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PREFACE

The object of this treatise is to present to the student a full

and systematic course of practical and theoretical elementary

Algebra. With this object steadily in view, the author has

made no effort for the display of mathematical genius, but has

assiduously applied himself to the preparation of a text- book

in the science. Believing that original discoveries are not

best adapted to beginners, he has satisfied himself with the

humble vocation of collecting, arranging, and illustrating the

ample materials already provided. But it is due to himself

to say that these materials have all been re-wrought, and

not a few of them re-written several times. It has been a

constant endeavour to make everything explicit, and also to

exhibit it in the simplest possible form. By this means, the

author has been enabled to embrace, within a comparatively

small compass, a more comprehensive view of the science than

can be found in any text-book on the subject now in use.

Among the works which have shared, and still stare most

largely in the patronage of the public, isolated parts or sub-

Jects are treated with great ability and clearness ; but, in some

instances, these works are remarkably deficient, so far as con-

cerns any methodical arrangement of the subjects introduced,

while also other subjects of great importance are omitted alto-

gether. That these books force their way into public patron-

age is not surprising, when, on the other hand, those treatises

which are systematic in the arrangement of topics are, in

general, too theoretical and abstract for the convenience or

profit of the beginner, or, indeed, of the practical algebraist.
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VI PREFACir.

In collecting his materials, the author has consulted the most

approved writers upon the subject. It would be difficult, if

not impossible, to point out the precise amount of his indebt-

edness to each ;
yet he does not hesitate to acknowledge it,

nor has any desire of appearing original led him to remodel

these materials. Indeed, this has been done only when it was

necessary in order to preserve the unity of the work, or to

render the subjects more explicit. In arranging and digesting

these materials, however, the author has been fettered by no

adopted system. Whatever seemed most appropriate to his

general object, and in keeping with the general plan of his

work, he has freely made use of, at all times having reference

to the wants of our schools, and endeavouring to meet them.

How far this object has been attained, he now leaves the

reader to judge, claiming only for himself that it is a well-

meant contribution to elementary education in an important

branch of science.

For the article on " Roots of Numbers," as well as for other

valuable assistance in the preparation of this work, he is in-

debted to the Rev. Joseph Cummings, A.B., lecturer on Nat-

ural Science in the Amenia Seminary.

In the present work, Algebra has not been regarded merely

as an introduction to the higher branches of mathematics, but

also as a means of unfolding more clearly the principles and

theory of common arithmetic. This is an important consid-

eration. A great portion of the students in our academies and

schools do not pursue the mathematical course beyond alge-

bra. Such, aside from the mental discipline acquired in its

study, derive their chief advantage from the superior under-

standing it gives them of common arithmetic ; and we speak

only the common sentiment of the better-informed school-

teachers, when we say that few, if any, are properly qualified

to teach arithmetic w^ithout a knowledge of algebra. The au-

thor has not, however, limited himself to this object, and be-
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lieves the work will fully answer all the necessary requisitions

of an introduction to the higher branches of mathematics.

The Logic of Algebra is an object that should not be lost

sight of in the study ; and in order that the student may be

exercised in this, every important principle has been explained

and demonstrated. But, at the same time, the explanations

have been made simple, and the demonstrations put in such a

form (especially in the first part of the work), that they can

be easily comprehended by those unaccustomed to the rigid

demonstrations of analytical algebra. In the higher depart-

ments of mathematics, it is undoubtedly desirable that the for-

mality in stating every proposition, and the course of demon-

stration required by the precise rules of logic, should be adhe-

red to. But in algebra the case is different. The mind of the

student must become gradually habituated to the more ab-

stract modes of thinking and precise methods of reasoning

;

and, as algebra is commenced in so early a part of the course,

a certain degree of familiarity, rather than formality, in the

statement of propositions and in their proof, becomes not only

excusable, but even necessary. The author, however, has

studied precision in the statement of propositions, and endeav-

oured to make his reasoning explicit. In this way has he en-

deavoured to make the theory obvious and satisfactory.

Believing that a knowledge of the general principles of

algebra can be perfected and permanently secured only by

frequent and rigid application, the author has endeavoured,

throughout the work, to blend theory and practice. For this

purpose, a careful selection of problems and exercises has been

made from the most approved authors.

In the ninth section the author has given a clear and con-

cise view of the theory of Logarithms, and a method of cal-

culating common logarithms, or those in general use, so expli-

cit, and yet so simple, that the student well versed in propor-



Vlll PREFACE.

tion and progression may be able to calculate them with ease

and facility.

As the last three sections treat upon subjects that are sel-

dom called into use by the merely practical algebraist, and

yet subjects that are indispensable as an introduction to the

higher departments of mathematics, they have been thrown

into the form of an Appendix.

This work was commenced, and has been- carried to its

completion, amid the arduous duties incident to the charge of

a large and flourishing seminary of learning. Yet labour and

care have been bestowed upon every part of it, and that, too,

while the author was daily engaged in instructing classes in

this interesting and important branch of study ; and if, under

these circumstances, he has been able to discover the wants

of the student, and adapt his work to meet those wants, he

will feel amply compensated for his toil.

D. W. Clark.

Amenia Seminaiy, March, 1843.
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proofs that he desired. This he would offer as an apology for any errors that

may have been overlooked.





ELEMENTS OF ALGEBRA.

SECTION I.

Preliminary Remarks.—Definitions.—jJxioms.—.Algebraic

Method of J^otation.

PHELIMINAEY REMARKS.

1. The object of Mathematical Science is to investigate

the relations of quantities and the properties of numbers.

2. Quantity, or magnitude, is a general term, embracing

everything which admits of increase, diminution, and meas-

urement.* Thus, a given weight or bulk, a sum of money,

or a number of yards, are quantities.

3. The measurement of quantity is accomplished by means

of an assumed unit or standard of measure. This unit must

be of the same kind as the quantity. Thus, the measuring

unit of money is one dollar ; of a line is one inch, foot, or

mile, &c. ; of area is one square inch, foot, or acre, &c.

4. Jfumbers are symbols adopted to facilitate the investi-

gation of quantities. They represent a unit or an assem-

blao-e of units. Thus, 35, 42, and 64 are numbers j but $35,

42 cwt., and 64 acres, are quantities.

5. Whole numbers, as 4, 6, 15, 30, &c., are called integers.

Broken numbers, as i, |, -j^, &c., are called /ramo;w.

6. Any number which can be divided by 2 without pro-

ducing a fraction, is called an even number ; and all numbers

which cannot be divided by 2 without producing a fraction,

are called odd numbers.

7. Numbers are also distinguished into composite and prime

* See Note A.
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numbers. Any number which can be produced by multi-

plying two or more numbers together, each of which is

greater than a unit^ is called a composite number, as 4, 6, 12,

20, &c. Numbers which admit of no exact divisor except

themselves and unity, are called prime numbers, as 1, 2,, 3,

6, 7, 11, (Src.

8. The foundation of mathematical reasoning is laid in Defi'

nitions and Axioms. The absolute certainty of its conclu-

sions results no less from the exactness of mathematical

definitions, and the clearness and simplicity of its first prin-

ciples, than from the nature of the subjects about which it

is employed.

9. A Definition, when applied to language, is a brief ex-

planation of what is meant by a word or phrase. When ap-

plied to "a thing, it is an analysis of its parts or an enumera-

tion of its principal attributes ; but this analysis or enumer-

ation must be sufficiently extensive and definite to distin-

guish the thing defined from everything else. Definitions,

in mathematics, are used to determine the meaning of the

terms, as well as the signs and symbols used.

10. An Axiom is a self-evident truth or proposition. They

are said to be self-evident, because, as soon as enunciated,

they produce in the mind a force of conviction that cannot

be increased by any subsequent' train of reasoning. This

conviction is the result of an instantaneous and intuitive

perception of the simple relations involved.

11. By a skilful use of the simple elements of mathemati-

cal knowledge, furnished by Definitions and Axioms, we are

led on through the most complicated processes of mathe-

matical investigation.

DEFINITIONS.

12. A problem is a question proposed which requires a

solution ; and the problem is said to be solved when the

value of the unknown quantity, involved in the conditions

of the question, is discovered.

13. A theorem is a general truth, which is to be proved by
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a course of mathematical reasoning called a demonstra-

tion.

14. A Itmma is a subsidiary truth previously laid down, in

order to render the solution of a problem, or the demon-

stration of a theorem, more easy.

15. A proposition is a common name, applied indifferently

to problems, theorems, and lemmas.

16. A corollary is an obvious consequence, derived from

some proposition already demonstrated, without the aid of

any other proposition.

17. A scholium is. a remark made on one or several pre-

ceding propositions, to point out their connexion, their use,

their restriction, or their extension.

18. A hypothesis is a supposition made either in the enun-

ciation of a proposition or in the course of demonstration.

AXIOMS.

19. The following is a list of mathematical axioms. The

list is incomplete, but sufficiently extensive for our present

purpose.

1. The whole of a quantity is greater than a part. '

2. Quantities equal to the same quantity are equal to

each other.

3. If to equal numbers equals be added, the sums will be

equal.

4. If from equal numbers equals be subtracted, the re-

mainders will be equal.

5. If equal numbers be multiplied by equals, the products

will be equal.

6. If equal numbers be divided by equals, the quotients

will be equal.

7. If the same quantity be added to and subtracted from

another, the value of the latter will not be altered.

8. If a quantity be multiplied and divided by a number,

its value will not be altered.

9. If equal numbers are involved to equal degrees, their

powers will be equal.
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10. If corresponding roots of equal numbers be taken,

they will be equal.

11. If to unequal numbers equals be added, the greater

will give the greater sum.

12. If from unequal numbers equals be, subtracted, the

greater will give the greater remainder.

13. If unequal numbers be multiplied by equals, the

greater will give the greater product.

14. If unequal numbers be divided by equals, the greater

will give the greater quotient.

ALGEBRAIC NOTATION.

20. Jllgehra is that branch of mathematical science in

which the relations of quantities are investigated, and the

value of unknown quantities determined, by means of let-

ters and signs.*

21. Quantities^ in Algebra, are represented by the letters

of the alphabet as well as by numbers.

22. The first letters, as a, 6, c, &c., are used to represent

the known quantities, 'the last letters, as a?, y, &c., are

used to represent the unknown quantities.

23. The use of letters to represent quantities is product-

ive of several important advantages.

1. A letter may be made to represent the unknown quan-

tity whose value is sought, and then be used in the so-

lution of the problem as though its value were already

determined.

2. The long and tedious processes of arithmetic may be

greatly abridged by the introduction of letters, since a

single letter may be made to represent any quantity,

however great it may be.

3. The several quantities which enter into the calcula-

tion are preserved distinct from each other, in all their

combinations.

4. The requisite operations may be performed with much
more readiness, and with less liability of mistake, with

letters than with numbers.

* See Note B.
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5. The processes of algebra may be used tp demonstrate

theorems and general rules, inasmuch as a letter mjay

represent every possible value.

24. The relations of quantities, or the operations to be per-

formed upon them, are represented by signs. This method

of notation presents to the eye, at one view, the conditions

of the problem, and at the same time facilitates the reduc-

tion of it.

25. Addition is represented by a horizontal and perpen-

dicular line mutually bisecting each other, as +. Thus,

a-\-b represents that b is to be added to a, and the expres-

sion is read " a plus &."

26. Subtraction is indicated by a horizontal line prefixed

to the quantity to be subtracted, as — . Thus, a—b repre-

sents that 6 is to be subtracted from a, and the expression

is read " a minus i."

27. Multiplication is indicated by a sign formed some-

thing like a Roman X, as X. Thus, aXb indicates that a

is to be multiplied by b. Sometimes the multiplication is

indicated by a dot placed between the quantities to be mul-

tiplied, as a.b ; or if the quantities are represented by let-

ters, the letters may be written one after another, in alpha-

betical order, without any sign, as ab. If numerals are to

be multiplied, the sign must be expressed. Thus, 4x 10, or

4.10, without the sign, would become 410.

28. Division is indicated in three ways. 1. By connect-

ing the divisor to the dividend by a horizontal line with a

dot above and another below it, as —. Thus, a-rb indicates

that a is to be divided by b. 2. By making the dividend the

numerator, and the divisor the denominator of a vulgar

fraction, as ^. 3. Or by placing the divisor to the right of

the dividend, and drawing a perpendicular line between

them, and a horizontal line under the divisor, as a\b.

29-. To indicate that the difference between two quantities

is to be taken without determining which is to be subtracted,

a sign like the letter s placed horizontally is used, as^ c/t*

C
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Thus, a (/) 5 represents that the difference between a and h

is to be taken.

30. Equality between two quantities or sets of quantities

is indicated by two horizontal lines, as =r. Thus, a=6 rep-

resents that a is equal to Z*, and is read ," a equals 6."

31. An equation is the algebraic expression of two equal

quantities connected by the sign of equality. If the alge-

braic quantities are known, the expression is called an

equality.

• 32. Inequality is indicated by two lines forming an angle,

like the letter V placed horizontally, the vertex denoting the

less of the two quantities, as >. Thus, ayb represents

that a is greater than &, and is read " a greater than Z)."

33. An inequation is the algebraic expression of two un-

equal quantities connected by the sign of inequality. If

the quantities are known, the expression is called an ine-

quality.

34i. Proportion is indicated in the same manner as in Com-

mon Arithmetic. Thus, aib'.'.cd represents that the four

quantities a, Z>, c, and c/ are proportional, and the expression

is read " a is to 6 as c is to c?."

35. A coefficient is a numeral figure or a letter prefixed

to a quantity to show how many times the quantity is to be

taken. Thus, 4a shows that a is to be taken four times, as

o+a+a+a=:4a; and ax shows that x is to be taken as

many times as there are units in a.

36. When a quantity has no number prefixed to it, 1 is

always understood as its coefficient. Thus, a is the same

as la.

37. An Mgehraic expression is a quantity or several quan-

tities written in algebraic language ; that is, by the aid of

letters and signs.

39. An algebraic formula is a general rule or principle

stated in algebraic language ; that is, by the aid of letters

and signs.

39. A monomial or simple algebraic quantity is one that
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may be represented in an'Rlgebraic expression, without the

aid of the signs pltts or minus. Thus, a, 3a6, iab', and lab^mx

are monomials. Monomials are sometimes called terms.

40. Polynomials^ or compound quantities, are expressions

containing two or more simple quantities <;onnected by the

signs plus or minus. Thus, a+3a6 and a-\-*Xb—3c are poly-

nomials.

41. A polynomial composed of two terms is called a W-

nomial ; of three terms, a trinomial y of four terms, a quadri-

nomial. If the two terms of a binomial are connected by

the sign minus, it is sometimes called a residual.

42. To indicate that like operations are to be performed

upon all the terms of a polynomial, they must be included

in a parenthesis, or have a bar or vinculum drawn over

them. Thus, a—(b-{-c) indicates that the sum of b and c is

to be subtracted from a; and (a-|-6)Xc indicates that the

sum of a and b is to be multiplied by c ; and (^a-^b)^c indi-

cates that the sum of a and b is to be divided by c.

43. If both multiplicand and multiplier, or dividend and

divisor, are polynomials, each should be included in a pa-

renthesis, as (a4-6)x(c-}-c/), or (a-|-6)H-(c+c/). And in

general, when a sign is prefixed to a parenthesis, it is to be

understood as affecting all the terms included in the paren-

thesis, taken collectively.

44. Positive or additive quantities are those to which the

sign plus is prefixed. J^egative or subtractive quantities

are those to which the minus sign is prefixed. When no

sign is prefixed to the first term of an algebraic expression,

the sign plus is always to be understood.

45. A quantity is said to be ambiguous with regard to its

sign when it is affected with the double sign ± . Thus,

a±b represents that b is to be added to or subtracted from

a; and the expression is read "a plus or minus A."

46. Equal terms affected by unlike signs, in an algebraic

expression, cancel each other, and may be rejected from the

expression. Thus, 3a—56+5^=3«, since —5^ and -f56

cancel each other.
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47. Positive and negative quantities sustain opposite rela-

tions with respect to addition ; i. e., a negative quantity

must be subtracted when a positive quantity would be addp

ed, and added when a positive quantity would be subtracted.

48. The numbers which are multiplied together to form

a composite number, are called /ac^'or^. Thus, Wabcx is a

composite number, formed by multiplying the factors 11,

a, ^, c, and X.

49. A number is said to be resolved into factors when two

or more numbers are taken, such that, when multiplied to-

gether, their product shall equal the given number. Thus,

54 may be resolved into 6x9, or 3x18, or 2x27.

50. The power of a number is the product arising from

the multiplication of the number by itself, till it has been

used as a factor a certain number of times. If the number

is taken twice as a factor, the product is called the second

power ; if three times, the product is called the third power ;

if four times, the fourth power, &c..

51. The index, or exponent, is a figure or letter placed to

the right and a little above the number, and is used to show
the power to which the number is to be involved. The
number is to be used as a factor as many times as there are

units in the exponent. When no exponent is expressed, 1

is understood.

The first power of a is » - - «, or a\

The second power of a is - - axa, or a^.

The third power of a is - - axaxa, or a-^.

The fourth power of a is - axaxaxa, or a'^.

The mth power of a is ax ax a m times, or a", &c-..

52. If a polynomial is to be involved, its terms should Be

included in a parenthesis, and the exponent placed without

the parenthesis to the right. Thus, (a-]-b)- i« the algebraic

expression of the second power of the sum of a and b*

53. Involution is finding the powers of numbers.

54. The root of a number is a number which, multiplied

into itself till it is taken a certain number of times as a
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factor, will produce the given number. The root is called

square root, cube root, fourth root, &c., according to the

number of times it must be used as a factor to produce the

given number.

55. The radical sign, as ^/ , or fractional index, is used

to indicate that the root of a number is to be taken. The

denominator of the fractional index denotes the root ; and

when the radical is used, the figure over the foot of the

radical determines the root. Thus,

The square root of a is expressed - \/a, or a*.

The cube root of a is expressed - y/'a^ or ai.

The fourth root of a is expressed - ^ a, or oi

The fifth root of a-\-b is expressed, \/a-\-b, or {a-\-b)\, &c.

56. Evolution is finding the roots of algebraic numbers.

57. A power of a root, or root of a power, is a result ob-

tained by involving the root of a number, or by extracting

the root of a power. Cases of this kind are indicated as

follows

:

The second power of the third root of a is v'a*, or (^a)*i

or a!.

The third power of the fourth root of o-f-6 is ^(a-|- J)*, or

(a+b)i.

58. It should be remarked that the exponent aflfects only

the letter over which it is placed. Thus, in the expression

abc^, the first powers of a and by and the second power of c,

are to be taken. When no coefficient is prefixed to tho

radical sign, 1 is always understood as the coefficient.

59. Exponents should not be confounded with coefficients.

The exponent indicates that the number is to be used as a

factor a certain number of times. Thus, o" represents that

a is to be taken six times as a factor, or axaxaxaxaxa
=0*. The coefficient indicates that the number is to be

used as a term a certain number of times. Thus, 6a repre-

sents that a is to be used six times as a term, or a-|-a-|-a-h

a4-fl+a=6a.

60. The reciprocal of a quantity is the quotient arising
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from dividing a unit by that quantity. Thus, the reciprocal

of a is 7j of a-\-h is ^ip^ ; and of 4 is J

.

61. The reciprocal of a power is the quotient arising from

dividing a unit by that power, and is frequently expressed

by a negative exponent. Thus,

The reciprocal of a^ is - - - ^, or a~^.

The reciprocal of 4a^ is - - 4;^, or \a~^.

The reciprocal of {a-\-hy is - (^a-\-b)^t or (a+i)~^, &c.

62. Rational quantities are those whose exact value can be

expressed in finite terms. Thus, 4a, ^6, and o-|-3Z>, are ra-

tional quantities.

63. Irrational quantities^ or surds, are those whose exact

value cannot be expressed in finite terms. Thus, since only

the approximate value of the square root of 2 can be ob-

tained, s/2 is called a surd j also Va is a surd.

64. The measure or divisor of a quantity is thai by which

it can be divided without leaving a remainder ; and when a

quantity will divide two or more quantities without leaving

a remainder, it is called a common measure of those quanti-

ties. Thus, la is a measure of 28a, since 7^=4 ; and 3a is

a common measure of 12a and 21a, since — =4, and ^1^=7.

65. The multiple of a quantity is that which can be divided

by the quantity without leaving a remainder. Thus, 28a is

a multiple of 7a, since ^=4, &c.

66. Commensurable quantities are such as have a common
measure or divisor. Thus, 12a and 21a are commensurable,

because they have a common divisor, 3 or 3a.

67. Incommensurable quantities are such as have no com-

mon measure except unity. Thus, 5 and 7, 3a and 10^, are

incommensurable quantities.

68. The value of an algebraic expression is the result ob-

tained by substituting for the letters their numerical values,

and performing the operations indicated by the signs. Thus,

the value of 4a— 8Z>, on the supposition that a=i:12 and ^=:5,

is 4 X 12—8 X 5=48—40= 8.

The value of la+s, on the supposition that a=:6 and^=
10, isix6+^l°=3+6=9.
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69. The following examples are given for the exercise of

the learner. On the supposition that a=6, 6=5, c=4fj d=.

1, and m=10, it is required to find the value of the follow-

ing algebraic expressions.

1. a^-\-<2ab+b'=6^+2 . 6 . 5+5^=36+60+25=121.

2. 2a'—3a'6+c»=2.6'—3.6^5+4»=
3. (a+Z») xa^—5c(//7i+V'= (6+ 5). 6^—5 .4 . 1 . 10+^=
4. 4^+a.(2c+c»)—3w=
5. (4.c'+6').a—(6+3A^).8=

7. 5v/c%^~a*.(3a'—IOot—7</)=

8. ^T.(3a+6+4m)—6a.(36+(f)=
9. 3. v/4^c:3^+3a.(2a +6—(i)i=

10. b . Va*-\-'6d^m—3bc\/b^^=

1 1 2H-g ^&fc=^Wf-t-ct
*A' 3a-« 2o+c —
12. (-;;;zr-+at>)i——^— =

70. The value of an algebraic expression is not altered

by changing the order of the terms or the order of the fac-

tors, if its proper sign be prefixed to each. Thus, a+6+c

—

d is the same in value as —rf+c+ft+a; and aXbXcxd is

the same in value as dxcxbxa. For considering the let-

ters of the same value as in art. 69, we shall have a+6+
c—<i=6+5+4r-l=—l+4 + 5+6= 14j and aXbXcXd=
6.5.4.1= 1.4.5.6=120.

Mote.—It will be found convenient to write the letters in

alphabetical order.

71. Like quantities or terms are those which consist of

the same letters and the same powers, or the same roots of

the same letters. Thus, 3a, 6a, 5a are like quantities ; and

7a*6, 8a'6, and a b are also like quantities.

72. Unlike quantities or terms are those which consist of

different letters, or dififerent powers of the same letters.

Thus, 3a and Sab are unlike quantities, because they have

different letters ; and 3a and 3a^ are unlike, because differ-

ent powers of the same letter are taken.

73. A polynomial which is composed of like quantities or
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terms may be reduced to one term. Thus, ba-\-3a—Sa

;

for, letting a— 6, and substituting for a its value, the expres-

sion will become 5.6 -{-3 . 6= 8. 6, or 30+18=:48. Again,

5a—3a=2a; for, letting a=z6, and substituting, as before,

5 . 6—3 . 6= 2 . 6, or 30—18= 12. In the third place, —5a
—3a=—8a; for substituting, as before, —5.6—3.6=:

—8.6, or —30—18=—48. The same method of illustra-

tion may be applied, whatever value we assume for a.

JVote.—The addition of negative quantities may seem in-

consistent at first sight ; but it should be recollected that the

minus sign merely indicates that the quantities affected by

it are to be subtracted ; hence the sum or aggregate of

those quantities must also be subtracted. Thus, if a mer-

qhant loses $30 in one speculation and $18 in another, the

sum of his losses is $48, and the algebraic expression of it,

is —$30—18=—$48.

74. A polynon^ial which is composed of unlike quantities

or terms cannot be reduced to a simpler form. Thus, Sa-f-

3o can be reduced to no simpler expression ; for, letting a=:

6 and 6=5, we shall have 5a+36=5 . 6+ 3 . 5=45 ; but 5a+
3b cannot equal 8a, since 8 . 6=48 ; neither can it equal 86,

since 8 . 5=40 : therefore the polynomial cannot be reduced

to a simpler expression.

75. The processes of algebra are employed chiefly in the

solution of problems, or in the demonstration of theorems

and the investigation of general rules. This is accomplished

by means of a series of equations or proportions. But, be-

fore entering upon the consideration of these, it will be

necessary to make an application of the algebraic method

of notation to the fundamental principles of numeration.



SECT. II.] ADDITION. 25

SECTION II.

Additioriy Subtraction^ Mrdtiplication^ and Division of

Algebraic Quantities*

ADDITION.

76. Addition is a method of finding the sum of two or

more algebraic quantities.

77. This may be done by connecting the several quanti-

ties by their proper signs in one algebraic expression.

78. In order to bbtain the simplest expression for the sum

of two or more quantities, it is necessary to reduce the like

quantities to one term. Accordingly, Addition may be con-

veniently considered in three cases.

CASE I.

79. In this case the quantities are like, and have like

signs.

RULE.

1. Write the quantities to be added so that the like terms may

fall under each other,

2. jJdd the coefficients^ and to their sum prefix the common

sigUj and annex the common letter or letters.

JSTote.—For the reason of this and the next rule, see the

illustrations in Art. 73.

EXAMPLES.

(1)

3a+ 2A— 5c

5«4- eb— c

^a+llb—Sc
a+ b— 3c

(2)

4a6— 2cd

lab— cd

l^ab— 2cd

ab—12cd

(3)

la%x+\2c}^

%a%x-\- Scl/

2(^bx^ c6»

Sa^bx+ IcV"

I6a+20fr—17c
3

Tiab-llcd

D
20a«^x-f.28ci»
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4. Add Sa'—^bc, 4a'—56c, la'—Sbc, and ^a'—Sbc.

Arranging the terms for addition, 3a"—26c

4a'—56c

7a'—86c

2a'—36c

5. Add —Sax—2by\ —2ax—6by% —3ax—by\ —Qax-^^Sby^

and—3aj?—6/. ^ns. —25aa7— 186y'.

6. Add 12a6'c—8c</a7'+56/, a6'c—7crfa:^-|-36y^ and 3a6'c--

cc?ar'+26/. Jlns. 16a6'c—16cJa?^+ 106y\

7. Add 3a6+ 2aa7y, 7a6+4aa?y, and 12a6-|-10aa:y.

^ns. 22a6-j-16axy.

8. Add Ho^^'y—3a?y+4a?/, ex'y—l2xY+6xf, and ar'y—

3xY-}-xy\ Ans. 24a?='y—18a;'y' +110:3/'.

9. Add 8a'6='c^—36'a?^ 12a'6V—66'a:^ 13a'63c^—76V, 2a'6V

—66'a:^ and lla'6V— 136'a?^ Ans. 46a'6V— 356'a:\

10. Add 60a6—12(a+6), 30a6—3(a+6), 40a6—7(a+6),
and 80a6—3(a-f-6). Ans. 210a6—25(a+6).

CASE II.

80. In this case the quantities are like, but the signs un-

like.

RULE.

1. WriU the quantities to be added so that the like terms may

fall under each other.

2. Take the difference between the sum of the coefficients of

the positive, and the sum of the coefficients of the negative

terms, and to this difference prefix the sign of the greater sum,

and annex the common letter or letters,

EXAMPLES.

(1) ' (2) (3)

12a6+6aa? 7a'a7-l-13a6y 6cc^l2a:y

—7a6+3aa? Qa^x-\- ab^y^ cd— 3xy

3ab—1ax —3a'a?— 7a6y —3cc/-|- ^xy

8a6+2aa7 10a'5;+ 7a6'/ 4c(/— Qxy

4. Add 2a—Sor^, 7a+5a?' —3a+a?', and a + 3a?'.

Ans, 7a+60:'
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5. Add 4a6V— 12tir, —3ab'c'-\-Sdx, lab'c'+6dx, —3a6V—
Idx, Ans, 5aZ»-c*—5cir

6. Add 7aAz*—ISaV+Qic", —SoAz"—aV—66c^ 3a6z*-f

4a*x'—6k^ and —a^^z^+^aV—76c».

^»*. oiz*—6a«x'-T-106c^

7. Add 12a»y^4-13, So'y*—7, —o^y^+S, 2ay—9, and —3
ay— 11. Ans, 13ay—6.

8. Add 6a?4-5ay, —3x+ 2ay, a?—6ay, and 2a?4-ay.

^;i5. 6a:4-2ay.

9. Add—3aft4-7a^6, 3a*— 10a*6, 3a*—6a'*, —ab—^a'b, and

2ab-^la-b. Ans, 4fab—4a**.

10. Add 3a(a+*), 7a(o+ *), —5a(a+ *), and 3a(a+*.)

Ans. 8a(a -{-*).

11. Add 7(6a?-fy—2)', _8(6x+y—2;)^ (Gx+y-z^, and

3(6x+y—2)^ ^715. 3(6x+y—2)^
12. Add 3a*+4a(6y4-*),—8a*—9a(6y-f-*), 12a*+13a(6y

+ *), ab+a(6y-^b), and 7a*+6a(6y+*).

^iw. 15a*+15a(6y+*).

CASE III.

81. In this case the quantities are unlike, or some like

and others unlike.

RULE.

1. Reduce the like terms as in the preceding cases.-

2. To the results thus obtained^ connect the terms which con-

not be reduced by their proper signs,

J^ote.—This rule is founded on the principles illustrated

in articles 73 and 74.

EXAMPLES.

1. Add 3ay^ —2a:y', —3y'x, —8a?'y, and 2Ty^.

f 3ay'—2xy-

These terms may be arranged thus : < —3xy'—8a?*y

I +2xy'

3ay—3j:y—Sor'y

,*.

V
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2. Add 8oV,—Sax, lax, —6xy,—bax, 9xy, 2aV, and xy,

rSaV— 3aa?

These terms may be arranged thus :

-\-lax—6xy

—^ax-\-9xy

2o^a^ + xy

lOaV — ax-\-^xy

3. Add 10b^—Sa\ —5H2aV, ^0-{-2a% and aV+120
^ns. 9b^-{-3a'x'—a'x+110,

4>. Add ab-^Sy cd~3, 28, and 5crf—4m + 2.

^ns. ab-\-6cd-\-3b—4>m,

5. Add babXc'cP, labXc"^, 6abcd, and —3abXc'd^-j-3abcd.

Ans. 9ab x c'd^^9abcd.

6. Add 3aa7—21, 65c-f2, aa;+15—56c, —8 + 6ca:—6c, and

llaa;+ 13—36c. ^ws. 21aa;—36c+ 1.

7. Add 3m2— 1, Gam—4m^+8, 7—9aOT+8, Gm^—3-f aw,

and 4>m^—am + 12. Ans. ^rr^—Sam+31.

8. Add \Sx{a^—b^\ —60^0?+ 1262a:, — 10a:(0^—60+13aX
and Sx{a^—V) + 36^0;. ^?i5. 6a;(a2—6-)+ 7a'a:+ 156^3;.

9. Add 4a2+36+2c, —3a2+ 46 + 8c, Qa^—76— 10c, and 3a»

—6+ c+aa7. Ans. \Sa—6+c+ oa;.

>10. Add 8aa?+2(a?+a)+36, 9aa;+6(a:+o)—96, and—7aa;—

8(a;+a)+66+lla:. ^»*. 10aa:+lla?.

11. Add 5a26+12(a—a:)^ 3a''6—8+9(a—a:)^ 12—8a26, and

--13(a—a:y+3. . Ans. 8(a— a;)-+7.

12. Add 28aXa7+5i/)+21, — 13a''(a:+5y)+18«, — 15a'(a:+

5y)_8, and —13—8a. Ans. 10a.

> 13. Add72aa:^—Say',—38aa:^—3ay^+7a3^, 8+ 12a3^^—6a/

4, 12—34aa:'+ baf—^ay\ Ans.—2ay^-^ 20.

14. Add 12a—13a6+16aa:, 8—4ffi+2y, —6a+7a62+12y

—24, and 7a6—16aa:+4m. Ans. 6fl—6a6+ 14y+7a6'—16.

15. Add 17a(a:+3a2/)+12a='6V, 8— 18ay—8a^6V—7a(a:+

3a2/),—4+12a?/—10a(a:+3a2/)—4a'6V\and 6ay—4. Ans. 0.

16. Add Sab's^—Sa'cd, -^7a6V+7a='cc/— 12, 32a6V, and

12-Sa^cd+ab'x\ • Jlns. 29a6V—40=^0^
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SUBTRACTION.

82. Subtraction is a method of finding the difference be-

tween two algebraic quantities or sets of quantities. It is

the opposite of Addition.

83. We have already seen that a negative quantity is of

an opposite nature to a positive quantity (Art. 4>7), with

respect to addition and subtraction : that is, it must be sub-

tracted when a positive quantity would be added, and added

when a positive quantity would be subtracted. Hence, for

subtraction of algebraic quantities, we have the following

general

RULE.

1. Write the quantity to he subtracted under that from which

it is to be taken, placing like terms under each other,

2. Change the signs of all the quantities to be subtracted, or

conceive them to be changed^ and then proceed as in addition*

EXAMPLES.

(1) (2) (3)

From Qa—db Uab— 6ac'—12aj:y Scd?—8axy-i-3bd

Take 3a—4.6 bab~10ac'-— 2axy Ucd^— axy+3bd

Ans. 3a—56 6a6+ 4.ac^—tOaxy —3cc/^

—

laxy

4. From 3a6^—8aVa:'+26"c take 2a6^+4a^cr'4-3A*c.

^/w. a6^-12a'cr'—6V.

The principles on which this rule is founded may be stated and de-

monstrated as follows I

1. Subtracting a positive quantity will produce the same result; as add-

ing an equal negative quantity.

Represent the sum of two quantities by - - fl-j-*

Taking -f^ away from this expression, there remains a

Adding—b to it, we shall have ... a-j.^—fc=at

2. Subtracting a negative quantity will produce the same result as add-

ing an equal positive quantity.

Represent the difference of two quantities by - a—h

Taking —b away from this expression, there remains a

Adding -|-A to it, we shall have - - . a—i-|J-*c=i.
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5. From 12ax—19c^b+2abx—a^ take dax—Qc'b—Sabx.

^ns. '^ax—10c%+\0abx—3^

6. From ^a^b—llcd'^+^y—^aT? take —^a'b—10cd^-\-^y—

bax^^2cd\ Ans. la'b—Sax".

7. From ISa'd-^xy-^-d take la^d—xy-^-d-i-hm^—ry.

jSns. Qa!^d-{-2xy—hm'^-\-7^y'^,

8. From '7a^bc^—S-\-'7x take 3a^bc'—S—da^-^r.

Ans. ^a^he+nx+dx'—r.

9. From l^a'bx^^llb-^c' take \\a'bo^^9b—lc\

Ans. la'bx^+^b—c'.

10. From IGa^iV—34-48c/a^ take —4a25V+&a:+12c(/.

Ans. '^0a^Wx^—3—bx-\-^Ux—l%cd,

11. From 3a5c—8a;2/+25H-85take —lla&c+4a;y—22—7J.

^;i5. 14ak—12i:y+4.7+15J.

12. From the sum of 6a?^y—llajj^and 8ar^y+3aa;^ take 4a?^y

—^aar*. ./^W5. lOir^y— 4aar'.

13. From the sum of 15ak4-8ccic—3 and 24— 8«Z?c+2ccte

take the sum of 12aJc

—

3cdx—8 and —4aJc+cc?a;+16.

Ans. —dbc^Vilcdx-\-\3,

14.^ From the difference between 8a&— 12ca; and —3ab-{-

4iCx take the sum of bab—lex and ab-\-cx.

Arts. 5ab—lOcx.

15. From the sum of 4aa;''+2ar'+350, 5aa;'+6a;'+250, and

9aa^+ 12a?=*+ 100, take the sum of 6aa;2+9a:'+432, a3^-{-5x^-^

328, and 5aa^+a:3+30. Ans. 6ax''+bx''—90.

84. The minus sign, when placed before the marks of pa-

renthesis which inchide a polynomial, indicates that each

term of the polynomial is to be subtracted, or that the result

obtained by reducing the terms, if they are like quantities,

is to be subtracted. This is done by removing the marks

of parenthesis, and changing the signs of the terms included

between them. Thus:

1. 3a—(3c—a?)=3a—3c+ a?.

2. Sabc— {laic+ 3a?—5)= 3aJc—2aJc—So?+ &= a^c— 3a7 -f- J.

3. 4aa?—3c—14—(aa?+ 7c— 12):=: 4aa:—3c— 14—oa?—7c+
12r=3aa?—lOc—2.
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4. 7abc— 13-\-Sabx—(3alc--U-\-9ahx)=labc-^13-^Sabx-^

3abc-\- 14j— 9aix=4.aic-f 1

—

abx.

85. When a number of terms are introduced within the

marks of parenthesis, to which the minus sign is prefixed,

the signs of the terms should be changed. Thus

:

1. 3ax—12a^3b=3ax—(-\-12a+3b).

2. 3abc—Q-\'4'ab+3x=3abc—{6—^ab^3x),

3. lxy—12ab—4y—S—b=lxy—{nab+^y-{-S-\-b).

86. By the above methods, polynomials may be made to

undergo a variety of transformations, which are sometimes

of great use in algebraic operations.

87. The word ^ddiiion^ as here used, it will be perceived

from the foregoing operations, does not always imply in-

crease or augmentation, nor does the word Subtraction al-

ways imply diminution. Hence the term Reduction has been

sometimes employed to express the operations included un-

der addition and subtraction.

MULTIPLICATION.

88. Multiplication is repeating the multiplicand as many
times as there are units in the multiplier. Thus

:

1. If a is to be multiplied by by it must be taken as many
times as there are units in b, and the expression would

become o x i, or ab,

2. If ab is to be multiplied by erf, it must be taken as many
times as there are units in cd^ and the expression would

become abxcd, or abed. Hence, to multiply letters^ we

write them one after the other^ in alphabetical order.

d> If 4a is to be multiplied by 36, it must be taken as many
times as there are units in 3h. Thus, 4ax3Z*=4'X<2x3

X 6=4 X 3 X a X i— \^ab. Hence, numerical coefficients

must be multiplied together^ and their product prefixed to the

product of the letters.

4. If la" is to be multiplied by 4a', it must be taken as

many times as there are units in 4a', and the work may
be opressed thus: 7a'x4a'=7aax4aaa=7xaax4x
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aaa—lx^Xaaxaaa— ^'^a^—^^a^+^. Hence, if the same

letter is found in both factors, it is multiplied by adding to-

gether its exponents, and their sum is the index of the same

letter in the product.

89. With regard to the signs, it should be observed, that

if the signs of the two factors are like, the sign of the product

will be + j but if their signs are unlike, the sign of the pro-

duct will be — . This rule may be illustrated thus:

1. If +« is to be multiplied by -{-b, the multiplication con-

sists in repeating -\-a as many times as there are units

in -i-b J and, consequently, the product is -\-ab.

2. If —a is to be multiplied by -{-b, the multiplication

consists in repeating —a as many times as there are

units in -\-b ; and, consequently, the product is —ab.

3. If -^a is to be multiplied by —b, the minus multiplier

indicates that the repetitions of -\-a are to be sub-

tracted
i
consequently, the product is — ab.

4. If—a is to be multiplied by—b, the repetitions of—a

will be negative ; but the minus multiplier indicates

that these repetitions are to be subtracted j conse-

quently, the product is -\-ab.

90. It should also be remarked, that if there are more than

two factors, an odd number of negative factors will produce

—, and an even number -\-. Thus, —ax

—

bx—c=—abc j

for —ax—b=-\-ab, and -{-abx—c=—abc. Again, —aX
—bx—ex—d=-\-abcd ; for —ax—h=-]-ab, and -\-abx—c

=—abc, and —abcx—d—-\-abcd.

91. The classification of quantities into monomials and

polynomials suggests three cases in multiplication, viz.

:

When the factors are both monomials ; when one is a poly-

nomial and the other a monomial j and when both are poly-

nomials.

CASE I.

92. In this case the factors are monomials, and the signs

are like or unlike.
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RULE.

1. Multiply together the numejncal coefficients of the facUrrs.

2. To the product of the coefficients annex the product of the

letters^ observing that if a letter is contained in both the multl-

plican(t and multiplier^ it will be affected mith an exponent in

the product equal to the sum of its exponents in the factors.

3. Prefix to the product the sign required by the principle

that like signs produce pluSy and unlike signs minus.

JVote.—For an illustration of the principles Df this rule,

see Arts. 88 and 89.

EXAMPLES.

(1.) (2.) (3.) (4.)

Multiply lOa^bx — laxyz 12t/m'»V —l^a'bc'd'i^

By 3a&V 3abcx — Sd^fmn — Sabx

Product lo^l^' ^2Wbcx'yz —96d]fm'n'x* +39o'^Vrf*x'

(5) (6) (7)

Multiply Sa*h'<^d^a^y* — HoVyz* — ^Sa^z
By la'bc'd'xY 12 — l^a'b'cdJ'xyz^

Product 36a'6Vc/Vy' —204aVyz* +336a'b'cd'xy'2^

8. Multiply lla^bcdhy 4<a^b*cx, jJns. Ua'b'c^dx,

9. Multiply iSamxy by 6anxz. Jins. lOSa^mnx'yz.

10. Multiply ^eahdJ'y by —2ac'df. Ans. —192aVciy.

11. Multiply —31abcd by babcx. ^ns. —IGOa^^^Vt/x.

12. Multiply — 12a6 by —U^ab\ Ans. +1728a*^»*.

13. Multiply 6o*i' by Vlc^xy, and that product by 2oar'/.

Ans. 144a«&»a?y.

14. Multiply Wbc by 3aZ>V, and that product by —1c?b(?.

Ans. —48a«i>V.

15. Multiply —la^x^f by ^ac^xf, and the product by —4a-

xf. Ans. +64aVy'.

16. Multiply — lOJc* by —3^>*cV, and that product by

—4tVxy. Ans. —120Z;'cVy.

17. Multiply the product of ISr'y and 5a:^y- by the product

of xY and 3xy. Ans. 270a?"y\

18. Multiply IZa'Vcd' by 10a«ft»a:.

E
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19. Multiply ^la'b'c'd'x by —12adnxK
20. Multiply —16aV by —16.
21. Multiply 6ada by 3a, and that product by 12a^JV.

22. Multiply —lax by ISaix, and that product by — 12

a'ccy,

23. Multiply —6c^x'z' by — 12a='a?, and that product by

—2ax'z\

24. Multiply the product of Kax and 3axz by the product

of 8ak^and 2aV/.

25. Multiply the product of ISaz and 2a^a? by the product

of 6aa? and — da'^y^z'^,

26. Multiply the product of

—

Sax and — 12aa? by the pro-

duct of—4<ax and Sax.

27. Multiply Sahcd by 12aV, and that product by —Sa^b^

c^dx.

28. Multiply the product of —Sahx and 4<a^xz by the pro-

duct of 6z and lla^lfx^z'^.

29. Multiply lla^d' by—SaV*, and that product by lWd\
30. Multiply the product of —ISahH' and —12aV(^V by

the product of —Sa'c'd'xY and —7a'cMVyV.

CASE II.

93. In this case the multiplicand is a polynomial and the

multiplier a monomial.

RULE.

1. Multiply the letters and coefficients of each term of the

multiplicand by the letters and coefficients of the multiplier,

2. Prefix to each term of the product the sign required by the

principle that like signs produce plus^ and unlike signs minus.

J^ote.—The simple principle on which this rule rests is, that

the sum of all the units in the multiplicand is to be taken as

many times as there are units in the multiplier. Thus, if

a-\-b is to be multiplied by c, it is evident that both a and h

must be taken as many times as there are units in c ; hence,

{a-\-b)xc—ac-\-bc.
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EXAMPLES.

(1)

Multiply ^ah+cd
By Sac

Product 12a'bc-\-3ac'd

(3)

Multiply a-{-3b—2c

By —3bx

Product —3abx— 9b'^x-{-6bcx

(5)

Multiply 3a^xY—l-\-a

By 5(^xy

Product

(2)

6abd

l^a'bd—lSab'd

(4)

2b—la—

3

4<ab

8ai^—2Sa^b—12ab

(6)

—12a''bx'—4fbc'

— 3a

36a'bx'-\-12abc^15aVy'

—

oa^xy -f 6a*xy

7. Multiply lla*Z>c'—ISxy by 3ax,

Ans. 33a%c^x—3^a:^y,

8._ Multiply 42c^— 1 by —4. .y?;w. —168c^+4.

9. Multiply —30a'fta?V+ 13 by —So*.

^715. +150a55a;2y—65a^

10. Multiply the product of a-\-b and 3c by 8ax.

.^?w. 24a^ca:+24a&ca7.

11. Multiply the product of 2a-\-3b—4c and —2a by

%abdx. Am. —32o?bdx—^>'^a^b^dx-\-^^>a%cdx,

12. Multiply the sum of 3aJH- 10 and a2>—8 by 6aa?.

Ans. 24a'*a?4-12aa?.

13. Multiply the sum of 12aJx

—

%ad—3b and %abx—ad-\-b

by 3a. Arts. 60a''bx—27a'd—6ab.

14. Multiply the difference between 12a

—

Ibdx and 8a+
bdx by 6abdx. Ans. 2Wbdx—4,Sab^<Px',

15. Muhiply the sum of 16—3y+12k and y+10—bd by

2abdm. Ans. 52abam—^abdmy-\-24fab^cdm—2ab^^m.

16. Multiply 20a'^»V/—l+17aJy4-3x2 by —^a'h^<^d\

Ans, —180a'iVc/Vy+ 9a<J2c^J^— 153a'*6V(^*y—

^la'b^c'd'xz.

CASE lU.

94. In this case the multiplicand and multiplier are both

polynomials.
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RULE.

1 Multiply the letters and coefficients of each term of the

multiplicand by the letters and coefficients of each term of the

multiplier,

2. Prefix to each term of the product the sign required by the

principle that like signs produce plus, and unlike .sig?is minus.

Jiote 1.—The principle on which this rule is founded is,

that in multiplication the sum of the units in the multipli-

cand is to be taken as many times as is expressed by the

sum of the units in the compound multiplier. Thus, if a-{-h

is to be multiplied by c-\-d, it is evident that a-\-b is to be

repeated as many times as there are units in c-{-d ; hence,

since c-\-d cannot be reduced te a monomial, we repeat the

multiplicand c times, and then d times, and then take the

sum of the repetitions. Thus, a~\-b repeated c times gives

ac-}-bc, and a-\-b repeated d times gives ad-\-bd ; and the

sum of the repetitions is ac-\-bc-\-ad-^bd.

Jfote 2.—Like terms in the product should be placed un-

der each other, and the product reduced to its simplest form.

(1)

ultiply 2a +3&

Y a-\- b

EXAMPLES.

6a?y

3ax

(2)

—2^ <

—^d

2a' -f- 3ab \^ax^y—Qaxz—3Qdxy+ IQdz

2aZ»+3&2

Product 2a2+5a&+362

(3)

Multiply a-\-b +c
By a— b—c

a^^ah-\-ac

^ah —5'— be

—ac — he—(?

Product a^ ^j^^^lbc—c'
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(4)

Multiply Sab .— Vy—<d
By 6a* — ^h^y-\-cd

ISa^l^'—eab^y—eabcd

—6aPy -\-2b*y-\r2cb^dy

+ 3abcd — cVdy—c^d}

Product \Sa}y^l1ab^y—Zabcd+^b*y^ cb^dy—c^<j^

5. Multiply &+C+2 by J+c+3.
Jlns. 62+2Jc+5J4-c*+5cH-6.

6. Multiply 2a+3b-\-c by ia+c+l.

^ns. 8a"4-12aft+6ac-f3Jc+c*+2a4-3&+c.

7. Multiply a^+ft^ by a+b, Jhis. cr'+ai'+a^ft+J*.

8. Multiply m+^bc+ld" by 3i«+2c*.

./fns. 9J«+15J'c+27^c2-f 10J<r»+14c\

9. Multiply a-f-^> by a—b, ^ns. a^—V,

10. Multiply 2a—i by 3a'— 1. .^w*. 6a»—3a'fr—2a+J.

11. Multiply 3ai*—6 by a+4.

Ans. Sa^J'-6a-f-12a&«—24.

12. Multiply 6a4-46 by 3a—2Z». Ans, 18a«—86«.

13. Multiply 7aZ>c^+3xy+l by %a%K

Ans. b^a^'c^ -}- 24a'^&'a:y+ 8a»**.

14. Multiply 4a'ftr'+ Zed by 3ctir, and that product by 4a

-f*. Ans. 48a'k(ir*-f 36ac'(/2a?+ na^bhdx'-\-Uc^d'x.

15. Multiply a-\-b-\-c by 8aZ>, and that product by a-\-b.

Ana. 8ff'64- 16a«6'+8a-6c+ 8a6'-f-8a6»c.

16. Multiply 2a4-46 by 2a—46. Ans. ^a^—\U\

17. Multiply ar'+x^y-f-xy^+y' by x—y. Ans. x*—y*.

18. Multiply x^-faryH-y^ by x^—<sy-\-y^' Ans, x*-^f-{-y*.

19. Multiply a:y+l by 3a-f-*, and that product by 4c.

Ans. 12aci'y-|-12ac-f-46ca;y-f-46c.

20. Multiply 3b-\-2x-^h by 3ax6x2cx2x.
Ans. S6ab''cx+ 24aica:'+

1

2abchx.

21. Multiply 3j:»+2a?Y-t-3y' by 2x'—Sr^y^+S/.

Ans. ex"—5xy'+ 6x»y3—6x^*4- ISx^y'+xy-j- 15y".

22. Multiply a'^^b^-^-x'—ab—ax—bx by a-f 6+a:.

Ans. a'—3a*a?+6'4-a?».
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23. Multiply a?*+a:y+y^ by x'—y'. Ans. x^—y\

24. Multiply together a-{-b, a^-^ab-\-h^, a—b, and a'—ab^
b\ Ans. a'—b'.

95. For many purposes, it is sufficient to indicate the mul-

tiplication of polynomials, as {a-{-b)x(a-\-b-\-c)
',
and when

the multiplication is performed, the expression is said to be

expanded.

96. As the multiplier merely expresses the number of

times the multiplicand is to be repeated, it is always con-

sidered a number.

97. The multiplicand may be either a quantity or a num-

ber ; and, since repeating a quantity cannot change its na-

ture, the product will be of the same nature as the multipli-

cand.

98. We sometimes speak of multiplying dollars by yards

or pounds ; but this language, if construed literally, is absurd.

To obtain the cost of a given number of articles, we repeat

the cost of one article as many times as there are articles

purchased.

99. If the multiplier is a unit, the product will be equal to

the multiplicand ; if it is greater than a unit, the product

will be greater than the multiplicand ; but if it is less than

a unit, the product will be less than the multiplicand. And,

in general, with this same multiplicand, the product de-

creases as the multiplier decreases ; and if the multiplier be

reduced to 0, the product is 0. Hence, if enters as a fac-

tor into any quantity whatever, the value of the expression

becomes 0.

DIVISION.

100: Division is finding a quotient which, being multiplied

into the divisor, will produce the dividend. It is the con-

verse of multiplication, the product and one of the factors

being given to find the other factor.

101. It is evident, from the nature of division, that a fac-

tor equal to the divisor must be rejected from the dividend
;
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or, the coefficient of the dividend must be divided by the

coefficient of the divisor, and a factor equal to the literal

part of the divisor rejected from the literal part of the divi-

dend. Thus,8aZ»^4ft=:^=2a; for Ux2a^Sab.
102. If the same letter is found in both dividend and divi-

sor, and affected with a greater exponent in the dividend

than in the divisor, the exponent of the quotient will be

that of the dividend diminished by that of the divisor.

Ihus, a/— a"^zaaaaaaa— aaaaa=z—^i^i;^ z=aa=^ar zzzo''^,

103. If the exponent of the divisor is greater than the ex-

ponent of the same letter in the dividend, the exponent of

the quotient will be negative. Thus, a^H-a^=a*~''=:a'l.

If the divisor contains a letter that is not found in the

dividend, the exponent of that letter will be aff^ected with

the opposite sign in the quotient. Thus, a'"-T-J'"=a'"i~"'

j

for a"'6-"*x6"'=a"'6-'"+'"=:a'"6°=a'". (Art. 107.)

104. The same rule is observed with regard to the signs

in division as in multiplication, i. e., like signs produce plus,

and unlike signs minus. Thus,

H-a6-f-4-6= a; for +ax+6=+a6.
-\-ab-r-—b=—a; for

—

aX—b=-\-ab.

—ab—-\-b=—a ; for —ax -\-b=—ab.

—ab-r-—b=-\-a; for -fax

—

b——ab,

105. The operations to be performed in division may also

be conveniently considered in three cases, accordingly as

the quantities are both monomials, or as the dividend is a

polynomial and the divisor a monomial, or as both are poly-

nomials.

CASE I.

106. In this case, the dividend and divisor are both mo-

nomials.

BULE.

1. Divide the coefficient of the dividend by the coefficient of the

divisor.

2. Reject the letters common to both dividend and divisor when

they have the same exponent; but when the exponents are not
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the same^ subtract the exponent of the divisor from that of the

dividend^ and the remainder will be the exponent of that letter in

the quotient.

3. To the above results, annex the letters of the dividend that

are not found in the divisor, and also those of the divisor that

are not found in the dividend, observing that the signs of the ex-

ponents of the latter are to be changed.

4. Prefix to the whole the sign required on the principle thai

like signs produce plus, and unlike signs minus.

EXAMPLES.

(1) (2) (3) (4)

Divide Sa-bd —2Sa'c'dxY ^baW ^Wb&d
By 2a6 Ic^cHxY 5«'^ —36

Quotient ^ad — ^xy la~^b~^ — ^a^bc^d

5. Divide na'b^x by Zab\ Ans. Ubx.

6. Divide 48a''cV^a;V by Sa'd^ar'. Ans. ^ac'dzK

7. Divide 42cfc/a?^ by —ladx. Jins. —6a?^.

8. Divide 12aWc''x by ^a^b'x. Jlns. ^a'bc".

9. Divide 120a:y by —Sa'^y. Jlns. —Ibxy,

10. Divide —846c' by —126c. Jlns. +7c.

11. Divide 256a'6V by 8a^6V. Ans. 32a'b'c-\

12. Divide 56a^6W by SaWdxK Ans. la^bH^x,

13. Divide 90a'6cMa?y by 5a'bc'd'x'y.

Ans. ISa-'c-'d-'x-y,

14. Divide 98a^6^ by —4>9a'bK Ans. —2abK
15. Divide 620j?y by 4^xYz\ Ans. lb5xy'z-\

16. Divide —15a'b' by ba'b'c'd. Ans. —3aWc-'d-\

17. Divide m^a'b-'d' by 12a'6Vc?'. Ans. U4>a-^b'c-^d\

18. Divide 684a?' by — 12a?-^ Ans. —57a?'.

19. Divide 328007^^^ by 4>0xyz\ Ans. 82a7yV.

20. Divide 62a'6' by 31a-'b-^d\ Ans. 2a'b'd-\

21. Divide the product of Sa'bd' and laWdx, by 2Sa'bdx,

Ans. 2aWd^.

22. Divide the product of ^a'b'c'd'x' and —lOabc'd by —2a'

^V. An^. -h25ac^(^V.
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23. Divide the sum of 12a*AV and 8a^6V by the sum of

3a6V+7aZ>V. J^ns. 2a^bc,

24. Divide the difference of 21a'iV(/-V and 15a^b*c^(Px* by

6a'bcdx, JJns. aU'c^da^.

107. It sometimes occurs in the operations of division,

that a letter becomes affected with the exponent 0. We
will, therefore, explain that symbol. Thus, a^-ra'=a*~*=:a°

;

or, again, a"'-ra"*=a'"^^=a° j but ^=1, and °m=lj there-

fore, since a may represent any quantity whatever, and m
any exponent whatever, every quantity affected with the ex-

ponent is equal to 1.

This will also explain why a'^^h'"—arh-'^ (Art. 103) j for,

multiplying the divisor and quotient together, &"*xa'"i~'"=

CASE II.

108. In this case the dividend is a nolynomial and the

divisor a monomial.

KULE.

1. Divide each term of the dividend by the divisor^ and the re-

sulting quantitieSy connected by their proper signs, will be the

quotient.

JVote.—That each term of the dividend should be divided

by the divisor, is evident from the fact that when a polyno-

mial is multiplied by a monomial factor, that factor enters

into every term of the polynomial. Thus, (a-^b-\-c)xd=

ad+bd+cd; hence, (ac/+W+c(f)^c/-'5^±^:^^+?+?=:a-f

i+c.

EXAMPLES.

(1) (2) (3)

Divide 2ab+6bc 12a?'y4-39aV/ 42aVx+ ISflWo?'

By 2b 3x'y —Qac'x

Quotient a -{-3c 4 4.13ay —la' — 3Wo?*

(4) (5) (6)

Divide 12a'b'c—21a''b'c* lDaxy-{.12cd 9aWx—3abc-

By 3abc' 3 3ab(^

Quotient ^-^bc-'—lb'c' 5axy+^cd 3aJVx—

1

F
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7. Divide lUd'b^c'^Sc^b'c'' by 8a'/>V. ^ns. 9abc—(^,

8. Divide 35dm-\-Udx by Id. Jlns. ^m-\-1x,

9. Divide 4aa:y—4a+16ac? by 4«. Ans, a?y— l4-4c?.

10. Divide 3aa:='+6:c'+3aa;-15a? by 3x.

Ans. 007^4- 2a:+a— 5.

11. Divide 3a'bc-\-l2abx—3a% by 3aJ. c/^7^.s. c+A>x—a,

12. Divide 25a^j£c— 15axa;^4-5aJc by — 5aa:.

Ans. —bab-\-3acx—bcx~\

13. Divide 20ah^+15ab'+10ab-^5a hy 5a.

^?i5. 4&^+3'^+2S+l.

14. Divide the product of 9a%^-\-la'x' and 4aVJ- by 2a^b.

Ans. lSa^c''d'-{-Ud'b~'c'd'x'.

15. Divide the product of 12a'^^a;='+3Ja:' and 8a:' by 24<bx\

Ans. 4>a^x^-\-x^.

16. Divide the product of Gaxy-^-lc^bc^dx and 6x'^-\-4>'if by

2aa?. Jgns. lSx'y+21a^c'dx^-{-12y'-{Ua^bc'df,

CASE III.

109. In this case the dividend and divisor are both poly-

nomials.

RULE.

1. Arrange the terms of the dividend, and also those of the

divisor, with reference to the power of some letter, so that its ea?-

ponents shall diminish from left to right.

2. Divide the first term of the dividend by the first term of the

divisor ; the result is the first term of the quotient.

3. Multiply the whole divisor ly this term, and subtract the

productfrom the dividend ; the remainder will form a new divi-

dend.

4. Divide the first term of this new dividend by the first term

of the divisor ; the result is the - second term of the quotient.

Multiply the divisor by this term, and subtract as before.

5. Proceed in this manner till the dividend has been exhausted,

or till no term of the remainder is divisible by the first term of

the divisor.

JVote 1.—In applying the above rule, we find, successively,

how often the divisor is contained in parts of the dividend,

for the reason that, as the dividend is made up of all its parts.
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the divisor is contained in the whole as often as it is con-

tained in all its parts.

JVb/e 2.—If the first term of the dividend is not divisible

by the first term of the divisor, after the terms in each have

been arranged, the division is impossible.

J^ote 3.—If the dividend is exactly divisible by the divi-

sor, the dividend will be completely exhausted, leaving no

remainder. But if it is not exactly divisible, the division

may be continued till the first term of the remainder is not

divisible by the first term of the divisor j the remainder

should then be placed over the divisor so as to form a frac-

tion.

J^ote 4.—It will not in all cases be necessary to bring

down all the terms of the dividend to form the first re-

mainder.

EXAMPLES.

1. Divide a'4-2a6+*' by a-\-b.

Dividend, a'+2oZ>+6'|a-f-6^ Divisor.

a' 4- ab a+^, Quotient.

Proof. (a+6)x(a+6)=a'+2a6+6^

2. Divide 12a'*6*—6a^*'H-8o'6'—4a»6*—22a«i+5a^by 4a«i»-h

5fl*—2a'A.

Dividend arranged. Divisor arranged.

5a^—22a«6+12a^ft»— 6a^y—4a»y+8a'6^|5a^-2(r»6+4fl'y

Sa"'— 2a%-\- 4a'6' Quotient, a'—4>a'b-{-2b^

•—20a«6-h 8aV/— 6a^i»—4aV+8a«6*

—20o^6-h Sab'~'i6a'b'

• -{-lOa^b^-U'b^+Sa'b'

lOa^b^—W'b^+Sa^b'

Proof. (5(1*—20^6+ 4a'i>^) xCo*—4a'JH-4a'J»)=5a'—22a*'6-f
12a^J^—6a*i»—4a'i*4- Sa'b\



44 ELEMENTS OF ALGEBRA. [SECT. U,

3. Divide 0=^— 1 by a— 1.

Dividend. Divisor,

a^—l |g—

1

o'

—

a^ a^+a+1, Quotient.

-fa^—

1

a'^—

a

+a—

1

a—

1

4. Divide a®

—

b^ by a—&.

i-a'b^—a^b'

~\-a'b'—b'

a'h^—d'b^

-{-a'b'—ab'

+ab'—b^
' ab'—b^

5. Divide a^-^-^a'b-^-^ab^-^-b^ by a-{-b. Ans. ct'^^^ab^y",

6. Divide a='+2a'6+2aZ''+Z'=' by c^^ab^bK Ans. a+b,

7. Divide x'—^x'-\-'2nx—rt by a?—3„ Ans. a?2_6a'+9.

8. Divide a?^+y^ by x^y. Ans. x'^—xy+y\

9. Divide 6a=^a?~9aV— a^+4a?* by a^+Sa?^—3aa?.

^7i5. 2x'^-\-3ax—a^.

10. Divide 6aa7+2a?2/

—

Sab—by-\-3ac-{-cy by Sa+y.

11. Divide 2a?^--19a?2+26a?— 16 by a?— 8.

Ans. 2a?'—3a?+2.

12. Divide 3/'+ 1 by y4- 1. ^^^5. y^—f+y^—y+ 1-

13. Divide /—I by y—1. Ans. y'+y'+y'+^+y+l-
14. Divide a?^—a' by x—a. Ans. x+a.
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15. Divide x*—a' by x—a. Jlns: ar*-|-aa?'-fa'x-|-a'.

16. Divide --15a^+ 37a'*c—29a'tir-—206V+44.k(ic—8J^x*

by Sa'—bbc+dx. ^ns. —5a'H-46c—8fir.

17. Divide 3a*—8a^6'4-3aV+56'—36V by a^—^.

Jlns. 3a2— 5d*4-3c».

18. Divide 20a'—41a*6-|-50a='fr^—4.5a-6^H-25a6*— 6/»' by 4a'

—5aZ>4-2A-. ^ns. ba'^A^a^b+bab'—Sb^

19. Divide 9a:«—46x'-f 95x^+150x by x^—4>x—5.

Arts, 9a:*—10x^+5x2— 30a?.

20. Divide 6x*— 96 by 3a:—6. Ans, 2ar'+4x-+8x+16.

21. Divide 4324-1152Z»VH-576iV by 6+126V.

Ans. 72+48^>V.

22. Divide 8aV— 8a''6a?^4-8a''cx^— 11a^^+116-^—11^2 by

o—64-c. ./?»5. 8aV— II62.

23. Divide 6x''—5xy—6xy+6ar'y'+15yx='—9xy +10x^3/*

H- 15y' by 3x»+2xy+ 3/. Am. 2x''—3x '3/-+ 5^.

