
LINEAR ALGEBRA
Jim Hefferon

Third edition

Answers to exercises

http://joshua.smcvt.edu/linearalgebra



Notation

R, R+, Rn real numbers, positive reals, n-tuples of reals
N, C natural numbers {0, 1, 2, . . . }, complex numbers

(a .. b), [a .. b] open interval, closed interval
〈. . .〉 sequence (a list in which order matters)
hi,j row i and column j entry of matrix H

V,W,U vector spaces
~v, ~0, ~0V vector, zero vector, zero vector of a space V

Pn, Mn×m space of degree n polynomials, n×m matrices
[S] span of a set

〈B,D〉, ~β,~δ basis, basis vectors
En = 〈~e1, . . . , ~en〉 standard basis for Rn

V ∼=W isomorphic spaces
M⊕N direct sum of subspaces
h, g homomorphisms (linear maps)
t, s transformations (linear maps from a space to itself)

RepB(~v), RepB,D(h) representation of a vector, a map
Zn×m or Z, In×n or I zero matrix, identity matrix

|T | determinant of the matrix
R(h),N (h) range space, null space of the map

R∞(h),N∞(h) generalized range space and null space

Greek letters with pronounciation

character name character name
α alpha AL-fuh ν nu NEW
β beta BAY-tuh ξ, Ξ xi KSIGH
γ, Γ gamma GAM-muh o omicron OM-uh-CRON
δ, ∆ delta DEL-tuh π, Π pi PIE
ε epsilon EP-suh-lon ρ rho ROW
ζ zeta ZAY-tuh σ, Σ sigma SIG-muh
η eta AY-tuh τ tau TOW (as in cow)
θ, Θ theta THAY-tuh υ, Υ upsilon OOP-suh-LON
ι iota eye-OH-tuh φ, Φ phi FEE, or FI (as in hi)
κ kappa KAP-uh χ chi KI (as in hi)
λ, Λ lambda LAM-duh ψ, Ψ psi SIGH, or PSIGH
µ mu MEW ω, Ω omega oh-MAY-guh

Capitals shown are the ones that differ from Roman capitals.
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Chapter One

Chapter One: Linear
Systems

Solving Linear Systems

One.I.1: Gauss’s Method

One.I.1.17 (a) Gauss’s Method
−(1/2)ρ1+ρ2−→ 2x+ 3y= 13

− (5/2)y=−15/2

gives that the solution is y = 3 and x = 2.
(b) Gauss’s Method here

−3ρ1+ρ2−→
ρ1+ρ3

x − z= 0

y+ 3z= 1

y = 4

−ρ2+ρ3−→
x − z= 0

y+ 3z= 1

−3z= 3

gives x = −1, y = 4, and z = −1.

One.I.1.18 If a system has a contradictory equation then it has no solution. Otherwise,
if there are any variables that are not leading a row then it has infinitely many
solution. In the final case, where there is no contradictory equation and every
variable leads some row, it has a unique solution.
(a) Unique solution
(b) Infinitely many solutions
(c) Infinitely many solutions
(d) No solution
(e) Infinitely many solutions
(f) Infinitely many solutions
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(g) No solution
(h) Infinitely many solutions
(i) No solution
(j) Unique solution

One.I.1.19 (a) Gaussian reduction

−(1/2)ρ1+ρ2−→ 2x+ 2y= 5

−5y=−5/2

shows that y = 1/2 and x = 2 is the unique solution.
(b) Gauss’s Method

ρ1+ρ2−→ −x+ y= 1

2y= 3

gives y = 3/2 and x = 1/2 as the only solution.
(c) Row reduction

−ρ1+ρ2−→ x− 3y+ z= 1

4y+ z= 13

shows, because the variable z is not a leading variable in any row, that there are
many solutions.

(d) Row reduction

−3ρ1+ρ2−→ −x− y= 1

0=−1

shows that there is no solution.
(e) Gauss’s Method

ρ1↔ρ4−→

x+ y− z= 10

2x− 2y+ z= 0

x + z= 5

4y+ z= 20

−2ρ1+ρ2−→
−ρ1+ρ3

x+ y− z= 10

−4y+ 3z=−20

−y+ 2z= −5

4y+ z= 20

−(1/4)ρ2+ρ3−→
ρ2+ρ4

x+ y− z= 10

−4y+ 3z=−20

(5/4)z= 0

4z= 0

gives the unique solution (x, y, z) = (5, 5, 0).
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(f) Here Gauss’s Method gives

−(3/2)ρ1+ρ3−→
−2ρ1+ρ4

2x + z+ w= 5

y − w= −1

− (5/2)z− (5/2)w=−15/2

y − w= −1

−ρ2+ρ4−→

2x + z+ w= 5

y − w= −1

− (5/2)z− (5/2)w=−15/2

0= 0

which shows that there are many solutions.

One.I.1.20 (a) Gauss’s Method

x+ y+ z= 5

x− y = 0

y+ 2z= 7

−ρ1+ρ2−→
x+ y+ z= 5

0 −2y− 1=−5

y+ 2z= 7

(3/2)ρ2+ρ3−→
x+ y+ z= 5

0 −2y− 1= −5

+ (3/2)z= 7/2

followed by back-substitution gives x = 1, y = 1, and z = 3.
(b) Here Gauss’s Method

3x + z= 7

x− y+ 3z= 4

x+ 2y− 5z=−1

−(1/3)ρ1+ρ2−→
−(1/3)ρ1+ρ3

3x + z= 7

−y+ (8/3)z= 5/3

2y− (16/3)z=−(10/3)

2ρ2+ρ3−→
3x + z= 7

−y+ (8/3)z= 5/3

0= 0

finds that the variable z does not lead a row. There are infinitely many solutions.
(c) The steps

x+ 3y+ z= 0

−x− y = 2

−x+ y+ 2z= 8

ρ1+ρ2−→
ρ1+ρ3

x+ 3y+ z= 0

2y+ z= 2

4y+ 3z= 8

−2ρ2+ρ3−→
x+ 3y+ z= 0

2y+ z= 2

z= 4

give (x, y, z) = (−1,−1, 4).

One.I.1.21 (a) From x = 1− 3y we get that 2(1− 3y) + y = −3, giving y = 1.
(b) From x = 1 − 3y we get that 2(1 − 3y) + 2y = 0, leading to the conclusion
that y = 1/2.
Users of this method must check any potential solutions by substituting back

into all the equations.
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One.I.1.22 Do the reduction
−3ρ1+ρ2−→ x− y= 1

0=−3+ k

to conclude this system has no solutions if k 6= 3 and if k = 3 then it has infinitely
many solutions. It never has a unique solution.

One.I.1.23 Let x = sinα, y = cosβ, and z = tanγ:
2x− y+ 3z= 3

4x+ 2y− 2z= 10

6x− 3y+ z= 9

−2ρ1+ρ2−→
−3ρ1+ρ3

2x− y+ 3z= 3

4y− 8z= 4

−8z= 0

gives z = 0, y = 1, and x = 2. Note that no α satisfies that requirement.

One.I.1.24 (a) Gauss’s Method

−3ρ1+ρ2−→
−ρ1+ρ3
−2ρ1+ρ4

x− 3y= b1
10y=−3b1 + b2
10y= −b1 + b3
10y=−2b1 + b4

−ρ2+ρ3−→
−ρ2+ρ4

x− 3y= b1
10y= −3b1 + b2
0= 2b1 − b2 + b3
0= b1 − b2 + b4

shows that this system is consistent if and only if both b3 = −2b1 + b2 and
b4 = −b1 + b2.

(b) Reduction

−2ρ1+ρ2−→
−ρ1+ρ3

x1 + 2x2 + 3x3 = b1
x2 − 3x3 =−2b1 + b2

−2x2 + 5x3 = −b1 + b3

2ρ2+ρ3−→
x1 + 2x2 + 3x3 = b1

x2 − 3x3 = −2b1 + b2
−x3 =−5b1 + 2b2 + b3

shows that each of b1, b2, and b3 can be any real number— this system always
has a unique solution.

One.I.1.25 This system with more unknowns than equations
x+ y+ z= 0

x+ y+ z= 1

has no solution.

One.I.1.26 Yes. For example, the fact that we can have the same reaction in two
different flasks shows that twice any solution is another, different, solution (if a
physical reaction occurs then there must be at least one nonzero solution).

One.I.1.27 Because f(1) = 2, f(−1) = 6, and f(2) = 3 we get a linear system.

1a+ 1b+ c= 2

1a− 1b+ c= 6

4a+ 2b+ c= 3
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Gauss’s Method

−ρ1+ρ2−→
−4ρ1+ρ3

a+ b+ c= 2

−2b = 4

−2b− 3c=−5

−ρ2+ρ3−→
a+ b+ c= 2

−2b = 4

−3c=−9

shows that the solution is f(x) = 1x2 − 2x+ 3.

One.I.1.28 Here S0 = {(1, 1) }

x+ y= 2

x− y= 0

0ρ2−→ x+ y= 2

0= 0

while S1 is a proper superset because it contains at least two points: (1, 1) and (2, 0).
In this example the solution set does not change.

x+ y= 2

2x+ 2y= 4

0ρ2−→ x+ y= 2

0= 0

One.I.1.29 (a) Yes, by inspection the given equation results from −ρ1 + ρ2.
(b) No. The pair (1, 1) satisfies the given equation. However, that pair does not
satisfy the first equation in the system.

(c) Yes. To see if the given row is c1ρ1 + c2ρ2, solve the system of equations
relating the coefficients of x, y, z, and the constants:

2c1 + 6c2 = 6

c1 − 3c2 =−9

−c1 + c2 = 5

4c1 + 5c2 =−2

and get c1 = −3 and c2 = 2, so the given row is −3ρ1 + 2ρ2.

One.I.1.30 If a 6= 0 then the solution set of the first equation is this.

{(x, y) ∈ R2 | x = (c− by)/a = (c/a) − (b/a) · y } (∗)

Thus, given y we can compute the associated x. Taking y = 0 gives the solution
(c/a, 0), and since the second equation ax+ dy = e is supposed to have the same
solution set, substituting into it gives that a(c/a) + d · 0 = e, so c = e. Taking
y = 1 in (∗) gives a((c− b)/a) + d · 1 = e, and so b = d. Hence they are the same
equation.

When a = 0 the equations can be different and still have the same solution
set: e.g., 0x+ 3y = 6 and 0x+ 6y = 12.

One.I.1.31 We take three cases: that a 6= 0, that a = 0 and c 6= 0, and that both
a = 0 and c = 0.

For the first, we assume that a 6= 0. Then the reduction

−(c/a)ρ1+ρ2−→ ax+ by= j

(−(cb/a) + d)y=−(cj/a) + k
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shows that this system has a unique solution if and only if −(cb/a) + d 6= 0;
remember that a 6= 0 so that back substitution yields a unique x (observe, by the
way, that j and k play no role in the conclusion that there is a unique solution,
although if there is a unique solution then they contribute to its value). But
−(cb/a) + d = (ad − bc)/a and a fraction is not equal to 0 if and only if its
numerator is not equal to 0. Thus, in this first case, there is a unique solution if
and only if ad− bc 6= 0.

In the second case, if a = 0 but c 6= 0, then we swap
cx+ dy= k

by= j

to conclude that the system has a unique solution if and only if b 6= 0 (we use
the case assumption that c 6= 0 to get a unique x in back substitution). But—
where a = 0 and c 6= 0—the condition “b 6= 0” is equivalent to the condition
“ad− bc 6= 0”. That finishes the second case.

Finally, for the third case, if both a and c are 0 then the system
0x+ by= j

0x+ dy= k

might have no solutions (if the second equation is not a multiple of the first) or it
might have infinitely many solutions (if the second equation is a multiple of the
first then for each y satisfying both equations, any pair (x, y) will do), but it never
has a unique solution. Note that a = 0 and c = 0 gives that ad− bc = 0.

One.I.1.32 Recall that if a pair of lines share two distinct points then they are the
same line. That’s because two points determine a line, so these two points determine
each of the two lines, and so they are the same line.

Thus the lines can share one point (giving a unique solution), share no points
(giving no solutions), or share at least two points (which makes them the same
line).

One.I.1.33 For the reduction operation of multiplying ρi by a nonzero real number k,
we have that (s1, . . . , sn) satisfies this system

a1,1x1 + a1,2x2 + · · ·+ a1,nxn = d1
...

kai,1x1 + kai,2x2 + · · ·+ kai,nxn = kdi
...

am,1x1 + am,2x2 + · · ·+ am,nxn = dm

if and only if a1,1s1 +a1,2s2 + · · ·+a1,nsn = d1 and . . . kai,1s1 + kai,2s2 + · · ·+
kai,nsn = kdi and . . . am,1s1 + am,2s2 + · · ·+ am,nsn = dm by the definition of
‘satisfies’. Because k 6= 0, that’s true if and only if a1,1s1+a1,2s2+· · ·+a1,nsn = d1
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and . . . ai,1s1+ai,2s2+· · ·+ai,nsn = di and . . . am,1s1+am,2s2+· · ·+am,nsn =

dm (this is straightforward canceling on both sides of the i-th equation), which
says that (s1, . . . , sn) solves

a1,1x1 + a1,2x2 + · · ·+ a1,nxn = d1
...

ai,1x1 + ai,2x2 + · · ·+ ai,nxn = di
...

am,1x1 + am,2x2 + · · ·+ am,nxn = dm
as required.

For the combination operation kρi + ρj, the tuple (s1, . . . , sn) satisfies
a1,1x1 + · · ·+ a1,nxn = d1

...
ai,1x1 + · · ·+ ai,nxn = di

...
(kai,1 + aj,1)x1 + · · ·+ (kai,n + aj,n)xn = kdi + dj

...
am,1x1 + · · ·+ am,nxn = dm

if and only if a1,1s1 + · · · + a1,nsn = d1 and . . . ai,1s1 + · · · + ai,nsn = di
and . . . (kai,1 + aj,1)s1 + · · · + (kai,n + aj,n)sn = kdi + dj and . . . am,1s1 +

am,2s2 + · · · + am,nsn = dm again by the definition of ‘satisfies’. Subtract k
times the equation i from equation j. (Here is where we need i 6= j; if i = j then
the two di’s above are not equal.) The previous compound statement holds if
and only if a1,1s1 + · · · + a1,nsn = d1 and . . . ai,1s1 + · · · + ai,nsn = di and. . .
(kai,1+aj,1)s1+ · · ·+(kai,n+aj,n)sn−(kai,1s1+ · · ·+kai,nsn) = kdi+dj−kdi
and. . . am,1s1+ · · ·+am,nsn = dm, which after cancellation says that (s1, . . . , sn)
solves

a1,1x1 + · · ·+ a1,nxn = d1
...

ai,1x1 + · · ·+ ai,nxn = di
...

aj,1x1 + · · ·+ aj,nxn = dj
...

am,1x1 + · · ·+ am,nxn = dm
as required.

One.I.1.34 Yes, this one-equation system:
0x+ 0y = 0
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is satisfied by every (x, y) ∈ R2.

One.I.1.35 Yes. This sequence of operations swaps rows i and j
ρi+ρj−→ −ρj+ρi−→ ρi+ρj−→ −1ρi−→

so the row-swap operation is redundant in the presence of the other two.

One.I.1.36 Reverse a row swap ρi ↔ ρj by swapping back ρj ↔ ρi. Reverse the kρi
step of multiplying k 6= 0 on both sides of a row by dividing through (1/k)ρi.

The row combination case is the nontrivial one. The operation kρi + ρj results
in this j-th row.

k · ai,1 + aj,1 + · · ·+ k · ai,n + aj,n = k · di + dj
The i-th row unchanged because of the i 6= j restriction. Because the i-th row is
unchanged, the operation −kρi + ρj returns the j-th row to its original state.

(Observe that the i = j condition on the kρi + ρj is needed, or else this could
happen

3x+ 2y= 7
2ρ1+ρ1−→ 9x+ 6y= 21

−2ρ1+ρ1−→ −9x− 6y=−21

and so the result wouldn’t hold.)

One.I.1.37 Let p, n, and d be the number of pennies, nickels, and dimes. For variables
that are real numbers, this system

p+ n+ d= 13

p+ 5n+ 10d= 83

−ρ1+ρ2−→ p+ n+ d= 13

4n+ 9d= 70

has more than one solution; in fact, it has infinitely many of them. However, it
has a limited number of solutions in which p, n, and d are non-negative integers.
Running through d = 0, . . . , d = 8 shows that (p, n, d) = (3, 4, 6) is the only
solution using natural numbers.

One.I.1.38 Solving the system

(1/3)(a+ b+ c) + d= 29

(1/3)(b+ c+ d) + a= 23

(1/3)(c+ d+ a) + b= 21

(1/3)(d+ a+ b) + c= 17

we obtain a = 12, b = 9, c = 3, d = 21. Thus the second item, 21, is the correct
answer.

One.I.1.39 This is how the answer was given in the cited source. A comparison
of the units and hundreds columns of this addition shows that there must be a
carry from the tens column. The tens column then tells us that A < H, so there
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can be no carry from the units or hundreds columns. The five columns then give
the following five equations.

A+ E =W

2H = A+ 10

H =W + 1

H+ T = E+ 10

A+ 1 = T

The five linear equations in five unknowns, if solved simultaneously, produce the
unique solution: A = 4, T = 5, H = 7, W = 6 and E = 2, so that the original
example in addition was 47474+ 5272 = 52746.

One.I.1.40 This is how the answer was given in the cited source. Some additional
material was added from [joriki]. Eight commissioners voted for B. To see this,
we will use the given information to study how many voters chose each order of A,
B, C.

The six orders of preference are ABC, ACB, BAC, BCA, CAB, CBA; assume
they receive a, b, c, d, e, f votes respectively. We know that

a+ b+ e= 11

d+ e+ f= 12

a+ c+ d= 14

from the number preferring A over B, the number preferring C over A, and the
number preferring B over C. Because 20 votes were cast, a + b + · · · + f = 20.
Subtracting the sum of the three above equations from twice the prior equation
gives b+ c+ f = 3. We’ve specified that each preference order got at least one vote,
so that means b = c = f = 1.

From the above three equations the complete solution is then a = 6, b = 1,
c = 1, d = 7, e = 4, and f = 1, as we can find with Gauss’s Method. The number
of commissioners voting for B as their first choice is therefore c+ d = 1+ 7 = 8.
Comments. The answer to this question would have been the same had we known
only that at least 14 commissioners preferred B over C.

The seemingly paradoxical nature of the commissioner’s preferences (A is pre-
ferred to B, and B is preferred to C, and C is preferred to A), an example of
“non-transitive dominance”, is common when individual choices are pooled.

One.I.1.41 This is how the answer was given in the cited source. We have not
used “dependent” yet; it means here that Gauss’s Method shows that there is
not a unique solution. If n > 3 the system is dependent and the solution is not
unique. Hence n < 3. But the term “system” implies n > 1. Hence n = 2. If the
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equations are
ax+ (a+ d)y= a+ 2d

(a+ 3d)x+ (a+ 4d)y= a+ 5d
then x = −1, y = 2.

One.I.2: Describing the Solution Set

One.I.2.15 (a) 2 (b) 3 (c) −1 (d) Not defined.
One.I.2.16 (a) 2×3 (b) 3×2 (c) 2×2

One.I.2.17 (a)

51
5

 (b)

(
20

−5

)
(c)

−2

4

0

 (d)

(
41

52

)
(e) Not defined.

(f)

128
4


One.I.2.18 (a) This reduction(

3 6 18

1 2 6

)
(−1/3)ρ1+ρ2−→

(
3 6 18

0 0 0

)
leaves x leading and y free. Making y the parameter, gives x = 6− 2y and this
solution set.

{

(
6

0

)
+

(
−2

1

)
y | y ∈ R }

(b) A reduction (
1 1 1

1 −1 −1

)
−ρ1+ρ2−→

(
1 1 1

0 −2 −2

)
gives the unique solution y = 1, x = 0. The solution set is this.

{

(
0

1

)
}

(c) Gauss’s Method1 0 1 4

1 −1 2 5

4 −1 5 17

 −ρ1+ρ2−→
−4ρ1+ρ3

1 0 1 4

0 −1 1 1

0 −1 1 1

 −ρ2+ρ3−→

1 0 1 4

0 −1 1 1

0 0 0 0


leaves x1 and x2 leading with x3 free. The solution set is this.

{

 4

−1

0

+

−1

1

1

 x3 | x3 ∈ R }
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(d) This reduction2 1 −1 2

2 0 1 3

1 −1 0 0

 −ρ1+ρ2−→
−(1/2)ρ1+ρ3

2 1 −1 2

0 −1 2 1

0 −3/2 1/2 −1


(−3/2)ρ2+ρ3−→

2 1 −1 2

0 −1 2 1

0 0 −5/2 −5/2


shows that the solution set is a singleton set.

{

11
1

 }

(e) This reduction is easy1 2 −1 0 3

2 1 0 1 4

1 −1 1 1 1

 −2ρ1+ρ2−→
−ρ1+ρ3

1 2 −1 0 3

0 −3 2 1 −2

0 −3 2 1 −2


−ρ2+ρ3−→

1 2 −1 0 3

0 −3 2 1 −2

0 0 0 0 0


and ends with x and y leading while z and w are free. Solving for y gives
y = (2+ 2z+w)/3 and substitution shows that x+ 2(2+ 2z+w)/3− z = 3 so
x = (5/3) − (1/3)z− (2/3)w, making this the solution set.

{


5/3

2/3

0

0

+


−1/3

2/3

1

0

 z+

−2/3

1/3

0

1

w | z,w ∈ R }

(f) The reduction1 0 1 1 4

2 1 0 −1 2

3 1 1 0 7

 −2ρ1+ρ2−→
−3ρ1+ρ3

1 0 1 1 4

0 1 −2 −3 −6

0 1 −2 −3 −5


−ρ2+ρ3−→

1 0 1 1 4

0 1 −2 −3 −6

0 0 0 0 1


shows that there is no solution—the solution set is empty.

One.I.2.19 (a) The reduction(
2 1 −1 1

4 −1 0 3

)
−2ρ1+ρ2−→

(
2 1 −1 1

0 −3 2 1

)



12 Linear Algebra, by Hefferon

ends with x and y leading, and with z free. Solving for y gives y = (1−2z)/(−3),
and then substitution 2x+(1−2z)/(−3)−z = 1 shows that x = ((4/3)+(1/3)z)/2.
Hence the solution set is this.

{

 2/3

−1/3

0

+

1/62/3
1

 z | z ∈ R }

(b) This application of Gauss’s Method1 0 −1 0 1

0 1 2 −1 3

1 2 3 −1 7

 −ρ1+ρ3−→

1 0 −1 0 1

0 1 2 −1 3

0 2 4 −1 6


−2ρ2+ρ3−→

1 0 −1 0 1

0 1 2 −1 3

0 0 0 1 0


leaves x, y, and w leading. The solution set is here.

{


1

3

0

0

+


1

−2

1

0

 z | z ∈ R }

(c) This row reduction
1 −1 1 0 0

0 1 0 1 0

3 −2 3 1 0

0 −1 0 −1 0

 −3ρ1+ρ3−→


1 −1 1 0 0

0 1 0 1 0

0 1 0 1 0

0 −1 0 −1 0


−ρ2+ρ3−→
ρ2+ρ4


1 −1 1 0 0

0 1 0 1 0

0 0 0 0 0

0 0 0 0 0


ends with z and w free. We have this solution set.

{


0

0

0

0

+


−1

0

1

0

 z+

−1

−1

0

1

w | z,w ∈ R }

(d) Gauss’s Method done in this way(
1 2 3 1 −1 1

3 −1 1 1 1 3

)
−3ρ1+ρ2−→

(
1 2 3 1 −1 1

0 −7 −8 −2 4 0

)
ends with c, d, and e free. Solving for b shows that b = (8c + 2d − 4e)/(−7)

and then substitution a+ 2(8c+ 2d− 4e)/(−7) + 3c+ 1d− 1e = 1 shows that
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a = 1− (5/7)c− (3/7)d− (1/7)e and we have the solution set.

{


1

0

0

0

0

+


−5/7

−8/7

1

0

0

 c+

−3/7

−2/7

0

1

0

d+


−1/7

4/7

0

0

1

 e | c, d, e ∈ R }

One.I.2.20 (a) This reduction3 2 1 1

1 −1 1 2

5 5 1 0

 −(1/3)ρ1+ρ2−→
−(5/3)ρ1+ρ3

3 2 1 1

0 −5/3 2/3 5/3

0 5/3 −2/3 −5/3


ρ2+ρ3−→

3 2 1 1

0 −5/3 2/3 5/3

0 0 0 0


gives this solution set.

{

xy
z

 =

 1

−1

0

+

−3/5

2/5

1

 z | z ∈ R }

(b) This is the reduction.
1 1 −2 0

1 −1 0 3

3 −1 −2 −6

0 2 −2 3

 −ρ1+ρ2−→
−3ρ1+ρ3


1 1 −2 0

0 −2 2 −3

0 −4 4 −6

0 2 −2 3


−2ρ2+ρ3−→
ρ2+ρ4


1 1 −2 0

0 −2 2 −3

0 0 0 0

0 0 0 0


The solution set is this.

{

−3/2

3/2

0

+

11
1

 z | z ∈ R }

(c) Gauss’s Method(
2 −1 −1 1 4

1 1 1 0 −1

)
−(1/2)ρ1+ρ2−→

(
2 −1 −1 1 4

0 3/2 3/2 −1/2 −3

)
gives the solution set.

{


1

−2

0

0

+


0

−1

1

0

 z

−1/3

1/3

0

1

w | z,w ∈ R }
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(d) Here is the reduction.1 1 −2 0

1 −1 0 −3

3 −1 −2 0

 −ρ1+ρ2−→
−3ρ1+ρ3

1 1 −2 0

0 −2 2 −3

0 −4 4 0

 −2ρ2+ρ3−→

1 1 −2 0

0 −2 2 −3

0 0 0 6


The solution set is empty { }.

One.I.2.21 For each problem we get a system of linear equations by looking at the
equations of components.
(a) k = 5

(b) The second components show that i = 2, the third components show that
j = 1.

(c) m = −4, n = 2

One.I.2.22 For each problem we get a system of linear equations by looking at the
equations of components.
(a) Yes; take k = −1/2.
(b) No; the system with equations 5 = 5 · j and 4 = −4 · j has no solution.
(c) Yes; take r = 2.
(d) No. The second components give k = 0. Then the third components give
j = 1. But the first components don’t check.

One.I.2.23 (a) Let c be the number of acres of corn, s be the number of acres of soy,
and a be the number of acres of oats.

c+ s+ a= 1200

20c+ 50s+ 12a= 40 000

−20ρ1+ρ2−→ c+ s+ a= 1200

30s− 8a= 16 000

To describe the solution set we can parametrize using a.

{

cs
a

 =

20 000/3016 000/30

0

+

−38/30

8/30

1

a | a ∈ R }

(b) There are many answers possible here. For instance we can take a = 0 to get
c = 20 000/30 ≈ 666.66 and s = 16000/30 ≈ 533.33. Another example is to take
a = 20 000/38 ≈ 526.32, giving c = 0 and s = 7360/38 ≈ 193.68.

(c) Plug your answers from the prior part into 100c+ 300s+ 80a.

One.I.2.24 This system has one equation. The leading variable is x1, the other
variables are free.

{


−1

1
...
0

 x2 + · · ·+


−1

0
...
1

 xn | x2, . . . , xn ∈ R }
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One.I.2.25 (a) Gauss’s Method here gives1 2 0 −1 a

2 0 1 0 b

1 1 0 2 c

 −2ρ1+ρ2−→
−ρ1+ρ3

1 2 0 −1 a

0 −4 1 2 −2a+ b

0 −1 0 3 −a+ c


−(1/4)ρ2+ρ3−→

1 2 0 −1 a

0 −4 1 2 −2a+ b

0 0 −1/4 5/2 −(1/2)a− (1/4)b+ c


leaving w free. Solve: z = 2a+b−4c+10w, and −4y = −2a+b−(2a+b−4c+

10w) − 2w so y = a− c+ 3w, and x = a− 2(a− c+ 3w) +w = −a+ 2c− 5w.

Therefore the solution set is this.

{


−a+ 2c

a− c

2a+ b− 4c

0

+


−5

3

10

1

w | w ∈ R }

(b) Plug in with a = 3, b = 1, and c = −2.

{


−7

5

15

0

+


−5

3

10

1

w | w ∈ R }

One.I.2.26 Leaving the comma out, say by writing a123, is ambiguous because it
could mean a1,23 or a12,3.

One.I.2.27 (a)


2 3 4 5

3 4 5 6

4 5 6 7

5 6 7 8

 (b)


1 −1 1 −1

−1 1 −1 1

1 −1 1 −1

−1 1 −1 1



One.I.2.28 (a)

1 4

2 5

3 6

 (b)

(
2 1

−3 1

)
(c)

(
5 10

10 5

)
(d) (1 1 0)

One.I.2.29 (a) Plugging in x = 1 and x = −1 gives

a+ b+ c= 2

a− b+ c= 6

−ρ1+ρ2−→ a+ b+ c= 2

−2b = 4

so the set of functions is {f(x) = (4− c)x2 − 2x+ c | c ∈ R }.
(b) Putting in x = 1 gives

a+ b+ c= 2

so the set of functions is {f(x) = (2− b− c)x2 + bx+ c | b, c ∈ R }.
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One.I.2.30 On plugging in the five pairs (x, y) we get a system with the five equations
and six unknowns a, . . . , f. Because there are more unknowns than equations, if no
inconsistency exists among the equations then there are infinitely many solutions
(at least one variable will end up free).

But no inconsistency can exist because a = 0, . . . , f = 0 is a solution (we are
only using this zero solution to show that the system is consistent—the prior
paragraph shows that there are nonzero solutions).

One.I.2.31 (a) Here is one—the fourth equation is redundant but still OK.
x+ y− z+ w= 0

y− z = 0

2z+ 2w= 0

z+ w= 0

(b) Here is one.
x+ y− z+w= 0

w= 0

w= 0

w= 0

(c) This is one.
x+ y− z+w= 0

x+ y− z+w= 0

x+ y− z+w= 0

x+ y− z+w= 0

One.I.2.32 This is how the answer was given in the cited source. My solution
was to define the numbers of arbuzoids as 3-dimensional vectors, and express all
possible elementary transitions as such vectors, too:

R: 13

G: 15

B: 17

Operations:

−1

−1

2

,

−1

2

−1

, and

 2

−1

−1


Now, it is enough to check whether the solution to one of the following systems of
linear equations exists:1315

17

+ x

−1

−1

2

+ y

−1

2

−1

+

 2

−1

−1

 =

 00
45

 (or

 045
0

 or

450
0

)

Solving −1 −1 2 −13

−1 2 −1 −15

2 −1 −1 28

 −ρ1+ρ2−→
2ρ1+ρ3

ρ2+ρ3−→

−1 −1 2 −13

0 3 −3 −2

0 0 0 0


gives y+ 2/3 = z so if the number of transformations z is an integer then y is not.
The other two systems give similar conclusions so there is no solution.
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One.I.2.33 This is how the answer was given in the cited source.
(a) Formal solution of the system yields

x =
a3 − 1

a2 − 1
y =

−a2 + a

a2 − 1
.

If a+ 1 6= 0 and a− 1 6= 0, then the system has the single solution

x =
a2 + a+ 1

a+ 1
y =

−a

a+ 1
.

If a = −1, or if a = +1, then the formulas are meaningless; in the first instance
we arrive at the system {

−x+ y= 1

x− y= 1

which is a contradictory system. In the second instance we have{
x+ y= 1

x+ y= 1

which has an infinite number of solutions (for example, for x arbitrary, y = 1−x).
(b) Solution of the system yields

x =
a4 − 1

a2 − 1
y =

−a3 + a

a2 − 1
.

Here, is a2 − 1 6= 0, the system has the single solution x = a2 + 1, y = −a. For
a = −1 and a = 1, we obtain the systems{

−x+ y=−1

x− y= 1

{
x+ y= 1

x+ y= 1

both of which have an infinite number of solutions.
One.I.2.34 This is how the answer was given in the cited source. Let u, v, x,
y, z be the volumes in cm3 of Al, Cu, Pb, Ag, and Au, respectively, contained
in the sphere, which we assume to be not hollow. Since the loss of weight in
water (specific gravity 1.00) is 1000 grams, the volume of the sphere is 1000 cm3.
Then the data, some of which is superfluous, though consistent, leads to only 2
independent equations, one relating volumes and the other, weights.

u+ v+ x+ y+ z= 1000

2.7u+ 8.9v+ 11.3x+ 10.5y+ 19.3z= 7558

Clearly the sphere must contain some aluminum to bring its mean specific gravity
below the specific gravities of all the other metals. There is no unique result to
this part of the problem, for the amounts of three metals may be chosen arbitrarily,
provided that the choices will not result in negative amounts of any metal.

If the ball contains only aluminum and gold, there are 294.5 cm3 of gold and
705.5 cm3 of aluminum. Another possibility is 124.7 cm3 each of Cu, Au, Pb, and
Ag and 501.2 cm3 of Al.
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One.I.3: General = Particular + Homogeneous

One.I.3.14 This reduction solves the system.
1 1 −2 0

1 −1 0 3

3 −1 −2 −6

0 2 −2 3

 −ρ1+ρ2−→
−3ρ1+ρ3


1 1 −2 0

0 −2 2 −3

0 −4 4 −6

0 2 −2 3


−2ρ2+ρ3−→
ρ2+ρ4


1 1 −2 0

0 −2 2 −3

0 0 0 0

0 0 0 0


The solution set is this.

{

−3/2

3/2

0

+

11
1

 z | z ∈ R }

Similarly we can reduce the associated homogeneous system
1 1 −2 0

1 −1 0 0

3 −1 −2 0

0 2 −2 0

 −ρ1+ρ2−→
−3ρ1+ρ3


1 1 −2 0

0 −2 2 0

0 −4 4 0

0 2 −2 0


−2ρ2+ρ3−→
ρ2+ρ4


1 1 −2 0

0 −2 2 0

0 0 0 0

0 0 0 0


to get its solution set.

{

11
1

 z | z ∈ R }

One.I.3.15 For the arithmetic to these, see the answers from the prior subsection.
(a) This is the solution set.

S = {

(
6

0

)
+

(
−2

1

)
y | y ∈ R }

Here are the particular solution and the solution set for the associated homoge-
neous system. (

6

0

)
and {

(
−2

1

)
y | y ∈ R }
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Note. There are two possible points of confusion here. First, the set S given
above is equal to this set

T = {

(
4

1

)
+

(
−2

1

)
y | y ∈ R }

because the two sets contain the same members. All of these are correct answers
to, “What is a particular solution?”(

6

0

)
,

(
4

1

)
,

(
2

2

)
,

(
1

2.5

)
The second point of confusion is that the letter we use in the set doesn’t matter.
This set also equals S.

U = {

(
6

0

)
+

(
−2

1

)
u | u ∈ R }

(b) This is the solution set.

{

(
0

1

)
}

These are a particular solution, and the solution set for the associated homoge-
neous system. (

0

1

)
{

(
0

0

)
}

(c) The solution set is infinite.

{

 4

−1

0

+

−1

1

1

 x3 | x3 ∈ R }

This is a particular solution and the solution set for the associated homogeneous
system.  4

−1

0

 {

−1

1

1

 x3 | x3 ∈ R }

(d) The solution set is a singleton.

{

11
1

 }

A particular solution and the solution set for the associated homogeneous system
are here. 11

1

 {

00
0

 }
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(e) The solution set is infinite.

{


5/3

2/3

0

0

+


−1/3

2/3

1

0

 z+

−2/3

1/3

0

1

w | z,w ∈ R }

A particular solution and the solution set for the associated homogeneous system
are here. 

5/3

2/3

0

0

 {


−1/3

2/3

1

0

 z+

−2/3

1/3

0

1

w | z,w ∈ R }

(f) This system’s solution set is empty. Thus, there is no particular solution. The
solution set of the associated homogeneous system is this.

{


−1

2

1

0

 z+

−1

3

0

1

w | z,w ∈ R }

One.I.3.16 The answers from the prior subsection show the row operations. Each
answer here just lists the solution set, the particular solution, and the homogeneous
solution.
(a) The solution set is this.

{

 2/3

−1/3

0

+

1/62/3
1

 z | z ∈ R }

A particular solution and the solution set for the associated homogeneous system
are here.  2/3

−1/3

0

 {

1/62/3
1

 z | z ∈ R }

(b) The solution set is infinite.

{


1

3

0

0

+


1

−2

1

0

 z | z ∈ R }

Here are a particular solution and the solution set for the associated homogeneous
system. 

1

3

0

0

 {


1

−2

1

0

 z | z ∈ R }



Answers to Exercises 21

(c) This is the solution set.

{


0

0

0

0

+


−1

0

1

0

 z+

−1

−1

0

1

w | z,w ∈ R }

Here is a particular solution and the solution set for the associated homogeneous
system. 

0

0

0

0

 {


−1

0

1

0

 z+

−1

−1

0

1

w | z,w ∈ R }

(d) The solution set is this.

{


1

0

0

0

0

+


−5/7

−8/7

1

0

0

 c+

−3/7

−2/7

0

1

0

d+


−1/7

4/7

0

0

1

 e | c, d, e ∈ R }

And, this is a particular solution and the solution set for the associated homoge-
neous system.

1

0

0

0

0

 {


−5/7

−8/7

1

0

0

 c+

−3/7

−2/7

0

1

0

d+


−1/7

4/7

0

0

1

 e | c, d, e ∈ R }

One.I.3.17 Just plug them in and see if they satisfy all three equations.
(a) No.
(b) Yes.
(c) Yes.

One.I.3.18 Gauss’s Method on the associated homogeneous system1 −1 0 1 0

2 3 −1 0 0

0 1 1 1 0

 −2ρ1+ρ2−→

1 −1 0 1 0

0 5 −1 −2 0

0 1 1 1 0


−(1/5)ρ2+ρ3−→

1 −1 0 1 0

0 5 −1 −2 0

0 0 6/5 7/5 0
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gives this is the solution to the homogeneous problem.

{


−5/6

1/6

−7/6

1

w | w ∈ R }

(a) That vector is indeed a particular solution, so the required general solution is
this.

{


0

0

0

4

+


−5/6

1/6

−7/6

1

w | w ∈ R }

(b) That vector is a particular solution so the required general solution is this.

{


−5

1

−7

10

+


−5/6

1/6

−7/6

1

w | w ∈ R }

(c) That vector is not a solution of the system since it does not satisfy the third
equation. No such general solution exists.

One.I.3.19 The first is nonsingular while the second is singular. Just do Gauss’s
Method and see if the echelon form result has non-0 numbers in each entry on the
diagonal.

One.I.3.20 (a) Nonsingular:
−ρ1+ρ2−→

(
1 2

0 1

)
ends with each row containing a leading entry.

(b) Singular:
3ρ1+ρ2−→

(
1 2

0 0

)
ends with row 2 without a leading entry.

(c) Neither. A matrix must be square for either word to apply.
(d) Singular.
(e) Nonsingular.

One.I.3.21 In each case we must decide if the vector is a linear combination of the
vectors in the set.
(a) Yes. Solve

c1

(
1

4

)
+ c2

(
1

5

)
=

(
2

3

)
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with (
1 1 2

4 5 3

)
−4ρ1+ρ2−→

(
1 1 2

0 1 −5

)
to conclude that there are c1 and c2 giving the combination.

(b) No. The reduction2 1 −1

1 0 0

0 1 1

 −(1/2)ρ1+ρ2−→

2 1 −1

0 −1/2 1/2

0 1 1

 2ρ2+ρ3−→

2 1 −1

0 −1/2 1/2

0 0 2


shows that

c1

21
0

+ c2

10
1

 =

−1

0

1


has no solution.

(c) Yes. The reduction1 2 3 4 1

0 1 3 2 3

4 5 0 1 0

 −4ρ1+ρ3−→

1 2 3 4 1

0 1 3 2 3

0 −3 −12 −15 −4


3ρ2+ρ3−→

1 2 3 4 1

0 1 3 2 3

0 0 −3 −9 5


shows that there are infinitely many ways

{


c1
c2
c3
c4

 =


−10

8

−5/3

0

+


−9

7

−3

1

 c4 | c4 ∈ R }

to write a combination.13
0

 = c1

10
4

+ c2

21
5

+ c3

33
0

+ c4

42
1


(d) No. Look at the third components.

One.I.3.22 Because the matrix of coefficients is nonsingular, Gauss’s Method ends
with an echelon form where each variable leads an equation. Back substitution
gives a unique solution.

(Another way to see that the solution is unique is to note that with a nonsingular
matrix of coefficients the associated homogeneous system has a unique solution, by
definition. Since the general solution is the sum of a particular solution with each
homogeneous solution, the general solution has at most one element.)
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One.I.3.23 In this case the solution set is all of Rn and we can express it in the
required form.

{c1


1

0
...
0

+ c2


0

1
...
0

+ · · ·+ cn


0

0
...
1

 | c1, . . . , cn ∈ R }

One.I.3.24 Assume ~s,~t ∈ Rn and write them as here.

~s =

s1...
sn

 ~t =

t1...
tn


Also let ai,1x1 + · · · + ai,nxn = 0 be the i-th equation in the homogeneous sys-
tem.
(a) The check is easy.

ai,1(s1 + t1) + · · ·+ ai,n(sn + tn)

= (ai,1s1 + · · ·+ ai,nsn) + (ai,1t1 + · · ·+ ai,ntn) = 0+ 0
(b) This is similar to the prior one.

ai,1(3s1) + · · ·+ ai,n(3sn) = 3(ai,1s1 + · · ·+ ai,nsn) = 3 · 0 = 0
(c) This one is not much harder.

ai,1(ks1 +mt1) + · · ·+ ai,n(ksn +mtn)

= k(ai,1s1 + · · ·+ ai,nsn) +m(ai,1t1 + · · ·+ ai,ntn) = k · 0+m · 0
What is wrong with that argument is that any linear combination involving only
the zero vector yields the zero vector.

One.I.3.25 First the proof.
Gauss’s Method will use only rationals (e.g., −(m/n)ρi + ρj). Thus we can

express the solution set using only rational numbers as the components of each
vector. Now the particular solution is all rational.

There are infinitely many rational vector solutions if and only if the associated
homogeneous system has infinitely many real vector solutions. That’s because
setting any parameters to be rationals will produce an all-rational solution.

Linear Geometry

One.II.1: Vectors in Space
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One.II.1.1 (a)

(
2

1

)
(b)

(
−1

2

)
(c)

 4

0

−3

 (d)

00
0


One.II.1.2 (a) No, their canonical positions are different.(

1

−1

) (
0

3

)
(b) Yes, their canonical positions are the same. 1

−1

3


One.II.1.3 That line is this set.

{


−2

1

1

0

+


7

9

−2

4

 t | t ∈ R }

Note that this system
−2+ 7t= 1

1+ 9t= 0

1− 2t= 2

0+ 4t= 1

has no solution. Thus the given point is not in the line.

One.II.1.4 (a) Note that
2

2

2

0

−


1

1

5

−1

 =


1

1

−3

1



3

1

0

4

−


1

1

5

−1

 =


2

0

−5

5


and so the plane is this set.

{


1

1

5

−1

+


1

1

−3

1

 t+

2

0

−5

5

 s | t, s ∈ R }

(b) No; this system
1+ 1t+ 2s= 0

1+ 1t = 0

5− 3t− 5s= 0

−1+ 1t+ 5s= 0

has no solution.
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One.II.1.5 (a) Think of x−2y+z = 4 as a one-equation linear system and parametrize
with the variables y and z to get x = 4+2y−z. That gives this vector description
of the plane.

{

xy
z

 =

40
0

+

21
0

 · y+

−1

0

1

 · z | y, z ∈ R }

(b) Parametrizing gives x = −(1/2)− (1/2)y− 2z, so this is the vector description.xy
z

 =

−1/2

0

0

+

−1/2

1

0

 · y+

−2

0

1

 · z
(c) Here x = 10−y−z−w and so we get a vector description with three parameters.

x

y

z

w

 =


10

0

0

0

+


−1

1

0

0

 · y+


−1

0

1

0

 · z+

−1

0

0

1

 ·w
One.II.1.6 The vector 20

3


is not in the line. Because 20

3

−

−1

0

−4

 =

30
7


we can describe that plane in this way.

{

−1

0

−4

+m

11
2

+ n

30
7

 | m,n ∈ R }

One.II.1.7 The points of coincidence are solutions of this system.
t = 1+ 2m

t+ s= 1+ 3k

t+ 3s= 4m

Gauss’s Method1 0 0 −2 1

1 1 −3 0 1

1 3 0 −4 0

 −ρ1+ρ2−→
−ρ1+ρ3

1 0 0 −2 1

0 1 −3 2 0

0 3 0 −2 −1


−3ρ2+ρ3−→

1 0 0 −2 1

0 1 −3 2 0

0 0 9 −8 −1
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gives k = −(1/9)+(8/9)m, so s = −(1/3)+(2/3)m and t = 1+2m. The intersection
is this.

{

11
0

+

03
0

 (−1
9
+ 8
9
m) +

20
4

m | m ∈ R } = {

 1

2/3

0

+

 2

8/3

4

m | m ∈ R }

One.II.1.8 (a) The system
1= 1

1+ t= 3+ s

2+ t=−2+ 2s

gives s = 6 and t = 8, so this is the solution set.

{

 19
10

 }

(b) This system
2+ t= 0

t= s+ 4w

1− t= 2s+w

gives t = −2, w = −1, and s = 2 so their intersection is this point. 0

−2

3


One.II.1.9 (a) The vector shown

is not the result of doubling 20
0

+

−0.5

1

0

 · 1
instead it is 20

0

+

−0.5

1

0

 · 2 =
12
0


which has a parameter twice as large.
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(b) The vector

P = {

20
0

+ y ·

−1/2

1

0

+ z ·

−1/2

0

1

 | y, z ∈ R }

is not the result of adding

(

20
0

+

−0.5

1

0

 · 1) + (

20
0

+

−0.5

0

1

 · 1)
instead it is 20

0

+

−0.5

1

0

 · 1+
−0.5

0

1

 · 1 =
11
1


which adds the parameters.

One.II.1.10 The “if” half is straightforward. If b1−a1 = d1−c1 and b2−a2 = d2−c2
then √

(b1 − a1)2 + (b2 − a2)2 =
√
(d1 − c1)2 + (d2 − c2)2

so they have the same lengths, and the slopes are just as easy:
b2 − a2
b1 − a1

=
d2 − c2
d1 − a1

(if the denominators are 0 they both have undefined slopes).
For “only if”, assume that the two segments have the same length and slope (the

case of undefined slopes is easy; we will do the case where both segments have a slope
m). Also assume, without loss of generality, that a1 < b1 and that c1 < d1. The first
segment is (a1, a2)(b1, b2) = {(x, y) | y = mx+ n1, x ∈ [a1..b1] } (for some inter-
cept n1) and the second segment is (c1, c2)(d1, d2) = {(x, y) | y = mx+ n2, x ∈ [c1..d1] }

(for some n2). Then the lengths of those segments are√
(b1 − a1)2 + ((mb1 + n1) − (ma1 + n1))2 =

√
(1+m2)(b1 − a1)2

and, similarly,
√

(1+m2)(d1 − c1)2. Therefore, |b1 − a1| = |d1 − c1|. Thus, as we
assumed that a1 < b1 and c1 < d1, we have that b1 − a1 = d1 − c1.

The other equality is similar.

One.II.1.11 We shall later define it to be a set with one element—an “origin”.

One.II.1.12 This is how the answer was given in the cited source. The vector
triangle is as follows, so ~w = 3

√
2 from the north west.
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One.II.1.13 Euclid no doubt is picturing a plane inside of R3. Observe, however, that
both R1 and R2 also satisfy that definition.

One.II.2: Length and Angle Measures

One.II.2.11 (a)
√
32 + 12 =

√
10 (b)

√
5 (c)

√
18 (d) 0 (e)

√
3

One.II.2.12 (a) arccos(9/
√
85) ≈ 0.22 radians (b) arccos(8/

√
85) ≈

0.52 radians (c) Not defined.

One.II.2.13 We express each displacement as a vector, rounded to one decimal place
because that’s the accuracy of the problem’s statement, and add to find the total
displacement (ignoring the curvature of the earth).(

0.0

1.2

)
+

(
3.8

−4.8

)
+

(
4.0

0.1

)
+

(
3.3

5.6

)
=

(
11.1

2.1

)
The distance is

√
11.12 + 2.12 ≈ 11.3.

One.II.2.14 Solve (k)(4) + (1)(3) = 0 to get k = −3/4.

One.II.2.15 We could describe the set

{

xy
z

 | 1x+ 3y− 1z = 0 }

with parameters in this way.

{

−3

1

0

y+

10
1

 z | y, z ∈ R }

One.II.2.16 (a) We can use the x-axis.

arccos(
(1)(1) + (0)(1)√

1
√
2

) ≈ 0.79 radians

(b) Again, use the x-axis.

arccos(
(1)(1) + (0)(1) + (0)(1)√

1
√
3

) ≈ 0.96 radians
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(c) The x-axis worked before and it will work again.

arccos(
(1)(1) + · · ·+ (0)(1)√

1
√
n

) = arccos(
1√
n
)

(d) Using the formula from the prior item, limn→∞ arccos(1/
√
n) = π/2 radians.

One.II.2.17 Clearly u1u1 + · · ·+ unun is zero if and only if each ui is zero. So only
~0 ∈ Rn is perpendicular to itself.

One.II.2.18 In each item below, assume that the vectors ~u,~v, ~w ∈ Rn have components
u1, . . . , un, v1, . . . , wn.
(a) Dot product is right-distributive.

(~u+~v) • ~w = [

u1...
un

+

v1...
vn

] •

w1...
wn



=

u1 + v1...
un + vn

 •

w1...
wn


= (u1 + v1)w1 + · · ·+ (un + vn)wn

= (u1w1 + · · ·+ unwn) + (v1w1 + · · ·+ vnwn)
= ~u • ~w+~v • ~w

(b) Dot product is also left distributive: ~w • (~u+~v) = ~w • ~u+ ~w •~v. The proof is
just like the prior one.

(c) Dot product commutes.u1...
un

 •

v1...
vn

 = u1v1 + · · ·+ unvn = v1u1 + · · ·+ vnun =

v1...
vn

 •

u1...
un


(d) Because ~u •~v is a scalar, not a vector, the expression (~u •~v) • ~w makes no sense;
the dot product of a scalar and a vector is not defined.

(e) This is a vague question so it has many answers. Some are (1) k(~u •~v) = (k~u) •~v

and k(~u •~v) = ~u • (k~v), (2) k(~u •~v) 6= (k~u) • (k~v) (in general; an example is easy to
produce), and (3) |k~v | = |k||~v | (the connection between length and dot product
is that the square of the length is the dot product of a vector with itself).

One.II.2.19 (a) Verifying that (k~x) • ~y = k(~x • ~y) = ~x • (k~y) for k ∈ R and ~x,~y ∈ Rn

is easy. Now, for k ∈ R and ~v, ~w ∈ Rn, if ~u = k~v then ~u •~v = (k~v) •~v = k(~v •~v),
which is k times a nonnegative real.

The ~v = k~u half is similar (actually, taking the k in this paragraph to be the
reciprocal of the k above gives that we need only worry about the k = 0 case).
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(b) We first consider the ~u • ~v > 0 case. From the Triangle Inequality we know
that ~u •~v = |~u | |~v | if and only if one vector is a nonnegative scalar multiple of the
other. But that’s all we need because the first part of this exercise shows that, in
a context where the dot product of the two vectors is positive, the two statements
‘one vector is a scalar multiple of the other’ and ‘one vector is a nonnegative
scalar multiple of the other’, are equivalent.

We finish by considering the ~u •~v < 0 case. Because 0 < |~u •~v| = −(~u •~v) =

(−~u) • ~v and |~u | |~v | = |−~u | |~v |, we have that 0 < (−~u) • ~v = |−~u | |~v |. Now the
prior paragraph applies to give that one of the two vectors −~u and ~v is a scalar
multiple of the other. But that’s equivalent to the assertion that one of the two
vectors ~u and ~v is a scalar multiple of the other, as desired.

One.II.2.20 No. These give an example.

~u =

(
1

0

)
~v =

(
1

0

)
~w =

(
1

1

)
One.II.2.21 We prove that a vector has length zero if and only if all its components
are zero.

Let ~u ∈ Rn have components u1, . . . , un. Recall that the square of any real
number is greater than or equal to zero, with equality only when that real is zero.
Thus |~u |2 = u12+ · · ·+un2 is a sum of numbers greater than or equal to zero, and
so is itself greater than or equal to zero, with equality if and only if each ui is zero.
Hence |~u | = 0 if and only if all the components of ~u are zero.

One.II.2.22 We can easily check that(x1 + x2
2

,
y1 + y2
2

)
is on the line connecting the two, and is equidistant from both. The generalization
is obvious.

One.II.2.23 Assume that ~v ∈ Rn has components v1, . . . , vn. If ~v 6= ~0 then we have
this.√√√√( v1√

v12 + · · ·+ vn2

)2
+ · · ·+

(
vn√

v12 + · · ·+ vn2

)2

=

√(
v12

v12 + · · ·+ vn2

)
+ · · ·+

(
vn2

v12 + · · ·+ vn2

)
= 1

If ~v = ~0 then ~v/|~v | is not defined.
One.II.2.24 For the first question, assume that ~v ∈ Rn and r > 0, take the root, and
factor.

|r~v | =
√

(rv1)2 + · · ·+ (rvn)2 =
√
r2(v12 + · · ·+ vn2 = r|~v |
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For the second question, the result is r times as long, but it points in the opposite
direction in that r~v+ (−r)~v = ~0.

One.II.2.25 Assume that ~u,~v ∈ Rn both have length 1. Apply Cauchy-Schwarz:
|~u •~v| 6 |~u | |~v | = 1.

To see that ‘less than’ can happen, in R2 take

~u =

(
1

0

)
~v =

(
0

1

)
and note that ~u •~v = 0. For ‘equal to’, note that ~u • ~u = 1.

One.II.2.26 Write

~u =

u1...
un

 ~v =

v1...
vn


and then this computation works.

|~u+~v |2 + |~u−~v |2 = (u1 + v1)
2 + · · ·+ (un + vn)

2

+ (u1 − v1)
2 + · · ·+ (un − vn)

2

= u1
2 + 2u1v1 + v1

2 + · · ·+ un2 + 2unvn + vn
2

+ u1
2 − 2u1v1 + v1

2 + · · ·+ un2 − 2unvn + vn
2

= 2(u1
2 + · · ·+ un2) + 2(v12 + · · ·+ vn2)

= 2|~u |2 + 2|~v |2

One.II.2.27 We will prove this demonstrating that the contrapositive statement
holds: if ~x 6= ~0 then there is a ~y with ~x • ~y 6= 0.

Assume that ~x ∈ Rn. If ~x 6= ~0 then it has a nonzero component, say the i-th
one xi. But the vector ~y ∈ Rn that is all zeroes except for a one in component i
gives ~x • ~y = xi. (A slicker proof just considers ~x • ~x.)

One.II.2.28 Yes; we can prove this by induction.
Assume that the vectors are in some Rk. Clearly the statement applies to one

vector. The Triangle Inequality is this statement applied to two vectors. For an
inductive step assume the statement is true for n or fewer vectors. Then this

|~u1 + · · ·+ ~un + ~un+1| 6 |~u1 + · · ·+ ~un|+ |~un+1|

follows by the Triangle Inequality for two vectors. Now the inductive hypothesis,
applied to the first summand on the right, gives that as less than or equal to
|~u1|+ · · ·+ |~un|+ |~un+1|.

One.II.2.29 By definition
~u •~v

|~u | |~v |
= cos θ

where θ is the angle between the vectors. Thus the ratio is |cos θ|.
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One.II.2.30 So that the statement ‘vectors are orthogonal iff their dot product is zero’
has no exceptions.

One.II.2.31 We can find the angle between (a) and (b) (for a, b 6= 0) with

arccos(
ab√
a2
√
b2

).

If a or b is zero then the angle is π/2 radians. Otherwise, if a and b are of opposite
signs then the angle is π radians, else the angle is zero radians.

One.II.2.32 The angle between ~u and ~v is acute if ~u •~v > 0, is right if ~u •~v = 0, and
is obtuse if ~u •~v < 0. That’s because, in the formula for the angle, the denominator
is never negative.

One.II.2.33 Suppose that ~u,~v ∈ Rn. If ~u and ~v are perpendicular then

|~u+~v |2 = (~u+~v) • (~u+~v) = ~u • ~u+ 2 ~u •~v+~v •~v = ~u • ~u+~v •~v = |~u |2 + |~v |2

(the third equality holds because ~u •~v = 0).

One.II.2.34 Where ~u,~v ∈ Rn, the vectors ~u+~v and ~u−~v are perpendicular if and only
if 0 = (~u+~v) • (~u−~v) = ~u • ~u−~v •~v, which shows that those two are perpendicular
if and only if ~u • ~u = ~v •~v. That holds if and only if |~u | = |~v |.

One.II.2.35 Suppose ~u ∈ Rn is perpendicular to both ~v ∈ Rn and ~w ∈ Rn. Then, for
any k,m ∈ R we have this.

~u • (k~v+m~w) = k(~u •~v) +m(~u • ~w) = k(0) +m(0) = 0

One.II.2.36 We will show something more general: if |~z1| = |~z2| for ~z1,~z2 ∈ Rn, then
~z1 + ~z2 bisects the angle between ~z1 and ~z2

��
��*
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���

�
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�
�
��

�
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����
��

gives

��
��
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���
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(we ignore the case where ~z1 and ~z2 are the zero vector).
The ~z1 + ~z2 = ~0 case is easy. For the rest, by the definition of angle, we will be

finished if we show this.
~z1 • (~z1 + ~z2)

|~z1| |~z1 + ~z2|
=

~z2 • (~z1 + ~z2)

|~z2| |~z1 + ~z2|

But distributing inside each expression gives
~z1 • ~z1 + ~z1 • ~z2
|~z1| |~z1 + ~z2|

~z2 • ~z1 + ~z2 • ~z2
|~z2| |~z1 + ~z2|

and ~z1 • ~z1 = |~z1|
2 = |~z2|

2 = ~z2 • ~z2, so the two are equal.
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One.II.2.37 We can show the two statements together. Let ~u,~v ∈ Rn, write

~u =

u1...
un

 ~v =

v1...
vn


and calculate.

cos θ =
ku1v1 + · · ·+ kunvn√

(ku1)
2 + · · ·+ (kun)

2
√
b1
2 + · · ·+ bn2

=
k

|k|

~u ·~v
|~u | |~v |

= ± ~u •~v

|~u | |~v |

One.II.2.38 Let

~u =

u1...
un

 , ~v =

v1...
vn

 ~w =

w1...
wn


and then

~u •
(
k~v+m~w

)
=

u1...
un

 •
(kv1...
kvn

+

mw1...
mwn

)

=

u1...
un

 •

kv1 +mw1...
kvn +mwn


= u1(kv1 +mw1) + · · ·+ un(kvn +mwn)

= ku1v1 +mu1w1 + · · ·+ kunvn +munwn

= (ku1v1 + · · ·+ kunvn) + (mu1w1 + · · ·+munwn)
= k(~u •~v) +m(~u • ~w)

as required.

One.II.2.39 For x, y ∈ R+, set

~u =

(√
x
√
y

)
~v =

(√
y√
x

)
so that the Cauchy-Schwarz inequality asserts that (after squaring)

(
√
x
√
y+
√
y
√
x)2 6 (

√
x
√
x+
√
y
√
y)(
√
y
√
y+
√
x
√
x)

(2
√
x
√
y)2 6 (x+ y)2

√
xy 6

x+ y

2

as desired.
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One.II.2.40 (a) For instance, a birthday of October 12 gives this.

θ = arccos(

(
7

12

)
•

(
10

12

)

|

(
7

12

)
| · |

(
10

12

)
|

) = arccos(
214√
244
√
193

) ≈ 0.17 rad

(b) Applying the same equation to (9 19) gives about 0.09 radians.
(c) The angle will measure 0 radians if the other person is born on the same
day. It will also measure 0 if one birthday is a scalar multiple of the other. For
instance, a person born on Mar 6 would be harmonious with a person born on
Feb 4.

Given a birthday, we can get Sage to plot the angle for other dates. This
example shows the relationship of all dates with July 12.

sage: plot3d(lambda x, y: math.acos((x*7+y*12)/(math.sqrt(7**2+12**2)*math.sqrt(x**2+y**2))),
(1,12),(1,31))

(d) We want to maximize this.

θ = arccos(

(
7

12

)
•

(
m

d

)

|

(
7

12

)
| · |

(
m

d

)
|

)

Of course, we cannot take m or d negative and so we cannot get a vector
orthogonal to the given one. This Python script finds the largest angle by brute
force.

import math
days={1:31, # Jan

2:29, 3:31, 4:30, 5:31, 6:30, 7:31, 8:31, 9:30, 10:31, 11:30, 12:31}
BDAY=(7,12)
max_res=0
max_res_date=(-1,-1)
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for month in range(1,13):
for day in range(1,days[month]+1):

num=BDAY[0]*month+BDAY[1]*day
denom=math.sqrt(BDAY[0]**2+BDAY[1]**2)*math.sqrt(month**2+day**2)
if denom>0:

res=math.acos(min(num*1.0/denom,1))
print "day:",str(month),str(day)," angle:",str(res)
if res>max_res:

max_res=res
max_res_date=(month,day)

print "For ",str(BDAY),"worst case",str(max_res),"rads, date",str(max_res_date)
print " That is ",180*max_res/math.pi,"degrees"

The result is

For (7, 12) worst case 0.95958064648 rads, date (12, 1)
That is 54.9799211457 degrees

Amore conceptual approach is to consider the relation of all points (month,day)
to the point (7, 12). The picture below makes clear that the answer is either
Dec 1 or Jan 31, depending on which is further from the birthdate. The dashed
line bisects the angle between the line from the origin to Dec 1, and the line
from the origin to Jan 31. Birthdays above the line are furthest from Dec 1 and
birthdays below the line are furthest from Jan 31.



Answers to Exercises 37

10

20

30

J F M A M J J A S O N D

One.II.2.41 This is how the answer was given in the cited source. The actual
velocity ~v of the wind is the sum of the ship’s velocity and the apparent velocity of
the wind. Without loss of generality we may assume ~a and ~b to be unit vectors,
and may write

~v = ~v1 + s~a = ~v2 + t~b

where s and t are undetermined scalars. Take the dot product first by ~a and then
by ~b to obtain

s− t~a • ~b = ~a • (~v2 −~v1)

s~a • ~b− t = ~b • (~v2 −~v1)

Multiply the second by ~a • ~b, subtract the result from the first, and find

s =
[~a− (~a • ~b)~b] • (~v2 −~v1)

1− (~a • ~b)2
.
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Substituting in the original displayed equation, we get

~v = ~v1 +
[~a− (~a • ~b)~b] • (~v2 −~v1)~a

1− (~a • ~b)2
.

One.II.2.42 We use induction on n.
In the n = 1 base case the identity reduces to

(a1b1)
2 = (a1

2)(b1
2) − 0

and clearly holds.
For the inductive step assume that the formula holds for the 0, . . . , n cases. We

will show that it then holds in the n+ 1 case. Start with the right-hand side( ∑
16j6n+1

aj
2
)( ∑
16j6n+1

bj
2
)
−

∑
16k<j6n+1

(
akbj − ajbk

)2
=
[
(
∑
16j6n

aj
2) + an+1

2
][
(
∑
16j6n

bj
2) + bn+1

2
]

−
[ ∑
16k<j6n

(
akbj − ajbk

)2
+
∑

16k6n

(
akbn+1 − an+1bk

)2]
=
( ∑
16j6n

aj
2
)( ∑
16j6n

bj
2
)
+
∑
16j6n

bj
2an+1

2 +
∑
16j6n

aj
2bn+1

2 + an+1
2bn+1

2

−
[ ∑
16k<j6n

(
akbj − ajbk

)2
+
∑

16k6n

(
akbn+1 − an+1bk

)2]
=
( ∑
16j6n

aj
2
)( ∑
16j6n

bj
2
)
−

∑
16k<j6n

(
akbj − ajbk

)2
+
∑
16j6n

bj
2an+1

2 +
∑
16j6n

aj
2bn+1

2 + an+1
2bn+1

2

−
∑

16k6n

(
akbn+1 − an+1bk

)2
and apply the inductive hypothesis.

=
( ∑
16j6n

ajbj
)2

+
∑
16j6n

bj
2an+1

2 +
∑
16j6n

aj
2bn+1

2 + an+1
2bn+1

2

−
[ ∑
16k6n

ak
2bn+1

2 − 2
∑

16k6n

akbn+1an+1bk +
∑

16k6n

an+1
2bk

2
]

=
( ∑
16j6n

ajbj
)2

+ 2
( ∑
16k6n

akbn+1an+1bk
)
+ an+1

2bn+1
2

=
[( ∑
16j6n

ajbj
)
+ an+1bn+1

]2
to derive the left-hand side.
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Reduced Echelon Form

One.III.1: Gauss-Jordan Reduction

One.III.1.8 These answers show only the Gauss-Jordan reduction. With it, describing
the solution set is easy.
(a) The solution set contains only a single element.(

1 1 2

1 −1 0

)
−ρ1+ρ2−→

(
1 1 2

0 −2 −2

)
−(1/2)ρ2−→

(
1 1 2

0 1 1

)
−ρ2+ρ1−→

(
1 0 1

0 1 1

)
(b) The solution set has one parameter.(
1 0 −1 4

2 2 0 1

)
−2ρ1+ρ2−→

(
1 0 −1 4

0 2 2 −7

)
(1/2)ρ2−→

(
1 0 −1 4

0 1 1 −7/2

)
(c) There is a unique solution.(

3 −2 1

6 1 1/2

)
−2ρ1+ρ2−→

(
3 −2 1

0 5 −3/2

)
(1/3)ρ1−→
(1/5)ρ2

(
1 −2/3 1/3

0 1 −3/10

)
(2/3)ρ2+ρ1−→

(
1 0 2/15

0 1 −3/10

)
(d) A row swap in the second step makes the arithmetic easier.2 −1 0 −1

1 3 −1 5

0 1 2 5

 −(1/2)ρ1+ρ2−→

2 −1 0 −1

0 7/2 −1 11/2

0 1 2 5


ρ2↔ρ3−→

2 −1 0 −1

0 1 2 5

0 7/2 −1 11/2

 −(7/2)ρ2+ρ3−→

2 −1 0 −1

0 1 2 5

0 0 −8 −12


(1/2)ρ1−→
−(1/8)ρ2

1 −1/2 0 −1/2

0 1 2 5

0 0 1 3/2

 −2ρ3+ρ2−→

1 −1/2 0 −1/2

0 1 0 2

0 0 1 3/2


(1/2)ρ2+ρ1−→

1 0 0 1/2

0 1 0 2

0 0 1 3/2
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One.III.1.9 (a)1 1 −1 3

2 −1 −1 1

3 1 2 0

 −2ρ1+ρ2−→
−3ρ1+ρ3

1 1 −1 3

0 −3 1 −5

0 −2 5 −9


−(2/3)ρ2+ρ3−→

1 1 −1 3

0 −3 1 −5

0 0 13/3 −17/3

 −(1/3)ρ2−→
(3/13)ρ3

1 1 −1 3

0 1 −1/3 5/3

0 0 1 −17/13


ρ3+ρ1−→

(1/3)ρ3+ρ2

1 1 0 22/13

0 1 0 16/13

0 0 1 −17/13

 −ρ2+ρ1−→

1 0 0 6/13

0 1 0 16/13

0 0 1 −17/13


(b) 1 1 2 0

2 −1 1 1

4 1 5 1

 −2ρ1+ρ2−→
−4ρ1+ρ3

1 1 2 0

0 −3 −3 1

0 −3 −3 1

 −ρ2+ρ3−→

1 1 2 0

0 −3 −3 1

0 0 0 0


−(1/3)ρ2−→

1 1 2 0

0 1 1 −1/3

0 0 0 0

 −ρ2+ρ1−→

1 0 1 1/3

0 1 1 −1/3

0 0 0 0


One.III.1.10 Use Gauss-Jordan reduction.

(a) The reduced echelon form is all zeroes except for a diagonal of ones.

−(1/2)ρ1+ρ2−→

(
2 1

0 5/2

)
(1/2)ρ1−→
(2/5)ρ2

(
1 1/2

0 1

)
−(1/2)ρ2+ρ1−→

(
1 0

0 1

)

(b) As in the prior problem, the reduced echelon form is all zeroes but for a
diagonal of ones.

−2ρ1+ρ2−→
ρ1+ρ3

1 3 1

0 −6 2

0 0 −2

 −(1/6)ρ2−→
−(1/2)ρ3

1 3 1

0 1 −1/3

0 0 1


(1/3)ρ3+ρ2−→
−ρ3+ρ1

1 3 0

0 1 0

0 0 1

 −3ρ2+ρ1−→

1 0 0

0 1 0

0 0 1


(c) There are more columns than rows so we must get more than just a diagonal



Answers to Exercises 41

of ones.

−ρ1+ρ2−→
−3ρ1+ρ3

1 0 3 1 2

0 4 −1 0 3

0 4 −1 −2 −4

 −ρ2+ρ3−→

1 0 3 1 2

0 4 −1 0 3

0 0 0 −2 −7


(1/4)ρ2−→
−(1/2)ρ3

1 0 3 1 2

0 1 −1/4 0 3/4

0 0 0 1 7/2

 −ρ3+ρ1−→

1 0 3 0 −3/2

0 1 −1/4 0 3/4

0 0 0 1 7/2


(d) As in the prior item, this is not a square matrix.

ρ1↔ρ3−→

1 5 1 5

0 0 5 6

0 1 3 2

 ρ2↔ρ3−→

1 5 1 5

0 1 3 2

0 0 5 6


(1/5)ρ3−→

1 5 1 5

0 1 3 2

0 0 1 6/5

 −3ρ3+ρ2−→
−ρ3+ρ1

1 5 0 19/5

0 1 0 −8/5

0 0 1 6/5


−5ρ2+ρ1−→

1 0 0 59/5

0 1 0 −8/5

0 0 1 6/5


One.III.1.11 (a) Swap first.

ρ1↔ρ2−→ ρ1+ρ3−→ ρ2+ρ3−→ (1/2)ρ1−→
(1/2)ρ2
(1/2)ρ3

(−1/2)ρ3+ρ1−→
(−1/2)ρ3+ρ2

(1/2)ρ2+ρ1−→

1 0 0

0 1 0

0 0 1


(b) Here the swap is in the middle.

−2ρ1+ρ2−→
ρ1+ρ3

ρ2↔ρ3−→ (1/3)ρ2−→ −3ρ2+ρ1−→

1 0 0

0 1 1/3

0 0 0


One.III.1.12 For the Gauss’s halves, see the answers to Chapter One’s section I.2
question Exercise 19.
(a) The “Jordan” half goes this way.

(1/2)ρ1−→
−(1/3)ρ2

(
1 1/2 −1/2 1/2

0 1 −2/3 −1/3

)
−(1/2)ρ2+ρ1−→

(
1 0 −1/6 2/3

0 1 −2/3 −1/3

)
The solution set is this

{

 2/3

−1/3

0

+

1/62/3
1

 z | z ∈ R }



42 Linear Algebra, by Hefferon

(b) The second half is

ρ3+ρ2−→

1 0 −1 0 1

0 1 2 0 3

0 0 0 1 0


so the solution is this.

{


1

3

0

0

+


1

−2

1

0

 z | z ∈ R }

(c) This Jordan half

ρ2+ρ1−→


1 0 1 1 0

0 1 0 1 0

0 0 0 0 0

0 0 0 0 0


gives

{


0

0

0

0

+


−1

0

1

0

 z+

−1

−1

0

1

w | z,w ∈ R }

(of course, we could omit the zero vector from the description).
(d) The “Jordan” half

−(1/7)ρ2−→

(
1 2 3 1 −1 1

0 1 8/7 2/7 −4/7 0

)
−2ρ2+ρ1−→

(
1 0 5/7 3/7 1/7 1

0 1 8/7 2/7 −4/7 0

)
ends with this solution set.

{


1

0

0

0

0

+


−5/7

−8/7

1

0

0

 c+

−3/7

−2/7

0

1

0

d+


−1/7

4/7

0

0

1

 e | c, d, e ∈ R }

One.III.1.13 Routine Gauss’s Method gives one:

−3ρ1+ρ2−→
−(1/2)ρ1+ρ3

2 1 1 3

0 1 −2 −7

0 9/2 1/2 7/2

 −(9/2)ρ2+ρ3−→

2 1 1 3

0 1 −2 −7

0 0 19/2 35


and any cosmetic change, such as multiplying the bottom row by 2,2 1 1 3

0 1 −2 −7

0 0 19 70
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gives another.

One.III.1.14 In the cases listed below, we take a, b ∈ R. Thus, some canonical forms
listed below actually include infinitely many cases. In particular, they includes the
cases a = 0 and b = 0.

(a)

(
0 0

0 0

)
,

(
1 a

0 0

)
,

(
0 1

0 0

)
,

(
1 0

0 1

)

(b)

(
0 0 0

0 0 0

)
,

(
1 a b

0 0 0

)
,

(
0 1 a

0 0 0

)
,

(
0 0 1

0 0 0

)
,

(
1 0 a

0 1 b

)
,

(
1 a 0

0 0 1

)
,(

0 1 0

0 0 1

)

(c)

0 0

0 0

0 0

,

1 a

0 0

0 0

,

0 1

0 0

0 0

,

1 0

0 1

0 0


(d)

0 0 0

0 0 0

0 0 0

,

1 a b

0 0 0

0 0 0

,

0 1 a

0 0 0

0 0 0

,

0 1 0

0 0 1

0 0 0

,

0 0 1

0 0 0

0 0 0

,

1 0 a

0 1 b

0 0 0

,

1 a 0

0 0 1

0 0 0

,

1 0 0

0 1 0

0 0 1


One.III.1.15 A nonsingular homogeneous linear system has a unique solution. So a
nonsingular matrix must reduce to a (square) matrix that is all 0’s except for 1’s
down the upper-left to lower-right diagonal, such as these.(

1 0

0 1

) 1 0 0

0 1 0

0 0 1


One.III.1.16 (a) This is an equivalence.

We can write M1 ∼M2 if they are related. The ∼ relation is reflexive because
any matrix has the same 1, 1 entry as itself. The relation is symmetric because if
M1 has the same 1, 1 entry as M2 then clearly also M2 has the same 1, 1 entry
as M1. Finally, the relation is transitive because if M1 ∼M2 so they have the
same 1, 1 entry as each other, and M2 ∼M3 so they have the same as each other,
then all three have the same 1, 1 entry, and M1 ∼M3.

(b) This is an equivalence. Write M1 ∼M2 if they are related.
This relation is reflexive because any matrix has the same sum of entries as

itself. The ∼ relation is symmetric because if M1 has the same sum of entries
as M2, then also M2 has the same sum of entries as M1. Finally, the relation is
transitive because if M1 ∼M2 so their entry sum is the same, and M2 ∼M3 so
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they have the same entry sum as each other, then all three have the same entry
sum, and M1 ∼M3.

(c) This is not an equivalence because it is not transitive. The first and second
matrix below are related by their 1, 1 entries, and the second and third are related
by their 2, 2 entries. But the first and third are not related.(

1 0

0 0

) (
1 0

0 −1

) (
0 0

0 −1

)
One.III.1.17 It is an equivalence relation. To prove that we must check that the
relation is reflexive, symmetric, and transitive.

Assume that all matrices are 2×2. For reflexive, we note that a matrix has the
same sum of entries as itself. For symmetric, we assume A has the same sum of
entries as B and obviously then B has the same sum of entries as A. Transitivity
is no harder— if A has the same sum of entries as B and B has the same sum of
entries as C then A has the same as C.

One.III.1.18 (a) For instance,(
1 2

3 4

)
−ρ1+ρ1−→

(
0 0

3 4

)
ρ1+ρ1−→

(
0 0

3 4

)
leaves the matrix changed.

(b) This operation

...
ai,1 · · · ai,n
...
aj,1 · · · aj,n
...


kρi+ρj−→



...
ai,1 · · · ai,n
...

kai,1 + aj,1 · · · kai,n + aj,n
...


leaves the i-th row unchanged because of the i 6= j restriction. Because the i-th
row is unchanged, this operation

−kρi+ρj−→



...
ai,1 · · · ai,n
...

−kai,1 + kai,1 + aj,1 · · · −kai,n + kai,n + aj,n
...


returns the j-th row to its original state.

One.III.1.19 To be an equivalence, each relation must be reflexive, symmetric, and
transitive.
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(a) This relation is not symmetric because if x has taken 4 classes and y has taken
3 then x is related to y but y is not related to x.

(b) This is reflexive because x’s name starts with the same letter as does x’s. It is
symmetric because if x’s name starts with the same letter as y’s then y’s starts
with the same letter as does x’s. And it is transitive because if x’s name starts
with the same letter as does y’s and y’s name starts with the same letter as does
z’s then x’s starts with the same letter as does z’s. So it is an equivalence.

One.III.1.20 For each we must check the three conditions of reflexivity, symmetry,
and transitivity.
(a) Any matrix clearly has the same product down the diagonal as itself, so the
relation is reflexive. The relation is symmetric because if A has the same product
down its diagonal as does B, if a1,1 · a2,2 = b1,1 · b2,2, then B has the same
product as does A.

Transitivity is similar: suppose that A’s product is r and that it equals B’s
product. Suppose also that B’s product equals C’s. Then all three have a product
of r, and A’s equals C’s.

There is an equivalence class for each real number, namely the class contains
all 2×2 matrices whose product down the diagonal is that real.

(b) For reflexivity, if the matrix A has a 1 entry then it is related to itself while if
it does not then it is also related to itself. Symmetry also has two cases: suppose
that A and B are related. If A has a 1 entry then so does B, and thus B is related
to A. If A has no 1 then neither does B, and again B is related to A.

For transitivity, suppose that A is related to B and B to C. If A has a 1 entry
then so does B, and because B is related to C, therefore so does C, and hence A
is related to C. Likewise, if A has no 1 then neither does B, and consequently
neither does C, giving the conclusion that A is related to C.

There are exactly two equivalence classes, one containing any 2×2 matrix
that has at least one entry that is a 1, and the other containing all the matrices
that have no 1’s.

One.III.1.21 (a) This relation is not reflexive. For instance, any matrix with an
upper-left entry of 1 is not related to itself.

(b) This relation is not transitive. For these three, A is related to B, and B is
related to C, but A is not related to C.

A =

(
0 0

0 0

)
, B =

(
4 0

0 0

)
, C =

(
8 0

0 0

)
,
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One.III.2: The Linear Combination Lemma

One.III.2.11 Bring each to reduced echelon form and compare.
(a) The first gives

−4ρ1+ρ2−→

(
1 2

0 0

)
while the second gives

ρ1↔ρ2−→

(
1 2

0 1

)
−2ρ2+ρ1−→

(
1 0

0 1

)
The two reduced echelon form matrices are not identical, and so the original
matrices are not row equivalent.

(b) The first is this.

−3ρ1+ρ2−→
−5ρ1+ρ3

1 0 2

0 −1 −5

0 −1 −5

 −ρ2+ρ3−→

1 0 2

0 −1 −5

0 0 0

 −ρ2−→

1 0 2

0 1 5

0 0 0


The second is this.

−2ρ1+ρ3−→

1 0 2

0 2 10

0 0 0

 (1/2)ρ2−→

1 0 2

0 1 5

0 0 0


These two are row equivalent.

(c) These two are not row equivalent because they have different sizes.
(d) The first,

ρ1+ρ2−→

(
1 1 1

0 3 3

)
(1/3)ρ2−→

(
1 1 1

0 1 1

)
−ρ2+ρ1−→

(
1 0 0

0 1 1

)
and the second.

ρ1↔ρ2−→

(
2 2 5

0 3 −1

)
(1/2)ρ1−→
(1/3)ρ2

(
1 1 5/2

0 1 −1/3

)
−ρ2+ρ1−→

(
1 0 17/6

0 1 −1/3

)
These are not row equivalent.

(e) Here the first is

(1/3)ρ2−→

(
1 1 1

0 0 1

)
−ρ2+ρ1−→

(
1 1 0

0 0 1

)
while this is the second.

ρ1↔ρ2−→

(
1 −1 1

0 1 2

)
ρ2+ρ1−→

(
1 0 3

0 1 2

)
These are not row equivalent.

One.III.2.12 Perform Gauss-Jordan reduction on each. Two matrices are row-equivalent
if and only if they have the same reduced echelon form. Here is the reduced form
for each.
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(a)

(
1 0

0 1

)
(b)

(
1 5

0 0

)
(c)

(
1 0

0 1

)
(d)

(
1 0

0 1

)
(e)

(
1 0

0 1

)

(f)

(
1 1

0 0

)
One.III.2.13 For each you can just perform some row operations on the starting
matrix.
(a) Multiplying the first row by 3 gives this.(

3 9

4 −1

)
(There is no sense to this particular choice of row operation; it is just the first
thing that came to mind.) Two other row operations are a row swap ρ1 ↔ ρ2
and adding ρ1 + ρ2. (

4 −1

1 3

) (
1 3

5 2

)
(b) Doing the same three arbitrary row operations gives these three.0 3 6

1 1 1

2 3 4


1 1 1

0 1 2

2 3 4


0 1 2

1 2 3

2 3 4


One.III.2.14 The Gaussian reduction is routine.1 2 1

3 −1 0

0 4 0

 −3ρ1+ρ2−→

1 2 1

0 −7 −3

0 4 0

 (4/7)ρ2+ρ3−→

1 2 1

0 −7 −3

0 0 −12/7


Denoting those matrices A, D, and B respectively, we have this.α1α2

α3

 −3ρ1+ρ2−→

 δ1 = α1
δ2 = −3α1 + α2

δ3 = α3


(4/7)ρ2+ρ3−→

 β1 = α1
β2 = −3α1 + α2

β3 = −(12/7)α1 + (4/7)α2 + α3


One.III.2.15 First, the only matrix row equivalent to the matrix of all 0’s is itself
(since row operations have no effect).

Second, the matrices that reduce to(
1 a

0 0

)
have the form (

b ba

c ca

)
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(where a, b, c ∈ R, and b and c are not both zero).
Next, the matrices that reduce to(

0 1

0 0

)
have the form (

0 a

0 b

)
(where a, b ∈ R, and not both are zero).

Finally, the matrices that reduce to(
1 0

0 1

)
are the nonsingular matrices. That’s because a linear system for which this is
the matrix of coefficients will have a unique solution, and that is the definition of
nonsingular. (Another way to say the same thing is to say that they fall into none
of the above classes.)

One.III.2.16 (a) They have the form (
a 0

b 0

)
where a, b ∈ R.

(b) They have this form (for a, b ∈ R).(
1a 2a

1b 2b

)
(c) They have the form (

a b

c d

)
(for a, b, c, d ∈ R) where ad−bc 6= 0. (This is the formula that determines when
a 2×2 matrix is nonsingular.)

One.III.2.17 Infinitely many. For instance, in(
1 k

0 0

)
each k ∈ R gives a different class.

One.III.2.18 No. Row operations do not change the size of a matrix.

One.III.2.19 (a) A row operation on a matrix of zeros has no effect. Thus each such
matrix is alone in its row equivalence class.

(b) No. Any nonzero entry can be rescaled.
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One.III.2.20 Here are two. (
1 1 0

0 0 1

)
and

(
1 0 0

0 0 1

)
One.III.2.21 Any two n×n nonsingular matrices have the same reduced echelon form,
namely the matrix with all 0’s except for 1’s down the diagonal.

1 0 0

0 1 0

. . .
0 0 1


Two same-sized singular matrices need not be row equivalent. For example,

these two 2×2 singular matrices are not row equivalent.(
1 1

0 0

)
and

(
1 0

0 0

)
One.III.2.22 Since there is one and only one reduced echelon form matrix in each
class, we can just list the possible reduced echelon form matrices.

For that list, see the answer for Exercise 14.

One.III.2.23 (a) If there is a linear relationship where c0 is not zero then we can
subtract c0~β0 from both sides and divide by −c0 to get ~β0 as a linear combination
of the others. (Remark: if there are no other vectors in the set— if the relationship
is, say, ~0 = 3 ·~0—then the statement is still true because the zero vector is by
definition the sum of the empty set of vectors.)

Conversely, if ~β0 is a combination of the others ~β0 = c1~β1 + · · ·+ cn~βn then
subtracting ~β0 from both sides gives a relationship where at least one of the
coefficients is nonzero; namely, the −1 in front of ~β0.

(b) The first row is not a linear combination of the others for the reason given in
the proof: in the equation of components from the column containing the leading
entry of the first row, the only nonzero entry is the leading entry from the first
row, so its coefficient must be zero. Thus, from the prior part of this exercise,
the first row is in no linear relationship with the other rows.

Thus, when considering whether the second row can be in a linear relationship
with the other rows, we can leave the first row out. But now the argument just
applied to the first row will apply to the second row. (That is, we are arguing
here by induction.)

One.III.2.24 We know that 4s+ c+ 10d = 8.45 and that 3s+ c+ 7d = 6.30, and we’d
like to know what s + c + d is. Fortunately, s + c + d is a linear combination of



4s+ c+ 10d and 3s+ c+ 7d. Calling the unknown price p, we have this reduction.4 1 10 8.45

3 1 7 6.30

1 1 1 p

 −(3/4)ρ1+ρ2−→
−(1/4)ρ1+ρ3

4 1 10 8.45

0 1/4 −1/2 −0.037 5

0 3/4 −3/2 p− 2.112 5


−3ρ2+ρ3−→

4 1 10 8.45

0 1/4 −1/2 −0.037 5

0 0 0 p− 2.00


The price paid is $2.00.

One.III.2.25 (1) An easy answer is this.

0 = 3

For a less wise-guy-ish answer, solve the system:(
3 −1 8

2 1 3

)
−(2/3)ρ1+ρ2−→

(
3 −1 8

0 5/3 −7/3

)
gives y = −7/5 and x = 11/5. Now any equation not satisfied by (−7/5, 11/5)

will do, e.g., 5x+ 5y = 3.

(2) Every equation can be derived from an inconsistent system. For instance, here
is how to derive 3x+ 2y = 4 from 0 = 5. First,

0 = 5
(3/5)ρ1−→ 0 = 3

xρ1−→ 0 = 3x

(validity of the x = 0 case is separate but clear). Similarly, 0 = 2y. Ditto for
0 = 4. But now, 0+ 0 = 0 gives 3x+ 2y = 4.

One.III.2.26 Define linear systems to be equivalent if their augmented matrices are
row equivalent. The proof that equivalent systems have the same solution set is
easy.

One.III.2.27 (a) The three possible row swaps are easy, as are the three possible
rescalings. One of the six possible row combinations is kρ1 + ρ2: 1 2 3

k · 1+ 3 k · 2+ 0 k · 3+ 3
1 4 5


and again the first and second columns add to the third. The other five combina-
tions are similar.

(b) The obvious conjecture is that row operations do not change linear relationships
among columns.

(c) A case-by-case proof follows the sketch given in the first item.
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Topic: Computer Algebra Systems

1 (a) Sage does this.
sage: var('h,c')
(h, c)
sage: statics = [40*h + 15*c == 100,
....: 25*c == 50 + 50*h]
sage: solve(statics, h,c)
[[h == 1, c == 4]]

Other Computer Algebra Systems have similar commands. These Maple com-
mands
> A:=array( [[40,15],

[-50,25]] );
> u:=array([100,50]);
> linsolve(A,u);

get the answer [1,4].
(b) Here there is a free variable. Sage gives this.

sage: var('h,i,j,k')
(h, i, j, k)
sage: chemistry = [7*h == 7*j,
....: 8*h + 1*i == 5*j + 2*k,
....: 1*i == 3*j,
....: 3*i == 6*j + 1*k]
sage: solve(chemistry, h,i,j,k)
[[h == 1/3*r1, i == r1, j == 1/3*r1, k == r1]]

Similarly, this Maple session
> A:=array( [[7,0,-7,0],

[8,1,-5,2],
[0,1,-3,0],
[0,3,-6,-1]] );

> u:=array([0,0,0,0]);
> linsolve(A,u);

prompts the same reply (but with parameter t1).

2 (a) The answer is x = 2 and y = 1/2. A Sage session does this.
sage: var('x,y')
(x, y)
sage: system = [2*x + 2*y == 5,
....: x - 4*y == 0]
sage: solve(system, x,y)
[[x == 2, y == (1/2)]]

A Maple session
> A:=array( [[2,2],

[1,-4]] );
> u:=array([5,0]);
> linsolve(A,u);

gets the same answer, of course.
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(b) The answer is x = 1/2 and y = 3/2.
sage: var('x,y')
(x, y)
sage: system = [-1*x + y == 1,
....: x + y == 2]
sage: solve(system, x,y)
[[x == (1/2), y == (3/2)]]

(c) This system has infinitely many solutions. In the first subsection, with z as a
parameter, we got x = (43− 7z)/4 and y = (13− z)/4. Sage gets the same.
sage: var('x,y,z')
(x, y, z)
sage: system = [x - 3*y + z == 1,
....: x + y + 2*z == 14]
sage: solve(system, x,y)
[[x == -7/4*z + 43/4, y == -1/4*z + 13/4]]

Maple responds with (−12+ 7t1, t1, 13− 4t1), preferring y as a parameter.
(d) There is no solution to this system. Sage gives an empty list.

sage: var('x,y')
(x, y)
sage: system = [-1*x - y == 1,
....: -3*x - 3*y == 2]
sage: solve(system, x,y)
[]

Similarly, When the array A and vector u are given to Maple and it is asked to
linsolve(A,u), it returns no result at all; that is, it responds with no solutions.

(e) Sage finds
sage: var('x,y,z')
(x, y, z)
sage: system = [ 4*y + z == 20,
....: 2*x - 2*y + z == 0,
....: x + z == 5,
....: x + y - z == 10]
sage: solve(system, x,y,z)
[[x == 5, y == 5, z == 0]]

that the solutions is (x, y, z) = (5, 5, 0).
(f) There are infinitely many solutions. Sage does this.

sage: var('x,y,z,w')
(x, y, z, w)
sage: system = [ 2*x + z + w == 5,
....: y - w == -1,
....: 3*x - z - w == 0,
....: 4*x + y + 2*z + w == 9]
sage: solve(system, x,y,z,w)
[[x == 1, y == r2 - 1, z == -r2 + 3, w == r2]]

Maple gives (1,−1+ t1, 3− t1, t1).
3 (a) This system has infinitely many solutions. In the second subsection we gave

the solution set as

{

(
6

0

)
+

(
−2

1

)
y | y ∈ R }
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and Sage finds

sage: var('x,y')
(x, y)
sage: system = [ 3*x + 6*y == 18,
....: x + 2*y == 6]
sage: solve(system, x,y)
[[x == -2*r3 + 6, y == r3]]

while Maple responds with (6− 2t1, t1).
(b) The solution set has only one member.

