
 NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

$$
\text { No, } 480
$$

4.2
4.7

Washington
September, 1928

NATIONAL ADVISORY COMEITTEE FOR AERONAUTICS.

TECHIICAL MEMORANDUM NO. 480.

> AIRPIANE STRENGTH CALCULATIONS AND STATIC TESTS IN RUSSIA.* (An Attempt at Standardization)

We are here giving a summary of the rules established by the Theoretical Section of the Central Aerodynamic Institute of Moscow for the different calculation cases of an airplane. These rules, which have been adopted by the "Direction des Forces aeriennes militaires" of the U.R.S.S. (Union of Socialist Soviet Republics, i.e., Russia), have been in force since August l, 192r. It will be interesting to compare them with the testing conditions required in France for the three cases of flight. It appears that the engincers of the Aerodynamic Institute considered only thick or medium profiles. For these profiles they have attempted to increase the safety when the center of pressure moves appreciably toward the trailing edge. Will such a standardization of the values of the overloads and their distribution lead to the construction of better cells with the maximum strength for the minimum wing loading? We would hesitate to affirm it, however, for investigations (like that of present pursuit airplanes), which are only typical cases. Nevertheless, this attempt at standardization is not without interest and at least has the merit of being presented in the form of concrete results. *"Calculs de resistance des avions et essais statiques en Russie," L'Aeronautique, February, 1928, pp. 42-45.

```
Definnitionns
```

The overload in flight is defined in each instance by the ratio of the load supported by the airplane parts involved in the motion considered to the load on the same parts in uniform horizontal flight for the same angle of attack. These overloads are determined experimentally with accelerometers and also by calculation.

The landing overload is defined by the ratio of the load on the parts of the airplane just making contact with the ground to the load on the same parts when the airplane rests on the ground.

The safety factor is the ratio of the breaking load to the maximun load of elastic deformation for the given flight case at a given angle of attacke It includes the ratio of the breaking stress to the limit of elasticity and the coefficient of exploitation, which takes into account the length of service, conditions of use, etc.

From the definitions of the overload in flight and of the safety factor, it follows that the static overload is the ratio of the breaking load to the fatigue in uniform horizontal flight in both cases for the same angle of attack.

The calculated overload is the ratio of the calculated breaking load to the load in uniform horizontal flight.

The ratio of the static to the calculated overload is the
perfection coefficient of the calculation. Its value indicates to the constructor the more or less precise degree of approximaition to the actual fatigue conditions of the airplane.

For the calculation and the static airplane tests, the flight cases in which the most important parts support the greatest stresses have been considered, each being distinguished by a letter with a subindex for each part. The following classificatiom has been adopted.

Class 1. Commercial Airplanes

Group 1. Full load not exceeding 2500 kg (5512 1b.)

Class II. Military Airplanes

Group 12. Single-seat land pursuit airplanes.*
" 11. " " marine pursuit airplanes.
" " " " training airplanes.
" 10. Two-seat land pursuit airplanes.
" 9. " " marine pursuit airplanes.
" " " " training airplanes.
" 8. Army observation airplanes.**
*The numbers for Class II are equal to the static overload applied to the wings, as prescribed for flight case A. **If an army observation airplane is used as a light bomber, it must satisfy the requirements of group 6.
N.A.C.A. Technical Menoranduan No. 480

Group 8. Combat airplanes.
"~" School "
" 7. Marine observation airplanes.
" " Army Corps observation airplanes.
" " Torpedo airplanes.
" " Marine school airplanes.
" 6 Light torpedo and bombing airplanes.
" 5 Large bombing airplanes.
" 4 Bombers weighing over 10000 kg (22046 13.).

I. The Wings (subindex k)

Case A_{k} - Coring out of a dive at the angle of maximum lift. We take the resultant in the position corresponding to this angle according to the C_{m}, the inclination of the resultant to the chord being 98°. For, the distribution of the load, see the following paragraphs II, III, and IV. The load itself has the form

$$
P=n\left(\Pi-\Pi_{\mathrm{kp}}\right)-\Pi_{\mathrm{kp}}
$$

in which n is the static overload given in the accompanying table; Π, the full load; Π_{kp}, the weight of the cell.

Case Bis.- Coming out of a dive to glide at the maximum angie of attack. The overload is the same as in the preceding case. the resultant being applied at $1 / 3$ the distance from the trailing edge and inclined $1 / 3$.

Case Cl:- Diving flight. The lift is assumed to be zero. The wings are subjected to a load which produces a moment of torsion and a drag.