24. Divide a''+8a'6+28a*'6«+56a'6''+70a*6*+56a^6'+28a»6«

+806'+*' by a*-|-4a'6+6a-6^4-4a6»4-6\

^»5. a*+4a'6+6o^6'+4a6»+6*.

It is sometimes desirable to resolve a polynomial into its

original factors. The principles of division enable us to do

this ; for, having obtained one of the factors by inspection

or trial, the other may be obtained by division. Thus,

1. 4a6c-|-4axy-f 4a6(/=i4a(6c+xy+W).

2. 72a'6+4a6c=4fl6(18a+c).

3. 8a-cx—18acx'+2ac''y—30aVx=2ac(4ax— 9x»+c*y—15

flVx).

4. x'+2axH-a'=(x+a)x(x+a).

5. X*—2ax4-a^=(a:—fl)x(x—a).
6. 42x''y—28x^y =7xy6x-4).
In the multiplication of compound quantities, when the

signs are unlike, some of the terms disappear or are cancel-

led in the product. These terms will reappear in the divis-

ion, so that the quotient frequently contains more terms

than the dividend. Thus,

(a«—«ur+x") X (a+6)=a»+a?».
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But {a'^-\-cc^)-^a+x=za'—ax-]-x\

110. The division of quantities-may sometimes be carried

ad infinitum. In such cases it will be sulSicient to write out

a few of the leading terms. Thus, ,,
'

1
\

l—x
1

—

X l-{-x-{-x''-\-x^j &c.

» -^oc

-{-X—x^

^
+x'

-^x^—x^

111. In multiplication, the multiplier is always considered

a number, but the multiplicand and product may be either

numbers or quantities. In division, we have the product

and either one of the factors to find the other. Hence, the

dividend and divisor may be either numbers or quantities.

112. If the dividend and divisor are both numbers, the

quotient will be a number. Thus, 12-r-4=:3.

113. If the dividend is a quantity and the divisor a num-

ber, the quotient will be a quantity of the same kind as the

dividend. Thus, 12 rods-r4= 3 rods.

114. If the dividend and divisor are both quantities, the

quotient will be a number. Thus, 12 rods-^4 rods— 4.

115. From the nature of division, it is evident that the

value of the quotient depends upon both the divisor and

dividend.

If the dividend be multiplied while the divisor remains

the same, the quotient will be multiplied. Thus, ab-T-b=za;

but multiplying the dividend by m, abm-i-h:^am.

Dividing the dividend, while the divisor remains the same,

divides the quotient. Thus, aim^h=am ; but, dividing the

dividend by m, ah^h=a.

If the divisor be multiplied while the dividend remains
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the same, the quotient will be divided. Thus, abm-rb=am ;

but abm-7-b7n=a.

Dividing the divisor, while the dividend remains the

same, multiplies the quotient. Thus, abm-r-hmziza ; but abm

—b=am.
116. The student will observe that there is a striking re-

semblance between the division of compound numbers in

algebra, and what is termed "long division" in common
arithmetic. But this essential difference should be noted

;

the several terms are so independent of each other, that af-

ter the first term of the quotient has been obtained, and the

first remainder brought down for a new dividend, an en-

tirely new arrangement of the terms, with reference to a

different letter from that first assurfied, may be made in both

the divisor and dividend, and the division completed under

this new arrangement without afl^ecting the value of the

quotient.

SECTION III.

•Algebraic Fractions.

REDUCTION OF ALGEBRAIC FRACTIONS.

117. Algebraic Feactions are perfectly analogous to vul-

gar fractions in common arithmetic. They express a part

or parts of a whole number, or unity.

118. The denominator shows the number of parts into

which the unit is divided j the numerator shows how many

of these parts are taken.

119. Every case in division may be expressed in a frac-

tional form, the dividend being used as the numerator, and

the divisor as the denominator.

120. The denominator and numerator, taken together, are

called terms of the fraction.
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121. A propkJ" fraction is one whose numerator is less than

its denominator. Example,^Zl.
a-\-b

122. An improper fraction is one whose numerator is equal

to, or greater than, its denominator. Example, SjI-.
a— b

123. A mixed number is an integer or whole number con-

nected with a fraction by the sign plus or minus. Exam-

ple,.a+-r
c

124. A compound fraction is the fraction of a fraction, the

simple fractions of which it is composed being connected

by the word of Example, _ of -.

b d

125. The value of a fraction,is the quotient resulting from

the division of the numerator by the denominator. Hence,

if the numerator equal the denominator, the value of the

fraction is a unit ; if the numerator is less than the denomi-

nator, the value is less than a unit j and if the numerator is

greater than the denominator, the value is greater than a

unit.

126. The principles involved in the reduction of Algebraic

Fractions are the same as those applied in arithmetic. It

will, however, be necessary to trace out those operations in

accordance with the method of notation adopted in Algebra.

CASE I.

DISCUSSION OF SIGNS.

127. The sign that is prefixed to the horizontal line drawn

between the numerator and denominator, determines whether

the value of the fraction is to be added or subtracted.

128. A sign prefixed to one of the terms of the numerator

or denominator affects only that term.

129. If the ^\gTi prefixed to the fraction be changed from +
to — or from — to +, the value of the fraction will also

be changed from + to — , or the contrary.

Thus, +

—

—-{-ab^b— a ; but ——=

—

ab~b=— a,
b b
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Again, 4-^t^=(a^-hac)-«=4-ft+c; but-f*±^=-.
a a

((ai-|-ac)-ra)=—(A+c)=—6—c.

And, ^±Z^=(ab-ac)--a=b^c; hut --±I^=^(iab
a a—ac)^a)~—(6—c)=—A-hc.

130. If the sign prefixed to the several terms of the nuvterator

be changed from -f- to — or from — to -|-, the value of the

fraction will be changed accordingly.

Thus, ±^=-f-a5-f-a=:6; but 11^=—a6-^a=-^.
a a

Again, e^±ff=(aA-fac)--a=A+c,- but =±=^=(-afr-
OL a

ac)-r-a=—b—c.

And, ——Z^ =--((a5—ac)H-a)=—(J—c)=

—

h-{-c; but
a

a

131. If the sign prefixed to the several terms of the denomina"

tor be changed from + to — or from — to +» the value

of the fraction will be changed accordingly.

Thus, —=ab-i-a=bi but — =ab-r-—a=—b,
a —a

Again, ±tJ^=b+ci hat'tt^^-b-c.
a —a

a —fl

4-c)=+fr—c.

132. If any two of the above changes are made, the value

of the fraction will not be altered.

1. If the signs before the fraction and also before the

several terms of the numerator be changed from -f- to

— or from — to +» the value of the fraction will re-

main the same.

Thus, ^=&; and -3^=—(—06-r a)=—(—6)=+6.
a a

5 6
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Again, ?*±^=J+c;,and-=:?*=ff=:-(-J_c)=+J
a a

+c.

Also,^^-5-c; and-=±t^=_(-6+c)r=+^^.
a a

2. If the signs before the fraction and before the several

terms of the denominator be changed from + to — or

from — to +, the value of the fraction will remain the

same. ^

.

Thus, ^=h; and—— =—(ab-^—a)=—{—b)= -j-b.

a —a

Again, ^^=h+ci and -?^?-'=-((aJ+«c)-r-a)=
a —a

—(^—b—c)= +b+c.

Also, ~^ =b—c; and

—

^ ^ —

—

((ab—ac)-i-— a)=
a —ct

^(—b-\-c)=:-\-b—C.

3. If the signs before the several terms of both nuiperator

and denominator be changed from + to — or from —
to +, the value of the fraction will remain the same.

Thus, —=J; and =:—ab——a=:-\-b.
a —a

Again, f^±l'=S+c; and Z:Stz^=+b+c.
a —a

Also, ?L-=ff=6-c; and -^+'"==+I>-c.
a —a

133. Hence, to make a negative fraction positive without

altering its value, change the sign before the fraction, and also

before all the terms of the numerator,

rpi a-\-b ,

—a—b
Thus,—f-.=+—-J- ;

c-{-d c-{-a

A , a—b-\-d
,

—

a-\-b—d^
^ ' "SM "^

Sabd
'

Also,~i?^+=:l?=-2.
' 6 6

CASE II.

IS^. To reduce a mixed number to an improper fraction.
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RULE.

1. Make all the fractional parts positive,

2. Multiply the quantity to which the fraction is annexed^ by

the denominator of the fraction, and connect the product^ by its

proper sign, with the numerator.

3. Under this result write the denominator.

EXAMPLES.

1. Reduce ^o'x-f—i^ to an improper fraction.
^ab

^^ Sa'bx-hSa^-i-bx

^ab

2. Reduce 3a+—21— to an improper fraction.

Ans.
"^-3aa:+x»

3a"—a?

3. Reduce 2x+y— =L to an improper fraction.
2x—

y

Ans.
2a?—

^

4. Reduce a—b——-— to an improper fraction.

5. Reduce 8

—

b— to an improper fraction.

Ans.
5Q-6^-«

6

6. Reduce 3a+9— ^ — to an improper fraction.
3+a

3+a

CASE m.

135. To reduce an improper fraction to a whole or a

mixed number.

RTTLE.

1. Divide the numerator by the denominator; the quotient will

be the integral part.
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2. If there, he a remainder^ write the divisor under it, and con'

necty by its proper sign, the fraction so formed to the integral part,

EXAMPLES.

1. Keduce to a whole quantity.

Ans. 5a^—3a^x.

2. Reduce ^ " ^
"*"

to a mixed quantity.
a-\-b

Ans. a-\-h
a-^-h

3 Reduce 1^^^+^^!^!=:^ to a mixed quantity.
4a6

Ans. c-f2a6^—??.^
26

4. Reduce ^^^^+^^'~"^
to a mixed quantity.

^ws. 2a+1——=•

2jc*

5. Reduce to a mixed quantity.
ct—ax -{-or

Ans. a--f-aa;—— 1 -.

ce-—aaj-f-ar

6. Reduce to a whole quantity.
a—

Ans.(^-\-ab+ i^,

7. Reduce" — to a ftiixed quantity.
a^—ab^

Ans. a'+b'—
^"'^^

^

8. Reduce
^"'^~^^^'^'

^ to a mixed quantity.
2a^ic^

a^ X aV
CASE IV.

136. To find the ^eatest common divisor of two numbers.

In order to obtain a general rule for finding the greatest

common divisor, we must observe

:
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1. If two numbers are respectively divisible by a third,

their sum or difference will also be divisible by the same

number. Thus, if a and 6 are each divisible by c, a 4-6 and

a—b will also be divisible by c; for, if c is contained in

a eight times and in b twice, in a-\-b it will be contained

ten times, and in a—b six times.

2. If any number is divisible by another, every multiple

of that number will also be divisible by the other. Thus,

if a is perfectly divisible by b, 2a, 3a, 4a, or ma will also

be divisible by b.

3. Hence, if t\yo numbers are divisible by a third, the dif-

ference between the larger and any multiple of the

smaller of these numbers must also be divisible by that

third number. Thus, if c is contained in a eight times

and in b twice, it will be contained in 3b six times, and

in a— 3b twice.

4. Also, if the larger of two numbers having a common
divisor is divided by the smaller, the remainder will be

divisible by the common divisor.

137. From the preceding principles we deduce the follow-

ing general rule for finding the greatest common measure.

BULB.

1. Divide one of thk given numbers by the other.

2. If there be a remainder, divide the first divisor by this re-

mainder,

3. Continue to divide in the same manner till there is no re-

mainder ; the last divisor will be the greatest common measure.

Jfote 1.—If, in the course of the reduction, one factor is

found to be common to all the terms of one of the quanti-

ties and not of the other, this factor may be cancelled ; for,

since only one of the numbers is divisible by it, it cannot be

a factor of the common divisor.

J^ote 2.—For a like reason, the dividend may be multi-

plied by a factor which does not contain a measure of the

divisor.
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EXABIPLES.

1. Find the greatest common divisor of d^—a^x-^-daa^—
3af^ and a^—5aa;+4a;2.

Finst Division,

4>a^x— aa^— 3a^

Wx—20ax'-i-16x''

Dividing by 19a;') 19ax^—19x'

a — X

Second Division*

a^—6ax-{-4>x^ \a— x

a^— ax a—4<a?

—4!ax-\-4>x^

—4aa:+4a?^

Hence, the greatest common divisor is a—x.

2. Find the greatest common divisor of a^—ab^ and c^-{-

2ab-\-b\

Dividing a^—a¥ by a, we obtain a^—&^.

First Division.

a^+2ab+ b' \a'-^b^

a' — b' 1

Dividing by 2^') 2ab-i-2b^

a -\- b

Second Division*

a^—b' \a~{-b

a'^ab a—b

—ab—b^
—ab—b^

Hence, the greatest common divisor is a-{-h.
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3. Find the greatest common divisor of a*—cc*' and 0*4-

c^x—ax^—x^.

First Division,

a*—X* \a^-{-a^x—aa^—a?

o^-\-a'x—a^x^—axr^ a— x

—a'x+aV-l-ax*— ap*

—a^x—aV-|-ar''+ x*

Dividing by 2x^) 2aV —2a?*

Second Division,

{^-{-a'x—ax'—sc' |a^—

^

fl* —ox* a -f-op

a^x —X*

0*0? —x^

Hence, the greatest common divisor is a^

4. Find the greatest common divisor of a*—b* and o*—ft*.

First Division.

a^— b'

a'—ah'

\a^-lP

a

a -b
Second Division.

a»—a-'ft (y-^ab^b^

a'b^ab'

ab'^y^

ah'—IP

Hence, the greatest common divisor is a—b.
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5. Find the greatest common measure 6( 3a'*

—

6a^b-\-5a%^

—6ab'+2b' and 6a'-{-8a'b—llab'-\-2b\

First Division.

Multiplying by 2,

3a*— 5a^64- oa^b^— 5aZ>'+ m
Qa*—10a'b-\-10aW—10ab^-{- 4Z>''| 6a^4- Sa^b—Uab^+ 2b^

6a*+ Sa'b~na'b'+ 2ab^ a— 3b

— lSa'b-^21a%^—12ab''-{- 4M
—18a'b—24>aW+33ab^— 66*

Dividing by 5Z>2) 45a'^>'—45a6^+ 106*

9^2 __ 9^j ^. 262

Second Division.

Multiplying by 3, 6a=^+8a'6— lla62+ 26=

18a='+24a^6— 33a62+ 66^

ISa''— 18a'64- 4a62

da"— 9a6+262

2a +146

Multiplying by 3, 42a^6— 37a6^4- ^^

126a^6—llla62+186='

1260^6— 126a62 4-286'*

Dividing by 56^) 15a6^— 10^ N

3a —. 2^

Third Division.

9a*—9a6+262|3a—26 .^

9a^—6a6 3a—

6

—3a6+262

— 3a6+262

rience, the greatest common divisor is 3a—26.

6. Find the greatest common divisor -of a*—6* and a*—a*6

—06^+6^ Jlns. a^—l^.
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7. Find the greatest common divisor of Scr*

—

Sa^x+as?—
X* and W

—

5ax-\-x^. Ans. a—x,

8. Find the greatest common divisor oiW—2a'—3a+l
and 3a'—2a— 1. *^ns. a— 1.

9. Find the greatest common divisor of 0^+90^4-270

—

98 and o»-|- 12o—28. Ans, ar-2.

10. Find the greatest common divisor of 36o'5'—18a'J*

—

27o*^>"+9o*6* and '21a'b^—lSa*b*—9a'lf'.

Ans. 9o*^>"—9o'6«.

138. The greatest common divisor of more, than two num-

bers may be obtained by finding, in the first place, the

greatest common divisor of two of them, and then of that

divisor and the third, and so on. The last divisor thus

found will be the greatest common divisor of all the quan-

tities.

EXAJIPLE.

Find the greatest common divisor of o*—J*, a'+2a'J4-2a6^

+ &», and a*^a^b'+b\

First Division,

o'+2o*&-f 2a^»»+ 6'
• |o^—

y

a" — &» 1

2J). 2o'6+2aA«-f2ft*

a* -\- ab-{- l^

Second Division,

o'+a'J+o^ o— 6

t^b—ab^—h'

Hence, the greatest common divisor of the first two num-

bers is a*-{-ab-\-b^,

H
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Third Division.

—a^b+¥
—a^b—a'b^—aW

aW+aW-\-b''

a^^J^ab^-^b^

Hence, the greatest common divisor of the three num-

bers is a^-\-ab-\-b^.

CASE V.

139. To reduce a fraction to its lowest terms.

RULE.

Divide the two terms of the fraction by their greatest common

divisor.

JsTote.—To show that the value of the fraction will not be

altered by the operation indicated in the preceding rule, we
will demonstjate the following theorem

:

Theor. If both terms of a fraction be divided by the same

quantity^ its value will not be altered.

Let aim and am represent the numerator and denominator

of an algebraic fraction of any assignable value, m repre-

senting any whole or fractional number whatever

:

Then the fraction ^!L^—dbm^am'—b.
am

Dividing both terms of the fraction by the indefinite num-

ber w, and reducing ——ab-^a—h,
a

Hence (by Ax. 2), ^--=.— ', which was to be demon-
am a

strated.

EXAMPLES.

1. Reduce _-— to its lowest terms.
Viiab
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•

The greatest common divisor is 6a; hence,
^^

\%ab

-———1-^=-—, which is the simplest fdrm of the fraction.
18aZ>~6a 36

^

2. Reduce ill^ to its lowest terms. *dns. ?^
2\aa* 3

3. Reduce ''"^^^'-'*°'^'f
+^'''^^

to its lowest terms.

The greatest common divisor is 7a'6V. Ans. _^Z1 Jl_.

4>. Keduce -— __ to its lowest terms.

Of, 5
The greatest common divisor is 9aa:. Arts,

^

5. Reduce
5«^^^4- lOa^ar^

^^ j^^ 1^^^^^ ^^^^^^
aV+2aV

The greatest common divisor is a*a?*+2aj:*. Atis. —

.

a

«' 1? ^,««^*—Sax'—8aV4- 180*0?—8aV . ,

6. Reduce ——L to its lowest terms.
ar*—aj^—8a«x-f-6a»

The greatest common divisor is 3?-\-^lax—2a'.

X—3a

to its loTvi^st tftrms.
2i'+3a^>-}-a»

p» Ti 3 2a&'—a'J—a*
, . i

7. Reduce ——— to its lowest terms.

Am, ±Z±,
6+a

b. Reduce ! to its lowest terms.
6aj7—8a

2

9. Reduce —^— to its lowest terms. Arts, ^
.

a*+i* 1

10. Reduce
^^+2aV+2a^+a:^

^^ .^^ j^^^^^ ^^^^^

5a*+5a'a?
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CASE VI.

140. To find the least common multiple of two or more

numbers.

The least common multiple of two or more numbers is the

least number which can be divided by each of them without

a remainder. The reason for the foUoAving rule will be suf-

ficiently obvious without farther illustration.

RULE.

1. Resolve the numbers into their prime factors.

2. Select all the different factors which occur^ observing^ when

the same factor has different powers, to take the highest power.

3. Multiply together the factors thus selected, and their pro-

duct will be the least common multiple.

\ EXAMPLES.

1. Find the least common multiple of Sa^cc^y, l^a^b^x^ and

IQa^'^cx.

Resolving them into their prime factors,

8aVy= 2^* X a" X 0?^ X y
* na%'x=2'xa'xx xb^X^

16aWcx=2'Xa'xx xb^XC
The different factors are 2", a*, x^, y, Z>', 3, and c.

Hence, the least common multiple is 2''x3xa''x2>*xcx

x^'Xy—4fSa'^b^cx'^y.

2. Find the least common multiple of 12a^J^, IGa'^bc^, and

24a. Jlns. 48a^JV.

3. Find the least common multiple of Sa^b, 5a, 7a^c, 12a',

15a^ ISa^Jc, and 35a*Z'V. Jlns. 1260a«JV.

4. Find the least common multiple of 12a''y+ 12a^by, Gce^i^-^

na'bf^-\-6abY, and 4ay.

Resolving the numbers into their prime factors,

12a=y4-12a% =12aya+Z»)=2'x3xa=^xy X(a-\-h)

6ay+ l^a'hy^+GabY= Qay\a^-\-

%ib-^¥)

4aY =2'X a^xy'

The different factors are 2^ 3, a^, /, and {a+bf.

t=2 x3xa xy^X(a+hY
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Hence, the least common multiple is 2*x3xa^Xy'x(a-h

bY=l'2aY{a+ by.

5. Find the least common multiple of a*—J*, a+J, and

6. Find the least common multiple of a-f ^> ^—^> or-\-ah-\-

^, and a»- ah-\-h^, Ans, a^—b\

CASE VII.

141. To reduce fractions to equivalent ones having a com-

mon denominator.

RULE.

1. Multiply each numerator into all the denominators^ except

its own^ for the new numerators.

2. Multiply all the denominators together for the common cfe-

nominator. ^

J^ote 1.—It will be perceived that, by the operations indi-

cated in the preceding rule, the terms of each fraction are,

in effect, multiplied by the product of the othfer denominators,

i. e., the numerator and denominator of each fraction are

multiplied by the same number. To show that the value of

the fractions is not altered by this transformation, it is only

necessary to demonstrate the following theorem :

Theor. If both terms of a fraction be multiplied by the same

number^ the value will not be altered.

Let ab and a represent the numerator and denominator

of an algebraic fraction of any assignable quantity :

Then the fraction —=iab-^a=zb.
a

Let m represent any whole or fractional number what-

ever ; then multiplying the terms of the fraction by fw, we

have ^—=abm-7-am=b.
am

Hence, since ^=b and ^=i (by Ax. 2), ^=^,
a am a am

which was to be demonstrated.
'

Jfote 2.~Mixed numbers should be reduced to improper

6
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fractions, and'all the fractions should be made positive be-

fore they are reduced to a common denominator.

JVb^e 3.—Whole numbers or integers can be put under

the form of a fraction by writing 1 for a denominator un-

der them, and then be reduced to a common denominator

with fractions.

EXAMPLES.

1. Reduce -, -, and — to equivalent fractions, having a
b d y '

common denominator.

axdxy—ady^ first numerator.

cxlxy—hcy^ second numerator.

xxhxd—hdx, third numerator.

bxdxy=^hdy, the common denominator.

Hence, the values of the fractions are —^^ —^, and—

.

bdy bdy bdy

2. Reduce — , -—, and — to equivalent fractions, having a

common denominator, ^ns. i, , and ^.
l^cxy llcxy \2cxy

3. Reduce — ,—, and __ to equivalent fractions having a
ax 36 7c?

common denominator.

a SUd Ua'dx , Ibabx
Jins. , , and .

2labdx ^labdx 21abdx

4}, Reduce — and to equivalent fractions having a
6b 3c

common denominator. ,dns. and it—

.

15k 156c

5. Reduce -, —I^, and a (or -) to equivalent fractions
b c-\-d 1

having a common denominator.

^ ac-{-ad 3bx—26 . abc-\-abd

bc-\-bd^ bc-\-bd
'

bc-\-bd

6. Reduce
^

, -, and -—J^ to equivalent fractions
4a; 5 c-\-d

having a common denominator.
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J,
25«c4-25af/—5c—5rf 12cxH-12dir , 20&x+ 4aj?y^

20cx-f-20(^ ' 20cx-f20(/a?' 20cx+20^*

7. Reduce —-1- and
"^

to equivalent fractions having
a 3

a common denominator. Ans, —-— and ———

.

3a 3a

8. Reduce , —-, and — to equivalent fractions hav-
76a? a —

5

ing a common denominator.

a 25 ad —I05bcx , 2Sbdx

—^bbdx" —Sbbdx' —Sbbdx
2 I IL2 O IL Z? 2

9. Reduce —l!l-,
, and — to equivalent frac-

2a a—b 2aH-2a6

tions having a common denominator.

Ans
^'—^^^' 12^-fl2a^^

and 1?^—?^

3 -r^ O Oj2 y _j_ 4
10. Reduce and i— to equivalent fractions

4a a-|-a?

having a common denominator.

jj^ 3ax^+3x'—2a—2x ^^^ Soa?^—4.ax+ 16a

4a'+4ax 4a*-f4aa;

142. To reduce fractions to their least common denomi-

nator.

SITLB.

1. Find the least common multiple of all the denominators of
the given fractions, and it will be the least common denominator,

2. Divide the least common denominator by the denominator

of each fraction separately, and multiply the quotient by the re-

spective numerators, and the products will be the numerators of

the fractions required,

EXAMPLES.

1. Reduce —- and ——- to their least common denomi-
Sjt 4aV

nators.

ar« =2»xa«
4flV=2'xa?»xaP



64 ELEMENTS OF ALGEBRA. [sECT. III.

Hence, the least common multiple is 2^x07^X0^=80^.

Then,^^xSa'=:a'xxSa'z=z Sa'x

?.'^'x5a6=2 X6ah=:10ai
4aV

) new numerators.

^;,..^andJ^.
8aV Sa'x'

2. Reduce —-, Jl, and to their least common de-

Qoric ^cLcrxu Sa?^
nommators. Ans. y^^r-.-> tAi and—_-..

8acV' 8acV 8acV

3, Reduce _ -, , and to their least common
a^—or 4a—4a? a-\-x

denominator.

Ans. _i-^_, Mt^, and ?0^^^=20^. -

CASE VIII.

ADDITION OF FRACTIONS.

143. Theor. Iftwofractions have a common denominator^ their

sum will he equal to the sum of their numerators-divided by the

common denominator.

Let — and —, represent two fractions whose common de-
a a

nominator is a ;

rpr am .an am-^an
,

^ a a a

For, '^=m, and 2^=»; therefore, ^+^=m+».
a a a a

But, ^'^~^^'^={am-^an)^a=m-^n ;
a

Hence (by Ax. 2), —+—

=

^^"'"°^
, which was to be de-

ex a a

monstrated.

144. Hence, to add fractions, we obtain the followingf

general
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RULE.

1. Reduce the fractions to equivalerit ones, having a common

denominator ^ and make them all positive.

2. Jldd all the numerators together, and under their sum write

the common denominator.

3. Reduce the resulting fraction to its lowest terms,

EXAMPLES.

1. Add toffether — , —, and —

•

^ 2A'y la

Reducing the fractions to a common denominator^

3^ 2a 3b_l06a' 2Sa'b 30Z>'

b ~b la~10ab lOab TOab

Adding the numerators of the reduced fractions,

lOba' 2Sa'b 30b' _ l05a'-\-2Sa'b-{-30b' ^

lOablOab lOab lO^b
^'

2. Add together ± and ?5±^. ^^ns.
^^±^b±Uc^^hx^ *

2b a\-b 2ab-\-2l^

3. Add together ?^+ \ ^^ and 1 Jlns. 1^±IL^
3 ' 5 ' 7 105

4. Add together ^±?f , tl^', and -t

b3^-\^xy.

5. Add together ^±^ and ?IZ*. ^ns. ^'+^.
a—b + 4 a'—4*

6. Add together ?, ^i^, and ±±=f?.
6 cd bed

Jlns ?!£^.^±i

7. Add together 1^^ and ^. Ans. ?^^.

8. Add together -^ and —, jlns.
°'+^'

.

a-f6 a—b a^—

^

9. Add together _?1, —?, and —1

^«j 5g^— 3/>>'—4qx—4^g
4Mb+W.

I
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10. Add together -, —^2^ , and —?^.
a b—

1

fe+1

ab^

11. Add together 2a+^ and 4^+?^.
5 4

•dns, 6a+

—

'

.

20

12. Add together a—— and b-\- .be
a . 7 . 2abx—Sea?*

be

CASE IX.

SUBTRACTION OF FRACTIONS.

145. Theor. Iftwofractions have a common denominator
f
their

difference is equal to the numerators divided by the common de-

nominator.

Let — and — represent two fractions whose common de-
a a

nominator is a ;

rpi am an am—an
ihen, ———= .

a a a

T^ am J an .i f am an
ror — =m^ and ——n j therefore, ——

—

=m—n.
a a a a

D , am—an / \ •

But, = (am—an)—a—

m

—n,
a

Hence (by Ax. 2), ———=^ ^^, which was to be de-
a a a

monstrated.

146. Hence, to subtract one fraction from another, we
obtain the following general

RULE.

1. Reduce the fractions to equivalent ones, having a common

denominator^ and make them all positive.

2. Subtract the numerator of the fraction to be subtractedfrom

that of the other fraction^ and under their diffei'ence write the

common denominator.
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EXAMPLES.

1. From ?? subtract if.
3b bd

Reducing the fractions to a common denominator, dec.

2a_^c_l0td_12bc_ 10ad—12bc ^^^
3b 5d~lbbd lbbd~ 15W

% From ^J± subtract 1 Jlns,
^^"^^"^^

c y cy

3. From ^1 subtract e!^±^.
lb 3ax

76 3aJ7 ~21aAj? 21aZ»a7 "~ ^labx

4. From ^ subtract ?i±i. wf;w.
^^-^^^

5 x+\ bx+b

5. From subtract . Ans. ^
x—y x-\-y x'—f

6. From ^±? subtract -J_. vfn*. ?JZ±Z%
y x^—

2

a?*y—2y

7. rrom subtract -. Ans.
ax—x^ ax-\-3^ a^—a*

8. From 6a-[.— subtract Sa-\-—, Am. 2a+^^^~^.
0? c ex

9. From 6ot—1^!±1 subtract f7»4-?. ^^. 5m—?2^il.
2 5 10

10. From . subtract

.^;w.
8a*—2a*6^+4a'6»—a6« 6*—4a«

CASE X.

MULTIPLICATION OF FRACTIONS.

147. Theor. Tht 'product of two fractions is equivalent to the

product of the numerators divided by the product of the denomi-

nators.

Let - and _ represent any two fractions

:

Then will ^X^=^'.
b b' bb''
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For, letting v represent the value of tjie first fraction, and

v' the value of the second, we shall have -=v, and - =iV'.
'

b b'

Multiplying the two equalities together (Ax. 5), - X - =v. V.
b b'

Multiplying the equality -=v by b (Ax. 5), a=bv,
b

a'
Multiplying the equality -=iv' hy b' (Ax. 5), a'—b't/.

Multiplying the last two equalities together (Ax. 5), aa'=z

bv .b'v'=bb' xvv'.

lualitv bv bb' (Ax. G\
bb'

Dividing the last equality by bb' (Ax. 6), — =vv\

Hence (by Ax. 2), _x -=^, which was to be demonstra-

ted.

CoROL. The product of any number of fractions is equiva-

lent to the product of the numerators divided by the product

of the denominators

:

ihus, -X — X—=
' b b' b" bb'b'^

148. From the foregoing theorem we infer the following

general rule for the multiplication of fractions.

*i' ' " RULE.

1. Multiply the numerators together for a new numerator, and

the denominators together for a new denominator.

2. Reduce the resulting fraction to its lowest terms.

EXAMPLES.

1 i\/r u- 1 3^2, bah n^^ ^a\bah Ibah
1. Multiply — bv . ^ns. —- x -—-=-——,.

^ ^ 46 ^ Ib'd 46 Wd 2Sb'd

2. Multiply ?^±^ by ^.^ ^ Sax ^ Sdx^

^^^ 3a'+6 2ac^_6ah+2abc^_3a''c-\-bc^

Sax 3dx' 24>adx' ndx'

3a^
3. Muhiply —L— by Jins. -!— .

^ ^ a—1 ^ a+1 a'—l
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'

4. Multiply ?^^ by -J^-. Jim.^^
5. Multiply by —

—

-. Ans. 1.

6. Multiply ±ZI by ^!±f?. wf^. ^'"^
ex c-\-x c^x-i-ca^

7. Multiply —, ^, -, and _i_ together.
m y c n—

1

Ans.
^i''-^^
cmny—cmy

8. Multiply —, — . and^ together. jJns. A.

9. Multiply by —-—-. Ans. ---L-—

.

10. Multiply e!^^^ by -Jl— ^ Jlns.?^±^.

J^ote 1.—Since every integer can be expressed in the form

of a fraction by writing 1 under it for a denominator, it is evi-

dent that an integer, or whole number, may be multiplied

into a fraction by multiplying the numerator of the fraction

by the whole number, while the denominator remains the

same.

mi ^b a^ h ab
Thus, aX_=_x-=—

.

c 1 c c

^ote 2.—If the denominator is divisible by a whole num-

ber, dividing the denominator multiplies the fraction.

Ihus, _xc=-_^=_; for, _xc=_-X-=—=-.
be bc—e b be be 1 be b

CASE XI.

DIVISION OF FRACTIONS.

149. Theor. If one fraction be divided by another fraetion,

the quotient will be equivalent to the product of the fracticmal

dividend multiplied by the fractional divisor inverted.

Let - and ~ represent any two fractions

:

b'

Then will ?-?.'=?*::
b b' ab
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For, letting v represent the value of-, and v' the value of -

;

b h'

Then, -=v and -=:v': and -^-=v-^v'.
b b' ' b '

b'

Multiplying the equality -—V by bb' (Ax. 5), ab'=bb'v.
,

b

Multiplying the equality -^=:v' by bb' (Ax. 5), a'b—bb'v'.

Dividing the former by the latter of the last two equalities,

ab' bb'v

ba' bb'v'
:V-T-V'.

Hence (by Ax. 2), —1-_=__, which was to bedemonstra-
b b' ba'

ted.

150. From the foregoing theorem we infer the following

general rule for the division of one fraction by another.

RULE.

1. Invert the fractional divisor,

2. Then proceed as in multiplication j and the product thus

found will be the quotient required,

EXAMPLES.

1. Divide ?^ by ^.•
46 ^ 6d'

4A" Q^~Tb 5c' 'WJI~TOb?'

2.Divide?^!±l^by5^.

3a^-{-2b_^3a_3a'+ 2b ^5b_ 15a''b-^ 10b'' ^^^
'WTc ' 56 26+c~ 3a 6ab-f3ac~'

3. Divide -^ by -. Jlns. —,
1—a ^ 5 1—a

4. Divide ^-±tl by 1-,
'

Ans, _?^1__.
e—y^ ^ c—b c'-\-bc-hb'

5. Divide -^^-Z^ by «!±^l Ans. ^±l=a^t
a'—2ab-{-b' ^ a—b a a

a r\' 'A 3a

—

3b , 5a— 5b n 3
6. Divide bv . Jins. -.

a-\.d ^ a+d 5
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7. Divide -^ by -Ij. Ant. _, '^ ..

8. Divide 5^ by ^-III. ^n.. 1?^.

9. Divide^ by 5^1^ ^... ^..
3c* ^ 7 • 6c»

10. Divide
2aV-2c^

.
g'+ac+c^

^;*,. 2(a3+c»).

JVo^e 1.—When a fraction is to be divided by a whole

number, or a whole number by a fraction, write the whole

number in the form of a fraction by making its denominator

1, and then proceed as before.

Thus «-c=«-^=^xl=f:
b 1 c be

A«j b a.b_a^c_ac
And, a--= -_= x-=--.

c 1 c 1 ^ b

J^ote 2.—The reciprocal of a fraction is expressed by the

fraction inverted

:

Thus, the reciprocal of J is -, or 1^ ^:
o I b

But, l-r-f!=lx-=-; hence, the reciprocal of - is _.baa b a

^ote 3.— If the numerator or denominator of a fraction

has a rational coefficient, the expression may be reduced to

a simpler form, on the principle that multiplying the denomi-

nator of a fraction has the same effect upon its value as di-

viding the numerator ; and multiplying the numerator has

the same effect as dividing the denominator.

Thus, l.¥=|x«=|.

3a-h2A 3a+26 ^ 3a+2^ 24a-hl66'

q f_^^^__^ d_ad
' yi' d'~i^c~'Tc
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ELEMENTS OF ALGEBRA. [sECT. IV.

SECTION IV.

OF EaUATIONS.

151. An EQUATION is the algebraic expression of two equal

quantities connected by the sign of equality.

152. The monomial or polynomial quantity which is writ-

ten on the left of the sign of equality is called the first mem'

ber ; that which is written on the right, the second member.

An equation, then, is composed of two members j and each

member is composed of one or more terms.

153. The two members of the equation must be composed

of quantities of the same kind ; that is, dollars must be put

equal to dollars, weight equal to weight, &c.

154. Equations are distinguished into different degrees, ac-

cording to the highest power of the unknown quantity. If it

involve only the first power of the unknown quantity, it is

called an equation of the first degree. If the highest power

of the unknown quantity be the second power, it is called an

equation of the second degree ; if it be the third power, an

equation of the third degree, &c.

Thus, x=a is an equation of the first degree.

x^=za )

, _ ^ are equations of the second degree.

o^-\-x^—a> \ are equations of the third degree.

x^-\-3:?-\-x—aj

155. The solution of a problem is the method of discover-

ing, by analysis, the value of the unknown quantity involved

in the conditions of the problem, and consists of two parts.

1. The translation of the problem from common into algebraic

language ; or the expression of its conditions in the form of an

equation by means of algehraic symbols.

2. The reduction of the equation to such a form that the un-
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known quantity may stand ly itself^ and form one member of the

equation^ while the known quantities form the other.

156: No general rule can be given for translating the

problem from common into algebraic language ; only that

the algebraic expression shall exhibit the same relations, and

indicate the same operations as those implied in the original

statement of the problem.

157. Proportions may be converted into equations by taking

the product of the first and fourth terms for one member,

and the product of the second and third for the other. Thus,

if a : 6 : : c : </, converting the proportion into an equation, we

shall have a x d= bxc ; or, if 2 : 4 : : 8 : 16, we shall have 2

x

16=4x8.
158 The reduction of an equation involves the following

general axiom : If equal operations be performed upon equal

quantities, the results will be equal. Hence,

1. If equal quantities be added to both members of an equation^

the equality of the members will not be destroyed.

2. If equal quantities be subtracted from both members of an

equation, the equality will not be destroyed.

3. If both members of an equation be multiplied by the same

number, the equality will not be destroyed.

4. If both members of an equation be divided by the same num-

ber^ the equality will not be destroyed.

5. If both members of an equation be involved to equalpowers

y

the equality will not be destroyed.

6. If equal roots of both members of an equation be taken^ the

equality will not be destroyed.

159. The verification of a problem consists in substituting

the value of the unknown quantity for the unknown quantity

itself in the given equation, and thereby ascertaining whether

it answers the conditions of the problem.

160. Equations are either numerical or literal. Numerical

equations contain numbers only, excepting the unknown

quantity. In literal equations, the given quantities are repre-

sented by letters.

7 K
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EaUATIONS OF THE FIRST DEGREE, INVOLVING ONE
UNKN0V7N aUANTITY.

161. There may be three cases of equations of this nature,

viz. : When the known and unknown quantities are con-

nected by addition or subtraction^ by division^ or by multipli-

cation.

CASE I.

162. In this case the unknown quantity is connected to

known quantities by addition or subtraction.

Ito)

reduce the equation
)

Adding 32 to both ) 9x-32+32=86+32+&..
members

.

)

Subtractinff 8a; from )

, ,, \ f9a?—32+32—8a;=86+ 32+8a;—8a?.
both members \

Cancelling - - 9ir—8x^=86+ 32.

Reducing - - a;=118.

163. These operations will suggest the following general

rule when the unknown and known quantities are connected

by the signs plus or minus.

RULE.

1. Transpose^ so that all the unknown quantities may he in the

first^ and the known in the second member of the equation ; ob-

serving to affect the terms transposed with the contrary sign.

2. Reduce each member to a monomial

EXAMPLES.

1. Reduce the equation 6x—5+3?= 12

—

x-\-lx.

Transposing - 6x-\-x-\-x—1x^12-^5.

Reducing - x=ll.

% Reduce the equation 14—8a:+5= 3a7+28+6a;—2a7—

16a:. ^ns. a;=9.

3. Reduce the equation x—12+7a?—8x=:4—a:+20.
^ns. a:=36.

4. Reduce the equation —6a;—32+1Ox=84+ 3x— 100.

Ans. a;=16.
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5. Reduce the equation 20—18a?-f-4.4.H-x=70— ISx— 5.

Ans. xi=l.

6. Reduce the equation 4x+25-|-3ar=6x-f 80.

Am. a:=55.

CASS n.

164. In this case the unknown and known quantities are

combined by division.

Let it be required to reduce the eqilation ——-=8.

Multiplying both members of the equation by 4, the least

common multiple of the denominators, the equation be-

comes ———=32.
4 2

Reducing the fractions to whole numbers, 3x—2a:=32.

Reducing the terms - - - - a:=32.

165. Hence, to free an equation of fractions, we have the

following general

RULE.

1. Multiply both members of the equation by the least common

multiple of the denominators.

2. Reduce the improper fractions thus produced to whole num-

bers.

3. Transpose and reduce the terms as before.

Kote 1.—Instead of finding the least common multiple of

the denominators, the equation may be multiplied by each

denominator successively.

Kote 2.—When a minus fraction is cleared from its denomina-

tor, the sign before each term of the numerator must be

changed.

EXAMPLES.

1. Reduce the equation 1^—?^-|-2=8.
5 4

The least common multiple of 4 and 5 is 20 ; multiplying

both members by this, the equation becomes

5 4
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Reducing the fractions to whole numbers,

16a?-15x+40=160.

Transposing - - - . iQx—15cT=160—4iO.

Reducing ir=120.

2. Reduce the equation ??—??+?= 11.^
3 4 6

Multiplying both members by 3, 2x—^-\--=33.

Multiplying by 4 - - - Sx—9x-\-2xz=zl32.

Reducing - - - . - a;=132.

CASE III.

166. In this case the kno\X^n and unknown quantities are

combined by multiplication.

Let it be required to reduce the equation —+-=17.
5 4

Clearing of fractions - - - 12a?-|-5T=340.

Reducing the terms - - - 17ir=:34<0.

Dividing the equation by 17 - - 37=20.

167. Hence, if the unknown quantity, after the, equation

has been cleared of fractions and the terms reduced, has a

coefficient, the reduction may be completed by the following

RULE.

Divide both members of the equation by the coefficient of the

unknown quantity.

EXAMPLES.

1. Reduce the equation 13ic+31=&r-|-76.

Transposing - - - - 13^—8a?=76— 31.

Reducing - - - - 5a;=:45.

Dividing by coefficient of a? - x=9,
Q/M

5ii? 3x
2. Reduce the equation —+———=5.

4 3 5

Clearing of fractions 45a?-|-100a;—36a?=300.

Reducing - - - 1090,-300.

•n- 'A- 300 o82Dividmff - - - X—— —Q,^
109 109
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3. Reduce {he equation ^+^+-=12. ^ns. a:=:ll^.

4*. Reduce the equation 12x+_— 1= 16. ^ns. Ify,
At

5. Reduce the equation _—5=~^_ Am. a?=20.
4 3

6. Reduce the equation ^=.?-|-^+10. Am, «=27A.
5 2 3

7. Reduce the equation a?-f—-+^=26. Ans. x—VL

8. Reduce the equation j:4--+—=81. Am, a?=36.
2 4>

9. Reduce the equation a;+a?4-^=100--2?.

Am. x=39.

10. Reduce the equation x+?4-^+^+4-=14'6-
2 4 7 14

.^;i5. a:=56.

168. Combining the principles discussed in the preceding

three cases, we have, for the solution of all equations of the

first degree involving only one unknown quantity, the fol-

lowing general

RULE.

1. Char the equation affractions.

2. Transpose the terms^ so as to bring all the unknown quanti-

ties into the first^ and the known into the second member of the

equation.

3. Reduce each member to a monomial.

4 Divide the equation by the coefficient of the unknown quan-

tity.

JVote 1.—If the unknown quantity in the result is negative,

change the signs of all the terms in the equation.

Thus - - 4a^-5x=9— 12.

Reducing - - — x=—3.
'

Changing the signs a?=3.
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Jfote 2.—To verify the result obtained by the reduction

of an equation, substitute the value obtained for the unknown

quantity in the first equation, and see if it satisfies the con-

ditions. Thus, substituting 3 for x in the equation above,

we have - - 4x3—5x3=9—12.
Multiplying factors 12—15= 9—12.

Reducing - - — 3= -^3.

EXAMPLES.

1. Reduce the equation, a7+_-|-_= 11. Ans. x^Q.

2. Reduce the equation ^x-{-—2——x-\--, Ans. a?=i.
o

3. Reduce the equation IL_— 2=::1. Ans. x=1,

4. Reduce the equation —-^-j-

—

—x-{-2. Ans. a?=4^.
11 o

5. Reduce the equation -+-+-= 94. Ans. a;=120.
3 4 5

6. Reduce the equation —+— =07—20—

-

^
4' 10

Ans. a?=800.

7. Reduce the equation ^^^+2&=.?^±i2.
4 6

Ans.x^^-:^^,
9

8. Reduce the equation 8f+^±l=4+a:—26i.
5

Ans. 07=39.

n -D 1 ^1 ^. 2a7—5
,
19— a? 10a7—7 5

9. Reduce the equation + = —^-.
^

18 3 9 2

Ans. 07=7.

10. Reduce the equation 2o;—?±i+15=l?^±?5
o

Ans. 07=12.

11. Reduce the equation ^II?+?=20—^11^.
^ 2 3 2

Ans. 07=18.
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12, Reduce the equation ?^±5—5=1

^7W.x=.^-"^

13. Reduce the equation _^^lt_=ca?4-4a.

4

2a^3c
14. Reduce the equation Sb-^lax=3x-\-4ic—ex

4c-8i
^ns. x=

7a—3+c

15. Reduce the equation ^—?H-?=20—-.
1/6 9 3 2

^»5. a?=24|t.

J7 . X a?
16. Reduce the equation -+-—_4-a?=2a?—43.

4 5 6

^715. x=60.

17. Reduce the equation 3af+_ _=a7+a.

6-hfr

18. Reduce the equation -+-4--4-?—?=1.
2 3 4 5 6

19. Reduce the equation
3^-3_3x-4^^ 27+4j?

^
4 - 3' ' 9

•^»*. a?=9.

20. Reduce the equation 15^±i5-4=?^Ill?—5.^
3j?+6 x—2

Ans. j:=2.

21. Reduce the equation 1^+^+12a=10—?!::^.

.^,. .._ 115+ 156~180a

23

22. Reduce the equation
31-^

_|,
^5^+8__7x—8^^^

2 13 11

Ans, 07=9.
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23. Reduce the equation
5a?-4_3a:—7^^i_8j:— 1

^
6 10 ^ 3

24. Reduce the equation—I—= +_.
36 5a:—4 4

*dns. a?=8.

25. Reduce the equation !I^±?—8=::?Zll?5f+4.^
3a:—

1

3a:—

1

.>^7i5. a:=:l.

o« T? 1 ^u *• 2a?+l 402—3a: ^ 471—6a?
26. Reduce the equation —— = 9— .^

29 12 2

»dns. x=12.

27. Reduce the equation 15^15+11^21^9^+15^^
28 6a:+ 14 14

j^ns. 07=7.

28. Reduce the equation 1?±^ : 3a:+6 : : 2 : 5.
5

^ns. x=S.

29. Reduce the equation 3a?+25a : 9a?+4Z> : : 4 : 10.

^ns. .^ 250a-16&
^

6

30. Reduce the equation ??±25 . 7_3^ .
. jq : 7.

jlns. a:=||.

31. Reduce the equation
21-3a?_4^+6^g_5^+l,

^
3 9 4

jlns. a:=3.

00 T? J *u .• 6a:+8 5a:+3 27—4a? 3a:+9
32. Reduce the equation 1—

—

!
—= ——-L_.^

11 2 3 2

jSns. x=z6.

33. Reduce the equation a,^^^—9g__5a:+2^g 2a?+5
^ 4 6 " 3

12
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o. T, 1 *u • 7x—8 , 15x-i-8 o 31—

X

34. Keduce the equation -f-
—=6X——-

—

^
11 13 2

Ans. a:=9.

35. Reduce the equation
^"^^

: 1 : : 2a:-f 19 : 3a:--19.
^ 6x—43

^ns. x=8.

36. Reduce the equation 5j:+2!^±^^t^9-f12^-1?.

^715. x= 3.

37. Reduce the equation ^^±^4-^^i^=—-|-3U.^
25 9x-16 5 '^

38. Reduce the equation

^ns, x=:4.

4x—34_258— 5x^69—

X

17~ 3 2

^«^. x=51.

4x—2 2x4-11 7—8x
39. Reduce the equation 2x^

13 5 7

*dns» x=7.

40. Reduce the equation 16x4-5 : ^^±i* : : 36x4- 10 : 1.

^ns. x=5.

PROBLEMS PRODUCING EQUATIONS OF THE FIRST DEGREE, IN-

VOLVING ONLY ONE UNKNOWN QUANTITY.

169. Though no general and definite rule can be given

for the translation of a problem into algebraic language, yet

the following precepts.may be found useful for this purpose.

1. Let X represent the unknown quantity whose value we wish

to determine.

2. Indicate by the aid of algebraic signs the operations that

would be necessary in order to verify the answer were the problem

already solved.

3. The equation or proportion thus formed may be reduced by

the preceding rules.

PROBLEMS.

1. Two men, A and B, trade in company and gain $680,

of which B has 4 times as much as A. What is the share

of each \

L
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Let x= number of dollars in A's share

;

Then 4a7= number of dollars in B's share,

And we shall have the equation a?+4a?=z680.

Reducing terms - - - 5a:=680.

Dividing by coefficient of a? - a?=136, A's share.

And 4a?=::544, B's share.

Verification - - 136+4x136= 680.

2. What number is that, the sum of whose third part and

fourth part is 7

1

Let 0?= the number

:

Then -= one third,

And -=z one fourth,
^

4
X X

And we shall have the equation _-4-_=7.
3 4

Clearing of fractions, 4a7+3a:=84 :

Reducing terms - 7a7i=84:

Dividing by 7 - - a?=:12. jSns,

Verification - i^+l?=4+3=:7.
3 4

3. Divide $5000 between A, B, C, and D in such a man-

ner that A shall have $300 more than B, and B $50 more

than C, and C $|200 more than D. W^hat was the share of

each ]

Let a?= D's share
;

, Then 07+200= C's share;

And a?+250= B's share
;

And a:+550=: A's share.

And we shall have the equation a:+a7+200+a7+250+

a:+550 -1^5000:
.

Transposing - a?+a? + a?+a?=5000—200—250-550;
Reducing - 4a?=4000;

Dividing by 4 - a?=100 \ D's share :

a?+ 200= 1200, C's share :

a?+ 250= 1250, B's share:

, 07+550=1550, A's share.
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Verification, 1000-f- 1000+200+ 1000+250+ 1000+550=
5000.

Or, reducing, 5000=5000.

4. It is required to divide the number 84 into two such

parts that the greater shall be to the less as 8 to 5.

Let x= the greater part,

And 84

—

x= the less part.

And we have the proportion x : 84

—

x : : 8 : 5,

Converting the proportion ) ^x=612—Sx,
'

into an equation )

Transposing - - 5a:+8x=672.

Reducing terms - - 13x=672.

Dividing by 13 - - 0^=51/5, greater part.

84—x=32i^, less part.

5. It is required to divide $972 between A and B in such

a manner that B may have fths as much as A.

Let Xz= A's share,

And ^= B's share,
5

And we shall have the equation j?+— =972.

Clearing of fractions - 5x+4x=4860.
Reducing terms - - 9a?=:4860.

Dividing by 9 - - - a:=540, A's share.

*^=432, B's share.
5

6. A man puts out three fifths of his money at 6 per cent,

and the remainder at 7 per cent., and at the end of the

year receives $4825 interest. How much money had

hel

Let x= the amount

:

3a:
Then —= the amount at 6 per cent,

2xAnd __=r the amount at 7 per cent.,
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And, multiplying each amount by its rate, we shall have

the equation

5 100 5 100

Multiplying factors — + 1^=4825.^^ ° 500^500

Clearing of fractions 18a?4- 14a? =24- 12500

:

Eeducing terms - - 32a?=2412500 : ^

Dividing by 32 - - a7=75390|. ^ns.

7. A can do a piece of work in 8 days,; B can do the same

work in 12 days; in what time will they do it if both

work together X

A will do ith of the work in one day :

B will do yLth of the work in one day

:

Let x=: the time it would take them to do the work

which is represented by 1 :

Then, in x days A will do - of the work,

And in x days B will do — of the work,^
12 '

•

' And we shall have the equation -+—= 1.^ 8^12

Reducing - - - - a:=i:4f. Ans,

8. A gentleman meeting 5 poor persons, distributed $4,50

among them, giving to the second twice, to the third

7 three times, to the fourth four times, and to the fifth

five times as much as to the first. How much did he

. give to each 1 Ans. 30, 60, 90, 120, and 150 cents.

9. A man left $11004 to be divided among his widow, two

sons, and three daughters, in such a manner that the

widow should have twice as much as both the sons, and

each son should have as much as the three daughters.

What was the share of each 1

Widow's share, $6288, )

Each son's share, $1572, \ ^ns.

Each daughter's share, $524. j
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10. What number is that which, being multiplied by 8, the

product increased by 10 times the number, and that

sum divided by 12, the quotient shall be 4 1 »^ns. 2*.

11. A post is \ in the earth, f in the water, and 13 feet

out of the water. What is the length of the post 1

•^716. 35.

12. After paying away ] and 4 of my money, I had $85

left in my purse. How many dollars had I at first \

Jlns. 140.

13. Of a battalion of soldiers.(the officers being included),

I are on duty, ^^ sick, f of the remainder are absent,

and there are 48 officers. What is the number of per-

sons in the battalion 1 ,^7is, 800.

14. In an orchard of fruit-trees, ^ of them bear apples, \

pears,
J
plums: 7 bear peaches, 3 bear cherries, and 2

quinces. How many trees are there 1 ./^n*. 96.

15. A farmer being asked how many sheep he had, an-

swered, he had them in 4 pastures: in the first he had

J of the whole number, in the second i, in the third ^,

and in the fourth he had 18 sheep. How many had he 1

^ns. 72.

16. A and B talking of their ages, A says to B, if ^, i, and

^ of my age be added to my age, and 2 years more,

the sum will be twice my age. What was his age 1

Jlns. 84.

17. The rent of an estate is this year 8 per cent, greater

than it was last. This year it is $1890; what was it

last yearl .Ans. $1750.

18. A capitalist receives a yearly income of $2940
; | of

his money being at 4 per cent, interest, and the re-

mainder at 5 per cent. How much has he at interest!

Ans. $70,000.

19. A cistern, containing 60 gallons of water, has three

unequal cocks for discharging it. The largest will

empty it in 1 hour, the second in 2 hours, and the third

in 3 hours In what time will they empty the cistern

if they all run at once 1 Ans, 32,«j minutes,

8
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20. A farmer wishes to mix 90 bushels of provender, con-

sisting of rye, barley, and oats, so that the mixture may
contain | as much barley as oats, and i as much rye as

barley. How much of each must there be in the mix-

ture %

Ans. 50 bushels of oats^ 30 of barley^ and 10 of rye.

21. A, B, and C trade in company. A puts into their

stock $3 as often as B puts in $7 and C $5. They gain

$960. What is each man's share of the gain '?

Ans. A's $192, B's $448, C's $320.

22. A, B, and C trade in company. A puts in $700, B
$450, and C $950. They gained $420. What was the

share of each %

Ans. A's $140, B's $90, and Cs $190.

23. At a certain election, the whole number of votes was

673. The candidate chosen had a majority of 11. How
many voted for each 1 Ans. One 342, the other 331.

24. On canvassing the votes at a certain election, it was

found that there was no choice : it was also ascertained

that one of the candidates had | of the whole number

of votes, the other | of the whole number, and there

were 45 scattering votes. What was the whole number

of votes 1 Ans. 200.

25. Three men built 780 rods of fence. The first built

9 rods per day, the second 7, the third 5 ; the second

worked three times as many days as the first, and the

third twice as many days as the second. How many

days did each work 1

26. A gentleman bequeathed $65,600 to his wife, two

sons, and three daughters. The wife was to have

$2000 less than the elder son and $3000 more than the

younger son, and the portion of each of the daughters

was $3500 less than that of the younger son. What
was the share of the wife and each son \

$16,350 elder son's share.

$14,350 wife's share. ^^s.

$11,350 younger son's share.

$7,850 each daughter's share.
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27. A man meeting some beggars, gave each of them 4cf.,

and had I6d. left j if he had undertaken to give them

6d. apiece, he would have wanted 12f/. more for that pur-

pose. How many beggars were there, and how many

pence had he 1

28. A boy being sent to market to buy a certain quantity

of meat, found that if he bought beef, which was 4>d. per

pound, he would lay out all the money he was intrust-

ed with ; but if he bought mutton, which was 3^d. per

pound, he would have 2 shillings left. How much meat

was he sent for 1

29. It is required to divide 85 into two such parts that

I of the one added to ^ of the other may make 60.

30. When the price of a bushel of barley wanted but 3d.

to be to the price of a bushel of oats as 8 to 5, four

bushels of barley and 90<i. in money were given for

nine bushels of oats. What was the price of each per

bushel

(

31. A market-woman bought a certain number of eggs at

the rate of 2 for a cent, and an equal number at 3 for a

cent. She sold the whole lot at the rate of 5 for 2 cents,

and lost 4- cents by her trade. How many eggs of each

sort had she 1

'

^tis. 120.

32. The hold of a vessel contained 442 gallons of water,

which was emptied out by two buckets, the greater of

which, holding twice as much as the other, was emp-

tied twice in 3 minutes, but the less 3 times in 2 min-

utes, and the whole time of emptying was 12 minutes.

How much would each bucket contain 1

Ans. 13 and 26.

33. The expense of paving a square court at 50 cents per

square yard, is the same as that of surrounding it with

an iron fence at $1, 75 per foot. How many square feet

does it contain \ Ans. 15,876.

34. Out of a certain sum a man paid his creditors $96

;

half of the remainder he lent a friend ; he then spent
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one fifth of what remained, and after all these deduc-

tions had one tenth of his money left. How much had

he at -first 1 ^ns. $128.

35. There are two numbers whose sum is a sixth part of

their product, and the greater is to the less as 3 to 2.

What are the numbers % Arts, 10 and 15.

36. A person being asked the hour, answered that it was

between 5 and 6, and the hour and minute hands were

together. What was the time \ Arts. 5A. 27;w. 16/y5'

37. Four places are situated in the order of the four let-

ters, A, B, C, and D. The distance from A to D is

102 miles ; the distance from A to B is to the distance

from C to D as 2 to 3; and -] of the distance from A
to B, added to \ of the distance from C to D, is three

times the distance from B to C. What is the distance

between the places \ 36 from A to B
)

12 from B to C
J. ^j^^^

54 from C to D j

38. A waterman went down a river and returned again in

6 hours. Now with the stream he can row 9 miles an

hour, but against it he can make a headway of only 3

miles an hour. How far did he gol Ans. 13g miles,

39. A hare is 50 leaps before a hound, and takes 4 leaps

to the hound's 3; but 2 of the hound's leaps are equal

to three of the hare's. How many leaps must the hound

take to catch the hare 1 Ans. 300.

40. There is a certain number consisting of two digits or

figures, and their sum is 6. If 18 be added to the num-

ber, the sum will consist of the same digits transposed.

What is the number 1 Ans. 24.

J^Cote.—As the local value of figures increases in a tenfold

ratio from right to left, if x— the left-hand digit, and 6—
a?= the right, then 10a:+6—a? the number.

41. A man and his wife w^ould consume a sack of meal

in 15 days. After living together 6 days, the woman
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alone consumed the remainder in 30 days. How long

would the sack last either of them alone 1

The man, 21 ^ days. )

The woman, 50 days. )

42. In the composition of a quantity of gunpowder, the

nitre was 10 lbs. more than | of the whole ; the sulphur

4i lbs. less than ^ of the whole ; the charcoal 2 lbs. less

than 4 of the nitre. What was the amount of gunpow-

der 1 ^ns. 69 lbs.

43. Two pieces of cloth, of the same price per yard, but

of different lengths, were bought, the first for JES, the

second for £Q^. If 10 be added to the length of each,

their sums will be as 5 to 6. What was the length of

each piece ] •dns. 20 and 26.

44. A and B began trade with equal sums of money. The

first year A gained JG40, and B lost JG40. The second

year A lost a of what he had at the end of the first,

and B gained JC40 less than twice the sum which A
had lost. B then had twice as much money as A
How much had each at first 1 jJm. £320.

45. On an approaching war, 594 men are to be raised from

three towns, A, B, and C, in proportion to their popu-

lation. The population of A is to that of B as 3 to 5,

and the population of B is to that of C as 8 to 7. How
many men must each town furnish 1

. 46. A shepherd, in time of war, was plundered by a party

of soldiers, who took ]- of his flock and { of a sheep
j

another party took i of what he had left and i of a

sheep ; then a third party took ^ of what remained and

i of a sheep, after which he had 25 sheep left. How
many had he at first 1 *^7is. 103.

47. A merchant adds yearly to his capital one third of it,

but takes from it, at the end of each year, $500 for his

expenses. At the end of the third year, after deduct-

ing the last $500, he finds his original capital is doub-

led 1 What was that capital 1 ^na. $5550.

M



90 ELEMENTS OF ALGEBRA. [sECT. IV.

48. A labourer was hired for 48 days : for each day he

wrought he was to receive 24s., but for each day

he was idle he was to forfeit 125. At the end of the

time he received 504*. How many days did he work 1

^ Ans. 30.

49. A cistern which holds 820 gallons, is filled in 20 min-

utes by 3 pipes, one of which conveys 10 gallons more,

and the other 5 gallons less than the third, per minute.

How much flows through each pipe per minute I

Arts. 22, 7, and 12 gallons,

50. A sets out from a certain place, and travels at the

rate of 7 miles in 5 hours j and 8 hours afterward B
sets out from the same place, and travels the same road

at the rate of 5 miles in 3 hours. How long and how
far must B travel before he overtakes A 1

Ans. 42 hours, and 70 miles,

EUUATIONS OF THE FIRST DEGREE INVOLVING MORE
THAN ONE UNKNOWN aUANTITY.

170. Most of the problems which we have already con-

sidered, involve more than one ufaknown quantity ; but we
have been able to solve them by employing but one letter or

symbol, as we have found it easy, by means of this letter

and the conditions of the problem, to find expressions for the

other unknown quantities. In many cases, however, the

solution is simplified by representing more than one of the

unknown quantities by a letter, and in complicated problems

it is frequently necessary to do this.

171. When, by the conditions of the problem, two or more

unknown quantities are to be determined, it is necessary

that there should be as many independent equations as there

are unknown quantities. When this is not the case, the prob-

lem will be indeterminate. Equations are independent when
they express different conditions, and dependent when they

express the same conditions under different forms.

172. Elimination is a method of deriving from the given

equations a new equation, from which all the unknown quan-
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titles except one shall be excluded. The unknown quanti-

ties thus excluded are said to be eliminated ; and the re-

sulting equation may be solved by the principles already dis-

cussed and applied. Having found the value of one of the

unknown quantities, the others may be readily found by

substitution.

173. There are three principal methods of elimination, viz.,

1. By Compariion; 2. By Substitution ; 3. By Addition or

Subtraction.

OF ELIMINATION WHEN THERE ARE TWO EQUATIONS INVOLVING

TWO UNKNOWN QUANTITIES.

First Method.—By Comparison,

174. This method of elimination rests upon the axiom,

that if each of two things is equal to a third, they are equal to

each other.

Let us take the two equations - x-\-y=16y

2a?+3y=36.

Finding the value of x in the 1st equation, a7:=16— y,

Finding the value of x in the 2d equation, x=—^^^.
i

Since each of the two quantities, 16—y, and ^, is

equal to x, they must be equal to each other (Ax.).

Hence we have the equation, - 16—y— '
"~" ^

Reducing y=4'. •

Substituting for y its value in the 1st equation, x-|-4= 16,

Reducing a?=16—4<=12.

175. Hence, for the elimination of one of two unknown

quantities, by comparison, we have the following general

RULE.

1. Find the value of one of the unknown quantities in each of

the equations.

2. Form a new equation by placing these two values equal to

each other.
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J^ote.—It will generally be found convenient to eliminate

that unknown quantity, which is least involved with known
quantities.

