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ABSTRACT 

The proliferation of unmanned aircraft systems (UAS) has contributed to the 

asymmetric threat of malevolent actors exploiting this technology for mischief or harm. 

Existing ground-based solutions are limited by line of sight, while human-operated 

responder drones can be less responsive and more labor-intensive. Hence, there is a 

capability requirement for autonomous vision-based pursuit and interception of 

unauthorized drones. To address this, the author developed a computer vision (CV) 

algorithm to detect, track and estimate the relative position and range of a hovering and 

moving airborne small UAS target in field conditions. CV-based measurements were 

compared against GPS data, to assess the range and angular estimation performance of 

the CV algorithm. Then, the CV-estimated range and angular information was processed 

by a flight control algorithm utilizing simple angular guidance principle to pursue and 

intercept the target. Field tests of the algorithm were done using a prototype drone. This 

research will inform the conceptual design and choice of hardware implementation for a 

commercial-off-the-shelf-based counter-UAS capability. More broadly, the research 

contributes to the body of knowledge in autonomous object tracking applications. 
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EXECUTIVE SUMMARY 

The proliferation of unmanned aircraft system (UAS) technology has increased the 

ease with which malevolent actors can exploit relatively low-cost technology to cause harm 

or mischief. For example, the sighting of illegal drones near Heathrow and Gatwick airports 

in the United Kingdom severely disrupted air traffic as flights were grounded for safety 

considerations, causing thousands of passengers to be stranded at airports (BBC 2019). 

While counter-UAS systems already exist in the market, these systems also have inherent 

limitations. The pursuit of counter-UAS capability is a Department of Defense priority, 

and this has been reflected in increased funding for counter-UAS research and 

development. The budget for counter-UAS technology grew by 99 percent over the 

preceding year to exceed $1B in the FY 2019 Defense Budget request (Gettinger 2018). A 

counter-drone intrusion system utilizing small UAS to execute autonomous pursuit of the 

unauthorized drones can improve responsiveness during intrusion incidents and provide 

better line-of-sight advantages.  

This thesis examines the use of commercial-off-the-shelf (COTS) 4K cameras to 

implement monocular visual estimation of the relative range and angular offset in azimuth 

and elevation of a nominal drone target from the optical axis of the camera. A computer 

vision (CV) algorithm is developed to detect and localize the position of the target within 

the camera’s field of view (FOV). A simple flight guidance algorithm is subsequently 

developed to use information from the CV algorithm to generate motion command signals 

to allow the observing drone platform to autonomously pursue and intercept the target. 

Implementing these functionalities would form the foundation for a practical counter-UAS 

capability. 

Past studies on object-following applications involving UAS did not directly 

address the counter-UAS scenario due to the conditions, types of targets and applications 

under consideration. This thesis aims to contribute further in the field of object-following 

applications for UAS by implementing computer vision and flight guidance algorithms to 

sense and pursue an airborne moving target in a field environment.  
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The system architecture for a counter-UAS capability is considered from the 

operational, functional, and physical perspectives. The functional architecture helps to 

structure the workflow of the algorithms while the physical architecture enumerates the 

key physical components needed to implement the system.  

Given that the counter-UAS aerial vehicle has limited size, weight, and power 

(SWaP) and needs to pursue the target in real time, a CV algorithm with lower 

computational demand was considered for implementation in this thesis. This thesis uses a 

color-space segmentation approach to detect and localize the target position within the 

image frames of the video stream from the camera. The baseline scenario considers only 

the detection of a single airborne target against a sky background of largely homogeneous 

color. These simplifying assumptions allow the thesis to focus on the range and angular 

performance of a COTS-based camera.  

The camera was calibrated with a cardboard target under indoor conditions to 

determine the empirical relationship between the pixel width of the target and the distance 

between the target and the camera. This relationship would be used to estimate the range 

of the drone target in subsequent field tests. The experimental setup for evaluating the 

effectiveness of monocular estimation of range and angular offset is centered on using a 

hovering unmanned aerial vehicle (UAV) with a camera payload to record the positions of 

another target UAV that has been programmed with pre-determined waypoints. The 

rationale for this setup is to realistically replicate the air-to-air encounter between the 

counter-UAS system and an intruder drone, and to use the recorded videos from such 

encounters to develop and evaluate the CV algorithm. Real-time kinematic (RTK) Global 

Positioning System (GPS) receivers were mounted on both drones to obtain accurate 

measurements of the relative positions between the drones. Field tests were conducted at 

Impossible City and Camp Roberts test ranges near Marina, CA, and Paso Robles, CA, 

respectively, but only meaningful GPS data was available for tests at Impossible City. 

The range estimation performance was assessed against GPS-based distances at 

Impossible City and waypoint-based distances at Camp Roberts. The upper range bound 

of the proposed algorithm was established to be 0.95o in terms of the angular size of the 

target, which for the small-size UAS with width of 33cm corresponds to about 20 m range 
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from the camera. For larger targets, such as the ScanEagle UAS featuring a 3.1 m wingspan 

(Huber 2018), the detection range would be in the order of approximately 190 m. Because 

of the way the bounding box is drawn, the box width is always larger than the target width. 

Consequently, the inverse relationship between the target width and target distance from 

camera means that the target distance is always underestimated. Hence, a correction factor 

needs to be introduced. The limited tests conducted within this study suggest that the 

correction factor can be as large as 0.55. 

A symmetrical set of waypoints was planned to evaluate the angular estimation 

performance of the CV algorithm. At Impossible City, significant asymmetry in the actual 

waypoints flown by the target was visually observed in the video frames and confirmed by 

GPS measurements. This affected the evaluation of the angular estimation performance at 

Impossible City, as the asymmetry in spatial positioning of the target is confounded with 

true angular estimation. 

The field tests were repeated at Camp Roberts with an additional set of waypoints 

flown at closer range to the camera. Evaluation of the angular estimation performance was 

compared solely against planned waypoints. For the nine waypoints observed at 20 m away 

from the camera, the azimuth errors range from 1.5o–18.4o in magnitude, while the 

elevation errors range from 0.1o–5.6o in magnitude. For waypoints observed at 10m away 

from the camera, the azimuth errors range from 3.9o–11.4o in magnitude, while the 

elevation errors range from 0.3o–4.9o in magnitude. The aforementioned results of the 

angular estimation did not reveal any dependency in the estimation error from the actual 

target position within the image frame, contrary to initial expectations. The results of the 

range estimation, however, showed that a correction factor is needed, depending on the 

prior camera calibration. This paves the way for future work to further investigate feasible 

techniques for accurate monocular range estimation. Alternatively, the target should 

always be positioned in the middle of the image frame where it is aligned with the optical 

axis via active gimbal control to reduce estimation errors. 

It should be noted that the current implementation of the CV algorithm is not 

adaptive to different landscapes and sky conditions. Hence, imperfections in image 

processing resulted in residual artifacts in the image frame, which affected the accuracy of 
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the bounding box in tracking the true target position. Flight videos from Impossible City 

suffered from image artifacts and had to be post-processed to remove outliers, which would 

otherwise worsen the angular estimation accuracy. Such post-processing would not be 

feasible for real-time flight guidance. Other means of feature tracking were explored and 

the Maximally Stable Extremal Regions (MSER) feature detection algorithm was found to 

be promising. MSER feature tracking, however, lacks the visual cue for range estimation, 

unlike bounding boxes with finite area, height and width. A possible strategy is to employ 

both bounding box construction and MSER feature detection functions to improve tracking 

accuracy. 

A prototype system was built to implement the counter-UAS concept and it 

successfully demonstrated vertical take-off/landing, rotational (yaw), and translational 

motion in field tests at Camp Roberts. Nonetheless, the yaw motion of the drone vehicle 

was not stable. This might be due to electromagnetic interference from sources on the 

airframe affecting the GPS self-localization performance. The implementation of the 

prototype system encountered several integration challenges with different degrees of 

mitigation. 

Field testing of the flight guidance algorithm was conducted at Impossible City. 

Erratic motion of the drone was observed. This is attributed to the intermittent appearance 

of image artifacts in the video frame, which generated unwanted motion vector commands, 

causing the drone to navigate in an erratic manner. The flight tests also showed that the 

criteria for meeting the control objective needed to be more robust. One possible way to 

make the criteria more robust in response to artifacts is to factor in additional stopping 

conditions. 
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I. INTRODUCTION 

This chapter outlines the background and the impetus for the thesis research, 

followed by the problem statement that the thesis aims to address. 

A. BACKGROUND 

There has been an increase in the usage of drones across a variety of industries 

ranging from defense applications to commercial sectors, such as cargo delivery and crop 

monitoring in agriculture. The proliferation of unmanned aircraft system (UAS) 

technology has brought with it many benefits, such as increased automation to relieve 

manpower shortages as well as manned-unmanned teaming for greater productivity and 

efficiency in labor-intensive tasks such as search and rescue missions. Yet, the flip side of 

the low barrier to UAS acquisition has meant that UAS technology is also easily available 

to malevolent actors who can exploit low-cost commercial off-the-shelf (COTS) UAS for 

asymmetric advantages in causing harm or mischief. For example, from December 2018 

to January 2019, the sighting of illegal drones flying in the vicinity of Heathrow and 

Gatwick airports in the United Kingdom caused massive disruption to air traffic as flights 

were grounded, causing thousands of passengers to be stranded at airports (BBC 2019). 

Existing counter-UAS systems in the market range from ground-based effectors 

relying on line-of-sight to remotely controlled drones with effector payloads such as nets 

(Khoe 2018). There are, however, inherent drawbacks to such solutions. Ground-based 

effectors are constrained by line-of-sight, and they may be further handicapped by effector 

range limitations, as the intruding drone can simply fly at higher altitudes to avoid being 

targeted. Mobile ground-based effectors can face terrain constraints, such as the presence 

of obstacles, water bodies, or sensitive and restricted areas. The sheer size of the facility 

that needs to be protected can also render static deployments of such effectors unfeasible 

and not cost-effective. Remotely controlled drones suffer from the same drawbacks, as the 

human operators are also ground-based personnel similarly constrained by line-of-sight 

and terrain. Further financial limitations appear as the scale of the proposed fleet of 

remotely controlled drones increases, as operators will require compensation for their 
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labor. These costs further escalate if there are requirements for round-the-clock facility 

protection.  

