XIX. On a New Method of Approximation applicable to Elliptic and Ultra-elliptic Functions.-Second Memoir*. By Charles W. Merrififld. Communicated by W. Spotiliswoode, Esq., F.R.S.

Received March 20,-Read April 3, 1862.

Since my first memoir on this subject was read before the Society, Mr. Sylvester has published a method, more general than mine, of applying rational approximation to facilitate the computation of the integrals of irrational functions. This method, at which he had arrived independently, included, \grave{a} majori, the one which was the subject of my memoir. Aided by his papers, my subsequent studies have enabled me to view the method with more generality, as well as with more precision and completeness of detail, and I am now able to present it in a sufficiently finished and practical form for the immediate use of the computer. I have also computed auxiliary Tables, to render its application easier in certain cases.

Any rational formula, which gives approximately the value of a function to be integrated, may be integrated in lieu of it, and the result will in general be an approximate value of the integral sought. But for such a process to be of any practical utility, the convergence of the formula must be excessive, for the complexity of the integral forms is so great that the labour would be enormous, unless the terms were very few in number. In the discovery of formulæ sufficiently convergent for the purpose, lies the success of the method.

We are by no means restricted to functions under a square root, or even to pure radical forms at all. The principle applies with equal generality to functions which are given implicitly as roots of equations, and thus to a class of differential equations; and Mr. Sylvester has well remarked that these formulæ not only afford facilities for computation, as by a method of quadratures, but also enable us to assign superior and inferior limits to an integral, without losing its generality of form.

I shall begin with the approximation to the square root, giving it in its general form, and explaining its exact analytical signification. I shall then show its application to Elliptic Functions, and how, in the ordinary cases, certain simple reductions can be effected, which greatly lessen the labour of computation ; and I shall give these reductions for the cases more commonly occurring, with some examples and working formulæ. I shall then add a short account of the extension of the method.

The paragraphs in the first two sections of this paper bear a consecutive number for convenience of reference.

[^0]mDCCCLIXII.

Section I.-Approximants to the Square Root.

1. Mr. Sylvester gives, for the approximants to the square root, the following state-ment:-
"Let r be an approximate value of $\sqrt{\mathbf{N}}$; then by that mode of application of Newton's method of approximation to the equation $x^{2}=\mathrm{N}$, which is equivalent to the use of continued fractions, we may easily establish the following theorem, viz., that

$$
\frac{r^{2}+\mathbf{N}}{2 r}, \frac{r^{3}+3 r \mathbf{N}}{3 r^{2}+\mathbf{N}}, \frac{r^{4}+6 r^{2} \mathbf{N}+\mathbf{N}^{2}}{4 r^{3}+4 r \mathbf{N}}, \frac{r^{5}+10 r^{3} \mathbf{N}+5 r \mathbf{N}^{2}}{5 r^{4}+10 r^{2} \mathbf{N}+\mathbf{N}^{2}}
$$

will be successive approximations to $\sqrt{\bar{N}}$."
2. Their general form is

$$
\begin{equation*}
y=\frac{(r+\sqrt{ } \mathbf{N})^{i}+(r-\sqrt{ } \mathbf{N})^{i}}{(r+\sqrt{ } \mathbf{N})^{i}-(r-\sqrt{ } \mathbf{N})^{i}} \sqrt{ } \mathbf{N} \tag{1.}
\end{equation*}
$$

which is always rational. In this form the approximation to $\sqrt{ } N$ as i increases is obvious. The method of my previous memoir is simply the particular case of $i=2^{k}$.
3. If we wish to approximate to $\mathrm{N}^{-\frac{t}{2}}$, we may take the reciprocal of (1.), or, what is simpler, we may divide (1.) by N, thus obtaining

$$
\begin{equation*}
z=\frac{(r+\sqrt{ } \mathbf{N})^{i}+(r-\sqrt{ } \mathbf{N})^{i}}{(r+\sqrt{ } \mathbf{N})^{i}-(r-\sqrt{ } \mathbf{N})^{i}} \frac{1}{\sqrt{\mathbf{N}}} . \tag{2.}
\end{equation*}
$$

Before we can integrate these formulæ, we must reduce them by means of the method of rational fractions; the simplest and most general way is as follows :-
4. Let ρ be an i th root of unity ; then, obviously,

$$
\log \left(1-x^{i}\right)=\log (1-\rho x)+\log \left(1-\rho^{2} x\right)+\ldots .+\log \left(1-\rho^{i} x\right)
$$

Multiplying the differential coefficient of this by $(-x)$, we obtain

$$
\frac{i x^{i}}{1-x^{i}}=\frac{\rho x}{1-\rho x}+\frac{\rho^{2} x}{1-\rho^{2} x}+\frac{\rho^{3} x}{1-\rho^{3} x}+\ldots .+\frac{\rho^{i} x}{1-\rho^{i} x} ;
$$

and since $\frac{1}{1-x^{i}}=1+\frac{x^{i}}{1-x^{i}}$ and $\frac{1+x^{i}}{1-x^{i}}=1+\frac{2 x^{i}}{1-x^{i}}$,

$$
\begin{aligned}
& \frac{i}{1-x^{i}}=\frac{1}{1-\rho^{x}}+\frac{1}{1-\rho^{2} x}+\frac{1}{1-\rho^{3} x}+\ldots \ldots+\frac{1}{1-\rho^{i} x}, \\
& i \frac{1+x^{i}}{1-x^{i}}=\frac{1+\rho x}{1-\rho x}+\frac{1+\rho^{2} x}{1-\rho^{2} x}+\frac{1+\rho^{3} x}{1-\rho^{3} x}+\ldots \ldots+\frac{1+\rho^{i} x}{1-\rho^{i} x} .
\end{aligned}
$$

Making $x=\frac{r-\sqrt{ } \mathbf{N}}{r+\sqrt{ } \mathbf{N}}$, we may thus divide $\mathrm{N}^{ \pm \frac{1}{2}}$ into i fractions, each of the form

$$
\frac{1}{i} \frac{(r+\sqrt{ } \mathbf{N})+\rho^{k}(r-\sqrt{ } \mathbf{N})}{(r+\sqrt{ } \mathbf{N})-\rho^{k}(r-\sqrt{ } \mathbf{N})} \mathbf{N}^{ \pm \frac{1}{2}}
$$

k being any integer not exceeding i.
5. If we add the pairs k and $i-k$, we obtain for the sum of the pair,

$$
\begin{aligned}
& \frac{2(r+\sqrt{ })^{2}-2(r-\sqrt{ })^{2}}{(r+\sqrt{ } \mathbf{N})^{2}+(r-\sqrt{N})^{2}-\left(\rho^{k}+\rho^{i-k}\right)\left(r^{2}-\mathbf{N}\right)} \mathrm{N}^{ \pm k} \\
& =\frac{8 r \mathrm{~N}}{2\left(r^{2}+\mathbf{N}\right)-\left(\rho^{k}+\rho^{i-k}\right)\left(r^{2}-\mathbf{N}\right)} \text { or } \frac{8 r}{\text { same denominator }}
\end{aligned}
$$

according to whether the upper or lower sign be taken. Now, because ρ is an i th root of unity, $\rho^{k}+\rho^{i-k}=2 \cos \frac{2 k \pi}{i}$, and the sum of the pair reduces itself, for $\sqrt{ } \mathrm{N}$, to

$$
\begin{align*}
y_{k} & =\frac{1}{i} \frac{4 r \mathrm{~N}}{\left(r^{2}+\mathrm{N}\right)-\cos \frac{2 k \pi}{i}\left(r^{2}-\mathrm{N}\right)}=\frac{1}{i} \frac{2 r \mathrm{~N}}{r^{2} \sin ^{2} \frac{k \pi}{i}+\mathrm{N} \cos ^{2} \frac{k \pi}{i}} \\
& =\frac{1}{i} \frac{2 r \mathrm{~N}}{\mathrm{~N}+\sin ^{2} \frac{k \pi}{i}\left(r^{2}-\mathrm{N}\right)}=\frac{1}{i} \frac{2 r \mathrm{~N}}{r^{2}-\cos ^{2} \frac{k \pi}{i}\left(r^{2}-\mathrm{N}\right)} \tag{3,}
\end{align*}
$$

For $\mathbf{N}^{-\frac{1}{2}}$ we have the simpler forms,

$$
\left.\begin{array}{rl}
z_{k} & =\frac{1}{i} \frac{4 r}{\left(r^{2}+\mathrm{N}\right)-\cos \frac{2 k \pi}{i}\left(r^{2}-\mathrm{N}\right)}=\frac{1}{i} \frac{2 r}{r^{2} \sin ^{2} \frac{k \pi}{i}+\mathrm{N} \cos ^{2} \frac{k \pi}{i}} \tag{4.}\\
& =\frac{1}{i} \frac{2 r}{\mathrm{~N}+\sin ^{2} \frac{k \pi}{i}\left(r^{2}-\mathrm{N}\right)}=\frac{1}{i} \frac{2 r}{r^{2}-\cos ^{2} \frac{k \pi}{i}\left(r^{2}-\mathrm{N}\right)} .
\end{array}\right\}
$$

