

CONTRIBUTIONS TO BIOLOGY from

The Hopkins Seaside Laboratory of THE

LELAND STANFORD JR. UNIVERSITY

nxxix

THE FISHES OF PANAMA BAY

By CHARLES H. GILBERT and EDIVIN C. STARKS

[Reprinted from the Memoirs of the California Academy of Sciences
Vol. IV]

\%. The Fishes of Sinaloa. By David Starr Jordan. pp. 142. 22 julates.
2. On the Cranial Characters of the Genus Sebastodes. By Frank Cramer. pp. 42. 14 plales.
3. The Fishes of Puget Sound. By David S. Jordan and Edwir C. Starks. pp. 7 r. 29 plates.
4. New Mallopliaga, I, with special reference to a Collection made from Maritime Biris तi the Bay of Monterey, California. By Vernon L. Kgrefons ir ick isplates.
5. Netas on Fishes, Little Known or New to Science. By David Starr Jordan. pp. 48. 24 plates.
6. Notes on Fresh Water Fishes of the Pacific Slope of North Amerlca. By Cloudsley Rutter. Descrlption of a New Species of Pipe-Fish (Siphostoma sInaloae) from Mazatlan. By David S. Jordan and Edwin C. Starks. Notes on Deltistes, a New Genus of Catostomoid Fishes. By Alvin Seale. pp. 29.
7. New Mallophaga, 11, from Land Birds, together with an account of the Mallophagous Mouth-Parts. By Vernon L. Kellogg. pp. 118. I4 plates.
8. List of Fishes Collected at Port Ludlow, Wash. By Edwin Chapin Starks. pp. i4. 2 plates.
9. Marine Fossils from the Coal Measures of Arkansas. By James Perrin Smity. pp. 72. 9 plates.
10. Sclentific Names of Greek and Latin Derivation. By Walter Miller. pp. 3 I.
11. A Morphological Study of Naias and Zannichellia. By Douglas Houghton Campbell. pp. 65. 5 plates.
12. Geology of the Paleozoic Area of Arkansas South of the Novaculite Region. By George H. Ashley. 3I cuts. 2 maps
13. The Development of Glyphloceras and the Phylogeny of the Glyphioceratidæ. By James Perrin Smith. pp. 28. 3 pinles.
14. A Geological Reconnaissance of the Coal Fields of this Indian Territory. By-Noai Fields Drake. pp. 93.
15. Duseription of a Species of Fish (Mitsukurina Owstoni) from Jepan, the Type of a Distinct Family of Lamnoid Sharks. dy Devio Starr Jordin. pp. 5. 2 plates.
16. The Devolopmont of Lytooeras and Phylloceras. Ky James Perrin Sattit. pp. 32. 5 plates.

NOTICE

AFTER CAREFUL EXAMINATION OF THE INNER MARGIN AND TYPE OF MATERIAL WE HAVE SEWN THIS VOLUME BY HAND SO IT CAN BE MORE EASILY OPENED AND READ.

4 Eang
$\cos \cos$ $+-8 i n$ 4hene
ion en in
-$48-E T t$ $i=\frac{1}{4}$

92 230 -646
 Fishes

 CONTRIBUTIONS TO BIOLOGY

 CONTRIBUTIONS TO BIOLOGY

 from

 from
 The Hopkins Seaside Laboratory of the

LELAND STANFORD JR. UNIVERSITY

XXXII

THE FISHES OF PANAMA BAY

By CHARLES H. GILBERT ANロ EDUTIN C. STARKS
[Reprinted from the Memoirs of the California Academy of Sciences Vol. IV]

PREFATORY NOTE.

This memoir is the thirty-second of a series designed to illustrate investigations and explorations connected with the Hopkins Seaside Laboratory, an adjunct of the biological laboratories of the Leland Stanford Junior University. These investigations have been carried on by means of the assistance given by Timothy Hopkins, Esq., of Menlo Park, California. This memoir appears in the publications of the California Academy of Sciences, the present edition being a reprint.

Oliver P. Jenkins,
Charles H. Gilbert,
Directors Mopkins Laboratory.
Date of publication, February 6th, 1904.

THE FISHES OF PANAMA BAY.

1 1
CHARLES H. GILBERT AND EDWIN C. STARKS.

Contents.

I'lates I XiNifl.
Introduction 3
List of New Species 5
Systematic Account of Species 5
General Remarks on Distribution 205
Table of Distribution 206
Bibliography 219
Explanation of Plates 228
Index 293

Jntroduction.

The ichthyologic history of Panama Bay falls maturally into three periods. The first, begimning with 1860, depended upon the aetivity of Captain John M. Dow, whose collections, forwarderl to the Smithsonian Institution and to the British Museum, were reported upon by Dr. Theodore Gill and Dr. Albert Giinther. This early work eulminated in 1869 throngh the publication of Cuiuther's "Fishes of Central America," which contains an admirable summary of the state of our knowledge at that date, with valuable disenssions of the faumal relations of both marine and freshwater forms.

The second period was eharacterized by the work of Dr. Franz Steindachner, based in part upon his own collections, in part npon material obtained throngh varions correspondents. No general summary was given by him, but the diagnoses of new species, which appeared in his series" of "Notizen" and "Beitr"̈ge" (See Bibliography), form a model of accurate and detailed work of that deseription.

The third period has resulted from investigations undertaken either directly or with the assistance of the United States Fish Commission and the Smithsonian Institution. Under their auspices Dr. Gilbert made in 1881 large collections of the fishes of Panema, which served as the basis for numerous papers by Jordan and Gilbert. A second and much larger collection, made by him in 1883, was unfortnnately destroyed by fire, together with all field-notes and the manuseript report then ready for the printer. The only record of this material is embodied in a list published by Jordan (1885). The new species indicated in that list remained, for the most part, still undesrribed and umrepresented in any museum at a period ten years later!

The dee ver waters off the Panama Bay, out as far as the Galapagos Islands, were thoroughly explored by the United States Fish Commission steamer Albatross in 1888 and 1891. Reports upon the fishes thas obtained have been given by Jordan and Bollman (1889), by Gilbert (1890 b), and recently in most admirable and complete form by Garman (1899).

The following account of the fishes of Panama Bay is based primarily upon material obtained in 1896 by an expedition from the Leland Stanford Junior University, generonsly equipped and sent out by Mr. Timothy Hopkins of Menlo Park, California. The party consisted of Dr. C. H. Gilbert and Messrs. E. C. Starks, C. J. Pierson and R. C. McGregor. During the six weeks (January 10th to February 24th) spent in residence at Panama, an almost hourly inspection of the excellent fish-market was maintained; the tide-pools of the reef were explored, and the rocks and islands near the city were investigated by the aid of dynamite. The effectiveness of the party became so reduced by illness during the last weeks of their stay, that they were unable to carry out that part of their plans which contemplated the exploration of the Pearl Islands on the one hand and the rivers of the Isthmus on the other. These localities offer still a rieh field for investigation. Of the two hundred and eighty-three marine species obtained, forty-three were new, and inehded among them all but four (Tylosurus sp., Cynoscion sp., Scarus sp., and Citharichthys sp.) of the still andeseribed forms of the list of 1885 . Descriptions of many of the new species have already appeared in the different volumes of Jordan and Evermann's "Fishes of North and Middle America," and full accounts of all appear in the present paper.

We have admitted to our list all previous records of fishes from Panama Bay, unless good reason exists for doubting their validity. Several general references to "Panama," in Jordan and Evermann's work above cited, seem not to be based upon special records, and are rejected by us, even where there is a general probability of their occurrence at Panama in view of the known range of the species. Of the fishes obtained by the Albatross, we lave included such only as were dredged within the fifty-fathom line. Even when thus restrieted, the assemblage is fond to contain many forms which are rarely or never taken along shore, and seem to constitnte a sublittoral fauna of characteristic shallow-water species. The genera Prionotus, Symphurus and Diplectrum offer numerons examples of such species.

List of New Splecies.

Types of all new species are deposited in the Ichthyological Collections of the Leland Stanford Junior University, and bear the numbers, indicated in the following list:-
Carcharias velox 11 s: $)^{3}$ Lutiamus jordani.................................... 11988
Circharias cerdale 11884
Carcharias azureus 118:0
My-liobatis asperrimus $118: \%$
Galeichthy's xenatuchen 5821
(a leichthys eigemmami 6986
T'achysurus emmelane 5818
Tichysurus evermanni 670%
Tachysurus steindachneri 7020
Pisoodonophis disppilotus. 5×20
Murena clepsydra (6) ${ }^{2} 7$
Anchovia rastralis 5812
Anchovia mundeola. 5817
Anchovial maso 5816
Anchovia starksi. 5814
Cetengraulis engymen 5815
Hemiramphus saltator. (is)
I'istularia corneta. 6808
Oligoplites refulgens 6799
Hemicaranx zelotes. 5819
l'eprilus snyderi 68800
Lobotes pacificus. 5883

Family GINGLYMOSTOMIDE.

1. Ginglymostoma cirratum (Gmelin).

A single specimen taken, 27 cm . long. The borly and fins are light brownish, marked with small black spots about as large as pupil, those in front of dorsal arranged rather uniformly in cross-series. Snout unspotted. Lower side of head whitish, unspotted.

Fimily GALEID.E.

2. Mustelus lunulatus (Jorilen \& Gilbert).

Plate I, Fig. 1.
Five specimens were secured seeming to agree in all respects with an individual collected loy Dr. Jordan from the type locality, Mazatlin. In a young male 53 cm . long the claspers do not project beyond the edge of the ventral fin; in another 64 cm . long they are fully developed, protruding beyond edge of ventral for about 4 cm . A male from Mazatlan (68 cm . long) has the elaspers undevelopect, not reaching beyond margin of ventrals. This seems to indicate considerable irregularity in the sexual development of the species. The young of M. hunulatus are as yet nuknown.

The Panama specimens agree well with the origimal description of the species, except in the following respects:-
(a) Distance from insertion of first dorsal to anterior root of pectoral $\frac{2}{5}$ (not "abont $\frac{1}{3}$ ") its distance from tip of smout. This discrepancy is due, however, to an error in the original description. Mr. Barton A. Bean has kindly re-examined the type, and states that the first distance is contained about $2 \frac{2}{3}$ times in the second.
(b) Distance between dorsals $2 \frac{1}{3}$ to $2 \frac{1}{2}$ times (not " $2 \frac{2}{3}$ times") base of first, and 22^{2} to $3_{\frac{1}{3}}$ times ("a little more than 3 times") base of second. Mr. Bean gives base of first dorsal 2_{2}^{2} and base of second dorsal $3 \frac{1}{2}$, in the interspace between dorsals. This interval is therefore longer in the type than in any of the Panama spocimens. The latter agree, however, with the Mazatlan specimens above mentioned.

A specimen of $\%$. lunulatus in the United States National Museum (No. 46838), taken by the "Abatross" at the month of the Mulegé River, Gulf of Califormia, has the proportions of the type. The base of the first dorsal, excluding the fleshy hump which precedes the rays, is contained 2_{3}^{2} times in the interval between dorsals, the base of the second dorsal $3 \frac{1}{2}$ times in this interval. It is evident, therefore, that the size and relative positions of the dorsal fins must be used with caution for specific distinction.
(c) Middle of dorsal base usually midway between axil of pectorals and anterior insertion of ventrals, sometimes very slightly nearer pectorals. In none of the Panama specimens is it nearer the base of the pectorals by a distance equaling the diameter of the eye, as given in the description of the type (slightly less than this in the type according to Mr. Bean).

Following are dimensions of a P'anama specimen:-
Total length. 53nim.
leength of head
Length of snout 43
I iameter of orbit 17
Length of spiracle 3.5
Length of middle gill-silit. 14
Distance from tip of shout to front of mouth $3+5$
Distance from tip of snout to inner angle of nostrils. 27
Distance between nostrils $1+$
Distance between angles of mouth 28
Distance from tip of mandible to line joining posterior angles of lips.... 21
Extreme length of upper lip 5.5
Extreme length of lower lip. S
Distance from tip of snout to base of pectorals 113
Greatest width of pectoral lase 23
Outer pectoral margin 71
Inner pectoral margin to
Distal pectoral margin 57
Axil of pectoral to base of rentrals. 107
Snout to base of ventrals 230
Outer edge of ventrals 40
Base of ventrals. mm.
Snout to base of dorsal fin proper, not including fleshy ridge 167
Base of first dorsal 51
Height of anterior margin of first dorsal (not including fleshy hump, at base) 65
Height of posterior margin 29
Distance between dorsals 125
Base of second dorsal 39
Distance from second dorsal to base of upper caudial lobe. 52
Length of upper candal tobe. 110
Distance from tip of caudal to base of notch $+1$
Distance from base of notch to origin of lower lobe 75
Distance from origin of lower caudal lobe to base of anal, 39
Base of anal 26

A specimen of Galens culifornicus from Magdalena Bay, Lower California (No. 1404 L. S. J. U.) compared with M. lemulutus has the fins less incised and with rounded angles, the snout broader and less pointed, the lips longer, about equaling width of nostril, and the dorsal more backward in position, its base contained three and one-fourth in its distance from snout. The angle of the month is also much greater.
G. culifornicus ranges to the sonthward along the entire coast of Lower California and thronghout the Gulf of Calitornia, where it is found associated with M. lumulatus. It occurs doubtless at Mazatlan, although it has not yet been recorded from that point. It was olstained by the "Albatross" in 1889 at Sau Quentin and Magdalena bays on the onter coast of Lower California, and in Concepeion Bay, San Luis Gonzales Bay, and at Station 3026 in the Gulf of California. The fretnses reported from Guaymas by Evermann and Jenkins (1891, p. 129), under the name of Galeus dorsalis, belonged to G. californicus, as is sufficiently evident from their measurements.

3. Galeus dorsalis Gill.

Plate. I, Fig. 9.
Previons diagnoses have called attention to the low, comparatively little-incised fins, and the short candal. More conspienons differences are foumd in the small size of the eye, the large spiracle, and the large nostrils. The diameter of the eye is contained $2 \frac{2}{3}$ to 3 times in the distance from tip of suont to front of npper jaw. In M. lunulatus of the same size, it is contamed twice in this distance. The width of the internasal septum is less than the distance from inner angle of nostrils to margin of snout, while greater than this distance in M. hmelutus. The spiracle is a long slit, $\frac{2}{5}$ or more than $\frac{2}{5}$ diameter of eye. The misal valve is smaller than in related species, prodnced mesially into a narrow flap, the width of which does not exceed $\frac{1}{3}$ width of nostril. The inner folds are also much simpler and smaller, and fail to conceal the olfactory membrane. 'The snout is narrower' and sharper, with the outlines less curved; it is also thinner, so as to appear whitisli-translucent. The pores on snout are much more conspicuous than in related species, and contribute to give it a spongy texture; they are numerous on top and sides of snont as well as below, and are clustered to form a conspieuons patch below front of eye. The shagreen is much coarser than in J. lumututus.

Both peetorals and ventrals have broad, romeded onter angles, and have the posterior margins straight or nearly straight when the fin is spread. The pectoral contrasts strongly with that of M. lumulatus, where the outer angle is prolonged, giving the fin a falcate shape. The tip of the pectoral reaches to or slightly beyond the vertical from the middle of the dorsal base. The first dorsal is low, with rounded anterior angle and gently concave margin, the anterior angle failing to reach the tip of the posterior angle when the fin is declined. Both dorsals are longer in proportion than they are in $1 /$. homutatus, and the candal pedmele as well as the caudal fin shorter. The base of the second dorsal equals in length the back of caudal peduncle; the base of the anal equals in length the lower side of the caudal peduncle. The bases of second dorsal and anal are much shorter than candal pedtncle in M. lumulutus. The angle of the lower caudal lobe is rounded or slightly angnated, never acute, the outline very gently concave next the angle. The margin of the posterior lobe is broad, evenly truncate when spread.

Following are measurements of a specimen from Panama:-
Total length.
ma. 468Length of head (to first gill-slit)84
Length of head (to last gill-slit) 107Length of snout
4
Diameter of orbi IO. 5
Length of spiracle Length of spiracle 4
Tip of snout to front of mouth 31
Tip of snotut to inner angle of nostrils 27
Distance between nostrils. 11
Distance between angles of mouth. 25
Distance from tip of mandible to line joining posterior angles of lips. 18
Extreme length of upper lip 7
Extreme length of lower lip , 6
Tip of snout to base of pectoral. 107
Widith of pectoral base. 24
Outer pectoral margin. 68
Inner pectoral mpargin. 39
Distal pectoral margin 47
Axil of pectorals to base of ventrals. 105
Snout to base of ventrals 233
Outer edge of ventrals 3^{6}
Base of ventrats 27
Snout to base of first dorsal 152
Base of first dorsal 52
Height of anterior nargin of first dorsal 53
Height of posterior margin of first dorsal 17
Distance between dorsals. 100
Base of second dorsal. 41
Back of caudal peduncle 41
Length of upper caudal lobe. 85
Tip of caudal to base of notch 30
Base of notch to origin of lower lobe 62
Origin of lower lobe to base of anal. 29
base of antal. 28

This species is known as yet ouly from the Bay of Panama. Like G. californicus, from which it differs widely in other respects, it has the yonng attached to the oviduct by a plaecota. The three specimens obtained by this expedition are all femates; one of them contains weil developed yomg.

4. Galeocerdo tigrinus Mïller \& Henle.

Recorded from l'amama by Jordan and Bollman (1889, p. 179), their specimen having been colleeted by the "Albatross." 'The speeies was not seen by the authors.

5. Carcharias æthalorus Jorden if Gillert.

Abundint at Panama, where it is used as fool though not highly prized. Small specimens only were seen. In a male abont 90 cm . long, the elaspers are very small, not reaching margin of ventrals. The teeth of both jaws are distinctly serrate in these young examples, the serre growing coarser towards base, equally present on the two margins. The interspace between dorsals is 5 to 6 times base of second dorsal (excluding the fleshy ridge before fin), and the base of anal considerably less than ($1 \frac{2}{5}$ in) its distance from catdal. In other respects the Panama speeimens answer well the original deseription.

6. Carcharias velox (Gillent).

Plate I, Fig. 3.

Carcharimus velor, Gilbert, Jordan \& Evermann, i898, p. 2747.
Distinguishable from other known sharks of the Pacific coist of America by the excessively long, slender, acute snour, the slender body, and the very long caudal fin.

Preoral portion of snout slightly more than $1 \frac{2}{3}$ times width of mouth, 5 times distance between nostrils, $1 \frac{2}{3}$ times width of smout opposite outer angles of nostrils, $1 \frac{1}{4}$ times interorbital width, $2 \frac{4}{5}$ times distance from chin to line joining angles of mouth. Nostrils tramsterse in position, the inner angle nearer mouth than tip of snout by a distance slightly less than length of nostril. Front of eye equidistant from nostril and front of mouth, the middle of eye nearer angle of mouth than nostril; diameter of eye less than mostril, slightly more than half longest gill-slit. Snout very porous. Folds at angle of mouth slightly longer than usual. Gill-slits rather wide, the middle slit $1 \frac{3}{4}$ times diameter of orbit.

Teeth of lower jaw very narrow, erect, very minutely serulate, appearing entire except with the lens. The species thus represents a transition between Carharias and the alleged gemus Hypoprion. 'Teeth in upper jaw very oblique, wide at base, with a deep notch on outer margin, the terminal cusp rather narrowly triangular.

Pectoral broadly falcate, the anterior margin convex, the distal edge concave, both angles rounded. Tip of pectoral reaching a short distance beyond base of first dorsal. Anterior margin of pectoral $2 \frac{2}{3}$ times the posterior (inner) margin, about $1 \frac{1}{8}$ times the distal edge. First dorsal inserted about the dimeter of orbit behind a vertical fron axil of pectomal; nearer pectoral, therefore, than ventral. The anterior margin is concave basally, convex on distal half, the anterior angle rounded. The free margin is concate, largely owing to the much produced acute posterior fobe. The vertical height exceeds the length of the base; the anterior lobe very high, extending beyond $t \mathrm{ip}$ of posterior when the him is derined, equaling $\frac{8}{8}$ length of anterior margin of pectome. Pusterior margin of first dorsal $3 \frac{1}{4}$ in the anterion margin. Base of first dorsal contaned $2 \frac{1}{2}$ times in interspace
between dorsals; base of second dorsal $6 \frac{2}{7}$ times. Margin of second dorsal gently concave. Front margin low, the angle broadly rounded, barely reaching posterior end of base when fin is declined. The posterior lobe is much procluced and acute, slightly longer than base of fin, the latter $\frac{5}{7}$ in the distance from its base to front of caudal pit. Upper lobe of caudal $3 \frac{2}{3}$ in total length; the lower lobe $2 \frac{1}{2}$ in the upper. Terminal lobe of catdal $3 \frac{2}{3}$ in the upper lobe. Anal larger than second dorsal, higher, with deeply incurved margin, its base a little longer, its origin slightly in advance of that of second dorsal; the posterior insertions of the two fins nearly opposite. Length of anal base $1 \frac{3}{5}$ in its distance from anterior edge of caudal pit.

Color bluish above, whitish or grayish below. Free margin of pectorals narrowly white, the anterior edge narrowly bordered with black, which is most evident when seen from the outer surface, the inner surface being dusky. The first dorsal is unmarked, the second dorsal has the anterior lobe dusky. Upper edge of caudal black, the lower margin faintly dusky. Fins otherwise unmarked.

A single specimen, a female, 120 cm . long, was procured in the Panama mar-

 ket. As preserved, it is partially skimed. The following measurements were taken when the specimen was intact, before preservation. Where not exactly agreeing with dimensions given above, the latter will be found more reliable.Ti) of snout to insertion of dorsal mm. 413
Base of first dorsal.
Distance between dorsals. 280111
Base of second dorsal 45
From second dorsal to front of caudal pit 73
Front of caudal pit to tip of caudal. 350
Tip of snout to axil of pectorals. 380Axil of pectorals to front of base of ventrals.
283Front of ventrals to front of anal
165Front of anal to front of caudal pit
116
Girth at Iront of first dorsal. $+51$

7. Carcharias cerdale (Gilbert.)

Plate II, Fig. 4.

Carcharimus cerdale Gilbert, Jordan \& Evermann, iSg8, p. 2746.
Body moderately compressed, not elevated, the depth at front of dorsal not more than onelourth greater than the oblique anterior margin of the dorsal fin, less than the distance from the nostril to the first gill-slit. Head clepressed, the snout flattened, long and narrow, acute. Length of snout beyond mouth $\frac{1}{6}$ to $\frac{1}{1}_{\frac{1}{0}}$ greater than distance between angles of mouth in all but one (the largest) specimen, where it is slightly less than width of mouth; $\frac{3}{5}$ to $\frac{4}{5}$ greater than distance from tip of lower jaw to a line connecting angles of mouth; $\frac{1}{7}$ to $\frac{1}{12}$ greater than width of snout opposite outer angle of nostrils. Interorbital width equaling distance from tip of snout to front of eye in the young, to middle or posterior border of eye in older specimens; less than half distance to first gill-opening. Middle of eye nearer nostril than angle of mouth by $\frac{1}{2}$ to $\frac{4}{3}$ its diameter. Distance from eye to nostril $\frac{1}{2}$ or slightly more than $\frac{1}{2}$ distance from nostril to tip of snout. Niddlle of nostrils much nearer front of mouth than tip of snout. Nasal flap with a very narrow, short, acute lobe, placed at end of imer thind of flap. Outer angle of nostrils nearly at margin of snout, the inner angles separated by a distance equaling or slightly exceeding that between inner angle of nostril and back of eye. Lips very little developed, the lower entirely concealed in closed mouth, the upper visible as a very short fold.

Teeth in lower jaw narrow, erect, serrulate on both margins, more coarsely so toward base. The serration is more conspicuous in the smallest specimens (45 cm .) , and is obsolescent on some of
the teeth in adults. Teeth in upper jaw broadly triangular, in front of jaw narrower and erect, those in sides of jaw growing at once broader and more oblique. The lateral teeth have a strong notch on the outer side. Both margins are strongly serrate, the serrations increasing toward base, one or more of those below notch sometimes enlarged and cusp-like in adults. Teeth about $\frac{28}{2} \frac{8}{8}$.

Conspicuous areas of large and of small pores on under side of head. Gill-openings of moderate width, the longest equaling distance between eye and nostril, the fifth much shortened, about ${ }_{4}^{3}$ length of first. Eye small, equaling length of nasal opening, $1 \frac{3}{4}$ to 2 in middle gill-slit.

Pectoral short and broad, the posterior margin not strongly incurved. Tip of fin extending to a vertical intersecting dorsal base at origin of its posterior third or fourth. Anterior margin of pectoral 3 times length of inner or posterior margin, the latter less than width of hase. First dorsal beginning behind a vertical from axil of pectorals a distance about equaling that which separates eye from nostril. Free margin of fin gently concave, the anterior angle extending to a point midway between base and tip of posterior lobe, when the fin is depressed. Base of first dorsal $2 \frac{1}{2}$ to $2 \frac{3}{5}$ in interspace between dorsals. Base of second dorsal 7 in interspace between dorsals, $2 \frac{1}{5}$ in its distance from anterior margin of pit. The origin of second dorsal falls over or behind middle of anal lase. The fin is but slightly concave, with rounded anterior angle; its posterior angle much produced; the posterior margin exceeding base of fin, which about equals length of anterior margin. Anal inserted more anteriorly than second dorsal, its base longer, its margin much more decply concave, the length of base contained about $1 \frac{1}{5}$ times in its distance from lower caudal lobe. Lower caudal pit in advance of the upper. The caudal is broad throughout, the lower lobe not falcate, slightly less ($\frac{1}{10}$ to $\frac{1}{4}$) than half length of upper lobe, which is about $4^{\frac{1}{4}}$ in total length. Shagreen coarse.

Color varying from light to dark gray above, the belly and lower part of sides whitish. Fins all dusky or grayish, the caudal often with a blackish border. Pectorals with or without a black tip, the latter when present not as conspicuous as in C. athalorus, usually not extended onto inner face of fin. A specimen 73 cm . long has the claspers undeveloped, extending slightly beyond margin of ventrals. Another specimen, 85 cm . long, has the claspers fully developed, extending beyond the margin of the ventrals for a distance of 5 cm .

Abundant at Panama, where numerous specimens were secured.

C. cerdale strongly resembles C. cethalorus, with which it is associated in the Bay of Panama. It is distinguishable at sight by the narrower gill-slits, broader and less falcate fins, and by the much less conspicuons black tips to the pectorals. The dentition is very dissimilar in the two, and makes it necessary to arrange them in different parts of the genus, C. cerdale belonging to the subgenus Platypodon.

8. Carcharias azureus sp. nov.
 Cazon Azul.

plate if, fig. 5.
Snout very short and bluntly rounded, its outline nearly parallel with cleft of mouth, the length of its preoral portion $1 \frac{2}{3}$ to $1 \frac{4}{3}$ in distance between angles of mouth, constantly greater than distance from chin to line joining angles of mouth, and very slightly ($\frac{1}{7}$ to $\frac{1}{10}$) less than distance between inner angles of mostrils. Width of snout opposite nostrils equals distance from angle of mouth to first gill-slit. Eye nearer mouth than nostril, nearer nostril than angle of mouth. Outer angle of nostril midway between tip of snout and middle of eye. Eye small, its horizontal diameter $\frac{3}{4}$ nostril opening. Nostrils converging along lines which meet a short distance behind symphysis. The anterior margin is produced into a short, triangular flap. Width of mouth equaling half length of head in front of grill-slits. Grill-slits wide, equaling or slightly exceeding the distance from eye to nostril, about equating length of branchiad area. Two very short diverging furrows visible at angle of mouth, one represeming as ustat the obsolescent upper lip.

Teeth in upper jaw broadly triangular, oblique, the anterior edge gently convex, the imner gently concave and often with a slight notch dividing the margin into equal parts. Teeth in lower jaw erect, narrowly lanceolate from a broad base. All the teeth are strongly serrate on both margins.

Pectorals long and wide, concave posteriorly, hence appearing falcate, their tips extending slightly beyond base of first dorsal. Both angles are broadly rounded. Upper margin of pectorals $3 \frac{1}{3}$ to $3^{\frac{1}{2}}$ times lower margin, and $1 \frac{1}{3}$ to $1 \frac{1}{4}$ times the posterior margin; its length equals that of head in advance of first gill-slit. A line joining axil of pectorals passes in front of orgin of first dorsal a distance equaling diancter of orbit. Base of first dorsal contained $1 \frac{2}{7}$ to $1 \frac{1}{3}$ times in anterior margin of fin, and $1 \frac{3}{4}$ or $1 \frac{4}{5}$ times in the interspace between dorsals. LPper margin concave, the posterior but little produced, contained 3_{3}^{2} to $3 \frac{5}{6}$ times in anterior margin. Second dorsal inserted well in arlvance of anal, the length of its base contaned $2 \frac{1}{2}$ to $2 \frac{2}{3}$ times in base of first dorsal, $4 \frac{1}{2}$ to $4 \frac{3}{4}$ times in the interspace, $1 \frac{2}{5}$ to $1 \frac{1}{2}$ times in its distance from front of caudal pit. Posterior lobe of second dorsal extends mearly half-way to origin of upper caudal lobe. Front of anal under end of first third of dorsal base, the two fins nearly equal in length, the anal perhaps slightly the longer. Margin of anal much more deeply concave. Distance from anal to orisin of lower caudal bobe contained i $\frac{1}{3}$ times in distance from second dorsal to origin of upper caudal lobe. Caudal slightly exceeding $\frac{1}{4}$ the total length; the lower lobe with rounded angle appearing bluntly falcate, contained $2 \frac{1}{4}$ times in upper lobe.

Color uniform light blue or bluish gray above, white below. Caudal and second dorsal black margined; the lower candal lobe and distal half of pectoral largely blackish.

This speeies is well known though not abundant at Pamama, and is more highly prized as food than other sharks. It appeared in the market on two occasions during the stay of the expedition, and three specimens were preserved, meastring from 92 to 95 cm . Two of these are males with the elaspers quite moleveloped, not nearly reaching magin of ventrals. The speeies is said to reach a large size.
C. azurens is extremely near C. nicaraguensis, from Lake Niearaga and its outlet, the San Juan River. Dr. Jordan has kindly eompared the above deseription with a specimen of C. nicaraguensis (No. 39913) in the United States National Musemm. The latter has a longer and wider snout, the length of which is contained $1 \frac{1}{2}$ in its preoral portion, its width opposite the nostrils equaling the distance from the angle of the month to the third gill-slit. The base of the first dorsal is ! the interspace between dorsals, and the base of the second dorsal is eontained $2 \frac{1}{3}$ times in the first. The lower candal lobe is contaned $2 \frac{2}{5}$ in the upper lobe. The pectoral is but faintly dasky. These differences are not great, but there has been no opportmity to make a direct comparison. In view of the exceptional distribution of C. nicaraguensis, known only from fresh waters, which belong to the Atlantie slope, it has not been thought wise to make the identification.

9. Scoliodon longurio Jorden \& Gillert.

Abundant at Panama, where six specimens were obtaned. The length of the base of the first dorsal is contained 2_{1}^{3} to nearly 3 times in the interspace between dorsals, not 24 times, as stated by Jordan \& Evermann (1890, p. 42). The teeth are not at all sermate in the Panama specimens the thin margin is sometimes gently simate, but never toothed.

Family SPHYRNIDE.

10. Sphyrna tiburo (Linnaus).

Reported for the first time from the Pacifie Coast of America by the Hopkins Mazatlan Expelition (Jordan, 1895 h, p. 383), which secured a single specimen. Althongh overlooked by previons observers, the species seems to be mot rare at Panama.

Three specimens were preserved, each about 50 cm . long. A number of larger specimens were seen, from one of which were obtained a nmmber of fully developed embryos. These measure about 20 cm . in length, and exhibit perfectly the reniform shape of the head characteristic of this species. The groove forward from the nostils is better developed in the embryos than in older individuals, being considerably more prominent even than in specimens of S. tudes, 60 cm . long. In examples of S.tiburo, 60 cm . long, the prenasal groove is but little less distinet than in S. tudes of the same size. In the Panama specimens of S. tiluro there is a more decided fold at the angle of the month. In S. tiburo the head is both longer anteroposteriorly and wider than in S. tudes, the greater length being in large part due to the greater convexity in the curve of the anterior profile. Thus in S. tiburo a line joining inner angle of nostrils cuts off the anterior $\frac{3}{5}$ of the snont; in S. tudes, the anterior $\frac{2}{3}$ only. The angle between anterior and lateral margins of head is more obtuse in S. tiburo, owing to this increased convexity of the anterior profile. The angle is as distinct, however, as in S. tudes, and the current statement concerning S. tiburo, "anterior and lateral margins of head confluent into a semicircle," is by no means jnstified.

11. Sphyrna tudes (Cuvier).

In common with other species of "Hammer-heads," S. tudes is frequently brought into the Panama market. It is undoubtedly abundant along the entire Pacific coast of Mexieo and Central America. Several specimens were secured.

12. Sphyrna zygæna (Linnuus).

Still more abundant than the preceding species, appearing in the market almost daily. Several specimens were obtained.

Family SQUALIDE.

13. Squalus sucklii (Gireted).

Jordan and Evermann (1896, p. 54) suggest that a single species of Squatus may be found to extend from the coast of California (S. suchlii) to Chile ("S. fernandinus"). In that case, it would be to this speeies we should assign the Panama record given by Guinther (1568 , p. 396).

Family PRISTIDA.

14. Pristis zephyreus (Jordan \& Starks).

A saw, 80 cm . long, was procured fresh in the market. A young specimen entire, 90 cm . in total length, was taken in fresh or slightly brackish water in a tributary of the Rio Grande at Miraflores. The smaller specimen agrees well with the type of the species.

Some statements in the original description which might lead to confusion are explained or corrected below.

The teeth are all deeply grooved behind, the groove with sharply trenchant edges. In both of the Panama specimens the teeth are in 22 pairs. The interspaces between the hind teeth are 4 times the base of teeth in the young, $2 \frac{1}{\frac{2}{2}}$ times in the adult. The length of the front teeth is slightly more than $\frac{1}{2}$ the breadth of the saw between them in young, $2 \frac{2}{3}$ in this width in adults. Distance between first and second tooth $2 \frac{1}{4}$ times base of first in young, twice base of first in adult. Width of mouth slightly less than distance between tips of hinder teeth. The "slant height of pectoral" of the original description inclades the anterior margin of the whole pectoral mass, from its angle forward to a point just behind eye. The "lower lobe" of caudal is the distance from anterior insertion of lobe to tip of fin. The saw in the type is 28 cm . long from base to tip, 31 cm . from tip of saw to front of nostril.

Family RHINOBATIDE.

15. Rhinobatus leucorhynchus (Günther).

Seen on two occasions only.
The relationship is extremely close between this species and R. glaucostigma, which is abundant at Mazatlan. R. leucorhynchus has no slate-colored spots on the back, and no black bloteh on the under side of the snont. The rostral ridges are much narrower, and the rostral cartilage tapers more anteriorly. The snont is broadly triangular, with almost perfectly straight sides, which are slightly concave near tip, making the latter narrow and sharp. In R. glaucostigma, the rostral outline is slightly concave from its base to near the tip, where it becomes convex, thus making the terminal portion of the snont broader and more bluntly rounded. The posterior gill-slit is narrower, contaned $1 \frac{2}{3}$ times in the fourth slit. In other details of structure, the two forms agree very closely, the proportions of disk and fins, the size of eyes, nostrils, and mouth, and the character of nasal flaps being wholly similar.
R. glaucostigma has been considered the northern representative of R. leucorhynchus, but is now recorded from the Bay of Santa Helena, near Guayaquil (Boulenger, 1898-9, Vol. XIII, p. 1). Its discovery at Panama is therefore to be expected.

16. Zapteryx xyster (Jordun if Evermunn).

K nown only from the type specimens, collected by Prof. F. H. Bradley at Panama, in 1866.

Family RAJIDA.

17. Raja equatorialis (Jordun \& Bollmun).

Known only from the type, which was dredged by the "Albatross" in 1888, at Station 2797, in the Bay of Panama, at a depth of thirty-three fathoms.

Family NARCOBATIDA.

18. Narcine entemedor (Jordant if Sturlis).

Not rare at Panama; five specimens seen in the market. Obtained also by Dr. Gilbert at Panama, in 1883.

The interorbital width is less than given in the original description. The least width of frontal cartilage between the eyes is contained three times in the preocular portion of snont; the distance between the eyes $1^{\frac{3}{4}}$. The longitudinal diameter of the eyeballs, which somewhat protrude, equals or slightly exceeds the diameter of the spirate. The spiracle is horseshoe-shaped, the eye entering its anterior border; everywhere except in front it is surrounded by a raised border which bears a single series of small tubereles. Series of pores are conspicuons on upper surface of smout, each pore often surrounded by a dark ring; a pair of much larger pores near middle line behind spiracles.

A deep fold of integument surromds the lower jaw posteriorly, growing very low as it surrounds angle of mouth, and passing anteriorly to join the base of the frenum of the nasal valve. Laterally it is concealed by a still deeper fold, which overlaps it postero-laterally and is continnons anteriorly with the inferior nasal valve.

19. Discopyge ommata (Jordun \& Gilbert).

Not seen by the expedition. First taken by Dr. Gilbert at Panama, in 1882. The type is from "Aibatross" Station 2795, in the Bay of Panama, at a depth of thirty-three fathoms.

Family DASYATIDE.

20. Urolophus halleri (Cooper).

Not seen in 1896, but reported on previous occasions. U. umbrifer Jordan and Starks is one of the may color forms of this species. U. nebulosus has been ascribed to Panama (Jordan \& Evermann, 1896, p. 81), but no authentic record of its occurrence can be found.
21. Urolophus mundus (filt).

Crolophus asterias Joridan \& Gilbert, 1882 m , p. 579.
The types of U. asterias, obtained by Gilbert at Mazatlan and Panama in 1881, were originally identified as U. mundus, but were afterwards distinguished becanse of disagreement with the description of U. mundus, the types of the latter being lost. The discrepancies do not now seem very important, however, and it seems safe to identify U. mundus with the present species, which is abundant from Panama to the Gulf of California.
U. mundus was thonght to be distinguished from other species, including U. asterias, by the short candal spine, posteriorly inserted. If, however, the original description refers to the posterior point of insertion of the candal spine, it agrees with U. asterias. Measured in that way, the insertion of the spine is usually behind the middle of the tail (measmed from anus), and the length of the spine equals distance between snont and nostrils. U. mundus is said to have the skin "beset with numerons small stelliform tubereles, larger on the dorsal region," but no mention is made of the row of large spinous tubercles on median line of back and tail, characteristic of U. asterias. In U. moundus the distance of snont from hinder margin of pectorals is said to equal the width of the disk, while in U. asterias the disk is constantly somewhat wider ($\frac{1}{10}$ to $\frac{1}{15}$). If another species be discovered at Panama, with disk as wide as long, with stelliform prickles but with no median series of spines, the case will have to be reconsidered.

Five specimens were obtained by the expedition at Panama; three of them are males. The females are 42 and 31 em. long, and contain embryos about two-thirds grown. The coloration in all the specimens is uniform dark brownish on upper side of disk, without the faint dnsky spots fonnd in a Mazatan example. The fringe on velum is much less conspicnons in the Panama material. None of the specimens approach the closely related U. rogersi Jordan and Starks, which is undoubtedly distinet.
22. Urolophus goodei (Jordan \& Bollman).

Not obtained by the expedition. The types were dredged by the "Albatross" at Station 2795, in Panama Bay, at a depth of thirty-three fathoms. Jordan and Evermann (1896, p. 81) state that this species was taken in Magdalena Bay, Lower Californit, but the present writers are anacquainted with the record. Bonlenger (1898-9, Vol. XIII, p. 3) lists it from the Bay of Santa Helena, near Guayaquil.

23. Urolophus aspidurus (Jordan \& Gilbert).

Abundant at Panama, where numerous specimens were secured, all but one of which are females. One contains embryos full grown.

The following corrections and additions may be made to current descriptions: The disk, taken to posterior margin of pectorals, is constantly a little broader than long; its length being less than that of tail measured from posterior insertion
of ventrals. The amome of exsertion of the snout is very variable, the protruding portion being sometimes short and broad, sometimes long and narrow. The distance from eye to tip of snout is $3^{\frac{1}{3}}$ or $3_{\frac{2}{5}}^{2}$ in disk, measured as above. The posterior insertion of caudal spine is very slightly in advance of middle of tail (measured from amse). The bucklers on tail vary in the present specimens from one to seven (eight in one of the types); they have not appeared at birth, and are still undeveloped in a young specimen 15 cm . long. It will probably be found that there is always a regular series of seven or eight of these when they first appear, a variable number of them falling off later. In the adults, those remaining are usually unequally spaced, the interspaces often showing the sears of the lost bucklers. Minute asperities seem to be constantly present (at least in females), and are most numerous in a strip extending aloug the median line of disk. The teeth are much as in U. mundus, but are much more deeply grooved.

In females the teeth are flat without cusp, each tooth with a deep transverse groove, the hinder margin of which is elevated to form a ridge crossing the toath transversely behind its middle. In the male, each tonth has a long acute median cusp; those in the upper jaw deeply grooved from base to tip along their anterior face, those in lower jaw transversely convex. In U. mundus the ensps of upper teeth in the males are provided with shallow grooves on basal portions only, and the transerse grooves on the flat teeth of the females are shallow, and followed by a lower transverse ridge. In embryos of O. aspicurus, the inmer margin of spiracular rim is much elevated and produced anteriorly into a long slender coiled lobe, posteriorly into a much shorter projection. All trace of this raised rim disappears in the adult.

24. Dasyatis longa (Gumuen).

Not rare. One female specimen preserved.
Anterior margins of pectorals gently concave along the middle, beeoming convex toward tip of snout, the latter abruptly projecting. The cutaneous fold on lower side of tail is low, not over 3 mm . in height; it begins opposite the anterior insertion of eaudal spine, and is evident on about half the length of the tail. An extremely low ridge on back of tail behind caudal spine. The tail is very rough behind the caudal spine. A series of $3 t$ coarse, spinous tubereles on median line of back, the three largest at intersection of median line with shoulder-girdle. Opposite this point are two short series of much smaller tubercles converging slightly backward. In addition to these, the interorbital region and the median area of back contain numerous stellate prickles, but few of which are behind the shoulder-girdle.
Length of disk. 355
WTidth of disk 420
Tail (from anal slit) evidently broken 790
Tip of snout to middle of nasal Hap) So
Outer edge of ventrals 60
Anterior margin of pectorals 260
Longitudinal diameter of eyeball 20
Lenglh of spiracle 25
Width of cartilage between eyes. 3^{8}

Material is not at hand to decide the relation between D. longa and D. dipterura. The specimen listed by Jordan (1895 b, p. 389) from Mazatlan may be the latter, if the two species are distinct. In one of the Mazatlan specimens, with the disk 32 cm . long, the upper surface is naked, except three small spines on middle line near shonlder-girdle. The tail is also naked, and possesses, in addition to the very high cutaneous fold below, a free upper fin-fold half the height of the lower. It is probable that the two species are distinct.

25. Pteroplatea crebripunctata (Peters).

Three specimens seen at Panama.
The propertions of disk are not essentially different in P. crelripunctata, P. rave, and P. machura. In all, the distance from tip of snout to front of anal slit equals half the width of the disk (or a little less than half in P. rava); and the extreme length of disk, from tip of snout to hinder margin of pectorals, is contained $1 \frac{2}{3}$ to $1 \frac{3}{4}$ times in the width. A line joining angles of disk intersects very slightly in advance of its middle a line from tip of snont to tip of tail.
P. crebripuctata and P. machura are extremely close, differing principally in color, the marblings and spots being finer in P. machura, and the lighter markings brighter in color, more sharply contrasting with the rest. P. rava has a sharper snout than the others, the rostral angle being, however, in excess of a right angle (110 degrees). The type of P. raca is a male specimen, 29 cm . long, with well developed clapers and no trace of caudal spine.

Fimity MYLIOBATIDA.

26. Aetobatus narinari (Euphrasen).

Frequently seen; three specimens preserved, one of which has measurements as given below.

Rostro-frontal fontanel narrowing anteriorly to opposite the hinder margin of eyes, then abruptly expanding; its greatest width anteriorly, 21 mm .; least width at the constriction, 13 mm ; greatest width posteriorty, opposite middle of spiracles, 18 mm .

Tip oi
1 ip of snout to posterior margin of pectorals.. 365

Length of tail (broken).. 1200
Greatest breadth of head (at anterior origin of pectorals) Io6

Width of snout opposite front of eyes... 56

Tip of snout to middle of nasal flap... 6
Width of mouth .. 4
Diameter of iris ..
The Panama specimens agree entirely with those described by Jordan (1895
b, p. 391). The comparative measurements given in the paper cited are often
erroneons, as will appear by comparing them with the above. The size of the spots is somewhat variable, and the length of the tail is unreliable, the latter being usually more or less shortened by injury.

27. Myliobatis asperrimus (Gilbert).

Plate III, Fig. 6.
Myliobatis aspervimus Gilbert, (Jordan \& Evermann, 1898, p. 2754).
Upper surface of head and body, excepting the snout, an area on outer side of spiracle, the pectoral margin and its posterior angle, and the ventral fins, thickly covered with minute usually stellate prickles of uniform size, most numerous on median portions of head and back; those on basal half or two-thirds of pectorals are least crowded, and are arranged in definite longitudinal series, corresponding with the muscle bands. The tail is very rough throughout, being covered with similar stellate prickles. It is also crossed by numerous narrow grooves, or indented lines, mostly convex forwards, somewhat irregular in position and direction, and not corresponding on the two sides. In the type they follow at an average interval of about io mm . Lower side of disk mostly smooth, with some prickles on the basal part of pectorals anteriorly, arranged in lengthwise series, and other patches on lower side of head, belly and base of ventrals.

Rostro-frontal fontanel scarcely constricted anteriorly, the bounding ridges diverging abruptly at their anterior ends. Nasal flap with a shallow median notch, covering the mouth except the median portion of lower dental plate, its posterior margin coarsely fringed. Teeth in each jaw in one broad, median row, and three lateral rows; those of median row about five times as broad as long antero-posteriorly.

The color is dusky-brown above, the anterior portion of pectorals with eight or ten narrow, transverse bars of bluish-white, most of which break up into series of spots towards outer margin of disk, the posterior ones also breaking up towards middle line. The bars and spots are fainter anteriorly, becoming whiter and more intense posteriorly. Towards outer angles of disk the bars are sometimes separated by intermediate series of light round spots. The bars usually fail to meet across the back. The posterior portion of disk, including base of tail and upper surface of ventrals, is covered with round white spots not much larger than pupil: some of those immediately succeeding the bars show a transverse serial arrangement. The top of head shows one or more pairs of indistinct light spots. Margin of snout and of pectorals blackish. Spiracular border black. Dorsal with a black blotch posteriorly. Under side of head and disk bright white. Proximal portion of tail blackish above, lighter below, the entire tail becoming black posteriorly.

Length of disk to front of anus... 272
Length of disk to posterior edge of pectorals......... ... 33^{8}
Width of disk... 345
Length of tail (not perfect)... 1215
Greatest width of head, at origin of pectorals... 79
Width of cranium, between orbits.. 45
Width of snout, opposite front of eye.. 55
Tip of snout to middle of nasal flap... 60
Length of nasal flap.. 26
Greatest width of nasal flap.. 35
Diameter of iris... $101 / 2$
Width of mouth.. 33
Distance between anterior gill-openings.......... .. 75
Distance between posterior gill-openings .. 45
Distance from anterior to posterior gill-openings.. 45
Length of spiracle... 26
Length of fontanel.. 60
Greatest width (at anterior end).. 23

One specimen taken, a male, with undeveloped claspers which do not nearly reach the edge of ventrals.

Family SILURID※.

28. Felichthys panamensis (Gill).

Abundant. Of the six specimens preserved, three are males and three females, all being of nearly equal size. The specimens do not differ according to sex in the shape of the dorsal buekler as extensively as is indieated in Steindachner's figures (1876 b, Plate II). Furthermore, such difference as exists is in the opposite direction to that observed by him, as the buekler is larger and proportionally somewhat wider in the females than in the males. More obvions sexual differences are found in the length of the ventral fins and in the shape of the anal. In females, the ventrals are long, constantly extending beyond the front of the anal. In males, they fail to reach the front of the anal fin. In females, the anterior portion of the anal fin is produced, forming a projecting lobe, thas giving a strongly concave areh to the posterior half of the margin of the fin. In males, there is no lobe, and the margin of the fin is nearly or wholly straight. This difference in the shape of the anal was noticed by Steindachner (1876 b, p. 15), but was supposed by him to be due to age and not to sex. Another sexual difference seems to exist in the size of the head, which in the present specimens is less in the case of the females, $3 \frac{5}{7}$ to $3 \frac{7}{8}$ ($3 \frac{3}{5}$ in males). The specimens taken range from 325 to 360 mm . in length.
29. Felichthys pinnimaculatus (Steindachner).

Negro encuero.
One of the most abnudant food-fishes of the Panama market. Sexual pecnliarities seem much less strongly marked than in F. panamensis.

30. Galeichthys lentiginosus (Eigenmann \& Eigenmunn).

Frequently seen; nine specimens preserved.
The species is at once recognized by the very long narrow occipital process, by the depressed head, which is wide posteriorly and tapers rapidly forward to the narrow pointed snout, by the very convex month, and the usually smooth head. In the latter respect, however, there is much variation. The granulations may be confined to the occipital process and the posterior part of occiput, and be faintly visible where present, or they may entirely cover the crown forward to the interorbital space. In the latter case, the pattern of sculpture is exactly similar to that figured for Netuma planiceps (Steindachner, 1876 b, Plate IV), except that the granulations are less definitely in series, and that an evident groove extends backward from fontanel to near base of accipital process. The difference in roughness of the head is dependent neither on age nor sex. The specimen with best marked grannations is a female.

The narrow pointed snont, and large convexly curved mouth combine to give the latter a considerable lateral elelt, when seen from the side. The length of the head is very constant, 3^{3} to $3_{f}{ }^{3}$, in length, when measured to marwin of opercular membranc. Eye $: 3$ to $3 \frac{1}{t}$ in its distance from tip of snout. The upper jaw protrades beyond the lower tor abont three-fouths the width of the thick upper lip. The maxillary barbele extend beyond base of pectoral spine, but not beyond its hasal third. Pectoral pore variable, usually mimute and deteeted with difficulty, occasionally an obvious slit.

The anal fin is very long, with perfeetly straight margin, the rays declining regularly from the longest to the last. Five speeimens have respectively $23,24,24$, 24 and 25 anal rays, including rodiments. The ams is anteriorly placed, its distance from base of ventrals equaling half its distance from front of anal fin. All but one of the specimens are females, and have the inner edge of the ventrats and the mper side of the inner rays covered by a thickened fold of skin.

Light brownish in life, with blue and green reflections; the lower portion of the sides coarsely punctate with brown. The fins are all dusky toward tips, the basal portions dall orange yellow. Maxillary barbels blackish, the others white. The specimens answer well to the description of the types.

It is evident that the relative smoothess of the head camot serve to distinguish the nominal genera Galeichthys and Hewconematichthys. The charaeter is dependent partly on variation in the gramalation of the bones, partly on the amount of thickening of the integument. Many species from different sections of the gronp show similar individual variations, aceording to which they might be placed in one or the other gemus. The American species with villiform teeth and comparatively marrow erescentic palatine patches will be ranged under the oldest name, Gateichthys.
31. Galeichthys peruvianus (Lütlien).

This rare species was not seen. Described originally from Callao, it has been reeorded from Panama by Steindachner and by Gilbert, and from Altata, Mexico, by Steindachner. It has not been procmred.by any of the numerous investigators in northern Mexico.

32. Galeichthys eigenmanni, sp. nov.

Plate IV, Fig. 7.
This speeies, found in abundance at Panama, and identified with fr. seemomni by Eigenmann and others, seems to be an undescribed species. Gr. seemami is from some unknown locality in Central America, not improbably from the Atlantic side. It is deseribed (Ciunther, 1864 (1, p. 147) as having the top of the head finel? gramular; the oceipital process with a prominent ridge; vomerine patches of teeth widely separated; and particularly as having the fontanel reaching to the base of the occipitel process. Dr. Jordan (188%, p. 282) has re-extmined the type in the British Musemm for this last character, and has found it as described. In all these respects the Panama specimens differ strongly, as shown below.
(4)

Head broad and flat, $3 \frac{2}{5}$ to $3 \frac{3}{4}$ in length; its depth at base of occipital process $1 \frac{1}{2}$ to $1 \frac{2}{3}$ in its length. The dorsal profile from dorsal spine to tip of snout nearly (appearing perfectly) straight. Snont wide and depressed, sharply wedge-shaped as viewed from the side; its length to a point on the median line of head between anterior margin of eyes $3 \frac{3}{4}$ to + in head. The prefrontal does not form a protuberance in front of eye as in Gr. jordani and related species, the contour of snout rising uniformly to the edge of the dermal margin of eye. The interorbital area is flattened and wide: its width between dermal supraorbital margins 2 to $2 \frac{1}{6}$ in head. The top of head is coarsely granular, the granulated area extending forward usually to above middle of orbit in two diverging areas, separated by a triangular continuation backward of the naked or smooth area of the snout. The length of the fontanel is variable in the present specimens, but in none of them does it reach the occipital process.' In two specimens evidently abnormal, the groove is sery short, extending only to the apex of the triangular smooth area, which extends backward from interorbital space. Usually, however, the groove narrows backward uniformly, though sometimes constricted where it enters the granular area of the head, and extends to within $\frac{2}{3}$ diameter of eye of the occipital process. The occipital process is usually broader than lomge; in extreme cases it is lroader than long by nearly the length of the basal plate of the dorsal spine: from this it varies to only as broad as long. The basal plate of the dorsal spine is twice, or a little more than twice, as broad as long. The median keel is lower than in G. planiceps or Cr. jordani; in some specimens it is scarcely evident at the termination of the fontanel, but grows stronger on the accipital process.

The maxillary barbel usually reaches base of pectoral spine; in one specimen to axillary pore, in several about to middle of opercle. The whter mental barbels often reach but $\frac{2}{3}$ distance to gillupenings, but sometimes extend beyond the latter. The vomerine patches of teeth usually meet on median line, or are separated by a marrow groove only. In but one specimen (an adult male) are they widely separated (as figured by Guinther and Eigemmann). The eye is contained $6 \frac{1}{2}$ to 7 times in the head, measured in a straight line from median tip of snout obliquely above eye to gill-opening.

As in other related species, the head is longer and the ventrals shorter in the male, the ventrals overlapping. front of anal in Females and provided with a very large fold of the integument. In the females the black of the ventrals passes gradually into the lighter margin. In males the transition between the two areas is abrupt. In five specimens examined, the gill-rakers are $5+10,5-10$, $6+10,5+11$, and $5+12$. The pectoral pore is a long slit. The base of adipose fin is twice or nearly twice diameter of eye. The dorsal has 7 solt rays, and the anal 17 or 18 . The length of the fectoral is very variable; measuring from base of spine to tip of soft rays, it is contained from $I_{5}^{\frac{1}{5}}$ to $\mathrm{t} \frac{1}{2}$ in head.

From G. jomtani and other related species, G. eigenmomi can be at once recognized by the wider, flatter head, especially the more depressed snout, the smaller eye, the rongher head, and the less evident carina on the occipital process.

Three males and nine females were preserved.
It is not elear what species from Santa Helena Bay is referred to by Boulenger (1 S! S-! ! , Vol. XlII, p. 5) under the name Arins seemumi. From lis statement
 he had before him specimens of G. jondmi rather than f. eigemmani.

33. Galeichthys jordani (Eiyenmenn \& Eigenmenn).

Two specimens were obtained 250 and 345 mm . long. The larger individual is a lemale, with elongate ventrals overtapping the front of the anal fin, and provided

[^0]on the upper surface of the inner rays with a much thickened fold of the integnment, as in G. pletypogon and G. eigenmumi.

The specimens taken agree well with Eigemman's description of the trpes, except in the size of the palatine patch of teeth, which is in adults about as large as in G. eigenmanni, and many times the size of the small pomerine patch. It is probably true of this species, as of Gilberti from Mazatan (Jordan and (iilbert, 188: l/, p. 47, under Arius assimilis), that the palatine bands vary "eonsiderably in size and someWhat in form, the width ranging from $\frac{1}{3}$ diameter of eye to $\frac{2}{3}$, being gencrally larger in adults." Eigenmann's type of G. jortani was an immature specimen. In the smaller of our specimens the palatine patch is much less developerl than in the adult, though somewhat larger and more ovate than in Eigenman's figure.

In both of the specimens taken the fontanel groove terminates a very short distance in advance of the base of the occipital process, not reaching the base of process as described by Eigemmann.

The gill-rakers number $5+11$ and $5+12$, the most anterior being very minnte. If the one at the bramehial angle be reckoned with the vertical series insteal of the horizontal, as above, one of the epecimens will have the formula $6+10$, as compared with Eigemmann's type $6+9$.

Comparing the Panama material with the en-types of G. gillerti from Mazatan, it is impossible to detect any appreciable differences, unless poswibly in the color, which is lighter in the Mazatlan specimens. Fr.gillerti is sad to lack the pectoral pore, but in reality possesses a minute romd pore, as is evident in the co-types examined. The adult fr. fordani from Pamama has the pore likewise minute, while the younger example has a considerably larger, slightly elongate opening. The width of the month is the same in the Mazatlan and Pamama specimens; meanterl externally, at the posterior labial angle, it equals the distance from the tip of the suout to the hinder margin of the pupil, and is contaned 21 to $2 \frac{1}{8}$ times in the length of the head.

The two would be united without question, were it not that the co-typen of G. gilberti (three in number) agree perfectly among themselves and differ from the Pamama specimens of G. jordani in having the oceipital plate much wider, more evenly romuled in transerse section, and with a moch lower keel. The oceipital plate is, in each of these specimens, wider than long by half the width of the basal plate of the dorsal spine. In (f. jordent the width of the occipital plate is $\frac{1}{3}$ or $\frac{5}{6}$ its lengeth. This plate is also much more sharply keeled and more densely gramular. (On the basis of these differences the tiwo species are held provisionally distinct.

In both species the upper lobe of the caudal is longer and more faleate than in related species, reaching far beyond the lower lobe, and contained $\ddot{\beta}_{3}^{1}$ to 3_{3}^{3} in the length. The head is finely and often sparsely granular, the gramular area not contimed forward in any of the Panama specimens as far as a line joining posterior margins of orbits. The fontanel groove widens anterionly, is rather deep, with sharply defined margins, and terminates abruptly, not "merging into the broad, flat, smooll, interorbital area" as is described in the type of G. gitberti.

34. Galeichthys xenauchen (Gillert).

Plate IV, Fig. S.

Hexanematichthys renauchen Gilbert (Jordan \& Evermann r99S, p. 2777).
In appearance, G_{t}. xentuchen is most closely allied to species of Netuma. having the low depressed head, with the lateral ontlines converging forwards to the narow pointed snont, and a long largely adherent adipose dorsal. The palatine patches are, however, narrow, and without backwardly projecting lobes. The species is distinguished from all those known from the Pacific Coast of America by the long and extraordinarily narrow occipital process.

Type, a female 38 cm . long.
Head $3 \frac{7}{3}$ in length; depth at front of dorsal $5 \frac{1}{2}$; anal with 23 rays. Width of head at opercle $I_{\%}$ in its length; width at front of eyes 2 in head. Width of mouth at inner angles $2 \frac{2}{6}$ in head. Interorbital width $2 \frac{1}{10}$. Eye very small, 9 in head, $3 \frac{1}{5}$ in its distance from tip to snout, $4 \frac{5}{6}$ in postocular part of head, $4 \frac{1}{3}$ in interorbital width.

Teeth all villiform. Nandibular bands well separated on middle line, very broad mesially, rapidly tapering to a point laterally, the band produced beyond angle of mouth, its greatest width contained $2 \frac{4}{3}$ times in its length. Premaxillary band very convexly curved, following the outline of the snout, its width $5 \frac{2}{3}$ in its length. Vomerine patches roundish, separated by an evident medial groove, marked off from the palatine patches by a narrower groove and a constriction. The palatine patches are equal in width to the vomerine patches, and less than twice as long. They are of nearly equal width throughout.

Maxillary barbels very slender, reaching slightly beyond the base of the pectoral spine. The mental barbels do not reach edge of gill-membrane, the outer pair equaling length of snout and half of eye. Nostrils very large, the anterior broadly oval, with widely reflexed rim, the posterior widely elliptical, not concealed by the valve. Distance from anterior nostril to tip of snout equaling that from posterior nostril to front of eye.

Fontanel wide, with nearly parallel edges on frontal region, abruptly narrowing at front of occiput, where it is continuous with a narrow and shallow groove. The latter fails to reach base of occipital process by a distance equaling half diameter of cye. The raised margins of the fontanel are continuous with a pair of sharp ridges bounding the groove, these accompanied by a pair of lower ridges on their outer sides and parallel with them. Posteriorly, these ridges are roughened with granules, and merge into the granulated area on posterior part of occiput. Occipital process granulated, the granules arranged in more or less definite lines radiating backwards and downwards on each side from median point of base. Lateral portions of occiput with an area of radiating strix, separated from the central ridges by a smooth groove-like depression. A narrow granulated area extends forward on each side of fontanel to above back of orbits. The occipital process is very long and narrow, its width opposite its middle being but $\frac{8}{9}$ of its length. Near base it abruptly expands, the basal width being half its length plus that of dorsal plate on median line. Opercles and humeral plate weakly striate. Gill-membranes with a wide free fold posteriorly. Gill-rakers weak and short, $1+4$ movable ones. No evident axial pore.

Dorsal spine slender, with a series of sharp gramuations on anterior edge; minutely roughened, not serrate behind. It is broken in the type, but its length was about $\frac{2}{3}$ that of head. Pectoral spines rather slender, rough granular on outer margins, with short fine serree within. Both are mutikated in the type, but their length was about equal to that of dorsal spine. The pectorals extend nearly $\frac{2}{3}$ distance to ventrals, the ventrals nearly to origin of anal. Distance from anus to
base of ventrals $\frac{2}{3}$ its distance from front of amal. Anal fin very long, its base $1 \frac{3}{4}$ in head, its fongest ray. $\frac{1}{3}$ head. Distance between dorsals, $3 \frac{4}{5}$ in length. Adipose fin long, highest about opposite the middle, with a short almost vertical free posterior margin. Its vertical height is $3 \frac{5}{6} \mathrm{in}$ its length, which is more than twice the distance from adhpose fin to rudimentary caudal rays, greater than the base of the first dorsal, and equal to half the length of the head. Caudal fin with broad lobes, the lower rounded; the upper mutilated in the type, but evidently acute and longer than the lower.

Color purplish above, more bluish anteriorly; the lower parts silvery, coarsely punctate with brown. Fins all blackish, except the lower surface of the paired fins.

35. Galeichthys guatemalensis (Günther).

This species was not seen by the authors. Recorded by Giunther (1868, p. 393) from Panama; by Boulenger $(1899, ~ p .2)$ from Rio Lara, Darien.

36. Galeichthys dasycephalus (Gianther).

This species was occasionally seen; eleven specimens were preserved, all of which are females.

It answers well the deseription of Guinther (1864 a, p. 157), and of Jordan and Gilbert ${ }^{1}$ (1882 b, page 51), except that the head is constantly longer, 4 to $4 \frac{1}{8}$ in length, and the dorsal spine is contained $1 \frac{1}{5}$ instead of $1 \frac{1}{4}$ times in head. The anal contains 21 rays, including the rudiments. The top of the head is constantly much rougher than in G. longicephalus, althongh exhibiting moch variation in this respect. The fontanel groove reaches base of oceipital process in all of the specimens taken.

37. Galeichthys longicephalus (Eigenmann \& Eigenmunn).

Taken occasionally; eight specimens were preserved, all of which are males.
There is little variation in the sculpturing of the head, which is either eutirely smooth, invested with thick skin, or minntely roughened by a few scattered points. None of our specimens have the plates roughly granulated, as in G. dasycephatus.

The head is very constant in length, $3 \frac{2}{5}, 3 \frac{2}{5}, 3 \frac{2}{5}, 3 \frac{2}{5}, 3 \frac{1}{2}, 3 \frac{2}{3}, 3 \frac{2}{3}$ and $3 \frac{5}{7}$ times respectively in distance from tip of snont to base of caudal. The maxillary barbel reaches to base of pectoral spine, or to the end of its basal fourth. The outer mental barbels are variable, sometimes not reaching gill-opening, more often slightly beyond it. The eyes vary in length, and equal their distance from hinder end or middle of posterior nostril, and about half their distance from tip of snout. The width of mouth about equals the length of suout, $2 \frac{5}{6}$ to $3 \frac{1}{4}$ in head. In the description of the type, the width of mouth should doubtless stand $3 \frac{1}{5}$, not $2 \frac{1}{3}$, in head. The distance from the tip of snout to front of dorsal is contained 2_{3}^{2} to 2^{3} in the length; the interspace between dorsals $3 \frac{\circ}{6}$ to 4 .

The color of the upper part is brown, sometimes continned down over the

[^1]sides and belly, almost entirely masking the silvery of those parts. In other specimens, the sides and belly are bright silvery without brown tinge. The fins are all dusky, in some specimens much darker than in others; the ventrals sometimes narrowly edged with bright white.

We have been tempted to consider this species the male of G. dasycephalus, as our numerous specimens seem to be all males, while onr specimens of G. dasycephatus, as well as all those of which we have record, seem to be females. The structural differences are so much greater in amount than are known to be sexual with any other species, that we hold the two forms distinct. In addition to the striking difference in the length and sculpturing of the head, f. longicephatus has shorter barbels, coarser gill-rakers, shorter pectoral spines, a wider fontanel, and a wider snout and mouth.

38. Sciadeichthys troscheli (Gill).

Abundant along the entire coast of Mexico and Central America. At Panama it ocemred daily in the markets, but seldom in large numbers. The collection contains five specimens from Panama, one from Champerico.

The species varies in certain respects more than has been represented. The dorsal buckler varies much in width, and even in general shape; one specimen at hand has it triangular, tapering nearly miformly from the base forward to the long acute apex, two-fifths of its length on the median line being contained within the noteh of the oecipital process. In one individual, the granulations are very sparse, and largely obscured by the thickened integment.

The maxillary barbels are blackish, with a conspicuons white inferior margin. They vary much in length, often failing to reach opercular opening, sometimes overlapping base of pectoral spine. The vomerine patch of teeth is sometimes long (transversely) and narrow, thus separating widely the palatine bands (as figured by Eigenmann and Eigenmann, 1890, p. 56); sometimes much shorter and wider. The head seems very constant in length, $3_{\frac{1}{3}}^{1}$ to 3_{6}^{1} in total length (withont caudal).

39. Selenaspis dowi (Gill).

Large specimens are frequently brought into the Panama market, but seldom more than two or three at a time. The young are rarely seen. In one of the specimens at hand, a curious variation is observable in the shape of the dorsal shield, which has its anterior margin medially produced and wedge-shaped, fitting into an emargination in the occipital process, much as in Sciadeichthys troscheli.

40. Netuma kessleri (Steinduchner).

One of the most abundant species of eatfishes at Panama. It varies in color from light brown to nearly black on the upper parts, and may be pure white below or varionsly marked with brown. The fins vary in a similar manner, the caudal, anal, and inner surfaces of pectorals and ventrals being black in the darkest specimens,
merely dusky in others. The vomerine patches vary somewhat in size and shape, A very narrow groove may be deteeted, separating them in all of the specimens, and they do not seem to be wholly confluent with the palatine patches even in adults. The pterygoid bands may be wholly absent, or represented by a linear group of small patches, or fully developed as an elliptical patch of large size.

Nine specimens were preserved.

41. Netuma insculpta (.Jordime id Gillert).

Witherto known only from the type (an adult male) and two young co-types, all from Panama. To these, the present enllection has added an adult female, 27 cin. long.

The species is very close to λ^{\prime}. planiceps, but differs in its wider head, more mmerons and coarser grannations, wider oceipital process, longer barbels, and shorter higher adipose fin. The oceipital process is less sharply keeled, and the palatine teeth are in larger patches. In our specimen, the vomerine patches are large, the apposed magrins romded, mecting in the middle hut not confluent; evident furrows mark them off from the palatine patches. The latter are very large, with straight parallel inner edges, as in N. pletypogon.

In the following measurements the specimen varies somewhat from the type description:

Head 3^{3} in length. Interocular width 21 in head; snout $2 \frac{3}{5}$; width of mouth (external measurement) 2 ; maxillary barbel reaching to end of second filth of the length of the pectoral spine; onter mental barbel to little past gill-opening. ()ceip)ital process a little wider at base than its length on the median line. Length of predorsal plate on the median line one-third the length of one of its sides. The base of the adipose fin is contained $2{ }^{2}$ times in the head, its height $1^{3} \mathrm{in}$ its length. The ventrals overlap, the rudimentary amal rays. The anal has 14 developed rays, 3 rudiments. The posterior face of the pectorals is black, the other fins dusky. The maxillary barbel is silvery white, wita a black upper margin.

42. Netuma planiceps (Steinduchner).

Of frequent occurrence. This proves to be an extremely variable species, the variations not being dependent on age or sex, and not correlated. The occipital process may be very much marower than figured ly Steindachner (1876 6 , Pl. IV), more tapering posterionly; or it may be broader than there represented and more expmaded at the base, so that the lateral margins are more concave and the greatest width and length of the plate are about equal. There is nsually a wide shallow groove extemding backward from the fontanel to within about a pupil's diamcter of the occipital process. This is often obscured posteriorly by gramules or granulated ridger, and may even be obliterated by the latter, ats shown in the figure already cited. The carina on the oceipital process is usually sharp, rarely
rounded posteriorly. In the former case it is not infrequently continued backward onto the dorsal plate. The gramulations are always very fine; they are sometimes arranged in series, and are always rather distant and inconspicuons.

The teeth on the palate are especially variable. The vomerine patches are usually small, and may be either confluent with each other and with the palatine patches, or may be separated from both by a groove. This variation seems to be not determined by age. The palatine patches are sometimes ovate, small, with very indistinct backward processes; sometimes fully twice as large, produced backward, with their inner margins nearly straight and diverging.

The snout is ustally broadly rounded or subtruncate, seen from above. In some cases, however, it is sharply convex, the mouth then with more lateral cleft, and often with swollen lips. In all the specimens, the premaxillary band of teeth is long, its width being contained not less than fonr times in the length. The barbels are always short, the maxillary barbel seldom reaching the gill-opening. In adults, the appearance is often peculiarly modified by the great enlargement of the upper portion of the cheek muscles, making the top of the head transversely concave.

The long adipose fin is highest near its middle, where the vertical height is about one-third the length. The tin is not wholly adnate, there being a short, free posterior border. It is constantly a little longer than the base of the first dorsal.

43. Netuma platypogon (Günther).

Abundant in the Pamama market. Of the ten specimens preserved, six are females, with elongate ventrals, which overlap the front of the anal. Unlike G. eigenmanni, the vent is constant in position, not more anteriorly placed in females. As in G. eigenmanni and G. jorduni, the imner ventral ray is somewhat broadened in females, and gives attachment to a demmal thickening, less marked, however, in this species.

In one male specimen taken at some date between Jannary 10 and February 24, the month contained eggs, and was obviously functioning as a brood-cavity. The strong arch to the buccal roof was evident. It is clear that the breeding season is not confined to June and July, as given by Steindachner (1876 b, p. 17).
N. platypogon has the basal portion of the paired fins jet black on their upper surfaces, in both males and females. The anal is blackish in its anterior two-thirds, with a wide white margin. The fontanel groove is everywhere sharply defined. It is widest a little in front of the middle of its length, tapering slowly backward to the base of the occipital plate, the base of which is always reached. Anteriorly, it narrows more rapidly, terminating in an acute point which is opposite or in advance of the middle of the eyes.

The dorsal spine is very narrowly compressed, its anterior margin sharp, strongly serrate.
44. Netuma oscula (Jorden \& Gilbert).

Two specimens are distinguishable from N. planiceps only by the smaller month and the shorter band of premaxillary teeth. The width of the latter (antero-
posteriorly) is contained but three times in its length. One specimen is a young male, the other an adult female with very narow convexly curved snout, and small convex mouth with thick lips. The adult agreces exactly with adults of N. planiceps, except in the eharacters mentioned. N. oseuln may represent an extreme variation in that most variable species, but the two forms are retained until intermediate specimens are obtained.

It is donbtful whether the specimen described by Eigenmann and Eigenmann (1890, p. 74) as Tuchisurus osculus is properly reforred to this species, as the month is wider (two in head), and the intermaxillary band is wider antero-posteriorly, its width one-fourth its lengtl. The vomerine pateles seem also much more widely separated than in N. oscula or λ. planiceps. In our adult female the head is contained $3 \frac{2}{5}$ times in total length (without caudal).

45. Netuma elattura (Jordun \& (rilbert).

Known from the type specimen obtained by Dr. Cilbert at Panama in 1881; and from another obtained at Albatross Station 2800, Bay of Panama, at a depth of seven fathoms (Jordan and Bollman, 1889, p. 179).
46. Tachysurus steindachneri sp. nov.

$$
\text { Plate V, Fig. } 9 .
$$

Arius melanopus Steindaciner, 1876 b, p. 29 (Panama): not Arius melanopus Güntuer (Rio Motagua, Atlantic slope of Guatemala).

It has been pointed out hy Dr. Steindacher, in the article above cited, that Panama specimens of T'achysurus, allied to T. melunopus, differ not a little from Günther's description of that species. Two specimens in the present collection, $21(\delta)$ and $26(7) \mathrm{cm}$. long, agree with those examined by Steindachmer. They differ from melanopus in the shorter head ($4 \frac{1}{3}$ in melanopus), the character of the longitudinal groove on top of head ("indistinct, narrow, linear behind, scarcely extending to the base of the occipital process" in melanopus), the shorter maxillary barbels (not quite extending to the middle of the pectoral fin, in melanopus), and in the small size of the axillary pore ("nearly as wide as a masal opening" in melenopus). The deseription of melunopus is so lacking in detail that other differences may well exist. When to these considerations is added the fact that melanomus belongs to the Atlantic fanna, while no species of marine catfish is as yet known to be common to the two oceans, it scems advisable to recognize the Pacific form as distinct.

Of the Pacific species, T. steindacteneri is most nearly allied to T. liropus, but the latter has the inner faces of the paired fins light or slightly dusky, instead of black on basal half; the spines are longer and more slender, the snont longer and more rounded at its extremity, the anterior divergent extensions of the granulated
area on top of head are much wider, and the nature of the lengthwise groove is widely different.

Type, 子, 21 cm . long.
Head $3 \frac{3}{5}$ in length to base of caudal; depth 5. Greatest width of head $\frac{\pi}{7}$ its length; interocular width $2 \frac{1}{5}$; snout 3 ; width of mouth (at outer angles) $2 \frac{1}{3}$; eye $5 \frac{1}{2}$; pectoral spine $1 \frac{3}{5}$. Anal with 22 rays, including anterior rudinents.