EXAMPLES.

1. Reduce the equations ^x-\-y—^^ and 4y-f-a;=16.

4a7-f-y=:34',

37+4^=16,

Finding the value of x in the 1st equation, a?= y,

Finding the value of x in the ^d equation, x= 16—4y,

Forming a new equation - __JZ^=:16—4y,

Reducing ----- y=2,

And a?r=8.

2. Reduce the equations 2a;-j-3y=16^, and 3a;—2y=ll.

i^ns, a;=:5, andyz=z2.

3. Reduce the equations _+2l— 7, and -+^=8.^
2 a ' 3 2

^ns. x— 6j and y=12,

a—h

4>. Reduce the equations _+2y=a, and -

—

^y=b

4
Jlns. a;=a+Z>, and y-.

5. Reduce the equations --|-^=:8, and -—^^=1.
iL O O At

Ans. a:=12, and y=6,

6. Reduce the equation --\-±=:9^ ^nd the proportion x:

2^ - 4 : 3. ^ns. a:= 12, and y=9.

7. Reduce the equations —±—£.=8—-, and -llZ—=rll
^ 6 3 2

-\-y. Ans. a?=6, and y=S.

Second Method.—By Substitution.

176. This method of elimination rests upon the principle,

that if any equivalent expression be substituted, in an equa-

tion, for an unknow^n quantity, it will satisfy the conditions

of that equation.
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Let US resume the two equations before used,

2x-f3y=36.

Finding a value of j:in the 1st equation, x=16

—

y:

Substituting this value for x in the 2d equation,

2(16—y)4-3y=36;
Reducing - - V—^i
And x=12.

177. Hence, for the elimination of one or two unknown

quantities by substitution, we obtain the following general

RULE.

1. Find the value of one of the unknown quantities in one

of the equations.

2. In the other equation^ substitute this value for the unknovm

quantity itself and then reduce as before.

EXAMPLES.

1. Reduce the equations a;+y=13, and x—y=3.
Jlns, 37=8, andy=z6,

2. Reduce the equations x—7=3y—21, and x-{-l=2y+ H,
Ans. a:=:49, andy=^\,

3. Reduce the equations 7a:=8y, and a?—y+^O.

Ans. x= 160, and y= 140.

4. Reduce the equations ic4-10=2y, and y-j-10=3x.

jlns. x— 6y and y=:S.

5. Reduce the equations ^+8y=194, and l-\-Sx=zl3h
o 8

jJns. 07=16, andy— 2^.

6. Reduce the equations 4a7+^=26, and -4-^=6.
2 2 5

Ans. x=4, andy=^20.

7. Reduce the proportions a? : y : ; 3 : 1, and - : 5y— 4: :3:9.

Ans. a:=24, and y=S.

8. Reduce the equations ?±?-|-6y=21, and y4-^+5a:=23.
4 3

Ana, x=4,j and y=3^.
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Third Method.—By Addition or Subtraction,

178. This method of elimination rests upon the prmciple,

that if equals be added to or subtracted from equals, the re-

sults will be equal.

As the members of an equation are equal quantities, it

will follow that if one equation be added to or subtracted

from another, the results will be equal.

Let us resume the two equations before used,

2a?
-I- 33^^ 36.

Multiplying the 1st equation by 2 - 2a7H-2y=32 5

Subtracting the 3d from the 2d equation y= 4;

Substituting and reducing - - - 3?=: 12.

Again, let us take the two equations, 3r+5y=:28,

2a?—5y= 2.

Adding the two equations - - 5a? =30;
Dividing by 5 - - - -a? =6j
Substituting and reducing - ' y =2.

179. Hence, for the elimination of one or two unknown

quantities, by Addition or Subtraction, we have the following

general

RULE.

1. Multiply or divide the equations in such a manner that the

term containing one of the unknown quantities shall be the same

in both equations.

2. If the signs of these terms are alike, subtract one equation

from the other ; if unlike, add the two equations together.

EXABIPLES.

1. Reduce the equations 2x-{-y—16, and 3a:

—

3y=6.

Ans. x=6, and y=4f.

2. Reduce the equations a?+y=48, and x—y=z32.

Ans. a?=40, andy=S.

3. Reduce the equations 5a?— 3yi=9, and 2x-\-by=16.

Ans. 07=3, and y—2.
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4. Reduce the equations 30x-\-^0yz^210, and 50xH-30y=

340. Jins. x=b, and y=3.

5. Reduce the equations 3a?-}-7y=79, and 2y=9-f ?.

^ns. x=z 10, and y=7.

6. Reduce the equations ?fZ:??4-2=7, and ?+?-:=6.
y o 5

^n*. a;1=24, and y= 10,

7. Reduce the equations ?fZ^4-14=18, and r^+f-f 16
2 3

= 19. ^715. x=i5, and y=2.

8. Reduce the equations ^+^"^^+^^8, and llZ^l-y^

11. ^ns, x= 6y and y=S,

9. Reduce the equations '^_}0-^^9^:10 ^^^ 2y+4^
5 3 4' 3

8 4

10. Reduce the equations _+?l=:6, and -4-^=5|.

,^ns, x= 12, and y= 16.

MISCELLANEOUS EQUATIONS OF THE FIRST DEGREE INVOLVING

TWO UNKNOWN QUANTITIES.

1. Reduce the equations 8x+ 5y=68, and 12x+7y=100.

,^ns. a:=6, and y=4.

2. Reduce the equations 8x4-^=20, and 20j:-|-3y=70.

^dns. x=\ljand y=15.

3. Reduce the equations £±2^—2y=2, and '^~~^y-\-y=

23 '

—-. ^ns, x= 1 1, and y=l.

Ot Q
4. Reduce the equations —Z_-|-y=7, and 5x—13y=y

• ,^ns, x=S, andy= ^.
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5. Reduce the equations ?^2^=?^y±i, and 8-^!=^
3 5 5

= 6. Jins. a:=13, and y=zS,

6. Reduce the equations ^+?^=— , and ^-\-'?l=^%\.^
5 4 20' 4 5 ''^

jlns. a?=i, and yz=:^»

7. Reduce the equations ?+7^=99, and ^+ 7a?zzi51.

»^ns^ a?=7, a?itZ yz= 14.

8. Reduce the equations ?—12=^+8, and ^±y+^—8=

^y~^+27. Jins. a?=60, a«(/ v=40.
4 ^

9. Reduce the equations ^—12=^+13, and ^±2(_}_^_f_i6

=^~y+27. ^«5. a?=60, awc^ v=20.
4

10. Reduce the equations
"^ ——I^i=3v—5, and ^^
5 4^' 2

4,J, 3
,

4-

—

^
—=18—5a;. Ans. x=^^ and y—%
6

11. Reducethe equations 4a?+l^Z:?=2y+5+2!^±ii,and

12. Reduce the equations 1

—

^
. +^—y— 16|, and ^^—

2

=-. ^»5. 07= 10, and y=20.

13. Reduce the equations ??II?l(=a:—2|, and a?—?(ZL^=:0.

./^ws. a?=l, andy—Z.

14. Reduce the equations ^—^-+5= 6, and 3'-f-4=—+6.
4 7 5 14

./?;j5. a:=28, and y=20.

15. Reduce the equations y—3=-+ 5, and ~^^=y—32

• ^?^5. a?=2, awc?y=9.
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x-l-3 3x ^v
16. Reduce the equations 2y—_I__=7-f-——^, and 4x

—

4 5

^Z:y=2^—^^^. Ans. x=5, and y=5.

17. Reduce the equations X—?yz:?±f =1-1-i5f±iy, and*
11 33 '

3x-f2y_y—

5

_ llx+152_3y-H
6 4 12 2 '

Arts, a;=8, andy=9.

18. Reduce the equations ?^?^=18i—i^?^,and
15

*
7 '

10y+^^~~^^= 5^+lQx. Ans. x=:10, and y=16.
5

. Reduce the equations g_3j?-h5y i7^5y^^+7 ^^^
17 ^3

22--6y_5x-7^x4:l _8y+5^ ^^ ^^^
3 11 6 18 ' ^

20. Reduce the equations—~~'"
4-
^~ =4+—^^^^—»and^

6 3 2

2j+y 9a:—7 3y+ 9 4r-|-5y ^ a j a—21^—^=J^-—^. ^/w. j;=9, an(/y=4.

PROBLEMS REQUIRING TWO UNKNOWN QUANTITIES, AND PRODUCING

TWO EQUATIONS OF THE FIRST DEGREE.

181.— 1. A fruiterer sold to one person 6 lemons and 3

oranges for 42 cents, and to another 3 lemons and 8

oranges for 60 cents. What was the price of each 1

Let x= the price of a lemon.

And y= the price of an orange,

Then we shall have the two equations,

6x-|-3y=42,

3x-h8y=60.

Transposing in the Ist equation - - 6a:=42—3y;

Dividing by 6 ^^42—3y..

6

Transposing in the 2d equation - - 3a7=60—8y;

Dividing by 3 ^^60-8y.

9 N
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Forming a new equation from the two values of x,

42—3y_60—Sy—6 3-"'

Reducing - - y=6, the price of an orange,

And - - - x—4fj the price of a lemon.

2. What fraction is that, to the numerator of which, if 1

be added, its value will be i, but if 1 be added to the de-

nominator, its value will he 1%

Let x= the numerator.

And y= the denominator,

Then -= the fraction,

y
And we shall have the two equations,

x-^1
=h

—1.
y+1

'

Clearing the 1st of fractions - 3x-\-3=y;

Clearing the 2d of fractions - - 4>x—y-{-li

Dividing the 4th equation by 4 - - rrr=?Li_

;

4

Substituting the value of a? ) /y+l\
, «_

in the third equation - y^ \ 4 /
~^

^

Reducing y=15,
And ----._ 07=4

:

Hence -=tt5 the frac-

y
tion required.

3. A boy bought 2 apples and 3 oranges for 13 cents; he

afterward bought, at the same rate, 3 apples and 5

oranges for 21 cents. What was the price of eachl

Let x= the price of an apple,

And y= the price of an orange.

Then we shall have the two equations,

2:c+3y=13,

3x+53/=:21.
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Multiplying the Ist equation by 3, 6x-f-9y=39;

Multiplying the 2d equation by 2, 6a:+10y=4.2j

Subtracting the 3d from the 4th - y=3, the price

of an orange,

And - a?=2, the price

of an apple.

4. What fraction is that, to the numerator of which if 4

be added, the value is i, but if 7 be added to its de-

nominator, the value is } 1 Ans. y\.

5. A and B have certain sums of money : says A to B,

"Give me $15 of your money, and I shall have five times

as much as you have left." Says B to A, " Give me $5

of your money, and I shall have exactly as much as you

have left." How many dollars had each 1

Ans. Jl had $35, and B $25.

6. There are two numbers, such that 3 times the greater

added to ^ the less is equal to 36 ; and if 2 times the

greater be subtracted from 6 times the less and the re-

mainder divided by 8, the quotient will be 4. What

are the numbers 1 Ans, ^ and l\,

7. A person was desirous of relieving a certain number

of beggars by giving them 25. 6f/. each, but found that

he had not money enough in his pocket by 3*.: he then

gave them 2^. each, and had 4s. to spare. How many-

shillings had he, and how many beggars did he relieve 1

Ans. 32*. and 14 beggars,

8. A labourer working for a gentleman for 12 days, and

having had with him the first 7 days his wife and son,

received 745. : he wrought afterward 8 other days, du-

ring 5 of which he had with him his wife and son, and

he received 505. Required the gain of the labourer per

day, and also that of his wife and son.

Ans. Husband 55., and the wife and son Is,

9. A purse holds 19 crowns and 6 guineas. Now 4 crowns

and 5 guineas fill yy of it. How many will it hold of

each % Ana, 21 crovms and 63 guineas.
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10. A farmer, with 28 bushels of barley at 25. 4c/. per

bushel, would mix rye at 3s. per bushel^, and wheat at 4>s.

per bushel, so that the whole mixture may consist of

100 bushels, and be worth 3^. 4c?. per bushel. How
many bushels of rye, and how many of wheat, must he

mix with the barley % Ans. 20 of rye and 52 of wheat.

11. A and B speculate with different sums : A gains $150,

B loses $50, and now A's stock is to B's as 3 to 2.

And if A had lost $50, and B gained $100, then A's

stock would have been to B's as 5 to 9. What was the

stock of each 1 Ans. A's. $300, and B's $350.

12. A rectangular bowling-green having been measured,

it was observed that, if it were 5 feet broader and 4 feet

longer, it would contain 116 feet more j but if it were

4 feet broader and 5 feet longer, it would contain 113

feet more. Required the length and breath.

Ans. Length 12, and breadth ^ feet.

13. There is a number consisting of two figures, the sec-

ond of which is greater than the first j and if the num-

ber be divided by the sum of its figures, the quotient is

4 ; but if the figures be inverted, and the number which

results be divided by a number greater by 2 than the

difference of the figures, the quotient becomes 14. What
is the number 1 Ans. 48.

14. A person owes a certain sum to two creditors. At one

time he pays them $53, giving to one y^ of the sum

due to him, and to the other $3 more than ^ of his debt

to him. At a second time he pays them $42, giving

to the first ^ of what remains due to him, and to the

other A of what is due to him. What were the debts \

Ans. $121 and^m.

15. Some smugglers discovered a cave which would ex-

actly hold the cargo of their boat, viz., 13 bales of cat-

ton and 33 casks of wine. While they were unloading,

a custom-house cutter coming in sight, they sailed away
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with 9 casks and 5 bales, leaving the cave | full. How
many bales or casks would it hold 1

Ana. 24 halts or 72 casks.

16. A and B can perform a piece of work in 16 days.

They work together 4 days j then A being called off, B
is left to finish it, which he does in 36 days more. In

what time would each do it separately 1

Ans. A in 24, and B in 48 days.

V7, Two loaded wagons were weighed, and their weights

were found to be in the ratio of 4 to 5. Parts of their

loads, which were in the proportion of 6 to 7, being

taken out, their weights were then found to be in the

. ratio of 2 to 3 j and the sum of their weights was then

10 tons. What were their weights at first 1

Ans. 16 and 20 tons.

18. There is a cistern, into which water is admitted by

three cocks, two of which are of exactly the same di-

mensions. When they are all open, j^ of the cistern is

filled in 4 hours ; and if one of the equal cocks be stop-

ped, ^ of the cistern is filled in lO^. hours. In how many
hours would each cock fill the cistern 1

Ans. Each of the equal ones in 32 hours, and the other

in 24.

19. A has a capital of $30,000, which he puts out to in-

terest at a certain rate per cent., and he owes $20,000,

on which he pays a certain rate per cent, interest* The
interest which he receives exceeds that which he pays

by $800. B has a capital of $35,000, which he puts out

to interest at the same rate per cent, that A paysj he

also owes $24,000, on which he pays interest at the

same rate that A receives. The interest which he re-

ceives exceeds that which he pays by $310. What are

the two rates of interest 1 Ans. 6 and 5 per cent.

20. A has a certain capital, which he puts out to interest

at a certain rate per cent. B has a capital of $10,000

more than A, which he puts out to interest at one per

cent, more, and receives $800 more interest than A.
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C has a capital of $15,000 more than A, which he puts

out at 2 per cent, more, and receives $ 1500 more interest

than A. What is the capital of each, and the three rates

of interest 1 Jlns. A's capital, $30,000 ; B's, $40,000 ;

C'5, $45,000 ; and the rates of interest 4, 5, and & per cent,

Ot ELIMINATION WHERE THERE ARE THREE OR MORE EQUATIONS

INVOLVING AS MANY UNKNOWN QUANTITIES.

182. In the problems hitherto given, each has contained

no more than two unknown quantities, and two independent

equations have been sufficient to express the conditions of

the question. Other problems, however, may involve three

or more unknown quantities j and if they are determinate,

their conditions will give rise to as many independent equa-

tions as there are unknown quantities.

183. The principles already discussed, and the rules al-

ready given for the elimination of one of two unknown

quantities, may also be applied where the number exceeds

two.

Thus, if there be three independent equations involving

three unknown quantities,

I. From the three equations involving three unknown quanti-

ties, deduce two equations involving only two unknown quantities.

II. Then from these two deduce one, involving only one un-

known quantity.

III. Reduce this equation, or find the numerical or literal

value of the unknown quantity involved in it : then substitute

this value for the unknown quantity itself, in an equation which

involves only that and another unknown quantity whose value

may thus be found. The value of the remaining unknown quan-

tity may be found in a similar manner.

184. If there be four independent equations involving four

unknown quantities,

I. From the four equations deduce three, involving only three

u?iknown quantities.

II. Reduce these three equations as before.

185. If there be n independent equations, involving n un-
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known quantities, they maybe reduced in a similar manner.

For from the n equations involving n unknown quantities,

we may deduce n— 1 equations involving n— 1 unknown

quantities ; and from these n—2 equations involving n—

2

unknown quantities, and so on until only one equation re-

mains, involving only one unknown quantity. The value of

this being found, the values of all the rest may be determin-

ed by substitution, as before.

A calculation may often be very much abridged by the

exercise of judgment in stating the question, in selecting

the equations from which others are to be deduced, in the

manner of performing the reduction, in simplifying fractional

expressions, in avoiding radical quantities, &c.

EXAMPLES

1. Reduce the equations

a?-f- y+ Z-.

x-\-2y-\-32z

U U --

2 3^ 4

29'

62
. Jlns.

10

, ,

From the 1st equation

From the 2d equation

From the third equation

Making the 1st and 2d values )

of X equal - - V ^

Making the 1st and 3d values

of X equal

From the 7th equation

From the 8th equation

x=S,

2=12.

x=29—y—z; (4)

a:=62—2y—3z;(5)

x=20-?^—^; (6)

J29-y-

Making the two values of y
equal - - -

33-

Keducing

Substituting for z its value

the 9th equation

Substituting for y and z their

values in the 4th equation

1

3 2

-z=62—2y--3z. (7)

^z=20-^-
-I-

(8)

y=33-2z; (9)

(10)

2.=27_|. (11)

z=n; (12)

y= 33—24 ==9.(13)

x=29—9- 12=8.

(14)
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[2x^^—3z=22) (x=3,

2. Reduce the equations { 4<x~2y+5z= 18
\ ^^^^ \ y=l,

[Qcc+ly— z=Q3] [z=^.

Multiplying the 1st by 6

Multiplying the 2d by 3

Multiplying the 3d by 2

12a?-h24y-18z:=132.

12a:—62/+15z=54.

12a?+14y—22r=126.

Subtracting the 5th from the 4th 30y—33z=:78.

Subtracting the 5th from the 6th 20y—17:^=72.

Multiplying the 7th by | - - 20^—222=52.
Subtracting the 9th from the 8th^ - 52=20.

Dividing by 5 - - - - - 2=4,

And y—'^i

And j?=3.

(4)

(5)

(6)

O)
(8)

(9)

(10)

(11)

(12)

(13)

3. Reduce the

equations
Ans.

fl2a?4- y+ 7m=26
182+ 3y+ 12^=69
1007+202+17^=69
18^+102+ 7y=66^

From the 1st equation, ^=26

—

lu— 12ir.

Substituting for y ")

its value in the [ 182+78—21w—36a?+12M=69
2d - -

j

Substituting for y ")

its value in the \ 18ir+ IO2+ 182—49w—84a:= 66. (7)

4th - . - J

2=li,
w=2.

(5)

(6)

Transposing and )

uniting in the \

6th - - J

Transposing and "j

uniting in the
J-

7th - - J

Multiplying the 9th by 2, 2O2—98w—132^?=—232.
Subtractingthe 10th from the 3d, 115M+142a?=301.

Multiplying the 8th by 5, 902—45w—1800?= -45.

Mdtiplying the 9th by 9, 902—441t^
Subtracting the 13th )

from the 12th \

I82—9w—36a:=-9. (8)

IO2—49w—66a7=—116. (9)

(10)

(11)

(12)

594a;=— 1044.(13)

396M+414a;=999. (14
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999—396m
From the 14lh equation, x=

414.

From the 11th equation, i=2?il"il^.^ '

14-2

Making these two values ( 999—396t<_301—115m

of X equal 4U 142

105

(15)

(16)

(17)

Reducing
And
And
And

tt=2.

4. Reduce the equations

^ y "

^ns.

:23,V.

121

^y * 'r

Adding the three equations, -+Z-|-z=.j.-f.|-f-_'_z=l:!ll. (4)
X y Z OQy)

1+1+1^121.
(5)

X y z 720 ^
'^

31 ^ ^ 720 ...
: or 2:=

,
(O)

z 720' 31' ^
^

Subtracting the 2d from the 5th, -= 11, or v=— , (7)
' y 720' ^ 41 ' ^

'^

Subtracting the 3d from the 5th, -=—, or x=— . (8)
X 720' 49 ^

^

Dividing by 2 -

Subtracting the 1st from the 5th,

5.Eeducethe(^2y-3.= 4,l

equations |

yi"-'
> r

t a?-f y4- 2=12. j

6. Reducethe|^^+^y+ ^=*^'

]

equations i^" y+^^= ^'

r x+ y-J- z-l- w=14,'

7. Reduce the

equations
3x+2y-|2r-f w=lb,

2.^ 2y z_3^.
3 4 5

^ns.

Ans,

Am,

rx=5,

rx=2o,

^y= 12,

iz=:32
' x=2,

y=3,
2= 4,

w=i5.
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8. Reduce the

equations

a?+yr-.52,
^

( x=:20,.

2/+ 2^=82, 3/=:32,

z-\-w=iQS^ > Jljf,s,\ z—bO,

u-{-x='62.j [ u—12.

9. Reduce the equations a?i/=28, a?2r=2(>, and yz=35.

Ans. a:=4i, y— 7, and z=z5.

10. Reduce the

equations

2^3^4 124,

^ 3 4 5 '
^

Ans,

L4 5 6'
76.

:48,

y=120,

:^=:240.

11. Reduce the equations a?y=100, ^0=40, and a?2=160.

Ans. 07=20, y= 5, z—'^,

12. Reduce the equations ir+100=2/H-2r, y4-100=2a?+

22;, and 2;+100=i3a?+3y.

Ans. a?:=9Jyj 2/=45/y, awJ 2r=63yV

13. Reduce the

equations

107+ 32/=: 23,)

4

2/+32r= 31,

^a?+2/+i2r+2w;=35.
J

Ans.

2 3 4'
:62,

14. Reduce the J ^_|_y_j_^_47

equations o ^ o

4 5 6

2a?+ 2^—22:=

4y— a?-j-3zi

3w+w:

3a?—yH-3w

—

w:

Ans.

15. Reduce the

equations

:40,

:35,

:13,

:15,

=49.

Am. <

16. Reduce the

equations

[00+ y+ z=: 53,]

\ a?+22/-h32:=105, \

i^a?+ 32/+4z=134.J

a?=6,

y=%

z=S,

a?=24,

y-60,

^=120.

a?=20,

y = 10,

z=5,

u^l.

fa?=24,
Ans. J II —

^2=23.
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PROBLEMS PRODUCING THREE OR MORE EQUATIONS, AND

REQUIRING AS MANY UNKNOWN QUANTITIES.

1. Three persons divided a sum of money between them

in such a mapner that the shares of A and B together

amounted to $900 ; the shares of A and C together

amounted to $800 j and the shares of B and C to $700.

What was the share of each 1

Let a7=A's share,

y=B's share,

z=C^s share:

Then - x+y=900y

And - j?+2=&00,

And - y+2=700.
Reducing, x=500, A's share,

y=400, B's share,

2=300, C's share.

2. A man with his wife and son, talking of their ages,

said that his age added to that of his son was 16 year&

more than that of his wife ; the wife said that her age

added to that of her son made 8 years more than that

of her husband ; and that all their ages together amount-

ed to 88 years. What was the age of each 1

Ans. Husband 40, wife 36, and son 12 years,

3. Three teachers, A, B, and C, speaking of their respect-

ive schools, says A to B, "If you will give me 20 of

your scholars, my number will then be to the sum of

C's and what you will have left, as 4 to 5." Says B to

A and C, " If each of you will give me 10 scholars, my
number will be to what you will then have as 5 to 4."

Says C to A and B, " If you will give me 10 each, I

shall have twice as many as both of you." What was

the number of scholars each had 1

Ans, A 20, B 30, and C 40 scholars,

4. A cistern is furnished with three pipes, A, B, C. By
the pipes A and B it can be filled in 12 minutes, by the

pipes B and C in 20 minutes, and by A and C in 15
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minutes. In what time will each fill the cistern alone,

and in what time will it be filled if all three run to-

gether 1 Ans. A 20, B 30, C 60 minutes^ and the three

together in 10 minutes.

5. It is required to divide the number 72 into 4 such parts,

Uiat if the first part be increased by 5, the second di-

minished by 5, the third part multiplied by 5, the fourth

part divided by 5, the sum, difference, product, and

quotient shall all be equal. Ans. 5, 15, 2, and 50.

6. Find three numbers, such that \ of the first, \ of the sec-

ond, and \ of the third shall be equal to 62 ^
i of the first,

\ of the second, and ] of the third equal to 47 j and \

of the first, \ of the second, and \ of the third equal to

38. Ans. 24, 60, and 120.

7. If A and B together can perform a piece of work in

8 days, A and C together in 9 days, and B and C in 10

days, how many days will it take each person alone to

perform the same work ?

Ans. A in 14f|, B in 17-^, -and C in 23/^ days.

. 8. A, B, and C sit down to play, each one with a certain

number of shillings : A loses to B and C as many shil-

lings as each of them has. Next B loses to A and C as

many as each of them now has : lastly, C loses to A and

B as many as each of them now has. At the close of

the game, each of them has 16 shillings. How much

did each one gain or lose 1

Ans. A lost 10s., B gained 25., and C Ss.

9. There are two such fractions, that if 3 be added to the

numerator of the first, its value is double that of the

second ; but if 3 be added to the denominator, their

values are ecfiial. Now the sum of the two fractions is

9 times as great as their difference ; and if the numera-

tor of their product be increased by 10, its value will

be equal to that of the first fraction. What are the

fractions'? Ans. j\ and ^.

10. Three brothers purchased an estate for $15,000: the
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first wanted, in order to complete his part of the pay-

ment, ^ of the property of the second j the second

would have paid his share with the help of ^ of what

the first owned ; and the third required, to make the

same payment, in addition to what he had, | part of

what the first possessed. What was the amount of each

one's property 1

Jlns. $3000, $4000, and $4250 respectively.

11. A merchant has 3 ingots, each composed of gold, sil-

ver, and copper, in the following proportions, viz., in the

first there are 7 ounces of gold, 8 ounces of silver, and

1 ounce of copper to the pound; in the second, there

are 5 ounces of gold, 7 ounces of silver, and 4 ounces

of copper; and in the third, 2 ounces of gold, 9 ounces

of silver, and 5 ounc^ of copper to the pound. What
parts must be taken from each in order to compose a

fourth ingot, in which there shall be 4} f ounces of gold,

7|| ounces of silver, and 3j^ ounces of copper to the

pound 1

Ans, 4 ounces ofgoldj 9 ounces of silver, and 3 ounces

of copper.

12. At an election for two members of Congress, three

men offer themselves as candidates: the number of vo-

ters for the two successful ones are in the ratio of 9 to

8; and if the first had had 7 more, his majoritj'^ over the

second would have been to the majority of the second

over the third as 12 to 7. Now if the first and third

had formed a coalition, and had one more voter, they

would each have succeeded by a majority of 7. How
many voted for each 1

Jlns. 369, 328, and 300 respectively.

10
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SECTION V.

Generalization of Algebraic Problems.—Demonstration of Gen-

eral Propositions or Theorems.—Properties of J^umhers.—
Reduction of Formulas relating to Simple Interest^ Com-

pound Interest^ and Fellowship,—Discussion of Equations

of the First Degree.—Theory of Negative Quantities.—Ex-

planation of Symbols.—Infinity.—Infinitesimal.—Indetermi'

nation.—Inequations.

GENERALIZATION OF ALGEBRAIC PROBLEMS.

188. The soiution of many questions does not depend

upon the particular numbers given in those questions, but

will be the same for any other numbers. By generalizing

such questions, we are able to deduce a general method or

rule for the solution of all questions whose conditions are

similar, or which differ from the proposed only in particular

numbers which are given.

The following instances of generalization will serve to in-

troduce the learner into this important branch of Algebra.

First General Problem.

189. The sum of two numbers is a, their difference b; it

IS required to find the two numbers.

Let x= the greater, and y= the less:

Then, by the conditions - - x-\-y—a.

And - - - s - - X—y:=b

;

Adding the two equations - - 2a? =a-\-b,

2 2'

Subtracting the 2d from the 1st equation, 2y=a—b;
_a b

^~2 2*

Hence, since a and b may represent any numbers what-

ever, the sum and difference of two quantities being given,
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1. To find the greater, ^dd the half difference to the halfsum,

2. To find the less, Subtract the half difference from the half

sum.

EX^AMPLES.

1. The sum of two numbers is 24, the difference 6 : what

are the two numbers 1

Let x= the greater, and y= the less

:

Then x=^+|=?iH-^= 124-3=15, the greater,
JL JL JL JL •

And y=-—-=——-= 12—3=9, the less.^2222 '

2. The sum of two numbers is 56, their difiTerence 12:

what are the numbers \

3. It is required to divide $860 between two men, so that

the first may have $250 more than the second.

4. Two merchants invest in trade $10,000; the sum in-

vested by the first exceeds that invested by the second

by $1225; what was the sum invested by eachl

Second General Problem.

190, The sum of three numbers is a ; the excess of the

mean above the least, b ; and the excess of the greatest above

the mean, c. Required the three numbers.

Let x= the least, y= the mean, and z= the greatest:

Then, by the conditions - x-\-y-\-z—a;

y—x=b;
z-^=c ;

Reducing these three equations, x= ^
?

o

a-\-b—c

3

a4-*-f-2c

J'=-3-'

2=
3

Hence, since a, i, and c may represent any values what-

ever, having given the sum of three numbers, the excess of

the mean above the least, and the excess of the greater

above the mean :



112 ELEMENTS OF ALGEBRA. [sECT. V.

1. To find the least, Fro^ their sum subtract the sum of twice

the mean above the least, and the excess of the greater above the

mean, and divide the remainder by 3.

2. To find the mean, To their sum add the excess of the mean

above the least, andfrom the result take the excess of the greatest

above the mean, and divide the remainder by 3.

3. To find the greatest, Jldd together the sum of the three

numbers, the excess of the mean above the least, and twice the ex-

cess of the greatest above the mean, and divide the sum by 3.

EXAMPLES.

1. The sum of three numbers is 440 ; the excess of the

mean above the least is 40 ; the excess of the greatest

above the mean is 60 : vi'hat are the numbers 1

Let X, y, an^ z. represent the numbers.

Then x=g=m=^^°-(-^^"+^°)=100, the least

number

;

a4j_e^440+40-60^^^Q^^ ^^^^^^^^^33'
_«4.ft+2c^440+40+2x60^200,

the greatest
3 3

number.

2. It is required to divide a prize of $973 among 3 men,

so that the second shall have $69 more than the first,

and the third $43 more than the. second.

3. The sum of three numbers is 15,730 ; the second ex-

ceeds the third by 2320, and the first exceeds the sec-

ond by 3575 : what are the three numbers 1

Third Genera^ Problem.

191. The sum of 4 numbers is a; the second exceeds the

first by b ; the third exceeds the second by c ; the fourth

exceeds the third by d. Required the four numbers.

EXAMPLE.

Find each of the above numbers, on the supposition that

a=:3753, Z>=159, c 275, and t/^389.
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Fourth General Problem.

192. The sum of 2 numbers is a, and if 3 times the first

be divided by 2 times the second, the quotient will be b,'

Bequired the numbers.

EXAMPLE.

If a=420 and 6=&, what are the numbers 1

Fifth General Problem,

193. The sum of two numbers is a, and if the first be di-

vided by 5 and the second by 2, the sum of the quotient

will be b. Required the numbers.

EXAMPLE.

If a=120 and J=42, what are the numbers!

Sixth General Problem,

194. Three men share a certain sum in the following man-

ner, viz.: the sum of A's and B*s shares is a; that of A's

and C*8, b ; that of B's and C's, c. What is the sum di-

vided, and the share of each %

EXAMPLES.

1. If a=:$123, 5= $110, and c=$83, what will be the sum,

and the share of each 1

Seventh General Problem. '

195. A person engaged a workman to labour n days'; for

each day that he laboured he was to receive a cents, and for

each day he was idle he was to pay b cents : at the time of

settlement he received c cents. How many days did he la-

bour, and how many was he idle \

Let x= number of days he laboured,

y= number he was idle

;
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Then, by the conditions,

ax—hy=^c

or x=z—L_,
a-i-b'

1 an—c
and y:

a+b

JVote.—If the labourer had paid c cents instead of receiv-

ing it, the general equations would become,

bn—

c

a!-\-y=n

by—ax=zc

or 0?: ,

a-\-b'

J an-{-c
and y= !

—

EXAMPLES.

1. Jf w=48, a=24, b—-12, and c=r504, how many days

did he work, and how many was he idle 1

2. A labourer was hired for 75 days : for each day that he

wrought he was to receive $3, but for each day that he

was idle he was to forfeit $7. At the time of settle-

ment he received $125 : how many days did he labour,

and how many was he idle 1

3. A man agreed to carry 20 earthen vessels to a certain

place on this condition, viz., that for every one deliver-

ed safe he should receive 11 cents, and for every one

he broke he should forfeit 13 cents : he received 124

cents. How many did he break 1

4. A fisherman, to encourage his son, promises him 9

cents for each throw of the net in which he should take

any fish j but the son is to forfeit 5 cents for each un-

successful throw. After 37 throws the son receives

from the father 235 cents. What was the number of

successful and unsuccessful throws of the net 1

DEMONSTRATION OF GENERAL PROPOSITIONS OR THEOREMS.

196. It was remarked in the introductory section of this

work, that algebraic symbols might be applied to the dem-

onstration of general truths or principles. We will now
exhibit a few of these applications.
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First Theorem.

197. The greater of any two numbers is equal to half

their sum added to half their difference, and the less is

equal to half their sum minus half their difference.

Let a and h represent any two numbers, of which a is the

greater and h the less j let their sum be represented by

5, and their difl^erence by d:

Then a+b=s.

And a—b=d;

Adding the equations - - - 2a =s-{-d;\

Dividing a =i+ ^-j

Subtracting the 2d from the 1st equation, 2b=s—d;
^

Dividing - ^ *=|—-.

I

Second Theorem.

198. The product of the sum and difference of two num-

bers is equal to the difl^erence of their squares.

Let a, b, 8, and d sustain the same relations as in the p(re-

ceding theorem

:

Then s=a-\-b,

And - - - . - d=a—b.

Multiplying the two equations, d.s z=(a-\-b)(a—b)=a*—6*.

CoBOL. 1.—Dividing the above equation by d, we have

a»—A«

Hence, if the difllerence of the squares of two numbers be

divided by the diflJerence of the numbers, the quotient will

be their sum.

CoROL. 2.—Dividing the same equation by Sy we shall have

d-.
a -I^

8

Hence, if the difference of the squares of two numbers

be divided by the sum of the numbers, the quotient will be

their difference.
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Third Theorem,

199. Four times the product of any two numbers is equal

to the squares of their sum, diminished by the square of

their difference.

Let a, &, 5, and d sustain the same relations as in the pre-

ceding theorem

:

Then ------ a-\-b=s^

a—b=d.

Adding the two equations - - 2a—s-\-d;

Subtracting the 2d from the 1st - 2b=zs—d;

Multiplying the 3d and 4th - - 4}ah=zs^—dK

Fourth Theorem. -

200. The sum of the squares of any two numbers is equal

to the square of their difference plus twice their product.

Let a, &, and d sustain the same relations as before, and

let p represent the product of the two numbers-:

Then - a—b=:d,

And ------ ab—p;
Squaring the members of the 1st ) o a i /2 ^.

equation " " "
)

Multiplying the 2d equation by 2, 2a& =2p/
Adding the two equations to-) 2_j_r2_-72io

gether - - - - j

Fifth Theorem,

201. The square of a polynomial expressing the sum of

two numbers, is equal to the square of the first term +
twice the product of the two terms + the square of the

last term.

Let s represent the sum, and a-{-b the polynomial:

Then s =a -\-b

;

Squaring the equation - - s^—a^+'^ab-\-W.

Sixth Theorem,

202. The square of a polynomial expressing the differ-
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ence between two numbers, is equal to the square of the

first term — twice the product of the two terms -f- the

square of the last term.

Let d represent the difference, and a—b the polyno-

mial :

Then d=a—b;
Squaring the equation - - (P=a"—2a&+J*

Seventh Theorem.

203. The difference of any two equal powers of different

numbers, is always divisible by the difference of the num-

bers.

Let a and b represent finy iwo numbers, a being greater

than b

:

Then ^II^=a-\-b,
a—b

And ^II^=(^+ab-\-l^,
a—b

And ^LZI^^a^^a'b+ab'+k
a—b

This process may evidently be continued indefinitely;

hence we have

^!lll^=a'^'+a™-2x J+ a'"-='x&«-f- a^b'^-{-ab^-^-\-b'^K
a —b

CoROL. If J=l in the above formula, the formula will be-

come

a"*—

1

=a'^'+a'"-'4-a'"~^4- .... -fo'+a'+a-fl.

Eighth Theorem,

204. The difference of two equal powers of different num-
bers, is divisible by the sum of the numbers, when tlie expo-

nent of the power is an even number.

Let a and b sustain the same relations as before

:

Then - . . ^Ill=a-b,
a-\-b
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And - - - '^^II^=^a^—d?h+ah^—h\
a -\-b

And - - - ^^^=a'—a''b+aW—a'}y'-\-ab*—b\
a -j-b

Hence we also conclude (letting m represent any even

number),

-—^=a^-'-j-d^^xb+ar-^Xb^-^ . . . -j-a'b^'-^-^-ab^-^+b^K
a -^b

CoROL. If ^=1, the above formula will become
«"» 1

t==a^''-'a^-''+a"'-^— .... -^a^—a'-\-a—l.
a +1

JSPinth Theorem.

205. The sum of any two equal powers of different num-

bers, is divisible by the sum of the numbers, when the expo-

nent of the power is an odd number.

Let a and b sustain the same relations as before

:

Then - - '^±^=a'—ab-]-b%
a -\-b

And - - '!L±^=:a'—a'b+a'b^—ab^+b\
a -{-b

And - - '^-±^=a'—a'b-\-a'b'—a'b'+a'b^—a¥+b\
a -j-b

Hence we also conclude (letting m represent any odd

number),

^-t!!l=a^~'—a^^xh-{-a""^Xb^— .... —a='6—"^-a^Z^'^-^—
a -\-b

ab^''-\-b^-\

CoROL. If &=!, the above formula will become

a +1

Tenth Theorem,

206. If a given number be divided into two parts, and

those parts multiplied together, the product will be the

greatest possible when the parts are equal.

Let n=: the given number, a=. the greater part, b=. the



8BCT. v.] PROPERTIES OF NUMBERS. 119

less part, d= the difference between the parts, and^=
the product of the two parts:

Then - - ab=p.

And (Art. 189) - - - - a =^ +^,

n d

2 2
And (Art. 189) - • -' - - J=s—-•

Multiplying the last two equations together, ab=———

.

XT n^ d*
Hence - P=——-•

^ 4 4f

Now It is evident that p will increase as d diminishes;

hence it will be the greatest possible when

d=Oy or p=i .

DEMONSTRATIONS RELATING TO CERTAIN PROPERTIES OF NUMBERS.

207. We will now apply the principles of Algebra hereto-

fore discussed to the demonstration of some singular prop-

erties of numbers.

Let it first be premised that the local value of the digits

increases in a tenfold ratio from right to left, and that any

number is equal to the number of units expressed by the

digit in the unit's place, -f the number of units expressed

by the digit in the ten's place, -|- the number of units ex-

pressed by the digit in the hundred's place, -f j &c.

Thus, 3756= 6+ 504-700+3000, and 12,899=9+90+800

+2000+10,000.

> First Proposition,

208. If from any number the sum of its digits be subtract-

ed, the remainder will be divisible by 9.

Let a, 6, c, (/, &c., represent the digits of any number, a

being the digit in the unit's place, h the digit in the

ten's place, &c. ; also let N=: the number, n= the num-

ber of the digits, S= the sum of the digits, and r=10:
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Then 'N=a-\-br -j-cr" +c?r' +...+a?r"-',

And S=za-{-b +c +d +...+a?.

N—S= br—b -{-cr'—c +d7^—d + . . . +a?r"-'-—a?,

Or N—S== ^>(r— l)+ c(r^—l)H-c/(r'—1)+- • • +x(r"-'—1),

by subtraction.

But (Th. 7, Art. 203) r— 1, r^-l, r»—1+ . . +r"-^— 1, are

divisible by r— 1, which is equal to 9 j hence, N—S is also

divisible by 9.

Example. 327,856— (3+2+7+8+5+ 6)= 327,825, and

.327,825^ 9 ==36,425.

Second Proposition,

209. If the sum of the digits of any number be divisible

by 9, the number itself is divisible by 9.

Let N= any number, and S= the sum of its digits:

Then, since S is supposed to be divisible by 9, let S=9m
Since N—S is divisible by 9, let 'N—S=9p :

Then - - N—S=N—9w= 9j9;

Transposing - - N=z9p-{-9m

;

Resolving into factors, N=9(7?-}-m), which is divisi

ble by 9 ; consequently, N also is divisible by 9.

Example. 5 1,489^9=^5721, and (5+1+4+8+9)^9=27
H-9= 3. ^

Third Proposition.

210. If the sum of the digits of any number be divisible

by 3, the number itself is divisible by 3.

Let N represent any number, and S the sum of its digits,

as before ; and let S= 3m, and N

—

S=3p

:

Then - - N—37^= 3;? ;

Transposing, N=3p+ 3?7i, which is evidently divisible

by 3.

Example. 785,142-^3=261,714, and (7+8+5+1+4+2)
-f-3=27H-3=9.

Fourth Proposition.

211. If from any number the sum of the digits standing

in the odd places be subtracted, and to it the sum of the
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digits Standing in the even places be added, the result will

be divisible by 11.

Let the number be a+br -f-cr* -{-drf Sec, :

Add - - —a+ft —

c

-fc/, &c.

The result is - br-^b +cr'—c i-dr^-{-d, &c.,

Or - - - 6(r+l)-|-c(r'—l)+c/(r'+l), &c.

But (Ths. 8 and 9) r'{- 1, r»— 1, r'-f- 1, &:c., are divisible by

r-f- 1 ; hence, b{r-\- l)+c(r»— l)+t/(r'4- 1), &c., is divisible by

r+1, or 11.

Example. (57,937-(7-t-94-5) + (7+3))-Ml =(57,937—21
H-10)-H 11=57,926-7-11= 5266.

Fifth Proposition.

212. If the sum of the digits standing in the even places

in any number be equal to the sum of the digits standing in

the odd places, the number is divisible by 11.

Let N= the number, S= the sum of the even digits, and

$z= the sum of the odd digits :

Then, by Prop. 4, N+S—s is divisible by 11. But S—

«

=0j therefore N is divisible by 11.

Example. (137,456+13- 13)^11= 137,4.56-M1=12,496.

Sixth Proposition.

213. Every prime number which will exactly divide the

product of two factors, one of which is also a prime num-

ber, will divide the other.

Let AxB represent the product of two numbers, which

is divisible by P ; A being greater than P, and prime

with it, or not divisible by it.

Then let us endeavour to find the greatest common divi-

sor of A and P, representing the successive quotients

^y Qj Q > &c*> ai*d the successive remainders by R, R',

11 Q
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P)A(Q
QP

"IR) P (Q'

Q'R

R') R (Q"

Q"R

R", &c.

Making each dividend equal to the product of its divisor

and quotient, we have

1. - - - A=PQ+R;
2. - - - P=RQ'+R';
3. - - - R=:R'Q"+R", &c.

MuUiplying the first equation (1.) by B,

AB=PQB+RBj

Dividing by P . . - . ^= BQ+^.

By hypothesis, _- produces a whole number ; and since

B and Q are whole nuhibers, the product BQ is a whole
•p-p

number j hence —- is also a whole number.

Multiplying the second equation (2.) by B, and dividing

by P, we have

P>_
BRQ BR^

pin
We have already shown that -—. produces a whole num-

ber ; hence ^ will also produce a whole number. This

BR'
being the case, _—- must also be a whole number. If this

operation is continued till the number which multiplies B
R V 1

becomes 1, we shall still have ——_, equal to an entire num-

ber 5 therefore B is divisible by P.
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Hence, if a number will exactly divide the product of two

numbers, and is prime with one of them, it will divide the

other.

REDUCTION OP FORMULAS.

214. The processes of generalization which we have no-

ticed will suggest some methods of demonstrating formulas

or general rules.

FORMULAS RELATING TO SIMPLE INTEREST.
*

215. It is required to deduce general formulas or rules

for the computations relating to simple interest.

216. To present the subject in a general point of view, let

us consider the five things that enter into the calculation,

viz.. Principal^ Interest, Rate, Time, and Amount.

Let p= principal, t= interest, r= rate per cent., t= time,

and a= amount.

Taking the dollar as unity, r will be a fraction, whose ae-

nominator is 100. If the given sum be put at interest for

one year, then <=1 j if for a longer period, ^>1 ; if for a

shorter period, t^l. The interest of $1 will evidently be

proportional to the rate and time jointly, or the interest of

$l=rx^ The rate and time being the same, any given

principal will be to any other principal as the interest of the

former is to the interest of the latter.

Hence - - ^\ i ^p : :rxt : i, ox i=pxrxt.

By making the necessary transformations, we obtain the

four following formulas

:

1. - - i=prt,

2 - - p=iL
^ rt

3. . - /=i.
pr

4. r=l
pt

These formulas may be enunciated in the form of general

rales.
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EXAMPLES.

1. What is the interest of $3875,20 for 3 years, at 7 per

cent, per annum %

2. What is the interest of $325 for 3 months, at 6 per

cent, per annum %

3. The interest of a certain sum is $92,75, the time 3

years and 6 months, and the rate 5 per cent. : what is

the suml

4. The interest received for $4070, at 9 per cent., was

$91,575 : how long was it at interest 1

5. The sum $367J was put at interest for 6 months, and

at the end of the time 'the interest paid was $183,55 •

what was the rate per cent. %

217. Since the amount is equal to the principal + the in-

terest, or a=p-\-prt, hy making the necessary transforma-

tions we shall have

1. - - a=p-{-prt,

% - ' p
1+r?

3. - ^ T=^i:2.
pt

4. - . ^=^Zf.
pr

These formulas may also he stated in the form of gen-

eral rules.

EXAMPLES.

1. If;?=:$895, r=7, and tz=z^, what is the value of a ?

2. If a=$7589,50, r^S, and ^=5', what is the value ofp^

3. If a=:$820,20, ;)=:$600, and t—^, what is the numer-

ical value of r ?

4. If a=$525,86, ;}z=$35,80, r=4, what is the numerical

value of ^ ?

FORMULAS RELATING TO COMPOUND INTEREST.

218. In Compound Interest the interest is supposed to re-

main in the hands of the borrower, and, being added to the
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principal at the end of each year, forms a part of the princi-

pal for the succeeding year.

219. Let p and r sustain the same relations as before, and

let a= the amount for the first year, and, consequently, the

principal for the second year, a'=: the amount for the sec-

ond year, a"= the amount for the third year, a"'= the amount

for the fourth year, &c. Then, as $1 will be to any given

sum as the amount of $1 for one year is to the amount of

that given sum for the same time, we shall have

\:p :: 1+r : a, or a =p(l-\-r),

And - l:p(l-^r) : : l+r : a', or a' =Xl+r)^
And - 1 :p{l-\-ry : : 1+r : a", or a" =p(l+ry,

And 1 :pll-\-ry : : 1+r : a'", or a" =p(l-{'r)\

&c.

Let A represent the amount for n years, and we shall

have

1 :;)(l+r)'*-' : : 1+r : A, or A=p(l+ry.

Hence, by making the necessary transformations, we ob-

tain the following formulas :*

1. - - A=p(l+rY,

2. . ^ p=-A.^.
(1+rr

These formulas may be stated in the form of general rules.

EXAMPLES.

1. If p= $3250, 71=8, and r=5, what is the numerical

value of Al
2. If A=$30,200, n=20, and rz=6, what is the numerical

value of ^ ?

3. If A= $1479,15, p=$1000, and n=6, what is the nu-

merical value of r ?

The fourth formula is omitted, since it would involve Logarithms,

which are treated of in a subsequent section.

Q2
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FORMULAS RELATING TO FELLOWSHIP.

220. Two men engage in trade together, and furnish

mopey in proportion to the numbers m and n ; they gain a

sum represented by g j it is required to deduce formulas

for the division of the gain, so that each man shall receive

his equitable share.

Let X— the share of the first, and y— the share of the

second

:

Then a?+y=g,

And - - - a? : y : : 771 : 7i, or my—nx.

Reducing these equations, we obtain

x=J^^-.

•-\-n

Hence, to find each man's share of the gain. Multiply his

stock hy the whole gain, and divide the product by the whole

stock invested.

Example. Two merchants, A and B, gained by trading in

company $20,480. A's stock was $15,000, B's $18,000:

what was each man's share of the gain %

221. Again: suppose three persons engage in trade, and

furnish money in proportion to the numbers lUj w, and p ;

they gain a sum represented by g j it is required to deduce

formulas for the division of the gain as before.

Let a?, y, and z represent the respective shares of the

three persons:

Then we shall have

X : y : : m : Uj or my—nx,

X : z : : m : Pj OT mz=px.

Reducing the above equations, we obtain

x=_^
m-{-n-{-p'
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Hence, to find each man's share of the gain, Multiply his

stock by the whole gain, and divide the product by the whole

amount of stock invested.

Example. Three merchants, A, B, and C, gained hy tra-

ding in company $1100}. A's stock was $1500, B's $1200,

and C*s $850: what was each man's share of the gainl

222. As the above formulas contain four things, viz^y

whole stock, whole gain, the particular stock whose share of

the gain is to be found, and that share of the gain, it is ev-

ident that any one of these may be found if the other three

be given.

Letting S= whole stock, S'= stock whose share of the

gain is to be found, g= the whole gain, and g'= share

of the gain to be found, and substituting these letters

in the preceding formulas, they become

1. - - g'=^.^ S

2. . - g=^'
. S'

3. . - S'=^.
g

4. . . S=^X
8"

EXAMPLES.

1. Two men, A and B, traded in company, with a joint

capital of $8000; they gained $1250. A's stock was

$3250 : what was his share of the gain 1

2. Three men. A, B, and C, jointly invest in trade $2725 ;

they gain $560, of which A receives as his share $120,

6 receives as his share $160: what was the stock in-

vested by each 1

3. Three men, A, B, and C, gain by trading $6000. A's
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stock was $8000, and he took as his share of the gain

$2800 : what was the whole stock invested 1

4. Two men, A and B, invest in trade $3000. A's gain

was $250, and his stock $2600 : what was the whole

gainl

223. Let us now consider the cases in which the stock of

the partners in trade has been invested for different lengths

of time.

224. Two men engage in trade together, and furnish

money in proportion to the numbers m and n, for the times

t and f ; they gain a sum represented by-g: it is required

to deduce formulas for the equitable division of the gain.

Let X and y represent the respective shares of the gain

:

Then we shall have

nt'x^=zmty,

Keducing these equations,

mtor
X=z^ 2__.

y= ^
mt-\-nt'

These results may be enunciated in the form of a general

rule.

225. Again : suppose three persons invest in trade money
in proportion to the numbers m^ tz, and p, for times ^, /', and

t'' ; the sum gained is represented by g : it is required to

deduce formulas for the equitable division of the gain.

Let a?, y, and z represent their respective shares of the

gain: then

x-\-yi-z=g,

nt'x—mty,

pt"x=mtz.

Reducing these equations,

mts:
X=z o

.

mt-^nt'-\-pt"

mt-^nt'-i-pt"
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mt-\-TW -\-pt"

These results may also be enunciated in the form of a

general rule.

Example. A, B, and C enter into partnership. A invests

$1200 for 3 years, B $2000 for 2 years and 9 months, C

$950 for 4 months. They gain $2400 : what is each man's

share of the gain ]

DISCUSSION OF EaUATIONS OF THE FIRST DEGRER

226. When a question has been solved in a general mai>

ner, that is, by representing the known quantities by letters,

it may be proposed to determine what values the unknown

quantities will take when particular suppositions are made

upon the known quantities. This is called the discussion

of that equation.

227. The discussion of the following problem presents

nearly all the circumstances that can ever occur in equa-

tions of the first degree.
*

PROBLEM OF THE COURIERS.

A courier sent out from a certain place travels in a right

line with a velocity expressed by n. After the first courier

had travelled a distance, a second was despatched after him,

travelling with a velocity expressed by m. At what dis-

tance from the starting point will they be together 1

In order to render the conditions of the question more

evident, let ED

1 1 1
( 1

C A B C

represent the line upon which the couriers travel, A
the starting point, B the point at which the first cou-

rier is when the second starts, and C the point at which

the second will overtake the first

:

Let x=AC, and y=BC

:

Then x—y=a^

R
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And —=y..
m n

Reducing these equations, we have

am, J an
-, and y:

.^. m—n M—n

DISCUSSION.

I. Let m >n.

228. In this case the values of x and y will be positive,

and the solution of the problem will exactly accord with the

enunciation j for if the second courier travels -faster than the

first, they will evidently meet somewhere in the direction

AD, and to the right of B.

II. Let OT< n.

229. In this case the values of x and y will be negative.

In order to interpret this result, we observe that, the courier

from B travelling faster than the courier from A, the inter-

val between them must increase continually. It is absurd,

therefore, to require that they should meet in the direction

AD. The negative values of x and y, then, indicate an ab-

surdity in the conditions of the question. To remove this

absurdity, we have only to suppose that the two couriers

start at the same time from B and A, and travel in the direc-

tion BE', in which case the equations will become

y—x=za,

And -=t
m n

f^ am J an
Or - - - 0?— , and y= ,

n—m n—m
which give the values of x and y positive, and indicate that

the couriers will come together at C instead of C.

III. Let m—n.

230. In this case the values of x and y become

am am
/».

—

—
m—n

an an

m—n
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In order to interpret this result, let us return to the ques-

tion. If the couriers travel with equal velocities, it is ev-

ident that the interval between them must always continue

the same, however far they may travel in either direction.

Indeed, on the hypothesis w=:w, the conditions of the ques-

tion produce

And X—y=0,

equations which are incompatible with each other. It is

therefore absurd to suppose that the couriers will come to-

gether on this supposition.

IV, Let m=n, and a=0.

231. In this case,

Oxm
X=:.

m—n m—n

an _Ox_m_0
jn—n m—n

In order to obtain a correct interpretation of this result,

it is only necessary to observe that, if the couriers set out

each from the same point at the same time, and travel

equally fast, there is no particular point at which one can

be said to overtake the other, since they will be together,

however far, and in whatever direction they may travel.

Indeed, on this supposition, the conditions of the problem

produce

a?—y=0,
x—y=0,

two dependant or identical equations. The problem is

therefore indeterminate, since we have, in fact, but one

equation with two unknown quantities.

THEORY OF NEGATIVE aUANTITIES.
232. It has already been shown, •

1. That adding a negative quantity is the same as sub-

tracting an equal positive quantity.

2. That subtracting a negative quantity is the same as

adding an equal positive.
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3. If a negative quantity be multiplied or divided by a

positive, the result will be negative.

4. If a positive quantity be multiplied or divided by a

negative, the result will be negative.

5. If a negative quantity be multiplied or divided by a

negative, the result will be positive.

233. We will now proceed to show that, if the conditions

of the problem are such as to render the unknown quantity

essentially negative, it will appear in the result with the

minus sign, although it may have been regarded as positive

in the statement of the problem.

1. The length of a certain field is a, and its breadth h:

how much must be added to its length that its contents

may be c ?

Let xz=z the quantity to be added to the length:

Then a-{-x=i whole length.

Since the area of a field is found by multiplymg its length

by its breadth, we have

ab-\-lxz=:c.

Reducing - - - xz=z-—a.

Now, letting a=8, 6=5, and 0=60, the equation becomes

a:^^—8= 12—8zzz4.
5

This value of x satisfies the conditions of the problem in

the precise sense in which it was stated.

Again: letting a=:8, 6=5, and c=30,

Then .... a:=r^—8=6—8=—2.

5

In order to interpret this negative result, let us return to

the original eq^uation

:

ab-\-lx—c.

Substituting - - - 8x5+5x—2=30j
Resolving into factors - - 5(8—2)= 30.

Hence we perceive that, though addition was required by

the enunciation, yet it was incompatible with the conditions
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of the question ; and the algebraic result, true to the condi-

tions of the question, detects the error in the enunciation,

and shows that x is to be subtracted from instead of being

added to the length of the side. Thus,

ab—bxz=c,

Or x=a-~^.
o

By substitution - - - a?=8--^=8—6=2.

This result answers to the question modified in this man-

ner:

The length of a certain field is a, and its breadth b: how
much must be subtracted from its length that its contents

may be c ?

234-. Discuss in like manner the following questions

:

2. A father is a years old, and his son b: in how many
years will the son be one fourth as old as the father 1

3. A man when he was married was a years old, his wife

b : how many years before his marriage was he t\vice

as old as she 1

EXPLANATION OF SYMBOLS.

Infinity.

235. A mathematical quantity is said to be infinite when

it is supposed to be increased beyond any determinate limits.

The symbols usually adopted by mathematicians to ex-

press such quantities are — and oo, A being used to repre-

sent any finite quantity.

In order to explain these symbols, let us resume the equa-

tions for X and y in the problem of the couriers:

am 1 an
,andy=:

;

ffi—n tn—n

Or, if m=n - - x=—, and y=--.

236. In order to explain these expressions for the values

12
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of X and y, we will show how these values are affected by

assuming different values for m and n.

If 7w= 3, and n—%

3a, and y= =2o.
3—2 " 3—2

If OT=:3, and %= 2,9,

icz=?^30a, and w=?l?^=:29a.

If»i=3, and»=2,99,

a;:zz^= 300a, and y=?l^=299a.
,01 ^ ,01

IfOT=:3, and7z=2,999,

ic=-^=3000a, and y=M??i^=2999a.
,001

' ^ ,001

If »jzz:3, and 71=2,9999,

ir=-?^= 30 000«, and y=M^^_?.= 29 999a, &c.
,0001 ^ ,0001

'

Hence we infer, that if the difference between m and n be-

comes less than any assignable quantity, the values of x and

y will be greater than any assignable quantity ; and _ or oo

is the proper symbol of infinity.

237. CoROL. Since, by the conditions of the question, a?=

y+a, which will continue to be the case when the values of

X and y become infinite, we infer that one mathematical in-

finity may be greater thdn another.

Infinitesimal.

239. A mathematical quantity is called an infinitesimal,

or sometimes nothing, when it is supposed to be decreased

below any determinate limits.

A
The symbols used to express such a quantity are — or 0.

CO

In order to explain these symbols, let us resume again the

equations

am J an
iC== , and y=-

w,—n in—n
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239. A course of reasoning similar to that adopted in the

preceding case will show that the values of x and y decrease

as the difference between m and n increases. Hence, when

that difference becomes greater than any assignable quan-

tity, the values of x and y become less than any assignable

quantity.

That is, x= =— , or the value of x may be expressed
m—n 00

by the symbol — or 0.
QO

And y=—— =^, or the value of y may be expressed by
m—n 00

the symbol _ or 0.
QO

240. CoROL. Since x=y4-fl, we infer that one infinitesimal

may be greater than another.

EXPLANATION OF THE SYMBOL OF INDETERMINATION.

0*

241. A quantity is said to be indeterminate when every

possible value will satisfy the conditions of the question.

242. The symbol used to express indetermination is -.

We have already seen that the equations x= "^
, and

m—n

, on the hypothesis m — n and a=0, reduce to x=
I—n

-, and y=-y and also that all possible values of x and y will

satisfy the conditions of these two equations.

243. We will, however, add another illustration to this

case.

I «»

Take the expression : if we perform the division, the
1

—

X

quotient will be 1 j ahd if we make x= 1, there will result

U . . . !=£=!=?.
l—x
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2. - - - h:^=i+x=i=l
l—x

3- - - - 1eJ=i+-+-=3=5.
drc, ad infin.

Hence every possible value will satisfy the conditions —

244. It should, however, be observed, that this symbol

does not always imply indetermination.

Thus, the expression x— , if a=b, will become
or—

r

But, resolving the terms of the fraction into factors,

^^(a-b){a'+ ah-\-b')_ d'-\-ab-\-b^

(a—bXa+b) ~ a-\-b '
^ *

which, on the supposition a—b^ becomes

X— .

a-\-a 'la 2

Hence we conclude that the symbol - , in Algebra, some-

times indicates the existence of a factor common to the two

terms of the fraction, which, in consequence of a particular

hypothesis, becomes 0, and reduces the fraction to the form

INEaUATIONS OR INEaUALITIES.

245. The principles established respecting equations will

in most cases also apply to inequations. As there are some

exceptions, we will here illustrate the principal transforma-

tions which may be made upon inequations, and then apply

those transformations to the determination of the limits of

unknown quantities.

246. Two inequations are said to subsist in the same sense

when the greater quantity stands at the right in both or at

* See Note C.
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the left in both, and ia a contrary sense when the greater

quantity stands at the right in one and at the left in another.

24-7. 1. We may always add the same quantity to both

members of an inequality, or subtract the same quantity

from both members, and the inequahty will continue in the

same sense.

Thus, let - - 2<12 ; adding 6 to both sides,

we have - 6+2< 124-6,

Or - . - 8<18.

Again: let - —2>— 12:

Then - - 6—2>6— 12, or 4>—6.

CoROL. A term may be transposed from one member of an

inequation to the other.

24-8. 2. If we add the corresponding members of two or

more inequations subsisting in the same sense, the inequa-

tion which results will exist in the same sense of those added.

Thus - - - 8>5,

And - - - 10>2.

Adding - - 19+8>2+5, or 18>7.

But if we subtract the corresponding members of one in-

equation from another subsisting in the same sense, the re-

sulting inequation will not always exist in the same sense.

Thus, from - - - 4.<7

Subtract - - - - 2<3.

There will remain - 4—2<7—3, or 2<4..

But if from - - - 9<10
We subtract - - - 6< 8,

There will remain - • - 9—6>10—8, or 3>2.

249. 3. If both members of an inequation be multiplied

or divided by any positive whole number, the resulting ine-

quation will exist in the same sense as the inequation mul-

tiplied.

Thus - - - - 6<10;
Muhiplying by 3 - - 18<30. ;

Or, again ... - ^<^;
Multiplying by 6 - - 2<3.
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CoROL. An inequation may be freed from fractions in the

same manner as an equation.

250. 4. If we multiply or divide the two members of an

inequation by a negative quantity, the resulting inequation

will subsist in a contrary sense.

Thus 6<10;
Muhiplying by —3 - - - —18>—30.

Or, again ... - i<i5

Multiplying by —6 - - - —2>— 3.

Hence it also follows, that if we change the sign of each

term of an inequation, the inequation which results will ex-

ist in a sense contrary to the inequation proposed j for this

.transformation will be equivalent to multiplying the inequa-

tion by —!
EXAMPLES.

1. Find the limit of the value of x in the inequation

„ 23^ 2a?
,
.

3^3
Clearing of fractions, 21a:—23>2a?+ 15

;

Transposing - - '21a?—2a?> 15+ 23;

Reducing - - 19a?>38;

Dividing by nineteen, a?>2.

2. Find the limits pf the value of x in the inequations

14a:+A>i|+230,

7

J^Tote.—To determine both the limits of a?, it is necessary

that we have two inequations existing in a contrary sense.

These inequations are not combined together like equations,

but reduced separately.

3. Find the limits of x in the inequations

X X ^7 2a?