{

(
0

1

)
}

Sage gives this.

sage: var('x,y')
(x, y)
sage: system = [ x + y == 1,
....: x - y == -1]
sage: solve(system, x,y)
[[x == 0, y == 1]]

(c) This system’s solution set is infinite

{

 4

−1

0

+

−1

1

1

 x3 | x3 ∈ R }

Sage gives this

sage: var('x1,x2,x3')
(x1, x2, x3)
sage: system = [ x1 + x3 == 4,
....: x1 - x2 + 2*x3 == 5,
....: 4*x1 - x2 + 5*x3 == 17]
sage: solve(system, x1,x2,x3)
[[x1 == -r4 + 4, x2 == r4 - 1, x3 == r4]]

and Maple gives (t1,−t1 + 3,−t1 + 4).
(d) There is a unique solution

{

11
1

 }

and Sage finds it.

sage: var('a,b,c')
(a, b, c)
sage: system = [ 2*a + b - c == 2,
....: 2*a + c == 3,
....: a - b == 0]
sage: solve(system, a,b,c)
[[a == 1, b == 1, c == 1]]



(e) This system has infinitely many solutions; in the second subsection we described
the solution set with two parameters.

{


5/3

2/3

0

0

+


−1/3

2/3

1

0

 z+

−2/3

1/3

0

1

w | z,w ∈ R }

Sage does the same.

sage: var('x,y,z,w')
(x, y, z, w)
sage: system = [ x + 2*y - z == 3,
....: 2*x + y + w == 4,
....: x - y + z + w == 1]
sage: solve(system, x,y,z,w)
[[x == r6, y == -r5 - 2*r6 + 4, z == -2*r5 - 3*r6 + 5, w == r5]]

as does Maple (3− 2t1 + t2, t1, t2,−2+ 3t1 − 2t2).
(f) The solution set is empty.

sage: var('x,y,z,w')
(x, y, z, w)
sage: system = [ x + z + w == 4,
....: 2*x + y - w == 2,
....: 3*x + y + z == 7]
sage: solve(system, x,y,z,w)
[]

4 Sage does this.

sage: var('x,y,a,b,c,d,p,q')
(x, y, a, b, c, d, p, q)
sage: system = [ a*x + c*y == p,
....: b*x + d*y == q]
sage: solve(system, x,y)
[[x == -(d*p - c*q)/(b*c - a*d), y == (b*p - a*q)/(b*c - a*d)]]

In response to this prompting

> A:=array( [[a,c],
[b,d]] );

> u:=array([p,q]);
> linsolve(A,u);

Maple gave this reply. [
−
−dp+ q c

−b c+ ad
,
−bp+ aq

−b c+ ad

]
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Topic: Accuracy of Computations

1 Scientific notation is convenient for expressing the two-place restriction: .25 ×
102 + .67× 100 = .25× 102. Note that adding the 2/3 has no effect on the total.

2 The reduction
−3ρ1+ρ2−→ x+ 2y= 3

−8y=−7.992

gives (x, y) = (1.002, 0.999). So for this system a small change in the constant
produces only a small change in the solution.

3 (a) The fully accurate solution is that x = 10 and y = 1.
(b) The four-digit reduction

−(.3454/.0003)ρ1+ρ2−→

(
.0003 1.556 1.569

0 −1794 −1805

)
gives the conclusion that y = 1.006, which is not bad, and that x = 12.21. Of
course, this is twenty percent different than the correct answer.

4 (a) For the first one, first, (2/3) − (1/3) is .666 666 67− .333 333 33 = .333 333 34
and so (2/3) + ((2/3) − (1/3)) = .666 666 67+ .333 333 34 = 1.000 000 0.

For the other one, first ((2/3)+(2/3)) = .666 666 67+.666 666 67 = 1.333 333 3

and so ((2/3) + (2/3)) − (1/3) = 1.333 333 3− .333 333 33 = .999 999 97.
(b) The first equation is .333 333 33 · x + 1.000 000 0 · y = 0 while the second is
.666 666 67 · x+ 2.000 000 0 · y = 0.

5 (a) This calculation

−(2/3)ρ1+ρ2−→
−(1/3)ρ1+ρ3

3 2 1 6

0 −(4/3) + 2ε −(2/3) + 2ε −2+ 4ε

0 −(2/3) + 2ε −(1/3) − ε −1+ ε


−(1/2)ρ2+ρ3−→

3 2 1 6

0 −(4/3) + 2ε −(2/3) + 2ε −2+ 4ε

0 ε −2ε −ε


gives a third equation of y − 2z = −1. Substituting into the second equation
gives ((−10/3) + 6ε) · z = (−10/3) + 6ε so z = 1 and thus y = 1. With those, the
first equation says that x = 1.

(b) As above, scientific notation is convenient to express the restriction on the
numbe of digits.



The solution with two digits retained is z = 2.1, y = 2.6, and x = −.43..30× 101 .20× 101 .10× 101 .60× 101

.10× 101 .20× 10−3 .20× 10−3 .20× 101

.30× 101 .20× 10−3 −.10× 10−3 .10× 101


−(2/3)ρ1+ρ2−→
−(1/3)ρ1+ρ3

.30× 101 .20× 101 .10× 101 .60× 101

0 −.13× 101 −.67× 100 −.20× 101

0 −.67× 100 −.33× 100 −.10× 101


−(.67/1.3)ρ2+ρ3−→

.30× 101 .20× 101 .10× 101 .60× 101

0 −.13× 101 −.67× 100 −.20× 101

0 0 .15× 10−2 .31× 10−2



Topic: Analyzing Networks

1 (a) The total resistance is 7 ohms. With a 9 volt potential, the flow will be
9/7 amperes. Incidentally, the voltage drops will then be: 27/7 volts across the
3 ohm resistor, and 18/7 volts across each of the two 2 ohm resistors.

(b) One way to do this network is to note that the 2 ohm resistor on the left has
a voltage drop of 9 volts (and hence the flow through it is 9/2 amperes), and the
remaining portion on the right also has a voltage drop of 9 volts, and so we can
analyze it as in the prior item. We can also use linear systems.

−→
i0

i1 ↓

−→
i2

i3
←−

Using the variables from the diagram we get a linear system
i0 − i1 − i2 = 0

i1 + i2 − i3 = 0

2i1 = 9

7i2 = 9

which yields the unique solution i1 = 81/14, i1 = 9/2, i2 = 9/7, and i3 = 81/14.
Of course, the first and second paragraphs yield the same answer. Essentially,

in the first paragraph we solved the linear system by a method less systematic
than Gauss’s Method, solving for some of the variables and then substituting.
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(c) Using these variables

−→
i0

i1 ↓

−→
i2

−→
i3

i4 ↓
i5
←−

i6
←−

one linear system that suffices to yield a unique solution is this.

i0 − i1 − i2 = 0

i2 − i3 − i4 = 0

i3 + i4 − i5 = 0

i1 + i5 − i6 = 0

3i1 = 9

3i2 + 2i4 + 2i5 = 9

3i2 + 9i3 + 2i5 = 9

(The last three equations come from the circuit involving i0-i1-i6, the circuit
involving i0-i2-i4-i5-i6, and the circuit with i0-i2-i3-i5-i6.) Octave gives i0 =

4.35616, i1 = 3.00000, i2 = 1.35616, i3 = 0.24658, i4 = 1.10959, i5 = 1.35616,
i6 = 4.35616.

2 (a) Using the variables from the earlier analysis,

i0 − i1 − i2 = 0

−i0 + i1 + i2 = 0

5i1 = 20

8i2 = 20

−5i1 + 8i2 = 0

The current flowing in each branch is then is i2 = 20/8 = 2.5, i1 = 20/5 = 4, and
i0 = 13/2 = 6.5, all in amperes. Thus the parallel portion is acting like a single
resistor of size 20/(13/2) ≈ 3.08 ohms.

(b) A similar analysis gives that is i2 = i1 = 20/8 = 2.5 and i0 = 40/8 =

5 amperes. The equivalent resistance is 20/5 = 4 ohms.
(c) Another analysis like the prior ones gives is i2 = 20/r2, i1 = 20/r1, and
i0 = 20(r1 + r2)/(r1r2), all in amperes. So the parallel portion is acting like a
single resistor of size 20/i0 = r1r2/(r1 + r2) ohms. (This equation is often stated
as: the equivalent resistance r satisfies 1/r = (1/r1) + (1/r2).)

3 Kirchoff’s Current Law, applied to the node where r1, r2, and rg come together,
and also applied to the node where r3, r4, and rg come together gives these.

i1 − i2 − ig = 0

i3 − i4 + ig = 0
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Kirchoff’s Voltage law, applied to the loop in the top right, and to the loop in the
bottom right, gives these.

i3r3 − igrg − i1r1 = 0

i4r4 − i2r2 + igrg = 0

Assuming that ig is zero gives that i1 = i2, that i3 = i4, that i1r1 = i3r3, and that
i2r2 = i4r4. Then rearranging the last equality

r4 =
i2r2

i4
· i3r3
i1r1

and cancelling the i’s gives the desired conclusion.
4 (a) An adaptation is: in any intersection the flow in equals the flow out. It does

seem reasonable in this case, unless cars are stuck at an intersection for a long
time.

(b) We can label the flow in this way: let i1 be the number of cars traversing the
part of the circle going from North Avenue to Main, let i2 be the number of cars
between Main and Pier, and let i3 be the number of cars traversing the circle
between Pier and North.

Because 50 cars leave via Main while 25 cars enter, i1 − 25 = i2. Similarly
Pier’s in/out balance means that i2 = i3 and North gives i3 + 25 = i1. We have
this system.

i1 − i2 = 25

i2 − i3 = 0

−i1 + i3 =−25

(c) The row operations ρ1 + ρ2 and ρ2 + ρ3 lead to the conclusion that there are
infinitely many solutions. With i3 as the parameter, this is the solution set.

{

25+ i3i3
i3

 | i3 ∈ R }

Since the problem is stated in number of cars we might restrict i3 to be a natural
number.

(d) If we picture an initially-empty circle with the given input/output behavior,
we can superimpose i3-many cars circling endlessly to get a new solution.

(e) A suitable restatement might be: the number of cars entering the circle must
equal the number of cars leaving. The reasonableness of this one is not as clear.
Over the five minute time period we could find that a half dozen more cars
entered than left, although the problem statement’s into/out table does satisfy
this property. In any event, it is of no help in getting a unique solution since for
that we would need to know the number of cars circling endlessly.

5 (a) Here is a variable for each unknown block; each known block has the flow
shown.
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75

65 55

40

50
30

70

80
5

i1

i2 i3
i4

i7i5 i6

We apply Kirchhoff’s principle that the flow into the intersection of Willow
and Shelburne must equal the flow out to get i1 + 25 = i2 + 125. Doing the
intersections from right to left and top to bottom gives these equations.

i1 − i2 = 10

−i1 + i3 = 15

i2 + i4 − i5 = 5

−i3 − i4 + i6 =−50

i5 − i7 =−10

−i6 + i7 = 30

The row operation ρ1 + ρ2 followed by ρ2 + ρ3 then ρ3 + ρ4 and ρ4 + ρ5 and
finally ρ5 + ρ6 result in this system.

i1 − i2 = 10

−i2 + i3 = 25

i3 + i4 − i5 = 30

−i5 + i6 =−20

i6 − i7 =−30

0= 0

Since the free variables are i4 and i7 we take them as parameters.
i6 = i7 − 30

i5 = i6 + 20 = (i7 − 30) + 20 = i7 − 10

i3 = −i4 + i5 + 30 = −i4 + (i7 − 10) + 30 = −i4 + i7 + 20

i2 = i3 − 25 = (−i4 + i7 + 20) − 25 = −i4 + i7 − 5

i1 = i2 + 10 = (−i4 + i7 − 5) + 10 = −i4 + i7 + 5

Obviously i4 and i7 have to be positive, and in fact the first equation shows
that i7 must be at least 30. If we start with i7, then the i2 equation shows that
0 6 i4 6 i7 − 5.

(b) We cannot take i7 to be zero or else i6 will be negative (this would mean cars
going the wrong way on the one-way street Jay). We can, however, take i7 to be
as small as 30, and then there are many suitable i4’s. For instance, the solution

(i1, i2, i3, i4, i5, i6, i7) = (35, 25, 50, 0, 20, 0, 30)

results from choosing i4 = 0.





Chapter Two

Chapter Two: Vector
Spaces

Definition of Vector Space

Two.I.1: Definition and Examples

Two.I.1.17 (a) 0+ 0x+ 0x2 + 0x3

(b)

(
0 0 0 0

0 0 0 0

)
(c) The constant function f(x) = 0
(d) The constant function f(n) = 0

Two.I.1.18 (a) 3+ 2x− x2 (b)

(
−1 +1

0 −3

)
(c) −3ex + 2e−x

Two.I.1.19 (a) Three elements are: 1+ 2x, 2− 1x, and x. (Of course, many answers
are possible.)

The verification is just like Example 1.4. We first do conditions 1-5 from
Definition 1.1, having to do with addition. For closure under addition, condi-
tion (1), note that where a+ bx, c+ dx ∈ P1 we have that (a+ bx) + (c+ dx) =

(a + c) + (b + d)x is a linear polynomial with real coefficients and so is an
element of P1. Condition (2) is verified with: where a + bx, c + dx ∈ P1

then (a + bx) + (c + dx) = (a + c) + (b + d)x, while in the other order they
are (c + dx) + (a + bx) = (c + a) + (d + b)x, and both a + c = c + a and
b + d = d + b as these are real numbers. Condition (3) is similar: suppose
a+bx, c+dx, e+fx ∈ P then ((a+bx)+(c+dx))+(e+fx) = (a+c+e)+(b+d+f)x

while (a+ bx) + ((c+ dx) + (e+ fx)) = (a+ c+ e) + (b+ d+ f)x, and the two
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are equal (that is, real number addition is associative so (a+ c) + e = a+ (c+ e)

and (b + d) + f = b + (d + f)). For condition (4) observe that the linear poly-
nomial 0 + 0x ∈ P1 has the property that (a + bx) + (0 + 0x) = a + bx and
(0 + 0x) + (a + bx) = a + bx. For the last condition in this paragraph, condi-
tion (5), note that for any a+bx ∈ P1 the additive inverse is −a−bx ∈ P1 since
(a+ bx) + (−a− bx) = (−a− bx) + (a+ bx) = 0+ 0x.

We next also check conditions (6)-(10), involving scalar multiplication. For (6),
the condition that the space be closed under scalar multiplication, suppose that r
is a real number and a+bx is an element of P1, and then r(a+bx) = (ra)+(rb)x

is an element of P1 because it is a linear polynomial with real number coefficients.
Condition (7) holds because (r + s)(a + bx) = r(a + bx) + s(a + bx) is true
from the distributive property for real number multiplication. Condition (8) is
similar: r((a+ bx) + (c+ dx)) = r((a+ c) + (b+ d)x) = r(a+ c) + r(b+ d)x =

(ra + rc) + (rb + rd)x = r(a + bx) + r(c + dx). For (9) we have (rs)(a +

bx) = (rsa) + (rsb)x = r(sa + sbx) = r(s(a + bx)). Finally, condition (10) is
1(a+ bx) = (1a) + (1b)x = a+ bx.

(b) Call the set P. In the prior item in this exercise there was no restriction on
the coefficients but here we are restricting attention to those linear polynomials
where a0 − 2a1 = 0, that is, where the constant term minus twice the coefficient
of the linear term is zero. Thus, three typical elements of P are 2+ 1x, 6+ 3x,
and −4− 2x.

For condition (1) we must show that if we add two linear polynomials that
satisfy the restriction then we get a linear polynomial also satisfying the restriction:
here that argument is that if a + bx, c + dx ∈ P then (a + bx) + (c + dx) =

(a+c)+(b+d)x is an element of P because (a+c)−2(b+d) = (a−2b)+(c−2d) =

0 + 0 = 0. We can verify condition (2) with: where a + bx, c + dx ∈ P1 then
(a + bx) + (c + dx) = (a + c) + (b + d)x, while in the other order they are
(c+dx)+(a+bx) = (c+a)+(d+b)x, and both a+c = c+a and b+d = d+b as
these are real numbers. (That is, this condition is not affected by the restriction
and the verification is the same as the verification in the first item of this
exercise). Condition (3) is also not affected by the extra restriction: suppose that
a+bx, c+dx, e+fx ∈ P then ((a+bx)+(c+dx))+(e+fx) = (a+c+e)+(b+d+f)x

while (a+ bx) + ((c+ dx) + (e+ fx)) = (a+ c+ e) + (b+ d+ f)x, and the two
are equal. For condition (4) observe that the linear polynomial satisfies the
restriction 0 + 0x ∈ P because its constant term minus twice the coefficient
of its linear term is zero, and then the verification from the first item of this
question applies: 0+ 0x ∈ P1 has the property that (a+ bx) + (0+ 0x) = a+ bx

and (0 + 0x) + (a + bx) = a + bx. To check condition (5), note that for any
a+ bx ∈ P the additive inverse is −a− bx since it is an element of P (because
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a + bx ∈ P we know that a − 2b = 0 and multiplying both sides by −1 gives
that −a + 2b = 0), and as in the first item it acts as the additive inverse
(a+ bx) + (−a− bx) = (−a− bx) + (a+ bx) = 0+ 0x.

We must also check conditions (6)-(10), those for scalar multiplication. For
(6), the condition that the space be closed under scalar multiplication, suppose
that r is a real number and a + bx ∈ P (so that a − 2b = 0), then r(a + bx) =

(ra)+ (rb)x is an element of P because it is a linear polynomial with real number
coefficients satisfying that (ra) − 2(rb) = r(a − 2b) = 0. Condition (7) holds
for the same reason that it holds in the first item of this exercise, because
(r + s)(a + bx) = r(a + bx) + s(a + bx) is true from the distributive property
for real number multiplication. Condition (8) is also unchanged from the first
item: r((a + bx) + (c + dx)) = r((a + c) + (b + d)x) = r(a + c) + r(b + d)x =

(ra + rc) + (rb + rd)x = r(a + bx) + r(c + dx). So is (9): (rs)(a + bx) =

(rsa) + (rsb)x = r(sa + sbx) = r(s(a + bx)). Finally, so is condition (10):
1(a+ bx) = (1a) + (1b)x = a+ bx.

Two.I.1.20 Use Example 1.4 as a guide. (Comment. Because many of the conditions
are quite easy to check, sometimes a person can feel that they must have missed
something. Keep in mind that easy to do, or routine, is different from not necessary
to do.)
(a) Here are three elements.(

1 2

3 4

)
,

(
−1 −2

−3 −4

)
,

(
0 0

0 0

)
For (1), the sum of 2×2 real matrices is a 2×2 real matrix. For (2) we consider

the sum of two matrices(
a b

c d

)
+

(
e f

g h

)
=

(
a+ e b+ f

c+ g d+ h

)
and apply commutativity of real number addition

=

(
e+ a f+ b

g+ c h+ d

)
=

(
e f

g h

)
+

(
a b

c d

)
to verify that the addition of the matrices is commutative. The verification for
condition (3), associativity of matrix addition, is similar to the prior verification:((a b

c d

)
+

(
e f

g h

))
+

(
i j

k l

)
=

(
(a+ e) + i (b+ f) + j

(c+ g) + k (d+ h) + l

)
while (

a b

c d

)
+
((e f

g h

)
+

(
i j

k l

))
=

(
a+ (e+ i) b+ (f+ j)

c+ (g+ k) d+ (h+ l)

)
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and the two are the same entry-by-entry because real number addition is as-
sociative. For (4), the zero element of this space is the 2×2 matrix of zeroes.
Condition (5) holds because for any 2×2 matrix A the additive inverse is the
matrix whose entries are the negative of A’s, the matrix −1 ·A.

Condition (6) holds because a scalar multiple of a 2×2 matrix is a 2×2 matrix.
For condition (7) we have this.

(r+ s)

(
a b

c d

)
=

(
(r+ s)a (r+ s)b

(r+ s)c (r+ s)d

)

=

(
ra+ sa rb+ sb

rc+ sc rd+ sd

)
= r

(
a b

c d

)
+ s

(
a b

c d

)
Condition (8) goes the same way.

r
((a b

c d

)
+

(
e f

g h

))
= r

(
a+ e b+ f

c+ g d+ h

)
=

(
ra+ re rb+ rf

rc+ rg rd+ rh

)

= r

(
a b

c d

)
+ r

(
e f

g h

)
= r
((a b

c d

)
+

(
e f

g h

))
For (9) we have this.

(rs)

(
a b

c d

)
=

(
rsa rsb

rsc rsd

)
= r

(
sa sb

sc sd

)
= r
(
s

(
a b

c d

))
Condition (10) is just as easy.

1

(
a b

c d

)
=

(
1 · a 1 · b
1 · c 1 · d

)
=

(
sa sb

sc sd

)
(b) This differs from the prior item in this exercise only in that we are restricting
to the set T of matrices with a zero in the second row and first column. Here are
three elements of T . (

1 2

0 4

)
,

(
−1 −2

0 −4

)
,

(
0 0

0 0

)
Some of the verifications for this item are the same as for the first item in this
exercise, and below we’ll just do the ones that are different.

For (1), the sum of 2×2 real matrices with a zero in the 2, 1 entry is also a
2×2 real matrix with a zero in the 2, 1 entry.(

a b

0 d

)
+

(
e f

0 h

)(
a+ e b+ f

0 d+ h

)
The verification for condition (2) given in the prior item works in this item also.
The same holds for condition (3). For (4), note that the 2×2 matrix of zeroes is
an element of T . Condition (5) holds because for any 2×2 matrix A the additive
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inverse is the matrix −1 ·A and so the additive inverse of a matrix with a zero in
the 2, 1 entry is also a matrix with a zero in the 2, 1 entry.

Condition 6 holds because a scalar multiple of a 2×2 matrix with a zero in the
2, 1 entry is a 2×2 matrix with a zero in the 2, 1 entry. Condition (7)’s verification
is the same as in the prior item. So are condition (8)’s, (9)’s, and (10)’s.

Two.I.1.21 (a) Three elements are (1 2 3), (2 1 3), and (0 0 0).
We must check conditions (1)-(10) in Definition 1.1. Conditions (1)-(5)

concern addition. For condition (1) recall that the sum of two three-component
row vectors

(a b c) + (d e f) = (a+ d b+ e c+ f)

is also a three-component row vector (all of the letters a, . . . , f represent real
numbers). Verification of (2) is routine

(a b c) + (d e f) = (a+ d b+ e c+ f)

= (d+ a e+ b f+ c) = (d e f) + (a b c)

(the second equality holds because the three entries are real numbers and real
number addition commutes). Condition (3)’s verification is similar.(

(a b c) + (d e f)
)
+ (g h i) = ((a+ d) + g (b+ e) + h (c+ f) + i)

= (a+ (d+ g) b+ (e+ h) c+ (f+ i)) = (a b c) +
(
(d e f) + (g h i)

)
For (4), observe that the three-component row vector (0 0 0) is the additive
identity: (a b c) + (0 0 0) = (a b c). To verify condition (5), assume we are
given the element (a b c) of the set and note that (−a −b −c) is also in the
set and has the desired property: (a b c) + (−a −b −c) = (0 0 0).

Conditions (6)-(10) involve scalar multiplication. To verify (6), that the
space is closed under the scalar multiplication operation that was given, note
that r(a b c) = (ra rb rc) is a three-component row vector with real entries.
For (7) we compute.

(r+ s)(a b c) = ((r+ s)a (r+ s)b (r+ s)c) = (ra+ sa rb+ sb rc+ sc)

= (ra rb rc) + (sa sb sc) = r(a b c) + s(a b c)

Condition (8) is very similar.

r
(
(a b c) + (d e f)

)
= r(a+ d b+ e c+ f) = (r(a+ d) r(b+ e) r(c+ f))

= (ra+ rd rb+ re rc+ rf) = (ra rb rc) + (rd re rf)

= r(a b c) + r(d e f)

So is the computation for condition (9).
(rs)(a b c) = (rsa rsb rsc) = r(sa sb sc) = r

(
s(a b c)

)
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Condition (10) is just as routine 1(a b c) = (1 · a 1 · b 1 · c) = (a b c).
(b) Call the set L. Closure of addition, condition (1), involves checking that if the
summands are members of L then the sum

a

b

c

d

+


e

f

g

h

 =


a+ e

b+ f

c+ g

d+ h


is also a member of L, which is true because it satisfies the criteria for membership
in L: (a+e)+(b+ f)−(c+g)+(d+h) = (a+b−c+d)+(e+ f−g+h) = 0+0.
The verifications for conditions (2), (3), and (5) are similar to the ones in the
first part of this exercise. For condition (4) note that the vector of zeroes is a
member of L because its first component plus its second, minus its third, and
plus its fourth, totals to zero.

Condition (6), closure of scalar multiplication, is similar: where the vector is
an element of L,

r


a

b

c

d

 =


ra

rb

rc

rd


is also an element of L because ra+ rb− rc+ rd = r(a+ b− c+ d) = r · 0 = 0.
The verification for conditions (7), (8), (9), and (10) are as in the prior item of
this exercise.

Two.I.1.22 In each item the set is called Q. For some items, there are other correct
ways to show that Q is not a vector space.

(a) It is not closed under addition; it fails to meet condition (1).10
0

 ,
01
0

 ∈ Q
11
0

 6∈ Q
(b) It is not closed under addition.10

0

 ,
01
0

 ∈ Q
11
0

 6∈ Q
(c) It is not closed under addition.(

0 1

0 0

)
,

(
1 1

0 0

)
∈ Q

(
1 2

0 0

)
6∈ Q

(d) It is not closed under scalar multiplication.

1+ 1x+ 1x2 ∈ Q − 1 · (1+ 1x+ 1x2) 6∈ Q
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(e) It is empty, violating condition (4).

Two.I.1.23 The usual operations (v0 + v1i) + (w0 +w1i) = (v0 +w0) + (v1 +w1)i

and r(v0 + v1i) = (rv0) + (rv1)i suffice. The check is easy.

Two.I.1.24 No, it is not closed under scalar multiplication since, e.g., π · (1) is not a
rational number.

Two.I.1.25 The natural operations are (v1x + v2y + v3z) + (w1x + w2y + w3z) =

(v1+w1)x+(v2+w2)y+(v3+w3)z and r·(v1x+v2y+v3z) = (rv1)x+(rv2)y+(rv3)z.
The check that this is a vector space is easy; use Example 1.4 as a guide.

Two.I.1.26 The ‘+’ operation is not commutative (that is, condition (2) is not met);
producing two members of the set witnessing this assertion is easy.

Two.I.1.27 (a) It is not a vector space.

(1+ 1) ·

10
0

 6=
10
0

+

10
0


(b) It is not a vector space.

1 ·

10
0

 6=
10
0


Two.I.1.28 For each “yes” answer, you must give a check of all the conditions given
in the definition of a vector space. For each “no” answer, give a specific example of
the failure of one of the conditions.
(a) Yes.
(b) Yes.
(c) No, this set is not closed under the natural addition operation. The vector of
all 1/4’s is a member of this set but when added to itself the result, the vector of
all 1/2’s, is a nonmember.

(d) Yes.
(e) No, f(x) = e−2x + (1/2) is in the set but 2 · f is not (that is, condition (6)
fails).

Two.I.1.29 It is a vector space. Most conditions of the definition of vector space are
routine; we here check only closure. For addition, (f1 + f2) (7) = f1(7) + f2(7) =
0+ 0 = 0. For scalar multiplication, (r · f) (7) = rf(7) = r0 = 0.

Two.I.1.30 We check Definition 1.1.
First, closure under ‘+’ holds because the product of two positive reals is a

positive real. The second condition is satisfied because real multiplication commutes.
Similarly, as real multiplication associates, the third checks. For the fourth condition,
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observe that multiplying a number by 1 ∈ R+ won’t change the number. Fifth, any
positive real has a reciprocal that is a positive real.

The sixth, closure under ‘·’, holds because any power of a positive real is a
positive real. The seventh condition is just the rule that vr+s equals the product
of vr and vs. The eight condition says that (vw)r = vrwr. The ninth condition
asserts that (vr)s = vrs. The final condition says that v1 = v.

Two.I.1.31 (a) No: 1 · (0, 1) + 1 · (0, 1) 6= (1+ 1) · (0, 1).
(b) No; the same calculation as the prior answer shows a condition in the definition
of a vector space that is violated. Another example of a violation of the conditions
for a vector space is that 1 · (0, 1) 6= (0, 1).

Two.I.1.32 It is not a vector space since it is not closed under addition, as (x2) +

(1+ x− x2) is not in the set.

Two.I.1.33 (a) 6
(b) nm
(c) 3
(d) To see that the answer is 2, rewrite it as

{

(
a 0

b −a− b

)
| a, b ∈ R }

so that there are two parameters.

Two.I.1.34 A vector space (over R) consists of a set V along with two operations ‘~+’
and ‘~·’ subject to these conditions. Where ~v, ~w ∈ V , (1) their vector sum ~v~+ ~w is an
element of V . If ~u,~v, ~w ∈ V then (2) ~v~+ ~w = ~w~+~v and (3) (~v~+ ~w)~+~u = ~v~+(~w~+~u).
(4) There is a zero vector ~0 ∈ V such that ~v ~+~0 = ~v for all ~v ∈ V . (5) Each ~v ∈ V
has an additive inverse ~w ∈ V such that ~w ~+ ~v = ~0. If r, s are scalars , that is,
members of R), and ~v, ~w ∈ V then (6) each scalar multiple r ·~v is in V . If r, s ∈ R
and ~v, ~w ∈ V then (7) (r+ s) ·~v = r ·~v ~+ s ·~v, and (8) r~· (~v+ ~w) = r~·~v+ r~· ~w, and
(9) (rs)~·~v = r~· (s~·~v), and (10) 1~·~v = ~v.

Two.I.1.35 (a) Let V be a vector space, let ~v ∈ V, and assume that ~w ∈ V is
an additive inverse of ~v so that ~w + ~v = ~0. Because addition is commutative,
~0 = ~w+~v = ~v+ ~w, so therefore ~v is also the additive inverse of ~w.

(b) Let V be a vector space and suppose ~v,~s,~t ∈ V . The additive inverse of ~v is −~v
so ~v+~s = ~v+~t gives that −~v+~v+~s = −~v+~v+~t, which says that ~0+~s = ~0+~t

and so ~s = ~t.

Two.I.1.36 Addition is commutative, so in any vector space, for any vector ~v we have
that ~v = ~v+~0 = ~0+~v.

Two.I.1.37 It is not a vector space since addition of two matrices of unequal sizes is
not defined, and thus the set fails to satisfy the closure condition.
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Two.I.1.38 Each element of a vector space has one and only one additive inverse.
For, let V be a vector space and suppose that ~v ∈ V. If ~w1, ~w2 ∈ V are both

additive inverses of ~v then consider ~w1 +~v+ ~w2. On the one hand, we have that it
equals ~w1 + (~v + ~w2) = ~w1 + ~0 = ~w1. On the other hand we have that it equals
(~w1 +~v) + ~w2 = ~0+ ~w2 = ~w2. Therefore, ~w1 = ~w2.

Two.I.1.39 (a) Every such set has the form {r ·~v+ s · ~w | r, s ∈ R } where either
or both of ~v, ~w may be ~0. With the inherited operations, closure of addition
(r1~v + s1~w) + (r2~v + s2~w) = (r1 + r2)~v + (s1 + s2)~w and scalar multiplication
c(r~v+ s~w) = (cr)~v+ (cs)~w are easy. The other conditions are also routine.

(b) No such set can be a vector space under the inherited operations because it
does not have a zero element.

Two.I.1.40 Assume that ~v ∈ V is not ~0.
(a) One direction of the if and only if is clear: if r = 0 then r ·~v = ~0. For the other
way, let r be a nonzero scalar. If r~v = ~0 then (1/r) · r~v = (1/r) · ~0 shows that
~v = ~0, contrary to the assumption.

(b) Where r1, r2 are scalars, r1~v = r2~v holds if and only if (r1 − r2)~v = ~0. By the
prior item, then r1 − r2 = 0.

(c) A nontrivial space has a vector ~v 6= ~0. Consider the set {k ·~v | k ∈ R }. By the
prior item this set is infinite.

(d) The solution set is either trivial, or nontrivial. In the second case, it is infinite.

Two.I.1.41 Yes. A theorem of first semester calculus says that a sum of differentiable
functions is differentiable and that (f + g)′ = f′ + g′, and that a multiple of a
differentiable function is differentiable and that (r · f)′ = r f′.

Two.I.1.42 The check is routine. Note that ‘1’ is 1 + 0i and the zero elements are
these.
(a) (0+ 0i) + (0+ 0i)x+ (0+ 0i)x2

(b)

(
0+ 0i 0+ 0i

0+ 0i 0+ 0i

)
Two.I.1.43 Notably absent from the definition of a vector space is a distance measure.

Two.I.1.44 (a) A small rearrangement does the trick.

(~v1 + (~v2 +~v3)) +~v4 = ((~v1 +~v2) +~v3) +~v4

= (~v1 +~v2) + (~v3 +~v4)

= ~v1 + (~v2 + (~v3 +~v4))

= ~v1 + ((~v2 +~v3) +~v4)

Each equality above follows from the associativity of three vectors that is given
as a condition in the definition of a vector space. For instance, the second ‘=’
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applies the rule (~w1 + ~w2) + ~w3 = ~w1 + (~w2 + ~w3) by taking ~w1 to be ~v1 +~v2,
taking ~w2 to be ~v3, and taking ~w3 to be ~v4.

(b) The base case for induction is the three vector case. This case ~v1+(~v2+~v3) =

(~v1 +~v2) +~v3 is one of the conditions in the definition of a vector space.
For the inductive step, assume that any two sums of three vectors, any two

sums of four vectors, . . . , any two sums of k vectors are equal no matter how we
parenthesize the sums. We will show that any sum of k+ 1 vectors equals this
one ((· · · ((~v1 +~v2) +~v3) + · · · ) +~vk) +~vk+1.

Any parenthesized sum has an outermost ‘+’. Assume that it lies between
~vm and ~vm+1 so the sum looks like this.

(· · · ~v1 · · ·~vm · · · ) + (· · · ~vm+1 · · ·~vk+1 · · · )
The second half involves fewer than k+1 additions, so by the inductive hypothesis
we can re-parenthesize it so that it reads left to right from the inside out, and in
particular, so that its outermost ‘+’ occurs right before ~vk+1.

= (· · · ~v1 · · · ~vm · · · ) + ((· · · (~vm+1 +~vm+2) + · · ·+~vk) +~vk+1)

Apply the associativity of the sum of three things
= (( · · · ~v1 · · · ~vm · · · ) + ( · · · (~vm+1 +~vm+2) + · · · ~vk)) +~vk+1

and finish by applying the inductive hypothesis inside these outermost parenthesis.
Two.I.1.45 Let ~v be a member of R2 with components v1 and v2. We can abbreviate
the condition that both components have the same sign or are 0 by v1v2 > 0.

To show the set is closed under scalar multiplication, observe that the components
of r~v satisfy (rv1)(rv2) = r

2(v1v2) and r2 > 0 so r2v1v2 > 0.
To show the set is not closed under addition we need only produce one example.

The vector with components −1 and 0, when added to the vector with components
0 and 1 makes a vector with mixed-sign components of −1 and 1.

Two.I.2: Subspaces and Spanning Sets

Two.I.2.20 By Lemma 2.9, to see if each subset of M2×2 is a subspace, we need only
check if it is nonempty and closed.
(a) Yes, we can easily check that it is nonempty and closed. This is a parametriza-
tion.

{a

(
1 0

0 0

)
+ b

(
0 0

0 1

)
| a, b ∈ R }

By the way, the parametrization also shows that it is a subspace, since it is given
as the span of the two-matrix set, and any span is a subspace.
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(b) Yes; it is easily checked to be nonempty and closed. Alternatively, as mentioned
in the prior answer, the existence of a parametrization shows that it is a subspace.
For the parametrization, the condition a + b = 0 can be rewritten as a = −b.
Then we have this.

{

(
−b 0

0 b

)
| b ∈ R } = {b

(
−1 0

0 1

)
| b ∈ R }

(c) No. It is not closed under addition. For instance,(
5 0

0 0

)
+

(
5 0

0 0

)
=

(
10 0

0 0

)
is not in the set. (This set is also not closed under scalar multiplication, for
instance, it does not contain the zero matrix.)

(d) Yes.

{b

(
−1 0

0 1

)
+ c

(
0 1

0 0

)
| b, c ∈ R }

Two.I.2.21 No, it is not closed. In particular, it is not closed under scalar multiplica-
tion because it does not contain the zero polynomial.

Two.I.2.22 The equation 10
3

 = c1

 2

1

−1

+ c2

 1

−1

1


gives rise to a linear system 2 1 1

1 −1 0

−1 1 3

 (−1/2)ρ1+ρ2−→
(1/2)ρ1+ρ3

2 1 1

0 −3/2 −1/2

0 0 3


that has no solution, so the vector is not in the span.

Two.I.2.23 (a) Yes, solving the linear system arising from

r1

10
0

+ r2

00
1

 =

20
1


gives r1 = 2 and r2 = 1.

(b) Yes; the linear system arising from r1(x
2) + r2(2x+ x

2) + r3(x+ x
3) = x− x3

2r2 + r3 = 1

r1 + r2 = 0

r3 =−1

gives that −1(x2) + 1(2x+ x2) − 1(x+ x3) = x− x3.
(c) No; any combination of the two given matrices has a zero in the upper right.
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Two.I.2.24 (a) Yes; it is in that span since 1 · cos2 x+ 1 · sin2 x = f(x).
(b) No, since r1 cos2 x+ r2 sin2 x = 3+ x2 has no scalar solutions that work for all
x. For instance, setting x to be 0 and π gives the two equations r1 · 1+ r2 · 0 = 3
and r1 · 1+ r2 · 0 = 3+ π2, which are not consistent with each other.

(c) No; consider what happens on setting x to be π/2 and 3π/2.
(d) Yes, cos(2x) = 1 · cos2(x) − 1 · sin2(x).

Two.I.2.25 (a) Yes, for any x, y, z ∈ R this equation

r1

10
0

+ r2

02
0

+ r3

00
3

 =

xy
z


has the solution r1 = x, r2 = y/2, and r3 = z/3.

(b) Yes, the equation

r1

20
1

+ r2

11
0

+ r3

00
1

 =

xy
z


gives rise to this
2r1 + r2 = x

r2 = y

r1 + r3 = z

−(1/2)ρ1+ρ3−→ (1/2)ρ2+ρ3−→
2r1 + r2 = x

r2 = y

r3 =−(1/2)x+ (1/2)y+ z

so that, given any x, y, and z, we can compute that r3 = (−1/2)x+ (1/2)y+ z,
r2 = y, and r1 = (1/2)x− (1/2)y.

(c) No. In particular, we cannot get the vector00
1


as a linear combination since the two given vectors both have a third component
of zero.

(d) Yes. The equation

r1

10
1

+ r2

31
0

+ r3

−1

0

0

+ r4

21
5

 =

xy
z


leads to this reduction.1 3 −1 2 x

0 1 0 1 y

1 0 0 5 z

 −ρ1+ρ3−→ 3ρ2+ρ3−→

1 3 −1 2 x

0 1 0 1 y

0 0 1 6 −x+ 3y+ z


We have infinitely many solutions. We can, for example, set r4 to be zero
and solve for r3, r2, and r1 in terms of x, y, and z by the usual methods of
back-substitution.



Answers to Exercises 73

(e) No. The equation

r1

21
1

+ r2

30
1

+ r3

51
2

+ r4

60
2

 =

xy
z


leads to this reduction.2 3 5 6 x

1 0 1 0 y

1 1 2 2 z


−(1/2)ρ1+ρ2−→
−(1/2)ρ1+ρ3

−(1/3)ρ2+ρ3−→

2 3 5 6 x

0 −3/2 −3/2 −3 −(1/2)x+ y

0 0 0 0 −(1/3)x− (1/3)y+ z


This shows that not every three-tall vector can be so expressed. Only the vectors
satisfying the restriction that −(1/3)x− (1/3)y+ z = 0 are in the span. (To see
that any such vector is indeed expressible, take r3 and r4 to be zero and solve
for r1 and r2 in terms of x, y, and z by back-substitution.)

Two.I.2.26 (a) {(c b c) | b, c ∈ R } = {b(0 1 0) + c(1 0 1) | b, c ∈ R } The obvi-
ous choice for the set that spans is {(0 1 0), (1 0 1) }.

(b) {

(
−d b

c d

)
| b, c, d ∈ R } = {b

(
0 1

0 0

)
+ c

(
0 0

1 0

)
+ d

(
−1 0

0 1

)
| b, c, d ∈ R }

One set that spans this space consists of those three matrices.
(c) The system

a+ 3b = 0

2a −c− d= 0

gives b = −(c+ d)/6 and a = (c+ d)/2. So one description is this.

{c

(
1/2 −1/6

1 0

)
+ d

(
1/2 −1/6

0 1

)
| c, d ∈ R }

That shows that a set spanning this subspace consists of those two matrices.
(d) The a = 2b− c gives that the set {(2b− c) + bx+ cx3 | b, c ∈ R } equals the
set {b(2+ x) + c(−1+ x3) | b, c ∈ R }. So the subspace is the span of the set
{2+ x,−1+ x3 }.

(e) The set {a+ bx+ cx2 | a+ 7b+ 49c = 0 } can be parametrized as
{b(−7+ x) + c(−49+ x2) | b, c ∈ R }

and so has the spanning set {−7+ x,−49+ x2 }.
Two.I.2.27 (a) We can parametrize in this way

{

x0
z

 | x, z ∈ R } = {x

10
0

+ z

00
1

 | x, z ∈ R }
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giving this for a spanning set.

{

10
0

 ,
00
1

 }

(b) Here is a parametrization, and the associated spanning set.

{y

−2/3

1

0

+ z

−1/3

0

1

 | y, z ∈ R } {

−2/3

1

0

 ,
−1/3

0

1

 }

(c) {


1

−2

1

0

 ,

−1/2

0

0

1

 }

(d) Parametrize the description as {−a1 + a1x+ a3x2 + a3x3 | a1, a3 ∈ R } to get
{−1+ x, x2 + x3 }.

(e) {1, x, x2, x3, x4 }

(f) {

(
1 0

0 0

)
,

(
0 1

0 0

)
,

(
0 0

1 0

)
,

(
0 0

0 1

)
}

Two.I.2.28 Technically, no. Subspaces of R3 are sets of three-tall vectors, while R2 is
a set of two-tall vectors. Clearly though, R2 is “just like” this subspace of R3.

{

xy
0

 | x, y ∈ R }

Two.I.2.29 Of course, the addition and scalar multiplication operations are the ones
inherited from the enclosing space.
(a) This is a subspace. It is not empty as it contains at least the two example
functions given. It is closed because if f1, f2 are even and c1, c2 are scalars then
we have this.

(c1f1+c2f2) (−x) = c1 f1(−x)+c2 f2(−x) = c1 f1(x)+c2 f2(x) = (c1f1+c2f2) (x)

(b) This is also a subspace; the check is similar to the prior one.

Two.I.2.30 It can be improper. For instance, if the vector space is R1 and ~v 6= ~0 then
the subspace {r ·~v | r ∈ R } is all of R1.

Two.I.2.31 No, such a set is not closed. For one thing, it does not contain the zero
vector.

Two.I.2.32 (a) This nonempty subset of M2×2 is not a subspace.

A = {

(
1 2

3 4

)
,

(
5 6

7 8

)
}
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One reason that it is not a subspace of M2×2 is that it does not contain the zero
matrix. (Another reason is that it is not closed under addition, since the sum of
the two is not an element of A. It is also not closed under scalar multiplication.)

(b) This set of two vectors does not span R2.

{

(
1

1

)
,

(
3

3

)
}

No linear combination of these two can give a vector whose second component is
unequal to its first component.

Two.I.2.33 No. The only subspaces of R1 are the space itself and its trivial subspace.
Any subspace S of R that contains a nonzero member ~v must contain the set of all
of its scalar multiples {r ·~v | r ∈ R }. But this set is all of R.

Two.I.2.34 Item (1) is checked in the text.
Item (2) has five conditions. First, for closure, if c ∈ R and ~s ∈ S then c · ~s ∈ S

as c ·~s = c ·~s+ 0 ·~0. Second, because the operations in S are inherited from V , for
c, d ∈ R and ~s ∈ S, the scalar product (c+ d) ·~s in S equals the product (c+ d) ·~s
in V, and that equals c · ~s+ d · ~s in V, which equals c · ~s+ d · ~s in S.

The check for the third, fourth, and fifth conditions are similar to the second
condition’s check just given.

Two.I.2.35 An exercise in the prior subsection shows that every vector space has
only one zero vector (that is, there is only one vector that is the additive identity
element of the space). But a trivial space has only one element and that element
must be this (unique) zero vector.

Two.I.2.36 As the hint suggests, the basic reason is the Linear Combination Lemma
from the first chapter. For the full proof, we will show mutual containment between
the two sets.

The first containment [[S]] ⊇ [S] is an instance of the more general, and obvious,
fact that for any subset T of a vector space, [T ] ⊇ T .

For the other containment, that [[S]] ⊆ [S], take m vectors from [S], namely
c1,1~s1,1 + · · · + c1,n1~s1,n1 , . . . , c1,m~s1,m + · · · + c1,nm~s1,nm , and note that any
linear combination of those

r1(c1,1~s1,1 + · · ·+ c1,n1~s1,n1) + · · ·+ rm(c1,m~s1,m + · · ·+ c1,nm~s1,nm)

is a linear combination of elements of S

= (r1c1,1)~s1,1 + · · ·+ (r1c1,n1)~s1,n1 + · · ·+ (rmc1,m)~s1,m + · · ·+ (rmc1,nm)~s1,nm

and so is in [S]. That is, simply recall that a linear combination of linear combina-
tions (of members of S) is a linear combination (again of members of S).
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Two.I.2.37 (a) It is not a subspace because these are not the inherited operations.
For one thing, in this space,

0 ·

xy
z

 =

10
0


while this does not, of course, hold in R3.

(b) We can combine the argument showing closure under addition with the argu-
ment showing closure under scalar multiplication into one single argument showing
closure under linear combinations of two vectors. If r1, r2, x1, x2, y1, y2, z1, z2
are in R then

r1

x1y1
z1

+ r2

x2y2
z2

 =

r1x1 − r1 + 1r1y1
r1z1

+

r2x2 − r2 + 1r2y2
r2z2


=

r1x1 − r1 + r2x2 − r2 + 1r1y1 + r2y2
r1z1 + r2z2


(note that the definition of addition in this space is that the first components
combine as (r1x1 − r1 + 1) + (r2x2 − r2 + 1) − 1, so the first component of the
last vector does not say ‘+ 2’). Adding the three components of the last vector
gives r1(x1 − 1+ y1 + z1) + r2(x2 − 1+ y2 + z2) + 1 = r1 · 0+ r2 · 0+ 1 = 1.

Most of the other checks of the conditions are easy (although the oddness of
the operations keeps them from being routine). Commutativity of addition goes
like this.x1y1

z1

+

x2y2
z2

 =

x1 + x2 − 1y1 + y2
z1 + z2

 =

x2 + x1 − 1y2 + y1
z2 + z1

 =

x2y2
z2

+

x1y1
z1


Associativity of addition has

(

x1y1
z1

+

x2y2
z2

) +

x3y3
z3

 =

(x1 + x2 − 1) + x3 − 1

(y1 + y2) + y3
(z1 + z2) + z3


while x1y1

z1

+ (

x2y2
z2

+

x3y3
z3

) =

x1 + (x2 + x3 − 1) − 1

y1 + (y2 + y3)

z1 + (z2 + z3)


and they are equal. The identity element with respect to this addition operation
works this way xy

z

+

10
0

 =

x+ 1− 1y+ 0

z+ 0

 =

xy
z
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and the additive inverse is similar.xy
z

+

−x+ 2

−y

−z

 =

x+ (−x+ 2) − 1

y− y

z− z

 =

10
0


The conditions on scalar multiplication are also easy. For the first condition,

(r+ s)

xy
z

 =

(r+ s)x− (r+ s) + 1

(r+ s)y

(r+ s)z


while

r

xy
z

+ s

xy
z

 =

rx− r+ 1ry

rz

+

sx− s+ 1sy

sz


=

(rx− r+ 1) + (sx− s+ 1) − 1

ry+ sy

rz+ sz


and the two are equal. The second condition compares

r · (

x1y1
z1

+

x2y2
z2

) = r ·

x1 + x2 − 1y1 + y2
z1 + z2

 =

r(x1 + x2 − 1) − r+ 1r(y1 + y2)

r(z1 + z2)


with

r

x1y1
z1

+ r

x2y2
z2

 =

rx1 − r+ 1ry1
rz1

+

rx2 − r+ 1ry2
rz2


=

(rx1 − r+ 1) + (rx2 − r+ 1) − 1

ry1 + ry2
rz1 + rz2


and they are equal. For the third condition,

(rs)

xy
z

 =

rsx− rs+ 1rsy

rsz


while

r(s

xy
z

) = r(

sx− s+ 1sy

sz

) =

r(sx− s+ 1) − r+ 1rsy

rsz


and the two are equal. For scalar multiplication by 1 we have this.

1 ·

xy
z

 =

1x− 1+ 11y

1z

 =

xy
z
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Thus all the conditions on a vector space are met by these two operations.
Remark. A way to understand this vector space is to think of it as the plane

in R3

P = {

xy
z

 | x+ y+ z = 0 }

displaced away from the origin by 1 along the x-axis. Then addition becomes: to
add two members of this space, x1y1

z1

 ,
x2y2
z2


(such that x1 + y1 + z1 = 1 and x2 + y2 + z2 = 1) move them back by 1 to place
them in P and add as usual,x1 − 1y1

z1

+

x2 − 1y2
z2

 =

x1 + x2 − 2y1 + y2
z1 + z2

 (in P)

and then move the result back out by 1 along the x-axis.x1 + x2 − 1y1 + y2
z1 + z2

 .
Scalar multiplication is similar.

(c) For the subspace to be closed under the inherited scalar multiplication, where
~v is a member of that subspace,

0 ·~v =

00
0


must also be a member.

The converse does not hold. Here is a subset of R3 that contains the origin

{

00
0

 ,
10
0

 }

(this subset has only two elements) but is not a subspace.

Two.I.2.38 (a) (~v1 +~v2 +~v3) − (~v1 +~v2) = ~v3
(b) (~v1 +~v2) − (~v1) = ~v2
(c) Surely, ~v1.
(d) Taking the one-long sum and subtracting gives (~v1) −~v1 = ~0.

Two.I.2.39 Yes; any space is a subspace of itself, so each space contains the other.
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Two.I.2.40 (a) The union of the x-axis and the y-axis in R2 is one.
(b) The set of integers, as a subset of R1, is one.
(c) The subset {~v } of R2 is one, where ~v is any nonzero vector.

Two.I.2.41 Because vector space addition is commutative, a reordering of summands
leaves a linear combination unchanged.

Two.I.2.42 We always consider that span in the context of an enclosing space.

Two.I.2.43 It is both ‘if’ and ‘only if’.
For ‘if’, let S be a subset of a vector space V and assume ~v ∈ S satisfies

~v = c1~s1 + · · · + cn~sn where c1, . . . , cn are scalars and ~s1, . . . ,~sn ∈ S. We must
show that [S ∪ {~v }] = [S].

Containment one way, [S] ⊆ [S ∪ {~v }] is obvious. For the other direction,
[S ∪ {~v }] ⊆ [S], note that if a vector is in the set on the left then it has the form
d0~v + d1~t1 + · · · + dm~tm where the d’s are scalars and the ~t ’s are in S. Rewrite
that as d0(c1~s1 + · · · + cn~sn) + d1~t1 + · · · + dm~tm and note that the result is a
member of the span of S.

The ‘only if’ is clearly true—adding ~v enlarges the span to include at least ~v.

Two.I.2.44 (a) Always.
Assume that A,B are subspaces of V. Note that their intersection is not

empty as both contain the zero vector. If ~w,~s ∈ A ∩ B and r, s are scalars then
r~v+ s~w ∈ A because each vector is in A and so a linear combination is in A, and
r~v+ s~w ∈ B for the same reason. Thus the intersection is closed. Now Lemma 2.9
applies.

(b) Sometimes (more precisely, only if A ⊆ B or B ⊆ A).
To see the answer is not ‘always’, take V to be R3, take A to be the x-axis,

and B to be the y-axis. Note that(
1

0

)
∈ A and

(
0

1

)
∈ B but

(
1

0

)
+

(
0

1

)
6∈ A ∪ B

as the sum is in neither A nor B.
The answer is not ‘never’ because if A ⊆ B or B ⊆ A then clearly A ∪ B is a

subspace.
To show that A ∪ B is a subspace only if one subspace contains the other,

we assume that A 6⊆ B and B 6⊆ A and prove that the union is not a subspace.
The assumption that A is not a subset of B means that there is an ~a ∈ A with
~a 6∈ B. The other assumption gives a ~b ∈ B with ~b 6∈ A. Consider ~a+ ~b. Note
that sum is not an element of A or else (~a+ ~b) − ~a would be in A, which it is
not. Similarly the sum is not an element of B. Hence the sum is not an element
of A ∪ B, and so the union is not a subspace.
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(c) Never. As A is a subspace, it contains the zero vector, and therefore the set
that is A’s complement does not. Without the zero vector, the complement
cannot be a vector space.

Two.I.2.45 The span of a set does not depend on the enclosing space. A linear
combination of vectors from S gives the same sum whether we regard the operations
as those of W or as those of V, because the operations of W are inherited from V.

Two.I.2.46 It is; apply Lemma 2.9. (You must consider the following. Suppose B is a
subspace of a vector space V and suppose A ⊆ B ⊆ V is a subspace. From which
space does A inherit its operations? The answer is that it doesn’t matter—A will
inherit the same operations in either case.)

Two.I.2.47 (a) Always; if S ⊆ T then a linear combination of elements of S is also a
linear combination of elements of T .

(b) Sometimes (more precisely, if and only if S ⊆ T or T ⊆ S).
The answer is not ‘always’ as is shown by this example from R3

S = {

10
0

 ,
01
0

 }, T = {

10
0

 ,
00
1

 }

because of this. 11
1

 ∈ [S ∪ T ]

11
1

 6∈ [S] ∪ [T ]

The answer is not ‘never’ because if either set contains the other then equality
is clear. We can characterize equality as happening only when either set contains
the other by assuming S 6⊆ T (implying the existence of a vector ~s ∈ S with ~s 6∈ T)
and T 6⊆ S (giving a ~t ∈ T with ~t 6∈ S), noting ~s+~t ∈ [S ∪ T ], and showing that
~s+~t 6∈ [S] ∪ [T ].

(c) Sometimes.
Clearly [S∩T ] ⊆ [S]∩ [T ] because any linear combination of vectors from S∩T

is a combination of vectors from S and also a combination of vectors from T .
Containment the other way does not always hold. For instance, in R2, take

S = {

(
1

0

)
,

(
0

1

)
}, T = {

(
2

0

)
}

so that [S] ∩ [T ] is the x-axis but [S ∩ T ] is the trivial subspace.
Characterizing exactly when equality holds is tough. Clearly equality holds if

either set contains the other, but that is not ‘only if’ by this example in R3.

S = {

10
0

 ,
01
0

 }, T = {

10
0

 ,
00
1

 }
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(d) Never, as the span of the complement is a subspace, while the complement of
the span is not (it does not contain the zero vector).

Two.I.2.48 Call the subset S. By Lemma 2.9, we need to check that [S] is closed
under linear combinations. If c1~s1 + · · ·+ cn~sn, cn+1~sn+1 + · · ·+ cm~sm ∈ [S] then
for any p, r ∈ R we have

p · (c1~s1 + · · ·+ cn~sn) + r · (cn+1~sn+1 + · · ·+ cm~sm)

= pc1~s1 + · · ·+ pcn~sn + rcn+1~sn+1 + · · ·+ rcm~sm
which is an element of [S].

Two.I.2.49 For this to happen, one of the conditions giving the sensibleness of the
addition and scalar multiplication operations must be violated. Consider R2 with
these operations. (

x1
y1

)
+

(
x2
y2

)
=

(
0

0

)
r

(
x

y

)
=

(
0

0

)
The set R2 is closed under these operations. But it is not a vector space.

1 ·

(
1

1

)
6=

(
1

1

)

Linear Independence

Two.II.1: Definition and Examples

Two.II.1.20 For each of these, when the subset is independent you must prove it, and
when the subset is dependent you must give an example of a dependence.

(a) It is dependent. Considering

c1

 1

−3

5

+ c2

22
4

+ c3

 4

−4

14

 =

00
0


gives this linear system.

c1 + 2c2 + 4c3 = 0

−3c1 + 2c2 − 4c3 = 0

5c1 + 4c2 + 14c3 = 0
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Gauss’s Method 1 2 4 0

−3 2 −4 0

5 4 14 0

 3ρ1+ρ2−→
−5ρ1+ρ3

(3/4)ρ2+ρ3−→

1 2 4 0

0 8 8 0

0 0 0 0


yields a free variable, so there are infinitely many solutions. For an example of
a particular dependence we can set c3 to be, say, 1. Then we get c2 = −1 and
c1 = −2.

(b) It is dependent. The linear system that arises here1 2 3 0

7 7 7 0

7 7 7 0

 −7ρ1+ρ2−→
−7ρ1+ρ3

−ρ2+ρ3−→

1 2 3 0

0 −7 −14 0

0 0 0 0


has infinitely many solutions. We can get a particular solution by taking c3 to
be, say, 1, and back-substituting to get the resulting c2 and c1.

(c) It is linearly independent. The system 0 1 0

0 0 0

−1 4 0

 ρ1↔ρ2−→ ρ3↔ρ1−→

−1 4 0

0 1 0

0 0 0


has only the solution c1 = 0 and c2 = 0. (We could also have gotten the answer
by inspection—the second vector is obviously not a multiple of the first, and
vice versa.)

(d) It is linearly dependent. The linear system9 2 3 12 0

9 0 5 12 0

0 1 −4 −1 0


has more unknowns than equations, and so Gauss’s Method must end with at
least one variable free (there can’t be a contradictory equation because the system
is homogeneous, and so has at least the solution of all zeroes). To exhibit a
combination, we can do the reduction

−ρ1+ρ2−→ (1/2)ρ2+ρ3−→

9 2 3 12 0

0 −2 2 0 0

0 0 −3 −1 0


and take, say, c4 = 1. Then we have that c3 = −1/3, c2 = −1/3, and c1 =

−31/27.

Two.II.1.21 In the cases of independence, you must prove that it is independent.
Otherwise, you must exhibit a dependence. (Here we give a specific dependence
but others are possible.)
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(a) This set is independent. Setting up the relation c1(3− x+ 9x2) + c2(5− 6x+
3x2) + c3(1+ 1x− 5x

2) = 0+ 0x+ 0x2 gives a linear system 3 5 1 0

−1 −6 1 0

9 3 −5 0

 (1/3)ρ1+ρ2−→
−3ρ1+ρ3

3ρ2−→ −(12/13)ρ2+ρ3−→

3 5 1 0

0 −13 4 0

0 0 −128/13 0


with only one solution: c1 = 0, c2 = 0, and c3 = 0.

(b) This set is independent. We can see this by inspection, straight from the
definition of linear independence. Obviously neither is a multiple of the other.

(c) This set is linearly independent. The linear system reduces in this way2 3 4 0

1 −1 0 0

7 2 −3 0

 −(1/2)ρ1+ρ2−→
−(7/2)ρ1+ρ3

−(17/5)ρ2+ρ3−→

2 3 4 0

0 −5/2 −2 0

0 0 −51/5 0


to show that there is only the solution c1 = 0, c2 = 0, and c3 = 0.

(d) This set is linearly dependent. The linear system8 0 2 8 0

3 1 2 −2 0

3 2 2 5 0


must, after reduction, end with at least one variable free (there are more variables
than equations, and there is no possibility of a contradictory equation because
the system is homogeneous). We can take the free variables as parameters to
describe the solution set. We can then set the parameter to a nonzero value to
get a nontrivial linear relation.

Two.II.1.22 (a) The natural vector space is R3. Set up the equation00
0

 = c1

12
0

+ c2

−1

1

0


and consider the resulting homogeneous system.1 −1 0

2 1 0

0 0 0

 −2ρ1+ρ2−→

1 −1 0

0 3 0

0 0 0


This has the unique solution, that c1 = 0, c2 = 0. So it is linearly independent.

(b) The natural vector space is the set of three-wide row vectors. The equation

(0 0 0) = c1(1 3 1) + c2(−1 4 3) + c3(−1 11 7)
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gives rise to a linear system1 −1 −1 0

3 4 11 0

1 3 7 0

 −3ρ1+ρ2−→
−ρ1+ρ3

1 −1 −1 0

0 7 14 0

0 4 8 0


(4/7)ρ2+ρ3−→

1 −1 −1 0

0 7 14 0

0 0 0 0


with infinitely many solutions, that is, more than just the trivial solution.

{

c1c2
c3

 =

−1

−2

1

 c3 | c3 ∈ R }

So the set is linearly dependent. One dependence comes from setting c3 = 2,
giving c1 = −2 and c2 = −4.

(c) Without having to set up a system we can see that the second element of the
set is a multiple of the first (namely, 0 times the first).

Two.II.1.23 Let Z be the zero function Z(x) = 0, which is the additive identity in the
vector space under discussion.
(a) This set is linearly independent. Consider c1 · f(x)+c2 ·g(x) = Z(x). Plugging
in x = 1 and x = 2 gives a linear system

c1 · 1+ c2 · 1= 0
c1 · 2+ c2 · (1/2) = 0

with the unique solution c1 = 0, c2 = 0.
(b) This set is linearly independent. Consider c1 · f(x) + c2 · g(x) = Z(x) and plug
in x = 0 and x = π/2 to get

c1 · 1+ c2 · 0= 0
c1 · 0+ c2 · 1= 0

which obviously gives that c1 = 0, c2 = 0.
(c) This set is also linearly independent. Considering c1 · f(x) + c2 · g(x) = Z(x)
and plugging in x = 1 and x = e

c1 · e+ c2 · 0= 0
c1 · ee + c2 · 1= 0

gives that c1 = 0 and c2 = 0.

Two.II.1.24 In each case, if the set is independent then you must prove that and if it
is dependent then you must exhibit a dependence.
(a) This set is dependent. The familiar relation sin2(x) + cos2(x) = 1 shows that
2 = c1 · (4 sin2(x)) + c2 · (cos2(x)) is satisfied by c1 = 1/2 and c2 = 2.
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(b) This set is independent. Consider the relationship c1 · 1 + c2 · sin(x) + c3 ·
sin(2x) = 0 (that ‘0’ is the zero function). Taking three suitable points such as
x = π, x = π/2, x = π/4 gives a system

c1 = 0

c1 + c2 = 0

c1 + (
√
2/2)c2 + c3 = 0

whose only solution is c1 = 0, c2 = 0, and c3 = 0.
(c) By inspection, this set is independent. Any dependence cos(x) = c · x is not
possible since the cosine function is not a multiple of the identity function (we
are applying Corollary 1.18).

(d) By inspection, we spot that there is a dependence. Because (1+x)2 = x2+2x+1,
we get that c1 · (1+ x)2 + c2 · (x2 + 2x) = 3 is satisfied by c1 = 3 and c2 = −3.

(e) This set is dependent. The easiest way to see that is to recall the trigonometric
relationship cos2(x) − sin2(x) = cos(2x). (Remark. A person who doesn’t recall
this, and tries some x’s, simply never gets a system leading to a unique solution,
and never gets to conclude that the set is independent. Of course, this person
might wonder if they simply never tried the right set of x’s, but a few tries will
lead most people to look instead for a dependence.)

(f) This set is dependent, because it contains the zero object in the vector space,
the zero polynomial.

Two.II.1.25 No, that equation is not a linear relationship. In fact this set is indepen-
dent, as the system arising from taking x to be 0, π/6 and π/4 shows.

Two.II.1.26 No. Here are two members of the plane where the second is a multiple of
the first. 10

0

 ,
20
0


(Another reason that the answer is “no” is the the zero vector is a member of the
plane and no set containing the zero vector is linearly independent.)

Two.II.1.27 We have already showed this: the Linear Combination Lemma and its
corollary state that in an echelon form matrix, no nonzero row is a linear combination
of the others.

Two.II.1.28 (a) Assume that {~u,~v, ~w } is linearly independent, so that any relation-
ship d0~u + d1~v + d2~w = ~0 leads to the conclusion that d0 = 0, d1 = 0, and
d2 = 0.

Consider the relationship c1(~u) + c2(~u+~v) + c3(~u+~v+ ~w) = ~0. Rewrite it
to get (c1 + c2 + c3)~u + (c2 + c3)~v + (c3)~w = ~0. Taking d0 to be c1 + c2 + c3,
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taking d1 to be c2 + c3, and taking d2 to be c3 we have this system.
c1 + c2 + c3 = 0

c2 + c3 = 0

c3 = 0

Conclusion: the c’s are all zero, and so the set is linearly independent.
(b) The second set is dependent

1 · (~u−~v) + 1 · (~v− ~w) + 1 · (~w− ~u) = ~0

whether or not the first set is independent.

Two.II.1.29 (a) A singleton set {~v } is linearly independent if and only if ~v 6= ~0.
For the ‘if’ direction, with ~v 6= ~0, we can apply Lemma 1.5 by considering the
relationship c ·~v = ~0 and noting that the only solution is the trivial one: c = 0.
For the ‘only if’ direction, just recall that Example 1.11 shows that {~0 } is linearly
dependent, and so if the set {~v } is linearly independent then ~v 6= ~0.

(Remark. Another answer is to say that this is the special case of Lemma 1.14
where S = ∅.)

(b) A set with two elements is linearly independent if and only if neither member
is a multiple of the other (note that if one is the zero vector then it is a multiple
of the other). This is an equivalent statement: a set is linearly dependent if and
only if one element is a multiple of the other.

The proof is easy. A set {~v1,~v2 } is linearly dependent if and only if there is a
relationship c1~v1 + c2~v2 = ~0 with either c1 6= 0 or c2 6= 0 (or both). That holds
if and only if ~v1 = (−c2/c1)~v2 or ~v2 = (−c1/c2)~v1 (or both).

Two.II.1.30 This set is linearly dependent set because it contains the zero vector.

Two.II.1.31 Lemma 1.19 gives the ‘if’ half. The converse (the ‘only if’ statement)
does not hold. An example is to consider the vector space R2 and these vectors.

~x =

(
1

0

)
, ~y =

(
0

1

)
, ~z =

(
1

1

)
Two.II.1.32 (a) The linear system arising from

c1

11
0

+ c2

−1

2

0

 =

00
0


has the unique solution c1 = 0 and c2 = 0.

(b) The linear system arising from

c1

11
0

+ c2

−1

2

0

 =

32
0


has the unique solution c1 = 8/3 and c2 = −1/3.
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(c) Suppose that S is linearly independent. Suppose that we have both ~v =

c1~s1 + · · ·+ cn~sn and ~v = d1~t1 + · · ·+ dm~tm (where the vectors are members of
S). Now,

c1~s1 + · · ·+ cn~sn = ~v = d1~t1 + · · ·+ dm~tm
can be rewritten in this way.

c1~s1 + · · ·+ cn~sn − d1~t1 − · · ·− dm~tm = ~0

Possibly some of the ~s ’s equal some of the ~t ’s; we can combine the associated
coefficients (i.e., if ~si = ~tj then · · ·+ ci~si + · · ·− dj~tj − · · · can be rewritten as
· · · + (ci − dj)~si + · · · ). That equation is a linear relationship among distinct
(after the combining is done) members of the set S. We’ve assumed that S is
linearly independent, so all of the coefficients are zero. If i is such that ~si does
not equal any ~tj then ci is zero. If j is such that ~tj does not equal any ~si then dj
is zero. In the final case, we have that ci − dj = 0 and so ci = dj.

Therefore, the original two sums are the same, except perhaps for some 0 · ~si
or 0 ·~tj terms that we can neglect.

(d) This set is not linearly independent:

S = {

(
1

0

)
,

(
2

0

)
} ⊂ R2

and these two linear combinations give the same result(
0

0

)
= 2 ·

(
1

0

)
− 1 ·

(
2

0

)
= 4 ·

(
1

0

)
− 2 ·

(
2

0

)
Thus, a linearly dependent set might have indistinct sums.

In fact, this stronger statement holds: if a set is linearly dependent then it
must have the property that there are two distinct linear combinations that sum
to the same vector. Briefly, where c1~s1 + · · ·+ cn~sn = ~0 then multiplying both
sides of the relationship by two gives another relationship. If the first relationship
is nontrivial then the second is also.

Two.II.1.33 In this ‘if and only if’ statement, the ‘if’ half is clear— if the polynomial is
the zero polynomial then the function that arises from the action of the polynomial
must be the zero function x 7→ 0. For ‘only if’ we write p(x) = cnx

n + · · · + c0.
Plugging in zero p(0) = 0 gives that c0 = 0. Taking the derivative and plugging in
zero p′(0) = 0 gives that c1 = 0. Similarly we get that each ci is zero, and p is the
zero polynomial.

Two.II.1.34 The work in this section suggests that we should define an n-dimensional
non-degenerate linear surface as the span of a linearly independent set of n vectors.

Two.II.1.35 (a) For any a1,1, . . . , a2,4,

c1

(
a1,1
a2,1

)
+ c2

(
a1,2
a2,2

)
+ c3

(
a1,3
a2,3

)
+ c4

(
a1,4
a2,4

)
=

(
0

0

)
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yields a linear system
a1,1c1 + a1,2c2 + a1,3c3 + a1,4c4 = 0

a2,1c1 + a2,2c2 + a2,3c3 + a2,4c4 = 0

that has infinitely many solutions (Gauss’s Method leaves at least two variables
free). Hence there are nontrivial linear relationships among the given members
of R2.

(b) Any set five vectors is a superset of a set of four vectors, and so is linearly
dependent.

With three vectors from R2, the argument from the prior item still applies,
with the slight change that Gauss’s Method now only leaves at least one variable
free (but that still gives infinitely many solutions).

(c) The prior item shows that no three-element subset of R2 is independent. We
know that there are two-element subsets of R2 that are independent—one is

{

(
1

0

)
,

(
0

1

)
}

and so the answer is two.
Two.II.1.36 Yes; here is one.

{

10
0

 ,
01
0

 ,
00
1

 ,
11
1

 }

Two.II.1.37 Yes. Fix any vector space V, and let S be a linearly dependent subset
of V. For a subset of S that is dependent we can take S itself. For a subset of S
that is independent we can take the empty set.

Two.II.1.38 In R4 the biggest linearly independent set has four vectors. There are
many examples of such sets, this is one.

{


1

0

0

0

 ,

0

1

0

0

 ,

0

0

1

0

 ,

0

0

0

1

 }

To see that no set with five or more vectors can be independent, set up

c1


a1,1
a2,1
a3,1
a4,1

+ c2


a1,2
a2,2
a3,2
a4,2

+ c3


a1,3
a2,3
a3,3
a4,3

+ c4


a1,4
a2,4
a3,4
a4,4

+ c5


a1,5
a2,5
a3,5
a4,5

 =


0

0

0

0


and note that the resulting linear system

a1,1c1 + a1,2c2 + a1,3c3 + a1,4c4 + a1,5c5 = 0

a2,1c1 + a2,2c2 + a2,3c3 + a2,4c4 + a2,5c5 = 0

a3,1c1 + a3,2c2 + a3,3c3 + a3,4c4 + a3,5c5 = 0

a4,1c1 + a4,2c2 + a4,3c3 + a4,4c4 + a4,5c5 = 0
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has four equations and five unknowns, so Gauss’s Method must end with at least
one c variable free, so there are infinitely many solutions, and so the above linear
relationship among the four-tall vectors has more solutions than just the trivial
solution.

The smallest linearly independent set is the empty set.
The biggest linearly dependent set is R4. The smallest is {~0 }.

Two.II.1.39 (a) The intersection of two linearly independent sets S ∩ T must be
linearly independent as it is a subset of the linearly independent set S (as well as
the linearly independent set T also, of course).

(b) The complement of a linearly independent set is linearly dependent as it
contains the zero vector.

(c) A simple example in R2 is these two sets.

S = {

(
1

0

)
} T = {

(
0

1

)
}

A somewhat subtler example, again in R2, is these two.

S = {

(
1

0

)
} T = {

(
1

0

)
,

(
0

1

)
}

(d) We must produce an example. One, in R2, is

S = {

(
1

0

)
} T = {

(
2

0

)
}

since the linear dependence of S1 ∪ S2 is easy to see.

Two.II.1.40 (a) Lemma 1.5 requires that the vectors ~s1, . . . ,~sn,~t1, . . . ,~tm be distinct.
But we could have that the union S ∪ T is linearly independent with some ~si
equal to some ~tj.

(b) One example in R2 is these two.

S = {

(
1

0

)
} T = {

(
1

0

)
,

(
0

1

)
}

(c) An example from R2 is these sets.

S = {

(
1

0

)
,

(
0

1

)
} T = {

(
1

0

)
,

(
1

1

)
}

(d) The union of two linearly independent sets S∪ T is linearly independent if and
only if their spans of S and T−(S∩T) have a trivial intersection [S]∩[T−(S∩T)] =
{~0 }. To prove that, assume that S and T are linearly independent subsets of some
vector space.

For the ‘only if’ direction, assume that the intersection of the spans is trivial
[S] ∩ [T − (S ∩ T)] = {~0 }. Consider the set S ∪ (T − (S ∩ T)) = S ∪ T and consider
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the linear relationship c1~s1 + · · ·+ cn~sn + d1~t1 + · · ·+ dm~tm = ~0. Subtracting
gives c1~s1 + · · · + cn~sn = −d1~t1 − · · · − dm~tm. The left side of that equation
sums to a vector in [S], and the right side is a vector in [T − (S ∩ T)]. Therefore,
since the intersection of the spans is trivial, both sides equal the zero vector.
Because S is linearly independent, all of the c’s are zero. Because T is linearly
independent so also is T − (S ∩ T) linearly independent, and therefore all of the
d’s are zero. Thus, the original linear relationship among members of S ∪ T only
holds if all of the coefficients are zero. Hence, S ∪ T is linearly independent.

For the ‘if’ half we can make the same argument in reverse. Suppose that
the union S ∪ T is linearly independent. Consider a linear relationship among
members of S and T − (S ∩ T). c1~s1 + · · ·+ cn~sn + d1~t1 + · · ·+ dm~tm = ~0 Note
that no ~si is equal to a ~tj so that is a combination of distinct vectors, as required
by Lemma 1.5. So the only solution is the trivial one c1 = 0, . . . , dm = 0. Since
any vector ~v in the intersection of the spans [S] ∩ [T − (S ∩ T)] we can write
~v = c1~s1 + · · · + cn~sn = −d1~t1 − · · · − dm~tm, and it must be the zero vector
because each scalar is zero.

Two.II.1.41 (a) We do induction on the number of vectors in the finite set S.
The base case is that S has no elements. In this case S is linearly independent

and there is nothing to check—a subset of S that has the same span as S is S
itself.

For the inductive step assume that the theorem is true for all sets of size
n = 0, n = 1, . . . , n = k in order to prove that it holds when S has n = k + 1

elements. If the k+ 1-element set S = {~s0, . . . ,~sk } is linearly independent then
the theorem is trivial, so assume that it is dependent. By Corollary 1.18 there is
an ~si that is a linear combination of other vectors in S. Define S1 = S− {~si } and
note that S1 has the same span as S by Corollary 1.3. The set S1 has k elements
and so the inductive hypothesis applies to give that it has a linearly independent
subset with the same span. That subset of S1 is the desired subset of S.

(b) Here is a sketch of the argument. We have left out the induction argument
details.

If the finite set S is empty then there is nothing to prove. If S = {~0 } then the
empty subset will do.

Otherwise, take some nonzero vector ~s1 ∈ S and define S1 = {~s1 }. If [S1] = [S]

then we are finished with this proof by noting that S1 is linearly independent.
If not, then there is a nonzero vector ~s2 ∈ S − [S1] (if every ~s ∈ S is in [S1]

then [S1] = [S]). Define S2 = S1∪ {~s2 }. If [S2] = [S] then we are finished by using
Theorem 1.18 to show that S2 is linearly independent.

Repeat the last paragraph until a set with a big enough span appears. That
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must eventually happen because S is finite, and [S] will be reached at worst when
we have used every vector from S.

Two.II.1.42 (a) Assuming first that a 6= 0,

x

(
a

c

)
+ y

(
b

d

)
=

(
0

0

)
gives

ax+ by= 0

cx+ dy= 0

−(c/a)ρ1+ρ2−→ ax+ by= 0

(−(c/a)b+ d)y= 0

which has a solution if and only if 0 6= −(c/a)b + d = (−cb + ad)/d (we’ve
assumed in this case that a 6= 0, and so back substitution yields a unique solution).

The a = 0 case is also not hard—break it into the c 6= 0 and c = 0 subcases
and note that in these cases ad− bc = 0 · d− bc.

Comment. An earlier exercise showed that a two-vector set is linearly
dependent if and only if either vector is a scalar multiple of the other. We could
also use that to make the calculation.

(b) The equation

c1

ad
g

+ c2

be
h

+ c3

cf
i

 =

00
0


expresses a homogeneous linear system. We proceed by writing it in matrix form
and applying Gauss’s Method.

We first reduce the matrix to upper-triangular. Assume that a 6= 0. With
that, we can clear down the first column.

(1/a)ρ1−→

1 b/a c/a 0

d e f 0

g h i 0

 −dρ1+ρ2−→
−gρ1+ρ3

1 b/a c/a 0

0 (ae− bd)/a (af− cd)/a 0

0 (ah− bg)/a (ai− cg)/a 0


Then we get a 1 in the second row, second column entry. (Assuming for the
moment that ae− bd 6= 0, in order to do the row reduction step.)

(a/(ae−bd))ρ2−→

1 b/a c/a 0

0 1 (af− cd)/(ae− bd) 0

0 (ah− bg)/a (ai− cg)/a 0


Then, under the assumptions, we perform the row operation ((ah−bg)/a)ρ2+ρ3
to get this.1 b/a c/a 0

0 1 (af− cd)/(ae− bd) 0

0 0 (aei+ bgf+ cdh− hfa− idb− gec)/(ae− bd) 0
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Therefore, the original system is nonsingular if and only if the above 3, 3 entry
is nonzero (this fraction is defined because of the ae− bd 6= 0 assumption). It
equals zero if and only if the numerator is zero.

We next worry about the assumptions. First, if a 6= 0 but ae− bd = 0 then
we swap1 b/a c/a 0

0 0 (af− cd)/a 0

0 (ah− bg)/a (ai− cg)/a 0


ρ2↔ρ3−→

1 b/a c/a 0

0 (ah− bg)/a (ai− cg)/a 0

0 0 (af− cd)/a 0


and conclude that the system is nonsingular if and only if either ah− bg = 0 or
af− cd = 0. That’s the same as asking that their product be zero:

ahaf− ahcd− bgaf+ bgcd = 0

ahaf− ahcd− bgaf+ aegc = 0

a(haf− hcd− bgf+ egc) = 0

(in going from the first line to the second we’ve applied the case assumption that
ae− bd = 0 by substituting ae for bd). Since we are assuming that a 6= 0, we
have that haf− hcd− bgf+ egc = 0. With ae− bd = 0 we can rewrite this to
fit the form we need: in this a 6= 0 and ae − bd = 0 case, the given system is
nonsingular when haf− hcd− bgf+ egc− i(ae− bd) = 0, as required.

The remaining cases have the same character. Do the a = 0 but d 6= 0 case
and the a = 0 and d = 0 but g 6= 0 case by first swapping rows and then going
on as above. The a = 0, d = 0, and g = 0 case is easy—a set with a zero vector
is linearly dependent, and the formula comes out to equal zero.

(c) It is linearly dependent if and only if either vector is a multiple of the other.
That is, it is not independent iffad

g

 = r ·

be
h

 or

be
h

 = s ·

ad
g


(or both) for some scalars r and s. Eliminating r and s in order to restate this
condition only in terms of the given letters a, b, d, e, g, h, we have that it is
not independent— it is dependent— iff ae− bd = ah− gb = dh− ge.

(d) Dependence or independence is a function of the indices, so there is indeed a
formula (although at first glance a person might think the formula involves cases:
“if the first component of the first vector is zero then . . . ”, this guess turns out
not to be correct).
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Two.II.1.43 Recall that two vectors from Rn are perpendicular if and only if their
dot product is zero.
(a) Assume that ~v and ~w are perpendicular nonzero vectors in Rn, with n > 1.
With the linear relationship c~v+ d~w = ~0, apply ~v to both sides to conclude that
c · ‖~v‖2 + d · 0 = 0. Because ~v 6= ~0 we have that c = 0. A similar application of
~w shows that d = 0.

(b) Two vectors in R1 are perpendicular if and only if at least one of them is zero.
We define R0 to be a trivial space, and so both ~v and ~w are the zero vector.

(c) The right generalization is to look at a set {~v1, . . . ,~vn } ⊆ Rk of vectors that
are mutually orthogonal (also called pairwise perpendicular ): if i 6= j then ~vi is
perpendicular to ~vj. Mimicking the proof of the first item above shows that such
a set of nonzero vectors is linearly independent.

Two.II.1.44 (a) This check is routine.
(b) The summation is infinite (has infinitely many summands). The definition of
linear combination involves only finite sums.

(c) No nontrivial finite sum of members of {g, f0, f1, . . . } adds to the zero ob-
ject: assume that

c0 · (1/(1− x)) + c1 · 1+ · · ·+ cn · xn = 0

(any finite sum uses a highest power, here n). Multiply both sides by 1− x to
conclude that each coefficient is zero, because a polynomial describes the zero
function only when it is the zero polynomial.

Two.II.1.45 It is both ‘if’ and ‘only if’.
Let T be a subset of the subspace S of the vector space V. The assertion that

any linear relationship c1~t1 + · · · + cn~tn = ~0 among members of T must be the
trivial relationship c1 = 0, . . . , cn = 0 is a statement that holds in S if and only if
it holds in V , because the subspace S inherits its addition and scalar multiplication
operations from V.

Basis and Dimension

Two.III.1: Basis

Two.III.1.18 (a) This is a basis for P2. To show that it spans the space we consider
a generic a2x2 + a1x + a0 ∈ P2 and look for scalars c1, c2, c3 ∈ R such that
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a2x
2 + a1x+ a0 = c1 · (x2 − x+ 1) + c2 · (2x+ 1) + c3(2x− 1). Gauss’s Method

on the linear system
c1 = a2

2c2 + 2c3 = a1
c2 − c3 = a0

shows that given the ai’s we can compute the cj’s as c1 = a2, c2 = (1/4)a1 +

(1/2)a0, and c3 = (1/4)a1 − (1/2)a0. Thus each element of P2 is a combination
of the given three.

To prove that the set of the given three is linearly independent we can set up
the equation 0x2+ 0x+ 0 = c1 · (x2− x+ 1) + c2 · (2x+ 1) + c3(2x− 1) and solve,
and it will give that c1 = 0, c2 = 0, and c3 = 0. Or, we can instead observe that
the solution in the prior paragraph is unique, and cite Theorem 1.12.

(b) This is not a basis. It does not span the space since no combination of the
two c1 · (x+ x2) + c2 · (x− x2) will sum to the polynomial 3 ∈ P2.

Two.III.1.19 By Theorem 1.12, each is a basis if and only if we can express each vector
in the space in a unique way as a linear combination of the given vectors.
(a) Yes this is a basis. The relation

c1

12
3

+ c2

32
1

+ c3

00
1

 =

xy
z


gives 1 3 0 x

2 2 0 y

3 1 1 z

 −2ρ1+ρ2−→
−3ρ1+ρ3

−2ρ2+ρ3−→

1 3 0 x

0 −4 0 −2x+ y

0 0 1 x− 2y+ z


which has the unique solution c3 = x − 2y + z, c2 = x/2 − y/4, and c1 =

−x/2+ 3y/4.
(b) This is not a basis. Setting it up as in the prior item

c1

12
3

+ c2

32
1

 =

xy
z


gives a linear system whose solution1 3 x

2 2 y

3 1 z

 −2ρ1+ρ2−→
−3ρ1+ρ3

−2ρ2+ρ3−→

1 3 x

0 −4 −2x+ y

0 0 x− 2y+ z


is possible if and only if the three-tall vector’s components x, y, and z satisfy
x − 2y + z = 0. For instance, we can find the coefficients c1 and c2 that work
when x = 1, y = 1, and z = 1. However, there are no c’s that work for x = 1,
y = 1, and z = 2. Thus this is not a basis; it does not span the space.



Answers to Exercises 95

(c) Yes, this is a basis. Setting up the relationship leads to this reduction 0 1 2 x

2 1 5 y

−1 1 0 z

 ρ1↔ρ3−→ 2ρ1+ρ2−→ −(1/3)ρ2+ρ3−→

−1 1 0 z

0 3 5 y+ 2z

0 0 1/3 x− y/3− 2z/3


which has a unique solution for each triple of components x, y, and z.

(d) No, this is not a basis. The reduction 0 1 1 x

2 1 3 y

−1 1 0 z

 ρ1↔ρ3−→ 2ρ1+ρ2−→ (−1/3)ρ2+ρ3−→

−1 1 0 z

0 3 3 y+ 2z

0 0 0 x− y/3− 2z/3


which does not have a solution for each triple x, y, and z. Instead, the span of
the given set includes only those three-tall vectors where x = y/3+ 2z/3.

Two.III.1.20 (a) We solve

c1

(
1

1

)
+ c2

(
−1

1

)
=

(
1

2

)
with (

1 −1 1

1 1 2

)
−ρ1+ρ2−→

(
1 −1 1

0 2 1

)
and conclude that c2 = 1/2 and so c1 = 3/2. Thus, the representation is this.

RepB(

(
1

2

)
) =

(
3/2

1/2

)
B

(b) The relationship c1·(1)+c2·(1+x)+c3·(1+x+x2)+c4·(1+x+x2+x3) = x2+x3

is easily solved by eye to give that c4 = 1, c3 = 0, c2 = −1, and c1 = 0.

RepD(x
2 + x3) =


0

−1

0

1


D

(c) RepE4(


0

−1

0

1

) =


0

−1

0

1


E4

Two.III.1.21 Solving (
3

−1

)
=

(
1

−1

)
· c1 +

(
1

1

)
· c2

gives c1 = 2 and c2 = 1.

RepB1(

(
3

−1

)
) =

(
2

1

)
B1
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Similarly, solving (
3

−1

)
=

(
1

2

)
· c1 +

(
1

3

)
· c2

gives this.

RepB2(

(
3

−1

)
) =

(
10

−7

)
B2

Two.III.1.22 A natural basis is 〈1, x, x2〉. There are bases for P2 that do not contain
any polynomials of degree one or degree zero. One is 〈1+x+x2, x+x2, x2〉. (Every
basis has at least one polynomial of degree two, though.)

Two.III.1.23 The reduction(
1 −4 3 −1 0

2 −8 6 −2 0

)
−2ρ1+ρ2−→

(
1 −4 3 −1 0

0 0 0 0 0

)
gives that the only condition is that x1 = 4x2 − 3x3 + x4. The solution set is

{


4x2 − 3x3 + x4

x2
x3
x4

 | x2, x3, x4 ∈ R }

= {x2


4

1

0

0

+ x3


−3

0

1

0

+ x4


1

0

0

1

 | x2, x3, x4 ∈ R }

and so the obvious candidate for the basis is this.

〈


4

1

0

0

 ,

−3

0

1

0

 ,

1

0

0

1

〉
We’ve shown that this spans the space, and showing it is also linearly independent
is routine.

Two.III.1.24 There are many bases. This is a natural one.

〈

(
1 0

0 0

)
,

(
0 1

0 0

)
,

(
0 0

1 0

)
,

(
0 0

0 1

)
〉

Two.III.1.25 For each item, many answers are possible.
(a) One way to proceed is to parametrize by expressing the a2 as a combination of
the other two a2 = 2a1 + a0. Then a2x2 + a1x+ a0 is (2a1 + a0)x2 + a1x+ a0
and

{(2a1 + a0)x
2 + a1x+ a0 | a1, a0 ∈ R }

= {a1 · (2x2 + x) + a0 · (x2 + 1) | a1, a0 ∈ R }
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suggests 〈2x2 + x, x2 + 1〉. This only shows that it spans, but checking that it is
linearly independent is routine.

(b) Parametrize {(a b c) | a+ b = 0 } to get {(−b b c) | b, c ∈ R }, which sug-
gests using the sequence 〈(−1 1 0), (0 0 1)〉. We’ve shown that it spans, and
checking that it is linearly independent is easy.

(c) Rewriting

{

(
a b

0 2b

)
| a, b ∈ R } = {a ·

(
1 0

0 0

)
+ b ·

(
0 1

0 2

)
| a, b ∈ R }

suggests this for the basis.

〈

(
1 0

0 0

)
,

(
0 1

0 2

)
〉

Two.III.1.26 (a) Parametrize a − 2b + c − d = 0 as a = 2b − c + d, b = b, c = c,
and d = d to get this description of M as the span of a set of three vectors.

M = {(2+ x) · b+ (−1+ x2) · c+ (1+ x3) · d | b, c, d ∈ R }

To show that this three-vector set is a basis, what remains is to verify that it is
linearly independent.

0+ 0x+ 0x2 + 0x3 = (2+ x) · c1 + (−1+ x2) · c2 + (1+ x3) · c3
From the x terms we see that c1 = 0. From the x2 terms we see that c2 = 0. The
x3 terms give that c3 = 0.

(b) First parametrize the description (note that the fact that b and d are not
mentioned in the description of W does not mean they are zero or absent, it
means that they are unrestricted).

W = {

(
0 1

0 0

)
· b+

(
1 0

1 0

)
· c+

(
0 0

0 1

)
· d | b, c, d ∈ R }

That gives W as the span of a three element set. We will be done if we show that
the set is linearly independent.(

0 0

0 0

)
=

(
0 1

0 0

)
· c1 +

(
1 0

1 0

)
· c2 +

(
0 0

0 1

)
· c3

Using the upper right entries we see that c1 = 0. The upper left entries give that
c2 = 0, and the lower left entries show that c3 = 0.

Two.III.1.27 We will show that the second is a basis; the first is similar. We will show
this straight from the definition of a basis, because this example appears before
Theorem 1.12.

To see that it is linearly independent, we set up c1 · (cos θ− sin θ)+c2 · (2 cos θ+
3 sin θ) = 0 cos θ+ 0 sin θ. Taking θ = 0 and θ = π/2 gives this system

c1 · 1+ c2 · 2= 0
c1 · (−1) + c2 · 3= 0

ρ1+ρ2−→ c1 + 2c2 = 0

+ 5c2 = 0
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which shows that c1 = 0 and c2 = 0.
The calculation for span is also easy; for any x, y ∈ R, we have that c1 · (cos θ−

sin θ) + c2 · (2 cos θ+ 3 sin θ) = x cos θ+ y sin θ gives that c2 = x/5+ y/5 and that
c1 = 3x/5− 2y/5, and so the span is the entire space.