Head narrow, the occiput slightly depressed opposite the upper angle of the opercle. Snout narrow, depressed, subtruncate anteriorly. Top of head with a very few minute granules, most numerous on the occipital plate, where they are more or less confluent to form wavy irregular lines. The occipital plate is wider than long by the cliameter of the pupil; its posterior half is narrow, the lateral margins being strongly concave; the median ridge is very low, disappearing behind. The median line of the head is occupied by a sharply defined deep groove, which is continuous from a point opposite the posterior nostrils to a point distant from the base of the occipital plate by the diameter of the pupil. This cutaneous groove is much narrower than the fontanel depression which it traverses, and widens or narrows independently of the latter. Its widest points are at the anterior end of the groove and at the anterior end of its posterior third. There are no strongly marked strixe parallel with the posterior portion of the groove. In no other species of Tachysurus known to us is there a continuous groove occupying the fontanel depression. In T. furthii the groove may be continued for a short distance in front of the sculptured area, and is then interrupted in the interorbital region, to reappear anteriorly as a short narrow linear depression. T. cmmelane has also a short detached anterior portion; and this is even shorter, almost round, in T. Yiropus. In the type of T. stcindachneri, the granulated area on top of head does not send forward diverging processes, the line connecting the middle of the orbits being equidistant from the front of the granulated area and the posterior nostrils. In the co-type, some granulations accompany very narrow diverging ridges, which reach the middle of the interorbital space.

The teeth are similar to those in other species of the genus. The palatine patches are large, well separated, of very coarse granular teeth. The maxillary and mandibular bands are wide, of villiform teeth except for those forming a backwardly projecting lobe near mandibular symphysis; these being coarsely granular.

Eye large, $2 \frac{2}{5}$ in interorbital width. The maxillary barbel extends beyond pectoral pore to end of basal sixth of the spine. The outer mental barbels reach to opposite base of pectoral spines, the imer barbels being half their length. The pectoral pore is a narrow slit scarcely half the length of nostril. The branchiostegal membrane las mesially a very narrow, free fold (not to be made out in the co-type). Gill-rakers slender, $5 \dagger_{12}$, the longest half the diameter of the orbit.

The pectoral spines are short and heavy, their width at base $\frac{1}{10}$ their length, which is half the distance from margin of branchiostegal membrane to insertion of ventrals. The outer edge of the spine is weakly serrate near tip, minutely tuberculate elsewhere; the inner margin is provided with rather small, closely appressed teeth. The dorsal spine is broken in the type, $\frac{2}{3}$ the length of the head in the co-type, the dorsal rays projecting well beyond it. The base of the adipose dorsal equals $\frac{1}{4}$ the length of the head. The sexual orifice is very slightly nearer base of inner ventral rays than front of anal. In the (male) type, the ventrals fail to reach front of anal by $\frac{1}{3}$ their length; in the female specimen they slightly overlap it.

Light grayish brown above, with greenish and bluish reflections; silvery below. 1nner faces of paired fins uniformly black in type (male), the basal half only blackish in the female. Anterior half of ventrals dusky.

47. Tachysurus emmelane Gilbert.

Plate Vi, Figs. 11 and lla.

Tachisurus cmmelane GILBERT, Jordan \& livermann, 1898, 1. 2785.
Head $3 \frac{2}{5}$ in length ($4 \frac{1}{10}$ in total); depth 5 (6 in total). A. $27(3+24$). Eye 7 in head, $2 \frac{1}{2}$ in its distance from tip of snout, + in postorbital part of head, $3 \frac{2}{3}$ in interorbital width, $2 \frac{1}{6}$ in frontal width opposite middle of eyes. Mouth of moderate width, gently conver, the distance between its angles (measured internally) $2 \frac{4}{5}$ in head.

Teeth in premaxillary and front of mandible finely villiform; posterior mandibular teeth stronger than those in front, bluntly conic, not, however, coarsely granular, as are the posterior mandibular teeth in T. furthii, T. melanopus, and T. liropus. Mandibular bands with a wide interspace mesially, each widest near symphysis, rapidly tapering laterally, and extending beyond angle of mouth. The width of the bands is less than in related species, $\frac{1}{4}$ eye at their widest point. The length of one of the mandibular bands is slightly greater ($\frac{1}{10}$) than length of eye. Premaxiliary band very short, its length but $\frac{1}{6}$ greater than that of one of the mandibular bands, extending on each side less than $\frac{1}{2}$ distance from median line to angle of mouth; width of band $\frac{1}{5}$ its length. Palatine teeth granular, in small oblanceolate patches, which taper to a point laterally, and are widely separated on median line, the patches agreeing in size and shape with. those in T. liropus.

Head depressed, tapering, and at the same time narowing anteriorly, as in other species of Tachysurus; profile rising in a uniform, gently convex curve to occiput, where it becomes concave, owing to the more rapidly ascending outline of the occipital process. Eye low, but little above angle of mouth, the interorbital space decidedly convex. Barbels slender, the maxillary barbels reaching edge of gill-membrane in front of pectoral spine, the outer mental barbels extending beyond gillmembrane, $1 \frac{4}{5}$ in head; the inner not to edge of membrane. Gill-membrane widely attached to isthmus, without free edge.

Occipital region with very fine granulations, those on middle of occiput forming parallel series along the fontanel groove, those on median portion of occipital process in series which diverge backward from the median line. The sculptured area extends forward to a vertical which traverses the cheek at a distance of its own diameter behind the eye; anterior edge of granulated area equidistant between the tip of snout and front of predorsal plate. Fontanel produced backward as a deep, narrow groove, which fails to reach base of occipital process by a distance equaling half the length of the process on the median line. The groove widens but little anteriorly; an area behind and on each side of the groove with parallel series of granulations, and marked off from the rest of the head by a shallow trench. Base of occipital process similarly indicated by a transverse inclented line; occipital process not keeled, very wide at base, becoming abruptly very narrow behind, its posterior third having parallel margins and being as wide as long, the lateral margins therefore deeply concave: width of process at base equaling its length on median line plus that of predorsal plate, its hinder edge deeply incised to receive the anterior rounded wedge-shaped process of the predorsal plate. The latter is finely granulated anteriorly, the lateral wings concealed under the smooth skin. A narrow groove as long as eye occupies the anterior end of the fontanel. Opercle without radiating ridges. A short, slit-like axillary pore present. Humeral process short, the exposed portion not broadly triangular, the surface smooth, or indistinctly rough. Gill-rakers $6+13$, of moderate length and thickness, the longest below the angle, $\frac{2}{3}$ diameter of eye.

Dorsal spine with a series of oltuse granulations in front and rery weak retrorse serra behind, its length to ti) of calcified portion $1 \frac{2}{5}$ in head; longest soft ray $1 \frac{3}{3} \mathrm{in}$ heacl. Adipose dorsal not adnate, its anterior insertion about over middle of amal; base of adipose dorsal much greater than its height, less than base of first dorsal; distance between dorsals equal to length of head. Pectoral spine strong, ridged and granulated in front, the hinder edge with very strong serre: length of
spine $1 \frac{3}{4}$ in head, the fin projecting beyond tip of spine and reaching $\frac{2}{3}$ distance from axil to base of ventrals. V'entrals reaching to or nearly to origin of anal. Vent midway between base of ventrals and front of anal. Base of anal equaling length of pectoral spine, its margin gently concave, the longest ray $2 \frac{\pi}{8}$ in head. Caudal with pointed lobes, the lower longest in the type, $1 \frac{2}{5}$ in head.

Color dark steel blue or brownish above, becoming bright silvery below; posterior $\frac{2}{5}$ of anal white, the anterior portion black with a narrow white edge; pectorals and ventrals with anterior (outer) face white or slightly dusky; pectorals with inner face of upper rays black; a black blotch covers all of inner face of ventrals except terminal half of inner rays; barbels blackish.

Closely related to 7 . mclanopus and T. multiradiatus, differing from the former in the longer anal fin, from the latter in the black markings on lower fins.

The deseription of the type of T' multiradiatus (Bagrus? arioides) Kner \& Steindachner (1864, p. 47), indicates a species with moch rougher senlpturing of the head, a longer fontancl groove, narrower occipital process, and more anteriorly inserted adipose dorsal.

The type is a siugle specimen, 280 mm . long, from Pamama.

48. Tachysurus furthii (Steinducherer).

Abundant, eighteen speeimens preserved. Our specimens exhibit some variation in the size of the granulations on top of head, also in the extent of the grambated area, which sometimes extends as far forward on the ridges as the posterior border of the eye. The groove extemding backwards from fontanel is variously developed. An occasional specimen shows no trace of the groove; others have it developed for half the distance to the oceipital process; in most cases it nearly reaches the base of the latter. In the interorbital region, the fontanel depression contains no definite groove, but at the anterior end of the depression, a short oval detached portion of such groove is always present.

The interspace between dorsals is found to be $3 \frac{1}{2}$ to 4 in the length, not " 3 to $3 \frac{1}{3} "$ as given by Eigenmann. The species stands alone in the delicate, easily ruptured skin, and the very light blue color of its upper parts.
49. Tachysurus evermanni sp. nov.

Plate V, Fig. 10.
Type, $252 \mathrm{mm}$. ; Panama Bay; C. II. Gilbert and party, collectors; No. 6706, Ichthyological Collections, L. S. Jr. U.

Very elose to T'. furthii, from which it differs in the subequal jaws (the upper much protroding in furthii), the thick, gently rounded snout (thin and subtruncate in furthii), the shorter barbels, the coarser granulations on head, the absence of a depressed linear pit at anterior end of fontanel depression (this always present in furthii, representing a detached anterior portion of a fontancl groove), and the much wider union of gill-membranee with the isthmus.

Head $3 \frac{3}{3}$ in the length; depth $4 \frac{4}{5}$; tip of snout to front of dorsal $2 \frac{1}{2}$; distance between dorsals $3 \frac{2}{3}$; distance from base of inner ventral ray to front of anal $6 \frac{2}{7}$. Fiye 4 in interocular, 8 in head; greatest width of head $1 \frac{2}{5} \mathrm{in}$ its length; length of snout $2 \frac{9}{10}$; width of mouth $2 \frac{3}{5}$; distance between anterior nostrils $6 \frac{2}{3}$ ($5 \frac{2}{3}$ in furthii) ; pectoral spine equaling length of head behind front of pupil; dorsal spine equaling length of head behind posterior margin of pupil: base of adipose fin equaling lase of dorsal behind the spine.

The snout is convexly rounded anterionly, less depressed than in furthii. The maxillary barbel barely reaches gill-opening, when laid horizontally backward; the onter mental barbels reach margin of gill-membrane on under side of head.

The palatine patches of teeth are marrowly elliptical, their length $\frac{1}{6}$ times the diameter of the orbit; they are marrowly separated in front, the interspace $\frac{3}{1}$ diameter of pupil; the inner mandibular teeth next the symphysis are coarsely granular, like the palatine teeth.

Gill-membrans broadly united to the isthmus, without free fold, the width of the complete union with the isthmus more than twice the diameter of the eye (much narrower, less than diameter of eye in furthii). Gill-rakers rather strong, $5+9$, the longest $\frac{2}{3}$ the diameter of the eye.

Top of head much more coarsely gramiated than in furthii; the groove is confined to the granulated area, teminating at a point $\frac{2}{3}$ diameter of pupil in front of the base of the occipital process. Anteriorly, the fontanel depression is evident, but contains no definite groove at any point. The occipital process is very broad, wider at base than long, much shorter than in furthii, the median portion not elevated as in the latter; a raised line representing an obsolescent keel is present on the median line of the anterior two-thirds. The predorsal plate is narrow, sculptured like the occiput on its anterior transterse portion only.

The dorsal and pectoral spines are slencler, rugose anteriorly, but without teeth except near the tips; the teeth on the posterior margin of the dorsal spine are scarcely visible, being smaller than in furthii; the inner pectoral teeth are stronger and less mumerous than in furthii. The type is a male, with the ventral fins failing to reach the front of the anal by half their length. The vent is midway between ventrals and front of anal. The pectoral pore is small, slit-like.

The skin is thicker and less delicate than in furthii, and the color is darker, the upper parts dark brownish, with obscure bluish reflections. Barbels all more or less disky.

50. Tachysurus multiradiatus (Günther).

Not seen by us. The type specimen was recorded by Kner \& Steindachner, 1864, p. 227, as Bagrus ? arioides, from the Rio Bayano near Panama. A second specimen has now been listed by Boulenger, 1891, p. 2, from Rio Cianati, Darien.

51. Cathorops hypophthalmus (Steinduchner).

Known only from the types, and from two specimens secured by Gilbert in 18S1; all from Panama.

52. Cathorops gulosus (Eigenmum \& Eigenmenn).

Two specimens were secured, 230 and 245 mm . long. None athers are known save the types, from Panama, which are in the Museum of Comparative Zoology.

Onr specimens agree for the most part with Eigenmann's description. The following details may be placed on record:

Head $3 \frac{3}{7}$ or $3 \frac{1}{2}$ in length; distance from tip of snout to origin of dorsal, $2 \frac{1}{2}$; distance between dorsals $3 \frac{2}{3}$ or $3 \frac{3}{3}$. Interocular space 2 in head; width of mouth, measured at outer angle of lips, $2 \frac{1}{3}$ or $2 \frac{2}{5}$; length of dorsal spine $1 \frac{1}{4}$ to $1 \frac{1}{6}$ in head; upper caudal lobe $1 \frac{1}{3}$; longest anal ray $2 \frac{1}{4}$; ventrals 2 or $2 \frac{1}{5}$. The retrorse teeth on inner border of dorsal and pectoral spines are minute, irregular, crowded. The maxillary barbels extend to distal fourth of pectoral spine; outer mental barbels to its middle, inner mental barbels to its base. The fontanel groove fails to reach the base of the occipital process by $\frac{3}{4}$ the diameter of the eye. The palatine patches of granular teeth are wider than figured by Eigenmann, the two separated by a distance equal to or slightly in excess of the diameter of the eye. The patches vary in size and shape in the two specimens, and on opposite sides of the same individual. In one specimen are two detached teeth laterally on the head of the vomer, on one side only; none in the other specimen.

In addition to the other characters already noted, Cathorops differs from Tachysurus in the absence of the patch of coarsely granular teeth along the inner border of the symplysial portion of the mandibular band.

Family SYMBRANCIIIDE.

53. Symbranchus marmoratus Bloch.

Abundant in a fresh-water pond at Miraflores, where it is trapped for food. As mone could be taken with the seine, it seems probable that the species burrows in the mud. The few specimens secured were all brownish, varionsly marbled with yellowish.

Family LEPTOCEPHALDDA.

54. Congrellus gilberti Donglass-Ogilly.

Congrellus gilberti Douglass-Ogilbr, 1898, p. 288.
Ophisoma (?) balcaricum Gilbert, is9i a, p. 349.
Dredged by the "Albatross," Station 2797, Yanama Bay, 33 fathoms; recorded by Gilbert as Ophisomu (?) balearicum. The species is based exelusively on Gilbert's description above eited. The type specimens are deposited in the United States National Musenm.

55. Congrellus nitens (Jordan \& Bollman).

One specimen dredged by the "Albatross" in Panama Bay, Station 2799, $29 \frac{1}{2}$ fathoms (Gilbert, 1890 b, p. 450).

56. Congrellus proriger (Gillevt).

A co-type of this species was dredged hy the "Albatross" in Panama Baly, Station 2799, 291 fathoms (Gilbert, 1891 a , p. 35).

Family MUR.ENESOCIDAE.

57. Murænesox coniceps Jordan \& Gilbert.

Sifiro.
The most abmdant cel at Pamama, where it appears in the market nearly every day. The relations of the species to its Atlantic representative M. savanna are much in need ol elucidation.
58. Neoconger vermiformis Gillbert.
"Albatross," Station 2799, Panama Bay, 291 fathoms (Gilhert, 1890 b, p. 450).

Fimily MYRID.E.

59. Myrophis vafer Jordum \& Gitlert.

Numerous in rock-pools, from which several specimens were obtained, larger than any before recorded. The teeth are in a moderate band in upper jaw, marrowing backward, and widening rapidly in front, where it becomes confluent with the pateh at anterior end of vomerine serics. Behind this, the vomerine teeth are in a single series, which is contimed backward to behind angle of month. Mandibular, teeth in a single series laterally, widening into a band at sympliysis. In M. punctatus all the bands of teeth are wider, and those of vomer and mandible are in more than one series.

Table of Measurements in Jillimeters.

		$\stackrel{\text { Eremer }}{\sim}$				$\begin{aligned} & \dot{\circ} \\ & \stackrel{0}{6} \end{aligned}$	$\check{~ 巳 ~}$			㖪
280	108	172	31	5	+	$8 \frac{1}{2}$	2	5	$2 \frac{1}{2}$	65
215*	98	117*	28_{1}^{1}	+	$3 \frac{1}{4}$	S	2	$+\frac{1}{2}$	2	59
210	8 I	129	23	$3 \frac{1}{2}$	3	6	2	$3 \frac{1}{2}$	I $\frac{1}{2}$	$+9$

Family OPHICHTII YID.E.
60. Myrichthys tigrinus Giretrd.

Ophisurus rysturus Jordan \& Gilbert, 1881 c, p. $3 \nmid 6$.
Numerons specimens were obtained from tide-pools on the recf. They answer Girard's description of the type, and also the type deseription of O. xysturus. The number of rows of teeth on sides of mandible varies from two to four, younger speci-

[^2]mens having frequently the lower number. The head varies in length, being contained $3 \frac{1}{3}$ to 4_{4}^{1} times in the trunk. There are but two conspicuous series of roundish spots on either side of the back, a third series of much smaller spots being only oceasionally present along base of anal fin. The spots on head vary greatly in size, number and position. No arrangement can be assigned to these as normal for the species.

61. Pisoodonophis daspilotus Gillert.

Plate Vil, Fig. 12.

Pisoodonophis daspilotus Gllbert (Jordan \& Evermann, 1898, p. 2803).
Brownish above, gray below, the head and body usually thickly covered with black spots smaller than the eye; these are smaller and more numerous on the head, fewer and fainter on the lighter inferior surface, and become indistinct or entirely disappear on the terminal portion of tail. In one specimen the head and trunk are spotted and the entire tail unicolor. In another no spots are present, the upper parts being a uniform dark brown, the under parts lighter brown, a few dark freckles only being present on sides of head. In all specimens the snout and lower jaw are blackish.

The anus is near the middle of the total length, sometimes nearer the tip of snout, sometimes nearer tip of tail. The cheeks are not greatly swollen. The gape extends behind the eye, its length, measured from tip of lower jaw to angle of mouth, being contained $+\frac{3}{5}$ to $+\frac{3}{3}$ in head. The snout projects beyond the lower jaw for a distance about equaling diameter of orbit. Eye 2 to $2 \frac{1}{3}$ in snout, $1 \frac{2}{3}$ to $2 \frac{1}{7}$ in interorbital width. Tubes of anterior nostrils about $\frac{1}{2}$ diameter of eye, directed downward near tip of snout. Posterior nostrils under front of eye, concealed in the upper lip as usual.

Teeth all bluntly conic, in rather wide bands on jaws and vomer; they are usually not disposed in regular series within the bands, but each hand has about the width of four series, and these are sometimes distinguishable. The mandibular teeth become larger on approaching the symphysis, those at point of mandible and those on head of vomer being much the largest teeth present. The patch on shaft of vomer tapers backward to a point considerably behind angle of mouth.

Origin of dorsal entirely behind tip of pectorals, its distance from snout $\frac{1}{3}$ to $\frac{1}{8}$ greater than length of the head. The tip of the tail is compressed, acute, horny, used for defense. Pectoral very short, from a wide base which slightly exceeds length of gill-slit. The fin rapidly narrows downward, the longest portion contained 12 to 14 times in length of head. The width of gill-slit is about $\frac{1}{8}$ head.

Table of Heasurements in Hillimeters.

		$\stackrel{\text { E }}{\sim}$		$\begin{aligned} & \dot{\sim} \\ & \stackrel{0}{0} \end{aligned}$	シ									\% 0 0 0 0 5 0 0
362	177	185	38	8	3	5	$9{ }^{\frac{1}{2}}$	$6 \frac{1}{4}$	$2 \frac{3}{4}$	$3 \frac{1}{2}$	5	48	3	12
401	203	198	48	$10 \frac{1}{2}$	31	7	11	$7 \frac{1}{2}$	$3 \frac{1}{2}$	4	6	53	4	$14 \frac{1}{2}$
492	248	244	52	11	$3 \frac{1}{2}$	$7 \frac{1}{2}$	$16 \frac{1}{2}$	$8{ }_{4}^{1}$	$3 \frac{1}{2}$	$3 \frac{3}{4}$	61	68	$5 \frac{1}{2}$	18
49.	255	239	56	12	$4 \frac{1}{4}$	7	I6	S ${ }_{2}$	$4{ }^{\frac{1}{2}}$	$+$	6	68_{2}^{1}	$5 \frac{1}{2}$	16

Four specimens were secured，three obtaned in brackish water at the month of a small stream which empties into Panama Bay，the fourth in a fresh－water pond at Miraflores．There is some reason to suppose that they burrow in the mud．

62．Ophichthus triserialis（K＂ulp）．

No Panama record is known to the writers．The species is abundant on the Mexican coast，and has been recorded from the Galapagos Islands（Cimbiet， 1890 l，p．450）．

63．Ophichthus zophochir Jorilen if Gilbert．
This species has been heretofore known only from the Mexican coast（Guay－ mas，Mazatlan，Acapulco）．A single specimen was taken in a rock－pool at Panama． As in the type，the teeth are acute，biserial on all the bones．The color is as described， except that the dorsal is not definitely black－edged．The anal is conspicuonsly edged with black，the pectoral largely blackish．Pores on head black－edged．

Table of Measurments in Millimeters．

		\％	舭	总	$\dot{\sim}$	免		䂞	
329	$1{ }^{1}+\frac{1}{1}$	$21+\frac{1}{2}$	37	$6 \frac{1}{4}$	$+$	121	2	19	49

Family IIURAENID．E．
64．Rabula panamensis（Steinduclener）．
Recorded from Panama by Steindachner，and by Bonlenger（1899，p．2），as Murana panamensis；not seen by the writers．

> 65. Lycodontis verrilli (Jorden \& Gillert).

Only the type specimen known；collected by Prof．F．Il．Bradley at Panama in 1866；now in the maseum of Comparative Zoology．

66．Lycodontis dovii（Günther）．
A single specimen 753 mm ．long was taken in a tide－pool on the reef at Panama．

The color is dark chestnut－brown，miform on head，body and fins，except that the belly and under side of head are lighter．The spots are numerons，round， varying in size，but all of them small，the largest smaller than pupil；they were all very light yellow in life，and are not definitely ocellated，the gromad－color being slightly darker around them．The larger spots are on the dorsal portions，with ocea－
sional finer ones intermingled; those on ventral surface minute. Fins colored like the body, the spots of the same size and character. On the head the spots become less numerons, the anterior third of its lenghth plain.

Teeth everywhere in single series, the lateral teeth small, those anteriorly in both maxillary and mandible much enlarged. Shaft of vomer with a very inconspicnons series of teeth, beginning opposite middle of eye, preceded after an interval by three very large depressible canines, the largest tecth present. A series of five black-edged pores along each half of upper and lower jaw, the two largest on upper jalw between front of eye and anterior nostril tube.

Table of Weasurements in Millimeters.

67. Muræna clepsydra Gillert.

Plate Vil, Fig. 13.

Thurena clepsydra Gilibert (Jurdan \& Evermann, 1898, p. 2805).
Thurenar melanotis Gïntusk, Cat. Fish., Vol. V111, p. 98 (in part); here belong all other records of M. melanotis from the Pacific.
Closely related to . \% insularum and $\%$. argus, from the tropical Pacific, but differing from louth in color.

Nostrils tubular, of almost equal length. Mouth closing completely, the teeth entirely concealecl by the lips. Gape straight, horizontal, extending to well behind the eyes, $2 \frac{1}{3}$ to $2 \frac{3}{4}$ in head.

Teeth in jaws large, compressed and wide at base, tapering uniformly to an acute point. directed backward, close set, everywhere miserial; those in sides of mandible noticeably smaller than those of upper jaw, the teeth in both jaws increasing in size anteriorly. As many as 18 or 20 teeth may be present in the half of either jaw, but many of them are usually wanting, leaving gaps in the serics. A single row of small teeth on shaft of vomer, heginning opposite front of eye. Head of romer with two long canines, larger than any of the other teeth, one or both of these uswally wanting in larger specimens, having apparently fallen out.
llead $=\left(1 \frac{1}{12}\right.$ to $\left.2 \frac{1}{18}\right)$ in trunk; head and trunk $1 \frac{1}{3}$ to $1 \frac{1}{7}$ in tail; depth at anus approximately half length of head. Eye small, its diameter contained 12 to 16 times in head; snout 5 to $5 \frac{1}{3}$. Dorsal begiming on the head, its distance from snout $\mathrm{I} \frac{1}{3}$ to $\frac{1}{2}$ in head.

Color dark brown, lighter on belly, dull whitish on under side of head. Head, body and fins closely covered with white spots, those on posterior parts larger, with some smaller ones intermingled, the larger spots with a more or less evident central constriction which makes them hourglass-shaped. Toward the head, the spots become very small and crowded, not more than half as large as pupil. Fins indistinctly light margined. A large elliptical jet-black bloteh surrounds the gill slit, distinctly margined by a series of contluent white spots. The fongitudinal diameter of the bloteh is contained 5 to $5 \frac{1}{2}$ times in the length of the head. Angle of mouth with a small black blotch, often obscure, preceded ly a pale spot on mandible. The throat is marked with a number of paratlel lengthwise folds, the bottom of each fokl with a dark line.

Table of Measurements in Millimeters of Fize Specimens:

		$\underset{\tilde{\tilde{E}}}{ }$	跑	$\stackrel{\dot{0}}{\tilde{6}}$	$\begin{aligned} & \dot{\overline{0}} \\ & \dot{\ddot{n}} \end{aligned}$	关		
675	311	364	106	45	201	7	59	72
630	289	341	96	38	181	$6 \frac{1}{4}$	52.3	70
612	287	325	9^{8}	39	19	$6!$	47	6
473	203	270	66	28	13	$5{ }_{4}^{3}$	40	50
397	177	220	58	21	11	+1	27	39

This species is abundant at Panama, where it is frequently brought to market. About 25 specimens were seen during the visit of the expedition, all essentially alike in coloration. The type is 397 mm . long (see table of measurements), and has the spots on body less numerons than in larger speeimens.
68. Muræna lentiginosa Jenyns.

Originally deseribed from the Galapagos Islands, this species seems much more abundant in Mexico, toward the northern limits of its range. No specimens were seen by the authors, the single Panama record being by Rowell (Jommax \& Ghbert, 1882 l, p. 381).

> Family ELOPID.E.

69. Elops saurus Linnctus.

This species was oceasionally seen, hut was not abmedant.

Family ALBULID.E.

70. Albula vulpes (Linnurus).

Not abundant. A few specimens only were seen in the market.
Family CLUPEIDN.
71. Sardinella stolifera (Jordan id Gillevt).

The species is apparently not abundant at Panama, as but two of three small specimens were seen. It is now known to extend as far south as Guayagnil (Boulenger, 1898-9, Vol. XI Y, p. 1).

72. Opisthonema libertate (Günther).

Abundant; several specimens preserved averaging about 25 cm . long. Young specimens were also seen at Acapulco.

This species differs from 0 . oglinum in coloration, in the shorter dorsal and anal fins (the latter containing 20 or 21 rays), and in the more numerous gill-rakers. The alleged differences in length of head are not reliable, both species varying greatly in this respect and no average difference being evident.

Six specimens of 0 . libertate give the following measurements:-

Head in length.	Depth in length.
$3 \frac{2}{3}$	$2 \frac{4}{5}$
$3 \frac{2}{5}$	$2 \frac{7}{8}$
+	$3 \frac{2}{7}$
$4 \frac{1}{70}$	3
$4 \frac{1}{6}$	$3 \frac{1}{10}$
$4 \frac{2}{8}$	$2 \frac{9}{10}$

In addition to the details of coloration already reported there is frequently present a series of small, round, evenly-spaced dark spots, behind the humeral spot, along the line separating the blue of the back from the silvery of the sides. Seutes $18+14$ or 15 .

> 73. Ilisha furthi (Steinduchner).

Pellona furthi Steindacherer, i875a, p. It.
Pellona panamensis Steindaciliner. 1. c. p. It.
A very abundant food-fish at Panama, but of inferior quality. The species is extremely variable in shape, but the deepest forms with strongly arehed ventral outline (1 . furthi) grade imperceptibly into the more slender forms with weak ventral curvature (I. prenamensis). Nouther characters are correlated with this difference in ventral curvature, and it appears certain that but a single species is represented. The deeper specimens are constantly the smaller ones, so far as indicated by the material at hand. The eye is therefore proportionately larger, and the snont (measured into the eye) apparently shorter than in the larger, slenderer individuals. In none of the specimens do the first five to seven anal rays originate under the dorsal fin, as deseribed in I. furthi. In both deep and slender forms the first anal ray is approximately under the last of the dorsal. The front of the dorsal is constantly nearer the tip of snout than the base of the caudal, the difference varying from $\frac{2}{3}$ to $\frac{3}{4}$ diameter of orbit.

The following table of measurements exhibits the variation in depth of body, and in size of eye and smout. The length into which the depth of body is measured, is taken from the tip of snout to base of caudal, exeluding the projecting tip of lower jaw. Stemdachner has apparently inchuded the latter in his measurements.

Total length millineters.	Depth into the length.	Orbit into head.	Snout into orbit.
255	$2 \frac{3}{5}$	$2 \frac{3}{5}$	$1 \frac{1}{3}$
280	$2 \frac{\pi}{8}$	$2 \frac{5}{6}$	$1 \frac{1}{3}$
295	$2 \frac{4}{5}$	$2 \frac{4}{70}$	$1 \frac{2}{5}$
295	$2 \frac{10}{8} \frac{0}{3}$	3	$1 \frac{1}{3}$
305	3	$3(+)$	$1 \frac{1}{3}$
310	$2 \frac{7}{8}$	3	$1 \frac{2}{7}$
320	$3 \frac{1}{5}$	$3 \frac{1}{6}$	$1 \frac{1}{4}$
330	$3 \frac{1}{8}$	$3 \frac{1}{4}$	$1 \frac{1}{8}$
390	$3(-1)$	$3 \frac{1}{2}$	1

74. Opisthopterus dovii (Gïnther).

This species is known only from Panama, where it occurs but rarely. Four specimens were seen, 18 to 20 cm . long; they agree well with Guinther's diagnosis. Head $4 \frac{t}{5}$ to 5 in length; depth $3 \frac{1}{3}$ to $3 \frac{1}{2}$. Eye 3_{5}^{2} to $3 \frac{1}{2}$ in head; maxillary $1 \frac{9}{10}$ or 2. Pectorals long, pointed, 4 to $4 \frac{t}{5}$ in length. Origin of dorsal nearer caudal than scapula by half length of head. A. 55, 59, 61, 62 in our specimens; D. 11, 12, 13, 14. Scutes 27 or 28 . Teeth in jaws strong, incurved, in a single series.

Color light olivaceons above, bright silvery below angle of gill-opening. A faint bluish streak sometimes present along upper edge of silvery area. No dark humeral spot. A broad black vertebral band. End of snout and tip of lower jaw black. Fins translucent, with dark specks along the rays.

75. Opisthopterus macrops (Günther).

Occurring but rarely. Three specimens were obtained, each about 225 mm . long.

The species is readily distinguished from O. dovii by its much larger eye, more oblique mouth, strongly concave occipital profile, and deeper body with much stronger ventral curvature. The teeth are much smaller than in O. dovii, and there is a conspicuous lumeral spot, lacking in the latter. In the specimens taken, the head is $4 \frac{3}{5}$ or $4 \frac{2}{3}$ in length, the deptl $2 \frac{5}{6}$ to 3 . Eye $2 \frac{2}{3}$ to $2 \frac{3}{3}$ in head. Front of dorsal slightly nearer root of caudal than scapula, farther forward than in O. dovii. Pectoral $4^{\frac{1}{2}}$ to $4^{\frac{2}{3}}$ in length. Scutes 27. D. 13 or 14. A. 62. Coloration as in 0 . docii, but with a large black humeral spot.

Not heretofore reported since the discovery of the type at Panama by Capt. J. M. Dow.
76. Odontognathus panamensis (Steinduchuer).

Only the type specimen is known.

Family ENGRAULIDID .

77. Anchovia miarcha (Jordan \& Gillert).

Collected by Prof. Frank H. Bradley in the Pearl Islands, Bay of Panama (Jordan \& Gilbelit, $1852 n$, p. 622); not seen by us.
78. Anchovia ischana (Jortun \& Gillert).

Three specimens taken, the largest 63 mm . long.

79. Anchovia curta (Jorden \& Gilbert).

Numerous specimens were taken. Some of these have the lateral streak "somewhat indistinct," as given in the original description of the species, while others have the streak much better marked, with well-defined edges. It widens on the candal peduncle and wholly disappears anteriorly.

80. Anchovia opercularis (Jorden \& Gillert).

A specimen of this species is recorded by Gilbert (1890b, p. 449) from Albatross Station 2802, Panama Bay, in 16 fathoms.

81. Anchovia lucida Jorden \& Gillert.

Five specimens were taken, the largest 57 mm . in total length.
In the original description of this species the cheek is described as being over half the length of the head. This is evidently a mistake, and should probably read, cheek over half the post-orbital part of the head. This would agree with the specimens taken.
82. Anchovia rastralis (Gilbert \& Pierson).

Plate ViII, Fig. 14.
Stolephorzs rastralis Gilbert \& Pierson (Jordan \& Evermann, iSgS, p. 2 Sii).
Head 3.16 (3.I to 3.3) ; depth 3.8 (3.5 to 4.2); eye 3.4 in head $(3.33$ to 4). D. I4 (I2 to 15) A. 26 to 32 . Length 5 to 8 cm .

Body much compressed and deep; belly sharply keeled in front of ventrals; dorsal outline much less curved than ventral. The lower profile rises very rapidly from a point opposite middle of pectorals to tip of snout, the shape of head thus closely resembling that of Cetengraulis. Maxillary reaching almost but not quite to gill-opening; snout high, compressed, its length $\frac{1}{2}$ to $\frac{3}{4}$ diameter of eye. Gill rakers averaging in larger examples $5 \mathrm{I}+64$, in smaller specimens $44+50$; the largest about as long as eye. Insertion of dorsal fin variable, but never posterior to a point midway between base of caudal and middle of eye; pectoral fins reaching to or nearly to insertion of ventrals; the latter not to vent.

Color olivaceous, the lower part of sides with violet reflections; sides of head silvery; a conspicuous silvery lateral band, varying in width from about one and one-third times length of orlit in the largest examples to less than one-half the orbit in the smaller specimens. The band is widest before
dorsal, and tapers to half or less than half its greatest width on caudal peduncle, where it frequently disappears in the young. In larger specimens the ventral edge of this band is frequently ill-clefnecl anteriorly. Top of head with widely spaced black specks. A dark vertebral streak, more or less of which often consists of two narrow lines. Tips of caudal lobes often blackish; fins otherwise ummarked.

Differing from closely allied species in the following characters: From . A. lucida, in the much Ionger head, more compressed body, well defined lateral stripe, and smaller eye; from A. compressa, in the longer head and wider lateral band; from A. panamensis and A. mundeola, in the much more numerous gill rakers, and the more anterior position of the dorsal relatively to the anal, the origin of the anal being under the middle of the dorsal, while in A. panamonsis the origin of the two fins lie in the same vertical.

83. Anchovia naso (Gilbert \& Pierson).

Stolcphorus naso Gilbert \& Pierson (Jordan \& Evermann, iSgS, p. 2Si3).
Head 3.3-3.5 in length; depth $4.7-5.5$; eye $4.5-5$ in head. Anal 22-24; dorsal 14 or 15; lateral line about 35 .

Dorsal and ventral outlines weakly arched; body slender, compressed, its greatest depth 1.5 in head; belly carinated in front of ventrals, and sometimes behind them in larger specimens. Head long and slender, its greatest width 1.5 to 1.7 in its length, the lower profile much more oblique than the upper. Snout long, compressed, bluntly rounded, its length exceeding the small eye. Cheek with a very acute posterior angle. Opercle narrow, oblique. Maxillary rather bluntly pointed, failing to reach gill-opening by about one-half diameter of pupil. Teeth on the maxillary quite prominent and directed forward. Gill-rakers short, $17+20$ in number; the longest $1 \frac{1}{2}$ in eye. Scales large, thin, deciduous, only a few scattering ones remaining on our specimens. Dorsal fin inserted midway between front or middle of orbit and base of median caudal rays. Origin of anal under or slightly behind middle of dorsal; length of anal base about equal to the distance from front of orbit to base of ventral fin. Pectorals not reaching ventrals, their length about one-half length of head. Length of ventrals equaling or slightly exceeding distance from tip of snout to middle of pupil.

Color light olive, with the usual bright reflections; a large dark patch of brown dots on occiput: a double series of dots along median line posterior to dorsal, this absent in some specimens; large specimens with a bright well defined silvery streak, slightly narrowing anteriorly and on caudal peduncle, its greatest width about equaling diameter of eye. In the young, this band is fainter and narrower. A conspicuous series of black dots at base of anal.

Characterized by the slender form, well defined silvery streak, sharply carinated breast, the small eye, and the very long, compressed, deep and rather bluntly rounded snout. Most closely resembling . 1 . starkisi, from which it differs in smaller eye, longer snout, and slightly longer anal. Length to to 52 mm .

84. Anchovia starksi (Gilbert \& Pierson).

Stolephorres starksi Gilbert \&Pierson (Jordan \& Evermann, i898, p. 28 13).

Head 3.3 to 3.6 ; depth 4.8 to 5.5 in length, 1.3 in head. Eye 3 to 3.5 in head. Dorsal 15 or I6; anal I7 to 22 ; scales about 41 . Vertebre to (counted in one example only).

Bocly long and slender, slightly deeper and more compressed than in A. ischamus, which much resembles this species. Dorsal outline very little arched; ventral outline nearly straight from gill opening to insertion of anal fin, the lower profile of head oblique, nearly straight. Belly compressed, keeled for anterior two-thirds of its length in front of base of ventrals.

Head long and pointed, its width $\frac{1}{2}$ times in its length. Maxillary abruptly widened opposite the mandibular joint, tapering posteriorly to a blunt point, which reaches almost to the gill-opening, its length equal to length of base of anal. Snout long, sharp, and projecting, abruptly compressed in its
terminal portion as seen from above, its length two-thirds diameter of orbit, or slightly more. Branchiostegal membranes united at base for a very short distance. In four examples examined as to this point, the gill-rakers are as follows: $20+25,23+24,21+23,19+30$; the longest contained $x \frac{1}{2}$ to $1 \frac{2}{3}$ in eye. Scales large, thin, deciduous, a few only remaining on the specimens at hand. Origin of the dorsal fin equally distant from the base of the caudal fin and the tip of snout or front of eye. Anal inserted under beginning of posterior third of base of dorsal. Pectorals not reaching ventrals, the latter extending three-fiiths distance to front of anal.

Color light olive, with broad, well defined, lateral silvery streak of nearly uniform width, usually narrowing anteriorly and on middle of caudal peduncle, its width in our largest specimens fivesixths diameter of eye. The silvery streak has a slight golden tinge. A narrow dark vertebral line, which widens on the nape. Occiput blackish.

This species differs from A. cultrata in its slenderer body, shorter snout, wider opercle and smaller teeth; the belly is also not sharply carinate, the dorsal is more anteriorly placed, the ventrals are farther back, and the silvery streak is wider anteriorly. It differs from A. delicatissima in its longer, slenderer head and body, smaller eye, longer, sharper snout, and much wider, better defined silvery streak.

Length 4 to 6 cm . Named for Mr. Edwin Chapin Starks.

85. Anchovia panamensis (Steindachner).

'This species was found to be rather common.

Dr. Steindachner seems to have had both A. panamensis and A. mundeola, as his description covers both in many respects. His count of seales would apply better to A. muadeola than to A. panamensis, which has 38 to 41 . The length of head, $4 \frac{2}{5}$, applies better to A. panamensis, that of A. mundeola being generally about 4 in length of body. Otherwise there seem to be no differences.

86. Anchovia mundeola (Gilbert \& Pierson).

Stolephorus mundcolus Gilbert \& Pierson (Jordan \& Evermann, is98, p. 28i2).
Head 4.15 (4 to 4.25); depth 3.77 (3.40 to 4.25); eye 3.44 in head (3.12 to 3.70). Dorsal 13 or 14 ; anal 33 (33 to 35) ; scales 36 (36 to 39). Dorsal and ventral contours about equally and gradually rounded from the middle region of body to the tip of snout and base of caudal fin. Snout short, high, compressed, blunt at tip, its length if in eye. Eye very large. Maxillary broad, tapering to a sharp point which reaches margin of gill-opening. Gill-rakers $17+2$ I to $22+24$; the longest $1 \frac{1}{2}$ to 2 in eye. Anterior insertion of dorsal fin varying from a point midway between base of caudal and middle of ey'e to a point midway between the candal and tip of snout. In ten examples its insertion is before that of the anal. Anal fin long, averaging 33 rays; its origin beneath the anterior third of the dorsal; length of base shorter than in A. panamensis, being $3 \frac{1}{2} 5$ in length, while in the latter its length is contained $2 \frac{1}{2}$ in length. Pectorals long, reaching well beyond the insertion of the ventrals, equaling length of head behind front of pupil; a large axillary scale. Ventrals scarcely reaching vent.

Color uniformly light olive with silvery reflections; a faint, narrow, silvery stripe, sometimes scarcely distinguishable. Sides of head plain silvery. Upper margin of orbital rim black. Dorsal region blackish. A laint, narrow, dark line on each side of the light mid-dorsal streak. Caudal slightly dusky. Fins otherwise ummarked.

This species is closely allied to A. panamensis and A. compressa, but may be distinguished from the former by its longer head, larger eye, greater depth, fewer scales along the lateral line, and its much shorter anal base; also by the much fainter lateral silvery stripe. The eye is contained 14 to 16 times in length, excluding the caudal; while in panamensis the length contains the eye i6 to 20 times.

From A. compressa it differs in the relative length of the head and maxillary. In A. mundeola the maxillary is contained in the head $\mathrm{I} \frac{1}{3}$ times (I .19 to I .37); in compressa $\mathrm{I} \frac{1}{2}$ times (1.30 to 1.81). In mundicola the head is contained 4.15 times in the length; in compressa $4 .+4$ times.

Since the publication of the above description, as cited, the material has been further studied by Chloe Lesley Starks, whose results we are permitted to incorporate below.

Twenty-seven specimens were measured, ranging in size from 72 to 120 mm . in length. In A. panamensis the head measures .2110 .25 of the length exclusive of the caudal; in A. mundeola $.2+$ to 26 . The depth of panamensis is 24 to .26 ; of mundeola $.2+$ to .27 . The size of the eye is the most striking difference between the two species, holding well from . $05 \frac{3}{4}$ to $.06 \frac{3}{4}$ in panamensis and from .07 to $.07 \frac{1}{3}$ in mundcola. The maxillary measures about the same throughout (doubtless some tips are broken). In panamensis the snout measures about of and in mendcola from of to .05. Gill-rakers and also the rays in the dorsal and anal fins number about the same in the two species. The length of anal base in panamensis seems generally longer, ruming from .35 to .39 of length, while in mundeola it runs from .33 to .36 . The number of scales varies from 39 to 41 in panamensis; from 36 to 39 in mundcola.

The extremes of the two species differ greatly in appearance, and no difficulty is encountered in separating them; but a few specimens seem to come so nearly intermediate that it is difficult to know to which form to assign them. When collected the two species were easily separable on account of the faint, silvery, lateral stripe of mundeola, but since preservation it has so faded in both species that it cannot be considered.

These two species may prove to be the same, but since A. mundeola has been deseribed, it will be better to consider the two as distinct, until enough material can be obtained to settle the point beyond question.

Mcasurements in Hundredths of Length to Base of Caudal.

ANCHOVIA PANAMENSIS.

77	2.4	$25 \frac{1}{3}$	6	18	4	36	$16+22$	34	13	40
S9	23	25	$6 \frac{1}{3}$	$18 \frac{1}{3}$	$+$	38	$16+22$	32	13	40
92	22	26	$6 \frac{2}{3}$	19	t	36	$15+18$	32	12	41
86	21	${ }^{2}+$	$5 \frac{3}{4}$	$17 \frac{1}{3}$	4	38	$16+22$	32	13	39
71	23	2.4	6	18	$+$	37	$16+22$	33	13	41
88	23	25	6	$17 \frac{1}{3}$	4	38	$16+24$	35	14	39
89	23	$2+$	$6 \frac{2}{3}$	17	4	39	${ }_{17} 7+22$	33	13	40
109	2.4	26	$6 \frac{2}{3}$	19	$+$	35	$16+25$	30	14	40
105	24	26	$6 \frac{2}{3}$	$18 \frac{2}{3}$	$+$	36	$18+22$	32	13	39
79	25	26	$6 \frac{3}{4}$	20	$+$	35	$15+19$	32	${ }^{1} 4$	40

Weasurements in Hundredths of Lengeth to Base of Caudal.

Anchovia mundeola.

S4	25	$25 \frac{1}{3}$	$7 \frac{1}{3}$	19	5	36	$16+23$	30	13	39
83	$25 \frac{1}{3}$	$24 \frac{1}{3}$	7	198	$4 \frac{1}{3}$	35	16 ± 22	33	13	38
91	$25 \frac{1}{3}$	25	7	19	$4 \frac{1}{2}$	36	16 ± 19	31	13	37
87	25	$26 \frac{1}{3}$	7	21	5	34	$16+19$	31	13	39
78	25	24	7	20	4 $\frac{1}{2}$	35	$17+22$	32	13	38
104	26	251	7	19	$4 \frac{1}{3}$	35	$17+23$	33	13	37
108	24	27	7	18	4	36	$20+24$	35	14	37
102	$24 \frac{1}{2}$	27	7	$18 \frac{1}{3}$	4	36	$16+25$	33	12	37
$93 \frac{1}{2}$	25	26	7	$20 \frac{1}{3}$	$4 \frac{1}{2}$	34	$17+23$	32	13	39
101	$2.4 \frac{1}{2}$	26	$7 \frac{1}{3}$	19	42	34	$17+22$	33	12	37
82	26	26	7	21	5	$33 \frac{1}{2}$	$16+17$	31	13	37
116	25	28	7	20	5	34	$17+22$	31	13	39
120	24	27	7	19	4	34	$16+23$	32	14	37
108	$24 \frac{1}{3}$	27	7	20	$4 \frac{3}{4}$	$35 \frac{1}{2}$	$18+22$	3 I	14	36
75	25	26	$7 \frac{1}{3}$	20	43	35	$17+23$	31	13	38
103	25	$26 \frac{1}{3}$	$7 \frac{1}{3}$	21	4	33	$17+24$	30	12	37
107	25	26	$7 \frac{1}{3}$	$20 \frac{1}{3}$	4	$35 \frac{1}{3}$	$20+23$	31	14	36

87. Anchovia spinifera (Cuvier \& Vulenciennes).

Plate Vili, Fig. 15.
Two specimens were taken in shallow water by means of a cast-net.
Head 4 in length; depth 4 ; dorsal 16 ; anal 38 ; scales 42 . Form moderately slender, the dorsal outline ascending in nearly a straight line from snout to front of dorsal, where it reaches the greatest height; thence descending at about the same angle in a straight line to caudal peduncle; ventral outline evenly curved from tip of lower jaw to caudal peduncle. Abdomen somewhat compressed, not serrated.

The head is rather long, and has a slarp conical snout. The upper posterior outline of the gill-opening is very oblique. A line drawn from snout to angle of opercle would nearly parallel the oblique maxillary. The subopercle projects beyond the opercle in a triangular process. The eye is placed within the first two-fifths of the head. The maxillary is slender, and not angulated on its upper outline towards its posterior end. It is widest near angle of mouth, and ends in a rather sharp point near lower edge of gill-opening. The teeth are small but sharp. The gill-rakers are slightly shorter than the orbit; about $15+17$ in number.

The origin of the anal is about under the middle of dorsal. The pectorals extend to or slightly past the micldle of the outer ventral rays.

Owing to the action of formalin，these specimens have little of their original color left．Where scales remain，the lower parts of the sides are bright silvery， rather abruptly shaded to olive above．Apparently no lateral stripe was present． The caudal and the first rays of dorsal are tipped with black．In life，the candal and dorsal were otherwise bright yellow．

Measurements in Hundredths of Length to Base of Caudal．

	ジむ̃	$\stackrel{\vdots}{\stackrel{訁}{U}}$	$\stackrel{\dot{M}}{\substack{0}}$		$\begin{aligned} & \dot{3} \\ & \text { 品 } \end{aligned}$				
96	26	25	$5!$	22	4	38	20	15	$17!$
99	26	26	$5 \frac{1}{2}$	22	$4 \frac{1}{2}$	39	19	14	${ }^{1} 7$

88．Anchovia macrolepidota（Finer \＆Steinduchner）．
Very abundant，reaching a large size and used for bait．The body is closely compressed，and very minnte teeth persist in the maxillaries even in adults．

89．Cetengraulis mysticetus Gïnther．
Abundant；often used as bait in hand－line fishing．It reaches a length of 20 cm ．Our specimens have been compared with C ．edentulus from Jamaica，and are found to differ from this closely selated Atlantic representative in the slightly longer head，slenderer body and candal pedmele，smaller eye，and shorter anal fin． The anal has an average of but one less ray，instead of three less，as given by Jordan \＆Evermann，1896，p． 450.

In the original deseription，the gill－rakers on the lower part of arch are said to number 42．Dr．Boulenger has kindly reexamined for us the three types in the British Mnseum，and finds in each from 55 to 60 gill－rakers．The number in the speeimens at hand ranges from 53 to 66 ．In these specimens，the pectorals usually do not reach the ventrals，either terminating some distance from them，or rarely approximating them．

The color in life is light olivaceons or olive－green above，massing into the bright silvery of sides and lower parts．No lateral stripe．Candal margined with dlusky．

Mcasurements in Hundredths of Length without Caudal.

Species.....................	Cetengraulis mysticetus					cetengraulis edentulus				
Locality	Panama					South Atlantic				
Length without caudal, in mm .	149	153	$14+$	145	152	106	96	101	109	104
Head.	36	36	37	37	35 ${ }^{\frac{1}{3}}$	34	33	33	33	33
Depth....	31	30	31	29	$30 \frac{1}{2}$	$31 \frac{1}{2}$	33	33	$3+\frac{1}{2}$	32
Orbit..	8	$7 \frac{1}{8}$	$7 \frac{1}{2}$	8	$7 \frac{1}{2}$	8	9	8	$8 \frac{1}{2}$	9
Maxillary	21	$21 \frac{1}{2}$	22	$21 \frac{1}{2}$	21	20	20	19	20	20
Snout	4	4	4	$4 \frac{1}{2}$	4	5	5	5	5	5
Greatest length from preopercular ridge to gillopening.	${ }^{1}$	15	15	${ }^{1}+$	15	12	12	12	11	12
Number of dorsal rays..	15	15	15	15	14	${ }_{4}$	14	15	${ }^{15}$	15
Number of anal rays	22	23	23	22	22	${ }^{2}+$	${ }^{2}+$	23	23	23
Number of scales	42	4°	+3	43	42	39	40	41	40	${ }^{1}$

90. Cetengraulis engymen Gilbert \& Pierson.

Cetengraulis engymen Gilbert \& Pierson (Jordan and Evermann, 1898, p. 28i5).
This species differs from C. mysticetus in the much narrower union of the gill membranes, the less numerous gill-rakers, and in the longer snout. Head 3 to 3.3 in length; depth + to 4.9 ; eye + in head; dorsal It or 15 ; anal 20 to 23 ; vertebre 4 . Body compressed, fusiform, not so deep as in mysticetus or edentutus. The dorsal and ventral outlines are about equally and regularly curved in the larger specimens; in the smaller specimens the ventral contour is more nearly straight. Belly trenchant, but not carinate nor serrate; caudal peduncle moderate, its depth being contained 1.5 times in its length. Head similar to mysticetus; the snout longer, contained 5.5 to 7 times in head, $1 \frac{1}{2}$ times in eye (the snout is contained 8 to 9 times in head, in mysticetus). Both jaws bear minute teeth, those on the maxillary largest. Branchiostegal membranes united for only $\frac{2}{3}$ to $\frac{3}{4}$ of the distance between tip of mandible and mandibular articulation; wholly free from the isthmus. Tip of mandible directly beneath the anterior border of orbit. Gill-rakers long, nine-tenths diameter of eye, 20 to 30 on the upper limb, 25 to 30 on the lower limb; in five examples as follows, $25+30,27+25,30+26,25+30$, $23+29$ to $20+25$.

The origin of the dorsal is midway between base of median caudal rays and a point varying between front and middle of the eye. Insertion of anal below the posterior fourth or third of the dorsal, its length equaling the distance from the posterior border of the eye to insertion of pectoral. The pectoral is short, $2 \frac{1}{4}$ to $2 \frac{1}{3}$ in head, failing to reach the insertion of the ventrals by half or nearly half its length. Caudal deeply lorked, its median rays $2 \frac{1}{2}$ to 3 times in head.

Color uniformly silvery, with a distinct, well defined lateral silvery band, extending from upper angle of gill-opening to base of caudal; its greatest width equals the diameter of orbit, becoming narrower on caudal peduncle.

Length 38 to 57 mm .

91. Lycengraulis poeyi (Kner \&steinduchner).

Seven specimens were taken, the largest 198 mm . in total length.
In some of the specimens the pectorals scarcely reach to the base of the ventrals, while in others they reach a very little past this point. The gill-rakers become shorter and somewhat thicker with age.

We have compared these specimens with a single specimen of L. grossidens from Pernambuco, Brazil. The latter specimen seems to differ from L. pocyi in having a slightly longer maxillary, a greater distance separating the tip of snout from lower angle of cheek, and in the slightly larger teeth, which are more meven and more widely spaced.

Mcasurements in Hundredths of Length without Caudd.

Species Locality	Licengraulis roevi.					L. GROS SIDENS.
	Panama.					Brasil.
Length without caudal, in mm...........	186	159	${ }^{1} 53$	189	198	169
Head in rooths of length...	23.	23	$23 \frac{1}{2}$	23	23.1	24
Depth..	26	24	2.4	25	2.4	25
Eye..	5	5	5	5	$+^{3}$	$4^{\frac{3}{4}}$
Maxillary	18	178	181	18	18	201
Origin of dorsal from snout	$56 \frac{1}{2}$	56	$5+\frac{1}{2}$	55	$5+\frac{1}{2}$	551.
Greatest distance from eye to gill-opening	15	1.4	$1+\frac{1}{3}$	14_{2}^{1}	14	$15 \frac{1}{4}$
Snout to lower angle of cheek.	181	$15 \frac{1}{2}$	18	18	19	201
Dorsal rays	15	14	15	14	14	15
Anal rays.	24	25	24	24	25	24
Gill-rakers..	$1++20$	$15+19$	$14+20$	$1++20$	$12+19$	$1++18$
Scales...	40	40	4	41	40	39

Family SYNODONTIDE.

92. Synodus evermanni Jordan if Bollman.

Dredged by the "Albatross" in Panama Bay, at Stations 2795 and 2797, 33 fathoms; not seen by us. The species is also known from "Albatross" Stations 2S:31, 3043,3044 , off the coast of Lower California, in depths of 12 to 74 fathoms; and Station 2998, Gulf of California, 40 fathoms.

93. Synodus scituliceps Jordan \& Gilbert.

Synodus jenkinsi Jordan \& Bollman, 1889, p. 153.
Two specimens seen, one of which is 40 cm . long, and is preserved. The head is remarkably long, $3 \frac{2}{3}$ in length. Five rows of scales between lateral line and median series before dorsal; seven rows between lateral line and median series before anus; sixty scales in lateral line; six rows on cheeks. These characters would range the specimen under the nominal species S. jenkinsi, which we are mable, however, to distingnish from S. scituliceps. Specimens from Mazatlan with short head (typical S. scituticeps) have five or six rows of sates on the cheeks (never four as originally (lescribed), and have the anterior dorsal rays reaching or not reaching tip of posterior ray when depressed. In these, the head varies from $3_{\frac{3}{4}}^{3}$ to $4_{\frac{1}{3}}$ in length, no specimen before us having the head as small as described for the type of S. scituliceps ($4 \frac{3}{5}$).

The species was also seen at Acapulco (Dec. 20), several specimens being observed lying on the sandy bottom near the wharf. They lie rigidly in a straight line, and their colors harmonize so well with that of the sand that they are detected with difficulty. One specimen, on coming to rest after swimming a short distance, disappeared in the sand, leaving only the tip of the snout exposed. It did not enter head first, but settled into the sand with its whole length at once, apparently throwing up the sand by motions of its pectoral and ventral fins.

Family PCECILIIDE.

94. Pœcilia elongata Günther.

Very abundant in the brackish sloughs about Panama. We found it also in the market, where nmmerons specimens were taken from 5 to 18 cm . in length. These are all females, no males being seen. All of the specimens examined have young in the oviduct, abont 18 mm . in length, apparently about ready to be set free. They have four or five narrow, distinct cross-bars on the body. The scale-ponches have also a narrow, dark border, which shows throngh the scales as in the adult.

We here supplement the original description, from specimens 10 to 18 cm . in length. Head 3_{8}^{2} to $4_{5}^{\frac{2}{5}}$ in length; depth $3 \frac{1}{2}$ to 4 . Eye $3^{\frac{1}{2}}$ to $4_{\frac{1}{5}}$ in head, slightly less than half the interorbital width in the larger specimens, slightly more than half in specimens 10 cm . long. Interorbital width half head. Height of candal peduncle $1 \frac{1}{4}$ to $1 \frac{2}{5}$ in head, diminishing in height but slightly (sometimes not at all) from dorsal to caudal base. Scales in six specimens 30, in six specimens 31 , in four specimens 32. Nine specimens have 10 dorsal rays, two have 9 ; eight specimens have 9 anal rays, four have 8 .

After removing and drying the jaws, a narrow band of very fine villiform teeth, behind the dark-tipped slender outer teeth of each jaw, may be seen by the aid of a lens.

95. Pœcilia boucardii Steinduchner.

Very abundant in fresh and brackish water. Found in every pond and stream in the savannah ahout Panama. They agree very well with Dr. Steindachner's description of the typieal specimens, which were taken alont Colon.

The black spots on the caudal are quite variable in size. In most specimens the caudal fin and even the posterior part of the candal pednuele, is profnsely covered with rather large black spots. There are elongate or elliptical spots between the rays, and smaller indistinct spots are on the rays. In a few specimens the spots are small and diffused, those on the rays being most persistent. The young, 25 to 40 mm . long, have only small indistinet spots.
96. Anableps dowei Gill.

Not seen by us.
The types of the species have been ascribed to Panama, this locality being based on the following ambiguous statement by Gill (1861 a, p. 3): "There has recently been sent to the Smithsonian Institntion from Panama, by Captain J. M. Dow, a new species of the genus Anableps." While this speeimen was sent from Panama, it was apparently not eaptured at that point, as witness the following statement published by Dow (1861, p. 30): "Some time since, while in the bay of La Union, State of Sin Salvador, I eaught . . . a couple of what I supposed was Anableps tetrophthalmus; but npon sending them to my friend, Professor Baird, of the Smithsonian Institution at Washington, was somewhat surprised and gratified to hear that they were of an entirely new species . . . A. dowii." On a subsequent trip, Dow obtained (l. c.) from the same locality several specimens, which were likewise sent to the Smithsonian Institution (see Jordan and Gitbert, 1882 i , p. 373). Others are recorded by Giinther (1866a, p. 333) from Chiapam and Guatemala, and still others (Giinther, 1864 b, p. 27) are sild to have been collceted hy Captain Dow on the "Pacific Coast of Panama."

There seems to be no warrant for changing the spelling of the specifie name, as has been done, to dowi, dowii or dovii. It appears as dowei in three places in the original description, a fact which sufficiently indicates the deliberate intention of the author concerning it.

Family ESOCID E.

97. Tylosurus scapularis Jordan \& Gilbert.

Several specimens seined in fresh water at Miratlores. Four specimens preserved, the largest 41 cm . in length, the others 23.

In these specimens the caudal pedunele is not compressed, as described for the type, but is about as wide as deep. The body is somewhat depressed, especially in the ventral region. The description of the type states that the eye "is contained 8 or 9 times in the length of the upper jaw" (this agrees with our specimens), "and
$3 \frac{1}{2}$ times in rest of head." This last doubtless should read postorbital part of head. The eye in our specimen is contained $4 \frac{1}{2}$ to nearly 5 times in head without upper jaw. The description states that the anterior dorsal rays are "as long as from eye to edge of operele." This should read to edge of preoperele or to anterior edge of opercle.

The lateral band tapers to a point at each end. It is nearly confined to the posterior third of the body, and does not reach to the candal rays. In the large specimen it is dusky silvery and has ill-defined edges, while in the small ones it is well defined and bright silvery. It is bordered above with a dark streak, very conspicuous in the younger specimens, but diffused and only slightly darker than the body in the large specimen.

> 98. Tylosurus stolzmanni (Steinduchner).

Two specimens were taken, 51 and 62 cm . in entire length. Besides these we have in the Museum of Stanford University a specimen from Mazatlan of about the size of our smaller speeimen. These are larger than the type (477 mm . in length), from the description of which they differ in some minor respeets.

In our speeimens the body is as broad as high at the region of the ventrals. The interorbital space is a little wider than diameter of eye, which is contaned 12 times in length of head. The anal base is a little longer than the dorsal base. The insertion of the ventrals is nearer the eaudal base than the posterior border of the eye by from 1 (in the larger specimen) to 3 times the diameter of the eye.

This is probably the species recorded by Boulenger (1890, p. 2) from the Gulf of Panama, under the name Belone truncata.

99. Tylosurus fodiator Jorden \& Gillert.

Not uncommon at Panama. Like other gars, it is called Aguja by the native fishermen.
100. Tylosurus pacificus (Steinduchner).

Three specimens were collected, which agree very well with the deseription of the type.

Family HEMIRHAMPHID.E.

101. Hyporhamphus unifasciatus (Runzuni).
'Two specimens collected at Panama by Captain J. M. Dow have been identified by Jordan and Gilbert (1882 i , p. 373) with the short-nosed half-beak, II. poeyi ($=H$. unifasciatus). The species is also recorded from Panama by Jordan \& Bollman (1889, p. 180).
102. Hyporhamphus roberti (Cucier (f I Ulencienmes).

One small specimen taken, about 15 cm . in length.
r03. Hemirhamphus saltator sp. nov.

Plate IN, Fug. 16.

Hemirhamphus baluo Jordan, is85, P. 370 (Panama); not of Le Sueur.
Head from tip of upper jaw, $4 \frac{1}{3}$ in length from the same point to base of caudal; depth $6 \frac{1}{3}$ to $6 \frac{9}{10}$. Dorsal 13 or I4; anal II or 12 ; scales 53 or 54 .

Body compressed, the sides vertical and parallel. Nandible from tip of upper jaw $+\frac{1}{3}$ to $f_{2}^{\frac{1}{2}}$ in length. Diameter of eye slightly exceeding interorbital width, 4 to $+\frac{1}{2}$ in head. Pectoral $1 \frac{1}{5}$ to $1 \frac{1}{3}$ in head. Insertion of ventrals midway between base of caudal and anterior third of pectoral fin. Last ventral ray producel, and longer than first ray. Front of anal a little anterior to middle of dorsal base; the posterior end of anal base coterminous with that of dorsal. Posterior ray of dorsal produced; anterior rays about a third higher than those of anal.

Color uniform bright silvery on lower part of sides, dusky silvery above. An inconspicuous, dark, narrow lateral streak extends from upper angle of gill-opening to just above middle of caudal. Top of head and upper jaw dark. Dorsal and caudal dark; pectorals dusky; ventrals colorless, except a slight dusky tinge towards ends of outer rays; anal white.

This species is closely related to H. brasiliensis from the West Indies, with which it has been identified. It differs from that species in the smaller eye, longer mandible, and longer pectoral fin. The insertion of the ventrals is more anterior; the horizontal length of the opercle is greater; the anterior rays of the dorsal are lower, and there are one or two more scales in a horizontal series.

Eight specimens were taken, from 41 to 46 cm . in entire length.
Mcasurements in Hundredths of Length without Caudal.

Species..	HEMIRHAMPHUS SALTATOR								HEMIRHAMPHUS BRASILIENSIS										
Locality .	Panama								Jamaica									Havana	
Length from tip of upper jaw to base of caudal, in mm \qquad	266	242	256	277	251	213	252	283	211	209	210	215	190	207	198	191	192	173	222
Head from tip of upper jaw in rooths of length	24	$23 \frac{1}{2}$	$23 \frac{1}{2}$	$23 \frac{1}{2}$	24	$23 \frac{1}{1}$	24	23	$23 \frac{1}{\frac{1}{2}}$	24	24	23	$24 \frac{1}{2}$	24	24	$24 \frac{1}{4}$	$23 \frac{1}{2}$	$24 \frac{1}{2}$	2.4
Depth.................	$14 \frac{1}{2}$	16	$16 \frac{1}{2}$	$15 \frac{1}{2}$	$15 \frac{1}{2}$	$15 \frac{1}{2}$	$15 \frac{1}{2}$	16	18	17	$17 \frac{1}{2}$	16	IS	17	17	$17 \frac{1}{2}$	$16 \frac{1}{2}$	17	16
Eye..................	$5 \frac{1}{2}$	$5{ }^{\frac{1}{3}}$	$5 \frac{1}{2}$	$5^{\text {\% }}$	$5^{\text {星 }}$	$5^{\frac{1}{2}}$	6	$5 \frac{1}{2}$	6	6	6	$5 \frac{1}{2}$	6	$6 \frac{1}{8}$	6	$6 \frac{1}{4}$	6	67	61
Mandible from tip of upper jaw	30	brok'n	$30^{\frac{1}{2}}$		ken	$30 \frac{1}{2}$	32 t	25	26	2.4	26	$26 \frac{1}{2}$	30	$25 \frac{1}{2}$	brok'n	$27 \frac{1}{2}$	27.		
Insertion of ventrals from candal base............	36	36	36	$35 \frac{1}{1}$	$35 \frac{1}{2}$	$35^{\frac{1}{2}}$	$35^{\frac{1}{2}}$	36	332	35	$34 \frac{1}{2}$	35	33	$34 \frac{1}{2}$	34	$33^{\frac{1}{2}}$	$34 \frac{1}{2}$	33	33
Length of ana! base.	St	S	9	8	$8 \frac{1}{2}$	8	9	8	8	8t	8	$8 \frac{1}{2}$	8	S	8	St ${ }^{\frac{1}{2}}$	$8 \frac{1}{1}$	8	St ${ }_{\frac{1}{3}}$
Length of opercle........	7	67	7	7	7	7	7	7	64	6	$6 \frac{1}{2}$	$6 \frac{1}{2}$	$6 \frac{1}{2}$	$6{ }^{1}$	5 $\frac{1}{2}$	$6 \frac{18}{3}$	$6 \frac{1}{1}$	$6 \frac{1}{3}$	$6 \frac{1}{2}$
Length of pectoral. .	18	19	20	20	20	21	$20 \frac{1}{2}$	20	$17 \frac{1}{2}$	17	$16 \frac{1}{2}$	16	179	17	17	$17 \frac{1}{2}$	$16 \frac{1}{2}$	171	$16 \frac{1}{2}$
Length of highest dorsal rays	9	$8 \frac{1}{3}$	9	9	8t	9	9	9	$10 \frac{1}{2}$	10	brok'n	10	10	$9{ }^{\frac{1}{2}}$	$9^{\frac{1}{3}}$	Io	912		
Number of dorsal rays...	I4	13	14	13	13	13	14	14	14	13	13	15	13	13	14	13	15		
Number of anal rays	II	11	12	1 I	12	11	12	12	12	12	12	12	12	12	12	12	13		
Scales	54	54	54	53	53	54	54	54	52	52	52	51	51	53	51	52	52		

Family EXOCGETIDE.

104. Fodiator acutus (Cuvier \& V'elenciennes).

Abundant in Panama Bay; many were seen flying, and four specimens were taken, 145 to 158 mm . in length. They agree well with the description of the type.

105. Cypselurus callopterus (Giinther).

Two specimens were collected, 25 and 31 cm . in length. They agree well with Dr. Günther's description and plate.
106. Exonautes rufipinnis (Cuvier \& Valenciennes).

Only the type of Exocotus dowi Gill, 1863, p. 167, ($=$ E. Mufipinnis), is known from the vicinity of Panama.

Family FISTULARIIDE.

107. Fistularia depressa Günther.

A single large specimen was taken in the market at Panama.
We have examined specimens from Japan, Honolulu, the Philippines, and La Paz, L. C., and can distinguish no differences between them. In the figure of this species given by Dr. Giinther (Shore-fishes, Challenger, Plate XXXII), the greatest width between the diverging ridges on the anterior part of the snout is indicated at a point too far forward. In our specimens the ridges are farthest apart at the beginning of the anterior $\frac{2}{8}$ or $\frac{1}{4}$ of the snout. The interorbital area appears to be more concave in small specimens (25 cm . in length) than in the larger ones. In the latter the interorbital is contained $5 \frac{1}{2}$ in the postorbital part of the liead. In specimens 50 cm . in length the orbit (measuring the extreme length between the bones surrounding the eye) is from $9 \frac{1}{4}$ to 9_{4}^{3} in the head, and the length of the maxillary is $9 \frac{1}{2}$. In a specimen 69 cm . in length, the maxillary is contained 10 times and the eyc 11 times in the head.

A large number of small specimens 25 to 28 cm , and one specimen 41 cm . in length from Honolulu, arc plain brown on the back, while a larger specimen 61 cm . long has bluc spots, as in our Panama specimen. Four specimens from La Paz, 51 cm . long, all show blue spots. The following color description was taken from our Panama specimen in the fresh condition.

Olive-brown on upper parts, white below. A pair of narrow blue stripes, interrupted anteriorly and posteriorly, begin at the nape, diverge backward and cross the lateral line just in front of the point where it becomes straight, then run just above and parallel to the lateral line as far as the tail. Another pair of streaks, made each by a series of blue spots, runs close along each side of mid-dorsal line, from a
point above axil of pectorals to front of dorsal. Behind dorsal a single series of spots occupies the median line of back.
108. Fistularia corneta sp. nov.

Plate X, Figs. 18 and 1 Sa.
Five specimens, each 62 cm . long, were seen in the Panama market; two of these were preserved. Besides these, we have in the collection of Stanford University several small specimens from Panama, collected by the "Albatross," and several small ones from Mazatlan.

Head 3 in length. Depth of body, a short distance in front of dorsal fin, $\frac{4}{5}$ the depth at occiput. At insertion of ventral fins the width of the body is twice its depth. The extreme length of the orbit is contained 9 times in the length of the head; maxillary $13 \frac{2}{5}$ to $13 \frac{3}{5}$; interorbital width (bone) $3 \frac{3}{4}$ to 4 in postorbital part of head. Length of pectoral, from base of upper ray to tips of longest rays, $6 \frac{3}{5}$ to 7 in head; ventrals II.

The maxillary is rather short, and has a concave posterior border. The upper lateral ridge of snout is serrated on its posterior three-fiths. On the anterior half of the serrated portion, the serrations become abruptly finer and more crowded. The two superior ridges of the snout are rather wide apart posteriorly, and very gradually approach each other anteriorly. They are scarcely divergent or even parallel in the large specimens, but in the small ones they diverge slightly on the anterior half of the snout. The distance between them is everywhere much greater than their distance from the upper lateral ridge. The area between the upper lateral ridge and the superior ridges is generally smooth, sometimes somewhat uneven, but never roughly sculptured. The interorbital area is flat and roughly sculptured on each side, and its middle third is depressed to form a smooth channel.

The pectoral reaches about one-third of the distance between the base of its upper ray and the insertion of the ventrals. The dorsal and anal fins are exactly opposite and equal in length; their base 4 times their distance from the middle caudal rays. The skin is everywhere smooth; the lateral line is not armed with bony plates.

In the five specimens seen at Panama (fresh) the back was a uniform dark brown. In the small specimens from Panama and Mazatlan there is usually a lighter stripe, with ill-defined edges, on each side of the back, a short distance above the lateral line, and following its course to the base of the caudal fin.

This species differs from F. depressa in having a shorter maxillary, a larger eye (in specimens of the same size), and particnlarly in having a much wider interorbital space. There is no trace of blue markings in our material.

We have several specimens of F. petimba from Formosa and Japan, which agree well with the description given by Dr. (iinther (Shore-fishes, Challenger, p. 68) under the name F. serruta. They differ from F. corneta in having the superior ridges of the smout very close together and parallel for nearly their whole length. (They are spoken of as ritlges, though they appear, in this species especially, as a single, raised, flat area posteriorly, the sides of which are left in relief as ridges anteriorly.) The distance between them is everywhere much less than their distance from the upper lateral ridge. The area between the upper lateral ridge and the superior ridges is ronghly sculptared with radiating lines, as shown in the illustration accompanying the description cited above (Plate XXXII). The interorbital area is
deeply concave and without flat supraorbital areas. The serrations of the upper lateral ritge are coars. 'The skin is rongh to the tonch, and the lateral line is armed with small, bony, stellate plates, which become larger posteriorly.

We have no specimens of F. tabacaria, but from current descriptions it is different from F. cornete. It seems always to have blue spots and to have few or no sermations on the upper lateral ridge. It has not been recorded from the Pacific.

Family SYNGNATHIDE.

109. Siphostoma auliscus Sucuin.

Two specimens, 122 and 88 mm . long, were taken in the Rio Grande, at Miraflores, near Panama. We have compared them with two small specimens of S. autiscus from Magdalena Bay, L. C., and find the only difference to be the more anterior anal opening in the smaller specimen, in which it occupies the ring just anterior to dorsal. In the other specimens it is in the same ring with the front of dorsal. The Panama specimens are darker and more mottled. Each body ring hars a broken vertical white streak, and on about every fifth ring is a faint dark streak.

110. Hippocampus ingens Girurd.

Three specimens taken, 5,8 , and 10 cm . long. The smaller two, a male and a female, are rough with papille, and have many dermal flaps. The largest one, a femate, is almost perfectly destitute of these, though upon close examination with a lens very small, white papille are to be seen.

Two specimens from Mazatlan in the collection of the Stanford University have been examined. One is smooth, the other covered with dermal flaps.

Family ATHERINID.E.

III. Kirtlandia pachylepis (Günther).

This species and K. gilberti, referred to the genns Menidia by Jordan and Evermann ($1806, \mathrm{pp} .798$ and 801), the former afterwards transferred to the genus Thyrina by these authors (1898 , p. 2840), belong to the genus firtlumtio. We have compared them with K. cagrans, the type of the genus. Like the latter, they have crenate scales, which are, however, smooth, not " very rongh to the tonch," as described by Jorlan and Evermann. Our specimens of h. vergrans and K. puchylepis have no scales on the dorsal. The base of the anal has a row of rather long scales. Both the dorsal and anal of K. yilberti are sealeless.

