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PREFACE.

To the first cdition of this work, published in 1856, the
following was prefixed :—

“In the present Treatise avill be found all the ordinary
propositions, connected with the Dynamics of pagtickes, which
can be conveniently deduced without the use of D’Alembert’s
Principle.

“Tts publication has been delayed by many unforesecn
occuirences ; more especially by the early and lamented death
of Mr STEELE, whose portion of the work wasleft uncompleted,
and whose assistance in its final arrangement and revision
would have been invaluable. The principal portions due to
him zre the greater part of Chapters IIL., V. and VIIL
together with a few pages of Chapter L

¢“Considerable usc has been made of Pratt’s Mechanical
Dhilosophy : indeed a large portion ef Chapter X1. is reprinted
verbatim from that work.

“Throughout the book will be found a number of illus-
trative examples introduced in the text, and for the most part
completely worked out; others with decasional solutions or
hints to assist the student are appended to each Chapter.
&or by far the greater portion of these the Cambridge Senate-
House and College Examination Papers have been applied
to.”
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I am glad of the opportunity, presented by the call for
a second edition, to make reparation for many of the faults
of the first. Numerous trivial errors, and a few of a more
serious character, have now been corrected ; many sections
and several new examples have been added; and the whole
of the second Chapter has been rewritten, upon the basis of
the corresponding portion of Thomson and Tait's Natural
Philosophy which, though as yet unpublished, was printed off
nearly two years ago.

When I wrote that Chapter, in 1855, I had not read
Newton's admirable introduction to the Principia; and I
endeavoured to make the bestof the information T had then
acquired from English and French treatises on Mechanies.
These five pages, faulty and even erroncouns as I have sinee
geen them to be, cost me almost as much labour and thought
as the utterly disproportionate rémainder of my contributions
to the volume. And I cannot but aseribe this result, in part
at least, to the vicious system of the present day, which
ignores Newton’s Third Law of Motion, though constantly
assuming it (tacitly) as an axiom; and erccts Statics upon
a separate basis from Kinetics, thereby necessitating several
additional Physical Axioms, the splitting of Newton’s Sccond
Law into two, and the introduction of a so-called Statical

.

measure of Force.

To be enabled to preserve the title of the work, I have
added (apropos of the Second Law of Motion) a few hints
about Statics of a particle.

The Examples are, for the most part, reprinted verbatim
from the papers in which they were set; in a few the lan-
guage has-been altered, or the theorem involved has been
generalized ; several, however, have defied all attempts at
improvement, and now stand in their unintelligibility as a
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warning, to the Candidate for Mathematidal Honors, of the
ordeal he may have to pass through.

*To several important theorems more than one demonstra-
tion has been appended: with the object of exhibiting the
use of the various processes by applying therr to the de-
+ duction of results of real value, instead of to the solution of
“ Problems” of unquestionable absurdity.

Various friends to whom I have applied for sugge%tlonq as
to any important changes which they might think desirable
in this second edition, and especially I. TopHUNTER, Esq.
of St John’s, have replied that they had none to offer, as
they liked the book well enough in its original form. This
has prevented me from attempting a thorough glteration of
style which I had contemplated, viz. to cease breaking up
the subject into detached propositions—specially fitted " for
“writing out.” T retain my own opinion, however, that
this is not the form in which such a treatise ought to he
written; although there can be no doubt thas it offers certain
advantages to the student whose sole object in reading is to
pass an examination.

The treatise is intended to be merely an analytical one:
for the full discussion and experimental demonstration of the
elementary principles on which the analysis is founded, the
reader must be referred to works on Natural Philosophy; of
which, so far as mere Abstract Dynamics is concerned, we
have a most admirable example in the Principia. For the
general application of modern theories to the whole range of
physical phenomena, the reader is referted to the forthcoming
work on Natural Philosophy by Professsr. W.«THOMSON and
myself, in which the subject will be developed from the grand
hasis of Conservation of Energy.

T Liave been dissuaded from introducing into this work the
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Newtonian notation for Fluxions, It is true that in Kinetics
of a particle it is not very greatly superior to the ordinary
notation of differential coefficients: though, when the gencral
equations of motion of a systemr have to be treated, in the
beautiful manner invented by Lagrange, a partial use of it is
absolutely necessary. Newton’s idea of Fluxions was purely
Kix;ematical; and, in fact, the fundamental ideas of the Dif-
ferential Calculus are esgentially involved in the most cle-
mentary considerations regarding velocity. It is also to be
observed, that, whenever we write f'(r) for the differential
coefficient of f(x), we are really employing the principal fea-
ture of Newton’s notation, though in a form somewhat more
expressive than his.

It is possible that in this edition a few of the objectionable
terms or methods, which the first edition contained, may have
remainéd undetceted—but I ‘hope that in cvery essential
respect the volume will be found to be an improvement on
its predecessor. -

I am encouraged in this hope by the fact that the sheets
in passing through the press have been read by J. StirLINg,
Esq. of Trinity, to whose care and knowledge I am indebted
for many valuable suggestions.

P. GUTHRIE TAIT.

CoLLEGE, EDINBURGH,
March, 1865.
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spectivc]?r. But the actual velocity of* the point is not
greater than v, and not less than v,, therefore as regards the
actual space described,

8s is not greater than v 8¢, and not less than v,3¢,
OF 5 ceevneenieneenennens o Ty cererreeeiiee Ty,

however small 8 may be. But, as 8¢ continually diminishes,
», and v, tend continually to, and ultimately become each
cqual to, . Therefore, proceeding*to the limit,

ds

=1,
dt .

If » be negative in this expression, it indicates that s
diminishes ax ¢ increases; the positive case, which we have
taken as the standard one, referring to that in which s and ¢
increase together. Tt follows that, if a velocity in one direc-
tion be considered positive, in the opposite direction it must
be considered negative; ang® consequently the sign of the
velocity indicates the direction of motion.

8. Tt will be easily scen that the idea of velocity ex-
plained above is equally applicable whether the point be
considered as moving in a straight, or in a curved, line. In
the latter case, however, the direction of motion continually
changes; and it will be necessary to know at cvery instant
the direction, as well as the magnitude, of the point’s velo-
city. This is done by considering the velocitics of the point
parallel to the three co-ordinate axes respectively. For, if
the co-ordinates of the point be represented by «, z, z, the
rates of increase of these, or the velocities parallel to the cor-
responding axes, will by reasoning analogous to the above be

de dy dz
de’ dt’ dt’

Denoting by v the whole velocity of ‘the ‘point, we have

=4
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and, if &, 8, ¥ be the angles which the direction of motion
makes with the axes,
dzx

cosa—‘—zj-’*- dt
ds-.(_?_.;’
e dt

dx
or -, =tvcosa=u,, suppose.
.. dy
Similarly, ;= veos B=r,,

dz
— =7C08y=1,.

dt
dr dy dz
Henve, ‘a-t* ’ 7{;, 2}- '
to the axes, and are therefore called the Component ]%elocities
of the point: and, with reference to them, v is called the
Lesultant Velozity.

.+ 9. Tt follows from the above, that, if a point be moving
in any direction, we may suppose its veloeity to be the result-
ant of three coexistent velocities in any three directions at
right angles to each other; or, more generally, in any three
directions not coplanar. But the rectangular resolution is
the simplest and best except in some very special questions.

Let v,, v,, », be the rectangular components of the velo-
city » of a moving point, then the resolved part of v along

a line inclined at angles A, g, v to the axes will be

v, €0S A+ v, COS u + 7, COS 1.,

For, let a, B, v be the angles which the direction of the
point’s motion makes with the axes, 6 the angle between
this direction and the given line. Then the resolved part of
v along that line is =
v c0s @ = v {os & cos A + cos B cos u + cos iy cos ¥}
= v, €08 A + v, COS u + v, COS V.

10. These propositions are virtually equivalent to the

following obvious geometrical construction :—

are the resolved parts of v parallel
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To compound any two velocities as 0.4, OB in tlie figure;
where OA, for instance, represents in magnitude and direc-
tion the space which would be described in one second by
a Yoint moving with the first of the given velocities—and

similarly OB for the second ;* from A draw 4 C parallel and
equal to OB, Join OC:—then OC is the resulfant velocity'
in magnitude and direction. For the motions parallel to 04
and OB are independent. .

OC is evidently the diagopal of the parallelogram two of
whose sides are 0.4, OB. ¢

Hence tl e resaltant of any two velocities as 04, 4C, in
the figure is a velocity represented by the third side, OC, of
the triangle OAC.

Hence if a point have, simultaneously, velocities repre-
sented by 0.1, AC, and CO, the sides of a triangle taken in
the same order, it is at rest.

Llence the resultant of velocities represented by the sides
of any closed polygon whatever, whether in one plane or not,
taken all in the same order, is zero.

Hence also the resultant of velocities represented by all
the sides of a polygon but one, taken in order, is represented
by that one tamn in the opposite direction.

When there are two velocities or three velocities in two
or in three rectangular directions, the resultant is the squarc
root of the sum of their squares—and the cosines of the in-
clination of its direction to the given directions are the ratios
of the components to the resultant.

11. When a point moves in a plane curve, to express tts
component velocities at any instant along, and perpendicular
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to, the radius vector drawn from a fixed point in the plane of
the curve.

: Let «, y be its rectangular, =, 6 its polar, co-ordinates ; so
that

x=rcosl, y=rsinb;

<4 -
ﬂ'
r — ly
4 yam
N )
 whi dr _dr . 0
from which T a0 0 —rsin 87‘ )\ l
nd é][_flrs‘ng_l_ 0(19 (e ( ),
? Cdt T de ! r Cos _u’_t,J

which are the velocities parallel to « and . DBut by § 9 the
velocity along the radius vector is

‘gsine—i-%::cosG:Z:, by (1);

and the velocity perpendicular to it is

dy . de . df .
i cose—;[t sinf@ =1 ilf’ by (1.

+

t

12. The velocity bf a point is said to be accelerated or
retarded according as, it increases or diminishes, but the word
Acceleration is generally used in both senses; and is defined
as the rate of increase of the velocity per unit of time.

Acceleration may be either uniform or variable. It is
said to be uniform when the point receives equal increments
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of velocity in equal times, and is measuredsby the actual in-
crease of velocity gencrated in unit of time. Let the unit of
acceleration be so taken that a point under its action would
reckive an increment of a unmit of velocity in a unit of time;
then a point under the influence of a units of acceleration
would receive an increment of « units of velocity in a unit of
time, and conscquently af units of acceleration in ¢ units of
time.  If the point starts from rest we have

v =al,
]
where o denotes the velocity at the end of the interval ¢, and
a the acceleration,

13.  Acceleration is variakle when the point does not re-
ceive equal increments of velocity in equal increments of time.
The acceleration at any instant is then measured by the in-
crement of velocity which would have been generated in a
unit of tiine had the acceleration remained constant duting
that interval and equal to thg ¥alue at its comgencement.

Let v be the velocity of the point at the end of the time
t, a the acceleration at that instant, v + 8v the velocity at the
end of the time ¢+ 8¢ ; and let a,, 0, De the greatest and least
values of the acceleration during the interval 8¢, then a8t
a,8¢ would be the increments of velocity in that interval, of a
point under those accelerations respectively. But the actual
acceleration is not greater than o, and not less than a,, there-
fore the actual increment of velocity

3v is not greater than a,8¢ and not less than ¢,8¢,

o»

~5 verre O eereeeesivennensenses Oy

Py HRSSARRRRRALLELLLY

however small 8 may be. But, as 8¢ ¢ontinually diminishes,
@, and q, tend continually to and ultimately become each
equal to a, Therefore, proceeding to tht timit,

dv

a=*



8§ " KINEMXTICS.

_The positive sign given to a shews that v increases with ¢,
while a negative sign would shew that v decreases as ¢ in-
creases, in other words a negative acceleration is a retardation.

Combining the above equation with

b —
a= Y
we have
‘ ds
="

«onsidering ¢ as the independent variable.

If the point be in motion along a curve, the accelerations
of the rates of increase of its co-ordinates are called the Com-
t Accelerations of the point's velocity parallel to the axes.
If these be denoted by a,, a,, ¢,, we shall have
d'z _ d'y _ d*z
@ T g T g =

With reference to these, ¥a,’+4," +a? is called the Re-
sultant Acceleration.

2
14. The acceleration '—;;'; is not the complete resultant

r dy d'z . ) .
of 80 dn g@c 8 may easily be sceff: for its square.

does not equal the sum of the squares of those three accelera-.
tions, but it is the only part of their resultant which has any
2

effect on the velocity ; in short 22 is the sum of the resolved

de
2 2
parts of %;5, %?, (fi; in the direction of motion, as the

following identical equation shews: o
ds_dzdx dydy dzd
dit " ds «dt* " ds df* T ds dt*°
The other part of-the resultant is at right angles to this,
and shews its effect in changing the direction of the motion

of the point. And this leads us to another form of accelera-
tion, viz. when the velocity of the moving point is unaltered,

&,



KINEMATICS. 9

but the direction of motion changes. Its value will be given
afterwards.

The above equation also shews, since %, %, Z—: are
the direction-cosines of the stall arc ds which may have any
direction whatever, that to obtain the acceleration along any
line inclined at given angle$ to the axes, we must resolve
the component accelerations parallel to the axes along-it,
and take the sum of the resolved parts. Thus the acceleration
along a line inclined at angles A, u, 1 to the axes is

a, Cos A + a, COS 4 + 0, COS v,

15.  When a point moves in a plane curve, to express its
component accelerations at any instant along, and perpendicular
to, the radius vector.

Let 2, y be the rectangular, », 6 the polar, co-cordinates ;
s0 that

& = recos 0,
y=rsinf;
we have do_ dr cos @ —rsinf (Zg
’ dt dt dt’
)
r — y
e
- (4 —_—

d'z (dr dé\* drd8 d6\ .
and . d?= {th’ —r(t—g)} 0080— (2 d—t a-t‘-}-rz?— sin 6.
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Similarly,
d'y (dr a6\ . drdd d
a‘?-{azf"(:z?)} sin 0+ (22222‘*%?) cos 6.

These are the accelerations 'Karallel to z and y. ence
by § 14, the acceleration along the radius vector is

. Ay . d’x
—p S 0+ o0 0,
d*r doN?
or —Z—r(-5F.
att (dz
" And the acceleration perpendicular to the radius vector ix
d*y dr .
‘ 5 €08 6— - 47 5D 6,
or 2 drdf d'6
‘ de de 7T did

. t 1d ,dﬁ)
which may be written i (r 5

16. When a point is in motion in any curve, to find uts
accelerations along, aund perpendicular to, the tangent, at any
wnstant.

Let 2, y, z be the co-ordinates of the point at the end
of the time ¢, s the length of the arc described during that
interval. Then, since by the equations to the curve x, y and
z are tunctions of s,

?l:c_dx ds
dt ~ ds dt’
g Do Loy dedy
an dt”"ds’(d ds df’
.. dY d% /ds\* dy d*
Similarly; . E:—, =-Jg(-a£) Z{Z’ dt: )

re_ds iy de
de  dst \dt ds dt* *
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To find the acccleration along the tangent, we must mul-
. . dx dy dz
tiply these component accelerations by 5 s T
L]
spectively, and add. Thus the tangential acceleration is
deds dydy ded's _d
ds dt* " ds d¥ " ds dff  di*’
as we have alrcady seen.. Also in the normal, towards the
center of curvature, we have the acccleration

BN atledgles)
TN

We have assumed, in the above, the followingeeqnations
from Analytical Geometry,

1 /d'xe\' (N 2\t
= \
o (ds“) +(d ‘) +(ds*/ ’
where p is the radius of curvature;
dx\? 47.1/)’ (]")
(@) +(&) + (@) =1
ded'c dydy d:dz

Lditdsde Tas de =0

17. We might have treated the component accelerations
thus, .

LIRS 2,\2 22\?
(:l%) + ((217&:/) + (%;-;) or (resultant acceleration)*

= ,’:" (d:)‘ + (Zz":)’ :

2
Now %3 is the acccleration along the tangent, and the

d!
th il . ight angles to it as th
0 er°part-((—ﬁ , O ;, acts at right angles to 1t as the
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form of the equation shews, and consequently is the accelera-
tion perpendicular to the tangent.

. d'z d'y d* ' .
From the expressions for —d—g , B-t;’ , E”i , Wwe also obtain

d'z (dydy _dz dy

ut’ (da dst ~ ds 737)

dYy (dzd’z _dr d’z) .

e P e

‘fi(‘llfé'-l 1‘7-_’{‘1_'_'{”)_0.
d \ds d* ~ ds ds') '

and thus the acceleration perpendicular to the osculating
1

plane tanishes, The acceleration Z must therefore be along

a pormal to the path drawn in the osculating plane; that is,
along the radius of absolute curvature.

18. We are therefore led to expand the definition given
in § 12 thus :—Acceleration i3 the rate of change of velocity
whether that ckange take place in the direction of motion or not.

What is meant by change of velocity is evident from § 10.
For if a velocity 0.4 become OC, its change is AC, or UB.

Hence, just as the direction of motion of a point is the
tangent to its path—so the direction of acceleration of a
moving point is to be found by the following construction.

i
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From any point O draw lines OP, 0@, ztc., representing
in magnitude and direction the velocity of the moving point
at every instant. The points, P, @, etc., form in all cases of
motfon of a material particle a continuous curve, for an infi-
nitely great force is requisite to change the velocity of a par-
ticle abruptly either in direction or magnitude. Now if ¢) be
a point near to P, OP and O @ represent two successive values
of the velocity. Hence PQ is the whole change of velocity
during the interval. As the interval becomes smaller, the
direction Q) more and more nearly becomes the tangent at P.
Hence the dircction of acceleration is that of the tangent to
the curve thus described, called by its inventor, Sir W. R.
Hamilton, the Hodograph.

The amount of acceleration is the rate of change of velo-
city, and is therefore measured by the velocity of P in the
curve PQ.

19. The Moment of a velocity about any point is the
rectangle under its magnitude and the per endicuIl)ar from the
point upon its direction. Thesmoment of the resultant velo-
city of a point abom any point in the plane of the compo-
nents is equal to the algebraic sum of the moments of the
components, the proper sign of each moment depending on
the direction of motion about the point. The same is true of
moments of aceeleration, and of momentum as defined later.

Consider two component velocities, 4B and A4C, and let
AD be their resultant (§ 10). Their half moments round

the point O are respectively the areas 0AB, 0CA. Now
0 C4, together with half the area of the parallelogram CABD,
is eqfial to OBD. Hence the sum of the two half moments
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together with hdlf the area of the parallelogram is cqual to
AOB together with BOD, that is to say, to the area of the
whole figure OABD. But ABD, a part of this figure, is
equal to half the area of the parallelogram ; and therefor® the
remainder, 0AD, is equal to ¢he sum of the two half mo-
ments. And OAD is half the moment of the resultant velo-
city round the point 0. Ilenct the moment of the resultant
is equal to the sum of the moments of the two components.
By attending to the signs of the moments, we sce that the
proposition holds when O is within the angle CAD.

20. Now if one of the components always passes through
the point 0, it« moment vanishes. This s the case of a motion
in which the acceleration is directed to a fixed point, and we
thus prove the theorem that in the case of acceleration always
directed to a fixed point the path is plane and the arcas de-
seribed by the radius-vector are proportional to the times ; for
the moment of velocity, which in this case is constant, is cvi-
dently double the rate at which the area is traced out by the
radius-vectog.

21. Hence in this case the velocity at any point is
inversely as the perpendicular from the fixed point upon the
tangent to the path, the momentary direction of motion.

For evidently the product of this perpendicular and the
velocity at any instant gives double the area described in one
second about the fixed point, which hast just been shewn to
be a constant quantity.

22. The results of the last three scctions may be easily
obtained analytically, ghus. Let the plane of motion be
taken as that of «, y; and let the origin be the point about
which moments are taken. Then if 2, y be the position of
the moving point at time ¢, the perpendicular from the origin
on the tangent to its path is

p==2 “% - “ ‘% =7 %’ , in polar co-ordinates. .

From this we have at once
ds_dy de  ,df M
H

p,d_t=m‘.{t. _y dt =9 -t—i—t-, tecsseonnenet

s

-
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or with the notation of § 8,

Py = a0, — Yy,
whieh is the theorem of § 19.

(7"1/ d'r
Also = a (pv) =T =Y g e e . (2).
Now, if the acceleration be dlrected to or from 0, its mo-
ment about O which is evidently -7 o T
d’1/ d'z , T
Tue T Y ai 2

wust vanish. Ience (2) gives
pv = constant ; which is § 21.
By means of (1) this gives

7’ 4¢ = constant, which is § 20;
kince, if .1 e the area traced ot by the radius-yector,
a4 _r*
g 2’

23.  To determine the motion of a point when the accelera-
tions to which it is subjected arc gwen '

This includes also, as will be scen, the determination of
the motion when the component velocities arc given.

Let a, B, «v be the given accelerations parallel to the axes,
we have

de :

zr"‘“’]}

dl

37'?_—:,8, vreveesesennnns (1)
& _ |
="

Now a, 8, v may be functions of z,y, z, t, tailf , ‘Z or :tlt R

or of two or more of these quantities. Equations (1) must
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be integrated as Simultaneous differential equations if possible.
Thus we have the values of % , % , g in terms of one or
more of the quantities «, y, z and ¢; that is the component
velocities are known. .

Another integration, if it cap be performed, gives z, y, and
zin terms of ¢; and, if the ﬁn‘.ter be eliminated from the
three integrated equations, we have the two equations to the
sath in space, and thus theoretically the motion is completely
etermined. .
It is unnecessary to give examples of the intcgration of
such equations, as the major part of the following chapters
will be devoted to them.

24. So far for a single point. When more points than
one are cgnsidered, Kinematics enables us to determine, from
the given motions of all, their relative motions with respect
te any one of them; or conversely, from the actual motion
of one, and the motions relative to it of the others, to de-
termine the ‘actual motions of the latter in space. This de-
pends on the following self-evident proposition.

If the velocity of any point of a system be reversed in
direction, and be communicated to each point of the system in
composition with that which it already possesses, the relative
motions of all about the first, thus reduced to rest, will be
the same as their relative motions about it when all were in
motion.

For the proof it is sufficient to notice that if at every
instant the distance of two points, and the direction of the
line joining them be the same as for two other points, the
relative motions of one of each pair about the gther will be
the same. 'The simplest illustrations of this proposition are
furnished by the relative motions of objects in a vessel or
carriage, which are independent of the common vélocity of the
whole—or, on a grander scale, of terrestrial objects, whose
relative motivns are unaffected by the earth’s rotation, or by
its motion in space.

Since accelerations are compqunded according to the same
law as velocities, the above theorem is trne of them alse,
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25. Two points describe similar orbitse about each other
wnd about any point dividing in a given ratio the line which
loins them.

et 4 and B be the poiuts, G a point in AB such that

4G
an= a constant,

The path of I3 about 4 will evidently be the same as
that of A4 about B, since the length and direction of the

ine AD ar N

Also if G be fixed the path of B about it will evidently
liffer from that of I about 4 by having correspogdipg radii
vectores diminished in the ratio A5 But this is the defi-
iition of similar curves. The same of course Swould hold with
espect to the relative path of A4 with respect*to G. This
sroposition will be found of considerable use afterwards, as it
-nables us materially to simplify the equations of motion of
:wo mutually attracting free particles.

26. As an instance of relative motion, consider two points,
e of which moves uniformly in a straight line, while the
ither moves uniformly in a circle about the first as center ; to
lctermine the path of the second point, the motion being in one
Aune.

Take the line of motion of the first as the axis of », v its
relocity, the plane of the circle as ay, @ the radius of the
clative circular orbit, » the angular velocity in it, § 32.
Suppose the revolving point to be initially in the axis. Also
it time ¢ suppose the line joining the points to be inclined
it an angle @ to the axis of . Then for the co-ordinates of
he revolving point we have °

y=asinb,
x=vt+acosé.
But 0= wt; )
T. D. 2
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Y Y "—13_/ 2_ 9
hence z o sin a+4/(u, )

is the equation to the absolute path required. This belongs
to the class of cycloids; it is prolate or curtate according as
v is greater or less than aw, dr the absolute motion of the
first point greater or less than that of the other in its circular
orbit. If the two are equal, of v = aw, we have the equation
to the common cycloid, as is indeed evident, for the circular
path may beé supposed the generating circle, and the velocity
of the center in its rectilinear path is equal to that of the
tracing point about that center.

27. It is evident that, whatever be the rclative path, if
7, 0 denote the relative co-ordinates of the second point with
respect to the first at time ¢, £, y, and Z the absolute ev-ordi-
nates at the same time,

z=%+rcosf
i } e (1),

Now in the first case, when tiye motion of the first point, and
that in the relative orbit are given,

z, r and 8 are known functions of #, if thercfore these
values be substituted in (1), and ¢ be eliminated, we shall have
the equation between z and y, which is required.

Again, if the absolute orbits of both are given, , y, and
% are known in terms of ¢, and thus equations (1) serve to
give r and @ in terms of ¢, which furnishes "the complete
determination of the relative path, and the circumstances of
its description.

28. In any system 8f moving points, to determine the rela-
trve, from the absolute, motions ; and vice versd.

Letz, y, z,, «, 9, z, be the co-ordinates of two of the points,
x, Y 2 the ,rq(ltat‘ivplco-,oxdinates of the second with regard to
the firdt, of] 9, 40,

v, w,, 'izi\b,"w, the velocities of each parallel to the
axes, u, v, w the ye.ocities of the second relatively to the first.

Then z=z,—x, U= Uy— Uy,
Y=¥%-Y V=T, Y,
z=2z,—-2, w=10,—u,.
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The second group may be derived from ‘the first by differ-
entiation with respect to 2.

*Now, when the actual motions of the two are given, all the
subscribed quantities are knoavn. Hence the above equations
give the circumstances of the relative motion.

Or if the actual motion of the first, and the relative motion
about it of the second, be known, we have zy z, uvw, 2,7, z,,
u, v, w,, to find the other six quantities for the actual motion
of the second in space.

A second differentiation proves the statement in § 24 re-
garding relative acceleration.

29. Some of the best illustrations of this part of our sub-
ject are to be found in what are called Curves of Pursuit.

These questions arose from the consideration ®f fhe path
taken by » dog who in following his master always directs
his course towards him.

In order*to simplify the ghestion the rates of motion of
both master and dog are supposed to continue uniform; or at
least to have a constant ratio.

80. As an instance of the curve of pursuit, suppose it be
required to determine the path of a point which continually with
uniform velocity u moves towards another which is describing a
straight line with uniform velocity v. :

The curve of course is plane. Take the line of motion

4 .
.A- id
M P
0 M Q i X
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of the.second ]l)oint @ as the axis of z, and let = denote
its position at the instant when the co-ordinates of the first,
P, are z, y. The axis of y is chosen as that tangent to the
curve of pursuit which is perpendicular to the axis of , and
the distance between the points fu that position is a.

Let 2= e, then
u
eAP= 0@, and PQ is a tangent at P

L]
These are our conditions, and lead to the following equa-
tions

es=r=x—y z
TETE T Ay

Diffpreptiating with respect to y, we have
ds d’z

e@=—y@;.

. . . . N
But s increases as y diminishes,

ds’ dx\*
whence Zy——’\/{l-'—(ﬂ?é/)}'

&
ay'

@) .

and integrating, noting*that y =a, glz =0 together,

g (4] -1 [o /{14 ()} + ]

e, (=4 (5)}+ 5

. 2
and therefore (‘%) = ,\/ {1 + (%) } - g—; taking reciprocals.

e
Ilence - =
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And we have finally

2%’= (%)‘— ?) ................ e (1),

e+l aa

y
et e

or 2(x+C)=

But 2=0, y=a; which gives C= pal

e \__ 9T e @

Hence 2 (:v+ e"—l) = F et D) +3/,,1 =1

This is true for all values of ¢ except unity, a case to
which we will presently recur.

There are two cases of curves represented by equation (2).
1st, e>1, 2nd, e<1, °

In the first case @ moves the faster, and P can never over-
take it; the curve therefore never meets the axis of @, wlich
indeed will be seen by (2) to he an asymptote. » AT R

cerrenen(2).

In the second case equation (2) becomes

ae ,'Ina aJl—c.
2z — — )= S 2
(m l—e") a(l+e 1-—¢’

and for = lfi_f? we have y =0, and also by (1) %; infinite,

Ience the curve touches the axis at this point. The re-
mainder of the curve satisfies a modified form of the question,

and is called the Curve of Flight., {It is to be observed,

1
however, that = r__-; gives also y=+ta (li e) }

When e =1, the integral of (1) is

A\_¥ _ 10e?
4) va alog HE

the on]y case in which we do not obtain an algebraic curve.
Here®again the axis of # is an asymptote.

2(a:+
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81. As an ingtance of relative motion let us consider the
path of P with regard to, Q. It will be casy to sec that this
corresponds exactfy to the following question.

A boat, propelled (relatively to the water) with uniform
velocity w, starts from a point Aein the bank of a river which
runs with velocity v parallel to Qx, and tends continually to
the point Q, on the other bank, directly opposite to A ; to find
ity path.

The constant velocity of the stream in this case com-
municated to P corresponds to the constant velocity of @ in
the last example, but 1s in the opposite direction. In fact,
if the earth were to be supposed moving in the direction ()
with uniform’velocity z, the river would be at rest in space,
and the actual motions of P and @ would be the same as in
the last example. (Scc § 24.)

To investigate the path, take @ as origin, Qr, Q4 as the
axes. Then the component velocities of I are v parallel to
Qr and u along PQ, and the tangent to its path is in the
direction of the resultant of thesc two. Putting 6 for PQx,

we have dy__ _usin o
dzx v—ucos@
oo sin @
T T e—cosf

=Y
eV@'+y)—az"-
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This, being a homogeneous equation, isecasily integrated,
and we have, taking =0, y =a togsther,

3(.::: V@+Y) = e, (1),

p__s_ig__q)‘._l—-cosﬂ
r( a /  sin@ . .

in polar co-ordinates. This evidently gives a parabola about
() as focus, if e=1.

To find the time of crossing the stream.

This may easily be effected by considering the actual
velocity parallel to the axis of y,

d .
zl'%/=—usm0

—_——y g .
V@)
Now taking quotients of y’ by both sides of .(1),
aay'l—c= V(w!+y2) + x.
Hence 2N (@ +y) =ay' "+ a y™;
and therefore %ﬂ (ay'™ + a™y'") = — 2udl.

Taking the integral from a to 0, and putting 7| for the
time of crossing,

an
us — ’0’ .

a
1-¢

But, if there had been no current, we should have had for
the time of crossing,

=ul}; or I}=

u’

a T
= -: whence ! =-—+—s.
7; u, w 7; uﬂ__v’l

Tn the integration we have, of course, e <1, else the boat
could not reach Q.
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If e=1, the boat will reach the farther bank but not at
Q. The solution of this case presents no special difficulty.

82. If the motion of a point in a plane be considered
with reference to a fixed point m that plane, the rate of in-
crease of the angle made by the line joining the two, with
some fixed line in the plane, is ¢alled the Angular Velocity of

the former point about the latter.

Suppose this angle to be represented by 6 at time ¢; then
at time ¢ + 8¢ it has the value 6+ 86, and it may be shewn
as before (§ 7), that if @ represent the angular velocity re-

quired, then
w = '(“lz .

Ex.. 4point moves uniformly, with velocity v, in a straight
line ; to find at any instant its angular velocity about @ fioed
point whose distance from the straight line is a.

Taking asg initial line the perpendicular from the fixed
point on the line of motion; thic polar equation of the path is

r =asec 0.

Also, if when ¢=0, 6 =0, we have

7 sin 6 = vt.
Hence, atan 6 = v,
and o=@ ve __w
Tdt a4 P

83. A point describes a circle with uniform velocity ; 1t
18 required to find the actual velocity, and the angular velocity
(about the center) in any orthographic projection.

Let ApA’ be an ellipse and 4P4’ the auxiliary circle.
Then the former will be the orthographic projection i?’its axes
be made in the rativ of the cosine of the angle (a) between
the planes of projection. Also if PpM be perpendicular to
AA', Pand p will be corresponding points in the two. Draw
the tangents p 7, PT’; then 3



xixnuxrxcs. %rs
v iy
D:Ctual VelOClty at% %%:’ and if TOP= o [ . ‘l 40‘

velocity at p _ /(PT" sin’ 0 + PT* cos*  cos ! a)

..... R . PT
= y/(sin’ 0 + cos’ § cos’s)
= /(1 — sin’ a cos’ 6).

angular velocity at p _ d¢

Now, if TOp=4¢, PIb

— tan™ (cos a tan §
cosa
T cos® 0 + cos* o sint ¢
cosa
~1—sin®asin®g’
. . . . o . .
This is a maximum if = 3 when its value is sec a,
.. minimum ...... e I cos a.

Hence, if o, and o, be the greatest and least angular
velocities in the pro_]ectxon,

N (0,0,) is the angular velomty in the original path.
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34. Evidently, the product of the radius-vector into the
angular velocity is the velocity perpendicular 1o the radius-
vector. This is to the whole velocity as the perpendicular on
the tangent is to the radius-vector; and therefore the prodtict
of the square of the radius-vectar by the angular velocity is
equal to the product of the whole velocity by the perpen-
dicular on the tangent, 4.e. to the moment of velocity about
the pole, § 22, (1).

85. The rate of increase or diminution of the angular
velocity when variable is called the Angular Acceleration,
and is measured with reference to the same unit angle.

36. Tle motion of a point in a plane being given with
respect to fixéd axes, to investiqate expressions jfor ats velocity
and acceleration relative to axes in the same plane, which re-
volve about a common origin with uniform angular velocity.

Let o e this angular velocity, then, if at time ¢ =0 the
fixed and revolving axes coincide, at time ¢ they will be
inc?ined at an angle . Hence; if z, , £ # be the co-ordi-
nates of the point at time ¢, veferred to the fixed and the
revolving axes respectively, we have

&=z coswt +y sin ot (1)
n=ycosot—zsinet] T .
These give, by differentiation,
%= %coswt+ %Z sin ot — o (z sin wt — ¥ ¢os wt)
=-C—Ifcos wt+-(-lﬂ sin wt+wn.1
¥ dt dt 9
W dy g eennn (2),
Similarly, R cogwt -~ sin wt — of
which determine the relative velocities.
- Again, . '
't .d dy . dx . d, -
%gfd—d;—f cos ”“*';,z;? 8in ! — 20 ((g sin wt — a‘%cos wt) - w’fl

dw dy &'

: . dy . dx ) .
W_stmt—7f81n wt—2w (Ei 8in wi + —- cos wt | — @'y

()
dt
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or
PE dw o dy . .,
r —E?-cosmt+ stnwt-l-mnaz-i-mf -
(Z'tn —dz:’/ dgm e 7 A )
—a-t-;——dt'.‘ Cco8 wt — 2;2- smwt—?w?ﬁ+w,q

the relative accelerations.

Now the component accclerations along fized axes, which
at the time ¢ coincide with the moVing axes, arc evidently
represented by the first two terms of the right-hand sides of
these equations; or, in terms of the co-ordinates with respect
to the moving axes, by

2

d’t dn d'n dt
vdt,—-2w%—-w‘g‘, andzt;+2w8--—w:17 ...... (4).

Ex. 1If the point be at rest,  and y are constant, and *

d d
Gmem =k

Also aE__ o’E, =

These expressions are obvious, as in this case the relative
motion of the point with respect to the moving axes is a
uniform circular motion about the origin, in the negative
dircction, . e. from the axis of # to that of £. 8

87. Suppose the axes not to revolve uniformly.

In this case the investigation is precisely the same as the
above, with the exception that 6, a given function of ¢, must
be substituted for w?. If @, now no longer constant, be put
for %g , the student will have no difficulty in verifying the fol-
]owing expressions which take the place of (2), (3') and (4), of
the preceding section. :
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Z—f=%~fcos€fl-%sin0+wn

........................... ).
%z=%c030—%sin0—wf .’
2 2 2,
§t§=%;c050+%t‘:lsin€+a')'§+2m%7+%;—’1;

.. (3).

d'n _d% d'z . . d¢ dw CH
a—t:‘——'dt, COSH—“E;*S.IDG+CO?)—2CDE‘—-(EE

d*? 1d dn , 1d
('ﬁig‘—m’f—; 7 (0n%), T -“”’+§'d'e (WE) eieiieen (4).

These expressions might have been deduced at once from
the expresgions in § 15, by the consideration of relative aceele-
rations as in § 24. Let OM = §, MP=q, be the co-ordinates
of the point referred to the moving axes. Then, by § 13, the
acceleration of A along OV is

d?
o

Also, as MP revolves with angular velocity w, the ac-
celeration of P relative to M in the direction perpendicular
to AP, is

1d
Gl

Thigtis in the direction of the negative part of the axis of
£ Hence the resolvedpart parallel to O, of the relative
acceleration of P with respect to O, is

d’t . 1d .
’er—a’f—;,‘gz(wﬂ)-

88. <The principles already enunciated, and the examples
given of their application, will suffice for the solution of pro-
-blems on this part of the subject.

" Other examples of the application of these principles,
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such as the kinematical part of the invéstigations of the
Hodograph, Tractory, &ec., will be more appropriately intro-
ducgd in future clapters.

EXAMPLES.

— (1) A point moves from rest in a given path, and its
velocity at any instant is proportional to the time elapsed
since 1ts motion commenced; find the space described in a
given time.

= (2) If a point begin to move with velocity v, and at
cqual intervals of time a velocity » be communicated to it
in the same direction; find the space described in n such
intervals.

— (8) A man six feet high walks in a straight Mne® at the
rate of four miles an hour away from a street lamp, the height
of which is 10 feet; supposing the man to start from the
lamp-post, find the rate at which the end of his shadow
travels, and also the rate at which the end of his shadow
separates from himself.: '

(4) TIf the Eosition of a point moving in a plane be
determined by the co-ordinatcs p and ¢, p being measured
from a fixed circle (radius @) along a tangent which has
revolved through an angle ¢ from a fixed tangent; investi-
gate the following expressions for the accelerations along and
perpendicular to p respectively,

Loy ()1 a8

ar ~ P\ dr*
and %(% (p’ %b) +a (%t)z

¥

(4
= (5) Prove. that it is not possible for_a point to move so
that its velocity at any point may be £rop0rtiotlal to the .
length of the path which it has described from rest: also that
.if its velocity be proportional to the space it has to describe,
however small, it wilf never accomplish it: :
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(6) The velocity of a point parallel to each of three
rectangular axes is proportional to the product of the other
two co-ordinates; what are the equations to the path, and
what is the time of describing a given portion when® the
curve passes through the origin

==(7) .A point moves in a plane, its velocities parallel to
the axes of = and y are

u + ¢y and v 4 ex respectively,
shew that it moves in a ‘conic section.

—(8) Two points are moving with uniform velocity in two
straight lines, 1st in a plane, 2nd in space; given the initial
circumstances, find when they arc nearest to each other.
Slew also that in both cases the relative path is a straight
line, descmbed with uniform velocity.

~(9) A number of points are moving with uniform velo-
city in straight lines in space; detcrmine the motion of their
common center of inertia. (§ 53.)

—(10) A cannon-ball is moving in a dircction making an
acute angle 6 with a line drawn from the ball to an observer;
if ¥ be the velocity of sound, and n ¥ that of the ball, prove
that the whizzing of the ball at different points of its course
will be heard in the order in which it is produced, or in the
reverse order, according as n < > sec 6.

' (11) A particle projected with a velocity u, is acted on by
a force, which produces a constant acceleration £, in the planc
of motion, inclined at a constant angle a to the direction of
motion. Obtain the intrinsic equation to the curve described,
and shew that the particle will be moving in the opposite
-direction to that of projection at the time '

'chs p (e""“ - 1) .

(12) $hew that any infinitely small motion given to a
plane fignre in its own plane is equivalent to a rotation
h‘l‘w an infinitely small angle about some point in the
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™ . (18) The highest point of the wheel of a carriage rolling
on a road moves twice as fast as each of two points in the
riméwhose distance from the ground is half the radius of the
whéel.

— . (14) A rod of given length moves with its extremities
in two given lines which intgrsect; shew how to draw a tan-
gent to the path described by any point of the rod. .

—(15) TInvestigate the position of the instantaneous center
about which the rod is turning, and apply this also to solve
the preceding question.

(16) One circle roll. on another whose center is fixed.
From the initial and final positions of a diameter in each
determine how much of their circumferences have been in
contact,

-~ (17) One point describes the diameter 4B of a circle with
uniform velocity, and another the semi-circumference 4 B from
rest with uniform tangential acceleration, they start together
from .1 and arrive together at B, shew that the velocities
at [ arc as r : 1.

(18) In the example of § 30 find in the case of e=1
the ultimate distance of the particles, and for 6 <1 the length
of time occupied in the pursuit.

=~ (19) In the example of § 31 find the greatest distance
the boat is carried down the strcam, and shew that when
it is in that position its velocity is 4/(u” — o).

When % = v, shew directly that the curve described is a

parabola.

~(20) Shew that if p be the radius of curvature of the
curve of pursuit, we have in the figure of § 30,

_re
P=ePM” .

*(21) In the case of a boat propelled with velocity u
relatively to the water in a stream running with velocity »;
shew that the boat passes from one given point to another in.
the lgast possible time when its actual path is a straight
line. IR
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+'(22) 'The velocity of a stream varies as the distance from
the nearest bank; shew that a man attempting to swim di-
rectly across will describe two semiparabolas. (Shew that the
sub-normal is constant.) Find by how much the mean velo-
city is increased.

—=(23) A point moves unifogmly in a circle; find an cx-
pression for its angular velocity about any point in the plane
of the circle.

w=/ (24) If the velocity, of a point moving in a plane curve
vary as the radius of curvature, shew that the direction of
motion revolves with uniform angular velocity.

"y

©(25) Two bevilled wheels roll together; having given

the angular velocity of the first wheel and the iuclinations of

the axes of the cones, find their vertical angles that the

second ma¥ revolve with given angular velocity.

» (26) Supposing the Earth and Venus to describe in the
same plane circles about the Sun as center; investigate an
expression for the angular velocity of the Earth about Venus
in any position, the actual velocities being inversely as the
square roots of their distances from the Sun.

.. ¥ (27) A particle moving uniformly round the circular base
of an oblique cone is projected by gencrating lincs on a sub-
contrary section ; find its angular velocity about the center of
the latter.

v (28) If £, 7 denote the co-ordinates of a moving point re-
ferred to two axes, one of which is fixed and the other rotates
with uniform angular velocity , prove that its component
accelerations parallel to these axes are

a’t dn
i 2w cosec wit PR

8

d'np o dn
vEt—,——wn+2wcot‘wt R
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CIIARTER IIL
LAWS OF MOTION.

39. Ilavixg, in the preceding chapter, considered the
purely geometrical properties of the motion of a point or par-
ticle, we must now treat of the causes which produce various
circumstances of motion; and of the experimental laws, on
the assumed truth of which all our succeeding investigations
are founded. And it is obvious that we now infgoduce for
the first time the idea of Mautter.

We commence with a few definitiops and explanations,

necessary to the full enunciation of Newton’s Laws and their
CONseyieees. ¢

40. The Quantity of Matter in a body, er the Mass of
a Dbody, is proportional to the Volume and the Density con-
jointly. Thc ZDensity may therefore be defined as the quan-
tity of matter in unit volume.

If A be the mass, p the density, and V" the volume, of a
homogencous body, we have at once

M="Vp;

if we so take our units that unit of mass is the mass of unit
volume of a body of unit density. If the density vary.from
point to point, we have, of course,

M=[[jpdV.

As will be presently explained, the most convenient unit
mass is an imperial pound of matter.

41. A Particle of matter is supposed to be so small that,
though retaining its material properties, it may be treated so
T. D. 3
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far as its co-ordimates, &ec. are concerned, as a geometrical
point.

42. The Quantity of Motion, or the Momentim, Of a
moving body is proportional to its mass and velocity con-
jointly. .

Hence, if we take as unit 6f momentum the momentum
of a unit of mass moving with unit velocity, the momentum
of a mass M moving with velocity v is Av.

43, Change of Quantity of Motion, or Change of Momen-
tum, is proportional to the mass moving and the change of its
velocity conjointly. ‘

Change of velocity is to be understood in the general
sense of § 10. Thus, with the notation of that scction, if a
velocity represented by 04 be changed to another represented

by OC, the change of velocity is represented in magnitude
and direction by 4C,

44. Rale of Change of Mhﬁmentum, or Acceleration of Mo-
mentum, is proportional to the mass moving and the accelera-
tion of its velocity conjointly. Thus (§ 16) the acceleration

d’s

dt’

3
the tangent, and M % in the radius of absolute curvature,

of momentum of a particle moving in a curve is 3/ - along

45, The Vis Viva, or Kinetic Energy, of a moving hody
ig¥proportional to the mass and the square of the velocity,
conjointly. If we adopt the same units of mass and vclo-
city as before, there is partigular advantage in defining kinetic
energy as kalf the product of the mass into the square of
its velocity.

46. Rate of Change of Kinetic Energy (when defined as

above) is the prodact of the velocity into the component of
acceleration of momentum in the direction of motion.

.For gt(-]gz =Mv%=v(ﬂ[%’;).
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47. Matter has an innate power of fesisting external -

influences, so that every body, as far as it can, remains at rest,
or moves uniformly in a straight line. :

[ ] .
This, the Inertia of matter, is proportional to the quan- -
tity of matter in the body. * And it follows that some cause -

is requisite to disturb a body’s uniformity of motion, or to
change its direction from-the natural rectilinear path. «

48. Impressed Force, or Force simply, is any cause which
tends to alter a body's natural state ef rest, or of uniform mo-
tion in a straight line.

The three clements specifying a force, or the three ele-
ments which must be known, before a clear notion of the force
under consideration can be formed, are, its place of application,
its direction, and its magnitude.

49. The Measure of a Force is the quantity of motjon

which it produces in unit of time. According to this method
of measurcment, the standard® or unit force &s that force
which, acting on the unit of matter during the unit of time,
generates the unit of velocity.

Hence the British absolute unit force is the force which,
acting on one }mund of matter for one sccond, gencrates a
velocity of one foot per second.

[According to the common system followed in modern
mathematical treatises on dynamies, the unit of mass is ¢
times the mass of the standard or unit weight; g being the
numerical value of the accelcration produced (in some g)ar-
ticular locality) by the earth’s attraction on falling bodies.
This definition, giving a varying and a very unnatural unit
of mass, is exceedingly inconvenient. In reality, standards of
weight are masses, not forces. They are employed primerily
in commerce for the purpose of measuring out & definite quan-
tity of matter; not an amount of matter which shall be at-
tracted by the earth with a given force.]

».(»E
50. To render this standard intelligible, all that has to

>

be dope is to find how many absolute units will produce, in,,

any particular locality, the same effect as the fore of gravity: -
3"""2 ' o
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The way to do this is to measure the effect of gravity in pro-
ducing acceleration on a body unresisted in any way. The
most accurate method is indirect, by means of the pendulum.
The result of pendulum experiments made at Leith Fort) by
Captain Kater, is, that the velo¢ity acquired by a body falling
unresisted for one second is at that place 32207 feet per
second. The variation in the fbree of gravity for one degree
of difference of latitude about the latitude of Leith is only
*0000832 of its own amount. The average valuc for the
whole of Great Dritain, differs but little from 32:2; that is,
the force of gravity on a pound of matter in this country is
32-2 times the force which, acting on a pound for a sccond,
would generate a velocity of one foot per sccond; in other
words, 32:2 is the number of absolute units which measures
the weight of a pound. Thus, speaking very roughly, the
British, apsolute unit of force is equal to the weight of about
half an ounce.

L]

51. Forces (since they involve only direction and mag-
nitude) may be represented,. as velocities are, by straight
lines in their directions, and of lengths proportional to their
magnitudes, respectively.

Also the laws of composition and resolution of any number
of forces acting at the same point, are, as we shall presently
shew, § 62, the same as those which we have already proved
to hold for velocities; so that, with the substitution of force
for velocity, § 10 is still true.

82. The Component of a force in any dircction, sometimes
called the Effective Component in that .direction, is therefore
found by multiplying thc magnitude of the force by the cosine
of the angle between the directions of the force and the com-

nent. The remaining component in this case is perpen-
dicular to the other.

It is very generally convenient to resolve forces into com-
ponents garallel‘to‘ three lines at right angles to’each other;
each such resolution being effected by multiplying by the
cosine of the angle concerned.

The magnitude of the resultant of two, or of three, forces
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in directions at right angles to each other,+is the square root
of the sum of their squares.

%63. The Center of Inertin or Mass of any system of material
points whatever (whether righdly connected with one another,
or connected in any way, or quite detached), is a point whose
distance from any plane is &qual to the sum of the products
of each mass into its distance from the same plane divided by
the sum of the masses.

The distance from the plane of %, of the center of inertia
of masses m,, m,, etc., whose distances from the plane are
£y, oLy, ctc., is therefore

7o M@ tma, tete. T (ma)

my + m, + ete. S
And, similarly, for the other co-ordinates.
Hence its distance from thc..plane
=Xz +puy+vz—a=0,
18 D=Az+py+12—a,

_Smz+py+rz—a)l I (md)
- ) T dm

’

as stated above. And its velocity perpendicular to that
plane is

a8

3(m%

D _ 1 2{ (h%:—;+/.cd'g+vdz>} dt)

dt = Sm a i) =" =3m

d
from which, by multiplying by Zm, and. noting that 8 is the
distance of z, y, z from & =0, we see that the sum of the mo-
menta of the parts of the system in any Qirection is equal to
the momentum in that direction of the awhole inass collected
at the center of inertia. '

51. By introducing, in the definition of moment of velo-
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city (§ 19), the mass of the moving body as a factor, we
have an important element of dynamical science, the Moment
of Momentum. The laws of composition and resolution are
the same as those already explained. )

B5. A force is said to do TFork if it moves the body to
which it is applied, and the work done is measured by the
resistance overcome, and the space through which it is pyer-
-come, conjointly.

. »

Thus, in lifting coals from a pit, the amountpf work dque
is proportional to the weight of the coals lifted; that is,
the force overcome in raising them; and also to the height
through which they are raised. The unit for the measure-
ment of work adopted in practice by British cngincers, is that
required to overcome the weight of a pound through the space
of a foot, 2hd is called a foot-pound.

+In purely scientific measurements, the unit of work is not
the foot-pound, but the kinetic unit force (§ 49) acting
through unit of space. v

If the weight be raised obliqucly, as, for instance, along
a smooth inclihed plane, the space through which the force
has to be overcome is increased in the ratio of the length to
the height of the plane; but the force to be overcome is not
the whole weight, but only the resolved part of the weight
parallel to the plane; and this is less than the weight in the
ratio of the height of the plane to its length. By multiplying
j%am?hvo expressions togcther, we find, as we might expect,
‘that the amount of work required is unchanged by the sub-
stitution of the oblique for the vertical path.

66. Generally, if s be an arc of the path of a particle, §
thé tangential component of the apphied forces, the wark done
on the particle between any two points of its path‘ss K

Ji

tak_en’%é‘iween limits cﬁ;‘esponding to the initial and final
positions. . :
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. Referred to rectangular co-ordinates, iteis easy to sce, by
the law of resolution of forces, § 62, that this becomes

f(xffdf+ Yj%’+z§)ds.

Thus it appears that, for ‘any force, the work done during
an dpdefinitely small displacement of the point of application
i3 & product of the resolved part of the force in the direction
of the disphagement into the displacement.

%Iﬂ' rom tﬁ%? it folfows, that if the motion of a body be
always perpendicular to the direction in which a force acts,
such a force does no work. Thus the mutual normal pressure
between a fixed and a moving body, the tension of the cord
to which a pendulum bob is attached, the attraction of the
sun on a planet if the planet describe a circle with ¢the sun
in the center, are all cases in which no work is done by the
force.

- In fact the geometrical cgndition that the, resultant of
4, Y, Z, shall be perpendicular to ds is

.dx dy dz _
JL;I;+ Y33+Z(—l;—-0,

and this makes the above expression for the work vanish.

57. Work done on a body by a force is always shewn
by a corresponding increase of vis viva, or kinetic energy,
it no other forces act on the body which can do work or have
work done against them. If work be done against any forces, |
the increase of kinetic energy is less than in the former case
by the amount of work so done. In virtue of this, however,
the body posscsscs an eguivalent in the fogm of Potential,
Energy, if jts physical conditions are such that these forces .
will act equally, and in the same directionsif thé motion of :
the system is reversed. Thus there m’ﬁyhbe no change of
kinetic energy produced, and the work done may be wholly
stored up as potential energy. .

Thus a weight requires work to raise it to a height, a
spring requires work to bend it, aiy requires work to com-
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press it, etc.; but a raised weight, a bent spring, compressed
.air, etc., are stores of energy which can be made use of at
pleasure.

- ¢
These definitions being premised, we give Newton's Laws
of dotion. - ’ :

58. Law 1. Every body comtinues in its state of rest or of
uniform motion in « straight line, except in so far as & may
be compelled by Tmpressed forces to chunge that state.

- We may logically convert the assertion of, the first law
of motion as to velocity into the following statements :—

The times during which any particular body, not com-
pelled by force to alter the speed of its motion, passes through
equal spaces, are equal. And, again—Every other body in
the universe, not compelled by force to alter the speed of
its motiorf, moves over equal spaces in successive intervals,
during which the partimi]lar chosen body moves over cqual
sphces.

59. The first part merely expresses the convention uni-
versally adopted for the measurcment of Z%ne. The carth,
in its rotation about its axis, presents us with a case of motion{’
in which the condition of not being compelled by force to
alter its speed, is more nearly fulfilled than in any other
which we can easily or accurately observe. Ilence the nu-
merical measurement of time practically rests on defining
equal intervals. of time, as times during which the carth turns
through equal angles. This is, of course, a mcre convention, ;
and not a law of‘q nature ; and, as we now sec it, is a part of
Newton's first law. Lt

The remainder of the law is not a convention, but a great
truth of nature, which we may illustrate by referring to small
and trivial cases as well as to the grandest phenomena we
can conceive. .

