

AjT + B., 

This shows that, when t is transformed by a projective substitution of the group, 

T is transformed by a corresponding projective substitution 

(r . 
\ ’ A.t + B.J 

Thus the theorem is proved, namely, that the dissected Riemann surface can be 

conformally represented on a polygon in the r-plane, and the sides of this polygon 

can be derived from each other in pairs by certain projective substitutions ; in other 

words, T is a quasi-uniformising variable. An infinite number of variables t can be 

got in this way, for T depends linearly on several arbitrary constants. 

E 2 
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In the above theorem, for the sake of simplicity, we have made a restriction which 

is really unnecessary, namely, we have supposed that i is a uniformising variable. 

t can, hoivever, be any quasi-imiformising variable if we make the corresponding 

extension in the meaning of T. T will now have to be a function of t, which is 

holomorphic in any of the polygons, and which obeys the law 

for substitutions of the group generated from the substitutions which change the 

sides of the ^-polygon into each other. Such functions exist; for, as before, if iv is 

an Abelian integral of the first kind connected with the curve, {divjdty is such a 

function, T is, of course, really a multiform function of t, if ^ is a quasi-uniformising 

variable; but as it is not possible to pass from one of its values to another by any 

paths contained within one of the polygons, we can regard it as uniform within that 

polygon. The proof in this extended case is just as before. Thus we have the more 

general theorem : 

Jft is any uniformising or quasi-uniformising variable of an algebraic form 

f {u, z) = 0, 

and T is any holomorphic Thetafuchsian function of t of order two, then the quotient 

of any t ivo solutions of the di^erential equation 

fv 

dt^ 
Tu = 0 

is another uniformising or quasi-uniformising variable. 

To complete the theorem, we must prove that the converse is also true. Suppose, 

then, that r and t both belong to the set of uniformising and quasi-uniformising 

variables, so that a polygon in the r-plane corresponds to a polygon in the ^-plane. 

point for point, and to each of the substitutions of the group ( t, ) corresponds 

a substitution i t, ~ ^ 
\ ’ c;; -f d 

Now T is the quotient of two integrals of the equation 

if 

d-v 

Tf + Tv = 0 

, dH/dr^ ^ (dHIdry- 

2 (dt/dry ^ (dt/dry ' 

Now T has no branch-point, considered as a function of t, and t has no branch¬ 

point, considered as a function of r, except at the limiting points of the groups. So, 
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if w e consider any point in the ^-plane, which is not one of the singularities of the 

group, dtjclT and dTjclt are, in its vicinity, regular functions of t. 

So T is holomorphic at all points except the singularities of the group. 

Now, denoting as before the effect of a substitution of the group by accents, we 

have 

^ ^ (dH'/dr'J 

j dH/dr^ 3 {dHjdT^^f 

^ {dtjdTf ^ {dtldTf _ 

= {yt + Sr T. 

So, T is a function of t of the kind already specified. 

So, the converse of the theorem is true. 

Thus, if we can find any one quasi-uniformising variaMe of an cdgehraic form, we 

can find the totality of all uniformising and quasi-uniformising variables by this 

equation. 

We can now find the functions T. 

If 
* _ at + h 

ct d 

we have 

(If _ _1_ 

dt {ct + dy- ’ 

and so 

{dzjdt'Y = (ct -j- ciy {dzjdty. 

Thus {dz/dty is a Thetafuchsian function of order two; any other Thetafuchsian 

function of order two can be written in the form 

T = fl (2, u). [dzjdty, 

where R [z, u) is an automorphic function of the group, i.e., a rational function of the 

algebraic form. 

If the algebraic form is of genus p, it is known''’ that any function II [z, u) for 

which T is holomorphic is a linear function of (3p — 3) special functions. These we 

can write 
Ri (z, u), Ro (z, uj, . . . Rsjj-s (z, u). 

The case q) = 1 is exceptional; here there is one such function, T, namely, a 

constant. 

* Humbert, ‘ Liouville’s Journal,’ (4), vol. 2, p. 239, 1886. 
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In general, tlierefore, we have 

T = [ttiRi (2, u) + ttoR. {z, w) + . . . + a3^_3R3^_3 {z, u}] {dzjdtf, 

where Ri (2, u), R2 (2, u), . . . R3 (2, u) are functions which can be found, and 

«!, . . . GLzp-z, are arbitrary constants. 

We can now fiyid the form of the differenticd equation ivhich gives all the quasi- 

uniformising variables. Take any quasi-uniformising variable t of the algebraic 

equation 
f {u, 2) = 0. 

For it, we have 

^ 1^5 z} — ^ {Z} ^)} 

where (/> is some rational function of 2 and u. 

If t is the most general quasi-uniformising variable, we have seen that t is given as 

the quotient of two solutions of the differential equation 

dh^ldd + Tv = 0, 

where 
T = [aiRi {z, u) + a2R2 (2, m) + . . . + (2, u)~\ {dzjdtf. 

Hence 
ifbr} =T. 

But 
{t,z} = (t, 2} + {drldzj {t, t]. 

Therefore 
^ {t,z} = (f){z,u) T {dTjdzf, 

or 

^{t,z} = (f> (2, u) -b aiRi (2, ic) -f a^R. (2, w) -f . . . + Oa^-sRsp-s {z, u). 

Thus, the solution of the problem of finding all the variables t, which ivill con¬ 

formally represent the Riemann surface of a given algebraic form on a curvilinear 

polygon, ivhose sides are derived from each other in pairs by projective substitutions, 

is given by a differential equation containing {^p — 3) arbitrary parameters linearly, 

and the problem of finding the unifio rmising varicdde is equivcdent to tha t ofi deter¬ 

mining these parameters in order that that group generated by these substitutions may 

be discontinuous. 

Now let us return to the differential equation of § 5, which we can write 

1 
2 {t, iv] 

8 (n 1) u diih 

1 

-—■R hz-^ + hz-^ + • . , -f- ^ 

If we take any set of values ^2 . . . kn_i for the undetermined constants, 

this differential equation will give a variable r in terms of 2, which will not in 
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general be the variable ^ of §§ 3 and 4. But the variables r so found will solve the 

problem of conformally representing the 2-plane, regarded as bounded by a number 

of finite lines radiating from a point, on a curvilinear polygon in the r-plane, such 

that the sides of the boundary can be transformed into each other in pairs by 

certain projective substitutions. The variable t is one of these variables, characterised 

by the condition that the infinite group generated from these substitutions is a 

discontinuous group. 

We can, in fact, find the functions T in this case. We must have 

T = U 

and R (2) must be such that T is holomorphic. So the only possible poles of R (2) 

are the places where dzjdt is zero, i.e., the places 2 = Cj, e^, . . . e,j+2- At these 

places dzjdt is zero of the first order ; so {clzjdtY' is zero of the second order, and 

R (2) may have a pole of the second order. 

Therefore 

R (2) 

where 

vd (2 - e,) (2 - C2) ... (2 - 

and I (2) is an integral function of 2. At 2 = 00, dzjdt has a pole of the second 

order, and id a pole of the {n 2)'*' order. So I (2) may have a pole of the 

{n — 2)“" order. 

Therefore 
I (2) = hiZ" ^ h^z^'' ^ -j- . . . -j- 

and 

rp _ -f -h tin-\ I dz'd 
~~ id [dtj ' 

Thus if T is the quotient of two solutions of the equation 

d^vjdd + Tv = 0 

and t is defined by the equation 

i [t, 2] = R (2), 

then T is defined by the equation 

1 {t, 2} = R (2) -f 
kiZ^ ^ ® -t- . . . k„. 

u- 

Comparing this with the equation of § 5, we see that the variables t given by it, 

ivhen the constants ho, . . . h^-i, are arbitrary, are the quasi-uniformising variables. 

We can now prove that the number of conditions which have to be satisfied in 
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order that the group of substitutions of t may be discontinuous, i.e., in this case may 

conserve a fundamental circle, is equal to the number of the constants k. 

In order that a self-inverse substitution with complex coefficients, 

at -J- lj\ 

may leave unchanged a given circle, two of the four real constants contained in the 

substitution must be determinate in terms of the others. 

Now there are [n + 2) fundamental self-inverse complex substitutions, containing 

4 {n + 2) real constants ; of these, the relation 

S1S2S3 S ,1 + 2 = 1 

accounts for six. So (2n + 1) of the real constants are determined in terms of the 

other (2n -f- 1) by the condition that the group is to conserve a fundamental circle ; 

but as the fundamental circle may be any whatever, and so involves three constants, 

we must deduct three from the number of equations, giving (2n — 2). Thus, 2n — 2 

real, or n — 1 complex, constants can be determined from the condition that the 

substitutions of t conserve a fundamental circle. This accords ivith the fact, otherwise 

arrived at, that the constants k^, ko, . . . Xy_i, in the differential equation have to he 

determined from this consideration. 

Among the quasi-uniformising variables of any algebraic form there are several 

distinct uniformising variables. The groups we have found in § 3 have simply- 

connected fundamental polygons. But automorphic functions exist, for which the 

fundamental polygons are multiply-connected. 

The simplest example of such a function is 

where P is Weierstrass’ elliptic function with periods and 2m,; the fundamental 

polygon is the space between two circles in the Gplane. 

The automorphic functions studied by Schottky, Weber, and Burnside may be 

regarded as generalisations of this. As these uniformising variables with multiply- 

connected fundamental polygons are included in the general set of quasi-uniformising 

variables, they are defined by the same differential equations as the uniformising 

variables with simply-counected polygons, exce})t that the constants k will have 

different values. 
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The chief part of the following investigation (Sects, i. and iii.) was undertaken with 

tlie view of discovering whether it was possible to imagine a kind of vortex motion 

which would impress a gyrostatic quality which the forms of vortex aggregates 

hitherto known do not possess. The other part (Sect, ii.) deals with the non- 

gyrostatic vortex aggregates, the discovery of which we owe to Hill,* and investi¬ 

gates the conditions under which two or more aggregates may be combined into one. 

It is shown that it is allowable to suppose one or more concentric shells of vortex 

aggregates to be applied over a central spherical nucleus, subject to one relation 

between the radii and the vorticities. In all cases the vorticities must be in opjiosite 

directions in alternate shells. The special case when the aggregates are built up 

of the same vortical matter is considered, and the magnitudes of the radii and 

the positions of tlie equatorial axes determined. The cases of motion in a I’igid 

spheroidal shell and of dyad spheroidal aggregates are also considered. 

The chief part of the paper refers to gyrostatic aggregates. The investigation 

has brought to light an entirely ne\v system of spiral vortices. The general con¬ 

ditions for the existence of such systems, wdien the motion is symmetrical about 

an axis, are determined in Sect, i., and are worked out in more detail for a particular 

case of spherical aggregate in Sect. iii. It is found that the motion in meridian 

planes is determined from a certain function xfj in the usual manner. The velocity 

along a parallel of latitude is given by v —/[xjj] / p where p is the distance of the 

point 1‘rom the axis. The function rjj, however, does not depend on the ditferential 

equation of the ordinary non-spiral type, but is a solution of the equation 

1 d-yjr Cot 6 d-y^r d/’ 

7/;.r + v' pffz — = p ^ 

where F and f are both functions of i//. The case F and fdfjd^li both uniform is 

briefly treated. It refers to a spiral aggregate with a central solid nucleus, and 

is not of great interest. Tlie case F uniform and fee \jj is treated more fully. If 

^'= \\fj/a where a is the radius of the aggregate 

The most striking and remarkable fact brought out is that witli increasing para¬ 

meter X. we get a periodic system of families of aggregates. The members of each 

family differ from one another in the number of layers and equatorial axes they 

possess. I have ventured to call them singlets, doublets, triplets, &c., in contra¬ 

distinction to the more or less Fortuitous and arbitrary compounds dealt with later, 

and which I have named monads, dyads, triads, &c. Of these families two are 

investigated more in detail than the others. In one family (the X.^ family) all the 

members remain at rest in the surrounding fluid. In the other (the Xi family) the 

// = A J., JoX [ siir^. 

Uii ti Sjiberical Voi tc.v,” ‘ Phil. Tnnit;.,' A, vol. 185, 1894. 
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distinguishing feature common to all the members is that the stream lines and 

the vortex lines are coincident. 

The parameter k defines the total angular pitch of the stream lines, on the outer 

current-sheet, viz., up the polar axis and down the outside ; although in the aggregates 

with more than one axis these lines are not one continuous stream line. The first 

aggregates—with X<5‘7r)37 (the first X2 parameter)—behave abnormally. Beyond 

these we get successive series, in one set of which the velocity of translation is in the 

same direction as the polar motion of the central nucleus, in the alternate set the 

velocity is opposite, and the aggregate regredes in the fluid as compared with its 

central aggregate (see fig. 3, Plate 1). The physical analogue of these aggregates 

is obvious. It is specially enlarged upon in the abstract. '" 

Suppose we set ourselves the problem of making a set of aggregates with greater 

and greater angular pitch. As we do so we shall find that as the pitch increases 

the equatorial axis contracts, and the surface velocity diminishes. On the outer 

layei’s (ring shaped) the spiral is chiefly produced on the inner side facing the polar 

axis, until on the boundary itself the stream lines flow in meridians, and the 

twist is altogether on the polar axis. The pitch can be increased up to a certain 

degree. As this is done, the stream lines and vortex lines fold up towards one 

another, coincide at a certain pitch, and exchange sides. When an external angular 

pitch of about 330° is attained it is impossible to go further if a simple aggregate is 

desired. If a higher pitch is desired it is attained by taking it in two parts. First, 

a central spherical nucleus of the same nature as the former, in which a portion of 

the twist is produced, and outside this a spherical shell, in which the spirals have 

the same direction of twist, and complete the pitch to the desired amount but in 

which the spirals are traversed in the opposite direction. With increasing pitch 

this layer becomes thicker, and its equatorial axis contracts relatively to the mid¬ 

point of the shell until another limit is reached ; the stream and vortex lines again 

fold together, cross, and expand as this second limit is reached. If a larger pitch still 

is desired there must be a third layei', and so on. The first coincidence of vortex 

and stream lines takes place for an aggregate whose pitch is 257°’27'. Whenever a 

maximum pitch is attained the aggregate is at rest in the fluid. This is first 

attained for an external pitch of 330°'14'. Beyond this there are two equatorial 

axes. For an external pitch of 442°'37' the stream and vortex lines again coincide, 

the internal nucleus gives 257°'27' of the pitch and the outer shell the remainder, 

and so on. 

At the end a theory of compound aggregates is developed similar to that in 

Sect. ii. for non-gyrostatic vortices. It is not worked out in detail in the present 

communication, but the conditions are determined for dyad compounds, whilst a 

similar tlieory holds for triad and higher ones. Each element of a poly-ad may consist 

of singlets, doublets, &c. The equations of condition leave three quantities arbitrary— 

* ‘ Roy. Soc. Proc.,’ vol. 62, p. 332. 



36 PROFESSOR W. M. HICKS ON VORTEX MOTION. 

as, for Instance, ratio of volumes, ratio of primary cyclic constants, ratio of secondary 

cyclic constants. The full development of this theory is. however, left for a future 

communication. It is clear that spiral or gyrostatic vortex aggregates are not confined 

to forms symmetrical about an axis. Their theory is however much more complicated. 

If we take any particular spherical aggregate with given X and primary cyclic 

constant (p.), the energy is determinate. We may, however, alter the energy. If it 

be increased, the spherical form begins to open out into a ring form, whose shape and 

properties have not yet been investigated. If the energy be increased sufficiently 

the aperture becomes large compared with the thickness of the rotational core, and 

approximate calculation can be applied. The differential equation for ijj is given in 

Sect, i., but its development is left for a future occasion. After that I hope to deal 

with the question of stability, and then more fully with that of the conditions of 

combination. The new field opens up so many questions of interest that other 

workers in it are welcomed. 

Section i.—General Theorems. 

1. To give an idea of the nature of the rirotions considered in the present investi¬ 

gation, consider the case of motion of an infinitely long cylindrical vortex of sectional 

radius a. The velocity perpendicular to the axis inside the vortex will be of the 

form V — f{r), where/{O) = 0. Outside it will be given by v = Yaj‘}-, where Y =_/(«). 

We may, how^ever, have a motion in wdiich the fluid moves parallel to the axis 

inside the cylinder with rest outside. The velocity will be of the form n = F (r) 

inside, wdiere F («) = 0, and zero outside. Both/"(r) and F (?•) are arbitrary functions 

subject only to the conditions/ (O) = 0 and F {«) = 0. 

Putting aside for the present the question of the stability of these simple motions 

or of their resultant, it is clear that if we supei'pose the two we get another state 

of motion in which we have vortex-filaments in the shape of helices lying on 

concentric cylindric surfaces. The problem to be considered is whether it is possible 

to conceive a similar superposition of two motions in the case of any vortex aggregate 

whose motions are symmetric about an axis. 

There are an infinite number of either ring-shaped vortices, or singly connected 

aggregates (of which Hill’s vorte.x may serve as a type), differing from one another 

in the law of vorticity of the ^different parts—the most important being those in 

wdfich the voi’ticiiy is uniform. The motions in all these are known in terms of 

the stream function i//. The value of i// is however at present only actually known for 

an infinitely thin ring-filament or for a spherical aggregate. 

2. We are to consider two superposed motions. The one component is in meridian 

planes through an axis and can be defined in terms of the stream-function The 

* Throughout is taken as the total flow up througfli the circle whose radius is />. In other words tlie 

velocity perpendicular to ds is —• 
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other component is everywhere perpendicular to these meridian planes. The vortex 

aggregates will be moving with rectilinear translation through the fluid with a 

velocity calculable, when the distribution of vortex motion is known, by Helmholtz’s 

method. Bring the aggregate to rest by impressing everywhere a velocity equal and 

opposite to the velocity of translation. The motion then consists of a flow up through 

the centre in the direction of previous translation, the fluid then streaming (in this 

most general case) in spirals round a certain circle. The circle may conveniently be 

called the equatorial axis of the aggregate. The line of symmetry through the 

centre in the direction of translation may then be termed the q')oIar axis. Whether 

we deal with ring-shaped or singly connected aggregates, the surfaces \(j will always 

be ring-shaped inside. In fact they are so also at the boundary, for the surface value 

of \fj really consists in the latter case of the outer boundary together with the 

polar axis. 

3. Conceive now the aggregate divided up into a large number of ring-surfaces 

given by values of a paiameter xjj differing by dxjj, and confine attention to what is 

going on between the two surfaces \jj and xfj -f- dxjj. We shall suppose xp to increase as 

we pass from the outside inwards. Let dn denote the distance at a point between 

the surfaces \p and xjj + dip, dn to be measured also inwards. In the shell considered 

the lines of flow will be spiral, and the vortex-filaments also spirals, as indicated in 

the figure, the thin line P/’represeiiting a line of flow, the thick Pa a vortex-filament, 

Fig. I. 

and the line Pm a meridian section. Denote the velocity at P by v and the angle it 

makes with the meridian by (p. Also let w denote the molecular rotation at P, and y 

the angle the filament makes with the meridian—estimated positive when on the 

opposite side of the meridian to v. 

Consider the How between the two surfaces xp and xp -f- dxp across the “ parallel of 

latitude ” through P. The total flow must be the same for every parallel. The area 

through which the flow takes place is 2TTpdn, where p is the distance of P from the 
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polar axis. Hence 27Tpv cos (^cln is constant over the surface i//. It must therefore 

be of the form/(r//) drlf. So far i// is only defined as the parameter which detennines 

the particular surface. Choose the parameter so that /(i/;) = 1. if/ is then analogous 

to the stream-fimction in the simple case. It acts in fact as the stream-function for 

the component of velocity v cos cj). Similar reasoning leads to the conclusion that 

ojp cos yf/n is also of the form /(t//) dxp, say/Ic/i//. Hence 

2Trpv cos (f)d}i — dxjj.(1) 

2TTpoi cos ycZw — fdxjj.(2). 

We started with the supposition that the stream-lines and vortex-lines must lie on 

the same surfaces xjj. In other words, there must be no component rotation perpen¬ 

dicular to ifj. This may be ex])ressed in other words by the statement that the 

circulation round any circuit drawn wholly on ijj musi vanish. Take for this circuit 

any two parallels of latitude. Tire condition gives that the flow along one must 

equal the flow along the other. In other words, the flow round a parallel of latitude 

must be the same for all parallels on the same surface xjj. Hence 

27rpv sin (^ = y.(3) 

where is a function of ifj. 

Equations 1, 2, 3 give conditions which any motion possible between any two given 

surfaces i// and rp -f- dxfj must satisfy. In our case, however, the motions in the 

.separate shells must fit together. We may regard the vortex-filaments as due to the 

velocities in t^vo successive shells, or as due to the different velocities on the inner 

and outer surfaces of the same shell—the velocities on the inner surface of one beino’ 

the same as on the outer of the next succeeding shell. If no\v be anv component 

of a filament, and dA the area perpendicular to Wi, the value of cuidA is given by half 

the circulation round dA. Apply this to the two components co cos y along a meridian 

and (o sin y along a parallel of latitude. As a circuit for w cos y take two parallels 

one on ip and the other on ip -j- dip. The flow along the first is 27rpv sin ^ and along 

the latter 

2Trpv sin (p -f- 277 y~ [pv sin (p) dn. 

Hence 

'jOI cos y . 27Tpdn = —277— {vp sin <p) dn 

but by (3), 

Hence 

27Tpv sin (p = f. 

Airpu) cos y = 
dn 
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Comparing with (2) it follows that 

dn 

or 

Ji - 

We may regard then Etp (2) as replaced by (4), which includes it as the greater does 

the less. 

For the circuit for co sin y take a small circuit formed by a small arc ds of a meridian 

PP' on xp, the normals (drt,) at P. P' and the portion of the meridian arc on xp + dxp 

cut off by these normals. The flow along the normals dn is zero. Along ds it is 

V cos (p ds ; along ds' it is 

V cos (p ds 4- (v cos (p ds) dn. 
dn 

^ dn 

The area of the cross-section of ojsiiiy is dn ds. 

Hence 

But by (L), 

therefore 

d 
2oj sin y dn ds = — (r cos (p ds) dn 

V cos (p = 
‘Iirp 

Ttto) sin y ds — 
d 

dn 

Since dxpjds = (J xp wull give any component of velocity in the meridian plane in 

the same way as the ordinary stream-function. 

4. It will often be foiuid advantageous to express i// in terms of curvilinear 

co-ordinates. Denote these by u, v. Displacements perpendicular to the u will be 

denoted by dm, and to v by dn, to be estimated positive in the directions in which 

u, V respectively increase. 

The differential equation satisfied by xp is found by expressing the circulation round 

a small area bounded by the curves u, u -)- du, v, v dr dv. Let wj ( = w sin y) denote 

the rotation at a point of the area. We shall regard this as positive when it goes 

clockwise. The circulation is then 2w[ X area = 2(y, dn, dn. 

The velocities along PQ, PP' (see fig. 2) are respectively 

1 1 d'yp' 

'lirp dn 'lirp dn 

The riows along them are therefore (clockwise) 

1 

'lirp 
dll and + 

dn 2iTp 

dip 

dn' 
dn. 
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Fig. 2. 

Heuce the total How round PQQ'P' is 

or 

rl / I d^lr j , 
— I r— a n 
an \l'np an 

du — 
dv 

/ 1 d\jr 

Tbi' 

d / 1 d^ du dn' 

du ylirp du dn dv 
du dv 

d / 1 d.-\^ 

dv \'27rp dv 

d:V 

ddd' 

But this is 2wi dn dn^. Hence 

d /I d->\r du dn'\^ _i_ ^ 

dv, \ p dv, ’ dn * dv j dv \ p dv dn'" du 
— dTTCUi 

dn dn' 

du dv 

— 47r&i sin ^ 
dn dn' 

du dv 
(5). 

In many cases p zl = f 'Vi-), giving duldn = dvldn, and the equation 

simplifies to 

y a m + 4,^, (*v 
du \ p du j dv \ p dv j \du / 

The following cases will he required :— 

(1) Cylindrical co-ordinates, (p, z), 

and 

du = dp = dn 

d 1 dy{r\ 1 dV 
dp \ p dp j p dz- 

d"T^ 1 d'Kj/' d’yp' 

dp^ p dp dz- 

dv = dz = dn', 

= — Attoj sin y, 

= — 4:TTpoj sin y 

or 

(6). 
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(2) Polar Co-ordinates, {r, 6), 

p — r sin 6 du = dr = dii dv — dd dn' = r d,9, 

and 
d ( r d-\lr\ , d f 1 d-<Jr\ 

* (7 * ) + M (7 7) = - 
or 

d^yjr 1 d'ylr cot 6 d4r 

^ ^ dO ~ ^ ' ■ 

(3) Spheroids. 

(a) Prolate. Here p zt = \ sinh (ti + vl), 

p — \ sinh u cos v, z — \ cosh ii sin v. 

The surfaces u, v are respectively the ellipses and hyperbolas 

. (7). 

whence 

+ sinh^tt cosh^w 
= and 

siii-"y cos^v 
= 

u increases from 0 at the origin to co at an infinite distance ; v increases from — at 

points on the negative part of the axis of 2, through 0 for points on the equatorial 

plane to |-7r at points on the positive part of the axis of 2. 

Again 
dn\^ 

du j 

dpV fdzV d , , . d , 

dv) +(7) 

= X' cosh (tf + rC) cosh ~ vl) 

= X“ (coshV — sin"r). 

Hence the differential equation is (writing C and S for cosh sinh u). 

J_ A / i I i 
cos V du\'& du ) S dv \cos v dv j 

+ 7 :^ ( 777: ^ ) = — 47rX^w sin y (C“ — siiffi?) . . (8). 

(yd) Oblate. Here p -f = X cosh [u + vt) 

p \ cosh u cos V, z = X sinh sin v, 

= X^ sinh [u + Vl) sinh {ii — vl) 

= X^ (cosh^-M — cos\’), 

and the differential equation is 

d / 1 d-»/r\ , ^ d 
Jr., \ n Jr,, I ri cosv du \ G du 

VOL. CXCII. — A. 

1 di\r\ 

C dv \cos'y dv j 

G 

— 47rX®(y sin y (C^ — cos^v) . . (9). 



42 PROFESSOR W. M. HICKS ON VORTEX MOTION. 

(4) Toroidal Functions.—Here [‘Phil. Trans.,’ 188 L, Part III., p. 614j 

p + e + zi sinh cho sinh u 
u vl = log 

p + a + ;u 
= a 

cosh u — cos V (hi 

whence 

(I /C—COSV(IF\ . 1 P" 
*\-^ * j + y * ”)ih) = - y"X. 

4:Tr(C‘ 

(C — cosH 
2 CO sin X • (10). 

5. Equations 1, 3, 4, 5 or 6 give the conditions for a possible motion. It is ojDen 

to us to choose xfj arbitrarily. In this case the equations give v, co, y, (p. The motion 

is instantaneously possible, but in general it will at once proceed to change the 

configuration—the motion will not be steady. The application of this theory to 

values of xjj which are already known (Hill’s vortex for example) leads to interesting 

results, but the absence of steadiness robs the theory of importance. If we impose 

the condition of steady motion, it is no longer open to us to choose xp at will. Let 

us then impose this condition. The condition that the motion shall be steady 

involves:— 

(1) xjj must be a surface containing both vortex-lines and stream-lines. 

This is already the case. 

(2) V(x) sin {(p x) dn must be constant over the surface, 

It must therefore be of the form Fdxp, where F is a function of \h. Hence 

VO) sin (^ + X) = rg' (11). 

Expanding this, and substituting from 1, 3, 4, 7, 

or 

1 J_ ^ + “V 
cot 6 d){r ] 

d0 I 87r"p"F, 

d'-ik ,_^ cot 0 ^ _ Q 2 p df 
tV 1” der- ' 1- de ~ p n / (12). 

where f and F are arbitrary functions of if/. Choosing these, equation 12 will give 

the type of if//'' 

We proceed to apply these general theorems to certain special cases of spherical 

aggregates. In order to exenqolify the method employed we will take first the case 

in which there is no secondary spin, the type in which Hill’s spherical vortex is the 

simplest case. 

* For aiiotlier proof of tEi.s equation, due to one of the referees, see end of present paper. 
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Section ii.—Aggregates with no Secondary Spin {f= 0) and with 

Uniform Vorticity. 

6. We begin with the spherical agg’regate, the simplest type of which is the Hill’s 

vortex. The equation for i/; is that given by equation 7, in which oj is put kp where 

k is uniform and y = It is 

I cl'y\r cot 6 dyr 

f f de 
= — Ankp^ = — iTrkA siir d, 

in which 9 is measured from the pole to the equator. A particular solution of this 

is — hirUA sin^ 6. 
In^ 

cZ-’V 1 d-y\r cot 6 d-\Jr _ 

dd ~ 

put i// = Z„ being a function of 6 only. Then 

- cot e‘^ + n(n-l) Z,„ = 0. 
dd- 

The integral of this is 

Z,.= -smC^ 

where P„_i is a zonal harmonic of degree n — 1. 

Hence the general solution of the equation in xJj is 

B 

Since 

P., = 

xjj = — ^Trkr^ siiV 0 S ( A,.r"' + Z,,^. 

1.3.5 .. . {2n - I) [■ a “ 1) „-o /, . 1 

^r°" ^-2(2,.-• 1) n : 

the values of Z,^ are easily found, excejit for Z, or Zq. It is easily found from the 

direct equation in this case that Zi = Zq = cos 6. The following results are easily 

deduced :— 

Zo =■ siiV 0, Z3 = 3 sin" 6 cos 6, 

Z, = f (4 sin- 9-5 sin^ 9), sin^ 9 = ^Z.- f,- Z,. 

Consider now first the case of a homogeneous spherical aggregate. In this case 
g 

the functions Z„ apply only to the space outside, and Ar^Z^^ to the space inside. 

Let xj/i denote the value of xp inside and xf/o outside. Hence 

e 2 
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i//i = — ^Trkr^ sin''" 6 + 

Let a denote the radius of the sphere. Along the bonndaiy of the sphere xfji = i//,, 

and also d^ijclr = dxjjoldr. ExjDressing siid^ in terms of Zo and Z^, 

^1= — ^7rJcr^Z2 + Y^irkr^Zi + SA„r“Z„. 

The term in -^^nh'^Zi may be supposed merged in A^r^Zi, and may therefore be 

treated as absent. The conditions 

^1 = ^2 
when r = a 

dr dr J 
give 

and for m = 2 

Ai = 0, A,I = 0 when n > 2, 

Bi = 0, = 0 when n > 2, 

KoO? — ^Trkcd = 
B., 

a 

2 As « — ^Trkcd = — ^ 

Hence 

and 

As = ^Trkcd, Bs = -^^Trkak, 

xfji = 27Tk [\a“r' — y?’'') siid^ 

\jj2 = "^T^k y siid0. 

The velocity along the normal to the aggregate is 

1 d’Kjr2 _ 4 7'^ 73 
T-— = -fska- cos 6. 
Iirp rdd ^ ^ 

Hence the aggregate moves forward through the surrounding fluid with a velocity 

V = -^^ka\ 

Beferred to the aggregate at rest therefore 

xp^ — ^irkr- i^cr — r~) siir^. 
t* 

The cyclic constant (p.) is the circulation taken round a meridian section, up the 

polar axis and down outside. It is the sum of the circulation round the elementary 

areas of which the section is composed. Hence ' A. ' 
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fji = % (elementary circulations) = ^2(o dA. = k%2p dK 

Ic k ')uJc 
= - %2iTp dK = - X volume of aggregate = —^ • 

Thus 
TTfl fX 

OJ — Icp = - P \ ; 

' m ' ba 

which are Hill’s results obtained by direct methods. 

7. Heterogeneous Aggregates.—We may, however, superpose on an aggregate such 
as the foregoing other spherical layers of dilferent vorticities. It will be advisable to 
consider fii-st the case where there is one such layer of vorticity determined by 
(say) We may call them dyads. In this outer portion both terms in Ar"' and 
g/^n-i appear. Let i//2, denote the stream functions for each part and for 

the surrounding fluid. Then 

xjji = — -f nkAZ.^ + SK,,r'''Z-„_, 

nk'r'Z, + 2 (A.,y- + ^1:;) Z,., 

-^ = 2 ,-!i; Z... 

Let a, h denote the radii of the two spherical surfaces (a > 6), and apply the same 
conditions as before to the two surfaces. 

Again all the co-efEcients vanish except for n = 2, and there results 

t) / "I 
Koh- - I ttMA = + -f - I o 6 ^ I 

2kdj - ^TrkV = 2K^h - ^ - ^rrk'h^ 
J 

and 

^^2 A ' I 1^2 o 1 t i ^ ~ = Ao a 4- — — ink a \ 
a a ^ 1^ 

- 4 = 2A,'a - 4 - I TrkV 

The first two give at once 

the last two 

A2 — %TTa^k'; 

B.2 = 1^5-77 {{k - k') V + 

A, = f 77 \k‘a^ 4-\k - F) ¥]-. 

also 
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2^ ^ + (/^ A;-) ¥ ^ , 

= 27r I ^k'ah-'- + (^‘ — k') ~ — \k'r^ | siir 6, 

•4:7r {k — k ) 1/’ -1- k'cv' . ^ 
= -Sin- U. 

lo r 

The normal velocity at the outer boundary is 

1 d-v/r , A {k — k') ¥ + //fd 
6-7^ (when r = a) = ^- 
"lirp rcW ^ 

cos d. 

The outer boundary therefore progresses unchanged with velocity of translation 

y _4, 
— 15 

{k - k') ¥ + //fd 

Bring the outer boundary to rest by impressing on every j^art of the fluid a 

velocity equal and opposite to this, i.e., adding to the stream-functions a term 

- 15 

^ {k — k') ¥ + ¥¥> _2 

CC‘ 
?■“ sin- 0. 

The relative motions are then given by 

i [bk'ct- + 5 (A: - k') 6“ - 2k'a? ~ 2 {k - k') - /;?•-j r- sin- 0 

= ^ -kr--^\{k- k') ^5 - 6^1 n- sin- 0 

xP2=j (a- - r-) r- + I (^ - ^') sin- 0. 

If, however, the motion is to be steady, the inner sphere must now be at rest, 

that is rpi = 0 when r —h. We get, therefore, the following necessary relation 

between k, k', a, h, 

k'a^ _ ^ 1- (7, _ Jc') (^5 - 6- = 0. 

This may be written 

2¥k (a® - ¥) + k'{da^ (a^ - ¥) - 2h- (cd - ¥)] = 0. 

Both the expressions in the brackets are positive, hence k/k' must be negative or 

the rotations in opposite directions in the two portions. 
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Denote the cyclic constants of the inner and outer portions by /Xj, p,- 

we see that they are respectively 

As before, 

TT 
X vol. 

That is 

Pi = - - f b k, 
IT 

TT ' ' 

Substituting for h, h' in terms of pi, p^ 

V — 1 J _L 5 1 -T P2 

The result is that a double aggregate is possible. If, however, the size is given 

the ratio of the vorticities must have a special value, and vice versd. In terms 

of the radii it may be shown that 

_ 4 {k - //) W {a - h) {2cd + 4 

45a'* (a + 6) 

Three cases specially invite attention, (l) equal volumes, (2) both parts made of 

similar matter, i.e., vorticities equal, and (3) equal cyclic constants. 

Case i.—Here cd — 26b 

h' 2¥ 1 

A “ “ 6?r'* {(d - h-) - 26' ~ “ 3 X 2'^'** - 4 ’ 

^ ~ -76220 = — f nearly. 
k' 

Case ii.—h' = — h. 

3a® {d~ — Ir) — 46" (a® — 6®) = 0. 

Put a/6 = X, we get 
3x* + 3a3® — 405® — 4o5 — 4 = 0. 

This has three negative roots ; the positive one is 

€b 
05 = 1-3283 or nearly. 

Case hi.—p = — p' or 
h ¥ k - ¥ 

a? - 6* — ~ IF 
whence 

_ ceV - 6® (a® - 6®) + la® {b - 6® = 0, 

2a® + 6® — 3a®6 = (^a — h) (2a® — ah — 6®) = (a — 6)® (2a + 6) = 0. 

Equal circulations are therefore impossible. 
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8. Polyads.—Passing on now to the consideration of any number of layers, let the 

radii of the spherical boundaries from the inside outwards be denoted by Uj, cto. . . ; 

the vorticities by k^, and the stream-functions by xjji, • V'/t \p. Then 

xpi — 27r {AiP ~ -g- } sin^ 6 '] 

^ — 1^/’^ jsiiP 6 ^ 

B 
xjj,,+i = 27t silP 6 

J 

Applying the conditions of continuity at the 2^th boundary, there results 

■^2,^1 J' — \ — Ap+ittp -f- a„ 
1 k 5 ) 

■P 

B„ 

with 

Adding 

Similarly 

2AX - ^ - I=■ 2A,,^xa| - ^ 
Up Up 

5 

Bj — 0, A,j+i — 0. 

A^,+i ~ A^ = (4,+i — t^) ol with A,,+i = 0. 

B^,+i — = — ^^5- {k^^2 — kp) al with Bi = 0. 

Clearly the A’s evolve from the outside, the B’s from inside. 

Write 

F (^iJ “ ^p+i) = 

Then 

A^, — kp^2 — with A.^+1 = 0, 

•B^,+i — B^, = I \pal with Bi = 0. 

Hence 

Ap = t;\pal, Bp = ^tr%(i^ 

Thus the \p are completely determined. 

For steadiness of motion it is necessary that the translatory velocity of the different 

boundaries be the same. This is obtained if the velocities of the inner and outer 

boundaries of each layer are equal. 

Hence we get n — 1 equations (p = 2 to 11) 

iV kp A J- — ^ kpCCp — kp + i I rr- 
'i)-i 

or 

or 

B -:K) 5 

B,= 
Up U,p_ 
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If the volumes of all the layers are equal, 

Hence 

Bp = - i (P — 1) —ip — I)"'"'} . 
or 

p (p - 1) [p'' - ip - If'l = {{p - + .... + Xi}. 
Now 

Xp-i — s' {^’p-i ^p)- 

Hence 

{{p-l)p^>^ -{p + K= -1(p -ifVi- 2;(p-2fV2+ •... + x,] 

^ - I [((P - !)•'" - (p - 2)“'*) i,-. + ■•••+ (2“’ - l)fc + k]. 
or subtracting two consecutive equations 

ir' - (p +1) (p - in h =-{(p- 2)“ - (p -1) (p - in 4- 

Thus the k can be determined in order from the inside. The peculiarity is that the 

process can stop at any point. That is that if we have two poly-ads, with m and n 

layers respectively (w > n) then the first n layers in the first will be precisely similar 

to those in the second. The values are 

and when p is large 

h, — — ^ ^ ^k^ — — l-3120^’i 

k^ = -f 1*4717^1 

ki = — l’5866^’i 

kp — ■ kp_i. 

As another example, take the case where the layers are formed of the same 

material, fie., the vorticities alternately equal and opposite. Then k^ = ( — 

Xp = f fip = I fi'i { — Y~' but X,, = i Xq = (—i fi’i 

- «i + .... + = i 
C(l - o^_i 

Let denote the ratio dp+i/a-iy. 

These values are then given by 

nP ^_1 —4)1 
^ +::P K-i _ 2 

and may be found in succession. The equations are, if denote 1 
®p-i 

+ 

VOL. CXCII.—A. 

a^p (a^p + 1) = f 6p (4 + aJp + !)■ 

H 
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In which it is clear that 

h=i 
h-. 

If the equation is 

{x + 1) — ^{x- + X 1), 

the positive root of which is x = 1. In this case 

h,) + i — I ^ = i. 

If ever is nearly F = J- -f- a (say), x^, is nearly I = ] -|- | (say). Then, regarding 

a and £ of same order 

and 

^j)+i — I 

(1+3^+ 3f) (2 + 0 = I (3 + 3^ + a (1 + 2a) 

^ = 5 « + 5 — If' = 5 “ — f t = 5 “ ( 1 — 1-5 «) 

i + « 
= 1 - (4 + a) (1 — 4a H- ^5^ a-) = i + a - f f ah 

Hence continually converges to ^ and the value of to 1 asj; increases. 

The first seven values are 

T, = 1-3283, 6, = -7582. 

T., = 1-1840, lh = -6741. 

X; — 1-1284, h = -6315. 

a;4 = 1-0987, h = -6056. 

Ts = 1-0802, b.= -5882. 

a-g = 1-0674, h,= -5753. 

x-i — 1-0580, cx
 11 -5660. 

The succeeding values will be given to four figures by the foregoing approximations. 

Tlie velocities of translation of the series of aggregates are 

Monad V, = 1-5- 

Dyad V2 = i(7- 5xf) Vi 

Triad V3 = IOTi 4- 5Tia’2) Vi 

4-ad V4 = 1(7- lOxi 10X1X2 — 

5-ad V5 = i{7- lOxi + lOXix'i — 

&c. Vg 

V, 

V« 

= V, 

= — -9110 V,. 

= + -8615 Vj. 

bx\xlx\)^y — — '8282 ^^1. 

lOxi.roXa + bx\xlxlx‘^^ V, = *8023 V,. 

= - -7833 V,. 

= -7618 Vj. 

= - 7462 Vj. 
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9. The form of the stream lines for a monad aggregate have been delineated by 

Hill. The general form of the stream lines for a poly-ad is obvious, and there is no 

special reason for drawing them accurately at present. It will be well, however, 

to determine the position of the equatorial axes, for the particular case of homo¬ 

geneous poly-ads, that is in which 

The condition at an equatorial axis is that 

^ ^ = 0 when 0 = 
ivrp ar Z 

in which xfj denotes the stream-function referred to the boundary at rest. A]q:)lying 

this to the p-th layer in an w-ad 

t = 2,7 { A„,' + h - i Kr - ^ + i } sii.'ft 

The equation for the equatorial axis is therefore 

or 
r’ (a'^, - a^_i) - ^ {a^ - a;_,) r' - (a; - «;_,) ~ 0. 

This may be written 

, 1 — 1 . A’? , — 1 . 
0. 

a'Ai — 1 ' 

1 

1 1 ^ 3 5 

4 s _ 1 1 

Now 

therefore 

and 

For a monad 

K-i {^-1 - 1) = I Vi - 0. 

K-i - 1 
-1 = 4 3 

— i (4 + 1) - 4 = 0. 

6 = 0 r~ = 

for a dyad 

Beyond dyads 

Then 

a 

v/2 

hi =1 or' — 4 a® = 0 r= 1T720a,. 

r = nearly = (1 -f 

+ {5 - i(f6,_,+ 1)] 

Now hp_i is nearly 4 

=i+(I - 2/,_,) f=5= 

= 0. 

H 2 

o 
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The distance from the inner layer is therefore 

From the outer it is 

But (p. 50) 

therefore 

ftp 1 — ^^p-\ 1 

Ratio =Pf-.r 
•'-S-l ■ ^ 5 Jp-V 

^p-\ = f + 

Ratio = 1, 

or the equatorial axis, with increasing number of layers, tends to bisect the distance 

between the two boundaries of the layer. 

10. Energy.—The energy within any region is 

the integral extending within the boundary of the region. By the ordinary method 

this is reduced to the form 

E = - ^ c/s + ff wi/zr/p dz. 
Ttt J p cm J J ' 

Since 
cl /I 

clp p dp . V7 + 37 
d / I c/yx 

dz dz 
Tttco. 

If the boundary be infinite and the fluid at rest then the first integral is zero, 

and 

If the 

E = j j anjj dp dz. 

The integral extending only to spaces which contain rotational motion, 

motion IS of uniform vorticity co = I'p, and 

E = ^ II pi// c/p c/z. 

In the cases here considered xJj is of the form /(r) sin" 0, and 

E = 2k 11^ E'f^r) dr sin® 6 dO =■ ^k^ 

In the case of a poly-ad f{r) is different for the various layers, and 

E = t j/^’i 1^' r-f, (r) dr + h | Efo. {r) dr + . . 
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We work out the case for a dyad a^^gregate, in which ko = — ^i, 

A{r) = 27T{{^a\-^a^ky--ik,r^}, 

f, (r) = 277 [ - i k^ik^ + k,a\/r + i k,r^}, 

and 

E = ^ {iV (2«i — «i) a\ — ^ fd + iT 0^2 (ai - «?) 

-h (cfr2 — «?) — 5-7 («2 — «0 

— yg ^ (3 '^<'1 t ^2®i H" I'-y OS'’] 

o3'/( A/l dm O^ll 7\ 

= "4h“ ~ ^2^1 + 7 «2) 

^ _ ?>2irk\ . 
= 1‘945 X 7;—^ a\. 

4o X 7 

If the two parts had been single monads their combined energy (when far apart) 

would have been 

E , ro. 327r/d , 

^ 45x7^'^- 

The energy when combined is therefore greater than when they are separate. 

11. It may not be out of place to make a short digression here as to the relation 

of a Hill’s vortex to the vortex rings which have been investigated in previous parts 

of these researches. As is known the translation velocity of an ordinary ring 

decreases as the energy increases, and formulm are given in a former paper'" whereby 

those quantities can be calculated for comparatively thick rings up to R/r = 4 with 

considerable accuracy, and possibly further. Here R is the radius of the equatorial 

axis and r the mean radius of the section of the ring. Refer all measurements to the 

spherical form, and let c denote its radius, Vo its velocity of translation, and Eq its 

energy. Take now a ring of the same volume and circulation as the sphere, and let 

V and E denote its translation velocity and energy. We get the following value of 

E/Eo, V/Vo for different apertures. 

R 
r 

R 
c 

r 

c 

V 

w 

E 

Eo‘ 

100 •199 176 
50 S'OO -162 •282 95 
10 2-77 -277 •593 20-8 

5 1-745 •349 •784 10-25 
4 1-500 -375 •856 8 
3 1-239 •413 ■946 6 

* “ Researches in the Theory of Vortex Rings,” Part II., p. 757, ‘ Phil. Trans.,’ 1885, Pai't II. 
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These numbers are graphically represented in fig. 1, Plate 1, where the abscissEe 

give E/Eo and the ordinates V/Vq. Dotted lines refer to points where calculation 

cannot be applied. On the same figure are placed outlines of the aggregates drawn 

to scale. Two things at once strike the eye. First, that the spherical aggregate 

evidently lies on the E .V curve of the rings, belongs, in fact, to the same family; 

and, secondly, that the variation of V with the energy is small over a very large 

range. The shape and nature of the aggregate when the energy is nearly that of the 

spherical form have not yet been determined. It is probable that as the energy 

diminishes the form lengthens along the polar axis, until when the euerg}^ is very 

small it becomes a long, thin, cylindrical aggregate. When this is so long that the 

end portions form only a small portion of the whole, it is possible to obtain an 

approximation to the energy, for when very long the fluid outside wiU be very 

nearly at rest (as in case of force outside a long helix). The velocity of propagation 

will then be the velocity at the axis. Let a be the radius of the cylinder, I its 

length. Then 
la~ = fc®. 

Again, if V denote the velocity along the axis, the velocity outside is zero, and the 

variation at the ends only a small part of the whole. Hence the circulation is 

given by 
/X = V/. 

Again let v denote the velocity at a distance r from the axis. Take a small 

rectangular circuit, h parallel to the axis, one inside distant r from the axis, the other 

outside. The circulation round this is bv. But it is also the value SwdA taken 

over the area of the rectangle. 

Therefore 

hv = Ji%2r clA = (volume) = .hn (a“ — r"), 
TT TT 

V = k{ar — ?■“), p, = Iha^ ; 

therefore 

Energy in E = 27rr. I dr. 
Jo 

TT/i,- p-/ .7 /-2\ 

TTfura- 

61 
•2 2 ^ 

y 

IttcWI 
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It is thus the same as a mass of one-third its own mass moving with its velocity of 

translation. Now 

Eo = 3-5 fc ’ 
therefore 

E ... Y 5c 
E„ ~ ’ V„ “ / ’ 

therefore 
7 /vy 

E„ ^^\yJ' 

This only holds, however, when V/Vq is small. It is a small part of a parabola in 

the figure touching the axis of E/Eq. 

12. Spheroidal Aggregates.—As is known from Hill’s investigations, the spheroid, 

although an instantaneously possible form, is not steady. It proceeds at once to 

change its shape into a non-spheroidal one. It seems, however, advisable to give the 

general outline of the method as adopted in this paper and as applied to the 

spheroids, in order to investigate whether by superposing a second or third layer it 

may be possible to obtain a steady form. 

The functions involved and the differential equation for rp are given in Eqs. 8, 9. 

Writing C for cosh w and S for sinh u, the differential equation in xp is 

since 

1 

cos V du \ S du j 8 

dLl Jl 
dv \cosv 

Ank-X* S cos V (C" — siir v), 

CD = hp = Z:XS cos V. 

As in the former case, a particular integral is 

i// = — ^ hp*^ =z — T Trews'* cos^ V. 

It remains to integrate 

1 d fl_ d^\ , 1 ^ 0 
cosr du, \ kS du) S dv \cosr dv ) 

This can be satisfied by writing \p = where X and Z are functions respec¬ 

tively of u and v only, and 

dv Vcos V dv 
m Z 1 
cos V 

pL /J_ _ 
dn \ S du 

viX 

S J 

m being any constant. These equations are 
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(P'L , ^ f/Z , „ 
-r- + tan v-r mA = 0 i 
(iv civ I 

clX ^ ^ 
—^ — cotn u--wiX = 0 I 

cm J 

As will be seen later m must be of the form n{n — 1), n being any integer. 

TT 
Writing for a moment v = ~ — 6, the equation in Z becomes 

whence 

Therefore 

- cot 6' + n (ir - I) Z = 0, 
cW 

Z„ = — sin 6 
d0 

Z. 

sin“ 6 = cos^ V 

6 sin“ 0 — ^2- sin^ 0 

6 cos“ V — A- cos^ V 

cos^v 4 7 _2_ 7 
Zj, 1 0 ^^4 - 5-^2 

To determine X, we proceed by the same analogy to put 

dV x = s 
dll 

Then 

dll 
— — cothu-r — n (?^ — 1) X = S — 1 + coth u--nin — 1) P k 
hd clu ' ' cki ydu- v d^l '■ ' J 

If then P denote a zonal harmonic with imaginaiy argument and of order n 

the right hand of the above vanishes, and the value of X is a solution. That is 

- 1, 

X.„ = S 
clu. 

Now we have 

_ 1.3...(2?^ - 1) r _ n {11 - 1) 
2(271-1)^ nl 

Hence 
Xo = SI Xi = 6S“ + Sb S^ = lA X4 - I X.2. 

This set oT solutions gives values finite and continuous at all points inside a given 

ellipse of the family, but infinitely large at an infinite distance. Let Y denote the 

second integral of the equation. Then, in the usual way, it may be shown that 

Y = xf|*. 
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whence it is easy to prove that 

-1C, 
C + 1 

C - 1 

n = - A-C(:i5C*- 13). 

With these values the particular integral is 

~iX,)(2Z,- IZ,). 

The terms in X2Z.2, X4Z4 may be supposed mei’ged in tire general solution. We 

may then write 

i//i = (A2X2 TrkX'^^i) Z2 + (A4X4 — i.\Trl'X*^2) 24, 

\po = B.2Y2Z2 + B4Y4Z4. 

From these it is easy to deduce the values of A2, etc., for a single free aggregate, 

by applying the conditions xf/i = i//2 and clxf/j/du = dxfj-ijcht at the surface. It is 

unnecessary to do this, as from Hill’s work we know that it is not steady. 

The case of motion inside a rigid spheroidal boundary is also given by Hill.* 

Tlie solution follows immediately by impressing the condition = 0 when u — u. 

Hence 

Ao = -7-5 , 
A2 

A, = , 

where thick type denotes values at the surface, and 

xjj, = ^5- rrkX^ Z2 - A Z4, 

which easily reduces to 

xfjl = 
'Itt Ji'X 

4 + 5S^ 
^ (S^ ~ 8'“^) S'‘^(S^ + cos^i’) cos"r, 

The total circulation is f 

The equatorial axis is given by 

du 
— 0, when v = 0. 

That is by the equation 

2S"S - 48® = 0, or 8 = ^ S. 

* ‘ PEil. Trans.’ Part 11., 1884, p. 403. 

VOL. CXCII.-A. I 
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The equatorial axis therefore lies in the equatorial section in a similar position to 

that for a sphere. 

13. Dyad Spheroids.—Polj-ad spheroids clearly occur in the same way as for 

spheres ; they are, however, also unsteady. It will be sufficient merely to indicate 

the steps of the proof. 

Let n = u' and u = u" denote the two boundaries, ijj will involve terms in Z2 and 

Zj. By applying tlie surface conditions in the same way as for the spheres to both 

sets of terms independently, the coefficients are determined, whilst the condition that 

the internal interface has the same translational velocity as the outer gives for Z4 an 

equation which u' and u" must satisfy. This is 

where 

ri/Q/i 

^ ivr'' ^ iv/T' . ^ — Uo __ M - -g- M + g _ = 0, 

M X., 'y- - Y, 
i/v, du 

aud the dashed letters refer to values at the outer and inner boundaries 

The same applied to the 7a, terms give 

// / 
ll , tt . 

S" 

where 

N" - ~ N' + (C"S"' - = 0, 

N = X, - Y. 
dll du 

The existence of steaddy-moving spheroids depends on the possibility of finding 

values of u', u" to satisfy these two equations. 

It is easy to show that 

6M + N = iS(25S' + 14). 

Hei ice, adding 6 times the first equation to the second, there results an equation free 

of logarithmic terms and which can easily be reduced to 

1C’ 

C"S"' - C'S''‘ ~ 50'- - 1 ’ 

Butting C' = y, C" = X, the factor (x — yf divides out, and the equation may 

be put in the form 

(a:'l+ 2.x“y + Sxy~ — 2x) + (y- -- 1) (3y“ + 1) — 0. 

Now a; > y > 1. Hence Sxy~ — '2x = xy~ + 2x {y~ — 1) is positive. The expres¬ 

sion on the left is therefore always positive and no suitable Vcdues of x, y satisfy 

the equation. A prolate spheroidal dyad is therefore not steady. 

The condition for the oblate spheroid can be found by writing S^/ — 1 fur C. It 

can be shown that this also has no suitable root. 
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Section iii.—Gi/rostatic Aggregates. 

14. Passing on now to the consideration of the more general problem where a 

secondary spin exists, the simplest case is that in which in equation (12) both F and 

yt/Z/di// are uniform. 

Suppose 

/|" = A, or /= v/(2Ar//). 

The differential equation iii il/ is now 

1 (1-y^ 

dA 

cot 6 d-^ 

dd 
87r"p“F — A, 

a particular integral of which is 

^ - lAr-^ 

and the general integral is the same as that considered in the previous section, viz. : 

( A7‘"' + Z„. 

It will however not be found possible to satisfy the boundary conditions unless the 

term xjj = Ap" be introduced. This term, as well as that in makes the motion 

discontinuous at the polar axis. However, we will suppose for the moment this 

portion of space excluded, and see later if it is possible to do so. The stream- 

functions are then,—inside 

xpi = — tt^p^F — |■A9•■ -f- Ap’ S2A,p'"Z,,, 
outside 

and can be replaced as before by fr^Z.,. 

Applying the conditions if/i = ij/j and dxjjijdr — dxjjoldr, when r = a it is easy to 

deduce that 

i/;, = - iA {a - rf - iir-VAZo F ^ir-a-YAZ,, 

F. = -A-tt^F ^ Z.3. 

The velocity normal to the sphei’e is 

1 fZF 

A-TTp rdd 

That is, the sphere progresses bodily with a velocity given by 

= "A’ 7rF(d cos 6. 
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Impress — V on every point, that is, deduct ira'Yr-Z.y. Then the stream- 

iiinctioii referred to the boundary is 

- 1A {a - rf + I {cj? - r^-) Z,. 

At the outer boundary i/; = 0. If we trace the stream-line i/; = 0, it is seen that 

it consists of the circle r — a and the curve 

iA (« — r) =: Att'-F?’- {a + r) sin" 6. 

This passes through the poles (r = a, 6 — 0) and touches the circle there. Hence 

the space between this and the outer boundary does not contain the polar axis. The 

motion given by r/; is therefore finite and continuous there. The space inside it 

must be excluded as giving a motion not possible—or rather, a motion due to sources 

and sinks on the polar axis. AVe shcdl suppose it excluded by replacing the fluid by 

a solid nucleus of the shape required. 

The radius of an equatorial axis is given by d\p/dr = 0 when 0 = tt, 2, or by 

A {a — r) q- ^TrFr {cd — 2r-) — 0, 

5A 
In this wuite r/a = x and ,= h. Then 

lOTT-rff- 

(h — 1) X — h = 0.(13). 

This has one root between 0 and 1. The other roots must either be both imaginary, 

or, if real, one at least must be negative, since the coefficient of x- is zero. As, 

further, x = — co and x — 0 both make the expression on the left of the same sign, 

both these roots must be negative. Hence there is one and only one root between 

0 and f. That is, there is only one equatorial axis. 

In the special case b = the radius of the equatorial axis is a. 2~^ — •7937u. 

For this curve 

>/'. = iA | q («= - r-} Z, - (a - r)=j. 

The curves are drawn in fig. 1, Plate 2, for values of 2\fjjAa^ =■ — '1, 0, '1. 

The value at the equatorial axis is '397. The value (— T) is drawn to show how the 

discontinuity enters. 

The velocity along a parallel of latitude is given by the equation 

2Trpv sin (ji = f — ^(2Ai/j). 

This is zero at the surface and on the spindle-shaped nucleus, and increases to a 

maximum at the equatorial axis. The secondary cyclic constant is the circulation 
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round the two circles (1) the equator of the sphere, and (2) the equatorial axis, it 

is therefore given by 

v = y(2Ai/;'h 

or 
p —. Aa y/(2.'r — I — 

where x is the root of equation (13). 

On account of the artificial nature of the internal nucleus the further discussion 

of this case is scarcely called for. We pass on, therefore, to the more important 

case—the next simplest one—in which F is uniform, but the second terms varies 

as rjj. 
cl f 

15. Case f —Here also f varies as xfj. 

Write f = where a is a length, which may be taken to be the radius of the 

SttV^ * 
sphere, and X is a pure number. Also write F = where V is a velocity. Then 

the equation in ijj is 

(Pyjr 1 d'-\lr COt $ dxjr p- „ V 

^ d^ W le~ ~~ cd ^ V- 

V 
A particular integral is — — C and the general integral depends on 

, 1 d^lr cot 0 d-\p' , ^ 

In this put if/ = where is the function of 0 already discussed (§ G) and J„ is 

a function of r only. Then 

d'-Jn ___ J n(n - 1) 
d,.2 I ,.2 

JL/y r is therefore a Bessel’s function of order n — T, which can, as is known, be 

expressed in finite form involving circular functions. In what immediately follows, 

the values of J2 will alone be required. The equation is, writing x for r/a, and 

dropping the subscript 2, 

dx^ 

If J and Y denote the two integrals 
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or, in more general terms, 

Integral = C | 

where C and a are arbitrary constants. 

J and Y ma}" be expressed in infinite convergent series. Thus 

T / \ _ Sin ?/ 
J {y) = y - cos y 

{2n + 1)! 

y- 
2m + 3 {2m + 1) 

+ (14) 

Y(y)s'!^ + sin 2/ = i + ij/ + . . . + (-)“■ + .. . 

also, 

and 

1 ^ +12/=+ ... +(-r> y/■■ + ... 
y 

<u Y) 

<^\iy) 

sm y 

cos y 

,U 

y 

Y 

y 

o 1 r t 

}/ 

sin y 

cos y I 

V' ! 

Y ' - J — 
,Jy //// 

(^5), 

(16). 

Clearly the functions J refer only to space excluding- infinity ; Y to space excluding 

the origin. 

16. For the problem in question the stream-functions ai'e, therefore, 

inside, 

outside, 

i/'i = — y r- slid 6 -f 

^■2 = ^ 

Applying the surface conditions that when x = 1, xjji = xfjo, and d\\jjdx = c/i/zo/c/ai, it 

follows that when 
n >2, A„ = = 0, 

when 
n = 2, 

Y 2 , A T' - — ^ + AnJ — , 
A." Ci 

2y 
a~ 4- Ao 

dx a 7 

where J' and d^'jdx mean the values of J and d^jdx when x = 1, that is 
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J' = 
sin A, . 
--COS A, 

X 

cU' . sin> \ \ \ 
~ = A sm A-P cos \ \ sni A 
ax A 

the two ecjuatioiis for Ao, B2 give 

A., =1 
3V , 

W—:- 
siu A 

YA / 3J' 

A- \A siu A 

The aggregate moves through the fluid with a velocity of translation given by 

u 2B, 

2ito? 

Y_ / 3J^ 

ttA- \A sin A 

By its formation the above value of \jj satisfies all the equations of condition except 

that in those equations ifj is the velocity-function referred to fixed axes. Here it is 

not—it represents the motion referred to the instantaneous position of the sphere. 

It is, therefore, not directly applicable unless the velocity of translation given by it 

vanishes, that is, unless 
J' — ^A sin A = 0. 

If A be a root of this equation we get a steady motion of a vortex aggregate, at 

rest in the surrounding fluid. 

If we, however, take the above general function, it gives a velocity of translation 

U = 
A" 

ttA' 

3J^ 

A sin A 
(17). 

Bring the aggregate to rest by impressing a velocity—U on the whole fluid—that 

is, add to the stream-function a term — 7rUp“ = — TrUa'^x^ sin 

We get a new value of ip, referred to axes remaining fixed, viz.. 

xp = 
3Vft^ 

A^ sin A 
(J - x^J') sin 

Take this value of ip, and put f= -xp. Then equations (L, 3, 4, 7) become 
cc 

Vp cos <f) 

vp sin (p 

ojp CO.S y 

o)p sin X 

I dxp' 

27r d n 

A 

27r« 

^ cljr 

47r« dn 

3V 

TttA sin A 
J sin’^61. 
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These give v, w, <^, ;>(. 

Now substitute in voi sin + X- result is that 

o'^r 
V(D sin (d) 4- y) dn = ^ ^-J'.ddj 

^Sirki-X sm X ^ 

SO that the motion given by the new ijj is a steady one. There exist, therefore, 

systems travelling through the fluid with velocities given by (17) and with a steady 

motion. The system given by J' = sin X is contained as a special case, 

17, There are two circulations to be considered. That along a circuit up the polar 

axis and down over the surface of the sphere, and that due to the motion I'ound the 

polar axis. Call them respectively the primary and secondary cyclic constants, and 

denote them by p,, p. 

=d“{ ^ *+2 n - Jo [^Trp rdO J 0=0 Jo L ^Trp dr J ,.=„ 

In finding this the term siid 6 may be omitted as giving no circulation, and 

we may take 
, 3Vfd -r . 2^ 

ijj — —r J sm u 

p = 

X® sill X 

3Vrd 

ttX® sin X 

8V« 

ttX- sin X 

g'J , dJ' f 

J 7 dJH 
2 — — — I 
hr dy\ 

r‘' a m sm u du 
dr J 0 

where 

Now 

therefore. 

y = 
\r 

fg _ i + fl y = _ 1 + f(SBl _ 4) ^ 
J r ^ y i y dy ^ y h y rJ'^ 

^ c J 7 r JI c sfjiy 7 
2 — cZy = — — + —~ dy. 
hr ^ L 3/Jo Jo 2/ 

Also, J (y) is of the order if when y is small, therefore, 

0^ J , 4' 

and 

J 
2 -dy = 
hr 

-j” StX, 

3Va 
p = 

ttX' sin X 
(SfX — sin X). 

If we replace V as a constant of the motion by p, 

irpia 
1/7 = 

X (StX — sin X) 
(J - x~3') sin'^ e. 
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Before discussing tlie value of v it will bo well to get some general idea of the 

nature of the inotions. One of the most striking peculiarities of these aggregates 

is the quasi-periodicity of type as X increases from 0 to inlinity. The best way to 

illustrate this is to use a graphical construction. Now 

i//oc {J (Xx) — a;" J (X)]. 

In fig. 2, Plate 1, the curve y = J (X) is drawn. Pj corresponds to a given type 

(X) of aggregate. A parabola is drawn with vertex at O and passing through Pj. 

Bepresent any abscissa to the left of X (or of Pi) by Xx, where a;<l. Then the 

differences of ordinates between the curve and the parabola up to P represent 

J (Xa;) — a;“ J (X). 

It is clear from the figure that, in the position Pi, this function never vanishes for 

x<\. In the second position, P2, however, the parabola intersects the curve at 

another point p. For this point (suppose x = Xq) ijj vanishes for all values of 6, and 

the corresponding current sheet is a sphere internal to the boundary. The aggregate 

consists of two portions with independent motions. The primary circulations are in 

opposite directions, and there will be tivo equatorial axes. So, as P moves on 

along the curve, i.e., as X increases, we get families of aggregates with three, four, &c., 

layers, and a corresponding number of equatorial axes. We shall denote any transition 

value of X by Xo. Each layer will have its own secondary circulation, given by the 

circulation round the double circuit formed by its equatorial axis, and an equator on 

its boundary. 

Now the secondary spin velocity is given by 

vp sin (b = 'A* 
' ZTra 

And since = 0 on the boundary, it follows that 

X, 
V,, = 2 wpv sin (f), along the equatorial axis only, = — 

cc 

where is the value of if/ at the nth equatorial axis, or 

irp 

Six — sin X 
— xlJ'}, 

where J„ = J (Xx„) and J' = J (X). 

VOL. GXCII.—A. K 
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I 8. The moment of anoular momentum is o 

M 2 [ [ 'iTTpj'(Ir (Wvp s'm (j) 

/e“ sin 6 dr dO 

OJ 0 

2A, r<cr^ -^ 

a , 

['{J - a;'-’ J') dx ("siiE 6 dO 
S;A, — sni A. Jo^ -’o 

hi 

Si A — sill \ 

r- 

-V '- . 
I - - sm 

o\ A 

Si A - sill A 

\x — X' cos Vc; — ’ I dx 

sill A\ sill A1 

A 

where 

and 

where m denotes the volume of the aggregate. 

19. The internal energy of the aggregate, supposed without translation is 

E = I jl^TTp dp dz (v- COS" (^ + y' siid </») 

t/, = A{J-a;y')sin-d 

A = . 
Si A — sin A 

Hence, as in tlie usual way. 

Now along the boundary v// = 0. Also 

(I j 1 d^\r \ d / 1 dyjr x A" . J siir 0 X’yjr A’A 
,T:(br a;) + ati-v j. ) = - vt - vv: “ ~dP^ ’ dp \ p dp J d, 

therefore 

„ A= [{drxdrdd , A-AJ' 

Ft—+ w„. 
j'v/ip'r dr d6 

2 sill- Xc sill 2Ar , ^ , 
- ~ +2 COS" A. 

A-e- 

A'A'^ 

oird 

Ahl- 

37ra 

A^-A'^ 

OTTh \ 

1 T'2 
5 

/SsiiiA 3 cos A sin A\ . , sin 2A 2 sin-A 

-^ - X + ' + Tx-x=" 

1 ^ \ T'2 I 2 sin A cos A 
^ ~ AV' ' A- ~ A 

fi _ 
^ A- 

„ + si.r A , 
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or 

E = 
TTfi-a 

9 ' 

X,- 
+ siiP \ 

(S-iX — sin X)- 
(19). 

The energy due to translation is that due to the bodily translation of the sphere 

+ 4 the same. 

The velocity of translation is 

U = 

Hence this part of the energy is 

Therefore total energy is 

iTfjra 

IJ. .T' — i X sin X 

a X (Six — sin X) 

3. i 4 ..^^,3TT2 
2 • 2 • 3 ^ • 

1 ) J'" + i ^ ( V 'T' — I sin X ) 
(Six - sin X)- [ \ ^ X- / ■ ■ ■ \ X 

,,, {2 (i - ^) J'" - I ^ + *- (&^X — Sin X)- L J oX •' 

A verification is afforded by putting X = 0 (Hill’s vortex). Then 

(20). 

(S^X — sin X)- = X*^. 

Large bracket = 5~t^9T9 

E = 3% 77/4 Vg 

which is correct. 

The preceding formulae refer to the whole aggregate. When, however, X > the 

lowest k,, there are more than one component, and it will be well to give the 

requisite formulae for each of these separately. Denote Xr„/« by y„, where is the 

radius of the vrth interface from the centre. Also for shortness let 8 (x) denote the 

function Six — sin x. Then 

_ B(y„) - S(y„_d 

fi S (X) (21). 

77 

S(y,) - s (//„_,) 
IT _ T'■' 
I’J ,1 X,, 0 j . • (22), 

J,„ denoting the value of J at the equatorial axis= 

M„ = 
VI fj. 

X“(SiX — sin X) ^ y„_j 

J_ 
x" S(y„) - S(y„_i) 

j (y sill!/ — if cosy — y* cly 

^yJ {ya) — 3?/,_iJ (y„_i) - 'iji sin y„ + sin y,_, 

_ yl - yl-i. J (x; (^ 
5 * X- J 

K 2 
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But 

Hence 

T n 
- y ^ = 0- 

Tvr — ^__ m- 
3 N y'n y'n—l 1 (^) O ■ I ■ / O O \ 

Va-i) - - - - y-’ y-- + yy^ sm y,,_, . (23). 

20. The velocity of translation is given by 

U= - 
/A \ sin X — 3 (sin X/X — cos X) 

3« X (Six — sin X) 

fjL cl 

3a (Six — sin X) d (kcc) 
{J (Xx) - x-J 

To see how this varies with the parameter X, refer to the graphical construction in 

fig. 2, Plate 1. The curve J and the parabola intersect in P. If A be a point on 

Fig. 3. 

the curve (fig. 3), and B on the parabola with the same abscissa near P, and PN be 

the perpendicular on AB, 

Tj _ _d_^ 

3a (Six — sin X) PH 

_ fjL sin (« — ;d) 

3«(SiX —sinX) cos a cos jd 

fx sin (a — /S) 

3aA cos « cos d 

Where a, /3 are the angles which the tangents to the curve and the parabola at P 

make with the axis of x, and A denotes the area of the curve OAPMO. 

The factor o always finite, except for X = 0, and positive. It is 

then easy to see in general how the velocity alters as the parameter X increases. 

As P (fig. 2, Plate 1), travels along the curve, U is positive. Leaving out of sight 

for the present its value for X small, it later on diminishes to zero when P reaches a 
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certain point Q where the parabola touches the curve. It then changes sign and 

remains negative until P reaches another Q point where the parabola again touches 

the curve, and so on. 

We shall call the values of X corresponding to the Q points the X2 values, and 

denote them in order by X^P, . . . Xp\ Thus for values of X < XP the aggregate 

moves in the direction of the rotational flow up the axis. At X = XP the aggregate 

is at rest, the velocity of the fluid on the boundary is zero; as X increases beyond 

this, the aggregate takes on another layer with primary rotation in the opposite 

direction, and it moves in the fluid in a direction opposed to the rotational motion of 

the innermost layer. It regredes relatively to this. The velocity at first increases 

and then diminishes until P reaches the second X., point, when the corresponding 

aggregate is at rest in the fluid, and so on. 

The periodic nature of the aggregates is thus evident. We get for example a 

whole periodic family of aggregates whose peculiar property is that they remain at 

rest in the fluid. The members of the family differ, amongst other things, in the 

number of independent layers each possesses. 

So we get another family formed by values of X, corresponding to points where the 

J-curve cuts the axis of x. We will call values of X, corresponding to these the X^ 

parameters, and denote the orders in the same way as for the Xo parameters. As we 

shall see shortly, the distinguishing property of this family is that in each of them 

the vortex lines and the stream lines coincide. 

For small values of X it is preferable to express the value of U in terras of the 

lowest powers of X. 

It is easy to show that 

StX — sin X = -d;. X' 
■7 

6,0 
-i-r.- 2n Xin+i 

2ft + 1 (2 ft + 1)1 

whence 

u= c (I-Thn 5a 

This gives for X = 0 the value of U already known for Hill’s vortex. 

The curve y = U/Uq, where Uq is the velocity of the non-gyrostatic aggregate of 

same cyclic constant and volume, is drawn in fig. 3, Plate 1, up to XP. The periodic 

quality is evident. 

21. The directions of the lines of flow and of the vortex lines are given by 

, vp sm (b 
tan (b = ' 

vp cos 

tan X — 
sin X 

wp cos X 

A, yjr 

a 

dn 

X 
a 

dn 

J shd 0 

(J — x-J') sill- 6 
}■ 

(24), 
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Hence 

also 

Equation (25) shows that when J' = 0, i.e., for the X, parameters, the stream lines 
and vortex lines coincide. (It is to be remembered that we have supposed in the 
foregoing’ that (/> and x. opposite sides of meridian lines, and therefore 
tan (f) = — tan x means that they lie on the same side and coincide.) 

I. From X = 0 up to X = Xj^^ J > x^J' and J — x%J' < J. Hence between these 

limits, the stream lines and vortex line are on the same side of the meridians, and 
y>^, i.e., the stream lines lie between the vortex lines and meridians. At X = Xi^^ 
they coincide. 

II. Between Xi^^ and Xl^^ J > but J —x^J'>J. For any given X, J changes 
from + to — as x passes through the value \x = For this value of x, or 

r = ^ a, X— b- Thus, for an aggregate whose parameter X lies between the first Xj 

and Xo roots, the vortex lines lie between the stream lines and the meridians for all 

points at a less distance from the centre than r = ^ a. At this distance y = 0, or 

the vortex lines coincide with the meridian planes, and beyond this distance up to 
the boundary the vortex lines and stream lines are on opposite sides of the meridians. 

For values of X between tlie first and second X^ parameters we have to deal with 
two layers. In the outer J — x'J' is negative, whilst J is negative between Xf^ and \f\ 
positive between and Referring to fig. 2, Plate 1, let the point where the 
parabola cuts the J curve be given by X', corresponding in the aggregate to a distance 

from the centre Xx = X' or r = — a. It is clear that J (X) and J (X') are of the same 

sign. Hence, if X lies between X2’ and Xf^ (corresponding to P between Qi and R.,), 
lies between X^/^ and X2 ^ whereas if X lies between and X' lies between 0 and 

Xy^—or, taking closer limits still, between it and XjE We find, therefore, the follow¬ 

ing results. 
III. P between Qj and R,. In the inner spherical nucleus the vortex lines lie on 

the same side of the stream lines as the meridians—they are, in fact, exactly similar 
to the second category. At the boundary between the central nucleus and the outer 
layer (/> = 0, the stream lines coincide with the meridians, In the outer layer the 
stream lines lie on the other side of the meridian, with the vortex lines beyond. When 
P coincides with R2 or X is the second Xj parameter the stream lines coincide with the 
vortex lines again, but on the opposite side of the meridians. 

IV. For P between R2 and Qo, we get still two layers, the boundary being given 

, , X J'x- ,sin 6 
tan y = - tan - — qyy- 

« — J (J _ giiP 0 
(hi [ 

. (25), 

tan (j) 1 , o 't' 
, ■ — — 1 X . 
tan y J 
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bj (say) y (P at^9), where JX' and JX are both positive. J — is positive between 

0 and X — X'/X and negative between x — X'/X and 1. In the inner spherical nucleus 

(r = 0 to 7' = X'a/X) the stream lines lie between the vortex lines and the meridians 

(similar to the first category). At the interface the stream-lines coincide with the 

meridian. In the outer layer the stream lines and vortex lines lie on opposite sides 

of the meridian for points whose distance from the centre are less than ^ a, or greater 

X® . . X'l x<^^ 
than — For points at a distance - a and a, the vortex lines coincide with the 

X X X 

meridians, and between them the two lines lie on the same side of the meridian. In 

the same way the behaviour for aggregates whose parameter is greater than may 

be determined. The periodic nature of the aggregate is again very clearly seen. 

It is perhaps easier to describe the nature of the changes above indicated by supposing 

our eyes placed in a prolongation of the polar axis. Call the vortex lines blue lines and 

the stream lines red lines, and suppose for X small that the stream or red lines lie on the 

right of the meridians. For X = 0, or Hill’s vortex, the red lines lie along meridians 

and the blue lines perpendicular to these, along parallels of latitude. As X increases 

the red and blue lines swing round towards each other, the reds to the right and the 

blues to the left, and this goes on with increasing values of X up to when they 

coincide. Beyond X = X(^’ and up to X = yp the red and blue lines interchange their 

relative positions. In any given aggregate the blue lines move more and more 

towards meridians as we pass from the centre outwards. At a distance — a from 

the centre the blue lines all coincide with the meridians, both red and blue lines are 

swinging round to the left. Beyond the distance a the blue lines cross to the left 

of the meridians and the red lines close up towards the meridians until at the surface 

of the aggregate they coincide with them. 

Between X^* and yp we have doublets. The aggregates lying between XT and XP 

and between XP and XT are however essentially different. 

In the first set in the central nucleus the blue lines lie to the left of the red, and 

both to the right of the meridians for points near the centre. As we pass outwards 

from the centre they swing round to the left, the blue lines swing past the meridians 

whilst at the surface of the nucleus the red lines just reach it. Beyond, in the 

outer layer as we pass out, the blue and red swing further to the left, and later at 

least the red swing back again towards the meridian, coinciding with it at the 

surface. When X = XT red and blue coincide everywliere. They lie to the right in 

the inner nucleus and to the left in the outer layer. 

Between XT and XT we get aggregates in which red and blue lines again change 

sides. In the inner nucleus both lie to the right of the meridian, blue furthest out. 

They close up to the meridian as we pass out from the centre to the nucleus surface. 

In the outer layer the red lines swing further to the left and back again, the blue 
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lines follow after in the same way, crossing the meridian twice; once in each 
direction. 

Beyond Xi"* we get triplets. 
In general, between Xf^ and the blue lines lie to the right of the red or the 

opposite according as n is even or odd. They coincide for the Xj parameter. Also, if 
n is even, both lie to the right of the meridian for the inner nucleus, the reds to the 
left for the second layer, to the right for the third, and so on. Whilst the opposite 
takes place if n is odd. 

The forms of the spirals may be obtained by finding the polar equations to their 
projections on the equatorial plane. Let (p, rj) be the polar co-ordinates of a point 
on the projection of a flow ; (p, 9) of a vortex line lying on a given sheet x}j. Then 

(^■v . j d? • 

where ds is an element of a meridian curve. Hence 

d-yfr 
P dn 

\ dr 
a d^ 

P VW 

Provided dr is not perpendicular to ds, i.e., on the outer boundary, but then xjj — 0 
and 7) = 0. 

dr 
2 cos 6 ’ ’X, 

dx 
-’ > 
cos 0 

where corresponds to the inner circle of the two in which the current sheet xp cuts 
the equatorial plane. The total angular pitch of the spiral is 

X 
I 

dx 
cos 0 

where x^, Xo are the two roots of 

T/s \ oTx X\/r(Si:x — sin \) , 
J (X.r;) — aj-J X = - = b, say. 

iTjjLa 

The above may also be written 

(26). 

(27). 

Equation (26) enables us easily to determine the form graphically when the 

surfaces \p are drawn. So 

5 = 7? + 4 J' r ^(J - J') (J - J' - dx . . . (28), 
Jari 

the case of a spherical boundary being excepted as before. 
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For the outside stream-lines the pitch is 

For values of X, however, lying beyond there are several layers in which the 

stream-lines are distinct. If Xi. x^, x^ . . . denote the values of x corresponding’ to 

the interfaces of the layers, the pitches of the stream-lines on those surfaces as we 

pass outwards are 

(xj — 0) X, (xo — Xi) X, (xg — Xo) X, &c. 

\Ye have seen that on these surfaces the stream-lines coincide with the meridian. 

These parts therefore produce no part of the pitch. The twist must be supposed as 

taking place in the part of the stream-line along the polar axes. It is easy to see 

that this is so by considering current sheets near the interfaces. 

We may therefore regard the physical meaning of X to be the criterion of the total 

external pitch of the stream-lines. We will return to the consideration of the pitch, 

and the shape of these lines later. 

The total angular pitch of a stream spiral on any stream sheet if/ can easily be 

expressed in terms of the volume of the fluid inside that sheet. For 

ds XJ' p" TTua - . - . ^ - 
p cd d-yfr X (Six — sin X) 

dn 

XJ' 27rp dsd?i _ 7rp.« , 

27rcd d-\Jr' ^ ^ X(SiX — sin X)' 

ch = dy — 

Integrate round the stream surface 

<; = y — 
\J' d f , , XJ' dm 

27rcd d."\^' 
(29), 

where m denotes the volume inside if/. 

22. The discriminating properties of the Xj and X., parameters make it importanc to 

determine their values. The Xj parameters are the roots of the equation 

J(X) = 
sill X 

X 
cos X = 0, or tan X = X 

The large roots are clearly nearly {2n 1)7 

Put 

X = (2?i -\-l)~ — y=a — 

Then 

TT 

VOL. CXCTI.—A. 

COS W 
— sin 1/ = 0. 

a-y 

L 

V 
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Expanding this in powers of y, it is easily proved by successive approximation that 

y 

or 

X<"> = (2^i+ 1)^ - 

“1“ VTj + -I K a oa IDa 

If) 13 X 32 

{2n+\)Tr 3(2?i + l)V' 

= 1-57079 (2?^ + 1) — - 
•63662 •I720I 

15 {2n + 1) V 

•03558 

2n+l (2n + If 

The first root is by numerical calculation 

X = 4-49341'= 257° 27' 10" 

The foregoing formula gives for this case [n =1) 

X = 4-49366. 

For higher values the formula is correct to five places at least 

The first three roots are 

4-49341 = 270° 

7-72528 = 450° 

10-90408 = 630° 

12° 32' 50 

7° 22' 27" 

5° 14' 23" J 

The Xo parameters are roots of the equation 

cot X = ^ 
A/ o 

The large roots are clearly nearly mr — mr — y say, where 

nir — y I 
cot y 

niT — y 

or 

cos y 
niT — y 1 

?i-7r — y 
Sin y. 

■ (30)- 

(31). 

Writing and expanding in terms of y it is easy to prove, as in the former 

case, that 

3 
X = niT — 

= 3-14159^^ — 

3 

3 ./O'. 

^ (,V' mr \mr! 

95493 -29026 -15881 

n w 
(32). 
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There is no root corresponding to n = 1. The first root is 

X., = 5*76346 = 360° — 29° 46' 41". 

The formula gives for this root 

X = 5*76448. 

For n > 2 it is exact to five places. 

'rhe first three roots are 

5*76346 = 360° — 29° 46' 41" d 

9-09506 = 540° — 18° 53' 29" I.(33). 

12*32296 = 720° - 13° 56' 48" J 
23. Equatorial Axes.—An equatorial axis is the line of particles which remains at 

rest. It is given by the equation 

or by 
f = «. when d = 0, 

S - £ =«• 
The positions of the axes are, therefore, readily observed by means of the graphical 

construction in fig. 2, Plate 1. They depend on the abscissm of points for which the 

tangents to the J curve and the parabola are parallel. For values of X > Xi^\ the 

inclination of the parabola to the axis of x is always small. Hence the equatorial 

axes must always be near the crests (or bottoms) of the J curve, i.e., near values 

(2m + 1) 

The equation for the axes becomes, if y be put for \x, 

1 ^ J' 
cos y + (2/ — - j sin J/ - 2/ -, =0 . (34). 

in which the roots < X are required. 

As the values of the secondary cyclic constants and other important properties 

depend on the position of the equatorial axes, it will be necessary to determine their 

values. We shall do this (1) for the case of X small, and (2) for the case of X large- 

As, however, the case of the X, values is special, we shall treat these separately. In 

the case of values other than Xj, say, e,g., Xo parameters, all the axes of any aggregate 

depend on the particular X value. In the case of Xj, however, they are independent 

of the particular Xj. In fact, the successive Xi aggregates may be built up by taking 

any one and putting outside of this a suitable vortex shell. Moreover, the values of 

the axes for the Xi roots are the crests, and bottoms, of the J curve, and so are 

important for their own sakes. 

L 2 
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Case of\ small.—Here y is also small. . If equation (34) be expanded 

y and X, there results 
% 

2^ 2/ -1 ( ) (271 + 3) {2n + I)! 

Dividing by this may be written 

71“ 

(27^ + 1)! 
=: 0. 

X“ 
•7 

+ 30S2(~)'" 
n + 1 

{2n + 3)! 
l(n + l)y-“ - X“], 

whence y can be exj)ressed in terms of X by successive approximation, 

be found that 

y = 

A,“ 

112 

224 

This gives the equatorial axis at 

a 

\/2 
2 2 7 
5 4 

When X = 0, this agrees with Hill’s vortex. 

Case of Xj.—The equation in y for this case becomes 

cosy + y 
y 

sin y = 0, 

y is always nearly = mr — 2 say, where 2 is small. Then 

cos 2 — 7177 — 2 
7177 — Z 

sin 2 = 0. 

Whence 

y = mr 

= mr — 

1_ _ _5_1f_ 

iiTT 3 {nir^ 15 {mry 

•31831 -05375 -01590 

n ir IV 

This formula gives for the two lirst roots 

2*75363, 6*11682. 

The values obtained by numerical calculation are 

2*74371, 6*11676. 

in powers of 

To X'’ it will 

(35). 
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The roots beyond this are therefore given by the formula cori-ect to live places. 

The radii of the equatorial axes are r = yajX. Hence using- the values of given 

in (31), the tirst three are. For X(^\ 

2-74;37l 
r — 

4-49341 
a = -61062 a. 

For Xf, 

2-74371 , 
■i\ = ^3-^3 « = 35516 a J 

>-• 

h or Xf 

9- 31663 

10- 90408 

6-11676 

1F90408 

_ 2-74371 

~ 10-90408 

a = -85442 a 

a = -56096 a )> • 

a — -25162 a 

Case of X large.—The number of equatorial axes depends on the order of the X2 

parameter next greater than X. If X lie between and \f\ there are n such axes. 

It seems then natural to refer the magnitude of X to Suppose then 

X = Xi“> - X, 

where the maximum value of X is about tt,—or we may write X = + X, and if 

both be allowed X will have a maximum of the order 

— nrr 

The equation in y is 

cos y -\-[y 

in which the first n roots are to be determined. For small roots the parabola of fig. 3 

is almost coincident with the axis of x, and consequently the small y roots are very 

nearly equal to the corresponding values for X^. It will be best to obtain an 

expression for the large roots and then see how far back it holds for the smaller roots. 

Clearly y is always near m-rr where m is an integer < 71. 
Put 

y = rmr z = a z say. 

Then 
C0S2: , 1\ . / ^ 'I\ 

J (X) may be either + or —, it is of order of magnitude 1 at most. 

- A_ i/AY_ i/sy. 
wtt ^ ymr/ ^ \ TT / 

- -jsmy-2/^ = 0, 
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Since 2 is not large (it is of order 1/a), we get 

Write 

a- 
+ W ) ( 1 “ O + IT ) + ( 1 

X 2 
z 
- _L 

6 ' 

(-)■' 

6',, 

a. JX 

X ■ X 

1 9^\ 
- + a“ a 

(-)-2-^(l + * 

b 

a 

JX 

X 

The greatest value of a/X is < 1. J'X/X is of order 1/X, therefore at least of order 1 V/. 

Hence in the most unfavourable cases h is < 2. The above equation can be written 

1 b hz 2z £- ^ . I, 2^ 
„ „2 „2 0„ « ”t“ 3 b “b “b j,H“ K, > a cc a“ 

b - 1 

a 

a 6 a" 

2; = 

OL 

h 1 

a a 

b-l , + 2)(6- 1) , (b- lb , (h- lb 

5: 

a + cc' + -i- 

(1st approx.) 

6^3 ^ approx.) 

h — 1 (b — 1) (& + 2)(& 5) 

a 
(36). 

It will be convenient to put h — 1 ziz c. Then 

_ c c(c + 3) (r; + 6) ^ ^ 

a. 6«'^ ' a? 

c(c + 3)(c + 6)(c- + Jr + 6) 

12 
Sr- _ _ — 3^ 4, 

r 

5/ 

If X is a Xi root, c = — 1 and 

__7-^ 

a oa’ 15a'^ ’ 

which agrees with the result already found. 

2 4. The Spiral Forms taken hi/ the Lines of Flow and Vortex Filaments.—The 

equations determining these are given in § (21). Unfortunately, however, they are 

not integrable in finite forms. 

We give a graphical method for the stream-lines later. At present it is proposed 

to determine (1) the forms of the stream and vortex lines when X is small, (2) the 

pitch of the spirals near the equatorial axes, and (3) the pitch of the same on the 

outer surface. 

Let the stream surface ip, the streams and filaments on which we have to investi¬ 

gate, cut the equatorial plane in circles given by rja = Xi and .r.,. Then 

dx 
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where 

b = (Six — sin X) xjj. 
TT/xa ' ' ^ 

In deterraininof the vortex filaments we will take 9 to be measured in the same O 
direction as rj : that is, to the right of meridians as looked at from the polar axis. 

In this case 

j x’l 

J sin-^? cb. 

or 

sin 6 (-T — xrj') 2 sin 6 cos 0 

5 = ^+ yJ'f' 

(1.) Case of X small. 

j dx 

b)} 

z" dx 

, v/(J - (J - - b) ■ 

J - = i W \ - 1) 

also h is of order Xk Put 

Hence 

1 

■ ' Xi 

10 

- X dx 

Xi, Xo are the roots of the denominator equated to 0, viz., of 

A first approximation is 

1 ± v/l -^c 
X- 

— a;- + c = ^ (t® — x“). 

= i\ or Vo (say), where ?‘i denotes the smaller root. 

Let for a second approximation 

x~ = Ti 4- where ^ is of order X". 

+ c = Xi + — Vi — ^ c = (2r| 

x^ = r\ 4- S/’i^ — Xi — 

l)e 

X 

Therefore, 
X- 
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Since ‘i\ ], also ViVo = c, 

Hence the roots are 

._ N“c +1 
= ~ OO 28 ' o —r.2' 

V'c ?-i +1 

and 

and the clenoininator becomes 

CLo — 1 o 

28 ' To—Ti 

\-c r, + l 

28 ' 

Whence 

V = 0 

N- ,, 

^8 - 

(x- - xf) {xz - rr) (1 “ ~ 

X dx. 

X p 

4\ 
1 -V 

in this put 

So that 

(y-.'/d {v±-y) 

_ y^+yi _ Vi-yx 
y o o 

28 28 

dy, where y = x~. 

cos 6. 

y -yi = —w (1 “ cosd) y-i-y- 
V-I-Vi (1 + cos 6). 

Then 

n = ^ — y de, 

o?—xz 

and 

= \/ 1 “ v/i E {h, (f)), where siir ^ = 71^'i • 
XT, 37 

7 2 _ ^2 .Fl _ ^2 ^ 

- 1-y^ - 

X~C 7\ + 77 + 2 
_ ’’2 - ’’l — ^ n-77 

ri — — 

X^c +1 

28 7-2-77 

1 — 4c 
3X-C 

28 
X“c 

l-ic+Xi-io-^ {3 - Xl - 40 

(37), 
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At the equatorial axis Jc =■ 0, on the surface k=]. Thus k increases from 

0 to 1 for the various current sheets in order from the axis to the surface. The pitch 

ol the helix on any sheet is 

Pitch = X \/l — E. 

At the surface this is X, at the axis it is 

= X\/l — ?/o 
TT ttX / 

2 'V 
l-i(l 

112/1 2v/2\ ^112/' 

Since ^T/{'2^y2) =■ ITl, the pitch at the axis is about 11 per cent, larger than on 

tlie surface when X is small. 

The corresponding quantity for the vortex filaments is given by 

= 1 + iJ'J' f 
J .ri 

clx 

By what has immediately gone before 

'5 — 7} = ixj' r ■ ^0 xdx 

Xi 

,1' 
15. _ i - 

I' z'® i_5 A r _ 

1 - ^ (P- + 1) I- v/{(l - X^) ix? - {xi - .fib} 

cly 

- ^ ) V {0-- y) iy - Vi) (2/2 - y)) 

(10 

28 28 ^ ^ 

15J^ 

2xvr^ 

and 

^9 

IF 
(1(f) 

^ (1 + Vi) - ^ (y-i - yi) shfi I' \/ (1 - F shfi d)) 28 

J' = ^XM1 -tAF. 

Therefore 

9 — 17 = 
5 1- A 

10 

where 

Thus 

2X \/ 1 - 2/1 { 1 - ^ (1 + 3/1) 

f_ 
Jo(l - 

(1(f) 

n sin^ </)) v/ (1 — P sin^ </>) ’ 

^ - 2/0 = 4 F(i - 44 28 

X /- n,/7 ,, ^ 
"7 7^^ 2x71-2/1 

n (— n, A (f)) (38). 

At the equatorial axis n = 0,k — Q 11 = 77/2 for a half turn. 

VOL. CXCII.—A. M 
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Thus the pitch at the equatorial axis is 

and 

Therefore 

— Ih /I- , 28 
v 1 d~ „ /-- 

^ 2\V1 - 

r- 

7T, 

2/0 = i ( 1 - 112 

= .2r/-,{^' + 2{5--AVxT 

= x-Jdi + *n 

112 

If \ = 0, the pitch is oo, as it clearly ought to be, since all the vortex filaments 

then lie along parallels. 

The Form of the S2nrals near an Eciuatorial Axis. 

The meridian sections of a current sheet near an axis will evidently in general 

be elliptic. To find rj it is therefore necessary to determine for an ellipse the 

value of 
r dr 

J cos 6' 

The following general theorem enables us easily to do this. Transfer the origin 

to any point O' in the equatorial plane, at a distance c; and let the new polar 

co-ordinates of a point P be r'.B', corresponding to r.6. Also let x.y denote the 

Cartesian co-ordinates referred to O'. Then 

F — r'^ -1- c“ -b 2cx, 

rdr = r'dr fi- cdx, 

f dr j [■ rdr 1 1 

+
 r dr' 

1 cos 0 ' 1r cos 6 J 1 r' cos 6' J Icos 6' y 

For the spirals near the axis the point of interest is to determine the angular pitch. 

Now clearly for a complete ellipse, whose axes are parallel and perpendicular to the 

equatorial plane, and whose centre is at O' 

dr' 

cos 6' 
= 0. 
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Further, if the axes are a, respectively in the equatorial plane and perpendicular 

to it, 
X z= a sin y ^ cos 6, 

where 6 is the excentric angle of a point on it. Hence, 

[dx _ C+.ra cos 6 dO OL 

Therefore, 

t] (for half-turn) = 

y /3 cos Q " /3 

7r«c \ 

or. 
1 ., , 7r«c N 

angular pitch = — — . 

To ajiply this, it is necessary to determine the form of the current sheets near the 

axis. 

Let the co-ordinates of the equatorial axis be c, o. 

The equation to a current sheet is 

or. 

/A,?’ N 
) - — 

^ ! ' d- 

f \ [j(V — < 
r' 

^ ^) !■ = constant. a- 

^ = J (X)/X“, and p are nearly = c. 

Denote J -/r by f, and suppose it expressed in terms of x, y co-ordinates. 

Refer to O'. 

Then x = c + y = 0 -f 7}, where f, y are small. Hence, if f now denote the 

value at O', 

0 + 
(C + + yf. 

df df X 

dx dr r ’ 

. 'V , 9^ 'V , = 'T-.f 
+ aXIy + H d'J? 

— constant, 

^ ^ J/ 
dy d r r ’ 

and dfjdr = o, for c is given by this equation. 

Denote dfjdr by dfjdr- by f". Then 

~ f + =/"> si'^'ce a: = r to 1st order. 

~ f' f" = 0, since y = 0 to 1st order, 
dxdy 

IL 
df 

0. 

M 2 

r r 
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Hence 

[1 — (/+ UY") = constant. 

The constant is nearly j — f ~ a say ; then 

or the curve is the ellipse 

- + i/"? = - “. 

t-O 0 

_^ 1 

Hence the angular pitch = ^ ~ ^ ~~ ^ ‘ r 
Now 

r J 1 x- d} \ ^ 2 J 1^) 
/ =-4—= [ a 

— j — - 2 ~ — 
a- [ ay- X- J L \ V 

X^ 

The angular pitch of the stream^lines is therefore 

2/ 
77 
V- J {y) V > = 

y' 

IT 

P 

where 

tP — — F — 2 
J iy) 

Hy)-'F4y~ 7 

Now y is determined by J (y) — y sin y + 27/' = 0, therefor( 

— i F — 2 

sin y — 2y 
J {X) 

x^ 

sin y — ^y 
J (A.) y- 

x^ 

— 1_^_L 1_- 
^ y- ^ sni y 

y V- 

- 3 

Note for Xi aggregates = i — — 

When the value of \ is fairly large we substitute for y from equation (36) 

y = miT + 2, 
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where 

Therefore 

h-l (h-l){h + 2){h + b) 
z — —-1--, 

« D« 

a = mTT, h = 2 [ — )™a“ . 

— — - -4- 1 ^ 2 (« + 2)2 -t- 2 
(- 1)" 

Sin z 

(a + c) ^_yn, 

— o 

— L_^ + J-_-_ 

2 ^ 2«2 z- 
a + z h 

- 3 

= i_—4-1 — 2 „ -2 ^ 2 

1_1- 4_ 1 . 
2 „2 I 2 . ■2{h-l)(^ , 5 4 2 & + 5 

6a2 1 -''' icF) V - V “ 

— 1 _ -T 4. 1_ 
— 2 „2 ^ 2 •> ('ft _ (&- 1) 

1 + 0 ^(h + 25 + 5 — h — 1 “ — 65 — r — 

— 1_— 4- i_ - 2 -V 2 ^ _ 1 
2 + ^^ - o 

_ 1 1 
./2 + i 

1 - 

- (5 + 2) + 

(5 - 1) (5 + 5) 

(5 - 1) (5 + 5) 

1 - 

¥ + 65 - 1 

r = 
1^2- - 1) + 5) «' 5 + 2 - ~ 

and the pitch is 

7T 

V 
/. 

5 + 2 - 
(5-l)(5 + 5)- 

1 - 

5'’ + 65-1 
2^2 

=^V{ 6 + 2 + (5 + 2)'' - 95 

2a“ } 

Now 

where 

and 

h = 2{-Y(-^ JX, 

XI”' = niT — 

X = - X 

3 \ , / 3 

2177 nir 
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and 

denote mr by /5 ; then 
X < 77 = ^77 say, 

cc^JX 
= (-)“ P 

3 
. 3 9 

sm ( X + 

3 X \ cos + ^ + ^3 
9 

, ^ , mV ,/ . 2X . 6 + 3X-A ri / ,X\/.^,3 ^ 

+ cos X (|l - - sin X 

2X , 6 + 3X^\ 3 X\ 

therefore 

& + 2 = 2 ■-(-)-"ig-|(. + f + HP>.x-(| + f)...x 

1 
For very large values of \ we may neglect powers of —, and then 

P 

pitch = 77^/2 1 — ( — )" \:n+n. m 

n 
cos X I . 

For the outside shell m = n, 

pitch = 277 sin |X. 

Thus in the case of the Xo aggregates the pitch of the outer layer is very small. 

If we number the shells backward from the outside, we write — ^9 + 1 for m, 

and the pitch is 

77^2 {1 + ( - )- (''* ~p-+-y cos xV. 

It is seen, therefore, that tliere are two series of shells in aggregates of large X, one 

in which the pitches increase as we pass inwards, and an alternate series in which it 

decreases. If X lies between a X^ and a X.o parameter (Xo > Xi), the outer series belongs 

to the first category. If X lies between a X., and a Xj value (X^ > Xo), the opposite is 

the case. In other words, if the parametral point P in fig. 2, Plate 1, lie above the 

line of abscissse, the outside layer has a very small pitch, and those of alternate_shells 

increase as we go to the centre. If P lie below the opposite is the case. 

The vortex spirals are given by 

<?dx 

{(J - P-J') (J - PJ' - 1>)Y 
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and 

Write J - x^J' = f 

Let Xo be the value of x at the axis, so that^' = 0 when x — Xq. 

For points near the axis, 

cr = a?o 4- 
f¥) =/+ «/'-f + = /+ iaT'.P, 

<5 — 7) 

” " J-« (if") \(^, + r- 

where means the positive value of \ f‘ 

To the first order. 

^=^1= -2 
d^f 

Hence for the total pitch, 

— 7] = 

Put 

x.r / (Xn + ^ f 

F(/') ^ 

l:- [ (ii - P) ( 
! 2/ 
V cdf" 

2X.P f i+fi {4 + f) 
F (/') 1 

[(S- P)l 
( 2/ 

V F/' 

i * 

sin 6. 

or writing 

cie 

4XJ' 

V(- 2//0 
/y»2 U/Q 

cc-r 
F + |.E 

At the axis itself F = 0. 

^ ^ = V(- W") ■ 2 
4XJ'a;o 7r 

5=,7\ ^ 
V(- 2/n 

27rX 

V(- vn 
27rXJ (y) 

av/(- 2fn 

2’jT^y 

v/2/(jy - ^ 

{(/) + 4J'} 

if 

if }(y)>ii 
X 
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Ol’ 
'.'K 

? ~ 17 = ifwx---^yy- ‘‘ v- 
\ T 

where y = Xx^ja. 

S2oircds on the hounding surface, or interface hetiveen tivo shells. This is the case 

where the transformation (Eq. 26) fails. Taking first the stream spirals 

, \ \Ir (Is 
dr)=-Ti' 

a p a-\fr 

(In 

On a spherical boundary this is zero, except for the X., aggregates, in which, however, 

there is no flow at all, 1’he other part of the sti’eam surface is the portion up the 

polar axis. Here ds = dr and dn = rcW. Therefore 

Twist on axis alone = 
2\ ■v/rr/?’ 

= - [dr = X. 
Cl Jo 

There is no twist on the spherical boundary. Hence 

Angular pitch of stream spiral = X. 

Next for the vortex spirals. Here there are two portions as in the former case— 

the polar axis, and the spherical boundary. 

J sin- 6 
C?9 = 

A, 

a ' ~l 
ds. 

Hence, supposing at present we are dealing with a singlet only 

2X r“, -J , . 2x J\.ad9 2X r“, -J , , 2X 
? = — i V-VT/ • + — \ 

a J 0 ^ ,1 _ .x-J' a \ 
« shi 0 (J - 

Jo^ — ^^0 / T ^ 

2XJX dO 

0 sin 6 
<dx 

AJ - 

Both these integrals become infinite at the poles. XX^e must therefore treat this 

part separa,tely. 

, p-f J • , 2XJ(X) d- de „ X pfi'- JsiiH^ds 

^ J0 J - 3/J' X sin X - 3J (X) J„ sin ^ ^ n I 1 (d^f (d<r'\-\ % 

Jfia' ^ U dr ) \rde) J 
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in which a are small, and in the third integral, x and 6 are nearly 1, 0 respectively. 

Let cc = 1 — sin d ~ t]. Then near the pole the rectangular co-ordinates of a 

point referred to the pole are connected by (iff= J — x“J') 

_/sin^ 6 = small constant = (say). 

so that when ^ = rj each = y. 

The third integral is 

J sin^ d v/ (df + dv-) 

2 S 
- If = y 

dx 

2X f — 
J r ?i sin 9 {{dfjdrf sin^ 0 + 4 siid 6 cos- 6 (//r)^}* 

+ df) 
= 2X 

I (1 - ^) i (d//dx)- sin^ 0 + 4 cos’- ^ ^ ^ 

2XJ' 

dfjdx 

The curve is given by 

Therefore 

]:v 1 + (d-nld^f' 

~VTW + I. V 
1 + (d^ldyf 
f + 4P 

dr] 

___ _ \ fl _ _ I 
i^T? 

7 3/2 
i / 

7 

Therefore 

Integral = ^ ^V 
+ 47'V 

+ Afjn'' 

-+w;y 

4^3 ^ 

4f + yf ^ i -IV 7y> + 4y 

/ 

'’o drj~ 

V _ 

2XJ' 

dfjdx 

The second integral is 

ilog| + log^^ 
XJ' , 
- lOP’ - 
dfldx ^7?1 

2\S' d- dd _ 2\,y 

dfjdx J 0 sin 0 dfjdx 

XV 

dfjdcc 

and 6 is nearly = 0. Therefore 

log tan 

, 1 + cos 0 

I - COS0 “ 

A,J' , (1 + COS 6V 
log 

dfjdx sin^ 0 

Second Integral = log Ar , 
^ dfjdx ^ vl 

and the second and third together 

XJ' , 4 

dfjdx 7I1 

VOL, cxcn.—A, N 
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The first integral is 

O'} do: 

J - o}3' 

Now J - x-y 

does not vanish. 

= x‘ {\ — .x')F [x), where F {x) is finite for x between 0 and 1 and 

Hence 

_dx 

0 (1 — x) (1 + oj)Fx 
, = X + XJ' I 

J I 

= X+XJ'f^ 

= X + 

Therefore 
dfjdx 

log + finite quantity, 

" = + lik ’°S 7 + 

X sin X — 3 J ^ s \ -t J — orj ,,.2T' "1” 

d. 

\ dx, 

where s is the distance from the pole of the point at which the stream sheet \p cuts 

a line joining the pole to a point on the equator. The angular pitch is therefore 

infinite at the surface owing to the filaments being parallel to the equator at points 

close to the pole. 

25. Graijhical Methods,—The graphical construction indicated in § 17 aftbrds a 

very convenient method of obtaining a general qualitative view of the properties of 

these aggregates. It serves also for a rough quantitative one, and at least gives for 

many determinations the rough starting jDoint which is always the most troublesome 

obstacle in numerical approximations. It may be well, therefore, here, to collect 

and enlarge on what has gone before in this respect. 

The first thing is to trace on a large scale the curve y = J (X) where X is the 

abscissa. This is very easily done, since J is expressed in simple functions which are 

tabulated. The curve is drawn for the first three undulations in fig. (2), Plate (l). 

Now X determines completely the nature of the aggregate (except its volume and its 

intensity). The point P on the J curve, corresponding to X, we will call the para¬ 

metral point. Draw through P a parabola touching the axis at the origin. For all 

points beyond the first few undulations a circle will suffice, or the curve drawn by a 

thin lath bent to touch the axis at 0 and to pass through P. If x denote r/a, Xx 

will correspond to a point on the J curve between 0 and P. If Pj, Po denote the 

corresponding points on the J curve and the parabola, the value of xfj in the aggregate 

at the point (r = xa, 0) is given by P1P2 siird (note P2P1 will be negative). The 

velocity of jjropagation will depend on the angle at wdiich the parabola and curve 

intersect at P (see fig. 3, § 20). If they touch, the angle is zero, and the translation 

velocity zero. In fact the parameters of the points are the Xo values. We will call 
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them the Q points. They are easily formed by fixing a lath at 0 and bending it to 

touch successive loops of the J curve. It is easy to do this correct to two decimal 

places, when numerical calculation will carry it to any degree of approximation desired. 

The points where the J curve cuts the axis of x correspond to the Xi parameters. 

We will call them the II points. 

Denote the points where the parabola through P cuts the J curve again by the 

letters p. These points give the sizes of the shells into which the aggregate divides. 

ON 
If ON be the abscissa of any such point, Xr = ON, and r = . a gives the radius 

of the corresponding interface between two shells. It is evident at once from the 

construction that the thicknesses of the shells, as we pass in or out, are alternately 

greater and less—that there are two categories, in one of which the thickness 

increases as we pass in, and an alternate series in which it decreases. There will be, 

however, some irregularity in the two inner components. 

The position of the equatorial axes is determined by those abscissa, for which the 

tangents to the J curve and the parabola are parallel. They are easily recognized by 

the eye, and thus a starting point for calculation is readily obtained. The difference 

of ordinates of these points (P1P2) is proportional to the secondary circulations of 

the corresponding shells. In fact, when multiplied by 7^p,/(S^X — sinX), the products 

give the values of those constants. It is therefore clear from the figure that these 

circulations are in opposite directions alternately, and that we get two alternate 

series of ascending- and descending values. 

The function S (X) = SiX — sin X denotes the area between the J curve and the 

axis of X up to the point X. It is clear, therefore, that it has its maximum values at 

the odd Xj points, and its minimum at the even ones. 

The tracing of the current sheets is particularly easy from the fact that they are 

given by functions of the form 
xjj = Y (r). slir 9. 

Let 

and let \po and Vq denote values at the equatorial axis {i.e., xJjq a numerical maximum). 

Then 

^ _ / (^’) 
^0 ~/bo) 

siiP 9, 
t_ /(To) 
^0 ’ / (’’)' 

On squared paper, draw a series of circles, radii sub-multiples of a, say at intervals 

of '05a or "la, also the circle r = This last circle has the property that all the 

current sheets cut it at right angles. 

Let us trace first one sheet (say xfj = 'Ixfjo). We do this by tabulating the values 

of sin 9 for values of r, corresponding to the series of circles drawn. Now mark on 

the bounding circle (r = a) points whose abscisste aie those tabulated values (which 

N 2 
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is done at once on the squared paper). Mark the points where the radii vectores to 

these points cut the corresponding circles. Join these points by a continuous curve, 

and the shape of the particular \p curve is obtained ; call it the xjj^ sheet. This first 

curve should be obtained with care and as much accuracy as possible. We may now 

proceed to draw from this as many of the other sheets as we please. Suppose we 

want to draw the curve xjj = k. xjjo. We set a pair of proportional compasses (or any 

similar method) to the ratio \/10k. Suppose the xjji cuts any particular circle at P, 

set the short legs of the compasses to its abscissa. Turn it round and find the point 

on the same circle whose abscissa is the new value. Proceed thus with the other 

circles and the sheet is rapidly traced. Although this may appear cumbrous in 

stating, it is very expeditious in practice, and with a moderate amount of care very 

accurate. 

Having traced the \fj curves, we may now easily trace the proj ections of the stream 

lines, for these are given by 

= fof-. = (see fig. 4), 

Fig. 4. 

26. It will be interesting to go into further details for a few cases, and for this 

purpose we take the first two aggregates of the X2 and K families. 

The distinguishing feature of tlie Xo types, is that the aggregates are at rest in the 

surrounding fluid. The distinguishing feature of the Xj types is that the vortex and 

stream lines are coincident. 

Xo aggregates. Here 

U= 0, M = 
mjjb — A, sin A 

15 ^i\ — sin A 

EC) o 

= T5 « 
A- sin- A 

(S'iA — sin A)- 

A- sin- A 

A - sin Xf 

where Eq is the energy of a Hill’s -^.^p egate of equal volume and circulation. 
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The first parameter is = 5‘7637 = 330° 14'. 

The ecjiiatorial axis has a radius = '5130a, 

M = '0985nifi 

E = I-6979Eo 

a = 2T020/r. 

Angular pitch of stream lines at surface = 330° 14'. 

,, ,, ,, at axis = 334° 58'. 

,, ,, vortex lines at axis = 267°. 

The forms of the current sheets (i/;) are drawn in fig. 2, Plate 2. The projections 

of the stream lines in fig. 3, Plate 2. These latter were determined by the graphical 

method described above. 

The second X., parameter is 

= 9-0950 - 377 - 18° 53' 40". 

The equatorial axes are given by 

X2X = 2-6616 and 6-2718, 

or ?' = -2926a and -6896a. 

Radius of internal nucleus = -4694a, 

M=- -1459m/x 

E = 3-727Eo 

p.1 = 1 -9403/x 

fj.o ~ — -9403jU, 

H'i/H'z — — 2-063 

Ml = •08904mi/xi 

M2 = -1890w2p,2 

= 1-1747)^1 

i>2 = 3-6415/^2- 

Total angular pitch of stream lines outside =521° 6'. 

,, ,, ,, inside nucleus = 244° 37'. 

,, ,, ,, outer shell = 276° 29'. 

Angular pitch of stream lines at 1st axis = 284° 21'. 

„ ,, ,, 2nd axis = 320° 9'. 

., ,, vortex lines at 1st axis = 308° 48'. 

,, ,, ,, 2nd axis = 422° 11'. 

The Xi aggregates. Here 

U = :^^ 
— sin X. — sin X _ A 

3a S^X — sin X ^ Sf X — sin X 
a 0» 

M 
— sin X 

E = 177/x“a 

X (Six — sin X) ’ 

„ sin- X 

(S-iX — sin 
_ 7.0 
— 9 

sin^ X 

(Sf X — sin X) 
-2E 0) 



94 PROFESSOR W. M. HICKS ON VORTEX MOTION. 

where Uq is the velocity of translation of a Hill’s aggregate of the same volume and 

circulation. 

The stream pitch of these aggregates at the axis takes a very simple form, viz., 

TT 

The first K root is = 4-4935 = 257° 27' 30." 

The equatorial axis has a radius = *6106a. 

U = -eiSOUo, M = •0826wrp, 

E = 10-724Eo, V = -SOlG/r. 

Angular pitch of stream lines at surface = 257° 27' 30". 

,, ,, ,, axis = 297° 4'. 

The forms for the stream sheets xfj are shown in fig. 4, Plate 2. It is to be noticed 

that there is a considerable difference between the angular pitches outside and on the 

axis, whereas in the Xl^^ aggregate they were very nearly the same. 

The second Xj parameter is = 7-7253 = : 450° - 7° 22' 27". 

The equatorial axes are given by 

^ = XiX = 2-7437 and 6-1168, 
01, 

r ='3552a and -7918a. 

Radius of internal nucleus = -5816a. 

u = - 3-094U0 /rj//i,2 = ~ 1-2500 

M = — -2403m/r Ml = ‘0826T/i]fjii 

E= 26-803Eo Mo = -lOOSin.ojao 

fxj = 4-9740/r vi = 1-2707/xi 

fji,2 = — 3-9740ja j'2 = l-5135p,2 

Total angular pitch of outside = 442° 37' 33". 

,, ,, on inside nucleus = 257° 27' 30". 

,, ,, j, outer shell = 185° 10'. 

Angular pitch at inner axis = 297° 4'. 

,, ,, outer ,, = 261° 39'. 

In all the Xj aggregates the expression for the angular pitch at an axis is 
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Hence, when Xj is large, the outer layers have their pitches at the axes about 

7rv/2 = 254° 31'. 
Fig. 5, Plate 2, shows the relative positions of the shells and axes for the X? and Xi 

aggregates. The thin lines belong to the Xo, the dotted to the Xj. A, A are the 
position of the X., equatorial axes. B, B those of the Xj. 

27. In the preceding investigation we find doublets, triplets, &c., naturally arising. 
We may have also built-up systems consisting of monads, dyads, &c., as in the cases 
developed in the previous section. Each element of a poly-ad may coiisist again of 
singlets, doublets, &c. I do not propose now to develop this theory of multiple 
combiDation to any length, but merely to draw attention to it, and to determine the 
necessary conditions for the case of a dyad only. 

Beferring to § 15, the general solution of the differential equation contains not only 

J functions, but also the functions Yg = + sin y, which are suitable only for space 

not containing the origin. They are therefore suitable for any shell embracing an 

interior aggregate. In the shell the functions will be of the form AJ -p BY, or as it 
may be written 

sin {a + y) / , ^ 
-cos (a -p y). 

It will be convenient to denote this by f (a, y). 

Let now the radius of the interior aggregate be a, that of the exterior h. 
also X, X' denote the corresponding parameters. 

Then we may write 

— “ Jx| sin^ 6. Inside = L IJ 

Let 

(39), 

Shell ^\so = qL\f[a,~)—— /(a, X') \ sin“ 9 • (M). 

Outside xfj = — 77 Y (— —■) sin“ 9. 

At the interface i//, = i/>2 and if/i = 0, therefore 

b / ¥ 

Write alh=p. This equation, when developed, gives 

J(X» -/J(V) 
tan a = — 

Y(Vj9)-/Y(V) 
(41). 

Moreover, the tangential velocities must be the same. Hence, Avhen r — a, 

dxl/Jdr = 
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Therefore 

1 

a 

But 

Hence 

[X sin \ - 3J (X)} = — (-/(a- sin (a + Xp) - X')]. 

/(«, X» = (a, X'). 

X sin X — 3J (X) = 5 (Xy sin (a + Xj?) — 3y’(a, X^)} . . . (42). 

So, also, making dx^i^ldr — d^^/dr when r = l> v^e get 

T = §{/K) 4 X' sin X' ] . . (43). 

Equation (41) determines a ; Equation (42) gives a relation between X, p, and q. 

We can therefore impress in general three further conditions. For instance, ratio of 

volumes, ratio of primary circulations, and ratio of secondary circulations. 

There is a natural connection of the various singlets which go to make up an 

aggregate of the kind first discussed. At any interface all the differential co-efEcients 

are continuous. In the polyad aggregates this is not so. Differential co-efEcients 

beyond the first are not continuous. Monads, &c., which go to form them, are arti¬ 

ficially combined. It is possible we may, on this basis, develop a theory of special 

aggregates which will unite with one another, or split up and be capable of uniting 

again in another manner. Some progress has been made with such a theory, but 

before an attempt is made to carry such a theory out it will be necessary to investi¬ 

gate the stability of the various systems. I hope soon to be able to take up this 

question. ' 

[May 6, 1898.—By the permission of Professor Hill, to whose careful reading of 

the MS. I owe a great debt, I ajipend an independent and very suggestive proof by 

him of the general theorem of gyrostatic vortices, based on the equations of motion.] 

Take as co-ordinates r, 6, z. 

X = r cos 9 

y = r sin 6 

Let p be the pressure, 

p the density, 

V the potential of the impressed forces. 

Let T be the velocity increasing r, 

cr be the velocity increasing 6, 

IV be the velocity increasing 2:. 

Then the equations of motions are - . 
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! cl d cl d_ 
7, + 7 "i" cr -{■ IV \ T 

dt dr r cW dz j r 

(dd d d 

\Tt + ’■ dr +^ ^\b 
_L — cr + — = 

d d d cl 

fZ , , da . d , . 
('") ++ *<’■») = 0- 

dL [HL 
dr \ p 

d IP 

rcW \ p 

d fp 

+ V 

H-V 

4- V 

ch 

It is desired to find a solution in which all the quantities are independent of 6. 

Therefore 
dr da 

cie cie 
^ 0 - + V 

cie ’ cie\p^ 
0. 

The last gives 
d , d , d \ ^ 

+ ^ V: + VT ) = 0- dt dr clz 

If therefore t// be the equation of a surface always containing the same particles of 

fluid, it is possible to take 

= o:: J W- TT 

Also 

ch 

Let K be the current function (which I distinguish throughout from \Ij). 

Therefore 

Substituting in 

it follows that 

1 (I^ 

27rr clz ’ 
IV = 

1 dK 

2'7rr dr 

d , d cl 
* +“■ * 

d'yj/' I cl/c clyjr 1 die cl^lr 

dt 2nTr dz dr 27rr dr clz 

Now make the further supposition that the surfaces i// = const, move without 

alteration parallel to the axis of 2; with velocity Z. 

Therefore 

Therefore 

cly\r diy 
•“ Aa ~ *• 

dt clz 

d^ d . • d^jr d , 
.h s V - ’Ti'-Z) - - {k 77/'“ Z) = 0. 

VOL. cxcir.-A, Q 
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Hence we can take 

Therefore 

K — 770“ Z = l}/. 

1 (lyjr 

iir/' (/z 

1 y 
7.+^- lirv dr 

We have now 

d j p T- + 7ij-\ (It , I'dr dvj\ cr 

A- { j + ^ + j = -cu + - T 

7 / o , s: 
d / p , , T' + IV- 

Now 

dz \ p 

dr 

+ V + 
d }v V f (It dvj\ 

(It ^ \(Iz dr / 

dw _ _ iy ^ ^ /(It _ 

It. " ~ ~dz ~ ~ dr ~ dr 

(ho (ho 

dt ~ ^ ^~dz' 

Therefore 

i^(7 + ^^ + = <irj W-r 

1 (I\}r /(It dw\ 1 

27rr dr \ dz dr 

[/(■A)]” 

4.vH(«P> 

''/>- + V + 
„ \ /(ir dw 

1 d-ijr /(It dw\ 

277/’ (/? c/r / 

Hence 

/(It dw\ ~ 
(I ; (lyp j dz~dr\ [/(W 
dz Ldr \ r ) 277?’’^ _ 

1 
cZ (If 

/(It (ho\~ 
/77-^l 

dr -dz ^ r /_ 

Therefore 

/(It dw\ |— /(It (hv\ 

d^ d j dz dr | d^^ | d | dz dr 

dr dz dz \_(Ir + 
Trr 

= 0. 

Therefore 

dyjr (I 

7lr dT 

1 /(It dw 

jlz dr 

d-ijr d 1 /(It (ho\ / {\lr) f'{yp') 

dz d r r \d -, z dr ) 277/’' 

Therefore 

1 /d.T dw\ /(f) f (^) , -C^W , X 

Y' 1 dyfr d'-yp- 

dr dr dz- 
- 277r^F(^//)-/(V/)/(^//). 
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Therefore 

- f('-^ + v + 
dr p 

T- + Zf' 
— Ziv I = 

1 r/('^)/'('^) 
/ 27r?’ f/r Lm' 

+ rF'(^) LW)]= 
473--r'" 

\j±v)Y, iss^r 
“1" 9 Stt’/ Ztt 

and 

_ 2 f p . V + Ti-"" - ZiA = f- 
dz \ 'I'm' dz 'Itti' 

H- tF'(t//) 

d l/W. , if)' 
SttV 27r z?,; 

Therefore 

— + V 4- ^ ^ = arbitrary function of f. 
o 2 OTT?’" 'Jtt 

Therefore 

— 4- V + -| \r 4- o-' 4" — ■2)“] + V7 ^ ~ arbitrary function of t 

This arbitrary function of t is in this paper always a constant. 