All that remains is to integrate these terms, and sum them.
6. Our grouping the terms in pairs has limited the value of k to range from i to $\frac{1}{2}(i-1)$ when i is odd. There is an odd term which, however, presents no difficulty, being simply $\frac{r}{i}$ in the case of $\sqrt{ } \mathrm{N}$, and $\frac{r}{i \mathbf{N}}$ in the case of $\mathrm{N}^{-\frac{1}{2}}$. When i is even, k is limited to range from 1 to $\frac{1}{2} i-1$, and the odd term becomes $\frac{r^{2}+\mathbf{N}}{i r}$ in the case of $\checkmark \mathbf{N}$, and $\frac{r^{2}+\mathbf{N}}{i \mathbf{N} r}$ in the case of $\mathrm{N}^{-\frac{1}{2}}$. It is important to bear in mind that the term just mentioned is an odd term, and therefore not affected with the coefficient 2 , which appears in the terms composed of pairs corresponding to imaginary roots.
7. The value of i, which I consider to be most useful for general purposes, is $i=8$: in this case the odd term becomes $\frac{r^{2}+\mathrm{N}}{8 r}$ or $\frac{r^{2}+\mathrm{N}}{8 \mathrm{~N} r}$, and the other values of $\frac{k \pi}{i}$ are three in number, viz. $22^{\circ} 30^{\prime}, 45^{\circ}, 67^{\circ} 30^{\prime}$. With proper precautions $i=8$ will almost always give seven or more figures correct.
8. If we now give infinite values to k and i and pass from the summation to the definite integral, we have (putting $\lambda=\frac{k}{i}$)

$$
z=\mathbf{N}^{-\frac{1}{2}}=\int_{0}^{\frac{1}{2} \lambda} \frac{2 r d \lambda}{r^{2}+\left(\mathbf{N}-r^{2}\right) \cos ^{2} \lambda \pi}=\frac{2}{\pi} \overline{\mathbf{N}} \int_{0}^{\frac{2}{2} \pi} \frac{d \phi}{1+\frac{r^{2}-\mathbf{N}}{\mathbf{N}} \sin ^{2} \phi} ;
$$

and since

$$
\int_{0}^{\frac{1}{2} \pi} \frac{d \phi}{1+p \cdot \sin ^{2} \phi}=\frac{\frac{1}{2} \pi}{\sqrt{1+p}}
$$

this is an identical equation, as it ought to be.
9. This use of approximants, therefore, is simply the application of the method of
quadratures to a definite integral, which we substitute for the surd proposed for evaluation.
10. It would appear at first sight that a full application of the method of quadratures in the ordinary way, with the help of differences, would give better results than the mere summation of the ordinates. But this is not the case; for the differences diverge immediately. If we use differential coefficients for the quadrature, instead of differences, we have an opposite anomaly, namely that the correction of the summation appears to be absolutely $n i l$, inasmuch as the differential coefficients which appear in the series are all of odd order, and the numerator of each of them contains the factor $\sin \varphi \cos \varphi$, which vanishes at both the limits 0 and $\frac{1}{2} \pi$. Legendre has discussed this point. See the Appendix to the second volume of his 'Fonctions Elliptiques,' p. 578.
11. The application of the method to integrations, then, lies in the substitution for

$$
\int_{0}^{t} \frac{\mathbf{M}}{\sqrt{ } \mathbf{N}} d t \text { of } \int_{0}^{t} \int_{0}^{\frac{1}{2}} \frac{2 \mathrm{M} r \cdot d \lambda \cdot d t}{r^{2}+\left(\mathbf{N}-r^{2}\right) \cos ^{2} \lambda \pi}
$$

in which, since λ and t are perfectly independent of each other, we may change the order of integration, thus obtaining

$$
\int_{0}^{\frac{1}{2}}\left\{\int_{0}^{t} \frac{2 \mathrm{M} r . d t}{r^{2}+\left(\mathbf{N}-r^{2}\right) \cos ^{2} \lambda \pi}\right\} d \lambda
$$

and the rest of the operation depends upon our being able to perform the integration in $\}$ generally, and then to determine the integral in λ by quadratures. The great advantage of the method turns upon the easy application of the method of quadratures, in consequence of our not requiring to difference the ordinates.
12. One way of exhibiting generally the degree of convergence is as follows: $\mathrm{N}^{ \pm \frac{1}{2}}$ always lies between

$$
\mathbf{N}^{ \pm \frac{1}{2}} \frac{(r+\sqrt{ } \mathbf{N})^{i}+(r-\sqrt{ } \mathbf{N})^{i}}{(r+\sqrt{ } \mathbf{N})^{i}-(r-\sqrt{ } \mathbf{N})^{i}} \text { and } \mathbf{N}^{ \pm \frac{1}{2}} \frac{(r+\sqrt{ } \mathbf{N})^{i}-(r-\sqrt{ } \mathbf{N})^{i}}{(r+\sqrt{ } \mathbf{N})^{i}+(r-\sqrt{ } \mathbf{N})^{i}},
$$

and the error of either is therefore always less than their difference,

$$
\mathbf{N}^{ \pm \frac{1}{2}} \frac{4\left(r^{2}-\mathbf{N}\right)^{i}}{(r+\sqrt{ } \mathbf{N})^{2 i}-(r-\sqrt{ } \mathbf{N})^{2 i}} .
$$

13. There is another mode, by which, in any given case, we may see how far it is necessary to carry our work in order to obtain a given number of decimals correctly in the result. Let θ_{m} be determined by the equation

$$
\int_{0}^{\theta_{m}} \frac{d \theta_{m}}{\cos \theta_{m}}=m \int_{0}^{\theta_{1}} \frac{d \theta_{1}}{\cos \theta_{1}},
$$

and let $\sin \theta_{1}=\frac{\sqrt{ } \mathbf{N}}{r}$ or $\frac{r}{\sqrt{ } \mathbf{N}}$, whichever may be less than unity ; then the m th approximant will be $\frac{\sqrt{ } \mathbf{N}}{\sin \theta_{m}}$. This is easily seen from the general term of the approximant, since

$$
\int \frac{d \theta}{\cos \theta}=\frac{1}{2} \log _{a}\left(\frac{1+\sin \theta}{1-\sin \theta}\right) .
$$

14. A table of meridional parts, such as is given in the books on Navigation, if carried far enough, would solve this equation. I have calculated an auxiliary Table for the purpose, as follows:-

Let $\operatorname{cosec} \varphi-1=z, \log _{2} \tan \left(\frac{1}{4} \pi+\frac{1}{2} \varphi\right)=y$, then

$$
\begin{aligned}
y & =\frac{1}{2} \log _{8} \frac{2+z}{z}=\frac{1}{2} \log 2-\frac{1}{2} \log z+\frac{1}{2} \log \left(1+\frac{1}{2} z\right) \\
& =\frac{1}{2} \log 2-\frac{1}{2} \log z+\frac{z}{4}-\frac{z^{2}}{16}+\frac{z^{3}}{48}-\frac{z^{4}}{128}+\ldots \ldots \ldots
\end{aligned}
$$

To bring this formula to the same unit as the common Table of meridional parts, we must multiply it by the number of minutes in the arc equal to unity, or by $\mathrm{L}=3437 \cdot 7467707849$ 4, whence we have $\frac{1}{2} \mathrm{~L} \log _{\mathrm{s}} 2=1191 \cdot 43224082432$, and $\frac{1}{2} \mathrm{~L} \log$, $10=3958.8522339129$ 100. These data give the following Table, the argument being the common logarithm of z with its sign changed ; that is, the number of places which are correct:

$-\log z$.	y
1	$5234 \cdot 14859$
2	$9117 \cdot 70966$
3	$13068 \cdot 84816$
4	$17026 \cdot 92712$
5	$20985 \cdot 70200$

$-\log z$	y.
6	$24944 \cdot 54650$
7	$28903 \cdot 39796$
8	$32862 \cdot 25012$
9	$36821 \cdot 10235$
10	$40779 \cdot 95458$

$-\log z$.	y.
11	$44738 \cdot 80681$
12	$48697 \cdot 65905$
13	$52656 \cdot 51128$
14	$56615 \cdot 36352$
15	$60574 \cdot 21575$

15. As a simple example, let $\mathrm{N}=3, r=2 ; \therefore \frac{r^{/ N}}{r}=\sin 60^{\circ}$: the meridional parts for $60^{\circ}=4527$; and in order that the error may not exceed unity in the tenth place of figures, we must have m or $i=\frac{40780}{4527}=9$; so that we must make $i=9$ at least, for the 10th figure to be correct.
16. These methods of course only exhibit the degree of approximation on the surd itself. The proportionate approximation is generally greater on the integral than on the simple surd, because the first approximant is usually so chosen as to be identical with the surd at one of the limits, and it is only near the other limit that the discrepancy tells.

Section II.-Details of Reduction and Computation.