The use of autonomous UAS in facility protection for countering unauthorized 

drone intrusions is a possible solution as the response entity, an aerial vehicle, is airborne 

and does not suffer the same degree of limitations imposed by line-of-sight and terrain. 

Labor costs considerations can be mitigated since the autonomous capability would 

minimize the size of the workforce needed to control the whole fleet in real time. 

Compared to remotely controlled variants, a counter-drone intrusion system 

utilizing small UAS to execute autonomous pursuit of unauthorized drones can improve 

responsiveness during intrusion incidents, and enjoy better line-of-sight advantages 

compared to ground-based effectors. In the context of facility protection for airports, a 

mobile relatively low-cost COTS-based autonomous UAS solution can mitigate the 

challenges of continuously protecting large volumes of airspace. Realizing the autonomous 

pursuit capability will require the UAS to detect and localize the suspect drone and make 

use of spatial awareness to plan and execute a trajectory to pursue and intercept the moving 

target. 

B. STATE OF THE ART IN OBJECT DETECTION / LOCALIZATION  

This section details the review of literature from previous studies conducted by 

scholars and researchers in the field that contributed to this thesis research. 

1. UAS in Object-Following Applications 

Past studies on object-following applications involving UAS have been done on 

ground targets (Liu et al. 2017, 1–12). The focus of some of the previous research was to 

studying precision landing) or simple, non-maneuvering airborne objects (for example, 

balloons) (Mondragón et al. 2011, 1–7). The conditions and applications of such studies 

are not directly applicable to the purpose of realizing a UAS-based autonomous pursuit 

capability. This thesis aims to contribute further in the field of object-following 

applications for UAS by implementing a computer vision algorithm to sense and pursue an 

airborne moving target in a field environment. 
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One of the critical functions that the counter-UAS systems needs to perform is the 

ability to sense the position of the target. The electro-optical (EO) sensor will generate a 

stream of image frames which are then processed by a computer vision (CV) algorithm to 

detect the presence of the target in the image frames, and to localize the target within each 

frame, typically with a bounding box (for ease of illustration to human observers). 

Furthermore, for a moving target, the desired CV algorithm must track the movement of 

the target across successive image frames. According to a study by Parekh, Thakore, and 

Jaliya (2014, 2971), tracking is defined “as the problem of approximating the path of an 

object in the image plane as it moves around a scene.” 

A 2013 International Journal of Computer Applications article describes a variety 

of techniques for object detection and localization in the field of computer vision 

(Shantaiya, Verma, and Mehta 2013, 14–20)—such techniques are classified under four 

broad approaches: (1) feature-based (for example, shape, color), (2) template-based, (3) 

classifier-based, and (4) motion-based. In feature-based approaches, the goal is to segment 

the object from the background by means of image processing techniques to extract distinct 

object features such as corners, edges, and color. Template-based approaches rely on the 

availability of a given template describing a specific object, and the authors of the same 

article pointed out that “object detection becomes a process of matching features between 

the template and the image sequence under analysis” (Shantaiya, Verma, and Mehta 2013, 

16). Classifier-based object detection approaches have gained popularity in recent years as 

advances in computing power have made deep learning accessible to CV researchers. One 

key drawback of the classifier approach, however, is the need to build up a sufficiently 

large set (for example, in the order of 300–400 different images per category of object for 

the You-Only-Look-Once (YOLO) deep learning algorithm) of annotated training data 

with positive and negative sample images to train the classifier algorithm to recognize the 

object with a high degree of confidence (Teo 2018). Motion-based approaches such as 

background subtraction and optical flow typically compare successive frames with an 

initial background frame to detect the motion of objects. These motion-based approaches 

perform best with stationary backgrounds (hence implying a static sensor) and are not 

suited for the context of a moving UAS pursuing a maneuvering intruder drone.  
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The low computational cost (Shantaiya, Verma, and Mehta 2013, 14–20) and 

relative simplicity in implementing a featured-based approach for object detection and 

localization makes it a feasible option for implementation on a small COTS-based UAS 

platform with finite size, weight, and power (SWaP) constraints. The focus of this thesis is 

on using detected visual cues to generate a flight path to pursue and home in on an intruding 

drone, thereby demonstrating the implementation of a vision-based relative position 

estimation and pursuit capability for the counter-UAS system. Improvements in object 

detection and localization performance are left as areas for future research.  

2. Range Estimation 

With a visual sensor, the position of the detected target in three-dimensional space 

is projected onto the two-dimensional image plane of the sensor. While such 2-D images 

offer information on the relative latitude and longitude offset in the image plane between 

the target and the observer, spatial awareness is not complete, as the range or depth 

information is missing from such images. Typically, the solution to range/depth estimation 

problems in computer vision and robotics applications is to employ stereo vision (Saxena, 

Schulte, and Ng 2007, 2197), in which the depth of a target object is estimated by 

triangulation using images from two cameras mounted at a fixed and known distance apart. 

The same study, however, also points out that there are limitations to stereo vision: first, 

inaccuracies in depth estimates tend to occur when the distances considered are large; and 

second, stereo vision performs poorly “for textureless regions of images where 

correspondences cannot be reliably found” (Saxena, Schulte, and Ng 2007, 2197). 

Implementation of dual sensors to achieve stereo vision also imposes penalties on the 

payload, the power consumption, and the computation load, given that the UAS involves 

an airborne platform with a finite payload capacity and power. 

The same authors, however, also pointed out that the problem of range/depth 

estimation can be simplified with monocular cues (Saxena, Schulte, and Ng 2007, 2197), 

for example, if the size of the target object is known prior. This simplifies the 

implementation into a single sensor system and avoids the penalties on the payload, the 

power consumption, and the computation load. The dimensions of the representative drone 
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threat in an unauthorized drone intrusions incident can be reasonably bounded within a 

narrow range. Here, several assumptions are made. The first is that the intruding drone 

would need to be above a certain size to have meaningful endurance in the air to carry out 

its mission. This would require a sufficient power supply that would necessarily affect lift. 

The second assumption is that larger and more capable “professional grade” drones like 

the types employed in commercial videography tend to be more expensive, putting them 

out of reach of the average consumer. The larger drones are also more conspicuous, and 

less likely to be employed as a stealthy intruding platform.  

A survey of the drone dimensions from leading drone manufacturers such as DJI, 

Yuneec, and Parrot shows that these products range from 214 mm to 322 mm in length 

with flight times ranging from 25 to 33 minutes (DJI n.d.; Parrot n.d.; Yuneec n.d.). In 

summary, this study considers consumer-grade drones designed and marketed as portable 

videography tools as the nominal representative intruder threat. In this study, the 3DR Solo 

(with a length of 330 mm and flight time of 25 minutes) is used to test and evaluate the CV 

algorithm.  

C. PROBLEM FORMULATION AND THESIS STRUCTURE 

Based on the review of the state-of-the-art in object detection/localization, it 

becomes clear that the problem of countering UAS intrusion with UAS-based solutions has 

not yet been fully addressed. This thesis’s objective is to contribute to the solution of this 

problem by developing the prototype algorithm to detect and estimate the relative position 

of an airborne object representative of the nominal threat, and conducting a series of field 

tests employing small COTS drones to verify the effectiveness of the developed algorithms. 

Another thesis objective is to try to close the control loop passing the processed video 

information to the autopilot to make corrective actions, specifically, to navigate towards 

the detected airspace intruder. To this end, the specific research questions to be addressed 

are: 

 What is the range detection limit of the developed CV algorithm?  

 What is the accuracy of the monocular range and angular estimation technique?  
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 What are the dependencies in the estimation errors? 

 What is the feasibility of the flight guidance algorithm utilizing the processed 

video information? 

The remainder of this thesis is organized as follows: Chapter II outlines the system 

architecture of the envisioned counter-UAS capability from the standpoint of facility 

protection. Chapter III details the development of the feature-based CV algorithm for 

object detection and localization, and Chapter IV describes the calibration process for 

visual estimation of the target range. Chapter V presents the experimental setup to obtain 

Global Positioning System (GPS)-based range measurements for comparison against 

visual estimates. Chapter VI discusses and analyzes the results of the range and angular 

evaluations. Chapter VII details the implementation of a prototype system, implementation 

challenges encountered, as well as field tests of the prototype system. Finally, in Chapter 

VIII, the conclusions and recommendations are made.  
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II. SYSTEM ARCHITECTURE  

This chapter describes the system architecture of the counter-UAS capability from 

the operational, functional and physical perspectives.  

A. SYSTEM DESCRIPTION 

The system of interest is a counter-UAS system to detect, pursue and intercept an 

unauthorized UAS which intrudes by flying into a protected facility. The main hardware 

product of the counter-UAS system is a small quadrotor unmanned aerial vehicle (UAV)—

built from COTS component—which flies and lands on its own without the need for a 

separate launch/recovery system (unlike bigger types of UAS). The vehicle is mounted 

with a COTS camera, which functions as the EO sensor payload to allow the counter-UAS 

system to detect and track the target. The UAV’s ability to fly and operate over long 

distances offers the end user non-line-of-sight advantages over areas of interest and beyond 

visual range.  

The UAV can be controlled manually by a human operator—akin to remote-control 

aircraft—or flown via autopilot through a desired flight path with pre-programmed mission 

waypoints and minimal human effort. The operator controls the vehicle manually with a 

wireless remote controller. The remote controller has toggle controls to switch the UAV 

into autonomous mode and back into manual mode when required. Manual or automatic 

flight by waypoints allows the end user to direct the UAV to an area of interest (for 

example, based on early warning from perimeter sensors or intelligence) before the camera 

on the UAV starts to detect any potential intruding drone. This design consideration also 

factors in the finite detection range of the camera. Mission planning, downloading of 

waypoints and troubleshooting of software (onboard the UAV) are done on a laptop that is 

connected to the onboard computer of the UAV. An operational view (OV) OV-1 diagram 

illustrating the counter-UAS capability is shown in Figure 1. 
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Figure 1. OV-1 Diagram for Counter-UAS Capability. Adapted from 

3D Robotics (n.d.); 3D Robotics (2015); Murph (2019). 