5"^¥>5"^'3''

X X 6 X

7 14 5 10*



SECT. V
] INEQUATIONS. 139

4. The double of a number diminished by 5 is greater

than 25, and triple the number diminished by 7 is less

than double the number increased by 13. Required a

number that will satisfy the conditions.

Let x= the number : then, by the question, we have

2x—5>25,
3x—7<2a:+13.

Resolving these inequalities, we have ar>15 and a:<20.

Any number, therefore, either entire or fractional, compri-

sed between 15 and *20, will satisfy the conditions.

5. A shepherd being asked the number of his sheep, re-

plied that double their number diminished by 7 is great-

er than 29, and triple their number diminished by 5 is

less than double their number increased by 16. Requi-

red a number that will satisfy the conditions.

Resolving the question, we have a:>18 and x<21. Here

all the numbers comprised between 18 and 21 will satisfy

the inequalities ; but since the nature of the question re-

quires that the answer should be an entire number, the num-

ber of solutions is limited to two, viz., x=19, 07=20.

6. A market-woman has a number of oranges, such that

triple the number increased by 2 exceeds double the

number increased by 61, and 5 times the number di-

minished by 70 is less than four times the number di-

minished by 9. Required a number that will satisfy the

conditions. •

7. The sum of two numbers is 32 ; and if the greater be

divided by the less, the quotient will be less than 5, but

greater than 2. What are the numbers!

8. A boy being asked how many apples he had in his

basket, replied, that the sum of three times the number

plus half the number diminished by 5, is greater than

16 ; and twice the number diminished by one third of

the number plus 2, is less than 22. Required the num-

bers that will satisfy these conditions.
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SECTION VI. ;

Involution and Powers,—Of Monomials.—Of Polynomials.—
Binomial Theorem.—Evolution and Roots.—Square Root of

Jfumbers.—Cuhe Root of JVumbers.—General Method of ob-

taining any Root of Jfumbers.—Evolution of Monomials,—
Of Polynomials.—Calculus of Radicals.

INVOLUTION AND POWERS.

251. Involution is the multiplying anumber by itself till

it has been used as a factor as many times as there are units

in the exponent.

252. The product thus produced is called the power of

that quantity ; and the power is designated ^r^if, second^ third^

fourth^ &c., accordingly as the number has been used once,

twice, three times, four times, &c., as a factor.

253. To indicate the involution of a polynomial, or of a

monomial composed of several factors, the numbers should

be placed within a parenthesis, to the right of which the ex-

ponent should be written.

INVOLUTION OF MONOMIALS.

254. In order to obtain a general rule for the involution

of monomials, let the following proposition be demonstra-

ted, viz. : The power of the product of two or more factors

is equal to the product of their powers.

Let {abf represent the second power of the product of

two factors,

And a^lf^ the product of the second power of the same fac-

tors :

Then (abY—a^¥ ; for, by the definition of involution (Art.

251), {abf=zabxab=aaxbb= a'b\

Again: {abY—d^b'^} for {abY—obxabxabx .... taken

m times=aaa . . m iimesxbbb . . m times=a"'&"'.
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255. Now let it be required to involve Sah^ to the fourth

power

:

(3aby

=

3ai« x 3ab^ X3a6'x3aft« = 3x3x3x3x aaaa x bl'b^il'b*

= 81a*6'=3*xa'^*x6'^*.

256. The same reasoning will evidently apply to every

case of monomials ; hence, for the involution of monomials

we have the following general

RULE.

1. Involve the coefficient to the required power.

2. Multiply the exponent of each letter by the exponent which

denotes the power to which the monomial is to be involved.

J^ote 1.—If the number to be involved is positive, all its

powers will be positive (Art. 89). If it be negative, the even

powers will be positive and the odd powers negative (Art.

90).

^ote 2.—If the given number be fractional, involve both

the numerator and denominator. This results from the prin-

ciple that the product of fractions is equal to the product of

their numerators divided by the product of their denomina-

tors (Art. 149). Thus, ('^y=?x-=^.

Jfote 3.—The above rule is applicable to numbers having

negative exponents, since the negative exponent expresses

the reciprocal of a power (Art. 61). Thus, (a~^)^=a~'^^=

JVb^e 4.—The fourth power of a number is equal to the

square of the second power ; thus, (a)*=o X a X a x a=oa x aa

=(a')'. The sixth power is equal to the cube of the second

power
J
thus, a^z=axaxaxaxaxa=aaxaaxaa=(a^f, &;c.

EXAMPLES.

1. Required the second power of 8a'6'. •^tis, 640"^".

2. Required the third power of 5x^z, Ans. 125jV.

3. Required the third power of <6dfx, Ans. 2l6a'yr'.

4. Required the fourth power of 2aVc*. Ans, lea'd'^c'*.
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5. Eequired the fifth power of 2a5V. Ans. 32a^6'^a?2^

6. Required the second power of—6a^Z>^ Jins. 36a^6'^

7. Required the third power of—3aJc^.

Ans. —27a%«.
8. Required the sixth power of \d^h. Ans. i^-^-^c^^W,

9. Required the seventh power of—2a7^y.

Ans. -—128a;'y.

10. Required the fourth power of—4^a^2>.

Ans. 256a«6^

11. Required the fourth power of— .

Ans. ''''

12. Required the second power of 3a~^. Ans. 9a-*.

13. Required the second power of 1?^. Ans. _5?^*-.

U. Required the second power of ??-. Ans ^^^^^
82a? 6724a?2

15. Required the third power of 6a~^b~\

Ans. n6a-'b-^.

16. Required the fourth power of Sah~^

' Ans. 4>0%a'b-'^

17. Required the fourth power of lOx^z"^.

Ans 10000a?'V*».

18. Required the fifth power of ^a^xy^.

Ans. 1024a^V2/'°.

19. Required the fifth power of—Sabxy.

Ans. —U^a'b'xY.
20. Required the eighth power of ba^x.-^

Ans. 390625a'V.

21. Required the fourth power of^. Ans. i5??^'.
xyz x^y^z^

22. Required the second power of
ISyz

Ans,
400j?^

324yV'

ft
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23. Required the third power of
We'd-*

,1ns.
27a-*'^'^

24. Required the fifth power of Wb^c*dK

Ans, 1024a«'J'»c»(i».

25. Required the seventh power of—2aa:ccP.

Ans. --128aVc'(/'\

26. Required the nth power of _^. Ans. ^ ^
.
-.^ ^

8cdy S"c"d'Y

27. Required the eighth power of —Wb^.
Ans. 65536a'«6^.

28. Required the fourth power of lOx^fz.

Ans. lOOOOa^'y^^.

29. Required the sixth power of—3a^b^c*d-\

Ans. 7•29a'«i'»c"(^*.

30. Required the third power of 12a-^b-^c-^dr*.

Ans. 1728a-*6-»c-«(f-'«.

INVOLUTION OF POLYNOMIALS.

257. Multiply the polynomial by itself till it has been used

as afactor as many times as there are units in the exponent de-

noting the power to which it is to be raised; the final product

will be the power required.

EXAMPLES.

1. Required the first, second, third, fourth, and fifth pow-

ers of the binomial a-\-b,

(a-\-by=a -i-b ------ 1st power.

(a-hJ)*=a'+2a*+6' 2d power.

a+b

a*+2a'6-h ah"
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(a+6)
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a+b
a'-j-3a'b-\-3aW-\- ah''

a!'b+ 3a'b^-\-3ah'+b*

(a-\-byz=a'-{-U'b-\-6a%^-^4>ah^-\-b^

a-\-b

a'-{-4^a'b-j- 6a'b'-i- 4<a'b^-\- a¥

{(l-\-hy=a'-^ba'b+ \Oa?b^+ lOa'b^-{-bab^-{-¥ -

2. Required the first, second,' third, fourth,

ers of the binomial a—h.

{a—by=za—b - - - - -' -

a—b

c^— ab

ab-\-W

(^a-.bf=a^—^ah-{-b^

a—b

— a^-{-2ab'—b'

(a-^by=a^-3a'b+ 3ab^—b^

a—b

— a'b-{-3a^b^—3ab''+b^

(a-'by=a'—Wb-\-Qa^W—^ab^+b'-

a—b

a^—^a'b^ 6a'b'

— a'b-\- Wb^
4>a'b^+ ab' .

Qa'h^+^ab'-l^

(a—by=a'—^a'b^- IQa^b'^—lOa'b^+bah'—b'

3. Required the second power oi a-\-b,

< a -\-b

a-\-b

o^+ ab

+ ab+b^

a^-^2ab-\-y, Ans,

[sect. vi.

3d power.

4th power.

5th power,

and fifth pow-

1st power.

2d power.

3d power.

4th power.

5th power.
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J^ote.—Since a and b may represent any numbers what-

ever, we infer the following general principle : The square

of a binomial is the square of the first term, plus twice the

product of the two terms, plus the square of the last term.

4. Required the second power of a—b.

a—b
a—b

a"— ab

— ab-\-b^

a^—2ab-\-b\ Ans,

JhCott.—Since a and b may represent any two numbers, a

being greater than 6, we infer the following general princi-

ple : The square of d residual is the square of the first term,

minus twice the product of the two terms, plus the square

of the last term.

5. Required the second pt)wer of 6a4-3A.

Ans. 36a'-|-36aJ-h95».

6. Required the second power of la—2J.

Jlns. 49a'—28a6+4J'.

7. Required the second power of 2a6+3c.

Am. 4a'6'-fl2a&c+9c'.

8. Required the second power of babe—2acd,

Ans. 25a'6V—20a»*c'rf+4aVrf».

9. Required the third power of 2a -|- 36.

Ans. 8a'+36a»6-f 54a^-f 276^

10. Required the third power of 2a— 5&.

Ans. 8a'—eOa'/j-hloOaft'—1256*.

11. Required the second power of a-|-l.

^n*. a«-f-2a-fl.

12. Required the second power of 2a— 1.

wf;i«. 4a»—4a-|-I.

13. Required the third power of a+1.

^n*. a»+3a*+3a+l.
13 T
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3a—

1

14f. Required the second power of
b+c

Ans, 5^6.^1.

15. Required the third power of a-\-b-\-c. Ans, (i?-\-3(i^'b

+ 3a'c4- 3a^>'+ 3ac'+ 6a&c+ Wc-i^il&-\-W-\-&,

16. Required the fourth power of 3a+26c.

Ans. 81a^+216a='k+216a2iV+96aiV+ 16&V.

17. Required the fifth power of 6a?— 2i. ./?7i5. 7776a7^

—

12960a?^Z>+8640:c^Z>2—2880a?'^^+480a?&^— 32Z>^

18. Required the second power of 6a4-2&— 3c.

Ans, 36a'+ 24''a6—36ac+ 4.^>2—126c+ Qc";

19. Required the third power of 2a^

—

3x,

Ans, 8a«—36a^T+54aV—27a:'.

la—W
20. Required the second power of

8a?+y

*

64a:'-f 16a:y+/*

21. Required the second power of—±—
Ans,

9a?y

9/^2—246(i+ 16(i^

6a~^b^
22. Required the third power of

Ans,

3a—

1

216a-'b'

27a^—27a^+9a—

1

23. Required the fourth power of 4a^6—2c^

.^715. 2b6a'^b'—51'ila'b'c^+3S4>a'b'c'—n8a'bc'-\- 16c\

24. Required the fourth power of ^_.

^^^ 4>096aVy-^
^*'

^H^aH^'+4^Tl'
258. Remark.—Any factor may be transferred from the

numerator to the denominator, or from the denominator to

the numerator of a fraction, by changing the sign of its ex-

ponent.
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1. ?fl'^!!!xx-«=^xirArt.061)=4-.
y y y a?^ a^y

' 2/~ 2 y' 2 ^ ~ 2 *

CX-' c X-* c c \ x^J c c

. 2a-* 2 ^_, 1 2^1 ;, 2i»
*• ZT-i=^x^ Xr-2=c:><-l><^=^-3•

5. ^=exx»=^^i=^-x-=^x4=-^.
c c c ' or c c x-* cx~*

fi <M?~* _ ay*

a-'b-' 1
8.

3a6 Sa^b''

Q 3a _3a%*
' la-'b-y T~"

10 -^^
,

=5a'Z>Vcf.

BINOMIAL THEOREM.

259. The method of involving polynomials by repeated

multiplications is somewhat tedious, especially when high

powers arc required. This has led mathematicians to seek

for other methods. The most simple method known is the

one invented by Sir Isaac Newton, called the Binomial The'

orem. Its use is very important and extensive in algebraic

operations.

260. Let us take the binomird a-h^, of which a is called

the leading quantity, b the following quantity. Involving by

the preceding rule, we shall find,

(a-hiy=a'4-2a64-i*

(a-f6)*=a'+3a«6-f 3a 6»4-^.

(a+by=a'-\-Wb-^ 6a^t^-\' ^ab^-\-b*.

(a+6)*=a*-f 5a*A-h lOa^A^-f- 10a^6'-h 5a b'+b\

la+by=a*+6a'b+ 15a^A^4-20a'6'-f 15a^i*+ ^a b'+b\

(cf+A)'=a'+7a«64-21a'6*H-35a«6*+35a'6*+21a**'+7aA«+3\
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261. By observing the several results above, the number

of terms will be found to be greater by 1 than the index de-

noting the power to which the binomial is to be expanded.

Thus,

The square has three terms
j

The cube has four terms
;

The fourth power has five terms

;

The fifth power has six terms
j

The sixth power has seven terms

;

The seventh power has eight terms

;

And if the nih. power of a-\-b were required, the number

of terms would be n-\- 1. Hence, if the index of a binomial

be a positive whole number, the number of terms will be

one greater than the number of units contained in the index.

262. By attending to the exponents of the letters in the

above powers, we shall find that they preserve an invariable

order.

In the square, the exponents \
^^ ^ ^^® ^' ^' ^ '

^ of ^> are 0, 1, 2.

In the cube, the exponents ^
of « are 3, 2, 1, ;

^
^ of 5 are 0, 1, 2, 3.

In the fourth power, the exponents \
^^ ^ ^^® ^' ^' 2, 1, ;

^ "^

^ of Z> are 0, 1, 2, 3, 4,

&c.

Two laws are discoverable here

:

• 1. The sums of the exponents of the two letters in each

term are equal, and each sum is equal to the index de-

noting the power to which the binomial was to be raised.

2. The exponent of the leading quantity in the first term

is the same as the index denoting the power to which

the binomial was to be raised, and decreases regularly

by 1 J the exponent of the following quantity is 1 in the

second term, and increases regularly by 1.

263. If it be required to involve a-^b to the power denoted

by n^ the exponents of a would be

«, n—l, n—2j n—Sy —3, 2, 1, j
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Of i, 0, 1, 2, 3, 71—3, n—2y w— 1, n.

Or, expressing the letters without the coefficients,

b\

264. The same principle may be applied if the exponents

be negative or fractional. Thus,

(a-f6)-*-o-»+a-='64-a-'^>'+a-'6'+a-«J'-far'5*4-, &c., ad

infin.

Also,

{a-\-b)^=J-^a~h-{-a~h'-{-a~^b^-\-a~ib'-ha~^!/'-{-, &c., ad

infin.

It is evident that the above two series will never termi-

nate, as a negative or fractional index can never become

by the successive subtractions of a unit ; hence, when the

index of the binomial is negative or fractional, the number

of terms in the series will be infinite.

265. The law of the coefficients is more complicated,though

not less remarkable.

In the preceding series of powers (Art. 259), the coeffi-

cients taken separately are,

- - 1, 1.

- - 1, 2, 1.

1, 3, 3, 1.

1, 4. 6, 4, 1.

- 1, 5, 10, 10, 5, 1.

1, 6, 15, 20, 15, 6, 1.

1, 7, 21, 35, 35, 21, 7, 1.

In the first power

In the second power

In the third power

In the fourth power

In the fifth power

In the sixth power

In the seventh power

By examining the above series of coefficients, it will be

discovered,

1. That the coefficient of the first term is 1.

2. That the coefficient of the second term is the same as

the index denoting the power to which the binomial is

to be raised.

3. If the coefficient of any term be multiplied by the in-

dex of the leading quantity in the same term, and the
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product divided by the index of the following quantity-

increased by 1, the quotient will be the coefficient of

the following term.

266. By recurring to the above series of coefficients, it

will be observed that they increase and then decrease in

the same ratio, so that the coefficients of terms equally dis-

tant from the first and last terms are equal. It is sufficient,

then, to find the coefficients oi half the terms ; these, repeat-

ed in the inverse order, will give the coefficients for the re-

maining terms.

267. By inspecting the coefficients farther, we shall dis-

cover that in any power of a+i, the sum of the coefficients

is equal to the number 2 raised to that power. Thus, the

sum of the coefficients

In the second power is - J - - 4=: 2^;

In the third power is - - - - 8==2^;

In the fourth power is - - - - 16= 2^;

In the fifth power is - - - - 32=2'

;

In the sixth power is - - - - 64= 2^;

In the seventh power i^ . - - 128=2',

268. If it be required to involve a-\-l to the power ex-

pressed by ra, first, taking the letters and exponents without

their coefficients, we shall have

Let A, B, C,^ (Sec, represent the coefficients of the several

terms in order, excepting the first and the last, which

are always 1.

A=w, coefficient of the second term.

2

B=^i:^, coefficient of the third term.
2 '

{n''-n){n- 'X)
coefficient of the fourth term.

2x3
The same coefficients may be used in the inverse order

for the last terms of the indefinite series. Then we shall

have, by restoring the coefficients,
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(fl-fJ)"=a"4-Aa'^'6+Ba'^'6»+Ca''-'6* . . . Ca»6'»-»+Ba«J'^«-h

269. We proceed, in the next place, to consider the signs

to be prefixed to the several terms produced by the involu-

tion of a binomial. When a term is composed of several

factors, the sign of the term will evidently depend upon the

proper signs of the factors ; if an even number of them be

minus, or if none of them be minus, the quantity will be

positive ; if an odd number of them be minus, the quantity

will be negative (Art. 90). Thus, analyzing the fourth pow-

er of a-{-by each term is composed of one numerical and

four literal factors, oil plus j and consequently each term will

be positive. Thus,

lXaXoXaxa=aVthe first term;

^Xaxaxaxb=4^a^by the second term;

6Xaxaxbxb= 6aW^ the third term
;

^Xaxbxbxb =4.aA', the fourth term j

lxbxbxbxb=b\ the fifth term.

The letters and exponents are a^-j- a^b-^ a-b^-\- ab*-\-b*;

The coefficients are - - 1 +4« +6 +4 +1.

Compounding the series, (a-f 6)S=a* + 4ja'6H-6a*6*+4aZ>'-f 6*.

Again, (a—by=a*-Aa'b+ea^b^—4^ab^-{-b\

lxaxaXaxa=+a*, the first term;

4XaXaXax

—

b=—i-a'A, the second term;

6xaxax

—

bx—b=-{-6a^b^, the third term;

4xax—bx—kx—b=—4a6^, the fourth term;

lx—b-\ bx—bx—b= + b\ the fifth term.

The letters and exponents are a*— c^b-{- a*b*— ab'^+b*
;

The coefficients are - - 1+4 -f6 +4 +1.

Compounding the series, (a

—

by=a'^—4a'^-|-6a^6^

—

^ah'^+b*.

270. The signs of the terms are also affected by the sign

of the exponent.

Let it be required to expand (a+d)"* i
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The letters and ^ ^.,^ ^.3^^ ^_,^,_^ a-^^^^ &c., ad infin.

;

exponents are S

The coefficients ) j _2 ^3 _^^ &c.,adinfin.

\ ar'^— a~^b-{- ar^W— a~^Z>^, &c., ad infin.

;

are

Multiplying, ""

(a4-Z.)-2=ra-2—2a-^^>+ Sa-^i^—4a-^6^ &c., ad infin.

;

Ur, (^+6) =—

—

—A-——— > &c., ad mtin.
a^ a^ or a'

Again: let it be required to expand («—&)~^:

The letters and

exponents are

The coefficients
^ ^ _^ _^3 . _^^ &c., ad infin.

are
J

Multiplying,

(a_ j)-2^a-2_f_2a-364-3a-^&2+4a-55^ &c., ad infin.

;

Or, (a—^) —-,+-T+—r+ -^j ^c., ad infin.
a^ or a* a""

271. The principles of the Binomial Theorem may be

stated as follows

:

I. The exponent of the leading quantity in the first term of the

power is the same as the index denoting the power to which the

binomial is to be raised^ and decreases regularly by 1. The ex-

ponent of the following quantity is 1 in the second term, and in-

creases regularly by 1 in the succeeding terms.

II. The coefficient of the first term is 1 ; that of the second the

same as the power to which the binomial is to be raised ; and

universally^ if the coefficient of any term be multiplied by the

exponent of the leading quantity in that term, and the product be

divided by the exponent of the following quantity -j-1, the result

will be the coefficient of the succeeding term.

JVote 1.—The learner will find it convenient to obtain the

series of the letters and exponents, and the series of coeffi-

cients separately, and then compound them by multiplying

their corresponding terms, as in the preceding cases.

J^ote 2.—The preceding discussions relating to the Bino-

mial Theorem will suggest some methods of verifying the

work, and also of abridging it.
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EXAMPLES.

1. Required the fourth power of a+b.

Expanding letters, &c., a*-{- a^b-\- a'i'-f ai^-\-b*',

Finding coefficients - 1+^ -\-6 -}-4 +1.

Compounding, (a-{-bY=a*-\-Wb-^Qa'b^+^aly'i-b', jJns

2. Required the fourth power of a—b.

The letters and exponents are a*— c£^b-\- a^l^— aft*-f 5*5

The coefficients are - - 1 -|-4 +6 +4 +1.

Compounding, - {a—by=a*—^(^b^^a^b'—^a}^-\-b\

3. Required the fifth power of a-\-b and of a

—

b.

4. Required the sixth power of a+^ and of a

—

x.

5. Required the seventh power of a:-fy and of x—y.

6. Required the eighth power oi a-\-b and of a

—

b.

7. Required the eighth power of x—y.

8? Required the fourth power of \-\-a.

Expanding the terms - l*-hl'xa+l'Xa*-fl'xa'4-o*;

Finding coefficients - 1 +4 +6 4-4 +1.

Compounding, and reject- >

^
mg the factor 1 - J

9. Required the fourth power of 3a4-25.

Let x=3a, and y= 25: the« (3a+26)*=(x-fy)\
Expanding this last expression, x*+ or'y-f- xy-|- xy^-\-y^l

Finding coefficients - - .1+4 -|-6 +4 -fl.

Compounding - (a:+yy=x*-t-4ar'y-f-6a:'y*+ 4jry'-}-y*.

Restoring the values of x and y,

(3a+ 2Z.y ^ {Zay + 4 x (Sa^ x 25 +6 x {^af x (25)*4-4 X
3ax(25)='-}-(25)*.

Involving the terms,

(3^+25)* = 81a* + 4x270^x25 + 6 X9a«x45»+4X 3ax
85»+165*.

Multiplying factors,

(3a+25)*= 81a*+216a'54-216a'5»+96a5»+165*.

10. Required the fifth power of 2cx—4y.

Let a=2cx, and 5=4y : then {lex—4y)*=(a— 5)*.

U
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Expanding the terms, a^—.a'b-\- aW— a%'^-\-ah''—b^i

Finding coefficients, 1+5 +10 +10 +5 +1.

Compounding, {a—Vf=za''—ba'h-\.l(ia?b''—10a%^+bab''—l\

Restoring the values of a and J,

(2ca:-4y)^z=32cV—320cVy+ 1280cV/—25600^/

+

2560ca??/*—1024^^

11. Required the fourth power of a^ ^b^.

Let x^a\ and y=Z>^: then {a^+by={x-]-yy.

Expanding the terms - a:'*+ a:^y+ a:^+ x'if-\-y'^ :

Finding the coefficients - 1+4 +6 +4 +1.

Compounding - (a?+2/)''—a?''+4ar'y+6a?y+4a?y'+y*.

Restoring the values of x and y,

{a^+by=a?-\-^a%^-\-Qa'b'+A>a^b^-\-VK

12. Expand (2^^—5J)^

13. Expand {Zabx+yy,

14. Expand L_z=(a+*)-^
{a+bf ^ ^

15. Expand (a+a:)"^.

16. Expand {a-^b)~K

17. Expand (6a5c

—

laxyy.

18. Expand (33?^—4y)^

19. Expand {c^—Qax)K

20. Expand (3a^— 1)*.

272. The powers of any polynomial whatever may be

found by the Binomial Theorem. Take, for example, {a-\-b

+c)^ Letting a?=:&+c, we shall have

{aJtb-{-cy={a-\-x)\

Expanding - - - (a+a?)^=a^+3a^a?+3aa?^+a7'.

Restoring the value of a?,

(a + Z>+cy=za^+3a^(^>+ c)+ 3a(i + c)2+(&+c)^

Expanding and multiplying factors,

(a+Z>+cy=a'+3a'^>+3a2c+3a6'+6ak + 3ac2+&=»+3J'c

+3k2+c^

2. Required the third power of a—b-\-c.

3. Required the third power of 25c—3a;+y.
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EVOLUTION AND ROOTS. .

Extraction of the Square Root of JVumhers,

273. A power of a number has already been defined to be

the result of multiplying the number into itself continually,

until the number has been used as a factor as many times as

there are units in the exponent denoting the power.

The second power of 6:r6 ><6= 36.

The third power or cube of 6::^6 x 6 x 6= 216.

The fifth power of47=47 x 47 x 47 x 47 x 47=229,345,007.

Involution is the method of finding the various powers of

numbers.

Evolution is the reverse of this: it explains the method of

resolving a number into equal factors, called roots.

274. When a number is resolved into two equal factors,

one of the factors is called the Square Root ; when resolved

into three, the Cube Root j when into four, the Fourth Root,

Sec.

The first ten numbers are 1,2, 3, 4, 5, 6, 7, 8, 9, 10.

And their squares - 1, 4, 9, 16, 25, 36, 49, 64, 81, 100.

By inspecting this table, it will be perceived that among

entire numbers, consisting of one or two figures, there are

nine only which are squares of other numbers. The square

roots of other numbers, expressed by one or two figures, will

be found between two whole numbers differing from each

other by unity. Thus, 55, comprised between 49 and 64,

has for its square root a number between 7 and 8 ; 78 has

for its square root a number between 8 and 9. The num-

bers in the second line of the table being the squares of

those in the first, the numbers in the first are the square

roots of those in the second ; therefore the square root of

numbers consisting of one or two figures will readily be

found by the table.

275. Let it next be required to find the root of a number

consisting of more than two figures. It has already been

shown that the square of any binomial, as (a-\-by=za-\-2ab

+6*. Every number may be regarded as made up of a cer-
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tain number of tens and a certain number of units ; thus,

46 is composed of 4 tens and 6 units, and may be expressed

thus, 40+ 6; the square of which may be obtained in the

same manner as the square of a-{-b ; thus,

40+ 6

40 + 6

1600+240

240+36

1600+480+ 36=^2116.

In this result, as in the Square of the binomial a-{-b, in

which a may represent tens and b units, it will be observed

there are three parts, viz. : the square of the tens, 40^,= 1600

;

twice the product of the tens by the units, 2x40x6=480;
and the square of the units, 6^=36. These three parts will

be found in the second power of every number.

276. We next proceed to reverse this process, and find

the square root of 2116.

As the square of 4 tens, or 40, is 1600, and the square of

5 tens, or 50, is 2500, the root can contain only 4 tens.

Subtracting the square of this - - - 2116

Square of 4 tens, or 40 - - - - 1600

516

This remainder contains twice the product of the tens by

the units, plus the square of the units. Now, if we double

the tens, which gives 80, and divide 516 by 80, the quotient

is the figure of the units, or a figure greater than the units.

This quotient figure can evidently never be too small, but

it may be too large, as 516, besides containing double the

product of the tens by the units, may contain tens arising

from the square of the units. The figure representing the

units can never be greater than 9. 516-^80=6. To ascer-

tain whether 6 express the units, we multiply 80 by 6= 480,

and subtract it from 516: the remainder is 36; from this

subtract the square of the units 6 x 6= 36 : the remainder is

; hence 4 tens and six units, or 46, which is the root.
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The operation will stand thus

:

2116^

1600

2116^40-f-6=46, root.

40x2=80)516
480

""is

6x6= 36

277. The work may be abridged by several modifications.

By observing the table of the squares of the numbers 1, 2,

3, 4, &c., it will be perceived that the square of a num-

ber consisting of one figure can contain no figure of a high-

er denomination than tens. If we annex a cipher to the

numbers 1, 2, 3, 4, &c., they become

10, 20, 30, 40, 50, 60, 70,. 80, 90, 100;

And their squares are

100, 400, 900, 1600, 2500, 3600, 4900, 6400, 8100, 10000.

From which we see that the square of tens will contain no

figure of a less denomination than hundreds, nor higher

than thousands. When, then, the square root of a number

consisting of three or four figures is required, in finding the

tens, we may reject the first two figures on the right, as they

can in no way influence the result. As the square of hun-

dreds can contain no figure of a less denomination than

thousands, when the square root of a number consisting of

five or six figures is required, in obtaining the hundreds we
may reject four figures at the right liand. When, then, the

square root of any number is required, we may divide it

into periods of two figures each (if a number consist of an

odd number of figures, the last period will contain but one

figure), and the number of these periods will be the number

of figures in the root. Each of these periods, in connexion

with the remainder resulting from the operations on the

preceding period, may be used independently of the follow-

ing periods in obtaining that figure of the root contained in

14
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it. In the above example, likewise, in which the square

root of 2116 is required, as the product of tens by units ev-

idently can contain no figure less than tens, after subtract-

ing the square of the tens, the next step, the division, may
be as well performed after rejecting the cipher from the

right of the tens, and the unit figure from the right of the

dividend. Moreover, it will be perceived that, instead of

finding first twice the product of the tens by the units, and

then the square of the units, we may obtain the sum of both

numbers by placing the unit figure at the right of the tens

in the divisor, and multiplying the result by the unit figure.

With these modifications, the work of extracting the square

root of 2116 will stand thus :

2il6]46

16

86)516

516

Find the square of the tens in the first period j subtract,

and bring down to the right of the remainder the next peri-

od. Divide by twice the tens, rejecting the right-hand fig-

ure of the dividend. Place the quotient figure in the root,

and at the right of the divisor, and multiply this last num-

ber by the quotient figure, and subtract j as there is no re-

mainder, 46 is the root.

Kequired the square root of 53361.

5336i|231

4

^43)133

129

461)461

461. ^ns. 231.

278. The same process may be extended to any number,

however large. From the preceding operations, the follow-

ing rule for the extraction of the second root will be readily

inferred

:
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RULE.

I. Separate the number into periods of two figures each^ be-

ginning at the right hand: the left hand period mil often con-

tain but one figure,

II. Find the greatest square in the first period on the left

;

write the root in the place of a quotient in division^ and subtract

the second powerfrom the left-hand period.

III. Bring down the next period to the right of the remainder

for a dividend^ and double the root already found for a divisor.

See how many times the divisor is contained in the dividend, ex*

elusive of the right-handfigure, and place the result in the root^

and also at the right of the divisor.

IV. Multiply the divisor thus augmented by the last figure of

the root, and subtract the product from the dividend, and to the

remainder bring down the next periodfor a new dividend.

V. Douhle the whole root already found for a new divisor

^

and proceed as before, till all the periods are brought down. The

root will be doubled if the right-handfigure of the last divisor be

doubled.

If there is no remainder after all the periods are brought

down, the proposed number is a perfect square. If there is

a remainder, by the above rule, the root of the greatest

square number contained {n the proposed number will be

obtained.

When the proposed number is not a perfect square, a

doubt may arise whether the root found be that of the great-

est square contained in the number. This may be deter-

mined by the following rule. The square of a-|-l is a'-f-2a

-f 1 J whence the square of a quantity greater by unity than

a exceeds the square of a by 2a+l ; or, the difference be-

tween the squares of two consecutive numbers is equal to twice

the less number augmented by unity.

Hence the entire part of the root cannot be augment-

ed unless the remainder exceed twice the root found plus

unity.
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Required the square root of 1287135

9 '~

65)387

325

Now, as 35x2+l=71>62, 35 is the entire part of the

root.

EXAMPLES.

1. What is the square root of 451,5841 ^ns. 672.

2. What is the square root of 9,186,9611 Jins. 3031.

3. What is the square root of 13,032,1001 ^ns. 3610.

4. What is the square root of 4,543,164,409 1

^ns. 67,403.

5. What is the square root of 669,420,148,761

1

^ns. 818,181.

279. From Avhat has been done, it will be perceived that

there are many numbers the roots of which are not whole

numbers; and although there must be a number which, mul-

tiplied into itself, will produce any number whatever, yet

these numbers can have no assignable roots, either among

whole or fractional numbers. The proof of this depends on

the following proposition, which has already been demon-

strated (see Art. 213)

:

Every number, P, which will exactly divide the product,

AxB, of two numbers, and which is prime to one of them,

will divide the other.

The root of an imperfect power evidently cannot be ex-

pressed by a whole number, and, to show that it cannot be

expressed by a fraction, let c be an imperfect square j if its

root can be expressed by a fractional number, let - repre-
a

sent that fractional number : then we shall have
|^

o

Or ... - c=_.



SECT. VI.] SQUARE ROOT OF NUMBERS. 161

If c be not a perfect square, its root will not be an entire

number j that is, a will not be divisible by b ; but it has been

demonstrated that if a is not divisible by Z>, axa or a' is not
2

divisible by b or bxb=b'^, whence — cannot be equal to an
tr

entire number c.

All numbers, both entire and fractional, have a common
measure with unity ; on this account they are said to be

commensurable j and since the ratio of these numbers to

unity may always be expressed, they are called rational

numbers.

The root of a numbeir not a perfect square can have no

common measure with unity, as no fraction can be assigned

sufficiently small to measure at the same time this root and

unity. The roots of such numbers are called incommensu-

rable or irrational numbers. They are likewise called surds.

EXTRACTION OF THE SQUARE ROOT OF FRACTIONS.

280. The square root of a fraction may be found by ex-

tracting the square root of the numerator and of the denom-

inator ; thus, the square root of ^s is |. If the numerator

or denominator is not a perfect square, the root of the frac-

tion cannot be found exactly, but the root to within less

than one of the equal parts of the fraction may readily be

found by the following

RULE.

Multiply both terms of the fraction by the denominator which

does not change the value of the fraction ; then extract the square

root of the perfect square nearest the value of the numerator^ and

place the root of the denominator under it ; this fraction mill be

the approximate root.

Required the square root of | : multiply both terms by 5,

which gives ^^y of which f is the required root exact to

within less than |. We might multiply both terms of if by

any perfect square, and thus approximate the root mor«

nearly. Thus, multiplying by 144, it becomes ||^§, the rotti

X
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of which is nearest ||. Thus we have the root of f to within

less than j^^.

The approximate root of a number not a perfect square

may be found in a similar manner within a given fraction.

Multiply the proposed number by the square of the denomina'

tor of the fraction ; then extract the square root of the product to

the nearest unit, and divide this root by the denominator of the

fraction.

This rule may be demonstrated as follows

:

Let a be the number proposed, of which it is required to

find the root'to within less than - : a—-— ; let r be the en-
n TV-

tire part of the root of the numerator an^ ; ar^ will be com-

prised between r^ and (r-|- 1)^ ; consequently, the square root

of a will be comprised between those of — and 1_2_jl that
r^ n^

is, between - and ^ ^ , whence - will be the root of a to
n n n

within less than -.
n

Find the square root of 59 to within less than ^^'

59'x (12)^=8496.

V 8496= 92. ff, ^ns,

281. The manner of determining the approximate root in

decimals is a consequence of the preceding rule.

To obtain the square root of a number within J^, yi^,

to-Vtt? ^^"> "^6 multiply, by the preceding rule, the number

by (10)^, (100/, &c., or, what is the same thing, we add to

the right of the number two, four, six, &c., ciphers j then

extract the square root of the product to the nearest unit,

and divide this root by 10, 100, 1000, &:c.

The number of ciphers annexed to the whole number

should always be double the number of decimal places re-

quired to be found in the root. The roots of decimal frac-

tions, whole numbers, and decimals, may be found by the

preceding rules. The number of decimals in the proposed



8£CT. YI.] CUBE ROOT OF NUMBERS. 163

number must always be made even by annexing ciphers if

necessary. A vulgar fraction may be changed to a decimal

fraction before extracting its root, and a mixed number to

a whole number and decimal.

EXAMPLES.

1. What is the square root of 31,027 to within ,01

1

Ans. 5,57.

2. What is the square root of 0,0100,1 to within ,00001 \

Ans, 0,10004.

3. What is the square root of \\ to withiti ,001 \ \
Ans. 0,886.

*

4. What is the square root of 2}^ to within 0,0001

1

Ans. 1,6931.

5. What is the square root of 7 *? Aiis. 2,645+.

6. What is the square root of 4-^ 1 Ans. 2,027+.

7. What is the square root of i^ 1 Ans. 0,8044+.

8. What is the square root of 0,01001 1

Ans.

9. What is the square root of 0,0001234. 1

Ans.

10. What is the square root of 227 to within x^o o7 '^

*

Ans. 15,0665.

11. What is the square root of 3,425 to within yiy 1

Ans. 1,85.

12. What is the square root of
fjj^f 1 Ansi | J.

13. What is the square root of 11}^ to within ,001 1

Ans. 3,418.

14. What is the Square root of 3 to within ,00000000011

Ans. 1,7320508076.

EXTRACTION OF THE CUBE ROOT OF NUMBERS.

282. The third power^ or cube of a number, is the product

arising from multiplying this number into itself till it has

been used three times as a factor. The third or cube root is

a number which, being raised to the third power, will pro*

duce the proposed number.
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The first ten numbers being

1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

Their cubes are, 1, 8, 27, 64, 125, 216, 343, 512, 729, 1000.

The numbers of the first line are the cube roots of the

second.

By inspecting these lines, we perceive there are but nine

perfect cubes among numbers expressed by one, two, or three

figures ', the cube root of other numbers consisting of one,

two, or three figures, cannot be expressed exactly by means

of unity, as may be shown by a process similar to that used

in Art. 279.

The cube root of an entire number consisting of not more

than three figures, may be obtained by merely inspecting

the cubes of the first nine numbers. Thus, the cube root of

125 is 5 ; the cube root of 30 is 3 plus a fraction, or within

one of 3.

To extract the cube root of a number consisting of more

than three figures, we present the following

RULE.

1. Separate the given number into periods of three figures

each, beginning at the right hand : the left-hand period will often

contain less than three figures.

2. Find the greatest cube in the left-hand period, and place its

root on the right, in the place of a quotient in division. Sub-

tract the cube of this figure of the rootfrom the first period, and

to the remainder bring down the next period, afid call this num-

ber the dividend.

3. Multiply the square of the root just found by 300 for a

divisor. Find how many times the divisor is contained in the

dividend, and place the quotient for a second figure of the root.

Multiply the divisor by this secondfigure^ and place the product

under the dividend. Multiply the former figure orfigures of the

root by 30, and that product by the square of the last figure,

and place the result under the last ; under these two products

place the cube of the last figure of the root, and call the sum of

the last three numbers the subtrahend.
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4. Subtract the subtrahend from the dividend^ and to the re-

mainder bring down the next period for a new dividend ; and in

finding a divisor and subtrahend^ proceed precisely as before^

and so continue till all the periods have been brought down.

We proceed next to the explanation of this tule.

The cube of a binomial, as a-\-b=c^+2a'b^'^ab''-\-b\ In

the number 45, a may represent tens, and b units, or we max
find the cube of 45 writing it 40+5.

45=40-f- 5
.

40-h 5

"

200+ 25

1600+200

(45^=1600+400+ 25

40+ 5

8000+2000+125
64000+16000+1000

(45)»=64000+ 24000+ 3000+ 125=91125

283. On inspecting the above examples, it will be per-

ceived that the cube of a number composed of tens and units

is equal to the cube of the tens, plus three times the prod-

uct of the square of the tens by the units, plus three times

the tens by the square of the units, plus the cube of the

units. Let it now be required to reverse the above process,

and find the cube root of 91125.

(40^=64000, (50)^=125000.

Hence the cube root is evidently 40 plus a certain number

of units. Subtracting the cube of 40, that is, the cube of the

tens, there remains 27125, which contains the remainder of

the parts above specified. As it is evident that the third

power of tens can have no significant figure below the fourth

place, in finding the third root of the tens the three figures

on the right may be rejected, as they will not influence the

result. As the cube of 100 is 1000000, in obtaining the cube

root of hundreds in a number consisting of more than six

figures, we may reject the first six figures on the right as
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not influencing the result ; hence any number of which the

root is required may be separated into periods of three fig-

ures each, each one of the periods may be used separately

in connexion with the remainder resulting from the prece-

ding operations, and the number of periods will be the num-

ber of figures in the root. The cube of no one of the digits

.contains more than three figures. In the above example,

rejecting the first three figures on the right, the cube root

of the tens found in 91 is 4. Subtracting the cube of this

(64), and bringing down the next period, the result of the

operation is 27125. This must contain, from what has been

said, triple the product of the square of the tens by the

units, together with two remaining parts already specified.

As the square of tens contains no significant figures less

than hundreds, we may reject the two right-hand figures

from 27125, and dividing the remainder by three times the

square of the tens, Ave should obtain the unit figure. In

practice it is found more convenient to use the whole divi-

dend, and to annex two ciphers to the divisor, as, instead of

multiplying the square of the tens by three, we multiply by

300. For the same reason, instead of multiplying the prod-

uct of the square of the units by the tens by 3, we multiply

by 30.

Dividing 27125 by the square of the tens (16), multiplied

by 300, which =4800, the quotient 5 will be the unit figur.e

sought ; or it may be too large by 1 or 2, as there may be

hundreds arising from the other parts of the root sought

:

this can only be determined by trial. Having now the tens

and the units, and having already subtracted the cube of the

tens, we next proceed to subtract the other parts of the

cube from the remainder.

The square of the tens, multiplied by 300 and by the units,

the last figure of the root - - - - =24000

The tens, multiplied by the square of the units

and by 30 =3000

The cube of the last figure or units - - - = 125

Sum - - 27125
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As there is no remainder, 45 is the root.

The operation may be exhibited as follows

:

91125:45

(4)'= 64
'~~

(4)*= 16) X 300=4800)27125

4800 X 5= 24000
(5)«x4x 30= 3000

(5)'=5x5x5= 125

000

284. Any number, however large, may be considered as

composed of units and tens : the process of finding the cube

root may therefore be reduced to that of the preceding ex-

ample.

Required the third root of 9663597.

9663597!213, root.

(2)»= 8
'

Di » imr. T"

(2)*x 300= 1200 ) 166^, first dividend.

1200x1= 1200
2x30x(l)'= 60

(1)'= L
^_^ 1261, first subtrahend.

(21^x300= 132300)402597, second dividend.

132300x3= 396900

21x30x(3^)= 5670

(3^)= 27^

402597, second subtrahend.

OOOOW
Should the divisor not be contained in the dividend as

prepared above, place a cipher in the root, and bring down

the next period to form a new dividend.

The difference between the cubes of two consecutive whole num-

hers is equal to three times the square of the least number^ plus

three times this number
^
plus 1.

Let a and a-j-1 be two consecutive whole numbers.

(a+l)*=tf'+3o'+3a-|-l.

(a-f-1)'—a'=3a' + 3a+l.

(90)»-(89)*=3 X (89)^+3 X 89+ 1 =24031.

In extracting the cube root of any number not a perfect
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cube, if any of the remainders are equal to, or exceed three

times the square of the root obtained, plus three times this

root, plus 1, the last figure of the root is too small, and must

be augmented by at least unity.

285. The third root of a fraction is found by extracting

the third root of the numerator and denominator. When
the denominator is not a perfect third power, we may ob-

tain the root approximately by multiplying both terms by

the square of the denominator j thus, in obtaining the cube

root of ^, we multiply both terms by 49 J
the fraction then

becomes i|^|, the root of which is nearest ^ accurate to

within ^. We might multiply both terms of ^^^ by any

perfect cube, and then extract the cube root, and we should

approximate still nearer the true rooti By a process similar

to that explained in the article on square root, we may ap-

proximate the third root of a number not a perfect third

power, by converting it into a fraction, the denominator of

which is a perfect third power. Thus the approximate root

of 15 may be found, putting it under the following form

;

15x1 2=^= 25920

(12f 1728
'

the third root of which is f|, or 2^2 accurate to within less

than j^j. The root may be obtained with greater accuracy

by using some number greater than 12.

In such cases it is most convenient to convert the propo-

sed number into a fraction, the denominator of which shall

be the third power of 10, 100, 1000, &c. Let it be required

to find the third root of 25 to within ,001 ; converting 25

into a decimal, the denominator of which is the third power

of 1000, viz., 25,000 000000, the third root of which is 2,920

to within ,001, we have then v^ 25=2,920 accurate to with-

in less than ,001.

To approximate the third- root of an entire number by

means of decimals, we annex to the proposed number three times

as many ciphers as there are decimal places required in the root

;

we then extract the root of the number thus prepared to within a
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timV, and point offfor decimals as many places as there are deci-

tnal figures required i?i the root.

If the proposed number contain decimals, beginning at the

place of units, separate the number, both to the right and

left, into periods of three figures, annexing ciphers, if ne-

cessary, to complete the right-hand period in the decimal

part. Then extract the root, and point off for decimals in

the root as many places as there are periods in the decimal

part of the power.

The third root of a vulgar fraction may be most readily

obtained after converting it first into a decimal fraction.

EXAMPLES.

1. What is the cube root of 75686967 1 ^ns. 423.

2. What is the cube root of 128787625 1 ^ns. 505.

3. What is the cube root of 2054.83447701 1 ^ns. 5901.

4. What is the cube root of 52458 1674,6251 Ans, 806,5.

5. What is the cube root of 1003,003001 1 Ans. 10,01.

6. What is the cube root of 0,756058031 \ Ans, 0,911.

7. What is the cube root of 32977340218432 %

Ans, 32068.

8. What is the cube root of 473 to within ^V '^- •^^*- ^h
9. What is the cube root of 79 to within ,0001

1

Ans. 4,2908.

10. What is the cube root of 3,00415 to within ,0001 \

Ans. 1,4429.

11. What is the cube root of 0,00101 to within ,01 \

Ans. 0,10.

12. What is the cube root of 0,000003442951

1

Ans. 0.0151.

13. What is the cube root of 6iff f 1 Ans. Iff
14. What is the cube root of iJfH '^ *^^^' ff

•

TO EXTRACT ANY GIVEN ROOT OF A WHOLE NUMBER.
286. Any root exceeding the third, consisting simply of

two and three, as factors, may be found by the preceding

rules j
thus, the fourth root may be found by extracting the

square root twice ; the sixth root by extracting the third

15 Y
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root, and then the square root of that ; the twelfth root hy

extracting the square root twice, and then th^ third of the

last root. Before proceeding to give a rule for the extrac-

tion of any root, we subjoin a table of roots and powers.
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{a-\-bY=a'-\-ba*b-{- 10a'ft'+ 10a'lr'-^Dab*-^b\

{a-{-by=d'+la'b-\-2la'b'-{-S5a*lf'-^3ba'b*-\-2la'b'-^lab'+b\

In these examples a and b may represent tens and units

in any given number, as 47 j and to obtain the root of any

given power, we evidently must reverse the process by which

the power is obtained from the root.

By carefully attending to the preceding explanations, and

the different powers of the binomial (a-{-b), the reason of the

following rule for extracting any given root of a proposed

number will readily be discovered:

1. Divide the number into periods of as many figures each as

there are units in the index denoting the root,

2. Find the first figure of the root by trials and subtract its

power from the left-hand period^ and to the remainder bring down

the first figure of the next periodfor a dividend.

3. Involve the root to the next inferior power to that which is

given, and multiply it by the number denotijig the given power^

and it will be the divisor.

4. Find how many times the divisor is contained in the divi-

dend, and the quotient will be another figure of the root, or 1 or

2 too large.

5. Involve the whole root to the given power, and subtract it

from the two left-hand periods of the given number; bring down

the first figure of the next period to the remainder for a new div'

idend, find a new divisor, another figure of the root, and again

involving the whole root to the given power, subtract it from the

first three left-hand periods. Thus proceed till the whole root is

obtained.
•

Required the fifth root of 36936242722357.

36936242722357|517
5^= 3125

5* X 5= 3125, first divisor. 5686, first dividend.

(51)*= 345025251, subtrahend.

(51)* X 5= 33826005, 2d divisor. 243371762, 2d dividend,

(517)*= 36936242722357

0000000
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287. The preceding rule may be put in another form, em-

bracing the same principles, but more consistent with the

method by which we have explained the extraction of the

second and third roots.

RULE.

1. Separate the numler into periods of as many figures as

there are units in the index denoting the rooti

2. Find by trial the root of the first period : this will he the

first figure of the root : place this figure to the left^ in a column

called FIRST column ; then multiply it by itself and place the

product for the first term of a second column. This, multi-

plied by the same figure, will give the first term of a third col-

umn. Thus continue until the number of columns is one less

than the units in the index denoting the root. ,

Multiply the term in the last column by the same figure, and

subtract the product from the first period, and to the remainder

bring down the next period, and it will form the first dividend.

Jlgain, add this same figure to the term of the first column,

multiply the sum by the same figure, and add the product to the

term of the second column, which, in turn, must be multiplied-

by the same figure, and added to the term of the third column,.

and so on till we reach the last column, the term of which will

form the first trial divisor.

Jlgain, beginning with the first column, repeat the above pro-

cess until you reach the column next to the last ; and so continue

to do until there are as many terms in the first column as there

are units in the index denoting the root, observing in each suc-

cessive operation to terminate in the column of the next inferior

order.

3. Seek how many times the first trial divisor, when there are

annexed to it as many ciphers, less one, as there are units in the

index, is contained in the first dividend ; the quotient figure

will be the secondfigure of the root.

Then proceed to form a new series by annexing this figure to

the last term in the first column ; multiply the result by the last

figure, and add it to the last term in the second column, advan-
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cing the number to be added two places to the right of the other

before adding. Multiply this result by the same figure^ and add

the product to the last term in the third column, having previ-

ously advanced it three places to the right of that term ; proceed

in the same manner to the last term^ observing to advance the

numbers added to the different columns as many places to the

right of the terms as the number expressing the order of the col-

umn ; that iSy advancing the terms of the first column one place,

those of the tEcpND column two places, Src Multiply the term

thus obtained in the last column by the last'figure of the root,

and subtract it from the dividend ; to the remainder bring down

the next period for a new dividend, and proceed to find a divisor

and the third figure of the root in the same manner as the second

was obtained.

Proceed in the same manner^till all the periods are brought

down. If there is still a remainder, the process can be extended

by forming periods of ciphers.

Required the third root of 103823.

Ist col.

4

8

127
1

2</ col.

16

48, first trial divisor.

5689

10382347

64 '-

39823, first div.

39823

288. It will be perceived that this method of extracting

the cube root is similar to that already explained. Let a-}-

J=40-h7=47(a+Z»f=a»+3a'A+3aZ»»+ ^^ We subtract first

the cube of the tens, a*=64. We next form the divisor,

which is 3a'=48 ; 16, the first term of the second column,
is once the square of the tens ; 8, the second term of the
first column, is double the tens j multiplying this by the
tens (4), the product is twice the square of the tens (32)

;

this added to 16, the square of the tens, gives 48, three times
the square of the tens. Instead of rejecting two figures on
the right of the dividend, we annex two ciphers to the divi-

sor. The second figure of the root is the result of the di-

vision. Then there remains to be obtained and subtracted
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from the given number^ 3a^b-\-3ah'^-\-h^ : this may be put in

another form, thus :
(
{3a-\-b) x b-\-3a^) x b. On inspecting the

above work, it will be perceived that 127=3a+&; this, mul-

tiplied by 7 (b), becomes S89= {3a-\-b) X b ;• adding 4800 ^Sa^,

the result is 5689 ; multiplying, according to the rule, by 7

(b), we have 39823=( (3a+i) x^>+3a') x^;. The same expla-

nation will apply, however extended the operations may be.

Required the fifth root of 36936242722357.

^
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What is the seventh root of 1231171548132409344 '?
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EXAMPLES.'

1. Find the fifth root of 418227202051. Jins. 211.

2. Find the fourth root of 75450765,3376. Ans. 93,2.

3. Find the fifth root of 0,000016850581551.

^7X5.. 0,1 11.

4. Find the fourth root of 25^6,88187761. Ans. 7,09.

5. Find the sixth root of 2985984. Ans. 12.

6. Find the eighth root of 1679616. Ans. 6.

7. Find the seventh root of 2. Ans. 1,10409, nearly.

EVOLUTION OF MONOMIALS,
*

289. From a previous demonstration (Art. 156), it is evi-

dent that the root of the product of two or more factors is equal

to the product of the roots. Thus, \/ a^b*c^z= Va^xVtf^xV c\

Again, by the definition of evolution (Art. 274), \/c^=c^',

for c'xc^'^c^^^c'; hence v/"?=c^-^^ or ci=c\

And, ^~Sc'=2c^
',

for 2c''x'2c'x2c'=Sc' -, hence ^Sc'zzz

^8"x ^7'=2xc''r-\ or 2(^=^c\.

The same reasoning will evidently apply to every case of

monomials. Hence, for the evolution of monomials, we have

^the.following general

J?:. RULE. t.

1. Extract the required root of the coefficient.

2. Divide the exponent of each literal factor by the number

denoting the root, and annex the result to the root of the coeffi-

cient.

JVote 1.
—

"With regard to the sign to be prefixed to the

root, it is important to observe, *
^

a. An odd root of a number will have the same sign as the

number itself. Thus, the cube root of a^, or ^a^=^a, for ax

axa—a^\ and the cube root of

—

a^, ox ^—a =—a, for

—

ax
—flX —a=—a^,

b. The even root of an affirmative number is ambiguous.

Thus, the square root of a'', or ^fa=±a; {or a Xa=a\ and

,

—

ax—a=+a ; also, the square root of 16, or \/16=±4,

for 4x4=16, and -4x-4=+ l6.
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c. The even root of a negative number is impossible. Thus,

the square root of —a', or V—a*, can be neither +« nor

—a, for -\-aX'{-a=-^a^f and —aX

—

a=z-\-a^. Also, the

square root of— 16, or V— 16, can be neither +4 nor —4.

J^ote 2.—The root of a fraction is equal to the root of the

numerator divided by the root of the denominator. Thus,

v\-=— : for— X —= 3C-.
c ck c* ci c^i c

^ote 3.—The above rule for the evolution of monomials

is equally applicable where the exponents are negative.

Thus, the square root of a~^, or y/ a~*=ar^ =a~^ ; for a~*=:

I; hence, ^a-^=^l=l=a-\
a* V a* or

EXAMPLES.

1. Bequired the square root of da*b^,

2. Required the square root of 64a*a?*. Arts. Sa'oc^,

3. Required the cube root of 21a'b\ A?is. 3a'b.

4. Required the fourth root of 16a^a?'y. Ans. 2aVy*«

5. Required the square root of .-— Aits. -^.
^ ^ 9a?y 3a:/

6. Required the fifth root of 243a'°6^ Ans. Sa'b.

7. Required the fourth root of 16o-^Z>*. Ans. 2a-^b.

8. Required the sixth root of 64a®a:'y. Ans. 2ax^yh,

9. Required the third root of Sa-^b-^c^, Ans. 2ar'b-^c,

10. Required the square root of 196a*6V. Ans. 14a^i~'c*.

11. Required the square root of 784x^2*'. Ans.^Sxi^z^.

12. Required the square root of—J-. ' Ans. —^.
^ ^ 496V 7k»

13. Required the cube root of —Tta^b^. Ans. ~3a^b^.

14. Required the nih. root of a"J*'c~*". Ans. aV^cr*.

15. Required the fifth root of—32a'^6'V*. Ans. —1ah^(?.

16. Required the fourth root of Sla^^^V. Ans. 3(iShc^

.

17. Required the cube root of—64a~^Z»"^c-'^

Ans. —4a-'J-*(r^.

Z
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18. Required the square root of 44 la?^3/V. ^ns.^lx'^yz^,

19. Required the square root of 576a^^>-^c-''c?'^

20. Required the fifth root of —243a?-'2/'°;s-»^

Ans. —3x-yz-\

21. Required the square root of . Ans. —^^.

290. If all the factors of which the monomial is composed

are not complete powers of the same name as the root, it is

evident that the root of the entire number cannot be obtain-

ed. Still the expression may he simplified by removing that

factor which is a complete power of. the same name as the

required root, from under the radical sign. This is done on

the principle that the root of the product is equal to the product

of the roots.

Thus,V8^ = v/4a2x 26== v/4?x \/'2i= 2a V26.

And, ^2Ub'=4^Sb'x3a='^Sb^x^3a=2b VSa.

And, V6a"Z> =ya" x^b=Va'' xVQb=:a V6b.

Hence, to reduce radicals to their simplest forms

:

1. Resolve the quantity under the radical sign into two faC'

tors, one of which shall be a complete power of the same name as

the root.

2. Extract the root of this factor, and multiply it by the co-

efficient of the radicalf if it has any, and prefix the result to the

radical sign under which the factor that is not a complete power

will remain.

EXAMPLES.

Required the simplest form of \/S2a'*b'^c.

Ans. U^by/Yc,

2. Required the simplest form of ^/^Sa^¥c'^d,

Ans. '7ab^cW'2d,

3. Required the simplest form of v^24a^c^^

Ans. 2ad'VSc,

^. Required the simplest form of \/ b4^a^xy'-^z\

* Ans. 3aSjz^V~^.



SECT. VI.] EVOLUTION OF MONOMIALS. 179

5. Required the simplest form of VS2a*b'c.

Jlns. QaVV^c,

6. Required the simplest form of a/—^.V 4fox y

V 48x^y V 16x* 3y V 16x* V 3y ^x' V 3y

2^ V 3^*
Jlns.^^f.

7. Required the simplest form of V^a^b—l^a^x.

Jlns. 2aN/2A— 3x.

v/8a»6- 12a«x= v/4a2 X (2A-3x)= v/4o^ X x/26-3a:=2a

V2^3^

8. Required the simplest form of ^^/.JlfL—

Ans. ^l/E
3c \^ d

9. Required the simplest forip of ^24a'c— 32tt'cx.

Ans. 2a^3c—4cx.

10. Required the simplest form of y/c^-^a^b^.

Ans. a^l+^.

11. Required the simplest form of \/^Oba^b*c^de.

v'405a»6V(/e= v/81a'6Vx v/5^=9a*»Cv/"Wer

^/w. 9a^CN/5a(ie.

12. Required the simplest form of '^QOba'b^c'd^.

Ans. lWb^(^ds/bacd.

13. Required the simplest form of v^lOUaVc'd

Ans. 13a«6*cv/6aicd

14. Required the simplest form of V —Sd'x.

v/-8a«x=v/4a'x-2j;=v/4?Xv/"^^^=2av/^r2i.

Ans. 2av/— 2a:.

15. Required the simplest form of v/ — 16.

Ans. 4v/^n".
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EVOLUTION OF POLYNOMIALS.

291. We might give rules for the extraction of the differ-

ent roots separately, but it will comport better with our

purpose to introduce the student at once to a general rule

by which we may evolve any root whatever. The reason

for the following rule will be sufficiently obvious if we re-

cur to the formation of powers by the binomial theorem or

by actual multiplication ; and, indeed, the work verifiear itself.

• RULE.

1. Arrange the terms according to the powers of one of the

letters^ so that the highest power shall stand in the first term, the

next highest in the second, Sfc.

2. Find the root of the first term, and place it in the quotient

;

then subtract its powerfrom the first term, and Iring down the

second term for a dividend.

3. Involve the first term of the root to the next inferior power,

and multiply it by the index of the given power for a divisor.

Divide the dividend hy this divisor, and the quotient will he the

second term of the root.

4-. Involve the terms of the root thus found to the given power,

and subtract itfrom the whole polynomial. Divide the first term

of the remainder by the divisor first found ; the quotient will be

another term of the root.

5. Proceed in this manner till the power obtained by the invo-

lution of the terms of the root is equal to the given polynomial.

This will be the case only when the true root is found.

EXAMPLES.

1. Kequired the square root of 4a^-{-4ai-f 6^

4>a^-\-^ab-{-b\
\
2a-{-b. Ans.

4.a^

4a) * -\-^<ab^

4a=^+4a64-6'

2. Required the cube root of a -|-3a''— 3a^— lla'+6a^-j-

12a-8.
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oe^3a5«3a*-lla*+6a»+12a-8 |a«+a-2. Jlns.

3a*)* +3a»

a«+3a*+3a*H-a*

3a0* • -6a*— 12a='

a6_|-3a6_3a*-lla^+6a'+l:2a-8.

3. Required the fourth root of 16a*+96a»6+216a«6«-f-

216air»-f81J*.

16a*4-96a'64-216a*6*+216ai'H-81J*. |
2a+3^. Ans.

16a*

32a') • +96a»J

16a*+96a'i4-216a«6»4-216a^>'+8l6*.
'

4. Required the cube root of a«—6a^64-15a*J*—20a'^>'+

15a'6*— 6a5»H-6^ Ans, a^—'lab+ h''.

5. Required the fifth root of 32a»-80a*a:H-80aV-40aV

+ lOox*—X*. Ans, 2a

—

x,

6. Required the fifth root of a'+ 5a*6+10a'6»4-10a*J'+

5aZ>*-f J*.
^ Ans, a+ 6.

7. Required the sixth root of a»—6a«6+15a*^—20a='6»+

l^a^b^—%ab^-\-b\ Ans, a—b.

292. Remark 1.—The square of a binomial consists of

three parts, viz., the square of the first term, twice the prod-

uct of the two terms, and the square of the last term. Hence

the second power of the simplest polynomial will consist of

three terms ; and every trinomial in which, when the terms

are arranged, the extremes are complete squares, and the

middle term is double the product of the square roots of the

extremes, is a perfect square, whose root may be found by

the following

BI7LE.

Take the square roots of the two terms that are complete pow^

erSj and connect them by the sign prefixed to the other term*

16
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1. sfa"- -i-2ab i-b^ =a +h.

2. Va" —^ah +6^ =a —5.

3. x/a^ +2a +1 =0+1.

V 3 9 3

5. x/36y2+36y +9 =6^+3.

6. V^d^ -Qdk +A2 =:3c?-A.

7. v/a'Z>2+2ak(^+c2t/2-a6+cJ.

8. ./^-^ +-^ ..^ -1

293. JRemark 2.—Since the fourth power of a quantity-

may be found by squaring the second power, it is evident

that the fourth root may be obtained by extracting the

square root of the square root.

Thus, V^*=\/ V^=y/^=a.

And, V^'=\/v~^=V^^=a,Scc.
Hence,

1. To obtain the fourth rootj we may extract the square root

of the square root.

2. To obtain the sixth root, we may extract the cube root of the

square root, Src. •

> EXAMPLES.

1. Required the square root and fourth root of 16a'' -j-

96(^b+'21QaW-\-216ab^+Slb\

Ans, 4a'+12a6+95^ and 2a+3J.

2. Required the sixth root of a;'— 12a?^+60a?''—160ar'+

240a:'— 192a;+64. *^ns. a?—2.

3. Required the eighth root of a^-\-^a'b+'^Sa%''+bQa'b^-\'

10a''¥+bQa^b'-{-2'^a%^+^aV^b\ Ans. a+b,

4. Required the ninth root of a^+9a«i+36a'Z»2+84a^5''-{-

126a^6^+126a^55+ 84^=^6^+ 36a2Z>'-h9a5«4- *'. Ans. a^b.

294. Remark 3.—If the polynomial is not a perfect pow-

er, it may sometimes be simplified in the same manner as

monomials. ^
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1. Required the simplest form of y/5(^-\-l0ab-\-5tl^.

2. Required the simplest form of \/o'6+4a'^-f4o^'

jJns. {a-{-2b)y/ab.

