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Markov chainMonte Carlo (MCMC) iswidely used for Bayesian
inference in models of complex systems. Performance, however,
is often unsatisfactory in models with many latent variables
due to so-called poor mixing, necessitating the development
of application-specific implementations. This paper introduces
‘posterior-based proposals’ (PBPs), a new type of MCMC
update applicable to a huge class of statistical models (whose
conditional dependence structures are represented by directed
acyclic graphs). PBPs generate large joint updates in parameter
and latent variable space, while retaining good acceptance
rates (typically 33%). Evaluation against other approaches
(from standard Gibbs/random walk updates to state-of-the-art
Hamiltonian and particle MCMC methods) was carried out
for widely varying model types: an individual-based model
for disease diagnostic test data, a financial stochastic volatility
model, a mixed model used in statistical genetics and a
population model used in ecology. While different methods
worked better or worse in different scenarios, PBPs were
found to be either near to the fastest or significantly faster
than the next best approach (by up to a factor of 10). PBPs,
therefore, represent an additional general purpose technique
that can be usefully applied in a wide variety of contexts.
1. Introduction
Markov chain Monte Carlo (MCMC) techniques allow correlated
samples to be drawn from essentially any probability distribution
by iteratively generating successive values of a carefully
constructed Markov chain. This flexibility has led MCMC to
become the method of choice for inferring model parameters
under Bayesian inference [1]. However, for high-dimensional
systems (e.g. where inference is over many tens, hundreds or even
thousands of variables), MCMC often suffers from a problem
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known as ‘poor mixing’. This manifests itself as a high degree of correlation between consecutive samples

along the Markov chain, so requiring a very large number of iterations to adequately explore the posterior
[1]. This limitation is of practical importance, because it restricts the possible models to which MCMC can
realistically be applied. The focus of this paper is to introduce and explore a new approach that helps
alleviate these mixing problems, thus reducing the computational time necessary to generate accurate
inference. This approach has practical advantages over existing methodologies that aim to address the
same problem [2–4].

In Bayesian inference, the posterior distribution π(θ, ξ|y) represents the state of knowledge
concerning the parameters θ and latent variables ξ of a given stochastic model taking into account
data y. Using Bayes’ theorem, this posterior distribution can be expressed as

pðu, jjyÞ ¼ pðyjj,uÞpðjjuÞpðuÞ
pðyÞ , ð1:1Þ

where π(y|ξ,θ) is here referred to as the observation model, π(ξ|θ) is the latent process (i.e. the part of the
model which is not directly observed but helps explain the observations) likelihood, π(θ) is the prior
distribution (representing the state of knowledge prior to data y being considered) and π(y) is a
constant factor known as the model evidence [5].

An MCMC implementation of Bayesian inference aims to produce samples from the posterior, i.e. a
list of parameter values θ i and latent variables ξ i distributed in accordance with equation (1.1). This is
achieved by sequentially proposing some change to the current state θ i and/or ξ i to generate θ p and
ξ p, and accepting or rejecting this change with a Metropolis–Hastings (MH) probability to create the
next member on the list, i.e. θ i+1 and ξ i+1 [6]. Note, in some instances, it is possible to probabilistically
generate samples directly, e.g. via Gibbs sampling [7] or slice sampling [8], without the need for an
accept/reject step.1 The term Monte Carlo refers to the probabilistic nature of these updates that form
a Markov chain, i.e. step i + 1 in the chain only depends on the state at the previous step.

A typical approach is to sequentially update each parameter and latent variable separately. Figure 1a
illustrates the problem of poor mixing resulting from implementing this ‘standard’MCMCwhen there is a
strong dependency between latent variables and model parameters. The dark shaded area represents high
posterior probability2 as a function of θ and ξ. Consider first fixing θ andmaking changes to ξ, as shown by
the dashed line in figure 1a. Because MCMC samples are probabilistically constrained to lie in the shaded
region, the chainwill make limited progress even for a large number ofMHupdates. Similarly, changes to θ
while fixing ξwill be restricted to move along horizontal lines, which are again limited in scope. A typical
output from an MCMC algorithm which independently updates parameters and latent variable is
illustrated in figure 1b, which shows the trace plot for one of the variables in θ. Thousands of MH
updates are potentially needed to generate just one uncorrelated effective sample from the posterior.

The way out of this sorry state of affairs is shown in figure 1c. Here the proposals are performed
jointly in parameter and latent variable space (as indicated by the pink shaded region) and share a
similar correlated structure to the posterior itself. In this case, proposals can jump much further
without the posterior probability becoming negligibly small. Consequently, as illustrated in figure 1d,
successive samples are less correlated and fewer are needed to be representative of the posterior.

Various techniques to perform joint updates have been proposed in the literature. For example
particle MCMC (PMCMC) [2] samples a new set of parameters θ p relative to θ i and then sets about
generating ξ p. This is achieved by directly sampling from the model π(ξ|θ p) multiple times, with each
instance referred to as a ‘particle’. The final result is built up in a series of stages that sequentially
take into account a larger fraction of the data y. At the end of each stage, those particles which agree
well with the sequentially introduced observations are duplicated at the expense of those which don’t
agree so well (so-called particle filtering). While this method exhibits very good mixing,
computational speed is often compromised because the number of particles needed to generate a
reasonable acceptance probability can be very large [9].3

Approximate Bayesian computation (ABC) [3] also samples directly from themodel, but rather than fitting
the data to the samples through a full observation model, as in equation (1.1), here the fit with the data is
characterized by a much simpler distance measure χ. Often χ is specifically chosen such that a substantial
proportion of simulated samples contribute to the final result. Such an approach, however, comes at a
1In these cases, the MH acceptance probability is exactly one.
2Note, this diagram is purely schematic, as θ and ξ are usually multidimensional quantities.
3Potentially leading to detrimentally large computational memory requirements.
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Figure 1. Mixing. Illustrative example of poor/good mixing. (a) Proposals are made individually on parameters and latent variables
separately (the dashed line shows the case of a latent variable being changed). The shading represents the region of high posterior
probability. (b) Trace plot exhibiting poor mixing. (c) Efficient joint proposals are made using the distribution in pink (which is
correlated in the same way as the posterior). (d ) Trace plot exhibiting good mixing.
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significant cost, because ABC generates only approximate, rather than exact, draws from the posterior [10].
Furthermore, doubts have been cast on ABC’s ability to accurately perform model selection [10,11].