60. Law IL, Change of motion is proportional to the im-
pressed force, and takes place in the direction of the straight
line in which the force acts.

We have considered change of velocity, or acceleration,
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as a purely geometrical quantity, and have seen how it
may be at once inferred from the given initial and final velo-
cities of a body. By the definition of motion, or quantity of
motton (§ 42), we see that, if we multiply the change of velo-
city, thus geometrically determined, by the mass of&’ ihe body,
we have the change of motion (§ 43) referred to in Newton's
law as the measure of the foree which produces it.

- Itistobe garticularly noticed, that in this statement there
is nothing said about the actual motion of the body before it
was acted on by the force: it is omdy the change of motion
that concerns us. Thus the same force will produce precisely
the same change of motion in a body, whether the body be at
rest, or in motion with any velocity whatever.

61. Again, it is to be noticed that nothing is said as to
the body being under the action of one force only ; go that we
may logically put part of the sccond law in the following
(apparently) amplified form :—

When any forces whateverlact on a body, &hen, whetner
the body be oriyginally at rest or mocing with any velocity
and A any divection, eacl force produces in the body the
eract change of motion which it would have Yroduced if it
hud acted singly on the body originally at rest.

62. A rcmarkable consequence follows immediatcly from
this view of the second law. Since forces are measurcd by
the changes of motion they produce, and their directions
assigned by the directions m which these changes are pro-
duced ; and since the changes of motion of one and the same
body are in the directions of, and proportional to, the changes
of velocity—a single force, measured by the resultant change
of velocity, and in its direction, will be the equivalent of any
number of simultancously acting forces. Hence

The resultant of any number of forces: (applied at one
point) 18 to be found by the same geometrical grocess as the
resultant of any number of stmultaneous velotities.

From this follows at once (§ 10) the construction of
the Parallelogram of Forces for finding the resultant of two
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forces acting at tlie same point, and the Polygon of Forces for
the resultant of any number of forces acting at a point. And,
so far as a single particle is concerned, we have at once the
whole subject of Statics. *

63. The second law gives us the mecans of measuring
force, and also of measuring the®mass of a body.

For, if we consider the actions of various forces upon
the same body for equal times, we cvidently have changes
of velocity produced, which are proportional to the forces.
The changes of velocity, then, give us in this case the means
of comparing the magnitudes of different forces. Thus the
velocities acquired in one second by the same mass (falling
freely) at dci‘}ferent parts of the earth's surface, give us the
relative amounts of the earth’s attraction at these places.

Aguingif equal forces be excerted on different bodies, the
changes of velocity produced in equal times must be 2nversely
as-the masses of the various bodics. This is approximately
the case, for instance, with treins of various lengths drawn by
the same locomotive. :

Again, if we find a casc in which different bodies, each
acted on by u force, acquire in the same time the same
changes of velocity, the forces must be proportional to the
masses of the bodies. This, when the resistance of the air
is removed, is the case of falling bodies; and from it we
conclude that the weight of a body in any given locality,
or the force with which the earth attracts it, is proportional
to its mass.

64. It appears, lastly, from this law, that every theorem
of Kinematics connected with acceleration has its counter-
part in Kinetics. Thus, for instance (§ 16), we sec that
the force, under which a particle describes any curve, may
be resolved into two components, one in the tangent to the
curve, the other thwards the center of curvature; their
magnitudes being the acceleration of momentum, and the
product of the momentum into the angular velocity about
the center of curvature, respectively. In the case of uni-|
form ‘motion, the first of these vanishes, or the whole force:
is perpendicular to the direction of motion. When there is
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no force perpendicular to thé direction of emotion, there is
no curvature, or the path is a straight line.

Hence, if we resolve the forces, acting on a particle of
mass m whose co-ordinates are z, y, 2z, into the three rect-
angular components X, Y, Z;°we have

dz_ dy _ d’z _

In many of the future chapters these equations will be
somewhat simplified by assuming uttity as the mass of the
moving particle. \When this cannot be done, it is sometimes
convenient to assume X, Y, Z as the component forces on
unit mass, and the previous equations become

?

dz .
m % = 7)24.‘, &C.;

from which = may of course be omitted.

L]
[Some confusion is often infroduced by the division of
forces into “ accelerating,” ande*‘ moving,” forces; and it is
even stated occasionally that the former are of one, and the
latter of four linear dimensions. The fact, however, is that
an equation such as
d’x

dt*
may be interpreted either as dynamical, or as- merely kine-
matical.  If kinematical, the meanings ‘of the terms are
obvious; if dynamical, the unit of mass must be understood
as a factor on the left-hand side, and in that case X is the

a-component per unit of mass, of the whole force exerted on
the moving body.]

=4,

If there be no acceleration, we have of course equilibrium
among the forces. Hence the equations of motion of & particle
are changed into those of equilibrium by putting
d'z - :
EE; = 0, &C- i K

65. We have, by means of the first two laws, arrived
at a définition and a measure of force; and have also.found
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how to compourtd, and therefore also how to resolve, forces;
and also how to investigate the conditions of cquilibrium or
motion of a single particle subjected to given forces. But
more is required before we can completely understand the
more complex cases of motiom, especially those in which we
have mutual actions between or amongst two or more bodies ;
such as, for instance, attractiohs or pressures or transference
of energy in any form. 'This is perfectly supplied by

66. Law IIL. To every action there is always an cqual and
contrary reaction : or, the mutual actions of any two bodies ar«
aliways equal and oppositely directed in the same straight line.

If one body presses or draws another, it is pressed or
drawn by this other with an equal force in the opposite
direction. If any one presses a stone with his finger, his
finger is pressed with the same force in the opposite direction
by thé stbne. A horse towing a boat on a canal is dragged
backwards by a force equal to that which he impresses on the
towing-rope forwards. By whatever amount, and in what-
ever directign, one body has its motion changed by impact
upon another, this other body has its motion changed by the
same amount in the opposite direction; for at each inxtant
during the impact the force between them was equal and op-
posite on the two.  When neither of the two bodics has any
rotation, whether before or after impact, the changes of velo-
city which they experience arc inversely as their masses,
When one body attracts another from a distance, this other
attracts it with an equal and opposite force.

\ 67. We shall for the present take for granted, that the
mutual action between two particles may in every case be
imagined as composed of cqual and opposite forces in the
straight line joining them. From this it follows that the
sum of the quantities of motion, parallel to any fixed dircc-
tion, of the particles of any system influencing one another in
any possible way, remains unchanged by their mutual action;
also that the sum of the moments of momentum of all the
particles round ‘any line in a fixed direction in space, and
{Jassing through any point moving uniformly in a straight
ine in any darection, remains constant. From the first of
these propositipns we infer that the center of inertia of any
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system of mutually influencing particles, if* in motion, con-
tinues moving unitormly in a straight line, unless in so far as
the direction or velocity of its motion is changed by forces
acting mutually between the particles and some other matter
not belonging to the system; also that the center of inertia of
any system of particles moves just as all their matter, if con-
centrated in a point, would mdve under the influence of forces
equal and parallel to the forces really acting on its different
parts. Irom the second we infer that the axis of resultant
rotation through the center of inertig of any system of par-
ticles, or through any point cither at rest or moving uniformly
in a straight line, remains unchanged in direction, and the
sum of moments of momenta round it remains constant if the
system experiences no force from without. [This principle is
sometimes called Conserrvation of Areas, a very misleading
designation.] These results will be deduced analyficglly in
Chap. xI1.

68. What precedes is founded upon Newton’s own com-
ments on the third law, and tlre actions and rgactions con-
templated are mere forces. In the scholium appended, he
makes the following remarkable statement, introducing another
specification of actions and reactions subject to hi8 third law :—

St stimetur agentis actio ex ejus v et velocitate conjunctim;
et stmiliter resistentis reactio wstumetur conjunctim ex cjus par-
tium singularum velocitatibus et viribus resistendi ab earum
attritione, cohwsione, pondere, et acceleratione ortundis ; erunt
actio et reactio, in omni instrumentorum usw, sibt invicem sem-
per aquales. : ;

In a previous discussion Newton has shewn what is to
he understood by the velocity of a force or resistance; e.,
that it is the velocity of the point of application of the force
resolved in the direction of the force. Bearing this in mind,
we may read the above statement as follows :— p

If the Action of an agent be medsured By tts dmount and 1is
velocity conjointly ; and if, similarly, the Reagtion.of the resist-'
ance be measured by the veloctties of its several parts and their -
several amounts conjointly, whether these arise from friction,
cohesiop, weight, or acceleration ;—Action and Reaction, in all
combinations of machines, will be equal and opposite.
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| 69. Newtor® here points out that forces of resistance
against acceleration are to be reckoned as reactions equal and
opposite to the actions by which the acceleration is produced.
Thus, if we consider any one material point of a system, its
reaction against acceleration mast be equal and opposite to the
resultant of the forces which that point experiences, whether
by the actions of other parts of the system upon it, or by the
influence of matter not belonging to the system. In other
words, it must be in equilibrium with these forces. Hence
Newton’s view amounts to this, that all the forces of the
system, with the reactions against acceleration of the material
points composing it, form groups of equilibrating systems for
these points considered individually. Hence, by the prin-
ciple of superposition of forces in equilibrium, al{ the forces
acting on points of the system form, with the reactions against
acceleration, an equilibrating set of forces on the whole sys-
tem. This is the celebrated principle first explicitly stated,
and very usefully applied by I’Alembert in 1742, and still
known by his name.

| Newton in the sentence just quoted lays, in an admirably
distinct and compact manner, the foundations of the abstract
theory of Engrgy, which recent experimental discovery has
raised to the position of the grandest of known physical laws.
He points out, however, only its application to mechanics,
The actio agentis, as he defines it, which is evidently cquiva-
lent to the product of the effective component of the force, into
the velocity of the point on which it acts, is simply, in modern
English phraseology, the rate at which the agent works. The
subject for measurement here is precisely the same as that for
which Watt, a hundred years later, introduced the practical
unit of a * Horse-power,” or the rate at which an agent works
when overcoming 33,000 times the weight of a pound through
the space of a foot in a minute; that is, producing 550 foot-
pounds of work per second. The unit, however, which is most
generally convenient is that which Newton’s definition im-
plies, namely, the rate of doing work in which the unit of
energy is produced in the unit of time.

0. Looking at Newton’s words in this light, we sec by
§ 46 that they may be logically converted into the following
form i~ o
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“Work done on any system of bodies (in Newton's state-
ment, the parts of any machine) has its eq'uivalent in work
done against friction, molecular forces, or gravity, if there be
no ateeleration ; but if there be acceleration, part of the work
is expended in overcoming theresistance to acceleration, and
the additional kinetic energy developed is equivalent to the
work so spent.” .

| When part of the work is done against molecular forces,
as in bending a spring; or against gravity, as in raising a
weight ; the recoil of the spring, anda the fall of the weight,
arc capable, at any future time, of reproducing the work
originally cxpendec{ (§ 57). But in Newton’s day, and long
?f:ter‘wards, it was supposed that work was absolutely lost by
riction,

4 71, If a system of bodies, given either at rest or in mo-
tion, be influenced by no forces from without, the sum of the
kinctic encrgies of all its parts is augmented in any time by
an amount cqual to the whole work done in that time by the
mutual forces, which we may igfagine as actingebetween its
points. When the lines in which these forces act remain all
unchanged in length, the forces do no work, and the sum of
the kinetic encrgies of the whole system remdins constant.
If, on the other hand, one of these lines varies in length during
the motion, the mutual forces in it will do work, or will con-
sume work, according as the distance varies with or against
them.

1 72. Experiment has shewn that the mutual forces be-
tween the parts of any system of natural bodies always per-
form, or always consume, the same amount of work during
any motion whatever, by which the system can pass from one
particulaz configuration to another: so that each configuration
corresponds to a definite amount of kinetic energy. ‘[;For the
apparent violation of this by friction, impact, &e. sep § 78%]

ence no arrangement is possible, in which a gain of kinetic
energy can be obtained when the system ig restored to its
initial confizuration. '~ In other words, ke Perpetual Motion
1s tmpossible.” ‘

173.* The potential energy (§ 57) of such a system, in the
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configuration whigh it has at any instant, is the amount of
work that its mutuwal forces perform during the passage of the
system from any one chosen configuration to the configura-
tion at the time referred to. It is generally convenient %o to
fix the particular configurationschosen for the zero of reckon-
ing of potential energy, that the potential encrgy in every
other configuration practically considered shall be positive.
To put this in an analytical form, we have merely to
notice that by what has just been said, the value of
dr dy dz
s - 7 7 -
aﬂX&+I@+7@)&
is independent of the paths pursued from the initial to the
tinal positions, and therefore that

3 (Xdx + Ydy + Zdz)

is a complete differential. If, in accordance with what has
Jitst been said, this be called —dV, V'is the potential cuergy,
aud .

Also, by the second law of motion, if m be the mass of
a particle of the system whose co-ordinates are z, y, z, we
have
d*z

Mg = X,, &e.=&e.

drd*» dyd'y dzd%% .
s PR T AL T =S
and -{m G+ g d‘,)} dt=3(Xdz+ Ydy+ Z2)
: ——av.
The integral is .
13N+ V=0,

that is, the sum of the Finetic and potential encrgies s con-
stant. Thid is calletf'the Conservation of Energy.

In abstract dynamics, with which alone this treatise is con-
cerned, there is loss of energy by friction, impact, &e. This we
simply leave as loss, to be afterwards accounted for in Physics.
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78*. [The theory of energy cannot be cdmpleted until we
are able to examine the physical influences which accompan
loss of cnergy. We then see that in every case in whic
enerZy is lost by resistance, heat is generated; and we learn
from Joule’s investigations th4t the quantity of heat g0 gene-
rated is a perfectly definite equivalent for the energy lost.
Also that in no natural action®is there ever a development of
energy which cannot be accounted for by the disappegrance
of an equal amount elsewhere by means of some known phy-
sical agency. Thus we conclude, that if any limited portion
of the material universe could be perfectly isolated, so as to
be prevented from either giving energy to, or taking energy
from, matter external to it, the sum of its potential and kinetic
cnergies would be the same at all times. But it is only when
the inscrutably minute motions among small parts, possibly
the ultimate molecules of matter, which constitute light, heat,
and magnetism; and the intermolecular forces of chemical
affinity; are taken into account, along with the palpable
motions and measurable forces of which we become cognizant
by direct observation, that we ¢hn recognise the universally
conservative character of all natural dynamic action, and per-
ceive the bearing of the principle of reversibility on the whole
class of natural actions involving resistance, which seem to
violate it. 1t is not consistent with the object of the present
work to enter into details regarding transformations of energy.
But it has been considered advisable to introduce the very
brief sketch given above, not only in order that the student
may be aware, from the beginning of his reading, what an
intimate conuection exists between Dynamics and the modern
theories of Heat, Light, Electricity, &c.; but also that we may
be enabled to use such terms as “ potential energy,” &e. in-
stead of the unnatural “ Force-functions,” &c. which disfigure
most of the modern analytical treatises on our subject.]

T. D. 4
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CHAPTER IIL

RECTILINEAR MOTION.

74. THE simplest case of motion which we have to con-
sider is that of a particle in a straight line. This may be
due to a force acting at every instant in the dircction of
motion ; or the particle may be supposed to be constrained
to move in a straight line by its being enclosed in a straight
tube of indefinitely small bore. As already mentioned, § 64,
we shall in every case suppose the mass of the particle to be
unity. .

75. A particle moves in a straight line, under the action
of any forces, whose resultant is in that linc; to determine
the motion.

Let P be the position of the particle at any time ¢, f the
resultant acceleration acting always along 0F, O being a
fixed point inthe line of motion.

4

0 P
Let OP =z, then the equation of motion is
d'z
ae =t

"In this equation f may be given as a function of , of %’ ,

or of ¢, or of any two or-all three combined ; but in any case
the first and second integrals of the equation (if they can be
obtained) will give % and z in terms of ¢; that is, the position
and velocity of the particle at any instant will be known.
The only oné of these cases which we will now consider
is that in which £is given as a function of #; those in which

f1s a function of %—f, or of %‘—: and z, being reserved for the
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Chapter on Motion in a Resisting Mediunr: while those in
which f involves ¢ explicitly possess little interest, as they
cannot be procured except by special adaptations; and can
evefl then appear only in an incomplete statement of the cir-
cumstances of the particular arrangement. : ¢

The simplest supposition we can make is that £ is constant.’
[ ]

76. A particle, projected from a given point with a given
velocity, 18 acted on by a constant force in the line of its motion ;
to determine the position and velocity of the particle at any
time.

Let 4 be the initial position of the particle, P its position
at any time ¢, v its velocity at that time, and f the constant

A s
0 d P

acceleration of its velocity, Take any fixed pdint O in the
line of motion as origin, and let Od=a, OP=x. The

cquation of motion is .
2
S ereen (1),
Integrating once, we have
i‘ld; =v=ft+C,

(' being a constant to be determined by the initial circum-
stances of the motion. Suppose the particle projected from
A in the positive direction with velocity V, then when ¢=0,
v=V; hence C=V, and

-5 = = teceevescsesse 2 Ay

dt v V+ﬂ ‘ b ( ) *
Integrating again,

z=C"+ Vt+ft2—’.
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But when ¢t=9, x=a; hence C'=q, and
t’
x=a+1't+f§ ............... (3).

Equations (2) and (3) give the velocity and position of the
particle in terms of ¢; and the welocity may be determined in
terms of & by eliminating ¢ between them: but the same
result will be obtained more dircctly by multiplying (1) by

T and integrating. This gives the equation of encrgy

1 4].17\2 v "
2 (Jt} =g=CHse
If?
But when x=«, v=T"; hence C"=--2 ~ fa, and
<
P A
3= 9 +fe—a)iiiinanen. (4).

77. The most important case of the motion of a particle
under the action of a constant force in its line of motion is
that in which the force is gravity. Forthe weights of bodies
in the same latitude at small distances above the Earth's sur-
face may be considered constant, and therefore if we denote
the kinetic measure of the earth’s attraction by g, and con-
sider the particle to be projected vertically downwards; equa-
tions (2), (3), (4) of § 76 become

o 0
x=a+ Vt'-{- '}gt’ (A\
o P cesesessrasnees b
77 toE-a)] )

z being measured as before from a fixed point O
in the line of motion. As a particular instance P
suppose the particle to be dropped from rest at O.

At that instant 4 coincides with O, and a=0, |

V=o. a
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Hence v=gt............ veeseeninane oo (1),
=398 ceirieiiiiiinicniean 2),
'U’
==gL..u... eresesereieseninasinns (3)
The last of these equations may also be obtained from
A’z dv dvdx dv )

Al kb Y
L]
by a single integration.

78. As another particular instance, suppose the particle
to be projected vertically upwards. Here it must be re-
membered that if we measure  upwards from the point of
projection, the force tends to diminish « and the equation of
motivi is

dx
ar =9

In other respects the solution is the same. Taking,
therefore, @ =0 in equations (4) and changing the sign of g,
we obtain *

ST O R (1),
2

z= 12-%‘- ..................... @),

‘f 1’,’2

% =g B (6)

From equation (4) we see that the x:%locity continually
diminishes, and becomes zero when ¢=—; and from (6) that
the height corresponding to v;OI,/ or the greatest height to
which the particle will ascend, is T After this the velocity
becomes negative, or the particle begihs®to descend, and
(5) shews that it will return to the point of projection when

t=g; , a8 « then becomes 0; and the velocity with which
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it returns to that point is, by (6), equal to the velocity of
projection.

79. A particle descends a smooth inclined plane uhder
the action of gravity, the motion saking place in a vertical plane
perpendicular to the intersection of the inclined with any hori-
zontal plane ; to determine the metion.

_ Let P be the position of the particle at any time ¢ on the
inclined plane 04, OP=« its distance from a fixed point O

(/]
7
N v
Lf
a
A B

in the line of motion, and let @ be the inclination of 04 to
the horizontal line A4B. The only impressed force on the
particle is its weight ¢ which acts vertically downwards, and
this may be resolved into two, g sina along, and gcosa per-
pendicular to, OA4. Besides these there is the unknown
force R, or the reaction of the plane, which is perpendicular
to OA4: but neither this nor the component gcosa can affect
the motion along the plane. The equation of motion is
therefore

d’z

< TR =gsina,

the solution of which, as gsin a is constant, is included in
that of the progosition of § 77, and all the results for particles
moving vertically under the action of gravity will be,made
to apply to it by writing g sina for g. Thus, if the particle
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start from rest at O, we get from equations (1), (2); (8) of
§ 77 by this means,

vV=g8iNa.t.cciurernenn. ceene (1),
z=4gsina.t' cceirennnne. (2),
'D’

-§=gsin [ S RN veoenes (3).

A

80. Equation (3) proves an important property with
regard to the velocity acquired at any point of tEe Xescent.
For, draw I’N parallel to AB, and let it meet the vertical line
through O in V, then if v be the velocity at P, we have

'§=gsina.0P
=g.0N.

Comparing this with equation (38) of § 77, we see that
the velocity at P is the same as that which a particle wotld
acquire by falling freely from gyest through the vertical dis-
tance ON; in other words the velocity at any point, of a
particle sliding down a smooth inclined plane, is that due to
the vertical height through which it has descended; a par-
ticular case of the conservation of energy.

81. Again from (2) we derive immediately the following
curious and useful result.

The times of descent down oll chords drawn through the
kighest or lowest point of a vertical circle are equal.

Let AB be the vertical diameter of the circle, AC any
chord through 4 ; join BC; then if T be the time of descent
down A4 C, we have by equation (2) of § 79,

AC=13gT*cos BAC.
But AC=ABcos BAC; whence °
AB=3}gT",
or T'= ?—4—-]—},

g
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which, being inde(yendent of the position of the chord, gives
the same time of descent for all. 4

A

~—~——

N

. It may similarly be shewn that the time of descent down
all chords through B is the same.

To find the straight line of swiftest descent to a given curve
Jrom any point in the same vertical plane, all that 1s required
is to draw a circle having the given point as the uﬁper ex-
tremity of its vertical diameter, and the smallest which can
meet the curve. ence if BO be the curve, 4 the point,
draw AD vertical ; and, with center in AD, describt a circle
passing throngh A and touching BC. Let P be the point of
contact, then AP is the required line. For, if we take any
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other point, p, in BC, Ap cuts the circle in some point ¢, and
time down Ap > time down Ag, i.e. > time down AP.

If the given curve be not plane, a sphere must be described
passing through A, with center in AD, so as to touch the
curve; and the proof is precistly as before.

82. In §79 we have supposed the inclined plane to be
smooth, but the motion will still be uniformly accelerated
when the plane is rough. For since there is no motion per-
pendicular to OA (sce fig. § 79), we pust have

R=gcosa.

If u then be the coefficient of kinetic friction, which is
known by experiment to be independent of the velocity of the
particle, the retarding force of friction will be ul? or ug cos q,
and the equation of motion will become

2,

x .
g7 =9sina—pgcosa

the-sceond member still being constant, and the solution there-
fore similar to those we have already considered.

83. When a particle moves under the action. of a force in
1ts line of motion, the force varying directly as the distance
of the particle from a fixed point wi that line, to determine
the motion.

Let O be the fixed point, P the position of the particle at
any time ¢, v its velocity at that time, and let OP=a. Then

A P
(/] M

if w be the acceleration of a particle at a unit of distanee from
O, which is supposed known, the acceleration at P will be
ua, and if it be directed towards O will tend to.diminish z.
Therefore, the equation of motion is

d’z

a—t'f == U,

¢

d
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Multiplying this equation by %—;, and integrating, we
obtain )

1 d»m '_ [L M e
3 (75) SE{V L D @),
the equation of energy. This may be written
dt 1 1

— T - ————

the negative sign being employed if we suppose the motion to
be towards O, and A being the constant introduced in the in-
tegration. Integrating again

=cos! X..
N ut + B = cos o

orz= A4 cos {Nut+ DB} ........... (3),

the complete integral of (1); involving two arbitrary constants
A and B, the values of which are to be determined from the
initial distance, and the velocity of projection. Thus from (3),

dx

=v=—yudsin [ypt+ B} o (4).

84. Suppose the particle to be projected from 4 in the
positive direction with the velocity V, and let 04 = a; then
when ¢=0, we have x=a, v="V; and therefore from (3)

and (4) ’

a= A4 cos B,

V=—suAdsinB,
which determine 4 and B, and then (3) and (4) give the
position and velacity of the particle at any instant. The

velocity in terms of z is obtained directly from (2), for when
x = a, we have v=V; whence V*'=p(4*—a%), and

V=V +p(a’~2").
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85. Equations (3) and (4) give periodical values of = and
v, such that all the circumstances of motion are the same at

the thme t+—?lr as at the time ¢, They also shew that the

©w
velocity becomes zero when s/ut+ B =0, and that the cor-
responding value of z is the greatest possible. Hence the par-
ticle will move in the positive® direction to a distance 4 from
0, and then begin to return. Also, since when y/ut+ B =,
we have v =0 again, and z=— 4, it will pass through O,
move to an equal distance on the other side, and so on: the
time of a complete oscillation, that is, the time from its leav-
ing any point until it passes through it again in the same

direction, being g'r_r; This result is remarkable, as it shews

that the time of oscillation is independent of the velocity and
distance of projection, and depends solely on the intensity of
the force.

The above proposition includes the motion of a particle
within a homogeneous sphere of ardinary matter, in a straight
bore to the center. Ior the attrhction of such a’sphere on a
particle within it is proportional to the distance from the
center, and the equation of motion is therefore,the same as
that which we have just considered.

Suppose O itself to be in motion in the line 04, and let
£ denote its position at time ¢. The equation of motion is

d’x
. €xr —
=k E=E),

and is Integrable when £ is given in terms of &. This may be
at once changed into the equation of relative motion

T8 pe-0-25,

which is the same as when the point O is’ at rest if g-:—‘,f =0,

i.e. if the velocity of O be constant. If O tndve with constant ;
acceleration, a, the oscillatory motion will be the same as be-;

fore, but the mean position will be :—: behind O.
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86. 1If the -force in § 83 be supposed repulsive or di-
rected always from the center instead of towards it, the equa-
tion of motion becomes

dx " °
de- * P, ‘

the integral of which is known,to be
x=AeV™ + BV,

and the motion i8 not oscillatory. If, when ¢t=0, z= D,

v=— BVp, the particle constantly approaches the centre but
never reaches it.

87. It is to be remarked that we cannot always apply
the same equation of motion to the negative and positive sides
of the origin as we have done in the case of § 83. Our being
able to do so arises from the fact that the expression, ux, for
the force changes sign with «; for by looking at the figure
it will be scen that when z is negative the forcc tends to
increase z algebraically, and the equation ought properly to
be written . 7 ‘.

x
aE=TH (—a).

In general, when the force is proportional to the nt" power
of the distance, the equations of motion for the positive and
negative sides of the origin are respectively

d'z "
pranled

d*z !
and 7 St (— )"
The only cases, therefore, in which the same equation of
motion will apply to both sides of the origin, occur when = is
2m + 1 , .
of the form 1) where m, m' are any whole numbers in-

cluding zero, since it is only in these cases that we have
— (""' w). = w. .

88. In all other cases the investigation of the motion will
generally consist of two parts, one for each side of the origin;
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2m+1 . .

2——-————m,+1 1t 18
necesgary to consider these parts separately, because the form
of the integral is not sufficiently general to include both.
This is*when m = 0 and m’ =—"1, for in that casc the equaiion
of motion becomes

and in one case even when #n is of the form

d'z Ko

1z

Multiplying this by 2 %:-‘ and intedrating we have

(d'pf: C—2u log z,

dt
which becomes impossible when « is negative. But it is cvi-
dent that we may then write the integral v e
dx\*
() = C—2ulog (-a),

which is, of course, the proper form for the negative side of the
origin. These equations cannot generally be integrated far-
ther, but we will shew towards the end of the Chapter how
the time of reaching the origin may be determined.

89. A particle, constrained to move in a straight line, s
acted on by a force always directed to a point outside the line,
and varying directly as the distance of the particle from that
point, to determine the motion.

The constraint here contemplated may be conceived by
considering the particle either as an indefinitely small ring
sliding on a smooth rod, or as a material particle sliding in a
smooth straight tube of indefinitely small bore.

Let AB be the straight line, P the position of the particle
at any time, O the point to which the force on P is slways
directed. Draw Ol\? perpendicular to 4B, and Jet NP=z;
then if OP=r, and if u as formerly be the acceleration at a
unit of distance, the acceleration of P along PO is ur. This
may be resolved into two, one along and the other perpen-
dicular to 4B, of which the latter has no effect on the motion
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of the particle. - The equation of motion is, therefore, since
the acceleration is ur cos OPN or uPN,

d'z

=TS

the same as in § 83. The motion of the particle will there-
fore be oscillatory about .V, the time of a complete oscillation

4 N P B
T /

V2

/]

. 2 . .
being “T  and all the circumstances of motion the same

as for a frep particle moving in AB under the action of an
cqual center of force placed at N.

90. A particle moves in a straight line under the action
of a force always directed to a point in that line and varying
tnversely as the square of the distance from that point; to de-
termine the motion.

Let O be the fixed point, P the position of the particle at

.
~
TR

P A

et
N

(/]

the time ¢, OP=; the equation of motion is

d’.c____!.&

de =7
p being, as befére; the acceleration at unit distance from O.

, Mhultiplying by %’3: and integrating, we get
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1(de\' o
(dt) =043
.the gquation of energy.

Suppose the particle to start from rest at a point 4 dis-
tant ¢ from O, then when x =a, v=0;

[ J
hence, C=- "-5 , and

1 (‘Zd}’)“___%’___# G;_é) erererenrenns (1),

which gives the velocity of the particle at any distance
from the origin. Again from (1)

dt ot ax

dzx ‘\/2—-' a—

?

the negative sign being taken, since in the motion towards @,
z diminishes as ¢ incrcases. This gives

d__ Je . =
de ™ 2u " N (ax— )

=V 508 vimm S v

Integrating, we have

t=&/2‘:~;.{«/(aw—x') 2vers 2a +0”}.

Now, when ¢ =0, = a, and therefore C'= ? .

2w, n @ - 22 + T
Hence. \/-Zz_t_"/(ax—x —g Vet —+4 -,
which is the relation between z and ¢
9l Puttmg =0, we find that the time of arriving at
Ois :2—0«/ 2’ and (1) shews that the velocity at O is in-
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finite. On this account we are precluded from applying our
formule to determine the motion after arriving at O; but it is
to be observed that, although at any point very near to 0
there is a very great force tending towards O, at the pofut O
itself there is no force at all : -and .therefore the particle, ap-
proaching the center of force with an indefinitely great velocity,
must pass through it. Also, everything being the same at
equal distances on either side of the center, we see that the
motion must be checked as rapidly as it was gencrated, and
therefore the particle will proceed to a distance on the other
side of S equal to that from which it started. The motion
will then continue oscillatory.

92. The above case of motion includes that of a body falling
from a great height above the Earth’s surface. For a sphere
attracts an external particle with a force varying inverscly as
the squate of the distance of the particle from its center,
and therefore if z be the distance of a body from the Earth’s
center, B the Earth’s radius, and ¢ the kinctic measurc of
gravity on unit of mass at the Karth’s surface, the equation
of motion will be

d*x e
&=

the same equation as before, if we write u for g2%. The re-
sults just obtained will therefore aﬁply to this case. Thus if
we wish to find the velocity which a body would acquire in
falling to the Karth’s surface from a height 2 above it, we
have from (1), putting u =gR?

v 1 1
5 =9F (- 757)
and therefore if V be the velocity when z =R, i.e. the re-
. quired velocity, .

E+h'

If % be small compared with B, this may be written
1 2
2 Vi=gh (1 -3 +é&e)

t] p—
§V’—-gR
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from which we sec the amount of error introduced by the
ordinary formula, § 77, :

% V*=gh.

If the fall be fr(;m an infinite distance, Z=0, and we
have ¢

% Vi=gR.

A}

98. A particle 7s constrained to move in a straight line, and
18 acted on l{; a force, always directed to a point outside that line,
and varying inversely as the square of the distance from that
point; to determine the motion.

Let AB be the straight line, P the position of the particle
at any time, O the point to which the force is always directed,

L)
= 3

4 N
|
!
|
i

¥
/
/

/
0

w the acceleration at unit distance. Draw ON perpendicular
to AB and let ON=0b, NP=x; then the acceleration of P
dlong PO is -P%;, and, as in § 89, the only part of this
which produces motion is the resolved part along PN. There-
fore the equation of motion is

>

dz__ _»_
TE= " O OPN

[ 5]

T. D.
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Muhiplying by 2 %: and integrating, we have

. i]'f x= PO ,_2'“___

dt (w’ + 6”)4 ’
where C is to be determined in the usual manner.

94. This equation cannot generally be integrated farther,
but in this and every similar case the integration can be per-
formed if we suppose @ always very small. Suppose the
particle to have been at rest at N, and to have beeu slightly
displaced from this position of equilibrium, the displacement

2
being so small that throughout the motion %c; may be neglected

in comparison with %’ ‘We have from (1),

)

- Z &)

==

=L nearly ;

bs
d’xz  px
or s 3 7= 0,
the same form of equation of motion as that of §'83. The
motion will therefore be oscillatory, the time of cach small
8

oscillation being 27 i

.

95. A4 particle moves in a strazé]ht line under the action of
a force varying inversely as the n* power of the distance of
the particle from a fixed point in that line; to determine the

motion. (‘5/2}3 FE to i % o
Megisuring 2-ag before, the equation of motion will be
- d'z w

a¢ o

RN
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Multiplying by 2 Z—; and integrating, we have

d 2
7) =v= 0t

n—1&

Suppose the particle to stagt from rest at a distance @ from
the fixed poiut; then when x=a, v=0; therefore

2
O==u=i o=
dr\' . o 1 1
and (ZJZ) —”—m(ﬁ—;ﬁ) .............. (1.

96. This cquation cannot generally be integrateg fyrther,
but if we suppose the particle to have started from a point at
an infinite distance, we have a = w0, and

2u »01
v’—"_lf' L1

Tn-1g
where v i3 the velocity from infinity, at the distahce 2.
We have therefore in this particular case
ds_ 31‘.)5 L
dt (n -1 =Y
z
or %_ (n____— l)éwi‘-'g
dz \ 2u :

Integrating this between the limits x=a, =g, we have
or the time of moving from z=a to =4, ‘

97, If we expand (1) into a series, we obtain
5—2
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dt n—1\} = 2"\
=—(—-§,—l’-—- & (l_au-l
n—1\8 =2 1 2™ 1.8 2™
=) = (yamta s+ ).

Integrating between the limits z=a, =0, we get for
the time of falling to the center from a distance a the

expression
n—T1\_ =, 1 1 1
(2;—) 2a (n+1+2 371—1+&c')’

n+1
which therefore for different distances varies as a *.

Or, better, thus. Put %’:z, and we have, for the time
of fall to the center from rest at distance a, the expression

=1
n—l)éa-";“" z'ds 1 &";‘F n+1 1}
(2,; .’0(1_2«—1)4— un—1)) * 2(n—-1)" 2)°

where F is “ Euler’s first integral.”

98. The above solution fails when n =1, but the time of
falling to the center may be found as follows. The equation
for this case, as given in § 88, is

dmi
(Zi?) =C-2ulogx
‘ =2p.logg,

since when z=a, %—f =0. Hence,

¢

N dt 1

2#@ ,\/logt—l’
x
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the negative sign being taken since = diminishes as ¢ increases.
Put 7" for the requu-ed time, then

VanT= -f ,\/lob 2

To transform the integral, put \/ log§=y. Tixen we

have

dx .
z=ae" ¥, and dy = — 2ae~Vy,
and the limits of  are 0 and . Hence
VEE.T=2] 4y,
[}

which (Gregory’s Examples, p. 466)

=32a. %'-\/'n'.
™
Hence T=a 5

and is therefore directly as the space traversed.

99. A particle is constrained to move in a straight line,
and s acted on by a force directed to a point not in that line,
and expressed by a function ¢ (r) of the distance ; to determine
the time of a small vscillation.

Employing the same notation as in § 93, the acceleration
along PO being ¢ (r), its component along PN is ¢ (») ;’;
therefore the equation of motion is

d* x
7?="¢(");-

But r=«/(b’+w’)=b«/(1+Q

= ) approximately.
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&z $0) _

Hence Ft 2 0,

and therefore by § 85, the time of a small oscillation is
) b
2 T /I\ ®
/50

EXAMPLES.

(1) A body 1s projected vertically upwards with a velocity
which will carry it to a height 2¢ feet; shew that after three
seconds it will be descending with a velocity g.

(2) Find the position of a point on the circumference of
a vertical circle, in order that the time of rectilinear descent
from it to the center may be the same as the time of descent
to the Jowest point.

(8) The straight line down which a particle will slide in
the shortest time from a given point to a given circle in the
same vertical plang, is the line joining the point to the upper
or lower extremity of the vertical diameter, according as the
point is within or without the circle.

(4) Find the locus of all points from which the time of
rectilinear descent to each of two given points is the same.
Shew also that in the particular case in which the given
points are in the same vertical, the locus is formed by the
revolution of a rectangular hyperbola.

(5) Find the line of quickest descent from the focus to
a parabola whose axis is vertical and vertex upwards, and
shew that its length is equal to that of the latus rectum.

(6) Find the straight line of quickest descent from the
focus of a parabola to the curve when the axis is horizontal.

(7) The locus of all points in the same vertical plane for
which the least time of sliding down an inclined plgne to
4 circle is constant is another circle, '
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+"(8) Two bodies fall in the same time from two given

oints in space in the same vertical down two straizht lines

rawn to any point of a surface, shew that the surface is an
equitateral hyperboloid of revolution, having the given points
as vertices.

v (9) Find the form of a curve in a vertical plane, such
that if heavy particles be siffiultancously let fall from ecach
point of it so as to slide frecly along the normal at that'point,
they may all reach a given horizontal straight line at the
same instant. .

(10) A semicycloid is placed with its axis vertical and
vertex downwards, and from different points in it a number of
particles are let fall at the same instant, each moving down
the tangent at the point from which it sets out; prove that
they will reach the involute (which passes through the vertex)
all*at the same instant. S

= (11) A particle moves in a straight line under the actien
. . 3\ th .
of a forcc varying inversely as the Z) power ofsthe distance,

shew that the velocity acquired by falling from an infinite
distance to a distance a from the center is equal to the velocity
which would be acquired in moving from rest at'a distance «

to a distance g.

—+ (12) A particle moves in a straight line from a distance a
towards a center of force, the force varying inversely as the
cube of the distance ; shew that the whole time of descent

al

=’
—i- (18) A particle is {)laced at a given point between two
centers of force of equal intensity attracting directly as the
distance; to determine the motion and the time of an oscil-
lation.

Let 2a be the distance between the centers, = the distance
of the particle at any time from the middle point between
them, then the equation of motion is
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dz

Za=—k@+a)+ple-2)
=— 2ur. .
Hence, the time of an oscillation = ;/Z;;) .

~ “(14) If a particle begin toemove directly towards a fixed
center which repels with a force = u (distance), and with an
initial velocity = ! (initial distance), prove that it will con-
tinually approach the fixed center, but never attain to it.

—(15) A particle acted upon by two centers of force, each
attracting with an intensity varying inverscly as the square of
the distance, is projected from a given point between them,
to find the velocity of projection that t}nc particle may just
arrive at the ncutral point of attraction and remain at rest
there..

If u, ' be the absolute forces of the centers; a,, «, the
distances of the point of projection from them; aud V' the
initial velocity ; we have . :

]72 = (‘\/"ao__ ‘\//"’Ial)z
al."ﬂ &al + u2) '

". (16) Supposing the Earth a homogencous spheroid of
equilibrium, the time of descent of a body let fall from any
point P> on the surface down a hole bored to the center C,
varies as CF, and the velocity at the center is constant.

- -(17) A material particle placed at a center of attraction
varying as the distance, is urged from rest by a constant force
which acts for one-sixth of the time of a complete oscillation
about the center, ceases for the same period, and then acts as
before, shew that the particle will then be retained at rest,
and that the spaces moved through in the two periods are
equal.

~~v (18) A body moves from rest at a distance a towards
a center of force, the force varying inversely as the distance:
shew that the time of describing the space between BSa and

gra will be a maximum if B =—o.
3T .
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(19) If the time of a body’s descent in a straight line
towards a given center of force vary inversely as the s?uare
of the distance fallen through, determine the law of the
force.

(20) Assuming the velocity of a body falling to a center

a —

. L . o« e, :
of force to be as d , where a is the initial and w the

variable distance from the center, find the law of the force. *~

“(21) Find the time of falling to the center when the force
« (dist.) 3,

—(22) Shew that the time of descent, to a center of force
« (dist.)™, through the first half of the initial distance, is to
that through the last halfas # +2 : #—2.

= (23) A particle descends to a center of force oc (dist.)".
Find 2 so that the velocity acquired from infinity to distanee
«t, shall be cqual to that acquired from distance a to distance .
la, from the center. '

L}
w8 (24) A particle is placed at the extremity of the axis of a
thin attracting cylinder of infinite length and of radius a,
shew that its vcfocity after describing a space z is propor-,
tional to PR S

«/log ____________w-}-\/(:’+a’).

(25) A particle falls to an infinite homogeneous solid
bounded by a planc face, find the time of descent.

(26) Lvery point of a fine uniform ring repels with a-
force o (dist.)™, find the time of a small oscillation in its
plane, about the center. ¢ WJ) . ‘ -

™ (27) Shew that a body cannot move so- that the ve- .
locity shall vary as the space from the®beginning of the'
motion. And if the velocity vary as the cube root of that
space, determine the force, and the time of describing a given
space. *
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*(28) Shew that the time of quickest descent down a focal
chord of a parabola whose axis is vertical is
s
g ?
where [ is the latus rectum.

-~ (29) An ellipse is suspem{ed with its major axis vertical,
find the diameter down which a particle will fall in the least
time, and the limiting value of the excentricity that this may
not be the axis major itself,

(80) Particles slide down chords from a point O to a curved
surface, under the action of a plane whose attraction is as the
distance, and they reach the surface in the same time; shew
that the surface is gencrated by the revolution (about a line
whose length is a through O perpendicular to the planc) of
the curvé whose polar equation about O is

- pcos @ =a {1 —cos(kcosb).

(31) 1If the particles cominence their motion at the surface,
and reach O after a given time, the cquation to the generating
curve is

pcos 0 =a {sec (k cos f) —1].

— (32) Prove that the times of falling through a given space
AC towards a center of force S, under the action of two forces,
one of which varies as the distance, and the other is constant
and equal to the original value of the first, are as the arc
(whose versed sine is AC) to the chord, in a circle whose
radius is A48

(33)- The earth being supposed a thin uniform spherical
shell, in the surface of which a circular aperture of given radius
is made, if a particle be dropped from the center of the aper-
ture, determine its velocity at any point of the descent.

(34) If a particle fall down a radius of a circle under the
action of a force o (D)® in the center, and ascend the opposite
radius under the action of the same force supposed repulsive,
shew that it will acquire a velocity which is a geometric mean
between radius, and the force at the circumference.
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™ (35) If a particle fall to a center of force oc (D); deter-
mine the constant force which would produce the effect in the

same time, and compare the final velocities. i

—-(36) Tind the equation toethe curve down each of whose
tangents a particle will slide to the horizontal axis in a given
time.

(37) A sphere is composed of an infinite number of free
particles, equally distributed, which gravitate to each other
without interfering ; supposing the patticles to have no initial
velocity, prove that the mean density about a given particle
will vary inversely as the cube of its distance from the center.



(76 ) '

CHAPTER 1V.
PARABOLIG MOTION.

100. Ix this chapter we intend to treat principally of the
motion of a free partigle which is subject to the action of
torces whose resultant is parallel to a given fixed line.

The simplest case of course will be when that resultant is
constant. The problem then becomes the determination of
the motion of a projectile in vacuo, since the attraction of the
rarth may be considered within moderate limits as constant
and perallel to a fixed line. This we will now consider.

. 101. A free particle moves under the action of a vertical
force whose magnitude is constant ; to determine the form of the
path, and the circumstances Jf its description.

Taking the axis of x horizontal and in the vertical plane
and sense of projection, and that of y vertically upwards, it
is evident that the particle will continue to move in the plane
of xy, as it is projected in it, and is subject to no force which
would tend to withdraw it from that plane.

The equations of motion then are

d*z d*y
=% @ =T
if g be the kinetic measure of the force.

Suppose that the point from which the particle is projected
is taken as origin, that the velocity of projection is ¥V, and
that the direction of projection makes an angle a with the
axis of .

The first and second integrals of the above equations will
thenbe - .

de d, .
= V cos a, —‘%= Veina—gt....coeunnnn (1)e

| @=Vcosa.t, y="Vsina.t =g ....... (2).
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These equations give the co-ordinates of the particle and
its velocity parallel to cither axis for any assumed value of
the time.

Pliminating ¢ between equations (2) we obtain the equa-
tion to the trajectory, viz.

y=zxtan “‘WZ’EE;’ U (8),

which shews that the particle will move in a parabola whose
axis is vertical, and vertex upwards.

102. Equation (3) may be written

. _2VP%sinacosa _ 2T%cos’a
g g 7
or (x _ V?sinacos a)’___ _2V%cos’a ( _ Vsin? a) ‘
g g 29

By comparing this with the equation to a parabola, we

find for the co-ordinates ,, y, ofsthe vertex

V?sinacosa V2sin® o
Ly =", Yo=—7%—"
g g

Hence we obtain the equation to the directrix

’ V?sin*a  Vicos’a T?*
y=y,+ 1 (parameter) = 59 + 29 2

Now if v be the velocity of the particle at any point of
its path,

V= (%)’+ (%Z)” or by (1),
= (V*cos’a) + (V*sin*a— 2Vgsina. ¢+ ¢*t)-
=V*—2¢(Vsina.t—3% gt
= V*-2gy, by (2).
To .acquire this velocity-in falling, from rest, the par-e
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'
ticle must have fallen, § 77, through a height %, or

rs
= —¥, i.e. through the distance from the directrix.
=g
103. 7o find the time of ﬂ.z:qkt along a horizontal plane.
Put y=0 in eguation (8). The corresponding values
of & are 0 and g—‘—q-—sinacos a. But the horizontal velocity

2T sin a .
; and, ceteris

is Vcosa. Hence the time of flight is

paribus, varies as the sine of the inclination to the horizon of
the direction of projection.

104. 7o find the time of flight along an tnclined plane
passing throwgh the point of projection. .

Let its intersection with the{_‘pla'i]c,of projection make an
avgle B with the horizon; it is evident that we have ouly to
eliminate y between (3) and y =xtan 8.

This gives for the absciSsa of the point where the pro-
jectile meets the plane,

2
z,= 2—;— (sin a cos @ — tan B cos’ a)

_2V*cos asin (a—f)
- gcosB '
Hence time of flight
_ @ _2Vsin(a—p)
*“Vesa g cosf

105. 70 find the direction of projection whick gives the
greatest range on a given plane.

2
The range on the horizontal plane is L sin 2a. For a
given value of ¥ this will be greatest when

2a=7—r, g‘r a=2,
2 4
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That on the inclined plane is —>_, or
cos B
2
gco‘—‘—g,-BCOS asm (a-,B). )
That this may be a maximum for a given valuc of 1" we

must equate to zero its differential coefficient with respect to
a, which gives the equation '

cvs ¢ cos (4 — B) —sinasin (a—B) =0,
or cos (2a — 8) =0;

whence a=% (g+ﬁ) .

Ience the direction of projection required for the greatest
range makes with the vertical an angle

T 1 /(m

5-a=3(3-8),

that is, it bisects the angle Letwebn the vertical and the plane
e which the range is measured.

106. 7o find the elevation necessary to the p(;rtz'cle’s pass-
ing through a given point.

Suppose the point in the axis of & and distant @ from the
origin.  Then we must have

e
— 8in 2a =a.
g

Let a' be the smallest positive angle whose sine is %.f’; .

. ! —a'
The admissible values of a are %and 3-21 ; 8o that we

see there are two directions in which a particle may be pro-
jected so as to reach the given point, and that. these are

equally inclined to the direction of, projection ( =7£) which
gives the greatest range,
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Suppose the given point in the plane which makes an
angle 8 with the horizon. Then ifpits abscissa be a, we

must have
]

gcosfB

. If &, a” be the two values of & which satisfy this equa-
tion, we must have ‘

cos a sin (¢ — B) = a.

cos o’ sin (&' — B) =cos o sin (@ — B) ;

and therefore 2" — 8 = g -,

w_ 1 1 ,
or a'—§(1;+B)=-2-(17;+.3)—a.

Hence, as before, the two directions of projection, which
enable the particle to strike a point in a given plane through
the point of projection, are equally inclined to the direction of
projection required for the greatest range along that plane.

107. Tc find the envelop of all the trajectories correspond-
ing to different values of a.
Differentiating equation (3) with respect to a, we get

gr sina _

sec’a — g —5—=
V? cos’a

The elimination of a between (3) and (4) gives us as the
equation to the required envelop

EA
Y=g v
2
or w’=-—g—l‘7~( —;K- .
g 29

This represents a parabola, whose axis is vertical, whose
focus is the point of projection, and whose vertex is in the
common directrix of the trajectories. o
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It will easily be seen from what has gone before that there
are two directions of projection, 8o that the particle may pass
through any given point within this parabofn, only one for a
poiné in it ; and of course there is no possibility of its reaching
(with the given velocity V) ang point without this parahola,

108. By a somewhat simpler method of considering the
problem we might easily have arrived at some of the more
obvious properties of the trajectory, thus. '

Take the direction of projection as the axis of 2, and the’
vertical downwards from the point of projection as that of .
By the second law of motion we may consider the velocity
due to projection to be maintained constant = ¥ parallel to
the axis of , while we have in addition parallel to the axis
of y the portion due to gravity as investigated in § 77.

Hence =11t

y=1ig t’} at any time,

4 ]
and thercfore 2’ = 2 s J
g Y

the equation to a parabola referred to a diameter and the
tangent at its vertex. The distance of the origin from the
2

directrix, being 3 of the coefficient of yz, is ?.I; , and the

velocity due to a fall through that space is as before

,\/(2‘9.1};)= 7.

109. Many properties of parabolic motion are more easily
obtained by geometry than by analysis. We proceed to give
a few cxamples. )

Thus suppose O in thefigure to be the point of projection,
MN the directrix common to the trajectories of: all particles
projected from O in the plane of the figure with a E:iven. velo-
city, and suppose it be required to determine the direction of
projection for the g}xl‘eatest range along the plane OS. -Since
O 1s a point in each trajectory and MN the common directrix, -

T. D, 6
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the foci of all possible trajectories lie in the circle MF” FF"”
described with center O and touching M in M.

Take any point in this circle as F", then the path whose
focus is F” will intersect 08 again in a point P’ such that if
P'N" be drawn perpendicular to MN, FFP' = P'N'. Now in
order that P' may be as far as possible from 0, at P suppose,
it is evident (ex absurdo) tha¥ the focus must be taken at the

int F' where OS meets the circle. But the tangent at O
isects the angle between the diameter A0 and the focal
distance OF. Hence the direction of projection for the
greatest range on an inclined plane bisects the angle between
the plane and the vertical.

Again, if with center P’ and radius P'F" an arc be de-
scribed cutting F'FF" in F", it is evident that the trajectories

R

T

whose foci' are 7%, F", will intersect OS in the same point P
Hence, since the directions of projection for these cases will
bisect the angles M OF', MOF" respectively, we see that to
strike @ given object there are in general two direttions of
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projection, and that these are equally inclined to the .di-
rection which gives the greatest range on the plane passing
through the object and the point of projection.

Again, for the envelop of all the trajectories. Tt is evi-
dent that P must be a point*in the enve{o ; since 1t is the
ultimate position of P’, when the two parabolas whieh inter-
sect in that point have beconte indefinitely nearly coincident.
Draw PN perpendicular to AN, and produce it hll NQ = FO.
Draw QR parallel to N, and cutting OM in B. RQ is a
fixed line since RM = M0, and as OF = PQ we see that the
envelop is.a parabola whose focus is O and directrix £ Q.

It ma{ be seen at once that it touches in P the only tra-

jectory which can }))ass through that point. Since the tangent
of either curve at P bisects the angle OPQ or FPN.

110. Ex. It is required to throw a shell with given
velocity so as to strike at right angles an inclined plane through
the point of projection,

The letters being the samesas before, join ST cutting

x N &

MF'F" in F". Draw F"P'N' perpendicular to M8 cutting OS
in P'. Find F" so that PF' =PF'=PN'. P isa point in
the trdjectory whose focus is F'. Hence the tanggxi ;t P
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bisects F'P'N'. But OF bisects I"P'F". Tlence the trajec-
tory at P’ is perpendicular to OS.

Also as F" is the focus of the other path by which the
point P’ might be reached, 7 will be the vertex of that path,
and therefore the particle will be moving horizontally when
it reaches P".

111. Even if the planc along which the range is mea-
sured do not pass through the point of projection, a somewhat
similar construction will enable us to find the direction of
projection for the maximum range. Thus,

Let it be required to find the direction of projection from

A rp
—=_

(4]

5 o I

M e N

¢ with velocity due to 40 in order that the range on a hori-
zontal line 2LV may be a maximum.