Moment of torsion:

$$
M=f \frac{C_{m}}{C_{X_{C}}+C_{X_{B}}} \Pi I .
$$

Drag

$$
X=f \frac{C_{X_{k p}}}{{ }^{C_{X_{C}}}+{ }^{C_{X_{B}}}} I
$$

f, safety factor given in table;
C_{m}, coefficient of moment;

$\mathrm{L}=\mathrm{S} / \mathrm{A}$, chord of wing.
C_{m} and $C_{X_{k p}}$ are taken on the polar for $C_{y}=0$. Moreover,

$$
C_{X_{B}}=C_{p} \frac{F}{S} a
$$

with

$$
F=\frac{\pi}{4}\left(D^{2}-d^{2}\right)
$$

surface swept by propeller;
s, area of wings;

$$
a=\frac{z b_{c p}}{D},
$$

mean width of propeller blades (z, number of blades; $b_{c p}$, mean
N.A.C.A. Technical Nemorandum No. 480
width of one blade).
Op, coefficient of the negative traction of the propeller equal to

$$
\begin{aligned}
& 0.26 \\
& 0.24
\end{aligned} \text { for } h=0.9 \quad \text { " } h=0.5 \quad\left(h=\frac{H}{D}\right)
$$

with

$$
c_{p}=0.26+0.2(0.9-h)
$$

as intermediate values. In the plane of the wing, the static load has the form

$$
Q=X- \pm \Pi_{\mathrm{kp}} \pm \Pi_{\mathrm{kp}}
$$

+ , if the wing is fixed during the tests with the leading edge down; -, if the wing is fixed during the tests with the leading edge up; f, safety factor given in table.

Case D_{r}.- Curvilinear flight in inverted position. The resultant is taken at $1 / 4$ of the chord from the leading edge and inclined $-1 / 4$. The overload is the same as in case A_{k}.

Case Ek.- Sudden landing. The resultant passes through the center of gravity of the wing section and the overload is given by

$$
\mathrm{R}=\mathrm{n} \Pi_{\mathrm{kp}}
$$

n being given in the table.

N.A.Ċ.A. Technical Memorandum No. 480

II. Distribution of the Load Along the Wing Chord

Case A_{k} - Load distributed according to Figure 1 , or a loading diagram (derived from Fig. 12) is plotted by observing the condition of passage of the resultant through the center of lift. The latter method (Fig. 2) is used when

$\imath \leftrightarrows 0.3125 \mathrm{~L}$.

dase $\mathrm{B}_{\mathrm{K}} \cdot-$ Uniform distribution on the half-chord, the resultant passing at $1 / 3$ of the chord from the trailing edge (Fig. $3)$.

Cases O_{k} and E_{k}.- The distribution of the load depends on the way the tests are made.

$$
\text { Case Dk.- Figure } 4 .
$$

```
O
```

III. Distribution of the Load Along the Span

The following rules give the distribution for the wings shown in Figure 5, with the same angle of setting of the same profile throughout the span.

Gase A_{i}-- For elliptical wings, distribution proportional to the chords.

For trapezoidal wings, the ratio of the extreme chords being comprisod between 0.4 and 0.7 and the aspect ratio between 5 and 8, we have (Fig. 6)

$$
\begin{aligned}
& h_{1}=p^{\prime} \times G_{1} \\
& h_{2}=p^{\prime} \frac{C_{1}+\lambda C_{2}}{0.5+\lambda}
\end{aligned}
$$

with
p^{\prime}, calculated wing loading ($p^{\prime}=\Pi_{1} / s ; \Pi_{1}$, full load - weight of wings);
λ, aspect ratio $=i^{2} / \mathrm{s}$;
C_{1}, chord a.t point of imbedding;
C_{2}, chord at ming tip;
$C_{0}=s / l$, mean chord.
For the wing types a, b, c, (Fig. 5), the load is distributed according to Figure 7 with

$$
h=p^{\prime} \frac{l}{\lambda-0.25}
$$

Cases B_{k} and Dk.- For elliptical wings, distribution proportionel to the chords.

For trapezoidal wings $\left(C_{2} / C_{1}=0.4-0.7 ; \lambda=5-8\right)$, distribution similar to Figure 6, the height of the trapezoid of the extremity being c_{0} instead of $c_{0} / 2$ with

$$
\begin{aligned}
& h_{1}=p^{\prime} C_{1} \\
& h_{2}=p^{\prime} \frac{2 C_{1}+C_{2} \lambda}{1+\lambda} .
\end{aligned}
$$

For the ving shapes a, b, c, d distribution according to Figure 8, with

$$
h=p^{\prime} \frac{1}{\lambda-0.5}
$$

N.A.C.A. Technical Memorandum No. 480

Case Ck.- Distribution proportional to the chords.

Case Ek- Distribution corresponding to the masses loading the wing and to the weight of the wing itself.
IV. Distribution of the Load between the Wings*

The angle of stagger is the angle with the vertical formed by the straight line joining the two points on the upper and lower chords at one-third their length from the leading edge.

The load is distributed following the angle of stagger according to Figure 9 for case A_{k}, Figure 10 for case B_{k}, Figure ll for case E_{k}. On the abscissas, angles of stagger; on the ordinates, quotient of the upper C_{y} divided by the lower C_{y}.

