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NATIOITAL ADVISORY COMMITTEE FOR AERONAUTICS.

TECHNICAL MEMORANDUM NOo 480.
* —.

AIRPLANE STRENGTH CALCUL’ATIO?!?SAND STATIC TESTS IN RUSSIA**

(An Attempt at Standardization)

We are here giving a summary of the rules established by the

Theoretical Section of the Central Aerodynamic Institute of

Moscow for the different calculation cases of an airplane.

These rules, which have been adopted by t’he “Direction des Forces

aeriennes militairesll of the U.R.S.S. (Union of Socialist Soviet

Republics, i.e., Russia), have been in force since August 1,

192? . It will :oeinteresting

conditions required in France

It appears that the engineers

to compare them with the testing

for the three cases of flight.

of the Aerodynamic Institute con-

sidered only thick or medium profiles. For these profiles they

have attempted to inczease tilesafety when the center of pressure

moves appreciably toward the trailing edge. Will such a stand-

ardization of the values of the overloads ad their distribution

lead to the construction of better cells with the maximum strength
.

for the miilimurnwing loadlng? We would hesitate to affirm it,

however,

planes),

tempt at

for investigations (like that of present pursuit air-

which are only typical cases. Nevertheless, this at-

standardization is not without interest and at least

has the me?:itof being presented in the form of concrete results.
—. .-

*“Calculs de resistance des avions et essais statiques en Russie,”
L~Aerona,utique, February, 1928, pp. 42-45.
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De fi.n

The overload in flight is

fatio of the load supported by

i t’.i o n s

2

defined in each instance by the

the airplane parts involved in

the nlotion considered to the load on the same parts in uniform

horizontal flight for the same angle of attack. These overloads

are determined experimentally with accelerometers

calculation.

The landing overload is defined by the ratio

and also by

of the load on

the parts of the airplane just making contact With the ground

to the load on the same parts wheilthe airplme rests on the

ground.

The safety factor is the ratio of the breaking load to the

maximum load of elastic deformation. for the given flight case

at a given angle of attack. It includes the ratio of the break-

ing stress to the limit of elasticity and the coefficient of ex-

ploitation, which t,akesinto account the length of service, con-

ditions of use, etc.

From the definitions of the overload in flight and of the

safety factor, it follows that the static overload is the ratio

of the breaking load to the fatigue in uniform horizontal flight

in both cases for t-hesame angle of attack.

The calculated overload is the ratio of the calculated

breaking load to the load in uniform horizontal flight.

The ratio of the static to the calculated overload is the
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perfection coefficient of the calculation. Its value ii~dicates

to the constructor the more or less precise degree of approx”i-....,.-,.,
mation to the actual fatigue conditions of the airplane.

For the calculation and the static airplane tests, the

flight cases in”.whichthe most important parts support the great-

est stresses have been considered, each being distinguished by a

letter with a subindex for each part. The followiflgclassifica-

tiom.has been adopted.

class 1. Commercial Airplanes

Group 1. Full load not exceeding 2500 kg (5512 lb.)

It 2. 11 !! 2500 - 5000 kg (11023 lb.)

II 3* II II 5000 - 10000 “ (22046 “ 1

II 4. ‘f 11 over 10000 kg

Class II.

.
Group 12. Single-seat

II 11. II II

II II II II

Military Airplanes

land pursuit airplanes.*

inarlnepursuit ai-rplanes.

training airplcmcs.

II 100 Two-seat land pursuit airplanes.

II 9. II II marine pursuit airplanes.

II II 1! II training airplanes.

!1 8. Army observation airplanes.**
,.

..—— ——
*The n~bers for Class II are equ~ to the static overload ap~

plied to the wings, as prescribed for fliglitcase A.
**If an army observation air~lane is used as a light bomber, it
must satisfy the requirements of group 6.
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“Group

..... ..,. -11

!!

II

11

1!

!!

!1

tt

8.

II

7.

11

!!

(3

5

4’

Case A1..-—— ---.,’.

lift. ~~e~~J:e

Combat airplanes. .,
,.-.,----‘“

school !1

I,larineobservat io-nairplanes.

Army Corps observatio-n airplanes.

Torpedo airplanes.

Wwine school airplanes.

Light torpedo and bombing airplanes.

Large bom-oin,gairplmes.

Bombers vei:hing over 10000 kg (22046 lb.).

T ?Ee ?]ings ( mi’cinclexk )-.

.
Cor(iiilgoUt 01 a dive at the mgle of maximum

the resultant in the position corresponding to

4

,.

this angle according to the Clm, the inclinatio~l of the result–

ant to the cF_ordbeing S80. For the distribution of the 10?.cI,.

see the followim=jparagraphs II, III, and IV. The load itself

has the form

p=n(lI - ‘kp ) - ‘kp

in which n is the static overload given in the accompanyiW

table; II, the full load; ~kp , the weight of the cell.

