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W. SPOTTISWOODE, Esq., F.R.S. 

Received March 20,--Read April 3, 1862. 

SINCE my first memoir on this subject was read before the Society, Mr. SYLVESTER has 

published a method, more general than mine, of applying rational approximation to 
facilitate the computation of the integrals of irrational functions. This method, at 
which he had arrived independently, included, a majori, the one which was the subject 
of my memoir. Aided by his papers, my subsequent studies have enabled me to view 
the method with more generality, as well as with more precision and completeness of 

detail, and I am now able to present it in a sufficiently finished and practical form for 
the immediate use of the computer. I have also computed auxiliary Tables, to render 
its application easier in certain cases. 

Any rational formula, which gives approximately the value of a function to be inte- 

grated, may be integrated in lieu of it, and the result will in general be an approximate 
value of the integral sought. But for such a process to be of any practical utility, the 

convergence of the formula must be excessive, for the complexity of the integral forms is 
so great that the labour would be enormous, unless the terms were very few in number. 
In the discovery of formulhe sufficiently convergent for the purpose, lies the success of 

the method. 
We are by no means restricted to functions under a square root, or even to pure 

radical forms at all. The principle applies with equal generality to functions which are 

given implicitly as roots of equations, and thus to a class of differential equations; and 

Mr. SYLVESTER has well remarked that these formulhe not only afford facilities for com- 

putation, as by a method of quadratures, but also enable us to assign superior and infe- 

rior limits to an integral, without losing its generality of form. 
I shall begin with the approximation to the square root, giving it in its general form, 

and explaining its exact analytical signification. I shall then show its application to 

Elliptic Functions, and how, in the ordinary cases, certain simple reductions can be 

effected, which greatly lessen the labour of computation; and I shall give these reduc- 
tions for the cases more commonly occurring, with some examples and working formulae. 
I shall then add a short account of the extension of the method. 

The paragraphs in the first two sections of this paper bear a consecutive number for 

convenience of reference. 
* For the First Memoir, see the Philosophical Transactions for 1860, p. 223. 
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418 MR. C. W. MERRIFIELD ON A NEW METHOD OF APPROXIMATION 

SECTION I.-Approximants to the Square Root. 

1. Mr. SYLVESTER gives, for the approximants to the square root, the following state- 
ment:- 

"Let r be an approximate value of /N; then by that mode of application of NEWTON'S 

method of approximation to the equation x==N, which is equivalent to the use of con- 

tinued fractions, we may easily establish the following theorem, viz., that 

r2" N r3+3rN r4+6r2N+N2 r5+lOr3N+5rN2 
2r ' 3r2T+N ' 4r3+4rN ' 5r4l + Or2N +N2 

will be successive approximations to /N." 
2. Their general form is 

(r + VN)(r- /N)i v.(1 
Y(r,+ N N)-(r " VN) ....... ( .) 

which is always rational. In this form the approximation to V/N as i increases is 
obvious. The method of my previous memoir is simply the particular case of i=2ck. 

3. If we wish to approximate to N-~, we may take the reciprocal of (1.), or, what is 

simpler, we may divide (1.) by N, thus obtaining 

(r+ VN)-+(r-V N). 1 
z= +(r- vN)i-(r- -N)i ........ N 

Before we can integrate these formulae, we must reduce them by means of the method 
of rational fractions; the simplest and most general way is as follows:- 

4. Let 6 be an ith root of unity; then, obviously, 

log (1--x)=log (1- _x)+log (1-2x)+..... +log (1 - ). 

Multiplying the differential coefficient of this by (-x), we obtain 

ixi _ 
3 

L i 

xi 1 _ x xii 2x- 
and since 1 1 +- 

- and - -l_- 

i 1 + 1 . 1 1 
i-S+-g 1-g 1- * * lj?-g$ 

.1+xi l+gx l+gx i l+g3 l+gx 
1i -xi- I -x - - 1- x- ..... +. -gix' 

r-/N 
Making x=-r + ~/', we may thus divide N*t into i fractions, each of the form 

I (r+ VN) + k(r- VN) 
i (r + /N) -gk (r- VN) 

5 

k being any integer not exceeding i. 
5. If we add the pairs k and i-k, we obtain for the sum of the pair, 

2(r + /N)2-2(r- /N)2 
(r + N)2 (r- VN)2 - (gkgi-k) (r2-N) 

8rN 8r 
-2(r2++ N-( g(r) ( - N) rsame denominator 



APPLICABLE TO ELLIPTIC AND ULTRA-ELLIPTIC FUNCTIONS. 

according to whether the upper or lower sign be taken. Now, because g is an ith root 
2k7r 

of unity, fk+~-k'=2 cos z, and the sum of the pair reduces itself, for vN, to 

1 4rN 1 2rN 

(r2+N)-cos- (r2_N)i s + N cos 

1 2rN 1 2rN ( 

N - sin2- k(r2-N) r2 Cos k(r2_N) 

For N-" we have the simpler forms, 

1 4r 1 2r 
2k7r i 2 k/r k7r 

(r2 + N) - cos -2 (r2_ N) r sin + N cos2 

(4.) 1 2r 1 2r 

kxr 2.. kI.(4.) N+ sin2 . (r2-N) r--cos2 (r2-N) 

All that remains is to integrate these terms, and sum them. 
6. Our grouping the terms in pairs has limited the value of k to range from i to 9 (i- 1) 

when i is odd. There is an odd term which, however, presents no difficulty, being 
ry r 

simply - in the case of VN, and i-N in the case of N-~. When i is even, kc is limited to 

r2?N ___Z~r2+N 
range from I to 1 i-1, and the odd term becomes +r in the case of V/N, and iNr iNr 

in the case of N-~. It is important to bear in mind that the term just mentioned is an 
odd term, and therefore not affected with the coefficient 2, which appears in the terms 

composed of pairs corresponding to imaginary roots. 
7. The value of i, which I consider to be most useful for general purposes, is i= 8: in 

r2+N r+2?N 7 N I 
this case the odd term becomes 8r or 8Nr and the other values of - are three in 

number, viz. 22? 30', 450, 67? 30'. With proper precautions i=8 will almost always 

give seven or more figures correct. 
8. If we now give infinite values to k and i and pass from the summation to the defi- 

nite integral, we have (putting X= ) 

zN 2rrdx _2N r " d?, 
z ~ P;T-s-~L.r9 + (N-r2) COS2 Axr -rxN- J0 r+ (N-r)cos7ro 1+ Nsin 

r 

and since 

r* f4 d__d_ _7 
1 +p.sin-- 4/l+p 

this is an identical equation, as it ought to be. 
9. This use of approximants, therefore, is simply the application of the method of 
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420 MR. C. W. MERRIFIELD ON A NEW METHOD OF APPROXIMATION 

quadratures to a definite integral, which we substitute for the surd proposed for 
evaluation. 