Nine specimens of K. pactaylepis were collected. They differ from Gïnther's description only in the slightly longer head, and in a greater range of fin-rays.

Head and depth 5 in length of body without caudal. Eye and snout ahont equal, $3 \frac{1}{2}$ in head. Angle of lower jaw slightly in advance of front of orhit. Inter-
orbital space one－fourth or one－fifth wider than eye．Jaws with a band of villiform teeth．Pectorals reaching nearly to tip of ventrals．Anal and soft dorsal conter－ minons．Seales 41 to 43．About 27 seales on baek in a series between oeeiput and spinous dorsal．Fius ummarked．Snout and a small area on top of head behind eye dusky．Back dusky，with small brown punctulations，whieh marrowly border eaeh seale．Lateral streak dark above，shading downward into silvery，widest under the dorsals．A dirk line on back from dorsal to oeciput，eomposed of a single row of dark brown dots；more conspicuous in the smaller specimens．

Measurements in Hundredths of Length without Caudal．

Length without caudal，in mm．．．．	I I 5	99	97	99	109	100	97	97	82
Head	$20 \frac{1}{2}$	$20 \frac{1}{2}$	20	20	2 I	2012	20	$20 \frac{1}{2}$	20
Depth．	$20 \frac{1}{2}$	2 I	20	$20 \frac{1}{2}$	20	201 ${ }^{\frac{1}{2}}$	$19 \frac{1}{2}$	2 O	$19 \frac{1}{2}$
Eye	7	6	$6 \frac{1}{3}$	6	6	$6 \frac{1}{2}$	6	$6 \frac{1}{2}$	$6 \frac{1}{2}$
Snout．	$6 \frac{1}{3}$	6	6	6	6	6	6	6	6
Insertion of ventrals from snout．．．	43	41	43	41	42	42	42	$42 \frac{1}{2}$	$40 \frac{1}{2}$
Length of anal base	24	$24 \frac{1}{2}$	$25 \frac{1}{2}$	$25 \frac{1}{2}$	24	$26 \frac{1}{2}$	$23 \frac{1}{2}$	$25 \frac{1}{2}$	25
Length of pectoral．．．．．．．．．．．．．．．．．．	$28 \frac{1}{2}$	28	27	29	$27 \frac{1}{2}$	28	27	27	$26 \frac{1}{2}$
Number of dorsal rays．．．．．．．．．．．．．．	$\mathrm{V}-\mathrm{r}, 8$	バー1，7	$\mathrm{V}-1,8$	IV－I， 8	V－I， 7	V－1，7	IV－I，7	$V-1,7$	V－I， 7
Number of anal rays	I， 2 I	I， 22	I， 2 I	I， 2 I	1，23	1，23	I， 2 I	I， 2 I	1， 2 I
Scales	42	43	43	42	44	42	43	$4{ }^{1}$	42

112．Kirtlandia gilberti（Jordan \＆Bollman）．
Of this speeies we obtained nine specimens，which we have examined in con－ neetion with thirteen eo－types collected at Panama by the＂Albatross．＂

Only two of these have six dorsal spines，as deseribed for the type；fifteen of them have 5 ；and five of them have 4 ．The origin of the first dorsal in the type is described as being at a point midway between the posterior margin of the head and the base of the caudal．We find that it varies from this to a point half the diameter of the eye nearer to the occiput．The longest spine（probably owing to a slip of the pen）is alleged to be 4_{5}^{1} in the head．This should read $3 \frac{1}{5}$ to $3 \frac{1}{2}$ ．The longest ray of ． the soft dorsal exceeds the length of the snout by from one－fourth to one－half the diameter of the eye．The origin of the anal varies in position from a point midway between base of caudal and posterior base of pectoral（as deseribed），to a point mid－ way between base of eaudal and middle of upper pectoral ray；the width at base is generally somewhat greater than＂distance from tip of snont to base of pectorals．＂ The scales are crenate，but smooth to the touel．The dorsal and anal are sealeless．

The edges of the lateral band are well defined，and a much darker streak com－ poses its upper edge．It is widest under the dorsals，thence narrows on the caudal peduncle and widens at base of eandal fin．Its termination is rounded．

Measurements in Hundredths of Length aithout Caudal.

Length without caudal, in mm...	103	105	110	103	98	103	97	93	95
Head..	22	21	22	201	$20 \frac{1}{8}$	21	21	21	201
Depth.	17	17	17	17	$17 \frac{1}{2}$	$17 \frac{1}{2}$	$17 \frac{1}{2}$	161	17
Eye	6	6	6	6	$5 \frac{1}{2}$	6	6	6	6
Origin of anal from caudal base..	36	37	37	38	40	38	38	38	38
Origin of first dorsal from caudal.	+4	+3	+4	43	43	45	+2 $2 \frac{1}{2}$	43	43
Length of pectoral.................	19	$18 \frac{1}{2}$	18	19	18	18	19	18	$18 \frac{1}{3}$
Length of anal base.	19	$20 \frac{1}{2}$	$20 \frac{1}{2}$	2 I	21	20	20	21	20
Number of dorsal spines...........	v	IV	v	V	IV	V	IV	v	r
Number of dorsal rays	1,9	1,8	I, 9	1,9	I, S	I, 9	I,9	1,9	I,9
Number of anal rays.	1,19	1,19	I, 19	1,2 I	I, 20	1,20	1,20	1,19	1,20
Number of scales..	5 I	49	49	50	50	50	49	50	51

Fin Formula of the Co-Types.

Dorsal Anal...	$\begin{gathered} \mathrm{Y}-\mathrm{I}, 9 \\ \mathrm{I}, 22 \end{gathered}$	$\begin{aligned} & \mathrm{V}-\mathrm{I}, 9 \\ & \mathrm{I}, 20 \end{aligned}$	$\begin{gathered} \text { IV-I, } 9 \\ \text { I, } 20 \end{gathered}$	$\begin{gathered} \text { VI-I, } 9 \\ \text { I, } 22 \end{gathered}$	$\begin{gathered} \mathrm{V}-1,9 \\ \mathrm{I}, 22 \end{gathered}$	V-(broken)	
Dorsal	V-(broken)	v-I, 8	IV-I,9	V-I,9	V-I, 9	V-I, 9	V-I, 9
Anal.	1,20	1,20	I, 20	I, 2 I	I, 20	I, 20	1, 19

113. Atherinella panamensis Steindachner.

Plate IN, Fig. 17.
A single specimen obtained, 13 cm . in entire length.
We add the following details to Dr Steindachner's exeellent description:Head $4 \frac{4}{5}$ in length; depth $4 \frac{1}{2}$. Eye $3 \frac{2}{3}$ in head; snont 3_{3}^{2}; interorbital width ${ }_{2}^{3}$. The enlarged outer teeth of the npper jaw are in two series only in front of jaw, in one series laterally. Pectoral 2_{4}^{3} in length. The insertion of the ventrals is nearer the tip of the lower jaw than the base of the caudal by lalf the length of the head.

Family MUGILIDE.

114. Mugil cephalus Linneus.

Taken by Gilbert at Panama in 1883 (.Jordan, 1885, p. 371); not recorded by other observers.
115. Mugil thoburni Jorden of Starks.

Reeorded (as Mugil incilis) from Pauama (Jordan \& Gilbert, 1882 n, p. 624) and from Chiapam (Steindachner). The types of the species were collected by the "Albatross" at the Galapagos Islands.

ェ16. Mugil curema Cuvier \& Vulenciennes.
This species comes into the Panama markets in abundance. We have compared six specimens with others from the Atlantic and can distinguish no differences between them.

Neasurcments in Hundredths of Length reithout Caudal.

Locality...	Panama.						Jamaica.		Koy IVest.		
Length without caudal, expressed in mm.	205	212	240	250	192	190	201	231	$1+5$	118	230
Head.	27	26	$26!$	26	26	26	26	$26 \frac{1}{2}$	26	27	$2+$
Depth.....	25	$2+$	26	22	25	25	26	26	27	27	26
Interorbital(bone only)	9	$9 \frac{1}{2}$	10	9	9	$9 \frac{1}{2}$	10	10	$9{ }^{\frac{1}{3}}$	9	9
Insertion of ventral spine from snout \qquad	40	3^{8}	40	39	4°	40	to	$39 \frac{1}{2}$	$39^{\frac{1}{2}}$	39	38
Front of spinous dorsal from snout. \qquad	+912	$49 \frac{1}{2}$	52	$48 \frac{3}{2}$	$50 \frac{1}{2}$	51	+9 ${ }^{\frac{1}{2}}$	52	$50 \frac{1}{2}$	51	50
Tip of pectoral from shout.....	$+6 \frac{1}{2}$	44	45	+4	$45 \frac{1}{2}$	47	+51 $\frac{1}{2}$	+5	+51	+7 ${ }^{\frac{1}{2}}$	+31
Length of pectoral.............	$19 \frac{1}{2}$	$18 \frac{1}{2}$	$1 \mathrm{~S}_{2} \frac{1}{2}$	$18 \frac{1}{2}$	18_{2}^{1}	20	19	1 $8 \frac{1}{2}$	1912	21	19
Length of anterior dorsal ray's	$11 \frac{1}{2}$	$1 \mathrm{O}_{2}^{1}$	1 I $\frac{1}{3}$	$111 \frac{1}{3}$	$12 \frac{1}{2}$	12	12	12	$12 \frac{1}{3}$	$13 \frac{1}{2}$	11
Length of anterior anal rays...	$12 \frac{1}{2}$	12	12	12	12	$12 \frac{1}{2}$	$12 \frac{1}{4}$	12	13	${ }^{1}+$	12
Number of dorsal spines and rays.	I'-I, 8	1V-1,7	IV-1, 8	IV-I, S	IV-I, 8	IV-1,8	I ${ }^{\prime}-1,8$	IV-1, 8	IV-I, 8	IV-I, 8	IV-I, 8
Number of anal spines and rays	111,9	111,9	111,9	111,9	I1I, 9	111,9	111.9	III,9	111,9	III, 9	[11,9
Scalesfromabove upper pectoral ray	38	37	37	3^{8}	37	37	37	36	36	37	37

117. Mugil hospes Jordan \& Culver.

Abundant at Panama. It is at once separated from M. curema by the longer pectoral. We found the small crustacean nearly always present in the mouth of the Panama specimens, as it was in the type and co-types from Mazatlan.

Mecasurements in Hundredths of Length without Candal.

Locality	Panama.								.Mazatlan (TYPe.)
Length without candal, in mm.	212	193	212	222	230	190	217	219	170
Head (without opercular flap)	28	28	$26 \frac{1}{2}$	27	27	27	$26 \frac{1}{2}$	27	28
Depth	26	27	$23 \frac{1}{2}$	$24 \frac{1}{2}$	$22 \frac{1}{2}$	$2+$	$2+\frac{1}{2}$	23	23
Interorbital (bonc)	I I	$10 \frac{1}{2}$	$10 \frac{1}{2}$	10	10	$10^{\frac{1}{2}}$	10	10	10
Insertion of ventral spine from snout.. \qquad	4	42	3915	41	$39 \frac{1}{2}$	+012.	${ }^{1}$	+0, $\frac{1}{2}$	$39 \frac{1}{2}$
Front of spinous dorsal from snout..	51	$53!$	51	$5{ }^{1 \frac{1}{2}}$	$51 \frac{1}{2}$	52	51	51	50
Tip of pectoral from snout....	$52 \frac{1}{2}$	$53 \frac{1}{2}$	51	$51 \frac{1}{2}$	$51 \frac{1}{2}$	$52 \frac{1}{2}$	52 ${ }^{\frac{1}{2}}$	$52 \frac{1}{2}$	501
Length of pectoral....	$23 \frac{1}{2}$	$25 \frac{1}{2}$	23	24	24	25	2.4	$23 \frac{1}{2}$	23
Length of anterior dorsal rays..	12	13	$12 \frac{1}{2}$	$12 \frac{1}{2}$	$12{ }^{1}$	$12 \frac{1}{2}$	$12 \frac{1}{2}$	12	$12 \frac{1}{3}$
Length of anterior anal rays...	$12 \frac{1}{2}$	13	$12 \frac{1}{2}$	13	$12 \frac{1}{2}$	13	13	13	$13{ }^{\frac{1}{2}}$
Number of dorsal rays and spines	IV-I, 8								
Number of anal ray's and spines	[11,9	III,9	III, 9	III,9	III,9	1II, 9	[1I,9	III,9	III,9
Scales	37	37	38	36	37	38	36	36	38

r18. Chænomugil proboscideus (Günther).
Probably not so common as farther north. Two large specimens and several small ones were collected, the latter found in rock-pools, in company with Querimana harengus.

Measurements in Hundredths of Length without Caudal.

Length in mm.	191	$15+$	76	56	+8
Head..	26	$27 \frac{1}{2}$	28	29	30
Depth	29	31	$3+$	32	31
Eye...	6	$6 \frac{1}{2}$	$7 \frac{1}{2}$	S	8
Insertion of first spine of spinous dorsal from snont	56	56	56	57	55
Insertion of first spine of soft dorsal from snout....	78	78	78	77	78
Insertion of anal spine from snout....................	75	75	70	73	72
Length of pectoral......................................	23	23	25	25	26
Length of ventral	15	16	IS	I 8	18
Number of dorsal rays and spines.....................	IV-I, 8	IV-1, S	IV-I, S	1-1, 8	1V-I, 8
Number of anal rays and spines...................	III, IO	III, 10	III, 10	III, 10	I11, 10
Scales	39	4	to	40	40

19. Querimana harengus (Günther).

This little mullet was taken in abundance in the rock-pools. There is considerable variation among the specimens, as the table of measurements will show. Nothing can be found, however, that would indicate more than one species among them. Ont of fifty specimens examined, forr were found with three anal spines. In each of these cases, a spine had replaced a ray, as only nine rays were present instead of the ten always found in two-spined examples.

Measurements in Hundredths of Length without Caudal.

Length in mm., without caudal...	47	40	45	43	45	45	4	4	4
Head	30	$32 \frac{1}{2}$	32	31	31	29	28	32	28
Depth.	28	30	29	30	29	26	26	27	26
Eye	7	8	8	7	$7 \frac{1}{2}$	S	$7 \frac{1}{2}$	8	S
First dorsal from snout..	53	55	55	53	53	51	51	53	51
Second dorsal from snout...	75	76	75	76	76	74	72	74	72
Insertion of ventral spine from snout \qquad	44	46	44	44	44	41	42	46	42
Anal from snout.	70	73	73	7 I	71	68	70	71	69
Length of pectoral.	21	21	21	$20 \frac{1}{2}$	$20 \frac{1}{2}$	20	19	19	19
Length of anal base.	16	$14 \frac{1}{2}$	${ }^{1} 5$	15	16	15	16	15	15
Spines and rays of dorsals	IV-I, S	IV-I, 9	IV-1, 8	IV-I, 8	IV-I, 8	IV-I, 8	IN- 1,8	IV-I, 8	IV-I, S
Spines and rays of anal............	II, 10	II, IO	II, IO	11,9	II, 9	II, 10	II, 10	II, 10	II, 10
Scales	36	36	38	37	36	38	38	37	37

Family SPHYRANIDN.

120. Sphyræna ensis Jordan \& Gilbert.

Not uncommon in the market at Panama, where nine specimens were collected. These agree very well with the description given by Dr. Steindachner (1879b, p. 4) under the name S'. forsteri, he having confused it with that East Indian species.

Measurements in IHndredths of Length without Caudal.

Length in mm., from tip of snout to base of caudal	293	298	305	359	310	290	290
Head from tip of shout	32	$3{ }^{1}$	$31 \frac{1}{2}$	30_{2}^{1}	311	32	31
Depth	$14 \frac{1}{2}$	13	1.3	$13 \frac{1}{2}$	$13 \frac{1}{2}$	14	$13 \frac{1}{2}$
Orbit	$5 \frac{1}{2}$	$5 \frac{1}{3}$	5	5	$5 \frac{1}{3}$	$5 \frac{1}{2}$	$5{ }^{3}$
Insertion rentral spine from tip of snout	41	40	$40 \frac{1}{2}$	$39 \frac{1}{2}$	$40 \frac{1}{2}$	42	41
Spinous dorsal from snout	43.1	43	$43 \frac{1}{2}$	43	4	4	44
Soft dorsil from snout	721	$70 \frac{1}{2}$	$69 \frac{1}{2}$	70	$71 \frac{1}{2}$	$70 \frac{1}{2}$	$70 \frac{1}{2}$
Length of pectoral	13	13	$12 \frac{1}{2}$	13	$12 \frac{1}{2}$	13	13
Longest dorsal ray.	11	$1{ }_{1}^{1} \frac{1}{2}$	1513	$11 \frac{1}{2}$	11	$1{ }^{1} \frac{1}{2}$	$1{ }^{1} \frac{1}{2}$
Longest anal ray.	$10 \frac{1}{2}$	$1 \mathrm{O}_{2}^{1}$	IO	$10 \frac{1}{2}$	$10 \frac{1}{2}$	$10 \frac{1}{2}$	IO_{2}^{1}
Number of dorsal rays and spines................	V-I, 8	V-I, 9	V-I, 9	$\mathrm{V}-\mathrm{I}, 6$	V-1.9	V-I,9	V-1,9
Number of anal rays and spines..................	11,7	11, 8	11, S	11,8	11,8	[1,8	1I, 8
Number of scales..................................	108	III	109	IoS	109	I 12	110

Family POLYNEMIDむ.
121. Polydactylus approximans (Lay \& Bennett).

Common but much less abundant than P. opercularis, and much less valuable than the latter as a food-fish.

Measurements in Hundredths of Length acithout Caudal.

Length in mm..	217	193	191	206	205
Head	31	32	32	32	32
Depth	29	29	30	28	29
Naxillary	14	$14 \frac{1}{2}$	14	$14 \frac{1}{2}$	14
Spinous dorsal from snout..............................	37	39	39	39	39
Distance from front of spinous dorsal to soft dorsal..	27	2 S	30	27	27
Length of pectoral.......................................	28	28	29	31	28
Longest detached ray...................................	41	42	45	45	39
Longest dorsal spine...................................	22	22	Broken	24	22
Longest dorsal ray.....................................	21	19	21	22	20
Dorsal..	VIIT-1.12	VIII-1, 52	V1II-I, 12	VIII-I, 12	V111-1, 12
Anal	111, 14	III, 14	[11, 13	III, 13	111, 14
Scales	60	61	60	61	62

122. Polydactylus opercularis (Gill).

Taken with hook and line in great abundance. It is eagerly sought after by the native population, by whom it is highly prized. It is one of the most important food-fishes, and on some days equals or exceeds in numbers all others combined.

The type is described as having only eight free pectoral rays, but that was doubtless based on erroneous observation.

Measurements in Hundredths of Length without Caudal.

Length in mm.	280	280	290	242	205	178
Head	3 I	$29 \frac{1}{2}$	$30 \frac{1}{2}$	30	30	30
Depth...	25	24	25	25	$25 \frac{1}{2}$	27
Maxillary ...	18	I 71	$17 \frac{1}{2}$	17	$17 \frac{1}{2}$	$17 \frac{1}{2}$
Spinous clorsal from snotut.	36	36	35	$35 \frac{1}{2}$	35	$34 \frac{1}{2}$
Distance from front of spinous dorsal to soft dorsal. \qquad	25	26	28	28	$26 \frac{1}{2}$	261
Length of pectoral	21	20	2 I	$20 \frac{1}{2}$	22	22
Longest detached ray	31	$31 \frac{1}{2}$	32	$33 \frac{1}{2}$	32	35
Longest dorsal spine.............................	20	20	$19{ }^{1}$	20	$20 \frac{1}{2}$	20
Longest dorsal ray.	I 8	$17 \frac{1}{2}$	18	18	I 8	$17 \frac{1}{2}$
Dorsal.	VIII-I, I 2	VIII-I, 12	VIII-I, I2	VIII-I, I 2	VIII-1, I 2	VIII-I, I 2
Anal.	III, I3	III, I3	III, I3	III, I 3	III, I 3	[II, I 3
Scales	66	69	68	70	68	69

Family HOLOCENTRIDE.

123. Myripristis occidentalis Gill.

Two specimens were taken among the islands in the bay. The species differ from M. puecilopus more than has been previously indicated. The teeth are mueh larger, and the vomerine pateh is lance-shaped rather than anchor-shaped. The anterior rays of the dorsal and anal are longer, making these fins more angulated and their posterior margins more nearly vertical. Scales thirty-nine or forty in the lateral line, somewhat smaller than indicated in the type description.

The color of the back is of a clearer reddish brown, less slaty than in M. pucilopus, and with bluish reflections on each scale. The silver begins on the row of scales below the lateral line rather than above, and is richer in coppery and greenish reflections. The dorsal is lighter, and there are no dusky bands at base of caudal and below the lateral line, as in M. precilopus. The ventrals have lighter or
colorless tips. In one specimen the ventrals are immaculate, in the other a slightly dusky tinge is present. The three specimens of M. puecilopus have the tips of the ventrals darker, running from dusky to black. There is a dark pigment spot above pupil in M. occidentalis, which is absent or very slightly dusky in M. precilopus.

124. Myripristis pœcilopus (Gill).

Three specimens taken.
Very small villiform teeth on jaws, vomer, and palatines; the palatine patches very long and narrow, the vomerine pateh anchor-shaped, its length about three times its width across lateral arms. The median backwardly extending limb is narrow and pointed.

Color of back slaty brown, passing into bright, iridescent silvery at the upper part of the band of seales which bears the lateral line. Upper end of operele with bluish reflections. Directly below the lateral line is a narrow, straight, dusky streak, commenciug three or four scales from gill-opening and ending a little behind tip of pectoral. Tips of ventrals varying from slightly dusky to black. Base of caudal with a dusky band. Spinous dorsal dark or nearly black. Other fins colorless.

Length without caudal in mm...	50	44	45
Head.	34	$35^{\frac{1}{2}}$	35
Depth.	35	33	35
Eye	14	15	15
Snout.	$7 \frac{1}{2}$	8	8
Length of pectoral..	20	21	21
Length of ventrals..	20	20	21
Height of soft dorsal.............	15	15	15
Height of anal..	15	15	16
Length of caudal	22	23	23
Number of dorsal rays	X-I, 14	X-I, If	X-1, I4
Number of anal rays..	IV, 12	IV, 12	IV, 12
Scales	3-35-7	3-35-7	3-34-7

125. Holocentrus suborbitalis Gill.

Taken in abundance in the rock-pools. Our specimens do not materially differ from the description of the type. The statement that "the tail behind the vertical fins nearly equals a minth of the total length" should doubtless read "the leight of the candal peduncle behind the vertical fins nearly equals a ninth of the total length." The length of the tail behind the vertical fins is about $3 \frac{1}{2}$ in the total length.

Measurements in Hundredths of Length without Caudal. ${ }^{1}$

[^3]
Fanily MULLIDA.

126. Upeneus grandisquamis Gill.

Several specimens collected in the Pamama market. This large series emables ns to add the following range of variations to the original description:

Head $3_{5}^{\frac{1}{5}}$ to $3 \frac{1}{2}$ in length without candal; depth 3 to 3_{5}^{2}. Eye $4 \frac{1}{2}$ to 5 in head; snout 2 to $2 \frac{1}{6}$. The fin connts in our eleven specimens are constantly VIII-I, S for the dorsal, and I, G for the anal. The third dorsal spine is longer than the fonth, but does not project beyond it. Sometimes it does not reach its tip.

Dr. Gill's measmrement of the length of the spinous dorsal fin includes the 'membrane which comnects the last spine to the body. As most specimens have this membrane broken, we have considered the base of the fin to extend to the base of the last spine. The base of the first dorsal equals or sometimes slightly exceeds the interval between the dorsals, the latter equaling or sometimes slightly exceeding the base of the second dorsal. The interval between the dorsals contains 4 scales along the median line.

The following color description was taken from a fresh specimen: Red above, silvery below; 2 silvery streaks along the sides anteriorly, follow the rows of scales above and below the lateral line, and are continned forward on the head to a point behind the eye. Other silvery streaks follow the rows of scales, but are much less conspicuons. Dorsal and eaudal deep orange-red with wide translucent margins.

Measurements in Mrundredths of Length reithout Caudal.

Length without caudal, in mm..	160	$15+$	I 45	$1+2$	121
Head.	32	30	31	$29 \frac{1}{2}$	30
Depth.	32	29	29	29	30
Snout.	15	14	1.4	14	14
Eye.	7	$6 \frac{1}{2}$	7	$6 \frac{1}{2}$	$7 \frac{1}{2}$
Length of 3d dorsal spine	21	21	20	$19 \frac{1}{2}$	19
Length of pectoral.	25	$23 \frac{1}{2}$	25	23	24
Height of second clorsal.	12	$12 \frac{1}{2}$	13	13	13
Spinous dorsal from snout.	40	381	39	38	38
Front of first dorsal to front of second dorsal......	29	30	28	29	283
Number of gill-rakers.	$6+11$	6+11	$6+11$	$6+12$	$6+11$
Number of dorsal rays	VIII-I, S	vilili, 8	VIII-I, 8	VIII-I, 8	VIII-I, 8
Number of anal rays.	І, 6	1,6	I, 6	I, 6	1,6
Scales	$2-30-5$	2-30-5	$2-31-5$	$2-3 \mathrm{I}-5$	2-30-5

Family SCOMBRIDA.

127. Sarda chilensis Cuvier \& Valenciennes.

Abundant in the market for two or three days, but not again seen. We preserved one speeimen, 46 cm . in length.

Eighteen gill-rakers are attributed to the horizontal limb of the anterior branchial areh by Jordan \& Evermann, 1896, p. 872. They also describe the maxillary as not reaching the eye. In our specimen there are but nine gill-rakers including one rudiment; and the maxillary extends to below the posterior border of the eye.

128. Scomberomorus sierra Jordun \& Starks.

This species is bronght into the market daily, and is one of the most important food fishes. We preserved six speeimens.

If it is distinct from its East Coast relative, S. maculatus, it is separated by only slight eharacters, and a large series from both shores will have to be compared aecnrately to define the species. The chief eliaracter that has been alleged to separate the two is the more backward position of the dorsal in S. sierra. Onr material shows this charaeter to be valneless.

We have but three specimens of S. maculatus. From these, S. sierra seems to differ in being a little more slender, and in having the spots rounder and more numerous below the lateral line. As the appended table indicates, the size of the head and eye may average smaller, the number of dorsal rays less, and the number of gill-rakers more. S. sierra has 3 or 4 rows of spots below the lateral line, while S. maculatus has but two, or at the most, the begiming of a third.

We do not admit to our list S. concolor, recorded without comment from the Gulf of Panama, by Boulenger, 1899, p. 3. Aside from this record, S. concolor has been known only from Monterey Bay, California.
Mcasurements in Hundredths of Length without Caudal.

Species			SConimeromorts sierra					S. maculatus		
Locality...	Mazatlan (TyPE.)		Panama					Florida		
Length without caudal.	307	305	305	325	305	350	282	285	205	185
Head.	22	22	23	22	22	22	$22 \frac{1}{2}$	23	$23 \frac{1}{2}$	${ }^{2}+$
Depth.............	$21 \frac{1}{2}$	20	$20 \frac{1}{21}$	20	20	19	$18 \frac{1}{2}$	22	$22 \frac{1}{2}$	22
Orbit.....	4	+	4	4	4	4	4	4	$4 \frac{1}{2}$	$4 \frac{1}{2}$
Maxillary	$12 \frac{1}{2}$	12	12	12	12	1212	12	13	13	$13 \frac{1}{2}$
Snout to first dorsal,	26	$26 \frac{1}{2}$	27	26	$25 \frac{1}{2}$	26	$26 \frac{1}{2}$	$26 \frac{1}{2}$	$26 \frac{1}{2}$	27
Snout to second dorsal....	$55 \frac{1}{2}$	54	55	$5+$	$54 \frac{1}{2}$	53	55	52	$54 \frac{1}{2}$	53
Snout to anal....	57	$56 \frac{1}{2}$	60	57	57	$57 \frac{1}{2}$	58	56	57	57
Length of pectoral. ...	$13 \frac{1}{2}$	$1+$	14	14	14	${ }^{1}+$	$13 \frac{1}{2}$	${ }^{1}+$	$13 \frac{1}{2}$	13
Height of soft dorsal.......	12	12	12	13	12	121 $\frac{1}{2}$	11	Broken	Broken	Broken
Height of anal..	Broken	12	$11{ }^{\frac{1}{2}}$	12	11	12	11	"	"	"
Length of cauclal.	28	27	28	27	28	28	26	27		"
Number of dorsal rays	XVILI-16-IX	XVII-16-ix	XVH-16-ix	xvil-17-1x	XVII-16-vili	Xvili-i6-ix	XVII-17-vili	xvil-18-ix	?-17-VIII	XVII-17-IX
Number of anal rays....	11-15-1X	${ }_{\text {II- }}$ 5-IX	11-15-IN	II-16-ix	11-16-vili	II-16-VIII	It-15-V1II	II-16-IX	$\mathrm{IL-I}_{\text {I }}^{\text {- }}$ IX	II-16-IN
Number of gill-rakers.....	$3+12$	$3+12$	$3+11$	+ +13	$4+11$	+十10	$3+11$	$2+10$	$3+11$	$3+9$

Family TRICIIURIDE.

129. Trichiurus lepturus Linnaus.

Recorded from Panama by Jordan and Bollman, 1889, p. 180.

Family NEMCATISTIIDA.
130. Nematistius pectoralis Gill.

Probably rare as far sonth as Panama; only three or four seen.
The following measurements are from a specimen 30 cm . in length.
Head $3_{\frac{2}{3}}^{2}$ in length; depth 3_{5}^{1}. Eye 5 in head; snout $3 \frac{7}{8}$; maxillary $2 \frac{1}{10}$; interorbital (bone) $3 \frac{3}{4}$. Dorsal VIII-I, 26; anal I, 16. Gill-rakers $3+9$, the longest two-thirds the diameter of the eye.

Family CARANGIDA.

131. Oligoplites saurus (Bloch \& Schneider).

Not uncommon in the market, though much less abundant than O. mundus.
The top of head and nape are smooth and without conspicnons pores in seurus and there is no membrane connecting the anterior branchiostegal rays of the two sides. Our material shows that no reliable character can be drawn from the comparative size of the lowest suborbital bone and the next above. In saurus the lowest suborbital seems constantly narrower than the one above it, but they vary greatly in size, sometimes differing on opposite sides of the same specimen. Larger specimens have proportionately deeper bodies, so this character also must be used with caution.

We have compared our material with specimens from the Atlantic, and can appreciate no difference whatever.
Measurements in Hundredths of Length without Caudal.

Locality	Panama									$\begin{aligned} & \text { Mazat- } \\ & \text { Lan, } \end{aligned}$	Jamaica				Florida
Length without caudal in mm..	200	202	209	212	217	215	232	228	232	113	177	192	202	20.4	106
Head	22	211	21	22	$21 \frac{1}{2}$	22	22	22	22	211	22	23	22	23	22
Depth	$27 \frac{1}{2}$	27.	27	$27 \frac{1}{2}$	27	$30 \frac{1}{2}$	$29 \frac{1}{2}$	291	30	27	26	$26 \frac{1}{2}$	27	$27^{\frac{1}{3}}$	26
Eye	$4 \frac{1}{2}$	$4 \frac{1}{2}$	+17	$4 \frac{1}{2}$	$4 \frac{1}{2}$	$4 \frac{1}{2}$	5	+ ${ }^{\frac{1}{2}}$	$4{ }^{\frac{1}{2}}$	5	$4 \frac{1}{3}$	$4 \frac{1}{2}$	$4 \frac{1}{2}$	5	5
Maxillary	12	12	12	$12 \frac{1}{2}$	12	$12 \frac{1}{2}$	12	$1 \mathrm{I}_{\frac{1}{2}}$	12	$12 \frac{1}{2}$	12	$12 \frac{1}{2}$	12	$12 \frac{1}{2}$	13
Snout to posterior margin of eye	$1 \mathrm{O}_{\frac{1}{2}}$	$10 \frac{1}{2}$	11	11	11	11	11	$10 \frac{1}{3}$	11	II	$11 \pm$	12	11	12	12
Snout to soft dorsal..	49	49	49	49	49	50	49	49	50	48	49	52	49	51	+9
Snout to anal	50	50	49	49	50	50	$49 \frac{1}{3}$	49	51	48	49	51	50	$51 \frac{1}{2}$	50
Length of pectoral.	$13 \frac{1}{\frac{1}{2}}$	${ }^{1} 3$?	13	$13 \frac{1}{2}$	$13 \frac{1}{2}$	${ }^{1} 4$	$1+$	131 ${ }^{\frac{1}{2}}$	$14 \frac{1}{2}$	14	13	$13 \frac{1}{2}$	13	131	$13 \frac{1}{\frac{1}{2}}$
Length of caudal.	21	22	$22 \frac{1}{2}$	22	22	23	23	22	23	21	21	22	$22 \frac{1}{8}$	$22 \frac{1}{2}$	
Height of dorsal.	$1{ }^{\frac{1}{2}}$	111	11	12	$11 \frac{1}{2}$	$11 \frac{1}{2}$	11	11	$11 \frac{1}{2}$	13	$11 \frac{1}{2}$	$11 \frac{1}{2}$	12	$12 \frac{1}{2}$	11
Height of anal	913	$9 \frac{1}{2}$	$9{ }^{1}$	10	10	IO	9	$10 \frac{1}{3}$	101	10	91	9	$9 \frac{1}{2}$	$9 \frac{1}{2}$	S13
Number of dorsal rays..	VI-I, 20	$\mathrm{V}-1,20$	V-I, 20	IV-I, 20	V-1,20	Vi-1, 20	V-I, 20	IV-I, 20	V-1,20	V-T, 20	Vi-I, 19	V-1,20	$\mathrm{V}-\mathrm{I}, 2 \mathrm{O}$	r-1,20	W-1, 20
Number of anal rays.	11-1, 20	11-1, 20	11-1, 20	11-1, 20	11-1, 19	11-1, 20	11-1, 20	11-1,20	H-I, 20	II-I, 20	11-1,20	11-1, 20	11-1, 20	II-1, 20	11-1,20
Gill-rakers above angle of arch.	5	4	+	5	5	5	5	5	5	5	+	$+$	$+$	$+$	5
Gill-rakers below angle of arch.	14	14	14	${ }^{14}$	${ }^{\text {I }}$	${ }^{\text {I }}$	15	${ }_{4}$	${ }^{1}+$	15	14	${ }^{1}+$	${ }_{4}$	$1+$	15

```
132. Oligoplites altus (Günther).
Plate II, Fig. 20.
```

One specimen taken in the Panama market.
Head $4 \frac{1}{3}$ in length without caudal; depth $3 \frac{1}{4}$. Eye $4 \frac{1}{2}$ in head; snout 3_{4}^{3}; maxillary I_{3}^{2}. The interorbital width equals the diameter of the eye. Dorsal V-l, 19; anal II-I, 20.

Body moderately deep, as in specimens of O. saurus of equal size; contour very slightly angulated at front of soft dorsal and anal. Mouth large, the maxillary reaching slightly past eye. The bands of teeth on jaws are wider than in either O. saurrus or O. mundus, and differ from them in having the outer row of the lower jaw composed of slender movable teeth which are more or less in contact and project above the other teeth. They are bluntly rounded as viewed from the side, but are laterally compressed to a sharp cutting edge. The width of the mandibular band of teeth anteriorly is about a fourth of the diameter of the eye or one-fourth wider than maxillary near the posterior end. The premaxillary band is somewhat narrower. The patch of vomerine teeth is rounded in front and acutely pointed behind; its length about half the diameter of the eye, its width about two-thirds of its length. The palatine patches are about half as wide as the vomerine patch. Gill-rakers moderately slender, their length about two-thirds eye. Top of head and nape with pores, as in O. mundus. Anterior branchiostegal rays connected across isthmus by a thin transparent membrane.

The anterior rays of dorsal are a little longer than those of anal. The last rays of dorsal and anal are produced; those of anal a little longer, barely reaching to the short anterior caudal rays. Pectoral about $\mathrm{m}_{\frac{7}{5}}^{\mathrm{z}}$ in head; its tip reaching slightly past tips of ventrals. Origin of ventrals nearer front of anal (behind detached spines) than tip of lower jaw by about half eye. Caudal lobes subequal.

Color not unlike O. mundus. Back slaty-brownish, lower parts and sides silvery. Top of head to tip of snout dark; tip of mandible black. Pectoral fin dusky on inner face, growing darker or black at base. Dorsal and caudal dusky, median rays of caudal darker at tips. Ventral and anal white.

This species differs from 0 . mundus in having a smaller month, a more slender body, and in the character of the teeth in the lower jaw. Dr. G. A. Bonlenger has kindly re-examined for us the type of 0 . altus in the British Muscum, and informs ths that the top of the head is densely beset with pores, and the anterior branchiostegal rays of the two sides are joined by membrane. There can be no question, therefore, as to the correct identification of our specimen.

Measurements in Hundredths of Length aithout Caudal.

Length without caudal in mm...	225
Head...	23
Depth .	30
Eye.	5
Maxillary.	14
Snout to posterior margin of eje.	$1 \mathrm{I} \frac{1}{2}$
Snout to soft dorsal..	49
Snout to first anal ray.	50
Length of pectoral.	16
Length of caudal.	27
Longest dorsal ray	$12 \frac{1}{2}$
Longest anal ray.	$10^{\frac{1}{3}}$
Number of dorsal rays...	$\mathrm{v}-\mathrm{I}, 19$
Number of anal rays.	II-I, 20
Number of gill-rakers	+ +10

133. Oligoplites refulgens sp . nov.

Plate XI, Fig. 19.
Head $4 \frac{3}{3}$ in body without caudal; depth $4 \frac{4}{2}$. Eye $4 \frac{1}{\frac{1}{2}}$ in head; maxillary $2 \frac{1}{3}$; snout $3 \frac{1}{2}$. Interorbital width little exceeding diameter of eye. Dorsal V-I, 20; anal II-I, 19.

Body more elongate than in other members of the genus; the ventral and dorsal outlines similar and symmetrical, without angles at origin of dorsal and anal fins.

Head pointed; its greatest width $2{ }_{4}^{1}$ in its length; its depth at point of occipital crest a little anterior to edge of opercle, $1 \frac{1}{4}$ in its length. Mouth comparatively small; its outline curved upward anteriorly and downward posteriorly; lower jaw slightly the longer; maxillary scarcely reaching to below middle of eye. Teeth on jaws in narrow bands which are scarcely as wide as exposed portion of maxillary anteriorly. Bands on vomer and palatines wide, that on vomer about $\frac{2}{3} \frac{2}{3}$ as long as it is wide, its greatest width in its anterior third or fourth; palatine bands at least twice as wide as those on jaws. Tongue with minutely granular patches.

Head entirely scaleless. Scales on body about as in the most conspicuously scaled examples of O. saurus. Top of head and mape smooth as in O. saurus, without the conspicuous pores of O. mundus and O. altus.

Insertion of ventrals about midway between base of first anal spine and the vertical from anterior orbital rim; their tips reaching over half way to second anal spine. Pectoral extending to tips of ventrals. Longest anterior dorsal ray a little longer than longest anal ray. Last ray of dorsal and anal elongate, that of the anal the longer, reaching rudimentary caudal rays. Caudal rather short, the lobes equal; its longest ray $1 \frac{1}{3}$ in head.

Sides bright silvery; top of head and snout nearly black; extrene tip of lower jaw black. Two very dark brown or blackish bands run parallel along the back and upper part of sides; the
lower sharply defined below by the silvery of the sides, passing gradually above into dusky silvery. The upper band is uniform in color and joins its fellow of the opposite side, forming a well defined median band on back as viewed from above. Dorsal spines and anterior part of soft dorsal blackish; anal slightly dusky anteriorly, its spines white. Ventrals white; pectoral dusky on inner face, growing darker towards base. Upper and lower edges of caudal dusky; the upper the darker.

A single specimen, 22 em . in entire length, was taken in the Panama market.

134. Oligoplites mundus Jordan \& Starks.

In the Panama market this species is more abundant than any other of the genus.
O. mundus resembles 0 . cltus, and differs from that division of the genus to which O. suurus and O. refulgens belong in having the top of its head and nape closely covered with pores, which open into short eanals ramifying beneath the skin.

In a large specimen from Mazatlan, about 16 inches in length, these pores and canals are very conspicuous and extend posteriorly in a pateh on side of back to a point above the anterior thisd of the peetoral fin. O. mundus and O. altus have also the anterior branchiostegals connected across the isthmus by a thin, but tough transparent membrane. The bands of teeth on the jaws are wider, the body is deeper, and the eaudal is longer.

Weasurements in Hundredths of Leength without Caudal.

Locality.	Panama					Algodones Lagoon, Mex.		Mazatlan, Mex.
Length without caudal in mm...........	198	210	205	208	174	209	151	385
Head.	25	$25 \frac{1}{2}$	261	26	26	26	$25 \frac{1}{2}$	24.4
Depth	35	$3+$	36	35	$36 \frac{1}{2}$	34	33	35
Eye.	5	$5 \frac{1}{2}$	51	5	$5 \frac{1}{2}$	5	$5 \frac{1}{2}$	4
Maxillary.	$17 \frac{1}{2}$	$17!$	17 !	18	18	$17 \frac{1}{1}$	17	16
Tip of snout to posterior edge of eye....	$11 \frac{1}{2}$	$11!$	12	12	12	12	12	10.1
Tip of snout to soft dorsal.	51	52!	53	53	53	52	51	51
Tip of snout to anal. .	52	53	54.	55	55	52!	52	51
Length of pectoral	$16 \frac{1}{2}$	$17 \frac{1}{2}$	17	$16 \frac{1}{2}$	161	$17 \frac{1}{2}$	16	16
Length of caudal.	25	27	28	$26 \frac{1}{2}$	27	27	$25 \frac{1}{2}$	24.
Height of dorsal.	$15 \frac{1}{2}$	16	16	16	15	16	15	14
Height of anal.	15	15	15	If	14	15	14	$13 \frac{1}{2}$
Number of dorsal rays.	IV-I, I9	IV-I, 20	1V-1, 20	V-1, 19	I'-I, 18	V-I, 20	IV-1, 19	V-1, 20
Number of anal rays	II-I, I9	II-I, 20	[1-I, I9	H-I, 19	II-I, IS	II-I, 20	1I-I, I9	II-I, 20
Number of gill-rakers above angle..	3	3	+	4	3	4	3	4
Number of gill-rakers below angle	10	1 I	10	10	9	10	10	10

135. Trachurops crumenopthalmus (Bloch).

Occasionally brought to market, where numerous specimens were collected. It was also observed at Acapulco. We are umable to find any differences betiveen specimens from the Atlantic and the Pacific.

The head varies from 3_{6}^{1} to $3_{\frac{1}{3}}^{1}$ in length; the depth from 3_{4}^{1} to $3_{\frac{2}{3}}^{2}$; the pectoral from $3_{5}^{\frac{1}{5}}$ to $3 \frac{2}{5}$. Orbit $2 \frac{5}{6}$ to $3 \frac{1}{6}$ in head; maxillary $2 \frac{1}{4}$ to $2 \frac{1}{3}$; ventral 2 to $2 \frac{1}{4}$. Plates and scales along the entire lateral line vary from 86 to 91 .
136. Hemicaranx atrimanus (Jorden of Gilbert).

Of frequent occurrence in the Pamama market, where it appeared sometimes in considerable numbers.

As the original description was taken from a single specimen, we append the following notes giving a wider range of variation.

Head 3_{4}^{3} to 4_{4}^{1} in leugth; depth 2_{3}^{1} to 2_{4}^{3}; length of pectoral 2_{2}^{1} to 2_{4}^{3}; chord of curve of lateral line $3 \frac{1}{2}$ to 4 ; straight part of lateral line 1_{6}^{5} to 2 . Orbil $3_{5}^{\frac{4}{5}}$ to $4_{3}^{\frac{1}{3}}$
in head; maxillary $3 \frac{1}{4}$ to $3 \frac{2}{5}$; ventrals $1 \frac{4}{5}$ to $2 \frac{1}{6}$; highest dorsal spine 3 to $3 \frac{1}{2}$; second dorsal ray $1 \frac{3}{4}$ to 2 . Length 23 to 36 cm .

The following color description was taken from a fresh specimen: Back deep blue, with faint traces of cross-bars. Snout and opercles dusky. Cheeks dusky yellow, with coarse brown specks. Lower part of sides silvery, with some dusky shading and without yellow. Candals and pectorals light lemon-yellow, the caudal narrowly edged with black. Pectorals with a jet-black blotch involving base and axil of fin and basal portion of all except the lowest rays. Dorsal, anal and ventrals orange-yellow, more or less dusky; dorsal inconspicuonsly margined with black.
137. Hemicaranx zelotes Gilbert.

Plate XII, Fig. 22.
Hemicaran.x zclotes Gilbert (Jordan \& Evermann, 1898, p. 2845).
Closely related to atrimanus, with which it agrees in having a large jet-black area on axil and base of pectorals. It differs from atrimanus in the following characters: The more rounded profile of snout; the lower spinons dorsal; the longer maxillary; the higher, shorter curve in the lateral line; the wider scutes, which are also fewer in number; the darker coloration of body and fins.

Head 4 to $4 \frac{2}{5}$ in length; depth, $2 \frac{2}{5}$ to $2 \frac{3}{5}$; D. V11-1, 26 to 29; A. 1I-1, 23 to 25 ; P. 20 to 22. Scutes 51 to 53 (over 60 in atrimanzes).

Body regularly elliptical, its greatest depth about in the middle of its length, exclusive of caudal peduncle. Head small; anterior profile more decurved, the snout hence blunter than in atrimanus; depth of head just behind eye about five-sixths its length. Jaws subequal, the tip of the lower slightly projecting; maxillary narrow, not quite reaching anterior margin of pupil, about $3 \frac{1}{6}$ in head ($3 \frac{1}{3}$ in atrimanus). A single series of small, close-set subequal teeth in each jaw; no teeth on vomer, palatines, or tongue. Orbit considerably greater than snout, $3 \frac{1}{3}$ to $3 \frac{4}{7}$ in head. Interorbital width (taken at anterior margin of orbit) slightly less than orbit. Occiput with an evident carina. Distance from snout to first dorsal spine greater than length of pectorals.

Spinous dorsal very low, the highest spine considerably less than orbit (greater than orbit in atrimanus). A well developed antrorse spine before the dorsal. Soft dorsal and anal similar, not falcate; the rays decreasing in size from the first; the highest ray of the soft dorsal 2 to $2 \frac{1}{2}$ in head; the highest ray of the anal about $2 \frac{1}{\mathrm{~g}}$ in head. Dorsal and anal depressible into a sheath of scales, the last 3 or 4 rays uncovered. Caudal fin wide, well forked, the upper lobe the longer, the longest ray not quite one-fourth total length of body. Pectoral fin long, falcate, but much shorter than in atrimanus, $3 \frac{1}{8}$ to $3 \frac{5}{7}$ in body ($2 \frac{2}{5}$ to $2 \frac{4}{8}$ in atrimanus). Ventrals $2 \frac{2}{5}$ to $2_{\frac{3}{5}}^{2}$ in head. Scales as in atrimanus.

Lateral line with a very strong curve anteriorly, the height of the curve $2 \frac{2}{3}$ to $3 \frac{1}{8}$ in its length; its length $2 \frac{1}{8}$ to $2 \frac{1}{4}$ in the straight portion. The entire length of the straight portion is furnished with scutes, which are very small in front and behind. The scutes are considerably wider and lower than in atrimanus: the widest about one-half the diameter of orbit (about one-third diameter of orbit in atrimanus).

Coloration much as in atrimonus, but darker and the fins without yellow. Blackish olive above, dusky silvery below, top of head and snout black. Spinous dorsal black; soft dorsal and anal black, except a narrow light streak at base. Caudal dark, margined with black; pectorals very dark, black on inner face, the extreme lower rays light. A large jet-black blotch covers the base of the pectorals and extends for about one-fifth of the whole length of the fin; the axil is also black.

Four specimens were obtained in the market at Panama; none others were seen.
138. Hemicaranx furthii (Steindachner).

Ouly the types known, from Panama. Probably not distinct from $I I$. lencurus.
139. Hemicaranx leucurus (Günther).

Only the type known, from Panama.
140. Caranx vinctus Jordun \& Gilbert.

But few specimens were seen, four of these preserved. They agree well with the description of the type. The measurement of the eye in the original description is evidently of the entire orbit. Between the adipose eyelids, the eye is 5 to $5 \frac{1}{5}$ in head.
141. Caranx hippos (Linncus).

We have compared seven specimens from Panama and Mazatlan with five specimens from Jamaica and Cuba. The Pacific cxamples seem to differ slightly in having an average larger number of gill-rakers and more plates in the straight part of the lateral line. In five of the seven Paeific specimens, the ventrals end considerably in advance of the vent; in one specimen they reach the vent, and in one they extend beyond it. The Atlantic specimens all have the ventrals reaching to or a little past the vent. The Panama specimens are all a little more slender than the Atlantic or Mazatlan specimens. It is not probable that these differences have any importance for classification.

Measurements in Hundredths of Length without Caudal.

Locality	Panama					Mazatlan, Mex.		Jamaica				$\stackrel{8}{\square}$
Length in mm. without candal	252	204	260	261	254	185	I 77	200	200	193	172	228
Depth at base of ventrals...	3^{2}	$3+$	301	$32!$	31	361	36	35 $\frac{1}{2}$	36	36	35	38
Distance from base of ventrals to ist detached anal spine. \qquad Distance from vent to base of ventral fins. \qquad	$20 \frac{1}{2}$	211	211	22	21	21.	19	201	21	201	20	20_{2}^{1}
	$1+\frac{1}{2}$	$16 \frac{1}{3}$	16	161	${ }^{1} 5$	15	14	$1+$	${ }^{1}+\frac{1}{2}$	14	${ }^{1} 3 \frac{1}{2}$	$13!$

(11)

Table of gill-rakers and plates of straight part of lateral line.

142. Caranx caballus (Günther).

Frequently appearing in considerable numbers; seven specimens preserved. These, in addition to three specimens from Mazatlan, have been compared with four specimens of C. crysos from the Atlantic (two from Jamaica; one from Woods Mole, Mass.; one from Florida).
C. caballus seems to be more slender, the depth varying from $3 \frac{1}{4}$ to $3 \frac{1}{3}$ (3 to $3 \frac{1}{6}$ in C. crysos). The former has two or three of the plates on the candal peduncle lengthened antero-posteriorly. Counting from a point opposite the base of the last dorsal ray to opposite the begimning of the short outer rays of the caudal, they number four or five in C. caballus, and seven or eight in C. crysos.

The two species do not differ in length of the pectoral or in the number of plates in the straight part of the lateral line, as has been alleged. In both, the pectoral varies from $2 \frac{3}{4}$ to $3 \frac{1}{6}$ in the length, and the plates from 47 to 50 .

143. Caranx marginatus Gill.

Common in the Panama market. We supplement the description given by Jordan and Evermann (1896, p. 922) as follows:

Head from $3 \frac{1}{1}$ to $3 \frac{1}{1}$ in length; depth 2_{4}^{3} to 3 . Dorsal in four specimens VIII-I, 21; in two specimens V IIT-I, 20. Anal in four specimens II-I, 16; in two specimens II-I, 17. Eye (iris) 4 to $4 \frac{1}{3}$ in hewd; maxillary 3 to $3 \frac{1}{5}$, reaching to below posterior border of pupil. The gill-rakers number 4 or $5+14$ or 15 . Pectoral 2_{6}^{5} to 3 in body. Arch of lateral line 1_{5}^{2} to 1_{5}^{3} in its straight portion. Plates in straight part of lateral line in two specimens 30 , in three specimens 31 , in one specimen 32 .

We have specimens in the collection of Stanford University from Mazatlan, Socorro Island and the Galapagos Islands, which agree with our Panama specimens in all respects.

Doubtless all of the records of the occurrence of C. latus in the Pacific are referable to either C. marginatus or C. medusicolu. C. marginatus differs from C. medusicolu and C. lutus in having a slenderer form, and fewer plates in the lateral line.

We have re-examined the two type specimens of C. medusicola from Mazatlan, and also several specimens from Clarion Island. None of them exceed 7 inches in length. From \mathcal{O}. latus of the same size (of which we have specimens from Key West, St. Lncia and Bahia, Brazil), C. medusicole differs in the following respects:

[^4]The maxillary is shorter, $2 \frac{2}{5}$ to $2 \frac{1}{2}$ in head (2 to $2 \frac{1}{5}$ in C. latus). The preorbital is wider, in the narrowest part two-thirds the diameter of the eye (half eye in C. latus). The snont is longer, from 2_{1}^{9} to 3 in head ($3 \frac{2}{5}$ to 3_{5}^{3} in C. latus). The gill-rakers are more numerous, $4+17$ or $18(4+14$ or 15 in C. latus $)$. It has 1 or 2 more soft rays in the dorsal and anal, 22 or 23 dorsal rays, 18 anal rays (20 or 21 dorsal rays, and 16 or 17 anal rays in C. latus). One of the Mazatlan specimens is deeper than any specimen we have seen of C. latus, the others are of the same depth.

The figure of C. medusicola given by Jordan (1895 b , plate 34), shows the characters of this species very well, except that the preorbital is not wide enough. In the original description, the number of the dorsal spines, gill-rakers, and lateral plates is wrongly given. The first dorsal has 8 spines, the plates to the bend in the lateral line number from 36 to 38 .

Measurcments in Hundredths of Length without Caudal.

Species,	c. Medusicola				c. latus		
Locality	Masatlan(Types.)		Clarion Island		Bahia,	Key West, Florida	
Length without caudal in mm	98	123	133	139	103	111	108
Head	$31 \frac{1}{2}$	$30 \frac{1}{2}$	32	$32 \frac{1}{3}$	33	$32 \frac{1}{2}$	32
Depth	$46 \frac{1}{2}$	$42 \frac{1}{2}$	to	$42 \frac{1}{2}$	43	+3	43
Snout	$10 \frac{1}{2}$	$1{ }^{1} \frac{1}{3}$	II	$1 \mathrm{I} \frac{1}{2}$	9	9	9
Least width of preorbital.	4	4	$4{ }^{\frac{1}{2}}$	$+\frac{1}{2}$	3	3	3
Maxillary	$12 \frac{1}{2}$	12	13	$12 \frac{1}{2}$	15	15	$15 \frac{1}{2}$
Eye	8	$7 \frac{1}{2}$	$7 \frac{1}{2}$	$7 \frac{1}{2}$	8	8	8
Chord of curve of lateral line.	30	30	30	30	28	30	30
Straight part of lateral line.	+1 $\frac{1}{8}$	$4 \mathrm{I} \frac{1}{2}$	t^{2}	42	+5	+3	45
Number of soft dorsal rays.	22	22	22	23	21	20	21
Number of anal rays....	18	18	18	15	17	16	${ }^{17}$
Plates in straight part of lateral line..	36	36	37	3^{8}	37	36	35

144. Gnathanodon speciosus (For:siait).

Appearing infrequently; on two occasions many large ones were brought to market. Our five specimens all have 19 rays in the dorsal and 16 in the anal.

145. Citula dorsalis (Gill).

Frequently brought to market. We preserved seven specimens from 24 to 36 cm . in length. To the deseription given by Jordan and Evermann (1896, p. 930), we make the following additions and corrections, based upon our material.

Depth from 1_{5}^{4} to 2 in length. Eye $4_{\frac{1}{3}}$ to $4_{\frac{2}{3}}^{2}$ in head; snout $2_{\frac{3}{4}}$ to 3. Pectoral one-fourth to one-fifth longer than head. Ventrals reaching well past vent, about half the distance from their insertion to the third anal spine. Length of gillrakers a little over half diameter of eye, their number $6+16$. In threc specimens the dorsal rays number 19 and the anal 17 ; in three the dorsal is 18 and the anal 16 , and in one the dorsal is 19 and the anal 16 . Scales in the straight part of lateral line 48 (not 58).
146. Alectis ciliaris (Bloch).

But few of this species were scen. We have compared our material with a single speeimen from Jamaica and can appreciate no differences.

147. Vomer setipinnis (Mitchill).

Brought into the market almost daily, sometimes in large numbers. We preserved nine adnlt specimens and several young; the latter were taken in the tide-pools.

We have compared our adult specimens with three specimens from Beanfort, N. C., and a single large speeimen from Jamaica. From the former, ours differ in the following respects: The body is more slender, the declivity of the anterior profile is less steep, the space between the eye and the angle of profile above eye is shorter, the bases of the anal and soft dorsal are shorter, and the scutes on the candal peduncle are larger. They differ from the Jamaica specimen only in having larger sentes. We have compared the young with specimens of the same size from Galveston and find them similar. The specimens from Beaufort seem to occupy a position between the Panama specimens and V. spixii.

Our material from the Atlantic is so meagre that we are mable to dccide whether the species from the Pacific is distinet or not.

Measurements in Hundredths of Length without Caudal.

Locality	Beaufort, N.C.			癸 Panama								Galieston	
Length without caudal in mm.....	150	164	138	248	159	225	204	172	204	63	66	65	66
Head	33	33	331	33	34_{2}^{1}	32	$3+$	331	$32 \frac{1}{2}$	39	38	38	38
Depth	55	57	58	51 $\frac{1}{2}$	501	50	$48 \frac{1}{2}$	52	51	68	6.3	66	65
Maxillary	13	13	13	$13 \frac{1}{2}$	I $3 \frac{1}{2}$	13	13	13	13	$1+$	13	14	14
Eye	8	$7 \frac{1}{2}$	$7 \frac{1}{2}$	8	8	7	7	8	$7 \frac{1}{2}$	$9 \frac{1}{2}$	9	10	$9 \frac{1}{2}$
Eyetomiddfe of upper curse of head	$16 \frac{1}{2}$	16	17	$15 \frac{1}{2}$	13	13	$12 \frac{1}{2}$	I 3	$12 \frac{1}{2}$	I 8	17	19	19
Eye to anterior tip of maxillary...	15	$15 \frac{1}{2}$	I $5 \frac{1}{2}$	14	I $4 \frac{1}{2}$	$13 \frac{1}{2}$	13	14	$13 \frac{1}{2}$. 18	17	20	I 8
Least distance from eye to anterior profile \qquad	$6 \frac{1}{2}$	$6 \frac{1}{2}$	7	$6 \frac{1}{2}$	7	7	7	7	$6 \frac{1}{2}$	72	7	$7 \frac{1}{2}$	7
Eye to opercular angle	$11 \frac{1}{2}$	12	$1 I_{1}^{1}$	$12 \frac{1}{2}$	13	$12 \frac{1}{2}$	13	$12 \frac{1}{2}$	$12 \frac{1}{2}$	$13 \frac{1}{2}$	12	I I	I 2
Straight part of lateral line from base of middle caudal rays.....	40	41	4	1	39	41 $\frac{1}{2}$	42	$40 \frac{1}{2}$	43	40	38	37	37
Chord of curve of lateral line	$3+\frac{1}{2}$	31	33	33	32	32	30	31	31	29	28	32	33
Length of soft dorsal base.	45	4^{6}	46	$44 \frac{1}{2}$	$42 \frac{1}{2}$	$+4 \frac{1}{2}$	+3	4	+4	46	45	45	46
Length of anal base	53	54	52	48	48	48	48	48	$+8$	55	52	$5+$	53
Length of pectoral.	$3+$	35	37	34	381	37	38	40	38	37	36	35	34
Length of caudal ...	Bro	ken.	29	29	28	29	30	28	30	28	32	30

148. Selene œrstedii Lütken.

Common; brought into the market almost daily with S. vomer. It may be at once distinguished from all other members of the genus by the occipital region being scarcely angulated, and by the comparatively large ventral fins.

The following description is from a specimen 31 cm . in length.
Head $2 \frac{2}{3}$ in length; depth $\mathrm{I}_{\frac{2}{3}}$. Eye 4 in head; snout 2; maxillary $3 \frac{1}{8}$. Dorsal VI, I, is; anal II, I, I5. The profile of snout is less nearly vertical than that of head in front of eye, with which it forms a slight angle just below the level of the eye. In smaller examples the angle is less noticeable. The upper profile forms a broad even curve from just above eye to spinous dorsal. The outline of the body is angulated at front of soft dorsal and anal.

Teeth small, blunt, and not much crowded, in bands on jaws and palatines, in a quadrangular patch on vomer. Preorbital space contained 3 times in postorbital space. Gill-rakers contained $2 \frac{1}{2}$ times in diameter of eye; their number $++\mathrm{I}_{4}$.

The pectoral reaches to above eleventh or twelfth anal ray, or to within twice the diameter of the eye of the base of the middle caudal rays. The ventrals reach to the first detached anal spine; in specimens 21 cm . in length, they reach to the first anal ray; in specimens 11 cm . long, they reach to the caudal rays and are about half the length of the entire body. Anterior dorsal and anal rays filamentous. Second dorsal spine as long as the maxillary, reaching when fin is depressed, two-thirds the distance between its base and the front of the soft dorsal. In a specimen II cm . in length it is longer than the head by a distance equal to the diameter of the eye.

Color silvery with bluish reflections above. Spinous dorsal and front of soft dorsal dusky; other fins colorless. In specimens 21 cm . in length or less, the distal half or more than half of the ventrals is black.

Measurements in Hundredths of Length zeithout Caudal.				
Length without caudal in mm...	$2+3$	15°	160	86
Head.	37	37	39	42
Depth	60	66	68	73
Eye.	$9 \stackrel{1}{8}$	9	9	IO
Snout	19	20	20.1	22
Length of jectoral	46	47	46	43
Length of ventrals..................	I I 1	20	17	60
Length of caudal	36	38	40	37
Length of dorsal base..............	45	48	47	45
Length of anal base................	43	43	44	45
Number of dorsal rays	VI-I, I 8	VII-I, I 7	V1I-I, IS	
Number of anal rays..............	II-I, I 5	11-1, 15	II-I, I 5	II-I, I 5

149. Selene vomer (Linnaus).

Common at Panama. We have compared our specimens with others from Florida and Jamaica, and find only individual differences.
150. Chloroscombrus orqueta Jorlan id Gilbert.

Frequently taken in abundance. We have compared our specimens with the original description (Jordan \& Gilbert, 1882, o, p. 646) and with specimens of C. chrysurus.

The depth is very variable; in our most slender specimens the depth is $2 \frac{2}{3}$ in the length, while in the deepest specimen (of the same length) it is $2 \frac{1}{3}$. Between these extremes are all intermediate shapes.
151. Trachinotus rhodopus Gill.

Not abundant; eight specimens preserved, from 15 to 36 cm . in length.
We have compared them with a single specimen of T. glaucus from Key West. In addition to the less vertical snout noted by Dr. Gill, they differ in having much longer, slenderer, and more numerous gill-rakers. The seales appear to be smaller, and the dorsal and anal are probably slightly longer.

The dorsal formula in seven specimens is VI, I, 20, in one specimen VI, T, 19; the anal in three specimens III, 19, in five specimens IIT, 18. The gill-rakers are long and slender, and do not greatly taper in size from their base to their tips.

They number 14 or 15 on the lower limb of the areh, and in length are from threefifths to two-thirds the diameter of the eye.

The character of width or position of the cross-bars is without value. In one of our small specimens, the second bar on one side occurs directly midway between the first and second bars on the reverse side, while the third bar is only a little behind the second bar of the reversed side. The first two bars are not always nearer together than the others, as described by Jordan and Evermann. The bars are not so conspicuous in our small specimens as in the large ones, but they are evident.

In our specimens of T. glaucus, the dorsal formula is V, I, 19, the anal III, 17. The gill-rakers are short and thick at the base and taper rapidly to a point. They number 9 on the lower part of the areh, and in length are but one-third the diameter of the eye.

Measurements in Hundredths of Length without Caudal.

Species	trachinotus rhodorus			trachinotus GLAUCUS
Locality .	Panama			Key Hest
Length without caudal in mm..	227	221	232	226
Head	27	$26 \frac{1}{2}$	27	261
Greatest depth at angle of dorsal.	51	54	49	53
Eye	$6!$	61.	$6 \frac{1}{2}$	61
Snout.	$6 \frac{1}{2}$	7	7	61
Maxillary	$9{ }^{1}$	10	91	9
Interorbital (bone)	9	$9 \stackrel{1}{2}$	91	93
Pectoral fin	23	24	23	2118
V entral fin.	10	$10 \frac{1}{2}$	111	$11 \frac{1}{2}$
Upper caudal lobe	50	53	51	Broken
Length of gill-rakers	31	4	4	$2 \frac{1}{4}$
Height of caudal peduncle	$8!$	S!	9	9
Number of dorsal spines..	VI, I	V1, I	V1, 1	$v, 1$
Number of dorsal rays	20	20	20	19
Number of anal spines and rays....................	111, 18	[11, 19	111, 19	111, 17
Number of gill-rakers on lower limb of arch	15	15	14	9

152. Trachinotus culveri Jordan \& Starks.

A single specimen was taken in the market.
This species seems to differ from T. falcatus in having a slightly shorter dorsal and anal. Our Panama specimen and the type and co-type from Mazatlan have the following fin counts: Dorsal VI, I, 18; VI, I, 18; VI, I, 17; anal III, 16; III, 17; III, 16. In twelve specimens of T. falcatus, three have 20 soft rays in the dorsal, nine have 19 ; in the anal, nine specimens have 18 soft rays, three have 17. As the largest specimen of falcatus in our possession is but 8 cm . in length, other comparisons are unsatisfactory.
T. cutveri differs from T. kennedyi in luaving a deeper, more angulated body and in having the mouth more oblique. The anterior end of the premaxillary is on a level with a point a little above the lower rim of the orbit in ' ''. culveri, while it is slightly below the orbit in T'. kennedyi.

153. Trachinotus kennedyi Steinduchner.

Frequently brought to market but never in large numbers. Six specimens were preserved, 28 to 31 cm . in length.

They are smaller than the specimens from whieh Dr. Steindaelmer wrote his excellent description, and differ slightly as follows: Head $3 \frac{1}{6}$ to $3 \frac{1}{2}$ in length; depth $1 \frac{3}{4}$ to $1 \frac{4}{5}$. Eye 4 to $4 \frac{2}{3}$ in head; interorbital width $2 \frac{1}{2}$. The maxillary reaches to below the middlle of the eye or only slightly beyond that point.

154. Trachinotus paloma Jordan \& Starls.

One adult specimen taken, 31 cm . in length. We have in addition a large specimen from Magdalena Bay and several small ones (including the types), from 5 to 10 cm . in length, from Mazatlan and San Juan Lagoon, Mexico. For comparison we have a single large specimen and two smaller ones of T. carotinus from the Athantic.

T'. paloma differs from T'. carolinus in having a smaller eye, 5_{3}^{2} to 5_{2}^{1} in head in adult, 3_{5}^{4} to $4 \frac{1}{5}$ in young ($4 \frac{4}{5}$ in carolinus in adnlt, 3 to $3_{z}^{\frac{1}{2}}$ in young). The gillrakers are longer, their length contained 6 times in the postorbital part of the head in the adult (10 times in the adult of carolinus). They number the same in the two species, $4+9$ or 10 . The snout is longer, $3 \frac{1}{2}$ in head (4 in head in carolinus), and the maxillary is shorter, 3 in head (2_{8}^{3} in carolinus). The anal lobe seems to be shorter, $1 \frac{1}{4}$ in head, 1_{5}^{4} in anal base (in carolinus it equals head and is $1 \frac{1}{2}$ in base of anal). We find little difference in size of head between the two species, though such was alleged to exist in the original description of T. paloma.
155. Nomeus gronovii (Gmelin).

Recorded from Panama by Dr. Eigemmann (1894, p. 629), who states that they were taken in "rocky pools at Panama." It has not been taken by other observers.
156. Peprilus palometa (Jordun \& Bollman).

This species was frequently brought to the Panama market. As the type of the species was only 7 cm . in length, we supplement the original description by the following taken from specimens 19 to 23 em . in entire length.

Head $3 \frac{1}{3}$ to $3 \frac{1}{\frac{1}{2}}$ in length without caudal; depth $\mathrm{I}_{1}{ }^{7} \frac{7}{6}$ to $\mathrm{I}_{1} \frac{9}{6}$. Eye $4 \frac{1}{\frac{1}{3}}$ to $4_{\frac{3}{1}}$ in head; maxillary $3 \frac{1}{2}$; dorsal III, 44 to 46 ; anal III, 41 to 43 . Lateral line 100 . Gill-rakers $5+16$ or 17 .

Body compressed and deep, the dorsal and ventral outlines similar in contour behind the head. Dorsal profile of head more convex than ventral; the snout blunt. Mouth small and oblique, the maxillary barely reaching past the anterior orbital rim. Teeth in a single row on jaws; none evident on vomer or palatines. Gill-rakers about half as long as the diameter of the eye.

A few scales present on head under and behind the eye, and a few at upper end of opercle; head otherwise naked. Scales on body smooth, crowded, and loosely attached; those of lateral line more firmly attached. Dorsal, anal, and caudal fins covered with fine crowded scales.

In the co-types, with which we have compared our specimens, no lobes are evident on the dorsal and anal fins. In the adult specimens, the lobes are well developed, though variable in length; they are generally longer in the larger specimens. The spines of dorsal and anal are scaled over, as are the rays. Anal lobe much longer than that of dorsal, often reaching to below the tips of the last anal rays, or to base of caudal fin. Dorsal lobe sometimes extending to opposite tip of pectoral, sometimes reaching further back. Dorsal and anal rays behind the lobes of about equal height, generally a little higher than the diameter of eye, though often less than that in the smaller specimens. Tip of pectoral generally reaching to half way between its base and tips of middle caudal rays. Pelvic bones ending as a short sharp spine. Upper lobe of caudal the longer, sometimes filamentous.

Color bluish brown on back, silvery on lower parts of body. Top of head and snout colored like the back. Opercle with dusky brown areas. Dorsal, anal and caudal variously dusky. Pectoral dusky behind base; the rays sparsely covered towards their ends with rather large brown dots.
Measurements in Hundredths of Length without Caudal.

	Co-types Panama Bay			Panama Market									
Length without caudal in mm...	50	57	58	I 32	I35	136	136	156	168	168	170	174	175
Head	36	37	37	32	$30 \frac{1}{21}$	31	30	29	$29 \frac{1}{3}$	$27 \frac{1}{8}$	$28 \frac{1}{2}$	29	29
Depth.	48	50	50	54	52	53	53	56	56	51	53	53	$56 \frac{1}{2}$
Eye	$1 \mathrm{O}_{\frac{1}{2}}$	$\mathrm{IO}_{\frac{1}{2}}$	$1 \mathrm{I} \frac{1}{\square}$	$7 \frac{1}{2}$	73	$7 \frac{1}{2}$	$7 \frac{1}{8}$	63	$6 \frac{1}{2}$	$6 \frac{1}{2}$	$6 \frac{1}{4}$	$6 \frac{1}{4}$	61
Snout	8	$7 \frac{1}{2}$	$7 \frac{1}{8}$	$7 \frac{1}{2}$	$7 \frac{1}{2}$	$7 \frac{1}{2}$	719	7	7	71	7	7	$6 \frac{3}{4}$
Maxillary	11	11	11	9	$8 \frac{1}{2}$	9	$8 \frac{1}{2}$	8	8	8	8	8	8
Dorsal lobe from base of third ray	Broken			29	35	31	31	Broken	30	35	32	29	Broken
Anal lobe from base of third ray	No lob	es are	evident	46	52	43	50	49	53	60	51	Broken	58
Length of pectoral	33	31	Broken	$39 \frac{1}{8}$	$41 \frac{1}{2}$	43	41	43	43	40	$40 \frac{1}{2}$	39	42
Upper lobe of caudal	Caudal	broken		40	48	45	Broken	Broken	39	59	48	42	45
Scales in lateral line*.	100	98	98	95	100	101	103	98	100	95	100	99	97
Number of dorsal rays..	III, 45	III, 46	III, 44	III, 46	III, 45	III, 44	III, 45	III, 46	III, 45	III, 44	III, 46	III, 45	III, 45
Number of anal rays	III, 43	III, 43	III, 43	III, 42	III, 43	III, 42	III, 43	III, 42	III, 41	III, 42	III, 4^{2}	III, 41	III, 42
Gill-rakers.	$5+16$	$5+17$	$5+\mathrm{f} 6$	5+16	5+16	5+16	$5+16$	$5+16$	5+17	$5+17$	$5+15$	5+16	$5+15$

[^5]157. Peprilus snyderi sp. nov.
plate xil , Fig. 23.
Head $3 \frac{1}{2}$ in length without caudal; depth $2 \frac{3}{3}$. Eye $5 \frac{2}{5}$ in head: snout $3 \frac{3}{5}$; maxillary $3 \frac{3}{4}$ Scales ifo. Dorsal III, 45; anal III, 43. Gill-rakers $5+16$.

Dorsal and ventral outlines of body similar, the body not greatly compressed, more elongate than in any other American species. Strout blunt. The occipital crest forms a sharp ridge on top of head. Mouth rather small, the maxillary barely reaching to the vertical from anterior edge of eye; jaws subequal. Teeth small and close-set in a single even series, those of lower jaw fitting inside those of upper jaw when mouth is closed. Gill-rakers moderately slender, half as long as the diameter of the eye, their number 4 or $5+14$ to 16 . Top of head with a network of sensory canals ramifying over it, the most conspicuous branch vein-like above anterior part of eye. Branching canals also extend more or less over the scales of back above lateral line, sometimes reaching nearly to dorsal spines.

Head entirely scaleless except the cheeks and upper part of opercles. Dorsal, anal and caudal with very small, crowded scales, extending nearly to the ends of the rays. Pectoral scaleless. Body completely invested with rather loosely attached scales.

Dorsal and anal fins with moderate lobes, that of anal slightly longer than that of dorsal, about equal to the length of head without snout. Base of anal a little shorter than that of dorsal. Tip of pectoral nearly reaching to the vertical above notch belind anal lobe, its length greater than that of the head by the diameter of the eye. Pelvic girdle ending as a small sharp spine. Caudal longer than pectoral by nearly half eye.

Color bluish brown on back, changing to a warm Vandyke brown on naked parts of head. Caudal a rich dark brown similar to that of head. Pectoral brown at base, toward end of rays dusky, with dark points. Other fins dusky. One specimen is more silvery than the others, and may represent more nearly the original coloration. Top of head brown. Caudal, dorsal and anal slightly dusky.

The type is 255 mm . in entirc length. The species came to market on but two days of our visit of six weeks. Seven specimens in all were seen and preserved.

The species is named for our friend and associate, Professor John O. Snyder, who has helped us materially in the preparation of this report.

Mcasurements in Hundredths of Length aithout Caudal.