B. CAPABILITY VIEW 

The counter-UAS system performs the mission of intercepting an intruding drone. 

The mission is achieved by the operational activities modeled in Figure 2. 

 

Figure 2. Mission and Operational Activities 



9 

The counter-UAS system provides the end user with the capability of intercepting 

an intruder drone in a protected area. This capability is refined into several lower echelon 

capabilities identified in Figure 3. These lower echelon capabilities are implemented by the 

system requirements shown in the same figure. This thesis focuses on the development of 

CV and guidance algorithms to implement requirements R.8 (provide autonomous 

operation), R.12 (detect airborne target), and R.13 (pursue target until successful 

interception).  

 

Figure 3. Capability Needs and System Requirements 
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Figure 4. Expanded View of R.7 

 

Figure 5. Expanded View of R.9 
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Figure 6. Expanded View of R.18 

C. OPERATIONAL ARCHITECTURE  

The operational flow of the system is illustrated in Figure 7. The diagram shows 

the resource flows into the system, through a series of operational activities, eventually 

culminating in the intended outcome—mission completion/termination. The input and 

output of items into/from the various operational activities are also outlined in the same 

figure. 
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Figure 7. Operational Flow 

A traceability matrix in Figure 8 shows how the various system functions 

implement the operational activities. 

 

Figure 8. Operational Activity to System Functions Traceability 

Matrix 
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D. FUNCTIONAL ARCHITECTURE  

The functional hierarchy of the counter-UAS system is shown in Figure 9. The 

expanded views for functions F.3.1 and F.4.1 are shown in Figures 10 and 11, respectively. 

 

Figure 9. Functional Hierarchy 
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Figure 10. Expanded View for F.3.1 

 

Figure 11. Expanded View for F.4.1 

The functional behavior model of the system is further illustrated using Enhanced 

Functional Flow Block Diagram (EFFBD) diagrams. The top-level functions are shown in 

Figure 12. The loop enclosing functions F.3–F.5 represents the mission control loop. Once 

an initial mission is planned, the counter-UAS system iteratively awaits control inputs, 

moves the vehicle to an area of interest based on manual commands or pre-programmed 

waypoints, and starts to detect and pursue the target within the area of interest until the 

mission is completed or terminated.  
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Figure 12. Top-level Functions 

Functions F.1–F.5 are further decomposed into their respective lower echelon 

functions in Figures 13–17. The loop enclosing all the functions in Figure 12 represents 

the flight control loop, and it is responsible for steering and flying the vehicle along the 

waypoints to complete the flight path. A change in the mission state (for example, 

completion of the last waypoint) or vehicle state (for example, low battery level or user 

activated emergency landing) can cause the loop to stop iterating. The inputs and outputs 

between functions are shown in the green boxes of the following figures. 

 

Figure 13. Expanded View of F.1 

 

Figure 14. Expanded View of F.2 
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Figure 15. Expanded View of F.3 

 

Figure 16. Expanded View of F.4 

 

Figure 17. Expanded View of F.5 
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A traceability matrix in Figure 18 illustrates how the various system functions are 

allocated to physical components. Each function is allocated to at least one component. 

 

Figure 18. Physical Components to System Functions Traceability 

Matrix 
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The physical hierarchy of the counter-UAS system is shown in Figure 19.  
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Figure 19. Physical Hierarchy Diagram 
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The systems view (SV) SV-1 diagram in Figure 20 shows the four top-level 

components in the system—namely the mission planning laptop, remote control, aerial 

vehicle, and video assembly—as well as the interfaces between these components.  

 

Figure 20. SV-1 Diagram for UAS 

The SV-1 diagrams for each of the top-level components are illustrated in Figures 

21–24. Figures 21 and 22 show that the touchscreen and the remote control’s joysticks and 

buttons constitute the human-system interface. 
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Figure 21. SV-1 Diagram for Mission Planning Laptop 

 

Figure 22. SV-1 Diagram for Remote Control 
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Figure 23. SV-1 Diagram for Aerial Vehicle 
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Figure 24. SV-1 Diagram for Video Assembly 

The system boundary is overlaid on the OV-1 diagram in Figure 25, indicated by 

the red dashed line. Major inputs to the system include the following: spares (material), 

electricity for charging batteries (energy), mission-planning parameters (information), and 

sensors (GPS, compass, barometer) inputs from the environment (information). Major 

output from the system would be in the form of the recorded video footage (information). 
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Figure 25. System Boundary. Adapted from 3D Robotics (n.d.); 3D 

Robotics (2015); Murph (2019). 
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III. DEVELOPMENT OF CV ALGORITHM 

This chapter describes the assumptions and key steps of the CV algorithm. One of 

the key functions of the counter-UAS system is to detect the presence of an airborne target 

in a field environment. The EO sensor in the camera produces a stream of images (i.e., 

video), which is then processed by the CV algorithm code running in the on-board 

computer.  

A. DETECTION APPROACH, ASSUMPTIONS, AND TOOLS 

As the problem formulation section in Chapter I stated, this thesis uses a feature-

based object detection and localization CV algorithm to detect the target in a stream of 

images and localize its position. Given that the counter-UAS aerial vehicle has limited 

SWaP and needs to pursue the target in real time, a CV algorithm with lower computational 

demand is selected for implementation in this thesis.  

The baseline scenario considers only the detection of a single airborne target against 

a sky background of largely homogeneous color (for example, blue, grey or white). These 

simplifying assumptions allow the thesis to focus on the range and angular performance of 

a COTS-based camera. Modifications to the baseline scenario, such as the detection of 

multiple airborne targets and detection of targets against non-homogenous backgrounds, 

are left as areas for future research.  

The CV algorithm is first developed and tested in the MATLAB software 

environment, as this software has a rich array of image processing and visualization tools. 

In this thesis, the author made use of the Image Processing and Computer Vision Toolboxes 

in MATLAB which facilitates the use of various image processing, filtering, color-space 

segmentation and morphological operations to successfully detect and localize a target in 

the image frame.  

B. ALGORITHM WORKFLOW 

The sequential workflow of such operations in MATLAB forms the CV algorithm 

and the key tasks are broken down into the following steps: 
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1. Read the video file. 

2. Read the current image frame. 

3. Convert the image frame separately into Hue-Saturation-Value (HSV) 

color-space and grayscale images. 

4. Extract the single layer array of hue values from the HSV image. 

5. Create an image mask based on a threshold for hue values. This step 

exploits the distinct differences in hue values between the sky and the 

ground and the mask (based on hue threshold) helps to eliminate the 

surface foreground in the image frame.  

6. Apply morphological erosion operation with a disk-shaped structuring 

element to improve the image mask by removing small remaining patches 

of the foreground left over from the thresholding operation. 

7. Apply the image mask to the grayscale image. 

8. Apply edge detection function with the Sobel method in MATLAB to the 

masked grayscale image to detect the edges of the target blob region in the 

sky.  

9. Apply a morphological close operation with a line-shaped structuring 

element to the resulting image to form a target blob region with closed 

edges. 

10. Perform two-dimensional median filtering on the resulting image twice to 

remove unwanted horizontal lines leftover from the edge detection step. 

This helps to refine the resulting image for target blob detection. 

11. Apply a morphological dilate operation with a disk-shaped structuring 

element to the resulting image to fill up the target blob region. This forms 

an image mask to isolate the target. 
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12. Apply the image mask from step 11 to the masked grayscale image from 

step 7. 

13. Apply the regionprops() function in MATLAB to the resulting image from 

step 12 to obtain the bounding box coordinates for the target. 

14. Overlay the bounding box on the original image frame for visualization 

purpose. 

15. Apply the detectMSERFeatures() function in MATLAB to the masked 

grayscale image from step 7 to detect the salient MSER features on the 

target. This serves as an alternative and backup means to extract the target 

location within the image frame. (This method involves fewer processing 

steps compared to the color-space segmentation and morphological 

operations between steps 8 to 13. The drawback, however, is that it only 

indicates the target location, but not the size of the target image blob 

which is needed for range estimation).  

16. Repeat the entire workflow for the next frame in the video stream.  

The preceding CV algorithm for object detection and localization represents the 

final product after many iterations of trying out different combinations of image processing 

steps and operations. The values selected for thresholding, median filtering and 

morphological operations were empirically determined based on the test videos used for 

the CV algorithm development. The experimental setup for obtaining the test videos are 

described in Chapter V. Refer to Appendix A for the MATLAB code. 
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IV. CALIBRATION FOR VISUAL RANGE MEASUREMENT 

This chapter describes the optical calibration process used to estimate physical 

dimensions from pixel measurements. The CV algorithm described in the preceding 

chapter is designed to localize the target’s position within the image frame with the aid of 

a bounding box. Besides target localization, the dimensions of the bounding box—

expressed in pixels—also serves as a proxy for the size of the target perceived by the EO 

sensor of the camera. This information can be exploited to estimate the range of the target 

from the camera by using the concept of ground sample distance (GSD) with a simplifying 

assumption and visual calibration on the camera with an object of known size at a fixed 

distance. Range estimation is necessary for the counter-UAS system to have complete 

spatial awareness of the target’s relative position, and subsequently develop a flight path 

to intercept the target. 

A. GROUND SAMPLE DISTANCE  

In photogrammetry applications, a camera is typically used to survey and capture 

photographs of the ground terrain at a pre-determined altitude. Each pixel has a finite 

instantaneous field of view that is subtended by a portion of the ground being surveyed.  

The GSD is defined as the distance between the projected centers of two 

consecutive pixels on the ground. The parameters that affect the GSD are the sensor width 

SW (in mm), the focal length FR(in mm), the distance from the image, or flight height H (in 

m), and the image width DW (in m). See Figure 26. 
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Figure 26. Parameters Affecting GSD. Source: Pix4D (n.d.). 