17. The chief assistance, which can be provided \grave{a} priori for the computer, consists in the exhibition and discussion, for the ordinary forms, of the integral $\int_{0}^{t} \frac{2 \mathrm{M} r d t}{r^{2}+\left(\mathbf{N}-r^{2}\right) \cos ^{2} \lambda \pi}$ and of the auxiliary functions which present themselves in its reduction.
18. In applying these methods to elliptic integrals, the radical and the first approximant r must both be of a simple form, and it is advisable that $r^{2}-\mathbf{N}$ or $\mathrm{N}-r^{2}$ should be
of a square form. For the common form of the elliptic radical $V\left(1-\sin ^{2} \theta \cdot \sin ^{2} \varphi\right)$, our choice is practically limited to
(1) $r=1$,
(2) $r=\cos \varphi$,
(3) $r=\sin \theta \cdot \cos \phi$,
(4) $r=\cos \theta$,
(5) $r=\cos \theta \cdot \sin \varphi$.

And on these suppositions I now proceed to the integration of the general form of the reduced approximant for $\int_{0}^{\phi}\left(1-\sin ^{2} \theta \cdot \sin ^{2} \varphi\right)^{-\frac{1}{2}} d \varphi=\int z d \varphi$. I omit mention of the constants of integration, because very slight changes in the function may alter them. The first of our three cases require, as they stand, no constant, and these are the most useful cases.

$$
\begin{align*}
r & =1, r^{2}-\mathrm{N}=\sin ^{2} \theta \cdot \sin ^{2} \varphi \tag{1}\\
z_{k} & =\frac{2}{1-\sin ^{2} \theta \cdot \cos ^{2} \frac{k \pi}{i} \cdot \sin ^{2} \phi}
\end{align*}
$$

$$
\int z_{k} d \varphi=2\left(1-\sin ^{2} \theta \cdot \cos ^{2} \frac{k \pi}{i}\right)^{-\frac{1}{2}} \tan ^{-1}\left\{\left(1-\sin ^{2} \theta \cdot \cos ^{2} \frac{k \pi}{i}\right)^{\frac{t}{t}} \tan \varphi\right\}
$$

$$
\begin{align*}
r & =\cos \varphi, r^{2}-\mathrm{N}=-\cos ^{2} \theta \cdot \sin ^{2} \varphi, \tag{2}\\
z_{k} & =\frac{2 \cos \phi}{\cos ^{2} \phi+\cos ^{2} \theta \cdot \cos ^{2} \frac{k \pi}{i} \cdot \sin ^{2} \phi}=\frac{2 \cos \phi}{1-\left(1-\cos ^{2} \theta \cdot \cos ^{2} \frac{k \pi}{i}\right) \cdot \sin ^{2} \phi}, \\
\int_{k} z d \varphi & =\left(1-\cos ^{2} \theta \cdot \cos ^{2} \frac{k \pi}{i}\right)^{-\frac{1}{2}} \log _{\varepsilon}\left\{\frac{1+\sin \varphi\left(1-\cos ^{2} \theta \cdot \cos ^{2} \frac{k \pi}{i}\right)^{\frac{1}{2}}}{1-\sin \varphi\left(1-\cos ^{2} \theta \cdot \cos ^{2} \frac{k \pi}{i}\right)^{\frac{1}{2}}}\right\} .
\end{align*}
$$

(3) $r=\sin \theta \cdot \cos \varphi, r^{2}-\mathrm{N}=-\cos ^{2} \theta$,

$$
z_{k}=\frac{2 \sin \theta \cdot \cos \phi}{\left(1-\cos ^{2} \theta \cdot \sin ^{2} \frac{k \pi}{i}\right)-\sin ^{2} \theta \cdot \sin ^{2} \phi}
$$

$$
\int z_{k} d \varphi=\left(1-\cos ^{2} \theta \cdot \sin ^{2} \frac{k \pi}{i}\right)^{-\frac{1}{2}} \log \left\{\frac{\left(1-\cos ^{2} \theta \cdot \sin ^{2} \frac{k \pi}{i}\right)^{\frac{1}{2}}+\sin \theta \cdot \sin \varphi}{\left(1-\cos ^{2} \theta \cdot \sin ^{2} \frac{k \pi}{i}\right)^{\frac{1}{2}}-\sin \theta \cdot \sin \varphi}\right\} .
$$

(4) $r=\cos \theta, r^{2}-\mathrm{N}=-\sin ^{2} \theta \cos ^{2} \varphi$,

$$
z_{k}=\frac{2}{\cos \theta} \frac{1}{1+\tan ^{2} \theta \cdot \cos ^{2} \frac{k \pi}{i} \cdot \cos ^{2} \varphi}
$$

$$
\int z_{k} d \varphi=2\left(1-\sin ^{2} \theta \cdot \sin ^{2} \frac{k \pi}{i}\right)^{-\frac{1}{2}} \tan ^{-1}\left\{\cos \theta \cdot \tan \varphi\left(1-\sin ^{2} \theta \cdot \sin ^{2} \cdot \frac{k \pi}{i}\right)^{-\frac{1}{2}}\right\}
$$

$$
\begin{align*}
r & =\cos \theta \sin \phi, r^{2}-\mathrm{N}=-\cos ^{2} \varphi \tag{5}\\
z_{k} & =\frac{2 \cos \theta \cdot \sin \phi}{\cos ^{2} \theta \cdot \sin ^{2} \varphi+\cos ^{2} \frac{k \pi}{i} \cdot \cos ^{2} \phi}
\end{align*}
$$

$$
\begin{aligned}
\int z_{k} d \varphi & =2\left(\cos ^{2} \frac{k \pi}{i}-\cos ^{2} \theta\right)^{-\frac{1}{2}} \tan ^{-1}\left\{\frac{\cos \theta}{\cos \varphi}\left(\cos ^{2} \frac{k \pi}{i}-\cos ^{2} \theta\right)^{-\frac{1}{2}}\right\} \\
& =\left(\cos ^{2} \theta-\cos ^{2} \theta \frac{k \pi}{i}\right)^{-\frac{1}{2}} \log \left\{\left\{\frac{1-\frac{\cos \phi}{\cos \theta}\left(\cos ^{2} \theta-\cos ^{2} \frac{k \pi}{i}\right)^{\frac{1}{2}}}{1+\frac{\cos \phi}{\cos \theta}\left(\cos ^{2} \theta-\cos ^{2} \frac{k \pi}{i}\right)^{\frac{1}{2}}}\right\}\right.
\end{aligned}
$$

(6) If we make $t=\tan \frac{1}{2} \varphi$, we obtain

$$
\left(1-\sin ^{2} \theta \cdot \sin ^{2} \varphi\right)^{-\frac{1}{2}} d \varphi=2\left(1-2 \cos 2 \theta \cdot t^{2}+t^{4}\right)^{-\frac{1}{2}} d t
$$

Taking $r=1-t^{2}$, the terms which we have to integrate are of the form

$$
\int \frac{4\left(1-t^{2}\right) d t}{\left(1-t^{2}\right)^{2}+4 \cos ^{2} \theta \cdot \cos ^{2} \frac{k \pi}{i} \cdot t^{2}}
$$

Putting $q^{2}=1-\cos ^{2} \theta \cdot \cos ^{2} \frac{k \pi}{i}$, we have

$$
\int z_{k} d \varphi=\frac{1}{q} \log _{s}\left(\frac{t^{2}+2 q t+1}{t^{2}-2 q t+1}\right)
$$

The same expression serves for the integral

$$
\int \frac{2 d t}{\sqrt{ }\left(1+2 \cos 2 \theta \cdot t^{2}+t^{4}\right)}
$$

if we put $q^{2}=1-\sin ^{2} \theta \cdot \cos ^{2} \frac{2 \pi}{i}$.
19. It will be observed that the first four cases, and the sixth, depend upon a radical of the form $\mathcal{V}\left(1-\sin ^{2} A \cdot \sin ^{2} \omega\right)$, where ω is restricted to the selected values of $\frac{k \pi}{i}$. Assuming the modulus sin A not to vary, it would therefore in general be better to begin by computing the radical for the selected values. I have computed, and I append to this paper, a Table of this radical, the selected values of $\frac{k \pi}{i}$ being $22^{\circ} 30^{\prime}, 45^{\circ}$, and $67^{\circ} 30^{\prime}$, while A ranges by whole degrees from 1° to 90° inclusive. Every entry but the last in the 2nd, 3rd, and 4th columns of the Table was computed by myself in duplicate with VEGA's ten-figure logarithms, by the help of two or more of the following formulæ, some of which are from Legendre.
20. Putting Δ for $\sqrt{ }\left(1-\sin ^{2} A \cdot \sin ^{2} \omega\right)$,
(1) Make $\sin \mathrm{A} \cdot \sin \omega=\sin \mathrm{M}$; then $\Delta=\cos \mathrm{M}$, $\log \sin \mathbf{M}=\log \sin A+\log \sin \omega, \log \Delta=\log \cos \mathbf{M}$; or else
(2) Make $\tan \mathrm{A} \cdot \cos \omega=\tan \mathrm{M}$; then $\Delta=\cos \mathrm{A} \cdot \sec \mathrm{M}$, $\log \tan M=\log \tan A+\log \cos \omega, \log \Delta=\log \cos A+a r . \operatorname{co} . \log \cos M$.
Moreover, let L be the tabular angle nearest to the angle \mathbf{M} : it is not necessary to obtain the value of M : so that we have simultaneously,
$\log \sin \mathrm{M}=\log \sin \mathrm{L} \pm s$,
$\log \tan \mathrm{M}=\log \tan \mathrm{L} \pm t$,
$\log \cos \mathrm{M}=\log \cos \mathrm{L} \mp c$;
then we shall also have, and with great approximation,