	Type						
Length without caudal in mm.....................	200	215	211	187	180	187	192
Head	$28 \frac{1}{2}$	28	27	28	29	28	$28 \frac{1}{2}$
Depth	37	38	$37 \frac{1}{2}$	39	41	$37 \frac{1}{2}$	39
Eye ..	51	$5 \frac{1}{2}$	$5^{\frac{1}{2}}$	$5 \frac{1}{2}$	$5 \frac{1}{2}$	$5 \frac{1}{2}$	$5 \frac{1}{2}$
Snout	$7 \frac{1}{2}$	$7 \frac{1}{2}$	$7 \frac{1}{2}$	8	8	$7 \frac{1}{2}$	$7 \frac{1}{2}$
Maxillary	8	$7 \frac{1}{2}$	8	S1 ${ }_{2}$	$8 \frac{1}{2}$	8	S $\frac{1}{2}$
Longest dorsal rays	$19 \frac{1}{2}$	$19 \frac{1}{2}$	19	22	$2 \mathrm{I} \frac{1}{2}$	20	22
Longest anal rays	20	21	20	24	23	21	23
Length of pectoral....................................	32	32	31	33	$32 \frac{1}{2}$	32	33
Length of caudal.....................................	34	34	33	36	34	35	35
Number of scales...................................	107	112	106		I I I	108	109
Number of dorsal rays	III, +5	III, 45	III, 43	III, 44	1II, 44	III, 45	III, 44
Number of anal rays...............................	III, 43	III, 42	III, 43	III, 42	III, 42	III, 43	III, 42
Number of gill-rakers..............................	$5+16$	$4+14$	$4+16$	$4+16$	++14	4+15	$4+14$

158. Peprilus medius (Peters).

The Panama record of this species (Jordan, 1885, p. 375) needs verification. The specimens obtained may have belonged to one of the forms above recorded, both of which were at that time unknown. Only the type of P. medius is now extant.

Family CHEILODIPTERIDA.

159. Apogon dovii Günther.

Abundant about the rocky islands in Panama Bay.
The species varies in color from light to dark red, with much or little black pigment. The caudal may be translucent or blackish, the soft dorsal is translucent, or may be tipped with black, or may be largely black with only the posterior rays whitish. The anal and ventral fins may also be translucent, or with the terminal portions more or less largely black. Young specimens are marked with a very conspicuous round or elliptical black spot on the end of the caudal peduncle, and a rather poorly-defined dusky streak around the snout and across the opercle. The streak wholly disappears and the caudal spot becomes very faint and diffuse with age.

There seem to be no differences, save those of color, between A. dovii and A. retrosella. The fin-rays, gencral proportions, and squamation seem alike in the two. The fin-formula is: dorsal VI-I, 9; anal II, 8. The lateral line traverses 24 or 25 large seales to the base of the caudal fin, and 5 or 6 seales of reduced size on the fin itself. Between the lateral line and the base of the spinous dorsal are $2 \frac{1}{2}$ rows of seales (as in retrosella). In A. atricaudus there are $4 \frac{1}{2}$ or $5 \frac{1}{2}$ rows, in A. atridorsalis $3 \frac{1}{2}$ rows between the lateral line and the spinous dorsal.

Measurements in Hundredths of Length without Caudal.

Family CENTROPOMIDA.

160. Centropomus undecimalis (Bloch).

Frequently fond in the Panama market.
We are unable to follow Dr. Jordan (1895 b, p. 452) in recognizing the Pacific form as a distinct species (C. viridis). The separation is based on the supposed greater length of the appendages to the air-bladder in viridis, and the shorter second anal spine. We find, however, that the third anal spine projects beyond the second in Atlantic specimens as well as in those from the Pacific, and there seems to be no
difference between them in this respect. The appendages to the air-bladder vary widely in length, from a trifle less than the diameter of the eye to twice the diameter, in our Panama specimens. In the few individuals we have been able to examine from the Atlantic (Havana and Jamaica), the appendages vary from $1 \frac{1}{5}$ to $1 \frac{1}{2}$ times the orbital diameter. It is highly improbable, therefore, that this character possesses any significance.
161. Centropomus nigrescens Günther.

Only a few small specimens seen.
162. Centropomus pedimacula Poey.

Very abundant at Panama.
We have had for comparison a single specimen from the Atlantic, which shows a slightly longer anal spine and a slightly wider interorbital space than any of our Pacific examples. In all other characters there seems to be perfect agreement with our Panama specimens. We believe that the slight differences found are well within the range of variation of the species, and shall therefore not recognize Centropomus medius (the Pacific form) as distinct in any degree. A full series from the Atlantic may eventually prove, however, that these characters have a higher value than we have assigned to them, and necessitate specific separation of the two forms.
C. grandoculatus is certainly not separable from C. medius (= pedimacula). The scale-counts of different anthors vary widely in this group, as some have included a number of the scales overlying the base of the candal fin, and others cease the enumeration at a point corresponding to the base of the median rays. In this paper we have adopted the latter course, and find very uniformly 47 or 48 tubes in specimens from Mazatlan, Panama and Havana, including those from the San Juan Lagoon, Mexico, upon which is based the description of grandoculatus given by Jordan and Evermann. The first dorsal fin contains uniformly 8 spines, as in all other species of the gemus. The describers of grandoculatus seem to have neglected the first spine, which is very short and often concealed by the scales. Other characters assigned to grandoculatus, such as the form of the body and the size of the eye, have no significance. The amount of black on the ventral fins is also subject to wide variation, and has no distinctive value. In young specimens, the black is usually very distinct, but in adults it grows fainter and often disappears.

163. Centropomus unionensis Bocourt.
 Plate xill, Fig. 27.

Abundant in Panama Bay.
The species is closely related to armatus and robalito, but has shorter anal spines and weaker ridges and spines on head than in either species. It agrees with robalito in the slender, flexible dorsal spines, the second one of which is very short, in the anterior position of the vent and in the pale lateral line; with armatus in the small number of gill-rakers, and the increased number of scales in a vertical series above the lateral line. The second anal spine scarcely extends beyond the tip of the longest
anal ray, and extends beyond the third anal spine a distance less than half the diameter of the pupil. The interspinous membrane is not dusky. The dorsal spines are slenderer even than in robalito; the third is not heavier than the fourth, and is usually shortened a little, giving a rounded contour to the fin, which is sometimes, however, sharply angular. The second dorsal spine is very short, varying from one-fourth to one-sixth the length of the third. The distance from the vent to the base of the first anal spine equals that between the tip of the snout and some point between the hinder margin of the pupil and the hinder margin of the orbit. The preorbital and the horizontal and vertical limbs of the preopercle are very weakly spinous, the spines being scarcely perceptible in some specimens. There are 2 stronger spines, as usual, at the preopereular angle. The ridges on top of head are low and narrow; the median pair are most widely separated at a point over the middle of the occiput. There are $\overline{5}$ or 6 developed gill-rakers on the vertical limb of the outer arch, 11 or 12 on the horizontal limb, besides 2 or 3 rudiments on each. There are 47 or 48 scales in the lateral line in advance of the base of the caudal, and $7 \frac{1}{z}$ in a vertical series between the middle of the soft dorsal and the lateral line. The lateral line is uniformly pale.

Length in mm. without projecting lower jaw or caudal...	254	251	$2+4$	255	239	250
Head without lower jaw..	41	40	391			
Depth ..	28	28	28			
Eye...	$5 \frac{1}{4}$	5	5			
Interorbital (bone only)......................................	$5 \frac{3}{4}$	6	$5 \frac{1}{2}$			
Maxillary	It	I $3 \frac{1}{2}$	14			
Third dorsal spine ..	$17 \frac{1}{2}$	$17 \frac{1}{2}$	18			
Fourth dorsal spine...	17	I $7 \frac{1}{2}$	${ }^{1} 7 \frac{1}{2}$			
Fifth dorsal spine..	${ }^{1}+\frac{1}{2}$	$1+\frac{1}{2}$	14			
Second anal spine	I 81	19	15			
First anal ray	${ }^{1} 5 \frac{1}{2}$	16	16			
Second dorsal ray	broken	$15 \frac{1}{2}$	15			
Pectoral	231	$2+\frac{1}{2}$	$23!$			
Ventral	211	21	$21 \frac{1}{2}$			
Caudal ...	broken	about	24			
Caudal peduncle (height).....................................	$11 \frac{1}{2}$	12	1 I			
Vent from front of anal	16	$1+\frac{1}{2}$	15	I_{4}	$15 \frac{1}{2}$	$14 \frac{1}{2}$
Distance from anal to base of ventral spine................	38	381	39			
Longest gill-rakers ...	4	31	4			

164. Centropomus armatus Gill.

Plate Xili, Fig. 26.
Abundant in Panama Bay; distinguishable at sight by the excessively developed second anal spine with the black interspinous membrane, and by the strong, inflexible dorsal spines.

The species is placed by Boulenger (1895, p. 370), in the synonomy of C. ensiferus, but this is wholly inadmissible, as has been pointed out by Jordan and Evermann (1896, p. 1123).
C. ensiferus agrees with armatus in the strongly spinous bones of the head, and in its greatly developed second anal spine and black membrane; but it differs conspicuously in the slender, flexible dorsal spines, and in the course of the cranial ridges and the shape of the included areas. In the three specimens of ensiferus before us from the Atlantic, there are but 5 or 6 scales in a vertical series between lateral line and middle of second dorsal fin. The gill-rakers in these specimens are as follows: $9+17$, with 3 additional rudiments on each limb; $9+17$ with 4 rudiments above, 5 below; $8+16$, with 4 rudiments on each limb. The distance from the middle of the vent to the base of the first anal spine equals, or a little exceeds, that from tip of snout to hinder edge of pupil. The second anal spine extends to opposite the edge of the scaly area on base of caudal, and is contained 3_{10}^{9} to 3_{6}^{5} times in the length. The character and direction of the ridges on top of head are very characteristic, and are well shown by the accompanying figure (Pl. XIII, fig. 24).

In C. armatus, the second anal spine is longer than in any other Pacific species, to be compared in this respect with C. ensiferus only. The fifteen specimens secured by us vary little in the length of this spine, which extends, when depressed, to opposite the base of the caudal in young specimens, well beyond that point in adults. The third anal spine usually exceeds slightly the longest soft ray. The membrane between the second and third anal spines is jet-black in the young, and is usually blackish in varying degree in adults. In none of our specimens has the pigment entirely disappeared, but it is not improbable that it occasionally does so. The dorsal spines are much stronger than in any other known species, and are wholly constant in this regard. The third spine is the strongest, and is inflexible; it is but little longer than the fourth, which projects beyond a line joining the third and fifth, giving a rounded contour to the fin. There is considerable variation in the height of the spines, the fourth spine, when depressed, reaching occasionally to or beyond the origin of the second dorsal, but usually falling short. The second spine is proportionally long, $2 \frac{1}{z}$ to $3 \frac{1}{4}$ in the third spine. The dorsal formula is VIII-I, 10 (11 articulated rays in one specimen); the anal III, 6 . The vent is posteriorly placed, the distance from its center to the base of the first anal spine about equaling the distance from the tip of the snout to the middle of the eye. The preorbital has 5 to 7 strong retrorse spines; an equal number of still stronger spines are in the " humeral" process; preopercular spines much larger than in robalito or unionensis.

The median pair of ridges on top of head are very strong. From the middle of the occiput they diverge a little, both anteriorly and posteriorly, and are separated
at their posterior ends by a distance equaling the diameter of the pupil; anteriorly they converge, meeting at a point opposite the front of the eye.

The gill-rakers are long and slender, the longest two-thirds to five-sevenths the diameter of the eye, there being 5 or 6 movable ones on the vertical limb, and 11 or 12 on the horizontal limb, besides 2 or 3 immovable rudiments on each limb. There are 51 or 52 tube-bearing scales in the course of the lateral line, corresponding in number with the approximately vertical series along the back. Each vertical row under the middle of the second dorsal fin contains $7 \frac{1}{2}$ or $8 \frac{1}{2}$ scales in the fifteen specimens examined. The lateral line is pale, but is accompanied above and below by short stitch-like lines of black pigment, one pair for each scale.

Length in mm. from tip of snout to caudal base..	207	222	230
Head without lower jaw	$39 \frac{1}{2}$	40	39
Depth	27	29	$27 \frac{1}{8}$
Eye.	6	6	$5 \frac{1}{2}$
Interorbital (bone only)	51	$5!$	$5 \frac{1}{3}$
Maxillary	14	$1+$	$4 \frac{1}{2}$
Third dorsal spine	1713.	$17 \frac{1}{8}$	17
Fourth dorsal spine.	$17 \frac{1}{2}$	$18 \frac{1}{3}$	161
Fifth dorsal spine..	15	151 ${ }^{\frac{1}{2}}$	$14 \frac{1}{2}$
Second anal spine	$27 \frac{1}{8}$	27	27
First anal ray .	18	18	18
Second dorsal ray	$17 \frac{1}{8}$	18	17
Pectorals	26	27	27
Ventrals	23 ${ }^{\frac{1}{2}}$	23	22
Caudal.	26	25	25
Caudal peduncle (height)..	$11 \frac{1}{2}$	12	$11 \frac{1}{2}$
Vent from front of anal..	$12 \frac{1}{2}$	$12 \frac{1}{2}$	14
Distance from anal to base of ventral spine......	39	36	371
Longest gill-rakers	4!	$+\frac{1}{3}$	4

165. Centropomus robalito Jordan \& Gilbert.

Plate ilil, Fig. 25.
Very abundant at Panama.
Dr. Bonlenger places this species in the synonomy of C. ensiferus, and Jordan and Evermann consider the two probably identical. They are easily distinguishable, however, by the different size and the direction of the ridges on the top of the head, by the larger serrations in C. ensiferus, the longer anal spines, and the rounded contour of the spinons dorsal. The membrane between second and third anal spines seems to be constantly blackish in ensiferus, and is nsually pale in robalito. From 0 . armatus, robalito differs strikingly in the longer, more flexible, dorsal spines, the angular conton of the spinons dorsal fin, the ridges on head with the shape of the enclosed areas, the shorter anal spines with the light interspinons membrane, the more anterior position of the vent, the more numerons gill-rakers, the larger scales, and the uniformly light color of the lateral line. The third anal spine fails to attain the tip of the succeeding soft ray. The sccond spine extends beyond the third for a distance equaling one-half to three-fonrths the diameter of the eye; it sometimes attains the base of the caudal fin, but more frequently fails to do so. The dorsal spines are long and flexible, the third little heavier than the fourth. The fin is sharply angulated at the tip of the third spine, which usually reaches a straight line joining the tips of the succeeding spines. The second spine is very short, contained 4 to $4 \frac{1}{2}$ times in the third. The distance from the vent to the base of the first anal spine nearly equals that from tip of snont to hinder margin of orbit, varying a little from that measurement in either direction. The spines on the margin of the preorbital and preopercle are distinct and strong, but less so than in armatus.

The median pair of ridges on head are stronger than in any other species, and enclose a narrower space, which is widest opposite the posterior ends of the ridges and is regularly wedge-shaped, the ridges meeting at a point opposite the nostrils. The gill-rakers are long and slender, the longest two-thirds the diameter of the orbit. They are more numerous than in armatus, 7 or 8 movable ones on the vertical limb and 15 or 16 on the horizontal limb, with 2 or 3 rudiments at each end of the series. There are 46 to 49 seales in the lateral line in advance of the base of the cadal fin, and 5 or 6 seales in a vertieal series between the lateral line and the middle of the seeond dorsal. The lateral line is uniformly pale.

In the fresh state the ventrals are rich golden yellow, whitish at the base, with white pigment at tips, best marked on the inner rays. Anal lemon-yellow, including the membraue between the spines, which is rarely dusky; the base of the fin and the last two rays are translucent. The spinons dorsal is translueent dusky, not distinctly black; the soft dorsal similar, translucent at base. The candal is dusky translucent, slightly tinged with straw color, the latter best marked on the lower lobe. The pectorals are translucent.

Mcasurements in Hundredths of Length aithout Caudal.

Length in mm. without projecting lower jaw or caudal \qquad	192	261	250	240	242	222	242
Head without lower jaw	40	391	39!				
Depth	$27 \frac{1}{2}$	28	27				
Eye	61	$5 \frac{1}{2}$	5!				
Interorbital (bone only)	$4^{\frac{3}{4}}$	4	$4 \frac{1}{2}$				
Maxillary	13 !	14	13 ?				
Third dorsal spine	19	18	18				
Fourth dorsal spine	18	${ }^{1} 5 \frac{1}{2}$	$16 \frac{1}{2}$				
Fifth dorsal spine	15	13	14				
Second anal spine	24	20	20				
First anal ray .	$17 \frac{1}{2}$	16	16				
Second dorsal ray	$18 \frac{1}{2}$	17	18				
Pectoral	251.	24	25				
Ventral	231	22	$23 \frac{1}{2}$				
Caudal.	$27 \frac{1}{2}$		25				
Caudal peduncle (height).............................	$12 \frac{1}{2}$	$12 \frac{1}{1}$	12				
Vent from front of anal..	$15 \frac{1}{2}$	$16 \frac{1}{2}$	16	16	$16 \frac{1}{2}$	$17 \frac{1}{2}$	17
Distance from anal to base of ventral spine.......	39	40	41				
Longest gill-rakers	5	$4{ }^{\frac{1}{4}}$	$4^{\frac{1}{2}}$				

Family SERRANIDE.

166. Petrometopon panamensis (Steinduchner).

This species is seldom brought to the market, though it is very abundant about the islands in Panama Bay.

The excavation in the frontal bones for the reception of the posterior processes of the premaxillaries is not so deep as in P. guttatus. It more nearly resembles in this respect Epinephelus louti, as figured by Bonlenger (1895, p. 173).

To the type description we add the following range of measurements, taken from specimens 19 to 28 cm . in length: Head 2_{5}^{2} to 2_{3}^{2} in length, withont candal. Eye 5_{4}^{1} to 6 in head; interorbital width (bone) 9_{2}^{1}; snont 3_{4}^{3} to 4 . The fin formula seems to be constant as described: Dorsal IX, 14; anal III, S. The small canines anteriorly in each jaw are sometimes paited on one or both sides.
167. Epinephelus analogus Gill.

Abundant among the islands in Panama Bay, brouglit to market in considerable numbers.

No variation lias been reported in the number of dorsal spines, which seems to be constantly ten. In a specimen 20 cm . long, the upper parts were duskyolive, the under parts lighter, the cross-bars very faint. The spots were brownishred. The dorsal and the upper caudal rays were colored like the back; the fins otherwise were slaty-blue with a whitish margin, all of them spotted like the soft dorsal. In specimens 8 to 10 cm . long, the dark bars are distinctly six in number, one on the nape, two below the spinous and two below the soft dorsal, and one on the tail. They are well marked above the lateral line, but fade ont on lower part of sides. The round dark spots are confined to the bands, where they are arranged in pairs, forming two vertical series in each band; the two middle bands contain five pairs each.

168. Epinephelus labriformis (Jenyns).

Abondant in the Panama market.
In our smallest specimens, 6 and 15 cm . long, there is no trace of the numerous gently undulating pale lines rmming upward and backward, described by Steindachner ($1876, b, p .5$) in a specimen 75 mm . long. In none of our specimens was the inside of month salmon-yellow, as described by Jordan (1895, b, p. 444); the lips were faintly tinged with yellow. The distal half of the upper pectoral rays was deep red, shading below into the yellow of the lower rays. The black saddle on caudal peduncle seems to be constantly present. The number of articulated dorsal rays is constantly 17, as given by Jenyus and Gill.
169. Promicrops guttatus (Linncus).

Very large specimens are frequently brought to market.
170. Alphestes multiguttatus (Günther).

Abundant in Panama Bay, the young very mmmerons in the tide-pools. The young have fewer spots, mostly confined to the head, while the sides of the body are marked by wavy longitudinal dusky streaks, which are much darker where they traverse certain vertical areas, thas producing a number of vertical bars, which soon disappear. The dark streak behind the maxillary is more conspicnous than in adults. In specimens less than 35 mm . long, the preopercular angle is provided with a large furcate spine, with a long posterior and a short anterior limb. The posterior limb rapidly diminishes in size, while the anterior limb elongates and becomes appressed to the preopercular margin, forming the antrorse spine characteristic of the gemus.

As has been pointed out, this species is well distinguished from A. afer, by differences in color and in the contour of the head and body. We find no differ-
ence, however, in the relative lengths of the second and third anal spines, and very little difference in the length of the gill-rakers. A. multiguttatus has the gillrakers a trifle longer than in A. afer, but they do not exceed two-thirds the length of the gill-filaments.

171. Mycteroperca boulengeri Jordun if Starks.

Probably rare; only two specimens taken, each about 23 cm . in length.
We make the following corrections to the original description, and to the description given by Jordan and Evermann (1896, p. 1175):

Head $2 \frac{2}{3}$ in length ($2 \frac{7}{8}$ in type, 30 cm . long); depth $3 \frac{1}{3}$ ($2 \frac{9}{10}$ in type). In our specimen, and in the type and co-types (3 specimens) from Mazatlan, the dorsal is constantly XI, 16, the anal III, 11. Scales 23-90-44; ctenoid posteriorly, becoming cycloid anteriorly. Snout 4 in head; eye $5 \frac{1}{2}$ ($6 \frac{1}{5}$ in type); longest anal ray 2 ($1_{\frac{4}{5}}^{4}$ in type); third dorsal spine 3.

172. Hypoplectrus lamprurus (Jordan \& Gillert).

Only the type is known, obtained by Gilbert in 1881, at Panama.
173. Paralabrax humeralis (Cuvier \& Valenciennes).

Young specimens of this species are recorded from Panama by Steindacher (1876, b, p. 4) as Serranus albomaculatus.
174. Diplectrum radiale (Quoy d. Gaimard).

Occasional in the Panama market, not taken by us about rocky reefs or islands. There are constantly 10 series of scales on the cheeks running obliquely downward and forward; $5 \frac{1}{2}$ to 6 scales in a series between lateral line and base of dorsal near the middle of the length; and seven articulated rays in the anal fin. There is but little variation in the size and spination of the preopercular lobe, the species being readily distinguishable from D. macropoma and D. euryplectrum by this character alone.
175. Diplectrum macropoma (Günther).

No specimens of this species were secured by us. It seems to occur abundantly a short distance from the shore, where it was dredged by the "Albatross" in depths of from 7 to 33 fathoms. A single specimen was said to be found by them in the Panama market. Its range seems to be co-extensive with that of the tropical fish-fanna in general, as it was obtained by the "Albatross" in 1889 at Station 3014 , off Guaymas, Gulf of California, 29 fathoms, and at Station 3039, off Magdalena Bay, Lower California, 47 fathoms.

The species is very close to D. rudiale, but differs constantly in the wider preopercular lobe, the larger scales on cheeks (6 or 7 rows), and the larger head and deeper body. There are constantly 7 anal rays. The colors in life have not
been recorded; but there are no distinct blne spots on the dorsal, in our material, and in general the coloration seems to have been less variegated than in D. radiale.

176. Diplectrum euryplectrum Jordan \& Bollman.

Known only from moderate depths in Panama Bay, where it was dredged by the "Albatross" in 1888, in 33 to $51 \frac{1}{z}$ fathoms.

It is a deeper species than radiale, with much wider preopercular lobe, 8 series of scales on the cheeks, and constantly S anal rays. There is no trace of blue spots on the soft dorsal, which is marked by a very characteristic narrow black bar along the base. The coloration in the fresh state has not been reported. Judging from alcoholic specimens, it is probable that the species differs widely from radiale in that respect. It was not taken in the Gulf of California with its companion species, D. macropoma.

177. Prionodes fasciatus Jenyns.

This species is abundant among the Galapagos Islands, and on the coast of Mexico, but has been recorded but once from Panama Bay (Pearl Islands and Panama, Jordan \& Gilbert, 1882, n, p. 625). It was not seen by us.
178. Paranthias furcifer (Cuvier \& Vulenciennes).

Not seen by us; recorded from Panama by Stemdachner (1876, l, p. 6; as Serranus creolus), and by Gilbert (see Jordan, 1885, p. 377).

Rhegma Gilbert.
Rhegma Gilbert (Jordan \& Evermann, i898, p. 3169).
Allied to Rypticus, Grammistes and Gramma, having the large ctenoid scales and interrupted lateral line of Gramma, and the peculiar physiognomy, attachment of gill-membranes, and fin structure of the Rypticina.

Scales of moderate size, thin, not embedded, minutely ciliated; lateral lines 2, the upper near base of dorsal, ceasing under origin of posterior fifth of soft dorsal, the lower line beginning slightly in front of the end of the upper line, rumning along middle of caudal peduncle; the tubes very short, borne on much smaller intercalated scales, and not forming a continuous line. Head largely scaled, the snout and jaws naked.

Gill-membranes united anteriorly, forming a narrow free fold across the isthmos. Branchiostegals 7. Pseudobranchixe well developed; a wide slit behind last gill-arch; gill-rakers short, broadly triangular, strongly toothed. Upper margin of opercle, above its angle, wholly attached by membrane to the shoulder girdle, as in the Rypticina. Mouth large, protractile, the lower jaw protruding, the maxillary broadly exposed, with a narrow supplemental bone along its upper edge. Teeth all villiform, in broad bands on jaws, vomer and palatines, the inner teeth on jaws slightly longer than the others and depressible. Tongue smooth. Large mucous pores on under side of mandible, and slit-like pores present on edge of preorbital and around front of eye. Anterior nostril near edge of preorbital, provided with a short tube; posterior nostril without tube or raised rim, immediately in front of eye. A short free triangular flap on upper edge of each orbit. Upper portion of preopercle with a single strong plectroid spine, directed backward and downward; bones of the head otherwise unarmed, the preorbital and preopercle with entire edges, the opercle without spines or ridges.

Ventrals small and anterior in position, as in the Ryplicina, consisting each of a strong spine, and 5 branched rays, their base being in front of base of pectorals; no enlarged scale behind base of ventrals. Vertical fins low, with rounded lobes, their basal portions well scaled; dorsal with 7 low strong spines and 22 profusely branched rays; anal with 3 spines and if rays. One species, apparently the type of a distinct sulb-family, Rhegmatince.

179. Rhegma thaumasium Gillert.

Plate XV , Fif. 31.
Rhegma thaumasium Gilbert, I.c., p. 31 zo.
Head $2 \frac{4}{5}$ in length; depth 3 ; eye 5 in head; 1). V1I, 22; A. III, 18. Scales 45 in a longitudinal series along middle of side.

Body elongate, moderately compressed, with very short, deep, caudal peduncle. Anterior profile strongly arched, slightly depressed above orbits. Interorbital space very narrow, convex, its width two-thirds diameter of orbit. Mouth large, slightly oblique; lower jaw the longer, its tip entering the profile.

Dorsal spines low, strong, increasing backward, the last spine one-fourth longer than diameter of orbit. Anal spines short and strong, the middle spine longest.

Lateral line curved strongly upward from its origin to below third dorsal spine; thence running parallel with the back to below middle of second dorsal, from which point it gradually approaches the base of the dorsal, where it terminates under the fifth ray from the last; along its anterior course it is separated from base of dorsal by from 4 to 6 scales (in oblique series). Scales minutely ctenoid except on head, breast, and belly, on nape under anterior dorsal spines, and on base of pectoral. Top of head scaled forward to interorbital space, the anterior scales here, as well as those on cheek, much reduced in size, embedded, so that their outlines cannot be distinguished.

The following measurements of the type specimen are given:

Color, nearly uniform warm brown on head, body and fins; a dusky opercular blotch; soft dorsal, anal and caudal only narrowly margined with white.

Oue specimen known, from Panama.

180. Rypticus nigripinnis Gill.

Not rare. The upper preopercular spine is minute, but seems to be constantly present. The second dorsal spine is usually a little longer than the first, and is united for its entire length by membrane with the succeeding soft ray.

Fimily LOBOTIDE.

181. Lobotes pacificus Gillert.

Plate Xiv, Fig. 28.
Lobotes pacificus Gilbert, (Jordan \& Evermann, i898, p. 2857).
Lobotes auctorum Steindachner, 1876 b, p. 6; Panama. Not of Giunther.
Lobotes surinamensis Jordan \& Gilbert, is82 d, p. ito; Panama. Gilbert, i882, p. ilz; Punta Arenas. Jordan, 1885, p. 378; Panama. Boulenger, 1899, p. 2; Rio Tuyra, Darien.
The Lobotes of the Pacific Coast of Central America is distinguished from the other known species, L. surinamensis and L. erate, by the small size of the preopercular serrations, those at the angle not elongated and spine-like, even in the young.

Head $2 \frac{3}{4}$ in length; depth $2 \frac{1}{5}$ to $2 \frac{1}{10}$ (to base of caudal rays); depth of caudal peduncle $2 \frac{1}{2}$ in head. Dorsal XII, 15; anal III, 11; pectoral 15. Scales 46 (+6 on base of caudal) $\frac{11}{18}$; vertebre $12+12$. Body more elongated than L. surinamensis, agreeing in this respect with L. erate, the depth less than half the length. Upper profile deeply concave at occiput, thence strongly convex to front of dorsal. Head shorter and narrower than in L. surinamensis, the interorbital width but slightly longer than snout, $3 \frac{9}{10}$ to + in head ($3 \frac{1}{3}$ to $3 \frac{2}{3}$ in head in L. surinamensis). Eye small, $6 \frac{2}{3}$ to $7 \frac{1}{3}$ in head, 2 or $2 \frac{1}{10}$ in interorbital width. Mandible strongly protruding, but without symphyseal knob. Maxillary narrow, not concealed in closed mouth, its tip reaching vertical from middle of pupil, $2 \frac{6}{8}$ to $2{ }^{\frac{9}{10}}$ in head.

Upper jav with a moderate villiform band of teeth, in front of which is a single series of conical close-set canines. Lower jaw with a single series, similar to outer series of upper jaw, and behind them a very marrow band of villiform teeth which grow slightly larger towards symphysis. Palate toothless.

Posterior margin of preopercle vertical, the angle protruding little or not at all. In five young specimens, 175 to 275 mm . long, the preopercular teeth are fine, acute, short and inconspicuous, about as in species of Pomadasys. They increase but little in size towards the angle, where they are never spine-like; below, they are perceptible only in the immediate vicinity of the angle, the remainder of the horizontal limb being entire. In the adult the vertical limb is finely and evenly toothed, the angle and lower limb slightly roughened or entire. Opercle with two short spinous points, behind the lower of which a narrow tongue-shaped process of the subopercle extends to near the edge of opercular membrane. The humeral process is very weakly toothed, contrasting with the strongly serrate condition in L. surinamensis. Branchiostegals 6 .

Gill-rakers short, two-fifths diameter of eye in young, comparatively shorter in adults, 5 on vertical limb, all but one of which are broad firmly fixed tubercles, i4 on horizontal limb, the anterior two or three tubercular.

Spinons dorsal low, with gently rounded outline. Notch between dorsals shallow, the eleventh spine two-thirds the length of the lengest, which is contained 2 to $2 \frac{1}{3}$ times in heall in the young, 3 times in adults. When declined, the spines are pratially received within a scaly grouve. Soft dorsal, anal and caudal with hasal portions densely scaled, and with series of scales running up on membrane to beyond middle of finl. Suft dorsal and anal of eqpal height, forming bluntly rounded lobes, the fongest rays of which are about half head in adults, $1 \frac{1}{2}$ to $1 \frac{8}{3}$ in head in young. Third anal spine about half length of longest ray. P'ectorals shorter than ventrals, 2 to $2 \frac{1}{3}$ in head; ventrals $1!$ in head in young, shorter in adults.

Scales less strongly denoid than in L. surinamensis. Tubes of lateral line mostly simple, occasionally with one to three branches.

Color grayish or brownish, with plumbeous or silvery reflections. The youngest specimens show fainly the dark streaks so conspicuous in young of I. surinamensis, wiz: a pair rumning backwards from interorbital space; a pair from upper posterior border of eye converging towards front of dorsal; a broader band from eye downwards and backwards across cheeks. Soft dorsal, anal and caudal uniform blackish, or the caudal with an ill-defined lighter edge. Pectorals translucent; ventrals blackisl.

Abundant at Pamana, where it is known as Bermuate.

Family PRIACANTHIDAE.

182. Pseudopriacanthus serrula (Gillert).

Only the type known, from Albatross. Station 2797, Panama Bay, 33 fathoms (Gilbert, 1890 6, p. 450).

Family LUTIANID.E.

183. Hoplopagrus guentheri Gill.

This species had not been taken previotsly farther south than Mazathan. We secured one large specimen with dyamite among the rocky islands in the Bay. It must be very rare at Panama.

Lutianus.

The eharacters relied apon to separate λ^{\top} eomennis, Lettinnus, Genyoroge and Eoophtes, seem wholly lacking in distinctive value. The band of temporal scales may be narrow or wide, and may be isolated or may be surrounded by bands of smaller scales. All degrees of sealing of top of head are found among the Asiatic species, and considerable variation among the Ameriean members of the group. 'The temporal ridge never joins the orbital rim, bat terminates at varying distances between that and the median crest. Its approximation to the median erest depends in part upou its production anteriorly, and this is in many species a guestion of age. No groups can be sepatated by this character, nor can the matural alfinities of the speeies be dutermined by its adid. A third character is derived from the emargination of the preoperele, into which may lit a knob of the interoperele. Most Ameriean species have this weakly developed or absent, but L. jorlani forms an obvious transition between the two conditions, and this will donbless be made more complete by an examination of the Asiatic forms. Luticmes (E'ooplites) viridis is evidently the descendant of an Asiatic form, and has the noteh and knob strongly developed.

The temporal ridges do not join the median frontal ridge, though they are continued well forward and approach it.

In this paper we have used the oldest name, Lutionus, for all American species.

184. Lutianus jordani (Gilbert).

Plate XiV, Fig. 29.

Neomanis jordani Gilbert (Jordan \& Evermann, 1898, p. i251).
Head $2 \frac{3}{4}$ to 3 in length; depth $2 \frac{3}{5}$ to $2 \frac{3}{4}$; eye $4 \frac{1}{2}$ in head; dorsal $\mathrm{X}, 4$; anal 1II, 9 ; scales $5 \frac{1}{2}$ above lateral line, 43 to 47 oblique series running downwards and backwards.

Body deep, with regular curves, the two profiles nearly equal. Snout short, with gently rising upper profile, $3 \frac{1}{3}$ to $3 \frac{1}{3}$ in head. Eye large, its diameter much greater than the width of the preorbital at middle of length, where it is one-seventh length of head. Maxillary reaching slightly beyond Iront of pupil, its length equaling that of suout and half cye, $2 \frac{2}{5}$ in head. Least width of preorbital half the diameter of the eye. Temporal ridge ceasing about middle of orbit, much nearer orbital rim than median crest, but not confluent with either. Mandibular teeth in a villiform band, which is of moderate width anteriorly and tapers rapidly on sides. An outer series of distantly placed moderate canines. Teeth in premaxillaries similar to those below, the canines small, a pair on each side enlarged, but small for this genus. Vomerine teeth in a kite-shaped tract, rapidly reaching its greatest width, then tapering slowly backward for twice the distance. The anterior margins are gently concave, the posterior deeply so. Preopercular margin with a rather deep emargination above the angle. The interopercle forms a slight protuberance opposite the preopercular notch, the prominence failing to fill the notch, as it does in ciridis and other species of the "Genyoroge" group. Above the emargination, the edge is very minutely and finely serrulate, at the angle provided with a few short slender rather distant teeth. Gill-rakers strong, those above angle short, all but one tubercular, the one at angle abroptly lengthened, about half diameter of eye; seven developed on horizontal limb of arch. Posterior nostril elliptical.

Five or six series of scales on cheeks, the band rumning upward to level of upper margin of orbit. A single narrow band of scales on occiput, separated by a naked space from those on nape. Top of head, snout, mandible, preopercle, maxillary, and inferior half of interopercle naked. Scates above lateral line in series parallel with the lateral line; those below lateral line in horizontal series. Scales on the breast not much reduced, as large as those on opercle. Basal half of dorsal and anal with series of scales which form a sheath at base; basal three-fourths of caudal densely scaled.

Dorsal spines heavy, not flexible, the fourth the longest, $2 \frac{1}{2}$ to $2 \frac{2}{3}$ in liead. Second and third anal spines about equal, half the length of snout and eye. Soft dorsal and anal low, rounded, the longest ray (measured from free edge of sheath) about one-third head. Caudal lunate, the middle rays three-fourths the outer, $1 \frac{3}{6}$ in head. Pectorals very long, nearly reaching vertical from vent, ${ }_{14}^{\frac{1}{4}}$ in head. Ventrals ${ }^{\frac{4}{5}}$ in head.

Color: Back and top of head deep olive; lower half of sides and below dark reddish-purple. Many of the scales on sides with a silvery spot near the margin, producing faint lengthwise stripes. Fins reddish-purple, the basal portions of soft dorsal and caudal tinged with olive. Iris silvery, with an inner and an outer orange circle. No blue lines on the head. limer lining of gill-membranes and the shoulder girdle largely orange-red. Pectoral fins orange-brown.

Of rare occurrence at Panama, but oceasionally taken in considerable numbers. It is a small species, reaching a length of abont 40 cm .

185. Lutianus novemfasciatus Gill.

Occasional; reaching a large size.
186. Lutianus argentiventris (Peters).

With the exception of L. guttutus, the most abundant species of the genus. The species is marked by the very slender slarp snont, the profile being coneave in front of the nape, convex behind it. The snout is three-eighths to fom-elevenths the length of the head, and equals the length of the maxillary; it is not depressed anteriorly. The blue stripe below eye is conspienous only in the young. It may extend, without interruption, from the tip of the snout along entire side of head to opercular margin. It is more often limited to the anterior part of the head, and becomes variously broken up into a series of dashes or dots.
187. Lutianus colorado Jordan \& Gilbert.

Not abundant; reaching a large size.
188. Lutianus guttatus (Steindachner).

The most abundant species of the genus; never reaching a large size. This species has the temporal region more extensively scaled than in other American representatives of the genus in the Pacific. The usual temporal band of large seales is present, in addition to which are bands of small seales in front of and behind it.
189. Lutianus aratus (Günther).

Less abundant than other species of the genus; several specimens secured. The maxillary reaches past the middle of the eye.
190. Rabirubia inermis (Peters).

A single mutilated specimen was found. The species must be one of the rarest known, as but three specimens have been noted by collectors. The fignre published by Jordan (Proc. Calif. Acad. Sci., 2nd Ser., Vol. V, 1895, Plate XXXIX), errs in the number and obliquity of the dark streaks above the lateral line. Nineteen or twenty of these can be distinguished on the specimen from which the drawing was made, and the streak from last dorsal spine runs to the tenth scale of the lateral line. The anal fin contains ten rays in each of the Panama specimens known.
191. Xenichthys xanti Gill.

Brought to market in abundance. The best description of this species is that given by Jordan and Gilbert (1882 a, p. 325) under the name of X. xenops. The following details may be adeled.

Eye 3 to $3 \frac{1}{6}$ in head. Scales 52 to 54 ; those on head and nape less coarsely ctenoid than elsewhere. The fourth dorsal spine is as long as the third, or sometimes a little longer; the fifth is but slightly shorter. In the dectined fin, the fifth spine reaches past the tips of all the other spines anterior to the tenth; the pectoral does not reach the vertical from the vent. In the six specimens counted, the dorsal was constantly XI, I, 18, the anal III, 17.

We have compared this species with X. agassizii from the Galapagos Islands, and find it to differ in having fewer scales, a larger eye and a shorter pectoral fin. X. agassizii has 58 to 61 scales; the eye is contaned $3 \frac{1}{2}$ to $3 \frac{2}{3}$ times in the head; the pectoral reaches to beyond the origin of the anal.

Family H NNUULIDA.

192. Hæmulon scudderi Gill.

The most abundant species of the genns at Panama.
In eight half-grown specimens, five have 11 dorsal spines, three have 12 dorsal spines. In thirty-six young specimens, with the streaks and candal spot still conspicnous, thirty-three have 11 dorsal spines, three have 12 spincs. The articnlated dorsal rays are 16 or 17 in number; the anal rays 7 or 8 . In twelve specimens from Mazatan, ten have 12 spines, two have 11.

In young specimens, are three well-developed streaks and one rudimentary one. The uppermost starts on the median line of occiput, rmes to the spinons dorsal, and is continned along each side of the base of the dorsal, gradually growing fainter and disappearing before reaching the second dorsal. A pair begin just inside the nostrils, run just above the eyes, diverging backward to a point opposite the origin of the dorsal, thence converging to the base of the last dorsal may, belind which the pair unite on upper median line of candal peduncle, on which they reach base of npper condal rays. Another pair begin at tip of snont and extend backward through eye to middle of caudal perluncle, where they become faint or entirely disappear. A faint streak extends backward from upper margin of orbit to beginning of lateral line, along the anterior part of which it may be faintly indicated. A large black oval spot three-lourths the size of the eye is half on the caudal pednele, half on the base of the fin. Comparing these streaks, which disappear in adolts, with the permanent coloration in I. macrostomum, we find them characterized by the rudimentary condition of the streak along (or just below) the lateral line, and the total absence of a streak, present in macrostomum, running from above eye along sides just above the lateral line.
H. sculderi differs from its Atlantic representative II. parra: (1) In having usually 11 dorsal spines insted of 12 ; (2) In having longer falcate pectoral fins, which extend beyond the tips of the ventrals, and are nearly devoid of scales; (3) In the greater compression of occiput and nape, forming a crest which may be traced in adults to the interorbital space; (4) In the greater compression of the snout, which is also produced npward at tip, so that in adnlts the upper profile of snont and head as far as occiput is concave. [n H. parra, the dorsal spines are normally 12. In but one specimen of parrat of sixteen examined, have we found 11 spines, a number which seems not to be recorded for the species. The pectoral fins are short and rounded, not reaching tips of ventrals. They are very densely covered with scales to their tips, both membranes and rays being completely invested. The ventrals also are much more densely scaled than in seudderi. The occiput, mape and snont are transversely broadly rounded in both young and old specimens, while
the upper profile forms an minterropted even curve from tip of snout to front of dorsal, and beyond. The fin and scale formula does not differ from that in scudderi, except as noted. There are 52 scales in the lateral line, corresponding with the nmmber of vertical series above it.

Measurements in IHundredthis of Length without Caudal.

Species ..	H.EA	$\begin{aligned} & \text { LON } \\ & \text { ERI } \end{aligned}$	$\begin{aligned} & \text { HAMLLON } \\ & \text { PARRA } \end{aligned}$	
Locality	Panama		Havana, Cuba	
Length without catudial in mm.	205	200	205	198
Head.	36	351	36	$34 \frac{1}{2}$
Depth.	40	37	37	37
Eye	$7 \frac{1}{4}$	73	9	9
Snout	14.	$1+$	15	$1+$
Interorbital (bone)	9	9	$7!$	$7 \frac{1}{6}$
Maxillary	15	141	15	14
Third dorsal spine	$15 \frac{1}{3}$	15	16	15
Second anal spine	15	$1+\frac{1}{2}$	$13!$	13
Length of pectoral...................	28	29	23	21
Length of ventrals.	22	22	21	20
Length of upper lobe of caudal....	26	27	$20!$	20
Height of caudal peduncle	11	1013	11	10

193. Hæmulon steindachneri (Jordun \& Gillert).

Frequent in the market and about the islands in the bay.
A detailed and wholly satisfactory description of this species is given by Steindachner (1876 a, p. 15) under the name Mremulon caudimucula.

194. Lythrulon flaviguttatum (Gill).

Iythoulon opalescens Jordan \& Starks (Jordan, iS95, p. 459, Pl. NL; Mazatlan).
Abundant in the Panama market; often taken with dynamite about the islands in the hay. We have compared our specimens with the type of L. opalescens, and find no differences between them. The following account of opulescens is based on a re-examination of the type, the published description being fanty in several respects:

Head $3 \frac{2}{5}$; depth 23 ; dorsal XII, 17 ; anal III, 10 (the last may eleft to the base, the parts somewhat separated, the posterior half again forked, both joining the last
interhemal); snout $3 \frac{2}{3}$ in head; maxillary $2 \frac{3}{5}$; eye (between eyelids) $3 \frac{2}{3}$; interorbital width (between edges of frontal bone) 4; longest (fourth) dorsal spine 2; longest dorsal ray $3 \frac{1}{3}$; second amal spine 2_{3}^{2}; scales 6 or $7-53-14$. Gill-rakers $9+17$ on one side, $9+19$ on the other.

For comparison, we subjoin a statement of measurements and counts based on five Panama specimens of flaviguttutum, each about the same length as the type of opalescens.

Head 3_{5}^{2} to 3_{5}^{3} in length; depth 2_{7}^{5} to 2_{8}^{7}; dorsal XII, 16; XIII, 16; XII, 17; XII, 17; XII, 17; the anal has 3 spines and either 10 or 11 rays; when there are 10 anal rays, the last ray is divided to the base and the two halves are well separated. Snont $3 \frac{2}{5}$ to $3 \frac{2}{3}$ in head; eye (between eyelids) 3_{5}^{3} to 4 ; bony interorbital width $3 \frac{5}{6}$ to 4 ; longest (fourth) dorsal spine 2; longest dorsal ray $3 \frac{1}{4}$ to $3 \frac{1}{3}$; second anal spine $2 \frac{2}{5}$ to 2^{2}; scales 6 or $7-51$ to $53-13$ or 14 ; gill-rakers usually $10+18$ or $9+19$, in one specimen $11+20$.
195. Orthostæchus maculicauda Gill.

Seldom seen by us.

Well described and fignred by Steindachner (1870 b, p. 12, Pl. VI) as Itwmulon mazatlanum. The outline of the spinons dorsal is, however, widely different from that shown in the figure. It is convexly romeded throughout, not concave behind the highest portion of the fin, the second spine exceeds the seventh, and the third is usually slightly longer than the fifth. There is usually a faint indication of the caudal spot.

196. Anisotremus pacifici (Günther).

Rather common in the Panama market.
The general color is dusky silvery, with four very faint dusky cross-bars, which correspond in position and extent with the more conspicuons bars of A. dovii. The soft dorsal, anal and ventrals are blackish, the caudal and pectorals yellowish.

The species is characterized by the very short, blunt and wide snout, the narrow preorbital, the very large eye, the short pectoral, and the short dorsal and long anal fins almost devoid of seales. The soft dorsal and anal fins are also rounded in contour, the middle dorsal rays being longer than the anterior rays, and the anal fin not emarginate, as it is in dovii.

The head is contained $2 \frac{9}{10}$ to $3_{1} \frac{1}{10}$ times in the length to base of caudal; the depth $2 \frac{1}{5}$ to $2 \frac{2}{5}$. Eye 4 in head. The preoperenlar margin is indented above the projecting angle, on which the teeth are moderately or scarcely at all enlarged. Below the angle, the teeth are again reduced and point downward and backward. The normal fin-formula is: dorsal XI, 14; anal III, 10 . We find in one specimen only, dorsal XII, 13; and in one other, anal III, 9. The second anal spine is contained $1 \frac{2}{5}$ to 1_{5}^{4} times in the head; the third anal spine $2 \frac{7}{8}$ to 3_{3}^{1} times. The soft dorsal and anal have short series of scales on basal half only of interradial membranes, the rays, together with the entire distal half of fins, being naked. In both
dovii and casius, these fius are densely sealed to their tips. The peetorals are short, not nearly reaching vertieal from tips of ventrals, their length $1 \frac{2}{5}$ in head. The seales on the back are in series parallel with the lateral line, but lose their regularity under the soft dorsal. There are $5 \frac{1}{2}$ or $6 \frac{1}{2}$ series between the lateral line and the base of the spinous dorsal, and 46 to 48 scales in the lateral line.
197. Anisotremus cæsius (Jordan \& Gilberl).

This species, known hitherto only from the types taken at Mazatlan and one specimen from Acapuleo, was found to be abundant among the islands in Panama Bay. It is readily distinguished from its nearest relatives in the Paeifie by its uniform coloration, its longer dorsal fin, and its very long faleate peetoral. The preorbital is also wider, four-fifths diameter of eye. None of our specimens show trace of dark bars. 'The description of the types answers well to our specimens, but the maxillary extends to middle of eye, instead of "not quite reaching to front of eye." Of nine specimens examined, all had 12 dorsal spines; there were eight with 16 dorsal rays, one with 15 ; seven with 10 anal rays, two with 9 . The third anal spine is longer than in dovii or pacifici, protruding beyond the wide basal sheath for two-fifths length of head. The eandal is much more decply forked and the upper lobe more decidedly the longer; the median candal mas are slightly less than half the upper.

198. Anisotremus dovii (Gïnther).

Oceasionally brought to market.
The normal fin-formula in this species is: dorsal XI, 14; anal III, 9. We have no specimen with 12 spines, but this variation is to be expected. The soft dorsal varies to 15 , but apparently not to 16 . The type was deseribed as laving 12 dorsal spines and 16 rays. The vertical fins are sealed to their tips, but the anterior half of each ray, with a marrow strip of the membrane preeeding it, is maked. Where the rays fork distally, they become entirely invested. There are $6 \frac{1}{2}$ horizontal series of seales between the lateral line and the middle of the spinous dorsal. The peetorals do not extend to opposite tips of ventrals, $1 \frac{1}{3}$ in head.

This species is very close to A. pacifici, but differs in the longer sharper snout, larger dorsal and anal spines, greater scaliness of the fins, the presence of but 9 anal rays, and the intenser color of the bands.

199. Anisotremus interruptus (Gill).

We have two speeimens, one 23 cm ., the other 43 cm . long. They throw no additional light on the relation of interruptus to its Atlantic representative surinumensis. In both speeimens, the seales above the anterior portion of the lateral line are eonspienously enlarged, an oblique series downard and baekward from first dorsal spine containing but 7 scales. Specimens of surinamensis have somewhat smaller scales, and are darker in color, especially on the fins. These are slight differences, however, and may well prove ineonstant. The speeies interruptus should be aceepted only provisionally.
200. Anisotremus tæniatus Gill.

Occasional in the market; of more frequent oceurrence about the rocky islands in the Bay.

The species is undoubtedly distinct from its Atlantic representative A.virginicus, although some of the characters which have been relied upon to distinguish the two are of no valuc. Thus, the gill-rakers are alike in both and the eye does not differ in size. The second anal spine is variable in both; in treniutus, its tip usually fails to reach the tip of the soft rays, in virginious it usually reaches beyond their tips.

The most striking difference is in the color, as has been sufficiently described by previous authors. In addition, we note that the fins in virginicus are more densely scaled, this being especially well marked with the pectorals. The anterior portion of the spinous dorsal differs widely in contour: in virginicus, the third spine is longest, the sccond five-sixths or more than five-sixths the lagth of the fourth; in treniatus, the fourth spine is usually the longest, the second very short, not more than foursevenths the length of the fourth. Our material is not sufficient to emable us to determine the limits of variation in the relative lengths of the dorsal spines. The pectoral scems to be slightly longer in toniatus, and the preorbital a little narower, but these differences are unimportant.

Measurements in Hundredths of Length without Caudal.

201. Brachydeuterus nitidus (Steinctuchner).

Four specimens taken. 'They agree with Dr. Steindachner's description in most particular's.

Head 3 to $3_{4}^{\frac{1}{4}}$ in length without caudal; snout 3 to 3_{4}^{1} in head; eye 4 to $4 \frac{1}{5}$; interorbital (bone) 5. Scales $4 S$ to 50 . 'Two of our specimens have 9 anal rays, one has 14 dorsal rays; the others have S anal and 15 dorsal rays. The upper lobe of the caudal is conspicuously longer than the lower lobe.

202. Brachydeuterus Ieuciscus (Giinnther).

Very abundant; the young and half-grown specimens exhibit the same bewildering variety of form and general appearance for which the species is noted in other parts of its range. Compared with adults, the young appear much slenderer, with longer sharper snout, smaller mouth, and less arched frontal region. The preorhital usually appears much wider; but in all these respects there is wide variation among young of the same size. It reaches the length of 31 cm .; adults vary little in appearance, and approach nearly the even contour of Pomudusis pantomensis. The pectoral is never falcate, and equals the distance from tip of snout to upper preopercular margin.

203. Pomadasis panamensis (Steinduchner).

This species was very abundant at Panama. Our material shows few variations from Dr. Steindacherers description.

Eye $4_{5}^{\frac{1}{5}}$ to $5_{6}^{\frac{1}{6}}$ in head; interorbital 4_{2}^{1} to 5 ; second anal spine $2 \frac{1}{3}$ to $2 \frac{2}{5}$. The maxillary reaches a vertical from the anterior margin, or the anterior third, of the pupil. Dr. Steindachner's statement that the third dorsal spine is from 2 to $2 \frac{1}{6}$ times as long as the second is doubtless a slip of the pen. The third dorsal spine in our specimens varies from 3 to $3 \frac{1}{2}$ times the length of the second.
204. Pomadasis bayanus Jordun \& Evermann.

Pristipoma humile Kner \& Steindachner, 1864, p. 222, Pl. I, fig. I. Steindachner, 1879 a, p. 33. Not Pristipoma humilis Bowdich.

Pomadasis bayamus Jordan \& Evernann, 1898, p. 1331.
One specimen, 36 cm . long, was taken in the Rio Grande River, at Miraflores, a point above tide-level, where the water is perfectly fresh. A small specimen is in the museum of Stanford University, collected at Sin José del Cabo, Mexico, by Mr. J. F. Abbott. The records do not show whether this specimen was taken in the river at San Josci, or in the sea.

The species is very close to P. crocro, agreeing with it in general shape and color, and in fin and seale formule. Both species have normally 13 dorsal spines. P. bayunus has a longer snout, larger month and shorter second anal spine. The latter varies greatly with age. In our smaller specimen, it reaches far beyond the tip of the soft rays, to the base of the anal, and is contained 4 times in the length; in the larger specimen, it fails to reach the tip of anal rays, and is contained $6 \frac{1}{2}$ times
in the length. The dorsal contains 13 spines, 12 rays; the anal III, 7. The seales are very irregular, and difficult to enumerate. We count 52 pores in the lateral line, in each specimen. The head is contained 3 times in the length ($2 \frac{1}{8}$ is a misprint for' $3 \frac{1}{8}$ in Jordan \& Evermann's description, l. c.).

The eye is contained 5 times in head in the larger specimen, 3_{4}^{3} times in the smatler; snout $2_{10}^{9} ;$ maxillary 23 in large specimen, 2_{5}^{4} in the smaller; fourth dorsal spine 2_{5}^{4} and $2 \frac{1}{5}$; second anal spine 2 and 1_{5}^{2}. The base of the second dorsal is onehalf the base of the spinous dorsal. The gill-rakers are short and weak, 13 on horizontal limb of arel, 3 or 4 of the anterior being rudimentary, immovable.

Striking characters of this species are: the ploughshare-shaped snout, narrowing upward and forward to form a ridge, which terminates in the acntely angulated premaxillaries; and the small accessory seales, which are larger than such seales are apt to be, are more irregular in shape, and are scattered more widely over the surface of the other scales.

205. Pomadasis macracanthus (Giunther).

A common species in the market. The following additions to current deseriptions are from specimens 18 to 26 cm . in length.

Head 2_{5}^{3} to 2_{4}^{3} in length; depth 2^{3} to 2_{6}^{5}. Eye $4 \frac{1}{2}$ to $4_{6}^{\frac{5}{5}}$ in head; snout 2_{8}^{7} to 3_{6}^{1}; interorbital (bone) 5 to $5_{\frac{3}{3}}^{3}$. Three of our specimens have 13 dorsal rays, three have 14. The anal has constantly 8 soft rays, as described by Giinther, the last split ray counting as 1 ; not 7 rays, as given by Jordan and Evermann (1898, p. 1332). Pectoral 3 to $3 \frac{1}{2}$ in length.

Our speeimens have the seales rather strongly etenoid, not smooth as deseribed by Giunther.
206. Pomadasis branicki (Steinduchner).

A single specimen was obtained. The dorsal spines seem to be indifferently 13 or 14 in number. There are 14 in our specimen.
207. Orthopristis chalceus (Günther).

Very common; seen daily in the markets.
The dorsal spines are nsually 12 in number, only one of our specimens has 13 ; the articulated rays are usually 15 (exceptionally 16). We have found no specimen with 14 rays, as recorded by Steindachner (1870 b, p. 3, Pl. II ; as Pristipoma kneri). The anal rays are usually 11 in number (exceptionally 12). The tubes in the lateral line (corresponding with the series of seales above the lateral line rumning obliquely downward and backward) are 52 to 54 in number. The diameter of the eye equals the width of the preorbital, $4 \frac{2}{5}$ in the head; pectoral $1_{5}^{\frac{1}{5}}$ to 1_{10}^{1}; snout 2_{5}^{4} to 2_{10}^{9}; the maxillary extends beyond the front of the eye. Brownish streaks follow the centers of the rows of scales, alternating with narrower grayish blue streaks along the margins of the rows. No pale streak below the dorsal and no darker cross-bands in any specimens seen by us.
208. Orthopristis brevipinnis (Steinduchner).
plate KV, Fig. 30.
Four specimens, from 28 to 31 cm . long, were obtained by us in the Panama market; no others were seen.

The species has been made the type of a distinct genns (Isaciella Jordan \& Fesler), differing from Orthopristis in the presence of accessory seales, from Microlepidotus in the larger seales, the presence of accessory scales on the bases of the larger ones, and the shorter spinous dorsal. A re-examination of Microlepidotus inornatus (Magdilena Bay, Albatross collection) shows however that the seales have been incorrectly enmmerated in that species. They are in reality of the same size as the scales in brevipinnis, there being 60 in the lateral line. There are furthermore nmmerous small accessory seales on the bases of the larger ones. The dorsal and anal are sealed in inornatus, almost as fully as in brenipinnis. The tro species are very elosely related, differing prineipally in the relative sizes of the two dorsal fins. This difference is not greater than that oceurring between species of Pomadasis or Anisotremus, and seems not worthy of generic recognition. In one specimen of O. inornatus from Mazatlan, we find 15 dorsal spines. The only character to separate the two species as a generic gronp (Microlepidotus) distinct from Orthopristis, is the possession of the small accessory scales on the sides. This eharacter appears also in Brachydeuterus, where elongatus and axillaris possess it highly developed, while nitidus and corvineformis are withont it. We have no indication of the condition in the type of Brachydeuterus (auritus). Should the latter have no accessory seales, the subordinate group consisting of elongatus and axillaris would be without distinetive name. We have preferred to reduce Microlepidotus to the rank of a subgenns, of equal value with Evapristis, which forms a transition between it and the ordinary forms of Orthopristis with naked fins and no accessory scales.

Steindachner's description of the type of brevipimas (1870 a, p. 10, Pl. V) refers unquestionably to the present species, but the aceompanying figure is so poor and inaccurate as to suggest a very different fish. Prominent among the unfortunate features in this drawing are: the upper contour, which should be evenly curved from snout to caudal peduncle; the dorsal spines, which shonld be longer and slenderer; the soft dorsal, which is much more completely sealed; the streaks above the lateral line, which are much less oblique, much wider, more irregnlar and wavy, and less numerous; the series of scales below the lateral line, with their aceompanying streaks, which should be horizontal, instead of oblique.

The usual fin formula is: dorsal XIII, 17; anal III, 13 or 14 . The third dorsal spine is the longest, $2 \frac{1}{3}$ to $2 \frac{1}{2}$ in the length of the hearl. The lateral line contains 60 to 62 tubes.

The seales in the species of Orthopristis are more nearly uniform in size than current descriptions would seem to indicate. O. forbesi, from Albemarle Island, Galapagos Gronp, is said to have 80 to 85 series of seales. Examination of one of the types makes it evident that the vertical rows were connted, instead of the oblique rows. The number of oblique rows corresponding to the pores in the lateral line is 65 .

Family SPARIDN.

209. Calamus brachysomus (Lockington).

Chrysophys calamus Günther, i869, p. 42 I (Panama).
Known from the Gulf of California, from Panama, and from Santa Helena Bay, near Guayaquil (Boulenger, 1898-9, Vol. XIV, p. 7).

Several small speeimens were seen in the market and a number of large individuals were taken by the aid of dynamite abont the islands. Four speeimens were preserverl, ranging in length from 23 to 43 cm .

Its southern representative, C. taurinus, is a more slender species and has shorter dorsal spines and a shorter pectoral. Two specimens of taurinus which we have examined from the Galapagos are darker in color, especially about the head, and have the imer base of the peetoral blaekish.

The original deseription of C. brachysomus contains numerous errors and cannot be relied upon. To the description given by Jordan and Evermann (1898, p. 1453), we make the following additions:

Head 3_{5}^{1} to 3_{3}^{1} in length; depth 2 to $2 \frac{1}{4}$. Eye 3_{5}^{3} to $4 \frac{1}{2}$ in head; snout 1_{5}^{3} to 1_{5}^{4}. The maxillary reaches to below the anterior orbital rim. There are but five very small, short gill-rakers on the lower branchial arch. In our specimens, the dorsal is constantly XII, 12 and the anal III, 10. The third dorsal spine is contained $1 \frac{?}{8}$ to 2_{5}^{2} times in the head; the second anal spine is gencrally longer than the third, but does not reaeh to its tip in the deelined fin. Its length is $3_{5}^{\frac{4}{5}}$ to $4 \frac{1}{2} \mathrm{in}$ head.

Measurrments in Hundredths of L.ength without Caudal.

Species. Locality	bractivsomus				taurinus	
	I'anama			$\begin{aligned} & \text { La Paz, } \\ & \text { L. C. } \end{aligned}$	$\begin{gathered} \text { Calapagos } \\ \text { Islands } \end{gathered}$	
Length without caudal in mm.	286	177	175	255	286	216
Head..	31.1	31	31	31	34	313
Depth	48	46	49	46	4.3	+2!
Ey'	7	8	81	71	$7!$	8
Preorbital (least depth)	$14!$	12	12	13 !	$14 \frac{1}{2}$	$1{ }^{1}$
Interorbital (bone).	8	8	S	8	$8{ }_{4}$	S
Snout	19	17	$18 \frac{1}{2}$	19	20	$17!$
Maxillary	13	12	12	131	15	121
Pectoral	37	37	40	$37 \stackrel{1}{3}$	35	36
Third dorsal spine	$16 \frac{1}{2}$	16	16	17	12	13
Second anal spine	7	8	$9{ }^{1}$	7	7	$6!$
Ventral.	22	$23 \frac{1}{3}$	24	22	18	22
Caudal	26	29	31	Broken	26	31
Caudal peduncle (height)	9	10_{2}^{1}	\pm	9	9	9

Family CiERRID.E.

210. Eucinostomus californiensis (Gill).

Diapterus doaiti Gill, I863, p. 162.
We fond this species very common at Pamama, and carefnlly selected a series of abont twenty specimens, with a view to exhibiting all the variations to which it is subject. We have also a large number of specimens from other localities.

Our extensive series seems to prove E. dourii to be invalid. It is alleged to differ from this species in having the maxillary groove "linear" instead of "broad and semi-oval"; in having the scales $5-47-10$ instead of $6-44-13$, and in having the "spinous dorsal blackish at the margin " rather than "fius immaculate."

Our specimens show all intermediate stages of the maxillary groove, from linear to broadly U-shaped. In some individuals the groove is as wide at the anterior or open end as at the middle, but in most of them it is more or less constricted anterionly by the encroachment of the seales on each side. In one specimen the groove is wholly elosed in front by the meeting of these scales. The scale-formula in onr
specimens is $5-44$ or $45-10$. The margin of the spinons dorsal varies in color from dusky to black, but we have some small specimens, collected by the Albatross, in which the fins may be said to be immaculate.

Our specimens of the young up to 65 mm . in length show light brown crossbars on back. One at the mape runs obliquely downward and backward to the upper end of gill-opening; one at the front of the spinons dorsal runs obliquely downward and forward to lateral line, nearly meeting the one at the nape; between these there is a shorter vertical bar, and more posteriorly are several bars rmming downward and forward, which become more or less indefinite along the middle of their length. One or two of these bars are represented by the spots on the upper edge and at the middle of the candal pednnele.

Onr material from the Atlantic is so meager that we are unable to discuss relationships between E. californiensis, E. harengulus, and E. pseudogula.

Measurements in Hundredths of Length zeithout Caudal.

Locality	Panama							Chatham I., Cala pagos
Length without caudal ex pressed in mm .	149	I 53	150	154	149	95	80	I 56
Head	32	33	31	32	3 I	33	3.3	30
Depth	37	3^{8}	37	37	36	36	38	32
Eye (inside of adipose eyelid)..	10	10	10	9	9	10	10	9
Pectoral	34	32	32	32	33	33.	32	32
Second dorsal spine	19	19	IS	18	178	18	17	$17:$
Second anal spine	9	9	$7 \frac{1}{2}$	8	S	9	9	$8 \frac{1}{4}$
Caudal	27	28	26	27	27	26		28
Ventrals	I 7	I S	17	I 6	I 7	IS	18	16
Snout	1 I	10	$1 \mathrm{O}_{2}^{1}$	I I	10	$1{ }^{1} \frac{1}{2}$	10	101
Number of dorsal rays	IX, 9	IX, 9	IX, 9	IX, 9	LS, 9	IX, 9	18,9	1X,9
Number of anal rays...........	III, 7	[11, 7	I11, 7	111, 7	111, 7	111, 7	III, 7	III, 7
Scales	$5-44-10$	$5-4+10$	$5-45-10$	5-45-10	$5-44-10$	$5-44-10$	$5-45-10$	5-45-10

21I. Xystæma cinereum (Walbaum).
Panama records are by Giinther, 1869, p. 391 (as Gerres squamipinnis); and Jordan, 1885, p. 384.
212. Gerres aureolus Jordan is Gilbert.

Known only from the type taken by Gilbert at Panama in 1881.
213. Gerres peruvianus Cuvicr is Velenciennes.

We found this species very common at Panama. From G. olisthostomus it differs in having the premaxillary groove sealeless, a smaller eye, smaller and crowded teeth, and a higher sheath of scales to dorsal and anal. From G. aureolus (as described) it differs in laving the eye not larger than length of snont or width of interorbital, and in having the second dorsal spine much stronger than the others, and much more than half length of head (second dorsal spine of G. perwvianus is from $1_{10}^{1}{ }_{0}$ to $1 \frac{1}{5}$ in head).

214. Gerres brevimanus Günther.

Probably not common; we collected five specimens ranging in entire length from 23 to 36 cm . The species may be at once distinguished from all other American species by the short pectoral, which never reaches the vertical from the vent, and which equals in length the post-nasal part of the head.

The lips are much thickened, especially the lower one. In the smaller specimen the breadth of the lower lip at its widest part is contained 3_{5}^{3} times in the diameter of the eye. In the largest one, it is contained $2 \frac{1}{5}$. Between these there is a regular gradation, with the exception of the next to the largest specimen (31 cm . long), in which the lips are much wider than in any other. In this, the lower lips are thickened until they mect on the median line, and appear as a medially divided flap, which extends backward to below the corner's of the month, where it is truncated. We cannot determine whether this is a sexual character, as our specimens unfortunately have been eviscerated.

The upper profile of the head is concave above the cyes and convex above the nostrils; the snont is blunt, in the large specimens projecting beyond the tip of the lower jaw a third of the diameter of the eye, in the small specimens somewhat less. The eye varies much with the size of the fish and is contaned (inside of the adipose eyelid) from $3_{2}^{\frac{1}{2}}$ to $4 \frac{1}{2}$ times in the length of the head. Its width nearly equals the length of the snout in the smallest specimens; in the largest ones it is contained from $1 \frac{1}{2}$ to $1_{5}^{\frac{1}{5}}$ times in the snont.

The gill-rakers are very short, $9+13$ in number. The exposed portion of the maxillary varies in length from 4_{4}^{1} to 4_{4}^{3} in the length of the head. The ventral spine is stout and blunt, abont six-tenths of the longest ventral ray. The second anal spine does not project beyond the third, which about equals the soft rays. The third dorsal spine projects beyoud the second, sometimes beyond the fourth.

The streaks along the rows of scales are scarcely fainter than in G. lineatus; those above the lateral line are as conspicuous as those below.

Guinther's statement that the length of the head is twice and a half in the length of the body is evidently a misprint. It should read thrice and it half.

Mexsurements in Mundredths of Length without Caudal.					
Length without caudal in mmı............................	170	210	227	2.77	278
Head..	30	$31 \stackrel{1}{2}$	$31 \frac{1}{2}$	$31 \stackrel{1}{2}$	31
Depth at base of first dorsal spine.......................	$+5$	43	$+5$	$+21$	15
Eye between adipose eyelids	S!	$7{ }^{1}$	8	7	7
Snout	9	101	I I	12	10
Exposed portion of maxillary	6	6	7	8	8
Interorbital	10	$9 \frac{1}{2}$	10	I I	IO ${ }_{2}^{1}$
Length of pectoral.................................	24	25	24	23	$24{ }^{1}$
Length of ventrals...	25	26	24	24	24.
Second dorsal spine..	23	21	22	20	$19!$
Second anal spine...	19	$17 \frac{1}{2}$	18	16	17
Caudit	36	$3{ }^{S}$	35	34	34
Number of dorsal rays	1., 10	1.X, 10	IX, IO	IX, 10	$1 \times, 9$
Number of imal riays ...	III, 8	III, 8	111, S	111, 8	1II, 8
Scales	6-40-11	6-39-1 1	$6-39-11$	6-40-1 1	$6-39-1$ I

Family KYPHOSIDE.
215. Kyphosus elegans (Peters).

Abnudant in the market; also taken by us about the rocky islands. No specimens of K. analogus were observed, though these were carefully looked for. It is probable that Panama records of K. analogus refer to elegans. The differences separating these closely related species are well shown by our specimens. The scales are comparatively large, there being 63 to 68 in the lengthwise series above the lateral line. The anal is more elevated than the dorsal, the height of its anterior rays being contained $1_{2}^{\frac{1}{2}}$ times in the base of the soft portion of the fin. There seem to be constantly 13 rays in the second dorsal and 12 in the anal (instead of 12 in one and 11 in the other).

Onr specimens vary widely in color. One is almost uniformly deep bronze on head, body, and fins, there being only faint traces posteriorly of the lighter streaks which in other specimens follow the centers of the rows of scales. Other specimens approach more nearly the bright coloration found in K. analogus, some of the streaks being noticeably blue.
216. Sectator ocyurus (Jorden \& Gilbert).

Seen ou two occasions ouly, but present then in considerable numbers.
We lave the following corrections to make in the original description: The eye is contained $4 \frac{1}{2}$ to 4_{3}^{2} times in the head (not 4). The scales on the breast are
much reduced in size. The base of the spinons dorsal is two-thirds (not nearly equal to) the length of the soft dorsal or anal. The soft dorsal contains 15 (not 13) rays.

Family SCIENIDE.

217. Isopisthus remifer Jordan \& Gilbert.

Abundant; known only from Panama. This species is probably distinct from its very close Atlantic representative, I. parvipinnis, but no specimens of the two have been directly compared, and the characters alleged to distinguish them are in need of verification. I. remifer is said to have longer pectoral fins and more numerous rays in the anal fin. In seven specimens at hand, however, the pectoral is shorter than the description of the type would indicate, equaling the length of the lead behind the front of the pupil, and contained $1 \frac{1}{3}$ to $1_{\frac{2}{5}}^{2}$ in the length of the head. They agree in this character wholly with the type of I. parvipinnis (see Jordan, 1883, p. 289), and with its synonym I. affinis Steindachner. I. remifer is said to have 19 rays in the anal, as contrasted with 16 or 17 in parnipinnis. The only reliable information concerning the condition in parvipinnis is derived from Steindachner's description and figure of I. affinis. In two specimens examined by him, the anal fin contained 16 and 17 rays. In seven specimens of I. remifer, the anal counts are as follows: $16,17,17,18,18,18,18$. In the type of remifer, there are said to be 19 rays. It is impossible to pronounce upon the distinctuess of these two species until adequate Atlantic material is at hand for comparison.

The dentition has been insufficiently described by all observers. It differs in no essential respect from that characteristic of Cynoscion. The mandible contains an onter series of minute teeth, closely associated with an inner series of elongate canine-like teeth of considerable size. The canines are not definitely 3 in number, as described by Steindachmer, but vary from 6 , the normal number, to 2 or 3 , the missing ones having become accidentally detached. The canines are largest along the middle of the side of the mandible, and cease before reaching the symphysis, the tip of the maudible being occupied by a double series of very small teeth. On the sides of the upper jaw is an outer row of slightly enlarged teeth, and a narrow band of villiform teeth behind it. Anteriorly the band disappears and gives place to a short inner series, the median pair of which are enlarged to form the very conspicuous fangs.

The scales agree in size in the two species, there being 52 to 55 enlarged scales along the lateral line, and above the lateral line 70 to 75 oblique series rumning downward and backward.

Isopisthus seems to differ inadequately from the genus Archoscion, being distinguished only by the longer interval between the dorsal fins.

218. Cynoscion prædatorius (Jordun \& Gitbert).

Occasionally coming into the market in considerable numbers, reaching a length of 75 to 110 cm . It is strongly distinguished from all other species of Cynoscion by its more oblique mouth and heavier mandible. As this character seems to us insufficient to warrant generic separation, we do not recognize the nominal genus Buccone based upon it.

In twelve specimens, three have 18 dorsal rays, seven lave 19 rays, one specimen has 20 rays and one but 15 . The last-mentioned seems normal in every way. There is no distinct sheath at the base of the soft dorsal. The anal fin contains 2 spines (not 1 , as described) and 9 rays.

The scales above the lateral line increase in size posteriorly to below the middle of the soft dorsal, and decrease somewhat on the very slender candal peduncle. There are 65 to 70 oblique rows runuing downward and backward. The posterior nostril is obovate in shape.
219. Cynoscion squamipinnis (Günther).

Not rare in the Bay of Panama.
As stated by Steindachner, the scales along the lateral line are decidedly larger than the others. There are 47 to 50 of these enlarged scales, and an equal number of oblique rows of scales running downward and backward above the lateral
line. The enumeration of scales in current deseriptions (70 and 85) is based on the vertical series above the lateral line.

The spinous dorsal is shorter than in any other species of the genus, containing constantly S spines, of which the first is short, firmly attached to the second, and the eighth usually adnate to the back. The pectorals reach to or nearly to the vertical from the tips of the ventrals.
220. Cynoscion othonopterus Jordan \& Gillert.

Obtained at Panama by Gilbert (Jordan, 1885, p. 383); not seen by others.

221. Cynoscion reticulatus (Günther).
 Corbina rallada.

Abundant; not reaching a large size.

