TREATISE

0 s

THE MARINE BOILERS

OF THE

UNITED STATES.

> BYB.H.BARTOL, ENGINEXR.

PHILADELPHIA:
f. W. barnard \& Sons, printere.
1851.

Entered, according to the Act of Congress, in the year 1851, by B. H. Barton, in the Clerk's Office of the District Court of the United States, for the Eastern District of Pennsylvania.

TO THE

ENGINEERS OF THE UNITED STATES,

THIS VOLUME,

PREPARED FROM AUTHENTIG DRAWINGS,

AND

INFORMATION FURNISHED BY THEIR KINDNESS,
$\mathfrak{I s}$ kespectfulln 国edicated

BY THE AUTHOR.

CONTENTS.

ii
Pacific, 46
Philadelphia, 30
Pioneer, 62
Powell, Thomas 104
Powhattan, 4
Princeton, 12-14
Republic, 32
Rescue, 80
San Jacinto, 10
Saranac, 8
Seneca, 126
State, Bay 110
State, Buck Eye 120
State, Empire 11\%
State, Empire (on Lake Erie) 118
Susquehanna, 2
Taylor, General 136
Traveller, 98
Union, 76
United States, 24
Vixen, 70
Washington, 20-22
Williams, Roger 102
World, New 96

ERRATA.

Page 2, line 16 Dip of Wheel, for 5 ft read 6 ft .
" 12, " 8 Draft of Water, forward, for 15 ft read 15 ft .6 in .
" 12, " 10 Area of Cylinders, for $17 \frac{3}{4}$ read $17 \frac{1}{3}$.
" 24, " 1 For "running from New York to Liverpool," read "sold to Prussian Navy."
" 85, After word "Flues" read" as those of the North America," \&c.
" 120, line 13 Length of Paddles, for 9 ft .8 in . read 9 ft .3 in .
" " " 16 Average Dip of Wheel, for 3 ft .10 in . read 3 ft .1 in .
" " " 26 Area of Chimnies, for 39 9-10ths sqr. ft. read 33 sqr. ft.
" " " 27 Height of Chimnies, for 75 ft . read 65 ft .
" 142, " 7 from the bottom, for "our furnaces are" read "each furnace is."
" 143. " 6 from bottom, for "differs" read "differ," and for "agrees" read "agree."

The following information has been received since the work was put to press:

TRIAL TRIP OF THE GOLDEN GATE.

Average number of Revolutions per minute, "6 Pressure of Steam, " point of Cutting off,	$15 \frac{1}{4}$ $8 \frac{1}{2}$ lbs. 3 feet.
Consumption of Bituminous Coal per hour,	3472 lbs .
Water Evaporated by 1 lb . of Coal,	$7{ }^{1} \frac{7}{1} \overline{0} \mathrm{l} ~ \mathrm{lbs}$ 。
Coal per hour to a square foot of Grate,	

TRIAL TRIP OF BUCK EYE STATE.

Àverage number of Revolutions per minute, 16
" Pressure of Steam, 40 lbs .
Consumption of Bituminous Coal per hour, 3158 lbs .
Water Evaporated by 1 lb . of Coal,
Coal per hour to a square foot of Grate,
$6 \frac{18}{100} \mathrm{lbs}$. 20 lbs.

The tubes in these boilers are 3 inches bore, and 15 feet long, and the natural draft is sufficient to give ample steam.

STEAMER BALTIMORE.

Average number of Revolutions per minute,	19
" Pressure of Steam,	30 lbs .
" point of Cutting off,	5 ft .6 in
Consumption of Virginia Pine wood per hour, $1 \frac{1}{3}$ cords	3200 lbs .
Water Evaporated by 1 lb . of Wood,	$4 \frac{36}{100}$

The Steamer Illinois, just finished at New York, is of the same size as the Golden Gate, and her Engines and Boilers, (constructed by the AllaireWorks,) are of the same kind and dimensions.

A TREATISE

ON THE
 MARINE BOILERS OF THE UNITED STATES.

The Fire Surfaces are all calculated from the top of the grate to the water line, which is taken at 12 inches above the flues.

All the boilers are drawn to a scale of $\frac{3}{16}$ of an inch to the foot. See scale on last page.

Unless noted otherwise, the draft is natural.

SUSQUEHANNA.