3. Required the simplest form of V2a'+8a*ft+12a*6*4-

4. Required the simplest form of VSa*b—9a^t^-{-9a^l/^—
3a^. •^ns. (a—b)V3ab.

295. Remark 4.

—

Roots may also be obtained by the Bino-

mial Theorem, since n in the general formula (Art. 268) may

be either an integer or a fraction. ' The series produced by

the expansion of a binomial, however, will never terminate,

since the successive subtractions of unit's from the fraction-

al exponent of the leading letter can never reduce that ex-

ponent to 0.

EXAMPLES.

1. Expand by the Binomial Theorem (a-\-by.

The exponents in the successive terms of the result will

be as follows

:

Of a

Of J

0, 1, 2, 3, 4, &c.

Hence the letters, without their coefficients, will be

J^arh+a~h--{-a~^l/'-^a~h\ &c., ad infin.

Proceeding as in Art. 271, we shall obtain for the coeffi-

cients of the successive terms,

*» 3> 2 X —^"r2=—£4, —2^X —f"^"=2X6, iisX 5^T-4«=—

8,4^8'
****"

Or - 1, i, —I, tV
—ihy &^c-» «^ ^^fi^'

Hence, by compounding the series of letters and coeffi-

cients, we obtain

(a+»)*=ai+d*_i2*!+fd^_?±', &c, ad infin.
^ ' 8 8 16 128 ' '

•'
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Transferring a, where it is affected with the negative ex-

ponent, to the denominator, as in Art. 258, the expression

becomes
x 1 b b'' V b'

Ca-\-by=a^-{-—1——3-1- 5

—

Y, &c., adinjin,

2. Expand (a—b)^. *,

The exponents, obtained as in the last example, are as

follows

:

Of/7 1 1 1— 3 ^ 1— 5. S 1— 8 ^f.

Of 6 0, 1, ^ 2, 3, &c.

Hence the letters, &c., will be

ai—a~^b-\-a-^b^—am\ &c. adinjin.

The coefficients, obtained as before, are

1, h ix—1-^2=—3-e, —34x—f--3=3^, &0.

Or - - l+^—re+Hgj &CC., ad infin.

1 ± A- ^^' 2.5Z>"

Hence - ^a-b)^=a^^^^-^^^^j-^^^^^j,6cc., adinjin.

EXAMPLES.

1. Expand by the Binomial Theorem (a-^b)^.

Diminishing the exponents ^ successively by 1, the expo-

nents of a, in the successive terms, are i,—^, —|, —|, &c.

(Art. 271.)

The coefficients obtained by the general theorem (Art.

271) are as follows : 1, i, i X -_|-7-2=:—|,—}x—f
-^3=yV•

2. Expand (a-^bf.

3. Expand ( I +a:)^.

4. Expand (a+&)^.

5. Expand (a—b)^.

6. Expand (a—a?)"^.

7. Expand b{a^—b)-\

8. Expand (a^-bx)-^.

9. Expand V2=(l+ 1)^

CALCULUS OF RADICALS.

296. A radical quantity is the indicated root of an imper-

fect power; as, \/2, \/a, and \/b.

Radicals are similar when they are composed of the same

numbers or letters, placed under the same radical sign or

index. Thus, v/a, 4v/o, and a^a are similar radicals*
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Before entering upon equations of the higher degrees, we
will consider some of the transformations that may be made
upon algebraic expressions involving radicals.

CASE I.

297: To reduce a rational number to theform of a radioed,

RULE.

1. Involve the given number to a power of the same name as

the root.

2. *^pply the corresponding radical sign or index to the power

thw produced,

1. Reduce 3a to the form of the fourth root.

3a involved to the fourth power equals 81o*.

Applying the radical sign, 3a=V81a*j or applying the

fractional index, 3a=(81a*)*^.

2. Reduce 5c^b to the form of the third root.

Jins. Vl25a'^, or {I25a«i»)^.

3. Reduce 2ax'y* to the form of the eighth root.

Jlns. 4^2560^3^, or (256a«x*V"A
4. Reduce {a^cx^ to the form of the fourth root.

^ns, ^^ya'cV", or {-^ja'c'x'^)K

6. Reduce _—_ to the form of the third root.
Wd-'if

Ans V-?Z^!^' or
/27aW\.}

CASE II.

298. To introduce a rational coefficient under the radical sign

or fractional index.

We have already seen (Art. 290) that a part of the root may
be removed from under radicals of the form Va'^b, Thus,

^~^= Va^Xb= V^x Vb=aV'^.
Now, by reversing this process,

a Vb=z ;/T" X !t/b= ^~cFxb= yo^.
Hence we have the following

RULE.

1. Raise the rational coefficient to a power of the same name

as the root indicated by the radical sign or fractional index.
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2. Multiply the quantity under the radical sign or index by

this power, and place the given radical sign or index over the

product,

EXAMPLES.

1. In the expression 3a\/26, let the coefficient be introdu-

ced under the radical.

Za^/2b=: \/~9? X y/2h=:'^Wx2bz= >/l8a^. Ans.

2. In the expression ia^-^Sax, let the coefficient be intro-

duced under the radicaL ^ns. y/l92a'^x.

3. In the expression 2a\4:Xyy, let the coefficient be intro-

duced under the fractional index.

2a\4xy)^=(8ay x {4xyy= (Sa' X 4xyY={32a^xyY. Ans,

4. In the expression 6v^l3, let the coefficient be introdu-

ced under the radical. . Ans. \/2808.

5. In the expression 2al{2db^y, let the rational cofficient

be introduced under the fractional index. Ans. (IQa^h^) .

6. In the expression (a + Z>)\/aA, let the rational coefficient

be introduced under the radical sign.

Ans. Vl^'Wxab='sf a%^2a^y'-\-ah\

7. In the expression
^ (__£_) , let the rational coeffi-

cient be introduced under the fractional index.

Ans, ' "*" ^ '

\a%''-\-h'')

CASE III.

299. To reduce radicals of different indices to equivalent radi-

cals having a common fractional index.

RULE.

1. Reduce the indices to a common denominator.

2. Involve each quantity to the power expressed by the numer-

ator of the reduced index.

3. Take the root denoted by the denominator,

EXAMPLES.
1 1

1. Reduce a^ and b^ to a common index.

a*=a'^^^=(a''y^, i i

3
^ \ Ans, (a^y^, and (b^y^

b^z=b^^=(bY^,



SECT. VI.] ADDITION OF RADICALS. 187

2. Reduce 2 and 3 to a common index.

_ _ Ans. 8*^, and 9^»

3. Reduce \/^ and v^^ to a common index.

vT=(i)*=(i)'=((i)')*=(TV)*-

4.. Reduce
( ^ ] and

| ^ ]
to a common index.

_ ^~.(C)'-(|)'.
5. Reduce v^|, y/\y and ^2 to a common index.

__ Ans. i'^l296, ^'V656T, and '-^8.

6. Reduce V^h ^"^^ v'5^ to a common index.

Am. V 150^j, and '^151^^

CASE IV.

ADDITION OP RADICALS.

300. If the radicals are not similar, and cannot be made

80 by reduction, it is evident that the addition can only be

expressed.

Thus, s/a-\->/h can be reduced to no simpler form.

301. If the radicals are similar, they may be added by the

following'

RULE.

Add the coefficients^ and to their sum annex the common radical,

J^ote.—If the radicals are not similar, they may frequently

be made so by reduction.

EXAMPLES.

1. Add 4\/ax, 2\/aj:, 5v^ax, and Z^^/ax^

^\/ax

2s/ax

by/ax

3iv'ai

lii'/ox. Ans. 14iJ\/ax.

2. Add 3a^^ and 5c^^ Ans. (3a+5c)^|.
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3. Add\/8andN/32.

[sect. VI.

v/8 =V4> x2==v/4 X\/2=:2v/2.

V32=n/16x2=x/16x%/2-4v/2.

4. Add i/50 and v/l28.

5. Add (SGa^y)^ and (25y)^.

6. Add ^54^ and ^1280^.

Jlns. eV2.

Ans. 13\/2.

' Ans. (6aH-5)v/y.

Ans. 4av/J-y.7. Addy^^^d y/^.
/Q>,2 /9^2

s/ Va' Xj\= Va' XVj\=: «n/tV-

4a\/yV-

21

24

Ans. (b-^y)Vb^^

Ans. 4<a^2b.

8.Add./^and,/122.V 147 V 294

9. Add^i"and\V^^.' V 13824

10. Add i/b^ and Vby^

11. Add ^"32^ and 2a</2b.

12. Add 4>(a+x)^ and (4a'^>2+4a%)^.

./?»s. (4+2a5)v/a4-a7»

13. Add v/f", 4v'l2, and 3 s/~J~ Ans. 9v/3.

14. Add ^192 and ^24. Ans. 6^3.

15. Add 3^5^16^ and aby^^. Ans. 9ab^^.

CASE V.

SUBTRACTION OF RADICALS.

302. If the radicals are not similar, and cannot be made
so by reduction, the subtraction can only be expressed.

Thus, y/a—Vb can be reduced to no simpler form.

303. If the radicals are similar, the subtraction may be

performed by the following
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RULE.

Subtract the coefficient of the subtrahendfrom the coefficient of

the minuend, and to the difference annex the common radical,

J^ote.—If the radicals are not similar, they may frequently

be made so by reduction.

EXAMPLES.

1. From ^ab^/cd subtract SabVcd, Ans, aby/cd.

2. From V^Oa^ subtract VSa\

V50a^=v/25a^ X 2=i/25a^ x V2=baV2.

y/Sa' =s/4>a' x2=v/4a' Xv/2=2av/2.

3aV2. Jlns,

3. From -5^192 subtract 4^24-. jJns. 2^3.

4. From IW^Qa^bc" subtract 3av/24^(r'. JJns. 3Sacs^6bc,

5. From v/| subtract \/^. JJns. j^n/I^.

6. From Vi subtract v/|. ^ns. Jv^3.

7. From 3^^ subtract 1^400. JJns. J^^Bo.

8. From 4a^l250a^ subtract i^640a«. Ans. ISaVlO.

9. From 1^^567 subtract 1^112. Ans. -^^1,

10. From ^^%W subtract fv/Qo'. Am, |a.

CASE VI.

MULTIPLICATION OF RADICALS.

604. If the quantities are not under the same radical sign,

and are not roots of the same letters, the multiplication can

only be indicated. But since the product of the roots is

equal to the root of the product (Art. 156), and since the

product of several factors, composed of the same letters or

quantities, is obtained by taking one of the factors affected

by an exponent equal to the sum of the exponents of the

several factors (Art. 88), that is, a"* x a**=a'*»x «***=«"",

we have the following general
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RULE.

1. If the, quantities are under the same radical sign or index,

multiply thefn like rational quantities, and place the common

radical sign over the product.

2. If the qu(fitities are composed of the same letters or num^

bers, and are affected with different fractional exponents; add

these exponents.

3. If the radicals have rational coefficients, multiply them, and

prefix the product to the product of the radicals.

EXAMPLES.

1. Multiply 2ay/3ax by SbVSa^cx.

2a>/3ax X Sb\/3a^cx=Qaby/3ax x 3a^cxz=6ab\/^ci^ca^'

6aby/9a'^cx^=z6aby/9a^x^ X ac=6a5\/9aV X y/ac=6ab x Sax^ac

= ISc^bxy/ac, Arts.

% Multiply {3af by (3a)*. Ans. ^~^Ma^.

{3af=:{3af

{3af={3ay

5 1

(3ay=(24^3a'y=z ^24<3a'.

3. Multiply 4n/2 by V6. Ans. 4.5^288.

4. Multiply 5v/5 by 3v^8. Ans. 30x/10.

5. Multiply 2av/aM^ by ^3aV^Tb^

^ Ans, —ea'ia'-i-b').

6. Multiply 5a^a+x by UV(a~+xf. Ans. 20ab{a-\-x).

8. Multiply (6a^bcy by (6a'bc)K Ans. (6a'bcyK

9. Multiply a , a , and a together. Ans. a^^.

10. Multiply 7e^l8 by 5^4. Ans. 70^9.

11. Multiply 2a%a+bY by 6ac(a-\-by.

Ans. 12a^c(a-{-b)~i^

.

12. Multiply 6aV3a^ by 64^27a^ Ans. dOa'Vb.

13. Multiply 4>^J^ by 3s/8. Ans. 12^2.

14. Multiply 27V by iVh ^'^^' ^^^Vt-
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15. Multiply 4.^f by ia^J •*"!

16. Multiply a¥ by flM. \dn8,ab^.

17. Multiply 3a-V by 3a**~«. Am. 9.

18. Multiply laJ" by llxK
3 1 1

^715. 14a*x^.

. '3 3

19. Multiply 6aV by 1 la^a:. Ans, %d^ £^ .

CASE VII.

DIVISION OF RADICALS.

305. If the numbers are not under the same radical sign,

nor roots of the same letters, the division can only be indi-

cated.

306. But in those two cases it may be performed by the

following general

RULE.

1. Jf the quantities are under the same radical sign or index,

divide them like rational quantities, and place the common radi-

cal sign over the quotient.

2. If the quantities are composed of the same letters or num-

bers, and affected vrith different fractional exponents, subtract the

exponent of the divisor from that of the dividend.

3. If the radicals have rational coefficients, divide the coeffi-

cient in the dividend by-that in the divisor.

EXAMPLES.

1. Divide 6v/12a^Z> by 3v/3a*. Ans. Wa.

V oah

2. Divide Ua^ by 7a^' Ans. 2a^

14a'-^7a*= 14a^~7a^=2a^-^=2a'
;

Or, 14^^H-7^/a=14y^-^7W=2e^a.

3. Divide 4* by 4^. Ans. 4^

4. Divide 6v/54 by 3v/2. Ans. 6v/3.

5. Divide 4^72 by 2>/18. Ans. Wl>
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6. Divide v/7 by V7. ^;js. V7.

7. Divide 8v/108 by 276. Ans. 12n/2.

8. Divide (a%H'f by /. ^»s. (a&f

.

9. Divide v/3 by v/|. .^W5. v/|, or ^v/,6.

10. Divide i^J by i^I. ^7i5. f4^l2.

11. Divide %ah^hy1ah^. Ans. A^a^h^,

12. Divide 21a&'^' bv 3a*A Am. 7a¥.

CASE VIII.

INVOLUTION OF RADICALS.

307. Let it be required to involve ^as/W to the second

power. By the definition of involution (Art. 25), we shall

have (6a\/35^)^=6aN/36^ X 6a\/36^ ; or, performing the multi-

plication, (6av/3^f= 6ax/3^^ X 6av/"36^= 36aV"96'^= 36a=^ X 3&^

= 108a2&^

\ 3

Again, let it be required to involve 3a h^ to the third

power.

(3a¥)='z:r3aVx 3a^^»^X 3a¥=27a^6l
308. The above operation will evidently apply to all cases

of monomial radicals.

Hence we have the following general

RULE.

1. Involve the coefficients to the required power,

2. If the number is under the radical sign, involve it as if it

were rational ; over the power place the radical sign, and then

reduce the result to its simplest form.

3. If the number to be involved is affected by a fractional

exponent^ multiply the exponent of each letter by the index of the

required power.

EXAMPLES.

1. Required the third power of ^a^y. Ans. 'Ula^y.

2. Required the second power of 4a^6\/6&.

Ans. 16a%V36F'=96a3&2.

.#--^-
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3 1

3. Required the third power of ^'6^\/86*x.

^ns, 1288a«6V2i.

4. Required the fourth power of 6\/^. ^ns. 36.

5. Required the third power of b^2a^b,

Jlns. 125a^8a^.

6. Required the third power of 3%/? x 2^2.

Jlns, 216>/J.

CASE IX.

EVOLUTION OF RADICALS.

309. From the foregoing operations, the following rule

win be sufficiently obvious :

RULE.

i. Extract the root of the coefficient^ if it is a complete power

;

if not, introduce it under the radical sign or index.

2.' If the radical sign is used, multiply the figure over the foot

of the radical by the index denoting the root to he taken,

3. If the fractional index is used, divide the index of each let'

ter by the index of the required root.

EXAMPLES.

1. Extract the square root of IGa'^V^o:".

2. Extract the third root of 27a«^26t/. JJns. 3a^ V^bd.

3. Extract the third root of 8oM. Jlns. 2a^b\

4. Extract the third root of 6U^VTW. Jlns. i^a^^iW.

5. Extract the square root of 24^3a. Jlns, 2yi08a.

6. Extract the cube root of 54aVVi. Jlns, Sa^b^^Q.

CASE X.

POLYNOMIALS HAVING RADICAL TERMS.

310. We will give, for the exercise of the learner, some

examples of polynomials having one or more of their terms

radical quantities. These examples may be solved by an

application of the rules laid down in the preceding cases,

n Bb )
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EXAMPLES.

1. Required the second power of a-\-Vy*

Ans, a^-\-2a>/y+y,

2. Required the third power of a—Vh»

Am. (^—^aW~b-{-^ah—y/¥.

3. Required the second power of \/3a4-\/2a7.

Ans. 3a+\/6aa;4-2ar.

4. Required the square root of a-\-2^/ab-\-h,

Ans. y/a+y/b.

5. Required the square root of 9a+36\/Sax-{-10Sx.

Ans. 3Va-\-6V3cc.

6. Required the cube root of (f+3a''^'x-\-3aVoo^-x.

Ans, a-\-^x.

CASE XI.

BINOMIAL AND TRINOMIAL SURDS.

311. Expressions under this form, y/a-\-Vhj or a-\-Vi, are

called binomial surds, and may be reduced to rational quan-

tities on the principle that the product of the sum and differ-

ence of two quantities is equal to the difference of their squares,

. Thus the binomial surd \/a-\-\/b

Multiplied by - - y/a—s/h

uW

a-\-y/ab

—/ah^l)

rives - - - a +^j a rational quantity.

312. Trinomial surds may be reduced, first, to binomial

surds, then to rational quantities. Thus,

The trinomial surd - ,Ja-\-^fh —^fc

Multiplied by - yfa—s/h +n/c

. a-\-y/al—\/ac

—y/ab —b-\- Vbc

-hVac + Vbc—

c

Gives a ^b-i-2Vbc—c.
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A

Let x=a—b—c / then we shall have

Multiplying by - - x—2>/bc

x*-^2xVTc

^
—2xy/bc—ifbc

x* —46c

Restoring value of x - (a

—

b—cf—ibc.

3. Find a factor which will make 1 + v/2 rational.

l+ %/2

1—v/2

l+ v^2

—v/2—

2

1 —2=-l.
Hence the factor is 1—\/2.

4. Find a factor which will make n/10—V2—\/3 rational.

VT6—V2 -V3
Multiplying by - x/'T0-hv'2 4-v/3

10—v/20—v/30
—2+N/20 —/6

—3 +'/30—v^6

Multiplying by

— 2n/6

-f 2v'6

25 —lOv/6

4-10v/6-24

25 —24=1.
Hence the factors are v/'io+v/24-v/3, and 5+ 2v/6.

5. Find a factor which will make 3—2n/2 rational.

6. Find a factor which will make \/6+ 3v/2—v/5 rational.

313. By the above process, fractions may be cleared from



196 ELEMENTS OF ALGEBRA. [SECT. VI.

radical numerators or denominators without altering the

value of the fraction, and thus the process of extracting the

root be facilitated by confining it either to the numerator or

denominator.

1. Let it be required to extract the square root of the

fraction ^.

a \/a y/a x y/a>

Vb \fh X \/a \/ab

2. Extract the square root of the fraction ^
.

ooy

a-{-b_\/a-\-b s/a-\-bXy/a-\-b a-\-b

4-
^y Vxy Vxy-{-Va-^b ^/axy-\-bxy

3. Extract the square root of -.

V-
5_n/5_n/5xn/5^V25_ 5

8 v/8 n/8x\/5~x/40~2n/10'

\/2
4. Reduce the fraction = to an equivalent fraction

3—v/2
^

having a rational denominator.

Ans^J^^.

3
5. Reduce the fraction —= =to an equivalent fraction

having a rational denominator.

.. . Ans.^^^1.
1

6
6. Reduce the fraction ~t to an equivalent fraction hav-

5*

ing a rational denominator.

5

g
7. Reduce the fraction -^ = to an equivalent frac-

v/3+v^2+l
tion having a rational denominator.

*/??i5. 4—2V6+ 2v'2.
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8. Reduce the fraction -— v ^-hv ^^ ^^ equivalent

fraction having a rational numerator.

84v/10-20>/64-72v/34-20W5

I
CASE XII.

ROOTS OP BINOMIAL SURDS OF THE FORM a±^'b.

314. It is proposed to obtain a formula for extracting the

square roots of expressions in the form of a± y/b.

Let - ya-\-Jl=x+y/~y (1).

Then - y a-^/b=x-'^/y (2).

Squaring both equations,

a+>/^=«2+2a:v/y4-y (3).

a—%/^=x*—2xv/y-hy (4).

Adding - 2a =2a:* +2y (5).

And - - a=oi^-\-y (6).

Multiplying the first equation by the second,

^~^^~b=3?-y. (7).

Adding the sixth and seventh equations,

a^shr^h^lx" (8).

Reducing - a'=y/°+^^'~^ (9).

Subtracting the seventh from the sixth equations^

a-^ir^z=:'Xy (10).

Reducing - v^y^-y/^LZ^J^ (l^)'

Substituting these values of x and >/y in the first and sec-

ond equations,

\/a+V*=v/^^^*V^^
-y/a^^b

Va-x/6=V 2 V 2
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Or, letting c=y/a^—b.

1- - ^^^=^/^+\/^ (A).

EXAMPLES.

1. Extract the square root of 34-2'/2.

Here a=3, andv7z>z=2v/~2=rv/8, or h—^, and c^-ZO—8=1.

3+2n/2=34-v/8

\/3+2v/2=n/2+1. ^715.

2. Extract the square root of 14—6V5. Ans. 3—\/5.

3. Extract the square root of ll+ 6\/2. Ans. 3+-/2.

4. Extract the square root of 7—2\/10. Ans. V5—v/2.

5. Extract the square root of 94H-42n/5. ^7^5. 7+3\/5.

6. Extract the square root of 1+W—3.

Ans, 2+1/^.
7. Extract the square root of 28+1073. Ans. 5+ n/3.

8. Extract the square root of ab-\-4)6^— d^-\-2\/^ahc^—abd.

Ans. V'ab+V^c'—d^'

9. Find the sum ofy 16+ 30v/=^+\/l6—30%/=!.
Ans. 10.

10. Find the sum of \/bc-\-2bVbc—b'-\- ybc—2b^bc^b\

Ans. 26

^



SECT. YII.] EQUATIONS EXCEEDING THE FIRST DECREE. 199

SECTION VII.

Equations of the Second Degree,

EaUATIONS EXCEEDING THE FIRST DEGREE.

315. The questions heretofore discussed involved only

the first power of the unknown quantity, or, if a higher

power ever appeared, it was cancelled in the process of the

reduction. The enunciation of other questions, however,

frequently requires a power or root of the unknown quantity,

and for the solution of such cases we must seek for meth-

ods different from any heretofore discussed.

316. Equations of this nature are divided into two class-

es, viz., pure or incomplete equations, and affected or complete

equations.

317. A pure equation is one which, when reduced to its

simplest form, involves only one power or root of the unknown

quantity. Thus,

X =q is a pure equation of the first degree
j

a^=q^ is a pure equation of the second degree, or a pure

quadratic equation;

s?=:(f is a pure equation of the third degree, or a pure

cubic equation
;

x*=q* is a pure equation of the fourth degree, or a pure

biquadratic equation, &c.

y/Xy or x^=q^y is a sub-quadratic equation

;

— L 1 .

^Xf or x^=q^, is a sub-cubic equation
;

V«, or X* =q*, is a sub-biquadratic equation, &c.

318. An affected equation is one which, when reduced to its

simplest form, involves different powers or roots of the un-

known quantity. Thus,

a^-{-px=q is an afl!ected quadratic equation ;

a'-f-JP*-fpJC=fl is an afi^ected cubic equation, &c.
'
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PURE EaUATIONS.

319. Pure equations may be readily solved on the princi-

ples, 1. If the same root of loth mernbers of an equation be eX'

traded, the results mil be equal. 2. If both members be involv-

ed to the same power, the results will be equal (Art. 158).

Let us take the equation - - - x^^^q^

;

Extracting the nth root - - - - x =q.

Again, the equation - - - - i^x — Vq ;

Involving to the ?2th power - - - a? =:j.

Hence, for the reduction of pure equations, we have the

following general

RULE.

1. Reduce the equation to such a form that the power or root

of the unknown quantity may stand by itself in the first, and the

known quantity by itself in the second member of the equation.

2. If the expression containing the unknown quantity is a

power, extract the corresponding root of both members.

3. If the expression containing the unknown quantity is a

root, involve both members to a power of the same name. .^^

J^ote 1.—If the even root, i. e., the second, fourth, or sixth

root of an equation, is to be taken, the resulting second

member should be affected by the double sign ± . Thus^

the square root o{ q^—:kq; for -\-qx-\-q—+q^, and

—

qx —q
= +^' : the fourth root of q'^= it g ; (or qxqxqxq=q'^i and

—5'X

—

qX—qX—q=-{-q'^: and the sixth root of q^=dzq ;

for q-q-q'q'q'q=q\ and —qX—qX—qx—qX—qX—q=q\
&c.

JSTote 2.—Since, if the even root be taken on both sides of

the equation, it would be very natural to suppose that the

first member, or x, should be affected with the double sign

± , as well as the second member of the equation. Affect-

ing it thus, and arranging the signs in the equation, ±x=
± q, in every possible manner, we shall have the four equa-

tions.

(1). +0?=+?. (3). -x=+q.
(2). -\-oo=—q. (4). •^x=-~q.

^••".^\^
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But Still we have in reality no more than the first two

equations, as the third equation expresses the same rela-

tions with the second ; for, changing the signs, it becomes

(2). -\-x=—q :

And the fourth expresses the same relations with the first

;

for, changing the signs, it becomes

(1). -^x=-\-q.

EXAMPLES.

1. Find the value of x in the equation ——10=2»
4

2^—10= 2;

Clearing of fractions - - 3a?*—40= 8 ;

Transposing and reducing - 3x* =48

;

Dividing a?* =16;
Evolving - - - - X =±4.
Verifying on the supposition that x=4-4

;

2:1^—10= 12—10=2.
4

Verifying on the supposition that a:=—4 ;

?2ir±'~10=2ll^=12—10=2.
4 4

2. Find the value of ar in the equation >/x—16=8— %/a?.

-y/x—16=8

—

Vx ;

Involving both members - x—16=64—16v^a:-l-ap;

Cancelling and transposing 16\/a:=80

;

Dividing - - - - y/x= 5

;

Involving - - - - x=25.

Verification - - V25^6=8--n/25 ;

Or v/9=8—5= 3.

X—ax y/x
3, Find the value of x in the equation —;=—=—

.

VX X

Clearing the equation of fractions - x'

—

ax^=x ,*

Dividing by X x—ax=l;^

Besolving into factors ... (1—a).x=l

;

Cc
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Dividing by the coefficient of a? - a?=

4. Find the value of a? in the equation Vx-j-a-.

1—a
a+b

Voc—a

Clearing of fractions - Vx^—a^= a+b ;

Involving ... oc^—a^= a^-\-2ab-\-bf^

;

Transposing and reducing - x^='2,a^-\-2ab-\-b^

;

Evolving .... X =±V2a'—2ab-{-b^.

. \/^+28 v/a:+38
5. Find the value of x in the equation —-=—- =—rz——

,

\/x-{-4f \/a?+6

Clearing of fractions - a?4-34%/^H-168=a?+42\/a?+152;

Transposing . - - - 8y/x= 16 ;

Dividing ----- Vx— 2j

Involving - - - - - x= 4f.

. . Vax—b 3s/ax—25
6. Find the value of x in the equation —=—-:=—-==——

.

Vax-\-b 3\/aa?+56

Clearing of fractions,

3ax-{-2bV'ax—6b^=3ax-{-bVax^^b^ ;

Transposing - - - bs/ax=z3b^;

Dividing by & - - - ^/ax=z3b;

Involving - - - - ax=9b^

;

Dividing - - . - x=—

.

7. Find the value of x in the equation \/ x+Vco—

V ^ 2 V x-\-Vx _

/ z _ 3v/f.
Multiplying by\/ a:+ v/a? - x+Vx-^s/a^—a?=—2~ '

\/a?
Transposing and reducing - - x—---=y/a^—x;

At

Dividing by Va; - - - - Va?

—

\z=L\fx— 1

;

Involving x—s/x-^\—x— 1

;

Transposing and reducing - - - '>Jx=i\
j

Involving X—
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!* 20"
8. Find the value ofx in the equation x-\->/a*-\-3^:=z—rT==z

Clearing of fractions - Xy/c^-\-3^-\- (^-\-a^z=2a?-y

Transposing and reducing, Xy/a^-\-a^=2(^—a*—x*=a^—«•
j

Involving - - 2c'(a'-{-a^)= a*—2aV4-a?<j

Multiplying factors - - c^a^-}-x*=: a*—2aV+iC* ; *^

Transposing and reducing 3aV= a* j
»

a —
Dividing and evolving - - « =~75» **' ^v^i*

v3
ji

9. Find the value of x in the equation 3a?»—29=:_4-510.
4

^;w. a?= 14.

10. Find the value of a; in the equation \/a:—32=\/x—

^

\/32. ./f;i5.ar=50.

/20x' 9 -
11. Find the value of x in the equation W =:^/x,

V 4>x

Ans, x=\.

12. Find the value of x in the equation \/x+v/3+a?=
6

Ans. a:=l.

13. Find the value of x in the equation x-\-\/W^\^—

-^. An.. x=y3.

14. Find the value of x in the equation

ap+2= \/4H-«x/64+^. Ans. x^^.

15. Find the value of x in the equation \/2ar'+9x*-f 27x

=a:+3. w^TW. x=3.

16. Find the value of a; in the equation ^/x—32=16

—

s/x.

Ans, x=%\.

v/6x-2 4n/6x~9
17. Find the value of x in the equation

>/6a:-f-2 4N/6ar+6

Ans. x=6.

18. Find the value of x in the equation ^x^—a'= 4^3ax«

—

3a'x-f86. Ans.x=a^-Wb.
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19. Find the value of a? in the equation c?—2aa7+a?2=:Z>.

Ans, x=a^^>/b.

a—s/d^—a^
20. Find the value of x in the equation —&.^

a+v/a^—a?2

Multiplying both numerator and denominator of the first

member by a—\/a^

—

x^.

Reducing and clearing of

fractions - - -

(a—vV—^_,

Evolving -

Transposing

Involving - - -

Cancelling and transposing

Dividing by a? -

Re solving- into factors

Dividing

- a—Va^—a^=±xy/b;

a q=X\/l— y/a^—x^
;

a^ qp 2aa?x/5"+ bx^= a^—x?
;

bx'^-x^—±1axsfb;

bx-\-x^±1a^fb',

X—.
^'+1

21. Find the value of x in the equation
\/x-\-\/x—a

Vx—\/a?

—

a X—a

Multiplying the numerator and denominator of the first

fraction by Vx—Vx—a.

Whence

Evolving

Clearing of fractions

X—ix-a) n'a

(Vx-Wx—af
1

X—a

(Vx-Wx-af
1

~x—a

±n
Vx—Vx—a Vx—a

Multiplying by Voc—a

Or . - -

Transposing - (x—a)-\-n{x—a)=:±n\/!X^—ax;

s/x—a= ± »(\/aj

—

\/x—a) ;

X—a= ± niVx^—ax—x-\-a),

X—a= ± nVoc^—ax—n{x—a) y
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Resolvinpf into ) *» , \ , \ , /Ta°
[ (1-l-n). (x

—

a)=±n>/a^—ax;
factors - >

InTolving - (1-fn)'. (x

—

af=n\3p^—ex) =ft'x(x—a) ;

Dividing by X—a, (1-fw)^ (x—o)=«'x,

Or -. (l-\-nyx—{\—nfa=n^x;

Transposing - (l+n)'x—n*x=(l-|-n)^a,

Or - (l+ 2;i-|-n')x—»"x=(14-»)*a;

Addingcoeffi.; ^^2^^^,_^,^^^ ^^^^, .

cients of X >

Reducing - - (l+ 2;i)x=(l+n)^a ;

Dividing by l+2;i - x^llt^. ^;w.

_ \/a-|-x4-\/a—

X

22. Find the value of x in the equation-^ =6.

23. Find the value of x in the equation

1 n/3

24. Find the value of x in the equation \/x'+8=v/125

—6x*— 12x. ^»5. x=3.

25. Find the value of x in the equation* /.^il5-}- 2* / ^
V X V a-i-a:

-V. .^TW. X= —..

Examples of Pure Equations containing two or more unknown,

Quantities.

320. In equations of this kind, unknown quantities may
be eliminated by the same principles that were applied in

equations of the first degree.

EXAMPLES.

1. Find the values of x and y in the equations x'+y=28,

and ^—^=19. ^ns, x=5, and y=3»
5 3

18
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5 3

Transposing y, and extract- )

ing the square root of the } a?= ^/28

—

y
first equation - - -

J

Clearing the second equa- } ^ „ ^

tion of fractions - J 12a:^-5y=285

Transposing, &c. . - - x^=?^^±^

Evolving x=a/ 285 -f5y

12

Forming a new equation of the two values of x,

28-y=5?^±^^
12

336—122/=285+5y
—12y—52/=285—336

172/=51

y=3, and a:=5.

2. Find the values of x and y in the equations 3y=aj+y,

and xy= 18. ^?i.9. 3?= db 6, and y= dr 3.

* 3. Find the values of x, y, and z in the equations {x-\-y

-\-zf=S000, y''-\-2yzS6= 64>—z\ and 2a?y+202:=200.

jins. a?=10, y=8, and z=2,

4. Find the values of x and y in the equations 5a?—5y=:

^y, and a:^+4y^=:181. .^ns. x=9, and y-=5.

5. Find the values of a?, y, and z in the equations j?'^y=54,

y2;=8, and xz—1% Ans. x—Z, y=2, and z—^.

6. Find the values of x and y in the equations a?^4-y^=

, and xy= Ans, 07=3 or —2, and y=2 or—

3

x—y x—y

x—y
6xy= ;

0?

—

V
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Multiplying the second equa-

>

o* — ^^ . n^
tion by 2 - - -) ^~x^

'

^
'^

Subtracting the third from ) <i a i 3 1 />« \

the first - - - - > X—y

Contracting the first member - (x—y)*= ; (5.)
X—y

Clearing of fractions - - - (x—yy=lj (6.)

Evolving X—y=lj (7.)

Substituting for x

—

y its val- >
a:*-+-«»— 13 • ^8 \

ue in the first equation - i

Substituting for x—y its val- > ^ Oj.y_i2
; (9.)

ue in the third equation - >

Adding the eighth and ninth > ^^cixy-^f=25
;

equations - - - >

Evolving x-\-y=±5.

But x^y=l.

Hence - • -x=3or—2, and y=2 or —3.

7. Find the values of x and y in the equations x'^-{-y^=

13, and a?^+y^=5. ^ns. a?=27 or 8, and y = 8 or 27.

8. Find the values of x and y in the equations 3c^-\-sl*y*-{-

y»=273, and x'+xy+y'=21.
^ns.x=±2 or ±2v/— l,and y=±l or ± >/~l.

9. Find the values of x and y in the equations (x'—y*).

(a?—y)= 3xy, and (a?*—y«).(x-—y2)=45a:*y'.

^ns. x=z4f or 2, and y=2 or 4.

10. Find the values of x and y in the equations 3^y-\-xy'^=

6, and a^y*+a:'y'=12. Ans. x=2 or 1, and y=l or 2.

11. Find the values of a and y in the equations Vx—Vy
= 3, and Vx-\-Vy=^7. Am. x=625, and y=16.

r? 5 3
12. Find the values of x and y in the equations x*+a:*y*

4-y'=1009, and r'-ha?V4-y*= 582193.

^n«. ar=8l ar 16, and y=16 or 81.
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PROBLEMS PRODUCING PURE EaUATIONS.

321.— 1. What two numbers are those whose difference is

to the greater as 2 to 9, and the difference of whose squares

is 1281 ^^ns. 18 and 14.

2. A fisherman bfeing asked how many fish he had caught,

replied, "If you add 14 to the number, the square root of

the sum, diminished by 8, will equal nothing." How many

had he caught % Ans. 50.

3. A merchant gains in trade a sum, to which $320 bears

the same proportion as five times the sum does to $2500.

What is the sum \ Ans. $400.

4. What number is that, the fourth part of whose square

being subtracted from 8, leaves a remainder equal to 4 \

Ans. 4,

5. It is required to divide the number 18 into two such

parts, that the squares of these parts may be in the propor^

tion of 25 to 16. Ans. 10 and 8.

6. It is required to divide the number 14 into two such

parts, that the quotient of the greater part, divided by the

less, may be to the quotient of the less, divided by the great-

er, as 16 to 9. Ans. 8 and 6.

7. Two persons, A and B, lay out some rnoney on specu-

lation. A disposes of his bargain for $11, and gains as

much per cent, as B lays out; B gains $36, and it appears

that A gains four times as much per cent, as B. Required

the capital of each. Ans. A's $5, and B's $120.

8. A gentleman bought two pieces of silk, which together

measured 36 yards. Each of them cost as many shillings

by the yard as there were yards in the piece, and their

whole prices were as 4 to 1. What were the lengths of the

pieces \ Ans. 24 and 12 yards.

9. A number of boys set 'out to rob an orchard, each hav-

ing as many bags as there were boys in all, and each bag

capable of containing as many apples as there were boys.

They filled their bags, and found the whole number of ap-

ples was 1000. Wto was the number of boys \ Ans. 10.,
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10. Several gentlemen made an excursion, each taking

the same sum of money. Each had as many servants as

there were gentlemen ; the number of dollars which each

had was double the number of all the servants; and the

whole sum of money taken out was {^14'58. What was the

number of gentlemen 1 *dfu. 9

11. There is a rectangular field, whose length is to the

breadth as 6 to 5. After planting one sixth of the whole,

there remained 625 square yards. What are the dimen-

sions of the field 1

*dns. The sides are 30 and 25 yards.

12. There are two numbers, which are to each other as 3

to 2, and the difference of their fourth powers is to the

sum of their cubes as 2G to 7, What are the numbers %

An&. 6 and 4-.

13. What two numbers are as 5 ta 4, and the sum of

whose cubes is 5103 \ Jlns, 15 and 12.

14. There is a rectangular field containing 360 square

rods, and whose length is to its breadth as 8 to 5. What is

the length and breadth. Ans, Length 24, breadth 15.

15. There are two square fields, the larger of which con*

tains 13941 square rods more than the smaller, and the pro-

portion of their sides is as 15 to 8. What is the length of

the sides *{ An$.

16. Two travellers, A and B, set out to meet each other.

They started at the same time, and travelled on the direct

road between the two places \ and on meeting, it appeared

that A had travelled 18 miles more than B,and that A could

have gone B's distance in 15^ days, while B would have

been 28 days in going A'^s distance. What was the distance

travelled by each 1 Jlns. A*s 72, B's 54.

17. There are two men whose ages are to each other as

5 to 4, and the sum of the third power of their ages is

137781. What are their ages 1 Am. 45 and 36 years.

18. Find two numbers, such that the second power o( the

greater, multiplied by the less, may be equal to 448 j and

Dd
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the second power of the less, multiplied by the greater, may-

be 392.

19. A man wishes to make a cellar that shall contain

Sll04f cubic feet, and in such a form that the breadth shall

be twice the depth, and the length li the breadth. What
must be the length, breadth, and depth 1

jins. Length 48, breadth 36, depth 18.

20. A man wishes to make a cistern that shall contain

500 gallons of wine, in such a form that the length shall be

to the breadth as 5 to 4, and the depth to the length as 2 to

5. Now, allowing 231 cubic inches for one wine gallon,

what will be the length, breadth, and depth 1

AFFECTED EaUATIONS OF THE SECOND DEGREE.

322. Let 2p nnd q be two variable numbers, 2/? represent-

ing the coefficient of the unknown quantity, and q the known
quantity ; then, however complicated may be the equations

which involve the first and second powers of the unknown
quantity, they may be reduced to one of the four following

forms :

(1.) x'-\-2px=q. (3.) x^-\-2px=-q.

(2.) x''—2px=q. (4>.) x^—2px=z—q.

Let us then determine the process by which equations

of these forms may be solved.

323. We have already seen that a binomial cannot be a

perfect square, and also that the root of a trinomial, which

is a perfect square, may be formed by taking the root of the

two terms that are complete powers, and connecting them

by the sign of the other term (Art. 292). Thus, \/x^-\-2px

-{-p^=x-\-p, and \/x^—2px-{-p^=:x—p.

324. We have also seen that the square of a binomial is

equal to the square of the first term, plus twice the product

of the two terms, plus the square of the last term. Thus,

(x-{-pf—x^-\-2px-{-p^ ;

And the square of the residual, x—p^ gives

(x-py=x^—2px+p\
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Hence, if/?' be added to both members of each of the pre-

ceding four forms of the affected quadratic equation, the

first member of each will be a perfect square. Thus,

(5.) :3^+2px+f=q-{.f',

(6.) x«—2pa:+;>*=9-hp';

(7.) s^+lpx^p'^f—q;
(8.) j?-^px-\-p^=f^^,

325. If we compare p^ with the coefficient of x, it will be

found equal to the square of half of it. Thus, p^= IJl\,

Hence, when the quadratic equation is reduced to the first,

second, third, or fourth power, the first member may be

rendered a perfect square by adding the square of half the

coefficient of the first power of the unknown quantity to

both members of the equation. This is called completing

the square,

326. Each of the above equations may be reduced by ex-

tracting the square root of both members, and making the

necessary transformations.

Extracting the square root of the (5), x-\-p= ± Vq-{-p^

;

Transposing - . . . . x=z—p±y/q-^p^.

Extracting th6 square root of the (6), x—p= ± y/q-\-p*
;

Transposing x=;)± v/^-f-p\

Extracting the square root of the (7), x-\-p= ± y/p^—q ;

Transposing x=—p±>/p^—q-

Extracting the square root of the (8), x—p= ± ^/p^—q ;

Transposing x=p± y/p^—q.

327. Hence, for the solution of affected quadratic equa-

tions, we have the following general

RULE.

1. Reduce the equation to one of the above four forms.

2. Complete the square by adding to both members of the equa-

tion the square of half the coefficient of the first power of the

unknown quantity.
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3. Extract the square root of both members^ observing to affect

the second member with the double sign ± , and complete the re-'

duction by the preceding principles.

JVote.—Equations of this nature also give two values of

the unknown quantity. Thus, x^-\-4<x= 12.

Completing the square - a?^+4!a?+4= 12+4= 16.

Extracting the square root - x-\-2=± \/16= d=4.

Transposing- - - - x——2±4=i2 or —6.

EXAMPLES.

1. Find the values of x in the equation 3a?^-|-18a;=;81.

3a?2+18a:=81

x^+ ex=21
a?'+6a?+9=27+9 =3G

x-\-3=±VS6=:±6
x——3±6=:z3or—9.

2. Find the values of x in the equation 3a?^+2a;—9=76.

^ns. x—5y or —5|.

Of:

3. Find the values of x in the equation -= —4.^
2 x-\-2

Ans. 07=4, or — 14.

4. Find the values of x in the equation a?^-f-48=426 + 12a?

—bx^. Ans. x=:^, or —7.

5. Find the values of x in the equation 2a:^+12a7=— 16.

Ans. X——2, or —4.

6. Find the values of a? in the equation x^— 150?=—54.

Ans. 07= 9, or 6.

2?^ X X^ V IS
7. Find the values of a? in th« equation _.+_:=_—1_+

—

2 4 5 10 20

Ans. x= 1, or — 2-}.

X X 3(?

8. Find the values of a? in the equation —+-—15=— 4-^
2 3 4

—14f. Ans. a?=3, or — i.

9. Find the values of x in the equation 4a^—2a?^+2aa?=

l^ab—l%W. Ans. x=2a—3b, or —a-\-3b.

10. Find the values o( x in the equation 2ax—x^=z—2ab—

h^, Ans. 2a-\-byOx —h.
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A SECOND METHOD OF COMPLETING THE SaUARE.

328. It is frequently impossible to clear the highest power

of the unknown quantity from its coefficient without intro-

ducing fractional expressions into the equation. But, resu-

ming the four forms of affected quadratic equations, and let-

ting a represent the coefficient of «*, we shall have

(1.) ax'+2px=q;

(2.) ax'—2px=q;
(3.) aa^+2px=^q;

(4.) ax*

—

2px=—q.

Multiplying each of these equations by 4a, and adding the

square of 2p to both members, we shall have

(5.) 4>a^x^-{-8apx-\-4fp'^=4>aq-\-4>p'

]

(6.) 4fa^a^—Sapx-\-4>p*=4>aq+4<p';

•^(7.) 4aV-f8a;>a?+4>'=—4^0^+V

;

(8.) 4a-x*

—

S(ipx-\-4tp'^=—4faq-\-4<p^.

329. It is evident that the first member of each of these

equations is a perfect square ; hence, extracting the square

root of both members, we shall have

(9.) 2ax+2;>= ± v/4a9-f-4/

;

(10.) 2ax—2p= ± v/4a9-f4/ ;

(11.) 2ax-\-2p= ± V —4faq-\-4p*

(12.) 2ax—2p=± V—^aq-\-4^,

Or, reducing,

(13.)

(14.)

(15.)

,_

—

2p± y/^aq-\-^p^
^

2a
'

_ +2p±>/^aq-\-^p\

2a

—2p± y/—4>aq-\-^p*

2a

(16) ^_ -f2;)dbv/—4a^+V
2a

'

330. Hence the square of an affected quadratic equation

may be completed by the following general

RULE.

1. Multiply both members of the equation by four times the
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coefficient of the second power of the unknown quantity^ and add

the square of the coefficient of the first power to loth members ;

the first member will then be a perfect square.

2. Extract the root^ and reduce as before.

EXAMPLES.

1. Find the values of a? in the equation 2a;^+3ir=65.

2a?2+3a:z=65.

Completing the > 16^2+24^+9^520+ 9 =529;
square - >

Evolving - - - 4a?+3=±v/'529=±23,-
4a?=—3±23=20,or—26;
x=b^ or —6|.

2. Find the values of a: in the equation 3a?^

—

^x—4—80.

Ans. a?=7, or —4.

35 ^
3. Find the values of a; in the equations 4a:— =46.

X

Ans. x—\% or —f.

2ii? X
4f. Find the values of x in the equation x^-\-——.^=8+

12 6
* J 11

Sep
5. Find the values of x in the equation 2a?^+8a?+7z=

—

4

—^+197. Ans. a;=8, or —lly^.
8

6. Find the values of x in the equation -—_+7-|=8.

Ans. a?=:l^, or —|.

c
7. Find the values of x in the equation

8—a; 2a?— 11

2 a?—

3

^
. Ans. a;=6, or \.

6

8. Find the values of x in the equation 5a?-+4a?=273.

Ans. x—1, or —7|.

PARTICULAR CASES OF AFFECTED aUADRATICS.

331. It is evident that every equation of the form

a?'"+2^a?"=9

r
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may be solved by the preceding rules ; for, let y=x", and

y^=x^j and the above equation will become

f-\-2py=q;
Completing the square, i/^-{-2py-^p^=:q-^p'^

',

Evolving and transposing - y=

—

p±: \/g-\-p*i

Substituting the value of y - x'*=—p±Vq-j-p';

Evolving - - - . x=\/^ —p±Vq+p''
332. Equations also occur in the form

> I

ar-\-2px^=q.
1 s

Let y=ir", then y'=af* ; and substituting these values,

y'-\-2py=q;

Reducing - - - - y=—p±Vq-\-p^,

Or ar=-p±Vq-\-p^j

Involving to the nth. power - xz=(—p±y/q-\-p^y.

These equations may be readily solved without the for-

mality of substitution. Resume the equation

a^-\-2px''=q ;

Completing the square, af''-\-2px^-{-p^=q-{-p'^

;

Evolving - - - . af'-\-p=±'^q-\-p^

'

Transposing- - - - JL'^=—p±\/q-\-p';

Evolving - - - - x= \/—p± ^q-\-f*

Resume, also, the equation
s t

a^-\-2po^z^q ;
3 1

Completing the square, tj^-^2px''-\-p*=.q-\-p^
\

1

Evolving - - - - a?^-(-^=dr\/^ -!-/>';

Transposing- - - - x'^zzL—p^s/q-^-p^'^

Involving - - - - x—{^—p^s/q-\-p^y,

333. The same principles will apply also to all equations

in which there are two terms, simple or compound, and the
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exponent of one is double that of the other. Thus, in the

equation

Letting yz=zx'^-{-2px-\-q^ and f=^{x^-\-'Zpx-\-qy, we shall

have then - - y^-{-y=:q',

And . - - - 'yz=-^±^//-fiJ

Whence - ^-^';ipx-\-q=-^±Vq'+},

And ... - x=-p±\/p^q-i±Vq'+ly
Or, in the equation 'W

(ax + 2by—2p(ax-{-2b)= q,

Letting y='ax-\-2b^ and y'^=(ax-^2bf^ we shall have

y^-2py=^q,

And - - . . y—p±y/q-^p2-

Whence - - ax-{-2b=p±Vq+p'^,

And ... - x=P±^l±Pl:i^.
a

These equations may also be solved without the formality

of substitution.

334. If the indeterminate quantity y=0, the affected qua-

dratic will assume the form

x''±2px=0.

This equation may be readily solved ; for, dividing both

members by x^ we have

x±2p=
j

Transposing - - x—:p2p.

335. Equations involving more than one unknown quan-

tity, as xY-\-^pxy=q, or (a?"+y")^+2p(a?"4-y")=5', if the ex-

ponent of one term is double that of the other, may also be

reduced to simpler forms by completing the square and per-

forming the necessary transformations.

336. When there are two unknown quantities similarly

involved in the equations, the work may be simplified by

the introduction of two additional symbols which shall rep-
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resent known functions of the unknown quantities. Thus,

in the equations

Let x-{-y=2s, and x—y=2z ; then x=s+z, and y=s—z.

And - x'=(s-{-zy=s'-^2sz-^z'

;

And - y^z=:(s—zy=s^—2sz+ 2^'y

Adding - - x'-\-f=2s^-\-2z' j

Consequently, bz=2s^-{-22^
j

Transposing and > ^^^2^^ ^^^ z=±./^^;
reducing - j 2 V 2

Hence - - j=^+-v/-Z_, and y=s—y/
~~

;

^ , /b—4>, or ]a^ j , /^— 4-, or ia*
Or T=ia-y^ V"^'

and y=ia—y/ V~^*
Similar operations will reduce any equations of the same

form ;

As, x+ y=a, and a:'+ y*=J; or x-\-y=ay and x*-{-y*=b ; or

X'{-y=ay and j^-fy^=Z>, &c.

337. Again, let us take the equations

X -\-y =ai

y ^

Clearing the second equa- > , ,_,

tion of fractions - > y — y'

Let x-\-y=2sy and x—y=2z, as before; then x=s+ z, and

y=s—z.
Whence - a^={8+zY=s^-^2sz-\-:^;

And - - f=(s—zYz=zs''—2sz-\-z'.

Adding, x'-\-f=2s^-\-22^=b(s-\-z).(8—z)z=b{s'^2^)=
bs'-bs^.

Whence - 2r= __ : or 2:=i * 7^-;——J
2-\-b

' V *+2
Or, substituting and reducing,

,=,± v/ip2, and y=,T ,/]pE.V *+2 * ^V i+2
19 Ee
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Restoring the value of s and 5^,

Similar operations will reduce any equations of the same

form,

As, x-\-y—a^ and —+^=5, &c.
y X

There are a variety of expedients by which complicate

equations may be simplified. The above cases will indicate

some of the most general. Others must be left to exercise

the skill and ingenuity of the learner.

AFFECTED EaUATIONS INVOLVING ONLY ONE UN-
KNOWN aUANTITY.

35 3^
1. Find the values of x in the equation 6a7+ =4)4<.

X

Clearing of fractions - - 6a?^4-35—3a?=44a?;

Transposing Qx^—47a?=—35
;

Completing the square and reducing - x=l, or |.

3^, 3
2. Find the values of x in the equation 5a?— =2a?4-

X—

3

^^—^, Ans, a?z=4, or —1.
2

3j, 2 2a? 2
3. Find the values of x in the equation —+__=a?4-—_—

.

2 da? 3

Ans. a?n:2±2v/2.

3^ 10
4. Find the values of a? in the equation 3a?—_—^^_= 2-f-

\)
—ZiX

5^i5. ^;i5. a?=lli, or4..
2a?—

1

5. Find the values of a? in the equation a?^—4a:'' ==621.

Ans. a?n:3, or ^—23.

6. Find the values of x in the equation —=—__.
2 4 32

Ans. x=:^~\^^'\^^^ll.
2. i

7. Find the values of a? in the equation 2a?3+ 3a?3z=2.

Ans. a;=|, or —8.
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8. Find the values of x in the equation a:*-|-a:*=756.

Jlns. j:=243, or (—28)^

9. Find the values of x in the equation (lO-hx)'—(10-f-x)*

=2. jJns. x=6.

10. Find the values of x in the equation 2(1 -fa?—a?*)

—

(l+i—x»)^=—|. J^ns. x=i-\-lV'U,

11. Find the values of x in the equation v^ar*—a*=a?

—

b.

Jins. x=-± / .

2 / 126

12. Find the values of ar in the equation 2Vx—a-\-3y/2x

7a-f-5x=—=. *d7is, x=9a.
y/x—a

Ajr 5 2x 7
13. Find the values of x in the equation — i 1=

X 3a:+7

?^-. jJns. x=2.
13x

q /I

14. Find the values of a? in the equation -+— =

—,
'

J3ns. x=z3.
5x

AFFECTED EaUATIONS INVOLVING TWO OR MORE
UNKNOWN aUANTITlES.

1. Given

And - ^t^^^ + 2^r ''Jtofindxandy.
x'-f. xy +f=133S

Dividintr the second by the first / ,— .
_ ._ .

°
} x—Vxy-\-y= 7; (3.)

equation - - . -^ ^ ^^^ » ^ '

Adding the first and third equa- / Oj:4-2v= 26 (4> )
tions \ ^ > V •;

Or x-{-y= 13; (5.)

Substituting, in the first equation, Vary 4-13= 19; (6.)

Whence ^1^= 6, (7.)

And xy= 36; (8.)

Multiplying by 3 - - - - 3a?y=108; (9.)

Subtractinsf the ninth from the / « « a ok /ia\,^. > a^'-'Xxy^f= 25; (10.)
second equation - - •\
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Evolving------ X—y=d=5. (11.)

Adding the eleventh and fifth;
2a:::.13±5= 18, or 8;

equations - - - -\

Whence a?=9, or 4.

Subtracting the eleventh from; 2^=13^5 =8, or 18;
the fifth equation - -* -

)

Whence 2/=^> ^^ ^-

2. Given - x^^x^y^ 18-/ >
^^^^^ ^ ^^^ ^_

And - - - xy— 6 \

Transposing in the first; ^2^3,2^^^^^ jg .
(3.)

equation - - )

Multiplying the second) _ _ 2a^y.= 12; (4.)
equation by 2 - )

Adding third and;
^j^^^j^fj^^j^y^^^^ (5.)

fourth equations \

Or- - - - (a? + 2/)^+(a7+2/)=30; (6.)

Completing the / (^^y)2^(^+2^) + i=3o+i=.A^5 (7.)

square - )
^

Evolving - - - a7+2/-hi=±Y' ^'^

And - ^+y=±n_|=.:^or-^=5,or-6; (9.)

Whence, from the first }
x^^f=\% or 24

; (10.)
equation - -

)

Subtracting the 4th from ) ^._2^^_^y2^i^ ^^ 12 ; (11.)
the 10th equation )

Evolving - ^—y= ±l, or±x/12=:±273; (12.)

Adding 13th and ; 2a^=5±l, or —6±2v/3 ;

9th equations >

Whence - - - a^=3 or 2, or —3± n/3 ;

Subtract'g 13thfrom) 2y^4 or 6, or —6:f 2>/3 ;

9th equation \

Whence - - - 2/=^ ^^ ^' ^^ —3:F V3.

3. Given - ^xy^m-x^f \
^^ ^^^ ^ ^^^ ^^

And - - x-\-y— 6 \ ^^
Ans, a:=4 or 2, or 3±v/21 j and 2(=2 or 4, or 3=f\/21.
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4. Given

Aud

5. Given

And

6. Given

And
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7. Given

And

> to find X and y.
x-fy = S

jJns. x=5 or 3, and y=3 or 5.

..""«., > to find X and y.

Jlns, x—b or 2, and y=2 or 5.

c .""-^-o > to find X and v.
x'+y'=1056\ ^

*^ns. x=^ or 2, and y=2 or 4.

xV==2y^j to find X and

8x3-

^ns. x=2744. or 8, and y=4 or 9604.

PROBLEMS PRODUCING AFFECTED EaUATIONS.

1. It is required to divide the number 40 into two such

parts that the sum of their squares shall be 818.

Jlns. 23 and 17.

2. What two numbers are those whose difference is 9,

and their sum, multiplied by the greater, produces 266 1

Ans. 14 and 5.

3. An officer would arrange 1200 men in a solid body, so

that each rank may exceed each file by 59 men. How many
must be placed in rank, and how many in filel

^ns. Rank 75, file 16 men.

4. Some bees had alighted upon a tree ; at one flight the

square root of half of them went away; at another eight

ninths of them ; two bees then remained. How many alight-

ed on the tree 1 ^ns. 72.

5. A mercer bought a piece of silk for j£16 4*., and the

number of shillings he paid per yard was to the number of

yards as 4 to 9. How many yards did he buy, and what

was the price per yard 1 »dns. 27 yards, at 12* per yard.

6. There is a field in the form of a rectangular parallelo-

gram, whose length exceeds the breadth by 16 yard?, and it

contains 960 square yards. Required the length and breadth.

^ns. Length 40, breadth 24 yards.

7. A person being asked his age, answered, " If you add
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the square root of it to half of it, and subtract 12 from the

sum, there will remain nothing." What was his age 1

^ns. 16.

8. What number is that which, if divided by the product

of its digits, the quotient will be 2; but, if 27 be added to

the number, the digits will be inverted "i Ans. 36.

9. Find two numbers such that their sum, their product,

and the difference of their squares may all be equal to one

another. ^?J5. ^±|v/5, and |±^-v/5.

10. A and B hired a pasture, into which A put 4 horses,

and B as many as cost him I85. a week. Afterward B put

in two additional horses, and found that he must pay 20*.

a week. How many horses had B at first, and at what

rate was the pasture hired \

Ans. B had 6 horses, and the pasture was hired at

5O5. per week.

11. A labourer dug two trenches, one of which was 6

yards longer than the other, for £>Yi I65., and the digging of

each of them cost as many shillings per yard as there were

yards in its length. What was the length of each \

Ans, 10 and 16 yards.

12. A and B set out from two towns which were distant

from each other 247 miles, and travelled the direct road till

they met. A went 9 miles a day, and the number of days

at the end of which they met was greater by 3 than the

number of miles which B went in a day. How many miles

did each go ] Ans. A 117, and B 130 miles.

13. Two merchants each sold the same kind of stuff; the

second sold 3 yards more of it than the first, and together

they receive 35 crowns. The first said to the second, " I

would have received 24 crowns for your stuff;" the other

replied, "I would have received 12g crowns for yours."

How many yards did each of them sell \

Ans. The first sold 15 or 5, the second 18 or 8.

14. A widow possessed $13,000, which she divided into

two parts, and placed them at interest in such a manner that
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the incomes from them were equal. If she had put out the*

first portion at the same rate as the second, she would have

drawn for this part $360 interest ; and if she had placed the

second out at the same rate as the first, she would have

drawn $490. What were the two rates of interest I

^ns. 7 and 6 per cent.

15. The sum of two numbers is 9, and the sum of their

cubes 24-3. What are the numbers 1 j9ns. 3 and 6.

16. The sum of two numbers is 10, and the sum of their

fourth powers is 1552. What are the numbers 1

jJns, 4 and 6.

17. The sum of two numbers is 7, and the sum of their

fifth powers 3157. What are the numbers 1

^ns. 5 and 2.

18. There are two square buildings that are paved with

stones a foot square each. The side of one building ex-

ceeds that of the other by 12 feet, and both their pavements

together contain 2120 stones. What are the lengths of them

separately ] J^ns, 26 and 38 feet.

19. A regiment of soldiers, consisting of 1066, formed

into two squares, one of which has four men more in a side

than the other. What number of men are in a side of each

of the squares'? j^ns. 21 and 25.

20. The plate of a looking-glass is 18 inches by 12, and is

to be framed with a frame of equal width, whose area is to

be equal to that of the glass. Required the width of the

frame. Ans. 3 inches.

21. A square courtyard has a rectangular gravel-walk

round it. The side of the court wants two yards of being

six times the width of the gravel walk, and the number of

square yards in the walk exceeds the number of yards in

the periphery of the court by 164. Required the area of

the court. ^ns. 256 yards.

22. There are four towns in the order of the letters A, B,

C, and D. The difference between the distances from A to

B and from B to C is greater by four miles than the dis-
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tance from B to D. Also, the number of miles between B
and D is equal to two thirds of the number between A and

C ; and the number between A and B is to the number be-

tween C and D as seven times the number between A and C
is to 208. Required the respective distances.

Ans. A B 42, B C 6, C D 26 miles.

DISCUSSION OF THE GENERAL EaUATION OF THE
SECOND DEGREE.*

CASE I.

338. It has already been remarked, and we will now pro-

ceed to demonstrate, that every affected equation of the sec-

ond degree necessarily admits of two values for the unknown
quantity, and only two.

339. Let us resume the first of the four forms of the af-

fected quadratic (Art. 322).

X'^-1J)X^q', (1.)

Adding ;?^ to both members, Q^-\-^])x-\-f-—q-\-f-^ (2.)

Or - - - - -^ - {x^^y^q^f-, (3.)

Let - - m^=q^f', (4.)

Then {x-^-ff^m^-, (5.)

Transposing - - - (ar+jp)^—^'=0

;

(6.)

Resolving into factors, (a? H-^+7w).(a?4-p—m)=:0
j (7.)

Dividing by a?+pH-?w - - a>+^

—

m— ^\

Transpasing - - - a?=

—

'p-\-m^ox x——'p-^ \fq-\-'p^ '^.

Dividincr the 7th equation / ,
. ^

by x-^-p—m - - )

Transposing - - - x=—p—m, or a?=

—

j)
— \/ q-{-p^.

Either of these values of x will answer the conditions of

the equation.

The same course of demonstration might be applied to

the remaining three forms of the quadratic equation.

Hence every affected equation of the second degree necessarily

admits of two values of the unknown quantity^ and only two.

CASE II.

340. We will now resume the results obtained in the four

^ « This discussion is substantially that of ]M. Bourdon.
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preceding formulas, and enter into such an analysis of them

with reference to the relative values of q and p as will de-

termine the particular values of x. These results are (Art.

326),
__

(1.) x=-^±Vqj^',
I

(3.) x=—p±V^
(2.) x=+p±Vq-\-p'',

I (4.) X=+p±^p'-^.

1. Since the value of x in each equation is expressed by a

rational term, with which a radical is connected by the sign

db, in order that this value may be found, the quantity un-

der the radical sign must be positive.

As p^ is necessarily positive, the value of x may always

be found in the first and second equations.

If q-\-p^ is a perfect square, the exact value of x will be

obtained ; if it is a ^urd, its approximate value.

In the third and fourth equations, if

q<p\
the value of x may also be found, either exactly or approxi-

mately
J
but if

q>p\
the value of x will be imaginary, since it will involve the ex-

traction of the square root of a negative quantity.

2. In the first and second equations, since

P<y/g-{-p\

the value of x will be positive when the radical is taken pos-

itive, and negative when the radical is taken negative.