Two.III.1.28 (a) Asking which a0 + a1x + a2x2 can be expressed as c1 · (1 + x) +
c2 · (1+ 2x) gives rise to three linear equations, describing the coefficients of x2,
x, and the constants.

c1 + c2 = a0
c1 + 2c2 = a1

0= a2
Gauss’s Method with back-substitution shows, provided that a2 = 0, that
c2 = −a0 +a1 and c1 = 2a0 −a1. Thus, with a2 = 0, we can compute appropri-
ate c1 and c2 for any a0 and a1. So the span is the entire set of linear polynomials
{a0 + a1x | a0, a1 ∈ R }. Parametrizing that set {a0 · 1+ a1 · x | a0, a1 ∈ R } sug-
gests a basis 〈1, x〉 (we’ve shown that it spans; checking linear independence is
easy).

(b) With
a0+a1x+a2x

2 = c1 · (2− 2x)+ c2 · (3+ 4x2) = (2c1+ 3c2)+ (−2c1)x+(4c2)x
2

we get this system.
2c1 + 3c2 = a0

−2c1 = a1
4c2 = a2

ρ1+ρ2−→ (−4/3)ρ2+ρ3−→
2c1 + 3c2 = a0

3c2 = a0 + a1
0= (−4/3)a0 − (4/3)a1 + a2

Thus, the only quadratic polynomials a0 + a1x + a2x2 with associated c’s are
the ones such that 0 = (−4/3)a0 − (4/3)a1 + a2. Hence the span is this.

{(−a1 + (3/4)a2) + a1x+ a2x
2 | a1, a2 ∈ R }

Parametrizing gives {a1 · (−1+ x) + a2 · ((3/4) + x2) | a1, a2 ∈ R }, which sug-
gests 〈−1+ x, (3/4) + x2〉 (checking that it is linearly independent is routine).

Two.III.1.29 (a) The subspace is this.
{a0 + a1x+ a2x

2 + a3x
3 | a0 + 7a1 + 49a2 + 343a3 = 0 }

Rewriting a0 = −7a1 − 49a2 − 343a3 gives this.
{(−7a1 − 49a2 − 343a3) + a1x+ a2x

2 + a3x
3 | a1, a2, a3 ∈ R }

On breaking out the parameters, this suggests 〈−7+ x,−49+ x2,−343+ x3〉 for
the basis (it is easily verified).

(b) The given subspace is the collection of cubics p(x) = a0 + a1x+ a2x2 + a3x3

such that a0+7a1+49a2+343a3 = 0 and a0+5a1+25a2+125a3 = 0. Gauss’s
Method

a0 + 7a1 + 49a2 + 343a3 = 0

a0 + 5a1 + 25a2 + 125a3 = 0

−ρ1+ρ2−→ a0 + 7a1 + 49a2 + 343a3 = 0

−2a1 − 24a2 − 218a3 = 0
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gives that a1 = −12a2 − 109a3 and that a0 = 35a2 + 420a3. Rewriting (35a2 +

420a3)+(−12a2−109a3)x+a2x
2+a3x

3 as a2·(35−12x+x2)+a3·(420−109x+x3)
suggests this for a basis 〈35− 12x+ x2, 420− 109x+ x3〉. The above shows that
it spans the space. Checking it is linearly independent is routine. (Comment. A
worthwhile check is to verify that both polynomials in the basis have both seven
and five as roots.)

(c) Here there are three conditions on the cubics, that a0+7a1+49a2+343a3 = 0,
that a0 + 5a1 + 25a2 + 125a3 = 0, and that a0 + 3a1 + 9a2 + 27a3 = 0. Gauss’s
Method
a0 + 7a1 + 49a2 + 343a3 = 0

a0 + 5a1 + 25a2 + 125a3 = 0

a0 + 3a1 + 9a2 + 27a3 = 0

−ρ1+ρ2−→
−ρ1+ρ3

−2ρ2+ρ3−→
a0 + 7a1 + 49a2 + 343a3 = 0

−2a1 − 24a2 − 218a3 = 0

8a2 + 120a3 = 0

yields the single free variable a3, with a2 = −15a3, a1 = 71a3, and a0 = −105a3.
The parametrization is this.

{(−105a3) + (71a3)x+ (−15a3)x
2 + (a3)x

3 | a3 ∈ R }

= {a3 · (−105+ 71x− 15x2 + x3) | a3 ∈ R }

Therefore, a natural candidate for the basis is 〈−105+ 71x− 15x2+ x3〉. It spans
the space by the work above. It is clearly linearly independent because it is a
one-element set (with that single element not the zero object of the space). Thus,
any cubic through the three points (7, 0), (5, 0), and (3, 0) is a multiple of this
one. (Comment. As in the prior question, a worthwhile check is to verify that
plugging seven, five, and three into this polynomial yields zero each time.)

(d) This is the trivial subspace of P3. Thus, the basis is empty 〈〉.
Remark. Alternatively, we could have derived the polynomial in the third item by
multiplying out (x− 7)(x− 5)(x− 3).

Two.III.1.30 Yes. Linear independence and span are unchanged by reordering.

Two.III.1.31 No linearly independent set contains a zero vector.

Two.III.1.32 (a) To show that it is linearly independent, note that if d1(c1~β1) +
d2(c2~β2) + d3(c3~β3) = ~0 then (d1c1)~β1 + (d2c2)~β2 + (d3c3)~β3 = ~0, which in
turn implies that each dici is zero. But with ci 6= 0 that means that each di is
zero. Showing that it spans the space is much the same; because 〈~β1, ~β2, ~β3〉 is
a basis, and so spans the space, we can for any ~v write ~v = d1~β1 + d2~β2 + d3~β3,
and then ~v = (d1/c1)(c1~β1) + (d2/c2)(c2~β2) + (d3/c3)(c3~β3).

If any of the scalars are zero then the result is not a basis, because it is not
linearly independent.

(b) Showing that 〈2~β1, ~β1 + ~β2, ~β1 + ~β3〉 is linearly independent is easy. To
show that it spans the space, assume that ~v = d1~β1 + d2~β2 + d3~β3. Then, we
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can represent the same ~v with respect to 〈2~β1, ~β1 + ~β2, ~β1 + ~β3〉 in this way
~v = (1/2)(d1 − d2 − d3)(2~β1) + d2(~β1 + ~β2) + d3(~β1 + ~β3).

Two.III.1.33 Each forms a linearly independent set if we omit ~v. To preserve linear
independence, we must expand the span of each. That is, we must determine the
span of each (leaving ~v out), and then pick a ~v lying outside of that span. Then to
finish, we must check that the result spans the entire given space. Those checks are
routine.
(a) Any vector that is not a multiple of the given one, that is, any vector that is
not on the line y = x will do here. One is ~v = ~e1.

(b) By inspection, we notice that the vector ~e3 is not in the span of the set of the
two given vectors. The check that the resulting set is a basis for R3 is routine.

(c) For any member of the span {c1 · (x) + c2 · (1+ x2) | c1, c2 ∈ R }, the coefficient
of x2 equals the constant term. So we expand the span if we add a quadratic
without this property, say, ~v = 1− x2. The check that the result is a basis for P2
is easy.

Two.III.1.34 To show that each scalar is zero, simply subtract c1~β1 + · · ·+ ck~βk −
ck+1~βk+1 − · · · − cn~βn = ~0. The obvious generalization is that in any equation
involving only the ~β’s, and in which each ~β appears only once, each scalar is zero.
For instance, an equation with a combination of the even-indexed basis vectors (i.e.,
~β2, ~β4, etc.) on the right and the odd-indexed basis vectors on the left also gives
the conclusion that all of the coefficients are zero.

Two.III.1.35 No; no linearly independent set contains the zero vector.
Two.III.1.36 Here is a subset of R2 that is not a basis, and two different linear
combinations of its elements that sum to the same vector.

{

(
1

2

)
,

(
2

4

)
} 2 ·

(
1

2

)
+ 0 ·

(
2

4

)
= 0 ·

(
1

2

)
+ 1 ·

(
2

4

)
Thus, when a subset is not a basis, it can be the case that its linear combinations
are not unique.

But just because a subset is not a basis does not imply that its combinations
must be not unique. For instance, this set

{

(
1

2

)
}

does have the property that

c1 ·

(
1

2

)
= c2 ·

(
1

2

)
implies that c1 = c2. The idea here is that this subset fails to be a basis because it
fails to span the space; the proof of the theorem establishes that linear combinations
are unique if and only if the subset is linearly independent.
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Two.III.1.37 (a) Describing the vector space as

{

(
a b

b c

)
| a, b, c ∈ R }

suggests this for a basis.

〈

(
1 0

0 0

)
,

(
0 0

0 1

)
,

(
0 1

1 0

)
〉

Verification is easy.
(b) This is one possible basis.

〈

1 0 0

0 0 0

0 0 0

 ,
0 0 0

0 1 0

0 0 0

 ,
0 0 0

0 0 0

0 0 1

 ,
0 1 0

1 0 0

0 0 0

 ,
0 0 1

0 0 0

1 0 0

 ,
0 0 0

0 0 1

0 1 0

〉
(c) As in the prior two questions, we can form a basis from two kinds of matrices.
First are the matrices with a single one on the diagonal and all other entries
zero (there are n of those matrices). Second are the matrices with two opposed
off-diagonal entries are ones and all other entries are zeros. (That is, all entries
in M are zero except that mi,j and mj,i are one.)

Two.III.1.38 (a) Any four vectors from R3 are linearly related because the vector
equation

c1

x1y1
z1

+ c2

x2y2
z2

+ c3

x3y3
z3

+ c4

x4y4
z4

 =

00
0


gives rise to a linear system

x1c1 + x2c2 + x3c3 + x4c4 = 0

y1c1 + y2c2 + y3c3 + y4c4 = 0

z1c1 + z2c2 + z3c3 + z4c4 = 0

that is homogeneous (and so has a solution) and has four unknowns but only
three equations, and therefore has nontrivial solutions. (Of course, this argument
applies to any subset of R3 with four or more vectors.)

(b) We shall do just the two-vector case. Given x1, . . . , z2,

S = {

x1y1
z1

 ,
x2y2
z2

 }

to decide which vectors xy
z
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are in the span of S, set up

c1

x1y1
z1

+ c2

x2y2
z2

 =

xy
z


and row reduce the resulting system.

x1c1 + x2c2 = x

y1c1 + y2c2 = y

z1c1 + z2c2 = z

There are two variables c1 and c2 but three equations, so when Gauss’s Method
finishes, on the bottom row there will be some relationship of the form 0 =

m1x +m2y +m3z. Hence, vectors in the span of the two-element set S must
satisfy some restriction. Hence the span is not all of R3.

Two.III.1.39 We have (using these oddball operations with care)

{

1− y− z

y

z

 | y, z ∈ R } = {

−y+ 1

y

0

+

−z+ 1

0

z

 | y, z ∈ R }

= {y ·

01
0

+ z ·

00
1

 | y, z ∈ R }

and so a natural candidate for a basis is this.

〈

01
0

 ,
00
1

〉
To check linear independence we set up

c1

01
0

+ c2

00
1

 =

10
0


(the vector on the right is the zero object in this space). That yields the linear
system

(−c1 + 1) + (−c2 + 1) − 1= 1

c1 = 0

c2 = 0

with only the solution c1 = 0 and c2 = 0. Checking the span is similar.
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Two.III.2: Dimension

Two.III.2.16 One basis is 〈1, x, x2〉, and so the dimension is three.

Two.III.2.17 The solution set is

{


4x2 − 3x3 + x4

x2
x3
x4

 | x2, x3, x4 ∈ R }

so a natural basis is this

〈


4

1

0

0

 ,

−3

0

1

0

 ,

1

0

0

1

〉
(checking linear independence is easy). Thus the dimension is three.

Two.III.2.18 (a) Parametrize to get this description of the space.

{


w− z

y

z

w

 =


0

1

0

0

y+


−1

0

1

0

 z+

1

0

0

1

w | y, z,w ∈ R }

That gives the space as the span of the three-vector set. To show the three vector
set makes a basis we check that it is linearly independent.

0

0

0

0

 =


0

1

0

0

 c1 +

−1

0

1

0

 c2 +

1

0

0

1

 c3
The second components give that c1 = 0, and the third and fourth components
give that c2 = 0 and c3 = 0. So one basis is this.

〈


0

1

0

0

 ,

−1

0

1

0

 ,

1

0

0

1

〉
The dimension is the number of vectors in a basis: 3.
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(b) The natural parametrization is this.

{


a 0 0 0 0

0 b 0 0 0

0 0 c 0 0

0 0 0 d 0

0 0 0 0 e

 | a, . . . , e ∈ R }

{


1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

 · a+


0 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

 · b+ · · · | a, . . . , e ∈ R }

Checking that the five-element set is linearly independent is trivial. So this is a
basis; the dimension is 5.

〈


1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

 ,

0 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

 , . . . ,

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

〉
(c) The restrictions form a two-equations, four-unknowns linear system. Parametriz-
ing that system to express the leading variables in terms of those that are free
gives a0 = −a1, a1 = a1, a2 = 2a3, and a3 = a3.

{−a1 + a1x+ 2a3x
2 + a3x

3 | a1, a3 ∈ R }

= {(−1+ x) · a1 + (2x2 + x3) · a3 | a1, a3 ∈ R }

That description shows that the space is the span of the two-element set
{−1+ x, x2 + x3 }. We will be done if we show the set is linearly independent.
This relationship

0+ 0x+ 0x2 + 0x3 = (−1+ x) · c1 + (2x2 + x3) · c2
gives that c1 = 0 from the constant terms, and c2 = 0 from the cubic terms. One
basis for the space is 〈−1+ x, 2x2 + x3〉. This is a two-dimensional space.

Two.III.2.19 For this space

{

(
a b

c d

)
| a, b, c, d ∈ R }

= {a ·

(
1 0

0 0

)
+ · · ·+ d ·

(
0 0

0 1

)
| a, b, c, d ∈ R }
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this is a natural basis.

〈

(
1 0

0 0

)
,

(
0 1

0 0

)
,

(
0 0

1 0

)
,

(
0 0

0 1

)
〉

The dimension is four.

Two.III.2.20 (a) As in the prior exercise, the space M2×2 of matrices without restric-
tion has this basis

〈

(
1 0

0 0

)
,

(
0 1

0 0

)
,

(
0 0

1 0

)
,

(
0 0

0 1

)
〉

and so the dimension is four.
(b) For this space

{

(
a b

c d

)
| a = b− 2c and d ∈ R }

= {b ·

(
1 1

0 0

)
+ c ·

(
−2 0

1 0

)
+ d ·

(
0 0

0 1

)
| b, c, d ∈ R }

this is a natural basis.

〈

(
1 1

0 0

)
,

(
−2 0

1 0

)
,

(
0 0

0 1

)
〉

The dimension is three.
(c) Gauss’s Method applied to the two-equation linear system gives that c = 0

and that a = −b. Thus, we have this description

{

(
−b b

0 d

)
| b, d ∈ R } = {b ·

(
−1 1

0 0

)
+ d ·

(
0 0

0 1

)
| b, d ∈ R }

and so this is a natural basis.

〈

(
−1 1

0 0

)
,

(
0 0

0 1

)
〉

The dimension is two.

Two.III.2.21 We cannot simply count the parameters. That is, the answer is not 3.
Instead, observe that we can express every member

(
x
y

)
∈ R2 in the form(

x

y

)
=

(
a+ b

a+ c

)
with the choice of a = 0, b = x, and c = y (other choices are possible). So S is the
set S = R2. It has dimension 2.

Two.III.2.22 The bases for these spaces are developed in the answer set of the prior
subsection.
(a) One basis is 〈−7+ x,−49+ x2,−343+ x3〉. The dimension is three.
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(b) One basis is 〈35− 12x+ x2, 420− 109x+ x3〉 so the dimension is two.
(c) A basis is {−105+ 71x− 15x2 + x3 }. The dimension is one.
(d) This is the trivial subspace of P3 and so the basis is empty. The dimension is
zero.

Two.III.2.23 First recall that cos 2θ = cos2 θ− sin2 θ, and so deletion of cos 2θ from
this set leaves the span unchanged. What’s left, the set {cos2 θ, sin2 θ, sin 2θ }, is
linearly independent (consider the relationship c1 cos2 θ+c2 sin2 θ+c3 sin 2θ = Z(θ)

where Z is the zero function, and then take θ = 0, θ = π/4, and θ = π/2 to conclude
that each c is zero). It is therefore a basis for its span. That shows that the span is
a dimension three vector space.

Two.III.2.24 Here is a basis
〈(1+ 0i, 0+ 0i, . . . , 0+ 0i), (0+ 1i, 0+ 0i, . . . , 0+ 0i), (0+ 0i, 1+ 0i, . . . , 0+ 0i), . . .〉
and so the dimension is 2 · 47 = 94.

Two.III.2.25 A basis is

〈

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

 ,
0 1 0 0 0

0 0 0 0 0

0 0 0 0 0

 , . . . ,
0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

〉
and thus the dimension is 3 · 5 = 15.

Two.III.2.26 In a four-dimensional space a set of four vectors is linearly independent if
and only if it spans the space. The form of these vectors makes linear independence
easy to show (look at the equation of fourth components, then at the equation of
third components, etc.).

Two.III.2.27 By the results of this section, because P2 has dimension 3, to show that
a linearly independent set is a basis we need only observe that it has three members.
To show a set is not a basis we need only observe that it does not have three members
(in this case we don’t have to worry about linear independence).

(a) This is a basis; it is linearly independent by inspection (the first element has
no quadratic or linear term, the second has a quadratic but no linear term, and
the third has a linear term) and it has three elements.

(b) This is not a basis as it has only two elements.
(c) This three-element set is a basis.
(d) This is not a basis as it has four elements.

Two.III.2.28 (a) The diagram for P2 has four levels. The top level has the only three-
dimensional subspace, P2 itself. The next level contains the two-dimensional
subspaces (not just the linear polynomials; any two-dimensional subspace, like
those polynomials of the form ax2 + b). Below that are the one-dimensional
subspaces. Finally, of course, is the only zero-dimensional subspace, the trivial
subspace.
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(b) For M2×2, the diagram has five levels, including subspaces of dimension four
through zero.

Two.III.2.29 (a) One (b) Two (c) n

Two.III.2.30 We need only produce an infinite linearly independent set. One is such
sequence is 〈f1, f2, . . .〉 where fi : R→ R is

fi(x) =

{
1 if x = i

0 otherwise

the function that has value 1 only at x = i.

Two.III.2.31 A function is a set of ordered pairs (x, f(x)). So there is only one function
with an empty domain, namely the empty set. A vector space with only one element
a trivial vector space and has dimension zero.

Two.III.2.32 Apply Corollary 2.11.

Two.III.2.33 A plane has the form {~p+ t1~v1 + t2~v2 | t1, t2 ∈ R }. (The first chapter
also calls this a ‘2-flat’, and contains a discussion of why this is equivalent to the
description often taken in Calculus as the set of points (x, y, z) subject to a condition
of the form ax+ by+ cz = d). When the plane passes through the origin we can
take the particular vector ~p to be ~0. Thus, in the language we have developed in
this chapter, a plane through the origin is the span of a set of two vectors.

Now for the statement. Asserting that the three are not coplanar is the same
as asserting that no vector lies in the span of the other two—no vector is a linear
combination of the other two. That’s simply an assertion that the three-element
set is linearly independent. By Corollary 2.15, that’s equivalent to an assertion
that the set is a basis for R3 (more precisely, any sequence made from the set’s
elements is a basis).

Two.III.2.34 Let the space V be finite dimensional and let S be a subspace of V.
If S is not finite dimensional then it has a linearly independent set that is

infinite (start with the empty set and iterate adding vectors that are not linearly
dependent on the set; this process can continue for infinitely many steps or else S
would be finite dimensional). But any linearly independent subset of S is a linearly
independent subset of V, contradicting Corollary 2.11

Two.III.2.35 It ensures that we exhaust the ~β’s. That is, it justifies the first sentence
of the last paragraph.

Two.III.2.36 Let BU be a basis for U and let BW be a basis for W. Consider the
concatenation of the two basis sequences. If there is a repeated element then the
intersection U ∩W is nontrivial. Otherwise, the set BU ∪ BW is linearly dependent
as it is a six member subset of the five-dimensional space R5. In either case some
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member of BW is in the span of BU, and thus U ∩W is more than just the trivial
space {~0 }.

Generalization: if U,W are subspaces of a vector space of dimension n and if
dim(U) + dim(W) > n then they have a nontrivial intersection.

Two.III.2.37 First, note that a set is a basis for some space if and only if it is linearly
independent, because in that case it is a basis for its own span.
(a) The answer to the question in the second paragraph is “yes” (implying “yes”
answers for both questions in the first paragraph). If BU is a basis for U then
BU is a linearly independent subset of W. Apply Corollary 2.13 to expand it to
a basis for W. That is the desired BW .

The answer to the question in the third paragraph is “no”, which implies a
“no” answer to the question of the fourth paragraph. Here is an example of a basis
for a superspace with no sub-basis forming a basis for a subspace: in W = R2,
consider the standard basis E2. No sub-basis of E2 forms a basis for the subspace
U of R2 that is the line y = x.

(b) It is a basis (for its span) because the intersection of linearly independent
sets is linearly independent (the intersection is a subset of each of the linearly
independent sets).

It is not, however, a basis for the intersection of the spaces. For instance,
these are bases for R2:

B1 = 〈

(
1

0

)
,

(
0

1

)
〉 and B2 = 〈[〉r]

(
2

0

)
,

(
0

2

)
and R2 ∩ R2 = R2, but B1 ∩ B2 is empty. All we can say is that the ∩ of the
bases is a basis for a subset of the intersection of the spaces.

(c) The ∪ of bases need not be a basis: in R2

B1 = 〈

(
1

0

)
,

(
1

1

)
〉 and B2 = 〈

(
1

0

)
,

(
0

2

)
〉

B1 ∪ B2 is not linearly independent. A necessary and sufficient condition for a ∪
of two bases to be a basis

B1 ∪ B2 is linearly independent ⇐⇒ [B1 ∩ B2] = [B1] ∩ [B2]

it is easy enough to prove (but perhaps hard to apply).
(d) The complement of a basis cannot be a basis because it contains the zero
vector.

Two.III.2.38 (a) A basis for U is a linearly independent set in W and so can be
expanded via Corollary 2.13 to a basis for W. The second basis has at least as
many members as the first.
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(b) One direction is clear: if V =W then they have the same dimension. For the
converse, let BU be a basis for U. It is a linearly independent subset of W and
so can be expanded to a basis for W. If dim(U) = dim(W) then this basis for W
has no more members than does BU and so equals BU. Since U and W have the
same bases, they are equal.

(c) Let W be the space of finite-degree polynomials and let U be the subspace of
polynomials that have only even-powered terms.

U = {a0 + a1x
2 + a2x

4 + · · ·+ anx2n | a0, . . . , an ∈ R }

Both spaces have infinite dimension but U is a proper subspace.
Two.III.2.39 The possibilities for the dimension of V are 0, 1, n− 1, and n.

To see this, first consider the case when all the coordinates of ~v are equal.

~v =


z

z
...
z


Then σ(~v) = ~v for every permutation σ, so V is just the span of ~v, which has
dimension 0 or 1 according to whether ~v is ~0 or not.

Now suppose not all the coordinates of ~v are equal; let x and y with x 6= y be
among the coordinates of ~v. Then we can find permutations σ1 and σ2 such that

σ1(~v) =


x

y

a3
...
an

 and σ2(~v) =


y

x

a3
...
an


for some a3, . . . , an ∈ R. Therefore,

1

y− x

(
σ1(~v) − σ2(~v)

)
=


−1

1

0
...
0


is in V. That is, ~e2 − ~e1 ∈ V, where ~e1, ~e2, . . . , ~en is the standard basis for Rn.
Similarly, ~e3−~e2, . . . , ~en−~e1 are all in V . It is easy to see that the vectors ~e2−~e1,
~e3 − ~e2, . . . , ~en − ~e1 are linearly independent (that is, form a linearly independent
set), so dimV > n− 1.

Finally, we can write
~v = x1~e1 + x2~e2 + · · ·+ xn~en
= (x1 + x2 + · · ·+ xn)~e1 + x2(~e2 − ~e1) + · · ·+ xn(~en − ~e1)
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This shows that if x1 + x2 + · · · + xn = 0 then ~v is in the span of ~e2 − ~e1, . . . ,
~en − ~e1 (that is, is in the span of the set of those vectors); similarly, each σ(~v)
will be in this span, so V will equal this span and dimV = n − 1. On the other
hand, if x1+ x2+ · · ·+ xn 6= 0 then the above equation shows that ~e1 ∈ V and thus
~e1, . . . ,~en ∈ V, so V = Rn and dimV = n.

Two.III.3: Vector Spaces and Linear Systems

Two.III.3.16 (a)

(
2 3

1 1

)
(b)

(
2 1

1 3

)
(c)

1 6

4 7

3 8

 (d) (0 0 0)

(e)

(
−1

−2

)
Two.III.3.17 (a) Yes. To see if there are c1 and c2 such that c1 · (2 1)+ c2 · (3 1) =

(1 0) we solve
2c1 + 3c2 = 1

c1 + c2 = 0

and get c1 = −1 and c2 = 1. Thus the vector is in the row space.
(b) No. The equation c1(0 1 3) + c2(−1 0 1) + c3(−1 2 7) = (1 1 1) has no
solution.0 −1 −1 1

1 0 2 1

3 1 7 1

 ρ1↔ρ2−→ −3ρ1+ρ2−→ ρ2+ρ3−→

1 0 2 1

0 −1 −1 1

0 0 0 −1


Thus, the vector is not in the row space.

Two.III.3.18 (a) No. To see if there are c1, c2 ∈ R such that

c1

(
1

1

)
+ c2

(
1

1

)
=

(
1

3

)
we can use Gauss’s Method on the resulting linear system.

c1 + c2 = 1

c1 + c2 = 3

−ρ1+ρ2−→ c1 + c2 = 1

0= 2

There is no solution and so the vector is not in the column space.
(b) Yes. From this relationship

c1

12
1

+ c2

 3

0

−3

+ c3

14
3

 =

10
0
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we get a linear system that, when we apply Gauss’s Method,1 3 1 1

2 0 4 0

1 −3 −3 0

 −2ρ1+ρ2−→
−ρ1+ρ3

−ρ2+ρ3−→

1 3 1 1

0 −6 2 −2

0 0 −6 1


yields a solution. Thus, the vector is in the column space.

Two.III.3.19 (a) Yes; we are asking if there are scalars c1 and c2 such that

c1

(
2

2

)
+ c2

(
1

5

)
=

(
1

−3

)
which gives rise to a linear system

2c1 + c2 = 1

2c1 + 5c2 =−3

−ρ1+ρ2−→ 2c1 + c2 = 1

4c2 =−4

and Gauss’s Method produces c2 = −1 and c1 = 1. That is, there is indeed such
a pair of scalars and so the vector is indeed in the column space of the matrix.

(b) No; we are asking if there are scalars c1 and c2 such that

c1

(
4

2

)
+ c2

(
−8

−4

)
=

(
0

1

)
and one way to proceed is to consider the resulting linear system

4c1 − 8c2 = 0

2c1 − 4c2 = 1

that is easily seen to have no solution. Another way to proceed is to note that
any linear combination of the columns on the left has a second component half
as big as its first component, but the vector on the right does not meet that
criterion.

(c) Yes; we can simply observe that the vector is the first column minus the second.
Or, failing that, setting up the relationship among the columns

c1

 1

1

−1

+ c2

−1

1

−1

+ c3

 1

−1

1

 =

20
0


and considering the resulting linear system

c1 − c2 + c3 = 2

c1 + c2 − c3 = 0

−c1 − c2 + c3 = 0

−ρ1+ρ2−→
ρ1+ρ3

c1 − c2 + c3 = 2

2c2 − 2c3 =−2

−2c2 + 2c3 = 2

ρ2+ρ3−→
c1 − c2 + c3 = 2

2c2 − 2c3 =−2

0= 0

gives the additional information (beyond that there is at least one solution) that
there are infinitely many solutions. Parametrizing gives c2 = −1+ c3 and c1 = 1,
and so taking c3 to be zero gives a particular solution of c1 = 1, c2 = −1, and
c3 = 0 (which is, of course, the observation made at the start).
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Two.III.3.20 A routine Gaussian reduction
2 0 3 4

0 1 1 −1

3 1 0 2

1 0 −4 −1

 −(3/2)ρ1+ρ3−→
−(1/2)ρ1+ρ4

−ρ2+ρ3−→ −ρ3+ρ4−→


2 0 3 4

0 1 1 −1

0 0 −11/2 −3

0 0 0 0


suggests this basis 〈(2 0 3 4), (0 1 1 −1), (0 0 −11/2 −3)〉.

Another procedure, perhaps more convenient, is to swap rows first,

ρ1↔ρ4−→ −3ρ1+ρ3−→
−2ρ1+ρ4

−ρ2+ρ3−→ −ρ3+ρ4−→


1 0 −4 −1

0 1 1 −1

0 0 11 6

0 0 0 0


leading to the basis 〈(1 0 −4 −1), (0 1 1 −1), (0 0 11 6)〉.

Two.III.3.21 (a) This reduction

−(1/2)ρ1+ρ2−→
−(1/2)ρ1+ρ3

−(1/3)ρ2+ρ3−→

2 1 3

0 −3/2 1/2

0 0 4/3


shows that the row rank, and hence the rank, is three.

(b) Inspection of the columns shows that the others are multiples of the first
(inspection of the rows shows the same thing). Thus the rank is one.

Alternatively, the reduction 1 −1 2

3 −3 6

−2 2 −4

 −3ρ1+ρ2−→
2ρ1+ρ3

1 −1 2

0 0 0

0 0 0


shows the same thing.

(c) This calculation1 3 2

5 1 1

6 4 3

 −5ρ1+ρ2−→
−6ρ1+ρ3

−ρ2+ρ3−→

1 3 2

0 −14 −9

0 0 0


shows that the rank is two.

(d) The rank is zero.

Two.III.3.22 We want a basis for this span.

[

12
0

 ,
31
1

 ,
−1

1

1

 ,
20
4

] ⊆ R3

The most straightforward approach is to transpose those columns to rows, use
Gauss’s Method to find a basis for the span of the rows, and then transpose them
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back to columns.
1 2 0

3 1 1

−1 1 1

2 0 4

 −3ρ1+ρ2−→
ρ1+ρ3
−2ρ1+ρ4

(3/5)ρ2+ρ3−→
−(4/5)ρ2+ρ4

−2ρ3+ρ4−→


1 2 0

0 −5 1

0 0 8/5

0 0 0


Discard the zero vector as showing that there was a redundancy among the starting
vectors, to get this basis for the column space.

〈

12
0

 ,
 0

−5

1

 ,
 0

0

8/5

〉
The matrix’s rank is the dimension of its column space, so it is three. (It is also
equal to the dimension of its row space.)

Two.III.3.23 (a) This reduction
1 3

−1 3

1 4

2 1

 ρ1+ρ2−→
−ρ1+ρ3
−2ρ1+ρ4

−(1/6)ρ2+ρ3−→
(5/6)ρ2+ρ4


1 3

0 6

0 0

0 0


gives 〈(1 3), (0 6)〉.

(b) Transposing and reducing1 2 1

3 1 −1

1 −3 −3

 −3ρ1+ρ2−→
−ρ1+ρ3

1 2 1

0 −5 −4

0 −5 −4

 −ρ2+ρ3−→

1 2 1

0 −5 −4

0 0 0


and then transposing back gives this basis.

〈

12
1

 ,
 0

−5

−4

〉
(c) Notice first that the surrounding space is as P3, not P2. Then, taking the first
polynomial 1+ 1 · x+ 0 · x2+ 0 · x3 to be “the same” as the row vector (1 1 0 0),
etc., leads to1 1 0 0

1 0 −1 0

3 2 −1 0

 −ρ1+ρ2−→
−3ρ1+ρ3

−ρ2+ρ3−→

1 1 0 0

0 −1 −1 0

0 0 0 0


which yields the basis 〈1+ x,−x− x2〉.

(d) Here “the same” gives 1 0 1 3 1 −1

1 0 3 2 1 4

−1 0 −5 −1 −1 −9

 −ρ1+ρ2−→
ρ1+ρ3

2ρ2+ρ3−→

1 0 1 3 1 −1

0 0 2 −1 0 5

0 0 0 0 0 0
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leading to this basis.

〈

(
1 0 1

3 1 −1

)
,

(
0 0 2

−1 0 5

)
〉

Two.III.3.24 (a) Transpose the columns to rows, bring to echelon form (and then
lose any zero rows), and transpose back to columns. 1 1 3

−1 2 0

0 12 6

 ρ1+ρ2−→ −4ρ2+ρ3−→

1 1 3

0 3 3

0 0 −6


One basis for the span is this.

〈

11
3

 ,
03
3

 ,
 0

0

−6

〉
(b) As in the prior part we think of those as rows, to take advantage of the work
we’ve done with Gauss’s Method.

0 1 1

2 −2 0

7 0 0

4 3 2

 ρ1↔ρ2−→ −(7/2)ρ1+ρ3−→
2ρ1+ρ4

−7ρ2+ρ3−→
−7ρ2+ρ4

−(5/7)ρ3+ρ4−→


2 −2 0

0 1 1

0 0 −7

0 0 0


One basis for the span of that set is 〈2− 2x, x+ x2,−5x2〉.

Two.III.3.25 Only the zero matrices have rank of zero. The only matrices of rank one
have the form k1 · ρ...

km · ρ


where ρ is some nonzero row vector, and not all of the ki’s are zero. (Remark. We
can’t simply say that all of the rows are multiples of the first because the first row
might be the zero row. Another Remark. The above also applies with ‘column’
replacing ‘row’.)

Two.III.3.26 If a 6= 0 then a choice of d = (c/a)b will make the second row be a
multiple of the first, specifically, c/a times the first. If a = 0 and b = 0 then any
non-0 choice for d will ensure that the second row is nonzero. If a = 0 and b 6= 0
and c = 0 then any choice for d will do, since the matrix will automatically have
rank one (even with the choice of d = 0). Finally, if a = 0 and b 6= 0 and c 6= 0

then no choice for d will suffice because the matrix is sure to have rank two.
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Two.III.3.27 The column rank is two. One way to see this is by inspection—the
column space consists of two-tall columns and so can have a dimension of at least
two, and we can easily find two columns that together form a linearly independent
set (the fourth and fifth columns, for instance). Another way to see this is to recall
that the column rank equals the row rank, and to perform Gauss’s Method, which
leaves two nonzero rows.

Two.III.3.28 We apply Theorem 3.13. The number of columns of a matrix of coef-
ficients A of a linear system equals the number n of unknowns. A linear system
with at least one solution has at most one solution if and only if the space of
solutions of the associated homogeneous system has dimension zero (recall: in the
‘General = Particular+ Homogeneous’ equation ~v = ~p+ ~h, provided that such a ~p

exists, the solution ~v is unique if and only if the vector ~h is unique, namely ~h = ~0).
But that means, by the theorem, that n = r.

Two.III.3.29 The set of columns must be dependent because the rank of the matrix
is at most five while there are nine columns.

Two.III.3.30 There is little danger of their being equal since the row space is a set of
row vectors while the column space is a set of columns (unless the matrix is 1×1,
in which case the two spaces must be equal).

Remark. Consider

A =

(
1 3

2 6

)
and note that the row space is the set of all multiples of (1 3) while the column
space consists of multiples of (

1

2

)
so we also cannot argue that the two spaces must be simply transposes of each
other.

Two.III.3.31 First, the vector space is the set of four-tuples of real numbers, under
the natural operations. Although this is not the set of four-wide row vectors, the
difference is slight— it is “the same” as that set. So we will treat the four-tuples
like four-wide vectors.

With that, one way to see that (1, 0, 1, 0) is not in the span of the first set is to
note that this reduction1 −1 2 −3

1 1 2 0

3 −1 6 −6

 −ρ1+ρ2−→
−3ρ1+ρ3

−ρ2+ρ3−→

1 −1 2 −3

0 2 0 3

0 0 0 0
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and this one
1 −1 2 −3

1 1 2 0

3 −1 6 −6

1 0 1 0

 −ρ1+ρ2−→
−3ρ1+ρ3
−ρ1+ρ4

−ρ2+ρ3−→
−(1/2)ρ2+ρ4

ρ3↔ρ4−→


1 −1 2 −3

0 2 0 3

0 0 −1 3/2

0 0 0 0


yield matrices differing in rank. This means that addition of (1, 0, 1, 0) to the set
of the first three four-tuples increases the rank, and hence the span, of that set.
Therefore (1, 0, 1, 0) is not already in the span.

Two.III.3.32 It is a subspace because it is the column space of the matrix3 2 4

1 0 −1

2 2 5


of coefficients. To find a basis for the column space,

{c1

31
2

+ c2

20
2

+ c3

 4

−1

5

 | c1, c2, c3 ∈ R }

we eliminate linear relationships among the three column vectors from the spanning
set by transposing, reducing,3 1 2

2 0 2

4 −1 5

 −(2/3)ρ1+ρ2−→
−(4/3)ρ1+ρ3

−(7/2)ρ2+ρ3−→

3 1 2

0 −2/3 2/3

0 0 0


omitting the zero row, and transposing back.

〈

31
2

 ,
 0

−2/3

2/3

〉
Two.III.3.33 We can do this as a straightforward calculation.

(rA+ sB)T =

 ra1,1 + sb1,1 . . . ra1,n + sb1,n
...

ram,1 + sbm,1 . . . ram,n + sbm,n


T

=

 ra1,1 + sb1,1 . . . ram,1 + sbm,1
...

ra1,n + sb1,n . . . ram,n + sbm,n



=

ra1,1 . . . ram,1
...

ra1,n . . . ram,n

+

sb1,1 . . . sbm,1
...

sb1,n . . . sbm,n


= rAT + sBT
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Two.III.3.34 (a) These reductions give different bases.(
1 2 0

1 2 1

)
−ρ1+ρ2−→

(
1 2 0

0 0 1

) (
1 2 0

1 2 1

)
−ρ1+ρ2−→ 2ρ2−→

(
1 2 0

0 0 2

)
(b) An easy example is this.(

1 2 1

3 1 4

) 1 2 1

3 1 4

0 0 0


This is a less simplistic example.

(
1 2 1

3 1 4

) 
1 2 1

3 1 4

2 4 2

4 3 5


(c) Assume that A and B are matrices with equal row spaces. Construct a matrix
C with the rows of A above the rows of B, and another matrix D with the rows
of B above the rows of A.

C =

(
A

B

)
D =

(
B

A

)
Observe that C and D are row-equivalent (via a sequence of row-swaps) and so
Gauss-Jordan reduce to the same reduced echelon form matrix.

Because the row spaces are equal, the rows of B are linear combinations of
the rows of A so Gauss-Jordan reduction on C simply turns the rows of B to
zero rows and thus the nonzero rows of C are just the nonzero rows obtained by
Gauss-Jordan reducing A. The same can be said for the matrix D—Gauss-Jordan
reduction on D gives the same non-zero rows as are produced by reduction on B
alone. Therefore, A yields the same nonzero rows as C, which yields the same
nonzero rows as D, which yields the same nonzero rows as B.

Two.III.3.35 It cannot be bigger.

Two.III.3.36 The number of rows in a maximal linearly independent set cannot exceed
the number of rows. A better bound (the bound that is, in general, the best possible)
is the minimum of m and n, because the row rank equals the column rank.

Two.III.3.37 Because the rows of a matrix A are the columns of AT the dimension
of the row space of A equals the dimension of the column space of AT. But the
dimension of the row space of A is the rank of A and the dimension of the column
space of AT is the rank of AT. Thus the two ranks are equal.

Two.III.3.38 False. The first is a set of columns while the second is a set of rows.



118 Linear Algebra, by Hefferon

This example, however,

A =

(
1 2 3

4 5 6

)
, AT =

1 4

2 5

3 6


indicates that as soon as we have a formal meaning for “the same”, we can apply it
here:

Columnspace(A) = [{

(
1

4

)
,

(
2

5

)
,

(
3

6

)
}]

while
Rowspace(AT) = [{(1 4), (2 5), (3 6) }]

are “the same” as each other.
Two.III.3.39 No. Here, Gauss’s Method does not change the column space.(

1 0

3 1

)
−3ρ1+ρ2−→

(
1 0

0 1

)
Two.III.3.40 A linear system

c1~a1 + · · ·+ cn~an = ~d

has a solution if and only if ~d is in the span of the set {~a1, . . . , ~an }. That’s true
if and only if the column rank of the augmented matrix equals the column rank
of the matrix of coefficients. Since rank equals the column rank, the system has
a solution if and only if the rank of its augmented matrix equals the rank of its
matrix of coefficients.

Two.III.3.41 (a) Row rank equals column rank so each is at most the minimum of
the number of rows and columns. Hence both can be full only if the number of
rows equals the number of columns. (Of course, the converse does not hold: a
square matrix need not have full row rank or full column rank.)

(b) If A has full row rank then, no matter what the right-hand side, Gauss’s
Method on the augmented matrix ends with a leading one in each row and none
of those leading ones in the furthest right column (the “augmenting” column).
Back substitution then gives a solution.

On the other hand, if the linear system lacks a solution for some right-hand
side it can only be because Gauss’s Method leaves some row so that it is all zeroes
to the left of the “augmenting” bar and has a nonzero entry on the right. Thus,
if A does not have a solution for some right-hand sides, then A does not have
full row rank because some of its rows have been eliminated.

(c) The matrix A has full column rank if and only if its columns form a linearly
independent set. That’s equivalent to the existence of only the trivial linear
relationship among the columns, so the only solution of the system is where each
variable is 0.
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(d) The matrix A has full column rank if and only if the set of its columns is
linearly independent, and so forms a basis for its span. That’s equivalent to
the existence of a unique linear representation of all vectors in that span. That
proves it, since any linear representation of a vector in the span is a solution of
the linear system.

Two.III.3.42 Instead of the row spaces being the same, the row space of B would be a
subspace (possibly equal to) the row space of A.

Two.III.3.43 Clearly rank(A) = rank(−A) as Gauss’s Method allows us to multiply all
rows of a matrix by −1. In the same way, when k 6= 0 we have rank(A) = rank(kA).

Addition is more interesting. The rank of a sum can be smaller than the rank
of the summands. (

1 2

3 4

)
+

(
−1 −2

−3 −4

)
=

(
0 0

0 0

)
The rank of a sum can be bigger than the rank of the summands.(

1 2

0 0

)
+

(
0 0

3 4

)
=

(
1 2

3 4

)
But there is an upper bound (other than the size of the matrices). In general,
rank(A+ B) 6 rank(A) + rank(B).

To prove this, note that we can perform Gaussian elimination on A+B in either
of two ways: we can first add A to B and then apply the appropriate sequence of
reduction steps

(A+ B)
step1−→ · · · stepk−→ echelon form

or we can get the same results by performing step1 through stepk separately on
A and B, and then adding. The largest rank that we can end with in the second
case is clearly the sum of the ranks. (The matrices above give examples of both
possibilities, rank(A+B) < rank(A)+rank(B) and rank(A+B) = rank(A)+rank(B),
happening.)

Two.III.4: Combining Subspaces

Two.III.4.20 With each of these we can apply Lemma 4.15.
(a) Yes. The plane is the sum of this W1 and W2 because for any scalars a and b(

a

b

)
=

(
a− b

0

)
+

(
b

b

)



120 Linear Algebra, by Hefferon

shows that the general vector is a sum of vectors from the two parts. And,
these two subspaces are (different) lines through the origin, and so have a trivial
intersection.

(b) Yes. To see that any vector in the plane is a combination of vectors from these
parts, consider this relationship.(

a

b

)
= c1

(
1

1

)
+ c2

(
1

1.1

)
We could now simply note that the set

{

(
1

1

)
,

(
1

1.1

)
}

is a basis for the space (because it is clearly linearly independent, and has size
two in R2), and thus there is one and only one solution to the above equation,
implying that all decompositions are unique. Alternatively, we can solve

c1 + c2 = a

c1 + 1.1c2 = b

−ρ1+ρ2−→ c1 + c2 = a

0.1c2 =−a+ b

to get that c2 = 10(−a+ b) and c1 = 11a− 10b, and so we have(
a

b

)
=

(
11a− 10b

11a− 10b

)
+

(
−10a+ 10b

1.1 · (−10a+ 10b)

)
as required. As with the prior answer, each of the two subspaces is a line through
the origin, and their intersection is trivial.

(c) Yes. Each vector in the plane is a sum in this way(
x

y

)
=

(
x

y

)
+

(
0

0

)
and the intersection of the two subspaces is trivial.

(d) No. The intersection is not trivial.
(e) No. These are not subspaces.

Two.III.4.21 With each of these we can use Lemma 4.15.
(a) Any vector in R3 can be decomposed as this sum.xy

z

 =

xy
0

+

00
z


And, the intersection of the xy-plane and the z-axis is the trivial subspace.

(b) Any vector in R3 can be decomposed asxy
z

 =

x− zy− z

0

+

zz
z


and the intersection of the two spaces is trivial.
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Two.III.4.22 It is. Showing that these two are subspaces is routine. To see that the
space is the direct sum of these two, just note that each member of P2 has the
unique decomposition m+ nx+ px2 = (m+ px2) + (nx).

Two.III.4.23 To show that they are subspaces is routine. We will argue they are
complements with Lemma 4.15. The intersection E ∩ O is trivial because the only
polynomial satisfying both conditions p(−x) = p(x) and p(−x) = −p(x) is the zero
polynomial. To see that the entire space is the sum of the subspaces E+ O = Pn,
note that the polynomials p0(x) = 1, p2(x) = x2, p4(x) = x4, etc., are in E and
also note that the polynomials p1(x) = x, p3(x) = x3, etc., are in O. Hence any
member of Pn is a combination of members of E and O.

Two.III.4.24 Each of these is R3.
(a) These are broken into some separate lines for readability.
W1 +W2 +W3, W1 +W2 +W3 +W4, W1 +W2 +W3 +W5,
W1 +W2 +W3 +W4 +W5, W1 +W2 +W4, W1 +W2 +W4 +W5,
W1 +W2 +W5, W1 +W3 +W4, W1 +W3 +W5, W1 +W3 +W4 +W5,
W1 +W4, W1 +W4 +W5, W1 +W5,

W2 +W3 +W4, W2 +W3 +W4 +W5, W2 +W4, W2 +W4 +W5,
W3 +W4, W3 +W4 +W5,
W4 +W5

(b) W1 ⊕W2 ⊕W3, W1 ⊕W4, W1 ⊕W5, W2 ⊕W4, W3 ⊕W4
Two.III.4.25 Clearly each is a subspace. The bases Bi = 〈xi〉 for the subspaces, when
concatenated, form a basis for the whole space.

Two.III.4.26 It is W2.
Two.III.4.27 True by Lemma 4.8.
Two.III.4.28 Two distinct direct sum decompositions of R4 are easy to find. Two such
areW1 = [{~e1,~e2 }] andW2 = [{~e3,~e4 }], and alsoU1 = [{~e1 }] andU2 = [{~e2,~e3,~e4 }].
(Many more are possible, for example R4 and its trivial subspace.)

In contrast, any partition of R1’s single-vector basis will give one basis with no
elements and another with a single element. Thus any decomposition involves R1

and its trivial subspace.
Two.III.4.29 Set inclusion one way is easy: { ~w1 + · · ·+ ~wk | ~wi ∈Wi } is a subset of
[W1 ∪ . . . ∪Wk] because each ~w1 + · · ·+ ~wk is a sum of vectors from the union.

For the other inclusion, to any linear combination of vectors from the union
apply commutativity of vector addition to put vectors from W1 first, followed by
vectors from W2, etc. Add the vectors from W1 to get a ~w1 ∈W1, add the vectors
from W2 to get a ~w2 ∈W2, etc. The result has the desired form.

Two.III.4.30 One example is to take the space to be R3, and to take the subspaces to
be the xy-plane, the xz-plane, and the yz-plane.
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Two.III.4.31 Of course, the zero vector is in all of the subspaces, so the intersec-
tion contains at least that one vector.. By the definition of direct sum the set
{W1, . . . ,Wk } is independent and so no nonzero vector of Wi is a multiple of a
member of Wj, when i 6= j. In particular, no nonzero vector from Wi equals a
member of Wj.

Two.III.4.32 It can contain a trivial subspace; this set of subspaces of R3 is indepen-
dent: { {~0 }, x-axis }. No nonzero vector from the trivial space {~0 } is a multiple of a
vector from the x-axis, simply because the trivial space has no nonzero vectors to
be candidates for such a multiple (and also no nonzero vector from the x-axis is a
multiple of the zero vector from the trivial subspace).

Two.III.4.33 Yes. For any subspace of a vector space we can take any basis 〈~ω1, . . . , ~ωk〉
for that subspace and extend it to a basis 〈~ω1, . . . , ~ωk, ~βk+1, . . . , ~βn〉 for the whole
space. Then the complement of the original subspace has this basis 〈~βk+1, . . . , ~βn〉.

Two.III.4.34 (a) It must. We can write any member of W1 +W2 as ~w1 + ~w2 where
~w1 ∈ W1 and ~w2 ∈ W2. As S1 spans W1, the vector ~w1 is a combination of
members of S1. Similarly ~w2 is a combination of members of S2.

(b) An easy way to see that it can be linearly independent is to take each to be
the empty set. On the other hand, in the space R1, if W1 = R1 and W2 = R1

and S1 = {1 } and S2 = {2 }, then their union S1 ∪ S2 is not independent.

Two.III.4.35 (a) The intersection and sum are

{

(
0 0

c 0

)
| c ∈ R } {

(
0 b

c d

)
| b, c, d ∈ R }

which have dimensions one and three.
(b) We write BU∩W for the basis for U ∩W, we write BU for the basis for U,
we write BW for the basis for W, and we write BU+W for the basis under
consideration.

To see that BU+W spans U+W, observe that we can write any vector c~u+d~w
from U+W as a linear combination of the vectors in BU+W , simply by expressing
~u in terms of BU and expressing ~w in terms of BW .

We finish by showing that BU+W is linearly independent. Consider

c1~µ1 + · · ·+ cj+1~β1 + · · ·+ cj+k+p ~ωp = ~0

which can be rewritten in this way.

c1~µ1 + · · ·+ cj~µj = −cj+1~β1 − · · ·− cj+k+p ~ωp
Note that the left side sums to a vector in U while right side sums to a vector
in W, and thus both sides sum to a member of U ∩W. Since the left side is a
member of U ∩W, it is expressible in terms of the members of BU∩W , which
gives the combination of ~µ’s from the left side above as equal to a combination
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of ~β’s. But, the fact that the basis BU is linearly independent shows that any
such combination is trivial, and in particular, the coefficients c1, . . . , cj from the
left side above are all zero. Similarly, the coefficients of the ~ω’s are all zero. This
leaves the above equation as a linear relationship among the ~β’s, but BU∩W is
linearly independent, and therefore all of the coefficients of the ~β’s are also zero.

(c) Just count the basis vectors in the prior item: dim(U+W) = j+ k+ p, and
dim(U) = j+ k, and dim(W) = k+ p, and dim(U ∩W) = k.

(d) We know that dim(W1+W2) = dim(W1)+dim(W2)−dim(W1∩W2). Because
W1 ⊆W1 +W2, we know that W1 +W2 must have dimension greater than that
of W1, that is, must have dimension eight, nine, or ten. Substituting gives us
three possibilities 8 = 8 + 8 − dim(W1 ∩W2) or 9 = 8 + 8 − dim(W1 ∩W2) or
10 = 8+ 8− dim(W1 ∩W2). Thus dim(W1 ∩W2) must be either eight, seven, or
six. (Giving examples to show that each of these three cases is possible is easy,
for instance in R10.)

Two.III.4.36 Expand each Si to a basis Bi for Wi. The concatenation of those bases
B1

_ · · ·_Bk is a basis for V and thus its members form a linearly independent set.
But the union S1 ∪ · · · ∪ Sk is a subset of that linearly independent set, and thus is
itself linearly independent.

Two.III.4.37 (a) Two such are these.(
1 2

2 3

) (
0 1

−1 0

)
For the antisymmetric one, entries on the diagonal must be zero.

(b) A square symmetric matrix equals its transpose. A square antisymmetric
matrix equals the negative of its transpose.

(c) Showing that the two sets are subspaces is easy. Suppose that A ∈Mn×n. To
express A as a sum of a symmetric and an antisymmetric matrix, we observe that

A = (1/2)(A+AT) + (1/2)(A−AT)

and note the first summand is symmetric while the second is antisymmetric.
Thus Mn×n is the sum of the two subspaces. To show that the sum is direct,
assume a matrix A is both symmetric A = AT and antisymmetric A = −AT.
Then A = −A and so all of A’s entries are zeroes.

Two.III.4.38 Assume that ~v ∈ (W1 ∩W2) + (W1 ∩W3). Then ~v = ~w2 + ~w3 where
~w2 ∈W1 ∩W2 and ~w3 ∈W1 ∩W3. Note that ~w2, ~w3 ∈W1 and, as a subspace is
closed under addition, ~w2 + ~w3 ∈W1. Thus ~v = ~w2 + ~w3 ∈W1 ∩ (W2 +W3).

This example proves that the inclusion may be strict: in R2 take W1 to be the
x-axis, take W2 to be the y-axis, and take W3 to be the line y = x. Then W1 ∩W2
and W1 ∩W3 are trivial and so their sum is trivial. But W2 +W3 is all of R2 so
W1 ∩ (W2 +W3) is the x-axis.



Two.III.4.39 It happens when at least one of W1,W2 is trivial. But that is the only
way it can happen.

To prove this, assume that both are non-trivial, select nonzero vectors ~w1, ~w2
from each, and consider ~w1+ ~w2. This sum is not inW1 because ~w1+ ~w2 = ~v ∈W1
would imply that ~w2 = ~v − ~w1 is in W1, which violates the assumption of the
independence of the subspaces. Similarly, ~w1 + ~w2 is not in W2. Thus there is an
element of V that is not in W1 ∪W2.

Two.III.4.40 Yes. The left-to-right implication is Corollary 4.13. For the other
direction, assume that dim(V) = dim(W1) + · · · + dim(Wk). Let B1, . . . , Bk be
bases for W1, . . . ,Wk. As V is the sum of the subspaces, we can write any ~v ∈ V
as ~v = ~w1 + · · ·+ ~wk and expressing each ~wi as a combination of vectors from the
associated basis Bi shows that the concatenation B1

_ · · ·_Bk spans V . Now, that
concatenation has dim(W1) + · · ·+ dim(Wk) members, and so it is a spanning set
of size dim(V). The concatenation is therefore a basis for V. Thus V is the direct
sum.

Two.III.4.41 No. The standard basis for R2 does not split into bases for the comple-
mentary subspaces the line x = y and the line x = −y.

Two.III.4.42 (a) Yes, W1 +W2 =W2 +W1 for all subspaces W1,W2 because each
side is the span of W1 ∪W2 =W2 ∪W1.

(b) This one is similar to the prior one—each side of that equation is the span of
(W1 ∪W2) ∪W3 =W1 ∪ (W2 ∪W3).

(c) Because this is an equality between sets, we can show that it holds by mutual
inclusion. Clearly W ⊆W +W. For W +W ⊆W just recall that every subset is
closed under addition so any sum of the form ~w1 + ~w2 is in W.

(d) In each vector space, the identity element with respect to subspace addition is
the trivial subspace.

(e) Neither of left or right cancellation needs to hold. For an example, in R3 take
W1 to be the xy-plane, take W2 to be the x-axis, and take W3 to be the y-axis.

Topic: Fields

1 Going through the five conditions shows that they are all familiar from elementary
mathematics.

2 As with the prior question, going through the five conditions shows that for both
of these structures, the properties are familiar.



3 The integers fail condition (5). For instance, there is no multiplicative inverse for
2—while 2 is an integer, 1/2 is not.

4 We can do these checks by listing all of the possibilities. For instance, to verify the
first half of condition (2) we must check that the structure is closed under addition
and that addition is commutative a + b = b + a, we can check both of these for
all possible pairs a and b because there are only four such pairs. Similarly, for
associativity, there are only eight triples a, b, c, and so the check is not too long.
(There are other ways to do the checks; in particular, you may recognize these
operations as arithmetic modulo 2. But an exhaustive check is not onerous)

5 These will do.
+ 0 1 2

0 0 1 2

1 1 2 0

2 2 0 1

· 0 1 2

0 0 0 0

1 0 1 2

2 0 2 1

As in the prior item, we could verify that they satisfy the conditions by listing all
of the cases.

Topic: Crystals

1 Each fundamental unit is 3.34× 10−10 cm, so there are about 0.1/(3.34× 10−10)
such units. That gives 2.99× 108, so there are something like 300, 000, 000 (three
hundred million) regions.

2 (a) We solve

c1

(
1.42

0

)
+ c2

(
0.71

1.23

)
=

(
5.67

3.14

)
=⇒ 1.42c1 + 0.71c2 = 5.67

1.23c2 = 3.14

to get c2 ≈ 2.72 and c1 ≈ 2.55.
(b) Here is the point located in the lattice. In the picture on the left, superimposed
on the unit cell are the two basis vectors ~β1 and ~β2, and a box showing the offset
of 2.55~β1 + 2.72~β2. The picture on the right shows where that appears inside of
the crystal lattice, taking as the origin the lower left corner of the hexagon in the
lower left.



So this point is two columns of hexagons over and one hexagon up.
(c) This second basis

〈

(
1.42

0

)
,

(
0

1.42

)
〉

makes the computation easier

c1

(
1.42

0

)
+ c2

(
0

1.42

)
=

(
5.67

3.14

)
=⇒ 1.42c1 = 5.67

1.42c2 = 3.14

(we get c2 ≈ 2.21 and c1 ≈ 3.99), but it doesn’t seem to have to do much with
the physical structure that we are studying.

3 In terms of the basis the locations of the corner atoms are (0, 0, 0), (1, 0, 0), . . . ,
(1, 1, 1). The locations of the face atoms are (0.5, 0.5, 1), (1, 0.5, 0.5), (0.5, 1, 0.5),
(0, 0.5, 0.5), (0.5, 0, 0.5), and (0.5, 0.5, 0). The locations of the atoms a quarter of
the way down from the top are (0.75, 0.75, 0.75) and (0.25, 0.25, 0.25). The atoms a
quarter of the way up from the bottom are at (0.75, 0.25, 0.25) and (0.25, 0.75, 0.25).
Converting to Ångstroms is easy.

4 (a) 195.08/6.02× 1023 = 3.239× 10−22

(b) Each platinum atom in the middle of each face is split between two cubes, so
that is 6/2 = 3 atoms so far. Each atom at a corner is split among eight cubes,
so that makes an additional 8/8 = 1 atom, so the total is 4.

(c) 4 · 3.239× 10−22 = 1.296× 10−21

(d) 1.296× 10−21/21.45 = 6.042× 10−23 cubic centimeters
(e) 3.924× 10−8 centimeters.

(f) 〈

3.924× 10−80

0

 ,
 0

3.924× 10−8

0

 ,
 0

0

3.924× 10−8

〉
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Topic: Voting Paradoxes

1 This example yields a non-rational preference order for a single voter.

character experience policies
Democrat most middle least
Republican middle least most
Third least most middle

The Democrat is better than the Republican for character and experience. The
Republican wins over the Third for character and policies. And, the Third beats
the Democrat for experience and policies.

2 First, compare the D > R > T decomposition that was covered in the Topic−1

1

1

 =
1

3
·

11
1

+
2

3
·

−1

1

0

+
2

3
·

−1

0

1


with the decomposition of the opposite T > R > D voter. 1

−1

−1

 = d1 ·

11
1

+ d2 ·

−1

1

0

+ d3 ·

−1

0

1


Obviously, the second is the negative of the first, and so d1 = −1/3, d2 = −2/3,
and d3 = −2/3. This principle holds for any pair of opposite voters, and so we
need only do the computation for a voter from the second row, and a voter from
the third row. For a positive spin voter in the second row,

c1 − c2 − c3 = 1

c1 + c2 = 1

c1 + c3 =−1

−ρ1+ρ2−→
−ρ1+ρ3

(−1/2)ρ2+ρ3−→
c1 − c2 − c3 = 1

2c2 + c3 = 0

(3/2)c3 =−2

gives c3 = −4/3, c2 = 2/3, and c1 = 1/3. For a positive spin voter in the third
row,

c1 − c2 − c3 = 1

c1 + c2 =−1

c1 + c3 = 1

−ρ1+ρ2−→
−ρ1+ρ3

(−1/2)ρ2+ρ3−→
c1 − c2 − c3 = 1

2c2 + c3 =−2

(3/2)c3 = 1

gives c3 = 2/3, c2 = −4/3, and c1 = 1/3.

3 The mock election corresponds to the table on page 153 in the way shown in the
first table, and after cancellation the result is the second table.
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positive spin negative spin
D > R > T

5 voters
T > R > D

2 voters
R > T > D

8 voters
D > T > R

4 voters
T > D > R

8 voters
R > D > T

2 voters

positive spin negative spin
D > R > T

3 voters
T > R > D

-canceled-
R > T > D

4 voters
D > T > R

-canceled-
T > D > R

6 voters
R > D > T

-canceled-

All three come from the same side of the table (the left), as the result from this
Topic says must happen. Now we can tally, using the canceled numbers

3 ·

D

T R

−1

1

1

+ 4 ·

D

T R

1

1

−1

+ 6 ·

D

T R

1

−1

1

=

D

T R

7

1

5

to get the same outcome.

4 (a) A trivial example starts with the zero-voter election, which has a trivial
majority cycle, and adds any one voter. A more interesting example takes the
Political Science mock election and adds two T > D > R voters (to satisfy the
“addition of one more voter” criteria in the question we can add them one at a
time). The new voters have positive spin, which is the spin of the votes remaining
after cancellation in the original mock election. This is the resulting table of
voters and next to it is the result of cancellation.

positive spin negative spin
D > R > T

5 voters
T > R > D

2 voters
R > T > D

8 voters
D > T > R

4 voters
T > D > R

10 voters
R > D > T

2 voters

positive spin negative spin
D > R > T

3 voters
T > R > D

-canceled
R > T > D

4 voters
D > T > R

-canceled-
T > D > R

8 voters
R > D > T

-canceled-

This is the election using the canceled numbers.

3 ·

D

T R

−1

1

1

+ 4 ·

D

T R

1

1

−1

+ 8 ·

D

T R

1

−1

1

=

D

T R

9

−1

7

The majority cycle has indeed disappeared.
(b) Reverse the prior exercise. That is, add a voter to the result of the prior
exercise that cancels the one who made the cycle disappear.

(c) One such condition is that, after cancellation, all three be nonnegative or all
three be nonpositive, and: |c| < |a+ b| and |b| < |a+ c| and |a| < |b + c|. That



follows from this diagram.
D

T R

−a

a

a

+

D

T R

b

b

−b

+

D

T R

c

−c

c

=

D

T R

−a+b+c

a+b−c

a−b+c

5 (a) A two-voter election can have a majority cycle in two ways. First, the two
voters could be opposites, resulting after cancellation in the trivial election (with
the majority cycle of all zeroes). Second, the two voters could have the same
spin but come from different rows, as here.

1 ·

D

T R

−1

1

1

+ 1 ·

D

T R

1

1

−1

+ 0 ·

D

T R

1

−1

1

=

D

T R

0

2

0

(b) There are two cases. An even number of voters can split half and half into
opposites, e.g., half the voters are D > R > T and half are T > R > D. Then
cancellation gives the trivial election. If the number of voters is greater than one
and odd (of the form 2k+ 1 with k > 0) then using the cycle diagram from the
proof,

D

T R

−a

a

a

+

D

T R

b

b

−b

+

D

T R

c

−c

c

=

D

T R

−a+b+c

a+b−c

a−b+c

we can take a = k and b = k and c = 1. Because k > 0, this is a majority cycle.

6 It is nonempty because it contains the zero vector. To see that it is closed under
linear combinations of two of its members, suppose that ~v1 and ~v2 are in U⊥ and
consider c1~v1 + c2~v2. For any ~u ∈ U,

(c1~v1 + c2~v2) • ~u = c1(~v1 • ~u) + c2(~v2 • ~u) = c1 · 0+ c2 · 0 = 0

and so c1~v1 + c2~v2 ∈ U⊥.
As to whether it holds if U is a subset but not a subspace, the answer is yes.

Topic: Dimensional Analysis

1 (a) Assuming that this

(L1M0T0)p1(L1M0T0)p2(L1M0T−1)p3(L0M0T0)p4(L1M0T−2)p5(L0M0T1)p6

equals L0M0T0 gives rise to this linear system
p1 + p2 + p3 + p5 = 0

−p3 − 2p5 + p6 = 0



130 Linear Algebra, by Hefferon

(there is no restriction on p4). The natural parametrization uses the free variables
to give p3 = −2p5 + p6 and p1 = −p2 + p5 − p6. The resulting description of
the solution set

{



p1
p2
p3
p4
p5
p6


= p2



−1

1

0

0

0

0


+ p4



0

0

0

1

0

0


+ p5



1

0

−2

0

1

0


+ p6



−1

0

1

0

0

1


| p2, p4, p5, p6 ∈ R }

gives {y/x, θ, xt/v02, v0t/x } as a complete set of dimensionless products (recall
that “complete” in this context does not mean that there are no other dimensionless
products; it simply means that the set is a basis). This is, however, not the set
of dimensionless products that the question asks for.

There are two ways to proceed. The first is to fiddle with the choice of
parameters, hoping to hit on the right set. For that, we can do the prior
paragraph in reverse. Converting the given dimensionless products gt/v0, gx/v20,
gy/v20, and θ into vectors gives this description (note the ? ’s where the parameters
will go).

{



p1
p2
p3
p4
p5
p6


= ?



0

0

−1

0

1

1


+ ?



1

0

−2

0

1

0


+ ?



0

1

−2

0

1

0


+ p4



0

0

0

1

0

0


| p2, p4, p5, p6 ∈ R }

The p4 is already in place. Examining the rows shows that we can also put in
place p6, p1, and p2.

The second way to proceed, following the hint, is to note that the given set is
of size four in a four-dimensional vector space and so we need only show that it
is linearly independent. That is easily done by inspection, by considering the
sixth, first, second, and fourth components of the vectors.

(b) The first equation can be rewritten
gx

v02
=
gt

v0
cos θ

so that Buckingham’s function is f1(Π1, Π2, Π3, Π4) = Π2 − Π1 cos(Π4). The
second equation can be rewritten

gy

v02
=
gt

v0
sin θ−

1

2

(
gt

v0

)2
and Buckingham’s function here is f2(Π1, Π2, Π3, Π4) = Π3 − Π1 sin(Π4) +
(1/2)Π1

2.
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2 Consider
(L0M0T−1)p1(L1M−1T2)p2(L−3M0T0)p3(L0M1T0)p4 = (L0M0T0)

which gives these relations among the powers.
p2 − 3p3 = 0

−p2 + p4 = 0

−p1 + 2p2 = 0

ρ1↔ρ3−→ ρ2+ρ3−→
−p1 + 2p2 = 0

−p2 + p4 = 0

−3p3 + p4 = 0

This is the solution space (because we wish to express k as a function of the other
quantities, we take p2 as the parameter).

{


2

1

1/3

1

p2 | p2 ∈ R }

Thus, Π1 = ν2kN1/3m is the dimensionless combination, and we have that k
equals ν−2N−1/3m−1 times a constant (the function f̂ is constant since it has no
arguments).

3 (a) Setting
(L2M1T−2)p1(L0M0T−1)p2(L3M0T0)p3 = (L0M0T0)

gives this
2p1 + 3p3 = 0

p1 = 0

−2p1 − p2 = 0

which implies that p1 = p2 = p3 = 0. That is, among quantities with these
dimensional formulas, the only dimensionless product is the trivial one.

(b) Setting
(L2M1T−2)p1(L0M0T−1)p2(L3M0T0)p3(L−3M1T0)p4 = (L0M0T0)

gives this.

2p1 + 3p3 − 3p4 = 0

p1 + p4 = 0

−2p1 − p2 = 0

(−1/2)ρ1+ρ2−→
ρ1+ρ3

ρ2↔ρ3−→
2p1 + 3p3 − 3p4 = 0

−p2 + 3p3 − 3p4 = 0

(−3/2)p3 + (5/2)p4 = 0

Taking p1 as parameter to express the torque gives this description of the solution
set.

{


1

−2

−5/3

−1

p1 | p1 ∈ R }
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Denoting the torque by τ, the rotation rate by r, the volume of air by V, and
the density of air by d we have that Π1 = τr−2V−5/3d−1, and so the torque is
r2V5/3d times a constant.

4 (a) These are the dimensional formulas.

quantity
dimensional
formula

speed of the wave v L1M0T−1

separation of the dominoes d L1M0T0

height of the dominoes h L1M0T0

acceleration due to gravity g L1M0T−2

(b) The relationship

(L1M0T−1)p1(L1M0T0)p2(L1M0T0)p3(L1M0T−2)p4 = (L0M0T0)

gives this linear system.
p1 + p2 + p3 + p4 = 0

0= 0

−p1 − 2p4 = 0

ρ1+ρ4−→ p1 + p2 + p3 + p4 = 0

p2 + p3 − p4 = 0

Taking p3 and p4 as parameters, we can describe the solution set in this way.

{


0

−1

1

0

p3 +

−2

1

0

1

p4 | p3, p4 ∈ R }

That gives {Π1 = h/d,Π2 = dg/v2 } as a complete set.
(c) Buckingham’s Theorem says that v2 = dg · f̂(h/d) and so, since g is a constant,
if h/d is fixed then v is proportional to

√
d .

5 Checking the conditions in the definition of a vector space is routine.

6 (a) The dimensional formula of the circumference is L, that is, L1M0T0. The
dimensional formula of the area is L2.

(b) One is C+A = 2πr+ πr2.
(c) One example is this formula relating the the length of arc subtended by an
angle to the radius and the angle measure in radians: `− rθ = 0. Both terms in
that formula have dimensional formula L1. The relationship holds for some unit
systems (inches and radians, for instance) but not for all unit systems (inches
and degrees, for instance).



Chapter Three

Chapter Three: Maps
Between Spaces

Isomorphisms

Three.I.1: Definition and Examples

Three.I.1.12 (a) Call the map f.

(a b)
f7−→

(
a

b

)
It is one-to-one because if f sends two members of the domain to the same image,
that is, if f

(
(a b)

)
= f

(
(c d)

)
, then the definition of f gives that(
a

b

)
=

(
c

d

)
and since column vectors are equal only if they have equal components, we have
that a = c and that b = d. Thus, if f maps two row vectors from the domain to
the same column vector then the two row vectors are equal: (a b) = (c d).

To show that f is onto we must show that any member of the codomain R2 is
the image under f of some row vector. That’s easy;(

x

y

)
is f

(
(x y)

)
.
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The computation for preservation of addition is this.

f
(
(a b) + (c d)

)
= f

(
(a+ c b+ d)

)
=

(
a+ c

b+ d

)

=

(
a

b

)
+

(
c

d

)
= f

(
(a b)

)
+ f
(
(c d)

)
The computation for preservation of scalar multiplication is similar.

f
(
r · (a b)

)
= f

(
(ra rb)

)
=

(
ra

rb

)
= r ·

(
a

b

)
= r · f

(
(a b)

)
(b) Denote the map from Example 1.2 by f. To show that it is one-to-one, assume
that f(a0 + a1x + a2x2) = f(b0 + b1x + b2x

2). Then by the definition of the
function, a0a1

a2

 =

b0b1
b2


and so a0 = b0 and a1 = b1 and a2 = b2. Thus a0+a1x+a2x2 = b0+b1x+b2x2,
and consequently f is one-to-one.

The function f is onto because there is a polynomial sent toab
c


by f, namely, a+ bx+ cx2.

As for structure, this shows that f preserves addition

f
(
(a0 + a1x+ a2x

2) + (b0 + b1x+ b2x
2)
)

= f
(
(a0 + b0) + (a1 + b1)x+ (a2 + b2)x

2
)

=

a0 + b0a1 + b1
a2 + b2


=

a0a1
a2

+

b0b1
b2


= f(a0 + a1x+ a2x

2) + f(b0 + b1x+ b2x
2)
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and this shows

f( r(a0 + a1x+ a2x
2) ) = f( (ra0) + (ra1)x+ (ra2)x

2 )

=

ra0ra1
ra2


= r ·

a0a1
a2


= r f(a0 + a1x+ a2x

2)

that it preserves scalar multiplication.

Three.I.1.13 These are the images.

(a)

(
5

−2

)
(b)

(
0

2

)
(c)

(
−1

1

)
To prove that f is one-to-one, assume that it maps two linear polynomials to

the same image f(a1 + b1x) = f(a2 + b2x). Then(
a1 − b1
b1

)
=

(
a2 − b2
b2

)
and so, since column vectors are equal only when their components are equal,
b1 = b2 and a1 = a2. That shows that the two linear polynomials are equal, and
so f is one-to-one.

To show that f is onto, note that this member of the codomain(
s

t

)
is the image of this member of the domain (s+ t) + tx.

To check that f preserves structure, we can use item (2) of Lemma 1.11.

f (c1 · (a1 + b1x) + c2 · (a2 + b2x)) = f ((c1a1 + c2a2) + (c1b1 + c2b2)x)

=

(
(c1a1 + c2a2) − (c1b1 + c2b2)

c1b1 + c2b2

)

= c1 ·

(
a1 − b1
b1

)
+ c2 ·

(
a2 − b2
b2

)
= c1 · f(a1 + b1x) + c2 · f(a2 + b2x)

Three.I.1.14 To verify it is one-to-one, assume that f1(c1x+ c2y+ c3z) = f1(d1x+

d2y+d3z). Then c1+c2x+c3x2 = d1+d2x+d3x2 by the definition of f1. Members
of P2 are equal only when they have the same coefficients, so this implies that c1 = d1
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and c2 = d2 and c3 = d3. Therefore f1(c1x + c2y + c3z) = f1(d1x + d2y + d3z)

implies that c1x+ c2y+ c3z = d1x+ d2y+ d3z, and so f1 is one-to-one.
To verify that it is onto, consider an arbitrary member of the codomain a1 +

a2x + a3x
2 and observe that it is indeed the image of a member of the domain,

namely, it is f1(a1x+ a2y+ a3z). (For instance, 0+ 3x+ 6x2 = f1(0x+ 3y+ 6z).)
The computation checking that f1 preserves addition is this.

f1 ( (c1x+ c2y+ c3z) + (d1x+ d2y+ d3z) )

= f1 ( (c1 + d1)x+ (c2 + d2)y+ (c3 + d3)z )

= (c1 + d1) + (c2 + d2)x+ (c3 + d3)x
2

= (c1 + c2x+ c3x
2) + (d1 + d2x+ d3x

2)

= f1(c1x+ c2y+ c3z) + f1(d1x+ d2y+ d3z)

The check that f1 preserves scalar multiplication is this.

f1( r · (c1x+ c2y+ c3z) ) = f1( (rc1)x+ (rc2)y+ (rc3)z )

= (rc1) + (rc2)x+ (rc3)x
2

= r · (c1 + c2x+ c3x2)
= r · f1(c1x+ c2y+ c3z)

Three.I.1.15 To see that the map is one-to-one suppose that t(~v1) = t(~v2), aiming
to conclude that ~v1 = ~v2. That is, t(a1x2 + b1x+ c1) = t(a2x2 + b2x+ c2). Then
b1x

2−(a1+c1)x+a1 = b2x
2−(a2+c2)x+a2 and because quadratic polynomials

are equal only if they have have the same quadratic terms, the same constant terms,
and the same linear terms we conclude that b1 = b2, that a1 = a2, and from
that, c1 = c2. Therefore a1x2 + b1x + c1 = a2x

2 + b2x + c2 and the function is
one-to-one.

To see that the map is onto, we suppose that we are given a member ~w of the
codomain and we find a member ~v of the domain that maps to it. Let the member
of the codomain be ~w = px2 + qx+ r. Observe that where ~v = rx2 + px+ (−q− r)

then t(~v) = ~w. Thus t is onto.
To see that the map is a homomorphism we show that it respects linear combi-

nations of two elements. By Lemma 1.11 this will show that the map preserves the
operations.

t(r1(a1x
2 + b1x+ c1) + r2(a2x

2 + b2x+ c2))

= t((r1a1 + r2a2)x
2 + (r1b1 + r2b2)x+ (r1c1 + r2c2))

= (r1b1 + r2b2)x
2 − ((r1a1 + r2a2) + (r1c1 + r2c2))x+ (r1a1 + r2a2)

= (r1b1)x
2 − (r1a1 + r1c1)x+ r1a1 + (r2b2)x

2 − (r2a2 + r2c2)x+ r2a2

= r1t(a1x
2 + b1x+ c1) + r2t(a2x

2 + b2x+ c2)
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Three.I.1.16 We first verify that h is one-to-one. To do this we will show that
h(~v1) = h(~v2) implies that ~v1 = ~v2. So assume that

h(~v1) = h(


a1
b1
c1
d1

) = h(


a2
b2
c2
d2

) = h(~v2)

which gives (
c1 a1 + d1
b1 d1

)
=

(
c2 a2 + d2
b2 d2

)
from which we conclude that c1 = c2 (by the upper-left entries), b1 = b2 (by the
lower-left entries), d1 = d2 (by the lower-right entries), and with this last we get
a1 = a2 (by the upper right). Therefore ~v1 = ~v2.

Next we will show that the map is onto, that every member of the codomain
M2×2 is the image of some four-tall member of the domain. So, given

~w =

(
m n

p q

)
∈M2×2

observe that it is the image of this domain vector.

~v =


n− q

p

m

q


To finish we verify that the map preserves linear combinations. By Lemma 1.11

this will show that the map preserves the operations.

h(r1 ·


a1
b1
c1
d1

+ r2 ·


a2
b2
c2
d2

) = h(


r1a1 + r2a2
r1b1 + r2b2
r1c1 + r2c2
r1d1 + r2d2

)

=

(
r1c1 + r2c2 (r1a1 + r2a2) + (r1d1 + r2d2)

r1b1 + r2b2 r1d1 + r2d2

)

= r1

(
c1 a1 + d1
b1 d1

)
+ r2

(
c2 a2 + d2
b2 d2

)

= r1 · h(


a1
b1
c1
d1

) + r2 · h(


a2
b2
c2
d2

)

Three.I.1.17 (a) No; this map is not one-to-one. In particular, the matrix of all
zeroes is mapped to the same image as the matrix of all ones.
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(b) Yes, this is an isomorphism.
It is one-to-one:

if f(

(
a1 b1
c1 d1

)
) = f(

(
a2 b2
c2 d2

)
)

then


a1 + b1 + c1 + d1
a1 + b1 + c1
a1 + b1
a1

 =


a2 + b2 + c2 + d2
a2 + b2 + c2
a2 + b2
a2


gives that a1 = a2, and that b1 = b2, and that c1 = c2, and that d1 = d2.

It is onto, since this shows
x

y

z

w

 = f(

(
w z−w

y− z x− y

)
)

that any four-tall vector is the image of a 2×2 matrix.
Finally, it preserves combinations

f( r1 ·

(
a1 b1
c1 d1

)
+ r2 ·

(
a2 b2
c2 d2

)
)

= f(

(
r1a1 + r2a2 r1b1 + r2b2
r1c1 + r2c2 r1d1 + r2d2

)
)

=


r1a1 + · · ·+ r2d2
r1a1 + · · ·+ r2c2
r1a1 + · · ·+ r2b2
r1a1 + r2a2



= r1 ·


a1 + · · ·+ d1
a1 + · · ·+ c1
a1 + b1
a1

+ r2 ·


a2 + · · ·+ d2
a2 + · · ·+ c2
a2 + b2
a2


= r1 · f(

(
a1 b1
c1 d1

)
) + r2 · f(

(
a2 b2
c2 d2

)
)

and so item (2) of Lemma 1.11 shows that it preserves structure.
(c) Yes, it is an isomorphism.

To show that it is one-to-one, we suppose that two members of the domain
have the same image under f.

f(

(
a1 b1
c1 d1

)
) = f(

(
a2 b2
c2 d2

)
)
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This gives, by the definition of f, that c1 + (d1 + c1)x + (b1 + a1)x
2 + a1x

3 =

c2 + (d2 + c2)x + (b2 + a2)x
2 + a2x

3 and then the fact that polynomials are
equal only when their coefficients are equal gives a set of linear equations

c1 = c2

d1 + c1 = d2 + c2

b1 + a1 = b2 + a2

a1 = a2

that has only the solution a1 = a2, b1 = b2, c1 = c2, and d1 = d2.
To show that f is onto, we note that p+ qx+ rx2 + sx3 is the image under f

of this matrix. (
s r− s

p q− p

)
We can check that f preserves structure by using item (2) of Lemma 1.11.

f(r1 ·

(
a1 b1
c1 d1

)
+ r2 ·

(
a2 b2
c2 d2

)
)

= f(

(
r1a1 + r2a2 r1b1 + r2b2
r1c1 + r2c2 r1d1 + r2d2

)
)

= (r1c1 + r2c2) + (r1d1 + r2d2 + r1c1 + r2c2)x

+ (r1b1 + r2b2 + r1a1 + r2a2)x
2 + (r1a1 + r2a2)x

3

= r1 ·
(
c1 + (d1 + c1)x+ (b1 + a1)x

2 + a1x
3
)

+ r2 ·
(
c2 + (d2 + c2)x+ (b2 + a2)x

2 + a2x
3
)

= r1 · f(

(
a1 b1
c1 d1

)
) + r2 · f(

(
a2 b2
c2 d2

)
)

(d) No, this map does not preserve structure. For instance, it does not send the
matrix of all zeroes to the zero polynomial.

Three.I.1.18 It is one-to-one and onto, a correspondence, because it has an inverse
(namely, f−1(x) = 3

√
x). However, it is not an isomorphism. For instance, f(1) +

f(1) 6= f(1+ 1).

Three.I.1.19 Many maps are possible. Here are two.

(a b) 7→

(
b

a

)
and (a b) 7→

(
2a

b

)
The verifications are straightforward adaptations of the others above.
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Three.I.1.20 Here are two.

a0 + a1x+ a2x
2 7→

a1a0
a2

 and a0 + a1x+ a2x
2 7→

a0 + a1a1
a2


Verification is straightforward (for the second, to show that it is onto, note thatst

u


is the image of (s− t) + tx+ ux2).

Three.I.1.21 The space R2 is not a subspace of R3 because it is not a subset of R3.
The two-tall vectors in R2 are not members of R3.

The natural isomorphism ι : R2 → R3 (called the injection map) is this.(
x

y

)
ι7−→

xy
0


This map is one-to-one because

f(

(
x1
y1

)
) = f(

(
x2
y2

)
) implies

x1y1
0

 =

x2y2
0


which in turn implies that x1 = x2 and y1 = y2, and therefore the initial two
two-tall vectors are equal.

Because xy
0

 = f(

(
x

y

)
)

this map is onto the xy-plane.
To show that this map preserves structure, we will use item (2) of Lemma 1.11

and show

f(c1 ·

(
x1
y1

)
+ c2 ·

(
x2
y2

)
) = f(

(
c1x1 + c2x2
c1y1 + c2y2

)
) =

c1x1 + c2x2c1y1 + c2y2
0


= c1 ·

x1y1
0

+ c2 ·

x2y2
0

 = c1 · f(

(
x1
y1

)
) + c2 · f(

(
x2
y2

)
)

that it preserves combinations of two vectors.
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Three.I.1.22 Here are two:
r1
r2
...
r16

 7→
r1 r2 . . .

. . . r16

 and


r1
r2
...
r16

 7→

r1
r2
...

...
r16


Verification that each is an isomorphism is easy.

Three.I.1.23 When k is the product k = mn, here is an isomorphism.r1 r2 . . .
...

. . . rm·n

 7→

r1
r2
...

rm·n


Checking that this is an isomorphism is easy.

Three.I.1.24 If n > 1 then Pn−1 ∼= Rn. (If we take P−1 and R0 to be trivial
vector spaces, then the relationship extends one dimension lower.) The natural
isomorphism between them is this.

a0 + a1x+ · · ·+ an−1xn−1 7→


a0
a1
...

an−1


Checking that it is an isomorphism is straightforward.

Three.I.1.25 This is the map, expanded.

f(a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5)

= a0 + a1(x− 1) + a2(x− 1)
2 + a3(x− 1)

3

+ a4(x− 1)
4 + a5(x− 1)

5

= a0 + a1(x− 1) + a2(x
2 − 2x+ 1)

+ a3(x
3 − 3x2 + 3x− 1)

+ a4(x
4 − 4x3 + 6x2 − 4x+ 1)

+ a5(x
5 − 5x4 + 10x3 − 10x2 + 5x− 1)

= (a0 − a1 + a2 − a3 + a4 − a5)

+ (a1 − 2a2 + 3a3 − 4a4 + 5a5)x

+ (a2 − 3a3 + 6a4 − 10a5)x
2

+ (a3 − 4a4 + 10a5)x
3

+ (a4 − 5a5)x
4 + a5x

5
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This map is a correspondence because it has an inverse, the map p(x) 7→ p(x+ 1).
To finish checking that it is an isomorphism we apply item (2) of Lemma 1.11

and show that it preserves linear combinations of two polynomials. Briefly, f(c ·
(a0 + a1x+ · · ·+ a5x5) + d · (b0 + b1x+ · · ·+ b5x5)) equals this

(ca0 − ca1 + ca2 − ca3 + ca4 − ca5 + db0 − db1 + db2 − db3 + db4 − db5)

+ · · ·+ (ca5 + db5)x
5

which equals c · f(a0 + a1x+ · · ·+ a5x5) + d · f(b0 + b1x+ · · ·+ b5x5).

Three.I.1.26 No vector space has the empty set underlying it. We can take ~v to be
the zero vector.

Three.I.1.27 Yes; where the two spaces are {~a } and {~b }, the map sending ~a to ~b is
clearly one-to-one and onto, and also preserves what little structure there is.

Three.I.1.28 A linear combination of n = 0 vectors adds to the zero vector and so
Lemma 1.10 shows that the three statements are equivalent in this case.

Three.I.1.29 Consider the basis 〈1〉 for P0 and let f(1) ∈ R be k. For any a ∈ P0

we have that f(a) = f(a · 1) = af(1) = ak and so f’s action is multiplication by k.
Note that k 6= 0 or else the map is not one-to-one. (Incidentally, any such map
a 7→ ka is an isomorphism, as is easy to check.)

Three.I.1.30 In each item, following item (2) of Lemma 1.11, we show that the map
preserves structure by showing that the it preserves linear combinations of two
members of the domain.
(a) The identity map is clearly one-to-one and onto. For linear combinations the
check is easy.

id(c1 ·~v1 + c2 ·~v2) = c1~v1 + c2~v2 = c1 · id(~v1) + c2 · id(~v2)

(b) The inverse of a correspondence is also a correspondence (as stated in the
appendix), so we need only check that the inverse preserves linear combinations.
Assume that ~w1 = f(~v1) (so f−1(~w1) = ~v1) and assume that ~w2 = f(~v2).

f−1(c1 · ~w1 + c2 · ~w2) = f−1
(
c1 · f(~v1) + c2 · f(~v2)

)
= f−1( f

(
c1~v1 + c2~v2)

)
= c1~v1 + c2~v2

= c1 · f−1(~w1) + c2 · f−1(~w2)

(c) The composition of two correspondences is a correspondence (as stated in the
appendix), so we need only check that the composition map preserves linear
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combinations.

g ◦ f
(
c1 ·~v1 + c2 ·~v2

)
= g

(
f(c1~v1 + c2~v2)

)
= g

(
c1 · f(~v1) + c2 · f(~v2)

)
= c1 · g

(
f(~v1)) + c2 · g(f(~v2)

)
= c1 · g ◦ f (~v1) + c2 · g ◦ f (~v2)

Three.I.1.31 One direction is easy: by definition, if f is one-to-one then for any ~w ∈W
at most one ~v ∈ V has f(~v ) = ~w, and so in particular, at most one member of V is
mapped to ~0W . The proof of Lemma 1.10 does not use the fact that the map is a
correspondence and therefore shows that any structure-preserving map f sends ~0V
to ~0W .

For the other direction, assume that the only member of V that is mapped
to ~0W is ~0V . To show that f is one-to-one assume that f(~v1) = f(~v2). Then
f(~v1)− f(~v2) = ~0W and so f(~v1−~v2) = ~0W . Consequently ~v1−~v2 = ~0V , so ~v1 = ~v2,
and so f is one-to-one.

Three.I.1.32 We will prove something stronger—not only is the existence of a depen-
dence preserved by isomorphism, but each instance of a dependence is preserved,
that is,

~vi = c1~v1 + · · ·+ ci−1~vi−1 + ci+1~vi+1 + · · ·+ ck~vk
⇐⇒ f(~vi) = c1f(~v1) + · · ·+ ci−1f(~vi−1) + ci+1f(~vi+1) + · · ·+ ckf(~vk).

The =⇒ direction of this statement holds by item (3) of Lemma 1.11. The ⇐=
direction holds by regrouping

f(~vi) = c1f(~v1) + · · ·+ ci−1f(~vi−1) + ci+1f(~vi+1) + · · ·+ ckf(~vk)
= f(c1~v1 + · · ·+ ci−1~vi−1 + ci+1~vi+1 + · · ·+ ck~vk)

and applying the fact that f is one-to-one, and so for the two vectors ~vi and
c1~v1 + · · ·+ ci−1~vi−1 + ci+1f~vi+1 + · · ·+ ckf(~vk to be mapped to the same image
by f, they must be equal.

Three.I.1.33 (a) This map is one-to-one because if ds(~v1) = ds(~v2) then by definition
of the map, s ·~v1 = s ·~v2 and so ~v1 = ~v2, as s is nonzero. This map is onto as any
~w ∈ R2 is the image of ~v = (1/s) · ~w (again, note that s is nonzero). (Another
way to see that this map is a correspondence is to observe that it has an inverse:
the inverse of ds is d1/s.)

To finish, note that this map preserves linear combinations

ds(c1 ·~v1 + c2 ·~v2) = s(c1~v1 + c2~v2) = c1s~v1 + c2s~v2 = c1 · ds(~v1) + c2 · ds(~v2)

and therefore is an isomorphism.
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(b) As in the prior item, we can show that the map tθ is a correspondence by
noting that it has an inverse, t−θ.

That the map preserves structure is geometrically easy to see. For instance,
adding two vectors and then rotating them has the same effect as rotating first
and then adding. For an algebraic argument, consider polar coordinates: the map
tθ sends the vector with endpoint (r, φ) to the vector with endpoint (r, φ+ θ).
Then the familiar trigonometric formulas cos(φ+ θ) = cosφ cos θ− sinφ sin θ
and sin(φ+ θ) = sinφ cos θ+ cosφ sin θ show how to express the map’s action
in the usual rectangular coordinate system.(

x

y

)
=

(
r cosφ
r sinφ

)
tθ7−→

(
r cos(φ+ θ)

r sin(φ+ θ)

)
=

(
x cos θ− y sin θ
x sin θ+ y cos θ

)

Now the calculation for preservation of addition is routine.(
x1 + x2
y1 + y2

)
tθ7−→

(
(x1 + x2) cos θ− (y1 + y2) sin θ
(x1 + x2) sin θ+ (y1 + y2) cos θ

)

=

(
x1 cos θ− y1 sin θ
x1 sin θ+ y1 cos θ

)
+

(
x2 cos θ− y2 sin θ
x2 sin θ+ y2 cos θ

)

The calculation for preservation of scalar multiplication is similar.
(c) This map is a correspondence because it has an inverse (namely, itself).