In Hamiltonian MCMC (HMCMC) [3,12] θ i and ξ i are dynamically changed through a series of small
intermediary steps (which take into account local gradients in the log of the posterior probability) to
reach θ p and ξ p. This final state is then accepted or rejected with an overall MH probability. This,
again, produces good mixing (due to the fact that θ i,ξ i and θ p,ξ p can be widely separated), but its
efficiency is critically dependent on the number of intermediary steps needed for a sufficiently high
acceptance rate [3]. Although recent improvements have helped to optimize this technique (most
notably the ‘No-U-turn sampler’ introduced in [13]), HMCMC is applicable to only those models for
which θ and ξ are continuous quantities. Consequently, it is not well suited to tackle models with
discrete variables, e.g. disease status [14], or variable dimension number, e.g. event data [15].

Another approach is to develop a non-centred parametrization (NCP) [4,16,17] in which a new set of
latent variables ξ’ (whose distributions are typically independent of the model parameters θ) are
introduced. These new variables are related to the original latent variables through some deterministic
function ξ = h(ξ’, θ, y). MCMC implemented using this reparameterization can lead to improved
mixing [17]. In this case, proposed changes to ξ’ can be thought of as joint proposals in both ξ and θ.

This paper introduces a new class of MCMCproposal valid for the vast majority of statistical models (§2).
We refer to these as ‘posterior-based proposals’ (PBPs, §3), as they are constructed with the aid of importance
distributions (§4) which approximate the posterior. PBPs enable joint updates to both θ and ξ (unlike standard
approaches), are fast (i.e. they don’t require multiple particles like PMCMC), accurate (i.e. they draw samples
from the true posterior, unlike ABC) and they can be applied to continuous or discrete state-space models
(unlike HMCMC). A further novelty in PBPs is that they not only account for correlations between θ and ξ
inherent to the model, but can also take into account the data (unlike NCP). Application to models used in
disciplines ranging from statistical genetics to epidemiology to finance demonstrate that PBPs potentially
offer considerable improvements in performance over standard approaches (§5).
2. Broadly applicable model framework
PBPs are potentially applicable to any statistical model whose conditional dependence structure can be
represented by a directed acyclic graph (DAG) [18], as illustrated in figure 2. This encompasses a vast
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Figure 2. Directed acyclic graph (DAG). This shows a model with parameters θ, latent variables ξ and observations y. The arrows
represent conditional dependencies. The model assumes that latent variables ξe (where e goes from 1 to E = 6 in this example) are
sampled from a set of univariate probability distributions π(ξe|ξe’<e,θ) and yr are sampled from π( yr|ξ,θ) (note, this example
shows the special case when yr depends only on ξr).
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range of statistical models including mixed models (MMs) [19], generalized linear MMs [20], hidden
Markov models [21], discrete-time Markov processes [22] and most of the models that can be defined
in automated Bayesian software, such as WinBUGS [23], JAGS [24] or Stan [25], which specifically
assume a DAG structure. A key property of DAGs is that the indices for the latent variables e can be
ordered such that each element ξe is conditionally dependent on only those other elements with lower
index ξe’ < e (a property known as topological ordering).4

Simulation results from sequentially sampling each latent variable ξe (starting from e = 1 up to e = E)
from a set of model-defining univariate probability distributions π(ξe|ξe’ < e,θ). Consequently, the latent
process likelihood in equation (1.1) can be expressed as

pðjjuÞ ¼
YE

e¼1
pðjejje0,e,uÞ: ð2:1Þ
3. Posterior-based proposals
3.1. Aim
PBPs first propose a new set of parameters θ p relative to θ i and then generate ξ p by means of
stochastically modifying ξ i to account for this change in parameters (note, this is in stark contrast to
PMCMC which aims to sample ξ p directly from π(ξ|θ p,y) without reference to ξ i or θ i). The novel PBP
process involves sequentially sampling each latent variable j

p
e from e = 1 up to E, and makes use of

so-called importance distributions (IDs) applied to both the initial and proposed states. These
importance distributions fID(ξe|ξe’ < e, θ, y) are approximations to the posterior distributions π(ξe|ξe’ < e,
θ, y) used in importance sampling (see electronic supplementary material, appendix A for further
details). For clarity, we leave a discussion of how these approximations are made in practice until §4.
3.2. Example
We first run through an illustrative example of a PBP and then provide a general description in §3.3.
Figure 3 shows hypothetical distributions for a particular value of e for which ξe takes non-negative
integer values. Here, the black lines represent the true (unknown) distributions for the current
4The notation ξe’<e denotes all elements in ξ with index smaller than e.
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p(j ejj i
e0,e, u

i, y) and proposed p(j ejj p
e0,e u

p, y) states, respectively. Since these curves are approximately
Poisson distributed,5 the IDs are taken to be Poisson (as shown by the red dashed lines in figure 3)
with probability mass functions (p.m.f.)

fID(j ejj i
e0,e,u

i,y) ¼ e�lilj e
i

j e!
,

fID(j ejj p
e0,e,u

p,y) ¼ e�lplj e
p

j e!
: ð3:1Þ

These functions are characterized by ‘expected event number’ parameters λi and λp, which themselves
are functionally dependent on ðj i

e0,e, u
i, yÞ and ðj p

e0,e0u
p, yÞ, respectively (see §4).