10. It would appear at first sight that a full application of the method of quadratures 
in the ordinary way, with the help of differences, would give better results than the 
mere summation of the ordinates. But this is not the case; for the differences diverge 
immediately. If we use differential coefficients for the quadrature, instead of differences, 
we have an opposite anomaly, namely that the correction of the summation appears to 
be absolutely nil, inasmuch as the differential coefficients which appear in the series are 
all of odd order, and the numerator of each of them contains the factor sin p cos p, which 
vanishes at both the limits 0 and -r. LEGENDRE has discussed this point. See the 

Appendix to the second volume of his 'Fonctions Elliptiques,' p. 578. 
11. The application of the method to integrations, then, lies in the substitution for 

ct M d t 2Mr.dA.dt 
J o/N dt of 

(N )c 

in which, since X and t are perfectly independent of each other, we may change the 
order of integration, thus obtaining 

rir t 2Mr.dt 
Jo l~Jr2 + (N - r2) Cos2 XJr ' 

and the rest of the operation depends upon our being able to perform the integration 
in } generally, and then to determine the integral in X by quadratures. The great 
advantage of the method turns upon the easy application of the method of quadratures, 
in consequence of our not requiring to difference the ordinates. 

12. One way of exhibiting generally the degree of convergence is as follows: 
N ii always lies between 

(r + N)i + (r- /N)i (r +N) -(r -A/N)i 
'(r+ v/N)i--(r- /N)i an (r+v N) + (r- N)' 

and the error of either is therefore always less than their difference, 

N,i 4(r2-N)i 
(r + /N)-- (r- N)2 

13. There is another mode, by which, in any given case, we may see how far it is 

necessary to carry our work in order to obtain a given number of decimals correctly in 
the result. Let Om be determined by the equation 

om dOm 01 dOl 

cos, o , cos 01 

r 
and let sin -- r or -N7 whichever may be less than unity; then the rnth approximant 

r/N 
will be sVn ' This is easily seen from the general term of the approximant, since 

cos logsin s) dO 1 
l -gsinO\ 

cosO8-2 log1 sin 1 
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14. A table of meridional parts, such as is given in the books on Navigation, if carried 
far enough, would solve this equation. I have calculated an auxiliary Table for the 

purpose, as follows:- 

Let cosec p-1=z, log, tan (4 r+2 ) =y, then 

Y= log, z 2 log 2-- log z+log 1+ 

-=2log 2-logz+-16-8 28 ......... 

To bring this formula to the same unit as the common Table of meridional parts, 
we must multiply it by the number of minutes in the arc equal to unity, or by 
L=3437-74677 07849 4, whence we have 1- L log, 2=1191-43224 08243 2, and 

L log, 10=3958 85223 39129 100. These data give the following Table, the argument 

being the common logarithm of z with its sign changed; that is, the number of places 
which are correct: 

-log . y. 

1 5234-14859 
2 9117-70966 
3 1306884816 
4 17026-92712 
5 20985-70200 

-log z. Y. 

6 24944-54650 
7 28903-39796 
8 32862-25012 
9 36821-10235 

10 40779-95458 

-log z. . 

11 44738-80681 
12 48697-65905 
13 52656-51128 
14 56615-36352 
15 60574-21575 

v/N 15. As a simple example,letN=3, r=2; -..r =sin 60: the meridional partsfor 

600=4527; and in order that the error may not exceed unity in the tenth place of 
40780 

figures, we must have m or 4527 - 9; so that we must make i=9 at least, for the 

10th figure to be correct. 
16. These methods of course only exhibit the degree of approximation on the surd 

itself. The proportionate approximation is generally greater on the integral than on the 

simple surd, because the first approximant is usually so chosen as to be identical with 

the surd at one of the limits, and it is only near the other limit that the discrepancy 
tells. 

SECTION II.--Details of Reduction and Computation. 

17. The chief assistance, which can be provided a priori for the computer, consists in 

the exhibition and discussion, for the ordinary forms, of the integral r+ (N_2 

and of the auxiliary functions which present themselves in its reduction. 

18. In applying these methods to elliptic integrals, the radical and the first approxi- 
mant r must both be of a simple form, and it is advisable that r2-N or N-r2 should be 
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422 MR. C. W. MERRIFIELD ON A NEW METHOD OF APPROXIMATION 

of a square form. For the common form of the elliptic radical V/(1--sin2 0. sin2 p), our 
choice is practically limited to 

(1) r=l, (2) r=cos p, (3) r=sin . cos , 

(4) r=cos 0, (5) r=cos 0. sin . 

And on these suppositions I now proceed to the integration of the general form of the 
reduced approximant for o(I--sin2 0.sin2 )-idp=--zdp. I omit mention of the con- 

stants of integration, because very slight changes in the function may alter them. The 
first of our three cases require, as they stand, no constant, and these are the most useful 
cases. 