The last equation, together with the following, are the important equations 

K = xjj ttZv^, 

T = 
1 die 

'lirr dz 

1 dyjr 

’Itt)' dz 

1 die 1 dMr 
U'= -pr q = r - r Z, 

Zirr dr iTTr dr 

|-| = ^/W/'W + >'r'W. 

- 7 S + S'= “/W/'W - 2-=^'«• 

Whenever the conditions for the continuity of the t and tu components of the 

velocity have been satisfied at a separating surface whose equation is \fj = const., 

then if the irrotational motion outside the surface have cr = 0, we must have cr = 0 

when ifi is equal to the parameter of separating surface, if there is to be no slip there. 

Therefore/'(^) = 0, when if/ is equal to the parameter of separating surface. 

This is the case in the Third Section of the Paper.] 

o 2 
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Introductory. 

In his ‘ Lettres snv la Tlidorie des Probabilites ’ (1846), Quetelet has shown 

that in certain anthroiiometrical statistics, e.g.., in statistics of height or of chest- 

ineasnrement, the curve of frequency is approxiinatel}’’ of the same form as the curve 

known to mathematicians as the curve of error,” hut better described for statistical 

purposes as the normal curve. A similar conclusion has been arrived at by later 

observers with regard to a large number of biological measurements. The general 

similarity thus established has been extended, primarily by Mr. Francis Galton, to 

certain cases of statistical correlation of two or more attributes. It has been tbimd 
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in these cases that not only are the curves of frequency of the separate attributes 

approximately normal curves, but the frequencies of joint occurrence of different 

measures of these attributes follow (approximately) a simple law, corresponding to 

the law of correlation of errors of observation. 

Since we can never observe more than a finite number of individuals, it is 

impossible to decide with absolute certainty as to the existence, in any particular 

case, of this (or any other) law of distribution or correlation. But if the number 

of observed individuals is large, and if they are obtained by random selection from 

a “ community ” coiuprising (practically) an indefinitely great number of individuals, 

the theory of error provides us witlr a test for deciding whether any particular 

law, suggested by the given observations, may be regarded as holding for the 

original community. 

The main object of the present memoir is to obtain formulae for testing the 

existence, in any particular case, of the normal cUstrihution and normal correlation 

described above. As the treatment of multiple correlation presents some difficulty, 

I have restricted myself to the cases of one attribute, supposed to be normally 

distributed, and of two attributes, supposed to be normally correlated. Where 

the hypothesis of normal distribution or of normal correlation may be regarded 

as established, there are different methods of treating the statistical data; and these 

may lead to different results. I have therefore given formulae for comparing the 

relative accuracy of different methods of calculating the frequency-constants which 

are required. 

The application of the formulae to actual cases is postponed until certain tables are 

completed. In the absence of these tables, Kramp’s and Encke’s tables (printed at 

the end of De Morgan’s article on the “Theory of Probabilities” in the ‘Encyclo¬ 

paedia Metropolitana’) may be used for cases of a single attribute. For cases of 

correlated attributes, I have given two methods of making a rough calculation of the 

“ theoretical ” distribution, for comparison with the “ observed ” distribution. These 

methods depend on theorems which can be conveniently expressed in a geometrical 

form. As the normal curve lends itself to geometrical treattnent, and as the funda¬ 

mental formulae in the theory of error can be obtained by the use of ordinary algebra, 

T have attempted to make the memoir complete in itself by starting with a simple 

definition of the normal curve, and adopting Galton’s definition of normal correla¬ 

tion ; and by deducing the necessary theorems without the direct use of the 

differential or integral calculus. 

The normal curve may be defined in various ways, e.g. ;— 

(1.) Fimctional Equation, z — f [x’), where f {E) X f {y^^") — f {x“y~). 

(2.) Ordinary Cartesian Equation, z cc 

(3.) Differenticd EquoAion, or {dzjdx) -f xz = 0. 

(4.) Geometriccd Equation, abscissa X sub-tangent = constant This follows at 
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once from (3); for if O is the foot of the central ordinate, and if MP is any other 

ordinate, and the tangent at P meets OM in T, then sub-tangent MT = — 2 dxjdz. 

(5.) Statistical Equation, = {k l)X2Xi., where X;,. denotes the mean I'th power 

of the deviation from the mean in a distribution whose curve of frequency is a normal 

curve ; h being any positive integer. This relation follows from (3). Since, by the 

definition, Xj = 0, it gives X/, in terms of X., for all positive integral values of h; and 

it may therefore be regarded as the equation to the curve, the position of the central 

ordinate being arbitrary. 

Of these different equations the first is in some respects the most important, as it 

is the direct expression of the relation on which the special property of normal dis¬ 

tributions depends; the property, that is to say, that if the measures of a number of 

independent attributes are normally distributed, any linear function of these measures 

is also normally distributed. The second equation is, of course, essential for any 

numerical calculations. The last two, however, have certain conveniences when an 

elementa,ry investigation is desired. I have therefore adopted the geometrical defini¬ 

tion of the curve, and have deduced the statistical equation ; and then have used 

either or both of these as occasion might require. 

The memoir is divided into four parts. Part I. deals with elementary theorems ; 

most of these are well known, but it is convenient to have them collected, and 

established by comparatively simple methods."^ Part II. contains the investigation 

of the principal formulse in the theory of error as applied to numerical statistics. 

In Part III. these formulse are applied to cases of normal distribution. Part IV. 

deals with normal correlation, and is subdivided into two portions. The first con¬ 

sists of a discussion of the more important phenomena which occur when two 

attributes are normally correlated ; while the second contains the applications of the 

theoiy of error. Some of the formulae given in Parts III. and IV. have already been 

obtained by Professor Karl Pearson, but by a different method. 

Part I.—General Properties of the Normal Citrve and of Normal 

Distributions. 

The Normal Curve. 

§ I. Definition of Normal Curve,—Let O be a fixed point in a straight line X'OX, 

and let a point P move so that, if MP is the ordinate to P from X'GX, and PT the 

tangent at P, intersecting X'OX in T, the rectangle OM.MT is constant and = cd. 

Then the path of P is a normal curve. 

Let OZ be drawn at right angles to X'OX, intersecting the curve in H, and let 

points A' and A be taken in X'OX, such that A'O = OA = a. Then OZ will be 

* It will be seen that some of the proofs are only expressions, in geometrical form, of familiar 

methods of differentiation or integration. 



ERROR TO CASES OP NORMAL DISTRIBUTION AND CORRELATION. 105 

called the median of the curve, X'OX the base, OH the centred ordmate, and A'A the 

parameter. 

The curve is obviously symmetrical about the median, and asymptotic to the base 

in both directions. 

The area bounded b}^ the curve and the base will be called a normed figure. 

§ 2. Formation of Family of Curves by Projection.—Let a new curve be formed by 

orthogonal projection of a normal curve with regard to the base in any ratio. Let 

MP and NQ be ordinates to the original curve, and MP' and NQ' the corresponding 

ordinates to the new curve (tig. 1). Then MP : MPA: NQ : NQ'. Hence PQ and 

P'Q' will intersect on the base. Let N move up to and coincide with M. Then PQ 

and P'Q' become the tangents at P and P' to the two curves, and therefore these 

tangents meet the base in the same point T. Hence for the second curve we have 

also OM.MT = OA-, and therefore this is also a normal curve of parameter A'A. 

JSimilarly, if the curve is projected with regard to OZ in the ratio a : b, the new 

curve will be a normal curve of parameter 2b, having the same median. 

Fig. 1. 

§ 3. Limitation to Curves so obtedned.—Thws,, by projection of a single normal curve 

with respect to the base and the median, we can get an indefinite number of normal 

curves of different parameters and different central ordinates. Conversely, if S and 

S' are two normal curves placed so as to have the same base and the same median, 

either can be got from the other by projection. Let the parameters be 2a and 2b 

respectively. Project S into a curve S" of parameter 2b, and let S denote the family 

of projections of S" with regard to the base. Then the tangent at each point of S' 

coincides with the tangent to the particular curve of S which passes through this 

point. Hence S' is one of the curves or else is the envelope of these curves. But 

the curves have no envelope at a finite distance. Hence S' is a projection of S". 

§ 4. Standard Normed Curve.—It is, therefore, convenient to take a standard 

normal curve, and to consider all other normal curves as obtained from it by projection. 

VOL. CXCII.—A. p 
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For the standard form we take the curve whose semi-parameter is unity, and area 

unity. The central ordinate of this curve will for the present be denoted by C ; we 

shall show later that C = l/\/27r. It is clear that if A is the area of a curve of 

parameter 2a, its central ordinate is CA/a, 

The curve may he traced by means of Table I, (p. 153). The second column of that 

table gives the ordinate of the standard curve in terms of the abscissa; the third 

gives its ratio to the central ordinate. Table II. (p. 155) is formed by inverting 

this latter table ; it gives the abscissa in terms of the ratio of the ordinate to the 

central ordinate. 

§ 5. Moment-formulce.-—Let MP, M'P', be any two consecutive ordinates to a 

normal curve whose parameter is 2a, Draw Pvn and Vm perpendicular to the 

central ordinate OH, and let ]) and p be the intersections of MP, ?n'P' and of MT'. 

Fio” 2 

wiP respectively (fig, 2). Tlien, if PP' produced cuts the base in T, we have, by 

similar triangles, 
Pp'. MP = P'^/. MT = _pP, MT. 

Hence 

(1.) ()M X rectangle MP^;'M' = OM . Pp'. MP 

= OM . MT XpV = OM . MT (I\IP ~ M'P') ; 

(2.) OM“ X rectangle MP^:)'M' = OM . MT X nip).pP 

= OM . MT X rectangle m'pVni; 

(3.) OM^"^" X rectangle MPp'M' = OM. MT X wP* X rectangle m'pVm. 

The Z-’th moment of the rectangle nLp)Vm about OH is y—", . wP^ X nip)Vm. Also 

when MM' becomes indefinitely small, OM . MT = d\ Hence, by summation, we 

see that 

(i.) If MP and NQ are any two ordinates, the moment of the area MPQN 

about OH is a“ (MP — NQ); 

(iia.) If Pm and Qa are the perpendiculars from P and Q on OH, the second 

moment of MPQN about OH is d~ X area nQP7?i ; 
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(ii6.) For the complete normal figure, the mean square of deviation from the 

mean is ; 

(hi,) If X* denote the mean ^th power of the deviation from the mean, 

K+2 — (^' + 1) — (^’ + 1) KKi 

which is the statistical equation to the curve. 

This equation gives 

X,,_i = 0 
X., =: {2s - 1) (25 - 3) ... 1 . X’, = 

> 

The Surface of Revolution of the Normal Curve. 

§ 6. Projective Solids and Surfaces.—Let S be a surface whose equation referred 

to three rectangular axes OX, ^OY, OZ, is of the form z = (f) (x). cf) {y). Then if 

we take sections of N by a system of planes parallel to OZX, and project these 

sections on OZX, we obtain a system of curves which are the orthogonal projections 

of one another with regard to their common base OX. Similarly if we take sections 

by planes parallel to OZY. On this account it is convenient to call such a surface 

a projective surface. If the surface is terminated in all directions by the base- 

plane OXY, the volume included between this plane and the surface will be called a 

projective solid. 

For the geometrical definition of a projective solid it is sufficient that the solid 

should be bounded by a plane base OXY, and that two lines OX, OY in this plane, 

at right angles to one another and to a line OZ, should be related to the solid 

in such a way that the sections of the surface by planes parallel to OZX, when 

projected on OZX, form a system of curves in orthogonal projection. If this is the 

case, it follows at once, from the elementary properties of projection, that the same 

property holds for sections by planes parallel to OZY. 

The sections of the solid by the two sets of planes parallel to OZX and to OZY will 

be called prineipal sections. 

The following properties of a projective solid are easily obtained from the 

geometrical definition. 

(i.) Let WR and MP be any two ordinates, and let the other ordinates in which 

the principal sections through WR and MP intersect be NQ and nq. Then 

WR.MP = NQ.my. 

(ii.) In one of the principal sections through an ordinate WR, take any two ordinates 

NQ and N”Q' ; and in the other take any two ordinates nq and u'q (fig. 3). Draw 

the principal sections through these ordinates, and let them enclose (with the base 

and the upper surface) a volume V. Then WR.V = area NQQ'N' X area nqq’n'. 

(iii.) From (ii.) it follows that if we fix a principal section S, and take vaiiable 

P 2 
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ordinates NQ and N'Q', the volume of the solid bounded by the other principal 

sections through NQ and N'Q' is proportional to the area NQQ'N'. 

(iv.) From (ii.)it also follows that if V is the whole volume of the solid, WR any 

ordinate, and A and A' the areas of the principal sections through WR, then 

WR.V = A.A'. 

Fig. 3. 

R 

(v.) Let OH be the ordinate passing through the centre of gravity of the solid, 

and let S and S' be the principal sections through OH. Tlien the central ordinates of 

all sections parallel to S (he., the ordinates through their respective centres of gravity) 

lie in S', and the central ordinates of all sections parallel to S' lie in S. 

§ 7. Normal Solid mid Normal Surface.—Let the half of a normal figure of 

parameter A'A = 2a, lying on one side of the central ordinate OH, be rotated 

about this ordinate through four right angles. The solid so formed will be called a 

normal solid, and its surface will be called a normcd surface. The plane traced out 

by the base will be called the hase-plane. A section of the solid by a plane 

perpendicular to the base-]jlane will be called a vertical section. 

§ 8, Normal Solid is Projective Solid.—Let S be any vertical section of the 

solid, and AIR any ordinate in this section. Draw ON perpendicular to the plane of 

the section, and let NQ he the ordinate at N. Let the tangents at P to the section 

S, and to the central section through MP [i.e., the section through AIP and the axis), 

cut the base-plane in T and T' respectively (fig. 4). 

Since PT and PT' are tangents to sections through P, the plane PTT' is the tangent 

plane to the solid at P. But the solid is a solid of revolution, and therefore this 

plane is perpendicular to the plane OMP. The base-plane is also perpendicidar to 

the plane OMP, and therefore the intersection TT' is perpendicular to this latter 

plane. Hence OT'T is a right angle, and therefore a circle goes round ONT'T, so 

that NM.MT = OM.MT'. 

But the section by the plane OMP is a normal figure of parameter 2a, and there¬ 

fore OM.AIT' = a?. Hence also NM.MT = a’; i.e., the section S is a normal figure 

of parameter 2a, having NQ for its central ordinate. 
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Thus every vertical section of the solid is a normal figure of the same parameter, 

having its central ordinate in the plane through the axis at right angles to the plane 

of the section. 

It follows from § '6 that the solid is a projective solid, any two vertical sections at 

right angles to one another being regarded as principal sections. 

§ 9. Converse Propositions.—There are two converse propositions. 

(i.) If two principal sections of a projective solid are normal figures of equal para¬ 

meter, the solid is one of revolution. 

Let this parameter be 2a. From § 2 it follows that every principal section is a 

normal figure of parameter 2a. The solid will obviously have a maximum ordinate 

OH ; and each of the two principal sections through OH will contain the central 

ordinates of all sections by planes perpendicular to it. Take any other section 

through OH ; and let MP be any ordinate in this section. Draw planes through 

MP cutting the principal sections through OH in ordinates NQ and nq. Then the 

sections NQPM and ?igPM are normal figures of parameter 2a, having NQ and nq 

for their central ordinates. Let the tangents to these sections and to the section 

OHPM cut the respective bases in T, t, T' (fig. 5). Then PT, PT', P^ all lie in the 

tangent plane to the surface at P, and therefore TT'^ is a straight line. Also 

NM. MT — a~ — nM. M^, so that ON ; NM :: TM : Ml Hence the triangles ONM, TM^ 

are similar, and angle MTi = angle NOM ; and therefore a circle goes round NOTT'. 

Hence OM.MT' = NM.MT = a", and therefore the section OHPM is a normal figure 

of parameter 2a, having OH for its central ordinate. This is true for every section 

through OH, and therefore the solid is one of revolution. 
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(il.) Tf a solid of revolution is also a projective solid, the generating figure is a 

normal figure. 

Let OH be the central ordinate. Then every vertical section is symmetrical about 

the plane through OH perpendicular to it, and any two vertical sections, if arranged 

so as to have their central ordinates coincident, will be interconvertible by projection. 

Let S be any section through OH, and let NQ and N'Q' be any two ordinates in 

this section, ON beine’ oTeater than ON'. Let the tancrents to S at Q and Q' cut 

ON' N in T and T'. 

Describe a circle in the base-plane on ON as diameter, and draw the chord 

NM = ON'. Draw the ordinate MP, and let the tangent at Q to the section MPQN 

cut MN produced in P (fig. 6). Then MP is the central ordinate of the section 

MPQN ; and therefore, since this section and the section OHQ'N' are interconvertible 

by projection, it follows that NR = N'T'. 

Since QR and QT are tangents to sections through NQ, QRT is the tangent plane 

at Q. The solid being a solid of revolution about OH, this tangent plane must 

be perpendicular to the plane OQT. The base-plane is also perpendicular to the 

plane OQT, and therefore TR, which is the line of intersection of the tangent plane 

and the base-plane, is perpendicular to the plane OQT. Hence OTR is a right angle, 

and therefore a circle goes round OMTR, so that ON . NT = MN . NR = ON'. N'T'. 

In other words, the rectangle ON . NT is constant for different positions of N, and 

therefore the central section is a normal figure. 
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Fig. 6. 

^ 10. Value of C.—Let A and A' be the areas of two sections through OH at right 

angles to one another; and let V be the whole volume of the solid. Then, since 

the solid is a projective solid, OH.V = A . A' = A" (§ 6 (iv.)) ; and, since it is 

a solid of revolution, V=27ra^.OH (§ .5 (i.), and Guldinus’ theorem), But 

OH = CA/a (§ 4). Hence C = 1/^277. 

It is convenient to consider the solid as obtained from a standard form by an 

orthogonal and an axial'"" projection. As the standard solid we shall take the solid 

whose volume is unity and whose vertical sections are normal figures of semi- 

parameter unity. The central ordinate of this solid is 1/277. 

§ 11. Representation of Segment of Normal Solid by an Area.—-Let S be any 

closed curve in the base of a normal solid, whose principal ordinate is OH, and whose 

parameter is ‘la; and let V be the portion of the solid which lies above S, i.e., which 

is bounded by S, by the surface of the solid, and by a cylinder K of which S is a 

normal section. We require a method of determining the volume V. 

Let be the upper boundary of V, i.e., the area cut out of the surface of the 

normal solid by the cylinder K. Describe a circular cylinder of radius b, and of 

height OH, having OH as axis ; and project on this cylinder by lines perpendicular 

to OH. The projection will be a closed curve a. Now the volume V can be divided 

into elements by a series of planes through OH at indetinitely small angular 

distances from one another. Let IT and TI' be two consecutive planes of the system, 

* By an axial projection of a surface or a solid with regard to a straight line is meant the surface or 

solid obtained by projecting every point orthogonally with regard to this straight line in a definite 

ratio, 
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the angle between them being 6; let them cut cr in the straight lines and pq, 
and let IT cut V in the area IMPQN, hounded by the ordinates MP and NQ. Then 

^9(2 = NQ MP ; and therefore, by § 5, the moment of the area MPQN about OH 

is equal to a~. pq. Hence, by Guldinus’ theorem, the portion of V included between 

IT and H' is equal to cr .pg , d = a-jh X area pq qp. By summation, we see that 

V = d'\h X area cr. 

The cylinder, with the curve o-, may be supposed to be unwrapped on a plane. 

Hence when we are given the central section of the solid, and a plan showing the 

form of S and its position with regard to O, we are able to construct, by geometrical 

methods, a curve whose area will give us the volume V. Take a standard 

line OX on the plan. Through 0 draw a line inclined to OX at an angle wdiose 

circular measure is a, and let this line cut 2 in points M and N. Take abscissae 

OM and ON along the base of the given central section, and draw the ordinates MP 

and NQ. On a line O'X' take O'L' = 6a, and draw an ordinate L'gp such that 

L'p = MP, \j'q = NQ. The ditferent points p and q corresponding to different 

values of a will form a curve, whose area can be measured ; and this area, multiplied 

by a-jh, is the volume required.* 

If the curve 2 encloses the base of the principal ordinate OH, the continuity of the 

boundary of cr will be broken when the cylinder is unwrapped. The locus of the 

points p is then the top of the rectangle representing the complete cylinder, and the 

area to be taken is the area between this, the sides of the rectangle, and the curve 

which is the locus of q. Similarly, if any portion of the boundary of 2 is at infinity, 

the corresponding part of the boundary of a will lie along the base of the rectangle 

representing the complete cylinder. 

The area cr is unaltered by projecting it at right angles to O'X' in the ratio 1 : X, and 

parallel to O'X' in the ratio X : 1. Thus we shall have L'p = X . MP, Uq = X . NQ, 

the point L' being taken so that O'L' = 6a/X. When the solid is the standard solid, 

it is convenient to take h — a (= I), and X —• 277 ; the unwrapped cylinder then 

becomes a square whose base is unity and height unity ; and the values of Up and 

Uq are given by the third column of Table I. (p. 153). 

If, for example, we divide the standard solid into twenty equal portions by 

nineteen parallel vertical planes, and if the cylinder is supposed to be divided along 

one of the lines in which it is cut by the central plane, and then unwrapped, and 

projected vertically in the latio of 1 :277 and horizontally in the ratio of 277: 1, we 

* Generally, let V be a portion cut out of a solid of revolution b}' a closed cylinder K, whose 

generating lines are parallel to the axis of revolution. Let F denote the section of the solid by a plane 

through the axis of revolution ; and let S be a curve lying in the plane of F and related to it in such a 

way that any ordinate MP (drawn to S from a base at right angles to the axis of revolution) is propor¬ 

tional to the moment, about the axis, of that portion of F which lies beyond MP. Then, if F is given 

geometrically, and if the section of the cylinder K and its j^osition with regard to the axis are given, we 

can construct a figure whose area will be proportional to the volume V. 
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shall obtain the figure shown, in fig, 7. I'he figure consists of two similar portions, 

each of which is divided into ten equal parts by nine curves ; each curve touching 

the corresponding half of the base at its extremities, and being symmetrical about 

Fig. 7. 

its central ordinate. The curves may be traced by means of Tables III. and IV. 

(pp. 156-158) ; Table III. gives the ordinates in terms of the abscissa, measured from 

the extremity of the base of the figure ; and Table IV. is a converse table, giving 

the abscissse of the different curves in terms of the ordinate.'" 

* The values in Table IV. were calculated by means of Callet’s tables, in which the quadrant is 

divided centesimally. 
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General Theorems Relating to Normal Distributions. 

§ 12. Mean Squares and Mean Products of Composite Measures.—Let A, B, 

C, . . , E, F, G be a number of attributes, all of which exist in every member of a 

community ; and let the measures of their respective magnitudes be denoted by 

L, M, N, . . . P, Q, It. Let the mean values of L,' M, N, . . . P, Q, R be re.spectively 

Li, Ml, Nj, . . . Pi, Qi, Ri; let the mean squares of their deviations from their respec¬ 

tive means be a^, b", c", . . . e"^,/'^, f-\ and let the mean product of the deviations of 

any two L and M from their respective means be denoted by S (L, M). Then, what¬ 

ever the relations amongst the distributions may be, 

(i.) The mean value of -p ?uM + . . . -f- ?’R, where /, m, n, . . . r are any con¬ 

stants, is IL^ -f- 7nMi + nMi rRi ; and the mean square of its deviation 

from its mean is 

l-a? -p m%- + rdc- + . .. + rdf -p 2bnS (L, M) + 2bhS (L, N) + 2»i/hS (M, N) + ... 

(ii.) The mean product of the deviations of Ih -p 7?iM -p nN -p . . . -p ?’R and 

Z L -p M -p H N -p . . . -p rTv from their respective means is 

ll'd- + mm'lr -p 7in'c' -p . . . + rr'g- -p [hn -p Idn) S (L, M) 

-P {In' -P I'n) S (L, N) + {mn -P m'n) S (M, N) + . . . 

As we shall often require to use these last two expressions, it will be found 

convenient to express the mean squares and mean products in the form of a table, 

thus :—- 

L M H &c. 

L Cl’ S (E, M) S (L, Xj 

S (L, M) S (M, H) 

N S (L, N) S (M, N) c- 

i 
Ac. ! 

! 

§ 13. Independent Normal Distributions.—M the different values of L, in the class 

distinguished by particular values of M. N, . . . P, Q, R, are distributed in the same 

way, whatever these particular values may be, the distribution of L is said to be 

independent of the distributions of M, N, . . . P, Q, R. 
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If the distribution of Q is independent of that of R; the distribution of P 

independent of those of Q and II; and so on, for L, M, N, . , . P, Q, R ; then the 

distributions of L, M, N, . . . P, Q, R may he said to be mutually independent. 

Now suppose that each distribution, taken separately, is normal; we require to find 

the distribution of /L + mM + nN -f • • • 4* pR + ’"R? where I, m, 2^, <1, 

are any constants. 

Consider first the case of two measures L and M. Let their mean values be 

Li and Mj, and let their mean squares of deviation from the mean be ctr and Let 

L = Li + ax. M = Ml + by. Then the values of x and of y are distributed normally 

about mean values zero with mean squares unity, and the distribution of x is inde¬ 

pendent of the distribution of y. Take two lines OX, OY at right angles to one 

another, and on OXY as base-plane construct the solid of frequency of values of 

X and y, these values being measured parallel to OX and OY respectively. Let OZ 

be draAvn at right angles to OXY; and let Ki and Ko be two planes whose equations 

referred to OX, OY, OZ as axes are la. x -p mb = and la .x mb .y=^> 

respectively, where and have any values. Then the portion of the solid lying 

between Ki and K2 includes all elements representing individuals for which 

/a. X -p mb. y lies between and ; and therefore the number of these individuals 

is proportional to the volume of this portion of the solid. Denote this volume by V. 

Since the distribution of x is independent of the distribution of y, the sections of 

the solid of frequency by planes parallel to OZX are figures which when projected 

on OZX are orthogonal projections of one another with regard to OX ; in other 

words, the solid is a projective solid. Since the values of x are distributed normally 

with mean value zero and mean square unity, it follows from (iii.) of § 6 that the 

sections by planes parallel to OZX are normal figures whose semi-parameters are 

unity, and whose central ordinates lie in OZY ; and similarly the sections by planes 

parallel to C)ZY are normal figures whose semi-parameters are unity and whose 

central ordinates lie in OZY. Hence, by § 9 (i.), the solid is a normal solid ; and 

therefore it may be regarded as a projective solid whose principal sections are 

parallel and perpendicular to the planes Kj and K2. Through OZ draw a plane at 

right angles to Kj and K.,, cutting them in ordinates WjRi and WgRo, and cutting 

the solid in a normal figure S. Then the volume V is proportional to the area 

WiRiR-2W2 of the figure S. Also OW, = ^,ls/lkC~ + OWL = + nrb\ 

Hence the number of individuals for which la.x -P mb.y lies between and I2 is 

proportional to the area, comprised between ordinates at distances ^J\/l“ar p 

and ^oJ\/V‘a- + rrvlr from the median, of a normal figure of semi-parameter unity; 

and therefore, by § 2, it is proportional to the area, comprised between ordinates 

at distances and ^2 from the median, of a normal figure of semi-parameter 

\/ZW-j- In other words, the values of la.x mb.y are distributed normally 

with mean square l'a“ ?n"6“ about a mean value zero, and therefore the values 

Q 2 
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of /L + mM are distributed normally with this mean square'" about a mean value 

/Lj -J“ wilVlj. 
Next take the more general case. Since the distributions of Q and of E, are 

independent and normal, the distribution of + rE is normal. Again, since 

the distribution of P is independent of the distributions of Q and E, it is 

independent of the distribution of qQ + rE ; and therefore, since the distribution 

of P is normal, the distribution of pP + qQ + ^'E is normal. Proceeding in this 

way, we see that if the distributions of L, M, N, . . . P, Q, E are mutually inde¬ 

pendent, and if each distribution, taken separately, is normal, the distribution of 

/L “h + nN + . . . + pP + + ^’P^ is also normal. 

We might have obtained this result from the statistical equation of the normal 

curve (§ 5)'; Let L-Li = T/, = M', N-N, N',.... Also let S ...) 

denote the mean value of • • • , and let denote the mean value 

of (7L' -f mM' -h wN' + . . Then, since the distributions are independent, 

S . . .) = S (L'‘^).S (M'^).S (N'^).... Also, by § 5, S (L'-*" *) = 0, and S 

l-s 
= a~ 

2'(s 
and similarly for M', N', . . . . Hence we see that— 

(i.) Every term in the expansion of (/L' -P mM' -p nN' + . . must contain an 

odd power of one at least of the quantities L', M', N', . , . ; and therefore, by taking 

the mean, X2s_i = 0 ; 

(ii.) X, = l~u~ -p m^6‘ + n-c~ + . . . 

(iii.) Xo, = mean value of {lU + mM' -p nN' -p . . .Y" 

= -^2 ... |2.|2g%...Sf(^L7"j.S {(mM'rj.S [{«N'y'»l .., 

(the summation being made for ail positive integral values of a, /3, 

y, . . . satisfying the condition a-p^-Pyd--- - — s) 

— vw is 

2»!s • • • 

la |2/3 |27 . . . 

i'S’ 

py. . . 

. . . Pt- a-“. 4= . . . 
2“|« •P\I3 2^7 

{ycrY.{iifh-Y.{n-y-)y... 

^2,S 

s 

and therefore, for all positive integral values of /r, 

N +2 — {y + 1) kA/,. 

* The expression “mean square” may generally he used, without eonfitsion, to denote the meati 

square of deviation from the mean, 
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Hence the values of lU + mM' -f- n-N' + . . . are normally distributed; and 

therefore the values of ZL + wiM + + • • • are normally distributed. 

§ 14. Correlated Normal Distributions.—If L, M, N, , . . R are the measures of 

coexistent attributes A, B, C, . . . G ; and if the values of L, in every class dis¬ 

tinguished by particular values of M, N, . . . R, are distributed normally with constant 

mean square about a mean value Li /a (M — Mj) -{■ p(N — Nj) -f- . . . -j- p (R — Rj), 

where Li, Mj, Ni, . . . Ri are the respective mean values of L, M, N, . . . R taken 

separately, and [x, v, . . . p are constants : then the distribution of L is said to be 

correlated with the distributions of M, N, . . . R. 

If the distribution of R is normal ; the distribution of Q correlated with that of R ; 

the distribution of P correlated with those of Q and R ; and so on, for L, M, N, . . . 

P, Q, R : then the distributions of L, M, N, . . . P, Q, R may be said to be mutually 

correlated. We require to find, in this case, the distribution of Ih -f- -f- . . . 

+ ^jP -h -h rR, where I, m, n, . . . p, (j, r are any constants. 

For convenience, consider only the case of four attributes L, M, N, R. From the 

definition, we see that L — Li is equal to p (M — Mj) + n (N — N,) + p (R — Rj) + L', 

where L' is independent of M — Mj,. N — Ni, and R — Rj, and is distributed normally 

with mean value zero. Similarly M — Mj is equal to F (N — N]) fi- p (R — Rj) + M', 

where M' is independent of N — N, and R — Ri; and N — Ni is equal to p" (R — Rj) N', 

where N' is independent of R — Ri; the values of M' and of N' being distributed nor¬ 

mally with mean values zero. Since M' is independent of N — Nj and R — Ri,and N — Nj 

is equal to p''(R — Ri) + N', it follows that M' is independent of N' and R — R, ; 

and similarly L' is independent of M', N', and R — R,. Thus the distributions of 

L', M', N', and R — R, are mutually independent. Also each of the measures 

L — Li, M — Ml, N — Ni, R — Ri, is a linear function of the measures L', M', N', 

R — Ri ; and therefore 1{L — Lj) -f- m{M. — Mj) -f- (N — Ni) + 7’(R — Rj) is a 

linear function of these measures It follows, from § 13, that the values of 

?(L-Li) + ?n(M — Ml) + 7i(N — Ni) -f- r(R — Rj) are normally distributed ; i.e., 

the values of Ih + mM -}- nN -p rR are normally distributed. The argument 

obviously applies to any number of correlated distributions. 

This result might also be obtained by the second of the two methods given in the 

last section. 

II. Theory of Error. 

§ 15. Distribution of linear function of errors of random selection.—Let the 

individuals comprised in an indefinitely great community be divided into any number 

of classes A, B, G, ... , and let the numbers in these classes be proportional to 

a, (3, y, ... , SO that a-fyS-)-y+.. . = 1. Suppose a random selection of 7i 

individuals to be made, and let the numbers drawn from the different classes be 

respectively na, n^', ny, . . . , so that a' + yS' + y'fi- . . . =1. Then a—a, (3' — /3, 

y' — y, . . . are the em'ors in a, ^8, y, . . . We require to investigate the distribution 
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of the different values of « (a' — a) + {/3' — yS) + c (y' — y) + • • • for different 

random selections of n individuals, o, b, c, . . . being any constants. 

(1.) If we only require the mean and the mean square, we can most conveniently 

use the formulae of § f 2. Suppose an indefinitely great number of random selections 

to be made. Then the proportion of cases in which p come from A and the remaining 

n — p> from the other classes is 

Hence 

\n 

'p'^n — p 
a‘ (I - a)" -p 

(i.) the mean value of a' is 

p—a rpp p—n u, ^ 1 

S - ^ (1 - = rx S - = ot ; 
p=o |Pp^ V p=i \P ^ V 

so that the mean value of a.' — a is zero ; and 

(ii.) the mean square of a' is 

p=>! „ 
% _Lr 

p = 0 -p 
a^(l - aY-^ • ^ = ir- Y 

/r 

p='' 
•’ V _L 

p=o 'P\'p~ p 
a”(I O + Pi 

= n~~ {n (/i - 1) a- 4“ 7(a] = a- -j- a (l — j 

SO that the mean square of a' — a is a (1 - a)/n. 

(iii.) Similarly the mean value of a is 

j) = n q=n \n 

5=0 'P^qp — P — q 
a'’yS'^(l — a - fd) n-p-q . p 

n n 

'll — 2 

= 1 5=1 Yp_ — I \q — 1 |/i — Ji — q 
rH'-' (1 — a — 

= a /3 — a. ^jn 

and therefore the mean product of a' — a and (3' — /S \h — a /Bpn. From these three 

results it follows that 

(iv.) the mean value of rx [a —«) + /> (/3' — /3) + c (y' — y) + ... is zero ; 

(v.) the mean square is 

a- a (1 — a)/n + 1)-{3 (1 — + c“y (1 - y)/n + . . . 

— 2aba.[3jn — ‘lacc/.yin — 2hc^y n — . . . 

= [(«.'« -p -f c-y -f- . . . ) — + -‘/3 + cy + • • • )■}/« ') 
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(vi.) the mean product of a {a — a) h c {y — y) . and 

«'(a' -a) + h' - ;8) 4- c' (/ - y) + . . . is 

+ bh'/B + cc'y 4- • • • ) ~ + cy 4" • • • ) («'a 4- h'^ + c'y 4* . . . )}/n. 

(2.) Let X;, denote the mean /;th power of a (a — a) 4- b {/3' — /3) c {y — y) . 

The proportion of cases in which the numbers drawn from the different classes are 

p, (j, r , where q r = n, is 

\p + fl + r + 
Y . . 

Hence the mean ^’th power of aa' 4- bj^' 4- cy + • • • is 

11 . . . {ap 4- bq 4- cr 4- . • 

w'-' \k X coefficient of SSS . . . ''' a^'By. . . ^ 
\p\q\p... ' 

— 11 \k X CO. 6'' in (ae"^)L (ye^'’)' . . 

= k X CO. O’" in (ae"® "'' 4" /Se** "’' 4“ ye"®"* 4~ • • •) • 

Denote aa 4“ ^^8 4- cy + • • • by o). Then, since a' 4- ,8' -f- y' + . . . = 1, 

a {a — a) 4- 6 — /3) 4- c (y' — y) 4- ... 

— ua 4" bfi 4~ t'y ”1“ • • • — ^ ip- ~1~ /8 y “!”•••) 

= {a — oj) a' 4" y8 + (c — fa>) y' 4" • • • 

Hence, writing a — co, b — oj, c — w, . . . for a, b, c, . . . , in the above result, we 

see that 

X^. = jZ: X coefficient of 0^' in 4- 4- ygF-")®/'* 4. ^ ^ ^j»-_ 

§16. Tendency of Distribution to become Normal.—We have now to prove that, 

when 71 becomes very great, the distribution of values of a (a — a) -j- b (j8' — /3) 

4- c (y — y) 4- . . . tends to become normal. To do this, we can use either the 

geometrical or the statistical definition of the normal curve. Of the two methods, 

the latter is the simpler. 

(1.) Since the mean square of a (a' — a) b {/S' — y8) 4" ^ (y' — y) + • • • varies 

Inversely as a, it is more convenient to find the distribution of 

v/n [a [a — a) -f b {/5' — -f c (y' — y) 4- . . .]. 
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Let the mean ^’th power of this last expression be denoted by so that 

p,2 = {ci'cc -|- 6'/3 -f- c'y . ..) — {ci^i -{- d" cy d" • • 

By expanding the expression at the end of § 15, and writing nd for 0, we see that 

fji/. = n~-^'\kx coefficient of 6’' in {1 + -h 

where C3, C4, . . . are functions oi a,h, c, . . ., /3, y,. . . Denote -fg2^+C3^®+C4^+. . . 

by ©, and expand (1 + ©)" by the binomial theorem. Then the highest power of n 

contained in comes from the term involving 0"^' when k is even, or from the term 

involving when k is odd. Hence, when n is made indefinitely great, 

p..,; = R " X (2/^2)" = 

M2.+ 1 =W 25 + 1 X ^ .5 (ipo)'"' C3 
[1 

and therefore the distribution is ultimately normal. 

It follows that the distribution of values of a {a — a)h — /S) c {y' — y)... 

is also normal. 

It will be noticed that, when n is finite, the number of terms in pjs or P2.-+1 increases 

with 5, and becomes infinite when s is infinite. Thus the approximation of the 

actual distribution to the ultimate normal distribution is close as regards the low 

moments, n being supposed to be moderately gTeat, but is not close as regards very 

high moments. The difterence between the two distributions is therefore due 

mainly to the values of 7i {a (a' — a) b c (y' — y) + • • •} which are 

great in comparison with \/But these are values Avhich only occur very rarely ; 

and therefore, for practical purposes, Ave may regard the two distributions as 

identical. 

(2.) To obtain the same result from the geometrical definition of the curve, we 

must use § 14. 

(i.) To find the distribution of values of \/;? (a — a), we take a series of points 

Mo, Ml, . . . M,„ at equal distances ijy/n along a straight line X'X ; and then druAv 

ordinates MqPo, MiPj, . , . M^P,^ equal to the coefficients in the expansion of 

-v/ri {l^x + oLij)'\ where a + ^8 = 1. Thus 

M,,P^ = v/h.a^/3'‘-^C;, 

where Cp stands for -j- ^ . Then, if n is increased indefinitely, the locus of the 

points Pq, Pi, . . . P,t will be a curve, which will be the curve of frequency of A’alues of 

v/?i (a' — a). 
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To find this curve, take a second series of points Nq, N,. . . . N,,+i, also at equal 

distances ijs/n, and in such a position with regard to the former series that 

= a|^/n, NpMp =l3lx/n ; 

and at the points Nj, Ng, . . . N„ erect ordinates NiQi, N2Q2, . . . N^Q,^ (fig. 8) equal 

to the coefficients in the expansion of \/n{/3x -j- Thus 

Fig. 8. 

These ordinates lie in the successive intervals between the ordinates MyPo, MjPi, 

, . . M,jP,,i ; and it is easily shown that (except where it is the maximum 

ordinate) is intermediate in magnitude between M^,_iP^,_i and M^,Pj,. Also we have 

+ ^-N^+iQ,,+i = V (C;:l + C;r^) = <v/7n= M^,P„. 

But : /3 : a ; and therefore P^, lies in It follows that, in 

the limit, Q^Q^+i becomes the tangent at P^. 

Let meet X'X In T^. Then 

n . 13'^-^-^ {/3C^Z\ - aC;r‘] 

— 2)) «}. 

Hence if v/e choose the point O so that 

\/7i.OMj, = — na 2> = — {71 — p) a, 
we have 

* When n is not infinite, the relation OM,, .M^T^, = a/I shows that, if 2 denote any one of the family 

of normal curves of parameter ccji having their median at 0, the sides of the polygon N0Q1Q2 • • 

VOL. CXCIl.-A. 

- N^+iQp+i 

R 
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Now let n become indetinitely great, the point 0 remaining fixed. Then this 

relation holds all along the curve which is the limit of the polygon PqPi . . . P„, and 

therefore this curve is a normal curve of parameter 2\/a/3, having its central ordinate 

at O. The mean value of a is found by putting OM = 0, which gives a! = p^n = a. 

Thus the values of \/n (a — a) are distributed normaily with mean square 

= a (l — a) about a mean value zero; and therefore the values of a' — a are 

distributed normally with mean square a (1 — a)/n. 

(ii.) Next, consider the distribution of values of a — a when certain other errors, 

as y8' — and y' — y, have particular values. This distribution is found by taking 

an indefinitely great number of random selections, each containing n individuals, and 

isolating those sets in which the numbers drawn from the classes B and C are respec¬ 

tively and ny'. From the principles of random selection it follows that the distri¬ 

bution of values of a' — a in these sets is the s.uiip as if we made random selections of 

n {1 — yS' — y) individuals from that portion of the community which does not involve 

B and C. Of this portion of the community, the class A forms a part denoted by the 

fraction a/(l — /3 — y). Hence the values of no.', the number coming from A, are 

distributed with mean square n {1 — — y) X «(! — a — ^ — 7)/( ^ ^ — y)' 

about a mean value 5? (1 — /S' — y) X «/(! — ,5 — y). So long as yS' — yS and y — y 

are small in comparison v/ith yS and y, this is equivalent to sa3dng that the values of a 

are distributed with constant mean square about a mean value a {I —yS' — y')/(] —/3 — y) 

= a — X (yS'— yS) — X (y' — y), where X= a/(I —/3—y). Thus the distributions of a — a, 

yS' — yS, y' — y, . . . are normally correlated ; and therefore, since the separate distri¬ 

butions are normal, the values of a (a'— a )-f6(y8'-/8)-Fc(y'-y)+.. . are normally 

distributed. 

Since this argument only applies when a' — a, — yS, y — y, . • • are small, the 

result is subject to the limitation pointed out in (I) (above). 

§ 17. Frohahle Error and Probable Discrepancy.—Let X be any magnitude which 

is determined by observation of the ratios a', y8', y', . . . Then X can be written in 

the form / (A, y8', y', . . .). Now suppose n to be very great. Then the values of 

a — CL, yS' — y8, y — y, . . . are distributed normally with mean values zero and mean 

squares a(l — oL)/n, y8(l —/S)/n, y (I — y)Ab • • • ; and therefore it may be supposed 

that in any particular case the values of a! — a, y8' — /S, y — y, ... will be very 

Q„N„+i have the same slope at the points PjPa • . . Pa+i as the respective curves 2 which pass through 

those points. 'Professor Karl Pearson has arihved at a different result (‘Phil. Trans.,’A, vol. 186 

(1895) p. 357) by forming the polygon P.P. . . . P,+i and finding the “ slope ” at the middle points of its 

sides. There is of course no discrepancy between the two I’esults, since they deal with different polygons, 

and with points having different relative positions on these polygons. The curve found by Professor 

Pearson becomes the normal curve when n is made indefinitely great. 

To prevent misunderstanding, it should be pointed out that, in either case, the slope of the polygon 

at the points in question is not the same as the slope of any one curve of the family considered. 

Professor Pearson’s statement (op. cit., p. 356) as to the existence of a close relation between the 

binomial polygon (for = /i) and “ the ” normal curve seems to require some qualification, 
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small. Thus X is of the form ■) +fa{^'— +—/^) +fyiy — y) + . • • ; 

and therefore, by § 16, its mean value is . . .), and the different possible 

values are distributed normally about this mean value with mean square 

{(“/a" -r /d// + yfy +•••)“ (“/a + /^fp + y4 + • ■ 

If we denote the expression in curled brackets by cr“, the quartile deviation from the 

mean is Qcr/\/n, where Q is the deviation of the quartile ordinate from the central 

ordinate in the standard normal curve (= '67449 approximately"^). 

The applications are of two kinds. In one class of cases X is a “ frequency- 

constant ” whose value is required. Its observed value f (a', y', . . .) differs from 

its true value /"(a, /3, y, . . .) by an error due to the paucity of observations, and 

Qcr/\/n is then the prohahle error. In the other class of cases the theory is applied 

to the testing of any hypothesis with regard to numerical statistics. The difference 

between the observed and the calculated values of X is a discrepancy, and we test 

the hypothesis that this discrepancy is due to paucity of observations by comparing 

it with the prohahle discrepancy Q.(Tj\/n. If the comparison is made for several 

different values of X, we ought to find that for about half of them the discrepancy 

(z= d) is less than the probable discrepancy (= q), and that, amongst the remaining 

values, d is in no case a very large multiple of q. The following considerations will 

enable us to determine whether, in any particular case, the values of djq are or are 

not greater than we might reasonably expect. 

Let the different values of a magnitude § be distributed normally, with quartile 

deviation q, about a mean value zero ; and let m values be taken at random. Then, 

if the area of the standard normal figure lying between the ordinates at the points 

X = — pjq and as = + pjq is (f), the probability of one at least of the values of 8 

being numerically greater than p is 1 — If we choose cf) so that this probability 

may be equal to the corresponding value of p may, by analogy with the “ probable 

error,” be called the prohahle limit of 8. The following table gives the values of pjq 

determined by this condition, for values of m from 1 to 20t 

m P'1'1 '1 m pIi VI pIi VI pIi 

1 1-000 6 2-37b 11 2-777 16 3-009 
2 1'559 7 2-481 12 2-832 17 3 046 
3 1-874 8 2-570 13 2-882 18 3-080 

4 2-088 9 2-648 14 2-928 19 3-112 

i ^ 
2-248 10 2-716 15 2-970 20 

1 

3-142 

* The value of Q to 20 places of decimals is '67448 97501 96081 74320, and its logarithm to 

1 2 27 29 201 230 
13 places is 1'82897 53543 532. The successive convergents to Q are -v > “v> 777 > 7:, > xtv > 7777 1 • • • 

t For larger values of m, the value of pjq may be taken as equal to that given by Chauvexet’s 

criterion for the rejection of one out of 7n/log« 4 + f observations. 

n 2 
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If m values of X were observed, and if the discrepancies were independent, it 

would be an even chance that in one case at least the ratio of the discrepancy to the 

probable discrepancy would exceed the value given by the above table. As a 

matter of fact, the discrepancies are usually correlated; but, if we bear this in mind, 

the table may be used to decide whether the greatest value of the ratio is such as to 

negative the hypothesis under consideration. 

For calculating Qcr/\//?, in either class of cases, it will not always be necessarv to 

express cr“ in terms of a, /d, y, . . . If the value of X depends solely on the values of 

certain frequency-constants, and if 9, p, d, . . . are the errors in these frequency- 

constants, then /"(«', , y, . ■ •) —./'(«> y, • ■ ■) may be written in the form 

/r? Ir) mO + • • • The errors 6, . . . being of the form a (cc' — a) 4- b ifi' - /3) 

+ c (y' —- y) d- . . their mean squares and mean products can be found ; and thence 

the mean square of I’? -f can be obtained by the general formula 

given in § 12. The expressions for the mean squares and mean products of the 

errors in frequency-constants of certain j)articular forms will be found in §§18 

and 19. 

The true values of a, y, . . ., or of the frequency-constants on which X depends, 

are not known; and therefore, in calculating Qajs/n, we can only use the observed 

values a', (i\ y, . . , But, n being great, the mistake so introduced in Qcr/\/n is 

small in comparison with Qo-/\/a itself. In general, it is sufficient to determine 

Qo-Zv^n within about 1 per cent, of its true value. It will therefore be found 

simplest to calculate and then to take out the corresponding value of Qo-/\/n 

from Table V. (p. 159). This table gives Qv'^N, for any given value of N, within 

from '8 to "08 per cent, of its true value. 

§ 18. Error in Mean, Mean Square, &c.—Let the mean value of a measure L (in 

an indefinitely great community), and the ;/?th power of the deviation from the 

mean, be denoted by Li and respectively. Also let the actual values of L be 

Li-f .Ti, Li-h.T2, L,-1-.T3, . . . ; and let the relative frequencies of these values be z^, Zr^, 

2:5, • • • Thus we have %z — 1, St'.r = 0, Xzx^' = Now" let a random selection of 

n individuals be made, and let the numbers for which Ij has the values Lj + x^, 

Li + X., L, + a-;;, . . ., be respectively n (z, + e,), 71 (z. -b e..,), n (23 + €3), . . . Then 

(§§ 15, 16) the mean value of A^ei Aoe., + A363 + . . . = SAe is zero ; its mean square 

is {^A‘2 — {SAzY]/n ; the mean product of !SAe and Bie, -f- Boe., -f B3e3 + . . . = 2!Be 

is (SAB2 ~ SA2.SB2)/a; and, 11 being supposed to be great, the values of SAe or of 

SBe are normally distributed. 

Hence we obtain the following results :— 

(i.) The calculated value of Lj is Lj -j- -T x.x, + X3e3 -f- . . .). Thus the error 

in L, is Xy^i + Xos, -f .^363 -f- . . •, and therefore this error is distributed normally 

with mean square [%zx' — {%zx)~}jn = X-ijn. 
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(ii.) Denote the error in Lj by w. Then the calculated value of is 

S (z + e) {x — ojY =: S (z + e) ^ w) ; 

and therefore the error in is 

Sx'^e — ptzx'^' “' _ 1 CO = X (cc^ — _ 1 re) e. 

Hence this error is distributed normally with mean square 

\tz{x‘^-p\-xxf - {Xz(.x^’-pK-xx)}~]ln—{\^ — ,X^,_i + ;3-X^_i X, — \l)/n. 

In particular, the mean square of the error in X, is (X^ — X:^/n. 

(ill.) The mean product of the errors in Lj and in is 

[tzx (x^’ — p)\--\x) — Xzx. Xz (.U’ — p>K--^ x)]ln = (\,+i — p)\-x X^ln. 

In particular, the mean product of the errors in the mean and in the mean square 

of deviation is X3/W. 

(iv.) The mean product of the errors in X^, and in \ is 

{Xz (x^’ — p\,_i x) {x'^ — 5X^-1 x) — Xz (x^ — p\,-i x). Xz (x/^ — q\-i x)}ln 

= iK+i —pK-i K+i — \-i + p^K-i — KK)/^^- 

§ 19. Error in Class-Index.—Let the values Lj + Xi, Li -f Xo, Li + X3. . . ., in 

§ 18, be supposed to be in order of magnitude, Lj + Xj being least; and let X be any 

possible value of L, not coinciding with any one of these actual values."^' Let 

the two classes for which L is respectively less and greater than X be denoted by 

C' and C, and let the numbers in these classes be in the ratio of 1 + ot : 1 — a ; then a 

will be called the class-index of X for classification according to values of L. Its 

value ranges from — 1 to + 1. 

If a representative selection of n individuals were made, the numbers coming 

from the two classes would be ?q = l?i(l -j- a) and n., = -g-n. (l — a); so that 

a. = {ny — n,)/(5q + n.i). Suppose however that the selection is a random one, the 

errors being as in § 18. Then, if we take X as lying between X,. and X,.+i, the 

observed value of a is (zj + €1) + (2:2 + ^2) + .... + (z,. -j- u) — {'^r+\ + ^r+i) — ...., 

and therefore the “ error ” in a is ej + €2 + . . . . fi- e,. — e,.+ i — .... Hence :— 

(1.) By considering the division of the community into the two classes C' and C, 

we see from § 15 (i.) and (ii.) that the error in a is distributed normally v/ith 

mean square (1 — a^)/n about a mean value zero. 

* This limitation does not introduce any difficulty in the case of continuous variation, since the 
frequency of any single value is then indeSnitely small. (Cases in which the curve of frequency has an 
infinite ordinate are excluded from consideration.) 
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(ii.) Let yQ be another class-index. The lines of division corresponding to these 

two class-indices divide the community into three classes, whose numbers are pro¬ 

portional to quantities Zj, Zj, Z3, where Z^ -}- Z, -f- Z3 = 1. From § 15 (hi.) it will 

be seen that the mean product of the errors in a and in B is 

AZyZ^jn = {(1 — ajB) — (a ^ 

(iii.) Let the values of Izx^ for the classes C' and C be respectively and Vp, so 

that Vp Vp = Xp. Then it will be found from § 15 (vi.) that the mean product of the 

errors in a and in Lj is — {v-y — v'i)/7i; and that the mean product of the errors in a 

and in is 

— {{^P — ^p) - (^1 - 

The following table shows the general results obtained in this and the last section ; 

for convenience, the divisor n is omitted throughout. 

A, a; i 

c Ap+i P^p-Ai — (''1 — d) 

\ + + pX_y\, - \ = — {("p — d) - (‘'1 — d)pAp_i + x\} 

\ \+i d^p+Aq-\ + p’Tp-Aq-Ai 

V J - 
(Similar expression) 

OL 1 - 

(1 - a/3) - /3) 

§ 20. Mean Squa^'es and Pi'oducts of Errors in Case of Two Attributes.—Let M 

be the measure of a second attribute, its mean value, and the mean qth power 

of the deviation from the mean ; and suppose that each 2 in § 18 denotes the pro¬ 

portion of individuals for which L and M jointly have certain specified values. Let 

Sp_2 denote the mean value of (L — Lj)^ (M — Mj)’, so that S^_o = ^o,a —Ar 

Then it will be found that the error in {i e., tire error produced by taking as 

equal to the average of 7/, where x and y are the respective deviations of L and M 

from their averages for the n individuals) is of the form SAe, and therefore is dis¬ 

tributed normally ; its mean square being 

[tz{x^if - - q^p,^-yy)- - {tz{x^7f -p^p^y,^x - ?Sp.g_iy)}']/ 

27 1, 9 —1, 2 ~b P 1, 

+ 2p2S^_i_ 1 4" T^p,q~\Pz — Sp,g)/w. 

n 
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Let X and Y be the values of L and M corresponding to class-indices a and ^ ; 

and let ■|(l — )() be the proportion of individuals for which L exceeds X and M 

exceeds Y : thus ^ is necessarily greater than either a or (B. Let the constituent 

parts of corresponding to (1 — x) ^(1 + x) be ^ and respectively, 

so that, if a representative selection of N individuals is made, the value of 

^ (L — Li)^ (M — Ml)'' for the (1 — x) individuals for which L exceeds X and M 

exceeds Y is N oy g, while for the remaining N (1 -b x) if ^ s- Then it can be 

shown by the methods of §§ 18 and 19 that the following tables give the mean 

products of the errors in the quantities concerned, the divisor n being omitted :— 

Li ^p, ? 

Ml Si.i ‘8(, 1 1 ®P, 9+1 ,8,^ 1 (J'hp g_i/l3 

/<». S|, M 1 m lSi,m ^p. 9+m ^^^p—m 5/*7n+lq —i 

iSp, j + i + lSp_i^ I 

+ mg^(„,_lSp_,_i/l2 — 

S;+r,s ^X;_iS,i.i g vX;i,iSr_l, 5 

sS;_iSr, ,_1 + Zr/\;_iS,._i Ai 

+ Z.sX(_iSr, j_lSi^ 1 X(Sg j 

®p+r, g+« P^p—1, g^r+1, fi 2 ^p, 9—l^r, s+1 

’"Sp+l.gSr — i,, ,_,_,Sr_g_i 

+ jP?'Sp_i ,Sr_i A2 "t 3^Sp. 9—I®r— 

“f" 2^sSp—1^ 9^r, s—1^1,1F 9—«—i/n 

-Sp.9S.,, 

X (°'l, 0 ^i,o) — A.o) —A,o) + X^d { ? ^P, 9^ P^P ”1, Q (*^1. 0 ^1, 0) 

('^O, 1 ^0,1) g} 

; 
V 

(similar expressions) 

X a /3 

X 1—
' 1 (1 - x) (1 + «) (1 - x) (1 + /3) 

a 1 - a' I -H a + /i — a/3 — 2x 

I-/F 

Suppose, for instance, that we are considering the error in Si_ i/\/X,,p..2 = L 

Let the errors in X.,, in S,_ i, and in fxo be 6, (f), and if/ respectively ; then the error 
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in k is (— 6/2\., + i — xp/'Z/j..,) k. For the mean squares and mean products of 

0, (p, xp, we have the table— 

1 

S,I r-i 

^2 M-x| S3, 1 1 ^2,2 

S3.2-S?,, S], 3 1 

Mi — m\ 

from which it will be found that the mean square of the error in k is 

§ 21.—Test of Inde'pendence of Tivo Distributions.—Yov an illustration of the 

application of the theory of error to testing statistical hypotheses, let us take the 

case of two independent distributions. The criterion of independence of the distri¬ 

butions of two measures L and M is that, if a denotes the proportion of individuals, 

in the complete community, for which L lies between any two values L' and L", and 

if denotes the proportion for which M lies between any two values M' and M", 

then the proportion for which both these conditions are satisfied is aj^. Hence, in 

order to test the hypothesis of independence w^hen n individuals have been obtained 

by random selection, we must arrange them in a table of double entry, thus:— 

Values of L. 

Values of M. 

Total. 

XT to M”. W to M"'. &c. 

L' to L”. &c. Pi 
L" to L”' .... 

i 

'>h2 Pi 

Total . . . 'll . n 

then form a new table by dividing each number in this table by n, so as to show the 

proportions in the different classes ; and then consider whether the discrepancies 

between these proportions and the corresponding proportions in a table showing 

independent distribution are such as might be accounted for by random selection. 
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Let the following table represent the proportions, in the original community, ot 

the individuals specified :— 

Values 0^ L. 

Values of M. 

M" to M'". Remainder. 

L' to L". V V" 

Remainder .... V' Y’" 

and let \fj, ijj', xjj", xjj'" be the errors in V, V', V", V'". Thus Uio = n {Y + ^)} 

Pi =: n [Y + V" xjj xjj"), q2 = n [Y Y' xp xp'). If the distributions are 

independent, V = (V+V') (V+V''); (since V+V'-fV"+V'"= 1), VV'"=V'y". 

Hence (since xp -{• xp' xp" xp'" = 0) 

ni2 ~ -piY-h — n {xp — {Y Y') (xp + xp") — (V + V") (xp + xp')} 

= n {(Y"'xp + Yxp'") - (Y"xp' + Y'r)}- 

By § 15 (v.) it will be found that the mean square of this discrepancy is 

nYY'" = nY'Y" ; and therefore the “ probable discrepancy ” is Q \/nYY'" 

= Q \/nY'Y". By calculating this expression for each number in the table, and 

comparing the actual discrepancies, as n^o — piqz/n, with the values so obtained, we 

have data for deciding as to the validity of the hypothesis of independence. 

The following example of a case in which, on a p>7'iori grounds, we should expect 

to find independence, will serve as an illustration. The table is compiled from a 

list of school-teachers who passed a certain examination. 

List. 

First letter of name. 

Total. 

A-D. 
1 

E-J. K-R. S-Z. 

Men. 166 174 180 164 684 
Women, 1st year .... 427 379 411 366 1583 

„ 2nd „ . 549 493 577 492 2111 

Total .... 

1 

1142 
i 

1046 1168 1022 4378 

By multiplying each total of a row by each total of a column, and dividing each 

product by n = 4378, we get the “ calculated ” table 

VOL. cxcii.—A. s 
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178'4 163-4 182-5 159-7 

413-0 378-2 422-3 369-5 

550-G 504-4 563-2 492-8 

showing discrepancies in the actual table amounting to 

— 12-4 + 10-6 — 2-5 + 4-3 

+ 14-0 + 0-8 - 11-3 1 C
O

 

CJ
I 

- 1-6 — 11-4 + 13-8 - 0-8 

If rV represents any number in the calculated table, the corresponding v: 

nY"' will be found to be 

2730-4 2811-4 2708-5 2831-7 

2060-0 2127-2 2049-3 2142-5 

1075-0 1725-4 1662-2 1737-8 

Multiplying each number in this table by the corresponding number 

“ calculated ” table, and dividi ng by 4378, we get the values of nY\'" 

111-20 104-93 112-91 103-29 

194-90 183-76 197-67 180-83 

210-73 198-79 213-83 195-61 

Whence, from Table V. (p. 159) the probable discrepancies are 

7-1 6-9 7-2 6-9 

9-4 9-1 9-5 9-1 

9-8 9-5 9-9 9-4 

The ratios of the actual discrepancies to these probable discrepancies are 

- 1-7 + 1-5 - 0-3 -i- 0-6 

+ 1-5 + 0-1 - 1-2 — 0-4 

— 0-2 — 1-2 + 1-4 — 0-1 

Thus six out of the twelve ratios are numerically less than unity, and six numeri- 

cally greater, while the greatest ratio is well within the probable limit (§17). The 

hypothesis of independence in this case is therefore justified by the data.* 

Part III.—Application to Normal Distributions. 

§ 22. Probable Errors in Mean and in Semi-parameter by Different Methods.—Ii 

the values of a measure L are known to be distributed normally, the distribution is 

* The method of this section is an extension of the ordinary method (used largely by Professor Lexis 

and Professor Edoeavorth) for testing the “stability of statistical ratios,” 



EKROR TO CASES OF NORMAL DISTRIBUTION AND COREELATION. I3l 

deteraiined when the mean value Lj and the semi-parameter a are determined. 

When the values of L for n individuals obtained by random selection are given, the 

values of Lj and of a can be found in either of two different ways. 

(1.) We can find the average and the standard deviation (square root of average 

square of deviation from the average^) of the n individuals. The average will differ 

from Li by an error whose mean square (§18 (i.)) is a'jn, so that the probable error 

of Li as found in this way is Qaj\/n ; and (§ 18 (ii.)) the square of the standard 

deviation wdll differ from a- by an error whose mean square is (X4 — \l)/n = 2a^fn (§ 5) ; 

so that the probable error in a will be Qa/\/‘In. These are familiar results. 

(2.) The other method is that which has been mainly used by Mr. GALTON.t 

Let a and be ai^ two class-indices, and let X and Y be the corresponding values 

of L in the complete community. Then, if x and y are the abscissae corresponding 

to class-indices a and /3 in the standard normal figure {i.e., if ordinates at distances 

X and y from the central ordinate divide the figure into areas whose ratios are 

1 + a : 1 — a and 1 + /8: 1 — /S respectively), we have 

X = Lj + ax 

Y = L, -f- ay 

Whence 

L, {xY - yX)j{x - y)l 

a =: (X - Y)/(a; - ^) J. 

Now let ^ and rj he the errors in the observed values of X and of Y; i.e., let a and /3 

he the class-indices of X -f ^ and Y -f- ly in the collection of n individuals. Then, if 

we deduce the values of Lj and of a from (ii.), the resulting erroi’s are —{y^—x'r))/ix—y) 

and (^ — r))/{x — y) respectively. Now the eirors ^ and y are due to errors — 2i^/a 

and — 2z'r}Ja in the class-indices of X and Y’^, where 2 and z are the ordinates of the 

standard normal figure corresponding to abscissae x and y ; and therefore (§ 19) the 

mean squares and mean product of ^ and y are a" (1 — a^)/4n2", cr(l — ^')linz'\ and 

cr{(l — a^) — (a ^)]/4:nzz. Hence the probable errors in Lj and in a, as found 

from (ii.), are respectively Q.'E/x/n and where 

-■'7/ (1 — «/3) — jS) 

(x - yf 42.' ■ + 

H“ = 
^ 412 + \ 

{ 
I 

J 

. (iii.). 

* It seems couveuient to use tbe term “staiidaicl deviation” in this sense, as denoting a quantity 

which has a definite value for the particular data, 

t GALTcr, ‘ Natural Inheritance,' p. 61.'. 

s 2 
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(3.) As an extension of this last result, let X, Y, U, .. . be values of L correspond¬ 

ing (in the complete community) to class-indices a, y, . . . , and let the corresponding 

abscissae in the standard figure be x, y, u, . . . Then X = Lj -f- ax, Y = Li -f ay, 

U = L,+ au,. . . ; and therefore 

Li = (ZX + mY -f pU + ...)/ (Z + m + ^9 +.. .) 'I 

a = {l'X + mY ^ p'JJI{l'x^ my ^ p'u +‘ ' 

where I, m, p . . I', m , p'. . . are any quantities which satisfy the conditions 

lx + my + pu -h .,. = 0 

V m' p = 0 

SujDpose that we fix on the values of a, yS, y,.. . beforehand, and choose I, m, p,.. 

V, m', p,. . . to satisfy (ii.), and then observe the values of L whose class-indices in 

the collection of n individuals are a, /3, y, . . . If the errors in these values are 

r), 6,..the resulting errors in Lj and in a will be (/f + my -\-p9 l{l-\-m -\-p + • • •) 

and {V^ -|- m'y p'9 + ...)/ {J!x -|- my + p'u + .•.); and therefore the probable 

errors in Lj and in a, as deduced from (i.), are Q.E/ \/?i and Q.H / \/7i, where 

(iii.). 

For any particular values of a, yS, y,. . ., the values of I, m, p, . . V, m', p , . . . can 

be chosen so as to reduce E“ or H“ to a minimum, 

§ 23. Relative Accuracy of the Different Methods.—Now let w and p be the errors 

in Li and in a as obtained by the average-OMd-average-square method; i.e., the 

errors due to taking them as equal to the average and the standard deviation of the n 

individuals. Also let the class-index of X, in the n individuals, be a + ^, the true 

class-index of X being a. Then, with the notation of § 19, the mean values of oid 

and of 2ap6 are respectively — (vj — v\)/ n and — {v2 — v'o + But, by § 5, 

Vi = az, v\ ■= — az, V2 = ^ {I — cl) cr + a~xz, F., = ^(I + a) a' — a~xz. Also the 

error ^ in X is due to the error 6, and is equal to — ad j'2z. Thus we have the 

following table of mean squares and mean products of errors, the divisor n, as 

usual, being omitted :— . , 
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L. a X 

Li a' 0 a' 

a 0 

X a? (I - / 4s' 

and thence 

I, a X — (Lj -f- ax) 

L: a? 0 0 

a 
! 

0 0 

i 

X — (Li -t- ax) 0 0 a' (1 - a') / 42' - a' - ^a^x- 

The true value of X — (Li + ax), of course, is zero; so that the “error” in 

X — (Li + ax) is the difference between X as determined by direct observation of 

the value whose class-index is a, and Lj -|- ax, as determined by calculating the 

average and the standard deviation. This error is ^ — (w -j- xp); and therefore, if 

we write ^ = (o -\- xp the last table shows that the mean products of oj, p, 

and (f), taken in pairs, are zero. Hence we deduce the following conclusions :— 

(1.) The mean square of ^ is greater than the mean square of -f xp/' Hence, 

if we fix a class-index a, corresponding to abscissa x in the standard normal figure, 

and if X denote the unknown value of L whose class-index is a, the probable error 

in X as obtained by direct observation is greater! than the probable error in the 

value obtained by calculating the average and the standard deviation, and deducing 

X from the formula X = Li -[- ax. The following table, for instance, gives the 

probable errors in certain values which are often chosen for exhibiting the frequency- 

constants in any particular case :— 

* This shows that (1 — a?) j a? (I -t- Hence, if OH is the central ordinate, and MP 

any other ordinate, of a normal figure of parameter 2a, and if Aj and Aj are the areas into which the 

figure is divided by MP, the product A, A, is greater than MP" {a? + ^ OM'q. 

t The result, of course, only holds when we know that the distribution is normal. When we know 

nothing about it, the value corresponding to any particular class-index can only be obtained by direct 

observation. 



134 MR. W. F. SHEPPARD OE" THE APPLICATION OF THE THEORY OF 

Value of a. 
Probable error in L 

by direct observation. 

Probable error by 
averajire-and-average- 

square method. 

Ratio of 

probable 

eiTors. 

•0 '8153.5 all'll ■674-49 (ij yn 1-25 

± -5 '91908 aj \/n •747'28 a' yn 1-23 

± -2 ■85528 aj yu '68523 a\ yn 1-25 

± -I oc
 

00
 

00
 

s
 

•71937 a.'yn 1-24 

± -6 •96369 aj v/w •78489 aj yn 1 23 

± -8 P15298 aj yn •91023 a/ yn 1-27 

Value of L. 

]\IecHan 

Qnartiles 

I )eciles 

(2.) If we take Li as equal to the average for the n individuals, and find X and Y 

by observing the values of L whose class-indices are a and ^ respectively, the mean 

scpiare of the resulting' error in Lj — {xY — y X.) j [x — y) is 

a/jn — 2 [x a-/n — y o^ln) j (x — y) + E'Y^ = (E'^ —- u-)jn, 

where E“ has the value given in § 22 (2.); and similarly, if we take a as equal 

to the standard deviation of the n individuals, the mean square of the error in 

a — (Y — X)/ {x — y) is (H“ — ^o-)ln. Hence E'^ and are respectively gTeater 

than and ^ or; in other words, the probable errors in the values of Lj and of a as 

determined by the formulEe (li.) of § 22 (2.), are greater than the probable errors in 

their values as determined by the average-and-average-square method of § 22 (1.), 

If, for instance, a = — ^ so that the observed values are the two quartiles, 

the probable error in Li as determined by (ii.) of § 22 (2.) is ’75043 aj^n, which is 

11 per cent, greater'" than the probable error ’67449 aj^yn due to the average-and- 

average-square method; and the probable error in a is ’78672 ajy/n, which is nearly 

65 per cent, greater than the probable error ’47094 ajyn due to the average-and- 

average-square method. 

If we are unable to calculate the average and the standard deviation, we should 

* When the quartiles are observed, it is also usual to observe the “ median,” for which a = 0. If 

we take the arithmetic mean of the median and the two quartiles, the probable eiTor due to taking 

this as the value of L, is reduced to •72736 aj-/n, which is less than 8 per cent, in excess of the 

probable error due to taking the average. If X and Y are the quartiles and M the median, it 

may be shown that the best result from these data is obtained by giving to 4 (X -t- Y) and M 

weights in the ratio of 2 (exp. — Qb — 1: (exp. 4 Qb ~ ^>^^4 the probable error in the mean is 

then [4 Q« v/’T / {1 — 2 (exp. — 4 Qb + 2 (exp. — Qblb/'v/’^- The first two convergents to the above 

ratio are 2 : 1 and 7 : 3, so that { 7 (X -f Y) -|- 6 M}/20 is a slightly better value than (X -I- Y M)/3. 

I have assumed that the quartiles, &c., are found by actual observation. But there is reason to 

believe that their values are sometimes obtained by faulty methods of interpolation. This does not 

afl'ect the magnitude of the probable error, but it affects the calculated values of Lj and of a. 
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choose m and /? so as to make the values of E“ and of as small as possible. It is 

obvious that one of the class-indices must be positive and the other negative. 

Suppose a to be negative, and equal to — y ; then it will be found from Kramp’s 

tables that E’ is a minimum when ^ and y are each taken a little greater than ‘459, 

the probable error in the mean being then •74951 aj\/n, which is about the same as 

the probable error due to using the quartiles; and that H" is a minimum when 

/3 and y are each taken a little less than '862, the probable error in the semi-para¬ 

meter being then ‘59055 ajs/n, which is about 25 per cent, less than the probable 

error due to using the quartiles, but nearly 24 per cent, greater than that due to 

the average-and-average-square method. 

(3.) Suppose the values of the mean and of the semi-parameter to be found by the 

extended class-index method of § 22 (3.). Then, with the notation used above, the 

errors in the observefl values of X, Y, U, . . . are of the form w -f- xp (f), oj yp \jj, 

fo lip . where i//, y, . . . are eri'ors whose mean products with w, and also 

with p, are zero. Substituting in (i.) of § 22 (3.), and taking account of (ii.), we see 

that the resulting errors in Li and in a due to this method are respectively 

+ mxb H- px + • • ■)I(J + -f + . . .) 
and 

P + + wi'V' + P'x + • • + •••)• 

Hence if and are the mean squares of 

(l(jj -j- mi//' -|- ^;x + • • p . .) 

and of 

{l'4> + 7nxp -f 2>'x + • • + ^n'y -b p'u + ...), 

the mean squares of the errors in Lj and in a, due to the use of the class-index 

method, are (a^ and (-| -j- Since these are necessarily greater than 

arjn and ^ cPjn respectively, the probable errors in Li and in a due to this method 

are greater than the probable errors due to the average-and-average-square method. 

In other words, we cannot, by observation of the values corresponding to particular 

class-indices, obtain such good results for Li and a as by calculating the a verage and 

the standard deviation.* 

(4.) Generally, let R be any quantit}’’ which would be known if the true mean and 

mean square of the distribution were known ; let lii be the value obtained by taking 

the mean and mean square as equal to the average and the average square for the n 

observations, and let R, be the value obtained by any other method involving obser¬ 

vation of the class-indices of any finite number of values of L, with or without the 

* Professor Edgeworth’s contrary statement (‘ Phil, Mag.,’ vol, 36, 1893, p. 100) appears to be based 

on neglect of the correlation of errors. 
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use of the average and the average square. Let ©i/n and 0;/?i be the mean squares 

of the errors in II as determined by the two methods. Then it may be shown that 

the mean square of the error involved in taking pRi -b as the value of (2^ + q) E, 

is {{]r 4- ^pq)®\ 4 q-&l}/n = [(p + 5)“©i 4- S'" (©2 — ©i)}/^- Since this must be 

positive, it follows, by taking p q = 0, that ©; must be greater than ©f; and 

therefore Ri gives a better value of E thaTi E,. By taking 25=—5'=4;lwe see 

that the quartile of Ej E2 is Q (©2 — @?)Vv^ 

§ 24. Test of Hypothesis as to Normal Distribution.—To test whether any par¬ 

ticular distribution is normal, we use the result obtained at the beginning of the last 

section. Having found the average and the standard deviation of the n individuals, 

we calculate Lj ax, the value whicli should correspond to class-index a. The 

difference between this and the observed value X is a discrepancy whose mean 

square is ar [(1 — a~)/Az~ — (1 4- so that the probable discrepancy is 

Qa [([ — a'A/E" — (i + ")] Vv^; ^od the actual discrepancy has to be compared, 

for as many values of x as possible, with this probable discrepancy. 

Suppose, for instance, that we take the chest-measurements of Scotch soldiers,* to 

which Quetelet refers in the work quoted above :— 

Chest-measurements, to the nearest inch, of 5,732 Scotch soldiers. 

Inches. Number. Inches. Number. 

33 3 41 935 
34 19 42 646 
35 81 43 313 
36 189 44 168 
37 409 45 50 
38 753 46 18 
39 1062 47 3 
40 1082 48 1 

The values of the average and of the standard deviation cannot, of course, be 

calculated exactly; as the most probable values we tindt Li = 39'8489 inches, 

a = 2'05301 inches. Thiis we get the following results :— 

* ‘Edinburgli Medical Journal,’ vol. 13, pp. 260-262. Quetelet made some mistakes, whicli I hare 

corrected, in transcribing the figures. 

t The formula for calculating tbe standard deviation lias been given by me in a paper “ On the 

Calculation of the most Probable Values o1 Frequency-Constants,” in vol. 29 of the ‘ Proceedings of the 

London Matliematical Society ’ (p. 353). 

The values given in the text are obtained by a first approximation. A second approximation might 

be made by assuming that the data represent the result of a random selection from the normal 

distribution given by the first apj^roximation; but this correction would not alter any discrepancy 

shown in the table by as much as 1 per cent., and it may therefore be omitted. 
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A' alue of L. a. li^ “h ci-X. Discrepancy. 

1 
1 

Probable 
discrepancy. 

Ratio of actual 
to probable 
discrepancy. 

32- 5 
33- 5 
34- 5 
35- 5 

-i-ooooo 
-0-99895 
-0-99232 
-0-96406 -2-09762 35-5425 --0425 -044-2 0-96 

36-5 -0-89812 -1-63579 36-4906 + -0094 •0263 0-36 

37-5 -0-75541 -1-16359 37-4600 + -0400 •0177 2-26 

38-5 -0-49267 -0-66301 38-4877 + -0123 •0145 0-85 

39-5 -0-12212 -0-15366 39-5334 --0334 •0138 2-42 

40-5 + 0-25541 + 0-32573 40-5177 -•0177 •0139 1-27 

41-5 + 0-58165 + 0-80928 41-5104 -•0104 -0150 0-69 

42-5 + 0-80705 + 1-30190 42-5217 -•0217 •0195 1-11 

43-5 + 0-91626 + 1-72938 43-3993 + •1007 •0290 3-47 

44-5 + 0-97488 + 2-23952 44-4467 + •0533 •0525 1-02 

45- 5 
46- 0 
47- 5 
48- 5 

+ 0-9923-2 
+ 0-99860 
+ 0-99965 
+ 1-00000 i 

■ 

The extremities of the range are not considered, as the values of in (1 + a) or 

i u (I — a) are small when a is nearly equal to dz h so that the law of normal distri¬ 

bution does not hold with regard to the errors in these values; and, moreover, 2 is 

changing rapidly, so that is not exactly proportional to 0. For the ten values 

considered, the actual discrepancy is less than the probable discrepancy in four cases, 

and greater in six ; and for nine of them the ratio of the two is within the probable 

limit (§ 17). The remaining ratio is rather large (3‘47) ; but otherwise the data 

appear to justify the hypothesis of normal distribution.t 

* TLe value.s of x sEown in this column correspond to tlie fractional values of a given by tbe data 

(— 2763/2866, — 2574/2866, &c.), not to the nearest decimal values as shown in the second column 

(- -96406, ~ -89812, &c.). 

The quantities shown in the final column are the ratios of the quantities given in the preceding 

columns. If these were taken to the fifth place of decimals, the last figure in some of the ratios might 

be altered; but it is not necessary to make such exact calculations (§ 17). 

t It should be remembered that when the probable discrepancy is small, the possibility of errors of 

scale must be considered; thus an inaccuracy of one-hundredth of an inch in a division of the scale 

near 40 inches would make an appreciable difference in the ratio of the actual to the probable discrepancy. 

Also it should be noted in the present case that the observed individuals came from different parts 

of Scotland, so that the “original community” was really heterogeneous; and it is likely that the 

measurements in different regiments were taken by different observers, with different personal 

equations, and were not taken with as great care as would be observed at the present day. On the other 

hand, as the exact measurements are not given, but only the measurements to the nearest inch, the 

values of Lj and of a are fitted more closely to the class-indices than they should be; and the probable 

disci-epaucy should thei-efore be slightly less than that given by the theoretical formula. 
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Part IV.—Application to Normal Correlation. 

(1.) Correlation-Solid of Two Attributes. 

§ 25, Correlation-Solid in General.—Let the values of L and of M, the measures of 

two coexistent attributes A and B, be distributed in any manner whatever. Let 

Li and Mi be the means, and cr and IT the mean squares of deviation from the mean. 

Then we know that the mean value of (L — Li) (M — Mj) is less than ab. Let 

this mean value be ah cos D ; then the angle D will be called the divenjence of the 

two distributions. 

Take two lines OX, OY, including an angle tt — D, and on OXY as base-plane 

construct the solid of frequency of values of (L — Li)/a sin D and (M — Mi)/6 sin D, 

these values being measured parallel to OX and OY respectively. Thus if we draw 

O.r at right angles to OY, and Oy at right angles to OX, and if on Ox and Oy 

respectively we take ON' = x', ON" = x”, and On’ = y', On" — y", then the 

portion of the solid included between planes through N' and N" at right angles to 

ON'N" and planes through n' and n" at right angles to Onn" includes all the 

elements representing individuals for which L lies between Lj -j- ax and L^ -f- ax', 

and M between Mj + hy' and Mj -f hy". This solid will be called the correlation- 

solid of the two distributions. The ordinates are supposed to be measured on such a 

scale that the total volume of the solid is unity. 

Let L' = ^L -j- mM, M' = Vh m'M, and let the means, mean squares of devia¬ 

tion, and mean product of deviation of L' and M' be respectively L',, M'l, a'\ 6'“, and 

a'h' cos D'. Then 

L' = IL, + mM'i, M' = I'L, 

a'^ = /“cr -j- 2hnah cos D + m~T, 

h'~ ■= V'-ar -|- 2l'mab cos D -f- m~h', 

a'h' cos D' ~ ll'a/ 4- ijoi' -p I'm) ah cos D -j- mm'C. 

Let Wll be any ordinate of the correlation-solid, the co-ordinates of AY with 

regard to OX and OY being x cosec D and y cosec D ; and let ax' = lax -p mhy, 

h'y' — I'ax 4 m'hy. Then VVR is proportional to the number of individuals lor 

which L = Li -p ax and M = -p hy, and therefore it is proportional to the 

number for which L' = L'j -p a'x', M' = M'j -p h'y. Through O draw the lines 

OY', OX', whose equations referred to OX and OY as axes are lax -p mhy — 0, 

I'ax -p m'hy = 0 ; and draw WN parallel to Y'O, meeting OX' in N (fig. 0). Then 

ON sin X'OY' = {lax -p mhy)l{l'~cr -j- 2lmah cos D -p m“h~f = x ; and similarly 

NW sin X'OY' — y'. Hence the solid is the solid of frequency of values of 

(L' — L'i)/a' sin X'OY' and (M' ~ sin X'OY', these values being measured 

parallel to OX' and OY' respectively. Also 
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cos (tt - TOY') = + {Im + cos D + mm'¥} 

/ {{To? -f 2lmah cos D + mW) + 2Vm'al> cos D + vfiy')]^ 

= cos D', 

and therefore X'OY' = tt — D'. Hence the solid is the correlation-solid of the 
distributions of IL -j- inM and /'L -{- m'M., OX' and OY' being taken as axes. 

Thus the correlation-solid of the distributions of L and M is the same as the 
correlation-solid of the distributions of IL -f mM and Z'L wi'M, where I, m, V, m' are 
any constants whatever.^ 

Fig. 9. 

r 

It may be noted that if Dj and D., are the divergences of the distribution of /L+wM 
from the distributions of L and of M, we have D = Di D2. Or, generally, if the 
divergence may be supposed to be either positive or negative, and if L, M, N are 
measures connected by a linear relation /L + mM + = 0, their divergences 
D, D', D" from one another are subject to the relation D -{- D' -h D" = 0. 

§ 26. Correlation-Solid for Normal Distributions.—(i.) Now suppose that the 
distribution of L is correlated with that of M, i.e., that the values of M are 
distributed normally with mean square b'^, and that for any i^articular value of 
M the values of L are distributed normally with constant mean square /3“ about 
a mean value Li + X (M — Mj), where X is a constant. Then (§ 14) we may write 
L — Li = X (M — Ml) + L', where L' is a measure whose values are distri¬ 
buted normally with mean square /3" about a mean value zero, this distribution 
being independent of that of M. Hence the mean square of L — Lj is 'tdb'^ + yd“, and 
the mean product of L — Lj and M — Mi is W; so that, if a' is the mean square of 
L — Li, we have X = ajb. cos D, yS" = siir D. Thus for any particular value of 
(M — Mi)/7> sin D the values of (L — Li)/a sin D are distributed normally with mean 

* We must, of course, allow for the possibility of two solids, which really are identical, appearing to 

be the “ reflexions ” of one another. 

T 2 
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square unity about a mean value {(M — Mi)/& sin D] cos D. Hence the correlation- 

solid is a projective solid whose vertical sections by planes parallel to OX are normal 

figures of semi-parameter unity ; and since the values of (M — are distributed 

normally v/ith mean square unity, the sections by planes at right angles to OX are 

also normal figures of semi-parameter unity; be., the correlation-solid is the standard 

normal solid. 

(ii.) By taking vertical sections parallel to OY, we see that the values of 

(L — Li)/a are normally distributed, so that the values of L are normally 

distributed; and that in any class distinguished by a particular value of L the 

values of M are distributed nortnally with mean square Ir siir D about a mean 

value Ml -f- — cos D. (L — Ld. In other words, if the distribution of L is correlated 
a ' 

with that of M, the distribution of M is correlated with that of L. 

(iii.) Conversely, if the correlation-solid of two distriburions is the standard normal 

solid, the distributions are normal and normally correlated. 

(iv.) We have already seen (§ 14) that wdien the distributions of L and of M are 

normally correlated, the values of Ih mM are distributed normally. We might 

obtain this result directly by the method adopted at the beginning of § 13. In 

the base-plane draw the lines whose equations, referred to OX and OY as axes, are 

la sin D . X -j- mb sin D . y = ^i, and la, sin D . cr fi- mb sin D , y = £2- Then the 

vertical planes through these lines will include between them the elements repre¬ 

senting individuals for w hich I (L — Lj) -f m (M — Ml) lies between and ^2- Draw 

the central vertical plane at right angles to these planes, cutting the two sections 

in the ordinates WjHi and W2B2- Then the number of these individuals is pro¬ 

portional to the area W1R1II2W2, be., it is proportional to the area of the standard 

normal figure included between ordinates at distances ^i/{l~o? -h 'llmab cos D + mW}^ 

and cos D-j-from the median; and therefore the values of 

ZLi fi- 7nMi are distributed normally with mean square fW ‘llmab cos D -h 'nrb“ 

about the mean value ILi -j- wMi. 

(v.) Since (§ 25) the correlation-solid of the distributions of ZL + ?nM and of 

Z L -j- wbM is also the standard normal solid, it follows (see (iii.) above) that these two 

distributions are normally correlated. 

§ 27. Determination of Divergence by Double Median Classification.—The portion 

of the solid which lies on the positive side of each of the two planes OZY and OZX 

(OZ being the axis of the solid) represents all the individuals for wdiich L and M are 

greater than L, and Mj respectively; and the portion which lies on the negative side 

of OZY and the positive side of OZX represents those for which L is less than Li and 

M greater than Mj. Bat, since the solid is a solid of revolution, these volumes are in 

the ratio of tt — D ; D. Hence, if we arrange the whole number of individuals in 

four classes, thus :— 
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Below Lp Above Lj. 

Below Ml . P R 

Above LIi . R P 

the divergence is equal to ^ ^ tt. 

§ 28. Calculation of Table of Double Classif cation.—In the base-plane drav/ Ox, 

Oy at right angles to OX, OY, and therefore including an angle D. In Ox take 

ON = (X — Lj)/a, ON' = (X' — L,)/a ; and in Oy take 0?i = (Y — Mfb, 

On = (Y' — Mi)/6. Through these points draw vertical planes at right angles to 

Ox and Oy res^rectively ; then (§ 25) the volume of the portion of the standard solid 

included between these four planes represents the proportion of individuals for whicli 

L lies between X and X' and M between Y and Y'. 

The calculation of this volume requires the use of the integral calcidus. For a 

rough calculation we may use either of two methods. 

(1.) The planes by which the volume is bounded will meet the base-plane in lines 

forming a parallelogram, two of the sides of the parallelogram being at right angles 

to Ox, at distances (X — Li)/a and (X' — Li)/« from O, and the other two at right 

angles to Oy, at distances (Y — Mi)/5 and (Y' — Mi)/& from 0. Now suppose that 

the base-plane is divided up into very small areas such that the portions of the solid 

lying above these areas are all equal. Then the ratio of the number of these areas 

which lie inside the parallelogram to the total number will be the proportion of 

individuals for which L lies between X and X', and M between Y and Y'. For 

effecting this division of the base-plane into small areas we can use either of the two 

characteristic properties of the normal solid. 

(i.) The solid is a projective solid. Hence if we find the values of x corresponding 

to a = i 1/w, a = d: 2/7?i, , . . a = [ni — l)/m, and if we take the corresponding 

points on each of two rectangular axes £'0^, rj'Orj in the base-plane, and draw 

lines through these points parallel to y'Or) and to ^'0^ respectively, the two sets 

of lines will divide the base into Am~ areas, corresponding to the division of the solid 

into 4equal portions. Fig. 10 shows the arrangement of these lines for m = 50 ; 

thus the figure contains 10,000 rectangles (one or two of the sides of some of them 

being at infinity), and each rectangle represents 1/10,000 of the whole volume of the 

solid. The centre 0 of the figure is shown by a small circle. The larger circle is 

introduced to show the scale ; its radius is the semi-parameter of the solid, and is 

therefore the unit for measuring the distances (X — L)/a., &c. 

The values of x corresponding to m = 100 are given in Table VI. (p. 167); so that 

* This formula obviously applies in any case in which the correlation-solid is a solid of revolution. 
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by means of this table we can divide the base into 40,000 areas, each representing 

1/40,000 of the whole volume. To simplify the counting of the areas, every tenth 

line should be drawn in ink, the others being in pencil; a dot should be placed in 

each area, and the pencil lines should then be erased. There will thus be 400 larger 

areas, each containing 100 dots. It will be found convenient to replace the circle 

shown in fig. 10 by a larger graduated circle ; if the radius of this circle is p, and if 

Ox cuts the circumference of the circle in F, the line at right angles to Ox at a 

distance x from 0 will cut the circumference in points at an angular distance cos~^ x/p 

from F. 

The lines Ox, Oy, &c., may be shown on tracing-paper, instead of on the figure 

itself; and the paper may then be turned round O into two or three difterent posi¬ 

tions, so as to minimise inaccuracies of counting. Or the figure may be copied on to 

a glass plate, and the lines Ox, Oy, &c., drawn on ordinary paper. 

(ii.) The solid is a solid of revolution, and therefore can be divuded into mm equal 

portions by a set of m planes through the central ordinate at successive angular 

distances ^irlm, and a set of concentric cylinders enclosing portions Ijm', ‘lira, 

. . . {m' -- l)jm' of the whole volume. Let the rth cylinder cut a central section in 

the ordinate MP. Then, if OH is the central ordinate, r/m' = (OH — MP)/OH 

(§§ 5, 11). Hence the radii of the successive cylinders are the abscissse of the standard 

curve corresponding to ordinates whose ratios to the central ordinate are respectively 

[m' — l)lm', {in — 2)1111, . . . Ijin. Thus for m' = 100 the values are given by 

Table H. (p. 155). 

This method of division of the base-]3lane is not so convenient as the method 

explained in (i.), but it may be used for testing the accuracy of a figure constructed 

according to that method. If on such a figure we draw" circles with the radii given 

by Table IL, each of the rings so formed should contain one-hundredth of the total 

number of dots in the figure. Or, if we draw circles with radii •05, ’10, '15,. . ., the 

numbers in the successive rings should be proportional to the differences shown in the 

fourth column of Table I. 

(2.) A more accurate method can be adopted wdren the values of X and X', and 

also those of Y and Y', have been chosen so as to correspond to particular class- 

indices. Let these be a, a, /3, and respectHely, and let the corresponding 

abscissae of the standard normal figure be x, x, y, and y'. Thus (X — Li)/a = x, 

(X' - Li)/« = x', (Y - Mi)/6 = y, (Y' - Mi)/6 = y. Now if, by the method of 

§11, we construct a figure representing the division of the standard solid by parallel 

vertical planes at distances x and x from OH, and also a corresponding figure for 

distances y and y', the bases of the twm figures being in the same straight line, and 

the distance between corresponding extremities being equal to I)/27r of either base, 

the area formed by the two pairs of curves wall give the proportion of individuals for 

wdiich L lies betw^een X and X', and Y^ between Y and Y'. The most important case 

is that in which the class-indices for each distribution separately correspond to the 
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division of the comumuity into p numerically equal classes. The table of double 

classification of values of L and of M will then contain p^ compartments ; and if we 

draw the figure corresponding to the division of the standard solid into p equal 

portions by parallel vertical planes, and shift this figure along its base through a 

Fig. 10. 

distance ctjual to D/27r of its whole breadth (the part of the figure which pi ejects on 

one side being superposed on the other side, so as to leave the whole breadth 

unaltered), we obtain a diagram with jr compartments, whose areas are proportional 

to the numbers in the corresponding compartments of the table of double classifica¬ 

tion. 
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Suppose, for instance, that 2^ — 10- If Xj, X2, . . . Xg and Yj,. Y2, . . . Yg denote 

the “ decile ” values of L and of M respectively, the table of double classification 

will be of this form ;— 

Values of M. 

Values of L. 1 ] 

— GO 

to Lp 
Li to 
L, 

L2 to 
La- 

L3 to 
L,. 

L, to 

L5. 

La to 
Le. 

Lg to 
L,. 

L- to 

Ls- 

Ls to 

La- 

Lg to 
+ CC. j 

! 

— 00 to . (00) (01) (02) (03) (04) (05) (06) (07) (08) (09) 

Mj to Mj. (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) 

IMj to M3. (20) (21) (22) (23) (24) (25) (26) (27) (28) (29) 1 

to M,. (30) (31) (32) (33) (34) (35) (36) (37) (38) (39) 

M, to M3. (40) (41) (42) (43) (44) (45) r46) (47) (48) (49) 

to Me. (50) (51) (52) (53) (54) (-75) (56) (57) (58) (59) 

]\Ie to M7. (60) (61) (62) (63) (64) (65) (66) (67) (68) ^ (69) i 

M; to Mg . (70) (71) (72) (73) (74) (75) (76) (77) (78) (79) 

Mjj to M.j. (80) (81) (82) (83) (84) (85) (86) (87) (88) : (89) 

M,j to + CC'. (90) (91) (92) (93) (94) (95) (96) (97) (98) (99) 

The correspondint portions of the standard solid will be bounded by planes whose 

intersections with the base-plane will form a “plan” such as the following (fig. IT^):— 

and the volumes of these portions are equal to the one hundied compartmeuts in 

the diagram formed by shifting fig. 7 (omitting the alternate curves, which correspond 

to the values T, ’3, ‘5, '7, and ‘9 of a) through the required distance. 

* In this figure, as iu fig. 10, the base-])iane is supposed to be seen from above. lu fig. 9 it is seeu 

from below. 
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Fig. 12 shows the form of this diagram for the case of D = ^tt, so that it is 

produced by shifting fig. 7 from right to left through one-eiglith of its whole breadth. 

The dotted lines in fig. 10 (p. 143) show the position of the corresponding planes 

dividing the standard solid into 100 portions; the angle between the two sets of lines 

Fig. 12. 

ordinate are respectively ‘25335, ‘52440, ‘84162, and 1‘28155, the radius of the 

circle shown in the figure being the unit. If instead of dividing up the base^plaiie, 

as in fig. 10, in the manner explained in (1.) (i.) above, we had divided it up by 100 

radial lines and 99 circles as explained in (1.) (ii.), these lines and circles would 

become vertical and horizontal straight lines dividing the diagram (fig. 12) into 

10,000 equal squares. 

VOL. CXCII.-A. U 
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For practical applications of this method, it is sufficient to have the single figure 

as shown in tig. 7. The curves representing the displacement of the figure through 

the distance D/^tt can then be traced by means of a double-barred parallel rule 

or a,n antigraph. But it is better to draw the curves directly from Tables III. 

and IV.* 

§ 29. Differential Relation of V and D.—Let Y denote the proportion of individuals 

for which L exceeds X, and M exceeds Y. Then V is the volume of the solid 

lying on the positive side of the vertical planes drawn through N and n (§ 28) at 

right angles to ON and On respectively. Let the sections of the solid by these 

planes intersect in the ordinate WR ; and let them meet the base-plane in the 

straight lines NW77 and nW^ respectively. 

Let V — V denote the value which V would have if the divero’ence, instead of beino- 

D, were D 6, the values of ON and On being unaltered. This alteration in the 

value of V might be obtained by keeping ON and Nt7 fixed, and rotating On and 

n^ about OZ through an angle 9. Now suppose that 6 is very small. Then the 

consecutive positions of the vertical section through will intersect close to the 

ordinate at n ; and therefore v is the volume obtained by rotating the area 

about the ordinate at n through an angle 9. Hence, for a first approximation, we 

have V = WR.0 (§ 5). 

We might have obtained this result by considering the alteration, due to the 

change of I) into D + d, of the diagram constructed in the manner explained in the 

last section. The area which is equal to V is bounded by the base and by two curves 

intersecting at a point whose height above the base is 27r.WR ; and the decrement 

V is obtained by shifting one curve laterally through a distance 0/27r. Hence 

V = WR.0. Let the two curves, at their point of intersection, be inclined to the 

base at angles and w,- Then it will be seen that for a second approximation we 

have V = WR. 9 ^ sin wj sin m., cosec (wi + 0)2}. f/'liry. 

The ordinate WR is the ordinate, for abscissa (x“ — 2a;y cosD + y“)- cosec D, of 

* It lias beeu suggested that tlie one set of curves miglit be drawn on a board or stiff card, and the 

other on a thin sheet of some transparent substance (e.gf.,of talc), which could be slipped across the face 

of the card. Tliis, however, might require the curves to be drawn on too small a scale to be really 

useful. 

Table HI. can be used for drawing the curve corresponding to any value of a not given in the table. 

If X and X are the abscisste of the standard curve corresponding to class-indices a and a', the equations to 

the corresponding curves of the divergence-diagram are 0 = exp( — AHsec’27r0) and z'= exp( —W’sec^2-d). 

Hence, for any particular value of 0, we have log z'jlogz = The value of z being given by the 

table, the value of z' may be deduced by means of an ordinary slide-rule and a pair of proportional 

compasses. 

The methods described in the text can be extended to the problems which occur in the theory of the 

error in the position of a point in a plane (as in Beavais’ memoir, referred to bj' Professor Peaesox). 

Thus the condition that the j^oint lies within an area limited by the curve / (x, y) = 0 is found b}' 

taking the curve 2 of § II to be the curve whose equation, referred to axes including an angle tt — D, 

is/ (r/usin D, y/bsin D) = 0, and then counting the dots or measuring the corresponding cylinder-area. 
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the normal curve of semi-parameter unity and central ordinate 1/277- (area = 1/^277) ; 

T\-here x = (X — Li)/a, y = (Y — Mi)/6. 

Applications of the- Theory of Error. 

§ 30. Prohctble Error in Value of Divergence, as Obtained by Different Methods.— 

Let the distributions of L and of M be normally correlated, the means, mean squares 

of deviation, and mean product of deviation, being- Lj, Mj, a", E, and ab cos D. 

If a random selection of n individuals is made, the divergence can be found by any 

one of several different methods. We require to .find the probable error in D, due 

to the use of each method. 

(1.) Suppose that we take the averages, average squares, and average product, as 

equal to the means, mean squares, and mean product for the complete community. 

The general expression for the resulting probable error in cos D = Si_ i / \/hyp-i 

been found in § 20. To find the values of 83^1, 82,2; and 81^3, in the case of normal 

correlation, we write L — Li = {a/b) cos D.(M — Mj) -f- L'; then M — Mj and L' 

are independent, and their mean squares are respectively D and cr sin^ D. The 

mean fourth power of M ~ Mi is 36^; and thus we find 83,1 = ?>cdb cos D, 

82^2 = (1 + 2 cos'^ D), Si^3 — 3a6® cos D. The table in § 20 becomes 

^2 Si.i r-i 

X, 2a‘ 2a?h cos D 2a-h^ COS' D 

S:,i a^Jr (1 + cos^ D) 2ab’' cos D 

/‘2 2b* 

and hence we find that the probable error in D, due to adopting this method, 

is Q sin D/\/n. 

(2.) Let D be determined by the method of § 27. Let the medians as given by 

the data be respectively L'l and M'l, and let the result of the double median 

classification be 

Below L'l. Above L'l. 

Below M'l .... P' R' 

Above M'l .... R' P' 

so that n = 2 (P'+ L'). Let P = n (tt — D)/27r, P = 7il) j2Tr; and let the classifi- 

u 2 
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cation of the observed individuals with regard to the true means of the complete 

community be 

Below Lj. Above L,. 

(D) (C) 

Below M] .... V — 0 — (p — yjr R + 

(B) (A) 

Above Mj .... R + 0 V + e 

Then the erroneous values L'l and M'l are obtained by shifting the medians so that 

this table may present the appearance of the former table. Thus Li is shifted so as 

to transfer 0 \fj individuals, and Mj is shifted so as to transfer d -\- cf). In the first 

case the particular individuals are in the class for which L = Lj (to a first approxi¬ 

mation) ; and the median of M for this class is at M,, so that half of the 0 xjj are 

put from class (C) into class (D), and half from class (A) into class (B). Similarly 

half of the 6 (j) are put from (A) into (C), and half from (B) into (D). Hence 

P'=P — — 

and the error in D is 

^ TT (^ + V-') / (P + P) = (^ + 

This error is distributed with mean square D (tt — D) / n ; and therefore the probable 

error in D as obtained by the second method is Q\/D (tt — a)/v/ n. 

This probable error is of course greater than the probable error due to using the 

method of (1.). since v/D( TT - D) > sin D. 

(3.) Suppose that, instead of taking the medians, we fix on any two class-indices 

a and yS, and divide the total community into four classes (A), (B), (C), and (D) by a 

double classification with regard to the corresponding values X and Y of L and M 

respectively, thus :— 

Below X. Above X. Total. 

(B) (C) 

Below T . . . . + d) + V = v'” I (1 + d) 

(B) (A) 

Above T . . . . i (1 - /3) - V = V' V I (1 - d) 

Total .... I (1 -«) 1 
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The value of V is different for different values of D. But, if x and y are the 

abscissae of the standard normal figure corresponding to the class-indices a and /3, it 

is easily seen that V depends solely on x, y, and D. Hence, if we choose a. and /3, 

and observe V, D is (theoretically) determined. 

Let the errors in the values of X and of Y be ^ and y. Then the observed value 

of V is the proportion of individuals for which L exceeds X -j- f and M exceeds 

Y 7). Let the actual nubmers coming from the four classes (A), (B), (C), and (D) 

be n (Y -f xfj), n (Y'-f f), n (Y''+ f'), and n (Y'"-l- f''); thus i// + f-{- f'+ f "= 0. 

Let the areas of the sections of the standard solid by the planes NWHtj and nWRf 

(§ 29) be r and A, and let these areas be divided by WE, in the ratios of 

1 y : 1 ~ 7 and 1+8:1 — 8 respectively. Thus V and A are equal to the ordinates 

of the standard figure corresponding to abscisste x and y (class-indices a and /3); 

while y is the class-index of Y in the class for which L = X, and 8 is the class-index 

of X in the class for which M = Y, these being the class-indices corresponding to 

abscissae {y — x cos D)/sin D and {x — y cos D)/sin D in the standard figure. 

The erroneous values X + ^ and Y + are obtained bj^ transferring n {xfj + xfj") 

individuals from (A) and (C) to (B) and (D), and n (xjj + xfj') from (A) and (B) to (C) 

and (D). The first transfer takes place (to our order of approximation) in the class 

for which L = X, and the second in the class for which M = Y; so that the propor¬ 

tion appearing to fall in (A) is 

V + '/'-i(i-y)('/' + ^") — Hi - S) f) 
= Y + -H1 + y).i(l + 8).v// — ^(1 +y).^(l — 8).+ 

— i (1 - y) • Hi + ^) • H i (1 - y). Hi - S) 

= Y + 

Let WE = Z. Then the error in Y produces (§ 29) an error — in D, and 

therefore the probable error in D, as determined by this method, is 

Q . © / yn, 
where 

0^--uz-’-[(Y(1+^.r+8)H V'(I^.I^)Hw'(lAH.T+8)Hw''(T^y. 

- {Y.TTy.T+S-YM‘-H-^i^S-V".l-y.T+S+YYYH.l-S]“J. 

Since Y + Y' + Y" + Y'" =1, Y + Y' = i (1 - j8), Y + Y" = i (1 - «), this 

probable error can be expressed in terms of Y, a, j8, y, 8. But the above is the most 

symmetrical form, and the most convenient for calculation. 

(4.) By taking a number of difterent values of a and j8, and observing the 

corresponding values of Y, we get a series of values of D ; and then we can take the 

weighted mean of these, the weights being assigned in such a way as to make the 

probable error as small as possible. 
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§ 31. Relative Accuracy of the Different Methods.—By means of § 5 it may be 

shown that, with the notation of § 20 and § 30 (3.), 

= a {ir(l ~ y) + 1 A(1 - 8) cos D], 

0-0.1 r (1 - y) cos D + I A {1 - 8)}, 

0-2 0 = a'{ V + Z sin D cos D + |-r(l — y)a;-l-^A(l — 8)y cos' D], 

0-11 =: ah{Y cos D + Z sin D + |-r(l — y)a: cos D + ^ A (1 — S) y cos D], 

0-0,2 = {V + 21 sin D cos D+i'r(l — yjcc cos' D + i A (1 — 8)?/]. 

Thus from § 20 we have the following table :— 

Li Ml a h D y ' 

Li ah cos D 0 0 0 « {2 r (1 - 7) + i (1 — ^) cos D} 

Ml b^ 0 0 0 Mir(i-7) cosD+ iA(l-o)} - 

a 
I 2 ■g ab cos^ D — sin D cos D \a {7i sin D cos D -f i F (1 — 7) re 

+ ^ A (1 — ^) 2/ cos-D} 

b — \b sin D cos D ^ 5 {Z sin D cos D + ^ F (1 — 7) a; cos- D 

■t 2 ^ (1 “ 2/} 

D sin^D - [Z sin^D+i{iF (1-7) rc 

-F ^ A (1 — ^) ?/} sin D cos D] 

V 

1 

y(i-yj 

Let the errors in Lj, Mj, ct, h, D, be &>, oj', p, p , 6. The error in V is i//; if we 

write this = ^F (1 — y) (w + xp)!u -B ^A (l — 8) (w' + yp')l^ ~ 'Z‘0 (f), then it may 

be shown by the above table that the mean products of (f) with co, co', p, p, and 9 are 

zero. By writing in the one case A = 0, y= — 1,Z = 0, and in the other F = 0, 

8 = — 1, Z = 0, we see that xp + aod xp xp' are of the forms F (w + xp)/a + y 

and A (w' + yp')lh + f, where the mean products of y or y' with oj, oj , p, p, and 6, 
are zero (c/. § 23). Hence we obtain the following results :— 

(1.) Suppose that we fix on definite values X and Y of L and M, and that we 

require the proportion of individuals for which L exceeds X, and M exceeds Y. If 

we determine Lj, Mi, a, b, and D from the averages, average squares, and average 

product, and then calculate the value of V, the resulting error is i-r(l—y) 

(co + xp)jct fi- ^A(1 — S) + yp)ff ~ The mean square of this error is less 
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than the mean square of xfj, the error in Y as obtained by direct observationand 

therefore we obtain a better result for Y by the calculation than by observation. 

(2.) Suppose that we fix on particular class-indices a and /3, and that we require 

the corresponding value of Y. The error in Y, as determined by calculating the 

averages, average squares, and average product, is — Z9 ; while the error for direct 

observation is (§ 30 (3.)) ^ (l — y) [F ((y-|-xp)/a -j-y] + 

= — Z6 (j) — ^ {1 — y) X ~~ i ~ X- Since the mean products of (f), y, y' with 6 

are zero, the mean square of this last error is greater than the mean square of — ZO. 

This result, of course, is identical with (1.) ; for if the observed class-index of X' is 

a, we may consider that we are observing either the class-index of X' or the value 

of L corresponding to class-index a'. 

(3.) If we determine D by tire method of § 30 (3.), the resulting error is 

6 — Z~^ ~ 2 “ y) X ““ i" (1 — S) y'}. The mean product of 6 and ^ ^ (1 — y)y 

— ^(1 — h)x is zero; hence the probable error due to the method of § 30 (3.) is 

greater than that due to the method of § 30 (1.). 

(4.) Similarly, if we take the weighted mean of a number of different values of D, 

as in § 30 (4,), we shall still get an error of the form d -j- where the mean 

value of 6^ is zero. Hence, if the averages, average squares, and average product 

can be determined, the value of D so obtained cannot be inq^roved by direct obser¬ 

vation of the values of Y corresponding to selected pairs of class-indices.t 

(5.) Generally, let R be any quantity wdiich would be known if the true means, 

mean squares, and mean product of L and M were known. Let Ri be the value 

obtained by taking these as equal to the averages, average squares, and average 

product, for the n individuals; and let R., he the value obtained by any other 

method involving observation of the numbers occurring in any set of classes deter¬ 

mined by a finite number of class-indices of L and M, with or without the use of the 

averages, average squares, and average products. Let Bijn and %\ln be the 

mean squares of the errors in R as determined by the tw^o methods. Then the pro¬ 

positions stated in § 23 (4.) hold good. The theorem may be extended to the case of 

any number of mutually correlated attributes. 

§ 32. Test of Hypothesis as to Normal Correlation.—To test whether the distri¬ 

butions of L and of M, in any particular case, may be regarded as normally correlated, 

we use the method of § 24, with the necessary modifications. 

(1.) With the notation of § 31 (5.), let R denote the proportion of individuals for 

which L exceeds X and M exceeds Y, the values of X and Y being fixed beforehand. 

Then, writing -g-F (1 — y) = A, A (l — 8) = B, we have 

* This shows that V (1 — V) is greater than A} (I -f 2AB (l.-t cos D) cos D -f BRl -|- 

-j- {Ax -h By) Z sin D cos D -|- Z^sin'^ D, where A = ^ F (I — 7), B = ^ A (I — o). 

t Of. Kael Peaeson, in ‘Phil. Trans.,’ A, vol. 187 (1896), p. 265. 
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Bi = A” (1 + x“) + 2 AB (1 + cos D) cos D 

+ B- (I + iy") A (Asc + By) Z sin D cos D + Z- sin- D, 

and 

@2 = V(1 -V). 

Thus the “discrepancy” is Bie difference between N as calculated by finding the means, 

mean squares, and mean product, and V as found by direct observation ; and the 

probable discrepancy is Q (Bi Bi)-/\/n. 

In adopting this metliod we are testing both the normal distribution of each 

measure separately and also the normal correlation of the two distributions; and 

therefore it is not necessary to test first whether the separate distributions are 

normal. 

(2.) Suppose that we are satisfied that the separate distrihutions are normal, and 

that we require to test whether, on this assumption, they may he regarded as 

normally correlated. Then B, in ^ 3 I (5.), will denote the proportion for which L 

exceeds the value found to correspond to class-index a, and M exceeds the value 

found to correspond to class-index The discrepancy is (§ 3U (3.)) the difference 

between the errors — Zd and xfj — — 7) ('/' + — g (1 — 8) (’A + (This 

difference, by § 31 (2.), may be written in the form (f> — ^ (I ~ y) X ~ i ~ ^) x'-) 

The mean square of the discrepancy is Z' (B" — sird D)/ri, where B" has the value given 

in § 30 (3,); so that the probable discrepancy is Q.Z (B^ — siid D)-/\Ai. When this 

method is adopted, the sum of all the discrepancies in any row or in any column 

of the table of double classification is zero. 

(3.) In some cases we are not able either to calculate the averages, average squares, 

and average product, or to test whether the separate distributions are normal. We 

must then determine D by some other method, and proceed as in (2.). Suppose, for 

instance, that D is determined by the double-median-classification method of § 27. 

Then, as in (2.), the discrepancy is the difference between the value of V, calculated for 

particular class-indices a and /3, and the observed value of V for these class-indices ; 

and the probable discrepancy is Q.^h/A??, where <J>- has different forms according as 

a and /3 are positive or negative. If a and /8 are both positive, it may be shown 

that 

cp-^ = D(7r~D)Z-^-2(7r-D)Z{T(l -a).i(l-7) + I(f -S)} 

- 2DZV A 277Z{T(1 _ y) W a i(l - S) W'} a ©-ZA 

B" having the value given in § 30 (3.), and W and W' denoting what V would 

become if we put /3 = 0 and a = 0 respectively, without altering the value of D. 
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TABLES. 

Table I.—Ordinate of Standard Normal Curve in terms of Abscissa. 

1 
Abscissa = x. Ordinate = Ce - 'a where C 7- 

TT 

zjC. 
Differences 0/C. 

Difference.s 
of 0/C. 

A. /V • 
of 0/C. 

•00 •39894 1-00000 
125 

1-25 •18-265 •45783 
2827 

•05 •39844 •99875 
374 

1-30 •17137 42956 
2754 

•10 •39695 •99501 
620 

1-35 •16038 •40202 
2671 

•15 •39448 •98881 
861 

1-40 •14973 •37531 
2581 

•20 •39104 •98020 
1097 

1-45 •13943 •34950 
2485 

•25 •38667 •96923 
1323 

1-50 12952 •32465 
2383 

•30 •38139 •95600 
1541 

1'55 •1-2001 •30082 00 

•35 •37524 -94059 
1747 

1-60 •11092 •27804 
2170 

•40 •36827 •92312 
1941 

1'65 •10226 •25634 
2059 

•45 •36053 -90371 
2121 

1-70 '09405 •23575 
1948 

•50 •35207 •88250 
2287 

1'75 •08628 •21627 
1837 

•55 •34294 •85963 
•2436 

1-80 •07895 •19790 
1726 

•60 •33322 •83527 
2570 

1-85 ■07206 •18064 
1617 

•65 •32297 •80957 
2687 

1-90 ■06562 •16447 
1509 

•70 •31225 •78270 
2786 

1-95 •05959 •14938 
1404 

v5 •30114 •75484 
2869 

2-00 •05399 •13534 
1304 

! -80 ] •28969 •72615 
2935 

2-05 •04879 •1-2-230 
1205 

1 ^85 1 •27798 -69680 
2982 

2-10 •04398 •11025 
nil 

•90 •26609 •6G698 
3015 

•215 •03955 ■09914 
1022 

•95 •25406 '63683 
3030 

2-20 •03547 •08892 
936 

1-00 •24197 '60653 
3030 

2-25 •03174 •07956 
855 

1-05 •22988 •57623 
3016 

2-30 •02833 •07101 
780 

I 110 •21785 •54607 
2986 

2-35 •02522 •06321 
708 

j 1-15 
1 

•20594 •51621 
2946 

2-40 •02239 •05613 
641 

1"20 •19419 •48675 
2892 

2-45 •01984 •04972 
578 

X VOL OXCTL—A. 
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'65 

'70 
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'95 

'00 

05 
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■15 

■20 

25 

30 

•35 

■40 

■45 

■50 

■55 
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of Standard Normal Curve in terms of Abscissa (continued). 

-ir Differences 
-c 

Differences 
of c/C. of c/C. 

•04394 
521 

3-60 •00061 •00153 
25 

•03873 
468 

3-65 •00051 •00128 
2*2 

C
O

 
0

 

419 
3-70 •00042 •00106 

18 
•02986 

374 
3*75 •00035 •00088 

15 
•02612 

333 

0
 

G
O

 

C
O

 •00029 •00073 
13 

02279 
295 

3-85 •000-24 •00060 
10 

•01984 
261 

3-90 •00020 •00050 
9 

•01723 
231 

3-95 •00016 •00041 
7 

•01492 
203 

4-00 •00013 •00034 

•01289 
178 410 •00009 •00022 

12 

•01111 
156 4-20 •00006 •00015 

7 

•00955 
136 4-30 •00004 •00010 

0 

•00819 
119 4-40 •00002 •00006 

4 

•00700 
102 4^50 •00002 •00004 

0 

•00598 
89 4-60 •00001 •00003 

1 

•00509 
77 4-70 •00001 •00002 

1 

•00432 
66 4-80 •ooouo •00001 

1 

•00366 
o7 4-90 •00000 •00001 

0 

•00309 
49 5-00 •00000 •00000 

1 

•00260 
41 

•00219 
36 

100000 

•00183 
30 
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Table II. —Abscissa of Standard Normal Curve in terms of Ordinate. 

[Converse of Table I.) 

s/C. .T. s/C. 
1 

a*. z/C. X. 

i-oo •0000000 •66 •9116090 •33 1-4890686 
•99 •1417768 •65 •9282057 •32 1-5095922 
•98 •2010110 i •64 •9447615 •31 1-5304790 1 
•97 •2468166 ! •63 •9612861 -.30 1-5517557 ! 
•96 •2857341 : •62 •9777891 •29 1-5734512 i 
•95 -.3202914 •61 •9942800 •28 1-5955975 : 

•94 •3517823 •60 1-0107677 •27 1-6182295 
•93 •3809743 •59 1-0272612 •26 1'6413858 
•92 •4083665 •58 1-0437693 •25 1-6651092 

: -91 •4343056 •57 1-0603008 •24 1-6894475 
; -90 •4590436 1 •56 1-0768644 •23 1-7144538 

•89 •4827708 S •55 1-0934688 •22 1-7401883 
•88 5056350 i •54 1-1101226 •21 1-7667189 
•87 •5277539 : •53 1-1268347 ’ •20 1-7941226 
•86 •5492229 i •52 1-1436140 •19 1-8224880 
•85 •5701209 1 •51 1-1604693 •18 1-8519171 
•84 •5905140 : •50 1-1774100 •17 1-8826285 
•83 •6104582 •49 1-1944454 •16 1-9144615 

i -82 •6300015 i •48 1-2115851 •15 1-9478809 
1 -81 •6491857 •47 1-2288390 •14 1-9829840 

-80 •6680472 •46 1-2462173 •13 2-0200103 
' -79 •6866183 •45 1-2637307 •12 2-0592540 

•78 •7049275 •44 1-2813903 •11 2-1010830 ' 
•77 •7230004 •43 1-2992075 •10 2-1459660 ’ 
•76 •7408601 -42 1-3171944 •09 2-1945139 
•75 -7585276 •41 1-3353637 •08 2-2475447 s 

•74 i -7760220 •40 1-3537287 •07 2-3061917 ! 

‘ i i -7933609 •39 1-3723036 •06 2-3720922 ' 

•72 : -8105604 •38 1-3911032 •05 2-4477468 
•71 ! 8276356 •37 1-4101434 •04 2-5372725 
•70 •8446004 •36 1-4294413 •03 2-6482288 i 

•69 1 -8614681 •35 1-4490149 •02 2-7971496 ' 

•68 
•67 

•8782511 
•8949610 

•34 1-4688837 •01 3-0348543 

X -1 
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Table III.— Ordinates of curves of Divero’ence-diagfram in terms of Abscissa. 
cv O 

Abscissa = ‘25 di ^ ov ’75 d: 

Ordinate = 2. 

2 = value of .T being given by a = a/ — f 6 

Values of cc. 

a — •0; cT = 0-00000 00000 

= •1; = 0-12566 13469 

a = • 0 . 
— 5 X = 0-25334 71031 

a z= •3; X = 0-38532 04664 

0. = •4; X = 0-52440 05127 

a — •5; .T = 0-67448 97502 

a = •6; X = 0-84162 12336 

a = ■7; X = 1-03643 33895 

a “ •S; X = 1-28155 15655 

a = •9; X = 1-64485 36270 

Values of 2. 

a = -0 a = -1 a = -2 a =: -3 a = -4 a. = -5 a = -6 , a = -7 a = -8 
1 

j a = -9 j 

0 Z z z - z Z Z 

= ! 

-00 1-00000 •99214 •96842 -92845 •87154 •79655 •70176 •58444 •43991 •2.5852 
-01 1-00000 •99210 •96829 •92818 •87106 •79583 •70078 •58320 •43848 •25714 
-02 1-00000 •99201 •96792 •92735 •86963 •79366 •69781 •57945 •43418 •25300 
-03 1-00000 -99185 •96729 •92595 •86719 •78998 •69277 •57313 •42696 •24610 
-04 1-00000 •99162 •96637 •92392 •86367 •78469 •68557 •56411 •41673 •23647 
-05, 1-00000 •99131 •96514 •921-20 •85898 •77765 •67601 •55222 •40338 •2-2412 
-06 1-00000 •99091 •96356 •91771 •85295 •76860 •66386 •53725 •38677 •20912 
•07 1-00000 •99040 •96156 •91332 •84540 75742 •64883 •51891 •36677 •19161 
•08 1-00000 ■98977 •95907 •90785 •83606 •74363 •63053 •49687 •34322 •17177 
•09 1-00000 •98899 •95598 •90110 •82459 •72682 •60848 •47076 •31603 •14993 
•10 1-00000 •98801 •95215 •89277 •81052 •70642 •58210 •44016 •28517 •12658 
•11 1-00000 •98679 •94738 •88246 •79326 •68172 •55071 •40467 •25078 •10243 
•12 1-00000 •98525 •94139 •86962 •77202 •65177 •51351 •36395 •21324 ■07842 
•13 1-00000 •98329 •93381 •85349 •74571 •61544 •46964 •31785 •17336 •05575 
•14 1-00000 •98076 •92405 •83301 •71291 •57130 •41826 •26663 •13-251 •03581 
•15 1-00000 •97741 •91129 •80665 •67168 •51768 •35876 •21128 •09284 •01993 
•16 1-00000 •97288 •89424 •77216 •61946 -45282 •29126 •15402 •05726 •00899 
•17 1-00000 •96655 •87086 •72625 •55298 -37527 •21740 •09884 •02906 •00294 
•18 ] -00000 •95738 •83776 •66399 •46839 •28515 •14176 •05168 •01078 •00057 
•19 1-00000 •94340 •78914 -57822 •36254 •18665 •07328 •01900 •00234 •00005 
•20 1-00000 -92064 •71457 -45960 •23695 •09236 •02451 •00361 ■00018 •OOOOO 
•21 1-00000 •88015 •59517 -30110 •10826 •02528 •00326 •00017 •OOOOO •OOOOO 
..>0 • ^ 1 -00000 •79862 •40091 -12072 •01992 •00154 •00004 •OOOOO ■OOOOO •OOOOO 
•23 1-00000 •60494 •12964 -00886 •00016 •ooooo •OOOOO •OOOOO •OOOOO •00000 
•24 1-00000 •13499 •00029 -00000 •00000 •ooooo •OOOOO , •00000 1 •OOOOO •OOOOO 
'2^ Indeter¬ 

minate 
•00000 •00000 -00000 •ooooo •ooooo ' •OOOOO ■ 

i 
•OOOOO 

[ 
1 

•OOOOO 1 •ooooo , 
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Table IV.—Abscissae of curves of Divevo’ence-cliaoTam in terras of Ordinate. 