A unique feature of PBPs is that the sampling distribution for j p
e crucially depends on the relative size

of λp and λi. When λp>λi (as it is in figure 3) j p
e is generated by adding a Poisson-distributed variable onto

j i
e with expected event number given by the difference between λp and λi:

j p
e ¼ j i

e þ X where X � Pois(lp � li), ð3:2Þ

(e.g. in figure 3 a random Poisson sample X = 8 results in j
p
e ¼ j i

e þ X ¼ 13). Such an approach makes
sense, because adding an approximately Poisson distributed quantity with expected event number λi,
to one with expected event number λp− λi, gives an approximately Poisson distributed variable with
expected event number λp, as required by j

p
e on the left-hand side of equation (3.2). Thus, equation

(3.2) modifies j i
e to generate j

p
e accounting for the change in λ.

On the other hand, when λp≤ λi the actual number of events in the proposed state j
p
e should be less

than in the initial state j i
e, because the expected number of events parameter λ has reduced. Specifically,

each existing event in j i
e is retained in j

p
e with probability λp/λi, which is equivalent to sampling j

p
e from

the following binomial distribution6

j p
e � B j i

e,
lp
li

� �
: ð3:3Þ

Together, the two potential sampling schemes for j p
e in equations (3.2) and (3.3) (selected depending

on whether λp is bigger or smaller than λi) make up the PBP proposal in cases in which the ID is Poisson.
This is summarized by the first line in table 1.
5A Poisson distribution expresses the probability a given number of events occur in a fixed interval of time, assuming that events occur
at a constant rate.
6If N represents the total number of experiments and p is the success probability of each experiment then B(N,p) samples the number of
successes.
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3.3. General approach

In general, the choice of ID will depend on the distribution π(ξ|θ p,y), which itself is model dependent. If,
for example, π(ξe|ξe’ < e,θ,y) is better represented by a normal ID, the PBP sampling procedure is taken
from the second line in table 1. In all, table 1 summarizes sampling schemes for twelve different ID
functional forms, each corresponding to probability distributions commonly used in statistical models.
These schemes are specifically designed to satisfy the following two conditions:

Condition 1:
fIDðj p

e jj p
e0,e,u

p,yÞ
fIDðj i

ejj i
e0,e,u

i,yÞ
g(j i

e)
g(j p

e )
¼ 1,

Condition 2: j p
e ! j i

e as u
p ! ui,

ð3:4Þ

where g(j p
e ) is the probability of sampling latent variable j

p
e starting from state i, and g(j i

e) is the
probability of sampling j i

e when proposing state i from p. Condition 1 ensures that if j i
e is a random

sample from fIDðj ejj i
e0,e,u

i,yÞ then j
p
e will, by construction, be a random sample from fIDðj ejj p

e0,e,u
p,yÞ

(albeit correlated with j i
e). Condition 2 guarantees that proposals with small jumps in parameter space

have an acceptance probability close to one.
Note, condition 1 can trivially be solved by sampling directly from the IDs

g(j p
e ) ¼ fIDðj p

e jj p
e0,e,u

p,yÞ

g(j i
e) ¼ fIDðj i

ejj i
e0,e,u

i,yÞ,
ð3:5Þ

but this does not satisfy condition 2 and turns out to usually be inefficient.7 Deriving sampling schemes
which also satisfy condition 2 is a non-trivial task guided by intuition and trial and error. Extension of
table 1 to encompass a more comprehensive list of possible sampling distributions will be the subject of
future research. The validity of equation (3.4) for both Poisson and normal IDs is explicitly demonstrated
in electronic supplementary material, appendix B.
3.4. Algorithm
We now describe the general algorithm used to implement PBPs:

POSTERIOR-BASED PROPOSALS
Step 1: Generate θp—A proposed set of parameter values is drawn from a multivariate normal (MVN)

distribution centred on the current set of parameters in the chain θ i

up � Nðui,j2SuÞ, ð3:6Þ
where Σθ is a numerical approximation to the covariance matrix for π(θ|y) and j is a tuneable jumping
parameter (estimation of Σθ and optimization of j are achieved during an initial ‘adaptation’ period, as
explained in electronic supplementary material, appendix C). (Note, performing a joint update on all
parameters instead of each individually helps to alleviate poor mixing due to strong parameter
correlations in π(θ|y).)
Step 2: Generate ξ p—We take each latent variable ξe in turn (starting from e = 1 up to e = E) and calculate
the characteristic quantities defining the IDs for the initial and proposed states (e.g. in the Poisson case this
would be λi and λp), as described in §4. j p

e is then sampled using specially designed proposals outlined in
table 1 (note, this table contains separate lines referring to different potential ID functional forms). This
sampling procedure is at the heart of PBPs and represents the key novelty of this approach.
Step 3: Accept or reject joint proposal for θp and ξp—With MH probability (see electronic supplementary
material, appendix D)

PMH ¼ min 1,
pðyjj p,upÞpðj pjupÞpðupÞ
pðyjj i,uiÞpðj ijuiÞpðuiÞ

YE

e¼1

fIDðj i
ejj i

e0,e,u
i,yÞ

fIDðj p
e jj p

e0,e,u
p,yÞ

( )
: ð3:7Þ
7This approach is akin to standard importance sampling and typically leads to very low acceptance rates for high dimensional models
(as observed in examples 5.2 and 5.3 later).
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The algorithm above performs a random walk through the parameter space defined by the posterior,

but because the dimensionality of θ is typically much less than ξ, it is expected to mix at a much faster
rate8 than standard MCMC, which performs a random walk in both θ and ξ. Further insights into the PBP
procedure are given in electronic supplementary material, appendix E.