Suppose ' the point where the projectile falls. Join
QF', F'O, F" being the focus of the path. Then if Q'P’ be
vertical and meet the horizontal line through 4 in P, we
have F'Q'= @ P. This is true of each of the {:aths, and
Q'P is constant. The farthest point @ which can be reached
will therefore be determined by inflecting O to MN, where
00Q = 04 + PQ, and therefore if 40 =a, AM =25, the cosine

of double the requisite angle of elevation will be (ZE—Z) .

'Should MN be an inclined plane, we must evidently draw
a line QO, and the corresponding)vertical QP; such that if
: @O0 meet the circle in F, Q= QP. LS
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This resolves itself into the well-known geometrical
problem of describing a circle whose center is in a given line,
and which touches a given circle, and a given straight line.

4 LI

L
b/

Of the two solutions, which this problem admits of, one be-
longs to AL, the other to MN produced to the other side of
the point of projection.

112. Terhaps, however, the most satisfactory method of
solving all such problems about the maximum range, is to
describe the parabola which envelops all the trajectories.
The point where this cuts the plane, &c. on which the range
is estimated, gives the maximum value of the range, and it is
then easy from known properties of the envelop to construct
for the required path. ‘ -

113. Let P be ‘any point in the trajectory, § its focus,
BN, AL, the dircetrix, and the tangent at the vertex.

N B

L 4
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* Then (velocity at P)*=2g PN=2g SP

= (by a property of the parabola) —::’1 SL}= 727;%1- SN,

Hence velocity at Poc SN; and, since by the figure
gﬁf LN, PL is the tangent at P and is perpendicular to

Hence as SN is perpendicular to the direction of motion
at P, proportional to the velocity at P, and drawn from a fixed
point §, the locus of IV is the Hodograph (§ 18) turned through
a right angle about 8. As this is a horizontal straight line, |
the Hodograph is a vertical line.

This result will be found of considerable utility in
solving various problems in the common vacuum theory of
projectiles. It is evideni that SB, BN represent the hori-
zontal and vertical velocities at P, in the same scale in which
SV represents the entire vélocity at that ).oint,

<114, When a particle moves subject to the action of two
centers of force where the law is the di.ect distance and the
absolute interisities the same, but one attractive and the other
repulsive, its motion will be the same as that of a pro-
Jecttle in vacuo.

For the whole force on the particle resolved perpendicular
to the line joining the centers is evidently zero, and that
Earallel to this line is equal to that which would be exerted

ly either of the centers on a particle placed at the other; and
always tends in the direction lparallcl to that from the repelling,
to the attracting, center. It corresponds therefore exactly
to the force of gravity, within moderate elevations above the
earth’s surface. o

115. Again if a particle moves on a plane inclined to the
horizon at an angle 8, the whole force on 1t is, by § 79, g sin 8
" parallel to the line of greatest slope on the plane, and there-
gore the trajectory will still be a parabola, whose dimensions
will depend upon 0: '

Ex. A particle is projected from a given point with o
given velocity, and moves on an inclined plane; find the locus
of the directrices of its puth for different inclinatigus of the
ﬂlaﬂeo . N ' )
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It will be easily seen that when a particle moves on an
inclined plane, the velocity at any pomnt is equal to that
which would have been acquired by sliding from the directrix;
that i3 (§ 80) equal to the velocity due to the fall from & hori-
zontal plane through the directix. Now the velocity is given
constant, hence the locus of the directrices is a horizontal
plane. . ‘

% A particle moves sulject to the action of a force
always perpendicular to a given plane, and a function of
the distance of the particle from the plane: to determine the
motion. '

It is evident that the motion will be confined entirely to
a planc through the direction of projection perpendicular to the
attracting plane. Let us take the former as the plane of ay,
the axis of « lying in tle attracting plane. Let ¢'(1)) be the
acceleration at distance 72, where @' is the derived function
of ¢.  Then she equations of motion are
M . (.Z’Il' d2 L3 ]
a0 (Zg ==¢' ) .

Suppose the particle projected from a point (a, 8), in a
direction making an angle a with the axis of «, and with a
velocity V.

Maultiplying by 2 fg , 2 % , and integrating we get
2
(%) = const. = V*cos’a,

(&) =029 ) =7*sinta+26 () 26 )

" " Hence v*=V?*+2 {¢ (b)) — ¢ (y)} and therefore depends only

on the distance from the attracting plane, a particular case of

conscrvation of energy. A L
To find the differential equation to the path, we have

dy ,

dt _dy_w[V'sin'a+2(¢@)—¢ @)l

dz do Veosa ?

% :
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an équaﬁon integrable for particular forms only of the function

¢. An interesting case is that in which the attraction of the
plane is inversely as the cube of the distance,

or ¢'(y)=f;, and therefore ¢(3/)=—1};,',.

The differential equation becomes

' ‘ %=¢{(V’sin’a—;)+$,}.

Veosa

There will be three cases according as ( 172 sin’ a — Z’,) is

positive, zero or negative.

1st: <Let it be positive and = ;"ﬁ, ,
1

‘i’/__ Nu 2 .
ydx—m\/(ag +.7/’),

v
whence /(e +y%) = 75,—5%5 @+ C),

N

the equation of a hyperbola whose transverse axis is that
of a.

2nd. Let V*sin‘a —-g—; =0,

dy_ N
Ydz~ Veosa’
s 20
and ' = o (@ + 0),

“ a parabola whose axis is that of x.

8rd. Let V*sin*a— %1, be negative, and =— -5’-* ,

1

.

dy __ e 2__,9
.’/dm—m'\/(a; 7",
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or W(at=5) = VA @+ 0),

Va,cosa
the oquation of an ellipse of which the axis of z is an axis.

‘We might have obtained tlie above results by integrating
separately the two equations of motion, and then eliminating
t between them. . )

If the force be re(fulsive, instead of attractive, it is easy
to see, by a slight modification of the above process, that there
is only onc case, and that the curve described is a hyperbola
whose conjugate axis lies in the intersection of the plane of

projection and the attracting plane.

From this we see that the conic sections are the only
curves which can be described by a free particle moving in
a plane and subject to a force in the direction, and inversely
as the cube, of the perpendicularson a given lin@ ih that
plane.

The converse of either of the above propositions is easily
investigated ; thus, taking the figst, our problem becomes

117.  To find the law of force perpendicular to an axis
that « free particle may describe a conic section. *

Take the axis as that of «, and the vertex as origin, then
the cquation

’
i

[

Y=2mx + 02’ cioeeieninnnnninan (1)

will represent, by J)roperly taking m and n, any parabola, any
hyperbola referred to its transverse axis, or any ellipse re-
ferred to either axis,

Also, since the force is perpendicular to the axis, we

have
dt .
Hence y%=mc+nwc; .

and y %;‘Z + (%‘—Z); nd’. -



90 PARABOLIC MOTION.

From these dy =1 { ne*— (%)'}

@ =y
_1 {nc’-— (m +¥ux)‘0,}
yu- y

= ;—; (nyf — m® — 2mnzx — n"c?)

2 .2
= 93.;;". by equation (1).

_For the second case, a hyperbola referred to its conjugate
axis taken as that of z, the equation is

ys = pa 2+ ¢
Hehncd y (!% =)' %—f
= p’cz,

from which wWe have immediately

5+ () re.

. d’,’/__ 1{, 2__ d.’/ il
That is, "y {pc (?it) f

=P (127
y U7y
2 2.2
-2,

118. T find the force which must act Zemendz’wlar to a
plane, in terms of the distance from that plane, that a given
‘path may berdéscribed.

Take the axes gs before; then, ¥ being the required force

(a function of y only), we have ' '

2,
| ‘gl:f =0, or %‘-: = const. = a, suppose ;
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dy _
dae
L&t y =£(x) be the equation to the given curve,”

=

d’ LW
=" @)

or by (1), Y'=dlf"()
=df" {7 (o),
by the equation to the curve. Hence the law of force required
is found.

119. Tt is necessary to observe fhat, in the case of § 116,
when the particle actually reaches the axis, it will not proceed
to describe the portion of the same curve which lies on the

) QP ¢ )Y

4

other side of the axis, as this would involve a change in sign
of the constant horizontal velocity. It is, in fact, evident that
in such cases the particle having described ABC will, instead
of pursuing the course Cba, actually describe CDE similar and
equal to Cba, but turned in the opposite diregtion. And a
similar remark applies to the general problem in § 118.
Although, in the case of 4B( being a conic, one of whose
axes is C@, and therefore cutting it at right angles in G, it
might geem that at (' the horizontal velocity vanishes, yet it
is to be recollected that the velocity at C is infinitely great ;
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and it ma{ easily be shewn by independent methods, such as
limits, if the forei;o'mg anagsis do not appear satisfactory, that
a

the velocity parallel to CG is really constant throughout the
motion. )

“120. It may be useful to notice that cases of this kind
are reduced at once to investigations similar to those of last
Chapter, by considering, separately, the equations of motion
parallel and perpendicular to the attracting plane.

Whenever, then, we can completely determine the motion
of a particle towards a center o}) force, in a straight line, we
can also completely solve the problem of the motion of a
particle anyhow projected, and attracted by an infinite plane;
the law of force in terms of the distance being the same in
the two cases.

121." Generally, whert a particle is anyhow projected and
subject only to the action of a force whose direction 1s perpen-
dicular to a given plane, and whose magnitude (qumdg solely
on the distapce from the plune; the velocity parallel to that
plane is constant ; and, in passing from any point to another,
the square of the entire velocity v altered by a quantity de-
pending only upon the distances of these two points from the
gtven plane.

Take the axis of y perﬁendicular to the given plane, and
the axis of « in it, so that the direction of projection lies
in zy. This will evidently be the plane of motion; and the

equations are - 7
z d'y _
#=% =T
dz
Hence Pkl
da\* = rdy\? ¢
= < * Yd,
and o (dt) + (dt)qv +2 b
' =V'+¢( )

V being the velocity of projection, and y, the co-ordinate of
the point of projection ; which proves the proposition.
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This is, of course, merely a particular case of the general
principle of Conservation of Energy (§ 73).

-122. As another example of the motion of a particle
under the action of forces whqse direction is constant, let us
consider the motion of a particle of light in the corpuscular
theory, at the confines of two hgmogencous media whose bound-
ing surface 1s plane. .

In this case the hypothesis is that the attractive or repul-
sive forces, exerted by the particles of any medium on a
Sarticle of light passing through it, are insensible at sensible

istances but enormously great at infinitely small distances.
Hence of course the path of such a particle in a homogeneous
medium will be a straight line, and will be described with
constant velocity, until the particle is infinitely near to the
bounding surface of the medium.

Thus, suppose AB to be the cofnmon plane surface of two
such media. Draw CD at a distance from 4B equal to that
at which the intensity of the attractive forces of the particles
of the medium begins to be sensible; and draw FF parallel to
CD and cquidistant from it with 4B. . By what we have just
noticed, a particle of light moving along PQ will arrive at Q
without any change of velocity or direction. Also from the
symmetry of the figure, the resultant of all the sensible forces
on it will always be perpendicular to 4B. This shews, § 121,
that the velocity resolved parallel to 4B is constant through-
out the motion, and also that whatever be the direction of IQ,
the change in the square of the velocity in passing from @ to
any point of the path will depend only on the distance of that
point from 45, .

Let, PQR represent a portion of the path.

‘We have no means of determining its actual form, since
the extent through which the force is sensible, the law of its
variation, and whether it change from attractive to repulsive
with the distance, are unknown. ,

Through any point B draw KRL parallel to AB, and let
G H be equidistant from KL with 4B,

Then at R the particle is subject only to the actions of the
upper medium beyond G, and of the lower medium.
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If the resultant effects of these two should, at a point S in .
the superior medium, destroy the velocity perpendicular to
AB, the particle will evidently pursue a course SE'QP’

x =
A
L ]
Q Q ~ D
/ o
K L
A K3 B

a o

similar and equal to SEQPD, and the angles P' Q' C and PQD
will be equal, as also the velocities in I’Q and 7' (/. (§121.)
Here we have the case of a ray reflected at a planc surface.

If however the attraction of the lower medium should so
prevail that the particle actually enters it, then we may con-
sider its motion, while still within the range of action of both
media precisely as before; but there will be two cases.

I At some point as 'S whose distance from AD (the
bounding surface) is less than that of AL from CD, the velo-
city perpenaicular to AB may be destroyed; then as before,

P

/

r ' e
e\o' \ , o/ ]
&

L 4
the particle will pursue .the path §7"Q'P', similar and equal
to STQP, .and w}ﬁlbe reflected at an angle equal to that of
incidence and with its original velocity.

'II. The particle may pass into the lower medium so far
as to be independent of tEe action of the upper tnedium.
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After this it will move in a straight line as before, and the
change of the square of its velocity will be, § 121, independent
of the path pursued. Hence, if V" be the velocity, and a the
angle, of incidence ; ¥, a’ those of refraction, we have

Vsina= V' sin o,
’ ViaV"4al

where @ is a constant depending on the nature of the two
media.

gina _ V' - a

Hence, il «/ (1 F V”) ,
and, thercfore, for particles of light which have the same velo-
city the ratio of the sines of the angles of incidence and
refraction is constant. Zhis s the known law of ordinary
refraction. . *

We have introduced this examplé, although belonging to
a theory now completely exploded, as it forms a good illus-
tration of the application of thg¢ results of this Chapter, and
was the first instance of the solution of a problem connected
with molecular forces. It is due to Newton.

EXAMPLES.

*(1) The time of describing any portion ’Q of the para-
bolic path of a particle acted on by gravity, is erc;}:ortional to
the difference of the tangents of the angles which the tangents
at Pand Q make with the horizon. (§113.)

(2). The sights of a gun arc set so that the ball may
strike a given object; shew that when the sights are directed
to any other object in the same vertical line, the ball will
also strike it.

(3) Shew that the time of a projectile’s describing an
arc of its path ¢ut off by'a focal chord is équal to the time
of falling vertically from rest through a space equal to the

chord.
(4)’ If a shell burst, all the fragments receiving equal
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velocities from the exfplosion; shew that the locus of the foci
of the paths of the fragments is a sphere, of the vertices an
oblaie spheroid, and of the particles themselves at any time
a sphere.

=~ (8). Two_bodies, rrojectéd from the same point A, in
directions makin%l angles a, a’ with the vertical, pass through

the point B in the horizontal plane through A'; prove that
if ¢, ¢' be the times of flight from 4 to B,

sin (a —a) ¢*'—¢
sin(a+a) 24"

(6) With what velocity must a projectile be fired at an
elevation of 30°, so as to strike an object at the distance of
2500 feet on an ascent of 1 in 402

~= (19 *ABC is a right-angled triangle in a vertical plane
with its hypothenunse 4B horizontal; a particle projected
from A passes through C and falls at B; prove that the tan-
gent of the angle of projection = 2 cosec 24, and that the
latus rectum of the path déscribed is equal to the height of
the triangle.

- (8) If a body be projected at an angle a to the horizon
with the velocity due to gravity in 1° its direction is inclined
a

at an angle g to the horizon at the time tan 3 and at an

augle -7{-2-8 at the time cot g.

— (9) A plane 4B inclined at an angle a to the horizon,
leads up to a horizontal plane BC;-a particle is projected
with a velocity ¥V from the point 4, traverses the plane 4B,
and falls upon the horizontal plane BC'; if the times of motion
from A4 to B and from B to (/B be equal, shew that

_2V*sina (1 +sin’a)
A:.B_ g (1 +2sin*q) °
(10) Three particles are projected simultaneously from

the same point, and strike the horizontal plane through the
point simultaneously; prove that, if their ranges be in geo-
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)

metrical progression, the latera recta of their paths will also
be in geometrical progression.

- 511) If 4 and v be the velocities at the extremities of a
focal chord of a projectile’s path, V, the horizontal velocity,
shew that '
1 1
;;,-{- ,,='V—,. (§ 113). .
(12) From a point in an inclined plane two bodies are
projected with the same velocity in the same vertical plane in
dircctions at right angles to each other; the difference of their
ranges is constant.

~—(13) A ball is thrown up in a vertical plane passing
through the sun, in a direction inclined at an angle 6 to the
horizon, and it is obscrved that ¢ seconds elapse frqm the
instant that the ball is in the line joining the point of projec-
tion with the sun till it reaches the ground again, and that_T'

: scconds is the whole time of flight: shew that

ttan 6= Ttana,

where ¢ is the altitude of the Sun.

" (14) Find an expression for the velocity of the shadow on
the ground in (13); and shew that its greatest distance from the
2020
V2o (0=2) " and that it will attain
sin 2a N .
" Vsin (

. 0—-a) . .
. o ¢
this position after a time —oosa’ V being the velocity

of projection. Prove also that the shadow moves with a uni-
form acceleration g cot a.

point of projection is

“7(15) A particle is projected from the top of a tower with

the velocity which would be acquired in falling vertically
down n times the height of the tower, find the range on the
horizontal plane through the bottom of the tower, and shew
that it will be a maximum when the angle’8f projection is

;3- sec” (1+2n). .

T, D. 7
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»~(16) Two inclined planes of equal altitudes 4, and in-
clined at the same angle a to the horizon, are placed back to
back upon a horizontal plane. A ball is projected from the
foot of one plane along its surface and in a direction makin

an angle B with its line of mtersection with the horizonta
plane. After flying over the top of the ridge it falls at the
foot of the other plane; shew that the velocity of projection is

) Q—
3 Ngh cosec B V'8 + cosec’ a.

(17) Two bodies 4, B acted on by gravity arc projected
from two given poinis in the same vertical line with the same
velocity and in parallel directions; shew that if 4 be higher
than B, pairs of tangents drawn to B’s path from any points
of A’s path will intercept arcs described by B in equal times.

—(18) Ifw, ¢, ¢", be the velocities at three points P, @, I8,
of the path of a projectile where the inclinations to the horizon
are a, a—f3, a—28; and if ¢, ¢ be the times of describing
PQ, QR respectively, shew that

” ’ 1 1 el
v"t=1of, and st =" (§ 113).

~—{19) If two particles be projected from the same point at
the same instant in the same vertical plane, with velocities v
and v, in directions making angles a and a, with the horizon ;
shew that the interval between their transits through the
other point which is common to their paths is

[ 1 ~
2 _vw,sin (a~a) .
g v, cosa +vcosa

(20) If any chord be drawn to the trajectory of a projectile
the velocities of the particle at its extremities if resolved per-
pendicular to the chord, are equal. (§ 113).

(21) Partieles slide from rest at the highest point of a
vertical circle down chords, and are then allowed to move
freely ; shew that the locus of the foci of their paths is a circle
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of half the dimensions, and that all the paths bisect the ver-
tical radius.

= (22) If the particles slide down chords to the lowest
point, and be then suffered to move freely, the locus of the
foci is a cardioide. ' '

(23) Down what chord from the vertex of a vertical circle
must a particle slide so as to have when falling freely the
greatest range on a given horizontal plane?

(24) Tind the locus of the foci of all trajectories which
pass through two given points.

(25) The envelop of all the parabolas which correspond
to a given velocity of projection is equal to the trajectory for
which the direction of projection is horizontal.

(26) Particles fall down diameters of a vertical circle;
the locus of the foci of their subsequent paths is the circle.”

~=(27) If two bodies be projected from the’same point,
with equal velocities, and in such directions that they both
arrive at the same point of a plane whose inclihation to the
horizon is B, and if ¢, ¢’ be the times of flight, and a the angle
of projection of the first,
' _ cos a

T sm (a—p)°

— (28) If the focus of the projectile’s path be as much
below the horizontal plane through the point of projection, as
the vertex is above ; shew that double the angle of projection

= SBC—’ 30

(29) From points of aninclined plane, particles are:fimul-
taneously projected in different directions. If-their times of
flight are the same, shew that their locus at any instant is a
plane parallel to the given one.

~(30) A particle is thrown over a triangle from one end of

the horlxzontali' base, and, grazing the vertex, falls upog’the
7—2

[
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other end of the base. If a, 8 be the base angles, 8 the angle
of projection,
tan @ = tan a + tan 8.

(31) For the greatest range on an inclined plane through
the point of projection the direction of motion on leaving, is
at right angles to that on reacliing, the plane.

(32) Particles are projected from the same point in a
vertical plane: 1st, with the same vertical, 2nd, with the
same horizontal, velocity ; shew that in each case the locus
of the foci is a parabola whose focus is at the point of projec-
tion, and axis, vertical, but whose vertex is upwards 1n case
(1) and downwards in (2).

(33) If a be the angle of projection, 7" the time which
elapser before the projectﬁe strikes the ground, prove that at
the time —-+— the angle which the direction of motion

“ 480 a
makes with the direction of projection is g —-a.

— (84) If a body describe an arc of a cycloid under the
action of a force parallel to the base, shew that this force
varies inversely as 2 sin @ — sin 26, 8 being the corresponding
arc of the generating circle measured from the vertex.

~=(35) If the force pegpendicular to a plane vary as the
distance, shew that the es described have equations of
the form .
y=4a"+ Ba™, } as the force is repulsive
or y=A4 cos (mx+ B) ) or attractive.

Find the circumstances of projection in the two cases that
the curves may be the catenary, and the companion to the
cycloid, respectively. '

(36) Particles are projected in the same plane and from
the same point, in such a manner that the parabolas described
are equal ; prove that the locus of the vertices of these para-
bolas will be a parabola. ‘

“

o W
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CHAPTER V. B
CENTRAL FORCES. )

123, I this part of the subject we consider the motion of
a particle under the action of a force whose direction always
passes through, and whose intensity is some function of the
distance from, a_fixed point. The fixed point is-called the
Center of Force, and the force is said to be attractive or re‘PuI-
sive according as it is dirccted to or from the cenger. The
former, as including the most important applications of the
subject, we will take as our standard case; Eut it will be seen
that a simple change of sign will adapt our general formfile
to the latter. If the center of force be itself ig motion, the
methods of §§ 24, 28, enable us casily to treat it as fixed ; but
in this case the relative acceleration 1s not in general directed
to the center, so that the problem no longer belofigs to Central
Forces strictly so called. It will be considered later. If the
center be moving uniformly in a straight]line, the results of
this chapter are at once applicable to the relative motion.

124 A particle is projected in a plane, and is acted on
by a force P directed to the fixed point O <n that plane; to de-
termine the motion. .

The whole motion will clearly take place in the plane, as
there is no force to withdray the particle from it, Let Oz,
Oy, any two lines through O at right angles to ech other, be
taken as the axes of co-ordinates. Let M be the position of
the particle at the time ¢; and draw MN mend,;cular to

1Oz, and join MO. Let ON =z, NM =y, =r, and the

-angle NOM=0. Then,since cos 0%; , 8in @ =‘g , the com=

‘pm‘:énts of P, parallel to the axes and in the negative di-
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rections, are P;, P g . But by the second: law of motion

4

/] / g W

we may consider the accelerations in the directions of z and y
separately, and we have therefore

feort)
o S5 S )
__'Z=_P31J

. r

In these, since P is a function of », and therefore of
and y, the second members will generally contain both these
variables, and the equations must be treated as simultaneous
differential equations. Their integrals will give =, g, %1:4’, ‘5—;{ ,
in terms of ¢; from which the position and velocity of the
particle at any instant will be known, and the problem com-
pletely solved. In onecase, however, viz. when P is pro-
portional to , the first equation will involve  and ¢, and the
second y and ¢, only, and each equation may be integrated
by itself. As it is the simplest example of its class, and of

“great importance in its applications, especially to Acoustics
and to ngsical Optics, we will begin by considering it.

125. A particle moves about a center of };force, theﬁflmm
varying directly as the distance : to determine the motion. ' -..*
Let p be the acceleration at unit of distance, usually called
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0y

the absolute force of the center, then P = ur, and equations
(4) become

d'z -

a-t?-.:— L /

. »} ............... (B,
.oaETTH

the integrals'of which, see § 83, $re
z=A cos (i Bt ... ceverefens ceenn (1),
yT A’ cos {y/ut

4, B, A', B’ being the constants introduced in the integration,
to be dgﬁﬂermined by tle initiul circumstances of motion.

Considgf the particle pfjected from a point on the axis of x,

at distdnce @ from the center, with velocity ¥, #hd in a
direction making an angle a with Oxz.* When ¢ =0, we have
z=aq, y=0, ff(;-} = Vcos a, ?;: =:Vsin a. Hence,
a=4 cos B,
0=d'cos B,
I’cosa=—4dysinB, ¢
. Vsing=— A'y/usin B

Expanding the cosines in (1) and (2), and substituting
these expressions for the constants, we obtain

w#,%fﬁ?—of sin /ut + a cosa/ut ............ (3),

y= Kj%ESi /\/;Lt.............................. 4,

B

which contain the complete solution of the. problem. Elimi-
nating ¢, we have ' .
.'U‘. A ! . . ,j,a’ \ ,. \
(@sina—y cosa)'+ 55 y =a'sin’q,
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the equation to the path of the particle; which is therefore an
ellipse whose center is 0. Equations (8) and (4) give periodic

values for z, g, %—-f, %’%, spch that all the circumstances of

motion will be the same at the time t+-2 ™ as at the time £

Np

N L]
The period of revolution is therefore 2™ . a most remarkable

result, as it is independent of the dimensions of the cllipse,
and depends solely on the jntensity of the force.
J

By taking p nmegative :in equations (73), we may apply
them to the case of a repulsive force varymg as the distance
from O. In the integration for ‘this supposition the sines
and cosines would be replaced by exgpnentials, and the curve
described would be a }lyperbola }Txing O as centgr,; but
the motion would not be one of revolution, as the particle
would necessarily always remain on the same branch of the
hy perbola.

126. Recurring to equations (4), it will in all cases but
the one we have just considered be more convenient to trans-
form them to polar co-ordinates, especially as the general
polar differential equation to the orbit described by a particle
under the action of a central force can be easily formed, as
follows.

127. A particle being acted on by a central forge ; it ds
required to determine the polar equation to the path.

Multiplying the second of equations (4), § 124, by z, and
the first by #, and subtracting, we obtain

dy dz
x y7 i Yy TE 0.
Integrating, ‘
; z % ~y f‘lg = constant = % suppose.

Changing the variables from 2, ¥, to 7, 0, where =108 6, -
y=rsind, we get as in § 22, . e
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oo 1
or, substituting o forr,

b_, , ,
Z[t- = Ilq ........................... \2)
. i cos @ !
Again, mzrc050=—~;—~; .
. | du
. ‘ . usm€+cos€3—5do
which gives =" = —

=—h(z¢siuq+cose%), by (2);,

? 2,
and therefore %t? =-% (u cos 0 + cos 6 %‘) %—3

2,
=— I’ (u cos @ +cos @ %) , by (2).

But, by the first of cquations (4),
Cd'

” 7 Rk Pcosb.
i d’z ‘e
Equating these valucs of T and dividing by cos 6, we
have 7
u €
P=r (Ea,‘—l- u) .................. (3),
d’u P
or :[E,—+u -— /—t'd§= 0 B (4).

This is the differential equation to the’ orbit described;
and as, in any particular instance, P will be given in terms
of #, and therefore in termsof ¥, its integral will be the polar
eguatiodl to the required: path, -
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128. The general integrals of (4), which are differential
equations of the second order, ought to contain four constants.
One of these has been already introduced in (1), and two
more will be introduced by the integration of (4). If the
value of  deduced from the integral of (4) be substituted in
(1), and that equation be then integrated, the remaining con-
stant will be introduced, and the path of the particle and its
position at any time will be obtained. The four constants in-
volved in the resulting eqyations must be determined from the
initial circumstances of motion ; namely, the initial position of
the particle (depending on two independent co-ordinates), its
initial velocity, and its direction of projection.

129. Equation (3) may be used to ascertain the law of
central force which must act upon a particle to cause it to de-
scribe a given curve. To effect this we must determine the
relation ‘Detween  ‘and @ {rom the polar equation to the orbit
referred to the required-center of force as pole : we must then
di¥erentiate % twice with respect to 8, and substitute the
result in the expression for P; eliminating 6, if it be in-
volved, by means of the relation between » and 6. In this
way we shall obtain P in terms of « alone, and therefore of
r alone.

‘When we know the relation between = and 6 from (4), we
make use of equation (1) to determine the time of describing
a given portion of the orbit; or, conversely, to find the posi-
tion of the particle in its orbit at any time.

130. The equation of the orbit between r and p, the
radius vector an% the perpendicular on the tangent at any
point, may be easily obtained from (4). For by Diff. Cale.
we have .

Fu, 1
T Pt dr’

. ®d,
] P, .
and therefore P = Fa
181. The sectorial drea swept out by the radius vector of
the particle in any time s proportional to the time (§22).-
. < - 7 L Lo /i o ’
ba, Lo wa ey | fhedrr 00
“Ta o hwo Al - ‘ T R
’ et . /Lu_ A 2 R

r
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If A4 denote this area we have, by Diff. Cale.

dt - 2dt’
and therefore, by equation (1) of § 127,
¥ d4 _h
da 2’
whence 4 =4kt + C =3k,

C being zero if 4 and ¢ be supposed to vanish together. Let
A’ be the area described in any other interval ¢, then

A'=4k'; “
and therefore 4 : 4" 2 ¢ : ¢'; .-

%

or, the arcas described in different intervals are proportional
to these intervals. We also see, by taking t=1, that the
value of % is twice the area describéd in a unit of time,

132.  The velocity of the particle at eack point.of its path
15 tnversely proportional to the perpendicular fzz)‘om the center of

Jorce on the tangent at that point. (§ 21.)

is

For Velocity =v = 7
— ds 48
de dt . v
crdl .
= ;az ’ by Duﬁ Cale.
f(' P bn;ing the perpendicular on the tangent from the center of
orce . "
. =§ , by equaéon (1) of §12% .
Hence, as :a;bove,‘ vee }-f

(.
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138. This equation enables us to express  in terms of
the initial circumstances of the motion. For, let & be the dis-
tance of the point of projection from the center, ¥V the velocity,
and 8 the angle which the direction of projection makes with
that of B. Then evidently - .

. »
Perpendicular on tangent at point of projection= R sin 8;
‘ h

whence % = VR sin 8.
Again, since by Diff. Cale.,

o)

B, du\*
..";’ab {u’+(¢70/}’

another important expressioa for the velocity.

we have

134.  The velocity at any point of a central orbit ¥s inde-
pendent of the path described,/ and depends solely on the inten-
sity and law of the force;. the distance of the point from the
center, and the velocity dnd distance of projection.

- Multiply équations (4) §124, by %‘; ) %‘Z respectively, and

add, then

ded’z dydy _P( dx dy
7.;;7,1“‘222‘?*‘7(”'&*-"(1;)
" _ pdr

. =-P% .-

(Since 4y =7 :vef;%ve‘:%'h’/ %_____,.%") )

b o= (W= (RS .
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d(v") _ dr
Hence 5= —2P2; .

Also,esince P is some function of , let P=¢' (r), then
. =C-1¢'@)dr
T =0 ().
At the point of projection v =V, »=R; and therefore
1V'=C-¢(B);
whence 30*—3V*=¢ (B) — ¢ (r);
v‘;{lich proves the proposition. (Compare § 78).

\135. The velocity of a particle at any point of a central
orbit ds the same as that which would be acquired by a par-
ticle moving freely from rest along ene-fourth of the thord of
curvature at the pownt, drawn through the center of force, under

the action of a constant force whose intensity 1s equal to thatuf
the central force at the point.

By § 134,
’ 20) _ _ypir,
S dt dt’
dv
orv =r P.
And by § 132,
v= é .
p

Differentiating the logarithm of the latter, we obtain _

ldv __1dp ..

vdr  pdr’

and, dividing the former equation by this,

dr opordr ¥

=2P\§§ (Dif. Calc,)\l .
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where ¢ is the chord of curvature through the center. IHence
the proposition, § 77.

From this it follows that the velocity, T, of a particle
moving in a circle of radius R, under the action of any force
P to the center, is given by the equation

V*e PR,
a simple, and most useful expression.

136. DEF. An Apse is a point in a central orbit at
which the radius vector is a maximum or minimum, and the
corresponding value of the radius vector is called an Apsidal
Distance.

The analytical conditions for such a point (Diff. Calc.) are
that ;-l:'f should vanish, and that the first succeeding differeptial

9
cocflicient which does not vanish should be of an even order.

The first candition ensures that the tangent at an apse is per-
pendicular to the radius veetor. dew s YEE L J:L e

. o o o . L .
Every apsidal line divides the orbit into two parts which are
equal and similar.

du
For 70 |
. du\* . .
therefore, since (39) is some function of u, £(u), suppose,

if on one side of the apse g}é be represented by + 4/f(x), on

the other it will be represented by — +/ f (u).

Hence if A be an apse, O the center of force, and OP, 0Q
any two lines on opposite sides of 04 and cqually inclined to

it, we have

changeé sign in passing through an apse, and

4y
<o4=[ o,
» du

3 K"}
01"\/.70(“) :

1
1

¢ AOP =~
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(Note. These integrals have no meaning if there be an -
a{»se in AP or in AQ, for then they contain an infinite
clement.) A dp wmee ot

i

P

e

[N

1

—011‘-“{1—‘"’_ +j>0[’ :du
2 Nf (w)

L V()

04

Hence

=Y,

1
. or f (;6:/7@1(‘;7 = 0 identically.

Whence, if P and Q have been taken so close to 4, that
no apse but A4 lies between them, which can of course always
be done, unless the orbit is a circle about O, we have

0P =09,

which shews that any two lines on opposite sides of, and
equally inclined to, 04 are equal. Hence the parts AP, 49,
into which OA4 divides the orbit, are equal and similar, so
long as neither contains an apse.- But if P be.an apse, it is
cvident that Q will also be one; .and theref the portion of
the orbit between P and the* mext apse_ befng”similar and
equal to P4, and the same being trme. for @; these mew por- .
tions are symmetrical about 04, and s0 on: and the proposi-
tion is completely proved.
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137. In a central orbit there cannot be more than two
apsidal distances.

For, since the parts of the orbit on opposite sides of an apse
are similar, the particle after pgssing two apses must come next
to one at an equal distance with that of the first, then to one
at an equal distance with that of the second, and so on.
Hence there can be but two apsidal distances.

138. When the central force varies as a power of the
distance, we may obtain the above result, as well as the
equation for determining the apsidal distances, directly from
equation (4) of § 127. Suppose P = puu®, then we have

d’u L I
t—{o, +u—b,u =0.

Multiplying by 24 Z; and integrating, we have

h’{(g—;)’+ u’}b = 26 w4 C.

n—1

[

Suppose the particle projected with a velocity equal to
? times the velocity from infinity at the same distance, and
et ¢ be the initial value of u, then when u=¢,

2ug® .-
o = Lot (§96);

n-1

whenee C'= (g~ 1) ¥ ¢

2
and therefore A° Ké%) + u’} = n2_l_l'} W+ (¢ -1) "}

To determine the apsidal distances we must put % =0,
which gives

’ —
u""—h—%’—;—l—)u’+ (=1 =0.

"The form of this equation shews that it can have at mos
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two positive roots, which are therefore the two apsidal dis- -
tances.

AJbtlelough there can only be two apsidal distances, there-
may any number of apses, and the angle between two '
consecutive apsidal distances 18 called the apsidal angle.
Generally, to determine this angle, the, equation to the orbit
must first be found for the partfcular case considered; but the
apsidal angle may be determined approximately for any law
of force, without first finding the form of the orbit, if we
assume that it does not differ much from a circle.

189. A particle revolves in an orbit which 43 very nearly
circular, and s acted on by a central force varg/z'ni'q as any func-
tion of the distance, to determine the apsidal angle.

A ssume P= pu’ b (u), then the differential equation of the
orbit is 7 -
=0

- If the orbit were circuldr, we should have’ u =¢, and
d*u

g = 0, in which case =L@ =0uinniiitnnn. (a)

h‘l
When the orbit is very nearly circular we may put
u = ¢ + &, where x is always very small. Hence

2 .
Z—g+c+w—§,¢(c+m)=0,

d’ )
or ﬁ+c+w—’,§{¢(0)+w¢ ()} =0, nearly;

and (a) enables us to reduce this to

or, by a second application of (),
&'z of (c)} _
R 1o R
T. D.
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i the integral of which is (§ 83)

e p-ghen)

Hence the general value'of § which renders g;=0, is
given by the equation

Vi)

n being any integer; and consequently the difference between
any two successive values of § is

m

the aﬁpfoximate apsidal angle. .
+ Thus if the force vary directly as the n'® power of the dis-
tance, we have 5
. p @ (u) = pu™; and ¢ (v) = u™,
whenoe ¢' (u) =— (n +2) ¥™7,
and the apsidal angle is ;7—(3—"_*_—;5 .

This shews that n cannot be less than —3, or that the
force must not vary according to a higher inverse power of the
distance than the third, if the circle is to be an approximation
to the path of the particle: and furnishes a simple example of
the determination of the conditions of Kimetic Stability, into
which wi eannot enter in this elembntary treatise.

To find the law of force that the apsidal angle in the nearly
circAlar orbit may be equal to a given angle, a suppose, we have

T
V-5
from which ﬂg)z =1 (1 —{—:);

4
3

=a;
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$ (0

or, by integration, log = (1 -“-(;, log e,

whence ¢ (c) = G’c"'g';
and therefore the law of force, uu'e (u), is /m"g. \

140. A particle is projected from a given point in & given
direction and with a given velocity, and moves under the action
of a central force varying inversely as the square of the dis-
tance; to determine the orbit.

We have P= uu’, and therefore

d*u n
35-,+u-l?,-0,

L e ) b (um &) =0,
Ol‘w(u—'k@) +(u-7k,,)=0,
the integral of which is
u—-z—"';=Acos (6 + B),

or, as it is usually written,

u=%{1+ecos(0—-a)}........... ....... (1.
oo du L .
This gives 9=~ Eesin @—a)....... voresns (2).

Let R be the distancg of the point of projection from the
center; B the angle, and V the velocity, of projection; then
when 6 =0,

1 1 du .
u=p, cot B=- (5 c—la)o.,o (3% ?’alc.) P
2

Hence, by (1), :——R— l1=ecsa,

and, Ty (2), l—i%cotﬂ=-—esi'x} a. .
' —2

LoLd
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»

2
From these, tan a =[’:-I-§%t7§ S PTRR ¢:) N

1]

h‘ 2hl i
e __ 20 __
ande—”-——,R,qosecB “R+l .......... .(4).
But 2*= V*R*sin*B, § 133;
_V*Rsin BcosB

wherefore tana-———mp_ PRsnt g (39,

V*R*sin*B 2 V* ,
— '=———-—————-—-— T ™™ T Jaesssesvenee .

and 1 - ¢ l" (R p) (#). 3

Now (1) is the general polar equation of a conic section
about the fpcus ; and, as its nature depends on the value of
the excentricity ¢ given by (4), we see that

if 7*> 2 , e>1, and the orbit is a hyperbola,

R
& 2p
=7 6= 1, ceeeiieenieeen, a parabola,
v: 2?1-’2-", €<, ciiiiirrininnninens an ellipse.

141. By § 96, the square of the velocity from infinity at
distance R, for the law of force we are considering, is 27"—: , and

the above conditions may therefore be expressed more con-
cisely by saying that the orbit will be a hyperbola, a para-
bola, or an ellipse, according as ghe velocity of projection
is greater than, equal to, or less than, the velocity from
infinity. .

The velocity of a particle moving in a circle is also often
taken as the standard of comparison for estimating the velo-
cities of bodies, in their orbits. 'For the gravitation law of
force with which we are dealing the square of the velocity in

a circle at distance R is %‘,“ﬁlnd' ﬁ?e above conditions may
be expressed in another form by saying that the orbit will be

¥
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a hyperbola, a parabola, or an ellipse, according as the velo-
city of projection is greater than, equal to, or less than 4/2
times the velocity in a circle at the same distance.

®

142. Supposing the orbit te be an ellipse, we shall obtain
its axis major and latus rectum most easily by a different pro-
cess of integrating the differeptial equation. Multiplying it
by 24* Z—g and integrating, we obtain |

R {(g%)"" u"} =v'= C + 2uu.

But when u=Rl, v=V; which gives o=y,

 (/duy? 2 :
Hence % {(dz) + u’} =v'= ,V"— —I'g + 2ut ..aw. (5).

Now tc determine the apsidal distances, we must put

du <
a8~
and this gives us the condition - N

2 2 v '
o — .h': w4 E,% LT ()}

which is a quadratic equation whose roots are the reciprocals
of the two apsidal distances. But if @ be the semiaxis major,
and e the excentricity, these distances are

a(l—e) and a (1+e).

Hence, as' the coefficient of the second term of (6) is the
sum of the roots with their signs changed, we have
LU B
a(l—e) a(lte) W’

;maa—ﬂég ........ eeereneneees @.
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And, as the third term is the product of the roots,

1 2 P
dl-¢) RR™H’
12 ,
0.;=.-12—"7; ............... (8). !
Substituting then ',7: for =5 — V*in (5), we have
v=p (210 - -—) ........................... 9)

Equations (7) and (8) give the latus rectum and axis major
of the arbit, and shew that the axis major is independent of
the dirwetion of projection,

. Equation (9) gives a useful expression for the velocity at
any point.

148, Tile time of deseribing any given angle is to be
obtained from the formula,

dg .
Loy )
=#{pa (1 -¢)}, by equation (7).

From' this, combined with the polar equation to a conic
section about the focus, we have

o a P .
dd yipa(1-e)} \

Y2, S S
- “ (Xrt-ecos 6)*’

measuring the angle from the niéarest apse. To integrate
this, let ‘ ' '

' ginf o
e “ite cosd’ . they
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)
1 ' 1 .—8’
< (1+.ecosb) -

d® _ cosf+e _ _
df — (1+ecos 6)* (1 + e cos B)™
11 d4-¢ 1"
Teltecosf e (l+ecosB)’
df ® 1 [ df '

"f (I+ecosf) 1-¢ I 1—¢J1+4ecosf
(]
’_
sec 2d0

;e sinG____ 1
T T 1—é 1+ecosf

1-¢ (1+¢)+ (1—e) tan’ —g’

e sin 2 o 1—¢ 9 -
T1—=¢ 1+ecosf + (1-e)t tan. {\/(1 +e) tan 1},’
(ife<l); °*
v (e+1) cosg +4/(e~1) sin b
e sinf 1 log{ ’ 3 . 2}
—11 0 (-1t ’ oy O
€ +ecost  (g*—1) ¥ (e+1) f:os 3 —y (e—l) sin 5
(if e > 1).

Hence the time of describing, about the focus, an angle 6
measured from the nearer apsc is, in the ellipse,

Vel (150 ) ovae LT,

and, in the hyperbola,

or =

A
s (e+1) 008_-';/(8-1)3111
’\/ﬁ[log{ z 3}4.34(: 1)1 sin @ e:l
# v (e+1)cos §+../(e_'1) sin 4-eCo8

144 In the parabola, if d be the apsidal distance, the
Integral becomes

' {s;fmo;g’e=1, a(l%@j——-d, a(l—e’)§2d}, ‘
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(14 cos 6)*
3
—,\/Sd f4sec - df
_ e 0 5, 0
—Jﬂ [(l‘i-tan g)dtan§
2d? 6 ‘1.~
_,\/—I—‘—-<ta11§+§tan’g).

146. From the result for the ellipse we see that the
3
periodic time is 27 J 2. 'This might also have been found
from thve.considenation that the periodic time is

2 area of ellipse _ 2ma’ /(1 — ¢
Vipa (1-€)}

—or J___

in the notation commonly employed.

146. By laborious calculation from an immense series of
observations of the planets, and of Mars in particular, Kepler
enunciated the following, as the laws of the planetary motions
about the Sun.

I. The planets describe Ellipses of which the Sun oc-
cupies a focus.

II. The radius vedtor of each planet traces out equal
areas in equal times,

III. The squares of the periodic times of any two planets
are as the cubes of the ma_}or axes of their orbits.

147. From the‘ second of these laws we conclude that
the planets are retained in their orbits by a central force
tending to the Sun. For, . K1

hw,r
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If the radius vector of d particle moving in a plane describe
equal areas in equal times about a point in that plane, the re-
sultant force on the particle tends to that point.

Thke the point as origin, and let z, y be the co-ordinates
of the }l)article at time ¢; X, Y the forces acting on it, resolved
e

parallel to the axes; the equations of motion are
’ dx dy
'd—tg =4, E-t-{ = K TR PR Y R PR IR (1).

But by hypothesis, if 4 be the area traced out by the

. dd .
radius vector, — is constant.

de
dA__ dy_ do_
Hence, 2= Y= C.
&y d=,

Differentiating, = =Y gE = Q;
or, by (1), Y —yX=0.

Hence, %:t =% , and by the parallelogram of forces (§ 62)
the resultant of X and Y passes through the origin. ’

148. From the first it follows that the law of the force.is
that of the inverse square of the distance.

The equation to an Ellipse about the focus is

u=%(l+ecos€),

4

where [ is the latus rectum. .k

Hence, d;'; = - —2; cos @, and therefore the force to the
focus requisite for the description of the ellipse is (§ 127)
d*u .\
Pes (7 *u)
' "
= U

X
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. Hence, if the orbit be an ellipse, described about a center
of force at the focus, the law of force is that of the tnverse
square of the distance.

149. From the third it follows that the force towards the
Sun which acts on each of the planets is the same for each
planet at the same distance. o

For, in the formula in § 145, 7"* will not vary as ¢® unless’

* u be constant, i. e. unless the absolute force of the Sun be the
same for all the planets.

We shall find afterwards (Chap. XIL) that for more
reasons than one these laws are only approximate, but their
enunciation was sufficient to cnable %ewton to propound the
doctrine of Universal Gravitation; viz. that every particle
of matter in the universe attracts every other with « force
whichis as the masses dirctly, and as the square of the distance
tnversely. ) ‘

L}

EXAMPLES.

(1) A particle describes an ellipse under the action of a
force always directed to the center, to determine the law of
the force. ‘ '

From the polar equation to the ellipse, center pole
,_cos'@ sin'f

u =5+ ; We haveugg=(§,--—al-§)cosﬁsin0;

s (] (he ) o=

P=§(u‘+u’§l;?) N
- %’ [u‘ — (%),+u' {u % + (%)2}]

FEpr-GrBerearsnd(g-Pors-nd)
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. 1 1 1 1\.
== {u’-’r (-—, -;,) cos’ﬂ}{ g (F_}z—’) sm’ﬂ}
B11
~% @SR
and therefore the law is that of the direct distance.

The above example is the converse of § 125. The solutxon
may be very easily effected by the use of § 130. s

(2) A particle describes a conic section under the action
0;" a force always directed to one of the foci, to find the law
of force.

-,

In this case

1
u=m{1 +eco? @-a),
d*ue
and . Pt (Gm+u)
AT 1

Sa(— R
the converse of § 140. See also § 148.

~ (3) Find the law of force, tending to the pole, under
which a particle may describe an equiangular spiral.

1
PU:P-

--(4) Find the law of force bﬁ which a particle may de-
scribe the lemniscate’of Bernoulli, the center of force being
the node.
1
P ;-', . .

— (5) Find the law of force by which a partlcle may de-
scribe a circle, the eenter of force being in fhe circumference
of the circle. ‘

P‘oc\;—,.
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(6) Find the law of force by which a particle may de-
scribe the spiral r =qa (sec g) , the centre of force being the

°1
P“—?":E‘
,‘.ﬂ

« [Shew that this result is not true for n=1, and find the
- correct one.]

pole of the spiral.

— (7) Find.the law of force that a pal:ticle may describe
Ind ]
the cissoid of Diocles »=2a %?g*g , the center of force being

the pole.
cosec® 6

o
[Here 6 ought to'be expressed in terms of » in the value
ol P] .

(8) A ‘particle is projected from a given point in a given
direction with the velocity which it would acquire in falling
to the point of projection from an infinite distance, and 1s
acted on by a force varzing inversely as the n** power of the
distance, to determine the orbit.

Here P = uu*, and therefore, § 127,

&
Pra

P

+u—7"—:',u”"=0.

Multiplying*by 2% gz and integrating,

I {(gg)’+ u’} =¢'=C 1—;—2;@1 w7,

Let V be the initial velocity, 8 the angle of projection,
and ¢ the initial value of «, then, § 96 ‘

Pro 2t -
ne~1" "
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But when 4= =¢, v="V; . 0= 0, and

(gg)’+ va gl

LA T .
du [ ;\/(uﬂ 3 __ 3 5111 ﬁ) ................ .

- To integrate this let :
P ws;

< (n=3) u""%—ﬁz

Dividing, n=3du_2

— e e

u dr =

Substituting in 1),

g 2 smB
dm n— 3zV(w’ ¢ ®sin? B)

Integratmg,

" __ 2 =1 z -
0+C',-,D 5 sec
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Suppose we take the initial line so that (" =0, then

n=-3
—_—

u? n—3
= =8ec— 0;
¢?®snf
or, if R'be the initial istance &= 7,
(1)"—"-‘ = cosec 3 cos n-3 [7)
R/ 2.

the polar equation to the required path.

— (9) A particle, acted on by a central force varying in-
versely as the fifth power of-the distance, is projected in any
direction with the velocity from infinity ; find the orbit.

Its equation is r.= R cosecB sin (8 — ), B being the
angle of projection, and the line joining the point of projec-
tion with the center being taken as the initial line.

(10) A particle acted on by a central force varying in-
versely as the fifth power of the distance is projected from a
given point with a velocity which is to the velocity from
infinity as 5 to 3, in a direction making an angle sin™ 3’:,/—6

J
with the radius vector; find the orbit.

Here we have

3
g;;:+u—}%u’=0;

K {(g%),+ u’} =v'=C+ ’—‘12-@ .

] But if V be the velocity ‘of projection, ¢ the initial value
of u, ‘

LS 25 ‘ 3
=2 L 96):)

Suct
. and Whep % =¢C, q)=I/'; . 0=__§£_;
[4
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(%)'+ﬁ’=7’;(§§ +';‘) X

. . V’sin‘8_25pc‘§t_1.
But K ¢t T8¢t 257
B3 . .
R4

Substituting and integrating we find, after the necessary
reductions,

V3 1 —eVili+a
=3 Eizeneeas

where R is the initial distance, and a a constant to be deter-
mined by the position of the initial line.

(11) A particle acted on by a forcé, varying partly as the
inverse third, and partly as the inverse fifth, power of the
distance, is projected with the vglocity from infinity at an
angle with the distance, the tangent of which is W2, the
forces being cqual at the point of projection ; determine the
orbit. ’

r

1
.R-'r=;/—§I£3.

— (12) The force tending“ to the center of a ‘circle whose
radius is a being (7 + =% ), find the velocity with which a
’ 7

article will describe the circle; and shew that if the velocity
{:c suddenly doubled the particle will come to an apse at the
distance 3a.

5
(13) If P=2u -cz-‘i + pu’, and a particle be projected at an

angle of 45° with the initial distance (B =) 3 with a velocity

which is to the velocity in a circle at the same distance as
/2 to /3, find the curve described.

r=R(1-0).
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~ (14) If a particle be acted on by a central force varying
inversely as the seventh power of the distance, and be pro-
jected from an apse with a velocity which is to the velocity
1 a circle at the same distance as 1 to 4/3; find the eqUation
to the curve described. ‘

r*=R*cos2 (0 +a).

(15) A particle, acted on by a force varying inversely as
the cube of the distance, is projected from a given point with
any velocity in any direction ; to separate the curves according
to the circumstances of projection. These curves are called
Cotes' Spirals.

The equation of motion is
d*u m

a—;-}-u h,.u=0 ................ (l)
Let%be>l,andlct”f,—-—l=k’;then
v,
Zé,—ku=0,
the integral of which is
u=Ae+BeP.....ccn..... (@).

This resolves itself into three distinct species of curves
according to the values of 4 and B.

Seecies I.  Let 4 and B have the same sign; then
u=A4e¥ + Be™;

d &
and z%=k (Ae — Be™),

. The values of 4 and B may in these ec}uations be ex-
ressed in terms af the initial distance, and angle of projection;
Eut we may put the equation to the curve in a simpler form
as follows. g.et a be the value of 8 corresponding to an apse,

.

then when 8=a,g—g=0;
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or - 0= Ae** — Beka,
which always gives a possible value of @ ; and therefore
Aet* = Be* = ¢, suppose.

Substituting, w=c {J(G—a) + e—k(o—a)}.

Hence when 8 =a, u=2¢, or 515 is the apsidal distance.

As 0 increases, y increases, or » diminishes; and when § =,
u=ow,orr=0. Ience the curve forms an infinite number
of convolutions about the pole ; and, as it is symmetrical on
both sides of the apse, it will be as represented in the figure,
where 4 is the apse and O the center of force.

Srecies II. Let ]?,' > 1, B=0, then the equation (2)
becomes
u=A4é,

the equation of the logarithmic spiral. The nature of the curve
will e the same if 4, instead of B, vanish.

Srecies 111, Let }’—g,> 1,and B negative, then by equation (2),

= Ae? — B8,
T. D. 9



130 CENTRAL FORCES.
Putting u =0, we obtain as for Species I,
u = ¢ {62 — ko],

Hence, when @ =a, =0 0r r=a. As 6 increases r de-
creases, and when @ is infinite »=0; so that there is an
infinite number of convolutions.round the pold. It is easily
shewn that this curve has an asymptote parallel to O, at a

. 1
_distance ook

Seectes IV, Let & =1. Then equation (1) becomes

k,
d’u
g ="
the integral of which is
( u=A (60— B),

the equation of the reciprocal spiral.

Srectes V. Let 7?’ <1, and let 1 - }':‘; = [’, then by
equation (1),
du ..
W + ku = 0,

the integral of which is
u=.4 cos (kf+ B);

du

whence G ke Aksin (k6 + B).
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Lét « be the value of 6 corresponding to the apse,
then ka=- B;
and u=4cosk(0-q),

which shews t®at ;-:; is the apsidal distance. The asymptotes

to this curve are easily found for any assigned value of %.
Une case 18 represented in the annexed fig.