The mathematical relationship between these parameters is defined in the following 

Equation (1): 

𝐻

𝐹𝑅
=

𝐷𝑊

𝑆𝑊
 

Given a horizontal arrangement with a camera observing a target at a distance on 

the same plane, the same relationship holds true if Dw is substituted for the target dimension 

Td, H is substituted for target range R, and Sw is substituted for size of target image Ti—

expressed in pixels—perceived by the EO sensor. See Equation (2). 

𝑡𝑎𝑟𝑔𝑒𝑡 𝑟𝑎𝑛𝑔𝑒, 𝑅

𝐹𝑅
=

𝑡𝑎𝑟𝑔𝑒𝑡 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛, 𝑇𝑑

𝑡𝑎𝑟𝑔𝑒𝑡 𝑖𝑚𝑎𝑔𝑒 𝑠𝑖𝑧𝑒 (𝑝𝑖𝑥𝑒𝑙𝑠), 𝑇𝑖
 

Re-arranging Equation (2) to express target range R in terms of other parameters, 

one easily observes that the target range R and the size of target image Ti share an inversely 

proportional relationship for a fixed target dimension Td. Refer to Equation (3). 

𝑡𝑎𝑟𝑔𝑒𝑡 𝑟𝑎𝑛𝑔𝑒, 𝑅 =
𝐹𝑅 𝑥 𝑡𝑎𝑟𝑔𝑒𝑡 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛, 𝑇𝑑

𝑡𝑎𝑟𝑔𝑒𝑡 𝑖𝑚𝑎𝑔𝑒 𝑠𝑖𝑧𝑒 (𝑝𝑖𝑥𝑒𝑙𝑠), 𝑇𝑖
 

 
=

𝑘
𝑡𝑎𝑟𝑔𝑒𝑡 𝑖𝑚𝑎𝑔𝑒 𝑠𝑖𝑧𝑒 (𝑝𝑖𝑥𝑒𝑙𝑠), 𝑇𝑖

 

The simplifying assumption made here is that the size of the target dimension is 

taken as a constant value for the purpose of analysis in this thesis. This is because the actual 
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size of the threat varies within a relatively narrow range of values (as outlined in Chapter 

I) for the class of drones under consideration.  

B. EMPIRICAL ESTIMATION OF K 

The constant k is empirically estimated by measuring the perceived pixel width of 

the image of a simple 10 cm x 10 cm black square on a white background in an indoor 

environment, at different distances from the camera, mounted on a tripod. A COTS-based 

camera, the GoPro Hero 4 Black, is used for the calibration, as it is the same payload that 

will be adopted for the counter-UAS system in this thesis. Videos of the black square were 

recorded at distances of 0.4 m, 0.7 m, 1.0 m, 1.3 m, 1.6 m, 1.9 m, and 2.2 m away from the 

camera (measured from the wall to the center of the tripod). The video was recorded at a 

video resolution of 1920 x 1080, and a frame rate of 30 fps in Linear field of view (FOV) 

mode. Frames at the original resolution were extracted from each video and the pixel width 

of the square in each frame was measured with the Paint image editing software application 

in Windows 10 environment. Figure 27 shows a sample photo at 0.4 m away from the 

camera. 

 

Figure 27. Sample Photo at 0.4 m Away from Camera 

The pixel width measurements of the image were recorded at six different ranges. 

These data points were then fitted using the Excel statistical package assuming an inverse 

proportional model to obtain the constant k from this calibration process for a 10 cm wide 
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object. Table 1 summarizes the data for the calibration process, and Figure 28 shows the 

fitted graph that describes the inverse relationship between pixel width and distance to 

target.  

Table 1. Empirical Variation of Pixel Width with Target Distance  

object size: 10 cm 

pixel width (pixels) 1/pixel width distance (meters) 

270 0.00370 0.4 

151 0.00662 0.7 

106 0.00943 1 

82 0.01220 1.3 

68 0.01471 1.6 

57 0.01754 1.9 

49 0.02041 2.2 

 

Figure 28. Fitted Graph of Inverse Relationship between Range and 

Pixel Width  
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The value of constant k obtained in this calibration process is 107.75. This constant 

was then multiplied by the appropriate factor of 3.3 to obtain the corresponding k constant, 

i.e., 355.575 for the nominal target (i.e., 33 cm for the width of the 3DR Solo UAS). The 

relationship between the pixel width and range to target for the nominal target at 1920 x 

1080 video resolution is stated in Equation (4).  

𝑡𝑎𝑟𝑔𝑒𝑡 𝑟𝑎𝑛𝑔𝑒, 𝑅 (𝑚𝑒𝑡𝑒𝑟𝑠) =
355.575

𝑡𝑎𝑟𝑔𝑒𝑡 𝑖𝑚𝑎𝑔𝑒 𝑠𝑖𝑧𝑒 (𝑝𝑖𝑥𝑒𝑙𝑠), 𝑇𝑖
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V. EXPERIMENTAL SETUP  

This chapter describes the experimental setup to obtain the GPS-based 

measurements and corresponding CV-based estimates for range and angular evaluations. 

The experimental setup is geared toward obtaining videos from a hovering UAV (i.e., 

observer drone) with a camera payload observing another UAV (i.e., target drone) 

programmed with pre-determined maneuvers. The rationale for this setup is to realistically 

replicate the air-to-air encounter between the counter-UAS system and an intruder drone, 

and to use the perceived image frames from such encounters to develop the CV algorithm 

for object detection and localization. The observer drone hovers to maintain a relatively 

fixed observation position while the maneuvering drone functions as the target to test the 

range and angular accuracy of the visually estimated measurements.  

A. RANGE MEASUREMENTS 

Given the finite resolution of the camera’s EO sensor, the range measurements aim 

to determine the empirical range limit of a COTS camera when operated together with the 

CV algorithm. Besides the camera’s resolution limit, the CV algorithm based on MATLAB 

may also pose a limiting factor, and this appears in cases such as the minimum target blob 

size to trigger the construction of bounding boxes. In addition to this, in instances where 

bounding boxes are constructed for a detected target, the thesis aims to compare the 

accuracy of visually estimated measurements (i.e., range estimation from perceived pixel 

size with the actual range) with actual distances.  

1. GPS Measurements 

The actual distances are estimated by means of real-time kinematics (RTK) GPS 

receivers mounted on both the observer and target drones in the experiment. Compared to 

the conventional GPS receivers in cellphones, fitness trackers and watches, RTK GPS 

receivers offer significantly better position accuracy with centimeter-level precision. 

Besides the GPS receivers mounted on the drones, it is necessary to setup a GPS receiver 

base station on the ground to send correction signals to the drone-mounted receivers. The 

experiment made use of two Reach RTK Global Navigation Satellite System (GNSS) 
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receivers (drone-mounted units) and one Reach RS+ RTK GNSS receiver (base station) 

from EMLID to obtain and record GPS data. The receivers are capable of logging GPS 

data, which was extracted after the flights were completed. Refer to Figure 29 for a picture 

of the GPS measurement setup. 

 

Figure 29. GPS Measurement Setup 

2. Waypoint Measurements 

The observer and target drones are flown by means of pre-programmed 

waypoints—essentially user-defined positions in three-dimensional space using altitude, 

latitude, and longitude coordinatesusing the mission planning functions in the ground 

control station (GCS) software application. GCS software is  

typically a software application, running on a ground-based computer, that 

communicates with your UAV via wireless telemetry. It displays real-time 

data on the UAV’s performance and position and can serve as a “virtual 
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cockpit,” showing many of the same instruments that you would have if you 

were flying a real plane. A GCS can also be used to control a UAV in flight, 

uploading new mission commands and setting parameters. It is often also 

used to monitor the live video streams from a UAV’s cameras. (ArduPilot 

Dev Team n.d.) 

Flying the drones by waypoints has several benefits: 

 It minimizes human errors in positioning the drones and makes the 

experiment repeatable. 

 It automates the experiment task, improving efficiency and minimizes the 

human effort required to control two drones. 

 The distance between waypoints can be measured in the mission planning 

software, and such measurements can be used to complement the GPS 

data. 

The Windows-based Mission Planner GCS software application was chosen based 

on its ease of use, rich features, and compatibility with the drones used in this experiment. 

Refer to Figure 30 for a screenshot of the Mission Planner software interface. 

 

Figure 30. Screenshot of Mission Planner Software 
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B. CHOICE OF DRONE 

The 3DR Solo was selected as the platform for both the observer and target roles 

as it has dimensions and capabilities that are representative of the nominal threat. 

Furthermore, it can readily be mounted with a camera payload and is capable of streaming 

video in real time to the end user. This enables quick adjustments to be made in mid-air, 

and greatly streamlines the experiment workflow. Lastly, the drone is compatible with the 

Mission Planner GCS application, which helps to automate the drone flying.  

C. CHOICE OF CAMERA PAYLOAD 

The GoPro Hero 4 Black was selected as the camera payload for the experiment, as 

it is lightweight and compatible with the 3DR Solo drone platform. Additionally, this 

camera offers the Linear FOV video mode which helps to overcome the barrel distortion 

optical effect known as the “fish-eye” effect, which is common in wide-angle lens cameras. 

This feature is important to preserve accuracy in angular measurements. See Figure 31 for 

comparison of the distortion effect between the Standard FOV and the Linear FOV in the 

GoPro cameras. 

 

Figure 31. Comparison of Barrel Distortion Effects. 

    Source: GoPro. (n.d.). 

The linear FOV mode is only available for certain resolutions and frame rates 

(Coleman 2014). In the experiment, the video settings used are 

 Resolution: 1080 p 
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 Dimensions: 1920 x 1080 

 Aspect ratio: 16:9 

 Frame rate: 30 

 FOV mode: linear 

D. DATA POINTS FOR RANGE MEASUREMENTS 

The target drone is programmed to fly and hover for 5 sec at intervals of 10 m from 

the observer drone. Six data points were planned at distances of 10 m, 20 m, 30 m, 40 m, 

50 m, and 60 m from the observer drone. 

At each distance interval, the target is programmed by waypoint to hover at a fixed 

angle above the optical axis of the camera. This is done so that the target does not appear 

to rest on the horizon line in the camera’s FOV—which complicates the detection task—

but instead ensures that the target appears completely against the sky background for 

detection purpose. Figure 32 illustrates the differences.  