(1) r=l, r--N=sin2 0. sin2 p, 

2 

i 
r 

1-sin2 0. cos2_-. sin2 

Skd=2 (1 - sin2 . cos2 ) tan- ( -sin2 .cos2 tan 4 

(2) r=cos p, r2-N=--cos2 .sin2 , 
2 cos p 2 cos qp 

cos2 < + Cos2 0. cos2 - . sin2 p 1 --cos2 . cos2 k). sin2 

S,d~ C-COS' 8 ,I l+smy^l-cos2^ 

. 
cosk r) 

J^zdp= (l-cos2 6 . cos2 log, ) ( 2 ' 
1 - sin (1-cos2 0. cos2 

k 

(3) r=sin d. cos , r2--N= --cos2 , 

2 sin 0 . cos p 

(1-cos2 si . sin 8. -s in2. s 

-Cor - 0(1-cos2 0. sina k) + 
sin . s in l 

5zkd (1-cos0 sin2 k ) log i(--co k. sn j 

_ 2 _ 1 
~ I- .cos ,l . g - 

cs1 + tan2 0. cos2 - . cos2 ( 

zkdP=-2 (1-sin2 0. sin2 })-~ tan'{cos 0. tan -s (n1-sin2 . sin2 --) }. 

(5) r=cos 0 sin e, r2- N cos2 , 
2 cos 8 . sin 

Z= - ...- 

cos . sin2 p + cos2 -. cos <p 
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Szed 2 (cos2 -- os2 ) tan - co s (cos2 -c2 } 
- cos -co 

1--os0 kcos -s 
(cos-cos2 -) log co 

COS l \2 

(6) If we make t=tan p, we obtain 

(l- sin2 0. sin2 p))- dp=2(1-2 cos 2 . t2+t4)- dt. 

Taking r -l-t2, the terms which we have to integrate are of the form 

4(1-it) dt 

(1_t2)2+4cos2 . COS2 

kvr 

'te)+ e+ 4 cos0820. cos --$ 

Putting 2= 1--cos2 . cosa2 -, we have 

1 t / 2+2t+l 
fzkdp-q log, t2--2qt+ 1 

The same expression serves for the integral 
r 2dt 

J(1 + 2 cs 2 .t t4)' 

if we put -2= 1- sin2 O. cos2 -. 

19. It will be observed that the first four cases, and the sixth, depend upon a radical 

of the form V(1--sin2 A. sin2 o), where w is restricted to the selected values of -. 

Assuming the modulus sin A not to vary, it would therefore in general be better to begin 
by computing the radical for the selected values. I have computed, and I append to 

this paper, a Table of this radical, the selected values of y being 22? 30', 45?, and 67? 30', 

while A ranges by whole degrees from 1? to 90? inclusive. Every entry but the last in 
the 2nd, 3rd, and 4th columns of the Table was computed by myself in duplicate with 
VEGA'S ten-figure logarithms, by the help of two or more of the following formule, some 
of which are from LEGENDRE. 

20. Putting A for /(1--sin2 A. sin2%), 
(1) Make sin A. sin w=sin M; then A=cos M, 

log sin M=log sin A+log sin W, log A=log cos M; or else 

(2) Make tan A. cos w=tan M; then A=cos A. sec M, 
log tan M=log tan A+log cos o, log A-log cos A+ar. co. log cos M. 

Moreover, let L be the tabular angle nearest to the angle M: it is not necessary to 
obtain the value of M: so that we have simultaneously, 

log sin M=log sin L+s, 
log tan M=log tan L+ t, 
log cos M=log cos L+Pc; 

423 



424 MR. C. W. MERRIFIELD ON A NEW METHOD OF APPROXIMATION 

then we shall also have, and with great approximation, 

log s=log (t. cos2 L)+- (t-t. cos2 L) 
=log (c. cot2 L)+(c+c. cot2 L), 

log c=log (s . tan2 L)?(s+s . tan2 L) 
=log (t. sin2 L)?(t-t. sin2 L), 

log t=log (s. sec2 L)+(s-s . sec2 L) 

=log (c. cosec2 L) 4 (c-c cosec2 L). 

I have given the whole set of six, but my Table was computed with the pair for log c. 
By way of example, I add a specimen copy of one of my working sheets. The use of so 

many as ten figures is not altogether unnecessary, because otherwise, when A is nearly 

equal to unity, the value of log (1- A) or of log +cannot be had with exactness. 

21. The following formulae will also be found in many cases preferable, both for 
exactness and facility, to the ordinary use of logarithmic tables by means of differences. 
These formula, as well as those of the previous paragraph, are but applications of 
TAYLoR'S theorem, reduced to a shape fit for the computer. Even where only seven 

figures are required their application is frequently much easier, and gives more exact 

results, than interpolation by differences. In what follows, x is supposed to be the 
nearest tabular entry. 

22. To find logyfrom log tan y.-Let us assume simultaneously 

log y=log xl, logtany=log tan x+t. 

Putting u=log x, z=log tan x, we have 

du sin 2x d2u sin 2x sin 2\ 
-= and d2=2 (cos 2x- ; i 'X d-- 2x and dZ2 2 2x 

M being the modulus of the logarithms. 
Hence, by TAYLOR'S theorem, 

sin 2x /1__Msin 2) l=t j, {1+Mt nx cos 2x } nearly. 

Taking the logarithm, this becomes 

log/logQ sin 2x) t /sin 2x 
log l=lo(t -) +t ( 2 -cos 2x) 

1(t. sin x . cos x t . sin x . cos x 
-=log - + X -t t+2tsn x. 

The latter is the better shape for a working formula, because log sin x and log cos x 
are found in the same page and line as log tan x, while log sin 2x must be looked for 
elsewhere. The first term alone is sufficient when x is small; but when x much exceeds 
450, cos 2x changes its sign, and even the entire formula is insufficient. The maximum 
value of the coefficient of t in the second term is 1-0631, corresponding to x= 78? 33' 26X' 5. 
In many cases, where the first term alone is insufficient, a rough interpolation, made at 
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sight from the following Table, will answer the purpose; it is a Table 

n 2 -cos 2x) and of its logarithm, from x=45? to r=90?. -co 

45 0*63662 9'80387 
50 0'73816 9-86815 
55 0-83149 9'91986 
60 0-91349 9-96070 
65 098041 9-99141 

of the value of 

70 1.02910 0-01246 
75 1-05658 0-02390 
80 1-06216 0-02619 
85 1-04334 0-01843 
90 1. 0 

The Table shows that, past 45?, the formula 

,log 1=log 
t sin x cos x) _ 

x 

is a better approximation than when the 4t is omitted. It is to be remarked that t is 
at its minimum for x-=45?, and increases both towards x-=0 and x=90?. Near the 
latter limit, where great accuracy is required, we must proceed as follows. 