As in the last item, that the reflection map preserves structure is geometrically
easy to see: adding vectors and then reflecting gives the same result as reflecting
first and then adding, for instance. For an algebraic proof, suppose that the line
` has slope k (the case of a line with undefined slope can be done as a separate,
but easy, case). We can follow the hint and use polar coordinates: where the line
` forms an angle of φ with the x-axis, the action of f` is to send the vector with
endpoint (r cos θ, r sin θ) to the one with endpoint (r cos(2φ− θ), r sin(2φ− θ)).

f`7−→
θ φ

φ− (θ− φ)

To convert to rectangular coordinates, we will use some trigonometric formulas,
as we did in the prior item. First observe that cosφ and sinφ can be determined
from the slope k of the line. This picture

x

kxx
√
1+ k2

θ
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gives that cosφ = 1/
√
1+ k2 and sinφ = k/

√
1+ k2. Now,

cos(2φ− θ) = cos(2φ) cos θ+ sin(2φ) sin θ

=
(
cos2φ− sin2φ

)
cos θ+ (2 sinφ cosφ) sin θ

=

(
(

1√
1+ k2

)2 − (
k√
1+ k2

)2
)

cos θ+
(
2

k√
1+ k2

1√
1+ k2

)
sin θ

=

(
1− k2

1+ k2

)
cos θ+

(
2k

1+ k2

)
sin θ

and thus the first component of the image vector is this.

r · cos(2φ− θ) =
1− k2

1+ k2
· x+ 2k

1+ k2
· y

A similar calculation shows that the second component of the image vector is
this.

r · sin(2φ− θ) =
2k

1+ k2
· x− 1− k2

1+ k2
· y

With this algebraic description of the action of f`(
x

y

)
f`7−→

(
(1− k2/1+ k2) · x+ (2k/1+ k2) · y
(2k/1+ k2) · x− (1− k2/1+ k2) · y

)
checking that it preserves structure is routine.

Three.I.1.34 First, the map p(x) 7→ p(x + k) doesn’t count because it is a version
of p(x) 7→ p(x − k). Here is a correct answer (many others are also correct):
a0 + a1x + a2x

2 7→ a2 + a0x + a1x
2. Verification that this is an isomorphism is

straightforward.
Three.I.1.35 (a) For the ‘only if’ half, let f : R1 → R1 to be an isomorphism. Con-

sider the basis 〈1〉 ⊆ R1. Designate f(1) by k. Then for any x we have that
f(x) = f(x · 1) = x · f(1) = xk, and so f’s action is multiplication by k. To finish
this half, just note that k 6= 0 or else f would not be one-to-one.

For the ‘if’ half we only have to check that such a map is an isomorphism
when k 6= 0. To check that it is one-to-one, assume that f(x1) = f(x2) so that
kx1 = kx2 and divide by the nonzero factor k to conclude that x1 = x2. To check
that it is onto, note that any y ∈ R1 is the image of x = y/k (again, k 6= 0).
Finally, to check that such a map preserves combinations of two members of the
domain, we have this.

f(c1x1 + c2x2) = k(c1x1 + c2x2) = c1kx1 + c2kx2 = c1f(x1) + c2f(x2)

(b) By the prior item, f’s action is x 7→ (7/3)x. Thus f(−2) = −14/3.
(c) For the ‘only if’ half, assume that f : R2 → R2 is an automorphism. Consider
the standard basis E2 for R2. Let

f(~e1) =

(
a

c

)
and f(~e2) =

(
b

d

)
.
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Then the action of f on any vector is determined by by its action on the two
basis vectors.

f(

(
x

y

)
) = f(x ·~e1+y ·~e2) = x ·f(~e1)+y ·f(~e2) = x ·

(
a

c

)
+y ·

(
b

d

)
=

(
ax+ by

cx+ dy

)
To finish this half, note that if ad− bc = 0, that is, if f(~e2) is a multiple of f(~e1),
then f is not one-to-one.

For ‘if’ we must check that the map is an isomorphism, under the condition
that ad − bc 6= 0. The structure-preservation check is easy; we will here show
that f is a correspondence. For the argument that the map is one-to-one, assume
this.

f(

(
x1
y1

)
) = f(

(
x2
y2

)
) and so

(
ax1 + by1
cx1 + dy1

)
=

(
ax2 + by2
cx2 + dy2

)
Then, because ad− bc 6= 0, the resulting system

a(x1 − x2) + b(y1 − y2) = 0

c(x1 − x2) + d(y1 − y2) = 0

has a unique solution, namely the trivial one x1 − x2 = 0 and y1 − y2 = 0 (this
follows from the hint).

The argument that this map is onto is closely related—this system

ax1 + by1 = x

cx1 + dy1 = y

has a solution for any x and y if and only if this set

{

(
a

c

)
,

(
b

d

)
}

spans R2, i.e., if and only if this set is a basis (because it is a two-element subset
of R2), i.e., if and only if ad− bc 6= 0.

(d)

f(

(
0

−1

)
) = f(

(
1

3

)
−

(
1

4

)
) = f(

(
1

3

)
) − f(

(
1

4

)
) =

(
2

−1

)
−

(
0

1

)
=

(
2

−2

)
Three.I.1.36 There are many answers; two are linear independence and subspaces.

First we show that if a set {~v1, . . . ,~vn } is linearly independent then its image
{f(~v1), . . . , f(~vn) } is also linearly independent. Consider a linear relationship among
members of the image set.

0 = c1f(~v1) + · · ·+ cnf( ~vn) = f(c1~v1) + · · ·+ f(cn ~vn) = f(c1~v1 + · · ·+ cn ~vn)

Because this map is an isomorphism, it is one-to-one. So f maps only one vector
from the domain to the zero vector in the range, that is, c1~v1+ · · ·+cn~vn equals the
zero vector (in the domain, of course). But, if {~v1, . . . ,~vn } is linearly independent
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then all of the c’s are zero, and so {f(~v1), . . . , f(~vn) } is linearly independent also.
(Remark. There is a small point about this argument that is worth mention. In
a set, repeats collapse, that is, strictly speaking, this is a one-element set: {~v,~v },
because the things listed as in it are the same thing. Observe, however, the use of
the subscript n in the above argument. In moving from the domain set {~v1, . . . ,~vn }
to the image set {f(~v1), . . . , f(~vn) }, there is no collapsing, because the image set
does not have repeats, because the isomorphism f is one-to-one.)

To show that if f : V →W is an isomorphism and if U is a subspace of the
domain V then the set of image vectors f(U) = { ~w ∈W | ~w = f(~u) for some ~u ∈ U }

is a subspace of W, we need only show that it is closed under linear combinations
of two of its members (it is nonempty because it contains the image of the zero
vector). We have

c1 · f(~u1) + c2 · f(~u2) = f(c1~u1) + f(c2~u2) = f(c1~u1 + c2~u2)

and c1~u1 + c2~u2 is a member of U because of the closure of a subspace under
combinations. Hence the combination of f(~u1) and f(~u2) is a member of f(U).

Three.I.1.37 (a) The association

~p = c1~β1 + c2~β2 + c3~β3
RepB(·)7−→

c1c2
c3


is a function if every member ~p of the domain is associated with at least one
member of the codomain, and if every member ~p of the domain is associated with
at most one member of the codomain. The first condition holds because the basis
B spans the domain—every ~p can be written as at least one linear combination
of ~β’s. The second condition holds because the basis B is linearly independent—
every member ~p of the domain can be written as at most one linear combination
of the ~β’s.

(b) For the one-to-one argument, if RepB(~p) = RepB(~q), that is, if RepB(p1~β1 +
p2~β2 + p3~β3) = RepB(q1~β1 + q2~β2 + q3~β3) thenp1p2

p3

 =

q1q2
q3


and so p1 = q1 and p2 = q2 and p3 = q3, which gives the conclusion that ~p = ~q.
Therefore this map is one-to-one.

For onto, we can just note that ab
c
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equals RepB(a~β1 + b~β2 + c~β3), and so any member of the codomain R3 is the
image of some member of the domain P2.

(c) This map respects addition and scalar multiplication because it respects
combinations of two members of the domain (that is, we are using item (2) of
Lemma 1.11): where ~p = p1~β1 + p2~β2 + p3~β3 and ~q = q1~β1 + q2~β2 + q3~β3, we
have this.

RepB(c · ~p+ d · ~q) = RepB( (cp1 + dq1)~β1 + (cp2 + dq2)~β2 + (cp3 + dq3)~β3 )

=

cp1 + dq1cp2 + dq2
cp3 + dq3


= c ·

p1p2
p3

+ d ·

q1q2
q3


= RepB(~p) + RepB(~q)

(d) Use any basis B for P2 whose first two members are x + x2 and 1 − x, say
B = 〈x+ x2, 1− x, 1〉.

Three.I.1.38 See the next subsection.

Three.I.1.39 (a) Most of the conditions in the definition of a vector space are routine.
We here sketch the verification of part (1) of that definition.

For closure of U×W, note that because U and W are closed, we have that
~u1+~u2 ∈ U and ~w1+~w2 ∈W and so (~u1+~u2, ~w1+~w2) ∈ U×W. Commutativity
of addition in U×W follows from commutativity of addition in U and W.

(~u1, ~w1)+(~u2, ~w2) = (~u1+~u2, ~w1+~w2) = (~u2+~u1, ~w2+~w1) = (~u2, ~w2)+(~u1, ~w1)

The check for associativity of addition is similar. The zero element is (~0U,~0W) ∈
U×W and the additive inverse of (~u, ~w) is (−~u,−~w).

The checks for the second part of the definition of a vector space are also
straightforward.

(b) This is a basis

〈 (1,

(
0

0

)
), (x,

(
0

0

)
), (x2,

(
0

0

)
), (1,

(
1

0

)
), (1,

(
0

1

)
) 〉

because there is one and only one way to represent any member of P2 × R2 with
respect to this set; here is an example.

(3+2x+x2,

(
5

4

)
) = 3·(1,

(
0

0

)
)+2·(x,

(
0

0

)
)+(x2,

(
0

0

)
)+5·(1,

(
1

0

)
)+4·(1,

(
0

1

)
)

The dimension of this space is five.
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(c) We have dim(U×W) = dim(U) + dim(W) as this is a basis.
〈(~µ1,~0W), . . . , (~µdim(U),~0W), (~0U, ~ω1), . . . , (~0U, ~ωdim(W))〉

(d) We know that if V = U⊕W then each ~v ∈ V can be written as ~v = ~u+ ~w in
one and only one way. This is just what we need to prove that the given function
an isomorphism.

First, to show that f is one-to-one we can show that if f ((~u1, ~w1)) = ((~u2, ~w2)),
that is, if ~u1 + ~w1 = ~u2 + ~w2 then ~u1 = ~u2 and ~w1 = ~w2. But the statement
‘each ~v is such a sum in only one way’ is exactly what is needed to make this
conclusion. Similarly, the argument that f is onto is completed by the statement
that ‘each ~v is such a sum in at least one way’.

This map also preserves linear combinations
f( c1 · (~u1, ~w1) + c2 · (~u2, ~w2) ) = f( (c1~u1 + c2~u2, c1~w1 + c2~w2) )

= c1~u1 + c2~u2 + c1~w1 + c2~w2

= c1~u1 + c1~w1 + c2~u2 + c2~w2

= c1 · f( (~u1, ~w1) ) + c2 · f( (~u2, ~w2) )
and so it is an isomorphism.

Three.I.2: Dimension Characterizes Isomorphism

Three.I.2.9 Each pair of spaces is isomorphic if and only if the two have the same
dimension. We can, when there is an isomorphism, state a map, but it isn’t strictly
necessary.
(a) No, they have different dimensions.
(b) No, they have different dimensions.
(c) Yes, they have the same dimension. One isomorphism is this.(

a b c

d e f

)
7→

a...
f


(d) Yes, they have the same dimension. This is an isomorphism.

a+ bx+ · · ·+ fx5 7→

(
a b c

d e f

)
(e) Yes, both have dimension 2k.

Three.I.2.10 Just find the dimension of each space, for instance by finding a basis,
and then spaces with the same dimension are isomorphic. This lists the dimension
of each space.
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(a) 3 (b) 4 (c) 4 (d) 4 (e) 3

Three.I.2.11 (a) RepB(3− 2x) =

(
5

−2

)
(b)

(
0

2

)
(c)

(
−1

1

)
Three.I.2.12 For each, the simplest thing is to find the dimension of the space by
finding a basis. For each basis given below, We will omit the verification that it is
a basis.
(a) It is isomorphic to R5. One basis for P4 is {x4, x3, x2, x, 1 } so the space has
dimension 5.

(b) It is isomorphic to R2 since one basis for the space P1 = {a+ bx | a, b ∈ R } is
{1, x }.

(c) It is isomorphic to R6. One basis has these six matrices.(
1 0 0

0 0 0

)
,

(
0 1 0

0 0 0

)
, · · ·

(
0 0 0

0 0 1

)
(d) It is a plane so it is isomorphic to R2. For a more extensive answer, parametriz-
ing the plane gives this vector description

{

xy
z

 =

1/21
0

y+

−1/2

0

1

 z | y, z ∈ R }

and so it has a basis consisting of those two vectors.
(e) It is isomorphic to R3. One basis is the set of linear combinations {x, y, z },
that is, {x+ 0y+ 0z, 0x+ y+ 0z, 0x+ 0y+ z }.

Three.I.2.13 They have different dimensions.

Three.I.2.14 Yes, both are mn-dimensional.

Three.I.2.15 Yes, any two (nondegenerate) planes are both two-dimensional vector
spaces.

Three.I.2.16 There are many answers, one is the set of Pk (taking P−1 to be the
trivial vector space).

Three.I.2.17 False (except when n = 0). For instance, if f : V → Rn is an isomorphism
then multiplying by any nonzero scalar, gives another, different, isomorphism.
(Between trivial spaces the isomorphisms are unique; the only map possible is
~0V 7→ 0W .)

Three.I.2.18 No. A proper subspace has a strictly lower dimension than it’s super-
space; if U is a proper subspace of V then any linearly independent subset of U
must have fewer than dim(V) members or else that set would be a basis for V , and
U wouldn’t be proper.
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Three.I.2.19 Where B = 〈~β1, . . . , ~βn〉, the inverse is this.c1...
cn

 7→ c1~β1 + · · ·+ cn~βn

Three.I.2.20 All three spaces have dimension equal to the rank of the matrix.
Three.I.2.21 We must show that if ~a = ~b then f(~a) = f(~b). So suppose that a1~β1 +
· · ·+ an~βn = b1~β1 + · · ·+ bn~βn. Each vector in a vector space (here, the domain
space) has a unique representation as a linear combination of basis vectors, so we
can conclude that a1 = b1, . . . , an = bn. Thus,

f(~a) =

a1...
an

 =

b1...
bn

 = f(~b)

and so the function is well-defined.
Three.I.2.22 Yes, because a zero-dimensional space is a trivial space.
Three.I.2.23 (a) No, this collection has no spaces of odd dimension.

(b) Yes, because Pk ∼= Rk+1.
(c) No, for instance, M2×3 ∼= M3×2.

Three.I.2.24 One direction is easy: if the two are isomorphic via f then for any basis
B ⊆ V, the set D = f(B) is also a basis (this is shown in Lemma 2.4). The check
that corresponding vectors have the same coordinates: f(c1~β1 + · · · + cn~βn) =

c1f(~β1) + · · ·+ cnf(~βn) = c1~δ1 + · · ·+ cn~δn is routine.
For the other half, assume that there are bases such that corresponding vectors

have the same coordinates with respect to those bases. Because f is a correspondence,
to show that it is an isomorphism, we need only show that it preserves structure.
Because RepB(~v ) = RepD(f(~v )), the map f preserves structure if and only if
representations preserve addition: RepB(~v1 + ~v2) = RepB(~v1) + RepB(~v2) and
scalar multiplication: RepB(r · ~v ) = r · RepB(~v ) The addition calculation is this:
(c1 + d1)~β1 + · · · + (cn + dn)~βn = c1~β1 + · · · + cn~βn + d1~β1 + · · · + dn~βn, and
the scalar multiplication calculation is similar.

Three.I.2.25 (a) Pulling the definition back from R4 to P3 gives that a0 + a1x +
a2x

2+a3x
3 is orthogonal to b0+b1x+b2x2+b3x3 if and only if a0b0+a1b1+

a2b2 + a3b3 = 0.
(b) A natural definition is this.

D(


a0
a1
a2
a3

) =


a1
2a2
3a3
0
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Three.I.2.26 Yes.

First, f̂ is well-defined because every member of V has one and only one
representation as a linear combination of elements of B.

Second we must show that f̂ is one-to-one and onto. It is one-to-one because
every member of W has only one representation as a linear combination of elements
of D, since D is a basis. And f̂ is onto because every member of W has at least one
representation as a linear combination of members of D.

Finally, preservation of structure is routine to check. For instance, here is the
preservation of addition calculation.

f̂( (c1~β1 + · · ·+ cn~βn) + (d1~β1 + · · ·+ dn~βn) )

= f̂( (c1 + d1)~β1 + · · ·+ (cn + dn)~βn )

= (c1 + d1)f(~β1) + · · ·+ (cn + dn)f(~βn)

= c1f(~β1) + · · ·+ cnf(~βn) + d1f(~β1) + · · ·+ dnf(~βn)
= f̂(c1~β1 + · · ·+ cn~βn) + +f̂(d1~β1 + · · ·+ dn~βn)

(The second equality is the definition of f̂.) Preservation of scalar multiplication is
similar.

Three.I.2.27 Because V1∩V2 = {~0V } and f is one-to-one we have that f(V1)∩f(V2) =
{~0U }. To finish, count the dimensions: dim(U) = dim(V) = dim(V1) + dim(V2) =

dim(f(V1)) + dim(f(V2)), as required.

Three.I.2.28 Rational numbers have many representations, e.g., 1/2 = 3/6, and the
numerators can vary among representations.
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Homomorphisms

Three.II.1: Definition

Three.II.1.18 (a) Yes. The verification is straightforward.

h(c1 ·

x1y1
z1

+ c2 ·

x2y2
z2

) = h(

c1x1 + c2x2c1y1 + c2y2
c1z1 + c2z2

)

=

(
c1x1 + c2x2

c1x1 + c2x2 + c1y1 + c2y2 + c1z1 + c2z2

)

= c1 ·

(
x1

x1 + y1 + z1

)
+ c2 ·

(
x2

c2 + y2 + z2

)

= c1 · h(

x1y1
z1

) + c2 · h(

x2y2
z2

)

(b) Yes. The verification is easy.

h(c1 ·

x1y1
z1

+ c2 ·

x2y2
z2

) = h(

c1x1 + c2x2c1y1 + c2y2
c1z1 + c2z2

)

=

(
0

0

)

= c1 · h(

x1y1
z1

) + c2 · h(

x2y2
z2

)

(c) No. An example of an addition that is not respected is this.

h(

00
0

+

00
0

) =

(
1

1

)
6= h(

00
0

) + h(

00
0

)
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(d) Yes. The verification is straightforward.

h(c1 ·

x1y1
z1

+ c2 ·

x2y2
z2

) = h(

c1x1 + c2x2c1y1 + c2y2
c1z1 + c2z2

)

=

(
2(c1x1 + c2x2) + (c1y1 + c2y2)

3(c1y1 + c2y2) − 4(c1z1 + c2z2)

)

= c1 ·

(
2x1 + y1
3y1 − 4z1

)
+ c2 ·

(
2x2 + y2
3y2 − 4z2

)

= c1 · h(

x1y1
z1

) + c2 · h(

x2y2
z2

)

Three.II.1.19 For each, we must either check that the map preserves linear combina-
tions or give an example of a linear combination that is not.

(a) Yes. The check that it preserves combinations is routine.

h(r1 ·

(
a1 b1
c1 d1

)
+ r2 ·

(
a2 b2
c2 d2

)
) = h(

(
r1a1 + r2a2 r1b1 + r2b2
r1c1 + r2c2 r1d1 + r2d2

)
)

= (r1a1 + r2a2) + (r1d1 + r2d2)

= r1(a1 + d1) + r2(a2 + d2)

= r1 · h(

(
a1 b1
c1 d1

)
) + r2 · h(

(
a2 b2
c2 d2

)
)

(b) No. For instance, not preserved is multiplication by the scalar 2.

h(2 ·

(
1 0

0 1

)
) = h(

(
2 0

0 2

)
) = 4 while 2 · h(

(
1 0

0 1

)
) = 2 · 1 = 2

(c) Yes. This is the check that it preserves combinations of two members of
the domain.

h(r1 ·

(
a1 b1
c1 d1

)
+ r2 ·

(
a2 b2
c2 d2

)
)

= h(

(
r1a1 + r2a2 r1b1 + r2b2
r1c1 + r2c2 r1d1 + r2d2

)
)

= 2(r1a1 + r2a2) + 3(r1b1 + r2b2) + (r1c1 + r2c2) − (r1d1 + r2d2)

= r1(2a1 + 3b1 + c1 − d1) + r2(2a2 + 3b2 + c2 − d2)

= r1 · h(

(
a1 b1
c1 d1

)
+ r2 · h(

(
a2 b2
c2 d2

)
)
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(d) No. An example of a combination that is not preserved is that doing it
one way gives this

h(

(
1 0

0 0

)
+

(
1 0

0 0

)
) = h(

(
2 0

0 0

)
) = 4

while the other way gives this.

h(

(
1 0

0 0

)
) + h(

(
1 0

0 0

)
) = 1+ 1 = 2

Three.II.1.20 The check that each is a homomorphisms is routine. Here is the check
for the differentiation map.
d

dx
(r · (a0 + a1x+ a2x2 + a3x3) + s · (b0 + b1x+ b2x2 + b3x3))

=
d

dx
((ra0 + sb0) + (ra1 + sb1)x+ (ra2 + sb2)x

2 + (ra3 + sb3)x
3)

= (ra1 + sb1) + 2(ra2 + sb2)x+ 3(ra3 + sb3)x
2

= r · (a1 + 2a2x+ 3a3x2) + s · (b1 + 2b2x+ 3b3x2)

= r · d
dx

(a0 + a1x+ a2x
2 + a3x

3) + s · d
dx

(b0 + b1x+ b2x
2 + b3x

3)

(An alternate proof is to simply note that this is a property of differentiation that
is familiar from calculus.)

These two maps are not inverses as this composition does not act as the identity
map on this element of the domain.

1 ∈ P3
d/dx7−→ 0 ∈ P2

∫
7−→ 0 ∈ P3

Three.II.1.21 Each of these projections is a homomorphism. Projection to the xz-plane
and to the yz-plane are these maps.xy

z

 7→
x0
z


xy
z

 7→
0y
z


Projection to the x-axis, to the y-axis, and to the z-axis are these maps.xy

z

 7→
x0
0


xy
z

 7→
0y
0


xy
z

 7→
00
z


And projection to the origin is this map.xy

z

 7→
00
0


Verification that each is a homomorphism is straightforward. (The last one, of
course, is the zero transformation on R3.)



156 Linear Algebra, by Hefferon

Three.II.1.22 (a) This verifies that the map preserves linear combinations. By
Lemma 1.7 that suffices to show that it is a homomorphism.

h(d1(a1x
2 + b1x+ c1) + d2(a2x

2 + b2x+ c2) )

= h((d1a1 + d2a2)x
2 + (d1b1 + d2b2)x+ (d1c1 + d2c2))

=

(
(d1a1 + d2a2) + (d1b1 + d2b2)

(d1a1 + d2a2) + (d1c1 + d2c2)

)

=

(
d1a1 + d1b1
d1a1 + d1c1

)
+

(
d2a2 + d2b2
d2a2 + d2c2

)

= d1

(
a1 + b1
a1 + c1

)
+ d2

(
a2 + b2
a2 + c2

)
= d1 · h(a1x2 + b1x+ c1) + d2 · h(a2x2 + b2x+ c2)

(b) It preserves linear combinations.

f(a1

(
x1
y1

)
+ a2

(
x2
y2

)
) = f(

(
a1x1 + a2x2
a1y1 + a2y2

)
)

=

 0

(a1x1 + a2x2) − (a1y1 + a2y2)

3(a1y1 + a2y2)


= a1

 0

x1 − y1
3y1

+ a2

 0

x2 − y2
3y2


= a1f(

(
x1
y1

)
) + a2f(

(
x2
y2

)
)

Three.II.1.23 The first is not onto; for instance, there is no polynomial that is sent
the constant polynomial p(x) = 1. The second is not one-to-one; both of these
members of the domain (

1 0

0 0

)
and

(
0 0

0 1

)
map to the same member of the codomain, 1 ∈ R.

Three.II.1.24 Yes; in any space id(c ·~v+ d · ~w) = c ·~v+ d · ~w = c · id(~v) + d · id(~w).

Three.II.1.25 (a) This map does not preserve structure since f(1 + 1) = 3, while
f(1) + f(1) = 2.
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(b) The check is routine.

f(r1 ·

(
x1
y1

)
+ r2 ·

(
x2
y2

)
) = f(

(
r1x1 + r2x2
r1y1 + r2y2

)
)

= (r1x1 + r2x2) + 2(r1y1 + r2y2)

= r1 · (x1 + 2y1) + r2 · (x2 + 2y2)

= r1 · f(

(
x1
y1

)
) + r2 · f(

(
x2
y2

)
)

Three.II.1.26 Yes. Where h : V →W is linear, h(~u − ~v) = h(~u + (−1) · ~v) = h(~u) +
(−1) · h(~v) = h(~u) − h(~v).

Three.II.1.27 (a) Let ~v ∈ V be represented with respect to the basis as ~v = c1~β1 +
· · · + cn~βn. Then h(~v) = h(c1~β1 + · · · + cn~βn) = c1h(~β1) + · · · + cnh(~βn) =
c1 ·~0+ · · ·+ cn ·~0 = ~0.

(b) This argument is similar to the prior one. Let ~v ∈ V be represented with
respect to the basis as ~v = c1~β1 + · · · + cn~βn. Then h(c1~β1 + · · · + cn~βn) =
c1h(~β1) + · · ·+ cnh(~βn) = c1~β1 + · · ·+ cn~βn = ~v.

(c) As above, only c1h(~β1) + · · · + cnh(~βn) = c1r~β1 + · · · + cnr~βn = r(c1~β1 +

· · ·+ cn~βn) = r~v.

Three.II.1.28 That it is a homomorphism follows from the familiar rules that the
logarithm of a product is the sum of the logarithms ln(ab) = ln(a)+ ln(b) and that
the logarithm of a power is the multiple of the logarithm ln(ar) = r ln(a). This
map is an isomorphism because it has an inverse, namely, the exponential map, so
it is a correspondence, and therefore it is an isomorphism.

Three.II.1.29 Where x̂ = x/2 and ŷ = y/3, the image set is

{

(
x̂

ŷ

)
|
(2x̂)2

4
+

(3ŷ)2

9
= 1 } = {

(
x̂

ŷ

)
| x̂2 + ŷ2 = 1 }

the unit circle in the x̂ŷ-plane.

Three.II.1.30 The circumference function r 7→ 2πr is linear. Thus we have 2π·(rearth+
6)−2π · (rearth) = 12π. Observe that it takes the same amount of extra rope to raise
the circle from tightly wound around a basketball to six feet above that basketball
as it does to raise it from tightly wound around the earth to six feet above the
earth.
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Three.II.1.31 Verifying that it is linear is routine.

h(c1 ·

x1y1
z1

+ c2 ·

x2y2
z2

) = h(

c1x1 + c2x2c1y1 + c2y2
c1z1 + c2z2

)

= 3(c1x1 + c2x2) − (c1y1 + c2y2) − (c1z1 + c2z2)

= c1 · (3x1 − y1 − z1) + c2 · (3x2 − y2 − z2)

= c1 · h(

x1y1
z1

) + c2 · h(

x2y2
z2

)

The natural guess at a generalization is that for any fixed ~k ∈ R3 the map ~v 7→ ~v •~k

is linear. This statement is true. It follows from properties of the dot product we
have seen earlier: (~v+ ~u) •~k = ~v •~k+ ~u •~k and (r~v) •~k = r(~v •~k). (The natural guess
at a generalization of this generalization, that the map from Rn to R whose action
consists of taking the dot product of its argument with a fixed vector ~k ∈ Rn is
linear, is also true.)

Three.II.1.32 Let h : R1 → R1 be linear. A linear map is determined by its action on a
basis, so fix the basis 〈1〉 for R1. For any r ∈ R1 we have that h(r) = h(r·1) = r·h(1)
and so h acts on any argument r by multiplying it by the constant h(1). If h(1) is
not zero then the map is a correspondence— its inverse is division by h(1)—so
any nontrivial transformation of R1 is an isomorphism.

This projection map is an example that shows that not every transformation of
Rn acts via multiplication by a constant when n > 1, including when n = 2.


x1
x2
...
xn

 7→

x1
0
...
0
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Three.II.1.33 (a) Where c and d are scalars, we have this.

h(c ·

x1...
xn

+ d ·

y1...
yn

)

= h(

cx1 + dy1...
cxn + dyn

)

=

 a1,1(cx1 + dy1) + · · ·+ a1,n(cxn + dyn)
...

am,1(cx1 + dy1) + · · ·+ am,n(cxn + dyn)



= c ·

 a1,1x1 + · · ·+ a1,nxn
...

am,1x1 + · · ·+ am,nxn

+ d ·

 a1,1y1 + · · ·+ a1,nyn
...

am,1y1 + · · ·+ am,nyn



= c · h(

x1...
xn

) + d · h(

y1...
yn

)

(b) Each power i of the derivative operator is linear because of these rules familiar
from calculus.

di

dxi
( f(x) + g(x) ) =

di

dxi
f(x) +

di

dxi
g(x)

di

dxi
r · f(x) = r · d

i

dxi
f(x)

Thus the given map is a linear transformation of Pn because any linear combina-
tion of linear maps is also a linear map.

Three.II.1.34 (This argument has already appeared, as part of the proof that isomor-
phism is an equivalence.) Let f : U→ V and g : V →W be linear. The composition
preserves linear combinations

g ◦ f(c1~u1 + c2~u2) = g( f(c1~u1 + c2~u2) ) = g( c1f(~u1) + c2f(~u2) )
= c1 · g(f(~u1)) + c2 · g(f(~u2)) = c1 · g ◦ f(~u1) + c2 · g ◦ f(~u2)

where ~u1, ~u2 ∈ U and scalars c1, c2
Three.II.1.35 (a) Yes. The set of ~w ’s cannot be linearly independent if the set

of ~v ’s is linearly dependent because any nontrivial relationship in the domain
~0V = c1~v1 + · · ·+ cn~vn would give a nontrivial relationship in the range f(~0V) =
~0W = f(c1~v1 + · · ·+ cn~vn) = c1f(~v1) + · · ·+ cnf(~vn) = c1~w+ · · ·+ cn~wn.

(b) Not necessarily. For instance, the transformation of R2 given by(
x

y

)
7→

(
x+ y

x+ y

)
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sends this linearly independent set in the domain to a linearly dependent image.

{~v1,~v2 } = {

(
1

0

)
,

(
1

1

)
} 7→ {

(
1

1

)
,

(
2

2

)
} = { ~w1, ~w2 }

(c) Not necessarily. An example is the projection map π : R3 → R2xy
z

 7→ (
x

y

)
and this set that does not span the domain but maps to a set that does span the
codomain.

{

10
0

 ,
01
0

 }
π7−→ {

(
1

0

)
,

(
0

1

)
}

(d) Not necessarily. For instance, the injection map ι : R2 → R3 sends the standard
basis E2 for the domain to a set that does not span the codomain. (Remark.
However, the set of ~w’s does span the range. A proof is easy.)

Three.II.1.36 Recall that the entry in row i and column j of the transpose of M is
the entry mj,i from row j and column i of M. Now, the check is routine. Start
with the transpose of the combination.

[r ·


...

· · · ai,j · · ·
...

+ s ·


...

· · · bi,j · · ·
...

]

T

Combine and take the transpose.

=


...

· · · rai,j + sbi,j · · ·
...


T

=


...

· · · raj,i + sbj,i · · ·
...


Then bring out the scalars, and un-transpose.

= r ·


...

· · · aj,i · · ·
...

+ s ·


...

· · · bj,i · · ·
...



= r ·


...

· · · aj,i · · ·
...


T

+ s ·


...

· · · bj,i · · ·
...


T

The domain is Mm×n while the codomain is Mn×m.



Answers to Exercises 161

Three.II.1.37 (a) For any homomorphism h : Rn → Rm we have

h(`) = {h(t · ~u+ (1− t) ·~v) | t ∈ [0..1] } = {t · h(~u) + (1− t) · h(~v) | t ∈ [0..1] }

which is the line segment from h(~u) to h(~v).
(b) We must show that if a subset of the domain is convex then its image, as a
subset of the range, is also convex. Suppose that C ⊆ Rn is convex and consider
its image h(C). To show h(C) is convex we must show that for any two of its
members, ~d1 and ~d2, the line segment connecting them

` = {t · ~d1 + (1− t) · ~d2 | t ∈ [0..1] }

is a subset of h(C).
Fix any member t̂·~d1+(1−t̂)·~d2 of that line segment. Because the endpoints of

` are in the image of C, there are members of C that map to them, say h(~c1) = ~d1
and h(~c2) = ~d2. Now, where t̂ is the scalar that we fixed in the first sentence of
this paragraph, observe that h(t̂ · ~c1 + (1− t̂) · ~c2) = t̂ · h(~c1) + (1− t̂) · h(~c2) =
t̂ · ~d1 + (1− t̂) · ~d2 Thus, any member of ` is a member of h(C), and so h(C) is
convex.

Three.II.1.38 (a) For ~v0,~v1 ∈ Rn, the line through ~v0 with direction ~v1 is the set
{~v0 + t ·~v1 | t ∈ R }. The image under h of that line {h(~v0 + t ·~v1) | t ∈ R } =

{h(~v0) + t · h(~v1) | t ∈ R } is the line through h(~v0) with direction h(~v1). If h(~v1)
is the zero vector then this line is degenerate.

(b) A k-dimensional linear surface in Rn maps to a k-dimensional linear surface
in Rm (possibly it is degenerate). The proof is just like that the one for the line.

Three.II.1.39 Suppose that h : V →W is a homomorphism and suppose that S is a
subspace of V. Consider the map ĥ : S→W defined by ĥ(~s) = h(~s). (The only
difference between ĥ and h is the difference in domain.) Then this new map is linear:
ĥ(c1 · ~s1 + c2 · ~s2) = h(c1~s1 + c2~s2) = c1h(~s1) + c2h(~s2) = c1 · ĥ(~s1) + c2 · ĥ(~s2).

Three.II.1.40 This will appear as a lemma in the next subsection.
(a) The range is nonempty because V is nonempty. To finish we need to show
that it is closed under combinations. A combination of range vectors has the
form, where ~v1, . . . ,~vn ∈ V,
c1 ·h(~v1)+ · · ·+ cn ·h(~vn) = h(c1~v1)+ · · ·+h(cn~vn) = h(c1 ·~v1+ · · ·+ cn ·~vn),
which is itself in the range as c1 · ~v1 + · · · + cn · ~vn is a member of domain V.
Therefore the range is a subspace.

(b) The null space is nonempty since it contains ~0V , as ~0V maps to ~0W . It is
closed under linear combinations because, where ~v1, . . . ,~vn ∈ V are elements of
the inverse image {~v ∈ V | h(~v) = ~0W }, for c1, . . . , cn ∈ R

~0W = c1 · h(~v1) + · · ·+ cn · h(~vn) = h(c1 ·~v1 + · · ·+ cn ·~vn)
and so c1 ·~v1 + · · ·+ cn ·~vn is also in the inverse image of ~0W .
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(c) This image of U nonempty because U is nonempty. For closure under combi-
nations, where ~u1, . . . , ~un ∈ U,
c1 ·h(~u1)+ · · ·+cn ·h(~un) = h(c1 ·~u1)+ · · ·+h(cn ·~un) = h(c1 ·~u1+ · · ·+cn ·~un)
which is itself in h(U) as c1 ·~u1+ · · ·+cn ·~un is in U. Thus this set is a subspace.

(d) The natural generalization is that the inverse image of a subspace of is a
subspace.

Suppose that X is a subspace of W. Note that ~0W ∈ X so that the set
{~v ∈ V | h(~v) ∈ X } is not empty. To show that this set is closed under combina-
tions, let ~v1, . . . ,~vn be elements of V such that h(~v1) = ~x1, . . . , h(~vn) = ~xn and
note that

h(c1 ·~v1 + · · ·+ cn ·~vn) = c1 · h(~v1) + · · ·+ cn · h(~vn) = c1 · ~x1 + · · ·+ cn · ~xn
so a linear combination of elements of h−1(X) is also in h−1(X).

Three.II.1.41 No; the set of isomorphisms does not contain the zero map (unless the
space is trivial).

Three.II.1.42 If 〈~β1, . . . , ~βn〉 doesn’t span the space then the map needn’t be unique.
For instance, if we try to define a map from R2 to itself by specifying only that
~e1 maps to itself, then there is more than one homomorphism possible; both the
identity map and the projection map onto the first component fit this condition.

If we drop the condition that 〈~β1, . . . , ~βn〉 is linearly independent then we risk
an inconsistent specification (i.e, there could be no such map). An example is if we
consider 〈~e2,~e1, 2~e1〉, and try to define a map from R2 to itself that sends ~e2 to
itself, and sends both ~e1 and 2~e1 to ~e1. No homomorphism can satisfy these three
conditions.

Three.II.1.43 (a) Briefly, the check of linearity is this.

F(r1 ·~v1 + r2 ·~v2) =

(
f1(r1~v1 + r2~v2)

f2(r1~v1 + r2~v2)

)

= r1

(
f1(~v1)

f2(~v1)

)
+ r2

(
f1(~v2)

f2(~v2)

)
= r1 · F(~v1) + r2 · F(~v2)

(b) Yes. Let π1 : R2 → R1 and π2 : R2 → R1 be the projections(
x

y

)
π17−→ x and

(
x

y

)
π27−→ y

onto the two axes. Now, where f1(~v) = π1(F(~v)) and f2(~v) = π2(F(~v)) we have
the desired component functions.

F(~v) =

(
f1(~v)

f2(~v)

)
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They are linear because they are the composition of linear functions, and the
fact that the composition of linear functions is linear was part of the proof that
isomorphism is an equivalence relation (alternatively, the check that they are
linear is straightforward).

(c) In general, a map from a vector space V to an Rn is linear if and only if each
of the component functions is linear. The verification is as in the prior item.

Three.II.2: Range space and Null space

Three.II.2.21 First, to answer whether a polynomial is in the null space, we have to
consider it as a member of the domain P3. To answer whether it is in the range
space, we consider it as a member of the codomain P4. That is, for p(x) = x4, the
question of whether it is in the range space is sensible but the question of whether
it is in the null space is not because it is not even in the domain.
(a) The polynomial x3 ∈ P3 is not in the null space because h(x3) = x4 is not the
zero polynomial in P4. The polynomial x3 ∈ P4 is in the range space because
x2 ∈ P3 is mapped by h to x3.

(b) The answer to both questions is, “Yes, because h(0) = 0.” The polynomial
0 ∈ P3 is in the null space because it is mapped by h to the zero polynomial in
P4. The polynomial 0 ∈ P4 is in the range space because it is the image, under
h, of 0 ∈ P3.

(c) The polynomial 7 ∈ P3 is not in the null space because h(7) = 7x is not the
zero polynomial in P4. The polynomial 7 ∈ P4 is not in the range space because
there is no member of the domain that when multiplied by x gives the constant
polynomial p(x) = 7.

(d) The polynomial 12x − 0.5x3 ∈ P3 is not in the null space because h(12x −
0.5x3) = 12x2 − 0.5x4. The polynomial 12x − 0.5x3 ∈ P4 is in the range space
because it is the image of 12− 0.5x2.

(e) The polynomial 1+ 3x2− x3 ∈ P3 is not in the null space because h(1+ 3x2−
x3) = x+ 3x3 − x4. The polynomial 1+ 3x2 − x3 ∈ P4 is not in the range space
because of the constant term.

Three.II.2.22 (a) The range of h is all of the codomain R2 because given(
x

y

)
∈ R2

it is the image under h of the domain vector 0x2 + bx+ c. So the rank of h is 2.
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(b) The range is the yz plane. Any 0a
b


is the image under f of this domain vector.(

a+ b/3

b/3

)
So the rank of the map is 2.

Three.II.2.23 (a) The range space is

R(h) = {a+ ax+ ax2 ∈ P3 | a, b ∈ R } = {a · (1+ x+ x2) | a ∈ R }

and so the rank is one.
(b) The range space

R(h) = {a+ d | a, b, c, d ∈ R }

is all of R (we can get any real number by taking d to be 0 and taking a to be
the desired number). Thus, the rank is one.

(c) The range space is R(h) = {r+ sx2 | r, s ∈ R }. The rank is two.
(d) The range space is the trivial subspace of R4 so the rank is zero.

Three.II.2.24 (a) The null space is

N (h) = {

(
a

b

)
∈ R2 | a+ ax+ ax2 + 0x3 = 0+ 0x+ 0x2 + 0x3 }

= {

(
0

b

)
| b ∈ R }

and so the nullity is one.
(b) The null space is this.

N (h) = {

(
a b

c d

)
| a+ d = 0 } = {

(
−d b

c d

)
| b, c, d ∈ R }

Thus the nullity is three.
(c) The null space

N (h) = {

(
a b

c d

)
| a+ b+ c = 0, d = 0 } = {

(
−b− c b

c 0

)
| b, c ∈ R }

is a dimension 2 space, so the nullity is two.
(d) Every vector in the domain is mapped to the zero vector so the nullspace is
N (h) = R3.

Three.II.2.25 For each, use the result that the rank plus the nullity equals the
dimension of the domain.



Answers to Exercises 165

(a) 0 (b) 3 (c) 3 (d) 0

Three.II.2.26 Because
d

dx
(a0 + a1x+ · · ·+ anxn) = a1 + 2a2x+ 3a3x2 + · · ·+ nanxn−1

we have this.

N (
d

dx
) = {a0 + · · ·+ anxn | a1 + 2a2x+ · · ·+ nanxn−1 = 0+ 0x+ · · ·+ 0xn−1 }

= {a0 + · · ·+ anxn | a1 = 0, and a2 = 0, . . . , an = 0 }

= {a0 + 0x+ 0x
2 + · · ·+ 0xn | a0 ∈ R }

In the same way,

N (
dk

dxk
) = {a0 + a1x+ · · ·+ anxn | a0, . . . , ak−1 ∈ R }

for k 6 n.

Three.II.2.27 To see that the range space is all of R2 note that for any u, v ∈ R this
system has a solution.

x+ y = u

x + z= v

−ρ1+ρ2−→ x+ y = u

−y+ z=−u+ v

(In fact, because there is a free variable, z, it has infinitely many solutions.) Thus
the rank, the dimension of the range space, is 2.

Since the rank plus the nullity equals the dimension of the domain, we know
that the nullity is 1. Finding the null space verifies that:

x+ y = 0

x + z= 0

−ρ1+ρ2−→ x+ y = 0

−y+ z= 0

the nullspace is this set

{

−1

1

1

 · z | z ∈ R }

which is one-dimensional.

Three.II.2.28 The shadow of a scalar multiple is the scalar multiple of the shadow.

Three.II.2.29 (a) Setting a0+(a0+a1)x+(a2+a3)x
3 = 0+0x+0x2+0x3 gives a0 = 0

and a0 + a1 = 0 and a2 + a3 = 0, so the null space is {−a3x2 + a3x3 | a3 ∈ R }.
(b) Setting a0 + (a0 + a1)x+ (a2 + a3)x

3 = 2+ 0x+ 0x2 − x3 gives that a0 = 2,
and a1 = −2, and a2 + a3 = −1. Taking a3 as a parameter, and renam-
ing it a3 = a gives this set description {2− 2x+ (−1− a)x2 + ax3 | a ∈ R } =

{(2− 2x− x2) + a · (−x2 + x3) | a ∈ R }.
(c) This set is empty because the range of h includes only those polynomials with
a 0x2 term.

Three.II.2.30 All inverse images are lines with slope −2.
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2x+ y = 12x+ y = −3

2x+ y = 0

Three.II.2.31 These are the inverses.
(a) a0 + a1x+ a2x2 + a3x3 7→ a0 + a1x+ (a2/2)x

2 + (a3/3)x
3

(b) a0 + a1x+ a2x2 + a3x3 7→ a0 + a2x+ a1x
2 + a3x

3

(c) a0 + a1x+ a2x2 + a3x3 7→ a3 + a0x+ a1x
2 + a2x

3

(d) a0 + a1x+ a2x2 + a3x3 7→ a0 + (a1 − a0)x+ (a2 − a1)x
2 + (a3 − a2)x

3

For instance, for the second one, the map given in the question sends 0+ 1x+ 2x2+
3x3 7→ 0+ 2x+ 1x2 + 3x3 and then the inverse above sends 0+ 2x+ 1x2 + 3x3 7→
0+ 1x+ 2x2 + 3x3. So this map is actually self-inverse.

Three.II.2.32 For any vector space V, the null space

{~v ∈ V | 2~v = ~0 }

is trivial, while the range space

{ ~w ∈ V | ~w = 2~v for some ~v ∈ V }

is all of V , because every vector ~w is twice some other vector, specifically, it is twice
(1/2)~w. (Thus, this transformation is actually an automorphism.)

Three.II.2.33 Because the rank plus the nullity equals the dimension of the domain
(here, five), and the rank is at most three, the possible pairs are: (3, 2), (2, 3), (1, 4),
and (0, 5). Coming up with linear maps that show that each pair is indeed possible
is easy.

Three.II.2.34 No (unless Pn is trivial), because the two polynomials f0(x) = 0 and
f1(x) = 1 have the same derivative; a map must be one-to-one to have an inverse.

Three.II.2.35 The null space is this.

{a0 + a1x+ · · ·+ anxn | a0(1) +
a1
2
(12) + · · ·+ an

n+ 1 (1
n+1) = 0 }

= {a0 + a1x+ · · ·+ anxn | a0 + (a1/2) + · · ·+ (an/n+ 1) = 0 }

Thus the nullity is n.

Three.II.2.36 (a) One direction is obvious: if the homomorphism is onto then its
range is the codomain and so its rank equals the dimension of its codomain.
For the other direction assume that the map’s rank equals the dimension of
the codomain. Then the map’s range is a subspace of the codomain, and has
dimension equal to the dimension of the codomain. Therefore, the map’s range
must equal the codomain, and the map is onto. (The ‘therefore’ is because there
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is a linearly independent subset of the range that is of size equal to the dimension
of the codomain, but any such linearly independent subset of the codomain must
be a basis for the codomain, and so the range equals the codomain.)

(b) By Theorem 2.20, a homomorphism is one-to-one if and only if its nullity is
zero. Because rank plus nullity equals the dimension of the domain, it follows
that a homomorphism is one-to-one if and only if its rank equals the dimension
of its domain. But this domain and codomain have the same dimension, so the
map is one-to-one if and only if it is onto.

Three.II.2.37 We are proving that h : V →W is one-to-one if and only if for every
linearly independent subset S of V the subset h(S) = {h(~s) | ~s ∈ S } of W is linearly
independent.

One half is easy—by Theorem 2.20, if h is not one-to-one then its null space is
nontrivial, that is, it contains more than just the zero vector. So where ~v 6= ~0V is in
that null space, the singleton set {~v } is independent while its image {h(~v) } = {~0W }

is not.
For the other half, assume that h is one-to-one and so by Theorem 2.20 has a

trivial null space. Then for any ~v1, . . . ,~vn ∈ V, the relation

~0W = c1 · h(~v1) + · · ·+ cn · h(~vn) = h(c1 ·~v1 + · · ·+ cn ·~vn)

implies the relation c1 ·~v1+ · · ·+cn ·~vn = ~0V . Hence, if a subset of V is independent
then so is its image in W.

Remark. The statement is that a linear map is one-to-one if and only if it
preserves independence for all sets (that is, if a set is independent then its image is
also independent). A map that is not one-to-one may well preserve some independent
sets. One example is this map from R3 to R2.xy

z

 7→ (
x+ y+ z

0

)

Linear independence is preserved for this set

{

10
0

 } 7→ {

(
1

0

)
}

and (in a somewhat more tricky example) also for this set

{

10
0

 ,
01
0

 } 7→ {

(
1

0

)
}

(recall that in a set, repeated elements do not appear twice). However, there are
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sets whose independence is not preserved under this map

{

10
0

 ,
02
0

 } 7→ {

(
1

0

)
,

(
2

0

)
}

and so not all sets have independence preserved.

Three.II.2.38 (We use the notation from Theorem 1.9.) Fix a basis 〈~β1, . . . , ~βn〉 for
V and a basis 〈~w1, . . . , ~wk〉 for W. If the dimension k of W is less than or equal to
the dimension n of V then the theorem gives a linear map from V to W determined
in this way.

~β1 7→ ~w1, . . . , ~βk 7→ ~wk and ~βk+1 7→ ~wk, . . . , ~βn 7→ ~wk

We need only to verify that this map is onto.
We can write any member of W as a linear combination of basis elements

c1 · ~w1 + · · ·+ ck · ~wk. This vector is the image, under the map described above, of
c1 · ~β1 + · · ·+ ck · ~βk + 0 · ~βk+1 · · ·+ 0 · ~βn. Thus the map is onto.

Three.II.2.39 Yes. For the transformation of R2 given by(
x

y

)
h7−→

(
0

x

)
we have this.

N (h) = {

(
0

y

)
| y ∈ R } = R(h)

Remark. We will see more of this in the fifth chapter.

Three.II.2.40 This is a simple calculation.

h([S]) = {h(c1~s1 + · · ·+ cn~sn) | c1, . . . , cn ∈ R and ~s1, . . . ,~sn ∈ S }
= {c1h(~s1) + · · ·+ cnh(~sn) | c1, . . . , cn ∈ R and ~s1, . . . ,~sn ∈ S }
= [h(S)]

Three.II.2.41 (a) We will show the sets are equal h−1(~w) = {~v+ ~n | ~n ∈ N (h) } by
mutual inclusion. For the {~v+ ~n | ~n ∈ N (h) } ⊆ h−1(~w) direction, just note
that h(~v + ~n) = h(~v) + h(~n) equals ~w, and so any member of the first set is a
member of the second. For the h−1(~w) ⊆ {~v+ ~n | ~n ∈ N (h) } direction, consider
~u ∈ h−1(~w). Because h is linear, h(~u) = h(~v) implies that h(~u − ~v) = ~0. We
can write ~u−~v as ~n, and then we have that ~u ∈ {~v+ ~n | ~n ∈ N (h) }, as desired,
because ~u = ~v+ (~u−~v).

(b) This check is routine.
(c) This is immediate.
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(d) For the linearity check, briefly, where c, d are scalars and ~x,~y ∈ Rn have
components x1, . . . , xn and y1, . . . , yn, we have this.

h(c · ~x+ d · ~y) =

 a1,1(cx1 + dy1) + · · ·+ a1,n(cxn + dyn)
...

am,1(cx1 + dy1) + · · ·+ am,n(cxn + dyn)



=

 a1,1cx1 + · · ·+ a1,ncxn
...

am,1cx1 + · · ·+ am,ncxn

+

 a1,1dy1 + · · ·+ a1,ndyn
...

am,1dy1 + · · ·+ am,ndyn


= c · h(~x) + d · h(~y)

The appropriate conclusion is that General = Particular+ Homogeneous.
(e) Each power of the derivative is linear because of the rules

dk

dxk
(f(x) + g(x)) =

dk

dxk
f(x) +

dk

dxk
g(x) and

dk

dxk
rf(x) = r

dk

dxk
f(x)

from calculus. Thus the given map is a linear transformation of the space because
any linear combination of linear maps is also a linear map by Lemma 1.17.
The appropriate conclusion is General = Particular+ Homogeneous, where the
associated homogeneous differential equation has a constant of 0.

Three.II.2.42 Because the rank of t is one, the range space of t is a one-dimensional
set. Taking 〈h(~v)〉 as a basis (for some appropriate ~v), we have that for every ~w ∈ V ,
the image h(~w) ∈ V is a multiple of this basis vector—associated with each ~w

there is a scalar c~w such that t(~w) = c~wt(~v). Apply t to both sides of that equation
and take r to be ct(~v)

t◦t(~w) = t(c~w·t(~v)) = c~w·t◦t(~v) = c~w·ct(~v)·t(~v) = c~w·r·t(~v) = r·c~w·t(~v) = r·t(~w)

to get the desired conclusion.

Three.II.2.43 By assumption, h is not the zero map and so a vector ~v ∈ V exists that
is not in the null space. Note that 〈h(~v)〉 is a basis for R, because it is a size-one
linearly independent subset of R. Consequently h is onto, as for any r ∈ R we have
r = c · h(~v) for some scalar c, and so r = h(c~v).

Thus the rank of h is one. Because the nullity is n, the dimension of the
domain of h, the vector space V , is n+ 1. We can finish by showing {~v, ~β1, . . . , ~βn }

is linearly independent, as it is a size n + 1 subset of a dimension n + 1 space.
Because {~β1, . . . , ~βn } is linearly independent we need only show that ~v is not a
linear combination of the other vectors. But c1~β1 + · · · + cn~βn = ~v would give
−~v+c1~β1+ · · ·+cn~βn = ~0 and applying h to both sides would give a contradiction.
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Three.II.2.44 Fix a basis 〈~β1, . . . , ~βn〉 for V. We shall prove that this map

h
Φ7−→

h(
~β1)
...

h(~βn)


is an isomorphism from V∗ to Rn.

To see that Φ is one-to-one, assume that h1 and h2 are members of V∗ such
that Φ(h1) = Φ(h2). Then h1(

~β1)
...

h1(~βn)

 =

h2(
~β1)
...

h2(~βn)


and consequently, h1(~β1) = h2(~β1), etc. But a homomorphism is determined by
its action on a basis, so h1 = h2, and therefore Φ is one-to-one.

To see that Φ is onto, consider x1...
xn


for x1, . . . , xn ∈ R. This function h from V to R

c1~β1 + · · ·+ cn~βn
h7−→ c1x1 + · · ·+ cnxn

is linear and Φ maps it to the given vector in Rn, so Φ is onto.
The map Φ also preserves structure: where

c1~β1 + · · ·+ cn~βn
h17−→ c1h1(~β1) + · · ·+ cnh1(~βn)

c1~β1 + · · ·+ cn~βn
h27−→ c1h2(~β1) + · · ·+ cnh2(~βn)

we have

(r1h1 + r2h2)(c1~β1 + · · ·+ cn~βn)

= c1(r1h1(~β1) + r2h2(~β1)) + · · ·+ cn(r1h1(~βn) + r2h2(~βn))
= r1(c1h1(~β1) + · · ·+ cnh1(~βn)) + r2(c1h2(~β1) + · · ·+ cnh2(~βn))

so Φ(r1h1 + r2h2) = r1Φ(h1) + r2Φ(h2).

Three.II.2.45 Let h : V →W be linear and fix a basis 〈~β1, . . . , ~βn〉 for V. Consider
these n maps from V to W

h1(~v) = c1 · h(~β1), h2(~v) = c2 · h(~β2), . . . , hn(~v) = cn · h(~βn)
for any ~v = c1~β1 + · · · + cn~βn. Clearly h is the sum of the hi’s. We need only
check that each hi is linear: where ~u = d1~β1 + · · ·+ dn~βn we have hi(r~v+ s~u) =
rci + sdi = rhi(~v) + shi(~u).
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Three.II.2.46 Either yes (trivially) or no (nearly trivially).
If we take V ‘is homomorphic to’ W to mean there is a homomorphism from V

into (but not necessarily onto) W, then every space is homomorphic to every other
space as a zero map always exists.

If we take V ‘is homomorphic to’ W to mean there is an onto homomorphism
from V to W then the relation is not an equivalence. For instance, there is an onto
homomorphism from R3 to R2 (projection is one) but no homomorphism from R2

onto R3 by Corollary 2.17, so the relation is not reflexive.∗

Three.II.2.47 That they form the chains is obvious. For the rest, we show here that
R(tj+1) = R(tj) implies that R(tj+2) = R(tj+1). Induction then applies.

Assume that R(tj+1) = R(tj). Then t : R(tj+1)→ R(tj+2) is the same map,
with the same domain, as t : R(tj)→ R(tj+1). Thus it has the same range:
R(tj+2) = R(tj+1).

Computing Linear Maps

Three.III.1: Representing Linear Maps with Matrices

Three.III.1.12 (a)

 1 · 2+ 3 · 1+ 1 · 0
0 · 2+ (−1) · 1+ 2 · 0
1 · 2+ 1 · 1+ 0 · 0

 =

 5

−1

3

 (b) Not defined.

(c)

00
0


Three.III.1.13 (a) This is not defined.

(b) This is defined. (
3 1

2 4

)(
0

−1

)
=

(
−1

−4

)
(c) Not defined.

∗ More information on equivalence relations is in the appendix.
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Three.III.1.14 (a)

(
2 · 4+ 1 · 2

3 · 4− (1/2) · 2

)
=

(
10

11

)
(b)

(
4

1

)
(c) Not defined.

Three.III.1.15 Matrix-vector multiplication gives rise to a linear system.
2x+ y+ z= 8

y+ 3z= 4

x− y+ 2z= 4

Gaussian reduction shows that z = 1, y = 1, and x = 3.

Three.III.1.16 Here are two ways to get the answer.
First, obviously 1−3x+2x2 = 1 ·1−3 ·x+2 ·x2, and so we can apply the general

property of preservation of combinations to get h(1−3x+2x2) = h(1·1−3·x+2·x2) =
1 ·h(1) − 3 ·h(x) + 2 ·h(x2) = 1 · (1+ x) − 3 · (1+ 2x) + 2 · (x− x3) = −2− 3x− 2x3.

The other way uses the computation scheme developed in this subsection.
Because we know where these elements of the space go, we consider this basis
B = 〈1, x, x2〉 for the domain. Arbitrarily, we can take D = 〈1, x, x2, x3〉 as a basis
for the codomain. With those choices, we have that

RepB,D(h) =


1 1 0

1 2 1

0 0 0

0 0 −1


B,D

and, as

RepB(1− 3x+ 2x
2) =

 1

−3

2


B

the matrix-vector multiplication calculation gives this.

RepD(h(1− 3x+ 2x
2)) =


1 1 0

1 2 1

0 0 0

0 0 −1


B,D

 1

−3

2


B

=


−2

−3

0

−2


D

Thus, h(1− 3x+ 2x2) = −2 · 1− 3 · x+ 0 · x2 − 2 · x3 = −2− 3x− 2x3, as above.

Three.III.1.17 Fix this natural basis for M2×2.

D = 〈

(
1 0

0 0

)
,

(
0 1

0 0

)
,

(
0 0

1 0

)
,

(
0 0

0 1

)
〉

The representation of the map h with respect to E2, D is this.

RepE2,D(h) =


1 0

2 −1

0 1

1 0
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Since the general vector is represented with respect to E2 by itself, and similarly
every matrix is represented with respect to D by itself, we have this for the effect
of the map.

RepD(h(

(
x

y

)
)) =


1 0

2 −1

0 1

1 0


(
x

y

)
=


x

2x− y

y

x


Three.III.1.18 Again, as recalled in the subsection, with respect to Ei, a column vector
represents itself.
(a) To represent h with respect to E2,E3 take the images of the basis vectors from
the domain, and represent them with respect to the basis for the codomain. The
first is this

RepE3(h(~e1) ) = RepE3(

22
0

) =

22
0


while the second is this.

RepE3(h(~e2) ) = RepE3(

 0

1

−1

) =

 0

1

−1


Adjoin these to make the matrix.

RepE2,E3(h) =

2 0

2 1

0 −1


(b) For any ~v in the domain R2,

RepE2(~v) = RepE2(

(
v1
v2

)
) =

(
v1
v2

)
and so

RepE3(h(~v) ) =

2 0

2 1

0 −1

(v1
v2

)
=

 2v1
2v1 + v2
−v2


is the desired representation.

Three.III.1.19 The action of the map on the domain’s basis vectors is this.11
1

 7→ (
2

2

) 11
0

 7→ (
2

1

) 10
0

 7→ (
1

1

)
Represent those with respect to the codomain’s basis.

RepD(

(
2

2

)
) =

(
2

1

)
D

RepD(

(
2

1

)
) =

(
2

1/2

)
D

RepD(

(
1

1

)
) =

(
1

1/2

)
D
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Concatenate them together into a matrix.

RepB,D(h) =

(
2 2 1

1 1/2 1/2

)
Three.III.1.20 (a) We must first find the image of each vector from the domain’s

basis, and then represent that image with respect to the codomain’s basis.

RepB(
d 1

dx
) =


0

0

0

0

 RepB(
dx

dx
) =


1

0

0

0

 RepB(
dx2

dx
) =


0

2

0

0



RepB(
dx3

dx
) =


0

0

3

0


Those representations are then adjoined to make the matrix representing the
map.

RepB,B(
d

dx
) =


0 1 0 0

0 0 2 0

0 0 0 3

0 0 0 0


(b) Proceeding as in the prior item, we represent the images of the domain’s

basis vectors

RepD(
d 1

dx
) =


0

0

0

0

 RepD(
dx

dx
) =


1

0

0

0

 RepD(
dx2

dx
) =


0

1

0

0



RepD(
dx3

dx
) =


0

0

1

0


and adjoin to make the matrix.

RepB,D(
d

dx
) =


0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0


Three.III.1.21 For each, we must find the image of each of the domain’s basis vectors,
represent each image with respect to the codomain’s basis, and then adjoin those
representations to get the matrix.
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(a) The basis vectors from the domain have these images
1 7→ 0 x 7→ 1 x2 7→ 2x . . .

and these images are represented with respect to the codomain’s basis in this
way.

RepB(0) =



0

0

0
...


RepB(1) =



1

0

0
...


RepB(2x) =



0

2

0
...



. . . RepB(nx
n−1) =



0

0

0
...
n

0


The matrix

RepB,B(
d

dx
) =


0 1 0 . . . 0

0 0 2 . . . 0
...

0 0 0 . . . n

0 0 0 . . . 0


has n+ 1 rows and columns.

(b) Once the images under this map of the domain’s basis vectors are determined
1 7→ x x 7→ x2/2 x2 7→ x3/3 . . .

then they can be represented with respect to the codomain’s basis

RepBn+1
(x) =


0

1

0
...

 RepBn+1
(x2/2) =


0

0

1/2
...



. . . RepBn+1
(xn+1/(n+ 1)) =


0

0

0
...

1/(n+ 1)
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and put together to make the matrix.

RepBn,Bn+1
(

∫
) =


0 0 . . . 0 0

1 0 . . . 0 0

0 1/2 . . . 0 0
...

0 0 . . . 0 1/(n+ 1)


(c) The images of the basis vectors of the domain are

1 7→ 1 x 7→ 1/2 x2 7→ 1/3 . . .

and they are represented with respect to the codomain’s basis as

RepE1(1) = 1 RepE1(1/2) = 1/2 . . .

so the matrix is

RepB,E1(
∫
) =

(
1 1/2 · · · 1/n 1/(n+ 1)

)
(this is an 1×(n+ 1) matrix).

(d) Here, the images of the domain’s basis vectors are

1 7→ 1 x 7→ 3 x2 7→ 9 . . .

and they are represented in the codomain as

RepE1(1) = 1 RepE1(3) = 3 RepE1(9) = 9 . . .

and so the matrix is this.

RepB,E1(
∫1
0

) =
(
1 3 9 · · · 3n

)
(e) The images of the basis vectors from the domain are 1 7→ 1, and x 7→ x+ 1 =

1+ x, and x2 7→ (x+ 1)2 = 1+ 2x+ x2, and x3 7→ (x+ 1)3 = 1+ 3x+ 3x2 + x3,
etc. The representations are here.

RepB(1) =



1

0

0

0
...
0


RepB(1+ x) =



1

1

0

0
...
0


RepB(1+ 2x+ x

2) =



1

2

1

0
...
0


. . .

The resulting matrix

RepB,B(slide−1) =



1 1 1 1 . . . 1

0 1 2 3 . . .
(
n
1

)
0 0 1 3 . . .

(
n
2

)
...

0 0 0 . . . 1
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is Pascal’s triangle (recall that
(
n
r

)
is the number of ways to choose r things,

without order and without repetition, from a set of size n).
Three.III.1.22 Where the space is n-dimensional,

RepB,B(id) =


1 0 . . . 0

0 1 . . . 0
...

0 0 . . . 1


B,B

is the n×n identity matrix.
Three.III.1.23 Taking this as the natural basis

B = 〈~β1, ~β2, ~β3, ~β4〉 = 〈

(
1 0

0 0

)
,

(
0 1

0 0

)
,

(
0 0

1 0

)
,

(
0 0

0 1

)
〉

the transpose map acts in this way
~β1 7→ ~β1 ~β2 7→ ~β3 ~β3 7→ ~β2 ~β4 7→ ~β4

so that representing the images with respect to the codomain’s basis and adjoining
those column vectors together gives this.

RepB,B(trans) =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1


B,B

Three.III.1.24 (a) With respect to the basis of the codomain, the images of the
members of the basis of the domain are represented as

RepB(~β2) =


0

1

0

0

 RepB(~β3) =


0

0

1

0

 RepB(~β4) =


0

0

0

1

 RepB(~0) =


0

0

0

0


and consequently, the matrix representing the transformation is this.

0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0



(b)


0 0 0 0

1 0 0 0

0 0 0 0

0 0 1 0



(c)


0 0 0 0

1 0 0 0

0 1 0 0

0 0 0 0
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Three.III.1.25 (a) The picture of ds : R2 → R2 is this.

~u

~v

ds(~u)

ds(~v)
ds−→

This map’s effect on the vectors in the standard basis for the domain is(
1

0

)
ds7−→

(
s

0

) (
0

1

)
ds7−→

(
0

s

)
and those images are represented with respect to the codomain’s basis (again,
the standard basis) by themselves.

RepE2(

(
s

0

)
) =

(
s

0

)
RepE2(

(
0

s

)
) =

(
0

s

)
Thus the representation of the dilation map is this.

RepE2,E2(ds) =

(
s 0

0 s

)
(b) The picture of f` : R2 → R2 is this.

f`7−→

Some calculation (see Exercise I.33) shows that when the line has slope k(
1

0

)
f`7−→

(
(1− k2)/(1+ k2)

2k/(1+ k2)

) (
0

1

)
f`7−→

(
2k/(1+ k2)

−(1− k2)/(1+ k2)

)
(the case of a line with undefined slope is separate but easy) and so the matrix
representing reflection is this.

RepE2,E2(f`) =
1

1+ k2
·

(
1− k2 2k

2k −(1− k2)

)
Three.III.1.26 Call the map t : R2 → R2.

(a) To represent this map with respect to the standard bases, we must find, and
then represent, the images of the vectors ~e1 and ~e2 from the domain’s basis. The
image of ~e1 is given.

One way to find the image of ~e2 is by eye—we can see this.(
1

1

)
−

(
1

0

)
=

(
0

1

)
t7−→

(
2

0

)
−

(
−1

0

)
=

(
3

0

)
A more systematic way to find the image of ~e2 is to use the given information

to represent the transformation, and then use that representation to determine



Answers to Exercises 179

the image. Taking this for a basis,

C = 〈

(
1

1

)
,

(
1

0

)
〉

the given information says this.

RepC,E2(t)

(
2 −1

0 0

)
As

RepC(~e2) =

(
1

−1

)
C

we have that

RepE2(t(~e2)) =

(
2 −1

0 0

)
C,E2

(
1

−1

)
C

=

(
3

0

)
E2

and consequently we know that t(~e2) = 3 ·~e1 (since, with respect to the standard
basis, this vector is represented by itself). Therefore, this is the representation of
t with respect to E2,E2.

RepE2,E2(t) =

(
−1 3

0 0

)
E2,E2

(b) To use the matrix developed in the prior item, note that

RepE2(

(
0

5

)
) =

(
0

5

)
E2

and so we have this is the representation, with respect to the codomain’s basis,
of the image of the given vector.

RepE2(t(

(
0

5

)
)) =

(
−1 3

0 0

)
E2,E2

(
0

5

)
E2

=

(
15

0

)
E2

Because the codomain’s basis is the standard one, and so vectors in the codomain
are represented by themselves, we have this.

t(

(
0

5

)
) =

(
15

0

)
(c) We first find the image of each member of B, and then represent those images
with respect to D. For the first step, we can use the matrix developed earlier.

RepE2(

(
1

−1

)
) =

(
−1 3

0 0

)
E2,E2

(
1

−1

)
E2

=

(
−4

0

)
E2

so t(

(
1

−1

)
) =

(
−4

0

)
Actually, for the second member of B there is no need to apply the matrix because
the problem statement gives its image.

t(

(
1

1

)
) =

(
2

0

)
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Now representing those images with respect to D is routine.

RepD(

(
−4

0

)
) =

(
−1

2

)
D

and RepD(

(
2

0

)
) =

(
1/2

−1

)
D

Thus, the matrix is this.

RepB,D(t) =

(
−1 1/2

2 −1

)
B,D

(d) We know the images of the members of the domain’s basis from the prior item.

t(

(
1

−1

)
) =

(
−4

0

)
t(

(
1

1

)
) =

(
2

0

)
We can compute the representation of those images with respect to the codomain’s
basis.

RepB(

(
−4

0

)
) =

(
−2

−2

)
B

and RepB(

(
2

0

)
) =

(
1

1

)
B

Thus this is the matrix.

RepB,B(t) =

(
−2 1

−2 1

)
B,B

Three.III.1.27 (a) The images of the members of the domain’s basis are
~β1 7→ h(~β1) ~β2 7→ h(~β2) . . . ~βn 7→ h(~βn)

and those images are represented with respect to the codomain’s basis in this
way.

Reph(B)(h(~β1) ) =


1

0
...
0

 Reph(B)(h(~β2) ) =


0

1
...
0



. . . Reph(B)(h(~βn) ) =


0

0
...
1


Hence, the matrix is the identity.

RepB,h(B)(h) =


1 0 . . . 0

0 1 0

. . .
0 0 1
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(b) Using the matrix in the prior item, the representation is this.

Reph(B)(h(~v) ) =

c1...
cn


h(B)

Three.III.1.28 The product
h1,1 . . . h1,i . . . h1,n
h2,1 . . . h2,i . . . h2,n

...
hm,1 . . . hm,i . . . h1,n





0
...
1
...
0


=


h1,i
h2,i
...

hm,i


gives the i-th column of the matrix.

Three.III.1.29 (a) The images of the basis vectors for the domain are cos x
d/dx7−→

− sin x and sin x
d/dx7−→ cos x. Representing those with respect to the codomain’s

basis (again, B) and adjoining the representations gives this matrix.

RepB,B(
d

dx
) =

(
0 1

−1 0

)
B,B

(b) The images of the vectors in the domain’s basis are ex
d/dx7−→ ex and e2x

d/dx7−→
2e2x. Representing with respect to the codomain’s basis and adjoining gives this
matrix.

RepB,B(
d

dx
) =

(
1 0

0 2

)
B,B

(c) The images of the members of the domain’s basis are 1
d/dx7−→ 0, x

d/dx7−→ 1,

ex
d/dx7−→ ex, and xex

d/dx7−→ ex + xex. Representing these images with respect to B
and adjoining gives this matrix.

RepB,B(
d

dx
) =


0 1 0 0

0 0 0 0

0 0 1 1

0 0 0 1


B,B

Three.III.1.30 (a) It is the set of vectors of the codomain represented with respect
to the codomain’s basis in this way.

{

(
1 0

0 0

)(
x

y

)
| x, y ∈ R } = {

(
x

0

)
| x, y ∈ R }

As the codomain’s basis is E2, and so each vector is represented by itself, the
range of this transformation is the x-axis.



182 Linear Algebra, by Hefferon

(b) It is the set of vectors of the codomain represented in this way.

{

(
0 0

3 2

)(
x

y

)
| x, y ∈ R } = {

(
0

3x+ 2y

)
| x, y ∈ R }

With respect to E2 vectors represent themselves so this range is the y axis.
(c) The set of vectors represented with respect to E2 as

{

(
a b

2a 2b

)(
x

y

)
| x, y ∈ R } = {

(
ax+ by

2ax+ 2by

)
| x, y ∈ R }

= {(ax+ by) ·

(
1

2

)
| x, y ∈ R }

is the line y = 2x, provided either a or b is not zero, and is the set consisting of
just the origin if both are zero.

Three.III.1.31 Yes, for two reasons.
First, the two maps h and ĥ need not have the same domain and codomain.

For instance, (
1 2

3 4

)
represents a map h : R2 → R2 with respect to the standard bases that sends(

1

0

)
7→

(
1

3

)
and

(
0

1

)
7→

(
2

4

)
and also represents a ĥ : P1 → R2 with respect to 〈1, x〉 and E2 that acts in this
way.

1 7→

(
1

3

)
and x 7→

(
2

4

)
The second reason is that, even if the domain and codomain of h and ĥ coincide,

different bases produce different maps. An example is the 2×2 identity matrix

I =

(
1 0

0 1

)
which represents the identity map on R2 with respect to E2,E2. However, with
respect to E2 for the domain but the basis D = 〈~e2,~e1〉 for the codomain, the same
matrix I represents the map that swaps the first and second components(

x

y

)
7→

(
y

x

)
(that is, reflection about the line y = x).
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Three.III.1.32 We mimic Example 1.1, just replacing the numbers with letters.
Write B as 〈~β1, . . . , ~βn〉 and D as 〈~δ1, . . . ,~δm〉. By definition of representation

of a map with respect to bases, the assumption that

RepB,D(h) =

h1,1 . . . h1,n
...

...
hm,1 . . . hm,n


means that h(~βi) = hi,1~δ1+· · ·+hi,n~δn. And, by the definition of the representation
of a vector with respect to a basis, the assumption that

RepB(~v) =

c1...
cn


means that ~v = c1~β1 + · · ·+ cn~βn. Substituting gives

h(~v) = h(c1 · ~β1 + · · ·+ cn · ~βn)
= c1 · h(~β1) + · · ·+ cn · ~βn
= c1 · (h1,1~δ1 + · · ·+ hm,1~δm) + · · ·+ cn · (h1,n~δ1 + · · ·+ hm,n~δm)

= (h1,1c1 + · · ·+ h1,ncn) ·~δ1 + · · ·+ (hm,1c1 + · · ·+ hm,ncn) ·~δm
and so h(~v) is represented as required.

Three.III.1.33 (a) The picture is this.

The images of the vectors from the domain’s basis10
0

 7→
10
0


01
0

 7→
 0

cos θ
− sin θ


00
1

 7→
 0

sin θ
cos θ


are represented with respect to the codomain’s basis (again, E3) by themselves,
so adjoining the representations to make the matrix gives this.

RepE3,E3(rθ) =

1 0 0

0 cos θ sin θ
0 − sin θ cos θ


(b) The picture is similar to the one in the prior answer. The images of the vectors
from the domain’s basis10

0

 7→
cos θ

0

sin θ


01
0

 7→
01
0


00
1

 7→
− sin θ

0

cos θ
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are represented with respect to the codomain’s basis E3 by themselves, so this is
the matrix. cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ


(c) To a person standing up, with the vertical z-axis, a rotation of the xy-plane
that is clockwise proceeds from the positive y-axis to the positive x-axis. That
is, it rotates opposite to the direction in Example 1.9. The images of the vectors
from the domain’s basis10

0

 7→
 cos θ
− sin θ
0


01
0

 7→
sin θ
cos θ
0


00
1

 7→
00
1


are represented with respect to E3 by themselves, so the matrix is this. cos θ sin θ 0

− sin θ cos θ 0

0 0 1



(d)


cos θ sin θ 0 0

− sin θ cos θ 0 0

0 0 1 0

0 0 0 1


Three.III.1.34 (a) Write the basis BU as 〈~β1, . . . , ~βk〉 and then write BV as the

extension 〈~β1, . . . , ~βk, ~βk+1, . . . , ~βn〉. If

RepBU(~v) =

c1...
ck


so that ~v = c1 · ~β1 + · · ·+ ck · ~βk then

RepBV (~v) =



c1
...
ck
0
...
0


because ~v = c1 · ~β1 + · · ·+ ck · ~βk + 0 · ~βk+1 + · · ·+ 0 · ~βn.

(b) We must first decide what the question means. Compare h : V →W with its
restriction to the subspace h�U : U→W. The range space of the restriction is a
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subspace of W, so fix a basis Dh(U) for this range space and extend it to a basis
DV for W. We want the relationship between these two.

RepBV ,DV (h) and RepBU,Dh(U)
(h�U)

The answer falls right out of the prior item: if

RepBU,Dh(U)
(h�U) =

h1,1 . . . h1,k
...

...
hp,1 . . . hp,k


then the extension is represented in this way.

RepBV ,DV (h) =



h1,1 . . . h1,k h1,k+1 . . . h1,n
...

...
hp,1 . . . hp,k hp,k+1 . . . hp,n
0 . . . 0 hp+1,k+1 . . . hp+1,n
...

...
0 . . . 0 hm,k+1 . . . hm,n


(c) Take Wi to be the span of {h(~β1), . . . , h(~βi) }.
(d) Apply the answer from the second item to the third item.
(e) No. For instance πx : R2 → R2, projection onto the x axis, is represented by
these two upper-triangular matrices

RepE2,E2(πx) =

(
1 0

0 0

)
and RepC,E2(πx) =

(
0 1

0 0

)
where C = 〈~e2,~e1〉.

Three.III.2: Any Matrix Represents a Linear Map

Three.III.2.12 (a) domain: 2, codomain: 2
(b) domain: 3, codomain: 2
(c) domain: 2, codomain: 3
(d) domain: 3, codomain: 2
(e) domain: 4, codomain: 2

Three.III.2.13 For each we just have to decide if the matrix is nonsingular, perhaps
by doing Gauss’s Method. (In truth, we can do each of these by eye.)
(a) This matrix is nonsingular, since the second row is not a multiple of the first,
so the map is nonsingular.

(b) The matrix is singular so the map is singular.
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(c) Nonsingular.
(d) Singular.

Three.III.2.14 With respect to B the vector’s representation is this.

RepB(2x− 1) =

(
−1

3

)
Using the matrix-vector product we can compute RepD(h(~v))

RepD(h(2x− 1)) =

(
2 1

4 2

)(
−1

3

)
B

=

(
1

2

)
D

From that representation we can compute h(~v).

h(2x− 1) = 1 ·

(
1

1

)
+ 2 ·

(
1

0

)
=

(
3

1

)
Three.III.2.15 As described in the subsection, with respect to the standard bases,
representations are transparent, and so, for instance, the first matrix describes this
map. 10

0

 =

10
0


E3

7→

(
1

0

)
E2

=

(
1

0

) 01
0

 7→ (
1

1

) 00
1

 7→ (
3

4

)

So, for this first one, we are asking whether there are scalars such that

c1

(
1

0

)
+ c2

(
1

1

)
+ c3

(
3

4

)
=

(
1

3

)
that is, whether the vector is in the column space of the matrix.
(a) Yes. We can get this conclusion by setting up the resulting linear system and
applying Gauss’s Method, as usual. Another way to get it is to note by inspection
of the equation of columns that taking c3 = 3/4, and c1 = −5/4, and c2 = 0 will
do. Still a third way to get this conclusion is to note that the rank of the matrix
is two, which equals the dimension of the codomain, and so the map is onto—
the range is all of R2 and in particular includes the given vector.

(b) No; note that all of the columns in the matrix have a second component that
is twice the first, while the vector does not. Alternatively, the column space of
the matrix is

{c1

(
2

4

)
+ c2

(
0

0

)
+ c3

(
3

6

)
| c1, c2, c3 ∈ R } = {c

(
1

2

)
| c ∈ R }

(which is the fact already noted, but we got it by calculation rather than inspira-
tion), and the given vector is not in this set.
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Three.III.2.16 (a) The first member of the basis(
0

1

)
=

(
1

0

)
B

maps to (
1/2

−1/2

)
D

which is this member of the codomain.
1

2
·

(
1

1

)
−
1

2
·

(
1

−1

)
=

(
0

1

)
(b) The second member of the basis maps(

1

0

)
=

(
0

1

)
B

7→

(
(1/2

1/2

)
D

to this member of the codomain.
1

2
·

(
1

1

)
+
1

2
·

(
1

−1

)
=

(
1

0

)
(c) Because the map that the matrix represents is the identity map on the basis,
it must be the identity on all members of the domain. We can come to the same
conclusion in another way by considering(

x

y

)
=

(
y

x

)
B

which maps to (
(x+ y)/2

(x− y)/2

)
D

which represents this member of R2.
x+ y

2
·

(
1

1

)
+
x− y

2
·

(
1

−1

)
=

(
x

y

)
Three.III.2.17 Since, with respect to the standard basis E2, a matrix is represented
by itself, we just need to do the matrix-vector multiplication.
(a)

RepE2(h(

(
2

3

)
)) = RepE2,E2(h) RepE2(

(
2

3

)
)

=

(
1 3

2 4

)
E2,E2

(
2

3

)
E2

=

(
11

16

)
E2

=

(
11

16

)
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(b)

(
1 3

2 4

)(
0

1

)
=

(
3

4

)

(c)

(
1 3

2 4

)(
−1

1

)
=

(
2

2

)
Three.III.2.18 A general member of the domain, represented with respect to the
domain’s basis as

a cos θ+ b sin θ =

(
a

a+ b

)
B

maps to (
0

a

)
D

representing 0 · (cos θ+ sin θ) + a · (cos θ)

and so the linear map represented by the matrix with respect to these bases
a cos θ+ b sin θ 7→ a cos θ

is projection onto the first component.
Three.III.2.19 Denote the given basis of P2 by B. Application of the linear map is
represented by matrix-vector multiplication. Thus the first vector in E3 maps to
the element of P2 represented with respect to B by1 3 0

0 1 0

1 0 1


10
0

 =

10
1


and that element is 1+ x. Calculate the other two images of basis vectors in the
same way.1 3 0

0 1 0

1 0 1


01
0

 =

31
0

 = RepB(4+ x
2)

1 3 0

0 1 0

1 0 1


00
1

 =

00
1

 = RepB(x)

So the range of h is the span of three polynomials 1 + x, 4 + x2, and x. We can
thus decide if 1+ 2x is in the range of the map by looking for scalars c1, c2, and c3
such that

c1 · (1+ x) + c2 · (4+ x2) + c3 · (x) = 1+ 2x
and obviously c1 = 1, c2 = 0, and c3 = 1 suffice. Thus 1+ 2x is in the range, since
it is the image of this vector.

1 ·

10
0

+ 0 ·

01
0

+ 1 ·

00
1


Comment. A slicker argument is to note that the matrix is nonsingular, so it

has rank 3, so the range has dimension 3, and since the codomain has dimension 3
the map is onto. Thus every polynomial is the image of some vector and in
particular 1+ 2x is the image of a vector in the domain.
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Three.III.2.20 Where B = 〈~β1, ~β2〉 we can find RepB(~v) by eye, where ~v is the general
vector, with entries x and y.(

x

y

)
= a ·

(
1

0

)
+ b ·

(
1

1

)
gives b = y, a = x− y

Thus the representation of general vector with respect to B is this.

RepB(

(
x

y

)
) =

(
x− y

y

)
Compute the effect of the map with matrix-vector multiplication.(

2 1

−1 0

)
B

(
x− y

y

)
B

=

(
2(x− y) + y

−(x− y)

)
B

=

(
2x+ y

−x+ y

)
B

Finish by converting back to the standard vector representation.(
2x+ y

−x+ y

)
B

= (2x+ y) ·

(
1

0

)
+ (−x+ y) ·

(
1

1

)
=

(
x+ 2y

−x+ y

)
Three.III.2.21 Let the matrix be G, and suppose that it represents g : V →W with
respect to bases B and D. Because G has two columns, the domain V is two-
dimensional. Because G has two rows, the codomain W is two-dimensional. The
action of g on a representation RepB,D(~v) of a general member of the domain is
this. (

x

y

)
B

7→

(
x+ 2y

3x+ 6y

)
D

(a) No matter what is the codomain’s basis D, the only representation of the zero
vector ~0W is

RepD(~0) =

(
0

0

)
D

and so the set of representations of members of the null space is this.

{

(
x

y

)
B

| x+ 2y = 0 and 3x+ 6y = 0 } = {y ·

(
−1/2

1

)
D

| y ∈ R }

(b) The nullity is 1. The representation map RepD : W → R2 and its inverse are
isomorphisms and so preserve the dimension of subspaces. The subspace of
R2 that is in the prior item is one-dimensional. Therefore, the image of that
subspace under the inverse of the representation map—the null space of G, is
also one-dimensional.

(c) The set of representations of members of the range space is this.

{

(
x+ 2y

3x+ 6y

)
D

| x, y ∈ R } = {x ·

(
1

3

)
D

+ y ·

(
2

6

)
D

| x, y ∈ R }

= {k ·

(
1

3

)
D

| k ∈ R }
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(d) Of course, Theorem 2.4 gives that the rank of the map equals the rank of the
matrix, which is one. Alternatively, the same argument that we used above for
the null space gives here that the dimension of the range space is one.

(e) One plus one equals two.
Three.III.2.22 (a) (i) The dimension of the domain space is the number of columnsm =

2. The dimension of the codomain space is the number of rows n = 2.
For the rest, we consider this matrix-vector equation.(

2 1

−1 3

)(
x

y

)
=

(
a

b

)
(∗)

We solve for x and y.(
2 1 a

−1 3 b

)
(1/2)ρ1+ρ2−→ (1/2)ρ1−→

(2/7)ρ2

−(1/2)ρ2+ρ1−→

(
1 0 (3/7)a− (1/7)b

0 1 (1/7)a+ (2/7)b

)
(ii) For all (

a

b

)
∈ R2

in equation (∗) the system has a solution, by the calculation. So the range space
is all of the codomain R(h) = R2. The map’s rank is the dimension of the
range, 2. The map is onto because the range space is all of the codomain.

(iii) Again by the calculation, to find the nullspace, setting a = b = 0 in
equation (∗) gives that x = y = 0. The null space is the trivial subspace of the
domain.

N (h) = {

(
0

0

)
}

The nullity is the dimension of that null space, 0. The map is one-to-one because
the null space is trivial.

(b) (i) The dimension of the domain space is the number of matrix columns,m = 3,
and the dimension of the codomain space is the number of rows, n = 3.

The calculation is this. 0 1 3 a

2 3 4 b

−2 −1 2 c

 ρ1↔ρ2−→ ρ1+ρ3−→ −2ρ2+ρ3−→

(1/2)ρ1−→ −(3/2)ρ2+ρ1−→

1 0 −5/2 −(3/2)a+ (1/2)b

0 1 3 a

0 0 0 −2a+ b+ c


(ii) There are codomain triples ab

c

 ∈ R3
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for which the system does not have a solution, specifically the system only has a
solution if −2a+ b+ c = 0.

R(h) = {

ab
c

 | a = (b+ c)/2 } = {

1/21
0

b+
1/20
1

 c | b, c ∈ R }

The map’s rank is the range’s dimension, 2. The map is not onto because the
range space is not all of the codomain.

(iii) Setting a = b = c = 0 in the calculation gives infinitely many solutions.
Parametrizing using the free variable z leads to this description of the nullspace.

N (h) = {

xy
z

 | y = −3z and x = (5/2)z } = {

5/2−3

1

 z | z ∈ R }

The nullity is the dimension of that null space, 1. The map is not one-to-one
because the null space is not trivial.

(c) (i) The domain has dimension m = 2 while the codomain has dimension n = 3.
Here is the calculation.1 1 a

2 1 b

3 1 c

 −2ρ1+ρ2−→
−3ρ1+ρ3

−2ρ2+ρ3−→ −ρ2−→ −ρ2+ρ1−→

1 0 −a+ b

0 1 2a− b

0 0 a− 2b+ c


(ii) The range is this subspace of the codomain.

R(h) = {

2b− cb

c

 | b, c ∈ R } = {

21
0

b+
−1

0

1

 c | b, c ∈ R }

The rank is 2. The map is not onto.
(iii) The null space is the trivial subspace of the domain.

N (h) = {

(
x

y

)
=

(
0

0

)
}

The nullity is 0. The map is one-to-one.

Three.III.2.23 Here is the Gauss-Jordan reduction.1 0 −1 a

2 1 0 b

2 2 2 c

 −2ρ1+ρ2−→
−2ρ1+ρ3

1 0 −1 a

0 1 2 −2a+ b

0 2 4 −2a+ c


−2ρ2+ρ3−→

1 0 −1 a

0 1 2 −2a+ b

0 0 0 2a− 2b+ c
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(i) The dimensions are m = n = 3. (ii) The range space is the set containing all of
the members of the codomain for which this system has a solution.

R(h) = {

b− (1/2)c

b

c

 | b, c ∈ R }

The rank is 2. Because the rank is less than the dimension n = 3 of the codomain,
the map is not onto.

(iii) The null space is the set of members of the domain that map to a = 0,
b = 0, and c = 0.

N (h) = {

 z

−2z

z

 | z ∈ R }

The nullity is 1. Because the nullity is not 0 the map is not one-to-one.

Three.III.2.24 For any map represented by this matrix, the domain and codomain are
each of dimension 3. To show that the map is an isomorphism, we must show it is
both onto and one-to-one. For that we don’t need to augment the matrix with a,
b, and c; this calculation2 1 0

3 1 1

7 2 1

 −(3/2)ρ1+ρ2−→
−(7/2)ρ1+ρ3

−3ρ2+ρ3−→ (1/2)ρ1−→
−2ρ2
−(1/2)ρ3

2ρ3+ρ2−→

−(1/2)ρ2+ρ1−→

1 0 0

0 1 0

0 0 1


gives that for each codomain vector there is one and only one associated domain
vector.

Three.III.2.25 (a) The defined map h is onto if and only if for every ~w ∈W there
is a ~v ∈ V such that h(~v) = ~w. Since for every vector there is exactly one
representation, converting to representations gives that h is onto if and only if
for every representation RepD(~w) there is a representation RepB(~v) such that
H · RepB(~v) = RepD(~w).

(b) This is just like the prior part.
(c) As described at the start of this subsection, by definition the map h defined
by the matrix H associates this domain vector ~v with this codomain vector ~w.

RepB(~v) =

v1...
vn

 RepD(~w) = H · RepB(~v) =

 h1,1v1 + · · ·+ h1,nvn
...

hm,1v1 + · · ·+ hm,nvn
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Fix ~w ∈W and consider the linear system defined by the above equation.
h1,1v1 + · · ·+ h1,nvn = w1
h2,1v1 + · · ·+ h2,nvn = w2

...
hn,1v1 + · · ·+ hn,nvn = wn

(Again, here the wi are fixed and the vj are unknowns.) Now, H is nonsingular
if and only if for all w1, . . . , wn this system has a solution and the solution is
unique. By the first two parts of this exercise this is true if and only if the map
h is onto and one-to-one. This in turn is true if and only if h is an isomorphism.

Three.III.2.26 No, the range spaces may differ. Example 2.3 shows this.

Three.III.2.27 Recall that the representation map

V
RepB7−→ Rn

is an isomorphism. Thus, its inverse map Rep−1B : Rn → V is also an isomorphism.
The desired transformation of Rn is then this composition.