$$
\begin{aligned}
\log s & =\log \left(t \cdot \cos ^{2} \mathrm{~L}\right) \mp\left(t-t \cdot \cos ^{2} \mathrm{~L}\right) \\
& =\log \left(c \cdot \cot ^{2} \mathrm{~L}\right) \mp\left(c+c \cdot \cot ^{2} \mathrm{~L}\right) \\
\log c & =\log \left(s \cdot \tan ^{2} \mathrm{~L}\right) \pm\left(s+s \cdot \tan ^{2} \mathrm{~L}\right) \\
& =\log \left(t \cdot \sin ^{2} \mathrm{~L}\right) \pm\left(t-t \cdot \sin ^{2} \mathrm{~L}\right) \\
\log t & =\log \left(s \cdot \sec ^{2} \mathrm{~L}\right) \mp\left(s-s \cdot \sec ^{2} \mathrm{~L}\right) \\
& =\log \left(c \cdot \operatorname{cosec}^{2} \mathrm{~L}\right) \mp\left(c-c \operatorname{cosec}^{2} \mathrm{~L}\right) .
\end{aligned}
$$

I have given the whole set of six, but my Table was computed with the pair for $\log c$. By way of example, I add a specimen copy of one of my working sheets. The use of so many as ten figures is not altogether unnecessary, because otherwise, when Δ is nearly equal to unity, the value of $\log (1-\Delta)$ or of $\log \frac{1-\Delta}{1+\Delta}$ cannot be had with exactness.
21. The following formulæ will also be found in many cases preferable, both for exactness and facility, to the ordinary use of logarithmic tables by means of differences. These formulæ, as well as those of the previous paragraph, are but applications of Taylor's theorem, reduced to a shape fit for the computer. Even where only seven figures are required their application is frequently much easier, and gives more exact results, than interpolation by differences. In what follows, x is supposed to be the nearest tabular entry.
22. To find $\log y$ from $\log \tan y$.-Let us assume simultaneously

$$
\log y=\log x \pm l, \log \tan y=\log \tan x \pm t
$$

Putting $u=\log x, z=\log \tan x$, we have

$$
\frac{d u}{d z}=\frac{\sin 2 x}{2 x} \text { and } \frac{d^{2} u}{d z^{2}}=\mathrm{M} \frac{\sin 2 x}{2 x}\left(\cos 2 x-\frac{\sin 2 x}{2 x}\right)
$$

M being the modulus of the logarithms.
Hence, by Taylor's theorem,

$$
l=t \frac{\sin 2 x}{2 x}\left\{1 \mp \mathrm{M} t\left(\frac{\sin 2 x}{2 x}-\cos 2 x\right)\right\} \text { nearly. }
$$

Taking the logarithm, this becomes

$$
\begin{aligned}
\log l & =\log \left(t \frac{\sin 2 x}{2 x}\right) \mp t\left(\frac{\sin 2 x}{2 x}-\cos 2 x\right) \\
& =\log \left(\frac{t \cdot \sin x \cdot \cos x}{x}\right) \mp \frac{t \cdot \sin x \cdot \cos x}{x} \pm t \mp 2 t \sin ^{2} x .
\end{aligned}
$$

The latter is the better shape for a working formula, because $\log \sin x$ and $\log \cos x$ are found in the same page and line as $\log \tan x$, while $\log \sin 2 x$ must be looked for elsewhere. The first term alone is sufficient when x is small; but when x much exceeds $45^{\circ}, \cos 2 x$ changes its sign, and even the entire formula is insufficient. The maximum value of the coefficient of t in the second term is $1 \cdot 0631$, corresponding to $x=78^{\circ} 33^{\prime} 26^{\prime \prime} \cdot 5$. In many cases, where the first term alone is insufficient, a rough interpolation, made at
sight from the following Table, will answer the purpose ; it is a Table of the value of $\left(\frac{\sin 2 x}{2 x}-\cos 2 x\right)$ and of its logarithm, from $x=45^{\circ}$ to $x=90^{\circ}$.

| 45 | 0.63662 | 9.80387 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 50 | 0.78316 | 9.86815 |
| 55 | 0.83149 | 9.91986 |
| 60 | 0.91349 | 9.96070 |
| 65 | 0.98041 | 9.99141 |

The Table shows that, past 45°, the formula

$$
\log l=\log \left(\frac{t \sin x \cos x}{x}\right) \mp t
$$

is a better approximation than when the $\mp t$ is omitted. It is to be remarked that t is at its minimum for $x=45^{\circ}$, and increases both towards $x=0$ and $x=90^{\circ}$. Near the latter limit, where great accuracy is required, we must proceed as follows.

Find the correction for the logarithm of the complement of the arc by the above process, and then find $\log \left(\frac{1}{2} \pi-y\right)$ from $\log y$. For this purpose, I observe that $\log y=\log x \pm l$ is equivalent to $y=x \cdot 10^{ \pm l}$, hence

$$
\frac{1}{2} \pi-y=\frac{1}{2} \pi-x \cdot 10^{ \pm l}=\left(\frac{1}{2} \pi-x\right)-x\left(10^{ \pm l}-1\right)
$$

Now, let $\pm A=10^{ \pm l}-1$, whence

$$
\begin{aligned}
& \log (\pm m \mathrm{~A})=\log (\pm l) \pm \frac{1}{2} l-\frac{1}{12} \mathrm{M} l^{2} \text { nearly, and also } \\
& \log \left(\frac{1}{2} \pi-y\right)=\log \left(\frac{1}{2} \pi-x\right)-\left(\frac{ \pm m \mathrm{~A} x}{\frac{1}{2} \pi-x}\right)-\frac{1}{2} \mathrm{M}\left(\frac{ \pm m \mathrm{~A} x}{\frac{1}{2} \pi-x}\right)^{2}-\ldots
\end{aligned}
$$

It is not often that the third term of either formula will be required.
I have gone into all this detail, because the inverse tangent is continually presenting itself in all these integrations, and because no book that I know shows the proper way of handling it.
23. The following constants are needed for these and similar formulæ:-

$$
\begin{array}{llllll}
10+\log m=9.63778 & 43113 & 00537, & \quad \log \mathbf{M}=0 \cdot 36221 & 56886 & 99463, \\
10+\log 1^{\circ}=8.24187 & 73675 & 90828, & -\log 1^{\circ}=1 \cdot 75812 & 26324 & 09172 \\
10+\log 1^{\prime}=6.46372 & 61172 & 07184, & -\log 1^{\prime}=3 \cdot 53627 & 38827 & 92816, \\
10+\log 1^{\prime \prime}=4.68557 & 48668 & 23541, & -\log 1^{\prime \prime}=5 \cdot 31442 & 51331 & 76459 .
\end{array}
$$

24. As an example of finding the inverse tangent, let it be required to find $\log y$ and $\log \left(\frac{1}{2} \pi-y\right)$ from

$$
\begin{aligned}
\log \tan y & =9.0231350437 . \\
\log \tan x & =9.0230357359 \\
+t & =\frac{993078}{} ;
\end{aligned} \quad \therefore x=6^{\circ} 1^{\prime} 10^{\prime \prime}=21670^{\prime \prime} \quad \begin{aligned}
\frac{1}{2} \pi-x=302330^{\prime \prime}
\end{aligned}
$$

$\log \sin x=9.0206346$
$\log \cos x=9 \cdot 9975988$
$\log t=5.9969834$
ar. co. $\log x=0.9785662$

$$
\log \frac{t \sin 2 x}{2 x}=5 \cdot 9937830
$$

2nd correction -14
$\log l=\overline{5 \cdot 9937816}$
$\begin{aligned} \frac{1}{2} l & +493 \\ \log m A & =5 \cdot 9938309 \\ \log x & =9.0214338\end{aligned}$
ar.co. $\log \left(\frac{1}{2} \pi-x\right)=9 \cdot 8339439$
\log correction $=4 \cdot 8492086$
$\log \sin ^{2} x=8.0413 \quad \log 21670=4 \cdot 3358589113$
$\log 2=0 \cdot 3010$
$\log t=5 \cdot 9970$
$\log \left(2 \sin ^{2} x\right)=4 \cdot 3393$
$2 \sin ^{2} x=21,800$
$\frac{t \sin 2 x}{2 x}=\frac{985,8}{1007,6}$
$-t=-993,1 \quad \log 302330=5 \cdot 4804812441$
2 nd correction $=14,5$
The comma cuts off the eighth decimal.
$\log 1^{\prime \prime}=4 \cdot 6855748668$
$\log x=9 \cdot 0214337781$
$l=\quad+985786$
$\log y=9.0215323567$