Find the correction for the logarithm of the complement of the arc by the above 
process, and then find log (- 7r-y) from log y. For this purpose, I observe that 

log y=log x+l is equivalent to y= x.l0', hence 
1. 

17r-y= 1i7--X. 10+fl=( 1r-X)-(101 1-1). 

Now, let +A=l10--1, whence 

log (?mA)=log (?+l)?+l-2 M12 nearly, and also 

[ +mAx f_+mAx log (-7r-y)=log (--7r-X)- (:_) -M ( mA) . 2 

It is not often that the third term of either formula will be required. 
I have gone into all this detail, because the inverse tangent is continually presenting 

itself in all these integrations, and because no book that I know shows the proper way 
of handling it. 

23. The following constants are needed for these and similar formule:- 

10+logm =963778 43113 00537, 

10+logl0 =824187 73675 90828, 

10+logl'=6-46372 61172 07184, 

10+logl"=4'68557 48668 23541, 

logM=0-36221 56886 99463, 

-logl?=1-75812 26324 09172, 

-logl' =3-53627 38827 92816, 

-log "=5-31442 51331 76459. 

24. As an example of finding the inverse tangent, let it be required to find logy and 

log (Ist-y) from 

log tany=9-902313 50437. 

log tanx= 902303 57359 

+t-- 9 93078; 

Here we must take 

.. x=6? 1' 10"=21670" 

r--xT= 302330" 
MDCCCLXII. 
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426 MR. C. W. MERRIFIELD ON A NEW METHOD OF APPROXIMATION 

log sinx- 90206346 

log cos x= 9-9975988 

log t=5-9969834 

ar. co. log x=0-9785662 
t sin 2x 

log 
si2x =5-9937830 lo ~2a? 

log sin2 x= 80413 

log 2=-03010 

log t=5-9970 

log (2 sin2 x)=43393 

2 sin2 x= 21,800 
f cQ;r at 

log 21670 =433585 89113 

log1" =4-68557 48668 

log x=902143 37781 

1= +9 85786 

logy= 902153 23567 

2nd correction -14 2 = 985,8 

log =5-9937816 1007,6 

-1 +493 -t=-993,1 log 302330=5-48048 12441 

logmA=5-9938309 2ndcorrection= 14,5 log 1"=4-68557 48668 

log x= 9-0214338 The comma cuts off the log (?7r-x)=0'16605 61109 
eighth decimal. 

ar. co. log (-r- x)- 9-8339439 correction- -70666 

log correction=4-8492086 log(7r--y)=0-16604 90443 

Verification.-The numbers corresponding to these logarithms of y and of 7-r-y are 
0-10508 29743 and 1-46571 33525, the sum of which, to the very last figure, is 

exactly 1-. 

25. To find log y+ from logy.-Let log y+ l=log +p, and log y=log x+q; 

then logp=log ( _ l) IT4-g+ ', nearly. This formula obviously fails where y is 

near unity; in this case log Y + cannot be had with great accuracy, unless y itself be 

given absolutely. All the cases of b a may be included in the above formula by 

giving proper signs to p and q. It may save trouble to remark that x must not always 
be taken to the extreme limit of the Table, because log(x+ 1) and log (x -1) have also 
to be taken out. As an example, let 

log y=0-36290 63835 

log x=0'36285 93030 x=2'306, a+1=3-306, x-1=1 306 

q= +4 70805 log (x+l)=051930 28492 

log q=56728411 log(x-1)=0-11594 31769 

ar.co. log(x2-1)=- 9-3647540 sum==0-63524 60261 

5-0375951 -i-- =0-0001090 difference=0-40335 96723 

log x=03628593 1g= 135 --= -5 02761 

log 2=0-3010300 2nd corr-=0O0001225 log 040330 93962 
log =0' 40330 93962 

5-7014844 
- y- 

2nd correction- -1225 

logp=5-7013619 
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This example has been so chosen as to admit of easy verification. In fact y =230625, 
4 1 ^529 and logjy l=log -==0 40330 93959 24. The error is therefore only of three units 

in the tenth decimal place, where there was no reason to expect accuracy. 
26. The only other formulae which I shall give are the following, for finding the 

logarithm of a number, and vice versd. They are indispensable where more than seven 

figures are required. 
Let log (x+_h)=log x+k, then 

/mh\_1 mh 
log k-=log y + -- nearly, 

log h=log (Mxk)? - k nearly. 

The values of log m and log M have been given in paragraph 23. 
27. As an example of the application of the method to the evaluation of elliptic 

integrals of the third class, let us take the integral 
dp 

- (l--sin2O.sin2p)i 

for the values a=45?, d-=30?, 60?. 
I have selected these values because they can be obtained without reduction or inter- 

polation from the Table of A(O, p) which I have given, and also because sin2 a= sin 0, 
and therefore the integral can be reduced to one of the first class, plus an inverse tangent, 
thus admitting of easy verification. For this case 

2 

(l--sin2a . sin) (- sin2 0. cos2 . sin2) 

?2 sin2 L i 
SZd =k .2 2 cos 1 tan-' (cosa .tan p) 

sin 2 a- sin 20.cosc 

2 sin2 -s .coss k(r2 2( 
-- ;e A (1-sind.i .cosI - s tan- 1 -sinn' cos tan p 
sin2a- Sin0.cos2 _ 