(16) A particle projected in any manner is*acted on by
a central force varymng inversely as the fifth power of the

distance, to determine the orbit.
Here P= pus, and we have
d’
F e =0
du)\* gt
2 | AU o _ a8 pu
whence k {(dO) +u} v'=C+ 3

When u=¢, v=V; therefore C=V"*— ’fc—z— ;

A A N

whence (EP) tet ==Lt om
2 12

But #*= 4 S:,n A (§ 133); and therefore
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(AR S
d8/ — 2V*sin*B sinf 8 2} sin’B

This equation cannot be integrated in finite terms unless
4

either the right-hand member be a perfect squage, or Vi= ’i;» .
The latter case is included in the more gencral one of Ex-
ample (8). In the former we must have

2uc’ & pct ) =1
V*sin’ 8 (sin’b‘ 21 sin* B/~

4
or 2;1.(V”—%C- = I:T sin* B3,

from whkich 8 may be found. .

,Extracting now the square root, integrating and taking
the initial line so that the constant =0, we derive after the
necessary reductions, .

o VB 1=V
T VRsinB 1+ €V

Giving /2 the positive or negative sign we have a spiral
having an interior or an exterior asymptotic circle, the radius

. . e e e  NB
of this circle being in either case VRsin B

(17) A particle is projected from an apse at the distance
2
#/(mh), and is acted on by a central force :7,+§g, % being

twice the area described in a uni.t pf timq ; find the equation
to the orbit and the time of describing a given angle.

_ mh _ -
ﬁ—m, t =mtan o.

(18) 1If a particle move about a center of force o :—f,', + ;': ,
shew that the equation to the orbit is generally of the form
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r=—2
" 1—ecos(kf)’

In the case when the projection takes place at an apse,
the apsidal distance being ';Zi',' and » being equal fo A?, shew
that the equation to the path is

e 2uk?
T2k ue

and that the time of describing an angle a is

é tan @ (0 + § sin 26) where tan 6 = \/—(%%55 .

.(19) If » be the velocity, and P the force at distance » in
a central orbit, and if o', /”, #' be similar quantities for the
corresponding point of the locus of the foot of the perpen-
dicular on the tangent, shew thag

o Py
mto =2

" (20) A particle attached to one end of an elastic string
moves on a smooth horizontal plane, the other end of the
string being fixed to a point in the plane. If the path of the

: . et !
particle be a circle, shew that the periodic time oc (£ d) ,

a and r being the natural and stretched lengths of the string.
If the orbit be nearly circular, find the angle between the

apsides.
= (21) A particle is projected in such a manner as to describe

a reciprocal spiral whose equation is 0=-;; shew that the
2

. . th . a’
time of performing the n revolution = E'T(’;: TS

(22) If Pbe a central force attracting a catenary, and p
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be the perpendicular on the tangent at any point from the
center of force; then the force which would cause a particle

to revolve in the curve formed by the catenary o« ;1?

'

= (23) Find the time in which a particle would move from
the vertex to the end of the latus rectum of a parabola; and
shew that if the velocity be fhere suddenly altered in the
ratio m to 1 (m being < 1) the body will proceed to describe

an ellipse, the excentricity of which is (1 — 2m® + 2m*).

==124) A spherical surface is described in space, having
in its center a force varying inversely as the square of the
distance ; shew that if a particle be let fall from this surface
and be projected in any direction at any moment of its descent
with the velocity acquired, it will move in an ellipse, the
major axis of which is equal to the radius of the sphere.

- (25) If the Earth’s orbit be taken an exact circle, and
a comet be supposed to describe round the Sun a parabolic
orbit in the segme plane ; shew that the comet cannot possibly

. o1 . 2\%®
continue within the Earth’s orbit longer than the (3—;) part
of a year.

- (26) If a particle be projected about a center of force
varying inversely as the square of the distance, with a velocity
equal to n times the velocity in a circle at the same distance;
the angle a between the axis major and this distance may be
determined from the equation

tan (a—B) = (1 — n’) tan B.

(27) A particle describes a parabola about a center of
force (oc D) residing in a point in the circumference of a
given ellipse the foci of which are in the circumference of the
parabola ; shew that the time of moving from one focus to
the other is the sanje, at whatever point in the circumference
of the ellipse the center of force is placed. (§ 165).

(28) A particle moves about a center of force, and its
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velocity at any point is inversely proportional to the distance
from fhe center of force; shew that its path will be a lega-
rithmic spiral. |

* (29) A particle is describing a curve about a center of
force, and its velocity ac;;, find the law of force and the

v

equation to the path.

n-1
P -;};—-ﬂ, (2) =cos {(n—1) 0 +a}.

r

(80) A particle is projected in any direction from one
extremity of a uniform straight line each particle of which
attracts it with a force proportional to the distance, prove that
the particle tvill pass through the other extremity.

= (31) A particle projected in a given direction with a
ﬁiven velocity and attracted towards a given center of force

as its velocity at every point fo the velocity jn a circle at
the same distance as 1 to 4/2; find the orbit described, the
position of the apse, and the law of force.

r=,\/§—ﬁ1:,cos(6—a), P=:‘-3.

* (32) A particle is projected from a given point with a
given velocity and is acted on by a central force varying in-
versely as the square of the distance; shew that whatever be
the direction of projection the center of the orbit described
will lie on the surface of a certain sphere.

(33) Find the locus of the center of force that a cycloid
may be described with uniform velocity, and find the law of
force to the moving center, :

v (34) TIf a particle revolve in a circle of radius r, about a
center of force distant @ from the center of the circle, shew
that the time from distance = to the nearer apse is .
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-& cos-lg—_g 1_...@..)
a’)* 2 r ( 4t/ |’
r* ’

Vo (2-

where ¢ is the initial force; afd that the periodic time is

27rrd
(r—a)v¢’

where ¢ is the force at the nearer apse.

——(85) Shew that the only law of central force for which
the velocity at each point of the orbit can be equal to that in
a circle at the same distance is that of the inverse third
power, and that the orbit is the logarithmic spiral. ., ¢ -

«w*36) A particle describes an equilateral hyperbola about
a center of force in the center, shew that an angle 6 from the
apsidal line is connected with the time ¢ of its description by
the formula ‘

Vet 1

81!120—-‘?“/"‘_‘_l .

(37) If a number of particles, describing different circles
in the same plane about a center of force oc D™, start together
from the same radius, find the curve in which they all lie
when that which moves in the circle whose radius 18 @ has
completed a revolution.

_ (88) If the m'" power of the periodic time be proportional
to the n'* power of the velocity in a circle, find the law of
force in terms of the radius.

(89) If v be the velocity of a particle revolving in an
ellipse about the center, v’ its velocity when the direction of
its nrotion is at right angles to the former direction, the time

of describing the interoepted azc = ;/1_; sin” 2.
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- (402 A particle revolves in a circle about a center.of
force in the center, the force cc;ll?,; the absolute force is

suddealy increased in the ratio of m : 1 when the purticle
is at any assigned point of its*path, and when the particle
arrives again at the same point the absolute force is again
increased in the same ratio; shew that the path which the
particle will describe is an ellipse whose excentricity

(41) TIn a curve described by a particle under the action
of a central force the angle between the radius vector and the
tangent varies as the time. Find the curve and law of force.

(42) Shew that the apsidal angle is the same for different
apsidal distances, only when the force is as some power of
the distance. -, ., . fone

272 2
~ (48) Given P= g‘:ﬁ’i %, determine the path. Shew

that in the particular casc of the projection being made at
distance a, and with velocity =;4/2, the equation to the
orbit is

r=a(l1+0).
- f44) Force = ;»’f;, and a particl2e is projected from an apse ‘
at distance o with velocity = \/ 5’(—:;, shew that the path is

.

a cardioide, and that the periodic time is

8w /3
4 2 "
* (45) A particle is revolving in an ellipse about a center .
of force in the focus; supposing that évery time the particle
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arrives at the lower apse the absolute force is diminighed in
the ratio of 1 to 1—mn; find the excentricity of the elliptic
orbit after p revolutions, the original excentricity being e.
1te
A=wp
(46) A particle describes a circular orbit about a center
of force situated in the center of the circle; prove that the
form of the orbit will be stable or unstable according as the
value of %—llng—g , for w=a, is less or not less than 3, P being
the central force, u the reciprocal of the radius vector, and

% the radius of the circle.

(43 If the equation for determining the apsidal distances
in a central orbit contain the factor (u — a)?, shew that u =a
cgnnot correspond to an apse unless p be of one of the forms

dm +2 or dm+2 .
2n+1
will be a root of the equation

‘ ¢ (u) — B =0,

where ¢ (u) is the central force.

If thg factor » —a occur twice, then a

(48) Erzamine carefully the case of an apse where the
center of force coincides with the center of curvature. Shew
that the particle will, after passing such an apse, describe a
circle about the center of force, but that the motion will be
unstable,
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CIIAPTER VI
ELLIPTIC MOTION. ‘

150. In this chapter we propose to deduce from the
results of the last some of the properties of Elliptic and
Parabolic Orbits described about a center of force in the focus.
This is a problem of great interest, as it has been proved by
actual observation that the orbits of planets and comets are
in general (neglecting the swall effects of disturbing forces)
ellipses citl.er very slightly excentric, or so much so as to be
scarcely distinguishable i a parabolas. There are, it i true,
some comets whose orbits are moderatgly excentric ellipses,
and some whese orbit are hyperbolas; but, as the problem
in their case becomes very complicated, and the approximate
methods which we will here employ are inapplicable to their
motions, it Las been considered advisable to omit the con-
sideration of such cases. .

161. For the intelligibility of what follows it will be
necessary to premise a few definitions.

Suppese APA’ to be an elliptic orbit described about a
center of force in the focus 8. Also surB)ose R to be the
osition of the particle at any time ¢ Draw PJM perpen-
sicular to the major axis 4CA4’, and produce it to cut the
auxiliary circle in the Point Q. Let C be the common center
of theé curves. Join CQ.

‘When the moving particle is at 4, the nearest point of
the orbit to S, it is sald to be in Perthelion.

The angle ASP, or the excess of the I?a.rticle’s longitude
over that of the operihelion, is called the True Anomaly. Let
us denote it by 6.

The angle ACQ is called the Excentric Anomaly, and is

generally denoted by ». And if %E be the time of a complete
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revolution, nt,is the circular measure of an imaginary angle
called the Méan Anomaly; it would evidently be the true
anomaly if the particle's angular velocity about S were
uniform,

152. It is easy from known properties of the ellipse to
deduce relations between the mcan and excentric, and also
between the true and excentric, anomalies; and this we
proceed to do.

To find the relation between the mean and excentric ano=
malies.

In the figure QCA is the excentric anomaly, and the
mean anomaly is evidently to 27 as the area PS4 is to the
whole area of the elliptic orbit (§§ 145, 151), or as area QSA
to area of auxiliary circle.

Now area QS84 = area §CA — area QCS
=3}d'u—4%a.ae.8inu
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(a being the scmi-major axis of the orbit and e its excentricity)
= 6—;— (w—esinu).

2
2 (u—esinu)

.
2 b

n
Hence — =
2 A

or nft=1u—esinu.

153. 7o find the rclation between the true and excentric
anomalies.

We have (by Conics)

a(l=¢)
SP= 1+ecos0

But SP=a—e¢CM=a(l—ecosu).

— e’

Hence ———- =1—ccosu;
14ecos@ ?
cosu —e
Hence cos=_""—"—,
l—ccosu

V) 1 — cos
and tan 5 \/1+coa.0
l—ccos_u cosu-+e
l—ecosu+cosu—e

(1+¢)(1—cosw) )
=\/(1--49)(1+cosu)

+e [/
=«/<1-e>t“2
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The two equations which we have just found are suf-
ficient for the solution of our problem, but they arc sometimes
obtained in the following manner.

154. The direct problem in elliptic motion is

To find the time of motion of a planet or comet through any
portion of its elliptic orbit.

The equation of the orbit gives us

~al=¢)
" 14ecosf’
And from the description of equal areas in equal times, we
have
d0_h_wipa (1=
dt » r ‘
, From these equati.ons we have
dt dd(1-e)t 1o (1-et 1

a9~ " Wu (1+ec.063)"= n (L+ecos 6)°
if 27:{ be the period of revolution. (§ 145).

Hence if ¢, be the time of describing an arc measured by
6, from perihelion,
Int =(1—-e)t fﬂ ' db or (remarking that
! o (L+ecosf)*’

e ..,0 (]
= cos® — — sin®— = cos? 2 '2_6)
cos @ = cos g~ sin’z, and 1 = cos g +sin 2

0, df
=~—(1—e’)ﬁ[o {(1+e) cos’g+(1--e)sin.’-g}
. adtang
vl
=2(1-e’)if‘ sec’ 5 ¥ N
° {(1+6)+(1-—e)tan’-g-}
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To gimplify this, let us put

tang=\/(%—;—:') tan% ..... creveseneenes (1),

(an assumption which will evidently conduct us to a formula
already proved, as it is clear that ¢ will represent the ex-
centric anomaly).

‘We have
1
T4+ i_—_{-_e tan? &

“e 2 d {\/G%)mng)d‘f’

(1 +¢)®sect %’ ¢

»
nt,=2(1—ct
0

=f:" {(1 —e) cos’ $+ (1,+e) sin® %5} d¢ |

=f¢l (L—ecos ¢) do,
= ¢1-— ESin ¢1 ........................ (2).

When 6, is given we must calculate ¢, by means of (1), and
thence ¢ by means of (2).

Since (1) and (2) give us the time of passing through an
arc from perihelion subtending any angle 6, at the focus, it
1 evident that we have now the mcans of finding the time of
describing any given portion of the orbit, and have thus the
complete solution of the direct problem.

155. The inverse problem, which is far the most im-
portant, is to find the values of 6 and » as functions of ¢, so
that the direction and length of a planet’s radius-vector may
be determined for any given time. This generally goes by
the name of Kepler’s Problem.

166. Before entering on the systematic development of
u,  and @ in terms of ¢ from our equations, it may be useful
to remark that if ¢ be so small that higher terms than its
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square may be neglected, we may easily obtain develgpments
correct to the first three terms.

Thus w=nt+esinu

= n¢ + e sin (nt + ¢ sin nf) nearly,

Tt e
=nt+esinnt+§-sin2nt.

Also £=1—-ecosu
= 1— ¢ cos (nt+ e sin nt)

3
=1-—ecosnt+-§- (1 — cos 2nt).

And P = a1 - o),

.

which mayrbe written |
g g = =
vor (1-a)t(1 +ecos€)”%g =n.
Keeping powers of e lower than the third
(1 —%¢cos 8 + z é*eos 20) %f =n,
or nt=0—2¢sin § + i ¢’ sin 20;
whence 0 =nt 42 sin 6 2 ¢ sin 20

= in¢ + 2 sin (nt + 2 sin net) — 2— ¢’ sin 2n¢
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= nt + 2¢ 8in nt + 4¢* cos nt sin nf — % ' sin 2t
. 5, .
=nt+2esmnt + 1 ¢€'sin 2nt,

Y 157. KepLer's ProsueM. 7o jfind r and 0 as functions
of t from the equations

r=a(l—€Co8 U uiiiirirrirnnrns (1)
(7 1 +e) u

tan § = «/(‘1‘:; tan -2' ................. (2) ;
RE=U—EBIN U eereerienneernnnnenrnnnnns (3).

These equations evidently give r, 6, and ¢ directly for any

. . O, . . .
assigned value of u,.but tl}lS is of-little value in practice.
The method of solution which we proceed to give is that of
Lagrange, and the general principle of it is this— .

We can develop 8 from equati('m (2) in a series ascending
by powers of a small function of e, the coeflicients of these
owers being « and the sines of multiples of v, Now by
iagrange’s theorem we may from equation (3) express u,
1—ecosu, sinu, sin2u, &c. in series ascénding by powers
of ¢, and whose coefficients are sines or cosines of multiples
of nt. Hence by substituting these values in gquation (1)
and in the developmént of (2), we lave r and 6 expressed in
geries whose terms rapidly decrease, and whose coefficients
are sines or cosines of multiples of nt. And this is the com-
plete practical solution of the problem.

158. To express the true, as a function of the excentric,-
anomaly. .

Substituting in (2) the exponential expressions for the
tangents, and writing ¢ for J =1, we have ,

i _‘2 —ﬁ! __v:u
e —¢€ ¥ 1+e\ € —¢ ?
KU (i—:—)l‘ _m !
e+e e¢+te

T. D, ‘ .10
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whence

o W) V(= + (=0 = V(1 4]}

e WI—)=V(I+eof+ W(i-e+V(1+e)}’

.o Nl+e—N(1-—¢e) _ €
or, puthngx—v(l+e)+4(1—e)"1+4(1~6’)’
f=¢ 11 );i::

Taking the logarithm of each side and dividing by 7,

— x'( u i l’g 117 ~2iu
9—“+z'-l€ € }-l-m.{e2 e 4.,
* A A°
=u+2(Xsinu.+;sin2u+%—s1n.‘1u+u":c.)......(4).
159. To develop u in tarms of t.

If we haye

we obtain, by Lagrange’s Theorem, the devclopmcnt

FO =1+ F &) +1y 5 BEITF (@)

x“

T 3(dz> BETF @) + & .. (6)-

Now equation (3) may be put in the form

% = nt 4 e 8in u,

which is identical with (5) if

y=u, 2=nt, z=e, and ¢ (y) =siny.
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Also, as it is the development of u that we require, we must

put
S(w)=u, and f' (u) =1. Hence, by (6)
. z . 1.
y=stasing+— ;z'% (sin’2) + T%s_a (Elé) (sin®z) +&e.;

and, substituting for the powers of sinz their corresponding
¢Xpressions In sines and cosines of multiples of z,

y=z+asinz+

_:gi i(l—cos?z) ® Q)’(?&sinz-—sin.%z
1.2dz 2 1.2.3 (dz 4 )

+

d:

o d\* /3 — 4 cos 22 + cos 4z
T () (2 g e

. z . @, . .
=st@singtosinet o (8sin 3z —sin2) +......

or, substituting for 2, y, z their values as above,

2 3 ’
u=ut+esinnt+ ; sin 2nt +—g— (3 sin 3nt — sin nf)

+¢

7 (2sin 4nt — sin 2nt) + &, ...... (7).

To develop sin u, e recur to equation (3), which gives,
after the climination of # by means of (7),

2
sin % = 8in nt+%sin 2nt+% (8 sin 3nt — sin nt) + &e. ... (8).

By the application of Lagrange’s theorem to equation (3),
it is easy to geduce the following expressions:

sin 2u = 8in 2n¢ + ¢ (sin 3nt — sin nt) + €' (sin 4nf — sin 2nf)

8
+ & (4 sin nf — 27 sin 3n¢ + 25 sin 5nt) + &c.

24
102
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. . 3e , . .
sin 3u = sin 3nt + 3 (sin 4nt — sin 2n¢)
+ —;—, (15 sin 5n¢ — 18 sin 3n¢ + 3 sin nt) + &e.

&e. = &e.

Substituting these values in (4), we obtain the value of 6,

containing however the quantity A, If we take as its approxi-
3

mate value g--i-g- , and make the requisite substitutions, we

obtain

1. . 5 4. 13, .
= 2¢ — — - e xE 3t +......
6 =nst (2 4e’)smnt‘+4e‘sm2nt+lzc sin 3nt +

which is correct as far as é.

160. TIn proceeding farther with the development, it be-
comes necessary to expand X and its powers in series ascending
by powers of e. This is readily done as follows.

‘We have
. e e

A= m = E sup'pose.

3
Hence E=2 — i—, , from which by Lagrange's Theorem,

E1=-21;+§,%e’+£§~(.’~’;§§)e‘+&c.;

and thus the value of A, being ¢’£, is known.

bThe correct value of 6 to the fifth power of ¢ is thus found
to be
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e.

sin 2nt + 53 (13 8in 3nt — 3 sin at)

5¢

nf+ 2e 8in nt + T

4

o+ 2f (108 sin 4nt — 44 sin 2n¢)

5
+ é;—%—s (1097 sin 5nt — 645 sin 3nt + 50 sin nt).

161. To develop r in terms of t.

From (1) it is evident that all we have to do is to de-
velop, by Lagrange's Theorem, 1 —ecosu as a function of ¢,
from nt=u —¢ sin w.

To develop (1 — e cos u) in terms of t.
Here f(y) =1—ecos y,
f'{y)=esiny;
and the form of ¢ is the same as before ; hence

1—ccosy=(1—ecosz)+xsinz (esin z)

@ d .., .
{9k (su} z.esinz)+.........

Hence, as before, substituting for the powers df sines their
equivalent expressions in sines and cosines of multiple arcs,
differentiating, and substituting » for y, a¢ for 2, and e for «,
we have

2
]—ecosu=£=1—ecosnt+§-(1—cos2nt)

¥
s

*g (8 cos nt — 3 cos 3nt)

¢ »
+ % (cos 2n¢ — cos 4nt) + &e.

which gives the radius vector in terms of the time.
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162. In the case of parabolic motion the above methods
arg not applicable; but a much simpler one is.

To find the time of describing any arc of a parabola, from
the vertex; the center of force being in the focus.

The cquation to the curve is

r = d sec’ g » Where d is the perihelion distance.

And the condition of equable description of areas gives

dé
"’?ﬁ=k='\/(2ﬂd>§

A
vedt (s .0
<02 [ )

N /

LN e PR AR
=Vu (tan2+3ta:x 2),

dtang
2 20
T

or nt:=(tan%+§tan’g!), if §%’=ﬂ;

which is the expression required. From this it is evidently
easy to calculate the time of describing any arc of the orbit.

The inverse problem of parabolic motion would require
the solution of the cubic equation just found for té,ng in terms
of the time. This however is easily obviated by the formation
of a table in which corresponding values of ¢ and g 8re cal-

culated on the supposition that n=1. If we wish then to
solve the inverse problem, all we have to do is to find the
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value of @ corresponding to the number at. This will be the
true ahomaly required, and the same table will of course
apply to any parabolic orbit.

163. If the orbit be not parabolic, but elliptic and of
very great excentricity, the result of the following direct
problem is sometimes of use.

To find the place of a comet at & given time in a very ex-
centric elliptic orbit.

dt _at(1-e)} 1
We have 0= Vi ({{Fecostp (§ 154).

Let D be the perihelion distance, D=a (1—e¢);

‘-_
dt _ Dt(1+e)t 83

Y= . - .
o Vi {(1 +¢) + (1~ ¢) tan® g}
Y M 1—e, 07
_msec é {1'—[- m tan 5}0 .
Expanding in powers of (1—e¢), and neglecting higher
powers of (1 —e) than the first; since e =1 nearly,
1/, 1—eyhre g 6
nt1=§(1—~—é—) fo S%‘é{l—(l-e)talfg}do

dtang

A 0 )
r_—.f:-w—{l+tan’g+(l—e) (;i—-—g-tan”-é—tan‘g)jdo;

whence

6, 1, ,6 101,&1,;6,)
ntxl=tan§}+§tan,§‘ +(1—e)(ztan-2-‘-z tan® —gtanﬂ—Q— (1)
The following is a convenient method of calculating the
value of 6, for a given value of ¢, .

Suppose @ to be at time ¢, the true anomaly of a comet
maving in a parabolic orbit of which D is the perihelion
distance ; then by § 162
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9.1 @
. nt1=ta.n~2-+§tan §- ............... (2).‘

Let 6, =0 + x, substitute in equation (1) and (sincé =z is
very’ smaﬂ) expand in powers of 2 by Taylor's Theorem: we
have approximately

g 1, ,6 1 6
ntx—tan—z--l-gtan g tgwsec g+ ..
1 [ 0 4 .?)
+Z(1—e)tan§(1—tan »2—-5tan 3):

From this, by means of (2), we obtain

- _ l -9 ’é ‘9)
=151 e)t’-n§(4—.3cos 5—6oos's).

To make, use of this fotmula, there must be added to the
table before mentioned, a column giving the values of i—?:é

corresponding to those of §. Taking then any value of ¢,
we seek in the second column the value of 8 for the number

nt, and then t..he value of -1-—?_—; for the value of 8 so found.

As the orbit is known, 1 —¢ is known, hence « and 7 are
known in terms of ¢, and the true anomaly, or

9% z, is known.

164. Remark. In all that precedes we have supposed
for simplicity that the angle 6, which determines the position
of the particle, is measured from perihelion; and that =0,
t=0, together. 'Phis is not usually the case, but let & be
the longitude of the particle at time ¢, w that of the perihelion,
e the longitude of the particle at time ¢=0, or the Epoch as
it is generally called ; then at time ¢ the mean longitude is
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0

evidently nt+e¢, and the mean anomaly nt+e—~w. Hence
by oursprevious results

0 —w=nt+e—w+2esin (nt+e—w)
5, .
+7¢ sin 2 (nt + e — =) + &e.

r=af{l—ecos(nt+e—=m)+...},

which are the formule in general use; 6 being, as before
observed, the true longitude at time .

165. The time through any arc of a parabolic orbit, de-
scribed about the focus, may be expressed in terms of the chord
and cxtreme radii vectores of the arc.

Let », 6, r,, 6, be the co-ordinates of the extreme points,
¢ the chord, of the arc. Then, T being the required time, we

have (§ 162) .
8, 6, 1(, .6, ,g_‘)
nT—tanE"'—tan5‘+§(tan 3 tan 2‘ ,

or, a8 we may rite it for simplicity,
1
=4-1 +§ (& —1t)
1

= 3 (ts - tx) (3 + tx’ + tsg + ttts)

='§' G—t){A+e)+(1+ ) +(1+ tlts)}‘

- l cos 0,;91 '
Now 1+tlt,=——3——7 >
cos—‘;‘ cos §?

and in the triangle whose base is ¢, sides r,, ,, and vertical
angle 6,— 0,, we have by Trigonometry
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cos 9,;—01= /8 (s —c)

pyrl (where 8=
1's

[/ .0
Also, r‘=dsec’-§', r, =d scc 7;.

n+n+%
2 J/°

Hence, 1+¢t,= %q/{s (s—¢)}.

And f,—t =M1+ +1+t =2 (1+11)}

=/ Sl —24fs =)

=¢§[2s-c-zv{s (= ))]
= J7 e -0,

Also 1+t,’+1+t:+1+t1§=}i[rl+r,+~/{s(s—c)}]

=-:-i[2s—c+«/{s (s—c)})-
1

Hence nT=.-3di Ws=w(s—c)} {s+Wsn(s—A+ (s—c)}

=‘é%l—* (st = (s—o)b).

Substituting this, and the values of s, (s — ¢), We have

1 “,
T=gmlttntot—t+n—of)
In this invest;gation we have supposed the arc mnot to-
inglpde the perihelion; if it should do so we must take the
sy of the radicals as the value of 7 .-
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166. It may be shewn in a similar manner that the time
of describing about the focus an arc of an ellipse or hyperbola
whose chorﬁ and extreme radii vectores are given, may be
expregsed in terms of these quantities and the axis major
alone. TFor the proof we must refer to the Mécanique Cé-
leste, or to Pontécoulant’s Systéme du Monde.

It may also be shewn, in much the same manner, that the
ratio of the area described in a given time, to that of the
triangle formed by the chord and extreme radii vectores, may
be expressed independently of the parameter of the path.

EXAMPLES.

(1) If the L)erihclion distance of a comet's orbit Je § of
the radius of the Earth’s orbit suppgsed circular, find the
number of days the comet will remain within the Earth’s
orbit, ‘ .

(2) Tf a comet describe 90° from perihelion in 100 days,
compare its perihelion distance with the distance of a planet
which describes its circular orbit in 942 days.

(3) Shew dow to divide a planet's elliptic orbit by a
diameter, so that the times of describing the two parts are
as n: 1, and find in what cases only one such line can be

drawn.

(4) In the case of planets and comets prove the following
formulz, the letters being the same as in the text,

r%w«/(l—e’);
%sin():i(lé:ﬂ (u—ut);

log2=—log @+
— 2 (A cos u + FA* cos 2u + I\ cos Bu + &c.)
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(8) Abody describes an ellipse: prove that the times of

describing the two parts, into which the orbit is divided

. by the axis minor, are to one another as 7 + 2¢ is to 7 — 2e,
where e is the excentricity of the ellipse. .

(6) If Pp, Qg be chords parallel to the axis major of an
elliptic orbit, shew that the difference of the times through
the arcs PQ), pq varies as the distance between the chords.

(7) If a comet whose orbit is inclined to the plane of
the ecliptic were observed to pass over the Sun’s dise, and
three months after to strike the planet Mars, determine its
distance from the Earth at the first observation, the Earth
and Mars describing about the Sun circles in the same plane
whose radii are as 2 : 3.

(8) Shew that the arithmetic mean of the distances of a
planet from the Sun, at equal indefinitely small intervals of

time, is"
‘ e
a (1 + ‘2-.) .

(9) When a body desctibes an ellipse under the action
of a force in the focus 8, if I be the other focus, the square
of the velocity at P varies as <SP

(10) The time through an arc of a parabolic orbit bounded
by a focal chord cc (chord)t,

(11) If a circle be described passing through the focus
and vertex of a parabolic orbit, and also through the position
of the moving particle at cach instant, shew that its center
describes with uniform velocity a straight line bisecting at
right angles the perihelion distance.

(12) Shew that the velocity of a comet perpendicular to
the major axis varies inversely as its radius vector.

(18) D,, D, being two distances of a comet, on opposite
gides of perihelion, including a known angle, shew that the
position of perihelion may be found from the equation.

A/D,—N/-Dg

m == tan } (sum of true anomalies) .tan } (difference).
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(14), In what point of all conic sections is the paracentric
velocity a maximum? Shew that in such a case the velocity
is to that in a circle at the same distance as the distance is to .
the perpendicular on the tangent. ‘

(15) In an elliptic orbit find the relation between the
mean angular velocity about the center of force and the
angular velocit{ about the other focus, and thence shegv that
when ¢ is small the latter is nearly uniform.

(16) Ifa, B be the greatest and least angular velocities
in an ellipse about the focus, the mean angular velocity is

2V(«°8")
Vat+yB®
(17) Find the maximum value of §—n¢ in an elliptic

orbit, and develop it in powers of e, shewing that it cannot
contain even powers, ‘

If ® be this quantity,

11 599¢°

®=2e+§.~;~);+mﬁ+&c.
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CHAPTER VIL

CONSTRAINED MOTION.
.

167. WE come now to the case of the motion of a particle
subject to the action not only of given forces, but of undeter-
mined pressures or tensions. Such cases occur when the par-
ticle is attached to a fixed, or moving, point by means of a
rod or string, and when it is forced to move on a curve or
surface. \

In applying to a problem of this kind the general cquations
of motion of a free particle, we must assume dircctions and
intensitfes for the unkmown forces, treating them then as
known, and it will always be found that the geomectrical
circumstances of the motion will furnish the resuisite number
of additional equations forethe determination of all the un-
known quantities in terms of the time.

One case of this kind has been already treated of (§ 79),
namely, that of a particle moving on an inclined plane under
the action of gravity. There the undetermined force is the
pressure on the plane, which however is evidently constant,
and equal to the resolved part of the particle’s weight per-
pendicular tosthe plane.

The laws of kinetic friction are but imperfectly known,
and the few investigations which will be given of motion on a

 rougl curve or surface are of very sliglit importance.

J168. The simplest case is

A particle is constrained to move on a given smooth plane
curve, under the action of given forces in the plane of the curve,
to determine the motion.

Taking rectangular axes in this plane, the forces may be
resolved into two, X, Y, parallel respectively to the axes of
and y. Inaddition there will be the force R,the mutual pres-
sure between' the curve and particle, which evidently acts in
the normal to the curve since there is no friction.
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Let-P be the position of the particle at the time ¢; and let

y Y o7
Vs
R

——>»X

the forces X, Y, B, act as in the figdre, Draw PT a fan"ent
to the constrmnmg curve at P. Then if PTz =6, we have
dy dz
sin 0——(5 , cos-O-as—
The mass of the particle being, as before, taken as umty,
the equations of motion are

dx dy

b7 =X—-Rsinf=X-R- AT (1),
dy _ 030 = dw
B-E-Y+Rcose-Y+Itds ............... ().

These two equations, together with the equation to the
given curve, are sufficient to determme the motion completely.

To eliminate 2, multiply (1) by 7’ @ by ‘;t’ add add.
We. thus obtain,

dyde _dxdy
("‘“"e B d=d dt)
deds Ay dy_ded's de +TY .(3), -

ddr A A dde dt
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;w‘h } We may writeit, =

’ o )

ok ‘might at once have been obtained by e.xpressiﬁg the

geleration along the tangent.

i+ Niowy it has been shewn in Chap, II. that if the forces re-,
vedinto. X and Y are such as occur in nature, A

Come Xz + Ydy !

is the complete differential of some function ¢ (z, y). See §73.
Integrating (3) on this hypothesis, we have

% {(%")’-r (‘c%’)’} ==g= G (@ 3) + Corrrrerrerenns (4),

supposing v to represent the efitire velocity of the particle at
time ¢.

‘Imagine the particle to start at the time ¢=0, from a point
wﬁose co-ordinates are a, b, with a velocity V.

We havee from (4),

s7'=4@H+C;

N

and therefore 3 o' = 2 7"+ (2, 3) =~ (@, 8) cvveee ®).

' This shews that a particle, constrained to move under the
action of thes forces X, ¥, along any path whatever from the
point a, b to the poist 2, y, has on arriving at the latter point,
the square of its velecity increased by a guantity entirely in-
dependent of the path pursued: another simple chse of the
conservation of energy. :

J189.  Tb find the pressure on the curve.
) Mulsiply eqnation (1) by % , (2) by % , and:subtract.
Then, noticing that. '
A E At
¥ Tt il
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we have
dyd’z ded'y dy dz ds
ww-mad-xa Ya B

But (Diff. Cale.) if p be the radius of curvatureff thé con-
straining curve at the point z, y,

(@)

Y 4

dt d¢*  dt d¢*
Transforming by means of this, the above equation becomes

_@X=X¢ﬁ'_ yd_"f_R;

ds “eds

o, R=Xsin0—-.Ycos0+-Z:..................(G)é

The two parts of which this expression consists are, evi-
dently, the resolved pressure on the curve produced by the
forces X and Y, and the pressure due to the velocity only.

170. To find the point where the particle will leave the
constraining curve.

For this it is evident that wé have gdly to imt R=0,a8
then the motion will be free.

This eonditi?n gives us

o .
;=Y0080—Xam0. ¢

N N

%
Now flets J# be the resultant of X and ¥, then if @ be the
chord of eprvature at P parallel to F, @ is gvidently
{ *

=2p sin FRT" ' 2p.sin (FPX~ )

g, Yeon8—Xsind
SR> < TR
¥. D, 11,
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ol S,

EE e

Q
=F-4‘.

*  Comparing this with the formula $2*=/#s (§ 77), we sce
-that the particle will leave the curve at a point where its

"Oelocity is suck as would be produced by, the resultant force
then acting on 1t, if continued constant during s fall from rest
through a szaace equal to } of the chord of curvature parallel
to that resultant,

171. The formule just given are much simplified when
we consider gravity to be the only force.acting. Taking in
this case the axis of y vertically upwards, our icrces become

. X=0and Y=-g;
and the velocity, and the pressure on the curve, are given by

WiVi=g(k-g), if v=V wheny=F;
2
and R=gcos 8 + % .

Suppose we change the origin to the point from which the
particle’s motion is supposed to commence ; and take the axis
of y vertically downwards; we shall evidently have

30 =4V =gy
and if the particle start from rest

' %’0‘ = gy.

This shews that the welocity depends merely on the
distance beneath a horizontal p’l,ane through' the " original
position of rest. Hence, whatever be the nature of the curve
on which a particle slides under the action of gravity, its
motion will always be in the same direction till it rises to
the same level as that to the fall from which ity velocity is
-due, _If it cannot do 80, its motion will be constantly in the
‘same direction; if it'can, its velocity will become /:éerp, and the
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i

particle will then either come permanently to rest, or retars
tc:j:e boint from which it started. S

172.  To find the time of a particle’s sliding down any arc
of a curve, from rest at the upper extremity of the are.

Taking the upper extremity as origin and the axis of y -
vertically downwards; we have

ds
G =v=vCm);

n idf dy
and ¢ = Tl e, (1)
toJo W(299)

if y, be the vertical co-ordinate of the lower extremity of the
given arc. '

Or, taking the lower point as origin, and axis of y dpwards,,
we have, since in this case v tends to decrease s, ! e

[ho [ %
{ = e————— == ..-..‘o 2 .
PRy (-t e V29 (Y @)

178. Ex. 7o find the time of descending from rest at any
point of an inverted cycloid to the vertew.

¥

A\ .
Y
= : ~

; , .

112
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Taking formula (2); since in this case the vertex is origin,
and axis that of 4, we have from the figure

8= 0P=2 chord OP'=2y/(40.0N)=24/(2ay),*
if a be the radius of the generating circle.
| b_ [
a Ny’
dy
d 1= \/2 n__dy
BTV ), Vs

= <C+ /\/2 VerS" ‘2‘!‘{')"1
g i'o
— /2.
A g 4

which is independent of y,, that is, of the point from which the
patticle begias its descent.’

Hence,

The reason of this remarkable property will be more
easily seen if we take the formula for the acceleration in the
direction of the arc. 'We have thus

% = —g gin (P’ Ox)
(since OP' is parallel to the’ tangenf to the cycloid at P)

..—_--gsm(OAP’)
__OoFP
= iz
=—gz‘-’

, 9 mlerataon is proportwnal to the dlstance from the
»ﬁrte x measured along the cycloid. Com 1Yarmg' this with
 §§.88—85, the réason of the abo‘ve result will be evident.
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- 174, A particle acted on by gravity moves in an arc of a -,
vertical circle, to determine the motion.

Taking the v,el;tical diameter as axis of y, and its lower
extremity as origin, the equation to the circle is

gy (2ay - ).

A3

Hence d—"= S —
dy  V(2ay—y)
ds

But 2 = vi2g (7.~ ),
if we suppose the motion to commence at the point defined
by y,; and therefore
e : @
dy— W29) Y-y Lay -y} T

If we put y=y,sin’d, we have for the time of falling
through any arc ' °

= '\/t_z f - df
g Y e ’
'\/ (1 95 Sin 0)
an elliptic integral of the first order, whose value for given
limits can only be approximated to; except when y, =2a,

that is, when the velocity is that due to a fall from the
highest point of the circle. This case we will soon consider

§ 176).
(1) may be put in the form

a__1 w ___}*__ﬁ(l_zz_)‘*
Cdy 2N g vy -Y) 2a '
=_..1.\/g 1 {1+1 g&)+l‘3' ,‘.:y.“ .
2N g (y,y—y’); 2(2“ Ry .4(‘2«1)

AL (0 ),

each term of which may be integrated separately.
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qose it be required to determine the txme of Jescent
to the owest point; the limits of y arc y, and 0. If we
notice that

f y"dy 2n 1 f ""de/ ““«l(?/l?/—:v'):
V(yy - J) RN »
yndy 271 1 (U ?/n-l‘h,

whence —_ = ;
y,V(y,y—y) o ) Ny -
0

while ——-'53-’-—,-=(vers-*-’!+ 0) S
% ‘\/(Z/x."/ ".’/) KA %N
*_ydy _ 1.8.5..(2-1)

we have wNwy-9) 2.4.6...20

Henc.:e the time of fall to the lowest point is

R VA A
Yl

‘When the arc of vibration is very small, we have

mw a
"=/

and the time of a complete oscillation is

' -‘271'«/2.
g

The value of ¢, coincides with. that in a eycloid, § 173, if we
observe that i in the cycloid the quantity @ 1s 4 times as great
as in the circle. . .

176. -The nexj approximation gives, as a correction to
the period of a quarter oscillation, the expression

s
g 8a’.
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whose ratio to that period is

g{i =(} chord“ semi-angle of Bscillation)’;

Thus, if the particle oscillate through an arc whose chord is

5 on each side of the vertical, the time of oscillation given
Ly the formula 7 , /= will be incorrect by about 1—6_16_:) of its
amount, in defect.

When the particle is supposed to be suspended by a
thread without weight, it becomes what is termed a simple
peadulon,  Such a machine can exist only in theory, but
Dynamics furnishes us with the means of reducing the calcu-
lation of the motion of such a pendulum as we can construct,
to that of the simple pendulum. It is evident that by its
means we may determine the value of g, if the lengdth of the .
pendulum, its arc of oscillation, and the number of vibrations
1t makes in a given time, be known. Since gravity decreases
(according to a known law) as We ascend above the Earth’s
surface, the comparison of the times of vibratich of the same
pendulum on the top of a mountain and at its base would
give approximately the height. One of the most important
applications of the pendulum is that made by Newton. Itis
evident that if the weight of a body be not proportional to its
mass, the value of ¢g-will be different for different materials.
JHence the fact that pendulums of the same length vibrate in
~equal times at the same place whatever be the matttr of which
the bob is made, proves, by means of the above formula, the
truth of one part of the Law of Gravitation, § 149 : viz. that,
ceteris paribus, the attraction exerted by one body on another
is proportional to the quantity of matter it containg, and inde-
pendent of its quality. .

176. Or we may take the equation for the acceleration
along the arc. .

Suppose O to be the center, 04 the vertical radius, B the
point whence the particle starts with velocity aw, at time
¢t =0; Pits position at time 2.

Let A40B=0, AOP=6, OA=a.
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Then ¥ S =—gsiné.
But s =af.

Multiplying by 2 ‘g and integrating, we have

(Zf) 0+ =L cos 6.

But %9=w, When.0=az°

hence 4-—— ,\/ N/cosﬂ —cosa+ - ') ......... 2. .

~ This cannot be integrated without elliptic functions unless
W aw®
o —cosa=1;

29

oi' a’e* =2ga.(1 + cos a) ;

Adp ?l’nﬂsgs the vélocity of projection at B, be that due to a fall
t%l‘&ﬁ@‘*ﬂ}e difference of altmxdes of B and the highest point
of the circle. Sl
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In this case,

Do /9 c0s?

dt a 27

From this we have ‘
. 0
14 sin -
q 2

/'— =log.0\/

Va 1 — sin -

. 2
But t=0, 6 =a, together,

/)
—sm2 ‘1+sm 2)

therefore \/ =log, \/ 7R e (3),
14 sm —sing )

which determines the motion completely

From the remark in § 174, it is evident that, after redch-
ing 4, the pay .7 will ascend the other semlcxrcle with a
ve outy just si'ticient to carry it to the hlghest point ; the
time, 7/, at which it will reach that point after leavmg 4,
will be found by patting '

b=m, a=é, in (3).

This gives /4 7= log. = o;

ar, the particle will continually appreach the highest pomt :
but never reach it.

177. To find the pressure on the circle.
_cmose R directed outwqxjds- from the ceater, then

JR: +gcos€ ,
=2g(cos& cos d) + aw* +ycose* by (é),v

3

= 3¢ cos 6 — 2g cos &+ aw’.



]
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Suppose the particle to have been projected from {, with
velocity aw; then a=0; .

and R =3¢ cos§ — 2+ aa’
This expression for R admits of the valuc zero if
aw’ P 5g, or ae 3 «/(5ga).

It may happen . however that the points thus found may
not lie within the arc which the particle passes over.

There are positions of rest (§171) when aw 3 24//ga).
Now, in order that the points where 22 =0 may lic within the
limits of oscillation, the value of cos 6, for the former, must
not be less than that for the latter;

. 29 —aw’

9 — aew®
or, 739 A .

27

This condition can only be satisfied by 27 — aw® vanishing
or becoming negative; thaf is, by

ow < /(2ga).

. Hence, if the velocity of projection from the lowest point
do not fall short of 4/(2¢a), and do not exceed 4/(5ga), there

<

. will be a poir}t in the patjy at which R =0; and if the particle

-

be moving on the coficave side of a smooth circle, or be
attathed by a string to a fixed point, the circular motion will
cease at that point; the particle will fall off the circle in the
one case, and the string: will cease to be stretched in the

other.
Beyond these limits it is evident that we shall have, for

. velocity of projection > 4/(5¢w) continuous revolutiongin the

circle, and for velocity of projection < #/(2ga) oscillations about
the lowest point. ' ' o

Also by what we have before shewn, if the*ipirficle be
constrained by a circular tube, it will oscillate if the velocity
at' the lowest point is less than 2 4/(ga): if that welocity be
equal to 2 4/(ga) the particle-will reach the highest point after
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the lapse of an infinite time; and if greater than 2 4/(ga) it will
revolve cortinuously.

178. A particle falls from rest at a Iwzqkt k d-wn the
semicubical parabola whose equation is ax’=y', the axis of y
being vertical ; to determine the motion.

Here, g; =—+/{2g (k—y)}, since gravity tends to diminish s.

s/ 1+ 3]y 0+ 250 042

dt da+9%
Henee, &y =~ \/ 8ga (k—y)’

and the time of fall to a point where y= lis

{a + 97/
=yl

Lctgix 'k:—'/,thehmltsofeare«/ (k— l) and 0;
) + 9y

AR ' .
Ok +da [T 2d0
3 4/ (8ga) J, (14 6’2’ :

_ .. 4 JoE=10) .
Put 0= tan ¢, limits arc tan Tavol and 0, and

and therefore ¢, =

et /3
9% + 4a o
b=, et ]
-1

_Yetdal L AE=D A da+ 90 |
~ 34/(8ga) PR A R ’
4a+ 91

which determines ¢, for any values of X and Z.



172 CONSTRAINED MOTION.

If the time of fall to the cusp at the origin be reguired,
l=0, and

_ 9% +4a 3 [k 64/(ak)
= 3V(Egu) {ta“ atar 9k}

179. A particle acted on by gravity W prq;ected Jrom the
vertex, along a smooth parabola whose azxis 18 vertical and ver-
tew upwards ; to determine the motion and the pressure on the
curve.

Let z* =4ay be the equation, the axis of y being vertically
downwards, and the vertex the origin. Then

(%) =v'=V"+2gy,

where V is the given velocxty at the vertex. Suppose it due
to a height , then

(%:)Q 9G4 ) crrrrrrerersrrrernenenes ().

by the eqfiation to the curve. -

dy\' _ 29y (1+3)
Hence' (dt) at+y ’

and, if ¢, be the time of fall to a depth ,

h= (zy)f\/fliz/) &

which is thus determined.

For the pressure on the curve, supposmg it positive when
Jrom the axis, ..
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R= g -9 %’f
) 2?(;1:;3* -9(5% yy
a

_ (-ad
(@+y)t

If 1> a, R is positive, or the particle will move on the
concave side of the curve; if [ <a, R is negative, and the
particle moves on the convex side. In each of these cases
the pressure is inversely as the §™ power of the distance
below the directrix.

If 1= a, that is if the velocity ¢f projection at the vertex
be that due to a fall from the directrix, £ is zero the whole
way, or the particle moves frecly, as we might have infesred
from the results of Chap. IV.

180. 7o find a curve such that a particle under the action
of gravity will descend any arc of it from a given point, in the
same time as it takes to descend the chord of that arc.

Take the vertical through the given point as the initial
line, then if p, 6 be the polar co-ordinates of a point in the
curve, the given point being pole, the conditiéns of the pro-
blem give at once .

- ds .
f, %JO ~ 2
oV (2gpcost) A gcos’

6, being the inclination to the vertical of the tangent at the
point of departure. ' g

.. Or, differentiating with respect to 9,
| ds dp
db _v2 { db + A/p sin
V@pcos0) 2 W(pcosb) ' (cos 1)
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ds _dp
Hence 6= ge Pt 0.

But (%)L P+ (%)’

Eliminating s between these equations, and reducing, we

Obtain . »

dp _cos20d6

Y Pt il

p sin 260
whose integral is

log,p*=log, C sin 26,
that is, p* = a®sin 26,

the Lemniscate of Bernoulli, the node being the pole, and a
tangent gf that point the initial line.

181. To find a curve such that if a particle, acted on by
gravity, fall down it through a vertical space h, starting from
the vertex with velocity due to a height h, the time of full will
be independent of h.

Let the axis of y be vertically downwards, then evidently
the time required is

ds
b= .,h"v'{é;' T

Let %=¢(y) be the required differential equation to
the curve, ' .
o1 "oy dy
GRS

1 f‘qS‘(kz) wdz
Vg, ViIrs

if y=ha.

Now %“is to be identically zero, hence we have

‘ he ¢ (ha) =~} (he),
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gy _dy
¢ (y) 2y’

.y _ds
i whence ¢(y) =Cy = &’
which shews the curve to be a cycloid, whose base is hori-
zontal and vgriex upwards. !

Y 182. Two points being given, whick are neither in a ver-
tical nor in a horizontal line, to find the curve joining them,
down which a particle sliding under the action of gravity, and
starting from rest at the higher, will reach the other in the
least possible time.

The curve must evidently lie in the vertical plane passing
through the points. Ior suppose it not to lic in that plane,
project it on the plane, and call corresponding elenients of
the curve and 1ts. projection ¢ and ¢'.  Then if a particle slide
down tl ¢ projected curve its velocity at ¢’ will be the same
as the velocity in the other at o. *But o is never less than o,
and is generally greater.  lence the time through ¢’ is gene-
rally less than that through o, and never greater. 'That is,
the whole time of falling through -the projected curve is less
than that through the curve itself. Or the required curve
lies in the vertical plane through the points.

Taking the axes of z and y, horizontal, and vertically
downwards, respectively, from the starting point; if &, be the
abscissa of the other point, the time of descent will be

ds
' = % dx .
°Jy Mi2gy)’

tﬁf’»«/ﬂ +7)

or, writing %= 7

o Vgy) o
Applying the rules of the Calculus of Variations, we have,
2 ’ : .
since ¥ or '\/(i/‘; ) is & function of y and p, the condition

for a minimum,
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. ” ‘ P d‘
V() + O

the differential coeffictent being partial.

o NUHP) P
This gives =™ = v+ 7 T

.

[

_or HyN(1+p" =—la=q/a suppose.

Hence é_'__.ﬂlj_ﬂﬂ/,_e__,
dy P a—y

the differential equation to a cycloid, the origin being a cusp

and the base the axis of a.

Thid is a problem celebrated in the history of Dynamics.
The cycloid has received on account of this property the name
of* Brachistochrone. Farther on we pro}gose to investigate
the nature and ‘some of the proggrties of Brachistochrones for
other forces*besides gravity. For an investigation not in~
volving the Calculus of Variations see Appendix.

188. 7o find the curve down which if a particle, projected
with a given velocity, slide under the action of gravity, w will
descend equal vertical apacei in}egual times.

Here,we' have, taking the”axis of @ horizontal, and that
of y vertically downwards, "
-ds
: ‘ i Vg
if the velocity i tha&.dm?;@ a fall from the &xis of z.

ey, . - e S ‘.’5” ) . £y
¢ Also by conditiqn“f—d—t’—_e const. = 4/ (2gh), suppose.
" " X “ ‘j A

3“’“""‘;;%."'-‘ %

\/a
ks

L8
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2 {(y;k)’}{

01', z+0='s" ?

the sgmicubical parabola.

If the horvzontal velocity 1s to be constant, we have
dz ds d, —k o
e T B X3 WL

and therefore 24k W/(y—-k)=z+ C;

a parabola with its axis vertical and vertex upwards; as in-
deed we might have forcseen from the results of Chap. IV,

'/ 184. A particle moves on a smooth plane curve under
the action of a force directed to a fixeg center in the plane of the .
curve; to determine the motion. R

&

Let »=£(6) be the g;olar equation of the constraintng
curve about the center of force o5 pole, and let P=¢ (r) be
the central repulsive force on a particle whose Jistance from
the center is 7. -

Resolving along the tangent at any point,

di
(AN a?s--:%,"" ..... dscccccesess ' (l).

Hence, (§>t=v’=0+2f¢(r)dr....... ..... @) .

Equation (2) contains the complete solution of the problem
.80 far as the motion is concen;ed; since, by means of the
equation to the curve, either » or 8 may be eliminated from
it, and if the resulting differential eqmation be integrable, it
will give s or 7 in térms of &

For theypressure on the cufve. Résolving along the
onrmal at any point, p being the radius of curvature, we
ave

! A
;+%‘ Rnlc- ----------- ecesnes (3),
’ - 12

T. D.
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an expression which by means of the foregoirig equations will .
give R in terms of ¢ or 7.

Hence the solution is complete.
185. A particle, initially at rest at a point of the loga-
rithmic spiral t = ae™® whose radius vector 1s b, moves on the

curve ander the action of an attracting center of gorce o« dis-
tance, situated at 'the pole; to determine the motion.

Here %25 =— ur %;

’ .

therefore (g:) = C—pur’,
and 0= C—ub’,

©d:
hence a—'—: = {u B -}

e )
&)

'We have therefore dr_ nA/p

=TT
whence r=bcos{ nypt +ﬁ}.

V(L +)
At time ¢=0, b=bcos B; which gives 8=0,
- nypt
and finally r-bcosv(l_}-n,) 2

whig; determines the position of the particle at * time,
‘When it reaches the pole »=0; the required interval is

Rt
therefore . t= "Lﬂli’l’l ‘ )
" B 2n V“ L]
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For the pressure on the curve,

v rdB

= ; —pr T

—pl=r) _ pr
rN(l+2") N1+

_ p D=2

VA

Ience the pressure is towards the pole when the motion
commences, becomes zero when the particle’s distance from
the pole is diminished in the ratio of 72’ and then is di-
rected from the pole for the rest of the motion.

. . . ‘
, 186. When the constraining curve is one of double cur-
vature.

All we know directly about R is that it is perpendicular
to the tangent line at any point.

Resolve then the given forces acting upon the particle into
three, one, S, along the tangent, which in all cases in nature
will be a function of z, y, z and therefore of s; another, T
in the line of intersection of the normal and osculating planes
(or radius of absolute curvature); and the thixd, P, perpen-
dicular to each of the other two. .