(Converse of Table ILL) 

! 
a = -0 a = -1 a = -2 ' a = -3 a = -4 a = -5 a = (^ a = -7 a = -8 a = -9 

Z 

1 

0 0 e 

i 
0 0 0 0 0 0 0 

1 
1-00 Indeter- 

mi-aale 
« • • • • • « • 

•99 •25000 •07662 i 
■98 •25000 •14252 

I -97 •25000 ■16498 ! 
•90 •25000 •17753 •07651 ., 
•97) •25000 •18583 •10478 
•94 •25000 •19186 •12203 
•93 •25000 ■19650 •13422 
•92 •25000 •20022 •14349 •05372 • • 1 
•91 •25000 •20328 *15087 •07632 ; 

•90 •25000 •20587 •15695 •09145 
■89 ■25000 •20809 •16207 •10291 
•88 •25000 •21003 •16647 •11210 
•87 •25000 ■21174 •17031 •11973 •01795 
•80 •25000 •21326 •17369 •12624 •04803 
•85 •25000 •21463 •17671 •13189 •06417 

■•84 •25000 •21587 •17943 •13686 •07603 1 
•83 •25000 ■21700 •18189 •14128 ■08553 
•82 •25000 ■21804 •18413 •14526 •09349 1 

•81 •25000 •21900 18619 •14886 •10033 
•80 •25000 •21988 •18809 •15215 •10634 
•79 •25000 •22071 •18985 •15517 •11168 •02996 
•78 •25000 •22148 •19149 •15796 •11649 ■04694 
•77 •25000 •22220 •19302 •16054 •12085 •05863 ,. 
•76 •25000 ■22-287 •19445 •16295 •12484 ■06788 • • 

•75 •25000 •22351 •19580 •16520 •12851 •07563 1 

•74 ■25000 •22411 •19707 •16730 •13191 •08-233 
•73 ■25000 •22468 •19827 ■16929 •13507 •08825 
•72 •25000 •22.^3 •19941 17116 ■13801 •09356 
•71 •25000 •22574 •20049 •17293 •14079 •09838 
•70 •25000 •22623 •20151 ■17460 •14339 •10279 •01337 

j 

•69 •25000 •22670 •20249 •17620 •14584 •10686 •03423 
•08 •25000 •22715 •20343 •17771 •14816 •11063 •04613 .. ! 
•67 •25000 •22758 •20432 •17916 •15036 •11415 •055-23 .. 
'66 •25000 •22799 •20518 •18054 •15245 •11744 •06277 1 

•65 •25000 ■22839 •20600 •18187 ■15445 ■12054 •06929 
•64 •25000 •22877 •20679 •18314 15635 •12346 •07506 
•03 ■25000 •22914 •20755 •18436 •15817 •12622 •08026 
•(;2 •25000 •22949 •20829 •18553 •15991 •12885 •085O0 
•61 •25000 •22983 •20899 •18666 ■16158 •13134 •08936 
•60 •25000 •23016 •20968 •18775 •16319 •13372 •09341 
•59 •25000 •23048 •21034 •18881 •16473 •13600 •09718 
•58 •25000 •23079 •21098 •18982 ■16622 •13818 •10073 •01888 
•57 •25000 •23109 ■21160 •1908] •16766 •14027 •10406 •03383 
•56 •25000 •23139 •21220 •19176 •16905 •14-227 •10722 •04375 
'55 •25000 •23167 •21279 ■19269 •17040 •14421 ■11021 •05163 
•54 •25000 •23195 •21336 •19358 •17170 ■14607 •11306 •05832 
•53 •25000 •23221 •21391 •19446 •17-296 •14787 •11577 •06419 
•52 •25000 •23-248 •21445 •19531 •17419 •14961 •11837 •06946 
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Table IV.—Abscissce of curves of Divergence-diagram in terms of Ordinate 

(continued). 

, = •0 a = •! a = -2 a = -3 a = -4 X = -.5 a = -6 a = -7 a = -8 a = -9 

z 0 0 0 0 0 0 0 6 

•51 ■25000 •23273 •21497 •19613 ■17.5.38 •15129 •12086 •07426 .. 
•50 •25000 •23298 •21548 •19694 •17653 -15292 •12326 •07868 
•49 •25000 ■23323 ■21598 •19772 •17766 •15450 •12.556 •08280 
•48 ■25000 •23346 •21647 •19849 • 17876 •15603 •12778 •08664 
•47 •25000 •23370 •21695 •19924 ■17983 ■15753 •12992 •09027 
•46 •25000 •23392 ■21742 •19997 ■18088 •15898 •1.3200 •09369 
•45 •25000 •23415 •21788 •20069 •18190 •16040 •1.3401 09695 
•44 •25000 •23437 •218.32 "20139 •18290 •16178 •13595 •10005 
•43 ■25000 •23458 ■21876 •20208 •18387 •16312 •13785 •10301 •02627 
•42 •25000 ■23479 ■21920 •20275 •18483 •16444 •13968 •10586 •03711 
•41 •25000 ■23500 •21962 •20341 •18577 •16573 •14147 ■10859 04534 
•40 •25000 ■23520 •22004 •20406 •18669 •16699 •14322 •11122 •05221 
•39 •25000 •23541 •22045 •20470 •18760 •16822 ■14492 ■11376 •05821 
•38 •25000 •23560 •22085 •20533 •18848 •16944 •14659 ■11621 •06359 
*37 •25000 •23580 •22125 •20595 ■18936 •17062 •14821 •11859 •06850 
•3(; ■25000 •23599 •22164 ■20656 ■19022 ■17179 ■14980 •1-2091 •07304 
*35 •25000 •23618 •22203 •20716 •19106 •17294 •15137 •12315 •07727 
•34 ■25000 •23637 •2-2241 ■20776 •19190 •17407 ■1.5290 •12534 •08126 
-.33 •25000 •23655 •22279 ■20834 •19272 •^518 •15440 •12747 •08.503 
•32 •25000 •23674 •22316 •20892 •19354 •17628 •15588 •12956 •08862 
•31 •25000 ■23692 •22353 •20949 •19434 •17736 •15733 •13160 •09205 
•30 •2.5000 •23710 •22390 •21006 •19513 •17843 15876 •133.59 ■09534 
•29 •25000 •23728 •2-2426 •21062 •19592 •17949 •16018 •13555 •09851 
•28 •25000 •23745 •22462 ■21118 •19670 •18054 ■16157 •13748 ■10157 
•2'7 •25000 •23763 •22498 ■21174 •19748 •18157 •16-295 •13937 •104.53 
•26 •25000 •23780 •22534 ■21229 •19824 •18260 •16431 •14123 •10741 
•25 •25000 •23798 •22569 •21-283 •19901 ■18362 •16566 •14307 •11022 •0248.5 
•24 •25000 •23815 •22604 ■21338 •19977 •18464 •16700 •14489 •11295 •0.3665 
•23 •25000 ■23832 •22640 ■21392 ■20053 •18565 •16833 •14668 •11563 •04550 
*2*2 •25000 •23850 ■22675 •21446 •20P28 ■18665 •16966 •14846 •11825 •05293 
•21 •25000 •23867 ■22710 •21501 •20204 •18766 •17098 •15022 •12083 •05946 
•20 •25000 ■23884 ■22745 •21.555 •20279 •18866 ■ 172-29 •15198 •12337 •06538 
•19 ■25000 •23902 ■22780 ■21609 •20355 •18966 ■17360 •1.5372 •12588 •07085 
•18 ■25000 •23919 ■22816 ■21664 •20431 ■19067 ■17492 •15.547 •12836 •07598 
•17 •2.5000 •23937 •22852 •21719 ■20507 •19168 •17623 •15721 ■13082 •08084 
•16 •25000 •23955 •22888 •21775 ■20584 •19270 •17756 •15895 •1.3327 •08549 
•15 1 -25000 ■23973 -2-2924 •21831 •20662 •19372 •17889 •16070 •13572 •08997 
•14 I -25000 •23991 •22961 ■21888 ■20740 •19476 •18024 •16247 •1.3816 •09432 
•13 •25000 •24009 •22999 •21945 ■20820 •19.582 •18160 •16425 ■14062 •09857 
•12 •25000 •24028 •23037 •22004 •20902 •19689 •18299 •16606 •14309 •10274 
•11 •25000 •24048 •23076 •22065 •20985 •19799 •18441 •16790 •14560 •10688 
•10 •25000 •24068 •23117 •22127 •21071 •19911 •18586 •16978 •14814 •11100 
•09 ■25000 ■24088 •23159 •22191 •21160 •20028 •18736 •17171 ■15075 •11514 
•08 ■25000 ■24110 ”23202 ■22258 •21252 •20149 •18891 •17372 •15343 •119.33 
•07 ■25000 ■24132 ■23248 •22328 •21349 ■20276 •19054 ■17582 •15623 •P2361 
■06 •25000 ■24156 ■23297 •22403 •21452 -20411 •19227 •17803 15916 •12805 
■05 •25000 ■21183 ■23350 •22484 •21564 •20557 •19414 ■18041 •16230 •13272 
■04 ■25000 -24211 ■23408 •22574 •21687 •20718 •19619 •18303 •16573 •13775 
■03 ■25000 ■24245 ■23475 •22676 •21827 ■20901 •19853 •18600 •16960 •14334 
•02 •25000 •24285 ■23557 •22801 ■21998 •21124 ■20136 •189.59 •17425 •14995 
■01 ■25000 •24341 •23670 ■22974 •22236 •21433 •20528 •19453 •18062 •15884 

i -00 
1 

■25000 
1 

•25000 ■25000 •25000 •25000 •25000 ■25000 •25000 •25000 •25000 
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Table V.-—Table for Calculation of Probable Error. 

This taljle gives Q\/N in terms of N, where Q = '67448975 .. and N lias any 

value. I'he values of N in the first column are the values corresponding to values of 

Qv^N intermediate between those in the second column. Thus Qv/N = 93'5 gives 

N = 19216, and Q\/N = 94'5 gives N = 19630 ; and therefore for any value of N 

between 19216 and 19630 the value of Qv^N to the nearest integer is 94. The 

figures in N are arranged in pairs, since the result of dividing \/N by 10 is to divide 

N by 100. Thus for N = '01 93 00 the value of Qv^N to three places of decimals is 

'094 ; and similarly, if N = '00 00 01 93, Qv^N = '00094, correct to five places of 

decimals. Thus the table gives Q\/N within from '8 to '08 per cent, of its value, 

without the necessity for any interpolation. This is accurate enough for ordinary 

purposes. 

N. QCn. N. Qv/N. N. Qv/N. 

00 97 21 
067 

01 56 95 
085 

02 30 94 
103 

01 00 15 
068 

60 69 
086 

35 47 
104 

03 14 
069 

64 47 
087 

40 04 
105 

06 17 
070 

68 29 
088 

! 44 66 
106 

09 25 
071 

72 16 
089 

49 32 
107 

12 37 
072 

76 07 
090 

54 02 
108 

15 54 
073 

80 03 
091 

58 77 
109 

18 75 
074 

84 03 
092 

63 56 
110 

22 00 
075 

88 08 
093 

68 39 
111 i 

25 30 
076 

92 16 
094 

73 27 1 

112 ' 
^ 28 64 

077 
96 30 

095 
78 20 

113 
32 02 

078 
02 00 47 

096 
83 17 

114 
35 45 

079 
04 69 

097 
88 18 

115 
38 93 

080 
08 96 

098 
93 23 

116 
42 44 

081 
13 27 

099 
98 33 

117 
16 00 

082 
17 62 

100 
03 03 48 

118 ' 
49 61 

083 
22 01 

101 
08 66 

119 
53 26 

084 
26 45 

102 
13 90 i 

120 ! 
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Table V.—Table for Calculation of Probable Error (continued). 

X. QVx. X. 
! 

QCx. X. g Cx. ! 

03 19 17 

1 

04 84 73 06 84 76 
i 

121 149 177 
24 49 91 28 92 54 

122 150 178 
29 85 97 88 07 00 37 

123 151 179 
35 20 05 04 52 08 24 

124 1 152 180 
40 71 11 20 16 15 

125 153 181 
40 21 17 92 24 11 

126 154 182 i 
51 75 24 09 32 11 i 

127 155 183 
57 33 31 51 40 15 

128 156 184 
02 90 38 37 48 24 

129 157 185 
68 63 45 27 56 37 

130 158 186 
74 34 52 21 64 55 

131 i 159 187 
80 10 ' 59 20 72 77 j 

132 160 188 ! 
85 91 66 24 81 04 1 

133 101 189 ! 
91 75 73 32 89 35 

134 162 190 
97 64 80 44 97 70 

135 163 191 
04 03 58 87 60 08 06 10 

130 164 192 
09 50 94 81 14 54 

137 165 193 
15 58 06 02 07 23 02 

138 160 194 
21 65 09 37 31 55 1 

139 167 195 
27 76 16 71 40 12 

140 168 196 
33 91 24 09 48 74 

141 169 197 
40 11 31 52 57 40 

142 170 198 
46 35 39 00 66 10 

143 171 199 
52 64 46 51 74 85 

144 172 200 i 
58 97 54 07 S3 65 

145 173 201 ! 
65 35 01 68 92 48 

146 I 174 202 1 
71 76 ' 69 33 09 01 30 

147 175 203 
78 23 77 02 10 29 1 

1 

148 176 
1 

204 

M 
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Table V.—Table for Calculation of' Probable Error (continued). 

N. qCn. N. QCn. N. QCn. 

09 19 25 
205 

11 88 22 
233 

14 91 64 
261 

28 27 
206 

98 46 
234 

15 03 12 
262 

37 32 
207 

12 08 75 
235 

14 63 
263 

40 42 
208 

19 08 
236 

26 20 
264 

65 57 
209 

29 45 
237 

37 80 
265 

04 76 
210 

39 87 
238 

49 45 
266 

73 99 
211 

50 33 
239 

61 15 
267 

83 20 
212 

60 84 
240 

72 88 
268 

92 58 
213 ! 

71 39 
241 

84 67 
269 

10 01 95 
214 

81 99 
2 

96 49 
270 

11 36 
215 

92 63 
243 

16 08 36 
271 

20 81 
216 1 

13 03 31 
244 

20 28 
272 

30 30 
217 

14 04 
245 

32 23 
273 

39 84 
218 i 

24 81 
246 

44 24 
274 

49 43 
219 

35 62 
247 

56 28 
275 

59 05 
920 

46 48 
248 

68 37 
276 

68 73 
221 

57 38 
249 

80 50 
277 

78 44 
222 

68 33 
250 

92 68 
278 

88 20 
223 

79 32 
251 

17 04 90 
279 

98 01 
224 

90 35 
252 

17 17 
280 

11 07 85 
225 

14 01 43 
253 

29 48 
281 

17 74 
226 

12 55 
254 

41 83 
1 

282 
27 68 

227 
23 72 

255 
54 23 

283 
37 66 

228 
34 93 

256 
66 67 

284 
47 68 

229 
46 19 

257 
79 16 

285 
57 75 

230 
57 48 

258 
91 68 

286 
67 86 

231 
68 83 

269 
18 04 26 

287 
78 02 80 21 16 87 1 

232 
j 

260 
1 
t 

288 
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Table Y.—Table for Calculation of Probable Error (continued). 

N. Q^/N. N. Qv/N. N. Q^/N. 

18 29 54 
289 

22 01 90 
317 

26 08 72 
345 

42 24 
290 

15 83 
318 

23 89 
346 

54 99 
291 

29 81 
319 

39 10 
347 

67 78 
292 

43 84 
320 

54 35 
348 

80 62 
293 

57 90 
321 

69 65 
349 

9.3 50 
294 

72 02 
322 

85 00 
350 

19 06 43 
295 

86 17 
323 

27 00 38 
351 

19 39 
296 

23 00 37 
324 

15 81 
352 

32 41 
297 1 

14 61 
325 

31 29 
353 

45 46 
298 

■ 28 90 
326 

46 81 
354 

68 56 
299 

43 23 
327 

62 37 
355 

71 71 
300 

57 61 
328 

.77 98 
356 

84 90 
301 

72 03 
329 

93 63 
357 

98 13 
302 

86 49 
330 

28 09 32 
358 

20 II 41 
303 

24 01 00 
331 

25 06 
359 

24 73 
304 

15 65 
332 

40 8 4 
360 

38 09 
305 

30 15 
333 1 

56 67 
361 

51 50 
306 

44 79 
334 

72 54 
362 

64 95 
307 

59 47 
335 

88 45 
363 

78 45 
308 

74 20 
336 

29 04 41 
364 

91 99 
309 

88 97 
337 

20 41 
365 

21 05 57 
310 

25 03 78 
338 

36 46 
366 

19 20 
311 

18 64 
339 

52 55 
367 

32 87 
312 

33 55 
340 

68 68 
368 

46 59 
313 

48 49 
341 

84 86 
369 

60 35 
314 

63 48 
342 

30 01 08 
370 

74 16 
315 

78 52 
343 

17 35 
371 

88 00 
316 

93 60 
344 

33 66 
372 
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Table V.—Table for Calculation of Probable Error (continued). 

N. Qv/N. N. Qv/N. N. Qv^N. 

30 50 01 35 25 77 40 36 00 
373 401 429 

66 41 43 40 54 86 
374 402 430 

82 85 61 07 73 76 
375 403 431 

99 34 78 79 92 71 
376 404 432 

31 15 87 96 55 41 11 70 
377 405 433 

32 44 36 14 36 30 74 
378 406 434 

49 06 32 21 49 82 
379 . 407 435 

65 72 50 10 68 94 
380 408 436 

82 43 68 03 88 11 
381 409 437 

99 18 86 02 42 07 32 
382 410 438 

32 15 97 37 04 04 26 57 
383 411 439 

32 81 22 11 45 87 
384 412 440 

49 69 40 22 65 22 
385 413 441 

66 62 58 38 84 60 
386 414 442 

83 59 76 58 43 04 04 
387 415 443 

33 00 60 94 82 23 51 
388 416 444 

17 66 38 13 11 43 03 
389 417 445 

34 76 31 44 62 59 
.390 418 446 

51 90 49 82 82 20 
391 419 447 

69 09 68 24 44 01 85 
392 420 448 

86 32 86 70 21 55 
393 421 449 

34 03 60 39 05 21 41 29 
394 422 450 

20 92 23 76 61 07 
395 423 451 

38 29 42 36 80 90 
396 424 452 

55 70 61 00 45 00 77 
397 425 453 

73 15 79 68 20 68 
398 426 454 

90 65 98 41 40 64 
.399 427 455 

35 08 19 40 17 18 60 64 
400 428 

1 

456 

Y 2 
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Table V.—-Table for Calculation of Probable Error (continued). 

N. 0 N. 

45 80 69 
457 

51 59 85 

46 00 78 
458 

81 17 

20 91 
459 

52 02 53 

41 09 
460 

23 94 

61 32 
461 

45 40 

81 58 
462 

66 90 

47 01 89 
463 

88 44 

22 25 
464 

53 10 02 

42 65 
465 

31 65 

63 09 
466 

53 32 

83 57 
467 

75 04 

48 04 11 
168 

96 80 

24 68 
169 

54 18 61 

45 30 
470 

40 16 

65 96 
471 

62 35 

86 67 
472 

84 29 

49 07 42 
173 

i 
i 
1 

55 06 27 

28 21 
474 

28 29 

49 05 
475 

i 
50 36 

69 93 
476 

72 48 

90 86 
477 

94 63 

50 11 83 
478 

56 16 83 

32 84 
479 

39 08 

53 90 
480 

61 37 

75 00 
481 

83 70 

96 15 
482 

57 06 08 

51 17 34 
433 

28 50 

38 57 
484 

50 96 

ii 

Qv/R. R. qVr. 

485 
57 73 47 

513 

486 
96 02 

514 

487 
58 18 62 

515 

488 
41 26 

516 

489 
03 95 

517 

490 
86 67 

518 

491 
59 09 45 

519 

492 
32 26 

520 

493 
55 12 

521 

494 
78 03 

522 

495 
60 00 98 

523 

496 
23 97 

524 

497 
47 00 

525 

498 
70 08 1 

526 

499 
93 21 1 

527 

500 
61 16 38 

528 

501 
39 59 

529 

502 
62 84 

530 

503 
86 14 

531 

504 
62 09 49 

532 

505 
32 88 

533 

506 
56 31 

534 

507 
79 78 

535 

508 
63 03 30 

536 

509 
26 87 

537 

510 
50 48 

538 1 

511 
74 13 

539 ! 

512 
97 82 1 

540 

j 
j 
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Table V.—Table for Calculation of Probable Error (continued). 

i Qv"N. N. 
1 

Qv/N. N. Qv/N. 

64 21 56 
541 

1 71 04 12 

j 

569 
78 21 14 

597 
45 35 

542 
29 13 

570 
47 39 

598 
69 17 

543 
54 19 

571 
73 68 

599 
93 04 

544 
79 29 

572 
79 00 01 

600 
65 16 96 

545 
72 04 44 

573 
26 39 

601 
40 92 

546 
29 63 

574 
52 81 

602 
64 92 

547 
54 87 

575 
79 27 

603 
88 97 

548 
80 14 

576 
80 05 78 

604 
66 13 06 

549 
73 05 47 

577 
32 34 

605 
37 20 

550 
30 83 

578 
58 93 

606 
61 38 

551 
56 24 

579 
85 57 

607 
85 60 

552 
81 70 

580 
81 12 26 

608 
67 09 87 

553 
74 07 19 

581 
38 99 

609 
34 18 

554 
32 74 

582 
65 76 

610 
58 53 

555 
58 32 

583 
92 58 

611 
82 93 

556 
83 95 

584 
82 19 44 

612 
68 07 37 

557 
75 09 63 

585 
46 34 

613 
31 86 

558 
35 .34 

586 
73 29 

614 
56 39 

559 
61 11 

587 
83 00 29 

615 
80 97 

560 
86 91 

588 
27 32 

616 
69 05 59 

561 
76 12 76 

589 
54 40 

617 
30 25 

562 
38 66 

590 
81 53 

618 
54 96 

563 
64 59 

591 
84 08 70 

619 
79 71 

564 
90 57 

592 
35 91 

620 
70 04 50 

565 
77 16 60 

593 
63 17 

621 
29 34 

566 
42 67 

594 
90 47 

622 
54 22 

567 
68 78 

595 
85 17 81 

623 1 
79 15 

! 

568 
94 94 

596 
45 20 

624 
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Table V.—Table for Calculation of Probable Error (continued). 

N. Qv/N. N. Qv/N. i N. Qv/N 

85 72 63 
625 

90 45 71 
642 

95 31 49 
659 

86 00 11 
626 

73 93 
643 

60 46 
660 

27 63 
627 

91 02 20 
644 

89 48 
661 

55 19 
628 

30 51 
645 

96 18 54 
662 

82 80 
629 

58 87 
646 

47 64 
663 

87 10 45 
630 

87 27 
647 

76 79 
664 

38 15 
631 

92 15 71 
648 

97 05 98 
665 

65 89 
632 

44 20 
649 

35 21 
666 

93 67 
633 

72 73 
650 

64 49 
667 

88 21 50 
634 

93 01 31 
651 

93 81 
668 

49 37 
635 

29 92 
652 

98 23 18 
669 

77 29 
636 

58 59 
653 

52 59 
670 

89 05 25 
637 

87 30 
654 

82 05 
671 

33 25 
638 

94 16 05 
655 

99 11 54 
672 

61 30 
639 

44 84 
656 

41 09 
673 

89 39 
640 ! 

73 68 
657 

70 67 
674 

90 17 53 
641 

95 02 56 
658 

100 00 30 
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Table VI.—Abscissa of Standard Normal Curve in terms of Class-Index. 

Class-Index = a. 

Abscissa = x. 

a = e . 

a. X. 

1 

: Oi, 

1 

X. 

1 

a. X. 

•00 •00000 •34 •43991 ■67 •97411 
•01 •01-253 •35 ■45376 ■68 •99446 
•02 •02507 •36 •46770 ■69 1-01522 
•03 •03761 •37 •48173 •70 !■ 03643 
•04 •05015 ■38 •49585 ■71 1-05812 
•05 •06271 •39 •51007 •72 1-08032 
•06 •07527 •40 •5-2440 •73 1-10306 
■07 •08784 •41 •53884 ■74 1 12639 
•08 •10043 •42 •55338 •75 1-15035 
•09 •11304 •43 ■56805 •76 1-17499 
■10 •12566 •44 •58284 •77 1-20036 
•II •13830 •45 ■59776 •78 1-22653 
•12 •15097 •46 •61281 •79 1-25357 
•13 •16366 ■47 •6280] •80 1-28155 
■14 •17637 •48 •64335 •81 1-31058 
•15 •18912 •49 •65884 •82 1-34076 
•16 •20189 •50 •67449 •83 1-37220 
•17 •21470 •51 •69031 •84 1-40507 
•18 •22754 •52 •70630 •85 1-43953 
•19 ■24043 •53 •72-248 ‘86 1-47579 
•20 •25335 ! •54 ■73885 •87 1-51410 
•21 •26631 •55 ■75542 •88 1-55477 
■22 •27932 ■56 ■77219 •89 1-59819 
■23 •29237 •57 •78919 ■90 1-64485 
•24 •30548 •58 •80642 •91 1-69540 
•25 •31864 •59 •8-2389 •92 1-75069 
•26 •33185 •60 •84162 •93 1-81191 
•27 •34513 •61 •85962 •94 1-88079 
•28 •35846 •62 •87790 •95 1-95996 
•29 •37186 •63 •89647 •96 2-05375 
•30 •38532 •64 •91537 •97 2-17009 
•31 •39886 •65 •93459 •98 2-32635 
•32 •41246 •66 •95417 •99 2-57583 
•33 •42615 
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(l.) The object of this paper is to show, by the use of a special case as illustration, 

the true limits within which it is possible to reconstruct the parts of an extinct race 

from a knowledge of the size of a few organs or bones, when complete measurements 

have been or can be made for an allied and still extant race. The illustration I 

have taken is one of considerable interest in itself, and has been considered from a 

variety of standpoints by a long series of investigators. But I wish it to be 

considered purely as an illustration of a general method. What is here done for 

stature from long bones is equally applicable to other organs in Man. We might 

reconstruct in the same manner the dimensions of the hand from a knowledge of any 

of the finger bones, or the bones of the upper limbs from a knowledge of the bones of 

the lower limbs. Further, we need not confine our attention to Man, but can 

predict, with what often amounts to a remarkable degree of accuracy, the dimensions 

of the organs of one local race of any species from a knowledge of a considerable number 

of organs in a second local race, and of only one or two organs of the first. The import¬ 

ance of this result for the reconstruction of fossil or prehistoric races will be obvious. 

What we need for any such reconstruction are the following data :— 

(a.) The mean sizes, the variabilities (standard-deviations), and the correlations of 

as many organs iq an extant allied race as it is possible conveniently to measure. 

When the correlations of the organs under consideration are high {e.g., the long- 

bones in Man), fifty to a hundred individuals may be sufficient; in other cases it is 

desirable that several hundred at least should be measured. 

(6.) The like sizes or characters for as many individual organs or bones of the 

extinct race should then be measured as it is possible to collect. It will be found 

always possible to reconstruct the mean racial tyj^e with greater accurac}' than to 

reconstruct a single individual. 

(c.) An appreciation must be made of the effect of time and climate in producing 

changes in the dimensions of the organs which have survived from the extinct race. 

(2.) Supposing the above data to exist in any particular instance, we have next to 

ask what is tlieoretically the best method of dealing with them. There cannot be a 

doubt about the answer to be given. If we know an organ A, then the most 

probable value of an organ B is that given by the regression formula for the two 
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organs. Let be the mean sizes of A and B, or,„ o-^ their standard deviations, 

r„4 tlieir coefficient of correlation, then the most [probable value of B for a given value 

of A is, 

B — (A — ma) 

or 

= C] + CoA...(i.) 

where Cj and c., are constants for the pair of organs under consideration. The 

probable error of such a determination is '67449 cr^ X \/il — 

Now there are several points to be noticed here. 

(i.) If be small, the probable error of reconstruction will be large, if the organ 

B is to be reconstructed for a single individual. No ingenuity in constructing other 

formulae can in the least get over this difficulty ; it is simply an exju'ession of the 

fact that races are variable. Any formula which professes to reconstruct individuals 

with extreme accuracy may at once be put aside as unscientific. On the other hand, 

if A be known for p individuals, the corresponding mean value of the unknown organ 

B may be found with a probable error of '67449 o-^ X \/{l — 't'lb)l\/p^ thus with 

increasing accuracy as p increases. 

(ii.) Anthropologists and anatomists have frequently assumed that the ratio of two 

organs, B/A, is the measure to be ascertained in a reconstruction problem. They 

were soon compelled to admit, however, that this varies wiidi A, and accordingly have 

tabulated the ratio B/A for three or four ranges of the organ A. Such a table, 

for example is given by M. ManouveiepA for the ratio of stature to the length of 

the six long bones. He gives the ratio for three values of each long bone. He also 

in a second table gives values of the ratios which are to be taken when the long 

bones exceed or fall short of certain values, i.e., in cases of what he terms macroskely 

and microskely. The regression formula shows us that ; 

B/A = Co + c,/A, 

and since Cj is never small as compared with A, this ratio can never be treated as 

constant. Accordingly, while a table can be constructed which will give quite good 

reconstruction values, by determining the mean value of B/A for each value of A, we 

see that it is theoretically an erroneous principle to start from ; no constancy of tlie 

ratio B/A ought to be expected. The theory of regression shows us that the most 

probable value of B is expressible, so long as the correlation is normal (or at least 

“linear ”), as a linear function of A.t 

* ‘ Memoires cle la Societe cTAntliropologie cle Paris,’ vol. 4, pp. 347-402. 

t Sir George Humphry gives a table of the ratio B/A for stature in his “ Treatise on the Human 

z 2 
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(3.) So far we have dealt only with the reconstruction of the most probable value 

of B from one organ A, but we may propose to find the most probable value of B from 

11 organs Aj, Aa, Aj . . . A,j, Let represent the correlation coefficient of B and the 

organ A,^, the correlation coefficient of A,^ and A,^-; o-q the S.D. of B, and cr^ of the 

organ A,j, nio the mean of B, and of A,j; let Pt be the determinant 

1 Al '^\-2 '^’03 On 

"^'lO 1 '^\2 '^’l3 • • • 

'^20 '^*21 1 ^^23 • • • '^^2n 

'^’SO ^’si '^’32 1 = . . T^;, 

^'nO '^w2 ^’nS ... 1 

and E.^5, the minor corresponding to 'Ifiien the general theory of correlation 

shows us that 

B — r/in = — 
lb 

E (10 

/ A \ CTii 
-- (Ai — m,) — ^- 
a I ±A;„J <J 2 

E, 
(A,_ma)... - . ''^'^(A.-m.,). . (ii.) 

-•--o;) ^-,1 

is the most probable value of B, and that there is a probable error = '67449 o-,,^(E Rqo) 

in this determination. 

Thus we reach again a formula of the character 

P “ Co + CjAi + C2A2 + C3A3 + . . . + c„A;„ 

or, B is expressible as a linear function of the organs from wdiich its value is to be 

predicted. This again supposes normal, or at least " linear ” correlation. Now there 

are several points to be noticed here. 

(i.) The linear function which will give the best value for B is unique. For 

example, some anthropologists have attempted to reconstruct stature by adding 

together the lengths of femur and tibia. The proportions in which femur and tibia 

are to be combined are given once for all by the regression formula, and they are 

not those of equality. I have succeeded in proving the following general theorem, 

which settles this point conclusively. Given any linear function of the 11 organs 

Ai, Ao, A3. . . A,,, say 

“b ^9-^1 "h l>-iAl + hgAs + . . . + l>n^,n 

Skeleton,” Cambridge, 18-58, p. 108. Many others have been given by French writers, in some cases 

with several values cf B/A for three ranges of stature or of long bone (Topixard, Rollet, etc.). 

Dr. Beddoe has given a rule Avhich really amounts to making B a linear function of A, but his values 

for Cl and c.^ are widely divergent from what 1 have obtained by applying the theory of correlation. 

‘ Journal of the Anthropological Institute,’ vol. 17, 1888, p. 205. 
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and let p be the correlation of this expression with B, then p will be greatest or 

tbe probable error of the determination of B by means of its correlation with such an 

expression will be least, i.e., ‘67449 cto ^^/(l—p") will be least, when the b’s are pro¬ 

portional to the corresponding c’s of the regression formula. 

Let S be the standard-deviation of the quantity 

Q = bo + biAj -f 62A.2 “b . . . -h 
Then 

= S;'(bVi) -h 2S (^16.20-10-2^1.2) 

and 
p = 

The best value of B as determined from Q is 

B = Wq {bi (Ai — mi) -f- h, (Ao — oru) + . . . -j- 6,^ (A,,j — n;.,,)} . (iii.), 

with a jDrobable error ‘67449 o-q v^(l — p'). 

This may be taken to be any linear function of the As, since so far h^, h,, . . , b„ 

are n quite arbitrary constants, and the constant bo has to satisfy the condition that 

B takes its mean value when the A’s take their mean values. 

Now select such a value of the b’s as to give the greatest value to p. By 

ditferentiating p with regard to the b’s in succession we find the system of equations 

7‘oiS/'p = bio-i + -j- -h . • . + b„o-.„?‘i„ 

‘^'02'^!P — biO-iri2 -f- hoCT'z + hiCriTo^ + b,jO-„7‘2„ 

~ biO-p'ia -j- hiO’oTo^ -{- 630-3 -{-••• “h 

'>'o.X/p — biO-i?‘i,j fi- boO-'p'zti d“ d~ • • • + b,,0-„. 

The solutions of these equations are 

5 

P 

or, the equation to the best value of B, (iii.) above, reduces to the regression 

formula (ii.). In other words, no attempt to reconstruct the organ B from a linear 

relation to the organs Ai, A., . . . A,^ will give such a good result as the ordinary 

regression formula.''' This, of course, excludes all attempts to form type ratios of 

* I note that what i.s here demonstrated is only a special case of Mr. Yule’s general theorem. See 

‘ Roy. Soc. Proc.,’ vol. 60, p. 477. 

biO-i = — 
R 

I^flM P 
b.,cr., = 

It. 
R 

b„o-„ 
uo P 

IL 

E,„ 
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A/B or B/A as a method of prediction. We may, in fact, at once dismiss all 

reconstruction formulae as insufficieiit which are not based on the theory of corre¬ 

lation. The theory as here applied, he it noted, depends on the linearity of the 

proposed formula and not on any special form of the distribution of variations. 

(ii.) The accuracy of a prediction will not be indefinitely increased by increasing- 

the number of organs upon which the prediction is based. This fundamental fact of 

the application of the theory of correlation to prediction has already been noticed by 

Miss Alice Lee and mj^-'self in the case of barometric prediction." The choice of 

organs upon which to base the prediction is far more important. Thus, to illustrate 

this from stature I may remark that the probable error of a prediction of male stature 

from radius is to a prediction from femur in the ratio of 2’723 to 2T74 ; that if one 

takes both femur and tibia for the prediction, the probable error is only reduced to 

2’030, and further, if one takes femur, tibia, humerus, and radius, we only reach 

1‘961. This latter reduction is so small as to be well within the errors of the 

determination of our means, variations, and correlations, and accordingly scarcelv 

worth making. To pass from the radius to the femur is a real gain ; to pass from 

femur and humerus, say, to femur, humerus, tibia, and radlns, is no sensible gain. 

Hence, one or two organs well selected are worth much more for prediction than a 

much larger number selected less carefully. 

(iii.) It is the custom of French writers, when determining stature, to predict it 

from several single types of bones, say from femur, tibia, humerus, and radius, and 

then to take the mean of these results for the true stature. This is not the best 

theoretical procedure. Suppose the regression formulge for the prediction of B from 

Ai, Ao, A3. A4 sejiarately to be 

^ — Co T" <^1 

B = Co" + c/A.3, 
c "'A B = Co'" 

B = Co"" -b c/"'A4. 

Then the mean of all these results would give 

B - J (Cq + Co + Co' -f- Co" ') -f- + i^/'Ao + ^Ci"'A3 -+■ 5Ci""A4, 

that is to say, B has been really found from a linear relationship between B and the 

four organs in question. But the best linear relationship for the four organs is 

B — Cq CjAi -f- fvAo "F C3A3 F C4A4, 

where the c’s are the true regression coefficients. But the slightest acquaintance 

with the theory of regression shows that the partial regression coefficient is as a 

* “ On tlie Distribution of Frequency (Yariation and Correlation) of tbe Barometric Heiglit at 

Divers Stations,” ‘Phil. Trans.,’ A, vol. 190, p. 45G et seq. 
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rule not just + of the value of the total regression coefficient c/. For example, if 

A4 wei’e the radius and B stature, ci''' — 3'271, while C4 is a negative quantity — *187. 

This process of taking means may accordingly screen some most important element, 

like the negative value of the partial regression coefficient of the ra,dius. Tkeoreticallu, 

therefore, as vrell as fiom the standpoint of discovery, the regression formula for n 

organs will give more valuable results than the mean of the results of the n regression 

formulse for the n organs. A practical modification of this principle will be referred 

to below (p. 178). 

(4.) The theory of regression will thus enable us to determine the best value to be 

assigned to an unknown organ, when the values of any other n organs are known, 

supposing the individual to ivhich these organs belong is a member of a race or group 

for ivhich the regression coefficients have been ascertained. 

On what principle, however, can we extend the regression formulse for one race to 

a second \ The regression coefficients depend upon two things, the variability of 

the organs under consideration and their correlation. Now the change in variability 

as we pass from one race to a second has never been questioned. It has been 

suggested that the correlations were I'acial characters, but the divergences in corre¬ 

lations between local races a,re far beyond the probable errors of the observations.* 

Mr. Filon and I have shown that every random selection from a race changes both 

variation and correlation.T have shown in a memoir not yet published that all 

natural and all artificial selection also changes these quantities. How then can we 

hope that a regression formula as applied from one local race to another will give 

accurate results ? Why should the statui’e formula obtained from measurements on 

modern Frenchmen apply to palreolithic man ? 

I think M. Manouvriee, somewhat lightly skips this difficulty in the following 

sentences :—“ Enfin les variations ethniques des proportions du corps seront dans le 

meme cas que les precedentes [les variations individuelles]. H y a des races macros- 

keles et des races microskeles, comme il y des individus de ces deux sortes, et les 

variations individuelles sont bien plus grandes que les variations ethniques les plus 

accusees. Or les coefficients moyens des os de grande longueur tendant a abaisser la 

faille et ceux des os de faible longueur tendant a Telever, il s’ensuit qu’il sera tenu 

compte dans une certaine mesure de la macroskelie des races comme de celle des 

individus dont les os seront absolument longs et de la microskelie des races comme 

de celle des individus ayant des os absolument courts.’’^; If we admit for the 

moment, which I sliould not be prepared to do generally,|| that the individual 

variations in a local race are greater than the “ethnic variations” or divergences 

between the means of local races, M. Manouvrier’s conclusion by no means follows. 

* See ‘Phil. TiVins,” A, vol. 187, pp. 2GG, 280, and ‘Roy. Soc. Proc.,’ vol. 61, p. 3t0. 

t “ On Random Selection,” see ‘ Pliil, Trans,’ A, vol. 191, p. 229, and ‘ Roy. Soc. Proc.,’ vol. 62, p. 173. 

4 Loc. cit., on my page 171. 

[| vSee the results as to the radius referred to on 2^. 176 below. 
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The formulfe foi’ stature reconstruction, whether obtained with a consciousness of the 

theory of regiession, as in the present paper, or indirectly by taking the means of 

small groups, as by M. Manouveiee, are based upon averages, and involve the 

standard-deviations, the variabilities of distribution of each organ. Hence, the fact 

that individual variations may be greater than ethnic valuations does not touch the 

real point at issue, for the formulm depend on the proportions of macroskely and 

microskely in each race, and these undoubtedly change. The individual variation 

being greater than the ethnic, is not a valid argument for applying a formula, based 

on the observation of one local race straight away to a second. 

The validity of applying the formula for one local race to a second depends, I 

think, upon very different considerations. In the first place, the validity is not 

general. If we endeavoured to reconstruct the radius, for example, of Aino or 

Naqada races from the femur or tibia by a regression formula obtained from measure¬ 

ments on the French, the results would, we might a pi'iori expect, not be so 

satisfactory as for stature.'* 

The validity depends on our conceptions as to “local races.” While the problem 

of local races is dealt with at length in my memoir on artificial and natural selection, 

and 1 do not want to anticipate the results there stated, it is still needful to cite 

here a theorem reached in that memoir. When a sub-race is established bv the 

selection out of a primary race of a group having p organs distributed with given 

variabilities and given correlations about given means, we shall speak of its establish¬ 

ment as due to a direct selection of these p organs. But this direct selection is shown 

to alter also the sizes of all the remaining organs of the organism, the variabilities of 

all those organs, and the correlations among themselves of the non-directly selected as 

well as their correlations with the selected organs. We shall speak of this result as 

* Allowing, as in my page 193, for cartilage and shrinking, I find the following formulie from the 

French measurements for tlie reconstruction of radius in centimetres : 

R = 7-839 -h •367F, 

R = 5-715 + -508T. 

Aino race. Naqada race. 

Calculated. Observed. Calculated. Obsei’ved. 

Reconstruction of R from F 
Reconsti’uction of R from T 

22-799 
22-9.34 

22-913 
22-913 

24- 692 
25- 494 

25-697 
25-697 

In the case of the Ainos, the prediction is within -5 per cent, of the observed value. In the case of 

the Naqada I’ace, the prediction from the femur diffei’s by 1 ceuiim., or 4 per cent, fi-om its true value. An 

error of 6 to 7 centiins. in the prediction of stature of a local race uhich would correspond in 

magnitude is hardly likely to occur. The explanation is that the radius is a nuich differentiated hone. 
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* 

indirect selection. The chanofes due to indirect selection are shown in the memoir 

referred to to be in many cases of considerable importance ; every mean, every 

standard deviation, every correlation may be altered ; but the following theorems 

govern the changes in the regression formulae :— 

(i.) The regression formula of a directly selected organ on any number of other 

organs, whether directly or indirectly selected, will change. 

(ii.) The regression formula of an indirectly selected organ on all the directly 

selected organs, and any number of the indirectly selected organs, does not change. 

(iii.) The regression formula of an indirectly selected organ on some, but not all 

the directly selected organs, will change, unless the selection happens to be one of 

size only, and not of variability and correlation at the same time, in which case the 

formula remains unchangfed. 

(iv.) Most local races show sensible but small diflPerences in both variability and 

correlation ; if we call these differences quantities of the first order of small quantities, 

then the changes in the regression formulge between two or more indirectly selected 

organs will be of this order of small quantities X the squares and products of corre¬ 

lations, quantities which are themselves less than unity, or what we may term a 

quantity of the third order ; further, the changes in the regression formulee between 

an indirectly selected organ and some but not all the directly selected organs will be 

of the first order of small quantities X the correlation, or what we may term a 

quantity of the second order. 

To sum up, then, it would appear that the I'egression formulse in general will 

change from local race to local race, but that a particular set (see (ii.) above) exist 

which would not be changed at all, while many others, supposing size* to be the chief 

character selected, would only be changed by quantities of the second or third order. 

It will be obvious then that a knowledge of a considerable series of regression 

formulae of two local races will enable us to ascertain to some extent the nature and 

amount of differentiation which has gone on from a common ancestral stock. Further, 

if we have not sufficient data for one local race to find the variabilities and correla¬ 

tions of its organs, but if we can find fairly closely the inean size of its organs, then 

the degree of consistency of the results obtained when these means are inserted in the 

regression formulse for the second local race is an indication of the amount of 

differentiation which has taken place. The larger the number of organs we include 

in a regression formula the more likely we are to embrace all the directly selected 

organs, and so to obtain a formula which remains unchanged for the two races. 

Thus we see that the extension of the stature regression formulse from one local 

race—say, modern French—to other races—say, palseolithic man—must be made 

with very great caution. The extension assumes (i.) that stature itself has not been 

* A selection of the mean sizes of two organs, which, wonld alter their relative proportions, does not 

of course involve a selection of correlation; in other words, selection of mean relationship does not 

necessarily connote a selection of differential relationship. 

VOL. CXCII.-A, 2 A 
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direcbly selected, however widely changed by indirect selection, (ii.) that the formulge 

involve cdl the directly selected organs closely correlated with stature, or that the 

selection has been principally one of size, and not of variability of, or correlation 

between, these organs. The real test of the applicability of the formulae is whether 

or not they give for another local race of which we know d priori the stature, results 

in agreement with themselves and with the known stature. I take it that the justi¬ 

fication required for applying our formulae to palaeolithic man is not the statement that 

ethnic are less than individual iutra-racial variations, but is to be drawn from the 

fact that our formulae, based upon measurements on the French, give results very fairly 

consistent among themselves aud with observaition for such a divergent race as the 

Aino. Such results seem to indlcaite that racial differences in stature are not the 

result of direct selection of stature, and that the selection of the long bones has been 

rathei’ a selection of their absolute and relative sizes than a selection, in the first 

place, of their degrees of variation and correlation, although these ha.ve to some extent 

undoubtedly changed. 

tion has taken place. Suppose there has been a selection of femur and tibia, but not 

of humerus and radius. Then the regression formulre for statui'e'on femur and tibia, 

and for stature on femur and tibia together with one or both of the other two, humerus 

and radius, ought to give identical results ; but these results ought to differ from 

those given by the furmulee for stature on humerus or on radius, or on both together. 

Practically, however, we have in many cases so few bones to obtain our meaus from (and 

these bones themselves parts of different skeletons), that the probable errors of these 

means quite obscure the deviations in stature as obtained from vmrious formulae and due 

to the influence of selection. From this standpoint a partial practical justification can be 

found for taking the mean of the divergent reconstructions of stature given by a series 

of regression formulae, at any rate for the case when the divergences are not very large. 

These divergences maiy be due to errors in the mean lengths of the long; bones, or 

to selection directly of one or more of the long bones, or even to some small direct 

selection of stature. But as in our ignorance of these sources of errors we can onh^ 

suppose some positive and some negative, the mean of all the formulae ma,y to some 

extent eliminate these quite unknown and unascertaiiicible divergences (see p. 175). 

Generally, however, I should expect the stature in which two or more formulae agree, 

to be more probable than the mean of several divergent formulae. 

(5.) On the Data availahle for Stature Regression Formulw.—The only data avail¬ 

able for the cadculation of the correlation between stature and long bones occur in the 

measurements made by Dr. Rollet on 100 corpses in the dissecting room at Lyons.'"'" 

This material has already been made use of by Miss Alice Lee and mj'self in our 

memoir, “ On the Relative Correlation of Civilised and Uncivilised Races,”t so that 

‘ ,De la Mensuration des Os Longs des Membres,’ par Dr. Etienne Rollet, Lyons, 1889. 

t ‘ Roy. Soc. Proc.,’ toI. 61, p. 343 
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all the coefficients of correlation and adl the variations of the long bones have already 

been calculated. 

I owe to Miss Alice Lee the knowledge of the additional constants required for 

this further investigation, and embodied in Tables I. and II. below, which embrace 

all that is needed to fully determine the correlation of stature and long bones. 

The treatment of Dr. Lollet’s material was not to be briefly settled. He had 

measured only 50 bodies of each sex, and this number included a great variety of 

ages. M. Manouvrier in determining his table of statures has at once excluded 

from his calculations all the males but 24 as senile, and all the females but 25. Now, 

although the correlations between stature and long bones are high, it would be quite 

hopeless to attempt to calculate them from 25 cases ; 50 cases are hardly sufficient, 

25 impossible. It seemed, therefore, necessary to include all Dr. Dollet’s cases, and 

the question now arises how far the inclusion of the senile ones will affect our results. 

Taking 50 as the age at which stature begins to decrease, we notice that of the 25 

lowest statures recorded by Dollet, 18 are of men over 50, and of the 25 highest 

statures, 17 are of men over 50. In other words, there appear sensibly as many 

senile statures above as below the median stature. Of women there are 16 over 50 

years old with a stature greater than the median, and only 14 women over 50 under 

the median stature. Turning to means, we notice that 24 males under 60 years had 

for mean stature 167T7 centims., and 26 males over 59 years had 165'4 centims., 

25 females under 60 had for mean stature 154'04 centims., and 25 females over 59 

had 154*00 centims. 37 females under 70 had a stature 153‘94 centims., and 13 over 

70 gave 154'23 centims., an absolutely greater stature. 24 years was the minimum 

age. From this it would appear that whatever shrinkage may be due to old age, 

it is not of a very marked character in these data, or largely disappears when a 

body is measured after death on a flat table ; the senile stoop may then be largely 

eliminated. 

But there is another point to be noted ; we shall not directly make use of the 

mean stature as obtained from Bollet’s data, except to test how far our formulse 

will reproduce Bollet’s results. What we shall make use of from Bollet’s data 

are the standard-deviations and coefficients of correlation, and these will hardly have 

their values sensibly influenced by such comparatively small senile changes as are to 

be found indicated in Bollet’s measurements.''" Accordingly our constants are 

calculated by including all Bollet’s measurements, namely, on 50 of each sex. 

The following results were found :—■ 

* If llie bones shrink with old age, like the stature, the correlation would not be altered. The length 

of a bone varies with the amount of moisture in it (see below), and such shrinkage is itself a possibility. 

The bones of tke aged will of course be included among those of extinct races, and cannot easily be 

eliminated. 

2 A 2 
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Table I.—Correlation between Stature and Long Bones. 

Pairs of organs. Male. Female. 

Stature and tibia. 
Stature and radius. 
Stature and humerus*. 
Stature and femur. 
Stature and humerus + radius . . . 
Stature and femur -f tibia .... 

•7769 ± -0378 
•6956 ± -0492 
•8091 ± -0329 
•8105 ± -0327 
•7973 ± -0347 
•8384 ± -0283 

•7963 ± -0349 
•6717 ± -0523 
•7706 ± -0387 
•8048 ± -0336 
•7547 ± -0411 
•8268 ± -0302 

The means, standard deviations, and correlations of femur, tibia, humerus, and 

radius, for Rollet’s measurements, are given in the ‘ Boy. Soc. Proc.,’ vol. 61, 

pp. 347-350. The means and variability of the remaining organs not there recorded 

were found to be as follows ;— 

Table II. 

Mean. Standard deviation. 

Male. Female. Male. Female. 

Stature . 
Humerus + radius . . 
Femur + tibia .... 

166-260 ± -525 
57-368 ± -242 
82-028 ± -380 

154-0-20 ± -520 
51-240 ± -241 
75-024 ± -382 

5'502 ± -371 
2- 536 ± -171 
3- 979 ± -268 

5-450 ± -368 
2-526 ± -170 
4-001 ± -270 

Without reproducing the full tables of the memoir referred to, it is of value to 

form the correlation tables, which serve as the determinants from which the regres- 

sion formulm have been calculated. It is only in the case of stature in terms of the 

four long bones that the numerical work proved lengthy. 

The general formula used is (ii.) on p. 172. S, F, H, T, B stand for Stature, Femur, 

Humerus, Tibia, Radius, all measured in Bollet’s manner, which will be discussed at 

length below. 

* The somewhat low value of the correlation for female stature and humerus was tested by means of 

the formula 
_ O'- I tTy r — _£ 7* 4- _2 7* 

<^Z A- 

where z — x y, y, and m are organs, their standard deviations, and r a coefficient of 

correlation. Hence putting x = humerus, y — radius, and u — stature, I found the correlation between 

stature and humerus + radius indirectly; it was oSGt. The table shows that the directly-calculated 

value was ’7547, a difference well within the errors of observation. Thus the correlations as given for 

female humerus and stature and female radius and stature must be correct, i.e., the somewhat lengthy 

arithmetic involved is not at fault. 
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Table III. 

Males.—Stature and Long Bones Correlation. 

S. P. H. T. R- 
! 

s. 1 •8105 •8091 •7769 •6956 
F. •8105 1 •8421 •8058 •7439 
H. •8091 •8421 1 •8601 •8451 
T. •7769 •8058 •8601 1 •7804 
R. •6956 ‘7489 •8451 •7804 1 

Table IV. 

Females.—Stature and Long Bones Correlation. 

S. F. H. T. R. 

S. 1 •8048 •7706 •7963 •6717 
P. •8048 1 •8718 •8904 •7786 
H. •7706 •8718 1 •8180 •8515 
T. •7963 •8904 •8180 1 •8053 
R. •6717 •7786 •8515 •8053 1 

The following: cases of reconstruction were then dealt with 
O 

(a) Reconstruction of mean stature from a knowledge of tlie femur of p individuals. 

(6) 
(c) 
{d) 

(e) 

(/) 
(?) 
{h) 

(0 

(k) 

humerus „ 

tibia ,, 

radius ,, 

femur -)- tibia ,, 

femur and tibia „ 

humerus + radius ,, 

humerus and radius ,, 

femur and humerus „ 

{femur, humerus,^ 

tibia, and radius j ” 

In the formulae M denotes a mean, and e the probable error of the estimate. 
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(a) 

(^>) 

(^) 

(^0 

(^) 

if) 

fj) 

{h) 

(0 

(/.) 

(a) 

(h) 

(c) 

(d) 

if 

if) 

id) 

(A) 

(^) 

(A) 

(6.) Now these tables require a good deal of comment. In the first place they 

must not be considered as extending beyond the range of data on which they are 

based, thus Pt, F and H are the maximum lengths of bones measured with the 

cartilage attached, and in a humid state, T is the tibia length excluding spine. Ail 

the constants were worked out for the right members, except in one or two cases in 

which they were missing. The stature is the stature measured on the corpse. 

Further the measurements are made on the French race. 

We shall now proceed to generalise these formulae. In the first place, the 

* It may appear strange that the probable error of (e) is less than (/), but the difference is really 

less than the probable error of the observations. If be calculated from the known values of o-p, o-j 

and /-px, &c., we find it equals ‘8369 instead of '8384 the directly calculated value, while o-p+x thus calcu¬ 

lated =: 3'967 instead of 3‘979, whence e — 2'031/vb-’ instead of 2'023/vA’, which- is in agi’ceinent with 

the general theorem on p. 173. 

s- 
s- 
s- 
s- 
s- 
s - 
s - 
s - 
Q 

s 

Table V.—Male. 

Ms = 1-880 (F - Mp), 

Ms = 2-894 (H - Mh), 

Ms = 2-376 (T — Mt), 

Ms = 3-271 (R — Mb), 

Ms =1-159 (F + T-Mpx.t), 

Ms = 1-220 (F - Mp) + 1-080 (T — Mx), 

Ms = 1-730 (H -p P* -“ ^'^u + r)} 

Ms = 2-769 (H - Mh) + -195 (R - Mb), 

Ms = 1-030 (F - Mb) + 1-557 (H - Mh), 

Ms— -913 (F — Mp) +-600 (T — Mx) 

+ 1-225 (H - Mh) - -187 (Pv - Mb) 

Table VI.—Female. 

S — Ms = 1-945 (F - Mf), 

S-Ms = 2-754 (H-Mh), 

S - Ms = 2-352 (T - Mx), 

S - Mg = 3-343 (R - Mb), 

S - Ms = 1-126 (F + T - Mp+x), 

S - Ms = 1-117 (F - Mp) + 1-125 (T 

S - Ms = 1-628 (H + R - Mh+r), 

S — Ms = 2-582 (H — M„) + -281 (R - Mr), 

S - Ms = 1-339 (F - Mp) + P027 (H - Mh), 

S - Ms = -782 (F - Mp) + 1-120 (T - Mx) ' 

+ 1-059 (H - Mh) - -711 (R — Mr) 

- o 

2•174/^/p. 

2’666/\/ p. 

2-023/\/p.'' 

2-030/v/^ 

2-240/yp. 

2-179/x/p. 

1-9621 fp. 

= 1-961! Vp. 

Mx), e = 

2-182/v/p. 

2-343/vA9. 

2-2451 y/p, 

2-726l^p, 

2-068/yp, 

2-9651 y/Jx 

2-41-2/v/p. 

2-340/v/p. 

2-120/yp. 

e 2-024/v/p. 
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numerical factors are functions only of the standard deviations and the correlation 

coefficients, and will accordingly be unchanged if these be unchanged. 

Let Oi and O-, be any organs and Mj and M, their means, and iio their numbers, 

and their coefficieut of correlation. Suppose that any hygrometric changes, 

different method of measurement, amount of animal matter in the organs at time of 

measurement, etc., cause us to measure Oi and yi02 -fi 72 = 0^ instead 

of Oi and Oo, and let o-'j, cr'2, M'l, Mb, and r\o be the resulting characters, then 

clearly, S standing for summation :— 

M'i= /3iMi + ;8.2, M'2 = 71M2 4- 70, 

a-'? = S (O'j - M\y = 131^ (Oi - = /3lcrl, or 

cr'l = S (Oh — Mh)^ = 7^8 (O2 — Mj)" = yWli or o-h = 7icr2, 

, S (0\-M\) (Oh-Mh) S (Oi - Md (0, - M,) 
12— _/ _/ — P271 , , — 7 / / 

cr icr 2 (T tCr 
12* 

2 

Thus a correlation coefficient will be quite unchanged. A regression coefficient will 

be changed or not according as the ratio of two standard deviations is changed or 

not, or according as to whether j8,/yi sensibly differs from unity. Now in stature 

or any of the long bones with which we have to deal quantities corresponding to 

A) 72 may amount to 1 per cent, of the value of Oj or Oo, but the multipliers like 

A and 7i are not only quantities differing in the second order from unity, but 

probably very nearly equal to each other. Hence it is reasonable to suppose that 

changes in the condition of the bones, and stature measured on the living or on the 

corpse, while sensibly affecting Mg, Mf, Mh, M^, and Mr will produce little or no 

effect on the numerical constants of the regression formulm (a) to (k). We shall find 

that this d priori conclusion is borne out by actual measurements. Hence we 

conclude that Tables Y. and VI. may be applied to stature measured on the living 

or the corpse, to bones measured humid or dry, with or without the cartilage, 

provided proper modifications are made in the values of the five means. We might 

even go so far as to predict that provided Mj be properly altered, the stature from 

tibia reconstruction formulae will not be much modified, even if the tibia be measured 

with instead of without the spine. The change, however, in the regression formulae 

when the femur is measured in the oblique position is more likely to be of import¬ 

ance, and the correlation between stature and oblique femur has accordingly been 

worked out. If F' denote oblique femur we have :— 

Male Msf' = 44-938, o-p = 2-331, rgF-= '8025, 

Female Msf'= 41-240, crp,= 2'205, 7yp, = '8007, 

whence for [a) we find : 

Male S - Ms = 1-894 (F' - Mf-), 

Female S — Mg = 1-979 (F' — Mf-). 
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Thus the regression coefficient is not changed more than ‘55 per cent, for males and 

1'7 per cent, for females, even in this case where the difference between the maximum 

and oblique lengths of the femur has been much insisted upon as very significant 

with regard to stature. Putting in the lengths of the means as found on the corpse, 

we have : 

Male S = 81-147 + 1-894 F'" 
Y.(i.). 

Female S = 7-2-406 + 1-9/ 9 F' 

The corresponding formulm for the stature in terms of the maximum length of 

femur are, as we shall see later : 

Male S = 81-231 + 1-880 F 

Female S = 73-163 + 1-945 F 

The extreme oblique femur lengths are for males 39'6 and 49-8, and for females 37-4 

and 48-0. Let us calculate the stature of these individuals directly from (i.) and 

indirectly from (ii.), by putting F = F' + '32 for males and F' + -33 for females. 

We find 
(t) (it) 

IMale min. 156-15 156-21 

Female min. 146-42 146-53 

Male max. 175-47 175-46 

Female max. 167-40 167-17 

The differences here in these extreme cases are absolutely unimportant for the 

determination of stature. In other words, the changes in the regression equation are 

insignificant, when we even make such a change as from oblique to maximum femur 

length. Accordingly we have the rule, if the oblique length of femur be given, 

the equations for the maximum length can always be safely used if we add -32 for the 

male and "33 for female to the oblique length in centimetres before using equations of 

type (ii.). 

So farw^e have generalised Tables Y. and YI., having regard to the nature and con¬ 

dition of the organs when measured. AYe see that the regression coefficients will remain 

sensibly constant. Our general considerations on pp. 177 and 178 indicate the limits 

under which these regression coefficients may be considered constant for different local 

races. But the constancy of the regression coefficients is not sufficient to preserve the 

constancy of the linear reconstruction formulas for stature. It would be of no service 

if Ms, Mp, Mh, Mt, Me varied from local race to local race absolutely independently. 

Now if niQ be the mean of a not directly selected organ, and mi, m2, m^ . . . the means 

of any other organs, the constant part in a reconstruction formula will wnth the 

notation of p. 172, be : 
b(i'> R n« O-n 
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It is shown in the memoir on selection to which I have previously referred, that 

this expression remains the same for all local races, and equal to its value in 

the original stock under precisely the same conditions (stated on p. 177) as the 

regression coefficients themselves remain constant. Hence we have the same degree 

of justification in applying our whole stature reconstruction formula from one race to 

a second, as in applying the regression coefficients. 

(7.) Re-examining Tables Y. and VI. with a view to drawing one or two general 

conclusions before we proceed further, we notice ; 

(i.) The probable error of the reconstruction of the stature of a single individual is 

never sensibly less than two centimetres, and if we have only the radius to predict 

from may amount to 2f centims. 

Hence no attempt to reconstruct the stature of an individual from the four chief 

long bones can possibly exceed this degree of accuracy on the average, at any rate no 

linear formula.^ No other linear formulse will give a better, or indeed as good a 

result as the above. 

The reconstruction of racial stature is naturally more accurate, since if we recon¬ 

struct the mean from p bones of one type, the probable error is reduced by the 

multiplier ijs/p. At the same time we must bear in mind that possibly a definite, 

if small amount of direct, selection by stature has actually taken place in the differen¬ 

tiation of human races, and accordingly the values of e given in Tables Y. and YI. 

are not absolutely true measures of the probable error of racial reconstruction, even 

when one or more of the long bones have not been directly selected. A direct selection 

of the long bones is usually evidenced by one or more of the formulfe giving discordant 

results. When, as will be seen later to be usually the case, several of the formulm give 

results well in accordance with each other, then we may assume that 2/\/y) centims. 

is an approxlmatet measure of the probable error of the reconstructed stature. 

(ii.) The four long bones give for males the least probable error, but with sensibly 

equal accuracy and less arithmetic we may use F & H, F -f- T or F & T ; then follow 

fairly close together H & R, F or H alone ; T alone is sensibly worse, and R is worst 

ot‘ all. It is noteworthy that H is better than T, and the H & R is sensibly as 

good as F alone. 

Turning to female stature reconstruction, we notice that the order of probable 

errors is considerably altered. Tibia and radius now play a more inqDortant part in 

the determination of stature. The four long bones still give the best result; F & T, 

and F -{- T follow closely ; then come F & H, and F alone ; followed at some 

distance by H & R, and H alone, but both these are now worse than T alone; last of 

* I stall return to the question of tlie lineai'ity of the formula, when dealing later with the stature of 

giants and dwarfs, see p. 222. 

t It must be remembered that we have, as a rule, a number of long bones which in part do not even 

belong to the same skeletons. This result accordingly is the probable error of a group to whom one 

kind of long bones belonged, rather than the probable error of the racial stature as reconstructed. 

VOL. CXCII.—A. 2 B 
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all comes R, as before. Thus while in the case of men the humerus, in the case of 

Avomen the tibia is the better bone of the two to predict stature from. A simple 

examination shows the emphasisino’ of the tibia coefficients in the case of woman. 

Tlip same holds for the radius coefficients, but in a still more marked degree. 

Both male and female show in the reg-ression formula for the four lono- bones a 

remarkable feature which they haA-e in common with the anthropomorphous apes, 

namely, the negative character of the partial regression coefficient. TJie longer the 

ratlius for the same value of femur, humerus, and tibia, the shorter ivill he the stature. 

In this point women are more akin to the anthropomorphous apes than man, for the 

negative radius coefficient in formula (k) is nearly four times as large. The tibia also 

has u coefficient almost double that of the male, and pointing in the same direction. 

(iii.) A comparison of Table Y. with Table YI. shoAvs us that man and Avoman are 

in all probability not only differentiated from a common stock directly with regard to 

stature, liut also directly AAuth regard to all other loDg bones. If we use female to 

construct male stature, or male to reconstruct female, we get surprisingly bad results. 

The fact that the formula {k) for female diverges in a direction from that of man, 

wdiich approximates to that of at least one species of anthropomorphous ape, is only 

of course a round-about quantitative manner of indicating, what is obvious on other 

grounds, that a substantial part of the differentiation of male and female took place 

in that part of the histoiy of man’s evolution which preceded his differentiation from 

the stock common to him and certain of the anthropomorphous apes. 

(S.) Before Ave modify our formulte in Tables Y. and YI. to suit the reconstruction 

of stature by measurements on prehistoric and other bones, we Avill put the numerical 

values for Mg, Mx, Mh, Mr into these formulm. This will serve a double purpose 

(i.), it will enable us to verify our formulae on Rollet’s material, and (ii.) it will 

place at the disposal of the criminal authorities the best formulae yet available for 

the reconstruction of the stature of an adult of whom one or more members haA'e 

been found under suspicious circumstances. 

Formulae for the Reconstruction of the Stature as Corpse, the Maximum Lengths of 

F, H, R, and of T without Spine being measured Avith the Cartilage on and in a 

Humid State.'’" 

Table YII.—Male. 

(a) S = 81-231 -f 1-880 F. 

(h) S = 70-714 + 2-894 H. 

(c) S = 78-807 + 2-376 T. 

{d) S = 86-465 -f 3-271 R. 

(e) S = 71-164 + 1-159 (F + T). 

(/) S = 71-329 -f 1-220 F -f 1-080 T. 

* TTe probable error in these and later tables are not reproduced; tbej maj be considered to be 

substantially* the same as in V. and A'l, 
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Table VII.—Male (continued). 

{g) S = 67-025 + 1-730 (H + K). 

ill) S = 69-870 + 2-769 H 4- -195 R. 

{i) S = 68-287 + 1-030 F + 1-557 H. 

{k) S = 66-918 + -913 F + -600 T + 1-225 H - -187 R. 

Table VIII.—Female. 

{a) s = 73-163 + 1-945 F. 

{^) s = 72-046 + 2-754 H. 

(c) s = 75-369 2-352 T. 

(cl) s = 82-189 + 3-343 R. 

(e) s = 69-525 + 1-126 (F + T). 

if) s = 69-939 •F 1-117 F + 1-125 T. 

ig) s = 70-585 + 1-628 (H + R). 

(A) s = 71-122 2-582-H + -281 R. 

(^■) s = 67-763 + 1-339 F + 1-027 H. 

(A) s = 67-810 + -782 F + 1-120 T + 1 059 H - 

Should the stature of the living be required from the corpse stature, then 

1-26 centim. should be subtracted for the male and 2 centims. for the woman.* If a 

left member has been measured instead of a right, a small allowance might be made 

for this on the basis of Rollet’s means for the left side, but such refinement is 

hardly of service when we look at the probable error of an individual reconstruction, 

i.e., about 2 centims. We shall return to the point later as a second order error in 

racial reconstruction. 

In order to indicate to the reader the degree of confidence he may place in the 

above formulae of reconstruction, and also their relative value, I give below a table of 

observed and reconstructed statures in the case of 20 out of Hollet’s 100 cases. 

The individuals, in order to avoid any bias, were taken at random as the 5th, 10th, 

15th, &c. enti'ies through Rollet’s Tables. The observed statures are recorded and 

the differences as obtained by the formulae (a)-(/r). Under the heading M, I give 

the differences which would be yielded by M, Manouvbier’s Table. It is formulae 

(_/), (A), (t), and [k) on which I should lay most weight, and which should be used 

whenever the material is available. 

* For the reasons for these numbers, see p. 191 below. 

2 b 2 
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The first point with regard to these tables is to note how, even with only ten cases, 

the mean errors accord closely with their theoretical values. For example, the mean 

error of k is 2‘31 centims. for male and 2'35 centims. for female when deduced from 

the probable errors in Tables V. and VI.: the observed mean errors in the two cases 

are 2'4 centims. for male and 2'0 centims. for female. The mean of the mean errors 

is for male 2'57 centims., and for females 2'66 centims.; the observed values are 

2*46 centims. and 2'2 centims. for the two sets of ten cases respectively. We con¬ 

clude at once that our formulae, and therefore certainly any other linear formulae, will 

not give results with a probable error of less than 2 centims. for the individual 

stature. In our case the worst error is one of 8 centims. (about 3 inches) in the 

stature of a man of 47 years of age, who must have had a remarkably long trunk in 

proportion to his leg and arm-lengths. It would be impossible to have predicted 

his stature any closer without taking into account the correlation between stature 

and trunk. The preservation of the vertebral column is comparatively rare, and at 

present there are absolutely no statistics on the relationship between the dimensions 

of any part of it and living stature. We must therefore content ourselves with a 

probable error of 2 centims., and expect, but rarely, to make an error of as much as 

8 centims. in the reconstructing of the stature of an individual. 

We have placed in the above tables M. Maxouveier’s results as calculated from 

his ‘ Table-bareme.’ They give somewhat larger mean errors than our formula*, 

which would have been probably reduced somewhat if we had excluded, as he has 

done, the aged. We have seen, however (p. 179), that there seems no reason to 

exclude the aged women, and in the case of the seven men over 60, he actually in 

three cases under-estimates their stature. In other words, while in four cases his 

table might have given better results for adult stature, in three it would havm given 

worse results. If we allow a mean old-age shrinkage of 3 centims."—an amount 

hardly justified by averaging the adult and old-age portions of Rollet’s returns—we 

should find that Manouvriee’s method would have made a total error of 17 centims. 

in estimating the stature of these seven old men in youth, whereas it gives a total 

error of 16 centims. in estimating their old-age stature. Thus there might, perhaps, 

be a small, but it would not be a very sensible, reduction of the mean errors of the 

results given by Manouveier’s ‘ Table-bareme ’ had we excluded the old age cases. 

'What deserves special notice is that our formula [k] gives a better result than the 

mean of all the formulae (o)-(^), and a better result than the mean of the values 

obtained by Manouveiee’s method for the lour long bones. 

(9.) The next stage in our work is to so modify Tables IX. and X. that they will 

serve for the reconstruction of the living stature from bones ont of ivhich all the 

animal matter has disa2ipeared, and ivhich are dry and free of all cartilage. This 

* Tins value is that given by M. Maxodvrier himself, ‘ Memoires de la Societe d’Anthropologie de 

Paris,’ vol. 4, p. 366, 1892. 
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is either the condition in which we find the bones of a prehistoric or early race, or it 

is one to which they are soon reduced on being preserved in museum or laboratory. 

The first question which arises is the difference between the mean stature of the 

living and the mean stature of the corpse for both sexes. It is impossible to measure 

this difference satisfactorily on a sufSciently large number of individuals, and then 

take the mean difference. If we supj)Ose Rollet’s individuals to be an average 

sample of the French race, then we must place in Tables V. and VI. for Mg on the 

left the mean heights of French men and French women. 

Now there is a considerable amount of evidence t-o show that the mean Ireight of 

Frenchmen is 1G5 centims. almost exactly. The anthropometric service of M. Ber- 

TiLLON gives 164‘8 centims., and this is the stature furnished by the measurements 

for military recruiting."^ M. Manouvrier takes 165 centims. as the mean height, 

and as by selecting only twenty of E,ollet’s cases he gets a mean height of about 

167 centims. for the corpse, he concludes that 2 centims. must be deducted from the 

corpse length to get the living stature. In our case all we have to do is then to put 

Mg = 165 centiffis. At the same time, Bertillon’s numbers probably include many 

men over 50, and the recruiting service many men not yet fully grown ; hence it 

seems to me doubtful whether 2 centims. really represents the difference between 

living and dead stature. 165 centims. is probably a good mean height for the whole 

adult population,! and should accordingly be compared with Rollet’s whole adult 

population, which has a mean of 166'26 centims. I accordingly conclude that 

1’26 centims. is on the average a more reasonable deduction to make in order to pass 

from the dead to the living stature of the general population. In the course of my 

investigations, however, no use is made of this difference, but Mg given its observed 

living value. 

The value for women is far less easy to obtain, as a good series of French statistics 

entirely fails. The mean given in the footnote below is clearly only that of a special 

class. Manouvrier has found from 130 women, between 20 and 40 years of age, 

inscribed in Bertillon’s registers the mean height 154’5 centims., and Ration holds 

that this is the best result yet obtained.;}; But the mean height of Rollet’s material 

is 154’02 centims. (see my p. 180), and, as we have seen, this is not sensibly increased 

by taking only the women in the prime of life (see p. 179, above). If 154'5 centims. 

were the mean living stature of Rollet’s women, we should have to suppose a 

shrinkage of stature in women when the corpse is measured, whereas in the case of 

men the corpse length is greater than the living stature. Rahon, disregarding his 

own statement as to 154'5 centims. being the best value, follows Manouvrier in 

deducting 2 centims. from the stature as corpse to get the living stature. Manouvrier’s 

* ‘ Memoires de la Societe d’Anthropologie de Paris,’ vol. 4, p. 413, 1893. 

t For special classes the stature is considerably greater. See the values 166‘8 centims. for male and 

156T centims. for female given in the ‘Mem. Soc. d’Anthrop.,’ vol. 3, 1888. 

t Loc. cit., p. 413. 
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rule for deducting 2 centims. seems based partly on a comparison of Bertillon’s 

measurements for men, with his own selection from Bollet’s material, which give 

mean heights 165 centims. and 167 centims. respectively, and partly on the measure¬ 

ment standing and reclining of six men and four women.^ Now the reader should 

notice that in our method of reaching the reconstruction equations, we are not con¬ 

cerned with the amount to be subtracted from an individual stature, but with the 

mean living stature of the population which Bollet has sampled. Now there is a 

quantity which has very remarkable constancy, namely, the sexual ratio for stature. 

The mean male is to the mean female stature in a great varietv of races and classes 

as 13 to 12.t If, therefore, Bollet’s women are the same class as his men, we 

should expect their living stature to have had a mean = yf, that of the men 

= yf (165) = 152'3 centims. We have seen that from the registers of Bertillon 

the mean stature of women between 20 and 40 was 154’5 centims. ; these probably 

include a considerable number of stout tramps or vagabonds, not a fair sample of those 

who would find their way into the Lyons Hospital. Tenon measured in 1783 60 

women of the village of Mussey, and obtained a mean stature of 150'6 centims.^ If 

we take the mean of these groups we find 152‘55 centims. as the mean stature for 

French women of the lower classes ; this differs by less than 3 millims. from the result 

already suggested by using the sex ratio. I am, accordingly, inclined to hold that the 

best that can be done at present is to take 152'3 centims. as the mean stature of 

Frenchwomen of the class sampled by Bollet. 

The next stage in our work is to consider the difference in length of the long bones, 

as measured in the dissecting room by Bollet and his assistants, and as they w'ould 

be measured in the case of a primitive race wdiose bones had been exhumed, and then 

been preserved and dried before measuring. Bollet merely observes that he kept 

several of his bones for some months, and, the cartilage being then dry, they measured 

on the average 2 millims. less.§ On the strength of this, Manouvrier,]] and he is 

followed by PvAHON, add 2 millims. to the length of each prehistoric bone when recon¬ 

structing the stature. Now I am doubtful wdiether this gives a really close enough 

result. Bollet measured the bones in the dissecting room, the cartilages were still 

on, and the animal matter in the bones, but in the case of prehistoric and ancient 

bones this does not at all represent the state of affairs. Nor are they merely such 

bones with the cartilage dry ; the cartilage, together with the animal matter, has 

entirely gone. There are accordingly two allowances to be made [a) for the cartilage, 

and (b) for the disappearance of the animal matter and drying of the bone. 

* ‘ Memoires de la Societe d’Antliropologie de Paris,’ vol. 4, p. 384, 1892. 

t Rollet’s corpse statures give a sexual ratio = 1'079. 

+ “Notes manuscrites relatives a la stature de I’liomme, recueillies par Yilleeme,” ‘Annales 

d’Hygiene,’ 1833. 

§ Rollet, loc. cit., p. 24. 

II Manouvrier, he. cit., p. 386. 



CONTRIBUTIONS TO THE THEORY OF EVOLUTION. 193 

(a.) Allowance for the Cartilage* * * § 

Tlie thicknesses of the cartilages here cited are taken from Heinrich Werner’s 

Inaugural Dissertation, ‘Die Dicke cler menschlichen Gelenkknorpel,’ Berlin, 1897. 

They are only discussed for the cases required for the long bones as measured by 

Rollet and used in my reconstruction formulse.t 

Femur.—(i.) Maximum length (“ straight ”) from top of head to bottom of internal 

condyle (F). 

(ii.) “Oblique” length from top of head to plane in contact with both 

condyles (F'). 

For both we have for articular cartilage at upper end 2 millims., at lower end 

2'5 millims., or the total together of 4’5 millims. This is more than double 

Manocvrier’s allowance. 

Humerus.—Length from top of head to lowest point of internal margin of trochlea 

(H). At upper end we must allow 1'5 millims., and at lower 1*3 millims., altogether 

2‘8 millims. for articular cartilage. 

Tibia.—The spine is excluded by Rollet. The length is from plane of iqiper 

surfaces (margins) to tip of internal malleolus (T). In this case the articular carti¬ 

lage has only to be allowed for at the upper end, and is here 3 millims. 

Radius.—The length is measured from top of head to tip of styloid process (R)* 

The allowance must be for articular cartilage at upper end only, and is 1'5 millims. 

(b.) Allowance for Animcd Alatter in Bones. 

Here unfortunately I had not the same amount of data to guide me. The best 

hypothesis to go upon seemed to be that a thoroughly dry bone, free from all animal 

matter, would, if it were thoroughly soaked, approximate to the condition of the 

bones measured by Bollet. Broca, who has written a very elaborate memoir on 

the effect of humidity in altering the capacity and dimensions of skulls, has referred 

incidentally to the extension of the femur by humidity.j He took three femurs, one 

macerated in 1873, one of the 15th century, and one of the polished stone age. After 

soaking for seven days, he found an increase of I'o millims. in the first, 1’5 millims. in 

the second, and 1 millim. in the third. These results, he says, compare very well with 

Welcker’s,§ who gives I’2 millims. for increase of length of femur with humidity. 

It vv^as somewhat difficult to make fresh experiments on a considerable number of 

* The details of this section I owe entii’ely to my colleague. Professor GtEORGE Thane, who in this 

matter, as in many others, has given me most ready and generous assistance. 

t On another occasion 1 may take into consideration the ulna and fibula, but they have nothing like 

the importance for stature of the bones here dealt with. 

t ‘Memoires d’Anthropologic de Paul Broca,’ vol. 4, pp. 163 et. seq.-, p. 195. 

§ ‘ Ueber Wachstum und Ban des menschlichen Schiidels,’ p. 30, 1862. Welcker only dealt with one 

male femur, and soaked it for three days. 

VOL. CXCII.—A. 2 C 
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long bones of each kind, but it seemed worth while to measure dry and thoroughly 

humid a bone of each type. A bone of each type was placed at my disposal by 

Professor Thane, and they were measured independently on each occasion hy 

Mr. BPwiMLEY-Moore and myself. In the one or two instances in which we did not 

agree within ‘02 millim., the bone was again independently measured. Our results 

were as follows :— 

Table XI.—Lengths of Long Bones, Dry and Wet, in Centimetres. 

Dry as received. 24 hour.s in water. 120 hours in water. 72 hours drying. 

F. 42-58 42-79 42-84 42-50 
T. 37-41 37-52 37-58 37-37 
H. 34-.52 34-62 34-65 34-48 
R. 23-11 23-20 23-19 23-00 

The bones themselves were between 200 and 300 years old.* They were only 

allowed to stand two hours for the water to run off before they were measured after 

soaking. In the case of the final 72 hours’ drying, it concluded with six hours in the 

neighbourhood of a stove. The first column may be considered to represent the 

average humidity of bones jareserved in a museum ; the last column complete dryness. 

It seems to me that the difference betv/een the first and third column is what we in 

general have to deal with. In this case we have a difference of 

F. T. H. E. 

2’6 millims. 1’7 millims. 1'3 millims. '7 millim. 

between dry and humid bones. 

The difierence between this result for the femur and Broca’s is very considerable. 

I think it is due to the fact that he allowed his bones to dry for 24 hours in a room 

before measuring them. I was much impressed by the rapidity with which the bones 

dried, and their conditions, of course, are very unlike what they would be if containing 

or sLirrouiided by animal matter. It is clear that the extensions due to humidity are 

not by any means proportional to the length of the hone, and it would he quite futile 

to attempt any percentage allowance for the extension due to this cause, the effect of 

which clearly differs with the different structure of different parts of the same hone. 

I have accordingly thought it best to subtract the above quantities from Eollet’s 

means, Mp, Mx, Mh, and Mr, and to consider the results so derived as giving the 

means of Eollet’s material on the supposition that the bones were dry and free from 

animal matter. Even so I do not think we shall err in over-estimating the difierence 

between the lengths of living and dead bone. Making allowances («) and (6) we 

have finally to subtract from PtOLLEx’s results for 

* See additional note, p. 244. 
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Mp. Mh. Mt. M^. 

7*1 millims. 4’1 millims. 4’7 millims. 2’2 millims., respectively. 

Making these subtractions (which are sensibly ditFerent from Manouvrier’s 

allowance of 2 millims, for each bone), we are in a position to find the reconstruction 

formulae connecting lining statnre with dry bone entirely free of animal matter. We 

have for the French population, if Ms» denotes living mean stature, and Mp-/, Mh', 

Mx"j the mean lengths of the corresponding dry bones in centimetres : 

Table XII. 

Ms". Mh». Mx". Mr.. 

Male .... 16.50 44'52 32-60 36-.34 24-17 
Female .... 152'3 40-86 29-36 32-97 21-27 

If we want the mean oblique length of the femur Mp-, we must follow the rule 

given on p. 184, and we find Mp- = 44"20 for male and = 40'53 for female. M. Rahon 

has measured the lengths of a large collection of long bones in the Faculty of 

Medicine of Paris,and he finds :—■ 

Femur, oblique length, 62 males, mean 44T (44‘2). 

,, ,, ,, 38 females, ,, 39‘6 (40'5). 

Humerus, maximum length, 44 males, ,, 32’3 (32'6). 

,, ,, :, 39 females, ,, 29 2 (29’I). 

My results are placed in brackets, and it is clear that for these bones the 

allowances for cartilage and animal matter have been very satisfactory ; there has 

certainly been no over-correction, although in the case of the femur our allowance is 

more than thrice, and in that of the humerus more than twice M. Manouvrier’s. 

M. PtAHON does not give the measurement of the radius, but he does of the tibia, 

and in this case there is undoubtedly some source of error in his result, or in the 

collection. He gives :—T for 53 males, mean = 37‘7 ; for 26 female = 35'7. Now 

Pollet’s material for 50 of either sex gives, male mean = 36'8, and female = 33'4, 

without allowance for the cartilage or presence of animal matter. Allowing for these, 

Rahon’s measurements are, male, 1'4 centims., and female, 2'7 centims. too large. 

These are errors much beyond those of the determinations, which have probable 

errors of about T7 to *18 centim. Rahon, since he is using' Manouvrier’s method 

must be supposed to be measuring the tibia in the same manner as FIollet, i.e., with 

the malleolus and without the spine. But even supposing he had included the spine, 

* Loc. cit., p. 413. 

2 c 2 
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it could not make this great difference.That there is some substantial error is 

evidenced by the fact that tibias of these dimensions would give a reconstructed 

stature for French males of 168'2 centims. instead of 165 centims., and for French 

females of 158'9 centims. instead of 152'3 centims. Fahok himself, on the basis of 

Manouvrier’s method, forms the estimates of 166'8 centims. and lo9’5 centims. 

respectively,—the latter, at any rate, a quite impossible height for the French female 

population. 

(10.) We are now in a position to write down the reconstruction formulae for 

living stature from dry long bones ; they are the following :— 

Table XIV.—Male. Living Stature from Deadt Long Bones. 

(rt) S = 81-306 -b 1-880 F. 

(h) S = 70-641 + 2-894 H. 

(c) S = 78-664 + 2-376 T. 

(d) S = 85-925 + 3-271 K. 

(e) S = 71-272 + 1-159 (F + T). 

If) S = 71-443 + 1-220 F + 1-080 T. 

(g) S = 66-855 + 1-730 (H + E). 

(h) S = 69-788 + 2-769 H +-195 R. 

(i) S = 68-397 + 1-030 F + 1-557 H. 

(k) 8 = 67-049 + -913 F +-600 T + 1-225 H --187 E. 

Table XV.—Female. Living Stature from Dead! Long Bones. 

{a) S = 72-844 + 1-945 F. 

{h) S = 71-475 + 2-754 H. 

(c) S = 74-774 + 2-352 T. 

(d) 8 = 81-224 + 3-343 11. 

(e) S = 69-154 + 1-1-26 (F + T). 

If) S = 69-561 + 1-117 F + 1-125 T. 

(g) S = 69-911 + 1-628 (H + E). 

(k) S = 70-542 + 2-582 H +-281 E. 

(7) S = 67-435 + 1-339 F + 1-027 H. 

(/c) 8 = 67-469 + -782 F + 1-120 T + 1-059 H --711 E. 

Remarhs.—(i.) If the femur has been measured in the oblique position and not 

* Dr. Warren found for the New Race from Egypt the mean length of spine for 85 males 

= '96 centim., and for 115 females = -87 centim. These numbers should be introduced as an addition 

to Mx in Tables V. and YI., when the tibia has been measured including spine. 

t The word “ dead ” is here used to denote a bone from which all the animal matter has disappeared, 

and which is in a dry state. 
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straight, add ‘32 centim. for male and ‘33 centim. for female to the length before 

using the above formulse. 

(ii.) If the tibia has been measured with, and not without, the spine, subtract 

•96 centim. for male and '87 centim. for female from the length before using the above 

formulae. 

(iii.) The above formulae have been determined from the right members; a small 

error, of the second order as a rule, arises when the left is used. The following 

numbers are determined from Rollet’s measurements; they give the amount to be 

added to a left bone when it is used in the formulae :— 

Femur. Hnmerus. Tibia. Radius. 

Male.. -•04 + •42 + •18 + •28 

Female. + •03 + •51 + •09 + •19 

The femur change is insignificant. In most statements of lengths the rightness or 

leftness of the bone is not given, and hence, no correction can generally be made for 

an individual. The error will, however, be hardly sensible except in the case of the 

humerus and radius. If a considerable number of bones have been averaefed, 

probably half may be looked upon as right and half left, and in this case half the 

above corrections may be added to the average. In any case, it is probably only the 

estimate based on the humerus and radius which need to be corrected in this manner. 

Even here it is a problem how far there is a racial character in this right and left¬ 

sideness. Results due to Callender, Roberts, Garson, Harting, and Raymondaud 

are cited by Rollet (Joe. cit., pp. 53-60), but being based either on very few cases, 

on measurements on the living, or on unsexed material, they are not of much service 

for our present purpose. Results of much greater value for racial comparison have 

been given by Dr. Warren for the Naqada race (‘Phil. Trans.,’ B, vol. 189, p. 135 

et seq.). He finds :— 

Femur. Humerus. Tibia. Radius. 

Male. -11 + •34 -•08 + •20 
Female. -•16 + •57 -•105 + •305 

Dr. Warren’s results are for the oblique femur, and from centre to centre of the 

articulate surfaces in the case of tibia and radius. Thus they are not directly com¬ 

parable with the results for the French, On the whole, if the bone is stated to be 

left, we may add '45 for the humerus and ‘25 for the radius, leaving the femur and 

tibia unaltered. These additions are approximately the same for both sexes. 
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(11.) Before we proceed to apply the formulae in Tables XIV. and XV. to the 

general reconstruction of stature, it is desirable to obtain some measure of confidence 

in the application of the formulae. We require to test them by finding what sort of 

results they give for a second race.^'" That race ought to be as widely divergent from 

the French as possible, but one in which the stature as weil as the measurement of 

the long bones is known. There are, I believe, no other measurements than those of 

Rollet, in which both the stature and long bones have been measured on the same 

individuals. A fairly complete series of measurements of the long bones of the Aino 

have, however, been made by Koganei, and he has also determined the mean living 

* There is very little detail for verification of our results even in the same race. M. Manocvriee 

gives the dimensions of seven men, six of whom were assassins (see p. 387 of loc. cit. in footnote, p. 171 

above). I have reconstructed the statures of these seven individuals from our ten formnlse with the 

following results :— 

Assassins. 
A.B. 

Name 

unknown. 
Math EL IN. Sellier. Kaps. Riviere, Gamahut. Alorto. 

Ijong hones:— 
F. 50T2 45-22 44-52 44-72 42-72 44*82 39-52 

H. .35-4 32-6 31-9 32-8 30-5 33-3 29-8 
T. 43-3 36-4 37-7 35-3 37-6 36-3 33-4 

R. 27-6 24-1 24-4 23-8 24-7 24-5 22-1 

Stature:— 

(a) 175-5 166-3 165-0 165-4 161-6 165-6 155-6 

(h) 1731 165-0 163-6 165-6 158-9 167-0 156-9 

(<^) 181-6 165-2 168-2 162-5 168-0 164-9 158-0 

(d) 176-2 164-8 165-7 163-8 166-7 166-1 158-2 

(e) 179-6 165-9 166-6 164-0 164-4 165-3 155-8 

if) 179-3 165-9 166-5 164-1 164-2 165-3 155-7 

(9) 175-9 165-0 164-3 164-8 162-4 166-8 156-6 

(h) 17.3-2 164-8 162-9 165-3 159-1 166-8 156-6 1 

(0 175-1 165-7 163-9 165-5 1.59-9 166-4 154-9 I 

(A) 177-0 165-6 164-8 164-8 161-4 166-2 155-5 

Mean 176-7 165-4 165-2 164-6 162-7 166-0 156-4 

Actual . 180-0 173-4 171-7 168-3 165-2 160-9 156-6 

Difference . -3-3 -8-0 —6-5 -3-7 -2-5 + 5-1 -0-2 

While the means of the whole series of forniulce agree very closely with the results of (k), they differ 

very markedly from the actual statures. I do not know under what conditions the long bones or the 

statui’es were measured. A suggestive hut somewhat hasty conclusion (failing more data) would he 

that the average assassin is tall (170 centims. against the general French population of 165 centims.), 

hut his limbs are relatively short, i.e., he is long of trunk. Anyhow, the divergence is noteworthy. 
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stature from a fairly large series of living indivicluals.'^ Now the Aino are a race 

widely divergent from the French, and therefore, althotigh the stature and long bones 

are not measured on the same group, we are likely to get a very good test of the 

safety with which we can apply our stature results from one local race to a second. 

The stature, as measured by Koganei on 95 living males, was 156'70 centims., and 

on 71 living females, 147*10 centims. The long bone measurements were made on 

20 to 25 female and 40 to 45 male skeletons, not quite from the same districts as the 

living groups. The maximum length of the long bones is given in the paper by 

Miss Lee and myself, ‘ Roy. Soc. Proc.,’ vol, 61, pp. 347-8, and accordingly ahowance 

must be made for the spine in the case of the tibia. We then have the following 

values for insertion in Tables XIV. and XV. ;— 

Femur. Humerus. Tibia. Radius. 

Male. 40-77 29-50 32-93 22-91 

Female. 38-20 27-72 30-99 21-08 

Table XVI.—Reconstruction of Aino Stature. 

Formula. 

Male. Female. 

Calculated vslue. Difference. Calculated value. Difference. 

(a) Male .... 1.57-95 + 1-25 153-12 46-02 
(b) „ . 156-01 -0-69 150-86 + 3-76 
(c) „ .... 156-90 + 0-20 152-30 + 5-20 

(d) „ .... 160-90 + 4-20 154-88 + 7-78 

(e) „ .... 156-69 -0-01 151-46 + 4-36 

(/) „ .... 156-75 + 0-05 151-34 + 4-24 

(ff) „ .... 157-52 + 0-82 151-28 + 4-18 

w „ . . . . 155-94 -0-76 150-65 + 3-55 
(i) „ .... 156-32 -0-.38 150-90 + 3-80 

a-) „ .... 155-90 -0-80 150-53 + 3-43 

Observed .... 156-70 0 147-10 0 

(a) Female . 15-2-14 —4-56 147-14 + 0-04 

(b) „ ... 152-72 -3-98 147-82 + 0-72 

(c) „ ... 152-33 -4-37 147-66 + 0-56 
(d) „ ... 157-82 + 1-12 151-69 + 4-59 
(e) „ ... 152-14 —4-56 147-06 -0-04 

(/) „ • . ■ 152-14 -4-56 147-18 + O-08 

(s') „ ... 155-23 -1-47 149-36 + 2-26 

w „ ... 153-15 -.3-55 148-04 + 0-94 

(0 „ ... 15-2-32 -4-38 147-05 — 0-05 

a-) „ ... 151-14 -5-56 146-48 -0-62 

* “ MithLeilungen aus der Medicinischen Facnltat der k. Japaniscken Universitat,” vol. 2, I. and II., 

Tokio, 1893 and 1894. 
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Several results may be noted with regard to this table : (i.) In the first place let 

us compare our results with those which would be given by M. Maxotjveiee’s 

Tableau II.* Corresponding to our cases (a), (b), (c), (d) he would obtain ;— 

Male. Female. 

Calculated value. Difference. Calculated value. Difference. 

(a). 156-80 + 0-10 145-36 -1-74 

(h). 152-47 -4-23 146 86 -0-24 

(c). 155-59 -1-11 147-32 + 0-22 

(D. 161-13 + 4-43 153-08 + 5-98 

(/). 156-19 -0-51 146-34 -0-76 

(D. 156-80 + 0-10 149-92 + 2-82 

(7). 154-63 -2-07 146-11 -0-99 

(D. 156-50 -0-‘20 148-15 + 1-05 

Observed .... 156-70 0 147-10 0 

Here (/), (/;), (^), and {k) are obtained by taking means of the results for the 

single bones. Comparing the first four formulae with my first four, M. Maxott\ eter 

has for male a mean error of 2‘47 centims. against my 1'58 centims., and for the last 

four a mean error of'72 centim. as against my '50 centim. His error in stature, as 

deduced from the male humerus, is greater than my error from the radius even. In 

the male measurements M. Manouveier has a mean error of 2'04 centims. against 

my H4 8 centims. in the first four results, and one of 1'40 centims. against my 

•42 centim. in the last four results. 

But these results by no means represent the full advantage of the present theory. 

An examination of the results shows us the formulae give good, i.e., consistent results 

except in the case of the radius. Here it is that the greatest difierentiation has 

taken place, very possibly owing to the direct selection of other long bones. Our 

general principles (p. 177) accordingly suggest that we should omit the results for this 

bone from our consideration. The best formulae then to use will be (e), (/), and (i); we 

shall then have a mean error of '15 centim. for male and ‘06 centim. for female—a better 

approximation to the true stature could not possibly be reached. M. Maxouveiee, 

by the process of means, would have deduced from the same three bones a male 

stature with an error of 1'75 centims. and a female stature with one of ‘59 centim. 

Dr. Beddoe’s rulet would give for male Aino 155'.3 centims., and female Aino 

146‘6 centims., or errors of 1'4 centims. and ‘5 centim. ; in this case not as great as 

those of M. Manouveier, but still sensibly greater than our (e), {f), or (^). 

The accordance obtained between the formulae for reconstruction which I have given, 

* Loc. cit., tables at end of IMemoir. 

t ‘Journal of the Anthropological Institute,’ vol. 17, 1887, p. 205. 
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and the actually observed stature in the case of such a diverse race as the Aino 

ought, I think, to give considerable confidence in their use, 

(ii.) I have also included in the table the results for the male Aino, calculated 

from female formulse, and for the female Aino, calculated from the male formulae. 

The reader will perceive at once that sexual differences are immensely greater than 

racial differences—that it would be perfectly idle to attempt to reconstruct female 

stature from male formulae, or vice versa. Exactly the same order of divergences 

are obtained if we endeavour to reconstruct French female from male formulae, or 

vice versd, and we concluded that French men and French women are more 

differentiated from each other than French of either sex and Aino of the same sex, 

at any rate, in the relations between stature and the long bones. It is noteworthy 

that the only instance in which the formula for one sex gives even approximately 

the stature of the other, is in the case of the female formula applied to find the male 

stature by means of the length of the radius. In tins case we get a better result 

than from the male formula itself. Noav this is peculiarly significant, for it is in the 

radius that the most marked differentiation between French and Aino has taken 

place ; and in this respect the Aino male approaches nearer to the French female 

than to the French male. We must therefore conclude that while the sexes are 

widely differentiated from a common stock, still in respect of radius the females of a 

highly civilised race like the French, and the males of a primitive race like the Aino, 

are even closer together than the males or the females of these two races for this 

special bone. The agreement between the same sex m two different races, however, 

is generally far closer than between different sexes in highly civilised and primitive 

races. 

(12.) Having taken an extreme case of divergence in man and tested the confidence 

that may be put in our reconstruction formulse, it will not be without interest to see 

the amount of divergence in the formulse when we apply them to allied species. 

Stature is, of course, a very difficult character to deal with when we are considering 

the anthropomorphous apes, and it would be idle to think of going beyond a round 

number of centimetres. But even here the aafreements and disagreements are so 

remarkable that they appear to furnish material on which certain quantitative 

statements with regard to the general lines of evolution can be based, and further 

they suggest that tlie regression formulae for the long bones among themselves'^" 

open up quite a new method of attacking the problem of the descent of man. Like 

the rest of the material in this paper, the considerations of the present paragraph 

must be looked upon as suggestions for new methods of research. I have taken what 

material was at hand and not endeavoured to form comprehensive statistics. The 

methods £ire illustrated on stature, but they are equally applicable to the regression 

formulse connecting any characters or organs whatever. 

* I hope later to deal at length with the regi’ession formul® foi the long hones of naan and 

apply theaoi to the anthropomorphous apes, placing stature entirely on one side as a quantity vei’y 

difficult to measure. 
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The following table, here given in centimetres, is taken from Humphry’s work.* 

Table XVIII.—Stature and Long Bones of Anthropomorphous Apes. 

No. Stature. Femur. ' Humerus. Tibia. Radius. 

Chimpanze 4 127 31-52 31-01 25-40 27-90 
Orang . 2 112 26-92 35-60 23-41 35-60 
Gorilla . 

i 
147 35-33 42-12 28-70 32-79 

The sexes are not stated, and the results are all mean results for the numbers 

given. The stature is probably exaggerated rather than understated, and must 

have been difficult to estimate. It might seem at first sight idle to apply the 

stature reconstruction formulm for man, to such data, but as we shall soon see it is a 

question of coming within 10 or 20 centims. of the true values in all but a few cases. 

I have calculated the following table from the reconstruction formulae for both sexes 

in man :— 

Table XIX.—Reconstructed Stature of Anthropomorphous Apes. 

Formula. Chimpanze. Orang. Gorilla. 

(a) Male . 141 + 14 132 + 20 148 + 1 
(b) „ . 160 + 33 174 + 62 193 + 46 
(c) 139 + 1-2 134 + 22 147 0 
(d) „ . 177 + 50 203 + 91 193 + 46 
te) » 137 + 10 130 + 18 145 — 2 
if) „ • 137 + 10 130 + 18 146 - 1 
(9) 169 + 42 190 + 78 196 + 49 
(/O • 161 + 34 175 + 63 193 + 46 
(i) 149 + 22 152 + 40 170 + 23 
(A-) „ . 144 . + 17 143 + 31 162 + 15 

Observed . 127 0 112 0 147 0 

(a) Female 134 + 7 125 + 13 142 - 5 

w „ 157 + 30 169 + 57 188 + 41 
(c) „ 135 + 8 130 + 18 142 — 5 
(d) „ 174 + 47 200 + 88 191 + 44 

(e) 133 + 6 126 + 14 141 - 6 

(/) „ 133 + 6 126 + 14 141 - 6 

(S') 166 + 39 186 + 74 192 “}■ 45 
W „ 158 + 31 172 + 60 189 + 42 
(i) „ 141 + 14 140 + 28 158 + 11 

(^■) „ 134 + 7 127 + 15 148 + 1 

* ‘A Treatise on the Human Skeleton,’ Cambridge, 1851, p. 106. It is, perhaps, needless to remai’k 

that the gibbon gives stature results quite incomparable vith those for man. 
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Now we see that, if the gorilla be put on one side, there is no approach to 

accordance between the calculated and observed statures''^ in the case either of the 

chimpanze or orang for any of the ten formulse. We conclude therefore, that if 

man and the chimpanze and orang have been derived from a common stock, they 

must have been directly selected with regard to stature and with regard to the 

lengths of the four chief long bones. In the case of the gorilla we notice, however, 

a remarkable accordance between the observed stature, and that calculated from the 

male reconstruction formulse in the case of man, when we use only formulae involving 

the femur and tibia. It would thus appear that if man and the gorilla have been 

differentiated from a common stock, they have been directly selected in the same 

manuer so far as femur and tibia are concerned, but in different directions when we 

consider humerus and radius—we are here referring only to the lengths of these 

bones. Re-examining the results for the male formulse from the standpoint of 

con'espondence in the femur and tibia between the gorilla and man, we see that the 

chimpanze comes nearer to man than the orang; the lengths of the femur and tibia 

have been modified in the former, but not to such a marked degree as in the case of 

the latter. Turning to the female reconstruction formulse we notice in (a) to (k) for 

the chimpanze and orang an accordance between the observed and calculated statures 

which is some 3 centims. to 6 centims. better, although still very poor. The reason 

for this is obvious, the stature of the woman for the same length of long bone is 

3 centims. to 6 centims. shorter than that of man, and accordingly the female formulm 

must give slightly better results than the male formulse when applied to the anthropo¬ 

morphous apes, which have for the same length of bone a markedly shorter stature 

than man. In the gorilla we have over-corrected the stature so far as femur and 

tibia are concerned by using the female formulse. One point, however, is of very 

great interest: while the female formulse for humerus, radius, or for humerus and 

radius give very bad results, even worse for the gorilla than they do for the 

chimpanze, yet the female formula for femur and humerus gives a sensibly better, 

and that for all the long bones a markedly better result for the stature than the 

corresponding male formulse. The difference here is not the 3 centims. to 6 centims. due 

to sex. The improvement in the result when we apply the female formulse for all four 

long bones to the estimate of the stature of the gorilla is noticeable also, if to a 

lesser degree, in the cases of the chimpanze and orang. We may sum up our 

results as follows :— 

(a.) Man is apparently differentiated from the chimpanze and orang by direct 

selection of stature, but this direct selection appears to be small in the case of the 

gorilla. 

* If tlie chimpanze and orang be treated as “ dwarf men,” and their statures estimated in the manner 

indicated on p. 224 below, the femur and tibia give statures, F, 115'5,105'0 ; T, 118'0, 112’5 respectively, 

nearer the actual values, in fact too small, but the radius and humerus still give values far too great. 

The stature of the gorilla as estimated from femur and tibia in this manner now becomes far too small. 

2 D 2 
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(6.) Man and tlie gorilla appear to have followed common lines of differentiation 

from a common stock in the case of the femur and tibia, but the differentiation on 

v/hich they have not followed common lines has not been that of radius and humerus 

alone, or (Jc) would have given good results. 

(c.) Other organs closely correlated with stature beside the four long bones must 

have beeii differentially modified in the case of the chimpanze and orang, or (k) 

would still have given good results. 

(d.) The accordance between the result given by female (k) and the observed 

stature of the gorilla, and the want of accordance in all other formulae, seems to 

show that woman has been principally differentiated by these four long bones from 

the common stock, while man has been differentiated in other oro-ans hifoily 

correlated with stature. For example, the differentiation in pelvis may be much 

greater. 

So far as I am able to draw a conclusion from the few data at m}^ command, the 

correlation of radius and humerus with stature appears to be negative for the 

chimpanze and orang, while it is positive for the gorilla and man. The negative 

character of the partial correlation coefficient for the radius in {k) seems to be a 

relic of this stage of evolution, and it is much more marked in wmman than in man. 

The above statements must not be taken as dogmatic conclusions ; they are only 

suggestions of the manner in which the regression formulae can possibly be applied to 

the problems of evolution. They are no more weighty than the very slender 

material'" on which they are based. But they may suffice to indicate how a method 

of quantitative inquiry might be applied to ascertain more about the relationship of 

man to the anthropomorphous apes, so soon as a sufficient amount of data concerning 

the dimensions of the organs of adult apes has been collected, and reduced to 

numerical expression. 

* lu oi’der to verify Sir G. Hcjiphry’s measurements, I have gone through the catalogues, so far as 

published, of the German anthropological collections, and extracted the measurements of all adult 

anthropomorphous apes. Unfortunately I could only find one adult chimpanze; the sex vras as often 

as not not given. I find : 

No. Stature. Femur. Humerus. Tibia. Radius. 

Gorilla .... 7 144-2 35-51 41-83 28-19 33-91 
Orang .... 9 119-9 26 52 34-34 22-57 34-10 

A better agreement tvith the results cited, p. 202, could not have been expected, or wanted. Thus our 

data give racial and not random characters. 
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(13.) Palceolithic Man. 

I am indebted to the memoir of M. Rahon"^ for the details of all the individuals 

that are classed under this heading. I presume that in measuring the tibia he has 

not included the spine, as his formulae are, hke mine, based on its exclusion. I have 

further allowed for the fact that he used the oblique length of femur, while I require 

the maximum length. Unfortunately we have only five cases to base our estimate 

upon. 

Neanderthal Man. 

F = 44-52, H = 31-2, R = 24-0. 

We find for stature from : 

(a.) {h.) (d.) (li.) (i) Mean 

165-01 160-94 163-46 162-83 161-59 162-96 

Rahon gives 161-3 centims. (but I think he ought to have given 165*2 centims., 

as his femur estimate is incorrect) and SciiAAFFHAUSENt 160-1 centims., so that our 

estimate diverges by 2 centims. to 3 centims. 

3Ian from Spy. 
F = 43-32, 

We find for stature from : 

{a.) 

162-75 

(c.) 

157-07 

T = 33-0. 

{f.) Mean 

160-26 160-33 

Rahon gives 159-0 centims. 

Man from Clay at Lahr. 

The length of the femur here is doubtful, but it is said to liave been between 45-0 

centims. and 46-0 centims. If we take the mean value, the probable stature was 

166 85 centims., and the maximum value would only be 167-79 centims. Rahon 

gives 170 centims., using ulna as well as femur. I have not worked out the stature- 

ulna correlation, but, if this bone is at all akin to the radius, it will give very exag¬ 

gerated results for primitive man. 

Man of Chancelade. 

F =: 40-8, H = 30-0, R = 23-6. 

{a.) (6.) (d) 

158-095 157-46 163-125 

Here again the radius gives clearly an 

{h.) {i.) 

157-46 157-13. 

exaggerated result. The mean is 

* ‘ Memoires de la Societe d’Anthropologie de Paris,’ 1893, p. 414 et seq. 

t “ Dcr Neanderthaler Fund,” ‘ Deutsche Anthropologisclie Gesellscliaft,’ 1888. 
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158'7 centims., but, neglecting {cL), I am inclined to take the best value as 

157'5 centims. Hahox gives 159'2 centims. Maxouvrier {loc. cit., jd. 391) is 

inclined from the general character of the bones to consider the stature as deter¬ 

mined from the ulna and radius to be the better estimate, and even thinks this 

troglodyte may have been 165 centims. Judging, however, from other primitive 

races, I should expect the arm bone estimate to exaggerate the stature, and prefer 

my estimate of 157'5 centims. 

Mem of Laugerie.—All we know here is the length of the femur = 45'1 centims. 

The probable stature is accordingly 166’1 centims. Topinard gives it as 

168’5 centims., and Rahon at 164’9 centims. 

Taking the mean of the best values for the above five cases we have :— 

Probable stature of palaeolithic man = 162’7 centims. All the above cases are 

supposed to be males. Considering that it is more probably the massive bones which 

have survived, we must hold that palaeolithic man was shorter than the modern 

French population, but was taller than the men of Southern Italy (156 centim.s. 

to 158 centims.), and about the mean height of the modern Italian male population, 

i.e., 162’4 centims. 

(14.) Neolithic Man, 
(a.) Great Britain. 

We have not very much data to build upon here. Dr. Beddoe* gives the length 

of twenty-five male and five female femora. Converted into centimetres, we have 

Male F (25), 45’72 centims. hence probable stature \ male, 167’3 centims. 

Female F (5), 41’53 ,, from (a) female, 153’6 ,, 

Dr. Beddoe’s estimates, male 170’2 centims., and female 156’3 centims., are, I 

thiuk, much too hio;h. The sex-ratio is 1’089. 

(h.) France and Belgium. 

The following data have been drawn from Bahon {loc. cit., pp. 418 et seq.), the 

numbers in brackets in the left-hand corners denoting the numbers upon which the 

average lengths of the bones are based. 

F. H. T. R. 

(127) (127) (133) (49) 

Male. 4:3-99 31-085 35-87 23-54 

(53) (79) (45) (18) 

Female. 40-105 28-58 33-11 21-76 

* ‘ Joui’nal of the Anthropological In.stitute,’ vol. 17, 1887, p. 209. 
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We find : 
Stature of Neolithic Man. 

Formula. Male. Female. 

(a). 164-01 150-85 
(h). 160-60 150-18 

(c). 163-89 152-65 
{d). 162-92 153-97 

(e). 163-83 151-59 

(/). 163-85 151-61 

(y). 161-36 151-86 
{h). 160-45 150-45 

(U. 162-11 1.50-49 

(M). 162-41 150-71 

Mean . . 162-54 151-44 

Sexual ratio d/? = 1’073. 

So far, then, as we have material to judge by, there appears to be no sensible diffe¬ 

rence between Continental palagolithic and neolithic man ; they corresponded very 

closely to the modern Italian in stature. 

On the other hand, if we compare British with Continental neolithic man, we find, 

judging even from femora only, a very sensible difference in stature. Neolithic man 

in Britain was taller probably than the modern Frenchman, and markedly taller than 

neolithic man in France. 

(c.) This leads us to consider one or two sjDecial classes of neolithic bones, for it 

must be remembered that probably as many neolithic races existed in Europe as we 

find races existing in historic times. In the first place, we have the big bones of the 

Cro-Magnon man,"^ F = 48'32 centims., T = 39’5 centims. These give for the stature : 

(a.) (c.) (e.) (f) Mean. 

172T5 172-52 173-06 173-05 172-70 

which is a centimetre greater than Rahon’s estimate, seven less than Rollet’s, and 

seventeen less than Topinard’s. This man was undoubtedly tall, but cannot be taken 

as a type of his race. The second Cro-Magnon skeleton gives us H = 32-1 centims., 

T =37-5 centims. from which we find from : 

(6.) (a.) Mean. 

163-54 167-76 165*68. 

This is also taller than the average neolithic man, but much below the other skeleton. 

* As carefally determined by Rahon (loc. cit., p. 421). 
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Two homogeneous series of neolithic bones ore given by M. Manouvrier in a paper 

entitled; “Etude des Cranes et Ossements humains recueillis dans la Sepulture 

Neolithique dite la Cave aux Fees, a Brueil,”'" and deserve separate consideration. 

We find : 

F. H. T. R. 

(10) (19) w (5) 

Brueil male. 

(7) 

41-77 

(8) 

30-86 35-20 

(5) 

24-19 

;, female .... 

(IG) 

38-63 

(10) 

28-51 

(10) (6) 

22-08 

Mureaux male .... 

(2) 

44-51 

(5) 

31 -46 35-08 

(7) ■ (3) 

•24-63 

„ female . 40-38 29-26 33-84 21-57 

I have deduced the following results : 

Formula. 

klale. Female. 

Brueil. tlureaux. Brueil. Mureaux. 

(a) 159-83 164-98 147-98 151-;38 

(C 159-95 161-69 149-99 152-06 

(c) 162-30 162-01 , , 154-37 
(^0 165-05 166-59 155-04 153-33 
(0 160-48 163-52 , , 152-73 

(f) 160-42 163-63 152-74 

(.<7) 162-09 163-89 152-27 152-66 
(70 159-96 161-70 150-36 152-15 

(0 159-47 163-23 148-44 151 55 
(A-) 159-58 162-67 152-60 

Mean 160-91 163-39 150-68 152-56 

The corresponding mean values given by M. Manouvrier are : 161’2, 163’8, 150'2 

and 154.’3, of which only the last diverges sensibly from mine.t I should be inclined 

to omit the results obtained from [d) as excessive, only the larger radii surviving. 

To do so woidd not much alter my means, based on ten results, although it would 

more sensibly modify M. Manouvrier’s. 

The sexual ratios for the two groups are :— 

* “ Memoires de la Societe des Sciences naturelles ... de la Crease,” 2® Serie, vol. 3, 1894 

(2'= Bulletin). 

t Tlie agreement is surprising, considering that M. Manouvrier -worked only from half my data, and 

allowed very differently for the drying of the bones. 
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Brueil c?/? = 1'068. Mureaux c?/? = 1’071, 

both less than the result we have obtained for the e^eneral averages of neolithic man. 

Probably we have here to do with local races, but M. Manouvriee, considers it just 

possible that the very different environment at Brueil and Mureaux may account for 

the differences. 

Neither of these groups has a stature equal to that of the modern French 

commonalty, although the Mureaux group approaches it somewhat closely. The 

modern British far exceed in stature their neolithic landsmen, and we have thus no 

evidence at all in favour of a giant stature for prehistoric man. He seems to have 

been markedly shorter than the taller races (English-Scandinavion) of to-day. Slightly 

taller than the Aino, he can be compared with the Italians, who appear, as we go 

southward, to closely represent him in stature. 

(15.) Other Early Races. 

In this group I propose to include a number of prehistoric or protohistoric races 

of whom we know very little. Their stature is considerably greater than that which 

we have determined for Continental neolithic man, though sensibly below that of 

British neolithic man. The data are extracted from Bahon’s memoir, and modified 

to suit the formulae of this investigation (see his pp. 431, 438 et. seq.). 

Race. F. H. T. R. 

(3) (1) (3) (1) 
Dolmen-builders, India, male . 45-81 32-5 35-3 24-5 

(1) (1) 
,, ,, ,, female 42-93 • • 33-3 . . 

(16) (161 (12) (15) 
,, ,, Algeria, male 45-32 31 9 38-0 23'8 

(8) (5) (9) 
,, „ ,, female . 40-1-3 28.8 33-8 « * 

0) (6; (3) (4) 
., ,, Caucasus, male . 44-92 32-4 34-6 24-6 

(1) (1) 
,, „ „ female . 41-3 29-1 • • 

(87) (60) (79) (30) 
Guanches, Group I., male .... 45-52 82-8 37-7 24-7 

(90) (92) (58) (32) 
,, „ female.... 41-.33 30T .34-7 22-1 

(76) (81) (75) (56) 
,, Group II., male .... 45-22 .32-5 37'G 24-6 

(33) (34) (20j (10) 
„ ,, female 41-03 29-G 34-4 -22-1 

While the dolmens of India and Algeria appear to belong to the Stone Age, those 

of the Caucasus belong to the first Iron Age. 
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The series from these dolmens is very small. On the other hand the Guanch 

series are both very complete. The first are drawn from the Musee Broca, and the 

second from the Museum d’Histoire Naturelle (see Rahon, loc. cit., p. 446), both at 

Paris. Although the first series comes from a single locality, and the second from 

several localities, the results are in good agreement. The following statures have 

been found from our formulae ;— 

Dolmens, Dolmens, Dolmens, Guanches, Guanches, 

Formula India. Algeria. Caucasus. Group I. Group II. i 

used. 

Male. Female. ]\Iale. Female. Male. Female. Male. Female. Male. Female. 

(a) 167-43 156-34 166-51 152-26 165-76 153-17 166-88 153-23 166-32 152-65 
(h) 164-70 162-96 150-79 164-41 151-62 165-56 154-37 164-70 152-99 
(o) 162-54 153-10 168-95 154-27 160-87 168-24 156-39 168-00 155-68 
id) 166-06 , , 163-77 166-.39 166-72 155-10 166-39 155-10 
(e) 165-28 154-99 167-84 153-19 163-44 167-72 154-76 167-26 154-09 
(/) 164-86 155-01 168-37 1.53-19 163-61 167-69 154-76 167-22 154-09 
G) 165-46 163-2-2 165-46 166-33 154-92 165-64 154-08 
(70 164-56 162-76 . , 164-30 , , 165-43 154-47 164-58 153-18 
(0 166-18 164-75 151-68 165-11 152-62 166-35 153-69 165-58 152-77 
(D 165-29 165-85 163-91 166-79 154-82 166-11 153-72 

Mean . 165-24 154-86 165-50 152-56 164-33 152-47 166-77 154-65 166-18 153-83 

Sexual 1 
ratio J 1-067 1-085 1-078 1-078 1-081 

The first point to be noticed about this table is the confidence it inspires in 

formula (k). Whenever the series is in the least extended, formula [k) gives a result 

sensibly identical with the mean of all ten formulae. 

M. Rahon’s means for the eight groups are not very divergent from mine, he 

gives :— 

166-0, 154-8; 165-7, 153-2; 165-3, 154-4; 166-0, 155-4; and 165-9, 154-3. 

He thus does not make quite such a sensible distinction between the Gunnches and 

the Dolmen-builders as my numbers seem to indicate. It is curious that these three 

groups of Dolmen-builders should stand so close together, and also comparatively 

close to the Guanches. The Dolmen-builders must have been as tall as the modern 

French, while the Guanches were probably slightly taller. Both were of greater 

stature than neolithic man in France, approaching more nearly the neolithic man of 

Britain. 

The sexual ratio in the first and third cases cannot be considered of any weight, 

as the female data contain only single individuals. 
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(16.) Stature of the Naqada Race from Upper Egypt. 

This race dates from about 4000 b.c. Its orgin and locus have been discussed by 

Professor Flixders Petrie in “Naqada and Ballus,” 1895, and an elaborate series 

of measurements made on the long bones by Dr. Warren ; see ‘ Phil. Trans.,’ 

B, Vol. 189, pp. 135-227, 1897. 

The measurements suited to our reconstruction Tables XIV. and XV. are :* 

F. H. T. R. 

(80) (62) (83) (47) 

Male .... 45-93 3-2 62 37-97 25-70 

(113) (97) (115) (66) 
Female . . . 42-G3 29-87 34-96 23-33 

Whence we deduce for the stature ; 

Male. Bones used. Female. 

165-04 H 153-74 
165-13 H & R 154-23 
166<il H & F 155-19 
166-93 H, F, R & T 1.55-02 
167-66 F 155-76 
167-79 H + R 1.56-53 
168-49 F & T 156-51 
168-5 F d- T 156-93 
168-88 T 156-99 
169-99 R 159-21 

167-5 ; 
i 

Mean 156-0 

Had we used M. Manouvrier’s “ Tableau-bareme,” we should have found :t 

Male. Bone. Female. 

166-4 F 155-4 
167-0 T 156-0 
164-7 H 154-5 
171-5 R 161-7 

167-4 Mean 156-9 

* TEe numbers in brackets to the left indicate the number of bones used to form the average, 

t Here, as in other cases, the reader must remember before entering the “ Tableau-bareme,” to correct 

from the maximum to oblique femur length. 

2 E 2 
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While M. Maxou^^eier’s male mean does not differ widely from onrs, his female 
mean is '9 centim. greater. His range for male stature covers 6’8 centims., and for 
female stature 7‘2 centims., as compared with our 4’9 and 5*5 centims. respectively. 
But the amount of this range in both cases is veiy significant considering the large 
number of bones averaged. While our formulm applied to the Aino gave very self- 
accordant results except in the case of the radius, we notice here considerable 
divergences. In particular, the order of the bones arranged in order of increasing stature, 
which is nearly the same in both sexes, is very different for the corresponding order 

for the Aino. The Naqada people for their stature have a remarkably small humerus, 
and although the Aino could hardly be separated more from the French by civilisation 
and locality, yet they could be derived from a common stock with the French by far 
less direct selection of the long bones, than would be possible in the case of the French 
and the Naqada races. This Egyptian race was a tall race—not as tall as the English 
commonalty—but taller than the better French classes and 2’5 centims. taller than 
the mean of the French army. The sexual ratio, 1’074, was less than that of the 

modern European (about L080), and this is in keeping with tlie greater equality in size 
observable in primitive and early races. On the whole it may be questioned whether 
any two modern races would give such divergence m character as the Naqada and 
Erench. We see not only the radius, as in the case of the Aino, but the humerus as 
a source of divergence, and so far as the lengths of those long bones are concerned, it 
would be easier to look upon the Ainos and French than upon the Haqada people and 
French as local races deduced from a common stock. If they have sprung ultimately 
from such a stock, there has been a very significant amount of direct selection. 
There is, however, an interesting point which the Naqada people share with the Ainos 
—the judgment of stature from the radius is excessive. This peculiarity of early 
and primitive races is one which the table on p. 202 shows that they share, of course 
in a much less marked manner, with the anthropomorphous apes. It wfiU later be 
seen to be a feature of other primitive and early peoples. 