222. Cynoscion albus (Günther).

Corbina amarilla.
Abundant at Panama, reaching a large size, specimens 220 cm . long coming frequently to the market. This species and C.stolzmanni reach the largest size, and are the most important food-fishes of the genus at Panama. C. albus is readily distinguished from other Panama species by the nearly naked dorsal and anal, the lanceolate caudal, the large scales, and the long pectorals. From C. stolzmonni, it is additionally distinguished by the wider head, the blant snout, with its decurved upper profile, by the longer, slenderer caudal peduncle and by the presence of much brassy yellow on the lower half of the sides, this being especially marked in adults. The median caudal rays are also much more produced than in C. stolamanni of the same size, and the lateral line is more arched anteriorly. Opercle largely black on its inner face.
D. IX or X-I, 19 to 22. A. II, 8 or 9. Lateral line with 53 or 54 pores (counted to base of caudal); 57 to 60 oblique rows of scales rumning downward and backward above the lateral line. Head $3 \frac{1}{7}$ to $3 \frac{1}{2}$ in length; maxillary $2 \frac{1}{3}$ in head. Usually 9 movable gill-rakers on horizontal limb of arch. The sheath of scales at the base of the dorsal fin is much wider than in C. stolzmanni. Series of scales accompany the first few mas of dorsal and anal, the remainder of each fin being naked. The posterior nasal opening is narrowly elliptical or ovate, much wider than in C. stolzmanni.
223. Cynoscion stolzmanni (Steinduchner).

Corbina blanca.
Abundant in the Panama market, retching a length of 220 cm .; the most highly prized representative of the genus at Panama.

We have little to add to Steindachner's excellent description. The depth is contained $4 \frac{1}{2}$ times, rather than 4 times, in the length; both dorsal and anal are scaled on one or more of their anterior rays. The species has normally 10 dorsal spines (rarely 9).

The second dorsal and caudal are margined with blackish. The upper half of the axil of the pectoral is black. The membranous fold behind the mandibular teetlo is black, contrasting strongly with the rest of the mouth. The gill-cavity is largely blackish, especially the lining membrane of the opercle. The ventrals, pectoral and anal fins are without dusky markings, except on the inner face of the upper pectoral rays.

224. Cynoscion phoxocephalus Jordan \& Gilbert.

This strongly marked form is known as yet ouly from Panama Bay, where we have found it to be abundant.

The dentition differs in no essential respect from that found in other species of Cynoscion. All of the teeth are smaller, including the anterior pair of canines in the premaxillaries. The arrangement differs somewhat from that ascribed to the type. The premaxillary teeth are in a band throughout, which contains everywhere more than two series. Along the sides of the jaw, the outer series consists of stronger conical teeth which are scarcely larger than those behind them. Anteriorly the band widens, and bears along its posterior edge a converging pair of small canines. The mandibular band is widest near the symphysis, where it consists of three series, those of the outer series somewhat stronger than the others. Laterally, the band rapidly narrows, at first to two series, the inner of strong conical teeth, the outer very small; then the outer series disappears, those of the remaining series increasing in size toward the augle of the mouth.

The scales above the lateral line are in 85 to 90 oblique series, downward and backward. Those of the lateral line are enlarged, as usual in the genus, but are so concealed by smaller seales, that they are difficult to enumerate.

The spinous dorsal is more elevated than in other species of the genus, the third spine often reaching the tip of the last spine when depressed. The last dorsal spines are very delicate, one or more of them often lacking; the spines are normally 10 in number. The second dorsal is without a definite scaly sheath; small scales eneroach on the thickened base of its anterior rays.

The posterior nostril is a narrowly oblong slit, scarcely larger than the anterior pore-like opening.

In life, grayish silvery above, with bluish and greenish reflections, silvery below; mouth cavity orange-yellow; opercular lining jet-black. A black humeral blotch, concealed by gill-cover. Anal and lower caudal lobe tinged with yellow; fins otherwise translucent-dusky.
225. Sagenichthys mordax sp. nov.

Plate XVi, Fig. 32.
This species, which comes rather abundantly to the market at Panama, has been identified heretofore with Sagenichthys ancylodon from the Atlantic. No satisfactory material from opposite sides of the Isthmus has ever been compared, and none from the Atlantic is now available to the authors. But if current descriptions of S. ancylodon are at all reliable, there can be no question as to the validity of the form here described, which is distinguished by the greatly enlarged scales along the course of the lateral line, and by the much smaller size of the scales covering the body generally, as shown by the number of oblique rows above the lateral line. The gill-rakers are shorter than in S. uncylodon.

Dorsal X, I, 28-30; anal II, 9 or Io. Head $3 \frac{1}{\frac{1}{4}}$ in length; depth $4 \frac{1}{2}$. Snout $4 \frac{1}{4}$ to $4 \frac{1}{3}$ in head; eyes (between edges of adipose eyelids) $6 \frac{1}{2}$ in head in adults 38 cm . long, $5 \frac{1}{2}$ to $5 \frac{3}{2}$ in specimens 25 cm . long. The width of the bony interorbital space is slightly greater than the distance from the tip of the snout to the posterior nostril, slightly less than 5 times in the head. In younger specimens, it equals the length of snout as far as posterior nostril.

The maxillary is longer in young specimens, its length contained 2 to $2 \frac{1}{5}$ times in the head; in larger specimens $2 \frac{1}{\frac{1}{7}}$ to $2 \frac{2}{9}$. The premaxillaries have an outer series of arrow-shaped tecth, which are very long toward the center of the jaw, and decrease in size regularly toward the angle of the mouth. Anteriorly, behind the outer row, is a short series of three teeth on each side the median line, one of the anterior pair, or rarely both, greatly elongate, much exceeding any of the other teeth in size. Along the posterior half of each premaxillary, there is a narrow inner band of small cardiform tecth, which retain the form of the canines, each tooth laving a distinctly lancet-shaped head, and a longi-tudinally-ridged stalk. Near the hinder end of the band, the outer row of canines become so reduced as to be indistinguishable from the teeth lying behind them. The sides of the mandible contain an inner series of large arrow-shaped canines, and a single outer series of slender teeth, similarly provided with arrow-shaped tips. Anteriorly on each side, the inner series of canines terminates, and an outer series of still larger canines develops, consisting normally of four teeth on each side the symphysis, of which the second pair are the largest. These are not continuous with the outer series of small teeth which occupy the sides of the jaw, as the latter bend around behind the anterior canines, where the two series overlap. The larger canines are subject to frequent injury, and are rapidly replaced by others occupying the same position. The lower jaw projects so that the anterior mandibular canines close outside the upper lip.

The gill-rakers are proportionately longer in young specimens, in which the longest is onethird to two-fifths the diameter of the eye. There are 7 to 9 movable rakers on the horizontal limb of the outer arch.

The dorsal spines are very slender and weak. The membrane behind the tenth spine joins the base of the eleventh, which is attached for its entire length to the first soft ray. All the fins are densely scaled to their tips. The caudal fin is doubly concave, the median rays greatly protruding in the young, less so in adults. The pectoral fins are very long, extending nearly twice as far as the ventrals, $1 \frac{1}{4}$ to $1 \frac{1}{7}$ in the head in specimens 12 incles long (injured in larger specimens). Ventrals $2 \frac{1}{6}$ in head.

The scales are very small, those above the lateral line arranged in about 105 oblique series running downward and backward. The scales bearing the pores of the lateral line are much enlarged, 47 to 50 in number, counted to the base of the median caudal rays. These enlarged scales are covered and in part concealed by small scales similar to those above the lateral line.

In life, grayish brown above, with bluish and greenish reflections, bright silvery below. The dorsal and caudal are dusky, the caudal often with narrow blackish margin, but without any deepening of color in the lower lobe. Ventrals and anal unmarked. Upper half of axil black, the inner face of the pectoral dusky, especially in its upper portion. Gill-cavity more or less dusky.

Measurements in Hundredths of Length without Caudal.

Length to caudal base, in mm...........	345	292	229
Depth	22	22	21
Head from tip of upper jaw..............	$31 \frac{1}{2}$	31	$30 \frac{1}{2}$
Eye between adipose eyelids	$4^{\frac{3}{4}}$	5	$5 \frac{1}{2}$
Maxillary	$14 \frac{1}{2}$	15	$14{ }^{\frac{1}{2}}$
Least width of suborbital (bone only)...	$1 \frac{1}{2}$	$1 \stackrel{1}{2}$	$1 \frac{1}{2}$
Interorbital width above middle of eye...	7	$6 \frac{1}{2}$	$6 \frac{1}{2}$
Length of third dorsal spine.............	I I	93	11
Length of soft dorsal base.................	37	38	36
Height of anal	11	1 I	$12 \frac{1}{2}$
Length of pectoral.........................	$20 \frac{1}{2}$	21	24
Length of ventrals	${ }^{1} 3$	14	$14 \frac{1}{2}$
Length of caudal (middle rays)..........	17	19	21
Least height of caudal peduncle..........	8	$8 \frac{1}{2}$	8

226. Nebris occidentalis Vuillant.

Guavina.

Nebris zestus Jordan \& Starks (Jordan \& Evermann, is98, p. 1417).
Abundant.
In Sagenichthys, Isopisthus and Nebris, we have genera each of which is represented by one species on the Pacific coast of Central America, and a supposedly different, but very closely related representative form in the Atlantic. Unfortunately, we have no Atlantic material for comparison in any of these cases. This is to be regretted the more, as no direct comparisons have ever been made, and the distinctive characters relied upon may prove to be fictitious.

Measurements in Hundredths of Length without Caudal.

227. Larimus argenteus (Gill).

Bocatuerta blanca.

Very abundant.

In this species, a vertical line from the corner of the closed mouth passes midway between the front of the orbit and the tip of the snont. The length of the snout is two-fifths that of the maxillary. The gape is arched, with the convexity behind. The anterior (lower) margin of the mandible is also strongly arched with its convexity forwards. The eye is smaller than in any other species of the genus, $4 \frac{3}{4}$ to 5 in head, in adults.

In life, very brilliant silvery on sides and below, the upper parts faintly olive, with silvery, greenish and bluish reflections. The dorsal and anal are slightly dusky, the pectorals translucent, the anal and ventrals white or faintly straw-colored.
228. Larimus effulgens Gilbert.

Plate XVI, Fig. 33.
Larimus effulgens Gilbert (Jordan \& Evermann, 1898, p. 142 I).
Very close to L. acelivis, with which it agrees in almost all details of structure. The color is, however, bright silvery without trace of stripes, as in L. argenteus. The pectoral fin is also much longer.

Dorsal XI, 28 to 30; anal II, 6; pectoral 16; head $3 \frac{1}{10}$ to $3 \frac{1}{\frac{1}{2}}$; depth $2 \frac{4}{5}$ to 3 ; pores of lateral line 49 or 50 .

Mouth slightly more oblique than in Larimus acclizis, much less so than in L. argenteus. Premaxillaries anteriorly on a level with middle of pupil (lower part of pupil in L. acclivis). Maxillary about reaching vertical from front of pupil, $2 \frac{1}{3}$ to $2 \frac{1}{7}$ in head. Teeth minute, close-set, even, in a single series in each jaw, none of them enlarged. Eye large, $3 \frac{\frac{4}{5}}{}$ to $4 \frac{1}{5}$ in head. Interorbital space $4 \frac{1}{3}$ to $4 \frac{1}{2}$. Preopercular margin membranous, with flexible ribs ending in minute spinules. Gill-rakers very long, two-thirds diameter of orbit, ig or 20 on horizontal limb of arch.

Dorsal spines high and flexible, the first two not noticeably thickened. Tenth spine shortest. Third dorsal spine longest, 2 to $2 \frac{1}{3}$ in head. Soft dorsal very long, its base $2 \frac{1}{3}$ to $2 \frac{1}{2}$ in length. The longest dorsal ray equals length of snout and eye. Second anal spine very strong, $2 \frac{1}{6}$ to $2 \frac{1}{3}$ in head. Pectoral very long and narrow, $1 \frac{1}{10}$ longer than head, injured in most specimens. Ventrals reaching to or slightly beyond vent, $\mathrm{I} \frac{1}{3}$ in head. Caudal lanceolate, the middle rays much produced, as long as head. Tubes of lateral line much branched. Definite scaly sheaths along bases of dorsal and anal. Basal portions of membranes of vertical fins with series of scales.

Bright silvery, the back grayish. Lining of cheeks black, a small black blotch on upper third of axil. Ventrals, anal and lower caudal rays bright orange-yellow; fins otherwise dusky-translucent.

Rather common at Panama, where numerous specimens were secured.

229. Larimus acclivis Jordan \& Bristol.

Plate XVii, Fig. 34.
Bocatuerta Rallada.
A common species in the Panama market. Our material agrees with the types of the species in those points which are supposed to be distinctive of this Pacific form. The black streaks are conspicuous, and the second anal spine is constantly shorter than the soft rays, $2 \frac{1}{8}$ to $2 \frac{2}{5}$ in the head. The region about the pseudobranchire is largely black.

230. Larimus pacificus Jordan \& Bollman.

Not seen by us; the type dredged by the Albatross in Panama Bay, Station 2802, 16 fathoms. It was subsequently dredged in the Gulf of California, Stations 3021 and 3026,14 and 17 fathoms.

231. Odontoscion xanthops Gilbert.

Plate XVII, Fig. 35.
Odontoscion xanthops Gilbert (JordÂn \& Evermann, 1898, p. 1426).
Head 3 in length; depth $3 \frac{2}{7}$; dorsal XII, 27; anal II, S; pectoral 17 ; pores in lateral line 50. Head and body elongate, compressed, narrow. Dorsal and ventral outlines nearly equally curved. Profile slightly depressed over front of orbits, the snout bluntish, not protruding. Jaws equal, the lower wholly included, the symphysis prominent, slightly passing the premaxillaries. Mouth very oblique, the maxillary reaching slightly behind middle of eye, $2 \frac{1}{3}$ in head. Tip of maxillary broad. Mental and rostral pores of moderate size, not conspicuous. A series of slender canines in lower jaw, preceded by an irregular outer villiform row, most evident toward symphysis. The series of canines turns inward and backward on the symphyseal protuberance, the innermost pair enlarged, directed backward. Upper jaw with a series of conical teeth, similar to those on sides of mandible, separated by a considerable interspace from an inner series of very small close-set teeth, directed backward. Eye very large, subcircular, the longest diameter $3 \frac{3}{4}$ in head; snout $4 \frac{1}{3}$; inter-
orbital width $4 \frac{2}{5}$. A definite supraorbital ridge. Suborbitals narrow. Preopercular margin without definite spines, with minute crenulations, which end in spinous points. Gill-rakers long and slender, 16 on horizontal limb of arch, the longest two-fifths diameter of orbit.

Spinous dorsal very high, of weak flexible spines, none of which are thickened. The third spine is the highest, as long as snout and eye; eleventh spine shortest. Second anal spine strong, equaling length of snout and half eye. Pectorals short, not reaching tips of ventrals, $1{ }^{9}{ }^{9} 0$ in head. Ventrals not reaching vent, extending half way from their base to front of anal. Caudal apparently short and rounded; somewhat mutilated in the type, as are the soft dorsal and anal.

Scales large, weakly ctenoid, except on head, where they are cycloid. Maxillary, tip of mandible, and extreme tip of snout naked; head otherwise completely invested. A definite sheath of scales at base of soft dorsal. Soft portions of all the vertical fins with membranes scaled.

Dark steel-gray, with olive tinge above, silvery below, the lower parts coarsely punctate with brown. Blackish streaks follow the rows of scales, those below the lateral line broad, horizontal, conspicuous; those above lateral line narrower, less intense, the anterior ones directed obliquely upwards, those under soft dorsal nearly horizontal. Fins dusky, the anal, lower caudal lobe, and the terminal portion of ventrals black. Iris bright yellow. Roof of mouth and sides of mandible within orange-yellow, the membrane within mandibular teeth black. Tongue faintly yellow. A dusky yellow bar above and one below pseudobranchiæ, the gill-cavity otherwise silvery.

A single specimen, 19 cm . long, from Panama Bay.

232. Corvula macrops (Steindachner).

This species is frequent about the islands in Panama Bay. We collected five specimens, which we have examined in connection with a specimen collected at Mazatlan by the Hopkins Expedition.

These all seem to be darker and have more pronounced stripes along the rows of scales than Steindachner's figure ($1876 a$, Pl. II) of the type would indicate.

We may supplement the original description as follows: Head $3 \frac{1}{5}$ to $3 \frac{2}{5}$ in length; depth $2 \frac{5}{6}$ to $3_{\frac{1}{10}}$. Eye 3_{6}^{5} to 4 in head; snout 4 to 4_{4}^{1}. Two specimens have 52 transverse series of scales; one has 53 ; three have 54 . The anal is constantly II, 10 ; the dorsal as follows: threc specimens, XI, I, 25 ; one specimen XI, I, 24; one specimen XI, I, 26.

233. Elattarchus archidium (Jordun \& Gilbert).

Frequently taken on sandy shores.
The dorsal formula has been incorrectly given. There are 11 (rarely 10) dorsal spines, and 26 or 27 articulated rays. In eight specimens, the second dorsal contained rays as follows: $26,26,26,26,26,27,27$. The diameter of the eye is constantly less than the interorbital width and is contained $4 \frac{3}{4}$ to 5 times in the head; interorbital width 3_{5}^{4} to 4_{5}^{1}. The caudal is strongly emarginate or shallowly lunate.

Along the sides of the mandible, there is a series of minute tecth along the outer edge of the row of canines (as in Cynoscion); as we approach the symphysis these increase in size mutil they come to equal those of the inner series, which decrease rapidly in size along this part of the jaw. Two irregular series are thus formed, which turn backward on the symphyseal knob, the pair of large canines being
the last teeth of the inner series. Along the front and sides of the upper jaw are two series, an outer row of enlarged canine-like teeth (smaller, however, than the large teeth along the middle of the mandible), and an inner row of slender curved cardiform teeth curving directly backward. Those along the front of each jaw are larger and more widely spaced than the others. Behind the middle of the premaxillary, the inner series develops into a narrow band. The canines diminish in size laterally and become finally indistinguishable from the teeth of the band.

A specimen of this species seeured by the Albatross in San Jnan Lagoon, near Guaymas, Gulf of California, has been compared with our material; no differences appear to exist. In this specimen, also, there are 26 rays in the second dorsal fin.

234. Bairdiella ensifera (Jordun \& Gilbert).

A common fish in the markets. It is well separated from B. icistia by the shorter snout, more oblique mouth, more projecting lower jaw, stonter dorsal spines, longer and stouter second anal spine, shorter soft dorsal and rounded spinous dorsal.

Dorsal X, I, 22 in two specimens; $\mathrm{X}, \mathrm{I}, 23$ in three specimens; X, I, 24 in three specimens. Snout equals diameter of eye, or is slightly shorter; it is contained from $4 \frac{1}{3}$ to $4_{\frac{3}{4}}$ times in head. Anterior margin of premaxillary on a level with a point slightly above lower edge of pupil. The tip of the lower jaw projects a very little beyond the upper.

Dorsal spines all stont, the second the stoutest; the fourth the longest, the fifth and sixth only slightly reduced in length, the others reduced rapidly to the tenth. The posterior outline of the extended spinons dorsal is convex above and concave below. The second anal spine reaches nearly to below the candal base, the length from $1 \frac{1}{3}$ to $1 \frac{1}{2}$ in head.

In three specimens of B. icistia, the dorsal formula is IX, 1,$28 ; \mathrm{X}, \mathrm{I}, 27$; $\mathrm{X}, \mathrm{I}, 26$. The snont is a little longer than eye, its length from 4 to $4 \frac{1}{5}$ in head. Anterior margin of premaxillary on a level with a point midway between lower part of eye and lower part of pupil. Tip of lower jaw included. Dorsal spines all slender; the second not stonter than the others, the third the longest. The posterior outline of the extended spinous dorsal is concave, the fin being sharply angulated at the tip of the third spine. The tip of the second anal spine scarcely reaches past the vertical from the tips of the last dorsal rays; its length $1 \frac{1}{2}$ to $1 \frac{3}{4}$ in head.

235. Bairdiella armata Gill.

Frequent. In six specimens the dorsal formula is $\mathrm{X}, \mathrm{I}, 23$; in five it is X, I, 22 (not XI, I, 21, as described by Jordan and Evermann, 1898, p. 1436).

The longest rays of the caudal fin are just below the middle; above these the fin is slightly concave, below it obliquely truncate. This shape is not well marked in some specimens.

The following color notes are from a fresh specimen: Fins all yellow; ventrals, pectorals, and candal orange-yellow; spinous dorsal with a large black blotch above; soft dorsal and caudal with dusky margins. Mouth and gill-cavity light yellow.
236. Bairdiella chrysoleuca (Günther).

Not incommon.
An examination of younger specimens than those from which are drawn current descriptions of this species, sheds little additional light on its relations to B. aluta. The type of the latter is 19 cm . long. We have at hand one specimen of chrysoleuca 19 cm ., and one 165 mm . long. In these, the eye is $4 \frac{1}{2}$ to 5 in head (not 4, as in aluta). The fin connts ascribed to aluta are outside the range of variation of chrysoleuca, as is also the number of scales in the lateral line. The soft dorsal in chrysoleuca varies from 21 to 23 rays (not 18, as in aluta); the amal contains 9 rays (not 8) and the lateral line traverses 49 to 51 scales (not 44), the connt being made to the base of the middle rays of the caudal. If the account of B. aluta is reliable in these respects, the species is certainly distinct.

In our specimens of chrysoleuca, the head is contained $3 \frac{1}{3}$ to $3 \frac{1}{8}$ in the length; the depth 2_{7}^{5} to $3 \frac{1}{7}$. The width of the preorbital is contained $1 \frac{2}{3}$ times in the diameter of the eye; the longest gill-raker is three-fifths diameter of pupil. The second dorsal spine is much stouter than the third and is not flexible. The filamentous ray of the ventral fin does not nearly reach the vent.

237. Stellifer oscitans (Jordun \& Gilbert).

Frequently brought to market. We preserved six specimens, from 18 to 24 cm . in entire length. To the original description, we add the following:

Head 3_{4}^{1} to 3_{5}^{3} in length; depth 3 to $3 \frac{1}{3}$. Eye equals prenasal part of snout (measuring around contour of snout), 5 to $5_{5}^{3} \mathrm{in}$ head. Snout (distance from tip to front of eye) 3_{2}^{1} to 4 in head. Three of our specimens have 24 rays in the soft dorsal, and three have 23. One specimen has but 10 spines in the first dorsal fin.

238. Stellifer furthi (Steindachner).

Common. A large number collected in the Panama market. We add the following to the original description: Head $3 \frac{1}{4}$ to $3_{5}^{3} \mathrm{in}$ length; depth 3 to $3 \frac{1}{4}$. Eye $4 \frac{2}{3}$ to 5 in head; interorbital $2 \frac{4}{5}$ to 3 ; second anal spine 2 to $2 \frac{1}{2}$; ventral spine 2_{4}^{1} to 2_{5}^{3}. The maxillary reaches to below a point midway between the posterior edge of pupil and the posterior edge of orbit.

The color of a fresli specimen is as follows: Body light gray above, lower parts of sides silvery, tinged with pinkish salmon. All fins light yellow; soft dorsal with a narrow black margin.

In Jordan and Evermann's description of this species (1898, p. 1441), occur the following statements: "Highest dorsal spine $1_{\frac{3}{5}}^{3}$ in head," "ventrals $2 \frac{1}{2}$ in head." This seems to have been incorrectly transcribed from Steindachner's description, which gives the length of the third (the highest) dorsal spine as 1_{5}^{3} times the second and about $2 \frac{1}{2}$ in the head; the ventral spine $2 \frac{1}{2}$ in the head.
239. Stellifer illecebrosus Gilbert.

Plate XViti, Fig. 36.
Stellifer illecebrosus Gilbert (Jordan \& Evermann, 1898, p. 1442).
Head 3 to $3 \frac{1}{\frac{1}{3}}$ in length; depth $2 \frac{9}{10}$. D. XlV, 20 or 2 I ; A. II, If; P. 19 or 20.
Body compressed, rather deep, both outlines curved, the dorsal more than the ventral. Head broad and depressed, but less so than in other species of Stelliferts, the interorbital width equaling distance from tip of snout to front of pupil, $3 \frac{3}{5}$ in head. Greatest width of head $1 \frac{9}{10}$ to $2 \frac{1}{10}$ in its length. Upper profile depressed above the orbits, the snout rather bluntly rounded, overlapping the premaxillaries but little. Mouth large, moderately oblique, the gape curved. Maxillary reaching vertical from middle of pupil, or slightly behind this point, its length, measured from front of premaxillaries, $2 \frac{3}{4}$ to $2{ }_{6}^{5}$ in head. Teeth in lower jaw uniform in size, in a villiform band of moderate width, which does not conspicuously increase towards symphysis. Premaxilary teeth in a similar villiform band, with an outer row of enlarged canines, which decrease in size towards the angle of the mouth. Lips thin, but somewhat thicker than in other species of the genus. Five large pores in mandible, and five in snout immediately behind premaxillaries, the inner pair being concealed by overhanging lobes. Back of these are three minute pores. Horizontal diameter of eye $5 \frac{1}{8}$ to $5 \frac{3}{\frac{3}{3}}$ in head; length of snout 4 to $4 \frac{1}{4}$; least width of preorbital half the diameter of orbit. Vertical limb of preopercle with δ or 9 rather slender spines, which increase in size towards angle; usually three of those at the angle are enlarged and radiate regularly, or the lowermost may be directed abruptly downwards. The horizontal limb is entire or provided with small flexible spines, loosely attached and projecting but little beyond the integument. Gill-rakers short, slender, the longest nearly half the longitudinal diameter of eye, 5 or 6 above angle of arch, io or it below.

Spinous dorsal high, the first two spines strong and rigid, the third to the eleventh weak and flexible, the twelfth to the fourteenth again stronger and rigid. Second spine nearly two-thirds the third which is the longest, $1 \frac{7}{8}$ in head. The fin diminishes slowly in height to the sixth spine, then more rapidly to the eleventh which is the shortest. The twelfth to the fourteenth progressively lengthen and belong to the second dorsal, the last being more than half the length of the longest ray.

Second anal spine long and slender, about two-thirds the height of the longest ray, equaling distance from tip of snout to front of pupil. Last ray of anal under the third before the last of the dorsal. Pectorals reaching to or nearly to the vertical from the vent, $1 \frac{2}{5}$ in the head. Ventrals short, the outer ray filamentous, is in head. Caudal double-truncate, sublanceolate, the middle ray's projecting much beyond the outer, $1 \frac{1}{4}$ in head.

Scales cycloid on top and sides of head, elsewhere ctenoid. Lateral line more arched than the back, becoming straight slightly behind front of anal fin. Soft parts of all the vertical fins scaled to their tips. Pectorals and ventrals with series of scales along the membranes.

Color in life, plain silvery gray above, silvery below. Dorsals and upper portion of caudal dusky translucent. Pectorals light straw-color. Ventrals mesially orange-yellow, the inner ray, the outer ray, and the tips of all the rays bright white. Anal deep yellow, the rays margined with black. Lower caudal rays yellow. Gill-cavity dusky, without yellow.

Three specimens from the Bay of Panama, the largest 255 mm . long.
As stated below, under Eques viola, the last portion of the original published description of S. illecebrosus (Jordan \& Evermann, 1898, p. 1442), including the color and some structural details, refers instead to E. viola, and should be transferred to the description of that species. There should be stricken from the description of S. illecebrosus all after the 11 th line from the bottom of p. 1442. The statement subsequent to this point: "This species is related most nearly to Stellifer minor, in some respects intermediate between Stellifer and Bairdiella" refers, however, to illecebrosus,
but was not included in the original manuscript, a copy of which is furnished above. On page 1439 of the volume cited, in the key to species, nuder the head of S. illecebrosus, occurs the statement "coloration dark." This shonld read "coloration silvery."

240. Stellifer ericymba (Jorden \& Gilbert).

This little fish is common in Panama Bay. Many specimens were preserved, the largest not exceeding 16 cm . in length.

We have examined in connection with our specimens the description given by Jordan and Evermann (1898, p. 1444) and find it satisfactory.

241. Stellifer zestocarus Gillert.

Plate XVIII, Fig. 37.
Stellifer zestocarus Gilbert (Jordan \& Evermann, 1898, p. 1445).
Head $3 \frac{1}{6}$ to $3 \frac{1}{4}$ in length; depth $2 \frac{6}{7}$ to 3 . Pores in lateral line 47 to 50 ; dorsal XII, 19; anal II, 1 .

Comparatively deep and compressed, with narrow head, large oblique moull, the greatest width of head $1 \frac{3}{4}$ to $1 \frac{4}{5}$ in its length. Anterior profile rising in an even convex curve to front of dorsal, depressed very little if at all above the orbits. Greatest depth under front of spinous dorsal. Length of caudal peduncle, measured from base of last anal ray, $1 \frac{3}{8}$ in head; from last dorsal ray, $1 \frac{1}{3}$. Least depth of caudal peduncle $2 \frac{5}{7}$ in head.

Head extremely soft, the bones cavernous. Snoul bluntish, not projecting beyond the premaxillaries, its length $4 \frac{1}{5}$ to $4 \frac{1}{2}$ in head. Lower jaw included, the tip produced into a short but distinct symphyseal knob. Mouth large, very oblique, the maxillary (measured from front of snout), equaling length of snout and eye, $2 \frac{1}{5}$ in head. Teeth in narrow villiform bands in both jaws, widest in sides of premaxillaries. None of the teeth enlarged. Lips thin. Mental and rostral pores minute. Interorbital space transversely conver, $2 \frac{1}{2}$ to $2 \frac{9}{10}$ in head. Supraorbital ridges prominent. Preopercle with a wide membranous border, which is strengthened near the angle with diverging ribs. A single rather stiff spine directed backwards, immediately above the angle. Gill-rakers numerous, long and slender, about 20 on horizontal limb of arch, the longest half the diameter of orbit. Eye large, elliptical, the long axis oblique, the greatest diameter $3 \frac{2}{5}$ or $3 \frac{t}{\frac{t}{3}}$ in head, equaling distance from tip of snout to front of pupil.

Fins high, densely scaled, including the spinous dorsal. First and second dorsal spines rather strong and stiff, the third and succeeding spines flexible. Third spine longest, $\mathrm{I}_{\frac{8}{3}}$ in head. The ninth spine is shortest, the tenth and eleventh longer, belonging to the soft dorsal. The last three spines are stronger and rigid. Second anal spine long and rather slender, $2 \frac{1}{3}$ to $2 \frac{2}{5}$ in length of head. Longest anal ray $1 \frac{2}{3}$ to $1 \frac{3}{4}$ in head. Anal basis long, equaling length of snout and eye. Caudal double-truncate, almost lanceolate, the middle rays much produced, $1 \frac{1}{4}$ or $1 \frac{1}{3}$ in head. Pectorals long, reaching beyond vent, $1 \frac{1}{8}$ in head. Ventrals not nearly reaching vent, $\mathrm{I} \frac{1}{2}$ to $1 \frac{2}{3}$ in head.

Scales thin, deciduous, weakly ctenoid. Head completely scaled.
Nearly uniform grayish silvery above, bright silvery below. Fins slightly dusky. Mouth and gill-cavities silvery white. A blackish blotch in the region of the pseudobranchix.

Seven specimens from Panama Bay, the longest about 15 cm . long.

242. Ophioscion typicus Gill.

Not common; eight specimens were taken 14 to 21 cm . in length. The description of this species by Jordan and Evermann (1898, p. 1448) was evidently
taken from a young specimen. We make the following additions to the original description:

Head $3 \frac{1}{3}$ to 3_{5}^{3} in length. Eye $4 \frac{1}{4}$ to 5 in head; snout $3 \frac{3}{4}$ to 4 ; interorbital (bone) $3_{\frac{3}{4}}$ to 4 ; maxillary 3 to $3 \frac{1}{3}$; third dorsal spine $1 \frac{5}{6}$ to $2 \frac{1}{6}$.

In addition to the differences already noted as distinguishing this species from O. strabo, we note the lighter pectorals and ventrals, which are colorless or only slightly dnsky. In O. strabo the pectorals are dark, and the ventrals, with the exception of a white outer ray, are nearly black.

243. Ophioscion simulus Gillert.

Plate XIX, Fig. 38.

Ophioscion simulus Gilbert (Jordan \& Evermann, i89S, p. 1449).
Dorsal X-I, 26; anal II, 7; pectoral 18 or 19; pores in lateral line 50 ; smatler scales not here enumerated cover the base of the caudal fin. Head $3 \frac{3}{3}$ in length, equaling depth.

Body more elongate and less compressed than in other species, the head especially characterized by rounded outlines; preorbitals turgid; snout blunt, scarcely at all compressed, evenly rounded in all directions. Top of head everywhere transversely convex, not at all depressed over the orbits. A scarcely noticeable depression at occiput, with the exception of which the profile rises slowly and evenly to the front of the dorsal fin. Predorsal region transversely evenly convex, not compressed to a ridge, except immediately in front of first dorsal spine. Dorsal and ventral outlines about equally curved, the base of anal fin but little more oblique than the normal contour at that point. Moutl wide, broadly U -shaped as seen from below, overpassed by the bluntly rounded snout for a distance (taken axially) equal to half diameter of pupil. The cleft of the mouth is moderately oblique, the maxillary reaching the vertical from middle of pupil. Length of maxillary (measured from front of premaxillaries) $3 \frac{1}{3}$ in head. Mandible with a broad band of villiform teeth of uniform size. Premaxillaries with a similar broad villiform band, preceded by an outer series of small canines, close-set, smaller in size than in related species. Preorbital of moderate width, swollen and turgid as in Pachyurus, its width $6 \frac{1}{3}$ in head. Posterior nostril large, circular, without trace of raised membranous edge. Anterior nostril vertically elliptical, small, with raised margin. Oblique diameter of eye, $4^{\frac{3}{5}} \mathrm{in}$ head. Preopercular margin with it to 16 spinous teeth (in the type specimen), the upper ones minute, increasing in size towards preopercular angle, around which they evenly radiate. None of them are conspicuously enlarged, and the lowermost is not directed abruptly downward. Gill-rakers short, the longest about equaling diameter of posterior nostril, 7 movable ones on upper limb of arch, 13 below.

First dorsal high, of very slender flexible spines, except the first two. The second spine is strong and rigid, as long as the fourth, contained $1 \frac{3}{4}$ times in the head; the third spine the longest, reaching when declined to base of the spine of second dorsal, its length $\frac{3}{5}$ in head. From the third, the spines decrease rapidly, so that the distal margin of the fin is subvertical. The tenth spine is the shortest, its membrane reaching base only of the eleventh, which belongs to the second dorsal and is two-thirds as long as diameter of the eye. Second dorsal high, the longest ray equaling length of snout and eye. Caudal sublanceolate, mutilated so that its exact shape cannot be ascertained. The middle rays are considerably longer than the outer, and are at least three-fourths length of head. Second anal spine long and strong, its measured length $\mathrm{I} \frac{2}{3}$ in head, slightly greater than that of first soft rays, which however project beyond it. Outer ventral ray produced in a very short filament, about one-fourth diameter of eye. Ventral spine $2 \frac{2}{5}$ in head, the longest ray, exclusive of filament, $1 \frac{1}{2}$ in head, reaching five-sevenths distance from its base to vent. Pectorals $1 \frac{1}{3}$ in head, reaching vertical from tips of ventrals.

Lips, gular membranes, and under side of snout naked, head and body otherwise scaled. Scales on mandible, and a small patch on base of anterior branchiostegals, cycloid; those in advance of nostrils cycloid, or very weakly ctenoid; scales otherwise strongly ctenoid. Second dorsal and anal with a definite low scaly sheath at base, consisting of a single series of small scales and in addition series of scales on the membranes, extending two-thirds distance to tip. Caudal scaled to tip. Lateral line with a long low curve, the height of which equals half diameter of orbit.

Color stecl-gray above, without dark streaks, white below, the cheeks and lower portion of sides with much brown specking, sometimes confined to the margins of the scales. Mouth white within. Lining of opercles blackish. Fins dusky, the distal part of ventrals black, the outer ray white. Anal with the anterior rays tipped with black.

A single specimen 187 mm . long.
This species is closely related to O. scierus, but differs in the longer, less compressed body, the plain coloration, the turgid preorbitals, less arched lateral line, and smaller canines.

244. Ophioscion strabo Gilbert.

This species is listed, without remark, by Bonlenger (1899, p. 3) from Rio Tuyra, and other rivers on the western slope of the Isthmus of Darien. The species was not seen by us. These Panama specimens shonld be carefully compared with the closely related species typicus and simulus, which are known from Panama and closely resemble O. strabo.

245. Ophioscion imiceps (Jorden if Gilbert).

This species seems to be rather rare at Panama. During our stay of six weeks we secured twelve specimens. Like other species of the genus, O. imiceps varies greatly in length of snout and diameter of eye.

Head 3_{5}^{1} to $3 \frac{3}{5}$ in lengtli; depth $2 \frac{6}{7}$ to $3 \frac{1}{5}$. Eye $4 \frac{2}{3}$ to $5 \frac{1}{2}$ in heal; snout $3 \frac{5}{6}$ to 4 ; interorbital width $3 \frac{4}{5}$ to $4 \frac{1}{5}$; second dorsal spine $2 \frac{1}{3}$ to 3 ; third dorsal spive 1_{4}^{3} to 2 .
246. Ophioscion scierus (Jordun \& Gilbert).

Plate XIX, Fig. 39.

Common.

The snout projects beyond the mouth for a distance varying from one-third to one-half the diameter of the eye. It increases in sharpness with its length.

Interorbital width (bone) $4 \frac{1}{4}$ to $4 \frac{1}{2}$ in head (not $5 \frac{1}{3}$); snout $3 \frac{1}{2}$ to $3 \frac{1}{5}$; eye $5 \frac{1}{4}$ to $5 \frac{5}{6}$. Gillrakers short, barely movable, 12 on horizontal limb of arch. Soft dorsal with a distinct, rather wide sheath of scales at base; each interradial membrane with a series of scales, rapidly diminishing in size from the base upward, reaching half way to margin of fin. Anal similarly scaled, the basal sheath less clearly defined.

Second dorsal spine very stout, conspicuously stronger than any of the succeeding spines, all of which are slender and weak. The eleventh spine is twice the length of the tenth. The second anal spine is very robust, twice the width of the second dorsal spine, reaching to opposite the tip of the fifth soft ray. Soft dorsal rays 24 or 25 .

Opercular lining, blackish.

Mcasurements in Hundredths of Length without Caudal.

Length without caudal in mm.	198	150	150	153	171	161	147	163
Head	31	$30 \frac{1}{2}$	32	311	31	31	$30 \frac{1}{2}$	301
Depth..	31	$31 \frac{1}{2}$	32	32	31	32	30	3 I
Eye...	51 ${ }^{\frac{1}{3}}$	6	6	$6 \frac{1}{2}$	6	61	6	6
Snout	$8 \frac{1}{2}$	$8 \frac{1}{2}$	$8 \frac{3}{4}$	81	9	8	8	9
Interorbital width	$7 \frac{1}{2}$	7	$7 \frac{1}{4}$	$7 \frac{1}{2}$	$7 \frac{3}{1}$	7	7	71
Length of pectoral	23	$2+$	26	24	24	24	2.4	23
Length of third dorsal spine	$16 \frac{1}{2}$	191	19	$18 \frac{1}{2}$	${ }^{1} 7 \frac{1}{2}$	18	1913	$16 \frac{1}{2}$
Length of second anal spine	$15 \frac{1}{2}$	18	17	17	17	17	18	$16 \frac{1}{2}$

247. Sigmurus vermicularis (Günther).

Frequently brought into the market, where we collected nine specimens.
Head from $3_{1}^{\frac{1}{0}}$ to $3_{\frac{1}{4}}^{1}$ in length. Eye $5_{4}^{\frac{1}{4}}$ to $5_{5}^{\frac{4}{5}}$ in head; suout $3 \frac{7}{8}$ to 4 ; length of third dorsal spine $1 \frac{3}{4}$ to $1 \frac{5}{6}$; interorbital (bone only) $4 \frac{3}{4}$ to 5 . The dorsal formula is as follows: In one specimen IX, I, 27; in four specimens $\mathrm{X}, \mathrm{I}, 27$; in four specimens $\mathrm{X}, \mathrm{I}, 26$. The anal is constantly II, 8.

248. Sciæna deliciosa (Tschudi).

According to Jordan and Eigenmann (1889, p. 406), a few specimens of this species, said to have been taken at Panama, are in the Museum of Comparative Zoology at Cambridge, Mass. There are no other references to the occurrence of this Peruvian species at Panama, and the record is in ueed of verification.

249. Micropogon altipinnis Günther.

Corbina luna.

Head $3 \frac{1}{6}$ to $3 \frac{1}{8}$ in length; depth $3 \frac{1}{2}$ to $3 \frac{4}{5}$. Eye 6 to $6 \frac{1}{3}$ times in head; snout projecting beyond the mouth for a distance equaling one-fourth eye. Snout $3 \frac{1}{8}$ in head. Anterior nostril very small, circular, with a narrow membranous border, widened posteriorly to form a short flap. Posterior nostril obliquely elliptical, its greatest diameter one-third eye. Maxillary reaching vertical from front or middle of pupil, $2 \frac{1}{3}$ in head. Anterior premaxillary teeth of the outer row noticeably larger than those behind them. Usually four pairs of slender mandibular barbels. Upper preopercular serre very small, increasing in size toward the angle. At the angle, separated from these by a wide interval, is a very strong spine directed downward and backward, below which is a similar but shorter spine directed more obliquely downward. The gill-rakers are very short, the longest two-fifths the horizontal diameter of the pupil, 15 or 16 present on the horizontal limb of the arch.

The dorsal fin contains constantly in spines, the last longer than the one preceding. In eight specimens the soft rays number 20, 21, 21, 21, 21, 21, 22, 22. The spinous dorsal is very high, the third spine extending to base of first or second ray of soft dorsal; its length is contained $1 \frac{1}{3}$ to $\mathrm{I} \frac{4}{5}$ times
in the head. The low scaly sheath along the base of the soft dorsal disappears shortly before reaching the end of the fin. The second anal spine is nearly or quite equal to the length of the snout. Pectorals extending well beyond the ventrals, $1 \frac{2}{7}$ in the head. Outer ventral ray filamentous, $1 \frac{3}{3} \mathrm{in}$ head. Caudal with the middle rays longest, the outline of the fin concave above the middle, convex below it.

Scales above the lateral line in very oblique series downward and backward, normally 40 or 41 in number; in one specimen there were but 35 rows, in another 43. An occasional scale is intercalated between these series as they approach the lateral line, the number of pores slightly exceeding the series.

Color as usual in the genus. Upper part of axil dusky. Opercular lining dusky, becoming black posteriorly, where it contrasts strongly with the silvery opercular membrane.

This is a common species at Panama. Our description is based on specimens 31 to 36 cm . long.
250. Umbrina xanti Gill.

Recorded from Panama by Giinther (1868, p. 426, as U. analis), and by Gilbert. Not seeu by us.

251. Umbrina dorsalis Gill.

Infrequent; four specimens secured.
Dorsal X, I, 29, 29, 31, 31. Anal II, 7, 7, 7, 8. Eye $4 \frac{1}{3}$ to $4 \frac{1}{2}$ in head; snont $3 \frac{4}{5}$ or $3 \frac{5}{6}$. Preopercular margin scarcely serrate, provided with a rather thick membranous border with small flexible teeth.
252. Menticirrus nasus (Gïnther).

Mcnticirrus simus Jordan \& Eigenmann, 1889, p. 437.
Frequent in the Panama market. The twelve specimens before us differ in the size of the eye and the form of the snont sufficiently to demonstrate the identity of M. simus and M. nasus, which have been separated on differences similar to those here found.

Head $3 \frac{1}{4}$ to $3 \frac{1}{2}$ in length; depth $4 \frac{1}{5}$ to $4 \frac{1}{2}$. Eye equals snout in front of anterior nostril, and is contained $5 \frac{1}{4}$ to $5 \frac{1}{2}$ in head; snout $3 \frac{1}{4}$ to $3 \frac{1}{2}$. The third dorsal spine is the longest and is contained $4 \frac{1}{4}$ to $4_{\frac{3}{4}}$ in the length. When the fin is depressed, its tip reaches variously from the base of the first ray of the second dorsal to the base of the fourth. Above the lateral line, there are 50 oblique series of scales rumning dowuward and backward.

The nostrils are larger than in M. panamensis, the anterior nostril round or very slightly oval, distant lialf its diameter from the posterior nostril. A dermal flap is attached to its posterior edge, and extends back to the posterior nostril. The posterior nostril varies in shape from widely to narrowly elliptical. Its posterior end is usually pointed and reaches the beginning of the adipose eyelid.

The caudal is S-shaped; its upper angulated lobe extends beyond the lower rounded lobe a distance equal to the diameter of the eye.

253. Menticirrus panamensis (Steindachner).

The most abundant species of the genus at Panama. Fourteen specimens were preserved, the largest 33 cm . in length. The following additions may be made to Dr. Steindachner's description, in the light of our large series.

Dorsal X, I, 20 or 21 ; anal I, 9 . Depth $4 \frac{1}{6}$ to $4 \frac{5}{6}$ (rather than nearly 4 as stated by Steindachner) in length withont caudal; head 3 to $3 \frac{1}{4}$. Eye 7 to 8 in head; snout $3 \frac{1}{2}$ to 4 . The anterior nostril is round, and is separated from the posterior nostril by a space equal to half its diameter. To its posterior edge is attached a dermal flap, which extends back to the posterior nostril. The latter is a little broader than the former, and twice as long. It ends at a distance equal to its length from the orbital edge (exclusive of the adipose eyelid). The outer series of teeth in the upper jaw consists of from 6 to 10 irregularly spaced canines, those in the front of the jaw much enlarged.

When the spinous dorsal is depressed, the tip of the third dorsal spine reaches to, or a very little past, the front of the second dorsal. The length of the third spine is contained in the length of the body 5 to $5 \frac{1}{2}$ times; it equals the caudal and is contained $1 \frac{1}{3}$ to $1_{4}^{\frac{1}{4}}$ in the pectoral (Steindachner describes it as equal to the pectoral). The candal is conspicnonsly S-shaped; the upper lobe shorter than in other species; its tip not extending beyond the lower rounded lobe.
M. panamensis differs from M. nasus in having a longer head, smaller eye, smaller nostrils placed farther from the eye, larger canines, and shorter dorsal spines. The anal base is longer, the fin is not so much rounded in outline. There are two less dorsal rays and one more anal ray; the upper angulated lobe of the caudal does not project beyond the rest of the fin. M. panamensis probably reaches a larger size.
254. Menticirrus elongatus (Günther).

Frequently seen, but less abundant than M. panamensis.

255. Polyclemus dumerili (Bocourt).

Very abundant in the Panama market during the early part of January. The species has been admirably described by Dr. Steindachner (1875 b, p. 31) under the name Genyanemus fasciatus. It may be well to note that the pectoral and ventral fins are densely scaled, as well as the soft portions of the vertical fins. Below are given the colors in the fresh state.

Silvery gray on back, sometimes tinged with deep reddish yellow. Lower half of sides, including belly and under side of caudal peduncle, salmon-red. Breast and area about ventrals dusky silvery. Burs jet-black. Sides and top of head dusky. Opercular lining blackish. Under side of head generally, including opercular membrane and under side of snout, tinged with salmon. Dorsal, caudal and pectoral fins straw-color, made dusky by minute points. Soft dorsal with a narrow black margin. Spinons dorsal largely blackish. Anal orange-yellow. Ventrals dusky yellow.
256. Polyclemus rathbuni (Jordan \& Bollmen).

Only the types reported by Jordan and Bollman (1889, p. 162) from Panama.
257. Polyclemus goodei (Gillert).

Plate XX, Figs. 40, 40a.
Paralonchurus (Zaclemus) goodei Gilbert (Jordan \& Evermann, i8gS, p. i48o).
The homodont dentition and elongate form of this species seem hardly sufficient for generic separation from Polyclemus. Its nearest relative is probably P. peruanus, Steindachner, a form with deeper body, but with scaly vertical fins and with the outer row of teeth but very little enlarged.

Head $3 \frac{4}{5}$ to 4 in length; depth 4 to $4 \frac{1}{8}$; dorsal XI, 25 to 27 , the spines varying from X to XII; anal 11, 7; 45 to 48 rows of scales running obliquely upwards and forwards from the lateral line.

Elongate, with broad heavy head, the temporal region swollen, protuberant. Snout very high and blunt, its anterior profile vertically rounded, little protruding beyond the premaxillaries. Length of snout $3 \frac{1}{3}$ to $3 \frac{2}{3}$ in head. Rostral and mental pores very large, arranged as usual. The symphysial pore is bounded laterally by two membranous wings, continued forward from the mandibular margins, bearing many barbels. This is the condition also in Paralonchuors petersi and in Poljclemus fasciatus, no "multifid barbel" being present. The barbels in P. goodei are much larger and more numerous than in any other species known to us. They are widely spaced, form a conspicuous series along the inner margin of the mandible, and become crowded into a dense fringe along the anterior half of the margin of the interopercle.

Mouth oblique, the maxillary reaching the vertical from the posterior edge of pupil, a trifle less than one-third head. Teeth slender, villiform, none of them enlarged, those in the lower jaw in a narrow band, in the upper jaw in a much wider band. Teeth nearly all with brown tips. Mouth very protractile. Eye large, $2 \frac{1}{3}$ in interorbital width, one-fourth postocular part of head. Preopercle with a membranous edge minutely crenate, spinulescent. Branchiostegal membrane very wide. Pseudobranchiæe covered by membrane, partially concealed. Gill-rakers undeveloped, represented by solt tubercles, of which there are 6 or 8 on the horizontal limb of arch. Two or three next the angle are sometimes slightly longer and movable.

Dorsal spines slender and flexible, the third the longest, equal to length of snout and hali eye. Tenth spine shortest. Solt dorsal and caudal densely covered with scales to their tips. No differentiated sheath at base of soit dorsal. Anal fin without scales. First anal spine minute, the second slender but not flexible, one-half to two-thirds length of longest ray. Caudal fin with the lower lobe longest, convex, the upper lobe concave. Longest caudal rays $1 \frac{3}{7}$ in head. Pectorals broad, reaching vertical from tijs of ventrals, but not nearly to vent, $\mathrm{I} \frac{1}{6}$ in head. The ventral spine is inserted slightly behind the vertical from the base of the lowest pectoral ray. Outer ventral ray produced into a filament about one-fourth total length of fin. The longest non-filamentous ray, $1 \frac{4}{5}$ in head.

Scales strongly ctenoid. Lateral line with a low wide curve, which grows abruptly steeper in its posterior part, the lateral line becoming straight behind the middle of the anal fin. The scales of the lateral line are enlarged, but are almost wholly concealed by smaller scales.

Color dark grayish brown above and on sides, with greenish and bluish reflections; white below. Back and sides with lour broad inconspicuous cross-bars extending downward and slightly backward; the first from predorsal region to base of pectorals; the second from end of spinous dorsal; the third Irom base of eighth to twelfth, the fourth from twentieth to twenty-fifth rays of soft clorsal. Basal portion of the anal fin, and the outer ventral rays yellow, the distal portions dusky; other fins dusky, the pectorals darker on the inner face, black at axil. lining of opercle clusky.

Rare at Panama, eight specimens were obtained during a close inspection of the markets for six weeks. Longest specimen 28 cm .

Measurements in Hundredths of Length without Caudal.

			TYPE
Length without caudal in mm.	201	226	230
Depth	25	26	26
Length of head..............................	$26 \frac{1}{2}$	$27 \frac{1}{2}$	27
Diameter of eye	4	4	4
Greatest width of preorbital	4	4	4
Width of interorbital......................	8	$8 \frac{1}{2}$	$8 \frac{1}{2}$
Length of snout	8	8	$8 \frac{1}{2}$
Length of third dorsal spine	13	Broken	I I
Length of longest anterior dorsal rays....	$8 \frac{1}{2}$	8	8
Length of third anal ray	12	12	12
Length of pectoral..........................	24	25	24
Length of ventrals	I $8 \frac{1}{2}$	21	20
Length of caudal	23	22	22
Height of caudal peduncle..................	$1 \mathrm{O}_{2}^{1}$	IO	10

258. Paralonchurus petersi Bocourt.

Plate XX, Fig. 41.

Rare; but four specimens seen.
The genus Paralonchurus, of which petersi is the type and the only known species, is well separated from related forms by the cycloid scales and the anterior insertion of the ventral fins. The base of the ventral spine falls in the vertical from the base of the uppermost pectoral ray. The species carries to an extreme the physiognomy peculiar to this section of the family, the eyes being very small, the snout long and depressed, with very large pores, and the fins excessively developed.

Head $3 \frac{1}{3}$ to $3 \frac{1}{3}$ in length; depth 4 to $4 \frac{1}{4}$. Dorsal X-I, 33 or 34. Anal II, 8. Lateral line 49 or 50 . Interorbital space equaling or slightly exceeding length of snout, $3 \frac{2}{5}$ in head. Eye $3 \frac{1}{3}$ to $3 \frac{1}{2}$ in interorbital width. Distance from front of premaxillaries to tip of maxillary equaling that from tip of snout to posterior edge of pupil, $2 \frac{9}{10}$ to 3 in head. Vertical width of preorbital under front of orbit equals half interorbital width.

The snout projects beyond the premaxillaries for a distance equaling two-thirds the diameter of the eye; it is flattened from above and bluntly rounded from side to side. There is an evident depression above the orbits. Mouth larger than in related species, the maxillary reaching a vertical slightly behind the eye. The teeth are in bands of about equal width in the two jaws, increasing slightly in size toward the inner side of the mandibular band and the outer side of the premaxillary
band. Upper jaw with an outer series of enlarged teeth, the basal four-fifths of each tooth finely ridged lengthwise, the terminal one-fifth abruptly smooth, separated from the ridged portion by a shallow transverse groove. This structure is very similar to that found in Sagenichthys, except that the terminal portion is flattened and lance-shaped in the latter, but remains conical in Paralonchurus. It is interesting to note that most of the teeth are light brown in color, as is usual with arrow-shaped teeth. The finer teeth in Paralonchurnes seem to show a similar structure to that just described.

Pseudobranchize are perfectly evident in this genus, never wholly concealed, though covered by the integument. Gill-rakers very short, little movable, 6 developed on the horizontal limb of the arch. Free edge of mandibular ramus with a series of delicate cilia, which are continued forward along the sides of the median pore at the chin. Preopercular margin delicately denticulate, with flexible teeth.

Pectorals very large, twice as long as the ventrals, reaching the vertical from the vent, or the front of the anal fin. The caudal fin is unsymmetrically lanceolate, the longest ray's being those just below the middle of the fin, the outline not incurved above or below these. The longest caudal rays equal the longest of the pectoral fin. The outer ventral rays are produced, extending half-way to the front of the anal.

Scales all cycloid, perfectly smooth, those of the lateral line enlarged, covered with very small scales. The caudal is scaled on its middle rays, the other fins wholly scaleless.

In life, the back is grayish-brown, with light blue and bronze reflections; under parts whitish. All the fins, except the spinous clorsal, are deep bright blue, appearing light brown by transmitted light; the blue color persists in spirits. Posterior border of pectoral fins black; inner ventral ray light brownish yellow, the outer filamentous ray whitish; anal with a narrow black margin. Branchiostegal membranes, gular membrane and lips with some yellow. Inside of mouth and gill-cavity, and lining of shoulder girdle orange-yellow. Lining of opercles jet-black, of cheeks dusky.

Measurements in Hundredths of Length without Caudal.

Length without caudal in mm.	252	238
Head	30	30
Depth	22 !	$23 \frac{1}{3}$
Eye	$2 \frac{1}{2}$	$2 \frac{1}{2}$
Snout.	9	9
Greatest width of preorbital.	4	4
Interorbital (bone)..	9	9
Length of pectoral.	29	30
Length of third dorsal spine..	10	9
Length of longest anterior dorsal rays....	8	71
Length of third anal ray	11	2
Length of ventrals	14	${ }^{1}+\frac{1}{2}$
Length of caudal	26	27
Height of caudal peduncle..	9	$9{ }^{\text {! }}$

259. Eques viola Gilbert.

Plate XXI, Fig. 42.
Eques ziola Gilbert (Jordan \& Evermann, s898, p. if86).
The present species and Stellifer illecebrosus were originally published in Jordan and Evermaun's Fishes of North and Middle America, Vol. II, pp. 1442 and 1486, from mannscript furnished by Dr. Gilbert. While being typewritten, the last manuscript pages of the two descriptions were unfortunately interchanged, with the result that the color, as well as various anatomical details ascribed to E. viola belong to Stellifer illecebrosus and vice versa. In the original description of E. viola (t. c. p. 1486), all should be stricken out after the word "reaching" on the fourth line from the bottom of that page. The following description exactly follows the original maunscript:

Head $2 \frac{9}{10}$ to $3 \frac{1}{5}$ in length to base of caudal; depth $2 \frac{\sqrt{3}}{\frac{3}{7}}$ to $3 \frac{1}{12}$. D. IX or $\mathrm{X}, 38$ to $4 \mathrm{r} ; \mathrm{A}$. 11, 7 or 8 ; P. 17 to 19 . Scales 50 to 54 (oblique series).

Body narrowly wedge-shaped in section, sharply compressed towards dorsal outline, widening below. Lower outline of head horizontal, straight; ventral outline a gentle convex curve to base of anal, which is moderately oblique; lower outline of caudal peduncle slightly concave. The anterior upper profile rises steeply in a very gentle curve to front of dorsal, thence more obliquely to front of soft dorsal, where the depth of body is greatest.

Snout compressed, with rather prominent blunt tip, which slightly overhangs the mouth. Tip of snout and of mandible swollen, provided with large mucous pores, a series of five in the mandible, two transverse series of five each in the snout, of which the posterior lateral pair is minute. Mouth horizontal or very slightly oblique, the maxillary reaching about to vertical from hinder margin of pupil, its length measured from tip of snout $2 \frac{3}{5}$ or $2 \frac{3}{4}$ in head. Teeth in lower jaw in a wide villiform band, a few of the outer series anteriorly slightly enlarged. Premaxillary teeth in a wide villiform band, the outer series enlarged, forming moderate canines, larger than those in front of mandibular band. Interorbital space narrow, its width contained 5 to $5 \frac{1}{3}$ times in the head. Eye large, 4 to $4 \frac{1}{3}$ in head. Preopercle entire, the membranous border sometimes minutely crenulate; opercle ending posteriorly in two concealed points, the included opercular membrane covered with fine scales. Gillrakers short and weak, 5 above the angle, 9 to II movable ones below, the longest about four-ninths eye.

Mandible, gular and branchiostegal membranes, and more or less of the snout naked, the scales extending forward in some specimens to beyond the nostrils, in others scarcely beyond the front of orbits. Head otherwise scaled. Lateral line following outline of back, strongly curved anteriorly. The pores of the lateral line are minute, placed on small scales, irregularly wedged in between the larger ones. Above the lateral line are very oblique series rumning downwards and backwards, and also vertical series. There are about 50 of the former and 90 to 95 of the latter. Scales all ctenoid except those on anterior part of breast, on lower anterior part of cheeks and on interopercle. Vertical fins densely covered to near their tips with small ctenoid scales. Pectorals and ventrals with series of scales on the membranes.

Spinous dorsal short, usually nearly triangular in outline, the second spine the longest, the others rapidly decreasing to the last or next to the last. Longest spine usually as long as snout and eye, sometimes shorter. Soft dorsal long and low, increasing in height backwards, the longest ray about $3 \frac{1}{3}$ in head. Depth of caudal peduncle equaling its length behind dorsal fin. Anterior insertion of anal fin about under middle of soft dorsal, the length of caudal peduncle behind anal $1 \frac{2}{5}$ to $\frac{1}{3}$ in head. Second anal spine strong, its length equaling distance from tip of snout to front or middle of pupil and nearly reaching the tips of the soft rays. Caudal convex, the lower lobe slightly longer than
the upper. Pectorals short and broad, $1 \frac{2}{3}$ to $1 \frac{3}{4}$ in head, the upper angle rounded, not reaching as far back as the ventrals, which equal them in length. Axillary scales of ventrals and pectorals very little developed.

Color varying from uniform deep bronze-purple on body and fins, to brownish gray with silvery reflections. Lower parts of head and body somewhat lighter. Tip of mandible white.
'Ten specimens, the longest 189 mm ., were taken around San José Rock, in the Bay of Panama.

In this species, three slender interneurals, not connected with dorsal spines, lie in advance of the neural spine of the second vertebra. Four interneurals giving attachment to dorsal spines, lie crowded between the nemral spines of the second and third vertebre, the anterior one being very broad. Three interneurals follow, interposed between the third and fourth neurals, and three more between the fourth and fifth.

Family CIRRHITIDE.

260. Cirrhites rivulatus Valenciennes.

The only Panama record for this species is that by Günther (1868, p. 421), based on a specimen secured by Captain Dow. It was not secn by us.

Family POMACENTRIDE.

261. Chromis atrilobatus Gill.

Plate XXi, Fig. 43.
This species is very abmedant about the islands in Panama Bay, where numerous specimens were secured.

It is a strikingly elegant fish in form and color. The upper parts are brownish, shading to silvery on lower sides of head and trunk. The yellowish silvery blotels at base of last dorsal rays and on the contiguous portion of the back is very conspicuous. A jet-black bar, wider in its upper portion, crosses base of pectoral fin and involves its axil. It often fails to reach the lower rays of the fin. The pectoral fin is translucent, ummarked. The ventrals are trauslucent or slightly dusky. The anal is light or variously dark, but is without distinctive markings. The spinous dorsal is uniformly dusky, the anterior two-thirds of the soft dorsal, including the ray which forms the tip of the lobe, jet-black, with a narrow white margin. The last three or four dorsal rays are translucent. The outer half of each candal lobe is jetblack, with a narrow translucent margin, the entire central portion of the fin translucent.

The body is slender, tapering regularly backward from the front of dorsal. The top of head is everywhere transversely convex. The longitudinal contour shows a slight but well-defined depression above the eyes. The teeth are in wide bands in each jaw, the outer series conical, stronger than the others. The spinous dorsal is rather low and of nearly uniform height. The soft dorsal and anal are distinctly
angulated. Both caudal lobes are produced into filaments, the upper the longer. The fin is very deeply forked, the median rays but one-fourth the longest rays of the upper lobe. The lateral line is discontinued at the anterior edge of the yellow blotch below last dorsal rays. It contains 19 or 20 scales. Each of the scales of the median series on caudal peduncle is distinctly pitted, and contains a small tube which is apparently imperforate, and represents the vanishing stages of the lateral line which formerly occupied this region. The median series of scales on the trunk contains 28 to 30 scales. Between the lateral line and the dorsal sheath are $2 \frac{1}{2}$ rows of scales.

The dorsal contains 12 spines and 13 rays; the anal fin 2 spines and 12 rays. C. atrilobatus resembles strikingly in coloration C. notatus from Japan; but the latter is deeper, and has 13 dorsal spines, larger scales, and a black-edged anal fin.

262. Pomacentrus rectifrænum Gill.

A large number of adnlt specimens, 15 to 18 cm . long, are referred to this species.

Two very closely related, yet distinct, species were found associated around rocky islands in Panama Bay. They were separated in the field by their slightly different color and proportions, characters to which we can now add a slight but perfectly constant difference in the fin-counts. Owing to the absence, among our Panama material, of series illustrating changes which occur with age, and to the lack of adults from any other region, our identification of one of these forms with the Mexican species rectifremum is subject to some uncertainty. The second form is described below as a new species (P. gilli). Our specimens of rectificenum are almost uniformly light brown, with darker edges to the scales. The head is darker than the tronk, and the ventral and vertical fins are black. The pectorals are distinctly blackish, with a light blotch on the upper rays near the base. A small black spot occupies the extreme base of the uppermost ray. In the majority of specimens, no traces persist of blue spots, but in others of full size, there are very distinct blue spots on the sides and top of head, and on the scales covering the anal fin. In one specimen 14 cm . long, there are in addition distinctly visible the vertical blue streaks on the scales of the sides, which are eharacteristic of the young of rectifrcenum.

There are constantly 15 soft dorsal rays, and 13 anal rays, the last split ray being in each ease reckoned as one. These numbers hold in our Panama speeimens (thirteen in number), and are also found in two young specimens of rectifrcenum (all to which we have access) from Mazatlan. In Gill's description of the types of rectifronum, he assigns to it 16 dorsal rays and 15 anal rays. It is reasonable to suppose that the split ray at the end of each lin was by him reckoned as two rays. In giving an account of some of the type material furnished him by Dr. Gill, Dr. Giunther gives 15 dorsal and 14 anal rays. In their deseription of the speeies, Jordan and Evermann assign 13 rays to eaeh fin, but this is certainly an error.

In the adult, the preorbital is very wide, equaling or exceeding the diameter of the eye; the interorbital space is very wide and strongly arched; the margin of the preorbital is smooth or nearly so for some distance behind the angle of the month. There are 20 scales traversed by the lateral line, and 26 or 27 in a series along middle of tronk.

Measurements in Hundredths of Length without Caudal.

263. Pomacentrus gilli sp. nov.

Plate XXiI, Fig. 44.
Very closely related to P. rectifranum, but differing constantly in the uniformly translucent pectorals, the larger eye, the narrower and flatter interorbital space, the narrower preorbital, which is serrated to a point opposite to or in advance of the angle of the mouth, and in the shorter dorsal and anal fins.

Adult specimens, 4 cm . long, are brownish olive, or darker brown, on head and body, including the bases of the vertical fins. Each of the scales on back and sides has a distinct black edge. The vertical fins and the ventrals are black, or in some specimens yellowish. The pectorals are translucent yellow in life, with the upper rays colored like the rest of the fin. There is a blue spot at the base of the upper pectoral rays. Each scale on the sides of the head and on the base of the anal fin is marked with a pinkish blue spot. These are fainter in adults, but were not wholly lost in any of our specimens. The smallest specimen procured is 11 cm . long. The spots are here more generally distributed. Large spots are present on the scales of the four lower series of the trunk, and on the scales in front of the pectoral base. Small spots are present on the scales of the caudal peduncle and on scittered scales on the top of the head and the sides of the trunk, especially evident above the lateral line. The scaly portions of the caudal, the soft dorsal and the pectorals are also marked with small blue spots less conspicuous than those on the anal fin. A few scales on middle of sides show vertically elongated spots, indicating the probable presence in the young of vertical streaks along the rows of
(19)
scales, as in P. rectifremum. There is no indication in our specimens of blue streaks on the head, but such may well be present in the young.

Head $3 \frac{1}{5}$ to $3 \frac{1}{10}$ in length; depth $\frac{3}{4}$ to $1 \frac{4}{5}$. D. XII, 14; A. II, I2. The lateral line traverses 20 scales (19 in one specimen); 26 or 27 scales in a series along the middle of the sides; 9 scales in a series between lateral line and anus, 3 between lateral line and front of dorsal. There are fewer accessory scales on top of head than in P. rectiframum.

The preopercular margin is sharply serrate to or slightly below the angle; the horizontal limb is smooth. Preorbital sharply serrate with slender retrorsely curved spines, which occur as far forward as the angle of the mouth, or slightly beyond that point.

The preorbital is narrower than in P. rectifrenum, its greatest width, opposite angle of mouth, equaling two-thirds diameter of orbit.

The soft dorsal and anal fins contain constantly $5 \neq$ and 12 rays, the last split ray being counted as one. Thirteen specimens have been examined as to this point. P. rectifrentm has constantly one more ray in the dorsal and anal. The soft dorsal and anal fins are pointed in all our specimens, whereas they are bluntly rounded in P. rectiframum. The ventrats have the outer ray filamentous, extending beyond the vent, usually exceeding the length of the pectoral fin, and equaling the length of the head.

The species is abundant among reefs and islands in Panama Bay. A single specimen was secured at Acapulco.

We take pleasure in naming this species for Dr. Theodore Gill, to whom is due much of our early knowledge of Panama fishes.

Measurements in Hundredths of Length without Caudal.

Length without caudal expressed in mm..	107	105	10.4	102	107	83
Head	34	$32 \frac{1}{2}$	34	33	33	34
Depth.	56	52	56	53	53	54
Orbit	9	9	$9 \frac{1}{2}$	9	$9 \frac{1}{2}$	IO
Interorbital	10	91	10	10	$9{ }_{2}^{1}$	10
Preorbital at end of maxillary	6	$6 \frac{1}{2}$	$6 \frac{1}{2}$	$6 \frac{1}{2}$	$6 \frac{1}{2}$	6
Longest dorsal rays	26	25	28	26	26	28
Longest anal rays	24	25	27	25	26	27
Length of pectoral	3 I	3 I		32	3 I	30
Length of ventral	31	30	30	32	31	32
Upper lobe of caudal... . .	$32 \frac{1}{2}$	3 I	32	31	32	31
Height of caudal peduncle...	161	I 5	16	16	16	16
Scales along middle of body.	27	26	26	26	27	26

264. Pomacentrus flavilatus Gill.

Not seen by us; recorded by Boulenger (1899, p. 3) from the Gulf of Panama.

265. Nexilarius concolor (Gill).

Abundant along rocky shores.
This species shows remarkable resemblance to Glyphisodon declivifrons. So far as known, the two do not occupy the same waters, G. dectivifrons being known only from the coast of Mexico, N. concolor from Panama. For description of our Panama material, see Jordan and Evermann (1898, p. 1559).
266. Glyphisodon saxatilis (Linneus).

Very abundant everywhere about rocks.
The sides of body show five well-defined dark bars, as described, but the "sixth faint bar" at base of caudal is usually absent.

Specimens have been compared with material from the Atlantic, and from the Hawaiian Islands.
267. Microspathodon dorsalis (Gill).

Seen abundantly at Acapulco and Panama. At Acapulco, on December 20th, numerous small specimens of a very brilliant blue were seen about the roeks of the mole. A larger specimen, 130 mm . long, was obtained. In this, the general color is slaty-black, without blue tinge. The blue on the centers of the scales on trunk has already disappeared, but the pair of larger blue spots on the nape, those above the first, sixth and fifteenth scales of lateral line, and the confluent pair immediately behind last dorsal ray are conspicuous. All the larger scales of occiput and postorbital region are marked each by a blue spot, the spots irregular in size and shape. An occasional scalc on the nape is similarly marked. There is an oblong blue spot on the eye above the pupil. An interrupted blue line runs from supraorbital rim anteriorly above the nostril, the two lines converging toward the tip of the snout, but not reaching it. A second broader streak runs forward from below eye to the depression separating tip of snout from preorbital. A third short streak runs backward from the angle of the mouth, continued by a series of two or three blue spots on successive scales. A blue bar crosses the inner base of the upper pectoral rays. Outer margin of ventrals blue. Margins of dorsal and anal narrowly blue to or nearly to the tips of the lobes. Upper and lower margins of caudal pale, the edge narrow and light blue in color near the base of the fin, wider and translucent opposite the middle of the lobes. Soft dorsal and anal fins have the post-lobular margins transparent, this edge widest and best marked on last dorsal rays. Pectorals have a wide terminal translucent bar, occupying about one-third of the fin. The lower region has a generally distributed bluish tint in life.

A larger specimen from Panama, 175 mm . long, is no further advanced toward the mature condition. The color is dark slaty-blue, with broad white margins to the pectorals, and narrower margins to the other fins. The larger sky-blue spots still persist, three above the lateral line, a saddle behind dorsal, and a larger spot on each
side of the nape. A profusion of small blue spots cover the top and sides of the head, one above the eye and one behind it being larger than the others. A series of spots form a distinct line below the eye, extending forward on the preorbital. A blue spot surrounds the nostril. The tip of the snout, the anterior (lower) edge of the preorbital, the angle of the mouth and the mandible are blue. There is a very narrow blue margin to the spinons dorsal and to the anterior half of the anal fin. A large blue spot on upper margin of eye-ball.

In older specimens, the conspicuous blue spots and streaks have largely vanished, but the smaller blue spots on sides of head may remain in specimens 25 cm . long. The blue spot on the upper edge of the eye-ball persists in all our specimens.

The ground color varies with the color of the bottom, adults from sand or coral being light gray in tint (M. cinereus), while others are blackish or slaty blue.

Family LABRIDÆ.

268. Harpe diplotænia Gill.

Abundant among the islands in Panama Bay.

269. Halichæres sellifer Gilbert.

Two specimens were secured, 19 and 24 cm . long. They agree in most details with the deseription given of the type, the single specimen heretofore known. In both Panama specimens, however, the outer caudal rays are shorter than the middle rays, the posterior margin of the fin being gently convex, even when the fin is spread. In the type, 29 cm . long, the caudal was found to be "truncate or slightly emarginate, the outer rays scarcely produced." The outer caudal rays doubtless become longer with increasing age, as in many of the Labridæ. The outer ventral rays are also shorter in our specimens, where they are less than twice the length of the inner rays, and fail to reach the vent. This also may depend upon the age of the specimens.

In the Panama specimens, the head is contained 3_{5}^{2} to $3 \frac{1}{2}$ in the length; the depth 3 to $3 \frac{1}{5}$. The depth of the caudal peduncle is $1 \frac{7}{9}$ to $1 \frac{8}{9}$ in the length of the head. The snout $2 \frac{3}{4}$ or $2{ }_{10}^{9}$ in the head.

The dorsal fin contains 9 spines and 11 rays, the anal fin 3 spines and 12 rays in each specimen. The first anal spine is greatly reduced and concealed in the membrane, and might easily give occasion to a statement that but 2 spines were present.

The colors were essentially as in the type of the species, but were somewhat less brilliant, the bright red of the sides being here of a duller brownish red tint. Following is a description of the coloration of our smaller specimen.

In life, each scale has a basal band of bright blue, the seales otherwise brownish, margined on all sides (including the base) with light yellow or olive.

There are blue spots on the opercles, and two parallel blue streaks from the eye toward the snout. A streak, or a series of spots, on the suborbital ring. Opercles with a pinkish ground color. There is a blackish half-bar under the posterior portion of the spinous dorsal, the bar narrowing rapidly below, and disappearing on middle of sides; it is directed toward the vent, aud seems to be more posteriorly placed than in H. nicholsi. There is a pinkish bar in front of the base of the pectoral. Caudal yellow. Dorsals brownish red, with a blue margin, and blue streaks running obliquely downward and backward. The anal is yellowish at the base, becoming brownish red toward the margin. There is a narrow blue edge, a blne spot at the base of each ray, and two parallel blue lines anteriorly, which divide that portion of the fin into basal, middle and terminal thirds. The ventrals and pectorals are translucent, the outer ventral rays translucent, margined externally with blue.

270. Halichæres macgregori sp. nov.

Plate XXIII, Fig. 45.

One specimen 87 mm . long was taken in company with Pseudojulis notospilus in a rock-pool on the Panama reef. It was not recognized at the time as a species distinct from notospilus, and no color notes were taken.

Head 3 in length; depth $3 \frac{5}{7}$; depth of caudal peduncle equals distance from tip of snout to middle of eye. Snout $2 \frac{6}{7}$ in head; eye 5 . D. IX, II; A. III, 12.

Anterior canines $\frac{4}{4}$, those in the lower jaw subequal, the outer canines of the upper jaw smaller than the others, but evidently enlarged. A well-developed posterior canine on each side of the upper jaw, this accompanied on one side of jaw by a smaller tooth more posteriorly placed.

The dorsal spines are slender but pungent. The last dorsal ray is split to the base. The first anal spine is reduced to a mere rudiment, which can be detected only on dissection. The last anal ray is split to the base, each half being again partially divided. The caudal is evenly rounded behind. The ventral spine is three-fifths the length of the outer ventral ray, the inner branch of which is longer than the outer, but is not filamentous and does not project beyond the contour of the fin. The ventrals do not quite reach the vertical from the hinder margin of the pectorals, and extend only two-thirds the distance from their base to the origin of the anal. The pectorals cover six scales in a series behind their base.