PBPs, by design, result in ξ p exhibiting correlation with ξ i (indeed, if θ p = θ i then ξ p is exactly the
same as ξ i, as required by equation (3.4)). The PBP MCMC algorithm used in this paper mitigates
against these correlations by performing PBPs interspersed with standard updates for the latent
variables9 every U steps. Electronic supplementary material, appendix H shows that mixing is not
sensitive to the exact value of U, and is approximately optimized when U = 4 (as subsequently used).10
/journal/rsos
R.Soc.open

sci.6:190619
4. Generating importance distributions
For each latent variable ξe, the distribution we wish to approximate is π(ξe|ξe’ < e,θ,y), i.e. the posterior
probability distribution for ξe given ξe’ < e, parameters θ, and data y. This distribution can be expressed as

pðj ejj e0,e,u, yÞ ¼
ð ð

pðj d�ejj e0,e,u, yÞdj E . . .dj eþ1, ð4:1Þ

where π(ξd�e|ξe’ < e,θ,y) is the joint posterior distribution for latent variables with index e and above
(conditional on everything else). The integrals in equation (4.1) successively marginalize over the
unknown latent variables, starting with the last ξE all the way back to ξe+1. Using Bayes’ theorem and
equation (1.1), the integrand in equation (4.1) can be expressed as

pðj d�ejj e0,e,u, yÞ/ pðyjj ,uÞpðj d�ejj e0,e,uÞ
/ pðj ejj e0,e,uÞpðyjj ,uÞ

YE

d¼eþ1
pðj djj e0,d,uÞ: ð4:2Þ

For now, making the simplification that one observation is made per latent variable, i.e.

pðyjj ,uÞ ¼
YE

e¼1
pðyejj e,uÞ, ð4:3Þ

and substituting equation (4.2) into equation (4.1) gives

pðj ejj e0,e,u, yÞ/ pðj ejj e0,e,uÞpðyejj e,uÞ

�
ð ðYE

d¼eþ1
pðj djj e0,d,uÞpðydjj d:uÞdj E . . .dj eþ1:

ð4:4Þ

Analytically performing these integrals is usually not possible. However, different levels of
approximation can be made depending on the point at which the expression on the right-hand side of
equation (4.4) is truncated. This leads to a family of importance distributions with increasing accuracy
(as illustrated in figure 4).

4.1. ID0
By taking just the first term on the right-hand side of equation (4.4), the ID is simply set to the
distribution from the model itself11

fID0ðj ejj e0,e,uÞ ¼ pðj ejj e0,e,uÞ: ð4:5Þ

Note, this can only be done provided the model distribution π(ξe|ξe’ < e,θ) has a functional form
belonging to one of the possibilities in table 1 (or alternatively a new PBP sampling scheme based on
the model distribution is created which satisfies the conditions in equation (3.4)). If this cannot be
achieved, the functional form for ID0 is chosen to match π(ξe|ξe’ < e,θ) as closely as possible.

The calculation of ID0, as illustrated in figure 4b, involves only those latent variables on which ξe is
conditionally dependent. PBPs using ID0 are equivalent to model-based proposals (MBPs) [9], and their
8Subject to sufficiently large jumping size j in equation (3.6) being possible.
9Which passes through each latent variable and performs a Gibbs or random walk MH update.
10In practice, the optimum U will depend on the relative CPU time needed for PBP and standard updates. If standard updates are
much slower it makes sense for U to be higher, but typically they are of a similar speed.
11Note, the proportionality sign in equation (4.4) becomes an equality sign because π(ξe|ξe’<e,θ) is normalized.
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MH acceptance probability from equation (3.7) simplifies to

PMH ¼ min 1,pðyjj
p,upÞpðupÞ

pðyjj i ,uiÞpðuiÞ

n o
: ð4:6Þ

One of the desirable features of MBPs is that they require no hand-tuning. There is a one-to-one
correspondence between the model distributions and the proposals, as outlined in table 1, and so they
can be implemented in an automated manner. However, in cases in which data substantially restricts
model parameters and latent variables, higher-order importance distributions become necessary.

4.2. ID1
The ID accuracy is improved by using the first two terms on the right-hand side of equation (4.4)

fID1ðj ejj e0,e,u, yÞ ¼ cpðj ejj e0,e,uÞpðyejj e,uÞ, ð4:7Þ
where c is a normalizing factor. Calculation of ID1, as illustrated in figure 4c, includes not only those
latent variables on which ξe is dependent, but also the observation ye on ξe itself (as indicated by the
green circle).12

4.3. ID2
This additionally includes observations on those latent variables which depend on ξe, e.g. ξE−1 in
figure 4d. Equation (4.4) now gives the improved approximation

fID2ðj ejj e0,e,u, yÞ ¼ cpðj ejj e0,e,uÞpðyejj e,uÞ
ð
pðj E�1jj e0,E�1,uÞpðyE�1jj E�1,uÞdj E�1: ð4:8Þ
12This relies on the product of model and observation probability distributions being contained within table 1. If this is not the case
then some level of approximation is necessary.
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data13) usually prove to be too computationally expensive to be efficient.
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4.4. Choosing ID
Choosing which level of ID to optimize PBPs involves a trade-off between the computational cost of
generating IDs with the size of posterior jumps (and hence improvement in mixing) they allow.
Unfortunately determining a priori which option is best is challenging. Indeed, in the results section
below we find examples for which ID0, ID1 and ID2 each represent optimum solutions for different
problems. From the point of view of the user, the pragmatic approach to take is to first try ID0 (which
is the easiest to implement) and if that doesn’t help mixing then try ID1 and so on and so forth.
Identification of optimal IDs will be the subject of active future research.