(17.) Protohistoric Races. 

My next group covers to some extent the ground which precedes 1000 a.d.— 

roughly, the beginning of the Middle x4.ges. 
{a.) Dr. Beddoe gives femur measurements for the Bound Barrow population of 

Britain,'" as follows ; 
Male F = 47"75 centims., mean for 27, 

Female F = 44*91 ,, ,, 2. 

We find at once from (a) : 

Stature Male = 171T centims.. Female = 160’2 centims. 
Sexual ratio d/? = 1'068. 

* ‘ Journal of the Anthropological Institute,’ yoI. 17, 1887, p. 209. 
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These values are immense reductions on Dr. Beddoe’s 176'2 for males and 166‘5 

for females. Even with this reduction, the Bound Barrow population must still be 

considered a tall one, as tall as the modern Engdish. It will be remembered that it 

was also brachycephalic,* a curious and infrequent combination in Europe. 

(h.) We may next consider the Bomano-British, for whom we obtain from 

Dr. Beddoe the data : 

Male F ~ 45’42 centiras., mean for 10, 

Female F = 40'82 ,, ,, 4. 

Formula (a) gives : 

Stature Male = 166'7 centims., Female = 152‘2 centims. 

Sexual ratio d/ ? = 1'090. 

Here again we have very sensible reductions on Dr. Beddoe’s estimates of 169‘3 

and 154'2. 

(c.) We may compare these result's for the Bomano-British with those for the 

Bomano-Gauls, based on data provided by Bahon.I These give : 

[ 
ic H. T. R. 

1 (40) (IS) (22) (0) 

Male. 45-52 320 35-9 24-1 

(5) (5) (1) 
Female. 40-43 29-7 .30-7 • - 

Whence we deduce : 

Stx\.ture of Bomano-Gauls. 

Male. Female. 

(a) 166-88 151-48 
G) 163-25 153-27 
(D 163 96 146-98 
(d) 164-76 , , 
(D 165-64 149-25 

(/) 165-75 149-26 
G) 163-91 , , 
(h) 163-10 • • 

(0 165-11 152-07 
(D 165-84 

Mean 164-82 150-37 (152-27) 

* Pearson, ‘ The Chances of Death,’ vol. 1, “Variation in Man and Woman,” p. 363. 

t Loc. cit., p. 441. 
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The second mean estimate for females is determined by neglecting the single tibia 

measurement, and is probably the best obtainable; it agrees closely with [i.) : 

Sexual Ratio (5/$ = 1’082. 

A series of 12 femora dug up in Boulogne Harbour'"' have also been attributed to 

the Romano-Gauls. They give male F = 45’22 centims., or for the stature 166'32. 

]\[y estimate here is about a centimetre larger than Rahon’s. We sensibly agree 

for the males in the larger series above, while for the females I should take the most 

probable stature to be a centimetre less than that (153'5) given by Rahon. 

We cannot compare the Ptomano-British with the Romano-Gauls on the basis of 

all bones, for we have only the results for the femur in the former case. But if we 

compare the femur estimates for the two cases we see that they are sensibly the 

same (male 166’9 against 166‘7, and female 152'3 against 152'2). It is, therefore, 

probable that the estimate of the Romano-British male is sensibly too high, and that 

it would have been nearer 165 centims. had we had other bones than femora to base 

our estimates upon. The sexual ratio is clearly abnormally high. 

(d.) Row-Grave Population of South Germany. 

Dr. R. Lehmann Nitsche has published a most interesting series of measurements 

on the long bones found in the Row=graves of Bavaria.t These interments date from 

the beginning of the 5 th to the end of the 7th century'. He divides his material 

into two groups, “Bajuvars,” from the Row-graves of Allach in Upper Bavaria,^ 

and Suabians and Alemanns from those of Dillingen, Gundelfingen, Schwetzheim, 

Memmingen and Fischen.§ The mean lengths of the long bones for these two groups 

are, however, in such complete accordance, that we are quite justified in following 

Dr. Nitsche and combining the two groups.j| We have then the following results 

after the proper change in the femur :— 

F. T. H. R. 

Male. 
(41) 

46-99 
(25) 

38-05 
(17) 

.33-71 
(11) 

25-41 

Female. 
(16) 

41-07 
(7) 

33-71 
(9) 

30-28 
(4) 

23-10 

The following table gives the reconstructed stature on the basis of the ten 

formulae of Tables XIV. and XV. :— 

* Loc cit., p. 439. 

t “Nene Beitriige zur pliysisclien Antliropologie der Bayera,” vol. 11, pp. 205-296, Miinclien, 1S95. 

+ Ihul, p. 207. 

§ Ihid., p. 239. 

II pp. 260, et seq. 
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Male. Bones used. Female. 

168T H & R 1.55-2 
168-2 H 154-9 
169-0 R 1.58-4 
169-1 T 154-1 
169-2 H + R 1.56-8 
169-3 F & H 153-5 
169-4 F, H, T & R 153-0 
169-6 F 152-6 
169-8 F -1- T 1.53-4 
169-9 F&T 153-4 

169-2 Mean 1.54-5 

Manouvrier’s “ Tableau-bardme” gives us— 

Male. Bone. Female. 

168-1 F 152-6 
167-6 T 154-6 
167-5 H 155-6 
170-1 R 160-5 

168-3 Mean 155-6 

Clearly Manouvrter’s method gives results in this case differing almost 1 centim. 

from mine for both sexes. They have ranges 2*6 centims. and 7'9 centims. for male 

and female as compared with my 1*8 centim. and 4*2 centims. respectively. Our 

method of taking the means of the results is not, however, very good. There are 

very few radii, and the results for that bone have little weig'nt. To properly weight, 

however, the formulse involving two or more bones is troublesome, and the increased 

exactness is so small as to be hardly v.mrth the labour. If we treat F and T, 

F and H, and F, T, H, and R as likely, d priori, to give the best result, \ve have 

male stature, 169’5 and female stature 153*3. I doubt whether this is as good 

as the previous result ; it would connote a very high sexual ratio, 1*106, which 

is contrary to what we generally find with primitive peoples. The sexual ratio 

of the above results is very high, 1*095, and it seems to me probably that in the 

difficult matter of sexing rather too large a proportion of large bones have been 

given to the male and too few to the female group. Further, the smaller radii may 

probably have disappeared, which accounts for something of the irregularity here—as 

in other cases—of the estimates from the radius. Allowing, however, for these 

irregularities we find the Row-grave population by no means so widely differentiated 

from f.he French as the Naqada race. They were, however, a tall race, taller than the 
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present French commonalty, almost, but not quite, as tall as the present English 

commonalty in their men, but sensibly below it as regards their women. The men 

wmre at least 1 to 3 centims. taller than the present Munich population, w^hich gives 

168 centims. as mean of accepted recruits, and 166 centims. as a mean based on 

corpse measurement. (See Ranke, “ Zur Statistik der Korpergrosse . . in ‘ Anthro- 

pologie der Bayern,’ vol. 1, and Pearson, ‘ The Chances of Death,’ vol. 1, p. 295.) 

(18.) Anglo-Saxons. 

Here my data are extracted frf)m Dr. Bedboe’s paper. 

Number. F. T. 

Anglo-Saxons in general, male . . 65 47T7 
(12> 

39-05 
,, ,, female . 26 42-77 

Wittenham, peasantry, male 23 46-69 , * 
„ „ female . 17 42-24 
,, with tibia, male 

Ely, bishops, male. 
7 48-34 39-43 
5 46-74 38-51 

Allowance has been made (see p. 197) for the length of the spine. 

Stature of Anglo-Saxons, 

(a.) (c.) (e.) (/)■ Mean. 

Anglo-Saxons in general, male . 170-0 171-4 171-2 171-2 170-9 
,, ,, female . 156-0 • • 

Wittenham, ^Jeasantry, male 169-1 
,, „ female . 155-0 * , , , • • 

,, with tibia, male . . 172-2 172-3 173-0 173-0 172-6 
Ely, bishops, male. 169-2 170-1 170-1 170-1 169-9 

Dr. Beddoe’s results diverge again immensely from mine.t For the Anglo-Saxons 

in general he finds, for example: male, 174’7 centims., and female, 160‘2 centims.; 

while his estimate, using the tibia for the Wittenham second male group, is 70’S6 

inches, or 180 centims. ! 

If his conclusions were correct, the modern English would have degenerated very 

much from the Anglo-Saxons in stature. 

* Ijoc. cit. p. 209. 

t I make Earl Brithnoth (F = 52'07, T = 4P58) abonfc 180 centims., while Dr. Beddoe's estimate 

is 192. 
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For modern English we have the following results :— 

Galton, Commonalty. 
I. 

Pearson, Middle classes. 

II. III. 

Male . 

Female . . 

(811) 

172-55 
(770) 

160-85 

(1000) 

172-8 
(1000) 

159-9 

(1077) 

175-15 
(135) 

162-17 

Mr. Galton’s results were measured at his South Kensington Laboratory during 

the Exhibition of 1884. My first group are from my family data cards, and without 

boots ; my second group are from the measurement cards of the Cambridge Anthropo- 

metrical Committee. Subtracting 2'54 centims. for boots from I. and IL, we find :— 

Male .... 170-0 172*8 172*6 

Female . . . loS’S 159*9 159*6 

Thus there is a sensible agreement between the results II. and III., while I. shows 

just the class distinction we might expect to find. Comparing these results with the 

Anglo-Saxon statures, we notice an increase of about 2 centims. in the female stature, 

while the present English commonalty is about 1 centim. less than the mean male 

stature, and the English male middle classes about 2 centims. more. If the Witten- 

ham skeletons with tibia belong to a class apart, then they were quite equal in 

stature to the modern English classes, while the Anglo-Saxon bishops were distinctly 

inferior. Probably the bishops were men unsuited for fighting, and showing a lower 

degree of physical development. The Anglo-Saxon women are not very many in 

number, and we have only the femora to base an estimate upon, which in all these 

cases gives a less stature than the tibia. We may therefore conclude that the 

average Englishman of to-day is certainly not behind his Anglo-Saxon ancestors ; he 

may be very slightly taller. The average Englishwoman is probably somewhat taller, 

but the paucity of data for Anglo-Saxon women hardly allows an estimate of how 

much. The sexual ratio, 1*096, is so high that I am compelled to consider the Anglo- 

Saxon women under-estimated, or possibly mixed with a Romano-British element. 

The modern value is about I'OSO. 

(19.) Franhs. 

I have put into one group the Frankish remains belonging to both the Merovingian 

and Carolingian periods, to be found in Rahon’s memoir,* the separate smaller groups 

giving results in close accordance. We have then :— 

VOL. CXCII.-A. 

* Log. cit., p. 440, et seq. 

2 F 
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Franks 500-800 a.d. 

1 

F. H. T. R. 

Male. 

Female. 

f47) 

45-18 
(16) 

40-87 

(23) 

33-23 

(8) 

-29-39 

(31) 

36-81 

(') 
32-77 

(7) 

25-31 
(3) 

22-80 

This gives us :— 

Frankish Stature. 

Formula. Male. Female. 

(a) 166-24 152-34 
(G 166-81 152-41 
(c) 16612 151-85 
(cl) 168-71 157-44 
(e) 166-30 152-07 
if) 166-32 152-08 
(g) 168-13 154-88 
(h) 166-74 152-83 
(i) 166-67 152-.34 
(h) 166-36 151-03 

]\Iean 166-84 (166-42) 152-93 (152-12) i 

Sexual ratio / $ = 1'091. 

The lueans in brackets are obtained by omitting the results of formulm (cl) and {g), 

which are clearly exaggerated, owing to otdy the larger radii having survived. 

It is clear, accordingly, that the Frankish conquerors of Fomano-Gaul were not a 

tall race—nothing like as tall as the Anglo-Saxons who conquered Piomano-Britain.'" 

Further, while the English commonalty have, if anything, slightly progressed on the 

stature of their Teutonic invaders, the French commonalty have, if anything, 

regressed. 

* Of course, occasionally we find tall Franks, as tliose buried at Harmignies (Hainaut), Rahon 

loc. cit., p. 440. These give :— 

F. H. T. r. (a.) (h.) (r.) (d.) C-) (/-) 0-) {h.) (i.) (h.) Mean. 

Jtale. . 
Female . 

50-52 
45-83 

34-9 
30-5 

41-0 
34-1 

27-3 
2i-5 

176-28 
161-98 

171-64 
155'47 

176-O.S 
154-98 

175-22 
159-78 

177'o4 
159-16 

177-36 
159-12 

174-46 
157-82 

171-75 
155-90 

174-77 
160-12 

170-03 
157-09 

174-5 
158-1 

These are tall as compared with tlie average Frencb of to-day, but not specially tall from the English 

standpoint, and certainly not comparable with Eaid Bkithnoth, 
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(20.) French of the Middle Ages, 

Two groups are classed, under this head by Rahon. The first comes from the 

cemetery of Saint-Marcel, and is said to belong to the 4th to the 7th century. The 

second comes from the cemetery of Saint-(fermain-des-Pres, and probably belongs to 

the 10th to the 11th century. If these dates be correct, the former group belongs to 

the protohistoric rather than the medimval period, and is directly comparable with 

the above results for the Merovingian and Carolingian periods. The latter group 

belongs to the early middle ages. We have : 

F. H. T. R. 

(71) (81) (96) (21) 

Saiut-Marcel, male. 45-32 34-2 37-8 24-4 
! (19) (26) (40) (9) 

,, female. 41-63 30-3 34-0 22-5 

1 (44) (37) (37) (6) 

Saint-Germain-des-Rres, male . 45-32 33-1 37-3 23-7 
j 

(10) (18) (18) 

,, female 
1 

41-32 30-9 340 

These give us for stature of mediseval French : 

Saint-Marcel. Saint -Germain-des-Pres. 

Formula. 
4tL to 7th century. 10th to 11th century. 

Male. Female. Male. Female. 

(«) 166-51 15381 166-51 153-21 
(i) 169-62 154-92 166-43 156-57 
(c) 168-48 1.54-74 167-29 154-74 

1 (d) 165-74 156-44 163-45 
(e) 167-61 154-31 167-03 153-96 
if) 167-56 154-31 167-02 1.53-96 

1 (.7) 168-23 155-87 165-12 
' (70 169-25 165-10 166-06 

(0 168-33 154-30 166-61 154-50 
(Ic) 168-44 154-12 166-92 

Mean 
i 

167-98 154-79 166-24 154-49 

IvAHON obtains the values ; 

165-7 155-5 1G5-6 155-5. 

The first of these differs very considerably from my estimate, but Rahon has made 

2 F 2 
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a slip in using Manouvrier’s table, and thus much underestimated the Saint-}darcel 

male stature. 

I think it impossible to accept Rahon’s vie\v that the modern French are sensibly 

of the same stature as the mediaeval French, because the slight apparent ditference 

may be accounted for by a process of selection preserving for us only the larger bones. 

It is not, as R^moN supposed, a difference of "7 centirn. which has to be accounted 

for, but one of nearly 3 centims. We have the following series for France, male 

and female :— 

Neolithic man. . 162-5 151-4 

Pvomano-Gauls ...... . 164-8 152-3 

Franks. . 166-4 152-9 

French, 4th to 7th century . . 168-0 154-8 

,, 10th to 11th century . . 166-2 154-5 

,, modern. . 165-0 152-3 

These results v.muld seem to indicate that the Gauls were taller than the races 

they superseded in France, that their Frankish conquerors v^ere taller again than 

they ; but that the stature has been sinking during the last 800 years, and that the 

French commonalty of to-da}^ is very close in stature to the Romano-Gauls. 

This may denote a selection of stature, or it may mean that the Celtic element of 

the population has superseded the Teutonic element—an explanation m accordance 

with the recognised greater fertility of the Breton element in France. We should 

then have an interesting illustration of the manner in which reproductive selection 

may reverse the results of natural selection. Y7hile it might be rash to attribute the 

decrease in stature which has taken place in France to any one definite cause, it is 

interesting to note that we do not trace the like decrease in stature in England, yet 

we should certainly expect to do so, if the result were due simply to a selective 

process by which the larger bones were preserved. There does appear to be a like 

decrease in the stature of the Bavarian population, where we have compared (p. 215) 

the Row-grave population with that of Munich town recruits, which appears to be 

considerably above the average of recruits from other near districts,"^ and considerably 

above the corpse length (166 centims.)—itself greater than the stature of the 

living—'which I have found from Bischoff’s data. 

(21.) On Giants and Dwarfs. 

If we pass from the consideration of races wdth mean statures varying from about 

157 centims. to 170 centims. to the consideration of individual giants and dwarfs, we 

very soon discover that our formulse give statures hopelessly too small in the case of 

* The average of the conscripts for the Isi Infanterie Brigade, which includes Munich, was only 

166 centims. The average of the Laden conscripts was 163 centims. 
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giants, and too large in the case of dwarfs. This defect of the theory is the more 

serious in that while no prehistoric bones at present discovered give ns indications of 

a race with giant proportions, there are such bones vrhicb indicate the existence of 

dwarf races in neolithic Europe. The reconstruction of individual giants from the 

skeletons preserved is also of some interest, although, from the standpoint of evolution, 

it, so far, has nothing like the importance of the reconstruction of the dwarf races. 

If our formulm do not apply to giants and dwarfs, we are forced to one or other of 

the following conclusions :— 

(«.) Dwarf and giant races must have been differentiated from normal races by a 

selection which has partially or totally changed the regression formulse. 

(h.) The regression forinulge are not really linear ; they are only apparently linear, 

because, in dealing with the normal range of stature, we have only to consider a small 

portion of the regression curve which is sensibly straight. 

Both these conclusions may of course be partially true. 

In order to consider the validity of one or both of these hypotheses, it might seem 

that all we have to do is to investigate the relation between the long bones and 

stature in the case of a sufficient number of giants and dwarfs. But alas ! the 

total material is small, and the quality of it is exceptionally bad. The majority 

of giants and dwarfs probably prefer a quiet life and a normal burial, so that their 

bones do not reach the anatomical museum.'" Of the dwarfs and giants whose 

skeletons are to be found in museums, the majority earned their livelihood by 

exhibition, and accordingly their living stature was a character likely to be under- 

or over-estimated for the pur230ses of advertisement. If we put aside all records of 

the living stature, we are thrown ba,ck on the measurement of the length as corpse, 

or on estimates formed by anatomists of the stature from the articulated skeleton. 

Unfortunately, authorities differ very widely as to (a) the difference between the 

skeleton (after mounting) and the corpse length—Orfila makes a difference of 

7'5 centims., Briant and Chaude of 8 centiins., and Torinard of 3‘5 centims.— 

and (h) on the difference between the living stature and the coiq^se length (see p. 191). 

Even if Topinard’s estimate, based upon 23 no'rmal subjects measured as corpse 

and skeleton, be correct, it could hardly be safely extended to the cases of giants 

and dwarfs. Professor Cunningham, in attemjiting to reconstruct the stature of 

the Irish Giant, Magrath, goes so far as to discard all records of living stature, and 

all attempts to reconstruct stature from the articulated skeleton, and would estimate 

only from the length of the femur.t But this method seems to me fatal, at any rate 

for our present purpose, the very object of wdiich is to find the I’elation between 

stature and femur (or any other long bone) in the case of giants. It cannot too 

* In the investigation fox- cousci'ipts in Bavaria, in 1875, 43 dwarfs were found, aud among’ the 

35 measured we have a range of 115 centims. to 139 centims. There were also four giants, or men 

with statures of 190 centims. and over. 

t ‘ Roj'al Iri.sh Academy Transactions,’ vol. 29, 1891, pp. 553-612. 
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often be repeated that the idea that there is in any sense a constant proportion 

between stature and any long bone is misleading. Manouvrier makes this ratio 

decrease from dwarf to giant, and this is correct so long as we suppose the regression 

formula linear, for example, S/F = a -\- hjY. But this ratio really begins to decrease 

again as we go from short people to actual dwarfs, and to increase again as we 

go from tall people to actual giants. 

For example, we have the following results for the ratios of long bones and 

stature :— 

Data. S/F. S/T. S/H. SR. 

•50 normal Erenchnien. 3-71 4-54 5-06 6-S3 
-^r f “ Coefficients moyens nltimes,” 1 JliKOUTHIKK, 1 ^ ^ ; 1 3-53 4-32 4-93 6-70 

Topinaed, 22 case.s, stature 7> 175. 3-61 4-46 5'05 6-94 
Pearson, 12 cases, stature > 200 . 3-73 4-41 o'Ol 7-07 

It will be at once obvious that Manouvrier’s “ Coefficients moyens ultimes” are 

by no means ultimate, but that in the case of giants the coefficients actually tend to 

return to their values for the mean population. This will be sufficient to show that 

it is quite impossible to consider any method of determining stature from a presumed 

constant ratio to femur as satisfactory. 

But this table shows an important principle, namely, that as the ratio of stature 

to long bone first decreases as the bone increases and then begins to increase, it is 

impossible to consider the regression curve as a straight line when we extend it so 

far as the region of dwarfs and giants. 

Now this is, a priori, what might have been expected, for all distributions of 

zoometric frequency that I have come across seem to possess sensible skewness, and 

in skew correlation the regression curve is not a straight line. Its actual form is of 

a somewhat complicated nature,* -and it would be purely idle to attempt to deter¬ 

mine the constants of it from the data for dwmrfs and giants which are at present 

available. Accordingly it seemed to me desirable to select some empirical curve 

which would, so far as possible, represent the available material and give results in 

harmony with certain general principles. The considerations Avhich led me to the 

choice of this curve were of the followdng character ;— 

(rt.) It must sensibly coincide with the line of regression already found between 

statures of 155 centims. to 175 centims. It must accordingly have a point of inflexion 

at the mean stature, at wdiich the tangent should be the already determined line of 

regression. Beferred to this tangent and its perpendicular, the form of the curve in 

the neighbourhood of the origin must be y = r.rt Away from the origin, c may 

become a sensible function of x and y, one or both. 

* 1 hope to ret □.I’ll to this point in a paper on skew correlation. 
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(6.) So far as the data at my command Avent, the dwarfs and giants appeared to 

deviate from the regression line in a remarkably symmetrical manner on opposite 

sides of it. In other words, the branches of the curve on opposite sides of the axis 

of y appeared to be centrally symmetrical or congruent. Thus the form of the curve 

was reduced to y — x^<f) (x^, y"). 

(c.) It follows from this that the asymptotes of the curve, besides x = 0, will be 

given by (j) (x~, y~) = 0. The problem then turns on what are the probable asymp¬ 

totes. Now if we examine the regression formula for an organ A on an organ B, it 

is of the form : 

where A,,; and B,,, are the mean organs, cr^ and o-j the standard deviations, and the 

coefficient of correlation. Now no amount of selection of either A or B, or any 

other organs, as to size only, would influence in the case of normal correlation 

but it would change the constant term A,„-B,,^. Hence, if we were to take the 

line of regression for an extreme population of d^varfs alone, or of giants alone, it 

would seem quite possible that r„j^(Talo-b might have remained constant, while the term 

-B„j changed. But these lines of regression Avould be the asymptotes of the 

recjuired curve. It was thus suggested to me that the asymptotes might be parallel 

to the line of regression of the normal population. On examining the points corre¬ 

sponding to giant and dwarf statures plotted to long bones, this hypothesis seemed 

to be highly probable. Accordingly the form of the curve finally selected to represent 

the extended curve of regression was 

y = ex' {Jr - y-), 

where the axis of x is the linear line of regression for normal stature, and the axis of 

y is the perpendicular to it through the mean normal stature of the French.* 

[d.) A diagram was now formed by plotting to half life-size centim. for 1 centim.) 

the points representing giants and dwarfs, and the lines of regression for the normal 

population were drawn. The y and x for the point for each giant for each bone were 

then read oft’, and these formed the data from Avhich the constants of the four curves 

of the above type were then determined. For this determination only giants over 

200 centims. were selected. The class of what mav be termed sub-giants, with 

statures from 180-200 centims., were put on oneside. Such individuals, termed giants, 

appear in both the Bonn and Munich anthropological catalogues, but the “Korperliinge” 

there given can hardly represent the living stature ; it is very probably only a skeleton 

* Some shifting of the origin would prohahly have improved my results, but the data were not 

sufficient to justify such extra labour. 
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length, and considerably under the real stature. A height, for example, of 185 

centims., 6 feet 2 inches, say, would hardly entitle a man, in England at any rate, 

to rank as a giant. 

In the next place, no notice whatever was taken of the dwarfs. I felt that, if the 

curves were determined from the giant data only, the test that they gave good results 

for dwarfs would be the most satisfactory one conceivable. As it is, I have been able, 

on the basis of the long-bone stature relations for giants, to predict the stature of 

dwarfs to within 2‘5 centims. average error. Manouvrier’s ‘'coefficients moyens 

ultimes ” give a mean error for these dwarfs of 7'25 centims., or 2'9 times as great. 

The actual fitting of the curves was conducted in the following manner. Remember¬ 

ing that the curve gives the value of the mean stature for the whole series of loug- 

bones of one size, i.e., the mean of the array of statures for a long bone of given type 

or size, I recognised that the curve, and accordingly its asymptote, must pass fairly 

centrally through the group of plotted points. An approximate value of the asymptote 

constant h was accordingly selected, and the value of c calculated from the mean of 

the observational values of y and x. If this form of the curve gave, as it generally 

did, not very satisfactory results, h was modified, and the nev/ c calculated. In this 

manner, for example, three approximations were made in the case of the radius. The 

method of least squares was not readily applicable to the data (which were at best 

not very trustworthy), for it involves the calculation of such expressions as S {x^y') 

and S which, owing to the large values of x involved, give far too great import¬ 

ance to the largest giants. 

The curves ultimately determined were the following :—^ 

For the femur : 

y — y~)- 

For the tibia : 

2/ = T-7lTo^M22-5625 -y^). 

For the humerus : 

y = (20'25 ~ ?y“). 

For the radius : 

y = T(5F8T-'»'(20*25 ~ y"). 

Here the unit for both y and x is equal to tAvo centims. of stature, or of long- 

bone. Thus the distances 7, 475, 4*5 and 4*5 centims, of the asymptotes from the 

lines of regression of the normal population are really distances of 14, 9'5, 9 and 

9 centims. in actual stature or long-bone length. 
O c* 

* The mathematical reader Avill bear in mind that it is only the “snake” arid not the otlier tvo 

branches of the quiutic curve which we require. 
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I do not suggest for a moment that tliese curves give a final solution of the problem 

of determining the stature of any individual in the range of 90 to 250 centims. from 

the lengths of his long bones, but they seem to me to give the best results obtain¬ 

able with the data at present availal^le. 

Reduced to a formula a curve of this type would be of little service, for both x and 

y are linear functions of the probable stature and the observed length of the long 

bone. Hence we should have a quintic equation to find the probable stature from 

the long bone. But if these curves be plotted once for ail, we have a graphical 

means of at once determining, by simply running the eye along a line, the probable 

stature corresponding to any given length of long bone. With care we can find the 

probable stature to "5 centim., but a,s a rule to the nearest centimetre is sufficient. 

As the lines of regression for the normal population are given as part of our curves, 

it is clear that the diagrams attached to this memoir (Plates 3, 4) will also serve for the 

determination to a like degree of exactitude of the probable stature of individuals or 

races falling within the ordinary range of statures. In view of the fact that the 

diagrams serve all practical purposes, I have not considered it needful to deduce from 

the above quintics numerical approximations for the value of the stature in terms of 

the lengths of the various long bones. 

(22.) If the reader will examine the diagrams, he will see the twelve giants 

A, B, C, . . . K, L marked by small dots; from these the curves were determined, 

and he will notice that they strike fairly well through the groups. The triplet 

O, M, N contains three pseudo-giants, or sub-giants ; these as well as the dwarfs, 

S, U, V, T, were not used in the determination of the curves. One remarkable 

feature of the curves must be noted, namely, that in the region of what may be 

termed sub-giants and super-dwarfs, namely, from about 180 to 200 centims. and 

150 to 130 centims., a very small change in the long bone makes a remarkable change 

in stature. This is specially noteworthy in the case of the radius. Thus between 

normal individuals on the one hand and giants or dwarfs on the other, there appears 

to he what may be termed a region of instability, in which an insignificant change in 

long bone may throw tlie individual across a considerable range of stature. The 

points of inflexion of our curves—other than those at the origin—may accordingly 

have a biological as well as a purely mathematical interest. 

The following are all the data which I have been able to collect for giants and 

dwarfs having any degree of probable truth. 

o 
O' VOL. oxen.—A. 



226 PROFESSOE, KARL PEARSON, MATHEMATICAL 

Table of Giants. 

Letter. Name. Locus. Stature. F. T. H. R. 

A Joachim . Mu see Broca. 210-0 56-72 47-0 40-4 30-5 ! 
B Berlin G-ia.nt I . . . Berlin Museum . . ■ . 223-0 64-0 53-0 45-5 30-5 
C Berlin Giant 11 . 216-0 55-0 48-0 38-5 29-8 
B O’Byene . Royal Collesreof Surgeons 231-0 62-5 .54-1 45 0 33-4 
E American Giant. 21.3-0 08-5 47-8 41-3 30-0 

1 ^ Mageath. R. C. S., Dublin .... 226-0 62-4 .50-6 43-3 33-8 
G “ Krainer ” .... Josephinum A^ienna 203-3 53-4 43-5 39-5 27-5 

' H “Grenadier”. 208-7 55-5 45-6 40-5 29-0 
I Innsbruck Giant Innsbruck . 222-6 61-5 52-0 44-6 34-3 
,J St. Petersburg Giant . St. Petersburg .... 219-5 06-5 .50-0 46-0 33-5 
K “ Wichsmaclier ”. Vienna. 202-3 52-4 44-9 39-4 27-8 
L Paris Giant .... Mtisee Orfila. 236-2 60-98 55-9 

Sub-Giants. 

il Bonn Giant .... Bonn. 188-7 51-0 41-8 35-8 26-0 
■ N “Gendarme”. Vienna. 186-9 51-4 44-0 38-6 26-4 
0 Munich Giant JIunicli. 185-0 50-2 40-8 35-0 25-3 

Dwarfs. 

S Mikol.uik. Anat. Instit., A^ienna . 112-5 31-0 22-S 20-5 15-1 
T ScHAAFHAUSEx's Dwarf Bonn. 94-0 22-0 160 
U His’s Dwarf .... 120-0 31-0 25-0 21-5 16-5 
V Bebe. Jardin des Plantes . 100-0 24-52 17-61 20-38 12-17 

Remarhs.—A. The measurements of this giant are given b}^ Manouveiee, 

‘ Memoires cle la Societe d’Anthropologie de Paris,’ vol. 4, p. 387. The femur has 

been given its maximum instead of oblique length. See also Topinaed, ‘ Anthro- 

pologie Generale,’ p. 1101. 

B and C. Details extracted from ' Die AnthropologiscJien Sammlungen Deutsch- 

lands,’ V. Berlin, 

D and E. Data from the Royal College of Surgeons’ Catalogue. 

F. I have taken the length of the long bones from Professor Cunningham’s paper, 

“ Royal Irish Academy Transactions,” vol. 29, 1891, pp. 553-612. Cunningham uses 

the femur and Topinaed’s ratio to get the stature. Topinaed himself gives 

Mageath’s stature as 223 centims. I do not see why Dr. Bianchi’s measurement 

of 226 centims. should be rejected. There is no reason to supj)ose the doctor would 

have any cause to exaggerate Mageath’s stature, and he measured him alive. I have 

accordingly adopted Bianchi’s value as the best available. It is in very good 

accordance with the stature of the Innsbruck giant, and both were probably shorter 

than O’Byene, 
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G, H, I, J, K and N are all taken from the very valuable memoir by K. Lancier ; 

‘‘Wacbstum des menschlichen Skeletes mit Bezug auf den Eiesen,” ‘ Denkscbriften 

der k. Akademie der Wissenscbaften, Math. Natiirwiss. Classe,’ vol. 31, Wien, 1872, 

pp. 1-105. F, H and R are here distinctly stated to be the maximum lengths, and 

T appears to be measured without spine.The heights are apparently those of the 

articulated skeletons. 

L. This is the only giant I have ventured to retain out of Sir George Humphry’s 

list in “The Human Skeleton,” Cambridge, 1858, p. 107, for he indicates that he 

measured it himself (p. 105). I have not been able to identify his “Paissian Giant” at 

Bonn. His Berlin giants differ considerably from those in the Berlin Catalogue, while 

his estimates of O’Byrne and of the Irish giant seem hopelessly too large. As he gives 

the Musee Orfila giant 17 centims. less stature than Topinard {Joe. cit., p. 430), I 

think his estimate on this occasion more probable. M and O are taken from the 

Anthropological Catalogues of the Museums at Bonn and Munich. I am not clear as 

to wdiat is meant by Korpcrlcinge in these cases, d'he statures are curiously small as 

compared with the long bones, if Korperlange is to be thus interpreted, Possiltly it 

is the length of the mounted skeleton witliout disks. 

S, T and U. The details of these dwarfs I have taken from Paltauf’s work : 

‘ Ueber den Zwercjwuchs in anatomischer und g'erichtsarztlicher Beziehuno’ ’ 

Wien, ]891.t This book compares unfavourably with the careful memoir of 

Langer. The measurements of the long bones of Mikolajik are given several 

times over, on each occasion with different values ; the exact nature of the measure¬ 

ments made is not stated, and results such as those on the author’s p. 92, depending 

on the most elementary arithmetic, are erroneously given. I have taken the values 

which seem to give the most self-consistent results, but it is impossible to feel sure of 

their absolute accuracy. Schaaffpiausen’s account of his dwarf appears in the 

‘ Berichte der Niederrhein. Gesellschaft fiir Naturkunde in Bonn,’ vols. 25 and 39, 

and His’s account of his dwarf in ‘Virchow’s Archiv,’ vol. 22, p. 104. 

All the giants and dwarfs in the above list were adults; the ages of the four 

dwarfs at death were S, 49 years; T, G1 years ; U, 58 years ; and V, 23 years. 

The following table gives the reconstructed statures of these giants and dwarfs ns 

obtained from my diagram and from Manouvrier’s “Coefficients rnoyens ultimes.” I 

have not thought it necessary to publish in the latter case the estimate from each 

individual bone, but have simply printed the mean of the four results and the 

differences from the supposed actual stature. It will be noticed that Manouvrier’s 

estimate is in every case too small. Of my differences, 2 are zero, 6 are positive, 

and 11 negative, but the negative differences are sensibly larger than the positive, so 

that my curves have rather under than over corrected for giant and dwarf stature. 

* “ Alls der Mitte der lateralen Condylusflaclie in die Incisura fibularis.” 

t I Lave verified the dimensions given for His’s dwarf from ‘ Virchow’s Archiv fiir Pathologie a, 

Anatomie,’ vol. 22, 1861, p. 104, et seq. 

2 G 2 
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My mean error is only 3‘7 centims., however, as against Maxcuveier’s 9'3. Allowang 

for the doubtful character of some of these measurements, I consider this result 

fairly satisfactory, and believe my estimate may in several cases be better than the 

supposed stature. 
Stature of Giants and Dwarfs. 

Estimated .statufe. 
Actual 

Maxouyrier. 

F. T. H. R. Mean. A. 
stature. 

Mean. A. 

A 21.3 212 210 213 212 + 2 210 200 -10 
B 229 228 228 215 225 + 2 223 219 - 4 
C 207 215 203 211 209 — 7 216 195 -21 
I) 226 231 227 224 227 - 4 231 223 - 8 
E 218 213 213 211 214 + 1 213 203 -10 
P 22G 222 221 226 224 - 2 226 218 - 8 
G 200 200 205 182 197 - 6 203 187 -16 
H 209 207 210 206 208 - 1 209 195 -14 : 
I 224 225 225 227 225 + 2 223 221 - 2 
J 212 220 229 224 221 + 2 219 214 — 5 
K 193 205 205 197 200 - 2 202 188 -14 
L 223 

. 
235 • • ■ • 229 — 7 236 226 -10 

180 184 176 171 178 -11 189 178 -11 
N ' 182 202 200 173 189 + 2 187 183 - 4 
0 178 178 173 170 175 -10 185 174 -11 

, s 114 111 105 107 109 - 3 112-5 109 - 3 
T 95 93 , , .. 94 0 94 79 -15 
U 114 117 108 112 113 - 7 120 116 - 4 
V 100 97 104 97 100 0 100 93 — 7 

(23.) Dwarf Races. 

(a) Concerning the curves I have given, much diversity of opinion must naturally 

exist. For we have made use of giants from a great variety of races in order to pro¬ 

duce across a considerable range of stature the regression curves based upon the data 

for one local race, the French. The justification for this can only be post-facto, 

namely, the capacity of the curves to predict the stature of giants and dwarfs satis¬ 

factorily. But it Avill be seen that in doing this Ave hav’e proceeded rather on 

mathematical than anatomical grounds. We haAm supposed a continuity between 

the normal population and betAveen giants on the one hand and dwarfs on the other. 

We have treated these beings as rare Amriations in a normal population, and not as 

pathological abnormalities. It is true our curves show a region of marked instability, 

AA'ithin AAdrich any slight change of long bone is accompanied by a great change in 

probable stature ; but nevertheless we haAm supposed a mathematical continuity, 

Avhich in itself is hardly consistent Avith the theory of “ pathological abnormality.” 
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The truth of this theory can only be discussed by anatomists, and many anatomists 

like Professor Cunningham and Dr. Paltauf hold that giants and dwarfs are 

pathological creations—they are the results of abnormal conditions to which they 

would give the name of a disease. Such a view would exclude any conception— 

especially in the case of dwarfs among the normal population—of an atavistic 

influence. The existence even to-day of dwarf races in both Africa and Asia ought, 

however, to give ground for pause. When we add to this that Professor Sergi 

actually considers that he has good evidence of a dwarf racial type still extant in 

Italy, and that Professor Kollmann, after examining Sergi’s cranial and other 

evidence, has been converted from strong disbelief to belief,''' Avhen we note the forty- 

three dwarfs (stature <140 centims.) actually brought to light by one annual con¬ 

scription in Bavaria alone, and finally when we consider the neolithic dwarf skeletons 

discovered by NuESCH,t we must undoubtedly hesitate to attribute to pathological 

causes all cases of dwarfs which come under notice. The African, Indian, and Italian 

dwarfs appear as a distinct racial type as little pathological variations of normal man, 

as a monkey of the anthropomorphous apes. It is thus possible that the pathological 

characters found in so many dwarfs may be the result of a conflict between atavistic 

and normal tendencies, rather than themselves the source of dwarfdom. At any rate, 

while admitting that our curves are largely based on admittedly pathological instances 

of both giants and dwarfs, it seems well worth while to consider to what results they 

lead us when wm endeavour to reconstruct the stature of dwarf races. 

In making this application we have to bear two points in mind (i.) we must expect 

a wide range in our prediction of statures lying between 130 and 150 centims., for 

this is the range for which our curves give very unstable results. We can only hope 

for a fair degree of approximation in the means, (ii.) Our curves are constructed 

solely from male data, because female data are practically non-extant. We must 

accordingly endeavour to find some means of passing from male to female stature. 

To this we must first devote our attention. 

(6) I take the following data for sexual ratios for the French and Aino from the 

material of Bollet and Koganei ; for the Naqada race from Dr. Warren’s memoir, 

and for the Andamanese from Sir W. H. Flower’s memoir, which is discussed below. 

Sexual ratio, d / ? . 

Race. Stature. Femur. Tibia. Humerns. Radius. 

French. 1-083 1-090 1-10-2 1-110 1-137 
Naqada . 1-074 1-080 1-088 1-088 1-100 
Aino. 1-065 1-067 1-064 1-064 1-087 
Andamanese . ? 1-034 1-034 1-049 1-071 

* Kollmann in Nuesch, Inc. cit. infra, p. 238, 

t Ibid. 
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Now, there appears from this table to be a very clear rule, namely, that the sexual 

ratio for stature is certainly not sensibly larger than the least sexual ratio for the 

long bones. It would seem accordingly improbable that the sexual ratio for the 

Andamanese can exceed 1'034. If we compare this result with Man’s measurements 

on 48 male and 41 female Andamanese of which the statures were : male, mean 

149’2 centims. ; female, mean 140'3 centims., we find d/? = 1'063, a value 

much nearer that of the Aino. Sir W. H, Flower’s own estimated statures'"" give a 

sexual ratio of b034 ; the fundamental formulae for a normal population (p. 19G of 

this paper) give 1‘048 ; Manouvrter’s “ Coefficients moyens ultimes” give 1‘030, and 

by applying the ratios of stature to long bones as obtained from the average French 

population we find 1'023. The mean of all these results is 1‘038. For the Laps 

Mantegazza found male = 152’3 and female = 145'0, or the sexual ratio = 1’050. 

For the Negritos del Monte, or the Aigtas of Luzon in the Philippines, Marche and 

Montano give male = 144‘1 centims. and female = 138’4 centims., from v/hich we 

find the sexual ratio of 1’041. Topinard gives for races under 150 centims. a mean 

difterence of 4 per cent, between male and female which corresponds to a sexual ratio 

of P042. Feitsch found a mean difference between male and female Bushmen of 

4 centims. which gives (male = ]44'4 centims.) a sexual ratio of P028 ; while 

Parry’s observations on the Esquimaux appear to give a sexual ratio of 1'025, 

Sutherland’s I’036. From all this it is clear that the dwarfs have a very small 

sexual ratio for stature as compared with the normal population. At first sight it 

might seem best to assume this sexual ratio for dwarf races to be Topinard’s average 

of P042, but as we are going to apply our chart in connection with the sexual ratios 

found for the long bones of the Andamanese in the table above, I doubt whether it 

ought to be taken greater than 1’035, say 1‘034 in agreement with the value obtained 

from Flower’s estimates. Accordingly I formulate the following rule for ascer¬ 

taining from the chart the probable stature of a female of dw^arf race :— 

Pteduce the female long bones to male long bones by multiplying their lengths by 

P034 in the case of femur and tibia, by 1’049 iu the case of the humerus and 

1‘071 in the case of the radius. Find the corresponding male statures from the 

chart and multiply it by •9G62 [i.e., the reciprocal of 1‘035); these are the probable 

values of the female stature as estimated from the several long hones, and their mean 

may be taken as the best result available. 

(c) It seems very desirable to compare the results thus obtained for male and 

female of dwarf races with their statures otherwise estimated. If we form a table 

similar to that on p. 222, but for the case of dwarfs, we have— 

* Uflng the values given, ‘ .Journal of Anthropological Institute,’ vol. 14, p. II7. 
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i 
i 

Data—Male. S/F. S/T. S/H. S/R. 

50 normal French. 3-71 4-51 5-06 6-83 
Ti, f “Coefficientsmoyens ultiums,” 1 

stature <1.53 . . . . | 
3-92 4-80 5-25 7-11 

Aino stature = I.56’7. 3-84 4-76 5-31 6-84 
Topinard, 21 men from 143 to 160 .... 3-68 4-59 5-00 6-70 
Pearson, 4 dwarfs under 120. 3-93 5-24 5'.33 7-59 

Now the tendency here is clearly for the ratios to increase with decrease of stature, 

if we consider only French, Aino and the group of four dwarfs. Topinard’s measure¬ 

ments show, however, rather a tendency in the ratios to return to their values for the 

mean of the normal French population, and as this was closely akin to what we found 

in the case of giants, we cannot afford to disregard it in the case of dwarfs. Sir W. H, 

Flower has reconstructed the Andamese from their femora on this supposition, and 

it does not give by any means improbable values of the stature. We have only to 

look, however, at the line of regression for the normal population to see that for 

statures between 155 and 175 tliis hypothesis wall give bad results, but it is 

conceivable that for statures above and below these limits the ratios of stature to 

the long bones obtained for the means of a normal population give results which 

are closer to the truth than those found from the lines of regression. Accordingly, 

on Plates 1, 2, dotted lines give these ratios of stature to long bones, and the statures 

of giants and dwarfs can be at once read off on this hypothesis. It will be seen that 

these lines do not give such good results for the four dwarfs under 120 centims. as 

our curves, but possibly they may give better results for normal dwarf races from 140 

to 150 centims. At any rate they do not on the surface exhibit the difficulty as to 

“instability” to which I have previously referred. Sir W. H. Flower writes of the 

Akka skeletons that : 

“ They conform in the relative proportions of the head, trunk, and Innb, not to 

dwarfs, but to full-sized people of other races.”* 

The chief and great difficulty, however, of adopting these lines of normal stadure 

ratios to determine the stature of dwarf races is to fix a limit to their application. A t 

what point are we to fall back on the normal line of regression? There must be such 

a point, for that line gives excellent results for statures from 155 to 175 centims. 

Wherever we do fall back upon it there will arise the very sort of instability which 

we find in our curves, only it will be a far more arbitrary and sudden change. 

For this reason I cannot consider it satisfactory to obtain the stature of races of less 

than 155 centims. by a process which is not in any sense continuous with that used 

* ‘ Journal of tlie Anthropological Institute,’ vol. 18, p. 90. By “dwarf” in the sentence cited I 

think we are to understand “ pathological ” dwarf. 
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for races of more than 155 centims. stature. The position and character of the 

instability is undefined and appears to be quite arbitrary. At the same time, I give 

the stature of the dwarf races with which I have dealt below on this hypothesis. In 

order to apply it, I add the additional data for the female stature and long bone ratios 

recjuired for this and Manouvrier’s method, putting in the Aino for comparison :— 

Data—Female. S/F. S/T. S/H. S/R. 

•50 normal French. 3-73 4-62 5T9 7T6 
Manouvrier ( “ Coefficients moyens ultimes,” 1 

[ stature <.140 . . . . J 
3-87 4-85 5-41 7-44 

Aino,* stature = 147T. 3-85 4-75 5-31 6-98 

The reader must remember that Maxouvrier’s coefficients are for corpse stature 

and length of bones when the latter contain animal matter. Hence he first adds 

2 millims. to the length of the dead bone to get the bone with animal matter, and 

then 2 centims. are subtracted by him from the corpse length to get the living 

stature. In the case of the femur, however, he works with the bone in oblique 

position, or with a length about 3’2 millims. less in the normal individual than the 

maximum length. This probably does not amount to more than 2 millims. in the 

case of dwarf races. Hence, when the femur of the dwarf is given by its maximum 

length, we need not add or subtract anything before multiplying by the stature- 

femur coefficient. We have accordingly the following methods of estimating the 

stature of dwarf races from their long bones .— 

(i.) The lines of regression for a normal population, i.e., the formulae of p. 196 of this 

paper, or the heavy straight lines of our charts. As we have already seen, this over¬ 

estimates the stature of dwarfs as it underestimates that of giants. 

(ii.) The curves of regression given by the empirical formulae of p. 224, or by the 

heavy curves of our charts. In the case of female dwarfs the lengths of their long 

bones must first be reduced to male equivalents by the rule on p. 230, and the 

statures found again reconverted to their female equivalents. 

(iii.) The “Coefficients moyens ultimes ” of Makouvrter may be used. These 

arc given on pp. 231 and 232. Special attention must be paid to the reductions 

(discussed above) of bones and corpse length. 

(iv.) The stature and long bone ratios for the normal population may be used. 

The values of these ratios are given on pp. 231 and 232, but for most practical purposes 

it suffices to use the dotted lines of the chart. 

I shall refer to these methods as Pi_ Ihr, M, and Fh In the latter case, not 

* It will be noticed bow close these are to the male coefficients on p. 231, except in the case of the 

radins, a bone very irregular in pilmitive and dwaif races. 
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because Sir W. H. Flower was the first* to use a ratio of stature and long bone for 

the mean population for the reconstruction of stature, but because he has emphasised 

the fact that, for dwarf races, it does appear to give fairly good results. 

(24.) Bushmen. 

My material is very sparse. Sir George Humphry, in his work on “ The Human 

Skeleton,” gives (p. 106) the mean long-bone lengths for three presumably male 

Bushmen. 

F = 38T0, H — 27-43, T = 32-77, 21*08. 

I find 

Estimated Stature of Bushmen. 

Bone. Pi. Pii. M. FI. 

F 152-9 150 0 147-4 141-4 
H 150-0 141-0 143-1 1.38-8 
T 156 5 156-5 156-2 148-8 
R 154-9 1.53-0 149-3 144-0 

F -f T 1.52-4 
F & T 152-3 

H + R 150-8 
H & R 149-8 
F & H 1.50-3 • • • • 

F, T, H & R 150-6 

Means 152-05 149-9 149-0 143-25 

Now it is clear that neither the chart (Pn), nor Manouvrier’s “ Coefficients 

moyens ultimes” (M), make in this case much alteration on the estimate given by 

my normal regression formula (h) for all four long bones. But the value given by 

FI is 6 centims. less. Sir George Humphry gives the average stature of these three 

Bushmen as 137*1 centims. He does not, however, state where his data are taken from. 

Curiously enough, his value for stature coincides exactly with the value Toptnard says 

Barrow has assigned to the Bushmen. I cannot think that this was the stature in 

life of the individuals whose bones are averaged by Humphry. Fritsch gives the 

average stature of six Bushmen he measured as 144 centims.,! and I should hesitate 

to place the mean stature of the above three below 145 centims. to 150 centims. At 

* It lias been used bj Orpila, Sii' George Humphry, and others, and, as we have seen, gives quite 

incorrect results for races from 155 to 175 centims. in stature, 

t See Topinard, ‘ Anthi’opologie generale,’ p. 461. 

2 H VOL. CXCII.—A. 
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che same time it must be remembered that the stature falls within the range within 

which our chart shows that a very slight change in the long bones makes a great 

difference in stature. In case the reader should be inclined to put too great faith in FI, I 

would draw attention to the fact that it underestimates by slightly over 5 centims. the 

known stature of the fairly short Aino race, while Pj or Pn give it almost accurately 

and M fairly closely. 

The only other Bushmen I have been able to find are a male and two females in 

the Royal College of Surgeon’s Catalogue. Selecting the right members as those for 

which our formulEe and curves are deduced, we have : 

Male, F = 3r)'6 centims., H = 25'5 centims., T = 29’9 centims., R=: 20‘8 centims. 

Female 1, F = 38-0 „ H=27-0 „ T = 33-2 „ R=21-0 

„ 2, F = 37-6 „ H = 25-7 ,, T = 28-8 „ R=18-G 

The following table gives the estimated statures :— 

Bone. Alale. Female 1. Female 2. 

Key 
letter. P,. Pn. Al. FI. P.. Pn. Al. FI. Pi. Pn. AT FI. 

(a) 148-2 130 137-6 131-9 146-7 148 8 14.5-1 141-6 146-0 146-9 143-5 140-1 
(C 144-4 1-24 13-2-9 129-1 145-8 140-6 145-1 140-1 142-2 131-4 138-1 133-3 
(C 149-7 136 14-2-5 135-7 152-9 1.54-6 160-0 153-3 142-5 129-4 143-5 133-0 
(d) 154-0 152 147-3 1420 151-4 1.54-3 155-7 150-4 143-4 125-1 137-9 133-2 
(e) 147-2 149-3 143-9 

(/) 147-2 , , 149-4 144-0 

(g) 146-9 . , 148-1 142-0 , , 
(h) 144-4 146-2 142-1 

(0 144-8 146-0 144-2 
(k) 144*8 148-0 143-1 

jMean . 147-2 
' 

135-5 140-1 134-9 148-4 149-6 151-5 146-3 143-3 133-2 140-75 134-9 

The estimates based on the skeleton height of these three Bushmen are : Male 

= 133‘3, female 1 = 140‘0, and female 2 = 139'0 centims. The mean error made 

by Pn is 5'9, by M 6*7, and by FI 4T centims. But it must be noticed that the last 

gives in one mstance less than the height estimated from the skeleton—a result 

which is in itself very improbable. A consideration of the values here given seems to 

show that with the mean length of bones given by Humphry the mean stature could 

not possibly have been the 137'L centims. he states. For whatever estimate we take 

of the Female 1, she must have been with bones no longer, at least 10 centims, taller 
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tlian Humphry’s mean male. Taking our four males and two females we get from Pn 

estimated statures for male and female Bushmen of about 146 and 142 centims., which 

I expect are not very far from the truth. 

(25,) Akha Stature. 

In a paper by Sir W, H. Flower in the ‘Journal of the Anthropological Institute,’ 

vol, 18, 1889, entitled: “Description of two Skeletons of Akkas, a Pygmy Pace 

from Central Africa,” the follov/ing data are given (p, 14): 

Male , 

Female 

F. 

32’6 centims. 

H, 

23'8 centims. 

T. 

27'0 centims. 

27-0 „ 

Pt. 

18‘2 centims. 

In the following table the reconstructed statures are given on the same four hypo¬ 

theses as we have considered in the case of Bushmen. 

Bone. Male. Female. 

Key letter. P.- p I u- M. FI. P.. Pn- M. FI. 

{a) 142-6 118-5 125-8 121-0 137-8 120-3 127-3 124-6 1 
(h) 139-5 117-5 124-0 120'4 138-7 119-8 131-1 126-6 
(c) 140-7 122-5 128-6 122-6 136-4 121-2 129-9 124-7 
(d) 145-5 119-5 128-8 124-3 146-1 135-3 143-8 1:38-9 : 
(e) 139-3 ^ * , , 136-3 
(/) 139-4 136-3 9 « 
(!7) 139-5 . , 141-2 
(h) i:i9-2 139-0 
(0 139-0 • • 137-2 
(k) 138-2 135-0 • • 

Mean . 140-3 119-6 126-8 122-1 1:18-4 124*1 133-0 128-7 , 

Sir W, Id. Flower estimates the height of both individuals at about 4 feet, or 

122 centims. He gives 121’8 as the estimate of stature from the female skeleton. 

We could hardly want better results than are given by Pi,. FI gives also good 

results, while M appears to err in excess.* 

* Emin Pa.sha refer,s to an Akka woman of 136 centims. stature, who must therefore have been con¬ 

siderably taller than the above woman. 

2 TI 2 
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(26.) Andamanese Stature. 

The stature of the Andamanese is a peculiarly difficult one to estimate. They are 

taller than Bushmen and Akkas, and fall more markedl}^ into the unstable range of 

our chart curves. The measurements of a very considerable number of long bones 

have been given by Sir W. H. Flowek, in two papers in the ‘ Journal of the 

Anthropological Institute,’ vol. 9, 1879, and vol. 14, 1885. I take the following 

mean values from the latter paper (p. 116) :— 

Ro. F. H. T. R. 

Male . . . 2.5 39-34 27-65 33-21 22 52 
Female 26 38-04 26-35 32-10 21-01 

Constructing as in the previous cases a table of stature as estimated by all four 

methods we find :— 

Bone. Male. Female. 

Letter. P.- P... 1 M. FI. Pi- Pn. M. FI. 

(«) 155-3 154 152-2 145-8 146-8 148-8 145-2 141-8 
(C 150-7 144 144-2 139-9 144-0 1.38-1 141-6 136-7 
(c) 157-6 157 1.58-4 , 150-8 150-3 151-7 153-7 148-3 
{d) 1.59-6 160 1.59-5 1.53-7 151-5 154-3 155-8 150-4 
(e) 155-4 ■ • • • 148-1 , , , , 
(/) 1.55-3 * . « • 148-2 i % 

ig) 153-6 • . • • 147-0 , , 
(70 150-7 • • • • 144-5 
(t) 152-0 • • • • 145-4 
(C 152-6 , 146-1 

Mean 154-3 153-7 1.53 6 147-6 
1 

147-2 148-2 
1 

149-1 144-3 

Now it will be observed that Pi, Pn, and M give sensibly the same result : 154 

centims. for the male ; that for the female, Pn, owing to our having first to increase 

the female bones to reduce them to male lengths, gives a higher result than P^ for 

we have got into the unstable range of the curves, and the stature-reducing factor 

afterwards applied does not undo the excess. Thei’e is not much, therefore, to choose 

between Pi, Pn, and M for the Andamanese. They give results 4 centims. greater 
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than FI in the case of males, and 3 centims. greater in the case of females. From 

them we should conclude that the stature of Andamauese was given by male =154 

centims,, female = 148 centims. May,'" who measured 48 male and 41 female livino- 

Andamanese, gives the stature as, male = 149'2 centims., and female = 140‘3 

centims. 

Sir W. H. Flower estimates the stature from his skeletons at male = 143’1 centims., 

and female = 138‘3 centims. This is very much less even than Man’s determination 

of the living stature. Mantegazza, who possesses a skeleton of an Andamanese, 

gives its skeleton height at 148“o centims., and Kollmann considers its living 

stature to have been 150 centims.t The femur in this case is 42’4 centims. long, 

which would correspond in a normal Frenchman to a stature of 161 centims. I 

must state that I feel inclined to put entirely on one side estimates of stature based 

on the height of the articulated or unarticulated skeleton, they appear invariably to 

underrate the living stature, and often by very large amounts. Even if we suppose 

the Andamanese to have the relative proportions of full-sized people {e.g., use FI), 

we obtain statures considerably above Sir W. H. Flower’s estimates. On the other 

hand Man’s measurements, which give results much in excess of the latter, fall 

considerably short of the results we obtain from Pj, Ph, or M, They even fall 

short of FI, and in the case of females markedly short of it. If we consider that 

Flower’s skeletons and Man’s individuals belong to the same group, then it must 

be confessed that our estimates are unsatisfactory. The hypothesis FI gives the 

least divergent result, but it cannot be considered a particularly good one. It will 

be seen at once that it is the inferior members in each liaib which give the 

exag-gerated stature estimates. If we confined our attention to femur and humerus, 

then Pji (a) and (6) would give 149'0 for males and t43’4 for females, results better 

in accordance with Man’s measurements than FI for all four bones, or than FI for 

male femur and humerus only. 

When we consider the immense importance of these dwarf races for the problem 

of evolution, the main result of our investigation is obvious ; there ought to be 

an elaborate investigation—such as Koganei has made for the Aino—on the long 

bones of skeletons and the stature of living individuals, of some extant dwarf race. 

These races are rapidly becoming extinct, and the possibility of making such mi 

investigation is yearly diminishing. Yet it is only by a careful comparison of the 

regression formulae for dwarf and normal races tha,t it seems to me possible that we 

shall be able quantitatively, and therefore definitively, to fix the relationship of 

dwarf and normal races in the course of evolution.[j; 

* See Sir W. H. Flower on “ Pygmy Races,” ‘ Jourii. of Anthropological Institute,’ vol. 18, 1889, p. 73. 

t Nuesch, loc. cit., infra, p. 129. 

j The reader must bear in mind that nearly all tlie vagueness involved in our attempts to recon- 
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(27.) European Neolithic Dwarfs. 

lu the recently published work by Nxtesch, ‘ Die prahistorische Niederlassung 

beim Scbweizersbild.’ 1896, is a memoir by Kollmann, entitled, “ Die menscblichen 

Skelete, besonders iiber die fossilen menscblichen Zwerge.” This publication for the 

first time showed us that there existed in neolithic Europe, alongside a normal race, 

with a stature of about 163 centims., a dwarf race, very similar to the pygmy races, 

of Avhich we still find traces extant in Africa and Asia. At any rate the discovery 

in the same group of graves of four skeletons, or rather fragments of skeletons, 

Avhich must have belonged to individuals Avho were jjygmies, and not “ pathological ’ 

dwarfs, jDoints very strongly in this direction. 

Kollmann, who gives a most interesting discussion of these neolithic pygmies, 

provides the following measurements ;— 

F. H. T. II. 

1. Female . . 36'9 centims. 

• » » • • 9 

25'15 centims. 29’90 centims, 

28’20 ,, 3270 „ 22‘60 centims. 

Of these: 1, female, is an adult; 2, female or male, is that of a young person 16 to 

18 years old, and, accoi’diiig to Kollmann, probably, but not certainly, female; 

3, female, and 4, female or male, are adults, but as we see the sex of the latter 

appears doubtful. Proceeding, as in the earlier cases, we find :— 

2. ,, or male, 31'3 

3. „ ... 35-52 

4. ,, or male. 39-40 

struct stature, arises from tLe fact that the regression coefficients for long bones and stature are known 

for owe local race only, and tbat we have notbing else to go upon. Had we endeavoured to reconstruct 

one long bone from a second, Ave sbould bave bad far more evact material to determine tbe differential 

evolution of local races. 
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If we include the non -adult and suppose the whole series female, we have : 

P:. Pii. M. El. 

142‘9 centims. 136'7 centims. 138'7 centims. 134'8 centims. 

Without the non-adult. we have : 

Pi. Pii. M. El. 

145'9 centims. 144'3 centims. 145'3 centims. 140‘9 centims. 

The two possible males give : 

Pi. Pii. M. El. 

144’2 centims. 134"2 centims. 136’5 centims. 132’3 centims. 

The adult male gives : 

Pi. Pii. M. El. 

154"6 centims. 154'5 centims. 153‘9 centims. 147'9 centims. 

The single male here is about identical with the means obtained by the different 

methods on p. 236 for the male Andamanese, and the adult females give a result 

somewhat less than that of the female Andamanese as reconstructed from their long 

bones, but in close accordance with Man’s measurements of living Andamanese 

stature. The dimensions are somewhat larger than those of Bushmen, or Akkas, or 

Negritos. We seem, therefore, justified in assuming a neolithic pygmy race in 

Europe having a stature about the same as that of the Andamanese. Whether the 

actual stature of this race was for the female nearer to 144 centims. (Pn) or 

141 centims. (FI) it seems to me impossible to ascertain definitely until we have 

more trustworthy and extensive measurements than yet exist of the living stature 

of extant pygmy races. 

(28.) Conclusion. 

The formulee and curves for the reconstruction of stature which are given in this 

memoir, must by no means be taken as final. No scientific investigation can be 

final; it merely represents the most probable conclusions which can be drawn from 

the data at the disposal of the writer. A wider range of facts, or aiore refined 

analysis, experiment, and observation wfill always lead to new formulm and ne^v 

theories. This is the essence of scientific progress. All, therefore, which is claimed 

for this paper is (i.) that it exhibits a better theory of the reconstruction of stature 

than any which has so far existed—it might not be too much to say that nothing 

which can be called a theory has hitherto existed; (ii.) that it determines the 

constants of the formulse given by that theory as well as the existing data allow of; 

(iii.) that it gives values for the probable statures of prehistoric races, which have 

far less divergence among themselves, whatever be the bone or combination of bones 
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used, than those suggested bj previous investigators; and lastly (iv.) that it 

indicates what additional data ought to be sought for, and to some extent what is 

the inner meaning of divergent results, for the great problem of racial differentiation 

by natural selection.* 

Of the general conclusions reached by the author, perhaps two deserve restating 

and emphasising here. In the first place, although there were individual tall men 

among the neolithic ^copulations, whose bones have so far been unearthed, yet neolithic 

man as a whole was short. Of course, it is possible that a tall neolithic type, i.e., one 

with a stature greater than 168 centims. say, may yet be discovered—witness the 

discovery within the last two years of a neolithic dwarf But failing its appearance, 

the question arises, where and how did the tall Anglo-Saxon and Scandinavian 

develop ? To what extent is this tallness racial, to what extent due to environment ? 

The apparently greater stature of British over Continental neolithic man deserves 

special consideration from anthropologists. 

Secondly, granting that the modern populations in the same district are taller than 

the neolithic populations, there still appears in both France and Southern Germany 

some regression of the modern stature on that of the ancient Franks, Bajuvars, and 

Allemans. I differ from both PtAHON and Lehmann-Nltsche in considering that the 

difference is too great to he accounted for as a process of natural selection applied to 

the long bones, Rahon has made a slip in his arithmetic, and Lehmann-Nitsche 

compares the Bow Grave population with the most favourable element of Munich 

town recruits. If the divergence could be accounted for by selection applied to the 

bones, why is not a similar divergence to be found in the case of Anglo-Saxons and 

modern English ? I think an explanation must be souglit elsewhere. One suggestion 

is, that as the physical struggle for existence has been lessened, reproductive selection 

has had more play, and the greater fertility^ of an older pre-Germanic element in the 

populations of both Southern Germany and France ha^i led to a return of stature to 

its more ancient value. In the case of Anodo-Saxons and Scandinavians in EnMand 
o o 

there was very probably a more comjfiete destruction of the earlier pojndations. 

Whatever may be the real reason for this apparent degeneration, it seems most 

desirable that there should be a systematic measurement of all long bones dug up 

anywhere in our own country, and this whether they belong to prehistoric or historic 

times. Stature is quite as marked a racial character as cephalic index, or any other 

skull measurement, and its hish correlation with the loner bones admits even in the 

present state of our data of its reconstruction with very considerable accuracy, if only 

a sufficient representation, say twenty to forty long bones, of an ancient population 

has been measured. It is only by the gradual accumulation of such data that we can 

* The influence of directed as distinguislicd. from random selection on size, variation, correlation, and 

regression has been theoretically developed in a memoir not yet published. Having been fully 

discussed in my college lectures of this Session, much of the recent work of my department, like the 

present memoir, touches on it. 

2 I VOL CXCJI.—A. 
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hope for light on the manner in which our own population has developed and is 

developing.* 

(29.) The following table restates some of the numerical results reached, and further 

includes, for the purposes of comparison, the stature of certain modern races as given 

by various authorities. No stress whatever is laid on the latter values, which have 

often been determined by doubtful observers from very small series.t They are merely 

given here in order to show the general position of the reconstructed races in the order 

of racial statures. 

Table of Stature and Sexual Ratio for Divers Races. 

Race. Authority. Male. Female. Ratio / $ • 

12 giants > 200 . Memoir, pi. 226 217-6 
4 sub-giants. Bavarian recruits Ranke 190-5 
3 sub-giants in Museums . . Memoir, p. 226 186-9 
Samoans. Topinard 188-3 
Patagonians. Moveno and Lister 185-0 
Caribeans. Humboldt 184-0 
Rod Indians. Topinard 175-180 
Polynesians. 170-180 » ♦ , , 

Flamboro’ Head Englisli . . Pitt Rivers 175-2 162-5 1-078 
Livonians . Topinard 173-6 
Americans (born). Gould 173-5 
Fellahs (Egypt). WOLNEY 173-0 
English (Middle classes) . . . Pearson 172-8 159-9 1-080 
Todas of Nilgherry. Marshall 172-7 
Norwegians ... .... H UNT 172-0 , , 

American Scottish. Gould 171-6 

Bantu. Fritsch 171-8 

Finns . Bonsdorff 171-4 
American Norse. Baxter 171-3 
Round Barrow British .... Memoir, p. 213 171-1 160-2 1-090 
Anglo-Saxons. „ p. 216 170-9 156-0 1-096 
American Ii'ish. Gould 170-5 
Lithuanians. Topinard 170-4 
American English. Gould 170-1 
English Commonalty. Galton 170-0 158-3 1-074 

Sikhs . Topinard 170-0 
Bajuvars from Row Graves. Memoir, n. 214 169-2 154-5 1-095 
American Germans. Baxter 169-5 , , 

American Danes. 169-2 
American Swedes. Gould 169-2 . , 

Nubians. Topinard 169-0 
Bechuanas. Fritsch 168-4 , , 

American negroes (pure) Gould 168-0 • • 

* For example, no one can say at jiresent what was the stature of Englishmen fi’Om a.d. 1000 to 1700, 

and yet large collections of bones exist, which would sullice to answer this problem. 

t Topinard, for example, considers the sex ratio for 73 series in “Etude sur la taille consideree 

suivant . . le sexe . . . et les races,” ‘Revue d’Authropolgie,’ 1876, p. 34, but he merely gives means 

for grouped, results and does not tell us the details for the individual series. 
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Table of Stature and Sexual .Ratio for Divers Races—(continued). 

Race. Authority. Male. Female. Ratio / ? ■ 

4tli to 7th cent, medifeval French . Memoir, p. 219 167-98 154-79 1-085 

Naqada Race. „ p. 211 167-5 156-0 1-074 

Neolithic man in Britain „ p. 206 167-3 153-6 1-089 

Kahyles. Prengruber 167-3 , * , * 

Gnanches I. Memoir, p. 210 166-77 154-65 1-078 

Romano-British. „ p. 213 166-7 152-2 1-090 

Franks . „ p. 218 166-42 152-12 1-091 

French (as corpse). „ p. 180 166-26 154-02 1-079 
lOth to llth cent, medifeval French „ p. 219 166-24 154-49 1-077 

Gnanches II. „ p. 210 166-18 153-83 1-081 
Mordevins. Topinard 166-0 

Munich District conscripts . Ranee 166-0 

Bavarians (as corpse) .... Bischofp 165-93 153-85 1-078 
Russian soldiers (Great Russia) . Topinard 165-5 , * 

Dolmens (Algeila). Memoir, p. 210 165-5 152-56 1-085 

French conscripts. klANOUVRIER 165-0 

Italians (Tuscany). Topinard 165-0 , , 

Dolmens (India). Memoir, p. 210 165-24 154-86 1-067 

Romano-Gauls. „ p. 213 164-82 152-27 1-082 

Chinese. Brigham 164-5 • * 
Esthonians. Topinard 164-2 • e 
Ruthenians. 164-0 

Dolmens (Caucasus). Memoir, p. 210 164-33 152-47 1-078 
Neolithic man (Mureaux) „ p. 208 163-39 152-56 1-071 
Baden conscripts. Ecker 163-0 

Palfeolithic man. Memoir, p. 205 162-7 * , 

Neolithic man, France and Belgium „ p. 207 162-54 151-44 1-073 

Poles. Topinard 162-0 

Italians (Piedmont). J9 162-0 « « 

Sicilians. 95 161-0 

Neolithic man (Brueil) .... Memoir, p. 208 160-91 150-68 1-068 

Hottentots. Fkitscii 160-4 

Samoyedes. Topinard 159-0 • • 

Annamites. 158-9 , , * , 

Esquimaux. Sutherland 158-5 152-8 1-036 

Sardinians.■ . Topinard 158-0 

Aino. Memoir, p. 199 156-7 147-1 1-065 

Juags of Oriva. Short 156-0 • • 
Veddahs . Bailey 153-0 143-3 (?) 1-068 

Ostiaks. Topinard 153-0 « * 
Siamese. 95 152 5 • • 

Laps. Mantegazza 152-3 145-0 1-050 
Andamanese I. Man 149-2 140-3 1-063 

Andamanese II. Memoir, p. 236 147-6 144-3 1-023 
Bushmen I. Fritsch 144-4 140-4 1-028 
Bushmen II. Memoir, p. 233 146-0 142-0 

Aigtas of Luzon. Marche and Montano 144-1 138-4 1-041 

Neolithic dwarfs. Memoir, p. 240 148-0 (?) 141-0 (?) , * 

35 Bavarian super-dwarfs . Ranke 133-9 

Akkas. Memoir, p. 235 120-0 124-0 

4 dwarfs < 125 centims. „ p. 226 106-6 • • * * 

Gorilla. Memoir, p. 202 147-0 • » 
Chimpanze. 9) 95 

127-0 • • • * 
Orang. 

99 99 
112-0 • • » • 

2 I 2 
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[Note added November 29, 1898.—Dr. Warren Las made an experiment on two 

Naqada femora and kindly sent me the following results :— 

Femur I. Oblique Lenr/th. Femur II. Oblique Length. 

Wednesday, 1 p.m. . . 40‘82 Tuesday, 10 A.M. . . . 44-31 

Put into water at 1 P.M. Put into water at 10 a.m. 

Wednesday, 7 p.m. . . 40-97 Tuesday, 12 A.M. . . . 44-38 

Thursday, 10 a.m. . 41-00 J5 7.30 P.M. . . . 44-42 

,, 7 P.M. . . . 41-00 Wednesday, 1 P.M. . . . 44-47 

Friday, 10 a.m. . . 41-01 5? 7 P.M. . . . 44-48 

„ 6 P.M. . . . 41-02 Thursday, 10 A.M. . . . 44-50 

Saturday, 10 a.m. . . . 41-03 Saturday, 10 A.M. , . . 44-53 

Monday, 10 a.m. . . 41-04 Monday, 10 A.M. . . . 44-53 

Removed from water at 10 a.m. E.emoved from water at 11 a.m. 

Monday, 7 p.m. . . 41-04 Monday, 7 P.M. . . . 44-53 

Tuesday, 10 a.m. . . 41-02 Tuesday, 10 A.M. . . . 44-43 

„ 7.30 P.M. . . . 41-02 Wednesday, 10 A.M. . . . 44-34 

Wednesday, 10 a.m. . . 40-96 Thursday, 10 A.M. . . . 44-32 

Thursday, 10 a.m. . . 40-89 Friday, 7 P.M. . . . 44-32 

Friday, 10 a.m. . . 40-87 

Saturday, 10 a.m. . . 40-82 

Monday, 10 a.m. . . 40-81 

Tuesday, 10 a.m. . . 40-80 

Wednesday, 10 a.m. . . 40-80 

Friday, 10 a.m. . . 40-80 

Thus there was a difference in the dr}^ and wet states of 2'4 and 2‘2 millims. 

respectively. Considering that the bones were some 3500 years older than those I 

experimented on, the agreement in result must be considered good. The maximum 

rate of expansion is reached in the first hour or two, and then gradually diminishes ; 

the maximum rate of contraction is not reached before about the second or third 

day, without artificial drying as in my case.] 
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V. An Experiment in Search of a Directive Action of one Quartz Crystal on another. 

By J. H. PoYNTiNG, Sc.D., F.R.S., and P, L. Gray, B.Sc. 

Received September 27,—Read November 17, 1898. 

Since so many of the physical properties of crystals differ along the different axes, 

our ignorance of the nature and origin of gravitation allows us to imagine that the 

gravitative field of crystals may also differ along those axes. Dr. A. S. Mackenzie 

(‘ Phys. Rev.,’ vol. 2, 1895, p. 321) has described an experiment in which he failed 

to find any such difference. Using Boys’s form of the Cavendish apparatus, he 

showed that the attraction of calc-spar crystals on lead and on other calc-spar 

crystals was independent of the orientation of the cryslalline axes within the limits 

of experimental error—about one-half per cent, of the total attraction. He further 

showed that the inverse-scpiare law holds in the neighbourhood of a crystal, the 

attractions at distances 3714 centims., 5‘5G5 centims., and 7'421 centims. agreeing 

with law to one-fifth per cent. 

One of the authors of this paper had already pointed out (‘ The Mean Density of 

the Earth,’ 1894, p. 7) that if the attraction between two crystal spheres were 

different for a given distance, according as their like axes were parallel or crossed, 

such difference should show itself by a directive action on one sphere in the field of 

the other, d’his directive action is suggested by the growtli of a crystal from solu¬ 

tion, where the successive parts are laid down in parallel arrangement—a fiict which 

which we might perhaps interpret on the molecular hypothesis as showing that, 

within molecular range at least, there is directive action. 

The experiment now to be described is a modification of one indicated in the work 

above referred to, carried out for two quartz spheres, and we may say at once that 

we have certainly not succeeded in proving the existence of a directive action of the 

kind sought for. 

To bring out the principle of the method, let us suppose that the law of the attrac¬ 

tion between two spheres with their like axes parallel, as in fig. 1 (a), is GMMVr^, 

where M, M' are the masses, r the distance between the centres, and G a constant 

for this arrangement. Let ns further su})pose that the law of attraction when the 

axes are crossed, as in fig. Ih, is G'MM'/r", where G' is a constant for this arrange¬ 

ment, and different from G. 

Let us start with the spheres r apart, as in fig. 1 (a). The work done in removing 

17.1.99 
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M' to an infinite distance, in a line perpendicular to the parallel axes, is GMM'/r. 

Now turn M' through 90° to cross the axes, and bring it back to the original position, 

but with the axes crossed. 
Fig, 1. 

The force will do work G'MM'/r Then turn M' through 90° into its original 

orientation. Assuming that the forces are conservative, th.e total work vanishes, so 

that there must be a couple acting during the last rotation, which does v\mrk equal to 

the difterence between the works done on withdrawal and approach. 

If we take the average value of the couple as .L, then 

TT 

2 
L = (G - G') 

MM' 

Our suppositions as to the law of force are doubtless arbitraiy, but they serve to 

show the probability of the existence of a directive couple accompanying any axial 

difference in the gravitative field. 

In the absence of any distinction between the ends of an axis we may assume 

that the couple is “ quadrantal,” that is, that it goes through its range of values 

with the rotation of the sphere through 180° and vanishing in every quadrant, and 

we shall suppose that it is zero when the crystals are in the positions shown in 

fig. 1 («), and fig. 1 (b). 

Taking the couple as a sine function of amplitude F, we have 

“F sin 29 (16 = F, 
0 

(G - G') ■ 

v'hence 

TT 

L r.:r 

F = 

But it is conceivable that the two ends of an axis are different, having polarlt}’ of 

the magnetic type. The couple would then be “ semicircular,” going through its 

range of values once and vanishing twice in the revolution. We shall suppose that 

the couple is zero when the axes are parallel. We should now have G and G' 

constants for the axes parallel, the one when like ends are in the same direction, 

the other when they are in opposite directions, and we have 

ttL r=(G G') 
]\IM' 
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But if F is the amplitude of the couple 

ttL = [ F sin 0 d6 = 2F, 
J n 

and 

2F = (G - G') 

To seek for the directive action we have made use of the principle of forced 

oscillations, thereby obtaining to some extent a cumulative effect, and at the same 

time largely eliminating the errors due to accidental disturbances. 

Briehy the method was as follows :—A small quartz sphere, about 0'9 centim in 

diameter, was carried in a frame to which a light mirror was attached, and suspended 

by a quartz fibre inside a brass case, the position being determined by the reflection 

of a scale in the usual way. The complete time of torsional vibration was about 

120 seconds. 

Outside the case was a larger quartz sphere, about 6'6 centims. in diameter, its 

centre being level with that of the suspended sphere, and 5‘9 centims. from it. The 

larger sphere could be rotated about a vertical axis through its centre at any desired 

rate. The crystalline axes of both were horizontal, that of the smaller sphere being 

perpendicular to the line joining the centres. 

To test for the quadrantal couple, the larger sphere was rotated once in 

230 seconds—a period nearly double that of the smaller sphere. To test for the 

semicircular couple, the larger sphere was rotated once in 115 seconds, or nearly the 

period of the smaller sphere. 

Assuming that a couple exists, a continuous rotation of the larger sphere would 

set up a forced oscillation in the smaller sphere of the same period as the couple, and 

since the damping was very considerable, this forced oscillation would soon rise to 

approximately its full value. Meanwhile, any natural vibrations of the suspended 

system would be rapidly damped out. Though continually renewed by disturbances 

due to convection-currents and tremors, they would be irregularly distributed, and 

there was no reason to suspect that their maximum amplitude would recur at any 

particular phase of the period of the applied couple. To secure the distribution of 

successive maxima of natural vibrations of the smaller sphere over all phases of the 

forced period, the latter was made sensibly different from the natural period in the 

ratio 23:24; and though the cumulative effect of the forced oscillations was reduced 

by the largeness of this difference, we did not think it advisable to make the periods 

more nearly coincident, lest the distribution of the disturbances, which were some¬ 

times large, should not be sufficient. This conclusion was arrived at from the results 

of preliminary experiments with more nearly equal periods. 

During each complete period of the supposed applied couple, the position of the 

smaller sphere was I’ead ten times at equi-clistant intervals of time, and the scale- 

readings were entered in ten parallel columns, one horizontal line for each period. The 



248 DR. J. H. POYNTING AND MR. P. L. DRAY IN' SEARCH OF A 

observations were continued usually for 70 or 80 periods. Adding up the columns 

and dividing’ l:)y the number of periods, any forced oscillation would be indicated by 

a periodicity in the quotients. The periodicities found were too irregular to be taken 

as evidence of the existence of a couple. 

Description of the A'pparatus. 

Tlie (juartz spheres were placed in a cellar at Mason College, Birmingham, below 

the room in which the observing telescope and rotating apparatus were fixed. 

The smaller sphere, 0'9 centim. diameter and weighing 1’004 grams, was held in 

an aluminium wire cage, and was suspended by a long, fine quartz fibre in a brass 

case from a torsion-head at the top of the case. 

A light plane mirror was fixed to the cage, and opposite this mirror was a glass 

window in the case ; in front of the window wms a plane mirror at 45°, by means of 

which the light from the scale was reflected into the case and back again to the 

telescope, as shown in fig. 2. 

The case wms surrounded by a double-sided wooden box, lined within and without 

with tin-foil, and with cotton-wool between its inner and outer walls. The box was 

supported on indiarubber blocks to lessen tremors. 

The larger sphere, 6'6 centims. diameter and weighing 399’9 grams, was held at 

the lower end of a vertical brass tube which terminated in a very carefully turned 

shallow brass bell, in which the sphere was held by tapes. The tube passed upwards 

through the top of the wooden casing without contact, a kind of air stuffing-box 

indicated in the figure serving to prevent currents through the hole. The tube came 

into the room above, and was there connected with a train of wheels, driven by an 

electromotor, the rotation of the motor being geared down from 1000 to 1. The 

observing telescope was fixed to a heavy stone slab resting on indiarubber blocks, 

standing on a brick-j-tillar, which was built on the brick arches forming the cellar- 

roof. A diagonal scale (of half-millimetre graduations, divided into tenths by the 

diagonal ruling) was clamped to the telescope-tube and illuminated by an incandes¬ 

cent lamp, aided by a concave mirror. A tenth of a division could be read with 

certainty, and as the distance from scale to mirror was 358 centims., the position of 

the suspended sphere could be determined within a little more than one second of 

arc. 

The steady rotation of the larger sphere was maintained by a regulator, for which 

we are indebted to Mr. B. IT. Holtsman. It consisted of two parts:—(l) the 

governor proper, which automatically maintained approximate steadiness, and (2) a 

fine hand-acljustment, by which the motion could be accelerated or retarded when it 

got “ out of time.” 

(Jne lead to the mofor went through tv/o mercury-cups, and the circuit was 

completed by a fork of platinum-wire dipping into the cups. This wire was fastened 
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to one end of a wooden lever, the other end of which was attached to a sliding collar 

on the axle of the motor. To this collar were fastened the upper ends of the loaded 

springs of the governor, as sliown in the figure. If the speed increased, the loads 

Fig. 2 

flying out pulled the collar down aiid so raised the wire out of the mercury-cups, and 

broke the circuit. As the speed diminished, the wire again dipped into the mercury 

and re-established the current. To diminish sparking the mercury was covered with 

alcohol, and the two cups were permanently connected by a high resistance shunt. 

VOL. CXCII.—A. 2 K 
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The fine hand-adjustment consisted of a small wooden plunger working in a tube 

connected with one of the mercury-cups ; by means of a screw the plunger could be 

raised or lowered, and the level of the mercury in the cup varied accordingly. 

If the revolving sphere was found to be gaining or losing, it was quite easy to 

bring it “ up to time” again by working the screw of the plunger. 

The last of the train of driving-wheels was fixed on the tube supporting the 

larger sphere; its rim was divided into equal parts by numbered marks, the use of 

which will be explained directly. There were 20 numbered marks, at 18° interval; 

of these only 10 alternate ones were used for the quicker rotation, while the whole 

20 were used for the slower speed. 

The Observations. 

Two observers were required, one at the telescope to note the position of the 

smaller sphere, the other to regulate the speed of rotation of the larger sphere, and 

to notify when readings were to be taken by the first observer. The motion having- 

been started, and brought to about the right speed, a time-table was rapidly prepared, 

showing the times, on the chronometer used, at which each of the numbered marks 

above mentioned should pass a fixed mark throughout the whole set of observations for 

one occasion. A signal was given at each passage of a mark past the fixed point, the 

observer at the telescope putting down the simultaneous scale-reading in a manner 

which will be understood from Table I., which may serve as a typical record. It does 

not appear to be necessary to give the full details in other cases. If the motion did not 

keep to the time-table, it was easily corrected by the hand adjustment already described. 

Every reading in the same column is taken at the same phase in the rotation of 

the larger sphere, and therefore the mean readings of the columns should preserve 

any periodicity in the motion of the smaller sphere equal to that of the larger sphere, 

and more or less eliminate all others. These mean readings are given at the foot of 

Table I., and appear to indicate a slight periodic vibration, but this might be due to 

a want of symmetry in the larger sphere and its attachments about its axis of rota¬ 

tion, since the system supporting the smaller sphere and mirror was necessarily not 

symmetrical. The observations for each couple were on this account divided into 

two sets : for the semicircular couple the larger sphere was in the second set turned 

through j 80° about a vertical axis from its position in the first set; for the quadrantal 

couple the rotation was 90°. For the final results the means of the results of the two 

sets were taken, in each case after the second set had been advanced by an amount 

corresponding to the change of position of the sphere. 

Table II. contains all the mean results obtained in the same way as the figures at 

the foot of Table I., the greatest range being given in the last column as an indication 

of the magnitude of the disturbances. 

In Table III. are given the means for each azimuth of the larger sphere in its 

support, the B and D series being advanced as mentioned above. 
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In combining the results it appeared useless to attempt to weight them according 

to the number of periods taken, since no accurate conclusion could be expected. It 

will be seen that in each case thei'e is an outstanding periodicity, but the amplitude 

is less when the disturbances (as indicated by the greatest range during a period) are 

less, and it diminishes when the results are combined so as to lessen the effect of want 

of symmetry. 

In the “ quadrantal ” observations (Series C, D), where the effect of want of 

symmetry of the apparatus should almost be eliminated, since it is ajqDroximately 

semicircular, the mean range is much smaller than in Series A and B. 

For these reasons we do not think that our observations can be taken as indicating 

the existence of a couple of the kind sought, but only as giving a superior limit to its 

value, should it exist. 

We now proceed to the Calculation of Superior Limit of Couple. 

Equatio7i of Motion of the Smaller Sphere. 

Let I be the moment of inertia of sphere and cage. 

„ p ,, torsion couple per radian, 

,, X ,, damping couple per unit angular velocity. 

,, F cos pt be the supposed couple due to the larger sphere, having period 27r/p. 

Then 

Id -{■ \d p6 — Y cos pjt. 

Putting 
K = X/I; n" = p/l; E = F/I 

we have 

9 k9 71^9 = E cos pt . ..(1). 

The solution of this is 

9 = 
E sin 

27 K 
COS {pt — e) + Ae cos t — a], . . . (2) 

where tan e = and A, a are constants. 
71- — 

The first term in the value of 9 in (2) gives the forced, and the second term the 

natural vibrations, the period of the latter being 

Stt ^ 
-p—,-= 1, say. 
^{71- - |/c-) 

The value of T was always very near to 120 secs., and the mean of various 

determinations during the observations gave 

T = 
iTT 

^(71^ - f/C'b 

2 K 2 

= 120’8 secs. (3). 
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Value of K.—When there are only natural vibrations 

any complete swing _ ^.j, 

next complete swing 

The value of this ratio was usually near 1‘4. The mean of a number of deter¬ 

minations taken at various times was 1‘3953. Putting 

g3o-2K _ 1.3953^ 

we get 
K - 0-011033. 

Value of n.—Substituting for k in the value of T in (3) we get 

and 
ir = 0-0027359, 

n = 0-052306. 

Value of e.—The forced period 27r/yi was always 115 secs., whence 

and 

tan e = , = 2-420, 
01- — 

e = 67° 33', 

sin e = 0-9242. 

From equation (1) it wnll be seen that the steady deflection due to F is — while 

from (2) the amplitude of the forced oscillations is ^ ^ or • 
pK pK n- 

Usiug the values found for iik and e we have 

iir sin e 

pic 
— 4-196, 

or the forced oscillations give a cumulative efiect, about four times the steady 

deflection clue to the couple at its maximum value. 

Value of Moment of Inertia, I.—This was found by vibrating the cage hung by 

a short cjuartz fibre, (1) when empty, (2) when containing the sphere, the times of 

vibration being respectively 8-38 secs, and 11-22 secs. The sphere w-eighs 1-004 grams, 

and its radius is 0-45 centim., so that its moment of inertia I M?-" = -08132. 

From this, and the times of vibration, we get 

I = 0-1821. 

Value of F.—The vibrations were observed in scale divisions, each 0-05 centim., 

the distance between mirror and scale beino; 358 centims. If N is the number of 
O 

scale divisions in the amplitude of vibration, i,e., in half the range, we have from (2) 
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E sin e 5N 

j)K ~ 2 X 35800’ 
whence 

F = El = 0-8293N x 10'®, 

using the values already found for e, k, I. 

Taking the limiting values of the amplitudes as half the mean ranges given in 

Table III., the vibration due to the quadrantal couple has amplitude not greater than 

0'033 div., and that due to the semicircular couple, amplitude not greater than 

0'095 div. Whence 

F (quadrantal) is not greater than 2’737 X 10“^°, 
and 

F (semicircular) is not greater than 7'878 X 

Perhaps some idea of these values may be obtained by noticing that the times of 

vibration of the small sphere under couple F per radian would be respectively 

32 hours and 25 hours. But it is probably best to interpret the value in terms of 

the assumptions we made as to the force in the introduction. We found for the 

quadrantal couple 
F = (G - G') MM'/r, 

G - G' GMM' 

~ G ■ r ’ 

where MM' are the masses of the spheres, r the distance between their centres, GG' 

the parallel and crossed gravitation constants. 

Now M, the mass of the larger sphere, is 399'9, say 400 grams, 

M „ „ smaller „ 1’004 grams, 

r is 5‘9 centims., 

G and G' are exceedingly near 6'66 X 10“ 

whence 
G - G' _ Er 1 

G ~ G.MM'~ 

On the assumed law of force this implies that the attractions between the two 

spheres, with distance 5’9 centims. between their centres, do not differ in the parallel 

and crossed positions by as much as xFsoo whole attraction. 

We may compare this result with PtUDBERG’s values of the refractive indices of 

quartz for the mean D line 

P'0 

1-05328 - 1-544 8 

1-54418 
= yto iibout. 

For the semicircular couple 
GMM' 

whence 

__ _L_ 
— 2 8 5 0 • 
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On the assumed law of force, this implies that the attractions between the two 

spheres, with distance 5’9 centims. between their centres, with their axes parallel 

and respectively in like and unlike directions, do not differ by as much as -^5-0 of 

the whole attraction. 

This limit is large, undoubtedly owing to the want of axial symmetry in the 

apparatus which produced a semicircular couple as already pointed out. This couple 

was large, and though we attempted to eliminate it by the two sets of observations 

with the different azimuths of the larger sphere, in all probability we failed. 

Table I.—Showing Scale-Readings in Tenths of a Division at Phases at Heads of 

Columns. Time of Revolution of Larger Sphere 115 secs. 

0. 1. 0 u. 3. 4. 5. 6. 7. 8. 9. 
1 

55 61 61 64 61 42 
25 2(5 31 40 50 55 60 53 52 45 
44 40 45 50 54 51 49 49 48 49 
52 57 62 54 57 62 40 33 28 25 
30 44 57 66 70 64 52 40 38 36 
39 46 55 60 63 61 52 44 44 45 1 
44 43 49 50 52 48 42 30 32 37 i 
45 50 62 71 69 62 52 42 39 38 
44 55 58 65 65 66 61 51 45 45 
41 38 40 49 56 61 62 60 56 50 
48 42 39 37 40 42 58 69 69 68 

58 48 41 38 38 42 48 54 60 57 
55 50 43 41 41 42 47 49 55 57 ! 
63 60 58 49 46 47 46 44 51 52 
50 54 48 45 44 40 36 40 50 60 
67 67 62 54 44 33 35 35 38 50 
57 62 68 62 62 45 36 36 39 44 
51 56 59 53 47 48 53 51 50 49 
50 49 52 50 50 51 53 52 54 55 
48 47 44 41 44 52 55 58 60 56 
49 41 41 42 43 47 50 55 60 60 
60 56 58 47 43 47 49 50 50 50 
54 54 54 48 50 51 49 52 52 45 
42 43 48 49 55 56 52 52 52 57 ! 
56 51 46 42 42 43 49 51 55 55 ■ 
55 52 49 67 50 50 50 44 43 50 
50 50 43 43 46 60 58 54 55 50 j 
49 49 49 48 50 51 54 53 56 56 i 
57 58 56 56 51 43 40 38 41 51 ! 
60 60 60 58 62 48 48 48 52 57 
58 60 57 47 41 41 51 62 63 59 
53 46 40 40 40 43 49 51 61 60 
60 5G 51 48 42 42 43 51 59 63 
62 61 55 52 51 60 51 51 52 56 
58 58 53 45 40 41 49 60 70 70 
60 52 48 48 60 60 54 55 53 51 
50 50 47 50 50 52 53 53 50 48 
48 46 48 50 51 51 50 50 52 52 
49 46 44 44 49 50 55 59 57 58 
51 49 46 43 44 51 59 68 64 56 
50 42 40 49 57 68 71 70 59 50 
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Table I. 

at 

(continued).—Showing Scale-Readings in. Tenths of a Division at Phases 

Heads of Columns. Time of Revolution of Lai’ger Sphere 115 secs. 

Mean of 80 in 
divisionB. 

0. 1. O 3. 4. 5. 6. 7. 8. 
! 

9. ' 

47 41 43 56 65 66 66 45 39 35 
33 40 48 59 68 70 64 51 43 42 
48 51 60 64 70 67 56 42 39 38 
40 47 52 65 60 61 59 51 51 50 1 
48 47 50 54 53 60 52 50 41 39 i 
40 44 51 58 66 70 71 63 50 38 ! 
35 38 41 43 50 56 70 75 70 59 
50 46 45 51 61 70 71 70 62 52 
41 40 40 40 47 54 60 71 71 68 
60 50 48 45 39 39 42 49 51 60 
64 61 50 46 47 49 52 60 72 75 
70 62 57 32 23 21 30 42 57 77 
84 79 63 51 42 33 34 38 49 60 
66 64 57 51 49 44 47 49 52 52 
55 55 52 58 59 56 57 51 42 40 
43 47 55 6j 66 64 60 52 50 45 
41 45 49 59 67 67 56 50 49 43 
38 45 48 53 55 56 57 55 54 56 
53 49 42 42 51 61 69 70 65 54 
45 41 40 47 51 56 61 59 55 49 
48 52 60 60 60 68 50 46 44 43 
45 51 53 60 63 67 62 60 55 48 
44 46 49 50 52 54 53 50 50 52 
60 62 63 61 51 41 39 38 42 50 
55 59 54 51 48 47 42 47 48 55 
58 61 62 60 59 54 52 52 50 50 1 
58 54 55 55 58 56 56 50 51 51 
56 58 51 52 48 48 54 55 50 5L 
52 51 51 50 45 44 42 46 51 55 
56 53 56 59 59 60 58 59 59 54 
49 46 46 49 50 52 58 56 57 53 
51 50 50 46 49 51 58 66 67 69 
65 62 51 46 39 39 39 45 51 56 
62 61 53 48 40 38 47 62 67 63 1 
55 52 57 56 56 53 49 42 38 41 
51 60 65 71 73 72 60 52 50 40 
42 49 52 62 71 73 73 65 59 44 
39 38 40 43 51 51 59 61 61 50 
49 41 49 51 52 58 58 52 52 50 
53 56 57 51 50 49 49 49 51 52 
49 52 53 52 • • • • 

5T75 5T63 5-143 
min. 

5-186 5-246 5-294 5-355 
max. 

5-284 5-300 5-216 

Mean rano-e 5'355 — 5’143 = 0‘212 division. 
O 

Greatest range in one period 7’5 — 3'5 = 4‘0 divisions. 
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Table II. 

Series. 

CD 
ft 

qn 
O 

^ 6 
■s S 

O 

q-i 
o 

V3 

.2 
s 

'o o 

a> ^ 

Mean readings al phases (-ivhole numbers omitted). 

1 

jMean 
range 

in 
Scale- 

Greatest 
range 
in a 

period 
in 

§ Ph 

<1 P
er

io
c 

ti
o
n

 

1^1 
0. 1. 2. 3. 4. 5. 6. 7. 8. 1 

( 

9. 
1 

divisions. Scale- 
divisions. 

A 1 
o 
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•216 •212 

! 

4-0 
A 2 0 115 80 ■653 •558 ■566 •653 •813 •950 1030 1-008 •929 •769 •472 31 
B 1 180 115 80 •485 •590 ■624 •648 •556 •464 •379 ■328 •284 •364 •364 3-0 
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Table III. 
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Mean readings at phases. 
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!Mean 
range. 

0. 1. 2. 3. 4. 5. 6. 7. 8. 9. 

A ■414 •361 •355 •420 •530 •622 ■693 •646 •615 •493 

1 

•338 
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Means of A and B •558 •503 •474 •478 •526 •570 •634 •638 •663 *605 •189 

C •565 •595 •584 •579 •550 •517 •473 •465 •487 •527 •130 

D (advanced 90°) •575 •575 •565 •560 •553 •528 •566 •592 •607 •604 •079 

Means of C and D •570 •585 •575 •570 •552 •523 •520 •5-29 •547 •566 •065 
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Introductory. 

I UNDERSTAND by a factor of evolution any source of progressive change in the 

constants—mean values, variabilities, correlations—which suffice to define an orsan 

or character, or the interrelations of a group of organs or characters, at any stage in 

any form of life. To demonstrate the existence of such a factor we require to show 

more than the plausibility of its effectiveness, we need that a numerical measure of 

the changes in the organic constants shall be obtained from actual statistical data. 

These data must be of sufficient extent to render the numerical determinations larcre 
O 

as comj)ared with their probable errors. 

In a “ Note on Reproductive Selection,” published in the ‘ Roy. Soc. Proc.,’ vol. 59, 

p. 301, I have pointed out that if fertility be inherited or if it be correlated with 

any inherited character—those who axe thoroughly conversant with the theory of 

correlation will recognise that these two things are not the same—then we have a 

source of progressive change, a vera causa of evolution. I then termed this factor 

of evolution Rejjrod.uctive Selection. As the term has been objected to, I have 

adopted Genetic SelectioJi as an alternative. I mean by this term the influence of 

different grades of reproductivity in producing change in the predominant type. 

If there be two organs A and B both correlated with fertility, but not necessarily 

correlated with each other,* then genetic or reproductive selection may ultimately 

cause the predominance in the population of two groups, in which the organs 

A and B are widely different from their primitive types—‘ widely different,’ because 

reproductive selection is a source of ‘progressive change. Thus this form of selection 

can be a source, not only of change, but of differential change. As this differentia¬ 

tion is progressive, it may amount in time to that degree of divergence at which 

crossing between the two groups begins to be difficult or distasteful. We then 

reach in genetic or reproductive selection a source of the origin of species. 

When I assert that genetic (reproductive) selection is a factor of evolution, I do 

not intend at present to dogmatise as’ to the amount it is playing or has played in 

evolution. I intend to isolate it so far as possible from all other factors, and then 

measure its intensity numerically. If this be sensible, then the demonstration that 

it is a factor is complete. How far it may be held in check by other factors— 

e.g., natural or sexual selection—is a matter for further inquiry. If three forces, 

Fj, Fo, F3 hold a system sensibly in equilibrium, then Fi cannot be asserted to be 

non-effective because no progressive change is visible; its absence would soon bring 

to light its effectiveness. 

The manner in which genetic (reproductive) selection is to some extent held in 

check will be clearer when my memoir on the influence of directed selection on 

* If Joi, be the correlation of two organic characters A and B, and C be third character, there is a 

considerable range of vadues of and tor which may be zero (see Yole, ‘ Roy. Soc. Proc.’ 

\ol. 60, p. 486). 
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variation and correlation is published. Meanwhile Mr. Filon and I have shown 

that even a random selection of one organ alters the whole system of correlated 

organs.* Hence genetic (reproductive) selection indirectl}’ modifies not only organs 

A and B, but all correlated organs. These modifications must be consistent wdth 

the maintenance of stamina, physique and fitness to the environment, if the change 

is not to be counteracted by natural selection. 

So far as man is concerned, I have shownt that in the case of civilised man, the 

selective death-rate—he., natural selection—does not appear to counteract repro¬ 

ductive selection. A small element of the population produces the larger part of the 

following generation. I thus concluded that fertility were inherited, reproductive 

selection was not only a factor of evolution, but in civilised man a very sensible 

factor, he., an apparently incompletely balanced factor. 

In the three years which have intervened since waiting the essay just referred to, 

members of the Department of Applied Mathematics in University College, as w-ell 

as other friends, have occupied their spare time in the collection of data as to fertility 

and fecundity in the cases of man and of the thoroughbred racehorse. About 

16,000 extracts were made in the case of man, and more than 7000 in the case of 

thoroughbred racehorses. In the course of the work, which proved far more laborious 

than we had anticipated, many difficulties and pitfalls appeared. But as a general 

conclusion it seems certain that: Both fertility and fecundity are inherited, and 

'probably in the manner prescribed by the Laiv of Ancestral Heredity. 

The object of this memoir is.to set forth the theory and data by aid of wffiich 

this conclusion was reached. It will be seen that it completes the establishment 

of genetic or reproductive selection as a factor of evolution by determining the much 

disputed point as to whether fertility is or is not inherited. 

I. Theory of Genetic or Reproductive Selection. By Karl Pearson, F.B.S. 

(1.) While the physical result of fertility in an individual is measurable, the 

quality of fertility or fecundity in an individual differs from other physical characters 

in that it does not allow of direct measurements except when the potentiality is 

exerted and the effects recorded. At present we are not able to measure any series 

of organs or characters in individuals and so ascertain their fertility or fecundity. 

At the same time there is little doubt that these characters are functions of the 

physical and measurable organs and characters of the body. Such organs and 

characters we have good ground for supposing to be inherited according to the Law 

* “ Contributions to the Theory o£ Evolution.—IV. On the Influence of Random Selection on Variation 

and Correlation,” ‘ Phil. Trans.,’ A, vol. 191, p. 234 et seq. 

t *■ The Chances of Death and other Studies in Evolution. Reproductive Selection,” vol. 1, p. 63. 

X See ‘ Roy. Soc. Proc.,’ vol. 62, p. 386. 

2 L 2 
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of Ancestral Heredity. It seems therefore worth while to prove the following 

proposition : 

Proposition I.—Any character not itself directly measurable, hut a function of 

physically measurahle characters and organs inherited according to the Law of 

Ancestral Hered.ity, ivdl itself he inherited according to that laiv. 

Thus if we assume intellectual and emotional characters to be ultimately a result 
j 

of physical conformation, we may be fairly certain that although we know neither 

the organs of which they are a function, nor the nature of that function, still they 

will be inherited according to the same law as that which holds for physically 

measurable oro-ans. 

Let y be the character in a parent, and let it be an unknown function f of the 

unknown physical organs x^, Xo, Xg, . . . x,,^, or let : 

y = f {x„ X., Xg, . . . xf.(i.). 

Let Ay denote the deviation from the mean value of the cha,racter y in some special 

individual, and A* the deviation from the mean of any x organ in the same individual, 

j'hen if these deviations be small compared with the mean values of the organs 

considered, we have from (i.) above : 

Ay = a^AXi + cuAx., + a^AXg + (in), 

where a^, a., . . . are constants independent of the individual variations. 

Let cr denote a standard deviation, p a coefficient of interorganic correlation, S a 

summation with regard to all individuals witli character y dealt with, and let them 

be n in number. Then : 

ncr; 

or 

= S {Ayf = S («! AXi + a-i Ax-y + cig AXg + ...)' 

= n {a\a\ -}- cdcrl^ + aga\ + , . . + + 2«ia3cr,-^o-.i-,Oc,.r3 + • • •) ^ 

a} = .(hi.), 

where S denotes a summation through the group of m organs. 

Let y' denote the character in an individual who is the offspring of the individual 

of character y, and x\, x'o, x'g . . . the corresponding organs. Then, if we do not 

suppose the nature of the function f to have changed in a single generation, we 

have : 
y'= f {x\, x'2, x'g . . . x\,f 

and 
Ay' = Ax'I + tto Ax'2 + «3 A.r's +. 

= ^(fho-y,) + 2S .(v.). 

Let r be a coefficient of direct heredity expressing the correlation between parent 
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and offspring, and according to the Law of Ancestral Heredity the same for all 

organs. Then multiplying (ii.) and (iv.) together and summing we have : 

na-yCr.j'R = S {AyAy') = t Ax'i)) -f S (cpcfaS {Ax^^Ax^ + Aa-jAich)), 

where R is the coefficient of correlation between the characters y and y in parent and 

offspring. ■ Now ; 

S(AXiAa'j) 7i(T^^(r^,r 

S(Aa;iA.r2 ffi Ax.Ax,) — 

where and are what I have elsewhere termed coefficients of cross heredity. 

Now if the race be stable or sensibly stable for two generations we shall have for all 

organs cr^- = cr^. Hence : 

S(AaiAa:'i) = ncrl^ X r 

S (AaiAa2 ff Ax^^Ax j) RG'^^o'y.^ {iff- i^ ^^'Px,x.p 

for it is shown in my memoir on the Law of Ancestral Heredity'"' that on a probable 

hypothesis : 

i {rx,x’, + X 

Th us we find on substitution : 

cryCTy R = r {t {d\a':,) + 2S ' 

But (iii.) and (iv.) show us that cr^ = <Ty, if there be no sensible changes in a 

generation. Hence; 

^y^y' = + 2S 
and 

R = 

Thus the character which is a function of physical organs is inherited at the same 

rate as those organs themselves. 

As we may not unreasonably consider fertility and fecundity to be functions of 

physically measurable oigans, even if we cannot specify which organs, we may, 

d pi'iori, expect fertility and fecundity to be inherited characters. 

(2.) P'roposition II.—To determine the numeilcal values of the changes in mean 

variation and correlation if fertility he mheriled. 

Let us first define two terms which will be frequently used in the sequel. 

(«.) The fertility of an individual shall be defined as the total number of actual 

offspring. 

* ‘Roy. Soc. Proc.,’ vol. 62, p. 411. The hypothesis yet awaits an experimental verification. The 

need to use it prevents Proposition 1. being self-evident. 
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(6.) fecundity of an individual shall be defined as tlie ratio of the total number 

of actual offspring to the total number of offspring which might have come into 

existence under the circumstances. 

These definitions ai’e not intended to give ^^recise statistical measures at this stage 

of our investigations. They are merely meant to convey a general sense of the 

words, which will be more precisely limited when they are applied to any given species. 

Fertility and fecundity, as we have thus defined them, leave out of account individual 

conditions and definite conditions of period, age and environment, which must be 

fully stated before numerical measures can be made in any special case. When the 

words are used in this theoretical section the reader mu.st suppose the phrase, “under 

definite individual and environmental conditions,” to be always inserted. 

Let Ml the mean fertility of parents of one sex ; jM'i = the mean fertility of 

parents of one sex weighted with their fertility Ni the number of parents con¬ 

sidered in the first case, ISfi, the apparent number dealt with in the second case; 

let cTi and mi be the standard deviations in the two cases, and let x represent the 

fertility of an individual parent and 2 its frequency among Ni parents. Let S 

denote summation for Ni parents. Then, without any assumption os to the type of 

frequency, Nj = S {kxz) = XMiNj, where \ is a constant such that \x is the weight 

of a parent of fertility x. This follows at once, since : 

Ni = S (2), M, = S ixz)/^ (z). 
Further, 

M'. = S (X.r X 

_ S {(a; - Mfz + 2Mi (xz) - 

MiNi 

Nicri + 2MfNi - MfNi 
MiNi 

by the definition of standard-deviation. Hence, finally : 

Further : 

0-1 = 

M'. = ^ ■ + M. 

S {\cc {x - U\fz} S {{x - Ml + M,) {x - Ml + - M'd's} 

(i.). 

N'l MiNi 

Hence, multiplying out, we find after some reductions : 

/2 
O- 1 + 

S {(x - Mi)s z] 

MiNi (ii.). 

At first sight it might seem a comparatively easy matter to avoid weighting parents 

with their fertility, but practically it is almost impossible. For example, if records 

* i.e., if / be tbe fertility of a parent, each parent is repeated A/times, where A is a constant. 
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are sought of the fertility of mothers in mankind, the women will appear under their 

husbands’ names, and the labour of ascertaining whether two sisters have been 

included is enormous, when large numbers are dealt with. But if two or more sisters 

have been included, their mother has been weighted with her fertility, and when we 

seek the correlation between mother and daughter, it will be between mothers and 

daughters when weighted with fertility. Bat a still more serious difficulty arises 

from the fact that all records are themselves weighted records ; the same number are 

not married from each family, hence we are more likely to find a member of a large 

family included than a member of a small. The large families, when we seek a record of 

two generations, are more likely to appear than small families. Precisely the same diffi¬ 

culty occurs when we are dealing with thoroughbred horses ; a mare with large 

fertilit}' is less likely to have all her offspring colts, or all her progeny sold abroad, 

some one or more will probably ultimately come to the stud, and thus mares of large 

fertility are, d i^riori, more likely to contribute to our fecundity correlation cards. 

We do not get over this difficulty by taking the mother and only one of her offspring. 

The record is still weighted with fertility. The practical verification of this lies 

in the experience that the fertility of mothers will always be found to be greater 

than that of daughters, although the fertility of the community may really be 

increasing ; the weighting, of course, excludes sterility in the generation of mothers, 

but the mere exclusion of the sterile is far from accounting for the whole difference. 

What we actually find from our records are M'l and cr'i, but what we want for the 

problem of heredity are Mi and Equations (i.) and (ii.) do not suffice to determine 

these, because we cannot evaluate the third moment S {(a: — Mi)^2:]. We can hardly, 

even for a first approximation, assume it zero, for the standard-deviation, and there¬ 

fore the individual variation is large as compared with the mean in the case of 

fertility, i.e., the distribution is markedly skew. 

Turning to offspring of the same sex as the parents, say : let Mg be the mean 

fertility of offspring taking one only to one parent for the number Ni of parents, 

supposing the parents not weighted with their fertility ; let Mb be the mean in the 

same case when the parents are weighted with their fertility; and let M'b be the 

mean of all recorded offspring of the second generation. Let cto, ct'^, o-'b be the 

standard deviations in the fertility of the offspring for the same three cases, and 

r, r, r' be the corresponding coefficients of correlation between fertility in parent 

and in offspring. It seems to me that r is the coefficient which actually measures 

the real inheritance of fertility, but that in any correlation table that we can form 

we shall get r or r”. 

Let y be the fertility of any individual among the offspring, and x the fertility of 

the corresponding parent; let \.x as before be the weighting of the parent, and \'x 

the number of offspring included in the record, X' being supposed a constant.* 

* I have been unable so far to find any sensible correlation between size of family and number 

married in man, but the point is worth a more elaborate investigation. 
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We have at once the following results for the total numbers dealt with in each 

case: 
= S (z), N'l = S (Xxz) = XMiNi, 

1\ = S (XxX'xz) = XX'S (xh) = XX' (o-i + M?) Ni . . . . (iii.). 

Tui nine’ to the means : o 

M, = S (yz)/N,.(iv.). 

M' 

M 

o = S (Xa2/2)/N\ = [S {(x -M,)(y- M,} z} + M^MoS (z)]/MiNi = Mo + r (v.). 
jMi 

= S (XaX'^2/2)/N", = ^ 
al + Xll N,(ai + Mb 

— M j_ - I . Mf — erf S {(« — Mi)’^ (y — M,) z} 
— IVio -j- ? _o , n^2 “I” 

M, Ml af + Ni (erf + Mf) 

after some reductions. Nov/ make use of (ii.) and we have : 

M'b = 

S {(..: - M,y ^(// - I.L) - - Mo) 2] 

(1 + af/Mf) MfNi 
(vi.). 

But for normal cori elation the equation to the straiglit line of regression is ; 

7/ - Mo = r^(x - Ml). 

Hence for such correlation the mean value of y — Mo for parents x — Mi is equal 

to r — {x — Ml) and the summation term wmuld vanish. For skew correlation, 
O'! 

Mr. Yule has shown that the line just given is the line of closest fit to the curve of 

regression. Hence even in the case of fertility, vdiere the correlation is certainly 

skew, the summation term must he extremely small, or even zero. It follov's, there¬ 

fore, that we may write : 
/o / o (j-yai 

MY = M2 + r^(l + 
1 + (rf/Mf 

. . (viL). 

There is still another mean which ought to be found, namely, that of parenis, M''i, 

when all their recorded offspring have been entered on the correlation table. XX"e 

have ; 
M"i = S (Xa:XYx2)/N"i = S (a:-^«)/{Ni (af + Mf)}, 

or, after some reductions 

MY = 
+ Ml + 1 + ff/Mf 1 (viii.). 
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I now proceed to the standard deviations for the three cases, and the additional 

case for parents. 

o-:; = S[(2/-M2)-z]/N;. (ix.). 

0-1= S{X.'r{2/-Mhr2]/N'. 

= S{x(^ - M2 + M2 - M'2)“2]/MiNi 

S{x(y - M,y2} + 2S{:c(.y - M,)^} (M. - + M, (M2 - 

- M,N, 

Whence, after some reductions, we find : 

/O '>11 
fr 2 = 0-2-^ 1 + r (zl 

SI (x - Md ((y - M,.)^ - U- ^ (x - Md^) 2 
(x.). 

Now for a nearly straight line of regression : 

y _ M2 = r {x - Md + ^ 

where 77 is uncorrelated with x — Mj. It follows accordingly that S{(;r — Md^77z} and 

S{(a: — Mi)77“z} will both vanish, since 8(77) for an array and S (.t — Mj) for the 

whole correlation surface will be zero. Hence the summation term in (x.7 is either 

absolutely zero or extremely small. We have accordingly : 

/o 
^ 2 . (xi.). 

Before we proceed to determine cr'd and a'l it seems simplest to find the coefficients 

of correlation rj r and r". We have ; 

r=S[(a;- M,) (y - M2) z}/(N,cr,cr2) 

To find r we have : 

r = S{Xa;z(x - M'd (y - M'2)}/(N'io-do-'2). 
Now 

7/ - M2 = (x - Md + y, 

(xii.). 

where 77 is sensibly un-correlated with x — M,. Hence : 

Ndo-'.o-V = sjxxz (x - M'd fr- (x - Md + M2 - Md + y ) j- 
L \ °'i J J 

Expanding, the summations with y vanish, and 

VOL. CXCII.-A. 2 M 
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But 

thus : 

Thus we deduce : 

or ; 
r'cr'j 'cr'i ~ rcr^/cr, 

changed, the coefficient of regression is unchanged hi/ weighting fertility, or by 

reproductive selection. 

This important conclusion is only an illustration of a very interesting theorem, 

which has been referred to in another memoir^ and will be proved generally in a 

memoir on directed selection, written but not yet published, be., that in a wide range 

of cases selection, whether random or directed (natural and artificial) changes 

correlation but not regression. 

Before proceeding further a general remark will enable us to considerably simplify 

the otherwise lengthy algebra. Namely, the relation of M"i, M'b, cr"i, a'o, r" to M'j, 

Mb, cr'i, o-b, r' is pi’ecisely the same as that of M',, Mb, <j\, crb, r themselves to Mj, 

Mo, (Ti, cTo, r. Consequently an interchange of symbols in results already found will 

lead us to the remainino’ formulm needful. 
o 

As an illustration of this, let us verify the result we have found for M'b- By an 

interchange in (v.) : 

hence using (v.), (i.) and (xiii.), we find : 

* Contributions to the Theory of Evolution.—V. On the Reconstruction of Stature,” ‘ Phil. Trans.,’ 

A, vol. 192, p. 177. 
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exactly the result reached by a longer process in (vli.). Similarly (viii.) may be 

deduced from (i.). Applying this to find r" we have from (xiii.): 

r"cr''n/(T"i — ra-zjfy'u and therefore = ncr.^/cri (xiv.), 

a result which again extends the constancy of the regression coefficient under the 

action of reproductive selection. 

Next from (xi.) : 

cr 2 = CT 2 ^1+ r — i I 

= CTo 

/ 

' . or 

.."•2 

or using (xiii.) and rearranging : 

//o '> \ -t i '> 

cr 2 = cr-I i 1 + 
/ ^''2 ^ 1 

Again by interchanges in (ii.) : 

"2 '2 -1 1 \ I ' 

M\N'i 

S{(.r - M'dV} 

1 . 

(xv.). 

. (xvi.). 

Here z' stands for Xxz, and we should obtain a fourth moment of tlie original 

system of unweighted parents by substitution. But it is practically impossible to 

obtain a correlation table for such a system. Thus it is better to allow the sum¬ 

mation term to stand as it is, where it represents the third moment of a system 

of parents, weighted for fertility owing to the nature of the record, but not weighted 

with all their recorded offspring, (xvi.) is then a relation between the standard- 

deviations of parents weighted solely by forming a record and weighted both by this 

and by their offspring. 

Equations (i.) to (xvi.) contain the chief theoretical relations of our subject,* and 

I shall consider some points with regard to them in the following section. 

(3.) (a.) If we wish to ascertain whether fertility is inherited, we have to discover 

whether r is or is not zero. Now by (xiv.) r vanishes with both r' and r”, and accord¬ 

ingly either of these will suffice to answer the problem. Still better, we may ascertain 

the coefficient of regression, and then whether our statistics weight for progeny or 

not we shall obtain the same value. If there be no secular change taking place in the 

population, due to something else than reproductive selection, we should expect, 

provided the Law of Ancestral Heredity holds for fertility, that the regression will 

be near '3 for parent and offspring.! 

* Two of these formul®, (v.) and (xi.), were given, but in a less precisely defined manner, in my 

“ Note on Reproductive Selection” of 189G, ‘Roy. Soc. Proc.,’ vol. .59, p. GOG. 

t See “ Law of i\ncestral Heredity,” ‘ Roy. Soc. Proc.,’ vol. G2, p. 397. 

2 M 2 
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(b.) If no reproductive selection exists, i.e., if fertility be not inherited, then r = 0, 

and 

Cr''^ = <j' 2 — Cft, M2 = M^2 = M^'2» 

or, however we form a record of offspring, the mean value and variability of their 

fertility ought not to be changed. We shall see later that this is very far from the 

truth, and that these values are in whole or part sensibly affected by the manner in 

which the record is formed. 

(c.) Although there be no reproductive selection, Mj, M'l, and M"i will not all be 

equal, it is impossible that they should be. Further, cr,, a-\ and a-”i need not be 

equal; their degree of sensible divergence will depend on the nature of the primitive 

frequency distribution for parents. 

(c/.) If fertility be inherited, or reproductive selection be an actual factor of 

evolution, then we see, by comparing (v.) with (i.) and (vii.) with (viii.), that the 

mean fertility of mothers will always be apparently greater than the mean fertility 

of daughters. This follows, since r is always less than unity, and if the race be not 

subjected to secular evolution, other than that due to reproductive selection, cr, 

cannot differ very widely from cti."" 

(c.) An argument from means, as to whether fertility is inherited or not, is very 

likely to be misleading. We may choose two groups from the record for comparison, 

neglecting the fact that their frequency in the record is not necessarily that of their 

fre(|uency in the general population. Thus, if one person, say, in four were married, 

a marriage record of the community might exhibit the proper frequency of families 

of four, but it would not do so of families of one. The sort of fallacious arguments 

we have to be prepared for are, for example : 

(i.) That the fertility of the community is diminishing, because Mb is less 

than Mb- 

(ii.) That the fertility of the community is increasing, because Mb might be > M, 

or M'b be > Mb. 

(iii.) That fertility is not inherited, because, owing to natural selection, or other 

factor of evolution, one or other of these means for offspring is sensibly equal 

to one or other of these means for parents. 

Owing to tl)e extreme difficulty of insuring that the method of extracting the 

record really gives us definitely Mb, say, and not M'b (or M'b in part), I have 

discarded all use of the mean values in attempting to ascertain whether fertility is 

inherited. The following result, however, is tenqffing, and might possibly be made 

" A difference between and <73 '^ould mark natural selection, sexual selection, or some other factor 

of secular evolution at work; of secular, not periodic, evolution, as parents and offspring must have 

reached the same adult stage to have had their fertility measured, 
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use of in direct experiments on breeding insects, where a record could be kept ad 

hoc. It follows at once from (i.), (v.), (vii.) and (viii.); 

Mb 

Mb 
:\i'b - 

M'b - Mb 
= r— = coefiBcient of resrression (xvii.). 

It is the second ratio which, I think, might with profit be experimentally 

evaluated. 

{/.} Since the mean fertility of daughters loaded with the fertility of their 

mothers is the fertility of the next generation, and we see that this is always greater 

than M2; if r be not zero, it follows that the inheritance of fertility marks a progres¬ 

sive change. The only means of cuunteracting its influence would be tlie reduction 

of M2 to or below Mi by the action of other equally potent factors of evolution. For 

the existence of such factors in man I shall later give evidence. 

(4.) Proposition III.—To extend the results obtained for fertility to the joroblem of 

fecundity. 

While the fecundity of an individual can often, at any rate approximately, be 

measured, the fertility is not ascertainable. Thus we can ascertain the number of 

occasions on which a brood mare has gone to the stallion and the number of foals she 

has produced, but her fertility, the produce she might have had, if she had 

throughout her whole career had every facility for breeding, is unknown to us. But 

if we proceed to form tables for the inheritance of fecundity, we are met by precisely 

the same difficulties as in the case of fertility. The more fertile individuals are d 

priori more likely to appear in the record, and will be likely to be weighted again 

with their fertility when we come to deal with their offspring.”" 