Case BJC.- Couin3 out of a dive to glide a.tthe maxiidmfian-——

Tl~ of :.-t-tack.TfleOverload is the s~e as in the precedin~v

case. the resultnnt being applied at 1/5 t-nedistance from the

trailing edge rnd incli~:ed l/3*
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Case Ck.”- Diving flight. The lift is assumed to be zero.

The wings are ,,subjectedto a-load which pko”duces a moment of
,e,

torsion. and

Moment

Drag

f,

Cm,

cx~,

a drag.

of torsion.

M =

x=

factor

coefficient

II

11

tl

L = S/A, chord of

of

1!

II

II

Cxkp
f

CXC + CXB

given in

moment;

drag

II

!1

of

II

II

II L.

IS

table;

the

II

II

wings;

airplane;

propeller;

Cm ~d Cxkp are taken on the polar for Cy = 0. Moreover,

c&j
with

F=

surface swept by propeller;

s, area.’ofwings;

d2),

mean width of propeller blades (Z, number of blades; bcp> mean
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.
width of one blade).

.Op’... . .coefficient of...thenegative-tract’ion’of the propeller equal
.

to
0.26 for h = 0.9

(
H)h=5,

0.24 ‘1 h = 0.5

with
..

Cp = 0.26 + 0.2 (0.9 - h)

as intermediate VCO,I-UCS.In the plane of the wing, the “static

load has the form

+, if the wing is fixed during

down; -, if the wing is fixed

ing edge up; f, safety factor

the tests with the leading edge

during the tests with the lend-

given in table.’

Case Dk.- Curvilinear flight in inverted position. The re-

sultant is taken at 1/4 of the chord from the leading edge and

inclined -1/4. The overload is the same as in case Ak.

Case Ek.- Sudden landing. The resultant passes through the

center of gravity of the wing section and the overload is given

by
R=nH k??

n being given in the table.
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II. Distribution of the Load Along the Wing Chord

,=..,,- .

..,- ,.

Case “Ak.-‘“Loaddistributed according to Figure 1, or a load-

ing diagram (derived from Fig. 12) is plotted by observing the

condition of passage of the resultant through the center of lift.

The latter method (Fig. 2) is used when

Uase Bk.- Uniform distribution on the half-chord, the re-

sultant passing at 1/3 of the chord from the trailing edge (Fig.

3).

cMeS Gk and Ek.- The distribution of the load depends on..———

the way the tests are made.

Case Q~.- Figure 4.
.,,’.:

.
III. Distribution of the Load Along”the Span

The following rules give the distribution for the wings

shovm ‘inFigure 5, with the same angle of setting of the same

profile throughout the span.

Case &--- For elliptical wings, distribution proportional

to the cho~ds.

For trapezoidal wings, the ratio of the extreme chords be-

ing compxiscd between 0.4 and 0.7 and the aspect ratio between

5 and 8, Vje have (Fig. 6)
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hl =

.,-. ‘hz=
-., -,. . . ,.,

with
loading (pt = lll/S; 111, fUll loadP’,

k,

c1>

c2?

calculated wing

weight of wings);

aspect ratio = 22/s;

chord

chord

~,,tpoint of imbedding;

zt wing tip;

nean chord..

types a, b, c, d-

Co = s/’l,

(Pig. 5), the load dis-

pro-

FOT

tributed

the wing

according

is

I’igure-7with

h=~l 1
.

)i- 0.2%

Cases B]<and Dk.- For elliptical wings, distribution

portion~.1 to the chords.

(c2/cl = 0.4 - 0.?;For trapezoidal

distribution similar

the extremity being

to

co

hl

ha

?igure 6, the height of

instead of co/2 lb~ith

trapezoid of

P’

Pt .

shapes a, b, c, d distribution according toFor the wing

Figure 8, with

h=pt.z

k- 0.5”

I
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cEiSe @.- Distri,butiop proportional to the chords.

,,, ~-,..-,,,,,,-..- cas”6””‘x~-.’-’Distribution corresponding to the masses loading

the wing and to the weight of the wing itself.

IV. Distribution of the Load between the Wings*

The angle of stagger is the angle with the vertical forimed

by the straight line joining the two points on the upper and

lower chords at one-third their length from the leading edge.

The load is distributed following the angle of stagger ac-

cording to Figure 9 for case Ak, Figure 10 for case Bk, Fig-~re

11 for case El<. On the abscissas, angles of stagger; on the

prdinates, quotient of the upper Cy divided by the lower CY“

In case Ck, the distribution is proportional to the area

of the wings. In case E]{, it is proportional to the weight of

the wings and to the masses.

v. The Ribs

The ribs were tested for all four cases: An, Bn, Cn and Dn.

Case An (Fig. 12):

~ ~ Q~385 – 0.875 v
0.225LL - 0.0338

-i-!

H = C (0.225~ + 0.875)

with
P, distance between the center of pressure and the

lezding edge in ~ of the chord;

*These rules apply only to biplanes whose wings have the same
setting.



N.A.C.A. Technical Mezlorandum No. 480 10

c, chord;

z, load area corresponding to the loti on a rib in

case A, all the load being distributed thus, namely,

extrados : intrados = 2 : 1.