Verification.-The numbers corresponding to these logarithms of y and of $\frac{1}{2} \pi-y$ are $0 \cdot 1050829743$ and 1.4657133525 , the sum of which, to the very last figure, is exactly $\frac{1}{2} \pi$.
25. To find $\log \frac{y+1}{y-1}$ from $\log y$.-Let $\log \frac{y+1}{y-1}=\log \frac{x+1}{x-1} \mp p$, and $\log y=\log x \pm q$; then $\log p=\log \left(\frac{2 q x}{x^{2}-1}\right) \mp \frac{1}{2} q \mp \frac{q}{x^{2}-1}$, nearly. This formula obviously fails where y is near unity ; in this case $\log \frac{y+1}{y-1}$ cannot be had with great accuracy, unless y itself be given absolutely. All the cases of $\int \frac{d y}{y^{2}-a^{2}}$ may be included in the above formula by giving proper signs to p and q. It may save trouble to remark that x must not always be taken to the extreme limit of the Table, because $\log (x+1)$ and $\log (x-1)$ have also to be taken out. As an example, let

$$
\begin{aligned}
\log y & =0 \cdot 3629063835 \\
\log x & =0.3628593030 \\
q & =\frac{+470805}{+4} \\
\log q & =5 \cdot 6728411
\end{aligned}
$$

ar.co. $\log \left(x^{2}-1\right)=\frac{9 \cdot 3647540}{5 \cdot 0375951}$
$\log x=0 \cdot 3628593$
$\log 2=0 \cdot 3010300$
$5 \cdot 7014844$

$$
x=2 \cdot 306, x+1=3 \cdot 306, x-1=1 \cdot 306
$$

$$
\log (x+1)=0.5193028492
$$

$$
\log (x-1)=\underline{0.11594} 31769
$$

$$
\text { sum }=\overline{0.6352460261}
$$

$$
\text { difference }=\overline{0 \cdot 4033596723}
$$

$$
-p=\quad-502761
$$

$$
\log \frac{y+1}{y-1}=0.4033093962
$$

2nd correction $=-1225$

$$
\log p=5 \cdot 7013619
$$

This example has been so chosen as to admit of easy verification. In fact $y=2 \cdot 30625$, and $\log \frac{y+1}{y-1}=\log \frac{529}{209}=0.403309395924$. The error is therefore only of three units in the tenth decimal place, where there was no reason to expect accuracy.
26. The only other formulæ which I shall give are the following, for finding the logarithm of a number, and vice versâ. They are indispensable where more than seven figures are required.

Let $\log (x \pm h)=\log x \pm k$, then

$$
\begin{aligned}
\log k & =\log \left(\frac{m h}{x}\right) \mp \frac{1}{2} \frac{m h}{x} \text { nearly } \\
\log h & =\log (\mathrm{M} x k) \pm \frac{1}{2} k \text { nearly }
\end{aligned}
$$

The values of $\log m$ and $\log M$ have been given in paragraph 23.
27. As an example of the application of the method to the evaluation of elliptic integrals of the third class, let us take the integral

$$
\int_{0}^{\phi} \frac{d \phi}{\left(1-\sin ^{2} \alpha \cdot \sin ^{2} \phi\right)\left(1-\sin ^{2} \theta \cdot \sin ^{2} \phi\right)^{\frac{1}{2}}}
$$

for the values $\alpha=45^{\circ}, \theta=30^{\circ}, \phi=60^{\circ}$.
I have selected these values because they can be obtained without reduction or interpolation from the Table of $\Delta(\theta, \varphi)$ which I have given, and also because $\sin ^{2} \alpha=\sin \theta$, and therefore the integral can be reduced to one of the first class, plus an inverse tangent, thus admitting of easy verification. For this case

$$
\begin{aligned}
z_{k}= & \frac{2}{\left(1-\sin ^{2} \alpha \cdot \sin ^{2} \varphi\right)\left(1-\sin ^{2} \theta \cdot \cos ^{2} \frac{k \pi}{i} \cdot \sin ^{2} \varphi\right)} \\
\int z_{k} d \varphi= & \frac{2 \sin ^{2} \alpha}{\sin ^{2} \alpha-\sin ^{2} \theta \cdot \cos ^{2} \frac{k \pi}{i}} \cdot \frac{1}{\cos \alpha} \tan ^{-1}(\cos \alpha \cdot \tan \varphi) \\
& -\frac{2 \sin ^{2} \theta \cos ^{2} \frac{k \pi}{i}}{\sin ^{2} \alpha-\sin ^{2} \theta \cdot \cos ^{2} \frac{k \pi}{i}}\left(1-\sin ^{2} \theta \cdot \cos ^{2} \frac{k \pi}{i}\right)^{-\frac{1}{2}} \tan ^{-1}\left\{\left(1-\sin ^{2} \theta \cdot \cos ^{2} \frac{k \pi}{i}\right)^{\frac{3}{2}} \tan \varphi\right\}
\end{aligned}
$$

Making $\frac{k \pi}{i}$ successively $22^{\circ} 30^{\prime}, 45^{\circ}, 67^{\circ} 30^{\prime}$, and, for the odd term, 90°, we find, after a few obvious reductions, that eight times the value of the integral is

$$
\begin{aligned}
& \left\{\frac{17}{3}+\frac{2}{\Delta^{2}\left(45^{\circ}, 67 \frac{1}{2}\right)}+\frac{2}{\Delta^{2}\left(45^{\circ}, 22 \frac{1}{2}\right)}\right\} \frac{1}{\cos 45^{\circ}} \tan ^{-1}\left\{\cos 45^{\circ} \cdot \tan 60^{\circ}\right\} \\
& -\frac{1}{\cos 30^{\circ}} \tan ^{-1}\left\{\cos 30^{\circ} \cdot \tan 60^{\circ}\right\}-\frac{2}{3} \frac{1}{\Delta\left(30^{\circ}, 45^{\circ}\right)} \tan ^{-1}\left\{\Delta\left(30^{\circ}, 45^{\circ}\right) \cdot \tan 60^{\circ}\right\} \\
& -\frac{\tan ^{-1}\left\{\Delta\left(30^{\circ}, 67 \frac{1}{2}\right) \cdot \tan 60^{\circ}\right\} \cdot \cos ^{2} 22 \frac{1}{2}}{\Delta^{2}\left(45^{\circ}, 67 \frac{1}{2}\right) \cdot \Delta\left(30^{\circ}, 67 \frac{1}{2}\right)}-\frac{\tan ^{-1}\left\{\Delta\left(30^{\circ}, 22 \frac{1}{2}\right) \cdot \tan 60^{\circ}\right\} \cdot \cos ^{2} 67 \frac{1}{2}}{\Delta^{2}\left(45^{\circ}, 22 \frac{1}{2}\right) \cdot \Delta\left(30^{\circ}, 22 \frac{1}{2}\right)}
\end{aligned}
$$

As these inverse tangents range generally from 45° to 60°, I computed them by the shortened formula of paragraph 22 , namely $\log \left(\frac{t \cdot \sin x \cdot \cos x}{x}\right) \pm t$; this being sufficient to give eight figures of decimals accurately. I found

$$
\begin{array}{ll}
\log \tan ^{-1}\left\{\cos 45^{\circ} \tan 60^{\circ}\right\} & =9 \cdot 9474715296, \\
\log \tan ^{-1}\left\{\cos 30^{\circ} \tan 60^{\circ}\right\} & =9.9924623739, \\
\log \tan ^{-1}\left\{\Delta\left(30^{\circ}, 45^{\circ}\right) \tan 60^{\circ}\right\} & =0 \cdot 0076692607, \\
\log \tan ^{-1}\left\{\Delta\left(30^{\circ}, 67 \frac{1}{2}\right) \cdot \tan 60^{\circ}\right\} & =9 \cdot 9972733807, \\
\log \tan ^{-1}\left\{\Delta\left(30^{\circ}, 22 \frac{1}{2}\right) \cdot \tan 60^{\circ}\right\} & =0 \cdot 01665 \quad 09657 .
\end{array}
$$

I hence obtained the following values:-

For the positive terms.	For the negative terms.
$7 \cdot 100913039$	$1 \cdot 134832441$
$4 \cdot 372126152$	$0 \cdot 725394027$
$2 \cdot 704216251$	
$14 \cdot 177255442$	$1 \cdot 668399478$
$\frac{3 \cdot 695909978}{10 \cdot 481345464}$	$3 \cdot 167284032$ $1 \cdot 310168183$

A more exact value of the integral, otherwise obtained, is

$$
\frac{1}{2} \mathrm{~F}\left(30^{\circ}, 60^{\circ}\right)+\tan ^{-1}\left(\frac{4 \sin 60^{\circ}}{\sqrt{ } 13}\right)=1 \cdot 310168161
$$

which differs from the previous value by 2 units in the eighth decimal place.
28. In order to find how many places ought to have been accurately obtained, I observe that the method followed gives $\mathrm{N}=\frac{13}{16}, r=1$, whence

$$
\log \left(\frac{\mathbf{l}}{r} \sqrt{ } \mathbf{N}\right)=9 \cdot 95491=\log \sin 64^{\circ} 20^{\prime} 30^{\prime \prime}
$$