 

Figure 32. Comparison of Targets in Image Frame When Flying on 

Optical Axis and Off-Axis 

For all distance intervals, the target drone was chosen to hover at different altitudes 

to maintain the same fixed angular displacement of 11.3o in elevation from the optical axis 

(i.e., 11.3o above the horizon). This angular displacement corresponds to a vertical 
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displacement of 2 m from the optical axis for every 10-m interval. The 2-meter vertical 

displacement was selected to buffer against position uncertainty as the drone has a 1-meter 

error when flown by waypoints. The level of precision is inferred from the input limitation 

of the Mission Planner application and is due to the limited precision of the navigation 

sensors onboard the 3DR Solo. Maintaining a fixed angular displacement from the optical 

axis (or above the horizon) helps to ensure the target blob appears approximately in the 

same spot in the image frame, minimizing the potential variation in optical distortion 

effects across different parts of the camera lens surface. 

E. ANGULAR MEASUREMENTS 

The EO sensor of the camera yields a two-dimensional output, i.e., the projection 

of the target within the camera’s FOV, onto the image plane. The center of the image plane 

represents the optical axis of the camera. When the range of separation is known, the 

vertical and horizontal offset of the target position from the center of the image plane can 

yield information on the elevation and azimuth angular deviation of the line-of-sight 

(between target and observer) from the optical axis of the camera lens. This information 

can be further utilized as input signals in a control scheme to guide the observer drone to 

home in on the target.  

F. OPTICAL DISTORTION EFFECTS 

In the visual spectrum, the light rays from the target are modulated by the lens of 

the camera before impinging on the EO sensor to produce the image frame. In an ideal lens, 

the image produced is rectilinear. Imperfections in the optical design of a lens, however, 

can give rise to optical distortion effects. There are two main forms of optical distortion 

effects: barrel distortion and pincushion distortion. Barrel distortion can make straight lines 

in the image appear to bulge towards the edge of the image. Pincushion distortion has the 

opposite effect, and causes straight lines to appear to bend towards the center of the image. 

Figure 33 shows examples of the two distortion effects. Such effects may contribute to 

errors in the camera’s spatial sensing of the target, and these effects can potentially affect 

the performance of the observer drone in its pursuit of the target. This study aims to 

characterize the accuracy of the angular measurements using a COTS-based camera.  
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Figure 33. Examples of Optical Distortion Effects. Source: 

Petersen. (2016). 

G. ESTIMATING ANGULAR DEVIATIONS 

Figure 34 shows a nominal image frame where the detected target has been 

enclosed by a bounding box after image processing by the CV algorithm. The vertical and 

horizontal offset distances (in pixels) from the camera’s optical axis can be easily 

determined through arithmetic operations between the pixel coordinates of the bounding 

box centroid and the center of image frame. The width of the bounding box is first used to 

estimate the range and to determine the pixel-distance relationship (i.e., distance 

represented by one pixel in the target plane), and thereafter the vertical and horizontal 

angular deviations can be calculated through trigonometry (assuming a rectilinear image). 

These estimates are compared against GPS-based data to evaluate the accuracy of the 

angular measurements.  
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Figure 34. Definition of Vertical and Horizontal Offsets in the Image 

Frame 

H. DATA POINTS FOR ANGULAR MEASUREMENTS 

The target drone is programmed to fly and hover at different points in a single 

vertical plane at a pre-determined range (i.e., 20 m at Impossible City, 20 m and 10 m at 

Camp Roberts) from the observer drone. This results in different target positions across the 

image frame, as shown in Figure 35. Given the CV algorithm was designed for target 

detection above the observer’s horizon; only target positions that met this criteria were 

analyzed for angular accuracy. The symmetrical design of the circular camera lens allows 

for the simplifying assumption that the bottom half of the lens surface can be approximated 

by the upper half. Nine data points across the image plane were planned for analysis. 
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Figure 35. Illustration of Different Target Positions across Image 

Frame 

The target drone is programmed by waypoints to hover at different positions in a 

plane that is perpendicular to the optical axis of the camera. The GoPro Hero4 Black 

camera has a vertical FOV of 55o and a horizontal FOV of 94.4o (GoPro n.d.) in the 

Medium FOV setting. These capabilities translate into theoretical offset limits of 10.41 m 

and 21.60 m in the vertical and horizontal dimensions, respectively. It should be noted here 

that GoPro did not publish the FOV details of the Linear FOV setting; however, visual 

observation of the camera playback shows that the Medium FOV setting has a narrower 

FOV than the Linear mode. Hence, the Medium FOV information was used to determine 

the angular boundaries of the waypoints.  

The waypoints were programmed with different vertical and horizontal distances 

offset from the center of the plane. Figure 36 illustrates the definition of the spatial 

positioning of the drone within the target plane for video recording. 
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Figure 36. Definition of Spatial Positioning of Drone in the Target 

Plane  

The nine target positions are labeled as indicated in Figure 35, and the respective 

offset distances for each position are summarized in Table 2. The direction of the offset is 

indicated by the sign of the value and follows the Cartesian coordinate convention with 

respect to the center of the target plane. Negative values for the horizontal offset distance 

and vertical offset distance indicate that the target is positioned to the left of the vertical 

axis and below the horizontal axis, respectively. The horizontal and vertical angular offsets 

are calculated from the range and the corresponding offset distances. The same sign 

convention applies to the angular values as well. 
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Table 2. Summary of Spatial Positioning for Different Target Positions 

Target 

Position 

Horizontal 

offset distance 

(meters) 

Vertical offset 

distance 

(meters) 

Azimuth 

angular offset 

(degrees) 

Elevation 

angular offset 

(degrees) 

A1 -18 9 -41.99 24.23 

A2 0 9 0 24.23 

A3 18 9 41.99 24.23 

B1 -12 6 -30.96 16.70 

B2 0 6 0 16.70 

B3 12 6 30.96 16.70 

C1 -6 3 -16.70 8.53 

C2 0 3 0 8.53 

C3 6 3 16.70 8.53 
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VI.  EXPERIMENTAL RESULTS OF RANGE AND ANGULAR 

MEASUREMENTS 

This chapter analyzes the results of the range and angular measurements, and 

discusses alternative means to improve the tracking accuracy.  

A. RANGE MEASUREMENTS 

The first set of range measurements were conducted on 26 April 2019 at Impossible 

City, a Military Operations on Urban Terrain (MOUT) site within Fort Ord, in Monterey, 

California. The range measurements for the six different data points, based on the planned 

waypoint, GPS data, and visual estimation are summarized in Table 3. Bounding boxes were 

found only for the first two waypoints, R1 and R2; hence, the visual estimation technique for 

range was not possible beyond 20 m from the camera’s position. The estimate error measures 

the difference between the CV estimated range and the planned distance as a percentage of 

the latter. Table 3 shows that the CV range estimation technique underestimates the actual 

distance by 46–48%. Correspondingly, this implies that the bounding box width is larger 

than expected given the inverse relationship between pixel width and target range. Further, 

as shown in Table 3, the GPS estimated ranges are fairly close to the planned waypoint 

distances, exhibiting a precision of approximately 1 m or less.  

Table 3. Range Measurements at Impossible City. 
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The time series plots showing variation in bounding box width and centroid 

coordinates over successive video frames are generated after processing the video 

recording of the waypoints with the CV algorithm in the MATLAB software environment. 

Cx refers to the x-coordinate of the centroid, while Cy refers to the corresponding y-

coordinates. Figure 37 shows the raw data for variation in bounding box (BB) width over 

successive frames as well as the cleaned and detrended data over time. The data was 

cleaned by further post-processing the raw data to remove outliers. Likewise, Figure 38 

shows the raw data for variation in centroid coordinates over successive frames. Figure 39 

presents the cleaned data for the centroid coordinates. Analysis is done using cleaned data 

to minimize the effects of outliers. 

The target hovers at each waypoint for eight seconds, and minimal variation is 

expected in the bounding box parameters in such instances. The plateau regions in the time 

series plots represent the occurrence of waypoints. This graphical approach is adopted to 

identify the occurrence of waypoints in the time series plots for all data. 

‘Flat-line’ regions occur when bounding boxes disappear and the last known value 

of the parameter is stored in the time series variable until new values are written into the 

variable. Figure 37 clearly indicates two plateau regions representing the first two 

waypoints R1 and R2. 

As the waypoints were planned to maintain a constant elevation angle from the 

optical axis, ideally both Cx and Cy would be expected to remain close to constant values. 

Figure 39 shows that the magnitude of variation in the values of Cx at waypoint R1 is 

approximately 50 pixels, and the corresponding magnitude of variation for Cy is 

approximately 13 pixels. It should be noted that the initial 1.5 seconds are not considered 

as the video shows the drone transiting into hovering position. At waypoint R2, the Cx 

variation magnitude decreases to approximately 31 pixels, while the Cy variation 

magnitude is approximately 23 pixels. A review of the video recording indicates that the 

observer drone platform is subject to environmental disturbances from wind when 

hovering. These environmental disturbances contributed to the observed rolling and 

pitching motion in the camera’s recordings, and this caused variation in the centroid 

coordinates.  
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Figure 37. Variation in Bounding Box Width 
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Figure 38. Outliers in Raw Data of Centroid Coordinates Variation 
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Figure 39. Post-processed Data (with Outliers Removed) Showing 

Centroid Coordinates Variation 

A second set of range measurements was conducted in a similar manner at Camp 

Roberts located near Paso Robles, California, on 02 May 2019. The hovering duration for 

the range waypoints was adjusted to six seconds during this experiment in an effort to 

streamline the field test workflow. A challenge was encountered at Camp Roberts, as the 

CV algorithm was initially designed based on the landscape observed at Impossible City. 