War Steamer belonging to the United States Navy. Engines and boilers designed by Charles W. Copeland, Esq., and constructed by Murry \& Hazlehurst, of Baltimore.

Note.-The above result was obtained on her first run from Philadelphia to Norfolk. The steam chimney is attached to the boilers, and the steam from each admitted by a regulating valve, so arranged that one or more may be used at pleasure.

POWHATTAN.*

War Steamer belonging to the United States Navy. Engines and boilers designed by Charles H. Haswell, Esq., Engineer in Chief, United States Navy, and constructed by A. Mehaffy \& Co., of Portsmouth, Virginia.

[^0]

MISSISSIPPI.

War Steamer belonging to the United States Navy. Engines and boilers designed by Charles W. Copeland, Esq., and constructed by Merrick \& Towne, of Philadelphia.

[^1]

SARANAC.

War Steamer belonging to the United States Navy. Engines and boilers designed by Charles W. Copeland, Esq., and constructed by Jabez Coney, of Boston.

Middle Boiler.

SAN JACINTO.*

War Steamer belonging to the United States Navy. Engines designed by Charles H. Haswell, Esq., Engineer in Chief, and constructed by Merrick \& Son, Philadelphia.

*Not yet finished.
11

PRINCETON.

War Steamer belonging to the United States Navy. Engines deo signed by John Ericsson, Esq., and constructed by Merrick \& Towne, of Philadelphia.

| Two Semi Cylinder Engines with Vibrating Pistons. | | | |
| :--- | :--- | :--- | :--- | :--- |
| | | | |
| Area of Cylinders, each | $17 \frac{3}{4}$ square feet. | | |
| Length of Stroke, | | 3 | 0 |

Diameter of Propeller, . . 140
Length of " . . 40

Angle at Hub, . . . 8°
" Periphery, . . 51°
Pitch at 6 . . 350
Number of Blades, . . 6
Area " . . 120 square feet.
Average Number of Revolutions,* . 23
Average Pressure of Steam, . lbs. 13
Cutting off at one-thisd stroke.
Three Iron Boilers (side by side).
Whole Amount of Fire Surface, - 2420 square feet. " " Grate Surface, 134 "
Ratio of Fire Surface to cubic foot of Cylinder, $23_{\frac{4}{10}}$ to 1. " " " Grate Surface, . 18 to 1.
Area of 1st Flues, . . 27_{10}^{10} square feet.
" 2 d " . . $15 \frac{7}{\frac{7}{0}}$ "
" Chimney, . . $133_{\frac{6}{10}}$ "
Height of " above Grate, . 32 feet
Consumption of Anthracite Coal per hour, 1400 lbs .
Water Evaporated by 1 lb . of Coal, . $4_{\frac{3}{10}}$ "
Coal per hour to a square foot of Grate, $\quad 10 \frac{1}{2}$ "
Note.-Fan blast under grate.

* The above rate of speed was found to be most economical, and was the average at sea.

14
 PRINCETON.*

War Steamer, belonging to the United States Navy. Engines designed by John Ericsson, Esq., Boilers by Charles H. Haswell, Esq., Engineer in Chief, U. S. N., and Propeller by Robert L. Stevens, Esq.

MICHIGAN.

Iron War Steamer, belonging to the United States Navy, on Lake Erie. Engines and Boilers designed by Charles W. Copeland, Esq., and constructed by Stackhouse \& Tomlinson, of Pittsburg.

17

GEORGIA.

Merchant Steamer running between New York and New Orleans. Engines and Boilers designed and constructed by T. F. Secor \& Co., New York.

Note.-The Flues marked A are drawn too small. Their diameter is 15 inches.

W ASHINGTON.

Merchant Steamer running between New York and Bremen. Engines and Boilers designed and constructed by Stillman, Allen \& Co., New York.

			Feet.	Inches*
Length on Deck,			236	0
Breadth of Beam,			39	0
Depth of Hold,			31	0
Tonnage,		tons 1733		
Average Draft of Water,	.		19	6
Two Side Lever Engines.				0
Diameter of Cylinders,		-	10	0
Length of Stroke,			10	8
Diameter of Paddle Wheels,		.	34	8
Length of Paddles,	,		7	4
Depth of "		28		
Number of Paddles in each Wheel, Average Dip of Wheel,		28	6	4
Average Number of Revolutions,		- 11		
Average Pressure of Steam,	-	lbs. 12		
Cutting off at .			3	4.