The corresponding meridional parts are 5086.5 , which must be multiplied by $i=8$, giving $40692 \cdot 0$. Referring to the Table in paragraph 14 , I find that this nearly corresponds to ten places correct, and therefore that the integral ought to be correct to at least that extent. That it is not so, is due to my having curtailed the formula for finding the logarithms of the inverse tangents. But my object was only to give seven decimals correct, and my going beyond that was simply because, with a ten-figure Table, putting down the additional figures gave me less trouble (once I had to use more than seven) than abbreviation would have done. This remark may at first sight seem strange to any one who has not had some practice in using large Tables. But the logarithmic corrections are given in the shape of arithmetical complements: with reference
to the 10th figure, therefore, considered as an integer, the index is right as it stands, and we need not bestow thought on the proper placing of the correction, as we must if we use any other number of figures.
29. If we had been content with five decimals, the calculation would have been very easy, for in that case we might have used six-figure logarithms, and have made $i=4$, thus omitting the terms containing $22^{\circ} \frac{1}{2}$ and $67^{\circ} \frac{1}{2}$. We should get

$7 \cdot 100913039$	$1 \cdot 134832441$
$\frac{1 \cdot 860226468}{5 \cdot 240686571}$	
$\underline{1 \cdot 310171643}$	$0 \cdot 725394027$

30. It is worth while to notice a case which will sometimes occur, namely (using the notation of the last example), that the values may be so selected as to give, for one of the values of $k, \sin \alpha=\sin \theta \cdot \cos \frac{k \pi}{i}$, and thus each of the terms into which $\int z_{k} d \varphi$ was divided would become infinite. Of course the difficulty is only apparent; for in this case the proper value is $z_{k} d \varphi=\int \frac{2 d \phi}{\left(1-\sin ^{2} \alpha \cdot \sin ^{2} \phi\right)^{2}}$, of which the integral may be at once found by differentiating the expression $\frac{\sin \varphi \cdot \cos \varphi}{1-\sin ^{2} \alpha \cdot \sin ^{2} \varphi}$.

Section III.-Extension of the Method.

In respect of rapid approximation and precision of limit, the foregoing processes leave nothing to be desired, as far as concerns the radical of the square root; but they do not go beyond that. Mr. Sylvester has given an elegant extension of the method to radicals of a higher index, by means of symmetric functions*.

The more general problem before us is that of approximating to the integrals of irrational functions by means of rational substitutions.
Let φ and ψ be functional symbols, and y a function of z; then, that $\varphi(z) \cdot y_{m}$ and $\varphi(z): y_{m}$ should both be approximations to $\varphi(z)$, depends upon y_{m} approaching unity as m increases. Assuming that y_{m} and y_{1} are connected by the equation $y_{m}=\psi\left(m, y_{1}\right)$, our problem is to choose ψ so that, in the first place, the approximation shall be exceedingly rapid, and, in the next place, that $\varphi(z) \cdot y_{m}$ and $\varphi(z): y_{m}$ shall both (or at least one of them) be thoroughly manageable, and easily integrable. In the case of the approximants already giveñ, the equation $y_{m}=\psi\left(m_{1} y_{1}\right)$ has been made $\int \frac{d y_{m}}{1-y_{m}^{2}}=m \int \frac{d y_{1}}{1-y_{1}^{2}}$.

I am acquainted with three general methods which effect the object more or less. The first is the obvious one afforded by the Newtonian approximation to the roots of an equation; viz., let a be a first approximate solution, obtained by trial, of the equation $f x=0$, and call $f^{\prime} x$ the differential coefficient of " $f x$; then a second approximation is

[^1]$a-\frac{f a}{f^{\prime} a}=b$; a third approximation will evidently be $b-\frac{f b}{f^{\prime} b}=c$, and so forth. If we apply this method to the pure equation $x^{n}=p$, the convergent terms which we obtain are as follows:-
\[

$$
\begin{aligned}
& b=\frac{(n-1) a^{n}+p}{n a^{n-1}} \\
& c=\frac{(n-1)\left\{(n-1) a^{n}+p\right\}^{n}+n^{n} \cdot p \cdot a^{n(n-1)}}{n^{2} a^{n-1}\left\{(n-1) a^{n}+p\right\}^{n-1}}, \& c .
\end{aligned}
$$
\]

The second method is that of the reversion of series; it is sufficiently discussed by Arbogast *.

The third method was suggested to me by Mr. Cayley's remark that Mr. Sylvester's third approximation is a particular case, for $n=2$, of the common form (of the books on the binomial theorem) $\sqrt[n]{\overline{\mathrm{N}}}=\frac{(n+1) \mathbf{N}+(n-1) a^{n}}{(n-1) \mathbf{N}+(n+1) a^{n}}$. a, approximately, a being a first approximation. In order to gain generality, and thereby symmetry, I shall pass from the particular form $\sqrt[n]{\mathrm{N}}$ to the more general $\varphi^{-1} \mathrm{~N}$ by the following Lemma:-

Let

$$
\begin{equation*}
\mathrm{N}=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+ \tag{1.}
\end{equation*}
$$

and let $x_{1}, x_{2}, x_{3}, x_{4} \ldots$ be determined by the system of equations,

$$
\left.\begin{array}{rl}
\mathrm{N} & =a_{0}\left(1+\frac{a_{1}}{a_{0}} x_{1}\right) \\
& =a_{0}\left(1+\frac{a_{1}}{a_{0}} x_{2}\left(1+\frac{a_{2}}{a_{1}} x_{1}\right)\right) \tag{2.}\\
& =a_{0}\left(1+\frac{a_{1}}{a_{0}} x_{3}\left(1+\frac{a_{2}}{a_{1}} x_{2}\left(1+\frac{a_{3}}{a_{2}} x_{1}\right)\right)\right),
\end{array}\right\}
$$

and so forth; also let $\mathrm{N}-a_{0}=\mu$, and

$$
\begin{equation*}
1=\left(\mu-a_{1} x-a_{2} x^{2}-a_{3} x^{3}-\ldots\right)\left(\lambda_{0}+\lambda_{1} x+\lambda_{2} x^{2}+\lambda_{3} x^{3}+\ldots\right), \tag{3.}
\end{equation*}
$$

then

$$
x_{1}=\frac{\lambda_{0}}{\lambda_{1}}, x_{2}=\frac{\lambda_{1}}{\lambda_{2}}, x_{3}=\frac{\lambda_{2}}{\lambda_{3}} \ldots x_{n}=\frac{\lambda_{n-1}}{\lambda_{n}}
$$

For, if we substitute these values in the equations (2.) after placing them in the following form,

$$
\left.\begin{array}{rl}
\mu=\mathrm{N}-a_{0} & =a_{1} x_{1} \tag{4.}\\
& =a_{1} x_{2}+a_{2} x_{2} x_{1} \\
& =a_{1} x_{3}+a_{2} x_{3} x_{2}+a_{3} x_{3} x_{2} x_{1}
\end{array}\right\} .
$$

and so forth, we obtain

$$
\begin{equation*}
\mu=\frac{a_{1} \lambda_{0}}{\lambda_{1}}=\frac{a_{1} \lambda_{1}+a_{2} \lambda_{0}}{\lambda_{2}}=\frac{a_{1} \lambda_{2}+a_{2} \lambda_{1}+a_{3} \lambda_{0}}{\lambda_{3}}=\& c \tag{5.}
\end{equation*}
$$

which are the same equations as we should get by multiplying the two series in (3.) and equating to zero the coefficients of x and of its powers. The coefficient $\lambda_{0}=\frac{1}{\mu}$, obviously.

* Calcul des Dérivations, pp. 288-296.

The coefficients λ may now be found in a variety of ways; by solving equations (4.) or (5.), by simple division, or by Arbogast's processes *. The object of the preceding lemma is to connect the quantities x_{n} with the coefficients of division and of recurring series. Our results in any way are,

$$
\begin{aligned}
x_{1}= & \frac{\mu}{a_{1}}, x_{2}=\frac{a_{1} \mu}{a_{2} \mu+a_{1}^{2}}, \\
& x_{3}=\frac{a_{2} \mu^{2}+a_{1}{ }^{2} \mu}{a_{3} \mu^{2}+2 a_{2} a_{1} \mu+a_{1}^{3}}, \\
& x_{4}=\frac{a_{3} \mu^{3}+2 a_{2} a_{1} \mu^{2}+a_{1}{ }^{3} \mu}{a_{4} \mu^{3}+\left(2 a_{3} a_{1}+a_{2}{ }^{2}\right) \mu^{2}+3 a_{2} a_{1}{ }^{2} \mu+a_{1}^{4}} .
\end{aligned}
$$

If for $a_{0}, a_{1}, \& c$. we substitute the coefficients of the binomial theorem, so as to make $\mathrm{N}=(a+x)^{n}$, we obtain

$$
\begin{aligned}
& a+x_{1}=\frac{(n-1) a^{n}+\mathbf{N}}{n a^{n}} \cdot a, \\
& a+x_{2}=\frac{(n-1) a^{n}+(n+1) \mathbf{N}}{(n+1) a^{n}+(n-1) \mathbf{N}} \cdot a, \\
& a+x_{3}=\frac{\left(n^{\varepsilon}-1\right) a^{2 n}+\left(4 n^{2}+2\right) a^{n} \mathbf{N}+\left(n^{2}-1\right) \mathbf{N}^{2}}{(n+1)(n+2) a^{2 n}+4\left(n^{2}-1\right) a^{n} \mathbf{N}+(n-1)(n-2) \mathbf{N}^{2}} \cdot a .
\end{aligned}
$$