Rn
Rep−1

B7−→ V
RepD7−→ Rn

Because a composition of isomorphisms is also an isomorphism, this map RepD ◦
Rep−1B is an isomorphism.

Three.III.2.28 Yes. Consider

H =

(
1 0

0 1

)
representing a map from R2 to R2. With respect to the standard bases B1 =

E2, D1 = E2 this matrix represents the identity map. With respect to

B2 = D2 = 〈

(
1

1

)
,

(
1

−1

)
〉

this matrix again represents the identity. In fact, as long as the starting and ending
bases are equal—as long as Bi = Di—then the map represented by H is the
identity.

Three.III.2.29 This is immediate from Lemma 2.9.

Three.III.2.30 The first map(
x

y

)
=

(
x

y

)
E2

7→

(
3x

2y

)
E2

=

(
3x

2y

)
stretches vectors by a factor of three in the x direction and by a factor of two in
the y direction. The second map(

x

y

)
=

(
x

y

)
E2

7→

(
x

0

)
E2

=

(
x

0

)
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projects vectors onto the x axis. The third(
x

y

)
=

(
x

y

)
E2

7→

(
y

x

)
E2

=

(
y

x

)
interchanges first and second components (that is, it is a reflection about the line
y = x). The last (

x

y

)
=

(
x

y

)
E2

7→

(
x+ 3y

y

)
E2

=

(
x+ 3y

y

)
stretches vectors parallel to the y axis, by an amount equal to three times their
distance from that axis (this is a skew.)

Three.III.2.31 (a) This is immediate from Theorem 2.4.
(b) Yes. This is immediate from the prior item.

To give a specific example, we can start with E3 as the basis for the domain,
and then we require a basis D for the codomain R3. The matrix H gives the
action of the map as this10

0

 =

10
0


E3

7→

12
0


D

01
0

 =

01
0


E3

7→

00
1


D00

1

 =

00
1


E3

7→

00
0


D

and there is no harm in finding a basis D so that

RepD(

10
0

) =

12
0


D

and RepD(

01
0

) =

00
1


D

that is, so that the map represented by H with respect to E3, D is projection
down onto the xy plane. The second condition gives that the third member of D
is ~e2. The first condition gives that the first member of D plus twice the second
equals ~e1, and so this basis will do.

D = 〈

 0

−1

0

 ,
1/21/2
0

 ,
01
0

〉
Three.III.2.32 (a) Recall that the representation map RepB : V → Rn is linear (it

is actually an isomorphism, but we do not need that it is one-to-one or onto
here). Considering the column vector x to be a n×1 matrix gives that the map
from Rn to R that takes a column vector to its dot product with ~x is linear (this
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is a matrix-vector product and so Theorem 2.2 applies). Thus the map under
consideration h~x is linear because it is the composition of two linear maps.

~v 7→ RepB(~v) 7→ ~x · RepB(~v)
(b) Any linear map g : V → R is represented by some matrix(

g1 g2 · · · gn

)
(the matrix has n columns because V is n-dimensional and it has only one row
because R is one-dimensional). Then taking ~x to be the column vector that is
the transpose of this matrix

~x =

g1...
gn


has the desired action.

~v =

v1...
vn

 7→
g1...
gn

 •

v1...
vn

 = g1v1 + · · ·+ gnvn

(c) No. If ~x has any nonzero entries then h~x cannot be the zero map (and if ~x is
the zero vector then h~x can only be the zero map).

Three.III.2.33 See the following section.

Matrix Operations

Three.IV.1: Sums and Scalar Products

Three.IV.1.8 (a)

(
7 0 6

9 1 6

)
(b)

(
12 −6 −6

6 12 18

)
(c)

(
4 2

0 6

)

(d)

(
−1 28

2 1

)
(e) Not defined.

Three.IV.1.9 The bases don’t matter. The only thing that matters is getting the
dimensions right. (

0 0 0 0

0 0 0 0

)
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Three.IV.1.10 Represent the domain vector ~v ∈ V and the maps g, h : V →W with
respect to bases B,D in the usual way.
(a) The representation of (g+ h) (~v) = g(~v) + h(~v)(

(g1,1v1 + · · ·+ g1,nvn)~δ1 + · · ·+ (gm,1v1 + · · ·+ gm,nvn)~δm
)

+
(
(h1,1v1 + · · ·+ h1,nvn)~δ1 + · · ·+ (hm,1v1 + · · ·+ hm,nvn)~δm

)
regroups

= ((g1,1 + h1,1)v1 + · · ·+ (g1,1 + h1,n)vn) ·~δ1
+ · · ·+ ((gm,1 + hm,1)v1 + · · ·+ (gm,n + hm,n)vn) ·~δm

to the entry-by-entry sum of the representation of g(~v) and the representation of
h(~v).

(b) The representation of (r · h) (~v) = r ·
(
h(~v)

)
r·
(
(h1,1v1 + h1,2v2 + · · ·+ h1,nvn)~δ1
+ · · ·+ (hm,1v1 + hm,2v2 + · · ·+ hm,nvn)~δm

)
= (rh1,1v1 + · · ·+ rh1,nvn) ·~δ1
+ · · ·+ (rhm,1v1 + · · ·+ rhm,nvn) ·~δm

is the entry-by-entry multiple of r and the representation of h.

Three.IV.1.11 First, each of these properties is easy to check in an entry-by-entry
way. For example, writing

G =

g1,1 . . . g1,n
...

...
gm,1 . . . gm,n

 H =

h1,1 . . . h1,n
...

...
hm,1 . . . hm,n


then, by definition we have

G+H =

 g1,1 + h1,1 . . . g1,n + h1,n
...

...
gm,1 + hm,1 . . . gm,n + hm,n


and

H+G =

 h1,1 + g1,1 . . . h1,n + g1,n
...

...
hm,1 + gm,1 . . . hm,n + gm,n


and the two are equal since their entries are equal gi,j + hi,j = hi,j + gi,j. That is,
each of these is easy to check by using Definition 1.3 alone.

However, each property is also easy to understand in terms of the represented
maps, by applying Theorem 1.4 as well as the definition.
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(a) The two maps g+ h and h+ g are equal because g(~v) + h(~v) = h(~v) + g(~v),
as addition is commutative in any vector space. Because the maps are the same,
they must have the same representative.

(b) As with the prior answer, except that here we apply that vector space addition
is associative.

(c) As before, except that here we note that g(~v) + z(~v) = g(~v) +~0 = g(~v).
(d) Apply that 0 · g(~v) = ~0 = z(~v).
(e) Apply that (r+ s) · g(~v) = r · g(~v) + s · g(~v).
(f) Apply the prior two items with r = 1 and s = −1.
(g) Apply that r · (g(~v) + h(~v)) = r · g(~v) + r · h(~v).
(h) Apply that (rs) · g(~v) = r · (s · g(~v)).

Three.IV.1.12 For any V,W with bases B,D, the (appropriately-sized) zero matrix
represents this map.

~β1 7→ 0 ·~δ1 + · · ·+ 0 ·~δm · · · ~βn 7→ 0 ·~δ1 + · · ·+ 0 ·~δm
This is the zero map.

There are no other matrices that represent only one map. For, suppose that H
is not the zero matrix. Then it has a nonzero entry; assume that hi,j 6= 0. With
respect to bases B,D, it represents h1 : V →W sending

~βj 7→ h1,j~δ1 + · · ·+ hi,j~δi + · · ·+ hm,j~δm
and with respect to B, 2 ·D it also represents h2 : V →W sending

~βj 7→ h1,j · (2~δ1) + · · ·+ hi,j · (2~δi) + · · ·+ hm,j · (2~δm)

(the notation 2 ·D means to double all of the members of D). These maps are easily
seen to be unequal.

Three.IV.1.13 Fix bases B andD for V andW, and consider RepB,D : L(V,W)→Mm×n

associating each linear map with the matrix representing that map h 7→ RepB,D(h).
From the prior section we know that (under fixed bases) the matrices correspond
to linear maps, so the representation map is one-to-one and onto. That it preserves
linear operations is Theorem 1.4.

Three.IV.1.14 Fix bases and represent the transformations with 2×2 matrices. The
space of matrices M2×2 has dimension four, and hence the any six-element set is
linearly dependent. By the prior exercise that extends to a dependence of maps.
(The misleading part is only that there are six transformations, not five, so that we
have more than we need to give the existence of the dependence.)

Three.IV.1.15 That the trace of a sum is the sum of the traces holds because both
trace(H+G) and trace(H) + trace(G) are the sum of h1,1 + g1,1 with h2,2 + g2,2,
etc. For scalar multiplication we have trace(r ·H) = r · trace(H); the proof is easy.
Thus the trace map is a homomorphism from Mn×n to R.
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Three.IV.1.16 (a) The i, j entry of (G+H)T is gj,i + hj,i. That is also the i, j entry
of GT +HT.

(b) The i, j entry of (r ·H)T is rhj,i, which is also the i, j entry of r ·HT.

Three.IV.1.17 (a) For H + HT, the i, j entry is hi,j + hj,i and the j, i entry of is
hj,i + hi,j. The two are equal and thus H+HT is symmetric.

Every symmetric matrix does have that form, since we can write H = (1/2) ·
(H+HT).

(b) The set of symmetric matrices is nonempty as it contains the zero matrix.
Clearly a scalar multiple of a symmetric matrix is symmetric. A sum H + G

of two symmetric matrices is symmetric because hi,j + gi,j = hj,i + gj,i (since
hi,j = hj,i and gi,j = gj,i). Thus the subset is nonempty and closed under the
inherited operations, and so it is a subspace.

Three.IV.1.18 (a) Scalar multiplication leaves the rank of a matrix unchanged except
that multiplication by zero leaves the matrix with rank zero. (This follows from
the first theorem of the book, that multiplying a row by a nonzero scalar doesn’t
change the solution set of the associated linear system.)

(b) A sum of rank n matrices can have rank less than n. For instance, for any
matrix H, the sum H+ (−1) ·H has rank zero.

A sum of rank n matrices can have rank greater than n. Here are rank one
matrices that sum to a rank two matrix.(

1 0

0 0

)
+

(
0 0

0 1

)
=

(
1 0

0 1

)

Three.IV.2: Matrix Multiplication

Three.IV.2.14 (a)

(
0 15.5

0 −19

)
(b)

(
2 −1 −1

17 −1 −1

)
(c) Not defined.

(d)

(
1 0

0 1

)

Three.IV.2.15 (a)

(
1 −2

10 4

)
(b)

(
1 −2

10 4

)(
−2 3

−4 1

)
=

(
6 1

−36 34

)

(c)

(
−18 17

−24 16

)
(d)

(
1 −1

2 0

)(
−18 17

−24 16

)
=

(
6 1

−36 34

)
Three.IV.2.16 (a) Yes. (b) Yes. (c) No. (d) No.
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Three.IV.2.17 (a) 2×1 (b) 1×1 (c) Not defined. (d) 2×2

Three.IV.2.18 We have
h1,1 · (g1,1y1 + g1,2y2) + h1,2 · (g2,1y1 + g2,2y2) + h1,3 · (g3,1y1 + g3,2y2) = d1
h2,1 · (g1,1y1 + g1,2y2) + h2,2 · (g2,1y1 + g2,2y2) + h2,3 · (g3,1y1 + g3,2y2) = d2
which, after expanding and regrouping about the y’s yields this.

(h1,1g1,1 + h1,2g2,1 + h1,3g3,1)y1 + (h1,1g1,2 + h1,2g2,2 + h1,3g3,2)y2 = d1
(h2,1g1,1 + h2,2g2,1 + h2,3g3,1)y1 + (h2,1g1,2 + h2,2g2,2 + h2,3g3,2)y2 = d2

We can express the starting system and the system used for the substitutions in
matrix language, as(

h1,1 h1,2 h1,3
h2,1 h2,2 h2,3

)x1x2
x3

 = H

x1x2
x3

 =

(
d1
d2

)

and g1,1 g1,2
g2,1 g2,2
g3,1 g3,2

(y1
y2

)
= G

(
y1
y2

)
=

x1x2
x3


and with this, the substitution is ~d = H~x = H(G~y) = (HG)~y.

Three.IV.2.19 (a) Following the definitions gives this.ab
c

 7→ (a+ b)x2 + (2a+ 2b)x+ c

7→

(
a+ b (a+ b) − 2(2a+ 2b)

2a+ 2b 0

)
=

(
a+ b −3a− 3b

2a+ 2b 0

)
(b) Because11

1

 7→ 2x2 + 4x+ 1

01
1

 7→ x2 + 2x+ 1

00
1

 7→ 0x2 + 0x+ 1

we get this representation for h.

RepB,C(h) =

 5/2 3/2 1/2

−3/2 −1/2 1/2

2 1 0


Similarly, because

1+ x 7→

(
0 −2

1 0

)
1− x 7→

(
0 2

−1 0

)
x2 7→

(
1 1

0 0

)
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this is the representation of g.

RepC,D(g) =


0 0 1

−1 1 1/2

1/3 −1/3 0

0 0 0


(c) The action of g ◦ h on the domain basis is this.11

1

 7→ (
2 −6

4 0

) 01
1

 7→ (
1 −3

2 0

) 00
1

 7→ (
0 0

0 0

)
We have this.

RepB,D(g ◦ h) =


2 1 0

−3 −3/2 0

4/3 2/3 0

0 0 0


(d) The matrix multiplication is routine, just take care with the order.

0 0 1

−1 1 1/2

1/3 −1/3 0

0 0 0


 5/2 3/2 1/2

−3/2 −1/2 1/2

2 1 0

 =


2 1 0

−3 −3/2 0

4/3 2/3 0

0 0 0


Three.IV.2.20 Technically, no. The dot product operation yields a scalar while the
matrix product yields a 1×1 matrix. However, we usually will ignore the distinction.

Three.IV.2.21 The action of d/dx on B is 1 7→ 0, x 7→ 1, x2 7→ 2x, . . . and so this is
its (n+ 1)×(n+ 1) matrix representation.

RepB,B(
d

dx
) =


0 1 0 0

0 0 2 0

. . .
0 0 0 n

0 0 0 0


The product of this matrix with itself is defined because the matrix is square.

0 1 0 0

0 0 2 0

. . .
0 0 0 n

0 0 0 0



2

=



0 0 2 0 0

0 0 0 6 0

. . .
0 0 0 n(n− 1)

0 0 0 0

0 0 0 0


The map so represented is the composition

p
d
dx7−→ dp

dx

d
dx7−→ d2 p

dx2
which is the second derivative operation.
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Three.IV.2.22 (a) iii
(b) iv
(c) None
(d) None (or (i) if we allow multiplication from the left)

Three.IV.2.23 It is true for all one-dimensional spaces. Let f and g be transformations
of a one-dimensional space. We must show that g ◦ f (~v) = f ◦ g (~v) for all vectors.
Fix a basis B for the space and then the transformations are represented by 1×1
matrices.

F = RepB,B(f) =
(
f1,1

)
G = RepB,B(g) =

(
g1,1

)
Therefore, the compositions can be represented as GF and FG.

GF = RepB,B(g ◦ f) =
(
g1,1f1,1

)
FG = RepB,B(f ◦ g) =

(
f1,1g1,1

)
These two matrices are equal and so the compositions have the same effect on each
vector in the space.

Three.IV.2.24 It would not represent linear map composition; Theorem 2.7 would
fail.

Three.IV.2.25 Each follows easily from the associated map fact. For instance, p
applications of the transformation h, following q applications, is simply p + q

applications.

Three.IV.2.26 Although we can do these by going through the indices, they are best
understood in terms of the represented maps. That is, fix spaces and bases so that
the matrices represent linear maps f, g, h.
(a) Yes; we have both r · (g◦h) (~v) = r ·g(h(~v) ) = (r ·g)◦h (~v) and g◦ (r ·h) (~v) =
g( r ·h(~v) ) = r · g(h(~v)) = r · (g ◦h) (~v) (the second equality holds because of the
linearity of g).

(b) Both answers are yes. First, f ◦ (rg+ sh) and r · (f ◦ g) + s · (f ◦h) both send ~v

to r ·f(g(~v))+s ·f(h(~v)); the calculation is as in the prior item (using the linearity
of f for the first one). For the other, (rf+ sg) ◦ h and r · (f ◦ h) + s · (g ◦ h) both
send ~v to r · f(h(~v)) + s · g(h(~v)).

Three.IV.2.27 We have not seen a map interpretation of the transpose operation, so
we will verify these by considering the entries.

(a) The i, j entry of GHT is the j, i entry of GH, which is the dot product of the
j-th row of G and the i-th column of H. The i, j entry of HTGT is the dot product
of the i-th row of HT and the j-th column of GT, which is the dot product of
the i-th column of H and the j-th row of G. Dot product is commutative and so
these two are equal.

(b) By the prior item each equals its transpose, e.g., (HHT)
T
= HTT

HT = HHT.
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Three.IV.2.28 Consider rx, ry : R3 → R3 rotating all vectors π/2 radians counterclock-
wise about the x and y axes (counterclockwise in the sense that a person whose
head is at ~e1 or ~e2 and whose feet are at the origin sees, when looking toward the
origin, the rotation as counterclockwise).

Rotating rx first and then ry is different than rotating ry first and then rx. In
particular, rx(~e3) = −~e2 so ry ◦rx(~e3) = −~e2, while ry(~e3) = ~e1 so rx ◦ry(~e3) = ~e1,
and hence the maps do not commute.

Three.IV.2.29 It doesn’t matter (as long as the spaces have the appropriate dimen-
sions).

For associativity, suppose that F is m×r, that G is r×n, and that H is n×k.
We can take any r dimensional space, any m dimensional space, any n dimensional
space, and any k dimensional space— for instance, Rr, Rm, Rn, and Rk will do.
We can take any bases A, B, C, and D, for those spaces. Then, with respect to
C,D the matrix H represents a linear map h, with respect to B,C the matrix G
represents a g, and with respect to A,B the matrix F represents an f. We can use
those maps in the proof.

The second half is similar, except that we add G and H and so we must take
them to represent maps with the same domain and codomain.

Three.IV.2.30 (a) The product of rank n matrices can have rank less than or equal
to n but not greater than n.

To see that the rank can fall, consider the maps πx, πy : R2 → R2 projecting
onto the axes. Each is rank one but their composition πx ◦ πy, which is the zero
map, is rank zero. That translates over to matrices representing those maps in
this way.

RepE2,E2(πx) · RepE2,E2(πy) =

(
1 0

0 0

)(
0 0

0 1

)
=

(
0 0

0 0

)
To prove that the product of rank n matrices cannot have rank greater than

n, we can apply the map result that the image of a linearly dependent set is
linearly dependent. That is, if h : V →W and g : W → X both have rank n then
a set in the range R(g ◦ h) of size larger than n is the image under g of a set in
W of size larger than n and so is linearly dependent (since the rank of h is n).
Now, the image of a linearly dependent set is dependent, so any set of size larger
than n in the range is dependent. (By the way, observe that the rank of g was
not mentioned. See the next part.)
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(b) Fix spaces and bases and consider the associated linear maps f and g. Recall
that the dimension of the image of a map (the map’s rank) is less than or equal
to the dimension of the domain, and consider the arrow diagram.

V
f7−→ R(f)

g7−→ R(g ◦ f)
First, the image of R(f) must have dimension less than or equal to the dimension
of R(f), by the prior sentence. On the other hand, R(f) is a subset of the domain
of g, and thus its image has dimension less than or equal the dimension of the
domain of g. Combining those two, the rank of a composition is less than or
equal to the minimum of the two ranks.

The matrix fact follows immediately.
Three.IV.2.31 The ‘commutes with’ relation is reflexive and symmetric. However, it
is not transitive: for instance, with

G =

(
1 2

3 4

)
H =

(
1 0

0 1

)
J =

(
5 6

7 8

)
G commutes with H and H commutes with J, but G does not commute with J.

Three.IV.2.32 (a) Either of these.xy
z

 πx7−→

x0
0

 πy7−→

00
0


xy
z

 πy7−→

0y
0

 πx7−→

00
0


(b) The composition is the fifth derivative map d5/dx5 on the space of fourth-
degree polynomials.

(c) With respect to the natural bases,

RepE3,E3(πx) =

1 0 0

0 0 0

0 0 0

 RepE3,E3(πy) =

0 0 0

0 1 0

0 0 0


and their product (in either order) is the zero matrix.

(d) Where B = 〈1, x, x2, x3, x4〉,

RepB,B(
d2

dx2
) =


0 0 2 0 0

0 0 0 6 0

0 0 0 0 12

0 0 0 0 0

0 0 0 0 0

 RepB,B(
d3

dx3
) =


0 0 0 6 0

0 0 0 0 24

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


and their product (in either order) is the zero matrix.

Three.IV.2.33 Note that (S+ T)(S− T) = S2 − ST + TS− T2, so a reasonable try is
to look at matrices that do not commute so that −ST and TS don’t cancel: with

S =

(
1 2

3 4

)
T =

(
5 6

7 8

)
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we have the desired inequality.

(S+ T)(S− T) =

(
−56 −56

−88 −88

)
S2 − T2 =

(
−60 −68

−76 −84

)
Three.IV.2.34 Because the identity map acts on the basis B as ~β1 7→ ~β1, . . . , ~βn 7→ ~βn,
the representation is this. 

1 0 0 0

0 1 0 0

0 0 1 0

. . .
0 0 0 1


The second part of the question is obvious from Theorem 2.7.

Three.IV.2.35 Here are four solutions.

T =

(
±1 0

0 ±1

)
Three.IV.2.36 (a) The vector space M2×2 has dimension four. The set {T4, . . . , T, I }

has five elements and thus is linearly dependent.
(b) Where T is n×n, generalizing the argument from the prior item shows that there
is such a polynomial of degree n2 or less, since {Tn2 , . . . , T, I } is a n2+ 1-member
subset of the n2-dimensional space Mn×n.

(c) First compute the powers

T2 =

(
1/2 −

√
3/2√

3/2 1/2

)
T3 =

(
0 −1

1 0

)
T4 =

(
−1/2 −

√
3/2√

3/2 −1/2

)
(observe that rotating by π/6 three times results in a rotation by π/2, which is
indeed what T3 represents). Then set c4T4 + c3T3 + c2T2 + c1T + c0I equal to
the zero matrix(

−1/2 −
√
3/2√

3/2 −1/2

)
c4 +

(
0 −1

1 0

)
c3 +

(
1/2 −

√
3/2√

3/2 1/2

)
c2

+

(√
3/2 −1/2

1/2
√
3/2

)
c1 +

(
1 0

0 1

)
c0 =

(
0 0

0 0

)
to get this linear system.

−(1/2)c4 + (1/2)c2 + (
√
3/2)c1 + c0 = 0

−(
√
3/2)c4 − c3 − (

√
3/2)c2 − (1/2)c1 = 0

(
√
3/2)c4 + c3 + (

√
3/2)c2 + (1/2)c1 = 0

−(1/2)c4 + (1/2)c2 + (
√
3/2)c1 + c0 = 0
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Apply Gaussian reduction.

−ρ1+ρ4−→ ρ2+ρ3−→

−(1/2)c4 + (1/2)c2 + (
√
3/2)c1 + c0 = 0

−(
√
3/2)c4 − c3 − (

√
3/2)c2 − (1/2)c1 = 0

0= 0

0= 0

−
√
3ρ1+ρ2−→

−(1/2)c4 + (1/2)c2 + (
√
3/2)c1 + c0 = 0

− c3 −
√
3c2 − 2c1 −

√
3c0 = 0

0= 0

0= 0

Setting c4, c3, and c2 to zero makes c1 and c0 also come out to be zero so no
degree one or degree zero polynomial will do. Setting c4 and c3 to zero (and c2
to one) gives a linear system

(1/2) + (
√
3/2)c1 + c0 = 0

−
√
3− 2c1 −

√
3c0 = 0

with solution c1 = −
√
3 and c0 = 1. Conclusion: the polynomial m(x) =

x2 −
√
3x+ 1 is minimal for the matrix T .

Three.IV.2.37 The check is routine:

a0+a1x+· · ·+anxn
s7−→ a0x+a1x

2+· · ·+anxn+1
d/dx7−→ a0+2a1x+· · ·+(n+1)anx

n

while

a0 + a1x+ · · ·+ anxn
d/dx7−→ a1 + · · ·+ nanxn−1

s7−→ a1x+ · · ·+ anxn

so that under the map (d/dx ◦ s) − (s ◦ d/dx) we have a0 + a1x + · · · + anxn 7→
a0 + a1x+ · · ·+ anxn.

Three.IV.2.38 (a) Tracing through the remark at the end of the subsection gives
that the i, j entry of (FG)H is this

s∑
t=1

( r∑
k=1

fi,kgk,t
)
ht,j =

s∑
t=1

r∑
k=1

(fi,kgk,t)ht,j =

s∑
t=1

r∑
k=1

fi,k(gk,tht,j)

=

r∑
k=1

s∑
t=1

fi,k(gk,tht,j) =

r∑
k=1

fi,k
( s∑
t=1

gk,tht,j
)

(the first equality comes from using the distributive law to multiply through
the h’s, the second equality is the associative law for real numbers, the third
is the commutative law for reals, and the fourth equality follows on using the
distributive law to factor the f’s out), which is the i, j entry of F(GH).

(b) The k-th component of h(~v) is
n∑
j=1

hk,jvj
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and so the i-th component of g ◦ h (~v) is this
r∑
k=1

gi,k
( n∑
j=1

hk,jvj
)
=

r∑
k=1

n∑
j=1

gi,khk,jvj =

r∑
k=1

n∑
j=1

(gi,khk,j)vj

=

n∑
j=1

r∑
k=1

(gi,khk,j)vj =

n∑
j=1

(

r∑
k=1

gi,khk,j) vj

(the first equality holds by using the distributive law to multiply the g’s through,
the second equality represents the use of associativity of reals, the third follows
by commutativity of reals, and the fourth comes from using the distributive law
to factor the v’s out).

Three.IV.3: Mechanics of Matrix Multiplication

Three.IV.3.24 (a)

(
3 4

1 2

)

(b)

(
2 4

1 3

)

(c)

1 2 3

7 8 9

4 5 6


Three.IV.3.25 (a) The second matrix has its first row multiplied by 3.(

3 6

3 4

)
(b) The second matrix has its second row multiplied by 2.(

1 2

6 8

)
(c) The second matrix undergoes the combination operation of replacing the
second row with −2 times the first row added to the second.(

1 2

1 0

)
(d) The first matrix undergoes the column operation of: replace the second column
by −1 times the first column plus the second.(

1 1

3 1

)
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(e) The first matrix has its columns swapped.(
2 1

4 3

)
Three.IV.3.26 (a) The second matrix has its first row multiplied by 3 and its second

row multiplied by 0. (
3 6

0 0

)
(b) The second matrix has its first row multiplied by 4 and its second row multiplied
by 2. (

4 8

6 8

)
Three.IV.3.27 (a) This matrix swaps row one and row three.0 1 0

1 0 0

0 0 1


a b c

d e f

g h i

 =

d e f

a b c

g h i


(b) This matrix swaps column one and two.(

a b

c d

)(
0 1

1 0

)
=

(
b a

d c

)
Three.IV.3.28 Multiply by C1,2(−2), then by C1,3(−7), and then by C2,3(−3), paying
attention to the right-to-left order.1 0 0

0 1 0

0 −3 1


 1 0 0

0 1 0

−7 0 1


 1 0 0

−2 1 0

0 0 1


1 2 1 0

2 3 1 −1

7 11 4 −3


=

1 2 1 0

0 −1 −1 −1

0 0 0 0


Three.IV.3.29 The product is the identity matrix (recall that cos2 θ + sin2 θ = 1).
An explanation is that the given matrix represents, with respect to the standard
bases, a rotation in R2 of θ radians while the transpose represents a rotation of −θ
radians. The two cancel.

Three.IV.3.30 (a) The adjacency matrix is this (e.g, the first row shows that there
is only one connection including Burlington, the road to Winooski).

0 0 0 0 1

0 0 1 1 1

0 1 0 1 0

0 1 1 0 0

1 1 0 0 0





208 Linear Algebra, by Hefferon

(b) Because these are two-way roads, any road connecting city i to city j gives a
connection between city j and city i.

(c) The square of the adjacency matrix tells how cities are connected by trips
involving two roads.

Three.IV.3.31 The pay due each person appears in the matrix product of the two
arrays.

Three.IV.3.32 The Gauss-Jordan reduction is routine.1 2 0

2 −1 0

3 1 2

 −2ρ1+ρ2−→
−3ρ1+ρ3

−ρ2+ρ3−→ −(1/5)ρ2−→
(1/2)ρ3

−2ρ2+ρ1−→

1 0 0

0 1 0

0 0 1


Thus we know elementary reduction matrices R1, . . . , R6 such that R6·R5 · · ·R1·T = I.
Move the matrices to the other side, paying attention to order. For instance, first
multiply both sides from the left by R−16 to get (R−16 R6) ·R5 · · ·R1 · T = R−16 I, which
simplifies to R5 · · ·R1 · T = R−16 , etc.

T =

 1 0 0

−2 1 0

0 0 1


−1 1 0 0

0 1 0

−3 0 1


−11 0 0

0 1 0

0 −1 1


−1

·

1 0 0

0 −1/5 0

0 0 1


−11 0 0

0 1 0

0 0 1/2


−11 −2 0

0 1 0

0 0 1


−1

Then just remember how to take the inverse of an elementary reduction matrix.
For instance, Ci,j(k)−1 = Ci,j(−k).

=

1 0 0

2 1 0

0 0 1


1 0 0

0 1 0

3 0 1


1 0 0

0 1 0

0 1 1


1 0 0

0 −5 0

0 0 1


1 0 0

0 1 0

0 0 2


1 2 0

0 1 0

0 0 1


Three.IV.3.33 One way to produce this matrix from the identity is to use the column
operations of first multiplying the second column by three, and then adding the
negative of the resulting second column to the first.(

1 0

0 1

)
−→

(
1 0

0 3

)
−→

(
1 0

−3 3

)
In contrast with row operations, column operations are written from left to right,
so this matrix product expresses doing the above two operations.(

1 0

0 3

)(
1 0

−1 1

)
Remark. Alternatively, we could get the required matrix with row operations.
Starting with the identity, first adding the negative of the first row to the second,
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and then multiplying the second row by three will work. Because we write successive
row operations as matrix products from right to left, doing these two row operations
is expressed with: the same matrix product.

Three.IV.3.34 The set of diagonal matrices is nonempty as the zero matrix is diagonal.
Clearly it is closed under scalar multiples and sums. Therefore it is a subspace.
The dimension is n; here is a basis.

{


1 0 . . .

0 0

. . .
0 0 0

 , . . . ,

0 0 . . .

0 0

. . .
0 0 1

 }

Three.IV.3.35 No. In P1, with respect to the unequal bases B = 〈1, x〉 and D =

〈1+ x, 1− x〉, the identity transformation is represented by this matrix.

RepB,D(id) =

(
1/2 1/2

1/2 −1/2

)
B,D

Three.IV.3.36 For any scalar r and square matrix H we have (rI)H = r(IH) = rH =

r(HI) = (Hr)I = H(rI).
There are no other such matrices; here is an argument for 2×2 matrices that is

easily extended to n×n. If a matrix commutes with all others then it commutes
with this unit matrix.(

0 a

0 c

)
=

(
a b

c d

)(
0 1

0 0

)
=

(
0 1

0 0

)(
a b

c d

)
=

(
c d

0 0

)
From this we first conclude that the upper left entry a must equal its lower right
entry d. We also conclude that the lower left entry c is zero. The argument for the
upper right entry b is similar.

Three.IV.3.37 It is false; these two don’t commute.(
1 2

3 4

) (
5 6

7 8

)
Three.IV.3.38 A permutation matrix has a single one in each row and column, and
all its other entries are zeroes. Fix such a matrix. Suppose that the i-th row has
its one in its j-th column. Then no other row has its one in the j-th column; every
other row has a zero in the j-th column. Thus the dot product of the i-th row and
any other row is zero.

The i-th row of the product is made up of the dot products of the i-th row of
the matrix and the columns of the transpose. By the last paragraph, all such dot
products are zero except for the i-th one, which is one.
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Three.IV.3.39 The generalization is to go from the first and second rows to the i1-th
and i2-th rows. Row i of GH is made up of the dot products of row i of G and the
columns of H. Thus if rows i1 and i2 of G are equal then so are rows i1 and i2 of
GH.

Three.IV.3.40 If the product of two diagonal matrices is defined— if both are n×n—
then the product of the diagonals is the diagonal of the products: where G,H are
equal-sized diagonal matrices, GH is all zeros except each that i, i entry is gi,ihi,i.

Three.IV.3.41 The i-th row of GH is made up of the dot products of the i-th row of
G with the columns of H. The dot product of a zero row with a column is zero.

It works for columns if stated correctly: if H has a column of zeros then GH (if
defined) has a column of zeros. The proof is easy.

Three.IV.3.42 Perhaps the easiest way is to show that each n×m matrix is a linear
combination of unit matrices in one and only one way:

c1

1 0 . . .

0 0
...

+ · · ·+ cn,m

0 0 . . .
...
0 . . . 1

 =

a1,1 a1,2 . . .
...

an,1 . . . an,m


has the unique solution c1 = a1,1, c2 = a1,2, etc.

Three.IV.3.43 Call that matrix F. We have

F2 =

(
2 1

1 1

)
F3 =

(
3 2

2 1

)
F4 =

(
5 3

3 2

)
In general,

Fn =

(
fn+1 fn
fn fn−1

)
where fi is the i-th Fibonacci number fi = fi−1 + fi−2 and f0 = 0, f1 = 1, which
we verify by induction, based on this equation.(

fi−1 fi−2
fi−2 fi−3

)(
1 1

1 0

)
=

(
fi fi−1
fi−1 fi−2

)
Three.IV.3.44 Chapter Five gives a less computational reason— the trace of a
matrix is the second coefficient in its characteristic polynomial—but for now
we can use indices. We have

Tr(GH) = (g1,1h1,1 + g1,2h2,1 + · · ·+ g1,nhn,1)
+ (g2,1h1,2 + g2,2h2,2 + · · ·+ g2,nhn,2)
+ · · ·+ (gn,1h1,n + gn,2h2,n + · · ·+ gn,nhn,n)

while
Tr(HG) = (h1,1g1,1 + h1,2g2,1 + · · ·+ h1,ngn,1)

+ (h2,1g1,2 + h2,2g2,2 + · · ·+ h2,ngn,2)
+ · · ·+ (hn,1g1,n + hn,2g2,n + · · ·+ hn,ngn,n)
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and the two are equal.

Three.IV.3.45 A matrix is upper triangular if and only if its i, j entry is zero whenever
i > j. Thus, if G,H are upper triangular then hi,j and gi,j are zero when i > j. An
entry in the product pi,j = gi,1h1,j + · · ·+ gi,nhn,j is zero unless at least some of
the terms are nonzero, that is, unless for at least some of the summands gi,rhr,j
both i 6 r and r 6 j. Of course, if i > j this cannot happen and so the product of
two upper triangular matrices is upper triangular. (A similar argument works for
lower triangular matrices.)

Three.IV.3.46 The sum along the i-th row of the product is this.

pi,1 + · · ·+ pi,n = (hi,1g1,1 + hi,2g2,1 + · · ·+ hi,ngn,1)
+ (hi,1g1,2 + hi,2g2,2 + · · ·+ hi,ngn,2)
+ · · ·+ (hi,1g1,n + hi,2g2,n + · · ·+ hi,ngn,n)

= hi,1(g1,1 + g1,2 + · · ·+ g1,n)
+ hi,2(g2,1 + g2,2 + · · ·+ g2,n)
+ · · ·+ hi,n(gn,1 + gn,2 + · · ·+ gn,n)

= hi,1 · 1+ · · ·+ hi,n · 1
= 1

Three.IV.3.47 Matrices representing (say, with respect to E2,E2 ⊂ R2) the maps that
send

~β1
h7−→ ~β1 ~β2

h7−→ ~0

and
~β1

g7−→ ~β2 ~β2
g7−→ ~0

will do.

Three.IV.3.48 (a) Each entry pi,j = gi,1h1,j + · · ·+ g1,rhr,1 takes r multiplications
and there are m · n entries. Thus there are m · n · r multiplications.

(b) Let H1 be 5×10, let H2 be 10×20, let H3 be 20×5, let H4 be 5×1. Then,
using the formula from the prior part,

this association uses this many multiplications
((H1H2)H3)H4 1000+ 500+ 25 = 1525

(H1(H2H3))H4 1000+ 250+ 25 = 1275

(H1H2)(H3H4) 1000+ 100+ 100 = 1200

H1(H2(H3H4)) 100+ 200+ 50 = 350

H1((H2H3)H4) 1000+ 50+ 50 = 1100
shows which is cheapest.
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(c) This is an improvement by S. Winograd of a formula due to V. Strassen: let
w = aA− (a− c− d)(A− C+D) and then(

a b

c d

)(
A B

C D

)
=

(
α β

γ δ

)
where α = aA + bB, and β = w + (c + d)(C − A) + (a + b − c − d)D, and
γ = w+(a−c)(D−C)−d(A−B−C+D), and δ = w+(a−c)(D−C)+(c+d)(C−A).
This takes seven multiplications and fifteen additions (save the intermediate
results).

Three.IV.3.49 This is how the answer was given in the cited source. No, it does not.
Let A and B represent, with respect to the standard bases, these transformations
of R3. xy

z

 a7−→

xy
0


xy
z

 a7−→

0x
y


Observe that xy

z

 abab7−→

00
0

 but

xy
z

 baba7−→

00
x

 .
Three.IV.3.50 This is how the answer was given in the cited source.

(a) Obvious.
(b) If ATA~x = ~0 then ~y · ~y = 0 where ~y = A~x. Hence ~y = ~0 by (a).

The converse is obvious.
(c) By (b), A~x1,. . . ,A~xn are linearly independent iff ATA~x1,. . . , ATA~vn are
linearly independent.

(d) We have

col rank(A) = col rank(ATA) = dim {AT(A~x) | all ~x }

6 dim {AT~y | all ~y } = col rank(AT).

Thus also col rank(AT) 6 col rank(ATT
) and so col rank(A) = col rank(AT) =

row rank(A).

Three.IV.3.51 This is how the answer was given in the cited source. Let 〈~z1, . . . ,~zk〉
be a basis for R(A) ∩ N (A) (k might be 0). Let ~x1, . . . ,~xk ∈ V be such that
A~xi = ~zi. Note {A~x1, . . . , A~xk } is linearly independent, and extend to a basis for
R(A): A~x1, . . . , A~xk, A~xk+1, . . . , A~xr1 where r1 = dim(R(A)).

Now take ~x ∈ V. Write

A~x = a1(A~x1) + · · ·+ ar1(A~xr1)
and so

A2~x = a1(A
2~x1) + · · ·+ ar1(A2~xr1).



Answers to Exercises 213

But A~x1, . . . , A~xk ∈ N (A), so A2~x1 = ~0, . . . , A2~xk = ~0 and we now know

A2~xk+1, . . . , A
2~xr1

spans R(A2).
To see {A2~xk+1, . . . , A

2~xr1 } is linearly independent, write

bk+1A
2~xk+1 + · · ·+ br1A2~xr1 = ~0

A[bk+1A~xk+1 + · · ·+ br1A~xr1 ] = ~0

and, since bk+1A~xk+1 + · · ·+ br1A~xr1 ∈ N (A) we get a contradiction unless it is
~0 (clearly it is in R(A), but A~x1, . . . , A~xk is a basis for R(A) ∩N (A)).

Hence dim(R(A2)) = r1 − k = dim(R(A)) − dim(R(A) ∩N (A)).

Three.IV.4: Inverses

Three.IV.4.12 Here is one way to proceed. Follow

ρ1↔ρ2−→

1 0 1 0 1 0

0 3 −1 1 0 0

1 −1 0 0 0 1

 −ρ1+ρ3−→

1 0 1 0 1 0

0 3 −1 1 0 0

0 −1 −1 0 −1 1


with

(1/3)ρ2+ρ3−→

1 0 1 0 1 0

0 3 −1 1 0 0

0 0 −4/3 1/3 −1 1


(1/3)ρ2−→
−(3/4)ρ3

1 0 1 0 1 0

0 1 −1/3 1/3 0 0

0 0 1 −1/4 3/4 −3/4


(1/3)ρ3+ρ2−→
−ρ3+ρ1

1 0 0 1/4 1/4 3/4

0 1 0 1/4 1/4 −1/4

0 0 1 −1/4 3/4 −3/4


and read the answer off of the right side.

Three.IV.4.13 (a) Yes, it has an inverse: ad − bc = 2 · 1 − 1 · (−1) 6= 0.
(b) Yes. (c) No.

Three.IV.4.14 (a)
1

2 · 1− 1 · (−1)
·

(
1 −1

1 2

)
=
1

3
·

(
1 −1

1 2

)
=

(
1/3 −1/3

1/3 2/3

)

(b)
1

0 · (−3) − 4 · 1
·

(
−3 −4

−1 0

)
=

(
3/4 1

1/4 0

)
(c) The prior question shows that no inverse exists.
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Three.IV.4.15 (a) The reduction is routine.(
3 1 1 0

0 2 0 1

)
(1/3)ρ1−→
(1/2)ρ2

(
1 1/3 1/3 0

0 1 0 1/2

)
−(1/3)ρ2+ρ1−→

(
1 0 1/3 −1/6

0 1 0 1/2

)
This answer agrees with the answer from the check.(

3 1

0 2

)−1

=
1

3 · 2− 0 · 1
·

(
2 −1

0 3

)
=
1

6
·

(
2 −1

0 3

)
(b) This reduction is easy.(

2 1/2 1 0

3 1 0 1

)
−(3/2)ρ1+ρ2−→

(
2 1/2 1 0

0 1/4 −3/2 1

)
(1/2)ρ1−→
4ρ2

(
1 1/4 1/2 0

0 1 −6 4

)
−(1/4)ρ2+ρ1−→

(
1 0 2 −1

0 1 −6 4

)
The check agrees.

1

2 · 1− 3 · (1/2)
·

(
1 −1/2

−3 2

)
= 2 ·

(
1 −1/2

−3 2

)
(c) Trying the Gauss-Jordan reduction(

2 −4 1 0

−1 2 0 1

)
(1/2)ρ1+ρ2−→

(
2 −4 1 0

0 0 1/2 1

)
shows that the left side won’t reduce to the identity, so no inverse exists. The
check ad− bc = 2 · 2− (−4) · (−1) = 0 agrees.

(d) This produces an inverse. 1 1 3 1 0 0

0 2 4 0 1 0

−1 1 0 0 0 1

 ρ1+ρ3−→

1 1 3 1 0 0

0 2 4 0 1 0

0 2 3 1 0 1


−ρ2+ρ3−→

1 1 3 1 0 0

0 2 4 0 1 0

0 0 −1 1 −1 1

 (1/2)ρ2−→
−ρ3

1 1 3 1 0 0

0 1 2 0 1/2 0

0 0 1 −1 1 −1


−2ρ3+ρ2−→
−3ρ3+ρ1

1 1 0 4 −3 3

0 1 0 2 −3/2 2

0 0 1 −1 1 −1


−ρ2+ρ1−→

1 0 0 2 −3/2 1

0 1 0 2 −3/2 2

0 0 1 −1 1 −1
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(e) This is one way to do the reduction.0 1 5 1 0 0

0 −2 4 0 1 0

2 3 −2 0 0 1

 ρ3↔ρ1−→

2 3 −2 0 0 1

0 −2 4 0 1 0

0 1 5 1 0 0


(1/2)ρ2+ρ3−→

2 3 −2 0 0 1

0 −2 4 0 1 0

0 0 7 1 1/2 0


(1/2)ρ1−→
−(1/2)ρ2
(1/7)ρ3

1 3/2 −1 0 0 1/2

0 1 −2 0 −1/2 0

0 0 1 1/7 1/14 0


2ρ3+ρ2−→
ρ3+ρ1

1 3/2 0 1/7 1/14 1/2

0 1 0 2/7 −5/14 0

0 0 1 1/7 1/14 0


−(3/2)ρ2+ρ1−→

1 0 0 −2/7 17/28 1/2

0 1 0 2/7 −5/14 0

0 0 1 1/7 1/14 0


(f) There is no inverse.2 2 3 1 0 0

1 −2 −3 0 1 0

4 −2 −3 0 0 1

 −(1/2)ρ1+ρ2−→
−2ρ1+ρ3

2 2 3 1 0 0

0 −3 −9/2 −1/2 1 0

0 −6 −9 −2 0 1


−2ρ2+ρ3−→

2 2 3 1 0 0

0 −3 −9/2 −1/2 1 0

0 0 0 −1 −2 1


As a check, note that the third column of the starting matrix is 3/2 times the
second, and so it is indeed singular and therefore has no inverse.

Three.IV.4.16 We can use Corollary 4.11.

1

1 · 5− 2 · 3
·

(
5 −3

−2 1

)
=

(
−5 3

2 −1

)
Three.IV.4.17 (a) The proof that the inverse is r−1H−1 = (1/r) ·H−1 (provided, of

course, that the matrix is invertible) is easy.
(b) No. For one thing, the fact that H+G has an inverse doesn’t imply that H
has an inverse or that G has an inverse. Neither of these matrices is invertible
but their sum is. (

1 0

0 0

) (
0 0

0 1

)
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Another point is that just because H and G each has an inverse doesn’t mean
H+G has an inverse; here is an example.(

1 0

0 1

) (
−1 0

0 −1

)
Still a third point is that, even if the two matrices have inverses, and the sum
has an inverse, doesn’t imply that the equation holds:(

2 0

0 2

)−1

=

(
1/2 0

0 1/2

)−1 (
3 0

0 3

)−1

=

(
1/3 0

0 1/3

)−1

but (
5 0

0 5

)−1

=

(
1/5 0

0 1/5

)−1

and (1/2)+(1/3) does not equal 1/5.
Three.IV.4.18 Yes: Tk(T−1)k = (TT · · · T)·(T−1T−1 · · · T−1) = Tk−1(TT−1)(T−1)k−1 =
· · · = I.

Three.IV.4.19 Yes, the inverse of H−1 is H.
Three.IV.4.20 One way to check that the first is true is with the angle sum formulas
from trigonometry.(

cos(θ1 + θ2) − sin(θ1 + θ2)
sin(θ1 + θ2) cos(θ1 + θ2)

)

=

(
cos θ1 cos θ2 − sin θ1 sin θ2 − sin θ1 cos θ2 − cos θ1 sin θ2
sin θ1 cos θ2 + cos θ1 sin θ2 cos θ1 cos θ2 − sin θ1 sin θ2

)

=

(
cos θ1 − sin θ1
sin θ1 cos θ1

)(
cos θ2 − sin θ2
sin θ2 cos θ2

)
Checking the second equation in this way is similar.

Of course, the equations can be not just checked but also understood by recalling
that tθ is the map that rotates vectors about the origin through an angle of θ radians.

Three.IV.4.21 There are two cases. For the first case we assume that a is nonzero.
Then

−(c/a)ρ1+ρ2−→

(
a b 1 0

0 −(bc/a) + d −c/a 1

)
=

(
a b 1 0

0 (ad− bc)/a −c/a 1

)
shows that the matrix is invertible (in this a 6= 0 case) if and only if ad− bc 6= 0.
To find the inverse, we finish with the Jordan half of the reduction.

(1/a)ρ1−→
(a/ad−bc)ρ2

(
1 b/a 1/a 0

0 1 −c/(ad− bc) a/(ad− bc)

)
−(b/a)ρ2+ρ1−→

(
1 0 d/(ad− bc) −b/(ad− bc)

0 1 −c/(ad− bc) a/(ad− bc)

)
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The other case is the a = 0 case. We swap to get c into the 1, 1 position.

ρ1↔ρ2−→

(
c d 0 1

0 b 1 0

)
This matrix is nonsingular if and only if both b and c are nonzero (which, under
the case assumption that a = 0, holds if and only if ad − bc 6= 0). To find the
inverse we do the Jordan half.

(1/c)ρ1−→
(1/b)ρ2

(
1 d/c 0 1/c

0 1 1/b 0

)
−(d/c)ρ2+ρ1−→

(
1 0 −d/bc 1/c

0 1 1/b 0

)
(Note that this is what is required, since a = 0 gives that ad− bc = −bc).

Three.IV.4.22 With H a 2×3 matrix, in looking for a matrix G such that the com-
bination HG acts as the 2×2 identity we need G to be 3×2. Setting up the
equation (

1 0 1

0 1 0

)m n

p q

r s

 =

(
1 0

0 1

)

and solving the resulting linear system

m +r = 1

n +s= 0

p = 0

q = 1

gives infinitely many solutions.

{



m

n

p

q

r

s


=



1

0

0

1

0

0


+ r ·



−1

0

0

0

1

0


+ s ·



0

−1

0

0

0

1


| r, s ∈ R }

Thus H has infinitely many right inverses.

As for left inverses, the equation(
a b

c d

)(
1 0 1

0 1 0

)
=

1 0 0

0 1 0

0 0 1
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gives rise to a linear system with nine equations and four unknowns.

a = 1

b = 0

a = 0

c = 0

d = 1

c = 0

e = 0

f= 0

e = 1

This system is inconsistent (the first equation conflicts with the third, as do the
seventh and ninth) and so there is no left inverse.

Three.IV.4.23 With respect to the standard bases we have

RepE2,E3(ι) =

1 0

0 1

0 0


and setting up the equation to find the matrix inverse(

a b c

d e f

)1 0

0 1

0 0

 =

(
1 0

0 1

)
= RepE2,E2(id)

gives rise to a linear system.
a = 1

b = 0

d = 0

e = 1

There are infinitely many solutions in a, . . . , f to this system because two of these
variables are entirely unrestricted

{



a

b

c

d

e

f


=



1

0

0

0

1

0


+ c ·



0

0

1

0

0

0


+ f ·



0

0

0

0

0

1


| c, f ∈ R }

and so there are infinitely many solutions to the matrix equation.

{

(
1 0 c

0 1 f

)
| c, f ∈ R }
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With the bases still fixed at E2,E2, for instance taking c = 2 and f = 3 gives a
matrix representing this map.xy

z

 f2,37−→

(
x+ 2z

y+ 3z

)

The check that f2,3 ◦ ι is the identity map on R2 is easy.

Three.IV.4.24 By Lemma 4.2 it cannot have infinitely many left inverses, because a
matrix with both left and right inverses has only one of each (and that one of each
is one of both—the left and right inverse matrices are equal).

Three.IV.4.25 (a) True, It must be linear, as the proof from Theorem II.2.20 shows.
(b) False. It may be linear, but it need not be. Consider the projection map
π : R3 → R2 described at the start of this subsection. Define η : R2 → R3 in this
way. (

x

y

)
7→

xy
1


It is a right inverse of π because π ◦ η does this.(

x

y

)
7→

xy
1

 7→ (
x

y

)
It is not linear because it does not map the zero vector to the zero vector.

Three.IV.4.26 The associativity of matrix multiplication gives H−1(HG) = H−1Z = Z

and also H−1(HG) = (H−1H)G = IG = G.

Three.IV.4.27 Multiply both sides of the first equation by H.

Three.IV.4.28 Checking that when I−T is multiplied on both sides by that expression
(assuming that T4 is the zero matrix) then the result is the identity matrix is
easy. The obvious generalization is that if Tn is the zero matrix then (I− T)−1 =

I+ T + T2 + · · ·+ Tn−1; the check again is easy.

Three.IV.4.29 The powers of the matrix are formed by taking the powers of the
diagonal entries. That is, D2 is all zeros except for diagonal entries of d1,12, d2,22,
etc. This suggests defining D0 to be the identity matrix.

Three.IV.4.30 Assume that B is row equivalent to A and that A is invertible. Because
they are row-equivalent, there is a sequence of row steps to reduce one to the
other. We can do that reduction with matrices, for instance, A can change by row
operations to B as B = Rn · · ·R1A. This equation gives B as a product of invertible
matrices and by Lemma 4.4 then, B is also invertible.

Three.IV.4.31 (a) See the answer to Exercise 30.
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(b) We will show that both conditions are equivalent to the condition that the
two matrices be nonsingular.

As T and S are square and their product is defined, they are equal-sized, say
n×n. Consider the TS = I half. By the prior item the rank of I is less than or
equal to the minimum of the rank of T and the rank of S. But the rank of I is n,
so the rank of T and the rank of S must each be n. Hence each is nonsingular.

The same argument shows that ST = I implies that each is nonsingular.
Three.IV.4.32 Inverses are unique, so we need only show that it works. The check
appears above as Exercise 38.

Three.IV.4.33 (a) See the answer for Exercise 27.
(b) See the answer for Exercise 27.
(c) Apply the first part to I = AA−1 to get I = IT = (AA−1)

T
= (A−1)

T
AT.

(d) Apply the prior item with AT = A, as A is symmetric.
Three.IV.4.34 For the answer to the items making up the first half, see Exercise 32.
For the proof in the second half, assume that A is a zero divisor so there is a nonzero
matrix B with AB = Z (or else BA = Z; this case is similar), If A is invertible then
A−1(AB) = (A−1A)B = IB = B but also A−1(AB) = A−1Z = Z, contradicting
that B is nonzero.

Three.IV.4.35 Here are four solutions to H2 = I.(
±1 0

0 ±1

)
Three.IV.4.36 It is not reflexive since, for instance,

H =

(
1 0

0 2

)
is not a two-sided inverse of itself. The same example shows that it is not transitive.
That matrix has this two-sided inverse

G =

(
1 0

0 1/2

)
and while H is a two-sided inverse of G and G is a two-sided inverse of H, we know
that H is not a two-sided inverse of H. However, the relation is symmetric: if G is
a two-sided inverse of H then GH = I = HG and therefore H is also a two-sided
inverse of G.

Three.IV.4.37 This is how the answer was given in the cited source. Let A be
m×m, non-singular, with the stated property. Let B be its inverse. Then for
n 6 m,

1 =

m∑
r=1

δnr =

m∑
r=1

m∑
s=1

bnsasr =

m∑
s=1

m∑
r=1

bnsasr = k

m∑
s=1

bns

(A is singular if k = 0).
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Change of Basis

Three.V.1: Changing Representations of Vectors

Three.V.1.7 For the matrix to change bases fromD to E2 we need that RepE2(id(~δ1)) =
RepE2(~δ1) and that RepE2(id(~δ2)) = RepE2(~δ2). Of course, the representation of a
vector in R2 with respect to the standard basis is easy.

RepE2(~δ1) =

(
2

1

)
RepE2(~δ2) =

(
−2

4

)
Concatenating those two together to make the columns of the change of basis matrix
gives this.

RepD,E2(id) =

(
2 −2

1 4

)
For the change of basis matrix in the other direction we can calculate RepD(id(~e1)) =
RepD(~e1) and RepD(id(~e2)) = RepD(~e2) (this job is routine) or we can take the
inverse of the above matrix. Because of the formula for the inverse of a 2×2 matrix,
this is easy.

RepE2,D(id) =
1

10
·

(
4 2

−1 2

)
=

(
4/10 2/10

−1/10 2/10

)
Three.V.1.8 If the matrix is nonsingular then it can be a change of basis matrix. For
all of these matrices we can check that by eye.
(a) This is nonsingular since the second row is not a multiple of the first.
(b) This is nonsingular.
(c) This matrix is singular, since to be nonsingular a matrix must be square.
(d) This matrix is singular since twice the first row plus the second row equals
the third row.

(e) Nonsingular.

Three.V.1.9 Concatenate RepD(id(~β1)) = RepD(~β1) and RepD(id(~β2)) = RepD(~β2)
to make the change of basis matrix RepB,D(id).

(a)

(
0 1

1 0

)
(b)

(
2 −1/2

−1 1/2

)
(c)

(
1 1

2 4

)
(d)

(
1 −1

−1 2

)
Three.V.1.10 The vectors RepD(id(~β1)) = RepD(~β1), RepD(id(~β2)) = RepD(~β2),
and RepD(id(~β3)) = RepD(~β3) make the change of basis matrix RepB,D(id).

(a)

0 0 1

1 0 0

0 1 0

 (b)

1 −1 0

0 1 −1

0 0 1

 (c)

1 −1 1/2

1 1 −1/2

0 2 0
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E.g., for the first column of the first matrix, 1 = 0 · x2 + 1 · 1+ 0 · x.

Three.V.1.11 One way to go is to find RepB(~δ1) and RepB(~δ2), and then concatenate
them into the columns of the desired change of basis matrix. Another way is to
find the inverse of the matrices that answer Exercise 9.

(a)

(
0 1

1 0

)
(b)

(
1 1

2 4

)
(c)

(
2 −1/2

−1 1/2

)
(d)

(
2 1

1 1

)
Three.V.1.12 A matrix changes bases if and only if it is nonsingular.

(a) This matrix is nonsingular and so changes bases. Finding to what basis E2 is
changed means finding D such that

RepE2,D(id) =

(
5 0

0 4

)
and by the definition of how a matrix represents a linear map, we have this.

RepD(id(~e1)) = RepD(~e1) =

(
5

0

)
RepD(id(~e2)) = RepD(~e2) =

(
0

4

)
Where

D = 〈

(
x1
y1

)
,

(
x2
y2

)
〉

we can either solve the system(
1

0

)
= 5

(
x1
y1

)
+ 0

(
x2
y1

) (
0

1

)
= 0

(
x1
y1

)
+ 4

(
x2
y1

)
or else just spot the answer (thinking of the proof of Lemma 1.5).

D = 〈

(
1/5

0

)
,

(
0

1/4

)
〉

(b) Yes, this matrix is nonsingular and so changes bases. To calculate D, we
proceed as above with

D = 〈

(
x1
y1

)
,

(
x2
y2

)
〉

to solve (
1

0

)
= 2

(
x1
y1

)
+ 3

(
x2
y1

)
and

(
0

1

)
= 1

(
x1
y1

)
+ 1

(
x2
y1

)
and get this.

D = 〈

(
−1

3

)
,

(
1

−2

)
〉

(c) No, this matrix does not change bases because it is singular.
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(d) Yes, this matrix changes bases because it is nonsingular. The calculation of
the changed-to basis is as above.

D = 〈

(
1/2

−1/2

)
,

(
1/2

1/2

)
〉

Three.V.1.13 (a) Start by computing the effect of the identity function on each
element of the starting basis B. Obviously this is the effect.10

0

 id7−→

10
0


01
0

 id7−→

01
0


00
1

 id7−→

00
1


Now represent the three outputs with respect to the ending basis.

RepD(

10
0

) =

−2/3

5/3

−1/3

 RepD(

01
0

) =

 1/3

−1/3

2/3

 RepD(

00
1

) =

 1/3

−1/3

−1/3


Concatenate them into a basis.

RepB,D(id) =

−2/3 1/3 1/3

5/3 −1/3 −1/3

−1/3 2/3 −1/3


(b) One way to find this is to take the inverse of the prior matrix, since it converts
bases in the other direction. Alternatively, we can compute these three

RepE3(

12
3

) =

12
3

 RepE3(

11
1

) =

11
1

 RepE3(

 0

1

−1

) =

 0

1

−1


and put them in a matrix.

RepB,D(id) =

1 1 0

2 1 1

3 1 −1


(c) Representing id(x2), id(x2 + x), and id(x2 + x+ 1) with respect to the ending
basis gives this.

RepD(x
2) =

00
1

 RepD(x
2 + x) =

 0

−1

1

 RepD(x
2 + x+ 1) =

1/2−1

1


Put them together.

RepB,D(id) =

0 0 1/2

0 −1 −1

1 1 1
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Three.V.1.14 This question has many different solutions. One way to proceed is to
make up any basis B for any space, and then compute the appropriate D (necessarily
for the same space, of course). Another, easier, way to proceed is to fix the codomain
as R3 and the codomain basis as E3. This way (recall that the representation of
any vector with respect to the standard basis is just the vector itself), we have this.

B = 〈

32
0

 ,
 1

−1

0

 ,
41
4

〉 D = E3

Three.V.1.15 Checking that B = 〈2 sin(x)+ cos(x), 3 cos(x)〉 is a basis is routine. Call
the natural basis D. To compute the change of basis matrix RepB,D(id) we must
find RepD(2 sin(x)+cos(x)) and RepD(3 cos(x)), that is, we need x1, y1, x2, y2 such
that these equations hold.

x1 · sin(x) + y1 · cos(x) = 2 sin(x) + cos(x)

x2 · sin(x) + y2 · cos(x) = 3 cos(x)

Obviously this is the answer.

RepB,D(id) =

(
2 0

1 3

)
For the change of basis matrix in the other direction we could look for RepB(sin(x))
and RepB(cos(x)) by solving these.

w1 · (2 sin(x) + cos(x)) + z1 · (3 cos(x)) = sin(x)

w2 · (2 sin(x) + cos(x)) + z2 · (3 cos(x)) = cos(x)

An easier method is to find the inverse of the matrix found above.

RepD,B(id) =

(
2 0

1 3

)−1

=
1

6
·

(
3 0

−1 2

)
=

(
1/2 0

−1/6 1/3

)
Three.V.1.16 We start by taking the inverse of the matrix, that is, by deciding what
is the inverse to the map of interest.

RepD,E2(id)RepD,E2(id)
−1 =

1

− cos2(2θ) − sin2(2θ)
·

(
− cos(2θ) − sin(2θ)
− sin(2θ) cos(2θ)

)

=

(
cos(2θ) sin(2θ)
sin(2θ) − cos(2θ)

)
This is more tractable than the representation the other way because this matrix is
the concatenation of these two column vectors

RepE2(~δ1) =

(
cos(2θ)
sin(2θ)

)
RepE2(~δ2) =

(
sin(2θ)

− cos(2θ)

)
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and representations with respect to E2 are transparent.

~δ1 =

(
cos(2θ)
sin(2θ)

)
~δ2 =

(
sin(2θ)

− cos(2θ)

)
This pictures the action of the map that transforms D to E2 (it is, again, the inverse
of the map that is the answer to this question). The line lies at an angle θ to the
x axis.

f7−→

~δ1 =

(
cos(2θ)
sin(2θ)

)

~δ2 =

(
sin(2θ)

− cos(2θ)

) ~e1

~e2

This map reflects vectors over that line. Since reflections are self-inverse, the answer
to the question is: the original map reflects about the line through the origin with
angle of elevation θ. (Of course, it does this to any basis.)

Three.V.1.17 The appropriately-sized identity matrix.

Three.V.1.18 Each is true if and only if the matrix is nonsingular.

Three.V.1.19 What remains is to show that left multiplication by a reduction matrix
represents a change from another basis to B = 〈~β1, . . . , ~βn〉.

Application of a row-multiplication matrix Mi(k) translates a representation
with respect to the basis 〈~β1, . . . , k~βi, . . . , ~βn〉 to one with respect to B, as here.

~v = c1 ·~β1+· · ·+ci ·(k~βi)+· · ·+cn ·~βn 7→ c1 ·~β1+· · ·+(kci)·~βi+· · ·+cn ·~βn = ~v

Apply a row-swap matrix Pi,j to translates a representation with respect to the
basis 〈~β1, . . . , ~βj, . . . , ~βi, . . . , ~βn〉 to one with respect to 〈~β1, . . . , ~βi, . . . , ~βj, . . . , ~βn〉.
Finally, applying a row-combination matrix Ci,j(k) changes a representation with
respect to 〈~β1, . . . , ~βi + k~βj, . . . , ~βj, . . . , ~βn〉 to one with respect to B.

~v = c1 · ~β1 + · · ·+ ci · (~βi + k~βj) + · · ·+ cj~βj + · · ·+ cn · ~βn
7→ c1 · ~β1 + · · ·+ ci · ~βi + · · ·+ (kci + cj) · ~βj + · · ·+ cn · ~βn = ~v

(As in the part of the proof in the body of this subsection, the various conditions
on the row operations, e.g., that the scalar k is nonzero, assure that these are all
bases.)

Three.V.1.20 Taking H as a change of basis matrix H = RepB,En(id), its columns areh1,i...
hn,i

 = RepEn(id(~βi)) = RepEn(~βi)
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and, because representations with respect to the standard basis are transparent, we
have this. h1,i...

hn,i

 = ~βi

That is, the basis is the one composed of the columns of H.
Three.V.1.21 (a) We can change the starting vector representation to the ending

one through a sequence of row operations. The proof tells us what how the bases
change. We start by swapping the first and second rows of the representation
with respect to B to get a representation with respect to a new basis B1.

RepB1(1− x+ 3x
2 − x3) =


1

0

1

2


B1

B1 = 〈1− x, 1+ x, x2 + x3, x2 − x3〉

We next add −2 times the third row of the vector representation to the fourth
row.

RepB3(1− x+ 3x
2 − x3) =


1

0

1

0


B2

B2 = 〈1− x, 1+ x, 3x2 − x3, x2 − x3〉

(The third element of B2 is the third element of B1 minus −2 times the fourth
element of B1.) Now we can finish by doubling the third row.

RepD(1− x+ 3x
2 − x3) =


1

0

2

0


D

D = 〈1− x, 1+ x, (3x2 − x3)/2, x2 − x3〉

(b) Here are three different approaches to stating such a result. The first is the
assertion: where V is a vector space with basis B and ~v ∈ V is nonzero, for any
nonzero column vector ~z (whose number of components equals the dimension of
V) there is a change of basis matrix M such that M · RepB(~v) = ~z. The second
possible statement: for any (n-dimensional) vector space V and any nonzero
vector ~v ∈ V, where ~z1,~z2 ∈ Rn are nonzero, there are bases B,D ⊂ V such
that RepB(~v) = ~z1 and RepD(~v) = ~z2. The third is: for any nonzero ~v member
of any vector space (of dimension n) and any nonzero column vector (with n
components) there is a basis such that ~v is represented with respect to that basis
by that column vector.

The first and second statements follow easily from the third. The first follows
because the third statement gives a basis D such that RepD(~v) = ~z and then
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RepB,D(id) is the desired M. The second follows from the third because it is
just a doubled application of it.

A way to prove the third is as in the answer to the first part of this question.
Here is a sketch. Represent ~v with respect to any basis B with a column vector
~z1. This column vector must have a nonzero component because ~v is a nonzero
vector. Use that component in a sequence of row operations to convert ~z1 to ~z.
(We could fill out this sketch as an induction argument on the dimension of V.)

Three.V.1.22 This is the topic of the next subsection.

Three.V.1.23 A change of basis matrix is nonsingular and thus has rank equal to the
number of its columns. Therefore its set of columns is a linearly independent subset
of size n in Rn and it is thus a basis. The answer to the second half is also ‘yes’; all
implications in the prior sentence reverse (that is, all of the ‘if . . . then . . . ’ parts of
the prior sentence convert to ‘if and only if’ parts).

Three.V.1.24 In response to the first half of the question, there are infinitely many
such matrices. One of them represents with respect to E2 the transformation of R2

with this action. (
1

0

)
7→

(
4

0

) (
0

1

)
7→

(
0

−1/3

)
The problem of specifying two distinct input/output pairs is a bit trickier. The
fact that matrices have a linear action precludes some possibilities.
(a) Yes, there is such a matrix. These conditions(

a b

c d

)(
1

3

)
=

(
1

1

) (
a b

c d

)(
2

−1

)
=

(
−1

−1

)
can be solved

a+ 3b = 1

c+ 3d= 1

2a− b =−1

2c− d=−1

to give this matrix. (
−2/7 3/7

−2/7 3/7

)
(b) No, because

2 ·

(
1

3

)
=

(
2

6

)
but 2 ·

(
1

1

)
6=

(
−1

−1

)
no linear action can produce this effect.

(c) A sufficient condition is that {~v1,~v2 } be linearly independent, but that’s not
a necessary condition. A necessary and sufficient condition is that any linear
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dependences among the starting vectors appear also among the ending vectors.
That is,

c1~v1 + c2~v2 = ~0 implies c1~w1 + c2~w2 = ~0.

The proof of this condition is routine.

Three.V.2: Changing Map Representations

Three.V.2.10 (a) Yes, each has rank two.
(b) Yes, they have the same rank.
(c) No, they have different ranks.

Three.V.2.11 Group the matrices into classes characterized by the condition that all
matrices in the same class are the same size and the same rank.
(a) 3×3, rank 2
(b) 2×2, rank 1
(c) 2×3, rank 2
(d) 3×3, rank 2
(e) 3×3, rank 1

Three.V.2.12 We need only compute the rank of each.

(a)

(
1 0 0

0 0 0

)
(b)

1 0 0 0

0 1 0 0

0 0 1 0


Three.V.2.13 Recall the diagram and the formula.

R2wrt B
t−−−−→
T

R2wrt D

id

y id

y
R2
wrt B̂

t−−−−→
T̂

R2
wrt D̂

T̂ = RepD,D̂(id) · T · RepB̂,B(id)

(a) These two(
1

1

)
= 1 ·

(
−1

0

)
+ 1 ·

(
2

1

) (
1

−1

)
= (−3) ·

(
−1

0

)
+ (−1) ·

(
2

1

)
show that

RepD,D̂(id) =

(
1 −3

1 −1

)
and similarly these two(

0

1

)
= 0 ·

(
1

0

)
+ 1 ·

(
0

1

) (
1

1

)
= 1 ·

(
1

0

)
+ 1 ·

(
0

1

)
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give the other nonsingular matrix.

RepB̂,B(id) =

(
0 1

1 1

)
Then the answer is this.

T̂ =

(
1 −3

1 −1

)(
1 2

3 4

)(
0 1

1 1

)
=

(
−10 −18

−2 −4

)
Although not strictly necessary, a check is reassuring. Arbitrarily fixing

~v =

(
3

2

)
we have that

RepB(~v) =

(
3

2

)
B

(
1 2

3 4

)
B,D

(
3

2

)
B

=

(
7

17

)
D

and so t(~v) is this.

7 ·

(
1

1

)
+ 17 ·

(
1

−1

)
=

(
24

−10

)
Doing the calculation with respect to B̂, D̂ starts with

RepB̂(~v) =

(
−1

3

)
B̂

(
−10 −18

−2 −4

)
B̂,D̂

(
−1

3

)
B̂

=

(
−44

−10

)
D̂

and then checks that this is the same result.

−44 ·

(
−1

0

)
− 10 ·

(
2

1

)
=

(
24

−10

)
(b) These two(

1

1

)
=
1

3
·

(
1

2

)
+
1

3
·

(
2

1

) (
1

−1

)
= −1 ·

(
1

2

)
+ 1 ·

(
2

1

)
show that

RepD,D̂(id) =

(
1/3 −1

1/3 1

)
and these two(

1

2

)
= 1 ·

(
1

0

)
+ 2 ·

(
0

1

) (
1

0

)
= −1 ·

(
1

0

)
+ 0 ·

(
0

1

)
show this.

RepB̂,B(id) =

(
1 1

2 0

)
With those, the conversion goes in this way.

T̂ =

(
1/3 −1

1/3 1

)(
1 2

3 4

)(
1 1

2 0

)
=

(
−28/3 −8/3

38/3 10/3

)



230 Linear Algebra, by Hefferon

As in the prior item, a check provides some confidence that we did this calculation
without mistakes. We can for instance, fix the vector

~v =

(
−1

2

)
(this is arbitrary, taken from thin air). Now we have

RepB(~v) =

(
−1

2

) (
1 2

3 4

)
B,D

(
−1

2

)
B

=

(
3

5

)
D

and so t(~v) is this vector.

3 ·

(
1

1

)
+ 5 ·

(
1

−1

)
=

(
8

−2

)
With respect to B̂, D̂ we first calculate

RepB̂(~v) =

(
1

−2

) (
−28/3 −8/3

38/3 10/3

)
B̂,D̂

(
1

−2

)
B̂

=

(
−4

6

)
D̂

and, sure enough, that is the same result for t(~v).

−4 ·

(
1

2

)
+ 6 ·

(
2

1

)
=

(
8

−2

)
Three.V.2.14 Where H and Ĥ are m×n, the matrix P is m×m while Q is n×n.
Three.V.2.15 (a) For the equation Ĥ = PHQ this is the arrow diagram.

Vwrt B
h−−−−→
H

Wwrt D

id

y id

y
Vwrt B̂

h−−−−→
Ĥ

Wwrt D̂

(b) We want P = RepB̂,B(id) and Q = RepD,D̂(id). For P we do these calculations
(done here by eye).

RepB(id(1)) =

10
0

 RepB(id(x)) =

−1

1

0

 RepB(id(x
2)) =

−1

0

1


These calculations give Q.

RepD̂(id(

(
0 0

0 1

)
)) =


0

0

0

1

 RepD̂(id(

(
0 0

1 1

)
)) =


0

0

1

1



RepD̂(id(

(
0 1

1 1

)
)) =


0

−1

1

1

RepD̂(id(

(
1 1

1 1

)
)) =


−1

−1

1

1
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This is the answer.

P =

1 −1 −1

0 1 0

0 0 1

 Q =


0 0 0 −1

0 0 −1 −1

0 1 1 1

1 1 1 1


Three.V.2.16 For the equation T̂ = PTQ this is the arrow diagram.

Vwrt B
t−−−−→
T

Wwrt D

id

y id

y
Vwrt B̂

t−−−−→
T̂

Wwrt D̂

These are the calculations for P = RepB̂,B(id) (done by eye).

RepB(id(

(
1

0

)
)) =

(
1

0

)
RepB(id(

(
0

1

)
)) =

(
−1

1

)
So we get this.

P =

(
1 −1

0 1

)
These calculations give Q = RepD,D̂(id).

RepD̂(id(

(
0

1

)
)) =

(
0

1

)
RepD̂(id(

(
−1

0

)
)) =

(
−1

−1

)
Concatenate them to make the other matrix.

Q =

(
0 −1

1 −1

)

Three.V.2.17 Gauss’s Method gives this.2 1 1

3 −1 0

1 3 2

 −(3/2)ρ1+ρ2−→
−(1/2)ρ1+ρ3

ρ2+ρ3−→ (1/2)ρ1−→
−(2/5)ρ2

1 1/2 1/2

0 1 3/5

0 0 0


Column operations complete the job of reaching the canonical form for matrix
equivalence.

−(3/5)col2+col3−→ −(1/2)col1+col2−→
−(1/5)col1+col3

1 0 0

0 1 0

0 0 0
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Then these are the two matrices.

P =

1 0 0

0 −2/5 0

0 0 1


1/2 0 0

0 1 0

0 0 1


1 0 0

0 1 0

0 1 1


 1 0 0

0 1 0

−1/2 0 1


 1 0 0

−3/2 1 0

0 0 1


=

1/2 0 0

3/5 −2/5 0

−2 1 1


Q =

1 0 0

0 1 −3/5

0 0 1


1 −1/2 0

0 1 0

0 0 1


1 0 −1/5

0 1 0

0 0 1

 =

1 1/2 −1/5

0 1 −3/5

0 0 1


Three.V.2.18 Any n×n matrix is nonsingular if and only if it has rank n, that is,
by Theorem 2.6, if and only if it is matrix equivalent to the n×n matrix whose
diagonal is all ones.

Three.V.2.19 If PAQ = I then QPAQ = Q, so QPA = I, and so QP = A−1.

Three.V.2.20 By the definition following Example 2.2, a matrix M is diagonalizable
if it represents M = RepB,D(t) a transformation with the property that there is
some basis B̂ such that RepB̂,B̂(t) is a diagonal matrix—the starting and ending
bases must be equal. But Theorem 2.6 says only that there are B̂ and D̂ such that
we can change to a representation RepB̂,D̂(t) and get a diagonal matrix. We have
no reason to suspect that we could pick the two B̂ and D̂ so that they are equal.

Three.V.2.21 Yes. Row rank equals column rank, so the rank of the transpose equals
the rank of the matrix. Same-sized matrices with equal ranks are matrix equivalent.

Three.V.2.22 Only a zero matrix has rank zero.

Three.V.2.23 For reflexivity, to show that any matrix is matrix equivalent to itself,
take P and Q to be identity matrices. For symmetry, if H1 = PH2Q then H2 =

P−1H1Q
−1 (inverses exist because P andQ are nonsingular). Finally, for transitivity,

assume that H1 = P2H2Q2 and that H2 = P3H3Q3. Then substitution gives
H1 = P2(P3H3Q3)Q2 = (P2P3)H3(Q3Q2). A product of nonsingular matrices is
nonsingular (we’ve shown that the product of invertible matrices is invertible; in
fact, we’ve shown how to calculate the inverse) and so H1 is therefore matrix
equivalent to H3.

Three.V.2.24 By Theorem 2.6, a zero matrix is alone in its class because it is the
only m×n of rank zero. No other matrix is alone in its class; any nonzero scalar
product of a matrix has the same rank as that matrix.

Three.V.2.25 There are two matrix equivalence classes of 1×1 matrices—those of
rank zero and those of rank one. The 3×3 matrices fall into four matrix equivalence
classes.
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Three.V.2.26 For m×n matrices there are classes for each possible rank: where k
is the minimum of m and n there are classes for the matrices of rank 0, 1, . . . , k.
That’s k+ 1 classes. (Of course, totaling over all sizes of matrices we get infinitely
many classes.)

Three.V.2.27 They are closed under nonzero scalar multiplication since a nonzero
scalar multiple of a matrix has the same rank as does the matrix. They are not
closed under addition, for instance, H+ (−H) has rank zero.

Three.V.2.28 Here is the picture.

R2wrt E2
t−−−−→
T

R2wrt E2

id

y id

y
R2wrt B

t−−−−→
T̂

R2wrt B

There are two ways to move from the lower left to the lower right. The first is
direct, using T̂ = RepB,B(t). The second moves up, then over, then down, using
RepE2,B(id) · T · RepB,E2(id) (remember that they get written right-to-left, so the
“up” matrix is on the right, in order to have that when applied to a RepB(~v) the
matrix applied first is RepB,E2(id)). We write S for RepB,E2(id); of the two we
choose this one because it is easier to calculate. So we have T̂ = S−1TS.
(a) We have

RepB,E2(id) = S =

(
1 −1

2 −1

)
and

RepE2,B(id) = RepB,E2(id)
−1 = S−1

(
1 −1

2 −1

)−1

=

(
−1 1

−2 1

)
and thus the answer is this.

RepB,B(t) =

(
−1 1

−2 1

)(
1 1

3 −1

)(
1 −1

2 −1

)
=

(
−2 0

−5 2

)
As a quick check, we can take a vector at random

~v =

(
4

5

)
giving

RepE2(~v) =

(
4

5

) (
1 1

3 −1

)(
4

5

)
=

(
9

7

)
= t(~v)

while the calculation with respect to B,B

RepB(~v) =

(
1

−3

) (
−2 0

−5 2

)
B,B

(
1

−3

)
B

=

(
−2

−11

)
B
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yields the same result.

−2 ·

(
1

2

)
− 11 ·

(
−1

−1

)
=

(
9

7

)
(b) As in the first item of this question

S = RepB,E2(id) =
(
~β1 · · · ~βn

)
RepE2,B(id) = S

−1 = RepB,E2(id)
−1

so, writing S for the matrix whose columns are the basis vectors, we have that
RepB,B(t) = T̂ = S−1TS.

Three.V.2.29 (a) The adapted form of the arrow diagram is this.

Vwrt B1
h−−−−→
H

Wwrt D

id

yQ id

yP
Vwrt B2

h−−−−→
Ĥ

Wwrt D

Since there is no need to change bases in W (or we can say that the change of
basis matrix P is the identity), we have RepB2,D(h) = RepB1,D(h) · Q where
Q = RepB2,B1(id).

(b) Here, this is the arrow diagram.

Vwrt B
h−−−−→
H

Wwrt D1

id

yQ id

yP
Vwrt B

h−−−−→
Ĥ

Wwrt D2

We have that RepB,D2(h) = P · RepB,D1(h) where P = RepD1,D2(id).

Three.V.2.30 (a) Here is the arrow diagram, and a version of that diagram for inverse
functions.

Vwrt B
h−−−−→
H

Wwrt D

id

yQ id

yP
Vwrt B̂

h−−−−→
Ĥ

Wwrt D̂

Vwrt B
h−1

←−−−−
H−1

Wwrt D

id

yQ id

yP
Vwrt B̂

h−1

←−−−−
Ĥ−1

Wwrt D̂

Yes, the inverses of the matrices represent the inverses of the maps. That is,
we can move from the lower right to the lower left by moving up, then left,
then down. In other words, where Ĥ = PHQ (and P,Q invertible) and H, Ĥ are
invertible then Ĥ−1 = Q−1H−1P−1.

(b) Yes; this is the prior part repeated in different terms.
(c) No, we need another assumption: if H represents h with respect to the same
starting as ending bases B,B, for some B then H2 represents h ◦ h. As a specific
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example, these two matrices are both rank one and so they are matrix equivalent(
1 0

0 0

) (
0 0

1 0

)
but the squares are not matrix equivalent— the square of the first has rank one
while the square of the second has rank zero.

(d) No. These two are not matrix equivalent but have matrix equivalent squares.(
0 0

0 0

) (
0 0

1 0

)
Three.V.2.31 (a) The arrow diagram suggests the definition.

Vwrt B1
t−−−−→
T

Vwrt B1

id

y id

y
Vwrt B2

t−−−−→
T̂

Vwrt B2

Call matrices T, T̂ similar if there is a nonsingular matrix P such that T̂ = P−1TP.
(b) Take P−1 to be P and take P to be Q.
(c) This is as in Exercise 23. Reflexivity is obvious: T = I−1TI. Symmetry is also
easy: T̂ = P−1TP implies that T = PT̂P−1 (multiply the first equation from the
right by P−1 and from the left by P). For transitivity, assume that T1 = P2−1T2P2
and that T2 = P3−1T3P3. Then T1 = P2−1(P3−1T3P3)P2 = (P2

−1P3
−1)T3(P3P2)

and we are finished on noting that P3P2 is an invertible matrix with inverse
P2

−1P3
−1.

(d) Assume T̂ = P−1TP. For squares, T̂2 = (P−1TP)(P−1TP) = P−1T(PP−1)TP =

P−1T2P. Higher powers follow by induction.
(e) These two are matrix equivalent but their squares are not matrix equivalent.(

1 0

0 0

) (
0 0

1 0

)
By the prior item, matrix similarity and matrix equivalence are thus different.
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Projection

Three.VI.1: Orthogonal Projection Into a Line

Three.VI.1.6 (a)

(
2

1

)
•

(
3

−2

)
(
3

−2

)
•

(
3

−2

) ·( 3

−2

)
=
4

13
·

(
3

−2

)
=

(
12/13

−8/13

)

(b)

(
2

1

)
•

(
3

0

)
(
3

0

)
•

(
3

0

) ·(3
0

)
=
2

3
·

(
3

0

)
=

(
2

0

)

(c)

11
4

 •

 1

2

−1


 1

2

−1

 •

 1

2

−1


·

 1

2

−1

 =
−1

6
·

 1

2

−1

 =

−1/6

−1/3

1/6



(d)

11
4

 •

 33
12


 33
12

 •

 33
12


·

 33
12

 =
1

3
·

 33
12

 =

11
4



Three.VI.1.7 (a)

 2

−1

4

 •

−3

1

−3


−3

1

−3

 •

−3

1

−3


·

−3

1

−3

 =
−19

19
·

−3

1

−3

 =

 3

−1

3



(b) Writing the line as

{c ·

(
1

3

)
| c ∈ R }
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gives this projection.(
−1

−1

)
•

(
1

3

)
(
1

3

)
•

(
1

3

) ·

(
1

3

)
=

−4

10
·

(
1

3

)
=

(
−2/5

−6/5

)

Three.VI.1.8


1

2

1

3

 •


−1

1

−1

1



−1

1

−1

1

 •


−1

1

−1

1


·


−1

1

−1

1

 =
3

4
·


−1

1

−1

1

 =


−3/4

3/4

−3/4

3/4



Three.VI.1.9 (a)

(
1

2

)
•

(
3

1

)
(
3

1

)
•

(
3

1

) ·(3
1

)
=
1

2
·

(
3

1

)
=

(
3/2

1/2

)

(b)

(
0

4

)
•

(
3

1

)
(
3

1

)
•

(
3

1

) ·(3
1

)
=
2

5
·

(
3

1

)
=

(
6/5

2/5

)

In general the projection is this.(
x1
x2

)
•

(
3

1

)
(
3

1

)
•

(
3

1

) ·(3
1

)
=
3x1 + x2
10

·

(
3

1

)
=

(
(9x1 + 3x2)/10

(3x1 + x2)/10

)

The appropriate matrix is this. (
9/10 3/10

3/10 1/10

)
Three.VI.1.10 Suppose that ~v1 and ~v2 are nonzero and orthogonal. Consider the
linear relationship c1~v1 + c2~v2 = ~0. Take the dot product of both sides of the
equation with ~v1 to get that

~v1 • (c1~v1 + c2~v2) = c1 · (~v1 •~v1) + c2 · (~v1 •~v2)
= c1 · (~v1 •~v1) + c2 · 0 = c1 · (~v1 •~v1)
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is equal to ~v1 •~0 = ~0. With the assumption that ~v1 is nonzero, this gives that c1 is
zero. Showing that c2 is zero is similar.

Three.VI.1.11 (a) If the vector ~v is in the line then the orthogonal projection is
~v. To verify this by calculation, note that since ~v is in the line we have that
~v = c~v · ~s for some scalar c~v.

~v • ~s

~s • ~s
· ~s = c~v · ~s • ~s

~s • ~s
· ~s = c~v ·

~s • ~s

~s • ~s
· ~s = c~v · 1 · ~s = ~v

(Remark. If we assume that ~v is nonzero then we can simplify the above by
taking ~s to be ~v.)

(b) Write c~p~s for the projection proj[~s ](~v). Note that, by the assumption that ~v
is not in the line, both ~v and ~v− c~p~s are nonzero. Note also that if c~p is zero
then we are actually considering the one-element set {~v }, and with ~v nonzero,
this set is necessarily linearly independent. Therefore, we are left considering the
case that c~p is nonzero.

Setting up a linear relationship

a1(~v) + a2(~v− c~p~s) = ~0

leads to the equation (a1 + a2) · ~v = a2c~p · ~s. Because ~v isn’t in the line, the
scalars a1 + a2 and a2c~p must both be zero. We handled the c~p = 0 case above,
so the remaining case is that a2 = 0, and this gives that a1 = 0 also. Hence the
set is linearly independent.

Three.VI.1.12 If ~s is the zero vector then the expression

proj[~s ](~v) =
~v • ~s

~s • ~s
· ~s

contains a division by zero, and so is undefined. As for the right definition, for the
projection to lie in the span of the zero vector, it must be defined to be ~0.

Three.VI.1.13 Any vector in Rn is the projection of some other into a line, provided
that the dimension n is greater than one. (Clearly, any vector is the projection of
itself into a line containing itself; the question is to produce some vector other than
~v that projects to ~v.)

Suppose that ~v ∈ Rn with n > 1. If ~v 6= ~0 then we consider the line ` =

{c~v | c ∈ R } and if ~v = ~0 we take ` to be any (non-degenerate) line at all (actually,
we needn’t distinguish between these two cases—see the prior exercise). Let
v1, . . . , vn be the components of ~v; since n > 1, there are at least two. If some vi
is zero then the vector ~w = ~ei is perpendicular to ~v. If none of the components is
zero then the vector ~w whose components are v2,−v1, 0, . . . , 0 is perpendicular to
~v. In either case, observe that ~v+ ~w does not equal ~v, and that ~v is the projection
of ~v+ ~w into `.

(~v+ ~w) •~v

~v •~v
·~v =

(~v •~v
~v •~v

+
~w •~v

~v •~v

)
·~v = ~v •~v

~v •~v
·~v = ~v
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We can dispose of the remaining n = 0 and n = 1 cases. The dimension n = 0

case is the trivial vector space, here there is only one vector and so it cannot be
expressed as the projection of a different vector. In the dimension n = 1 case there
is only one (non-degenerate) line, and every vector is in it, hence every vector is
the projection only of itself.

Three.VI.1.14 The proof is simply a calculation.

‖~v
• ~s

~s • ~s
· ~s ‖ = |

~v • ~s

~s • ~s
| · ‖~s ‖ = |~v • ~s |

‖~s ‖2
· ‖~s ‖ = |~v • ~s |

‖~s ‖
Three.VI.1.15 Because the projection of ~v into the line spanned by ~s is

~v • ~s

~s • ~s
· ~s

the distance squared from the point to the line is this (we write a vector dotted
with itself ~w • ~w as ~w2).

‖~v− ~v • ~s

~s • ~s
· ~s ‖2 = ~v •~v−~v • (

~v • ~s

~s • ~s
· ~s) − (

~v • ~s

~s • ~s
· ~s ) •~v+ (

~v • ~s

~s • ~s
· ~s )2

= ~v •~v− 2 · (~v
• ~s

~s • ~s
) ·~v • ~s+ (

~v • ~s

~s • ~s
) · ~s • ~s

=
(~v •~v ) · (~s • ~s ) − 2 · (~v • ~s )2 + (~v • ~s )2

~s • ~s

=
(~v •~v )(~s • ~s ) − (~v • ~s )2

~s • ~s
Three.VI.1.16 Because square root is a strictly increasing function, we can minimize
d(c) = (cs1 − v1)

2 + (cs2 − v2)
2 instead of the square root of d. The derivative is

dd/dc = 2(cs1− v1) · s1+ 2(cs2− v2) · s2. Setting it equal to zero 2(cs1− v1) · s1+
2(cs2 − v2) · s2 = c · (2s21 + 2s22) − (v1s1 + v2s2) = 0 gives the only critical point.

c =
v1s1 + v2s2
s12 + s22

=
~v • ~s

~s • ~s
Now the second derivative with respect to c

d2 d

dc2
= 2s1

2 + 2s2
2

is strictly positive (as long as neither s1 nor s2 is zero, in which case the question
is trivial) and so the critical point is a minimum.

The generalization to Rn is straightforward. Consider dn(c) = (cs1 − v1)
2 +

· · ·+ (csn − vn)
2, take the derivative, etc.

Three.VI.1.17 Suppose ~w ∈ `. Because this is orthogonal projection, the two vectors
~v − ~p and ~p − ~w are at a right angle. The Triangle Inequality applies and the
hypotenuse ~v− ~w is therefore at least as long as ~v− ~p.

Three.VI.1.18 The Cauchy-Schwarz inequality |~v•~s | 6 ‖~v ‖·‖~s ‖ gives that this fraction

‖~v
• ~s

~s • ~s
· ~s ‖ = |

~v • ~s

~s • ~s
| · ‖~s ‖ = |~v • ~s |

‖~s ‖2
· ‖~s ‖ = |~v • ~s |

‖~s ‖
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when divided by ‖~v ‖ is less than or equal to one. That is, ‖~v ‖ is larger than or
equal to the fraction.

Three.VI.1.19 Write c~s for ~q, and calculate: (~v • c~s/c~s • c~s ) · c~s = (~v • ~s/~s • ~s ) · ~s.
Three.VI.1.20 (a) Fixing

~s =

(
1

1

)
as the vector whose span is the line, the formula gives this action,

(
x

y

)
7→

(
x

y

)
•

(
1

1

)
(
1

1

)
•

(
1

1

) ·(1
1

)
=
x+ y

2
·

(
1

1

)
=

(
(x+ y)/2

(x+ y)/2

)

which is the effect of this matrix.(
1/2 1/2

1/2 1/2

)
(b) Rotating the entire plane π/4 radians clockwise brings the y = x line to lie on
the x-axis. Now projecting and then rotating back has the desired effect.