Two Iron Boilers (side by side).
Whole Amount of Fire Surface, . 5760 square feet.
" " Grate Surface, 182 "
Ratio of Fire Surface to cubic foot of Cylinder, $\quad 10 \frac{2}{10}$ to 1.
" " " Grate Surface, 32 to 1.
Area of 1st Flues, . . 36 square feet.
" 2 d " . ${ }^{21_{10}^{10}}$ "
" Chimney, . . $33 \frac{2}{10}$ "

Height of " above Grate, 75 feet.
Consumption of Bituminous Coal per hour,* 3920 lbs.
Water Evaporated by 1 lb . of Coal, - $4_{1}^{7 \%} \frac{77}{} \mathrm{lbs}$ 。
Coal per hour to a square foot of Grate, . 23 "

[^2]

WASHINGTON.*

Merchant Steamer running between New York and Bremen. Engines and Boilers designed and constructed by Stillman, Allen \& Co., New York.

Two Iron Boilers (side by side). \dagger
Whole Amount of Fire Surface, " " " Grate "

6798 square feet.
Ratio of Fire Surface to cubic foot of Cylinder, 292 " ، ، " Grate Surface,
Area of 1st, 2d, and 3d Flues, each " Chimney,

12 to 1.
$23 \frac{1}{2}$ to 1.
$22 \frac{1}{2}$ square feet.
Height of " above Grate,
Consumption of Bituminous Coal per hour,
Water Evaporated by 1 lb . of Coal,
$33_{\frac{2}{10}}^{2} \quad$ " 75 feet.

Coal per hour to a square foot of Grate,
3080 lbs.
$5_{\frac{32}{100}}$ "
$10 \frac{1}{2}$ "

* With new boilers.
\dagger The Boilers are on Miller's patent. In this case, the natural draft through the flues, as shown in section, not being sufficient, the draft was made direct through all the flues.

24

UNITED STATES.

Merchant Steamer running from New York to Liverpool. Engines and Boilers designed and constructed by T. F. Secor \& Co., New York.

25

26
 NORTHERNER.

Merchant Steamer running between New York and Charleston. Engine and boilers designed and constructed by Stillman, Allen \& Co., of New York.

* Fan blast under grate.

FALCON,

Merchant Steamer running between New York, Havana, and New Orleans. Engines and boilers designed and constructed by Hogg \& Delamater, of New York.

PHILADELPHIA.

Merchant Steamer running between New York and Chagres. Engines and boilers designed and constructed by Merrick \& Towne, of Philadelphia.

REPUBLIC.

Merchant Steamer running between Panama and San Francisco. Engines and boilers designed and constructed by Murry \& Hazlehurst, of Baltimore.

OHIO.

Merchant Steamer running between New York and New Orleans. Engines and Boilers designed and constructed by T. F. Secor \& Co., New York.

HERMANN.

Merchant Steamer running between New York and Bremen. Engines and Boilers designed and constructed by Stillman, Allen \& Co., New York.

HERMANN.*

Merchant Steamer running between New York and Bremen. Engines by Stillman, Allen \& Co.; Boilers designed by Erastus W. Smith, Esq., and constructed by Mott \& Ayres, New York.

CHEROKEE.

Merchant Steamer running between New York and Chagres. Engine and Boilers designed and constructed by Stillman, Allen \& Co., New York.

ATLANTIC.

Merchant Steamer running between New York and Liverpool. Engines designed and constructed by Stillman, Allen \& Co., of New York; boilers by John Faron, Esq., Chief Engineer of the Line.

ATLANTLC.

Fig. 3 shows a cross section of boiler at back connexion.
Fig. 4, plan of furnaces and tubes.
45

PACIFIC.

Merchant Steamer running between New York and Liverpool. Engines designed and constructed by the Allaire Works, New York; boilers by John Faron, Esq., Chief Engineer of the Line.

Boilers of the same size and kind as those of the Atlantic.

BALTIC.

Merchant Steamer running between New York and Liverpool. Engines designed and constructed by the Allaire Works, New York; boilers by John Faron, Esq., Chief Engineer of the Line.