Making $n=2$, we obtain Mr. Sylvester's approximants to the square root, and λ_{n} is then the coefficient of x^{n} in the development by ascending powers of

$$
\frac{1}{\left(\mathrm{~N}-a^{2}\right)-2 a x-x^{2}} ;
$$

and so far the method agrees with the Newtonian approximation by continued fractions; but from this point the two methods diverge. For $n=3, \lambda_{n}$ is the coefficient of x^{n} in the development of

$$
\frac{1}{\left(\mathrm{~N}-a^{3}\right)-3 a^{2} x-3 a x^{2}-x^{3}} ;
$$

and the successive approximants are

$$
\frac{2 a^{3}+\mathbf{N}}{3 a^{3}} . a, \frac{a^{3}+2 \mathrm{~N}}{2 a^{3}+\mathbf{N}} \cdot a, \frac{4 a^{6}+19 a^{3} \mathrm{~N}+4 \mathbf{N}^{2}}{10 a^{6}+16 a^{3} \mathrm{~N}+\mathbf{N}^{2}} . a, \frac{5 a^{9}+45 a^{6} \mathrm{~N}+30 a^{3} \mathrm{~N}^{2}+\mathrm{N}^{3}}{15 a^{9}+51 a^{6} \mathrm{~N}+15 a^{3} \mathbf{N}^{2}} . a, 8 z \mathrm{c} .
$$

while the second approximant obtained by successive substitution is

$$
\frac{16 a^{9}+51 a^{6} \mathrm{~N}+12 a^{6} \mathrm{~N}^{9}+2 \mathbf{N}^{3}}{36 a^{9}+36 a^{6} \mathrm{~N}+9 a^{3} \mathrm{~N}^{2}} . a
$$

What these methods all effect is simply a rational approximation to the value of y in the equation $\Phi(y, z)=0$. Then, making $y=\frac{d u}{d z}$, we have only to integrate in order to find the value of u. They thus constitute a means of approximately solving, in respect of u, differential equations of the form $\varphi\left(z, \frac{d u}{d z}\right)=0$; but they do not effect the solu-

[^2]tion of this equation in respect of z, and still less do they solve the more general form $\varphi\left(u, z, \frac{d u}{d z}\right)=0$.

It may suggest processes of reduction in some cases to remark, that there are many other functions of y_{m} and $\varphi(z)$, which will approximate to $\varphi(z)$ as m increases, besides the simple product or quotient of $\Phi(z)$ by y_{m}.

There is one point about these higher approximants, of which a solution, even if accompanied with considerable restrictions, would be extremely desirable,-I mean the resolution of the denominators into factors. I do not suppose that the problem, in its perfectly general form, admits of a compact solution; but any class of cases, of even moderate generality, for which it could be elegantly solved, would probably have very useful applications. The criterion of convergence and the measure of approximation would also have their interest.

Specimen sheet of work for the Table.
Arc of 60°.

$\log \tan 22 \frac{1}{2}=9.61722$	43146	62*	$\log \sin ^{2} \mathrm{~L}=$	$8 \cdot 6140815$	$\log \cos 22 \frac{1}{2}=9.96561$	53459 21*
$\log \cos A=9 \cdot 69897$	00043	36	$\log t=$	5.5451559	$\log \sec \mathrm{L}=0.00911$	84784
$\log \tan M=9.31619$	43190	08		$4 \cdot 1591374$	$9 \cdot 97473$	38243
$\log \tan L=9 \cdot 31615$	92213		t-	$+327$	$=\quad+$	14430
$t=+3$	50877		$t \sin ^{2} L=$		$\log \Delta=9.97473$	52673
$t \sin ^{2} L=$	14018		$\log \mathrm{c}=$	$4 \cdot 1591701$		

$\log \tan 45=10 \cdot 00000$	00000	00*	$\log \sin ^{2} \mathrm{~L}=$	9•3009948	$\log \cos 45=9 \cdot 84948$	50021 68*
$\log \cos A=$			$\log t=$	$5 \cdot 3429218$	$\log \sec \mathrm{L}=0.04845$	06017
$\log \tan \mathrm{M}=9.69897$	00043	36		$4 \cdot 6439166$	$9 \cdot 89793$	56039
$\log \tan L=9 \cdot 69894$	79790			+176	$c=\quad+$	44049
$t=\quad+2$	20253		$t \sin ^{2} \mathrm{~L}=$		$\log \Delta=9 \cdot 89794$	00082
$t \sin ^{2} L=$	44047		$\log \mathrm{c}=$	$4 \cdot 6439342$		
$\log \tan 67 \frac{1}{2}=10.38277$	56853	38*	$\log \sin ^{2} \mathrm{~L}=$	9.7730722	$\log \cos 67 \frac{1}{2}=9.58283$	96605 83*
$\log \cos A=9.69897$	00043	36	$\log \mathrm{t}=$	$4 \cdot 7719327$	$\log \sec \mathrm{L}=0 \cdot 19521$	55228
$\log \tan M=10 \cdot 08174$	56896	74		4.5450049	$9 \cdot 77805$	51834
$\log \tan L=10.08175$	16044				$\mathrm{c}=$	35075
$\mathrm{t}=\quad-$	59147		$t \sin ^{2} L=$		$\log \Delta=9 \cdot 77805$	16759
$t \sin ^{2} L=$	35075		$\log \mathrm{c}=$	$4 \cdot 5450025$		

Note.-The entries marked *, and the whole of the letter-press, were printed on the sheets. The letter A on this page corresponds to θ in the Table.

Table of the value of the function $\log \Delta(\theta, \omega)$ or $\log \sqrt{ }\left(1-\sin ^{2} \theta \cdot \sin ^{2} \omega\right)$ for four values of ω, viz. $22^{\circ} 30^{\prime}, 45^{\circ}, 67^{\circ} 30^{\prime}$, and 90°.

θ.	$\log \Delta\left(\theta, 22^{\circ} 30^{\prime}\right)$.	$\log \Delta\left(\theta, 45^{\circ}\right)$.	$\log \Delta\left(\theta, 67^{\circ} 30^{\prime}\right)$.	$\log \cos \theta$.	θ.
1	9.99999 03138	9.99996 69274	9-99994 35386	9•99993 38497	i
2	$9 \cdot 9999612643$	$9 \cdot 9998677197$	9.9997741349	$9 \cdot 9997353589$	2
3	9.9999128792	9•99970 24074	9-99949 17311	9•99940 44063	3
4	9•99984 52048	$9 \cdot 9994710407$	$9 \cdot 9990962308$	9•99894 07898	4
5	9.99975 83051	$9 \cdot 9991736910$	9•99858 74990	$9 \cdot 9983442260$	5
6	9•99965 22633	$9 \cdot 9988104507$	$9 \cdot 9979653618$	9•99761 43489	6
7	$9 \cdot 9995271805$	9.9983814325	9.99722 96070	9•99675 07098	7
8	$9 \cdot 9993831764$	9•99788 67716	9.99637 99831	9•99575 27754	8
9	9.99922 03891	$9 \cdot 9973266254$	9.99541 62004	$9 \cdot 9946199270$	9
10	9•99903 89748	9.99670 11740	9-99433 79300	9•99335 14589	10
11	9•99883 91084	$9 \cdot 9960106211$	$9 \cdot 9931348042$	9•99194 65764	11
12	$9 \cdot 9986209825$	$9 \cdot 9952551957$	$9 \cdot 9918364168$	$9 \cdot 9904043940$	12
13	$9 \cdot 9983848090$	$9 \cdot 9944351515$	$9 \cdot 9904123213$	9•98872 39328	13
14	9.9981308170	9.9935507689	$9 \cdot 9888720337$	9•98690 41185	14
15	$9 \cdot 9978592542$	$9 \cdot 9926023560$	$9 \cdot 9872150300$	$9 \cdot 9849437781$	15
16	9.9975703868	9.99159 02501	9.9854407479	$9 \cdot 9828416370$	16
17	9.99726 44986	$9 \cdot 9905148183$	9.9835485857	$9 \cdot 9805963156$	17
18	$9 \cdot 9969418915$	$9 \cdot 9893764594$	9.98153 79027	$9 \cdot 9782063255$	18
19	$9 \cdot 9966028857$	99881756060	9.9794080200	$9 \cdot 9756700654$	19
20	9.9962478189	$9 \cdot 9869127246$	9.9771582198	9.97298 58164	20
21	$9 \cdot 9958770469$	$9 \cdot 9855883197$	$9 \cdot 9747877462$	$9 \cdot 9701517377$	21
22	$9 \cdot 9954909429$	$9 \cdot 9842029331$	$9 \cdot 9722958056$	$9 \cdot 9671658605$	22
23	$9 \cdot 9950898979$	$9 \cdot 9827571478$	$9 \cdot 9696815661$	$9 \cdot 9640260827$	23
24	9.9946743204	$9 \cdot 9812515899$	$9 \cdot 9669441603$	$9 \cdot 9607301625$	24
25	$9 \cdot 9942446358$	$9 \cdot 9796869297$	$9 \cdot 9640826837$	$9 \cdot 9572757115$	25
26	9.9938012870	$9 \cdot 9780638852$	$9 \cdot 9610961968$	9•95366 01869	26
27	$9 \cdot 9933447337$	9.9763832245	9.9579837258	$9 \cdot 9498808840$	27
28.	$9 \cdot 9928754524$	9.9746457677	9.95474 42643	$9 \cdot 9459349269$	28
29	9-99239 39363	$9 \cdot 9728523905$	9.9513767741	$9 \cdot 9418192587$	29
30	$9 \cdot 9919006948$	$9 \cdot 9710040265$	$9 \cdot 9478801877$	$9 \cdot 9375306317$	30
31	9.9913962526	$9 \cdot 9691016705$	9.9442534100	$9 \cdot 9330655951$	31
32	$9 \cdot 9908811517$	9.9671463813	9.9404953211	$9 \cdot 9284204835$	32
33	$9 \cdot 9903559484$	$9 \cdot 9651392852$	$9 \cdot 9366047788$	$9 \cdot 9235914023$	33
34	$9 \cdot 9898212144$	$9 \cdot 9630815797$	$9 \cdot 9325806231$	$9 \cdot 9185742135$	34
35	$9 \cdot 9892775363$	$9 \cdot 9609745359$	$9 \cdot 9884216784$	$9 \cdot 9133645194$	35
36	9.98872 55150	9.9588195031	$9 \cdot 9241267607$	9-90795 76446	36
37	9.9881657654	$9 \cdot 9566179121$	9.9196946797	$9 \cdot 9023486165$	37
38	9.9875989157	$9 \cdot 9543712781$	9.9151242488	9•89653 21441	38
39	$9 \cdot 9870256072$	$9 \cdot 9520812065$	$9 \cdot 9104142888$	$9 \cdot 8905025944$	39
40	$9 \cdot 9864464943$	9.9497493945	$9 \cdot 9055636388$	9•88425 39665	40
41	$9 \cdot 9858622425$	$9 \cdot 9473776364$	$9 \cdot 9005711640$	9•87777 98629	41
42	$9 \cdot 9852735294$	$9 \cdot 9449678273$	$9 \cdot 8954357674$	$9 \cdot 8710734581$	42
43	9.9846810429	9.94252 19663	$9 \cdot 8901564024$	9.8641274638	43
44	$9 \cdot 9840854812$	$9 \cdot 9400421611$	$9 \cdot 8847320869$	$9 \cdot 8569340901$	44
45	$9 \cdot 9834875524$	$9 \cdot 9375306317$	$9 \cdot 8791619193$	988494850022	45