Making- successively 22? 30', 45?, 67? 30', and, for the odd term, 90?, we find, after a 

few obvious reductions, that eight times the value of the integral is 

(17 2 2 1 

{+A/2 (450, 67)+ A2(45% 22i)} cos 45-0 tan-' {Co 45?.tan 60?} 

1 9 1 
-cos tan-' {cos 30?. tan 60?} - A(30, 45) 

tan-' {A(30, 45?).tan 60?} 

_tan-' {A(30, 672) .tan 60?} .cos2 22~ tan-' {A(30?, 221) .tan 60?t .cos267 
A2(45?, 672) .A(300, 672) A2(450, 22) .A(30?,221) 

3 2 
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428 MR. C. W. MERRIFIELD ON A NEW METHOD OF APPROXIMATION 

As these inverse tangents range generally from 45? to 60 , I computed them by the 

shortened formula of paragraph 22, namely log( sin. )c+-t; this being sufficient to 

give eight figures of decimals accurately. I found 

log tan-' cos 45? tan 60?} =9-94747 15296, 

log tan-' {cos 30? tan 60?} =9-99246 23739, 

log tan-'A(300, 450) tan 60?} =0-00766 92607, 

log tan-' A(30?, 671).tan 60?} =9-99727 33807, 

log tan-' tA(30?, 221).tan 60?} =0-01665 09657. 

I hence obtained the following values:- 

For the positive terms. 

7-10091 3039 
For the n, 

1-134 

4-37212 6152 0-725 

2-70421 6251 1-668 

14-17725 5442 0-167 

3-69590 9978 3-695 

8)10-48134 5464 

1-31016 8183 value required 

A more exact value of the integral, otherwise obtained, is 

egative terms. 

i83 2441 

M39 4027 

;39 9478 

'28 4032 

i90 9978 

iF(30?, 6O?)+tan- (4 in 6 131016 8161, 

which differs from the previous value by 2 units in the eighth decimal place. 
28. In order to find how many places ought to have been accurately obtained, I 

13 
observe that the method followed gives N=-, r=1, whence 

log ( v/N) =9-95491=log sin 64? 20' 30". 

The corresponding meridional parts are 5086'5, which must be multiplied by i=8, 
giving 40692'0. Referring to the Table in paragraph 14, I find that this nearly corre- 
sponds to ten places correct, and therefore that the integral ought to be correct to at 
least that extent. That it is not so, is due to my having curtailed the formula for 

finding the logarithms of the inverse tangents. But my object was only to give seven 
decimals correct, and my going beyond that was simply because, with a ten-figure 
Table, putting down the additional figures gave me less trouble (once I had to use more 
than seven) than abbreviation would have done. This remark may at first sight seem 

strange to any one who has not had some practice in using large Tables. But the loga- 
rithmic corrections are given in the shape of arithmetical complements: with reference 
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to the 10th figure, therefore, considered as an integer, the index is right as it stands, 
and we need not bestow thought on the proper placing of the correction, as we must if 
we use any other number of figures. 

29. If we had been content with five decimals, the calculation would have been very 
easy, for in that case we might have used six-figure logarithms, and have made i =4, 
thus omitting the terms containing 22?1 and 67?. We should get 

7'10091 3039 1-13483 2441 

1-86022 6468 0-72539 4027 

4)5-24068 6571 1.86022 6468 

1-31017 1643 value required. 

30. It is worth while to notice a case which will sometimes occur, namely (using the 
notation of the last example), that the values may be so selected as to give, for one of 

the values of k, sinsin .si cos, and thus each of the terms into which Szkdp was 

divided would become infinite. Of course the difficulty is only apparent; for in this 

case the proper value is Sz,kdpJ(l sin2 sin2 )2' of which the integral may be at once 

sinTbp.cos found by differentiating the expression 1-sin 2asin 

SECTION III.-Extension of the Method. 

In respect of rapid approximation and precision of limit, the foregoing processes 
leave nothing to be desired, as far as concerns the radical of the square root; but they 
do not go beyond that. Mr. SYLVESTER has given an elegant extension of the method 
to radicals of a higher index, by means of symmetric functions*. 

The more general problem before us is that of approximating to the integrals of 
irrational functions by means of rational substitutions. 

Let p and 4 be functional symbols, and y a function of z; then, that @(z).ym and 

p(z) ym should both be approximations to p(z), depends upon ym approaching unity as m 
increases. Assuming that ym and y, are connected by the equation y.=4i(m, y,), our 

problem is to choose ? so that, in the first place, the approximation shall be exceedingly 

rapid, and, in the next place, that p(z). y and p(z):y, shall both (or at least one of 

them) be thoroughly manageable, and easily integrable. In the case of the approximants 

already given, the equation ym=(m1n,y) has been made j 2--=mJ Y-y2 

I am acquainted with three general methods which effect the object more or less. 

The first is the obvious one afforded by the Newtonian approximation to the roots of an 

equation; viz., let a be a first approximate solution, obtained by trial, of the equation 

fx=0, and call f'x the differential coefficient of fx; then a second approximation is 
* See the Philosophical Magazine for December 1860, Supplementary Number, vol. xx. p. 525, note A. 

429 
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fa fb 
a-y-fi=b; a third approximation will evidently be 6--f-=c, and so forth. If we apply 

this method to the pure equation x"=p, the convergent terms which we obtain are as 
follows:- 

(n- 1)an +p 
na-n- 

_(n- 1) (n -l)a +p} n +n..p.an(n-l & 
n2an-' (n-1)a-p}- ,-'1 

The second method is that of the reversion of series; it is sufficiently discussed by 
ARBOGAST *. 

The third method was suggested to me by Mr. CAYLEY'S remark that Mr. SYLVESTER'S 
third approximation is a particular case, for n=2, of the common form (of the books on 

~ Xthe binomial theorem) (n + 1)N + (n- ] )an 
the binomial theorem) a,/N- (n- )N + (n+ 1)an a, approximately, a being a first approxi- 

mation. In order to gain generality, and thereby symmetry, I shall pass from the par- 
ticular form /-N to the more general p-'N by the following Lemma:- 

Let N=aO+alx+x+a2x+3+ . ....... .. (1.) 
and let x,, x2, x, x4 ....be determined by the system of equations, 

N=a(l+ao l) 

= (+a1 , (1 +.)) . ...a2. (2.) 