Boilers of the same kind as the Atlantic's, but wider, and containing one-ninth more fire surface.

ARCTIC.

Merchant Steamer running between New York and Liverpool. Engines designed and constructed by Stillman, Allen \& Co., New York; boilers by John Faron, Esq.,* Chief Engineer of the Line.

[^3]Boilers same as the Baltic's.

52
 FRANKLIN.

Merchant Steamer running between New York and Havre. Engines and Boilers designed and constructed by Stillman, Allen \& Co., New York.

HUMBOLDT.*

Merchant Steamer running between New York and Havre. Engines and Boilers designed and constructed by Stillman, Allen \& Co., New York.

OSPREY.

Merchant Steamer running between Philadelphia and Charleston. Engine and Boilers designed and constructed at the West Point Foundry.

[^4]

OSPREY.*

Merchant Steamer running between Philadelphia and Charleston. Engine designed and constructed at the West Point Foundry; boilers by Merrick \& Son, Philadelphia.

* With increased hull, new boilers, and Pirsson's fresh water condenser. About $\frac{1}{8}$ th of the usual quantity of water is blown out, to prevent the accumulation of oil in the boiler.
\dagger With fan blast under grate.

ALBATROSS.*

Merchant Steamer running between Philadelphia and Charleston. Elgines and boilers designed and constructed by James T. Sutton \& Co Philadelphia.

[^5]
61

PIONEER.*

Merchant Steamer to run between New York and Liverpool, Engines and Boilers, designed and constructed at the West Point Foundry.

CITY OF PITTSBURGH.*

Merchant Steamer to run between Philadelphia and Liverpool. Engines and boilers designed and constructed at the West Point Foundry.

* Not yet Finished.

EL DORADO.

Merchant Steamer running from New Orleans to Chagres. Engines and Boilers designed and constructed by Cunningham, Belknap \& Co., New York.

MONUMENTAL CITY.

Merchant Steamer running from Panama to San Francisco. Engines and boilers designed and constructed by Murry \& Hazlehurst, Baltimore.

Length on Deck,	Feet.	Inches
	180	0
Breadth of Beam,	30	0
Depth of Hold,	15	0
Tonnage,	tons 768	
Average Draft of Water,	12	0
Two Oscillating Engines (direct action).		
Diameter of Cylinders,	- 3	8
Length of Stroke,	3	0
Diameter of Propeller,	12	0
Length of "	3	0
Angle at Hub, " at Periphery,	$\begin{aligned} & 10^{\circ} \\ & 55 \frac{1}{9} \circ \end{aligned}$	
Pitch at "		0
Number of Blades,	4	
Area of	54	
	40	
Average Number of Revolutions, Average Pressure of Steam	lbs. 15	
Cutting off at	2	0
'Two Iron Boilers (side by side).		
Whole Amount of Fire Surface,	3230 square feet.	
" Tube "	2520	
Grate	10	"
Ratio of Fire Surface to cubic foot of Cylinder, " " " Grate Surface	$51 \text { to }$ $31 \frac{1}{2} \text { to }$	
Area of Tubes,	21 squa	re feet.
Height of " above Grate,	$49 \mathrm{ft}$.	
Consumption of Bituminous Coal per hour,	1680 lbs .	
Water Evaporated by 1 lb . of Coal,		
Coal per hour to a square foot of Grate,	$16 \frac{5}{10}$	

70
 VIXEN.

War Steamer belonging to the United States Navy. Engine and boilers designed and built by the West Point Foundry.

71

GOLDEN GATE.*

Merchant Steamer to run from San Francisco to Panama. Engines designed and constructed by Stillman Allen \& Co., New York.

CONSTITUTION.

Merchant Steamer running between Panama and San Francisco. Engines designed and constructed by I. P. Morris \& Co., of Philadelphia; boilers by R. F. Loper, Esq., and constructed by I. P. Morris \& Co.

* No authentic account of fuel consumed.

UNION.

Merchant Steamer running between Panama and San Francisco. Engines and Boilers, designed and constructed Reaney, Neafie \& Co., Philadelphia.

MASSACHUSETTS.

War Steamer, belonging to the United States Navy. Engines and Boilers designed by John Ericsson, Esq., and constructed by Hogg \& Delamater, New York.