Table
 (continued).

θ.	$\log \Delta\left(\theta, 22^{\circ} 30^{\prime}\right)$.	$\log \Delta\left(\theta, 45^{\circ}\right)$.	$\log \Delta\left(\theta, 67^{\circ} 30^{\prime}\right)$.	$\log \cos 0$.	θ.
46	9.98288 79722	9•93498 97136	$9 \cdot 8734450980$	9.8417712731	46
47	9.98228 74657	$9 \cdot 9324218620$	9×8675809423	9.8337833303	47
48	$9 \cdot 9816867640$	9-92982 96543	$9 \cdot 8615689166$	$9 \cdot 8255108951$	48
49	$9 \cdot 9810866053$	9•92721 57944	9×8554086587	$9 \cdot 8169429168$	49
50	$9 \cdot 9804877326$	$9 \cdot 9245831150$	$9 \cdot 8491000105$	$9 \cdot 8080674967$	50
51	9•97989 08943	9•92194 45794	$9 \cdot 8426430543$	$9 \cdot 7988718039$	51
52	9.97929 68415	9.9192732846	$9 \cdot 8360381532$	$9 \cdot 7893419787$	52
53	$9 \cdot 9787063285$	$9 \cdot 9166024627$	9•82928 59976	$9 \cdot 7794630249$	53
54	9.97812 01111	$9 \cdot 9139254820$	$9 \cdot 8223876555$	$9 \cdot 7692186852$	54
55	$9 \cdot 9775389457$	$9 \cdot 9112458470$	$9 \cdot 8153446333$	$9 \cdot 7585913013$	55
56	$9 \cdot 9769635878$	9•90856 71996	$9 \cdot 8081589399$	9•74756 16513	56
57	$9 \cdot 9763947918$	$9 \cdot 9058933160$	$9 \cdot 8008331625$	$9 \cdot 7361087645$	57
58	$9 \cdot 9758333090$	9-90322 81075	9×7933705490	9•72420 97077	58
59	9.97527 98869	$9 \cdot 9005756154$	9.7857751006	9•71183 93361	59
60	9.97473 52675	9×8979400084	$9 \cdot 7780516759$	$9 \cdot 6989700043$	60
61	9.9742001874	9•89532 55788	$9 \cdot 7702061055$	$9 \cdot 6855712291$	61
62	$9 \cdot 9736753742$	9•89273 67330	$9 \cdot 7622453190$	$9 \cdot 6716092909$	62
63	$9 \cdot 9731615478$	9×8901779885	9.7541774828	$9 \cdot 6570467649$	63
64	9.97265 94174	$9 \cdot 8876539622$	$9 \cdot 7460121530$	$9 \cdot 6418419615$	64
65	9•97216 96810	9×8851693618	$9 \cdot 7377604387$	$9 \cdot 6259482593$	65
66	9.97169 30239	9-88272 89739	$9 \cdot 7294351756$	$9 \cdot 6093132999$	66
67	9.97123 01175	9•88033 76506	$9 \cdot 7210511125$	$9 \cdot 5918780116$	67
68	9.97078 16179	$9 \cdot 8780002961$	$9 \cdot 7126251046$	$9 \cdot 5735754170$	68
69	9.97034 81644	$9 \cdot 8757218497$	$9 \cdot 7041763081$	$9 \cdot 5543291617$	69
70	$9 \cdot 9699303790$	9×8735072689	9×6957263771	$9 \cdot 5340516846$	70
71	9.96952 88643	9•87136 15099	9•68729 96519	9•51264 19176	71
72	9.96914 42028	9×8692895088	$9 \cdot 6789233280$	$9 \cdot 4899823640$	72
73	9.96877 69551	9×8672961579	$9 \cdot 6706276041$	$9 \cdot 4659353400$	73
74	9-96842 76594	$9 \cdot 8653862846$	$9 \cdot 6624457824$	$9 \cdot 4403380750$	74
75	$9 \cdot 9680968303$	$9 \cdot 8635646269$	$9 \cdot 6544143168$	$9 \cdot 4129962305$	75
76	$9 \cdot 9677849569$	$9 \cdot 8618358088$	$9 \cdot 6465727859$	$9 \cdot 3836751767$	76
77	9.96749 25025	$9 \cdot 8602043157$	$9 \cdot 6389637732$	$9 \cdot 3520880330$	77
78	9.96721 99032	$9 \cdot 8586744678$	$9 \cdot 6316326324$	$9 \cdot 3178789102$	78
79	9.96696 75670	$9 \cdot 8572503958$	$9 \cdot 6246271226$	9.2805988450	79
80	9.96673 58731	9.8559360134	$9 \cdot 6179968925$	$9 \cdot 2396702300$	80
81	9.96652 51705	$9 \cdot 8547349940$	9.6117928070	9•19433 24413	81
82	9.96633 57778	$9 \cdot 8536507456$	$9 \cdot 6060661106$	$9 \cdot 1435553039$	82
83	9.96616 79819	$9 \cdot 8526863874$	$9 \cdot 6008674357$	9.0858944712	83
84	$9 \cdot 9660220377$	$9 \cdot 8518447281$	$9 \cdot 5962456795$	$9 \cdot 0192345656$	84
85	$9 \cdot 9658981672$	9•85112 82461	$9 \cdot 5922467793$	$8 \cdot 9402960083$	85
86	9.96579 65594	$9 \cdot 8505390708$	9-58891 24439	$8 \cdot 8435845184$	86
87	9.9657173697	$9 \cdot 8500789667$	$9 \cdot 5862788989$	$8 \cdot 7188001636$	87
88	$9 \cdot 9656607187$	$9 \cdot 8497493212$	$9 \cdot 5843757166$	$8 \cdot 5428191639$	88
89	$9 \cdot 9656266934$	$9 \cdot 8495511322$	9.5832248116	8.24185 53184	89
90	$9 \cdot 9656153459$	$9 \cdot 8494850022$	$9 \cdot 5828396696$	-log. infin.	90

[^0]: * For the First Memoir, see the Philosophical Transactions for 1860, p. 223.

[^1]: * See the Philosophical Magazine for December 1860, Supplementary Number, vol. xx. p. 525, note A.

[^2]: * See his ' Calcul des Dérivations,' pp. 26, 29 ; or De Morgan, 'Diff. Calc.' p. 331.