Three.VI.1.21 The sequence need not settle down. With

~a =

(
1

0

)
~b =

(
1

1

)
the projections are these.

~v1 =

(
1/2

1/2

)
, ~v2 =

(
1/2

0

)
, ~v3 =

(
1/4

1/4

)
, . . .

This sequence doesn’t repeat.

Three.VI.2: Gram-Schmidt Orthogonalization

Three.VI.2.10 (a)

(
1/
√
5

2/
√
5

)
= 1√

5
·

(
1

2

)

(b) 1√
10
·

−1

3

0
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(c) 1√
2
·

(
1

−1

)
Three.VI.2.11 Call the given basis B = 〈~β1, ~β2〉. First, ~κ1 = ~β1. For the other,
~κ2 = ~β2 − proj[~κ1](~β2).

~κ2 =

(
−1

2

)
−

(
−1

2

)
•

(
1

1

)
(
1

1

)
•

(
1

1

) ·

(
1

1

)
=

(
−3/2

3/2

)

To check that they are orthogonal, just note that their dot product is zero.
Three.VI.2.12 Call the given basis B = 〈~β1, ~β2, ~β3〉. First, ~κ1 = ~β1.

Next, ~κ2 = ~β2 − proj[~κ1](~β2).

~κ2 =

 2

1

−3

−

 2

1

−3

 •

12
3


12
3

 •

12
3


·

12
3

 =

 33/14

24/14

−27/14



For the third, this is the formula
~κ3 = ~β3 − proj[~κ1](~β3) − proj[~κ2](~β3)

and here is the calculation.

33
3

−

33
3

 •

12
3


12
3

 •

12
3


·

12
3

−

33
3

 •

 33/14

24/14

−27/14


 33/14

24/14

−27/14

 •

 33/14

24/14

−27/14


·

 33/14

24/14

−27/14

 =

 9/19

−9/19

3/19



Three.VI.2.13 (a)

~κ1 =

(
1

1

)

~κ2 =

(
2

1

)
− proj[~κ1](

(
2

1

)
) =

(
2

1

)
−

(
2

1

)
•

(
1

1

)
(
1

1

)
•

(
1

1

) ·(1
1

)

=

(
2

1

)
−
3

2
·

(
1

1

)
=

(
1/2

−1/2

)
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This is the corresponding orthonormal basis.

〈

(
1/
√
2

1/
√
2

)
,

( √
2/2

−
√
2/2

)
〉

(b)

~κ1 =

(
0

1

)

~κ2 =

(
−1

3

)
− proj[~κ1](

(
−1

3

)
) =

(
−1

3

)
−

(
−1

3

)
•

(
0

1

)
(
0

1

)
•

(
0

1

) ·

(
0

1

)

=

(
−1

3

)
−
3

1
·

(
0

1

)
=

(
−1

0

)
Here is the orthonormal basis.

〈

(
0

1

)
,

(
−1

0

)
〉

(c)

~κ1 =

(
0

1

)

~κ2 =

(
−1

0

)
− proj[~κ1](

(
−1

0

)
) =

(
−1

0

)
−

(
−1

0

)
•

(
0

1

)
(
0

1

)
•

(
0

1

) ·

(
0

1

)

=

(
−1

0

)
−
0

1
·

(
0

1

)
=

(
−1

0

)
This is the associated orthonormal basis.

〈

(
0

1

)
,

(
−1

0

)
〉

Three.VI.2.14 (a) The first basis vector is unchanged.

~κ1 =

22
2
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The second one comes from this calculation.

~κ2 =

 1

0

−1

− proj[~κ1](

 1

0

−1

) =

 1

0

−1

−

 1

0

−1

 •

22
2


22
2

 •

22
2


·

22
2



=

 1

0

−1

−
0

12
·

22
2

 =

 1

0

−1


For the third the arithmetic is uglier but it is a straightforward calculation.

~κ3 =

03
1

− proj[~κ1](

03
1

) − proj[~κ2](

03
1

)

=

03
1

−

03
1

 •

22
2


22
2

 •

22
2


·

22
2

−

03
1

 •

 1

0

−1


 1

0

−1

 •

 1

0

−1


·

 1

0

−1



=

03
1

−
8

12
·

22
2

−
−1

2
·

 1

0

−1

 =

−5/6

5/3

−5/6


This is the orthonormal basis.

〈

1/
√
3

1/
√
3

1/
√
3

 ,
 1/

√
2

0

−1/
√
2

 ,
−1/

√
6

2/
√
6

−1/
√
6

〉
(b) The first basis vector is what was given.

~κ1 =

 1

−1

0
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The second is here.

~κ2 =

01
0

− proj[~κ1](

01
0

) =

01
0

−

01
0

 •

 1

−1

0


 1

−1

0

 •

 1

−1

0


·

 1

−1

0



=

01
0

−
−1

2
·

 1

−1

0

 =

1/21/2
0


Here is the third.

~κ3 =

23
1

− proj[~κ1](

23
1

) − proj[~κ2](

23
1

)

=

23
1

−

23
1

 •

 1

−1

0


 1

−1

0

 •

 1

−1

0


·

 1

−1

0

−

23
1

 •

1/21/2
0


1/21/2
0

 •

1/21/2
0


·

1/21/2
0



=

23
1

−
−1

2
·

 1

−1

0

−
5/2

1/2
·

1/21/2
0

 =

00
1


Here is the associated orthonormal basis.

〈

 1/
√
2

−1/
√
2

0

 ,
1/
√
2

1/
√
2

0


00
1

〉
Three.VI.2.15 We can parametrize the given space can in this way.

{

xy
z

 | x = y− z } = {

11
0

 · y+

−1

0

1

 · z | y, z ∈ R }

So we take the basis

〈

11
0

 ,
−1

0

1

〉
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apply the Gram-Schmidt process to get this first basis vector

~κ1 =

11
0


and this second one.

~κ2 =

−1

0

1

− proj[~κ1](

−1

0

1

) =

−1

0

1

−

−1

0

1

 •

11
0


11
0

 •

11
0


·

11
0



=

−1

0

1

−
−1

2
·

11
0

 =

−1/2

1/2

1


and then normalize.

〈

1/
√
2

1/
√
2

0

 ,
−1/

√
6

1/
√
6

2/
√
6

〉
Three.VI.2.16 Reducing the linear system

x− y− z+w= 0

x + z = 0

−ρ1+ρ2−→ x− y− z+w= 0

y+ 2z−w= 0

and parametrizing gives this description of the subspace.

{


−1

−2

1

0

 · z+

0

1

0

1

 ·w | z,w ∈ R }

So we take the basis,

〈


−1

−2

1

0

 ,

0

1

0

1

〉
go through the Gram-Schmidt process with the first

~κ1 =


−1

−2

1

0
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and second basis vectors

~κ2 =


0

1

0

1

− proj[~κ1](


0

1

0

1

) =


0

1

0

1

−


0

1

0

1

 •


−1

−2

1

0



−1

−2

1

0

 •


−1

−2

1

0


·


−1

−2

1

0



=


0

1

0

1

−
−2

6
·


−1

−2

1

0

 =


−1/3

1/3

1/3

1


and finish by normalizing.

〈


−1/
√
6

−2/
√
6

1/
√
6

0

 ,

−
√
3/6√
3/6√
3/6√
3/2

〉
Three.VI.2.17 A linearly independent subset of Rn is a basis for its own span. Apply
Theorem 2.7.

Remark. Here’s why the phrase ‘linearly independent’ is in the question.
Dropping the phrase would require us to worry about two things. The first thing to
worry about is that when we do the Gram-Schmidt process on a linearly dependent
set then we get some zero vectors. For instance, with

S = {

(
1

2

)
,

(
3

6

)
}

we would get this.

~κ1 =

(
1

2

)
~κ2 =

(
3

6

)
− proj[~κ1](

(
3

6

)
) =

(
0

0

)
This first thing is not so bad because the zero vector is by definition orthogonal
to every other vector, so we could accept this situation as yielding an orthogonal
set (although it of course can’t be normalized), or we just could modify the Gram-
Schmidt procedure to throw out any zero vectors. The second thing to worry about
if we drop the phrase ‘linearly independent’ from the question is that the set might
be infinite. Of course, any subspace of the finite-dimensional Rn must also be
finite-dimensional so only finitely many of its members are linearly independent,
but nonetheless, a “process” that examines the vectors in an infinite set one at a
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time would at least require some more elaboration in this question. A linearly
independent subset of Rn is automatically finite— in fact, of size n or less— so the
‘linearly independent’ phrase obviates these concerns.

Three.VI.2.18 If that set is not linearly independent, then we get a zero vector.
Otherwise (if our set is linearly independent but does not span the space), we
are doing Gram-Schmidt on a set that is a basis for a subspace and so we get an
orthogonal basis for a subspace.

Three.VI.2.19 The process leaves the basis unchanged.

Three.VI.2.20 (a) The argument is as in the i = 3 case of the proof of Theorem 2.7.
The dot product

~κi •
(
~v− proj[~κ1](~v ) − · · ·− proj[~vk](~v )

)
can be written as the sum of terms of the form −~κi • proj[~κj](~v ) with j 6= i, and
the term ~κi • (~v − proj[~κi](~v )). The first kind of term equals zero because the
~κ’s are mutually orthogonal. The other term is zero because this projection is
orthogonal (that is, the projection definition makes it zero: ~κi • (~v−proj[~κi](~v )) =
~κi •~v−~κi • ((~v • ~κi)/(~κi • ~κi)) ·~κi equals, after all of the cancellation is done, zero).

(b) The vector ~v is in black and the vector proj[~κ1](~v )+proj[~v2](~v ) = 1 ·~e1+2 ·~e2
is in gray.

The vector ~v− (proj[~κ1](~v ) + proj[~v2](~v )) lies on the dotted line connecting the
black vector to the gray one, that is, it is orthogonal to the xy-plane.

(c) We get this diagram by following the hint.

The dashed triangle has a right angle where the gray vector 1 · ~e1 + 2 · ~e2 meets
the vertical dashed line ~v− (1 ·~e1 + 2 ·~e2); this is what first item of this question
proved. The Pythagorean theorem then gives that the hypotenuse— the segment
from ~v to any other vector— is longer than the vertical dashed line.

More formally, writing proj[~κ1](~v ) + · · ·+ proj[~vk](~v ) as c1 ·~κ1 + · · ·+ ck ·~κk,



248 Linear Algebra, by Hefferon

consider any other vector in the span d1 · ~κ1 + · · ·+ dk · ~κk. Note that

~v− (d1 · ~κ1 + · · ·+ dk · ~κk)

=
(
~v− (c1 · ~κ1 + · · ·+ ck · ~κk)

)
+
(
(c1 · ~κ1 + · · ·+ ck · ~κk) − (d1 · ~κ1 + · · ·+ dk · ~κk)

)
and that

(
~v−(c1·~κ1+· · ·+ck·~κk)

)
•
(
(c1·~κ1+· · ·+ck·~κk)−(d1·~κ1+· · ·+dk·~κk)

)
= 0

(because the first item shows the ~v− (c1 ·~κ1 + · · ·+ ck ·~κk) is orthogonal to each
~κ and so it is orthogonal to this linear combination of the ~κ’s). Now apply the
Pythagorean Theorem (i.e., the Triangle Inequality).

Three.VI.2.21 One way to proceed is to find a third vector so that the three together
make a basis for R3, e.g.,

~β3 =

10
0


(the second vector is not dependent on the third because it has a nonzero second
component, and the first is not dependent on the second and third because of its
nonzero third component), and then apply the Gram-Schmidt process. The first
element of the new basis is this.

~κ1 =

 1

5

−1


And this is the second element.

~κ2 =

22
0

− proj[~κ1](

22
0

) =

22
0

−

22
0

 •

 1

5

−1


 1

5

−1

 •

 1

5

−1


·

 1

5

−1



=

22
0

−
12

27
·

 1

5

−1

 =

14/9−2/9

4/9
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Here is the final element.

~κ3 =

10
0

− proj[~κ1](

10
0

) − proj[~κ2](

10
0

)

=

10
0

−

10
0

 •

 1

5

−1


 1

5

−1

 •

 1

5

−1


·

 1

5

−1

−

10
0

 •

14/9−2/9

4/9


14/9−2/9

4/9

 •

14/9−2/9

4/9


·

14/9−2/9

4/9



=

10
0

−
1

27
·

 1

5

−1

−
7

12
·

14/9−2/9

4/9

 =

 1/18

−1/18

−4/18


The result ~κ3 is orthogonal to both ~κ1 and ~κ2. It is therefore orthogonal to every
vector in the span of the set {~κ1,~κ2 }, including the two vectors given in the question.

Three.VI.2.22 (a) We can do the representation by eye.(
2

3

)
= 3 ·

(
1

1

)
+ (−1) ·

(
1

0

)
RepB(~v ) =

(
3

−1

)
B

The two projections are also easy.

proj[~β1](

(
2

3

)
) =

(
2

3

)
•

(
1

1

)
(
1

1

)
•

(
1

1

) ·(1
1

)
=
5

2
·

(
1

1

)

proj[~β2](

(
2

3

)
) =

(
2

3

)
•

(
1

0

)
(
1

0

)
•

(
1

0

) ·(1
0

)
=
2

1
·

(
1

0

)

(b) As above, we can do the representation by eye(
2

3

)
= (5/2) ·

(
1

1

)
+ (−1/2) ·

(
1

−1

)
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and the two projections are easy.

proj[~β1](

(
2

3

)
) =

(
2

3

)
•

(
1

1

)
(
1

1

)
•

(
1

1

) ·(1
1

)
=
5

2
·

(
1

1

)

proj[~β2](

(
2

3

)
) =

(
2

3

)
•

(
1

−1

)
(
1

−1

)
•

(
1

−1

) ·( 1

−1

)
=

−1

2
·

(
1

−1

)

Note the recurrence of the 5/2 and the −1/2.
(c) Represent ~v with respect to the basis

RepK(~v ) =

r1...
rk


so that ~v = r1~κ1 + · · · + rk~κk. To determine ri, take the dot product of both
sides with ~κi.

~v • ~κi = (r1~κ1 + · · ·+ rk~κk) • ~κi = r1 · 0+ · · ·+ ri · (~κi • ~κi) + · · ·+ rk · 0
Solving for ri yields the desired coefficient.

(d) This is a restatement of the prior item.
Three.VI.2.23 First, ‖~v ‖2 = 42 + 32 + 22 + 12 = 50.

(a) c1 = 4 (b) c1 = 4, c2 = 3 (c) c1 = 4, c2 = 3, c3 = 2, c4 = 1
For the proof, we will do only the k = 2 case because the completely general case is
messier but no more enlightening. We follow the hint (recall that for any vector ~w

we have ‖~w ‖2 = ~w • ~w).

0 6

(
~v−

( ~v • ~κ1
~κ1 • ~κ1

· ~κ1 +
~v • ~κ2
~κ2 • ~κ2

· ~κ2
))

•

(
~v−

( ~v • ~κ1
~κ1 • ~κ1

· ~κ1 +
~v • ~κ2
~κ2 • ~κ2

· ~κ2
))

= ~v •~v− 2 ·~v •
(

~v • ~κ1
~κ1 • ~κ1

· ~κ1 +
~v • ~κ2
~κ2 • ~κ2

· ~κ2
)

+

(
~v • ~κ1
~κ1 • ~κ1

· ~κ1 +
~v • ~κ2
~κ2 • ~κ2

· ~κ2
)
•

(
~v • ~κ1
~κ1 • ~κ1

· ~κ1 +
~v • ~κ2
~κ2 • ~κ2

· ~κ2
)

= ~v •~v− 2 ·
(

~v • ~κ1
~κ1 • ~κ1

· (~v • ~κ1) +
~v • ~κ2
~κ2 • ~κ2

· (~v • ~κ2)
)

+

(
(
~v • ~κ1
~κ1 • ~κ1

)2 · (~κ1 • ~κ1) + (
~v • ~κ2
~κ2 • ~κ2

)2 · (~κ2 • ~κ2)
)

(The two mixed terms in the third part of the third line are zero because ~κ1 and ~κ2
are orthogonal.) The result now follows on gathering like terms and on recognizing
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that ~κ1 •~κ1 = 1 and ~κ2 •~κ2 = 1 because these vectors are members of an orthonormal
set.

Three.VI.2.24 It is true, except for the zero vector. Every vector in Rn except the
zero vector is in a basis, and that basis can be orthogonalized.

Three.VI.2.25 The 3×3 case gives the idea. The set

{

ad
g

 ,
be
h

 ,
cf
i

 }

is orthonormal if and only if these nine conditions all hold

(a d g) •

ad
g

 = 1 (a d g) •

be
h

 = 0 (a d g) •

cf
i

 = 0

(b e h) •

ad
g

 = 0 (b e h) •

be
h

 = 1 (b e h) •

cf
i

 = 0

(c f i) •

ad
g

 = 0 (c f i) •

be
h

 = 0 (c f i) •

cf
i

 = 1

(the three conditions in the lower left are redundant but nonetheless correct). Those,
in turn, hold if and only ifa d g

b e h

c f i


a b c

d e f

g h i

 =

1 0 0

0 1 0

0 0 1


as required.

This is an example, the inverse of this matrix is its transpose. 1/
√
2 1/

√
2 0

−1/
√
2 1/

√
2 0

0 0 1


Three.VI.2.26 If the set is empty then the summation on the left side is the linear
combination of the empty set of vectors, which by definition adds to the zero vector.
In the second sentence, there is not such i, so the ‘if . . . then . . . ’ implication is
vacuously true.

Three.VI.2.27 (a) Part of the induction argument proving Theorem 2.7 checks that
~κi is in the span of 〈~β1, . . . , ~βi〉. (The i = 3 case in the proof illustrates.) Thus, in
the change of basis matrix RepK,B(id), the i-th column RepB(~κi) has components
i+ 1 through k that are zero.
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(b) One way to see this is to recall the computational procedure that we use to
find the inverse. We write the matrix, write the identity matrix next to it, and
then we do Gauss-Jordan reduction. If the matrix starts out upper triangular
then the Gauss-Jordan reduction involves only the Jordan half and these steps,
when performed on the identity, will result in an upper triangular inverse matrix.

Three.VI.2.28 For the inductive step, we assume that for all j in [1..i], these three
conditions are true of each ~κj: (i) each ~κj is nonzero, (ii) each ~κj is a linear
combination of the vectors ~β1, . . . , ~βj, and (iii) each ~κj is orthogonal to all of the
~κm’s prior to it (that is, with m < j). With those inductive hypotheses, consider
~κi+1.

~κi+1 = ~βi+1 − proj[~κ1](βi+1) − proj[~κ2](βi+1) − · · ·− proj[~κi](βi+1)

= ~βi+1 −
βi+1 • ~κ1
~κ1 • ~κ1

· ~κ1 −
βi+1 • ~κ2
~κ2 • ~κ2

· ~κ2 − · · ·−
βi+1 • ~κi
~κi • ~κi

· ~κi

By the inductive assumption (ii) we can expand each ~κj into a linear combination
of ~β1, . . . , ~βj

= ~βi+1 −
~βi+1 • ~κ1
~κ1 • ~κ1

· ~β1

−
~βi+1 • ~κ2
~κ2 • ~κ2

·
(
linear combination of ~β1, ~β2

)
− · · · −

~βi+1 • ~κi
~κi • ~κi

·
(
linear combination of ~β1, . . . , ~βi

)
The fractions are scalars so this is a linear combination of linear combinations
of ~β1, . . . , ~βi+1. It is therefore just a linear combination of ~β1, . . . , ~βi+1. Now,
(i) it cannot sum to the zero vector because the equation would then describe
a nontrivial linear relationship among the ~β’s that are given as members of a
basis (the relationship is nontrivial because the coefficient of ~βi+1 is 1). Also,
(ii) the equation gives ~κi+1 as a combination of ~β1, . . . , ~βi+1. Finally, for (iii),
consider ~κj • ~κi+1; as in the i = 3 case, the dot product of ~κj with ~κi+1 = ~βi+1 −

proj[~κ1](~βi+1) − · · · − proj[~κi](~βi+1) can be rewritten to give two kinds of terms,

~κj •
(
~βi+1 − proj[~κj](~βi+1)

)
(which is zero because the projection is orthogonal)

and ~κj • proj[~κm](~βi+1) with m 6= j and m < i + 1 (which is zero because by the
hypothesis (iii) the vectors ~κj and ~κm are orthogonal).
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Three.VI.3: Projection Into a Subspace

Three.VI.3.10 (a) When bases for the subspaces

BM = 〈

(
1

−1

)
〉 BN = 〈

(
2

−1

)
〉

are concatenated

B = BM
_
BN = 〈

(
1

−1

)
,

(
2

−1

)
〉

and the given vector is represented(
3

−2

)
= 1 ·

(
1

−1

)
+ 1 ·

(
2

−1

)
then the answer comes from retaining the M part and dropping the N part.

projM,N(

(
3

−2

)
) =

(
1

−1

)
(b) When the bases

BM = 〈

(
1

1

)
〉 BN〈

(
1

−2

)
〉

are concatenated, and the vector is represented,(
1

2

)
= (4/3) ·

(
1

1

)
− (1/3) ·

(
1

−2

)
then retaining only the M part gives this answer.

projM,N(

(
1

2

)
) =

(
4/3

4/3

)
(c) With these bases

BM = 〈

 1

−1

0

 ,
00
1

〉 BN = 〈

10
1

〉
the representation with respect to the concatenation is this.30

1

 = 0 ·

 1

−1

0

− 2 ·

00
1

+ 3 ·

10
1


and so the projection is this.

projM,N(

30
1

) =

 0

0

−2
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Three.VI.3.11 As in Example 3.5, we can simplify the calculation by just finding the
space of vectors perpendicular to all the the vectors in M’s basis.
(a) Parametrizing to get

M = {c ·

(
−1

1

)
| c ∈ R }

gives that

M⊥{

(
u

v

)
| 0 =

(
u

v

)
•

(
−1

1

)
} = {

(
u

v

)
| 0 = −u+ v }

Parametrizing the one-equation linear system gives this description.

M⊥ = {k ·

(
1

1

)
| k ∈ R }

(b) As in the answer to the prior part, we can describe M as a span

M = {c ·

(
3/2

1

)
| c ∈ R } BM = 〈

(
3/2

1

)
〉

and then M⊥ is the set of vectors perpendicular to the one vector in this basis.

M⊥ = {

(
u

v

)
| (3/2) · u+ 1 · v = 0 } = {k ·

(
−2/3

1

)
| k ∈ R }

(c) Parametrizing the linear requirement in the description of M gives this basis.

M = {c ·

(
1

1

)
| c ∈ R } BM = 〈

(
1

1

)
〉

Now, M⊥ is the set of vectors perpendicular to (the one vector in) BM.

M⊥ = {

(
u

v

)
| u+ v = 0 } = {k ·

(
−1

1

)
| k ∈ R }

(By the way, this answer checks with the first item in this question.)
(d) Every vector in the space is perpendicular to the zero vector so M⊥ = Rn.
(e) The appropriate description and basis for M are routine.

M = {y ·

(
0

1

)
| y ∈ R } BM = 〈

(
0

1

)
〉

Then

M⊥ = {

(
u

v

)
| 0 · u+ 1 · v = 0 } = {k ·

(
1

0

)
| k ∈ R }

and so (y-axis)⊥ = x-axis.
(f) The description of M is easy to find by parametrizing.

M = {c ·

31
0

+ d ·

10
1

 | c, d ∈ R } BM = 〈

31
0

 ,
10
1

〉
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Finding M⊥ here just requires solving a linear system with two equations

3u+ v = 0

u +w= 0

−(1/3)ρ1+ρ2−→ 3u+ v = 0

−(1/3)v+w= 0

and parametrizing.

M⊥ = {k ·

−1

3

1

 | k ∈ R }

(g) Here, M is one-dimensional

M = {c ·

 0

−1

1

 | c ∈ R } BM = 〈

 0

−1

1

〉
and as a result, M⊥ is two-dimensional.

M⊥ = {

uv
w

 | 0 · u− 1 · v+ 1 ·w = 0 } = { j ·

10
0

+ k ·

01
1

 | j, k ∈ R }

Three.VI.3.12 Where

A =

0 1

2 −1

0 1


straightforward, although tedious, calculation gives this.

A
(
ATA

)−1
AT =

 1/2 0 −1/2

0 1 0

−1/2 0 1/2


When applied to the vector we get the projection. 1/2 0 −1/2

0 1 0

−1/2 0 1/2


12
0

 =

 1/2

2

−1/2


Three.VI.3.13 Using the matrix calculation from the prior answer, this 1/2 0 −1/2

0 1 0

−1/2 0 1/2


 1

2

−1

 =

 1

2

−1


shows the vector is in the subspace S.

Three.VI.3.14 Suppose ~w ∈ S. Because this is orthogonal projection, the two vectors
~v − ~p and ~p − ~w are at a right angle. The Triangle Inequality applies and the
hypotenuse ~v− ~w is therefore at least as long as ~v− ~p.
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Three.VI.3.15 (a) Parametrizing the equation leads to this basis for P.

BP = 〈

10
3

 ,
01
2

〉
(b) Because R3 is three-dimensional and P is two-dimensional, the complement
P⊥ must be a line. Anyway, the calculation as in Example 3.5

P⊥ = {

xy
z

 |

(
1 0 3

0 1 2

)xy
z

 =

(
0

0

)
}

gives this basis for P⊥.

BP⊥ = 〈

 3

2

−1

〉
(c)

11
2

 = (5/14) ·

10
3

+ (8/14) ·

01
2

+ (3/14) ·

 3

2

−1


(d) projP(

11
2

) =

 5/148/14

31/14


(e) The matrix of the projection1 0

0 1

3 2

((1 0 3

0 1 2

)1 0

0 1

3 2

)−1(1 0 3

0 1 2

)

=

1 0

0 1

3 2

(10 6

6 5

)−1(
1 0 3

0 1 2

)

=
1

14

 5 −6 3

−6 10 2

3 2 13


when applied to the vector, yields the expected result.

1

14

 5 −6 3

−6 10 2

3 2 13


11
2

 =

 5/148/14

31/14


Three.VI.3.16 (a) Parametrizing gives this.

M = {c ·

(
−1

1

)
| c ∈ R }
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For the first way, we take the vector spanning the line M to be

~s =

(
−1

1

)
and the Definition 1.1 formula gives this.

proj[~s ](

(
1

−3

)
) =

(
1

−3

)
•

(
−1

1

)
(
−1

1

)
•

(
−1

1

) ·(−1
1

)
=

−4

2
·

(
−1

1

)
=

(
2

−2

)

For the second way, we fix

BM = 〈

(
−1

1

)
〉

and so (as in Example 3.5 and 3.6, we can just find the vectors perpendicular to
all of the members of the basis)

M⊥ = {

(
u

v

)
| −1 · u+ 1 · v = 0 } = {k ·

(
1

1

)
| k ∈ R } BM⊥ = 〈

(
1

1

)
〉

and representing the vector with respect to the concatenation gives this.(
1

−3

)
= −2 ·

(
−1

1

)
− 1 ·

(
1

1

)
Keeping the M part yields the answer.

projM,M⊥(

(
1

−3

)
) =

(
2

−2

)
The third part is also a simple calculation (there is a 1×1 matrix in the

middle, and the inverse of it is also 1×1)

A
(
ATA

)−1
AT

=

(
−1

1

)((
−1 1

)(−1
1

))−1 (
−1 1

)
=

(
−1

1

)(
2
)−1 (

−1 1
)

=

(
−1

1

)(
1/2
)(

−1 1
)
=

(
−1

1

)(
−1/2 1/2

)
=

(
1/2 −1/2

−1/2 1/2

)
which of course gives the same answer.

projM(

(
1

−3

)
) =

(
1/2 −1/2

−1/2 1/2

)(
1

−3

)
=

(
2

−2

)
(b) Parametrization gives this.

M = {c ·

−1

0

1

 | c ∈ R }
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With that, the formula for the first way gives this.01
2

 •

−1

0

1


−1

0

1

 •

−1

0

1


·

−1

0

1

 =
2

2
·

−1

0

1

 =

−1

0

1



To proceed by the second method we find M⊥,

M⊥ = {

uv
w

 | −u+w = 0 } = { j ·

10
1

+ k ·

01
0

 | j, k ∈ R }

find the representation of the given vector with respect to the concatenation of
the bases BM and BM⊥01

2

 = 1 ·

−1

0

1

+ 1 ·

10
1

+ 1 ·

01
0


and retain only the M part.

projM(

01
2

) = 1 ·

−1

0

1

 =

−1

0

1


Finally, for the third method, the matrix calculation

A
(
ATA

)−1
AT

=

−1

0

1

((−1 0 1
)−1

0

1

)−1 (−1 0 1
)
=

−1

0

1

(2)−1 (−1 0 1
)

=

−1

0

1

(1/2)(−1 0 1
)
=

−1

0

1

(−1/2 0 1/2
)

=

 1/2 0 −1/2

0 0 0

−1/2 0 1/2


followed by matrix-vector multiplication

projM(

01
2

)

 1/2 0 −1/2

0 0 0

−1/2 0 1/2


01
2

 =

−1

0

1


gives the answer.
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Three.VI.3.17 No, a decomposition of vectors ~v = ~m+ ~n into ~m ∈M and ~n ∈ N does
not depend on the bases chosen for the subspaces, as we showed in the Direct Sum
subsection.

Three.VI.3.18 The orthogonal projection of a vector into a subspace is a member of
that subspace. Since a trivial subspace has only one member, ~0, the projection of
any vector must equal ~0.

Three.VI.3.19 The projection intoM alongN of a ~v ∈M is ~v. Decomposing ~v = ~m+~n

gives ~m = ~v and ~n = ~0, and dropping the N part but retaining the M part results
in a projection of ~m = ~v.

Three.VI.3.20 The proof of Lemma 3.7 shows that each vector ~v ∈ Rn is the sum of
its orthogonal projections into the lines spanned by the basis vectors.

~v = proj[~κ1](~v ) + · · ·+ proj[~κn](~v ) =
~v • ~κ1
~κ1 • ~κ1

· ~κ1 + · · ·+
~v • ~κn
~κn • ~κn

· ~κn

Since the basis is orthonormal, the bottom of each fraction has ~κi • ~κi = 1.

Three.VI.3.21 If V =M⊕N then every vector decomposes uniquely as ~v = ~m + ~n.
For all ~v the map p gives p(~v) = ~m if and only if ~v− p(~v) = ~n, as required.

Three.VI.3.22 Let ~v be perpendicular to every ~w ∈ S. Then ~v • (c1~w1+ · · ·+cn~wn) =
~v • (c1~w1)+ · · ·+~v • (cn • ~wn) = c1(~v • ~w1)+ · · ·+cn(~v • ~wn) = c1 ·0+ · · ·+cn ·0 = 0.

Three.VI.3.23 True; the only vector orthogonal to itself is the zero vector.

Three.VI.3.24 This is immediate from the statement in Lemma 3.7 that the space is
the direct sum of the two.

Three.VI.3.25 The two must be equal, even only under the seemingly weaker condition
that they yield the same result on all orthogonal projections. Consider the subspace
M spanned by the set {~v1,~v2 }. Since each is in M, the orthogonal projection of ~v1
intoM is ~v1 and the orthogonal projection of ~v2 intoM is ~v2. For their projections
into M to be equal, they must be equal.

Three.VI.3.26 (a) We will show that the sets are mutually inclusive, M ⊆ (M⊥)⊥

and (M⊥)⊥ ⊆ M. For the first, if ~m ∈ M then by the definition of the perp
operation, ~m is perpendicular to every ~v ∈ M⊥, and therefore (again by the
definition of the perp operation) ~m ∈ (M⊥)⊥. For the other direction, consider
~v ∈ (M⊥)⊥. Lemma 3.7’s proof shows that Rn =M⊕M⊥ and that we can give
an orthogonal basis for the space 〈~κ1, . . . ,~κk,~κk+1, . . . ,~κn〉 such that the first
half 〈~κ1, . . . ,~κk〉 is a basis forM and the second half is a basis forM⊥. The proof
also checks that each vector in the space is the sum of its orthogonal projections
into the lines spanned by these basis vectors.

~v = proj[~κ1](~v ) + · · ·+ proj[~κn](~v )
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Because ~v ∈ (M⊥)⊥, it is perpendicular to every vector in M⊥, and so the
projections in the second half are all zero. Thus ~v = proj[~κ1](~v )+· · ·+proj[~κk](~v ),
which is a linear combination of vectors from M, and so ~v ∈M. (Remark. Here
is a slicker way to do the second half: write the space both as M⊕M⊥ and as
M⊥ ⊕ (M⊥)⊥. Because the first half showed that M ⊆ (M⊥)⊥ and the prior
sentence shows that the dimension of the two subspacesM and (M⊥)⊥ are equal,
we can conclude that M equals (M⊥)⊥.)

(b) Because M ⊆ N, any ~v that is perpendicular to every vector in N is also
perpendicular to every vector in M. But that sentence simply says that N⊥ ⊆
M⊥.

(c) We will again show that the sets are equal by mutual inclusion. The first direc-
tion is easy; any~v perpendicular to every vector inM+N = { ~m+ ~n | ~m ∈M, ~n ∈ N }

is perpendicular to every vector of the form ~m+~0 (that is, every vector inM) and
every vector of the form ~0+ ~n (every vector in N), and so (M+N)⊥ ⊆M⊥∩N⊥.
The second direction is also routine; any vector ~v ∈M⊥ ∩N⊥ is perpendicular to
any vector of the form c~m+ d~n because ~v • (c~m+ d~n) = c · (~v • ~m) + d · (~v • ~n) =
c · 0+ d · 0 = 0.

Three.VI.3.27 (a) The representation ofv1v2
v3

 f7−→ 1v1 + 2v2 + 3v3

is this.
RepE3,E1(f) =

(
1 2 3

)
By the definition of f

N (f) = {

v1v2
v3

 | 1v1 + 2v2 + 3v3 = 0 } = {

v1v2
v3

 |

12
3

 •

v1v2
v3

 = 0 }

and this second description exactly says this.

N (f)⊥ = [{

12
3

 }]

(b) The generalization is that for any f : Rn → R there is a vector ~h so thatv1...
vn

 f7−→ h1v1 + · · ·+ hnvn

and ~h ∈ N (f)⊥. We can prove this by, as in the prior item, representing f with
respect to the standard bases and taking ~h to be the column vector gotten by
transposing the one row of that matrix representation.
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(c) Of course,

RepE3,E2(f) =

(
1 2 3

4 5 6

)
and so the null space is this set.

N (f){

v1v2
v3

 |

(
1 2 3

4 5 6

)v1v2
v3

 =

(
0

0

)
}

That description makes clear that12
3

 ,
45
6

 ∈ N (f)⊥

and since N (f)⊥ is a subspace of Rn, the span of the two vectors is a subspace
of the perp of the null space. To see that this containment is an equality, take

M = [{

12
3

 }] N = [{

45
6

 }]

in the third item of Exercise 26, as suggested in the hint.
(d) As above, generalizing from the specific case is easy: for any f : Rn → Rm the
matrix H representing the map with respect to the standard bases describes the
action v1...

vn

 f7−→

 h1,1v1 + h1,2v2 + · · ·+ h1,nvn
...

hm,1v1 + hm,2v2 + · · ·+ hm,nvn


and the description of the null space gives that on transposing the m rows of H

~h1 =


h1,1
h1,2
...

h1,n

 , . . . ~hm =


hm,1
hm,2
...

hm,n


we have N (f)⊥ = [{~h1, . . . , ~hm }]. ([Strang 93] describes this space as the trans-
pose of the row space of H.)

Three.VI.3.28 (a) First note that if a vector ~v is already in the line then the orthog-
onal projection gives ~v itself. One way to verify this is to apply the formula for
projection into the line spanned by a vector ~s, namely (~v • ~s/~s • ~s) · ~s. Taking the
line as {k ·~v | k ∈ R } (the ~v = ~0 case is separate but easy) gives (~v • ~v/~v • ~v) · ~v,
which simplifies to ~v, as required.

Now, that answers the question because after once projecting into the line,
the result proj`(~v) is in that line. The prior paragraph says that projecting into
the same line again will have no effect.



(b) The argument here is similar to the one in the prior item. With V =M⊕N,
the projection of ~v = ~m+ ~n is projM,N(~v ) = ~m. Now repeating the projection
will give projM,N(~m) = ~m, as required, because the decomposition of a member
of M into the sum of a member of M and a member of N is ~m = ~m+~0. Thus,
projecting twice into M along N has the same effect as projecting once.

(c) As suggested by the prior items, the condition gives that t leaves vectors in
the range space unchanged, and hints that we should take ~β1, . . . , ~βr to be basis
vectors for the range, that is, that we should take the range space of t for M (so
that dim(M) = r). As for the complement, we write N for the null space of t
and we will show that V =M⊕N.

To show this, we can show that their intersection is trivial M ∩N = {~0 } and
that they sum to the entire spaceM+N = V . For the first, if a vector ~m is in the
range space then there is a ~v ∈ V with t(~v) = ~m, and the condition on t gives that
t(~m) = (t ◦ t) (~v) = t(~v) = ~m, while if that same vector is also in the null space
then t(~m) = ~0 and so the intersection of the range space and null space is trivial.
For the second, to write an arbitrary ~v as the sum of a vector from the range
space and a vector from the null space, the fact that the condition t(~v) = t(t(~v))
can be rewritten as t(~v− t(~v)) = ~0 suggests taking ~v = t(~v) + (~v− t(~v)).

To finish we taking a basis B = 〈~β1, . . . , ~βn〉 for V where 〈~β1, . . . , ~βr〉 is a
basis for the range space M and 〈~βr+1, . . . , ~βn〉 is a basis for the null space N.

(d) Every projection (as defined in this exercise) is a projection into its range
space and along its null space.

(e) This also follows immediately from the third item.

Three.VI.3.29 For any matrix M we have that (M−1)
T
= (MT)−1, and for any two

matrices M, N we have that MNT = NTMT (provided, of course, that the inverse
and product are defined). Applying these two gives that the matrix equals its
transpose.(
A(ATA)−1AT)T = (ATT

)(
(
(ATA)−1

)T
)(AT)

= (ATT
)(
(
(ATA)

T)−1
)(AT) = A(ATATT

)−1AT = A(ATA)−1AT
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Topic: Line of Best Fit

1 As with the first example discussed above, we are trying to find a best m to “solve”
this system.

8m= 4

16m= 9

24m= 13

32m= 17

40m= 20

Projecting into the linear subspace gives this
4

9

13

17

20

 •


8

16

24

32

40



8

16

24

32

40

 •


8

16

24

32

40



·


8

16

24

32

40

 =
1832

3520
·


8

16

24

32

40



so the slope of the line of best fit is approximately 0.52.

0 10 20 30 40
0

5

10

15

20

2 With this input

A =


1 1852.71

1 1858.88
...

...
1 1985.54

1 1993.71

 b =


292.0

285.0
...

226.32

224.39


(the dates have been rounded to months, e.g., for a September record, the decimal
.71 ≈ (8.5/12) was used), Maple responded with an intercept of b = 994.8276974

and a slope of m = −0.3871993827.
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1850 1900 1950 2000

220

240

260

280

3 With this input (the years are zeroed at 1900)

A :=


1 .38

1 .54
...
...
1 92.71

1 95.54

 b =


249.0

246.2
...

208.86

207.37


(the dates have been rounded to months, e.g., for a September record, the decimal
.71 ≈ (8.5/12) was used), Maple gives an intercept of b = 243.1590327 and a slope
of m = −0.401647703. The slope given in the body of this Topic for the men’s mile
is quite close to this.

1900 1920 1940 1960 1980 2000
200

210

220

230

240

250

4 With this input (the years are zeroed at 1900)

A =


1 21.46

1 32.63
...

...
1 89.54

1 96.63

 b =


373.2

327.5
...

255.61

252.56


(the dates have been rounded to months, e.g., for a September record, the decimal
.71 ≈ (8.5/12) was used), MAPLE gave an intercept of b = 378.7114894 and a slope
of m = −1.445753225.
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1900 1920 1940 1960 1980 2000

220
240
260
280
300
320
340
360
380

5 These are the equations of the lines for men’s and women’s mile (the vertical
intercept term of the equation for the women’s mile has been adjusted from the
answer above, to zero it at the year 0, because that’s how the men’s mile equation
was done).

y = 994.8276974− 0.3871993827x

y = 3125.6426− 1.445753225x

Obviously the lines cross. A computer program is the easiest way to do the
arithmetic: MuPAD gives x = 2012.949004 and y = 215.4150856 (215 seconds is
3 minutes and 35 seconds). Remark. Of course all of this projection is highly
dubious— for one thing, the equation for the women is influenced by the quite slow
early times—but it is nonetheless fun.

1850 1900 1950 2000

220
240
260
280
300
320
340
360
380

6 Sage gives the line of best fit as toll = −0.05 · dist+ 5.63.
sage: dist = [2, 7, 8, 16, 27, 47, 67, 82, 102, 120]
sage: toll = [6, 6, 6, 6.5, 2.5, 1, 1, 1, 1, 1]
sage: var('a,b,t')
(a, b, t)
sage: model(t) = a*t+b
sage: data = zip(dist,toll)
sage: fit = find_fit(data, model, solution_dict=True)
sage: model.subs(fit)
t |--> -0.0508568169130319*t + 5.630955848442933
sage: p = plot(model.subs(fit), (t,0,120))+points(data,size=25,color='red')
sage: p.save('bridges.pdf')

But the graph shows that the equation has little predictive value.



266 Linear Algebra, by Hefferon

20 40 60 80 100 120

1

2

3

4

5

6

Apparently a better model is that (with only one intermediate exception) crossings
in the city cost roughly the same as each other, and crossings upstate cost the same
as each other.

7 (a) A computer algebra system like MAPLE or MuPAD will give an intercept
of b = 4259/1398 ≈ 3.239628 and a slope of m = −71/2796 ≈ −0.025393419

Plugging x = 31 into the equation yields a predicted number of O-ring failures
of y = 2.45 (rounded to two places). Plugging in y = 4 and solving gives a
temperature of x = −29.94◦F.

(b) On the basis of this information

A =


1 53

1 75
...
1 80

1 81

 b =


3

2
...
0

0


MAPLE gives the intercept b = 187/40 = 4.675 and the slope m = −73/1200 ≈
−0.060833. Here, plugging x = 31 into the equation predicts y = 2.79 O-ring
failures (rounded to two places). Plugging in y = 4 failures gives a temperature
of x = 11◦F.

40 50 60 70 80
0

1

2

3

8 (a) The plot is nonlinear.
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0 2 4 6
0

5

10

15

20

(b) Here is the plot.

0 2 4 6
−0.5

0

0.5

1

There is perhaps a jog up between planet 4 and planet 5.
(c) This plot seems even more linear.

0 2 4 6 8
−0.5

0

0.5

1

(d) With this input

A =



1 1

1 2

1 3

1 4

1 6

1 7

1 8


b =



−0.40893539

−0.1426675

0

0.18184359

0.71600334

0.97954837

1.2833012


MuPAD gives that the intercept is b = −0.6780677466 and the slope is m =

0.2372763818.
(e) Plugging x = 9 into the equation y = −0.6780677466 + 0.2372763818x from



the prior item gives that the log of the distance is 1.4574197, so the expected
distance is 28.669472. The actual distance is about 30.003.

(f) Plugging x = 10 into the same equation gives that the log of the distance is
1.6946961, so the expected distance is 49.510362. The actual distance is about
39.503.

9 For any ~w ∈ W, the vectors ~v − ~p and ~p − ~w are orthogonal. So the Triangle
Inequality applies to the triangle with those vectors as sides, and with ~v − ~w as
hypoteneuse. Therefore ~v− ~w is at least as long as ~v− ~p.

Topic: Geometry of Linear Maps

1 This Gaussian reduction

−3ρ1+ρ2−→
−ρ1+ρ3

1 2 1

0 0 −3

0 0 1

 (1/3)ρ2+ρ3−→

1 2 1

0 0 −3

0 0 0


(−1/3)ρ2−→

1 2 1

0 0 1

0 0 0

 −ρ2+ρ1−→

1 2 0

0 0 1

0 0 0


gives the reduced echelon form of the matrix. Now the two column operations of
taking −2 times the first column and adding it to the second, and then of swapping
columns two and three produce this partial identity.

B =

1 0 0

0 1 0

0 0 0


All of that translates into matrix terms as: where

P =

1 −1 0

0 1 0

0 0 1


1 0 0

0 −1/3 0

0 0 1


1 0 0

0 1 0

0 1/3 1


 1 0 0

0 1 0

−1 0 1


 1 0 0

−3 1 0

0 0 1


and

Q =

1 −2 0

0 1 0

0 0 1


0 1 0

1 0 0

0 0 1


the given matrix factors as PBQ.
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2 We will first represent the map with a matrix H, perform the row operations and,
if needed, column operations to reduce it to a partial-identity matrix. We will then
translate that into a factorization H = PBQ. Substituting into the general matrix

RepE2,E2(rθ)

(
cos θ − sin θ
sin θ cos θ

)
gives this representation.

RepE2,E2(r2π/3)

(
−1/2 −

√
3/2√

3/2 −1/2

)
Gauss’s Method is routine.

√
3ρ1+ρ2−→

(
−1/2 −

√
3/2

0 −2

)
−2ρ1−→

(−1/2)ρ2

(
1
√
3

0 1

)
−
√
3ρ2+ρ1−→

(
1 0

0 1

)
That translates to a matrix equation in this way.(

1 −
√
3

0 1

)(
−2 0

0 −1/2

)(
1 0√
3 1

)(
−1/2 −

√
3/2√

3/2 −1/2

)
= I

Taking inverses to solve for H yields this factorization.(
−1/2 −

√
3/2√

3/2 −1/2

)
=

(
1 0

−
√
3 1

)(
−1/2 0

0 −2

)(
1
√
3

0 1

)
I

3 (a) Recall that rotation counterclockwise by θ radians is represented with respect
to the standard basis in this way.

RepE2,E2(tπ/4) =

(
cos θ − sin θ
sin θ cos θ

)
A clockwise angle is the negative of a counterclockwise one.

RepE2,E2(t−pi/4) =

(
cos(−π/4) − sin(−π/4)
sin(−π/4) cos(−π/4)

)
=

( √
2/2

√
2/2

−
√
2/2

√
2/2

)
(b) This Gauss-Jordan reduction

ρ1+ρ2−→

(√
2/2

√
2/2

0
√
2

)
(2/
√
2)ρ1−→

(1/
√
2)ρ2

(
1 1

0 1

)
−ρ2+ρ1−→

(
1 0

0 1

)
produces the identity matrix. Thus we do not need column-swapping operations
to end with a partial-identity.

(c) In matrix multiplication the reduction is(
1 −1

0 1

)(
2/
√
2 0

0 1/
√
2

)(
1 0

1 1

)
H = I

(note that composition of the Gaussian operations is from right to left).
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(d) Taking inverses

H =

(
1 0

−1 1

)(√
2/2 0

0
√
2

)(
1 1

0 1

)
︸ ︷︷ ︸

P

I

gives the desired factorization of H. The partial identity is I.
(e) Reading the composition from right to left (and ignoring the identity matrices
as trivial) gives that H has the same effect as first performing this skew

~u

~v

h(~u)

h(~v)

x
y

 7→
x+ y
y


−→

followed by a dilation that multiplies all first components by
√
2/2 (this is a

shrink in that
√
2/2 ≈ 0.707 is less than 1) and all second components by

√
2,

followed by another skew.

~u

~v h(~u)

h(~v)

x
y

7→
 x

−x+ y


−→

For an example we start with the unit vector whose angle with the x-axis is π/6
and apply the components of H in turn.(√

3/2

1/2

) (
(
√
3+ 1)/2

1/2

)

(√
2(
√
3+ 1)/2√
2/2

)

(√
2(
√
3+ 1)/4√

2(1−
√
3)/4

)

x
y

 7→
x+ y
y


−→

x
y

7→
(√2/2)x√

2y


−→

x
y

7→
 x

−x+ y


−→
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We can easily verify that the resulting vector has unit length and forms an angle
with the x-axis of −π/12, which is indeed a rotation clockwise of π/4 radians
since (π/6) − (π/4) = −π/12.

4 Represent it with respect to the standard bases E1,E1. That produces a 1×1
matrix. The only entry is the scalar k.

5 (a) A line is a subset of Rn of the form {~v = ~u+ t · ~w | t ∈ R }. The image of a
point on that line is h(~v) = h(~u + t · ~w) = h(~u) + t · h(~w), and the set of such
vectors, as t ranges over the reals, is a line (albeit, degenerate if h(~w) = ~0).

(b) This is an obvious extension of the prior argument.
(c) If the point B is between the points A and C then the line from A to C has B
in it. That is, there is a t ∈ (0 .. 1) such that ~b = ~a+ t · (~c− ~a) (where B is the
endpoint of ~b, etc.). Now, as in the argument of the first item, linearity shows
that h(~b) = h(~a) + t · h(~c− ~a).

6 The two are inverse. For instance, for a fixed x ∈ R, if f′(x) = k (with k 6= 0) then
(f−1)′(x) = 1/k.

x

f(x)

f−1(f(x))

7 We can show this by induction on the number of components in the vector. In the
n = 1 base case the only permutation is the trivial one, and the map(

x1

)
7→
(
x1

)
is expressible as a composition of swaps—as zero swaps. For the inductive step we
assume that the map induced by any permutation of fewer than n numbers can be
expressed with swaps only, and we consider the map induced by a permutation p
of n numbers. 

x1
x2
...
xn

 7→

xp(1)
xp(2)
...

xp(n)





Consider the number i such that p(i) = n. The map

x1
x2
...
xi
...
xn


p̂7−→



xp(1)
xp(2)
...

xp(n)
...
xn


will, when followed by the swap of the i-th and n-th components, give the map p.
Now, the inductive hypothesis gives that p̂ is achievable as a composition of swaps.

Topic: Magic Squares

1 (a) The sum of the entries of M is the sum of the sums of the three rows.
(b) The constraints on entries of M involving the center entry make this system.

m2,1 +m2,2 +m2,3 = s

m1,2 +m2,2 +m3,2 = s

m1,1 +m2,2 +m3,3 = s

m1,3 +m2,2 +m3,1 = s

Adding those four equations counts each matrix entry once and only once, except
that we count the center entry four times. Thus the left side sums to 3s+ 3m2,2
while the right sums to 4s. So 3m2,2 = s.

(c) The second row adds to s so m2,1 + m2,2 + m2,3 = 3m2,2, giving that
(1/2) · (m2,1 +m2,3) = m2,2. The same goes for the column and the diagonals.

(d) By the prior exercise either bothm2,1 andm2,3 are equal tom2,2 or else one is
greater while one is smaller. Thusm2,2 is the median of the set {m2,1,m2,2,m2,3 }.
The same reasoning applied to the second column shows that Thus m2,2 is the
median of the set {m1,2,m2,1,m2,2,m2,3,m3,2 }. Extending to the two diagonals
shows it is the median of the set of all entries.



2 For any k we have this.

1 1 0 0 s

0 0 1 1 s

1 0 1 0 s

0 1 0 1 s

1 0 0 1 s

0 1 1 0 s


−ρ1+ρ3−→
−ρ1+ρ5



1 1 0 0 s

0 0 1 1 s

0 −1 1 0 0

0 1 0 1 s

0 −1 0 1 0

0 1 1 0 s



−ρ2↔ρ6−→



1 1 0 0 s

0 1 1 0 s

0 −1 1 0 0

0 1 0 1 s

0 −1 0 1 0

0 0 1 1 s


−ρ2+ρ3−→
−ρ2+ρ4
ρ2+ρ5



1 1 0 0 s

0 1 1 0 s

0 0 2 0 s

0 1 −1 1 0

0 0 1 1 s

0 0 1 1 s


The unique solution is a = b = c = d = s/2.

3 By the prior exercise the only member is Z2×2.

4 (a) WhereM,N ∈Mn×n we have Tr(cM+dN) = (cm1,1+dn1,1)+· · ·+(cmn,n+

dnn,n) = (cm1,1 + · · ·+ cmn,n) + (dn1,1 + · · ·+ dnn,n) = c ·Tr(M) + d ·Tr(N)

where all numbers are real, so the trace preserves linear combinations. The
argument for Tr∗ is similar.

(b) It preserves linear combinations: where all numbers are real, θ(cM+ dN) =

(Tr(cM+dN),Tr∗(cM+dN)) = (c ·Tr(M)+d ·Tr(N), c ·Tr∗(M)+d ·Tr∗(N)) =

c · θ(M) + d · θ(N).
(c) Where h1, . . . , hn : V →W are linear then so is g : V →Wn given by g(~v) =
(h1(~v), . . . , hn(~v)). The proof just follows the proof of the prior item.

5 (a) The sum of two semimagic squares is semimagic, as is a scalar multiple of
a semimagic square. (b) As with the prior item, a linear combination of two
semimagic squares with magic number zero is also such a matrix.

Topic: Markov Chains

1 (a) With this file coin.m
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# Octave function for Markov coin game. p is chance of going down.

function w = coin(p,v)

q = 1-p;

A=[1,p,0,0,0,0;

0,0,p,0,0,0;

0,q,0,p,0,0;

0,0,q,0,p,0;

0,0,0,q,0,0;

0,0,0,0,q,1];

w = A * v;

endfunction

This Octave session produced the output given here.
octave:1> v0=[0;0;0;1;0;0]

v0 =

0

0

0

1

0

0

octave:2> p=.5

p = 0.50000

octave:3> v1=coin(p,v0)

v1 =

0.00000

0.00000

0.50000

0.00000

0.50000

0.00000

octave:4> v2=coin(p,v1)

v2 =

0.00000

0.25000

0.00000

0.50000

0.00000

0.25000

This continued for too many steps to list here.
octave:26> v24=coin(p,v23)

v24 =

0.39600

0.00276
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0.00000

0.00447

0.00000

0.59676

(b) Using these formulas

p1(n+ 1) = 0.5 · p2(n) p2(n+ 1) = 0.5 · p1(n) + 0.5 · p3(n)
p3(n+ 1) = 0.5 · p2(n) + 0.5 · p4(n) p5(n+ 1) = 0.5 · p4(n)

and these initial conditions 

p0(0)

p1(0)

p2(0)

p3(0)

p4(0)

p5(0)


=



0

0

0

1

0

0


we will prove by induction that when n is odd then p1(n) = p3(n) = 0 and when
n is even then p2(n) = p4(n) = 0. Note first that this is true in the n = 0 base
case by the initial conditions. For the inductive step, suppose that it is true in
the n = 0, n = 1, . . . , n = k cases and consider the n = k + 1 case. If k + 1 is
odd then the two

p1(k+ 1) = 0.5 · p2(k) = 0.5 · 0 = 0
p3(k+ 1) = 0.5 · p2(k) + 0.5 · p4(k) = 0.5 · 0+ 0.5 · 0 = 0

follow from the inductive hypothesis that p2(k) = p4(k) = 0 since k is even. The
case where k+ 1 is even is similar.

(c) We can use, say, n = 100. This Octave session
octave:1> B=[1,.5,0,0,0,0;

> 0,0,.5,0,0,0;

> 0,.5,0,.5,0,0;

> 0,0,.5,0,.5,0;

> 0,0,0,.5,0,0;

> 0,0,0,0,.5,1];

octave:2> B100=B**100

B100 =

1.00000 0.80000 0.60000 0.40000 0.20000 0.00000

0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

0.00000 0.20000 0.40000 0.60000 0.80000 1.00000

octave:3> B100*[0;1;0;0;0;0]

octave:4> B100*[0;1;0;0;0;0]
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octave:5> B100*[0;0;0;1;0;0]

octave:6> B100*[0;1;0;0;0;0]

yields these outputs.

starting with: $1 $2 $3 $4
s0(100)

s1(100)

s2(100)

s3(100)

s4(100)

s5(100)

0.80000

0.00000

0.00000

0.00000

0.00000

0.20000

0.60000

0.00000

0.00000

0.00000

0.00000

0.40000

0.40000

0.00000

0.00000

0.00000

0.00000

0.60000

0.20000

0.00000

0.00000

0.00000

0.00000

0.80000

2 (a) From these equations

s1(n)/6+ 0s2(n) + 0s3(n) + 0s4(n) + 0s5(n) + 0s6(n) = s1(n+ 1)

s1(n)/6+ 2s2(n)/6+ 0s3(n) + 0s4(n) + 0s5(n) + 0s6(n) = s2(n+ 1)

s1(n)/6+ s2(n)/6+ 3s3(n)/6+ 0s4(n) + 0s5(n) + 0s6(n) = s3(n+ 1)

s1(n)/6+ s2(n)/6+ s3(n)/6+ 4s4(n)/6+ 0s5(n) + 0s6(n) = s4(n+ 1)

s1(n)/6+ s2(n)/6+ s3(n)/6+ s4(n)/6+ 5s5(n)/6+ 0s6(n) = s5(n+ 1)

s1(n)/6+ s2(n)/6+ s3(n)/6+ s4(n)/6+ s5(n)/6+ 6s6(n)/6= s6(n+ 1)

We get this transition matrix.

1/6 0 0 0 0 0

1/6 2/6 0 0 0 0

1/6 1/6 3/6 0 0 0

1/6 1/6 1/6 4/6 0 0

1/6 1/6 1/6 1/6 5/6 0

1/6 1/6 1/6 1/6 1/6 6/6


(b) This is the Octave session, with outputs edited out and condensed into the
table at the end.
octave:1> F=[1/6, 0, 0, 0, 0, 0;

> 1/6, 2/6, 0, 0, 0, 0;

> 1/6, 1/6, 3/6, 0, 0, 0;

> 1/6, 1/6, 1/6, 4/6, 0, 0;

> 1/6, 1/6, 1/6, 1/6, 5/6, 0;

> 1/6, 1/6, 1/6, 1/6, 1/6, 6/6];

octave:2> v0=[1;0;0;0;0;0]

octave:3> v1=F*v0

octave:4> v2=F*v1

octave:5> v3=F*v2

octave:6> v4=F*v3

octave:7> v5=F*v4
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These are the results.
1 2 3 4 5

1

0

0

0

0

0

0.16667

0.16667

0.16667

0.16667

0.16667

0.16667

0.027778

0.083333

0.138889

0.194444

0.250000

0.305556

0.0046296

0.0324074

0.0879630

0.1712963

0.2824074

0.4212963

0.00077160

0.01157407

0.05015432

0.13503086

0.28472222

0.51774691

0.00012860

0.00398663

0.02713477

0.10043724

0.27019033

0.59812243

3 (a) It does seem reasonable that, while the firm’s present location should strongly
influence where it is next time (for instance, whether it stays), any locations in
the prior stages should have little influence. That is, while a company may move
or stay because of where it is, it is unlikely to move or stay because of where it
was.

(b) This is the Octave session, slightly edited, with the outputs put together in a
table at the end.
octave:1> M=[.787,0,0,.111,.102;
> 0,.966,.034,0,0;
> 0,.063,.937,0,0;
> 0,0,.074,.612,.314;
> .021,.009,.005,.010,.954]
M =
0.78700 0.00000 0.00000 0.11100 0.10200
0.00000 0.96600 0.03400 0.00000 0.00000
0.00000 0.06300 0.93700 0.00000 0.00000
0.00000 0.00000 0.07400 0.61200 0.31400
0.02100 0.00900 0.00500 0.01000 0.95400

octave:2> v0=[.025;.025;.025;.025;.900]
octave:3> v1=M*v0
octave:4> v2=M*v1
octave:5> v3=M*v2
octave:6> v4=M*v3

This table summarizes.
~p0 ~p1 ~p2 ~p3 ~p4

0.025000

0.025000

0.025000

0.025000

0.900000




0.114250

0.025000

0.025000

0.299750

0.859725




0.210879

0.025000

0.025000

0.455251

0.825924




0.300739

0.025000

0.025000

0.539804

0.797263




0.377920

0.025000

0.025000

0.582550

0.772652


(c) This is a continuation of the Octave session from the prior item.

octave:7> p0=[.0000;.6522;.3478;.0000;.0000]
octave:8> p1=M*p0
octave:9> p2=M*p1
octave:10> p3=M*p2
octave:11> p4=M*p3

This summarizes the output.
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~p0 ~p1 ~p2 ~p3 ~p4
0.00000

0.65220

0.34780

0.00000

0.00000




0.00000

0.64185

0.36698

0.02574

0.00761




0.0036329

0.6325047

0.3842942

0.0452966

0.0151277




0.0094301

0.6240656

0.3999315

0.0609094

0.0225751




0.016485

0.616445

0.414052

0.073960

0.029960


(d) This is more of the same Octave session.

octave:12> M50=M**50
M50 =
0.03992 0.33666 0.20318 0.02198 0.37332
0.00000 0.65162 0.34838 0.00000 0.00000
0.00000 0.64553 0.35447 0.00000 0.00000
0.03384 0.38235 0.22511 0.01864 0.31652
0.04003 0.33316 0.20029 0.02204 0.37437

octave:13> p50=M50*p0
p50 =
0.29024
0.54615
0.54430
0.32766
0.28695

octave:14> p51=M*p50
p51 =
0.29406
0.54609
0.54442
0.33091
0.29076

This is close to a steady state.

4 (a) This is the relevant system of equations.

(1− 2p) · sU(n) + p · tA(n) + p · tB(n) = sU(n+ 1)

p · sU(n) + (1− 2p) · tA(n) = tA(n+ 1)

p · sU(n) + (1− 2p) · tB(n) = tB(n+ 1)

p · tA(n) + sA(n) = sA(n+ 1)

p · tB(n) + sB(n) = sB(n+ 1)

Thus we have this.
1− 2p p p 0 0

p 1− 2p 0 0 0

p 0 1− 2p 0 0

0 p 0 1 0

0 0 p 0 1




sU(n)

tA(n)

tB(n)

sA(n)

sB(n)

 =


sU(n+ 1)

tA(n+ 1)

tB(n+ 1)

sA(n+ 1)

sB(n+ 1)


(b) This is the Octave code, with the output removed.

octave:1> T=[.5,.25,.25,0,0;
> .25,.5,0,0,0;
> .25,0,.5,0,0;
> 0,.25,0,1,0;
> 0,0,.25,0,1]
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T =
0.50000 0.25000 0.25000 0.00000 0.00000
0.25000 0.50000 0.00000 0.00000 0.00000
0.25000 0.00000 0.50000 0.00000 0.00000
0.00000 0.25000 0.00000 1.00000 0.00000
0.00000 0.00000 0.25000 0.00000 1.00000

octave:2> p0=[1;0;0;0;0]
octave:3> p1=T*p0
octave:4> p2=T*p1
octave:5> p3=T*p2
octave:6> p4=T*p3
octave:7> p5=T*p4

Here is the output. The probability of ending at sA is about 0.23.

~p0 ~p1 ~p2 ~p3 ~p4 ~p5
sU
tA
tB
sA
sB

1

0

0

0

0

0.50000

0.25000

0.25000

0.00000

0.00000

0.375000

0.250000

0.250000

0.062500

0.062500

0.31250

0.21875

0.21875

0.12500

0.12500

0.26562

0.18750

0.18750

0.17969

0.17969

0.22656

0.16016

0.16016

0.22656

0.22656

(c) With this file as learn.m

# Octave script file for learning model.
function w = learn(p)

T = [1-2*p,p, p, 0, 0;
p, 1-2*p,0, 0, 0;
p, 0, 1-2*p,0, 0;
0, p, 0, 1, 0;
0, 0, p, 0, 1];

T5 = T**5;
p5 = T5*[1;0;0;0;0];
w = p5(4);

endfunction

issuing the command octave:1> learn(.20) yields ans = 0.17664.
(d) This Octave session

octave:1> x=(.01:.01:.50)';
octave:2> y=(.01:.01:.50)';
octave:3> for i=.01:.01:.50
> y(100*i)=learn(i);
> endfor
octave:4> z=[x, y];
octave:5> gplot z

yields this plot. There is no threshold value—no probability above which the
curve rises sharply.
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0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

line 1

5 (a) From these equations

0.90 · pT (n) + 0.01 · pC(n) = pT (n+ 1)

0.10 · pT (n) + 0.99 · pC(n) = pC(n+ 1)

we get this matrix.(
0.90 0.01

0.10 0.99

)(
pT (n)

pC(n)

)
=

(
pT (n+ 1)

pC(n+ 1)

)
(b) This is the result from Octave.

n = 0 1 2 3 4 5
0.30000

0.70000

0.27700

0.72300

0.25653

0.74347

0.23831

0.76169

0.22210

0.77790

0.20767

0.79233

6 7 8 9 10
0.19482

0.80518

0.18339

0.81661

0.17322

0.82678

0.16417

0.83583

0.15611

0.84389

(c) This is the sT = 0.2 result.
n = 0 1 2 3 4 5
0.20000

0.80000

0.18800

0.81200

0.17732

0.82268

0.16781

0.83219

0.15936

0.84064

0.15183

0.84817

6 7 8 9 10
0.14513

0.85487

0.13916

0.86084

0.13385

0.86615

0.12913

0.87087

0.12493

0.87507

(d) Although the probability vectors start 0.1 apart, they end only 0.032 apart.
So they are alike.

6 These are the p = .55 vectors, and the p = 0.60 vectors.
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n = 0 n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7

0-0
1-0
0-1
2-0
1-1
0-2
3-0
2-1
1-2
0-3
4-0
3-1
2-2
1-3
0-4
4-1
3-2
2-3
1-4
4-2
3-3
2-4
4-3
3-4

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.55000

0.45000

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.30250

0.49500

0.20250

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.16638

0.40837

0.33412

0.09112

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.09151

0.29948

0.36754

0.20047

0.04101

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.09151

0

0

0

0.04101

0.16471

0.33691

0.27565

0.09021

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.09151

0

0

0

0.04101

0.16471

0

0

0.09021

0.18530

0.30322

0.12404

0

0

0

0

0

0

0

0

0

0

0

0

0.09151

0

0

0

0.04101

0.16471

0

0

0.09021

0.18530

0

0.12404

0.16677

0.13645

n = 0 n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7

0-0
1-0
0-1
2-0
1-1
0-2
3-0
2-1
1-2
0-3
4-0
3-1
2-2
1-3
0-4
4-1
3-2
2-3
1-4
4-2
3-3
2-4
4-3
3-4

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.60000

0.40000

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.36000

0.48000

0.16000

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.21600

0.43200

0.28800

0.06400

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.12960

0.34560

0.34560

0.15360

0.02560

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.12960

0

0

0

0.02560

0.20736

0.34560

0.23040

0.06144

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.12960

0

0

0

0.02560

0.20736

0

0

0.06144

0.20736

0.27648

0.09216

0

0

0

0

0

0

0

0

0

0

0

0

0.12960

0

0

0

0.02560

0.20736

0

0

0.06144

0.20736

0

0.09216

0.16589

0.11059
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(a) We can adapt the script from the end of this Topic.

# Octave script file to compute chance of World Series outcomes.
function w = markov(p,v)
q = 1-p;
A=[0,0,0,0,0,0, 0,0,0,0,0,0, 0,0,0,0,0,0, 0,0,0,0,0,0; # 0-0

p,0,0,0,0,0, 0,0,0,0,0,0, 0,0,0,0,0,0, 0,0,0,0,0,0; # 1-0
q,0,0,0,0,0, 0,0,0,0,0,0, 0,0,0,0,0,0, 0,0,0,0,0,0; # 0-1_
0,p,0,0,0,0, 0,0,0,0,0,0, 0,0,0,0,0,0, 0,0,0,0,0,0; # 2-0
0,q,p,0,0,0, 0,0,0,0,0,0, 0,0,0,0,0,0, 0,0,0,0,0,0; # 1-1
0,0,q,0,0,0, 0,0,0,0,0,0, 0,0,0,0,0,0, 0,0,0,0,0,0; # 0-2__
0,0,0,p,0,0, 0,0,0,0,0,0, 0,0,0,0,0,0, 0,0,0,0,0,0; # 3-0
0,0,0,q,p,0, 0,0,0,0,0,0, 0,0,0,0,0,0, 0,0,0,0,0,0; # 2-1
0,0,0,0,q,p, 0,0,0,0,0,0, 0,0,0,0,0,0, 0,0,0,0,0,0; # 1-2_
0,0,0,0,0,q, 0,0,0,0,0,0, 0,0,0,0,0,0, 0,0,0,0,0,0; # 0-3
0,0,0,0,0,0, p,0,0,0,1,0, 0,0,0,0,0,0, 0,0,0,0,0,0; # 4-0
0,0,0,0,0,0, q,p,0,0,0,0, 0,0,0,0,0,0, 0,0,0,0,0,0; # 3-1__
0,0,0,0,0,0, 0,q,p,0,0,0, 0,0,0,0,0,0, 0,0,0,0,0,0; # 2-2
0,0,0,0,0,0, 0,0,q,p,0,0, 0,0,0,0,0,0, 0,0,0,0,0,0; # 1-3
0,0,0,0,0,0, 0,0,0,q,0,0, 0,0,1,0,0,0, 0,0,0,0,0,0; # 0-4_
0,0,0,0,0,0, 0,0,0,0,0,p, 0,0,0,1,0,0, 0,0,0,0,0,0; # 4-1
0,0,0,0,0,0, 0,0,0,0,0,q, p,0,0,0,0,0, 0,0,0,0,0,0; # 3-2
0,0,0,0,0,0, 0,0,0,0,0,0, q,p,0,0,0,0, 0,0,0,0,0,0; # 2-3__
0,0,0,0,0,0, 0,0,0,0,0,0, 0,q,0,0,0,0, 1,0,0,0,0,0; # 1-4
0,0,0,0,0,0, 0,0,0,0,0,0, 0,0,0,0,p,0, 0,1,0,0,0,0; # 4-2
0,0,0,0,0,0, 0,0,0,0,0,0, 0,0,0,0,q,p, 0,0,0,0,0,0; # 3-3_
0,0,0,0,0,0, 0,0,0,0,0,0, 0,0,0,0,0,q, 0,0,0,1,0,0; # 2-4
0,0,0,0,0,0, 0,0,0,0,0,0, 0,0,0,0,0,0, 0,0,p,0,1,0; # 4-3
0,0,0,0,0,0, 0,0,0,0,0,0, 0,0,0,0,0,0, 0,0,q,0,0,1]; # 3-4

v7 = (A**7) * v;
w = v7(11)+v7(16)+v7(20)+v7(23)

endfunction

When the American League has a p = 0.55 probability of winning each game
then their probability of winning the series is 0.60829. When their probability of
winning any one game is p = 0.6 then their probability of winning the series is
0.71021.

(b) From this Octave session and its graph

octave:1> v0=[1;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0];
octave:2> x=(.01:.01:.99)';
octave:3> y=(.01:.01:.99)';
octave:4> for i=.01:.01:.99
> y(100*i)=markov(i,v0);
> endfor
octave:5> z=[x, y];
octave:6> gplot z

by eye we judge that if p > 0.7 then the team is close to assured of the series.
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7 (a) They must satisfy this condition because the total probability of a state
transition (including back to the same state) is 100%.

(b) See the answer to the third item.
(c) We will do the 2×2 case; bigger-sized cases are just notational problems. This
product(

a1,1 a1,2
a2,1 a2,2

)(
b1,1 b1,2
b2,1 b2,2

)
=

(
a1,1b1,1 + a1,2b2,1 a1,1b1,2 + a1,2b2,2
a2,1b1,1 + a2,2b2,1 a2,1b1,2 + a2,2b2,2

)
has these two column sums

(a1,1b1,1+a1,2b2,1)+(a2,1b1,1+a2,2b2,1) = (a1,1+a2,1)·b1,1+(a1,2+a2,2)·b2,1
= 1 · b1,1 + 1 · b2,1 = 1

and

(a1,1b1,2+a1,2b2,2)+(a2,1b1,2+a2,2b2,2) = (a1,1+a2,1)·b1,2+(a1,2+a2,2)·b2,2
= 1 · b1,2 + 1 · b2,2 = 1

as required.

Topic: Orthonormal Matrices

1 (a) Yes.
(b) No, the columns do not have length one.
(c) Yes.

2 Some of these are nonlinear, because they involve a nontrivial translation.

(a)

(
x

y

)
7→

(
x · cos(π/6) − y · sin(π/6)
x · sin(π/6) + y · cos(π/6)

)
+

(
0

1

)
=

(
x · (
√
3/2) − y · (1/2) + 0

x · (1/2) + y · cos(
√
3/2) + 1

)
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(b) The line y = 2x makes an angle of arctan(2/1) with the x-axis. Thus sin θ =

2/
√
5 and cos θ = 1/

√
5.(
x

y

)
7→

(
x · (1/

√
5) − y · (2/

√
5)

x · (2/
√
5) + y · (1/

√
5)

)

(c)

(
x

y

)
7→

(
x · (1/

√
5) − y · (−2/

√
5)

x · (−2/
√
5) + y · (1/

√
5)

)
+

(
1

1

)
=

(
x/
√
5+ 2y/

√
5+ 1

−2x/
√
5+ y/

√
5+ 1

)
3 (a) Let f be distance-preserving and consider f−1. Any two points in the codomain

can be written as f(P1) and f(P2). Because f is distance-preserving, the distance
from f(P1) to f(P2) equals the distance from P1 to P2. But this is exactly what
is required for f−1 to be distance-preserving.

(b) Any plane figure F is congruent to itself via the identity map id : R2 → R2,
which is obviously distance-preserving. If F1 is congruent to F2 (via some f)
then F2 is congruent to F1 via f−1, which is distance-preserving by the prior
item. Finally, if F1 is congruent to F2 (via some f) and F2 is congruent to F3
(via some g) then F1 is congruent to F3 via g ◦ f, which is easily checked to be
distance-preserving.

4 The first two components of each are ax+ cy+ e and bx+ dy+ f.

5 (a) The Pythagorean Theorem gives that three points are collinear if and only
if (for some ordering of them into P1, P2, and P3), dist(P1, P2) + dist(P2, P3) =
dist(P1, P3). Of course, where f is distance-preserving, this holds if and only
if dist(f(P1), f(P2)) + dist(f(P2), f(P3)) = dist(f(P1), f(P3)), which, again by
Pythagoras, is true if and only if f(P1), f(P2), and f(P3) are collinear.

The argument for betweeness is similar (above, P2 is between P1 and P3).
If the figure F is a triangle then it is the union of three line segments P1P2,

P2P3, and P1P3. The prior two paragraphs together show that the property of
being a line segment is invariant. So f(F) is the union of three line segments, and
so is a triangle.

A circle C centered at P and of radius r is the set of all points Q such that
dist(P,Q) = r. Applying the distance-preserving map f gives that the image
f(C) is the set of all f(Q) subject to the condition that dist(P,Q) = r. Since
dist(P,Q) = dist(f(P), f(Q)), the set f(C) is also a circle, with center f(P) and
radius r.

(b) Here are two that are easy to verify: (i) the property of being a right triangle,
and (ii) the property of two lines being parallel.

(c) One that was mentioned in the section is the ‘sense’ of a figure. A triangle
whose vertices read clockwise as P1, P2, P3 may, under a distance-preserving map,
be sent to a triangle read P1, P2, P3 counterclockwise.



Chapter Four

Chapter Four:
Determinants
Definition

Four.I.1: Exploration

Four.I.1.1 (a) 4 (b) 3 (c) −12

Four.I.1.2 (a) 6 (b) 21 (c) 27
Four.I.1.3 For the first, apply the formula in this section, note that any term with a
d, g, or h is zero, and simplify. Lower-triangular matrices work the same way.

Four.I.1.4 (a) Nonsingular, the determinant is −1.
(b) Nonsingular, the determinant is −1.
(c) Singular, the determinant is 0.

Four.I.1.5 (a) Nonsingular, the determinant is 3.
(b) Singular, the determinant is 0.
(c) Singular, the determinant is 0.

Four.I.1.6 (a) det(B) = det(A) via −2ρ1 + ρ2
(b) det(B) = −det(A) via ρ2 ↔ ρ3
(c) det(B) = (1/2) · det(A) via (1/2)ρ2

Four.I.1.7 Gauss’s Method does this.
1 2 0 2

2 4 1 0

0 0 −1 3

3 −1 1 4

 −2ρ1+ρ2−→
−3ρ1+ρ4

ρ2↔ρ4−→ ρ3+ρ4−→


1 2 0 2

0 −7 1 −2

0 0 −1 3

0 0 0 −1


The echelon form matrix has a product down the diagonal of 1·(−7)·(−1)·(−1) = −7.
In the course of Gauss’s Method no rows got rescaled but there was a row swap, so
to get the determinant we change the sign, giving +7.



286 Linear Algebra, by Hefferon

Four.I.1.8 Using the formula for the determinant of a 3×3 matrix we expand the left
side

1 · b · c2 + 1 · c · a2 + 1 · a · b2 − b2 · c · 1− c2 · a · 1− a2 · b · 1

and by distributing we expand the right side.

(bc− ba− ac+ a2) · (c− b) = c2b− b2c− bac+ b2a− ac2 + acb+ a2c− a2b

Now we can just check that the two are equal. (Remark. This is the 3×3 case of
Vandermonde’s determinant which arises in applications).

Four.I.1.9 This equation

0 = det(

(
12− x 4

8 8− x

)
) = 64− 20x+ x2 = (x− 16)(x− 4)

has roots x = 16 and x = 4.

Four.I.1.10 We first reduce the matrix to echelon form. To begin, assume that a 6= 0
and that ae− bd 6= 0.

(1/a)ρ1−→

1 b/a c/a

d e f

g h i

 −dρ1+ρ2−→
−gρ1+ρ3

1 b/a c/a

0 (ae− bd)/a (af− cd)/a

0 (ah− bg)/a (ai− cg)/a


(a/(ae−bd))ρ2−→

1 b/a c/a

0 1 (af− cd)/(ae− bd)

0 (ah− bg)/a (ai− cg)/a


This step finishes the calculation.

((ah−bg)/a)ρ2+ρ3−→

1 b/a c/a

0 1 (af− cd)/(ae− bd)

0 0 (aei+ bgf+ cdh− hfa− idb− gec)/(ae− bd)


Now assuming that a 6= 0 and ae − bd 6= 0, the original matrix is nonsingular if
and only if the 3, 3 entry above is nonzero. That is, under the assumptions, the
original matrix is nonsingular if and only if aei+ bgf+ cdh−hfa− idb− gec 6= 0,
as required.

We finish by running down what happens if the assumptions that were taken
for convenience in the prior paragraph do not hold. First, if a 6= 0 but ae− bd = 0

then we can swap1 b/a c/a

0 0 (af− cd)/a

0 (ah− bg)/a (ai− cg)/a

 ρ2↔ρ3−→

1 b/a c/a

0 (ah− bg)/a (ai− cg)/a

0 0 (af− cd)/a


and conclude that the matrix is nonsingular if and only if either ah − bg = 0 or
af − cd = 0. The condition ‘ah − bg = 0 or af − cd = 0’ is equivalent to the
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condition ‘(ah− bg)(af− cd) = 0’. Multiplying out and using the case assumption
that ae− bd = 0 to substitute ae for bd gives this.

0 = ahaf− ahcd− bgaf+ bgcd = ahaf− ahcd− bgaf+ aegc

= a(haf− hcd− bgf+ egc)

Since a 6= 0, we have that the matrix is nonsingular if and only if haf−hcd−bgf+
egc = 0. Therefore, in this a 6= 0 and ae− bd = 0 case, the matrix is nonsingular
when haf− hcd− bgf+ egc− i(ae− bd) = 0.

The remaining cases are routine. Do the a = 0 but d 6= 0 case and the a = 0

and d = 0 but g 6= 0 case by first swapping rows and then going on as above. The
a = 0, d = 0, and g = 0 case is easy—that matrix is singular since the columns
form a linearly dependent set, and the determinant comes out to be zero.

Four.I.1.11 Figuring the determinant and doing some algebra gives this.

0 = y1x+ x2y+ x1y2 − y2x− x1y− x2y1

(x2 − x1) · y = (y2 − y1) · x+ x2y1 − x1y2

y =
y2 − y1
x2 − x1

· x+ x2y1 − x1y2
x2 − x1

Note that this is the equation of a line (in particular, in contains the familiar
expression for the slope), and note that (x1, y1) and (x2, y2) satisfy it.

Four.I.1.12 (a) The comparison with the formula given in the preamble to this
section is easy.

(b) While it holds for 2×2 matrices(
h1,1 h1,2 h1,1
h2,1 h2,2 h2,1

)
= h1,1h2,2 + h1,2h2,1

−h2,1h1,2 − h2,2h1,1

= h1,1h2,2 − h1,2h2,1

it does not hold for 4×4 matrices. An example is that this matrix is singular
because the second and third rows are equal

1 0 0 1

0 1 1 0

0 1 1 0

−1 0 0 1


but following the scheme of the mnemonic does not give zero.

1 0 0 1 1 0 0

0 1 1 0 0 1 1

0 1 1 0 0 1 1

−1 0 0 1 −1 0 0

 = 1+ 0+ 0+ 0

−(−1) − 0− 0− 0
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Four.I.1.13 The determinant is (x2y3−x3y2)~e1+(x3y1−x1y3)~e2+(x1y2−x2y1)~e3.
To check perpendicularity, we check that the dot product with the first vector is
zerox1x2
x3

•
x2y3 − x3y2x3y1 − x1y3
x1y2 − x2y1

 = x1x2y3−x1x3y2+x2x3y1−x1x2y3+x1x3y2−x2x3y1 = 0

and the dot product with the second vector is also zero.y1y2
y3

•
x2y3 − x3y2x3y1 − x1y3
x1y2 − x2y1

 = x2y1y3−x3y1y2+x3y1y2−x1y2y3+x1y2y3−x2y1y3 = 0

Four.I.1.14 (a) Plug and chug: the determinant of the product is this

det(

(
a b

c d

)(
w x

y z

)
) = det(

(
aw+ by ax+ bz

cw+ dy cx+ dz

)
)

= acwx+ adwz+ bcxy+ bdyz

−acwx− bcwz− adxy− bdyz

while the product of the determinants is this.

det(

(
a b

c d

)
) · det(

(
w x

y z

)
) = (ad− bc) · (wz− xy)

Verification that they are equal is easy.
(b) Use the prior item.

That similar matrices have the same determinant is immediate from the above two:
det(PTP−1) = det(P) · det(T) · det(P−1).

Four.I.1.15 One way is to count these areas

y1

y2

x2 x1

A
B

C

D

E
F

by taking the area of the entire rectangle and subtracting the area of A the upper-
left rectangle, B the upper-middle triangle, D the upper-right triangle, C the
lower-left triangle, E the lower-middle triangle, and F the lower-right rectangle
(x1+x2)(y1+y2)−x2y1−(1/2)x1y1−(1/2)x2y2−(1/2)x2y2−(1/2)x1y1−x2y1.
Simplification gives the determinant formula.

This determinant is the negative of the one above; the formula distinguishes
whether the second column is counterclockwise from the first.

Four.I.1.16 The computation for 2×2 matrices, using the formula quoted in the
preamble, is easy. It does also hold for 3×3 matrices; the computation is routine.
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Four.I.1.17 No. We illustrate with the 2×2 determinant. Recall that constants come
out one row at a time.

det(

(
2 4

2 6

)
) = 2 · det(

(
1 2

2 6

)
) = 2 · 2 · det(

(
1 2

1 3

)
)

This contradicts linearity (here we didn’t need S, i.e., we can take S to be the
matrix of zeros).

Four.I.1.18 Bring out the c’s one row at a time.

Four.I.1.19 There are no real numbers θ that make the matrix singular because
the determinant of the matrix cos2 θ + sin2 θ is never 0, it equals 1 for all θ.
Geometrically, with respect to the standard basis, this matrix represents a rotation
of the plane through an angle of θ. Each such map is one-to-one— for one thing, it
is invertible.

Four.I.1.20 This is how the answer was given in the cited source. Let P be the
sum of the three positive terms of the determinant and −N the sum of the three
negative terms. The maximum value of P is

9 · 8 · 7+ 6 · 5 · 4+ 3 · 2 · 1 = 630.

The minimum value of N consistent with P is

9 · 6 · 1+ 8 · 5 · 2+ 7 · 4 · 3 = 218.

Any change in P would result in lowering that sum by more than 4. Therefore 412
the maximum value for the determinant and one form for the determinant is∣∣∣∣∣∣∣

9 4 2

3 8 6

5 1 7

∣∣∣∣∣∣∣ .

Four.I.2: Properties of Determinants

Four.I.2.8 (a) Do 2ρ1+ρ2 to get echelon form, and then multiply down the diagonal.
The determinant is 0.

(b) Swapping the second and third rows brings the system to echelon form (and
changes the sign of the determinant). Multiplying down the diagonal gives 12, so
the determinant of the given matrix is −12.

Four.I.2.9 (a)

∣∣∣∣∣∣∣
3 1 2

3 1 0

0 1 4

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣
3 1 2

0 0 −2

0 1 4

∣∣∣∣∣∣∣ = −

∣∣∣∣∣∣∣
3 1 2

0 1 4

0 0 −2

∣∣∣∣∣∣∣ = 6
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(b)

∣∣∣∣∣∣∣∣∣
1 0 0 1

2 1 1 0

−1 0 1 0

1 1 1 0

∣∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣
1 0 0 1

0 1 1 −2

0 0 1 1

0 1 1 −1

∣∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣
1 0 0 1

0 1 1 −2

0 0 1 1

0 0 0 1

∣∣∣∣∣∣∣∣∣ = 1

Four.I.2.10 (a)

∣∣∣∣∣ 2 −1

−1 −1

∣∣∣∣∣ =
∣∣∣∣∣2 −1

0 −3/2

∣∣∣∣∣ = −3;

(b)

∣∣∣∣∣∣∣
1 1 0

3 0 2

5 2 2

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣
1 1 0

0 −3 2

0 −3 2

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣
1 1 0

0 −3 2

0 0 0

∣∣∣∣∣∣∣ = 0
Four.I.2.11 When is the determinant not zero?∣∣∣∣∣∣∣∣∣

1 0 1 −1

0 1 −2 0

1 0 k 0

0 0 1 −1

∣∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣
1 0 1 −1

0 1 −2 0

0 0 k− 1 1

0 0 1 −1

∣∣∣∣∣∣∣∣∣
Obviously, k = 1 gives nonsingularity and hence a nonzero determinant. If k 6= 1
then we get echelon form with a (−1/k− 1)ρ3 + ρ4 combination.

=

∣∣∣∣∣∣∣∣∣
1 0 1 −1

0 1 −2 0

0 0 k− 1 1

0 0 0 −1− (1/k− 1)

∣∣∣∣∣∣∣∣∣
Multiplying down the diagonal gives (k− 1)(−1− (1/k− 1)) = −(k− 1) − 1 = −k.
Thus the matrix has a nonzero determinant, and so the system has a unique solution,
if and only if k 6= 0.

Four.I.2.12 (a) Condition (2) of the definition of determinants applies via the swap
ρ1 ↔ ρ3. ∣∣∣∣∣∣∣

h3,1 h3,2 h3,3
h2,1 h2,2 h2,3
h1,1 h1,2 h1,3

∣∣∣∣∣∣∣ = −

∣∣∣∣∣∣∣
h1,1 h1,2 h1,3
h2,1 h2,2 h2,3
h3,1 h3,2 h3,3

∣∣∣∣∣∣∣
(b) Condition (3) applies.∣∣∣∣∣∣∣

−h1,1 −h1,2 −h1,3
−2h2,1 −2h2,2 −2h2,3
−3h3,1 −3h3,2 −3h3,3

∣∣∣∣∣∣∣ = (−1) · (−2) · (−3) ·

∣∣∣∣∣∣∣
h1,1 h1,2 h1,3
h2,1 h2,2 h2,3
h3,1 h3,2 h3,3

∣∣∣∣∣∣∣
= (−6) ·

∣∣∣∣∣∣∣
h1,1 h1,2 h1,3
h2,1 h2,2 h2,3
h3,1 h3,2 h3,3

∣∣∣∣∣∣∣
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(c) ∣∣∣∣∣∣∣
h1,1 + h3,1 h1,2 + h3,2 h1,3 + h3,3
h2,1 h2,2 h2,3
5h3,1 5h3,2 5h3,3

∣∣∣∣∣∣∣
= 5 ·

∣∣∣∣∣∣∣
h1,1 + h3,1 h1,2 + h3,2 h1,3 + h3,3
h2,1 h2,2 h2,3
h3,1 h3,2 h3,3

∣∣∣∣∣∣∣
= 5 ·

∣∣∣∣∣∣∣
h1,1 h1,2 h1,3
h2,1 h2,2 h2,3
h3,1 h3,2 h3,3

∣∣∣∣∣∣∣
Four.I.2.13 A diagonal matrix is in echelon form, so the determinant is the product
down the diagonal.

Four.I.2.14 It is the trivial subspace.

Four.I.2.15 Adding the second row to the first gives a matrix whose first row is
x+ y+ z times its third row.

Four.I.2.16 (a)
(
1
)
,

(
1 −1

−1 1

)
,

 1 −1 1

−1 1 −1

1 −1 1


(b) The determinant in the 1×1 case is 1. In every other case the second row is
the negative of the first, and so matrix is singular and the determinant is zero.

Four.I.2.17 (a)
(
2
)
,

(
2 3

3 4

)
,

2 3 4

3 4 5

4 5 6


(b) The 1×1 and 2×2 cases yield these.∣∣∣2∣∣∣ = 2 ∣∣∣∣∣2 3

3 4

∣∣∣∣∣ = −1

And n×n matrices with n > 3 are singular, e.g.,∣∣∣∣∣∣∣
2 3 4

3 4 5

4 5 6

∣∣∣∣∣∣∣ = 0
because twice the second row minus the first row equals the third row. Checking
this is routine.

Four.I.2.18 This one

A = B =

(
1 2

3 4

)
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is easy to check.

|A+ B| =

∣∣∣∣∣2 4

6 8

∣∣∣∣∣ = −8 |A|+ |B| = −2− 2 = −4

By the way, this also gives an example where scalar multiplication is not preserved
|2 ·A| 6= 2 · |A|.

Four.I.2.19 No, we cannot replace it. Remark 2.2 shows that the four conditions after
the replacement would conflict—no function satisfies all four.

Four.I.2.20 A upper-triangular matrix is in echelon form.
A lower-triangular matrix is either singular or nonsingular. If it is singular then

it has a zero on its diagonal and so its determinant (namely, zero) is indeed the
product down its diagonal. If it is nonsingular then it has no zeroes on its diagonal,
and we can reduce it by Gauss’s Method to echelon form without changing the
diagonal.

Four.I.2.21 (a) The properties in the definition of determinant show that |Mi(k)| = k,
|Pi,j| = −1, and |Ci,j(k)| = 1.

(b) The three cases are easy to check by recalling the action of left multiplication
by each type of matrix.

(c) If TS is invertible (TS)M = I then the associative property of matrix multipli-
cation T(SM) = I shows that T is invertible. So if T is not invertible then neither
is TS.

(d) If T is singular then apply the prior answer: |TS| = 0 and |T | · |S| = 0 · |S| = 0.
If T is not singular then we can write it as a product of elementary matrices
|TS| = |Er · · ·E1S| = |Er| · · · |E1| · |S| = |Er · · ·E1||S| = |T ||S|.