Now it is certain that fertility must be correlated with fecundity ; or, if x now 

represents the fecundity and y'the fertility, we shall have for the mean fertility for a 

given fecundity x an expression of the form Xq + Xi.-r, always supposing the regression 

to be sensibly linear. But the fertility must vanish with the fecundity, hence Xo = 0, 

and Xi is really the ratio of mean fertility to mean fecundity. Tims we may write for 

the fertility f 
f=\,x + C, 

where { may vaiy widely, but it is not correlated with x. 

If now all the symbols we have used with regard to fertility in Section (2) be inter¬ 

preted as referring to fecundity, we must weight with a factor kf instead of a factor 

kx, or with a factor kk^x X{. So long as this factor is linear, absolutely no change 

can be made in the results, for, ^ being uncorrelated with x, all summations including 

* In the case of sires especially, if we are dealing with thoroughbred horses, their comparative 

fewness at each period renders it quite imposfuble to deal with one offspring of each parent only. 
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S (C) vanish. Thus all the values given for M'l, M'2, (r\, and cr'2 remain the same, if 

their results be interpreted in the sense of fecundity and not fertility. If p he the 

correlation between fecundity and fertility, and cti, 0-3 the standard deviations of 

these quantities, then Xj = po'zjcri; but we have seen that it is also the ratio of mean 

fertility to mean fecundity. It follows accordingly that p is the ratio of the coefficient 

of variation in fecundity to the coefficient of variation in fertility. If we may judge 

by the cases of man and horse, so far as I know the only cases in which fertility and 

fecundity have yet been examined, a coefficient of variation in fecundity amounts to 

about 30 per cent., while one in fertility is something like 50 per cent. Thus the 

correlation of fertility with fecundity would be about '6. We should expect it to 

have a high value, perhaps even a higher value than this. In the case of thorough¬ 

bred horses, p will be the correlation between fecundity and apparent fertility. By 

direct investigation in the case of 1000 brood mares I find its value to be ‘5152. 

Passing now to the correlations r, r, r", I observe that the proof given for fertility 

is valid with but few modifications, if these be fecundity correlations (see p. 266), for 

the proof involves no expansion of the factor {X^x -f- 0^- Hence we conclude that the 

regression coefficient for the inheritance of fecundity will not be modified by the 

nature of the record or the weighting of individuals with their fertility. 

When we come to the last series of constants, M"i, M"2, o-"i, or''25 we find that these 

will be modified, owing to the presence of the square factor (XjX + although 

{ is not correlated with x. The term now comes in, and S (^“) will give the 

standard-deviation of an array of fertilities corresponding to a given fecundity, i.e., 

S ({“) = 0-3(1 — p~) X number in the array. 

I find after some reductions that M'b and M'j are given by 

M'b = Af I .. °'iy2 /1 I_^ 
• • (xviii.). 

^ ^ 1 + 
(xix.), 

the correlation of fertility and fecundity being now introduced into the results. 

Clearly the result (xvii.) 

M", — M', 
^-T-- = coefficient of regression.(xx.) 

M 1 — jM , ^ ’ 

still remains true. 

For the remaining two constants a".3 and cr"i, I find, after some rather long 

analysis in the second case, which it seems unnecessary to reproduce,! 

* Sliould the regressiun not be linear, {\. — /<-) is the mean of the standard-deviations of the arrays, 

t In the course of the work the squared standard-deviation of a fertility array is assumed to be the 

same foi' all arrays o-] (I — p"), and Xj is given its value rffs/cri. See, however, the previous footnote. 
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U') 
(7 2 0-^1+ r- 

i a 
(xxi.), 

//o 

cr I 
7q~T\ 

w\) + 7 
1 - L S [(x - 

N'lM'i (xxii.), 

and y is the factor 
Ml -1^5? 

Ml + 
or as we can write it 

If p be unity or near unity, i.e., fecundity very closely correlated with fertility, 

y = 1, the second term vanishes and (xxii.) becomes identical with the corresponding 

fertility formula (xvi.), just as (xxi.) is already identical with (xv.). 

Thus we see that the whole series of fecundity relations are strikingly like those 

for fertility, except that in certain of them—those for IVT'i, M'h, cr", and cr'k—the 

correlation p of fertility and fecundity is introduced. If p be considerable, all the 

remarks we have made on the fertility formulae may, mutatis mutandis, be applied to 

the measurement of fecundity. 

(5.) Proposition IV.—To deduce formula for finding the correlation between any 

grades of kindred from the means of arrays into ivhich the kindred may he grouped. 

This problem is of very great practical importance. In the case of Man, families 

are so small that there is comparatively small difficulty in forming all the possible 

pairs of brethren, say, for any family ; but when we come to animals or insects where 

the fertility may be extremely large, it is practically impossible to form a correlation 

table involving 50,000 to 100,000 entries."^ One thoroughbred sire may have 50 to 80 

daughters, and thus give us roughly 1200 to 3200 pairs of sisters to be entered in 

a correlation table. Still higher results occur in the case of aunts and nieces. It 

may be asked why we do not content ourselves with one or two pairs from each 

parent; the answer is simple : we have not {e.g., in the case of thoroughbred animals, 

pedigree moths, &c.) a great number of sires, and the sire with 50 offspring cannot, 

for accuracy of result, be put on the same footing as the sire with only 2 to 4. Our 

process is really an indirect weighting of our results. 

(A.) To find the coefficient of correlation hetiveen brethren from the means of 

the arrays. 

Let X be the measure of any character or organ in one brother (sister), and x that 

of a second brother (sister) ; let m be the mean of one set of brothers, and ni of the 

* Even with the reduction in labour, introduced by this proposition and by the use of mechanical 

calculators, Mr. Leslie Bkamley-Moore and I took practically a week, of eight-hour days, to deduce 

two coefficients of correlation, after the means of the arrays had already been found. 
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second set. Let n be the number of brothers in an array, and therefore -gn {n — 1) the 

number of pairs of brothers in the array. Let cr and cr' be the standard deviations 

of the two sets of brothers, and r the coefficient of correlation between brothers for 

the organ in question. Let S denote a summation with regai'd to all pairs of brothers 

in the community, and S with regard to all brothers in an array. Let N be the 

total number of brothers in the community. Then if we selected our pairs of brothers 

for tabulation at random {e.g., not by seniority or other character), we should find 

m — m and a' = cr. Further, by definition of correlation 

Nrcrcr' = S (a: — m) [x — m) — [x — M + M — m) [x' — M' + M' — m), 

where M and M' are the means of the two sets of brothers in any array and are 

clearly equal. 

Further, S (x — M) ~ S {x' — M') = 0, when summed for an array, and 

^ {x — M) {x' — M') = 0, for there is no correlation witliin the array when the 

deviations are measured from the mean of the array. Hence : 

or 

Nrcrcr' = S {^n [n — 1) (M — m) (M' — w')}, 

Nrcr" = S [^n {n — 1) M"} — 2??iS {^n [n — 1) M] + w'N ; 

S {^n (n — 1) M} = Nri. 

S - 1) M^l/N - 
'T* fy •••••. 

cr*' 

This can be written 
o / o 

r = a-Jcr-. 

but 

Thus, finally. 

(xxiii.). 

(xxiv.) 

where cr„ is the standard deviation of the arrays concentrated into their means and 

loaded wdth their sizes ; cr is the standard deviation of all brethren loaded wdth the 

number of times they are counted as brethren ; m is the mean of all the offspring 

loaded with the number of times they are counted as brethren. 

Let cTo be the standard deviation of offspring, and p the correlation between parent 

and offspring, then the standard deviation of an array of offspring, if correlation be 

sensibly linear,* will be cto \/(l — p^). We have, further. 

m = S (x) = SS (x - M + M) = S {^n {n - 1) M], 

Ncr^ = S (x - mf = SS (x - M + M - m)^- S [S (x - M)- + (n - 1) (M - mf]. 

%{x — M)“ = ^71 {n — 1) cTo (1 — p*)- 

* See, however, the tirst footnote p. 270. 

But 
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Thus : 

or ; 

and r in ay be written : 

Here cr^j can be found from the arrays, and o-q and p will in many cases have been 

previously ascertained. 

(B.) To find the correlation between “uncles” and “ nepheivs” {“aunts” and 

“ nieces ”) from the means of the corresponding arrays. 

Let Tij be the number of uncles in an array, m be the number of nephews in the 

associated array, so that n^no is the number of pairs of uncles and nephews provided 

by the associated arrays. Let N = S (n-in.,) be the total number of pairs of uncles 

and nejihews in the community under consideration. Let x be the measure of the 

organ or character in the uncle, x in the nephew. Let M and M' be the means of 

two associated arrays of uncles and nephews respectively. Let m and m be the 

means of all uncles weighted with their nephews and all nephews weighted with 

their uncles respectively, and let (t, a be the corresponding standard deviations 

under the same circumstances ; r the correlation of uncle and nephew. Then : 

Nr'cro-' = S (x — m) {x — m!) = SS (rr — M + M — m) {x — M' + M' — ni). 

Now S (x — M) = S (x' — M') = 0, and within the arrays there is no association 

of individual uncles with individual nephews, i.e., ^ {x — M) {x — M') = 0. Thus ; 

Nct^ = Ncrs (1 - p^) + NcrL 

O'- = O-^ 1 — p-) + cr“ 

r = 
o’d (1 — P') + o-r, 

(xxv.), 

(xxvi.). 

Nr'orcr' = S {npi2 (M — m) (M' ~ m')] = S {n{tifKM.') — Nwm', 

since 

Thus : 

m ■= S(wiW2M)/N, ni = S (n,n2M.')/N. 

S — mm' 

aa 
(xxvii.). 

If cr„ and a a be the standard deviations of the means of the arrays of uncles and 

nephews and B the correlation of these means, the numerator is clearly Ilcr„cr'o. 

Thus : 

’ _ "p a 

era- 
(xxviii.). 

Here the numerator as a whole or in parts is easily found from the means of the 

VOL. cxcii.—A. 2 N 
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arrays. If o-g and (t\ be the means of unloaded uncles and nephews, we note that 

they are arrays owing to common parentage, and hence their array standard 

deviations* will be o-g a/1 — p“ and o-'g \/l — p“, p being the standard deviation of 

parent and offsjDring. As before we find : 

= a-l + (tI {1 — p') 

-p^) 
(xxviii.). 

If, as will probably be the case, there be no secular change between uncles and 

nephews, then cr = cr', cr,, = cr'a, erg = cr'g, and accordingly 7'' = Hcrl/cr; whence, using 

(xxiv.), we have : 

r' = r X R X (xxix.). 

If we could assume cr„ = 0-^ and o- = cr, this result would reduce to the very 

simple form : 
?•' = 7’ X R. 

Now the assumption o-g = o-g is, I think, legitimate, for the distribution for an 

unloaded array of nephews or uncles should be sensibly that of an array of brethren. 

But the equality of cr„ and cr„, which would now involve that of a and cr, is a much 

more doubtful point. cr„ and cr„ mark indeed quite different systems of loading. 

Both, it is true, are of the form 

S {nnW) / N - {S (7^7^'M) / N jq 

but in the case of brethren 71 = ^ [n — 1) or td has perfect correlation with 71, while 

in the case of uncles and nephews n is only imperfectly correlated with n. The 

intensity of this correlation depends upon the correlation between the sizes of arrays 

of uncles and nephews, a quantity which may be very small, or not, according to the 

nature of the record. Hence it appears necessary in applying the method to make 

some attempt to appreciate the value of (Xa as well as cr^. If this be done R can be 

found from (xxix.), if not directly. This value of R is not without importance for 

the inheritance of characters latent in one or other sex. 

We have thus reduced the correlations of individuals to a calculation of the corre¬ 

lation of arrays. 

(6.) P7'opositio7i V.—To Ji7id a 77ieasiire of the effect of 77ii7igling imcorrelated 

7nate7dcd iviili co7'related material. 

The imjDortance of this investigation lies in the fact that death, restraint, or other 

* Or, again, tlie means of tlie staiidard-deviations of the arrays. 
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circumstances, completely screen, in a certain number of cases, both the potential 

fertility and the real fecundity of man. Precisely similar circumstances, which will be 

considered more at length later, hinder our obtaining in horses a true measure of 

fecundity for all cases. We are thus really dealing with a mixture of correlated and 

apparently uncorrelated material. In what manner does the influence of this 

mixture effect our results ? 

Let a group N consist of Ux + ^2 + ^3 + pairs of individuals. Of these, in the 

case of pairs, both individuals have the true value of the character under investi¬ 

gation recorded ; in the case of lu pairs, neither have the true value recorded; in the 

case of ^3 pairs, it is the first individual of the pair which has a true recorded value, 

and the second an apparent or fictitious value; lastly, in ^4 cases, let the fictitious 

value be in the first and the real value in the second individual of the pair. Then 

there will be no correlation between individuals in the groups lu, n^, Hi. Let r be 

the correlation in the group Hi and R that observed in the whole group of 

N = ni -f- iio + 5^3 + ^4* Let x be the measure of a character in the first, x in the 

second individual. Let M and M' be the means of the total groups of the two 

individuals and their standard deviations. In group let the corresponding 

quantities be mi, m'l, o-j, cr'i, and a similar notation hold for the other sub-groups. 

Then mi = and o-j = 0-3; m2. = mi and a-2 = 0-4; while m'j = m'4 and cr', = cr'4; 

771 2 771 3, cr 2 •— O' 3. 

We have at once : 

,, 7!,7H.J + Uomo -f 7J37??3 + (Ui + n^) Vli + (u., -f lUo 
M = -^^^- =: -^^ , 

vii + 7?Zo -f 773 -f- 71 j til -f n., + n-i ■+ Ui 

while 

_ (til + nj) m'l + {n, + n^) m', 

til + '>h + % + Wj 

Further : 

(tii + 712 + 72.3 -f 71.4) XX'R = S (a? — M) [x — M'), 

by the usual properties of product moments 

= tiiCTiir' it ' -h Til {till — M) {m'l — M') + no {mo — M) {m'2 — M') 

+ ??3 (7713 — M) {m'2 — M') -h Hi {nii — M) {m'i — M') 

= TliCTiCrV’ + 7ip77.i77l'i fi- 77277l2777h + ^ + nitnitn i 

— M {uitn I + 7727n'2 + 77377^3 fi- tiirn'i) - M' (77l777i -f- tlomo -f- 7737773 -p 7747774) 

-f MM' (77i + 772 + 773 -1- Ui) 

— 1^' “1“ 1 + n2m2m'o + + tiiniirn'i — MM' (77, + 772 + 773 + 724). 

Substituting the values of M and M' and using the relations between the 777’s, we 

find after some reductions : 

2 N 2 
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NXS'R = n^aicr'ii' --—— (wi — W2) (m'l — m'2) . . (xxx.) 

Let — of the N first individuals and — of the N second individuals have fictitious 
P . 2 

values, then ^—— N and -- N will have their true values. If, now, there is no 
P 9. 

correlation between the fictitious values in the two cases, we have at once : 

nj = ^ N, no = — N, nj 
pq - pq 

From this it follows at once that 

or the second term in (xxx.) vanishes. Thus : 

7* ~ 1 XT ? ~ 1 XT --N, ni=--N. 
P9 Pi 

_ «1 O'lO’ P' 

N 22' 
(xxx.) his. 

Thus R vanishes with r, and no spurious correlation could arise from the existence 

of fictitious values distributed at random through the correlation table. This result 

might, indeed, (as it often is tacitly) be assumed by some, but it seems very desirable to 

have a definite proof. 

It remains to consider 2 and 2'. We have : 

oi¬ 

ls! 2' = n^al + iioO-'l + n^a-i + nial 

-f 7^1 (7?ii — M)^ + no {nio — M)“ + n^ {m^ — M)“ + ^4 (^4 — 

= (7?, + 773) cri -f- (7?, + 7^4) O'a 

+ Oh + ^3) -f Oh + ^^4)^>^2 — (^1 + ^2 + 773 + n^) 

2- = 

7ii + n, 2 , 7i, + n^ , , 77i + 713 n.2 + 7?1 /.^2 
o-I + —^ 0-2 -f -o^h — m.z)- N N N N 

1 \ 1 

Similarly 

= (1 - 7) <^1+Wi + (1 - y-j j (»«, - «‘,r- 

= tr; + 7 (ctI — crj) + (1 - 7)7 (m, — m.y- . 

2'= = <r'i + 7 (<7l - -x'f) + (1 - Aj A 

(xxxi.). 

. (xxxii.). 

Now if the introduction of the fictitious values consisted of anything of the 

nature of a wrong pairing of certain individuals, we should simply have o-j = cr.,, 

a'i= cr'o, nil — nu, m'l = ni'o and, accordingly, 2 = cr,, and 2' = cr',. 
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In any case, if the percentage of fictitious values be not large, the second and tliird 

terms are of the second order of small quantities, since and are small. The 

maximum value of the third term cannot be greater than ^ (mj — and this 

will be relatively small in the cases to which we shall apply it. 

For example, no great changes are made in <t, when we vary the amount of 

fictitious cases introduced into our fertility tables, and nio do, however, change. 

Thus cTi = 0-2 = 3 approximately, and the range — mo = 1'2. Hence : 

or. 

S' = 9 + i (1 '2)% at a maximum, = 9‘36, 

S = 3-06. 

Thus in this extreme case there is only 2 per cent, change in the value of S. In 

such cases accordingly we may take for rough approximations S = cr and S = cr'. This 

leads us to : 

R = (xxxii.). 

Or, the reduction of correlation, due to the introduction of fictitious values, is 

obtained by using as a factor the ratio of actual correlated 2)airs of individuals to the 

total number of pairs tabidated. 

This result will be of considerable service when we come to deal with the fecundity 

of thoroughbred racehorses. 

(7.) Proposition VI.—To obtain a measure of the spurious correlation apparently 

existing between two organs, when a mixture is made of heterogeneous materials. 

Let X and x' be measures of the two organs, and let there be N pairs of organs 

formed by i heterogeneous groups containing Wj, n.,, n-^. . . pairs with means m',, 

m2, m'2, m3, m\ . . . , &c., standard deviations cti, cr\, cto, cr'2, 0-3, cr'^ . . . , &c., and 

correlations rj, ^2, r^ . . . , &c. Let Mi M' be the means of the whole heterogeneous 

community, S, X' the standard deviations, and R the correlation. Then : 

RSS'N = S (no-o-'r) + S [n (m - M) {in - M')}, 

where S denotes a summation with regard to all i groups. Now if there were no 

correlation at all between the organs in any one of the i groups, R for the hetero¬ 

geneous mixture would still not be zero so long as the second summation did not 

vanish. This, then, is a measure of the spurious correlation produced by making 

a mixture of uncorrelated materials. 

Now S [n {m — M) {ni — M')j, remembering the values of M and M' may be 

written : 
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where the summation S now refers to every possible pair p and q of the r groups. 

Now it is very unlikely, unless i be very large and the numbers . . . be 

taken at random, that this expression will vanish. Suppose even that the means 

of our heterogeneous groups were uncorrelated, i.e., 8(771 — M){m' — M') = 0, it is 

unlikely that Sjw {m — M) {ni — M')} will also be zero, when n is taken at random. 

With a comparatively few groups, with numbers taken at random, it is extremely 

improbable that the principal axes of the i points loaded with iii, 112, . . . will 

exactly coincide with the directions of the axes of x and x. 

We are thus forced to the conclusion that a mixture of heterogeneous groups, 

each of which exhibits in itself no organic correlation, will exhibit a greater or less 

amount of correlation. This correlation may j^roperly be called spurious, yet as it 

is almost impossible to guarantee the absolute homogeneity of any community, our 

results for correlation are always liable to an error, the amount of which cannot be 

foretold. To those who persist in looking upon all correlation as cause and effect, 

the fact that correlation can be produced between two quite uncorrelated characters 

A and B by taking an artificial mixture of two closely allied races, must come rather 

as a shock.* 

The better to illustrate this, I take some data recently deduced by Miss C. D. 

Fawcett. She finds for 806 male skulls, from the Paris Catacombs, the correlation 

for length and breadth *0869 i ’0236, and for 340 female skulls, from the same locality, 

— ’0424 i '0365. The existence of the negative sign and the comparative smallness 

of the correlation, as compared with the probable errors, might lead us to assert the 

correlation between the length and breadth of French skulls to be sensibly zero. 

If now the two sexes be mixed, the heterogeneous group has for correlation 

•1.968 i ’0192, a value which cannot possibly be considered zero. Thus the mixture 

exhibits a large spurious correlation. 

Whether any given mixture increases or reduces the correlation will depend 

entirely on the signs of the differences of the means of the sub-groups. But the 

danger of heterogeneity for the problem of correlation will have been made manifest. 

If the value of E, for any mixture, whose components are known, is to be calculated, 

then we have only to note that: 

S (na-) S - mj-) _ S S (npi^ - m'J-) / v 
T" ^2 > A N ' N- t^xxv.| 

* Thus the mere fact of breedin" from huo or three individuals selected at random can easily produce 

a correlation between organs in the offspring, which has no existence in the species at large. 
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II. On the Inheritance of Fertility in Mankind. By Karl Pearson, F.R.S., and 

Alice Lee, B.A., B.Sc. 

(8.) In commencing an investigation of this kind where the results to be expected 

were quite unknown to us, but wLere we had reason to believe that the cqopon'ent 

strength of inheritance must be very small, we considered that the first thing to be 

done was to investigate the largest possible amount of material. Thus the probable 

errors of our results would be very small and any, however small, correlation between 

fertility in parent and offspring would be brought to light. Attempts might then be 

made to strengthen any correlation discovered by removing so far as possible one 

after another the various factors tending to screen the full effect of the inheritance 

of fertility. 

Such factors are for example ; 

(a.) The age of both husband and wife at the time of marriage. The real fertility 

may be screened by late marriages of one or both parents. The relation of fertility 

to age at marriage has been dealt with by several writers, notably by Duncan and 

Ansell.'“' 

(h.) The duration of marriage. The data may be taken from a marriage not yet 

complete, both parents being still alive. Or from a marriage which is complete one 

or both parents being dead. In the former or the latter case the marriage may be 

complete so far as fertility is concerned, i.e., details of offspring may be available till 

the wife has reached the age of 50 years, which for statistical purposes may be taken 

as an upper limit to fecundity. 

(c.) Restriction of fertility during marriage. It has been shown in a paper on 

Reproductive Selection! that there is evidence of the sensible influence of this factor 

in man. It tends to give fictitious values to the fertility of the younger, rather than 

the elder generation, and so obscures the correlation. 

We have accordingly two problems before us : 

(i.) Supposing these and other factors tending to screen the effects of reproductive 

selection to exist, can we show that it still produces sensible effects in the case of 

man, and thus demonstrate that fertility is really inherited ? 

(ii.) Can we by eliminating these factors so far as possible obtain a lower limit to 

the coefficient of heredity in the case of fertility, and ascertain whether it 

approximates in value to what we might expect from the Law of Ancestral 

Heredity ? 

The first impression of the reader may be that it is only needful to select the 

* J. Mathews Duncan, ‘Fecundity, Fertility, Sterility and Allied Topics,’ second edition, 
Edinburgh, 1871. Charles Ansell, Junr., ‘ Statistics of Families in the Upper and Middle Classes,’ 
London, 1874. 

t ‘ The Chances of Death and other Studies in Evolution,’ vol. I, pp. 77, 89. 
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fertility of marriages, which were formed with husband and wife between 20 and 

28"' say, and which have lasted till the wife is over 50. But these conditions must 

be true in two successive generations, and, had we adopted them, we may safely say 

that without immense labour it would have been impossible to collect even a 

thousand cases. From the wBole of the peerage, the baronetage, the landed gentry, 

a variety of family histories, of private pedigrees, and a collection of data formed of 

families at first hand, it was not possible to extract more than about 4000 cases for 

the inheritance of fertility in the female line, when the limitations were far less 

stringent, being applied only to one generation, and consisting in our taking marriages 

entered into at any time of life for either husband or wife, and lasting till the death 

of one member or for at least fifteen years. Even in this case the pedigree of the 

wife had to be sought for from one record to another and often in vain. It is the 

male pedigree with which the recorder in nearly all cases occupies himself. 

Only those who have attempted the labour of extracting, as has been done in this 

case, some 16,000 separate returns, will fully grasp the difficulty of making the 

limitations of selection more and more complex ; the quantity to be obtained becomes 

dangerously small and the labour immensely increases. Even could with time and 

patience a sufficient selection of ideal cases have been made, it does not follow that 

the result would be satisfactory ; for, we should have made a narrow selection, and 

this very fact might indicate that possibly we have been selecting one grade or class 

of fertility. It is possible that the less fertile are the weaker, and so more liable 

to die early ; or again it may be the more fertile wmmen who are subjected to the 

more frequent risk of childbed, and thus are less likely to appear in the selection of 

long marriages. Even greater or less risk at birth may be an inherited character 

in women, and may not unfairly be looked upon in itself as a factor limiting fertility 

naturally. 

Taking these points into consideration, it seemed that if we were to have enough 

material to draw conclusions from we must entirely drop all attenipt to classify by 

age of parents at marriage. We might make some limitations but they must not be 

very stringent ; they must leave room for an increase of stringency in difterent 

directions, so that we could roughly appreciate the influence of the screening factors. 

Accordiugly our plan has been to show that correlation actually does exist between 

parent and oftspring with regard to fertility, and that when we make the conditions 

more stringent the correlation increases towards the value indicated by the law of 

ancestral heredity. 

(9.) Oti the Inheritance of Fertility in Woman.—(i.) Table I. gives the result for 

4418 cases of the fertility of a mother and of her daughter. These were extracted 

from Foster’s ‘ Peerage and Baronetage,’ Burke’s ‘ Landed Gentry,’ some family 

* As Duncan points out, an early marriage ou tlie average means an earlier ce.ssation of fecundity; a 

somewhat later one does not necessarily connote less fertility. 



MATHEMATICAL CONTRIBUTIONS TO THE THEORY OF EVOLUTION. 281 

histories and a collection of family data drawn from private pedigrees and other 

sources. In the case of the daughter, no marriage was taken which had not lasted 

at least 15 years, or until the death of husband or wife. In the case of the mother 

no limitation whatever was made, the number of brothers and sisters of the daughter, 

including herself, being counted. Weight was given to the fertility of the mother, 

for every possible case that could be got from the records under the above conditions 

was extracted. It is quite possible that a certain proportion of offspring dying in 

early infancy have not been entered in the records. 

If M;„, be the mean fertilities of mother and daughter, o-,„, a-j, their standard 
deviations, and their correlation, we found : 

= 3-494, = 6-225, 

CTa — 2-975, (r„j = 3-052, 

= -0418. 

Clearly owing to the near equality of and cr„i the regression of daughter’s on 
mother’s fertility is sensibly equal to the correlation. 

The probable error of is determined by the formula given by Pearson and 
Filon"' to be -0101, or is four times its probable error. 

We thus conclude : 

(i.) That fertility is inherited in the female line. 
(ii.) That its effects are very largely screened by the factors to which we have 

previously referred. 

Had we started with no limitation as to the daughter’s family, it is highly probable 
that would scarcely have been sensible relatively to its probable error, and, 
therefore, small series without due regard to screening causes may easily lead the 

recorder to suppose that fertility is not inherited. 
Supposing we exclude from the daughters the 775 barren marriages, we find the 

mean for 3643 cases of fertile marriages to be 5-237. Comparing this fertility with 
the observed fertility 6-225 of mothers, a superficial inquirer miglit at once consider 
that a diminution of fertility has taken place. The fact is that neither of the results, 

or gives the actual fertility of the mothers or daughters. These are the 
means M"i and of formulse (viii.) and (vii.) of the theoretical investigation. 

Let us ajDply the theory developed to our statistics. In the first place we note 

that r is small ; hence is still smaller, and thus by (xv.) cr'b will not differ much 

from o-o. Since cr"i will be generally less than 0-1 by (xvi.), it follows that a \ will 

probably be less than cr^. Approximately, we can take ao = 3. Turning to (vii.) we 

see that M'b cannot, since r is small, differ widely from Mo. If there be no secular 

* “Contributions to Theoi’y of Evolution.—IV.’’ ‘Phil. Trans,,’ A, vol. 191, p. 242. 

VOL. CXCII.—A. 2 O 
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evolution in tlie real fertility sensible in the one generation, then Mj would equal 

M.,. Hence to a first approximation we should have : 

M, = M, = = 3-494. 

To obtain a second approximation we may substitute this in the small terms of 

(vii.). Here cr'f must be found from (ii.) ; neglecting the cubic term we have : 

ct'Vo-I = 1 - o-i/M- = -2628. 

Hence : 

Ml = Mo = 3-494 

= 3-494 

= 3-494 

f ) *\li \ 1/0/2/ 

•0418 X 2-5759 X 1-1513 

-124 = 3-370. 

AYe can now substitute this value of Mi in (viii.), and we find ; 

M"i = 3-370 -f 2-980 = 6-350. 

Tins differs comparatively little from the actually observed value, 6-225, and is 

satisfactory evidence of the validity of our theory. The fact that the elder generation 

was in no way limited like the younger, and that we have neglected the third 

moment—although fertility distributions are never normal—as well as made other 

approximations, is quite sufficient to account for the difference observed. 

We may take it that 3-4 is practically the fertility of the elder generation, and 

that this is raised to about 3-5 by reproductive selection in the younger generation. 

The result 6-2 for the elder generation is thus purely a result of weighting due to the 

nature of the record. 

(ii.) Table II. gives the result of 1000 cases taken from the Peerage. Here the 

conditions of extraction were as follows :— 

One member only was taken out of each family, or no weight was given to the 

fertilit}^ of mothers. 

The daughters’ marriages had all been completed by the death of one parent or had 

lasted at least 15 3mars. 

Tliere was no limitation with regard to the parents’ marriages. We found : 

M, 

o-d 

The coefficient of regression is sensibl\" equal to that of correlation. The probable 

error of = -0204, or not a tenth of the value of itself. Again we conclude 

= 3-923, 

= 2-758, (7 

r.u. = -2096. 

M„i = 5-856, 

— o 2-751, 
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that fertility is certainly inherited in the female line. By selecting fairly homogeneous 

material with a more definite and complete record than exists for the heterogeneous 

material of the previous case, we have carried up the correlation to five times its 

previous value, and within a reasonable distance of the value *3 which would he 

required by the law of ancestral heredity. The homogeneity of our material is 

evidenced by the reduction in both standard deviations ; the greater completeness of 

the record by the rise in the fertility of daughters ; and the non-weighting of the 

fertility of mothers by tlie fall in their mean fertility. 

If the reader will turn back to the theory of the influence of heterogeneity on 

correlation in section (7), he will notice that the expression in (xxxiv.) will be negative, 

and therefore the apparent correlation less than the real, if we form a mixture of two 

groups in which and m ^ Now the entries of women in the Landed 

Gentry and other records are very often entries of “ heiresses,” while the entries of 

women in the Peerage are entries because of class. An “ heiress” naturally has fewer 

brothers and sisters than another woman on an average, or we may expect > m\,. 

On the other hand an “ heiress ” need not have fewer children than other women, 

unless her heritage is the result of her coming from an infertile stock, and is not a 

result of the incompleteness of her parents’ marriage. If she belongs to a somewhat 

lower social grade, she may possibly be more fertile than the average of a higher 

social grade. In this case will be > and when we come to mix records of the 

Peerage with those of the Landed Gentry and Family Histories, we need not be 

surprised to find the correlation of fertility much weakened, as it undoubtedly is (as 

shown by (i.) and (ii.) above) by the mixture. 

Let us next apply our theory to the above results. We are now dealing with 

M’l, Mb, cr'i, cr'o. Assuming that there is no secular change cti = a,, and accordingly 

since a'l = cr'., sensibly, formula (xi.) shows us that both = cti. 

Further, if Mj = M.,, formula (v.) is a quadratic equation to find ; substituting 

for M'l, aj, and r, w'e have, on solving and taking the only admissible root. Mi =: 3’4625. 

'fhen, applying formula (i.) to find Mb, wc have : 

Mb = 5-GGO. 

This is not cpiite as high as the observed value 5'85G, but it suflices to show that 

our theory expresses the main facts. In all probability we have not entirely freed 

our results from weighting with fertility ; because, although eve)y endeavour was 

made to take only one from each family, it is possible that pairs of sisters have occa¬ 

sionally crept into the record. 

(iii.) Table III. gives the result of 1000 cases taken from tlie Landed Gentry. As 

we have already noted, the women recorded are largely “heiresses,” and we believed 

this might be one of the chief sources of the heterogeneity of the material in Table I. 

The conditions of selection were made somewhat mure stringent, and were as follows :—■ 

Only one daughter was taken from each family, and her marriage must have lasted at 

2 o 2 



284 PROFESSOR KARL PEARSON AND MISS ALICE LEE, 

least 15 years. No limitation was placed on the duration of the parents’ marriage. 

We found : 
M,, = 4-232, M,, = 5-403, 

(T, = 3-292, cr„ = 3-241, 

= -1045. 

The probable error of = -0211, and again we see that fertility is certainly 

inherited. The correlation has, however, sunk ; probably, as the great increase of 

variation indicates, because we are dealing with much more heterogeneous material than 

in the case of the Peerage. While the selection of “ heiresses ” has largely reduced 

the number of brothers and sisters, /.e., the fertility of mothers, the limitation to 

marriages of at least 15 years has increased the apparent fertility of daughters; nor 

is this increase at all balanced by the fact that heiresses come from small families, and 

may, therefore, be supposed to be the children of rather sterile mothers. The average 

number of children of heiresses is sensibly as large as the average number of children 

of women who are not in the bulk heiresses, and who have, as in the following case, 

been selected with the same condition as to duration of marriage. The fact is that 

heiresses are not on the whole the children of sterile mothers; their high fertility and 

their small correlation ivith their mothers shows us that heiresses in the bulk are 

rather the daughters of mothers whose apparent fertility is fictitious. They have, 

owing to the sterility or early death of their husband, to their own marriage late in 

life, or to some physical disability, or other restraint, never reached their true fertility. 

If this conclusion be correct, and a comparison of the values of and in this and 

the following cases thrusts it almost irresistibly upon us, then Ave see that the 

argument against the inheritance of fertility based upon the fertility of heiresses and 

non-heiresses is of no validity.^ It could not be valid as against the values of the 

correlation Ave have found, but the present investigation shoAvs by the value of 

exactly Avherein the error lies : the heiress is not infertile, but is the daughter of a 

fictitiously infertile mother. 

Applying our theory to this case, Ave find from formula (xi.), ])utting {T, = cto : 

Avhence we find o-j = 3-293, a result sensibly identical Avith 0-^. Solvmg the quadratic 

(ax) Avith Ml = M, to find Mi Ave find ; 

Ml = 3-952. 
Hence by (i.) we have : 

M\ = 6-838, 

the actually observed value being 5-403. Thus the theory completely fails to give 

the fertility of the heiresses’ mothers ; for such a fertility as Ave find in the daughters, 

* See, for example, a recent letter of Mr. Howard CoLLiXb in ‘ Nature,’ NoA'cmber 3) 1898. 
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the mothers’ fertility is far too low. This again emphasises the point we have 

already referred to. The peculiar character of the selection, which leads to the 

female record in the Landed Gentry, is not one such as we have considered in our 

theory,* where the record of any family is likely to appear in pro23ortion to its size. 

Such a distribution is a chance distribution, but a selection of women inheriting land 

has not this character, and a woman who is the mother of co-heiresses is hardly 

doubly as likely to appear as the woman who is mother of one. A marriage in either 

case is likely to be arranged, and if we take only one daughter from each family the 

record will not already have weighted—at any rate to the full extent—every mother 

with her fertility. If the reader will compare the variation columns for both daughters 

and mothers in Table III. with the corresponding columns in Table II. or Table IV., 

he will at once see how anomalous is the selection of women given in the Lauded 

Gentry. 

(iv.) Table IV. gives the results for 1000 cases taken from the Peerage and 

Baronetage under the following limitations : one daughter only was taken for each 

mother, and in the case of both mother and daughter the marriage must have lasted 

at least 15 years. We found : 

= 4-335, = 5-898, 

(T, = 2-967, o-„: = 2-830, 

'>'md — '2130. 

The probable error of = -0204. Thus, as it is now hardly necessary to repeat, 

fertility is certainly and markedly inherited. The regression coefficient is now as 

high as -2233, the closest limit we have yet reached to the theoretical -3 of the law 

of ancestral heredity. 

Owing to the limitation to marriages of 15 or more years, the means of tlie 

fertilities of both mothers and daughters have risen, in the latter case more, how¬ 

ever, than the former. It might have been expected that the fertility of mothers 

would have risen more, but it must be remembered that M,„ is the apparent and not 

the real fertility of mothers ; and further, since the record largely weights the more 

fertile women, the bulk of the mothers are already those with large families, i.c., 

those whose marriages have lasted at least 15 years. 

Assuming that there is no sensible secular change in unweighted fertility, i.e., 

(Ti — (Tn, we have from the formula on p. 284 : 

(Ti = 2-973. 

Prom (v.) with Mi = M2 we find : 

Ml = 3-845 

for the real fertility of mothers. This is a sensible increase on the value 3-463 given 

ill Case (ii.), in which there was no minimum duration to the length of the mother’s 

marriage. 



286 PROFESSOR KARL PE ARSON AND MISS ALICE LEE, 

incj formula (i.) we find : 
M'l = 6-144, 

which is somewhat more than the observed value 5-898. The reason for this lies, 

w^e think, in the difficulty already referred to on p. 263. If we start extracting 

mothers, it is often difficult to follow the daughter’s history ; starting with the 

daughter it is much easier, although still laborious, to trace back her ancestry, and 

find the number of her brothers and sisters. Even in this case the search may be 

lengthy. But as daughters when married change their name, it requires great care 

in extracting large quantities to be sure that a mother is not repeated, i.e., some 

approach made to weighting her with her fertility. Everj^ care was made in 

extracting the records, but we cannot hope to have always avoided weighting to 

some extent a mother, and if this be done we shall have a transition from formulae 

(xi.), (v.), and (i.) towards formuhe (xv.), (vii.), and (viii,), which would well account 

for the difference found between theory and observation. 

If we sum up for inheritance of fertility in the female line on the basis of these 

four cases, we draw from each one of them the uncjuestionable result that fertility in 

woman is an inherited character. Further, the more we remove causes of fictitious 

values for the fertility in either generation, the closer does the value approach that 

I’equired by the law of ancestral heredit}^. The two chief disturbing factors vliich 

we have not been able to eliminate are («.) the age at which marriage is entered 

upon, [h.) restraint giving a fictitious value to the fertility. Both these causes must 

o-ive a lessened value to the correlation of fertilitv between mother and daufiliter, 

and the first, judging from the great influence of age at marriage on fertility, cannot 

fail to yive a serious diminution. Hence if we find the regression coefficient as high 

as *2233, when we neglect these factors, it is no stretching of facts to conclude that 

it would in all probability rise to -3 could we take them into account. 

Our conclusion, therefore, is that fertility in woman is certainly iidierited through 

the female line, and most probably according to the law of ancestral heredity. 

Beproductive selection is actually a vera causa of progressive change, but its 

influence is largely, if not entmely screened by the numerous factors tending to make 

the apparent fertility of women differ from their real or potential fertility. 

(10.) On the Inheritance of Fertility in Man. 

(i.) While many of the difficulties involved in the extraction of data for women 

still exist for mau, a new and important feature tending to screen the full influence 

of the law of ancestral heredity arises in his case. The full fertility of the husband 

is not in the average case at all approached in tlie case of monogamic marriage. 

Hence, in considering the size of a man’s fainilv as a measure of his fertilitv we 

are measuring a character which differs largely from the character of fertility in 

woman. It is only in the case of sterile or even very sterile men that there is 

likely to be a correlation shown between the sizes of the families of fathers and sons. 
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The intensity or duration of fecundity in the liusband must, one or other, be less 

than that of the wife,—and this will hardly be so in the great run of cases—if his 

family is to be in any way a measure of his fertility, or, as it might be better 

to call it in this case, his sterility. We are seeking to find a correlation between 

two characters, one in father and one in the son, neither of which we can measure 

unless they fall short of a certain limit. The result is that our correlated material is 

weakened down by the admixture of a mass of uncorrelated material in the manner 

indicated in Proposition V. of the theoretical part of this investigation. Within the 

family we cannot hope to get a correlation which will approach that indicated by the 

law of ancestral heredity. We may still, however, hope to ascertain whether 

fertility, respectively sterility, is an inherited character in man as well as woman. 

(ii.) Our first attempt was to collect as much material as ])ossible, so that our 

limitations were few. The Peerage, Baronetage, Landed Gentry, Family Histories, 

private pedigrees, and collected data provided the 6,070 cases arranged in Table V. 

Here large famdies were weighted because several, Ayhere available, were taken from 

one family. The son’s marriage must either have lasted till the death of one partner 

or at least 15 years; there was no condition as to the duration of the father’s 

marriao’e. 
o 

We have spoken of the correlation between fertility of father and son, but since 

only a single marriage of the father is taken, it may be equally well termed a 

correlation between the fertility of the mother and son, which may, perhaps, to some 

extent explain the relatively high values reached. 

Let Mj, o-j be the mean and standard-deviation of the son, o-^, of the parent, 

and the correlation ; then we found ; 

M, = 3-871, M^, = 5-831, 

0-, = 3-003, o-^, = 3-190, 

* jy = -0514. 

The probable error of = -0087. Thus the correlation is nearly six times the 

probable error, or fertility in man is certainly inherited. 

(Hi.) Table VI. contains the result of extracting 1,000 cases from the Peerage, only 

one son being taken from each family, and his marriage having lasted at least 15 

years. No attention was paid to the length of parents’ marriage. 

We found : 

M, = 5-070, Mp = 5-827, 

(T, = 2-910, 0-, = 3-142, 

~ ’0656. 

The probable error of = -0212. This case closely confirms the previous case; 

Mp and o-^ remain sensibly the same, M, has risen owing to the longer period of 
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duration of the son’s marriage, and since there is a longer period for the possible 

exhaustion of the male fertility, we find is slightly larger. Although the numbers 

are smaller than in Case (i.), the probable error is not so large but that we can still 

assert an inheritance of fertility in man. 

(iv.) Lastly, to compare with Case (iii.) for women, 1000 cases were extracted 

from the Landed Gentry, and are given in Table VIL Here no marriage of the son 

or parents was taken under a minimum of 15 yeai's’ duration, and only one son 

taken from each family. We found : 

M, = 5-304, = 6-272, 

cr, = 2'95], o-p = 2-911, 

= -iifii. 

Thus the longer duration of the marriage, which gives a greater chance for the 

exhaustion of the fertility of a partially sterile father, leads to an increased corre¬ 

lation. The probable error here is -0210, and the correlation is thus unquestionable. 

It would be idle to apply the theory before developed to these male cases, for the 

simple reason that we must certainly look upon them as containing a large proportion 

of uncorrelated material. But they suffice to show that male fertility is an inherited 

character, and although the results are widely different from those indicated by the 

law of ancestral heredity, they are large when we consider how little male fertility 

appears measurable by the results of monogarnic marriage. Were an approximately 

close measure of male fertility available, there is certainly in the above results no 

reason to induce us to believe that it would not be found to obey the law of ancestral 

heredity. 
4 

(11.) 0)1 the Inheritance of Fertility in Woman through the Male Line. 

Although we are not able to measure the potential fertility of the male, we are 

able to determine whether he transfers fertility from his mother to his daughter. 

This may be simply done l)y correlating the fertility of a woman and that of her 

paternal grandmother. This problem belongs to an important class—namelv, 

questions as to the extent to which a sexual character is inherited through the 

opposite sex. Darwin has touched upon this “ transmission without development ” in 

Chapter viii. of the ‘ Descent of Man,’* and we shall find his views amply verified. 

The problem before us is : Does a woman have as close correlation with her paternal 

as with her maternal grandmother in the matter of fertility ? 

To solve this problem 1000 cases were taken out of the Peerage for the fertility of 

a woman and of her paternal grandmother. The marriages of the woman and of her 

grandmother were botn taken with a minimum duration of fifteen years. Every care 

was taken that no weight should be given to fertile families bv taking only one out 

* Second Edition, p. 227, ‘ Laws of Iqheritance,’ 
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of each family, but, of course, the difficulty of a,voiding this is increased when a 

pedigree must be traced through three instead of two genei’ations. 

If d denotes granddaughter, g grandmother, the following results were obtained 

(Table YIII.) 
4-411, M, = 5-657, 

cr^ = 2-897, cr„ = 3'056, 

n.,= -ii23. 

The coefficient of regression of daughter s fertility on grandmother’s fertility = -1065, 

The probable error of — -0211. 

According to the law of ancestral heredity""' we should expect the grandparental 

correlation and regression to be half the parental and equcl to -15. Comparing the 

present result with Case (iv.), we see that -1123 and "1065 have to be compared with 

|•(-2130) and |-(•2233), or with -1065 and "1116. These are tlifterences well within 

the probable error of our results, or we may conclude that the correlation of a woman 

with her paternal grandmother is exactly what from Case (iv.) of Section (9) we 

shoidd expect to find for her correlation with her maternal grandmother. The reduc¬ 

tion from -15 to ‘1123 is just what we might have predicted after the maternal 

reduction from '3 to "2130. We, therefore, conclude that the fertility of woman is 

inherited through the male line with the same intensity as through the female, and 

this intensity is most probably that which would be indicated by the law of ancestral 

heredity. 

(12.) We do not stay to consider many jroints which flow from our tables, such, for 

examjale, as the amount of restraint indicated by the hump at the start of our various 

frequency distributions for size of families, partly because such consideration would 

lead us beyond our present scope, the inheritance of fertility, and partly because this 

point has been already dealt with by one of us in a paper on ‘Reproductive Selection.’ 

We consider that we have shown fertility in mankind to be an inherited character in 

both lines, and probably obeying the law of ancestral heredity.! By aid of our 

theoretical investigations it is clear that the average size of a family (Md, as deduced 

from our record data (M'l or M'd): is about 3-5 children, if the marriage lasts till the 

death of one partner, or at least till 15 years; it is about 3-9 to 4 children if the 

duration of the marriage is at least 15 years. Reproductive selection would increase 

tliis average by about "5 child per generation were its influence not counteracted 

* “ Mathematical Contributions to the Theory of Heredity, on the Law of Ancestral Heredity,’’ 

‘ Roy. Soc. Proc.,’ vol. 62. p. 397. 

t In the paper on “ The Law of Ancestral Heredity ” (‘ Roy. Soc. Proc.,’ vol. 62, p. 412} it is .stated 

that fertility is probably inherited, but the amount falls below that which would be indicated hj' the 

law of ancestral heredity. At that time only Case (i.) of Section (9) and Case (i ) of Section (10) had 

been worked out in detail. It is the rise of correlation with more stringent limitation of opposing 

influences, which suggests that after all that law^ is true for fertility as for other characters. 

VOL. CXC’TI.—A. .1 
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by a variety of other factors of evolution. These factors are so active that the 

influence is reduced to T2 of a child per generation if we take Case (i.) of Section (9), 

and, we have little doubt, would be practically insensible did we take all marriages 

without any limitation whatever. Reproductive selection must, therefore, be looked 

upon as always tending to increase the fertility of a race ; races are not only ever 

tending to increase, but tending to increase the rate at which they increase—a feature 

not recognised by Malthus, but which strengthens certain of his arguments. So 

soon, therefore, as environment, or‘other circumstance, relieves the pressure of 

op])osing factors, a race will not only increase in numbers, but also in fertility. It is 

this inherited character of fertility, and its constant tendency to change unless held 

in check by natural selection or other factor of evolution, which seems to us the 

source of the immense diversity in fertility to he observed not only in different species, 

l)ut in local races of the same species. 

III. On the Inherit (I,} tce of Fecundity in Thoroughbred Racehorses. By Karl 

Pearson, F.R.S., with the assistance of Leslie Bramley-Moore.'" 

(13.) The data ])rovided for the fertility of thoroughbred racehorses by the stud- 

hooJcs, are of a kind which cannot be hoped for except in the cases of pedigree animals 

kept for breeding purposes, and of specially-arranged experiments on insects, &c. 

We have a practically complete record of the stud-life of every brood-mare. The sire 

by whom she has been covered in eacli year is stated, and the result, barren, dead 

foal, living filly or colt, twins, &c., can be ascertained. It is also possible to find out 

whether the fi)al dies young, say as a yearling. By examining the whole series of 

stud-books the complete pedigree of any mare or sire can nearly always be found, 

and the correlation theoretically worked out for almost any degree of relationship. 

In starting an investigation of this kind on such a great mass of raw material, 

it is necessary to draw up certain rules for the extraction and arrangement of data. 

These rules must he prepared without any definite knowledge of the character of the 

material in bulk, for this can only be found after, perhaps, some 1000 cases have 

been extracted and worked out. Hence the rules originally adopted are often not 

such as an investigator would have arranged had he known beforehand the general 

character of the conclusions he would reach. But the statistician cannot, like the 

experimental physicist, modify without immense labour his methods and repeat his 

experiment. The collection of Ids data has frecpiently been far too laborious a task 

for repetition. His raw material lias been prepared in a certain manner; he may 

* Diii'ing the tlireo years in which this investigation has Ijeen in progress, a considerable nninher of 

friends have given me substantial aid in the arithnictioal work, or in the ])reparation of the 6,000 

jiedigree cards on v.diich the results are based. iJIr. RKAMr.EY-]\rooRi3 has latterly been iny chief helper, 

but T am also much indebted to Miss AriCb; Lee and i\rr. G. U. Yule. Afiss Margaret Shaen and Miss 

Li.RA Eckenstein have also contributed to the labour of extracting the raw data from the stud-book.s. 
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sort and rearrange bis data cards in a variety of ways, but to prepare new cards on 

a different system is practically beyond his jDOwers. 

These remarks are made in order to meet criticism of the method in which my 

data cards were prepared. I could now possibly extract more convenient data, but 

that is only because of the knowledge gained in the process of examining the 

fecundity of several thousand horses. I did not even know, ah initio, the extent of 

variability in equine fertility; I did not even know the immense preponderance 

which would have to be given to certain sires, at any rate I had no numerical 

estimate of it. Nor had I any percentage of the number of cases in which a 

pedigree might end abruptly with an alternative sire."'^ 

I saw at once that the apparent fertility of racehorses was even less close to their 

potential fertility (which I presume to be the inherited character) than in the case 

of man. Mares go at different ages to the stud, they remain—for reasons not 

stated—uncovered for occasional years, or periods of years ; they return to the 

training stable for a time ; they are sold abroad ; they are converted into hunters, 

put into harness, or, as is occasionally recorded, sold to cab proprietors. This by no 

means invariably denotes that their fertility is exhausted ; their offspring may be 

bad racers, or their stock unfashionable. Yery frequently also we find the mare put 

to a cart-horse stallion for a year, a few years, or for the remainder of her career, 

and then no record at all is given of the result. Thus the total fertility recorded 

can have but small correlation with the potential fertility, and I was compelled to 

deal with fecundity. The insufficiency of the apparent fertilities, as recorded in my 

mare index, to solve the problem, may be illustrated in the following manner : 

1100 cases of the apparent fertilities of mares and dams having had at least four 

coverings were tabulated (Table IX.). The following results were calculated from 

this table, the subscript in referring to mare and d to dam :— 

M, 

rr.i 

The probable error of = ’0202, and thus we might argue that a fertile dam 

has, on the average, infertile offspring. But an examination of the above numbers 

shows us that the dams are more variable than the mares,t and yet the dams have 

been theoretically subjected to the greater selection, for they must all be granddams, 

or the fertility of the mares could not have been recorded. We are forced to 

conclude that the mares have been in some manner selected, and the foim of the 

selection is fairly obvious on examining the table. There ajjpears a great defect of 

'* Even tlie pedigree of snch a famous racehorse as Gladiateur is soon checked by the uccuirence of 

alternative sires. His sii’O, Mouarque, was the sou of either The Harou, or Sting, or the Emperor, 

t The vai’iahilily of mares, as a whole, not separated into mares and dams, is (see Art. 19) d'277o. 

2 P 2 

= 7'G655, M„ = GT391, 

= 3-3G52, (T,„ = 3-1G17, 

•0868. 
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mares in the third quadrant/''' he., of mares and dams of large fertility, the frequency 

is cut off abruptly in this quadrant. The reason for this is fairly clear. We have 

dealt with a limited number of years, about 30, of horse-breeding ; hence, when the 

dam has a long record, her later offspring at any rate cannot possibly have a long- 

one ; when she has a short one, it is possible for them to have a long one. Accord- 

ingly, there has been a process of unconscious selection, which has led to a negative 

correlation of the apparent fertilities. 

To illustrate the point further, two more correlation coefficients were obtained. In 

Table X, are given the apparent fertilities of mares and their dams with a minimum 

of eight coverings. We find : 

M,,--8-6191, M„, = 7-6309, 

= 3-1656, a-,, = 2-8149, 

= “ -0876. 

The probable error is again about -0202. While the mares now form a group with 

their mean fertility almost equal to that of the dams in the previous result, their 

variability is markedly less. Relatively to the dams its reduction is even greater. 

The correlation is sensibly the same. It would thus seem that the anomalous 

selection of mares wdiich thus reduces their variability so markedly below that of 

the dams is not in the low fertilities, 

I now removed from the Table IX. all parts of it concerning mares wfith a fertility 

greater than 8 ; 867 mares and dams remained with a minimum limit of four 

coverings, the mares not having a greater fertility than 8 oft'spring. I found : 

M,, = 7-7636, M,,, = 4-8558, 

o-,; = 3-3983, cr„, = i-9887, 

r = — -0190. 

The probable error of r = -0229. Now the line of regression for dams on mares 

uuoht to be the same, whether we obtain it from this result or from the first results 

in which mares with more than 8 oftspring are included. Yet, in this case, there is 

no sensible correlation at all. In other words, if we exclude the data for large 

fertilities, we should have to conclude that there was no correlation between the 

apparent fertilities recorded for mares and their dams. We are thus forced to conclude 

that apparent fertility is a character depending on the manner in which the record 

is formed, and must be useless for the investigation of inheritance. This investi¬ 

gation strengthens rny d priori reasons for selecting fecundity, not apparent fertility, 

as the character to be investigated. I took the fecundity of a brood-mare to be the 

numl)er of her living ofispring divided by the potential number of her oftspring 

under the given circumstances. Of both numerator and denominator of this ratio 

I must say a few words. 

* Tlie ]jortion of the table cut off by vertical and horizontal Hues through the means of dams and mares. 
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In considering the inheritance of fertility I had two different problems in my 

mind: (i.) Is fertility pare and simple inherited ? i.e., Does a very fertile mare have 

offspring more fertile than the average? And (ii.) What effect does reproductive 

selection actually have on the population ? i.e., To what extent is it screened by 

other factors of evolution ; does the very fertile mare actually have more offspring 

than the less fertile ? Is, for example, her stock weed}^ and likely to die early ? In 

the case of mankind, the fertility of a woman is, as a rule, effectively brought to 

its limit with the end of her marriage, and accordingly I started with completed 

marriages. In the case of a brood-mare her effective fertility depends not on the 

offspring she has but on the number of these which survive foaldom. It would doubt¬ 

less have been better to have treated these two problems of fertility separately, but 

being fairly confident from Proposition L, p. 260, that fertility must be inherited, I was 

more interested to test the actual effect of reproductive selection. Accordingly I 

selected as the numerator of my fecundity ratio, not the number of foals born, but 

those who survived to the yearling sales. The difference is not very great, but quite 

sensible. For example, the mean fecundity of 3909 brood-mares, measured in my 

way, = ’6343, i.e., 63 surviving offspring on the average of 100 coverings. 

The following table gives the result of reckoning merely barren mares and those 

slipping foals or giving birth to dead foals in a twenty-year period ;— 

Average Fecundity of Brood-mares. 

Year. Average fecundity. Year. Average fecundity. 

1873 •712 1883 •693 
1874 •70:3 1884 •678 

1875 •707 1885 •702 

1876 697 1886 •700 

1877 •692 1887 •682 

1878 •680 1888 ■695 

1879 •683 1889 •685 

' 1880 •666 1890 •686 

1881 •680 1891 •679 

1882 •667 1892 •675 

The averages of five-year periods are : 

•702, -675, -691, ‘684, 

and of the whole period, '688. 

There does not appear to be sufficient evidence for any secular change here, and 

we may take '688 to represent the average fecundity of the brood-mare, reckoning 

viable offspring to the number of coverings. The difference of '688 and ‘634 gives 

a death-rate of 5'4 foals in 68 8, or a death-rate of 7'85 per cent, of foals before 

maturity. If a considerable part of this death-rate be differential, we have room 

for natural selection inffuencing the drift of reproductive selection. The standard 
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deviation in the fecundity is, however, about *191, or about 19 foals in the 63, or 

about 30 per cent.—a. very great variation, so that if fecundity lie inherited, a 

ditferential death-rate of the immature will hardly suffice to check it. 

So much then of the numerator of my ratio. I have spoken immediately above of 

the denominator as if it were the number of times the mare had been covered. 

It is generally this, but in the relatively few cases where the mare has given birth 

to twins, I liave counted that coverino’ ttcice. Had this not been done the fecunditv 

might have been greater than unity, for example even in some exceptional cases 

have risen to two. On the other hand, a loss t)f twins Avould have, been marked by 

no greater change in fecundity than a loss of one foal, or the survival of one twin 

would not have been different in its effect on fecunditv to the birth of a foal. In 

order, therefore, to avoid these difficulties—especially that of isolated individuals 

lying far beyond the fecundity range of 0 to 1—when twins were born the poten¬ 

tiality of the covering was reckoned in the denominator as two. The relative 

infrequency of twins causes, however, this modification of the denominator to havm 

small influence on the result. 

My next step was to form some estimate of the extent to which fecundity thus 

measured was the same for diflerent periods in a mare’s breeding career. I expected 

fecundity to diminish with age as in the case of mankind, but taking out a fair!}' 

large test number of mares, I found that their fecundity for the periods covered by 

two succe.ssive stud-books was in the majority of cases closely the same. With larger 

experience 1 should now lay more weight on the decrease of fecundity with age; and 

I also think fecundity is smaller when the mare first goes to the stud. But even 

thus much of the reduced fecundity of old mares seems to arise from breeders sending 

famous mares to the sire long after their breeding days are passed. I have several 

records of old mares being covered seven or eight times without oflspring. This 

custom of breeders was much more rife in the early days of breeding than it appears 

to be now, when some breeders discard or sell a fairly old mare, even if she is barren 

two or thiee successive years. Clearly the custom gives the mare a fictitious 

fecundity, far below her real value, and probably accounts for granddams having a 

somewhat less fecundity than their granddaughters. 

The next problem to be answered \vas the effect the method of forming my 

fecundity ratios might have on the relative numbers which would be found in 

diflerent element-groups. For example, supposing the element of fecundity to be 

1/10, or the element-groups 0-1/20, 1/20-3/20, 3/20-5/20, . . . 17/20-19/20, 19/20-1, 

would the fact that the fecundity ratio is a ratio of tvhole numbers cause, d a 

greater probability of frequency in one of these element-groups than another ? 

’fo begin with, all estliiiation of fecundity based on less than four coverings was 

discarded. Three coverings give too rough an appreciation of a mare’s fecundity, it 

can only fall into one of the values 0, 1/3, 2/3, and 1. The question then arises, if 

all the fecundities : 
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0/4, 1/4, 2/4, 3/4, 4/4, 

0/5, 1/5, 2/5, 3/5, 4/5, 5/5, 

0/6, 1/6, 2/6, 3/6, 4/6, 5/6, 6/6, 

0/26, 1/26, 2/26, .... 25/26, 26/26, 

were equally likely, how would the frequency depend on the grouping 

Taking 26 coverings as the probable maximum—it actually occurs—we have for 

the total number of fecundities given above ; 5d-6 + 7-l-----r27 = 368 separate 

fecundities. Let us see how they woidd he divided in one or two cases. 

Case (i.) Let the elements be based on 1/8, or be 0-1/16, 1/16-3/16, 3/16-5/16, 

5/16-7/16, 7/16-9/16, 9/16-11/16, 11/16-13/16, 13/16-15/16, 15/16-1. 

The half-groups at the ends are taken so that zero and perfect fecundity should 

really be plotted at the middle of a 1/8 element. We find, adding up the numbers 

of the above fecundities which fall into the nine groups, the folloAving frequencies :— 

33-5, 42, 43-.5, 44, 42, 44, 43-5, 42, 33-5. 

There is thus a somewhat deficient frequency in the terminal groups, and this 

would probably to some extent bias the distribution. 

Case (ii.) Let the elements be based on 1/15, or be 

0-1/30, 1/30-3/30, 3/30-5/30, . . . 25/30-27/30, 27/30-29/30, 29/30-1. 

We liave the following distribution : 

23, 22, 23, 23-5, 22*5, 23-5, 23 5, 22, 22, 23-5, 23-5, 22-5, 23-5, 23, 22, 23. 

The bias here is only slight and the distribution is on the whole very satisfactory. 

Case (iii.) .Let the elements be based on 1/20, or be 

0-1/40, 1/40-3/40, 3/40-5/40, . . . 35/40-37/40, 37/40-39/40, 39/40-1. 

We find for the groups : 

23, 13, 17-5, 17-5, 17, 18, 17, 18, 17-5, 17, 18, 17, 17-5, 18, 17, 18, 17, 17-5, 17-5, 13, 23. 

Here the terminal groups have too great a frequency, and the adjacent groups too 

little. It is clear that the division into 1/15 elements is better than those of 1/8 of 

1/20, so far as these results go. But unfortunately the different coverings do not 

occur in anything like tlie same proportions. Their exact frequencies could only be 

found d posteriori, and I was desirous of having some idea of grouping before start- 

'* Such problems are really not infrequent in statistical investigation.s, and seem to be of some 

interest for the theory of fractional numbers. Mr. Fxlon worked out for me the details of the cases 

given below. 
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ing the labour of extraction I therefore weighted the different coverings on the 

basis of a small preliminary investigation as follows : 

Case (iv.) Number of coverings, 4 to 5 inclusive, loaded with 2. 

,, 6 to 9 ,, ,, 3. 

,, „ 10 to 15 „ ,, 4. 

,, „ 16 to 18 ,, ,, 2. 

,, ,, 19 to 2G ,, 1. 

The resulting system of frequencies was : 

54, 42-5, 45-5, 47, 45-5, 4G-5, 4G, 45, 45, 4G, 4G-5, 45-5, 47, 45-5, 42 5, 54. 

This system is not so uniform as in Case (ii.). I had hoped that the 744 frequencies 

would have been fairly closely the double system of Case (ii.). The main irregularitv 

occurs at the terminal groups, or those having fecundities nearly zero and nearly 

perfect. These I considered would be relatively infrequent, when we started with as 

many as four coverings, and had an average failure of about 37 in 100. The sequel 

showed that the assumption was legitimate, so far as regards zero fecundity, but that 

perfect fecundity was sufficiently frequent to cause a hump in the frequency curve 

for fecundity, corresponding to the group-element 29/30 to 1. The frequency of 

this group is greater than that of the group 27/30 to 29/30, when we start from at 

least four coverings. This hump entirely disappears, however, if we start with at 

least eight coverings. Thus I take the hump to be purely spurious,” he., a result of 

the arithmetical processes employed, and not an organic character in fecundity. It 

depends upon our definition of fecundity, which is not a truly continuous quantity. 

As the theory of correlation applied is not in any way dependent on the form of 

the correlation surface, beyond the assumption of nearly linear regression, the hump 

cannot, I think, sensibly affect our conclusions. Had I known, however, a priori, 

what the frequency of different coverings and the nature of the fecundity frequency 

curve would be, 1 should have attempted to choose such a group-eiement, that, with 

proper weighting of the coverings, there would have been no arithmetical bias to 

the terminal groups. As it was, it seemed to me that the group-element of 1/15 

gave fairly little arithmetical bias—at any rate where the bulk of the frequency would 

occur—and it was accordingly adopted as a basis for classifying fecundities. 

The dfficulty illustrates tlm point I have referred to, namely, that in statistical 

investigations the best classification can only be found d posteriori, but the classifi¬ 

cation adopted has usually to be selected d priori. 

The 1/15 element being selected, the letters a, h, c, d, e, f, g, h, i,j, k, I, m, n, p), q 

were given to the IG groups of fecundities from 0 to 1, as cited under Case (ii-)-'^ 

* A table was formed of the 368 actually-occurring fecundities, from whicli it was possible to at once 

read olf the group (or it might be two groups, e.g., "5 falls half into h and half into ?.) into which they 

each fell. 
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Thus the fecundity of a mare was described by one of these 16 letters. Here the 

centre of the j group, for example, is ’6, and it covers all fecundities from *56 to 'GS. 

Thus midway between y and h we are at about the mean fecundity. 

The more recent Stud-Books, vols. 12 to 17, were taken as containing more 

complete details and, what is more important, less in-and-in breeding, although as we 

shall see, this is still an important factor. These volumes cover 30 and more years 

of English'^ stud life. From these 30 years’ records upwards of 5000 mares, who had 

been covered upwards of four times, had their fecundity ascertained. The process 

w’as a very laborious one, as each mare had generally to be sought for in several 

volumes, and the records in each volume are not continuous, but overlap by quite 

arbitrary numbers of years. Further, great care had to be taken to identify each 

mare properly, as the same name is very frequently repeated, and the like difliculty 

occurs, though to a lesser extent, in the case of sires. A card was then written, 

giving the name of the mare and those of her sire, her dam, and her dam’s sire. 

Upon this card the letter indicating her fecundity was placed. A card alphabet of 

mares was thus formed, consisting, in the first place, of about 3000 entries. This 

alphabet was again gone through and the fecundity of the dams of the mares inserted 

on the cards till there were about 2500 cases known of mare and dam. The dams 

were partly found from the existing series, but it was also largely necessary to work 

out fresh cases. Lastly, the cards were gone through and the fecundiU of the grand- 

dams entered in upwards of 1000 cases. This forms the first series of cards. 

In the next place a card index was formed of all the sires serving during these 

30 years. This contained upwards of 1000 cards. On these cards the sire’s sire was 

entered, and the fecundity of all the mares contained in the first or mare alphabet 

was now' taken off and placed on the card of the mare’s sire. Thus the card of each 

sire had the letters a, h, c, d, e, &c., upon it, and a frequency distribution was formed 

on the card of each sire for the fecundity of his daughters. 

The same thing was done for the sires’ sires ; only here recourse had again to be 

had to the stud-books to obtain the fecundity of the daughters of the more ancient 

sires. Finally, a sire-alphabet was obtained which gave the average fertility of the 

daughters of a sire and of the daughters of his sire, or his half-sisters. On these 

cards was also placed the number of mares upon which each average was based. 

These two card-alphabets, the mare and sire alphabets, form the “ dressed ” 

material upon wdiich all the subsequent calculations were based. 

(14.) At this point it seems desirable to insist somewhat on the many causes which 

tend to make the fecundity of mares, as thus determined, to a considerable extent 

fictitious. Many of these were only apparent to me as I became more and more 

familiar with the material. 

* IrisE mares were excluded except where, for pedigree purposes, it was necessary to deal witli them. 

Many Irish mares were further included when it came to the valuation of the fertility of mares duo to 

a given sire. 

2 q VOL. CXCII.—A. 
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(a.) Mares appear to be less fecund at the beginning and end of tbeir breeding 

career. Hence, when the fecundity is based on a part only of their career, as it often 

must be, we do not really get a fair appreciation. 

(h.) A more fertile mare is likely to have more daughters go to the stud than a less 

fertile one, and hence we get a better appreciation of the fertility of the offspring of 

the former than of the latter. 

(c.) Fashion among breeders interferes largely with the exhibition of the natural 

fecundity of a mare. She may be a famous mare and is sent to a famous sire, even 

though produce is not so likely as if she were put to a sire of a different class. Thl.s 

appears to be practically recognised when apparently barren mares are sent in one 

season to two, or even three sires, or again to half-bred horses or cart-horses. 

(d.) Brood-mares which have produced performers are kept much longer at the 

stud, and we have the fecundity lowered by coverings after the mare is sensibly 

sterile. Less important mares are removed sooner from the stud. 

(e.) Good racing mares are often put late to the stud. 

{/.) In a certain number of cases we are simply told that the mare had no produce 

for a period of 3mars, but whether she wms covered or not is unrecorded. 

(g.) Second-rate mares, or mares thought to be near the end of their fecundit}’", are 

often sold abroad. In the latter case the fecundity is fictitiously increased; in the 

former we have only a short period to base it on. 

(A.) There is no record kept of the half-bred foals, which for our purpose are as 

important as the thoroughbred foals. “Put to a hunter” is a not uncommon record, 

with no statement of the result. 

(i.) Comparatively infertile mares, unless of ver^" valuable stock or famous as racers, 

are not kept long enough at the stud to get a reliable measure of their fecundity. 

(/.) The smaller breeders will often put mares to inferior sires, already nearly 

worn out, either because they own them, or because their fee is low ; and thus again 

a full chance is not given to the fecundity of the mare to exhibit itself. 

(A) We have excluded in our determination of the fecundity foals dying young. 

This is often due to the fault of the mare, but is often again due to the environment. 

(/.) Lastly, thoroughbred mares are highly artificial creatures, and man}^ must 

sufter from their environment,'" either in the matter of barrenness or slipping foal, in 

a manner from which the wild horse or a more robust domesticated animal would be 

entirely free. 

These considerations may suffice to show that our values of the fecundiW will -only 

roughly represent what may be termed the natural fecundity, and we ought not for 

* I am told that there are like difficalties with cows. Cows are very liable to slip their calves, and 

one cow doing so, several others in the hei-d will or may follow her e.xarajile. There is a strong folk- 

belief in Wiltshire—I give it merely as evidence of what a slight change in the envii’onment is supposed 

to achieve—that the habitual presence of a donkey with the herd in seme way soothes the cows, and 

renders them less ready to slip their calves. 
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a moment to expect inheritance in the full intensity of the Galtonian law to be 

exhibited by such material. 

(15.) But there is another point of very considerable importance for the weakening 

of correlation, namel}^ the effect of in-and-in breeding’. To get correlation we must 

have a diversity of parents producing a diversity of offspring, but when the parents 

become more and more identical, we get larger and larger arrays between which and 

the parents the correlation is weakened. For example : suppose the correlation found 

between all parents and offspring in the general population, and now select only all 

the brothers in a large array and find the correlation between them and their 

oflspring, we shall find that the correlation is lower than in the ])revious case.'"" It 

would be impossible to apply theory to the present case, however, because we can 

only roughly appreciate the extent of such in-and-in breeding. That it is great the 

following statistics will show. 

Of the more than 1000 sires in my sire alphabet, only 7G0 were sires of mares 

which had been covered at least four times. These 760 sires had upwards of 

5000 offspring, of whom I had the fecundity recorded, but when mares with 

alternative sires were excluded, there remained only 4677 available niares.t These 

mares were distributed as follows :— 

Daughters .... I 2 3 4 5 6 7 8 9 10 11 12 

Sires. 280 113 78 43 29 22 20 21 22 14 10 10 

Daughters .... 13 14 15 16 17 18 19 20 Above 20 

Sires . 11 11 8 0 2 6 4 4 46 

Here the second line gives the number of sires having the number of daughters 

in the first line in the 4677 cases, which I take to be a fair sample. 

Thus over a third of the sires had only one mare. Two-thirds of the sires had 

together only one-fifth of the mares. Seventy-six of the sires were fathers of 

about half the mares, and 46 sires alone produced 1801 mares, almost as many as 

642 sires did. We are here dealing with the fairly long period of 30 years, but 

even making due allowance for young stallions commencing and old stallions con¬ 

cluding their stud career, it will be manifest that our sample shows that the great 

bulk of mares for the period in question were the offspring of comparatively few sires. 

But let us look at the problem from the standpoint of the sires. My 760 sires 

* Tlie theory of such cases is fully developed in a memoir on the influence of selection on correlation 

not yet published. 

t Some other cases were also excluded for diverse reasons. 

2 Q 2 
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were all fathered among themselves except in 49 cases. In other words, they were 

tlie sons or grandsons of only 49 sires. Of these 49 sires, there were 12 whose 

pedigree I could not trace,but they were very probably sons of sires already on my 

list or among the remaining 37, In the majority of cases they appeared only as 

the sire of one stallion. The remaining 37, whose pedigree I could trace, were 

descended at once or in very few generations from 9 sires.t Thus both from the 

standpoint of the mares and of the sires we are dealing with a closely in-bred 

stock, and this is one and probably a very important factor in the weakening of the 

fecundity correlation. 

Having regard to these difficulties, if we can succeed in showing that fecundity in 

thoroughbred racehorses is inherited, we can be fairly confident that we have 

onlj^ reached a lower limit of the correlation coefficient, 

(16.) On the Inheritance of Fecundity in the Female Line. 

(i.) A preliminary investigation must here be made, in order to determine the p of 

the formulm given in Proposition III. (p. 269) we want the correlation of fecundity 

with fertility. If be the fecundity, f the apparent fertility, and c the number of 

coverings, twins counting as a double covering, we have ; 

^ = fl^‘> 

whence if we determine the correlation between ^ and f numerous constants will 

follow. Table XI. gives the correlation between fertility and fecundity for 1000 

brood-mares. We found : 

= -6375, M, = 6-515, 

cr,|, = ’1810, cr, = 3*2775, 

p — 5152, 

= lOOo-^/M^ = 28-39, Vj = 100o-,/M, = 50*31, 

where and ly are the “ coefficients of variation.Here b}^ Yule’s Theorem § 

r^j-cr^lo-f is the slope of the line which most closely fits the curve of regression for 

fecundity on fertility. If we supposed this curve to be straight, then the line must 

coincide with it. Now since fecundity vanishes with fertility, the curve passes 

through the origin, and hence, if the regression be linear, tlie line must also pass 

througli the origin. In this case, as is shown on p. 270, = vfv = *5644. The 

difiereiice between *5644 and *5152 may be taken, as it is several times the probable 

error, to indicate that the regression curve between fecundity and fertility is only 

approximately linear. 

The variations in both fertility and fecundity are here large. Accordingly we 

* Stockmar, Sovereign, Andover, Phaeton, Prince Caradoc, Robert Houdin, Pjlades, King of Kent, 

Clarrj- Owen, Calabau, Homily and Taurus. 

t Tramp, Sir Peter Tea/de, Cattoii, Buzzard, Orville, Dionied, Sorcerer, Dr. Syntax, Marske. 

X ‘ Phil. Trans.,’ A, vol. 187, p. 276. 

§ 'Roy. Soc. Proc.,’ vol. 60, p. 477. 
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nmsfc use the formula (i.) for the mean value of an index given in my memoir on 

spurious correlation.’’- We shall then obtain an approximate value to the mean 

number of coverings of each mare. Formulae (hi.) of the same paper will then give 

the standard deviation for the number of coverings. In our present notation : 

and therefore 

We find 

and ; 

iW = 
M, 

1 + too ^ r'th 

VJl\ 

CTr 
- V(im) + (foo) _ 2r 

10,000 .100/ 

M,/M^ = 10-2196, 

M, = 10-2196 X 1-007 = 10-2911, 

(Tc = 4-4455, 

V. = 43-20. 

To the same degree of approximation we can further ascertain the correlations 

between the number of coverings and the apparent fertility and fecundit}^, i.e., 

and A short investigation similar to those in the memoir on spurious correlation 

just cited shows us that: 

’V = i'^j - 

Th ese lead to the numerical results : 

= *8259, = — -0572. 

The conclusions to be drawn from these results are all of some interest. In the first 

place we may ask : How does agree with its value found from other and more 

complete series? For 4677 mares—my complete series without mares with alternative 

sires—the average fecundity was -6373. A better agreement could not have been 

hoped for. In a group of 1509 mares dealt with for variation only and entered as 

“ daughters ” on the cards—so that they had not been selected by the fact that their 

daughters must have recorded olfspring, as is the case with “ dam ” entries—I found 

the following results 

Variation in Fecundity of 1509 Brood-mares (Four Coverings). 

Eecundity. a. b. c. J. e. /• 17- h. li j- h. 1. 1)1. 11. P- 2- 

Frequency 9 3 11 26 46 43-5 85 122-5 154-5 232-5 194 223 146 100 23 90 

Total 1509. M.^ = ’6345. = T965. 

* ‘ Rcy. Soc. Proo.,’ vol. GO, p. 492. 
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Now this is precisely what we might expect; the mares belonged to a class, of 
6 

w hich we are not certain whether their daughters have or have not recorded fecundity. 

The mean fecundity is therefore decreased and the variability increased. Add to tiiis 

group 2400 mares, all of which had had their daughters’ fertility recorded, and w^e 

find for 3909 mares, = *6345 and cr^ = *1910, i.e., the mean fecundity ascends 

and the variability falls. Illustration of this law will be found in the following two 

groups :— 

Mifi, 

1200 mares. •6337 •1888 
1200 dams. ■6525 •1643 

Thus we send up the mean fertility and lower the variability by separating into two 

groups the pedigree of one which has a longer record. This is precisely in accordance 

with the theory already developed. Our mean fecundity and variability for brood¬ 

mares may be considered as constant characters, and variations in their values beyond 

their probable errors due to conscious or unconscious selection in the record itself, 

or in our extracting from it. 

The reader will notice at once, if he turns to the diagram of the above frequency, 

(i.) that there is a small hump at {a) of no practical importance, and a larger one 

at {q), perfect fertility being fairly frequent with only four coverings, and there being 

from the arithmetical processes involved a bias towards (2) as compared with {p). 

(ii.) The distribution of frequency, although somewhat ragged, is quite clearly not 

normal, but of the character which in other pajjers I have called shew. Were there 

any occasion, it wmuld be easy to fit it with one of my skew curves. To mark 

how (i.) will disappear and (ii.) become still more apparent, I have placed on the 

diagram the frequency distribution for 2000 mares reduced to the same scale. 
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Variation in Fecundity of 2000 Brood-mares (Eight Coverings), 

Fecundity 

1 
a. h. c. </. e. /• 'J- h. ' L i- 1. m. n. i q- 

1 

Frequency 0 2 7'5 11-5 21'5 55 104-5 182 : 271-5 
1 

315 1 337 293-5 204 127 49 , 19 
I 

i 
Total, 2000. M,^ = = -6330. = -1568, 

Thus, making the minimum number of coverings 8 instead of 4, has removed 

the terminal humps, zero fecundity is now unknown, and perfect fecundity very rare. 

We have reached a smooth skew frequency distribution ; we see fecundity as a con¬ 

tinuous character obeying the usual laws of variation.* The mean fecundity in the 

two cases is sensibly the same, '633, but owing to the fact that we have made a 

selection of a limited group in the second case, the variability is considerably 

decreased. 

The average apparent fertility of brood-mares, 6'515, must not be confused with 

their average real fertility, for, as we have seen, we have in many cases not a com¬ 

plete record of their stud-life, or such a full record has not been used {e.g., in case of 

mares still at the stud, but having been already covered four or more times). Its 50 

per cent, variation shows that an apparent fertility of 9 to 12 is not infrequent. 

The average number of coverings being 10 and more, it will be seen that the records 

of between 50,000 and 60,000 coverings have been dealt with to form our mare and 

sire alphabets. The large variability in the number of coverings shows that 15 

to 20 coverings will not be infrequent, and cases of 26 actually occurred. Lastly, 

we have the correlation between fertility and the number of coverings, high as 

might be supposed, for a high apparent fertility could only be exhibited by many 

coverings. Although a low apparent fertility might correspond to any number of 

coverings, still, in practice a sterile mare will not be sent indefinitely to the sire. The 

correlation between the number of coverings and the fecundity is small and negative 

(— *0572). This follows from the principle that, fertility being the same, a high 

number of coverings reduces the fecundity, and this factor is more potent than the 

high correlation of fertility and the number of coverings. 

(ii.) Table XTI. exhibits the correlation of 1200 mares and their dams with regard 

to fecundity. Here the more fertile dams are weighted with their fertility, and at 

least four coverings were required of each mare. If the subscript m refers to mare, 

and d to dam, we find : 

* The actual equation to the curve referred to the mode '6.531 as origin, the axis of x being positive 

towards perfect fecundity, and the unit of x being 1/15 is: 

y = .342'187 (1 + a’/47'1358)«2«2Ci (l _ .r/12'1106)2i-229i. 

The fit will be found to be very .satisfactory. 
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= -6337, M,; = '6525, 

(r^='1888, o-j = '1643, 

r,, = '0831. 

The coefficient of regression = '0945. 
The probable error of the correlation is ‘0193 and of the regression* •0195. Thus 

these quantities are four to five times their probable errors, and we conclude that 

fecundity is certainly inherited. 
The intensity is far below that suggested by the law of ancestral heredity, but it 

nevertheless exists. Its lowness is probably due to the fictitious character of the 
fecundity owing to the causes indicated on pp. 298-9. An attempt must now be made 
to eliminate some of the factors disguising the fecundity, but to do so is by no means 
so easy as in the case of fertility in man. 

(iii.) My first idea was that by taking a higher limit to the number of coverings a 
closer approach might be obtained to the true, fie., the inherited fecundity. 
Accordingly Table XIII. was formed for the correlation of 1000 mares and their 
dams, when the minimum number of coverings was eight. But I did not recognise 
that this would give far greater weight in the Table to the older mares, and that 
accordingly causes (cl) and (i) of p. 298 would now play a much larger part in disguising 

the true fecundity than before. There appears to be no limit to the number of 
times a famous old mare may go to the stallion when there is very small hope of any 
offspring. 

Table XIII. gives us the following results : 

M„ = -6300, = -0360, 

cr„, = '1633, (Tj = 'ISOO, 

r„,; = -0652. 

The coefficient of regression = ‘0708. 

The probable error of the correlation is ‘0212, and of the regression '0213, both 
less than a third of the observed values. We should agfain conclude from this result 
that fecundity is inherited, although it offers less strong evidence than the previous 
case. The influence of selection+ is at once apparent in the great reduction of the 
variabilities. The fact that we are throwing the determination of fecundity more 
on to the old age period of life appears from the reduced mean fecundities. I 

attribute the reduction in the fecundity-correlation to this source, i.c., the very diverse 
treatment which old mares receive at the hands of different breeders. 

(iv.) I made another attempt to remove screening causes by taking 1200 more 

* Peakson and Filon : ‘ Phil. Trans.,’ A, vol. 191, p. 214. 

t The effect of such a selection as the above in reducing correlation is dealt with in iny paper on the 

inHuence of selection on correlation. 
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mares, not identical with the series in (ii.)'“ and working ont their dams’ records most 

carefully, rejecting any cases in which the breeder was clearly sending the mare to 

the stallion long after it was obvious {'post facto) that she was sterile. In this case 

four coverings wmre retained as a minimum, and the results are given in Table XIA^. 

We find : 
= -OSGO, M,, = -6616, 

cr,„ = 'ISSS, a-a ■= T604, 

^rad = '0995. 

The coefficient of regression = ‘llGO. 

The probable error of the correlation is '0193, and of the regression ’0194 ; the 

correlation is accordingly more than five, and the regression more than six times Its 

probable error. We conclude that fecundity is most certainly inherited. The 

regression found is, however, only about two-fifths of what is recpiired by the law of 

ancestral heredity, 

(v.) It has been suggested that fertility or fecundity might alternate in tivo 

generations ; when the offspring are numerous their offspring might have less fertile 

or fecund offspring. I do not see how this wmuld be possible Muthout its exercising 

an influence on the correlation of two generations, for we must come to one fertile 

followed by an infertile generation. But I had made preparations in my alphabet of 

mares for testing the correlation between mares and their granddams, and I went on 

to the construction of a table, although the results for mares and their dams showed 

me that whatever result might be reached, it would be within the probable error of 

the observations. I reached this conclusion in the followino- manner : If we o’o back 
^ o 

one generation we introduce, owing to the nature of the record, so much fictitious 

correlation and so much in-and-in breeding that the coefficient of inheritance is 

reduced to two-fifths or less of what its value should be accordino’ to the law of 
o 

ancestral heredity. In going back two generations we come to fewer mai'es, to more 

in-and-in breeding, and to just the type of famous old mare, whose breeder kept her 

at the stud long after she was sterile. I expected accordingly a great and artificial 

fall in the fecundity of granddams and a double drop, something like | X |, in the 

value of the regression as indicated by the law of ancestral heredity. This would 

reduce the apparent regression to about f X f of T5, or to about ’025, say, a value 

about equal to the probable error of the table. The results actually reached are given 

in Table XV., and we find, if the subscript g refer to granddam : 

M„j = '0345, 

o-,„= -2040, 

> mg 

The coefficient of regression = ‘0204. 

* In the first series the mares’ names ran from A to G; in the second from G to M, with 300 

additions made to the A to G series, while I was completing my alphabet. 

VOL. CXCII.—A. 2 R 

M„ = -6232, 

o-y — ’1687, 

= -0169. 
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The probable error of the correlation is '0213, and of the regression *0213. Thus 

these results are not significant in themselves, but they are exactly what we might 

expect on the above hypothesis. Taken with the other five tables which we have 

worked out for the inheritance of fecundity, they are significant, for every one of 

them gives a positive correlation, however small it be, and thus adds to the accu¬ 

mulated evidence that fecundity is a heritable character. 

(vi.) It remains to test our results by the theory developed onpj). 2G9 et. seq. But 

a difficulty comes in here. Turning to (xviii.) and (xix.) on p. 268, we cannot feel 

justified in putting Mi = IVB, for there is a secular difference in the fecundity of mares 

and dams, owing to the fecundity of the older brood-mares being based on a longer 

period and liable to the disturbing causes so markedly manifest in the correlation of 

mares and granddams (see my remarks, p. 305). If we combine (xviii.) and (xix.) 

we find 

M'h - Mb = r ^(M'd - MM. 
o-i 

Now r is small, and it will accordingly be legitimate to put M'l = M'j and cti = cr, 

on the right, we have then 

(M"^ - rM"0/(l - r) = 

From this we deduce for the results in (ii.) on p. 304 

Mb = -0321. 

Turning now to (xix.), it may be written 

M'b = I -f 
/o / 0 

i/o-i 

Mf Vl + 

The second term in the curled brackets is small, and in it we may put to a first 

approximation cr'i = o-^ = cto and Mj = Mb- We then have 

or. 
W\ = M'l X 1-0666. 

Substituting the value of M'b we find 

M'l = -6118. 

We thus see a difference in the fecundities of the unweio-hted dams and unweio-hted O C? 

mares of -6118 and -6321, or about 2 foals more in the hundred appear to survive in 

the later generation. This is very probably due to the causes already indicated as 

affecting the apparent fecundity of the older mares (see p. 298). The influence of 
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reproductive selection changes these quantities to *6337 in the case of the daughters, 

and to the apparent high fecundity of '6525 in the case of the dams. 

We can now find cr, to a second approximation by aid of (xxi.). In the small term 

multiplied by r, we put cti = 0-2 = cr",. Hence we find 

2 _ '/2 I ^.2 / '/2 f'2\ 
0-2 = O- 2 + r (o- 2 — o- 1), 

and deduce, on substituting the numerical values. 

a-, = '1896, 

or is scarcely different from a"2. We accordingly conclude that we may quite 

reasonably assume the variability of the mares to represent the variability of the 

mares without reproductive selection, but the effect of weighting the dams with 

their fertility is to reduce the variability of the dams from about '1896, if there be 

no secular change, to an apparent value as low as '1643. 

The same formulae applied to the slightly better results in (iv.) on p. 305 give us : 

M'l = -6205, and Mb = '6342. 

If we pass back from Mb and Mb to Mj and M2 we find: 

First case. Second case. 

Ml . ‘5460 •5567 
M2 . . . •6266 •6278 

If these results be considered as valid, we notice a remarkable difference between 

the fecundity of the younger and elder generation. While the crude results on 

pp. 304 and 305 might lead us on first examination to suppose the elder generation 

more fecund than the younger, these results show us that it is distinctly less so. 

The greater part of the difference, however, is due, not to a secular change, but to 

the causes we have so often referred to as weakening the fecundity recorded for the 

older mares. At the same time the whole system of breeding is so artificial that we 

may well doubt whether our equations (i.) and (v.) can be legitimately applied. For 

the chance of a mare getting into the stud-book as a dam, i.e., having daughters at 

the stud, depends less on her fertility than on the degree of fashion in her stock. 

Thus the record weighting with fertility is hardly a probable hypothesis, and the 

values just given for Mi are, I suspect, much below what they should be. For the 

above reason 1 have not proceeded to consider the changes in variability connoted by 

(ii.) and (xxii.). As I have made no attempt to form a correlation table for mares 

and dams in which the dam would have only one daughter to her record, I cannot 

make any plausible guess at the real magnitude of the cubic summation term in 

2 R 2 
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(xxii.). Apart, however, from the numerical application of these variation formulEe 

to a somewhat doubtful case, we see in these formulse the theoretical basis for the 

observed fact that the fecundity of mothers is far less variable than that of daughters. 

It is really only an apparent divergence, due to the fact that the mothers have been 

v/eighted wuth their fertility ; this, while it increases the apparent mean of their 

fecundity, reduces its apparent variability, 

(17.) On the Inheritance of Fecundity in the Brood-rnare through the Male Line. 

For the thoroughbred horse this problem is fairly easily answered by investigating 

whether mares related to the same stallion have any correlation between their 

fecundities. The two cases I have selected are : (i.) “ Sisters,” daughtei’s of the same 

sire, but in general not of the same mare ; and then (ii.) “Nieces” and “Aunts,” or 

daughters of a sire and the daughters of his sire. As we have only 760 sires and 

nearly 5000 mares, the daughters or aunts fall into rather large arrays, and we are 

compelled to use the methods discussed in Proposition lY., A and B. Even so the 

arithmetical work for a correlation based on the index of sires was far more laborious 

than for one based on the index of mares. 

(i.) To find the Correlation between Hcdfi-Sisters, Daughters of the same Sire^ 

Here we have to use formulae (xxiii.), (xxv.), and (xxvi.) of pp, 272-273, In order 

to do this a table was formed of the mean fecundity M of the array of sisters due to 

each sire, and of ^n{n — 1), the number of pairs of sisters in each array. Then the 

products hn (n — 1) M and ^ n {n — 1)M“ were formed, and the numerator of (xxiii.), 

or al, calculated by adding up for all the 760 sires. The result gave : 

al = -6655167, 

v/here the unit is the fecundity group element of 1/15. The number of pairs of 

sisters dealt with was 54,305. The denominator cro(l — p') + crl is not so easily 

ascertained, o-q is the standard deviation of all the series of mares who are sisters 

without weighting; o-qs/{\ — p") is the standard deviation of an array of sisters, or 

if the regression be not linear, the mean of such standard deviations for all arrays, 

or rather its square is the mean of the squares of such standard deviations ; p is the 

correlation between a patent character in the daughter and a purely latent character 

in the sire, and cannot therefore he found directly. 

In order to get an appreciation of the standard deviation of an array of sisters— 

it being practically impossible to work out these quantities for 760 arrays—-I selected 

twenty sires having fairly large arrays of daughters, and reached the following- 

results : 
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Table of Arrays of Mares, which are Half-Sisters, 

Sire. No. of mares. Mean fertility. S.D. of array. 

Specnlam. 76 9-697 2-989 
Sterling. 52 10-750 2 545 

i Scottish Chief. 67 9-201 3-176 

Newminster. 64 8-875 2-497 

Parmesan. 37 9-708 3-076 
Macaroni. 81 10-210 2-770 

King Toni. 53 9-689 2-748 
Lord Clifden. 41 9-878 2-086 

! Hermit. 79 9-437 3-003 
1 Blair Athol. 87 9-057 2-752 
1 Lord Lyon. 32 9-125 3-314 

The Duke. 35 9-186 2-474 
Doncaster. 37 9-297 3 021 

Adventurer. 58 10-466 2-621 

Cathedral. 43 9-267 2-847 
Rosicrucian. 59 10-932 3-094 

Stock well. 80 9-131 2-093 
Rataplan. 40 8-222 2-201 

! Y. Melbourne. 55 9-064 2-301 

. Thormanby. 41 9-951 1-651 

' Totals. 

Mean. 

Ditto in actual units* . 

1117 

55-85 

191-143 

9-55715 
-6371 

53-259 

2-66295 

•1775 

I next took the mean and standard deviation of the 1117 mares to obtaiu o-q. 

The mean fecundity was now found to be 9'5685 and o-q = 2‘7824, or in actual units 

'6379 and ’1855. Clearly only about I- per cent, difference is made whether we 

take the mean fecundity of the 1117 mares, or the mean of the unweighted means 

of the twenty arrays. Knowing croand(To\/l — we can now find p. We have 

almost at once 
p = *2900. 

This is probably the first determination of a coefficient of inheritance between a 

latent character in one sex and a patent character in the other sex. We see that it 

has almost exactly the value required (’3) by the law of ancestral heredity, or we 

conclude, mares inherit from their sires a ^ecimdity governed closely hy the law of 

ancestral heredity. 

If the reader asks why is not the intensity reduced in this case in the same 

manner that we find it reduced in the case of the inheritance from the dam, the 

reply is ; 

(i.) In the case of the dam and mare, both quantities to be correlated are liable to 

fictitious values. In the case of sire and mare, we deal with only one. 

* A fecundity unit is taken to be 1/T5, for tliis is the unit of grouping. 
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(ii.) The influence of fictitious values has been shown on pp. 276-277 to chiefly 

affect the coefficient of correlation and not the standard deviation. 

Now the present result is based solely on the calculation of standard deviations, 

or on the variability of fecundity as a whole and in arrays. It is accordingly not 

influenced to nearly the same extent by the existence of fictitious values. Could we 

calculate the variability of the arrays of daughters due to individual mares, we 

should probably get a better result for inheritance in the female line.* 

The above result is so satisfactory that I have little doubt that we have deter¬ 

mined a very good value for ctov/ 1 — p^. Substituting it we find for the correlation 

between half-sisters : 
•66552 

7'09130 + -66552 
•0858. 

The law of ancestral heredity gi\ms for half-sisters r = ‘2, and f of this = ’08. 

Thus we see that the collateral heredity between half-sisters, daughters of the 

same sire, is quite sensible, and is almost what we might have predicted would be 

the result, if we supposed correlation to be weakened, as in the previous cases, to 

f of its value by fictitious records. 

It is worth while to consider the amount of fictitious fecundity suggested by 

the reduction factor f. We have only to suppose the n^/N of our p. 277 to be f. 

Now we may well assume the chance of a fictitious fecundity being recorded to be 

the same for either one of a pair of sisters ; hence we shall have p — <2, a^nd therefore, 

from the result on p. 276, we find {p — = f. This gives us (y) — l)_p = \/’4, 

and (?q + the fraction without fictitious values = (p — t)/p = '6325. Thus 

in order to introduce the reduction factor of f by the occurrence of fictitious values 

of the fecundity, we should have to suppose about 37 per cent, of fictitious values to 

occur. This is, of course, a sort of average ; many values will probably be only 

partially fctitious, i.e., will to some extent approximate to their real values. 

Considering the very artificial character of the thoroughbred brood-mare, and the 

uncertainty of her treatment by breeders, this does not seem such an immense 

percentage that it would force us to the conclusion that the law of ancestral heredity 

cannot be true for the inheritance of fecundity. 

(ii.) To find the Correlation in Fecundity hetween the Sisters of a Sire and his 

Daughters. 

What we want is really the correlation between aunts and nieces, but they 

^ The standard deviations for the arrays of mares in Table XII. Avere indeed -worked out for the 

twelve cases of dams from e to q. The mean of these cases was sensibly the same Avhether the simple 

mean, or the mean weighted Avith the numbers in the array was taken, and equalled 2'8091 or ‘1823. This 

is 0-^(1 — rb't But by p. 48, ctq = '1888, Avheuce Ave deduce r — T375, and the regression equals •1581. 

Thus Ave liaA'e found a substantially larger value for r than that on p. 304 by dealing Avith variabilities, 

and not direct correlations. This gives additional evidence, if any Avere needed, of the inheritance of 

fecundity. 
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Table XVI.-Con-elation Table for Weighted Mean Fecundities of Arrays of Stallion’s Daughters and Stallion’s Sire’s Daughters. 138,424 cases of Aunts and Nieces. (See p. 311.) 

Stallion. 

4'5-5 

5-5-5 

5- 5-6 

G-6-5 

6- 5-7 

7- 7-5 

7- 5-8 

8- 8-5 

8- 5-9 

9- 9-5 

9- 5-10 

10- 10-5 

10- 5-11 

11- 11-5 

11- 5-12 

12- 12-5 

12.5-13 
i 

13- 13-5 

13- 5-14 

14- 14-5 

145-15 

15- 15-5 

15- 5-16 
1 

16- 16-5 

-25 •25 

Totals . 45 48 220-5 304-5 479-5 149 242-5 597 1148-5 1437-5 4562 7214-5 12,7515 47,068-5 21,485 20,021 13,235-5 3783 

•5 

•5 

•75 75 

Totals. 

V3-5. 
d 

3-5-4. 4-4-5. 
e 

'J'S-S. 5-5-5. 
/ 

5-5-6. 6-6-5. 
9 

6-5-7. 7-7-5. 
h 

7-5-8. 8-8-5. 
1 

8-5-9. 9-9-5. 
j 

9-5-10. 
h 

10-10-6. 10-5-11. 11-11-5. 
1 m 

11-5-12. 12-12-5. 12-5-13. 13 -13-5. 
n 

13-5-14. 14^14-5. 
V 7 

14-5-15. 15-15-5. 15-5-16. 16-16-5. 

•25 •25 . , , . •25 •25 1 

•25 •25 1 1 ■25 •25 3 

, , . . • . 60-25 ■25 1 1 • • 
62-5 

-75 ■75 -25 3-25 1-5 1-5 •• 
8 

‘5 •5 ■75 ■75 3 1-5 1-0 .. •• 8-5 

•5 •5 2 2 , . . . 
5 

28 24 4-25 16-25 . 
2 2 76-5 

4 4 44-25 79-25 31 47-5 8-25 15-75 110 .. 1-5 1-5 •25 •25 •• 2 2 351-5 

.. 22 22 57-25 315-25 328 126-5 241-75 2162-75 1-5 396 5 30-5 163-5 18-25 •25 11 11 •• 3912-5 

9 0 20 49 37-5 8-5 8-5 145 18 15 332-5 276 217-75 770-25 3603 317-5 196-5 226-5 22 31-5 9-5 •• 20 20 636i2'0 

3 3 66 66 80-5 64-5 1-5 137 179-5 235-25 874-5 1415-25 3782-5 9020 5316 5197-5 1702-5 274-5 139 459-5 4 3 2 .. 32 32 29,090-5 

107 107 74-5 56 127 221-5 428-5 357-75 1903 3554-25 3945-5 24,628 7165 7030-5 6263-5 640-5 152 202 161-5 o'5 42 .. 114 114 57,400-5 

, , 3 3 19-5 40 243 10-5 22 22 76 224 705-5 676 2482-5 8148 2205-25 1502-75 1383 2122-5 406-75 72-25 470-5 14-5 73-5 73-5 20,999-5 

29-5 29-5 6-75 35-75 29-75 ■75 30 18 301 67 245-5 747 526 944 1862-25 3692-25 3283-5 214 145-75 173-25 164 65-5 ■5 -5 5-5 .5-5 12,623 

3-5 3-5 ■7o 6-25 13-25 7’75 23-75 23-75 44 99 86-25 367-25 1476-25 1347-75 1113-75 1877-25 343-5 263 72-5 20-5 4 •• 7-5 7-5 10 10 7232-5 

. . 2-25 2-25 .. 7-5 25-75 ■75 2-75 7-25 106-75 3-75 1 •• 1 1 162 

. . . . . 1-5 1-5 3 3 32 . •■ 41 

. . .. . .. 1-5 1-5 7-5 1-75 1 2-5 1-75 22-75 1-75 .. .. 3 3 48 

.. -25 •25 . . . ■25 1 1 •25 27-25 •25 •75 •75 32 

1104 1009-5 814-5 101-5 64-5 263 263 

2 

0 

0 

1 

1 

138,4-24 



MATHEMATICAL COHTRIBUTIOHS TO THE THEORY OF EVOLUTION. 311 

are not “ aunts ” and “ nieces ” in the human sense, for the auuts are only half- 

sisters of the sire. By a process similar to that on pp. 408 and 409 of m3- paper 

on the “Law of Ancestral Heredity,”I deduce that the correlation between a sire’s 

sisters and daughters ought to be ‘05, and not *15 as in the case of Man. If this be 

weakened down to the f of previous results, we should not expect a result differing 

much from '02. As the variability of the elder generation is always less than that 

of the younger, we ought to exj^ect a coefficient of regression of about this value. 

The theory used will be that of p. 273 of the theoretical part of this paper. The 

weighted mean fecunditj’ found for the arrays of aunts and nieces was as follows :— 

Without grouping. With grouping. 

AiTays of aunts. 
Arrays of nieces .... 

•6195 
•6346 

•6199 
•6338 

The grouping was done in fecundity units of i.e., 1/30 change in fecundity. The 

agreement may accordingly be considered very good. The “ aunts ” are the daughters 

of the older sires, who owing to in-and-in breeding form a comparatively small group, 

and are the sires of mares belonging to the older period, whose fecundity is much 

weakened by causes already referred to. Their mean fecundity is slightly less than 

that of granddams, given on p. 305, while the mean fecundity of their nieces agrees 

well with that for the corresponding group of mares. 

The method of grouping being adopted, a correlation table was formed for the 

mean fecundities of arrays of mares, daughters of a sire, and of arra}-s of mares, 

daughters of his sire. This is Table XVI. Here each mean is weighted with the 

number of pairs of aunts and nieces in the two arrays, i.e., the extent of the data on 

which it is based. It represents accordingly 138,424 pairs of aunts and nieces. 

The following results were obtained, corresponding to 687 pairs of sires :— 

Sire’s Sire. Sire. 

M„=-6199. M,, = -6338. 

cr„ = ‘04344. cr„, = ‘07609. 

E = ‘1174. 

It will be at once noticed how much more variable are the array-means for the 

sire than for the sire’s sire. The means of many of the sire’s arrays are based u|)on 

small numbers, which would have been selected out, if we had gone to another 

generation as in the case of the sire’s sire. 

It will clearly not be legitimate in this case to put cr'„ = cr^ as suggested onp. 274. 

There is probably no secular change of importance here, but the sire’s sire requiring 

* ‘ Roy. Soc. Proc.,’ vol. 62. 
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three generations from the record is really more stringently selected than the sire 

with only two. We can now form cr and cr' by (xxviii.) and (xxix.), if we adopt 

suitable values of otq and o-'o, p, as we have seen, may with high probability be put 

equal to '3 (p. 309). o-q for groups of daughters, on p. 309, is given as ’1855, but since 

this certainly included a fair number of what are now aunts, it must be somewhat too 

low for (tV We can well put cr'o equal to the ‘1888 of the mares on p. 304. o-q for aunts 

cannot be as low as the standard-deviation of dams on that page, as man}^ of the 

aunts may never appear in the record as granddams,* i.e., they are less stringently 

selected. The mean of the two results for mares and dams may, perhaps, be taken 

as a close enough approximation for our present purpose, or o-q = T765. We then 

deduce 

^=•1739, ^'='1955. 

If we compare the results now found with those for sisters cited on pp. 308 and 309, 

we find :— 

“ Aunts.” “ Sisters.” “ Nieces.” 

M •6199 •6371 •6338 

<^a •0434 "0544 •0761 
1 

(T •1739 •1855 •1955 

The accordances and divergences are much what we might expect, except in the 

case of a-„. We should, d }}riori, have expected “sisters” to have approached 

nieces more nearly than aunts. The work has been gone carefully through, but I 

have not succeeded in finding any error. In the “ nieces,” of course, the weighting 

of an outlying fecundity-mean due to a sire with but few daughters, may still be 

large, if his sire have numerous daughters ; this cannot occur in the case of “ sisters,” 

as the weighting depends only on the number in the array. The like heavy 

weighting cannot usually occur in the case of “ aunts,” for they are, as a rule (owing 

to selection to the third generation) daughters of old and famous sires, with plent}' 

of material for basing averages upon. We do not get many “nieces” attached to 

“ aunts,” who are not daughters of famous sires. Such is probably the source of 

divergence in 0-^ between nieces and sisters. 

Using formula (xxviii.), on p. 274, we find 

r = -0114, 

and for the regression coefficient '0123. 

This value is much below the '05 of the law of ancestral heredity, and below the 

reduced value ’02, which we might have expected to reach. Still, it again shows 

* Every dam appears as a granddam, otherwise the fecundity of the daughter could not have been 

found. 
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positive correlation, and we may conclude that the patent character in the daughter 

is inherited latently through the male line."^ 

But there is another and far more significant method of looking at this result, 

namely, by considering the meaning of E, on p. 274. We may treat the fecundity of 

daughters as really a character of the sire, and their mean fecundity as a measure of 

a latent character in him. B is then the correlation between a latent cliaracter in 

both a stallion and his sire, and we see that it is sensibly inherited for B = •1174. 

To compare with the law of ancestral heredity, we must use the coefficient of regres¬ 

sion, for the stallions are much more variable than their sires. We find 

Begression of stallion on sire = '2056, 

which carries us a long way in the direction indicated by that law. Thus it is 

extremely probable that this law of inheritance applies not only to the inheritance of a 

patent character, or of a character latent in one sex and transmitted to a second, but 

also to the inheritance of a character latent both in the transmitter and receiver. The 

present method accordingly seems applicable to the inheritance of a character latent in 

two individuals, if we take the mean of the character, wdien patent in the offspring, as a 

measure of its strength in the individual in whom it is latent. If li be the measure 

of a latent character in a parent, then the offspring will have a mean value qli Cj 

of this character, where q is the coefficient of parental regression and Cj a constant. 

If 4 be the measure of the same latent character in a relative, then the offspring in 

this case will have qlo + c.> of the character. But the correlation of li and 4 ^'hll be 

identical with that of ql^ -}- Cj and ql-i -j- c.,, as I have shown elsewhere.! Thus the 

mean of the patent character in the offspring may be used to measure the correlation 

between latent characters in their parents. 

To sum up our results for thoroughbred mares, we conclude that their fecundity, 

notwithstanding the imperfections and difficulties of the record, has been demon¬ 

strated to be inherited, and this, both through the male and female line, so far as 

we can judge, with an equal intensity. The apparent value of this intensity, except 

in the case of latent characters, is much below that required by the law of ancestral 

heredity, roughly, perhaps, 2/5 of that value; but there is considerable reason 

to think that this reduction may take place owing to the presence of fictitious values 

in the record arising from the peculiar circumstances under which thoroughbred 

horses are reared and bred. These fictitious values would hardly influence the 

means and variability of arrays like they must do the relationship between pairs of 

individuals. Hence, when we deal with such means and variabilities as in the cases 

on pp. 309 and 313, we find a much closer approach to the law of ancestral heredity. 

Fecundity is certainly inherited ; that it is inherited according to the Galtonian law 

* As a matter of fact, this conclusion is stronger than it appears here, for the correlation between 

nieces and aunts was worked out, without grouping, for fourteen distinct series, and in thirteen of them 

was found to be sensibly positive; in the fourteenth it was found to have an ijisignificant negative 

value. 

t “ On the Reconstruction of the Stature of Prehistoric Races,” ‘ Phil. Trars.,’ A, vol. 192, p. 183. 

VOL. CXCII.—A. 2 S 
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is not demonstrated, but may be treated as probable until the results of further 

investigations—preferably by breeding experiments instituted for this very purpose— 

are available. 

(18.) Conclusion.—The investigations of this memoir have been to some extent 

obscure and difficult, but the general result is beyond question. 

Fertility and fecundity, as shown hy investigations on mankind and on the 

thoroughbred horse, are inherited characters. 

The laws of inheritance of these characters are with considerable probability those 

already developed in my memoir on the Law of Ancestral Heredity for the inherit¬ 

ance of directly measurable organic characters. 

In the course of the work it has been shown how a numerical measure may be 

obtained for the inheritance of a character by one sex from the other, when it is 

patent in the former and latent in the latter. Fertility and fecundity purely latent 

in the male (in the sense here used) are shown to be transferred by him from his 

mother to his daughter. Thus Darwin’s views with regard to the transmission 

through one sex of a character peculiar to tlie other are given a quantitative 

corroboration.'" 

When we turn from these points to their weight and importance for the theory of 

evolution, we are at once encountered by all the wide-reaching principles which flow 

from the demonstration that genetic (reproductive) selection is a true factor of 

development. Let us look at these a little more closely. 

If natural selection were to be absolutely suspended, i.e., if there were no 

differential death-rate at all, then development would not for a moraejit cease. Not 

only is fertility inherited, but there can be small doubt that it is closely correlated 

with all sorts of organic characters ; thus the inheritance of fertility marks, the 

moment natural selection is suspended, a progressive change in a great variety of 

orpfanic characters. Without a differential death-rate the most fertile will form in 

every generation a larger and larger percentage of the whole population. There are 

very few characters which may not be supposed to be more or less directly correlated 

with fertility, and in reproductive selection we see a cause of progressive change 

continuously at work.t There is, so to speak, in every species an innate tendency 

to progressive change, quantitatively measurable by determining the correlation 

coefficients between fertility and organic characters, and between fertility in the 

parents and in the offspring. This “innate tendency” is no mysterious “force” 

causing evolution to take place in a pre-ordained direction ; it is simply a part of the 

physical organisation of the individual, which does not leave fertility independent of 

* The method is perfectly general, and a value can always be found for the intensity of transmission 

of a sexual character through the opposite sex. We could obtain, for example, a numerical measure of 

the manner in which a bull transmits good milking qualities to its offspring. 

t I have endeavoured to show (‘ Roy. Soc. Proc.,’ vol. 59, p. 303), that fertility is correlated with 

stature in woman. I hope later to return to the correlation of fertility and physique. 
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physique and organic relationship, or leave these characters uncontrolled by the 

principle of heredity. It seems to me, therefore, that the results of this memoir 

force on us some modification of current views of evolution. The suspension of natural 

selection does not denote either the regression of a race to past types, as the 

supporters of panmixia suggest, or the permanence of the existing type, as others 

have believed. It really denotes full play to genetic or reproductive selection, which 

Avill progressively develop the race in a manner which can be quantitatively predicted 

when once we know the numerical constants which define the characters of a race 

and their relation to racial fertility. In other words, natural selection must not be 

looked upon as moulding an otherwise permanent or stable type ; it is occupied with 

checking, guiding, and otherwise controlling a progressive tendency to change. 

So soon as a species is placed under a novel environment, either artificially or 

naturally, the equilibrium is disturbed, and it will begin to progress in the manner 

indicated by genetic (reproductive) selection, until this progress is checked by the 

development of characters in a manner or to an extent which is inconsistent with 

fitness to survive in the new surroundings. Within a very few generations a novel 

environment, sympathetic so to speak to the progressive tendency indicated by 

reproductive selection, produces the suitable variations without the assistance of 

natural selection. It seems to me that this principle ought to be borne in mind 

when, in laboratory experiments or in artificial breeding, natural selection is wholly 

or largely suspended, or again is altered in type ; the species dealt with is unlikely 

to remain constant for several generations, but will develop in the direction indicated 

by genetic selection. Further, when stable types of life like the English sparrow are 

taken to America, or the English rabbit to Australia, where initially they fill a more or 

less vacant field among living forms, and natural selection is in part suspended, we 

should expect in a few generations a considerable divergence in type.'"' The converse 

aspect of the problem is also of great importance ; namely, the natural selection 

of physical characters must tend to indirectly modify fertility and fecundity, if 

these be correlated with those characters. Variations in the fertility of local races 

need not be looked upon as due directly to environment, but may arise from the 

selection of characters correlated with fertility, combined with the law that fertility 

is itself an inherited character. 

Lastly, the inheritance of fertility involves the “acceleration” of fertility; a 

race, natural selection being suspended, tends not only to increase but to increase 

at an increasing rate. This principle is again full of meaning, not only for the study 

of the manner in which lower types of life rapidly expand under changed envirom 

ment, but also for the problems set to those philosophers who may desire that the 

most social and not the most fertile type of citizen may predominate in our modern 

civilised communities, where the state and public opinion to a greater or less extent 

hinder natural selection from playing the great part it does in wild life. 

* It would be interesting to know wbether the size or frequency of tlie litter ot the Australian 

rabbit is greater than that of the English. 
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Masson, Orme.—Ionic Velocities. 
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Ionic Velocities, directly measured. 
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II.—Ionic Velocities. 

By Orme Masson, M.A., D.Sc., Professor of Chemistry in the University of 

Melbourne. 

Communicated by Professor W. Ramsay, F.R.S. 

Receh'ed December 12,—Read December 16, 1898. 

Introduction. 

The general theory of electrolytic conduction, involving the laws of Faraday, 

Hittorf, Kohlrausch, and Arrhenius, may be briefly summed up by the formula 

C = A — (U + V) = A — Tra: (m + v\ 
7] V 

where 

C is the current, 

A is the area of cross-section of the conducting medium, 

7} is the electro-chemical equivalent of hydrogen or l/y is the charge per 

monad ion, 

n is the number of monad equivalents of the electrolyte per unit volume of 

solution, 

U is the average working velocity of the cations, 

V is that of the anions, 

TT is the fall of potential per unit of length (dV/dl), called in the sequel 

potential slojie, 

X is the coefficient of ionization, 

u is the velocity with which the same cations would travel if, all other 

things being equal, ionization were complete, and the potential slope 

had unit value, and 

V is the corresponding value for the anions. 

u and V are referred to in the sequel as specific velocities. 

In further explanation it may be pointed out that x may be taken as representing 

either that fraction of the total dissolved molecules which is at any given moment in 

2 u 2 20.4.99 
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tlie ionized state, or (wliich is tlie same thing) that fraction of the total time during 

which, on the average, any given dissolved molecule is ionized and that the relation 

of the tvo7'king velocity U (or V) to the running velocity ttu (or ttv) is therefore similar 

to that which holds between the average speed of a train for its Avhole journey, 

including stoppages, and its actual average speed between stations. Briefly, U = ttxu 

and V = TTXV. 

The values of u and v are not necessarily c[uite the same for the same ions in 

different strengfhs of solution, for the running s]3eed, apart from stoppages, may be, 

and almost certainly is, affected Ijy the concentration. Nor can it be assumed that 

all ions ai'e equally affected in this manner : more probably each has what may be 

called its own frictional coefficient. In other woi'ds, the value of the ratio ujv for any 

given electrolyte may be expected to show some variation according to the strength 

of the solution, though in dilute solutions these variations may practically vanish. At 

extreme dilution tlie maximum values and are attained. Here, also, x attains 

its maximum value 1 ; so that 

= TTU^ and V,, = ; 

or the v'orkine; and ruimino’ velocities are identical. 

The history of the study of ionic velocities divides itself naturally into three 

chapters. The first may be called the Hittorfian chapter, the second the Kohlrauschian, 

and the third may be associated rvith the names of Lodge and Whetham. 

Hittore, and those who have since adopted his well-known method, studied the 

changes of concentratif)n in the neighbourhood of the electrodes and deduced from 

U A' . . . . . u 
these the lutios =7-and ^, or (which is the same thing;) the ratios —— and 

U -t- A^ U -f- A^ ’ ^ V 
V , 

y—. These ratios, generally called the transport numbers of the cation and anion, 

may l)e conveniently represented in the sequel by the symbols 1 — p and/.). They 

represent respectively the cation share and the anion share of the current. 

The classical work of Kohlrausch consists essentially in the measurement of 

current and })otential difterence in an electrolytic cell of known dimensions, and con¬ 

taining a uniform solution of an electrolyte of known concentration. Thus all the 

values in the general equation, as given above, can be observed except x (r q- v), 

and this can be calculated if the truth of the equations be assumed. From this 

value of X iii + v) and the value of —-—, as detei’inined by Hittorfian methods, the 

separate values xu (= U/tt) and xv (= V/tt) for any given concentration may also be 

calculated. Further, 1jy working with various strengths of solution up to extreme 

dilution, x is eliminated and Woo + t’=o obtained. But here it is obviously impractic¬ 

able to determine the Hittorfian ratio by experiment; so that a certain assumption is 

necessarv in calculating the separate values of Ux, and I'x. This assumption is that 

* Compiu'e AViietjiam, ‘Phil. Trans.,’ A, 1893, p. 340. 
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the transport numbers determined in dilute solutions are aj^proximately correct for 

extreme dilution, and that they may be legitimately so far modified as to lead to 

constant specific velocities, lu and lu, in all combinations of the corresponding ions. 

Kohlrausch’s values are thus obtained. 

In general, electrolytes composed of monad ions, such as the chlorides of the alkali 

metals, are those which yield the best and most consistent results, while compounds 

containing divalent and polyvalent ions, such as Zn or SO4, do not behave so conform¬ 

ably with the law represented by the equation. This is shown both by the great 

alteration in the value of the transport numbers produced l)y change of concentration 

in many such cases, and by the fact that polyvalent ions do not appear to afford 

constant values of lu and Voo in their different comlfinations, on which account tliey 

are excluded from Kohlrausch’s tables of specific ionic velocities. Whatever may 

be the full explanation of these apparent contradictions of theory, it is probable that 

in these cases the ionization is not of such a character that the nature and number of 

ions of either kind can be deduced direct from the known composition of the solution ; 

in other words, the number of active ions of either kind is not related in the usual 

simple manner to n. 

The third chapter in the history of the study of ionic velocities is that which deals 

Avith their direct observation and measurement, and was begun by LodC4E in 1885 

(‘ Brit. Ass. Beports,’ 1886, p. 389). The great Audue of his Avork lay in the ingenious 

conception of the possibility of actually Avatching the advance of ions AAdiose colour 

renders their progress through an otherwise colourless solution visible, and of ions 

Avhich, though themselves colourless, may be detected in progress by their interaction 

with indicators ; and, further, in the introduction for these purposes of solid jellies in 

place of ordinary aqueous solutions, and the avoidance by this means of various 

sources of error, such as convection currents due to gravity and to temperature 

changes. The actual experiments were, however, of a pioneer character ; and the 

interpretation of them seems to have been Autiated by a misunderstanding of the 

mechanism of the process on Avhich they depended. It is necessary to point this out; 

first, because the author’s experiments cannot be properly discussed unless this be 

done, and secondly, because most of the recent text-books dealing Avith electrolysis 

quote Lodge’s experiment on the velocity of the hydrogen ion as afibrding the first 

and chief direct experimental verification of Kohlrausch’s theory, and do not direct 

attention to the difficulty in question. 

From the general equation and the explanations already given it is obvious that 

mere direct measurement of U and V, or of both, cannot by itself give results of 

exact value for comparison with calculated velocities [xu and xv). At best it can 

afford only an indication of whether something like the right order of magnitude has 

been arrived at by such calculation. To obtain data for exact comparison not only 

U or V, or both, hut also the potential slope 77, causing U or V, must be correctly 

measured. But the work of Lodge does not show that this latter Avas determined in 
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any of his experiments; or rather it shows that the value of tt was mcorrectly 

assumed. Thus he assumed, in the hydrogen experiment, that the potential slope 

causing the observed hydrogen velocity was 1 volt per centim., because the tube was 

40 centims. long, and there was a difference of potential of 40 volts between the 

electrodes. It is obvious, however, that this may be a very misleading assumption 

where the value of tt is required in one particular part of a tube which contains quite 

different electrolytic solutions in different portions of its length. There is, therefore, 

no exact information to be obtained by comparing Lodge’s observed velocity of from 

•0024 to ‘0029 centim. per second with Kohleausch’s calculated value •0032. 

Considerations of temperature and of concentration, though important, are less so 

than that of correct potential slope, and therefore may be passed over. 

Perhaps the most striking of all Lodge’s experiments were those in which he 

observed the velocities of Cl, Br, or I entering and travelling through a jelly tube 

from the cathode end, while Sr or Ba travelled in the opposite direction. The 

original jelly was charged with, among other things, a small pro23ortion of Ag ions to 

act by j)artial jDrecipitation as an indicator of the j^rogTess of the halogen, and with 

SO4 ions to l^lay a similar ^Dart towards the new cations. The observed velocities of 

the former were in all cases aiDjDroximately double those of the latter; whence Lodge 

concluded that Cl, Br, and I are, as ions, naturally twice as fast as Sr and Ba. Here 

again, however, the fact that the observed velocities were caused by unknovm, and 

jjresumably different, jootential slopes necessarily vitiates the conclusion dra^vn. It 

will be sho\vn in the sequel that what really determined the interesting and simple 

velocity ratios observed in this set of experunents was not the specific character of 

the ions under insiDection, but the composition of the intermediate solution into which 

the Cl and Ba, or similar ions, had not yet ^Jenetrated. As, however, this was a 

mixture, and the indications given of its composition are rather qualitative than 

quantitative, no results of theoretical value can be deduced. 