' Let the resolved parts of B in the directions of 7" ‘and
(I;’Be R, B, Then the acceleration ,long the tangent is
s

2B’ and therefore .

d’s

"d"i‘i‘—s.oo-.'.cuo..ouoo.- ......... (1)0
This eqgtion together with the two tg the curve is sufficient

to determi®®the motion completely.
+ Now the particle at any point of its path may be considered
i-as moving in the oscilating planc. Hence, by our'investiga-
. tion for motion on a plane curve, § 169, if p be the radius of
absolute curvature, v the velocity,
- ' 12—2

r
‘
.
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”i ’ .
R“:F — T --------------- v (2),,‘

T being considered positive when it acts towards the center
of absolute curvature. :

Now R, is the force which prevents P's withdrawing the
particle from the osculating plane; and therefore

By==Poerrevererernns 3),

(2) and (3) give the resolved parts of the pressure on the
curve.

Also B=#(R!+ ), and makes an angle=tan™ Gi")
with the osculating plane. !

~ 187. In Art. 173 we arrived at the remarkable property
of the cycloid, that a particle falling under the action of
gravity from rest at any poiut of the curve reaches the lowest
oint in the' same time, whatever be the point of the curve
rom which it starts. Let us find for what forces a sitmilar
property 18 possessed by any other given curve.

Let the forces resolved along the curve have a component
=¢'(s), where s is the distance at any instant from some
fixed point: then,

d’s ,
EF=S=-¢(8) ..................... (l);

and if'the particle starts at a distance k from the fixed point,
the wvelocity =0 when s=F%. Hence the corrected integral
of (1) is . ‘

(@Y=21 0 -4 };

and we have 427 = : m (’;)__d; i ;

if 7 he the time of fall to the fixed point, which is by

hypothesis to be independent of .
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Put s=rkz, the limits of # are 1 and 0, and

A2 =

f ¢ ®) - ¢ ()}t
and that this ﬁ:ay be independent of %,

¢ (k) — ¢ (k2) = Ef (2) ;

which gives %@ -2t %é::_)_ =f(2).
Hence, by inspection, ﬁ—)- = gk;,-’ ............ . (2).

I bo k@' (R)—2¢'(h2)
¢ (B) — ¢ (k2)} Sism_p @,
(k) — ¢ (k2) g

which must be identically equal to nothing. -

Or thus, ¥ 2 dk f

Henco { (K) —% ¢/ (k) ~ [ (ke) — = ¢/ (kz)} =0
identically, which can only be the case if
$@)-3$@)=0"

(or if ¢ (2) = constant ; which we evidently need not consider,
as in this case there would be no acceleration. )

. (w) L@ _ 20"

Hence — s
which gives, as above, %@—)--- C'+ g,, .......... eeennees @),

or ¢(x)=C4da+C",
and ¢'(z) = Cax.
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d’s '
Hence, by (1), 3=8==Cs ccooeeers 3),
de L’
that is, .the resolved force along the curve must be propor-
tional to the arcual distance from the fixed point.

N 188. We might have arrived at the same conclusion, but
not quite so satisfactorily, thus,

S ods ‘é__(_f)_ I_?,_?_ ff’_’(s)]"
V2= O{Mk)}g[u%ﬂk)+...+2h(Ln), () +]

Now the condition that the (n + 1)™ term when integrated
between the limits should not contain % is that

f. {i ((42)}}{: should be independent of .

This can only be the ‘case if {¢ ()1}, and of course also
{¢ (2)}3, be of the same dimensions as ds, and thercfore as s.

« Hence take {¢(s)} = C"s,
or ¢(s)=C's;
and we have ¢'(s) = Cs, as before.

Hence, if X, Y, Z be the impressed forces,

dzx dy dz _
E‘FYz +.Z‘¢'i‘s——08

X

is the condition they must satisfy at every point «, y, z of the
given curve. For such forces the given curve is said to be a
Tautochrone. : ,

By equation (3) § 187, the time of descent is

o a -
. T—m- Hence 0—21—,.
180, Do find the Brachistochrone for a_particle subjected
to the action of any forces which make Xdx + Ydy +Zdz o
complete differential. -
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Geperally ¢= f -‘? , between proper limits, is to be a mini-
mum; and therefore, taking its variation, :

8t=fv8ds;:dsb‘z{=

But, here, 3 o* = (Xdz + Ydy+ Z22);

which gives vdv = X3z + Y3y + 23z,

or dsSv= (X8z+ Y8y + Z82) dt cevvvvvrnnane. @)
Again d¢* =do* + dy’ + d2°,
a8 o ds— - dy dz )
and (TtSds-—vb‘ds-—di de-l-‘:h— gdy-l' Jt OdZ vrereirnns \3).

Hence (1) becomes, by (2) arrd (3), and since & and 8 fol-
low the commutative law,

C[lde ., dy .  d
0= [ (5 -+ 3 diy + 5, doe)
..f%,(XSx-i-YSy-L—ZBz)dt

_[l(ds, W5, %
=[5 (G Gr+ G )]

1 /dx dy dz
G+ o)

Jal(43)+ 3 62 Hs
STEE

by integrating the first term It)g parts. The integrated terms
in [ ] belong to the superior, those in {} to the inferior, limit.
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But, if the termitial points are given, we hdve at both limits
A dx=0, Sy=0, 8z =0, '

and_therefore the terms independent of the integral «sign

vanish. In order that the integral may be identically zero,
we must have

d(d) X

¢ dt (v“ dat) " o

with similar expressions in y and 2. The elimination of ¢,

and v or g—':, from these equations will ‘give us two differential

equations to the curve required, the forces X, Y, Z being by
hypothesis functions of z, ¥, z only.

But without getting rid of v we may prove two properties
common to all such Brachistochrones.

Eliminating ¢ from (4) we have
' d(ldx\ X
ARl

or' v 'z _ v dv de
ds “dsds
with similar expressions in y and z.

» Multiplying these in order by A, u, » and adding; if we
take A, p, v such that ,

+X =0, (),

dz  d d’
*Td§+#zgi+’jz,7f=°} o
dz b cl'?/ dz I D XYY TN »
A -as-‘j-}lwg; +v P
we shall have also : \
AX +puY +0Z2=0.0ccreunnsen. creenens (7).

L]

Now (6) shews that the line whose direction cosines are as
A v is yp?aﬁﬂicnlar to the radius of absolute curvature of
the path; and also to the tangent ; ‘that is, it is normal to the
oscy. lane. Also bg (7) the same line is perpendicular
to the resultant of X, ¥, Z o
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Ilence, the dsculating plane at any point contains the re-
sultant of the tmpressed forces. :

Again, if p be the radius of absolute curvature,

d%r\2 d\* d?2\%) -}
p={G)+ @)+ @)}
and its direction cosines are
dx dy d
Pt P P
therefore, multiplying equations (5) by
d’xz d d%
'a_g? ) Z?‘ ’ "d;a ’
and adding, noting that, since

(& + @+ G-

ded's dydy dad's_
ds ds’ * dsds® " dsds
we obtain the equation

o & LAy, d%
—=-—(sz§+Yp—d;'¥+Zp-d§)......°....,..(8),

which expresses that the portion of the pressure due to the ve-
Tocity is equal to that produced by the tmpressed forces.

we have
0,

' 190, If the terminal points are not definitely assigned -

(if, for instance, it be required to find the line of swiftest
descent from one given curve to another) we have. no longer

Sx=0, 8y =0, Se=0

at the limits; but, with the requisite modifitations, the pro-
cess in 1§ 189 enables us to find the proper conditions in any
case. These questions, however, belong rather to Calculus of
Variations than to Kinetics. -
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Thus, suppose that the final point of the path is to lie on

Flz, y,2)=0,
we have iF iF
i dr g
—;ﬁs‘z+@8y+% 82‘,=0 ...... secssccacss (1).

Algo that [ ] may vanish, which is necessary in order that
8t may be zero, we must have

dx dy dz
E&D'{"'Jt‘ay'*'?ié&?:o ................. (2).

Now the only relation between 8x, 8y and 8z is (1), to
which (2) must therefore be equivalent: hence

de dy dz dF dF dF
cdt " dt T dt T dedy” dz”

These equations thow that the moving particle meets
the terminal surface at right angles. A similar condition is
easily seen to hold if the imtial point of the path is also to lie
on a given surface, provided the whole energy be given and
the given surface be an equipotential one. 1If it be not equi-

otential, terms depending on 3z, 8y,, 6z,, will appear in the
integral and must be taken along with {}.

If a terminal point is to lic in a given curve the condition
is to be determined in a similar manner.
: :

181. ' 4 fartz'ck moves under the action of given forces on
a given smooth surface; to determine the motion, and the pres-
sure on the surface. - ‘

Let
Fl@,9,2) =0 .ceeieunnrernninnncenna (1),

be the equation to the surface, B the force acting in the nor-
mal to the surface, which is the only effect of the constraint.
Then if A, u, v be its direction cosines, we know that

(&)

e )

A= (@),
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with similar exprdssions for u and »; the differential coefficients
being partial.

If X, Y, Z be the impressed forces, our equations of motion
are, evidently,

d*x b

'—JF—X+R7»

'y _

7 Rl A T G 3).
d*z

—(-lF=Z+RV ]

Multiplying equations (3) respectively by
& dy de
dt’ dt’ dt’
and adding, we obtain )
ded'z dydy dedz_1d ()"
de dé T dt df T dt df T 2 de
_yd dy ,dz
_X—JZ+YE£+Z2Z .................... (4).

R disappears from this equation, for its coeffictent is

de dy  dz )
raTratr o .

and vanishes, becausc the line whose direction cosines are pro-

2’1:’ &c. being the tangent to the path, is per-
pendicular to the normal to the surface. L ‘

portional to

If we suppose‘ X, Y, Z to be such forces asoccur in nature,
(Chap. IL) the integral of (4) will be of the form,

=0 (2,9 2) +C.oveeerees RN () 8
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and the velocity at any point will depend ofly on the initial
circumstances of projection, and not on the form of the path
pursued.
To find R, multiply equations (3) in order by A; u, », add,
and observe that A*+ p*'+*=1. Wae thus obtain
LI LI S
e Magtrgptrgp T Art st VT
d’x _dz (ds\'  dx d’
&= 1) "5 T &
d’z  d d’z} .

d'z  dy K d'z_(ds
zzzz"'“aﬂ”zzf—(az) & tEa Y ad

Now, since

Y '{x
d dz

. dx dy _
for, evidently, A 7 e +v 5= 0.

But, if p be the radins of curvature of the normal section
through 8s, p, the radius of absolute curvature of the path, we
have, by Meunier’s Theorem,

dz " d d*%
~p (XP; st + pp, le?{ +vp, ‘d—s?) =Py

dz dy d%z_o
Hence A= tp 3?-4.,;-(.1?__;,

and the above equation becomes
. %’=x>~+ Yu+2Zv+B,
which gives the normal pressure on the surface.

192. 7o find the curve which the particle describes on the
surface. # '

For this purpose we must eliminate R from equations (3).
The result is .

d*z d'y - d’z
@ X w Y -~ -
— - — e .

two equations, between which if ¢ be eliminated, the result is
the differential equation to a second surface intersecting the
. first in the curve described. ' :

v
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_ 193, So far'for the general case, let us.now make par-
ticular hypotheses. :

If there be no impressed forces on the particle, we have
by (5§, v*=0, and equations (6) become, since in thi: case

d'z  d'z /ds\® d’z
e (E) =0%3, & &e,
Pz dy d
gs _ g8 _ds
P R

2 .
Now (—jl—‘;, &c. are proportional to the direction cosines of

the radius of absolute curvature of the path; A, u, » are those
of the normal to the surface. Hence those lines coirfeide, or
the normal to the surface lies in the osculating plane to the
path. N

But this is the property of the longest or &hortest line
joining two points on a surface, hence we have the following,

If a particle, subject to mo forces, move from one point to
another of a smooth surface, the length of the path described
will be a maximum or minimum.

This result will be afterwards deduced frora a different
principle (Chap. IX.). :

. 184. A particle moves on a surface of revolution, the only
Joree acting being gravity parallel to the.axis of the surface; to
determine the motion. :

Take the axis of the surface as that of z, the equation
may be written v

F (2,9, 2)=f(W&+y)}—2=0.
This may be put in the form ’

_ .f (P) -2=0,
if p be the distance of any point in the surface from the axis.
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Equations (6) become
d'z dy d%

de ar a9
- = e (D).

0% i)l
f(p)p f(p)P

The first two equal terms give us, for the motion referre
to a plane perpendicular to the axis, the equation

dy d'r
* e Y ="

But if 8 be the angle between the plane containing p an
the axis of z, and a fixed plane through that axis; we se
(§§ 22,.127) that this is equivalent to

- p %g =const. =R .ceeerrinniinnnn. (8).

& o dp ., dodO _hf(p) dp
Now a& =f(p) i =1"(o) a0 dt = Tt de”

dz 1* d (f(p) d
And therefore a—;=# 70 {%p—) EZ} .

But,¢in :zquations (7), multiply the numerator and deno
ménator of the first fraction by «, and those of the scconc
by y; then add their numerators and denominators to forn
those of a new fraction. . It will of course be equal to eithe;
of the others, and therefore to the third fraction in (7)
This gives

dz  d
*aF TYay _ . d=

7—(;))—— = g b d 7R (9).
.. Now by differentiating the equation 2+ 3* = g’, we obtain

o, dy_ dpdb_hdp.
eEtIn=PWB G p Ao
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And, by a second differentiation,
‘dz . d%  (da\t A\t R d 1 dp
.“mﬂfﬁ+@fﬁﬂ=?@$@)
and (9) becomes

%1:}% G gﬁ)“?{”’*(g@’} w4 {f’(,,) Zzp}

7 () AN AWK
ap_, (N _ o _pf(p) 1 d-(fp) dp
. o Pag (dﬂ) P="" _p" do { P -d—é}] ’

the differential cquation to the projection of the path on the
plane of zy. If we omit the term containing g, we see, by
§ 193, that the above equation will represent the projegtion on
ay of a geodetic line on the given swrface.

A 195. Suppose the motion to take place in a spherical botwl;

or, mare siniply, let the particle b€ suspended by g string from
a fixed point.

This is the general case of the Simple Pendulum.

Let us take the center as origin, and the axis of z vertically
downwards.

Then Flz,y,2)=a"+y +2"=a’=0, |
and the equations of motion are

&
@~
Py __pY
a =g
d’z z
7 =98
2 2 ]
Hence, (%:f) + (—Z—?) + (g;) =C+29z

=V*-2g (k- z)......(l),
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if V and % be the initial values of v and z.

dy d=z ‘
But = a —y g5 =05 .
dy dx _
or, & ==Y 4 =heeeurnen bessese ..(2).
dr d dz
Also:c—a—t—+y%+zg‘~=0 .............. @),

by the equation to the surfice.

Hence, eliminating'% and %’ from (1), (2), (3), we have
f= f adz

Vi@ —2) (V=29 (k—2)} - &L

an elliptic function which, if it were integrable in finite
terms, would give z, and conscquently = and y, in terms
of ¢. ‘

+ 7196, If the oscillations about the lowest point be very
small, we may obtain. interesting results by an approximate
solution.

Let 6 be the angle between the axis of z and the radius
through the ‘particle, ¥ the angle denoting the azimuth of the
plane containing these two lines, p the distance of the particle
from the axis. Let the projection be made horizontally with
velocity V when 8=, 4 =0, ¢ =0 together.

Then z=acos § —a (1 - i:;) , approximately,

k=a°08a=a(l—-e2— “eessesee a0e0ecevnscee

Also (2) gives at once, -

2 %?" h=dlsin’a o SZ —=aVs, approximately.....(5)
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. . N ' a’0d9
Hence by <4), t—‘f‘\/[aggg { Vn_ga (62__ az)} —& V:tas].

= Jef 648
=3 fie=ey o=y = - O

2
if B =—I%- be not greater than o If it be, the signsaof the

factors in the denominator must be changed.
Hence, the value of 4 lies between o and S,

If therefore a=p, or V"= gaa’, the particle will move in
a horizontal circle, and thercfore with uniform velocity, We
have then what is called a Conical Pendulum, and it is easy
to sce from equation (5) that in this particular case we are not
confined to an approximate solution; as the result just ob-
tained is true whatever be the magnitude of the horizontal circle

. . sin’ a . .
described, provided we take V?=ga o5 when « is finife.

‘We may now put (6), supposing a > B, into the form

_ (a)i f 640 .
=\ pyo. 3 Y\ 2 0] TR
9/ b ((€=BY _(gp_*+BY}
(55)-(-55)
and if we introduce a new variable, w, such that

PCEY ETICE 7}

2

= (5) [y

we have

or 2(t+ C) = (gy st

But when ¢=0, =0, 0=1;

hence o =cos 2 (%)‘ ¢
13
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s 2 — . 'i
whence = @+ + o-F cos 2 (2> l;
2 2 a .
or, substituting for the cosine of the double arc,

6 = o’ cos® (%)é t+ B sin’ (’%)5 N (7).

{

4
The value of & is therefore periodic. For ¢=0, = (-a')',
27 G)’g, &e. we have @ =q; and for t = g (g)é 3w (2)5’ &e

b 2 g
0=p8. Hence the period is 7 (g_)i

# 197, To find the motion of the plane in which 6 is
measured, we return to tle equation (5),

d . . Vw7t 3
' —d—‘if = aVq; which gives dyr = —a%i- = (Z) aéf dt,

or; l.vy ), )
_ (2, L ;
N (a) w a* cos® (g)é t+ B sin’ (‘g)# ;

a

he integtal of which (§ 143) is
Y+ C= tan"{étan (Q)*t} .

a \a
But 4 =0, ¢=0 together; this gives C=0, and finally
_B i
@?_Em(‘g) Erveeeereerenenn. (8).

It is easy from this to deduce the following results, viz.
that each quarter revolution of this plane is accomplished in
. the same fime, and simultancously with the change of 6 in that
' plane from a to 8, or B to a. Also that, whatever we take as



CONSTRAINED MOTION. 195

the initial position, the time of this plane’s turning through
two right angles is the same, namely, = G)i.

t) 198. If we climinate ¢ between (7) and (8), we find
03 a?Bﬁ
= Feinty t Boosip”
_This is of the same form as the polar equation to an
ellipse about the center.  The projection of the particle's path

on a horizontal plan- is therefore approximately an ellipse,
its semiaxes being aa, af.

¢ 199. 10 determine approximately the apsidal angle.

At an apse z is of course a magimum or minimtm, and

({i =0. This gives, by § 195 (4),

therefore d

'(ag — ) {Vim2g (E=2)} = H*=0 gyorrene n),

whose two positive roots are the alternate values of z at the
apses.  Since we have supposed the particle to have been pro-
jected horizontally, the point of projection is an apse; and
therefore £ is a root of this equation.

Substituting % for z, we get
B=V*(a-¥);

therefore (1) becomes after reduction
(k—2) {(k+2) V'—29 (@'—2")} =0 ......... ().
And, if  be the other positive root of (1) or (2), we have

2g(a’—2’) '
V'=—————k+l R

s 29(a=F) (a"=70)
and A= k+1

.

13—2
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Also if — ¢ be the third root of (1),

4 '
'7—l=§y: or by (2),=ﬁk—_;7-

Hence e+ = (a+ Z”)_{‘;—tg .

Now %—g = ;;é_———z,; and therefore

d__k a
dz &' —2" W{29(c—k)(I=2) (y+2)}°

;ance the apsidal angle or the value of 4 from z=% to
z=1 18

(e =F) (& =D)4 [ dz
e = P e

To get rid of v put 2z =o' =, the integral becomes

I (20—)| {(a=P)==] { ﬁa—zr{‘“*’i’ T -al]"
w w Wi W j w

T k+1

and, expanding in powers of = those factors whose variation
is small compared with themselves, we have finally
<

. a~k dw
Vo=iVle-R -0l === m=@=0]

[5Gt e ]
=g[l-[-%'\/{(a"7‘) (a-m{;l,w-:—';if(—cf-:z;f +]

The integration may easily be carried on farther, all the
terms being evidently positive, but we have enough to shew

. that the apsidal angle is greater than g, and that therefore in
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the approximaté elliptic path considered m last article the
apse centinually progredes.

In the case of this orbit, if p and ¢ be its semiaxes, we
have; by the properties of the sphere,

—-f= 1—
a—k ) nearly

— = g_’. ’
a l_2 ® ssecete

and therefore the apsidal angle

=7(14+32¢ )

-r(+38.),
and the rate of progression of the apse therefore varies as the
area of the projected orbit nearly. R

W 200.  To determine the nature of the small oscillations exe-
cuted under the action of gravity, on a smooth surface, by a
particle about a position of stable quilibrium.

The tangent plane at the position of equilil;ﬁum must be
horizontal, and the surface must evidently lie above it in order
that the equilibrium may be stable. S

If p, p, be the radii of curvature of the principal normal
sections, and if the axes of # and y be tangents to these sec-
tions respectively, at the point of contact with the horizontal
plane, we know by Analytical Geometry that the equation to
the surface in the immediate neighbourhood of the origin is

2z—-£—3—/-2=0 eeeeeunne ceetererenens (1.
P P

The equations of motion of the particle are, as in § 191,
d*x
T B\
d!
E—J‘Z=Rﬂ -0000.00...!0.0.0.00000(2),
d’s

d—t;=.RD—y

a
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where A, fl,, v are the dircction-cosines of the normal to the
surface at the point z, y, z. Since = and y are very small, z is
of the second order of small quantities by (1) and may there-

2., .
fore be neglected, as may also d?‘? .

Hence A=— 2, p===2, v=1, approximately. Elimi-
nating I? from equations (2)i we have

dr__g
¢~ p
£ verereerenenenens(3),
dy__9g,
de Py

which show (§ 173) that the motion consists of superposed
simple pendulum oscillations in the principal planes, the
lengths ‘of ‘the pendulums being the corresponding radii of
curvature.

The annexed cut shows a very simplc arrangement, duc to
Prof. Blackburn of Glasgow, by which this species of con-

»

o

straint may easily be produced. Three strings are knotted to-
gether at the point C, the other ends 4 and B of two of them
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are attached to fixed points, and the third supports the heavy

articls D. Suppose CE to be vertical, then the small oscil-
ations of D will evidently be executed as if on a smooth
surfaee whose principal planes of curvature at D are in, and
perpendicular to, the planc of the paper. The radii of curva-
ture in these planes are CD and DE respectively.

If we put ';{ =n', and ,_).Q =n," the integrals of (3) ‘are
1

=4 cos (nt +B),}
y=A4,cos (nt+B).

The curves corresponding to these equations are very in-
teresting, but we cannot enter at length on the consideration
of them. We may take, as a special case, that in which
DE=4(CD; in W]Zich therefore o .

=4 cos (nt 4 B), ’
y =4, cos (2"‘+B,).} ............ ervernns (3.

The circumstances of projection determine in each case the
particular curve described—a few of the principal forms are
sketched below, one of which is a portion of a parabola.

L

When n, is nearly, but not exactly, equal to 2, the curve
described is always for a short time approximately onc of the
above figures, but its form slowly passes in succession from
one member of the series to thenext, completing the round
when one pendulum has executed one morg, or less than twice
as many complete oscillations as the other. '

W 201, 7o find the Brachistockrone for a particle constrained
to move on-a given smooth surface, gravity being the only tm~
pressed force, .
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Let '
F=0.iiirirrnrinirnnnnnne, ..(1)

be the equation to the given surface, z being the vertical, axis.

Yhen §§= Vi2g (2 =20},

.

and therefore the time between the given points is
ds

" ®
e B ey S .
From the condition that ¢, is to be a minimum we obtain
‘ ‘de " dy

f’l_{ ds }5;+i { L] }81 =0
dz Wz —2y) dz W@ -2y Y =5
' But &z and 8y are not independent, (1) gives us
dF dF
(3—5) oz +(—(‘[.?-/-) 83[ =0,

Hence, eliminating, we obtain
€

AR WAt i)

)
S @ G)
. \dx } dy
which, by means of (1), may be reduced to a differential
equation of the second order between two variables; the in-
tegral will ‘therefore eontain two arbitrary constants, which
will enable us to make the curve pass through the two given

poipts.

? '.-202. A particle acted on by any forces, and résting on
. smooth horizontal plane, is attached by an inewtensible string

’
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to a point which moves in a given manner in that plane; to de-
terming the motion of the particle.

Let z, y, z, 7 be the co-ordinates, at time ¢, of the par-
ticle and point, @ the length of the string, and R tl.c force of
constraint, i '

For the motion of the particle we have

, @:X_R“"E
dt a - )
By o gy
= Y-E

with the condition (z—Z)’+ (y —7)"=a"
Now z, y are given functions of ¢ Tagg_ froril_ both
sides of the equations in (1) the qugntities -Zhif-, %ﬁ! , Te-

spectively, and we have the equations of relative motion *

4’ (x—x) x—x d°T) e,

e X E o

PY-9_y_py—3_du[
de =Y-R a df

These are precisely the equations we should have had if the
point had been fixed, and in addition to the forles X, ¥ and
R acting on the particle, we had applied, reversed in dirgc-
tion,  the accelerations of the point’s motion. It is evident

that the same theorem will hold in three dimensions. The
2 2
accclerations %;3 , :llg are known as functions of ¢, and there-

fore the cquations of relative motion are completely deter-
mined. Compare § 24.

208 Let there be no impressed forces, qnd suppose first
that.the point moves uniformly vn a siraight line, -

e dy are constant, 'and therefore no terms .are’

* Here @’ 26. y



i
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introduced in the equations of motion. We have thus the
case of § 26. o

C %
Again, suppose the point's motion to be rectilinear, Inﬁig&i‘:‘
Jormly accelerated. A L
The relative motion will evidently be that of a simples
pendulum from side to side of the point’s line of motion. In'
certain " cases, when the angular velocity exceeds a certain
limit, we shall have the string occasionally untended; and
this will give rise to an impact (Chap. X.) when it is again
tended. While the string i8 untended the partjcle moves,
‘of course, in a straight line. ‘

‘v .

204. Suppose the point to move, with. uniform angular
velocity @, tn a circle whose radius is x and center origin.

Here, supposing the point to start from the axis of z,
T=17coswt, ¥y=rsinowt.
“Hence the equations of motion are, since
“ d% d’y
T = ==

o P@-F Be-F
@ " "m e T

a
. &y-3__Ry—§_ .-
D@ TTwmoa oY

. (z—2)+(y-3)=d.

Whence (z— %) %2-@7.«7)@%‘3—@
=o' {(z-2)§~(y—3 a;
or, in polar co-ordinates, for the relative motion,

3 (0 ®) . rorsin (6
-d—t\a’dtl)——mqﬂjim(la wt),
d.(o—wt)—— ’t ./,-‘p—

o — g —==o' dn{l-a).
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%:Now 6 — ot is the inclination of the string to the radius
paséiigehrough the point; call it ¢, and we have

L _

'zitg ——w’:sin ¢,

which is the ordinary equation of motion of a simple pendulum
O I . P i
whose length is gw—g Lo T e

The particle therefore moves, with reference to the uni-
formly revolving radius of the circle described by the point,
just as a simple pendulum with reference to the vertical.

205. To detérmine the motion of a partict%'acted on
by given forces, and constrained to, move tn a smoocth tube,
in the form of a given plane curve, of indefinitely small sectional
area, which revolves wn a given manner about an axis ingtts

plane. .

Let the axis of revolution be that of z, and let 'the position
of the particle at time ¢ be given by its distance ~ from that
axis, the plane of the tube at that instant making an angle 8
with a fixed plane passing through the axis. By the con-
ditions of the problem 67is a given function of #.

The sole effect of the tube will be to produge a force of
constraint, which lies in the normal plane to the tube, and
may thercfore be resolved into two parts, one perpendicularto’
the plane of the tube, the other in that planc and in the prin-
cipal normal to the tube. .

Let the impressed forces be resolved into three, P along r,
T perpendiéular to the plane of the tube, and S parallel to the
axis of z. ' :

Let R, R be the two resolved parts of .the force of con-
straint, - . o

The equatior{s of m@ﬁon‘ will then be ‘(lv;y‘§§ 15, 64)

L WO 2 d. : .
. %t-::—r(.d_g ="-P+.R £ l-.:v--oo oooooo (1),‘ .
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d*6 _dr db

r—d-t;+2g'£—a-£=T—E ................ (2):,
d*z o dr .
‘d-‘t,, =S—Ra; ....................... ....(3),

where g is the arc of the revolving curve,

[ ]
In addition to these we have the two equations

B=F(8) veereverrereererrerennns @),
which gives the position of the tube at any time, and
X ) (5),
the equa&)n to the tube.

By “means of (4) and (5) we may eliminate 6, , and «
from (1), (2), (3). Tlien eliminating R between (1) and (3).
we~ obtain a differential equation between z and ¢, whosc

integral together with (4) completely determines the position
of the particle at any instant,

R and B’ may then be found from (1) or (3), and (2).

In general the angular velocity of the tube is given con-
stant, or %g =, whence (4) becomes 6= wt if the plane from
which 6 is mcasured be that of the tube at the time ¢=0.

" The simplest case weecan take is the following.
206. 3 particle moves sn.a, smooth straight tube whicl

revolves uniformly round a vertical axis to which ¢t is per
pendicular, to determine the motion. '

Here z=constant, glf = constant = w, P= 0, and we hav
. . Yh;,,:: "b . L
from (1) \ :&?}n .; R
. — =0
ar M’ % P

whence = At + B,
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Suppose the ‘motion to commence at time =0 by the
cutting ,of a string, length ,, attaching the particle to the
axis. The velocity of the particle at that instant along the
tube yould be zero. Hence at ¢=0

r=r,=4+ B,
& 0=A—B:
dt—O—A B;
T
4=B=7;

and r=’-21’ (ewt 4 ev1).

In the figure, let OM be the initial position of the tube,
A that of the particle; OL, Q, the tube, and particle at time ¢.
"Then 04 =ry, arc AP=rwt, 0Q =r, and we have

arcaP * __arcAF
OQ = 02A (G—OA".‘_ € 03") .

1

DX

‘Whence we see that'0.Q aﬁd,;gha arc AP t;,ge corresponding
-values of the ordinate md(abs.éigﬂa of a catenary whose para-
meter is 04, - Lo ’

Here, by (33, we have evidently B=g.
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Also, by (2), =-2522 (' — ") o
=—w'r, (" — ).

From this equation, combined with the value of », we

easily deduce
. c R =20/ (r*—7, ’)

and it is therefore proportional at any instant to thc tangent
drawn from @ to the circle APN.

207. Suppose the tube to revolve uniformly in a vertical
plane about a horizontal azis.
‘We have from equatlon (1) of § 205
¢ (p r
. , ar
if we conceive the tube to be vertical when ¢=0. The inte-
gral of this equation is

r=Ae*+ B —g {(g)g w}-lcos ot,

—vw’=— g Ccos wt,

or r = Ae* + B éi];“‘ cos wt ;

vand if r=n,, g§=0, when =0,
wehaver,=AfB+2~§,
and 0=A4-B;
or, =( 5 4@,) (e“"+e"") +—— cos wt,

which completely determines, the motion, R and .R’ may be
found as before.

208, Let the tube be in the form qf a circle turning uni-
. Jormly-wbout a- vemcal diameter. .
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Let 40 be the axis, P the position of the particle at any
time. Let POA=¢ denote the particle’s position. Then the
forces acting on it along the element at P are the resolved

-
A /

N P

‘r/

parts of gravity and of the centrifugal force (Chap. IX.) dug to
the distance NP from the axis. Hence as APs4 0.¢=a¢,
we have

d’¢

*
the first integral of which is evidently

(‘.l?)’= 2sin"¢[>+%gcons<l>+ C.

=aw’'singcosP—gsing............ (1),

Suppose the particle to be projected from the lowest point
with angular velocity @,; we have, fiom the last written
equation,

o'= —2;? + C.
2
Henco (52)'= ot {1~ cor' - 22, (1 - can )] £ o

This will be zero when ¢ hds a value determined from
the equation L .
o 29 . 2
oos'q&-—;“%;cos:ﬁ-—-— 1-;%,+%‘;;
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or ws¢=%i¢{(l—;%,)’+%§}.

2 4 4 .

Now, so long as. 2% > 2., or 02>-Y both values of
® " aw’ 17 a

cos ¢ are numerically greater than 1, and thereforc the

motioft is ome of continuous revolution. If w,’=ég , We

have g‘?” =0 for cos ¢ =—1, and thercfore the particle just

comes to rest at the highest point. We may notice that
ad’o’, or the square of the velocity of projection from the
lowest point, is then cqual to 2¢g.2a, or the velocity is that
due to the diameter.

Hence, if.a particle be projected from the lowest point of
a vertical circle with velogity due to the diameter, it will tend
to reach the highest pcint and there remain at rest whether
the. circle be fixed or revolving with any angular velocity
about the vertical diamecter, another simple instance of con-
servation of Znergy. In this case the position of the particle
at any instant can be determined.

fo?< %‘-:Z-, therc is one possible value of cos ¢, and there-

fore the particle will oscillate about the lowest point.

- €
Suppese, again, the projection to be made from the ex-
tremity of the horizontal diameter. In this casc our corrected
equation becomes

de\* _ 2 .2 29 2,
(dt) =—w’cos’$ + p cos ¢+ w’;
and for positions of rest

2 o
, cos’4>-;£—,,cos¢= 5;";

' _9 . /9 ez)
or cos¢ = aw’ i '\/(a"w“ + w,'/"

3
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Both values will be numerically less than 1, if

g o
N (ot 5) <1- 5
o} 2
or k<15,

and in this case the oscillations of the particle will de per-
formed between points corresponding to these values of ¢,
and on the same side of the vertical diameter.

209. , The posi}ion of equilibrium of the particle will be
found by putting %7? =0. Hence, if ¢’ be the corresponding
value of 40P,

aw ’

To fin1 the time of a small oscillation about this position,
let 4 be the angle of displacement, then by (1),

since ¢ =¢' + 9, ¥ being very small,
Y otsin (¢ + ) {cos (¢ +9) — ;Z—,-}
=—w"sin* ¢'. Y nearly, by (2),
== (“” - _:7:':) ¥,

aw
and therefore by § (85), the time requiréd is
2mraw

Toat g vervesennenes ().

That there may be a position of equilibrium~other than
the highest or lowest point, we must have by (2)

o>y/@.

and thus (3) shews that a small oscillation is always possible
T. D, 14
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when there is a position of equilibrium other than the highest.
or lowest point.

210. Find the form of the tube in order that the particle
projected with given velocity may preserve its velocity un-
changed, gravity acting parallel tp the axis.

. Repolving tangentially, and taking co-ordinates z, y in
the plane of the curve, the axis of revolution being that of y,

we have
d’s _,de_dy
7Rl Mt PN

Hence, (g‘:)’ = &'’ — 29y + C.

ds
. But T constant.

"Hence, «*= %)2, (y +%), the equation to a i)arabola. whose

axis is vertical and vertex downwards. This result might
easily have been foreseen, as the velocity can only be constant
if the accelerating effect of the impressed forces along the
curve be zero at every point; that is, if the resultant of
gravity and centrifugal force lie in the normal. That this
may be the case, we must have Centrifugal force : Gravity
i Ordinate : Subnormal. But the centrifugal force is pro-
portional to the ordinate, hence the subnormal must be pro-
portional to gravity, i. e. must be constant : a property peculiar
to the parabola. This proposition has a singular application
in Hydrostatics. ‘.

211. A particle moves on a rough curve, under the action
of given forces; to determine the motion.
If 4’ be the coefficient of kinetic friction, and
R =w(B+ &)

be the foree of constrainj:y.’as‘? in § (186), the effect of friction
will be ‘a force w«/(B'+&y) acting in the tangent to the
curve, and in the opposite diréction to the particle’s motion.
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Equation (1 of § (186), will therefore become

d° ,
O 8- (B B,

the other two equations remaining the same. 4

If from the three we eliminate R, and R,, we may b
means of the equations to the curve eliminate , y an® 2, and
the final result, involving only s and ¢, suffices to determine
the motion completely.

212. Ex. A particle moves in a rough tube in the form
of a plane curve, under the action of no forces; to determine
the motion.

1,8
Here T8 _ yp=_*%
di P
Now vg§=%§, hence
vd_}_)_—_-.__ "11"
d P
ds
or v=ac*I%,

But, if 4» be the angle which the tangent at any point
makes with a fixed line,
ds .
_—= d )
A

o
+

Hence, » =gae™¥, where a is the velocity when y»=0.

It may be instructiveto compare this result with that for
the tension of a string stretched over a rough curve.

If the curve be one of double curvature, ds is the angle

between two successive tangents. If the“surfacg of which
the curve is the cuspidal edge be developed, and if ¢ repre-
sent the angle between the tangents corresponding to the
initial and final positions of the particle, :

v=qac""?
142
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218. A particle under the action of given forces moves on
a gtven rough surface ; to determine the motion. ,
If R be the force of constraint due to the surface, the effect

of friction is u'R acting in the tangent to the path of the par-
ticle, and the equations of § 191 become _

d*» ,p AL
da: vp @
g =Y +Bs-wR G o
d’z 1
——!,,=Z+Rv-,u..RE

from which B must be eliminated. The two resulting equa-
tions contain , y, z and ¢, and if the latter be eliminated, we

“have oné equation in @, g, 2 which, with the equation to the

surface, will completely determine the path. In general these
equations are utterly intractable.

EXAMPLES.

(1) If a particle attached by a string to a point just
make complete revolutions in a vertical plane, the tension of
the string in the two positions when it is vertical is zero, and
six times the weight of the particle, respectively.

o

12) On a railway where the friction is 2%45 of the load,

shew that five times as much can be carried on the level as
up an incline of 1 in 60 by the same power at the same rate...

" (8) A pendulum’ which.vibrates seconds at a place 4,
gains two beats per hour at a place B; compare the weights
of any the same substance at the two places. '

(4) From a' ﬁcr,;int upon the surface of a smooth vertical
circular hollow cylinder, and inside, a_particle is projected in
a direction making an angle a with the gemerating line
through the point; find the velocity of projection that the
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pa.rticlé may rife to.a given height (%) above the point, and
the condition that the highest point may be vertically above
the point of projection.

=~ A3) A heavy Parﬁcle rests on the arc of a smooti: vertical
circle at an angular distance of 30° from the lowest point, .
being repelled from one extremity of the horizontal diameter
by a constant force ; shew that, if slightly displaced aleng tire
arc, it will perform small oscillations in the time

2w p) —7—.
i 3'\/39

(6) A particle is constrained to move on a smooth curve
under the action of a central force P tending to the pole, and
the pressure on the curve varies always as the curvature,
shew that

(7) A seconds pendulum when taken to®the top of a
mountain & miles high will lose 21.6% beats in a day nearly.

~ (8) AR is the diameter of a spherc of radius a; a centre
of force at 4 attracts with a force (u x distance) ; from the
extremity of a diameter perpendicular to 4B a particle is pro-
jected along the inner surface with a velocitys(2u)}a: shew
that the velocity of the particle at any point P is proportional
to sin 4, and the pressure to 1—3sin’f, where 6 isthe
angle PAB. .

«— (9) A chord 4B of a circle is vertical and subtends .at
the centre an angle 2 cot™x. Shew that the time down any
chord 4C drawn in the smaller of the two segments into ~
which AB divides the circle is constant, .4C being rough
and u the coefficient of friction. S

¥ (10) A particle under the action of no force is projected
with velocity ¥ in a rough tube in'the form of an-equiangular

iral at a distance a from the-pole and towards the pole; *
shew that it will arrive at the pole in time
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a 1

——,

V wsing—cosa’

a being the angle of the spiral and x (> cota) the coefficient
of friction.

.. (11) If a particle move on the surface of a smooth cone
with it} axis vertical and vertex downwards, and gravity be
the only force acting, shew that the differential equation
of the projection of its path on a horizontal plane is

2

d’u gsinacosa
- 8 §

5+ usin® a =r—m7p 11—

art W

a being the semi-vertical angle of the cone.

~ (12) , A particle is suspended from a fixed point by an in-
extensible string : find the velocity with which it must be pro-
jected when at the lowest point, so that its path after the
stringy has ceased to be stretched may pass through the point
of suspension. '

— (13) A particle is constrained to remain on the curve

r=a (1 —cos ) and is repelled from the pole by a force = % :

if its velocity at the apse be equal to (’-‘:)3, shew that it will
e, 3 ’

arrive at the initial line again in time 7 ((-:;) .

¥ (14) A particle slides dowh a_catenary, whose plane is
vértical and vertex upwards, the velocity at any point being
that due to falling from the directrix ; prove that the pressure
at any point is Inversely proportional to the distance of that
‘point from the directrix.

(15) A particle projected' with given velocity, moves
under the action .of gravity on a curve in & vertical plane;
find the nature of the curve that the pressure on it may be

the same throughout the motipn. ‘
o= (16) A particle is projécted with given velocity from the
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vertex of a cycloid whose axis is vertical and vertex upper-
most, find where it will leave the curve, and the latus rectum
of its future parabolic path.

v (17) The axis major of an ellipse is vertical, show that in
order that .a particle projected vertically upwards from the
extremity of tie axis minor along the concave side of the arc
may pass through the center after leaving the curye, the
velocity of projection must be

fe2glt
“3as3 )’
a and & being the semiaxes of the ellipse.

~ (18) The Earth being supposed to be at rest, and to con-
sist of concentric spherical strata with densities varying
gradually from the centre to the sprface, investigate the law -
of density according to which a pagticle let fall from the
mouth of a diametral pit would perform oscillations exgctly
similar to those of a simple pendulum oscillating through 45°
on each side of the vertical. "%

(19) Shew that if a particle falling from rest at a point in
an inverted cycloid have its velocity suddenly annihilated
when it has passed over half its vertical height above the
lowest point, and be allowed to procecd always losing its
velocity when half way down from the last position of no

(] .
% th of its original height abovci the
vertex after n times the time it would have taken to fall to
the vertex undisturbed. *

velocity, it will be at

== (20) Shew that a simple pendulum under the action of a
central force varying as the distance only, will move as it .

does under the action of gravity. ,

™ (21)° The times of oscillation of a pendulum are observed
at the Earth’s surface, and also at a-height A above the sur-
face; from these data find the radius of the Earth supposed ™
spherical. © ' R - e

(22) A pendulum oscillates in & small circular are, and *

w
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is acted on in addition to gravity by a small horizontal force
a8 the attraction of a mountain. Shew how to find the latter
by observing the number of oscillations gained in a given
time, Also find the direction in which the attraction must
aci‘:’ 80 a8 not to alter the time of oscillation. -

(23) (See 15). Determine the nature of the curve about
which the string of a simple pendulum must wrap itself in
order that its tension may be constant, and deduce the equa-
tion between the length of the arc, and the vertical ordinate

., T y 7
y=1-5 =9+ C0-a' -5,

where 7 is the length of the string, 7" the constant tension,
and ¥ the velocity of the bob when the string is vertical.

(24) " A string wrapped round a regular polygon has a

article at the free end*which just reaches an angle. There

18 in~the center a repulsive force e« (D). If v, be the velocity
when r sides are unwrapped, shew that

v = r (7'2“" 1) v,
the particle starting from rest.

(25) Find the curve cutting a serics of ellipses with the
same vertigal 4xis and vertex, so that a particle descending
each of them from rest at the point of section may press
equally at the vertex; in the following cases,

(a) vertical axes = a.
(8) horizontal axes =b.
(y) ellipses similar.

— (26) Find the equation to a curve in a vertical plane,
such that if a particle descend along it, the parts of the pres-
sure due to the velocity, and to gravity, may have a given
ratio. .

. If this be ¢, and the axis of y be vertical, then the dif-

“ferential equation is
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LAV AZA VY
where. Cisa copstant.( dﬂﬁ) (."/) ,

(27) Find a curve such that a particle starting from
will describe any arc in the same time as the chord, the force
being central and o distance. .

Deduce (180) as a particular case.

(28) Also find the curve in (180) when the time down
the chord is in a given ratio to that down the arc.

(29) Find the curve in which a particle acted on by
gravity will revolve uniformly about a point in the same
vertical plane.

(30) A particle acted on by & gentral repulsive force .

varying as the distance moves in a tube of the form of an
epicycloid, the pole being at the center of force. Shew that
the oscillations are isochronous. : .

(81) A particle is initially at rest at a point of the s%iral
r=ce™, distant d from the pole. Shew that if the pole be a

center of force whose attraction = lﬁ)" , the time of fall to it is

N

g‘ﬁ%) (”?ill’)‘

(82) In the preceding problem find the pressure on the
curve at any instant.

-~ (33) A particle starts from rest at any point of the con-
vex circumference of a vertical circle, shew that it will leave

the circle after descending one-third of its originhl vertical -

height above the center.

~=~(34) A particle under the influence of " gravity is pro-
jected from ene point in a horizontal direction towards another
point, find the curve on which it must be constrained to move
80 as to approach uniformly to the latter point.

'
N
s
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(35) Two particles are projected from tlte same point, in
the same direction, and with the same velocity, but, at dif-
ferent instants, in a smooth circular tube of small bore whose
plane is vertical, to shew that the line joining them constantly
touches another circle.

Let the tube be called the circle 4, and the horizontal
line, to a fall from which the velocity is due, L. Let m, m’
be corresponding positions of the particles, Suppose that mm'
I)iasses into its next position by turning about O, these two
Jlines will intercept two indefinitely small arcs at m and m’,
which (by a property of the circle) are in the ratio m 0 : m’O.

Let another circle B be described touching mm' in O, and
such that L is the radical axis of 4 and B. l.et a be the
distance between their centers, mp, m'p’ perpendiculars on L.
Let mp cut 4 againin ¢ and Bin 7, s.

Then by Geometry, "
mO* = rm.ms = pm (rm — g8) = 2a. pm =§ (velocity of m)™.
" Similarly,
m'O* = 2a. p'm’ =§ (velocity of m')*.

Hence the velocities of m and m' are as mO ; m’O, and
therefore by what we have shewn above about elementary
arcs at m and m’, the proximate position of mm' is also a tan-
gent to B, which proves the proposition.

It is easily seen from this, that if one polygon of a given
number of sides can he inseribed in one circle and circumscribed
about another, an indefinite number can be drawn. For this
we have only to suppdse a number of particles moving in 4
with velocities due to a fall from Z, if they form at any time
the angular points of a polygon whose sides touch B, they.
will continue to do so throughout the motion., This hewever

- does not belong to our subject.

(36) A particle under the action of gravity is projected
with given velocity from a point, find the curve on which it
must be constrained to move so as to recede uniformly from
the point of projection. -
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(37) A railway train travels due north with given velo-
city. Compare the horizontal pressure on the rails due to
the Earth’s rotation, with the weight of the train,

« (3%) A particle attached by a string to a point.nioves in
a horizontal plane. A small ring passing round the string
moves uniformly in a straight line from the point. Shew how
to find the equation to the actual path, and shew that that*
relative to the ring has the equation

78 = C.

. (89) A particle descends from rest under the action of
gravity. Find the curve on which it must move in order
that the ratio of the times of descending two vertical spaces
whose ratio is given, may also be equal to a given quantity.

Verify the general result in the particular cases:
(@) Double the height in dodble the time.
(B) Four times the height in eight times the time,

(40) s is the arc, and y the vertical ordinate of a curve
passing through the origin. If time through s : tine through
chord of s :: ks : chord, shew that

k
8= Ay™L,

(41) Given an arc of a curve, find the position in which
it must be fixed, that a particle starting from rest may
describe it under the action of gravitg_ in the lesst time.
Apply the result to an arc of the cardioide measurcd from
the cusp. . .

(42) A series of similar and similarly situated curves
start from a point 4 in a vertical plane; to find the syn-
chronous curve, or that which cuts off from e:ach of the series
. portion which would be described in a given time by a
particle starting from rest at 4. - . ,

Taking 4 as origin, and the axis of ¥ vertically down- °
wards, we have . "

1+ (5'-11”)
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Now the eommon equation of the curves contains one
arbitrary parameter a, which will therefore appear in (1) when
z is eliminated. Supposing then that (1) can be integrated,
if between the integral and the equation to the curves we
eliminate «, the result will be the equation to the required
series of synchronous curves, in which + will appear as a
Jvariable parameter.

The equation to the given series of curves will of course
be in the form §=f(%)’ so that ifg=w, j——‘f in terms of @

will not involve a. It is thence easy to deduce the following
values of x and y for the required curve, in terms of o,

7 f (@)

/o]

@
da; 2
° 14+ (-5
[ f ~/ { (dft) } dm]'
° 290
from which, if (1) is not integrable, the required curve can be
constructed by .quadratures.

J (43) « If's be the time in a cycloid from the point whose
abscisaa is the radius of the generating circle, to any other
point; 7 the time down the chord of the generating circle
corresponding to thé same two points, shew

2tan"'r,\7'g-=tan" (V2tant,\/'g). .

\/(44) A particle moves in a circular groove radius & under
. the action of a center of force oc D™ situated at a distance b
from the center.of the circle. - It is projected from the nearest
point with velocity ¥, shew that for a complete revolution

T
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¥ (45) A particle acted on by gravity descends from rest
at a giyen point, find the nature of the curve on which it
must move that the Eressure may be at any instant as the
square, of the vertical height fallen through.

(46) Find the tautochrone when the force is as the cube
root of the distance from the axis of «, and parallel to that

of y.
m} + yg - ag.

(47) To find all the tautochrones when the force is cen-
iral, and varies as the distance. *

If 8 be the force resolved along the curve, we must have
a8 =

Now if ¢ be the angle between ¢he radius vector and
iangent,

dr
="I""°°s¢="'l""a;5

d(r g%') i

'.'T=m’-;
X zlr)__wi dr
- 'az?zz;(’ds S s

or (rg—:')"=z-;%_;1’+ C;

. ' -
tha.tls, 7”—1).=m‘r‘+ C.

And if a be that perpendicular from the center on the tangent
which meets the latter at its point of contact, the correspond-
ing value of 7 is @ also, and therefore

ot
C=—Zp—1—,a';
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. Ny T g :
. 2 __ _r g I
o = (1 4”.7,)9- +4“T,a.........t..;..(l),
which is the differential equation to the required curves,
The curves will differ in species according to the value

=
of W.

I Let 41’— >1, (1) takes the form
p=é(-r),

which is at once recognized as the differential equation to the
epicycloid traced by a point in the circumference of a small
circle, which rolls on the inner surface of a large one whose
center is the pole. ‘

If we suppose the radius of the larger circle to be inde-
finitely increased, its eircumference tends to become a straight
limc and the epicycloid to become a scries of cycloids. The
force in this case tends to be constant, and perpendicular to
the bases of these cycloids, whence in the limit we have the
result of § (173). -

L '

Here p =a and the curve is a straight line. This is the
case of § (89).

I Zz—’_r—,< 1. In this, as in the other cases, we ma:y
find the equation to the curve by integrating (1) after substi-
tuting for p its value in terms of ~ and &, but the equation we
thus obtain is very complicated. This curve is found to be
a spiral with two symmetrical branches extending to an
infinite distance, and approximating to spirals which make
angles =cos™ ¢ with the radius vector.

IV. Let the origin bé on the curve, and be the point to
which the time of descent is mgasured. Then a=0.

gy

o equation is impossible.
I > 1,'the equation is impossible
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If it=1, wethave a st_taig};t line through the origin.
If i*<1, we have the Logarithmic Spiral.

V.s If the force be repulsive, we require only to change
the sign of u. In this case we have an epicycloid traced by
a point of a circle which rolls on the outside of another whose
center is origin. From this again we may deduce the gauto-
chronism of the common cycloid for gravity.

(48) A particle moving on the interior surface of a ver-
tical circular cylinder is projected with a given velocity, and
goes round n times before it falls to the level of the point of
projection. Determine the direction of projection.

(49) Shew that a particle moving under the action of
gravity on a smooth helix whose axis is vertical, makes the
first revolution from rest in the time |

87a
g 8in 2a”

(50) A groove is cut on a right cone of héight 4, at an
angle B with the generating line. Shew that the time of
reaching the base, from a vertical height &, below the vertex,
by a particle sliding in the groove is

‘\/ h— ‘\/ h:
« (8g) cos a cos B’

where « is the semivertical angle.

"~ (51) TFind the curve on the surface of a vertical cylinder
down which if a particle slide, the force of constraint will be
constant.

(52) A particle moves on a smooth ellipsoid, under the
action of a force o (D) in the center. Given the velocity and
direction with which it passes the extremity of aff axis, find
the pressure.

(53) A smooth tube of indefinitely smafl bore revolves
in a horizontal plane. A particle attached to the axis by an

elastic string moves in the tube. Determine the conditions ‘

that the motion be oscillatory.

«
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- (54) A circular tube of mdaﬂg:: ly small bore revolves
with uniform angular velocity o a u{ a vertical djameter,
and a particle in it is projected from the lowest point with
velocity due to the diameter. Determine the motion, ang shew
that it is at its greatest distance from the axis after a time

)
i)

where a i8 the radius of the tube.

(55) The axis of & rough helix of radius a is vertical,
and the curve makes an angle 8 with the horizon; a ring
slides qn it with initial velocity

(ge) (sin'B - p* cos*B)t
' Vucos 8 !

determine the motion.

~ (56) A heavy particle attached to a point by a strin

" whose unstretched length is a, lies on & rough horizonta
plane and is projected perpendicular to the string with velo-
. city v. If it comes to rest at a distance a from the point,
after describing a distance s, v' = 2ugs.

#(57) A %artlcle descends & rough circular tube from the
extremity of the horizontal diameter. If it stops at the lowest
point, shew that .