The classification scheme presented above is based on models which have one observation per latent
variable. For models in which this is not the case, generation of IDs relies on approximating the following
expression:

pðj ejj e0,e,u, yÞ/ pðj ejj e0,e,uÞ
ð ð

pðyjj ,uÞ
YE

d¼eþ1
pðj djj e0,d,uÞdjE . . .djeþ1: ð4:9Þ

This may or may not be computationally challenging, depending on the scenario considered.
However, provided the model itself makes uses of the distributions in table 1, using ID0 (i.e. MBPs) is
always possible.
5. Empirical evaluation
We now investigate the relative computational performance of PBPs compared to other approaches
(where appropriate):

Standard MCMC—Here an ‘update’ is performed by sequentially making changes to each model
parameter and latent variable in turn. Where possible, Gibbs sampling [7] is used, otherwise random
walk MH is implemented (note, computational efficiency is optimized by calculating only those parts
of the likelihood and observation probability which actually change given a particular proposal).

Non-centred parametrization (NCP)—Standard approaches can also be applied to so-called non-centred
parametrizations (NCPs). Here, inference is performed on (θ,ξ’), where ξ’ are distributed independently
of θ and the actual latent variables are related through deterministic relationship ξ = h(ξ’,θ,y) [26]. To give
a simple example, suppose each latent variable is distributed normally j e � Nðm,s2Þ with mean μ and
variance σ2 being model parameters θ. This can be reparametrized by setting j 0

e � Nð0,1Þ, with the
functional dependency h being given by j e ¼ mþ sj 0

e. Note, NCPs are not always possible because
parameters cannot always be separated from distributions, (e.g. this cannot be done for the Bernoulli,
Poisson or Gamma distributions), hence NCPs cannot be used in examples 5.1 and 5.3 below). More
complicated schemes which make use of partial CP/NCP proposals and interweaving different
parametrizations [4,16,17,27] are not considered here.

Hamiltonian MCMC (HMCMC)—This generates samples by integrating a trajectory from the current
parameter and latent variable state to a proposed state (typically via many intermediary steps) [3,12].
Such a process accounts for gradients in the log of the posterior probability, allowing large distances
in parameter and latent variable space to be traversed. Optimization balances making the initial and
proposed states as uncorrelated as possible (to improve mixing), while reducing the computational
burden of excessive steps and allowing for a sufficiently good acceptance probability. The Metropolis-
adjusted Langevin algorithm (MALA) [28] is a special case of HMCMC in which only a single step is
taken. HMCMC is limited to only those models with continuous model parameters and latent
variables, and consequently cannot be applied to examples 5.1 and 5.4 below.

Particle MCMC (PMCMC)—This approach generates unbiased approximations bpðyjuÞ by means of a
sequential filtering process [2]. In its simplest implementation this involves running multiple simulations
of the model (i.e. sampling from ID0 in §4) which are periodically filtered based on the observations;
however, more efficient schemes can make use of higher-order importance distributions ID1, ID2, etc.
13IDn is the approximation to equation (4.4) in which those latent variables ξd that are n−1 or fewer arrows away from ξe (along with
any latent variables on which they depend) are included in the integral.
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Jumping in parameter space (e.g. using equation (3.6)) is achieved through a MH algorithm that makes

use of these unbiased estimates.
Further details, along with optimization procedures for each of the different methods, are described

in electronic supplementary material, appendices I–K.
Additionally, it should be pointed out that another technique to improve mixing is to simply integrate

out problem parameters directly. Such an approach, however, is not considered in this paper for two
reasons: firstly, it lacks generality, because it only applies to models in which these integrals can
actually be performed, and secondly, it restricts the possible priors that can be applied to a given
model (most prior choices make such integration impossible).

Four contrasting model types are investigated. In each case, we examine the efficiency of the various
algorithms for parameter inference from data simulated from the model in question. Results shown are
based on 106 MCMC updates preceded by 104 discarded samples from a burn-in/adaptation period (see
electronic supplementary material, appendix C). One way to measure MCMC efficiency is to calculate the
‘effective sample size’ [1] (see electronic supplementary material, appendix L), and here we calculate the
computational time for any given algorithm to generate 100 effective posterior samples14 of a given
parameter.15 Unless otherwise stated, uninformative flat priors are assumed.

5.1. Inferring disease prevalence and diagnostic test performance
Suppose we aim to estimate the disease prevalence (fraction of infected) pD in a population of P
individuals using cross-sectional diagnostic test results. Such diagnostic tests are typically imperfect,
and characterized by a sensitivity Se (the probability of a positive test result given an infected
individual) and specificity Sp (the probability of a negative test result given uninfected). Suppose Se
and Sp are unknown. In the absence of a gold standard defining which individuals are truly infected,
inference is only possible when two or more independent test results are recorded per individual (due
to confounding). Here, we assume that results are available from a single diagnostic test performed on
each individual at two times, labelled t = {1,2}. The model is shown in figure 5a and described in
detail along with the development of PBP proposals in electronic supplementary material, appendix
M. We note that this model could be embedded in more complex models, e.g. fitted to data from
capture-mark-recapture programmes [29].