Whetham’s method {loc. cit.) rendered the use of gelatine unnecessary, as he 

avoided gravity currents, at all events, by emjDloying a vertical tube in which to 

observe the rate of migration of the boundary between a coloured solution and a 

colourless one during the passage of a current, the lighter solution lying above. He 

also avoided the occurrence of difierent and unknovm potential slopes in difierent 

joarts of the column by selecting for each experiment a pair of solutions of, as nearly 

as joossible, equal sjDecific resistance. The results so obtained were in very good 

accord with the calculated velocities {xu or xv) of the same ions in similar solutions 

of the same concentration, and thus afforded the first exact confirmation of the 

Kohleausch theory. But, from the very nature of the method, its application was 

restricted to a very few cases, as it is obviously not easy to find solutions suitable in 

all resjDects.’^ 

* Whetham’s determination of the velocity of the copper ion, and his comparison of the results with 

the calciUated number, are open to the objection that what he observed was not the copper ion at all, but 
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Neiv Method of Observing Ionic Velocities. 

This method resembles Lodge’s, in so far as it makes use of electrolytic jellies and 
of visible moving boundaries, but differs from his in its essential principle, as will be 
explained, and also in the fact that it seeks to avoid such sources of error as change 
of temperature, the use of mixtures of unknown composition, and the introduction of 
indicators that react with the ions under observation. The use of gelatine necessarily 
mtroduces a small amount of electrolytic impurity which must have some disturbing 
effect; but the solid gelatine used in making the jellies contains less than '5 per cent, 
of its weight of mineral matter, and a plain 12 per cent, jelly was found to have a 
conductivity so small as to be practically negligible in comparison with those of the 
salt jellies used for experiment. That this is so is shown by the results obtained; 
but the fact that the best available gelatine has some conductivity of its own would 
introduce a real difficulty in any attempt to apply the method to solutions of small 
concentration.* 

Fig. 1. 

A sketch of the apparatus is shown in fig. 1. A straight tube of convenient 
length and uniform narrow bore, the dimensions of which are known, is graduated by 

a complex cuprammonium ion. He says {loc. cit., p. .344): “ The first solutions used were those of copper 

and ammonium chlorides with just enough ammonia added to each to bring out the deep blue colour of 

the copper.” This is certainly not the colour of the copper ion. In support of this statement it may be 

mentioned that the deep blue ion of Fehling’s solution, which has as much right to be called copper as 

has the deep blue ion of Whetham’s experiment, can be proved by direct observation to be a negative 

ion, which travels towards the anode while its associated K ions carry the current towards the cathode. 

This observation led the author, in conjimction with B. D. Steele, to an investigation of the cupro- 

tartrates, which they propose to commimicate to the Chemical Society. Attention is there directed to 

earlier evidence of the same fact adduced by others. 

* Some triais were made with agar-agar in place of gelatine. It proved inferior, however, in respect to 

freedom from electrolytic impurity; and, though it affords jeliies of high meiting-point, and otherwise 

admirable, they have the fatal habit, after setting firm in the tube, of contracting away from its walls and 

exuding an aqueous solution. It is then easy to blow the whole cylinder of jelly out of the tube by the 

application of slight pressure at one end. The gelatine jellies used by the author showed no such 

tendency; nor did any extension from the tube occur in the course of the experiments in the manner 

described by Lodge. The cbfference may be due to the use of stiffer jellies, and particularly to the use of 

a constant temperature bath to prevent heating of the jelly by the current. 
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an etched scale from end to end. The two ends of the tube can be fitted, water-tight, 

into the short side necks of two cells of relatively large capacity, so that the tube 

forms a horizontal connection between them. For an experiment the tube is filled 

(by means of tubular elbow-pieces and rubber connections) with a molten jelly, which 

is then allowed to set at the experimental temperature. This jelly contains a known 

quantity per cub. centim. of the salt, whose ionic velocities it is desired to observe, 

c.g. KCl. The ends of the jelly, after removal of the elbow pieces, are shaped true 

with a knife ; and the tube is then connected with the empty cells, and the whole 

apparatus is placed in a large bath of water, so that only the mouths of the cells 

Fig. 2. 

IV IV = constant temperature bath. 

t = thermometer. 

T = jelly-tube. 

yl = anode cell. 

K — cathode cell. 

C = low resistance galvanometer for current measurement. 

V = high resistance galvanometer for voltage measurement. 

J! = added resistance in voltmeter circuit. 

S — mercury connections. 

Ji = flattery. 

remain above the surface. The temperature of tlie bath is kept constant at any 

desired point below the melting-point of the jelly, e.g. 18° C. The graduations of the 

tube are easily read through the water in a good light, and parallax is avoided by 

having the tube marked both l)ack and front. The electrodes, which have surfaces 

very large in comparison with the bore of the tube, are placed in the cells and fixed 

so as to be close to the eiids of the tube without touching it. They are connected 

with a battery of sufficient voltage, as constant as possible. A low-resistance 

galvanometer serves to register the curi’ent, and one of high resistance is arranged in 

parallel circuit to indicate the voltage. Fig. 2 shows the whole arrangement diagram- 

matically. The main circuit is completed and the experiment started by filling the 

cells with aqueous solutions, and a stop-watch is started simultaneously. 
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The nature of these cell solutions is all-important to the theory and practice of the 

method. They may be distinguished as the anode solution and the cathode solution 

respectively. They must fulfil four conditions, as follows :—In the first place, each 

must possess a strong and characteristic colour; but the anode solution must owe its 

colour to its cation, and the cathode solution must owe its colour to its anion. In 

the second place, the coloured ions must not be such as to act chemically on the salt- 

jelly, so as to form a precipitate in the tube through which they are to travel. In 

the third place, the cell solutions themselves must not, during an experiment, undergo 

such chemical change as to lead to the production of a new sort of cathion (e.p., H ions) 

in the anode cell, or of a new sort of anion ((?.(/., OH ions) in the cathode cell. The 

fourth condition, which will be explained more fully later, is that the coloured ions 

must be specifically slower than the corresponding ions of the salt-jelly. A suitable 

anode solution in most cases is made with copper sulphate, provided that the anode 

be made of copper, to prevent, or at least minimise, the production of free acid, i.e., of 

H ions. A generally suitable cathode solution is made with potassium chromate and 

sufficient bichromate to prevent the formation of free alkali, i.e. of OH ions.* The 

cathode should be of jjlatinum. The strength of these solutions should be known, but 

need not be proportioned to that of the salt in the jelly tube. All that is necessary 

is that there shall be plenty of coloured ions in the neighbourhood of the electrode 

and tube for the carriage of the current into the latter. 

During the experiment, the procession of the original cations (say K) of the jelly 

is followed through the tube by a corresponding procession of blue Cu ions, while the 

opposite procession of original anions (say Cl) is followed by a corresponding procession 

of yellow Cr04, or of mixed Cr04 and Cr.207. Thus the tube is soon seen to contain 

blue (CuCb) jelly at one end, colourless (KCl) jelly in the middle, and yellow (K2Cr04) 

jelly at the other end, of which the first and third continually grow in length at the 

expense of the second, intermediate, part. The ratio of the lengths of blue and yellow 

is constant, and these eventually meet, to the extinction of the colourless portion. 

There is no mixing of K with Cu, nor of Cl with Cr04. The blue and yellow 

boundaries remain quite clear cut, and may be sharply located at any points in their 

course, the former marching steadily through the solid jelly towards the cathode, the 

latter towards the anode, till they meet. It may be mentioned that the blue boundary 

is always slightly convex in the direction of its migration, while the yellow boundary 

is always slightly concave, so that each presents a meniscus with its convexity towards 

the cathode. 

At intervals throughout the experiment observations are taken of the positions of 

the blue and yellow boundaries, of the time, of the current, and of the voltage ; also of 

* The passage of Cr04 and Cr207 ions into the jelly-tube, where they meet with K or other cations, 

does not chemically affect the gelatine. In fact, a transparent orange half-normal bichromate-jelly, 

containing 12 per cent, of gelatine, may be prepared, solidified, and remelted, without any precipitation of 

the gelatine \ but precipitation occurs on the addition of free mineral acid. 

VOL. CXCII.—A. 2 X 
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the bath temperature, which sliould keep constant. With constant E.M.F. the 

current and the velocities steadily diminish in a manner determined by the nature 

and strength of the salt-jelly, hut they remain in direct proportion to one another. 

The exjDeriment is terminated when the two boundaries meet, which they do at a 

})oint that can always be predicted with very considerable accuracy from the first 

readings. 

The essential pi'inciple of the method may now be explained. The visible moving 

Ijoundai'ies mark respectively, not only the rates of advance of the foremost Cu and 

Cr04, ljut also those of the rearmost K and the rearmost Cl. These are themselves 

invisible, ljut the immediately following coloui’ed ions may be taken as their indicators. 

Now the intermediate colourless part of the jelly is at the start of uniform composition 

and remains so throughout the experiment, however much its length may he curtailed 

Ijy the progress of the blue and the yellow; so that (to use the same symbols as 

Ijefore) n and x have constant values from start to finish and in all parts of the 

colourless jelly, while tt, which diminishes as the experiment proceeds, has yet always 

the same value there, whether the part near the blue boundary or the part near the 

yellow boundary be considered. Therefore the i-earmost K at the one end and the 

rearmost Cl at the other are comparable in all respects ; and a comparison of their 

working velocities U and V, made visible by the indicators, gives at once the ratio u/v 

for the particular- concentration employed. Obviously also the result may be put in 

the form of Hittorf’s transport number ^ (or p), and may be compared with the 

values obtained by the indirect Hittorfian method. Of course, the observed U is 

also that of the copper ions and the observed V that of the CrO^ ions ; hut the 

experiment affords no indication of the corresponding values of tt and ic, which are 

certainly very different in the two cases. Hence there is nothing gamed by regarding 

the observations from this point of view, as has already been pointed out in connection 

with Lodge’s experiments. 

While the first result is the determination of u/v for the original salt, a second is 

the testing of the general equation C = A (U -}- V), or, if its truth he assumed, of 

the efficacy of the method itself For each quantity is independently determined, 

and, since all may he expressed in the same (C.G.S.) units, the value 1 should he 

obtained by dividing the left-hand side by the right. 

The experiment, as carried out, also affords data for the determination of the 

working velocities per unit potential slope, viz., of U/tt = xu and V/tt = xi\ For the 

total resistance for each position of the boundaries is given by the readings of voltage 

and current; and, as the increase of total resistance is directly proportional to the 

diminution of the length of the colourless jelly, and as a constant correction can be 

introduced for the resistance of the galvanometer, and approximately also for that of 

the solutions between the electrodes and the ends of the tubes, the resistance of the 



PEOFESSOE 0. MASSON ON IONIC VELOCITIES, 889 

tube full of the colourless jelly, and therefore of x {u + v), follows. Obviously the 

same result can be obtained by separate measurement of resistance by Kohlrausch’s 

method, and this has certain advantages. Arrangements are also possible for the 

direct measurement of tt in the various parts of the tul)e during the progress of an 

experiment by means of wires sealed through the walls of the tube, but tliis would 

introduce considerable complication. The velocities per unit potential slope, obtained 

as above, are not dealt with in the present paper; but it may be mentioned that they 

show (in accordance with conductivity results obtained by Arrhenius and others) a 

considerable percentage reduction in solid jelly as compared with acpieous solutions, 

but a reduction which is, at all events approximately, the same for diflPerent salts. 

The values of the relative velocities of the different ions should, therefore, be ffirly 

comjiarable with those found by the older methods. 

It is clear that any value which the method may have must depend on tlie justice 

of the assumption that the observed velocities of the lioundaries are determined by, 

and may be taken as indicative of, those of the intermediate colourless ions, or that 

no mixing of these with their coloured pursuers occurs. In support of this there are 

both exjDerimental facts and theory. 

At the end of an exjieriment in which the tube was oilginally full of a strong 

chloride jelly, the author has frequently melted out the yellow part (without dis¬ 

turbing the blue, which consists of CuCL), and tested it for chlorine without finding 

more than, at most, a barely perceptible trace. After one experiment with KCl, in 

Avhich a wide tube was employed, so that the quantities were considerable, only a 

doubtful trace of potassium could be found in the Idue part, after separation of the 

copper by HoS, evaporation with sulpliuric acid, and ignition to destroy organic 

matter. 

Less direct, but no less striking, evidence to the same effect is afforded by the fact, 

established l)y preliminary experiments, that the ratio of velocities of the Idue and 

yellow boundaries is practically the same in different experiments with the same 

concentration of the same salt, no matter how tlie dimensions of the tu1)e lie 

varied. There is also the fact, already stated, that this ratio in any one experiment 

remains practically constant from first to last. Very slight variations, it is true, do 

occur, attributable most probably to the presence of impurities in the gelatine or in 

the salts employed, or to slight heating by the current in spite of the constant 

temperature bath. But such small deviations from perfect constancy need not be 

considered at present. 

A third line of evidence is found in the fact that, while it is possible to greatly 

vary the relative velocities of the same indicators by using different salt-jellies, it is 

found that the relative rates of advance of the two boundaries remain the same with 

different indicators and the same salt-jelly. The latter jiart of this statement has, 

however, so far been tested only by the substitution of potassium ferrocyanide, and by 

that ol a tartrate solution, for the usual chromate in experiments with potassium 

2x2 
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sulphate and sodium chloride. In the tartrate experiment the indicator was, of 

course, quite invisible in itself, hut it met the copper and formed a visible precipitate 

across the tube at the exact point calculated from previous experiments made in the 

usual way. The relative velocities of Na and Cl were thus given the same value, 

whether Cu and Cr04 or Cu and C4H4O6 were used as indicators.^ 

Besides these experimental indications that there is no commingling of the ions at 

the blue and yellow boundaries, there are theoretical reasons in favour of the same 

conclusions, jirovided that the coloured ion is specificcdlii shiver than the one it is 

following. This has l^een already mentioned as one of the requisite characters of a 

satisfactory indicator. Imagine naturally slow Cu ions travelling behind naturally 

faster K ions, with Cl ions travelling past both in the opposite direction. If Cu lag 

behind K, or K run away from Cu, a region will be established where cations are 

deficient, a state of affairs that must immediately correct itself by reason of the 

consequent E.M.F. If, on the other hand, they keep pace with one another, as in 

fact they do, it must be by virtue of a steeper potential slope in the blue. If now 

some K ion accidentally lags behind its fellows, it will find itself in this region and 

be at once hurried forward again ; while any ambitious Cu ion, trying to penetrate 

* The ^precipitates formed across the tube by the meeting of Cu ions with Cr04 ions and Fe(CN)e ions 

are of the nature of the semi-permeal)le m.embranes used by Traube and Pfeefer in the stxrdy of 

osmotic pressure. An interesting fact has been observed udth both these membranes. They are first seen 

as fine transverse films across the tube, but, if the experiment be not stopped, they rapidly thicken up till 

they form discs about half a millim. wide. Simultaneously the galvanometer shows a rapid fall of current, 

which becomes almost nil within a very few minutes of the first meeting. If now, or later, the current be 

reversed, the galvanometer deflection rapidly goes up almost to its previous value, though the membrane 

remains apparently quite miaffected even when the reversed current is maintained for hours. By again 

reversing it the j)henomena may be repeated, though the current does not now fall off immediately. The 

explanation suggests itself that the membrane is impervious to the ions (Cu and Cr04 or re(CN)4) which 

have produced it, but not to other ions such as K and Cl. Before the first reversal of the current, only 

Cu ions can reach the membrane from the anode side and only CrOj (or Fe(CN)d from the cathode side, 

and these cannot pass. After reversal, K and Cl, or other corresponding ions respectively, carry their 

charges to and through the membrane. These are now on the wrong side; so that when the current is 

again reversed, it is some time before the original state of affairs is restored and the current again cut 

down. If, after the memlirane is first completely formed, the circuit be broken and everjuhing left 

in situ for 24 hours or so, it is found that, on re-connecting vdthout reversal, a very fair current will pass; 

but it does not last long. In all probability this is due to simple diffusion through the membrane, by 

which a little K and a little Cl find their way across to the parts of the tube previously free from them. 

It is a curious fact, no certain explanation of which has yet been arrived at, that when the intermediate 

salt is a sulphate instead of a chloride, the copper and chrome ions do not form a membrane on meeting, 

but simply intermix with production of a greenish colour; nor is the current cut down. This difference of 

behaviour has been consistently manifested in all the experiments recorded in this paper. Yet copper 

sulphate and potassium chromate solutions precipitate copper chromate when mixed. The usual membrane 

was, however, obtained with a K.SO4 jelly and Cu and Fe(CN)8 indicators. 

The maldng of osmotic pressure apparatus might be improved by depositing the membrane electrolytically 

in the walls of the pot, j^reviously charged with a potassium chloride jelly. Current readings would give 

a sure indication of the condition of the membrane during and after its formation. 
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the K region, will find itself forced to drop back. This explanation of the sharpness 

of certain margins was advanced by Whetham [loc. cit.), but bears repetition here. 

It comes to this—^that the boundary will possess stability if the necessary condition 

be fulfilled, but not otherwise. As a matter of fact it has been found by experiment 

that the colourless SO^ ion following the yellow Cr04 ion through a jelly tube over¬ 

takes it continuously, so that there is no boundary visible, but only a gradual fading 

out of colour. A similar result was got also by following the blue Cu ions with 

colourless Zn ions through the tube : again there was no boundary, but the colour 

gradually faded out. These cases probably illustrate the non-fulfilment of the con¬ 

dition that the foremost ion must be by nature the faster. 

Theory of the Moving Boundary. 

It is easy to deduce the behaviour of the ions on each side of a moving boundary 

from the fundamental equation given at the beginning of this paper, and from the fact 

that the visible (coloured) ion keeps pace with the invisible (colourless) ion in front of it. 

Let the boundary in question be that between visible and invisible cations travel¬ 

ling with the current and matched by invisible anions, all of one kind, travelling 

against it. Let the symbols be used with the same meaning as before, but let those 

applying to the coloured part of the jelly be marked with dashes to distinguish them 

from those ai^plying to the colourless jelly on the other side of the boundary. 

Since equal currents cross all sections of the tube at the same time, 

n (U' -f V') = « (U + V). 
But 

U' = U. 
Hence 

n _ U' _ U -F V _ 1 - f 

n' “ U' V' ^ V ~ 1 - 2-)' 
Also 

^ dL V V L-t v_y (1-p) 
V %' ^ U' + V' V 'p{l -2^')' 

Thus the concentrations of the salts in the two portions of the jelly are directly as 

the corresponding cations’ transport numbers; and the working velocities of the 

common anion on the two sides of the boundary are directly as its own transport 

numbers, and inversely as those of the corresponding cations. Since "^-77—w == “r? 

and since v and v may be considered for practical purposes as of equal value, the 

second of these rules may be put more simply, though not quite so correctly, in the 

form Y'/Y = uju or the working velocities of the common anion are inversely as 

the specific velocities of the corresponding cations. 

It is possible to test the foregoing conclusions by analytical experiments conducted 

as follows :—The exact ratio of the velocities of the K and Cl ions having been first 

found by experiments with two coloured indicators in the usual manner, a tube of 
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suitable length and considerable capacity is marked with a file at the place where 

these (or other) indicators should meet. It is then filled with the KCl jelly and 

connected with the cells, in hath of which is placed coj^per sulphate solution. A 

copper anode and a platinum cathode are used. During the progress of the experi¬ 

ment, two boundaries travel as usual, though only one is visible, viz., that between 

KCl and CuCL. It will, however, meet the other, viz., that between KCl and K2SO4, 

at the mark previously made ; and the circuit must be broken when the blue boundary 

reaches this point. The cathode will have gained in weight by as many miUigramme 

ecpiivalents of copper as there were milligramme molecules of KCl originally present 

in the whole tube ; and this may l)e taken as a test of the correctness of the 

experiment. That it is so, is evident from the fact that there will have travelled 

across that section of the tube, where the meeting of the margins occurred, all the 

K ions originally present on one side of it, and all the Cl ions originally present on 

the other, but nothing else. These are together equal in number to the total K, or to 

the total original KCl molecides. The tube is cut in two at the mark as soon as the 

experiment is over, and the contents of each part are then analysed separately. Cl and 

Cu being estimated in tlie part nearest the anode, and SO4 and K in the other. The 

results may he checked by estimating the Cl that has escaped into tlie anode cell, and 

the K that has escaped into tlie cathode cell. The residts give the value of n directly 

for each end of the tube, with which the value of the original n may be compared. 

The relative specific velocities {ujv) for Cu and Cl, and for K and SO4 follow from con¬ 

sideration of the exchanges at the anode end and the cathode end respectively; and, 

as those of K and Cl are already known, as determining the meeting point, the 

s})ecific velocities of all four ions may be compared with one another. 

One such experiment has been carried out, but the accuracy of the analytical 

results was, to some extent, spoilt by unforeseen difficulties that cropped up in the 

course of the work, due in part to the presence of gelatine in the solutions of the 

tube-contents, and in part to the formation of cupro?fS chloride in the anode cell and 

on the anode. This formation of cuprous chloride has since been observed in other 

experiments. It may be seen on tlie anode as a white crust after it has been washed 

with water, alcohol, and ether ; and its formation there causes the anode to lose less 

than the calculated weight instead of more, as is usual. It is intended to repeat the 

experiment described aljove, taking all precautions to ensure accuracy. In the mean¬ 

time it may be said that the residts, though rough, tended entirely towards the 

confirmation of the theory. Thus they showed, as might be expected, that very little 

change of concentration or of K velocity occurs across the KCI/K.2SO4 boundary, but 

tliat at tlie blue boundary the Cl approximately doubles its velocity and reduces 

its concentration to about two-thirds. These figures (which are only rough 

approximations) agree, according to the formulae already given, with a chlorine 

transport number [p') in CuCb of ‘67, taking its value (y>) in KCl as '5. The author 

is net aware of any Hittorfian experiments with CuCL ; but, to judge from those 
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made with other chlorides and Avith other copper salts, this value for p' can not be 

far wrong. 

Expenmental DetaUs. 

The fblloAAnng facts, in addition to those already stated, may be recorded concerning 

the series of experiments, the results of which are tabulated in this papei-. 

Gelatine.—The small conductivity of this has been already referred to. As 

additional evidence that its impurities are unimportant, it may be mentioned that 

practically no difference is observed in the value of ujv got for the same concentration 

of the same salt, Avhether the jelly contain, as usual, 12 per cent, of gelatine or only 

half that amount. 

Salts.—-The salts used Avere all re-crystallized, and Avere Avhat is generally called 

pure ; but no very special purification Avas attempted, as the present object Avas rather 

to test the method in a preliminary maimer than to get the most accurate quantitatiAm. 

results attainable. 

Jellies.—These Avere made as folioaa's. The required quantity of the salt Avas 

Aveighed into a beaker, dissohmd in Avater, and Avashed into a stoppered 50 cub. centim. 

flask containing 6 grammes of gelatine in small pieces. The flask Avas AAmrmed till 

the gelatine had dissolved, Avater AAms added to the mark, and the contents mixed and 

cooled. The exact volume AAms then made up Avith Avater and, after re-warming and 

thoroughly mixing, the jelly AAms ready for use. It Avas always made fresh for each 

experiment. For the experiments Avith lithium chloride, which is very deliquescent, 

the calculated quantity of carbonate Avas dissolved, Avith all precautions, in slight 

excess of hydrochloric acid, and the chloride AAms obtained neutral in reaction by 

evaporation and drying at about 150° C. The jellies Avere all clear Avhen solid and 

Avere transparent in the tube ; except the tAvice-normal lithium sulphate one, Avhich 

Avas, in bulk, Amry slightly opalescent. The melting-points Avere by no means all the 

same, but all Avere completely solid at the temperature employed. 

Temjyerature of the Bath.—This Avas in all cases very close to 18° C., the average 

in each experiment lying beloAA^ rather than aboAm that point. The extreme variation 

during any experiment did not exceed '5° on either side of 18°, and was generally less. 

Cell-solutions.—These AA^ere ahvays of normal strength, i.e., the anode cell contained 

CuSOi gramme per litre, and the cathode cell contained K2Cr04 + KoCiqO? 

gramme per litre. Each cell contained 100 cub. centims. 

The Tube.—This AAms the same in all the experiments tabulated. Its ends Avere 

ground smooth, and its bore uniform. Its length Avas 15 centims. and its area of 

cross-section (A), Avhich Avas determined carefully by the Aveight of its mercury 

contents, Avas ‘0378 sq. centim, It was divided into half centims. on both sides to 

avoid parallax, and the scale diAusions were picked out Avith red. They Avere easily 

seen througli the AAmter against the Avhite porcelain bottom of the bath. It was quite 

possible to divide by eye to less than half a millim. ; but only the readings made 
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when the boundary was crossing a scale division have been used in drawing the 

curves. The walls of this tube were rather thicker than is advisable, since it is 

important to maintain free thermal connnunication between the jeUy and the hath. 

Nearly centims. at each end of the tube were hidden in the ceU neck, so that 

readmgs, after the start, could not he made till the boundaries reached that mark. 

The Battery employed consists of 48 cells of zinc | potash | coj^per oxide, arranged 

in one series and giving about 40 volts. It is very constant, whether in use or not, 

even many months after setting up. The current, in the experiments quoted, varied 

from about 2 to about 13 milliamperes. 

The Time for an experhnent, from the starting of the current till the meeting of 

the boundaries, varied from nearly three hours to over seven. The tube was under 

constant observation. Time readings were made to the nearest quarter-minute. 

Table I.—Experimental Results. 

Salt. n 
it V 

P 
C, 

V U + V (L^ + V) 

NH4CI 1 1-041 •490 •508 - -517 (H) 1-005 

•5 1-021 •495 
- 

1-017 
KCl 1 1-041 •490 •503--516 (H) 1-032 

3 1-069 •483 1-014 

•5 •671 •598 1-023 
NaCl 1 •681 •595 •622--648 (H) 1-013 

2 •703 •587 1-022 

LiCl 
•5 

1 
•456 
•471 

•687 
•680 •674- -773 (K) 

1-004 
1-013 

1K2SO4 
■5 
1 

1-143 
1-143 

•467 
•467 •498 - -499 (il) 

1.002 
•951 

4 NaoSOa 
•5 
1 

•765 
•765 

•567 
•567 •634--641 (H) 

1-005 
•950 

•5 •538 •650 1-021 
-J- Li2fe04 1 •508 •663 •595 - -649 (K) 1-006 

2 •515 •660 •907 

•5 •463 •684 •942 
4MgS04 1 •422 •703 •656 - -762 (H) •861 

2 •442 •693 
i 

•807 



PROFESSOR 0. MASSON ON IONIC VELOCITIES. 345 

Experimental Results. 

In Table I., the first column gives the salt used, the formula specifying the quantity 

required, in grammes per litre, for a normal solution, i.e., for one in which n = 1. 

The values of n given in the second coliunn refer to the number of gramme formula 

weights per litre. In the third column are given the ratios, u/v, these being the 

values calculated from the observed meeting points of the blue and yellow Ijoundaries. 

In one case, however, viz., that of half normal KCl, this final reading was rejected 

and the ratio calculated from the readings immediately preceding it ; for the experi¬ 

ment, otherwise one of the best as regards constancy of ujv, was spoilt just at the 

end by a disturbance that had a very visible effect on the meeting point, spoiling the 

boundaries and shifting the film formation I niillim. This was the only case of the 

kind. In the fourth column the results are expressed as ^ the transport numbers 

of the anions ; so that they may be compared with the corresponding values obtained 

for aqueous solutions by the indirect Hittorfian method. These latter are given, 

under p, in the fifth column, where the experimenter’s name (Hittorf or Kuschel) 

is signified by its initial letter. To l^e strictly comparable, these values should be for 

the same concenti'ations ; but, as such data are not in most cases available, the 

extreme values of p are given, the most dilute value being placed first. For most 

of the salts these extreme values oip refer to concentrations outside those employed 

in the jelly-tid3e experiments, so that they may be taken as including the values for 

corresponding concentrations. Two points may be noticed. The first is that, while 

the author’s results for lithium and magnesium salts fall within the p limits, those 

found hy him for sodium, potassium, and ammonium salts give smaller anion 

transport numbers than the smallest value obtained by Hittorf. The second point 

is that the new values for the chlorides tend to decrease slightly as the concentration 

increases, whereas the opposite tendency is manifested liy the Hittorfian values. 

There is, however, a general similarity that is evident on comparing the two columns. 

The last column of the table ^ives the values of -—vr—foi' fhe calculation of 
® A'H-(U-f-V) 

which all the (piantities were expressed in C.G.S. units. As already explained, the 

approximation of this value to unity may be taken as a test of the method, and it 

is evident that the result is, on the whole, satisfactory. Only the stronger sulphate 

solutions give too small values ; and it is notalile that magnesium sulphate, which 

contains two divalent ions, is abnormal even in tlie most dilute solution employed, 

though it would evidently behave normally with greater dilution. It has already 

been pointed out tliat it is salts of. divalent and polyvalent ions tliat have always 

proved least consistent with theory. 

For the calculation of the numbers in this last column it was necessary to obtain 

strictly comparable current and velocity values. Now those directly obtained in an 

VOL. CXCII.-A. 2 Y 
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experiment are not comparable, those of C referring to current at given instants and 

those of U and V to average velocities for a long period of time; and it has been 

already told how both current and velocity steadily diminish at a rate determined 

by the nature and strength of the jelly. Either, then, an average current value must 

be obtained, or velocity values at dehnite points. Both methods have been used. 

For the former, since the quantities involved were too small to admit of the use of a 

voltameter, the average current was calculated from the area of the time-current 

curve. This was done for all the experiments except those with lithium and 

magnesium sulphates; and it was found in all cases that the average current value 

was attained at a point very close to that at which the indicators had travelled half 

their distance. With lithium and magnesium sulphates the current and velocities 

were so nearly constant that an appreciable error could hardly occur by assuming 

this as the correct point. The numbers given in the table Avere calculated in this 

manner. 

The other mode of calculation, which is a more rigid test of the experimental method, 

was applied to only two cases, but with satisfactory results. The values of U -h V at 

intervals throughout the exjjeriment Avere deduced Iw draAving tangents to a cuiwe 

got by plotting tlie added lengths of the coloured portions of the tube against the 

time. The current-time curA^e gaA^e the corresponding current values. Numerous 

C 
values of the ratio Avere thus obtained, which in the case of half-normal KCl 

I -t- V 

Avere constant to Avithin I per cent, of their mean Amine, and in the case of tAvice- 

normal KCl AAmre nearly, but not quite, so consistent. These mean Amines corresponded 

* A rather trequeut occm’rence in the.se e.\;periuieuts may be mentioned here. It is one AA’hieh, at first 

sight, looks as if it must be fatal to them, Imt AA’hich has been proA^ed to be really unimportant. FlaAvs, 

haAung the appearance of small bulddes or cracks, are apt to appear in the jelly tOAvards the end of an 

experiment. They seldom occui- till the boundaries haA'e done most of their journey, and they generally 

aj)pear near the centre of the tube. In many experiments they do not appear at all, but Avhen a Ahaa’ does 

come it is apt to e.xtend in a rather curious manner. This occurrence of flatA'S at once causes a reduction 

of current, and it is easy to locate their first appearance in the time-current ciuve, et'en Axere it not noted 

at the time, as Avas alAA'a3AS done. It has, hoAA'eA'er, A'ery little, if aiqq effect on the A’elocities of the 

l>ottndaries; and the ratio of these (itir) is absolutely unaft’ected. It is indeed striking to AA-atch the calm 

inditterence AA-ith AA’hich these flaAA's are treated Iq^ the traA’elling colour boundaries, and to contrast the 

behaA iour of the latter A\-ith that of the gah'anometer needle. The facts are explicable on the assumption 

that the fiaAA^s reduce the current by reducing the A’ahte of A, leaA'ing the current density (C/A), and 

therefore the actual A'elocities, as aa’cII as their ratio, unaffected. It is obA'ious that, in such a case, the 

e.xperiment must be regarded as finished as soon as flaAA-s appear, AAEere the object is to test the truth of 

the ecpiation involving the original, and only knoAvn, A-alue of A; but that, for the determination of ujr 

(or of jj), the experiment may be continued as usual till the boundaries meet. These rules haA'e been 

obsei'A'ed in all cases. The occurrence of flaAvs of the kind described AA'as noticed by Lodge {Ioc. cit.). 

Their cause has not been ascertained. Whether the\' Avill occur or not in any given experiment almost 

seems to be decided Ity caprice. 
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respectively to the figures I'015 and I‘002 for y'^ ? plaCe of I‘017 and I‘014, 

found by the other method and given in the table. 

Table II.—Belative Velocities of the Ions. 

! 
Chlorides. Sulphates. Kohi.rausch. 

i 

■n = ‘5. n = 1. n = 2. H = -5. n = 1. n = 2. 1879. 1885. 
t 

1893. 

1 
1 K 100 100 100 100 100 100 100 100 

Na 65-7 6.5-4 65-8 66-9 66-9 65 62 68 

Li 44-7 4.5-2 47-1 44-4 45-2 44 46 55 

NH, 100 98 96 100 

JMg 40-5 36-9 38-7 
1 

1 

Cl 97-9 96-1 93-6 102 104 105 

1 ISO, 87-7 87-7 87-7 ... ... 

In liable II., the results of the same experiments are given in such a form that the 

specific velocities of the different ions may be compared with one another and with 

u (K) 
those calculated for the same ions by Kohlrauscui. From the found values of 

i’(Cl) 

and 
Vj (Na) n (Na) 

the value of evidently he deduced, and so with the others. 

By making ^i(K) at each concentration equal to 100, comparable values are obtained. 

These are given for the chlorides and sulphates employed. Under Kohlrausch’s name 

are given, in parallel columns, the relative values of his specific velocities for the same 

ions, also reduced to the basis ii(K) = 100. The figures in the first of these columns 

correspond to the specific velocities calculated by him in 1879 (‘Ann. Phys. Chem.,’ 

vol. 6, p. 172) by extrapolation to extreme dilution from experiments with solutions 

the strength of which was not less than half normal. The figures in the second 

column correspond to the velocities given by him in 1885 (‘Ann. Phys. Chem.,’ 

vol. 26, p. 214) for solutions one-tenth normal, while the figures in the last column 

correspond to liis well-known specific velocities at infinite dilution, calculated in 1893 

(‘Ann. Phys. Chem.,’ vol. 50, p. 408) by extrapolation from his later work with 

exceedingly dilute solutions. 

The theoretical considerations advanced in the earlier part of this paper show that no 

exact agreement need be expected between the values for the same ion in the various 

columns of this Table. A general agreement might, hoAvever, be expected ; and it is 

2 Y 2 
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Fig. 3. 
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Fig. 4. 

Half-normal (a), normal (b), and iwice-normal (c) LkSOi jellies. 
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certainly seen to exist. Moreover, one would naturally expect the author’s results to 

show better agreement with Kohlrausch’s 1879 values than with his later ones, as 

the former were deduced from the conductivities of normal and half-normal solutions. 

This is notably the case, and is conspicuous in the lithium values. The only striking 

difference is that seen when the relative values of cation and anion are compared, 

wliich would he still more pronounced were one to include SO4 in the Kohlrausch 

columns ; l)ut he himself excludes it. This difference is, however, but a repetition of 

what has been already noticed in the comparison of the results obtained Avith 

Hittorf’s transport numbers ; for Kohlrausch bases his calculations on Hittorf’s 

aMuo of^J in KCl. 

The character of the observations on which the author’s values are based Avill be 

best judged by inspection of the specimen curA^es shoAvn in the accompanying plates. 

In fig. 3 are shoAvn the curves for half-normal chlorides of potassium, sodium, 

and lithium ; and in fig. 4 the curA^es for the three strengths of lithium sulphate. 

In all of these figures the right-hand curA^e represents the progress of the yelloAv 

boundary, i.e., of the anions, Avhile the left-hand cuiwe represents the simultaneous 

progress of the blue boundary, ?.c., of the cations. The gradual narroAving of the 

figure enclosed by the right-hand and left-hand curves represents the colourless jeUy 

originally filling the Avhole tube, and becoming curtailed till it A'anishes at the apex. 

The curvature, Avhich corresponds to diminishing A’elocity (and current), is seen to 

depend on the nature of tlie salt used—to be most marked in the case of the best 

conductor (KCl), and to nearly disappear in that of the Avorst (Li2S04). Fig. 4 

shoAvs the regular result of increased concentration, Avhlch decreases tlie ionization (cc), 

and therefore the A^alues of the Avorking A^elocities (U and V). 
Tlie displaced point at the apex of the half-normal KCl cuiwe, already described, 

is shoAvn in fig. 3 ; and in fig. 4 it may l)e noticed that the later readings of the 

yelloAV boundary Avere slightly inaccurate, this being due to the fact that the 

experiment, Avhich AAns a long one, had to be finished by gas light. 

In conclusion, the author desires to express his great obligation to his colleague, 

Professor T. R. Lyle, for much kindly suggestion and practical aid. 
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Introduction. 

Art. 64. The subject of the partition of numbers, for its proper development, 

requires treatment in a new and more comprehensive manner. The subject-matter 

of the theory needs enlargement. This will be found to be a necessary consequence 

of the new method of regarding a partition that is here brought into prominence. 

Let an integer n be broken up Into any number of integers 

if we ascribe the conditions 

the succession 

a„ ao, a.^, . . . 

tti > a. > ^3 > . . . > 

is what is known as a partition of n. 
There are s — 1 conditions 

> a.,, a., >: ois, . . . a,_i > 
to which we may add 

a, > 0 

if the integers be all of chem [)ositive (or zero). For tlie present all the integers are 
restricted to be positive or zero by hypothesis, so that this last-written condition 
will not be further attended to. 

If, on the other hand, the conditions be 

> > >» 
< a._> < a3 . . , < 

no order of magnitude is supposed to exist between the successive parts, and we 
obtain what has been termed a “ composition ” of the integer n. 

Various other systems of partitions into s parts may be brought under view, 
because between two consecutive parts we may place either of the seven symbols 

3 —3 

5.5.99 
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We thus obtain 7"“^ different sets of conditions that may be assigned; these are not 

all essentially different and in many cases they overlap. 

Art. 65. For the moment I concentrate attention upon the symbol 

and remark that the s — 1 conditions, which involve this symbol, set forth above, 

constitute one set of a large class of sets which involve the symbol. We may have 

the single condition 

+ Ai^’ao + A'^^^as + . . . + Af^a, > 0, 

Avherein Aj, Ao, A3 ... A^ are integers zero or —, of which at least one must 

be positive, or we may have the set of conditions 

A^aj + A^'a., + + . . . + A^a, > 0 ^ 

Af a, + APa, + Af «3 + . . . + Af a, > 0 

Af a, + A^a, + Ar)a3 + • • • + Af > 0 

Ai+ Ao^a., -f- As^tts -f- . . . Aj^a, — b ^ 

as the definition of the partitions considered. If the symbol be = instead of > 

the solution of the equations falls into the province of linear Diophantine analysis. 

The problem before us may be regarded as being one of linear partition analysis. 

There is much in common between the two theories; the problems may be treated 

by somewhat similar methods. 

The partition analysis of degree higher than the first, like the Diophantine, is of a 

more recondite nature, and is left for the present out of consideration. 

I treat the partition conditions by the method of generating functions. I seek the 

summation 

. . . X7 

for every set of values (integers) 

«!, ao, as) • • • a. 

which satisfy the assigned conditions. 

It appears that there are, in every case, a finite number of ground or fundamental 

solutions of the conditions, viz.:— 

a[^\ ot^P, aT . . . af^ 

af\ a.f, af . a' (2) 

a^ . . . af‘> 
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such that every solution 

is such that 

“u “29 “39 • • • “9 

+ Xjaf ... 4- ^ 

0.0 = + XzOif'* . . . + 

^3 = XiO.'i^ 4- Xjaf . . . + 

“9 = Xjaf) + Xoa® ... 4 X,^af 

Xj, X2, . . . X„^ being positive integers. 

This arises from the fact that every term 

X?‘X?X,?^. . . Xr 

of the summation is found to be expressible as a product 

... xfT' 

X {Xf^Xf^Xf^. . . Xf 

X. 

X ixf'^xf'^^xf'^... 

Denoting this product by 
^pA.i'DAj T>A.„ 
-T 1 JT 2 . . . X 

the generating function assumes the form 

1 - (QS^’ + Qf + Qf + ...) + (Q^^> + QF + Qf +...)- (Qi'^ + ...) + 

wherein the denominator indicates the ground solutions and the numerator the simple 

and compound syzygies which unite them. 

The terms 

Qf\ Q?' • • • denote first syzygies 

Q2^ Q® ... 9, second „ 

Qf, Qf’... „ third „ 

The reader will note the striking analogy with the generating functions of the 

theory of invariants. 

2 z VOL. CXCII.—A. 
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Similar results are obtained as solutions of linear Diophantine equations. 

The generating functions under view are real in the sense of Cayley and 

Sylvester. Enumerating generating functions of various kinds are obtained by- 

assigning equalities between the suffixed capitals 

X„ X„ . . . X,. 

Putting, e.g., 

X^j — ^^2 — • • • — — .r, 

we obtain the function which enumerates by the coefficient of x", in the ascending 

expansion, the numbers of solutions for which 

ct] “h cLo —j- . . , 0(3 n. 

It will be gathered that the note of the following investigation is the importation 

of the idea that the solution of any system of equations of the form 

“h A.2X2 -{- -j- . . . -j- A-jOt, ^ 0 

(all the quantities involved being integers) is a problem of partition analysis, and that 

the theory proceeds pari passu with that of the linear Diophantine analysis. 

Section 5. 

Art. 66. I propose to lead up to the general theory of partition analysis by con¬ 

sidering certain simple particular cases in full detail. 

Suppose we have a function 
F (x, a) 

which can be expanded in ascending powers of x. Such expansion being either 

finite or infinite, the coefficients of the various powers of x are functions of a which 

in general involve both positive and negative powers of a. We may reject ail terms 

containing negative powers of a and subsequently put a equal to unity. We thus 

arrive at a function of x only, which may be represented after Cayley (modified by 

the association with the symbol —) by 

fl F (x, a), 

the symbol > denoting that the terms retained are those in which the power of 

a is > 0. 

Similarly we may Indicate by the operation 

fi 
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that the only terms retained are those in which a occurs to the power zero and the 

meaning of the operations 

n, n, n, n 
^ > 

will be understood without further explamation. To generalise the notion we may 

consider 

n F ^^2? »• • ^ij ^2? • • • 

to mean that the function is to be expanded in ascending powers of Xj, Xj, . . . X„ 

the terms involving any negative powers of ai, a.2, . . . at are to be rejected, and that 

subsequently we are to put 

— 0^2 ““ • • • — — 1. 

In this case the operation n has reference to each of the letters ai, . . . at and a 

term involving any negative power of either of these quantities is rejected. 

If the quantities a^, . . . at be not all subjected to the same operation we may 

denote the whole operation by 

Ctj CLb 

n D. n,.... D. F (Xi, X2, . . . X„ «!, 02, Os . . • at) 

Or 

wherein operates upon .a^ according to the law of the symbol 0-^. 
CTf 

The operation, qud a single quantity and the symbol >, have been studied by 

Cayley.* Qud more than one quantity it has presented itself in a memoir on 

partitions by the present author.! 

These fl functions are of moment in all questions of partition and linear 

Diophantine analysis. 

Art. 67. I will construct D. functions to serve as generators of well-known 

solutions and enumerations in the theory of unipartite partition. 

Frohlem I. To determine the number of partitions of w into i or fewer parts. 

Graphically considered we have i rows of nodes 

. 

0-2 ... . 
0.3 .. . 

a,- 

* “ On an Algebraical Operation,” ‘ Collected Papers,’ vol. 9, p. 537. 

t “ Memoir on the Theory of the Partitions of Numbers,” Part I., ‘ Phil. Trans.,’ A, vol. 187, 

pp. 619-673, 1896. 

2 Z 2 
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ttj, a,, . . . denoting the numbers of nodes in the first, second, &c., rows. 

“i ^ “2 

“2 — a* 

To find 

“i-i ^ “i 

s xr ... xr 

for all sets of integers satisfying the conditions take 

n- 
~ 1 — Xj . 1 

1 

^ Xj. 1 - 
«1 a. 

where observe that the factors 
1_1 

1 — fliXi’ 1 —(ffj/adXj’ 
. . . generate the successive rows 

of nodes and that the method of placing the letters ai, . . . ensures the satisfaction 

of the first, second, &c., conditions. 

Continued application of the simple theorem 

n 
1 

1 — ax . 1 — 

1 

1 — X . 1 — xy^ 

applied in respect of the quantities ctj, a-,, ... in succession, reduces the function 

to the form 
1 

1 - X,. 1 - XjX,. 1 - X1X0X3... 1 - X,X,Xs... X, 

the real generating function. 

The ground solutions or fundamental partitions are, as shown by the denominator 

factors, 

(oti, O62, 013, . , , Otj) 

^ (1, 0, 0, ... 0) 

(1, 1, 0, ... 0) 

= <; (1, 1, 1, ... 0) 

• ••••• 

Jl, 1, 1, ... 1) 

and, as might have been anticipated, the graphical representation is in evidence. 



MAJOR P. A. MACMAHON ON THE THEORY OF PARTITIONS OF NUMBERS. 357 

Art. 68. By choosing to sum the expression 

SXpX?... XT, 

every solution of the given conditions has been generated. The same result might 

have been achieved by other summations such as 

... xr, 

Xi, X2, . . . Xi being given positive integers, or as 

sxp“‘^X2^-“=.., X“i-r“'X“\ 

We, in fact, may take as indices of Xj, X.2, . . . X^ any given linear functions of 

aj, . . . aj, and form the corresponding generating function. 

For the two cases specified, the O functions are 

n 
^ 1 -uiXi*. 1 ^ Xf^^... 1 - — xr 

«i " «i-i 

1 - aiXi .1-^—M- — ^...1--^ 
«i Ai a, Aj Aj_i 

and the reduced functions 

1 _ xtu 1 - xt‘X^^... 1 - xkx^=... Xf 

1 - Xi. 1 - X2.1 - X3. . . 1 - X; 

respectively. 

Generally for the sum 

+ /11C2 + . .. -h . , . + /u-joa + . . . + rjia; 

the two functions are 

1 
D 

1 - aiXkX^^u . .Xf‘. 1 - ^XpXr. . .Xr. . . 1 - — X?^X3u..Xf 

and 

1 — Xt^Xa*... Xf‘. 1 — ... Xf+'*‘... 1 — ... Xf+-"'^’’' 

Art. 69. In any of these instances we have i quantities at disposal, viz. : 

^1) X2,... Xjj 
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in order to derive enumerating generating functions corresponding to certain problems. 

In the last-written general case, the quantities X, /x, ... -17 being given integers, put 

as a particular case, 

= Xo = .. . = X, = cc. 

The reduced function is 

1 
1 - . 1 _ ’ 

and herein the coefficients of t’", in the expansion, give the number of partitions 

«!, a.,, aj, . . . 

of all numbers which satisfy the equation 

-f 2/x . a2 d' . . . + 217 . = w, 

«!, a2) • • • being in descending order. 

For the three particular cases considered above this equation takes the forms 

Oil “b ^2 “b • • • “b ■“ ^^5 

Xl^i “b f^2^2 “b • • • "b ~ 

di = w, 
connected with the reduced generators, 

_1_ 

1 — X . 1 — . 1 — .. 1 — x‘ 

_1__ 
\ ... 1 — x:''i+'^2+ ••• ’ 

1 

(1 - xY ’ 

respectively. 

Further, we may separate Xi, X^, ... X; in any manner into k sets and put those 

which are in the first set equal to Xi, those in the second equal to X2., and so on, and 

so reach an enumerating function involving k quantities, Xj, x^, X3, . . . x*. 

Ex. gr. Put 

Xj = X3 = X5 — ... — Xi, 
X2 = X4 = Xg = . . . = 072, 

and suppose i even. We obtain 

_^_ 

1 — X’l . 1 — X1.V2 1 — . 1 — xja-l... 1 — ’ 
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to enumerate by the coefficient of those partitions of for which 

“h “3 "h “5 “1“ • • • = '^1 

^*2 “h “f" ®6 4" • “ • — '^2* 

This enumerating function, since it involves Xi and x^, is one connected also 

with the partitions of bipartite numbers. In general when k sets are taken, we 

have a theorem of Z:-partite partitions. When h = i, we have at once a real 

generating function for unipartites and an enumerating function for ^-partites, for, 

from the latter point of view, the number unity which appears as the coefficient of 

XpX?. .. X^ shows that the multipartite number 

ttia, . . . 

can be partitioned in one way only into the parts 

1 0 

1 1 0. 

1 1 1. 

1 1 1 .... 1 

there being ^ figures in each part. 

A.rt. 70. We may now enquire into the partitions of all numbers 

a2, “3, . . • “i, 

subject to the given conditional relations and also to the linear equations 

+ • • • + 'Hi^i — ^ 

+ /^'2«2 + • • • + =■ 

+ /x^*>a2 4- ... 4- = w'*’. 

To illustrate the method, it suffices to take s = 2, and then we have to perform 

the summation 

2X1‘“-Xr’. . . 

The fl function reduced is 

1 - Xl‘Yf-. 1 - X^'X^^Y1''Y?'=... I - Xl-Xf^. . . XrYi'Yr^. . . Yf ’ 
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wlierein putting 
Xi = X3 = . . 

Yi Yo = . . 

. = X. = X, 

• = Y, = 2/, 

we obtain the enumerating function 

. 1 _ + ... 1   . . . + T)^X'i+/i'i+. . . +I)'i ’ 

in which we seek the coefficient of x'"y'^'. 

Art. 71. Ex. gr. Consider the particular case 

Oti *^2 “h • • • “h ~~ 

otj -]— 2ot2 “h • • • “h ^ J 

«!, an,. . . a^ being, as usual, subject to the conditional relations. 

The enumerating function is 

_1_ 

1 — xy . 1 — xhf. 1 — ... 1 — x’y^’' ’ 

and it is obvious also that the partitions of the bipartite ww' which satisfy the 

conditions may be composed by the biparts 

11, 23, 36, . . . i, ^iii+l). 

The corresponding graphical representation is not by superposition of lines of nodes, 

but bv angles of nodes, of the natures 
i/ c5 ' 

(J 9 ' 3 
0 0 
0 0 

0 
0 
o 

Art. 72. It is convenient, at this place, to give some elementary theorems concerning 

the 12 function which will be useful in what follows. 

12—- =- 

> 1 1 — x.l — xy ’ 
\ — ax .1 — — y 

a 

n 
1 — ocyz 

\ — ax. 1 — ay .1 — — 
a 

1 — x.l — y .1 — xz.l — yz’’ 
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I 

1 1 1 — X ,1 — ry .1 — xz ’’ 
1 — ax .1 — — y. 1 — — 2 

a a 

n 

n 

1 1 + xy 

] I — . 1 — xy- 
l-crx.l-^^y 

1 

1 1 — X .1 — oxy 
1 — ax. 1 — — y 

VL 
1 4 xy 4 xy- 

1 1 — a;. 1 — xir ’ 
1 — a-'x. 1 — y 

a 

1 1 

1 1 — A’. 1 — of y ’ 
\ — ax . \ — —y 

ar 

o 
1 1 4 o:z — xyz — -xyr- 

1 — d'X. 1 — ay .1 — 
(C 

n 

n 

1 — ,r. 1 — y .1 — yz. 1 — xz" ’ 

1 4 xy + xz -i- oyyz 

1 1 1 — as. 1 — xy’. 1 — xz- ’ 
1 — a-x .1 — — y. 1 — — z 

a 

1 I — ,xyin — .r:av — yuo 4 oyyziv 4 xyzvr 

i 1 — A’. 1 — y. 1 — . 1 — xw. 1 — inv. 1 — zw ’ 
I — ax. 1 — ay. 1 — az . 1 — ~ to 

1 

2--r 
“ 1 — rta;. 1 — «//. 1 — — z .1 — 

a, a. 

1 — xyz — xyw — xyzio 4 xy'zw 4 x-yzu: 

1 — X .1 — y .1 — xz. 1 — . 1 —• yz. 1 — yto" 

Art, 73. I pass on to consider tlic partitions oi niimbei's into parts limited not to 

exceed i in magnitude. 

The n function is clearly 

o 
,i+i 

> 1 — ejXi 

/ a., 

\ a, 

1 - X., 

I 

1 - ( X.; 
a., 

1 - X.. 
a.. 

uij inf. 

In this form I have not succeeded in elfecting the reduction, hut if vvc put at once 

X, = X, = X, = . . . = 4, 

1 

the reduced form is 

VOL. cxcii.—A. 

i — X .1 — x^ .1 — x‘... 1 — a' 

3 A 
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If the parts be limited to i in number and to i in magnitude, we find 

n ^ ~ 
> 1 — a^x 

+. 1 
-(A^r 

1 Y'"' 
' 1 - . 1 - . 1 - ... 1 - 

1 
cu 

1-X 
1 — X . \ — ox . 1 — of ... 1 — S'/ 

a, »-i 

the well-known result. 

Art. 74. It is to be remarked that the generating function in question may also be 

written 
1 

1 - g n- 

~ 1 — a^rp:. 1 — ~ o: . \ or ... 1-x 
c.. i-l 

in which we have to seek the coefficient of g\ This function reduces to 

i - g .1 - gx .1 - gor .1 - yor .. .1 - pf 

the well-known form. 

In general, when a generating function reduces to the product of factt^rs 

1 

1 - .r* ’ 

the part-magnitude being unrestricted, we obtain a product of factors 

1 

I — //■«* 

for the restricted case, and this is frequently exhibitable, as regards the coefficients 

of as a })roduct of factors 

\—of 

The fl function is not altered by the interchange of the letters i,j. 

Art. 75. If the successive parts of the partition are limited in magnitude by 

J [1 Jr • • • Jii 

numbers necessarily in descending order, the generating function is. 

n -1 - 1 

“ 1 - ap 

, , c., 
L — I —^ 

-A-''-’ 'i-l 

a., 
1-X 1-.7; 
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For i — 2, this may be shown to be equal to 

(1 — ic-'a+b (1 — 

(1 - (1 - 

(I — (1 ~ 

but for i > 2, the functions are obtained with increasing labour, and are of increasing 

complexity. 

Many cases present themselves, similar to the one before us, where the H function 

is written down with facility, but no serviceable reduced function appears to exist. 

On the other hand, we meet with astonishing instances of compact reduced functions 

which involve valuable theorems. 

Art. 76. From the reduced function we can frequently proceed to an n function, 

thus inverting the usual process. If, for example, we require an fi equivalent to 

1 

1 - . 1 - .T- ... 1 - 

a little consideration leads us to 

n 

1 — . 1 
rt. 
1 a;P^-P, . 1 _ 1 - 

('i-i 

This indicates that a unlpartite partition into the parts Pj, P2, . . . P^ may be 

represented by a twm-dimensional partition of another kind which involves the parts 

Po P2 PlJ P.3 - P2> • • • Pi Pi-1' 

Ex. (jr., the numbers P,, Po, P3 being in ascending order, the line partition 

P3P3P3P.2P.2Pj 

can be thrown into the plane partition 

Pi Pi P, Pi P, P. 

R-Pj P.3-Pj P.2-P. R-P, P,-Pi 

P3-P.2 P3-P2 P3-P2. 

of the nature of a regularised graph in the elements Pj, P.2 -- Pj, P3 — P.2, though 

these quantities are not necessarily in any specified order of magnitude. We obtain, 

in fact, a mixed numerical and graphical representation of a partition of a new kind. 

If 

(Pj, R, P3) = (1, 3, 4), 

3 A 2 
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the partition 4 3 3 3 1 has the mixed graph 

11111 

2 2 2 2 

1 

as well as its ordinary unit-graph. 

In one case the mixed graph is composed entirely of units, and is, moreover, the 

graph conjugate to the unit graph. 

This happens when 

(P., P,, P3, . . .) = (1, 2, 3, . . .). 

Thus, q\id these elements, 
4 3 3 3 1 

has the mixed (here the conjugate) graph 

11111 

1111 

1111 ’ 

1 

Art. 77. Observe that a partition may be such qvd the parts which actually appear 

In ii, or it may be cpid, in addition, certain parts which might appear, but which 

happen to be absent. A mixed graph corresponds to each such supposition. 

Ex. gr, :— 

Partition. Qua elements. Graph. 

4 3 

. „ 

4, 3 3 3 
1 

4 3 4, 3, 1 1 1 
2 2 
1 

4 3 4, 3, 2 2 2 
1 1 
1 

4 3 4, 3, 2. 1 1 1 
1 1 
1 1 
1 

We thus arrive at a generalization of the notion of a conjugate partition, and are 

convinced that the proper representation of a Ferrers-graph is not l)y nodes or points, 

but by units. 
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When the mixed elements 

Pj, P.3 P], P3 Po, . . . 

are in descending order ot magnitnde we have a correspondence between nnipartite 

partitions and multipartite partitions of a certain class. 

Art. 78. It is usual to consider the parts of a partition arranged in descending 

order. The Xl function enables us to assign any desired order of magnitude between 

the successive parts. 

In the case of three parts we have already considered the system 

For the system 

we have the solution 

> a,, tto > oL-i. 

a, > a.,, a-^ > a.,, 

1 

“ 1 — fcX,. 1-X„. 1 — rt.,X» 
a^a., ' ■ ^ 

and thence the real reduced o-enerator 

1 - Xl . 1 - XiXoX,,. 1 - X;, 

and the enumeratinof function 

1 + .r 

(1. - ^’) (1 - (1 - 

On the other hand, for the system 

we construct 

^ , a, > a^, 

^ X X 
- 1 - ^.1 - ai«oX..l 

«■ n. 

leading to the real and enumerating functions 

1 - XiX|X» 

1 _ X.,. 1 - X,X,,. 1 - X.,Xo. 1 - X,X.,X3 

_1 + 

(1 - O (1 - (1 - '0 ’ 

of the former, the denominator shows the ground solutions, id est, fundamental 

partitions, 
(a„a„a3) = (0, 1,0); (110); (Oil); (111); 

and the enumerator points to the syzygy 

X,. X,X2X3 - X,X,. X.,X, = 0. 
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Art. 79. If the partition be into i parts, we can assign 2*“^ different orders 

depending upon the symbols >, and these can all be expressed by conditional 

relations affecting aj, a,, . . . a-, involving the symbol > only. These are not all 

essentially different, as one order does or does not give rise to a different order by 

inversions of parts. Denoting >, < by the letters cl, a, we have for i = 3 the orders 

(Id, da, ad, aa ; the orders del, aa are not essentially different, because interchange 

of a and d combined with inversion converts the one into the other; da, ad are 

essentially different, because this two-fold operation leaves each of these unchanged. 

Hence there are three orders to be considered, and the results have been obtained 

above. 

For ^ = 4 we have the essentially different orders ddd, dda, dad, add. The first 

of these has been obtained ; the other three are solved bv the n functions ; 

o 

1 - rtiX,. 1 _ X.,. 1 - — . 1 - c.,X4 
i>. - a.-,n 

1 
n -;-r- 

- 1 - c,X,. 1 - . I - . 1 - 
■ ■■ a.. 

O 
1 

== ] _ .1 - . 1 - XT . 1 - 
a.. a.. 

which reduce to the three expressions : 

1 

1 - Xj. 1 X ^. 1 - XiX.. 1 - XiXoXoX, 

1 - XiX,,X|X, 

1 - Xi. 1 - XT . 1 - X„X,. 1 - XjXTXo. 1 - XjXoXoX 

1 - X^X^Xs - XiXIX^X, - XiXIXiX, + XiX^X^X, + XfXSXiX 
I - X,. 1 - X,XT. 1 - X,X,. 1 - XjXTX,. 1 - X,X„X,. 1 - XjX.X.X 

and to the three enumerating functions : 

1 .r -f- x~ 

- . 1 - .1 - of .1 - i 

1 -F .r + of + of + V* 

1 - . 1 - .rT 1 - a'T 1 - .r' 

1 -t- -p .f 

1 - rr . 1 

The last real o'eneratinn function that has been written down o-ives the solution 

of the system of conditions 
aoSraj, a.>>aa, a., > ; 
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the ground solutions are 

(«!, a,, ^3, «4) = (0, 1, 0, 0), (1, 1, 0, 0), (0, 1, 1, 0), (1, 1, 1, 0), (0, 1, 1, 1), (1, 1, 1, 1) ; 

the three simple syzjgies are given by 

Xo.XiX,X3 - X1X2.X0X3 = Si = 0, 

X2.XiX,X3X, - XjX^.X,X3X4 = S3 = 0, 

X^Xa.XiX.^XsXi - XiX3X3.X3X3X4 = S3 = 0, 

and the two compound syzygies by 

X-^XsXi.Si 

X1X3X3.S3 

X2X3.S, 

XiX^.Ss 

0, 

0. 

Art. 80. Ill general, when the number of parts is we have k\ orders Avhich are 

altered by interchange of d and a, combined with inversion, and I, which are un¬ 

altered where 

2ki -|- 4 = 

Hence the number of essentially different orders is 

hi li = ^l.,. 

To determine observe that an order 

d-^-a'^^. . . d^''‘a'''"^ d^‘a"' 

will be unaltered by the operations spoken of when 

K — l-^s — H-i — K = K — p-s-i = H-2 — K-i = . . . = 0 ; 

so that i — 1 must be even and there will be two such unaltered orders for each 

partition of . i — l .into even parts. 

Hence the generating function for -j- k is 

X- 

giving for 

1 — 2x (1 — v) (1— .j;‘) (1 — ?/’). . . rrcl ivf 

i = 2, 3, 4, 5, 6, 7, . . . 

1, 3, 4, 10, 16, 35, . . 

the numbers 
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Section 6. 

Art. 81. The theory, so far, has been concerned with partitions upon a line. The 

parts were supposed 

a., ctj ^4 aj , . . a__, a, 
• --•_•-•- • 

to be placed at the points upon a line with one of the symbols < placed between 

every pair of consecutive points. 

When the symbol was invariably > the enumerating’ function found was 

(.y_+ 1) (j + -) {j + 3) ^ ij + 0 

Id ’ (D ' (3) (tr 

wherein [s) denotes 1 — x\ If we place these factors at the successive points of the 

line we obtain a diagrammatic exhibition of the generating function, viz. :— 

b/' + 3) (j + o) (y + T) (j + i — 1) D/+_y) 
"(D (2) (3) (4) ■■■ D-1) ~(i) 

a simple fact that the following’ investigation shows to be fundamental in idea. 

Art. 82. I pass on to consider partitions into parts placed at the points of a two- 

dimensional lattice. 

For clearness take the elementary case ol four parts jilaced at the points of a 

square. 

with symbols ^ placed as shown. We have to solve the conditional relations 

0L^ ^ ao, (X., 2: 

> as, as > a4. 

The four parts are subject to two descending orders. For the sum 

Ave have the f) function 

—! .lVj ..Vs ..Vs ..a4 
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n 

which reduces to 

1 — a&Xi. 1 — - X, 
a - 

1 - - X3.I - - X, 
h ' cd ' 

1 - XfX^X. 

1 - Xj. 1 - XjX.,. 1 - X1X3.1 - XjXoX,. 1 - XiX^XgX, 

establishing the ground solutions 

(a.,a3,a3, «4) = (1, 0,0,0); (1, 1, 0, O); (1,0, 1,0); (1, 1,1,0); (1, 1, 1, 1). 

connected by the syzygy indicated by 

X,. X1X2X3 - XiX,. X1X3 = 0, 

and leading to the enumerating function 

1 

(1 -x) (1 - x?f (1 - x=*)' 

Art. 83. If the parts be restricted not to exceed j in magnitude, we may take as 

n function 
1- 

1 - o&Xi . 1 - — Xo 

1 - — X.. . 1 
b 

a 

cd, 
X, 

and herein putting Xi = X2 = X3 = X4 = a?, and reducing, we get 

1 - jl - x^^^V- 1 - x^+^ 
1 — X ' \ 1 — a;^ / ' 1 — ’ 

and we notice that we may represent this diagrammatically on the points of the 

original lattice, viz. :— 

( J+D 
(!) 

(J^-Z) 
(t) 

(J-¥2) (J-¥3> 

*2> (3) 

3 B VOL. CXCII.—A. 
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Art. 84. We next have to observe the identity 

n_ 
” 1 — rt&Xj 

n_ 
> 1 - aXi 

1_ 

1 — «&Xi X., 

1-X, 
a 

and to note that the dexter leads to the enumerating function 

2: 1 — . 1 — ab.v^ 

corresponding to the problem of two superposable layers of units, each of two 

rows ; 

111111 1111 

1111 11 

in the case indicated superposition yields 

2 2 2 2 1 1 

2 2 11 

the first row contains a combined number of two’s and units > the combined 

numbers in the second row, and further, the number of two’s in first row, > the 

number of two’s in second row. In the 12 function these conditions are secured by 

the auxiliaries a, h, respectively, and it is established that the problem of partition at 

the points of the elementary [i.e., simple square) lattice is identical with that of two 

superposable unit-graphs, each of at most two rows. 

In fact, the graph 

2222 1 1.X 

2 2 11 

y 

the axis of 2 being perpendicular to the plane of the paper, is immediately convertible 

to the lattice form by projection, with summation of units, upon the plane y z. The 

numbers at the points of the square lattice would be 6, 4, 4, 2 respectively. 
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Ai't. 85. Observe too tliat the partition is also one upon another kind of lattice in 

which the part-magnitude is limited not to exceed 2. 

2 2 2 B ! I ...... .BS 

^.211 

y 

Here, starting from the origin, we may proceed to the opposite point of the lattice 

along any line of route which proceeds in the positive direction along either axis, and 

the condition is that along each line of route (here there are six) the numbers must 

be in descending order and limited in magnitude to 2. 

Art. 86. We have, therefore, solved the system of conditions : 

aj > a., ^ ^.— 

IV IV IV IV 

> yds >.> 

2 > > 0, 

which is seen to possess the same solution as the system 

*3 ^ “4 

y > > 0 ; 

and we remark the diagrammatic representation 

the product of all the factors being 

(j + 1) (j + 2)-- (j + 3) 

(1) (2)^ (3) 

3 B 2 
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Art. 87. I return to the enumerating function 

_1_ 

(1 — a;) (1 — X")- (1 — x') 

to note that it may be exhibited as 

1 
12 7 7 ’ 
— 1 — ax . 1-X . 1-1-z 

a 0 c 

the interpretation of which is that the coefficient of x” in the development gives the 

number of instances in which 

“i + “2 "b “4 = '^1 > 

<^2. “sj *4 being integers satisfying the conditions 

> a2 >: S: a4. 

We arrive at the form in question if for these conditions we construct 

and then put Xi = Xa = X4 = x. 
The graphical representation is of the form 

1 1 1 1 1 1 1 I . . . 

1 1 1 1 I . . . 

0 0 0 0... 
11... 

the numbers of figures in the rows being in descending order and the third row of 

figures zeros. 

Art. 88. As another instance of the elementary lattice take the system 

^ a.,, > 1X3 

a4 > a., , a4 > a. , 

leading to 

1 
n-— 
- 1 - ahX, . 1 - 

ad 

1 - . 1 - cdX^ , 

reducing to 
__1 - XfXaX^X!_ 

1 - Xi. 1 - XiXoX^ . 1 - X1X3X,. 1 - X,X.7XsX4.1 - X4 ’ 
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establishing the fundamental solutions 

{a„a„a„a,) = {l, 0,0,0); (1, 1, 0, l) ; (1, 0, 1, 1) ; (1,1,1,],); (O, 0, 0, l) ; 

connected by the syzygy indicated by 

Xi. XiX3X3X4. X, - X1X0X4. X1X3X4 = 0. 

Art. 89. A more general generating function connected with the elementary 
lattice and descending orders is 

/ d 
1- 

1 - ahX^ . 1 - — X,, 
a 

1 

where now aj, aj, a-, are restricted not to exceed ji, jo, j~^, respectively, and of 

course 
^ j-i 

IV IV 
^3 ^ j, 

are conditions. 
It should be remarked that we examine the case of bipartite partitions with regular 

graphs hy putting X2 = Xj, X4 = X3. 

Part-magnitude being unlimited, the reduced function is 

_1 - XfX._ 

1 - Xi. 1 - Xb 1 - XiX,. 1 -^XiX.,. 1 - XiXi ’ 
and is real. 

Art. 90. Leaving the particular case, I pass on to consider the general theory of 
partitions at the points of a lattice in two dimensions. It can be shown immediately 
that it is coincident with the theory of those partitions of all multipartite numbers 
which can be represented by regular graphs in three dimensions. For consider the 
superposition of any number of unit graphs, adding into single numbers the units in 

the same vertical line. We obtain a scheme of numbers 

Ctii c/12 

®21 ®22 ^23 • 

CI31 <232 

^41 

y- 

X 
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in which all the rows and all the columns taken in the positive directions along the 

axes of X and y are in descending order. We may consider these numbers to be 

placed at the points of a lattice of which the sides involve in and I points along the 

sides parallel to the axes of x and y respectively ; m will then be a limit to the 

number of units in any row of a unit graph, and I will be the limit to the number of 

rows. 

-s-' > ■ ' ' i 

w 

--- 

w 

• -E- 

y 

There is a descending order along each line of route from the origin to the opposite 

corner of the lattice, and there are altogether 

7 + m — 2\ 

, ^-1 J 
such lines of route. 

Art, 91, The theory of the regular partitions of multipartite numbers is thus 

reduced to a lattice partition into I m parts in 'piano. The conditional relations may 

be written 

an — “i2 ^ “13 

IV IV IV 

a 1. m—1 > a Ini 

IV IV 

aoi > a.,2 — a.j3 a, 
2 . 7n — 1 — 1 — Ot.9 

— “/-1.2 — ®Z-1.3 

IV IV IV 

a i—1 .m —1 a. 2—1. m 

IV IV 

a 2,1 > aj.2 ^ ai.3 aom-i — a. I . TK 

and for the sum 

S n n X 
dti 
it 

i-\ t=\ 

we at once write down the H generating function, viz, 
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1 

375 

n 

1 ■ 1 

1 - ^ X31. 1 - 

. 1 - 

^ /e,x,3 .1 
ftj 

^2 ^2 "y" 
lU 0~ -^22 • I 
h A 

0, S, ' 

a.. 
yiXis 

h 72 V 7 A_23 b, 7i 

A Y, X 
Co 7., 33 

to I factors to I factors to I factors 

. . to w factors 

. . to m factors 

. . to m factors 

&c. 

If the part-magnitude be limited to n, we must place as numerator in the function 

\n + l a. 
I — ( ajaiXii . 1 — ( — /?iXi3) ... to m factors 

n-t-1 

n + \ 71+1 
1 — 1^61 — Xoij . 1 — X22j . . . to m factors 

&c. 

to I factors to I factors 

and if we please we may reject all the numerator factors except 

1 - 

Art. 92. The existence of the three-dimensional graph shows that this function 

remains unaltered, when X^j is put equal to x, for every substitution impressed upon 

the numbers 

I, m, n, 

but there is a still more refined theorem of reciprocity connected with a more general 

generating function. 

Suppose that the number of layers which involve 1, 2, 3, &c. rows be restricted to 

^l3 ^2» 4? • • • j 

that the successive layers are restricted to Involve at most 

Wi, rru, TO3, . . . rows; 

and that the successive rows of the layers are restricted to contain at most 

Tij, 712, . . . units. 

We have then the comprehensive fl function :— 
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\«i 
1 - . 1 - (f /3.x.,)"'" . 1 - (y.x., 

x«2 

7!, + l 

to nil factors 

l-(hi^X,i) .1 

ao 

?ii +1 h A V 1 ( h y-2 ^ 4- r 4- — Aoo . 1 — r;-Ao3 to w, lactors 
h Pi / V »2 7l / 

1 ( Cl ^ X31 1 _ I A |i . 1 _ -2i xA”" to m, factors 
Cl ^2 ) \ C-l 72 / 

&C. 

to /i factors to U factors to /, factors 

a. 
1 — aittiXii . 1 — — AX12 • 1 --^ yiXi3 . . . to Wi factors 

a 

1 — Xoi. 1 — Xgo. 1 — Y- — X03 ... to Wo factors 
«i ■■ \ Pi ^ h 7i 

1 - Cl ^ X31 . 1 “ X30. 1 — — X33... to W3 factors 
Cl ^0 C2 70 

to /i factors to 4 factors to /s factors 

&c. 

wherein, naturally, each of the series 

4, to
 

4) • • 

Wi, Wo, . . 

?ll. w. na, . . 

is in descending order, and the theorem of reciprocity involved in the fact of the 

existence of the graph consists in the circumstance that the function remains 

unaltered, when X^j is put equal to x, for any substitution impressed upon the unsuffixed 

symbols I, ni, n. 

In the corresponding lattice the conditions are :— 

(i.) The first, second, &c,, rows do not contain more than n2, &c. numbers 

respectively ; 

(ii.) The first, second, &c., rows do not contain higher numbers than 4, L, &c. . . . ; 

(hi.) No number so great as s occurs below row w^ for all values of s; 

wii, m2, . . . w^ . . . being of course in descending order of magnitude. 

Art. 93. The reduction of this O function presents great difficulties, and I propose 

to restrict consideration to the case 

4 = 4 = I, = ... = l 

my = m2 = W3 = ... — m 

n. 
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To adapt the function to enumerate the partition,s into at most m parts of /-partite 

numbers, such partitions being sucli as possess regular graphs in soJido, put 

X]i = Xj._, = Xi;j = . . . = — a I 

Xo] X'w X23 — . . . — Xoj,j — oi-i 

and the resultiim- function enumerates bv the coetEcients of “ O ^ 

rpVl/ytVi rp'pl 
tA^ I €A/'> • « • j 

the number of partitions of the /-partite 

into at most 7U parts. 

Art. 94, Further iDutting i O 

(7hP2 • . - it) 

. — .I'l — a‘, 

the coefficients of x" gives the number of graphs in aolido or unipartite partitions 

upon a tv/o-diniensional lattice, limited, as indicated above, by the numbers I, m, n. 

This function appears to be reducible to the product of factors shown in the 

tableau below :— 

(/i -f 1) -f 2) (/t -F 3) {^it -j- yyi) ^ 

(1) ■ (2) ■ (3) • • ■ (w) 

(n + 2) {ii + 3) ()i -F 4) (a -F m -F 1) . 

(3) (3) * (4) • • • (/;i + 1) 

(// A ;!) (// + 4) (/' + 0) (//. -F /// 4- 2) . 

(3) • (P ‘ (3) (7/r -F 2; 

(/t -j- /) (/t -f- ^ -j- 1) (/i -j- / -T 2) (n “F HI -{■ 1 — 1 ] 

(/) ■ (1 -F 1) ■ (1 + 2) {1 + — 1 ) 

This result, veritied in a multitude of particular cases, awaits demonstration. For 

/ = 2 it has been proved independently bv Professor Forsyth and l)y the present 

author. The diagTainmatic exhibition of the result at the jmiids of the lattice is 

clear, and since the product is an invariant for any substitution impressed upon the 

letters /, 7/1, n, it appears that such exhibition is six-fold. Taking a lattice whose 

sides contain I m poiiits respectively, so that I m points in all are involved, we mark 

a corner point, regarding it as an origin of rectangular axes one, and proceed to the 

opposite corner, along any line of route, such that progression along any branch or 

VOL. CXCIJ.—A. 0 C 
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section of the lattice is in the positive direction, markiug the successive points 

reached tivo, three, &c. 

For every point, marked s, vre have a factor, 

(a + c':) 

(-0 ’ 

and express the generating function as a product of I m such factors. If ?ibe co , each 

factor is of the form 
1 

(^)’ 

and if the number s appears a times on the lattice, ^ve have a factor and the 

complete result may be written 
_1_ 
(.sp-i (.so)-Hs,r3... • 

Art. 95. Hence the enumeration is identical with that of the partitions of a 

unipartite number into an unlimited number of parts of + cr., + cr- + • • • different 

kinds, viz. 
a I of the numerical value but differently coloured. 

0”2 ’''2 5) 

O’s ,! )5 '^’2 >> 

'fhe number of distinct lines of route In a lattice of I in points is 

fl + m — 2\ 

\ 1-1 )’ 

so that, in general, on the lattice we have partitions of a number into I rn parts 

subject to ^ ^ descending orders. 

Such a partition is transformable {I S: m) into one composed of tlie parts 

1 of 1 colour 

rn 

I 

I + I 

111 

„ in 

,, m — 1 

I -f- m — 1 1 
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a theorem of reciprocity analogous to and including the well-known theorem con¬ 

nected with the partitions of a number on a line. There is also a lattice theory 

connected with unipartite partitions on a line, for the unit-graph of such a partition 

is nothing more than a number of units and zeros placed at the points of a two- 

dimensional lattice, such numbers being subject to the i ^ ^ j descending orders. 

Art. 96. The fact is that the theory of the two-dimensional lattice, the part- 

magnitude being restricted to unity, is co-extensive with the whole theory of 

partitions upon a line. Hence for such partitions we may represent the generating 

function, diagrammatically, in two ways upon a lattice as well as in two ways upon 

a line. 

The two representations upon a line are 

(^ +1) 

(1) 

(1 + 2) 

(2) 

(1 -t 3) 

(3) 

(1 + 4) 

(4) 

(7 -t- m — 

{m — I 
1) 

) 

(1 4- m) _ 

(ni) 

('ll + 1) (m + 2) { '/ il -|- o) (m 4- 4) (/ + rii — 1) (1 4- m.) 

(1) (2) (3) (4) (/-]) 1 (/) 

Upon a lattice we have 

and at the point marked s we place the factor 

(■^ + 1) 

(s) 

The second lattice is obtained by interchange of I and m. 

The product thus obtained is 
s=?+|ii-l j-^'g ^ bs-hs^l — hs_m 

3 c 2 
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/>., denoting the .s^’’ figurate number of the second order, and h, — — hs_y,^ is easily 

shown to be equal to the number of points of the lattice marked s. We liave to 

show that this is equal to 
.. = iU (/ + ,,,) 

II -—-• 
.= 1 0) 

Taking- / > m. ol^serve that (/ + •''■) occurs in tlie former to the power 

which 

= 1 if / -}- .s > m 

= 0 if ? -T .S' < rn ; 

whilst (s) occurs to the power 

hs’-i 

wliich 

— I it S > HI 

= 0 if .S' >. I and < /a 

= — 1 if 5' < / ; 
the product is, therefore, 

{(/ + T) (/ + 2) ■ ■ . (m)] 0 Ifm + 1) (m + 2) ... {I + i/i)} _ (I +_y) 

{(1) (2) . . . (/)} {{I + 1) (/ + 2) . . . (m)] 0 ' ” (.) ' * 

Art. 97. When I =: m =■ n = co the generating function is 

(1 _ .,) (1 _ (1 _ (1 _ . . . 

which may be written 

o__ 

(1 — ff]A-) ( 1 
C., H. 

d' . 1. - - 
ffo 

1 _ -A ^,.1 _ 1 _ lA W. . .) 
a- a. 

from which is deduced a graphical representation in two dimensions involving units 

and zeros. 

The gi'apli is regular, and the successive rows involve the numbers 

1 ; 1, 0 ; 1, 0, 0 ; 1, 0, 0, 0; . . . 

re.spectivehn In the general case there is a similar representation, jiroper restrictions 

being placed upon the numbers of figures in the rows, 
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Section 7. 

Art, 98. It might have been conjectured that the lattice in solido would have 

afforded results of equal interest, but this on investigation does not appear to he the 

case. The simplest of such lattices is that in which the points are the summits of a 

cube and the branches the edges of the cuhe. 

ai a-, ttg a-, a^■, a- is a partition of a number into eight parts, satisfying the 

conditional relations indicated by the symbols > as shown. The descending order is 

in the positive dii’ection parallel to each axis. The H function 

o ] 

— X, . i-—\o . 1 — ' X., . 1-^ X, 
' ' r/, ■ r/o ■' ru 

-i^^-X-, . 1 - fflL X 1 
ff-a a.ru 

X, 

is difficult to deal with, and the result which I have obtained too complicated to be 

worth preserving. I therefore put at once 

Xi = X2 = X,. = X,j = X-, = X,; = X; = Xg = .r, 

I divide the calculation into eighteen parts 

Iiesult. 

1 + of‘ p 

(1) (2) (3) (4) (5) (G) (7) (8) 

and seek the sum 

as follows :— 

Conditions. 

ttfi > a; > 

a-, > a.,, ttj > ttj 

a,; ^ a- ^ 

a-i ^ a,, a._, >■ 

+ sr + 

(1)(2)(:!)(4)(5)(G)(7) (8) 
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Conditions. Fiesult. 

a,; S: tt; > ag x~ + r/’ 

tts > 0<o, ag > a.-, (l)(2)r3) (4) (o) (G)(7) (8) 

^ «4, a4 > of' + of + of’ 

a-, > a.2, a-i ~ '^-3 (1)(2) (.3) (4) (5) (G) (7) (8) 

«c S: «4, a4 >- a; .f F + of' 

S: ag, tto > ag (1) (2) (3) (4) (5) (G)(7) (8; 

«G — «4, a4 =- aj /yS 1 

a.g > a.j, ag >■ a-, (1)(2)(3)(4) (5) (G) (7) (8) 

a4 > «(i ^ «7 z'' -r of 

a- > ocg, a-, > ctg (1) (2) (3) (4) (5) (6) (7) (8) 

«! > a,;, a.; ^ “7 “1” 

ag > (1) (2) (3) (4) (5) (G) (7) (8) 

«4 > «C, «o > a- a;® + .v' + a.'^® 

v-g >■ a.g, Uo >■ a-, (1) (2) (3) (4) (5) (G) (7) (8) 

ry-i > ttj, 
• 

a. > ttg 

'■■^0 ^ « a -, > rx g (1) (2) (3) (4) (5) (G) (7) (8) 

«4 «7 > '^G 71’^" + a4® + a;’* 

«2 > ag, a., > ag (1) (2) (3) (4) (5) (G) (7) (8; 

> a^, «; > 

ag >• Wo, ag > a- (1) (2) (3) (4) (5) (G) (7) (S) 

> a,; a;® + of + a;'® 

^ «■:> «S ^ "3 
(I) (2) (3) (4) (o) (G) (7) (8) 

aj > a, =" “g a^*^ + of 

a. > ag, a... > ag (1) (2) (3) (4) (5) (G) (7) (8) 
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Conditions. Result. 

a. 

''><7 ^ a4 

«■>, 'M a. 

+ ,.ii + 
(1)(2) (3) (4) (5) (6) (7) (8) 

a- >- ag > aj 

^5 ^ a-j «5 — «.i 

> ag > «4 

«2 > a., a., > ag 

cc- >. ag > 

cig > a.,, ag > ag 

as' + ,d + 

(I) (2) (3) (4) (5) (6) (7) (8) 

_■>•' F _ 
(1) (3) (3) (4) (5) (6) (7) (8) 

aA + a;' + a;^" 

(1)(2) (3) (4) (5) (6) (7) (8) 

and by addition the resulting generating function'"" is 

1 4- 2./;- + 2a"' 4- 3./4 4- 3a-’ 4- oa® 4- 4a' 4- 8a/ 4- + oa^" 4- -y^ + 3ai' 4- 2a‘" 4- 2aj‘‘ 4- a' 

(1) (2) (3) (4) (5) (6) (7) (8) 

Art. 99. By analogy with the lattice in piano one might have conjectured that the 

result would have been 
1 

(1)(2)R3)R4)’ 

but this is not so, although the twm functions do coincide as far as the coefficient of 

inclusive. In fact, the two expansions yield respectively 

1 -|“ ^ "b 4a;‘ -}“ lx’ “b 14.r^ -b '23x^ -b 41.a/ -j~ G3.r' -b . . . , 

1 + a: + 4a;- + 7.// + 14.r' + 2.3.'b“ + 42.x'" + 63x‘ + . . . , 

the succeeding coefficients becoming widely divergent. This at tirst seemed sur¬ 

prising, but observe that analogy might also lead us to expect that, if the part- 

magnitude be limited to /, the result would be 

(i 4- I) (t 4- 2)'(< 4- 3)-’ (7 4" 4) 

(1) (2f‘ (3)^ (4) ’ 

but this does not happen to be expressible in a finite integral form for ail values of /, 

a fact which necessitates the immediate rejection of the conjecture. The expression 

in question is only finite and integral when i is of the form Sp or 3p + 1. We have. 

* Mr. A. B. Kejite, Treas. R.S., has verified this conclusiou by a dificrent and most iugenious mctliod 

of summation, which .also readily yields the result for any desired restriction on the part-magnitude. 
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further, the fact that the expression does give the enumeration when ^ = 1, for then 

the generating function is easily ascertainable to be 

1 -|- X ~j~ 3.r‘ -{“ 3x^ -b -}“ Oi'c'* ~t“ x' -b 

which may be exhibited in the forms 

(4y (5) ^ (3) (4y (5) _ (3) (3y^ (4y (5) 

a) (2y - (1) (2f (3) - (1) (2)-' (3)-" (4) ■ 

Art. 100. The second of these forms immediately arrests the attention, for, in 

piano, it denotes the number of partitions on a lattice of four points (in fact, a 

square), the part-magnitude being limited not to exceed 2. The reason of this is as 

follows :— 

Taking the cube with any distribution of units at the summits, we may project 

the summits upon the plane of y z, adding up the units on the cube edges at right 

X 

angles to that plane, and thus obtain a distribution, on the points of the cube face in 

that plane, of numbers limited in magnitude to 2. 

e- 

This projectton establishes the theorem, which may now be generalized. Conceive 

a lattice in solido having I, m, n points along the axes of x, y, z respectively, and a 

distribution of units at the points of the lattice which form an unbroken succession 

along each line of route through the lattice from the origin to the opposite corner, a 

line of route always proceeding parallel to the axes in a positive sense. Now project 

and sum unites on the plane of y z. 
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The result is a partition of the number at the points of a lattice in piano whose 

sides contain m and n points respectively, the part-magnitude being limited not to 

exceed 1. The descending order in this lattice is clearly from the origin to the 

opposite corner in the plane y z along each of its lines of route. 

The enumerating generating function is 

jl + 1) (i+1) 

(1) ■ (2) 

(/+ 2) {L + 3) 

(2) ■ (3) 

a + 3) (I_+_^ 

(3) • (4) 

(I + 3) (I 4- m) 

(3) (7«) 

(^ + 4) (I VI 

“(4j~ • • ■ • (//i + 1) 

(I + 5) (^ + '11^ + 2) 
(5) • • • • _|_ 2) 

(y -f- -f- 1) (I v 2i) {I 'ifi n) 

{n) ’ (% -f 1) ’ {n P 2) ' ’ ’ (vi + n) 

Each factor may be supposed at a point of the corresponding lattice ; if any point 

is the 5"' along a line of route the factor is 

(M- 5) 

(•5) 

The number of points at which we place 

(/ + s) 

(s) 

is equal to the coefficient of x" in the expansion of 

a: (1 -f , . . -h { \ x . -p x"~^) 

that is of 

If m, n be in ascending order and h, denote the 5**' figurate number of the second 

order, this coefficient is 

^0-n) 

the term -j- being omitted because s is at most m + n — 1. 

Hence the generating function may be wiitten 

. = m^+n- 11 ( / + g) 1 

*=i 1. (s) J 

Art. 101. It is now important to show the connexion between this result and the 

original lattice in solido. 

3 D VOL. CXCIJ.—A. 
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I say that this generating function may be exhibited by factors placed at the 

points of the lattice in solido. These factors are of form 

(s_+ 1) 

’ 

and such a factor must be placed at every point which is the s'” occurring along a 

line of route in the cubic reticulation. 

I take I, m, n in ascending order, and remark that the number of points possessing 

this property is the coefficient of x" in the product 

X [I X x'-^^) [l X x~ . . . + (I + a: + x' + a;"”’), 

which is 

(1 Z ^)3 (1 “ (1 - (’ - ^")> 

and that, if Cj denote the s'” of the third order of figurate numbers, this coefficient is 

^s—l ^s—m ^t—n ~k { —m ~k ^s—l — n “k m—n) 

the term — being omitted, because s is at most ? + w + n — 2. 

I propose, therefore, to prove the identity 

^s—1 ^'s—m ^'s—n “t 1—m ~t "t m—» s = j ^ s) 

s=l (S) 

^8 ^s—m ^8—n 
s=i + m+n—i 

= n 
S=1 

(g +1) 
(s) 

The factor {I + s) occurs to the power 

^l + s ~k ^s—m ^s—n “k + “k + s — i 

on the sinister side, and to the power 

(^;+s ^l+s-l) “k {^s l) (^s—m ^s—m —l) 

(^s—« ““ ^3—n —l) ~k (^? + s-?n ^i+s—m —l) “k {,^1+e—n ~~~ ^i + i—n —l) 

on the dexter. But 
Cf. Ci._i = h). — k. 

Hence, under all circumstances, the two powers mast be equal. 

Again the factor (.s) occurs to the power, 

- + i>s-l + ^5-m + i>i-n — 

on the sinister side, and to the power 
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(^s "i” —i —l) ~1~ — 

“1~ {('s—n ' 71 —l) ^3—m—l) ij^s — l~n ~~ ^s—l — n—l) 

on the dexter, and again the two powers are equal. 

Hence the identity under consideration is established, and this carries with it the 

proof of the diagrammatic representation of the generating function on the points of 

the solid reticulation. 

Art. 102. I resume the general theory of the partitions on the summits of a cube. 

When the parts are unrestricted in magnitude the generating function has been 

found. A process similar to that employed leads to the theorem that when the parts 

are restricted not to exceed t in magnitude the generating function is the quotient of 

I + a (2.x“ + + ox^ + + 2a;®) 

+ a? (x® 4- 3x® + 4x^ + Sx® + 4x® + 3x*® x^^) 

-f- a® (2x^° + 2x“ + + 2x^® 4- 2x’^) 

+ . x^® 

by 

(1 — a) (1 — ax) (I =• ax®) (1 — ax®) (1 — ax^) (1 — ax®) (1 — ax®) (1 — ax’’) (i — ax®), 

the required number being given by the coefficient of a*x“. Denoting the numerator 

by 1 + aP (x) + a®Q (x) + a®R (x) a*. the whole coefficient of a' is 

(9)(10)...(< + 8) , , (9)(10)...(f+7) , (9) (10) +6) 

(1)(2)...(0 + ' Hi)(2)...((-1) Hi)(2)...(7-2) 

+ Pt (x) 
(9) (10) ■ ■ ■ (^ + 5) 

(1) (2) ... p - 3) 
+ x'®. 

(9) (10) . . . (t + 4) 

(1) (2) 

Denoting this generating function by^F^ (x), I find 

P(x) = F, (x) 0 
(1)’ 

Q (x) = 

K(x) = 

Xi5 = 

F. (x) - F, (x) + X 

Fa (x)-^^F,(x) + x 

F4 (0-(^F3 (x) + x 

(8)(9) 

(1)(2) ’ 

(8) (9) 

(1)(2) 
Fi (x) — X® 

(8) (9) 

(1)(2) 
F2 (x) — X® 

(7)(8)(9)_ 

(1)(2)(3) 

(7) (8) (9) 

(1)(2)(3) 
F, (x) + X® 

(8) (7) (8) (9) 

(1)(2)(3)(4)’ 

whence 

F.(x) = - 

(6)(7)(8)(9) 

(1)(2)(3)(4) 
Fi (x) + x^° • 

(5) (6) (7) (8) (9) 

(1)(2)(3)(4)(5)’ 

3 D 2 
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and in general 

F, (x) (9)a0)-- ■ (< + i) _ iS)(9)...(f + -i) {t -4) 

(1) 
Fs (x) 

(7)(S)...(^ + 4) (^-4)(^-.3) 

(l)(2)...(i-2) (1)(2) 

,(6)(7)...a + 4) (<-4)(i-3)(i-2)^ , , 

,„(5)(6)...(^ + 4) (^-4)(^- 3)(^- 2)(<-l) 

(1)(2)...(0 ‘ (1)(2)(.3)(4) 

Art. 103. This appears to be the most symmetrical form in which the generating 

function can be exhibited, and it may be assumed that the like function for the solid 

reticulation in general will be of complicated nature. The argument that has been 

given shows that the theory of the ?i-dimensional lattice (easily realizable in piano), 

the part-magnitude being limited so as not to exceed unity, is co-extensive with the 

whole theory of partitions on the lattice of n — \ dimensions. 

Section 8. 

Art. 104. The enumerating generating functions that are met with at the outset in 

the theory of the partitions of numbers are such as are formed by factors of the forms 

1 — 

1 — x‘ 

written for brevity 
[n + 6-) 

(s) 
All those which appear in connection with regular graphs 

in two and three dimensions are so expressible, and the mere fact of such expression 

proves beyond question that the numerator of the generating function is exactly 

divisible by the denominator ; in other words, it proves that the function can be put 

into a finite integral form. It is quite natural therefore to seek the general expression 

of functions of this form, which possesses this property of competency to generate 

a finite number of terms. Moreover, it is conceivable that such a determination will 

indicate the paths of future research in these matters : will be in fact a sign-post at 

the cross-ways. This is the reason why I undertook the investigation ; but, as 

frequently happens in similar cases, the problem proves d posteriori to be per se of 

great interest and to involve in itself a notable theorem in partitions. 

Art. 105. I consider the function 

(n + 1)“^ (71 4- 2)"= (71 + 3)"’. . . (71 + sy 

which I also write 

(1)“' (2)'^ (3^ 

... xr, 

(s)“ 
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and investigate the sum 
. . . X“‘ 

for all values of a,, a^, a^, ... a„ which render the expression under the sign of 

summation expressible in a finite integral form for all values of the integer n. 

Art. 106. Let be that factor of 1 — which, when equated to zero, yields all the 

primitive roots of the equation 
1 — = 0. 

Then 1 — a;* = ifdfd, • • • where 1, f, d^, . . . t are all the divisors of We 

must find the circumstances under which every expression will occur at least as 

often in the numerator as in the denominator. We need not attend to since it 

occurs with equal frequency in numerator and denominator. In regard to we 

have equal frequency if n + I be uneven, but if n + 1 be even we must have 

~{~ “3 “b 0^5 + . . . ^ a, -}- a4 fi- ag -}- . . . 

For if n + 1 = 0 mod 3, 

“1 “b ^4 “b ^^7 ~1~ • • • — 0^3 “b “s "b “9 ~b • • ‘j 

and if 71 + 1 = 1 mod 3, 

“2 + “5 + + • • • — «3 "b + <^9 + • • •> 

while the case of 7i + 1=2 mod 3 need not be attended to. 

Proceeding in this manner we find the following conditions 

“1 “b “3 + “3 + • • • — “2 “4 "b “6 + 

+ “4 + “7 + 

°^2 + “5 + ^8 + 

r “i + cts + “9 + 
< a2 + ag + «io + 

®3 + «7 + «ii + 

— “3 4" «6 + «9 + 
> ttg + ag + «9 + 

— “4 + “s ~b “12 + 

— “4 + “3 + ”b 

— “4 + “a + «i2 + 

r®i “b “b • • • 1 
. . . . > a.,-1 

1 a. a,_i 

• 
j • « 

- 

r “1 > a. 

j an 

^ .■ t 

> a. 

1 • 
La,-i > a. 

\s{s — 1) in number. 
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The next step is to construct an O function which shall express these conditions 

and lead practically to the desired summation. 

Art. 107. First take 5=2; there is but one condition 

and the function Ls 

>: ao, 

— 1 — cr^Xj. I 

1 

I - Xi. 1 - XiXo ’ 

and every term in the ascending expansion of this function is of the required form, 

and no other forms exist. The general term being 

Xp (XiX2)“'^ > a2, 

we may call Xj and XjX, the ground forms from which all other forms are derived. 

Art. 108. Next take 5 = 3. The conditions are 

«! + -^3 > 0.0 

«i 

OLo 

leading to the summation formula 

- - KiaoXi. 1 - X„. 1 

^ "3 j 

the auxiliaries an, determining the first, second and third conditions respectively. 

The function is equal to 

1 
1 

- 1 -«i«.,Xi.l - - Xo. 1 - —X„X3 
a, ^ a.-, 

= a 

— 1 — «iXi -1-X2. 1 — rtiXiX2Xg 

= Q 

1 - Xj. 1 - X1X2X3.1 - XiX!Xs ' 1 - Xj. 1 - X1X2. 1 - XiX-Xj 

1 - XfXlXg 

1 - Xj. 1 - XjX.. 1 - X1X2X3. 1 - XjXsXs ’ 

representing the complete solution. 
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The denominator factors yield the ground forms 

X1X2X3, X,X1X3 

in addition to those previously met with, whilst the numerator factor indicates the 

ground form syzygy 
X,. XiX;X3 - X1X2. X1X3X3 = 0. 

Observe that 

XJX2X3 — 

X1XIX3 = 

1 - x”+^. 1 - a;”+- ■ 1 - 

1 — a:. 1 — 53^. 1 — 

(1 - x”+^) (1 - x’^+^-y (1 - a;”+“) 

(1 - X) (I - x^y (1 - x^) 

are those with which we are familiar in the theories of simple and compound 

partition respectively. 

Art. 109. I pass on to the case 5 = 4; the conditions are 

"T *^3 — ^-2 “h 

> a3 

a., > ag 

Oil > 

OL, > 

ag > a.^ 

We neglect the fifth of these as being implied by the remainder and from the 

function 
n 1 

1 — .1-^ X2. 1 a,, , aiCig -^2 ^'^2 -t- 

a.,a.. 

which, when reduced, is 

+ 

+ 

1 - Xi. 1 - X1X2 • 1 - XjX^XsXj. 1 - XjXlX^X, 

_XXIX3_ 

1 - Xi. 1 - X1X2.1 - X1XIX3.1 - XiX|X:3X, 

_X1X2X3_ 

1 - Xi. 1 - X1X2X3. 1 - X1XIX3. 1 - XiX|X|X, 

showing that the new ground forms are X1X2X3X4 and XiX2X3X4, both of which have 

presented themselves before. 

The result may be written 

1 - X?X|X3 - XfX|XlX4 - XfXlX^Xi + X?X|X2X4 + X?X^X|X4 

1 - Xi . 1 - XjXg . 1 - XiXjXs . 1 - X1XIX3 . 1 - X1X2XSX4. 1 - XiXIX^X, 
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and the numerator now indicates the existence of first and second syzygies between 

the ground forms. 

We have the first syzygies 

(A) = X.X, . X1X0X3 - Xi . X,X^X3 = 0, 

(Bi) = X.XoXj . XiX3X3X4 - Xi . XjXlXiX^ = 0, 

(Bo) = XjX|X3 . XJX0X3X4 - XjX^ . X.X^XjX^ = 0, 

and the second syzygies 

X3(B.3) - = 0, 

X4X.,X3 (B^) - XiX^X (B,) = 0. 

Art, 110. For 5=5, the generating function is ? o o 

(t-yCt.yO• 1 hhh Xo . 1 - 
aA 

'X,.l 
oA' i «iM;i ’i- 

7 '^4 • 1-1 N3 
«1«3&3C CiiPiCidi 

and therejs no difficulty in continuing the series. The obtaining, however, of the 

reduced forms soon becomes laborious. 

Art, 111. There is another method of investigation. Guided by the results ob¬ 

tained let us restrict consideration to the forms 

which are such that 
X^X? X- 

a,„ = a 5-h 1 -m 

This is of great importance, because we are thus able, for any given order, to 

generate the functions of that order alone. 

Put X„,Xs4.,_„ = Y,„ and seek . . . 

Art. 112. For s = 2, the generating function is simply 

1 _ 1 

1 - Yj ~ 1 - XjX., ‘ 

Art. 113. For 5 = 3, the conditions 

2ai > a S; ttj 

1 
lead to 

2,_ 
0 a 

the letters a, h determining the first and second conditions respectively 

* The validity of this assumption will be considered later. 
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This is on reduction 

1 - YiY,. 1 - YiYI 1 - X1X2X3.1 - X1XIX3 

a real generating function. 

Art. 114. For s = 4, the conditions are the same, viz. 

2ai > a.! — “1 

and the fl function, where now 

Yi = X1X4, Yo X0X3, 
IS 

n 

b rt ' 

1 

yielding’ the ground fornvs already found by the first method. 

Art. 115. For s = 5, the conditions are 

Oil *^2 — <^3 — “2 5 

2ai > a,, > «!. 
leading to 

where 

and this is 

70 

-1-—Y 1 

1 

nd „ ^ c 
j J 0 * 1 i 
oc ' a 

n 

Yi = XiX„ Y, = X,X„ Y3 = X3, 

1 

^1-—Y 1 

= n 

4- Y.,Y3 .1 - — y 
0 ' if, 

1 

- 1 - abYiY.,Y, .1 - Y.Y,. 1 - — X, 
h' a " 

= n - 
- 1 - 5Y1Y0Y3. 1 - -F Y2Y3. 1 - &YiY,Y| 

1 - Y^Y^Y^ 

1 - YiY,Y3 .1 - Y^YoYI. 1 - YiY|Yi. I - YiYlY;! 

_^ x^x.iXijXjXs_ 

1 - XiXoXsXXo • 1 - XXoXfXiXs. 1 - XiXiX'X^X,. l - XjXIX^XfXa 

establishing the ground forms 

XiX2X3X,X5, XiX2XiX4X5 

■y Y2V2V2Y Y Y2Y3Y2Y AiA.2A.3Y4A.5, A-iY2A.3A4A5 

3 E VOL. CXCII.—A. 
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connected by the simple syzygy 

(X.X.XaX^X,) (X,X?X^X1X,) - (X,X,X3%X,) XiXiXlX^X,) = 0. 

Art. 116. I stop to remark that one of these ground forms, viz.:— 

x.x^xix.x, 

is new, not having so far presented itself in a partition theorem. It is one of an 

infinite system which merits, and will receive, separate consideration later on. The 

one before us is associated with partitions at the points of the disloca,ted lattice. 

A ^ ^ A 

,L 
r'^ 

Art. 117 For 5=6, the conditions are : 

leading to 

where 

This is 

2a.j ^ -p “a 

2ai > a.y 

“a — 

n-^- 
- 1 - Yi.l - ^ Yb.l 

a be 
Y., 

Y, = X,Xa, Y, = X,Xa, Y3 = X3X4. 

1 
n-p-^— 
- 1 - — Yi. 1 - 4^ YAh. 1 - - Y 

a O' a 

1 
= n-^- 

- 1 - Ys. 1 - -4- YAb. 1 - Z^YAbY. 

1 - Y1Y2Y3.. 1 - yaIY' . 1 - yaiy 

establishing the ground forms : 

XiX3X3X,X3Xo 

XV2V2 V2V2V l-A.2-A.3-A.4-A.5-A 6 

-A. 1 .A. 2-A. 3 A. 4 A. 5 wA g 5 

unconnected by any syzygy. 
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Art. 118. For 5= 7, the independent conditions are: 

2ai 2ol^ > 2a2 + «4 

2a2 > “4 

a.. > 
"3 

“4 > “3 

2ai “2 

O-i > tto 

ay > ai, 

and these lead to 

Y^.l- 
h-cg 

■ 
S'y,.! 
ccl 

A 
ah 

and eliminating d, f, g in succession 

= n 
1 

a-ce- 
= 1 _ AAl- Yj. 1 - ^ Y.,. 1 - YAh. 1 - -V Yi 

fj ^ d-cj- - he ^ ^ c(b ^ 

9 9 7 1 5 
> 1 _ ^ Y 1 _ Y.,YAh • 1 - ^ Y..Yi. 1 - 4 Yi 

g ^ ac - ‘ he ^ ah 

= a 
] 

== 1 - ahccY,Y.Y,Y,. 1 - ^ Y., Y,Y,. 1 - j- Y.^,. 1 - 4 Y, 
ac be ah 

and eliminating e 

= n 

1 - «kYiY2Y3Yi • 1 - Z/'cYAlYAi • 1 - 4 Y,Yi • 1 

and eliminating c 

o _1 - ft^6-YAiYAl_ 
- ahY,Y.Y.Y^. 1 - a-Y,YA1Yl • 1 - 6'Y,YiY;iYi ’ 

-770' 

And on further reduction it is finally 

1 - YAHYA^I ■ 1 - YAlYfY^ 

- Y AsYAz • 1 - Y,Y2YA1 • 1 ~ YAaYlYi ’ 

- Y.YiYA! • 1 - YAAlYi. 1 - YAiYAl 

establishing the ground forms 
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Yi\2Y3^4 

Y,Y2Y3ll = XiX2X3X!X,XeX, 

Y.YA^lYl = XiXoXiXiXrX^X, 

Y.Y^YiYj = XiX^XiXiXrX^X, 

YiY?Y^Y| = X.X^X^X^X^XsX, 

V V-V^V^ — ^ V-Y3V4V3V-V X^X 2-1-3-14 - A-2-A.3Y4-A.5YQ-A.7 

connected by the simple syzygies 

(Y,Y2Y3Y4) (Y,YiY^Y0 - (Y.Y^YIYl) (Y^YlY^Yj) = 0, 

(Y1Y2Y3Y4) (Y,Y5Y^Y1) - (Y,Y2Y3Yi) (Y.Y^Y^Y!) = 0, 

and, denoting these respectively by A and B, the numerator term + 

indicates the second, or compound, syz^^gy ;— 

(Y,Y2Y3Y,) (Y,YiY^Yt) (A) - (Y.Y^Y^Yi) (Y.YsY^Yi) (B) = 0. 

Art. 119. I remark that the forms 

Y,Y2Y3YL Y^Y^YlYj 
are new to partition theory. 

Art. 120. For 5=8, the reduced conditions are 

a2 + as ^ «i + «4 

ai -f a. > a. 

a. a.. 

leading to 

fi 
,.r 
a 

n 

n 

2aj > a.., 

a.s > ot^ 

_ Y 1 _ Y 
ch - he ■ 

1 

(I 
-YWY,,1- Y,V. . 1 - y, 

1 

1 - h,/\\Y.^^\ • 1 - 77' . 1 - J Ys^'i • ^ - 7Y 

n 1 

■ 1 - h\\\:,\\;\\ . 1 - a:aaai • 1 - . 1 - hx^rY^i 

- YiYA'Ad - YtYAAI - YiYAA! + YfYAAI + Y^IYJY] 

1 - YiYoYsY, . 1 ^ YAi^Al • 1 - YiYPlYl 

1 - YiVAAi. 1 - YiVAAi • 1 - ViYAAI 

Y1Y^Y5Y“ 
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indicating the ground forms 

Y,Y.,Y3Y, = X.X,X3X,X,X,X,X, 

Y1Y3YIY! = XiX,XlXiX?Xi:X,X8 

Y,Y;;YiY' = X,X^X^X!XrXjXrX, 

YiY^YiYf = XiXiX^X^X^X^XrXs 

YiY^Y^Y! = X.X^X^X^X^XgXrX^ 

V V-V^V^ — Y" Y-Y^Y^Y-iY3Y-Y 

Art. 121. So far it appears that all products which can he placed in the form of a 

rectangle 
X: X, X3 ... X, 

X,X3 X4 ...X,,, 

X,iiX,jj_)_ jX.,)j^.2 . . . X.;^.,JJ_1 

are ground forms for all values of / and m. 

I have established this independently, and thus proved that the conjectured 

result for the general lattice in piano is, at any rate, linite and integral, as it 

should be. 

It is desirable to ol^tain information concerning the ground forms which are not 

within the rectangular tableau. 

The forms 
XpX?=. . . Xy, 

which appear in the tableau, may be eliminated from consideration, with the 

exception of the form 
X,X2... x„ 

by ascribing additional conditions such as 

ai = a,, 

which are not true in the tableau. 

The condition of this tableau is that if a^, = “p+n no index is greater than a.^ ; 

after a repetition of index, no rise in index takes place, in the Y form, therefore, 

we may assign the conditions 
U.p   ^p+\ + l 

for any value of j;, as one excluding the whole of the forms a])pertalning to the 

tableau. 

We may impress the conditions 
aj =; a,, < ag 

a., = aj -=: 

a = < 'a-^ 
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in succession, and we may combine any number of such conditions as are inde¬ 

pendent. 

Art. 122. I postpone further investigation into this interesting theory, and will 

now give a formal proof tha.t the product tableau is, in fact, finite and integral. The 

product in question for > Hs 

XjX: . .. x;:}{x,x,,, . . . 

11 for 

Al 
11 for s ^ 1 and < on + 1 

= 1 — S for i IV
 

All the conditions may be resumed in the single formula 

a. + + i + “3S+2 '.t + • . . > + ^2, s + 2( ~h “3.s + 3t + . . . 

s and t being any integers. 

Let the greatest 
■ , . 1 t — . 
integer in 

^ s + ^ 
be denoted 'vC:; - 1 

byl [ simply for 

brevity. Similarly let I2 refer 
on 

to — 
s 

±t 

+ t ’ 
I3 to 

1 + m + t — I 
s + ^ 

J1 to 
s 

- I 
Jto , 

s + C 

and J3 to 
1 -f i n — 

We derive 
-S "f- 

ll - Ji or Ji -b 1 

I2 = J.3 or J2 + 1 

I3 = J3 or Ja + 1 

Ii + I2 = l3 or I3 + 1 

Ji + J2 = Ja or Ja — 1 

and we have ten possible cases to consider, viz. :— 

Case 1. 

L = J. li + J2 — ts 

1.2 =■ J.. 

T _ T 

Ji “b J2 — J3 

^3 - ^3 

Case 2. 

b = Ji + 1 It H- I2 = la 

L = J2 Ji ~b J 2 J 3 — 1 

I3 - Ja 

Case 3. 

b = Ji + 1 L “b L = I3 -b 1 

L = J2 Ji -f- Jo — J3 

I3-J3 
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Case 4. 

Il = Jl • Ii 4~ I2 — I3 

I2 — J2 4* 1 
T T 

-•-3   *^3 
Case 5. 

Ji 4“ J2 = J3 — 1 

Ti = J, Ii 4" I2 = I3 4" t 

] 2 = J.3 4- I 

I3 — J3 

Case 6. 

J, 4- J o = J, 

Ti = Ji 4“ 1 Ii 4" h’ = I3 4“ i 

I, = Jo 4“ 1 

I3 — '^3 

Case 7. 

J1 4“ J2 — J 3 — 1 

1—
1 

’ll -h
 

Ii + I2 = I3 

L = J2 J, 4- ,Jo = J 3 

I3 = J3 4" 1 

Case 8. 

Ii = Ji I) 4" l2 = I3 

12 — J2 4" 1 

13 = J3 4“ 1 

Case 9. 

J1 4“ J2 — J3 

Ii = Ji 4~ 1 Ii 4- I2 = I3 

12 = J2 4“ 1- 

13 — J3 4" 1 

Case 10. 

.T J 4~ J 2 — 4 3 t 

Ii = Ji 4" i Ii 4“ I2 = I3 4“ t 

12 = J2 4“ 1 

13 == J3 4" 1 

J14“ J2 — J 3 

For the series 

“s + “2s + / + “3j + 2« + • • • 5 

we have, as far as a,_i, Ii terras ; as far as Ig terms ; and, as far as + I3 

terms. 

Hence the summation gives : — 

i'll {2s + (Ii — 1) (s + ^)} H- ? (I2 — Ii) 

“h i" (I3 — I2) {2^ 4" ‘2,171 -j- 2^ — 2 (s -4“ (I2 4" 1) “ (s 4“ 0 (^3 ” ^2 — 1)} 

= i (5 4- 0 (Ii + I2 — 10 4- "* 2^ ~ iO 
4- (2^ — — m) I2 4- 4" — 2-^ 4- aO 
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Summing similarly the series 

we find 
a. 'S+t + 0-25+ 2< + 0-:U+3t • • • 

2 (*' + 0 ('J i d“ ^2 — Ji) + +2^ — 0 

+ (i-s + — ’R) ^2 + {I + m — — \t) Js, 

and we have in each of the ten cases to establish the relation 

1 (s + 0 (li + II - Is) + {¥ -¥-i) I. 

+ (■S'5 ~ ~ I2 + (^ + ~ + ¥) i3> 

> 1 (s + ^) {j\ + _ ji) + + ¥-i) Ji 

"h (2^ “h •I2 d“ d" — 2'^ —¥) ’I3 

for all values of s and t. 

For Case 1 it reduces to 

I, + I2 S I:„ 

which is true, for here Ij + 1-2 = T3. 

For Case 2, making use of Jj + J2 = J3 ~ 1, the reduction is to 

I — s —t 

s + t 

and Ji being the greatest integer in 
I - 1 

, and moreover 5 4-*^ being at least unitv, 

the relation is obviously satisfied. 

For Case 3, making use of J, + Jo = J3, we find 

I — s 

s + t’ 
and this is satisfied as s > 1, 

For Case 4, reducing by Ji + Jo = J3 — 1, we find 

rn. 
J2^ A - 1 

S “I" 2^ 

obviously true from the definition of Jo. 

For Case 5, reducing by Jj + Jo = Jg, we find 

Jo> 

m — s 

s + t 
obviously satisfied. 

For Case 6, reducing by Jj + Jo =: Jg — 1, we find 

J3> 

clearly satisfied. 

I + VI — s 

S "f" / 
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For O&SG 7j rGdnciiig by Ji J2 — Jsj wg find 

VI 

5 “h ^ 

which is right. 

For CasG 8, rodacing by Ji + J., = J3, wg find 

s + ^ 
which is satisfied. 

For CasG 9, reducing by Ji + J2 = J3 — 4, the ratio is one of equality. 

For Case 10, reducing by Jj + Jg = J3, we find 

5 -j- ^ ^ 0, 
which is right. 

Hence the relation is universally satisfied, and we have proved that the expression 

XV2 lY Y Y \i Y'-2 Y 
l+n-i 

is in every case finite and integral. 

Art. 123. In Part 3 of this Memoir I hope to treat of other systems of algebraical 

and arithmetical functions which fall within the domain of partition analysis and the 

theory of the linear composition of integers ; also to take np the general theories of 

partition analysis and linear Diophantine analysis, with possible extensions to his’her 

degrees. 
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In a previous communication (‘Phil. Trans.,’A, vol. 189, p. 265, 1897) I described 

experiments proving that when dust-free air, initially saturated with water vapour, 

is allowed to expand adiabatically, condensation takes place, if the maximum degree 

of supersaturation resulting from the expansion exceeds a certain limit. Using Vo/Vi 

the ratio of the final to the initial volume,as a measure of the expansion, we may 

describe the phenomena briefly as follows :— 

Condensation only takes place throughout tlie gas if V2/V1 exceeds 1‘25 ; the drops 

are comparatively few, provided a second limit {voli\ — P38) is not exceeded. Beyond 

this second limit the rate of increase in the number of drops with increasing expansion 

is extremely rapid, very dense fogs resulting from expansions even slightly exceeding 

this limit. 

The view was taken that when the degree of supersaturation (approximately eight¬ 

fold) corresponding to the second limit is reached, the vapour condenses independently 

of any nuclei other than its own molecules or those of the gas with which it is mixed. 

The rain-like condensation which takes place in air when lies between 1’25 

3 F 2 12.5.99 
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and I‘38 was taken as indicating the j^resence of some other kind of nuclei than the 

molecules of gas or vapour. 

It was further found that when the gas was exposed to even weak Piontgen 

radiation, comparatively dense fogs were obtained when m/fi exceeded I‘25 (the 

supersaturation lieing then approximately four-fold), no condensation taking jDlace 

with smaller expansions. Thus, exposure of the gas to Ptontgen rays causes nuclei to 

be produced, requiring a definite degree of supersaturation in order that water may 

condense upon them. Later (‘Proc. Camb. Phil. Soc.,’vol. 9, p. 333, 1897) it was 

found that nuclei, requiring exactly the same minimum expansion to catch them, are 

produced in air by the action of uranium rays. 

In the paper just referred to the conclusion was drawn that the nuclei produced 

by X-rays and uranium rays are identical with one another, as well as with those 

always present in small numbers in moist air, and causing the rain-like condensation 

which results when m/'^i lies between 1'25 and 1'38. It was also there suggested 

that these nuclei are to be identified with the “ ions,” to the j^resence of which the 

conducting power of gases exposed to X-rays or uranium rays is due. 

The primary object of the experiments described in the present paper was the 

study, by comparison of their efficiency as nuclei of condensation, of the carriers of 

the electricity in gases, when these are made by any of the known methods to be 

capable of allowing the passage of electricity through them. In the course of the 

work certain other kinds of nuclei were unexpectedly met with, which appear not to 

be associated with any conducting power in the gas. The method by which nuclei 

carrying a charge of electricity were distinguished from such uncharged nuclei is 

described in § 10. 

I must explain here the meaning to be attached to certain expressions frequently 

used throughout this paper to avoid circumlocution. I have spoken of the expansion 

required to “ catch ” nuclei, meaning the expansion required to cause water to con¬ 

dense on such nuclei. The expressions “larger” a,nd “smaller” are often used of 

nuclei instead of “ requiring a less degree of supersaturation,” or “ requiring a greater 

degree of supersaturation, in order that condensation may take place on them.” 

Nuclei are often said to “grow” when they become larger in the sense just defined. 

It is probable that the expressions “larger” and “smaller” may be taken literally, 

without error ; for we may suppose such nuclei to be very small drops of water, 

whicli are able to persist in spite of their small size, because the effect of the 

curvature of the surface in raising the equilibrium vapour-pressure is balanced by the 

opposite effect produced by tlie drop either iDeing charged with electricity or con¬ 

taining some suljstance in solution. An increase in the charge of electricity or of 

the (piantity of dissolved substance, either of which woidd increase the efficiency of 

the drop as a condensation nucleus, would also result in an immediate increase in the 

size of the nucleus necessary for equilii)rium. 
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2, Expansion Apparatus. 

The apparatus that I have most frequently used for bringing about the sudden 

expansion required in these experiments is represented in fig. 1. 

A is the cloud chamber, where any drops which may be formed on expansion are 

made visible by the light from a luminous gas flame, brought by means of a lens to 

Fig. 1. 

a locus within it. As the form of the cloud chamber had very frequently to be 

changed, it was convenient to arrange that it could readily be detached from the rest 

of the apparatus. An air-tight joint was made by means of the indiarubber stopper 

and mercury-cup arrangement shown in the diagram. The form of the cloud chamber 

there sho’svn is the simplest that was used. 

The cylindrical glass tube B (internal diameter = 2'7 centim.) is closed at its lower 

end by an indiarubber stopper, through the centre of which passes a glass tube, C, 

about 1 centim. in diameter, with a wider portion at its upper end serving as a guide 
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to the light glass plunger, P, Vv-liich slides freely over it. The plunger is made from 

a thin-walled test-tube, the open end of which has been cut perpendicular to the 

sides and ground smooth. Its lower edge is always immersed in the mercury which 

fills tlie lower part of B, and thus the gas in A and the upper part of B is completely 

cut olf from the air inside P. The external diameter of the plunger is 2 miUims. 

less than the internal diameter of the outer tube; there is thus a space of 1 millim. 

all round the tubes. When the tap, Tj, is open and there is thus free communication 

between the space inside P and the atmosphere, the plunger rises till the j)ressure 

in A only differs from the atmospheric pressure by an almost negligible amount, 

depending on the difterence between the weight of the 23lunger a,nd of the mercury 

displaced by the immersed part of its walls. If, now, communication with the 

atmosphere be cut off (by closing the tap Tj), and the space below the plunger be 

suddenly connected with the vacuum in F by means of the valve, V, the plunger is 

driven through the mercury till it strikes the indiarubber, against which it remains 

tightly held by the pressure of the air above it. The mercury remains practically 

stationary, while the thin edge of the plunger cuts its way through it. 

If Ti be again opened, re-admitting air into the space below the j^lunger, the latter 

rises to its original position, and an expansion of the same amount can be rej^eated 

as often as may be recpnred. To arrange for an expansion of any given amount, the 

tap, Ta, must be opened Avhile the plunger is in contact with the indiarubber, that is, 

in the position it occupies immediately after an expansion. The mercury reservoir, 

R, is then fixed at such a level that the pressure in A, as indicated by the gauge, is 

the desired amount beloAv that of the atmos})here; the tap, T2, is then closed and the 

plunger made to rise by opening the tap, Tj. 

If B be the barometric pressure, then the pressure of the gas before expansion is 

Pi = B d- — 77, 

where 77 is the vapour pressure at the temperature of experiment, and m is the pressure 

(amounting to 1 or 2 millims. of mercury) required to keep the Avails of the plunger 

immersed in the mercury [m is measured by finding the pressure which has to be 

applied to the air in A to keep the piston immersed to the same depth when the space 

below it is in communication Avith the atmosphere). 

The pressure of the gas after expansion is 

P2 = B — p — tt, 

v/here p is the difference of pressure indicated by the open mercury gauge Avhen put 

in connection Avitli A before the previous contraction. 

Then the ratio of the final to the initial volume of the gas is (if Boyle’s laAV holds) 

V3 P, E -f- m — 77 

P., P) — p — IT 
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P2, it will be noticed, is the pressure, not at the nioinent when the expansion is com¬ 

pleted, but after the temperature has risen to its original value. 

As the initial pressure. Pi, in these experiments is always approximately equal to 

the atmospheric pressure, it is sufficient for many purposes to take Pi — P2, or p, as a 

measure of the expansion without further reduction. 

To make, for example, v<ilv\ = 1'25, Pi •— P2 must be equal to 15 centims. of mercury 

if the barometric pressure = 760 millims. and the temperature = 15° C. ; while, as 

long as the atmospheric pressure lies between 740 and 780 millims., and the tempera¬ 

ture lies between 10° and 25° C., Pi — P2 for the same expansion will always lie 

between 14‘4 and 15'4 centims. 