B ot =1,

/(58) Shew that the result of § (193) is true if the
gurface be rough. If a particle be projected with velocity ¥
along ‘the inner surface of a rough sphere, determine the
smotion, and shew that it will return to the point of projection
‘in thé time "~ .

raw
W (er— 1),

*
N

whergwf is the radius of the sphere.
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(59) If the*only impressed force be a central one = 5,, ,

and the velocity be that from infinity, shew that the equation
to thez brachistochrone is

oy m
r? cosf—;l(0+;3)=a”.

(60) A material particle P, attached by a slender cord
of given length a, to a point S'in a fixed axis S4, is attracted
by a constant force g in a direction always parallel to a line SB,
which is inclined at a given angle to the axis S4, and revolves
about it with a given angular velocity w: shew that if V' = the
velocity of P, o' = the angular velocity of the plane PS4
about S4, ¢ =« PSB, 0= PS4,

V*=2ga cos ¢ + 2¢°ww’ 8in*f + const.

Shew also that the dynamical conditions of this Problem
are the same as those of a ball-pendulum acted upon by gravity,
when the Earth’s rotation is taken into account.

(61) A small smooth ring slides along a rod which
moves with uniform angular velocity and so as always to
be in contact with a given circle: determine the motion of
the ring relatively to the rod.

(62) A ring slides on a smooth elliptic wire yhich moves
in its own plane with uniform angular velocRy ahout its
center. Determine the motion; and find the time of a small
oscillation about the position of cquilibrium where this is
. possible. *

« (63) A particle is attached by a rod without mass to the
extremity of another rod, » times as long, which revolves in
a Eiven manner about the other extremity, the whole motion
taking place in a horizontal plane. If @ be the inclination
of the rods, @ the angular velocity of the 2nd rod at the
time ¢, prove that ’
. .

%§+‘g—;-’+ n (%’cos@+w’sin0)=0.

T. D. 15
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v (64) If a particle slide along a smooth curve, which
turns with uniform angular velocity » about a fixed point O,
then the velocity of the particle relatively to the imoving
curve is given by the equation

-

vl — cl + 0)2?",

avhere r is the distarice of the particle from the point O; and
the pressure on the curve will be given by the formula

R= % + o’p + 20w,
where p is the perpendicular from O on the tangent.

(65) A heavy particle is attached to a smooth string
which passes over a rough circular arc in a vertical planc;
the particle initially at the extremity of a horizontal diameter

is drawn up with uniform acceleration 7,“,]- : shew that the

whole labowring force (i:e. work, sce § 55) expended in
drawing it to the vertex of the circle is

3
Wa (§+#—p§),

where W is the weight of the particle, @ the radius of the
circle, and 4 the coeflicient of friction.

" (66) A heavy particle is attached by a fine string to the
apex of a right vertical cone whose semivertical angle is B,
and is projected from a position of rest on the cone with an
initial angular velocity.w (about its axis) which is less than
2, the least angular velocity which would make the particle
leave the cone. If the coefficient of friction between the
particle and cone be u, find the position of the particle and
the tension of the string at a given instant ; an(f shew that
it will come to rest after a time

1 Io Q+o0 .
2uQ) cos B E0—w"
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(67) Determine (apﬁroximately) the motion of the bob of
a simple pendulum; when the point of suspension describes
unifortly, and with small velocity, a horizontal circle.

(68) If a curve revolve uniformly about a vertical axis
and the only extraneous force be gravity, prove that the time
of an oscillation of a particle shiding on the curve about its
position of rest is

27 / psina
o'V r—psinacos’a’

p being the radius of curvature at the point of e(ﬂlilibrium,
a the angle made by the normal at that point with the ver-
tical, » the distance of the point from the axis of revolution,
and o the angular velocity of the curve.

152
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CHAPTER VIIIL

MOTION IN A RESISTING MEDIUM.

* 214 . WHEN a body moves in a fluid, whether liquid or
gaseous, it must, in displacing the particles of the medium
and in rubbing against them, lose part of its own velocity.
The resistance of a fluid to a body moving in it is therefore of
the nature of a retarding force; but, in consequence of the
great difticulty of making accurate experiments on the subject,
the laws of the resistance of luids have not yet been satisfac-
torily ascertained.

For a velocity neither very great nor very small, the
general approximate law scems to be, that the resistance to
a plane surface, moving with its plane at right angles to the
line of motion, is proportional to the extent of the surface, the
density of the resisting medium, and the square of the velocity
taken conjointly. We are, however, only treating of the motion
of a particle, in which the extent of surface has no place in
our consideration, and will assume that the resistance depends
entirely on the density of the medium and the velocity of the
particle ; illustrating, by supposing different laws, the method
of procedurc in all such cases. '

215. ‘A particle acted on by no forces is projected in a re-
ststing medium of uniform density, of which the resistance varies
as the 0™ power of the velocity ; to determine the motion.

The motion will evidently be rectilinear. Let 2 be the
distance of the particle from a fixed point in the line of
motion at the time ¢, v its velocity at that time. The force
due to the resistance may be represented by kv, % being a
constant, and the equation of motion is

d'z ,,
aF ="k

R or % =—kv" (1).
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Putting it fo the form
dt i
k % =—-0 y
we have, by integration,
1=n
kt=C+ -2—.
n—1

Suppose the particle to be projected from the origin, with
velocity V, then when
e
t=0, v= V; and 0=—'I—l_:—i‘
Hence (n—1)kt=v""— V""" ciiernrnenn. (@),

the relation between » and £. It shews that v car never be

zero if n > 1, but if n < 1 the velocity will become zero when
pr

t=zf~;—n)—lz . After this the particle will evidently rdmain
at rest. b

To find the distance of the particle from the origin at any
time, we have from (2)

d =
vor?l;={l7’°“—-(l—n)kt} .

— sy

Hence = — @:ln—);;{”""— (=) B 4 g

« and ¢ being supposed to vanish togetl.ler. When n <1, the
distance to which the tEmrticle will go, or its distance from the
1-n )

origin at the time T=w %’ is
‘Vﬂ-n
2-n)k’
216. There is one case in which the above solution fails,

namely when n=1, or the resistance varies as the velocity.
In this case, by (1),
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dv_ _
dt

from which %t = C—logw.
When t=0, v=V; and C=log V.

q 4 dt 1
k‘v, and L%=——,

v

Hence kt=1log lv’ ..................... (3);
and therefore v or (‘Zg =Ve™.
. 4 —
Integrating, = =€) irriiiiiiiiinnnnnn, 4),

the constant being determined as before that = and ¢ may
vanish together. ¢

Equations (3) and (4) determine the velocity and the
position of the particle at any instant. They shew that the
velocity contthually diminishes without ever actually be-
coming zero, but that the space passed over by the particle
can never be greater than a certain quantity, for when

= -7
- y &x= ‘]_c' .
L)

217. A particle, acted on by a constant force in tts line
of motion, moves in a resisting medium of uniform density, of
which the resistance varies as the square of the welocity; to
determine the motion. .

Suppose the particle. projected from the origin with the
velocity V, and let v be its velocity at any time ¢, z its
distance from the origin at that time, and f the constant
acceleration due to the force.

Asgsume K tq be the velocity with which the particle
would have to be animated that the resisting force might be
equal to f; then the retarding force at any time may be repre-

sented by f—K—-,, .
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I. Let f alt so as to diminish «; then the equation of
motioneis I'e

ar _"'f sz,

which, since
d’z _dv_dv dx dv

FE @ dmd Cdx

Thesc again may be changed into o

de __K* 1
&= " F Eto
dx K® 1

T~ o Taot
Integrating, and determining the constants so that when

=0, t=0, v="V,

we obtain
* £ W .(UED)
‘ =tan™ K—tan K =tan Kirve
e _ K’+V’
_""1 g.K’

Let T be the time at which the veloclty becomes zero,
and % the correspondmg value of , then

K 4 14
=?~tan Yo and (h=—§}‘—log (1+-K—:)-
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After this the particle begins to return, tht force of resist-
ance therefore tends to increase x, and the equation of
motion is

d'z

v!
'&? = "'f ‘*’f fﬁ ’
v;vhich, as before, may be written either
dv _ ya

These may be changed into
d_K* 1

dv, f K*—o"
g _ K1
d('). 2f K'=o'
Integrating, ¥nd determining the constants so that when
v=0, z=h, t=T,
K+v
K—v’

2 K*
%(h—w)=logm.

we obtain

Fe-1)=log

Let U be the velocity with which the particle will return
to the point of projection ; then, putting =0 in the latter
equation, we obtain -

U o
—€ K*;

-1

or, substituting for % its value,
‘Vl
UK
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whence
1 1 1

° .
This shews, as we might expect, that the particle returns
to the point of projection with diminished velocity.

II. Let fact so as to increase . Then
" d'z o'
ar _f —f E®

from which we derive, as before,
d_K' 1
dv f K=o
de _K' ¥
\ d(?}“)— 2f K!_,‘;ﬁ'

Integrating, and determining the constants so that when
t=0, =0, v="V,

we obtain
1= K 1og (E+9) (E=T7)
2f "°(K—v)(K+7V)’
K* K*-V*

Tl

From the latter equation we obtain *
' )
-v’ =K’ -— (.K.’—'V’) G-E".

This equation shews that when x becomes very large,
v approaches to K, which is its limiting value. If'the velocity
of projection be less than K, » will continually approach to K,
ang never exceed it, and if the velocity be greater than K,
» will constantly diminish towards K, and riever become less.

918. The results of the last Proposition are applicable to
bodies projected in a resisting medium vertically upwards or
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downwards under the action of gravity; for the‘acceleration due
to gravity may still be considered constant, although not the
same as for a particle in vacuo. The actual moving force is
in fact the difference of the weights of the body and the fluid
displaced, so that if a be the ratio of the specific gravity of
the fluid displaced to that of the body, the moving force

=W (1—a) =My (1-a),

where W and M are the weight and mass of the body, and
therefore the acceleration caused by it =g¢ (1—a). By substi-
tuting this for fin the results of § 217, we may obtain formula
for the motion of bodies in a vertical direction under the action
of gravity. Hailstones and raindrops afford a good illystra-
tion of the Terminal Velocity indicated by the result of II.

219." To Jind the equations of motion, in a resisting me-
dium, of a particle acted on by any forces.

Let z, y, 2 be the co-ordinates of the particle relative to
an assumed system of rectangular axes, at the time ¢, and let
X, Y, Z be the component accelerations, parallel to the axes,
due to the forces acting on the particle. Then denoting by R
the acceleration due to the resistance, which lies in the tangent
to the path described, and in a direction opposed to the
motion, we have

d’z dz
=X B

Way-rY,

dz dz
Z—ti—= Z""R%o

These are the general equations of motion. In any par-
ticular case R will be given as a function of the density of the
medium and the velocity of the particle, and particular me-
thods will be necessary for obtaining the path of the particle
and its position at any time. The method of procedure will
be illustrated in what follows.
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220. A particle acted on by a constant force parallel to
a fixed dine vs projected from a given point in a given direc- ’
tion with a given velocity, and moves in a uniform medium
whose wesistance varies as the square of the velocity,; to deter-
mine the motion,

This is, approximatel};, the case of a projectile disturbed
by the resistance of the air; and its solution is, to a certain
extent, useful in gunnery.

Take the given point as origin, the axis of  perpendicular,
and that of y parallel, to the given line, so that the plane of zy
may contain the direction of projection. Let f be the con-
stant acceleration due to the force; acting, we will suppose,
to diminish y; then the acceclerating effect of the resistance

ds\* .
may be represented by % ( élj) where % is a constant. Hence

the equations of motion are

dzx ds !dm .
Zif:"k(&l't) FIRSRURRURURRRRSRRROON ¢ |
dy_ ., (ds\‘'dy s
R BT [ Te— (2).
The former may be written
'z _ k‘l’f@.’
df ~ Tdtdt’ -

and, therefore, dividing by %ag and integrating,

¥

log % = 0~ s.

Suppose u to be the component of the initial velocity
parallel to & : then, when =0 o

~ =wu; whence C=1logu, and

.Tclz
% = ue™,



Py _ wdyde s dy
therefore a—t,-_ue E,m—'k‘ué_ha—tz’;
)

= u’e"“% - kue"’“ds dy

But by (2),

Coxhparing these we obtain

ey f o_y.
dn T =0s

or, putting p=%,
ap  J
;h+1-‘-;e"“-—0 ........................... (3),

the differentit] equation to the path.

‘It may be made integrable once by multiplying the first
term by ‘
V(1 +
]

—

dx

, which is unity.

This gives c—jlf-;‘\/(l +p')+£e‘“=0.

Integrating, and determin'ing the constant so that when
8=0, p=tana, a being the angle which the direction of
Pprojection makes with the axis of «, we obtain
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PYA+P) +1og (p+v(L+7)) + Lo

u’
= tan a sec a + log (tan a + sec a) +£, 4),

the intrinsic equation to the path. This equation cannot be
integrated farther.

If we make k=0 in equations (1), (2), we have the’equa-
tions which belong to the trajectory in,a non-resisting medium,
the original velocity and direction of projection being the
same as in this problem. Hence if S, s be arcs of the trajec-
tories in a non-resisting, and a resisting, medium measured
from the point of projection to any two points at which the

tangents arc parallel, ' ..,/
dp 2) _ de_ S
ds VOHP) == gy ==
ds

Hence _J,;=eu ;

and therefore 248 =™ —1,
since we suppose S and s to commence together.
Hence 2ks=log (1 +2k8S) ...ocvvvinninnns (5).

221. From equation (3) it appears that, as s becomes
more and more nearly equal to + o, Z{g becopes more and

more nearly zero, and therefore 2 becomes more and more
nearly equal to a constant. Hence the curve.on the positive
side of the origin tends continually to coincide with a stra?ht
line parallel to the axis of y, at a finite distance, which is
therefore an asymptote.

Again, as s becomes more and more nearly equal to — oo,

:—il—g becomes more and more equal to zero, or p tends to be-

come constant. The curve therefore on the negative side of

the origin tends to become parallel to a certain straight line.
' K . 1

It appears also from equation (5) that when §=—g7, s be-
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comes —w, and therefore the curve tends t9 become parallel
to the tangent at a point of the common parabola at a dis-
*

tance — ’217‘: along the curve from the origin. Or, if § be the

angle which this straight line makes with the axis of «, we
have by putting s =— o in equation (4),
tan @ +sccf f
*tan 6 sec 6 — tan a sec a + log tana +seoq I
. To shew that the curve has an asymptote parallel to this
line, we must prove that z, the distance of the intersection of
the tangent with the axis, from the origin, is always finite.

Now:v=a:—y,8§;
which gives ‘.Z'—D ey B2 _ydp

de= Y dpdy = ptdz’
Also, if the ultimate value of p be called #, we shall have
ultimately,
‘ y=nx, s=x4/(1+27),
and, by (3),

dp __f*

dw— uz,
.di_. f_‘l_’ 140Y),
..%-—M,e‘w' ;

z
o B [ i g,
o U

\‘ . .
which, by integration, will be found to be finite when z is
infinite and negative. *

Hence the curve is not similar on opposite sides of the
vertex. The particle rises more obliquely and descends more
vertically than it would do in a vacuum.

222. The projectile will have reached thg.highest point
when 99 0. This gives, for the length of the path between
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the origin and the highest point, by equation (4), the ex-
pression ‘
1 Tt |
% log [1+ 7 {tan a sec a + log (tan & + seca)}],
aﬂd, for the velocity there, the value
2 A
ull+ l;—u— {tan a sec & + log (tan a +sec a)}]3.

223. The above results will, as in § 218, be made applica-
ble to the motion of a body projected in the air under the
action of gravity, by writing for f'the value of g, corrected for
buoyancy. The most important application of the problem

is to the practice of rificd arms, in which case p is always
small, and an approximate equation to the path may be found.

For we have

/A
Z—”'I-z;,-em—ﬂ.

PP P A

Multiplying this by g—i= V(1 + p*)=1, (neglecting higher
powers of p than the first), we have

B f s _

Integrating, and observing that when s =0,¢% =tan«,
P Ekfz—l/,e‘”=tana+%%;°
whence ¢ = L+?7—w (tan o — p).
Substituting in equation (3), we obtain

P 4L 19k (tanap)=0,"

'oa;j»—g—2kp=—({;+2ktana).
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Multiply by ¢*= and integrate, determining the constant
as before; and we have .
N

P = +(§-',-§;,-+tana) e

___f f
Orp—dm——ék:age'“+( " +tana).

Integrating, and observing that when =0, y=0, we
have finally, p

- SN_ S e
y =T (taﬂ o+ 2/\311,’) Zk:‘—';i (E 1),

the approximate equation to the required path.

224. A particle, moving in a resisting medium, s acted on
by a force whose direction*is constantly parallel to a fired line ;
to find the resistance that @ given curvc may be described.

Taking the fixed line as the axis of y, and denoting the
force at any‘s;oint by Y and the resistance by R, the equations
i

of motion will be .
d*x dzx
EF = - R -8; ................................. (l),
dy _ dy
7 Y_Rds veesetetenteveenreorsententons (2).

Eliminatingz B,
ded’y dydxz . dr

—c-l-z -d—t”—"——d'—t W—Y‘ZZ‘E ..... o-ooo--o--u--:..(3)-
dy
Cdy _ dt
NOW a‘; = g—’;;
dt

dedy_dyd'z
h dy _dt df* _dt df*
ence -d——-z-—-' (i;T),
dt
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.
(dw 2

dn' Y
or (2:—’) .................. eeegeerens(4)

Tuy
d‘,”x
Differentiating with respect to ¢,
gdods_d Y do
7 de ~ds (8‘*"1;) dt

.

d‘pl

Lz _la T, .

@ T2 ds (T
X

and therefore by equation (1)
* 1ds d | Y
BR=- 53—:—” dr (z-‘-_y—-) .....................(5).

da’

From this equation, if we know Y, the resistance that a
given curve may be described can be found.

(J
225. If the resistance vary as the product of tHe density
into the ' power of the velocity, equations (4) and (5) may
be used to find the law of densiz that a gtven curve may
be described. For in this case £ will be represented by

k (g—':)”, where % is proportional to the density at any point,

and is to be determined as a function of z and y. 'We have
then from (5) ‘

&2 )
. . da®

and hence, by (4),
T. D. ‘ 16
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A4

__lyds\\*™ Y -3d Y,
=-:(2) (d‘;y) Zo(T5)’
d. du
which, according as x is not or is equal to 2, may be wfitten
1 ds\td YT .
k= ’-;-;—E (&:C) 'J; (?) ........................ (b) 5
d?
1d Yy °
or k=-—§- (—Z—?loga‘—?; ......................... (7).
i

226. Equations (5) and (6) may also clearly be used to
determine the laws of force by which a given curve may be
described, the density being supposed known, and the direc-
tion of the force being given.

I'rom equation (3), we obtain »

ds\* ds\*
@ @)
Y (d__-?) T dy_dyds P
dt/ dt dt* dt dt
p being the radius of curvature. Hence
A9\ _ . dx
@ -7z

= 2Y (} chord of curvature parallel to y),
and therefore the velocity at any point.is the same as would
be acquired by a particle falling in vacuo through one fourth

of the chord ‘of curvature parallel to the fixed line under the
actior of a uniform force equal to the force at that point.

227. A particle, moving in a resisting medium, is acted
on by a central force; to find the resistance that a given curve
may be described.

P denoting the central force and B the resistance, the
equations of motion are  * : S
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d'x x dx
7 Sl - o
dzy-_ y_ dy
— = Pr R 7

Eliminating B,
dz d%y dy d'r P( (ly dw)

dide"de "t Y @)
ds P ds
or -(Et—) Pr at’
ds\* d ‘
hence (ﬁ) =sz;- ........................ m, -

which shews that the velocity is that due to one foturth the
chord of curvature through the centér.,

Again, eliminating P from the equations of motion, we
obtain

X

&y dw dy  da\di
JF"?’TE“"R( di ydt)ds’

or ;‘f—,(p Zt) —Ep;

wheucepjs g;(pg‘:)=—.3p ;
(

eﬁ

(]

therefore — 2Rp*=-

&'&. §~

) by (1);

1 d(p,
and fimally B=~ 52 7 (Pp ) eesgensanens @,
which determines the required law of resistance.

228. If the resistance vary as the product of the density
and the n® power of the velocity,
’ 16—2
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ri(d)

and by equations (1) and (2),
d\' 1 d(,,dr
I"(ﬂ’gﬁ) =T ds (&’ 13)’

e 8 ()

dp
which, according as = is not or is equal to 2, may be written

"2

- )
or k= —‘-;— (%log (Pp' flr)

These equations determine either the law of density that a
given curve may be described, the force being supposed known,
or the law of force supposing the density known.

229. A particle, moving in a resisting medium of which
the resistance varies as the product of the density and the square
qutlce velocity, 13 acted on by a central force; to determine the
orbit. °©

T'his may he derived immediately from the result of last
Article, but we will rere give a direct investigation. Let P be
the central force ; then, taking the equations of motion along
the radius vector, and perpendicular to it, we have

id;’_r(%g)'=fP-k(§€)’g ..... e (1),

1d/.d ds\? rd@
~m(”a§)=""(m) @

° . Dividing the latter of these equations by » ?g, we have
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d ( ,d
i@ L
ke
T
Integrating,
r’%o-=ke‘”";

k being the constant introduced in the integration and de-
pending on the initial circumstances.

Again, putting r=;1—,
dr l du _ l du df

=k g™

d'r __ kd % ~iia dé du .ﬂmds
de d¢ ¢ dt a0 ¢
1 ,d U s rae ds dr

Ll ARl 2
Substituting in equation (1), we have, since
oy _dodr
( ds  dt dt’

+ hk —

du

— R S e — e _p;

Ptk

i =0.

and ﬁna.lly Z;, +u—

EXAMPLES.

= (1) A'particle is projected with a given velocity Vin a
uniform medium in which the resistance varies as the square
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root of the velocity ; to find what time will elapse before the
particle is reduced to rest. ;
v

Required time = -2—k—~ .

(2) A particle projected with a velocity of 1000 feet a
second, loses half its velocity by passing through 3 inches of
a resisfing medium of which the resistance is uniform; to find
the time of passing through this space.

1
3600 th of a second.

(3) A particle falls towards a center of force which varies
as the inverse cube of the distance, in a medinm of which the
density varies also as the inverse cube, and of which the
resistance varies as the square ‘of the velocity ; prove that at
any distance x from the, center,

. 1

(velocity)* = % 1-¢* (il‘s";-)},

where p = force at unit of distance, % = density at unit of
distance, and @ = distance of the particle from the center at
the beginning of its motion.

The equation of motion is
d’x p k (dx)’.

T\
or v%=—§,+%§.
- Let v*=2z;
dz 2kz 2n

R~ P
X ' ‘
Multiply by ¢ and integrate;
.1

3
o e”z=0+£,:€;’.
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. X
Now when z=a, 2=10"=0; .- 0=-)73 at

€
- Z=v'=£{l—e_kc7-:’)}. .

~- (4) A particle acted on by a constant force £, moves from
rest in a medium of which the resistance varies as thesquate
of the velocity directly and as the distance from the center
inversely; find the velocity of the particle at any distance
from the origin, and the position o}) the particle when its
velocity is a maximum.

1
ot = 2 (@), of = (20,

1-2k
where a is the initial distance and % the resistancg when o
and v are both unity. : .

"~ (8) If chords be drawn from either extremity of & vertical
diameter of a circle, the time of descent down each of them in
a medium whose resistance varies as the velocity, is the same.

- (6) A particle is projected with a given velocity, towards
a center of force attracting inversely as the cube of the distance,
in a medium of which the resistance varies as the square of
the velocity directly, and as the square of the distance from,
the center inversely ; to find the velocity at any pqint.

% % - _% -
Here esv—e V2=t (a 2k€z_‘w 2%

_2Ne

21 €°)
where V is the velocity of projection, u the absolute attracting
force, k the resistance at a umt of distance, a the initial dis-

- tance, and @ the distance of the particle corresponding to the

velocity v. *

-V (7) One particle begins to fall from the higher extremity
of a vertical line, and at the same instant another is projected
upwards from the other extremity with a given velocity, the

articles moving in a medium of which the resistance varies
girectly as the velocity; shew that the time at which they
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will meet =-,15 log ;f’—;k? where a is the length of the vertical
line, ¥V the velocity of projection, and % the resistance for a
unit of velocity.

(8) A particle acted on by gravity falls from a given alti-
tude in an uniform medium of which the resistance varies as the
sduare eof the velocity ; on arriving at the lowest point of its
descent it i8 reflected upwards with the velocity which it has
acquired in its fall, after reaching its greatest altitude it again
descends and is again reflected, and so on perpetually ; to de-
termine the altitude of ascent after any number of reflections.

Let a be the height from which the particle falls, a,, qa,, a,,
&ec., its maximum altitudes afterwards, v, v, v,, &c., its
velocities after the first, second, &c. times of reaching the
bottom, then (§ 217),

2fa

ol K*(1— ¢ i3,

and
1_1_1
,c: vx’ = K*
1 1 _“lh
‘LJ’ v: —Ks'
111
,v“u Iv‘n.t 7'
Adding ’
1_1_n=1
,v“: ”v‘x K! .
Hence -
: 1 1 1
N 1—¢ 48
. ik Y
1 (n=-(n—1)e ¥
=fx Ya . H

lae k2

¢
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. ga- “

. vn’__ €ki — ]
< hala 7
neki —n 41

The particle is now projected upwards with a vclocity v,
therefore (§ 217)

a,=§log (1 +z’,':>

. 20
_L- 100(n+1)€‘“_”
=Splog——-

2 neki —n 41
If a Le equal to infinity,

_K loo ®F 1
a, :— 2 j. OD n .

(9) To determine the law of foree that a particle may
always descend to a given center in the same time from
whatever distance it commences its motion, the medium in
which the particle moves being uniform, and fhe resistance
varying as the square of the velocity.

(10) If one particle be projected in a mediim, the resist-
ance of which varies as the vefocity, and be acted on by a
constant force parallel to a given line, and another be pro-
jected in vacuo at the same angle and with the same velo-
city and be acted on by the same constant force, and"if ¢, ¢, be
the times of describing two arcs in the medium and in vacuo
so related to each other that the tangents at their extremities

shall be parallel to each other, then ¢"*—1="Zz,, % being the
resistance corresponding to the velocity 1. \

- (11) A particle moves in a semicircle, acted on by a con-

" stant force in parallel lines; find the requisite resistance, and

su;:gosing the resistance to vary as the gensity into the square
of the velocity, find the law of density.

* Let the equation to the cirele be 2" + y"=a", and the force
| parallel to y; then B oc.'.zt, ko /ﬁm?;: !

-
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" (12) A particle acted on by a constant force parallel to the
axis of y moves in the curve ¢y +a"=5"; find thg law of
resistance.
Mm-2 )
J A L)

n=1 .
&

.~ (13) A particle acted on by a constant f:?rce parallel to the
ol find the law of

density, the resistance varying as the product of the density
and square of the velocity.

ke

axis of y moves in the curve, 'y = ma 4

m’l

{zenﬂ_*_ (mmn-ﬂ - ,nanﬂ)!} '

(14) A particle moves in a circle about a center of force in
the circtimference, the force being attractive and = ur"; to find
the resistancc of the .medium and the law of the density,
supposing the resistance equal to the product of the density
and the square of the velocity.

. .
_K . _n+5sin8
R—4(n+5)r sin 6, k————~2 -

— (15) A particle moves towards the pole in an equiangular
spiral about a center of force in the pole, the force being pur";
to find the resistance and density of tKe medium, the resistance
being equal 3p the product of the density and the square. of
the veloctty. '

.
n+3cosa
r"cosa, k=T ._’:.._’

where o is the constant angle of the spiral.

@ (n+3)
B="0—

—(16) A particle moveés in the circumference of a circle
about*a center of force in the center, the resistance of the
medium in which the motion takes place being constant; to

~#ind the law of ‘force, -the velocity at any time, and ‘the time
which: elapses as well as the space desctibed before the particle
sig-reduced to rest. - 2 .
iV 20, P=l(V—ges); 8=, T=TL
= ‘ ’ pe C8); %’ e
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where V =initial velocity, ¢= constant force of resistance,
a=radius of the circle, s the arc described from the be-
ginning of the motion, § and T the space and time corre-
sponding to the particle’s being reduced to rest.

" (17) ' A particle is projected along a smooth circle with
velocity V in a medium whose resistance «c »*. Prove that
when the dircction of the motion has changed thromgh 4n
angle ¢ the velocity = Ve™*,

(18) A particle moves towards the pole in an equiangular
spiral, the motion taking place in a medium whose resistance
=kr"; find the law of central attractive force in the pole.

P= (n+38) cosaa’V*+ 2k (r"**—a™?)
- (n+3) cosar’ ’

[ ]
where V= initial velocity, and a = censtant angle of the spiral.
L]

(19) If a particle acted on by a central force P is méving
in a medium whose resistance = k (velocity) prove that
dr o Ko o dr

where % is an arbitrary constant.

(20) A heavy particle moving in a medium whose resist-
ance = nv’, is compelled to describe in a vertical ptang the curve

ar=eY—ns—1,

where 8 is the length of the curve meagured from the lowest
point, z the abscissa of the extremity of this arc referred to
a vertical, axis, and @ ‘a constant; shew that the time of
reaching the lowest point is independent of the height from
which it starts,

»

(21) Shew that the curve in last question is also tauto-
chronous if the resistance = mv + nv'. '

-
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CHAPTER IX.

GENERAL THEOREMS.

230. WE propose now to prove some of the general
theorems connecteg):vith the motion of a particle under the
action of any forces, and to investigate the forces requisite
for the description of given paths in a given manner. Several
of these results have a occurred as immediate deduc-
tions from the laws of motion; but to maintain the special
character of the work we give more formal analytical demon-
strations, though these are certainly superfluous.

231. Ifa particleObé subject to the action of forces, whose
resultant 18 continually at right angles to the direction of its
motion; the vflocz'ty will be uniform.

Let R be this resultant, A, u, , its direction cosines, then
if the mass of the particle be taken as unit,

d’z
dae
d’y

75 = 1B,

=R,

2,
%g=vR.

Multiplying by %, ., adding, and observing that
do  dy . de_
A s + p ds + l’a‘; =0

since the force R is at right angles to the element of the path,
1d . dedz dydy deds
@ T #F TG dtE @

or*y = const.



GENERAL THEOREMS, 258

Or, we might at once have resolved along the arc; this
would have given ‘

d’s
@ ="
whose integral is
ds
&a=v= const.

2
The value of R (§§ 16, 64) is evidently Z; or varies

inversely as the radius of absolute curvature of the path; and
it is clear that its direction lies in the osculating plane, since
there is no acceleration perpendicular to that plane.

232. Ex. I. A particle projected in a plane s acted on
by a-constant force R in that plane continually perpendicular
to its direction of motion ; to find the path descrt{ed.

2 3
Here R=2; and therefore p is constant, or the path is

a circle.

Ex. II. Let R vary as the time elapsed since the com-
mencement of the motion ; then R =R t.

Also s, the arc of the curve described in the same time,
= vi, since v is constant.

Hence we have

R="=R,

.
H

©Iis,
e ®

or ps=const. = ¢’, suppose.

If 4 be the angle which the direction of the element &s
makes with any fixed line, -

r

P=g\—1,3

ds _ ,
and therefore & = c,
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or f=2¢"(y+0),
the intrinsic equation to the curve described.
283. If X,Y, Z be the rectangular components of a force

or forces such as occur in nature, t.e. tending to fixed centers
and being functions of the distances from these centers,

Xdx + Ydy + Zdz=—-4dV,
i.e. 18 a complete differential. Compare § 73.

Let the points a,, b, ¢,; a,, b,, ¢,; &c., be the positions of
the centers of fqroe; x, 3, # the co-ordinates of the attracted
particle; then, if r, r, ... be its distances from the centers,

¢, (D), ¢, (D), &ec.,
the laws of attraction to those centers; we have

=22 )+ 2T ) (r) + e
1 r’
FEEe .

But r=v{(@a—2)*+ G -9+ (c—2)%;
which gives' (%) = : z. 9., for the values of the partial
differential coefficients of r.

Hence, ;
x=380 (%),

: , dr

¥==34() %)

. N
: L= 360 (Z.)-

.~ These give

‘ « Xdz + Ydy % Zdz

=24 {(%) o+ (%) dy + %) {ZZ}
=3P () dr == AV ecerrreenrereersresaenns (1)
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since every term of the sum is a complete differential. From.
§ 78 it is obvious that ¥ is the potential energy of unit of
matter ‘at z, y, 2.

284. Under the action of any forces such as occur in
nature the increment of the square of the velocity of « particle
" in passing from one iqoz'nt to another 18 independent of the path

pursued, and depends only on the initial and final pogitions.
This is true even if the particle be forced to move in any par-
ticular path by a Lforce continually perpendicular to its direc-
tion of motion, such as frictionless constraint.

Taking tangential resolution, the force of constraint dis-
appears, and

d’s

3?=S.

Now 8, the resolved force along the tangent, is

dx dy 4z
Xd—;+Y‘—i-s-+Z——,

and therefore by (1),

ds d’s o, \dr_ dV
G oM g=—a

vﬂ
or —2-'—"- C""2¢(1‘)=C— V;
hence, if U be the velocity at a point whose distances from
the centers are R, R, ...... , and where V=V y*
IR ICE A

a result which involves only the co-ordinates of the initial
and final positions. See, again, § 73.

235. Hence if from any point of the surface

V=3¢ (r)=4,
a particle be projected withsa given velocity in any direction ;
its velocity when it meets the surface ‘
. V=32¢()=B,  *

will be the same, in whatever point it meet that surface;
A and B being any constants. \
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Now on account of equation (1), V= ¢ (r) = ognstant is
the equation to & surface on which if smooth a particle will
rest in any position under the action of the given forces.

Hence a particle leaving any point of a surface ofiequi-
librium with a given velocity, will have on reaching any other
surface of e’};ﬂibrimn a velocity independent of the path

" pursueg or point reached. This is evident from § 78 if
we notice that a surface of equilibrium is an FEquipotential
Surface.

236. To find the condition to which the applied forces
must be subject when the vis viva of a particle é«mds upon
its position only. This is merely the converse of § 234.

Here we have

DO | bt

' =¢(z, 3 2),
and, therefore, ‘
vdv = (g—t) dx + (gg?) dy + (%Z—’) dz.

But, in all cases of motion,
vdv = Xda + Ydy + Zdz.
Hence, in this case we must have

k@) )
that i . “Xdo+ Ydy + Zie

must be a complete differential of three independent variables.

If the seat of the force be in a definite fixed point, which
may be taken as origin, the velgeity must evidently depend
solely on the distance from that feint ; hence, if .

r=y @ +y+ 2
we have . %”‘=¢(")-
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The dbove process gives, in this case, -
vdv = Xdx + Ydy + Zdz = d¢ (r)

=¢' () (Zde+? 4
=90 (Fawtldy+las),
X Y z
or =====,
x Yy z

which shew that the force s in the direction of . From this
i_tf evidently follows that dts magnitude must be a function
of r.

237. The proposition of § 234 contains the Conservation of
Energy; or, as it was formerly called, the Principle of Vis
Viva; for the case of a single particle.

From this principle it follows that if several particles
moving under the action of the same center of force have
equal velocities at any particular distahce from their center;
their velocities will always be equal at equal distances from
that center. .

Now we have seen (§ 142) that the axis major, 2a, of an
elliptic orbit about a center of force in the focus is independent
‘of the direction of projection. Hence, by considering the pro-
jection to be made from the center, we find that the velocity at
any point is due to a fall, from rest at a distance 2a, to that
pomnt; and that, therefore, in any elliptic orbit about a focus
the velocity at any point is that due to a fall*fo the point,
through a space equal to the distance from the other focus.

288. If the forces acting on a partitle, and the square of
1ts velocity, be increased at any instant in the same ratio, the
path will not be altered.

For the tangent, and the osculating plane, which con-
tains the tangent and the rcsultant force, are evidently not
altered. And the curvature, being T

Normal Component of Forces § 64
Square of velocity ? ?
has its numerator and denominator increased in the same ratio.
And the square of the velocity at the end of any arc is in-
T. D. 17
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creased in the same ratio as that at the beginning. Hence each.
successive elementary arc of the path remains unchanged.

239. If a number of separate particles whose massgs are
m,, m,, dx. subjected to the action of forces £, f,, dc. respec-
tively, and projected from the same {Zint tn the same direction
with veloctties v,, V,, dic., all describe one path; the same path
will also be described by a particle of mass M projected with
velocity U from the same point vn the same direction, and acted
on at once by the same forcesf,, f,, &o. provided MU* =3, (mv*).

Suppose that, in addition to the forces £, f,, &e., a force
R continually acting in a direction at right ang’ies to that of
M's motion be required to cause it to move in the given path;
i.e. suppose M to be constrained by a smooth tube to move
in the required path ; the equations of motion are

'z
. M7;=2(X)+R7«. ....................... ),

oWith similar equations in y and ¢, '
v

where A, u, v are the direction cosines of R, and X, Y, Z the
resolved parts of £,

| Multiplying by 2, %, % iy order, and adding, B
goes out, and we have
L MI(0) =% (X) de+ 3 (D) dy + 5 (2) e
But for the \aepax‘a-te particles m,, m,, &ec. we have
smd (o) = Xdo+ Yy + Zde, &e.
therefore, the path being the same for all,
FEMAN =3 (X do+S (N dy+3(2)de
Hence 3 {md (v)} = Md (U"), ’ '
or 2(M=MU‘+0. ) | o
But % (w7") = MU® by hypothesis, therefore 0'=0.
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[Instead of this analysis, it is sufficient (by § 73) to notice
that the work done on I is the sum of that done on m,, m,,
&c. Hence the dncrease of kinetic energy must be the same;
and if, at starting, the kinetic energy of M be the sum of
those of m,, m,, &c. it will remain so throughout the motion.]

Hence the vis viva of M will be at each point of the orbit
equal to the sum of the vires vive of m,, m,, &c., at that
point. To find R, notice that in general the pressure on a con-
straining curve is the sum of, the resolved parts of the im-

ressed forces, and the pressure due to the velocity. Now the
atter part is as the vis viva, therefore, in the case of M it is
the sum of the corresponding forces in the-case of m,, m,, &ec.
Also the same may be said of the resolved parts of the im-
pressed forces. But in the case of each particle, these partial
pressures destroyed each other, since the curve was dascribed
freely, hence their sums will destroy each other, or the curve
will be freely described by M. . .

240. If at any instant the velocity ‘of a material particle,
moving under the action of a conservative system offorces, § 72,
be reversed, the particle will describe its ({ormer h in the
reverse direction. [Compare Ex. (48) to Chap. Vﬁm

Suppose a smooth tube, in the form of the original path,
be requisite to constrain the particle to move backwards along
it l‘e’%be velocity will be, at each point, of the same magni-
tude as before, (§ 234) ; the resultant force, and ¢he aurvature
of the path, also alike; hence the normal component of the
force will produce the requisite curvature of the path, and
there will be no pressure on the constraining tube. The tube
i8, therefore, not required. 'Whence the proposition.

241. LEAST, OR STATIONARY, ACTION. If v be the velo-
city of a particle whose mass is m, and if s be the arc of the
path described, the value of the integral m[vds taken between
proper limits is called the Action of the particle.

If a particle move freely, or on a smooth surface, (under
the action of forces such as occur tn nature,) between h«::clz/ two
points, the valkie of the integral m[vds for the whole actual path
ts generally less than € would be if the particle were con-
strained to pass from one point to the other by a different path.

co 172
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This, combined with the above definition, *is for a single
particle the Principle of Least Action; of which in an elemen-
tary work like the present we can give only a very imperfect
sketch. For farther information see Thomson and Tait's
Natural Philosophy, § 318.

* 248. If & be the symbol of the Calculus of Variations,
the proposition will be proved if we shew that '

SA = 8fvds = 0.
Now 8feds = [B (vds) = [ (v3ds + dsv)
= [(x8ds + dtvdr), since v= g-:

But generally, , o= [(Xda + Ydy + Z02) =¥ (2, 3, 2),

[ 4

the force of constraint, if any, having disappeared ;
(b

hence vdv = X&x + Y8y + Zdz.
d'z

But (§ 191) X= ZF—RX, &e.
Heace «.
'v8v=(%ti,,—”§z+%’8y+%; 8z)—R(7\8x+y8y+v8z).

[3

Now if the particle remain on the surface whose equation
isF=0, - -
. Az + udy +viz =kdF =0,

and if it leave it B =0, 80 in either case the latter term on
the right vanishes,

Also ds*=da’ + dy* + d2*;
which gives dsdds = dwddi + dyddy + dz3de,
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. _dz dy dz
or vb‘ds—a—i 8dz+7‘l-28dy+-—8dz

dt
dx dy dz
= -(-i-z dox +*EZZ d8y -+ a dSZ,

since the order of d and & is immgterial.
Hence
8A=8fvds=f{‘gd8z+%%d8y+%d8z

+8ed (g’;{) +8yd (%’:) +82d (%j-)}

[z, s 22
-[:zzs“:zzs“zz&]’

taken between proper limits. Now at*both limits
=0, Sy=0, 32=0;
hence we have 84 = 0.

243. It is commonly said that as, in general, it is im-
possible to suppose the action a maximum, this result shews
that it is a minimum. The true interpretation of the ex-
pression, 84 =0, is that the unconstrained path of the particle
18 such, that a small deviation from it will produge ay infinitely
smaller change in the value of 4. Hence Hamilton has sug-
gested the more appropriate title Stationary Action. ¢

244. If no forces act on the particle e;:cept the constraint of
the surface, we have v constant, and the above equation shews
that in this case the length of the path is generally a minimum,

A particle therefore, projected along a smooth surface and
subject to no forces, will trace out between any two points in
its path the shortest line on the surface. (§ 193).

It may happen, in the case of a sphere for instance, that
the particleswill not trace out the shortest line on the surface
between the two points; but we cannot here enter into the de-
tails which are necessary to the full elucidation of such cases.
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245. We may apply this principle directly to form the
equations of motion 1n any particular case, or to find the
actual path under the action of any forces.

Ex. I. Let us take again the case of the refraction of
light tn the corpuscular theory. (§ 122).

The velocity in the upper medium is supposed to be u, that
in the lower ». .

In this case the expression for the action becomes simply
uPQ + vQR,
if PQR be the path of the particle.

By making this quantity a minimum, as depending on
the position o% Q, Pand Rtgcing given points; 1126 is easy to
shew that @ must lie in the plane through P and R perpen-
dicular ‘to the surface 4B, and also that the sines of the

inclinations of PQ and QR to the normal at @ must be in
the Inverse ratio of the velocities. )

246. Ex. II. T find the equation of the path described
by a particle about a center of force.

Let Pbe the central force at distance », then
v'= C—2[Pdr, (§134)
= {¢ ()}", suppose, ........c..... (1),
which gives '

Jvda = (5) de.
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Hence

0=844 () do
[16'(r) 8rds + § (r) B}

{4’ (r) (w2 + yBy + 282) ds
+¢(r)( d8x+d-§ds+ ds)}

J
[ 8z+d“ +% sz)]
+1%

) (xdz + ydy + 202) ds

— 8ad {4, ") -} - 8yd {¢ ") ‘ﬁ’} —8:d {¢ ") "’—z}] :

The integrated gart refers only to the limits, and must
therefore vanish independently of tHe integral. That the
integral may be 1dent1cally zero, we must have

2Ll %)=

with similar equations in y and z. These may be written

$0)(E-% F)-s0)55=0

¢()(Q-—”k@) qb()dy 1 (@).

. 4"(7') (’E—’Z_:: :i;) ¢(r)d8’

Multiplying by any three constants, 4, B, C, and adding,
we have

(Am+By+oz)?i(Il
(“*’fzf’fBZZ 0 ¢ %

- (4% + B G+ 0% s =0;
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which is obviously satisfied by
Ax + By + Cz=0,

which shews that the orbit is in a plane Eassing through the
center of force. Let z, y be this plane, then we may confine
onrselves to the first two of equations (a).

M\ﬂtxplymg the second by 2 and the first by y and sub-
tracting, we obtain

0V (= -y %) +90) (=4 -9 %) =0

This is immediately integrable, and gives

é() ( g—;’ —yz—x) = constant.

Since ¢ (r)=v, we see by § 22 that this is in polar
co-ordinates
< L d0

P =l s ®),

which is the equation for the equable description of areas.

Fxnally, multiplying these two first equations of group ()
by « and y respectively and adding, we have

a¢(ﬁ{f—(~)} ¢()( d,+y§!) 0o ).

But, since * .
dr_ _dz  dy

"% ds T Vs
we have by differentiation
i dy_, 2" (@
Gy aa=rg (@) -1

Substituting in (), and changing the independent variable
from s to 8 by means of the equation

de* = dr* + Pde",
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we have
$0)rfr+ () - o0 (-2 () -} =o.

Putting L for r, this becomes

d’ '(r) du .
Tp ru=— %{” (%)  S—)
But, by (5) as developed in § 133,

-t =r{e+ ()}

Also ¢ (r) ¢'(r) =— P, by (1).
Thus () becomes
Zﬂ’ +u= /f,, as in § 127.

247. We might-have treated these equatigns (§ 246 (a))
somewhat differently thus

¢(r)-v=g':.
Hence o;b(r) 5= dt , &e.;

and we have the equations

—z%'_—(r—) - g;. (%':) =0, &g &es,

which give, at once,
) @) 0
& Y 2

containing the theorems of constant plane and equable de-
scription qf areas; a.nd since

FO T =419 ==P

4 .
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dz _
ar -
the ordinary equations in three rectangular directions.

-Z2p-%2 =0, &,
;

248. We might have simplified the work by using polar
co-ordinates-immediately after having proved that the orbit is
plane. For we have

A=[¢(r) «/ {r' + (3—2)’} d6, a minimum,"
and therefore (by the formula V'=2Pp+C)

#0)/1r+ (G )= r)N/E> w40,
1"

or reducing, and putting k for C,

o (r) = f=+(d9)} ................ (@),
°r"’:§¢ hfll;,

: db
whence 7* i A,

the equaiidn for the equable description of areas.
Sqnanng (e) and attending to (1), we havc

T (C—2fPd) ="+ (ZZ)

or, putting » = ;l‘- ,

bonf2 -+

or, differentiating and dividing by 2 7
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P _ . du
A AT g

the general equation to central orbits.

249. Varyving AcTION. If, in § 242, we assume °
5 =/ (Xdw+ Ydy + Zde) + H=H-¥,

(with the notation of § 73) it is evident that H will depend
on the initial velocity. Supposing that this and the initial
and final co-ordinates vary; then, in addition to the already
considered variation of the form of the path between its
extremities, upon which the unintegrated part of the valye of
84 depends, we shall have in 84 terms depending on the
variations of initial and final positions and of initial velocity.

The additional term in v8v is 8H, and its integral ¢3H is
at once obtained. Hence in this mere general variation of
the conditions we have in the value of 84 the following ad-
ditional terms, depending on the limite only, and therefore to

be treated by themsclves, *%
_[d= dy .  dz
64 = [-‘E&”-}' dt by-l'zz 8z]

- [(El_t)o oz, + (75 ). 8y, + ( i), SzO:] + t8H.
Hence, if 4 could be found in terms of @, ¥, 2, @y Y, 2,
and 7, we should have at once the integrals of the equations

of motion in the fox:m _ .
34 _dx 34_ (‘i’v)
Sz~ dt’ Ox, d/;)
&e. &e.,

. .. ©OA
with the farther condition 5'15’“[-"

250. . is, of course, a fanction of z, ¥, 2, Zys Yo» % 80d
I, and must satisfy the partial differential equations
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(%)'+ (%)’ + (%)'= IYs - 58 S (w.
and (Z{v—‘i‘ T (%)'+ (j—;—f); DY7: 08 2 WO @)

261. The whole circumstances of the motion are thtis de-
pendent on the function 4, called by Hamilton the Character-
wstic Function. The above is a brief sketch of the foundation
of his theory of Varying Action, so far as it relates to the
motion of a single free particle. The determination of the
function 4 is troublesome, even in very simple cases of mo-
tion ; but the fact that such a mode of representation is pos-
sible is extremely remarkable.

252. More generally, omitting all reference to the initial
point, and the equation § 250 (2) which belongs to it, let us
consider 4 simply as a function of x, y, z. Then any fuic-
tion, A, whick satisfies § 250 (1) possesses the property that

A A A
. dx’ dy’ dz
represent the(rectangular components of the velocity of a particle
i:ezp; motion possible under the action of the given forces.

For, by partial differentiation of (1), we have

To_y_ dV_dAd4 JA A 24 24

G TG T de 3 Y dy dedy T de dwde”

" dydA\ dxed'd dyd'd d:d4
But 22(%)* % d7 T Gt dadyt & duds’
Comparing, we see that
do_dd dy_dd ds_dd
. dt dz’ dt dy’ dt dz’

satisfy this and the other two similar pairs of equations.

263. Also, if a, B be constants, which, along with X,
are involved in a complete integral of § 250 (1), the corre-
sponding path, and the time of 1ts descriptiop are given by

d4 d4 dA "
za°=au 33=ﬁn ‘i’_"‘H:t 19

where a,, B,, H, are three additional oonsta?ls
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For these equations give, by differentiation,
d’'Ad de  d'A dy d'4 ds_ 0
drda dt T dyda di ¥ dada &t ]
d’4 dxe d'A dy d'd.dz _
B d B T LpHm =0 [ @
d’4 dxe d*4 dy , d’4 dz

dedB & Y dydH dt T di = !
Baut, differentiating § 250 (1), we get
d’4 dA | d’A dA  d*4 dA 0

dadx El;.'-dady @4‘3;71; PZaa
d*4 dA  d'A dA  d*4 dA

Bz v T apdy dy T apdz &z =
’4 dd | 4’4 dd &4 d4
dHdz dz ™ dHdy dy ™ dHdz dz

3 S @).

=1

The values of %:3, &c. in (a) are evidently, £qual respec-

tively to those of (1‘—‘3 , &e. in (3). Hence the proposition.

254. Equiactional surfaces, t.e. those whose common

equation is
A = const, = C,

are cut at right angles by the trajectories.

For the dircction-cosines of the wmormal are obviously

. d4 dd dA . de dy dz
proportional to G’ &y da that is to I 3 T

Thus the determination of equiactional surfaces is resolved
into the problem of finding the orthogonal trajectories ‘of a set
of given curves in space, whenever the conditions of the
motion are given. e cannot, in the present work, spare
space for much detail on this very curious subject, and there-
fore give but one other singular property of these surfaces
before applying the principle of Varying Action to an im-
portant' problem.’ ‘ '

v N . v



270 " GENERAL THEOREMS. :
Let = be the normal distance at ‘any point between the

oonsecutive surfaces
A=C, and 4=C+8C.
‘We have evidently

dA dA d4

a—w'.' 8%"'2—5 8y+-a-z-8z= 80,

dx dy dz o
or mb‘m+-d—t8y+-ét-8z=80,
where 3z, 8y, 0z are the relative co-ordinates of any two con-
tiguous points on the two surfaces. If p be the length of the
line joining these points, 6 its inclination to the normal (i.e. the
line of motion) this may evidently be written

« : ”P Cco8 0 =W = 80,
since p cos @ is the normal distance between the surfaces.

Thus, the distance between consecutive equiactional surfaces
13, at any pojwet, inversely as the velocity in the corresponding
path.

This may be seen at once as follows; the element of the
action is v8s (where 3s, being an element of the path, is the
normal distance between the surfaces) and must therefore be
equal to 8C.

266.  To deduce, from the principle of Varying Action
the form and mode of iption of a planet's orbut. ’

In this case ii; is obvious that the force of gravity (— ;"i)

1;3 equal to —%‘;—. Hence the right hand member of § 250 (1)

€ - "
may be written 2(E+;). ‘ )
Let us take the plane of ay as that of the orbit, then'the
equation § 250 (1) becomes : ' .

R (‘%)’+ (%)isz (H + %) eressressens (1)

-
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It is not difficult to obtain a satisfactory solution of this

equation; but the operation is very much simplified by the
use of polar co-ordinates. With this, (1) becomes

. (%;)’+ ’1-;1 (%)’:, 9 (H.}.f::) ........ s 2),

which is ob;riously satisfied by

dA
2—0* = constant = a )
I S— (3).

()2 (e2)-

A=a0+fdr,\/2<ﬂ+5)—§ ............ @).

The final integrals are therefore, by § 253,

d—4 — — - e0ses
l a 0 - a[ ( ) g ot'u (5)!
—— = +e= esvesseenens Poooee 6 .

These equations contain the complete solution of the
problem, for they involve four constants, &, a, H, e. (5)
gives the equation of the orbit, and (6) the time in terms
of the radius-vector, T

Hence

~

and

.. 266. .. To illustrate the subject farther, we will deduce
the ordinary results of Chaps. V. and VI. from these formuls,
Thus, let @,, », denote the polar co-ordinates of any fixed
Q%int in the path, from which the action is to be reckoned.

e have, by (4),
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A=a(o—o.)+f;dr,\/2(’;f+ﬂ)-§ |
J +E dr :
..................... @),
VelE+a)-;

because, by (5), 0— 8 ..f L —
Ty ,\/ =+ H -=
To integrate (7), remark that (§ 140) = m an elliptic
orbit, and that thus X is negative by § 25.; (1)
IZut ' % = —2a, '
I a_. = 1 — eﬂ’
pa

and r=a (1 —ecos ¢),

and (7) becomes, after substitution,

=~/;Taf:(1+eco8¢)d¢-

which is 1mmed1ate1y mtegrable

Tt is obvious from § 153 that ¢ represents the excentric
anomaly.” Measured from the perihelion we have evidently

A= N/pa(¢+esm¢)
)-5.