5.1.1. Speed comparison

Simulated data was created using pD = 0.5, Se1 = Se2 = 0.6 and Sp1 = Sp2 = 0.9 for p = 1000 individuals.
Inference was then performed using MBP/PBP MCMC approaches as well as standard Gibbs
sampling. Figure 5b shows how posterior samples for pD vary as each of the three algorithms
progress. By binning these samples, the marginal posterior distributions for pD can be generated, as
shown in figure 5c (which also shows results for the other model parameters). These distributions
contain the known values used to generate the data (denoted by vertical black lines), indicating
successful inference.

It is important to note that, in the limit of infinite MCMC sample number, all algorithms generate
exactly the same set of marginal distributions (i.e. those shown in figure 5c). However, the speed with
which they converge does vary. For example, figure 5d shows how the computational time (i.e. the
CPU time to generate 100 effective samples) to infer pD increases with population size. Here we find
that MBPs (ID0) actually performs worse than the standard Gibbs approach; however, when
observations are incorporated (ID1) the resultant PBP algorithm is around three times faster than
Gibbs sampling (at least when the number of individuals is large). Although mixing is greatly
improved, as is evident in figure 5b, this is offset by the computational overhead associated with
each PBP.

PMCMCs which use ID0 (i.e. the usual approach of simulating from the model) are found to perform
very poorly (this is because a very large number of particles are required for a reasonable acceptance
rate). However, when ID1 is used, PMCMC actually becomes the fastest approach. In this particularly
simple example, ID1 exactly represents the posterior and so PMCMC only requires a single particle to
run. This is atypical, and usually particle methods fail when large numbers of observations are made
(as demonstrated later). Because this model contains discrete latent variables (i.e. the underlying
14Note, all MCMC chains were run long enough to be well mixed, with ESS typically exceeding 1000 and at least greater than 500.
15Simulation and inference were averaged over 20 separate runs to help remove data-dependent noise.
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disease status of individuals De is 0 or 1), HMCMC approaches are not possible, and the Bernoulli
distribution does not allow for NCP.

This example demonstrates a possible modest improvement in computational speed when using
PBPs compared to a standard Gibbs approach. The next example, however, shows that much larger
potential gains can be made.

5.2. Stochastic volatility model
Stochastic volatility (SV) models are used to capture time-varying volatility on financial markets, and are
essential tools in risk management, asset pricing and asset allocation [30]. In economics, a ‘logarithmic
rate of return’ can be defined by ye = log(Ve+1/Ve), where Ve is the price of an asset (e.g. a share) on
day e. Consequently, when ye is positive it means that on day e+1 the asset goes up in price, but when
it is negative it goes down. One way to capture time variation in ye is through the so-called SVt
model [31]

ye ¼ ehe=2ue,
he ¼ mþ f(he�1 � m)þ he,

ð5:1Þ

where ue are independent and identically distributed (i.i.d.) with a Student’s t-distribution (characterized
by parameter ν) and ηe are i.i.d. normal (with zero mean and variance σ2). Note, if he is fixed (i.e. σ = 0),
the logarithmic rate of return ye would simply be sampled asymptotically from a distribution with fixed
variance, or ‘volatility’. The introduction of time variation in the variable he, whose temporal correlations
are measured by 0 < ϕ < 1, means that ye experiences SV, i.e. periods when there are large variations in
asset price, and other periods when there is not much variation.
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The SVt model is represented in figure 6a. Simulated data were created using μ = –10, ϕ = 0.99, ν = 12,
σ2 = 0.0121 (which are parameter values based on estimates made from the S&P 500 index [30]). Figure 6b
shows the time variation in ye and he (observe how changes in he correspond to changes in the volatility of
ye) over E = 3000 days. A detailed development of PBP proposals for this model is given in electronic
supplementary material, appendix N.

5.2.1. Speed comparison

Bayesian inference from the simulated data in figure 6c identifies marginal posterior distributions which
contain the true parameter values, as indicated by black vertical lines. For each algorithm, figure 6d
shows how the computational time to infer σ2 varies with the correlation parameter ϕ used to
generate the data (with all other parameters fixed as above).

The standard algorithm is at its fastest when f � 1 but slows down considerably as ϕ is reduced. Some
speed-up is observed when NCP is used (where h0e ¼ ðhe � mÞ=s), however, the MBP and PBPmethods are
found to be much faster (note PBP using ID2 was not found to be any faster than with ID1, and so is not
shown). HMCMC was found to be relatively slow using the standard parametrization, but markedly
increased in speed when using NCP. PMCMC methods (using either ID0 or ID1) were found to be
extremely slow (because they required a huge number of particles), and lie above the top of this graph.

For real financial markets, ϕ is within the range of 0.95–0.99 [30], reflecting a high degree of
persistence in volatility. This corresponds to PBPs running between two and four times faster than the
standard approach, and comparable in speed with HMCMC (sometimes faster and sometimes
slower).16 However, the left-hand side of figure 6d clearly demonstrates the existence of regimes for
which PBPs are faster by a factor exceeding 10 than all other methods tried.

5.3. Mixed model
MMs [32] explain observations in terms of both ‘fixed effects’ (e.g. individual attributes such as gender or
disease status) and ‘random effects’ (which account for random uncontrollable factors within a study, e.g.
16The reason PBPs become slower as ϕ→ 1 is that (due to correlations introduced by ϕ) π(ξe|ξe’<e,θ,y) is expected to depend on
observations up to around 1/(1 − ϕ) days ahead. In contrast, IDn only includes observations up to n − 1 days ahead, which is
typically a much shorter interval.
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variation in student grades as a result of variation in the quality of schools). MMs are useful in a wide
variety of applications in the physical, biological and social sciences [33–36]. They assume that a vector of
N measurements y can be decomposed into three contributions:

y ¼ Xbþ Zaþ 1, ð5:2Þ
where X and Z are design matrices that define model structure, β is a vector of F fixed effects, a is a vector
of E random effects and ε are residuals. Random effects and residuals are assumed to be MVN with zero
mean and covariance matrices G and R, respectively. For simplicity, we assume that G ¼ s2

aA, where A is
a known symmetric matrix, and R ¼ s2

1I, where I is the identity matrix (such that residuals are
uncorrelated between measurements). The quantity r2 ¼ s2

a=ðs2
a þ s2

1Þ measures the relative
contribution of random effects to residuals.