(e) 1 = |I| = |T · T−1| = |T ||T−1|

Four.I.2.22 (a) We must show that if

T
kρi+ρj−→ T̂

then d(T) = |TS|/|S| = |T̂S|/|S| = d(T̂). We will be done if we show that combining
rows first and then multiplying to get T̂S gives the same result as multiplying
first to get TS and then combining (because the determinant |TS| is unaffected
by the combination so we’ll then have |T̂S| = |TS|, and hence d(T̂) = d(T)). That
argument runs: after adding k times row i of TS to row j of TS, the j, p entry is
(kti,1 + tj,1)s1,p + · · ·+ (kti,r + tj,r)sr,p, which is the j, p entry of T̂S.

(b) We need only show that swapping T
ρi↔ρj−→ T̂ and then multiplying to get T̂S

gives the same result as multiplying T by S and then swapping (because, as the
determinant |TS| changes sign on the row swap, we’ll then have |T̂S| = −|TS|, and
so d(T̂) = −d(T)). That argument runs just like the prior one.
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(c) Not surprisingly by now, we need only show that multiplying a row by a scalar

T
kρi−→ T̂ and then computing T̂S gives the same result as first computing TS

and then multiplying the row by k (as the determinant |TS| is rescaled by k the
multiplication, we’ll have |T̂S| = k|TS|, so d(T̂) = kd(T)). The argument runs
just as above.

(d) Clear.
(e) Because we’ve shown that d(T) is a determinant and that determinant functions
(if they exist) are unique, we have that so |T | = d(T) = |TS|/|S|.

Four.I.2.23 We will first argue that a rank r matrix has a r×r submatrix with nonzero
determinant. A rank r matrix has a linearly independent set of r rows. A matrix
made from those rows will have row rank r and thus has column rank r. Conclusion:
from those r rows we can extract a linearly independent set of r columns, and so
the original matrix has a r×r submatrix of rank r.

We finish by showing that if r is the largest such integer then the rank of the
matrix is r. We need only show, by the maximality of r, that if a matrix has a
k×k submatrix of nonzero determinant then the rank of the matrix is at least k.
Consider such a k×k submatrix. Its rows are parts of the rows of the original
matrix, clearly the set of whole rows is linearly independent. Thus the row rank of
the original matrix is at least k, and the row rank of a matrix equals its rank.

Four.I.2.24 A matrix with only rational entries reduces with Gauss’s Method to an
echelon form matrix using only rational arithmetic. Thus the entries on the diagonal
must be rationals, and so the product down the diagonal is rational.

Four.I.2.25 This is how the answer was given in the cited source. The value
(1−a4)3 of the determinant is independent of the values B, C,D. Hence operation (e)
does not change the value of the determinant but merely changes its appearance.
Thus the element of likeness in (a), (b), (c), (d), and (e) is only that the appearance
of the principle entity is changed. The same element appears in (f) changing the
name-label of a rose, (g) writing a decimal integer in the scale of 12, (h) gilding the
lily, (i) whitewashing a politician, and (j) granting an honorary degree.

Four.I.3: The Permutation Expansion

Four.I.3.17 Call the matrix M.
permutation φ1 φ2 φ3 φ4 φ5 φ6

term 1 · 5 · 9 1 · 6 · 8 2 · 4 · 9 2 · 6 · 7 3 · 4 · 8 3 · 5 · 7
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Four.I.3.18 We can swap each Pφ to the identity matrix. If the number of swaps is
even then it’s determinant is +1, while if the number of swaps is odd then the
determinant is −1

permutation φ1 φ2 φ3 φ4 φ5 φ6

number of swaps 0 1 1 2 2 1

|Pφi | +1 −1 −1 +1 +1 −1

Remark. In that table we simply swapped until we found a number that brought
us back to ‘1, 2, 3’. But is a different number of swaps possible? If one person found
2 swaps and another found 4 that would be OK, since both give a determinant
of +1. But if we can swap in two different ways and one of them is even and one is
odd then that would be a problem. The next section shows that a mix of even and
odd is not possible.

Four.I.3.19 ∣∣∣∣∣2 3

1 5

∣∣∣∣∣ = 2 · 5 · |Pφ1 |+ 1 · 3 · |Pφ2 |
= 2 · 5 ·

∣∣∣∣∣1 0

0 1

∣∣∣∣∣+ 1 · 3 ·
∣∣∣∣∣0 1

1 0

∣∣∣∣∣
= 2 · 5 · 1+ 1 · 3 · (−1) = 7

Four.I.3.20∣∣∣∣∣∣∣
−1 0 1

3 1 4

2 1 5

∣∣∣∣∣∣∣ = (−1)(1)(5) |Pφ1 |+ (−1)(4)(1) |Pφ2 |+ (0)(3)(5) |Pφ3 |

+ (0)(4)(2) |Pφ4 |+ (1)(3)(1) |Pφ5 |+ (1)(1)(2) |Pφ6 |

= (−1)(1)(5) · 1+ (−1)(4)(1) · (−1) + (0)(3)(5) · (−1)
+ (0)(4)(2) · 1+ (1)(3)(1) · 1+ (1)(1)(2) · (−1)

= −5+ 4+ 0+ 0+ 3− 2 = 0

Four.I.3.21 (a) This matrix is singular.∣∣∣∣∣∣∣
1 2 3

4 5 6

7 8 9

∣∣∣∣∣∣∣ = (1)(5)(9) |Pφ1 |+ (1)(6)(8) |Pφ2 |+ (2)(4)(9) |Pφ3 |

+ (2)(6)(7) |Pφ4 |+ (3)(4)(8) |Pφ5 |+ (7)(5)(3) |Pφ6 |

= 0

(b) This matrix is nonsingular.∣∣∣∣∣∣∣
2 2 1

3 −1 0

−2 0 5

∣∣∣∣∣∣∣ = (2)(−1)(5) |Pφ1 |+ (2)(0)(0) |Pφ2 |+ (2)(3)(5) |Pφ3 |

+ (2)(0)(−2) |Pφ4 |+ (1)(3)(0) |Pφ5 |+ (−2)(−1)(1) |Pφ6 |

= −42
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Four.I.3.22 (a) Gauss’s Method gives this∣∣∣∣∣2 1

3 1

∣∣∣∣∣ =
∣∣∣∣∣2 1

0 −1/2

∣∣∣∣∣ = −1

and permutation expansion gives this.∣∣∣∣∣2 1

3 1

∣∣∣∣∣ =
∣∣∣∣∣2 0

0 1

∣∣∣∣∣+
∣∣∣∣∣0 1

3 0

∣∣∣∣∣ = (2)(1)

∣∣∣∣∣1 0

0 1

∣∣∣∣∣+ (1)(3)

∣∣∣∣∣0 1

1 0

∣∣∣∣∣ = −1

(b) Gauss’s Method gives this∣∣∣∣∣∣∣
0 1 4

0 2 3

1 5 1

∣∣∣∣∣∣∣ = −

∣∣∣∣∣∣∣
1 5 1

0 2 3

0 1 4

∣∣∣∣∣∣∣ = −

∣∣∣∣∣∣∣
1 5 1

0 2 3

0 0 5/2

∣∣∣∣∣∣∣ = −5

and the permutation expansion gives this.∣∣∣∣∣∣∣
0 1 4

0 2 3

1 5 1

∣∣∣∣∣∣∣ = (0)(2)(1) |Pφ1 |+ (0)(3)(5) |Pφ2 |+ (1)(0)(1) |Pφ3 |

+ (1)(3)(1) |Pφ4 |+ (4)(0)(5) |Pφ5 |+ (1)(2)(0) |Pφ6 |

= −5

Four.I.3.23 Following Example 3.6 gives this.∣∣∣∣∣∣∣
t1,1 t1,2 t1,3
t2,1 t2,2 t2,3
t3,1 t3,2 t3,3

∣∣∣∣∣∣∣ = t1,1t2,2t3,3 |Pφ1 |+ t1,1t2,3t3,2 |Pφ2 |

+ t1,2t2,1t3,3 |Pφ3 |+ t1,2t2,3t3,1 |Pφ4 |

+ t1,3t2,1t3,2 |Pφ5 |+ t1,3t2,2t3,1 |Pφ6 |

= t1,1t2,2t3,3(+1) + t1,1t2,3t3,2(−1)

+ t1,2t2,1t3,3(−1) + t1,2t2,3t3,1(+1)

+ t1,3t2,1t3,2(+1) + t1,3t2,2t3,1(−1)

Four.I.3.24 This is all of the permutations where φ(1) = 1
φ1 = 〈1, 2, 3, 4〉 φ2 = 〈1, 2, 4, 3〉 φ3 = 〈1, 3, 2, 4〉
φ4 = 〈1, 3, 4, 2〉 φ5 = 〈1, 4, 2, 3〉 φ6 = 〈1, 4, 3, 2〉

the ones where φ(1) = 1
φ7 = 〈2, 1, 3, 4〉 φ8 = 〈2, 1, 4, 3〉 φ9 = 〈2, 3, 1, 4〉
φ10 = 〈2, 3, 4, 1〉 φ11 = 〈2, 4, 1, 3〉 φ12 = 〈2, 4, 3, 1〉

the ones where φ(1) = 3
φ13 = 〈3, 1, 2, 4〉 φ14 = 〈3, 1, 4, 2〉 φ15 = 〈3, 2, 1, 4〉
φ16 = 〈3, 2, 4, 1〉 φ17 = 〈3, 4, 1, 2〉 φ18 = 〈3, 4, 2, 1〉

and the ones where φ(1) = 4.
φ19 = 〈4, 1, 2, 3〉 φ20 = 〈4, 1, 3, 2〉 φ21 = 〈4, 2, 1, 3〉
φ22 = 〈4, 2, 3, 1〉 φ23 = 〈4, 3, 1, 2〉 φ24 = 〈4, 3, 2, 1〉
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Four.I.3.25 Each of these is easy to check.
(a) permutation φ1 φ2

inverse φ1 φ2

(b) permutation φ1 φ2 φ3 φ4 φ5 φ6

inverse φ1 φ2 φ3 φ5 φ4 φ6

Four.I.3.26 For the ‘if’ half, the first condition of Definition 3.2 follows from taking
k1 = k2 = 1 and the second condition follows from taking k2 = 0.

The ‘only if’ half also routine. From f(~ρ1, . . . , k1~v1 + k2~v2, . . . ,~ρn) the first
condition of Definition 3.2 gives = f(~ρ1, . . . , k1~v1, . . . ,~ρn) + f(~ρ1, . . . , k2~v2, . . . ,~ρn)
and the second condition, applied twice, gives the result.

Four.I.3.27 They would all double.

Four.I.3.28 For the second statement, given a matrix, transpose it, swap rows, and
transpose back. The result is swapped columns, and the determinant changes by a
factor of −1. The third statement is similar: given a matrix, transpose it, apply
multilinearity to what are now rows, and then transpose back the resulting matrices.

Four.I.3.29 An n×n matrix with a nonzero determinant has rank n so its columns
form a basis for Rn.

Four.I.3.30 False. ∣∣∣∣∣∣∣
0 1 1

1 0 1

1 1 0

∣∣∣∣∣∣∣ = 2
Four.I.3.31 (a) For the column index of the entry in the first row there are five

choices. Then, for the column index of the entry in the second row there are four
choices. Continuing, we get 5 · 4 · 3 · 2 · 1 = 120. (See also the next question.)

(b) Once we choose the second column in the first row, we can choose the other
entries in 4 · 3 · 2 · 1 = 24 ways.

Four.I.3.32 n · (n− 1) · · · 2 · 1 = n!
Four.I.3.33 [Schmidt] We will show that PPT = I; the PTP = I argument is similar.
The i, j entry of PPT is the sum of terms of the form pi,kqk,j where the entries of
PT are denoted with q’s, that is, qk,j = pj,k. Thus the i, j entry of PPT is the sum∑n
k=1 pi,kpj,k. But pi,k is usually 0, and so Pi,kPj,k is usually 0. The only time

Pi,k is nonzero is when it is 1, but then there are no other i′ 6= i such that Pi′,k is
nonzero (i is the only row with a 1 in column k). In other words,

n∑
k=1

pi,kpj,k =

{
1 i = j

0 otherwise
and this is exactly the formula for the entries of the identity matrix.

Four.I.3.34 In |A| = |AT| = |−A| = (−1)n|A| the exponent n must be even.
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Four.I.3.35 Showing that no placement of three zeros suffices is routine. Four zeroes
does suffice; put them all in the same row or column.

Four.I.3.36 The n = 3 case shows what to do. The row combination operations of
−x1ρ2 + ρ3 and −x1ρ1 + ρ2 give this.∣∣∣∣∣∣∣

1 1 1

x1 x2 x3
x21 x22 x23

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣
1 1 1

x1 x2 x3
0 (−x1 + x2)x2 (−x1 + x3)x3

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
1 1 1

0 −x1 + x2 −x1 + x3
0 (−x1 + x2)x2 (−x1 + x3)x3

∣∣∣∣∣∣∣
Then the row combination operation of x2ρ2 + ρ3 gives the desired result.

=

∣∣∣∣∣∣∣
1 1 1

0 −x1 + x2 −x1 + x3
0 0 (−x1 + x3)(−x2 + x3)

∣∣∣∣∣∣∣ = (x2 − x1)(x3 − x1)(x3 − x2)

Four.I.3.37 Let T be n×n, let J be p×p, and let K be q×q. Apply the permutation
expansion formula

|T | =
∑

permutations φ

t1,φ(1)t2,φ(2) . . . tn,φ(n) |Pφ|

Because the upper right of T is all zeroes, if a φ has at least one of p + 1, . . . , n

among its first p column numbers φ(1), . . . , φ(p) then the term arising from φ is 0
(e.g., if φ(1) = n then t1,φ(1)t2,φ(2) . . . tn,φ(n) is 0). So the above formula reduces
to a sum over all permutations with two halves: first rearrange 1, . . . , p and after
that comes a permutation of p+ 1, . . . , p+ q. To see this gives |J| · |K|, distribute.[ ∑

perms φ1
of 1,...,p

t1,φ1(1) · · · tp,φ1(p) |Pφ1 |
]

·
[ ∑

perms φ2
of p+1,...,p+q

tp+1,φ2(p+1) · · · tp+q,φ2(p+q) |Pφ2 |
]

Four.I.3.38 The n = 3 case shows what happens.

|T − rI| =

∣∣∣∣∣∣∣
t1,1 − x t1,2 t1,3
t2,1 t2,2 − x t2,3
t3,1 t3,2 t3,3 − x

∣∣∣∣∣∣∣
Each term in the permutation expansion has three factors drawn from entries in
the matrix (e.g., (t1,1 − x)(t2,2 − x)(t3,3 − x) and (t1,1 − x)(t2,3)(t3,2)), and so the
determinant is expressible as a polynomial in x of degree 3. Such a polynomial has
at most 3 roots.
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In general, the permutation expansion shows that the determinant is a sum
of terms, each with n factors, giving a polynomial of degree n. A polynomial of
degree n has at most n roots.

Four.I.3.39 This is how the answer was given in the cited source. When two rows
of a determinant are interchanged, the sign of the determinant is changed. When
the rows of a three-by-three determinant are permuted, 3 positive and 3 negative
determinants equal in absolute value are obtained. Hence the 9! determinants fall
into 9!/6 groups, each of which sums to zero.

Four.I.3.40 This is how the answer was given in the cited source. When the
elements of any column are subtracted from the elements of each of the other two,
the elements in two of the columns of the derived determinant are proportional, so
the determinant vanishes. That is,∣∣∣∣∣∣∣

2 1 x− 4

4 2 x− 3

6 3 x− 10

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣
1 x− 3 −1

2 x− 1 −2

3 x− 7 −3

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣
x− 2 −1 −2

x+ 1 −2 −4

x− 4 −3 −6

∣∣∣∣∣∣∣ = 0.
Four.I.3.41 This is how the answer was given in the cited source. Let

a b c

d e f

g h i

have magic sum N = S/3. Then

N = (a+ e+ i) + (d+ e+ f) + (g+ e+ c)

− (a+ d+ g) − (c+ f+ i) = 3e

and S = 9e. Hence, adding rows and columns,

D =

∣∣∣∣∣∣∣
a b c

d e f

g h i

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣
a b c

d e f

3e 3e 3e

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣
a b 3e

d e 3e

3e 3e 9e

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣
a b e

d e e

1 1 1

∣∣∣∣∣∣∣S.
Four.I.3.42 This is how the answer was given in the cited source. Denote by Dn
the determinant in question and by ai,j the element in the i-th row and j-th column.
Then from the law of formation of the elements we have

ai,j = ai,j−1 + ai−1,j, a1,j = ai,1 = 1.

Subtract each row of Dn from the row following it, beginning the process with
the last pair of rows. After the n− 1 subtractions the above equality shows that
the element ai,j is replaced by the element ai,j−1, and all the elements in the first
column, except a1,1 = 1, become zeroes. Now subtract each column from the one
following it, beginning with the last pair. After this process the element ai,j−1
is replaced by ai−1,j−1, as shown in the above relation. The result of the two
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operations is to replace ai,j by ai−1,j−1, and to reduce each element in the first
row and in the first column to zero. Hence Dn = Dn+i and consequently

Dn = Dn−1 = Dn−2 = · · · = D2 = 1.

Four.I.4: Determinants Exist

Four.I.4.11 This is the permutation expansion of the determinant of a 2×2 matrix∣∣∣∣∣a b

c d

∣∣∣∣∣ = ad ·
∣∣∣∣∣1 0

0 1

∣∣∣∣∣+ bc ·
∣∣∣∣∣0 1

1 0

∣∣∣∣∣
and the permutation expansion of the determinant of its transpose.∣∣∣∣∣a c

b d

∣∣∣∣∣ = ad ·
∣∣∣∣∣1 0

0 1

∣∣∣∣∣+ cb ·
∣∣∣∣∣0 1

1 0

∣∣∣∣∣
As with the 3×3 expansions described in the subsection, the permutation matrices
from corresponding terms are transposes (although this is disguised by the fact
that each is self-transpose).

Four.I.4.12 Each of these is easy to check.
(a) permutation φ1 φ2

inverse φ1 φ2

(b) permutation φ1 φ2 φ3 φ4 φ5 φ6

inverse φ1 φ2 φ3 φ5 φ4 φ6

Four.I.4.13 (a) sgn(φ1) = +1, sgn(φ2) = −1

(b) sgn(φ1) = +1, sgn(φ2) = −1, sgn(φ3) = −1, sgn(φ4) = +1, sgn(φ5) = +1,
sgn(φ6) = −1

Four.I.4.14 To get a nonzero term in the permutation expansion we must use the 1, 2
entry and the 4, 3 entry. Having fixed on those two we must also use the 2, 1 entry
and the 3, 4 entry. The signum of 〈2, 1, 4, 3〉 is +1 because from

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0


the two row swaps ρ1 ↔ ρ2 and ρ3 ↔ ρ4 will produce the identity matrix.

Four.I.4.15 The pattern is this.
i 1 2 3 4 5 6 . . .

sgn(φi) +1 −1 −1 +1 +1 −1 . . .
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So to find the signum of φn!, we subtract one n!− 1 and look at the remainder on
division by four. If the remainder is 1 or 2 then the signum is −1, otherwise it is
+1. For n > 4, the number n! is divisible by four, so n!− 1 leaves a remainder of
−1 on division by four (more properly said, a remainder or 3), and so the signum
is +1. The n = 1 case has a signum of +1, the n = 2 case has a signum of −1 and
the n = 3 case has a signum of −1.

Four.I.4.16 (a) We can view permutations as maps φ : {1, . . . , n }→ {1, . . . , n } that
are one-to-one and onto. Any one-one and onto map has an inverse.

(b) If it always takes an odd number of swaps to get from Pφ to the identity, then
it always takes an odd number of swaps to get from the identity to Pφ (any swap
is reversible).

(c) This is the first question again.

Four.I.4.17 If φ(i) = j then φ−1(j) = i. The result now follows on the observation
that Pφ has a 1 in entry i, j if and only if φ(i) = j, and Pφ−1 has a 1 in entry j, i if
and only if φ−1(j) = i,

Four.I.4.18 This does not say that m is the least number of swaps to produce an
identity, nor does it say that m is the most. It instead says that there is a way to
swap to the identity in exactly m steps.

Let ιj be the first row that is inverted with respect to a prior row and let ιk be
the first row giving that inversion. We have this interval of rows.

...
ιk
ιr1
...
ιrs
ιj
...


j < k < r1 < · · · < rs

Swap. 

...
ιj
ιr1
...
ιrs
ιk
...
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The second matrix has one fewer inversion because there is one fewer inversion in
the interval (s vs. s+ 1) and inversions involving rows outside the interval are not
affected.

Proceed in this way, at each step reducing the number of inversions by one with
each row swap. When no inversions remain the result is the identity.

The contrast with Corollary 4.5 is that the statement of this exercise is a ‘there
exists’ statement: there exists a way to swap to the identity in exactly m steps.
But the corollary is a ‘for all’ statement: for all ways to swap to the identity, the
parity (evenness or oddness) is the same.

Four.I.4.19 (a) First, g(φ1) is the product of the single factor 2−1 and so g(φ1) = 1.
Second, g(φ2) is the product of the single factor 1− 2 and so g(φ2) = −1.

(b) permutation φ φ1 φ2 φ3 φ4 φ5 φ6

g(φ) 2 −2 −2 2 2 −2

(c) It is a product of nonzero terms.
(d) Note that φ(j)−φ(i) is negative if and only if ιφ(j) and ιφ(i) are in an inversion
of their usual order.

Geometry of Determinants

Four.II.1: Determinants as Size Functions

Four.II.1.8 Solving

c1

33
1

+ c2

26
1

+ c3

10
5

 =

41
2


gives the unique solution c3 = 11/57, c2 = −40/57 and c1 = 99/57. Because
c1 > 1, the vector is not in the box.

Four.II.1.9 For each, find the determinant and take the absolute value.
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(a) 7 (b) 0 (c) 58

Four.II.1.10 We have drawn that picture to mislead. The picture on the left is not
the box formed by two vectors. If we slide it to the origin then it becomes the box
formed by this sequence.

〈

(
0

1

)
,

(
2

0

)
〉

Then the image under the action of the matrix is the box formed by this sequence.

〈

(
1

1

)
,

(
4

0

)
〉

which has an area of 4.

Four.II.1.11 Move the parallelepiped to start at the origin, so that it becomes the
box formed by

〈

(
3

0

)
,

(
2

1

)
〉

and now the absolute value of this determinant is easily computed as 3.∣∣∣∣∣3 2

0 1

∣∣∣∣∣ = 3
Four.II.1.12 (a) 3 (b) 9 (c) 1/9

Four.II.1.13 (a) Gauss’s Method

−3ρ1+ρ2−→
ρ1+ρ3

1 0 −1

0 1 4

0 0 2


gives the determinant as +2. The sign is positive so the transformation preserves
orientation.

(b) The size of the box is the value of this determinant.∣∣∣∣∣∣∣
1 2 1

−1 0 1

2 −1 0

∣∣∣∣∣∣∣ = +6

The orientation is positive.
(c) Since this transformation is represented by the given matrix with respect to
the standard bases, and with respect to the standard basis the vectors represent
themselves, to find the image of the vectors under the transformation just multiply
them, from the left, by the matrix. 1

−1

2

 7→
−1

4

5


 2

0

−1

 7→
 3

5

−5


11
0

 7→
 1

4

−1
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Then compute the size of the resulting box.∣∣∣∣∣∣∣
−1 3 1

4 5 4

5 −5 −1

∣∣∣∣∣∣∣ = +12

The starting box is positively oriented, the transformation preserves orientations
(since the determinant of the matrix is positive), and the ending box is also
positively oriented.

Four.II.1.14 Express each transformation with respect to the standard bases and find
the determinant.

(a) 6 (b) −1 (c) −5

Four.II.1.15 The starting area is 6 and the matrix changes sizes by −14. Thus the
area of the image is 84.

Four.II.1.16 By a factor of 21/2.

Four.II.1.17 For a box we take a sequence of vectors (as described in the remark, the
order of the vectors matters), while for a span we take a set of vectors. Also, for a
box subset of Rn there must be n vectors; of course for a span there can be any
number of vectors. Finally, for a box the coefficients t1, . . . , tn are in the interval
[0..1], while for a span the coefficients are free to range over all of R.

Four.II.1.18 Yes to both. For instance, the first is |TS| = |T | · |S| = |S| · |T | = |ST |.

Four.II.1.19 Because |AB| = |A| · |B| = |BA| and these two matrices have different
determinants.

Four.II.1.20 (a) If it is defined then it is (32) · (2) · (2−2) · (3).
(b) |6A3 + 5A2 + 2A| = |A| · |6A2 + 5A+ 2I|.

Four.II.1.21

∣∣∣∣∣cos θ − sin θ
sin θ cos θ

∣∣∣∣∣ = 1
Four.II.1.22 No, for instance the determinant of

T =

(
2 0

0 1/2

)
is 1 so it preserves areas, but the vector T~e1 has length 2.

Four.II.1.23 It is zero.

Four.II.1.24 Two of the three sides of the triangle are formed by these vectors.22
2

−

12
1

 =

10
1


 3

−1

4

−

12
1

 =

 2

−3

3
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One way to find the area of this triangle is to produce a length-one vector orthogonal
to these two. From these two relations10

1

 ·
xy
z

 =

00
0


 2

−3

3

 ·
xy
z

 =

00
0


we get a system

x + z= 0

2x− 3y+ 3z= 0

−2ρ1+ρ2−→ x + z= 0

−3y+ z= 0

with this solution set.

{

−1

1/3

1

 z | z ∈ R },

A solution of length one is this.

1√
19/9

−1

1/3

1


Thus the area of the triangle is the absolute value of this determinant.∣∣∣∣∣∣∣

1 2 −3/
√
19

0 −3 1/
√
19

1 3 3/
√
19

∣∣∣∣∣∣∣ = −12/
√
19

Four.II.1.25 (a) Because the image of a linearly dependent set is linearly dependent,
if the vectors forming S make a linearly dependent set, so that |S| = 0, then the
vectors forming t(S) make a linearly dependent set, so that |TS| = 0, and in this
case the equation holds.

(b) We must check that if T
kρi+ρj−→ T̂ then d(T) = |TS|/|S| = |T̂S|/|S| = d(T̂). We

can do this by checking that combining rows first and then multiplying to get T̂S
gives the same result as multiplying first to get TS and then combining (because
the determinant |TS| is unaffected by the combining rows so we’ll then have that
|T̂S| = |TS| and hence that d(T̂) = d(T)). This check runs: after adding k times
row i of TS to row j of TS, the j, p entry is (kti,1+tj,1)s1,p+ · · ·+(kti,r+tj,r)sr,p,
which is the j, p entry of T̂S.

(c) For the second property, we need only check that swapping T
ρi↔ρj−→ T̂ and

then multiplying to get T̂S gives the same result as multiplying T by S first and
then swapping (because, as the determinant |TS| changes sign on the row swap,
we’ll then have |T̂S| = −|TS|, and so d(T̂) = −d(T)). This check runs just like the
one for the first property.

For the third property, we need only show that performing T
kρi−→ T̂ and then

computing T̂S gives the same result as first computing TS and then performing
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the scalar multiplication (as the determinant |TS| is rescaled by k, we’ll have
|T̂S| = k|TS| and so d(T̂) = kd(T)). Here too, the argument runs just as above.

The fourth property, that if T is I then the result is 1, is obvious.
(d) Determinant functions are unique, so |TS|/|S| = d(T) = |T |, and so |TS| = |T ||S|.

Four.II.1.26 Any permutation matrix has the property that the transpose of the
matrix is its inverse.

For the implication, we know that |AT| = |A|. Then 1 = |A ·A−1| = |A ·AT| =

|A| · |AT| = |A|2.
The converse does not hold; here is an example.(

3 1

2 1

)
Four.II.1.27 Where the sides of the box are c times longer, the box has c3 times as
many cubic units of volume.

Four.II.1.28 If H = P−1GP then |H| = |P−1||G||P| = |P−1||P||G| = |P−1P||G| = |G|.

Four.II.1.29 (a) The new basis is the old basis rotated by π/4.

(b) 〈

(
−1

0

)
,

(
0

−1

)
〉, 〈

(
0

−1

)
,

(
1

0

)
〉

(c) In each case the determinant is +1 (we say that these bases have positive
orientation).

(d) Because only one sign can change at a time, the only other cycle possible is

· · · −→

(
+

+

)
−→

(
+

−

)
−→

(
−

−

)
−→

(
−

+

)
−→ · · · .

Here each associated determinant is −1 (we say that such bases have a negative
orientation).

(e) There is one positively oriented basis 〈(1)〉 and one negatively oriented basis
〈(−1)〉.

(f) There are 48 bases (6 half-axis choices are possible for the first unit vector, 4
for the second, and 2 for the last). Half are positively oriented like the standard
basis on the left below, and half are negatively oriented like the one on the right

~e1
~e2

~e3

~β1

~β2

~β3

In R3 positive orientation is sometimes called ‘right hand orientation’ because if
a person places their right hand with their fingers curling from ~e1 to ~e2 then the
thumb will point with ~e3.
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Four.II.1.30 We will compare det(~s1, . . . ,~sn) with det(t(~s1), . . . , t(~sn)) to show that
the second differs from the first by a factor of |T |. We represent the ~s ’s with respect
to the standard bases

RepEn(~si) =


s1,i
s2,i
...
sn,i


and then we represent the map application with matrix-vector multiplication

RepEn( t(~si) ) =


t1,1 t1,2 . . . t1,n
t2,1 t2,2 . . . t2,n

...
tn,1 tn,2 . . . tn,n



s1,j
s2,j
...
sn,j



= s1,j


t1,1
t2,1
...
tn,1

+ s2,j


t1,2
t2,2
...
tn,2

+ · · ·+ sn,j


t1,n
t2,n
...

tn,n


= s1,j~t1 + s2,j~t2 + · · ·+ sn,j~tn

where ~ti is column i of T . Then det(t(~s1), . . . , t(~sn)) equals det(s1,1~t1+s2,1~t2+
. . .+sn,1~tn, . . . , s1,n~t1+s2,n~t2+. . .+sn,n~tn).

As in the derivation of the permutation expansion formula, we apply multilin-
earity, first splitting along the sum in the first argument

det(s1,1~t1, . . . , s1,n~t1 + s2,n~t2 + · · ·+ sn,n~tn)
+ · · · + det(sn,1~tn, . . . , s1,n~t1 + s2,n~t2 + · · ·+ sn,n~tn)

and then splitting each of those n summands along the sums in the second arguments,
etc. We end with, as in the derivation of the permutation expansion, nn summand
determinants, each of the form det(si1,1~ti1 , si2,2~ti2 , . . . , sin,n~tin). Factor out each
of the si,j’s = si1,1si2,2 . . . sin,n · det(~ti1 ,~ti2 , . . . , ~tin).

As in the permutation expansion derivation, whenever two of the indices in i1,
. . . , in are equal then the determinant has two equal arguments, and evaluates to
0. So we need only consider the cases where i1, . . . , in form a permutation of the
numbers 1, . . . , n. We thus have

det(t(~s1), . . . , t(~sn)) =
∑

permutations φ

sφ(1),1 . . . sφ(n),n det(~tφ(1), . . . ,~tφ(n)).

Swap the columns in det(~tφ(1), . . . ,~tφ(n)) to get the matrix T back, which changes
the sign by a factor of sgnφ, and then factor out the determinant of T .
=
∑
φ

sφ(1),1 . . . sφ(n),n det(~t1, . . . ,~tn)·sgnφ = det(T)
∑
φ

sφ(1),1 . . . sφ(n),n·sgnφ.
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As in the proof that the determinant of a matrix equals the determinant of its
transpose, we commute the s’s to list them by ascending row number instead of by
ascending column number (and we substitute sgn(φ−1) for sgn(φ)).

= det(T)
∑
φ

s1,φ−1(1) . . . sn,φ−1(n) · sgnφ−1 = det(T)det(~s1,~s2, . . . ,~sn)

Four.II.1.31 (a) An algebraic check is easy.

0 = xy2+x2y3+x3y−x3y2−xy3−x2y = x·(y2−y3)+y·(x3−x2)+x2y3−x3y2
simplifies to the familiar form

y = x · (x3 − x2)/(y3 − y2) + (x2y3 − x3y2)/(y3 − y2)

(the y3 − y2 = 0 case is easily handled).
For geometric insight, this picture shows that the box formed by the three

vectors. Note that all three vectors end in the z = 1 plane. Below the two vectors
on the right is the line through (x2, y2) and (x3, y3).

xy
1


x2y2
1


x3y3
1



The box will have a nonzero volume unless the triangle formed by the ends of
the three is degenerate. That only happens (assuming that (x2, y3) 6= (x3, y3)) if
(x, y) lies on the line through the other two.

(b) This is how the answer was given in the cited source. We find the altitude
through (x1, y1) of a triangle with vertices (x1, y1) (x2, y2) and (x3, y3) in the
usual way from the normal form of the above:

1√
(x2 − x3)2 + (y2 − y3)2

∣∣∣∣∣∣∣
x1 x2 x3
y1 y2 y3
1 1 1

∣∣∣∣∣∣∣ .
Another step shows the area of the triangle to be

1

2

∣∣∣∣∣∣∣
x1 x2 x3
y1 y2 y3
1 1 1

∣∣∣∣∣∣∣ .
This exposition reveals the modus operandi more clearly than the usual proof of
showing a collection of terms to be identical with the determinant.

(c) This is how the answer was given in the cited source. Let

D =

∣∣∣∣∣∣∣
x1 x2 x3
y1 y2 y3
1 1 1

∣∣∣∣∣∣∣
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then the area of the triangle is (1/2)|D|. Now if the coordinates are all integers,
then D is an integer.

Laplace’s Formula

Four.III.1: Laplace’s Expansion

Four.III.1.11 (a) (−1)2+3

∣∣∣∣∣1 0

0 2

∣∣∣∣∣ = −2 (b) (−1)3+2

∣∣∣∣∣ 1 2

−1 3

∣∣∣∣∣ = −5

(c) (−1)4

∣∣∣∣∣−1 1

0 2

∣∣∣∣∣ = −2

Four.III.1.12

adj(T) =



∣∣∣∣∣1 3

2 −1

∣∣∣∣∣ −

∣∣∣∣∣0 2

2 −1

∣∣∣∣∣
∣∣∣∣∣0 2

1 3

∣∣∣∣∣
−

∣∣∣∣∣−1 3

0 −1

∣∣∣∣∣
∣∣∣∣∣1 2

0 −1

∣∣∣∣∣ −

∣∣∣∣∣ 1 2

−1 3

∣∣∣∣∣∣∣∣∣∣−1 1

0 2

∣∣∣∣∣ −

∣∣∣∣∣1 0

0 2

∣∣∣∣∣
∣∣∣∣∣ 1 0

−1 1

∣∣∣∣∣


=


−7 4 −2

−1 −1 −5

−2 −2 1



Four.III.1.13∣∣∣∣∣∣∣
1 2 3

4 5 6

7 8 9

∣∣∣∣∣∣∣ = 1 · (+1) ·
∣∣∣∣∣5 6

8 9

∣∣∣∣∣+ 2 · (−1) ·
∣∣∣∣∣4 6

7 9

∣∣∣∣∣+ 3 · (+1) ·
∣∣∣∣∣4 5

7 8

∣∣∣∣∣
The formula for 2×2 matrices gives 1 · (−3) − 2 · (−6) + 3 · (−3) = 0.

Four.III.1.14 (a)

(b) 1 · (−1)

∣∣∣∣∣0 1

3 0

∣∣∣∣∣+ 2 · (+1)
∣∣∣∣∣ 3 1

−1 0

∣∣∣∣∣+ 2 · (−1)
∣∣∣∣∣ 3 0

−1 3

∣∣∣∣∣ = −13

(c) 1 · (+1)

∣∣∣∣∣ 1 2

−1 3

∣∣∣∣∣+ 2 · (−1)
∣∣∣∣∣ 3 0

−1 3

∣∣∣∣∣+ 0 · (+1)
∣∣∣∣∣3 0

1 2

∣∣∣∣∣ = −13
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Four.III.1.15 This is adj(T).

T1,1 T2,1 T3,1
T1,2 T2,2 T3,2
T1,3 T2,3 T3,3

 =



∣∣∣∣∣5 6

8 9

∣∣∣∣∣ −

∣∣∣∣∣2 3

8 9

∣∣∣∣∣ +

∣∣∣∣∣2 3

5 6

∣∣∣∣∣
−

∣∣∣∣∣4 6

7 9

∣∣∣∣∣ +

∣∣∣∣∣1 3

7 9

∣∣∣∣∣ −

∣∣∣∣∣1 3

4 6

∣∣∣∣∣
+

∣∣∣∣∣4 5

7 8

∣∣∣∣∣ −

∣∣∣∣∣1 2

7 8

∣∣∣∣∣ +

∣∣∣∣∣1 2

4 5

∣∣∣∣∣


=

−3 6 −3

6 −12 6

−3 6 −3



Four.III.1.16 (a) This is the adjoint.

T1,1 T2,1 T3,1
T1,2 T2,2 T3,2
T1,3 T2,3 T3,3

 =



∣∣∣∣∣0 2

0 1

∣∣∣∣∣ −

∣∣∣∣∣1 4

0 1

∣∣∣∣∣
∣∣∣∣∣1 4

0 2

∣∣∣∣∣
−

∣∣∣∣∣−1 2

1 1

∣∣∣∣∣
∣∣∣∣∣2 4

1 1

∣∣∣∣∣ −

∣∣∣∣∣ 2 4

−1 2

∣∣∣∣∣∣∣∣∣∣−1 0

1 0

∣∣∣∣∣ −

∣∣∣∣∣2 1

1 0

∣∣∣∣∣
∣∣∣∣∣ 2 1

−1 0

∣∣∣∣∣


=

0 −1 2

3 −2 −8

0 1 1



(b) The minors are 1×1.

(
T1,1 T2,1
T1,2 T2,2

)
=


∣∣∣4∣∣∣ −

∣∣∣−1∣∣∣
−
∣∣∣2∣∣∣ ∣∣∣3∣∣∣

 =

(
4 1

−2 3

)

(c)

(
0 −1

−5 1

)
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(d) The minors are 2×2.

T1,1 T2,1 T3,1
T1,2 T2,2 T3,2
T1,3 T2,3 T3,3

 =



∣∣∣∣∣0 3

8 9

∣∣∣∣∣ −

∣∣∣∣∣4 3

8 9

∣∣∣∣∣
∣∣∣∣∣4 3

0 3

∣∣∣∣∣
−

∣∣∣∣∣−1 3

1 9

∣∣∣∣∣
∣∣∣∣∣1 3

1 9

∣∣∣∣∣ −

∣∣∣∣∣ 1 3

−1 3

∣∣∣∣∣∣∣∣∣∣−1 0

1 8

∣∣∣∣∣ −

∣∣∣∣∣1 4

1 8

∣∣∣∣∣
∣∣∣∣∣ 1 4

−1 0

∣∣∣∣∣


=

−24 −12 12

12 6 −6

−8 −4 4


Four.III.1.17 (a) (1/3) ·

0 −1 2

3 −2 −8

0 1 1

 =

0 −1/3 2/3

1 −2/3 −8/3

0 1/3 1/3


(b) (1/14) ·

(
4 1

−2 3

)
=

(
2/7 1/14

−1/7 3/14

)

(c) (1/− 5) ·

(
0 −1

−5 1

)
=

(
0 1/5

1 −1/5

)
(d) The matrix has a zero determinant, and so has no inverse.

Four.III.1.18


T1,1 T2,1 T3,1 T4,1
T1,2 T2,2 T3,2 T4,2
T1,3 T2,3 T3,3 T4,3
T1,4 T2,4 T3,4 T4,4

 =


4 −3 2 −1

−3 6 −4 2

2 −4 6 −3

−1 2 −3 4


Four.III.1.19 The determinant ∣∣∣∣∣a b

c d

∣∣∣∣∣
expanded on the first row gives a · (+1)|d| + b · (−1)|c| = ad − bc (note the two
1×1 minors).

Four.III.1.20 The determinant of a b c

d e f

g h i


is this.

a ·

∣∣∣∣∣e f

h i

∣∣∣∣∣− b ·
∣∣∣∣∣d f

g i

∣∣∣∣∣+ c ·
∣∣∣∣∣d e

g h

∣∣∣∣∣ = a(ei− fh) − b(di− fg) + c(dh− eg)
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Four.III.1.21 (a)

(
T1,1 T2,1
T1,2 T2,2

)
=

 ∣∣∣t2,2∣∣∣ −
∣∣∣t1,2∣∣∣

−
∣∣∣t2,1∣∣∣ ∣∣∣t1,1∣∣∣

 =

(
t2,2 −t1,2
−t2,1 t1,1

)

(b) (1/t1,1t2,2 − t1,2t2,1) ·

(
t2,2 −t1,2
−t2,1 t1,1

)
Four.III.1.22 No. Here is a determinant whose value∣∣∣∣∣∣∣

1 0 0

0 1 0

0 0 1

∣∣∣∣∣∣∣ = 1
doesn’t equal the result of expanding down the diagonal.

1 · (+1)

∣∣∣∣∣1 0

0 1

∣∣∣∣∣+ 1 · (+1)
∣∣∣∣∣1 0

0 1

∣∣∣∣∣+ 1 · (+1)
∣∣∣∣∣1 0

0 1

∣∣∣∣∣ = 3
Four.III.1.23 Consider this diagonal matrix.

D =


d1 0 0 . . .

0 d2 0

0 0 d3
. . .

dn


If i 6= j then the i, j minor is an (n− 1)×(n− 1) matrix with only n− 2 nonzero
entries, because we have deleted both di and dj. Thus, at least one row or column
of the minor is all zeroes, and so the cofactor Di,j is zero. If i = j then the minor is
the diagonal matrix with entries d1, . . . , di−1, di+1, . . . , dn. Its determinant is
obviously (−1)i+j = (−1)2i = 1 times the product of those.

adj(D) =


d2 · · ·dn 0 0

0 d1d3 · · ·dn 0

. . .
d1 · · ·dn−1


By the way, Theorem 1.9 provides a slicker way to derive this conclusion.

Four.III.1.24 Just note that if S = TT then the cofactor Sj,i equals the cofactor Ti,j
because (−1)j+i = (−1)i+j and because the minors are the transposes of each other
(and the determinant of a transpose equals the determinant of the matrix).

Four.III.1.25 It is false; here is an example.

T =

1 2 3

4 5 6

7 8 9

 adj(T) =

−3 6 −3

6 −12 6

−3 6 −3

 adj(adj(T)) =

0 0 0

0 0 0

0 0 0
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Four.III.1.26 (a) An example

M =

1 2 3

0 4 5

0 0 6


suggests the right answer.

adj(M) =

M1,1 M2,1 M3,1

M1,2 M2,2 M3,2

M1,3 M2,3 M3,3

 =



∣∣∣∣∣4 5

0 6

∣∣∣∣∣ −

∣∣∣∣∣2 3

0 6

∣∣∣∣∣
∣∣∣∣∣2 3

4 5

∣∣∣∣∣
−

∣∣∣∣∣0 5

0 6

∣∣∣∣∣
∣∣∣∣∣1 3

0 6

∣∣∣∣∣ −

∣∣∣∣∣1 3

0 5

∣∣∣∣∣∣∣∣∣∣0 4

0 0

∣∣∣∣∣ −

∣∣∣∣∣1 2

0 0

∣∣∣∣∣
∣∣∣∣∣1 2

0 4

∣∣∣∣∣


=

24 −12 −2

0 6 −5

0 0 4


The result is indeed upper triangular.

This check is detailed but not hard. The entries in the upper triangle of the
adjoint are Ma,b where a > b. We need to verify that the cofactor Ma,b is zero
if a > b. With a > b, row a and column b of M,

m1,1 . . . m1,b . . .

m2,1 . . . m2,b
...

...
ma,1 . . . ma,b . . . ma,n
...

...
mn,b


when deleted, leave an upper triangular minor, because entry i, j of the minor is
either entry i, j of M (this happens if a > i and b > j; in this case i < j implies
that the entry is zero) or it is entry i, j+ 1 ofM (this happens if i < a and j > b;
in this case, i < j implies that i < j + 1, which implies that the entry is zero),
or it is entry i + 1, j + 1 of M (this last case happens when i > a and j > b;
obviously here i < j implies that i+ 1 < j+ 1 and so the entry is zero). Thus the
determinant of the minor is the product down the diagonal. Observe that the
a− 1, a entry of M is the a− 1, a− 1 entry of the minor (it doesn’t get deleted
because the relation a > b is strict). But this entry is zero because M is upper
triangular and a− 1 < a. Therefore the cofactor is zero, and the adjoint is upper
triangular. (The lower triangular case is similar.)

(b) This is immediate from the prior part, by Theorem 1.9.



Four.III.1.27 We will show that each determinant can be expanded along row i. The
argument for column j is similar.

Each term in the permutation expansion contains one and only one entry
from each row. As in Example 1.1, factor out each row i entry to get |T | =

ti,1 · T̂i,1 + · · · + ti,n · T̂i,n, where each T̂i,j is a sum of terms not containing any
elements of row i. We will show that T̂i,j is the i, j cofactor.

Consider the i, j = n,n case first:

tn,n · T̂n,n = tn,n ·
∑
φ

t1,φ(1)t2,φ(2) . . . tn−1,φ(n−1) sgn(φ)

where the sum is over all n-permutations φ such that φ(n) = n. To show that
T̂i,j is the minor Ti,j, we need only show that if φ is an n-permutation such that
φ(n) = n and σ is an n−1-permutation with σ(1) = φ(1), . . . , σ(n−1) = φ(n−1)
then sgn(σ) = sgn(φ). But that’s true because φ and σ have the same number of
inversions.

Back to the general i, j case. Swap adjacent rows until the i-th is last and swap
adjacent columns until the j-th is last. Observe that the determinant of the i, j-th
minor is not affected by these adjacent swaps because inversions are preserved
(since the minor has the i-th row and j-th column omitted). On the other hand, the
sign of |T | and T̂i,j changes n− i plus n− j times. Thus T̂i,j = (−1)n−i+n−j|Ti,j| =

(−1)i+j|Ti,j|.

Four.III.1.28 This is obvious for the 1×1 base case.
For the inductive case, assume that the determinant of a matrix equals the

determinant of its transpose for all 1×1, . . . , (n− 1)×(n− 1) matrices. Expanding
on row i gives |T | = ti,1Ti,1 + . . . + ti,nTi,n and expanding on column i gives
|TT| = t1,i(T

T)1,i+ · · ·+tn,i(TT)n,i Since (−1)i+j = (−1)j+i the signs are the same
in the two summations. Since the j, i minor of TT is the transpose of the i, j minor
of T , the inductive hypothesis gives |(TT)i,j| = |Ti,j|.

Four.III.1.29 This is how the answer was given in the cited source. Denoting the
above determinant by Dn, it is seen that D2 = 1, D3 = 2. It remains to show
that Dn = Dn−1 +Dn−2, n > 4. In Dn subtract the (n− 3)-th column from the
(n−1)-th, the (n−4)-th from the (n−2)-th, . . . , the first from the third, obtaining

Fn =

∣∣∣∣∣∣∣∣∣∣∣

1 −1 0 0 0 0 . . .

1 1 −1 0 0 0 . . .

0 1 1 −1 0 0 . . .

0 0 1 1 −1 0 . . .

. . . . . . . . .

∣∣∣∣∣∣∣∣∣∣∣
.

By expanding this determinant with reference to the first row, there results the
desired relation.
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Topic: Cramer’s Rule

1 (a) Solve for the variables separately.

x =

∣∣∣∣∣ 4 −1

−7 2

∣∣∣∣∣∣∣∣∣∣ 1 −1

−1 2

∣∣∣∣∣
=
1

1
= 1 y =

∣∣∣∣∣ 1 4

−1 −7

∣∣∣∣∣∣∣∣∣∣ 1 −1

−1 2

∣∣∣∣∣
=

−3

1
= −3

(b) x = 2, y = 2

2 z = 1

3 Determinants are unchanged by combinations, including column combinations, so
det(Bi) = det(~a1, . . . , x1~a1 + · · · + xi~ai + · · · + xn~an, . . . , ~an). Use the operation
of taking −x1 times the first column and adding it to the i-th column, etc.,
to see this is equal to det(~a1, . . . , xi~ai, . . . , ~an). In turn, that is equal to xi ·
det(~a1, . . . , ~ai, . . . , ~an) = xi · det(A), as required.

4 (a) Here is the case of a 2×2 system with i = 2.

a1,1x1 + a1,2x2 = b1
a2,1x1 + a2,2x2 = b2

⇐⇒

(
a1,1 a1,2
a2,1 a2,2

)(
1 x1
0 x2

)
=

(
a1,1 b1
a2,1 b2

)
(b) The determinant function is multiplicative det(Bi) = det(AXi) =

det(A) · det(Xi). The Laplace expansion shows that det(Xi) = xi, and solving
for xi gives Cramer’s Rule.

5 Because the determinant of A is nonzero, Cramer’s Rule applies and shows that
xi = |Bi|/1. Since Bi is a matrix of integers, its determinant is an integer.

6 The solution of
ax +by = e

cx+dy= f

is

x =
ed− fb

ad− bc
y =

af− ec

ad− bc

provided of course that the denominators are not zero.

7 Of course, singular systems have |A| equal to zero, but we can characterize the
infinitely many solutions case is by the fact that all of the |Bi| are zero as well.

8 We can consider the two nonsingular cases together with this system

x1 + 2x2 = 6

x1 + 2x2 = c



where c = 6 of course yields infinitely many solutions, and any other value for c
yields no solutions. The corresponding vector equation

x1 ·

(
1

1

)
+ x2 ·

(
2

2

)
=

(
6

c

)
gives a picture of two overlapping vectors. Both lie on the line y = x. In the c = 6
case the vector on the right side also lies on the line y = x but in any other case it
does not.

Topic: Speed of Calculating Determinants

1 Your timing will depend in part on the computer algebra system that you use,
and in part on the power of the computer on which you do the calculation. But
you should get a curve that is similar to the one shown.

2 The number of operations depends on exactly how we do the operations.
(a) The determinant is −11. To row reduce takes a single row combination with
two multiplications (−5/2 times 2 plus 5, and −5/2 times 1 plus −3) and the
product down the diagonal takes one more multiplication. The permutation
expansion takes two multiplications (2 times −3 and 5 times 1).

(b) The determinant is −39. Counting the operations is routine.
(c) The determinant is 4.

3 You should build the matrix once and then time it being reduced many times.
Note that gauss_method, as written, changes the input matrix, so be careful not to
loop using the output of that routine or all the loops but the first will be on an
echelon form matrix.

4 The identity matrix typically does not take long to reduce. For matrices that
are slow, in Python you can try ones with numbers that are quite large. (Some
computer algebra system also have the ability to generate special matrices; try some
of those.)

5 No, the above code handles the numbers by row.

Topic: Chiò’s Method
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1 (a) Chiò’s matrix is

C =

(
−3 −6

−6 −12

)
and its determinant is 0 (b) Start with

C3 =

2 8 0

1 −2 2

4 2 2


and then the next step

C2 =

(
−12 4

−28 4

)
with determinant det(C2) = 64. The determinant of the original matrix is thus
64/(22 · 21) = 8

2 The same construction as was used for the 3×3 case above shows that in place of
a1,1 we can select any nonzero entry ai,j. Entry cp,q of Chiò’s matrix is the value
of this determinant ∣∣∣∣∣ a1,1 a1,q+1

ap+1,1 ap+1,q+1

∣∣∣∣∣
where p+ 1 6= i and q+ 1 6= j.

3 Sarrus’s formula uses 12 multiplications and 5 additions (including the subtractions
in with the additions). Chiò’s formula uses two multiplications and an addition
(which is actually a subtraction) for each of the four 2×2 determinants, and
another two multiplications and an addition for the 2×2 Chió’s determinant, as
well as a final division by a1,1. That’s eleven multiplication/divisions and five
addition/subtractions. So Chiò is the winner.

4 Consider an n×n matrix.

A =


a1,1 a1,2 · · · a1,n−1 a1,n
a2,1 a2,2 · · · a2,n−1 a2,n

...
an−1,1 an−1,2 · · · an−1,n−1 an−1,n
an,1 an,2 · · · an,n−1 an,n


Rescale every row but the first by a1,1.

a1,1ρ2−→
a1,1ρ3
...
a1,1ρn


a1,1 a1,2 · · · a1,n−1 a1,n

a2,1a1,1 a2,2a1,1 · · · a2,n−1a1,1 a2,na1,1
...

an−1,1a1,1 an−1,2a1,1 · · · an−1,n−1a1,1 an−1,na1,1
an,1a1,1 an,2a1,1 · · · an,n−1a1,1 an,na1,1





That rescales the determinant by a factor of an−11,1 .
Next perform the row operation −ai,1ρ1 + ρi on each row i > 1. These row

operations don’t change the determinant.
−a2,1ρ1+ρ2−→

−a3,1ρ1+ρ3
...

−an,1ρ1+ρn

The result is a matrix whose first row is unchanged, whose first column is all zero’s
(except for the 1, 1 entry of a1,1), and whose remaining entries are these.

a1,2 · · · a1,n−1 a1,n
a2,2a1,1 − a2,1a1,2 · · · a2,n−1an,n − a2,n−1a1,n−1 a2,nan,n − a2,na1,n

...
an,2a1,1 − an,1a1,2 · · · an,n−1a1,1 − an,1a1,n−1 an,na1,1 − an,1a1,n


The determinant of this matrix is an−11,1 times the determinant of A.

Denote by C the 1, 1 minor of the matrix, that is, the submatrix consisting of
the first n− 1 rows and columns. The Laplace expansion down the final column of
the above matrix gives that its determinant is (−1)1+1a1,1 det(C).

If a1,1 6= 0 then setting the two equal and canceling gives det(A) = det(C)/an−2n,n .

Topic: Projective Geometry

1 From the dot product

0 =

10
0

 • (L1 L2 L3) = L1

we get that the equation is L1 = 0.

2 (a) This determinant

0 =

∣∣∣∣∣∣∣
1 4 x

2 5 y

3 6 z

∣∣∣∣∣∣∣ = −3x+ 6y− 3z

shows that the line is L = (−3 6 −3).

(b)

−3

6

−3
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3 The line incident on

u =

u1u2
u3

 v =

v1v2
v3


comes from this determinant equation.

0 =

∣∣∣∣∣∣∣
u1 v1 x

u2 v2 y

u3 v3 z

∣∣∣∣∣∣∣ = (u2v3 − u3v2) · x+ (u3v1 − u1v3) · y+ (u1v2 − u2v1) · z

The equation for the point incident on two lines is the same.

4 If p1, p2, p3, and q1, q2, q3 are two triples of homogeneous coordinates for p
then the two column vectors are in proportion, that is, lie on the same line through
the origin. Similarly, the two row vectors are in proportion.

k ·

p1p2
p3

 =

q1q2
q3

 m · (L1 L2 L3) = (M1 M2 M3)

Then multiplying gives the answer (km) · (p1L1+p2L2+p3L3) = q1M1+q2M2+

q3M3 = 0.

5 The picture of the solar eclipse—unless the image plane is exactly perpendicular
to the line from the sun through the pinhole— shows the circle of the sun projecting
to an image that is an ellipse. (Another example is that in many pictures in this
Topic, we’ve shown the circle that is the sphere’s equator as an ellipse, that is, a
viewer of the drawing sees a circle as an ellipse.)

The solar eclipse picture also shows the converse. If we picture the projection
as going from left to right through the pinhole then the ellipse I projects through P
to a circle S.

6 A spot on the unit sphere p1p2
p3


is non-equatorial if and only if p3 6= 0. In that case it corresponds to this point on
the z = 1 plane p1/p3p2/p3

1


since that is intersection of the line containing the vector and the plane.

7 (a) Other pictures are possible, but this is one.
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T0

U0
V0

T1
U1

V1

V2
U2

T2

The intersections T0U1 ∩ T1U0 = V2, T0V1 ∩ T1V0 = U2, and U0V1 ∩U1V0 = T2
are labeled so that on each line is a T , a U, and a V.

(b) The lemma used in Desargue’s Theorem gives a basis B with respect to which
the points have these homogeneous coordinate vectors.

RepB(~t0) =

10
0

 RepB(~t1) =

01
0

 RepB(~t2) =

00
1

 RepB(~v0) =

11
1


(c) First, any U0 on T0V0

RepB(~u0) = a

10
0

+ b

11
1

 =

a+ b

b

b


has homogeneous coordinate vectors of this formu01

1


(u0 is a parameter; it depends on where on the T0V0 line the point U0 is, but
any point on that line has a homogeneous coordinate vector of this form for some
u0 ∈ R). Similarly, U2 is on T1V0

RepB(~u2) = c

01
0

+ d

11
1

 =

 d

c+ d

d


and so has this homogeneous coordinate vector. 1

u2
1


Also similarly, U1 is incident on T2V0

RepB(~u1) = e

00
1

+ f

11
1

 =

 f

f

e+ f


and has this homogeneous coordinate vector. 1

1

u1
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(d) Because V1 is T0U2 ∩ U0T2 we have this.

g

10
0

+ h

 1

u2
1

 = i

u01
1

+ j

00
1

 =⇒
g+ h = iu0

hu2 = i

h = i+ j

Substituting hu2 for i in the first equationhu0u2hu2
h


shows that V1 has this two-parameter homogeneous coordinate vector.u0u2u2

1


(e) Since V2 is the intersection T0U1 ∩ T1U0

k

10
0

+ l

 1

1

u1

 = m

01
0

+ n

u01
1

 =⇒
k+ l = nu0

l = m+ n

lu1 = n

and substituting lu1 for n in the first equationlu0u1l
lu1


gives that V2 has this two-parameter homogeneous coordinate vector.u0u11

u1


(f) Because V1 is on the T1U1 line its homogeneous coordinate vector has the form

p

01
0

+ q

 1

1

u1

 =

 q

p+ q

qu1

 (∗)

but a previous part of this question established that V1’s homogeneous coordinate
vectors have the form u0u2u2

1


and so this a homogeneous coordinate vector for V1.u0u1u2u1u2

u1

 (∗∗)

By (∗) and (∗∗), there is a relationship among the three parameters: u0u1u2 = 1.
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(g) The homogeneous coordinate vector of V2 can be written in this way.u0u1u2u2
u1u2

 =

 1

u2
u1u2


Now, the T2U2 line consists of the points whose homogeneous coordinates have
this form.

r

00
1

+ s

 1

u2
1

 =

 s

su2
r+ s


Taking s = 1 and r = u1u2 − 1 shows that the homogeneous coordinate vectors
of V2 have this form.





Chapter Five

Chapter Five: Similarity

Complex Vector Spaces

Similarity

Five.II.1: Definition and Examples

Five.II.1.5 One way to proceed is left to right.

PTP−1 =

(
4 2

−3 2

)(
1 3

−2 −6

)(
2/14 −2/14

3/14 4/14

)

=

(
0 0

−7 −21

)(
2/14 −2/14

3/14 4/14

)
=

(
0 0

−11/2 −5

)
Five.II.1.6 (a) Because the matrix (2) is 1×1, the matrices P and P−1 are also 1×1 and

so where P = (p) the inverse is P−1 = (1/p). Thus P(2)P−1 = (p)(2)(1/p) = (2).
(b) Yes: recall that we can bring scalar multiples out of a matrix P(cI)P−1 =

cPIP−1 = cI. By the way, the zero and identity matrices are the special cases
c = 0 and c = 1.

(c) No, as this example shows.(
1 −2

−1 1

)(
−1 0

0 −3

)(
−1 −2

−1 −1

)
=

(
−5 −4

2 1

)
Five.II.1.7 (a)

C3wrt B
t−−−−→
T

C3wrt B

id

y id

y
C3wrt D

t−−−−→
T̂

C3wrt D
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(b) For each element of the starting basis B find the effect of the transformation12
3

 t7−→

−2

3

4


01
0

 t7−→

00
2


00
1

 t7−→

−1

1

0


and represented those outputs with respect to the ending basis B

RepB(

−2

3

4

) =

−2

7

10

 RepB(

00
2

) =

00
2

 RepB(

−1

1

0

) =

−1

3

3


to get the matrix.

T = RepB,B(t) =

−2 0 −1

7 0 3

10 2 3


(c) Find the effect of the transformation on the elements of D10

0

 t7−→

10
0


11
0

 t7−→

10
2


10
1

 t7−→

01
0


and represented those with respect to the ending basis D

RepD(

10
0

) =

10
0

 RepD(

10
2

) =

−1

0

2

 RepD(

01
0

) =

−1

1

0


to get the matrix.

T̂ = RepD,D(t) =

1 −1 −1

0 0 1

0 2 0


(d) To go down on the right we need RepB,D(id) so we first compute the effect of
the identity map on each element of D, which is no effect, and then represent
the results with respect to B.

RepD(

12
3

) =

−4

2

3

 RepD(

01
0

) =

−1

1

0

 RepD(

00
1

) =

−1

0

1


So this is P.

P =

−4 −1 −1

2 1 0

3 0 1


For the other matrix RepD,B(id) we can either find it directly, as we just have
with P, or we can do the usual calculation of a matrix inverse.

P−1 =

 1 1 1

−2 −1 −2

−3 −3 −2
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Five.II.1.8 (a) Because we describe t with the members of B, finding the matrix
representation is easy:

RepB(t(x
2)) =

01
1


B

RepB(t(x)) =

 1

0

−1


B

RepB(t(1)) =

00
3


B

gives this.

RepB,B(t)

0 1 0

1 0 0

1 −1 3


(b) We will find t(1), t(1+ x), and t(1+ x+ x2, to find how each is represented
with respect to D. We are given that t(1) = 3, and the other two are easy to see:
t(1+x) = x2+2 and t(1+x+x2) = x2+x+3. By eye, we get the representation
of each vector

RepD(t(1)) =

30
0


D

RepD(t(1+x)) =

 2

−1

1


D

RepD(t(1+x+x
2)) =

20
1


D

and thus the representation of the map.

RepD,D(t) =

3 2 2

0 −1 0

0 1 1


(c) The diagram

Vwrt B
t−−−−→
T

Vwrt B

id

yP id

yP
Vwrt D

t−−−−→
T̂

Vwrt D

shows that these are P = RepB,D(id) and P−1 = RepD,B(id).

P =

 0 −1 1

−1 1 0

1 0 0

 P−1 =

0 0 1

0 1 1

1 1 1


Five.II.1.9 (a)

C2wrt B
t−−−−→
T

C2wrt B

id

y id

y
C2wrt D

t−−−−→
T̂

C2wrt D
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(b) For the right side we find the effect of the identity map, which is no effect,(
1

0

)
id7−→

(
1

0

) (
1

1

)
id7−→

(
1

1

)
and represent those with respect to D

RepD(

(
1

0

)
) =

(
1/2

0

)
RepD(

(
1

1

)
) =

(
1/2

−1/2

)
so we have this.

P = RepB,D(id) =

(
1/2 1/2

0 −1/2

)
For the matrix on the left we can either compute it directly, as in the prior

paragraph, or we can take the inverse.

P−1 = RepD,B(id) =
1

(−1/4)
·

(
−1/2 −1/2

0 1/2

)
=

(
2 2

0 −2

)
(c) As with the prior item we can either compute it directly from the definition
or compute it using matrix operations.

PTP−1 =

(
2 2

0 −2

)(
1 −1

2 1

)(
2 2

0 −2

)
=

(
3 3

−2 −1

)
Five.II.1.10 One possible choice of the bases is

B = 〈

(
1

2

)
,

(
−1

1

)
〉 D = E2 = 〈

(
1

0

)
,

(
0

1

)
〉

(this B comes from the map description). To find the matrix T̂ = RepB,B(t), solve
the relations

c1

(
1

2

)
+ c2

(
−1

1

)
=

(
3

0

)
ĉ1

(
1

2

)
+ ĉ2

(
−1

1

)
=

(
−1

2

)
to get c1 = 1, c2 = −2, ĉ1 = 1/3 and ĉ2 = 4/3.

RepB,B(t) =

(
1 1/3

−2 4/3

)
Finding RepD,D(t) involves a bit more computation. We first find t(~e1). The

relation

c1

(
1

2

)
+ c2

(
−1

1

)
=

(
1

0

)
gives c1 = 1/3 and c2 = −2/3, and so

RepB(~e1) =

(
1/3

−2/3

)
B
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making

RepB(t(~e1)) =

(
1 1/3

−2 4/3

)
B,B

(
1/3

−2/3

)
B

=

(
1/9

−14/9

)
B

and hence t acts on the first basis vector ~e1 in this way.

t(~e1) = (1/9) ·

(
1

2

)
− (14/9) ·

(
−1

1

)
=

(
5/3

−4/3

)
The computation for t(~e2) is similar. The relation

c1

(
1

2

)
+ c2

(
−1

1

)
=

(
0

1

)
gives c1 = 1/3 and c2 = 1/3, so

RepB(~e1) =

(
1/3

1/3

)
B

making

RepB(t(~e1)) =

(
1 1/3

−2 4/3

)
B,B

(
1/3

1/3

)
B

=

(
4/9

−2/9

)
B

and hence t acts on the second basis vector ~e2 in this way.

t(~e2) = (4/9) ·

(
1

2

)
− (2/9) ·

(
−1

1

)
=

(
2/3

2/3

)
Therefore

RepD,D(t) =

(
5/3 2/3

−4/3 2/3

)
and so this matrix.

P = RepB,D(id) =

(
1 −1

2 1

)
and this one change the bases.

P−1 =
(
RepB,D(id)

)−1
=

(
1 −1

2 1

)−1

=

(
1/3 1/3

−2/3 1/3

)
The check of these computations is routine.(

1 −1

2 1

)(
1 1/3

−2 4/3

)(
1/3 1/3

−2/3 1/3

)
=

(
5/3 2/3

−4/3 2/3

)
Five.II.1.11 Gauss’s Method shows that the first matrix represents maps of rank two
while the second matrix represents maps of rank three.

Five.II.1.12 The only representation of a zero map is a zero matrix, no matter what
the pair of bases RepB,D(z) = Z, and so in particular for any single basis B we have
RepB,B(z) = Z. The case of the identity is slightly different: the only representation
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of the identity map, with respect to any B,B, is the identity RepB,B(id) = I.
(Remark: of course, we have seen examples where B 6= D and RepB,D(id) 6= I—in
fact, we have seen that any nonsingular matrix is a representation of the identity
map with respect to some B,D.)

Five.II.1.13 No. If A = PBP−1 then A2 = (PBP−1)(PBP−1) = PB2P−1.
Five.II.1.14 Matrix similarity is a special case of matrix equivalence (if matrices
are similar then they are matrix equivalent) and matrix equivalence preserves
nonsingularity.

Five.II.1.15 A matrix is similar to itself; take P to be the identity matrix: P = IPI−1 =

IPI.
If T̂ is similar to T then T̂ = PTP−1 and so P−1T̂P = T . Rewrite T =

(P−1)T̂(P−1)−1 to conclude that T is similar to T̂ .
For transitivity, if T is similar to S and S is similar to U then T = PSP−1 and

S = QUQ−1. Then T = PQUQ−1P−1 = (PQ)U(PQ)−1, showing that T is similar
to U.

Five.II.1.16 Let fx and fy be the reflection maps (sometimes called ‘flip’s). For any
bases B and D, the matrices RepB,B(fx) and RepD,D(fy) are similar. First note
that

S = RepE2,E2(fx) =

(
1 0

0 −1

)
T = RepE2,E2(fy) =

(
−1 0

0 1

)
are similar because the second matrix is the representation of fx with respect to
the basis A = 〈~e2,~e1〉: (

1 0

0 −1

)
= P

(
−1 0

0 1

)
P−1

where P = RepA,E2(id).

R2wrt A
fx−−−−→
T

VR2wrt A

id

yP id

yP
R2wrt E2

fx−−−−→
S

R2wrt E2
Now the conclusion follows from the transitivity part of Exercise 15.

We can also finish without relying on that exercise. Write RepB,B(fx) =

QTQ−1 = QRepE2,E2(fx)Q
−1 and RepD,D(fy) = RSR−1 = RRepE2,E2(fy)R

−1.
By the equation in the first paragraph, the first of these two is RepB,B(fx) =

QPRepE2,E2(fy)P
−1Q−1. Rewriting the second of these two as R−1 · RepD,D(fy) ·

R = RepE2,E2(fy) and substituting gives the desired relationship

RepB,B(fx) = QPRepE2,E2(fy)P
−1Q−1

= QPR−1 · RepD,D(fy) · RP−1Q−1 = (QPR−1) · RepD,D(fy) · (QPR−1)−1
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Thus the matrices RepB,B(fx) and RepD,D(fy) are similar.

Five.II.1.17 We must show that if two matrices are similar then they have the same
determinant and the same rank. Both determinant and rank are properties of
matrices that are preserved by matrix equivalence. They are therefore preserved by
similarity (which is a special case of matrix equivalence: if two matrices are similar
then they are matrix equivalent).

To prove the statement without quoting the results about matrix equivalence,
note first that rank is a property of the map (it is the dimension of the range space)
and since we’ve shown that the rank of a map is the rank of a representation, it must
be the same for all representations. As for determinants, |PSP−1| = |P| · |S| · |P−1| =
|P| · |S| · |P|−1 = |S|.

The converse of the statement does not hold; for instance, there are matrices
with the same determinant that are not similar. To check this, consider a nonzero
matrix with a determinant of zero. It is not similar to the zero matrix, the zero
matrix is similar only to itself, but they have they same determinant. The argument
for rank is much the same.

Five.II.1.18 The matrix equivalence class containing all n×n rank zero matrices
contains only a single matrix, the zero matrix. Therefore it has as a subset only
one similarity class.

In contrast, the matrix equivalence class of 1×1 matrices of rank one consists
of those 1×1 matrices (k) where k 6= 0. For any basis B, the representation of
multiplication by the scalar k is RepB,B(tk) = (k), so each such matrix is alone in
its similarity class. So this is a case where a matrix equivalence class splits into
infinitely many similarity classes.

Five.II.1.19 Yes, these are similar(
1 0

0 3

) (
3 0

0 1

)
since, where the first matrix is RepB,B(t) for B = 〈~β1, ~β2〉, the second matrix is
RepD,D(t) for D = 〈~β2, ~β1〉.

Five.II.1.20 The k-th powers are similar because, where each matrix represents the
map t, the k-th powers represent tk, the composition of k-many t’s. (For instance,
if T = reptB, B then T2 = RepB,B(t ◦ t).)

Restated more computationally, if T = PSP−1 then T2 = (PSP−1)(PSP−1) =

PS2P−1. Induction extends that to all powers.
For the k 6 0 case, suppose that S is invertible and that T = PSP−1. Note that

T is invertible: T−1 = (PSP−1)−1 = PS−1P−1, and that same equation shows that
T−1 is similar to S−1. Other negative powers are now given by the first paragraph.
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Five.II.1.21 In conceptual terms, both represent p(t) for some transformation t. In
computational terms, we have this.

p(T) = cn(PSP
−1)n + · · ·+ c1(PSP−1) + c0I

= cnPS
nP−1 + · · ·+ c1PSP−1 + c0I

= PcnS
nP−1 + · · ·+ Pc1SP−1 + Pc0P−1

= P(cnS
n + · · ·+ c1S+ c0)P−1

Five.II.1.22 There are two equivalence classes, (i) the class of rank zero matrices, of
which there is one: C1 = {(0) }, and (2) the class of rank one matrices, of which
there are infinitely many: C2 = {(k) | k 6= 0 }.

Each 1×1matrix is alone in its similarity class. That’s because any transformation
of a one-dimensional space is multiplication by a scalar tk : V → V given by ~v 7→ k ·~v.
Thus, for any basis B = 〈~β〉, the matrix representing a transformation tk with
respect to B,B is (RepB(tk(~β))) = (k).

So, contained in the matrix equivalence class C1 is (obviously) the single
similarity class consisting of the matrix (0). And, contained in the matrix equivalence
class C2 are the infinitely many, one-member-each, similarity classes consisting of
(k) for k 6= 0.

Five.II.1.23 No. Here is an example that has two pairs, each of two similar matrices:(
1 −1

1 2

)(
1 0

0 3

)(
2/3 1/3

−1/3 1/3

)
=

(
5/3 −2/3

−4/3 7/3

)
and (

1 −2

−1 1

)(
−1 0

0 −3

)(
−1 −2

−1 −1

)
=

(
−5 −4

2 1

)
(this example is not entirely arbitrary because the center matrices on the two left
sides add to the zero matrix). Note that the sums of these similar matrices are not
similar(
1 0

0 3

)
+

(
−1 0

0 −3

)
=

(
0 0

0 0

) (
5/3 −2/3

−4/3 7/3

)
+

(
−5 −4

2 1

)
6=

(
0 0

0 0

)
since the zero matrix is similar only to itself.

Five.II.1.24 If N = P(T − λI)P−1 then N = PTP−1 − P(λI)P−1. The diagonal matrix
λI commutes with anything, so P(λI)P−1 = PP−1(λI) = λI. Thus N = PTP−1 − λI

and consequently N+ λI = PTP−1. (So not only are they similar, in fact they are
similar via the same P.)
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Five.II.2: Diagonalizability

Five.II.2.6 Because we chose the basis vectors arbitrarily, many different answers are
possible. However, here is one way to go; to diagonalize

T =

(
4 −2

1 1

)
take it as the representation of a transformation with respect to the standard basis
T = RepE2,E2(t) and look for B = 〈~β1, ~β2〉 such that

RepB,B(t) =

(
λ1 0

0 λ2

)
that is, such that t(~β1) = λ1 and t(~β2) = λ2.(

4 −2

1 1

)
~β1 = λ1 · ~β1

(
4 −2

1 1

)
~β2 = λ2 · ~β2

We are looking for scalars x such that this equation(
4 −2

1 1

)(
b1
b2

)
= x ·

(
b1
b2

)
has solutions b1 and b2, which are not both zero. Rewrite that as a linear system

(4− x) · b1 + −2 · b2 = 0
1 · b1 + (1− x) · b2 = 0

If x = 4 then the first equation gives that b2 = 0, and then the second equation
gives that b1 = 0. We have disallowed the case where both b’s are zero so we can
assume that x 6= 4.

(−1/(4−x))ρ1+ρ2−→ (4− x) · b1 + −2 · b2 = 0
((x2 − 5x+ 6)/(4− x)) · b2 = 0

Consider the bottom equation. If b2 = 0 then the first equation gives b1 = 0 or
x = 4. The b1 = b2 = 0 case is not allowed. The other possibility for the bottom
equation is that the numerator of the fraction x2 − 5x+ 6 = (x− 2)(x− 3) is zero.
The x = 2 case gives a first equation of 2b1− 2b2 = 0, and so associated with x = 2
we have vectors whose first and second components are equal:

~β1 =

(
1

1

)
(so

(
4 −2

1 1

)(
1

1

)
= 2 ·

(
1

1

)
, and λ1 = 2).

If x = 3 then the first equation is b1 − 2b2 = 0 and so the associated vectors are
those whose first component is twice their second:

~β2 =

(
2

1

)
(so

(
4 −2

1 1

)(
2

1

)
= 3 ·

(
2

1

)
, and so λ2 = 3).
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This picture
R2wrt E2

t−−−−→
T

R2wrt E2

id

y id

y
R2wrt B

t−−−−→
D

R2wrt B

shows how to get the diagonalization.(
2 0

0 3

)
=

(
1 2

1 1

)−1(
4 −2

1 1

)(
1 2

1 1

)
Comment. This equation matches the T = PSP−1 definition under this renaming.

T =

(
2 0

0 3

)
P =

(
1 2

1 1

)−1

P−1 =

(
1 2

1 1

)
S =

(
4 −2

1 1

)
Five.II.2.7 (a) Setting up(

−2 1

0 2

)(
b1
b2

)
= x ·

(
b1
b2

)
=⇒ (−2− x) · b1 + b2 = 0

(2− x) · b2 = 0

gives the two possibilities that b2 = 0 and x = 2. Following the b2 = 0 possibility
leads to the first equation (−2 − x)b1 = 0 with the two cases that b1 = 0 and
that x = −2. Thus, under this first possibility, we find x = −2 and the associated
vectors whose second component is zero, and whose first component is free.(

−2 1

0 2

)(
b1
0

)
= −2 ·

(
b1
0

)
~β1 =

(
1

0

)
Following the other possibility leads to a first equation of −4b1 + b2 = 0 and so
the vectors associated with this solution have a second component that is four
times their first component.(

−2 1

0 2

)(
b1
4b1

)
= 2 ·

(
b1
4b1

)
~β2 =

(
1

4

)
The diagonalization is this.(

1 1

0 4

)(
−2 1

0 2

)(
1 1

0 4

)−1

=

(
−2 0

0 2

)
(b) The calculations are like those in the prior part.(

5 4

0 1

)(
b1
b2

)
= x ·

(
b1
b2

)
=⇒ (5− x) · b1 + 4 · b2 = 0

(1− x) · b2 = 0

The bottom equation gives the two possibilities that b2 = 0 and x = 1. Following
the b2 = 0 possibility, and discarding the case where both b2 and b1 are zero,
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gives that x = 5, associated with vectors whose second component is zero and
whose first component is free.

~β1 =

(
1

0

)
The x = 1 possibility gives a first equation of 4b1+ 4b2 = 0 and so the associated
vectors have a second component that is the negative of their first component.

~β1 =

(
1

−1

)
We thus have this diagonalization.(

1 1

0 −1

)(
5 4

0 1

)(
1 1

0 −1

)−1

=

(
5 0

0 1

)
Five.II.2.8 For any integer p, we have this.d1 0

0
. . .

dn


p

=

d
p
1 0

0
. . .

dpn


Five.II.2.9 These two are not similar(

0 0

0 0

) (
1 0

0 1

)
because each is alone in its similarity class.

For the second half, these (
2 0

0 3

) (
3 0

0 2

)
are similar via the matrix that changes bases from 〈~β1, ~β2〉 to 〈~β2, ~β1〉. (Ques-
tion. Are two diagonal matrices similar if and only if their diagonal entries are
permutations of each others?)

Five.II.2.10 Contrast these two. (
2 0

0 1

) (
2 0

0 0

)
The first is nonsingular, the second is singular.

Five.II.2.11 To check that the inverse of a diagonal matrix is the diagonal matrix of
the inverses, just multiply.

a1,1 0

0 a2,2
. . .

an,n



1/a1,1 0

0 1/a2,2
. . .

1/an,n
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(Showing that it is a left inverse is just as easy.)
If a diagonal entry is zero then the diagonal matrix is singular; it has a zero

determinant.

Five.II.2.12 (a) The check is easy.(
1 1

0 −1

)(
3 2

0 1

)
=

(
3 3

0 −1

) (
3 3

0 −1

)(
1 1

0 −1

)−1

=

(
3 0

0 1

)
(b) It is a coincidence, in the sense that if T = PSP−1 then T need not equal
P−1SP. Even in the case of a diagonal matrix D, the condition that D = PTP−1

does not imply that D equals P−1TP. The matrices from Example 2.2 show this.(
1 2

1 1

)(
4 −2

1 1

)
=

(
6 0

5 −1

) (
6 0

5 −1

)(
1 2

1 1

)−1

=

(
−6 12

−6 11

)
Five.II.2.13 The columns of the matrix are the vectors associated with the x’s. The
exact choice, and the order of the choice was arbitrary. We could, for instance, get
a different matrix by swapping the two columns.

Five.II.2.14 Diagonalizing and then taking powers of the diagonal matrix shows that(
−3 1

−4 2

)k
=
1

3

(
−1 1

−4 4

)
+ (

−2

3
)k

(
4 −1

4 −1

)
.

Five.II.2.15 (a)

(
1 1

0 −1

)−1(
1 1

0 0

)(
1 1

0 −1

)
=

(
1 0

0 0

)

(b)

(
1 1

0 −1

)−1(
0 1

1 0

)(
1 1

0 −1

)
=

(
1 0

0 −1

)
Five.II.2.16 Yes, ct is diagonalizable by the final theorem of this subsection.

No, t+ s need not be diagonalizable. Intuitively, the problem arises when the
two maps diagonalize with respect to different bases (that is, when they are not
simultaneously diagonalizable). Specifically, these two are diagonalizable but their
sum is not: (

1 1

0 0

) (
−1 0

0 0

)
(the second is already diagonal; for the first, see Exercise 15). The sum is not
diagonalizable because its square is the zero matrix.

The same intuition suggests that t ◦ s is not be diagonalizable. These two are
diagonalizable but their product is not:(

1 0

0 0

) (
0 1

1 0

)
(for the second, see Exercise 15).
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Five.II.2.17 If

P

(
1 c

0 1

)
P−1 =

(
a 0

0 b

)
then

P

(
1 c

0 1

)
=

(
a 0

0 b

)
P

so (
p q

r s

)(
1 c

0 1

)
=

(
a 0

0 b

)(
p q

r s

)
(
p cp+ q

r cr+ s

)
=

(
ap aq

br bs

)
The 1, 1 entries show that a = 1 and the 1, 2 entries then show that pc = 0. Since
c 6= 0 this means that p = 0. The 2, 1 entries show that b = 1 and the 2, 2 entries
then show that rc = 0. Since c 6= 0 this means that r = 0. But if both p and r are
0 then P is not invertible.

Five.II.2.18 (a) Using the formula for the inverse of a 2×2 matrix gives this.(
a b

c d

)(
1 2

2 1

)
· 1

ad− bc
·

(
d −b

−c a

)

=
1

ad− bc

(
ad+ 2bd− 2ac− bc −ab− 2b2 + 2a2 + ab

cd+ 2d2 − 2c2 − cd −bc− 2bd+ 2ac+ ad

)
Now pick scalars a, . . . , d so that ad−bc 6= 0 and 2d2−2c2 = 0 and 2a2−2b2 = 0.
For example, these will do.(

1 1

1 −1

)(
1 2

2 1

)
· 1
−2
·

(
−1 −1

−1 1

)
=

1

−2

(
−6 0

0 2

)
(b) As above,(

a b

c d

)(
x y

y z

)
· 1

ad− bc
·

(
d −b

−c a

)

=
1

ad− bc

(
adx+ bdy− acy− bcz −abx− b2y+ a2y+ abz

cdx+ d2y− c2y− cdz −bcx− bdy+ acy+ adz

)
we are looking for scalars a, . . . , d so that ad− bc 6= 0 and −abx− b2y+ a2y+

abz = 0 and cdx+ d2y− c2y− cdz = 0, no matter what values x, y, and z have.
For starters, we assume that y 6= 0, else the given matrix is already diagonal.

We shall use that assumption because if we (arbitrarily) let a = 1 then we get
−bx− b2y+ y+ bz = 0

(−y)b2 + (z− x)b+ y = 0
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and the quadratic formula gives

b =
−(z− x)±

√
(z− x)2 − 4(−y)(y)

−2y
y 6= 0

(note that if x, y, and z are real then these two b’s are real as the discriminant is
positive). By the same token, if we (arbitrarily) let c = 1 then

dx+ d2y− y− dz = 0

(y)d2 + (x− z)d− y = 0

and we get here

d =
−(x− z)±

√
(x− z)2 − 4(y)(−y)

2y
y 6= 0

(as above, if x, y, z ∈ R then this discriminant is positive so a symmetric, real,
2×2 matrix is similar to a real diagonal matrix).

For a check we try x = 1, y = 2, z = 1.

b =
0±
√
0+ 16

−4
= ∓1 d =

0±
√
0+ 16

4
= ±1

Note that not all four choices (b, d) = (+1,+1), . . . , (−1,−1) satisfy ad−bc 6= 0.

Five.II.3: Eigenvalues and Eigenvectors

Five.II.3.21 We can permute the columns, by permuting the basis with which the
representation is done. (

3 0

0 −4

) (
−4 0

0 3

)
Five.II.3.22 (a) This

0 =

∣∣∣∣∣10− x −9

4 −2− x

∣∣∣∣∣ = (10− x)(−2− x) − (−36)

simplifies to the characteristic equation x2 − 8x+ 16 = 0. Because the equation
factors into (x− 4)2 there is only one eigenvalue λ1 = 4.

(b) 0 = (1− x)(3− x) − 8 = x2 − 4x− 5; λ1 = 5, λ2 = −1

(c) x2 − 21 = 0; λ1 =
√
21, λ2 = −

√
21

(d) x2 = 0; λ1 = 0
(e) x2 − 2x+ 1 = 0; λ1 = 1

Five.II.3.23 (a) The characteristic equation is (3 − x)(−1 − x) = 0. Its roots, the
eigenvalues, are λ1 = 3 and λ2 = −1. For the eigenvectors we consider this
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equation. (
3− x 0

8 −1− x

)(
b1
b2

)
=

(
0

0

)
For the eigenvector associated with λ1 = 3, we consider the resulting linear
system.

0 · b1 + 0 · b2 = 0
8 · b1 +−4 · b2 = 0

The eigenspace is the set of vectors whose second component is twice the first
component.

{

(
b2/2

b2

)
| b2 ∈ C }

(
3 0

8 −1

)(
b2/2

b2

)
= 3 ·

(
b2/2

b2

)
(Here, the parameter is b2 only because that is the variable that is free in the
above system.) Hence, this is an eigenvector associated with the eigenvalue 3.(

1

2

)
Finding an eigenvector associated with λ2 = −1 is similar. This system

4 · b1 + 0 · b2 = 0
8 · b1 + 0 · b2 = 0

leads to the set of vectors whose first component is zero.

{

(
0

b2

)
| b2 ∈ C }

(
3 0

8 −1

)(
0

b2

)
= −1 ·

(
0

b2

)
And so this is an eigenvector associated with λ2.(

0

1

)
(b) The characteristic equation is

0 =

∣∣∣∣∣3− x 2

−1 −x

∣∣∣∣∣ = x2 − 3x+ 2 = (x− 2)(x− 1)

and so the eigenvalues are λ1 = 2 and λ2 = 1. To find eigenvectors, consider this
system.

(3− x) · b1 + 2 · b2 = 0
−1 · b1 − x · b2 = 0

For λ1 = 2 we get
1 · b1 + 2 · b2 = 0

−1 · b1 − 2 · b2 = 0
leading to this eigenspace and eigenvector.

{

(
−2b2
b2

)
| b2 ∈ C }

(
−2

1

)
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For λ2 = 1 the system is
2 · b1 + 2 · b2 = 0

−1 · b1 − 1 · b2 = 0
leading to this.

{

(
−b2
b2

)
| b2 ∈ C }

(
−1

1

)
Five.II.3.24 The characteristic equation

0 =

∣∣∣∣∣−2− x −1

5 2− x

∣∣∣∣∣ = x2 + 1
has the complex roots λ1 = i and λ2 = −i. This system

(−2− x) · b1 − 1 · b2 = 0
5 · b1 (2− x) · b2 = 0

For λ1 = i Gauss’s Method gives this reduction.
(−2− i) · b1 − 1 · b2 = 0

5 · b1 − (2− i) · b2 = 0
(−5/(−2−i))ρ1+ρ2−→ (−2− i) · b1 − 1 · b2 = 0

0= 0

(For the calculation in the lower right get a common denominator
5

−2− i
− (2− i) =

5

−2− i
−

−2− i

−2− i
· (2− i) = 5− (−5)

−2− i
to see that it gives a 0 = 0 equation.) These are the resulting eigenspace and
eigenvector.

{

(
(1/(−2− i))b2

b2

)
| b2 ∈ C }

(
1/(−2− i)

1

)
For λ2 = −i the system

(−2+ i) · b1 − 1 · b2 = 0
5 · b1 − (2+ i) · b2 = 0

(−5/(−2+i))ρ1+ρ2−→ (−2+ i) · b1 − 1 · b2 = 0
0= 0

leads to this.

{

(
(1/(−2+ i))b2

b2

)
| b2 ∈ C }

(
1/(−2+ i)

1

)
Five.II.3.25 The characteristic equation is

0 =

∣∣∣∣∣∣∣
1− x 1 1

0 −x 1

0 0 1− x

∣∣∣∣∣∣∣ = (1− x)2(−x)

and so the eigenvalues are λ1 = 1 (this is a repeated root of the equation) and
λ2 = 0. For the rest, consider this system.

(1− x) · b1 + b2 + b3 = 0

−x · b2 + b3 = 0

(1− x) · b3 = 0
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When x = λ1 = 1 then the solution set is this eigenspace.

{

b10
0

 | b1 ∈ C }

When x = λ2 = 0 then the solution set is this eigenspace.

{

−b2
b2
0

 | b2 ∈ C }

So these are eigenvectors associated with λ1 = 1 and λ2 = 0.10
0


−1

1

0


Five.II.3.26 (a) The characteristic equation is

0 =

∣∣∣∣∣∣∣
3− x −2 0

−2 3− x 0

0 0 5− x

∣∣∣∣∣∣∣ = x3 − 11x2 + 35x− 25 = (x− 1)(x− 5)2

and so the eigenvalues are λ1 = 1 and also the repeated eigenvalue λ2 = 5. To
find eigenvectors, consider this system.

(3− x) · b1 − 2 · b2 = 0

−2 · b1 + (3− x) · b2 = 0

(5− x) · b3 = 0
For λ1 = 1 we get

2 · b1 − 2 · b2 = 0

−2 · b1 + 2 · b2 = 0

4 · b3 = 0
leading to this eigenspace and eigenvector.

{

b2b2
0

 | b2 ∈ C }

11
0


For λ2 = 5 the system is

−2 · b1 − 2 · b2 = 0

−2 · b1 − 2 · b2 = 0

0 · b3 = 0
leading to this.

{

−b2
b2
0

+

 0

0

b3

 | b2, b3 ∈ C }

−1

1

0

 ,
00
1
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(b) The characteristic equation is

0 =

∣∣∣∣∣∣∣
−x 1 0

0 −x 1

4 −17 8− x

∣∣∣∣∣∣∣ = −x3 + 8x2 − 17x+ 4 = −1 · (x− 4)(x2 − 4x+ 1)

and the eigenvalues are λ1 = 4 and (by using the quadratic equation) λ2 = 2+
√
3

and λ3 = 2−
√
3. To find eigenvectors, consider this system.

−x · b1 + b2 = 0

−x · b2 + b3 = 0

4 · b1 − 17 · b2 + (8− x) · b3 = 0
Substituting x = λ1 = 4 gives the system

−4 · b1 + b2 = 0

−4 · b2 + b3 = 0

4 · b1 − 17 · b2 + 4 · b3 = 0

ρ1+ρ3−→
−4 · b1 + b2 = 0

−4 · b2 + b3 = 0

−16 · b2 + 4 · b3 = 0

−4ρ2+ρ3−→
−4 · b1 + b2 = 0

−4 · b2 + b3 = 0
0= 0

leading to this eigenspace and eigenvector.