= (1+ a3 
a(1 

a+ 
(1+ ))) 

J 

and so forth; also let N--ao0=P, and 

1(-ax-a2 - a3X 3- ... .)(X0+X1++X2+ + *...), . (3.) 
then x AI A 2_n-1 XI- - x~ = ,- 1 2 A 3-.3 An 

For, if we substitute these values in the equations (2.) after placing them in the 
following form, 

,u=N- ao=alx A 

=ax23+a2x2x+ , J 

=ax3+S-ax3x+a-xx2x, .. (4.) 
and so forth, we obtain 

a1A a_alAX+a2 aXo_^alA2 Al+ + (+), 
3O. &C. (5.) 

which are the same equations as we should get by multiplying the two series in (3.) and 

equating to zero the coefficients of x and of its powers. The coefficient Ao=-, 
obviously. 

* Calcul des Derivations, pp. 288-296. 
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The coefficients X may now be found in a variety of ways; by solving equations (4.) 
or (5.), by simple division, or by ARBOGAST'S processes *. The object of the preceding 
lemma is to connect the quantities x, with the coefficients of division and of recurring 
series. Our results in any way are, 

a, _ alp__ 

al 
a2Fe + al 
a22 +? a, 2, 

'ap3 + 2a 2ap + a l3 S 

ap,'3 
? 

2a2at 2+ a213 
4- a4+ (2a3g1 + a22)p2+ 3a2a12.+ al4' 

If for a,, a, &c. we substitute the coefficients of the binomial theorem, so as to make 

N=(a+x)", we obtain 

(n- l)an+N 
a+1= na . a, 

na7, 

(n- 1)a" + (n + 1)N 
a+X2=-(n+ 1)an+ (n- 1)N a, 

(nS-- 1)a2n + (4n2 + 2)a"N + (n2- 1)N2 
a+ 3-(n+ 1)(n+ 2)a2 +4(n2-- )alN + (n--1) (n--2)N2. a. 

Making n=2, we obtain Mr. SYLVESTER'S approximants to the square root, and X, is then 
the coefficient of xn in the development by ascending powers of 

1 

(N-a2)-2axa-x; 

and so far the method agrees with the Newtonian approximation by continued fractions; 
but from this point the two methods diverge. For n- 3, X, is the coefficient of x" in the 

development of 
1 __ 

(N-a3)--3ax--3ax2~xa 

and the successive approximants are 
2a3+ N a3 +2N 4a6+ 19a3N+4N2 5a9+45a6N+30aS3N+N3 

3a3 .a, 2a3-+N.a 10a6+16aN + N2 a 15a9+51a6N+l5a3N2 * a &c.; 

while the second approximant obtained by successive substitution is 
16a9 + 51a6N + 12a6N 2+ 2Na 

36a6a+36a6N + 9a3N2 a 

What these methods all effect is simply a rational approximation to the value of y in 
du 

the equation p (y,z)=0. Then, making y=dz, we have only to integrate in order to 

find the value of u. They thus constitute a means of approximately solving, in respect 

of u, differential equations of the form p (, d) = -0; but they do not effect the solu- 
dp U"wt- Onu;erez~e ou 

* See his ' Calcuil des Drivations,' pp. 26, 29; or DE MORGA, ' Diff. Calc.' p. 331. 



432 MR. C. W. MERRIFIELD ON A NEW METHOD OF APPROXIMATION 

tion of this equation in respect of z, and still less do they solve the more general form 
i du\ d 
Btt:dz, 

It may suggest processes of reduction in some cases to remark, that there are many 
other functions of y, and p(z), which will approximate to p(z) as m increases, besides 
the simple product or quotient of @(z) by ym. 

There is one point about these higher approximants, of which a solution, even if 

accompanied with considerable restrictions, would be extremely desirable,-I mean the 
resolution of the denominators into factors. I do not suppose that the problem, in its 

perfectly general form, admits of a compact solution; but any class of cases, of even 
moderate generality, for which it could be elegantly solved, would probably have very 
useful applications. The criterion of convergence and the measure of approximation 
would also have their interest. 
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Specimen sheet of work for the Table. 
log sin 221= 9-58283 96605 83* 

log sinA = 9'93753 06316 96 

log sin M = 9'52037 02922 79 

log sinL = 9-52039 09944 

s = -2 07021 

s tan2 L = 25546 

log tan2 L= 9-0913166 

log s= 5-3160144 

4'4073310 

s+1 
-233 

s tan'L= 

log c= 4'4073077 

log cos L=9-97473 27132 

c= + 25545 

log A=9-97473 52677 
.. . - , 

log sin 45?= 9'84948 50021 68* logtan2L= 9-7781471 log cos L=9-89794 07883 

log sin A = 9-93753 06316 96 logs= 4-1137763 c= - 7797 

log sin M = 9'78701 56338 64 3*8919234 log A=9'89794 00086 

log sin L = 9-78701 43344 s+ 2 
s = + 12995 stan2 L= + 

s tan2 L = 7821 log c= 3-8919255 

log sin 67 = 9'96561 53459 21* log tan2 L= 10-2501550 log cos L=9-77806 24352 

log sin A = 9-93753 06316 96 log s= 4'7816118 c= - 1 07593 

log sin M = 9-90314 59776 17 5-0317668 log A=9'77805 16759 

log sin L = 9.90313 99296 s 
+168 

s = + 60480 s tan2L= J 

stan2L = 1 07589 log c= 5-0317836 

log tan22== 9'61722 43146 62* log sin2 L 8-6140815 log cos 22-=-996561 53459 21* 

log cosA = 9-69897 00043 36 log t= 5*5451559 log sec L =0'00911 84784 

log tanM = 9-31619 43190 08 4-1591374 9-97473 38243 

log tan L = 931615 92213 t-- c= + 14430 +.327 
t = + 3 50877 t sin2L= log A=9-97473 52673 