The scales in front of the dorsal fin fail to cross the median line, the naked space being very narrow posteriorly, but widening rapidly toward the nape. The scales are reduced in size, but are arranged in series continuous with those below and behind them. The scales of the breast are moderately reduced in size, a series anterior to base of ventrals containing 8 scales.

The lateral line is continuous, the posterior portion running on the third series below the anterior portion. The tubes of the posterior portion are simple, those of the anterior portion divided to form two or rarely three branches. Above the dorsally lying portion of the lateral line is a single horizontal series of scales of full size. Above each scale of this series, and forming with it a very oblique row running upward and forward, are four much smaller scales which decrease rapidiy in size upward. The uppermost of these are inserted on the base of the dorsal fin, and constitute an incipient sheath. Similar series of reduced scales running downward and forward are found along the anterior portion of the anal fin. There are 7 horizontal series of full-sized scales between the lateral line and the anterior portion of the anal fin.

No trace remains of the brilliant colors which this fish undoubtedly displayed in life. In spirits, the ground color is grayish olive, slightly darker along the back. Many scales have each a
dark brown spot at base, those so marked forming rather definite large groups, which correspond on the two sides of the fish. A series of four such groups, separated by narrow interspaces, lie along the lower half of the sides. Behind the eye, are three or four narrow wavy dark lines, the lower two joined more or less by irregular cross-branches. A faint dusky streak runs forward from eye to snout, a faint spot below the eye, and a well marked horizontal dusky streak on lower part of cheeks, turning downward and backward across preopercle. A narrow brown streak runs downward and backward across prepectoral area, but fails to reach the median ventral line.

Spinous dorsal dusky, a small blackish blotch at tip of membrane between first two spines. A very conspicuous elliptical jet-black spot on basal portion of first four rays of the soft dorsal; the spot is faintly ocellated with whitish, above this a faint curved dusky streak, then the translucent margin of the fin. Behind the spot, the dorsal is marked with oblique cross-bands of dusky and whitish. The caudal appears uniformly dusky. The anal is dusky, with a narrow translucent margin. The spine and outer ventral ray are dusky, the rest of the fin whitish. The pectorals are uniformly translucent.

Named in honor of Richard C. MeGregor, a member of the expedition to Panama, to the suceess of which he materially contributed.
271. Halichæres dispilus (Günther).

The types came from Panama, where the species was also secured by the Albatross (Jordan \& Bollman, 1889, p. 182). It has been reported also from Acapulco and Mazatlan.

272. Pseudojulis notospilus Günther.

The dark bands across the back are in the number of 8 , the first being on the nape, the eightly on the caudal peduncle. Those in front of the soft dorsal become progressively fainter, the anterior three, and the one on caudal peduncle, commonly disappearing in adults.

The species is very abundant in all rock-pools about Panama.

273. Thalassoma lucasanum (Gill).

This species has been recorded from Panama by Giinther (1864 b, p. 26) without comment. It has not been obtained there by other investigators.

Family SCARIDE.

274. Pseudoscarus perrico (Jordan \& Gilbert).

Ocensionally taken about the rocky islands in Panama Bay. Five speeimens were secured, ranging in length from 23 to 38 cm . The adipose bump on top of head is variable in its development among individuals of the same size. Our specimens are eviscerated, so we are unable to determine whether the development of the hump is dependent on sex.

The following color-notes were taken from a fresh speeimen 263 mm . long: Scales on body with the central portion blue, surrounded by brown. Under parts whitish. A wedge-slaped blue spot immediately behind the eye; 4 narrow blue
streaks radiate from above the eyc; 4 or 5 small spots of blue on the interorbital space; one or more blue streaks in front of eye, and a broad patch below eyc. Tceth green. Dorsal fin narrowly margined with bright green; below this the fin is brownish golden, with an imperfect median green band, which is most distinct posteriorly; a basal series of green spots is present. The caudal has the central rays green, the onter ones yellow, edged with green. The anal is largely green, the margin being more brightly colored than the rest of the fin. The pectorals are brownish yellow, margined posteriorly with a translucent band; the upper ray has a greenish margin. The ventrals are greenish white.

There is considerable variation in the size and shape of the green streaks about the eye. Those below the eye are usually wider than those elsewhere, the middle group often coalescent to form a widc blotch. One pair, from upper anterior margin of orbit, sometimes extends well across the top of the head, meeting or nearly meeting on the median line.

Family EPHIPPID.

275. Chætodipterus zonatus (Girarl).

This species comes abundantly to the Panama market, but seems not to reach a large size. The longest specimen seen was less than 30 cm . in length, and had not developed the thick bony masses on cranium such as appear in the adult of C. faber.
C. zonatus differs from its Atlantic representative C. faber principally in the lower lobes of the vertical fins, the shorter ventrals, and the smaller scales. The coloration of the two is essentially the same, there being no difference in the number and arrangement of the bands. These may, however, be a little wider in zonatus, which has also a more conspicnous black blotch on the pectoral. The fin-rays are the same in the two species, the dorsal rays varying from 21 to 23 , the anal rays from 18 to 20 .

The lateral line contains the same number of pores in the two species, 48 to 50, but the scales are notably smaller in zonctus, and are less regularly arranged. The smaller scales on the head and on the vertical fins are also noticeably smaller in zonatus. The widest portion of the black band which connects the front of the dorsal to the front of the anal has 11 or 12 scales in a longitudinal series across it; in faber there are usually but 6 or 8 scales across the widest portion of the band. In zonatus, there are 18 to 20 scales in an oblique series on sides between axil and tip of pectorals; in fuber, there are but 12 or 13 scales on corresponding part of sides.

A specimen of zonatus 50 mm . long is very light grayish olive, the bars very faintly indicated or wholly absent. The sides of head and body are marked with scattered sharply-defined brown spots and blotches mostly smaller than pupil. Those on head are arranged in a series along the line of the dark band. On the lateral line, below last dorsal spines, a circular area of the ground color, as large as the eye, is ocellated by a brown line. The third dorsal spine is slightly shorter than in C. faber of the same size.

| Measurements in Itundredths of Length without Caudal. | | |
| :--- | :---: | :---: | :---: |
| | C. zONA-
 TUS | C. FABER |

276. Parapsettus panamensis Steindachner.

Not rare in the Panama market, where numerous specimens were obtained.
In addition to the short graduated dorsal spines, this genus differs from Chetodipterus in having no transverse fold behind the upper lip, which is therefore technically as well as actually non-protractile. The shoulder-girdle agrees with Chetodipterus. The alisphenoids are much more developed, meeting each other mesially, and closing the cranial cavity in front. The interorbital septum contains a well-developed osseous lamina, which comes in contact posteriorly with the strong, compressed, vertical limb of the basisphenoid. The latter fails to meet the parasphenoid below.

Family CH ETODONTIDE.

277. Chætodon nigrirostris (Gill).
 Plate XXIV, Fig. 47.

Two adults of this apparently rare species were taken by the use of dyuamite near one of the rocky islands in Panama Bay.

In addition to the distinctive color-markings, this species has the scales on the checks enlarged, the exposed surfaces much higher than wide, arranged in four horizontal more or less wavy series, but not in quincunx order. The preopercle is strongly striated.

The head and the lower half of body are silvery, more or less washed with light yellow, each scale having often a brownish spot at base, these forming three faint lengthwise stripes along the scale-rows. The base of the anal, and the upper half of the trunk are light brownish purple. A jet-black bar encircles upper part of snout, but does not include the upper lip, nor the region behind the vertical from the
nostril. A black blotch above and behind each orbit, fails to meet its fellow by a distance about equaling the diameter of the pupil. A narrow black orbital ring encroaches on the eye-ball. A wedge-shaped black bar has its apex at front of dorsal, its base being separated from the orbital region by a transverse whitish bar which crosses the head behind the eyes. The wedge-shaped bar is bordered behind by a wide silvery band. The opercular membrane is jet-black, as is also the membrane covering the shoulder girdle. A few of the scales covering the supraclavicle are edged or blotched with black. A jet-black bar crosses the base of the upper three-fourths of the pectoral, and is continued into a broader axillary band, which likewise fails to involve the lower rays. A broad black bar begins at base of fifth or sixth dorsal spine, includes the basal half of soft dorsal and is continuous with a wedge-shaped bar on caudal peduncle, the apex of the wedge failing to reach the lower edge of the peduncle, but directed toward the margin of the last anal rays. The remainder of the vertical fins are translucent dusky, unmarked. The ventrals are dusky; the pectorals translucent yellowish.

We have not admitted to our list the Atlantic species Chcetodon capistratus. recorded without comment from Rio Tuyra, Darien, by Boulenger (1899, p. 3).

278. Chætodon humeralis Günther.

The young are abundant in tide-pools, and adults are present in large numbers among the rocky reefs and islands in the Bay.

Our youngest specimen is 28 mm . long, and is in the last phases of the "Tholichthys" stage. The color scheme of the adnlt is plainly indicated, but the head is wholly scaleless and is entirely covered with sculptured shields. One of these extends from the occiput on to the nape, in the form of a dagger-shaped spine, which fails to reach front of dorsal by a distance equaling about one-fourth its length. The angle of the preopercle is produced into a rounded squamous process, which extends more than half way to the insertion of the ventral fins. Two similar squamous lobes are attached to the upper portion of the shoulder girdle, their posterior margins being free. The upper is larger and less evenly rounded than the lower, and is separated from it at the point traversed by the lateral line. The margins of these lobes and the preopercular margin are very finely but sharply serrulate. Similar but sinaller squamons processes are attached to the horizontal limb of the preopercle and to the inner edge of the dentary, lobes on one side of the head corresponding to indentations on the other, those of the two sides closely joining below and wholly concealing the isthmus and the branchiostegals. The cheeks are firmly cuirassed, like the rest of the head.

The colors are the same as in adults with these exceptions: The ventrals are black. The vertical black bar at base of caudal is faintly indicated. The caudal fin, and the soft dorsal and anal fins are translucent, unmarked, thus contrasting strongly with their barred condition in the adult. The broad bar across posterior portion of trunk is continned definitely on to posterior portion of spinous dorsal, and
on to the basal portion of anal spines. There is at no time any ocellus, but a distinct intensification of the black of the posterior bar occurs over a small rounded area immediately below the last dorsal spines.

With increasing size, there appears first the black bar on dorsal and anal, contemporaneonsly with the broadening of the bar on candal peduncle. A definite white bar then forms behind the latter, on the basal portion of the caudal fin. Before the sharp differentiation of this bar, white pigment occupies its future position, but covers a wider area, gradually thimning out posteriorly, visible on the entire basal third of the fin. As soon as it becomes concentrated into a narrow bar, a faint dusky margin develops posteriorly, this widening to form a bar, which develops most rapidly on the lower half of the fin. The bars on dorsal and anal are at first near the middle of the fin, leaving a wide translucent margin, but later migrate distally.

The largest of our immature specimens is 55 mm . long. At this stage, the middle dark caudal bar is still much narrower than the basal bar, and there is no trace of the succeeding two bars (white and black).

279. Pomacanthus zonipectus (Gill).

Much less abundant than Holacanthus passer, with which it was found associated. But two individuals were seen.

In adults, the upper profile is continued forward in an even curve to front of nape. From this point, the occipital region is deeply concave, the profile becoming again convex above ocular region and snout. The color has been well described by Dr. Jordan (1895 b, p. 484) from Mazatlan examples.

An immature specimen, 63 mm . long, shows the characteristic coloration of the young, which has been described by Jordan and Gilbert (1881 c, p. 358), under the name Pomacanthus crescentalis. The third yellow band behind the head cuts the bases of soft dorsal and anal fins three or four rays in advance of the posterior ends, instead of running from end to end, as described. It curves forward on the two fins, meeting the anterior yellow band to form a broad loop, which is wider than the bands and blue in color. The dorsal continuations of all save the caudal band are blue. A blue bar is present midway between the first and second, and the second and third yellow bars behind head; no other blue bars are present. The basal twothirds of the caudal fin is jet-black, save for the narrow vertical yellow bar which divides that area equally. The outer third is translucent, with a narrow dusky bar near the anterior edge of the tract.

280. Holacanthus passer Vutenciennes.

Abundant among rocky islands in Panama Bay.
Gill's type of H. strigatus, a synonym of H. passer, must have been an immature specimen. In such we find a conspicuons narrow blue streak ruming from nape to upper posterior margin of orbit, thence faintly downward in a broken line toward base of preopercular spine. This streak disappears entirely in adults. In the young,
a second blue streak connects upper anterior margins of orbits, then extends vertically downward behind angle of mouth. The transverse portion of this streak persists in adults and becomes greatly widened.

An oval area in front of dorsal fin contains a number of small bright blue spots, nsually one for each scale. The scales behind the white bar are widely margined with blue in adult specimens, but in none do we find traces of the blue crossbars described by Gill. These may be found in younger specimens than have come to our hands. In adults, that portion of spinous dorsal in front of the white cross-bar is bright yellow. The rest of the fin is deep brown like the body, passing into brownish yellow in the falcate lobe, and as a submarginal band in front of this and behind it. Behind the anterior yellow area, the fin is narrowly margined with bright blue, the margin becoming much wider on the vertical part of the fin. In the young, the dorsal is similarly colored, but the blue margin is wider and includes also the anterior spines, and is everywhere followed by a submarginal yellowish brown band. The anal is similarly marked. The caudal fin and nearly half of the candal peduncle are light lemon-yellow, the fin posteriorly with a narrow dark brown edge. Pectorals and ventrals lemon-yellow, without other markings. The white bar on sides extends from base of dorsal, below fifth to seventh spines, downwards to a point opposite middle of base of pectorals. It is usually widest in its upper third, narrowing rapidly below. In adults, the dorsal lobe reaches nearly to edge of caudal.

The genus Angelichthys Jordan and Evermanu, characterized by the absence of spines on the preorbital, by the coarser spines on the ascending limb of the preopercle and by the greater length of the dorsal and anal lobes, should doubtless be considered a section of Holacanthus.

Family TEUTHIDIDE.

281. Teuthis crestonis Jordan \& Starks.

This species is very near T'. matoides, from the Hawaiian Islands and the Western Pacific generally, and may prove to be undistinguishable from that widely distributed form. It agrees in most details of shape, color and fin-rays, but appears to differ in having the spine on the side of the tail distinctly smaller, and in having the sides of the body mottled, but not streaked. In specimens 8 to 20 cm . long, the caudal spine is four to five hundredths of the length from snout to base of candal. In specimens of T. matoides from Honolulu, 10 to 23 cm . long, the candal spine is five to six hundredths of the length. In eight specimens from Panama, the fin-rays are: Dorsal IX, 25, 25, 26, 26, 26, 26, 26, 27; anal III, 23, 24, 24, 25, 25, 25, 25, 25.
T. bahianus from the Atlantic has a still larger caudal spine, which is seven to eight hundredths of the length.
T. crestonis is abundant in the tide-pools of the Pamama reef, and among the islands in the Bay. It is recorded from Panama Bay also by Bonlenger (1899, p. 3).

Family BALISTIDE.

282. Balistes polylepis Steinclachner.

Not uncommon at Panama; three specimens were collected which agree very well with Steindachner's description of the type and co-types from the west coast of Mexico.

It may be distinguished from B. carolinensis by the smaller scales, deeper body, more elevated and convex interorbital, less sharply angulated anal, and the shorter candal lobes. Our three specimens of B. carolinensis all have 24 anal rays, while B. polylepis has 25 or 26 ; the lateral series of scales of carolinensis are 55 or 56 in number, those of polylepis 69 to 73 . B. carolinensis has the depth of the body contained twice in the length, polylepis $1 \frac{3}{4}$ to $1 \frac{4}{5}$ times; in carolinensis the caudal lobes are somewhat longer, more slender and of equal length, while in polylepis the lower lobe is the shorter.

Length without caudal, in mm..............	194	207	211
Head	33	$32 \frac{1}{2}$	32
Depth...	57	57	59
Orbit	$7{ }^{\frac{1}{2}}$	7	7
Snout	26	26	26
Interorbital	1 I	$10 \frac{1}{2}$	I I
Length of pectoral.	13	13	$13 \frac{1}{2}$
Height of anterior part of soft dorsal.....	$26 \frac{1}{2}$	$26 \frac{1}{2}$	27
Height of anterior part of anal.............	$22 \frac{1}{2}$	22	23
Length of middle caudal rays	20	19	20
Dorsal rays	III, ${ }_{2}^{\text {en }}$ 28	III, 27	III, 27
Anal rays.....................................	26	25	25
Scales, from upper part of gill-opening...	69	73	70

283. Balistes naufragium Jordan \& Starks.

The commonest Balistoid in Panama Bay; many specimens were taken about the rocky islands.

We have re-examined the type of the species, from Mazatlan, and correct here a few slight errors in the original description:

Dorsal III, 26; anal 24; scales 50. Head to lower end of gill-slit $2 \frac{5}{6}$ in body. Snout $1 \frac{1}{6}$ in head; eye $5 \frac{3}{4}$; longest dorsal ray $1 \frac{2}{5}$; longest anal ray $1 \frac{3}{4}$; pectoral $1 \frac{1}{3}$.

The groove before eye is very faint, scarcely to be made out in some of our Panama specimens. Dorsal very slightly falcate in the type and in larger specimens; in small and half-grown examples only, is it sharply angulated. The anal is rather sharply rounded. In life the sides are marked with many narrow vertical wavy blue lines.

The species is easily distinguished from B. polylepis by the thicker body, the larger seales, the darker and more variegated coloration, the much reduced preocular groove, and the less falcate fins. In B. polylepis, the upper margin of the dorsal fin is deeply concave for the whole length; in B. naufragium, the greater part of the upper margin is convex, a few only of the anterior rays projecting, making that part of the fin concave. The caudal lobes are also much shorter in this species, while the middle rays are more produced. The plates are much more roughly granular, and are fewer in number. The lips are much thicker and more deeply plicate, the peripheral folds being densely papillose. The ventral stay is more robust, and the circumoral area is devoid of plates.

Measurements in Hundredths of Length without Caudal.

Locality .	Panama					Mazatlan (Type)
Length without caudal, in mm..........................	261	216	180	302	165	255
Head	332	34	35	34	35	$34 \frac{1}{2}$
Depth.	55	$56 \frac{1}{2}$	58	57	58	56
Orbit	7	7	$7 \frac{1}{8}$	61.	7	$6 \frac{1}{2}$
Snout	27	$28 \frac{1}{2}$	28	28	27	30
Length of pectoral...	$13 \frac{1}{2}$	$13 \frac{1}{2}$	15	$13{ }^{1}$	14	15
Height of anterior rays of soft dorsal...................	25	26	24	24	23	$24 \frac{1}{2}$
Height of anterior rays of anal	21	20	21	20	19	21
Length of middle caudal rays	19	21	22	19	2 I	21
Number of dorsal rays...................................	25	26	26	26	26	26
Number of anal rays	24	23	23	24	23	24
Series of scales ...	51	50	51	5 I	52	50

284. Balistes verres sp. nov.

Plate XXVi, Fig. 49.
We describe as new the species that has commonly been referred to B. capistratus on the Pacific coast of Central America. B. capistratus was probably based on East Indian material, but we have had for comparison specimens from the

Hawaiian Islands only. From these, B. verres differs in having smaller scales and a greater number of dorsal and anal rays. Specimens from Panama and Mazatlan have the scales 58 to 65 ; the dorsal has 30 to 32 rays, and the anal 28 or 29. Five specimens of B. capistratus from Hawaii have 50 or 51 oblique series of scales (counted from the upper end of the gill-opening) ; the dorsal has 29 or 30 rays; the anal 25 to 27 rays. The caudal of the Hawaiian specimens is truncate, with the outer rays not produced. The caudal is noticcably lunate in the Panama and Mazatlan specimens. Bleeker's plate shows that his specimen from the East Indies has 50 series of scales, 30 rays in the dorsal fin, and 27 in the anal.

The following description is from the type of B. verres:
Head to lower angle of gill-opening $3 \frac{1}{3}$ in length, without caudal; depth 2. Eye $5 \frac{1}{3}$ in head; snout $1 \frac{1}{7}$; interorbital width $3 \frac{1}{3}$. Dorsal III, 31 ; anal 28 . Scales from upper end of gill-opening 64 .

Teeth with their inner cutting edge produced, the lower ones shutting inside of the upper. The groove before the eye is scarcely longer than the eye. The length of the gill-opening is twice the diameter of the eye, and about equal to the length of the longest pectoral ray.

Groove of spinous dorsal a little longer than first dorsal spine, two-thirds the length of the base of the soft dorsal. Anal base shorter than dorsal base by three-fifths the length of the eye. Anterior part of dorsal a little higher than that of anal. Caudal lunate, the outer rays about onefourth longer than the middle rays.

Posterior part of sides with 9 or io lengthwise series of small antrorse spines. A row of very small pores extends irregularly backward from eye nearly to the front of soft dorsal.

Color in alcohol: upper parts of body brownish slate-color, lighter below. Anterior edge of upper lip, and lower lip and chin light yellowish. A scarcely discernible streak extends backwards across cheek from angle of mouth. Other specimens have this streak very conspicuous, as in B. capistratus. Caudal blackish; spinous dorsal dusky, other fins light yellowish.

Measurements in Hundredths of Length without Caudal.

Two large specimens, 41 and 43 cm . in length, were taken at Panama, and cannot be referred to any of the described species. For comparison we have specimens of . Y. punctatus from Mazatlan, Clarion Island, and San Benedicto Island; Y. laticlavius from the Galapagos Islands; and the type of X. clarionis from Clarion Island. We have not sufficient material to decide upon the validity of the last-mamed species, and for present purposes will consider it distinct from the others.

The outlines of the body are evenly curved. The snout projects but slightly as compared with the other species, and the upper anterior outline is shallowly concave. From before eye to dorsal, the profile is regularly rounded and without a projection at nape.

Dorsal VHII, 26 or 27 ; anal HI, 23. The head is smaller than in the other species, 26 or 27 hundredths of the length. In seven specimens of X. punctatus, the head averages $31 \frac{1}{7}$ hundredths of the length; in three specimens of laticlavius, $31 \frac{1}{3}$ hundredths; in clarionis, 30 hundredths. The mouth is smaller; the maxillary forms but $6 \frac{1}{4}$ hundredths of the length (in prenctatus, $7 \frac{5}{7}$ hundredths; in laticlavius, $8_{\frac{2}{5}}$ hundredths; in clarionis, 8 hundredths). The teeth are much smaller, though they number the same as in the other species, 8 or 9 on each side of the upper jaw. The eye is smaller, 4 or $4 \frac{1}{2}$ in the snout, 5 hundredths of the length (in punctatus $6 \frac{5}{7}$ hundredths; in laticlavius, $7 \frac{5}{6}$ hundredths; in clarionis, $6 \frac{1}{2}$ hundredths).

The pectoral is broad and rounded at its tip, reaching to above the base of the second anal spine, when forced into a horizontal position. It seems to incline obliquely upward in its normal position. The ventrals nearly reach the first anal spine, and are about two-thirds the length of the pectorals. The dorsal and anal are as in related species. In the larger specimen, the first dorsal spine has become almost entirely concealed beneath the skin, the first anal spine wholly concealed.

The posterior part of the body is rather thickly covered with sharp spines, the bases of which are expanded as rough plates. The spines are somewhat inclined forward and are occasionally bifid (some specimens of other species have scattered rough plates which sometimes bear low sharp keels, but never high spines). The three bony shields on the candal peduacle bear thick blunt spines, their points broad and smooth, as though worn.

Color light slaty on lower parts, dark above. One specimen is faintly spotted with black on nape and opercles.

Length without caudal, in mm..	360	335
Head	27	$26 \frac{1}{2}$
Depth	51	49
Maxillary	$6 \frac{1}{4}$	$6 \frac{1}{4}$
Eye	5	5
Horizontal limb of preopercle from behind fold in mandible..	11	12
Vertical limb of preopercle....................................	13	13
Length of pectoral..	26	25
Length of ventral...	16	16
Length of fifth dorsal spine......................................	12	11
Longest anal rays...	12	12
Height of caudal peduncle just behind base of dorsal	$11 \frac{1}{2}$	12
Length of longest caudal ray in upper lobe	$24 \frac{1}{2}$	$23 \frac{1}{2}$

Family TETRAODON'TIDE.

286. Spheroides angusticeps (Jenyns).

Not seen by us; recorded from Panama by Jordan and Gilbert (1882n, p. 631) from the Bradley eollection, and by Jordan and Bollman (1889, p. 183).

> 287. Spheroides lobatus (Steinduchner).

Obtained at Panama by the Albatross; not seen by us.

288. Spheroides testudineus (Linnous).

Probably rather rare at Panama, where four specimens were taken. Compared with others from Jamaica, they seem to show a slight difference in the length of the head and snont, but our series is insufficient for the verification of this distinction. Our specimens are much bleached, so that nothing can be made out except the pattern of coloration, which agrees with that of the Jamaica specimens. No satisfactory comparisons can be made as to the size of spots, or the distinctness of markings.

This species differs from S. annulatus in having the interorbital space (bone) narrower, the dorsal and anal shorter, the spots a trifle larger, and the termination of the dorsal and the anal further from the caudal, the insertion of the fins being more anterior and the base shorter. As the interorbital increases in width with age, only specimens of about the same size shonld be compared in this respect.

Measurements in Hundredths of Length without Caudal.

Locality	Panama			Jamaica			
Length without caudal in mm.	164	150	135	168	137	I33	151
Head from teeth to middle of gill-opening.......	32	33	33	34	351 ${ }^{\frac{1}{2}}$	34	34
Depth at occiput	$21 \frac{1}{2}$	23	21	23	25	22	$22 \frac{1}{2}$
Orbit..	7	$7{ }^{\frac{1}{2}}$	6	6	7	7	$7 \frac{1}{2}$
Interorbital (bone)	$7 \frac{1}{2}$	8	8	7	$7 \frac{1}{2}$	$7 \frac{1}{2}$	71
Snout (from teeth)	161	${ }_{1} 6 \frac{1}{2}$	$17 \frac{1}{2}$	18	18	18	$17 \frac{1}{2}$
Length of dorsal	18	18	$17 \frac{1}{2}$	$16 \frac{1}{2}$	17	18	${ }^{1} 71$
Length of anal..	15	${ }^{1} 5$	14	$13 \frac{1}{2}$	14	15	15
Length of caudal....................................	24	25	2.	25	25	24	25
Termination of dorsal from caudal.	14	13	14	$14 \frac{1}{2}$	I 3	14	14
Termination of anal from caudal	13	13	132	$13 \frac{1}{2}$	$13 \frac{1}{2}$	13	$13 \frac{1}{2}$
Number of dorsal rays	8	8	8	8	8	8	8
Number of anal rays...............................	7	7	7	7	7	7	7

289. Spheroides annulatus (Jenyns).

Appearing frequently in the Panama market. The young are common also in the tide-pools, associated with the young of T'etraodon hispidus. In the young, the concentric rings are less variable and less interrupted than in adults. The ground color of the back is generally not broken up into small spots, as is so frequently the case in adults. The spots on the sides are nsually larger and fewer in the young, or are sometimes entirely absent. The caudal is rather abruptly blackish upon its posterior half, the other fins are colorless.

One specimen, 15 cm . in total length, differs from all the others in the somewhat more prominent sharper spines, and the very different coloration. Upon the middle of the back is an S-shaped marking, the extremities of which are equidistant respectively from the eye and the front of the dorsal, the interval being in each case twice the diameter of the eye. Around it are very irregular incomplete rings. A curved line runs from just behind the eye to the middle of the gill-opening and another from the nape to above the base of the pectoral fin. Across the snont and candal peduncle are irregular lines. The sides have fewer spots than is usual, and the fins are as here described for the young. The measurements of this specimen are the third listed in the appended table.

We have examined specimens from Mazatlan, La Paz, and the Galapagos Islands. Some of the larger northern specimens (S. politus) have the color of
the back broken up into smaller spots than in the southern specimens, though some of the smaller northern specimens are like the southern in this as in other respects. Spheroides politus has been recorded from Panama (Jordan \& Bollman, 1889, p. 183) and from Santa Helena Bay (Boulenger, 1898-99, Vol. 14, p. 8). We consider it identical with annulatus. The Galapagos specimens vary greatly in depth of color. One has the back, pectoral, dorsal, and caudal very dark brown, almost black, while the anal is dark. The color of the back grades in other specimens to light brown, while the fins are nearly colorless. One specimen differs from the others in having a very concave interorbital.

Measurements in Hundredths of Length without Caudal.

Locality ...	Panama			Galapagos				$\left\|\begin{array}{c} \mathrm{La} \\ \mathrm{Paz}, \\ \mathrm{Mex} . \end{array}\right\|$	Mazatlan Mex.	
Length without caudal in mm.	200	158	121	170	185	200	116	215	114	92
Head from teeth to middle of gill-opening.......	37	$36 \frac{1}{2}$	$36 \frac{1}{2}$	34	35	34	35	36	$36 \frac{1}{2}$	35
Depth at occiput	24	24	$24 \frac{1}{2}$	25	24	24	24	24	23	22
Orbit.	$5 \frac{1}{2}$	7	$5 \frac{1}{2}$	7	6	$\cdot 4^{\frac{1}{2}}$	8	51	6	7
Interorbital (bone).....................................	13	12	9	101	12	$11 \frac{1}{2}$	10	13	10	$7 \frac{1}{2}$
Snout (from teeth)	$20 \frac{1}{2}$	19	$16 \frac{1}{2}$	$16 \frac{1}{2}$	$18 \frac{1}{2}$	18	18	20	18	18
Length of dorsal	18	18	18	20	19	19	19	19	I 8	17
Length of anal..	$16 \frac{1}{2}$	161	15	18	$16 \frac{1}{2}$	17	$16 \frac{1}{2}$	I6 $\frac{1}{2}$	$15 \frac{1}{2}$	16
Length of caudal.....................................	24	26	26	25	24	24	25	24	25	25
Distance from tip of dorsal rays to caudal	$9{ }^{\frac{1}{2}}$	$8 \frac{1}{2}$	10	8	7	8	9	8	9	10
Distance from tip of anal rays to caudal...........	91	S	91	$7 \frac{1}{2}$	8	71	9	7	10	10
Number of dorsal rays	8	8	8	8	8	8	8	8	8	8
Number of anal rays.	7	7	7	7	7	7	7	7	7	7

290. Spheroides furthii (Steinduchner).

A rare species, not taken by us; recorded from Panama by the describer, and by Jordan (1885, p. 393) from the Gilbert collection.

> Guentheridia gen. nov. (Tetraodontidce).

Type, Tetrodon formosus Günther, 1870, p. 283.
This genus differs from Spheroides in the character of the ollactory organ, which is a transversely-placed tube, open at each end to its full diameter. The outer end is squarely, the inner obliquely, truncate, making the upper margin of the tube
very narrow. The inner surface of the tube is closely covered with large eup-shaped pits, visible to the naked eye. To these pits the olfactory nerve is distributed; they are undoubtedly the end organs of the nerve.

Similar pits are developed in the genus Tetraodon (erethizon, setosus, aerostaticus, perspicillaris, hispicus), where they occupy the inner surface of the nasal flaps; but they are not found in other genera. The nasal organ of Tetraodon could be formed from that of Guentheridia by cutting through the upper edge of the tube, thus laving two lobes springing from a common base.

The American species of Spheroides, nearly all of which we have examined, have the olfactory tubes with small openings, and without cup-shaped pits on their inner surfaces; the latter are smooth, or are sometimes provided with one or two slight folds of skin.

291. Guentheridia formosa (Günther').

Common at Panama, twelve specimens being secured. In addition to these we have examined six specimens collected by the Albatross at Panama in 1888. We found no young of this form, though the young of Tetraodon hispidus and Spheroides anmulatus were common in the tidc-pools.

The color pattern is variable. In some examples the spots are almost evenly distributed over the back and upper part of the sides, with no indication of concentric arrangement. Other examples lave the spots confluent into smooth concentric rings, arranged with the smallest ring in the middle of the back. Between the examples with scattered spots and those with smooth rings are all intermediate stagessome with the spots arranged concentrically but not united, some with them more or less united, forming rings with uneven contour. The spots vary also in size. Sometimes they are little more than half the size of the cye, and are separated by interspaces of the gray ground color of about their own width, sometimes they are as large as the eyc, or larger, and are so closcly set that the ground color shows only as narrow lines between them. In one specimen some of the spots have fused into small irregular rings about twice the size of the eye, and enclose small spots of the ground color. The top of head has transverse rows of spots or solid bars. The latter are sometimes united in pairs, forming wider and fewer bars.

Tetraodon formosus was described from a single specimen from South America. The type description is not detailed, so the identification with this Panama form must be considered provisional, until direct comparison can be made with the type.
292. Tetraodon hispidus Linnaus.

Arothron erethizon Jordan \& Gilbert, 1882, p. 631.
This species is not rare about the rocky islands in Panama Bay, where numerous specimens were obtained, ranging from 15 to 330 mm . long. The long quill-like spines protrude only when the fish is inflated. When retracted, the position of the spines is indicated by the pores in the skin.

In our smallest specimens, the belly is white, the back brown with small white spots, one at the base of each spine; along lower margin of sides are light spots of larger size, enclosed in a network of dusky lines. In slightly larger specimens, the white spots on back have disappeared, and the under parts are covered with a close black reticulum, the lines of which show a tendency to a lengthwise arrangement. This tendency becomes dominant in specimens about 3 cm . long, the lower parts then marked with parallel black lines of varying width and intensity, which occasionally anastomose. The white dorsal spots soon reappear, and the lengthwise streaks begin to fade, wholly disappearing in adults.

We have had for comparison numerous young and adult specimens from the Hawaiian Islands, and two young individuals from Japan. No differences are discoverable, so we have been forced to conclude that T. hispidus is identical with T. erethizon, and is a species of miversal distribution in the tropical Pacific.

293. Eumycterias punctatissimus (Günther).
 Plate XXIII, Fig. 46.

Not rare among the rocky islands in Panama Bay.
The white spots are always numerous and crowded, especially on the lower part of the sides, but they vary considerably in size, and the brown lines forming the network enclosing them are sometimes wider, sometimes narrower. The belly is always white. The sides and top of the head, the nape and the whole dorsal line, are marked with numerous small blue spots, usually surrounded each by a darker ring; the eye is occasionally, but very rarely, surrounded by blue radiating streaks. Young specimens are sometimes marked by an obscurely ocellated dusky area below the dorsal fin, but no trace of this persists in adults. The youngest specimen, 12 mm . long, is a uniform warm brown, without trace of spots. The basal fourth of the caudal fin is usually covered with fine white spots, the remainder of the candal and all the other fins, translncent, unmarked.

The vertical fins are short, with evenly rounded margins. The pectorals are strongly emarginate, with the upper lobe the longer. The dorsal and anal each contains 9 rays (rarely 10). There is a short nasal tube widely open at the summit.

Family DIODONTIDÆ.

294. Diodon holacanthus Linnceus.

Three specimens were secured, 115, 179, and 280 mm . long. All show the characteristic black cross-bars and blotches ascribed to this species. Round black spots are also present on the lighter spaces of the back, and on the postocular area, where they are largest. Small black spots are present on the snout in the two smaller specimens, but are lacking in the larger one. In all of the specimens, large black spots are present over the ventral region, one in the axil of each spine. They are
more prominent in the youngest example than in the older ones, but their shape is less definite. The fins are immaculate in all, and the upper lobe of the pectoral is notably longer than the lower lobe, a character which becomes more pronounced in the older specimens. So far as our specimens are concerned, there is no indication that with increasing age there is an approach to D. hystrix. The species should be held distinct until a full intermediate series is obtained.

Family SCORPENID E.

295. Scorpæna histrio Jenyns.

Taken by the Albatross at Panama (Jordan \& Bollman, 1889, p. 182).

296. Scorpæna pannosa Cramer.

Only the type known; taken by the Albatross at Panama.
297. Scorpæna mystes Jordan \& Starls.

Of frequent occurrence in the Panama market, the collection containing numerous specimens from 10 to 30 cm . long.

In the type of S. mystes, the supraocular cirrus is longer than the diameter of the eye, but this is a very variable feature. In the majority of our Panama specimens, the cirrus is shorter than the diameter of the pupil, and in some individuals no trace of it can be found. Two Panama specimens have it long, as in the type; in a third it is long on one side and short on the other. In one adult co-type from Mazatlan, it is short, as is also the case in a young specimen from La Paz, L. C. The variation is dependent on neither age nor scx.

The nearest relative of S. mystes is the representative form S. plumieri of the Atlantic. The differences alleged to separate the two are slight. In all the specimens we have examined, those from the Pacific can be distinguished by the darker duller coloration, and the wider shallower grooves and pits on the top of the head. S. plumieri is currently described as having a long supraocular cirrus. From the following statement, however, it is evident that the species varies in this regard as does its Pacific representative: "Junge individuen besitzen blos wenige, oder selbst keine Hautlappen, und einem jungen Weibchen fehlen auch dic tentakeln über dem Auge." (Kner, Novara Fische, 1866, p. 115).
298. Scorpæna russula Jordan \& Bollman.

Dredged by the Albatross at Stations 2795 and 2797, in Panama Bay, 33 fathoms; only the types known.

Family TRIGLIDA.

299. Prionotus xenisma Jordan \& Bollman.

Dredged at Albatross Stations 2795 and 2805 , in Panama Bay, 33 and $51 \frac{1}{2}$ fathoms; the types only known.
300. Prionotus loxias Jordan.

Ouly the types known; dredged at Albatross Station 2805, Panama Bay, $51 \frac{1}{v}$ fathoms.
301. Prionotus quiescens Jordan \& Bollman.

The types were dredged by the Albatross in Panama Bay, in depths of 7 to $51 \frac{1}{2}$ fathoms.
302. Prionotus albirostris Jorden \& Bollman.

The types from Albatross Station 2795, Panama Bay, 33 fathoms.

303. Prionotus horrens Richardson.

This species is very similar in general appearance to P ' muscarius, with which it has been frequently confused. The two agree in having a continoous sharp ridge ronning from the margin of the snout across preorbital and cheek to the preopercular spine, this ridge bearing several strong bramble-like spines standing out from the head at right angles, and hooked backward. In this respect, both species differ conspicuonsly from P. tribulus, in the adults of which the rostral spine, the spine on the middle of preorbital, and that on the middle of cheek become inconspicuous or wholly wanting. P.tribulus cannot be considered a representative Atlantic species of either of these Pacific forms, for the relationship is not so close as has been assumed.
P. horrens seems to be less abundant than P. ruscarius. We secured four adults at Panama. Three others have been reported by Jordan and Bollman (1889, p. 182) from Albatross Station 2800, in Panama Bay. Aside from these, the species is known only from the Gulf of Fonseca, where the types were obtained. The following description is drawn from the seven specimens above noted:

Head $2 \frac{2}{8}$ to $2 \frac{3}{3}$ in length to base of caudal; depth + to $4 \frac{1}{3}$. Snout equaling maxillary, $2 \frac{1}{3}$ to $2 \frac{1}{3}$ in head; eye $5 \frac{1}{3}$ to 6 ; interorbital width 4. Dorsal X, if ; anal 9. Snout depressed, the longitudinal profile nearly straight, the sides concave, flaring strongly outwards to the sharp ridge at its lower margin. Beneath the ridge, the surface of the preorbitals is horizontal, continuous with that of the widely exposed dentigerous portion of the premaxillaries, and with the lower surface of the head. The snout is squarely truncate, or the preorbitals, especially in the young, may project slightly beyond its tip. They are never strongly produced, as in P. ruscarius, and permit a wide strip of the premaxillaries to be seen from above in the closed mouth.

The interorbital space is wide and flat, bounded by bluntly rounded supraocular ridges, which are usually low, but vary somewhat. This space is never deeply concave, as in P. ruscarius and P. tribulus.

The head is very finely granular, the radiating ridges delicate and very momerous, the minute granules almost uniformly covering the bones. The anterior margin of the preorbitals is minutely serrulate or granular, the posterior tooth sometimes larger than the others, projecting spine-like. Immediately behind the rounded portion of the preorbital, from which it is separated by a notch, is a strong compressed spine clirected outward and backward. Behind this, on the ridge already mentioned, is a series of similar spines increasing in size posteriorly. One of these is on the center of the preorbital, one on the center of the cheek, the third at the base of the preopercular spine. These spines decrease but little with age; but it may be possible that none of our specimens is fully grown. The preocular, supraocular, occipital, nuchal, opercular and humeral ridges and spines offer nothing peculiar. No spines immediately behind the eye. A single pair, similar to the occipital spines, located slightly in advance of the latter, on the blunt postocular ridge. No trace of a postocular groove.

The anterior nostril has a broad short flap arising from its posterior margin. Mouth large, the maxillary reaching a vertical which passes through spine on middle of cheek and traverses the orbit midway between its anterior margin and the front of the pupil. Mandible with a small but evident symphysial knob, much better developed than in P. ruscarius, the intermandibular space anteriorly acute. Vomerine and palatine patches of teeth varying greatly in width, the vomerine patch greatly constricted mesially, but not wholly divided in any of our specimens. The vomerine patch about equals in length one of the palatine patches. Gill-rakers varying in length from two-fifths to four-fifths diameter of pupil. They are usually heavy, club-shaped; 6, or rarely but 5 movable ones are developed on horizontal limb of arch. The membrane between the opercular spines is partly covered with cycloid scales.

Scales thin, smooth or weakly ctenoid in the young, wholly smooth with entire edges in adults. The scales of the lateral line have their exposed portions roughened with minute projections, the free edges coarsely spinous in the young. The size and roughness of these scales vary widely in different individuals. The sides of body are wholly scaled, save for a narrow naked strip in the axil of the pectorals and ventrals. The breast is variously scaled, but less completely so than in I ? ruscarius. The scaled tract is sometimes limited to a narrow medial band, with a constriction opposite the base of the ventrals; when wider than this, it is in adults still bounded in front and on the sides with distinct naked margins. There are 52 scales in the lateral line, and about 100 vertical series above the lateral line.

The dorsal spines are slender and flexible, none of them roughened or serrulate on their anterior margin. The first spine is but little shorter than the second (the longest); the free margin of the fin is slightly concave. The eighth is the last spine to bear movable membrane, the ninth being thick and short, declined, firmly embedded in the integument, and the tenth little more than a conical bony nodule, which is sometimes entirely concealed. The caudal is truncate when spread, rarely slightly emarginate. The pectorals are very short, barely reaching the vent in adults, slightly beyond that point in the young. In the very immature type (115 mm . long), the pectoral is figured as extending to a point opposite the fourth anal ray. The posterior margin of the fin is evenly rounded, the sixth to the eleventh rays the longest. Detached pectoral rays very long and slender, the uppermost about as long as the rest of the fin, extending well beyond tips of ventrals. In adults, the tips of ventrals fall a little short of the tips of the pectorals, and neither fin reaches the vent.

The dorsal contains invariably ro spines and in soft rays; the anal has but 9 rays. As noted above, the last dorsal spine (or tubercle) is sometimes concealed.

Color in spirits: dusky brown above, an obscure broad dark bar extending downwards from anterior part of spinous dorsal, and a second, more distinct, from posterior part of soft dorsal. A dusky shade on cheeks, continued on to lower side of head, where it widens from the cheek spine backward to behind tip of maxillary. Lower parts bright white. Spinous dorsal dusky, especiatly on its anterior half, where there may be disconnected traces of a distinct black margin. Gill-cavity blackish; peritoneum white.

The soft dorsal has its rays faintly barred, the posterior half darkest, the margin irregularly blackish. Caudal with much white pigment, the terminal fourth with a series of oblong black blotches, occupying the membranes between the rays. The remainder of the fin has two or three irregular crossseries of smaller roundish black spots. The anal is white, some of the rays occasionally margined with black. Ventrals white, sometimes black-margined. Pectorals dusky at base, becoming black toward middle of fin; the distal half is occupied by a conspicuous white cross-bar, beyond which is a narrow bar of black. The white cross-bar does not involve the upper or the lower rays.

Measurements in Hundredths of Length without Caudal.

Total length in mm. ..	232	213	224	152
Length to base of caudal in mm...	185	171	182	12 I
Greatest depth..	25	$24 \frac{1}{2}$	$24 \frac{1}{2}$	28
Least depth ...	913	$9{ }^{\frac{1}{4}}$	9	9
Length of caudal peduncle ..	17	17	17	18
Head	$43^{\frac{1}{2}}$	40	40	44
Snout ..	$19 \frac{1}{2}$	18	$18 \frac{1}{2}$	$19 \frac{1}{2}$
Orbit ...	$7 \frac{1}{2}$	$7 \frac{1}{3}$	$7 \frac{1}{2}$	81
Interorbital width	$11 \frac{1}{2}$	$10 \frac{1}{2}$	$10 \frac{1}{2}$	12
Maxillary	191 ${ }^{1}$	18	18	20
Greatest width of snout without spine......................................	24	23	23	26
Snout to first dorsal spine	$43^{\frac{1}{2}}$	$40 \frac{1}{3}$	40	4
Base of spinous dorsal	$23 \frac{1}{2}$	$21 \frac{1}{2}$	$20 \frac{1}{2}$	233
Base of soft dorsal	24	$24 \frac{1}{2}$	26	23
Longest caudal ray ...	$26 \frac{1}{2}$	$24 \frac{1}{2}$	241 ${ }^{\frac{1}{2}}$	29
Middle caudal rays ...	$24 \frac{1}{2}$	221	$22 \frac{1}{2}$	261
Upper pectoral ray :..	18	$18 \frac{1}{2}$	$17 \frac{1}{2}$	$20 \frac{1}{2}$
Fifth pectoral ray ..	28	27	$25 \frac{1}{2}$	29
Ninth (longest) pectoral ray	32	31	29	33
Upper detached ray	$31 \frac{1}{2}$	30	31	351
Second detached ray.	27	24	24	$28 \frac{1}{2}$
Third detached ray ...	21	$18 \frac{1}{2}$	20	24
Snout to first anal ray..	$66 \frac{1}{2}$	65	64	65
Base of anal.	19	20	201	$20 \frac{1}{2}$
Ventral spine.	14	14	14	$16 \frac{1}{2}$
Outer ventral ray ...	19	18	18	21
Inner ventral ray...	24	$2 \times \frac{1}{2}$	2212	24

304. Prionotus ruscarius sp. nov.

l'late XXVII, Figs. $50,50 a$.
Prionotus horrons Jordan, 1895 b, p. 492 (Mazatlan); Jordan \& Evermann, 1898, p. 2172 (Panama; Magdalena Bay); not Prionotus horrens Richardison.
Prionotus birostratus Jordan, 1885, p. 387 ; Jordan \& Hughes, 1886, pp. 332, 337; not Prionotus birostratus Richardson.

This species strongly resembles P. horrens, with which it is found associated. It differs in the coarsely granular head, which is usually strongly birostrate, the concave interorbital space, the strongly ctenoid scales, the more numerous rays in the vertical fins, and in the shape of the pectoral.

Like P. horrens, this species has a ridge extending from edge of preorbital backward to base of preopercular spine. The ridge is less sharp than in horvens, being scarcely keel-like in our younger specimens, and decidedly rounded in a large individual 34 cm . long. The rostral plates are usually produced into rounded lobes, with a deep emargination between them; but the lobes vary greatly. Where the lobes are large, the premaxillaries are wholly or almost wholly concealed, when viewed from above. In the largest specimen the lobes project but little, and the premaxillaries are exposed.

The ridges and granules are much coarser than in P. horrens, more nearly resembling P.tributus. The ridges are everywhere easily discernible. The spines are slightly smaller than in P. horrens, but occupy the same positions and are for the most part similarly developed. The supraocular spines are usually smaller, with two present above each orbit, a minnte one projecting into a notch in the immediate bony rim of the orbit, and a larger one farther removed from the rim, on the rounded supraocular ridge. But one supraocular spine is present in P. horrens. The humeral, opercular and occipital spines and ridges are sharper and stronger in P. ruscarius.

Head $2 \frac{1}{2}$ to $2 \frac{3}{4}$ in length to base of caudal; depth $4 \frac{2}{5}$ to $4^{\frac{3}{4}}$; snout $2 \frac{1}{5}$ to $2 \frac{1}{3}$ in head (10 edge of opercular flap); eye $5 \frac{1}{3}$ to 6 ; interorbital width + to $+\frac{1}{5}$. Dorsal X, 12 ; anal In.

Interorbital space deeply concave, as in P. tribulus. Anterior nostril with a slender flap, longer than in P. horrens, reaching when depressed to or beyond anterior margin of nostril. The maxillary usually fails to reach vertical from spine on middle of cheek. The intermandibular space is rounded anteriorly; there is little or no trace of a symphysial knob. Vomerine patch of teeth constricted mesially in young specimens, wholly divided into two separate patches in adults. Each half of vomerine patch about equals one of the palatine bands. Gill-rakers 6 (movable), the longest about three-fourths diameter of pupil. The membrane between the opercular spines is covered with cycloid scales.

Scales thick and firm, strongly ctenoid on back and sides, becoming cycloid on helly and breast, and on anterior portion of nape. The scales of the lateral line are less roughened than in P. horrens, the edges not strongly spinous. The breast is almost completely scaled, a small tract immediately behind the isthmus, and a narrow area at base of each ventral, naked. There are 50 to 52 scales in the lateral line, and about soo vertical series above the lateral line.

The dorsal spines are flexible, but stronger than in P. horrens. The first and second spines are about equal, the succeeding ones rapidly shortened, the margin of the fin straight. The ninth spine bears a movable membrane. The tenth is immovably imbedded, very strong, the basal tubercle
bearing a well-developed, backwardly directed spinous process. The lower caudal lobe is slightly longer than the upper; the margin is concave rather than truncate, when the fin is spread. The pectorals are very short, reaching to or slightly beyond the vent in adults, a little longer in the young. The fin is sharply angulated above, the third and fourth rays the longest; the posterior margin from the fourth to the ninth rays is vertically truncate or slightly emarginate; the whole contrasting strongly with the evenly rounded fin of P. horrens. The detached rays are short, the upper not nearly reaching the tips of the ventrals.

The dorsal contains invariably io spines and 12 soft rays; the anal has if rays in all of the eighteen specimens examined, except in one which had 10.

Color in spirits: dark brown on back and sides, white below; a faint ill-defined dark bar under spinous dorsal, and one slightly more distinct under posterior half of soft dorsal. Gill-cavity blackish. Dorsals translucent, the spinous dorsal blackish toward tip anteriorly; posterior part of soft dorsal dusky at base, the fin with a more or less distinct blackish margin, which does not involve the tips of the rays. Caudal translucent dusky on basal portion, with faint dark blotches arranged in one or two irregular cross-rows. In the terminal third, the rays become charged with much white pigment and the intervening membranes are black. Anal and ventrals translucent, unmarked. Pectorals dusky on basal half, becoming blackish toward middle of fin. The distal half of the third to the ninth rays with a broad whitish bar, broadly margined with black.

This species is now known from Panama, Mazatlan and Albatross Station 3041 (Magdalena Bay, L. C.).

Measurements in Hundredths of Length without Caudal.

Family GOBIID E .

305. Philypnus lateralis Gill.

Abundant in the Rio Grande at Miraflores. In life, the scattered spots on the sides and the streaks about eye were reddish in color.

In their List of American Gobiidæ, Eigenmann and Eigenmann (1888, p. 52) distinguish the Atlantic and Pacific species of Philypnus (P. dormitor and P. lateralis) by the size of the scales, the length of the head, and the number of anal rays. In going over this gronnd later, Jordan and Evermann (1898, p. 2195) state: "The only constant difference between this species $[P$. lateralis] and Philypnus dormitor seems to be the brighter coloration of lateralis."

We have examined in this connection five specimens of P. dormitor, and thirteen specimens of P. lateralis. These bear out in the main the differences assigned by Eigenmann. In P.dormitor, the head averages shorter, although the extreme of variation includes some measurements of P. lateralis. The scales are smaller in P. dormitor, although here again there is an overlapping in the formule. But in P. dormitor the anal rays are constantly 10 , while in P. lateralis they are constantly 11. Below are data for individual specimens examined:
P. LATERALIS.

	Mazatlan				Panama									
Head.	$2 \frac{4}{5}$	$2{ }_{5}^{4}$	$2 \frac{4}{5}$	$3{ }^{\frac{1}{4}}$	25	$2{ }_{6}^{5}$	$2 \frac{6}{7}$	25	3	25	$2 \frac{5}{6}$	$2 \frac{3}{4}$	$2{ }^{6}$	23
Scales	52	54	55	56	52	56	55	55	54	54	53	56	53	5 I
Scales in cross-series..					17	20	19	17	18	17	17	I 8	16	17
Anal ..	I I	11	11	I I	I I	I I	I I	I I	II	II	II	11	I I	I I

P. DORMITOR.

We have not sufficient material to enable us to decide whether there are any constant differences in coloration. The young of both species are marked by a longitudinal band, interrupted, or narrowed at intervals by incursions of the ground color. The only young specimen of P. dormitor in our possession shows three conspicuons cross-bars on the back: one under posterior portion of spinous dorsal, continued on the fin as a jet-black bar traversing its posterior and distal half; the second, immediately behind the soft dorsal; the third, much narrower, just in advance of the caudal fin. These become faint in adults, but we find traces of them in all our specimens. Where traces of these bars exist in Pacific material before us, they are very faint, even in brightly colored young, and do not involve the spinous dorsal.

306. Dormitator maculatus (Bloch).

Abundant at the mouth of the Rio Grande. Of the two forms recognized by Eigenmann as occurring in the Atlantic, our material agrees almost exactly with the seeond, which he had from Gurupa and Rio Grande do Sul.

Our younger specimens, 10 to 15 cm . long, are slender, with the upper profile usually noticeably depressed above the cyes. The head is 3 to 3_{6}^{1} in the length, the depth 3_{5}^{2} to 3_{5}^{4}. Highest anal ray 1_{5}^{2} to 1_{5}^{4} in head. Distance from snout to base of first dorsal spine equaling distance from first dorsal spine to base of last anal ray; it is sometimes slightly greater, sometimes slightly less than this distance, but always approximates it.

The color was light grayish, with numerous oblique dark bars ruming downward and forward from the back. A blue spot surrounded by a black area above the base of the pectoral. Base of pectoral with a blue or black cross-bar. A dark bar downward from eye to angle of month, and four parallel longitudinal dark streaks across cheeks and opercles. The spinous dorsal was broadly edged with bright red in life.

Two adults, 255 mm . long, have the depression above the eyes less marked, the head larger, 2_{4}^{3} in length, the depth much greater, 2_{3}^{2} in length, and the coloration plain dark brown on body and fins, save the red margin to the dorsals. Distance from snout to base of first dorsal spine equals distance from the latter to base of third anal ray.

It is probable that this widely-distributed brackish-water species is subject to local variations in different parts of its range, variations which are not geographically progressive and are incapable of systematic recognition. According to this view, the resemblance of the Panama and Rio Grande do Sul specimens is a chance one, depending upon independent local variation from the common stock.

A number of small specimens from the Rio Presidio at Mazatlan, Mex., do not agree precisely with either form, though they stand nearer the one here described. But the head averages somewhat smaller ($3 \frac{1}{6}$ to $3 \frac{1}{2}$ in length), and the distance from snout to first dorsal spine is about equal to that between first dorsal spine and middle of anal. There seems to be no basis for the division of these specimens into three groups, as indicated by Jordan and Evermann (1898, p. 2197).

307. Eleotris pictus Kiner \& Steinduchner.

Elcotris aquidens Jordan \& Gilbert, i88ıf, p. 46 I .
Abundant in muddy overflow ponds and ditches at Miraflores, where a few specimens were obtained. These agree perfectly with Kner and Steindachner's description and figure, also with typical E. cequidens from Mazatlan. Both show the characteristic mottlings of white or bluish white on the under side of the body. The black bars on the sides of the head are not visible in the larger individuals, but are very apparent in young specimens 50 to 125 mm . long. They consist of a short narrow line on each side of occiput, more or less broken up into series of dots, and of two rather broad dark bars diverging backward from eye. The upper bar extends
to the upper end of the pectoral base, but is not well marked posteriorly. The lower runs backward and slightly downward across cheeks to the preopercular margin. The lower part of cheeks is crossed nearly vertically by three broad dark shades separated by two narrow light streaks. In none of our specimens, do we note the bar deseribed by Kner and Steindachner beginning at the angle of the mouth and joining the second bar at preopereular margin. All of the fins are dark, rather finely barred with blackish and lighter. The spinous dorsal has usually a rather wide translucent margin, and a submedial lengthwise translucent streak.

The teeth are equal or nearly so. In young specimens, a slight enlargement of the onter mandibular teeth can often be detected.

In specimens of Eleotris pisonis from Havana (Rio Almendares), the outer series in the upper jaw are slightly enlarged, more noticeably on the sides than in the front of the jaw. A few of the posterior teeth near the middle line of the upper jaw are also slightly enlarged. In the medial portion of the mandibles, the anterior row is slightly larger. The inner mandibnlar series is also enlarged, the teeth increasing in size laterally where the band narrows to a single series.

In E. abacurus, the teeth are similar to those of E. pisonis, but the canines are much larger. Both outer and inner series are enlarged in the upper jaw, the inner series less so, and the teeth are declined. It is extremely probable that k. abacurus is a synonym of E. amblyopsis.
308. Alexurus armiger Jordan \& Richardson.

A single specimen, 172 mm . long, slightly larger than the type. This is the second individual to be reported, and extends the known habitat of the species from La Paz, L. C., to Panama.

The type description needs modification in the following respects: The diameter of the eye is contained $9 \frac{1}{2}$ times, the length of the snout 5 times in the length of the head. There are broad bands of villiform teeth in each jaw, the outer series enlarged to form small canines. In the upper jaw, these increase in size laterally, and extend as far as does the villiform band. The imner teeth are not enlarged. In the mandible, the onter canines are confined to the central portion of the jaw, numbering only abont 5 on each side of the symphysis. The teeth of the inner mandibular series are also enlarged, but less so than the outer, and are directed backward.

The cheeks and opereles are wholly covered with eycloid scales similar to those on the occipnt. They do not overlap, and are more or less embedded and concealed.

As indieated in the published drawing of the type (Jordan, 1895 b , Pl. XLVIII), the rays of the procurrent prortion of the caudal fin are umbranched and not articulated.

In the Panama specimen, the fin rays number: dorsal VI, 14, anal 11.
309. Gymneleotris seminudus (Günther).

Only the type known from Panama.

310. Gobius soporator Cuvier \& Valenciennes.

The most abundant fish of the tide-pools among the rocks.
3II. Gobionellus sagittula (Giinther).
Not seen by us; the species was described from specimens taken on the Pacific Coast of Central America, and has been recorded from Pamana Bay by Jordan (1885, p. 387) and by Boulenger (1899, p. 3; Rio Tuyra, Darien).
312. Gobionellus microdon (Gilbert). Plate XXVIII, Fig. 51.
This species has been known hitherto from two immature specimens taken in a brackish lagoon a short distance sonth of Guaymas, in the Gulf of California. We now report it from the Panama region, where two specimens were secured in the Rio Grande, at Miraflores, a point entirely above the action of the tides. Oue specimen is immature, only slightly larger than the types, the other is 113 mm . long, apparently adult. These enable us to correct the original account of the species in respect to the dentition and the coloration.

The teeth are minute in both jaws. Those in the mandible are in a narrow band, with the outer series very slightly enlarged, inserted on the extreme outer edge of the jaw, and directed ahost horizontally. They are not separated by an interspace from the rest of the band. Those in the upper jaw are extremely minnte, in a wider band than those in the mandible, the onter series stronger than the others, but scarcely longer. Here again, there is no interspace between the stronger series and the rest of the band. In G. sagittulu, the upper jaw contains an outer series of strong conical teeth, separated by a well-defined interspace from a narrow inner series of small villiform teeth; the villiform band in mandible is somewhat wider, of slightly coarser teeth, with an outer series less enlarged, and with two or three pairs of strong conical teeth in the inner series next the symphysis.

Color in spirits: light greenish olive, the snont and interorbital region brownish; a narrow black streak extending backward from eye; a second narrowly V-shaped streak on operele. A series of five to seven vertically oblong blotehes or bars on middle of sides. In the young specimen, these are distinetly bandlike, and reach nearly to upper and lower profiles of booly. In the adult, they are much shortened, and the anterior ones are obscure. Alternating with these bars above, is a series of blotehes extending half way to middle line of sides, becoming confluent in the dorsal region with a brown reticulum which encloses variouslyshaped areas of the ground color. A series of three brown blotches occupies the naked predorsal strip.

Dorsals whitish, each with three or four irregular lengthwise streaks, slightly looped from ray to ray. The caudal has a number of narrow cross-bars composed of series of small spots on the membrane. Other fins are colorless, or nearly so. A bright green spot is on the base of the tongue in life.

313. Garmannia paradoxa (Günther).

Plate Xxvili, Fig. 52.
Abundant in tide-pools on the Panama reef, where numerons speeimens were obtained.

Females are light olivaceous in color, with wine or ten dark eross-bars, two of which are on head, one opposite base of pectorals, two under spinous dorsal, three under soft dorsal, one on caudal peduncle and sometimes a fainter one at the base of the tail. The bars are usually wider than the interspaces, and each contains a number of small spots of the light ground color, arranged in one or more vertical series. A narrow horizontal black line traverses each bar at middle of sides. The dorsals are coursely speckled, the candal finely barred. The anal is blackish, the pectorals and ventrats faintly dusky; a small blackish blotel is sometimes present at
base of upper pectoral rays. The under side of the head is coarsely spotted, usually with two parallel cross-bars. Males are much dirker, sometimes nearly uniformly blackish, with all the fins black.

Six spines have been erroncously attributed to this species. Seven are present in all specimens examined by us, including the one obtained by the Hopkins Expedition to Mazatlan (see Jordan, 1895, p. 497, Pl. LIX). The normal fin-formula is dorsal VII, 12; anal 10. In ten specimens counted, one had 11 dorsal rays and one had 13 ; in all others, the normal formula was found. The first dorsal spine is constantly produced into a filament, which usually fails to reach the middle of the soft dorsal, but extends beyond the first dorsal ray.

The dentition has not been correctly described. There is in the upper jaw a moderate band of villiform teeth, along the front of which is a series of strong curved canines, which decrease in size regularly toward the angles of the mouth. Behind the band, in the middle of the jaw, are four much slenderer canines, directed backward, all evenly spaced. In the lower jaw, the teeth are in a villiform band, with an outer and an inner series of strong canines. Laterally, these all give place to a single close-set series of teeth, which are but little larger than those of the villiform band. The canines of the inner series increase in size laterally and are directed obliquely backward. The outer canines are stronger than the inner, and decrease in size laterally.

The scales are large and strongly ctenoid, covering the body behind the vertical from the second to fourth ray of second dorsal. There are about 16 cross-series of scales, the anterior series containing about 12 scales each.

The head is contained $3 \frac{1}{3}$ in the length to base of caudal; $4 \frac{1}{6}$ to $4 \frac{1}{4}$ in the total length.
314. Enypnias seminudus (Gïnther).

Plate xily, fig. 53.
Fifteen specimens were secured of this rare species, which had not been reported since the discovery of the types in 1861. Examination of our material shows that the species is widely separated from typical Gobius, and also from Garmanniu, possessing the following characters:

The dorsal spines are constantly 7 in number instead of 6 , the number assigned in current descriptions. There is a pair of thick barbels on the chin, each of which springs laterally from the edge of the median fremm of the lower lip. The body is much more completely scaled than is the case with Garmannia paradoxa. The belly is naked, and has contimous with it a naked strip extending up into the axil of the pectoral fin. The head and nape are also naked, a narrow naked strip extending backward along base of spinous dorsal. Otherwise, the scales cover the body, the scaly area narrowing anteriorly behind the base of the pectoral fin. Anteriorly, the scales are very small and are arranged irregularly. They increase in size posteriorly, and are there inserted in regular series. There are about 50 or 60 scalcs in a line along middle of sides.

In this species, as in Garmannia paradow, we fail to find the " 2 small curved eanine teeth on each side of lower jaw." The mandible contains a broad band of rather coarse villiform teeth, with an inner and an outer series of enlarged canines. The upper jaw is similar, but contains no enlarged inner scries.

None of the dorsal spines are filamentous or elongate. They are constantly seven in number, the last two much more widely spaced than the preceding five. The last membrane joins the base of the first soft ray.

The head is large, with swollen cheeks and a blunt nose. Its length is contained $3 \frac{1}{5}$ to $3 \frac{1}{4}$ times in length to base of caudal, 3_{4}^{3} to 3_{5}^{4} times in total length. The greatest depth of body is contained $4 \frac{1}{5}$ times in length to base of caudal, 5_{6}^{1} in total length, in a female; $4_{3}^{\frac{2}{3}}\left(5^{2}\right)$ in a male.

In females, the body is obscurely cross-banded, a horizontal black line on each bar along dorsal outline, and another where each erosses middle line of sides. The soft dorsal and caudal are coarsely speekled in cross-series; a black bar at base of upper and one at base of lower caudal rays. A conspicuous black bloteh at base of upper pectoral rays. Males are much darker than females, the fins all blackish and without cross-barring, the bars on sides little evident.

The normal fin-formula is D. VII, 15; A. 11. In fifteen speeimens examined, all contained 7 dorsal spines, thirteen contained 15 dorsal rays (one had 12 , and one 16 rays), fourteen contained 11 anal rays (one had 10 rays).

There is nothing in the squamation to distinguish this species generically from Golius. The genus Enypmias may be based upon the 7 dorsal spines and the pair of mental barbels.

3r5. Bollmannia chlamydes Jordan.

Only the types known, from Albatross Stations 2800, 2802, 2803, 2804, 2805, Panama Bay, depths 7 to $51 \frac{1}{2}$ fathoms.
316. Aboma lucretiæ (Eigenmunn \& Eigenmunn).

Only the type known, from Pearl Island, Bay of Panama.
317. Microgobius emblematicus (Jordun \& Gilbert).

Microgobius cyclolepis Gilbert, 1891, p. 74.
About thirty specimens were secured in tide-pools on the Panama reef.
In spirits, the coloration is largely lost, the fish laving the translucent olivaceous cast so characteristic of the typical members of this genus. On the back, along the base of the dorsal fins, are more or less distinct traces of five elongate dusky blotehes, the intervals between which are narrower than the eye. Most speeimens show a distinct, vertically oblong black humeral spot. The fins are translucent dusky, darker in males, in some of which the ventrals and anal are black. The spinous dorsal has occasionally one, or several, lengthwise series of small dark spots, one for each spine. The red streak on caudal is often represented by a pale line traversing obliquely the dusky fin. For the coloration in life, we can refer to the original descriptiou.

The species varies greatly in depth, in squamation, and in the length of the dorsal spines. The depth varies from 4_{5}^{4} to 6 in length to base of caudal. The seales grow larger posteriorly, and are there regnlarly arranged. More anteriorly, they are reduced in size and erowded, and are very difficult to enumerate. Different specimens vary greatly in size of seales, in amount of crowding and irregularity in the anterior part of the body, and also in the relative completeness with which the anterior part of the body is invested. The head, nape, and belly, and a strip along base of spinous dorsal are always naked. A narrow vertical strip immediately behind pectorals is usually scaleless. The scaly area of sides therefore narrows anteriorly and ends at a point about opposite the first dorsal spine. In some specimens the scales cease more posteriorly, opposite fourth or fifth dorsal spine. This condition does not differ essentially from that found in Microgobius signatus, the type of the genus, nor in M. thalassinus. The genus Zalypnus, based on emblematicus, must therefore be withdrawn. As above indicated, the enumeration of the rows of seales is attended with great difficnlty, and camnot be made with any high degree of accuracy. In different speeimens, our counts have varied from 45 to 70 , the majority ranging between 55 and 65 .

The third, fourth and fifth dorsal spines are nsually somewhat produced, often extending to middle of dorsal base, or even beyond this point. In some specimens, apparently females, the fin is evenly rounded in ontline, with none of the rays produced. Nicroyolius cyclolepis was based on a specimen, 5 cm . long, from the Gulf of California, said to differ from M. emblematicus in the lower spines, the larger scales, and in the presence of a round black humeral spot. Our present material shows that all of these characters fall within the range of variation of M. emblematicus, of which M. cyclolepis is doubtless a synonym.

The dentition is as follows: The upper jaw is provided with an anterior series of slender canines extending along the proximal half only of each premaxillary. Those nearest the center of each jaw are upright, backwardly curved toward their tips; the others are strongly curved (almost hooked) in the direction of the angle of the mouth. Behind the canines is a single series of minute villiform teeth, extending much farther laterally than do the canines. The mandibular teeth are arranged like those in the lower jaw, the outermost canine on each side larger than the others. Opposite the point where the anterior series terminates, the teeth of the posterior row are abruptly transformed into laterally curved canines, which replace on the sides of the jaw those of the anterior row.

In ten specimens, the fin-formula is as follows, the last ray of both dorsal and anal divided to the base and enumerated as one ray:

	Dorsal spines	Dorsal rays			Anal rays		
Number of rays........	VII	16	17	18	16	17	18
Specimens	10	I	6	3	I	7	2

One specimen with 18 rays in the dorsal has 17 in the anal. In all other cases the two fins agree. All specimens possess a sharp thin dermal fold which extends from the first dorsal spine, to the base of which it is attached, forward over nape and occiput to a point immediately behind the eyes. A similar fold exists in M. signatus, and will doubtless be detected in M. thalassinus. It does not exist in M. gulosus, which is in other respects less closely allied to the species under consideration, and will doubthess in time receive generic recognition. A similar fold is found in Gobius nicholsi, and again, in an exaggerated form in Lophogobius cyprinoides.
M. emblematicus is most nearly allied to M. thalassinus, which it seems to represent in the Pacific. No structural features which promise to be permanent are alleged to distinguish them, but we have no specimens of thalassinus at hand for comparison. It seems altogether probable that M. eulepis, from Fortress Monroe, is a synonym of M. thalassinus.

318. Microgobius miraflorensis sp. nov.

Plate XXIX, Fig. 54.

A species with comparatively large ctenoid scales, with produced spinous dorsal, and with plain coloration. Resembling in general appearance M. emblematicus, but the body less elongate, the mouth larger, the caudal more produced, the scaling and the coloration entirely different. There is also lacking the cutaneous fold on nape and occiput.

Head $3 \frac{1}{2}$ in length; depth 5. Maxillary $1 \frac{3}{3}$ in head; eye $3 \frac{1}{3}$. Dorsal VII, 17. Anal 17; the last ray split to the base, the two halves separated for half the distance found between distinct rays.

The body is rather elongate, the mouth large, oblique, the maxillary reaching slightly beyond the vertical from the posterior margin of the orbit. The interorbital space is very narrow and shallowly grooved, its width but half the diameter of the pupil. The gill-opening is produced below the level of the pectoral base. There are no fleshy appendages on the inner edge of the shoulder girdle.

The teeth are in a double row in each jaw, those of the outer series enlarged to form slender curved canines, as in other species of Aficrogobius. The outer series is confuned to the anterior portion of each jaw, the inner series extending laterally beyond them. In the mandible, these lateral teeth are somewhat enlarged, replacing those of the outer series, which they do not equal in size.

The spines of the dorsal fin are all very slender and flexible, all but the first and seventh produced, but connected by membrane to their tips, the tip of the produced lobe reaching middle of soft dorsal when depressed. Soft dorsal and anal of equal extent, high, the last rays slightly overlapping the caudal. Pectorals and ventrals reach the same vertical, which is slightly behind the origin of the anal fin. The caudal fin is lanceolate, the middle rays produced, their length equaling the distance between the tip of the snout and the base of the middle pectoral rays.

The scales are large, all but the anterior ones regularly arranged and strongly ctenoid. Anteriorly, in the post-pectoral region, the scales become reduced in size, cycloid, and less regularly arranged. As nearly as they can be enumerated, there are 44 or 45 in a longitudinal series. The head and nape, a narrow strip along spinous dorsal, and the breast and belly are naked.

There were no bright colors in life, while in related species (except gulosus) there are blue, green and red. In spirits, the head and body are light grayish olive, with a soiled appearance due to minute punctulations and the faintly darker margins of the scales. The snout, and the marginal portions of the vertical fins, are more distinctly dusky. The sides are crossed by a number of extremely narrow dark lines, 4 or 5 of which can be counted on that part of sides corresponding to anterior halves of dorsal and anal. A more distinct narrow bar descends from the front of the spinous dorsal. Pectorals and ventrals colorless.

Measurements in Hundredths of Length without Caudal.

319. Evermannia zosterura (Jordan \& Gillert).

Seven specimens were secured from the tide-pools of the Panama reef, where it was associated with the much more numerous E. panomensis. The species had been detected heretofore only at Mazatlan, Mex. In the Panama specimens, the normal fin-formula is D. IV, 14+1; A. 13+1. One specimen only varies from this in having the anal rays $14+1$. In seven additional specimens from Mazatlan no variation exists.
E. zosterura agrees with E. panamensis in having a rather long flexible appendage to the shoulder-girdle, and in the presence of embedded scales; though both characters are denied in all published descriptions. The scales are very few in number, and can be detected only by the examination of detached portions of the skin under high magnification. 'There are thus no characters remaining to separate Evermannia from llypnus, save that the latter has five instead of four dorsal spines, with none of them filamentous or produced; the scales are also regularly arranged and are not concealed. These characters seem doubtfully sufficient for generic division, but the groups may be provisionally retained pending finther examination of allied species. Clevelandia is somewhat less closely related. It is said to have no fleshy appendages to the shonlder-girdle, but in C. ios, which we have re-examined, there is an evident low sharp erest along the lower portion of the girdle, rising at about two points to form inconspicuons papille. This condition is quite different from that obtaining in Evermannia and llymus, where a single long flexible finger-like process arises from the same locality in all of the species.

Measurcments in Hundredths of Length without Caudal.

320. Evermannia panamensis sp. nov.

Plate XXX, Fig. 55.

Head $3 \frac{1}{6}$ in length, depth $5 \frac{1}{2}$. Dorsal IV, I6; anal it; pectoral 19 .
Body slender, highest opposite base of ventrals, which in preserved specimens protrule much below the general contour of the belly. The body tapers comparatively little posteriorly. The upper profile descends in a long even curve from the front of the dorsal to the tip of the snout, with an indentation in front of occiput. The lower jaw is curved upward toward tip, well included within the upper. The teeth are minute, slender, and slightly curved; in a narrow band on the extreme edge of each jaw, growing wider in front; the outer series is slightly enlarged. The maxillary extends beyond the orbit for a distance about equal to its diameter ; its posterior extremity slightly behind the middle of the head. The eyes are small, $6 \frac{1}{2}$ in head, separated by a narrow space which is less than half their diameter.

The edge of the shoulder-girdle has one rather long flexible appendage, inserted opposite the fourth to sixth pectoral ray counted from below.