3. In the third equation, since

pyy/p'—qy «

if y<;>', the value of x will be negative ; but if g'^p^, the

value of X will be imaginary.

4. In the fourth equation, since

p> y/p^—q,

if y<p^ the value of x will be positive ; but if q'>f^ the

value of a: will be imaginary.

5. If y=;>', the radical expression in the third and fourth

equations will be reduced to 0, and the values of x will be,

Ff
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In the third - - - - xz=—p^

In the fourth - - - - x=-\-p.

6. If q—0, the equation will assume the form x^±2px=
± ,• and, consequently, x= ± 2/?, or ± 0.

7. If jo=:0, the equation will assume the form x'^—ztq;

and, consequently, x=±V±qi and the value of x will be

imaginary in the third and fourth forms of the quadratic.

8. In the equation ax'^±2px=±q, if a—0, the equation

will assume the form ±2px—dzq, or be reduced to a simple

equation.

CASE III.

341. In order to show why we obtain the imaginary re-

sults in the third and fourth equations when q^p^, we will

demonstrate that these equations, when q^p^, express con-

ditions that are incompatible with each other.

Kesume the equation

X^—2pX=: q ;

Reducing - - - x=p± y/p^—q.

Designating the first value of x by x', and the second value

by x"j we shall have

x'=p+Vp^—q;

x"=p—Vp —q S

Adding - x'-{-x"=zp+ ^f—qj^p—>jf—q—^p.
Hence the sum of the two values of x is equal to the coeffi-

cient of the first power of the unknown quantity, taken with the

contrary sign.

Multiplying the above two equations,

Hence the product of the two values of x is equal to the sec-

ond member of the equation, taken with the contrary sign.

Therefore, in the general equation, x^—2px=:—q, 2p is

the sum of two numbers, of which q is the product. Now
it has already been demonstrated, that if a quantity be re-

solved into two factors, their product will be the greatest

possible when the factors are equal (Art. 206).
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Hence the conditions of the equation limit the value of q ;

it may vary between the limits and p*, but can never be-

come greater than
(-^J =P^'

If, then, we assign to y a value greater than the square of

half 2p, the equation will express conditions which are in-

compatible with each other, and, consequently, the value of

X will be imaginary or impossible. Thus,

Let it be required to divide 16 into two such parts that

their product shall be 72.

Let - - x= one of the parts,

Then - 16—a?= the other;

And, by the conditions of the problem,

x.(16—x)z=72;

Multiplying ... 16a:—a?^=72;

Changing the signs - - o^—16x=—72
j

Completing the square, a^—16x+64=64—72=—8;

Evolving X—8=db\/—8;

Transposing - - - - a7=8± /— 8.

Thus we obtain an imaginary result, which should be the

case, as 16 can be divided into no two factors whose prod-

uct shall be equal to 72; for, since 2/)=16, ;) will equal 8,

and /?*:=64, which is the greatest possible product that can

be formed of two numbers whose sum is 16.

CASE IV.

344. We will now apply the principles exhibited in this

discussion to a few problems, which will give rise to nearly

all the circumstances that usually occur in equations of the

second degree.

First Problem.

Find upon a line which joins two luminous bodies, A and

Bjthe point where these bodies shine with equal intensity.

J^ote.—The solution of this problem depends upon the

following principle in physics, viz. : The intensity of light

from the same luminous body will be, at different distances^ in

the inverse ratio of the squares of the distances.
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This being" premised, in the indefinite line (1, 2) let A and

B represent the respective position of the two lights, and

C the point required.

C A C B C
1 1 1 1 1 1 2

Let (z=:A B, the distance between the two lights,

And b^=z the intensity of the light A at the unity distance,

And c= the intensity of the light B at the unity distance.

Let a?=r:A C, the distance from A to the point of equal

intensity,

Then a—a;=B C, the distance from B to the point of equal

intensity.

Then, by the above principle in physics, the intensity of

A at the distance 1 being Z?, its intensity at the different

distances 2, 3, 4 .... a?, will be -, -, — ...._, which last
4 9' 16 s^'

term represents its intensity at C. In the same manner, it

may be shown that the intensity of B at the distance a—a?,

or at C, is equal to -. But the conditions of the ques-
{a—xy

tion require that their intensities be equal at C ; hence we
have the equation

b _
x^ {a—xj-

Reducing - x=: ^\/-
a^h

Or, simplifying, X— ^ -

—

I
;—

c

B ut - l± 's/U= Vb(V'b± v/c).

And - - b—c=(V'bf—{V'^f={Vb-{-V~c).(V'b—y/~cy,

'whence. - .^-^^M^^±^,
(Vb-j-VcXVb-Vc)

Taking \/c in the numerator, minus, and dividing the

equation by Vb— \/c, we have

a\/b *

(!)•
V4+Vc'
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But, taking y/c in the numerator, plus, and dividing the

equation by v/5-fVc, we have

Hence we also obtain

a\/c

(2).

-"^'^

Discussion,

I. Let i>c.

343.— 1. The first value of x, —:r- =, is positive, and less

_ Vb-{-Vc _
Vb , , s/b

than a ; for, —= ;= being a proper fraction, a .
—^= =<a.

Vb-{-vc Vb-^Vc

This value of a:, therefore, gives the point C between A and

B. It is, moreover, nearer B than A ; for, in consequence_____ v^6
of Z>>c, we have y/b-\-\/b=i2>/b^y/b-{-^c^ whence —= -=-

Vb-\-\/c

1
"^b ay/b a _,

>i, and, consequently, a .-^-^=^^^>-. Th.s, .n-

deed, should be the case, since we have supposed the inten-

sity of A greater than that of B, or J>c.

2. The corresponding value of a—a?,
—=

=, is also pos-
Vb-\-y/C

itive, and less than ^; for, since j:>-,

aVb a

Vb-^s^c 2

ay/b
3. The second value of «, —^- :r, is also positive, but

>/b
greater than a ; for, —= being an improper fraction, a .

vb—v'c

20
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-^= --^=—

=

=:>a. This value of a?, therefore, gives the
\/b—-v/c y/b— \/c

point of equal intensity to the right of B, atC This should

evidently be the case, since the light from A and B radiates

in all directions. This point will, moreover, be nearer the

body, the light of which is least intense.

4. The second value of a—a?,
—= -^ is negative, as it

-vb—\/c

should be, since x^a ; and the point C is in the direction

opposite from A.

II. Let &<c.

344.— 1. The first value of x will be positive, but less than

-J for, v/6+ V'"^=:2v/^<n/^+ v/c.

2. The corresponding value of a—x will be positive, but

greater than - ; fox, since a?<-

a\/c a

'^~^'^Vb+7c^^'
Thus, on the present hypothesis, the point C will be situ-

ated between the two lights, but nearer A than B, which

should evidently be the case.

3. The second value of x. —= =, is essentially negative,

and indicates that the point of equal intensity is situated at

C", in a direction from A opposite to B.

4. The corresponding value of a—x (which, since x is es-

—fl\/c .

sentially negative, becomes a+a?), —= ^, is positive ; for,

since \/c>\/Z>, the numerator and denominator will be af-

fected with like signs, and, consequently, the value of the

fraction will be plus. This result also indicates that C"

should be to the left of A.

III. Let b—c.

aVb aVb aVb a
345.—L The firt value of x,

^/^»+Vc Vb+Vb 2Vb 2'
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ay/c
2. The corresponding value of a—x, —=

=^, also equals

-. These two results give the middle point A B for the first

required point, and this result conforms to the hypothesis.

as/b
3. The second value of x, —=

=, since v/6=\/c, willbe
y/h \/c

reduced to , which indicates that no finite value can be

assigned to x,

—as/c
4. The corresponding value of a—a:,

—=; -^ will also be-

come

y/b—s/C
—ay/c

These results also agree with the hypothesis ; for, as the

diflference of their intensity decreases, the second values of

X and a~x increase, and, when that difference becomes in-

finitely small, these values must become infinitely large.

IV. Let i=c, and a=0.

346. The first values of x and a—x become 0, and the

second — This last character is the symbol of indetermi-

nation ; for, on returning to the equation of the problem,

Q^c)x^—'labx=—a\

this equation becomes

O.a:^—O.x==0,

an equation which may be satisfied by any number whatever

taken for x. And this agrees with the hypothesis ; for, if

the bodies have the same intensity, and are placed at the

same point, they will shine with equal light upon any point

whatever in the line 1—2.

V. Let a=0, and b and c unequal.

347. Each of the two values becomes in this case, which

proves that on this hypothesis there can be but one point

equally illuminated, and that is the point in which the two

lights are placed.

,
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Second Problem.

348. Find two such numbers that the difTerence of their

products by the numbers a and h respectively may be equal

to a given number \y, and the difference of their squares

equal to another given number q.

Let X and y represent the numbers sought
;

Then - - - ax—h/=Sj
,

And - - - a^

—

y^ —q.

Reducing these two equations, we have for the two values

of a?,

w-

of

(2). -

The two values

a'-b'

y are,

(1). .
bs+aVs'-q{a'-b')

(2). -
bs-aVs'-q(a'-b')

Discussion.

I. Let a>5.

349. In this case a^—b^ will be positive ; therefore, in or-

der that the values of x and y may be real, we must have

q{a'-b')<s\ or q<.
a'-b''

\. This condition being fulfilled, the first values of x and

y will necessarily be positive, and, consequently, will form a

direct solution of the problem in the sense in which it is

enunciated.

2. The second value of x will be essentially positive j for,

ayb gives asybVs^—q{a'—by " '^'^'^

The second value of y may be either positive or negative

In order that it may be positive, we must have

bs yas/s'—q{d'—}j')i

Or, squaring - 5V>aV—a'9(a'-Z»')

;

Or, transposing - bh^-\-a\{a^—b^)>a^s^
j,
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Or, subtractingW from both sides of the inequation,

Or, dividing - q>-.

Thus, if a>-, and g<—— , the question is susceptible
a* a*

—

b^

of a real and direct solution, and will give positive values of y.

But, if ?<-j, and y< ^ , ^, the value of y will be nega-

tive ; and we shall not obtain a solution of the problem in

the sense in which it was enunciated, but of an analogous

problem, the equations of which are

ax-\-byz=:s,

and which differ from the proposed equations in this respect

only, that s will express the arithmetical sum instead of the

difference of their products.

II. Let a<6.

350. In this case a^—b^ will be negative, and the values of

X and y may be put under the form.

(!)•
bVs'+q(b'—a')

.

To 5
~~ '

m ^_^as-\-bVs'+q{b^^a^)
(2). . X

^̂ -^
bs-a^^+q{b^-^)

.(i;. y jr^^s y

(2). . y= ^ ^,

_—hs+ ax/s^-\-q{b^—a!')

b'—a'

The values of x and y, it is evident, will be real, since the

quantity placed under the radical is essentially positive.

Their first values will be negative.

The second value of y may be either positive or negative.

s^
In order that it may be positive, we must have q^-^*

III. Let a=b,

3.t1. In this case a'—6*=0, and the first values of x and y
will be

Go
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x=^, and y=l^-^.

The second values of a? and y will be

X—-. and y=-.

But, if we solve the given equations on the hypothesis

that a=^, we shall have

a:=—iJ—, and v=:—^—

—

The preceding discussions show the precision with which

the algebraic results correspond to all the circumstances of

the enunciation of a problem.

SECTION VIIL

Ratioy PropQrtion, and Progression

RATIO.

352. By Ratio is meant the relation which one quantity-

bears to another with respect to magnitude. The quantities

compared must be of the same nature, so as to admit of a

common measuring unit. Thus, we compare dollars with

dollars, length with length, weight with weight, time with

time, &c.

353. The magnitudes of quantities may be compared in

two ways.

1. With regard to their difference. This is called jUrith-

metical ratio, or ratio by difference.

2. With regard to the number of times one quantity is

contained in the other. This is called Geometrical ratioj or

ratio by quotient.

The Arithmetical ratio of two numbers, as a and bj is ex-

pressed, a—hy or a . .b.
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The Geometrical ratio of two numbers, us a and i, is ex-

pressed, aiby or -.

When the ratio is thus expressed, the first term is called

the antecedent^ the last term the consequent, and the two terms,

takin together, are called a couplet,

354-. The term arithmetical ratio is only a substitute for

the word difference, and involves no principle that is not es-

sentially involved in algebraic subtraction.

355. In a geometrical ratio three things are involved, viz.,

the antecedent, the consequent, and the ratio ; and any two of

these being given, the other may be found.

Let a= antecedent, c= consequent, and r= ratio :

Then, from the geometrical ratio a: c=r, we have

r=-, i, e., ratio = antecedent -r- by consequent

;

And, a=c . r, i. e., antecedent = consequent x by ratio j

And, c=-, i. c, consequent = antecedent -i- by ratio.
T

356. When the antecedent is equal to the consequent, the

ratio is a unit, or a ratio of equality. When the antecedent

is greater than the consequent, the ratio is greater than a

unit, or a ratio of greater inequality. When the antecedent

is less than the consequent, the ratio is less than a unit, or

a ratio of less inequality.

A compound ratio is the ratio formed by multiplying the

corresponding terms of two or more ratios.

A duplicate ratio is the ratio of the squares of the corre-

sponding terms of a ratio ; the triplicate ratio, of the cubes

of the corresponding terms j the sub-duplicate, of the square

roots of the corresponding terms, &c.

357. The ratio, it will be observed, is expressed by a frac-

tion, the antecedent becoming the numerator and the conse-

quent the denominator. Now it has been demonstrated that,

if both terms of the fraction be multiplied or divided by the
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same number, the value of the fraction will not be affected.

Hence we infer,

1. If the terms of a ratio he multiplied or divided hy the

same number, it does not alter the value of the ratio.

2. j1 ratio may be reduced to its lowest terms by dividing its

antecedent and consequent by their greatest common measure.

3. Ratios may be compared with each other by reducing the

fractions which represent their values to equivalent fractions

having a common denominator.

358. The following are some of the more important theo-

rems relating to ratios :

1. A ratio o{ greater inequality is diminished, and a ratio of

lesser inequality is increased, by adding the same quantity to

both members.

First. Let a+bia, or ^^^—-, represent a ratio of greater
a

inequality

:

Adding x to both terms - a-\-b-i-x:a-^x, or —^
j

a-\-x

Then - - - - a-\-b:aya^b-\-x: a-{-Xy

Or - - - - - a+b a-\-b -{-x ^

a a-^x

For, reducing to a ? a'^-\-ab-\-ax-^bx^a^-{-ab-{-ax

common denom. > a{a-\-x) a(a-\-x)

Second. Let a—b : a, or , represent a ratio of lesser
a

inequality

:

fi h
I

/P

Adding x to bath terms - a—b-\-x : a-\-x, or J—
;

a-\-x

Then . - - > a—b:a<Ca—b-\-x:a-\-x,

.^ a—b ^a—b-\-x
^^ < r J

a a-{-x

For, reducing to a j> a^-j-ax—ab—bx^a^—ah-\-ax

\ a(common denom. ) a(a-f ^) a{a-\-x^

2. A ratio of greater inequality is increased:; and a ratio of

lesser inequality is diminished, by subtracting the same quan-

tity from both terms.
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First. Let a+h:ay or y^, represent a ratio of greater
a

inequality :

Subtracting X from both terms, a+h—X'.a-^x^ox—l- ;

Then - - - - a-\-hia<ia-{-h^x'.a—x^

Or !Lh^<^±^;
a a—x

For, reducmg - —^— <— — .

I a{a—x) a[a—x)

Second. Let a+Jio, or ^^^, represent a ratio of lesser
a

inequality :

Subtracting x from both terms, a—J

—

x : a—x, or H-

;

a—X

Then - - - - a—bia^a—b—x:a—x,

Or
g-j^g-i-x.
a a—X

« J • a*

—

ab—ax+bx^a^—ab—ax
For, reducmg - 1—>

a{a—x) a{a—x)

3. A ratio of greater inequality compounded with another

ratio increases it ; but a ratio of lesser inequality compound-

ed with another ratio diminishes it.

First. Let a+bia^ or ^—-, represent a ratio of greater

inequality,

And - - - - TO : », or -, be any other ratio :

n

Compounding - - am-{-bm : an^ or ^ "^_
j

an

Then ... m:n<iam-{-bm:anf

^ m^a7n-\-bm
^

n an

For, reducing . -
<m» amn+*m»
an* an^

Second. Let a—b:a, or —H-, represent a ratio of lesser

an' an"

a-l

a
inequality,
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And - - '• - m:n, or —, another ratio :

n

ri J- I «^—^wi
Compounding - - am—om : an^ or

j

Then - - - min^am—hmian,

n ^^ ctm—hm
Or ->

j

n an

ry J • amn^ amn—hmn
For, reducing - - —- >

avr ainr

4. If to the terms of any couplet there he added two other terms

having the same ratio, the sums will have the same ratio.

Let the ratio a : b equal the ratio c:d:

Then - W' • ' r-^,=T=-, 5
r b+d b d

For, since - - - - a : 6=c : c?.

We have ----- -=-.

;

b d

Clearing of fractions - - - adz=zbc ;

Adding cd to both members, ad-\-cd—hc-\-cd;

Resolving into factors - d{a-\-c)=:c{b-{-d)y

Dividing - - - - -^_= = .

b+d d b

5. Iffrom the terms of any couplet two other quantities hav-^

ing the same ratio be subtracted, the remainders will have the

same ratio.

Let the ratio a : b= the ratio c: d:

Then . - - - -

For, since - - - - -

"We have

a-

a-

~c
-d"

a c

'-b—d'

a : 5=-.c:d,

a_

b~

c

ad..Ic;Clearing of fractions

Subtracting cd from both members, ad—cd=bc—cd;

Resolving into factors - - c?(a

—

c)=c(b—d);

TV' !• a— c c a
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EXAMPLES.

1. Reduce the ratios 360 : 315, and 1595 : 667, to their low-

est terms.

2. Which is the greater of the two ratios, 11:9, and

44:35]

3. Which is the least of the three ratios, 20 : 17, 22 : 18,

and 25 : 23 1

4. If the consequent be 35, and the antecedent 985, what

is the ratio 1

5. If the antecedent be 1512, and the ratio 12, what is the

consequent 1

6. If the consequent be 320, and the ratio i, what is the

antecedent 1

7. What is the compound ratio of 12 : 21, 18 : 6, and 24 : 5

1

8. What kind of a ratio will be produced by compounding

5x4-7 : 2«—3, and x-\-2 : ix-{-3 1

9. What kind of a ratio will be produced by compounding

c^—3^ : a', a-\-x : h, and b : a—x ?

10. What kind of a ratio will be produced by compound-

ing x-\-y : a, x—y : ft, and b : —H^ %

11. What is the ratio produced by compounding 3 : 7, the

duplicate ratio of 3 : 5, and the triplicate ratio of 4 : 3 1

12. What is the ratio produced by compounding the sub-

duplicate ratio of 49 : 4, and the sub-triplicate ratio of 64

:

1251

PROPORTION.

359. Ratio is a comparison of two quantities to ascertain

their difference, or how often one is contained in the other.

Proportion is a comparison of two equal ratios.

If the ratios are arithmetical, the proportion is called

arithmetical proportion^ or proportion by difference.

If the ratios are geometrical, the proportion is called

geometrical proportion^ or proportion by quotient.

360. There are always two couplets, or four terms, in a

proportion. The first and fourth terms are called extremes ;
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the second and third, means. The two antecedents, or the

two consequents taken together, are called homologous terms.

The terms of the same couplet are called, with reference to

the proportion, analogous terms. Three terms are said to he

proportional when the ratio formed by the first and second

is equal to the ratio formed by the second and third.

361. As an arithmetical proportion, or a proportion by dif-

ference^ is nothing more than a simple form of equation, it is

unnecessary to give the subject a separate consideration.

It is expressed a—6—c— c/, or a . . &=c . . d.

362. Geometrical proportion is expressed by

* a:b=zc:d,

Or - a:b::c:dj

which expressions are read, " a to b equals c to c?," or, " a

is to & as c to d"

THEOREMS RELATING TO PROPORTION.

363.—(1.) If four numbers be proportional, the product of

the extremes will be equal to the product of the means.

Let - - - - a:b'.',c:d;f

Then, by equality of ratios, _=-
j

(i

•Clearing of fractions - • ad=:zbc.

CoR. 1. Any factor may be transferred from one mean or

extreme to the other without destroying the proportion.

Thus, \{ a:b:: cmidn, then an:bm::c:d.

CoR. 2. If any three terms of a proportion be given, the

fourth can always be ascertained ; for if a : & : ; c : cZ,

Then - - ad=cb

;

cb
" Dividing by d, a=— , i. c, the 1st termr=2dx3d-^4th;

d

Dividing by c, b=—, i. e., the 2d term= 1st x 4th-^ 3d
;

c

Dividing by b, c=—, i. e., the 3d term=:lstx4th-f-2d

;

b

Dividing by a, d=z^—, i. e., the 4th term=2dx 3d-T-lst.
a
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364.—(2.) If tkt product of any two numbers he equal to the

product of two others^ these four numbers will constitute a pro-

portion when so arranged that th^factors of one product be made

the meanSy and the factors of the other product the extremes.

Let ad=bc:

Dividing by db, and reducing, -=-
j

b d

Hence - - - - a:b::c:d,

365.—(3.) If three numbers be propoitional, the product of

the two extremes is equal to the square of the mean.

Let - - - - a:b::b:c

:

Then ?=*,
b c

Or acz^lr".

Cor. The mean proportional, or geometrical mean, be-

tween two numbers is equal to the square root of their

product. Thus, if ac^b"^, then bz=y/ac.

366.—(4.) If four numbers be proportional^ 1. the order of

the extremes^ 2. of the means, 3. of the terms of each couplet, 4.

of the couplets, 5. of all the terms, may be inverted withoitt cfe-

stroying the proportion.

Let . - - - a'.b'.'.c'.d:

Then .... t='-.
b a

Dividing by a, and multiply ) d^c^
,-. d:b::c:a ; (1.)

ing hy d - - - S b a

Dividing by c, and multiply- ) a_b^ .-.aiciibid; (2.)
ing by 6 ---)crf*

Inverting the fractions - -=-» •'• h:a::d:c ; (3.)
a c

Inverting the order of the ) c_a
. - . ^ . . . i . /a\

members • - - }d V
Inverting the fractions and j , ,

changing the order of the > ~~~, .'• d:c::b:a, (5.)

terms - - - - )

367.—(5.) Iffour numbers be proportional, the ^dnalogous

21 Hh
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or the Homologous terms may be multiplied or divided hy the

same number without destroying the proportion.

Let - - - - a:b::c',d:

Then "L=t
b d

Multiplying the terms of the } am c , ,

n r •
X { -,—= -,» ''' am : bm : : c : d :

nrst traction by m - - S bm d

Multiplying the terms of the } a cm , ,^•^ °
[ -=—,.'.a:b::cm:dm;

second traction oy m - ) b dm

am cm
Multiplying the equation hy wz, ==: , ,-, am : b : : cm: d ;

b d

Dividing the equation by m, J^=_^, .'.a : bm : : c :dm

;

bm dm

Dividing the terms of the first 1 -^ c a b

fraction hy m - - - \ ^~d^ '
' m' m c : d

;

Dividing the terms of the sec- ) ^ ^ c d

i 6 1' • mm
J mend fraction by m

a , c
Dividing the numerators hy m - 21= ul, »'* — i b : : — : dj

b d m ' m

Dividing the denominators by w, x^T") •*.«:— : : c : _.mm ^ m

368.— (6.) If there be two sets ofproportions having an ante-

cedent and consequent in the one equal to an antecedent and con-

sequent of the other, the remaining terms will be proportional.

Let - - - - a ::b::c:d,

And - a : b : : m: n:

By the first proportion - -
a c

b-r
By the second -

a m

Therefore - - f=^, and c : rf

d n
: n.

369.— (7.) If two homologous or two analogous terms be added

to or subtracted from the two others, the proportion will be pre-

served.
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FirBt, Let - - - aib i\ ci d^

r\ O C
^' • • - i=r

Then (by Art. 358, th. 5), i±^=?=^
j

bztd b d

Hence - - - a-\-c : b-\-d :: a : b^ or as c : d,

And - - - a—c : b—d :: a : b^ or as c : d.

Second, Inverting the order of the means, a : c : : b : d^

Then -
a±b a b

.

c±d c d*

Hence - a-\-b : c-^d :: a : c, or as b : d^

And - a—b : c—d : : a : c^ or as b : d.

Cor. 1. Since
a±i:_a , a-f c a—c

.

b±d b b-\-d b—d'
Hence we have a+ c : a—c : : b-\-d : b—d.

Cor. 2. Since
a±b_a , a-\-b_a—A.

c±d b c-\-d c—d'
Hence we have a-{-b : a—b : : c-\-d : c—d.

370.—(8.) If two sets ofproportional numbers be multiplied,

the products of the corresponding terms will be proportional.

Let - - - a : b : : c : dy or -=-=.
b d

And - - - m : n : : p lOyOT — =?

:

n q

Multiplying the two equations - ^=^ ;

bn dq

Hence - - - - am : bn : : cp : dq.

37L—(9.) If one set of proportional numbers be divided by

the corresponding terms of another set, the quotients will be pro-

portional.

Let - - a : ^ : : c : (/, or ^=-p
b d

And - mm: : p : q, or - =?

:

n q

Dividing the first equation by ) a . m c^p
the second - - - } b n d q*

T ^' m n p q
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372.—(10.) If four numlexs he proportional^ like powers or

like roots of them will be proportional.

Let - - a : h : : c : d:

Then
a_c

,

b~d'

Involving - - — =-t »
•*• a"" : Jf" : : c^ : d"" /

^ (1 v/c — —
Evolving - - -==-=, .-. ^a: :yb:: V'c: ^d.

Vb \/a

PROBLEMS TO BE SOLVED BY PROPORTION.

1. There are two numbers whose difference is to the l«ss

as 100 is to the greater, and the same difference is to the

greater as 4 to the less.- What are the two numbers 1

Let x= the greater, and y= the less

:

Then - - - - - x—y : y
' And . - - - . cc—y : x

Multiplying the proportions, (x—yY : xy

Dividing consequents - (x—yY : 1

Evolving ... - X—y : 1

Converting into an equation - x—y=20 ;

Whence - - - - x—^0-\-y;

Substituting this value of x ) ^O+y-y :y:: 100 : 20-f y,
in the first proportion )

Or - - - - 20 : y : : 100 : 20+y;
Dividing antecedents - 1 : y : : 5 : 20+y ;

Convertiag into an equation - 5y=20+2/ ;

Whence . - - - y=5,
And a?=20+ 5= 25.

2. The product of two numbers is 15, and the sum of their

squares is to the difference of their squares as 17 to 8. What
are the numbers 1

Let x= the greater, and y= the less

:

100 X,

4 y;
400 xy;

400 1;

20 ij

Then . xy—16,

And . x^-\-f : x'-y' : r 17: 8;

Addingy and subtracting - 2x' : 2f : : 25 : 9
;.

4
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Dividing first couplet by 2

Evolving - - -

Whence - - .

Reducing - - -

- x' : y« : : 25 : 9
;

- X
: y : : 5:3;

ar=5y
;

a:=5, and y=3.
3. What two numbers are those whose product is 320,

and the difference of their cubes is to the cube of their dif-

ference as 61 to 11

Let xz=i the greater, and y= the less

:

Then a?y=z32a,

And ----- x^—y^ : (x—yY :

Expanding 2d term, a?*—y* : x^—3j^y-\-3xy^—y^ :

Subtracting consequents ^02
from antecedents - ) ^

Dividing first ratio by x—y -

Dividing antecedents by 3

Substituting value of Jry -

Dividing antecedents by 20 -

Evolving - - - -

Converting into an equation -

Whence - - - -

4. It is required to prove that a : x : : V2a—y : v/y^ on

the supposition that (a-fx)* : (a—xf : : x-f-y : x—y.

Expanding first

and 2d terms,

•Adding and subtracting, 2o'4-2x* : 4ax :

Dividing terms - - a^-\- x^ : 2ax :

Transferring the factor x, o'-f- x* : 2a :

Inverting means - - a*-f- x* : x* ;

-3xy» : (x-yf :

3xy : (x-yf :

xy : (x—yY :

320 : (x-yY :

16 : {x-yf :

4 : X—y :

X—y=:4

;

- x=20, and y

:61. • J

: 61 •

^ 5

:60 ' 5

:60 ^ >

: 20 1 y

:20 1;

: 1 1

5

: 1 : * J

16.

''
i a2+2ax+x« : a*—2ax-|-x* : : x+y : x—y;

2x : 2y ;

a':x»

a : X

X :y;
x^ry;

2a:y;

2a—y:y;Subtracting terms -

Evolving - - -

5. It is required to prove that dx—cy^ on the supposition

that X : y : : a^ : b\ and a : 1

V2a—y:y/y,

Vc+x ^d+y.
Inverting the order of the ratios > _, ,,

m the first proportion - 3

Involving second proportion - a' : d' : : c-\-x : d+y

;

By equality of ratios - - x :y : : c-\-x : d-\-y;



246 ELEMENTS OF ALGEBRA. [&ECT. VIII.

Inverting means -* - - x : c-\-x : : y : (i-\-y

;

Subtracting terms - - - x : c : : y : d ^

Converting into an equation - dx=:cy.

6. There are two numbers whose product is 24, and the

difference of their cubes : the cube of their difference as

1& : 1. What are the numbers 1 j^ns. 6 and 4.

7. The sum of two numbers is to their difference as 3 : 1,

and the difference of their third powers is 56. What are

the numbers % Ans. 4 and 2.

8. There are two numbers whose product is 135, and the

difference of their squares is to the square of their differ-

ence as 4 to 1. What are the numbers'? Ans. 15 and 9.

9. There are two numbers which are to each other in the

duplicate ratio of 4 to 3, and 24 is a mean proportional be-

tween them. What are the numbers % Ans. 32 and 18.

10. Tl^ere are two numbers which are to each other as 3

to 2. If 6 be added to the greater and subtracted from the

less, the sum will be to the remainder as 3 to 1. What are

the numbers'? Ans. 24 and 16.

11. What number is that to which if 3, 8, and 17 be sev-

erally added, the first sum will be to the second as the sec-

ond to the third 1 Ans. 3i.

12. The sum of the third powers of two numbers is to the

difference of the third powers as 559 to 127, and the square

of the first, multiplied by the second, is equal to 294. What
are the numbers % Ans. 7 and 6.

ARITHMETICAL PROGRESSION.

373. A series of numbers increasing or decreasing by a

constant difference, is called an arithmetical progression^ or

progression by difference.

374. When the numbers increase by a common differ-

ence, they form an ascending series / when they decrease, a

descending series.

Thus, the natural numbers,

1, 2, 3, 4, 5, 6, 7, 8, &c.,
'

form an ascending series.
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Inverted, they form a descending series j as,

8, 7, 6, 5, 4, 3, 2, 1.

375. From the definition of arithmetical progression, it is

evident that in an ascending series each term is found hy

adding the common difference to the preceding term.

Let a= first term, (f= common difference, and n= the

number of terms :

Then the terms of the series will be

12 3 4 5 n

c, a+d, a4-2J, a-f 3(f, a-\-4>d a-\-(n^l)d.

Hence, letting /= the last term, we shall have,

- I I / i\ ; ? the formula for the
1. - - - lz=za-{-(n— l}a,

\^ ' > last term.

the formula for the

first term.

3. Transposing and > ,_/

—

a > the formula for the

dividing - - ) n— l' ) common diff.

. rr . . /

—

a . - > the formula for the
4. Transposing, &c., n=—r-+l, J , ^

d 3 number of terms.

These four formulas may be enunciated as follows ;

1. The last term is equal to the first term^ plus the common

difference multiplied by the number of terms less one.

2. The first term is equal to the last term, minus the common

difference multiplied by the number of terms less one.

3. The common difference is equal to the difference between the

extremes divided by the number of terms less one.

4. The number of terms is equal to the difference between the

extremes divided by the common difference, the quotient increased

hy one.

376. If the series is descending, the above formulas wijl

evidently become,

1. - l=a—(n—l)d;
2. - a=t+(n—l)d;

n—

1

a
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377. If the common difference and first term are equal,

l=za-{-(n—l)d=a-{-(n— l)a=a-\-an—a=any

Or, l=a—(n— l)c?=a

—

(n—l)a=a—an-\-a—2a—an.

378. From the third formula, d= ^, we may obtain a
n—

1

general method for finding any number of arithmetical

means between two given numbers. To do this, it is only

necessary to obtain, in addition to the given data, the com-

mon difl^erence.

Let m~ the number of means. Then, since the whole

number of terms consists of two extremes, plus the means, we
shall have m-\-'2.=n.

Hence, substituting for n its value in the above formula,,

1 /

—

a /

—

'a

~m^-2—l~m-^l

PROBLEMS FOR SOLUTION.

1. The first term of an arithmetical progression is 50, and

the common difference 10. What is the 100th term 1

Ans, /=a-h(7i—l)c/3=:50+(100—l). 10=1040.

2. The first term of an arithmetical series is 120, and

the common difference 2. What is the 325th term ]

Jlns.

3. The first term of an arithmetical series is 2, the last

term 1828, and the number of terms 42. What is the com-

mon difference 'X Ans.

4. The last term of an arithrhetical series is 2680, the

common difference 5, and the number of terms 30. What

is the first term 1 Ans,

5. The first term of an arithmetical series is 8, the last

term 1728, and the common difference 2. What is the

number of terms 1
' Ans.

6. The first term of a decreasing arithmetical series is

800, the number of terms 21, and the common difference 2.

What is the last term % Ans,

7. Find 4 arithmetical means between 2 and 52.

Ans, ci=10
J
and the series, 2, 12, 22, 32, 42, 52.
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8. The first term of a descending arithmetical series is

480, the last term 12, and the number of terms 42. What

is the common difference \ Ans.

9. Find 8 arithmetical means between 12 and 52920.

Ans. d= , and the series

10. The first term m a descending arithmetical series is

46450, the last term 10, and the common difference 2. What

is the number of terms ] Ans.

SUM OP THE SERIES.

379. The sum of the series may evidently be obtained by

the addition of all the terms, nor will this sum be affected

if the order of the terms be inverted. Thus,

S=[a ]-h[a+ (iJ-h[a+2c/]+ [a4-3c/]-f - - +[«+
^n^4,)d]+ [a-\-{n^3)d)-\-[a-^{n—2)d']-\-[a-\-(n—l)d]i

S=[a-f.(n— l)rf] + [a-f(»-2)(i]-h[a+(«—3yj+ [a+(/i—

4)(/]-f . - . 4- [a-h3(f] + [a-f2(i]+ [a-}-rf ]-f [a ].

Adding the two equations,

2S=[2a-|-(»— l)(/]-h[2a+(»—l)(i]4-[2a-h(«—iy] + [2a

+ {n—l)d]+ . . - -f [.2a+(;i-l)c/]+ [2a+(n— l)c/}+[2

. a-^(^ri—l)d]+ [2a+ {n—l)d].

But, since there are n terms, and all the terms are equa>,

2S=[2a+{n-i)d]n=.
Hence, by performing the necessary reductions,

1 o_2a4-(»— l)<^w ) ti^e formula for the sum of the

2 ) terms.

2. a= , the formula for the first term.
2/1

3 d=.^~l , the formula for the common difference.

y/{2a—d)^-\-Hds—2a-\-d ^ the formula for the num-

'A2d ) ber of terms.

These four formulas may be enunciated in tho form of

general propositions or rules.

PROBLEMS TO BE SOLVED BY THE PRECEDING
FORMULAS.

1. The first term of an arithmetical series is 5, the num.

Ii
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ber of terms 30, and the common difference 3. What is the

sum of all the terms 1 Ans. 1455,

2. The sum of the terms of an arithmetical series is 280,

the first term 1, and the number of terms 32. What is the

common difference 1 Ans. |.

3. The sum of the terms of an arithmetical series is 950,

the common difference 3, and the number of terms 25. What
is the first term % Ans. 2.

4. Suppose 100 balls be placed in a straight line, at the

distance of a yard from each other ; how far must a person,

starting from the box, travel to bring them one by one to a

box placed at the distance of a yard from the first ball \

Ans. 5 miles and 1300 yards.

5. In gathering up a certain number of balls, placed on

the ground in a straight line, at the distance of 2 yards from

each other, the first being placed 2 yards from the box in

which they were deposited, a man, starting from the box,

travelled 11 miles and 840 yards. How many balls were

there 1 Arts. 100.

6. How many strokes do the clocks of Venice, which go

on to 24 o'clock, strike in a day \ Ans. 300.

7. In a descending arithmetical series the first term is

730, the common difference 2, and the last term 2. What
is the number of terms 1 Ans. 365.

8. A speculator bought 47 house lots in a certain village,

giving $10 for the first, $30 for the second, $50 for the

third, and so on. What did he pay for the whole 47 1

Ans. $22,090.

9. A man bought a certain number of acres of land, pay-

ing for the first $i, for the second $|, and so on. When
he came to settle, he had to pay $3775. How many acres

did he purchase, and how much did he give per acre 1

Ans. 150 acres, at $25^- per acre.

10. A wealthy gentleman offered to his daughter, on the

evening of her marriage, $50,000 as her dowry ; or he would

give her on that evening $1, on the next $2, and so on to
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the end of the year, 365 days, and also the balance of inter-

est that might be found in her favour if she accepted the lat-

ter offer. The lady, being unskilled in mathematit;s, chose

the first ofier. Did she gain or lose by this choice 1

Jlns. She lost $16,795.

GEOMETRICAL PROGRESSION. /

380. If a series of numbers increase or decrease by the

continued multiplication or division by the same number,

they are said to be in Geometrical Progression,.

381. When the numbers increase by a common multiplier,

they form an ascending geometrical series; and when they

decrease by a common divisor, they form a descending geo-

metrical series. The common multiplier or divisor is called

the ratio.

382. In an ascending geometrical series, each succeeding

term is found by multiplying the preceding term by the ratio.

383. The following symbols are used in geometrical pro-

gression, viz. : a= first term, /= last term, n= number of

terms, r= ratio, and S= sum of the terms.

Using the above symbols, we have the series,

1 2 3 4. 5 71—4.. n—3. n—2. n—\. n.

a, ar^ ar^^ ar^^ ar^ . - - . ar"^, af*, ar"^, ar^-\ ar'^'K

Hence we shall have,*

the formula for

3. Dividing, evolving, &c., r= (-)**")
(

1 l=L
, , ^ ,

> the last term.

2. Dividing, &c. . . fl=_L, i
th« f^^'""^^ f^'

^
r*-' > the first term.

the formula for

the ratio.

These three formulas may be enunciated in the form of

general propositions or rules.

384. If the series is descending, the above formulas may
still be applied by taking r= to the reciprocal of the com-

• The formula for the number of terms is solved by the aid of logarithms,

and is, consequently, omitted in this place.
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mon divisor ; for, multiplying by the reciproca,! of a number

is the same as dividing by the number itself. In fact, when-

ever r<l, the series will be descending.
1

385. By the third formula, r=
[
-

j

"'~\ we may obtain a

general method for finding any number of geometrical means

between two given numbers. To do this, it is only neces-

sary to obtain, in addition to the given data, the ratio.

Let m= the number of means ; then, since the whole num-

ber of terms in the series consists of two extremes, plus the

means, m-\-2=n.

Henc(
-G)

When the ratio is found, the means may be obtained by

the continued multiplication of the first extreme.

PROBLEMS TO BE SOLVED BY THE PRECEDING
FORMULAS.

1. The first term of a geometrical progression is 5, the

ratio 4, and the number of terms 7. What is the last term 1

Ans. 20480.

2. The last term of a geometrical series is 98415, the

number of terms 11, and the ratio 5. What is the first

term ^ Ans.

3. The first term of a geometrical series is 28, the last

term 20872, and the number of terms 5, What is the

ratio \ *^ns.

4. Find two geometrical means between 4 and 256.

Jlns. 16 and 64.

5. The first term of a geometrical series is 2, the number

of terms 8, and the ratio \, What is the last term.

^'^^' 8X92-

6. Find three geometrical means between \ and 9.

Jins. i, 1, and 3.

7. A speculator wishes to purchase 8 house lots of a land-

holder, and agrees to pay for the 8 lots what the 8 would
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come to if the first be valued at $2, the second at $6, &c.

What did he pay 1 ^ns. $4374..

8. A man leased a plantation on condition of paying for

the first month $1, for the second $2, and so on for 12

i^nths. At the end of 10 months, finding he had made a

bad bargain, he obtained a release from his engagement on

condition of his paying what would have been the stipulated

sum for that month. How much did he pay % Ans, $512.

SUM OF THE SERIES.

386. The sum of the series may evidently be obtained by

the addition of all the terms, but it is necessary to obtain a

more expeditious method for finding it.

Using thp same symbols»as before, we have

S=:a-}-ar+ar'-f-ar'+ f-ar^-^+ar'-'+ar''-'.

And,rS= ar-|-ar'+ar*-f- .... 4-«r'*-''t-ar'-'+ar'»-'-|-ar\

Subtracting the first equation from the second,

rS—S= ar"

—

a ;

Resolving into factors, (r—l)S=ar"

—

a ;

Dividing . . (1.) Szzj^Z:?, the formula for
r— 1

the sum of the terms when the first term, the number of

terms, and the ratio are given.

Or, since ar"—rxar"-^=rlj i. c, the last term multiplied

by the r&tio,

(2;) S= , the formula for the sum of the terms when

the first term, th^ last term, and the ratio are given.

These formulas may be enunciated in the form of general

propositions <or rules, and applied to the reduction of prob-

lems.

387. From the above formulas it appears that there are

five things to be considered in geometrical progression, viz.

:

1. The first term.

2. The last terra.

3. The ratio.

22
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4. The number of terms.

5. The sum of the terms.

Any three of these being given, the remaining two^ except-

ing the number of terms, may be found.

388. If the ratio be less than 1, the progression is de-

creasing ; we shall also have r/<a.

Hence the formula for the sum of the series may be put

under the form

o_a

—

rl

~ \—r'

389. To obtain a formula for the sum of the terms of a

decreasing series having an infinite number of terms,

Put the formula - S^r^H^",
\-r.

'

Under the form - Sz=_iL—J^.

Now, since r<l, it must be a proper fraction, and r" is a

fraction which decreases as n increases. Therefore will

Xr"* decrease as n increases j and when n be-
1

—

r 1

—

r

comes greater than any assignable quantity, or when n be-

comes infinite, the fraction will become infinitely small, or

= 0, and the value of S be represented by . Hence
1

—

r
• 1

—

r

the formula for the sum of the terms of a decreasing geo-

metrical series, in which the number of terms is infinite, is

1—

r

*

This is, properly speaking, the limit of the decreasing

series, or the number to which the sum of the terms ap-

proaches as the number of terms increases ; but it can

never reach this number until an infinite number of terms be

taken.

390. The above formula may also be applied to the sum-

mation of a circulating decimal series, as 3333, &c., ad in-

fin, ; for this series may be put under the form to+t^t4-
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toVt+ iTT^ iToj &C' Hence, the first term, or a= fV) the geo-

metrical ratio, or r=-^, and the sum

&i=: = ^ =1, the limit of the series.

2. The decimal series, 323232, &c., ad injin.^ may be put

under the form -j?^«y-f-y^^^y, &c. Hence, a=^^y '•=TiT» ^<i

3. The decimal series, 713333, &c., ad infin,, may be put

under the form ^^~\-j^\^-^j^^^j^^ &c. Hence, TV?r+S=TVT

1—

r

1

—

j^

PROBLEMS TO BE SOLVED BY THE PRECEDING
FORMULAS.

1. The first term of a geometrical series is 1, the number

of terms S, and the ratio 5. What is the sum of all the

terms 1 ^ns. 97o56.

2. The first term of a geometrical series is 6, the last

1458, and the ratio 3. What is the sum of all the terms 1

^ns. 2184..

3. The last term of a geometrical series is y^j, the ratio

^, and the sum of all the terms 7f||. What is the first

term % ^ns. 4.

4. What is the sum of the series 1, ^, j, &c., continued

to an infinite number of terms 1 ^ns. 2.

5. What is the sum of the series 1, a, ^, &c., continued

to an infinite number of terms 1 *^ns. \\,

6. The first term of a geometrical series is ^, the ratio i,

and the number of terms 5. What are the last term and

the sum of the series 1 Jlns,*l=j\-^^ and S=}f^.
7. The first term of a geometrical series is 1, the ratio |,

and the number of terms 10. What is the sum of all the

term^l ^ns. VVoW-
8. A person being asked to dispose of a fine horse, said

he would sell him on condition of having a cent for the first

nail in his shoes, two for the second, four for the third, and
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SO on, doubling the price of every nail. There were 32 nails

in his four shoes. What would the horse be sold for at that

rate 1 ^ns, $42949672,95.

9. A man failing in trade, found himself in debt to a cer-

tain amount, after he had given up all his property ; but his

creditors offered to employ him, giving him $1 for the first

month's service, $3 for the second, and so on till the debt

was paid. Having accepted the offer, he found that it re-

quired of him but 10 months' service to.pay the debt. What
was the debt, and what did he receive for his last month's

services 1

Ans. Debt $29,524, and he received for his last month^s

services $19,683.

10.. Two couriers, A and B, set out at the same time to

meet each other. A travels 6 miles the first hour, 8 the

second, 10 the third, and so on, increasing at the rate of 2

miles every hour. B goes 3 miles the first hour, 4| the sec-

ond, and 6f the third, travelling each hour 1^ times as far

as the preceding hour. They meet after six hours. What
is the distance between the two places from which they set

out 1 Ans. 12811 miles.

11. Required the sum of the decimal series ,81343434,

&c., ad injin.
.

Arts, ffff

.

12. Required the sura of the three following series, viz.

:

,111111, &c., ad injin.

,232323, (fee, ad injin.

,714141, &c., ad injin. Ans, l|i^.

•
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SECTION IX.

Theory of Logarithms, and Construction of Logarithmic Tables*

391. Logarithms are a series of exponents, computed and

arranged into tables for the purpose of fa'cilitating many dif-

ficult arithmetical calculations.

In forming a system of logarithms, some number, usually

10, is selected as the base of the system. Taking 10 as the

base of the system, then the logarithm of any number is the

exponent denoting the power to which 10 must be involved

to produce that number.

Let a represent any known number, and x the unknown

exponent denoting the power to which 10 must be involved

in order that the power shall equal a ; we shall then have

10'=a.

To find the logarithm of a, then, requires the solution of

this equation.

392. In order to unfold still farther the theory of loga-

rithms, and a method by which the logarithm of any num-

ber may be calculated, let us take a geometrical progression

whose first term is unity and#he ratio 10 ; and also an arith-

metical progression whose first term is 0, and whose com-

mon difference is unity.

The first series is geometrical,^the second is arithmetical.

1,' 10, 100, 1000, 10000, 100000, 1000000, 10000000, &c.

0, 1, 2, 3, 4, 5, 6, 7, &e.

Supposing the two series to be continued to any extent,

the numbers in the arithmetical series are called the loga-

rithms of the corresponding terms in the geometrical series
;

that is, they arc the exponents showitig the power to which

10 must be involved to produce the corresponding terms in

the geometrical series. Thus <Art. 107), 10°= 1, 10'= 10,

10^=100, 10'= 1000, &c.

• See Note D.

Kk
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393. From the nature of logarithms, as exhibited above, it

will be easy to verify the truth of the three following propo-

sitions :

1. The sum of the logarithms of any two terms of the geomet-

rical series is the logarithm of that term which is their product.

For example, the sum of 2 and 5, the logarithms of 100

and 100000, is 7, which is the logarithm of 10000000=100

X 100000.

2. The difference of the logarithms of any two terms of the

series is the logarithm of thai term which is the quotient cf the

greater divided by the less.

For example, the difference between 7 and 4, the loga-

rithms of 10000000 and 10000, is 3, which is the logarithm

of 1000= 10000000^ 10000.

3. The arithmetical mean between the logarithms of any two

terms in the series is the logarithm of the geometrical mean be-

tween those terms.

For example, ( 10 x 1000)^= V 10000= 100, which is the

geometrical mean between 10 and 1000; also, (l-|-3)-7-2=
4<-i-2=2, which is the arithmetical meajfi between the loga-

rithms of 10 and 100, and is also the logarithm of 100.

394. If we take a decreasing geometrical series whose

first term is unity, and whose%atio is also 10, we shall have
11 1 1 1 _ • 1 i 1 Sirt**» To"? 1 n> To'o J I o> 1 o> 1 OJ 1 o» '*''^*>

Or, 1, 10-', 10-^ 10-^ 10-^, 10-^ 10-^, 10-', &c.

Hence the corresponding arithmetical series, or the loga-

rithms, are

0, —1, —2, —3, —4, —5, —6, —7, &c.

395. It is evident that the logarithms of 1, 10, 100, &c.,

being 0, 1, 2, &c., respectively, the logarithm of any number

between 1 and 10 will be 0+ some decirtial parts ; that of a

number between 10 and 100, 1+ some decinial parts j that

of a number between 100 and 1000, 2+ some decimal parts,

and so on for all the numbers falling between the successive

terms of this progression.-

It is also evident that the logarithms of y\, y^g^, j^q-q^



SECT. IX.] LOGARITHMS. 259

jjshz^ &c., or .1, .01, .001, .0001, &c., being —1, ~2, —3,
—4-, &c.,the logarithm of any number between 1 and ,1 will

be — 1-h some positive decimal parts ; that of a number be-

tween .1 and .01, —2-f- some decimal parts; that of a num-

ber between .01 and .001, —3-|- some decimal parts, &c.

396. Between each two adjoining terms of both series in

Art. 392 a term may be interpolated, and a new series of

numbers,and logarithms will be produced, each consisting

of double the number of terms. T4iis interpolation nruiy be

effected by finding the geometrical mean (Art. 365, Cor.), or

taking the square root of the product of the two terms in

the geometrical series, and the arithmetical mean^ or half

their sum, in the arithmetical series. The term interpola-

ted between 1 and iO in the geometrical series would be

>/lX 10=3,1622777; between 10 ©nd 100 would be v/lOx"

100=31,62280 ; the corresponding terms interpolated in the

arithmetical series would be (0+l)-r2=,5, and (l-h2)-r2

= 1,5. '

The two series, then, would be

1, 3.162277, 10, 31.62280, 100, &c.

0, .5, 1, 1.5, 2, &c.

These two series may again be interpolated as before, and

so on continiKilly. The nulhber of terms in the two series

will continually increase, and the differences between them

continually decrease, with each succeeding interpolation*

397. To construct a table of logarithms, however, it is

unnecessary to interpolate systematically throughout the

series ; for, if the logarithm of some few of the prime num-

bers be calculated, those of the composite numbers may be

obtained by the process indicated in Art. 393. Indeed, these

interpolations may be limited to any two adjoining terms in

the series.

Hence, the logarithm of any number, whele or fractional,

between any two terms of the series in Art. 392, may be cal-

culated by the following general
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RULE*

1. Find a geometrical mean between 1 and 10, 10 and 100,

or any other two adjacent terms of the series between which the

number proposed lies. Also^ between the mean thus found and

the nearest extreme^ observing that the proposed number shall fall

between the mean found and that extreme^ find another geometri-

cal mean^ as before ; and so on, till you have arrived sufficiently

near the number whose logarithm is sought.

2. Find as many arithmetical means between the correspond,

ing terms of the arithmetical series 0, 1, 2, 3, <^c., in the same

order as the geometrical means were found, and the last of these

will be the logarithm of the proposed number

EXAMPLES. •

1. Calculate the logarithm of 5.

Here the proposed number lies between 1 and 10.

Firsty then, the logarithm of 10 is 1, and the logarithm of

1 is 0.

Then, (10 X 1)^= 3.162277, which is the geometrical mean,

And, (l+ 0)-r-2— 1= .5, which is the arithmetical mean.

Hence, the logarithm of 3.162277 is .5.

Secondly, the logarithm of 10 is 1, an<i the logarithm of

3.162277 is ,5.

Then, (3.162277 x 10)*=:5.623413, which is the geometric

cal mean,

And - (l-f,5) -7-2=0.75, which is the arithmetical

mean.

Hence, the logarithm of 5.623413 is 0.75.

Thirdly, the logarithm of 5.623413 is 0.75, and the loga~

rithmof 3.162277is 0.5.

Then, (5.623413 x 3.162277)^ =:4.216964, which is the ge-

ometrical mean,.

And - - (0.54-0.75)-f-2=0.625, which is the arith-

metical mean.

Hence, the logarithm of 4.216964 is 0.625.

Fourthly, the logarithm of 5.623413 is 0.75, and the loga-

«ithm of 4-216964 is 0.625.
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Xhen, (5.623413 x4.216964)^=4..869674, which is the ge-

ometrical mean,

And - (0.75+0.625)^2=0.6875, which is the arith-

metical mean.

Hence, the logarithm of 4.869674 is 0.6875.

Fifthly, the logarithm of 5.623413 is 0.75, and the loga-

rithm of 4.869674 is 0.6875.

Then, (5.623413 x 4.869674)^=5.232991, which is the geo-

metrical mean,

And - (0.75-h0.6875)-7-2=0.71875, which is the arith-

metical mean.

Hence, the logarithm of 5.232991 is 0.71875.

Proceeding in this way, the 22d geometrical mean will be

found to agree with 5, as far, at least, as the sixth place of

decimals ; hence, for all practical purposes, they may be con-

sidered equal, and the 22d term in the corresponding arith-

metical series be taken as the logarithm of 5.

These operations, and their results, may be expressed in

the following table :

Numben.

1. (10x1)* =3.162277,

2. (10x3.162277)* =5.623413,

3. (3.162277 x5.623413)*=4.216964,

(5.623413 X 4.216964)* =4.869674,

(5.6234 13 X 4.869674)*= 5.23299 1,

(4.869674 x 5.23299 1;*= 5.048065,

(4.869674 x 5.048065)* =4.958069,

(5.048065 X 4.958069)*= 5.002865,

(4.958069 X 5.002865)*=4.9804.16,

(5.002865 x4.980416)*=4.991627,

(5.002865 x4.991627)*=4.997240,

12. (5.002865 x 4.997240)*= 5.000052,

13. (4.997240 x 5.000052)* =4.998647,

14. (5.000052 X 4.998647)* =4.999350,

4.

5.

6.

7.

8.

9.

10.

11.

Lnpu-itbmf.

0.50000000.

0.75000000.

0.62500000,

0.68750000.

0.71875000.

0.70312500.

0.69531250.

0.69921875,

0.69726562.

0.69824218.

0.69873046.

0.69897460.

0.69885254r.

0.69891357.
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Numben. Logarithms.

15. (5.000052x4.999350)^=4.999701, 0.69894409.

16. (5.000052x4.999701)^ =.4.999876, 0.69895935.

17. (5.000052 X 4.999876)^=z4.999963, 0.6989668.

18. (5.000052 X 4.999963)^=5.000008, 0.6989707.

19. (4.999963 x 5.000008)^=4.999984, 0.6989687.

^0. (5.000008 X 4.999984)^=4.999997, 0.6989697.

21. (5.000008x4.999997)^= 5.000003, 0.6989702.

22. (4.999997x5.000003)^-5-000000, 0.6989700.

J\^ote 1.—A greater degree of exactness might be attained

by carrying out the work to a greatpr number of decimal

places, and continuing our interpolations.

J^ote 2.—Having thus obtained the logarithm of 5, and

that of 10 being given, the logarithm of 2 can be readily

found ; for, since 10-r5= 2, logarithm of 10, minus loga-

rithm of 5= logarithm of 2, or 1—0.6989700=0.3010300,

which is the logarithm of 2.

2. Required the logarithm of 3. Jlns. 0.47712125.

3. Required the logarithm of 7. .^ns. 0.84509804.

398. The great difficulty of constructing a table of loga-

rithms is in finding the logarithms of the prime numbers.

These were first computed by successive interpolations, as

in the preceding examples. The logarithms of composite

numbers are found by adding the logarithms of the factors

whose product is equal to the composite number.

399. The computation of the logarithms of prime num-

bers, after the logarithm of 2 has been obtained, may be

greatly abridged by the following general

RULE.*

When the logarithm of any number (n) is known, the log-

arithm of the next greater number may be readily found by

substituting the numerical value of the letters in the follow-

ing series, and then calculating a sufficient number of terms.

Let n= the jiumber whose logarithm is given, ?i-|-l= the

* See Note E.
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number whose logarithm is to be found, and M= the modu-

lus of the system =0.4342944.819, or 2M=0.8685889638.

Then will

Lo?arit)im (»-f 1)= logarithm n-f-2M( +7r^r r^

5(2;i+ ly 7(2;i-}- 1)' 9(2/1 -h 1)7

Or, letting A, B, C, D, dec, represent the terms immedi-

ately preceding those in which they are used,

2M A
Logarithm (71+ 1)= logarithm n + ^_ ^ i ^-^th—r^n"^

&c.

SB
JI+;

logarithm

5C 7D
2n-f-l 3(271+1)^

5(271-1-1)* 7(271 -hi)' 9(27»-hl)'

EXAMPLES.

1. Required the logarithm of 3.

Here, since 72-|-l = 3, 7i= 2, and 27i-f-l= 5, we shall have

Logarithm n

2M
2/i4 1

A
3(271 -hi)*

3B

5(271+ 1)*

5C

7(2«4-l)'

7D
9(2/t-Kl)

=

9E
11(271 -hi)*

rlogarithm 2

0.868588964

5

0.1737 17793

3>r5^

3x0.002316237

5x0.000055590

7x5'

7x0.000001588
''^

9x5'

9x0.000000050

=0.301029995

=0.173717793

=0.002316237

=0.000055590

=0.000001588

=0.000000050

=0.000000002

(A.)

(B.)

(C.)

(D.)

(E.)

(F.)
11x5*

Whence the log. (2-hl)= log. 3 =0.477121255.

The above logarithm is correct as far as to the ninth place

of decimals.

2. Required the logarithm of 11. ^ns. 1.04139269.

400. The only numbers whose logarithms it will be found

necessary to compute by the preceding formula, of by in-

terpolating the series, are the prime numbers 3, 7, 11, 13,
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17, 19, 23, 29, &;c. The logarithms of composite numbers

may be computed by the propositions verified in Art. 393.

COMPUTATION OF LOGARITHMIC TABLES.

401. The following table will exhibit the manner in which

the logarithms of the natural series of numbers 1, 2, 3, 4,

&c., to 30, may bccomputed:
'

4
Nos. Method of Computation. Logarithmi.

1. log. Izz: 0.00000000.

2. Since 10H-5= 2,log. 10- log. 5= log. 2=0.30103000.

3. Computed by formula in Art. 399, log. 3= 0.47712126.

4. Since 2x2=4, log. 2+ log. 2 = log. 4= 0.60206000.

5. Computed by interpolating the > j 5=0 69897000.
series in Art. 397 - 5 ' ^'

6. Since 2x3= 6, log. 27f log. 3 = log. 6=0.77815125.

7. Computed by formula in Art. 399, log. 7= 0.84509804.

8. Since 2X4=8, log. 2+ log. 4 = log! 8= 0.90308999.

9. Since 3x3=9, log. 3+ log. 3 = log. 9= 0.95424251.

10. :-..-. log. 10=1.00000000.

11. Computed by formula in Art. 399, log. 11= 1.04139269.

12. Since 3x4=12, log. 3+ log. 4 = log. 12=1.07918125.

13. Computed by formula in Art. 396, log. 13=1.11394335.

14. Since2x7=14, log. 2+log.7 = log. 14=1.14612804.

15. Since3x5= 15,log. 3+log.5 = log. 15= 1.17609126.

16. Since 4x4=16, log. 4+ log. 4 = log. 16=1.20411998.

17. Computed by formula in Art. 399 log 17= 1.23044892.

18. Since3x6= 18, log. 3+log.6 = log. 18=1.25527251.

19. Computed by formula in Art. 399, log. 19= 1.^7875360.

20. Since 2 x 10=20, log. 2+ log. 10= log. 20= 1.30103000.

21. Since 3x 7=21, log. 3+ log. 7= log.^l= 1.32221929.

22. Since 2x 11= 22, log. 2+ log. lI=log. 22= L34242268.

23. Computed by formula in Art. 399, log. 23=1.36172784.

24. Since4x 6= 24, log.4+ log. 6= log. 24= 1.38021124.

25. Since5x 5=25, log. 5.+ log. 5= log. 25= 1.39794001.

26. Since 2 x 13= 26, log. 2+ log. 13= log. 26= 1.41497335.

27.- Since ^X 9= 27, log. 3 -f- log. 9= log. 27= 1.43136376.

28. Since 4 X 7=28, log. 4+ log. 7= log. 28= 1.44715803.
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29. Computed by formula in Art. 399, log. 29= 1.46239800.

30. Since 3 X 10=30, log. 3-Mog.4. = log. 30= 1.47712125.

The logarithm usually consists of two parts, the integral

part, usually called the index or characteristic^ and a decimal.

402. It will also be perceived that the multiplying or di-

viding of any number by 10, 100, 1000, &c , is performed by

increasing or diminishing the integral part of its logarithm

by 1, 2, 3, &c.
J
hence, all numbers which consist of the

same figures, whether, they be integers, decimals, or mixed

numbers, will have for the decimal part of their logarithms

the same positive number.

Thus, according to the tables now in common use, the

logarithm of 3854 is 3.58591171.

Log. 3854 =3.58591171
J

Log. 38540= log. (3854 x 10)= log. 3854+ 1=4.58591171
j

Log. 385,4 = log. ??^ = log. 3854-1=2.58591171

;

Log. 38,54 = log.^^ = log. 3854-2=1.58591171
J

Log. 3,854 = log. ??5^ = log. 3854-3=0.58591 171

;

Log. ,3854 = log. ^?5i = log. 3854-4= 1.58591171

;

^ ' ^ 10000
^

Log. ,03854= log. J?5i. = log. 3854-5=2.58591171.^ ^ 100000
^

The number of units in the characteristic of a logarithm

is one less than the number of digits in the natural number
j

and for decimals, the negative characteristic denotes how
far the first significant figure is removed from the place of

units. The decimal part of the logarithm is always positive.

APPLICATIONS OF LOGARITHMS.

403. The tables of logarithms in common use contain the

logarithms of numbers from 1 to 10000. An explanation of

these tables, and also of the methods of finding from them

the logarithm of any number, or the number of any logarithm

23 L L
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whatever, usually accompanies them, so that such explana-

tions are unnecessary here. The numbers and logarithms

used in the following applications of logarithms are taken

from these tables.

I. MULTIPLICATION AND DIVISION.

404. Since logarithms are a series of exponents denoting

different powers of the common number 10, it is evident

that the sum of the logarithms of any two numbers will be

the logarithm of their product, and the difference of their

logarithms will be the logarithm of the quotient produced

by dividing the greater by the less. Hence,

I. To multiply by logarithms, take the logarithms of the fac-

tors from the table^ add them together^ and then find the natural

number corresponding to their sum ; this will he the product re-

quired.

1. Multiply 16 by 5, by logarithms.

Logarithm 16 =1.20411998;

Logarithm "5 =z0.69897000

;

Logarithm 80 =1.90308998. Ans.QO,

2. Multiply 37153 by 4086, by logarithms.

Logarithm 37153 =4.5699939
;

Logarithm 408,6 =2.6112984;

Product, 15180715.8 . . 6.1812923.

3. Muhiply 4675,12 by .03275, by logarithms.

Logarithm 4675.12 =3.6697928;

Logarithm 03275 =2.5152113;

Product, 153,1102, &c. . 2.3850041.

II. To divide by logarithms, subtract the logarithm of the

divisor from the logarithm of the dividend, and the remainder

will be the logarithm of the quotient.

EXAMPLES.

1. Divide 72 by 24, by logarithms.

Logarithm 72 =1.85733250;

Logarithm 24 =1.38021124;

Quotient, 3 0.47712126.
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2. Divide 4768,2 by 36,954, by logarithms.