5.3.1. Speed comparison

An important application of MMs is in the field of quantitative genetics, which aims to understand the
genetic basis of traits of interest [37]. As an illustration take y to represent measurements of height within
a population. These measurements are correlated, e.g. if an individual has tall parents, they are more
likely to be tall. This correlation results from genetic inheritance. The relatedness of individuals within
the population is captured by the so-called relationship matrix A.

The DAG for the model is shown in figure 7a and simulated data were generated assuming a
population randomly mated over four generations with N = E = 4 × 103 individuals and F = 2 fixed
effects (see electronic supplementary material, appendix O for further details). Figure 7b shows how
the computational time to infer r2 varies with the r2 value used to generate the data. Disregarding
fixed effects, r2 = 0 implies no genetic inheritance and r2 = 1 corresponds to a trait dominated by
genetic inheritance. In these limits, Gibbs sampling slows down significantly due to strong parameter-
latent variable correlations in the posterior, leading to poor mixing. Using MBPs with ID0 shows an
improvement over Gibbs for low r2; however, for high r2, its performance proves to be poor. Using
ID1 and ID2 leads to further improvements in computational speed, resulting in PBPs becoming
consistently faster than the standard Gibbs approach (e.g. ID2 is a factor ∼50 times faster in the limit
r2→0). The move to ID3 shows little improvement and for ID4, ID5 etc. PBPs become progressively
slower despite mixing better. Consequently, ID2, which uses measurements taken on individuals as
well as close relatives, represents an optimum choice in this particular example.

Results for HMCMC in figure 7b are very slow. The reason lies in the fact that the trajectories
themselves are found to behave diffusively (e.g. if a trace plot of s2

a is made, its path exhibits familiar
random walk behaviour, rather than the relatively smooth progress from one side of the posterior to
the other that would be hoped for). NCP HMCMC (which sets a’ = a/σa) led to a marked
improvement, but still it remained considerably slower than the other methods.
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One of the striking features of figure 7b is how well the NCP standard approach works (only around

two times slower than the best PBPs for lower r2). The reason is that for this particular model NCP and
MBPs work in much the same way: under NCP, proposals in σa lead to a simultaneous expansion or
contraction of the random effects (through reparametrization a = σa a’), and this is also what happens
in MBPs when the value of κ in table 1 is set to zero (note, the two curves for these methods lie very
close to each other in figure 7b, with NCP slightly faster due to the fact that fewer computations are
required per update).

PBP and NCP approaches have also been applied to MMs and generalized MMs (binary disease data)
with diagonal, sparse and dense A (results not shown) and overall PBPs were not found to perform
substantially faster than NCP, and in some cases were slower. Consequently, for these types of model,
standard approaches using NCP may prove to be the best method to use, particularly given the
relative ease with which they can be implemented (table 2).
 os

R.Soc.open
sci.6:190619
5.4. Logistic population model
We here consider a simple illustrative example taken from ecology. Imagine time is discretized in
intervals of size τ and suppose we are following the population size of an animal species which has
been released into the wild. We know that births and deaths will occur, and that the population size
will increase, but that increase will be curtailed by the limited resources within the area. This can be
modelled in the following way

bt � Pois
�
t rbPtð1� Pt=KÞ

�
,

dt � Pois(tmPt),

Ptþ1 ¼ Pt þ bt � dt, ð5:3Þ
where bt, dt and Pt are the number of births, deaths and population size in time interval t, Pois(λ)
generates Poisson distributed integer samples with mean λ, rb is the birth rate, μ is the mortality rate
and K is the carrying capacity (which determines the maximum size of the population). Equation (5.3)
can be considered as a Tau-leaping approximation to the underlying continuous time process under
study [38].

A DAG for this model is shown in figure 8a and a simulation is shown in figure 8b. Now suppose that to
keep track of this wildlife population, traps are set at certain points in time and the number of trapped
individuals is recorded (shown by the red crosses).17 Note, animals are caught with capture probability p,
and so these result aremuch less that the actual population sizes and also contain additional stochastic noise.

The data from figure 8b alone is insufficient to estimate all four model parameters, so here semi-
informative priors are placed on the mortality rate μ and capture probability p (in reality captured
animals are marked and then when re-captured this provides direct evidence for these quantities).18

Figure 8c shows the results of inference, with μ and p largely following their prior distributions and
reasonably good estimates being obtained for birth rate rb and carrying capacity K.
5.4.1. Speed comparison

The CPU time to estimate 100 effective samples of rb is shown in figure 8d as a function of the number of
measurements made during the time interval. On the right-hand side is the extreme case in which
measurements are made at every single time point. Here the observations tightly restrict the potential
values for the latent variables, and the standard approach is actually found to perform the best. On
the other hand, as fewer and fewer observations are made, both the MBP and PMCMC methods
become more and more efficient. Note, however, that MBPs are consistently around five times faster
than PMCMC. Despite mixing faster, PMCMCs take much longer per update because of the large
number of particles (simulations of the process) needed.