RESCUE.*

Steam Tug for New York Harbor. Engines and Boiler designed and constructed by Reaney, Neafie \& Co., Philadelphia.

	Feet.	Inches.
Length on Deck,	106	6
Breadth of Beam,	20	0
Depth of Hold,	- 9	0
Tonnage,	tons 173	
Average Draft of Water (estimated),	- 9	9
Two Vertical Direct Action Engines; Cylinders over Cranks.		
Diameter of Cylinders,	. 2	2
Length of Stroke,	2	2
Diameter of Propeller,	8	2
Length of "	${ }^{4}$	0
Angle at Hub,	30°	
" Periphery,	48°	
Pitch at Centre of Pressure,	18	6
Number of Blades,	4	
Area of "	56 squa	
Average Number of Revolutions (estimated), $\quad 56$		
" Pressure of Steam,	lbs. 35	
Cutting off at	$11 \frac{1}{2}$ inc	
One Iron Boiler.		
Whole Amount of Fire Surface, " " " Grate "	$\begin{gathered} 1013 \mathrm{sq} \\ 36 \end{gathered}$	re feet. "
Ratio of Fire Surface to cubic foot of Cylinder, " " " Grate Surface,		
Area of 1st Flues,		uare
" 2d "	$4 \frac{1}{4}$	
" Chimney,	7	"
Height of " above Grate,	32 f	
Consumption of Anthracite Coal per hour,	-	
Water Evaporated by 1 lb . of Coal,	-	
Coal per hour to a square foot of Grate,	-	

[^6]81

NORTH AMERICA.

River Steamer running on the Hudson river from New York to Albany. Engine and Boilers designed and constructed by James Cunningham, Esq., Phœnix Foundry, New York.

* These boilers were the first of this form built, and may be considered the first that used anthracite coal with success.
\dagger Fan blast under grate.

SOUTH AMERICA.

River Steamer running from New York to Albany. Engine and Boilers designed and constructed by James Cunningham, Esq., Phœnix Foundry, New York.

[^7]Boilers with same diameter of shell and flues, but six feet longer and one foot more front, giving increased grate surface.

OREGON.

River Steamer running from New York to Albany. Engine and Boilers designed and constructed by Stillman Allen \& Co., New York.

ALIDA.

River Steamer running from New York and Albany, Engine and Boilers designed and constructed by H. R. Dunham \& Co., New York.

[^8]

NIAGARA.

River Steamer running on the Hudson River. Engine and Boilers designed and constructed by Hogg \& Delamater, New York.

JOSEPH BELKNAP.

River Steamer running on the Hudson River. Engine and Boilers designed and constructed by H. R. Dunham \& Co., New York.

MOUNTAINEER.

River Steamer, running on the Hudson River. Engine and Boiler designed and constructed by Joseph E. Coffee, Esq., New York.

96
 NEW WORLD.

River Steamer running from New York to Albany. Engine and Boilers designed and constructed by T. F. Secor \& Co., New York.

TRAVELLER.

River Steamer running on Long Island Sound, from New York to New Haven. Eagine and Boilers designed and constructed by the Allaire Works, New York.

[^9]

ISAAC NEWTON.

River Steamer running on the Hudson. Eagine and Boilers designed and constructed at the Allaire Works, New York.

102
 ROGER WILLIAMS.

River Stomer rumning on the Hudson. Engine and Boiler designed and consruceed by H. R. Dunham \& Co., New York.

* Fan blast under grate.

$10 t$
 THOMAS POWELL.

River Steamer running on the Hudson. Engine and Boilers designed and construcied by T. F. Secor \& Co., New York.

[^10]

ARMENIA.

River Steamer running on the Hudson River. Engine and Boiler de signed and constructed by H. R. Dunham \& Co., New York.

107

108

AMERICA.

River Steamer running on the Delaware River. Engine and Boiler designed and constructed by I. P. Morris \& Co., Philadelphia.

* There were two rows of 20 paddles in each wheel; each paddle being 4 feet 10 inches long, but lapping each other so as to present a surface of but 9 feet in length.

BAY STATE.

River Steamer running on Long Island Sound from New York to Fall River. Engine and Boilers designed and constructed at the Allaire Works, New York.

111

EMPIRE STATE.