Logarithm 4768,2 = 3 6783545
;

Logarithm 36,954 =1 5676615;

Quotient, 129,032 .... 2.1106930.

3. Divide 46257 by ,17608, by logarithms.

Logarithm 46257 =4.6651725;

Logarithm ,17608 =1.2457100
;

Quotient, 2^2741 . . . . 5.4194625.-

II. INVOLUTION AND EVOLUTION.

405. Involution is performed by multiplying the exponent

of the number to be involved by the exponent denoting the

power (Art. 157) ; and Evolution by dividing the exponent

of the number by the exponent denoting the root to be ta-

ken (Art. 289). Hence,

I. To involve by logarithms, multiply the logarithm of the

number to be involved by the number denoting the power ; the

product will be the logarithm of the power.

EXAMPLES.

1. Involve 9 to the second power, by logarithms.

Logarithm 9 =0.95424251;

Multiplying by 2, 2 ;

Square, 81 1.90848502.

2. Involve 7.0851 to the third power, by logarithms.

Logarithm 7.0851 =0.8503399

;

Multiplying by 3, 3
;

Cube, 355,6475 .... 2.5510197.

3. Involve 0.9061 to the seventh power, by logarithms.

Logarithm 0.9061 =1.9571761304
;

Multiplyihg by 7, 7 ;

Power, 0.5015 .... 1.7002329128.

4. Involve 1.0045 to the 365th power, by logarithms

Logarithm 1.0045 =0.0019499
;

Multiplying by 365, 365
;

97495"

116994

58497

Power, 5.148888 . . . 0.7117135.



268 ELEMENTS OF ALGEBRA. [sECT. IX.

II. To evolve by logarithms, divide the logarithm of the

given number by the number denoting the root to be taken ; the

quotient will be the logarithm of the root.

EXAMPLES.

1. Evolve 81 to the fourth root, by logarithms.

Logarithm 81 =r 1.90848502
;

Dividing by 4, -r-4
;

Root, 3 0.47712120.

2. Evolve 7.0825 to the fifth root, by logarithms.

Logarithm 7.0825 =0.8501866
j

Dividing by 5, 4-5
j

Root, 1.479235 .... 0.1700373.

3. Evolve 1.045 to the 365th root, by logarithms.

Logarithm 1.045 =0.0019116;

Dividing by 365, -i-365j

Root, 1.000121 .... 0.0000524.

4. What is the 8th power of the 9th root of 654 %

Logarithm 654 r=2.8 155777483
;

Multiplying by 8, 8

;

* 22.5246219864

;

Dividing by 9, -r-9
j

Root, 318.3 2.507357762.

III. EXPONENTIAL EQUATIONS.

406. Equations into which the unknown quantity enters

in the form of an index are called exponential equations.

Such equations may be most readily solved by logarithms.

Thus, d^=b^ but a=^=(log. a)xx ; therefore, (log. a)xx=

log. 5, or, dividing by log. a, x— ^^'
.

log. a

EXAMPLES.

1. Reduce the equation 5''i=100.

As the two members are equal, their logarithms must also

be equal y therefore,
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(Log. 5)xa?= log. 100;

Ti' .' log. 100 2 00000000 OQC1Dividing - - x= _-° =—— =2.861.
log. 5 0.69897000

2. Reduce the equation 3'=24.3.

(Log. 3)xx= log. 24.3;

Tx- ... log. 243 2.38561 ^
Dividing - - x= —P- = =5.^

log. 3 0.47712

407. Another and a more difficult form of exponential

equation is a"*=b. Here the exponent x is the exponent

of the exponent m.

In this equation assume rrfzuy^ then a?=by

And - (log. a)xy= log. h ;

Dividing - - y= ^^'
;

log. a

Hence - - »t*= —°^ (which let)=c;
log. a

Then - (log. »i)xa?= log. c;

Dividing • - ir= ^^' ^
.

log. m

EXAMPLE.
X

1. Reduce the equation 9'= 1000.

(Log. 9) X 3'= log. 1000
J

Dividing . . 3x^ log. 1000^ 3.00000000^3^^
log. 9 0.95424251

'

Then - - - 3*= 3.14.-. (log. 3) Xic= log. 3.14,

And - . . x=l^^Jll!=2^9^5-1.04.
log. 3 0.47712126

2. Reduce the equation 4^=4096.

^n«.a:= 1:^=1.6309+ .

log. 3

408. A third and a still more difficult form of the expo-

nential equation is af=b.

Taking the logarithms of both sides, we have

(Log. x)xx= log. b.

This equation naay be solved by " Trial and Errors Thus,
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make two suppositions of the value of the unknown quanti-

ty, and find their errors j then institute the following pro-

portion : /

Diff. of the errors : diff. of the assumed numbers : : least

error : to the correction required in the corresponding

assumed number.

EXAMPLES.

1. Reduce the equation a;*=i256.

Then - (log. x)xcc= log. 256
;

Suppose - - 07=3.5, or 3.6.
'

By first Supposition. By second Supposition.

Log. x=[og, 3.5=0.54406804

Multiplying by 3 5

(Log. a?)xa7= 1.90423814

But, log. 256 =2 40823997

Error* - 0.50400183

Log. X- log. 3.6=0.55630250

Muhiplying by 3.6

(Log. x)xx =2.00263900

Log. 256 =2.40823997

Error* - 0.39555097

Difference of the errors, 0.10844086.

Then, 0.10844086 : 0.1 : ; 0.39555097 : 0.365 j hence x

3.965+ .

To correct this still farther, suppose a?=3.96, or 4.01.

By first Supposition. By second Supposition.

Lo^.a;=loa. 3.96=0.59769519

Multiplying by 3 96

(Log. a;)xa: =2 36687295

Loa.x= log. 4,01=0.60314437

Multiplying by 4.01

{Log. x) XX =2.41860892

256 =2.40823997,Lo^. 256 =2.40823997

First errorf =0.04136702! Second errort=0.01036895

Difference of the errors =0 05173597.

Then, 05173597 : 0.05 : : 0.01036895 : 0.01.

Hence, a:=4.01— 0.01=4, which value for x satisfies the

conditions of the equation ; for

4^=256.

2. Reduce the equation 4a;''=100a?^

* Both these suppositions are discovered to be less than the true number;

hence the errors are like with reference to their signs.

t One of these suppositions is less, the other greater than the true value

of a;; hence the errors are unlike with reference to their signs.
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Dividing by 4 - - - - af=25a^;

Dividing by a:* .... jf-«=r25j

Taking the logarithm, (log. af)x(x—3)= log. 25;

Suppose x=4fy or 6.

Bjr wcoDd Suppokition.

Log. x= log. 6 =0.77815125
By fitrt SappMition.

Log. x= log. 4 =0.60205999

Multiplying } _ ,ultiplying )

by X—3 S

(Log. x) X (ar—3) =p 0.60205999

Log. 25 =1.39794001

First error =0.79588002

Difference of the errors =1.73239376.

Then, 1.73239376 : 2 : : 0.79588002 : 0.092

Hence, x=4-|-0.92=4.92.

Again, suppose 07=4.92, or 4.93.

By Am Supptwitioo.

Log.x=log.4.92=0.69196510

Multiplying
^ ^ J ^2

:—3 S

Multiplying^

by X—

3

(Log. a) X (a:—3) =2.33445375

Log. 25 =1.39794001

Second error =0.93651374

by X-

(Log. x) X (x--3)=

1

.32857299

By tecood Sappotilion.

Log. x= log. 4.93= 0.69284692

Multiplying

by X—

3

!
= 1.93

(Log. x) X (X—3)= 1 .337 1 9456

1.39794001'Log. 25 = 1.39794001Log. 25

First error =0.06936702,' Second error =0.06074545

Difference of errors =0.00851157.

Then, 0.00851157 : 0.01 : : 0.06074545 : 0.07.

Hence, i= 4.93 -1-0.07— 5.00, which value for x satisfies

the conditions of the equation ; for

4X5^=100X5'.

IV. GEOMETRICAL SERIES.

409. Logarithms are also very convenient in finding the

last term, and also the sum of the series in Geometrical

Progression, when n is not a very small number. The num-

ber of terms may also be obtained by the aid of logarithms.

I. The formula for the last term is (Art. 383),

Taking the log., log. /= log. a4-(log. r)x(n— \).

Hence, to find the last term in n geometrical series by



272 ELEMENTS OF ALGEBRA. [sECT. IX.

logarithms, add the logarithm of the first term to the logarithm

of the ratio multiplied by the number of terms less one ; the sum

will be the logarithm of the last term,

EXAMPLE.

1. The first term of a geometrical series is 4, the ratio 5,

and the number of terms 61. Required the last term.

Or, log. l=z log. 4+(log. 5) X 60=0.60205999+41.9382000

= 42.54025999.
'

Hence, finding the natural number corresponding with

42.54025999,

7=3469479392577934009746744427570344331708876.

2. The formula for the sum of the terms in a geometrical

series is (Art. 386)

g_ar"— <x ^

r— 1
*

In this formula, if n is not a small number, it will he found

convenient to find the value of ar" by taking

Log. (ar'^)= log. <z-l-(log. r)xn.

Thus, we may find the value of ar"" in the same way that

we found the last term in the preceding case,

3. To obtain a formula for the number of terms, let us

resume the formula for the sum of the terms,

b= .—

;

Clearing of fractions, rS— S=ar"

—

a;

Transposing - - ar'*=rS—S+a;

Dividing
a

Hence, - - (log. r)X7i= log. (rS—S+a)— log. a/

D.
•!• log. (rS— S4-«)— loor. a

ividmg - - - - n——^—^ —L 2 ,

log. r

EXAMPLES.

1. The sum of a geometrical series is 6560, the first term

2, and the ratio 3. Required the number of terms.

Here- - S=6560, a=2, and r=3
j
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Hence - n=}2iL0±±t^t±Si^',
log. r

— l£gl_l?122~Jlog^2

.

~
log. 3

_ 3.8169700_Q
""0.4771213"

2. The sum of a geometrical series is 1023, the first term

1, and the ratio 2. Required the number of terms.

jJns. 10.

3. The sum of a geometrical series is 640, the first term

4, and the ratio 1.01. Required the number of terms.

V. COMPOUND INTEREST.

410. By means of logarithms we may also determine the

number of years it will take a given principal, at a given

rate, compound interest, to gain a certain amount. Thus, in

Art. 219, we have the formula

A=P(l+r)";
Taking the logarithms, log. A= log. P+(log. (l+r))x» .•

Transposing, (log. {l-\-r))xn= log. A— log. P;

_ log. A— log. P
log. (1+r)

J^ote.—By means of this formula we may ascertain the

number of years it would take a sum of money to double,

triple, &c., or amount to m times itself, when put out at

compound interest, at a given rate per cent.

EXAMPLES.

1. A man loans $1250, at 6 per cent, compound interest.

In what time will it amount to $4008.92 1

In this example, A=$4008.92, P=1250, and r+l=,06-f-

1= 1.06.

Hence n- ^^^' ^^^^^^- ^^g- ^^^^
.

_3.60302739-3.09691001 ^^^ ^^^.
0.02530587

^*

2. At 6 per cent, compound interest, in how many yean

will $1200 amount to $2149.191 ^ns, 10 years.

Mm
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3. At 6 per cent, compound' interest, in how many years

will money amount to double, triple, and quadruple the ori-

ginal sural Ans. 11,9955, 18,8145, and 23,791 years.



APPENDIX.



The three following sections, as they contain those portions of

algebraic analysis which are seldom pursued in academies and

schools, but which are nevertheless essential to the successful

prosecution of the higher branches of the mathematical course,

have been thrown into the form of an appendix.



APPENDIX.

SECTION X.

Permutations^ ,^rrangementSy and Combinations.—DemonstrO'

lion of the Binomial Theorem.—Continued Fractions.—/n-

finite Series.—Expansion of Infinite Series.— Indeterminate

Coefficients.—Summation of Infinite Series.—Recurring Se-

ries.—Method of Differences.—Reversion of Series.

PERMUTATIONS, ARRANGEMENTS, AND COMBINATIONS.

I. PERMUTATIONS.

411. Permutations are the results obtained by writing a

given number of letters, one after the other, in every possi-

ble way, in such a manner that all the letters may enter into

each result, and each letter enter but once.

Thus, the two letters a and b furnish the two per- i ab

mutations t ba

The three letters, a, J, and c, furnish six permutations, viz.

:

abcj acby cah^ cba^ bac, bca.

Hence, the permutations of three letters are equal to the per-

mutations of two letters multiplied by three.

412. In like manner, the permutations offour letters will be

found equal to the permutations of three letters multiplied by

four.

And, in general, the permutations of any number whatever

(n) of letters will be equal to the permutations of n— 1 fetters^

multiplied by ;?, the number of letters employed. Letting Q de-

note the number of permutations of n— 1 letters, then the

general formula for the permutations of n letters will be

Qxn,
24

• •
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If 71=: 2, the number of permutations will be 1x2=2.
If 7^= 3, the number of permutations will be 1x2x3=6.
If 7^=:4<, the number of permutations will be 1x2x3x4'

=24.

If 7iz=5jthe number of permutations will be 1x2x3x4
X5=120, 6cc.

Hence, for the permutation of any given number of letters

or numbers, we infer the following general

RULE.

Multiply in order the natural numbers 1, 2, 3, 4, <S*c., to the

number denoting the letters employed inclusive ; the result will

be the permutations of the given number of letters.

EXAMPLES.

1. How many permutations can be made of the first 6 let-

ters of the alphabet 1 Ans. Ix2x3x4x5x 6 =720.

2. How many permutations can be made of the first 8 let-

ters of the alphabet ]

3. In how many different ways may 12 different persons

be seated at the table %

II. ARRANGEMENTS.

413. Arrangements are the results obtained by writing a

given number of letters in sets, 2 and 2, 3 and 3, &;c., in

every possible order.

Let it be required to arrange the three letters,

a, J, and c, in sets of two each. Setting apart ai

we write after it each one of the reserved letters,

h and c, and thus form two of the arrangements

sought, viz., ah and ac ; next, setting apart Z*, we <{ be

write after it each one of the reserved letters a and

c, and form two more of the arrangements sought,

viz., ba and be / pursuing the same course with c,

we obtain --------

ab

ac

—a

ba

The arrangement of the same letters in sets of

one each would give ------ y

Hence, the arrangement of three letters, taken two in a set, will

—b
ca

ch

—

c

a
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he equal to the arrangement of the same letters taken one at a

time^ multiplied by the number of letters reserved.

414. Let it be required, in the next place, to form the ar-

rangement of four letters, a, i, c, and </, taken three in a set.

First arranging the letters two in a set, we shall have 12

arrangements, viz.

:

oA, ac^ ad, ba, be, bd, ca, cb, cd, da, db, dc.

Next, take one of the above sets, ab, for example, and write

after it successively each one of the reserved letters c and

d, and thus form two of the arrangements sought, viz., abc

and abd. Proceeding in the same manner with the remain-

ing sets, we shall obtain 24 arrangements, viz.

:

abc bar. cab dab

abd bad cad dac

acb bca cba dba

acd ' bed cbd dbc

adb bda cda dca

adc bdc cdb deb

Hence, the arrangements offour letters, taken three in a set,

will be equal to the arrangements of the same letters taken two in

a set, multiplied by the numler of letters reserved.

415. In like manner, we have the arrangements of any num-

ber (m) of letters taken n in a set, equal to the arrangements of

the same letteis, n— 1 in a set, multiplied by the number of let'

ters reserved,

416. Let P represent the total number of arrangements of

m letters taken n—1 in a set, supposing this number to be

known ; the reserved letters, when it is required to take n

in a set, will be m— (n— l)=m—ti+I, and the number of

arrangements of rn letters, taking n in a set, will be

Px(w-7i+l).

This is the general formula for arrangements. To apply

it to particular cases, let n=2; then m—n + l=jn--l, and

P will represent the arrangements of m letters taken 1 at a
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time; whence P=77j, and m{m— l) will represent the ar-

rangements of m letters taken two in a set.

Again, let 7^=3, then m—n-\-lz=zm—% and V—m{m—1) ;

whence the formula becomes

m[m— \) (77i— 2).

Let 71=^^ then m—n-[-l=m—'6^ and Vz=m(m—\) (m—2)
;

whence the formula becomes

m(m— l) (77^-2) (m— S).

Hence we infer the following general

RULE.

1. From the number denoting the given letters^ subtract suc-

cessively the natural numbers 1, 2, 3, <^c., to the number which

denotes the letters to be taken at a time.

2. Multiply these several remainders and the number denoting

the given letters together ; the product will be the arfangements

required.

EXAMPLES*

1. How many arrangements may be made of the first six

letters of the alphabet, taken three in a set %

In this example m— Q, and n= 3; then we have

77^(m— 1) (77^— 2)=6x5x4==120. ^ns.

2. How many arrangements may be made of the 26 letters

of the alphabet, taking 6 in a set 1

Jsote.—It should b« observed that, when m^=Ln^ the num-

ber of arrangements is the same as the number of permuta-

tions. Thus, if there be six letters, to be taken six in a set,

we have

77i(7?i-l)(m-2)(m-3)(m— 4) (?7i-5)=6x 5x4x3x2x1==
720.

III. COMBINATIONS.

417. Combinations are arrangements, any two of which

will differ from each other by at least one of the letters

which enter into them.

Let it be required to determine the number of combina-

tions of which the three letters a, 5, and c^ taken, two in a
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set, are susceptible. The arrangements of these letters, two

in a set, are

ab ac be

ba ca cb

In these six arrangements we have but three combina-

tions, viz., aby aCy and ic, each one of which is repeated as

many times as there are permutations of two letters.

Hence the combinations of three letters^ taken two in a set,

will be equal to the arrangements of three letters, taken two in a

sety divided by the permutations of two letters.

4-18. In like manner, it may be shown that the combina-

tions of four letters,, taken three in a set, are equal to the

arrangements of four letters, taken three in a set, divided

by the permutations of three letters.

And, in general, the combinations of m letters, taken n ia

a set, will be equal to the arrangements of m letters, taken

71 at a time, divided by the permutations o( n letters.

Hence we have the following general formula for combii*

nations:

Px(m~-7t+l)

Qxn
Letting »=2, the formula for the combinations of m let-

ters, 2 in a set, becomes

m(m— 1)

1x2
Letting 7i=3, the formula for the combinations of m let^

ters, taken 3 in a set, is

m{m^\) (m—2)

1x2x3
And, if 71=4, we shall have

m{m—\) (7»—2) (7»— 3)

1x2x3x4
Hence we infer the following general

RULE..

To find the combinations of m letters, taken n in a set,

Nn
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divide the arrangements of m letters^ taken n in a set, by the

permvtations of n letters,

EXAMPLES.

1. How many combinations can be made of 10 letters, ta-

king foar in a set %

;7^(m-l) (771-2) (77^—3)_ 10x 9 x8x7_^^^ ^^^^
QX7?J 1x2x3x4

2. How many combinations can be made of the 26 letters

of the alphabet, taking two in a set 1

3. How many combinations can be made of 100 things,

tsfking four in a set 1
'

GENERAL DEMONSTRATION OF THE BINOMIAL
THEOREM.

419. We hare already exhibited the Binomial Theorem
and its applications to numbers ; but we propose now to give

a more rigid, and-, at the same time, a more general demon-

stration of it. It is easy to fix upon the law for the expo-

nents, but that for the coefficients is not so obvious. Ifwe
observe, however, the manner in which the different terms

that compose a power are formed, we shall perceive that the

numerical coefficients are occasioned by the reduction of

several similar terms into one, and that these similar terms

arise from the equality of the factors, which compose a

power. Hence, these reductions will not take place if the

second terms of the binomial are diffigrent.

420. We will begin, therefore, by investigating the law

for the formation of the prodtict of any number of binomi-

als, a?4-a, a?-f-i, a?+c, of which the first term is the

same in each, and the second terms diffi?rent. The coeffi-

cients of like powers of x are placed under each other, and

separated from a:, into which their sum is to be multiplied,

by a vertical line.

X -\-a

X -tb

1st product . . x^-\-a X -i-ab
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X -f c

2d product

3d product

x^-^a x'-ifah

+ b + ac

+ c ^hc

X -^abc

x+d
x*-\-a x'+ab a^-^abc

+ b 4-ac + abd

+ c -^ad -{-acd

+t/

+ cd

+ bcd

x-i-abcd

4f'21. From an incpectron of the above products, which we
have formed by the common rules of multiplication, it will

be easy to infer the following laws

:

1. The exponent of x in the first term is the same as the num-

ber of binomial factors employed^ and decreases by 1 in each of

the following terms.

2. The coefficient of the first term, is unity ; the coefficient of

the second term is equal to the s-um of the second terms of the

binomials ; that of the third term is equal to the sum of the dif-

ferent combinations of the second terms of the binomials^ taken

two in a set y and that of the fourth is equal to the sum of the

products of the second terms of the binomials^ taken three in a

56/, and so on. The last term is equal to the product of the sec-

ond terms of the binomials.

422. In order to show that the same law will obtain what-

ever be the number of factors employed, it is only necessary

to prove that if the law be true for the product of any num-

ber (m) of binomials, it will also be true for the product of

m-\-\ binomials.

Let us represent the product of m binomial factors by

ar'^-hAx''-'4-Bx'«-'+Cx"-'+ U. m
Multiplying this expression by a new factor, x+K, it be-

comes

+K
X-+B
+AK

I—'4-0

4BK
tKL
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423. Here the law of the exponents is evidently the same

as before. With respect to the coefficients, it is evident,

1. That the coefficient of the first term is unity.

2. That A-j-K, the coefficient of the second term, is

equal to the sum of the second terms of the m-\-l bino-

mials.

3. That, since B, by hypothesis, expresses the sum of the

second terms of the m binomials, taken two in a set, and

AK expresses the sum of the second terms of the m bino-

mials, multiplied each by the new second term K, B-j-AK,

the coefficient of the third term will be the sum of the prod-

ucts, two in a set, of the second terms of the m-\-l bino-

mials.

4. That C-fBK is the sum of the products, taken three

in a set, of the second terms of the m-\-l binomials, and so

on.

5. That the last term UK is the product o( m + 1 second

terms.

424. The law laid down in Art. 421*, being true for ex-

pressions of the fourth degree, will, from what has just been

demonstrated, he true for those of the fifth ; and, being true

for expressions of the fifth degree, will also be true for those

of the sixth, and so on indefinitely.

425. If, in the different products which we have formed^

we make the second terms of all the binomials equal, i. e.y

make a=J=c= ti,&c., these products^ will be converted into,

powers of a;+a. Thus,

X -{-a

X -\-a

1st product

2d product

x^-^a

X -\-a

X -\-o^

3?^-a a?2+a^

+« + a^

+fl^ +«^

X -\-(i
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3d product

x-\-a

x*+a or' -{-a' a:Ha'

+ a +a» + «>

+ a +a» H-a*

-f» + 0'

x+o*

426. By comparing these results with the products from

which they have been derived, we perceive,

1. That the multiplier of x in the second term has been

converted into the first power of a, repeated as many times

as there are units in the number of binomial factors used,

or, which is the same thing, as there are units in the expo-

nent denoting the power to which x-\-a was to be involved,

2. That the multiplier of x in the third term has been

converted into a^ repeated as many times as there can be

formed different products from a number of letters equal to

the number of binomials employed, taken two in a set.

3< That the multiplier of the fourth term has been con-

verted into a', repeated as many times as there can be form-

ed different products from a number of letters, equal to the

number of binomials employed, taken three in a set, and so

on.

427. It is therefore evident that, whatever may be the

power to which the binomial a: + a is to be raised, the for-

mation of its power will be subject to the following laws,

viz.

:

1. The exponent of x in the first term will be equal to the ex-

ponent of the power, and in the succeeding terms will decrease

regularly by 1 to the last teivi^ in which it will le 0,

2. The exponent of a in the first term will be 0, in the second

1, and that it will go on increasing by 1 until it becomes equal

to the exponent of the power to which the binomial was to be in*

volved.

3. That the numerical coefficient of x in the first term will b€

1 ; in the second it will be equal to the exponent denoting th%
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power to which the binomial was to le involved ; in the third

term it will be equal to the number of products^ which may be

formed from a number of letters^ equal to the exponent denoting

the power of the binomial, taken two in a set ; in the fourth term

it will be equal to the numbev of products which may be formed

from the same number of letters taken three in a set, Sfc.

428. The above theorem, with reference to the coeffi-

cients, is too cohiplicated for general use. In order to sini-

plify it, let it be required to expand (oj+a)"*. The first few.

and the last few terms, without the numerical coefficients,

will be

+a^ (A).

The numerical coefficient of the first term is 1 ; that of

the second is m /that of the third is equal to the number of

products which may be formed of m letters taken two in a

set ; this is expressed by the formula —A 1 : the coeffi-

cient of the fourth term is —— '

'

——^ , &;c.

1x2x3
By inspecting the above formulas for the numerical coef-

ficients of X, it will be perceived that the coefficient of the

third term is equal to the coefficient of the second term (m)

multiplied by the exponent of x {m— 1) in that term, the

product divided by the number (2) which marks the place

of this term, counting from the left.

And, also, the coefficient of the fourth tferm is equal to

the coefficient of the third term / ^(^— ; \
^ multiplied by

the exponent of x (m—2) in that term, the product divided

by the number (3) denoting the place of that term &c.

429. Again, since in the expression [x-{-a) , a may be sub-

stituted for X, and x for a, without altering its value,^ it fol-

lows that the same thing may be done in the development

of it. Hence, if this development contains a term of the

form Ka"a?"'~" (K representing the numerical coefficient), it
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must have another equal to Kx^aT-''^ or Ka'^'^x". These

two terms are evidently at equal distances from the two

extremes, for the number of terms whioh precede any term

being indicated by the exponent of a in that term, it follows

that the term Ka"x"*~" has n terms before it, and that the

term Ka^^x" has m—n terms before it, and, consequently, n

terms after it, since the whole number of terms is denoted

by m-fl.

Therefore, in the development of any power of a binomial,

the coefficients at equal distances from the extremes are equal to

each other.

Hence, the numerical coefficients of the series A will be

l-LffT-L
^^—

-j-K^— 1) (^—-) m{m—l) (ct—2)
1x2 1x2x3 ^ ' '

*'

' 1x2x3

+!fcL)+m+l (B).

Compounding the two series A and B, we have

(x+ar=x--\-max-' + ^lil^^^a'x"-' + m(m-l) (m-2)^
^ ^ ^ 1x2 1x2x3

x-'-f . . . 4.
^(^-1) (^-2)^^.^^^(m-l)^^ ,

1x2x3 1x2
4-mxa"'~'+ a"'.

430. The preceding operations give rise to the following

simple theorem for obtaining the coefficients

:

1. The coefficient of the first term is 1 j that of the second is

equal to the number of units in the exponent, which denotes the

power to which the binomial is to be raised.

2. .^nd univp-sally^ if we multiply the numerical coefficient

by the exponent of x in that term, and then divide the product ly

the number which marks the place of that termfrom the left, the

quotient will be the coefficient of the succeeding term.

3. The terms in the last half of the series of coefficients will

be found to correspond with those in the first half placed in the

inverse order.

431. These results of the Binomial Formula are substanr

tially the same as those obtained by a different process, and

practically applied in Articles 259-272.
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It should also be remarked that the same formula will

apply whether m represent a positive or negative whole

number or a fraction.

CONTINUED FRACTIONS.

432. A continued fraction is one which has 1 for its nu-

merator, and for its denominator an entire number plus a

fraction \ which fraction also has 1 for its numerator, and

for its denominator an entire number plus a fraction, and so

on. Thus,

1

«+l

c+l
</+, &c.,

is a continued fraction.

I. To convert a vulgar fraction into a continued fraction.

RULE.

Jjpply to the two terms of the fraction the process of finding

their greatest common divisor ; continue the operation until is

obtained for a remainder ; the reciprocals of the successive quo-

tient will form the partial fractions, which constitute the contin^

uedfraction.

JSTote.—The above rule may be readily illustrated by ap-

plying it to a particular case. Take, for example, the frac-

351
tion ; dividing both numerator and denominator by the

965
' ^ ^

numerator, we obtain

351 1

965 2+263
351*

263
Performing the same operation upon , we obtain

dO 1

263 1

351 1+88
263'
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A • 88 1
Again

And

263 2+87
88'

87 1

88 1+ 1.
87'

351 1

965 2+1
1 + 1

2+1

Hence

1+J^
87*

Now, if we apply the or4^nary rule for finding the great-

est common measure of two numbers to the two terms of

351
the fraction , the successive quotients will be 2, 1, 2, 1,

87, and their reciprocals ^, |, ^, i, and ^V^, which are evi-

dently the partial fractions which compose the above con-

tinued fraction.

EXAMPLES.

65
1. Transform— into a continued fraction.

149

149 2+

1

3+1
2+1

2+1
1+1

2'

2. Transform into a continued fraction.
5537

" 965
3. Transform —L into a continued fraction.

3ol

4. Transform —-— into a continued fraction.
10948

11. To find the equivalent vulgar fraction for a given con-

tinued fraction.

25 Oo

•
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•
RULE.

1. If there he any whole number prefixed to the fractional

series^ that will be the first approximate value ; if there be no

such whote number, then we know that the vulgar fraction

sought is proper, and the symbol _ is used to express its first

approximate value.

2. The second approximate value is obtained by taking the

sum of the first approximate value and the first partial fraction,

3. To obtain the third approximate value, multiply the numer-

ator and denominator of the second approximate value by the de-

nominator of the next partial fraction, and to the respective

products add the numerator and^ denominator of the first ap-

proximate value.

4. Jlnd universally, if we multiply the terms of the last ap-

proximate value by the denominator of the succeeding partial

fraction, and to the products add the numerator and denominator

of the preceding approximate value, the result will be the suc-

ceeding approximate vaiue. Thus continue till the last partial

fraction has been used.

Jfote 1.—The preceding rule may be readily illustrated by

applying it to a particular example. Thus, let it be requi-

red to find the equivalent vulgar fraction for the continued

fraction

1 2+i
3+1

2+1
2+1

1+i
2'

Here the first approximate value is - -

The second, omitting all after the first partial

1
2""2fraction, is _+_—

.

The third, omitting all after the first tWo par-

tial fractions, is
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1 _0 1

1 2+\ 1^2x3+1
,orl><3+0 :

'2x3+1
_ 3

7'

3

The fourth is ?+i_ 3x2+1
7x2+2

7
16"

3+1
2

The fifth is 2+L^ 7x2+3
16x2+7

17
39'

3+1
2+1.

2

The sixth is 5+L_ _ 17xl+7_
39x1+16

24

55

3+1
2+1

2+k

The seventh is ^+^

i

_24x2+17_
55x2+39

.65

149

3+1
.2+1 -

2+1
1+1

2

^ote 2.—The successive reductions, it will be perceived

by inspecting the above results, are alternately less and

greater than the whole continued fraction, and they ap-

proximate this fraction nearer find nearer. The first re-

duction is always less than the whole continued fraction.

Hence the reductions of an odd rank are always less than the

whole continued fraction^ and those of an even rank are greater.

In the above reductions.

The second difi^ers from the true value of the continued

1 65 19
fraction by -

The third differs by

2 149 ~ 298

66 __ 3 __ 8

149 7 1043'
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7

le-

65

149

3

2384

es 17 2

149 39 5811

24.

55

e5

149

_ 1

8195

e5

149

es

149
= 0.

292 ELEMENT

The fourth diifers by -

The fifth differs by

The sixth differs by

The seventh differs by -

J^Tote 3.—If a vulgar fraction which is not expressed in its

lowest terms be converted into a continued fraction, and all

the reductions be formed to the last inclusive, the last re-

daction will not be the proposed fraction, but this fraction

reduced to its lowest terms.

348
For example, let the fraction be converted into a^

954

continued fraction. Thug,

348^0 1

954 12+1
1+1

1+1
1+1

The reductions of this continued fraction are,

1 1 2 3 , 29
1' 2' 3' 5' 8' W
29 . 348

The last reduction, — , is the same as reduced to its
77 954

lowest terms.

EXAMPLES.

1. Required the vulgar fraction which is equivalent to the

continued fraction

1

3+T
2+1

5+1

6 992
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2. Required the approximate values of the continued

fraction

1

IH-l

2+1
3+1

4+1
5+1

6+1
7+1

8+1

3. Required the approximative values of the continued

fraction

1

9+1
8+1

7+1
6+1

5+1
4+1

3+1
2-

4. The ratio of the circumference of a circle to its diam-

eter may he expressed hy the fraction
^^7^;^.^-^ > required

some of the approximative values of this ratio.

Converting the given fraction into a continued fraction^

we have

314159^3^1
100000 7+1

15+1
1+ 1

25+j
1+1

7+1
4*
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The successive reductions are,

3 22 333 355 9208 9563 76149 ^^^ 314159'

r 7' 106' 113' 2931' 3044' 24239'
^"

lOOOOO'

INFINITE SERIES.

433. An Infinite Series is a progression of numbers con-

nected together by the signs + or —
,
proceeding onward

without termination, but usually according to some regular

law, which may be discovered by tracing a few of the lead-

ing terms.

A Converging Series is one whose successive terms de-

crease. Thus,

-+-2+3+4 +-5 +r^^'>
X x^ a^ x^ x^

and - - 1+A +1+2+^4-, &c.,
2 4 8 16 32 ' '

are converging series, when a?>l in the first series.

A Diverging Series is one whose successive terms increase.

Thus,

x-\-x^-{-x'-{-x* + x'-\-, &c.,

and - 2-1-4, 4-8-1- 16+32+, &c.,

are diverging series, when a7< 1 in the first series.

I. EXPANSION OF INFINITE SERIES..

434. There are four general methods of converting alge-

braic expressions into an infinite series of equivalent value.

First. We have already seen that the division of alge-

braic quantities (Art. 110) will sometimes produce an infi-

nite series. Also, a fraction may sometimes be expanded
into an infinite series by dividing the numerator by the de-

nominator.

examples..

1. Divide 1+a by 1

—

a.
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1—a l4-2a4-2a'+2a»+2a*-f , &c., ad infin.

2a—2a«

2a'—2a«

2a»

2a*—2a*

2^

2. Reduce the fraction to an infinite series.
1

—

a

Since the value of a fraction is the quotient resulting from

the division of the numerator by the denominator (Art. 125),

the vahie of the above fraction will be obtained by dividing

1 by 1—a.

1 |1—fl

1

—

a l-|-o+a'4-a*+fl^-f > &c., ad inftn,

a

a^—d?

a'

KoH,—By observing that the value of a fraction is equal

to the terms of the quotient -|- the fraction formed by pla-

cing the remainder over the denominator^ we shall have

--i_ = l+a+a»+a»-fa'+a*+ a"+:^.
1—

a

\—a

3. Reduce the fraction to an in£aite series.
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4. Reduce the fraction to an infinite series.
a—-b

a or a^

5. Reduce the fraction to an infinite series.
1+ a

Ans. \—a-\-d!'—o^-\-a^—a^, &c., adinjin,

6. Reduce the fraction^ to an infinite series.
1-2

Ans. 1+2+4+8+ 16+ 32+64+, &c., adinfin.

J^ote.—The above result might, at first sight, seem ab-

surd ; but it should be remarked that, if we wish to stop at

any term of the above series, we must add the fraction that

remains to the terms taken. Thus, if we stop after taking

seven terms of the quotient, we shall have

1 1+2+4+8+ 16+ 32+64+-!??-=: 127+1^=—1.1_2~ \ 1-2 —1

7. Reduce the fraction -^— to an infinite series.
a—x

8. Reduce the fraction . to an infinite series.

435. Secondly. An infinite series may be formed by ex-

tracting the root of a compound surd.

EXAMPLES.

1. Reduce -s/ c^-\-h^ to an infinite series.

Extracting the square root, according to the rule given in

Art. 291,

a2+^,^(a+^__|l+JL, &c., adinfin,
2a 8a' 16a'

2aY
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2. Reduce V<^—t^ to an infinite series.

3. Reduce ^/l^x to an infinite series.

Thirdly. We have already seen (Art. 295) that if a bino-

mial which has a negative or fractional index be expanded by

the Binomial Theorem, it will produce an infinite series.

This case has already been sufficiently explained and il-

lustrated in the article referred to above.

436. Foitrthly, An algebraic expression may also be ex-

panded by assuming a series with indeterminate coefficients^-

and afterward finding the value of these coefficients.

To give some idea of this method of development, we will

suppose it is required to expand —^ into a series arran-

ged according to the ascending powers of x. This expres-

sion may evidently be expanded so as to answer these con-

ditions ; for _=a(c-f ia?)"*. Expanding this last expres-

sion by the binomial theorem, and representing the known
terms and coefficients successively by A, B, C, &c., we shall

have

=A4-Bx-fCa:2-fDx*+Ex*-f , &c., adinjin.
c-\-bx

The above coefficients A, B, C, &c., being functions of

a, by and c, that is, dependant on them for their values, but

independent of x, are called indeterminate coefficients.

It is now required to determine thp value of these coeffi-

cients.

Multiplying both members of the equation by the denom-

inator c-j-^^j and transposing a, we obtain

0={Ac-a)-\-Ab x-{-Bb I x^+Cb r'+j &c., adinjin,

+Bc +Cc I -f-Dc

Here it is evident that if Ac—a, A6+Bc, Bi+Cc, &c., be

made each equal to 0, the several terms of the second mem-

ber will be reduced to 0, and, consequently, the mendber will

Pp
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equal 0, and thus the conditions of the equation may be sat-

isfied. From the above assumption we derive the following

values of the successive coefficients :

1st - Ac— a =0; hence A— -.

c

2d - Ah+Bc=0',henceB=-^=-^X ": =-^.
c c c c^

3d - BJ+Cc=:Oj henceC=-i^=-^X-^=:.+-.
c c c^ a?

4th - CZ.+Dc=0ihenceD= -2^=-^X^' =-^'.

Hence we have

—^-f-__ar— __a; , &c., ad mjin.
c-\-bx c c c^ c'*

437. By inspecting the preceding operations, we shall per-

ceive that each succeeding coefficient is equal to the prece-

ding multiplied by —- ; consequently, —- is the ratio of the
c c

progression of the coefficients, and —— is the ratio of the
c

progression of the series.

EXAMPLES,

1. Expand into an infinite series.
b—ax

Assume =A-\-Bx-\-Cc(^-{-'Dx'^-{-Ex'^-{-, &c., ad infin.
b—ax

Multiplying both members of the equation by b—ax, and

transposing c?, we have

0=z(Ab—d)—Aa
-{-Bb

X—Ba

+ Cb

x^—Ca
+Db

oc^—Da

+Eb
x\ &c.

Whence, making the several coefficients equal to 0, we

have,

1st
'

Ab—d =0; hence A=_.
b

id .' Bb—Aa=.0', hence B=^= ^ X^=~.
b b b'

3d - C^-Ba:=0 ', hence C=^=^ X?^^.
b b^ b b
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4th - DJ-Ca=Oi hence D=^=^x?=^.

5th - Ei-Da=0; hence E=°?=t''x?=^.
tr br

Hence we have

2. Expand—"^
into an infinite series.

Ans. l+3x-h4x'+7x*+llat*+18a:', &c.

3. Expand . = into an infinite series.

Am. l+a?+2a?'+2x»-H3a!:*-|-3x»+4a?«4-4a?', &c.

1—

X

1—2x—3x-

Ans, l+x4-5x'+13ar'4-41x*+121i»4-365x«, &c.

4«. Expand -— ^—, into an infinite series.

5. Expand ^"'"^ into an infinite series.

Remark.—The method of indeterminate coefficients re-

quires that we should know the form of the development

with reference to the exponents of x. The terms are gen-

erally supposed to be arranged according to the ascending

powers of x, commencing with x°. Sometimes, however,

this form is not exact \ in this case the calculus detects the

error in the supposition.

For example, let it be required to expand the fraction

1

Si-x"'

Suppose—L_-A+Ba:-hCx»+Da:*, &c.
3x

—

:r

Multiplying both members by Zx—a?*, and transposing 1,

we have

0=— l+ 3Ax—

A

Ix*,

+ 3B -I-3C +3D [

x«-C [x*,&c.

+ 3D

x«—

B

-I-3C

Whence the conditions of the equation require that — 1= 0,

which is absurd j hence the above form will not apply to the

development of the expression —

.

OX—x^
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II. SUMMATION OF INFINITE SERIES.

438. The summation of a series is the finding a finite ex-

pression equivalent to the series.

But as different series are often governed by very differ-

ent lavi^s, the methods of finding the sum which are appli-

cable to one class of series, will not apply universally. Hence

result different methods of summation.

I. First Method.—If the series is a regular descending

geometrical series, that is, if its terms decrease by a com-

mon divisor, the sum of the series may be obtained by the

following formula : (Art. 389.)

1—2'

As this formula has been explained and applied (see Arti-

cles 380 to 39p) in Geometrical Progression, we need add

nothing more concerning it in this place.

II. Second Method.—The summation of certain classes

of infinite series may be effected by subtraction.

EXAMPLES.

1. Let it be required to find the sum of the infinite series

'
;+.4^+:r^.+ rL+^.'&c. (1.)

1.2.3 2.3.4 3.4.5 4.5.6 5.6.7

By removing the last two factors from each of the de-

nominators in the preceding series, let us form a new series

whose value may be expressed by S j thus,

S=i-fl-fl+-+i+i &c., ad injin, (2.)1-23456 ''
^ '

By transposition,

^-\=l+\+\+l+\^''-^''^'''fi'>- (3-)

By subtracting the last equation (3) from the second (2),

1=—+—+— -j-— +

—

. &cc.t ad infin. (4.)
1.2 2.3 3.4 4.5 5.6' ' *^ ^ ^

By transposition,

1—_=—+—+—+— , &c., ad iniin, (5.)
2 2.3 3.4 4.5 5.6' ' '^ ^ ^
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Whence, by subtracting this last equation (5) from the

fourth (4), we have

!=_!_+_^4—^4—i5_, &c., ad infin,
2 1.4.3 2.9.4 3.16.5 4.25.6'

Or, i=_?_-f_^-f -^ +-^, &c., ad infin.'2 1.2.3^2.3.4 3.4.5 4.5.6'
-^

Whence, dividing by 2,

l=_L_+_J_-f-—1-+ -?— , &c., ad infin.
4 1.2.3 2.3.4 3.4.5 4.5.6'

-^

Hence the sum of the given series is -.
4

2. Required the sum of the infinite series

1.3^2.4^3.5^4.6^5.7'^

Let . Sr^l+l+l+l-^l Sec, ad infin. (1.)
J> O 't

Or - S= ?4.1+l-fl, &c., a</«n/in. (2.)
2 3 4 5 ' -^ ^ ^

By transposition,

S-^=U1+^, &c., ad infin. (3.)
2 3 4 5

Whence, subtracting the last equation (3) from the second

(2), we shall have

2=^4-Ah-A, &c., ad infin.
2 1.3 2.4 3.5' '

-^

Or - ?=-L +_L-}-_L, &c., ad infin.
4 1.3 2.4^3.5' ' -^

3
Hence the sum of the given series is -.

4

3. Required the sum of the infinite series

2.4.6 4.6.8 6.8.10 8.10.12 10.12.14'

III. Third Method.—The following method may some-

times be employed: Assume a decreasing series containing

26
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the powers of a variable quantity (a?), whose sum is equal to

S. Multiply both members of this equation by a compound

factor, in which x and some constant quantity are contained;

then give to x such a value that the compound factor shall

be equal to 0. If one or more of the first terms be then

transposed, these will be equal to the sum of the remaining

series.

EXAMPLE.

Let . S^l+ ^+^'+^Vf-', &c., ad infin.
2 3 4 5

Multiplying both members by x— 1, we have

-l^Z-^-Z.-Z.-'^, &c.
)

S(a7—1)_ >^ x_:^_x^_^_;^
'23456

^ /y> nn^ /)o3 /y^4 ^S

Eed„ci„g,S(.-l)=-l + ^^+£-3+iL+?^+^^,&c.

By making a;=:l, the equation becomes*

0=— !+—+—+—+—+—, &c.
1.2 2.3 3.4 4.5 5.6'

III. RECURRING SERIES.

439. A recurring series is one which is so constituted that

a certain number of contiguous terms, taken in any part of

the series, have a given relation to the term immediately

succeeding. Thus, in the series

l-^3x-\-4^x'-\-lx^-\-nx'+lSx\ &c.,

the sum of the coefficients of any two contiguous terms is

equal to the coefficient of the following term. If the series

be expressed by

A+B-i-C+D+E+F, &c., then

The 1st term - - A=l
;

The 2d term - - B= 3a?;

The 3d term - - Cz=zBx-{-Ax^=4<x^

;

The 4th term - - I>= Cx-^Bx'=lx'

i
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The 5th term - - E=Dx+Ca:«=lla?*
j

The 6th term - - F=Ex-^Dj^=1Sx\ 6cc.

That is, each of the terms after the second is equal to the

one immediately preceding multiplied by x, plus the one

next preceding multiplied by x^. Hence all the terms after

the first two are subject to a definite law.

440. The particular expression from which any term of

the series may be found when the preceding terms are

known is called the scale of the series^ and that from which

the coefficients may be formed the scale of the coefficients.

Recurring series are divided into orders, and the order is

estimated by the number of terms contained in the scale.

In the expansion of—— in Art. 436, we have a recurring

series of the first order. Thus,

a a abx , ah^oc^ aPx^ .

c-^bx c cr*

The scale of the coefficients here is—_ j that of the terms
c

bx
is —— . This is the simplest form of the recurring series.

441, In a recurring series of the second order the law of

progression depends upon two terms, and, consequently, the

scale consists of two parts. Let m-{-n represent the

scale of the series, and

A+ B-f C+ D-fE+F, &c.,

represent the recurring series. Then

The 3d term - - C-Bmx-\-knx^

\

The 4th term - - 'D= Qmx-\-Bnx^

]

The 5th term - - E = Dotx + C»x^ dec.

Taking the last two terms in the above expression, we
have the two equations

D = Cmx+Bnx' )
^^ g^^ ^^^ ^^^^^^ ^^ ^ ^^^ ^

Ez^D^nx+Cwx' S

Since the scale of the series is the same, whatever be the

value of J?, the reduction may be rendered more simple by

making x=l. The equations then become



304 ELEMENTS OF ALGEBRA. [sECT. X.

E=:I>m+Cn,

These, reduced, give

DC-BE CE-DD
CC-BD'CC—BD

In the series l + 3a7+5j?'+7a?='+9j?*+lla7^ &c.,

A=:l, B=:3x, C^So^VD^Tar', E=9a?^

Then, making x=. 1, we have

7x5—3x9_^2^ I ^^5x9—7x7^_.^
5x5—3x7 I 5x5-3x7

44*2. In a recurring series of the third order the law of

progression depends upon three contiguous terms. Letting

m-{-n-\-r. represent the scale of series, and

A+B+C+D+E+F, &c., the series, then

The 4th term - - J)— Q>mx-\.Bnx^-\-krT^-,

The 5th term - - '£,:=zDmx-\.Cnx'-\-Brx''
-,

The 6th term - - Y-Emx-^J)nx'-\-Qrx\ &c.

In a similar manner, we may obtain the succeeding terms

in the higher orders of the recurring series.

443. To ascertain whether th§ law of progression depends

on two, or three, or more terms, we may first make trial of

two terms ; and if the scale of the series thus found does

not correspond with the series, we may try three or more

terms. If we begin with a number of terms greater than is

necessary, one or more of the values found will be 0, and

the others will constitute the true scale of valuation.

444. When the scale of a decreasing series is known, the

sum of the terms may be found.

Let - a-^hx-\-cx'''-\-dx^-\-ex^-\-fx^^ &c.,

be a recurring series, whose scale of relation is m-\-n.

Then

The 1st term - - =:A

;

The 2d term - - =B
;

The 3d term - - C= 'Bxmx-{-Axnx^

;

The 4th term - - 'D= Cxmx-\-Bxnx'^

;

The 5th term - - E=:Dxwia?-f-Cx»a?^, &c.
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If the series be infinitely extended, the la^t term may be

neglected as of no comparative value j and if S= the sum
of the terms, we shall have

S=rA-f B+mxx(B + C + D, &c.) + »ir*x(A-|-B-f C, &c.).

But B+C-fD, &c.» =S—A, and A+B+C, &c., =S.

Hence, by substitution,

Or - S=A+B+Smx—Amx+Sna?*.
Transposing, S — Sotx—S«x^=A-fB—Amx,

Or - S{l—mx—nx')=A+E-Amx,
T\. .J. o A-fB

—

Amx
Dividmsr, o=—! -.•&»

1

—

mx—nx^

EXAMPLES.

1. Required the sum of the infinite series

l+ 6x+12xH48jc'+120a?*, &c.

A= l, B=6j:, C=12a:', D=48ar', E= 120a;*, &;c.

Then, making x=l, we have

^^ 12x48-6x120^.^
12x12—6x4:8

^_ 12x120-48x48 ^

12x12—6x48
Substituting the values of A, B, wi, and n in the formula,

o_A+ B

—

Amx
1—vix—nx^^

We shall have - S=J"^^^""^.
1

—

X—6ar

Or - - - S=^±^.
1

—

X—6a:'

2. Required the sum of the infiMte series

l+2x-f 8x'+28a:'+100x*, &c.

Substituting, as before,

^= a
^^8x100—28x28

8x8—2x28
""' "~

8—8—2x28

q_ l+2j—3j __ 1- -X

l-^Sx—^x" 1—3x—2x»

3. Required the sum of the infinite series

l + 3a:-}-4x'+7x'+llx*+18x'+29j?«, &c.

Qq
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4>. Required the sum of the infinite series

l-\-2x-\-3x^-}-^3c^+5x'+6x\ &c.

5. Required the sum of the infinite series

l+ 3x-\-bx'-\-lx'-{-9x'-\-llx''-{-13x% &c.

IV. METHOD OF DIFFERENCES. ^ '

445. We will now proceed to point out another process

by which the summation of various kinds of series to a lim-

ited number of terms may be obtained. This is termed

Method of Differences^ as it depends on finding the several

orders of differences belonging- to the series.

1. Orders of Differences.

1. If we take the first term from the second, the second

from the third, the third from the fourth, &c., in the given

series, the remainders will form a new series, which is called

the first order of differences.

2. If we proceed with this new series in the same manner

as with the given series, we shall obtain the second order of

differences.

3. In the same manner we may obtain the third^ fourth,

fifths &c., orders of differences.

446. It should be observed, however, that when the sev-

eral terms of the series increase, the differences will all be

positive ; but when they decrease, the differences will be

negative and positive alternately.

EXAMPLES.

1. Required the several orders of differences in the series

1^ 2^ 3^ 4^ b\ 6^ &c.

The proposed series - 1, 4, 9, 16, 25, 36, &c.

1st order of difference - - 3, 5, 7, 9, 11, &c.

2d order of difference - - 2, 2, 2, 2, &c.

3d order of difference - - - 0, 0, 0, &c.

2. Required the several orders of differences in the series

1, 6, 20, 50, 105, 196, &c.

1st order of difference - 5, 14, 30, 55, 91, &c.

2d order of difference - - 9, 16, 25, 36, &c.
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3d order of difference - - -.7, 9, 11, A:c.

4th order of difference - - - - 2, 2, <kc.

3. Required the several orders of differences in the series

i» h i» Vjt, -Sly &c-

1st order of difference - —\y —J, —^, —^»j, &c.

2d order of difference - - -f |, -fjV, +3^? ^^*

3d order of difference - - - —J-^ —^'^^ &;c.

4th order of difference - - - - +3V> ^c*

2. Law of the Coefficients.

44-7. Letting rr, ft, c, rf, &c., represent a series, and pro-

ceeding with this series in the same manner as with the

preceding, we shall likewise obtain the several orders of

differences.

Proposed series, a, ft, c, c/, e, /, &c.

1st order of differ., ft—a, c— ft, d—c, c—(/, /— e, &c.

2d differ., c—2ft-|-a, rf—2c+ft, A2rf+c, /—26+</, &c.
.

3d diff., (/—3c+3ft

—

a, e—3(i4-'3c—ft,/—3e-|-3</—c, &c.

4th differ., e—4</-}-6c—4ft+a,/—4e+6£/—4c+ft, &c.

5th difference - f—b€-{-\Od—10c+5ft— a, &c.

448. In these expressions, each difference in the several

orders, whether simple or compound, is called a term. By-

inspecting the/r5^ terms in the preceding orders of differen-

ces and the first term of the series, we shall find the coeffi-

cients to be as follows :

1st term of the series 1.

Ist order of difference - 1, 1.

2d order of difference - h 2, 1.

3d order of difference 1, 3, 3,

4th order of difference 1, 4, 6, 4,

5th order of difference 1, 5, 10, 10,

1.

5, 1;

which are the same as the coefficients in the powers of bi-

nomials (Art. 265). Therefore, the coefficients of the first

term in the nth order of differences are (Art. 429.)

1, n, nx-^,nx_^x^- __X-^xn,
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3. To find any Term in the SeYies.

44<9. In order to obtain a general expression for any term

of the series «, 5, c, c?, &c., when the differences of any order

become at last equal to each other, let d\ d\ d'", &c., be the

first terms in the first, second, third, &c., orders of differen-

ces. Then
d' =b—a;

d" =c—2b+a;
c?'"=:6?-3c+36—a;
d""=:e—U+6c—4>b-^a, &c.

Transposing^ and reducing these several equations, we ob-

tain the following expressions for the terms of the original

series

:

2d term - hz=a-{-d'

;

3d term - c=a-\-'id'-\-d" p

4th term - d=a'-\-W-\-W^d"'

;

'

5th term - e=za^^d'f6d"-\-4>d'"+ d"'\ &c.

450. By inspecting the above, we shall discover that the

coefficients observe the same law as in the powers of a bi-

nomial, with this difference, that the coefficients of the nth

term of the series are the coefficients of the {n—l)th. power

of a binomial. Substituting, then, 7i—l for n in the formula

for the coefficients of an involved binomial (Art. 448), and

applying the coefficients thus obtained to d\ d'\ d'"^ d"", «fec.,

as in the preceding equations, we have the following gen-

eral expression for the nth term of the series, a, b, c, d, &c.

:

T^th term^a+^izl . c/'+!^ .!^ . J"+^ZZ_1 . !Ll^ . ^11?

.

1 12 12 3

d'^+^'szl .'^^.'Lrl.'LrA. d'"' &c.12 3 4

JN'ote.—When the differences, after a few of the first or-

ders, become 0, any term of the series is easily found.

EXAMPLES.

1. Eequired the 12th term of the series 2, 6, 12, 20, 30,

&c.

Proposed series - . . 2, 6,, 12, 20, 30,. &c.
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Ist or-der of difference - - - 4, 6, 8, 10, &c.

2d order of difference - - - - 2, 2, 2, &c.

3d order of difference - - - - 0, 0, &c.

Here </'=-4., (/"=2, and n=12; and as d'"=0, it will be

necessary to use only the first three terms of the formula.

Hence,a+!^.rf'+!?=li.!L:?.c/"=2+l?i:i.4+i^Z:-^112 11
l^II?. 2=2+44+ 110=156. ^ns. 12th term =156.

2. Required the 20th term of the series 1, S, 27, 64-, 125,

&;c.

1, 8, 27, 64., 125, &c.

- 7, 19, 37, 61, &c.

- 12, 18, 24., &c.

6, 6, &c.

0, &c.

6, and d""=0 ; therefore

Proposed series -

1st order of difl'erence -

2d order of difference -

3d order of difference -

4th order of difference -

Here n=20, rf'=7, d"=12, d'

only four terms of the formula will be required.

Hence, a+!^ . rf'+!Lll . !L-Z? .
cf"+?^l . !Ll^ . !LI? .

'

1 1 2 1 2 3

^,/^, ,
20— 1 7, 20— 1 20—2

JO
20—

1

20—2 20—3
l''!"l'2*"l'2'3'

6=1 + 133+ 2052+5814=8000. ^ns. 20th term =8000.

3. Required the 15th term of the series 1, 4, 9, 16, 25, 36,

&c. »^ns. 255.

4. Required the 50th term of the series 1, 3, 6, 10, 15, 21,

&c. Jins. 1275.

5. Required the 30th term of the series 1, |, ^, i^y, j^j, ^Vi

&c. JJns, j}j.

4. To find the Sum of n Terms.

In order to find the sum of n terms of the series a, ^, c, d,

&c., when the differences of any order become at last equal

to each other, let one, two, three, &c., terms be successive-

ly added together, so as to form a new series, as

0, a, a+ 6, a-\-b-^Cy a+ 6+ c+ c/, &;c.

Taking the diffferences in this series, we have
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1st difference - - - «, ^) c, «?, &c.

2d difference - - h—a, c— 3, d— c, c—/, &c.

3ddiiier., c—26+a, t/—2c+^>, e—2£;+c,/-2e+c/, &c.

4thdiff.,(^— 3c+36—a,e—3c/+3c—Z*,/—3e+3ri—c, &c.

Here it will be observed that the first order of differences

in the new series is the same as the original series, and the

second order of differences is the same as the first order in

the original series a, 6, c, d^ &c. j and, generally, that the

(n-{-\)i\i order in the new series i^ the same as the nih. order

in the original series.

In this case,

= 1st term; a = 1st order of difference

;

d' =:2d order of difference ; d" =:3d order of difference
;

d"'z=iA>\\i order of difference ;
6?""=: 5th order of difference.

Resuming now the formula (Art. 450)

, n— 1 1, ,
n— 1 n—2 ,,- ,

n— 1 \—2 n—3 ,,,, „

^1
1 2 1 2 3 ' '

which is the general expression for the n\\v term of a series

whose first term is a ; applying it to the new series, in which

the first term is 0, and substituting n-\-l for n,we have

n , ,
n n— 1 1, , n n— 1 n—2 j., , n n— 1 n—

2

^12 12 3 12 3

__ . d , &c.,
4

^ which is a general expression for the (w + l)th term of the

series

0, a, a+J, a+Z>+c, a+o+c+t^, &:c.

;

Or the Tith term of the series

a, a-\-h^ a+^+c, a-\-h-\-c-\-d^ &c.

But the n\\v term of the latter series is evidently the sum of

n terms of the series a, Z>, c, d^ &;c.

Hence, the general formula for the sum of n terms, a series

of which a is the first term, is

, n n— 1 7, , n n— 1 n—2 »,, ,
n n— 1 n—2 n—

3

na-\-- . d +- . . . a +- • • • • •^12 1, ,2 3 ^12 3 4

d"', &c.
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EXAMPLES.

1. Required the sum of n terms of the series 1, 2, 3, 4,

5, 6, &c.

Proposed series - - - 1, 2, 3, 4, 5, 6, &c.

1st order of difference - - - 1, 1, 1, 1, 1, &c.

2d order of difference - - - 0, 0, 0, 0, &c.

Here a=l, (/'=1, and d=zO j therefore,

na+ .(f=n-\-- . =n+ =—I—= sum of n12 12 2 2

terms.

In the above example let n=20 j then

n^^400-20^210.
^ns.

2 2

2. Required the nth term of the series of odd numbers

1, 3, 5, 7, 9, 4:c.

Proposed series - - - - 1, 3, 5, 7, 9, &c.

Ist order of difference - - - 2, 2, 2, 2, «fec.

2d order of diflJerence - - - - 0, 0, 0, &c.

Here a=l, t/'=2, and d'=0
j
therefore,

na-\-- . . a = -\- . 2=n*.12 2

Hence, Me sum of the terms is equal to the square of the

number of terms. '

3. Required the sum of n terms of the series P, 2', 3*, 4*,

5^ 6', r, &c., or 1, 4, 9, 16, 25, 36, 49, &c. Also,

the sum of 20 terms.

Proposed series - - 1, 4, 9, 16, 25, 36, 49, &c.

1st order of diflference - 3, 5, 7, 9, 11, 13, <fec.

2d order of diflference - - 2, 2, 2, 2, 2, &c.

3d order of difference - - 0, 0, 0, 0, &c.

Here 0=1, (/'= 3, d"= 2, and d'=Q ; therefore,

12 12 3 2

2»»-6n'+4»_6»
,
9n'-9n . 2n'-6n'+*»_l /o»«_L

6 T"^—6—+ ^6— 6"^ ^

3»-f- 1)= the sum of n terms.
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Or,if7i=:20,-?^(27^'+3;^-hl)=:-.20(2.20^+3.20+l)= 2870.
6 6

4. Required the sum of n^ and also of 50 terms of the se-

ries 1^ 2^ 3', 4', 5^ &c.

Jins. n terms= -,—!

—

50 terms= 1625625.

5. Required the sum of n, and also of 12 terms of the se-

ries 1^ 2\V, 4^ 5^ 6*, &;c.

Ans. n terms=^V-+-——

^

5 2 3 30

12 terms=60710.

6. Required the sum of w terms of the series 1^, 2^, 3^, 4\

5^, &c.

6 2 12 12

7. Required the sum of n terms of the series 2, 6, 12, 20,

30, &c.

^;^..7^terms=<^+iK!^±^.
3

8. Required the sum of w, and also of 20 terms of the se-

ries 1, 3, 6, 10, 15, &c.

Ans, n terms=<^±lH^±l).
1.2.3

20 terms=1540.

9. Required the sum of n terms of the series 1, 4-, 10, 20,

35, &c.

Ans <^^l)(^+2)(7z+3)
1.2.3.4

V. REVERSION OF SERIES.

451. To revert a series is to express the value of the un-

known quantity in it by means of another series involving

the powers of some other quantity.

Let X and y represent two indeterminate quantities, and

let the value of y be expressed by a series composed of the

powers of x ; thus,

y—ax-\-lx^-\-cx^-\-dx'^-\-^ &c..
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in which a, by c, J, d:c., are known quantities ; then, to re-

vert the series is to express the value of a* in a series con-

taining only y, and the known quantities a, 6, c, (/, <fcc.

Then, in order to express the value of x in terms of y, as-

sume x=Ay-fBy'+Cy'+Dy^H-, &c.

Substituting this value for x in the proposed series, and

transposing y, it will become

0=aA
—1

Whence w

y-haB

+6A«

e have

+ 2^»AB

+cA»
-f26AC

+iB'

+ 3cA'B

+dA*

y*+,&c.

aA— 1 - - = 0, andA=i;
a

aB+JA* =0, andB=-*;

aC+26AB+ cA* - . -0,andC-2*'-«i
a

aD+2*AC-f &B^4.3cA^B+(/A*=0, «n^ n__5i-5«Jc4-a«d

&c.

Substituting these values of A, B, C, D, &c., we have

1 * 2 .«=-xy—-xy'-}-
2Z>' ac

xy*-
56'-5ffic-f-a*c/

x/4-,&c. (1)
a cr a-

If the series be of the form

y=<ix-\-bxr^-\-cx^-{-, <Scc.,

in which the even powers of x are not contained, then we
shall obtain instead of the above formula (1)'

1 b . , W—ac .

^±^z:«f*£xy-Ac.(2,

EXAMPLES.

1. It is required to revert the series y=x-f-a:*+ar*-|-, dec.

Here a=l, 6=1, and c=\ ; therefore.

= 1, .A=-l,5^«f=l, and-^^!i:!±±^=-l.
a*a <r a*

Hence a:=y—y'+y*—y*, &c.

27 Rr
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2. Revert the series x=:2y-{-Sy^-\-4y'^-\-5y''+ , &c.

Here a=2^ b=3, cr=4, dz=zd, &c. 5 therefore,

a~2' a^~ 16' ~~a' 128'
^^

a^°

152

1024

Hence —y=ir—Aa?'+iia?^_i5?.a:' &c.
^ 2 16 128 1024

3. Revert the series y^x—-o^-\--o^—-a?'*+, &;c.
^ 2 4 8 '

Ans. a7=2/+V+V+V+, &c.
/^ 4 o

4. Revert the series v=a:

—

-x^-\--x^—-a?^ &c.^
3 5 7 '

SECTION XL

GENERAL THEORY OF EaUATIONS.