Case Bn (Fig. 13).= The load areas are

‘ZJX2 = 3, referred.to the upper part 21 +

the lower part 0.6 X2, 21 - X2 corresponds

,21canal22 such that

0.4!22. Referred to

to the load on a rib.

Case Cn (Fig. 14).- In this case Xl = Zz: on the extrados,

21 + 0.3 X2; o~zthe intrados, 0.7 X2.

Case IIn (Fig. 15).- On the extrados, Zz; on the intrados,

‘ZI. .

VI. The Wings

These were tested only for case B. Mean aileron loading

tiia= 0.0525 vzrfl~

(‘max; i~aximuin speed in ‘m,’sin horizontal flight near,the ground)

with
..-
(Ua)min ~ 125 kg/m2 .

The p~essure is assumed to be constant along the hinge qnd “

to decrease uniforiily along the rib down to a third of its value

(Fig. 15).

—...., ..— . . .. .... ....-..--.—.-..... . .—. .
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VII. The Empennage

,.~.
-.’,

A.- Horizontal empennage.

~ase (?h.- Static load.

Pk
Clm

= ~:.
exe’+ CXB

k, safety factor given in table;

d, distance between center of gravity of airplane and

center of lift of empennage;

C~m, coefficient of ‘moment of airplane without empennage.

Distribution according to Figure 17.

JlaseKh.-

P = 2 fh~ Zch (1*4 ~at)~,

‘Ch> c.reaof horizontal empennage in m~ ;

fh Y coefficient of ascensional foroe given in table;

vat > landing speed in m/s;

P = l/8.

These two loads are compared and the greater one is taken.

for the tests. “

B,-- Vertical empennage

P = 2 fhP Z~v (1.4 vat)z,

distributed according to Figure 18.

z~v 3 area of vertical, empennage in ma.
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n

n

VIII. Landing Gear

. ...-. .,,

In all the cases, the overload is
e

P=nH

being the coefficient given in the table.

IX. Fuselage and Engine Bed

Case Efb:

P=ni2

being given in the table.

,
Oase Cfb.- The test is made for the rear part of the fuse-——

lage (diving),’with”a load corresponding to that on the hori–

zontd. el~~ennage (case Ch).

GU3e (Hfb)AR--- The lateral loaclon the stern is given by

the load on the vertical empennage (case Kh).

Case (Hfb)AV:

p = n?A,v

~AV being the weight of the front part (see case Afb).
v

Case &b.- Flight with a vertical acceleration correspond-

ing to case A:

p = nHAV.

(FroinTechnique de la Flotte A#rienne Russe, 1927, No. 1. )
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TABLE

Ail-
er-
ons

..,. ,

~

‘Class

RibsWings

Group —.——

Ak Bk
—-

AnBa Bn

f fnn

5.5 4

n I n n n n

1

2

3

4

12

11

10

9

3

7

6

5

4

If .. 5.5

5.5
-r

~
4

4

12

11

10

9

8

y

6

5

4

4

4
E%

3.5
3....

3

7.0

6.5

6.0

5.5

5.0

4.5

4.0

3.2:

3.0

1.25

1.25

1.25

II

2.0

1.9

1.R

1.75

1.7

1.5

1.’4

1.25

II

5,5 4
-5-TX

11

1[

If

4.0

3.75

3.5

3.25

3.5
T

3

7*9

6.5

6e0

5.5

5.0

4.5

*_
co
All
$24

12

1.1

10

9

r!?

7.J

6

5

4

4

3.75

3.5

3.25

3.0

3:5

z.0

!1

11

11. 3.0

2.5

2.0

II

11

-!--

fxl

II

G4.01

3.24

--1-3.0
—

*If V.+ ec:ualsor exceeds 120, the overload is given in eaoh—-
f.~~eky the “Ccmmissi6n Scientifique.” -9

-.— — .-
\,.
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Table (Cont.)
I

Eillpennages I
—~ “Lall~inG

.,1,,-,..:.- Fuselage
Hori-
zontal

Ver- ~
ti- I gear and engine bed

Class Group cal I
-—+-—––
KTJ ! Ea
f+l

~
Ch I Kh
k fh

I

1.5

1.4

~

1.35 ‘0.4

!1

2.25 ,

2*15

2.10 i
I

. .—_. —

(Hfb)&( ~fb )A~Fa Ga
n n

Efb
n

3

(

1. j
1

.

1

2

3

.4

12

11

I.o

9

8

7

6

5

4

0.6

0.6

006

0.6

*
-
m
/lil

c
co.
0

A II2.0
1

1.90( 0.<
II

1.7q

‘z
-

3.4II.

*If

‘D

L%1501’● :

1.30 ‘

II

/l——

I

1

)..I

T.Ta~ oqu.p,ls or exceeds 120, the overload is given in each
case by the llComillissionScientifique.l’

P. G.

Translation ky Dwight M. Miner,
National Ad~isory Committee
for Aeronautics.
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