Unfortunately here PBPs are not found to be effective because identification of the importance
distribution at time t is informed by the next measurement, which is potentially many time steps into
the future. Further work is need to develop effective IDs in these types of situation, which go beyond
the simple classification scheme from §4.
17Trapped animals are then released back into the wild.
18Specifically a gamma-distributed prior on μ with mean 0.3 and variance 0.0144 and a beta distributed prior on p with mean 0.5 and
variance 0.0025.
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Note, HMCMC was not possible because of the discrete latent variables in the model and NCP
methods could not be used because model parameters cannot be separated from Poisson-distributed
latent variables.
6. Summary
This paper introduced PBPs and demonstrated that they speed up MCMC inference in many cases where
existing approaches perform poorly. PBPs are applicable to the majority of statistical models (namely,
those whose conditional dependence structure is expressible in terms of a directed acyclic graph).
Performance is enhanced by improving mixing of MCMC (i.e. increasing the rate at which they
generate uncorrelated samples) by jointly proposing changes to model parameters θ and latent
variables ξ (see §3 for details). PBPs are a family of proposal schemes built by generating importance
distributions (ID0, ID1, etc.) that systematically account for dependence structure in the Bayesian
posterior with increasing accuracy. The zeroth-order approximation ID0 ignores the data and thus
corresponds to MBPs [9]. The optimal level of approximation depends on problem-specific trade-offs
between improved mixing resulting from increased acceptance rates and the computational cost of
generating suitably accurate IDs.

The relative computational speed of PBPs compared to ‘standard’ Gibbs/random walk MH
techniques (using centred and non-centred parametrizations) as well as HMCMC and PMCMC
approaches was investigated for various benchmark models used in applications ranging from finance
to ecology to statistical genetics. While different methods worked better or worse in different
scenarios, PBPs were found to be either near to the fastest or significantly faster than the next best
approach (by up to a factor of 10). Table 2 summarizes the relative strengths and weaknesses of the
various approaches.
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7. Discussion

We now discuss PBPs in relation to PMCMC and HMCMC under two regimes: ‘model dominant’ and
‘data dominant’. Here, we define ‘model dominant’ to relate to problems in which the shape of the
posterior is largely represented by the latent process likelihood, with the observation model providing
a small perturbation on top of this. A good example of this would be a complex model applied to
relatively few actual measurements (e.g. the left-hand side of figure 8d ). The flip side of this is the
‘data dominant’ regime, in which the data exceeds or is comparable to the model complexity19 (e.g.
the right-hand side of figure 8d ).

As stated previously, PMCMC only works on problems in which data can be incorporated in a
sequential manner. Even then, however, PMCMC can become slow in the data dominant regime due
to requiring a very large number of particles to give a reasonable acceptance rate.20 This was explicitly
demonstrated in examples 5.2 and 5.3 above, where PMCMC was found to be vastly slower than the
other approaches. However, a key advantage of PMCMC approaches is that they are usually relatively
easy to implement and typically allow for efficient parallelization.

HMCMC relies on calculating gradients in the log-likelihood, and hence is not applicable to models
with discrete variables (e.g. §§5.1 and 5.4) or when the number of variables within the model changes.
Both of these challenges are frequently encountered when latent variables represent some unknown state
of the system such as disease status or other individual classification. HMCMC efficiency is not related to
whether a given problem is model or data dominant, but is very much dependent on the specific shape of
the posterior itself. Often it is tested on high dimensional multivariate normal-type posterior
distributions, where it is found to perform well against other approaches [3]. However, in many real-
world problems, Hamiltonian trajectories can suffer from random walk-type behaviour (as was
observed in example 5.3) as a result of parameter/latent variable correlations. These trajectories
necessitate a large number of small intermediary steps for each MCMC update, significantly reducing
algorithm performance. In contrast to PMCMC, HMCMC cannot easily be parallelized.

Finally, we come to PBPs. Generally speaking they tend towork better (in comparison to both standard
approaches and HMCMC) on problems which are model dominant. The reason can be seen if we look at
the limiting case in which there is no data. Here, PBPs (which are actually MBPs in this particular case)
easily map out the prior distribution for model parameters (indeed equation (4.6) shows that the PBP
algorithm generates random walk MH behaviour in parameter space with acceptance probability given
simply by PMH =min{1,π(θ p)/π(θ i)}). The introduction of importance distributions in §4 allow for the
data itself to be incorporated into the proposals, so helping maintain the efficiency of PBPs as they
move out of the model-dominated regime towards the data-dominated case.

The main challenges facing PBPs are twofold: firstly, the development of fast and accurate importance
distributions that help PBPs in the data dominant regime (e.g. on the right-hand side of figure 8d ) and,
secondly, the identification of PBP proposals for a broad range of distributions (i.e. extending table 1 to
include other distributions). Like HMCMC, PBPs also cannot easily be parallelized. However, a
potential future extension to PBPs would be to incorporate them into a particle-like framework in which
multiple proposals are made and a sequentially applied particle filter is used to cull those proposals
that have a low acceptance probability. This may lead to further improvements in speed under some
scenarios, and will be the subject of future investigation.

One final point to mention is that while some complex models may not fit into the DAG structure
required by PBPs, it may be that certain subsections of them do. Here, PBPs could still profitably be
used by fixing all non-DAG elements of the model under the proposal (whereby they are
incorporated into the data y for the purposes of the proposal step).

The introduction of PBPs offers a promising opportunity for optimizing MCMC and for further
improvements, e.g. through creating particle versions of PBPs and the development and automation
of efficient importance distributions under different scenarios. As such we believe PBPs are an
exciting new methodology which will complement other tools in the MCMC toolbox.
Data accessibility. All of the C++ computer codes used to generate the results in §5 are included in the electronic
supplementary material.
19Which could be measured by comparing the number of data points and the number of model parameter and latent variables.
20This happens in cases in which after simulating between successive time points the probability of the observed data is small, either
because the observations themselves are very specific, or because multiple measurements are made.
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