River Steamer running on Long Island Sound from New York to Fall River. Engine and Boilers designed and constructed by the Allaire Works, New York.

114
 ANGLO SAXON.

Steam Tug used on the Mississippi below New Orleans. Engines and Boilers designed and construcied by H. R. Dunham \& Co., New York.

116

MAY FLOWER.

Merchant Steamer on Lake Erie, running from Buffalo to Detroit. Engine and Boilers designed by Hogg \& Delamater, and constructed by the West Point Foundry.

117

Three Boilers of the same form and diameter as those used on board the Steamer Falcon, their length being increased to 30 feet.

EMPIRE STATE.

(ON LAKE ERIE.)

Merchant Steamer running from Buffalo to Chicago. Engine designed by Erastus W. Smith, Esq., and constructed by Merrick \& 'Towne, of Philadelphia. Boilers by Merrick \& Towne.

BUCK EYE STATE.*

Merchant Steamer on Lake Erie to run from Buffalo to Cleveland. Engine and Boilers designed by Erastus W. Smith, Esq., New York.

Ratio of Fire Surface to cubic ft of Small Cylinder, 100 to 1.
" " " Grate Surface, $50 \frac{1}{2}$ to 1 .

Area of 1st Flues, . . 24 square feet. " Tubes . . . 28 " " Chimnies, . $39_{\frac{9}{10}}$ "
Height of " above Grate, . 75 feet.
Consumption of Bituminous Coal per hour,
Water Evaporated by 1 lb . of Coal,
Coal per hour to a square foot of Grate,

* Not yet finished.
\dagger The Steam from the Boiler is used full stroke in the small cylinder, and expanded into the larger.

JOHN FITCH.

Ferry Boat on the Hudson River from New York to Hoboken. Engine and Boiler designed and constructed by Hogg \& Delamater, New York.

[^11]123

ONALASKA.

Ferry Boat on the East River from New York to Williamsburg. Engine and Boiler designed and constructed by George Birkbeck, Jr., New York.

* No accurate means of ascertaining consumption of coal, as a considerable portion of time is spent in dock. The boiler gives an ample supply of steam.
125

SENECA.

Ferry Boat on the East River from New York to Williamsburgh. Engine and Boiler designed and constructed by George Birkbeck, Jr., New York.

* No accurate means of obtaining quantity of fuel, for the reason stated in last boat. The boiler gives an ample supply of steam.

MERCHANT.

Ferry Boat on the Delaware River from Philadelphia to Camden. Engine and Boiler designed and constructed by I. P. Morris \& Co., Philadelphia.

* Consumes 4480 lbs. of coal in 14 hours, a portion of which time she is lying in dock. Boiler makes ample steam, and contains 943 -in. tubes and 104 -in. tubes.

GORGONA.

Iron Steamer for the Chagres River. Hull, Engines, and Boilers designed and constructed by Mott \& Ayres, New York.

131

JOHN NELSON.

River Steamer running from New York to New Brunswick. Engine and Boilers designed and constructed by H. R. Dunham \& Co., New York.

* This boat has, in addition to large engine, two engines for forcing air through hei bottom to reduce the friction of the water; they hare cylinders 14 inches diameter, 4 feet stroke, and make 60 revolutions, cutting off at $\frac{1}{2}$ stroke; blast cylinders 40 inches diameter, 4 feet stroke.
\dagger Fan blast under grate.

134

BALTIMORE.

River Steamer running on the Potomac. Engine and Boiler designed and constructed by Reaney, Neafie, \& Co., Philadelphia.

GENERAL TAYLOR.

River Steamer to run on the Hudson. Boilers and Wheels by John F. Rodman, Esq., New York.

AMERICA.

(ON LAKE ERIE.)

Merchant Steamer running between Buffalo and Chicago. Engines and Boilers designed by S. T. Newhall, Esq., and constructed by Yeatman \& Shield, Cincinnati.

- ว.8ed

WESTERN RIVER STEAMERS.

The form of boiler used in the Steamer America, on Lake Erie, and here shown, is the one universally adopted on our western rivers, and will probably continue to be used so long as they remain attached to their present system of high pressure engines. One drawing is a sufficient explanation. Their proportion of boiler may be seen from the following steamer built a few years since ; no change of importance has taken place in that time that I am aware of.

STEAMER J. M. WHITE.