The first dorsal spine is filamentous in the male, extending in the type specimen to base of ninth soft ray, when depressed. The second spine is also somewhat produced, reaching in the type to slightly beyond the base of the second soft ray of dorsal. The third and fourth dorsal spines are shortened, but extend slightly beyond base of first soft ray. The first three spines are close-set and evenly spaced; the fourth is more widely separated from the third, the interval about equaling that separating the first from the third spine. The distance between the base of the fourth dorsal spine and the origin of the second dorsal equals the length of the snout. In females the first spine is usually produced, but less so than in males. In some specimens it fails to reach the base of the first soft ray.

The origin of the anal is opposite the interspace between the third and fourth dorsal rays. Its last ray is slightly posterior to the last dorsal ray. The last rays of the dorsal and anal overlap the base of the caudal. The caudal is produced, lanceolate, its length four-fifths that of head. Scales small, cycloid, partially embedded, not easily distinguishable.

Color in spirits: males dusky brown, somewhat lighter toward middle line of belly, the pigment dots on head much coarser and more widely spaced than those on sides of body. A faint vertical dark line below the eye. Pectorals, ventrals, dorsals, and upper half of caudal fin translucent, with dusky rays. Anal black, its upper half translucent, strongly contrasting. In life the upper half of caudal was yellow.

The females are lighter and less uniform in coloration. The ground color is light olive, the upper part of head and the dorsal region finely mottled with brown, the sides of body with narrow streaks following the lines which separate the myotomes. The dorsal fins have translucent membranes, and almost uniformly dusky rays. The caudal has the upper half plain or faintly cross-banded, the lower half translucent or faintly shaded, the coloration of the two halves never sharply distinguished as in the male; there is a faint sulbmarginal dusky streak, better defined on upper half of fin; the margin is narrowly translucent or whitish. The basal two-thirds of anal fin is dusky, more intense toward middle of fin, the marginal third translucent or whitish. The pectorals and ventrals are translucent, the former with dusky rays, the latter unmarked.

This species is closely related to E. zosterura. It is more extensively scaled than the latter, and seems to attain a larger size. It has one or two more soft rays in the dorsal and anal fins. The male is readily distinguished by its striking and peculiar coloration. The females require careful inspection, but can be separated usually at sight by the coloration of the second dorsal fin, which is noticeably speckled in E. zosterura.

Forty specimens of this species were obtained in tide-pools on the Panama reef.

Measurements in Hundredths of Length without Caudal.

	δ	(Type) δ	¢	- 9
Length without caudal in mm.	35	$32 \frac{1}{2}$	31	$32 \frac{1}{2}$
Length of head	33	$33 \frac{1}{2}$	$32 \frac{1}{2}$	32
Length of snout..	8	$7 \frac{1}{2}$	7	7
Length of maxillary	$17 \frac{1}{2}$	17	15	$13^{\frac{1}{2}}$
Diameter of orbit	5	$5^{\frac{1}{2}}$	6	6
Interorbital width	$1 \frac{1}{2}$	2	$1 \frac{1}{2}$	$1 \frac{1}{2}$
Depth of body at ventral.	$17 \frac{1}{2}$	$17 \frac{1}{2}$	17	18
Least depth of caudal peduncle	8	8	73	$7 \frac{1}{2}$
Distance from snout to spinous dorsal...	43	4	$42 \frac{1}{2}$	
Distance between front of dorsals	15	16	161	$16 \frac{1}{2}$
Base of second dorsal.	35	$34 \frac{1}{2}$	$35 \frac{1}{2}$	36
Distance from snout to anal	60	61	64	62
Base of anal..	31	30	27	30
Length of caudal peduncle	10	10	$8 \frac{1}{2}$	S
Height of longest dorsal spine	30	38	16	$15 \frac{1}{2}$
Length of pectoral fin	14	16	$16 \frac{1}{2}$	15
Length of ventral fin	19	23	22	21
Length of caudal fin.	25	27	26	24

321. Tyntlastes brevis (Günther).

This species is known from the type, and from two partially digested specimens taken from the stomach of a Centropomus (Gilbert, $1890 \mathrm{~b}, \mathrm{p} .451$).

Family ECHENEIDID天.
322. Echeneis naucrates Linncus.

Recorded from the Gulf of Panama by Boulenger (1899, p. 3).
323. Remora remora (Linnaus).

Obtained at Panama by Gilbert (Jordan, 1885, p. 372); not seen by us.

Family OPISTHOGNATHIDE.

324. Opisthognathus punctatum Peters.

Recorded from Panama by Jordan (1885, p. 389) on specimens secured by Gilbert; not scen by others.

Family DACTYLOSCOPIDE.

325. Dactyloscopus zelotes Jordan \& Gilbert.

Only the type known, collected at Panama by Captain J. M. Dow.

Family URANOSCOPIDÆ.

326. Kathetostoma averruncus Jordan \& Bollman.

Known from the type, dredged in Panama Bay at Albatross Station 2800, in 7 fathoms (Jordan \& Bollman, 1889, p. 163). Recorded by Garman (1899, p. 75) from depths of 56 to 210 fathoms.

Family BATRACHOIDIDÆ.

327. Batrachoides pacifici (Günther).

Very abundant at Panama, appearing daily in the markets; the young abundant in the tide-pools of the reef. The youngest specimen obtained by us is 24 mm . long, and shows a well-developed adhesive disk between the ventral fins. In a specimen 30 mm . long, no trace of the disk remains. In the young, the ground color is much lighter than in adults, while the black cross-bars on body and fins are much more conspicuous.

In their account of this species, Meek and Hall (1885, p. 61) make two serious errors, which are repeated by Jordan and Evermann (1898, p. 2314). The scales are said to be ctenoid, whereas they are perfectly smooth, with entire edges; and the anterior mandibular teeth are described as in two rows, while they are in a cardiform band, some or all of the onter and the inner series enlarged as strong conical canines. In the outer row there seem to be regularly two or three pairs of these eanines.

The upper lateral line is interrupted under the middle of the soft dorsal, the lower line at a point slightly posterior to this: the two are then continued at the immediate base of dorsal and anal respectively, and are again interrupted near the ends of these fins, to reappear on caudal peduncle at their former levels; they are discontinued on the base of the caudal fin, but are each represented on the fin itself beyond the base by a series of two or three pores.

The smaller number of fin-rays and the much larger eye serve readily to distinguish this species from surinamensis and boulengeri. In dentition, it seems to agree more nearly with the latter.

Measurements in Hundradths of Length zwithout Caudal.

Length to base of caudal in mm.	208	235
Length of head	38	$38 \frac{1}{2}$
Greatest width of head	32	33
Length of snout	8	81
Diameter of eyeball	6	$5{ }^{\frac{1}{2}}$
Interocular width.	8	10
Length of maxillary	$20 \frac{1}{2}$	$22 \frac{1}{2}$
Greatest depth of body	18	17
Depth of caudal peduncle	$7 \frac{1}{2}$	$7 \frac{1}{19}$
Snout to first dorsal spine	351	37
Base of second dorsal (to base of last ray)	51	51
Snout to front of anal.	55	$5^{8 \frac{1}{2}}$
Base of anal (to base of last ray)	42	40
Lengrth of caudal.	18	17
Length of pectoral (from middle of axil)	18	17
Length of ventral	15	15

328. Batrachoides boulengeri sp. nov. Plate XXXi, Figs. 57-57a.
Batrachoides surinamensis GÜnther, i86ı b, p. I74 (in part); GÜnther, 1868, p. 388. Not Batrachus surinamensis Bloch \& Schneider (Surinam).

Head $2 \frac{2}{3}$ to $2 \frac{4}{5}$ in length; greatest width of head $3 \frac{2}{8}$; depth $5 \frac{4}{5}$. Interorbital width $2 \frac{4}{5}$ to $2 \frac{5}{6}$ in head; snout $4 \frac{1}{4}$; maxillary $1 \frac{3}{4}$ to $1 \frac{4}{5}$ in head. Eye $3 \frac{2}{3}$ to 4 in interorbital width, 10 to 11 in head. Dorsal III, 27 to 29; anal 25 or 26.

Head very strongly depressed, the posterior part of trunk strongly compressed, the depth and width alrout equal at a point opposite the tip of the pectoral fins. The arrangement of pores and barbels on the head is essentially as in B. pacifici, but the filaments are more numerous and larger. As in other species, the filaments are clustered, being for the most part the fringed margins of cutaneous flaps which occur in pairs on either side the organs of the lateral lines.

The teeth near mandibular symphysis are in a broad cardiform patch, with the outer series enlarged to form broad conical canines. The sides of the mandible are occupied by a single series of very strong conical canines, two or three of which near the middle of each ramus are much larger than those in front and behind; this series is continuous with the posterior series of the cardiform band, where they decrease rapidly in size, those nearest the symphysis being scarcely larger than the others of the band. Vomerine teeth normally eight in number, the median ones small, the others increasing rapidly, the outermost usually as large as the largest of the palatine series. Palatine teeth strictly in a single series, eleven in number on each side; they increase regularly from the anterior end backward to the sixth, which is the largest, the remaining five being subequal, and about as large as the third.

The premaxillary teeth are all finely villiform, in a narrow band which tapers laterally to a point, and is discontinued opposite the fourth or fifth of the palatine series. Opercle and subopercle each with two strong diverging spines, the lower in each case shorter than the upper.

The entire head, with the throat and breast and the pre-pectoral area are naked. The rest of the body, including the entire belly, is covered with elongate imbricated cycloid scales, the margins of which may be slightly crenate. As in other species of the genus, there are two lateral lines: the upper begins on a level with the upper opercular spine, runs parallel with the back for a distance slightly exceeding two-thirds the length of the trunk, to a point opposite the base of the eighteenth dorsal ray; it is there discontinued, to reappear at the extreme base of the dorsal fin, along which it is evident from the twentieth to the twenty-fifth ray; it is there again interrupted, reappearing at its former level, where it is continued to a point opposite the end of the dorsal fin. The lower lateral line curves around the lower base of the pectoral fin and up behind it, then runs nearly parallel with the base of the anal to its interruption at a point opposite the twelfth anal ray; it is then continued along the base of the anal to within a few rays of its end, when it reappears at its former level. Two short longitudinal series of filaments divide the basal portion of the caudal fin into thirds, and seem to represent a posterior continuation of the two lateral lines.

There is a deep glandular pocket behind the upper portion of the pectoral fin. On the inner face of each pectoral toward the base is a series of grooves, one in each interradial membrane; these are continued proximally as canals which penetrate the base of the fin.

The color is gray, very finely mottled with olive-brown. About seven dark bars cross the back and sides. The belly and under side of the head are whitish. The ventrals are whitish, the other fins colored like the body.

This species seems to resemble the Atlantic B. surinamensis, with which it has been identified by Dr. Günther. No specimens of surinamensis are at hand for comparison, but published descriptions indicate important differences between the two forms. According to Cuvier and Valenciennes (Hist. Nat. Poiss., Vol. XII, p. 488), B. surinamensis has a very small eye, the diameter of which is contained eight or ten times in the interorbital space; the palatine teeth are in two rows, the throat is scaly, and the two lateral lines disappear near the middle of the length of the trunk. Meek and Hall (1885, p. 61) state that the vomerine teeth are small, about fourteen in number, and the pectoral is withont pores on its inner surface. All of these features are essentially different in the species here described, as has appeared in the above description. Authors are not agreed concerning the arrangement of the palatine teeth in B. surinamensis. They are varionsly described as in two rows, in one irregular row, or in a single series. We are also uncertain concerning the anterior mandibular teeth; Cuvier states that those of the anterior series of the cardiform band are stronger than the others, while Günther describes a villiform patch, the outer teeth of which are not canine-like.

Through the courtesy of Dr. C. H. Eigemmann, we are enabled to give the following notes on the specimen of B. surinamensis, on which Meek and Hall based their account of the species. The specimen is 111 mm . long. It is numbered 2080 in the catalogue of the Indiana University Musemm.

The longitudinal diameter of the eye is one-third the interorbital widtl. The palatine tecth are conic, irregular in size, in a single row. The vomerine tectls are 14 in number, increasing in size outward. The mandibular teeth are in a single series laterally, in a band in front, the anterior and the posterior scries of the band
evidently enlarged. Upper jaw with a narrow band, the posterior row slightly enlarged. Region in front of ventrals naked. Lateral lines disappearing near middle of tail. No pores at base of pectoral rays on inner surface.

Measurements in Hundredths of Length without Caudal.

329. Porichthys margaritatus (Richerdson).

Taken by the Albatross in Panama Bay at Station 2802, at a depth of 16 fathoms. Also reported by Dr. Boulenger (1899, p. 3) from Rio Tuyra, Darien (as P. notatus).
330. Porichthys greenei sp. nov.

Plate XXX, Fig. 56.
A small light-colored species, taken by is in the tide-pools of the Panama reef. It differs from all other species of the genus in the complete union of the dorsal and anal fins with the caudal, in the small head, and in the comparatively weak development of the phosphorescent spots.

Head $4 \frac{1}{4}$ to $4 \frac{1}{3}$ in length; depth $5 \frac{1}{2}$. The mouth is oblique, the lower jaw longest, the maxillary extending beyond the eye, slightly more than half length of head. A pair of slender cutaneous slips at tip of snout. Tip of maxillary with a cutaneous flap, the free edge of which is fringed.

Mandible anteriorly with an outer series of small canines, behind which is a narrow band of short cardiform teeth. The latter pass toward sides of jaw into a single series of canines, enlarging toward angle of mouth and hooked backward and laterally. Premaxillaries with a single close-set series of slender conical teeth, a median pair slightly larger than the others, but scarcely canine-like. Vomer with a pair of widely separated canines, about equaling the large teeth in sides of mandible, and much larger than any of the palatine teeth. The latter are of small size, nearly uniform, ten to twelve in number. The eyc is small, its diameter about equaling the bony interorbital width.

The lines of sense organs and phosphorescent organs of this species have been described by Dr. C. W. Greene (1899, p. 676), to whose paper we refer. As there stated, the rows agree very closely with those in P. notatus and P. margaritatus. The phosphorescent organs are, however, much smaller, proportionally, than in these species, and are less developed in the dorsal regrion and on top and sides of head. The following account gives the principal differences between P. greenci and the other species mentioned. In some minor details, it differs from the account given by D_{r}. Greene.

In the dorsal series, no phosphorescent spots are present. In the lateral series, there is no upper row of phosphorescent organs. In the plezral row, both sets of organs are constantly present; the sense organs are difficult to distinguish, as they are not accompanied by dermal filaments; the line is discontinued at a point opposite the twenty-first anal ray. Concerning the phosphorescent organs in this series in P. notatus, Greene says (1. c., p. 671): "The organs of this line have no relation to the body segments." We find that the typical arrangement, in the three species known to us, gives two spots to each anal ray, along that part of the line which is parallel with the anal fin. The spots are not equally spaced, but are rather obviously arranged in pairs, though one member of a pair is occasionally undeveloped. Both caudal rows are well developed as in other species. The gastrogular row is always complete, but the sense organs are again difficult to detect, owing to the absence of filaments. In the upper opercular series, and in a row along the lower edge of the black subocular blotch, the phosphorescent organs are well developed; they are absent, however, or very sparingly developed on all other series on top and sides of head.

The dorsal and anal fins are longer than in other species, the dorsal containing 2 spines and 38 or 39 rays, the anal 35 or 36 rays. The membrane of the last dorsal spine joins base of first soft ray. The last two or three dorsal rays are shortened, and the last ray is joined for its full length with the upper ray of the caudal; there is thus a notch between the two fins. The anal is continuous with the caudal, without notch, as the last rays are not shortened.

As in other species, a gland is present in the axil of the pectorals; also a series of canals penetrating the base of the fin on the axillary side, as in Batrachoides, one for each interradial membrane.

The color is translucent grayish or olive, with five broad dark cross-bars on back along base of dorsal fin, and a sixth on nape (including base of spinous dorsal); there are also one on occiput, one behind orbits and one on snout, the last three less intense and more or less joined. The basal portion of the pectoral fin is more or less dusky. Fins otherwise translucent, unmarked.

Twelve specimens were obtained. The species is named for Dr. Charles Wesley Greene.

331. Thalassophryne reticulata Günther.

Teeth on mandible, vomer and palatines similar, in single series, small, nealy uniform in size, antero-posteriorly eompressed so as to resemble diminutive incisors. Sometimes single teeth are crowled out of line, but they are never in two definite series, not even, as alleged, on front of mandible. The maxillary teeth are similar, but very much smather, in two rows or a narrow band.

The last dorsal and amal rays are inserted at a distance from base of camal aqualing more than half their length. They are joined ly membane for their entire length to the caudal peduncle and to the portion of the caudal fin which they overlap.

The type is described as having 24 rays in the dorsal and 24 in the anal fin; it is figured, however, with 25 rays in the dorsal. Nine specimens comted by us show miformly $2 t$ rays in the dorsal fin, 25 in the anal; a tenth specimen has 27 dorsal and 25 anal mays.

Measurements in /foudrodths of I.ongth mithoul Caudal.

Jeength to base of caurlal in mm....	255	218
Length of head.	31	31
Preatest width of head.	3')	$3{ }^{\prime \prime}$
Length of snout	6	6
Diameter rof eycljall	3	3
Interorlital width	6	7
Length of maxillary	18,	1\%
Cireatest dejeth of burdy	19	19)
Dejth of caudal jueduncle	51	\%,
Sinout to first dorsal spine	2.8	29
Hase of second dorsal (to, base of last ray)	$5^{1 /}$	54
Snout to Iront of anal.	44	$4{ }^{1}$
Haste of anal (to l,ase of last ray)	52	5.3
Length of caudal	18	25
Length of peectoral (irom middle of axil)	$22!$	2.3
Length of ventral (outer ray)	14.	1.42

332. Thalassophryne dowi Jordun \& Gilleert.

This species seerns to be rarely taken. A single specimen was oftatued by us, 100 mon. long. The only others known are the threre types from Ponta Arenas, Costa Rica, and two specimens dredged by the Albatroses in the Bay of Panama.

The lower half of the bordy is whitish, unmarkerl; the dorsal prortion is blackish, reliever! by the white lateral line and by a lew irregular bletehes of white, which are most numersus toward the middle of the sides. The head is blackish above and on sides, very finely marbled with gray. The lower lip and the front of the lower jaw are similarly marked; the gular membrane is slightly dusky; the under side of the head retherwise white. The eyes are seen with difficulty, lweing colereel like the surrounding area. The anal is white, excest sume of the pesterior ray's, whir hare margined with black. The lrasal hall of the clorsal is white or grayish, sharply contrasting with the black marginal half. The terminal hall of caudal is jet-llack, the latasal hall white, bletchell moreor, le-ss with brown. The ventrals are white; the pecturals white, marbleed with brown on their basal prostion. Teeth in premaxillaries small, in two series, the iront torth of the outer series on each side a strong conical canine. Sides of mandible with a single series of strong canines, which increase in size backward te the eighth or ninth, then suddenly diminish. On the Ir, ont of the mandible, are twr, series of similar teeth. The vomer contains twelve canines, increasing in size laterally. The pratatine tereth are in a single series, abrout twelve in number on each side large and small teeth regularly alternating in the series.

The head is contained 3 to 4 times in the length. It is cubreid in shape, with vertical checks and very cbligue mouth; in appsarance resembling Astroscopus. Freatest depth of hearl three-fourths its greatest width.

The last two or three raty in the dorsal and atmal fins are progressively shortened, giving a rommed conton to the end of these fins. The last rays of each are united for their whole length by memhane to the candial. In three specimens at hand the second dorsal contains respectively 30, 31, and 32 rays; the anal 29, 29, :md 30.*

Two paits of filments project from the free margin lehind the upper lip, one in from of each eye, the second patir nearer the median line. A pair of similar filaments on lower lip near symphysis. No onher filanents on heat or booly; but pairs of inconspicuous thick fleshy lobes close in front of the isolated sensony organs on the lower jaw, and on the sides and top of the head.

The opercular spine, and the spines of the dorsal fin are wholly conveloped in the integment. They contain a central canal, which opens in a shallow groove on the anterior face of the spine, at an appectiable distance below the tip.

The genns Dector dordan \& Evermann (1898, pp. 2313 and 2325), of which this species is the type, seems to have little value, and is not here recognized. The characters assigned are the many rayed dorsat and anal fins, and the union of these with the catudat. Other species of Thelassophryne have 19,20 , and 26 mas in the dorsal fin; 18,19 , and 25 rays in the anal. It seems unwarmatable to distinguish from these generically a species contaning 30 to 33 rays in the dorsal and 29 or 30 in the anall. As regards mion of the dorsal and anal fins with the candal, this occurs in varying degrees, and is not correlated with increased number of fin rays. T'. maculost (D. 11, 19; A. 1S) secms to have the fins wholly distinct; I'. amazonica (D. 11, 20; A. 18) has them completely joined; T'. reticulata (D. II, 26; $\Lambda .25$) has them almost wholly united.

Family GOBIESOCIDA.

333. Gobiesox rhodospilus Gïmulher.

The types of this species are from Panama, but it was mot seen by as. It is recorded by Boulenger (1898-9, Vol. XIV, 1.8) also from the Bay of Santa Helena, near Gimayarguil.

Gobiesox gyrinus Jordan \& Evermann (1898, p. 2331) is founded on Ciiinther's description of specimens in the British Museum, to which he has applied the mane Goliesox: mulus Bloch (sec Giinther, 1861 b , p. 502). These specimens were partly from the West Indies, partly from the Island of Cardon (misspelled Cordova, fide Giinther, 1868, p. 381) on the Pacific coast of Nicaragua, and are probably wot conspecific. Giinther's description (copied by Jordan and Evermamn) was doubtless based upon the adult specimens from the West Indies, not mpon the very immature Nicaraguan specimens.

Family RSLENNHDN:

334. Malacoctenus delalandi (Cuvier \& Valencienues).

Not seen by us; known from Mazatlan to Chayannil (Boulenger, 1898-9, Vol. XIV, p. 8). It is recorded by Giinther (1861a, p. 871) from the "Pacific coast of Central America," where it was collected by Captain Dow.
335. Mnierpes macrocephalus (Günther).

This species bas been taken several times at Panam, but was mot seen by us. It is recorded by Bonlenger (1899, p. 4) from Flamenco Island, Panama Bay.

336. Auchenopterus monophthalmus Giunther.

A very abundant species in the tide-pools at Panama.
The sexes are readily distinguisher by the coloration, and by the size of the mouth. In females, the lips, mandibles, and the lower portions of the cheeks and opercles are marbled or finely blotched with dark; the ventrals, the lower pectoral rays and the caudal are cross-barred. In males, all of these regions are plain, except the caudal, which may be faintly barred. In females, the month is small, the distance from tip of suout to tip of maxillary not exceeding (in adults) that from tip of snont to posterior edge of pupil. In males, the length of maxillary as measured ahove, exceeds the distance from tip of smont to posterior edge of orbit.

The first three dorsal rays form a detached fin, its posterior membrane joining fourth spine at or immediately above the base. The three spines are flexible, not pungent at tip, much weaker than the suceeeding spines. The frourth spine becomes. abruptly stiff and strong. So slender are the tips of the first and second spines that it is difficult to detect them where they terminate in the membrane. The first and second spines are about equal, and are somewhat longer than any of the spines in
the posterior portion of the fin. The third spine is shortened, but still is longer than the fourth. The dorsal formula is III, XXVI +1 . In ten specimens examined, the anal fin contained constantly 2 spines and 20 rays, the last two rays being distinct, but closely approximated at the base.

The lateral line traverses 38 to 40 scales, including the scale which overlies the base of the caudal fin and is sometimes without tube. The arched portion of the lateral line contains 18 to 20 scales, the straight portion 19 to 21 . The scales constituting the upper portion of the arch are slightly enlarged, and are perforated on the anterior two-fifths only by a tube which opens on the under surface of the scale. At the summit of the arch, a single series of scales intervenes between the lateral line and the base of the dorsal fin. At the beginning of the straight portion of the lateral line, it is separated by five horizontal rows from the base of the dorsal, and by five rows from the base of the a nal.

The second dorsal fin is marked by seven dark bars, which are continued more or less definitely upon the back and sides, where every alternate band is more distinct, the fainter ones being often with difficnlty distinguished. On the middle of sides, the bands are variously confluent and irregular. The dorsal ocellus occupies the next to the last dorsal bar; and is rarely accompanied by a second smaller ocellus developed in the last dorsal bar (in two out of eighty specimens). No small ocellated spots are present on the dorsal fin in advance of the main ocellus. The anterior dorsal fin is without ocellus, and is varionsly blotehed with dusky; the first spine is light, with four narrow cross-bars in the female, plain in the male. The dorsal ocellus is found between the twentieth and twenty-second spines of the second dorsal, occasionally encroaching on the membrane between nineteenth and twentieth spines. The anal shows six or seven oblique dark bars, or is more frequently miform blackish, with a white margin. The caudal, pectorals and ventrals are finely cross-barred in females, plain in males. In females, the lips, mandibles, and lower portion of cheeks and opercles are barred or freckled, these regions plain in the males. The opercle has a dark blotch; a dark shade is nsually present below the eye. A dark blotch occupies the basal portion of some of the pectoral rays, this more specialized on the lower rays in females.

Measurements in Hundredths of Length without Caudal.

	¢	¢	9	9
Length in mm.	67	52	67	50
Length of head	30	31	31	29
Length of snout..........................	8	8	8	7
Length of maxillary.....................	16	16	$13 \frac{1}{2}$	$12 \frac{1}{2}$
Diameter of orbit.	6	6	6	6
Interorbital width	4	4	$3 \frac{1}{2}$	3
Greatest depth	2.4	23	25	24
Depth of caudal peduncle	9	8	8	$8 \frac{1}{2}$
Length of first dorsal spine.	$9 \frac{1}{2}$	10	$12 \frac{1}{2}$	11
Length of second dorsal spine.	11	11 $\frac{1}{2}$	13	11
Length of third dorsal spine	7	7	9	$7 \frac{1}{2}$
Length of fourth dorsal spine	6	$6 \frac{1}{2}$	7	7
Length of twenty-sixth dorsal spine....	$9 \frac{1}{2}$	9	11	10
Length of first anal spine	$6 \frac{1}{2}$	$6 \frac{1}{2}$	$7 \frac{1}{2}$	7
Length of second anal spine.............	8	8	$9 \frac{1}{2}$	81
Length of longest anal ray................	12	15	${ }^{1} 5 \frac{1}{2}$	131
Length of caudal fin......................	23	23	24	22
Length of ventral fin.	19	21	22	20
Length of pectoral fin......................	24	24	24	24

337. Hypsoblennius piersoni sp. nov.

Plate XXXII, Fig. 60.
Resembling H. gentilis and H. gilberti, but with shorter spinous dorsal and much longer soft dorsal and anal.

Head 4; depth 5. D. IX, 25; A. II, 24; P. 16; V. I, 3.*
The form is elongate, with very bluntly rounded snout, the mouth subinferior, as in the other species mentioned. There is a slender nasal tentacle, longer than in its nearest relatives. The orbital tentacle is as long as diameter of eye; above a short basal stalk, it is finely dissected to form five or six slender filaments, one or more of which may be branched. The mouth is very small, largely transverse, reaching posteriorly to a vertical midway between front and middle of pupil. No posterior canines. Gill-opening extending below to opposite lower edge of pectoral base; from this point, the margin of the branchiostegal membrane can be traced across the throat, but it is nowhere free.

```
* In six specimens of H. gilberti from San Diego, the fin-formula stands:
    Dorsal XII, 17 XII, 18 XII, 18 XI, 19 XII, 19 X11, 19
    Anal It, 18 I1,19 II, 19 1I, 19 II, 19 1I, 20
In ove 8pecfmen of H. gentilis from San Dlego, we fiud D. X11, 16; A. If, 18.
```

The lateral line is conspicuously developed in its anterior part only, for a distance equaling the length of the head.

The dorsal spines are very slender, and increase regularly in length posteriorly, there being no notch between spinous and soft dorsals. It differs in this respect from related species, there being a distinct though not conspicuous notch in H. gentilis and H. gilberti.

The color is very light olivaceous, with black blotches and markings following the same pattern seen in H. gilberti. Along the back is a series of six quadrate blotches, below each of which is a similar smaller blotch, those anteriorly separated by a light streak corresponding in position to the lateral line. Below the middle of sides is a series of dark spots arranged in seven pairs, those of the anterior pairs developed as short vertical streaks. A few scattered smaller spots on head and sides of body. There is a narrow V-shaped bar on occiput, a broad bar downward from eye to angle of mouth, and a faint V-shaped mark on gular region. A conspicuons oval black blotch on front of spinous dorsal. The fin is translucent with dusky markings not in definite pattern. A conspicuous black point at the base of each anal ray. The anal is translucent, with a dusky lengthwise streak along the base of the distal third of the fin. Pectorals and ventrals translucent, with some dusky markings.

Named for Mr. C. J. Pierson, a member of the Panama Expedition, to whose untiring industry much of its success was due.

Length in mm. to base of caudal.	32
Head...	25
Snout	7
Eye.	$7+$
Gape of mouth	7
Interorbital width	$2 \frac{1}{2}$
Length of orbital filament	8
Depth of body.	20
Depth of caudal peduncle.	8
Length of dorsal base..	So
Length of anal base.	53
Length of pectorals.	22
Length of ventrals.	15
Length of caudal	15

338. Hypsoblennius striatus (Steinduchner).

Abundant in the tide-pools of the Panama reef.
The following details may be added to the original account given by Steindachner (1877, p. 15, Pl. VIII, fig. 4):

The free tips of the rays and spines of the dorsal fin are white, the color less intense than that on anal margin. The edge of the membrane between the spines
and between the anterior dorsal rays is black, contrasting sharply with the whitetipped spines and rays. A well-defined elliptical spot of jet-black occupies the membrane between the first and second dorsal spines; it is nearly as large as the eye, and is margined with a whitish ring. The blackish bloteh, mentioned by Steindachner, between third and fifth dorsal spines is diffuse and ill-defined, and sometimes extends beyond the limits assigned. There is a black spot at the base of each anal ray. The veutrals have the basal portion dusky, the distal third or half of each ray white. The supraorbital tentacle is erossed with red and whitish bars.

The usual fin-formula is dorsal XII, 16; anal 20: oceasionally dorsal XII, 15; anal 19. The dorsal spines are constantly twelve, and the dorsal rays never as numerous as seventeen. Steindachner's type, described with seventeen dorsal rays, is figured with sixteen rays. The pectoral fin contains constantly fourteen rays, as figured, not fifteen, as stated in the description. The ventrals are described with one spine and two rays. They have constantly one spine and three rays. The spine is short but strong, and the inner ray is usnally hidden in the integument enveloping the second ray, but is sometimes distinguishable externally. The ventral fins lave been examined by us in H. gilberti, scrutator, punctatus and gentilis, and are found to contain constantly one spine and three rays.

The interorbital space is rather deeply grooved. The anterior nostril is in a short tube, the posterior rim provided with a cirrus. The long supraorbital tentacles are unfortunately omitted in Steindachner's drawing. The length of the gill-slit equals the distance from the tip of the snout to the front of the pupil, scarcely extending below to the level of lower base of pectorals.

A short lateral line extends to or into the second dark cross-band behind the head, its posterior portion more or less broken up into detached fragments. It gives off a few short and irregular branches above and below, each ending in an open pore.

We have examined the mandibular teeth in twenty specimens without finding a posterior canine, such as was reported by Steindachner in one of his typical examples.
339. Hypsoblennius brevipinnis (Günther).

The species is apparently rare, as but one young specimen was obtained.

Homesthes Gilbert.

Homesthes Gilbert (Jordan \& Evermann, i898, p. 2394) (caulopus).

Differing from Hypsoblennius chiefly in the presence of four articulated ventral rays instead of three as is usual in Blenniince. We have examined the ventrals of Hypsoblennius striatus, punctatus, ionthas, gentilis, and gilberti, and have found them to consist constantly of one short strong spine and three simple articulated rays. In Homesthes caulopus there is one strong short spine and four well-developed simple jointed rays.
340. Homesthes caulopus Gilbert.

Plate XXXII, Fig. 61.
Homesthes caulopus Gilbert, l. c., p. 2394.
Head $3 \frac{2}{3}$ in length; depth at base of ventrals 4 , at middle of abdomen $3 \frac{3}{5}$; least depth of caudal peduncle 3 in length of head; snout 4 ; eye 4 to $4 \frac{1}{5}$; longest dorsal spine $2 \frac{2}{3}$; last dorsal spine $3 \frac{4}{6}$; longest (tenth) dorsal ray 2 ; longest (fifteenth) anal ray $2 \frac{1}{2}$; ventrals $\mathbf{I} \frac{5}{6}$; longest pectoral ray $\mathbf{I} \frac{3}{5}$ to $\mathrm{I} \frac{2}{3}$; caudal $\mathrm{I} \frac{1}{2}$. Dorsal XII, I5 or 16 ; anal II, 17 ; pectorals 14 ; ventrals I, 4 .

Robust, moderately compressed, with wide heavy head and short bluntly rounded snout, the anterior profile of which is nearly vertical. In shape and general appearance much resembling Hypsoblemius gilborti. Mouth very wide, horizontal, short, the maxillaries reaching vertical from hinder edge of pupil, 3 to $3 \frac{1}{5}$ in head. Teeth as usual in this group, the posterior not enlarged or caninelike. Nostrils with slightly elevated margins, scarcely tubular, the hinder edge of anterior nostril produced into a conspicuous laciniate flap, about two-thirds as long as the diameter of orbit. A similar but larger orbital cirrus, divided nearly to the base into six or eight slender filaments. Interorbital space deeply grooved, without median ridge, opening posteriorly into the deep transverse groove which separates the orbital region from the somewhat swollen occiput, its width $\frac{1}{3}$ eye. The mucous canals of head give off transverse branches which open by numerous pores, which thickly beset the snout, subocular region, top of head, preopercle, and upper portion of opercle. Width of gill-slit equaling or slightly exceeding one-half length of head, confined to area above lower base of pectorals.

First dorsal spine over margin of preopercle; spinous dorsal low, of nearly uniform height, much lower than second dorsal, the spines rather strong at base, with weak reflexed tips; membrane of last dorsal ray joined to extreme base of rudimentary caudal rays. Anal low, rising slightly posteriorly, leaving a short free interval between its last ray and the caudal.

Lateral line strongly developed anteriorly for a distance equaling length of head; from that point it is only faintly visible, declining abruptly to middle of sides, along which it may be traced to base of caudal; the anterior portion gives off numerous pairs of short transverse lines, each of which ends in a pore; no pores or lines are visible posteriorly.

Blackish, without sharp markings, the sides with irregular light blotches, some of which are subcircular in outline and contain one or more black central specks; the light markings near the back are elongate and vertically placed, faintly outlining dark bars of the ground color; lower parts lighter. A vertical black blotch on cheek behind eye; no distinct bars on head; tentacles whitish. Fins all blackisl; the anal, the ventrals, the lower caudal and pectoral rays deeper black; anal and caudal margined with white, some of the dorsal rays narrowly tipped with white.

Two specimens, 102 and 115 mm . long, from Panama Bay.
341. Scartichthys rubropunctatus (Cuvier \& Valeneiennes).

Recorded once from Panama (Jordan \& Gilbert, 1882 n, p. 628).
342. Rupiscartes atlanticus (Cuvier \& Valenciennes).

There is no Panama record for this species, which is known, however, from the Mexican coast to Guayaquil (Boulenger, 1898-9, Vol. XIV, p. 8).

343. Emblemaria nivipes Jordan \& Gilbert.

The type from Pearl Islands, Panama Bay; not seen by us.

Family CERDALIDA.

344. Microdesmus dipus Günther.

Not seen by us. In addition to the type, this species is known only from a specimen recorded by Lockington (1881, p. 114), from La Paz, L. C.

Dr. G. A. Bonlenger has kindly re-examined for us the type of the species, and writes: "There are four ventral rays. The fifteen anterior dorsal rays are simple and inarticulate; further back they gradually become branched and articnlate, and are distinctly so from the eighteenth. The anal rays are all articulate and branched."
345. Microdesmus retropinnis Jorden \& Gillert.

$$
\text { Plate XXXi, Fig. } 59 .
$$

Seven specimens were obtained in rock-pools on the Panama reef.
The genus Microdesmus - with the two species M. dipus and M. retropinnishas been described as having the ventrals reduced each to a single ray. Our material has shown, however, that in M. retropinnis a serious error was committed, for each ventral fin consists of a short slender spine and three slender unbranched rays, the inner of which is the longest. Through the great kindness of Dr. G. A. Boulenger, who has examined for us the type of M. dipus, we learn that that species also has "four ventral rays" (undoubtedly one spine and three rays).

In M. retropinnis, the dorsal fin contains 15 slender spines and 32 to 34 rays. Each of the rays is definitely articulated, and the majority of them are many times forked. The anal rays are all articulate and all but the first one forked.

We are informed by Dr. Boulenger that in M. dipus also the fifteen anterior dorsal rays are simple and inarticulate, while further back they gradnally become branched and articulate, being distinctly so from the eighteenth back. In this species the anal rays are all articulate and branched.

In one specimen of M. retropinnis, we enumerate 58 vertebre in addition to the hypural element. The latter is assisted by one spine in forming the basis for attachment of the caudal fin.

In six specimens the fins count as follows:

The scales are circular in outline, attached by their entire margin, and are non-imbricate. On the head and the anterior part of the body, they are closely crowded and are arranged in definite rows. Toward the tail, they are more widely spaced, and on the abdomen they are partially or wholly embedded and difficult to detect. They cover the entire head, including snout and branchiostegal membranes.

The margin of the upper jaw is formed by the premaxillaries, the broad max-
illary lying behind it. The teeth are strong and conic, with mather acute tips; those in the mandible are in two rows anteriorly which narrow to a single series laterally; those in upper jaw apparently in a single series.

346. Cerdale ionthas Jordan \& Gilbert.
Plate XxXi, Fig. 58.

Eighteen specimens were secured on the Panama reef. The genus Cerdale was described as differing from Microdesmus in having two rays in the ventral fin, but this was due to an error in observation. As in Microdesmus, the ventral fin contains one spine and three rays. The two genera seem to differ only in the much shorter body and fewer vertebre in Cerdale. The vertebre are $20+23 \mathrm{in}$ number in addition to the hypural element. One hrmal sjine assists the hypural in supporting the caudal fin.

The dorsal fin contains 12 slender spines and 30 to 32 branched articulate rays. The anal contains 27 to 29 bramed rays (by error given 36 to 38 rays, instead of 26 to 28 , in the original description and subsequently).

Following are the fin-counts in twelve specimens:

Dorsal.	4	4	4	++	+4	4	43	43	43	43	43	4^{2}
Anal	28	28	28	28	28	27	28	28	28	27	27	29

The pectoral fin contains fourteen rays.
The post-temporal is forked, and rather firmly joined to the skull. The supraclavicle is apparently absent. The actinosts are thin, flat, and very large, the three appermost joining the hypercoracoid, the lower one joining the hypocoracoid. The opereular bones are all present.

The front of the mouth is formed by the premaxillaries only. The maxillaries are slender and much curved. The teeth are small and conic in both jaws, uniserial in the premaxillaries, biserial in front of mandible becoming uniserial laterally. No teeth on vomer or palatines.

The branchiostegal rays are five in number.
The restricted gill-openings can scarcely suffice to distinguish a family Cerdalida from the Blemniide.

Family OPIIDDIDE.

347. Lepophidium prorates (Jordan \& Bollman).

Known only from type and co-types taken in Panama Bay.
348. Otophidium indefatigabile Jordan d Bollmunn.

Recorded from Albatross Station 2797, Panama Bay, 33 fathoms (Gilbert, 1890 b, p. 453).

Family FIERASFERIDA,

349. Fierasfer dubius I'utnum.

A single specimen, 58 mm . long, was taken in a tide-pool at Panama. We think it better to use the name dubius rather than affinis (Giinther) for this species. The type locality for dubius is the Pearl Islands, near Panama; while the locality of affinis is mknown, and the description inadequate. In our very small specimen, the head is one-eighth the length, the dorsal begins a head's length behind the occiput, the pectoral equals the maxillary and is half as long as the head. The onter mandibular teeth, and the teeth on front of vomer are slightly enlarged.

Family BROTULID※.

350. Ogilbia ventralis (Gill).

Not rare in tide-pools on the Panama reef. Heretofore known only from Mazatlan and Cape San Lucas.

The tip of the snout and the terminal portion of mandible are furnished with sharply clevated curving sensory ridges.

Family BREGMACEROTIDE.
351. Bregmaceros macclellandi Thompson.

Dredged by the Albatross in Panama Bay, Station 2804, 47 fathoms; these are the types of B. bathymaster, Jordau and Bollman, 1889, p. 173 (sce Jordan and Evermann, 1898 b, p. 2526).

Family PLEURONECTIDA.

352. Hippoglossina bollmani Giluert.

The types only known, from Albatross Stations 2804 and 2805, Panama Bay, 47 and $51 \frac{1}{2}$ fathoms.

353. Paralichthys woolmanni Jordun \& Williams.

The type of this species was collected by the Albatross, in 1888, at Panama, and was first listed loy Jordan and Bollman (15S9, p. 182) as P. adspersus Steindachner. Later; when made the type of a new species, it was erroneonsly credited to the Galapagos Islands. The species is abundant at Panama, where we obtained numerous specimens, and is known to range as far north as the Gulf of California (Mazatlan, Guaymas, La Paz). Specimens from Mazatlan and La Paz have been distingrished under the name P. sinalore Jordan and Abbott (see Jordan \& Evermann, 1898, p. 2872), but seem to differ in no respect from P. woolmanni.

In ten specimens from Panama, the fin-rays and gill-rakers are as follows:

Dorsal	70	70	70	72	73	73	$7+$	75	75	76
Anal	52	53	57	58	56	57	57	58	58	58
Gill-rakers....	12	14	14	13	$1+$	13	$1+$	14	13	13

In nine specimens from Mazatlan (including the type of P. sinalow), the gillrakers on horizontal limb of arch are constantly thirteen or fourteen in number, and the fin rays as follows:

Dorsal...	72	72	73	73	73	73	74	76	76
Anal .	56	57	56	5^{8}	58	59	56	60	61

The longest gill-raker in P. woolmanni is two-fifths to one-third as long as the diameter of the eye; on the vertical limb of the arch 4 or 5 are usually present, 1 or 2 of which may be immovable and rudimentary.

In the northern portion of its range, P. woolmanni is accompanied by the closely related P. cestuarius, which differs in its more elongate form, the longer, more numerous gill-rakers, the more numerous fin-rays, and the lighter, more nearly uniform coloration; a row of distinct small white spots follows the contour of the body, near the base of the vertical fins. P. magdalence Abbott (Jordan \& Evermann, 1898, p. 2871), is a synonym of P. cestuarius. We have compared the types of the two species.

Locality	Panama		Guaymas, Mex.
Total length in mm.......................	272	270	260
Length to base of caudal in mm........	219	219	208
Head (without opercular membrane)...	281	$29 \frac{1}{2}$	301
Snout (to upper eye)	$6 \frac{1}{2}$	$6+$	7
Maxillary.	14	$14+$	15
Upper eye.	5	5+	$5 \frac{1}{2}$
Interorbital width (total)	$2 \frac{1}{3}$	$2 \frac{1}{2}$	$2 \frac{1}{3}$
Greatest depth	45	$46 \frac{1}{2}$	$47 \frac{1}{2}$
Depth of caudal peduncle	12	12+	1213
Longest gill-raker	$2 \frac{1}{2}$	23	$2 \frac{1}{2}$
Length of caudal	24	$23{ }^{1}$	24
Length of ventral.	$8 \frac{1}{2}$	9	8:
Length of pectoral.	14	$14 \frac{1}{2}$	14
Longest dorsal ray.	13	13	$12 \frac{1}{2}$
Longest anal ray	13	13	12
Chord of arch of lateral line		$15 \frac{1}{2}$	15

354. Ancylopsetta dendritica Gillert.

Plate XXXili, Fig. 62.
Hippoglossina sabanensis Boulenger, 1899, p. 4.
Infrequent; five specimens obtained.
In this species the tubes of the lateral line are profusely branched in adults, but the structure does not differ from that found in other flounders with branched tubes. We are unable, therefore, to recognize the genus Ramularia Jordan and Evermann (1898, p. 2633) based on this character. The species is elosely related to A. quadrocellata Gill, from which it differs most strikingly in having the anterior dorsal rays not produced. This also we consider of less than generic importance.

Our specimens are smaller than the type. The depth is $1 \frac{5}{6}$ in the length. The interorbital width is about half the diameter of the upper eye. The length of the maxillary is contained 2_{3}^{2} to 2_{4}^{3} times in the length of the head. The color is blackish brown, becoming black on distal portion of vertical fins, which are narrowly margined with white. The fins are similarly colored on the blind side; the head and body of the blind side are also more or less washed with dark brown, especially around the margins. The ocellated spots are arranged as in A. quadrocellata, but the one above the arch of the lateral line is wanting. The central light spot is yellow in life.

In five specimens, the fin-rays are as follows:

Dorsal...	77	79	79	82	84
Anal	64	64	65	67	67

This is the species described by Boulenger (1899, p. 4) from Rio Sabana, nuder the name Hippoglossina sabanensis.
355. Platophrys constellatus Jordan.

Taken by the Albatross in Panama Bay, at Stations 2795, 2796, 2797, at a depth of 33 fathoms (Jordan \& Bollman, 1889, p. 183).
356. Engyophrys sancti-laurentii Jordan \& Bollmann.

Panama Bay, Stations 2795 and 2805, depths 33 and $51 \frac{1}{2}$ fathoms; recorded by Garman (1899, p. 222).
357. Syacium latifrons (Jordan \& Gilbert).

Known only from the types, which were taken at Panama.
358. Syacium ovale (Günther).

But few seen; nine specimens obtained. None of these show any tendency to increased width of interorbital space.
359. Cyclopsetta querna (Jorden \& Bollmen).

Abundant. In adult specimens, 255 mm . long, the colored side is uniform dusky brown on head, body and fins, the fins withont dusky blotehes.

The tubes of the lateral line are profusely branched above and below. An intricate network of branching tubes covers the preopercle and the postocular region of the head. The upper eye is distant from profile a distance less than diameter of pupil. The interorbital width in adolts equals half the diameter of the eye.
360. Azevia panamensis (Steindachner).

Infrequent; but four specimens secured.
The scales on the colored side of the body are strongly ctenoid, those of the uncolored side perfectly smooth.
361. Citharichthys platophrys Gitbert.

Known from the type only; Albatross Station 2799, Panama Bay, 29룰 fathoms.

362. Citharichthys gilberti Jenkins \& Evermann.

Abundant; differing from C. spilopterus in the longer* gill-rakers, which are also more numerous, in the slightly larger scales, and the slightly larger eye. In our specimens, the lateral line traverses 40 to 43 scales. In nine specimens of C. spilopterus from Havana, there are 45 to 47 seales in the lateral line. Our specimens of gilberti have thirteen or forrteen gill-rakers on horizontal limb of onter arch. Havana specimens of spilopterus have constantly eleven gill-rakers.
363. Etropus crossotus Jordan \& Githert.

But few seen by us.
Family SOLEIDAE.
364. Achirus klunzingeri (Steindachner).

Common in Panama Bay.
Resembling A. mazattanus, but differing in the smatler scales, the smaller eye and wider interorbital space, the larger mouth, the inereased number of fin-rays, the finer, more numerous cilia (in specimens of equal size), and the more elongate form.

The color is almost uniform brown on body and fins; in lighter specimens only are the vertical fins faintly mottled or blotehed with dusky. Ten to twelve faint dark hair-lines cross the body, often to be made out with extreme difficulty. Young specimens show numerous patches of fine black cilia on head and body, the larger patches arranged in two series nearly midway between the lateral line and the bases

[^6]of dorsal and anal fins respectively. In older specimens, the cilia are less nomerous, and usmally disappear entirely in adolts.

As in A. mazatlanus, the lower two-thirds of the opercle, as well as the suboperele and the preoperele on the blind side are naked; in A. klunzingeri, the seales on cheeks and upper part of opereles are non-imbricate and frequently smooth, especially in specimens of large size.

The eyes are small and distant, the interocular space nsually wider than the diameter of the eye. The pectoral varies widely in length and in the mumber of rays, seven specimens showing respectively $5,5,4,4,4,3$ and 2 pectoral rays. In five specimens there are 71 to 76 oblique rows of seales running downward and backward to the lateral line. In five speçimens of A. muatlanus, there are 54 to 61 oblique rows. In three specimens of A. kimazingeri, there are 62 to 64 dorsal rays, 46 to 49 anal rays; in four specimens of A. mazatlanus, 52 to 55 dorsal rays, 40 to 43 anal rays.

Length to base of caudal in mm.	160
Head	27
Snout	8
Maxillary	101
Eye..	$2 \frac{3}{3}$
Interorbital width	21
Depth.	64
Depth of caudal peduncle.	20
Length of caudal fin.	30
Length of pectoral	4
Longest dorsal ray ...	$14 \frac{1}{3}$
Longest anal ray .	15

365. Achirus fonsecensis (Ginther).

Solca fonseconsis Günther, 1862, p. 475 (Gulf of Fonseca).
Solca fischeri Steindaciner, 1879 , p. 13, Pl. 1I, fig. 8 (Rio Mamoni, near Pamama).
Solea panamensis Steindachiner, i877, p. io, Pl. II (Panama).
This species is abundant in the Bay of Panama and appears frequently in the market. It has not been recorded south of this point, but extends to the northward as far as Mazatlan.

The pectoral fin is greatly reduced, containing usually two short divergent rays, which fail to equal the diameter of the orbit. In one of our specimens three
rays are present, four specimens have but a single ray each, while two specimens are without any trace of a pectoral fin. A. fischeri, based on a young specimen with one pectoral ray, and S. panamensis, based on an adult specimen without pectoral, are duplicated by our material, and are to be considered as synonyms of A. fonsecensis. The best description and figure are given by Steindachner under the name of S. panamensis. The figure should be reversed.

The scales along the lateral line are 60 to 65 in number, not about 85 , as stated by Günther. In ten specimens, the fin-rays run as follows:

Dorsal..	61	61	61	60	60	60	59	58	57	57
A nal	45	45	42	45	45	44	44	44	43	43

Measurements in Hundredths of Length without Caudal.

Length without caudal in mm	I 50	158
Head	$27 \frac{1}{2}$	27
Snout	9	81
Maxillary .	10_{2}^{1}	10
Eye ...	3	$2 \frac{3}{4}$
Interorbital width	3	$2 \frac{1}{2}$
Depth..	61	70
Depth of caudal peduncle........................	20	$18 \frac{1}{2}$
Length of caudal fin............................ ${ }^{\text {f }}$	29	$26 \frac{1}{2}$
Length of pectoral fin............................	$2 \frac{1}{2}$	3
Longest dorsal ray ${ }^{\text {a }}$. \ldots..........................	$14 \frac{1}{2}$	$13 \frac{1}{2}$
Longest anal ray....................................	15	$13 \frac{1}{2}$

366. Achirus scutum (Günther).

Known only from Panama and the Gulf of Fonseca; not recognized until now since the original description. We found the species abundant at Panama, securing about thirty specimens, the largest 18 cm . long.

The species is strikingly marked with numerous narrow gray bars on a dark brown background, the bars varying in number from thirteen to twenty, often pursuing a wavy course and forking or coalescing with adjacent bars in a most irregular and intricate way. In some specimens, the irregularities are few in number. The dorsal and anal are marked like the body, but the candal is much lighter, crossed by about four irregular dark bars which often break up into series of roundish spots.

The pectoral is usually shorter than the eye and contains three rays, of which the middle is the longest. In twenty-five specimens, eight were found with two rays, and three with four rays. In five specimens, the fin-rays are as follows:

Dorsal $\ldots \ldots \ldots \ldots \ldots \ldots$	56	55	54	54	53
Anal $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	44	43	43	42	43

In the original description, the anal fin is said to have 48 rays, but there must have been included by inadvertence the five rays of the right ventral fin, which is coutinuous with the anal fin. There are 70 to 80 oblique rows of seales ruming downwards and backwards above the lateral liue. The blind side of the head in advance of the preopercle, and the anterior rays of the dorsal and anal fins are fringed with rows and clusters of filaments. These are not so long or so numerons as in A. fonsecensis.

367. Symphurus atramentatus Jordun is Bollman.

Known from specimens dredged by the Albatross in Panama Bay at Stations 2795, 2797 and 2805, depths 33 to $51 \frac{1}{2}$ fathoms; recorded by Garman (1899, p. 229).
368. Symphurus elongatus (Günther).

Oceasional in the Panama market, reaching a large size, the largest specimen seen by us being 255 mm . long. In adults, the depth is contained 3_{3}^{1} to 3_{3}^{2} in the length, thas much greater than has been aseribed to the species.

Measuroments in Hundredths of Length aithout Caudal.

Length without caudal in mm.	225	233	189	170	137
Head..	19	21	20	$20 \frac{1}{2}$	20
Depth.	28	$27 \frac{1}{2}$	29	28	$2+\frac{1}{2}$
Maxillary ..	5	$5 \frac{1}{2}$	$5 \frac{1}{2}$	$5^{\frac{1}{2}}$	5
Snout to lower eye	5	5	5	44^{3}	$3{ }^{3}$
Length of lower eye	$1{ }_{4}^{3}$	2	13	2	$1 \frac{1}{2}$
Length of ventral.	6	$5^{\frac{1}{2}}$	6	6	6
Longest dorsal ray	7	7	7	$7 \frac{1}{2}$	7
Longest anal ray	7	7	7	$7 \frac{1}{2}$	$7 \frac{1}{2}$
Length of caudal fin	8	S	8	10	$10 \frac{1}{2}$
Height of gill-opening	7	$6 \frac{1}{2}$	61	7	$6!$
Scales	96	99	93	95	95
Dorsal rays	106	110	108	107	10.
Anal rays ...	88	92	87	S7	89

369. Symphurus atricaudus (Jordun di Gillert).

A specimen of this species las been listed from Panama by Eigenmann (1894, p. 632). The record is in need of verification.
370. Symphurus leei Jordun \& Bollman.

Recorded from Albatross Stations 2800, 2802, 2803 and 2804, depths 7 to $51 \frac{1}{2}$ fathoms.
371. Lophiomus caulinaris German.

Described by Garman (1899, p. 79) from Albatross Stations 3387 and 3391, off Panama, in depths of 127 and 153 fathoms. It had been previonsly recorded by Gilbert (1890 b, p. 454) as L. setigerus, from Station 2805, Panama Bay, $51 \frac{1}{2}$ fatloms.

372. Antennarius strigatus Gill.

Not seen by us.
373. Antennarius sanguineus Gill.

Not seen by 11s.
374. Zalieutes elater (Jordun \& Gilbert).

Recorded from Stations 2794 and 2795, depths 62 and 33 fathoms (Gilbert, 1890 b, p. 455); and from Panama (Jordan \& Bollman, 1889, p. 183).

GENERAL REMARKS ON DIS'RIBUTION.

The ichthyological province to which Panama belongs extends to the northward as far as the Gulf of Califormia and Magdalena Bay. Of the 374 species recorded from Panama, 204 are now known to occur in the Gulf of California, and further exploration will certainly increase this list. The two regions differ principally in the greater development at Panama of Siluroids and Sciænoids, the majority of which fail to reach the northern limits of the province.

To the south of Panama, the faunal relations are as yet poorly defined. The coast of Ecnador is known to us principally from Boulenger's (1898-9) brief accomnt of a collection from the Bay of Santa Helena, near Guayaquil. The marine species there listed belong ahmost exclusively to the Panama fauna, and inchede many characteristic forms. How much farther to the southward these extend their range is unknown. The coast of Peru is largely unexplored, but the very incomplete lists which we possess indicate an almost total absence of Panama species. When these coasts shall be adequately investigated, there will probably be discovered a rather sharp line of demareation of faunas, corresponding with the interval between the areas of the South Equatorial and the Equatorial Counter Currents.

Much has been written concerning the close parallelism between the fishfaumas on opposite sides of the Isthmus of Panama, and the bearing of this upon the question of a water-way formerly open between the two oceans. A full bibliography of the subject is given by Gregory (1895), together with a résumé of the geological and biological evidence for the former existence of such an interoceanic connection, and a discussion of the probable date of its occurrence.

From the biological side, the subject is treated in a most satisfactory way by Faxon (1895), with whose views we find ourselves wholly in accord. The ichthyological evidence is overwhelmingly in favor of the existence of a former open communication between the two oceans, which must have become closed at a period sufficiently remote from the present to have permitted the specific differentiation of a very large majority of the forms involved. That this differentiation progressed at widely varying rates in different instances becomes at once apparent. A small minority of the species remain wholly unchanged, so far as we have been able to determine that point. A larger number have become distinguished from their representatives of the opposite coast by minute (but not "trivial") differences, which are wholly constant. From such "representative forms," we pass by imperceptible gradation to species much more widely separated, whose immediate relation in the past we cannot confidently affirm. Of identical species, occurring in both
oceans, our Panama list contains 43 , as shown on the appended table of distribution. To these should be added the following forms, unrecorded as yet from Panama, but known from other localities on the Pacific Coast of North America:
Manta birostris
Trachurus picturatus
Trachurus trachurus
Caranx lugubris
Thunnus thynnus
Germo alalunga

Scomber colias
Remora albescens
Mola mola
Diodon hystrix
Lampris luna

The total number of identical species which we recognize in the two faunas now separated by the Isthmus is therefore 54 , as compared with the 71 enumerated by Jordan (1885). It is obvious, however, that the striking resemblances between the two fannas are shown as well by slightly divergent as by identical species, and the evidence in favor of interoceanic connection is not weakened by an increase in one list at the expense of the other. All evidence concurs in fixing the date of that connection at some time prior to the Pleistocenc, probably in the early Miocene. When geological data shall be adequate definitely to determine that date, it will give us the best known measure of the rate of evolution in fishes.

Of the 82 families of fishes represented at Panama, all but 3 (Cerdalidse, Cirrhitidæ and Nematistidse) occur also on the Atlantic side of Central America; while of the 218 genera of our Panama list, no fewer than 170 are common to both oceans. The well-developed families Centropomide and Dactyloscopide are peculiar to the two tropical faunas now separated by the Isthmus of Panama.

Table of Distribution.

The following table indicates the distribution of Panama fishes, in so far as they lave been reported from the Gulf of California, the Galapagos Islands, the coasts of Ecuador and Peru, and the Atlantic Ocean. For the Gulf of California, we have depended upon Jordan (1895 b), Evermann and Jenkins (1891), and Gill (1862). For the Galapagos Islands, we have at hand a manuscript list by Messrs. Snodgrass and Heller. Ecuador is known to us principally through the list published by Boulenger (1898-9), and Peru through the paper by Abbott (1899a). Very few characteristically South American forms extend their range northward to Panama; and very few species from the Indo-Pacific fauna reach the continental shore-line, though a somewhat larger number of the latter find their way to the series of ontlying islands (Revillagigedos and Galapagos).

Panama	Gulf of California	Galapagos Islands	Ecuador	J'erı	Atlantic Ocean
Ginglymostoma cirratum	+		+		+
Mustelus lunulatus...	+				
Galeus dorsalis.	+			+	
Galeocerdo tigrinus..	+				+
Carcharias rethalorus..	+				
Carcharias velox...					
Carcharias cerdale...					
Carcharias azureus					
Scoliodon_longurio.	+				
Sphyrna tiburo..	+				+
Sphyrna tudes...	+	+			+
Sphyrna zygæna.	+				+
Squatus sucklii..					
Pristis zephyreus..	+				
Rhinobatus leucorlynchus.					
Zapteryx xyster					
Raja equatorialis..					
Narcine entemedor.	+				
Discopyge ommata.	+				
Urolophus halleri.	+				
Urolophus mundus	+				
Urolophus goodei..			+		
Urolophus aspidurus..					
Dasyatis longa...	+	+			
Pteroplatea crebripunctata...	+				
Aetobatus narinari	+				+
Myliobatis asperrimus					
Felichthys panamensis	$+$				
Felichthys pinnimaculatus..	+		+		
Galeichthys lentiginosus.					
Galeichthys peruvianus..				+	

Panama	Gulf of California	$\begin{gathered} \text { Galapagos } \\ \text { Islands } \end{gathered}$	Ecuador	Peru	Atlantic Ocean
Galeichthys eigenmanni..					
Galeichthys jordani....					
Galeichthys xenauchen.....					
Galeichthys guatemalensis ...	+				
Galeichthys dasycephalus					
Galeichthys longicephalus...					
Sciadeichthys troscheli..	+				
Selenaspis dowi...			+		
Netuma kessleri...			+		
Netuma insculpta..					
Netuma planiceps ..					
Netuma platypogon				+	
Netuma oscula.					
Netuma elattura					
Tachysurus steindachneri.					
Tachysurus emmelane					
Tachysurus furthii..					
Tachysurus evermanni.					
Tachysurus multiradiatus..					
Cathorops hypophthalmus.					
Cathorops gulosus....					
Symbranchus marmoratus					+
Congrellus nitens...					
Congrellus proriger...					
Murænesox coniceps...	+				
Neoconger vermiformis	+				
Myrophis vafer...	+				
Myrichthys tigrinus ..	+				
Pisoodonophis daspilotus					
Ophichthus triserialis.	+	+			

Panama	Gulf of California	Galapagos Islands	Ecuador	Peru	Atlantic Ocean
Ophichthus zophochir..	+				
Rabula panamensis.					
Lycodontis verrilli...					
Lycodontis dovii	+	+			
Murena clepsydra...			+		
Murena lentiginosa...	+	+			
Elops saurus	+		+		+
Albula vulpes..	+				+
Sardinella stolifera..	+		+		
Opisthonema libertate.	+	+			
Ilisha furthi .					
Opisthopterus dovii.					
Opisthopterus macrops..					
Odontognathus panamensis					
Anchovia miarcha ..	+				
Anchovia ischana.	+				
Anchovia curta..	+				
Anchovia opercularis	+				
Anchovia lucida	+				
Anchovia rastralis.					
Anchovia naso...					
Anchovia starksi					
Anchovia panamensis...					
Anchovia mundeola					
Anchovia spinifera					+
Anchovia macrolepidota.	+				
Cetengraulis mysticetus					
Cetengraulis engymen..					
Lycengraulis poeyi...					
Synodus evermanni	+				
Synodus scituliceps.	+				

Panama	Gulf of California	Galapagos Islands	Ecuador	Peru	Atlantic Ocean
Pœecilia elongata		,			
Pœecilia boucardii.					
Anableps dowei.......................................					
Tylosurus scapularis..					
Tylosurus stolzmanni	+			$+$	
Tylosurus fodiator	+				
Tylosurus pacificus					
Hyporhamphus unifasciatus..........................	+		+		+
Hyporhamphus roberti	$+$	+			+
Hemirhamphus saltator................................			+		
Fodiator acutus ...	+*		+		+
Cypselurus callopterus..					
Exonautes rufipinnis..................................				+	+
Fistularia depressa	$+$				
Fistularia corneta..	+				
Siphostoma auliscus.	+				
Hippocampus ingens	+		+		
Kirtlandia pachylepis					
Kirtlandia gilberti....					
Atherinella panamensis					
Mugil cephalus .	+	$+$		+	+
Mugil thoburni		+			
Mugil curema	+	$+$	+		+
Mugil hospes...	+				
Chænomugil proboscideus.	+	$+$			
Querimana harengus..................................	+	+		+	
Sphyræna ensis..	+		-		
Polydactylus approximans	+		+	+	
Polydactylus opercularis...............................	+				
Myripristis occidentalis..	+	+			
Myripristis pøecilopus	+				

[^7]| Panama | Gulf of California | Galapagos Islands | Ecuador | Peru | Atlantic Ocean |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Holocentrus suborbitalis.. | $+$ | + | | | |
| Upeneus grandisquamis.. | + | | + | | |
| Sarda chilensis. | + | | | + | |
| Scomberomorus sierra .. | + | + | | | |
| Trichiurus lepturus.. | $+$ | | + | | + |
| Nematistius pectoralis... | + | | | | |
| Oligoplites saurus.. | + | | $+$ | | + |
| Oligoplites altus | | | + | | |
| Oligoplites refulgens............................. | | | | | |
| Oligoplites mundus... | $+$ | | | | |
| Trachurops crumenophthalmus | + | + | | | + |
| Hemicaranx atrimanus.. | | | | | |
| Hemicaranx zelotes. | | | | | |
| Hemicaranx furthii. | | | | | |
| Hemicaranx leucurus | | | | | |
| Caranx vinctus. | + | | | | |
| Caranx hippos. | + | | + | | + |
| Caranx caballus. | + | $+$ | | | |
| Caranx marginatus . | + | + | + | | |
| Gnathanodon speciosus. | + | | | | |
| Citula dorsalis | + | | | | |
| Alectis ciliaris | $+$ | | | | + |
| Vomer setipinnis... | + | | + | | + |
| Selene œrstedii. | $+$ | | | | |
| Selene vomer... | + | | | | + |
| Chloroscombrus orqueta. | + | | | | |
| Trachinotus rhodopus.. | + | | | | |
| Trachinotus culveri | + | | | | |
| Trachinotus kennedyi................................ | + | | | | |
| Trachinotus paloma | + | | | | |
| Nomeus gronovii | | + | | | + |

Panama	Gulf of California	Galapagos Islands	Ecuador	Peru	Atlantic Ocean
Peprilus palometa					
Peprilus snyderi..					
Peprilus medius...	+				
Apogon dovii...	+				
Centropomus undecinalis			+		+
Centropomus nigrescens..............................					
Centropomus pedimacula............................					+
Centropomus unionensis..............................					
Centropomus armatus.................................					
Centropomus robalito.	+				
Petrometopon panamensis					
Epincphelus analogus.	+	+			
Epinephelus labriformis	+	+	t		
Promicrops guttatus..	+				+
Alphestes multiguttatus	+		+		
Mycteroperca boulengeri	+				
Hypoplectrus lamprurus..					
Paralabrax humeralis				+	
Diplectrum radiale	+				+
Diplectrum macroproma	+				
Diplectrum euryplectrum.					
Prionodes fasciatus	+	+			
Paranthias furciler..	+	+			+
Rhegma thaumasium					
Rypticus nigripimnis...	t				
Lobotes pacificus.	+				
Pseudopriacanthus serrula					
Hoplopagrus guentheri	+				
Lutianus jordani ...		+			
Lutianus novemfasciatus.	+				
Lutianus argentiventris............................	+	+			

Panama	Gulf of California	Galapagos Islands	Ecuador	Peru	Atlantic Ocean
Holacanthus passer.	+	+	+		
Teuthis crestonis.	+	+			
Balistes polylepis..	+				
Balistes naufragium..	$+$				
Balistes verres	t				
Xesurus hopkinsi..					
Spheroides angusticeps...	+	+			
Spheroides lobatus.	+	$+$			
Spheroides testudineus...					+
Spheroides annulatus	+	+	+		
Spheroides furthii...					
Guentheridia formosa					
Tetraodon hispidus......					
Eumycterias punctatissimus.	t				
Diodon holacanthus.	$+$				+
Scorpæna histrio.		$+$			
Scorprena pannosa					
Scorpæna mystes..	t				
Scorpæna russula					
Prionotus xenisma..	+				
Prionotus loxias.....					
Prionotus quiescens..	$+$				
Prionotus albirostris..	+				
Prionotus horrens..	$+$				
Prionotus ruscarius.	+				
Pliilypnus lateralis..	+				
Dormitator maculatus..	+				+
Eleotris pictus...	+				
Alexurus armiger .	+				
Gymneleotris seminudus.					
Gobius soporator	+	+	+		+
Gobionellus sagittula	.. +				

1840-42. Jenvns, L. The zoology of the voyage of II. M. S. Beagle, unter the command of Captain Fitzroy, R. N., during the years 1832 to 1836 . Fish. $1840-42$.
1 S60a. Gill, Theodore. Monograph of the genus Labrosomus Sw. Proc. Acad. Nat. Sci. Phil., 1860, pp. 102-10S.

1860b. Gill, Theonore. Monogruph of the Philypmi. Proc. Acad. Nat. Sci. Phil., is6o, pp. 120-126.
1861a. Gile, Theonore. Description of a new species of the genus Anablcps of Gronovius. Proc. Acad. Nat. Sci. Mhil., 1861, 11p. 3-6.
18616. Gill, Theodore. Synopsis generum Rhytici et affinium. Proc. Acad. Nat. Sci. Mhil., 1861, pp. 52-54.
1861c. Gill, Theodore. On several new generic types of fishes. Proc. Acad. Nal. Sai. Phil. 1861, pl. 77-78.
1861d. Gill, Theodore. Monograph of the Tridigitate Uranoscopoids. Proc. Acad. Nat. Sic. Phil., 18G1, pp. 263-27r.

1861a. Günther, Albert. On a collection of fishes sent by Captain Dow from the Pacific coast of Central America. Proc. Zool. Soc. Lond., 186r, pp. 370-376.
186ib. Günther, Albert. Catalogue of the Acanthopterggian Fishes of the British Museum, Vol. HII.
1861. Dow, John M. [Letter concerning Anableps dowei.] Proc. Zool. Soc. Lond., iS6i, p. 30.
1862. Gill, Theodore. Catalugue of the fishes of Lower Califorma in the Smithsonian Institution, collected by Mr. J. Xantus. Proc. Acad. Nat. Sci. Phil., 1862. Part I,

1862. Ginther, Albert. Catalogue of the fishes of the British Museum. Vol. IV.

1863a. Gill, Theodore. Description of some new species of Pediculati, and on the classification of the group. Proc. Acad. Nat. Sci. Phil., 1863 , pp. SS-92.
18636. GILL, Tifeodore. Descriptive enumeration of a collection of fishes from the westem coast of Central America, presented to the Smithsonian Institution by Captain John M. Dow. Proc. Acad. Nat. Sci. Phil., 1863, pp. 162-174.
1864. Kner, Rudolf, and Steindachner, Franz. Neue Gattungen und Arten von Fischen aus Central-Amerika. Abhandl. K. bajer. Akad. Ilisscn., Vol. X, s864, pp. 1-6ı.
186 4 a. Günther, Albert. Catalogue of the fishes of the British Muscum, Vol. V.
186 ${ }^{\text {b }}$. Ginther, Alibert. On some new species of Central American fishes. Proc. Zool. Soc. Lond., 1864, pp. 23-27. Also, Ann. Mag. N'at. Mist., 3d Ser., Vol. XIV', 1864 , Pp. 227-232.
1S6 c. Günther, Aimert. Report of a collection of fishes made by Messrs Dow, Godman and Salvin in Guatemala. Proc. Zool. Soc. Lond., 1864, 11p. 144-154.

186 7 d. Günther, Albert. On a poison-organ in a genus of Batrachoid fishes. Proc. Zool. Soc. Lond., 1864, pp. 155-158.
1865. Gill, Theodore. On a new generic type of sharks. Proc. Acad. Nat. Sci. Phil., 1865, p. 177.
1865. Dow, John M. [Letter concerning examples of Thalassophryne obtained at Panama.] Proc. Zool. Soc. Lond., 1865, p. 677.
1866a. Günther, Albert. Catalogue of the fishes of the British Museum, Vol. VI.
1866b. Günther, Albert. Memoir on the fishes of the states of Central America. Proc. Zool. Sor. Lond., 1866, pp. 600-604.
1868. Steindachner, F. Ichthyologische Notizen (VII). Sitzb. k. Akad. Wissen. Wien, Vol. LVIl, i868, pp. 965-1008.
1868a. Bocourt, M. F. Note sur des poissons Percoïdes appartenant au genre Centropome, provenant du Mexique et de l'Amérique Centrale. Ann. Sci. Nat., 5th Ser., Vol. 1X, s868, pp. 90-91.
1868b. Bocourt, M. F. Descriptions de quelques Acanthoptérygiens nouveaux appartenant au genre Serran et Mesoprion, recueillis dans l'Amérique Centrale. Ann. Sci. Nat., Vol. IX, 1868, pp. 222-224.
1869. Günther, Albert. An account of the fishes of the states of Central America, based on collections made by Captain J. M. Dow, F. Godman, Esq., and O. Salvin, Esq. Trans. Zool. Soc. Lond., 1869, pp. 377-494.
186g. Peters, W. Neue oder weniger bekannte Fische des Berliner Zoologischen Museums. Monatsber. Königl. Akad. Wissen. Berlin, I869, pp. 703-7ıI.
1869. Bocourt, M. Descriptions de quelques reptiles et poissons nouveaux appartenant a la faune tropicale de l'Amérique. Poissons de la famille des Scienoides. Nouv. Arch. du Mrus. d'Hist. Nat., Vol. V, 1869, pp. 2I-24.

1870a. Steindachner, F. Ichthyologische Notizen (VIII). Sitzb. \&. Akad. Wissch. Wien, Vol. LX, 1869 (1870), pp. 120-139.
18706.

1870c. Steindachner, F. Ichthyologische Notizen (X). Sitzb. k. Acall. Wissen. Wien, Vol. LX1; 1870, pp. 623-642.
1870. GÜnther, A. Catalogue of the fishes of the British Museum, Vol. VIII.
1871. Cope, E. D. Contribution to the ichthyology of the Lesser Antilles. Trans. Am. Phil. Soc., Vol. XIV, 1871 , pp. 445-483.
1874. Putnam, F. W. Notes on Ophidiidæ and Fierasferidæ, with descriptions of new species from America and the Mediterranean. Proc. Bost. Soc. Nut. Hist., 1874, pp. 339348.
1874. Valllant, L., and Bocourt, M. Mission scientifique au Mexique et dans l'Amérique Centrale. $4^{\text {th }}$ part. Etudes sur les poissons, 1874.
1875a. Steindachner, F. Ichthyologische Beiträge (I). Sitzb. k. Akad. Wissen. Wien, Vol. LXX, 1874 (1875), pp. 375-390.
1875b. Steindachner, F. Ichthyologische Beiträge (II). Sitzb. k. Akad. Wissen. Wien, Vol. LXXI, 1875, pp. 443-480.
1876a. Steindachner, F. Ichthyologische Beiträge (III). Sitzb. k. Akad. Wissen. Wien, Vol. LXXIl, 1875 (1876), pp. 29-96.