tsin2 L =14018 log c= 4-1591701 

logtan45 =10'00000 00000 00* log sin2 L= 9-3009948 log cos 45 =9-84948 50021 68* 

log cos A = log t= 5'3429218 log sec L =0-04845 06017 

log tanM = 9-69897 00043 36 4-6439166 9'89793 56039 

log tanL = 9-69894 79790 t- 1 c= + 44049 
+ 176 

t = +2 20253 t sin L=- log A=9'89794 00082 
tsin L = 44047 log c= 4-6439342 

log tan 67-= 10-38277 

log cos A = 969897 

log tan M = 10-08174 

log tan L =10-08175 

t = 
t sinQ L - 

56853 38* 

00043 36 

56896 74 

16044 

59147 

35075 

log sin L= 9-7730722 

log t= 4-7719327 

45450049 

tI - 24 
t sin L= J 

log c= 4-5450025 

log cos 67=-9-58283 96605 83* 

log sec L =019521 55228 

9-77805 51834 

c= - 5075 

log A=9'77805 16759 

Vote.-The entries marked *, and the whole of the letter-press, were printed on the sheets. The letter A 
en this page corresponds to 0 in the Table. 

MDCCCLXII. 3 N 

433 

Arc of 60?. 
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Table of the value o v f the function log A(O, 6) or log V(1 -sin2 0. sin) for four values 

of w,viz. 220 30', 450, 67? 30', and 90?. 

4. log A (8, 22 30'). log A (Q, 45?). log A (0, 67? 30'). log cos 0. . 

9-99999 03138 
9-99996 12643 
9-99991 28792 
9-99984 52048 
9-99975 83051 

9-99965 22633 
9'99952 71805 
9-99938 31764 
9*99922 03891 
9-99903 89748 

9-99883 91084 
9*99862 09825 
9-99838 48090 
9-99813 08170 
9-99785 92542 

9-99757 03868 
9-99726 44986 
9-99694 18915 
9-99660 28857 
9-99624 78189 

9-99587 70469 
9-99549 09429 
9-99508 98979 
9-99467 43204 
9-99424 46358 

9-99380 12870 
9-99334 47337 
9-99287 54524 
9-99239 39363 
9-99190 06948 

9-99139 62526 
9-99088 11517 
9-99035 59484 
9-98982 12144 
9-98927 75363 

9-98872 55150 
9-98816 57654 
9-98759 89157 
9-98702 56072 
9-98644 64943 

9-98586 22425 
9-98527 35294 
9-98468 10429 
9-98408 54812 
9-98348 75524 

9-99996 69274 
9-99986 77197 
9-99970 24074 
9-99947 10407 
9-99917 36910 

9-99881 
9-99838 
9-99788 
9-99732 
9-99670 

9-99601 
9-99525 
9*99443 
9-99355 
9-99260 

9-99159 
9-99051 
9'98937 
998817 
9-98691 

9-98558 
9-98420 
9'98275 
9-98125 
9-97968 

04507 
14325 
67716 
66254 
11740 

06211 
51957 
51515 
07689 
23560 

02501 
48183 
64594 
56060 
27246 

83197 
29331 
71478 
15899 
69297 

9-97806 38852 
9-97638 32245 
9-97464 57677 
9-97285 23905 
9-97100 40265 

9-96910 
9-96714 
9-96513 
9-96308 
9'96097 

9-95881 
9-95661 
9-95437 
9-95208 
9-94974 

16705 
63813 
92852 
15797 
45359 

95031 
79121 
12781 
12065 
93945 

9-94737 76364 
9-94496 78273 
9-94252 19663 
9-94004 21611 
9-93753 06317 

9-99994 35386 
9.99977 41349 
9-99949 17311 
9-99909 62308 
9-99858 74990 

9-99796 
9-99722 
9-99637 
9-99541 
9-99433 

9'99313 
9-99183 
9-99041 
9*98887 
9-98721 

9-98544 
9-98354 
9-98153 
9-97940 
9-97715 

9-97478 
9-97229 
9-96968 
9-96694 
9-96408 

9-96109 
9-95798 
9-95474 
9-95137 
9-94788 

9-94425 
9-94049 
9-93660 
9-93258 
9'92842 

9-92412 
9-91969 
9-91512 
9-91041 
9-90556 

9-90057 
9-89543 
9-89015 
9-88473 
9-87916 

53618 
96070 
99831 
62004 
79300 

48042 
64168 
23213 
20337 
50300 

07479 
85857 
79027 
80200 
82198 

77462 
58056 
15661 
41603 
26837 

61968 
37258 
42643 
67741 
01877 

34100 
53211 
47788 
06231 
16784 

67607 
46797 
42488 
42888 
36388 

11640 
57674 
64024 
20869 
19193 

9'99993 
9-99973 
9-99940 
9-99894 
9-99834 

9-99761 
9-99675 
9-99575 
9-99461 
9-99335 

9-99194 
9-99040 
9-98872 
9-98690 
9-98494 

9-98284 
9'98059 
9*97820 
9-97567 
9-97298 

9-97015 
9-96716 
9'96402 
9-96073 
9-95727 

9-95366 
9-94988 
9-94593 
9-94181 
9-93753 

9-93306 55951 
9-92842 04835 
9-92359 14023 
9-91857 42135 
9-91336 45194 

9-90795 
9-90234 
9*89653 
9-89050 
9-88425 

9-87777 
9-87107 
9-86412 
9-85693 
9*84948 

38497 
53589 
44063 
07898 
42260 

43489 
07098 
27754 
99270 
14589 

65764 
43940 
39328 
41185 
37781 

16370 
63156 
63255 
00654 
58164 

17377 
58605 
60827 
01625 
57115 

01869 
08840 
49269 
92587 
06317 

0 
1 
2 
3 
4 
5 

6 
7 
8 
9 

10 

11 
12 
13 
14 
15 

16 
17 
18 
19 
20 

21 
22 
23 
24 
25 

26 
27 
28 
29 
30 

31 
32 
33 
34 
35 

36 
37 
38 
39 
40 

41 
42 
43 
44 
45 

0 

3 
4 
5 

6 
7 
8 
9 

10 

12 
13 
14 
15 

16 
17 
18 
19 
20 

21 
22 
23 
24 
25 

26 
27 
28 
29 
30 

31 
32 
33 
34 
35 

36 
37 
38 
39 
40 

41 
42 
43 
44 
45 

76446 
86165 
21441 
25944 
39665 

98629 
34581 
74638 
40901 
50022 



APPLICABLE TO ELLIPTIC AND ULTRA-ELLIPTIC FUNCTIONS. 