WHICH IS THE BEST BOILER?

Is a question that I have often been asked, and is one that is more easily asked than answered. Of the two ordinary forms of flue boilers I consider the drop flue preferable as occupying less space to produce a given effect. A good comparison may be made between these two forms by examining the boilers of the Bay and Empire State on Long Island Sound ; the boats and engines being almost identical. Of tubular boilers there are two varieties, those having vertical, and those with horizontal tubes; so far as efficiency is concerned I do not think any difference would be observed where equal surface was presented to the action of the fire. Those with horizontal tubes take up less space in the length of the vessel, but more height than those having vertical tubes, unless the latter are made sufficiently high to withdraw a tube within the boiler, when its height would be as great as the former. The Miller boiler, recently brought forward by the Novelty Works in New York, has some advantages over the ordinary form of flue boilers, as it allows of increased grate and fire surface within a given space, and is somewhat lighter than the ordinary flue boiler for the same amount of fire surface.
I am of opinion that equal efficiency may be obtained with either of the forms of boiler (properly constructed) here shown; but there are many things, particularly in sea steamers, to be considered, and for them that boiler is the best which, giving equal effect, occupies the least space, always keeping in view the facilities for cleaning and repairs, two points that have been very much overlooked among us. There is one point to which I wish to draw particular attention, and that is the necessity of having an increased number of furmaces of reduced width in our boilers, and continuing the separation to the chimney if possible. The advantages to be derived from this arrangement are increased surface in immediate contact with the fire, and a very much more regular supply of steam, for it is evident that where a boiler has but two furnaces, nearly one-half of its efficiency is destroyed while our furnaces are being fired, and of course the pressure of steam is immediately reduced, and as one evil often begets another, so this has induced the use of blowers on the principle that two wrongs make one right, l suppose, for that is the only one on which it can be advocated. Sea stecmers should never use blowers; when they are really necessary their boilers are defective. These remarks apply with equal force, so far as number of furnaces are con.
cerned, to river steamers, but with them the increased weight of the boiler to obtain sufficient steam by natural draft would often exceed the extra quantity of coal consumed on the passage, (which occupies but a few hours,) and as speed is the primary object, the blower may be as much to be desired with them, as it is to be avoided in the former.

NOTE.

The quantity of water stated to have been evaporated by a given quantity of fuel, must not be taken as strictly correct; but where a comparison is to be made between two steamers of the same class, it will be found sufficiently accurate for all practical purposes, in obtaining information in relation to the consumption of steam and fuel. I found that nothing authentic could be ascertained in regard to the quantity of water blown out in marine steamers, and I have, therefore, not considered the losses from. that source, or the steam lost in valve chests and at each end of the cylinder. On the other hand, it was just as impossible to obtain the pressure of steam on the piston, from want of indicators, and I was unwilling to adopt any imaginary rule for pressure, as that which would apply to sea steamers, running with throthle valves full open, would not apply to our river boats, where they are more or less throttled off, to maintain a full working pressure in the boiler. I have, therefore, taken the pressure as being the same both in the boiler and on the piston, and the quantity of steam used as being equal to the area of the piston multiplied by the length of stroke at which the steam was cut off, and the number of revolutions. As the management of our river, lake, and sea steamers differs as regards each other, but agrees in respect to each vessel of the same class, so the calculations of fuel here given will be found sufficiently accurate to compare one river steamer with another, or one sea steamer with another, but if a comparison is to be made between a river and a sea steamer, then an allowance must be made in favor of the latter, for the water blown out.
B. H. B.

[^0]: * Not yet finished.

[^1]: * There are two rows of 21 paddles (half length) in each wheel.
 \dagger Result in Gulf of Mexico. Coal Inferior.

[^2]: * Fan blast under grate.

[^3]: * Since deceased.

[^4]: * Fan blast under grate.

[^5]: * With Pirsson's Fresh Water Condenser.

[^6]: * Not yet Finished.

[^7]: * Fan blast under grate.

[^8]: * Fan blast under grate.

[^9]: * Fan Blast under Grate.

[^10]: * Fan blast under grate.

[^11]: * The consumption of coal on this boat is 300 lbs . per hour during the entire day, a considerable portion of which time she is lying in dock. There is no means of telling her consumption while running. The boiler gives an ample supply of steam.