The CV algorithm had to be adjusted in terms of the color-space threshold for both the hue 

and grayscale values in order to effectively perform color-space segmentation and localize 

the target within the image frame for videos recorded at Camp Roberts. As the landscape 

and sky conditions at Camp Roberts were more homogeneous in color tone compared to 

Impossible City, there were fewer morphological operations involved in the modified CV 

algorithm to remove unwanted image artifacts. Refer to Figure 40 and Figure 41 for a 

comparison of the landscape and sky conditions at the two field test sites. Implicitly, this 
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also highlighted the limitation of the CV algorithm, as it is not able to effectively adapt to 

different landscapes and cloud cover. The modified CV algorithm is appended in Appendix 

B for reference.  

 

Figure 40. Snapshot of Landscape and Sky Condition at Impossible 

City 
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Figure 41. Snapshot of Landscape and Sky Condition at Camp Roberts 

The target drone was programmed with waypoints maintaining the same elevation 

angle of 11.3o from the optical axis of the camera. The data points used for range 

measurement at Camp Roberts included the same distances as those used at Impossible 

City, but additional data points were added at 4 m increments between 0 m and 20 m. These 

were done to compare and verify the results gathered at Impossible City, and to gain further 

insight into the variation in pixel width within the useful bounding box detection range. 

The results are summarized in Table 4. Figure 42 shows the raw data for variation 

in bounding box width over successive frames as well as the cleaned and detrended data 

over time. In this case, five plateau regionscorresponding to the first five 

waypointscan be discerned. Figure 43 shows the raw data for variation in centroid 

coordinates over successive frames. Figure 44 presents the cleaned data for the centroid 

coordinates. Analysis is done using cleaned data to minimize the effects of outliers. 

While the same GPS distance measurement setup was employed at Camp Roberts, 

no meaningful data could be extracted from the GPS logs. This problem affected all data 

points for range and angular measurements at Camp Roberts. After all the drone flights at 

Camp Roberts were completed, it was observed that the GPS antennas on the drones were 
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not perpendicular to the plastic antenna masts. The GPS antennas were designed to be 

mounted on flat surfaces and the plastic antenna mast was an improvised solution 

comprising 3D printed components that were joined together by strong adhesive and duct 

tape. It is postulated that mechanical shocks from repeated drone landings and in-flight 

vibrations may have contributed to the deterioration of the antenna mast joint over time. 

Refer to Figure 45 for a comparison of the mast joint condition. A loosening of the joint 

would have caused the GPS antenna to become tilted, and the quality of the GPS signals 

received would have been degraded (EMLID n.d.).  

Table 4. Range Measurements at Camp Roberts 

Waypoint Planned 

distance from 

waypoint to 

camera 

(meters) 

Angular 

size 

(degrees) 

GPS 

estimated 

range 

(meters) 

Width of 

bounding 

box 

(pixels)* 

CV 

estimated 

range 

(meters) 

Estimate 

error 

(%) 

RR1 4 4.7 - 70 5.1 -27% 

RR2 8 2.4 - 50 7.1 11% 

RR3 12 1.6 - 44 8.1 33% 

RR4 16 1.2 - 35 10.2 36% 

RR5 20 1.0 - 22 16.1 20% 

RR6 30 0.6 - - - - 

RR7 40 0.5 - - - - 

RR8 50 0.4 - - - - 

RR9 60 0.3 - - - - 

*Based on 1920 x 1080 resolution image frame 
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Figure 42. Variation in Bounding Box Width 

 

Plateau 

regions 
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Figure 43. Outliers in Raw Data of Centroid Coordinates Variation 
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Figure 44. Post-processed Data (with Outliers Removed) Showing 

Centroid Coordinates Variation 

 

Figure 45. Comparison of Mast Joint Condition for Normal Joint (Left 

Image) and Deteriorated Joint (Right Image)  
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B. RANGE MEASUREMENT LIMITS AND ACCURACY 

The results from Table 4 show that bounding boxes were found only for the first 

five waypoints RR1–RR5; hence, CV estimation technique for range was not possible 

beyond 20 m from the camera position. This verifies the same range limitation that was 

observed from the data in Table 2 and could form a baseline measure against which other 

algorithms could be compared.  

In terms of accuracy, the range estimation technique does not perform well in 

estimating distance to the target, with large error percentages ranging from 11–36% in 

magnitude. There was no noticeable trend in the error percentages. In nearly all the data 

points, the algorithm also underestimates the actual distance to the target. The sole data 

point with range overestimation occurred at waypoint RR1, which was the position nearest 

to the camera. Given that the estimated range varies inversely with the perceived bounding 

box pixel width, the same magnitude in errors arising from target pixel width perception 

(for example, sensor pixel noise in resolving the target from the background) will 

contribute to much greater errors at shorter distances from the camera. This is a drawback 

of the range estimating relationship. Nevertheless, within the detectable range limits, 

tracking the trends in target pixel width could still function as a useful indicator of whether 

a target is approaching or receding from the observer position. This could be employed as 

a possible heuristic in a control algorithm to guide the observer drone to home in on the 

target.  

The percentage error is also significantly greater when processing a lower 

resolution image frame. The data points in Table 3 were obtained from processing 960 x 

540-pixel image frames and the percentage errors in range estimation all exceeded 45%. In 

comparison, the data points in Table 4 were based on 1920 x 1080-pixel image frames and 

the percentage errors were smaller, varying between 11% and 36% in magnitude. These 

results are within expectations, as higher resolution images frame can better represent finer 

details on the same given object.  

In Figure 37, the flat line first occurs when the pixel width decreases to 13 pixels 

(while the lowest recorded pixel width in the time series plot was 11 pixels for a short 
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instance). By contrast, in Figure 42 the flat line first occurs at 17 pixels (while the lowest 

recorded pixel width in the time series plot was 12 pixels). Given that the image frames 

that generated the two time series plots in Figures 37 and 42 were of different resolutions, 

the proximity in values of the lowest recorded pixel width suggests the construction of 

bounding boxes might have an inherent lower bound arising from possible software 

limitation of the bounding box function. This observation could serve as a baseline to 

compare performance in bounding box construction with other image processing libraries 

such as OpenCV, as well as other types of object detection and localization algorithms, 

such as machine learning-based approaches.  

The possible sources of error in the target dimension (based on bounding box width) 

could include sensor noise and morphological dilation operations in the CV algorithm. 

First, the sensor has to resolve the boundary between the target and the background in order 

to perceive the target. A practical EO sensor will have some finite noise in its output; hence, 

the perceived width of the target and consequently the width of the bounding box will 

fluctuate. Second, morphological dilation operations at the pixel level are necessary to 

recover parts of the target image blob, which may have been “erased” by prior 

morphological erosion operations targeted at other artifacts in the video frame. The 

precision of such morphological operations is limited and influenced by the choice of 

structuring element, which affects every pixel and its neighborhood. While dilation 

operations may help to recover the “erased” parts of the target blob, the additive nature of 

the operation also adds pixels to the boundaries of the unaffected portions of the target 

blob, and that can inadvertently increase the perceived width of the target and bounding 

box. This can contribute to range underestimation.  

Furthermore, the magnitude of variation in the centroid coordinates is comparable 

to those of the data points from Impossible City. The video recording also shows 

observable rolling and pitching motion of the camera on board the observer drone platform 

at Camp Roberts. At waypoint RR3, the target drone was observed to marginally shift to 

the right when hovering, which accounts for the increase in the Cx value at that waypoint. 

It is postulated that the lateral shift could be due to momentary errors in the target drone’s 
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GPS self-localization. When waypoint RR3 was completed, the target drone was observed 

to laterally shift to the left for subsequent waypoints. 

The value of Cy was observed to trend upwards as the target drone flew farther 

away from the camera. Given that the vertical pixel coordinate convention of the image 

frame increases towards the bottom of the scene, this implies that the projection of the 

target drone on the image plane was approaching the center of the image plane as opposed 

to maintaining a constant elevation angle as planned initially. Consequently, this suggests 

a finite pitch angular error in the orientation of the camera.  

C. ANGULAR MEASUREMENTS 

At Impossible City, nine waypoints across the target plane, at 20 m from the camera 

position (measured from center of target plane), were planned for analysis. The relative 

positions of these waypoints are summarized in Figure 46 for ease of reference.  

 

Figure 46. Illustration of Different Target Positions across Target 

Plane 

The summary of the planned horizontal and vertical offset distances of the nine 

waypoints, as well as the theoretical resultant angular offsets in azimuth and elevation are 

shown in Table 5. At Camp Roberts, these nine waypoints were repeated to verify the 



61 

results from Impossible City. In addition, nine more waypoints (following similar 

geometrical arrangement) in a target plane 10 m from the camera position were flown. The 

horizontal and vertical offset distances were chosen to generate different angular offsets 

from the prior set of nine waypoints. The rationale is to populate the image plane with more 

data points for analysis. The summary of the planned spatial positioning for these nine 

waypoints is summarized in Table 6.  

Table 5. Summary of Planned Spatial Positioning for Different Target 

Positions Observed at 20 m from Camera Position (Impossible 

City and Camp Roberts) 

Target 

Position 

Horizontal 

offset distance 

(meters) 

Vertical offset 

distance 

(meters) 

Azimuth 

angular offset 

(degrees) 

Elevation 

angular offset 

(degrees) 

A1 -18 9 -42.0 24.2 

A2 0 9 0 24.2 

A3 18 9 42.0 24.2 

B1 -12 6 -31.0 16.7 

B2 0 6 0 16.7 

B3 12 6 31.0 16.7 

C1 -6 3 -16.7 8.5 

C2 0 3 0 8.5 

C3 6 3 16.7 8.5 

Table 6. Summary of Planned Spatial Positioning for Different Target 

Positions Observed at 10 m from Camera Position (Camp Roberts) 

Target 

Position 

Horizontal 

offset distance 

(meters) 

Vertical offset 

distance 

(meters) 

Horizontal 

angular offset 

(degrees) 

Vertical 

angular offset 

(degrees) 

AA1 -6 3 -31.0 16.7 

AA2 0 3 0 16.7 

AA3 6 3 31.0 16.7 

BB1 -4 2 -21.8 11.3 

BB2 0 2 0 11.3 

BB3 4 2 21.8 11.3 

CC1 -2 1 -11.3 5.7 

CC2 0 1 0 5.7 

CC3 2 1 11.3 5.7 
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A montage of the snapshots for the nine waypoints is shown in Figure 47. Table 7 

summarizes the comparison of the GPS-based angular measurements, planned angular 

offsets, and CV-based angular estimation of the nine waypoints flown at Impossible City 

(observed at 20 m). Table 8 compares the errors between the GPS-based angular 

measurements, planned angular offsets, and CV-based angular estimation. Figure 48 shows 

the visualization of the azimuth and elevation errors between CV estimates and planned 

offset in Table 8 for the different waypoints. 