V4 = {

(1/16) · b3
(1/4) · b3
b3

 | b2 ∈ C }

 14
16


Substituting x = λ2 = 2+

√
3 gives the system

(−2−
√
3) · b1 + b2 = 0

(−2−
√
3) · b2 + b3 = 0

4 · b1 − 17 · b2 + (6−
√
3) · b3 = 0

(−4/(−2−
√
3))ρ1+ρ3−→

(−2−
√
3) · b1 + b2 = 0

(−2−
√
3) · b2 + b3 = 0

+ (−9− 4
√
3) · b2 + (6−

√
3) · b3 = 0

(the middle coefficient in the third equation equals the number (−4/(−2−
√
3))−

17; find a common denominator of −2−
√
3 and then rationalize the denominator

by multiplying the top and bottom of the fraction by −2+
√
3)

((9+4
√
3)/(−2−

√
3))ρ2+ρ3−→

(−2−
√
3) · b1 + b2 = 0

(−2−
√
3) · b2 + b3 = 0

0= 0

which leads to this eigenspace and eigenvector.

V2+
√
3 = {

(1/(2+
√
3)2) · b3

(1/(2+
√
3)) · b3

b3

 | b3 ∈ C }

(1/(2+
√
3)2)

(1/(2+
√
3))

1
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Finally, substituting x = λ3 = 2−
√
3 gives the system

(−2+
√
3) · b1 + b2 = 0

(−2+
√
3) · b2 + b3 = 0

4 · b1 − 17 · b2 + (6+
√
3) · b3 = 0

(−4/(−2+
√
3))ρ1+ρ3−→

(−2+
√
3) · b1 + b2 = 0

(−2+
√
3) · b2 + b3 = 0

(−9+ 4
√
3) · b2 + (6+

√
3) · b3 = 0

((9−4
√
3)/(−2+

√
3))ρ2+ρ3−→

(−2+
√
3) · b1 + b2 = 0

(−2+
√
3) · b2 + b3 = 0

0= 0

which gives this eigenspace and eigenvector.

V2−
√
3 = {

(1/(2+
√
3)2) · b3

(1/(2−
√
3)) · b3

b3

 | b3 ∈ C }

(1/(−2+
√
3)2)

(1/(−2+
√
3))

1


Five.II.3.27 (a) The characteristic polynomial factors as x2−20x+75 = (x−5)(x−15),

so the eigenvalues are λ1 = 5 and λ2 = 15. These are the associated eigenspaces.

V5 = {k

(
1

2

)
| k ∈ C } V15 = {k

(
−2

1

)
| k ∈ C }

For each eigenvalue, both the algebraic and geometric multiplicities are 1.
(b) The characteristic polynomial x3 − 6x2 + 32 factors into (x+ 2)(x− 4)2. The
eigenvectors are λ1 = −2 and λ2 = 4. Here are the associated eigenspaces.

V−2 = {k

11
2

 | k ∈ C } V4 = {k1

11
0

+ k2

 1

0

−1

 | k1, k2 ∈ C }

For λ1 = −2 the algebraic and geometric multiplicities are both 1. For λ2 = 4

the algebraic and geometric multiplicities are both 2.
(c) The characteristic polynomial x3 − 5x2 + 8x − 4 factors into (x − 1)(x − 2)2.
The eigenvalues are λ1 = 1 and λ2 = 2. Here are the associated eigenspaces.

V1 = {k

−6

3

1

 | k ∈ C } V2 = {k

10
0

 | k ∈ C }

For λ1 = 1 the algebraic and geometric multiplicities are both 1. For λ2 = 2 the
algebraic multiplicity is 2 but the geometric multiplicity is 1.

Five.II.3.28 With respect to the natural basis B = 〈1, x, x2〉 the matrix representation
is this.

RepB,B(t) =

5 6 2

0 −1 −8

1 0 −2
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Thus the characteristic equation

0 =

5− x 6 2

0 −1− x −8

1 0 −2− x

 = (5− x)(−1− x)(−2− x) − 48− 2 · (−1− x)

is 0 = −x3+2x2+15x−36 = −1 ·(x+4)(x−3)2. To find the associated eigenvectors,
consider this system.

(5− x) · b1 + 6b2 + 2b3 = 0

(−1− x) · b2 − 8b3 = 0

b1 + (−2− x) · b3 = 0
Plugging in λ1 = −4 for x gives

9b1 + 6b2 + 2b3 = 0

3b2 − 8b3 = 0

b1 + 2b3 = 0

−(1/9)ρ1+ρ3−→ (2/9)ρ2+ρ3−→ 9b1 + 6b2 + 2b3 = 0

3b2 − 8b3 = 0

Here is the eigenspace and an eigenvector.

V−4 = {

 2 · b3
(8/3) · b3
b3

 | b3 ∈ C }

 2

8/3

1


Similarly, plugging in x = λ2 = 3 gives

2b1 + 6 · b2 + 2 · b3 = 0
−4 · b2 − 8 · b3 = 0

b1 − 5 · b3 = 0

−(1/2)ρ1+ρ3−→ −(3/4)ρ2+ρ3−→ 2b1 + 6 · b2 + 2 · b3 = 0
−4 · b2 − 8 · b3 = 0

with this eigenspace and eigenvector.

V3 = {

 5 · b3
−2 · b3
b3

 | b3 ∈ C }

 5

−2

1


Five.II.3.29 λ = 1,

(
0 0

0 1

)
and

(
2 3

1 0

)
, λ = −2,

(
−1 0

1 0

)
, λ = −1,

(
−2 1

1 0

)
Five.II.3.30 Fix the natural basis B = 〈1, x, x2, x3〉. The map’s action is 1 7→ 0, x 7→ 1,
x2 7→ 2x, and x3 7→ 3x2 and its representation is easy to compute.

T = RepB,B(d/dx) =


0 1 0 0

0 0 2 0

0 0 0 3

0 0 0 0


B,B

We find the eigenvalues with this computation.

0 = |T − xI| =

∣∣∣∣∣∣∣∣∣
−x 1 0 0

0 −x 2 0

0 0 −x 3

0 0 0 −x

∣∣∣∣∣∣∣∣∣ = x
4
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Thus the map has the single eigenvalue λ = 0. To find the associated eigenvectors,
we solve

0 1 0 0

0 0 2 0

0 0 0 3

0 0 0 0


B,B


b1
b2
b3
b4


B

= 0 ·


b1
b2
b3
b4


B

=⇒ b2 = 0, b3 = 0, b4 = 0

to get this eigenspace.

{


b1
0

0

0


B

| b1 ∈ C } = {b1 + 0 · x+ 0 · x2 + 0 · x3 | b1 ∈ C } = {b1 | b1 ∈ C }

Five.II.3.31 The determinant of the triangular matrix T − xI is the product down the
diagonal, and so it factors into the product of the terms ti,i − x.

Five.II.3.32 (a) Computing the eigenvalues gives λ1 = 3, λ2 = 0, and λ3 = −4. Thus
the diagonalization of the matrix is this.3 0 0

0 0 0

0 0 −4


(b) Get an eigenvector associated with each eigenvalue, and use them to make a
basis.

For λ1 = 3 we solve this system.1− 3 2 1

6 −1− 3 0

−1 −2 −1− 3


xy
z

 =

00
0


Gauss’s Method suffices.−2 2 1 0

6 −4 0 0

−1 −2 −4 0

 3ρ1+ρ2−→
−(1/2)ρ1+ρ3

(3/2)ρ1+ρ3−→

−2 2 1 0

0 2 3 0

0 0 0 0


Parametrizing gives the solution space.

S1 = {

 −1

−3/2

1

 · z | z ∈ C }

This is the λ2 = 0 system. 1 2 1

6 −1 0

−1 −2 −1


xy
z

 =

00
0
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Gauss’s Method 1 2 1 0

6 −1 0 0

−1 −2 −1 0

 −6ρ1+ρ2−→
ρ1+ρ3

1 2 1 0

0 −13 −6 0

0 0 0 0


followed by parametrizing gives the solution space.

S2 = {

−1/13

−6/13

1

 · z | z ∈ C }

The λ3 = −4 system works the same way.1− (−4) 2 1

6 −1− (−4) 0

−1 −2 −1− (−4)


xy
z

 =

00
0


Gauss’s Method 5 2 1 0

6 3 0 0

−1 −2 3 0

 −(6/5)ρ1+ρ2−→
(1/5)ρ1+ρ3

(8/3)ρ2+ρ3−→

5 2 1 0

0 3/5 −6/5 0

0 0 0 0


and parametrizing gives this.

S3 = {

−1

2

1

 · z | z ∈ C }

Thus the matrix will have that diagonal form when it represents of the same
transformation but with respect to D,D for this D.

D = 〈

 −1

−3/2

1

 ,
−1/13

−6/13

1

 ,
−1

2

1

〉
(c) Call the matrix T . Taking the domain and codomain spaces as R3, and taking
the matrix to be T = RepE3,E3(t) gives this diagram.

R3wrt E3
t−−−−→
T

R3wrt E3

id

y id

y
R3wrt B

t−−−−→
D

R3wrt B

Reading off the diagram we have D = P−1MP where P = RepE3,B(id). To
represent each vector in B with respect to E3 is easy because with respect to the
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standard basis each vector represents itself.

RepE3(

 −1

−3/2

1

) =

 −1

−3/2

1

 RepE3(

−1/13

−6/13

1

) =

−1/13

−6/13

1


RepE3(

−1

2

1

) =

−1

2

1


Thus the matrix just concatenates the three basis vectors.

P =

 −1 −1/13 −1

−3/2 −6/13 2

1 1 1

 and so P−1

−16/21 −2/7 −4/21

13/12 0 13/12

−9/28 2/7 3/28


Five.II.3.33 Just expand the determinant of T − xI.∣∣∣∣∣a− x c

b d− x

∣∣∣∣∣ = (a− x)(d− x) − bc = x2 + (−a− d) · x+ (ad− bc)

Five.II.3.34 Any two representations of that transformation are similar, and similar
matrices have the same characteristic polynomial.

Five.II.3.35 It is not true. All of the eigenvalues of this matrix are 0.(
0 1

0 0

)
Five.II.3.36 (a) Use λ = 1 and the identity map.

(b) Yes, use the transformation that multiplies all vectors by the scalar λ.
Five.II.3.37 If t(~v) = λ ·~v then ~v 7→ ~0 under the map t− λ · id.
Five.II.3.38 The characteristic equation

0 =

∣∣∣∣∣a− x b

c d− x

∣∣∣∣∣ = (a− x)(d− x) − bc

simplifies to x2 + (−a− d) · x+ (ad− bc). Checking that the values x = a+ b and
x = a− c satisfy the equation (under the a+ b = c+ d condition) is routine.

Five.II.3.39 Consider an eigenspace Vλ. Any ~w ∈ Vλ is the image ~w = λ ·~v of some
~v ∈ Vλ (namely, ~v = (1/λ) · ~w). Thus, on Vλ (which is a nontrivial subspace) the
action of t−1 is t−1(~w) = ~v = (1/λ) · ~w, and so 1/λ is an eigenvalue of t−1.

Five.II.3.40 (a) We have (cT + dI)~v = cT~v+ dI~v = cλ~v+ d~v = (cλ+ d) ·~v.
(b) Suppose that S = PTP−1 is diagonal. Then P(cT + dI)P−1 = P(cT)P−1 +

P(dI)P−1 = cPTP−1 + dI = cS+ dI is also diagonal.
Five.II.3.41 The scalar λ is an eigenvalue if and only if the transformation t− λ id is
singular. A transformation is singular if and only if it is not an isomorphism (that
is, a transformation is an isomorphism if and only if it is nonsingular).
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Five.II.3.42 (a) Where the eigenvalue λ is associated with the eigenvector ~x then
Ak~x = A · · ·A~x = Ak−1λ~x = λAk−1~x = · · · = λk~x. (The full details require
induction on k.)

(b) The eigenvector associated with λ might not be an eigenvector associated with
µ.

Five.II.3.43 No. These are two same-sized, equal rank, matrices with different eigen-
values. (

1 0

0 1

) (
1 0

0 2

)
Five.II.3.44 The characteristic polynomial has an odd power and so has at least one
real root.

Five.II.3.45 The characteristic polynomial x3 + 5x2 + 6x has distinct roots λ1 = 0,
λ2 = −2, and λ3 = −3. Thus the matrix can be diagonalized into this form.0 0 0

0 −2 0

0 0 −3


Five.II.3.46 We must show that it is one-to-one and onto, and that it respects the
operations of matrix addition and scalar multiplication.

To show that it is one-to-one, suppose that tP(T) = tP(S), that is, suppose that
PTP−1 = PSP−1, and note that multiplying both sides on the left by P−1 and on
the right by P gives that T = S. To show that it is onto, consider S ∈Mn×n and
observe that S = tP(P

−1SP).
The map tP preserves matrix addition since tP(T + S) = P(T + S)P−1 =

(PT + PS)P−1 = PTP−1 + PSP−1 = tP(T + S) follows from properties of matrix
multiplication and addition that we have seen. Scalar multiplication is simi-
lar: tP(cT) = P(c · T)P−1 = c · (PTP−1) = c · tP(T).

Five.II.3.47 This is how the answer was given in the cited source. If the argument
of the characteristic function of A is set equal to c, adding the first (n− 1) rows
(columns) to the nth row (column) yields a determinant whose nth row (column)
is zero. Thus c is a characteristic root of A.
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Nilpotence

Five.III.1: Self-Composition

Five.III.1.9 For the zero transformation, no matter what the space, the chain of range
spaces is V ⊃ {~0 } = {~0 } = · · · and the chain of null spaces is {~0 } ⊂ V = V = · · · . For
the identity transformation the chains are V = V = V = · · · and {~0 } = {~0 } = · · · .

Five.III.1.10 (a) Iterating t0 twice a+ bx+ cx2 7→ b+ cx2 7→ cx2 gives

a+ bx+ cx2
t207−→ cx2

and any higher iterate is the same map. Thus, while R(t0) is the space of
quadratic polynomials with no linear term {p+ rx2 | p, r ∈ C }, and R(t20) is
the space of purely-quadratic polynomials {rx2 | r ∈ C }, this is where the chain
stabilizes R∞(t0) = {rx2 | n ∈ C }.

As for null spaces, N (t0) is the space of constant polynomials {p | p ∈ C },
and N (t20) is the space of linear polynomials {p+ qx | p, q ∈ C }. This is the end,
N∞(t0) = N (t20).

(b) The second power (
a

b

)
t17−→

(
0

a

)
t17−→

(
0

0

)
is the zero map. Consequently, the chain of range spaces

R2 ⊃ {

(
0

p

)
| p ∈ C } ⊃ {~0 } = · · ·

and the chain of null spaces

{~0 } ⊂ {

(
q

0

)
| q ∈ C } ⊂ R2 = · · ·

each has length two. The generalized range space is the trivial subspace and the
generalized null space is the entire space.

(c) Iterates of this map cycle around

a+ bx+ cx2
t27−→ b+ cx+ ax2

t27−→ c+ ax+ bx2
t27−→ a+ bx+ cx2 · · ·

and the chains of range spaces and null spaces are trivial.

P2 = P2 = · · · {~0 } = {~0 } = · · ·
Thus, obviously, generalized spaces are R∞(t2) = P2 and N∞(t2) = {~0 }.

(d) We have ab
c

 7→
aa
b

 7→
aa
a

 7→
aa
a

 7→ · · ·
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and so the chain of range spaces

R3 ⊃ {

pp
r

 | p, r ∈ C } ⊃ {

pp
p

 | p ∈ C } = · · ·

and the chain of null spaces

{~0 } ⊂ {

00
r

 | r ∈ C } ⊂ {

0q
r

 | q, r ∈ C } = · · ·

each has length two. The generalized spaces are the final ones shown above in
each chain.

Five.III.1.11 Each maps x 7→ t(t(t(x))).

Five.III.1.12 Recall that if W is a subspace of V then we can enlarge any basis BW for
W to make a basis BV for V . From this the first sentence is immediate. The second
sentence is also not hard: W is the span of BW and if W is a proper subspace then
V is not the span of BW , and so BV must have at least one vector more than does
BW .

Five.III.1.13 It is both ‘if’ and ‘only if’. A linear map is nonsingular if and only if it
preserves dimension, that is, if the dimension of its range equals the dimension of its
domain. With a transformation t : V → V that means that the map is nonsingular
if and only if it is onto: R(t) = V (and thus R(t2) = V, etc).

Five.III.1.14 The null spaces form chains because because if ~v ∈ N (tj) then tj(~v) = ~0

and tj+1(~v) = t( tj(~v) ) = t(~0) = ~0 and so ~v ∈ N (tj+1).
Now, the “further” property for null spaces follows from that fact that it holds

for range spaces, along with the prior exercise. Because the dimension of R(tj)

plus the dimension of N (tj) equals the dimension n of the starting space V , when
the dimensions of the range spaces stop decreasing, so do the dimensions of the
null spaces. The prior exercise shows that from this point k on, the containments
in the chain are not proper—the null spaces are equal.

Five.III.1.15 (Many examples are correct but here is one.) An example is the shift
operator on triples of reals (x, y, z) 7→ (0, x, y). The null space is all triples that
start with two zeros. The map stabilizes after three iterations.

Five.III.1.16 The differentiation operator d/dx : P1 → P1 has the same range space as
null space. For an example of where they are disjoint—except for the zero vector—
consider an identity map, or any nonsingular map.
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Five.III.2: Strings

Five.III.2.19 Three. It is at least three because `2( (1, 1, 1) ) = (0, 0, 1) 6= ~0. It is at
most three because (x, y, z) 7→ (0, x, y) 7→ (0, 0, x) 7→ (0, 0, 0).

Five.III.2.20 (a) The domain has dimension four. The map’s action is that any vector
in the space c1 ·~β1+c2 ·~β2+c3 ·~β3+c4 ·~β4 goes to c1 ·~β2+c2 ·~0+c3 ·~β4+c4 ·~0 =
c1 · ~β3 + c3 · ~β4. The first application of the map sends two basis vectors ~β2 and
~β4 to zero, and therefore the null space has dimension two and the range space
has dimension two. With a second application, all four basis vectors go to zero
and so the null space of the second power has dimension four while the range
space of the second power has dimension zero. Thus the index of nilpotency is
two. This is the canonical form.

0 0 0 0

1 0 0 0

0 0 0 0

0 0 1 0


(b) The dimension of the domain of this map is six. For the first power the
dimension of the null space is four and the dimension of the range space is two.
For the second power the dimension of the null space is five and the dimension
of the range space is one. Then the third iteration results in a null space of
dimension six and a range space of dimension zero. The index of nilpotency is
three, and this is the canonical form.

0 0 0 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


(c) The dimension of the domain is three, and the index of nilpotency is three.
The first power’s null space has dimension one and its range space has dimension
two. The second power’s null space has dimension two and its range space has
dimension one. Finally, the third power’s null space has dimension three and its
range space has dimension zero. Here is the canonical form matrix.0 0 0

1 0 0

0 1 0


Five.III.2.21 By Lemma 1.4 the nullity has grown as large as possible by the n-th
iteration where n is the dimension of the domain. Thus, for the 2×2 matrices, we
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need only check whether the square is the zero matrix. For the 3×3 matrices, we
need only check the cube.
(a) Yes, this matrix is nilpotent because its square is the zero matrix.
(b) No, the square is not the zero matrix.(

3 1

1 3

)2
=

(
10 6

6 10

)
(c) Yes, the cube is the zero matrix. In fact, the square is zero.
(d) No, the third power is not the zero matrix.1 1 4

3 0 −1

5 2 7


3

=

206 86 304

26 8 26

438 180 634


(e) Yes, the cube of this matrix is the zero matrix.

Another way to see that the second and fourth matrices are not nilpotent is to note
that they are nonsingular.

Five.III.2.22 The table of calculations

p Np N (Np)

1


0 1 1 0 1

0 0 1 1 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

 {


r

u

−u− v

u

v

 | r, u, v ∈ C }

2


0 0 1 1 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

 {


r

s

−u− v

u

v

 | r, s, u, v ∈ C }

2 –zero matrix– C5

gives these requirements of the string basis: three basis vectors map directly to zero,
one more basis vector maps to zero by a second application, and the final basis
vector maps to zero by a third application. Thus, the string basis has this form.

~β1 7→ ~β2 7→ ~β3 7→ ~0
~β4 7→ ~0
~β5 7→ ~0
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From that the canonical form is immediate.
0 0 0 0 0

1 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 0 0


Five.III.2.23 (a) The canonical form has a 3×3 block and a 2×2 block

0 0 0 0 0

1 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 1 0


corresponding to the length three string and the length two string in the basis.

(b) Assume that N is the representation of the underlying map with respect to
the standard basis. Let B be the basis to which we will change. By the similarity
diagram

C2wrt E2
n−−−−→
N

C2wrt E2

id

yP id

yP
C2wrt B

n−−−−→ C2wrt B
we have that the canonical form matrix is PNP−1 where

P−1 = RepB,E5(id) =


1 0 0 0 0

0 1 0 1 0

1 0 1 0 0

0 0 1 1 1

0 0 0 0 1


and P is the inverse of that.

P = RepE5,B(id) = (P−1)−1 =


1 0 0 0 0

−1 1 1 −1 1

−1 0 1 0 0

1 0 −1 1 −1

0 0 0 0 1


(c) The calculation to check this is routine.

Five.III.2.24 (a) The calculation
p Np N (Np)

1

(
1/2 −1/2

1/2 −1/2

)
{

(
u

u

)
| u ∈ C }

2 –zero matrix– C2
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shows that any map represented by the matrix must act on the string basis in
this way

~β1 7→ ~β2 7→ ~0

because the null space after one application has dimension one and exactly one
basis vector, ~β2, maps to zero. Therefore, this representation with respect to
〈~β1, ~β2〉 is the canonical form. (

0 0

1 0

)
(b) The calculation here is similar to the prior one.

p Np N (Np)

1

0 0 0

0 −1 1

0 −1 1

 {

uv
v

 | u, v ∈ C }

2 –zero matrix– C3
The table shows that the string basis is of the form

~β1 7→ ~β2 7→ ~0
~β3 7→ ~0

because the null space after one application of the map has dimension two—
~β2 and ~β3 are both sent to zero—and one more iteration results in the
additional vector going to zero. (c) The calculation

p Np N (Np)

1

−1 1 −1

1 0 1

1 −1 1

 {

 u

0

−u

 | u ∈ C }

2

 1 0 1

0 0 0

−1 0 −1

 {

 u

v

−u

 | u, v ∈ C }

3 –zero matrix– C3
shows that any map represented by this basis must act on a string basis in this
way.

~β1 7→ ~β2 7→ ~β3 7→ ~0

Therefore, this is the canonical form.0 0 0

1 0 0

0 1 0
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Five.III.2.25 A couple of examples(
0 0

1 0

)(
a b

c d

)
=

(
0 0

a b

) 0 0 0

1 0 0

0 1 0


a b c

d e f

g h i

 =

0 0 0

a b c

d e f


suggest that left multiplication by a block of subdiagonal ones shifts the rows of a
matrix downward. Distinct blocks

0 0 0 0

1 0 0 0

0 0 0 0

0 0 1 0



a b c d

e f g h

i j k l

m n o p

 =


0 0 0 0

a b c d

0 0 0 0

i j k l


act to shift down distinct parts of the matrix.

Right multiplication does an analogous thing to columns. See Exercise 19.
Five.III.2.26 Yes. Generalize the last sentence in Example 2.10. As to the index, that
same last sentence shows that the index of the new matrix is less than or equal to
the index of N̂, and reversing the roles of the two matrices gives inequality in the
other direction.

Another answer to this question is to show that a matrix is nilpotent if and only
if any associated map is nilpotent, and with the same index. Then, because similar
matrices represent the same map, the conclusion follows. This is Exercise 32 below.

Five.III.2.27 Observe that a canonical form nilpotent matrix has only zero eigenvalues;
e.g., the determinant of this lower-triangular matrix−x 0 0

1 −x 0

0 1 −x


is (−x)3, the only root of which is zero. But similar matrices have the same
eigenvalues and every nilpotent matrix is similar to one in canonical form.

Another way to see this is to observe that a nilpotent matrix sends all vectors
to zero after some number of iterations, but that conflicts with an action on an
eigenspace ~v 7→ λ~v unless λ is zero.

Five.III.2.28 No, by Lemma 1.4 for a map on a two-dimensional space, the nullity has
grown as large as possible by the second iteration.

Five.III.2.29 The index of nilpotency of a transformation can be zero only when the
vector starting the string must be ~0, that is, only when V is a trivial space.

Five.III.2.30 (a) Any member ~w of the span is a linear combination ~w = c0 ·
~v + c1 · t(~v) + · · · + ck−1 · tk−1(~v). But then, by the linearity of the map,
t(~w) = c0 · t(~v) + c1 · t2(~v) + · · ·+ ck−2 · tk−1(~v) + ck−1 ·~0 is also in the span.

(b) The operation in the prior item, when iterated k times, will result in a linear
combination of zeros.
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(c) If ~v = ~0 then the set is empty and so is linearly independent by definition.
Otherwise write c1~v+ · · ·+ ck−1tk−1(~v) = ~0 and apply tk−1 to both sides. The
right side gives ~0 while the left side gives c1tk−1(~v); conclude that c1 = 0.
Continue in this way by applying tk−2 to both sides, etc.

(d) Of course, t acts on the span by acting on this basis as a single, k-long, t-string.

0 0 0 0 . . . 0 0

1 0 0 0 . . . 0 0

0 1 0 0 . . . 0 0

0 0 1 0 0 0

. . .
0 0 0 0 1 0


Five.III.2.31 We must check that B ∪ Ĉ ∪ {~v1, . . . ,~vj } is linearly independent where
B is a t-string basis for R(t), where Ĉ is a basis for N (t), and where t(~v1) =
~β1, . . . , t(~vi) = ~βi. Write

~0 = c1,−1~v1+ c1,0~β1+ c1,1t(~β1)+ · · ·+ c1,h1th1(
~~β1)+ c2,−1~v2+ · · ·+ cj,hithi( ~βi)

and apply t.

~0 = c1,−1~β1 + c1,0t(~β1) + · · ·+ c1,h1−1th1(
~~β1) + c1,h1~0

+ c2,−1~β2 + · · ·+ ci,hi−1thi( ~βi) + ci,hi~0

Conclude that the coefficients c1,−1, . . . , c1,hi−1, c2,−1, . . . , ci,hi−1 are all zero as
B ∪ Ĉ is a basis. Substitute back into the first displayed equation to conclude that
the remaining coefficients are zero also.

Five.III.2.32 For any basis B, a transformation n is nilpotent if and only if N =

RepB,B(n) is a nilpotent matrix. This is because only the zero matrix represents
the zero map and so nj is the zero map if and only if Nj is the zero matrix.

Five.III.2.33 It can be of any size greater than or equal to one. To have a transforma-
tion that is nilpotent of index four, whose cube has range space of dimension k,
take a vector space, a basis for that space, and a transformation that acts on that
basis in this way.

~β1 7→ ~β2 7→ ~β3 7→ ~β4 7→ ~0
~β5 7→ ~β6 7→ ~β7 7→ ~β8 7→ ~0

...
~β4k−3 7→ ~β4k−2 7→ ~β4k−1 7→ ~β4k 7→ ~0

...
–possibly other, shorter, strings–
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So the dimension of the range space of T3 can be as large as desired. The smallest
that it can be is one—there must be at least one string or else the map’s index of
nilpotency would not be four.

Five.III.2.34 These two have only zero for eigenvalues(
0 0

0 0

) (
0 0

1 0

)
but are not similar (they have different canonical representatives, namely, them-
selves).

Five.III.2.35 It is onto by Lemma 1.4. It need not be the identity: consider this map
t : R2 → R2. (

x

y

)
t7−→

(
y

x

)
For that map R∞(t) = R2, and t is not the identity.

Five.III.2.36 A simple reordering of the string basis will do. For instance, a map that
is associated with this string basis

~β1 7→ ~β2 7→ ~0

is represented with respect to B = 〈~β1, ~β2〉 by this matrix(
0 0

1 0

)
but is represented with respect to B = 〈~β2, ~β1〉 in this way.(

0 1

0 0

)
Five.III.2.37 Let t : V → V be the transformation. If rank(t) = nullity(t) then the
equation rank(t) + nullity(t) = dim(V) shows that dim(V) is even.

Five.III.2.38 For the matrices to be nilpotent they must be square. For them to
commute they must be the same size. Thus their product and sum are defined.

Call the matrices A and B. To see that AB is nilpotent, multiply (AB)2 =

ABAB = AABB = A2B2, and (AB)3 = A3B3, etc., and, as A is nilpotent, that
product is eventually zero.

The sum is similar; use the Binomial Theorem.
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Jordan Form

Five.IV.1: Polynomials of Maps and Matrices

Five.IV.1.13 The Cayley-Hamilton Theorem Theorem 1.8 says that the minimal
polynomial must contain the same linear factors as the characteristic polynomial,
although possibly of lower degree but not of zero degree.
(a) The possibilities are m1(x) = x− 3, m2(x) = (x− 3)2, m3(x) = (x− 3)3, and
m4(x) = (x− 3)4. The first is a degree one polynomial, the second is degree two,
the third is degree three, and the fourth is degree four.

(b) The possibilities are m1(x) = (x + 1)(x − 4), m2(x) = (x + 1)2(x − 4), and
m3(x) = (x+1)3(x−4). The first is a quadratic polynomial, that is, it has degree
two. The second has degree three, and the third has degree four.

(c) We havem1(x) = (x−2)(x−5),m2(x) = (x−2)2(x−5),m3(x) = (x−2)(x−5)2,
and m4(x) = (x− 2)2(x− 5)2. They are polynomials of degree two, three, three,
and four.

(d) The possibilities arem1(x) = (x+3)(x−1)(x−2),m2(x) = (x+3)2(x−1)(x−2),
m3(x) = (x+ 3)(x− 1)(x− 2)2, and m4(x) = (x+ 3)2(x− 1)(x− 2)2. The degree
of m1 is three, the degree of m2 is four, the degree of m3 is four, and the degree
of m4 is five.

Five.IV.1.14 In each case we will use the method of Example 1.12.
(a) Because T is triangular, T − xI is also triangular

T − xI =

3− x 0 0

1 3− x 0

0 0 4− x


the characteristic polynomial is easy c(x) = |T − xI| = (3 − x)2(4 − x) = −1 ·
(x − 3)2(x − 4). There are only two possibilities for the minimal polynomial,
m1(x) = (x−3)(x−4) and m2(x) = (x−3)2(x−4). (Note that the characteristic
polynomial has a negative sign but the minimal polynomial does not since it
must have a leading coefficient of one). Because m1(T) is not the zero matrix

(T − 3I)(T − 4I) =

0 0 0

1 0 0

0 0 1


−1 0 0

1 −1 0

0 0 0

 =

 0 0 0

−1 0 0

0 0 0
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the minimal polynomial is m(x) = m2(x).

(T − 3I)2(T − 4I) = (T − 3I) ·
(
(T − 3I)(T − 4I)

)
=

0 0 0

1 0 0

0 0 1


 0 0 0

−1 0 0

0 0 0

 =

0 0 0

0 0 0

0 0 0


(b) As in the prior item, the fact that the matrix is triangular makes computation
of the characteristic polynomial easy.

c(x) = |T − xI| =

∣∣∣∣∣∣∣
3− x 0 0

1 3− x 0

0 0 3− x

∣∣∣∣∣∣∣ = (3− x)3 = −1 · (x− 3)3

There are three possibilities for the minimal polynomialm1(x) = (x−3), m2(x) =
(x− 3)2, and m3(x) = (x− 3)3. We settle the question by computing m1(T)

T − 3I =

0 0 0

1 0 0

0 0 0


and m2(T).

(T − 3I)2 =

0 0 0

1 0 0

0 0 0


0 0 0

1 0 0

0 0 0

 =

0 0 0

0 0 0

0 0 0


Because m2(T) is the zero matrix, m2(x) is the minimal polynomial.

(c) Again, the matrix is triangular.

c(x) = |T − xI| =

∣∣∣∣∣∣∣
3− x 0 0

1 3− x 0

0 1 3− x

∣∣∣∣∣∣∣ = (3− x)3 = −1 · (x− 3)3

Again, there are three possibilities for the minimal polynomial m1(x) = (x− 3),
m2(x) = (x− 3)2, and m3(x) = (x− 3)3. We compute m1(T)

T − 3I =

0 0 0

1 0 0

0 1 0


and m2(T)

(T − 3I)2 =

0 0 0

1 0 0

0 1 0


0 0 0

1 0 0

0 1 0

 =

0 0 0

0 0 0

1 0 0


and m3(T).

(T − 3I)3 = (T − 3I)2(T − 3I) =

0 0 0

0 0 0

1 0 0


0 0 0

1 0 0

0 1 0

 =

0 0 0

0 0 0

0 0 0


Therefore, the minimal polynomial is m(x) = m3(x) = (x− 3)3.
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(d) This case is also triangular, here upper triangular.

c(x) = |T − xI| =

∣∣∣∣∣∣∣
2− x 0 1

0 6− x 2

0 0 2− x

∣∣∣∣∣∣∣ = (2− x)2(6− x) = −(x− 2)2(x− 6)

There are two possibilities for the minimal polynomial, m1(x) = (x− 2)(x− 6)

and m2(x) = (x− 2)2(x− 6). Computation shows that the minimal polynomial
isn’t m1(x).

(T − 2I)(T − 6I) =

0 0 1

0 4 2

0 0 0


−4 0 1

0 0 2

0 0 −4

 =

0 0 −4

0 0 0

0 0 0


It therefore must be that m(x) = m2(x) = (x− 2)2(x− 6). Here is a verification.

(T − 2I)2(T − 6I) = (T − 2I) ·
(
(T − 2I)(T − 6I)

)
=

0 0 1

0 4 2

0 0 0


0 0 −4

0 0 0

0 0 0

 =

0 0 0

0 0 0

0 0 0


(e) The characteristic polynomial is

c(x) = |T − xI| =

∣∣∣∣∣∣∣
2− x 2 1

0 6− x 2

0 0 2− x

∣∣∣∣∣∣∣ = (2− x)2(6− x) = −(x− 2)2(x− 6)

and there are two possibilities for the minimal polynomial, m1(x) = (x−2)(x−6)

and m2(x) = (x− 2)2(x− 6). Checking the first one

(T − 2I)(T − 6I) =

0 2 1

0 4 2

0 0 0


−4 2 1

0 0 2

0 0 −4

 =

0 0 0

0 0 0

0 0 0


shows that the minimal polynomial is m(x) = m1(x) = (x− 2)(x− 6).

(f) The characteristic polynomial is this.

c(x) = |T − xI| =

∣∣∣∣∣∣∣∣∣∣∣

−1− x 4 0 0 0

0 3− x 0 0 0

0 −4 −1− x 0 0

3 −9 −4 2− x −1

1 5 4 1 4− x

∣∣∣∣∣∣∣∣∣∣∣
= (x− 3)3(x+ 1)2

Here are the possibilities for the minimal polynomial, listed here by ascending
degree: m1(x) = (x−3)(x+1), m1(x) = (x−3)2(x+1), m1(x) = (x−3)(x+1)2,
m1(x) = (x− 3)3(x+ 1), m1(x) = (x− 3)2(x+ 1)2, and m1(x) = (x− 3)3(x+ 1)2.
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The first one doesn’t pan out

(T − 3I)(T + 1I) =


−4 4 0 0 0

0 0 0 0 0

0 −4 −4 0 0

3 −9 −4 −1 −1

1 5 4 1 1




0 4 0 0 0

0 4 0 0 0

0 −4 0 0 0

3 −9 −4 3 −1

1 5 4 1 5



=


0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

−4 −4 0 −4 −4

4 4 0 4 4


but the second one does.

(T − 3I)2(T + 1I) = (T − 3I)
(
(T − 3I)(T + 1I)

)

=


−4 4 0 0 0

0 0 0 0 0

0 −4 −4 0 0

3 −9 −4 −1 −1

1 5 4 1 1




0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

−4 −4 0 −4 −4

4 4 0 4 4



=


0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


The minimal polynomial is m(x) = (x− 3)2(x+ 1).

Five.IV.1.15 Its characteristic polynomial has complex roots.∣∣∣∣∣∣∣
−x 1 0

0 −x 1

1 0 −x

∣∣∣∣∣∣∣ = (1− x) · (x− (−
1

2
+

√
3

2
i)) · (x− (−

1

2
−

√
3

2
i))

As the roots are distinct, the characteristic polynomial equals the minimal polyno-
mial.

Five.IV.1.16 We know that Pn is a dimension n + 1 space and that the differen-
tiation operator is nilpotent of index n + 1 (for instance, taking n = 3, P3 =

{c3x
3 + c2x

2 + c1x+ c0 | c3, . . . , c0 ∈ C } and the fourth derivative of a cubic is the
zero polynomial). Represent this operator using the canonical form for nilpotent
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transformations. 
0 0 0 . . . 0

1 0 0 0

0 1 0

. . .
0 0 0 1 0


This is an (n+ 1)×(n+ 1) matrix with an easy characteristic polynomial, c(x) =
xn+1. (Remark: this matrix is RepB,B(d/dx) where B = 〈xn, nxn−1, n(n −

1)xn−2, . . . , n!〉.) To find the minimal polynomial as in Example 1.12 we consider
the powers of T − 0I = T . But, of course, the first power of T that is the zero matrix
is the power n+ 1. So the minimal polynomial is also xn+1.

Five.IV.1.17 Call the matrix T and suppose that it is n×n. Because T is triangular,
and so T − xI is triangular, the characteristic polynomial is c(x) = (x− λ)n. To see
that the minimal polynomial is the same, consider T − λI.

0 0 0 . . . 0

1 0 0 . . . 0

0 1 0

. . .
0 0 . . . 1 0


Recognize it as the canonical form for a transformation that is nilpotent of degree n;
the power (T − λI)j is zero first when j is n.

Five.IV.1.18 The n = 3 case provides a hint. A natural basis for P3 is B = 〈1, x, x2, x3〉.
The action of the transformation is

1 7→ 1 x 7→ x+ 1 x2 7→ x2 + 2x+ 1 x3 7→ x3 + 3x2 + 3x+ 1

and so the representation RepB,B(t) is this upper triangular matrix.
1 1 1 1

0 1 2 3

0 0 1 3

0 0 0 1


Because it is triangular, the fact that the characteristic polynomial is c(x) = (x−1)4

is clear. For the minimal polynomial, the candidates are m1(x) = (x− 1),

T − 1I =


0 1 1 1

0 0 2 3

0 0 0 3

0 0 0 0
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m2(x) = (x− 1)2,

(T − 1I)2 =


0 0 2 6

0 0 0 6

0 0 0 0

0 0 0 0


m3(x) = (x− 1)3,

(T − 1I)3 =


0 0 0 6

0 0 0 0

0 0 0 0

0 0 0 0


and m4(x) = (x− 1)4. Because m1, m2, and m3 are not right, m4 must be right,
as is easily verified.

In the case of a general n, the representation is an upper triangular matrix with
ones on the diagonal. Thus the characteristic polynomial is c(x) = (x− 1)n+1. One
way to verify that the minimal polynomial equals the characteristic polynomial is
argue something like this: say that an upper triangular matrix is 0-upper triangular
if there are nonzero entries on the diagonal, that it is 1-upper triangular if the
diagonal contains only zeroes and there are nonzero entries just above the diagonal,
etc. As the above example illustrates, an induction argument will show that, where
T has only nonnegative entries, T j is j-upper triangular.

Five.IV.1.19 The map twice is the same as the map once: π ◦ π = π, that is, π2 = π
and so the minimal polynomial is of degree at most two since m(x) = x2 − x will
do. The fact that no linear polynomial will do follows from applying the maps on
the left and right side of c1 · π+ c0 · id = z (where z is the zero map) to these two
vectors. 00

1


10
0


Thus the minimal polynomial is m.

Five.IV.1.20 This is one answer. 0 0 0

1 0 0

0 0 0


Five.IV.1.21 The x must be a scalar, not a matrix.

Five.IV.1.22 The characteristic polynomial of

T =

(
a b

c d

)
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is (a− x)(d− x) − bc = x2 − (a+ d)x+ (ad− bc). Substitute(
a b

c d

)2
− (a+ d)

(
a b

c d

)
+ (ad− bc)

(
1 0

0 1

)

=

(
a2 + bc ab+ bd

ac+ cd bc+ d2

)
−

(
a2 + ad ab+ bd

ac+ cd ad+ d2

)
+

(
ad− bc 0

0 ad− bc

)
and just check each entry sum to see that the result is the zero matrix.

Five.IV.1.23 By the Cayley-Hamilton theorem the degree of the minimal polynomial
is less than or equal to the degree of the characteristic polynomial, n. Example 1.6
shows that n can happen.

Five.IV.1.24 Let the linear transformation be t : V → V . If t is nilpotent then there is
an n such that tn is the zero map, so t satisfies the polynomial p(x) = xn = (x−0)n.
By Lemma 1.10 the minimal polynomial of t divides p, so the minimal polynomial
has only zero for a root. By Cayley-Hamilton, Theorem 1.8, the characteristic
polynomial has only zero for a root. Thus the only eigenvalue of t is zero.

Conversely, if a transformation t on an n-dimensional space has only the single
eigenvalue of zero then its characteristic polynomial is xn. The Cayley-Hamilton
Theorem says that a map satisfies its characteristic polynomial so tn is the zero
map. Thus t is nilpotent.

Five.IV.1.25 A minimal polynomial must have leading coefficient 1, and so if the
minimal polynomial of a map or matrix were to be a degree zero polynomial then it
would be m(x) = 1. But the identity map or matrix equals the zero map or matrix
only on a trivial vector space.

So in the nontrivial case the minimal polynomial must be of degree at least one.
A zero map or matrix has minimal polynomial m(x) = x, and an identity map or
matrix has minimal polynomial m(x) = x− 1.

Five.IV.1.26 We can interpret the polynomial can geometrically as, “a 60◦ rotation
minus two rotations of 30◦ equals the identity.”

Five.IV.1.27 For a diagonal matrix

T =


t1,1 0

0 t2,2
. . .

tn,n


the characteristic polynomial is (t1,1−x)(t2,2−x) · · · (tn,n−x). Of course, some of
those factors may be repeated, e.g., the matrix might have t1,1 = t2,2. For instance,
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the characteristic polynomial of

D =

3 0 0

0 3 0

0 0 1


is (3− x)2(1− x) = −1 · (x− 3)2(x− 1).

To form the minimal polynomial, take the terms x− ti,i, throw out repeats, and
multiply them together. For instance, the minimal polynomial of D is (x−3)(x−1).
To check this, note first that Theorem 1.8, the Cayley-Hamilton theorem, requires
that each linear factor in the characteristic polynomial appears at least once in the
minimal polynomial. One way to check the other direction—that in the case of a
diagonal matrix, each linear factor need appear at most once— is to use a matrix
argument. A diagonal matrix, multiplying from the left, rescales rows by the entry
on the diagonal. But in a product (T − t1,1I) · · · , even without any repeat factors,
every row is zero in at least one of the factors.

For instance, in the product

(D− 3I)(D− 1I) = (D− 3I)(D− 1I)I =

0 0 0

0 0 0

0 0 −2


2 0 0

0 2 0

0 0 0


1 0 0

0 1 0

0 0 1


because the first and second rows of the first matrix D − 3I are zero, the entire
product will have a first row and second row that are zero. And because the third
row of the middle matrix D− 1I is zero, the entire product has a third row of zero.

Five.IV.1.28 This subsection starts with the observation that the powers of a linear
transformation cannot climb forever without a “repeat”, that is, that for some
power n there is a linear relationship cn · tn + · · ·+ c1 · t + c0 · id = z where z is
the zero transformation. The definition of projection is that for such a map one
linear relationship is quadratic, t2− t = z. To finish, we need only consider whether
this relationship might not be minimal, that is, are there projections for which the
minimal polynomial is constant or linear?

For the minimal polynomial to be constant, the map would have to satisfy that
c0 · id = z, where c0 = 1 since the leading coefficient of a minimal polynomial is
1. This is only satisfied by the zero transformation on a trivial space. This is a
projection, but not an interesting one.

For the minimal polynomial of a transformation to be linear would give c1 · t+
c0 · id = z where c1 = 1. This equation gives t = −c0 · id. Coupling it with the
requirement that t2 = t gives t2 = (−c0)

2 · id = −c0 · id, which gives that c0 = 0
and t is the zero transformation or that c0 = 1 and t is the identity.

Thus, except in the cases where the projection is a zero map or an identity map,
the minimal polynomial is m(x) = x2 − x.
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Five.IV.1.29 (a) This is a property of functions in general, not just of linear
functions. Suppose that f and g are one-to-one functions such that f ◦ g is
defined. Let f ◦ g(x1) = f ◦ g(x2), so that f(g(x1)) = f(g(x2)). Because f is
one-to-one this implies that g(x1) = g(x2). Because g is also one-to-one, this in
turn implies that x1 = x2. Thus, in summary, f ◦ g(x1) = f ◦ g(x2) implies that
x1 = x2 and so f ◦ g is one-to-one.

(b) If the linear map h is not one-to-one then there are unequal vectors ~v1,
~v2 that map to the same value h(~v1) = h(~v2). Because h is linear, we have
~0 = h(~v1) − h(~v2) = h(~v1 − ~v2) and so ~v1 − ~v2 is a nonzero vector from the
domain that h maps to the zero vector of the codomain (~v1 −~v2 does not equal
the zero vector of the domain because ~v1 does not equal ~v2).

(c) The minimal polynomial m(t) sends every vector in the domain to zero and so
it is not one-to-one (except in a trivial space, which we ignore). By the first item
of this question, since the composition m(t) is not one-to-one, at least one of the
components t− λi is not one-to-one. By the second item, t− λi has a nontrivial
null space. Because (t − λi)(~v) = ~0 holds if and only if t(~v) = λi · ~v, the prior
sentence gives that λi is an eigenvalue (recall that the definition of eigenvalue
requires that the relationship hold for at least one nonzero ~v).

Five.IV.1.30 This is false. The natural example of a non-diagonalizable transformation
works here. Consider the transformation of C2 represented with respect to the
standard basis by this matrix.

N =

(
0 1

0 0

)
The characteristic polynomial is c(x) = x2. Thus the minimal polynomial is either
m1(x) = x or m2(x) = x2. The first is not right since N−0 · I is not the zero matrix,
thus in this example the minimal polynomial has degree equal to the dimension of
the underlying space, and, as mentioned, we know this matrix is not diagonalizable
because it is nilpotent.

Five.IV.1.31 Let A and B be similar A = PBP−1. From the facts that

An = (PBP−1)n = (PBP−1)(PBP−1) · · · (PBP−1)
= PB(P−1P)B(P−1P) · · · (P−1P)BP−1 = PBnP−1

and c·A = c·(PBP−1) = P(c·B)P−1 follows the required fact that for any polynomial
function f we have f(A) = P f(B)P−1. For instance, if f(x) = x2 + 2x+ 3 then

A2 + 2A+ 3I = (PBP−1)2 + 2 · PBP−1 + 3 · I
= (PBP−1)(PBP−1) + P(2B)P−1 + 3 · PP−1 = P(B2 + 2B+ 3I)P−1

shows that f(A) is similar to f(B).
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(a) Taking f to be a linear polynomial we have that A − xI is similar to B − xI.
Similar matrices have equal determinants (since |A| = |PBP−1| = |P| · |B| · |P−1| =
1 · |B| · 1 = |B|). Thus the characteristic polynomials are equal.

(b) As P and P−1 are invertible, f(A) is the zero matrix when, and only when,
f(B) is the zero matrix.

(c) They cannot be similar since they don’t have the same characteristic polynomial.
The characteristic polynomial of the first one is x2−4x−3 while the characteristic
polynomial of the second is x2 − 5x+ 5.

Five.IV.1.32 Suppose that m(x) = xn +mn−1x
n−1 + · · ·+m1x+m0 is minimal for

T .
(a) For the ‘if’ argument, because Tn + · · · + m1T + m0I is the zero matrix
we have that I = (Tn + · · · + m1T)/(−m0) = T · (Tn−1 + · · · + m1I)/(−m0)
and so the matrix (−1/m0) · (Tn−1 + · · · +m1I) is the inverse of T . For ‘only
if’, suppose that m0 = 0 (we put the n = 1 case aside but it is easy) so that
Tn+· · ·+m1T = (Tn−1+· · ·+m1I)T is the zero matrix. Note that Tn−1+· · ·+m1I
is not the zero matrix because the degree of the minimal polynomial is n. If T−1

exists then multiplying both (Tn−1 + · · ·+m1I)T and the zero matrix from the
right by T−1 gives a contradiction.

(b) If T is not invertible then the constant term in its minimal polynomial is zero.
Thus,

Tn + · · ·+m1T = (Tn−1 + · · ·+m1I)T = T(Tn−1 + · · ·+m1I)
is the zero matrix.

Five.IV.1.33 (a) For the inductive step, assume that Lemma 1.7 is true for poly-
nomials of degree i, . . . , k − 1 and consider a polynomial f(x) of degree k. Fac-
tor f(x) = k(x − λ1)

q1 · · · (x − λz)
qz and let k(x − λ1)

q1−1 · · · (x − λz)
qz be

cn−1x
n−1 + · · ·+ c1x+ c0. Substitute:

k(t− λ1)
q1 ◦ · · · ◦ (t− λz)qz(~v) = (t− λ1) ◦ (t− λ1)q1 ◦ · · · ◦ (t− λz)qz(~v)

= (t− λ1) (cn−1t
n−1(~v) + · · ·+ c0~v)

= f(t)(~v)

(the second equality follows from the inductive hypothesis and the third from
the linearity of t).

(b) One example is to consider the squaring map s : R→ R given by s(x) = x2. It
is nonlinear. The action defined by the polynomial f(t) = t2 − 1 changes s to
f(s) = s2 − 1, which is this map.

x
s2−17−→ s ◦ s(x) − 1 = x4 − 1

Observe that this map differs from the map (s − 1) ◦ (s + 1); for instance, the
first map takes x = 5 to 624 while the second one takes x = 5 to 675.
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Five.IV.1.34 Yes. Expand down the last column to check that xn +mn−1x
n−1 +

· · ·+m1x+m0 is plus or minus the determinant of this.
−x 0 0 m0
0 1− x 0 m1
0 0 1− x m2

. . .
1− x mn−1



Five.IV.2: Jordan Canonical Form

Five.IV.2.18 We must check that(
3 0

1 3

)
= N+ 3I = PTP−1 =

(
1/2 1/2

−1/4 1/4

)(
2 −1

1 4

)(
1 −2

1 2

)

That calculation is easy.

Five.IV.2.19 (a) The characteristic polynomial is c(x) = (x− 3)2 and the minimal
polynomial is the same.

(b) The characteristic polynomial is c(x) = (x+ 1)2. The minimal polynomial is
m(x) = x+ 1.

(c) The characteristic polynomial is c(x) = (x+ (1/2))(x− 2)2 and the minimal
polynomial is the same.

(d) The characteristic polynomial is c(x) = (x− 3)3 The minimal polynomial is
the same.

(e) The characteristic polynomial is c(x) = (x− 3)4. The minimal polynomial is
m(x) = (x− 3)2.

(f) The characteristic polynomial is c(x) = (x + 4)2(x − 4)2 and the minimal
polynomial is the same.

(g) The characteristic polynomial is c(x) = (x− 2)2(x− 3)(x− 5) and the minimal
polynomial is m(x) = (x− 2)(x− 3)(x− 5).

(h) The characteristic polynomial is c(x) = (x− 2)2(x− 3)(x− 5) and the minimal
polynomial is the same.

Five.IV.2.20 (a) The transformation t−3 is nilpotent (that is, N∞(t−3) is the entire
space) and it acts on a string basis via two strings, ~β1 7→ ~β2 7→ ~β3 7→ ~β4 7→ ~0
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and ~β5 7→ ~0. Consequently, t− 3 can be represented in this canonical form.

N3 =


0 0 0 0 0

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 0 0


and therefore T is similar to this canonical form matrix.

J3 = N3 + 3I =


3 0 0 0 0

1 3 0 0 0

0 1 3 0 0

0 0 1 3 0

0 0 0 0 3


(b) The restriction of the transformation s + 1 is nilpotent on the subspace
N∞(s + 1), and the action on a string basis is ~β1 7→ ~0. The restriction of the
transformation s− 2 is nilpotent on the subspace N∞(s− 2), having the action
on a string basis of ~β2 7→ ~β3 7→ ~0 and ~β4 7→ ~β5 7→ ~0. Consequently the Jordan
form is this. 

−1 0 0 0 0

0 2 0 0 0

0 1 2 0 0

0 0 0 2 0

0 0 0 1 2


Five.IV.2.21 For each, because many choices of basis are possible, many other answers
are possible. Of course, the calculation to check if an answer gives that PTP−1 is in
Jordan form is the arbiter of what’s correct.
(a) Here is the arrow diagram.

C3wrt E3
t−−−−→
T

C3wrt E3

id

yP id

yP
C3wrt B

t−−−−→
J

C3wrt B

The matrix to move from the lower left to the upper left is this.

P−1 =
(
RepE3,B(id)

)−1
= RepB,E3(id) =

 1 −2 0

1 0 1

−2 0 0


The matrix P to move from the upper right to the lower right is the inverse of
P−1.
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(b) We want this matrix and its inverse.

P−1 =

1 0 3

0 1 4

0 −2 0


(c) The concatenation of these bases for the generalized null spaces will do for the
basis for the entire space.

B−1 = 〈


−1

0

0

1

0

 ,

−1

0

−1

0

1

〉 B3 = 〈


1

1

−1

0

0

 ,

0

0

0

−2

2

 ,

−1

−1

1

2

0

〉
The change of basis matrices are this one and its inverse.

P−1 =


−1 −1 1 0 −1

0 0 1 0 −1

0 −1 −1 0 1

1 0 0 −2 2

0 1 0 2 0


Five.IV.2.22 The general procedure is to factor the characteristic polynomial c(x) =
(x − λ1)

p1(x − λ2)
p2 · · · to get the eigenvalues λ1, λ2, etc. Then, for each λi

we find a string basis for the action of the transformation t − λi when restricted
to N∞(t − λi), by computing the powers of the matrix T − λiI and finding the
associated null spaces, until these null spaces settle down (do not change), at which
point we have the generalized null space. The dimensions of those null spaces (the
nullities) tell us the action of t− λi on a string basis for the generalized null space,
and so we can write the pattern of subdiagonal ones to have Nλi . From this matrix,
the Jordan block Jλi associated with λi is immediate Jλi = Nλi + λiI. Finally, after
we have done this for each eigenvalue, we put them together into the canonical
form.
(a) The characteristic polynomial of this matrix is c(x) = (−10−x)(10−x)+100 =

x2, so it has only the single eigenvalue λ = 0.
power p (T + 0 · I)p N ((t− 0)p) nullity

1

−10 4

−25 10

 {

2y/5
y

 | y ∈ C } 1

2

0 0

0 0

 C2 2
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(Thus, this transformation is nilpotent: N∞(t− 0) is the entire space). From the
nullities we know that t’s action on a string basis is ~β1 7→ ~β2 7→ ~0. This is the
canonical form matrix for the action of t− 0 on N∞(t− 0) = C2

N0 =

(
0 0

1 0

)
and this is the Jordan form of the matrix.

J0 = N0 + 0 · I =

(
0 0

1 0

)
Note that if a matrix is nilpotent then its canonical form equals its Jordan form.

We can find such a string basis using the techniques of the prior section.

B = 〈

(
1

0

)
,

(
−10

−25

)
〉

We took the first basis vector so that it is in the null space of t2 but is not in the
null space of t. The second basis vector is the image of the first under t.

(b) The characteristic polynomial of this matrix is c(x) = (x + 1)2, so it is a
single-eigenvalue matrix. (That is, the generalized null space of t+ 1 is the entire
space.) We have

N (t+ 1) = {

(
2y/3

y

)
| y ∈ C } N ((t+ 1)2) = C2

and so the action of t+ 1 on an associated string basis is ~β1 7→ ~β2 7→ ~0. Thus,

N−1 =

(
0 0

1 0

)
the Jordan form of T is

J−1 = N−1 +−1 · I =

(
−1 0

1 −1

)
and choosing vectors from the above null spaces gives this string basis (other
choices are possible).

B = 〈

(
1

0

)
,

(
6

9

)
〉

(c) The characteristic polynomial c(x) = (1− x)(4− x)2 = −1 · (x− 1)(x− 4)2 has
two roots and they are the eigenvalues λ1 = 1 and λ2 = 4.

We handle the two eigenvalues separately. For λ1, the calculation of the
powers of T − 1I yields

N (t− 1) = {

0y
0

 | y ∈ C }
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and the null space of (t− 1)2 is the same. Thus this set is the generalized null
space N∞(t− 1). The nullities show that the action of the restriction of t− 1 to
the generalized null space on a string basis is ~β1 7→ ~0.

A similar calculation for λ2 = 4 gives these null spaces.

N (t− 4) = {

0z
z

 | z ∈ C } N ((t− 4)2) = {

y− z

y

z

 | y, z ∈ C }

(The null space of (t− 4)3 is the same, as it must be because the power of the
term associated with λ2 = 4 in the characteristic polynomial is two, and so the
restriction of t− 2 to the generalized null space N∞(t− 2) is nilpotent of index
at most two— it takes at most two applications of t − 2 for the null space to
settle down.) The pattern of how the nullities rise tells us that the action of t− 4
on an associated string basis for N∞(t− 4) is ~β2 7→ ~β3 7→ ~0.

Putting the information for the two eigenvalues together gives the Jordan
form of the transformation t. 1 0 0

0 4 0

0 1 4


We can take elements of the null spaces to get an appropriate basis.

B = B1
_
B4 = 〈

01
0

 ,
10
1

 ,
05
5

〉
(d) The characteristic polynomial is c(x) = (−2− x)(4− x)2 = −1 · (x+ 2)(x− 4)2.

For the eigenvalue λ−2, calculation of the powers of T + 2I yields this.

N (t+ 2) = {

zz
z

 | z ∈ C }

The null space of (t+ 2)2 is the same, and so this is the generalized null space
N∞(t+2). Thus the action of the restriction of t+2 to N∞(t+2) on an associated
string basis is ~β1 7→ ~0.

For λ2 = 4, computing the powers of T − 4I yields

N (t− 4) = {

 z

−z

z

 | z ∈ C } N ((t− 4)2) = {

 x

−z

z

 | x, z ∈ C }

and so the action of t− 4 on a string basis for N∞(t− 4) is ~β2 7→ ~β3 7→ ~0.
Therefore the Jordan form is −2 0 0

0 4 0

0 1 4
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and a suitable basis is this.

B = B−2
_
B4 = 〈

11
1

 ,
 0

−1

1

 ,
−1

1

−1

〉
(e) The characteristic polynomial of this matrix is c(x) = (2− x)3 = −1 · (x− 2)3.
This matrix has only a single eigenvalue, λ = 2. By finding the powers of T − 2I

we have

N (t− 2) = {

−y

y

0

 | y ∈ C } N ((t− 2)2) = {

−y− (1/2)z

y

z

 | y, z ∈ C }

and
N ((t− 2)3) = C3

and so the action of t − 2 on an associated string basis is ~β1 7→ ~β2 7→ ~β3 7→ ~0.
The Jordan form is this 2 0 0

1 2 0

0 1 2


and one choice of basis is this.

B = 〈

01
0

 ,
 7

−9

4

 ,
−2

2

0

〉
(f) The characteristic polynomial c(x) = (1 − x)3 = −(x − 1)3 has only a single
root, so the matrix has only a single eigenvalue λ = 1. Finding the powers of
T − 1I and calculating the null spaces

N (t− 1) = {

−2y+ z

y

z

 | y, z ∈ C } N ((t− 1)2) = C3

shows that the action of the nilpotent map t−1 on a string basis is ~β1 7→ ~β2 7→ ~0

and ~β3 7→ ~0. Therefore the Jordan form is

J =

1 0 0

1 1 0

0 0 1


and an appropriate basis (a string basis associated with t− 1) is this.

B = 〈

01
0

 ,
 2

−2

−2

 ,
10
1

〉
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(g) The characteristic polynomial is a bit large for by-hand calculation, but just
manageable c(x) = x4 − 24x3 + 216x2 − 864x + 1296 = (x − 6)4. This is a
single-eigenvalue map, so the transformation t− 6 is nilpotent. The null spaces

N (t−6) = {


−z−w

−z−w

z

w

 | z,w ∈ C } N ((t−6)2) = {


x

−z−w

z

w

 | x, z,w ∈ C }

and
N ((t− 6)3) = C4

and the nullities show that the action of t − 6 on a string basis is ~β1 7→ ~β2 7→
~β3 7→ ~0 and ~β4 7→ ~0. The Jordan form is

6 0 0 0

1 6 0 0

0 1 6 0

0 0 0 6


and finding a suitable string basis is routine.

B = 〈


0

0

0

1

 ,

2

−1

−1

2

 ,

3

3

−6

3

 ,

−1

−1

1

0

〉
Five.IV.2.23 There are two eigenvalues, λ1 = −2 and λ2 = 1. The restriction of t+ 2
to N∞(t+ 2) could have either of these actions on an associated string basis.

~β1 7→ ~β2 7→ ~0 ~β1 7→ ~0
~β2 7→ ~0

The restriction of t − 1 to N∞(t − 1) could have either of these actions on an
associated string basis.

~β3 7→ ~β4 7→ ~0 ~β3 7→ ~0
~β4 7→ ~0

In combination, that makes four possible Jordan forms, the two first actions, the
second and first, the first and second, and the two second actions.
−2 0 0 0

1 −2 0 0

0 0 1 0

0 0 1 1



−2 0 0 0

0 −2 0 0

0 0 1 0

0 0 1 1



−2 0 0 0

1 −2 0 0

0 0 1 0

0 0 0 1



−2 0 0 0

0 −2 0 0

0 0 1 0

0 0 0 1


Five.IV.2.24 The restriction of t+ 2 to N∞(t+ 2) can have only the action ~β1 7→ ~0.
The restriction of t− 1 to N∞(t− 1) could have any of these three actions on an



Answers to Exercises 373

associated string basis.
~β2 7→ ~β3 7→ ~β4 7→ ~0 ~β2 7→ ~β3 7→ ~0

~β4 7→ ~0

~β2 7→ ~0
~β3 7→ ~0
~β4 7→ ~0

Taken together there are three possible Jordan forms, the one arising from the first
action by t − 1 (along with the only action from t + 2), the one arising from the
second action, and the one arising from the third action.

−2 0 0 0

0 1 0 0

0 1 1 0

0 0 1 1



−2 0 0 0

0 1 0 0

0 1 1 0

0 0 0 1



−2 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


Five.IV.2.25 The action of t + 1 on a string basis for N∞(t + 1) must be ~β1 7→ ~0.
Because of the power of x− 2 in the minimal polynomial, a string basis for t− 2
has length two and so the action of t− 2 on N∞(t− 2) must be of this form.

~β2 7→ ~β3 7→ ~0
~β4 7→ ~0

Therefore there is only one Jordan form that is possible.
−1 0 0 0

0 2 0 0

0 1 2 0

0 0 0 2


Five.IV.2.26 There are two possible Jordan forms. The action of t+1 on a string basis
for N∞(t + 1) must be ~β1 7→ ~0. There are two actions for t − 2 on a string basis
for N∞(t − 2) that are possible with this characteristic polynomial and minimal
polynomial.

~β2 7→ ~β3 7→ ~0
~β4 7→ ~β5 7→ ~0

~β2 7→ ~β3 7→ ~0
~β4 7→ ~0
~β5 7→ ~0

The resulting Jordan form matrices are these.
−1 0 0 0 0

0 2 0 0 0

0 1 2 0 0

0 0 0 2 0

0 0 0 1 2




−1 0 0 0 0

0 2 0 0 0

0 1 2 0 0

0 0 0 2 0

0 0 0 0 2


Five.IV.2.27 (a) The characteristic polynomial is c(x) = x(x − 1). For λ1 = 0 we

have

N (t− 0) = {

(
−y

y

)
| y ∈ C }
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(of course, the null space of t2 is the same). For λ2 = 1,

N (t− 1) = {

(
x

0

)
| x ∈ C }

(and the null space of (t− 1)2 is the same). We can take this basis

B = 〈

(
1

−1

)
,

(
1

0

)
〉

to get the diagonalization.(
1 1

−1 0

)−1(
1 1

0 0

)(
1 1

−1 0

)
=

(
0 0

0 1

)
(b) The characteristic polynomial is c(x) = x2 − 1 = (x+ 1)(x− 1). For λ1 = −1,

N (t+ 1) = {

(
−y

y

)
| y ∈ C }

and the null space of (t+ 1)2 is the same. For λ2 = 1

N (t− 1) = {

(
y

y

)
| y ∈ C }

and the null space of (t− 1)2 is the same. We can take this basis

B = 〈

(
1

−1

)
,

(
1

1

)
〉

to get a diagonalization.(
1 1

1 −1

)−1(
0 1

1 0

)(
1 1

−1 1

)
=

(
−1 0

0 1

)
Five.IV.2.28 The transformation d/dx : P3 → P3 is nilpotent. Its action on the basis
B = 〈x3, 3x2, 6x, 6〉 is x3 7→ 3x2 7→ 6x 7→ 6 7→ 0. Its Jordan form is its canonical
form as a nilpotent matrix.

J =


0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0


Five.IV.2.29 Yes. Each has the characteristic polynomial (x + 1)2. Calculations of
the powers of T1 + 1 · I and T2 + 1 · I gives these two.

N (t1 + 1) = {

(
y/2

y

)
| y ∈ C } N (t2 + 1) = {

(
0

y

)
| y ∈ C }

(Of course, for each the null space of the square is the entire space.) The way that
the nullities rise shows that each is similar to this Jordan form matrix(

−1 0

1 −1

)
and they are therefore similar to each other.
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Five.IV.2.30 Its characteristic polynomial is c(x) = x2 + 1 which has complex roots
x2 + 1 = (x+ i)(x− i). Because the roots are distinct, the matrix is diagonalizable
and its Jordan form is that diagonal matrix.(

−i 0

0 i

)
To find an associated basis we compute the null spaces.

N (t+ i) = {

(
−iy

y

)
| y ∈ C } N (t− i) = {

(
iy

y

)
| y ∈ C }

For instance,

T + i · I =

(
i −1

1 i

)
and so we get a description of the null space of t+ i by solving this linear system.

ix− y= 0

x+ iy= 0

iρ1+ρ2−→ ix− y= 0

0= 0

(To change the relation ix = y so that the leading variable x is expressed in terms
of the free variable y, we can multiply both sides by −i.)

As a result, one such basis is this.

B = 〈

(
−i

1

)
,

(
i

1

)
〉

Five.IV.2.31 We can count the possible classes by counting the possible canonical
representatives, that is, the possible Jordan form matrices. The characteristic
polynomial must be either c1(x) = (x + 3)2(x − 4) or c2(x) = (x + 3)(x − 4)2. In
the c1 case there are two possible actions of t+ 3 on a string basis for N∞(t+ 3).

~β1 7→ ~β2 7→ ~0 ~β1 7→ ~0
~β2 7→ ~0

There are two associated Jordan form matrices.−3 0 0

1 −3 0

0 0 4


−3 0 0

0 −3 0

0 0 4


Similarly there are two Jordan form matrices that could arise out of c2.−3 0 0

0 4 0

0 1 4


−3 0 0

0 4 0

0 0 4


So in total there are four possible Jordan forms.

Five.IV.2.32 Jordan form is unique. A diagonal matrix is in Jordan form. Thus
the Jordan form of a diagonalizable matrix is its diagonalization. If the minimal
polynomial has factors to some power higher than one then the Jordan form has
subdiagonal 1’s, and so is not diagonal.
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Five.IV.2.33 One example is the transformation of C that sends x to −x.

Five.IV.2.34 Apply Lemma 2.8 twice; the subspace is t− λ1 invariant if and only if it
is t invariant, which in turn holds if and only if it is t− λ2 invariant.

Five.IV.2.35 False; these two 4×4 matrices each have c(x) = (x − 3)4 and m(x) =

(x− 3)2. 
3 0 0 0

1 3 0 0

0 0 3 0

0 0 1 3



3 0 0 0

1 3 0 0

0 0 3 0

0 0 0 3


Five.IV.2.36 (a) The characteristic polynomial is this.∣∣∣∣∣a− x b

c d− x

∣∣∣∣∣ = (a−x)(d−x)−bc = ad−(a+d)x+x2−bc = x2−(a+d)x+(ad−bc)

Note that the determinant appears as the constant term.
(b) Recall that the characteristic polynomial |T − xI| is invariant under similarity.
Use the permutation expansion formula to show that the trace is the negative of
the coefficient of xn−1.

(c) No, there are matrices T and S that are equivalent S = PTQ (for some
nonsingular P and Q) but that have different traces. An easy example is this.

PTQ =

(
2 0

0 1

)(
1 0

0 1

)(
1 0

0 1

)
=

(
2 0

0 1

)
Even easier examples using 1×1 matrices are possible.

(d) Put the matrix in Jordan form. By the first item, the trace is unchanged.
(e) The first part is easy; use the third item. The converse does not hold: this
matrix (

1 0

0 −1

)
has a trace of zero but is not nilpotent.

Five.IV.2.37 Suppose that BM is a basis for a subspace M of some vector space.
Implication one way is clear; if M is t invariant then in particular, if ~m ∈ BM
then t(~m) ∈M. For the other implication, let BM = 〈~β1, . . . , ~βq〉 and note that
t(~m) = t(m1~β1+ · · ·+mq~βq) = m1t(~β1)+ · · ·+mqt(~βq) is inM as any subspace
is closed under linear combinations.

Five.IV.2.38 Yes, the intersection of t invariant subspaces is t invariant. Assume that
M and N are t invariant. If ~v ∈M ∩N then t(~v) ∈M by the invariance of M and
t(~v) ∈ N by the invariance of N.

Of course, the union of two subspaces need not be a subspace (remember that
the x- and y-axes are subspaces of the plane R2 but the union of the two axes



fails to be closed under vector addition; for instance it does not contain ~e1 + ~e2.)
However, the union of invariant subsets is an invariant subset; if ~v ∈M ∪N then
~v ∈M or ~v ∈ N so t(~v) ∈M or t(~v) ∈ N.

No, the complement of an invariant subspace need not be invariant. Consider
the subspace

{

(
x

0

)
| x ∈ C }

of C2 under the zero transformation.
Yes, the sum of two invariant subspaces is invariant. The check is easy.

Five.IV.2.39 One such ordering is the dictionary ordering. Order by the real compo-
nent first, then by the coefficient of i. For instance, 3+2i < 4+1i but 4+1i < 4+2i.

Five.IV.2.40 The first half is easy—the derivative of any real polynomial is a real
polynomial of lower degree. The answer to the second half is ‘no’; any complement
of Pj(R) must include a polynomial of degree j + 1, and the derivative of that
polynomial is in Pj(R).

Five.IV.2.41 For the first half, show that each is a subspace and then observe that any
polynomial can be uniquely written as the sum of even-powered and odd-powered
terms (the zero polynomial is both). The answer to the second half is ‘no’: x2 is
even while 2x is odd.

Five.IV.2.42 Yes. If RepB,B(t) has the given block form, take BM to be the first j
vectors of B, where J is the j×j upper left submatrix. Take BN to be the remaining
k vectors in B. Let M and N be the spans of BM and BN. Clearly M and N are
complementary. To see M is invariant (N works the same way), represent any
~m ∈M with respect to B, note the last k components are zeroes, and multiply by
the given block matrix. The final k components of the result are zeroes, so that
result is again in M.

Five.IV.2.43 Put the matrix in Jordan form. By non-singularity, there are no zero
eigenvalues on the diagonal. Ape this example:9 0 0

1 9 0

0 0 4

 =

 3 0 0

1/6 3 0

0 0 2


2

to construct a square root. Show that it holds up under similarity: if S2 = T then
(PSP−1)(PSP−1) = PTP−1.



378 Linear Algebra, by Hefferon

Topic: Method of Powers

1 (a) By eye, we see that the largest eigenvalue is 4. Sage gives this.
sage: def eigen(M,v,num_loops=10):
....: for p in range(num_loops):
....: v_normalized = (1/v.norm())*v
....: v = M*v
....: return v
....:
sage: M = matrix(RDF, [[1,5], [0,4]])
sage: v = vector(RDF, [1, 2])
sage: v = eigen(M,v)
sage: (M*v).dot_product(v)/v.dot_product(v)
4.00000147259

(b) A simple calculation shows that the largest eigenvalue is 2. Sage gives this.
sage: M = matrix(RDF, [[3,2], [-1,0]])
sage: v = vector(RDF, [1, 2])
sage: v = eigen(M,v)
sage: (M*v).dot_product(v)/v.dot_product(v)
2.00097741083

2 (a) Here is Sage.
sage: def eigen_by_iter(M, v, toler=0.01):
....: dex = 0
....: diff = 10
....: while abs(diff)>toler:
....: dex = dex+1
....: v_next = M*v
....: v_normalized = (1/v.norm())*v
....: v_next_normalized = (1/v_next.norm())*v_next
....: diff = (v_next_normalized-v_normalized).norm()
....: v_prior = v_normalized
....: v = v_next_normalized
....: return v, v_prior, dex
....:
sage: M = matrix(RDF, [[1,5], [0,4]])
sage: v = vector(RDF, [1, 2])
sage: v,v_prior,dex = eigen_by_iter(M,v)
sage: (M*v).norm()/v.norm()
4.00604111686
sage: dex
4

(b) Sage takes a few more iterations on this one. This makes use of the procedure
defined in the prior item.
sage: M = matrix(RDF, [[3,2], [-1,0]])
sage: v = vector(RDF, [1, 2])
sage: v,v_prior,dex = eigen_by_iter(M,v)
sage: (M*v).norm()/v.norm()
2.01585174302
sage: dex
6

3 (a) The largest eigenvalue is 3. Sage gives this.
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sage: M = matrix(RDF, [[4,0,1], [-2,1,0], [-2,0,1]])
sage: v = vector(RDF, [1, 2, 3])
sage: v = eigen(M,v)
sage: (M*v).dot_product(v)/v.dot_product(v)
3.02362112326

(b) The largest eigenvalue is −3.
sage: M = matrix(RDF, [[-1,2,2], [2,2,2], [-3,-6,-6]])
sage: v = vector(RDF, [1, 2, 3])
sage: v = eigen(M,v)
sage: (M*v).dot_product(v)/v.dot_product(v)
-3.00941127145

4 (a) Sage gets this, where eigen_by_iter is defined above.
sage: M = matrix(RDF, [[4,0,1], [-2,1,0], [-2,0,1]])
sage: v = vector(RDF, [1, 2, 3])
sage: v,v_prior,dex = eigen_by_iter(M,v)
sage: (M*v).dot_product(v)/v.dot_product(v)
3.05460392934
sage: dex
8

(b) With this setup,
sage: M = matrix(RDF, [[-1,2,2], [2,2,2], [-3,-6,-6]])
sage: v = vector(RDF, [1, 2, 3])

Sage does not return (use <Ctrl>-c to interrupt the computation). Adding some
error checking code to the routine
def eigen_by_iter(M, v, toler=0.01):

dex = 0
diff = 10
while abs(diff)>toler:

dex = dex+1
if dex>1000:

print "oops! probably in some loop: \nv=",v,"\nv_next=",v_next
v_next = M*v
if (v.norm()==0):

print "oops! v is zero"
return None

if (v_next.norm()==0):
print "oops! v_next is zero"
return None

v_normalized = (1/v.norm())*v
v_next_normalized = (1/v_next.norm())*v_next
diff = (v_next_normalized-v_normalized).norm()
v_prior = v_normalized
v = v_next_normalized

return v, v_prior, dex

gives this.
oops! probably in some loop:
v= (0.707106781187, -1.48029736617e-16, -0.707106781187)
v_next= (2.12132034356, -4.4408920985e-16, -2.12132034356)

oops! probably in some loop:
v= (-0.707106781187, 1.48029736617e-16, 0.707106781187)
v_next= (-2.12132034356, 4.4408920985e-16, 2.12132034356)

oops! probably in some loop:



v= (0.707106781187, -1.48029736617e-16, -0.707106781187)
v_next= (2.12132034356, -4.4408920985e-16, -2.12132034356)

So it is circling.

5 In theory, this method would produce λ2. In practice, however, rounding errors in
the computation introduce components in the direction of ~v1, and so the method
will still produce λ1, although it may take somewhat longer than it would have
taken with a more fortunate choice of initial vector.

6 Instead of using ~vk = T~vk−1, use T−1~vk = ~vk−1.

Topic: Stable Populations

1 The equation

0.89I− T =

(
0.89 0

0 0.89

)
−

(
.90 .01

.10 .99

)
=

(
−.01 −.01

−.10 −.10

)
leads to this system. (

−.01 −.01

−.10 −.10

)(
p

r

)
=

(
0

0

)
So the eigenvectors have p = −r.

2 Sage finds this.
sage: M = matrix(RDF, [[0.90,0.01], [0.10,0.99]])
sage: v = vector(RDF, [10000, 100000])
sage: for y in range(10):
....: v[1] = v[1]*(1+.01)^y
....: print "pop vector year",y," is",v
....: v = M*v
....:
pop vector year 0 is (10000.0, 100000.0)
pop vector year 1 is (10000.0, 101000.0)
pop vector year 2 is (10010.0, 103019.899)
pop vector year 3 is (10039.19899, 106111.421211)
pop vector year 4 is (10096.3933031, 110360.453787)
pop vector year 5 is (10190.3585107, 115891.187687)
pop vector year 6 is (10330.2345365, 122872.349786)
pop vector year 7 is (10525.9345807, 131525.973067)
pop vector year 8 is (10788.6008533, 142139.351965)
pop vector year 9 is (11131.1342876, 155081.09214)

So inside the park the population grows by about eleven percent while outside the
park the population grows by about fifty five percent.



3 The matrix equation (
pn+1
rn+1

)
=

(
0.95 0.01

0.05 0.99

)(
pn
rn

)
means that to find eigenvalues we want to solve this.

0 =

∣∣∣∣∣λ− 0.95 0.01

0.10 λ− 0.99

∣∣∣∣∣ = λ2 − 1.94λ− 0.9404
Sage gives this.

sage: a,b,c = var('a,b,c')
sage: qe = (x^2 - 1.94*x -.9404 == 0)
sage: print solve(qe, x)
[
x == -1/100*sqrt(18813) + 97/100,
x == 1/100*sqrt(18813) + 97/100
]
sage: n(-1/100*sqrt(18813) + 97/100)
-0.401604899378826
sage: n(1/100*sqrt(18813) + 97/100)
2.34160489937883

4 (a) This is the recurrence. cn+1un+1
mn+1

 =

.95 .06 0

.04 .90 .10

.01 .04 .90


 cnun
mn


(b) The system

.05c− .06u = 0

−.04c+ .10u− .10m= 0

−.01c− .04u+ .10m= 0

has infinitely many solutions.

sage: var('c,u,m')
(c, u, m)
sage: eqns = [ .05*c-.06*u == 0,
....: -.04*c+.10*u-.10*m == 0,
....: -.01*c-.04*u+.10*m == 0 ]
sage: solve(eqns, c,u,m)
[[c == 30/13*r1, u == 25/13*r1, m == r1]]
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Topic: Page Ranking

1 The sum of the entries in column j is
∑
i αhi,j + (1− α)si,j =

∑
i αhi,j +

∑
i(1−

α)si,j = α
∑
i αhi,j + (1− α)

∑
i si,j = α · 1+ (1− α) · 1, which is one.

2 This Sage session gives equal values.
sage: H=matrix(QQ,[[0,0,0,1], [1,0,0,0], [0,1,0,0], [0,0,1,0]])
sage: S=matrix(QQ,[[1/4,1/4,1/4,1/4], [1/4,1/4,1/4,1/4], [1/4,1/4,1/4,1/4], [1/4,1/4,1/4,1/4]])
sage: alpha=0.85
sage: G=alpha*H+(1-alpha)*S
sage: I=matrix(QQ,[[1,0,0,0], [0,1,0,0], [0,0,1,0], [0,0,0,1]])
sage: N=G-I
sage: 1200*N
[-1155.00000000000 45.0000000000000 45.0000000000000 1065.00000000000]
[ 1065.00000000000 -1155.00000000000 45.0000000000000 45.0000000000000]
[ 45.0000000000000 1065.00000000000 -1155.00000000000 45.0000000000000]
[ 45.0000000000000 45.0000000000000 1065.00000000000 -1155.00000000000]
sage: M=matrix(QQ,[[-1155,45,45,1065], [1065,-1155,45,45], [45,1065,-1155,45], [45,45,1065,-1155]])
sage: M.echelon_form()
[ 1 0 0 -1]
[ 0 1 0 -1]
[ 0 0 1 -1]
[ 0 0 0 0]
sage: v=vector([1,1,1,1])
sage: (v/v.norm()).n()
(0.500000000000000, 0.500000000000000, 0.500000000000000, 0.500000000000000)

3 We have this.

H =


0 0 1 1/2

1/3 0 0 0

1/3 1/2 0 1/2

1/3 1/2 0 0


(a) This Sage session gives the answer.

sage: H=matrix(QQ,[[0,0,1,1/2], [1/3,0,0,0], [1/3,1/2,0,1/2], [1/3,1/2,0,0]])
sage: S=matrix(QQ,[[1/4,1/4,1/4,1/4], [1/4,1/4,1/4,1/4], [1/4,1/4,1/4,1/4], [1/4,1/4,1/4,1/4]])
sage: I=matrix(QQ,[[1,0,0,0], [0,1,0,0], [0,0,1,0], [0,0,0,1]])
sage: alpha=0.85
sage: G=alpha*H+(1-alpha)*S
sage: N=G-I
sage: 1200*N
[-1155.00000000000 45.0000000000000 1065.00000000000 555.000000000000]
[ 385.000000000000 -1155.00000000000 45.0000000000000 45.0000000000000]
[ 385.000000000000 555.000000000000 -1155.00000000000 555.000000000000]
[ 385.000000000000 555.000000000000 45.0000000000000 -1155.00000000000]
sage: M=matrix(QQ,[[-1155,45,1065,555], [385,-1155,45,45], [385,555,-1155,555],
....: [385,555,45,-1155]])
sage: M.echelon_form()
[ 1 0 0 -106613/58520]
[ 0 1 0 -40/57]
[ 0 0 1 -57/40]
[ 0 0 0 0]
sage: v=vector([106613/58520,40/57,57/40,1])
sage: (v/v.norm()).n()
(0.696483066294572, 0.268280959381099, 0.544778023143244, 0.382300367118066)



(b) Continue the Sage session to get this.
sage: alpha=0.95

sage: G=alpha*H+(1-alpha)*S
sage: N=G-I
sage: 1200*N
[-1185.00000000000 15.0000000000000 1155.00000000000 585.000000000000]
[ 395.000000000000 -1185.00000000000 15.0000000000000 15.0000000000000]
[ 395.000000000000 585.000000000000 -1185.00000000000 585.000000000000]
[ 395.000000000000 585.000000000000 15.0000000000000 -1185.00000000000]
sage: M=matrix(QQ,[[-1185,15,1155,585], [395,-1185,15,15], [395,585,-1185,585],
....: [395,585,15,-1185]])
sage: M.echelon_form()
[ 1 0 0 -361677/186440]
[ 0 1 0 -40/59]
[ 0 0 1 -59/40]
[ 0 0 0 0]
sage: v=vector([361677/186440,40/59,59/40,1])
sage: (v/v.norm()).n()
(0.713196892748114, 0.249250262646952, 0.542275102671275, 0.367644137404254)

(c) Page p3 is important, but it passes its importance on to only one page, p1. So
that page receives a large boost.

Topic: Linear Recurrences

1 We use the formula

F(n) =
1√
5

[(
1+
√
5

2

)n
−

(
1−
√
5

2

)n]
As observed earlier, (1 +

√
5)/2 is larger than one while (1 +

√
5)/2 has absolute

value less than one.
sage: phi = (1+5^(0.5))/2
sage: psi = (1-5^(0.5))/2
sage: phi
1.61803398874989
sage: psi
-0.618033988749895

So the value of the expression is dominated by the first term. Solving 1000 =

(1/
√
5) · ((1+

√
5)/2)n gives this.

sage: a = ln(1000*5^(0.5))/ln(phi)
sage: a
16.0271918385296
sage: psi^(17)
-0.000280033582072583

So by the seventeenth power, the second term does not contribute enough to change
the roundoff. For the ten thousand and million calculations the situation is even
more extreme.
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sage: b = ln(10000*5^(0.5))/ln(phi)
sage: b
20.8121638053112
sage: c = ln(1000000*5^(0.5))/ln(phi)
sage: c
30.3821077388746

The answers in these cases are 21 and 31.
2 (a) We express the relation in matrix form.(

f(n)

f(n− 1)

)
=

(
5 −6

1 0

)(
f(n− 1)

f(n− 2)

)
The characteristic equation of the matrix∣∣∣∣∣5− λ −6

1 −λ

∣∣∣∣∣ = λ2 − 5λ+ 6
has roots of 2 and 3. Any function of the form f(n) = c12

n + c23
n satisfies the

recurrence.
(b) The matrix expression of the relation is(

f(n)

f(n− 1)

)
=

(
0 4

1 0

)(
f(n− 1)

f(n− 2)

)
and the characteristic equation∣∣∣λ2 − 2∣∣∣ = (λ− 2)(λ+ 2)

has the two roots 2 and −2. Any function of the form f(n) = c12
n + c2(−2)

n

satisfies this recurrence.
(c) In matrix form the relation f(n)

f(n− 1)

f(n− 2)

 =

5 −2 −8

1 0 0

0 1 0


f(n− 1)

f(n− 2)

f(n− 3)


has a characteristic equation with roots −1, 2, and 4. Any combination of the
form c1(−1)

n + c22
n + c34

n solves the recurrence.
3 (a) The solution of the homogeneous recurrence is f(n) = c12n + c23

n. Substi-
tuting f(0) = 1 and f(1) = 1 gives this linear system.

c1 + c2 = 1

2c1 + 3c2 = 1

By eye we see that c1 = 2 and c2 = −1.
(b) The solution of the homogeneous recurrence is c12n + c2(−2)

n. The initial
conditions give this linear system.

c1 + c2 = 0

2c1 − 2c2 = 1

The solution is c1 = 1/4, c2 = −1/4.
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(c) The homogeneous recurrence has the solution f(n) = c1(−1)n + c22
n + c34

n.
With the initial conditions we get this linear system.

c1 + c2 + c3 = 1

−c1 + 2c2 + 4c3 = 1

c1 + 4c2 + 16c3 = 3

Its solution is c1 = 1/3, c2 = 2/3, c3 = 0.
4 Fix a linear homogeneous recurrence of order k. Let S be the set of functions
f : N→ C satisfying the recurrence. Consider the function Φ : S→ Ck given as here.

f
Φ7−→


f(0)

f(1)
...

f(k− 1)


This shows linearity.

Φ(a · f1 + b · f2) =

 af1(0) + bf2(0)
...

af1(k− 1) + bf2(k− 1)



= a

 f1(0)
...

f1(k− 1)

+ b

 f2(0)
...

f2(k− 1)

 = a ·Φ(f1) + b ·Φ(f2)

5 We use the hint to prove this.

0 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

an−1 − λ an−2 an−3 . . . an−k+1 an−k
1 −λ 0 . . . 0 0

0 1 −λ

0 0 1
...

...
. . .

...
0 0 0 . . . 1 −λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (−1)k−1(−λk + an−1λ

k−1 + an−2λ
k−2 + · · ·+ an−k+1λ+ an−k)

= ±(−λk + an−1λk−1 + an−2λk−2 + · · ·+ an−k+1λ+ an−k)
The base step is trivial. For the inductive step, expanding down the final column
gives two nonzero terms.

(−1)k−1an−k · 1− λ ·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

an−1 − λ an−2 an−3 . . . an−k+1
1 −λ 0 . . . 0

0 1 −λ

0 0 1
...

...
. . .

0 0 0 . . . 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣



(The matrix is square so the sign in front of −λ is −1even). Application of the
inductive hypothesis gives the desired result.

= (−1)k−1an−k · 1
− λ · (−1)k−2(−λk−1 + an−1λk−2 + an−2λk−3 + · · ·+ an−k+1λ0)

6 This is a straightforward induction on n.

7 Sage says that we are safe.
sage: T64 = 18446744073709551615
sage: T64_days = T64/(60*60*24)
sage: T64_days
1229782938247303441/5760
sage: T64_years = T64_days/365.25
sage: T64_years
5.84542046090626e11
sage: age_of_universe = 13.8e9
sage: T64_years/age_of_universe
42.3581192819294

Topic: Coupled Oscillators

1 The angle sum formula for the cosine function is cos(α + β) = cos(α) cos(β) −
sin(α) sin(β). Expand A cos(ωt+φ) to A · [cos(ωt) cos(φ)− sin(ωt) sin(φ)]. Then
cos(φ) and sin(φ) do not vary with t so we get the general solution x(t) =

B cos(ωt) + C sin(ωt).

2 We will do the first root; the second is similar. We have this equation.(
ω20 −ω

2 ε/2m

ε/2I ω20 −ω
2

)(
A1
A2

)
=

(
0

0

)
Plug in the first root ω2 = ω20 + ε/2

√
mI. The two equations are redundant so we

just consider the first.

−(ε/2
√
mI) ·A1 + (ε/2m) ·A2 = 0

That’s a line through the origin in the plane, so to specify it we need only find the
ratio between the first and second variables.

A2

A1
=

(ε/2
√
mI)

(ε/2m)
=

√
m

I

So this is the space of eigenvectors associated with the first eigenvalue.

{

(
A1√

m/I ·A1

)
| A1 ∈ C }
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3 Observe that cos(ωt+ (φ+ π)) = − cos(ωt+ φ). Take the derivatives
dx(t)

dt
= −ω · sin(ωt+ φ) d2 x(t)

dt2
= −ω2 · cos(ωt+ φ)

and
dθ(t)

dt
= ω · sin(ωt+ φ) d2 θ(t)

dt2
= ω2 · cos(ωt+ φ)

and plug into the equations of motion (∗∗).

mA1 · (−ω2 cos(ωt+ φ)) + kA1 · (cos(ωt+ φ)) +
ε

2
A2 · (− cos(ωt+ φ)) = 0

IA2 · (ω2 cos(ωt+ φ)) + κA2 · (− cos(ωt+ φ)) +
ε

2
A1 · (cos(ωt+ φ)) = 0

Factor out cos(ωt+ φ)(
m(−ω2)

)
·A1 + kA1 −

ε

2
·A2 = 0(

Iω2
)
·A2 − κA2 +

ε

2
·A1 = 0

and divide through by m and I.( k
m

−ω2
)
·A1 −

ε

2m
·A2 = 0

ε

2I
·A1 −

(κ
I
−ω2

)
·A2 = 0

We are assuming that k/m = ω2x and κ/I = ω2θ are equal, and writing ω20 for that
number. Make the substitution and restate it as a matrix equation.(

ω20 −ω
2 −ε/2m

ε/2I ω20 −ω
2

)(
A1
A2

)
=

(
0

0

)
We want the frequencies ω for which this system has a nontrivial solution.∣∣∣∣∣ω20 −ω2 −ε/2m

ε/2I ω2 −ω20

∣∣∣∣∣ = 0
This is the same determinant as we did in the Topic body except that the second
column is multiplied by −1. Multiplying a row or column by a scalar multiplies
the entire determinant by that scalar. So this determinant is the negative of the
one in the Topic body. But we are setting it to zero so that doesn’t matter. The
roots are the same as in the Topic body.

4 See [Mewes].
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