TABLE 

(continued). 

I. log A (0, 22? 30'). log A (,, 45?). log A (0, 67? 30'). log cos . 0. 
_ - _ - . ,,- I- - 

9-93498 97136 
9-93242 18620 
9-92982 96543 
9-92721 57944 
9-92458 31150 

9-92194 45794 
9-91927 32846 
9-91660 24627 
9-91392 54820 
9-91124 58470 

9-90856 71996 
9-90589 33160 
9-90322 81075 
9-90057 56154 
9-89794 00084 

9'89532 
9-89273 
9*89017 
9-88765 
9'88516 

9-88272 
9-88033 
9-87800 
9-87572 
9'87350 

9-87136 
9-86928 
9-86729 
9-86538 
9-86356 

9-86183 
9-86020 
9-85867 
9-85725 
9-85593 

55788 
67330 
79885 
39622 
93618 

89739 
76506 
02961 
18497 
72689 

15099 
95088 
61579 
62846 
46269 

58088 
43157 
44678 
03958 
60134 

9-85473 49940 
9-85365 07456 
9'85268 63874 
9-85184 47281 
9-85112 82461 

9'85053 
9-85007 
9-84974 
9-84955 
9-84948 

90708 
89667 
93212 
11322 
50022 

9-87344 
9-86758 
9.86156 
9-85540 
9-84910 

9-84264 
9-83603 
9'82928 
9-82238 
9*81534 

9-80815 
9-80083 
9179337 
9178577 
9177805 

9-77020 
9-76224 
9-75417 
9-74601 
9-73776 

50980 
09423 
89166 
86587 
00105 

30543 
81532 
59976 
76555 
46333 

89399 
31625 
05490 
51006 
16759 

61055 
53190 
74828 
21530 
04387 

9-72943 51756 
9172105 11125 
9-71262 51046 
9-70417 63081 
9-69572 63771 

9-68729 96519 
9-67892 33280 
9-67062 76041 
9-66244 57824 
9-65441 43168 

9-64657 27859 
9-63896 37732 
9-63163 26324 
9'62462 71226 
-961799 68925 

9-61179 28070 
9-60606 61106 
9-60086 74357 
9-5962456795 
9'59224 67793 

9'58891 
9-58627 
9-58437 
9-58322 
9'58283 

24439 
88989 
57166 
48116 
96696 

9.84177 
9'83378 
9-82551 
9'81694 
9-80806 

9-79887 
9178934 
9177946 
9-76921 
9-75859 

9-74756 
9-73610 
9-72420 
9-71183 
9-69897 

9-68557 
9-67160 
9-65704 
9-64184 
9-62594 

9'60931 
9-59187 
9'57357 
9-55432 
9-53405 

9'51264 
9-48998 
9-46593 
9-44033 
9-41299 

9-38367 
9-35208 
9-31787 
9'28059 
9-23967 

12731 
33303 
08951 
29168 
74967 

18039 
19787 
30249 
86852 
13013 

16513 
87645 
97077 
93361 
00043 

12291 
92909 
67649 
19615 
82593 

32999 
80116 
54170 
91617 
16846 

19176 
23640 
53400 
80750 
62305 

51767 
80330 
89102 
88450 
02300 

9-19433 24413 
9-14355 53039 
908589 44712' 
9-01923 45656 
8-94029 60083 

8-84358 45184 
8-71880 01636 
8-54281 91639 
8-24185 53184 

-log. infin. 
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46 
47 
48 
49 
50 

51 
52 
53 
54 
55 

56 
57 
58 
59 
60 

61 
62 
63 
64 
65 

66 
67 
68 
69 
70 

71 
72 
73 
74 
75 

76 
77 
78 
79 
80 

81 
82 
83 
84 
85 

86 
87 
88 
89 
90 

9'98288 
9-98228 
9'98168 
9-98108 
9'98048 

9'97989 
9'97929 
9'97870 
9'97812 
9.97753 

9-97696 
9'97639 
9'97583 
9'97527 
9'97473 

9-97420 
9'97367 
9'97316 
9-97265 
9-97216 

9'97169 
9-97123 
9-97078 
9-97034 
9'96993 

9-96952 
9-96914 
9-96877 
9'96842 
9'96809 

9-96778 
9-96749 
9-96721 
9'96696 
9'96673 

9-96652 
9.96633 
9.96616 
9.96602 
9-96589 

9*96579 
9-96571 
9*96566 
9-96562 
9-96561 

79722 
74657 
67640 
66053 
77326 

08943 
68415 
63285 
01111 
89457 

35878 
47918 
33090 
98869 
52675 

01874 
53742 
15478 
94174 
96810 

30239 
01175 
16179 
81644 
03790 

88643 
42028 
69551 
76594 
68303 

49569 
25025 
99032 
75670 
58731 

51705 
57778 
79819 
20377 
81672 

65594 
73697 
07187 
66934 
53459 

46 
47 
48 
49 
50 

51 
52 
53 
54 
55 

56 
57 
58 
59 
60 

61 
62 
63 
64 
65 

66 
67 
68 
69 
70 

71 
72 
73 
*74 
75 

76 
77 
78 
79 
80 

81 
82 
83 
84 
85 

86 
87 
88 
89 
90 