 

Figure 47. Montage of Waypoints at Impossible City 

(Observed at 20 m) 
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Table 7. Summary of Angular Measurements at Impossible City 

(Observed at 20 m) 

 

Table 8. Summary of Angular Errors at Impossible City 

(Observed at 20 m) 
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a)  

b)  

Figure 48. Visualization of Table 8 Data for (a) Azimuth Error and (b) 

Elevation Error 

A montage of the snapshots for the same waypoints flown at Camp Roberts 

(observed at 20 m) is shown in Figure 49. Table 9 summarizes the data for these waypoints, 

while Table 10 compares the errors. Figure 50 shows the visualization of the azimuth and 

elevation errors between CV estimates and planned offset in Table 10 for the different 

waypoints. 
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Figure 49. Montage of Waypoints at Camp Roberts 

(Observed at 20 m) 

Table 9. Summary of Angular Measurements at Camp Roberts 

(Observed at 20 m) 
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Table 10. Summary of Angular Errors at Camp Roberts (Observed at 20 m) 

 
 

a)  

b)  

Figure 50. Visualization of Table 10 Data for (a) Azimuth Error and 

(b) Elevation Error 
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Figure 51 shows the montage of the snapshots for the nine additional waypoints 

flown at Camp Roberts (observed at 10 m). Table 11 summarizes the data for these 

waypoints, while Table 12 compares the errors. Figure 52 shows the visualization of the 

azimuth and elevation errors between CV estimates and planned offset in Table 12 for the 

different waypoints. 

 

Figure 51. Montage of Waypoints at Camp Roberts 

(Observed at 10 m) 
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Table 11. Summary of Angular Measurements at Camp Roberts 

(Observed at 10 m) 

 

Table 12. Summary of Angular Errors at Camp Roberts (Observed at 10 m). 

Positions 

Azimuth (degrees) Elevation (degrees) 

Error 

between 

GPS and 

waypoint 

(degrees) 

Error 

between 

CV 

estimate 

and 

waypoint 

(degrees) 

Error 

between 

CV 

estimate 

and GPS 

(degrees) 

Error 

between 

GPS and 

waypoint 

(degrees) 

Error 

between 

CV 

estimate 

and 

waypoint 

(degrees) 

Error 

between 

CV 

estimate 

and GPS 

(degrees) 

AA3 - 3.9 - - 4.9 - 

AA2 - -10.6 - - -0.1 - 

AA1 - -11.4 - - 1.6 - 
 

BB3 - -4.4 - - 0.8 - 

BB2 - -7.7 - - -2.2 - 

BB1 - -9.3 - - -0.3 - 
 

CC3 - -7.4 - - 0.3 - 

CC2 - -8.4 - - -0.6 - 

CC1 - -3.9 - - -0.7 - 
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a)  

b)  

Figure 52. Visualization of Table 12 Data for (a) Azimuth Error and 

(b) Elevation Error 

1. Results of Angular Measurements at Impossible City 

In Table 7, there are no CV-based estimates for waypoints A2 and A3 as the target 

was not hovering within the FOV of the camera at these positions (refer to montage in 

Figure 47). As A2 and A3 are the outermost waypoints planned at the edge of the camera’s 

FOV, this suggests the existence of a finite error in the relative heading and elevation angle 

of the camera orientation. The asymmetry in GPS-based azimuth angular measurements 

within each cluster of waypoints (i.e., A1–A3 cluster, B1–B3 cluster) also provides further 

evidence of such error. The sources of such errors could include imperfections in the 

drone’s onboard compass (affecting heading) and accelerometer sensors as well as 

potential misalignment in the camera gimbal joints, collectively affecting the pitch angle 

of the camera.  

A comparison of the GPS-based measurements and planned angular offset values 

shows that the target drone’s accuracy in navigating to the planned waypoints is reasonable 

given that no angular errors (i.e., difference in angles between planned waypoints and GPS-

based measurements) in azimuth and elevation exceeded 5.5o in magnitude. This 

demonstrates the value of utilizing pre-programmed waypoints to plan and execute 

repeatable drone maneuvers for a variety of applications. 
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The CV-based angular estimation does not perform well as there are large errors of 

up to nearly 17o and 18o in magnitude when compared against planned waypoints and GPS-

based measurements, respectively. These large angular errors are attributed to relative 

positioning errors between the target and observer drones, as well as the observer camera 

orientation. This is evident in Figure 47 as the montage shows asymmetry in the physical 

positions of the target drone within the camera FOV. 

The presence of outliers in the raw data is attributed to the bounding box 

intermittently shifting between the actual target and spurious residual artifacts in the image 

frame resulting from imperfect image processing techniques in the CV algorithm. For 

example, foreground pixels are sometimes not completely removed before bounding boxes 

are constructed to isolate and localize the real target. Figure 53 shows an example of a 

bounding box enclosing an artifact instead of the actual target. The rapid shifts in bounding 

box between the target and artifacts across successive frames can be observed through 

visualization of the bounding boxes on the original video frames in the MATLAB software 

environment.  

 

Figure 53. Bounding Box Enclosing an Artifact 
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2. Results of Angular Measurements at Camp Roberts 

Given the lack of meaningful GPS-based measurements at Camp Roberts, 

comparisons in angular measurements are made against planned waypoints only. 

Inspecting the position of the bounding box visualization on the original video frames 

readily shows that all the planned waypoints have a finite offset in azimuth within the 

camera FOV (refer to Figure 49 and Figure 51). This is further confirmed by the asymmetry 

in the values of the CV-based azimuth angular measurements. This corroborates the 

observations of the data from Impossible City.  

Given the relatively more homogeneous color tone of the landscape and sky at 

Camp Roberts captured within the camera’s FOV compared to what was captured at 

Impossible City, the color-space segmentation processes in the CV algorithm resulted in 

much fewer residual image artifacts, which tends to draw the bounding box away from the 

true target position. The reduction in artifacts was observed for all 18 waypoints flown at 

Camp Roberts. Consequently, the position of the bounding box was significantly more 

stable and could steadily track the target movement over time. An example comparing the 

effects of residual image artifacts on the stability of the bounding box position is illustrated 

by Figure 54 (waypoints B1–B3 at Impossible City) and Figure 55 (waypoints B1–B3 at 

Camp Roberts). Clearly, Figure 54 shows the presence of significant image artifacts for 

videos captured at Impossible City, as indicated by numerous outliers.  

As the target moves from waypoint B1 to B3 through B2, the corresponding 

bounding box movement is manifested as changes in the box centroid coordinates over time. 

The data shown in these figures are the raw values without post-processing. The sharp 

spikes/dips in values in Figure 54 indicate instances when the bounding boxes are formed over 

image artifacts instead of the true target position. This underlines the importance of minimizing 

such artifacts to improve the tracking accuracy and stability of the bounding box. 
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Figure 54. Variation in Centroid Coordinates (Impossible City, 20 m) 

 

Figure 55. Variation in Centroid Coordinates (Camp Roberts, 20 m) 
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Given that the CV-based measurements at Camp Roberts are relatively free from 

the effects of image artifacts, the data from the waypoints flown at Camp Roberts is used 

for the evaluation of optical distortion effects and angular measurement accuracy. Figure 

33 had shown that optical distortion effects are typically most pronounced at the edge of 

the lens. Hence, the waypoints A1-A2-A3 residing at the edge of the camera FOV would 

be most susceptible to the effects of such distortion. Yet, inspection of the CV-based 

elevation angular measurements in this waypoint cluster reveals that these values are fairly 

close. Ideally, the values would be the same since the target was planned to travel in a 

straight line across the FOV when navigating this waypoint cluster. Hence, the data does 

not suggest the presence of significant optical distortion effects. The assumption made is 

that the lens construction is symmetrical about the lens optical axis, and therefore, the 

observed optical properties can reasonably be assumed to be similar for symmetrical 

regions. The lack of observable optical distortion suggests the linear FOV mode in the 

camera appears to be doing its intended function, which is desirable.  

For the nine waypoints observed at a range of 20 m (see data in Table 8), the 

azimuth errors range from 1.5o to 18.4o in magnitude, while the elevation errors range from 

0.1o to 5.6o in magnitude. The preceding paragraphs already highlighted that camera 

orientation is a major source of error in the azimuth measurements. While sensor 

imperfections have already been mentioned as a contributing factor in the previous section, 

another factor could be the finite offset between the camera lens optical axis and the body 

axis of the observer drone; this is a limitation of the camera mounting bracket design used 

in the experiment. Hence, the physical placement of the lens could be a design 

consideration to further reduce azimuth measurement errors.  

For the nine waypoints observed at a range of 10 m (see data in Table 10), the 

azimuth errors range from 3.9o to 11.4o in magnitude, while the elevation errors range from 

0.3o to 4.9o in magnitude. Assuming that the elevation error arising from the pitch angle of 

the hovering observer drone is negligible (ideally, zero) and that the lens optical 

construction is reasonably symmetrical about its optical axis, the empirical errors from the 

CV-based elevation measurements might be a useful heuristic for design boundaries when 

considering CV-based angular measurements from the optical axis. 
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An additional observation is that the C1–C3, B1–B3, and A1–A3 waypoint clusters 

represent image points that are increasingly farther away from the optical center as well as 

the center of the image frame. The errors in angular measurements generally increase as 

the cluster is farther away from the optical center. This illustrates a drawback in the CV-

based angular estimation technique, which assumes a constant nominal dimension for the 

target object. The constant nominal dimension assumption holds true only for a perfectly 

spherical object. As the camera observes the target at different angles, the nominal object 

width perceived by the camera sensor changes. For example, at an oblique angle such as 

waypoints at the corner of the FOV, the width of the bounding box is likely to be closer to 

the diagonal length of the target. This also explains why the angular errors are generally 

smallest when the target is observed at the waypoint cluster closest to the optical center. 