By e ’loymithe same substitutions as'in last section, it
isgasy to Enng this expression into the form- o

- 257. By (6) we havet= .[ l\fw
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. a’ (¢ yy ‘
t=\/;.f¢é1—ecos¢) dé
. =,\/§[¢-:-esin¢]

the formula of §§ 152, 154. '

258. By the process of § 152 we see that while ¢ —esin¢
is proportional to the area described about the center of force,
and therefore proportional to the time; ¢+ esin¢ is propor-
tional to the area described about the other focus, and is, by
§ 256, proportional to the action. Thus the time s measyred
by the area described about one focus, and the action by that
about the other.

An easy verification of this curious result is as follows.

‘With the usual notation we have :
dA = vds,
_k
T
But in the ellipse or hyperbola, p’ being the perpendicular
from the second focus, .

=+ l_’"
Hence 7 ==“t?g;2'd'»

o e 3
rwhil ,msses %m result sought.s
N S " .t' . . . »
o Hals, {{to extend this to a parabolic orbit, for which,
indeed, tﬁ: edrem is even more simple.

ds. §22.

axtit é:poves in aﬁy oﬂrﬁ‘@,’jt ‘has been
: $ atceleration along thé radius of ab-
“solute curvafhie of the pagh-ig o thit-ﬁ'”ﬂ:"é force ’i-;”—' 18 res .
it o g & Py o TR L ‘
quired to deflect”'the pasiidls' from the' Qg;&;:whgh is the
pa‘th it WQuld axe ft??&;}tﬁﬁlfﬁf\” P . v : R .
T. D, o e 18
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From this, or by the formula in § 135, we see that if a
particle revolve at distance r, with angular velocity w, about
a point, a force mre® to that point is requisite to maintain the
distance » unaltered. This tendency to move in the tangent,
whicls ariges from the inertia of matter, was formerly supposed
to be dueto,a force, called Centrifugal Force, generated in the
particle by its rotation about the point.

‘We have seen that when the motion of a particle in any
path is referred to polar co-ordinates in a plane, the acceleration
along the radius vector is

(). o

Now the velocity along r is z—g, and that perpendicular

toit r ?g; hence the first term of the above is the acceleration
of the velocity along.the radius vector, and the other is the
so-called ce.itrifugal force due to a velocity r zf in a circle

of radius ». The idea of this so-called force is useful, as we
have already seen (§ 208), in enabling us to form the equa-
tions of motion of a particle in particular cases.
L3
260. G-ven the path of a particle, and the manner of its
description, to find the requasite forces.

If X, Y, Z.be the reg&uired forces for unit of mass, we
must have d; i i .
=2%_¢ (ax)
= =a (2?) |
ds d (ds dx d f -dx)
' =E’ ds (75 3;)=W=._v J;(UE)’ ;,' .
with similar expressions for Y'shd Z But as the poth is
iven, and the manuer of its desgription,.that is v in terms of
the eo-ordinates, the value of the above expressions is com-
pletely known.. - ’
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Instead of having the velocity at any point, we might
have had other conditions, such for instance as that the re- .
sultant force is to be in a given direction, &c., but these, like
the above, present no difficulty.

261. A particle moves in a plane, under the action of a
central force directed to a point which moves in a given manngr
in the plane : to find the motion.

Let @, y, £, 7 be the co-ordinates of the particle and point,
at time ¢. £ and » are given functions of ¢, Also let P=f(r)
be the central force at distance #. Then

&z _ _ P z—§

A o,
@ _p_ V=T
& V=g (=

are the cquations of motion.

The equations of relative motion are, of coungg,

d’gx—§)=_—P w?é___,,__d.g
e Ve-8+ - 9 @
Tl _p_y=1_ _&q [T
e Na—E'+@y—n 9
or, putting £, 7,, for the relative co-ordinates,
i’fl = ""P—” El o _d’E
de’ VE: +9, drt (8)
) g:m:_P__?,_._(_ifﬂ csesssrniee . .
e ‘ "/ f" -+ m” de

These equations ustrate, in a particular case, the general
theorem of g 24 ; as they contain, in addition to the terms due
to the attraction of the fixed center, the two known quantities
_9E a9 th ion of th
3¢ 30d =77, the components of acceleration of the

center reversed,
18—2
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262. Ex. Let the central force vary ‘divectly as the

distance.

\
Here P=pVET + 7}, and equations (3) of last section
beconte ’

a: &
7§l= - u - ‘3’5
% B (4),

ar P gE

which are easily integrated, in the form

« d H <
(Zii)
f‘=ACOS (\/[Lt""B)——Z—E—— E
' , )t
d 2
ISP )
7, G cos Wyt + )“T—'fl
@ )
for particular values of £ and  in terms of ¢.

As a particular case, suppose the center of force to move
with upiform acceleration, a, parallel to a given direction,
which muy bt taken as the axis of y. The center will in
general (Chap. 1V.) describe a parabola, and the relative motion
of the particle will be the same as in § 125, the center of the
ellipse or hyperbola'being not at the center of force but at a

distance -:-: from it in a lne parallel to the axis of y.

263. If the radius vector of a curve in space be at each
snstant parallel to the direction, and egqual to the magnitude, of

.the velocity of a particle moving in any path ; the curve ¢s caileql
the hodpgraph corresponding to the pnga(g '18) vene
The hodograph is’.evidently a plane curve'if the path
.y , . L .

is so.
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Let 2, y, 2,be the co-ordinates of a point in the path,
£, n, { those of the corresponding point of the hodograph; |
then eVidently by the definition,

dx

w=?
dy
@7 [
dz

Z=t

Hence, if o be the arc of the hodograph,
a1+ @)+ @)
-7 «/ {(%)’ * (%l;z)"* (fz?)’} !

and the direction cosines of 8o are proportional to
de’ de’ de’
Hence we see as in § 18 that

The tangent to the hodograph at any instant vs parallel to
the resultant force acting on the particle at the corresponding
point of its path, and the velocity tn it 1s equal®to the ac-
celeration of the particle.

264. The most important case of the hodograph being
that corresponding to an’ orbit about a single center of force,
we may deduce the above properties for that case in a some-
what different manner. .

Let P be any point in P4, an arc of an orhit described
about a center of force §. Draw SY perpendicular to the
tangent at P, and take §Q.SY =4, then evidently 8¢ .is
equal to the velocity at P, and perpendicular to it in direction.
lgence the locus of ¢ is the.hodograph turned:in its own plane
through 90°. : A : .
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But we see that it is the polar reciprogal of P4 with
regard to a circle whose center i8 S and radius =4/A. Hence,

!

P

X
pV

by geometry, the tangent at @ is perper **~nlar to 57> This
cvidently corresponds to the firs of th>tw general properties
of the hodograph given in last section.

i
/|

Let», 0, p, 5,7, 0, p', ¢ represent the usual quantities for
corresponding points of the two curves; then if p be the radius
of curvature at ), we have by the condition that @Z is per-
pendicular to SP,

v ap Y
8s-p80—ra—’780
1 .
2y 4=
b pyg Doy
r
Py |
-—1—’5 df 8t—?58, (§ 130)’

whichgi¥roves the second property.

265. To find the mode of description of a given hodograph
that it may correspond to a central orbit. . o
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Here, pd0=28s"= 7

whergfore  pr B @

P
3 3
or L ﬁ = EZ’&_ =L
a7 _g’)
(%
7'
= dr'\* dr
"” er e
r +2(d()’) 7 a7
1 , 1
= e —— (where u =;_-;),
(s )

which giver ihe required an, lar veldbity at any point of the
hodograpl-, in terms of the co-ordinateg of that point.

266. When the central force is inversely‘%s the square
of the distance, we have by § 264 for the arc of the hodo-
graph,

r=F 5 =50
8.9—7235 h80,

or p=”-l-;.

Ilence for all conic sections described about the focus the
hodograph is a circle.

This might have been shewn in another way, thus. In
the fig. (§ 264) if P4 be a portion of an ellipse or hyperbola
of which 8 is the focus, the locus of ¥ is the auxiliary circle.
Hence evidently the locus of @ is a circle. If P4 be a E;”-
tion of a parabola of which § is the focus, the locus of Y is
a straight line, and therefore that of @ is a circle passing
through &, ' )

Hence generally, the hodograph for any orbit about a
_ center of force whose. intensity is inverscly as the square of
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the distance, is a circle; about an internal point for an ellipse,
an external point for a hyperbola, and about a point in the
circumference for a parabola. '

A purely analytical proof of the same theorem is pasily
given. If z, y be the co-ordinates of the planet, & » those
of a point in the hodograph, then

_dzx _dy
E_?l?’ "I—;E-

The equations of motion are

4z _ pr
¢~
ay _wy
at Tt
Hence, as usual,
d; d.
= -y —J:-’ B (1),
and therefore
dy _ dr dy de dy
&'z _p it o (@ +9) vdt-—y(:ca;+y a’t)
v L~ 7~ “k r ’
whioh gives, by integration,
@, g d=
it ]
dy g [ (@),
?xmﬂarly JE+B=.’7+B=" T
and thence _ .
ST A Br =T,

" proving that the hodograph is a circle.
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Also, by eliminating c‘%, %’ among the three equations
(1), (2, we get for the equation to the orbit

| ~h+dy-Bo=Fbr,

which gives the focus and directrix property at once.

267. The law of diffusion of heat and light from a
calorific and luminous body is that of the inverse square of
the distance. Hence an arc of the hodograph of a planet’s
orbit, which arc we have already seen to represent the gntire
acceleration due to the central force, represents also the entire
amount of light or heat derived from the Sun during the
passage through the corresponding arc of its orbit.

Ex. Comparc the amounts of light and heat received
throughout their orbits by the Farth moving in a eircle,
and a comet moving n o parabola & the same perihelion
distance,

'The hodographs are Doth circles, one about its center, the
other about a point in its circumference; but the diameter of
the latter is 4/2 times:the radius of the former, (§ 140).

Hence their circumferences are as 4/2 : 1, or the Earth
in its orbit receives in a revolution /2 timeg, the .amount
of light and heat, which the comet can receive in®its whole
path. ‘

It is evident that the path, apparently described by a
fixed star in consequence of the Aberration of light, is the
Hodograph of the Karth’s orbit, and is therefore a circle in
a plane parallel to the ecliptic.

268. It is evident that that diameter of the circular
hodograph which passes through the center of force is di-
vided by the center of force in the same ratio as the axis
major of the orbit is divided by the focus; and by (§ 266)

J

its lengt =?f.
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269. Sir W. R. Hamilton enunciates (Lectures on Qua-
ternions, p. 614) the following proposition :

1If two circular hodographs, having a common chord, which
passes through, or tends to, a common center of force, be both
cut_perpendicularly by a third circle, the times ?f kodogra-
phically describing the intercepted arcs will be equal.

" It Is ‘evident from (§ 268), that the two orbits are conic
sections of the same species, and with equal major axes.

Also, every circle which cuts both hodographs perpendi-
cularly must have its center on the common chord.” Let the

figure represent one of the hodogr?lphs, & being the center of
force, and ABP the common chord. Take any ‘point P and
draw the tangents PT, PT". We proceed to'inyestigate the
difference of the times of hodographically describing 7'7" and
the corresponding arc for a position of P slightly shifted
along 4P.

Draw OA perpendicular to AP. Let OT=a, AB=5,
OA=c¢, SP=r, SM=w, PO=g, PA=7, and PT=n.
Jf P.be moved through a space dr, the increase of the angle

¥
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PSM which is the angle vector in the orbit, is G;il‘ nearly.

But the corresponding radius vector in the orbit is -:z-; 1§ 264)

and therefore the time of hodographically describing the’small
arc at 7' is

St= b wor_por 1

. Hence the whole change produced in the time of hodo-
graphically describing the arc 7’7" by shifting P is
oy
pSr(l +l,,)_ pr'Or

Terr
[This is easily seen, if we notice that by the figure

w e (o qa, . ._,c}
¢ =7sin{sin” = +sin7 =p.
w} i { gty

Now this is the same for both hotlographs, and, as the
arc 17" vanishes for each when P is at B, we have the pro-
position.

It will readily be seen that this is in substance the same
as Lambert’s Theorem, (§§ 165, 166).

270. We now take an instance of the determination, from
the hodograph and the law of its description,s8f the curve
described and the forces acting.

The hodograph s a circle described with un{;’form angular
velocity about a point in its circumference, find the original

path and the circumstances of its description.
Here we have in the hodograph,
' p=acosf,
0=uot;

therefore in the path

%t—”=pcos0;acos’wt,
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%‘z‘gpsin‘a‘.-: a cos ot sin w?,

Integrating and properly adapting the constants, as they
affect only the position of the origin,

a . .
z= - (2wt + sin 2wt),

a
V=1 (1 = cos 2wt).

Now the equations to a cycloid are

o= A (¢+sing),
y=A(1—cos¢);

hence the path is a cycloid; and, since 2wt = ¢, the direc-
tion of motion revolves yniformly. The particle moves under
the action of a constant force perpendicular to the base of the
czcloidal constraining curve, and the velocity at any point is
that due to the distince from the base. The converse is
easily proved. ' '

EXAMPLES,

(1) InvesTIGATE the differential equation to_ the path of
a particle in a plane y

‘ dy
2x=2 e
Tde\" dy )

do*

. » L3 ‘ .
(2) A particle slides down an inverted cycloid from rest
.at the cusp; shew that the whole- acceleration at any instant
is gi tnd that its direction is to thg center of the generating
“eircle. o . ’

(8) When the whole 14‘01’0@‘ on a paiticle is along the
radius vector, shew that the centrifugal force from the pols
| . B i

. v =?s ‘v
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(4) A particle moves in a plane under the action of any
forces, whose resolved parts are P in the radius vector, and 7'
perpendicular to the radius vector. Shew that the clurd of

. 20
curvature through the pole is P Tty where «[r.ls the

exterior angle between the radius vector and tangent.

(5) A catenalﬁ is freely described under the action of
a force parallel to the axis; shew that the centrifugal force is
constant.

(6) A particle, projected from the origin along the axis

of y, describes the curve y®=4ax under the action of a force
uy parallel to y, and another parallel to z; shew that

1:’=,u,(l+ )(c’+y’)
(1) The curve y=¢ (x) touches the axis of y at the

origin, and is descnbed freely by a pafticle under the action
of forces Y parallel to y, and f parallel to «; sltow that

Yo Ay
Y=afve g {v2 2,
and that if Y cc2®, n is negative,

(8) A particle describes the hyperbola a’=#"+4" so that
dz dy
(dt) (a’t) =,

(9) The velocity of a particle in a central orbit varies
-1— ' Apply the principle of Least Action to find the orbit,
a.nd thence the law of force.

Find the forces.

(10? Shew that the amount of heat and light received
bz' a planet’in one revolution is'inversely as the square root .
the latus rectum of its orbit.
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(11) If P, P’ be the central forces for an orbit and its
hodograph,
h’!

PP:F 1‘1".

(12) The hodograph is a circle about a point in its cir-
cumference, and if g be the angle which the radius vector
makes*with the diameter, the angular velocity is given by

L
dt  N(e*—1)7
shew that the path is a cycloid with its vertex upwards, and

the velocity at any point, that due to a fall from the tangent
at the vertex. :

(13) The hodograph for a particle moving in a vertical
circle with the velocity due to the depth below the highest
point, is o

r=ccos .

(14) When the hodograph is a straight line described
uniformly, the path is the trajectory of a projectile in vacuo.

(15) When it is a straight line described with uniform
angular velocity about a point, the path is the catenary of
uniform strength,

. €7 =gec k.

(16) The hodograph for a circle about a point in the
circumference, is a parabola about the focus described with
angular velocity proportional to the radius vector.

. (17) Determine the motion of a simple pendulum, oscil-
lating in small arcs, when its point of suspension describes,
uniformly, a horizontal circle. , i

'~ Explain the peculiarity of the solution when the time of

rotation of the point of susqension is equal to that of a com-
“plete oscillation of the pendulum.
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. (18) Apgly the principle of Varying Action to the inves-
tigation of the motion of a simple pendulum, slighti; dis-
turbed'in any manner from its position of equilibrium.

(10) Find the form of the surfaces of equal action for
particles projected horizontally from points of a vertical line,
tllne velocity being due to the distance from a givén horizontal
pianc. ) *

(20) Find a central orbit whose form and mode of de-
scription correspond with those of the hodograph of another
central orbit.

Shew that there is but one law of central force for which
this is possible. § 265. '

(21) A particle is acted on by a repulsive force tending
from a fixed point, and by another, force parallel to’a fixed
line, and when the particle is at a distance » from the fixed
point, the magnitudes of these forces are

Al and A(7 r)
r"(l a) amlr“(c"-*-a ’
A, a, ¢,being constants ; shew that if the particle be abandoned
to the action of the forces at any point at which they are

ettxal to each other, it will proceed to describe a parabola of
which the fixed point is the focus. ,

(22) A particle is acted on by a force the direction of
which always meets an infinite straight line AB at right
angles, and the intensity of which is ipverstly proportional
to the cube of the distance of the particle from the line. The
particle is projected with the velocity from infinity from a

oint P at a distance o from the nearest point O of the line
m s direction perpendicular to OP, and incﬁzled at the angle a
to the plane I Ol;? - Prove that the particle is always on the
sphere of. which O is-the center; that it meets every meridian
linie through 4B at t’he angle a; and- that it reaches the line

AB in the {ime V__a » p being the absolute force.
- Nucosa
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CHAPTER X,

IMPACT,

271. 'WE come next to the consideration of the effects of
a class of forces which cannot be treated by the mcthods just
employed. These are called Impulsive forces, and are such as
arise 1n cases of collision; lasting for an indefinitely short
timepand yet producing finite changes of momentum. Hence,
in such questions, finite forces need not be considered.

When two balls of glass or ivory impinge on one another,
no doubt there ﬁoes on a very complicated operation during
the brief interval of contact. First, the portions of the sur-
faces, immediately in contact are disfigured and compressed
until the molecular forces thus called into action are sufficient
to resist farther distortion and compression. At this instant
itis evident that the points in contact are moving with the
same velocity. But, most substances being endowed with a
certain degree of elasticity, the balls tend to recover their
spherical form, and an additional pressure is generated; pro-
portional, it is found by experiment, to that exerted during
the compressjon. The coefficient of proportionality is a quan-
tity detesmindble by experiment, and may be conveniently
tereed the Cogffictent of Lestitution. It is always less than
unity. oo

‘ The method of treating questions involving forces of this
nature will be best ex laine% by taking as an example the
case of direct impact of one spherical ball on another; first,
when the balls are inelastic. Again, when their coefficient of
restitution is given. ) L -
And it is evident that in the case of direet impact of
spheres we may consider them as mere particles, since every-
ing is symmetrical about the lime joining their centers.
i oo " ¢ ]
272. Suppose that a sphere of mass M, moving with a
» xz%ocity v, overtakes and impinges on another of mass M,
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moving in the same direction with velocity v'; and that at the
instant when the mutual compression is completed, the spheres
are mo?ing with a common velocity V. If P be the common
action between them at any time ¢ during the compression,
it mugt cvidently be of the nature of a pressure exerttd by
cach on the other; and we have, if = Ee the time during
which compression takes place,

Mp-V)= ffPJt =R, suppose,

(V=)= f "Pit = B;
1]

Mo+ M"Y MM’

whence V= & and B = AT (v—19).

From these results we see that the whole momentut after
impact is the same as before, and that the common velocity is
that of the center of inertia before impact. Had the kalls
been moving in opposite directions, @' would have been
negative, and (taking it positively)-

Mo —M'"v' MM’

V='—JU+"M, <y and Rzm(v+v).

I'rom this it appears that both balls will be reduced to rest if
_ My=M"Y; .
. « o
that is, if their momenta were originally equal and ofposite.

This is the complete solution of the problem if the balls
be inelastic, or have no tendency to reeover their original
form after compression. ‘

273. 1If the balls be elastic, ‘there will be generated, by
their tendency to recover their original forms, an gddi-
tional action proportional to R. Con .

Let ¢ be e coefficient of restitution, v, v/, ‘the velocities
of the balls when finally separated. Then, as before,
M(V—v)=eR, - =
Mo/ =V)=eR; *
T. D. ‘ 19
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whence Iy
i v+ M'v MM
MU1=MWM+F“-3M+MI('J—”')’
and
M—eMNv+M'(1+e)v ar
v‘=(. < 2[+M'( )v=v—M+M.(l-ﬁe)_(v—v'),

with a similar expression for v,".

‘A rather singular result may easily be deduced from the
last formula. Suppose M =M, e=1, that is, let the balls
be of equal mass, and their coefficient of restitution unity (or,
in the usual, but most misleading phrascology, * Suppose
the balls to be perfectly elastic”) ; then in this case

v,=v', and similarly’y/ =,
or the balls, whatever e their velocities, interchange these,
and the motion is the same as if they had passed through one
another without exerting any mutual action whatever.

274, The only other case which we can treat in the
present work, is that of oblique impact when the balls are
perfectly smooth, for in rough and non-spherical balls rota-
tions are generated and the motion of each ball requires to be
treated as that of a rigid body. .

The sirdylest case is that of a particle smpinging with
given velocity, and in a given direction, on a smooth plane.

Suppose ‘the plane of the particle’s motion to be taken as
that of reference; its trace on the given plane as the axis
of z, and ‘the point 4t which the impact takes place, as

L)

ongin, : :

The impulsive effect of the planewill evidently be per-
pendicular to it, since it.is smogth. Let this be calledp%;
and let the velecity of the particle. be resolved ¥ito two v,, v,,
respectively pnalfel to the axes.. For the first part of the

N - % v s N

impact, ' 2
= Mo, —0)=0,
L(v,~v,)=B.
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But v, beiixg the common velocity of the plane and ball,
is evidently zero; hence™ : ~
v, =v,, v, =0,

or, thé velotity parallel to the ‘plane is unchanged, “while
that perpendicular to it is destroyed. So far for-an-inelastic
ball. * If the ball be elastic, let v.”, v," be the final velgcities,

then
M, ~v.)=0,
M (v, —v,") =eR.

v
These equations give
vl" = vz' = vl’

shewing that the velocity parallel to the plane is unaffected ;
and : *

My, = — eR =—eMs,,
or, v, =-—ev,>

that is, the velocity perpendicular to the Aplane i¥*reversed in
direction, and diminished in the ratio e : 1.

If we designate by the name of angle of incidence the in-
clination of the original direction of the ball’s motion to the
normal to the plane, and give that of angle of reflexion to the
angle made with the same line by the path affer impact;
then denoting the total velocities before and aftér ifpact by
Vand V", and these angles by 6, ¢ respectively, we haver

Vein@=",, V'sing=42",
Veosf=u, V'cosdp=v";
and the previous results give at once.
e cot 6= cot ¢
formulse sometimes of we, . . . .
Of course these Testilt are ‘spplicable £ caes o i;n;iact

3
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on any smooth surface; by making the legitimate hypothesis
that the impact, and its consequences on .the motion of the
ball, would be the same if for the surface its tangent plane at
the point of contact were substituted. .

275. - Two smooth spheres, moving in given directions and
with gjven velocities, impinge; to determine the impact and the
subsequent motion.

Let the masses of the s&)hcres be MM, M'; their velocities
before impact » and o', and let the original directions of
motion make with the line which joins the centers at the
instant of impact, angles a, o’. These angles may ecasily be
calculated from the data, if the radii of the spheres be given.

Tt is evident that, since the spheres are smooth, the entire
impulsive action takes place in thc line joining the centers at
that instant, and that therefore the future- motion of cach
sphere will be in the ‘plane passing through this line and its
original direction of motion. «

Let R bxf the impulse, ¢ the coefficient of restitution ; then
since the velocities in the line of impact are vcosa and
' cos a, we have for their final values v, v/, after restitution,
by § 273, the expressions

' oo
?l=b”fosa—ji_-l—_—ﬂ—, (1+e)(vecosa—1v'cosa’),

~

» ‘

. v/ =vca + ][‘%[IIT' (1+e)(vcosa—12' cosa'),

e

and the value ofi R is ~

. %(.lfe)(vc?a-v’gosd').

L]

. ‘Hence, the sphere }f has finally a velocity v, in the line
joining the centers, and a velocity vsina in a known direc-
tion perpendicular to. this, namely in' the plane through this
and its original direction of motion. Ang similarly for the
sphere M'.  Thus the impact is completely determined.



IMPACT. 208

276. Recuming to the equations in § 272, we have
M@-V)=R,
M (V-v)=R,

and, climinating 7,
. e MM’
R=m(’l’—v’) ceverrtirieciiiong (1). .

Hence, if e be the coefficient of restitution, v,, v," the final
velocitics,

R(1+e)

V- —

1

't !
v, =v+ E S-M—{ie)

Hence, Mv, + M's' = My + M'v', Whatever be e, or there
is no momentum lost. This is, of course, a direct cbnse-
juence of the Third Law of Motion.

Again,  Myr+ M'v= Ms+ M"*

_ L MM

, M+M' [ 2,0 \e
= 2 L 2 °
=M+ M = B (L4 o~ (1+c )

“The last term of the right-hand sideds therefore twice the
kinetic encrgy apparently destroyed by the impact. When

2= 0, its value is a maximum, m (v—27")". Whene=1,

its value is zeroy that is,in direct impact when the coefficient
>f restitution is unity no kinetic energy is lost." .

The kinetic energy which appears to. be destroyed in
iy of these cases is, a8 we see from § 73¥, only transformed—
sartly it mgy be into heat, partly into sonorous vibrations, as
n the impact of a hammer ‘on a bell. But, in spite of this,
‘he elasticity may be perfect.



Also by (2), - . ‘
v;';-v’=v‘d:v+R(l +e) %
='e (b —v'), by (1).

Hence the velocity of scparation is e times that of impact.
Fhese« résults may easily be extended to the more general
case of § 275. .

277. We proceed to some particular problems illustrating
this branch of the subject.

To one extremity of a uniform and perfectly flexible chain,
lying in a given curve on a smooth_horizontal plane, a given
wmpulsive tension 18 applied tn the direction of the tangent at
that extyemity ; it 18 required to find the tmpulsive tension at
any other point of the chain.

Tet this be 7" at a point of the chain whose co-ordinates
are z, y; and let the'initial velocities of that point, parallel
to the axesy-be v,, v,; then, u being the mass of a unit of
length of the chain, we have the following equations:

d [ ndx

ds (T ZZs) =H% }

d (pdy\_ ’

4 (T%) = |
The geométrical condition will be determined as follows.

The chain being inextensible, the length of an element®3s is

invariable, therefore' the velpcities of its two extremities re~
solved along it must be-the same. - This gives evidently

dv, dz. dv, d, .
. ' ﬁ —3;4—’_2;! “d‘gno .VS..-IQn‘ ---------- (2)0

- From theso oquations wa procced 9 eliminate v,
Differentiating (1) with-tespect 10 s, We have

" vy pedm AT & B Tids

WG ST G %’%@

Vo
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d’T dy

d d’ dT d*
,u,-é;' 7% 1022 %Y ds,ds

ds® ds ds* T

Multiplying these by 7 Zs , respectively, and wddmg,

we have by (2), .
AP eTET LY
+ ”Z:r {(%) + (gf)} Oueerrraeens 3.
But (dx) + (‘Z =1; differentiate, and we get
Lo i,

differcntiating again, and transposing, we have,

g -5+ ()

PR

O =

where p is the radius of curvature of the'elerpeh% 3e.
By means of these transformations (3),fakes the “final

form T T Do
T ,
—JT-;;= sesssasccsrescncenaape (4)-
This cannot of course be integrated inless the form of the
chain is known, or p given in terms of s. . b .

To find the instantaneous direction of thotion of any point,
we must find v, and ¢,, and their ratio' is ‘the tangent of .the
angle which the required direction makes with the axis of z.
These g uantities must be found' by means of (1) from- the
value of 7' given by (4



<
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278. Example 1. As a particular example, suppose the
chain to form a semicircle of radius . Then p=a, and (4)

becomes
aT_T_

é* &
whose integral is
T=Ae + Be's.
To determine the arbitrary constants, observe that when
8=0, T=T,

the original impulse; and when s=a, or at the free ox-
tremity of the chain, T=0. Thus we have

T,=4+B5,
0 =Ae + Be ™.
These' give A= i n_T:e“':_ , B=- T
© €7 - T € — e-u; ’
and therefore
L D)
po Dl e me ]
€ —e"
t er=0) . g=(x-6)
‘ =T e (),

€ —c"

-

if 8= q#, that is if we consider the tension at a point whose
distance from the tended end subtends an angle € at the
center.

Suppose now that the axis of y is the tangent at the
tended end ; that of  being the diameter through that point,

then @ =a (1 —cos 6),
y=asinf.

These give % =gin 6,
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dy _ .
z—-cosﬂ,

. " a‘%[cosO{e"-’—e-(w—o)}]
from which, by (1) and (5), v”= - .

’ "'Z‘é [Siﬂ 6 {e""o —re~(r-0]]

Differentiating out, and then substituting different values
of 6, we get the initial directions of motion of the correspond-
ing points of the chain. Thus, for the tended end, it will

casily be scen that, putting 8 =0, we have

For the free end

as we should expect, since there is jnitially no forceson it
parallel to the axis of .

279. Erample II. Suppose it be required that the
tension at each point should be proportional to the distance
from the free end of the chain.

Then [ being the length, and s as before,
T=T, (1 - ;) by hypothesis;
. aT
Tt ods?
that is, the chain must lie in a straight line, as is otherwise
evident.

280. To find the angle which the initial direction of motion
of any element malkes with the corresponding tangent. -

G 3y, let t: ¢=~'—’~=§3—(—-£-,s—,
'enera y, let tan "o, %(T%’)

=0, or by (%) %-—:0,. orp=,
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dy
_ and tana}r-— 5;

ds
Then (¢~ ) is the required angle; and

d (Tdy)dx d (T%) &y

ds) ds ~ ds ds
tan (¢ — ) = d 7\ E L d (7T
d( ds)d ds( ;1_)5'3
dz d dy d'x
T(ds ds*  ds Es")
= iiz., p
ds
e T ‘
L—ﬁ... ........................... (6)
‘P”J'?

[l
- Hence again, if the condition be that every clement o°

the chain is to move initjally along the chain, ¢ — ¢ =0.
and therefore p=c0, or the chain must lic in a straigh

lme

281, 7o find the absolute z’m'tz'al velocity of any element o
the chain. ’

naring and adding equations (1), after performing thu
dlﬂ';%nnmgns m«hm.te«f we have. ’ 8

y ('_” +9,) = (dT) { gf) * (Zf) }
+2T§Z(‘§ e %y)
+ T’{(d}).f @}

.(‘f,f) + I, gom).
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Again, if vy be the velocity of an element resolved alon;®
the cojresponding tangent, :

v, = (”a’ + ,0'2) cos’ (¢ -v)

-5

which might have been found at once from
- d (ndx
) B, = 3_8 (T a) ’
by taking the axis of z parallel to the element 8s.

! L
282. Thesc problems might perhaps have beenemore
readily solved by resolving the forces, at ‘any point of the
chain, along and perpendicular to the tangent. OCl;lling Vg Upy
the initial velocities 1n these directions, we have at once

ST = v 8s
T .

2 83‘ = uv, 80} !
the direction of v, being towards the center of etrvatire.

The kinematical condition furnished by the inextensibility
of the chain is .d .
Vs

v,,'=p—g;.

From these equations the foregoing results may be easily
deduced. -And the réader may easily work ouf iYo; himself
the obvious extension of the processes of this section or § 277
to a chain of varying section originally at rest in the form of
a curve of double'curvatufq, ' o .

283, The only other :6ase we ahail consider is that of
a continuous series of indefinitely small impacts, whose effect
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is comparable with that of a finite force. Thewobvious method

of considering such a problem is to estlmate.:epamlﬂy the
changes in the velocity produced by the finite forces, and
by the impacts, in the same indefinitely small time &, and
compound these for the actual cffect on the motion in that

period.

284, 4 spherical rain-drop, descending by the action of
gravity, receives continually by precipitation of vapor an ac-
cession of mass proportional to its surface; a being its radirs
when it begins to descend, and x 1ts radius after the intcrval t,
shew that ats velocity @s given by the equation -

=8 (142 LY
T4 1+r+r’+?)’

the resistance of the atr being left out of account.
¥

Let ¢ be the thickness of the shell of fluid deposited in
unit of time, , Then evidently .

r=a+el...ccceuunnnn. revereesennns (1),

Also let 8¢ =8,v+8,v be the increase of velocity in -
time 8t; the first term due to gravity, the second to the
impacts. '

Evidéatly, 80=gt; and if I be the mass at time ¢
8 (Mv) =0 is the condition of the impact. ‘

This gives

My =— v3M,
4mriedt . Bevdt Bendt
COOT BY == ¥ e o e e
4 , r a+ el
v -ar '
3
From these we have
' dy Bev ‘



o
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" ‘Maultiplying,by (s +et)", and transferring the last term to
the loft-hand sidg, of the equation, it gjves by inspection

: (a+et)'v=£(a+et)‘-+ C.

But 0= Z%a‘ + C by condition.
g a
Ilence v= ie {(a + et) — m——et—)-,} .
Substituting for e from (1),
~ =i (- a
: =1 (r—a) " r‘)
T (15242,
T4 <l+r+r”.l: ’)’

as required.

To verify this solution, suppose no moistite to be de-
posited, then 7=a, and we have v =gt as it ought to be.

285. One end, B, of @ uniform heavy chain hangs over a
small smooth pully A, and the other is coiled up on a table at C.
If B preponderates, determine the motion.

The moving force due to gravity is the weight of 4B
minus that of 4C= ug (£ —a) suppose.  ° . )

Now in an indefinitely small interval -&, this would
generate in the portion BAC of the chain an increment of
velocity 8o

pz+ea

But the whole uncoiled chain, being in‘motion at the com-
mencement of the interval 8 with'velocity v, lifts up a portion
of length g8t from the table during that interval. Hence,
if 8,v be the. change of velocity arising from -this impact, we
have by the condition that no momentum is lost,

=&‘7-(£:—‘§).a¢. (Sce Chap. XIL) °
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. g MV
Le V'=grar

plz+a)v

Y= e+ bt
. v*dt
or dp==—T"0, '

omitting quantities of the gecond and higher orders.
S Su 8y
Hence 88 3, =77 +50

proceeding to the limit
dv dv g(:c—a)—-v’.

dt=vd-§= @+a) ’
which gives (x+a)’v%+v‘(z+a)sg(.t’-a’)

or (@Fa)v=(+ o) (%>'= 2¢ f(a* —a') 42,

and this determines for any given initial circumstances the
velocity at any instant. :

EXAMPLES.

(1) If e=1, onc ball catmot be reduced to rest by
ﬁrst‘mt jmpact on another equal ball, unless the latter is at

. (@) If two balls for which e=1 impinge directly with
equal velocities, their masses must be as 1:3 that one may
be reduced to rest. ’

* (3), Shew that i#two equsl balls (¢ <1) impinge directly
it velocities S5 ¥ sad ~ ¥, the former il he reuced
to rest. ‘
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(4) Shew ghat the mass of the ball which must be
interposed directly between M at rest, and M' moving with,a
given Yelocity 7, s0 that M may acquire the greatest velocity, is

- ),
4 2
and that that maximum velocity is T%%K/-%)? .
(5) Suppose e=1, and an infinite number of balls to be
interposed, shew that the maximum velocity which can thus

be given to M, is
M
%

[Note that by the result of the preceding question, the
masses must form.a geometric series, and the above js easily

deduced.] .

(6) DPuarticles for which e=1 slide down radii vegtores
from the focus of a parabola whose axis*is hotizontal and plane
vertical. After reflexion at the curve they describe their
trajectories. 'What is the locus of the foci ?

(7) A impinges on B, shew that 4’s deviation is greatest

when its tangent is %}—{—g (L;—;-f) ..

(8) A particle for which e= i

in a smooth horizontal plane.. Find how far it goes before it
ceages t0 rebound. Shew that the timés between syccessive

s projected from a point

rebounds are in a geometric series whose ratio is -1"-' , and the
heights above the plane in another whose ratio is',—}. .

{9) A particle for which e=1 is. jmbéﬂ from the foot
of an inclined plane.in a direction. makig an angle 8 with
the plane; the plane is;inclined at an gngle a to-the horizon.
Shew that if 2 tan B = tan a, the particle will rethrr after one
rebound to the pomnt of projection. a
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If there be two rebounds before coming back to the point
of, projection, and the coefficient of restitution be e,

cotB=(1+e+¢) tana.

(10) .4COL is the vertical diameter of a circle. A par-
ticle for which e¢=1 slides down any chord AC, and is re-
flected at BC. The locus of the focus of its path is the circle
whose diameter is 40.

(11) If the direction in which one ball is moving when
it impinges on another equal ball at rest, bisect the angle
between their future directions ; then that angle is

2 tan™ y/e.
1
(12). If e=1}, find the direction in which a ball must be
projected against a smooth vertical wall, so as, with the least
possible velocity, to return to the point of projection.

— (13) ABC is a triangle, a, , ¢ the points of contact of
the inscribed®€ircle with the sides, a being in BC, &c. Shew
that if a particle projected from a to & be reflected to ¢,
Ab = eCb, and if it return to a, :

AB=¢AC.

(14) . A number of balls 4; B, C, &e. for which e is given,
are placed”in a line, 4 is projected with given velocity so as
to imspinge on B, B then impinges on C, and so on; find the
masses of the bails B, C, &c. in order that each of the balls
Ay B, C, &c. may be reduced to rest by impinging on the
next; and find the velocity of the = ball after its impact
with the (n — 1)t

e&l&- A ball is projectéd in a given direction within a
fixed horizontal hoop, so as' to go on rebounding from' the
surface of the hoop; find the limit to which the velocity will
approach, and shew that it attains this limit in a finite time,
e being less than L 2

[}

| \ (16) A given inelastic mass is let fall from a given height
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on one scale of a, balance, and two inelastic masses are let fall
from different heights on the other scale, so that the three
impactd take place simultaneouslg'; find the relations between
the masses and heights that the balance may remain per-
manerttly at rest.

(17) A particle moving in a parabola about a center of
force in the focus, strikes a hard plane at any pointeof its
path. If it describe a parabola after the impact, find the
direction of its axis,

(18) 04, OB are rods in the same vertical plane in-
clined at angles a, B to the horizon, If a particle, for which
e=1, projected from A, strike B and continue to rebound
between A and B, then T being the time of flight, « the in-
clination of AB to the horizon,

tan y =4 (cot 8 —got a),

2¢ . sin(a +78)

g v{4sin’asin’ 8 +8in* («™- B)} °

v{19) Equal particles revolve in opposite dir;,::tions about
qual p PP

and T" =

the focus in an ellipse of excentricity -g-, and impinge at the

nearer apse. Find the disténces of future impacts, and shew
that if p be the original apsidal distance, the particles fall into
the center after the time

w (5p)}

142"

(20) Two equal particles, connected by a string which
passes freely through the pole, are constrained to move in.the
same logarithmic spiral. If they be originally at rest and
one be projected with given velocity (so as.to incregse its
distance from the pole), determine the impact. - .

(21) Three balls (supposed indefinitely small), for which
e=1, are placed at the corners of a triangle. To find the
relations ampng the masses that the sphere 4 if projected to
strike B, may be reflected to C and ?rom O to its original
position, The impacts are supposed to take place aé% each

" T. D, :
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corner so that the line joining the centers of the spheres is
perpendicular to the opposite side of the triangle; «, 8, v,
being the angles of the triangle, we find ‘

' 4 sing A _ siny ¢
B sin(a—y)’ ¢ sin(B—a)°
*v (28) If a rocket, originally of mass M, throw off every
unit of time a mass el with rei);ttive velocity V, and if " be
the mass of the case, &c., shew that it cannot rise at once
MVe
M
once, vertically, shew that its greatest velocity is

V log M _g (1 - M—'> ,

unless Ve> g, nor at all unless >g. If it do rise at

. M e M
and the greatest height !t reaches
‘ v VAN 4 a 4

(23) If an infinite number of perfectly elastic material
points, equally distributed through a hollow sphere, be set in
motion each with any velocity, shew that the resulting con-
tinuous pressure (referred to a unit of arca) on the internal
surface is equal to two-thirds of the kinetic energy of the
particlés divided by the volume of the sphere.

~(24) A comet in moving from one given point to another,
throws off at every dnstant small' portions of its mass which
always bear the same ratio n to the mass which remains.
If v be the velocity with which each particle is thrown off,
a the inclination of its direction to the radius vector, prove

that the period ¢ will be diminished by

vt ,,, . ’

25— ) V(ap) s = (=) sl
¢ and ¢’ being the excentric anomalies, » and ' the focal
distances at the given points, a the mean distance, 2p the
latus rectum, and f the force at distance a.
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(v CHAPTER XI
DISTURBED MOTION.

286. INn the investigation of the motion of a particle
subjected to the action of disturbing forces, we may, when
the latter are very small in comparison with the forces under
which the undisturbed orbit is described, suppose that at any
-instant the actual orbit is of the same nature as the undis-
turbed, but that its magnitude, form and position are slightly
different. By this means the consideration of motiqn 1n an
orbit whose equation cannot be found, or if found would be of
extreme complexity, is reduced to the®cases considered in the
foregoing Chapters, the only additiogal pyocess beind the
determination of the changes of the elements or Purameters
of the orbit, due to the disturbing forces; thest parameters
being thus made explicit functions of the time. The principal
use of this method is in the planetary theory, and there the
elements of the Instantaneous Orbit cannot be determined but
by approximation, which this method affords us the best
mcans of effecting. .

° .
It is not necessary that the ordit should be clfanged by
the disturbing force, in order that the metHod of parameters
be applicable; suppose for instance a pgrticld be constrained
to move on a given curve; the extent of its oscillations, and
the velocity with which it reaches a dpaurticula.r point in the
path, for instance, are parameters, and in terms of such the
motion may be expressed. This method is thercfore appli-
cable to any case of free or constrained motion, always sup;
Eosing the disturbing forces to be small; the-only difference
eing that in constrained motion there are fewer parameters
of which to find the variation.

287. The general principle of the method may be ex-
plained as follows. : 903
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d'a N

d’]/_ 4]

W-Y+1 }t .................... (1),
’. d*z ’

EF.-Z_'-ZJ

be the equations of motion of a particle whose co-ordinates at
time ¢ are z, y, z; and suppose, farther, that X', Y', Z’ are
the sums of the resolved parts of the disturbing forces pa-
rallel to the axes. Ilad there been no disturbing forces, we
should have had the equations of motion

d’r
i

Now let the solution of equations (2) be

z=¢(t, a, a,...a,)
y=xt a, ... ag) } ceueennn. certeesenes 3),
i 2= a, a,...a)
involving six arbitrary constants; and the forms of the func-
tions ¢, x, V¥, heing known.

Let us remark it passing, that, if the motion were con-
strained, we should have in addition one or two relations
between 2, y and z, leading to others between their differen-
tial coefficients, so that the number of arbitrary constants
would- be reduced.

. Now suppose the solutions of (1) to be of the same form
as the expressions in (3), a,, 4,, ... a; being no longer con-
stants but functions of ¢ to be determined.

The fact of (3) having to satisfy (1), gives us the three
following unavoidable equations for the determination of
these parameters, S T ‘
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d'¢ ,
P/ X +‘X

ax _ '
Jh= Y4+ Y'Y ceieirerncnnenne vennes (4).
a™r 7

288. 'We are at liberty then to make any three additional
hypotheses regarding them that we please. The most con-
venient are those afforded by the condition that not only the
expressions for the co-ordinates of the particle, but also the
expressions for the resolved parts of the velocity parallel to
the co-ordinate axes, should be of the same form in the dis-
turbed as in the undisturbed orbit.

Now in the disturbed orbit,

G- @@ B %

@ = \at) * \da, da, " e\da,/ dt”’
with similar expressions for i—l}: and g—: , the bratkets being

used to express partial differentiation.
But in the undisturbed orbit

de _ (glg) .

de — \dt)’
- dy dz
and similarly for a and T .

From this we have the three additional relations between
a,, a,, a, a,, a;, a; and ¢,

()% 4 () 201 .+ (2) D=0

s da,) "dt da, dc:
(%) % + (%) %.;. ek (%) %=0 ....... (5).
@z @D T+ @ T
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And taking these énto account as well as cquat®ns
(2), (8), equations (4) become

' 1(3 26 a6 |

(e (Dr
fh‘,\ (g dx\

()5 (). (or

(e, (D), . (4.,
To) @\ )t I\ S a =t

Equations (5) and (6) suffice to determine the six para-
meters <n terms of ¢; and it may be remarked that, should
any of these quantities tifemselves appear in the cocfficients in
these differential equations, they may be treated as constants,
since their variations may be neglected for a short time at any
period of thg motion, on account of the smallness of the dis-
turbing forces. This will evidently amount analytically to
E:Sglecting higher powers of the disturbing forces than the

t.

289. Supposing then the parameters found as functions
of ¢, if in eqmations (3) we substitute these values; the result
of the supseqient elimination of ¢ will evidently be the two
equations to the orbit actually described by the particle.

But if ¢ be.eliminated considering a,, a,, ... a; constant,
and then their values as functions of ¢ be substituted ; the two
resulting equations will, for any particular value ¢ given to ¢,
represent & curve whieh evidently coincides with the actual
path at the time ¢, and which would be from that instant the
actual path if the disturbing forces were then to cease. This
is called the instantaneous orbit at the time ¢ =1¢, and its form
and position must evidently undergo a slow change due to
the disturbing force.

290. If the constants be fewer than six, as in the case of
constrained motion, 80 many equations as those just indicated

R
o
.
=
=)
~

-
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will not be necegsary ; but the preceding sketch will enable
us to apply the method to any such case. Thus if the particle
be constrained to move on a given surface, taking its cquatioh
along with equations (3), there will evidently be two of the
six cofistants at once determined completely in terms «of the
others. And if the motion be on a given curve, four of the
constants will be got rid of. In that case, taking tangential
resolutions we have, s being the length of the arc deecribed
at time ¢, S the tangential acceleration, 8’ the tangential
disturbing force,

d’s , .
ZZ“——S"'S ®vcecesesensnccns sessscace (4)
Now if R
=¢ (a, a, t) ........................ (8)
be the solution of
d*s S
dt‘ ?

we shall get the values of @, a in terms of ¢, in order that (8)
may satisty (7), and also that the expression for the velocity
in the orbit may be the same in both casesp by solving

the equations
(@) da 5@) da_,
da) dt , (d dat

d (%)@ .

(d(‘jlf)>da— (
¥ il Frie

which evidently correspond to those of groups (5) and (6)
respectively. *

291. To determine the effect of a small disturbing force on
a simple cycloidal pendulum.

If s be the arcual distance of the particle from the-lowest
point at time ¢ we have, (§ 173), putting '

A
reiakd

d:
a—;+n’s=0,
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as the equation of undisturbed motion. Its splution is
s=asin (nt + D),

where 2 and b are arbitrary constant quantities dependiag on
the length of the arc of vibration and the time of passing the
, lowest point.’

Th; velocity at time ¢ is §§=na cos (nt + B).

‘We shall now suppose that £is a small tangential disturb-
ing force: the equation of motion is

' s

dat

The«solution of this equation we assume to be
y=asin (nt +b),

a and b being cofisidered unknown functions of ¢, which it is
our business pow to determine.

+n's=f.

Taking as a condition, that the form of the expression for
the velocity is to be still the same ; since we have

ds Ly da db
at=naco§(nt+b)+ -stm(m+b)+acos(nt+b) g’

da . db
we have. O (nt +8) + a cos (nt + d) =%
which is the assumed relation between a and b.

Again, since % = na cos (nt + b),

s

- 7 n'asin (nt+bd)+n %li: co8 (nt+b) —nasin (nt+b) ‘Tldf .

L

?
In this substitute for d’s its value from the gquation of

dt*
motion, and we have
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"2
which is the second equation connecting a and b with ¢,

cos (nt +b) —na sin.(nt +3) ‘le? =f,

Eliminating successively g—? and %‘—: from these, we have

da_f B__f
T Co8 (nt+1), 7= "o e (nt + ).

If we could solve these equations exactly we should have the
complete determination of the motion. In few cases is this
practicable: in all to which we shall have to apply the in-
vestigation an approximation is sufficient. :

‘We suppose £ to be a very small force. Hence the vari-
able parts of @ and b are of the same order of magnitf]ude as f,
and may be neglected on the right-hand side of the above
e«fluations if we agree to neglect the square and higher powers
of f. “ .. ‘

In order to find the alteration in the exfgnt of vibra-
tion which takes place in one oscillation we must integrate
'Z;cos (nt+ b) dt between the limits of ¢ corresponding to one
oscillation ; that is, from # value of ¢ which givesnt+b=a
to the value of ¢ which gives nt +d=o+a. Hgre a may be
any quantity : in different cases we shall find it gonvenient to
integrate between different limits. *

, L4 .
Hence, tncrease of arc of semi-vibration = ’}; f Jfeos (n¢+0)dt
between the above-mentioned limits.

To find the alteration in the time of oscillation, let T, T
be the values of ¢ at two successive arrivals of the pendulum
?,lfhthe lowest point; B, B’ the values of & at these times;

en i
2T+ B=mmw, nT"+B'=(m+1)x;

v n(T'=T)+ B'=B=m,
r-r="_1(B-B).
n
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, Tdhe 1 [T,. .
Now B'-B=| Edt=—-;;;frfsm(nt+b)dt:

therefore the increase of time of oscillation

1 (T, ) d
) =;%frfsm(nt+ ) dt,

and the proportionate increase of time of oscillation

1 [(T,.
= fr Fsin (nt + ) dt.
If the circumstances are such that we must integrate
through two vibrations, then
proportionate increase of time of oscillation

1 .
= f Fsin (nt +0) d.

292. These formule are convenient when f can be ex-
pressed in terms ‘of«t.~ If however f be expressed in terms

of 8, as is the gase particularly in clock escapements, we must
modify the formule: thus

do_dide_ 1 di_f
ds  dt ds nmacos(nt+0) di  n'a’
b 1 &

ané! 'd_s,-_-: nacos (nt +0) dt

.t iy = S 8
T g tan (mt +‘b) T owlat (@ =6

3

. . . 1 [°
Hence, tncrease of arc of semi-vibration = o s,
-8

proportionate increase of the time of vibration
‘ 1 (r fds
Tantat ),/ (a*—5") "
The limits should strictly be —s and &', where s differs
from s by a quantity which depends upon the change in the

arc of vibration: but we may neglect this difference between
s and ¢, since the terms in which they occur are small,
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293. Instegd of vibrating in a'cyclozd let the pendulum
vibrate in a circle. ‘

Here the force = g sin ‘-;-- ? ; - l’ nearly ;
A .
f.- P G o0 (nt+0);
therefore proportionate increase in time of vibration
. .
=2 [sint (u +8)

Now[sm e+ ) de=1 [ (8 L0082 nt-+1)+ cos & nt + 3))

2. . )
{3t—;51112 (nt+0) +1'%§m4(nt+b)}+0.

m‘w 0r | w=t —

—, from 2t +5=0 to 7;

therefore proportionate increase of time

ga* _ea' s g
= {ouip = 1gp Since #'=7.

The increase of arc of vibration

=, f cos (nt -+ B) siv? (nt + 1)
=g 4 "l‘ sin* (nt+b) + C=0 between the limits,
as we might easily have foreseen.

294, Suppose the friction at the point of suspension to be
constant.

Tt will be convenient to take the integrals during that time
in which the friction acts in the same direction: that is, from
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the beginning of a vibratien to its end, or from nt +b =~} =
.to pt+b=4mw. Here f=—¢, since the friction retards the
motion ; )

.. 4increase of arc = — % f cos (nt +b) dt
c . 2¢
—-—-;‘gsm(nt+b)+0—-—g,
proportionate increase of time =— # f sin (nt +3) dt
=—Ccos (nt+2) + C=0, between the limits.
m™ma

295. Suppose the resistance of the air to produce a force
varying as the m'™ power of the velocity or =kv™, m being any
v whole nuinber, '

The velocity in moviné from the lowest point
=nacos (nf+d), .. f=—kn"a"cos™ (nt+1b);
therefore incrdase of arc

=—fkn""a™ f cos™" (nt + b) dt from nt+b=—}m to §w

_ ms M (m—=2) iiinne 1
——qum ‘f'a mE)(mo1)...2 (m odd)

—— 'H ’72' (m'—2) ......... 2
== 2kn am/\m+l) m—1)...3 {(m even).

When m =2 (the law usually taken) the decrease of the
arc = $ka’.

The proportionate increase of time of oscillation

o =_7;°.r,,ma-«fcos~‘(m+b) sin (nt + B) de

Q‘!an—l - . . .
Fm@ﬂ (nt +3) +C =0, vbetweeaim limits,

whether m be a positive integer or fraction..
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296. Suppose the resistance of the air 1s e;cpressed by any |,
JSunction of the velocity. *

Here f=— ¢ (v) for motion in the positive direction: and
the merease of the arc of vibration

1 cos(nt+0) , 1 [ vplo)d
- e?&f $ () sin (nt + b) dv= n'a ) A/ (n"a:)— 1:]’)

from v=0 to v=0 again. But it must be observed that from
v=0 to v=na (that is, from s=—a to s=0) the radical
must be taken with a negative sign, because sin (nf+3) is
then negative. The increase of the arc is consequently
__ 1 Mep(w)dy 1 [ vd(v)dv )
T wlal), y(@'d'—9F) T nla ), N (n'a’— )’
2 (™ v (v) dv

and therefore decrease = w3, Vi —o)"

The proportionate increase of time of yibratjon

=.._Lf¢(v) shl(nt+b)dz=77;‘?f'¢(v)dv

TR

=1r~—nl—3?1k(v)é0,.fr0m v=0 to v=0.
Hence a resistance which is constant, or which depends on
the velocity, does not alter the time of vibratiog,

297. Let the resistance be that produced by a current of
air moving in the plane of vibration with a delocity V greater
than the greatest velocity of the pendulum: and varying as the
square of their relative velocity.