The gas with which the apparatus is to be charged is introduced through the stop¬ 

cock, T3, a side tube on the cloud chamber A being connected to a water air-pump, so 

that a stream of the gas at low pressure may pass through the aj)paratus. (At this 

stage a sufficiently low pressure must, of course, be maintained below the plunger, P, 

to prevent it rising out of the mercury in B.) The side tube is afterwards sealed off, 

and when sufficient gas has been generated to bring the pressure nearly up to that ol 

the atmosphere, T3 is closed. 

The stopcocks, T2, T3, were lubricated witli water only and protected by mercury 

cups. The mercury in B, as well as that covering the indiaru])ljer stopper over which 

A is slipped, is prevented from coming in contact with the gas in the apparatus by a 

layer of distilled water. 

In most of the experiments in which large expansions were required tlie expansion 

apparatus had the form described above. Many of the experiments with air, however, 

were performed with an -expansion apparatus resembling that described in the ‘ Camb. 

Phil. Soc. Proc.’ {loo. cit.). In it the plunger works in water instead of mercury, and 

is made to fit the outer tube like a piston, instead of working on an internal guide 

tube. The only advantage of the form with mercury is the absence of any risk of 

contamination of the gas in the apparatus by air which, when the plunger works in 

water, may gain entrance by solution and diftusion through the latter. The mercury 

apparatus is also suited for experiments with other liquids than water; such experi¬ 

ments, have, however, not yet been made. 

Both these forms of apparatus give results almost identical with those obtained by 

means of the apparatus used in the earlier experiments (‘Phil. Trans.,’ loc. cit.). No 

considerable error appears to be produced by the yielding of the indiarubber when 

struck by the plunger, or by the momentum acquired by the air in the narrower part 

of the tube. 

It will be convenient to mention here the methods used in preparing the gases 

required for the experiments. Oxygen was prepared by heating potassium per¬ 

manganate. Hydrogen was obtained from palladium, which had previously been 

charged with the gas, obtained from the purest zinc and dilute sulphuric acid, the gas 

being passed through potassium permanganate solution before reaching the palladium. 
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Carbonic acid was prepared by heating potassium bicarbonate. In each case the tube 

in which the gas was produced was fused to the rest of the apparatus with the blow¬ 

pipe. 

§ 3. Nuclei produced by X-rays. 

In the experiments with X-rays described in the ‘ Phil. Trans./ loc. cit., the gas 

was only exposed to such radiation as was able to penetrate glass. It was of interest 

to know whether under the action of strong radiation condensation would take place 

with a less degree of supersaturation, or rvhether merely the number of nuclei would 

be increased. In a postscript to that paper the results of further experiments were 

given, showing that the latter alternative was the true one. Further experiments 

have confirmed this. 

For the experiments with X-rays the expansion apparatus used differed from that 

represented in fig. 1, in being without the part A, the tube B being cut off square at 

the top instead of being prolonged into a narrower tube. With the help of an india- 

rubber washer, its upper end, which was ground smooth, was closed by a thin sheet 

of aluminium. This was held down by a brass diaphragm, which was screwed tight 

by three bolts, attached to a similar brass plate pressing against the lower surface of 

the indiarubber stopper which closes the lower end of B. 

A “ focus ” tube giving out strong X-radiation was fixed a few centimetres above 

the aluminium plate closing the top of the tube B. In some of the experiments the 

expansion apparatus was wrapped in tinfoil (provided with the necessary apertures 

for observing the result of the expansions) ; this was found to be without effect on 

the appearance of the fogs. 

The results of expansions in the immediate neighbouilrood of the jioint where con¬ 

densation first begins are given below. 

I. Air exposed to X-rays. 

B = barometer reading = 767 millims. ; t = temperature = 18° C. ; tt = maximum 

vapour pressuiB at C. = 15 millims. ; m = pressure required to sink 

plunger = 0 millim. 

Gauge reading (in millims.) = 
, B - TT + m 

Result of expansion. 
B - ir - p 

146 1-241 No drops 
149 T247 Very few ckops 
156 T259 Fog 

Least value of Vo/v^, with which condensation was observed = 1'247. 

When the expansion was made without exposure of the air to X-rays, only a very 

few scattered drops were seen even with as great as 1'279. 

Similar results were obtained with oxygen. 
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II. Oxygen exposed to X-rays. 

B = barometer reading = 767 millims. ; t = temperature = 21‘5° C. ; tt = maximum 

vapour pressure at C. = 19 millims. ; m = pressure required to sink 

plunger = 0. 

Focus bulb 3 centims. above aluminium window. 

Duration of exposure 
before expansion. 

Gauge reading 
(in millims.) = p. 

B — TT + 
Result of expansion. 

1 min. 146 1-243 No drops 
1 
2 152 1-256 Fog 

I „ 149 1-249 Shower 

1 „ 147 1-245 No drops 
10 secs. 159 1-271 Dense fog- 

Least value V2IV1, with wbicb condensation was observed = t'249. 

The number of drops produced even with expansions exceeding any of those given 

in the table is exceedingly small in the absence of the rays. 

The minimum expansion required, in order that condensation in the form of drops 

may take place, is, it will be noticed, clearly defined ; the increase in the expansion 

corresponding to a cliange in the result from entire absence of drops to dense fog- 

being very small. It is also independent of the strength of the radiation, as is seen 

from the identity of the results here given with those previously obtained with weak 

rays (‘Phil. Trans.,’ loc. cit.). The increase of the density of the fogs with increasing- 

expansion continues till v^jv^ is about 1'31 ; beyond that point, as far as can he 

judged from the appearance of the fogs, the increase in the nuniher of the di-ops is 

slight, till the second limit t’a/'Ci = ^ is readied, beyond which the region of dense 

fogs, due to great supersaturation alone, is entered. Thus expansions exceeding 

v-y/'Vi = f‘31 appear to be sufficient to catch nearly all the nuclei produced by 

the rays. 

Prolonged exposure to the rays does not cause the nuclei to grow larger (or become 

otherwise more effective in helping the condensation) than tlie limit corresponding to 

the expansion ih/vi = 1'25. The oliservations given in Table II. show this, an 

exposure of 10 seconds producing- nuclei enough to give a dense fog with Vo/v^ = f-271, 

while even after 1 minute n<Dt one nucleus has grown sufficiently to lie caught by an 

expansion v-z/oi = L245. 

The nuclei introduced by the X-rays, as has already been pointed out (‘ Phil. 

Trans.,’ loc. cit.), rapidly diminish in number after the radiation has been cut offi, but 

several seconds are i-equired for their complete disappearance ; thus an expansion made 

5 seconds after switching off the current from the induction coil will give a shower 

very much denser than would have resulted had there been no exposure of the gas 

VOL. cxcii.—A. 3 G 
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to the rays. No trace of the nuclei can, however, be detected 30 seconds after 

cutting oft' the rays. The rapid diminution of the number of the nuclei is readily 

explained, if we regard them as consisting of positively and negatively charged ions 

which tend to recombine and neutralize one another. 

Experiments were also made with carbonic acid. 

CO2 EXPOSED to X-rays. 

B = barometer reading = 768 millims. ; t = temperature = 21° C. ; tt = vapour 

pressure at i° C. = 18 millims. ; m = pressure required to sink plunger = 0. 

Gauge reading (in millims.) = ]). 
, B - - + 

’•J"'- B - . - p- 
Result of expansion. 

189 1-337 No drops 
190 1-339 
190 1-339 Very few drops 
192 1-344 Slight shower 
235 1-45 Dense fog shoudng colours 

Least value of with which condensation was observed = 1'339. 

Even with an expansion the same as in the last observation given in the table, only 

a slight shower was obtained in the absence of the rays. 

The expansion, found in the previous experiments (‘ Phil. Trans.,’ loc. cit.) to be 

necessary to cause rain-like condensation to take place in the absence of X-rays, was 

Vojv^ = 1'36. Dense condensation began at the limit Vojvi = L53. In the experi¬ 

ments now described, condensation was again found to begin in the absence of the 

rays when rq/Pi = D36. 

The experiments with COo were made with a thin glass cloud chamber, such as is 

shovm in fig, 1. 

4. Nuclei peoduced by Uranium Rays. 

In the experiments on the action of the uranium rays on condensation, described in 

a previous paper (‘ Camb. Phil. Soc. Proc.,’ vol. 9, p. 333), the air was contained in a 

glass vessel v\^hich the rays had to penetrate; by far the larger part of the radiation 

being thus absorbed before it reached the air. Experiments were, therefore, performed 

in which the uranium compound was inside the vessel and thus actually in contact 

with the air, so that the maximum intensity of the radiation urns obtained. 

For this purpose the apparatus used was that shovui in fig. 1, the cloud chamber 

being a thin glass bulb. Inside it was fixed, by means of a copper wire vmund round 

the top of the narrow prolongation of B, a small shallow glass cup containing some 

uranium oxide. 
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Air in contact with Uranium Oxide. 

B = barometer reading = 759 millims. ; t — temperature = 13° C. ; tt — maximum 

vapour pressure at ^° C. = 11 millims. ; m = pressure required to sink plunger 

= 1 millim. 

Gauge reading (in millims.) — p. 
, B - TT + m 

V V — Result of expansion. ^ 2/ 13 B - TT - p 

147 1-246 0 

148 1-249 1 or 2 drops 
149 1-251 0 
150 1-253 1 or 2 drops 
154 1-261 Dense shower 
174 1-305 Fog 
196 1-357 Fog 

Least value of iq/vi with which condensation was observed = 1'249. 

This is identical with the number obtained when the uranium was contained in a 

glass bulb outside the expansion apparatus. (‘Camb. Phil. Soc. Proc.,’ loc. cit.) The 

number of drops is, as was to he expected, very much greater. 

Similar experiments were made with hydrogen. 

Hydrogen in contact with Uranium Oxide. 

B = barometer reading = 759 millims. ; t = temperature = 14'5° C.; v — maximum 

vapour pressure at C. = 12 millims. ; 7n = pressure recjuired to sink 

plunger = 1 millim. 

Gauge reading (in millims.) = 
1 B - TT + rii 

^■2^ = TS-r a — TT — ‘p 
Result of expansion. 

151 1-255 No drops 
153 1-259 1 or 2 drops 
161 1-277 Shower 
170 1-296 Dense shower 
198 1-362 Dense shower 

Least value of V2/V1 with which condensation was observed = 1'259. 

Hydrogen exposed to Uranium Bays (through glass). 

B = barometer reading = 767 millims. ; t = temperature = 13° C. ; 77= maximum 

vapour pressure at ^° C. = 11 millims. ; m = pressure required to sink 

plunger = 1 millim. 

Gauge reading (in millims.) = p. 
, B - TT + m 
p- 
B - TT - p 

Result. 

1.50 1-246 No drops 
153 1-255 Very few drops 

Least value of v^jvi with which condensation was observed = 1'255. 

3 G 2 
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It is rainai'kable that the minimum supersaturation required to cause condensation 

on the ions should be the same in hydrogen as in air. It must, however, be 

remembered that in all these experiments watei' vapour is necessarily present ; and 

some of the ions may always be derived from it. It may be that those requiring the 

minimum exj^ansion to make condensation take place on them are produced from this 

source, when hydrogen is the gas under investigation. 

In hydrogen which is not exposed to Uranium rays or other nucleus-producing 

agent, no drops at all are produced even with Vojv^ as great as I'3 (see ‘ Phil. Trans.,’ 

loc. cit.). A small quantity of uranium oxide contained in a thin glass bulb, 16 

centims. away fiom the glass bulb forming the cloud chamber, was found to give quite 

a noticeable shower with Vo/Vi = 1 "277. An expansion apparatus filled with hydrogen 

thus forms a very sensitive detector of Uranium or X-rays. If we take the view 

already suggested, that these nuclei actually are identical with the ions, each 

individual ion being made visible on expansion by the formation of a visible drop 

around it, it is not surprising that the method should be more delicate than the 

photographic or electrical modes of detecting such rays. 

§ 5. Nuclei produced by Ultra-violet Light. 

In some experiments of Lenard and Wolfe (‘ Wied. Ann.,’ vol. 37, p. 443, 1889), 

light, rich in ultra-violet rays, was admitted through a quartz window into a vessel 

containing moist dust-free air. They found that if the air was allowed to expand 

after being exposed for some minutes to the light, a fog was produced showing that 

nuclei of some kind had been produced by the action of the ultra-violet rays. 

Similar results were obtained in steam-jet experiments. They regarded their 

experiments as proving that the ultra-violet rays caused the posterior surface of the 

quartz to disintegrate, the small })articles thrown off constituting the nuclei on which 

condensation took place. 

For the purpose of measuring the expansion required to make water condense on 

the nuclei produced in this way, I used apparatus identical with that made for the 

experiments with Kontgen rays, a quartz plate being, however, substituted for the 

aluminium closing the top of the cylindrical tube B. 

The quartz plate was attached in the same way as the aluminium plate, being- 

screwed tightly against an indiarubber band placed on the top of B. As in Lexard 

and Wolff’s expeiiments, the souice of the ultra-violet light was the spark between 

zinc terminals produced by an induction coil; a Leyden jar being inserted in the 

secondary circuit to brighten the spark. Short sparks of about 2 millims. in length 

were generally used. Cadmium terminals were substituted for zinc in many of the 

experiments, but with no great increase in the effect. The expansion apparatus was 

wrapped in tinfoil, provided with windows to enable the fogs to be seen, the quartz 

Itself being covered with wire gauze, placed on the brass diaphragm which held the 

quartz in position. 



GASES BY THE ACTION OF RONTGEN RAYS AND OTHER AGENTS. 413 

The effects described below are certainly due to the ultra-violet rays. That they 

are due to light of some kind is easily shown by interposing a quartz lens, so that an 

image of the source is formed, which, by a slight displacement of the lens, may be 

made to fall either on the quartz window or just to one side of it. In the latter case 

all effect on the condensation ceases, while so long as the concentrated light from the 

quartz lens does enter the window, the effect is immensely increased by its presence. 

Even exceedingly thin glass or mica interposed anywhere between the source and the 

cloud-chamber prevents all action. It is, therefore, the ultra-violet rays alone which 

are active in producing nuclei. 

The results of one series of experiments, extending over four consecutive days, are 

given in the tables which follow. Many experiments of the same kind were made 

with exactly similar results. Since, however, as will be seen in what follows, the 

absolute numbers are of no particular interest, the one series has been considered 

sufficient. For the same reason the value of rff ci has not been calculated, the gauge 

reading jy (approximately equal to Pj — Pg) being used as a measure of the amount 

of expansion. The time for which the air was exposed to the ultra-violet rays before 

the expansion was made is given, as well as the interval, if any, which elapsed 

between the cutting-off of the rays and the expansion. When the number under this 

last heading is zero, it is to be taken as indicating that the expansion was brought 

about while the sparks were still passing. 

Distance of Spark from Quartz Plate = 4'5 centims. 

p = gauge reading 
(approx. = pressure fall). 

Duration of 
exposure. 

Interval after 
exposure. 

Result of expansion. 

(1) 10 millims. 1 min. 0 Fog 
(2) 112 „ 10 mins. 5 mins. Dense coloured fog 

Distance of Spark from Quartz Plate =17 centims. 

p = gauge reading 
(approx. = pressure fall). 

Duration of 
exposiu'e. 

Interval after 
exposure. 

Result of expansion. 

(.3) 102 millims. 5 mins. 0 0 
(4) 1.33 „ 30 secs. 0 Slight shower 
(5) 133 „ 7 mins. 0 Slight shower 
(6) 14.5 „ 30 secs. 0 Shower 
(7) 145 „ 5 mins. 0 Shower 
(8) 160 „ 30 secs. 0 Fog 
(9) 157 „ 10 „ 0 Very dense shower 
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Distance of Spark from Quartz Plate =11 centims. 

p = gauge reading 
(approx. = pressure fall). 

Duration of 
exposure. 

Interval after 
exposure. 

1 
1 

Result of expansion. | 

(10) 101 millims. 30 secs. 0 Dense fog 

(11) II „ 30 „ 0 Slight shower 
(12) 74 „ 3 mins. 0 Slight shower 
(13) 134 „ 30 secs. 0 Fog 
(14) 68 „ 30 „ 0 Slight shower 
(15) 38 „ 5 mins. 0 Few drops 
(16) 140 „ 5 secs. 0 0 
(17) 140 „ 20 „ 0 Fog 
(18) 140 „ •5 „ 1 sec. (approx.) 1 drop seen 
(19) 140 „ 10 Shower 
(20) 140 „ 20 „ ?? Very dense shower 
(21) 140 „ 1 min. Fog : 
(22) 163 Current switched on 

momentarily. 
Shower ' 

1 

Distance of Spark from Quartz Plate = 5’5 centims. 

p/ = gauge reading 
(approx. = jjressure fall). 

Duration of 
exposure. 

Interval after 
exposure. 

Result of expansion. 

(23) 85 millims. 10 secs. 0 Shower 
(24) 85 5 „ 0 0 
(25) 85 „ 10 „ 0 Shower 
(26) 85 15 „ about 1 sec. Fog 
(27) 41 30 ,, 77 Shower 
(28) 41 20 „ 77 0 

(29) 41 75 40 ,, 77 Fog 

Distance of Spark from Quartz Plate = 32 centims. 

p = gauge reading 
(approx. = pressime fall). 

Duration of 
exposure. 

Interval after 
exposirre. 

Residt of expansion. 

i 

(30) 156 millims. 20 secs. 0 Shower 
(31) 140 57 2 mins. 0 0 

(32) 169 5 secs. 0 Fog 
(33) 169 77 3 „ about 1 sec. Dense shower 
(34) 153 7? 10 „ 0 1 or 2 drops 
(35) 185 77 20 „ 10 secs. Fog 
(36) 185 77 20 „ 20 „ Verj^ dense shower 
(37) 185 77 20 „ 30 „ Slight shower 
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Distance of Spark from Quartz Plate =42 ceritims. 

p = gauge reading 
(approx. = pressm-e fall). 

Duration of 
exposime. 

Interval after 
exposure. 

Eesult of expansion. 

(38) 148 millims. 60 secs. 0 0 
(39) 152 ,-, 60 „ 0 Slight shower 

Distance of Spark from Quartz Plate =21 centims. 

p = gauge reading 
(approx. = pressure fall). 

Duration of 
exposure. 

Interval after 
exposiire. 

Eesult of expansion. 

(40) 128 millims. 60 secs. 0 Very few drops 
(41) 140 „ 5 „ 0 0 

(42) 140 „ 60 „ 0 Few drops 
(43) 155 „ 3 „ 0 Shower 

The nuclei produced by the action of ultra-violet light differ in many ways from 

those produced by X-rays or Uranium rays. 

The expansion required to make water condense upon them depends on the strengtli 

of the radiation, and when this is strong, only a very slight expansion is necessary, as is 

shown in Experiments (l) and (29) in the above table. The smallest expansion of 

which the apparatus admitted was, in fact, sufficient to form a fog with strong- 

radiation, and indeed, in later experiments, fogs were obtained without any expansion. 

Under the action of the weakest rays used, however (Ex|)ts. 30-39), the expansion 

required to obtain condensation is as great {p — about 150 millims.) as that required 

to catch the nuclei produced by X-rays. 

The expansion required to make condensation take place on these nuclei depends 

on the time during which the apparatus has been exposed to the action of the rays 

before the expansion, being less the longer the exposure. The number which can be 

caught by a given expansion also increases with the time of exposure. (See Expts. 

16-21, 23-29.) The nuclei thus appear to grow under the action of the ultra-violet 

rays. The increase in the size of the nuclei, or in the numljer exceeding a given 

size, does not, however, continue indefinitely with increasing time of exposure, but 

after a time a steady state is reached, the result of a given expansion liecoming 

independent of the time of exposure, if this be long enough. (Expts. 3-7, 10-12.) 

The time for which the nuclei persist depends on the size to whicli they have 

attained. When the radiation is so weak that the nuclei are only caught if an 

expansion be made as great as would be required for X-ray nuclei, by far the larger 

number have disappeared in 30 seconds after cutting off tlie radiation. (Expts. 
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35-37.) They do, however, last longer than the nuclei produced by X-rays, When 

the nuclei are large enough to be caught by a very slight expansion they last for 

many minutes at least (Expt. 2). As will be seen later, those produced by very 

strong radiation last for many hours. The shorter life of the smaller nuclei is 

probably due mainly to their more i-apid rate of diffusion. 

4’he limit to the size attained by tbe nuclei for a given strength of radiation when 

tlie time of exposure is indefinitely prolonged is, perhaps, also to be explained by 

diffusion. For, if the radiation be weak, the nuclei may reach the walls by diffusion 

l)efore any considerable growth has time to take place; whereas, - with stronger 

radiation, not only will the drops grow more in a given time, but the slower rate of 

diffusion resulting from their increased size must increase the time for which they 

remain exposed. It is not surprising, according to this view, that a comparatively 

small increase in the intensity of the radiation may result in a very great diminution 

in the least expansion recpiired to catch the nuclei. 

Fig. 3. 

• B 

Experiments were now carried out with the object of deciding whether the nuclei 

are produced throughout the volume of the moist air, or, only at the surface of the 

c[uartz, as Lenaed and Wolfe supposed {Joe. cit.). For this purpose an expansion 

apparatus was made of the form shown in fig. 2. The ultra-violet light entered from 

])elow through a cpiartz plate, which was covei'ed with watei- to a depth of about 

5 millims. Tlie (pmrtz plate was held up against the ground edge of the cloud- 

chamber 1)y means of two elastic bands, an indiarubber washer being used as before 

to make an air-tigbt joint. The a])paratus was wrapped in tinfoil, provided with the 

]iecessary apertures. 
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Dense fogs were obtained under the action of the ultra-violet light (zinc-spark) ; 

the expansion being that corresponding to a pressure fall of 10 centiins. 

The nuclei produced under these conditions cannot have arisen from the disinte¬ 

gration of the quartz. 

Another proof that the quartz is not the source of the nuclei is furnished by 

the results of experiments made with an expansion apparatus of the form shown 

in fig. 3. It consisted of three glass tubes meeting at right angles, two being 

horizontal and the third pointing downwards and containing the piston. A quartz 

window was fixed in a vertical j^lane making an angle of 45° with each of the hori¬ 

zontal arms. By placing the zinc points forming the source of the ultra-violet light 

at a position such as A, the rays may he made to pass along only one limb of the 

apparatus. If the source is transferred to B the air in the otlier liml) is exposed to 

the rays and none of them traverse the first limb. The quartz being equally inclined 

to both limbs, any nuclei which are thrown oft' from it will find their way e([ually 

readily along either. The experiments show, however, that nuclei are only introduced 

into that limb along which the idtra-violet light passes. 

Tlie fogs were made visible l)y the light from a gas ftame, which could l^e con¬ 

centrated by a condensing lens at any part of either tube. The time for which the 

rays were allowed to act before the expansion was made was generally 5 seconds. In 

some of the experiments the rays were made approximately parallel by means of a 

quartz lens. The expansions used, measured by the pressure fallp, varied from 13 to 

16 centiins. of mercury. 

In every case a shower of fog was produced from end to end of the tube traversed 

by the ultra-violet rays, while no effect could he detected in the other branch even at 

a point not more than 1 centim. from the junction of the tubes. The exposure could 

be made twice as long without any effect being ofitained in the branch not exposed 

to the rays. 

In all these experiments attention was confined to the small portion of one tube 

which was illuminated by the light from the luminous gas flame, which was lirought 

to a focus at that point; observations being made alternately with corresponding 

portions of the two branches successively illuminated in this way. Finally, however, 

experiments were made, in which, owing to the use of stronger radiation this was 

unnecessary, the fogs produced being well seen without any condensing lens. The 

sparks were produced between cadmium terminals, and a more powerful induction 

coil was used than in the previous experiments. A parallel beam of ultra-violet 

light was not used, but the cadmium points were brought to within 1'5 centiins. from 

the quartz plate. The experiments were made with a pressure fall of 14 centiins., 

the time of exposure being 20 seconds. Under these conditions, the tube along 

which the rays were directed was filled with fog on expansion, the other tube 

remaining empty. The fogs were well seen by means of the light from the gas 

flame without any condensing lens, so that a general view of the result of expansion 

YOL. CXCII.-A. 3 H 
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throughout both branches was obtained at once. On displacing the cadmium points 

so that the rays now passed along the other tube, and repeating the experiments, the 

tube which before was filled with fog now remained dark, and the other was filled 

with a white or coloured fog. 

These experiments prove that the nuclei produced by the action of ultra¬ 

violet light do not have their origin at the surface of the quartz. It might still be 

supjDosed that they are produced at the surface of the glass, where this is exposed to 

the ultra-violet rays. Lenard and Wolff, however, were able to detect no effect of 

this kind with glass. With the object of testing this 23oint, a T-shaped expansion 

a})paratus was now made (fig. 4). The length of tlie horizontal tube amounted to 

Fig. 4. 

ti SI 

27 centims., and the internal diameter was 1’3 centim. One end of this tube was 

closed by a quartz plate cemented on with shellac. 

The rays from a spark between cadmium terminals were sent axially along the tube, 

a quartz lens being inserted to make the rays converge to a point slightly beyond the 

far end of the tube. By observing the image of the cadmium points which was formed 

by the quartz lens, it was easy to test whether the light was passing axially, and also 

whether the points were sufficiently near together to give an image considerably smaller 

than the diameter of the tube. The length of the spark-gap was generally rather less 

than I millim. 

In the earlier experiments made with this apparatus, the fogs, which were produced 

on expansion under the influence of the ultra-violet light, although very dense near 

the quartz plate, diminished rapidly in denseness with increasing distance from the 

cpiartz, and did not reach the far end of the tube at all. This was at first interpreted 

as indicating either that the nuclei arose at the surface of the quartz, or that the 

active rays were al)soi“lied by a comparatively small tliickness of moist air. The latter 

view was easily disproved by interposing a layer of moist air (in an open tube 17 centims. 

long) between the source and the expansion apparatus. This exercised no appreciable 

absorption. The whole effect was finally traced to a deposit of fine dew on the Inside 

of the quartz j)late. On removing this by gentle warming, uniform fogs from end to 

end of the tube were obtained on expansion. There was never any indication of any 

increase in the density of the fog close to the far end of the tube, where the rays 
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strike the glass. To ensure that there should be iio eflect throughout the length of 

the tube due to rays grazing the walls, a tinfoil diaphragm with an aperture of 

5 millims. was inserted in front of the quartz plate. The fogs still remained uniform 

from end to end. A want of uniformity in the density of the fog at once shows itself 

in the curvature of the upper surface of the fog, due to the more rapid settling where 

the di'ops are fewer and larger. In these experiments the time of exposure before 

exjDansion was from 3 to 5 seconds. 

It is easy to understand the great effect produced by a slight dimness of the quartz 

plate, for scattering of the ultra-violet rays by the small droplets on the plate is likely 

to take place to a much greater degree than that of the luminous rays. The rays 

Avhich escape scattering or deflection at the quartz may not be strong enough of them¬ 

selves to produce, in the time for which the exposure lasts, nuclei large enough to he 

caught with the degree of expansion used, while together with the scatteind i-ays they 

may be more than strong enough close to the quartz for this purpose. Now the 

scattered light (the quartz plate being small compared with the length of the tube) 

Avill fall off approximately inversely as the square of the distance from the quartz. It 

is thus readily understood why the fog extended only a short distance from the quartz 

when this Avas coAmred AAuth a deposit of dew. 

That the uniformity of the fog from end to end of the tube, Avhen the contents are 

actually exposed to equally intense radiation throughout, is not due to diffusion of 

the nuclei before expansion, or mixing of the air in the tube in consequence of the 

expansion, is certain. For, in the experiments in Avhich there Avas a deposit of deAv on 

the quartz, no fog Avas produced at the far end, even Avith an exposure of 60 seconds ; 

Avhile a very dense fog was obtained near the quartz Avith an equal expansion, Avith an 

exposure of only 10 seconds. Similar results Avere obtained in experiments in AAdiich 

the Cadmium points were displaced to one side, so that only a small portion of tlie 

tube near the quartz Avas exposed to tlie rays. The fog obtained on expansion only 

extended a short distance beyond the part of the tube reached by the rays. 

The experiments Avith this apparatus make the superficial origin of the nuclei 

very improbable; for, if they arose only Avhere the rays fell on a surface, the fogs 

Avould have been confined to the ends of the tube. To account otherAAUse for 

the fact that Avhenever a fog Avas produced (with the light passing axially) it Avas 

uniform from end to end of the tube, AAm AAmuld haA'e to supjAose that on account of 

undetected scattering of the ultra-violet rays at the ends, the AAmlls throughout the 

A\Iiole length of the tube received approximately uniform ultra-violet illumination. 

Perhaps the most striking proof that the nuclei produced by ultra-violet light are 

formed throughout the Amluine of the moist air, and not at the surface of the vessel 

containing it, is furnished by experiments Avith very strong radiation. As already 

stated in a preliminary note on the subject (‘ Camb. Phil. Soc. Proc.,’ vol. 9, p. 392), 

under the influence of Amry strong ultra-Auolet light fogs are produced AAdthout any 

expansion, eAmn in unsaturated air. The nuclei Avhich, A\hen they are only ex})osed 

3 H 2 
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to very weak ultra-violet light, d(j not grow beyond the stage at which a four-fold 

supersaturatioii is required to make condensation take place upon them, grow under 

the influence of very strong radiation till they become large enough to scatter 

ordinary light. 

Tyndall, many years ago (‘ Phil. Trans.,’ vol. 160, p. 333, 1870), showed that when 

the mom i-efrangiljle rays from an arc lamp, such as were able to travei'se blue glass ijut 

not red glass, were concentrated within a tube containing air mixed with amyl-nitrite 

or certain other vapours, dense clouds were j^i’oduced. He was unable to obtain any 

such efiect with pure air and water only. The experiments to be described differ in 

no essential inspect from liis, except in the fact that the rays from the arc lamp wein 

allowed to travei’se no material such as glass, which is opaque to the ultra-violet rays, 

liefore enterin'^ the tube containing the moist air. Under these conditions, air con- 

taining water vapour only, shows the phenomena that were observed by Tyndall 

with other vapours. 

I have found the apparatus shown in fig. 5 convenient for exijeriments on this 

subject. It consists of a glass tul^e 34 centims. long, and 4 centims. in diameter, 

provided with a side tube near each end. The ends are closed by quailz lenses, 

which are fixed air-tight by means of indiarubber washers. They are pressed tightly 

against these indiarubber rings by means of two brass diaphiugms screwed together 

by means of three bolts just outside the tube. By means of the two Wolfi:‘ bottles, 

A, B, a current of filtered air can be driven through the a])paratus. The air is filtered 

before entering B, and again on leaving it. If, while A was fixed at some height 

above B, the stop-cock Tb remained closed while TT was open, the pressure in the 

apparatus was greater than the atmospheric pressure. On opening Tb the pressure 

was suddenly reduced to that of the atmosphere, and the expansion produced in this 

way was sufficient to cause condensation on ordinary dust particles. A small quantity 

of water w'as contained in the tube to keep the air saturated. To enable even faint 

clouds to Ije seen, the tube A\'as contained in a blackened box, o})en along one side, and 
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with a hole somewhat smaller than the diameter of the tube at each end, so that a 

beam of light fi-om an arc lamp might pass along the axis of the tube. 

I'lie quartz lens through which the light entered had a focal length of about 

to centims., and the arc was generally placed at such a distance that the light was 

brought to a focus about the middle of the tube. A strong arc is necessary in these 

experiments. 

Filtered air was passed through the apparatus until all dust particles were 

removed. The presence or absence of dust particles was easily ascertained by 

allowing expansion to take place as described above, while the light from the arc 

traversed the tube, a sheet of mica being interposed at this stage to cut off the ultra¬ 

violet rays. When drops ceased to appear on 02)ening the stopcock T.,, a few minutes 

were generally allowed to elapse before exposing to the ultra-violet rays, to enable the 

air inside the tube to come to rest. To start the exposure to ultra-violet rays the 

mica was removed. 

Under the conditions described above, a bluish fog is seen in the tube in about 

two minutes, making its a})pearance first near the apex of the beam of light, and 

then extending both ways in the form of a double cone. That the fog when it first 

appears is confined to the path of the light is easily proved by displacing the tube 

slightly to one side; or better, by inserting the mica screen and moving the box with 

the tube fixed inside it nearer the arc, so that the luminous rays converge to a focus 

much nearer the far end of the tube ; or, without moving the tube, by inserting a 

glass lens just in front of the tube after the fog has appeared, so as to bring the 

luminous rays to a new focus. In each of these ways it is easy to prove that the fog 

does actually arise, not near the quartz nor the glass walls of the tube, but along 

the axis of the tube in the neighbourhood of the point where the light is most 

concentrated. It was found that the shape of the cloud was specially well defined 

when the water in the tube contained two or three per cent, of caustic potash. This 

prevented any dej^osit of fine drops on the inner surface of the quartz by keeping 

the inside of the tube not quite saturated. 

We thus obtain a further confirmation of the conclusion already drawn from the 

expansion experiments, that ultra-violet light produces nuclei throughout the volume 

of the moist air which it traverses, and not only at the surface of the quartz or tlie 

glass walls of the tube. 

On allowing the air to expand after the fog has a})peared, condensation takes place 

throughout tlie tube, showing that outside the part traversed by the strongest 

radiation, nuclei have been formed, but not large enough or numerous enough to form 

a visible fog. These may arise partly through some of the nuclei produced in the 

strongest part of the beam travelling into other parts of the tube; they may also 

have been produced by the action of ultra-violet rays, scattered by the cloud particles 

produced in the direct path of the light. These will scatter ultra-violet light even 

before they have grown large enougli to make themselves visible by scattering the 
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luminous rays. The scattering of the ultra-violet rays by the cloud particles is 

probably also the cause of the fog (without expansion) spreading further and 

reaching a greater density on the side of the focus next the source. 

If the exposure to the rays of the arc he continued after the fog has become 

visible, this often assumes very remarkable shapes, resembling those obtained by 

Tyndall with air which had been passed through a solution of hydrobromic or hydio- 

iodic acid.'^'' The fog may, for example, develop dark strise which may he straight 

and vertical, or may have quite complicated forms. They sometimes produce a 

regular cone-in-cone structure {cf. Tyndall, loc. cit.), or the fog may become divided 

up into rounded clouds often connected by a thread of fog along the axis of the 

tube. These complicated forms were noticed most frequently in some of the earlier 

experiments, in which a longer tube (60 centims.) of the same cross-section was used, 

Avith a quartz lens Avhose focal length was 25 centims. The light was thus less concen¬ 

trated and the fog took much longer to become visible, generally about ten minutes. 

There can be no doubt that all these complicated cloud forms o\ve their origin to 

air currents in the tube. A dark stria may ahvays be produced at will at any part 

(d’ the fog by Avarming the loAver edge of the tube at that point, by holding one’s 

finger against it. A stream of air, free from fog, rises at this point in a narroAv 

layer, and a dark vertical stria is produced,! the brightness of the fog immediately 

on each side of it being also increased. Such a dark hand persists for a long time 

after the exciting cause has been removed. 

No condensation could be produced in pure steam even Avith prolonged exposure. 

The air AA^as expelled from the tube by alloAving a rapid current of steam to pass 

through the apparatus for an hour at Ioav pressure. The tube AA^as alloAved to cool to 

the temperature of the room (15° C.) before exjDosing to the ultra-violet rays. The 

failure to j^roduce any Ausible condensation in the steam Avas not due to the quartz 

becoming dimmed through drops of Avater condensing on it, for on letting in a small 

(.[uantity of air the effect Avas readily obtained. Fogs Avithout expansion AA^ere 

obtained Avithout difficulty Avith an air pressure of 5 centims. of mercury. 

To determine to Avhat extent Avater vapour Avas necessary for the production of these 

fogs, experiments Avere made Avith a much smaller apparatus than that just described. 

I’his is shown in fig. 6. The tube Avas 16 centims. long and 4 centims. in diameter. 

A solution of potash, or of sulphuiic acid, AA'as placed in the bottom of the tube. 

The stop-cocks Avere lubricated Avith H2SO4. A sIoav current of filtered air AA’as draAvn 

through the apparatus. This Avas then alloAved to stand for some time to enable the 

equilibrium vapour pressure to be attained before the exposui’e to the ultra-violet 

rays Avas begun. 

* Tyndall, ‘ Ifoy. Soc. Proc.,’ \'ol. 17, p. 92, 1869. 

t The production of dark Imiids of this kind in fogs Avas observed by Ta'NDALI, (‘ Roy. Inst. Proc.,’ 

vol. 6, p. 1, 1870), and further studied by Lord R.AYLEIGII (‘Roy. Soc. Proc.,’ a’oI. 34, p. 414, 1882), 

Lodge (‘ Nature,’ aoI. 28, p. 297, 1883), and Aitkex (‘Trans. Roy. Soc.,’ Edin., vol. 32 (1), p. 239). 
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No effect could be obtained with solid KOH or strong H2SO4 in the tube. 

With aqueous H2SO4 containing 45 per cent, of H0SO4, corresponding to a 

relative humidity of about 50 per cent., no fog was obtained. Over 10 per cent, 

sulphuric acid, which had been all night in the tube, so that there can be no doubt 

that the equilibrium vapour pressure was reached, a fog very quickly appeared under 

the action of the ultra-violet light. Over aqueous caustic potash, containing about 

17 per cent, of KOH, a fog was readily obtained. The relative humidity over such a 

Fig. n. 

solution is less than 90 per cent. Experiments have not l^een tried with humidity 

between 50 and 90 per cent. These experiments then show that Ijoth air and water 

vapour are necessary for the production of the ultra-violet light fogs; it is not 

necessary that the air should he saturated. 

The cloud particles produced by the action of ultra-violet light persist, for some 

hours at least, after the rays have been cut off. This is so, even when the air is 

unsaturated; for example, the fog produced over a 17 per cent, potash solution was 

found to be still visible three hours after the arc was stopped. The drops are 

therefore small enough to settle with extreme slomiess ; yet in spite of their small 

size there is no indication of any tendency for them to evaporate again. It is 

probable, therefore, that the drops do not consist of pure water. We might, it is 

true, account for their persistence by supposing each to have become charged with 

electricity under the influence of the ultra-violet rays. In the light of latei- experi¬ 

ments, however, the former view appears to he the more probable. 

Any discussion of the nature of these fogs is, however, postponed till the experi¬ 

ments made with other gases than air have been described. 

Before going on to describe the exj^eriments made wdth oxygen, mention should be 

made of experiments in which no indiarubber or cement of any kind came in contact 

witli the air exposed to the ultra-violet rays. For this purpose a test-tube Avitli the 

open end ground smooth was closed by a plano-convex quartz lens, simply held in 

position by an indiarubber band, no indiarubber washer Ijeing inserted. The inside of the 

tube was moistened with distilled water; the air inside was at atmospheric pressure. 

The tube was fixed in a horizontal position and left for two days to allow the dust 

particles to settle. On exposing to the light of an arc lamp, placed so that its light 



424 mi. C. T. II. WILSON ON THE CONDENSATION NUCLEI PEODUCED IN 

was broug'lit to a focus near the middle of the tuhe, a fog developed in less than two 

minutes. 

Expansion experiments were made with oxygen with the same apparatus as was 

used in the experiments on air. The results obtained were identical with those 

obtained in the former experiments. The oxygen was obtained by heating potassium 

permanganate. With weak radiation nuclei were produced requiring, however long 

an exposure might be made, a pressure fall of 15 centims. or more; while, when the 

radiation was stronger, fogs were produced with comparatively slight exj^ansions, the 

expansion required depending on the time of exposure. Finally, with sufficiently 

strong ultra-violet rays, visible fogs were obtained without expansion. 

For the purpose of making experiments with oxygen as pure as could he obtained ; 

and witliout any danger of contamination l^y vapours, which might be present if any 

indiarubber or cements were used in attaching the quartz ])late, the apparatus shown 

in fio’. 7 was used. 
Fig. 7. 

The vei'tical tube A, in which the gas was exposed to the action of the rays, was 

IG centims. long and 3 centims. in diameter. Its open end was carefully ground flat 

and closed hy a quartz plate, which was simply placed upon it, mercury being then 

j)oured into the wooden collar surrounding it to make a tight joint. The tube was 

exhausted before filling the collar with mercury. 

A small quantity (less than 1 cub. centim.) of well boiled distilled water was placed 

in the tiibe immediately before closing it with the quartz plate. The water was 

drawn up into a pipette while still boiling and run into the apparatus after cooling 

slightly. The apparatus was then pumped out hy connecting to a water pump. 

The oxygen was prepared by beating potassium permanganate, which had been 

twice recrystallised, and then heated in an open dish till the greater part of it fell to 

j)owder. Between the tuhe which contained the permanganate and the rest of the 
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apparatus a tube of glass wool was inserted, to prevent any of the small particles 

passing over with the oxygen. 

The apparatus was kept at a low pressure hy the pump, and a stream of oxygen 

made to pass through it hy heating the permanganate tube. The gas passed through 

the mercury in B on its way to the pump. Th.e connection to the pump could be 

closed at any time and the space above the mercury in B connected with the atmosphere. 

The mercury then rose in the long vertical tube, which dipped into it to a depth of 

about 1 centim.,and noAv served to indicede the pressure. The pressure could now be 

raised to any desired amount, less than that of the atmosphere, hy further heating of 

the permanganate. By closing the connection between B and the atmosphere and 

opening that leading to the pumj), the apparatus could he again exhausted and a 

stream of oxygen allowed to pass through it at a pressure of a few centimetres of 

mercury. 

A quartz lens, fixed above the quartz plate, served to bring the light fi’om an arc 

to a focus a little below the middle of the tube. The arc was formed between two 

horizontally placed carbons contained in a box with an aperture below somewhat smaller 

than the diameter of the tube. 

A current of oxygen was passed through the apparatus, while this was connected 

to the pump for 15 minutes, the apparatus was then left for one night and oxygen 

again allowed to stream through it for 30 minutes. After the pressure had been 

raised to 70 centims. the contents of the tube were exposed to the ultra-violet light 

of the arc. A fog appeared in a very few minutes. The apparatus was again left for 

a day and then pumped out, and a stream of oxygen allowed to pass for 10 minutes. 

Again, less than two minutes’ exposure to the ultra-violet rays was sufficient to produce 

a fog. A gain, after standing for three days, while repeatedly exposed to tlie ultra¬ 

violet rays till a fog a]q)eared, the oxygen Avas })um|)ed out and a vigorous stream 

passed for 30 minutes. The })ressure Avas then lArought up to 50 centims., and the 

gas exposed to the ultra-violet rays. A fog apjieared after an exposure of about one 

minute. 

The presence of nitrogen thus appears to he unnecessary for the production of cloud 

by the idtra-violet rays. There is no indication of any diminution in the density of 

the clouds or in the ease Avith Avhich they are produced as the gas becomes purer. 

The quantity of matter in the clouds Avliich develo}) under the action of ultra-violet 

light is very small: as is seen from the fact that even isolated patches of the fog 

remain suspended in the tube. Since tlie mass of each droj), even if its diameter be 

as great as one mean AA^ave-length of liglit, does not amount to 10“‘' gram, a very 

large number of drops may he present although the total Aveight of the fog is very 

small. 

The small quantity of matter in these clouds makes it A^ery difficult to exclude the 

possibility of their formation being due to the presence of traces of some vapour, 

which might become oxidised under the influence of the ultra-violet rays. That it is 

3 I VOL, CXCII.—A, 
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not due to mercury vapour was 2:)roved by making the exposure immediately after the 

stream of oxygen had stopped before the mercury va|:)Our in the gauge could have had 

time to diffuse into the rest of the aj^paratus. Before the final exj)eriment, also, the 

tubes leading to the gauge and the jjei'manganate tube were sealed off. After the 

cloud aiDjoeared the exjoosure was continued for three-quarters of an hour and the 

apparatus left till the next day. The fog was found to liave disaj^i^eared by that 

time, as was seen on exposing to the light of the arc with a plate of mica interjDosed; 

in less than two minutes after the removal of the mica, however, a new fog was 

produced. The last ex2:»eriment was performed with the object of determining 

whether the formation of the cloud dej^ended on the presence of minute traces of some 

sulrstance, which might all be used iqD to form fog if the exjDosure was sufficiently 

j^rolonged. After the fog had settled to the bottom of the vessel, it was thought 

that the complete or jDartial removal of the active substance would he made manifest 

in an increased difficulty in ^^roducing a second fog. No such effect was found; the 

exjijosure was perhajos, however, not sufficiently 2)rolonged for any very great weight 

to be attached to the result. 

The experiments described leave little room for doubt that pure oxygen and water 

vapour alone are sufficient to enable a cloud to he jDroduced under the influence of 

ultra-violet light. 

In hydrogen, fogs could not Ije obtained under' the influence of ultra-violet light 

without exjransion. Experiments were made with an exiransion ajrjraratus to see if 

nuclei of any kind were produced in this gas when exjrosed to ultra-violet light. 

Fig. 8. 

A T-shaped cloud-chamber (fig. 8) was used, the rest of the apjjaratus being that 

shown in fig. 1. The horizontal tube (fig. 8) was 9 centims. long and 1‘8 centims. 

in diameter. The ends were closed by quartz jdates, fixed like those in the large 

apparatus which was used for exj^eriments on the clouds irroduced in moist air by 

ultra-violet light without exjransion. 

The arc was used as the source of ultra-violet rays. These were made to converge 

by means of a quartz lens to a ])olnt slightly beyond the middle of the tube. The 
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hydrogen was obtained, as in previous experiments, by heating a tube containing 

palladium saturated with the gas. 

In hydrogen prepared in this way nuclei were produced under the influence of the 

ultra-violet rays, but never in very large numbers, and always requiring great 

supersaturation to make water condense upon them, however long the exposure. On 

replacing the hydrogen by air, without making any other alteration in the apparatus, 

and again exposing to the rays, a fog was obtained without expansion in less than 1 

minute. 

Hydrogen exposed to Ultra-violet Rays of Arc. 

Gauge reading (in millinis.) 
(approx. = pressure fall). Eesult of expansion. 

137 0 
147 Sliglit shower 
167 Dense shower 
167 (mica interposed) 0 

In all the above observations the time of exposure was thirty seconds. 

Fresh hydrogen prepared. 

Gauge reading (in millims.) 
(approx. = pressure fall). Eesult of expansion. 

147 
142 (exposed for 60 seconds) 
150 

Very few drops 
0 
Dense shower 

The expansion required to make condensation take place upon these nuclei is, it 

will be seen, approximately the same as is required in the case of the nuclei produced 

by X-rays or Uranium rays. 

With CO., exposed to ultra-violet rays fogs were obtained with slight expansion 

and even without expansion, but stronger radiation was found to be necessary than in 

the case of air or oxygen. For these experiments an apparatus like that used for 

hydrogen was used. The 00-2 was prepared by heating potassium bicarbonate. 

The nuclei produced by the action of ultra-violet light on moist air, oxygen or 

carbonic acid, are thus seen to be capable of growing under the action of the rays till 

they actually become large enough to scatter ordinary light. At least in the case of 

air these visible fogs may persist for hours, although the air be not saturated with 

water vapour. Later experiments make it very improbable that the growth of these 

nuclei is due to each one becoming charged with electricity under the action of the 

ultra-violet light. The most obvious way of accounting for the growth of the nuclei 

3 I 2 
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into visible particles, and their persistence even in iinsaturated air, is to suppose that 

by the action of the ultra-violet light some compound is formed in solution in each 

drop. Were it not for the fact that the fogs are produced in pure oxygen as well as 

in air, one would naturally consider the combination of oxygen and nitrogen with the 

water of the incijhent drop to foiui nitric acid as the most likely reaction which could 

account for the }>henomena. Possibly when tlie clouds are produced in moist air this 

may he, in fact, the reaction which takes place. When the clouds are produced in 

oxygen, however, the only possible combination whicli can account for the phenomena 

is that of oxygen and water to form hydrogen jDeroxide. The formation of ozone 

would not enable us to explain the production of the clouds, and indeed although 

clouds are very easily produced in ozonised oxygen it is, as the experiments of 

Meissner and others show, oidy as a consequence of reactions, by which some of the 

ozone is destroyed. 

The view here taken is then, that under tlie action of the ultra-violet light small 

drops of water combine with the oxygen in contact vath them, and in consequence of 

the lowering of the equilibiium vapour pressure by the dissolved H.2O2 they are ahle 

to grow, when similar drops of pure water would evaporate. 

The time taken by the nuclei to grow to any given size depends simply on the 

time required for tlie (piantity of dissolved substance produced in each drop by the 

action of the ultra-violet light to become sufficient to enable a drop of that size to be 

in equilibrium. That, for a drop containing a definite (piantity of dissolved substance, 

there is a definite size necessary foi' ecpiilibrium, is obvious from the fact that the 

lowering of vapour pressure due to the dissolved substance is proportional to the 

concentration, tliat is, inversely proportional to the volume, while the increase of 

vapour pressure due to the curvature of the surface is inversely jiroportional to the 

radius. By the growth of the drop, if initially the solution is too strong for 

equilibrium, the lowering of vapour pressure due to the dissolved substance will very 

quickly diminish till it ceases to exceed the rise of vapour pressure due to the 

curvature. 

If it is only, as is in itself ipiite likely, at the surface of separation of the gas and 

litpiid that the idtra-violet rays cause combination to take place, the maximum effect 

will be produced where, as in this case, the water is in the form of a cloud of minute 

particles ; for it is only in very small drops that any considerable proportion of the 

molecules are situated in the surface layer. 

T1 le al)sence of any effect of this kind in moist hydi'ogen is in agreement with 

the view that the growth of the drops in air or oxygen is due to the formation of 

hydrogen peroxide. 

§ G. Nuclei produced by Sunlight. 

Aitken^' has shown that many vapours when exposed to sunlight in glass vessels 

* Aitken, ‘Trans. Roy. Soc.,’ Edin., vol. 39 (1), p. 15, 1897. 
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become charged with nuclei, on which condensation takes place when supersaturation 

is brought about by expansion. He was unable to detect any such effect when moist 

air was exposed in this way to the action of the sun’s rays. 

In experiments such as Aitken’s, in which the sunlight has to traverse glass, any 

ultra-violet rays which may be present are cut off before reaching the gas under 

investigation. Now the light from an arc lamp, when deprived of its ultra-violet 

rays by passing through glass, was found to have no cloud-producing effect. An 

apparatus provided vdth a quartz window was therefore used. 

This had the form shown in fig. 9. The quartz plate was fixed, as in the other 

Fig 9. 

expansion experiments in which a quartz window was required, with the help of an 

indiarubber washer. There was a joint on the horizontal j^art of the tube, made by 

means of an indiarubber stopper, as shown in the figure ; the connection between the 

expansion apparatus and the gauge also was made by means of an indiarubber tube, 

instead of glass tubing with the joints made by the blow-pipe, as in other experi¬ 

ments. The cloud-vessel could thus be placed so that the quartz plate was directly 

facing the sun. 

The presence of indiarubber vapour is doubtless a disadvantage, but the experi¬ 

ments with ultra-violet light from other sources make it highly improbable that any 

complications are thereby introduced. 

On account of the heating effect of the sunlight, accurate measurements of the 

expansion were not possible. 

The experiments were made during the month of August, between the hours of 

10 A.M. and noon. The apparatus was placed at an open window, which was closed 

when it was desired to make an experiment with the ultra-violet rays intercepted by 

glass. Even wlien a quartz lens was used to concentrate the sunlight no nuclei were 

produced which could be caught with slight expansions. Even with a pressure fall 

of 137 millims. no drops were seen under these conditions. 

With pressure falls exceeding 15 centims., showers or fogs were obtained in which 

the drops were plainly more numerous when no glass was interposed than when a 

glass screen was used to cut off the ultra-violet rays. 
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Observations were now made without any glass screen, the quartz lens being still 

used to concentrate the light. The expansions were made alternately with the 

a})paratus unscreened, and with a screen of black paper in front of the quartz plate. 

The black paper was removed immediately after the expansion, to enable the drops to 

be seen. 

The pressui'e fall being 174 millims., the droj^s were very few when the black paper 

was interposed, while a fog resulted when the expansion was made without the 

screen. 

Similar experiments, made with a glass screen interposed, the exj)ansion being the 

same as before, showed again a very marked difference between the results of 

expansions made with and without the black pajjer screen. 

The difference is, in fact, more marked than that between the showers or fogs 

obtained with and without the glass screen. 

It is 2)lain, therefore, that sunlight, unlike the light from the other sources tried, 

contains nucleus-producing rays which can penetrate glass. 

The Idack paper and the window-glass screen were now removed, and exjDansions of 

the same amount as l3efore made with a red glass screen interposed. Only a few 

drops were produced. On substituting a screen of blue glass, a fog was obtained 

under the same conditions. These active rays can thus penetrate blue glass, but not 

red glass. 

In connection with the above results it is of interest to notice that Elster and 

Geitel (‘ Wied. Ann.,’ vol. 38, p. 497, 1889) found that the actino-electric effect of 

sunlight was not stopped by window-glass or blue glass (red glass being almost opaque 

to it), while glass is quite opaque to the active rays from a zinc-spark or arc. 

To determine to what extent the unconcentrated lig-ht of the sun was effective in 

producing nuclei, the quartz lens was removed, and expansions again made with and 

without a black paper screen, which was removed immediately after the expansion. 

A glass lens was interposed immediately after the expansion to make the drops 

readily visible. 

With expansions sufficient to give a few drops in the absence of sunlight, compara¬ 

tively dense showers were obtained when the air had been exposed to the rays 

immediately before expansion. 

In Aitken’s experiments on the effect of sunlight the expansion Avas probabl}^ not 

sufficiently great to make condensation take place on the nuclei produced by it in 

moist air. Moreover, nuclei, Avhich require such a large degree of supersaturation of 

Avater vapour before it can condense upon them, haA^e never been found to persist for 

more than a feAv seconds ; Avhile in Aitken’s experiments the exposure to the sunlight 

Avas made at an open AvindoAv and the appai'atus then removed to a dark room before 

the expansion was made. 

Although in these sunlight experiments no nuclei, requiring only slight super¬ 

saturation to make condensation take place on them, have been produced, they do not 
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absolutely prove that such nuclei may not be formed by sunlight even in the lower 

layers of the atmosphere. For it is quite possible that the disappearance of the 

nuclei produced by weak ultra-violet light, when they are left to themselves, is 

entirely due to the fact that they very quickly reach the walls of the vessel by 

difiPusion on account of their small size. The time for whicli tliey persist would then 

entirely depend on the size of the vessel containing them. Now the explanation of 

the fact, that with weak radiation they never grow sufficiently to be caught 1)y slight 

expansions, may simply be that they reach the walls before any considerable growth 

has time to take place. In the atmosphere, according to this view they would persist 

for an almost indefinite time, and might finally become large enough to act like 

“dust” particles in helping condensation. 

In the preliminary note already puhlished"^ it was pointed out that in the upper 

regions of the atmosphere sunlight was likely to be rich in ultra-violet rays, and it 

was suggested that from their action on air and water vapour alone the small 

particles, to which the blue colour of the sky is due, might arise. TyndallI recog¬ 

nised the resemblance between the light of the sky and that scattered by the fogs 

which he obtained by the action of light on various vapours, pointing out that the 

light scattered by the fogs is polarised like that of the sky. He concluded that the 

blue colour of the sky was due to the presence of small particles like those produced 

in his tubes. The connection 1)etween the blue colour of the sky and tliat of the 

fogs produced from air and water vapour 1jy the action of ultra-violet liglit is possibly 

a still closer one, the small particles to which the colour is due having a similar 

origin in both cases. 

The cloud or nucleus-producing effect of ultra-violet rays has obviously Ijearings 

on other meteorological phenomena. The nuclei which enable clouds to form may in 

many cases arise from this source. The upper clouds especially may owe their 

formation in this way to the action of sunlight. It is possilde, too, that owing to the 

action of the ultra-violet rays, sunlight may sometimes cause clouds to persist in 

unsaturated air. 

§ 7. Nuclei produced by Metals, 

The presence of certain metals in the expansion apparatus was found to give rise to 

condensation nuclei. 

The apparatus used in most of the experiments was of the form shown in fig. 10a. 

(Only the cloud-vessel is shown, the rest of the expansion apparatus was the same as 

shown in fig. 1.) The cloud-vessel consisted of a portion of a wide test-tube. This 

was held in position by means of an iudiaruhber liand. The cloud-vessel was divided 

into two equal parts by a vertical partition, consisting in most cases of mica on one 

* ‘Camb. Phil. Soc. Proc.,’ vol. 9, p. 392, 1898. 
t Tyndall, ‘Roy. Soc. Proc.,’ vol. 17, p. 223. 
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side and the metal under investigation on the other, or simply of metal polished on 

one side only, or of two metals, such as zinc and copj^er, in contact. 

Another and better form of apparatus which was used in some of the later experi¬ 

ments is that shown in fig. 10b. The top of the tube (2’8 centims. in diameter) was 

closed by a metal plate, bolted down, with an indiaruhber band interposed as a 

washer. Half of the lower surface of the metal plate was covered with a semicircular 

sheet of mica, attached to the metal by a little shellac; a vertical mica partition 

divided the apparatus into two equal parts; the roof of the one compartment being 

of mica, that of the other of the metal whose effect was to he investigated. 

The apparatus first described had this defect—that when a fog had been produced 

Fig. 10a. Fig. 10b. 

by expansion, the metal caused the re-evaporation of the drops in the air near it, 

before they had time to settle to the bottom of the vessel. This made the process of 

removing dust particles, by repeatedly forming a cloud by expansion and allowing 

it to settle, a very slow one in an apparatus of this kind. With the metal at the top 

there is no difficulty of this kind, for any drops formed near it very quickly fall out 

of reach of the metal. 

In no case were the metals found to produce nuclei requiring only slight expansion 

to catch them. 

This simplified the method of working, making it possible to remove all ordinary 

dust particles originally present, or any droj)s remaining in suspension after a cloud 

had been produced, by the expansion method just referred to, without any arrange¬ 

ment for shielding the air from the action of the metal while this was being done. 

When this process had been completed, so that with expansions of moderate amount 

drops were no longer produced, the expansion might be increased without any visible 

condensation generally to the point = 1’25) where a few drops are produced 

even in the absence of any metal. 

When, however, the expansion was such that a rain-like condensation would have 

resulted in the absence of any metal {v-i/ih being between I'25 and 1’38), the number 
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of drops in the compartment next the metal v/as generally greater than on the other 

side of the partition. 

With amalgamated zinc comparatively dense fogs are obtained with such 

expansions ; polished zinc and lead also show the effect well; polished copper and 

tin produce no appreciable effect. A plate of zinc amalgamated on one side and 

merely polished on the other shows a great difference in the density of the fog on the 

two sides, the fog next the amalgamated metal l)eing much the denser. If the 

partition consists of lead with an old surface on one side and a freshly scraped surface 

on the other, mamy more drops appear in the half of the tube next the fresh surface. 

With a zinc copper partition also, the drops are much more numerous on the zinc side. 

With amalgamated zinc a few drops may he produced even when VgA’i is rather 

less than 1'25 ; they have been observed with a pressure fall of only 13 centims. 

The effect of the metals is much more marked when the expansion is considerably 

greater {ih/vx = 1'30 or more) ; in many cases, indeed, the effect of the metal was 

inappreciable with smaller expansions. When v^jv^ exceeds 1’38 no difference can be 

detected iDetween the comparatively dense fogs which then occupy both sides of the 

tube. 

There can be little doubt that the effect here described is due to the same cause as 

the influence which these metals have on a photographic plate, studied by Russell'^'' 

and others. As far as these experiments go they tend to show that the order in 

which the metals must be arranged to indicate their relative activity in producing 

nuclei is the same as their order when arranged according to their photograpliic 

activity ; amalgamated zinc giving the most effect; tin and copper little effect, if any ; 

polished zinc and lead being intermediate in activity. 

The experiments described above were all performed with air in the expansion 

apparatus. In experiments with hydrogen in the apparatus the metals (zinc, 

amalgamated zinc, and lead) showed only a very slight effect. This, however, does 

not prove conclusively that more nuclei are produced when the metal is in contact 

with air than with hydrogen ; the difference may he due to the more rapid removal 

of the nuclei in hydrogen by diffusion to the walls of the vessel. 

I have not been able to obtain amy effect from metals outside the apparatus, even 

through celluloid, which Russell found to he })enetrated by the photographic action. 

§ 8. Nuclei produced by the Action of Ultra-violet Light on a 

Negatively Electrified Zinc Plate. 

Lenard and Wolff (/oc. cit.) were alile to show that the condensation of a steam 

jet becomes dense in the neighbourhood of a negatively electrified zinc plate when 

this is exposed to the action of ultra-violet light. 

The delicacy of the expansion method makes it a matter of some difficulty to 

*Eussell, ‘Eoy. Soc. Proc.,’vol. 61, p. 424,1897; vol. 63, p. 102,1898. Colson, ‘C. E.,’vo1. 123, p. 49,1896. 

YOL. CXCII.-A, 3 K 
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investigate by its means this effect in air. For, as has already been sho^vn, not only 

does ultra-violet light produce nuclei in moist air in the absence of any zinc plate, 

negatively charged or otherwise, but a zinc plate introduces nuclei into the 

surrounding air in the absence of both electrification and ultra-violet light. These 

two effects are apt to disguise the one looked for. 

By using very weak ultra-violet light, however, it was found possible to 

demonstrate the production of condensation nuclei b}^ the action of the light on a 

negatively charged zinc plate. 

Fig. 11. 

The ultra-violet light (from a zinc spark) entered the apparatus (shown in fig. 11) 

through a quartz plate covered with 2 or 3 centims. of water, the surface of which 

served as one plate of a condenser, a zinc plate placed about 1 centim. above the 

water serving as the other. The condensation from the action of the ultra-violet 

light alone, or of the zinc alone, was too slight to be detected with a pressure fall 

below about 18 centims. ; the short distance which the few drops that are doubtless 

produced had to fall, causing them to be overlooked. 

On allowing the ultra-violet light to strike the zinc plate, and using a pressure fall 

of between 15 and 18 centims., a fog was obtained if the zinc plate was made 

negative (a difference of potential of a few volts being applied between the plates of 

the condenser) ; while no condensation could be detected if the zinc was positive or 

uncharged. The experimental details are given below. 

The general construction of the cloud-vessel will be understood by reference to the 

figure (fig. 11). The zinc plate was soldered to a brass rod, which passed through 
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the small indiarubber stopper closing the upright tube at the top of the ap]3aratuS; 

The lower surface of the zinc was freshly polished, and the upper surface was covered 

with wet filter paper, to diminish as far as possible the production of cloud nuclei l^y 

the zinc. The thickness of the layer of air could 1)e increased or diminished by 

ruimiug water out, or drawing water in, through the tube pointing downwards on the 

left. Any desired difference of potential could be maintained between the zinc and 

the water by means of a battery of small secondary cells. 

The actual experimental numbers are given in the tables which follow. 

Polished Zinc PlcUe in Air. 

Ultra-violet light from zinc-spark 30 centims. below the cpiartz plate. Depth of 

water over the quartz = 2'8 centims. Thickness of air-layer — 0‘8 centim. 

Gauge reading 
(in millims.) = -p. 

\ 

E.M.E., in volts. 

Result of expansion. 

Zinc positive. Zinc negative. 

151 9 0 0 
159 9 0 Slight fog 
167 9 0 Fog 

! 173 9 0 Fog 
1 181 9 Slight fog Dense fog 

161 32 0 Fog 
! 157 32 0 Fog 

177 40 0 Fog 
; 177 80 0 Fog 
1 177 240 0 Fog 

153 240 0 0 
■ 153 80 0 0 
1 183 240 Fog Fog 

No difference could be observed between the results without any E.M.F., and those 

obtained with the same expansion when the zinc was positive. 

Zinc plate freshly polished ; zinc-sjiark 54 centims. below the quartz ; depth of water 

over quartz = 2'3 centims. ; thickness of air layer —- 1'6 centims. ; barometer 

= 766 ; temperature = 15*^ C., tt — 13 millims. 

Gauge reading 
(in millims.) = p. 

E.M.F. in 
volts. 

Result of expansion. 

Zinc uncharged. Zinc positive. Zinc negative. 

163 240 Shower Shower Fog 
153 240 Very few drops Very few drops Very dense shower 
151 80 Very few drops Very few drops Distinct shower 
149 80 Very few drops Very few drops Very few droj^s 
149 120 Very few drops Very few drops Very few drops 
139 120 Very few drops Very few drops Very few drops 

3 K 2 



436 MR. C. T. R. ^YILSOX OX THE COXDEXSATIOX XE'CLEI PRODEXED iX 

Gauge reading when the effect of the negative charge is first detected = 151 

inillims. 

Corresponding value of ^—■ 1'252. 

In the second series, partly owing to the greater thickness of the air layer, and the 

consequent greater chance of drops being seen, partly also on account of greater 

activity of the zinc surface, or greater intensity of the ultra-violet rays, drops were 

seen, with the expansions used, even when the zinc was positively charged or neutral. 

The change produced when the charge is negative is however well marked. It will 

be seen that, although drops are formed even when the expansion is below the lunit 

v.Jvi = 1’25, the effect of the negative electrification first becomes manifest at that 

point. It will be remembered that the nuclei produced by metals or by ultra-violet 

light do not show any very definite limit in the least expansion required to catch 

them. 

Experiments were also made in which all conditions were the same as in the 

experiments just described with this exception, that the zinc plate was covered on 

the side exposed to the ultra-violet light with wet filter paper. Under these 

conditions, as is well known,* it ceases to be capable of allowing negative electricity to 

escape under the influence of ultra-violet light. 

The result of a given expansion was now found not to depend on the sign of the 

charge on the zinc plate, the ajopearance of the showers or fogs being the same 

whether the zinc was jjositive, negative, oi' uncharged. 

Hydrogen. 

The phenomena are more easily studied in hydrogen than in air, the eflect of ultra¬ 

violet light throughout the volume of the gas being so very slight that quite strong 

radiation may be used. 

The hydrogen was obtained by heating palladium vdiich had been charged with the 

gas. The gas was first allowed to pass through the apparatus at a pressure of a few 

centimetres of mercury. The tube E was prolonged downwards and passed through 

the cork of a small wash-bottle containing distilled water, through which the gas had 

to bubble on its way to the pump. A convenient quantity of this water was finally 

admitted into the apparatus by closing the tube leading to the pump, and allowing a 

little air to enter the wash-bottle. The clip betv'een the wash-bottle and the 

expansion apparatus was then closed and the hydrogen brought to atmospheric 

pressure by heating the palladium. A })arallel beam of ultra-violet light Avas used, 

the zinc-spark being placed at the focus of a quartz lens (focal length = 6 centims.) 

The beam of light Avas just wide enough to illuminate the AA'hole of the zinc plate. 

* Stoletoav, ‘Coinptes Reudiis,’ a’oI. lOG, p. 1593, 1888. 
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Zinc Plate freshly polished. Depth of water over the quartz 1'5 centim. Thickness 

of hydrogen layer = 2'3 centims. ; barometer =749, temperature =15° C. 

:= 13 millims. ; ??i = 1 niillim. 

Gauge reading (in 
millims.) = j)- E.M.F. 

Eesult of Expansion. 

Zinc positive. Zinc negative. Short circuit. 

171 6 Leclanche cells 1 or 2 drops Fog 
152 6 0 Shower 
161 6 „ ,, 1 or 2 drops Fog 1 or 2 drops 
161 1 1 or 2 drops Slight fog 
161 O 

^ Dense fog 
161 6 „ Fog no denser i 1 
161 20 secondaries Much less dense ' 
161 120 1 or 2 di'ops 1 or 2 th’ops 1 01’ 2 drops 
151 6 Leclanche cells 0 Very few drops 
145 6 0 1 or 2 drops 
143 6 „ ,, 0 0 

Gauge reading, when expansioii is just sufficient to make condensation take place 

on the nuclei due to the negative electrification = 145 millims. 
o 

Corresponding value of = 1 '247. 
B TT — p 

It will be noticed that the expansion required to make condensation take place on 

the nuclei, produced by the action of ultra-violet light on a negatively electrified zinc 

plate, in air or in hydrogen, is identical with that required in the case of the nuclei 

produced by X-rays and Uranium rays. 

It is only when the zinc plate is negatively electrified that there is any action of 

this kind. 

With the zinc at the given height above the surface of the water the density of the 

fog produced in hydrogen by a given expansion is a maximum with a comparatively 

small difference of potential between the zinc and water. The maximum number of 

drops is obtained with a difference of potential produced by 6 Leclanche cells or less. 

With the much stronger field, produced by 120 secondary cells (= 240 volts) only a 

few scattered drops were seen, no more numerous than were obtained with the same 

expansion when the zinc plate was positively charged, or wlien the terminals leading 

to the zinc and water respectively were connected together by a wire. 

The diminution of the number of the drops as the electromotive force is increased is 

easily understood, for when the electric intensity is more than sufficient to remove all 

the carriers from the zinc as fast as they are produced by the ultra-violet light, then 

the total number of the carriers which cross from one plate to the other in a given 

time must remain constant, being equal to the number produced in that time by the 

ultra-violet light. The velocity of each carrier, however, is proportional to the electric 
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intensity; the number of drops produced on expansion, indicating as it does the 

number of cariiei'S which at that instant are on their way across between the plates, 

Avill therefore be inversely projDortional to the difference of potential. The ^^henomenon 

is, in fact, closely related to the fact first noticed by Stoletow,"^ that the currents 

produced by the action of ultra-violet light on negatively electrified surfaces a23proach 

a saturation A'alue as the electromotiAm force is increased. 

The fact that the source of the rays is discontinuous must also not be forgotten, 

for Avith strong fields all the ions produced by the action of one spark may haA’e time 

to traAml across to the other plate, under the influence of the electric field, before the 

next spark takes place. 

The fact that the carriers in hydrogen, as RuTHEEFOEDt has shoAAm, traAml 

seAmral times as fast as in air, explains Avhy the phenomenon under consideration Avas 

only observed in the former gas. With greater differences of potential, or a smaller 

distance between the plates, it Avould no doubt be observed in air also. 

The fact that the nuclei produced by the action of ultra-Anolet light on a 

negatively electrified zinc plate Avhether in air or hydrogen, require just the same 

degree of supersaturation in order that they may act as centres of condensation as 

those produced by Rontgen rays or Uranium rays, is strong eAudence that the carriers 

of the electricity in all these cases are of the same nature. Rutheefoed;]; has affeady 

proved this in quite a different Avay by his measurements of the Amlocity with which 

the carriers move in an electric field. 

The very considerable degree of supersaturation necessary to make condensation 

take place on these nuclei is of itself sufficient to proA^e that the particles Avhich carry 

off the iiegatiA-m charge from the zinc-plate are not of the nature of dust particles, but 

on the contrary must be of almost molecular dimensions (vide ‘ Phil. Trans.,’ loc. cit., 

p. 305). 

The conclusion arrived at is therefore opposed to that AAdiich Lexaed and Wolff 

clreAv from the results of their steam-jet experiments {loc. cit.), that the escape of 

negative electricity from a zinc plate exposed to ultra-violet light is due to the escape 

of particles arising from the disintegration of the metal. As Avas pointed out by 

R. v. Helmholtz and Richaez,§ the steam jet is incompetent to distinguish between 

dust particles and the “ ions,” to AAdiich the latter obserAmrs attribute most of the 

condensation phenomena studied by them. 

* Stoletoaa’’, ‘ Comptes Eeudiis,’ 106, p. 1149, 1888. 
t Eutherford, ‘Camb. Phil. Soc. Proc.,’ vol. 9, p. 401, 1898. 
I Eutherford, ‘ Camb. Phil. Soc. Proc.,’ loc. cit. 

§ E. V. Helmholtz and Eicharz, ‘ Wied. Ann.,’ 40, p. 161, 1890. 
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§ 9. Nuclei Produced by the Discharge of Electricity from a Pointed 

Platinum Wire. 

The effect of the electric discharge from a pointed wire in altering the appearance 

of a steam-jet has been studied by many observers. 

In expansion experiments, however, no effect appears to liave been noticed other 

than the immediate removal of all dust particles or fog from the air inside the 

ajiparatus.^ To study the properties of the condensation nuclei arising from this 

source an expansion apparatus allowing of rapid expansions of large amount is, in 

fact, necessary. 

Fig. 12. 

The apparatus which I have used for experiments on this subject is shown in 

fig. 12. The cloud-vessel consisted of a glass bulb with a side tube through which 

was sealed a platinum wire, reaching well into the interior of the bulb and ending in 

a sharp point. This was connected to one terminal of a Wimshurst machine. The 

other terminal of the machine was connected to earth and to another platinum wire 

fused through the neck of the bulb, the lower part of which was filled with mercury, 

covered with distilled water. The side tube was kept dry by warming when 

necessary with a small flame. 

No condensation nuclei were produced, except when the point of the wire was 

luminous when viewed in the dark. 

* First observed by Lodge, ‘Nature,’ vol. 31, p. 26-5, 1885. 
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Discharge from a Pointed Platinum Wire in Aii\ Expansion made while the 

Discharge is taking place. 

Gauge reading (in 
raillims.) = /<. 

Result of expansion. 

Pointed M-ire positive. Pointed wire negative. 

141 0 0 
147 0 Fog 
1-5-5 Fog Fog 
167 Very dense fog Dense fog 
177 Very dense fog Very dense fog 

The phenomena are simplest when, as in the observations given in the above table, 

the expansion is brought about while the discharge is taking place. No drops what¬ 

ever are seen, so long as the pressure fall is belovr a limit amounting to about 

15 centims., corresponding approximately to an exjiansion, T2/V1 = 1‘25. The fogs, 

when the pointed wire was the negative terminal, were always obtained with a 

slightly lower expansion than was required when this was positive. With expansions 

only .slightly exceeding this limit the fogs obtained were very dense. The fogs have 

only a momentary existence, on account of the dust- or fog-removing property of the 

point discharge already referred to. This was especially the case when the point was 

positive. The fogs, during the few seconds or less for which they lasted, made 

manifest the violent eddying motion of the air which accompanies the discharge. 

It was found that, when the discharge was stopped before the expansion was made, 

the results were not so simple. These were reduced to some degree of regularity 

when the stopping of the discharge was brought about by suddenly connecting 

together by a wire the two terminals of the apparatus. For this purpose each was 

connected to one of two mercury cups made near together in a block of paraffin. A 

short wire was dropped into these cups while the discharge was taking place. This 

must very quickly have brought the pointed wire and the wet walls of the apparatus 

to the same potential. Any electrified particles produced by the discharge had, 

therefore, a greater chance of remaining in suspension on the air than would have 

been the case if the difierence of potential were allowed to exist for any considerable 

ti)ne after it ceased to be sufficient to produce a supply of the particles which act as 

carriers of the electricity. 
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Discharge from Pointed Platinum Wire in Air. 

expansion. 

Terminals joined hy a wire before 

Gauge reading (in 
millims.) = 

1 Interval ).)efore ex- 
' pansion. 

Sign of chai’ge on 
wire. 

Besult of expansion. 

75 
75 
75 

40 sec.s. 
10 ,, 

5 mins. 

Negative 

n 

Slight shower 
Slight fog 

26 90 secs. Negative 0 

55 30 secs. Negative Fog 
55 20 „ Slight fog 
55 60 „ ^ 5 Shower 

45 30 secs. Negative Very few drops 
45 10 „ 0 
45 60 ,, Very few drops 

87 10 secs. Negative Veiy few drops 
87 30 „ Fog 
87 10 ., Positive Slight fog 
87 0 0 
87 30 „ ' «1 Slight fog : 

104 2 secs. Negative 0 
104 30 „ 11 Fog 
104 60 „ Fog 
104 2 mins. 1^ Slight fog 
104 6 ., 11 1 or two fh‘o]rs 

170 15 secs. N egative Very dense fog 
170 2 mins. Slight fog 
170 15 secs. I’ositive Dense fog 
170 70 „ 11 Slight fog 

In the second column of the above table is given the time which elapsed from the 

moment when the discharge was sto|)ped till tlie expansion was made to take place. 

It w4]l be observed that, as this interval is increased, the expansion required to 

produce a fog diminishes; in other words, the nuclei appear to grow when left to 

themselves. In no case was fog detained with a pressure fall of less tlian 4 or 

5 centims. 

The nuclei produced by the discharge last for one or two minutes (whether the 

ware is positive or negative) ; during this time the number has diminished consider¬ 

ably, and practically none last so long as six minutes. 

VOL. OXCIl.—A. 3 L 
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Hydrogen. 

The results oljtaiiied with hydrogen Vvdien the expansion was made while the 

discharge was taking place are given in the table which follows :— 

i 

; Gauge reatUng (in 
1 millims.) = p. 

Eesult of expansion. 

Pointed wire positive. Pointed vore negative. 

I 14-4 0 0 
1 1.50 0 Shower 
i 15G 0 Fog 
1 157 Slight fog Fog 

158 Slight fog Dense fog 

The expansion retpiired is, it will be seen, practically the same as in air. The fogs 

were again observed with slightly less expansion v/hen the wire was negative than 

when it v/as positive. 

The results of a second series of exjjeriments made some weeks later are contained 

in the next table. 

Gauge reading (in 
millims.) = p. 

Eesult of exjjansion. 

Pointed wire positive. Pointed wire negative. 

145 0 0 
15o Slight shower Fog 
150 Fog Fog 

In a third independent series oljtained some months later, the following numbers 

were obtained :— 

Gauge reading (in 
millims.) = p. 

Eesult of expansion. 

Pointed wire positive. I’ointed wire negative. 

1.32 0 0 ; 
146 0 Few drops ' 
157 Dense fog Dense fog 

The positive fogs thus obtained are much more evanescent than the negative, 

appearing generally as a momentary Hash of brightness in the appai'atus, while the 
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negative fogs last for two or three seconds. This is due to the “ electric wind ” accom¬ 

panying the positive discharge being the stronger. Possibly the greater expansion 

recpiired to give visible condensation when the wire is positive may be due to this rapid 

motion of the contents of the cloud-vessel causing very thin fogs to be overlooked. 

Except under certain conditions, to be mentioned immediately, the expansion 

required to catch the nuclei in hydrogen shows very little diminution (none in the 

case of the positive discharge) when the discharge is stopped by short-circuiting the 

terminals before the exnansion is made. A slight effect of this kind can be detected 

when the wire is negative, but the least expansion required to give even a slight 

shower, whatever interval might be allowed to elapse before making the expansion, 

was not less than that corresponding to a gauge-reading of 13 centims. The difference 

between air and hydrogen in this respect is not entirely due to the more rapid 

diffusion of the nuclei in the latter causing them to reach the sides of the vessel 

before they have time to grow to any considerable extent, for nuclei, requiring a 

pressure fall of more than 15 centims., can be detected even 30 seconds after the 

discharge has been stopped, and when this interval only amounts to 15 seconds they 

are sufficiently numerous to give quite a dense fog on expansion. Possibly even this 

slight tendency to become larger exhibited by the nuclei produced in hydrogen when 

the discharge from the pointed wire is negative, is really a remnant of the effect now 

to be described. 

When the apparatus was first charged with hydrogen, fogs could be obtained under 

the conditions just described (after the discharge was stopped), even with 

comparatively slight expansions. The effect was much more marked with the 

negative than with the positive discharge, and was often absent in the latter case. 

If, however, the experiments \yere continued for a day or two the fogs obtained under 

these conditions became gradually less dense, and finally only a few drops could be 

olkained with expansions less than that corresponding to a jDressure fall of 15 centims. 

There can be little doidffi that the effect just described is due to some impurity, 

probably air or oxygen remaining in the apparatus, either mixed with the hydrogen, 

or absorbed by the platinum wire. This is gradually removed by combination witli 

the hydrogen, the combination l.'eing doubtless hastened by the luminous discharge 

from the point of the wire. 

We may conclude from the condensation plienomena attending the discharge of 

electricity from a pointed platinum w^ire, that in a discharge of this kind, whether in 

ions identical with those which are air or hydrogen, the electricity is carried 

produced in air exposed to Eontgen rays. 

The after-effect of the discharge, noticed in air and under certain conditions in 

hydrogen, is probably a consequence of the chemical combination which can scarcely 

fail to take place at the glowing point of the wire ; where also the ions are, doubtless, 

liberated. So long as the difference of potential is maintained high enough to 

produce the discharge, the carriers are driven across to the walls of the vessel, before 
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they have time to grow appreciably. If, however, the electric field be removed 

suddenly, by short-circuiting the terminals, many of the carriers which have left the 

point of the wire may not have reached the walls before this process is completed, 

and their comparatively slow motion when the wire and walls are at the same 

potential enables them to persist for some time. The growth which then takes place 

is prohaldy the result of the condensation, upon tlie nuclei, of scune substance produced 

1)V the discharge. Tlie sul)stance may he nitric acid or H2O0. 

§ 10. Behaviour of the variotts kinds of Nuclei in an Electric Fjeld. 

It has already been suggested (‘ Camh. Phil. 80c. Proc.,’ loc. cit.) that the nuclei 

requiring expansions between I'25 and 1'87 to make condensation take place on them 

are to be identihed with the ions, to wliich the conductivity of gases exposed to 

X-rays or Uranium-rays is due. The only evidence there furnished for this view was 

tlie fact that in ordinary moist air or other gases such nuclei were found to be present 

in exceedingly small numbers, while when the gas was made a conductor liy being 

exposed to X-rays or Uranium-rays, immense numbers of these nuclei could be 

detected. 

The experiments with the nuclei produced by the discharge from a pointed platinum 

wire, as well as with those which are produced by the exposure of a negatively 

charged zinc plate to ultra-violet light, support this view, at the same time pointing 

to the conclusion that in all these cases the carriers of the electricity are of the same 

kind. 

A difficulty, however, is introduced by the results obtained with air exposed to 

weak ultra-violet light or to the action of certain metals, for in l)oth cases nuclei are 

produced, rec[uiring, in ordei' tliat water may condense on tliem, a degree of super¬ 

saturation approximately the same as is required in the case of nuclei associated with 

conducting power in the gas. Now there is no evidence that either the presence of 

metals or exposure to Tiltra-violet ligfit causes air to act as a conductor of electricity. 

Pc might be thought tliat the great delicacy of the condensation method of detecting 

hue ions (eacli individual carrier lieing represented by a visible drop on expansion) 

was the cause of tliis apparent discrepancy, and that air under the conditions in 

(piestion really has conducting power, too small to lie detected by ordiiiary methods. 

Uie experiments to he descrilied, liowever, show that the nuclei produced Im the 

presence of metals, as well as those jiroduced by the action of ultra-violet light on 

moist air, differ from those present in air exposed to X-rays or Uranium-rays in not 

carrying a charge of electricity, or, to he more exact, in not being affected by an 

electric field. 

To compare the heliavioiu’ of the nuclei produced by the action of ultra-violet light 

on moist air witli that of the nuclei produced by Pontgen rays, the a])paratus shown 

in fig. 13 was used. The air is contained between two plates of a condenser, the 
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upper plate consisting of a sheet of aluminium, forming the roof of the cloud-vessel, 

the lower plate being formed by the upper surface of the water wliich fills the lower 

part of this. The ahiminimn plate was fixed l^y means of sealing wax. The thickness 

of the layer of air between the plates was 1'6 centim. By means of a battery of 

secondary cells, any difference of potential up to 240 volts could Ije maintained 

between the plates. The positive terminal (')f the battery was connected to the 

aluminium. An aperture at tlie side, closed by a quartz plate, fixed with sealing- 

wax, enabled a horizontal l:)eam of ultra-violet light from a zinc spark to enter the 

apparatus. The light did not impinge on tiie aluminium plate. The air could be 

exposed either to the ultra-violet light or to the Tlontgen rays from a focus-tube 

placed above the aluminium plate. 

Fig. 13. 

The first experiments were made with idtra-violet light weak enough to give no 

condensation with pressure fall less than about 15 centims. When a somewliat 

greater expansion was used { ‘P = 172 millims.), an equally dense fog was obtained, 

wliether the difference of potential between the plates was 240 volts or zero. The 

ultra-violet light in both cases was applied for 30 seconds, and the expansion was 

made before cutting ofi:' the light. In other experiments the expansion was not made 

till 3 seconds after cutting off the ultra-violet rays ; in tliese experiments the expan¬ 

sion was somewhat greater than before, p* being equal to 183 millims. The fogs 

obtained, when a difference of potential of 240 volts was maintained between the 

aluminium and the water during the exposure and till after the expansion had been 

made, were again indistinguishable in appearance from those obtained in the absence 

of any difference of potential. 

On exposing the air to Tlontgen rays, instead of idtra-violet light, the expansion 

being the same as before (gauge reading — 183), very dense fogs were obtained in the 

absence of electromotive force, while, when a difierence of potential of 240 volts was 

maintained between the metal and water surfaces, only a very slight fog appeared on 

expansion. An expansion of the same amount, made 3 seconds after the rays were 

cut off, gave a fog in the absence of any difference of potential, whereas, when the 

potential diiference amounted to 240 volts, no drops at all were produced, even when 

the expansion was brought about 2 seconds after cutting off the rays. In fact, with 
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the difference of potential just mentioned, no nuclei could be detected if the rays were 

cut off* before the expansion, even if this were effected as quickly as possible after the 

rays were stopped. On the other hand, wlien no electromotive force was applied, 

some of the nuclei lasted for at least 10 seconds after the rays were cut olF, a shower 

being even then obtained on expansion. 

There is thus a veiy marked difference in the l)ehaviour of the nuclei according as 

they are produced by Ihmtgen rays or ultra-violet rays, the nuclei produced by the 

latter being uninfluenced even by a comparatively strong field. The phenomena 

oliserved witli air exposed to Rdntgen rays a,re easily understood in the light of 

IIutherfoed’s experiments * on the velocity of the ions in air which has acquired 

conducting powei' under the influence of these rays. He finds the ’‘mlocity, with a 

})otential gradient of 1 volt per centim., to amount to about I'G centim. per second 

In air. 

In the present case, 

240 
Potential gradient = ^ ^ = 150 volts per centim. 

Velocity of carriers = 150 X 1‘G centim. per second. 

Time taken to travel across the air space = —^ seconds 
^ loO X PG 

Thus even the carriers which have the greatest possible distance to travel reach one 

of the plates in less than ynofh of a second. This explains how no fogs were 

obtained when the expansion was made even a very short time after cutting off the 

Piontgen rays. 

Now, when the air was exposed to weak ultra-violet light in place of the Rontgen 

rays, the difference of potential being, as before, 240 volts, no diminiition in the 

number of the nuclei by the action of tiie electric field could be detected even 3 

seconds after the radiation was cut off. Even in three seconds the distance they have 

travelled under the influence of the electromotive force is therefore small compared 

with the thickness of the air layer. These nuclei therefore travel at least 300 times 

as slowly as those produced l)y liontgen rays undei* the same potential gradient. It 

is uidikely tliat this difference is due mainly to a difference in the size of the nuclei, 

tlie charge being the same ; for with ultra-violet light of the intensity used the two 

classes of nuclei are indistinguishable from one another, with resjDect to their power 

of enablina: condensation to take nlace unon them. There can he little hesitation in 

concluding that the nuclei produced throughout the volume of the moist air by the 

action of ultra-violet light differ from those produced by Rontgen rays in being 

uncharged. If any ions are present in air exposed to ultra-violet light they are 

exceedingly few in conq^arison with the uncharged nuclei which are at the same time 

produced. 

* Rutherford, ‘ Phil, l^lcag.,’ rol. 44, p. 422, 1897, 

T— second. 
loO 
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It still remains possible that the comparatively few nuclei, all requiring large 

expansions, which can be detected in hydrogen exposed to strong ultra-violet light, 

may consist of ions produced throughout the volume of the gas. This point could 

easily be tested by experiments like those just described. 

Further experiments were made with air exposed to the much more intense rays 

which were obtained when a quartz lens was interposed between the zinc points and 

the quartz plate. The intensity of the ultra-violet rays was then sufficiently great to 

give fogs with comparatively slight expansion. The apparatus being arranged to give 

expansion corresponding to a gauge reading ^9 = 64 millims., no condensation (in the 

absence of electromotive force) was obtained with an exposure of 10 seconds, while 

an exposure of 15 seconds with an expansion of the same amount gave a fog. The 

nuclei thus took between 10 and 15 seconds to grow large enough to be caught with 

the degree of expansion used. Yet the application of a difference of potential of 240 

volts between the plates did not prevent very dense fogs being obtained with the 

same expansion with an exposure of 3 minutes. Thus, in spite of the electric field, 

the nuclei were able to exist for more than 10 seconds ; in other words, they took more 

than 10 seconds to travel across the space between the plates, which were again 1‘6 

centims. apart. They thus took more than 1000 times as long as the nuclei produced 

by Kontgen rays to travel the same distance. It is, therefore, veiy inqji'ohaljle that 

the growth of the nuclei under the action of strong ultra-violet rays, or the diminution 

of the expansion required to catch tliem, is the result of any electrification of the 

nuclei by the action of the rays. Another explanation, therefore, than the possession 

of a charge of electricity by the drops, must also be sought for the persistence of the 

visible fogs, which are the final result of prolonged exposure to sti'ong ultra-violet rays. 

The great diminution of the number of drops which are pi'oduced on expansion 

when an electromotive force is applied dniing the exposing of" the air to Kontgen 

rays is easily understood. Foi' tlie number of nuclei present at any instant is 

proportional to the rate at which these are heing produced l)y the rays and to the 

average length of time for which they persist. Now before the application of the 

electric field the average life of the nuclei, depending on the rate at which they 

combine with one another or reach the walls l^y diffusion, is seen to Ije something of 

the order of 1 second, for a large proportion of the nuclei persist for 2 or 3 seconds. 

Now, when the electric field of the intensity used in the experiments is applied the 

time for which they persist must, as has been seen, Ije reduced to something like xo 

part of this. The numljer of drops in tlie fog wTll be diminished in the same ratio. 

The immense difference in the appearance of the fogs with and without the action of 

the electric field is in com23lete agreement with this. The conqffete absence of any 

such dillerence in the case of the fogs produced under the action of the ultra-violet 

light is again a proof that the nuclei on which their production depends do not move 

under the action of an electromotive force. 
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Uranium Rays. 

For experiments on the inlliience of an electric held on the nuclei produced by 

Uranium-rays the aj)paratus constructed for the experiments on the nuclei arising 

from a zinc plate exj)osed to ultra-violet rays was used (hg. 11). A piece of thin 

sheet tin was sidrstituted for the zinc. A thin float, consisting of a sheet of cork 

wrapped in tinfoil, formed the lower plate of the condenser. On the up})er surface of 

this was placed a layer of moist uranium oxide. The thickness of the air layer was 

regulated by allowing some water to esca))e or drawing a little more into the cloud- 

vessel, according as an increase or diminution of the thickness was recjuired. 

The following results wei'e obtained. 

DiFnERENOE of })otential used == 240 volts ; thickness of air layer = 1 centim. 

' 
Result of expansion. 

Gauge reading (in mil- 
liras.) = j). 1 

Upper plate positive. Upper plate negative. No E.iM.F. 

164 0 0 Fog 
184 0 0 Fog 

1 

'fhese experiments were many times repeated with the same results. The effect 

of the electric held was eijually marked when the distance between the plates was 

increased to 1‘3 centims. The dro})s produced wdiile the electric held was maintained 

were too few to l)e detected. All the nuclei })roduced by the action of the uranium 

appear therefore to be charged. 

Metals. 

The same ajjparatus was used, but the hoat was omitted and a j)olished zinc plate 

was substituted for the tin. The arrangements were in fact exactly the same as in 

the experiments on the nuclei produced ])y the action of idtra-violet light on zinc, 

Avith the omission of the apparatus necessary for producing these rays. The results 

obtained were entirely negative. 
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Difference of potential = 240 volts ; thickness of air layer = 1 ’4 centims. 

Gauge reading (in mil- 
lims.) = p. 

Result of expansion. 

No E.M.F. 

Zinc positive. Zinc negative. 

16.5 Slight shower Slight shower Slight shower 
188 Dense shower Dense shower Dense shower 

Thickness of air layer = '8 centims. 

189 Dense shower Dense shower Dense shower 
217 Dense fog Dense fog Dense fog 

Exactly similar results were obtained when the zinc was amalgamated, so that a 

larger number of nuclei might be produced. 

The action of zinc in producing nuclei is thus proved to be of quite a different 

nature to that of uranium oxide. It does not consist in the production of free ions 

throughout the volume of the air near it by the action of radiation like that from 

uranium and its compounds. 

It might be supposed, however, that the nuclei consisted of ions, not produced 

throughout the volume of the air, but having their origin at the surface of the zinc. 

They might in fact be a direct product of the oxidation of the zinc, the oxygen or water 

molecules being split up, half of the molecule combining wdth the zinc, the other 

part escaping into the surrounding gas as a free ion. One would expect the ions, 

according to this view, to be all charged with electricity of the same sign. There 

ought therefore to have been a difference in the number of cloud particles produced 

according as the zinc was made positive or negative. In fact one would expect, as 

was found to be the case when the zinc was exposed to ultra-violet light, an increase 

in the number of nuclei when the electromotive force was in one direction, that 

namely tending to move the ions from the zinc, and a diminution when the field was 

reversed. The absence of any difference whatever in the appearance of the fogs whether 

the zinc w'as the positive or negative terminal or was uncharged, shows that the 

nuclei do not consist of ions, produced either at the surface of the metal or through¬ 

out the volume of the air and in its neighbourhood. They are, like the nuclei 

produced by the action of ultra-violet light on moist air, uncharged. 

Ions are thus not the only nuclei requiring exjiansions between the limits 

= 1’25 and Vojv^ = 1’37, in order that condensation may take place upon them ; 

both weak ultra-violet light and certain metals produce such nuclei, which experiment 

shows to be unaffected by an electric field, that is, not to be ions. They have less 

definite properties as nuclei of condensation than the ions ; the minimum expansion 

VOL. CXCII.-A. 3 M 
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required to make condensation take place on them may be less or more than is 

required for the ions according as their number is great or small, and those produced 

by ultra-violet light grow, if the rays are strong enough, till they become visible 

without expansion. To account for the growth of the nuclei under the influence of 

ultra-violet light, I have already suggested that some compound such as II2O2 may be 

produced by the action of these rays on the nuclei. Vv^e may, perhaps, extend this 

idea somewhat, and regard also the nuclei j^roduced in air by weak ultra-violet light 

or by metals, as consisting of molecules of H2O2 or of aggregates of molecules of H2O 

and H2O.2. ScHONBEiN, so long ago as 1866, found that hydrogen peroxide was 

produced by shaking togetlier amalgamated zinc, oxygen and water (‘ Journ. fiir 

Pr. Chem.,’ vol. 98, p. 65). There can he little doubt that the nuclei produced in the 

neighbourhood of metals have some relation to the active substance, hydrogen peroxide, 

“ active oxygen,” or whatever it may be, which is produced in many cases of .slow 

oxidation, and about which there has Ijeen so much coiitrover.sy. 

The question now arises in which cla.ss of nuclei, the charged or the uncharged, 

must we place those which always appear to be present in small numbers in moist air, 

giving rise to the rain-like condensation which takes place with expansions between 

the limits v^jv^ = 1"25 and Vojvi — U38. 

To decide this question the same apparatus as that used for the experiments last 

described was used, hut the zinc plate was replaced by one of sheet tin, because this 

metal appears to he inactive, that is, it produces no increase as far as can be detected 

in the number of nuclei present. The plate was, moreover, covered on both surfaces 

with wet Alter paper to prevent direct contact of the metal with the air. The 

thickness of the air layer was equal to U7 centims. ; an electromotive force of 

225 volts was used. 

The expansion used was that corresponding to a gauge reading of 187 millims. 

This gave a .slight shower, and no difference could be detected in its appearance 

whether the electromotive force was applied or not. This appears to indicate that 

these nuclei are not charged. It is, however, doubtful whether the tin, even when 

covered with wet filter paper, is absolutely inactive, and on that account, perhaps, not 

a great deal of weight can be attached to this experiment. If we assume that the 

ertect of the tin is negligible, there still remains the possibility that although the 

nuclei re(:[uiring expansions considerably exceeding the limit v-i/v^ — 1'25 are uncharged, 

the very few which require an expansion only very slightly exceeding this may be 

charged and identical with tliose produced by Hontgen inys. Otherwise we have the 

somewhat astonishing result that two quite different kinds of nuclei require absolutely 

tlie same degree of supersaturation, that, namely, corresponding to the expansion 

v.,jc] = I’25, in order that condensation should take place on them. To make experi¬ 

ments of the same kind with expansions only slightly exceeding the limit Vojv^ = 1‘25 

is difficult on account of the exceedingly small number of the drops. Apparatus on a 

much larger scale would be better for experiments on this point. 
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One way of accounting for the fact that an electric field has no eftect on the rain¬ 

like condensation under consideration would be to suppose that the nuclei are 

produced at the moment of expansion. They might, for example, be caused by the 

motion of the piston or plunger thi'ough the M^ater. The fact, however, that the 

condensation is just as easily observed when the cloud-vessel is connected with the 

rest of the apparatus by a bent tube of considerable length, as for example in the 

aj^paratus shown in fig. 2, shows that this is not the source of the nuclei. 

The question whether the nuclei which exist in small numbers in moist air are 

charged or not must, I think, be left an open one for the present. It is manifestly a 

matter of considerable meteorological interest. 

The view which was taken in previous papers concerning the dense fogs which are 

obtained with expansions exceeding the second limit v-ijvx = 1‘38, was that the degree 

of supersaturation is then great enough to cause condensation to take place indepen¬ 

dently of all nuclei other than the molecules of gas or vapour themselves. According 

to this view no effect is to be expected on applying an electric field when expansions 

so great as this are used. In fact, the same apparatus being used as before, no 

difierence could be detected in the appearance of these fogs, whether they were pro¬ 

duced in the absence of any electric field, or with a difierence of potential of 

225 volts, between the tin and water surfaces, these being 1 centim. apart. 

§11. Ox Ions and Condensation. 

Tlie experiments described in this paper furnish strong evidence that the passage 

of electricity through gases is effected by carriers of the same nature, whether the 

conduction is the result of exposure of the gas to Ilontgen rays or Uranium rays, or 

the action of ultra-violet light on a negatively electrified zinc plate, or consists in the 

escape of electricity from a pointed platinum wire. It is not only in their efficiency 

as condensation nuclei that the carriers from the first three of the aljove-mentioned 

sources agree, for IIutherfoed has shown that their velocity in an electric field of 

the same strength is almost identical. 

Further, these carriers are by no means of the nature of dust particles, for unlike 

the latter, which require only an exceedingly slight supersaturation in order that 

condensation may take place on them, they do not act as centres of condensation 

unless the vapour is about 4'2 times as dense as that in equilibrium over a flat surface 

of water at the same temperature {vide ‘Phil. Trans.,’ loc. cit.). In the paper just 

referred to the number 8’6 X 10~® was given as an a^iproximate value of the radius 

in centims. of water-drops equivalent in their action to these nuclei. The nuclei are 

therefore not much larger than molecules ; the fact that dense condensation takes 

place with a supersaturation only twice as great when, as far as can be judged, no 

nuclei are present other than the molecules of vapour and gas, is further evidence 

that the nuclei with which we are here concerned are not very large compared with 

3 M 2 
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molecular dimensions. This again is an agreement with experiments on the velocity 

of the ions."^ 

It is, perhaps, of some interest to calculate what charge would be required to keep 

a drop of the above-mentioned size (radius = 8'6 X 10"® centim.) from evaporating. 

Making use of the results given by Professor Thomson (‘ Applications of Dynamics,’ 

pp. 163, 165), we have, when the charge on the drop just balances the effect of 

surface tension so that there is no longer any tendency to evaporate in vapour 

saturated with respect to a flat surface, 

e® = 167rTcC, 

where e is the charge on the drop, T is the surface tension, and a is the radius. 

This gives us in the present case 

e = 1-5 X 10"° electrostatic unit, 

which agrees sufficiently nearly with what we have reason to suppose the order of 

magnitude of ionic charges to be. We must not forget, however, the assumptions 

made in obtaining the above-mentioned estimate of the size of the nuclei {vide ‘ Phil. 

Trans.,’ loc. cit., p. 305). 

Townsend has showiif that freshly prepared gases are often electrified, and that 

the charge is carried ])y nuclei on which, even if the gas be not saturated with 

aqueous vapour, water condenses to form visible drops. He has shown, moreover, 

that the charge carried by each of these nuclei (in oxygen) amounts to about 

3 X 10"^° electrostatic unit, and is presumably the charge carried by one ion. The 

experiments of H. A. Wilson^ furnish strong evidence that the growth of the 

drops in the fogs studied by Townsend is not, however, a direct consequence of the 

charge which they carry, but is due to the presence of some substance in solution in 

the drops. 

Many of the cases of condensation (apparently with only slight or without any super¬ 

saturation) produced by chemical action, which were studied by II. v. Helmholtz 

and Richarz,§ and which were attributed by them to the influence of free ions, are pro¬ 

bably also mainly the result of the formation of some substance in solution in incipient 

drops (of which the original nuclei may be free ions). Professor J. J. Thomson] | has 

suggested that the great influence which the presence of moisture has in facilitating 

chemical reactions between gases may be due to the presence of minute drops, at the 

surface of which (or throughout the volume) the combination is able to take place. 

For example, dry NH3 and HCl do not combine, but if water vapour be present, 

* Rotherford, ‘ Camb. Phil. Soc. Proc.,’ vol. 9, p. 415, 1898. 

t Townsend, ‘ Camb. Phil. Soc. Proc.,’ 9, pp. 244 and 345, 1897. 

X H. A. Wilson, ‘Phil. Mag.,’ vol. 45, p. 454, 1898. 

§ Helmholtz and Richarz, ‘ Wied. Ann.,’ vol. 40, p. 161, 1890. 

II J. J. Thomson, ‘Phil. Mag.,’ vol. 36, p. 313, 1893. 
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combination at once takes place with the formation of a cloud. If the moist gases 

contain minute water drojDS, it is evident that combination must take place within the 

drops, for HCl and NHg at once combine when in solution. It appears to me natural 

to suppose that the fogs produced by this and similar reactions are to be explained by 

the products of the reaction being formed in solution in incipient drops, in quantities 

sufficient to counterbalance the effect of the curvature of the surface on the vapour 

pressure. The drops then grow so long as the products of the reaction continue to 

accumulate within them. The original droplets may be formed by the action of the 

ions ; but it is quite possible that even in the absence of any ions, minute drops are 

continually being formed, and on account of surface tension at once evaporating 

again, unless made permanent by the formation within them of some other substance 

than water. 

Aitken"^ found that when proper precautions were taken, no condensation nuclei 

were produced by the combustion of hydrogen. In this case (if we assume the 

product of combustion to be pure water only) any growth of the droplets through the 

lowering of the vapour pressure by a dissolved substance is out of the question. 

Although these experiments of Aitken show that in this case there is no production 

of comparatively large nuclei, such as would be capable of promoting condensation 

with slight supersaturation, or of travelling a considerable distance along a narrow 

tube without being removed, they do not prove that no free ions are produced by 

the combustion, or that these would not act as centres of condensation if the degree 

of supersaturation were reached, which the experiments described in this paper show 

to be in general required to cause condensation on the ions. 

There is, I think, no evidence that the ions alone, in the absence ot other influences, 

ever act as centres of condensation unless the above-mentioned comparatively great 

degree of supersaturation (approximately fourfold) be exceeded. 

In conclusion, I wish to acknowledge how greatly I am indebted to Professor 

Thomson for his suggestions and encouragement during the course of this work. 

* Aitkex, ‘ Trans. Roy. Soc., Edin.,’ vol. 39 (1), p. 15, 1897. 
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X. Hie Thermal Deformation of the Crystalliaed Normal Sulphates of Potassium, 

Ruhiclium, and Ccesium. 

By A. E. Tutton, B,Sc, 

Communicated hy Captain Abney, C.B., F.R.S. 

Received January 31,—Read February 16, 1899. 

In a communication made to the Royal Society in April last (‘Phil. Trans.,’ A, 

vol. 191, 313) the author described an interference dilatometer, hy the use of which, 

owing to the introduction of compensation for the expansion of the platinum-iridium 

interference apparatus by means of a disc of aluminium laid on the object, the delicate 

method of Fizeau is rendered equally sensitive in the determination of the expansion 

of solid substances, notably crystals, which cannot be obtained in Idocks of the 

relatively large size hitherto required. The method is particularly applicable in the 

cases of those substances, including the crystals of most artificial chemical salts or 

other preparations, whose ground surfaces will not take a polish equal to that of 

glass. The author was led to devise it in order to be able to extend his investi¬ 

gations, concerning the relations between the morphological and physical properties 

of the crystals of isomorphous series of salts on the one hand and their chemical 

constitution on the other, to the thermal deformation of the salts in question. In 

previous communications to the Chemical Society the author has described the 

results of detailed observations of a large number of morphological and physical 

properties of the crystals of the series of normal alkali sulphates, containing as metal 

potassium, rubidium, and csesium respectively (‘Journ. Chem. Soc.,’ Trans., 1894, 

628); of twenty-two double sulphates of the series R2M(S04)2, 6H.2O in which R is 

represented by the same three alkali metals (‘Journ. Chem. Soc.,’ Trans., 1893, 

337 and 1896, 344); and of the normal selenates of these metals (‘Journ. Chem. 

Soc.,’ Trans., 1897, 846). The general result of these investigations has been to 

show that the whole of the investigated morphological and })]iysical properties of the 

crystals of these salts exhibit progressive variations which follow the order of pro¬ 

gression of the atomic weights of the three alkali metals (K = 39, Rb = 85’2, 

Cs = 132’7), so that the variations may be said to be functions of the atomic weight 

of the alkali metal, in the broad sense in which the term “function” is usually 

applied in connection with atomic weight. 

Of all the isomorphous series inferred to, tlie normal sulphates alone prove to be 

17.6.99 
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suitable for au investigation of the thermal deformation. The double sulphates are 

unsuitable on account of the ease with which most of them lose water of crystallisa¬ 

tion when their temperature is raised, and a similar remark applies to the double 

selenates, whose investigation with respect to their morphological and physical 

properties is now proceeding. The simple selenates offer great difficulties on account 

of their excessively hygroscoj^ic nature, which is so marked in the case of caesium 

selenate, in accordance with the rapidly progressive advance in the solubility of the 

three salts wliich has l)een shown {loc. cit. p. 851) to follow the order of the atomic 

weights of the metals, as to j^lace it in the category of effective desiccating agents. 

The normal sulphate of potassium is absolutely free from this disadvantage, being one 

of the least soluble of the salts usually classed as soluble in water, 100 cub. centims. 

of this liquid at the ordinary temperature only dissolving 10 grams of the salt {loc. cit. 

p. 851 and sulphate memoir loc. cit. p. 632). Rubidium sulphate is so slightly 

hygroscopic, its solubility being only 44 per cent., as to present no difficulty on this 

ground. Caesium sulphate is decidedly hygroscopic, the solubility being so relatively 

great as 163 grams in 100 cub. centims. water. Although this characteristic is by no 

means so strong as in the analogous selenate, the solubility of caesium selenate being 

no less than 245 grams in 100 cub. centims. water, still it is sufficiently marked to 

render the use of the salt for the purjDose in question imjDossible in damp weather. 

The difficulty has, however, been successfidly overcome in the case of caesium sulphate, 

by taking advantage of the driest days of the recent remarkably dry summer, and of 

a few dry frosty ones of the early winter, together with the expedient of utilising the 

inner chamber of the air bath of the dilatometer as a desiccator, by placing a vessel 

containing oil of vitriol therein until the actual moment of commencing the obser¬ 

vations. 

In the present memoir, therefore, are presented the results of an investigation 

of the thermal deformation of the orthorhombic normal sulphates of j^otassium, 

rubidium, and cmsium. It is scarcely necessary to remark that the series of these 

particular three metals lias been chosen throughout the whole of the author’s work 

on the relations between the chemical composition of salts and the properties of their 

crystals, because of their well-established close relationship, as being in the strictest 

sense members of the same family group of the periodic system, the definitely 

established and relatively large difterences between their atomic weights, and the 

fact that they form the most strongly electro-positive series of elements. 

Pre'paration of the Crystals. 

Although the new compensation method does not require crystal blocks of greater 

thickness than 5 millims., the greatest difficulty has been experienced in obtaining 

crystals of the commonest of the three salts, potassium sulphate, of adequate thickness 

in all three of the axial directions along which measurements of expansion or con- 
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traction by heat were desired. By the slow evaporation of cold saturated solutions 

over oil of vitriol in vacuo it is possible, given adequate length of time and sufficient 

amount of solution, to obtain excellent crystals of the more soluble sulphates of 

rubidium and cresium, of the requisite size to furnish blocks from 5 to 10 millims. 

thick in the three axial directions. But in the case of the sparingly soluble potas¬ 

sium salt the crystals are almost invariably small. Moreover, when by exception 

they are larger, they are either pseudo-hexagonal triplets or other twinned forms, 

useless for the purpose in view owing to the unequal expansion of the interpene¬ 

trating parts due to different axial expansion in accordance with orthorhomhic 

symmetry; or otherwise, they are individuals of an elongated prismatic nature, the 

elongation being in the direction of the axis ct and the jDrisms being too narrow for 

use along the other two axial directions, particularly that of the axis h. It was 

found exceedingly difficult to induce well-formed individual prisms, deposited from 

a large quantity of a cooling saturated solution, to grow further to the required trans¬ 

verse dimensions in cold saturated solutions over vitriol in vacuo. After attaining 

a thickness of aljout 4 millims. it almost always happened that, rather than grow 

further, fresh crystals began to be deposited. After months of fruitless labour, 

Messrs. Hopkix and Williams kindly undertook to attempt to obtain larger crystals 

by the use of very much larger quantities of solution, and eventually succeeded in 

producing seven crystals of exceptional thickness, and which, after a little further 

growth in a cold saturated solution over vitriol in vacuo, have at length yielded 

transparent blocks 6 A to 9’6 millims. thick along the direction of the axis c and 5'1 

to 5 "9 millims. along the axis h. The author desires to exjiress liis great indelited- 

ness to the firm in question for so kindly placing their resources at his dis])osal, and 

thus enabling this investigation to be completed. 

Peepakation of the Paeallel-Faced Crystal-Blocks. 

Ini207'ovements on the Cutting and Grinding Goniometer. 

The preparation of the crystal-1 docks, each provided with a pair of truly plane and 

truly parallel surfaces accurately perpendicular to the particular crystallograpliical 

axis along which the linear expansion or contraction was to be measured, was carried 

out with the aid of the author’s new cutting and grinding goniometer. The instru¬ 

ment in question is similar in principle and general appearance to that which was 

described to the Royal Society in December 1894, (‘Roy. Soc. Proc.,’ vol. 57, p. 324), 

and which is now in the National Collection in the South Kensington Museum. It 

differs from the latter instrument in including a few slight improvements which 

prolonged use has shown to be advisable for the sake of greater convenience and ease 

in manipulation. The perfected instrument affords the highest satisfaction, enabling 

the most accurately orientated and truly plane surfaces of crystals of any degree of 

VOL. CXCII.-A, 3 N 
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hardness to be obtained with the minimum expenditure of time and trouble. Its cost 

is necessarily very heavy, and the author wishes it to be clearly understood that it is 

not intended as an instrument for ordinary laboratory use, hut as a means of 

obtaining, irrespective of cost, plates blocks or })risms of the highest attainable 

accuracy of orientation and perfection of surface, for the purposes of original investi¬ 

gation. The accompanying illustration represents it. 

The following descrijjtion of the improvements on the instrument previously 

described is appended for the information of other workers, and in response to several 

eiKpiiries which the author has received both from investigators in this country and 

abroad. 

The most important is a new method of mounting the grinding table, which admits 

of its movement in its own plane ; this is introduced in order to he able to vary the 

part used in the grinding more considerably than can be achieved merely by use of 



NORMAL SULPHATES OF POTASSIUM, RUBIDIUM, AND CH5SIUM. 459 

the centering movements of the crystal-adjusting apparatus, and thus avoid concentric 

grooving of the grinding surface, besides no longer recpiiring the centering of the 

crystal to be disturbed. This is achieved by mounting the grinding gear on a slider^ 

Avhich can be made to traverse a bevelled bed resting on the base of the instrument, 

by rotation of a long screAA^ gearing Avith a corresponding thread in the bed and 

manipulated by a Avinch handle. The gunmetal bed is 20 centims. long, 6 centims. 

Avide at the top surface, the greater portion of AAdiich is planed out into a depression 

so as to reduce friction by only leaAung narroAv strips along the long edges to act as 

guides for the slider, and 4 centims. Avide at the base, there being thus a bevel of 

1 centim. at each side. The bed is fixed firmly to tlie main base of the instrument l^y 

four large screAvs. At the outer end is a cup-shaped holloAv ending in the tapped 

horizontal holloAV cylinder of steel vvhich gears Avith the steel screAv carried by the 

slider. The latter is slightly longer than the bed, and 8 centims. broad. It is a 

solid casting of steel holloAved underneath to the shape of the bed; the thickness 

above the bed is 8 millims., and the sides, bevelled on their interior, haAm a depth of 

24 miUims. In order to ensure close but not iiicoiiAmniently tight fitting of the slider 

on its bed, room has been left on one side for the insertion of a thick strip of steel 

l^etAveen the bevelled edges of the slider and the bed, and this is attached to the 

slider by five screAA^s Avhose heads are on its outside, and Avhich serve as adjusting 

screAvs to regulate the fitting of bed and slider. At the outer end the slider narrows 

off laterally and its termination is deepened to the depth of the bevelled sides, so as 

to form a stout support for the passage of the thick steel cylinder which, beyond this 

bearing, Avhere it is flanged to prevent its traversing, is cut Avith a deep screAV-thread 

corresponding to the hollow one in the bed. Immediately outside this bearing, the 

steel cylinder passes into the brass Avinch fitted Avith ebonite handle. As the other 

end of the screAv is unhanged, the slider can Iac readily removed from, or re-attached 

to, the bed ; on pushing the slider OA^er the bed it slides unimpeded for a dozen 

centims., Avhien tlie screAv begins to gear, and further movement is effected by the 

AAuncli. The grinding gear is similar to that permanently hxed to the base in the 

previous instrumeiit, the grinding table being provided Avith an efficient means of 

adjustment exactly perpendicular to the vertical goniometrlcal axis, and the friction 

pulley Avith a means of adjustment for tlie tightening of the driving band. The 

former is necessarily effected differently to the method employed in the previous 

instrument, as it is no longer possible to penetrate the base for the utilisation of the 

spiral spring and tripod method. It is here effected by an adjustable stout circular 

base-plate, Avhich is fixed to the slider by six screAA^s, three of AA^oich penetrate both 

plate and slider, and three pass through the plate only and thus act as adjusting- 

screws ; after these are adjusted the table is fixed m the adjusted position by means 

of the other three screws. The adjustment of the friction pulley is effected by 

carrying it on a Iwacket AA-hich is fixed at the inner end of the siider ])y tAvo Inroad- 

headed screAA's, Avorking in slots of the recpiired length in the horizontal claAA-s of the 

3 N 2 
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bracket. Both this attachment and the circular-plate-bearing attachment of the 

driving pulley carried at the outer end of the slider can be slightly tilted if desired, 

so as to make the jDulleys I'un sufhciently eccentrically to avoid friction of the band at 

the two crossing points on each side of the grinding table pulley. The slider carries 

in addition, at the middle of the friction pulley end, a small brass plate supporting a 

short tube, in which, together with two holes driven into the slider one near each side 

and on the other side of the grinding table, fit three rod supports for a circular guard 

to surround the grinding table and prevent projection of the lubricating liquid when 

grinding. The guard has a wdndow on the side nearest the friction-jjulley, for the 

2)assage of the crystal and its suppoi'ting apparatus as the slider is pushed into 

jiosition; the window can be closed by a shutter after the passage of the crystal, a 

strip of metal of similar curvature to the guard itself being fitted round this j^ortion 

of the guard for this purpose, and made movable with tlie aid of a little handle along 

a suitable slot directed by l)roadbeaded guiding pins. 

The height of the giinding surface of the lap, when the slider is in position, is 

exactly the same as that of the cutting disc when the cutting gear is in position, so 

that no variatioii of the height of the crystal-carrying axis is required. The cutting 

gear is exactly as in the formei instrument, rotatable about the back pillar, and 

siq)j)orted also, when in jiosition, in a traversing apparatus carried by the front pillar. 

The slider carrying the grinding aj^paratus is removed when the cutter is in position. 

In addition to the laps provided with the previous instrument, two additional ones 

are furnished. One is a polishing lap for hard crystals, consisting of hard opticians’ 

wrix melted into a circular metal tray of the same size as the other laps, and after¬ 

wards compressed so as to jiresent a plane surface. This lap, employed with ochre or 

rouge, enables the 023ticians’ method of polishing glass surfaces to be closely followed 

in the polishing of hard crystal surfaces. The second is a lap whose grinding surface 

is formed by a sheet of emery cloth stretched over, and cemented to, a metal base of 

the size and shape common to all tire laps. This lap has been particularly useful for 

elfecting the preliminary grinding down of the relatively large crystals employed in 

the work whose results are now being communicated, leaving but little for the 

ground-glass lap to do. The variety of eleven laps now provided, enables any or all 

of the usual grinding and polishing processes of the o})tician and lapidary to be 

followed, besides those described by the author for the grinding and polishing of the 

softer crystals of artificial salts. One of the laps is shown in position in the illustra¬ 

tion, and another to the left leaning against the base of the instrument. 

A further small but imjjortant addition to the accessories consists of three gripping 

crystal-holders, which are shown resting on the base. One of them is a triply and 

widely split tube of a centimetre bore, narrowing at a centimetre from the orifice into 

a cone which passes into a grooved stem similar to the stems of the ordinary holders 

used for wax attachment of the crystal. The wide splits are continued down to the 

stem, and the conical portion is })rovided A\ith a screw thread, Avith Avhich gears a 
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milled collar, Ijy the screwing of which down the cone the three portions of the 

tubular holder are com23ressed together. The latter are padded inside with broad¬ 

cloth, within which, on rotating the collar, the crystal is firmly clamped. This holder 

is suitable for the gripping of prismatic crystals. The other two, which difier only in 

the size of their apertures, somewhat resemble miniature tuning forks, the stems being 

of the same size as those of the other holders and similarly grooved to fit the ribbed 

socket at the base of the crystal-adjusting apparatus. The two prongs are in each 

case relatively Ijroad, 1‘3 centim., are padded inside with broad-cloth and can ])e drawn 

together so as to eftect the grip by means of a milled-headed clamping screw, passing 

loosely through one i^rong and screwing firmly through the other. One of the forks 

takes crystals 5 millims. thick and the other takes crystals up to 1‘2 centim. thick. 

If the crystal is not sufficiently tabular for direct gripping by one of tliese two latter 

holders, and not sufficiently eveidy prismatic for the advantageous use of the split-tube 

grippei', it is })acked in a rectangular Ijlock of cork iield in the larger forked liolder; 

the cork can be cut with a sharp penknife so as to accommodate the most incon¬ 

veniently shaped crystal in the position required for grinding. When the jjrongs are 

screwed together as much as possible so as to tightly grip the cork setting and tlie 

contained crystal, the latter is found to be rigidly held without any danger of 

cracking, the cork lending itself to an even distribution of pressure. These grip- 

holders were devised in order to avoid the frequent cracking which large crystals 

sufi'er when warm opticians’ wax is employed to cement them to the ordinary holders. 

The importance of this point is obvious, when it is remarked that a cracked crystal is 

totally unsuitable for use in determinations of thermal expansion Ijy the interference 

method, the crack being sure to develop further during the observation and derange 

the interference bands. 

Another addition is a special crystal-adjusting apparatus, shown resting on the table 

to the right in the illustration, intended for use in preparing 60° prisms for refractive 

index determinations, in cases where it is a difficult matter, by reason of delicjuescence 

or other rapid deterioration of the substance under Investigation, to prepare tlie two 

inclined surfaces by separate settings on a crystal-holder enq>loyed Avith the ordinary 

adjusting apparatus. In order to pre])are tAvo surfaces inclined at 60° by one setting 

of the crystal, it is obviously necessary to rotate the crystal for 60° on each side of 

the })articular principal optical plane Avliicii has been adjusted vertical to the grinding 

plane, Avith the aid of the goniometrical arrangements provided on the instrument, 

and to Avhich optical j)lane the tAvo recjuired surfaces are to be symmetrical. The 

adjusting apparatus pi'ovided for ordinary purposes is similar to the second one 

described in the memoir on the first and smaller pattern grinding goniometer, intended 

for use in grinding small artificial salt crystals (‘ Phil. Trans.,’ A, 1894, p. 895), but 

of larger size, corresponding to the larger instrument. It includes tAvo cylindrical 

adjusting movements provided Avith divided silver arcs and indicators, and a divided 

horizontal circle betAveen them to enafjle tlie loAver nio\'ement to be set at any desired 
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angle, usually 90°, to the upper one. The two cylindrical movements, however, onlv 

admit of 35° of rotation on either side of the vertical axis in each case ; this amount 

is ample for ordinary purposes, including the preparation of a 60° prism hv separatelv 

setting the direction of each required prism-face, by rotation of 30° from the plane 

perpendicular to tlie bisecting plane, the former of which planes can usually be as 

readily goniometrically adjusted w'lth reference to the existing crystal faces as the 

bisecting jdane itself In the exceptional cases referred to, of which the extremelv 

deliquescent cresium selenate is an excellent instance, it repays to render the 

adjusting mechanism more cumbrous in order to secure the prime object, and for this 

reason the new alternative adjusting apparatus is provided. 