General Properties of Equations.—Composition of Equations.—
Transformation of Equations.

GENERAL PROPERTIES OF EQUATIONS.

452. Every complete equation of the nth degree, n being

a positive whole number, if it involves but one unknown

quantity, may by reduction be put under the form

Aa:"+Ba?"-'+Ca;"-24- +Ta:+U=0.

If this equation be divided by A, and the coefficients -,—

,

T U
....—, and — be represented by ^, c, . . . t, and u, we shall

A A
have

a^"_|_Ja^"-i_j_cj7"-2+ -\-tx-\-u^O.
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^ote.—Any real or imaginary algebraic expression which,

being substituted for x in an equation, satisfies its condi-

tions, is called a root of that equation.

453. Theorem.—If a represent any root of the equation

x^_|_Jx^'-j-cx"~'4- -\-tx-\-n=Oy the first member of

this equation is divisible by x—a.

Demonstration.—By supposition, x=a ; then, substituting

a for X, we have

a"+6a'^*-f ca»-'+ -\-ta-\-Uz=0.

Or, by transposition,

u=—a"—Aa**"'

—

ca"^'— —ta.

Substituting this value for u in the original equation, we

have

x"4-ix*-'+cx*^'+ -\-tx > _Q
_^---fta«-»>_ca"-*— —ta S

Or, by uniting the corresponding terms, the equation be-

comes

(x"—a'')-hi(a:^'—a'-')+c(a:*-«—a''-»)-h . . +t(x—a)=zO.

In this equation

Xn— 1 „n—l

a>n-2_^n_«^

X —a,

are each divisible by a?— a (Art. 203, th. 7) j therefore, the

first member of the original equation is also divisible by

X—a.

EXAMPLES.

Suppose 2 to be a root of the equation

a:*— 16x^4-56= 0.

By the theorem just demonstrated, the first member of this

equation must be divisible by x—2. Thus,
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gg—I6ar^4-56|a?—

2

a?3_ 2x^ x^—Ux-2a

—14a;24-28a?

—28074-56

—280?+56

Corollary 1. If we divide the general equation

a7" + 5a?"-'+ ca;"-'+ . . . -^tx-\-u=0, (1.)

by a;—a, there will result a new equation one degree less

than the given equation, which may be put under the gen-

eral form
a?"-'+Z»V-2+c'a7"-^+, &c.=iO.

, (2.)

Hence, the original equation may be transformed into the

following equivalent expression :

(a?—a)(a?'^-'+ 6V-2+c'a?"-''+, &c.)=0.

The conditions of this equation are satisfied on the sup-''

position that

x— a.

Cor. 2. The result (2) obtained in the preceding corollary

may evidently be divided by x—a', if a^ represent a root of

that equation 5 then,

x^-'-\-b"x^+c"x^-^-{-, 6lc.,=0. (3.)

Hence we shall have

a:n-i4.2,'a?"-'+cV-^+, &c. = (x—a) (a?"-^ + fx""^ + c"a?"-*+,

&C.)=::0,

and the original equation becomes

(x—a) (x—a') (a:"-2+^"ar-«+c"ic^+, &c.)=0.

The conditions of this equation are satisfied on either of

the following suppositions, viz.

:

x=a,

Or - - - - x=za\

Proceeding in the same way to find the remaining roots,

a", a'", &c., the original equation will eventually assume the

form

(x-a) (x—a) (x—a") (x—a'") (x—a""), &c.,=0. (4.)
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Cor. 3. In the above (4) equation there are evidently n

factors. Hence, the number of roots of an equation is denoted

by the degree of the equation. Thus,

An equation of the second degree has tioo roots ;

An equation of the third degree has three roots ;

An equation of the fourth degree has four roots^ &c.

Scholium. If any of the factors into which the first mem-

.

ber of the equation may be resolved are equal, the number

of unequal roots will evidently be less than the number of

units in the exponent expressing their degree.

EXAMPLE.

The equation (x— a)* {x—a'f (x— a")' (x—a")=0 has but

four different roots, although it is an equation of the 10th

degree.

Cor. 4. If one root of a cubic equation be found, and the

equation be divided by the simple equation containing that

root, the quotient will be an equation of the second degree

containing the other roots.

EXAMPLES.

1 If one root of the cubic equation a^—7x'+36=0 is 3,

what are the other two roots 1

By the conditions of the problem, x=3 .*. x—3=0.
Dividing the given equation by this, we have

X*—Tx'-h 36|x—

3

x*—3x« x'—4x—12

—4x^4-36

—4ir'-|-12x

—12XH-36

—12X+36

Hence we have the quadratic equation

x"—4x—12:r0,

which, reduced, gives x=6, or —2, the other two roots of

the cubic equation. Hence, the three roots of the proposed

equation are 3, 6, and —2.
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2. If one root of the equation x^-{-ixr—16a;-f 20= 0, is —5,

what are the other two roots ] ^ns. 2 and 2.

3. If one root of the equation x^-\-Zx''—10y=0, is 2, what

are the other two roots ] Ans. —5 and 0.

CoR. 5. If two roots of an equation of the fourth degree

be given, the remaining two njay also be found ,• and so of

the higher equations.

EXAMPLE.

1. Two roots of the equation a;*--3a;^—1437^4-4807—32= 0,

are 1 and 2 ; what are the other roots 1 *Mns. 4 and —4.

CoR. 6. Equations of the form

a;"=a

would appear to have but one root j but, from the preceding

reasoning, it must have n roots.

EXAMPLES.

1. What are the two foots of the equation a?^=4 1

Ans, 2 and —2.

2. What are the roots of the equation x^—l %

Extracting the cube root, we obtain

a:=l.

Consequently, 1 is one of the roots j then, to ascertain if it

has any more roots, we may put the equation under the form

0?^—1=0.

This equation must be divisible by x— 1 ; therefore,

3?='—l= (a?—1) (a?2+a?+l)=0,

Or - - - - x'+x+l =0.

The roots of this last equation are |(

—

1-\-\/—3), and

|(—1

—

^—3). Hence, the three roots of the equation

a?'=l are 1, ^(—I+n/"^), and |(—1— x/^^3).

3. What are the roots of the equation 37"= ! 1

Ans. 1,-1, s/~—i, and —^'—i,

4. What are the roots of the equation aj^=l 1

Ans. 1, andi(^—1—v/5± y/—10±2v^5J.

COMPOSITION OF EQUATIONS.

454. From what has been said, it will be readily inferred



SECT. XI.] GENERAL THEORY OF EQUATIONS. 319

that equations of any degree higher than the first may be

produced by the successive multiplication of equations of

the first degree.

Let - - - x—2=0,
And - - - X—3=0:

X—4 =0,

ar*—9x^+26a?-

X—

5

-24=0.

= 0,

Multiplying

Again, let -

Multiplying

Again, let -

Multiplying - a:*— 14x»+71a:«--154a:-f-120=0, &c.

Hence, the product of two equations of the first degree is an

equation of the second degree ; the product of three equations of

the first degree is an equation of the third* degree, &c.

The above equation of the fourth degree has evidently

four roots, viz., 2, 3, 4, and 5.

455. The law by which the coefficients are governed may
be seen by inspecting the results obtained by the actual

multiplication of the factors.

Let a, a\ a", a'", a"'\ &c., represent the roots of the gen-

eral equation

a?'*+6x'^'+ca:''-2+, &c.,= 0.

Then we shall have (by Art. 453, Cor. 2)

x^-f- Jj:'^'+ cjr-'+, &c.,=(x— a) {x—d) (x—a") (x—a"0,&c.,
=0.

Or, multiplying the factors and writing the coefficients of

the same power of x under each other, we have

1. [x—o) (*

—

a') - - =x'—a la: +aa'=0.

:0.

T-ffla'a"tt"'=0

2.(jr-a)(x-a')(x-a")

3. [x—a) (r—«')(r—a")(x—a'")=a

—a'

—a xHoa' x—aa'a":

—a' +aa"
—a" +a'a"

*-a T^-aa' x^aa'a''

—a' -\-aa" —aa'a"'

—a" +aa'" -aa"a"

-a'" +a'a" —a'a"a'

+aV"
•^a"a"'
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456. By attending carefully to the above results, we shall

discover the following properties :

1. The coefficient of x in the first term is always 1.

2. The coefficient of x in the second term is the sum of all the

roots of the equation taken with contrary signs.

Thus, the roots of the equation of the second degree are

a and a'; the coefficients of x in the second term are —a,

and —a\ In the cubic equation the roots are a, a\ and a";

the coefficients are — a,
—a\ and —a". In the equation of

the fourth degree the roots are a, a\ a'\ and a'"; the coef-

ficients are —a, —a\ — a", and —a"',

3. The coefficient of x in the third term is the sum of all the

products of the roots taken two and two, and so on.

Thus, in the equation of the fourth degree, the-roots are

a, a
J
a", and a"; and the coefficients in the third term are

aa\ aa"y aa"\ a'a[\ a'a"\ a"a'".

4i The last term, which is independent of x, is the product

formed from all the roots of the equation after the signs are

changed.

Thus, in the cubic equation, the last term —aaa'=—ax
—a'

X

—a" ; and in the biquadratic equation, the last term

-\-aaa"a"'—-^a X— a' X—a" x—a"\

CoR. 1. If the roots are all negative, the terms of the equa-

tion to which they belong will all be positive.

For, letting - - x——a,
x^—a"
xz=— a'\ &c.

By transposition, we have a;+a= 0, a;+a'=0, a?4-a"=r0, &c.

Consequently,

{x-^a) (x-\-a) {x-\-a")', &c.,= 0.

CoR. 2. If part of the roots are positive and part negative,

part of the terms of the equation to which they belong will

be positive and part negative.

TRANSFORMATION OF EQUATIONS.

457. The transformation of an equation consists in chan-

ging its form without destroying the equality of its members.
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458. TuEOREM.

—

*dny proposed equation may be transformed

into another, the roots of which shall be any multiples or sub'

multiples of those of the former.

First, In order to demonstrate the above, let us resume

the general equation

x"+^'-'+cx"-»+ +^x+tt=0.

Let y represent the unknown quantity of a new equation,

of which the roots are a times greater than those of the pro-

posed equation ; then

y=ax, and x=±.
^ ' a

Substituting this value for x in the general equation,

y-A^b^ ^c^ U _l/Llw=0.

Multiplying by a",

y"4-%'-'+ca'y''--+ +/a'*-'y+a''tt=0. (1.)

This last equation will evidently fulfil the conditions re-

quired, since y=ax

Secondly, Lety=:-; then a:= ay.
a

Substituting and reducing, as before, we shall obtain

V'+ly'-'+~y-'+ +^y+^=o- (2-)

Corollary. Since the coefficients in the preceding equa-

tion (1) are multiples of the coefficients in the general equa-

tion, it is evident that any equation having fractional coeffi-

cients may be transformed into another, in which all the

terms shall be entire numbers, and the coefficient of whose
first term shall be unity.

EXAMPLE.

Transform the equation ar'-fir^-|-|a?+J=0.

Multiplying this equation by 12, the least common multi-

ple of the denominators,

l2x''\-Gx'-\'Sx-\-9=0,

In this equation all the terms are entire numbers, but the

coefficient of the first terra is greater than unity.

Ss
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Then, let y=12a;, and a?=J^.^ '

12

Whence, by substitution,

122^12^^12 ^
Multiplying by 12^, 2/='4-6/+96y+1296= 0.

If the value of y in this equation be found, that of x can

be readily obtained, since x=^.

459. Theorem.—»dn equation may ie transformed into an-

other^ the roots of which shall be greater or less than those of the

former by a given number.

Let us resume the general equation

a:"+Z'a:"~'+ca;"~2+ .... ^tx-\-u=0^

and suppose it were required to transform it into another,

whose roots (y) shall be less or greater than those of the

given equation by e.

First. Let x=y-^e.

By substituting y+e for x in the general equation, we shall

obtain

(y+e)"+i(y+e)'-'+c(y+e)'-2+ +^(y+e)+i*=0.

Or, expanding,

-Vb

^
2

-\-{n-\)be

+ c

y"-2+ +e"

0. (L)

\te

This equation will evidently fulfil the conditions required,

since y—X—e.

Secondly. Let x^=:y—e ; then.

Substituting, as before, we have

{y—ey-\-b{y—e)"-'-\-c(y—ef-''-\- -\-t[y—e)-\-u= 0.

Or, expanding.
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y*

—

n^
{n

I)?.' 3^-'+, <kc., =0. (2.)

—(n—l)Je

+ c

Which equation also fulfils the required conditions, since

y=x^e.

Cor. 1. Since the truth demonstrated in the above theo-

rem does not depend upon any particular value of e, or since

e is indeterminate, it may be taken to satisfy any proposed

condition. Letting it, then, be taken of such value that the

coefficient of y'*~' may be equal to zero, or—we-f6=0, in the

above equation (1), the second term vanishes, and the equa-

tion becomes

^ 2
y"-»+, d:c., =0. (3.)

+ c

Or, representing the coefficients by c', d\ &c., we shall have

y"-l-c'y'^+</y'^+ -\-u=0.

This condition is represented by the equation

which gives
he=—

;

n

whence the second term of an equation may be removed by sub-

stituting for the unknown quantity some other unknown quanti'

ty, together with such a part of the coefficient of the second term,

taken with a contrary sign, as is denoted by the index of the

highest power of the equation,

EXAMPLE.

Transform the equation r*

—

9a^-\-lx-\-l2=0 into one which

shall want the second term.

Let - - - x=y +3

;

Then - - - «»=y'H-9y^+27y+27
—dx'^ -9y'-54y-81

+7x = + 7y+21
+12 = +12

=0.

Whence x^—9a:«+7a+12 =y» -20y-21 =0.
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Cor. 2. In the same manner, the third term may be remo-

ved from an equation by taking the value of e, such that

^{^-'^Je'-(n-l)he+c=.0.

For, transposing c, and dividing by the coefficient of e', we

obtain

, 2J 2c
e —6:

n n{n— 1)

Reducmg - - «=-=t\/—zr—-^+^2*n y n{n—1) n

EXABIPLE.

Transform the equation x^—6x'^-\-9x—l=0 into one in

which the third term shall be wanting.

„ 6_L. / 2x9 ,36 n_u / 18 ,36 ^ .

Here e^-±^ -^^^^^
+ -=2± y/ ^-+-=2±

^_3-t-4=3, or 1.

Then, letting - x =y -\-S,

we shall have - x'=.y'-{-9f-\-27yi-2'7 ]

-6^2= _6/-36y-54 i

-\-9x= + 9y4-27 (

~^'

-1 = -Ij
Whence x'—6x^-i-9x—l=f-^3y^ — 1=0.

Or, taking e=l, and proceeding in the same manner, we

shall obtain y^--3y-\-3=i0.

CoR. 3. Since n, in the general equation, is indeterminate,

an equation of any degree may be transformed into another

from which the second or third term shall be removed.

EXAMPLE.

Transform the equation x^—Sx^-\-ox^—10a7+4=0 into an-

other that shall want the second term.

Let - x=y+l=y+2.
n

Then - a?^=3^^+82/'+ 24^^+32^+16
^

—8x'= _8/—48/—96y—64
+ 5a^'= + 5/+20y+20
— lOo? = _10y—20
+ 4 =: + 4 ,

Whence y" —i9/_54y_44_:0.

=0.
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Cor. 4. If, in the general equation,

a:"-|-6x'*-'+ cx'*^^+ +^a:-|-u=0,

we let x=y+e, and this value be substituted, the equation

becomes

(y^.g)*^6(y+c)'-'+c(y-f0*^ s{y+ey-\-t{y-{-e)-\-u=0.

Expanding each binomial term of this equation separately

(1). (y+«r=y"+„3r'.+fcl)3r^«' .... "'"-^'
]

y'c'^«+ny€"-'+e"

(2). b{y + e)-' = by'*-' -f (»— 1) hy^'e ^(^riHi^II?)

l\f^^(? .... (n—\)bye'^+le^' -

(3). c(y + e)'*-' = cjr^ + (;i—2) cjT'e + (^H^K^H^)

cy^-^c* .... ce"^' ^ =0.

(4). d(y+ey^ = c/y^ + (n-3)(/y^e + (^—3) (>»—^)

d'y'^-'e'

(n—2). r(y+e)'=ry'H-3ry'e+3rye'+re*

(n— 1). *(y4-e)'=^*+2^« +s^
(»). ^(y+c) =/y 4-^e - - -

(n-4-1). w =M
By inspecting the above results, it will be perceived that

the exponents of e form an ascending series,

0, 1, 2 .n—% n— 1, 71.

Then, putting V= to the given equation, W= to the sum
of the coefficients of c°, X= to the sum^of the coefficients of

Y Z
e. —= to the sum of the coefficients of e*. = to the sum

2 '2.3

of the coefficients of c*, &c., we shall have

Y =x"+6x'^'H-cx''-'4-<fe~-' ra^-fjx^+^x+tf^O;

W=y'»+^-'+cy"-'+(/y"-^ ry^-\'sf-\-ty-\'U j

X =ny"-'+(»—l)^y^+(7i—2)cy'»-« .3ry'+2*y+^-

Y =n(n— l)y^'+(n—l)(7i—2)^*^ .6ry +2* ;

Z =n(»— l)(»-2)y'-'+(n-l)(7i-2)

(n—3)^-^* 6r, &c.

28
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The above expressions are called derived polynomials, and

by examining them we may readily discover the manner in

which they are derived. Thus,

1. W is derived from V, by simply changing x into y.

2. X is derived from W, by multiplying each of the terms

of W by the exponent of y in that term, and diminishing this

exponent by 1.

The above law will be found useful in the transformation

of the higher equations. To illustrate its application, we
will subjoin a few examples.

EXAMPLES.

1. Transform the equation a:"— ISaj^'+lTa?^—9a:-f 7=0 into

another which shall want the second term.

Let x=y-\-——y-\-^, or 3+y. /

4<

Substituting this for x in the given equation,

(3+yy- 12(3+yy+ 17(3+yy-9(3+2/)+ 7=0. -

This will give the transformed equation of the 4th degree,

and of the form

and the operation will be reduced to finding the values of

these coefficients.

Now it follows, from the preceding law, that

W '= (3)^-12. (3f+17. (3f-9.(3y+7=-110;
X =4.(3)='-36.(3f+34..(3)'-9 . . =-123;

Z =6.(3f-36.(3y+17 =-37;
At

_A=,4.(3y-12 = 0.
2.3 ^

^

Therefore, the transformed equation becomes

y4_37y2_i23y_i 10 =0.

2. Transform the equation 4a?^—5a?^+7a7—9=0 into an-

other, the roots of which shall exceed the roots of the given

equation by unity.

Let y—x-\- 1, then x=—1-f y, which gives the transformed

equation /
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But,

W = 4.(—1)'— 5.(—1)«4-7.(—1)'—9 . =—25;
X =12.(—ly—10.(— 1)'+ 7 ... . =+ 29;

I
=12. (-1)- 5 =-17;

^=4
2.3

Whence the transformed equation becomes

4y'— 17y^-|-29y—25= 0.

3. Transform the equation XT'—10x*+7ar*+4x—9=0 into

another which shall want the second term.

Let x=y——=y—2, or —2-|-y; then the transformed

equation becomes

But,

W = (2)'— 10 . (2)*4-7 . (2f+4 . (2)'—9=— 73

X = 5 . (2)^—40 . (2f 4-21 . (2)^+4 . . =—152

= 10.(2)^—60. (2)^+21. (2)» . . , =—118

= 10.(2)'—40.(2)' -h 7 =—33;

Y
2
Z
2.3

_?.'_= 5. (2)'—10 : . . = 0.
2.3.4 ^

^

Hence, the transformed polynomial is

y5_33y'_118y2—152y—73=0.

4. Transform the equation 3x'-f-15x^-|-25a?—3=0 into an

equation wanting the second term.

Divide the equation by 3, and proceed as before.

27

5. Transformtheequation3a:*— 13ar'+7x'— 8a:—9=0 into

an equation in which the roots shall be less than the roots

of the given equation by |.

An,. 3j,'-9y»-4y'-^y-H?=0.
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Cor. 5. If a, a\ a' a' .... a"^ represent the n roots of

the general equation V=0, or a?"4-6a?"~'+ , &c., ==0, we shall

have, by Art. 453, Cor. 2.

a7''+Z?a?"-'+ca?"-2+, ^^ ^ —[x—a) {x—a) {x—a') .... {x—aT),

Now if we put x=^y-\-e^ and substitute this value for a? in

the equation, it becomes

(y^eY^rh{y^rey-'+, &c., =(2/+e—a) {y^e—a) . . . {y^-e—oT),

Or,

(y+e)"+^>(2/+e)'*-^+, (fee, =(e+y— a) (e-{-y—a) .... (e-\-y—ar).

The first member, by Cor. 4, equals

Xe+L^ e\

With respect to the second member, it follows, from the

preceding theorem,

1. The 'part involving e , or the last term, is equal to the prod-

uct (y—a) (y
—a') .... (y

—

a"") of the factors of the proposed

equation; hence,

W=(y—a) (y—a) . (y—«")•

2. The coefficient of e is equal to the sum of the products of

these n factors, taken n— 1 and n— 1, or equal to the sum of all

the quotients that can be obtained by dividing W by each of the

n factors of the first degree in the given equation j hence,

V w
,

vv , w w
y
—a y—a y—a y

—a '

3. The coefficient of e^ is equal to the sum of the prod-

ucts of these n factors, taken n—2 and n—2, or equal to

the sum of the quotients that can be obtained bydividing W
by each of the factors of the second degree > hence,

Y W W W
2 {y—a) [y—a) (y—a) {y—a') {y—a"'-') {y-a"%

CoR. 6. If two or more of the roots of the given equation

are equal to each other ; that is,

«= «'=:«", &c.,

the derived polynomial, which is the sum of the products n

factors^ taken n— 1 and n— 1, contains a factor in its difTer-
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ent parts, which is two or more times a factor of the pro-

posed equation.

Hence, if the equation contain equal roots^ there must be a

common divisor between the first member of the proposed equation

and its first derived polynomial.

460. Problem.—Having given an equation^ it is required to

discover whether it has equal roots^ and to discover the method

ef determining these roots.

Resume the general equation j or, since the polynomial

W differs from V only by the substitution of y for x,

y^Jf-by''-^-\-cy'^^ ty-\-u-0.

Then, supposing the equation to contain m factors equa]

to y— a\ &c., and also to contain the simple factors y—/>,

y—qy &;c., then will

W^Cy—a)'" {y—a'y {y—a'y— iy—p) (y—q) iy—r)—
Whence, by the preceding corollary,

j^^mW m'W m'^W WWW
y-a y—a y—a" y—p y—q y—r

Now (y—a)"~^ (y— a')'"'~^&c., are factors common to all

the terms of the above polynomial j hence their product

(y—a)'^-^x(y—a')*"'-^ x(y—a")'"'~*

is the greatest common divisor of the polynomials W and

X; or,

D=:(y—a)'»'-^x(y—a')'"'-* x (y—a")'""~*
>

that is, the greatest common divisor is composed of the

product of those factors which enter two or more times in

the given equation, each being raised to a power less by

unity than in the given equation.

Hence, to discover whether an equation W=0 contains any

equal roots^ form X, or the derived polynomial ofW ; then seek

for the greatest common divisor between W and X j if one can-

not be obtained, the equation has no equal factors, and, const'

quently, no equal roots.

461. Again, if the greatest common divisor (D) is of the

first degree, or of the form y—a, make y—a— 0, whence

y=a ; and we may conclude that the equation has two roots

Tt
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equal to a ; if it is of the form [y—a)'*, we may conclude that

the equation has n-{-l roots, each equal to a.

If the greatest common measure (D) is of the form

we must find the two values of y. Let a and a represent

those values, then the equation will have two roots each

equal to a, and two each equal to a.

Hence, the equal roots of an equation may be obtained by

finding the greatest common divisor of its first member and its

derived polynomial, and solving the equation obtained by putting

this common divisor equal to 0.

EXAMPLE,

Has the equation aP—'7x'^-\-lQx—12=0 equal roots'? if so,

how many, and what are they ]

The derived polynomial of this equation is

Performing upon this and the first member of the given

equation the operations indicated in Art. 137 to find the

greatest common divisor, we obtain

x—%
Then - - - a?—2=0,

And - ' - X *=2.

Therefore, we conclude the equation has two roots equal

to 2.

Now, since the equation has two roots equal to 2, it must

(Art. 460) be divisible by

(x—2y=x^—4>x-{-4>.

Whence - a;^—737^+16a7— 12=(a;—2)'(a?-3)=0,

And - - - - 'x— 3=0, or 07=3,

which is the other root of the equation.

462. To show the application of the preceding principles,

we will subjoin a few equations with equal roots.

EXAMPLES.

1. Reduce the equation

2x'—12x^-\-19x''—6x+9z^0j

which has eoual roots.
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The derived polynomial is

8i»—36aH-38a:—6.

Whence - - D=«—3=0,
And - - - - X .= 3.

Therefore, thfe equation has two roots equal to 3.

Dividing its first member by (x

—

3y=x^—6a7+9, we obtain

2x^+1=0, OTX=±V'^h
Hence, the four roots of the equation are

3, 3, v^"^, and —v/^.
2. Reduce the equation

x^—2T*+ac'—7x»+8x—3= 0,

which has equal roots.

The first derived polynomial is

5a:«_8ar'H-9x»—14H-8.

Whence - D=x'—2x+l, or (x—lf ;

And the given equation has three roots equal to 1.

Dividing the first member by (x— 1)', or x'—3x'+3x— 1,

we have

a:*+x+3=0, or x=—i±is/—n.
The five roots are,

1, 1, 1, —i+iv/— 11, and _^-iv/—n. "

3. Reduce the equation

xH5x«-f6x^—6x^—ISr*—3a:»+8x+4=0,

which has equal roots.

W= x'4-5x« + 6x'— 6x*—ISr*—3a^+8x+4.,-

X =7x«+30x'+30x*—24f'—45x'—6x+8;
D = x*-\- 3jr'+ a^— 3x — 2.

Since D surpasses the second degree, we must apply to it

the same process we have to W.
Its first derived polynomial is

4r'+9x*+2x—3,

And the greatest common divisor ; or,

D'=a:+1.

Hence, D has two equal roots equal to — 1 ; and, dividing

it by
(x+l)», or x*+2a;+l,

we have • x'-|-x—2=0 5 or x=l, or —2.
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Therefore,

D, or x'+3x'+x''—3x—2={x+lf{x—l) (.r+2),

And - - - W= {x+lf{x—lY(x+2f.

The roots of the equation, then, are

1, 1, —1, —1, —1, —2, and —2.

4. Required the equal roots of the equation

x'—Sx'-]-26x'—4>ox'-\'4^bx'—21x'—10x'^20x—^z^0.

Ans. 1 and 2.

SECTION XIL

RESOLUTION OF THE HIGHER EaUATIONS.

Resolution of the Cubic Equations ly Cardan's Rule.—Young's

Method.— Des Cartes'* Method of Resolving Biquadratic

Equations.—JVewton^s Method of ^Approximation.—Resolu-

tion of Higher Equations by Trial and Error,

463. We will now proceed to investigate the methods by

which affected equations of the third degree may be solved.

Equations of this nature may all be exhibited under the ttiree

following forms, in which p, p\ and g may be either + or — :

(1.) x^-\-px =q;
(2.) x'+px' =.q;

(3.) x^-\-p'x'^-\-px= q.

JSTote.—The known quantities p, p\ and q are here used iii

their most general sense, and may be entire or fractional,

positive or negative quantities.

First Form.

464. In order to deduce a general formula for the reduc-

tion of cubic equations of the first form, let us take

x^-\-px= q.

Let - y-\-z—x^ and Syz=—p;
Then - - ^=(y+zY=f+3fz+Syz'+z'i
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Resolving into factors - ar'=y'-|-3y2(y-f «)+2';

Substituting X for y+2 - a?*=y'4-3y2X+2^}

Substituting this value of x^^
y^^z'-}-3yzx-\-px=q ;

in the 1st equation • S

JResolving into factors - y*-f 2*H-(3y2-f^)x=g,

Or - - - ^ - r y^-{-z^+{—p-\-p)x=q;

Whence - - * - - y^+z* =q*

To determine the values of y and 2, we have the two

equations,

y»H-2»=y; (L)

3yz=^p; (2.)

Dividing the 2d 3 - - yz =—lp ; (3.)

Cubing . . - - f2^=-^\jp»; (4.)

Squaring the lst7 yS^2fz^+z'=f j (5.)
equation - 5

Multiplying the 4.th by 4 - 4^2*=:

—

^\p^; (6.)

Subtracting the 6th ) ^.o^a^+^e^ 2^ , 3 /^ x

from the 5th - i ^ ^
^

___
Extracting the square root, y''

—

z^=± Vq^+-sSp\ (^O

Or y^—r»^±2v/ ig^+^S/.(9.)

Adding the 9th to the 1st - ^f=q±^\^iq'-\-^\p^y
3/ ===r

Dividing and evolving - y=\/ i9^ '^i9^'^iSP^i

Subtracting: the 9th from the } , ^ —3 r-

1st ! . . . 1 ^2^=q^^2V}q'+^\p';

Dividing and evolving - ^=\/h9^ >/W'^j\P^9

3/ ,

Consequently, we take - y=\/i?+ v^4?^+lV?^

And «=\/k—v/T?+SP-
Adding the last two equations, and observing that y-[-2z=x,

^=\/iq+ ^W+i^'+\/k-^iq'-^i\p* (A.)

Or, since 2=

—

2E and x=y+2,
y

Y/ij+v/ie^+^P'-j^
\^k+^^W-^i\p'- (A^)
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Again, taking the equation x^—px—q^ and letting y-{-z—x,

and 3yz=+j9, and proceeding as before, we shall obtain*

x=^hq+ Viq'-j\f-\-\/-hq-Vh'-^\p\ (B.)

Or, since z—'^, and x=:y-\'Z,

^=\/h+Vif-^\f+-
ip

By the above formulas we may obtain the exact or ap-

proximate roots of cubic equations of the first form.f

EXABIPLES.

1. Find the value of a: in the equation x^+6x—2.

Substituting 6 for jo, and 2 for g, in formula A, we have

Whence

a?z.r ^/4+^^= 1,587401—1,259921=,32748+ . jlns.

2. Find the value of x in the equation x^—2a:——4.

By formula B, we have

x= \Ai+ v/-L«.—8-4- \/z^— n/JJ.—_8_ :

V 2 4 27 \ 2 4 27

=y_2+ioy 3+y^-2-J-0 V3 J

=^—2+l',9245+ e^=^2^1";9245 j

=z^^=;o755—e/3,9245z=—,41226- 1,5773}

=—1,9999+ , or —2. ^ns,

* In formirias B and B', it is evident that, if-^^p^'^^q^,ihe equation can-

not be reduced, since it involves the extraction of the square root of a neg-

ative quantity; hence, the value of x can only be obtained by imaginary

quantities, and the conditions of the question are incompatible with each

other.

t These formulas are substantially what is known under the cognomen
" Garden's Rule for Cubic Equations.'? The invention of the rule, however,

is due to Nicholas Tartalea and to Scipio Ferreus, who found it independ-

ently of each other; but Garden first published it to the world.—See Ed.

Encycl., Art. Alg.
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3. Find the value of xin^he equation x*—6x=12.

By formula B', we have

3 / 2
a?=\/ll-f v/JJ.'+z±«-h

—

=3,1392. Ans,

V a ' 4 2 7

4. Find the value of x in the equation o?— 15x=4*.

Ans, x=:4.

5. Find the value of a: in the equation x'-|-9x=584'.

Ans. x=8.

Second Form,

465. If the second term be made to disappear from a cubic

equation of this form, there will result a cubic equation of

the first form (Art. 459, Cor. 1).

Hence, to reduce equations of the second form, we have

the following general

EULE.

Transform the given equation into one of the first form^ and

then reduce as before.

EXAMPLES.

1. Find the value of x in the equation x'+3x*=54.

Let x=z—l = z—Ij

Then af'=z'—32^-{-3z—l,

And 3x»= +.32;'—62+3;

Adding the two equations, x*+3x'=2r'

—

3z +2;
Hence - - - 2'—32+2=54

;

Transposing - - - 2*—32=52.

Applying formula B, we have

V 2^ 4 n^y 2 4 ^T?*
3/ =izzr 3/ zzzzzz

= \/26+\/2_l±4_-?_I+\/26— v'iUL* u ;V 4 aT y 4*7
= y/26+v/676^+ y/26—v/676— 1 j

= ^26+25,980761921+^26-25,980761921
j
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3.

1 8^ _3^
2 7

=:^51,980761921+>2/,019238079 ;

=:3,732+,267=i 3,999.

Hence jt zn 3,999 -l=z 2,999+, or 3. Ans.

2. Find the value of x in the equation x^—3a?^=: 16

Let - - x—z-\-%—z-\-\
;

Then - ^—fz^ IG+^V X ^\ or ^—32^= 18.

Applying formula B' to this last equation,

3/ ZZIZZI. 3

Z—\/uLa_s/11} 1L\ 2

V 2 4

Hence a?=2:+ 1= 34- 1=4. •^'i*-

3. Find the value of a? in the equation,ir^+6a;^=1600.

Ans. 10.

4. Find the value of x in the equation x^—,3a7^=^-,004.

Ans. \2.

Third Form.

x^-\-p'x^-\-px=zq.

466. Making the second term disappear, we shall have, as

before, an equation of the first form ; hence, the method of

reducing an equation of the second form will be the same as

that for.the second form.

EXAMPLES.

1. Find the value of x in the equation x^—6a?^+ 18a?==22.

Let x=z-{-^—z-\-2f then we shall have (Art. 459)

2^-\-6z=2.

Applying formula A, we shall find z= v^4— v^2.

Whence
a?=z+2=^4—^2+2=1,5874— 1,2599+2=2,3274. Ans.

2. Find the value of x in the equation x^-\-Sx'^—4a?=32.

Ans. a?=2.

3. Find the value of x in the eq'^iation a^— 10a?^+10a?=100.

Ans. x=10.
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young's method OF RESOLVING CUBIC EQUATIONS.

467. Every cubic equation may be transformed so as to

appear under the form

r'-f6a^+ca:=N. (A.)

468. Now, suppose that two consecutive numbers in either

of the series

1, 2, 3, &c., or 10, 20, 30, frc, or . 1, . 2, . 3, &c.,

are found such, that, substituting the first for x in the above

equation, the result shall be less than N, and, by substituting

the second, the result shall be greater than N ; then the first

of these numbers will be the first figure of one of the roots

of the equation. Let this figure be represented by r, and

the other succeeding figures of the same root by $, t, «, &c.

;

then, substituting for x the first figure (r) of its root in the

equation (A), we shall have

r»+^,7-»-fcr=N; *(B.)

Whence - - - r=—^--, (C.)

469. Let the remaining figures of the root equal y, then

x=r-\-y: substituting this value for x in the first equation

(A), we have
cy-f-cr =cx

bf^2bry-^br':

f+Srf-^-Sr'y

Adding, y*+(3r+W+(3'^+2ir-|-c)y-h(r'+ir»+cr)=N. (D.)

But, if - 6' =3r +A, (1.)

c' =3r»+2ir+c, (2.)

N'=N-r»-ir'-cr, (3.)

the above equation becomes

y34.fty+cy=N'. (E.)

470. This equation is in all respects similar to the first

(A) ; and, since s is the first figure of the root y of this

equation, substituting as before.

Whence - - s=-^-^—;• (^0

29 U ^

f-^cr =cx \

r4-Jr»=ii» ) =:N.

+ r'=x' )
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Supposing the value of s found, and putting t, u^ &c , equal

to 2r, or y—z-rs, we have

c'z-\-c s=c'y ;

Adding, !_'

z'+{3s-\-¥)z'+(3s'-\-2Vs-]-c')z+(s'+ b's'-\-c's)^'N\ (G.)

But, if - b''=Ss+b\ (4.)

c'' =^Ss'-\-Ws+c\ (5.)

W=W—s'—b's'—c's,{6.)

the above equation becomes

z'-\-b''z'+ c''z=W\ (H.)

an equation which is in all respects similar to the first.

Hence we may proceed in the same way to find the first

figure f, in the root z, and so on till we have found all the

figures in the root x of the proposed equation.

471. Now, by observing the formation of the coefficients

b\ c' in the equation marked (F), and recollecting that r,

being the first figure of the root, must be greater than s, it

will appear obvious that c' must form a part of the divisor

s^-\-b's+c\ and if r be already known, the value of c' will

become known (2), which may, therefore, be used as a trial

divisor for finding s ; the same may be observed of the next

and the succeeding divisors j but these trial divisors, c'', c"',

&c., will continually approach nearer the true divisors.

472. Now, if the first figure of the root r be found by

trial, and r-\-b be multiplied by it, and the product added to

c, the sum will be the first divisor ; thus,

r{r+b)= r'-\-br

7'^-\-b7'-\-c=: 1st divisor. (7.)

u N N
Hence - r= ——

, ,, .
-

r-1roj'-\-c r{r-\-b)-\-c

If under these two expressions we write r', and add up

the three, we shall obtain c'; thus,
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r*

3r«+2Z»r+c=c'. (8.)

Having obtained c', we have a trial divisor of N' that will

enable us to determine more easily the next figure s of the

root.

When s is found, the second divisor may be computed

;

thus,

s*-^-b's-\-c'= 2d divisor.

Hence - - s= ^ = ^1
s'-{-b's-\-c' s{s-\-3r+b)-{-3r'-\'2br^t

By a similar process we shall obtain

/'+*"/+c"= 3d divisor.

Hence, /=

Also,

Hence, tt=

Also, tt'+6'"tt+c'"= 4th divisor.

&c., Scc\, &c.

The above formulas may be readily applied to the reduc-

tion of cubic equations. By a careful inspection of them, we
may obtain the following general

RULE.

1. Put down c, the coefficient of a?, and a little to the right

place the absolute number^ which is to be considered as a divi'

dend, the figures of the root forming the quotient.

2. Place the first figure of the root^found by trials in the quo-

tient^ above which u^ite the coefficient of a?-, observing that its

unites place he over the unit's place of the quotient.

3. Multiply the value of the quotient figure, taking in those
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above by that value ; add the product to c, and the sum is the

first divisor,

4. Write the square of the quotient figure just found under

the first divisor^ add it to the two sums immediately above^ and

the result will be the trial divisor for finding the next figure of

the root.

5. Find now the next figure of the root^ and to its value (in-

cluding those above it) prefix three times the preceding^ taking

the value of the figure above it ; multiply the result by the last

found figure ; add the product to the trial divisor ^ and we shall

have the true divisor ; and in the same manner are the succeed-

ing divisors to be obtained.

EXAMPLES

1. Reduce the equation a:^-f8a:^-f 6a7=75 .9.
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J^ote.—By inspecting the preceding example, we shall ob-

serve that if, after obtaining three places of decimals in the

right-hand column, we had continued to reject the remain-

ing decimals, we should have had the root equally correct

to three places of decimals. Now, in order that the num-

ber of decimals in the last column may not exceed three, it

is obvious that the divisor corresponding to the first deci-

mal in the root must contain but two decimals, that corre-

sponding to the next decimals of the root but one, and that

for every succeeding decimal in the root the right-hand di-

git of the corresponding divisor must be cut off. It should,

however, be observed, that whatever would have been car-

ried had the complete multiplication been performed, is still

to be carried for the mcrease of the next figure 5 and, indeed,

if the figure cut off exceed 5, one is to be carried to the

next figure.

Hence the work of the above example may be rendered

more concise, and will stand as follows, the figures cut off

being placed a little to the right

:

6 75.9 12.4257+
20 52

26

4

"50

5.76

55.76

.16 ./

61.68

.3a 44

61.9 844

004

62.3

1

892

76325

23.9

22 . 304

1.596

1.240 688

.356

.312

312

827625

.044 484375

62.4
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2. Reduce the equation a:'-f.x'=500.

This equation is the same as x'-fx'-}-0x=500 ; hence

i=l, c=0, and N=500.

The first figure of the root is 7.

56

56

49

500

392

108

104.

|7. 61727975, &c.,=x.

736

161

13.56

3

1,

.264

.887181

174.56

36

1.

1,

.376819

. 323862

188.48

.2381

52957

37859

188.7181

1

15098

13251

188 . 9563

1669

1847

1704

189 . 123|2

189 . 290

5

143

133

10

. iiQio loioi;;, 9

3. Reduce the equation x*— 17x'-|-54a:=350.

An8. 1=14 . 954, &c*

4. Reduce the equation x'-f2x'+3x= 13089030.

An8, a?=235.

5. Reduce the equation j^-|-2x^—23x=70.

Ans. a:=5 . 1345, &c.

6. Reduce the equation a:*—2x=5.

^iM.a;=2» 09455 14815423265917, &c.
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DES cartes' method OF RESOLVING EQUATIONS OF THE FOURTH

DEGREE.

473. Every equation of the fourth degree may be reduced

to the form

x*-\-bx^-\-cx''-\-dx+e=zO. (A.)

This equation may also be transformed into another which

shall want the second term (Art. 459) j thus,

x'-]-c'x^-{-d'x+e'=zO. (B.)

474. Now if we can arrive to a solution of the equation in

this form, in which the roots sustain a given relation to the

original equation (A), the complete solution of that equation

may be effected.

Now, suppose B to be formed by the product of

x'+px+q^O, (1.)

x^-i-rx-{-s=0, (2.)

two equations in which p, q, r, and s are unknown quanti-

ties, and we shall obtain by the actual multiplication of the

factors (1) (2), and, taking the sum of the coefficients of the

equal powers of a:,

co'+{p+r)af'-^{s-hq+pr)x'+{ps-[-qr)x-{-qsz=zO. (C.)

Whence - p+r =0, or r=

—

p; (3.)

s+q-{-pr=c'; (4.)

ps+qr =d'} (5.)

qs =e'. (6.)

Or, substituting —p for r in (4) and (5), and transposing,

they will become

S+q^c'+p'-, (7.)

S-q=t (8.)

P
And, by subtracting the square of (8) from the square of

(7), we have

c'2+2c>2_j_^4_» ^4^5^ or 4e'.,

P
Or, clearing of fractions, and arranging the terms with

reference to the highest power of ^, we have

/+2cy+(c'2_4eV-(/'2:=0. (D.)
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li p*z=z, this equation will become

,
z^+ac'z^-f-Cc''—4«>—^"=0. (E.)

Now, if we add and subtract equations (7) and (8), and

divide the result by 2, we shall have

,= ic'+ii^+±; (9.)

9=ic'+iF'-~ (10-)

4-75. From these two formulas (9) and ( 10), p being known

from equation (E), s and q can be obtained.

Hence, substituting —p for r in equation (2), and reducing

the two equations (1) and (2), we shall have

X=-i,p±Vj^^q ; (11.)

X= + ip±Vip'-s. (12.)

These equations (11) and (12) give the four roots of the

biquadratic equation (B).

Cor. 1. The cubic equation (E) gives three roots; but the

same values of x will be obtained, whichever of the roots be

used.

Cor. 2. If the roots of the cubic equation (E) are all real,

the roots of the biquadratic equation (B) will be real also.

If only one root of the cubic equation (E) be real, then the

proposed biquadratic (B) will have two real and two imaginary

roots.

476. The above formulas may be readily applied to the

reduction of equations of the fourth degree.

EXAMPLES.

1. Reduce the equation x*— 3a:*H-6x+8=0.
Comparing this equation with formula (B), we shall have

c'=— 3, (/'=r6, and e'=:S; and substituting these values (oi

c', d\ and e' in formula (E), it becomes
2^-62*--23z-36=0.

Reducing this equation, 2=9 j hence p=y/z=V^=~-:t3»
Substituting -|-3 for;? in formulas (9) and (10), we have

«=ic'H-i;>«+^=~^+^4-f=4;
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Substituting these 3, 4, and 2 for 7?, s, and q in formulas

(11) and (12), we have

X::=z—ip± Vif^9-=^-^± v/f=:2=-|±i=:— 1, Or —2 ,'

Hence the four roots of the biquadratic equation are — 1,

-% l+lV^T, and i-v/^=7.

2. Reduce the equation x*—4,x^—8x-{-32—0.

Ans. 4, 2, — 1 + v^^^, and —\—^~—3,

3. Reduce the equation o:^— 9a:^+30a;2—46a?+24= 0.

*> ^7i5. 1, 4, 2+ y^^, and 2— v/^^.

4. Reduce the equation a:'+ 1 6a;'+ 9 9a;^4- 228a;+144=0.

Arts. —1, —3, —6 + 2v^^^, and —6—2v/"^.

477. This is an expeditious method of finding the approx-

imate root of an equation, when its near root is given or has

been ascertained by trial, and is equally applicable, whatever

be the degree of the equation.

478. Let us resume the general equation

a.n_^j^n-i_^^^«-2_|_ *a;'4-^a;4-^~.0. (A.)

Then let a represent the near root of the equation which

is known, and z represent the part to be added to make the

root complete \ then

a?=a+ S. (1.)

Substituting this value for x in the first equation (A), we
have

(«+2:)"+Z>(a4-z)"-'+ c(a+2r)"-2+ 5(a+2f)2+jf(a+2r)+
M= 0. (B.)

Then, transforming, as in Art. 459,

W+X^+I^^+^^ z-=.^, (C.)

479. Now, since r, by hypothesis, is a proper fraction, the

terms that involve z^^ z^^ &;c., being less than 2, may be re-
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jected from the equation without departing far from rigid

exactness. The equation (C) will then become

W+X2=0. (2.)

W
Whence - - ^=~^' ^^'^

But, comparing with the transformations in Art. 459, we

shall find

W= or +bar-' -{-car-* «a'-f/a+w; (4.)

X =na'^'+ {n—l)bar-^+(n—2)ca'*~^. . . 2sa +e. (5.)

Substituting these values for W and X in equation (3), we

have
aT-^-ba^'^+ car-* sa^-^ta-\-u ^jv v

^~
na''-'-{-{n-i)ba''-'-\-{n-2)car^ 2sa+t' ^ ''

The numeral value of this expression should be calculated

to within one or two places of decimals, and added to the

root (a) found by trial. Let the resulting approximate root

be represented by a', then a'=a-{-z ; and if z' represent the

part still to be added, we shall have

a"'+ba'^'-\-ca'^^ sa'^+ta'-{-u ^~ na'^'+(»—l)6a"*^H (n—2)ca"^ 2sa'+i
^

Letting a" represent the third approximate root, we shall

have
a"=a'+z',

480. Proceeding in this manner, the approximation may

be carried to any assigned degree of exactness.

EXA3IPLES.

1. Reduce the equation r'-f-2x^—8x=24.

By making trial of 1, 2, 3, and 4, we shall find that the

root of the equation is between 3 and 4, and very nearly

equal to 3.

Then n= 3, a=3, b or 5=2, c or ^=—8, u=—24, and Xz=

a+z.

By substituting these values in formula (D), we have

z=—?!±^ • ^'~:?- ^~"--=:A= 0.09 j hencex=3.09,nearly.
3.3^+4.3—8 ^r >

Again, if 3 . 09 be substituted for a' in formula (D'), we

shall have
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3.(3.09/+4.(3.09)—

8

'

a?=3. 09364.

2. Reduce the equation x^-\-x^-{-x= 90.

Here 7^=3, b or s=zl, c or ^=1, w=—90, and a will be

found =4< ; hence x=4f-\-Zj and we shall have

^=—i!±iji±ri?=:/^= 0. 1 J hence a:=4. 1, nearly.
3.4^+ 2.4+1 '' ' » ^

Again,

^.^_(4.ir+(4.ir+(4.1)-9_0^Q QQ,33 hence .=.4.
3.(4.1)+2.(4.1)+1

10283.

3. Reduce the equation a;*— 38a:'+210j:=^+538a:+289=:0.

^7X5.07=30.535653.

4. Reduce the equation x'-\-6x^—10x'—n2x''—201x-\-110

=0. ^ns. 07=4.46410161.

RESOLUTION OF HIGHER EaUATIONS BY TRIAL AND
ERROR.

481. The roots of cubic equations may also be found to

a sufficient degree of exactness by successive approxima-

tions. From the laws of the coefficients, as stated in Art.

455, it is evident that the roots must be such that, when
their signs are changed, their product shall be equal to the

last term of the equation, and their sum equal to the coeffi-

cient of the second term. By considering this law, some

estimate may be formed of the values of the roots, and a

trial may then be made, by substituting in the place of the

unknown letter its supposed value. If this proves too small

or too great, it may be increased or diminished, and the tri-

als repeated till one is found which will nearly satisfy the

conditions of the equations.

482. Now, since the errors in the results will be very

nearly proportioned to the errors in the assumed numbers,

after we have assumed two approximate values, and calcu-

lated the errors which result from them, we may obtain a

more exact correction of the root by the following propor-

tion :
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The difference of the errors : to the difference of the assumed

numbers : : the least error : to the correction required,

E'er, letting N and n= the assumed numbers, S and s=
the errors of these numbers, and R and r= the errors of the

results, we shall have

R : r : : S : 5 very nearly.

Hence, by Art. 369, R-r : S-5 i:r:s,

483. If the value which is first found is not sufficiently

correct, this may be taken as one of the numbers for a sec-

ond trial
J
and the process may be repeated till the error is

diminished as much as is required.

There will generally be an advantage in assuming two

numbers whose difference is . 1, or .01, or .001, &c.

EXAMPLES.

1. Reduce the equation ar'—8x^-f 1707—10=0.

Here the signs are alternately positive and negative,

therefore (Art. 455) the roots must all be positive ; their

product =10, and their sum =8.

Suppose J7=5 . 1 or 5 . 2 ; then,

By 1st supposition,

:!

(5 . l)'-8 . (5 . 1)'+ 17 . (5 . 1)- 10= 1 . 271 .
,^ ' ^ ' ^ ' ^ errors.

By 2d, (5 . 2)='-8 . (5 . 2)*+ 17 . (5 . 2)- 10 =2 . 688

Difference of errors - - - - 1.417

Then - - 1 . 4 : . 1 : : 1 . 27 : . 09.

Hence - - a:=5 . 1-0 . 09=5 . 01, nearly.

To correct this farther, suppose a?=5 . 01, or 5 . 02; then,

By 1st supposition,

(5.01)»-8.(5.01)»+17.(5.01)-10=;0.121>

By2d,(5.02)'-8.(5.02y+n.(5.02)-10=0.246 S

Difference of errors - - - - 0.125

Then - - . 125 : .01 : : . 121 : . 01.

Hence - - a:=5 . 01— . 01=5.

This value of x satisfies the conditions of the equation; for,

5'-8x 5^-1- 17x5—10=0.
Therefore, one of the roots of the equation is 5.

30
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To find the other two roots, let the first member be divi-

ded by X—5 (Art. 453), and the quotient put equal to 0.

a?3_8x2+17a?— 10 |a?—

5

x^— 5a?^ x^—'Sx-\-2

—3a?2—170-— 10

—3a?2_15a?

2a?— 10

2a?— 10

Hence - - a?^—3a? + 2=0.

Reducing - - x r=;2 or 1.

The three roots of the given equation, then, are 5, 2, and 1.

2. Reduce the equation x^—8a:^+4a?+48=0.

Let x=4f . 1, or 4 . 2.

Substituting successively these values for x in the equa-

tion, we have,

1st, (4 . 1)^-8 . (4 . 1)^+4 . (4 . l)+48:=-l . 159 )

2d, (4.2)'—8.(4.2)2+4.(4.1)+48=—2.282i

Difference of errors - - - — 1.123

Then - - — 1 . 1 : . 1 : : — 1 . 1 : . 1.
^

Hence - - a?=4 . 1—0.1=4.

This value of a? satisfies the conditions of the equation j for,

4'—8.42+4.4+48=0.
Therefore, one of the roots is 4.

Dividing the first member of the given equation by x—4,

the quotient is

a?2_4a?— 12=0.

Reducing - a?=6, or— 2.

The roots of the equation are —2, 4, and 6

3. Reduce the equation x^~\~16x'^-^65x—50=0.

^ns. 1, 5, and 10.

4. Reduce the equation 2a:^— 16a?='+40a?2—30a7=— 1.

^ns. a?=1.2847.

5. Reduce the equation a:5+2a?^+3a?'+4a?'+5a?=5 . 4321.

Jlns. x=S .414455.
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young's METHOD OF RESOLVING HIGHER EQUATIONS.

^S4f. The method of solving cubic equations in Art. 4-72

is obviously adapted to equations of any higher degree
j

and, by carefully inspecting the properties of equations, and

the mode of reduction there employed, we shall be able to

deduce, for the reduction of equations of the ;ith degree, the

following general

RULE.

1. Arrange the coefficients of the given equation in a row^

commencing with that of the first term then find by trial the first

figure of the root.

2. Jldd the product of the first root figure and the first coeffi-

cient to the second coefficient ; the product of this sum and the

same figure to the third coefficient^ and so on to the last coeffi-

cient^ and the last sum will be the divisor. Multiply this by the

first figure of the root^ and subtract the product from the tei'm

constituting the right-hand member of the equation ; the remain-

der will form the first dividend.

3. Repeat this process with the first coefficient and these sums,

and the number under the last sum will be the .trial divisor /or

the next figure.

4. Perform a similar process with the first coefficient and these

second sums, stopping under the n— Ith coefficient, jjgain, per-

form a similar process with the same first coefficient and these

last sums, stopping under the n—2/A coefficient, and so on till

the last sum falls under the second coefficient.

5. Find now, from the trial divisor and the first dividend^ the

next figure of the root, and proceed with the last set of sums and

this new figure exactly the same as with the original coefficients

and the first figure in finding the preceding divisor, and the sec-

ond divisor will be obtained. Then proceed, as before, to find

the SECOND DIVIDEND, and so on till the work has been carried to

a sufficient degree of exactness,

Kote.—The work may be contracted by cutting ofl' deci-

mals as before
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EXAMPLES.

1. Eeduce the equation a;'—3x2+7507=10000.

Operation.

•

9

—3
81

78

162

240

243

483

29 . 44

75

702

777

2160

10000

6993

|9 . 8860027, &c., =x.

9

9

3007

2677 .5616

18

9

2937

409 . 952

329

306

.4384

.1662

27

9

3346 . 952

434 . 016

23

23,

. 2722

.2616

36.8
.8

512.44
30.08

3780 . 968
46. 110

106

78

37.6

.8

542 . 52

30.72

3827 . 07|8

46 . 36

28

27

38.4

.8

573 . 24

3. 14

3873 . 44

3.50

1

3|9 . |2 576 ..3.8 3876. 9|4

3.1 3.5

579 . |5

3

3880 . 4

518|3

Kote.— By bringing down one period of decimals, we

have found the root to eight places of figures. If another

period, or eight decimals, had been brought down, the root

might have been found to twelve plav:jes of figures, or x^=:

9 . 88600270094.

2. Eeduce the equation a?'+6x4— 10a?'—112ac2—207a?= 110.
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Operation,

6

4

—10
40

30
56

"86

72

158

88

246
10.56

—112
120

,624

—207
32

110 14.46410161.
-700

10

4
8

344
—175
1408

810
667 . 05984

14

4
352
632

1233
434 . 6496

142.94016
133.46395

18

4
984
102.

1667.6496
477.4144

9.47621
9 . 24089

22
4

1086.

106.

.624

.912

2145.0640
79 . 3352

23532
23158

26.4
.4

256 . 56
10.72

1193.
111.

536
264

2224 . 399,2

80 . 389
374
232

26.8 267.28 1304.800 2304.788 142
4 10.88 17.453 5.434 139

27.2 278.16 1322.2513 2310.2212
4 11.04 17.56 5.44

27.6 289.20 1339. 8|1 2315.66
4 1.68 17.6 14

218. |0 290 .^8j8 1357.4 2315. 8|0

1.7 1.2 1

292.16 1358.16 2131 1|5.

9

1 1

2|9]4 1|3;5|9

3. Reduce the equation ar'-h2j:*+3a:'+4j:*+5a?=54321.

Ans. x=8 . 41445475, &c.

4. Reduce the equation x«-|-2x5+3x*+4ar'-|-5x--f6x=
654321. ^ns. Xz=% . 95697957, &c.

5. Reduce the equation a:'— 3x<'—2 . 5x'-|- lOx^+ar*—9x»-j-

2j=2. Jlns. x=1 , 62599736, &c.

6. Reduce the equation a:«-f 10x'-h21x—55x'— 100J?*-f-

525x'^-8(>4x«—630x=216. Ans, x= . 79128785, &c.





NOTES.

Note A, page 13, Art. 2.

The term Quantity seems to be used by writers on Mathematics with

a great degree of vagueness, and the definitions of it are liable to many

objections. For instance :
'• Quantity is a general term, embracing every-

thing which admits of increase or diminution."* Now, it is with perfect

consistency that the natural philosopher speaks of " increasing or dimin-

ishing" heat : so mental power or energy may be increased or diminished

;

and so, also, passion, resentment, anger, benevolence, or love may be in-

creased or diminished. Hence, by the above definition, they are included

under the term Quantity, and are, consequently, objects of mathematical

investigation. The incorrectness of this definition needs no farther illus-

tration. With regard to Number, we believe it cannot properly be included

under Quantity. Dugald Stewartf remarks :
'• As to number and propor-

tion, it might be easily shown that neither of them fall under the definition

of Quantity, in any sense of that word." Believing the term Quantity in-

correctly applied in most treatises on Algebra, we have endeavoured to

substitute the word number in its place.

Dr. Reidt suggests a distinction of Quantitj into proper and improper.

Proper Quantity is that which is measured by its own kind, such as ex-

tension and- duration. Improper Quantity is that which cannot be meas-

ured by its own kind, but to which we assign a measure in some proper

quantity that is related to it. Velocity, density, elasticity, <Scc., may be

considered as examples of this kind of quantity.

Note B, page 16, Art. 20.

The origin of Algebra, like that of other sciences of ancient date and

gradual progress, is not easily jeceriained. We, however, have derived

it from the Arabians, among whom it was cultivated at a very early pe-

riod. The most ancient treatise on Algebra now extant is that of Dio-

phantus, a Greek author of Alexandria, who flourished about A.D. 360,

and wrote thirteen books, six of which are now extant. The following

is a list of 8ome of the early writers on Algebra : Pisanus, 1400 ; Lucas

de Burgo, 1476 ; Scipio Ferreus, 1505 ; Nicholas Tartalca, 1539 ; Cardan,

1545; Xylander, 1575; Bachet, 1621 ; M. Fermat, 1670. Of later date,

writers have been abundant ; and among them may be ranked some of

* Davies' Boardon. t Works, vol. ii., p. 364. i Eway on Quautily.
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the most distinguished mathematicians and philosophers, such as New-

ton, Euler, Des Cartes, and a host of others.

Note C, j)age 136, Art. 244.

The theory of indetermination is productive of several important con-

sequences.

The remark here made upon indetermination wrill aid the student in his

analysis of several curious problems. For instance, we might cite the

process by which two is made to appear to be equal to one ; thus,

Let a=:l, and x=\.

Then a:=a;

Multiplying by a: . _ . - x^=^ax;

Subtracting a^ from both members, x^—a^=.ax—a^

;

Resolving into factors - (a:+a) [x—a)^=a[x—a)

;

Dividing by x—a - . - x-\-a^=a

;

Restoring values of a: and a - - 1+ 1^1, or 2=1.

The fallacy in the above reasoning will be easily detected ; for, express-

ing the division, we have

a{x—a)

X—a

which, since x=a, becomes

. aXO

The above case is not singular. Take the identical equation

10=10

:

Resolving into terms - - - 8+2=8+2

;

Transposing 2—2=8—8;
Resolving 2d member into factors 2—2=4(2—2)

;

Dividing by 2—2 1=4.

Note D, page 257, Art. 391.

The invention of Logarithms is undoubtedly due to John Napier, Baron

of Merchiston, in Scotland, who gave it to the world in a book written in

Latin, and entitled, " Mirijici Logarithmorum Canonis Descriptio, ejusque

usus in utraque Trigonomctria, ut etiam in omni Logistica Mathematica,

Amplissimi, Facilimi, et Expeditissimi Explicatio. Auctore ac inventore

Joanne Nepero, Baronne Merchislonii.

Note E, page 262, Art. 399.

Formula : logarithm (n+l)=log. n+2 M
|
^-^-^+-^^-^^3-+^^^-

1 1 1_ >

'^7(2«+iy^9(2'/j+l)»'^ll(2/i+iy"'^^- }
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The reductioQ of the above formula was not introdaced into the body

of the work, on account of its length and complexity.

Let a represent the base of the system, t+1 be any number in the com-

mon arithmetical scale, and x its logarithm ; then (Art. ) a'=r+l.

Again, let a=14-6, then (l+6)'=l+r; and to find the log. of l+u, we

must solve this equation, in which x is the unknown quantity.

Involving both members to the power m, we have

(I4.i)"«=(l+t,)"';

mrfmx— 1) ,, mx(mT—l)(mr—2)
Expanding, l+7iu:i+—^-^ *X4»+ ^ 'xA»+,&c.

fn(m— 1) . m(m—l)(m—2) _ ,

=l-t-mp+ ^
g ^ Xi>'-H— ^ ^Xr'+, <Sw5.

Rejecting 1 from each member, and dividing by m,

or - x(H.(^W^-^^=^*'+.*c.,)=H-^^-+

("-'f-^W.^c.
Now, let m=0, and we shall have

Dividmg - - ^=4_^4,^j^3_^44^^^s—4,c—
But a:=log. (r-|-l) ; therefore,

log. ^»-t-ij—^_^^.^j^,_^j«_^l^»_^ ^c.

Or, since a=64-l,

Incr r. I n ^-^'-|-^t>»-^t.*-f j^r'-^, &C.

Or, if we take M=, r^—-, —L_
t^ r—

(a_l)-i(a-l)»4-i(a-l)»-,&c.,

log. (r-fl)=M(r-ir»4-Jr'-U*4-»p»—, &c.) (A.)

Since a is a constant quantity, M, which is termed the modulus of sys-

tem, must also be a constant quantity.

^=2-;302k509=*^294482.

Or, more correctly,

M— 434294481903251827651 1289189166.

This is the series (A) earliest known for the calculation of logarithms

But the difficulty with it is that it will either diverge, or not converge so

quickly as to make the summation of a few terms of it a irafficient ap-
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proximation to the value of x or log. {v-\-l), unless tj be a proper fraction

sufficiently small. If v be nearly equal to 1, the series converges too

slowly to be of any use ; and if v be greater than 1, the series diverges,

and is, consequently, useless.

We may, however, transform this series (A) into others, so as to ob-

tain a series that will apply in every possible case. For if 1

—

v instead

of l-\-v be used, we shall obtain

»= v^
log. {l—v)=M{—v—-—-—\v*—^v'^—, &c.)

But log. (1

—

v)=:—log.-— ; therefore

=—M{v+^v''-\-lv^+\v*-\-^v^+, &c.)

1

log.—-=M(?j+ii;='-}-^2)3-|-iv*-|-|«5+, &c.) (B.)

By adding together the formulas (A) and (B), and observing that log.

{li-v)+ log. j^= log.
YZT^,

we have

log. J-^=M(2r+iv3+fr*+|r^+, &c.)

=2M[v-hiv'+^v'+\v-'+, &c.) (C.

)

Again, let us put — =-, then «=-— , and substituting in the above

formula, it becomes

Transposing - log. u^log. ^+2M ^^^H-j ^^-^y+| ^^-=^y^

Now, letting u=n-\-l and t—n, we shall have u—t=l, and u-\-t=2n-{-l ;

substituting these values in the preceding formula, it becomes

log. (n+l)=log. «+2M ^^_j^g-^^g^^+^.jj,+, &c.^

This series evidently converges very rapidly, even when w=l ; but

converges more rapidly as n increases. Hence, having found the log-

arithm of any number, we may easily find the logarithm of the next

higher in the natural series of numbers by the application of this formula.

See Edinburgh and Recs's Encyclopedias.
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