Here f=¢ (v) =k (V—v)® when the pendulum moves in
the direction of the current, which we su pose to be the
positive direction of s; and f=¢ (v) =k (V+ vs) when it moves -
in the opposite direction.

By the formula in‘the last Example, when the pendulum
moves in tlie direction of the current, the arc is increased by

k (2 V* Vamr 44

T Ta tTE)
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and when it returns the arc is diminished by °
% (2 V: Var 4d

n? n 3)°

The diminution in two vibrations ._.%;Z_ezr_, The time

is‘unaffected.

298. Let a force F act tkrougﬁ a very small space x at
the distance c from the lowest point.

ctz
The increase of the arc =~—.1,—— f Fds= Ef nearly.
n'a ), n‘a

The proportionate increase of the time of vibration
. _ 1 [ Fsds
- wq’a” . V(aa — 8’) M
If thé general value of, the integral be ¢ (s), then the propor-
tionate increz:ge of time

=¢ct+z)—(c)=¢'()=

_ I ¢

- ania’ V(a"— cu)f
If then an impulsc be given when the pendulum is at its
lowest point,,c= 0 and the time of vibration is unaffected.

299. 7o detérmine the motion of a projectile in a uniform
mediwm, the resistance being as the square of the velocity.

Here as before (§ 220),

d'z dz ds dx
e (1
d’y__ ’ gz , d8@ ......... v .
=g =I g
Now if k=0, we have evidently )
z=a+mé
y=b+n¢_iy"’ }Iootnloqlbolooooocvn (2),
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where @, b ate the co-ordinates of the point of projection,
and m, n the initial horizontal and vertical velocities.

Now supposing (2) to be the solution of (1), @, b, m and =
being now functions of ¢, we have

dz

@™
d;
w=n=vs |
in both orbits; therefore
da dm
p + tw =0 "
db dn 0e0ccenee eevscasane .
atta =0
Also B _ St (g )
= -3 2}:.
and equations (1) become
J’-’” dn ’
P =.ét_=—km:\/{m"+ (n—g'ty},
(l"l/ , dn o (4) H

[

ga ===k =g J[m'+ (n- gt}

and (3) becomes

. Z—“=kmw{m*+ (=g
]
o . (5).
o =km—gitvim'+(n-gtY

The last four equations suffice to determine a, 8, m, # it
terms of ¢, and thence the instantaneous orbit. For a first
approximation, we may on account of the remark in § 288
integrgte these equations on the supposition that the right-
hand side of each is variable only so far as it explicitly
involves ¢, .
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Now equations (2) shbw’ that the latus rectum of the in-

' dm
“dt
we see that the latus rectum continually diminishes,

Also by equations (2),

mn)’ 2m® n?
. (w—-a———T =-—'r( —b-—;——;).
9 g 29

These give for the co-ordinates of the focus of the instan-
taneous orbit :

stantancous parabola is 21?—-, and as is negative, Ly (4),

x=a+ - 4
‘ , -t
y=b+ 27
r If these expressions ,be differentiated and %‘—:, &e. be

elimirated by means of (4) and (5), it will be seen that

’ R B ¢

—;{ i8 negatiye, or the axis of the instantaneous orbit moves

backwards, until the particle reaches the vertex; after which
it progresses for the rest of the motion; also that f‘lz is
positive if m > n, that is, the focus of the instantaneous orbit
moves upwards while the direction of motion of the particle
makes with the horizon an angle less than 45° i.e. while the ,
particle is above the latus rectum of the instantaneous orbit.

800. A particle, moving about a center of force whose
intensity 18 inversely us the square of the distance, i3 subjected
to a small disturbing force in its plane of motion ; to investigate
the change in the form and position of the orbit. :

Leg. the disturbing force be résolved into two, ¢ and +,
one along the radius vector and the other perpendicular to it;
the equations of motion are

Ge-r (@)--hre

1 d ,}dg)‘ co-:ouc--cvf‘oouo-’(l)o
723( @)=Y
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Now the solutions of these equatidns are

}_=%{l+ecos(0—-cr)}
e, cee(2),
r’(—lg=h )
dt - .

if we omit the forces ¢ and 4. When we conside» their
effect then, the quantities 2, ¢ and & must be considered
variable.

But in the instantaneous orbit, the velocity and direction
of motion are the same as in the actual orbit, and therefore if
(2) be differentiated, considering k, ¢, and = variable, the
results for 7, 630 , and é—f must be the same in form as if the
disturbing forces had not acted. This will enable us fg avoid
second differential coefficients of %, ¢, and = ; and the ‘substi-

. . dr & df . _
tution of their values for —&; , -&—g , and & in (1), will give us

altogether three equations for

ah’ do de
de’ de’ de”
The expressions_for these guantities are complicated and so
we.do not give them, They will be more easily investigated
in particular cases, when ¢ and +» are given. .
In the case of the orbit being an ellipse, =2 ug (1 — ¢,
so that we have by substitution :
da  de and dw
dt’ dt’ dt’
And the second integral of the second of equations (1) in-
volves e or the epoch, which will also be thus found as a
function of ¢.

801. If we desire the change produced in the form and
position of an orbit by a slight change made in the velocity,
or direction of motion, &¢. at some particular point, we must
express-sepamately each of the elements of the orbit in terms
of the quantity to be changed; then taking the differentials
~f both sides, we'have the required changes of value.

T. D. 21
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Thus, we have generally in an elliptic orbit
2 1
o= p (— ——) . § 142 (9).

r aQ
At the extremity of the axis major farthest from the focus
this becomes .
¢ _pl—e

al+e’

&Now if at this point ¥ be made ¥ + 8V, without change of
direction, we have the condition that in the new orbit a (1 +¢)
shall have the same value as in the old ; since this will still
be the apsidal distance.

Hence
1—¢

sm=8(4 152

_and 8{a(1+e€)}=0;

a .

' a’l—e¢
« g =2\/(,71+e)8V’
which determine the increase of the axis major and diminu-
tion of the excentricity, and the same method is applicable to
more.complicated cases.

Agsin, in the case of a parabolic orbit, as in Chap. IV.,
it is easy to see that a change in the magnitude of the velo-
city shifts the focus in the line joining it with the projectile
through a space sy ‘

g | .
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raises the directrix through an equal ‘space, and increases the
latus-regtum by '

~

4VV cos’ ,

where a is the inclination of the path to the hokizon at the |
instant of the impact.

If the direction of motion only be changed, the directrix
is unaltered, the focus moves in a direction perpendicular to
the line joining it with the projectile, and the latus recfum
is diminished by the quantity

sin ¢ cos ada.

In the latter case the new orbit again intersects she old,
and the tangents to either at the two points of intersection
are at right angles to each other; so’long as the dispjace-
ment 8a 18 indefinitely small.

These results may easily be extended by geotetrical pro-
cesscs, as in Chap. IV., or deduced by differentiation from
the analytical results there given.

EXAMPLES.

(1) If a small velocity = %e be impressed on a planet, in
the direction of the radius vector, shew that ° ’
8¢ = nesin (0 —w),
Ow =—mncos (0 — ).

(2) A satellite ‘moves about a spherical planet in the
plane of its equator, in a slightly elliptic orbit. Find the
motion of the apse due to an uniform mountain ridge at the
equator.

(8) Cengral force varying as the distance, the velocity of
a particle is incrgased by }‘th when it is at the extremity of
' 21—2
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one of the equal conjugate diameters of its erbit. Shew that
each axis is increased by 5!;‘ th, and that the apse regredes

through an angle
1 ab

na®—0*"

(4) At what point of an elliptic orbit described about
the focus, can a small change be made in the direction of
motion without altering the position of the apse?

If 8¢ be this change, shew that (in the supposed case)

Se
8=

(5)‘ Shew that in an elliptic orbit about the focus, if the
velocity be incrgased'by %th when the true anomaly is 0-=;
we shall haye

81:;:_=+ nr sin (0 — =)

-~ ’

ae

as the particle is moving to or from the nearer apse.

(6) A particle moving about a center of force in the fotus,

in an ellipse.of small excentricity, receives a small impulse

ndicular tg its direction of motion at any instant. Find
the’effect on the position of the apse.

(7) Again, if at the extremity of the axis minor the
velocity be increased by% th, and the direction changed so

that & remains the same, find the alteration in the form and
- position of the orbit

8a=2(% §8V,

so=(2)' (G =e)om
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(8) .The first term of the central disturbing force on the
moon ig — m’r, where the central force is g ; shew that the
apsidal angle (the orbit being nearly circular) is

3 m?
T (l +3 72;) nearly,
2 .
where — is a mean lunar month.

(9) A particle is moving in a circle about a center of
force ¢ (Dist.)™. The absolute force of the centcr increases
slowly and uniformly. Determine the approximate elements
of the orbit after a given time.

(10) A particle moves in a focal elliptic orbit in a very
rare medium whose resistance is as the square of the valocity;
determine the effect of the resistance ®on the periodic time.

(11) A particle is projected along, a sljghtly rougl in-
clined plane; find the approximate pfﬁl, ‘and the velocity at
any point. %

(12) A point is describing a circle, the acceleration tend-
ing to the center and varying inversely as the square of the
distance: if the velocity al any point be increased in the
ratio of 4/3 to /2, find the eccentricity of the new,orbit.
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' ¥ CHAPTER XIL
MOTION OF TWO OR MORE PARTICLES.

802. HavinG considered in detail the various cases which
occur in the motion of a single particle subject to the action
of ary forces, and whose motion 1s either free, constrained, or
resisted, we proceed to the investigation of some very simple
cases in which more particles than one are involved. These
will diride themselves naturally into two series; first, when
the particles are entirely*free, and are sabject to their mutual
attractions as well as to other common impressed forces: and
second, when there are in addition constraining forces ; such
as when two or more of the particles are connected by inex-
tensible strings, &c. Let us take these in order:—

I. Free Motion.

303. An immediate application of the third law of motion
shews that if two particles attract each other, they exert each
on the dther’equal and opposite forces. |

If then m, m!, be the masses of the particles, and the force
between two uiits of matter at distance D be ¢’ (D), the com-

mon force is )
mm'¢p’ (D).

804. A system of free particles is subject to mo forces
but the mutua? atiractions ; to tnvestigate the motion of the
system. ) : ‘

Let, at time £, z,, ¥,, 2. be the co-ordinates of the particle
whose mass is m,, and let ¢'(D) be the law of attraction.
Let ,r, express the distance between the particles' m, and m,;

ghen we have for the motion of m,, ‘
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m, %;.1 =3 {m,m,c[)' () %F;:ﬂ} ............ (1),
m S =3 {mlm' ¢ (ir) -3/1—:£} ............ (@),
ml %—%‘ = 2 {mlm'¢' (lr,,) i”::;f;} ...... YTYYIN ( 3)‘,

with similar equations for each of the others; the sums being
taken throughout the system. Before we can make an
attempt at a solution of these equations, we must know their
number, and the laws of attraction between the several pairs
of particles. But some general theorems, independent of these
data, may easily be obtained: although not nearly so &imply
as in Chap. IL.

305. 1. Cozzsnnvumx OF }\dﬁounm‘nu. In*the ex-
pression for m, %;’, we have a terln

L]
T, — 2,
m,me (;7,) J;.;.‘q‘*z ’

2
and in m, %:—:' we have

mamd () 251,

Lo 4

Hence if we add"all the equations of thg form (1) together
the result will be . -

&'z d'z
m, -+, 7 SRR =0;

A
< —-—
or a(m dt") =0,

) Sitfxilal_'ly 2 (m %) =0.

3(ng)-e

.
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Now if z, 7, z, be at_time ¢ the co-ordinates of the eente;-
of inertia of all the particles, § 53, '
=% (m) @ =2 (ma),
% (m)g =3 (my),
3, (m) 2 =3, (mz).
*  And the above equations may be written,
‘. «

d’z d*z
2 (m) =z =0 r;{t&-=0’
2 d%
E(m)%,‘z= Yor, J a—t:"ny:'o’
a’z dz
2 (m) W =0 L_dt’ =0,
‘ dx "
‘Whence ‘22 =a
8y
@=%
€ _,
dt

These equations shew that the velotity of the center of inertia
parallel to each of the co-ordinate axes remains invariable
during the mbtion, that is, that the center of snertia of the
system remails’ at rest, or moves unifgmly in a straight
line. ,See § 67. «
The values of a, b,.c, may tlius be determined,
I

a= @ ;2 (m Zi)

=(m)

X+ Now if the initial velocity of m, were resolvable into
parallel to the axes respectively, and similarly

Uy Uy Wy
for m,, &ec.

a=2(m"),anﬂsoforb,&c.
(m) * BCBOX ,
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806. II. ConservATION OF MOMENT OF MOMENTUM.
Again, it is evident that if we multiply in succession equatipn
(1) by ,, and equation (2) by z,, andy subtract, and take the
sum of all such remainders through the system of equations
of the forms (1) and (2), we shall have ’

) dy _dx\] _
Or integrating once,

3 [m (w %—y%}]=x43.

Now if in the plane of zy we take p, 6, the polar co-ordi-
nates of the projection of m, )

dy _dx_ ,df
e Ya=r @

or % (mp’ gg) =4,

Now if a, be the area swept out by the radius vector p
on the plane of zy,

and our equation integrated gives
23, (may) = 4.,

no constant being necessary if we agree to reckon a, from
the position of p at time ¢=0.

This equation shews (since xy is'any plane) that generally
in the motion of a free system of particles, subject only to
their mutual attractions, the sum of the products of the mass
of each particle of the system, into the area swept out by the
radius vector of its projection on any plane, and about any
7§m'nt on thdt plane, will be proportional to the time. See

67. .

-
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Take a,, a, to repm;ént for the planes yz, 2z the same
that a, represent for zy,

2z (m“-) =4,
’ 23, (ma,) = A .

- The value of this quantity for a plane, the direction cosines
of ‘whos> normal are , y, v, will be * oo

(A4, +pd,+v4)t,
and will be & maximum if
‘ A, +pd, +vA4, is so,
subject to the equation of condition

P+ﬂ+f=h

. . _ A, _4,
This gives xn,( AT AN 4 suppose,

“"with similar values for 4 and »;

and the value of the product for the plane so found is evidently
At

. Hence, we see also, that the plane for which the sum of
the products of the masses of the particles into the sectorial
areas described by the radit vectores of their projections 1s a
mazémum, is a fived plane or parallel to a fixed plome during
t}zle'iz motion. It has been call gon this account the Invariab
Plane. ’

807. IIL. ConservaTION OF ENEray. Multiply

[ ‘ d
0D, @D, @by
and, treating similarly all the other equations, add them all
together.
 Let us consider the result as regards the term on the right-
.hand side involving the product mm,.
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Written at length it is '

mm ' (r,) dz, de,
BB (-0 B+ ) B

+ similar terms in y and };
and the portion in brackets is equal to

d . . .
- {(z,~=,) 7 (¢, ~ x,) + similar terms in g, 2} ;
d
or, = 3 Grds

de d’z  dy d%  dz d%

=-3 {mpma 4" (pra) dito(ﬂrﬂ)} 5

or, integrating,
15 (m) = C=3 (mm b (7)1

And by taking this integral between limits, we see that—
the change in the Vis Viva of the system in any tsme depends
only on the relative distances of the particles at the beginning
and end of that time, § 73. - i

808. So‘far for the case of several partitles. The simplest
examples will of course be found in the casé of two particles
only, and to such we will confine our attention ; as, when three
or more are involved, the problem does not admit of exact
solution, and in the two important applications which have
been made of it, namely to the Lunar and Planetary Theories,
it is found that a distinet method of approximation is required,
for each. - .

Since the acceleration of the center of inertia is zero, it
follows that the motion of each particle with reference to
that point®is the same as if the latter were at rest. Also, if
we apply to each particle of the system an acceleration equal
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and opposite to that of any one of them, the latter will be
.redpced to rest, and the relative motion of the others about it
will be unchanged. Hence, if there are only two, we see
that the relative motion of one about the other will be the
i;ame as'if the sum of the masses were substituted for the
atter. .

809.% Two particles, moving initially with grven velocities
in the same straight line, are sulject to no forces but thesir
mutual attraction which s tnversely as the square of the
distance ; to determine the motion.

The motion will evidently be confined to the straight line.
Let m,m’ be the masses ofy the particles estimated on the
hypothesis that unit of mass exerts unit of force at unit of
distance; z, ' their distances at any time ¢ from a fixed point
in the line of motion, then

.

Tz mm'
" @ ey 1
ot 'dgm' mm, ---------------- ( ).

AT T @ —a

Hence, if = be the co-ordinate of the center of gravity at
time ¢, ‘

, dzd% N
 mgE T g = mtm) 3 =0,
d% yde’ ndx _
mJJt—-I'!n—c_i-t--('mfm)TiZ_C
=mV+m'V,

if V.and V7 be the initial velocities.
¢ + Integrating again,
mz+m'e =(m+m)z=mV+m'V)t+ 0"
=(mV+m'V)t+ma+md .......;. (2),
ifya, o' denote the initial positions of the particles.

t
#
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Again, from equations (1),
'@'—x) m+m
¢ (@ -z
from which, by multiplying by m or m', we see that the
relative motion of the one with respect to the other, is the

same as if the former had moved to the sum of thz masses
collected at the latter, and fixed.

Integrating once, we have

L=l gy gt

dt -z

At ¢=0, this is

(V'=Vp=CtaZil)
and, eliminating C, ’
d(x’-—.’c) 2 , o, '1 1
(—_._dt_._> = (V _— V)’+2 (m+m) {23'—-2-90_ d,—:z}...(:‘;).
This is of the form
do\® A
(@) =55
or. ¢ -+ odw
H

~ V@t Ba),

which may be integrated by putting @ =*3". The integral
will be circular or logarithmic according as Bis — or +. Thus
we have ' —a in terms of ¢, and knowing mx + m'z’ by (2),
the motion is completely determined.

If at the instant of projection ' ,
(V=7 2 (m+m)

=T d—a '
the formula (3) becomes

V-2 2E=2 o mt ),
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2@-a= Oty mem))y

2,
S@-at=c,
and the motion is completely determined.

* e

810. There is another method of treating this problem.
Suppose instead of determining the relative motion of the
particles, we consider that of each relatively to the common
center of inertia. The distance of m from the center of
inertia is '

- mx + m'x m' (' — x)
T—x= T = 7 ;
m+m m+m
and we easily find from (1),
(A _ D mm o ,
" (dt" . dt’.) T (@ -2} (@ -

Hence, forthe relative motion of m and the center of
inertia, :

d’(t—2x) mm
mTaE T (@ —=z)?
— 2. mm" .
T et m) @—a)’
whenge iz —  may be determined, in finite circular or loga-
rithmic terms, as efor'e. ,

811. Two particles, anyhow projected, are acted on solely
by their mutual attraction; to shew that the line joining them
13 always parallel to a fixed plane.

., If i and m be the particles, z, g, 2, &, ¥, #, their
co-ordinates at time ¢, » their distance, and P the mutual
attraction, we have the following equations,
dz - d%%  px—2a
mg=P—— W=t

£

with"similar expressions for the other co-ordindtes; hence

»”
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de@' —x) d’(y—y)* d*(2' —2)
de _ at det
- Y-y  i-z

and integrating,

—

H

(wr_ w) d(.'/:l;' ."/) — (.'/""y) d(w:it— m) .= Oa’

with other two similar equations. Therefore
GE-2+C -9+ 0@ ~a)=0.

Hence, the line joining the particles is always parallel to
the plane whose direction-cosines are as C,, C,, 0, This
corresponds to § 306. ‘

Also it is evident that the motion of the particles with
respect to each other in a plane parallel to this is the same as
if the plane were at rest (§ 308),

From the preceding propositions the following are gvident
deductions, e

The center of inertia of the two particlegds at rest only
when the initial velocities are zefo, or when the directions of
pr((?'ection are the same or parallel, and the momenta equal
and opposite. .

The plane of relative motion will be at rest only when the
initial directions lie in one plane. . .

If the force be inversely as the square of the disfance, the
relative orbits of the particles about each other, and therefore
(§b 25) about their center of inertia, will be conic sections
about a focus. *

It is needless to pursue this any further, as the preceding
results enable us to reduce the problem to cases treated of
in forther chapters. L

812. Two particles tn space move under the action of
given forces, as well. as their mutual attraction; to delermine
the motion. ‘

Taking the same notation as in § 811, if X, Y, Z,
X', Y, Z', be the resolved parts of the given forces on

unit of mass, we have- . . . P
) L




. Sode mm/

]

-~

336 MOTION OF TWO OR MORE PARTICLES. '

d'z _ pa'—x dd S x—a

with similar equations for the other co-ordinates.

+m'X,

2 ) ’ ’
Hence, d‘ (= x)=_m+m pe _w+X'—X,
r

and so bn. Thus we see that the relative motion about m will
be found by applying to both particles (reversed in direction)
the forces to whose action m is subjected.

{\lso, if z, 7, z, be the co-ordinates of the center of incrtia,
we find, from the above, three equations of the form

w d’z d'z ,d% . e
(m+m)-d—t,,-=m7d«t7+m —‘ig—:mA+mi ,

which shew that the motion of the center of inertia s the same
as if the particles had heen collected into one, and acted on by
the whole of the impressed forces.

II. Constrained Motion.

313. Of the constrained motion of particles, we can only
take particular examples, but there are some gencral con-
siderations which deserve attention.

If two particles be connected by an inextensible string,
its only effect is to prevent their relative distance becoming
greatér than its own length. If we introduce an unknown
force T for the tension of the siring, the equations of motion
can be written down, and the condition that the distance of
the particles is equal te a given quantity will give us an
additional equation, enabling us to eliminate, or to find the
value of, this unknown force. If at any time the value of T’
hecomes equal to zero, the motion of the particles must be
investigati% as if they were free, until the values of their
co-ordinates shew that the string will begin to be tended
again, In such a case, if their velocities resolved along the
line joining them be not equal, an impact will take place,
whose effects must be investigated by the methods of
Chap. X. ‘. o

Lt
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When the particles are connccted by a rigid rod without
mass, we have an unknown reaction in the direction of the .
rod ; &nd, to determine it, we have the geometrical condition
that the distance between the particles is constant.

1! there be more than two particles attached to the rod, it
may ‘exert a transverse force; but cases of this kind more,
properly belong to the Dynamics of a Rigid Body ; ,.and we
therefore omit all consideration of them.

814. Two particles, attached to each other by an tnexten-
sible string, are projected with given velocities in space; to
determine the motion.

We may without loss of generality consider the distance
between the particles at the instant of projection, to be equal
to the length of the string. If their velocities aré wholl
perpendicular to its direction, or if thejr resolved parts along 1t
are equal and in the same direction, there will be no impact.
If not, suppose the masses m and m' to*have’velocities » and v’
parallel to the string at the instant it is stretcheda, 1t is evident
mv + m'y'

m+m'
This then is determinate ; g0 we may now in addition suppose
the resolved parts of the velocities along the string equal to
cach other. Let x, 3, 2, &, y', 7, be at any timg the co-ordi-
nates of the particles, then, if a be the length of ;he. string,

that the impact will change each of these into

) d*z X - ,d% T &'
(T
and so on,

Also, (@) +(y -3+ (=2 =d,

. -
which are seven equations to find 7, and the six co-ordinates
of m and m'. From the form of the equations, or by treatin
them as in ? 311, we see that the string remains paralle
to a fixed plane, and that the center of inertia moves uni-
formly in a,straight line; the motion of the particles about
each other, and about it, being the same as if it were at rest.
&snce, the particles revolve with uniform angular v;lzocity,
T. D, T '
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and the tension of the string is constant. From the above
equations - .
Te mm' V?

“m4+m a

- /@& -=)* d(y'-.?l)}’ fd(Z'-z)}
vghereLV-\/[{ 7 } +{ @, +1 p7 )
is the relative velocity. The same result might have been
easily obtained by considering t'hat the velocity of m relative

i V,, that, the radius of the
m-4m

to the center of inertia is

circle it describes about that point is m’:'_‘jn, , and that 7' is
the force which maintains it in that circle, and applying the

last formula in § 135,

815. Two particles, connected by an inextensible string
which passesover a small smooth pulley, move under the action
of gravity; to determine the motion.

This was partly anticipated in § 285. TLet m, m' be the
masses, and let z, ' denote their distances from the pulley
at time ¢, Then if T be the tension of the string (the same
throughout ?ineenthe pulley is smooth), we have
' d’x

7

v

d'c

. But z+2"=Tlength of string =a suppose. Hence sup-
posing m >/, ‘ e
P .

("fﬂ- m) %%?5 (mi- M) G esersrnsarsannees (1)e

. This equation completely determines the motion.. Also,
if'we eliminate  and &', we have S

LY VIRV
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2mm’
m+w%

and it is therefore constant.
[ ]

This is one of the cases in which theoretical results may
be tested by actual experiment with considerable accuragy.’
And it was this combination, with many delicate prctautions
against friction, &c. which Atwood made use of for experi-
mental verification of the laws of motion.

‘We see, for instance, by equation (1), that we may easily
keep m +m’ constant while m — m' has any value, and thus b
measuring the accelerations produced, find whether they are,
in the same mass, proportional to the forces producing the
motion. Again, keeping m—m’ constant, s +m' may be
varied at will. Ilence by this process the second laW of mo-
tion may be tested. See § 63. Agafn if, while the masses are
in motion, a portion be suddenly removed from the greater
so that they remain equal, (1) shews u#s sh#t observation will
cnable us to tcst the first law of motion. PR

316. Instead of two masses connected by a string, suppose
a-flexible and uniform chain of length 2a hang over the pulley;
then if = be the length hanging down on one sidg at time ¢,
there will be 2a¢ — z on the other, and the difference or

2 (z—a),

is the portion whose weight accelerates the®motion. Hence,
4 being the mass of the chain ‘per unit of length, we have

d!
2/4a;i;?=2/ty (x—a);

0 —/e
which gives w—a=Ae's'+ Be "/“'. '
If the chain were initially at rest, a portion a +5 being on
one side of the pulley,
i b=A4+B,

0=A4-B;
22—2



340 MCTION OF TWO OR MORE PARTICLES.

VE‘+ e'\/:‘).

KA a:-q=g-~(e

This is true until = = 2a, that is, till the chain leaves the
.pulley ; the value of ¢ at that instant being ¢,, we have’

0, a2
2a_ Vin, Vi,

[)

and therefore ¢,= ,\/ 5 lég {g +4A/ (ﬁ: - 1)} .

If; for example, b = -336—1, i.e. if the portions of the chain
were initially as 4 : 1,

. ?on\/glog.3.

817. A partick, bf mass m, hangs over a small pulley,
and the otha~ end of the string is attached to a mass m' lying
on a smooth horizontal plane ; to determing the motion.

Let a be the length of the-string, then it is evident that
if b be the height of the pulley above the plane, 6 the angle
the string attached to m’ makes with the vertical, and  the
distance of s from the pulley, we must have

< Y

.

Also, if T be the temsion of the string, the equations of
motion are ¢ .
d’z
m—g =mg = T .

oAU S e (2).
m’ﬂbd—t;-q—@ =— ?’sinﬂ

These will fuffice for the determination of thesmotion, and
#he tension of the string; unless 7'cos 6 should become greater
# g, in which case the mass m' wilil’)‘é}ithdrawn frow
,L;li‘:’ w .
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the plane, and ,instead of the last of equations (2) we must
have two equations for the determination of its motion.

318. Two particles m, m', connected by a rigid rod, are
Jorced to move one on each of two straight lines in a vertical
plané, inclined at angles @, o' to the vertical; te determine the
motion, and the time of a small oscillation about the positipn.”
of equilibrium.

Let 6 be the inclination of the rod to the vertical at time ¢,
T its tension, R, R' the reactions of the lines, z, 2’ the dis-
tances of the particles from the point of intersection of the
lines, and a the length of the rod. .

Then,

2
m® T =mgcosa+Tcos(d+a) |
dt . )
...... wweene (1),

m%’% =m'g cosa’ — T cos (Be—a')e
R =mg sina + T'sin (0 +a)

RI= mlg Sin al+ Tsin (0—“’) }oeooooouu-no.(?),

 =a'cos (a+0) —acos (9+a)} ®)
w'=a:cos (a+a')+acos (e_a,) ...... sesesenss

These six equations give z, o, R, R, Zfa?ldce'in terms
of ¢, and thus theoretically complete the solution. o

319. For the tim« f a small oscillation, we must first
find the position of equilibrium. This will, of course, be
obtained by equating to zero the right-hand members of
equations (1). (§ 64). Let z, &, correspond to this pesition ;
and let _

$=5+£, z’=w’+E',

where £ and £ are infinitely small.

Eliminating 7" from equations (1), and then é by means
=gf (3), we have, putting 8=a+4, '
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a3 N e ’ 2
m (ﬁ —gcos a) ('~= -m' (%t? —gcos a’) (z—2'cos B)=0.

€

But o+ 2™ — 222’ cos B =0a';
from which, ne.glecting quantities of the sccond order,
_ zE+2E — (@€' + ') cos f=0;

- ?:5’ cos B
or, £ —E:Ecos/::-—a:"

Hence, eliminating z, ', and ' from these equations, we

have -
d*€ ) - = T —x cos B
r'm (dt"‘ gcosa {w —xcosB+E Seosf—7 cos /3)}

, (A*Ex—2 cos B N ,)

-m (}F zcosB—a —'t.‘] gosa)x

= _x—a'cos B )}___
{w nS’cosB-i—f(l 5———-——-—COSB’_5,cosB 0.

Keeping only terms of the first order in £, since the terms
not involving £ or its differential doefficient must evidently

vanish of themselves ; we have .

* 2
(m @ =5 casB)+ mi (5~ con f)) T
‘ -' +g sin’B (mz cos & + m'Z cos &) £=0,
¢

an equation of the form .

. %:*f+"’§=0;

Py

and the time of oscillation is 27:5 . §125.

820. Two particles, m and m’, are attacked af different
potnts to an inextensible string, one of whose extremities 18 fized.
Mklsysteml be displaced, tq‘determz'qe the motion.

4

-’
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. ’ .
Take the ages of = and y horizental, and that of z verti-
cally downwards, the extremity of the string being origin. ,

Let a, @' be the lengths of the portions of the string, 6, &'
the apgles they make with the vertical, ¢, ¢’ the angles which
vertleal planes through them at time ¢, make with the plane

of zz. Letx, y, 2, 2, ¥/, 2, be the co-ordinates of the parti—-'
cles and 7}, 7" the tensions of the strings.

Then
m§;=—-T3in0cos¢+ T" sin & cos ¢/,
dy . . . e 4y
m7b2.=—T51n0s1n¢+T'sme'sm¢, .
dz
mz‘T=M—Tcos0+TcosB’, .
,(i’w’_ e ¢ : L]
"o =—T"sin 6 cos ¢,
WY T sin @ sin ¢
dt‘ ’
,d%'

m W=m'y—.1”0059'.

Besides these, we have the six equatioqs for =, y, 2,
a, ¥, # in terms of a, @', 6, ¢, €', ¢, in all tw;elve £quations
for the determination of the twelve unknowns%n t&rms of ¢

L] X )

821. These equations will be much sinplified if we con-
sider the displacement to be in one plane, as the motion will
evidently be confined to that plane. By this means we at once
get rid of y, o, p and ¢'. A still greater simplification will be
obtained gy taking in addition the condition that 6 and &
are so small, that their squares and higher powers'may be
neglected.s With these our equations become’ e

m %2~ _ 194 10,
d’z
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d”

il T'o'

a2,
m -‘7?=mg- T'.

'And x=ab,
a=ab+dl,
z=a,
Z=a+ad.
Herice, T =m'g, and T'=(m +m) g,

2
ma{i0=—(m+m,g " m'gf’, 1

( (lg;gn e d:ev> o J>
Introducing' an indeterminate multiplier, and adding,
az o d
m+mnw+x“¢” {m+mw+ma -1)6)=
. Let,, x, be the roots of the equation
T A a_a-1

'm+)»m' a m+ m

Evidet#lly one is positive and the other negative, and the
form of the equation shews that for both m 4 A’ i positive.

o, Putp=0+———

t .

+)m, L= 0 + k¥, suppose.

Then the above equation gives

d'¢ g m+m
ar +am+7m ¢=0.

gy the recent remark the coefficient of ¢ s positive for~
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both values ofe A; let its values be%,? and n?, and we have,
k., ¢y k,, ¢,, being the corresponding values of % and ¢, o

b, =0+, 6 =a, cos (nt+B,),
¢, =0+ k20’=a2(:05 (gt +B,), .

where a, a,, 8,, B,, are arbitrary constants.

Hence,

1
0= 7:::7; {k,3, cos (n,t + B,) — k,a, cos (n,t + B,)},
1
= k_—_:_—]gg {ax cos ("1" +8,) —a,cos (nt+ By}
1 N
a9 1%

. y EZ an E, we
find a,, a,, 8,, B,, and thus the solution is complete. ]t may
be noticed that the values of 6 and %¢’.may be found at any
time by taking the algebraic sum of the corregponding values
of the inclinations to the vertical of two penaulums whose

0/

Having given the initia. valueg of 6, ¢’

times of oscillation are 27 and 27, Also, if n,, n, be com-

n 2
mensnrable, the system will in time return to its first position,
and the motion will be periodic.

A very slight modification of the process® givés us the
result of small displacements not in one plane: but the stu-
dent may easily work out thege for himself. « )

" We have here a simple example of the principle of the
¢ Coexistence of Small Oscillations;” but this, for its satis-
factory treatment in the general case, requires the use of
D’Alembert’s Principle; which, though (§ 69) merely a
corollary to the Third Law of Motion, and as such clearlys
pointed out by Newton; is beyond the professed limits of the
present treatise.

822. ‘The examples, which have just been given, may
suffice to convey an idea of the mode of applying our methods
*$p any proposed case of motion of two constrained particles.
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‘These methods are applicable to more complicated cases, when

.more (farticles than two are involved; but nothing would be
gained by such a proceeding, as D’Alembert’s Principle®sup-
plies us with a far simpler mode of investigating the motions
of any system of free or connected particles: especially when
it is simplified in its application by the beautiful system
ef Generalized Co-ordinates introduced by Lagrange. See
Thémsor and Tait's Natural Philosophy, § 329.

EXAMPLES.

3

(1) Two spheres whose masses are M and M’ are placed
in contact, and one of them is projected in the line of centers
with veloeity V.~ If the law of attraction be D™, find where, -

¥and after what time, they will meet.

(2) - If the sun were broken up into an indefinite number
of fragments, uniformly filling the sphere of which the earth’s
orbit 13 a great circle, shew that each would revolve in a
year.

(8) A thin spherical shell of mass M is driven out sym-
metrically by an internal explosion.” Shew that if, when the
shell has a radius a, the outward velocity of each particle be v,
the fragments can never be collected by their mutual attrac-
tion unless - **

: 5 . M
VU<—.
<3

(4) Twoequal particles are initially at rest in two smooth
tubes at right angles to éach other. Shew that whatever were
their positions, and whatever their law of attraction, they will
reach the intersection of the tubes together.

(5) In last question suppose ‘the original distances from
the intersection of the tubes to be a, b, and the attraction as
the square of the distance inversely, find the future paths if
at any instant the constraint is removed. ‘

(6) A number of equal pa.rticles, ﬁtttacting each other,
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directly as the distance, are constrgined to move in parallel
tubes; if the positions of the particles be given at the com-
menc&ment of the motion, determine the subsequent motion of-
each; and shew that the particles will oscillate symmetricall
witherespect to the plane perpendicular to the tub®s whic
pass¢d through their center of inertia at the commencement
of the motion.

(7) Two given masses are connected by a slighﬂ.y elastic
string, and projected so as to whirl round, find the time of a
small oscillation in the length of the string.

Give a numerical result, supposing the masses to weigh
11b. and 21bs. respectively, and the natural length of the

string to be 1 yard, and supposing that it stretches —lloth inch
for a tension of 11b.

. (8) Two equal masses M, ate connected by a string
which passes through a hole in a shooth horizontal  plane.
One’of them hanging vertically, shew*thatthe other describes
on the plane a curve whose differential equatiop, is

te T

d¢*
and that the tension of the string is

g+ Bud
u 2

.

(9) Two equal particles gonnected by astring are placed
in a circular tube. In the circumferefice is a center of force

oc‘-lﬁ. One particle is initially at its greatest distance from

the center of force, shew that if v, v’ be the velocities with

which they pass through & point 90° from the center of force, |
) € x4 e-’:': =1.

(10) Two equal balls ‘repelling each other with & force

o 1—§—, hané ‘frox? the same point by strings of length I. Shew

[T AT
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that if when in equilibrium, the strings making an angle 2a
swith each other, they be approximated by equal small arcs,
the time of an oscil.za.tion 18 the same as that of a pendilum
whose length is

lcosa

1+2cos’a’

(11) ~One of two equal particles connected by an inelastic
strin% moves in a straight groove. The other is projected
parallel to the groove, the string being stretched ; determine
the motion, and shew that the greatest tension is four times
the least.

(12) Two particles are connected by an elastic string of
length 2a, and one is projected perpendicularly to the string
when it is unstreiched. Shew that in the relative orbit

1 r .

(18) Two, equal particles connected by a rigid rod move
on a vertical circle. }f)[f they be slightly disturbed from the
higher position of equilibrium, determine the motion.

Also find the time of a small oscillation about the position
of stable eqailibrium. ’

(14) Two particles P and Q are connected by a rigid rod.
P is constrained to move in a smooth horizontal groove. If
the particles be initially at rest, PQ making a given angle
with the groove 1n a vertical plane through it, find the velo-
city of @ when it reaches the groove, and shew that @’s path
in the vertical plane is an ellipse.

(15) A particle of mass m has attached to it two equal
weights‘m’ by means of strings passing over ;i‘l}lleys in the
same horizontal plane, and is initially at rest halfway between
them. Determine the motion. Shew that if the distance
between the pulleys be 2a, the velocity of m will be zero
when it has };‘ilen through a space X

dmm'a
I —m

,a
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and that it will have its greatest velocity when passing
through its position of statical equilibrium. (§ 73.)

(16) Two masses M, M’ are connected by a string which
passes over a smooth peg. To M’ is attached a string which
supports a mass m such that M'+m =M, and m is displaced
through an angle a. Investigate the motion; supposing m so
small that the horizontal motion of M’ may be gegleeted.
Shew that the string M’m will be vertical after the time

A\ fa 1—5—71’;—[sin’0%
(;) fo(m) 8,

where A is the length of M'm.,

GENERAL EXAMPLES.

(1) A spiral spring is stretched an‘inch by each addi-
tional pound appended to its lower end; fipd the greatest
velocity which will be acquired by a mass of 20 lbs. appended
to the unsttetched spring and allowed to fall.

Also find how far the mass will fall, and the time of a
complete oscillation. .

(2) Find the form of the hodograph, a d thg law of its
description, for any point of one circular %}lsc' rolling uni-
formly on another. Hence, find the force inder which a free
particle will describe an epitrochoid,’as it is’ described by a
“point of the uniformly rolhng disc. . -

(8) Form the equation to the surfaces of equal time, as
those of equal action were found in § 254. ,

(4) Apply a method similar to that of § 255 to find the
equation to the common brachistochrone.

(5) Find the law of the force when the brachistochrone
is an ellipse with the center of force in its focus.

(6) A rod slides between two rough parallel horizontal
. bars, in a plane perpendicular to the bars: determine the
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Ls

qlotlion while it is rectilinéar, but neither horizontal nor ver-
e tlc? . 3

(1) Determine the (unresisted) motion of a mass pro-
jected vertically at a given point of the earth's surface with a
velocity of 7 mjles per second. ’

«(8) ,Apply the princigle of varying action to the deter-
mination of the (unresisted) motion of a projectile.

(9) Shew that the action and time, in any arc of the
ordinary brachistochrone commencing at the cusp, are repre-
sented by the area and arc of the corresponding segment of
the generating circle,

(10) In the parabolic motion of a projectile, the action is
represented by othe area included between the curve, the
directrix,'and the two vertical ordinates: and the time by the

¥ intercept on the directrix, *

(11) Givena cengral orbit, and the law of its description,
find the differential equation of a curve such that if tangents
be drawn to " from any two points of the orbit, the action
shall be represented by the area included by these tangents
and the two curves, )

(12) A particle moves in a given line, under the action
of a force =—us —f—; and.a given impulse acts on it, alter-
e t ‘

nately in opposite directions in its line of motion, at intervals
each equal to T. . Find, the resultant periodic motion. (This
is the general case of'the pendulum of an electrically-con-
trolled clock.) .



APPENDIX.

A.  On the integration of the equations of motion about a
center of force.

Ix general, (Chap. V.) the problem of central forces is

r
and employing the resulting integrated relation betgeen r and
0 to find @ in terms of ¢ from the, law of equable description
‘of areas. If we try to express » and @ separately, in terms
of ¢, without first determining the form of the orbity we are
led to a host of curious resilts which may be easily obtained ;
:}2 easily indeed, that we shall merely notiee one or two of
em.

solved by considering the equation connecting u (or 1) and 0,

From the usual eﬁmtions for motion about a center, ..,
d'z x
=" Fr

y__pY

@ =P

.where Pis the acceleration due to the central force, we get
at once : *

(o

az d _
oge tY ==

Adding, we have iinmediately, ) . ‘
qdQ( de, dy —18° () _ _ - \
’d}(a;_d?_l_y.gt- ‘.} d“-——- 2f.Pd7' Pr... (1)-

and
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.

This, for any assigned form of P in terms of 7, will
.ev'adently give us 7* in terms of ¢. )

Now there is a remarkable case in which #* can be
generally expressed as a rational integral function of ¢, Sup-
pose

—2der—B-=C .................. @),
and we fave 209
() _
ar —20
or P=A+42Bt4 O ..covvvvvvneiennenens (8).
From (2) we find by differentiation
dP
3P +7r E = 0,
or Px —1~, .
rn

Hence the case in question is that of the inverse third power.
It may be worth while to find 8 in terms of ¢, and to obtain,
by elimination of ¢, the equations to the orbits which are
possible with such a force. :

‘We have, in all central orbits,

ab
”E—t:’.—'k"f"‘ .................. (4).

<

Hence, in the present case, by (8),

a9 Ak .05
- Y E— Y 'y T XX} .
at ™ A+2Bt+ C¢ O (t+%) +AC

—G—

Put now . 7:—.;4.%,

aadweget = =C {7’+AOC';BQ} ensernesnanens(8),

"
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and

There are, of course, four cases.

I' AC=B' The integral of (5) is

L1
b+a=—5=;
and r=++/Cr.
Here ¢ must be positive. Hence
- h
=t 700+’

the reciprocal spiral..

II. ‘i%}gi=a’. (3" and (5) give .
(o+ g =tan™?,
and therefore r= Ca’ sec? %— (6 +a),
or r cos aTC(G+a)= AC-B
n AP -2 e
% (0 +e) = log T +Z
and = ('r —a'),

whence, after a reduction or two,

®r= au(“?avow(w) = ! “"0
- a) -
- F Me TN

“ T, D

23
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IV. C=o, .

B
0= —;Blog JT;’ or r=1feh .

These ure, of course, the results of the integration of the
usual equation between u and 6. (Compare Chap. V. Ex.

- (15).

As’another case, suppose in (1),
—2[Pdr-—Pr=mr’+g-1 .................. (6).
Differentiate, multiply by #*, and integrate, then
P=—1imr+ ?.-, .

Hence, in the case of the direct first power, or a combination
of this with the inverse third, :
d’ (")

— ; 2 Y
e =2mr*+ ()

which gives, according as m is positive or negative,

o C [ Meveme . Newum
'. tom = {Mcos (W(—2m) ¢+ N}} ’

By meuns ¢f (4), these equations give us 8 in terms of ¢,
_and, the latter~vcing climinated, we have the required orbit,
which becomes the ellipse or hyperbola as usual when n =0,
it being observed that we have an additional disposable con-
stant introduced by th¢ method employed in obtaining equa-
tion (1). It is evident that results of this kind may be
multiplied indefinitely. To classify the cases in which the
equations for 7* and @ in terms of ¢ can be completely in-
‘tégrated would be an interesting, but by no means an easy
problem.

The method here employed is interesting as being that
which is at once suggested by the application of Quaternions
to the problem of Central Orbits. .

il
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B. To find the time of fall ﬁ-ohg rest down any arc of an
inverted cycloid.

_ Let O be the point from which the particle commences
its mgtion. Draw 04’ parallel to C4, and on BA' describe

By
S~

L)

a semicircle. Let P, P', P" he corresponding®points of the
curve, the generating circle, ¥nd the circle just drawn, and
let us compare the velocitics of the particle at P, and the
point P". Let P"T be the tangent at P".

velocity of P clement at P”
velocity of P~ element at P

'_M_IEJA‘B

BP ~BP'\ 4B
_ 4B /4B
24P’ .AB’

But velocity of P=y/(2g. A'M) = Al% A'P"

- - : ey .
Hence vel.ocxty of P'= ,\/ 5 B.A B, a constant
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© And, as the length of A'P"B is g .A'B, -

time from A4' to B in circle =time from O to B in cycloid

AB
* Cor. It is evident from the ‘groof, that the particle de-

scends half the vertical space to B in half the time it takes
to reach B.

=

C. To find the nature of the brackistochrone, gravity being
the only impressed force.

The following is founded on Bernoulli’s original solution.
(WoopHouse, Lsoperimetrical Problems.) .

From Art. 182 it is evident that the curve lies in the ver-
tical plane which contains the given points. Also it is easy
to see that if the tinfe of descent through the entire curve is

a minimum, that through any portion of the curve is less
than if that portion were chan.jx;nto any other curve.

And it is obvious that, between any two contiquous equal
values of a continuously varying ‘quantity, a maximum or
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mintinum must Jie. [This principle, though excessively simple
(witnegs its application to the barometer or thermometer), is of
very great power, and often enables us to solve problems ‘of
maxima and minima, such as require in analysis not merely
the processes of the Differential Calculus, but those .f the
Calcttlus of Variations. The present is a good example.]

Let, then, PQ, QR and PQ’, Q'R be two pairs of inde-
finitely small sides of a polygon such that the time of de-
scending through either pair, starting from P with a given
velocity, may be equal. Let Q@' be horizontal and indefi-
nitely small compared with PQ and QR. The brachisto-
chrone must lie between these paths, and must possess any
property which they possess in common. Hence if vebe the
velocity down P’Q (supposed uniform) and o' that down QZ,
drawing @m, Q'n perpendicular to B¢, PQ, we must have

v v ]

Now if 8 be the inclination of PQ to".the *horizon, & that of
QR, Qn=Q¢ cos 8, Qm=QQ@ cos #. Henge the above

equation becomes

v v
,
This is true for any two consecutive elements of the required
curve; therefore throughout the curve '

v ot cos 6.

. - "
But ©* « vertical space fallert through?s (§ {719. Hence the
curve required is such that the cosingof the angle it makes
with the%orizontal line through the point of departure varies
as the square root of the distance from that line; which is
easily seen to be a property of the cycloid, if we remember
that the tangent to that curve is parallel to the corresponding
chord of its generating circle. For in the fig. p. 163, .

A0
The brachistochrone thén, in the case of gravity being the

cos Q‘P'N =cos QAP = éf— = j—:—lg- o A/ AN.
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only impressed force, is gn inverted cycloid whose cusp is at

the point from which the particle descends. A
. C,. Were there any number of impressed forces we might
suppose. their resultant constant in magnitude and dir&ction
for two successive elements. Then reasoning similar tq that

«in § 182 would" shew that the osculating plane to the brachis-
tochrong always contains the resultant force. Again w¢
should have as in last Anxticle,

cos@ cos @
=2

v v

where 6 is now the complement of the angle between the
curve and the resultant of the impressed forces.

Let that resultant = F, and let the element PQ = &s, and
¢ =60+89. TlHen since F is supposed the same at £ and @),

¥ p?— o = 2F'8s sin 0 (by Chap. IV"),
© " or #du=+F8ssind.

But v oc 08 6; which gives

Sv__siné s0.
v cos 0,
vl
Hence . o= Fcos 6.
0

But in thé limit §;= p, the radius of absolute curvature

., at @, and Fcos @ is the normal component of the impressed
force. Hence in the genegal brachistochrone the pressure due
to centrifugal force equals that due to the impressed forces,
Jour restlt of § 189.

o€

«

C,. Now for the unconstrained path from P to I we
have fvds a minimtim. Hence in the same way.as before,
¢ being the angle corresponding to 6, vcos ¢ =v cps ¢’ from
element to element, and therefore throughout the curve, if the

.. direction of the force be constant. .

R ol
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But in the brachistochrone,

. cosf _cosd

v v .
‘Now if the velocities in the two paths be equal at any

equipptential surface, they will be equal af every other.

Hence taking the angles for any equipotential surface -

cos & cos ¢ = constant.

As an txample, suppose a parabola with its vertex up-
wards to have for directrix the base of an inverted cycloig H
these curves evidently satisfy the above condition, the one
being the free path, the other the brachistochrone, for gravity,
and the velocities being in each due to the same horizontal
line. And it is seen at once that the product of the cosines
of the angles which they make with any hofizontal. straight
line whicn cuts both’is a constant whose magnitude depends

on that of the cycloid and parabo]a; its value being. Zl;
where 7 is the latus rcetum of the parabola, and a the dia-

meter of the gencrating cirele of the cycloid. **

D. To shew that of two curves both concave in the sense
.of gravity, joining the saie points in a vertz’calj)l_ane and not
meeting in any other point, a particle will descend the enveloped
7 less time than it will the enveloping curve; the%initial velocity

being the same n both cascs. " o

Take the axis of «. as the line to a f .’from which the
initial velocity is due, and *the axisXof y im the sense of
gravity, then .

ds
7 =V 299);

fzg \/ {1 + (%)2} Jz

St =
b V(299) o
“v(1+ ) -------- o-;.--.:u-s 1 ).',‘7)?‘»
m.[ o Ny d Sl "5“)'?7
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&0
o)
(=4

e Jf:’dxsxézv -7,

<
(since the limits are constant),

e © _ N/(l +P2) Pz _ 7t
- Syd“[ Y VY a S T Viva

1

2
o + P’l_;a]
vy (1+p7)
o f * gy do — (L2 + 27y = 20y (1 +77)
i yVy (L +p)

. "’8 dx = (1+ng+23/9).
mfr. J yNy(1+p?)?

Now, the curve is convex to the axis of =, hence g is
ositive, and by (1) ¥y and #/(1+ %) have the same sign.
ence the sign of &, is the opposite of that of &y, and for an

enveloping curve 3y is.negative. Hence the time of fall will

be longer.

‘We may thus pass from one curve to any other enveloping
one, even situated at a finite distance, provided the latter be
concave throughout; else the multiplier of 8y.dx in the in-
tegral migh: change sign between the limits. (BERTRAND,
Liouville's Journal, Vol. vir.)

A simple geometrical proof of this theorem may easily be
obtained gy Irawing successive normals to the inner curve
and producing thém to meet the outer. The velocities in the
pairs of arcs, thus cut'out of the two curves, are equal (if the
curves be indefinitel, close), but the arcs themselves are
generally longer in the outer curve, since the convexity of
the inner curve is everywhere turned to it.

19

“« B. To find the curve in which the time of descent to the
lowest point is a given function ¢ (a) of a, the vertical height
© fallen through. .

Here +/(29)t=¢ (a) = f:VUTdE—C;—‘j .
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Hence, the problem may be thus stated,
s
oNa—x'

where «p 1s a known function, find 8 in terms of x.

Giwen ¢(a) =

Cdnsider the integral (GREGORY'S Erxamples, p. 471)

t Tul’
foya-l(l _y)p-l d.y T (: +I?3) ’

{where «'and 3 are cach positive).
Let 8=1—n, where z < 1, then

f’ y*ldy _Tal'(1—n)
0 (l—y)”—r(a'l'l'—n).

.
* Next put y = %, the limits are 0 and a, and

O ..

‘o) _a_("arzlds _Talfl—n),

j"(l_"z)"_‘f" @2 T(a+l-n)’
Q,

“wids CTul(1=m)
o 0 (a;z)"_l’(a+1—n)

Hence

da f"_z"-ldz Tal (1, — P e "daw
—a), @ Tar o), emap™
But, putting a = £x, we have
z as~" d“m Ex)u-n xdf ?-n dE
o(w_al—n"f Ewln w‘f(l_f)l—n
T(x— n+1) I‘n =

by the formula already clted. L
T. D. * g 24‘

- .
- -
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Hence .
f " 2614y L) TaT (1-) R (n)
@—a™ cl@=2r < F@+1)
_..l
= asin
Now, let
( [# @ e da=pa,
whence f $ (@) az*~1dy = 1 (),
and 6@ erda i,

then multiply the terms of the last equation by 0@ () da, and

integrate,  We nave ,

f(w- )'""/ /a¢'(a()i-1)fa-dz—;‘,;lgr/“‘“‘#(a)da,

or f(w a)""f (a—z) smmrf(x)'

Now if the datum of the probleni had been

¢ (a)

(a o we should have had

~ Yeto

. RO () da /’ ° ds
:v-—a)'"" (& ="a)™ o(a— z)*

ém nw
_ Henct, as in the given problem we have n = ; "
“¢(a)da
o (- a) .
wkwh is the reqmred expression. (ABEL, (uvres, Tom. L)

~
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Ex. I. Suppose the Tautochrone be required
¢@=«mé
Yapu [ e 2

._ 8gt,
'nﬁ

Hgre s=

or 8§

363

Ex. JI.a Let ¢ (a) =4/(29) %, that is let the time be pro-

portional to the vertical height fallen through.

Here '\/(1) [(a: o)t IR NCESY

tion to the required curve.

THE END.
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