In case Ck, the distribution is proportional to the area of the wings. In case E_{k}, it is proportional to the weight of the wings and to the masses.
V. The Ribs

The ribs were tested for all four cases: A_{n}, B_{n}, C_{n} and D_{n}. Case A_{n} (Fig. 12):

$$
\begin{aligned}
& \alpha=\frac{0.385-0.875 \mu}{0.225 \mu-0.0338} \\
& H=\frac{\Sigma}{C(0.225 \alpha+0.875)}
\end{aligned}
$$

with
μ, distance between the center of pressure and the le e ding edge in $\%$ of the chord; setting.

C, chord;
Σ, load area corresponding to the load on a rib in case A, all the load being distributed thus, namely, extrados : intrados = 2 : 1 .

Case B_{n} (Fig. 13).- The load areas are Σ_{1} and Σ_{2} such that $\Sigma_{1} / \Sigma_{2}=3$, referred to the upper part $\Sigma_{1}+0.4 \Sigma_{2}$. Referred to the lower part $0.6 \Sigma_{2}, \Sigma_{1}-\Sigma_{2}$ corresponds to the load on a rib.

Cose C_{n} (Fig. 14).- In this case $\Sigma_{1}=\Sigma_{2}$: on the extrados, $\Sigma_{1}+0.3 \Sigma_{2} ;$ on the intrados, $0.7 \Sigma_{2}$.

Case D_{n} (Fig. 15).- On the extrados, Σ_{2}; on the introdos, Σ_{1}.
VI. The Wings

These were tested only for case B. Mean aileron loading

$$
\bar{\omega}_{a}=0.0525 v^{2} \max
$$

($v_{\text {max }}$, maximum speed in m / s in horizontal flight near the ground) with

$$
(\bar{\omega} \mathrm{a})_{\min }=125 \mathrm{~kg} / \mathrm{m}^{2} .
$$

The pressure is assumed to be constant along the hinge and to decrease uniformly along the rib down to a third of its value (Fig. 16).

VII. The Empennage

A.- Horizontal empennage.

Case Ch.- Static load.

$$
P=k \frac{C^{\prime} m}{C_{X_{C}}+C_{X_{B}}} \Pi \frac{C}{d} .
$$

k , safety factor given in table;
d, distance between center of gravity of airplane and center of lift of empennage;
$C^{\prime} \mathrm{m}$, coefficient of moment of airplane without empennage. Distribution according to Figure 1?.

Case $\mathrm{K}_{\mathrm{h}} \cdot-$

$$
P=2 f_{h} \rho \Sigma_{\mathrm{ch}}\left(1.4 v_{\mathrm{at}}\right)^{2}
$$

$\Sigma_{\text {ch }}$, area of horizontal empennage in m^{2};
f_{h}, coefficient of ascensional force given in table;
$\mathrm{V}_{\text {at }}$, landing speed in m / s;
$\rho=I / 8$.
These two loads are compared and the greater one is taken for the tests.

$$
\begin{aligned}
& \text { B.- Vertical empennage } \\
& P=2 f_{h} \rho \Sigma_{l v}\left(1.4 v_{a t}\right)^{2},
\end{aligned}
$$

distributed according to Figure 18.
$\Sigma_{l_{v}}$, area of vertical empennage in m^{2}.
N.A.C.A. Technical Lemorandum Fo. 480

VIII. Landing Gear

In all the cases, the overload is

$$
P=n \Pi
$$

n being the coefficient given in the table.
IX. Fuselage and Engine Bed

Case E_{fb} :

$$
P=n \Pi
$$

n being given in the table.
Case Cifl $_{\text {fo }}$ - The test is made for the rear part of the fuselage (diving), with a load corresponding to that on the horizontal empennage (case O_{h}).

Case $\left(H_{f b}\right)_{A R}-$ The lateral load on the stern is given by the load on the vertical empennage (case K_{h}).

Case $\left(H_{f b}\right)_{A V}$:

$$
P=n \Pi_{A V}
$$

$\Pi_{A V}$ being the weight of the front part (see case Afb).
Case Afb- Flight with a vertical acceleration corresponding to case A :

$$
\mathrm{P}=\mathrm{n} \Pi_{\mathrm{AV}}
$$

(From Technique de la Flotte Aerienne Russe, 1927, No. 1.)

TABLE

*If V at equals or exceeds 120 , the overload is given in each case by the "Ccmmission Scientifique."

Table (Cont.)

*If $V_{a t}$ equals or exceeds l20, the overload is given in each
P. G.

Translation by Dwight in. Miner,
National Advisory Cominittee
for Aeronautics.

Fig. 1
$\beta=\frac{\frac{L}{L}-0.2375}{0.2}$

$$
\alpha+\beta=0.75
$$

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Figs.6, 7, 8, 9,10, 11, 12.

Fig. 8

Fig.I2

Fig. 13

Fig. 14

Fig. 15

Fig.16

Fic. ${ }^{77}$

Fig. 18