It is exactly like the one provided for <,)i’dinary use as far down as the upper fixed 

cylindrical segment and its divided silver scale reading 35° on each side, which is 

suspended by a bracket from the lower disc of the centering arrangement. The latter 

is given in duplicate, one being always attached to the ordinary and one to the 

special adjusting apparatus, as it is more readily attached to, or detached from, the 

inner axis of the goniometer than the adjusting apparatus to or fi'oin the centering- 

disc. Sliding in and under the fixed segment, instead of the usual movable segment 

of the same size, is one of do\dde the size, that is of rather more than 150°. On one 

face this enlarged movable segment carries a silver index, to indicate the position 

with respect to the fixed graduated arc above it ; and on the other a silver arc 

p’raduated to 75° on each side of the centre. In a rabbetted bed on the under side 
o 

of the large segment slides the carrier of the lower adjusting segments, which are of the 

same kind as in the ordinary apparatus, arranged permanently at right angles to the 

two upper ones, the hoi-izontal circle of the ordinary a})paratus being omitted in order 

to avoid conqdexity. The sliding of the large segment about the rq)per fixed one is 

effected, for the 35° of its path on each side, by manipulation of the milled head of a 

tangent screw arrangement as in the ordinary apparatus. The lowest of the pair of 

segments arranged at right angles to these upper ones is also manipulated in its 

segmental bed foi- 35° each side by a similar tangent screw. But the sliding of 

the carrier of the tvm lower segments about the large segment is effected by hand, 

and fixation at any required position, with reference to the laige silver arc as indi¬ 

cated l)y an index on the carrier, can be l_)rought about Ijy a milled-headed screw-clamp 

on the opposite side to that on which are situated the manipulating screw of the 

lower segments and the index just referred to. 

The mode of using the apparatus is very simple. The crystal is attached, with the 

minimum of wax protruding at the sides, to the smallest of the special crystal-holders 

which are provided with azimuth adjustment, and with the plane which is desired to be 

the bisectrix of the 60°-prism arranged vertically as nearly parallel to the goniometrical 

axis as possilde and parallel to the lower tangent screw. The latter can be accurately 

attained l.)y use of tlie azimuth adjustment of the crystal-holder. The ])lane referred to 

is then exactly goniometrically adjusted Avith the aid of the two tangent screws, that 
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is, in the case of the upper adjusting movement by slight rotation of the large segment 

about the upper fixed segment, the clamping screw being fixed, with the indicator on 

the carrier at zero. The screw is then unloosed and the slider, together with the lower 

segments carried by it, moved round 60° on one side, as indicated by the silver index 

on the carrier, which travels closely underneath the large divided arc. If the 60° are 

not conveniently attained by the hand movement of the carrier, the difference can be 

nicely made ujd by movement of the large segment about the ujDj^er arc by means 

of its tangent screw. If the original position of the upper segment had been noted 

on the silver scale it could readily be re-attained after the grinding of the first 

surface. When the latter has been achieved, the lower part of the apparatus is 

transferred to a position 60° on the other side of the centre, by a total sliding under¬ 

neath the large segment of 120°, and the second surface is ground. 

Another smaller but very useful addition is a spring-clutch to keep up the counter¬ 

balanced gun-metal axis, the apparatus for varying the pressure of the crystal on the 

grinding lap, when the left hand is removed from that one of the counterpoising levers 

which it manipulates during grinding. In order to prevent this axis from moving during 

the adjustmenf' of the crystal, a hooked spring-clutch is arranged about the bearing of 

the lever, in such a manner that when it is pushed over into position, it is maintained 

there by the force of a spring. It consists of an arm rotatable about an axis screwed 

into the lower part of one side of the bearing, and carrying a short horizontal bar 

attached at its outer end which j^resses down on the outer arm of the counterpoising 

lever when in position; a strong spring fixed to the base of the bearing and which 

has to be overcome on moving over the little arm, presses up against an angle of the 

latter below the axis in such a manner as to keep the bar of the clutch, after being 

brought over into position, firmly down on the counterpoising lever. The lever is 

thus fixed with its elbow resting on the circle plate, and its other arm carrying the 

knife edge is maintained pressed up against the collar of tlie gun-metal axis, and 

tlius the axis and the crystal which it carries at its lower extremity is unable to fall 

out of position during tlie adjustment. 

Tlie remaining improvements are two additions to the telescope of the goniometer, 

due to the suggestion of the author’s friend Professor H. A. Miers, who ])ad already 

had such additions made to the telescope of an inverted goniometer constructed tbr 

him by the same firm, Messrs. Troughton and Simms, and which wms intended for 

the study of the vicinal faces of crystals while in the act of growth in a cell of 

mother liquor. As the author’s cutting and grinding goniometer forms a most 

excellent inverted goniometer, it was considered advisable to adopt these additions. 

A rectangular cell with truly plane glass sides is also included to contain the satu¬ 

rated solution employed in such investigations. 

The first of the two consists of a combined goniometer- and micrometer-eyepiece, 

which provides two fixed spider-lines arranged at 90°, one vertical and adjusted 

exactly parallel to the vertical axis of the goniometer and the other horizontal, both 
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being diameters of the circular field ; and also a third spider-line which is both 

rotatable and capable of movement j^erpendicular to itself in the focal plane. The 

fixed lines are attached in the central aperture of a circle-plate 7 centims. diameter 

fixed round the optical tube of the eyepiece, and which carries near its periphery a 

circle divided directly into degrees. The movable spider-line is carried in the aper¬ 

ture of a micrometer box carried in front of a similar circular plate, which latter is 

fitted closely to the former plate in front of it, and partly enveloping it Avith a milled 

flange in such a manner as to be rotatable about it. This front plate is pierced by 

a window above the micrometer box in such a position that the divided circle of the 

fixed jolate is visible through it. The inner edge of the windoAv is bevelled and carries 

a vernier, with the aid of which the circle reads to minutes. The movable line is 

fixed to the front of the traversing frame of the micrometer, at the focus of the double 

eyepiece which slides in the short portion of the optical tube in front of the box. The 

fixed lines are brought into the focal plane and almost into contact Avith the moAmble 

one by means of a relatively thick anmdus capable of penetrating the traAmrsing frame 

and attached to the aperture of the fixed circle. The traAmrse of the frame and its 

spider line is recorded by a divided drum of the usual kind at the right-hand side of 

the box; the drum is divided into 100 parts, and the reading is indicated by an index 

mark fixed alongside. Tlie moAmhle circle and the spider line AAdiich it carries can be 

clamped to the fixed circle and the stationary spider lines Avhen desired, by means of 

a suitable clamping screAv proAuded Avith milled head, on the lower part of the peri¬ 

phery o])posite to that near Avhich the AvindoAAA is situated. These arrangements 

enable small movements of the image of the collimator signal, reflected from a crystal 

surface during groAAdh and due to disturbance of the thermal or other conditions of 

the solution, to l^e folloAved and measured, Avhether they are lateral, angular, or both. 

The other addition to tlie telescope is that of so arranging the remoA'able lens, 

usually added to the telescopes of goniometers outside the ohjectiA^e for the jAurpose 

of conA^ertlng the optical system into that of a Ioav poAver microscope focussing the 

crystal, as to make it capable of being throAvn into position either as usual behind the 

objective or in front of the eyepiece, and further- of making it capable of traA^elling 

for some distance along the o|)tical axis. The jnirpose of this is to enable the image 

of the signal to be actually folloAved right up to the image of the crystal itself, in order 

to he quite certain as to the particular face from Avhich it emanates. This is achieA'ed 

]3y supplying tAvo such lenses, mounting the pair on a T-piece, and hinging the stem 

ahont a small j^latform carried ahoAm a short tube sliding round the main optical tube 

and prevented from rotation by a suitable rib and grooA^e. It is only necessary to 

SAving the T-plece over one AAmy or the other for the lens to fall into joosition either 

adjoining the ohjectiAm or the eyepiece, the length of the end cross-piece carrying the 

lenses being arranged so that either lens falls exactly into the optical axis. The one 

AAdiich falls behind the ohjectiA'e is generally employed close \ip to the latter in the 

usual manner. The other one AAdiicli falls in front of the eyejiiece is the one employed 
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to trace an image; it is of such focal length that when it is close up to the eyepiece 

it permits the image of the signal to he seen almost as well as when it is absent, 

while as it is drawn more and more in front of and away from the eyej)iece it causes 

the image to pass gradually into that of the jiarticular reflecting face of the crystal 

itself The latter is clearly focussed when the sliding tube has been drawn forward 

to the full extent of its path, and the face afibrding the signal image is seen brightly 

illuminated, as well possibly as other vicinal faces, from which it is distinguished by 

the tracing process just indicated. 

The rest of the arrangements of the instrument are precisely as described in the 

former memoir {loc. cit.). 

Procedure in Cutting and Grinding the Crystal-hlochs. 

In selecting crystals from which to prepare a parallel-faced block, those were 

naturally chosen which were free from traces of turbidity and from cracks and 

distortions. Crystals of caesium suljehate are readily obtained perfectly free from 

turbidity; in the case of rubidium sulphate only very slow growth in vacuo yields 

crystals satisfactory in this respect. The exceptional crystals of the potassium salt, 

eventually obtained after so much trouble, as has been referred to, were also satisfactory 

from this point of view. 

After removal from the mother liquor, the crystals were carefuUy dried, and then 

immediately stored in a desiccator for several days at least before iise. With two 

exceptions each selected crystal was only employed for duplicate determinations, on 

two successive days, of the linear thermal expansion or contraction along some one 

particular axial direction. In aU, 29 difierent crystals were employed, 11 of 

potassium sulphate, 8 of rubidium sulphate, and 10 of caesium sulphate. The two 

exceptions were crystals of the rubidium and caesium salts, the former of which was 

a particularly fine specimen elongated along one axial direction, and which, when 

cut in two halves transversely to this direction yielded portions so large that they 

were separately employed for determinations in two different axial directions; the 

crystal of caesium sulphate was cut and ground into a rectangular block for successive 

determinations in all three axial directions, so as to afford an instance of all three 

linear values, and from these the value for the cubic expansion, being derived from 

one and the same crystal, for comparison of the cubic deformation thus obtained with 

that derived by calculation from measurements of the three linear expansions or con¬ 

tractions exhibited by difierent crystals. The results were so nearly identical, and 

the comparison therefore so satisfactory, that there will be no occasion to further refer 

to this point. 

The orientation of the various faces, and the consequential identification of the 

axial directions of the crystals, was usually an easy matter, as the author was familiar 

with the salts in question owing to the exhaustive morphological and optical study 

VOL. cxcn.—A, 3 o 
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already made. The identification of the axial directions is such a vital matter, as 

will be abundantly evident when the results are discussed, that it should be stated 

that the whole of the work, in common with all the author’s previous crystallo- 

graphical investigations, has been carried out exclusively by the author personally. 

In every case, the axial directions were actually verified both by goniometrical 

measurements and by examination of the interference figures in convergent polarised 

light. Immersion in a cell of benzene, on the inverted goniometrical polariscope, 

materially facilitates the latter verification, as the refi’active index of that liquid is 

not far removed from the mean of the indices of the three salts, and the interference 

figures are consequently very clear, and the apparent optic axial angle is very nearly 

the true angle. Oil cannot be used, as it is apt to penetrate into any minute cavities 

in the surfaces, and to ooze out during the thermal observations in drops too small to 

be noticeable without a lens, but which are sufiicient to entirely derange the inter¬ 

ference bands by lifting the compensator by an amount which is very appreciable in 

observations of such delicacy. 

For the same reason oil cannot be used in grinding the surfaces, and recourse was 

again made to benzene, which by its volatility rapidly removes itself from cavities. 

It is naturally unavoidable that greater quantities require to be used than of oil, as it 

so rapidly dries away. Hence a dropping funnel was arranged above the cutting or 

grinding disc, to deliver drops sufliciently fast to continually provide adequate lubrication. 

The crystal, after verification of the axial direction along which it was desired to 

determine the linear deformation, was mounted in the grip-holder, in the manner 

already described, with the axial direction in question apjDroximately vertical, parallel 

to the goniometrical axis and perpendicular to the cutting disc and grinding table. 

The apj^roximation was then converted into absolute adjustment, by goniometrical 

observation and adjustment of the natural zone of faces parallel to the axis in 

question. If the crystal were so terminated below that much grinding Avould be 

necessary to produce the required surface, the cutter was first brought into requisition 

and the lower end cut oft*, at such a distance as to aftbrd a surface of the requmed 

extent with the least sacrifice of thickness in the axial direction adjusted. The 

cutting of these crystals of artificial salts, although they are so much more friable 

than mineral crystals, is nevertheless most successfully performed by the new instru¬ 

ment. No crystal has yet been broken in the process. If no cutting were required 

the rough grinding of the surface Avas carried out on the emery-cloth lap, at first with 

the crystal-holder and lap detached from the insti'ument and tlie former held in the 

hand, and tlieii, after a rough approximation to the desired surface had been attained, 

with the crystal and its holder and the lap in position. Finally, after verification of 

the adjustment, which, owing to the mode of fitting of the holder on to the suspended 

adjusting apparatus, Avas usually unimpaired, the surface Avas finely ground AAuth one 

of the ground-glass laps. 

As the method of using the aluminivim compensator aboA'e the crystal AA'as alAA’ays 
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adopted in arranging the interference apparatus of the dilatonieter, the second of the 

methods described in the memoir concerning the latter and which is illustrated 1)y a 

special figure in the German translation of that memoir contributed to tlie ‘ Zeitschrift 

fur Krystallographie ’ (30, 530), there was no necessity to polish the surfaces of tlie 

crystal-blocks. For a crystal surface is not required to act as the lower reflecting 

surface involved in the generation of the interference bands, the upper surface of the 

compensator performing that function. It was therefore only necessary to complete 

the block by preparing a similar j^arallel surface in the same manner, separated from 

the first one by as much thickness of crystal as the particular specimen admitted of. 

The crystal-block was then cleaned from crystal dust by washing in benzene, dried 

with a clean linen cloth free from fluff, and stored in a desiccator until required for 

the observations. The thickness of the blocks employed varied, as will subsequently 

be seen from the record of the accurate measurements, from 4‘8 to 10‘7 millims., the 

former limit being in the case of the only crystal under 5 millims. in thickness. The 

great majority were from 7 to 9 millims. thick. 

In two or three cases, although only benzene had been used in the treatment of the 

crystals, the observations of expansion were vitiated by the oozing of minute traces 

of liquid, wliich proved to be mother-liquor, between the surfaces of the platinum- 

iridium tripod table and the crystal, or between the latter and the compensator. 

For in most cases the three point method of contact was impossible, owing to the 

prepared crystal surfaces being narrower in one direction than in the other, too 

narrow to take the third point but not too narrow for stable equilibrium of both 

crystal and compensator. A comparison of the results for the same direction by the 

two methods shows, however, no appreciable difference, the surfaces having always 

been absolutely clean and free from dust. Moreover, the surfaces produced l^y the 

author’s cutting and grinding goniometer are so absolutely plane, that no rolling, due 

to slight convexity of surface, has ever been observed with them. Further, the 

placing of the crystal and compensator in position on the table of the tripod was 

always effected by sliding, to minimise any intervening compressed air film. In the 

cases of oozing of mother-liquor referred to, the crystals were subsequently heated 

slowly to 105° in an air-bath, and maintained at this temperature for twelve hours. 

On repeating the observations of expansion no further disturbance occurred, successful 

determinations being obtained, and the results agreed satisfactorily with those 

obtained for the same direction of the same salt in cases where this treatment had 

been unnecessary. 

The Determinations of Linear Deformation. 

Mode of Conducting the Observations. 

The determinations of thermal expansion or contraction were made in the manner 

which is very briefly outlined for crystals at the close of the memoir concerning the 

3 O 2 
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dilatometer {loc. cit., lower part of p. 363 and p. 364), after the description and com¬ 

munication of the results of the determinations of the expansion of the platinum- 

iridium alloy of the interference tripod and of the aluminium of the compensators. 

The temperatures employed have not been quite so high as in the cases of those 

metallic substances, the highest limit being in the neighbourhood of 96°, in order 

that there might be no appreciable deformation due to internal strain, provoked by 

the attempted vaporisation of the water of mother-liquor contained in the inevitable 

minute internal cavities. It is impossible to altogether prevent the formation of such 

cavities, even by slow evaporation in vacuo, but the remarkable agreement of the 

results obtained indicates that any variable deformation due to this cause has been 

infinitesimal. 

Every efibrt has been made to render the conditions of the determinations as 

rigidly analogous as possible, so that comparisons of the results can be made with 

confidence. As far as possible the same aluminium compensator has been used 

throughout, namely, one 5'25 millims. thick and a centimetre diameter, and un¬ 

provided with points as the three-point method of contact was so rarely available; 

where exceptions have been made, results with the compensator mentioned are avail¬ 

able for the same direction of the same salt, and the two series of results agree so 

well that the change has evidently not introduced any error. This, of course, should 

be so, for the compensators, including the one 12 millims. thick used for the deter¬ 

mination of the expansion of the metal, were all cut from the same casting of pure 

aluminium. In most of the excejDtional cases the other compensators were provided 

with points, and the three-point method was used, and afforded the results which 

have already been stated to accord with those where points were not used. The 5‘25 

compensator gives excellent interference bands, particularly from one of the two 

surfaces, which was marked and invariably used. The bands afforded by it were 

slightly curved, due to infinitesimal convexity, an additional advantage as it was 

always possible, by noting whether they moved outwards from or inwards towards 

the centre of curvature, to at once ascertain whether the movement of the bands 

were due to expansion or to contraction. There is a further advantage in employing 

the compensator above rather than below the crystal, namely, that the polished 

surface of aluminium reflects light almost equally with the other surface involved in 

the production of the bands, the lower surface of the large cover-glass which is laid 

on the platinum-iridium tripod screws and which bears about its centre the miniature 

silver ring whose centre is the point of reference for the micrometric measurement 

of the position of the bands. 

The air-film between the two reflecting surfaces was in nearly all cases very thin ; 

it was not found advisable to strive so much for exact compensation for the expansion 

of the screws as to produce the most brilliant bands. For the correction for non¬ 

compensation is of course in all cases accurately determined from the known expansion 

of the tripod alloy and aluminium. The screw-length corresponding to 5’25 millims. 
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of aluminium is about 13’77 millims. which leaves room for a crystal 8‘37 millims. 
thick and an air film of OH5 millim. As the crystals only usually varied 1 or 2 
millims. each side of the thickness mentioned, the amount of under or over compen¬ 
sation was never very large. 

The same thermometers have been employed as were fully described in the previous 
memoir. Their fixed points were carefully redetermined after the completion of the 
determinations. The inner bent thermometer whose bulb was in contact with the 
tripod and whose indications were those accepted, was found to have altered only 
to the extent of 0°‘l, the indications at 0° and 100° in ice and steam, after applying 
the pressure correction for the latter, being 0°'l and 100°'l respectively. Hence the 
interval had remained unchanged, and as only differences of the temperatures are 
employed in calculating the coefficients of expansion, no correction of these latter 
is required for change of interval. 

The usual modus operandi was to expend the greater part of three days in carrying 
out a duplicate pair of determinations, of the linear thermal deformation of any one 
crystal along the direction perpendicular to the two prepared parallel surfaces. The 
afternoon of the first day was employed in adjusting the crystal and the whole 
apparatus so as to afford a suitable field of interference bands. Each of the two 
succeeding days was utilised for the carrying out of a complete series of observations 
of the position and transit of bands for two intervals of temperature, the operations on 
each day occupying 5 to 7 hours, during the whole of which time the author followed 
the bands without intermission. Naturally, the carrying out of sixty-four such 
observations has proved very trying and fatiguing, the observer being continually 
afraid of such highly delicate measurements being vitiated by earth tremors due to 
street traffic or other disturbance, in spite of the rigid mounting of the apj^aratus 
on a slate table. Fortunately, this fear has not proved to have had much foundation, 
as the author’s laboratory is happily situated in an exceptionally quiet part of Oxford 
well removed from the city and the railway. But the experience has shown that the 
observations would have been far more difficult, if not impossible, in a large city with 
a network of underground railways such as London. Although this source of dis¬ 
turbance has been minimised, several observations have been lost, generally after 
spending hours upon them, by the cracking of the crystal under the influence of the 
rise of temperature, slow as it always was in order to avoid this catastrophe. 

The further experience gained during this work indicates that in the case of 
crystals the Abbe method, of calculating the number of bands which pass the point 
of reference between two temperatures from initial and final observations of the 
positions of the bands nearest the reference point, for two wave-lengths, is generally 
inapplicable. The only guarantee that the observation has been a trustworthy one, 
that no disturbance due to any of the causes already referred to has occurred, is 
obtained by carefully following the bands for the whole of the temperature-interval, 
and observing that they maintain their regular distances and exhibit no appreciable 
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twisting round the centre or any other irregularity, throughout the whole of the 

interval of time. Frequently slight cracking of the crystal is accompanied by 

widening or narrowing of the bands during one part of the observation and movement 

in the inverse direction during the other, or possibly by twisting for a whole revo¬ 

lution, and very frequently l)y merely jumping several bands, the appearance at the 

end Ijeing much the same as at the beginning. Such an observation is, of course, 

valueless, but the Abbe method would not detect this fact. Undoubtedly, the 

author’s method, although very fatiguing, is the only one which is trustworthy 

when fragile substances are under investigation. 

The counting of the hands was achieved precisely as described in the dilatometer 

memoir (p. 348) with the aid of the tape-puncturing recorder, the induction coil 

which illuminated the hydrogen Geissler tube being actuated at sufficiently rapidly 

succeeding intervals to enable the author to observe the passage of at least every 

f[uarter of a band. Timing the transit with the watch is an excellent aid, as, if the 

observation is trustworthy, there should be no sudden changes of rapidity in the move¬ 

ment of the bands. When the Fletcher ring-gas-burner below the double air-bath is 

first ignited, the bands move very slowly, the rapidity then growing with a regular 

increment until it reaches, in the case of large expansions where at least forty bands 

pass during the interval of 45° of temperature, a maximum of two bands per minute ; 

the rapidity then as gradually diminishes until, with the attainment of constancy at 

the higher limit for that particular interval, the bands cease to move altogether. 

Moreover, if the temperature recorded by the inner bent thermometer, whose bulb 

is tied to and in contact with the platinum-iridium tripod, shows any slight tendency 

to descend a fraction of a degree, the bands should immediately begin to retrace their 

steps to a corresponding extent. No observation has been accepted during which 

these conditions were not fulfilled. 

The temperature limits em|)loyed were respectively the ordinary temperature, 

o])tained as low as j)0ssible by commencing work about 7 A.M., the neighbourhood 

of 56°, and that of 96°. The determinations of the positions at these temperatures, 

of the two bands nearest to the reference point, were made precisely as described in 

the previous memoir {p. 346). The monochromatic light employed throughout was 

red hydrogen light, corresponding to the C line of the solar and hydrogen spectrum, 

separated from all other radiations by a train of prisms in the manner described in 

the dilatometer memoir (pp. 322 and 342). The wave-length of this radiation 

employed in the calculations was 0'0006562 millim. 

When adequate time for complete cooling had elapsed, after the second series of 

observations, the measurement of the thickness of the crystal and the length of the 

tripod screws was made, l:)y means of the thickness measurer described on p. 337 of 

the former memoir. For this purpose the interference chamber was carefidly raised 

out of the bath by means of the rackwork on the pedestal, and the tripod, together 

with the supported crystal and compensator, after cutting the thread binding the 
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thermometer to it and gently drawing the latter aside, was removed from the chamher 

and transferred to the thickness measurer. The greatest care was taken not to 

disturb the positions of the crystal and compensator on the table of the tripod. The 

large cover-glass (cover-wedge of the previous memoir) was too large to be taken 

through one of the windows of the chamber along with the tripod, so was left inside, 

being raised with the left hand while the tripod was removed with the right to the 

nearest resting place, the top of the air-bath ; the cover-wedge was then turned over 

so as not to injure the silver reference ring and laid on the floor of the chamber. The 

tripod was then removed with both hands to such a position on the glass base of the 

thickness measurer that the agate pointed end of the measuring bar would fall exactly 

on the centre of the compensator, over which the silver reference ring of the cover- 

wedge had been situated during the observations. The height of the plane of the 

tops of the three tripod screws at this point was then first determined Ijy laying on 

the screws a large circular disc of glass similar to the cover-wedge, and whose surfaces 

were truly plane and the thickness of which had previously been repeatedly deter¬ 

mined at a position near the centre which was conveniently indicated by a small 

internal bubble. The disc was laid so that the bubble was over the centre of the 

compensator. The measurement was then made by lowering the counterpoised bar 

into gentle contact with the top of the disc and reading the scale with the aid of the 

micrometer. This height, minus the known thickness of the disc, gave the height of 

the plane of the tops of the screws. The disc was then removed and the bar lowered 

down upon the compensator, and the height again noted. The difference between 

this and the height of the screws gave the thickness of the air film. The bar was 

again raised and the compensator next removed, without disturbing the ciystal, a 

matter requiring some nicety of manipulation with a pair of small ivory-tij^ped 

forceps ; the bar was then allowed to fall gently on the crystal, when another 

measurement was taken. The difference of this and the last was of course the 

thickness of the compensator, as nearly as possible 5’250. It then only remained to 

once more raise the bar, remove the crystal, allow the bar to fall on to the table of 

the tripod, and take a final measurement of the height of this. The difference 

between this reading and the previous one afforded the measure of the thickness of 

the crystal. In cases where the three-point method was employed the only difference 

was to determine the mean height of the three particular table points used, with the 

aid of a small disc of glass, of known thickness at the centre, and placed on the same 

points, instead of determining the height of the surface of the table itself The 

length of the screws was evidently afforded by subtracting from the height of the 

screws the height either of the table itself or of the points, according to the method 

of supporting the crystal employed. 

The four desired basal quantities, the thickness of the crystal, the thickness 

of the compensator, I the length of the screws, and d the thickness of the air-film, 

were thus determined exactly along the vertical line passing through the centre of 
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refei'ence of the interference band observations, and so any error due to minute lack 
of parallelism of the surfaces involved was obviated. 

An example taken at random from the actual measurements will render the process 
quite clear. It refers to the fourth crystal of caesium sulphate along the direction of 
the morphological axis h. 

millims. millims. 

Height of top of glass disc 
Known thickness of glass disc 
Height of screws . . . . 

,, top of compensator 
„ „ crystal . . 
,, ,, tripod table. 

40-857 

6-117 

34-740 d = 0-145 

34-595 4 = 5-253 

29-342 8-379 

20-963 I = 13-777 

The Nature of the Problem ivith reference to the Crystallographical Symmetry. 

The symmetry of the three salts under investigation being orthorhombic, the three 
axes of the thermal ellipsoid coincide in direction in each case with the crystallo¬ 
graphical axes, just as do the axes of the optical ellipsoid already fully elucidated in 
a previous memoir. The amounts of thermal deformation along these three axial 
directions should not, from general considerations, be. equal, as in crystals belonging 
to the cubic system, nor even would any two of them be likely to exhibit the same 
amount of expansion, as in the case of crystals exhibiting tetragonal or hexagonal 
symmetry. Orthorhombic symmetry requires that if a sphere of the substance of any 
one of these crystallised salts could be procured at any specific temperature, at any 
other temperature such sphere would have become converted into an ellipsoid with 
three unequal axes, and that these axes would coincide in direction with the three 
rectangular crystallographical axes. One of these morphological axes would thus be 
the direction of maximum expansion or contraction, another that of minimum and the 
remaining one that of intermediate deformation. The problem of the determination 
of the nature and amount of this thermal deformation consequently resolves itself 
into the determination of the amount of linear thermal expansion or contraction along 
the respective directions of the three morphological axes. From these fundamental 
data can be calculated the cubical expansion, in other words, the difference in volume 
between the sphere of unit radius and the deformation ellipsoid produced therefrom 
as the effect of change of temperature. 

The Determinations and Computations. 

The work has thus consisted in the determination of nine quantities, namely, the 
linear coefficients of thermal expansion or contraction along each of the three crystal¬ 
lographical axes of each of the three salts. It may be at once stated that in no 
case has contraction been observed, expansion in every direction having been found 
to be the invariable rule with regard to all three sulphates. Every one of the nine 
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quantities has been determined at least six independent times on three different 

crystals, and with respect to five of the quantities eight determinations have been 

made on four separate crystals. In all sixty-four independent determinations have 

been carried out, on different days, and using the twenty-nine different crystals of 

which the details have already been given (p. 465). 

Each determination afforded, as already fully explained in connection with the 

determinations of the expansion of platinum-iridium and aluminium in the dilato- 

meter memoir {loc. cit. p. 352), the two constants required for a complete statement 
% 

of the thermal behaviour, namely, the constant a, the coefficient of expansion at 0°, 

and 6, half the increment of the coefficient per degree of temperature, the coefficient 

not being a fixed quantity for all temperatui'es but varying regularly with the 

temperature. The coefficient of thermal expansion is signified by a, and the expres¬ 

sion for the actual coefficient at any temperature t, as also for the mean coefficient 

between any two temperatures whose mean is is : 

a = « fi- 2ht. 

The mean coefficient of expansion between 0° and f is, however 

a -f- &L 

The data afforded by observations of the positions of the interference bands at 

three adequately separated temperatures, and of the number of bands passing the 

reference point during the intervals between these temperatures, together with a 

knowledge of the original thicknesses of the block of crystal and of the aluminium 

compensator, and the length of the platinum-iridium screws projecting above the 

tripod table or its raised points,-are ample to enable the two constants a and h to be 

calculated. For it is only necessary to insert respectively in three equations of the 

form 

= Eo (l cit ht") 

the known values of the three temperatures and the lengths (thicknesses) of the 

crystal block at those temperatures, and to solve the three equations thus provided, 

for the three unknown quantities Lq, a, and 6. 

The solution of these equations furnishes expressions for the three required 

quantities of the forms 

0 <h 
a = —, h =^, and Lq = — Bti — 

-L'O -1^0 ^ 

in which 0 and (f) are terms involving the differences of the lengths, at the 

three temperatures ti, U, and and the sums and differences of those temperatures. 

The actual expressions for 0 and (j) employed throughout the observations were : 

0 _ (fi + 4) (L<3 ~ Lf,) (fi + i-i) (L4 ~ ^ 

(4 ^1) (4 ^2) (4 ^1) (4 ^2) 

/ _ — fiti __ 1^4 ~ , 

(4 4) (4 4) (4 4) (4 “ 4) 

3 p VOL. CXCII.-A. 
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The results of the determinations of linear thermal expansion are presented in the 

next section in tabular form. Each table represents the results for one axial direction 

of a particular salt, and is divided into three jDortions. In the first portion is given 

the essential experimental data afforded by the observations and measurements. is 

the measured thickness of the crystal block, that of the compensator, I the length of 

the platinum-iridium screws, and d the thickness of the air-film, each measured in the 

manner described on p. 471. Next come the temperatures, and subsequently the corres¬ 

ponding barometric pressures. The next column contains fo, the number of inter¬ 

ference bands which effected their transit past the reference point during the mterval 

between L and to. In the succeeding column is given the small correction to be 

applied to the number of bands, rendered necessary by the alteration in the wave¬ 

length of the monochromatic light employed, which accompanies the change in the 

refraction of air consequent on the considerable rise of temperature and possible 

.alteration of pressure. The nature and a.mount of this correction were fully discussed 

ill the previous memoir {loc. cit. p. 350), and the formula for it there given was 

invariably followed. The barometric pressures and d are essential terms of that 

formula. The corrected number of bands, fi, is given in the next column, and the 

three remaining columns contain the number of bands for the temperature interval 

between b and its correction, and the corrected number for that interval. 

In the second portion are given, in the first two columns, the calculated values of 

the apparent expansion, obtained by multiplying the corrected number of bands by 

half the wave-length of the red C hydrogen light emjiloyed, 0•0003281 millim., 

according to the fundamental principle of the method; in the next six columns the 

calculated quantities involved in the correction to be applied to the apjDarent expan¬ 

sion for lack of compensation are recorded; and in the last two columns the actual 

expansion of the crystal obtained by use of the correction. For a fuller discussion of 

the principle of the method as touching the first tv/o columns, the memoir concerning 

the dilatometer may be referred to ; it need only be remarked here that the transit 

of each band past the reference spot corresponds to an alteration in the thickness of 

the air-film c/, between the compensator and the cover-wedge at the position of the 

reference spot, equal to half a wave-length of the monochromatic light employed. 

The determination of the correction for non-compensation involves the calculation of 

the actual expansion of the platinum-iridinm screws, which is given in the third and 

fourth columns for the two respective temperature-intervals, and of the aluminium 

compensator, which is given in the fifth and sixth columns. These values were 

calculated with the aid of the coetficients of linear expansion of the two metals, as 

previously determined with the greatest cai'e by the author and published in the 

memoir concerning the dilatometer (pp. 356 and 360). The following were the actual 

expressions used, / and being the values given in the fourth and third columns 

respectively of the first portion of the table 
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For the screws : I 8600 + 4-56 --^^' {U — h) for the first interval, and 

similarly for the second interval, substituting for U. 

For the compensator; 10 ®(2204 -h 2’12 (O ” h) for the first interval, 

and a like expression for the second interval with A substituted for U. 

In each case the actual expansion of the metal is thus calculated by multiplying 

the length (thickness) of the metal by the mean coefficient of the linear expansion 

between the two temperatures, that is by a + for that metal where t is the mean 

of the limiting temperatures of the interval, namely -g (h -fi A) or ^ (d + t^); and also 

by the amount of the temperature interval, that is, — h or — L- Actually, of 

course, one uses h instead of 2fi. (^i + ^2)- 

The diflferences between the amounts of expansion of the screws and the compen¬ 

sator are given in the next two columns headed “ correction for non-compensation,” 

The correction is obviously positive, given an expanding crystal, when the screws 

expand most, and negative when the compensator expands to the greater extent. 

For in the former case the effect is to increase the thickness of tiie air-film, and 

consequently the amount of diminution of the thickness of the air-film due to the 

expansion of the crystal is not fully evident, the actually observed amount being less 

than that really effected by the expanding crystal by the amount of this excess of 

expansion on the part of the screws. This latter amount should, therefore, be added. 

The inverse is the case when the excess is on the part of the compensator; causing, 

as it does, additional diminution of the thickness of the air-film, it should be sub¬ 

tracted. The values given in the last two columns, representing the actual expansions 

of the crystal during the two intervals of temperature, and were 

obtained by applying the correction for non-compensation, in the sense just indicated, 

to the apparent expansions'^A/2 andji^'X/2. 

In the last portion of the table are given the calculated values of 6, (f), and Lq, and 

of the two required constants of the coefficient of linear expansion, the coefficient 

at 0° and h, half the increment of the coefficient per degree of temperature. In the 

last column are given the values of the coefficient of linear expansion, a, for 50°, 

calculated by means of the formula rx — a 2ht. Fizeau invariably gave the 

coefficient at 40°, a specific temperature in the neighbourhood of the mean of the 

extreme limits employed by him, in addition to a and h. As 50° is nearer the mean 

of the author’s limiting temperatures, this specific temperature has l^een chosen in 

})reference, for which to record a particular calculated value of a. 

The Results. 

In the following tables are presented the results of the determinations and calcu¬ 

lations, 

3 P 2 
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Summary of the Kesults for the Linear Coefficients of Expansion, 

Collating the mean values given at the foot of each of the foregoing tables, the 

following is a statement of the essential results of the work as regards the linear 

coefficients. 

Mean Coefficients of Linear Exjiansion, a + ht, between 0° and f. 

Potassium Sulphate. 

For the direction of the axis a .. . O’OOO 036 16 + O'OOO 000 014 4L 

„ „ h . . . 0-000 032 25 + 0-000 000 014 IL 

„ „ c . . . 0-000 036 34 + 0-000 000 041 St. 

Rubidium Sulphate. 

For the direction of the axis «... 0-000 036 37 + 0-000 000 020 St. 

„ „ h . . . 0-000 032 14 + 0-000 000 018 4L 

„ „ c . . . 0-000 034 63 + 0-000 000 038 Ot. 

CcBsium Sulphate. 

For the direction of the axis «... 0-000 033 85 + O'OOO 000 021 At. 

„ ,, h . . . 0-000 031 95 + 0-000 000 018 2L 

„ „ c . . . 0-000 035 90 + 0-000 000 041 At. 

In abbreviated notation will next be given a list of the true coefficients. The 

suffix attached to a indicates the axial direction. 

True Coefficients a of Linear Expansion at C, or Mean Coefficients between any 

Two Temperatures whose Mean is t. a. — a 2ht. 

Potassium Sulphate. 

a^= 10-® (3616 + 2-88^). 

a, = 10"® (3225 + 2-82i). 

a, = 10-® (3634 + 8-260. 

Rubidium Sulphate. 

a„= 10"® (3637 + 4-060. 

aj, = 10-® 03214 + 3-680. 

= 10“® (3463 + 7-600. 

Ccesium Sulphate. 

10-® (3385 + 4-280. 

a, = 10-® (3195 + 3-640. 

a, = 10-® (3590 + 8-280. 
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A comparison of the coefficients of expansion along analogous directions in the 

three salts is presented in the following table, which also includes a comparison of 

the coefficients for the particular temperature of 50°. 

Com'parative Table of the Linear Coefficients of Expansion for the Three Salts. 

The Constant a, the Coefficient of Expansion at 0°, 

Crystallographical axial 
direction. K2SO4. Rb2S04. CS2SO4. 

a 0-000 036 16 0-000 036 37 
1 

0-000 033 85 ’ 
h •000 032 25 •000 032 14 •000 031 95 
c •000 036 34 •000 034 63 •000 035 90 

Sums of values for all 1 
three directions : J 

0-000 104 75 0-000 103 14 0-000 101 70 

1 

The Constant h. Half the Increment of the Coefficient per Degree. 

Axial direction. K2SO4. Rb2S04. CS2SO4. 

a 0-000 000 014 4 0-000 000 020 3 0-000 000 021 4 
h •000 000 014 1 •000 000 018 4 •000 000 018 2 
c •000 000 041 3 •000 000 038 0 -000 000 041 4 

Sums of values for all I 
three directions; J 

0-000 000 069 8 0-000 000 076 7 0-000 000 081 0 

ajoo, the Coefficient of Expansion, a = a 2bt, for 50°. 

Axial direction. K2SO4. Rb2S04. CS2SO4. 

a 0-000 037 60 0-000 038 40 0-000 035 99 
b •000 033 66 •000 033 98 •000 033 77 
c •000 040 47 •000 038 43 •000 040 04 

Siuns of values for ain 
three directions: J 0-000 111 73 0-000 110 81 

1 

0-000 109 80 

1 

It will be observed that in the preceding table the sums of the values of each 

constant for the three axial directions of each particular salt are taken. These sums 

represent the constants of the cubical coefficients of expansion. For when the 
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expression for the product of the expansions in the three rectangular axial directions, 

which naturally gives the expansion of the solid, is examined, it is found to consist of 

a large number of terms of which the only ones that alfect the fourth and last place 

of significant figures in the coefficient of expansion for any temperature are the sums 

of the constants a and 6 respectively. 

In the next table is presented a summary of the constants of the cubical coefficients 

of expansion, and of the cubical coefficients for 50°, in a form which readily admits of 

a comparison of the values for the three salts. 

Coefficients of the Cubical Expansion of the three Sulphates. 

a. h. ^50=. 

KoSOi . . . 0-000 104 75 0-000 000 069 8 0-000 111 73 
Diflf. 161 Diff. 69 Diff. 92 

Rb2S04 . . . 0-000 103 14 0-000 000 076 7 0-000 110 81 
Diff. 144 Diff. 43 DifL 101 

CS2SO4 . . . 0-000 101 70 0-000 000 081 0 0-000 109 80 

The mean coefficients of the cubical expansion of the three salts between 0° and f 

are therefore as follows : 

For potassium sulphate . O'OOO 104 75 + O’OOO 000 069 8^ or 10“® (10475 + 6’98^). 

,, rubidium sulphate . O'OOO 103 14 + O'OOO 000 076 7t, or 10“® (10314 -[- 7'67i). 

,, csesium sulphate . O'OOO 101 70 + O'OOO 000 081 Ot, or 10“® (10170 + 8'10^). 

The actual coefficients of cubical expansion, a, at any temperature t, and also the 

mean coefficients of cubical expansion between any two temperatures whose mean is t, 

are the following, in which a = a 2ht: 

For potassium sulphate . O'OOO 104 75 + O'OOO 000 139 6^, or 10“® (10475 + 13'96^). 

,, rubidium sulphate . O'OOO 103 14 + O'OOO 000 153 it, or 10“® (10314 fi- 15'34i). 

,, csesium sulphate . O'OOO 101 70 + O'OOO 000 162 Ot, or 10“® (10170 + 16'20^). 

Discussion of the Results, and Conclusions Thekefrom. 

Uie Cubical Expansion. 

The most striking result of the investigation is apparent from an inspection of the 

comparative table of the cubical coefficients of expansion. It may be stated in the 

following words : 

The coefficients of cubical- expa^ision of the normal sulphates of j^otassium, 
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rubidium, and ccesium exhibit a progression, corresponding to the progression of the 

atomic weights of the three respective metals. This is true of both the constants a and 

b in the genercd expression for the coeffcient of cubical expansion, the values of each 

constant for the rubidium salt being intermediate between the corresponding values for 

the potassium omd ccesium salts. 

It may be further stated that: 

The differences between the values of the constant a, which represents the coefficient 

of cidjical expansion for ()°,for the three salts, are small, amounting to only one and 

a half per cent.; this is an amount, however, which is five times as great as the 

possible experimental error in the detemninations. 

Also that : 

The order of progression of the two constants of the cubiccd coefficient of 

expansion is inverted; a, the coefficient at 0°, diminishes tvith increasing atomic 

weight of the metal contained in the scdt, ivhile b, half the increment of the 

coefficient per degree, increases. 

This latter fact leads to an interesting residt, namely, that the coefficients, in 

increasing with rise of temperature, approach each other in value, until for three 

certain temperatures between 110° and 170° they become identical in pairs; more¬ 

over, in the neighbourhood of the second of these temperatures the three values 

approximate so closely to each other that their difference comes within the limits of 

experimental error. For temperatures higher than those of coincidence, the values 

diverge and exhibit an inverted order of progression. This will be rendered clear by 

a table shovdng the true coefficients of cubical expansion, a + ‘2bt, for intervals of 

50° up to 200°, and for the three temperatures of coincidence. These latter are 114° 

for the identity of cubical expansion of potassium and rubidium sulphates, 136° for 

potassium and caesium sulphates, and 168° for the coincidence of expansion of the 

rubidium and caesiuni salts. 

Coefficients of Cubical Expansion for Various Temperatures from 0° to 200° 

Salt. 0°. o
 o
 

100°. 114°. 136°. 150°. 168°. 200°. 

K.,SO, 10-810475 11173 11871 12066 12373 12569 12820 13267 
Rb,SO^ 10-810314 11081 11848 12065 12400 12615 12891 13382 
cs.;so^ 10-810170 10980 11790 12017 12373 12600 12891 13410 

The point may be grapbically demonstrated l)y plotting out the values on curve 

paper, taking temperatures as abscissae and coefficients of cubical expansion as 

ordinates. The three straight lines thus obtained, shown in the reproduction given, 

will he observed to converge from 0° towards the three temperatures of coincidence, 

where crossing of the lines in pairs occurs, beyond which they diverge. The relative 

nearness of tlie lines to each other in tlie middle of the part where crossing occurs. 
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together with the fact that the increment 26 is not determinable with the accuracy of 

the constant a, the coefficient at 0°, suggests the probability that the three lines 

should all cross at one point, somewhere near 136°. At this temperature the value 

for rubidium sulphate only exhibits a difference of one in five hundred from the two 

identical values for the two other salts, so that the three values are identical within 

the limits of experimental error. 

Graphical Expression of Cubical Expansions. 

These considerations may be summarised in the following addition to the last 

italicised statement. 

In consequence of this fact the coefficients of cubical expansion of the three salts 

converge loith rise of temqjerature toivards equality, which, within the limits of 

experimental error, they reach at 136°. Beyond the temperature at which identity 

of expansion occurs the coefficients of expansion exhilnt increasing divergence, the 

order of progression being inverted, an increase in the atomic weight of the metal 

being now accompanied by an increase in the coefficient of cubical expansion. 

The Linear Exptansion. 

The first conclusions to be drawn from an inspection of the coefficients of linear 

deformation are the following : 

The thermal deformation is of the nature of an expansion along all directions 

in the crystals of the three sulphates, no contraction occurring in any direction. 

3 R VOL. CXCII.-A. 
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The amount of the expansion is relatively large, compared with the expansions 

of metals, being four times that of platinum and one and a halftimes as great as the 

large expansion of aluminium. 

The differences between the amounts of linear expansion along the three axial 

directions of any one salt are small, the difference between the maximum and 

minimum being about twelve per cent, of the total expansion in the case of each salt. 

But the differences between the values for the same direction of the three salts are 

much smaller ; in the case of the direction of the axis b, the difference is only one per 

cent., and in that of the axis a where the greatest divergence is shown, it is only six 

per cent, of the total amount of expansion. 

The increment of the coefficient of expansion, per degree of temperature, is about 

twice as large for. the direction of the axis c of each salt as for the other two axial 

directions, for ivhich the increment is nearly identical. 

It is interesting to point out, in connection with the last fact, that it agrees in a 

remarkable manner with the observation previously recorded (‘Journ. Chem. Soc.,’ 

Trans., 1894, p. 715, §14), that the change of optical refractive power brought about 

by rise of temperature is considerably greater for the direction of the axis c, than 

for the directions of the a and b axes, along which the amount of change is approxi¬ 

mately the same. 

The fact that the differences of expansion exhibited by the three salts are so small, 

compared with the differences in the amounts of expansion in the three axial 

directions, would render it probable that if any considerable changes were introduced 

in the relations of the values for these three directions l^y the replacement of one metal 

by another, particularly if such changes were not simply proportional to the atomic 

weight of the metal but expressed by a higher function of the atomic weight, such 

change would suffice to negative the possibility of a direct progression of the linear 

coefficients of expansion for each axial direction of the three salts, corresponding 

to the atomic weights of the metals present. That simple proportionality to the 

atomic weight was not to be expected directionally, has been indicated by the whole 

of the morphological and physical work on both sulphates and selenates. In the case 

of the refractive indices, however, the directional changes were small in comparison 

with the differences exhibited by different salts ; bence in the case of these, as of 

other, optical constants, the interesting progression according to the atomic weight 

of the metal was not interfered with. But although such perturbations of a direc¬ 

tional character are able, in the case of the thermal constants, to obliterate such a 

progression of the linear coefficient of expansion, they would mutually compensate 

each other when the total solid change was considered. Hence it must be apparent 

that if the influence of atomic weight were indeed a progressive one it would only 

be clearly revealed in the case of the coefficients of cubical expansion. These 

latter constants have been shown to exhibit such a progression in the clearest 

possible manner. 

In accordance with the a Dove considerations, a progression of the linear coefficients 
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of expansion is found to be prevented by the slight directional perturbations due to 

the different natures of the molecules of the three salts. The replacement of the 

atoms of one metal by those of another of higher atomic weight is possibly, and even 

probably, accompanied by movement of the relative positions of the constituents of 

the molecules of their spheres of motion, as well as by the purely chemical change; 

for not only is the substitution accompanied by an increase of mass, but also by an 

increase in the electro-positive energy of the metallic atoms, which may very reason¬ 

ably be expected to result in a closer approximation to the negative atoms, probably 

of oxygen, to which they are attracted. There are, however, several interesting facts 

exhibited by the linear coefficients, which connect their relations very intimately with 

those of the optical constants, for which a true progression in the order of atomic 

weight has been clearly demonstrated. Before passing to the consideration of these 

indications of parahelism between the thermal and optical behaviour of the crystals of 

the three salts, attention must be drawn to the two following salient facts which are 

apparent from an inspection of the linear coefficients. It is that : 

The amount of expansion along the dwection of the crystallographical axis h is 

practically identical for all three sulphates, indicating that the interchange of the 

three metcds is ivithout influence on the thermcd behaviour along the macrodiagonal 

axis of the crystals. Moreover, the crystals of cdl three salts expand least along this 

direction, which is therefore that of the minimum axis of the thermal ellipsoid. 

These two facts are doubtless of significance with respect to the structure of the 

molecule, apparently indicating absence of the metallic atoms or their spheres of 

motion from the immediate proximity of the axis b. The significance becomes 

enhanced in view of the fact that the author has shown (‘Journ. Chem. Soc. Trans.,’ 

1896, p. 507) that the whole of the work on the sulphates and double sulphates 

points to the conclusion that the structural unit of the crystals of the simple sulphates 

is the simple chemical molecule, a conclusion which is supported by the work of Fock 

(referred to loc. cit.) on the solubility of mixed crystals. 

The relations between the amounts of expansion along the directions of the other 

two crystallographical axes, a and c, are much more complicated, and are evidently 

influenced by the replacement of one metal by another. Considering the coefficients 

of expansion for 0°, the amount of expansion along the direction of the axis c is the 

greater in the case of both the potassium and csesium salts ; and for all three salts the 

increment is, as already indicated, greater for this than for any other direction. But 

in the case of the rubidium salt a remarkable excess of expansion is observed to occur 

along the direction of the a axis, which is the maximum thermal axis at 0°, at the 

expense of that along the c axis, which becomes reduced to the intermediate thermal 

axis. The increments per degree, however, for these two directions in the rubidium 

salt, remain of the same order as for the other two salts. Now it is an interesting 

fact, and doubtless not without significance, that the directions of maximum thermal 

effect coincide with those of the first median line of the optic axial angles of all three 

3 E 2 
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salts, which is the axis c in both the potassium and caesium salts and the axis a in the 

case of the rubidium salt. In order to follow the parallelism further, it wiU be 

necessary to compare the linear coefficients of expansion for higher temperatures, the 

values for 50° and 100° sufficing for the purpose. In the following table are given 

the values of a = a + 2bt for 0°, 50° and 100°. The directions are also indicated of 

the axes of the optical indicatrix, namely, the first median line, the second median 

line, and the intermediate axis of the optical ellijDSoid. The sign of the double 

refraction of the crystals is also given, as this determines whether the first median 

line is the maximum or the minimum axis of the optical indicatrix, the former being 

the case for positive double refraction and the latter for negative. 

Comparison of Linear Expansions at Different Temperatures with the 

Optical Indicatrix. 

Salt. Sign of double 
refraction. 

Crystallo- 
grapbical 

axis. 
Direction in optical ellipsoid. 

Linear coefficients of 
expansion— 

At 0°. At 50°. At 100°. 

r a Intermediate axis .... 10-s3616 3760 3904 
K2SO4 Positive . . < b Second median line .... 3225 3366 3507 

1 c First median line .... 3634 4047 4460 

Very feebly j ■ a First median line .... 3637 3840 4043 
Rb.>S04 h Second median line below 50° 3214 3398 3582 ’ 

positive 1 
c Intermediate axis below 50° . 3463 3843 4223 

r a Second median line .... 3385 3599 3813 i 
CS2SO4 Negative . < h Intermediate axis .... 3195 3377 3559 1 

1 c First median line .... 3590 4004 4418 

It will be apparent from the table that the relations of the linear expansions at 0° 

still hold good, as the temperature is raised, in the cases of the potassium and cmsium 

salts. A similar observation has been shown to be valid with respect to the optical 

properties. But in the case of the rubidium salt a remarkable change occurs. Owing 

to the greater increment of the expansion along the direction of the axis c, the pre¬ 

ponderance of the expansion along the axis a diminishes, until at 50° the amounts of 

expansion along these two axial directions become equal. That is to say, in the 

neighbourhood of 50° the crystals of rubidium sulphate simulate uniaxial symmetry 

as regards their thermal liehaviour. This is rendered the more interesting by the fact 

that about this temperature the crystals of this salt also exhibit uniaxial optical 

properties. Owing to the extremely feeble double refraction, it was shown [loc. cit., 

p. 693) that the slight alterations of the relations of the refractive power .in the three 
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axial directions, brought about by rise of temperature according to a rule common to 

all three salts, result in bringing two of the refractive indices to equality about the 

temperature indicated, and the optic axial angle diminishes until about the same 

temperature the circular rings and rectangular cross of an uniaxial crystal are 

exhibited in convergent polarised light. The exact temperatures at which the 

uniaxial interference figure is produced differ slightly according to the wave-length 

of the light, owing to there being a large amount of dispersion of the optic axes. 

They are respectively 42° for red lithium light, 44° for red C. hydrogen light, 48° for 

sodium light, 52° for green thallium light and 58° for greenish blue F. hydrogen light; 

the average is thus exactly 50°, the temperature at which the crystals of rubidium 

sulphate are thermally uniaxial. But the two ellipsoids of revolution for the two 

properties are not similarly orientated, the principal axis for the optical j)roperty 

being the crystaUographical axis a, while for the thermal property it is the axis b. 

This close parallelism between the thermal and optical properties is of considerable 

importance, inasmuch as the optical constants were shown to exhibit a clear pro¬ 

gression corresponding to the progression of the atomic weights of the three metals, 

the differences between the optical constants for the three salts being much greater 

relatively to their variations in the three axial directions of any one salt, than in the 

case of the thermal properties. 

On following the growth of the coefficients of linear expansion further to 100°, it is 

observed that the continued gain on the part of the c value has now rendered the 

expansion along this axis clearly the maximum, thus reversing the order of the axial 

expansions which had obtained below 50°. The maximum axis of the thermal ellipsoid 

for 100°, and temperatures superior to this, is thus the crystaUographical axis c for 

all three sulphates ; moreover the axis b is the minimum thermal axis, and the axis a 

the axis of intermediate thermal expansion for aU three salts. To complete the paral¬ 

lelism of the thermal and oi^tical properties, it may be mentioned that at temperatures 

superior to the neighbourhood of 50°, where the uniaxial optical interference figure 

is produced, the figure again breaks up into a biaxial one, but with the optic axes 

separated in the plane perpendicular to that which formerly contained them, and the 

optic axes separate more and more in this new plane until about 180° the axis c 

becomes the first median line instead of the axis a. At this temperature, therefore, 

the crystaUographical axis c is the first median line for aU three salts. It has been 

shown that at temjDeratures superior to 100° the axis c is also the direction of 

maxunum thermal expansion. Hence, at higher temperatures the rule observed for 

the lower ones, that the direction of maximum thermal expansion is that of the 

optical first median line, is equaUy valid. 

The foregoing considerations, concerning the relations of the linear coefficients of 

expansion, may be summarised as follows :— 

The smcdlness of the difference in the coefficient of expansion along any particular 

direction in the crystals, ivhich is introduced by the replacement of one idkcdi metal 
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hy another, compared ivith the larger differences of expansion exhibited in the three 

axial directions of any one salt, together ivith the fact that the change of metal is 

accompanied by considerable modifications of these latter relative expansions for tivo 

of the axial directions, a and c, prevent the coefficients of expamsion for any one 

direction of the three salts from exhibiting any progression corresponding to that 

of the atomic weights of the three metals. These directional perturbations are, 

however, mutually compensative, the increase of expansion in one of the two directions 

referred to being more or less balanced by the diminution in the other; consequently 

the effect of interchange of the metcds is clearly exhibited by the solid deformation, 

the cubical expansion, the coefficients and increments of which have been shown to 

exhibit a well-defined progression following the order of the atomic weights of the 

three metals. 

Before i3roceeding to siunmarise the interesting analogy between the thermal and 
the optical properties, it may he of advantage to consider what the dimensions 
of the linear change, on replacing one metal by another, would probably be, pro¬ 
vided no directional perturbations occurred. The diflerence between the cubical 
coefficients of expansion of potassium and rubidium sul23hates is 0•00000161, and of 
the rubidium and cmsium salts 0‘00000I44. The mean is O’OOOOOlo, and the linear 
ditferences might be reasonably expected to be about one-third of this, namely 
0’0000005. Even if the linear expansions along the axis b are accepted as free from 
perturbation and unaffected by change of metal, the linear differences for the other 
two directions could not exceed O’OOOOOOS. Now the directional perturbation in 
which the rubidium salt exhibits a reversal of the relative directions of the maximum 
and intermediate thermal axis compared with the potassium salt, amounts to more 
than twice this amount, namely 0'0000017. Hence it is clearly apparent that a 
progressive change, of the maximum possible amount, would be completely masked 
by the larger directional perturbation. A brief summary of the nature of the 
pertui-l^ation and its relation to the optical changes may next be given. 

The chief directional perturbation consists of a reversal, for temperatures below 

50°, of the directions of the maximum and intermediate axes of the thermcd ellipsoid 

in the rubidium scdt, compared with their directions in the qootassium and ccBsium 

scdts. The maximum thermal axis is the crystallographical axis c for the two latter 

salts, but the a axis for the rubidium salt. A similar reversal of the direction of the 

first median line, the maximum axis of the optical ellipsoid [the indicatrix), from the 

direction c to the direction a, occurs for similar temperatures, in the case of the 

rubidium, salt. Hence, the maximum thermal axis is identical in all three salts ivith 

the first median line. 

At higher temperatures the same relations still hold for the potassium and casium 

salts, both thermally and opticcdly. But oiving to the increment of expansion cdong 

the axis c being so much greater than for other directions, the exceptional inter¬ 

mediate expansion cdong the axis c of rubidium sidpliate is rapidly brought up to 
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equality, at 50°, ivith the expansion along the axis a; and heyond this temperature c 

becomes the maximum thermal ctxis for the rubidium salt, as it is for the other tivo 

sulphates. Hence, at 50° the crystals of rubidium sulphate are apparently thermally 

uniaxial. At temperatures varying 10° each side of 50° for different uKive-lengths 

of light, they are cdso ap)parently optically uniaxial. The thermal and optical 

elliptsoids of revolution, however, are not identically orientated, the axis of the former 

being the crystcdlographical axis b, and of the latter a. Further, the change of 

direction of the maximum thermal axis of rubidium sulphate, from a to c, is folloived 

op>tically at 180° by the change of the first median line from a to c. Thus the first 

optical median line corresponds, as at lower temperatures, to the maximum thermal 

axis, for all three sulphates. 

This parallelism between the linear thermal expansions and the opticcd coiistants 

is of significance, inasmuch as the latter constants, which, unlike the former ones, 

exhibit differences between the three salts of much greater magnitude than the 

directional differences for any one salt, show a clear progression, in the order of the 

atomic weights of the metals contained in the three sulphates. 

It will be interesting in conclusion, to compare the results for the thermal deforma¬ 

tion thus obtained by the refined interference method, with those jDreviously obtained 

from the much cruder method of combining determinations of specific gravity at the 

ordinary and higher temperatures with measurements of the morphological angles 

at those temperatures. Such an attempt to determine the coefficients of expansion 

was described in the j^revious memoir on the sulphates (‘Journ. Chem. Soc., Trans.,’ 

1894, p. 653). It naturally depended for success on the possibility of employing a 

liquid in the pyknometer which was absolutely without action on the salts, as well 

as upon the degree of accuracy with which such determinations and angular measure¬ 

ments, the latter involving total deviations of less than two minutes of arc, can be 

carried out, even with the aid of the extremely delicate insti’uments employed. 

The actual values found for the total cubical expansion for 40° (hetweeii 20° and 

60°) were :— 

For potassium sulphate . . . 0'0053 

,, rubidium ,, ... 0'0052 

,, csesium ,, ... 0'0051. 

Thus a diminution of expansion was found to occur as the atomic weight of the 

metal increa.sed, a result which is fully borne out by the more accurate determinations 

now presented. The figures for the three salts were so near, however, that they were 

taken as identical, having reference to the method Ijy which they were obtained, for 

the purpose of calculating the coefficients of linear expansion with the aid of the 

angular deviations for the same temperatures. For the linear coefficients of expansion 

X for 100° the following numbers were given :— 

X, = 0-00437, X, = 0-00385, X, = 0-00479. 
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It was therefore concluded that “ the crystals of the three salts, on heating, expand 

most in the direction of the vertical axis c, and least along the macrodiagonal axis h” 

We have seen that this is indeed the case, except for temperatures below 50° in the 

case of X„ and of the rubidium salt, a fact which the method could not possibly 

have indicated, as at 60°, the temperature of the higher density determinations, the 

rule found is really true. 

The actual values now published for the total expansion of potassium sulphate, 

taking this salt as an example, for the 100° between 20° and 120°, calculated by the 

formula a. — a + 26 j, are as follows ; 

= 0-003818, a^= 0-003422, a, = 0-004212. 

The ditference between these highly accurate values and the approximate ones 

obtained by the rougher method is not great considering the nature of the latter, and 

the order is the same. 

An attempt to determine the ex^Dansion of crystals of potassium and rubidium 

sulphates, by means of the weight-thermometer method, has been described by Spring 

(‘Bull, de I’Acad. de Belgique,’ 1882, 197, and ‘ Ber. Deut. Chem. Ges.,’ 15, 1940). 

Olive oil was employed as the liquid, and the density determinations were carried up 

to 100°. The value obtained for the cubical expansion of potassium sulj)hate for 100° 

was 0-0126, and for rubidium sulphate 0-0111. The latter value is extraordinarily 

near the truth according to the results now presented, the value for 0° to 100° being 

actually 0-01108. But the impossibility of trusting this method, equally with aU the 

relatively coarser density methods, to afford correct differences between the values 

for different salts, is clearly demonstrated by the fact that the difference shown 

between the values for the potassium and rubidium salts, namely 0-00150, is seventeen 

times as great as the real difference (-01117-0-01108 — 0-00009), which is now shown 

to exist. 

Summary of Conclusions. 

The principal results of the investigation are presented in the following summary. 

1. The coefficients of cubical expansion of the orthorhombic crystals of the normal 

sulphates of potassium, rubidium and csesium exhibit a progression, corresponding to 

the progression of the atomic weights of the three respective metals. This is true of 

both the constants a and 6 in the general expression for the coefficient of cubical 

expansion, a = a + 26i, for any temperature t. 

2. The order of progression of the two constants is inverted; «, the coefficient for 

0°, diminishes with increasing atomic weight of the metal, while 6, half the increment 

of the coefficient per degree of tenqoerature, increases. 

3. In consequence of rule 2 the coefficients of cubical expansion of the three 

salts converge, with rise of temperature, and attain equality, within the limits of 
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experimental error, at 136°. Beyond the temperature of identity divergence occurs 

and an increase of atomic weight is now accompanied by an increase in the coefficient 

of cubical expansion. 

4. The thermal deformation is of the nature of an expansion in all directions in the 

crystals of all three sulphates. 

5. The differences between the coefficients of linear expansion along the three 

crystallographical axial directions of any one salt, although only amounting to one- 

eighth of the total coefficient, are large compared with the differences between the 

values for the same direction of the three salts. 

6. The operation of rule 5, together with the fact that the replacement of one 

metal by another is accompanied by considerable modifications of the relations of two 

of the three values for the original salt, those corresponding to the axes a and c*, 

prevent the coefficients of linear expansion for any one direction of the three salts 

from exhibiting any progression corresponding to that of the atomic weights of the 

three metals. These directional perturbations are, however, mutually compensative, 

so that the effect of interchange of the metals is clearly exhibited by the solid defor¬ 

mation, the cubical expansion, the coefficients of which and their increments have 

been shown to exhibit a progression according to the atomic weight of the metal, as 

stated in rule 1. 

7. The increment of the linear coefficient of expansion for the direction of the 

vertical axis c of each salt, is about twice as large as the increments for the other two 

directions a and 6, for which latter the increments are nearly equal. This thermal 

property is analogous to the optical behaviour, the refractive power being altered 

(diminished) by rise of temperature much more in the direction of the axis c than in 

the other two directions, in which the lesser amounts of change are nearly equal. 

8. The amount of expansion along the direction of the crystallograpldeal axis h is 

approximately identical for all three sulphates, indicating that interchange of the 

metals is without influence on the thermal behaviour along the macrodiao;onal axis of 

the crystals. The crystals of all three salts also expand least in this direction, which 

is therefore the common minimum axis of the thermal ellipsoid. 

9. The chief of the directional perturlDations, referred to under 6, consists of a 

reversal, for temperatures below 50°, of the directions of the maximum and inter¬ 

mediate axes of the thermal ellipsoid for rubidium sulphate, compared witli their 

directions in the potassium and emsium salts. The maximum thermal axis is the 

crystallographical axis c for the two latter salts, but a for the rubidium salt. A 

similar reversal of the direction of the first median line, the maximum axis of the 

optical ellipsoid (the indicatrix), from c to a occurs for the same temperatures, in the 

case of rubidium sulphate. The maximum thermal axis is identical in all three salts 

with the optical first median line. 

10. At higher temperatures the same relations still olffain for the potassium and 

ernsium salts, both thermally and o})tlcally. But ov/ing to the Increment of expansion 

VOL. cxcii.—A. 3 s 
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along the axis c being so much greater than for the other directions, the intermediate 

expansion along c for rubidium sulphate attains equality at 50° with the exj)ansion 

along a, and beyond this temperature c becomes the maximum thermal axis for this salt, 

as it is for the other two sulj)hates. Consequently, at 50° the crystals of rubidium 

sulphate are apparently thermally uniaxial. At temperatures varying 10° each side 

of 50° for different wave-lengths of light, they have previously been shown to simulate 

uniaxial optical properties. The thermal and optical ellipsoids of revolution are not, 

however, identically orientated, the axis of the former being the axis h and of the 

latter a. Further, the change of direction of the maximum thermal axis of rubidium 

sulphate from a to c is followed ojffically at 180° by the change of the first median 

line from a to c, rendering the last sentence of rule 9 again valid. 

11. A close jDarallelism between the linear thermal expansion and the directional 
optical behaviour is thus shown to exist, and is indicative that the same progressive 
effect of variation of the atomic weight of the metal is in operation with regard to the 
former, as was clearly demonstrated in a former memoir with respect to the latter, 
and that this effect would be manifest in the former were it not masked by the larger 
eflect indicated under 6. 

12. The thermal deformation constants best capable of indicating the effect of the 
replacement of one alkali metal by aiiotlier, in the crystals of the normal alkali 
sulphates, have thus been shown to be the cubical coefficients of expansion and their 
increments ; and these have been further demonstrated to exhibit a regular progres¬ 
sion, which follows the order of j^rogression of the atomic weights of the metals in 
question. Moreover, the linear coefficients and their increments have been shown to 
exhibit var iations which present a remarkable analogy to those of the optical con¬ 
stants, for which, the values for the three salts being very much more widely 
separated and consequently undisturbed by the modification of the directional differ¬ 
ences for the same salt which are relatively so much more important in the case of 
the linear thermal constants, a clear progression according to the atomic weight of 
the alkali metals has been proved. 

The final conclusion of this investigation, therefore, is that: 
The thermal deformation constants of the crystals of the normal sulphates of 

potassium, rubidium, and ccBsium exhibit variations, ivhich, in common ivith the 

morphological, optical, and other physical properties previously investigated, follow the 

order of progression of the atomic iveights of the alkali metals ivhich the salts contain. 

This result is, therefore, in perfect agreement with the principle enunciated at the 
conclusion of the memoir concerning the alkaline selenates (‘ Journ. Chem. Soc., Trans.,’ 
1897, p. 920), which reads as follows : 

The difference in the nature of the elements of the same family group which is 

manifested in their regularly varying atomic weights, is also expressed in the similarly 

regular variation of the characters of the crystals of an isomorphous series of salts of 

which these elements are the interchangeable'constituents. 
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XL On the Electrical Conductivity of Flames Containing Salt Vapours, 

By Harold A. Wilson, B.Sc. [Lond. and Vic.), 1851 Exhibition Scholar, 

Cavendish Laboratory, Cambridge. 

Communicated by Professor J, J. Thomson, F.R.S. 

Received March 10,—Read April 27, 1899. 

In a recent paperon the electrical conductivity and luminosity of flames containing; 

salt vapours, by Professor A. Smithells, Mr. H. M. Dawson, and the writer, the 

similarity between the conductivity of flames and that of gases exposed to Ilontgen 

rays was pointed out, and it was shown that the relation of the current between two 

electrodes in the flame to the potential difference between them could he represented 

by the formulm 

C = i -h ^’lE, 
vhere C = the current, 

E = the P.D, between the electrodes. 

I, hi, ^2 are constants, and i is defined by the second ecjuation. 

When E is large, these equations become 

C = I + yt-iE, 

and if hi = 0, then they reduce to 

which represents the relation between the current and P.D. for the conductivity of 

Rcintgenised gases. (See a paper by J. J. Thomson and E. Ruthereord, ‘ Phil. 

Mag.,’ Nov., 1896.) 

The experiments described in the present paper were undertaken with the object of 

following up the analogy betw^een the conductivity of salt vapours and that of 

Ptontgenised gases, and especially of getting some information about the velocities of 

the ions in the flame itself. 

The paper is divided into the following sections :— 

* Abstract at ‘ Roy. Soc. Proc.,’ vol. 64, p. 142. 

3 s 2 26.6.99 
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(1.) Description of the apparatus for producing the flame. 

(2.) The relation between the current and E.M.F. in the flame. 

(3.) The fall of potential between the electrodes. 

(4.) The ionisation of the salt vapour. 

(5.) The relative velocities of the ions in the flame. 

(G.) The relative velocities of the ions in hot air. 

(7.) Conclusion. 

A summary of the earlier work done on this subject is given in Wiedemann’s 

‘ Lehre von der Elektricitiit,’ vol. 4 B. Arrhenius’s paper (‘Wied. Ann.,’ vol. 42, 

1891) is referred to in our paper mentioned above. 

(1.) Descrii^tion of the Apparatus used for Producing the Flame. 

The apparatus used for producing the flame was similar in principle to that used in 

the investigation referred to above. Carefully regulated sujiplies of coal gas and air 

were mixed together, along with spray of salt solution, and the mixture burnt from a 

brass tube, 07 centim. in diameter. The apparatus is shown in flg. 1. 

P, AA^ater pump. INI M', AA^ater manometers. E, Exit tube from G. 

B, Mercmy R, Gas regulator. G', Second globe. 

A, Carboy. H, Gasometer. F, Flame. 

AA^, AA^ater flask. L, Constriction. D, AAMod block. 

S, Gouy sprayer. G, Globe containing salt solution. 

The air supplied by the water pump, P, jiartly escapes by bubbling through mercury 

in B, and then passes into a carboy, A. From A the air passes through a flask, W, 

containing water, to the Gouy sprayer, S, and its pressure is measured by the water 

inamometer, M. The air supply is regulated b}^ means of a pinch-cock, K, and by 
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altering the water supply to the pump. A very considerable change in the water 

supply was necessary to appreciably alter the pressure indicated by the manometer, 

M. The air pressure used was 180 centims. of water, and it was very easily kept 

constant within 2 or 3 millims., only very occasional adjustments being required for 

this. 

The coal gas was passed through a regulator, R, consisting of a bell-jar suspended 

in water from one arm of a balance and arranged as shown in fig. 1, so that, when the 

gas in the jar attained the required pressure, the jar rose and cut off the gas supply. 

After passing through this regulator the gas supply was connected with a gasometer, 

H, which served to maintain the pressure steady. The weights on the gasometer 

were adjusted so as to produce a pressure equal to that at which the regulator partly 

cut off the gas. The gas was passed through a constriction, L, and then allowed to 

mix with the air and spray from the sprayer, S, in the globe, G, 

The pressure of the gas supply was measured on the water manometer, M', by 

means of a cathetometer reading easily to O’Ol centim. The gas pressure used was 

3'62 centims. of water, and it was easily kept constant within O’Ol centim. by 

occasionally altering the weights on the gasometer and in the j^an of the balance. 

The mixture of gas and air passed along the tube, E, into a globe, G', and from 

this into the flame tube, T. The tube, T, was supported by a wider brass tube, 

provided at its upper end with threg screws for centreing the flame tube, and fixed 

into an octagonal wooden block, D, 3’5 centims. thick and 20 centims. across (see 

fig. 2). A cylindrical glass shade, 15 centims. in diameter and 16 centims. high, 

rested in a circular groove in the block, D, and on this a flat tin plate was placed, 

having a circular hole at its centre, 3 centims. in diameter, for the escape of the 

products of combustion. Three holes, each 1 centim. in diameter, in the block admitted 

air to the flame, F. 

The flame thus obtained was steady, and measurements of its conductivity, when a 

particular salt solution was sprayed, did not differ more than 1 or 2 per cent, on 

different days. 

The gas consumed by the flame amounted to 43 litres per hour. The height of 

the inner sharply-defined green cone was 1'5 centim., and that of the outer cone 

7‘5 centims. 

(2.) The Relation between the Current and E.M.F. 

Some experiments were first done on the relation between the current and E.M.F. 

in the flame. The electrodes used each consisted of a brass disk, 14 centims. in 

diameter and 0‘2 centim. thick, having a circular hole 5'6 centims. in diameter at its 

centre, covered with a grating of platinum wires (see fig. 2). 

These two disks were each supported by three glass rods horizontally one above 

the other symmetrically about the axis of the flame. Two parallel slots were cut on 

each side of the hole in the upper disk, and through these the platinum gauze was 
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stretched across and kept in position by two brass strips screwed dowm over the slots. 

The gauze was thus stretched across the under side of the upper disk. The gauze 

had a mesh 0'06 centim. square, with wire 0'02 centim. thick. It was found necessary 

to use a wider mesh for the lower electrode to allow the flame to pass easily. The 

grating on the lower disk was, therefore, made by winding platinum wire between 

F, Flame. Q, Quadrant electrometer. 

D, Wood block. C C', Commutators. 

T, Flame tube. G, Galvanometer. 
E E', Electrodes. V, Voltmeter. 

E'„ 
E„ 

Upper surface of upper electrode. 
Upper surface of lower electrode. 

B, Battery. 

small brass pegs flxed in the upper surface of the disk. The wires were 0'3 centim. 

apart. 

The lower electrode was connected through a galvanometer to one pole of a battery 

of small secondary cells, and the upper electrode was connected to the other pole. 

The flame fuhe was also connected to the same pole of the battery as the lower 

electrode. The jiotential difference between the two electrodes could be measured by 

means of a multicellular electrostatic voltmeter when it was above 250 volts. A 
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circular patch at the centre of the grating on each electrode was heated by the flame. 

The lower electrode was nearly white hot usually, and the upper red hot, more or less, 

according to its position. 

Diagram No. 1 shows the relation between the current and E.M.F. when a 

normal solution of potassium carbonate was sprayed for fonr positions of the upper 

electrode, which was charged positively, the lower electrode being in the same position 

in each case, viz., 5‘6 centims. above the flame tube. 

Diagram No. 1. 

It will be observed that as the distance between the electrodes is increased, the 

E.M.F. necessary to produce approximate saturation increases very rapidly, but the 

saturation value of the current, where it is actually reached, is independent of the 

position of the upper or positive electrode. Diagram No. 2 shows the relation 

between the current with 200 cells and the distance between the electrodes, the lower 

electrode being kept fixed and negatively charged as before. 

0 123456789 cms. 

The falling ofl in the current as the upper electrode is raised is very rapid at from 

3 to 6 centims. distance. Up to 3 centims. distance the temperature of the upper 

electrode remained sensibly constant, bnt above this distance it became cooler as the 

electrode was raised higher in the flame, and at 6 centims. distance it was only red 
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at the centre, but it remained visibly hot even at 9 or 10 centims. above the lower 

electrode. It appeared probable that the cooling of the upper electrode might affect 

the observed current, and to test this point an electrode was constructed similar to 

those already described, but so arranged that the grating of platinum wires could be 

heated by passing an electric current through it. The grating was insulated by 

strips of mica, and the battery used to heat up the grating-was insulated, and one 

end of the grating wire connected to the brass disk supporting it. 

It was found that when the up23er electrode was kept at a bright red heat in this 

way the current, with 200 cells, was independent of the position of the upper elec¬ 

trode up to 8 centims. above the lower electrode. The following table gives some of 

the numbers obtained with 200 cells. 

Distance between the 
Electrodes. 

Current. 

Upper Electrode not 
heated. 

Upper Electrode heated. 

centims. 
1-3 235 235 
3-0 236 234 
4-2 180 230 
6-2 18 227 
8-0 10 235 

Diagram No. 3 shows the change in the relation of the current to the E.M.F. when 

the upper electrode is heated in this way. 

Thus it appears that keeping the upper electrode hot enables the current to attain 

its saturation value with a much smaller E.M.F. than is necessary when the electrode 

is not specially heated. 

Diagram No. 4 shows the relation between the current and E.M.F. for several 

positions of the upper electrode when this is negatively charged, the lower electrode 

being in the same position in each case as before. 
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In this case, in which the positive or lower electrode is hotter than the negative 

electrode, the current does not show much sign of arriving at a saturation value as 

the E.M.F. is increased. To see whether this depends on the relative positions of the 

electrodes with reference to the direction of motion of the flame gases, the lower elec¬ 

trode was flxed very near the base of the flame, so that it was less heated than the 

upper electrode. It was then found that when the lower electrode was positive, the 

current became nearly saturated with about 100 cells, whereas when the lower elec¬ 

trode was negative, the current showed no sign of attaining a saturation value. 

Thus the saturation of the current depends on the temperatures of the electrodes, 

and not on the motion of the flame gases. 

Diagram No. 5 shows the relation between the current and E.M.F, when the 

distance between the electrodes was 0’3 centim., the lower electrode being slightly 

hotter than the upper electrode. 

Diagram No. 5. 

When the E.M.F, is less than 150 volts the two curves are similar to those 

obtained when the electrodes were at greater distances apart, but at higher E.M.F.’s 

the current with the lower electrode positive increases rajDidly with the E.M.F., and 

becomes greater than that with the lower electrode negative. In all these experiments 

except those in which the upper electrode was heated by an electric current, the 

heated surface on the upper electrode was considerably greater than that on the 

lower electrode, owing to the upper electrode being of finer gauze than the lower 

electrode, but the lower electrode was usually heated to a higher temperature than 

VOL. CXCIl.-A. 3 T 
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the upper electrode, partly because, owing to its wider mesh, it lost heat less readily 

by conduction to the brass disk supporting it. 

Diagram No. 6 shows the relation between the current and the distance between 

the electrodes when the lower electrode is positive and kept fixed for an E.M.F. of 

70 volts per centim. of distance between the electrodes. 

O 12 3^3 cms. 6 

The current was always greater when the hotter electrode was negative than when 

it was positive, except when the electrodes were very near together, so that a very 

great electromotive intensity coidd be applied. 

The following table gives some of the currents observed showing this :— 

E.M.F. 
Height of Lower 
Electrode above 
the Flame tube. 

Distance between 
the Electrodes. 

Current. 
(100 = 4-7 X 10”® amjtere.) 

(1) 
Lower + 

(3) 
Lower - 

volts. centims. centims. 
335 5-6 1-28 75 233 
100-5 5-6 1-28 36-5 198 
330 5-6 2-20 30 233 
370 5-6 6-2 10 18 
1-2b 5-6 0-3 407 235 
350 3-65 3-35 16 355 
175 3-65 3-35 10-5 315 

Tlie theoretical l)eariiig of the results descril)ed in 

discussed in Section 7. 

this section of the })aper is 

(3.) The Fall of Potential hetween the Electrodes. 
•% 

To examine the fall of })otential along the fiaine between the electrodes, a horizontal 

insulated platinum wire was put in the flame, and its potential measured either by 

means of a quadrant electrometer or l)v connectlno- It throuu’h a iralvanometer to a 



OF FLA^IES CONTAINING SALT VAPOURS. 507 

point on the batteiy nsed to charge the electrodes and adjusting tlie position of the 

wire until no current passed through the galvanometer. The wire and connections 

with the electrometer are shown in fig. 2. 

The wire took up the potential of the flame very quickly, so that even if it was 

connected to earth through a high resistance its potential was not affected 

appreciably. The wire was always kept as nearly as possible so as to pass through 

the axis of the flame ; if this was not done the potential curves obtained were 

considerably altered, although their general character remained the same. 

Diagram No. 7 shows some of the results obtained when the electrodes were 

3'8 centims. apart, the upper electrode being positively charged and the salt solution 

sprayed a ^ normal rul)idium chloride solution. 

Diagram No. 7. 

C' 

5 

Cj 

o 

In this case, in which both of the electrodes were bright red hot, the fall of 

potential between the electrodes is very similar to that observed in gases at low 

pressures. Near each electrode there is a rapid fall of potential and in the interven¬ 

ing space an approximately uniform small potential gradient. This potential gradient 

is approximately proportional to the potential difference between the electrodes. The 

variation of the drop of potential at the negative electrode with the potential 

difference between the electrodes can be rej^resented by the formula 

0-873E — 4-4, 

3 T 2 
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where E is the P.D. between the electrodes expressed in terms of the E.M.F. -per 

cell used (I'80 volts). When E is less than about 5 the drop at the negative 

electrode is zero. 

The following table shows this :— 

E. 0-873E - 4-4. Negative drop observed. 

GO 48-0 48-5 
40 30-5 30-0 
20 13T 16-0 
10 4-3 6-0 i 

5 0-0 0-0 

Diagram No. 8 shows two curves obtained with the electrodes 5 centims. apart, 

the lower electrode Ijeing still in the same position as before. 

Diagram No. 8. 

In this case the drop of potential at the lower negative electrode did not become 

appreciable until about GO cells were used. Moving up the upper electrode to the 

colder parts of the flame rapidly increased the P.D. at which the negative drop 

appeared. Thus at 8'8 centims. above the lower electrode there was no negative 

drop even when 400 cells were used. 

When the upper electrode was charged negatively the character of the potential 

curves was completely changed. In this case nearly all Tie fall of potential occurred 

near to the upper negative electrode. Diagram No. 9 shows two curves got with the 

electrodes 5 centims. apart. Diagrams 10 and 11 each show two curves, one with 

the upper electrode positively and the other with it negatively charged. 
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Diagram No. 9. Diagram No. 10. Diagram No. 11. 

(4.) The Ionisation of the Salt Vapour. 

Arrhexius (‘Wied. Ann.,’ 42, p. 18, 1891) concluded from the results of bis 

experiments that the conductivity of salt vapours in flames is due to partial ionisation 

of the salt by the high temperature of the flame, and that the conductivity of a flame 

containing a salt vapour is very analogous to the conductivity of an aqueous solution 

of the salt. In our paper referred to above we have not seen any reason to doubt the 

general accuracy of Arrhexius’ conclusions. 

There are, however, a number of important facts which do not readily lend 

themselves to explanation by the hypothesis just mentioned. The phenomena of 

unipolar conduction are among these. Hittorf (see Wiedemaxn’s ‘ Elektricitat,’ 

vol. 4 B) showed that the current depends very greatly on the negative electrode, 

and that it is greater when a bead of salt in the flame is near the negative electrode 

than when it is near the positive electrode, and he concluded that nearly all the 

resistance to the passage of the current is at or near to the surface of the negative 

electrode, at any rate in the case of flames free from salt vapour. 

The experiments of Arrhexius and those described in our pajier referred to above, 

in which the current between two electrodes very near together in the flame was 

measured, were not adapted for the examination of unipolar conduction and allied 

phenomena, and it was sufficient, in considering the results obtained, to suppose the 

conductivity due to ionisation of the salt vapour, without making any further 

hypothesis as to exactly how and where the ionisation occurs. At the same time, it 

was more or less tacitly assumed that the salt vapour is ionised throughout the 

volume of the flame, just as a salt is ionised in an aqueous solution. 

I have concluded, from the results described in this paper, that the ionisation of the 

salt takes place entirely, or very nearly so, at the surface of the glowing platinum 

electrodes, and not throughout the volume of the flame. The experiments described 

above on the variation of the current with the distance between the electrodes, show 

that when the two electrodes are both kept hot, then the saturation current is 

independent of the distance between the electrodes, whereas if the salt vapour were 
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ionised thronghont the flame, the current should ha\m increased with the distance 

between the electrodes. To test this more completely, two electrodes of platinum 

foil, each 1’5 centim. square, were supported opposite one another in the flame so 

that the distance l^etween them could be easily varied. The salt solution sj^rayed 

was a g-Q normal rubidium chloride solution. With this arrangement it was found 

that, with a potential diflerence of 800 volts between the electrodes, moving the 

positive electrode did not affect the current between the electrodes unless it was 

moved so near to the side of the flame that it became comparatively cool, in which 

case the current was diminished. Moving the negative electrode usually affected the 

current, the current being greater the hotter the electrode appeared. If the negative 

electrode was placed at about the axis of the flame, then it could be moved several 

millimetres either way without appreciably affecting the current, but the effect of 

moving it to at all near the sides of the flame was to diminish the current, this effect 

being much more marked than in the case of the positive electrode. 

The amount of salt vapour passing between the electrodes is roughly proportional 

to the distance between them, so that since the potential difference used was fully 

enough to approximately saturate the gas, the current should have increased with the 

distance between the electrodes if the ionisation took place throughout the volume of 

the flame. 

If the two platinum electrodes just described were placed one on each side of the 

flame, just far enough from it not to be visibly Iieated, and about half-way up the 

flame, only a very small current could be passed between them, even when an E.M.F. 

of 400 volts was applied. This current, moreover, was only slightly increased when 

the flame was filled with a salt vapour. The following are the currents observed in 

one case with 45 volts E.M.F. :— 

(1.) Both electrodes just outside the flame and not visildy hot. Distance between 

the electrodes 2’5 centims.— 

Current without salt. 3 divisions. 

Current with ^ BboCOg.12 ,, 

(2.) Both electrodes just inside the flame and red hot. Distance between the 

electrodes 2 centims.— 

Current without salt.18 divisions. 

Current with-g-Q BlnCOg.610 ,, 

It is clear that the heating of the electrodes enormously increases the available 

conductivity, exactly as though the ionisation did not take place unless the electrodes 

were red hot. There is, nevertheless, a very small amount of conductivity even when 

cold electrodes are used, as has l)een known for a long time. This is no doubt due to 

a small amount of ionisation really taking place throughout the volume of the flame, 

both in the case of the flame gases and of the salt vapour. 
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This conductivity is, however, only a minute fraction of that which is observed 

when the electrodes are both hot enough to glow. If one electrode only is hot, then 

the current is much greater than Avhen both are cold, but is still small compared 

with that obtained when both are hot. The explanation of this, is considered in 

Section 7. 

If a piece of platinum foil is jDut in the flame midway between the two electrodes 

when both are just outside the flame and not visibly hot, then the current is greatly 

increased, showing that the presence of the glowing platinum enables ionisation to 

take place. The following currents were observed with an E.M.F. of 45 volts and 

3^ Rb, CO3 

(1.) Both electrodes not visibly hot. Current 12 divisions. 

(2.) With a piece of platinum foil in the flame between the electrodes and 

insulated. Current 40 divisions. 

(3.) Foil connected to earth. Current 400 divisions. 

The great increase in the current on connecting the foil to earth appears to be due 

to the much greater ease with which an electrode in the flame loses negative electrifi¬ 

cation than positive. This causes the foil when insulated to l^e positively charged to 

nearly the same potential as the positive electrode, which diminishes the current. 

The explanation of this will be considered in Section 7. 

The effect of putting a small bead of salt near the electrodes was also tried, 

the flame being otherwise free from salt. It was found that if the salt vapour only 

came in contact with the positive electrode, then tlie increase in the current due to 

the salt was very small, whereas if the salt vapour came in contact with the negative 

electrode the current was greatly increased. If the salt vapour passed between the 

electrodes without coming in contact with either, then the current was not increased 

at all. The following numbers were obtained with a head of potassium carbonate :— 

(1.) Flame without salt. Current 20 divisions. 

(2.) Salt vapour on positive electrode. Current 60 divisions. 

(3.) Salt vapour on negative electrode. Current 720 divisions. 

It is clear from this that unless the salt vapour actually comes into contact with 

the glowing electrodes, the conductivity of the flame is not affected by its presence. 

Giese (‘Wied. Ann.,’ vol. 17, p. 517, 1882) showed that when two pairs of 

electrodes were placed one above the other in a flame free from salt, or rather in the 

gases immediately above the flame, then applying an E.M.F. to the lower pair 

diminishes the conductivity between the upper pair. This effect was evidently due 

to the removal of the ions from the stream of gas by the lower pair of electrodes, 

and should, therefore, not happen in the case of the conductivity of the salt vapour 

if there is no ionisation of the vapour throughout the volume of the flame. Two 

pairs of electrodes were arranged as shown in fig. 3. The upper pair was supported 

by a glass tube passing through the tin plate above the flame, and could be fixed at 



512 xAIE. H. A. WILSON ON THE ELECTRICAL CONDUCTIVITY 

any height above the lower pair. The battery and galvanometer connected with the 

iipj)er pair were insulated so that the electrodes took up the potential of the flame. 

It was found that applying an E.M.F. to the lower electrodes affected the current 

between the upper pair very little, if at all, in the case of the conductivity due 

LT, Upper electrodes. 

to a salt vapour. With a normal solution of potassium carbonate the following 

currents were obtained ; the upper electrodes being about 3 centims. above the 

lower :— 

(1.) No E.M.F. on the lower pair— 

Current between the upper pair . . . . 66 divisions. 

(2.) 360 volts on the lower pair—■ 

Current between the upper pair .... 65 ,, 

With 700 volts on the lower pair the current between the upper pair was slightly 

increased or diminished, according to the direction of the current between the lower 

pair, showing that tLo upper pair took up some of the current from the lower 

electrodes. 

This effect became less as the distance between the two pairs was increased. 
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The results of this experiment are therefore entirely in accord witli the view that 

the ionisation of the salt vapoTir takes place only at the surface of the glowing 

electrodes. 

Another experiment very strikingly in favour of this view was also tried. The 

two horizontal electrodes of platinum gauze were fixed in position about 4 centims. 

apart in the flame. A bead of potassium carbonate or other salt was then held in 

the flame between the two electrodes so that the salt vapour only came in contact 

with the upper electrode. It was found that the current was almost independent of 

the height of the l)ead above the lower electrode, unless it was brought so near to the 

lower electrode that the salt vapour from the bead came into contact with the 

glowing platinum, when an increase in the current between the electrodes occurred, 

which was very great if the lower electrode was negatively charged. 

The following currents were obtained with a bead of lithium carbonate and 

potential difference of 380 volts :— 

(1.) Bead very near the lower electrode— 

Current with lower electrode negative 130’0 divisions. 

,, ,, ,, positive. 4-3 

(2.) Bead 0’2 centim. above lower electrode— 

Current with lower electrode negative 84'0 divisions. 

,, ,, ,, positive. 2-8 

(3.) Bead 1 centim. above lower electrode—■ 

Current with lower electrode negative 3‘5 divisions. 

,, ,, ,, positive. o ,, 

To further test the view that the salt vapour is not ionised in the flame, except at 

the surface of the glowing electrodes, the conductivity of the flame alone for very 

rapidly-alternating currents was compared with that of the flame containing salt 

vapour by the method described by Professor J. J. Thomson (‘ Cambridge Phil. Soc. 

Proc.,’ vol. 8, Part V.). 

The outer coatings of two Leyden jars were connected through two coils of wire, 

each consisting of five or six tui’iis of well-insTdated wire, aiid the inner coatings 

were charged by means of a Whimshurst machine ; so that when the charges on the 

inner coatings were allowed to dischaige to each other rapid electrical oscillations 

passed through the two coils. An electrodeless discharge bulb containing bromine 

vapour placed in one of the coils served to indicate, by the intensity of the light 

from its discharge, the absorption of energy when a conductor was placed in the 

other coil. With this arrangement the conductivity of a large Bunsen flame could 

be distinctly detected, but the'introduction of salt into the flame produced little or 

no effect, although enough salt was introduced to have increased the cuii-ent between 

two electrodes in the flame by several hundred times. 

3 u VOL. CXCII.—A. 
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It thus appears that nearly all the ionisation of the salt vapour, to which the 

conductivity of the flame is due, takes place at the surfaces of the glowing electrodes, 

although the electrodes are ceidainly colder than the flame gases. If we regard a 

molecule of the salt as consisting of oppositely-charged ions or electrons held together 

hy the attractions between their che.rges, then, when the molecule is very near to a 

conductor like the electrode in the flame, the induced charges on the conductor 

diminish the attraction between the ions composing the molecule which may enable 

it to be ionised, even while the molecules not near the electrodes are quite stable, 

though at a higher temperature. 

(5.) The Relative Velocities of the Ions in the Flame. 

The way in which the current through the flame depends on the temperature of 

the negative electrode indicates that the part played hy the negative ions in carrying 

the current is more important than that played by the positive ions. This fact, and 

the results obtained in investigating the fall of potential between the electrodes, 

suggested the idea that the velocity of the negative ions, due to a given potential 

gradient, is much larger than the corresponding velocity of the positive ions. 

To test this, experiments were made in which the potential difference between the 

upper and lower electrodes necessary to cause the positive or negative ions to move 

down the flame against the upward stream of gases was determined. The apparatus 

used for this purpose is shown in fig. 4. 

AA, Iiead of salt and support. P, screen above lower electrode. 

A bead of salt was put in the flame between the electrodes, and the current from 

the lower electrode measured. It was found that when the uj)per electrode was 

positive, introducing the bead caused no increase in the current unless the potential 

difference between the electrodes was greater than 100 volts, when the electrodes 
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were 5 centims. apart. When the upper electrode was negative, other conditions 

being the same, the current increased on introducing the bead, even with a potential 

difference of 1 or 2 volts. 

To prevent any ions reaching the lower electrode by passing down the sides of the 

flame where the velocity of the blast is small, a screen, PP (fig. 4), was placed above 

the lower electrode. The hole in the platinum gauze of the screen at D was 

2 centims. in diameter, and it was completely filled by the flame, which also passed 

through the gauze round the hole. The platinum grating on the lower electrode 

was bent up so that it was only 2 or 3 millims. below the gauze screen. Diagram 

No. 12 shows the results obtained with a bead of potassium carbonate. 

Diagi’am No. 12. 

It will be observed that the introduction of the bead produced no increase in the 

current when the upper electrode was positive until a definite E.M.F. was applied. 

It was possible to determine this E.M.F. within about 5 volts with certainty with 

salts of Cs, Rb, and K. With salts of sodium and lithium the amount of current 

obtained was small compared with the current through the flame without salt, which 

made it imjDossible to determine the necessary E.M.F. with any approach to accuracy. 

The following table gives the results obtained with carbonates of the alkali metals for 

the positive ions :—• 

Caesium. 104 volts. 

Rubidium. 100 ,, 

Potassium. 107 ,, 

Sodium.90 to 110 ,, 

Lithium.90 to 100 ,, 

The E.M.F. between the electrodes 5 centims. apart required to cause the positive 

ions of the carbonates of K, Rb, Cs, Na, and Li to move down against the blast of the 

flaune is about 100 volts, so that the positive ions of these salts must all have nearly 

the same velocity due to the slope of potential in the flame. With beads of the 

3 u 2 
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chlorides of the same metals the same result appeared to hold, but the much greater 

volatility of the chlorides made it difficult to obtain satisfactory results. 

To compare the velocity of the positive ion due to a potential gradient of 1 volt 

per centim. with the velocity of the flame gases, it is necessary to know the potential 

gradient between the electrodes when the P.D. is just enough to make the ions go 

down the flame. Diagram No. 13 shows the fall of potential in the flame without 

salt when this is the case with a P.D. of 107 volts between the electrodes 5 centims. 

apart, the upper electrode being positive. 

Diagram No. 1.3. 

The smallest potential gradient on this curve is 3’3 volts per centim., which is, 

therefore, the gradient necessary to make tlie positive ions of the alkali metal salts 

move against the gases of the flame. 

The mean velocity of the mixture of gas and air in the tube leading to the flame 

was approximately 206 centims. per second, as determined from the volumes of gas 

and air supplied to the apparatus. On entering the flame the gases of course expand 

very greatly, but the effect of this expansion is probably not great on the upward 

velocity of the gases, since the flame is free to expand laterally. Taking the velocity 

of the gases in the flame as 206 centims. per second, the velocity of the positive ions 

in tlie flame due to a potential gradient of 1 volt per centim. is therefore 

206 
•’.o 

, ^ centims. 
= 62 

sec. 

In determining the P.D. necessary to make the negative ions move down against 

the flame gases, a long wire through which a current was passing was used to supply 

the potential differences recpiired. Diagram No. 14 shows the results obtained with 

a bead of Na^COg. 

When the E.M.F. is less than I volt, there is a small current opposed to the 

applied E.M.F. At about I volt the current with the bead suddenly begins to 

increa.se rapidly, with the E.M.F. indicating that the negative ions have begun to go 

down against the blast of the flame. 
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The explanation of the small inverse current when the E.M.F. is small is not easy. 

It was increased by the introduction of the head, which may have been due to some 

salt jDarticles getting carried round to the lower electrode by the circulation of the air 

between the electrodes. The presence of this inverse current prevented the E.M.F. 

necessary to bring down tlie negative ions being determined very exactly, as it varied 

with the size of the bead and with the volatility of the salt used. 

The P.D. required by the negative ions was about 1 volt for both oxy and haloid 

salts of any of the alkali metals. Taking the potential gradient corresponding to this 

as 0‘2 volt per centim. gives for the velocity of the negative ion due to 1 volt per 

centim. 
centims. 

1030 -, 
sec. 

which is 17 times the corresponding velocity of the positive ions. 

Diagram No. 14. 
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Another method of estimating the velocities of tlie ions was alstj tried. Two 

electrodes of platinum foil were fixed opposite each other in the flame, about 1'5 

centim. apart, each electrode being I’5 centim. square. A bead of salt was held 

just below one of these, so that the salt vapour only came into contact with this 

electrode which was connected to earth. The ether electrode was charged, and any 

leak from it measured by the galvanometer. It was found that the current was not 

increased by the presence of the head of salt unless the E.M.F. used was greater 

than a definite amount, which was much greater when the electrode was negatively 

charged than when it was positively charged. This E.M.F. necessary for the current 

to increase when the salt is introduced is evidently that required to drag the ions 

from one electrode to the other, across the Idast of the flame gases. The salt vapour 

from the bead rapidly spreads out in the flame, so that unless the charged electrode 

was placed near the edge of the flame, the vapour came in contact with both elec- 
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trodes, in which case the current was increased by the presence of the salt even with 

very small E.M.F.’s. 

It is difficult to form any estimate of the velocities from this experiment, because 

the ions must spread out from the electrode at which they start by mere diffusion, 

which will make the velocity appear too great. The fall of potential between the 

electrodes also is not uniform, and cannot be determined conveniently when the 

electrodes are so near together. Nevertheless, the results obtained were of the same 

order of magnitude as those obtained l)y the method described above. When the 

electrode was positively charged an E.M.F. of 0’25 volt was enough to Increase the 

current when the salt vapour was introduced. This gives for the velocity of the 

CBlltllllS 

negative ions 1200 If positively-charged electrode was placed outside 

the flame, then the E.M.F. necessary for the current to increase when the salt vapour 

was introduced at the other electrode was much greater than before. The following 

numbers show this. The electrodes were kept at the same distance aj^art, 1'5 

centim. in each case. 

(1.) E.M.F. required when both electrodes were in the flame . . 0‘25 volt. 

(2.) E.M.F. required when the charged electrode was at the side 

of the flame, so as to be only just very slightly red hot . . 1*2 volt. 

(3.) E.M.F. required when the charged electrode was outside the 

flame.2 "3 volts. 

The explanation of this increase in the necessary E.M.F. can be readily seen by 

considering tire results of the observations on the fall of potential between the two 

electrodes wlien one is much colder than the other. In such a case nearly all the fall 

of potential occurs near the cold electrode, so that the potential gradient available for 

dragging across the ions at the hot electrode is very greatly diminished. 

A third estimate of the velocity of the negative ions was obtained by diverting 

the current between two electrodes, one above the other, in the flame by means of a 

pair of charged electrodes jrlaced outside the flame. Two small platinum electrodes 

were fixed one al30ve the other in the flame, and 3 centims. apart. The two j^latinum 

foil electrodes already described were placed one on each side of the flame, and on a 

level with the lower of the small electrodes. The lower small electrode was put to 

earth and the upj^er one charged positively to of a volt, and the current from 

it measured. The two la,rge electrodes were then charged positively, when it was 

found that tlie current observed was diminished and reversed if they were charged 

to more tlian 0‘4 volt. Since the ol)served current was probably mainly carried by 

negative ions moving upwards witli the blast, l^ecause the E.M.F. used Avas not 

enough to drag down any positive ions, the stoppage of the current on charging the 

large electrodes must have been due to the negathm ions being dragged across from 

the lower small electrode to the large electrodes. These latter Avere 2 centims. apart, 
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so that the potential gradient between them and the lower small electrode was 

anyhow less than 0'4 volt, per centim. This gives for the velocity of the negative 

ions, supposing that they travelled from the lower small electrode to the tops of the 

larger electrodes, which were 0’7 centim. higher up and 1 centim. distant horizontallyj 

206 

0-4 X 0-7 

_ ^ centims. 
740- . 

sec. 

This result agrees quite as well as can be expected with the other two estimates 

made of the velocity of the negative ions due to a potential gradient of 1 volt per 

centim. 

To compare the velocities of the negative ions of various salts some measurements 

were made of the E.M.F. necessary to drag them from an electrode in the flame to 

one placed oj)posite to it, but outside the flame. As I have pJready mentioned, this 

E.M.F. increases rapidly as the distance of the outside electrode from the flame 

is increased. By placing it about 0'5 centim. from the edge of the flame the E.M.F. 

necessary was increased to about 12'o volts. This necessary E.M.F. was determined 

for the following salts, KCL, NaCL, Li2C03, KF, KI, KBr, K2CO3, and was found 

in every case to lie between 12 and 13 volts. Thus it appears that the velocity of 

the negative ions is independent of the nature of the salt from which they are derived 

in the flame. 

(6.) The Relative Velocities of the Ions in Hot Air. 

The experimental difficulties in the determinations of the velocities of the ions in 

the flame described above prevented anything more than rough estimations of the 

respective relative velocities being obtained. I, therefore, endeavoured to devise a 

method in v/hich the conditions of the experiments should be simpler and more under 

control. It is clear that the gases of a flame, even when this is kept in as steady a 

state as possible, are not a very suitable medium for accurate work. I, therefore, 

tried treating the electrodes by means of electric currents passing through them, and 

put salt on one or both electrodes. After several trieJs, with various forms of appa¬ 

ratus, this method was abandoned, owing to the difficulty of getting the air i^etween 

the electrodes sufficiently hot to keep the salt vapour from condensing. 

A new apparatus was now constructed, in which a current of very hot air practi¬ 

cally replaced the flame in the experiments already described. The water pump and 

pressure-regulating apjoaratus, already described, were used to supply the air. The 

air was heated by 2:)assing it through a platinum tube, 50 centims. long and 1'3 cen¬ 

tim. in diameter, maintained at a bright red heat in a Fletcher’s gas-tube furnace. 

The stream of hot air so obtained would heat a jflatinum wire red hot 5 or 6 centims. 

from the end of the tube. To prevent the furnace gases getting into the air at the 

end of the tube, a plane flange of platinum, G centims. in diameter, was fitted to the 

end of the tube. 
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Fig. 5 shows the essential parts of the ap})aratns for getting the velocity of the 

ions in the stream of liot air. 

F is the liange on the platinum tube. An electrode, A, consisting of a grating of 

platinum wires, 0'25 millim. in diameter and 2 millims. apart, wound on pegs in a brass 

disk, 5'5 centims. in diameter, was placed opposite to the flange, and the stream of 

hot ail' kept the grating red hot. This electrode could he charged up by means of 

battery of small accumulators, and so an electric field maintained between A and F. 

A small head of the salt to be investigated was put midway between A and F in the 

current of hot air, and was supported by a platinum wire held by a glass tube, B. 

B 

<—^ WOT a/R ^ 

r/G. 6 

An electrode, C, was also introduced into the stream of hot air as near the mouth 

of the tube as possible. This consisted simply of a ring of fine platinum wire 

supported in a glass tube, which insulated the wire leading to the ring. 

The ring electrode was connected to a galvanometer of 11,000 ohms resistance, and 

through this to the platinum tube, which wars also connected to “ earth.” The bead 

of salt was slowdy volatilised in the current of hot air and its vapour passed through 

the grating. On the hot grating some of it was ionised, and if the electric field 

betw'een the grating and the ring electrode and liange "was strong enough, some of the 

ions moved against the blast of air to the ring electrode, so jiroducing a current -which 

was indicated by the galvanometer. 

It was thus possible to determine the P.D. necessary to make the ions move against 

the blast of hot air exactly in the same way as rvas done in the flame. If the velocity 

of the blast and the potential gradient corresponding to this necessary P.D. -were 

known, the absolute velocity of the ions could be at once calculated, but, unfortu- 



OF FLAMES CONTAINING SALT VAPOUES. 521 

nately, it is not possible to get anything more than rough estimates of these 

quantities. All that was attempted, therefore, was to determine the necessary P.D.’s 

for various ions under the same conditions. This gives the relative values of their 

velocities in the hot air. 

The following diagram shows the variation of the current with the P.D. when the 

platinum flange and the grating electrode were I centim. apart, the grating being 

positively charged with beads of KI and KOH :— 

Diagram No. 15. 

It will be observed that in each case the current is zero until a P.D. of about 

25 volts, is reached, when it increases nearly uniformly with the P.D. 

Other conditions remaining the same, the necessary P.D. should vary directly as 

the distance between the electrodes. Actually it was found that the necessary P.D. 

increased more rapidly than the distance, except when this was less than about 

1'5 centim. Below 1'5 centim. distance, the necessary P.D. varied as the distance 

between the electrodes. Thus the following results were obtained with a lib^COs 

bead:— 

Distance between 
Electrodes. Necessary P.D, 

centims. cells 
1-5 17-5 
1-0 12-5 
0-8 9-5 

With other salts similar results were obtained. In most of the measurements made 

the grating and the flange were kept 1 centim. apart. 

The effect of varying the velocity of the air blast was also tried. It was found that 

for small variations of the velocity not greater than 20 per cent, of its usual value, 

the necessary P.D. varied directly as the velocity of the blast. The blast could not 

be increased more than about 20 per cent, with the apparatus available. For diminu- 

VOL. cxcn.—A. 3 X 
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tions of the velocity of the blast greater than 20 per cent., the necessary P.D. 

diminished more rapidly than the velocity of the blast. This vas j^robahly due to 

the effects of accidental air currents and diffusion, Avhich, of course, become more 

important when the blast of air is made less rapid. If the velocity of the blast was 

reduced to mucli less than one-half its usual value, the grating did not become hot at 

all, and practically no current at all could be obtained. 

Any change in the temperature of the platinum tube produced a change in the 

amount of current obtained with any given P.D., and also changed the value of the 

least P.D. necessary to give an appreciable current. 

The gas and air supplies to the gas furnace were therefore carefully regulated by 

means of the apparatus already described for producing a steady flame. In this way 

the temperature of the tube could be maintained sufficiently constant for any length 

of time. 

Increasing the temperature increased the amount of current obtained, and diminished 

slightly the least necessary P.D. 

Since, however, altering the temperature of the tube alters so many of the other 

conditions of the experiments, such as the velocity of the air blast and the rate of 

volatilisation of the salt bead, it is very difficult to interpret the meaning of this last 

result. Consequently in all the experiments the temperature of the tube was kept as 

nearly as possible the same. 

The accuracy with which tlie necessary P.D. could be determined varied with the 

distance between the electrodes and with the temj^erature of the tube. If the 

electrodes were too near together, a current was obtained with any P.D., however 

small. 

Increasing the temperature diminished the least distance at which satisfactory 

results could be obtained. 

Finally, a distance of 1 centim. between the electrodes and a definite supply of 

gas and air to the furnace and to the tube were adopted, as giving the best results. 

The P.D. necessary to produce an appreciable current could be determined within 

1 volt in any one experiment, and the results of different experiments with the same 

salt usually agreed within the same limit. 

Occasionally larger discrepancies than this occurred, which, however, could generally 

be traced to some accidental circumstance affecting the supply of gas or air to the 

furnace. 

The amount of current obtained with any one salt depended much less than might 

be expected on the size of the bead used. With some very volatile salts such as KI, 

a bead about 3 millims. in diameter only lasted two or three minutes, yet during 

nearly all this time the current with a given P.D. remained very nearly constant 

and only began to fall off when the bead had almost disappeared. This, of course, 

greatly facilitated the measurements, since it was not neaessary to keep the bead very 

constant in size durini>’ a series of determinations of the current with different P.D.’s. 
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The rate at which the current increased with the P.D. after the least necessary 

P.D. was reached varied greatly with different salts, and with the sign of the charge 

on the grating. In general, the salt which was the more volatile gave the greater 

rate of increase of current with P.D. The rate of increase of current with P.D. was 

also usually greater when the grating was negatively charged than when it was 

positively charged. 

When the grating was negatively charged it was found that the P.D. at which the 

current began to increase with the P.D. between the electrodes was, other conditions 

remaining unchanged, aj^proximately 7’0 volts for all the salts tried, viz. :— 

NaoCOs, NaOH, NaCL, K^COa, KOH, KCL, KBr, KI, KF, LiCL, 

LLCO3, PbCL, EDCOa, CsCL, Cs,C03, CaCL,, BaCL,, SrCL,, Ba(N03)o. 

The following salts were also tried, but although they gave a large amount of 

current, it was so unsteady and lasted such a short time, owing to the decomposition 

of the salt, that no definite results could be obtained : FeCLg, AICL3, ZnOL^, MgCL.j. 

When the grating was positively charged, the least necessary P.D. was very 

approximately 25 volts with each of the salts of Li, Na, K, Ptb, and Cs mentioned 

above, and very approximately 48 volts for each of the salts of Ca, Sr, and Ba. 

The mean velocity of the air blast was estimated to be about 180 which 
sec. 

gives for the velocities of the ions due to one volt per centim. the following values :— 

(1.) Negative ions. 

(2.) Positive ions of salts of Li, Na, K, Eh, and Cs . 

(3.) Positive ions of salts of Ba, Sr, and Ca .... 

Only the relative value of these velocities has any pretensions to accuracy. As 

already explained, it was not found possible to obtain more than the order of 

magnitude of the absolute velocities. 

The result obtained for the velocities of the ions in the flame, viz., that all the 

negative have the same velocity, and likewise the positive ions of salts of Li, Na, K, 

Eb, and Cs, was thus found to hold good also in hot air. 

The velocities in the hot air are much smaller than those in the flame. The values 

given for the velocities in the hot air were obtained by assuming the fall of potential 

between the grating and the ring electrodes to be uniform. Since there was practi¬ 

cally no current between them up to the least necessary P.D., this assumption cannot 

be very far from correct; still, any departure from a uniform fall would cause the 

values given to be too small.* 

* Since the salt vapour is not ionised till it reaches the hot gauze, there are no ions between the gauze 
and flange ludess the ions go against the blast. 

26 

7-2 

3-8 

centims. 

sec. 

centims. 

sec. 

centims. 

sec. 

3x2 
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Taking this source of error into account, it is still clear that the velocities in the 

flame are very much greater than those in the hot air. The average temperature of 

the flame may be taken as say 2000° C., whilst that of the hot air was nearly 

1000° C. ; consequently, if the size of an ion is supposed to be independent of the 

temperature, the velocity of the ions in the flame should have been about double that 

in the hot air. Actually the negative ions were found to move forty times quicker in 

the flame than in the hot air. 

The results obtained by McClelland"^ for the velocities of the ions in the hot 

gases coming from flames appear to bear on this point. He found that the velocity of 

the ions rapidly diminished as the distance from the flame was increased, and this 

pointed to “ a rapid condensation on the charged carrier of some uncharged body 

greatly increasing its mass.” 

The theoretical velocity of an ion supposed to be one atom, carrying the same 

charge that an ion does in solutions, can be calculated by means of the formula 

-n U — —7 D 
mk 

where u is the velocity of the ion, 

D the coefficient of interdiflusion of the ions and the gas, 

ni the mass of an ion, 

e the charge on it, 

X the electromotive intensity, 

h the quotient of pressure by density for the ions, t 

This gives for the velocity of an ion of molecular weight 32 in air at the ordinaiy 

temperature about 40 centims. per second. At a temperature of 2000° C., its velocity 

would be 300 centims. per second, and at 3000° C., about 400 centims. per second. 

The velocity of the negative ions in the flame, 1000 centims. per second, is, there¬ 

fore, of the same order of magnitude as the theoretical velocity of an ion consisting 

of one atom. 

All the other velocities are less than this, which indicates that the ions consist of 

clusters of atoms, that is, assuming that they carry the same charge as the ions in 

electrolysis of solutions. This result is in agreement with those of Rutherford on 

the velocities of the ions in Rontgen ray and uranium ray conductivity, and of 

McClelland on the velocities of the ions in the hot gases coming from flames. 

The size of this cluster appears to he much greater in the case of positively- 

charged ions than in the case of negatively-charged ions. Zeleny (‘ Phil. Mag.,’ 

July, 1898) has shown that the velocity of the negative ions produced in gases by 

* ‘Phil. Mag.,’ July, 1898. 
t See J. J. Thomson, ‘Brit. Assoc. Reijort,’ 1894, Art., “Diffusion,” ‘ Encyclopredia Britannica,’ and 

E. Rutherford, ‘Phil. Mag.,’ Nov., 1897. 
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Ptontgen rays is greater than that of the positive ions in air by about 25 per cent. 

McClelland has found the same thing for the ions in the gases coining from flames, 

and Rutherford has shovm that the same result holds good for the ions produced 

by uranium radiation. 

In the flame the negative ions of alkali salt vapours move 17 times as fast as the 

positive ions, and in air at 1000° C. 3’6 times faster with alkali salts, and 7 times 

faster with salts of Ba, Sr, and Ca. 

It seems reasonable to suppose that since the ions in each of the three classes, viz. : 

1 Negative ions, 

2 Positive ions of alkali metal salts, 

3 Positive ions of Ba, Sr and Ca salts, 

have equal velocities, they are equal clusters of atoms. It thus appears that ions 

which in solutions have equal charges, have equal velocities in the gaseous state. 

This points to the conclusion that the size of the cluster of atoms forming a gaseous 

ion, depends, at a given temperature, only on the charge on the ion. Those ions, 

therefore, which have equal charges, have also equal velocities in the same medium. 

(7.) Conclusion. 

Since the ionisation on which the conductivity of the salt vapour depends takes 

place entirely at the surfaces of the glowing electrodes, there is therefore at the 

surfaces a thin layer in which very raj)id ionisation and recombination are going on. 

The number of ions dragged out from the surface of an electrode will depend on 

the slope of potential at the surface, and if this is great enough to drag out all the 

ions of one sort before they can recombine the current will be as great as possible. 

Owing to the much greater velocity of the negative ions they will be far more easily 

dragged out than the positive ions, so that unless the slope of potential is great 

enough to drag out all of either kind of ions, the current from an electrode with a 

given slope of potential at it will be greater when the electrode is negatively charged 

than when it is positively charged. 

Consider the case in which one electrode is white hot and the other comparatively 

cool, so that little or no ionisation occurs at it. In this case oidy one kind of ions 

will be present in the space between the electrodes, viz., those of the same sign as the 

hot electrode, so that there will be a charge in the gas which will diminish the slope 

of potential near the hot electrode and increase it near the cool electrode. The 

experimentally-determined slopes of potential with one electrode cool show this effect 

very clearly. 

In this case, in which the fall of potential is nearly all at the cold electrode, the 

smallness of the potential gradient at the hot electrode is not favourable to the 

attainment of the saturation value of the current, and the current E.M.F. curves 
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consequently continue to slope up, even with the greatest E.M.F.’s that could be 

applied. 

If the electrodes are connected to the galvanometer slmj)ly without any battery, 

there is a small deflection indicating a current from the colder electrode to the hotter 

through the flame. This is easily explained by supposing that some of the negative 

ions at the electrode diftuse out, owing to their high velocity leaving an excess of 

positive behind. The blast of the flame will assist this action by blowing away the 

negative ions as soon as they get away from the surface of the electrode. According 

to this the hotter electrode loses more negative ions than the colder, since there are 

more ions formed at it. In the same way a wire immersed in the flame becomes 

positively charged. This action is almost exactly analogous to the charging of a 

polished zinc plate, when ultra-violet light falls on it, described by Hallwachs, 

Righi, and others. 

If both the electrodes are hot enough to produce ionisation, and if the fall of 

potential at the upper electrode is great enough to make the ions from it come down 

against the blast, then there will be both sorts of ions present in the space between 

the electrodes, which will modify the fall of potential. Since the positive ions move 

so much more slowly than the negative ions, they remain in the gas much longer and 

so have a greater effect on the fall of potential; consequently the fall of potential is 

much greater at the negative electrode than at the positive electrode. The great 

velocity of the negative ions enables a much smaller slope of potential to drag them 

all out than is required to drag out the positive ions, so that unless the E.M.F. 

applied is very great the current is mainly carried by the negative ions. These 

points are very well illustrated by the experiments described above, on the effect of 

specially heating the upper electrode when it is positive. When it is heated the 

positive ions coming from it transfer the fall of potential from the positive electrode 

to the negative electrode, so that all the negative ions there are dragged out and the 

current attains its saturation value as far as the negative ions are concerned. 

If the jDositive electrode only is hot then the positive ions moving across will cause 

all the fall of potential nearly to be at the negative electrode, and owing to their 

small velocity this effect will be more comjflete than when the negative ions alone 

are present. Owing to this, and to the greater difficulty of dragging out the slow 

positive ions from the electrode, the current, when the positive electrode is hot, will 

be much smaller than when the negative electrode is hot. In this way it is easy to 

explain all the phenomena of unipolar conduction. 

In the case where both electrodes are hot, the fall of potential being mostly at the 

negative electrode, the current due to the negative ions attains its saturation value 

at a comparatively small E.M.F., but the current carried by the jjositive ions con¬ 

tinues to increase nearly uniformly with the E.M.F. 

According to this then, in the equations 
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C = I + ^’lE, 

I is the maximum current carried by the negative ions coming from the negative 

electrode, and is the current due to the positive ions, which is still far from its 

saturation value. 

If E is made sufficiently great, the current due to the positive ions should also 

become saturated, and with very high E.M.F’.s it is found that the current increases 

less rapidly with the E.M.F. than the formula C = I + /jjE represents. 

The equation I — ^ = /r, — was originally obtained for the conductivity of 

Eontgenised gases in which most of the ionisation takes place throughout the volume 

ciP . . . fZN 
of the gas. In this case , where a is the constant in the equation — =aN“ 

representating the rate of recombination of the ions, I is the distance between the 

electrodes, e the charge carried by each ion, and U the sum of the velocities of the 

positive and negative ions under an electromotive intensity of one volt per centim. 

When aU the ionisation takes place at the surfaces of the electrodes, the above 

signification of 1:2 no longer holds, but the fact that the equation can still represent 

the observed relation between the current and E.M.F. shoAvs that the general nature 

of the conductivity is the same in both cases. 

In our paper referred to above, we showed that the conductivity of the halogen 

salts is approximately proportional to the square root of the concentration of the salt 

vapour in the flame. The conductivity of the oxysalts followed the same law when 

the concentration was very small, hut with greater concentrations was nearly pro¬ 

portional to the concentration of the salt vapour. Now when the concentration of the 

salt vapour in the flame is very small, the amount of salt in an extremely tliin layer 

at the surface of an electrode in the flame will be proportional to 0% where C is the 

concentration of the salt vapour, that is, supposing that the mean distances between 

the molecules of salt is larger than the thickness of the layer in which ionisation takes 

place. Consequently the conductivity should vary as C* if it is supposed that the 

amount of ionisation is proportional to the amount of salt in this layer. If the 

concentration of the salt vapour in the flame is so great that the mean distance 

between the molecules of salt is small compared with the thickness of this layer, then 

the amount of salt in the layer will be j^roportional to the concentration of the salt in 

the flame, so that at such concentrations the conductivity should be j^roportional to 

the concentration. 

In the folloAAung table the observed conductivity of KCL is compared with the 

calculated by assuming it proportional to (1) C*, (2) C':—• 



528 ELECTKICAL CONDUCTIVITY OF FLAMES CONTAINING SALT VAPOURS. 

i Concentration of 
solution, sjijrayed. 

Current calculated. 

(1-) i (2.) 
1 

Current 
observed.* 

i 

0-2 (31-9) (31-9) 31-9 
OT 22-6 20-1 21-0 
0-05 15-9 12-7 14T 
0-01 7-14 4-33 6-0 

It will be observed that in each case the observed current lies between the two 

calculated currents. 

The results of the observations described above on the fall of potential between the 

electrodes show that there is a very close analogy between the conductivity of salt 

va230urs in flames and the conductivity of gases at low pressures. In both cases there 

is a greater fall of potential near the negative electrode than near the jDositive 

electrode, with a small slope of potential in the intermediate space, and it seems very 

likely, therefore, that the j^eculiar form of the fall of potential in gases at low pressures 

is due, like that in the flame, to a great difference between the velocities of the 

jDositive and negative ions. 

In conclusion, I desire to exjiress my best thanks to Professor J. J. Thomson for 

many valuable suggestions during the course of these exj^eriments, and also to 

Professor A. Smithells for his kindness in allowing me to continue the investigation 

of this subject begun in his laboratory. 

* These numbers are taken from the previous paper on this subject. 
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