1876b. Steindachner, F. Ichthyologische Beiträge (IV). Sitzb. k. Akad. Wissen. Wien, Vol. LXXII, 1875 (1876), pp. 551-616.
1877. Steindachner, F. Ichthyologische Beiträge (V). Sitzb. k. Akad. Wissen. Wien, Vol. LXXIV, 1876 (1877), pp. 49-240.
1877. Streets, T. H. Contributions to the natural history of the Hawailan 1slands and Fanning Islands and Lower California. Fishes of Upper and Lower California. Bull. U. S. Nat. Mus., No. 7, 1877, pp. 43-56.
1877. Gill, Theodore. Synopsis of the fishes of Lake Nicaragua. Proc. Acad. Nat. Sci. Phil, 1877, pp. 175-191.
1878. Steindachner, F. Ichthyologische Beiträge (VI). Sitzb. k. Akad. Wissen. IVien, Vol. LXXVII, 1878, pp. 379-392.
1879a. Steindachner, F. Ueber einige neue und seltene Fisch-arten aus den k. k. Zoologischen Museen zu Wien, Stuttgart und Warschau. V. Beiträge zur Kenntniss der Meeresfische Siid-Amerika's. Denkschr. k. Akad. Wissen. Hien, Vol. XLI, 1879, pp. 28-44.
1879b. Steindachner, F. Ichthyologische Beiträge (VII). Sitzb. k. Akad. Wissen. Wien, Vol. LXXV111, 1878 (1879), pp. 377-400.
1879c. Steindachner, F. Beitäge zur Kenntniss der Flussfische Sudamerika's. II. Ueber eine Sammlung von Fischen aus dem Mamoni-Flusse bei Chepo. Denkschr. k. Akad. Wisscn. Wien, Vol. XLI, 1879, pp. 159-169.
18So. Lockington, W. N. Description of a new Sparoid fish (Sparus brachysomus), from Lower California. Proc. U. S. Nat. Mus., Vol. III, 188o, pp. $28+-286$.
1880a. Steindachner, F. Zur Fisch-fauna des Cauca und der Fliisse bei Guayaquil. Denksch. k. Akad. Wissen. Wien, Vol. XLII, 1880, pp. 55-104.

18Sob. Steindachner, F. Ichthyologische Beiträge (VIll). Sitzb. 1. Akad. Wissen. Wien, Vol. LXXX, 1S79 (r88o), pp. 119-191.
188ı. Lockington, W. N. List of the fishes collected by Mr. W. J. Fisher upon the coasts of Lower California, 1876-77, with descriptions of new species. Proc. Acad. Nat. Sci. Phil., 1S81, pp. 113-120.
1881. Steindachner, F. Ichthyologische Beiträge (X). Sitzb. k. Akad. Wissen. Wien, Vol. LXXXIll, 1881, pp. 179-219.
1881a. Jordan, D. S., and Gilbert, C. H. Notes on a collection of fishes made by Lieut. Henry E. Nichols, U. S. N., on the west coast of Mexico, with descriptions of new species. Proc. U. S. Nat. Mlus., Vol. IV, 1881, pp. 225-233.
1881b. Jordan, D. S., and Gilbert, C. H. List of fishes collected by Lieut. Henry E. Nichols, U. S. N., in the Gulf of California and on the west coast of Lower California, with descriptions of four new species. Proc. U. S. Nat. Mhus., Vol. IV, 188r, pp. 273-279.
1881c. Jordan, D. S., and Glebert, C. H. Descriptions of thirty-three new species of fishes from Mazatlan, Mexico. Proc. U. S. Nut. IUus., Vol. IV, 188ı, pp. 338-365.
iSSid. Jordan, D. S., and Gilbert, C. H. Description of a new species of Pomadasys from Mazatlan, with a key to the species known to inhabit the Pacific coasts of tropical America. Proc. U. S. Nat. I/us., Vol. IV, IS8ı, pp. 383 -388.
18sic. Jordan, D. S., and Gilbert, C. H. Description of a new species of Xenichthys (Xenichthy's renurus) from the west coast of Central America. Proc. U. S. Nat. IHus., Vol. IV, i88ı, P. 454.
r88if. Jordan, D. S., and Gilbert, C. H. Description of five new species of fishes from Mazatlan, Mexico. Proc. U. S. Nat. Mfus., Vol. IV, I881, pp. 458-463.
1882. . Gilbert, C. H. List of fishes observed at Punta Arenas, on the Pacific coast of Central America. Bull. U. S. Fish Com., Vol. II, 1882, p. 112.
1882a. Jordan, D. S., and Gilbert, C. H. Descriptions of nineteen new species of fishes from the Bay of Panama. Bull. U. S. Fish Com., Vol. I, i88ı (I882), pp. 306-335.
1882b. Jordan, D. S., and Gilbert, C. H. A review of the Siluroid fishes found on the Pacific coast of tropical America, with descriptions of three new species. Bull. U. S. Fish Com., Vol. II, 1882, pp. 34-54.
r8szc. Jordan, D. S., and Gilbert, C. H. List of fishes collected at Mazatlan, Mexico, by Charles H. Gilbert. Bull. U. S. Fish Com., Vol. II, I882, pp. 105-108.
1882d. Jordan, D. S., and Gilbert, C. H. List of fishes collected at Panama by Charles H. Gilbert. Bull. U. S. Fish Com., Vol. II, 1882, pp. IO9-III.
1882e. Jordan, D. S., and Gilbert, C. H. Descriptions of four new species of sharks, from Mazatlan, Mexico. Proc. U. S. Nat. Mhus., Vol. V, 1882 , pp. ioz-i io.
1882 f. Jordan, D. S., and Gilbert, C. H. Description of a new species of Conodon (Conodon serrifer) from Boca Soledad, Lower California. Proc. U. S. Nat. Mhus., Vol. V, I882, pp. 35I-352.
1882 g . Jordan, D. S., and Gilbert, C. H. Catalogue of the fishes collected by Mr. John Xantus at Cape San Lucas, which are now in the U. S. National Museum, with descriptions of eight new species. Proc. U. S. Nat. M/us., Vol. V, 1882, pp. 353-371.
1882\%. Jordan, D. S., and Gilbert, C. H. List of fishes collected by Mr. Jolin Xantus at Colima, Mexico. Proc. U. S. Nat. Mfus., Vol. V, 1882, pp. 37 1-372.
1882i. Jordan, D. S., and Gilbert, C. H. List of fishes collected at Panama by Capt. John M. Dow, now in the United States National Museum. Proc. U. S. Nat. Mus., Vol. V, 1882, pp. 373-378.
r882k. Jordan, D. S., and Gilbert, C. H. List of a collection of fishes made by Mr. L. Belding near Cape San Lucas, Lower California. Proc. U. S. Nat. Mfus., Vol. V, 1882, pp. 378-381.
1882l. Jordan, D. S., and Gilbert, C. H. List of fishes collected at Panama by Rev. Mr. Rowell, now preserved in the United States National Museum. Proc. U. S. Nat. Mius., Vol. V, 1882, pp. 38i-382.
1882m. Jordan, D. S., and Gilbert, C. H. Description of a new species of Urolophus (Urolopluts astcrias) from Mazatlan and Panama. Proc. U. S. Nat. Mus., Vol. V, 1882, pp. 579-5So.
1882n. Jordan, D. S., and Gilbert, C. H. List of fishes now in the Museum of Yale College, collected by Professor Frank H. Bradley, at Panama, with descriptions of three new species. Proc. U. S. Nat. M/us., Vol. V, 1882, pp. 620-632.
18820. Jordan, D. S., and Gilbert, C. H. Descriptions of two new species of fishes (Myrophis vafer and Chloroscombrus orqueta) from Panama. Proc. U. S. Nat. Mus., Vol. V, 1882, pp. 645-647.
1882p. Jordan, D. S., and Gilbert, C. H. Description of a new eel (Sidera castanea) from Mazatlan, Mexico. Proc. U. S. Nat. Mus., Vol. V, 1882, pp. 647-648.
1883. JORDAN, D. S. Notes on the American fishes preserved in the Museums of Berlin, London, Paris and Copenhagen. Proc. Acad. Nat. Sci. Phil., 1883, pp. 281-293.
1883. Jordan, D. S., and Gilbert, C. H. Description of new species of Rhinobahes (Rhinobatus glaucostigma) from Mazatlan, Mexico. Proc. U. S. Nat. Mus., Vol. VI, 1883, pp. 210-211.
i884. Grant, W. R. Ogilvie- A revision of the fishes of the genera Sicydium and Lentipes, with descriptions of five new species. Proc. Zool. Soc. Lond., 1884, pp. 153-172.
1884. Jordan, D. S. Notes on the fishes collected at Guaymas, Mexico, by Mr. H. F. Emeric, with a description of Gobiosoma histrio, a new species. Proc. U. S. Nat. Mus., Vol. VII, i884, pp. 260-26i.
188+. Jordan, D. S., and Gilbert, C. H. Description of Sciana sciera, a new species of Scicua from Mazatlan and Panama. Proc. U. S. Nat. M/us., Vol. VII, 1884, pp. 48o482.

1884a. Jordan, D. S., and Swaln, Josepf. A review of the American species of Epinephelus and related genera. Proc. U. S. Nat. Mius., Vol. VII, 1884, pp. 358-410.
1884b. Jordan, D. S., and Swain, Joseph. A review of the species of Lutjaninæ and Hoplopagrinæ found in American waters. Proc. U. S. Nat. Nus., Vol. VII, 1884, pp. 427-474.
1884. Meek, Seth E. A review of the American species of the genus Synodus. Proc. Acad. Nat. Sci. Phil., 1884, pp. 130-136.
1884a. Meek, S. E., and Newland, R. G. A review of the American species of the genus Sphyrana. Proc. Acad. Nat. Sci. Phil., 1884, pp. 67-75.
188 \ddagger b. Meek, S. E., and Newland, R. G. A review of the American species of Scomberomorus. Proc. Acad. Nat. Sci. Phil., 1884, pp. 232-235.
1884. Meek, S. E., and Hoffman, M. L. A review of the American species of the genus Teuthis. Proc. Acad. Nat. Sci. Phil., 1884, pp. 227-231.
1884a. Meek, S. E., and Goss, D. K. A review of the American species of the genus Trachynotus. Proc. Acad. Nat. Sci. Phil., 1884, pp. 121-129.
1884b. Meek, S. E., and Goss, D. K. A review of the American species of Hemirhamphus. Proc. Acad. Nat. Sci. Phil., is84, pp. 221-226.
188. Fordice, M. W. A review of the American species of Stromateidr. Proc. Acad. Nat. Sci. Phil., 1884, pp. 311-317.
1885. Meek, S. E., and Hall, E. A. A review of the American genera and species of Batrachidæ. Proc. Acad. Nat. Sci. Phil., 1885, pp. 52-62.
1885. Hall, E. A., and Mc Caughan, J. Z. A. A review of the American genera and species of Mullidæ. Proc. Acad. Nat. Sci. Phil., 1885, pp. 149-155.
1885.

Jordan, D. S. A list of the fishes known from the Pacific coast of tropical America, from the Tropic of Cancer to Panama. Proc. U. S. Nat. Mius., Vol. VIll, I885, pp. 36i-394.
1885. Eigenmann, C. H., and Fordice, M. W. A review of the American Eleotridinz. Proc. Acad. Nat. Sci. Phil., 1885, pp. 66-80.
1885. Garman, S. Notes and descriptions taken from Selachians in the U. S. National Museum. Proc. U. S. Nat. Mfus., Vol. VIII, 1885, pp. 39-44.
1886. JORDAN, D. S., and Edwards, C. L. A review of the American species of Tetraodontidæ. Proc. U. S. Nat. Mus., Vol. IX, 1886, pp. 230-247.
1886. Jordan, D. S., and Hughes, Elizabeth G. A review of the species of the genus Prionotus. Proc. U. S. Nat. Mus., Vol. IX, 1886, pp. 327-338.
1886. Evermann, B. W., and Meek, S. E. A revision of the American species of the genus Gerres. Proc. Acad. Nat. Sci. Phil., 1886, pp. 256-272.
1887. Jordan, D. S., and Gilbert, C. H. Description of a new species of Thalassophryne (Thalassophryne dowi) from Punta Arenas and Panama. Proc. U. S. Nat. Muss,, Vol. X, 1887, p. 388.
1888. Eigenmann, C. H., and Eigenmann, R. S. A list of the American species of Gobiidæ and Callionymidr, with notes on the specimens contained in the Museum of Comparative Zoology, at Cambridge, Massachusetts. Proc. Cal. Acad. Sci., and Ser., Vol. I, 1888, pp. 51-78.
1888-89. Eigenmann, C. H., and Eigenmann, R. S. Preliminary notes on South American Nematoguathi, I, II. Proc. Cal. Acad. Sci, and Ser., Vol. I, I888, pp. 119-172; Vol. II, 1889, pp. 28-56.
is88. Jordan, D. S. List of fishes collected by Alphonse Forrer about Mazatlan, with descriptions of two new species-Heros bcani and Pecilia butleri. Proc. U. S. Nat. Murs., Vol. II, is88, pp. 329-334.
r888. Jenkins, O. P., and Evermann, B. W. Descriptions of eighteen new species of fishes from the Gulf of California. Proc. U. S. Nat. Alus., Vol. II, 1888, pp. 137-158.
1889. Morrison, W. L. A review of the American species of Priacanthidæ. Proc. Acad. Nat. Sci. Phil., 1889, pp. 159-163.
1889. Kirsch, P. H. A review of the European and American Uranoscopidæ or Star-gazers. Proc. Acad. Nat. Sci. Phil., 1889, pp. 258-265.
1889. Jordan, D. S., and Bollman, C. H. Descriptions of new species of fishes collected at the Galapagos Islands and along the coast of the United States of Colombia, 1887. 88. Proc. U. S. Nat. Muse, Vol. Xil, 1889, pp. 149-183.
1889. Jordan, D. S., and Eigenmann, C. H. A review of the Sciæuide of America and Europe. Rep't. U. S. Com'r Fish and Fisheries, 1886 (1889), pp. 343-451.
1889. Jordan, D. S., and Goss, D. K. A review of the flounders and soles (Pleuronectidæ) of America and Europe. Rep't. U. S. Com'r Fish and Fisheries, 1886 (r889), pp. 225-342.
1890 . Jordan, D. S., and Eigenmann, C. H. A review of the genera and species of Serranidæ found in the waters of America and Europe. Bull. U. S. Fish Com., Vol. VIII, 1888. (1890), pp. 329-433.
1890. Kirsch, P. H. A review of the American species of Thread-fins (Polynemidæ). Ann. N. Y. Acad. Sci,, Vol. V, 1890, pp. 231-236.
r8goa. Gilbert, C. H. A preliminary report on the fishes collected by the steamer Albatross on the Pacific coast of North America during the year 1889, with descriptions of twelve new genera and ninety-two new species. Proc. U. S. Nat. Muss., Vol. XIII, 1890, pp. 49-126.
18gob. Gilbert, C. H. A supplementary list of fishes collected at the Galapagos Islands and Panama, with descriptions of one new genus and three new species. Proc. U.S. Nat. D/us., Vol. XIII, 1890, pp. 449-455.
18go. Eigenmann, C. H., and Eigenmann, R. S. A revision of the South American Nematognathi or cat-fishes. Occas. Papers, Cal. Acad. Sci., I, ISgo.
1891. Jordan, D. S. A review of the Labroid fishes of America and Europe. Rep't. U.S. Com'r Fish and Fisheries, 1887 (1891), pp. 599-699.
r8gia. Gilbert, C. H. Description of Apodal fishes from the tropical Pacific. Proc. U. S. Nat. Mus., Vol. XIV, 1891, pp. 347-552.
18916. Gilbert, C. H. Description of thirty-four new species of fishes collected in 1888 and 1889, principally among the Santa Barbara Islands and in the Gulf of California. Proc. U. S. Nat. Mus., Vol. XIV, i891, pp. 539-566.
1891. Evermann, B. W., and Jenkins, O. P. Report upon a collection of fishes made at Guaymas, Sonora, Mexico, with descriptions of new species. Proc. U. S. Nat. Ihus., Vol. XIV, i891, pp. 121-165
1892. Jordan, D. S., and Davis, B. M. A preliminary review of the Apodal fishes or eels inhabiting the waters of America and Europe. Rcp't U. S. Com'r Fish and Fishcries, I888 (1892), pp. 581-677.
1893.

Jordan, D. S., and Fesler, B. A review of the Sparoid fishes of America and Europe. Rep't U. S. Com'r Fish and Fishcries, 1889-1891 (1893), pp. 421-544.
1894. Valleant, Léon. Sur une collection de poissons recueillis en Basse-Californie et dans le Golfe par M. Léon Diguet. Bull. Soc. Philom. Paris, 3rd Ser., Vol. VI, 1894, pp. 2-8.
1894. Eigenmann, C. H. Notes on some South American fishes. Ann. N. Y. Acud. Sci., Vol. VII, i894, pp. 625-637.

1895a. Jordan, D. S. Description of Eacrmannia, a new genus of Gobioid fishes. Proc. Cal. Acad. Sci., 2nd Ser., Vol. 1V, 1892-1894 (1895), p. 592.
1895b. Jordan, D. S. The fishes of Sinaloa. Proc. Cal. Acad. Sci., 2nd Ser., Vol. V, I895, pp. 378-5!4.
1895. Boulenger, G. A. Catalogue of the Perciform fishes in the British Museum, Vol. I.
1895. Faxon, Walter. Reports of an exploration off the west coasts of Mexico, Central and South America, and off the Galapagos Islands, in charge of Alexander Agassiz, by the U. S. Fish Commission Steamer "Albatross", during 1891, Lieut.-Commander Z. L. Tanner, commanding. XV. The Stalk-eyed Crustacea. Mem. Mrus. Comp. Zool. Harzard College, Vol. XVIII, 1S95, pp. 1-292.
1895. Gregory, J. W. Contributions to the Palæontology and Physical Geology of the West Indies. Quart. Journ. Geol. Soc., Vol. LI, 1895, pp. 255-312.
18g6. Jordan, D. S. Notes on fishes, little known or new to science. Proc. Cal. Acad. Sci, 2nd Ser., Vol. VI, 1896, pp. 201-244.
1896. Jordan, D. S., and Starks, E. C. Description of a new species of Pipe-fish (Siphostoma sinalooe) from Mazatlan. Proc. Cal. Acad. Sci., and Ser., Vol. VI, iSg6, p. 268.
1896. Jordan, D. S., and Evermann, B. W. The fishes of North and Middle America. Part I. Bull. U. S. Nat. Mus., No. 47.
1896. Gilbert, C. H. Descriptions of twenty-two new species of fishes collected by the steamer Albatross, of the United States Fish Commission. Proc. U. S. Nat. NTus., Vol. XIX, i896, pp. 437-457.
1896. Rutter, Cloudsley. Notes on fresh-water fishes of the Pacific Slope of North America. III. Note on a collection of fishes made in streans near Cape San Lucas by Dr. Gustav Eisen. Proc. Cal. Acad. Sci., 2nd Ser., Vol. VI, 1896, pp. 263-266.
1898. Evermann, B. W. Notes on fishes collected by E. W. Nelson on the Tres Marias Islands and in Sinaloa and Jalisco, Mexico. Proc. Biol. Soc. IVash., Vol. XII, 189s, pp. I-3.
18gs. Jordan, D. S., and Evermann, B. W. The fishes of North and Middfe America. Parts II and 111. Bull. U. S. Nitr. Mus., No. 47.
1898. Ogilby, J. Douglas- New genera and species of fishes. Proc. Limn. Soc. N. S. W', Vol. XXVILI, 1898, pp. 280-299.

1898-9. Boulenger, G. A. Viaggio del Dr. Enrico Festa nel l'Ecuador e regione vicine. Poissons de l'Équateur. Boll. Mus. Zool. Anat. comp. Torino, Vol. XIII, 1898, pp. 1-13; Vol. XIV, 1899, pp. 1-8.
1899. Greene, C. W. The phosphorescent organs in the Toad-fish Porichthys notatus Girard. Journ. Morph., Vol. XV, 1899, pp. 667-696.
1899. Jordan, D. S., and Mc Gregor, R. C. List of fishes collected at the Revillagigedo Archipelago and neighboring islands. Rep't U. S. Com'r Fish and Fisheries, 1898 (1899), pp. 273-284.
1899. Garman, Samuel. Reports of an exploration off the west coasts of Mexico, Central and South America, and off the Galapagos Islands, in charge of Alexander Agassiz, by the U. S. Fish Commission steamer "Albatross," during 1891, Lieutenant-Commander Z. L. Tanner, U. S. N., commanding. XXVI. The Fishes. Mem. Mus. Comp. Zool. Harvard College, Vol. XXIV, 1889, pp. 1-431.
1899. Boulenger, G. A. Viaggio del Dott. Enrico Festa nel Darien e regioni vicine. Poissons de l'Amérique Centrale. Boll. Zool. Anat. comp. Torino, Vol. XIV, 1899, pp. 1-4.
1899a. Abbott, J. F. The marine fishes of Peru. Proc. Acad. Nat. Sci. Phil., 1899, pp. 324-364.
1899b. Abbotт, J. F. Notes on Chilean fishes, with description of a new species of Sebastodes. Proc, Acad. Nat. Sci. Phil., 1899, pp. 475-477.
1900. Jordan, D. S., and Evermann, B. W. The fishes of North and Middle America. Part IV. Bull. U. S. Nat. Mus., No. 47.
igoia. Pellegrin, J. Poissons recueillis par M. L. Diguet dans le Golfe de Californie. Bull. Mus. d" Hist. Nat. Paris, 1901, pp. 160-167.
1gorb. Pellegrin, J. Poissons recueillis par M. L. Diguet dans l'État de Jalisco. Bull. Mus. d' Hist. Nat. Paris, 1901, pp. 204-207.
1903. Heller, E., and Snodgrass, R. E. Papers from the Hopkins Stanford Galapagos Expedition, 1898-1899. XV. New fishes. Proc. Wash. Acad. Sci., Vol. V, 1903, pp. 189-229.

Figs. 1, ia. Mustelus lunulatus Jordan \& Gilbert. Panama. 5
Figs. 2, 2a. Galeus dorsalis Gill. Panama. 7
Figs. 3, 3a. Carcharias velox Gilbert. Type specimen; Panama. 9

EXPLANATION OF PLATE II.

Figs. 4, 4a. Carcharias cerdale Gilbert. Type specimen; Panama.
Figs. 5, 5a. Carcharias azureus Gilbert \& Starks. Type specimen; Panama.

EXPLANATION OF PLATE III.

Fig. 6. Myliobatis asperrimus Gilbert. Type specimen; Panama.

EXPLANATION OF PLATE IV.

Fig. 7. Galeichthys xenauchen Gilbert. Type specimen; Panama.
PAGE

EXPLANATION OF PLATE V.

Fig. 9. Tachysumus steindacheri Gilbert \& Starks. Type specimen; Panama. 29
Fig. io. Tachysurus evermanni Gilbert \& Starks. Type specimen; Panama. 3^{2}

EXPLANATION OF PLATE VI.
Figs. in, ina. Tachysurus emmelane Gilbert. Type specimen; Panama. 31

EXPLANATION OF PLATE VII.

Fig. I2. Pisoodonophis daspilotus Gilbert. Type specimen; Panama. 36
Fig. I3 Murena clepsvdra Gilbert. Type specimen; Panama. 38

EXPLANATION OF PLATE VIII.

Fig. i4. Anchovia rastralis Gilbert \& Pierson. Type specimen; Panama. 42
Fig. I5. Anchovia spinifera Cuvier \& Valenciennes. Panama. 46

EXPLANATION OF PLATE IX.

Fig. 16. Hemirhamphus sallator Gilbert \& Starks. Type specimen; Panama. 53
Fig. 17. Atherinella panamensis Steindachner. Panama.

EXPLANATION OF PLATE X

Figs. 18, i8a. Fistularia cometa Gilbert \& Starks. Type specimen; Panama.

EXPLANATION OF PLATE XI.

Fig. ig. Oligoplites refulgens Gilbert \& Starks. Type specimen; Panama.
Fig. 20. Oligoplites altus GÜnther. Panama.

‘IIIX ЭLVTd AO NOILVNVTdX'

48
94
\downarrow
4อドむ

 IIX Gllvid ho NOILUNVTdXG

EXPLANATION OF PLATE XIV.

PAGE
Fig. 28. Lobotes pacificus Gilbert. Type specimen; Panama. 100
Fig. 29. Lutianus jordani Gilbert. Type specimen; Panama. IO2
Fig. 30. Orthopristis brevipimis Steindachner. Panama. I I I
Fig. 31. Rhegma thaumasium Gilbert. Type specimen; Panama. 99

EXPLANATION OF PLATE XVI.

Fig. 32. Sagenichthys mordax Gilbert \& Starks. Type specimen; Panama.
Fig. 33. Larimus effulgens Gilbert. Type specimen; Panama. 123

EXPLANATION OF PLATE XVII.
Fig. 34. Larimus acclizis Jordan \& Bristol. Panama.
Fig 35. Odontoscion xanthops Gilbert. Type specimen; Panama. 124

-

EXPLANATION OF PLATE XVIII.

Fig. 36. Stellifer illecebrosus Gilbert. Type specimen; Panama. $\begin{array}{r}\text { page } \\ \text { I28 }\end{array}$
Fig. 37. Stellifer zestocarus Gilbert. 'Type specimen; Panama. 129

EXPLANATION OF PLATE XIX.

Fig. 38. Ophioscion simulus Gnbert. Type specimen; Panama.
Fig. 39. Ophioscion scierus Jordan \& Gilbert. Panama.

EXPLANATION OF PLATE XX.

Figs. 40, 4oa. Polyclemus goodei Gilbert. Type specimen; Panama. I 35
Fig. 41. Paralonchurus petersi Bocourt. Panama. I 36

$$
6
$$

EXPLANATION OF PLATE XXI.

Fig. 42. Eques viola Gilbert. Type specimen; Panama. I38
Fig. 43. Chromis atrilobatus Gile. Panama. 139

EXPLANATION OF PLATE XXII.
Fig. 44. Pomacentrus gilli Gilbert \& Starks. Type specimen; Panama. iqi
ev

EXPLANATION OF PLATE XXII.

Fig. +5. Halichares macgregori Gllbert \& Starks. Type specimen; Panama.
Fig. 46. Eumycterias punctutissimus Günther. Panama.

-

EXPLANATION OF PLATE XXIV

Fig. 47. Chatodon nigrirostris Gill. Panama.

PAGE
$1+8$

EXPLANATION OF PLATE XXV.
Fig. 48. Aesumes hophinsi Gllbert \& Starks. Type specimen; Panama.

EXPLANATION OF PLATE XXVI.

Fig. 49. Balistes aerres Gilbert \& Starks. Type specimen; Panama.
0 7f 3

EXPLANATION OF PLATE XXVII.

Figs. 50, 50a. Prionohes muscarius Gilbert \& Starks. Type specimen; Panama.

EXPLANATION OF PLATE XXIX.

Fig. 53. Enypnias seminudus Günther. Panama.
Fig. 54. Jicrogobius miraflorensis Gilbert \& Starks. Type specimen; Panama.

EXPLANATION OF PLATE XXX.

Fig. 55. Evermannia panamensis Gilbert \& Starks. Type specimen; Panama.
Fig. 56. Porichthys greenci Gilbert \& Starks. Type specimen; Panama.

EXPLANATION OF PLATE XXXI.

Figs. 57, 57a. Batrachoides boulcngeri Gilbert \& Starks. Type specimen: Panama. 182 Fig. 58. Cerdale ionthas Jordan \& Gilbert. Panama. 196
Fig. 59. Microdesmus retropinnis Jordan \& Gilbert. Panama. 195

[GILBERT \& STARKS] PLATE XVYI

1
$1-1:$

EXPLANATION OF PLATE XXXII.

Fig. 60. Hipsoblennizs piersoni Gilbert \& Starks. Type specimen; Panama.
Fig. 61. Homesthes caulopus Gilbert. Type specimen; Panama.

EXPLANATION OF PLATE XXXII.

Fig. 62. Ancylopsetta dendritica Gilbert. Panama. I99

INDEX TO Volume IV.

Now names in heavy-faced type.
abacurus, Eleutris 170
Aboma lacretion 174, 217 acclivis, Larimus 123, 124, 214
Achirus fonsccensis 201, 203, 21s
klunzingeri 200, 201, 218
mazatlanus 200, 201
scutum 202, 218
acntus, Fodiator 55, 210
adspersus, Paralichthys 197
wquidens, Eleotris 169
aerostaticus, Tetraodon 159
:estuarius, Paralichthys 195
wthalorus, Carcharias 9, 11, 207
Aetobatus uariuari 18, 207
afer, Alphestes 96,97
aftinis, Fierasfer 197
Isopisthus 117
agassizii, Xenichthys 104
alalunga, Germo 206
albesceus, Remora 206
albirostris, Prionotus 162, 216
albomaculatus, Serrauns 97
Albula vulpes 39,209
Albulide 39
albus, Cynosciou 119, 214
Alectis ciliaris 50,211
Alexurus armiger 170,216
Alphestes afer 96, 97
moltiguttatus $96,97,212$
altipinuis, Micropogou 132, 215
altus, Oligoplites $72,73,74,211$
aluta, Bairdiella 127
amazonica, Tbalassophryuc 188
amblyopsis, Eleotris 170
Anableps 51
dowei 51, 210
tetrophthalmus 51
analis, Umbrina 133
aualogns, Epinephelus 96,212
Kyphosus 116
Auchovia compressa 43, 44, 45
cultrata 44
curta 42, 209
delicatissima 44
ischana $42,43,209$
lucida 42, 43, 209
macrolepidota 47, 20!
miarcha 42, 209
mundeola $5,43,44,45,46,20!$
naso $5,43,209$
opercularis 42, 209
pauamensis $43,44,45,209$

Anchuvia rastralis 5, 10, 209)
spinifera 46, 209
starksi 5, 43, 209
ancylodon, Sagenichthys 121
Ancylopsetta dendritica 199, 218 quadrocellata 199
Angelichthys 151
angusticeps, Spheroides 156
Auisotremus 111
casins 107, 213
dovii $106,107,213$
interuptus 107,213
pacifici $106,107,213$
surinamensis 107
toniatus 108,213
virginicus 108
anuulatus, Spheroides $156,157,158,154$
Antemarins sanguinens $204,21 \mathrm{~S}$ strigntus 204, 218
Apogon atricandus Sg atridorsalis 8 ?
dovii $85,59,212$ retrosella 59
approximaus, Polydactylus 63,210
aratus, Lutiaums 103, 213
archidium, Elattarchus 125, 214
Archoscion 117
argenteus, Larimus $123,124,214$
argentiventris, Lutianus 103, 212
argus, Mureua 38
arioides, Bagrus 32, 33
Arius assimilis 23
melanopus 29
seemanui 22
armata, Bairdiella 126, 214
armatus, Centropomus 90, 92, 94, 212
armiger, Alexurus 170, 216
Arothron erethizon 159
asperrimus, Myliobatis 5, 19, 207
aspidurus, Uroloplius $16,17,207$
assimilis, Jrius 23
asterias, Urolophins 16
Astroscopus 187
Atherinella panamensis 5!, 210
Atherinidio 57
atlanticus, Lupiscartes 194, 217
atramentatus, Symphurus 203, 218
atricaudus, Apogon 89
Symphurus 204, 218
atridorsalis, Apogon 59
atrilobatus, Chromis 139, 140, 215
atrimanus, Ifemicaranx 75, 76, 211

Auchenopterus monophthalmus 189, 217
auctorum, Lobotes 100
auliscus, Siphostoma 57, 210
aureolus, Gerres $114,115,213$
auritus, Brachydeuterus 111
averruncus, Kathetostoma 181, 217
axillaris, Brachydeuterms 111
Azevia panamensis 200, 218
azureus, Carcharias 5, 11, 12, 207

Bagrus ariontes 32, 33
bahiauus, Tenthis 151
Bairdiella 128
aluta 127
armata 126,214
chrysoleuca 127, 214 ensifera 126, 214
icistia 126
balao, llemirhamphus 53
balearicum, Ophisoma 34
Balistes capistratus 153, 154
carolinensis 152
naufragium 152, 153, 216
polylepis $152,153,216$
verres $5,153,154,216$
Balistidm 152
bathymaster, Bregmaceros 197
Batrachoides 185
boulengeri 5, 181, 182, 217
pacifici 181, 182, 217
suriuameusis 181, 182, 183
Batrachoidida ISI
Batrachus surinamensis 189
bayanus, Pomadasis 109, 213
Belone truncata 52
birostris, Manta 206
birostratus, Prionotus 165
Blenuiid* 189,196
Blenuiiua 193
bollmani, Hippoglossina 197, 218
Bollmannia chlamydes, 174,217
boncardii, Poscilia 51, 210
boulengeri, Batrachoides 5, 181, 182, 217
boulengeri, Mycteroperca 97, 212
Brachydeuterns 111
auritus 111
axillaris 111
corvinaformis 111
elongatus 111
leuciscus 109, 213
nitidus 109, 111, 213
brachysomus, Calamus $112,113,213$
branicki, Pomadasis 110, 213
brasiliensis, Hewirhamphus 5.3, 54
Bregmaceros bathymaster 197
macclellaudi 197, 218
Bregmacerotidæ 197
Hrevimanns, Gerres 115, 213
brevipinnis, 11 ypsobleunius 193 , 217
Orthopristis 111. 213
brevis, Tyutlastes 180, 217
Brotulidso 197
Buccone 118

Caballes, Caranx 78, 21
casius, Anisotremus 107, 213
Calamns brachysomus 112, 113, 213
tauriuus 112,113
calamns, Chrysophrys 112
californicus, Galeus 7, 9
califormiensis, Encinostomus 113, 114, 213
callopterus, Cypselurus 55, 210
capistratus, Balistes 153, 154
Chætodou 149
Carangida 70
Caraux caballus 7S, 211
orysos 78
hippos 77, 211
latus 78, 79
lugubris 206
marginatus 78, 2]1
medusicola 7S, 79
viuctus 77, 211
Carcharias 9
mthalorus $9,11,207$
azureus 5, 11, 12, 207
cerdale 5, 10, 11, 207
nicaragueusis 12
velox 5, 9, 207
Carchariuus cerdale 10
velox 9
carolinensis, Balistes 152
carolinus, Trachinotus 84
Cathorops 34
gulosus 33, 20 S
hypophthalmus 3 3, 208
candimacula, llæmulon 105
caulinaris, Lophiomus 204, 218
caulopus, Homesthes 5, 193, 19f, 217
Ceutropomida 59, 206
Centropomus 180
armatus $90,92,94,212$
ensiferus 92, 94 grandoculatus 90
medius 90
nigrescens 90,212
pedimacula 90,212
robalito $90,91,92,94,212$
undecimalis 59 , 212
unionevsis $90,92,212$
viridis 89
cephalus, Mrgil 59, 210
Cerdale 196
ionthas 196, 218
cerdale, Carcharias $5,10,11,207$
cerdale, Carchariuns 10
Cerdalide 195, 196, 206
Cetengranlis 42
edeutulns 47, 4S
engymen 5, 48, 209

Cetengraulis mysticetus $47,48,209$
Chanomugil proboscideus 61, 210
Chrtodipterus 148
faber 147,148
zouatus $147,148,215$
Chatodon capistratus 149
humeralis 149, 215
nigrirostris $14 \mathrm{~S}, 215$
Chrotodoutidr 148
chalceus, Orthopristis 110,213
Cleilodipteridro SS
chilensis, Sarda 68, 211
chlamydes, Bollmanuia 174, 217
Chloroscombrus chrysurus 82 orqueta 82,211
Chromis atrilobatus 139, 140, 215 notatus 140
chrysoleuca, Bairdiella 127, 214
Chrysophrys calamus 112
chrysirus, Chloroscombrus 82
cilıaris, Alectis 80, 211
cinereum, Xystama 114, 213
cinereus, Microspathodon 144
cirratum, Ginglymostoma 5, 207
Cirrhites rivulatus 139,215
Cirrbitids 139, 206
Citharichthys 4
gilberti 200,21S
platophrys 200, 218
spilopterus 200
Citula dorsalis 79, 211
clarionis, Sesurus 155
clepsydra, Muræna 5, 38, 209
Clevelandia 178
ios 178
Clupeidro 39
colias, Scomber 206
colorado, Lutiamus 103, 213
compressa, Anchovia $43,44,45$
coucolor, Nexilarius 143, 215
Scomberomorus 6S
Congrellus gilberti 34,20 S nitens $34,20 \mathrm{~S}$ proriger 34,208
couiceps, Murmesox 35,208 constellatus, Platophrys 199, •1 15
corneta, Fistularia 5, 56, 57, 210
corvineformis, Brachydeuterns 111
Corvula macrops 125, 214
crebripunctata, Pteroplatea 18, 207 creolus, Serranus 98 crescentalis, Pomacauthus 150 crestonis, Teuthis $151,: 16$
crocro, Pomadasis 109
crossotus, Etropus 200, 218
crumenophthalmus, Trachurops 75, 211
crysos, Caranx 78
eultrata, Auchovia 44
culveri, Trachinotus S4, 211
curema, Mugil 60, 210
curta, Anchovia 42, 209
cyclolepis, Microgobius 174, 175
Cyclopsetta querua 200,218
Cynoscion 4, 117, 118, 120, 12.5
albus 119, 214
othonopterns 119, 2t4
phoxocephalus 120, 214
predatorius 115,214
reticulatus 119,214
squamipinuis 118,214
stolzmanni 119, 214
eyprinoides, Lophogobius 176
Cypselurus callopterus 55, 210

Dactyloscopibet 181, 206
Dactyloscopus zelotes 181, 217
Drector 158
daspilotus, Pisoodonophis 5, 36, 208
Dasyatidæ 15
Dasyatis dipterura 18
longa 17, 18, 207
dasycephalns, Galeichtlays 25, 26, 208
declivifrous, Glyphisodon 143
delalaudi, Malacocteuns 189, 217
delucatissima, Auchovia 44
deliciosa, Sciena 132, 214
dendritica, Ancylopsetta 199, 218
depressa, Fistularia 55, 56, 210
Diapterus dowii 113
Diodon holacanthus 160,216 hystrix 161, 206
Diodontidæ 160
Diplectrum 4
euryplectrum 97, 98, 212
macropoma $97,98,212$
radiale $97,98,212$
diplotruia, Harpe 144, 215
dipterura, Dasyatis 18
dipus, Microdesmus 195, 218
Discopsge ommata 15, 207
dispilus, Malichores 146,215
Dormitator maculatus 169, 216
dormitor, Philypuus 168
dorsalis, Citula 79, ㄹ11
Galeus 7, 207
Microspathodon 143, 215
Umbrina 133, 214
dovii, Anisotremus $106,107,213$
Apogon 88, 8!, 21:
Lycodontis 37, 209
Opisthopterus 41, 209
dowei, Auableps 51
dowi, Exocotus 55
Seleuaspis 26, 20s
Thalassophryne 187, 217
dowii, Diapterus 113
Eucinostomus 113
dubius, Fierasfer 197, 215
Aumerili, Polyclemus $134,13 \overline{3}, 21 \overline{3}$

Echeneidibe 180
Echeneis naucrates 180, 217
edentulus, Cetengraulis 47,48
effulgens, Larimus 5, 123, 214
eigenmanni, Galeichthys 5, 21, 22, 23, ㄴs, 208
elater, Zalieutes 204, 215
Elattarchus archidium 125, 214
elattura, Netuma 29, 208
elegans, Kyphosus 116, 213
Eleotris abacurns 170
requidens 169
amblyopsis 170
pictus 169, 216
pisomis 170
elongata, Pacilia 50, 210
elongatus, Bracbydeuterus 11I
Menticirrhus 134, 215
Symphurus 203, 218
Elopid: 39
Elops saurus 39, 209
Emblemaria nivipes 194, 217
emblematicus, Microgobins $174,175,176,217$
emmelane, Tachysurus 5, 30, 31, 208
Lugranlididre 42
engymen, Cetengraulis $5,4 \mathrm{~S}, 209$
Engyophrys sancti-laurentii 199, 218
ensifera, Bairdiella 126, 214
ensiferus, Centropomus 22, 94
ensis, Sphyroua 62, 210
entemedor, Narcine 15, 207
Euypuias 174
seminudus 173, 217
Ephippidae 147
Epinephelus analogus 96, 212
labriformis 96,212
lonti 95
equatorialis, Raja 15, 207
Eques viola 5, 128, 138, 215
erate, Lobotes 100
erethizon, Arothron 159
Tetraodon 160
ericymba, Stellifer 129, 214
Esocida 51
Etropus crossotus 200, 218
Eucinostomus californiensis $113,114,213$
dowii 113
harengulus 114
psendognla 114
eulepis, Microgobins 176
Eumycterias punctatissimus 160,216
euryplectrum, Diplectrom $97,95,212$
Evapristis 111
evermanni, Syuodus 49, 209
evermanni, Tachysurus 5, 32, 208
Evermannia 178
panamensis $5,178,179,217$
zosterna 178, 179, 217
Evoplites 101
Exocetides 55
Exocutus dowi 55

Exonautes rufipinnis 55, 210
faber, Chetodipterus 147, 148
falcatus, Trachinotus 84
fasciatus, Genyanemus 134 Prionodes 98, 212
Felichthys panamensis 20, 207 pionimaculatus 20, 207
fervandinus, Squalus 13
Fierasfer aftinis 197
dubins 197, 218
Fierasferidie 197
fischeri, Solea 201, 202
Fistularia corneta 5,56,57, 210
depressa 55,56, 210
petimba 56
serrata 56
tabacaria 57
Fistulariidæ 55
flaviguttatum, Lythrulon 105, 106, 213
flavilatus, Pomacentrus 142, 215
Fodiator acutus 55, 210
fodiator, Tylosurus 52, 210
fonsecensis, Achirus 201, 203, 218
Solea 201, 202
forbesi, Orthopristis 111
formosa, Gueutheridia 159, 216
formosus, Telraodon 159
Tetrodon 155
forsteri, Sphyrana 62
furcifer, Paranthias 98, 212
furthi, Ilisha 40,209
Pellona 40
Stellifer 127, 214
furthii, Memicaranx 77, 2ll
Spheroides 755,216
Tachysums 30, 31, 32, 33, 205

Galeichthys 21
dasycephalus 25, 26, 20 S
eigenmanni 5, 21, 22, 23, 2s, 208
gilberti 22, 23
gualemalensis 25, 20 S
jordani 22, 23, 28, 208
lentiginosus 20, 207
longicephalus 25, 26, 208
peruvianus :31, 207
platypogon 23
seemanni 21
xenauchen 5, 24, 208
Galeidz 5
Galeocerdo tigriuns 9, 207
Galeus californicus 7,9
dorsalis 7,207
Garmannia 173
paradoxa 179, 173, 174, 217
gentilis, Hypsoblemins 191, 192, 193
Genyanemus fasciatus 134
Genyoroge 101, 102

Germo alalunga 206
Gerres aureolus $114,115,213$
brevimauus 115, 213
lineatus 115
olisthostomus 115
peruvianus 115, 213
squamipinnis 114
Gerride 113
gilherti, Citharichthys 200, 218
Congrellus 34,208
Galeichthys 22, 23
Hypsoblennius 191, 192, 193, 194
Kirtlandia 57, 58, 210
gilli, Pomacentrus 5, 140, 141, 215
Ginglymostoma cirratum 5, 207
Ginglymostomide 5
glaucostigma, Rhinobatus 14
glaucus, Trachinotus 82, 83
Glyphisodon declivifroms 143 saxatilis 143,215
Gnathanodon speciosns 79, 211
Gobiesocidao 189
Gobiesox gyrinus 159
nudus 189
rhodospilus 189, 217
Gobiidae 167
Gobionellus microdon 171, 217 sagittula 171, 216
Gobins 173, 174
nicholsi 176
soporator 171, 216
goodei, Paralonchurus (Zaclemns) 135
goodei, Polyclemus 5, 135, 215
goodei, Urolophus 16, 207
Gramma 98
Grammistes $9 S$
grandisquamis, Upeneus 67,211
grandoculatus, Centropomis 90
greenei, Porichlhys 5, 184, 217
gronovii, Nomens 84, 211
grossidens, Lycengraulis 49
guatemalensis, Galeichthys 25, 208
guentheri, Hoplopagrus 101, 212
Guentheridia 158, 159
formosa 159, 216
gulosus, Cathorops 33, 208
Microgobius 176
guttatus, Lutianus 103, 212
Petrometopon 95
Promicrops 96, 212
Gymneleotris semimudns 170,216
gyrinus, Gobiesox 189

Hemolide 104

Tremulon caudimacnia 105
macrostomum 104
mazatlaunm 106
parra 10t, 105
scudderi $104,105,213$
steindachneri 105,213

Malichores dispilus 146,215
macgregori $5,145,215$
nicholsi 145
sellifer 144,215
halleri, Urolophus 15, 207
barengulas, Eucinostomus 114
hareugus, Querimaua 61, 62, 210
ITarpe diplotonia 144,215
Hemicaranx atrimanns $75,76,211$ furthii 77, 211
leucurus 77, 211
zelotes 5, 76, 2ll
Hemirhamphida 5:
Hemirhamphus balao 53 brasiliensis 53, 54 saltator $5,53,54,210$
Hexanematichthys 21 semauchen 24
Hippocampus ingeas 57, 210
Hippoglossina bollmani 197, 21S sabanensis 199
hippos, Caraux 77, 211
hispidus, Tetraodon 157, 159, 160, 216
histrio, Scorproua 161, 216
Holacanthus 15]
passer 150, 216
strigatus 150
holacauthus, Diodou 160, 216
Holocentrida 64
Holocentrus suborbitalis 66, 211
Homesthes 193
caulopus 5, 193, 194, 217
hopkinsi, Xesurus 5, 155, 216
Hoplopagrus guentheri 101, 212
horrens, Prionotus $162,165,166,216$
hospes, Mugil 60, 210
humeralis, Chatocion 149, 215
Paralabrax 97, 212
humile, Pristipoma 109
bumilis, Pristipoma 109
hypophthalmus, Cathorops 33, 208
Hypoplectrus lamprurus 97,212
Iypoprion 9
Hyporhamphus poeyi 52 roberti 53, 210 mnifasciatus 52, 210
Hypsobleunius 193
brevipiunis 193, 217
gentilis 191, 192, 193
gilberti 191, 192, 193, 104
ionthas 193
piersoni $5,191,217$
punctatus 193
scrutator 193
striatus $192,193,21 \%$
hystrix, Diodou 161, 206
mistia, Bairdiella 126
llisha furthi 40,209
panmmensis 40
illecebrosus, Stellifer 5, 128, 129, 138, 214
Ilypuns 178
imiceps, Ophioscion 131, 214
iucilis, Mugil 59
indefatigabile, Otophidinm 196, 218
inermis, Rabiruhia 103, 213
ingens, Hippocampus 57, 210
inornatus, Microlepidotus 111
Orlhopristis 111
insculpta, Netuma 27, 208
insularum, Murrena 38
interruptrs, Anisotrewns 107,213
ionthas, Cerdale 196, 218
Hypsoblennius 193
ios, Clevelandia 178
Isaciella 111
ischana, Anchovia 42, 43, 209
Isopisthus 117, 122
affinis 117
parvipinnis 117
remifer 117,213

Jenkingi, Syuodus 50
jordani, Galeichthys $22,23,28,208$
jordani, Lutianus 5, 101, 102, 212
jordani, Neomenis 102

Kathetostoma averruncus 181, 217
kemnedyi, Trachinotus 8í, 211
kessleri, Netuma 26, 208
Kirtlandia 57
gilberti 57, 58, 210
pachylepis 57, 210
vagrans 57
klunzingeri, Achirus 200, 201, 21 S
kneri, Pristipoma 110
Kyphosidio 116
Kyphosus analogus 116
elegans 116, 213

Labride 144
labriformis, Epinephelus 96, 212
Lampris luna 206
lamprurus, Hypoplectrus 97, 212
Larimus acclivis $123,124,214$
argenteus $123,124,214$
effulgens 5, 123, 214
pacificus 124, 214
lateralis, Philypnus 167, 168, 216
laticlavins, Mesurus 155
latifrons, Syacium 199, 218
latus, Caranx 78, 79
leei, Symphurus 204, 21s
lentigiuosa, Murrena 39, 209
lentiginosus, Galeichthys 20, 20*
Lepophidium prorates 196, 218
Leptocephalidio 34
lepturus, Trichiurus 70, 211
lenciscus, Brachydeuterns 109, 213
lencurns, Hemicarans 77, 211
lencorhynchus, Rhinobatus 14, 207
libertate, Opisthonema 40, 209
lineains, Gerres 115
liropus, Tachysurus 29, 30, 31
lobatus, Spheroides 156
Lobotes 100
anctorum 100
erate 100
pacificus 5, 100, 212
surinamensis 100,101
Lobotidre 100
longa, Dasyatis 17, 18, 207
longicephalus, Galeichthys 25, 26, 208
longnrio, Scoliodon 12, 207
Lophiomus canlinaris 204, 218 setigerns 204
Lophogobius cyprinoides 176
louti, Epinephelus 95
loxias, Prionotus 162, 216
lucasanum, Thalassoma 146,215
lucida, Anchovia 42, 43, 209
lucretis, Ahoma 174, 217
lugubris, Caranx 206
Inua, Lempris 206
lunulatus, Mustelus 5, 6 7, 8, 207
Lutianidab 101
Lutianus 101, 102
aratus 103,213
argentiventris 103,212
colorado 103, 213
(Evoplites) viridis 101, 102
guttatus 103, 213
jordani 5, 101, 102, 212
novemfasciatus 102 , 212
Lycengraulis grossidens 49 poeyi 49,209
Lycodontis dovii 37, 209 verrilli 37, 209
Lythrulon Alavignttatum 105, 106, 213 opalescens 105, 106
macclellandi, Bregmaceros 197, 218
macgregori, Halicheres 5, 145, 215
maclura, Pteroplatea 18
macracanthus, Pomadasis 110,213
macrocephalus, Muierpes 189, 217
macrolepidota, Anchovia 47, 209
macropoma, Diplectrum 97, 98, 212
macrops, Corvula 125, 214
Opisthoplerus 41, 209
macrostomum, Hibmulou 104
maculatus, Dormitator 169, 216
Scomberomorus 68, 69
maculicanda, Orthostœechus 106, 213
maculosa, Thalassophryne 188
magdalenre, Paralichthys 198
Malacoctenus delalandi 189, 217
Manta birostris 206
margaritatus, Porichthys 184, 185, 217
marginatus, Caranx 78, 211
marmoratus, Symbranchns 34, 208
matoides, Teuthis 151
mazatlanum, Hwmulon 106
mazatlanus, Achirus 200, 201
medins, Centropomus 90
Peprilus 5S, 212
medusicola, Caranx 78, 79
melanopus, Arius 29
Tachysurus 29, 31, 32
melanotis, Murema is
Meuidia 57
Meuticirrhus elongatus 134, 215
nasus $133,134,215$
panamensis $133,134,215$
simus 133
miarcha, Anchovia 42, 209
Microdesmus 195, 196
dipus 195, 218
retropinuis 195, 218
microdon, Gobionellus 171, 217
Microgobius 177
cyclolepis 174, 175
emblematicus 174, 175, 176, 217
enlepis 176
gulosus 176
miraflorensis 5, 176, 217
signatus 175,176
thalassinus 175, 176
Microlepidotus 111
inornatus 111
Micropogon altipiunis 132, 213
Microspathodon cinereus 144
dorsalis 143, 215
miraflorensis, Microgobius 5, 176, 217
minor, Stellifer 128
Muierpes macrocephalus 159, 217
Mola mola 206
mola, Mola 206
mouophthalmus, Auchenopterns 189, 217
mordax, Sagenichthys 5, 121, 214
Mugil cephalus 59, 210
curema 60, 210
hospes 60, 210
incilis 59
thoburni 59, 210
Mugilidio 59
Mullidæ 67
multiguttalus, Alphestes 96, 97, 212
multiradiatus, Tachysurus 32, 33, 208
mundeola, Anchovia 5, 43, 44, 45, 46, 209
mundeolus, Stolephorus 44
muudus, Oligoplites $70,72,73,74,211$
Urolophus 16, 17, 207
Muræna argus 38
clepsyara 5, 35, 209
insularum 38
leutiginosa 39, 209
melanotis 38
panawensis 37
Muronesocide 35

Murmenox coniceps 35, 208
savauna 35
Murionida 37
Muslelus lunulatus $5,6,7,8,207$
Mycteroperca boulengeri 17,212
Myliobatida 18
Myliobatis asperrimus 5, 19, 207
Myrichthys tigrinus 35,208
Myride 35
Myripristis occidentalis 64, 65, 210
pcecilopus 64, 65, 210
Myrophis puuctatus 35 vafer $35,20 \mathrm{~S}$
mystes, Scorprona 16t, 216
mysticetus, Celengraulis 47, 48, 209
Narcine entemedor 15, 207
Narcobatidre 15
narinari, Aetobatus 18, 207
naso, Auchovia 5, 43, 209
naso, Stolephorus 43
nasus, Meuticirrhus 133, 134, 215
naucrates, Echeueis 180, 217
uaufragium, Balistes $152,153,216$
Nebris 122
occidentalis 122,214
zestus 122
uebulosus, Urolophus 15
Nematistiidre 70, 206
Nematistius pectoralis 70,211
Neocouger vermiformis 35, 908
Neosurenis 101
jordaui 102
Netuma 24
elattura 29, 208
insculpta 27, 208
kessleri 26, 208
oscula 28, 20, 205
planiceps 20, 22, 27, 28, 29, 208
platypogon $27,28,208$
Nexilarius concolor 143,215
nicaraguensis, Carcharias 12
aicholsi, Gobius 176
Halichares 145
nigrescens, Ceutropomus 90,212
nigripiunis, Rypticus 100, 212
nigrirostris, Chrotodou 148, 215
nitens, Congrellus 34, 208
nitidus, Brachydeuterus 100, 111 , 21:3
nivipes, Emblenaria 194, 217
Nomeus grouovii 81, 211
notatus, Chromis 140
Porichthys 184, 185
notospilas, Pseudojulis 145, 146, 2 t5
novemfasciatus, Lutianus 102,2 t2
nudus, Gobiesox 159
occidentalis, Myriprisis 64, 65, 210
Nebris 122, 214
ocyurus, Sectator 116, 213

Odonloguathus panamensis 41, 209
Odontoscion xanthops 5, 124, 214
werstedii, Selene 81, 211
Ogilbia ventralis 197,218
oglinum, Opisihonema 40
Oligoplites altus 72, 73, 74, 211
mundus $70,72,73,74,211$
refulgens $5,73,74,211$
saurus $70,72,73,74,211$
olisthostomus, Gerres 115
ommata, Discopyge 15, 207
opalescens, Lythrulon 105, 106
opercularis, Anchovia 42, 209
Polydactylus 63, 64, 210
Ophichthus triseriahs 37, 208 zophochir 37, 209
Ophichthyidæ 35
Ophidiida 196
Ophioscion imiceps 131, 214
scierus 131, 214
simulus 5, 130, 131, 214
strabo $130,131,214$
typicus 129, 131, 214
Ophisoma balearicum 34
Ophisurus xysturus 35
Opisthognathidæ 180
Opisthognathus punctatum 180, 217
Opisthonema libertate 40, 209
oglinum 40
Opisthopterus dovii 41, 209
maerops 41, 209
orqueta, Chioroscombris 82, 211
Orthopristis 111
brevipinois 111,213
chalceus 110, 213
forbesi 111
inornatus 111
Orthostcechus maculicauda 100 , 213 oscitans, Stellifer 127
oscula, Netuma 28, 29, 208
osculus, Tachisurus 29
othonopterus, Cynoscion 119, 214
Otophidinm indefatigabile 196,218
ovale, Syacium 199, 218
pachylepls, Kirtlandia 57, 210
pacifici, Anisotremus $106,107,213$
Batrachoides 181, 182, 217
pacificus, Larimus 124, 214
pacificus, Lobotes 5, 100, 212
pacificus, Tylosurus 52, 210
paloma, Trachinotins 84, 211
palometa, Peprilus 85, 212
panamensis, Anchovia 43, 44, 45, 209)
Atherinella 59,210
Azevia 200, 218
panamensis, Evermannia 5, 178, 179, 217
panamensis, Felichthys 20, 207
Ilisha 40
Menticirrhus 133, 134, 215
panumensis, Murona 37
Odontoguathus 41, 209
Parapsellus 148, 215
Pellona 40
Petromelopon 95, 212
Pomadasis 109, 213
Liabula 37, 209
Solen 201, 202
patmosa, Scorprena 161, 216
paradoxa, Garmannia $172,173,174,217$
Paralabrax humeralis 97,212
Daralichthys adspersus 197
costuarius 198
magdalenw 198
sinalow 197,198
woolmanni 197, 198, 218
Paralonchurus 136, 137
petersi $135,136,215$
(Zaclemus) goodei 135
Paranthias furcifer 98, 212
Parapsettus panameusis 148, 215
parra, Itomulon 104, 105
parvipinuis, Isopistluns 117
passer, Holacanthus 150, 216
pectoralis, Nematistios 70, 211
pedimacnla, Centropomus 90,212
Pellona furihi 40
panamensis 40
Peprilus medins 88, 212
palomela 85, 212
snyderi 5, 87,212
perrico, Psendoscarus 146, ㄴ15
perspicillaris, Tetraodon 159
peruauns, Polyclemus 135
peruvianus, Galeichthys 21, 207
Gerres 115, 213
pelersi, Paralonchurus 135, 136, 215
petimba, Fistularia 56
Petromelopon guttatus 95 panamensis 95, 212
Philypuus 168 dormitor 168 lateralis 167, 168, 216
phoxocephalus, Cynoscion 120, 214
picturalus, Trachurus 206
pictus, Eleotris 169, 216
piersoni, Hypsoblenujus 5, 191, 217
pinnimaculatus, Felichthys 20, 207
pisonis, Eleotris 170
Pisoodonophis daspilotus 5, 36, 208
plauiceps, Netuma 20, 2.2,27, 2s, 29, 20s
platophrys, Cithariclithys 200, 218
1'latophrys constellatus 199, 218
1’atypodou 11
platypogon, Netuma 23, 27, 28. 208
Pleuronectidæ 197
plnmieri, Scorprona 161
Pocilia boucardii 51, 210
elongata 50,210
Puciliide 50
pocilopus, Myriprist is 64,65, 210
pocyi, Hyporhamphus 52
Lycengraulis 49, 209
politus, Spheroides 157,158
Polyclemus 135
dumerili $134,135,215$
goodei $5,135,215$
peruauus 135
rathbuni 135, 215
Polydaclylus approximaus 63, 210 opercularis $63,64,210$
polylejis, Balistes 152, 153, 216
Polynemidro 63
Pomacanthus crescentalis 150 zonipectus 150,215
Pomacentridse 139
Pomacontrus flavilatus 142, 215
gilli 5, 140, 141, 215
rectifrouum $140,141,142,215$
Pomadasis 111
bayauns 109, 213
branicki 110, 213
crocro 109
macracanthus 110,213 panamensis 109,213
Pomadasys 100
Porichthys greenei 5, 184, 217
margaritatus 184, 185, 217
motatus 184, 185
pradatorius, Cynoscion 118, 214
Priacanthida 101
Priacanthns sercula 212
Prionodes fasciatus 98, 212
Prionotus 4
albirostris 162,216
birostratus 165
horrens 162, 165, 166, 216
loxias 162,216
quiescens 162, 216
ruscarius $5,162,163,165,216$
tribulus 162, 165
xenisma 162,216
Pristidem 14
l'ristipoma humile 109
humilis 109
kneri 110
Pristis zephyreus 14, 207
proboscideus, Chronomugil 61, 210
Promicrops guttatus 96, 212
prorates, Lepophidium 196, 218
proriger, Congrellus 34,208
pseudogula, Encinostomus 114
Pseudojulis nolospilus 145, 146, 245
l'sendopriacanthus serrula 101
Psendoscarns perrico 146,215
Pteroplatea crebripunctata 18,207 maclura 18 rava 18
punctatissimus, Eumycterius 160, 216 punctatum, Opisthoguathes 180, 217 (39)
punctatus, Mypsoblemuins 193 Myrophis 35
Xesurus 1.55
quadrocelfata, Ancylopsetta 199
Querimana harengus $61,62,210$
querua, Cyclopsetta 200, 218
quiescous, Prionotus 162, 2 t 6

Rabirubia inermis 103, 213
Rabula panamensis 37, 209
radiale, Diplectrum 97, 98, 212
Jaju equatorialis 15,207
Rajida 15
Ramularia 199
rastralis, Anchovia 5, 42, 209
rastralis, Stolephorns 42
rathbuni, Polyclemus 135, 215
rava, Pteroplatea 18
rectifrenum, Pomacentrus $140,141,142,215$
refulgens, Oligoplites $5,73,74,211$
remifer, Isopisthus 117, 213
Remora albescens 206
remora 180, 217
remora, Remora 180, 217
reticulata, Thalassophryue 156, 158, 217
reticulatus, Cynoscion 119, 214
retropinnis, Microdesmus 195,218
retrosella, Apogon 89
Rhegma 98
thaumasium $5,99,212$
Rhegmatinæ 99
Rhinobatide 14
lhinobatus glaucostigma 14
leucorhynchus 14,207
rhodopus, Trachinotus $82,83,211$
rhodospilus, Gobiesox 189, 217
rivulatus, Cirrhites 139,215
robalito, Centropomus $90,91,92,94,212$
roberti, Hyporhamphus 53,210
rogersi, Urolophus 16
rubropunclatus, Scartichthys 194,217
rufipinnis, Exonautes 55, 210
Rupiscartes athanticus 194, 217
ruscarius, Prionotus 5, 162, 163, 165, 216
inssula, Scorpana 161, 216
Rypticiur 98, 99
Rypticus 98
nigripinnis 100,212
sabasensis, Hippoglossina 199
Sagenichthys 12.2, 137
ancylodon 121
mordax 5, 121, 214
sagitula, Gobionellus 171, 216
saltator, Hemirhamphus 5,53,54, 210
sancli-laurentii, Engyophrys 199, 21 S
sanguineus, Antenuarius 204, 215
Sarda chilensis 68,211

Sardinella stolifera 39, 209
saurus, Elous 39, 209
Oligoplites 70, 72, 73, 74, 211
savanna, Murenesox 35
saxatilis, Glyphisodon 143, 215
scapnlaris, Tylosurus 51, 210
Scaridio 146
Scartichthys rubropuuctatus 194, 217
Scarus 4
Sciudeichthys troscheli 26, 208
Noinna deliciosa 13ㅇ, 214
Scieundie 117
scierns, Ophioscion 131, 214
scituliceps, Syuodus 50, 20!
S'culiodon longurio 12, 207
Scomber colias 206
Scomberomorus concolor 68 maculatus 68,69 sierra 68, 69, 211
Scombridas 68
Scorpera histrio 161, 216
mystes 161, 216
paunosa 161, 216
plumieri 161
russula 161,216
Scurpenida 161
scrutator, Hypsoblennins 193
scudderi, Homulon 104, 105, 213
scutum, Achirus 202, 218
Sectator ocyurus 116, 213
seemanui, Arius 22
Galeichtliys 21
Solenasjis dowi 26, 208
Selene orstedii 81,211
vomer $81,82,211$
sellifer, Halicheres 144, 215
semundns, Enypuias 173, 2 t7
Gymueleotris 170, 216
Serranita 95
Serranns albomaculatus 97 creolus 98
serrata, Fistularia 56
serrula, Psendopriacauthus 101, 212
setigerus, Lophiomns 204
setipinuis, Vomer s0, 211
setosus, Tetraodou 159
sierra, Scomberomorns 68, 69, 211
Sigmurus vermicularis 132,214
signatus, Mierogobins 175, 176
Silurida 20
simulus, Ophioseion 5, 130, 131, 214
simus, Menticirrhns 133
siualow, Paralichthys 197,198
Siphostoma anliscus 57, 2 to
snyderi, Peprilus 5, 87, 212
Solea fischeri 201, 202
fonsecensis 201, 202
pan凤meusis 20], 202
Soleidie 200
soporator, Gobius 171,216

Sparida 112
speciosus, Gnathanodon 79, 211
Spheroides 158, 159
angusticeps 156, 216
amunlatus $156,157,158,159,216$
furthii 158, 216
lobatus 156, 216
politus 157, 158
testudinens 156, 216
Sphyrana cusis 62, 210
forsteri 62
Sphyrænida 62
Sphyrua tiburo 13, 207
tudes 13, 207
zygaua 13, 207
Sphyruidat 13
spilopterus, Citharichthys 200
spiuifera, Auchovia 46, 309
spixii, Vomer 80
Squalidæ 13
Squalus 13
fernandinus 13
sucklii 13,207
squamipiunis, Cyuoscion 118, 214
Gorres 114
starksi, Auchovia 5, 43, 209
starksi, Stolephorus 43
steindachneri, Hamulon 105, 213
steindachnerí, Tachysurus 5, 29, 30, 20 s
Stellifer 1:8
ericymba 129, 214
furthi 127, 214
illecebrosus 5, 128, 129, 138, 214
minor 128
oscitans 127, 214
zestocarus 5, 129, 214
Stolephorms mundeolus 44
naso 43
rastralis 42
starksi 43
stolifera, Sardinella 39, 209
stolzmauni, Cynoscion 119, 214
Tylosurus 52, 210
strabo, Ophioscion 130, 131, 214
striatus, Hypsoblennius 192, 193, 217
strigatus, Autenmarius 204, 218
Molacauthus 150
suborbitalis, Holocentrus 66, 211
sucklii, Sunalus 13,207
surinamensis, Anisotremus 107
Batrachoides 181, 182, 183
Batrachus 182
Lobotes 100, 101
Syacinm latifrons 199, 218
ovale 199, 2] 8
Symbrauchidro 34
Symbranchas marmoratus 34, 205
Symphurus 4
atrameutatus 203, 218
atricaudus 204, 218

Symphurus, elongatus $\because 03,218$
leci 204,218
Syngnathide 57
Synodontid:o 49
Syuodns evermanni 49, 209
jenkinsi 50
scituliceps 50, 209
tabacakia, Fistularia 57
Tachisurus osculus 29
Tachysurus 29, 30, 31, 34
emmelane 5, 30,31, Ø05
evermanni 5, 32, 208
furthii 30, 31, 32, 33, 208
liropus $29,30,31$
melanopus 29, 31, 32
multiradiatus 32, 33, 208
steindachneri $5,29,30,20 \mathrm{~S}$
tinniatus, Anisotremus 108, 213
taurinus, Calamus 112, 113
testudineus, Spheroides 156
Tetraodon 159
aerostaticus 159
erethizon 160
formosus 159
hispidus $157,159,160,216$
perspicillaris 159
setosus 159
Tetraodontida 156, 158
'Tetrodon formosus 158
tetrophthalwus, Auableps 51
Tenthidida 151
Teutbis bahianus 151
erestouis $15 \mathrm{t}, 216$
matoides 151
thalassinus, Microgolius 175, 176
Thalassoma lucasanum 146, 215
Thalassophryne 185
amazonica 185
dowi 187, 217
maculosa 158
reticulata $156,158,217$
thaumasium, Rhegma $5,99,212$
tholurni, Mugil 59, 210
Thunnus thynuns 206
thynuus, Thumuus 206
Thyrina 57
tiburo, Sphyrua 13, 207
tigriuus, Galeocerdo 9, 207
Myrichthys 35, 208
Trachinotus carolinus 54
culveri 84,211
falcatus 84
glaucus 82, 83
keunedyi S4, 211
paloma 84, 211
rhodopus 82, 83, 211
'rachurops crumenophthalmus 75, 211
Trachurus picturatus 206
trachurits 200
trachuras, Trachurus 206
tribulus, Prionotus 162,165
Trichinrides 70
Trichinrus lepturus 70, 211
Triglidu 162
triserinlis, Ophichthes $37,20 \mathrm{~S}$
troscheli, Sciadeichthys 26, 20S
truncata, Belone 52
tules, Sphyrua 13, 207
Tylosurus 4
fodiator 52, 210
paciticus 52,210
scapularis 51, 210
stolzmanui 52, 210
Tyutlastes brevis $180,2 \mathbf{2} 7$
typicus, Ophioscion 129, 131, 214
© MBRIFER, Uroloplus 15
Umbrina analis 133
dorsalis 133, 245
sauti 133,215
nudecimalis, Centropomus 59,212
minfasciatus, Hyporhamphus 52, 210
nuioneusis, Centropomus 90, 92, 212
Upeneus grandisquamis 67,211
Uranoscopide 181
Urolophus aspidurns $16,17,207$
asterins 16
goodei 16, 207
halleri 15,207
mundus $16,17,207$
nebulosis 15
rugersi 16
nmbrifer 15
Varer, Myrophis 35, 208
vagrans, Kutlandia 57
velox, Carcharias 5, 9
velox, Carcharinus 9
veutralis, Ogillia 197, 218
vermicularis, Sigmurus 132, 214
vermiformis, Neoconger 35, 208
verres, Balistes 5, 153, 154, 216
verrilli, Lycodontis 37, 209
viuctus, Caranx 77,211
viola, Eques 5, 12S, 13S, 215
virginicus, Anisotremus 10 S
viridis, Centropomus 89
Latimus (Evoplites) 101, 102
Vomer setipinnis S0, 211
spixii 80
vomer, Selene S1, S2, 21t
vulpes, Albula 39, 209
woomanni, Pimalichthys $197,198,218$
XANTHOPS, Odontoscion 5, 124, 214
xanti, Umbrina 133, 215
Seuichthys 103, 213
xenauchen, Galeichthys 5, 24, 20s
xenauchen, Hexanematichthys 24
Yenichthys agassizii 104 xanti 103,213
xenops 103
xenisma, Prionotus 162, 216
xenops, Xenichthys 103
Xesurus clarionis 155
hopkinsi 5, 155, 216
laticlavius 155
punctatus 155
Xystama cinerenm 114, 213
xyster, Zapteryx 15, 207
xysturus, Ophisurus 35

Zalieutes klater 204, 218
Zalypuus 175
Zapteryx xyster 15, 207
zelotes, Hemicaraux 5, 76, 211
zelotes, Dactyloscopus 181, 217
zephyreus, Pristis 14, 207
zestocarus, Stellifer 5, 129, 214
zestus, Nebris 122
zonatis, Chretodipterus 147, , 48, 215
zonipectus, Pomacanthus 150, 215
zophochir, Ophichthus $37,2 \cdot 9$
zosterura, Evermannia 178, 179, 217
zygroua, Sphyrua 13, 207

ERRATA.

Page 5, 21st line, for "Hemiramphus" read Hcmirhamplus.
Page 21, ioth line from bottom, for "Fig. 7" read Fig. 8.
Page 22, 17 th line, for " G. planiceps" read Netuma planiccps.
Page 23, 2nd line, for " G. platypogon" read Netuma platypogon.
Page 24, 2nd line, for "Fig. 8^{\prime} " read Fig. 7.
Page 43, 7th line from bottom, for "A. ischanus" read A. ischana.
Page 74, I2th line from bottom, after "Jordan and Starks," insert Plate X11, Fig. 21.
Page 75, i4th line from bottom, for "crumonopthalmus" read crumenophthatmus.
Page III, 2oth line, for "clongatus" read lcuciscus.
Page 128, 6th line, for "Stelliferus" read Stcllifer.
Page 133, 2 ist and 22nd lines, for "Menticirrus" read Menticirrhus.
Page I34, Ist and 26th lines, for "Menticirrus" read Alnticirmus.
Page 135, I7th line, for "Polyclemus fasciatus" read-Polyclemus dumerili.
Page I59, 4th line, for "crethizon" read hispidus.
Remove parentheses from names of anthorities for the following species: Mhustclus lunulatus
(page 5), Pristis zephyrus, Rhinobatus leucorhychus (page 14), Zaptery, .rystor, Raja cqua-
torialis, Narcine cntemedor, Discopyge ommata, Urolophus halleri (page 15), Urolophus goodci, Urolophus aspidurus (page 16), Pteroplatca crebripunctata (page 18), Myliobatis asperrimus (page 19), Galeichthy's perutianus (page 21).

Enclose in parentheses names of authorities for: Galcus dorsalis (page 7), Scoliodon longurio (page 12).
17. Phycological Memoirs. By Du Atton Saunders. pp. 22. 21 plates.
18. The Phosphorescent Organs In the Toadfish Porichthys notatus Girard. By Charles Wilson Greene, pp. 24. 3 plates.
19. Now Mallophaga, III. Comprising Mallophaga from Birds of Panama, Baja California and Alaska. Ry Viernon L. Kellogg. Mallophaga from Birds of California. By Vernon L. Keliogg and Bektha L. CuAphan. The Anatomy of the Mallophaga. By Robert E. Snongrass. pp. 229. in platés.
20. The Nature of the Assoclation of Alga and Fungus In Lichens. By George James Peirce. pp. 36. I plate.
21. Studies on the Flower and Embryo of Sparganium. By Douglas Hougton Campbell. pp. 38. 3 phulcs.
22. The Development and Phylogeny of Placenticeras. By fames Perrin Smith. pp., 6o. 5 plates.
23. Studies on the Coast Redwood, Sequoia sempervirons Endl. Ry George James Peirce. pp. 24. I plate.
24. Description of Two New Cenera of Fishes(Ereunias and Draciscus) from Japan. By David Starr Jurdan and Joinm Otrerbein Snyder. Description of Throe Now Species of Fishes from Japan. By Dayid Starr Jordan and Edwin Chapin Starks. pp. io. 4 plates.
25. Notes on Coccidro (Scale Insects): Notes on Cerococcus. By Rose W. Patterson. New and Little known California Coccidæ. By S. I. Kuwana. The Redwood Mealy Bug (Dactylopius sequoica sp. nov.). By George A. Collanan. The San Jose Scale In Japan. By S. I. Kuwana. pp. 50. 6 plates.
26. Studles on Clliate Infuspria. By N. M. Stevens. pp. 44. 6 plates.
27. Coccldæ (Scale Insects) of Japan. By Shinkar Imokichi Kuwana. pp. 56. 7 plates.
28. The Anatomy of Epidella squamula, sp. nov. By harole heath. pp. 30. 2 plules.
29. The Root-tubercles of Bur Clover (Medicago denticulata Willd.) and of Some Other Leguminous Plants. By George James Peirce. pp. 34. I plate.
30. The Net-Winged Midges (Blepharocerldæ) of North Amerlca. By Vernon L. Kellogi. pp. 50 . 5 plates.
31. The Paleontology and Stratigraphy of the Marine Pllocene and Pleistocene of San Pedro, California. By. Ralph Arnold. pp. 420 . 37 plates.
32. The Fishes of Panama Bay. By Charles If. Gilbert and Edinin C. Starks. pp. 304. 33 plates.

ADDRESS,
Charles If. gilbert,
Stanford University, California.

$1 *$

[^0]: ${ }^{1}$ From a drawing kindly communicated by Professor Garman, it is learned that Eigenmann's material in the Museum of Comparative Zoology agrees with the present specimens in the leugth of the fontanel groove.

[^1]: ${ }^{1}$ Dr. Jordan has kindly re-examined the specimeus here referred to, collected by fillbert at fanama on a previons expedition, and states that the head measures $4 \frac{1}{6}$ (not $4 \frac{1}{2}$) in leugth to base of caudal.

[^2]: *Tail in this speciusen evideutly injured, though surrounded by the fin.

[^3]: ${ }^{1}$ In this table, the head is measured to the angle formed by largest opercular spine and edge of subopercle. The preopercular spine is measured along its upper edge from its angle with preopercle.

[^4]: * Gill-rakers given for lowerarch only; the rudiuents enumerated separately in each case.

[^5]: * Scale counts cannot be very accurate, as many of the specimens have scales missing.

[^6]: *By error, Jordan and Evermann (1898, p. 2686) state that the gill-rakers in this species are shorter than in C. spilopterus.

[^7]: * San luis Gonzalea Bay (Albatross)