This effect would be diminished, as the target is farther away from the camera since the 

perceived change in pixel width arising from change in target orientation would be reduced.  

D. IMPROVING TRACKING ACCURACY 

The presence of artifacts in the image frame affects the accuracy of the bounding 

box in tracking the true position of the target. This study has explored the use of other 

feature detection tools available in the MATLAB software, which are based on different 

feature extraction algorithms. The goal of the initial CV algorithm was to end up with an 

image blob representing the true target position in the frame, and use the regionprops() 

function to construct the bounding box around the image blob for object localization. The 

2018b version of MATLAB was used to support the thesis work, and this version offers 

seven different types of feature detection functions. The thesis focused on three functions 

that were designed for blob detection, namely the detectSURFFeatures(), 

detectKAZEFeatures(), and detectMSERFeatures(). These functions are based on different 

feature detection algorithms, respectively: the Speeded Up Robust Features (SURF) (Bay 

et al. 2008, 346), KAZE (Alcantarilla, Bartoli, and Davison 2012, 214), and Maximally 

Stable Extremal Regions (MSER) (Obdrzalek et al. 2009, 107–115) algorithms. 

A comparison of these feature detection functions is beyond the scope of this thesis. 

The focus is on the empirical results to guide the selection of the most suitable feature 
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detection function for the CV algorithm. The results of processing the Impossible City 

waypoint videos with the three types of feature detection functions show that only the 

detectMSERFeatures() function was able to track the target position over time. Figure 56 

shows the variation of coordinates of the MSER feature point for the target navigating 

waypoints B1, B2, and B3 at Impossible City. The plot shows instantaneous raw values 

without post-processing. The difference in tracking stability is significant when compared 

to the raw data shown in Figure 54.  

Clearly, the comparison shows that the MSER feature point is highly resistant to 

the effects of image artifacts and hence offers better accuracy in tracking the true target 

position. Visualization of the MSER feature point using a red circle overlaid on the video 

frames also corroborates the improved tracking accuracy as the red circle closely follows 

the target movement in the video. In addition, using the MSER feature point as an 

alternative means of target tracking is attractive as it avoids the computational penalty of 

having to post-process the raw signal to remove outliers. Furthermore, the post-processing 

in this analysis was done with the benefit of hindsight and without real-time constraint. A 

functional computer vision application for in-flight guidance will have to apply signal 

processing in real time to identify and separate noise from true target signals, and such 

processing will not be trivial.  

Nevertheless, the main drawback of using alternative feature detection functions is 

the lack of other visual cues like a bounding box to indicate the size of the target object. 

This implies the CV-based range estimation technique cannot be employed when such 

alternative feature detection functions are used in isolation. A possible strategy is to employ 

both bounding box construction and MSER feature detection functions to improve tracking 

accuracy while enabling CV-based range estimation, although this incurs the penalty of 

additional computational cost.  
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MSERx refers to x-coordinate of MSER feature point; MSERy refer to the corresponding 

y-coordinate. 

Figure 56. Variation of MSER Feature Point Coordinates for 

Waypoints B1–B2–B3 
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VII. IMPLEMENTATION 

This chapter describes some initial efforts on physical implementation of a 

prototype system to realize the counter-UAS capability. The prototype system is meant to 

serve as a physical surrogate to test the computer vision and flight control algorithms. The 

challenges encountered in the integration of the system components and results of the flight 

tests for the prototype system are also discussed.  

A. HARDWARE 

Table 13 builds on the traceability matrix (previously shown in Figure 18) to 

identify the hardware used for implementing the nominal physical components. As far as 

possible, the hardware sourced for implementation made use of existing components in the 

Naval Postgraduate School laboratory inventory. A pair of telemetry radios was also used 

in the prototype system to allow the human operator to monitor useful information on the 

UAS platform such as battery level, flight mode, and error messages through the GCS 

software. This helps to improve situational awareness for better user control and also 

facilitates troubleshooting. The actual hardware setup is shown in Figure 57, while Figure 

58 shows the key components on the drone.  

Table 13. Actual Implementation of Physical Components. 

  Physical Components Actual Implementation 

SYS.1.1 Touchscreen display 

Windows 10 laptop with Mission 

Planner software 

SYS.1.2 Mission planning software application 

SYS.1.3 USB port 

SYS.1.4 Device battery 

SYS.1.5 Device charging cable 

SYS.1.6 Device microprocessor 

SYS.2.1 Dual-axis joysticks 

Fly Sky FS-i6S Remote Controller 

SYS.2.2 Input buttons 

SYS.2.3 RC display screen 

SYS.2.4 Ground RC radio 

SYS.2.5 RC battery 

SYS.2.6 RC charging cable 

SYS.2.7 RC microprocessor 
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  Physical Components Actual Implementation 

SYS.3.1 
Flight management unit (FMU) 

(processor) 
Pixhawk 2.1 Cube Flight Controller 

SYS.3.2 GPS module 

Here+ V2 Rover 
SYS.3.3 Barometer 

SYS.3.4 Compass 

SYS.3.5 Gyroscope 

SYS.3.6 
Airframe RC radio 

Fly Sky FS-iA6B 2.4GHz 6 Channels 

Receiver 

SYS.3.7 Rotors DJI 2312E rotors 

SYS.3.8 Vehicle battery 
Turnigy 2200 mAh Li-Po battery 

SYS.3.9 Vehicle battery charging cable 

SYS.3.10 FMU USB port Pixhawk 2.1 Cube Flight Controller 

SYS.3.11 Companion computer Raspberry Pi 3 Model B board 

SYS.4.1 
HDMI bridge module 

Auvidea B101 HDMI to CSI-2 

Bridge 

SYS.4.2 Camera  

GoPro Hero4 Black SYS.4.3 Camera battery 

SYS.4.4 Camera charging cable 

  Telemetry radios 

mRo SiK Telemetry Radio V2 

915Mhz 
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Figure 57. Hardware Implementation of Prototype System 

  



80 

 

Figure 58. Key Components on the Drone  

The GoPro Hero4 Black camera was used in recording the test videos for the 

development of the CV algorithm; hence, the same camera was selected to implement the 

EO sensor of the prototype system. Implementing autonomous behavior requires the 

computer vision and flight guidance algorithms to run on a separate companion computer 

as the flight management unit (FMU) is only designed to function as an autopilot, i.e., 

control the actuators (rotors) to achieve a desired flight command input (e.g., take-off, land, 

roll, pitch, yaw). In an autonomous drone, the companion computer generates the flight 

commands, which the FMU processes and translates into actuator controls. The Raspberry 

Pi 3 Model B was selected as the companion computer as it is a mature platform commonly 

used for electronics prototyping and enjoys a wide network of online support forums that 

eases troubleshooting. The Auvidea B101 HDMI to CSI-2 Bridge module was used as a 

hardware interface to allow the Raspberry Pi companion computer to receive video feed 

from the GoPro camera (Vargas 2016). This thesis does not cover details on the physical 

assembly and wiring connections between the hardware components as these are already 

well addressed by online documentation (ArduPilot Dev Team n.d.; PX4 Dev Team 2019). 
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B. SOFTWARE 

The Mission Planner GCS software previously used for waypoint planning was 

used for telemetry purposes to remotely monitor the flight parameters and diagnostics 

status of the drone. A screenshot of the telemetry visualization in the Mission Planner 

software is shown in Figure 59. 

 

Figure 59. Screenshot of Telemetry Visualization in Mission Planner 

Software. 

The Raspberry Pi companion computer runs on the Raspbian operating system 

system, which supports the Python programming language, amongst others (Raspberry Pi 

Foundation n.d.). Python was selected as the programming language to implement the CV 

and flight guidance algorithms on the prototype system as there are computer vision and 

drone flight control software libraries (i.e., OpenCV and DroneKit) readily available, 

without having to build the code from scratch. This greatly streamlines the prototyping 

process. As the prototype drone was planned to be tested at Camp Roberts, the MATLAB 

CV algorithm (refer to Appendix B) was translated into Python programming code. 

User interaction with the Raspberry Pi companion computer is achieved remotely, 

using Virtual Network Computing (VNC). This allows the user to access and control the 
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desktop interface of the Raspberry Pi companion computer from another computer; in this 

case, the telemetry/mission planning laptop (Raspberry Pi Foundation n.d.). Hence, using 

VNC helps to streamline user control, monitoring, and programming of the autonomous 

drone system to a single computer. Establishing the VNC connection between the laptop 

and the companion computer requires three steps: 1) enabling the VNC Server in the 

Raspberry Pi, 2) installing the VNC Viewer software on the laptop, and 3) ensuring both 

laptop and Raspberry Pi are connected to the same wireless network. In field tests, the 

wireless network was provided by a smartphone in wireless hotspot tethering mode. Since 

the user has remote access to the desktop interface of the companion computer, such access 

also extends to the video output of the camera connected to the companion computer.  

C. FLIGHT GUIDANCE ALGORITHM 

This section describes the control objective, guidance principle, and workflow of 

the algorithm, as well as the software libraries used in the algorithm implementation.  

1. Software Libraries 

The CV algorithm presented in Chapter III is intended to help localize the target 

position within the FOV of the camera. Such information is further translated into guidance 

commands for the drone via the flight guidance algorithm. These commands are 

implemented through software functions in Python using DroneKit software libraries. 

DroneKit allows progammers to create Python programs that communicate with the 

unmanned vehicle via the MAVLink protocol. The software library enables the 

programmer to gain access to the vehicle’s state and parameter information and allows 

direct control over the vehicle movement (3D Robotics n.d.). 

2. Control Objective 

As the desired capability is to intercept an intruding drone, the control objective 

was to stop pursuing the target when it is within an arbitrary distance of 2 m and to execute 

a ‘return to launch’ command, directing the drone would return to its launch point. The 

stopping distance is converted into the equivalent bounding box width using Equation (4). 
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3. Guidance Principle 

A simple guidance principle utilizing the azimuth angular offset of the target is 

proposed to be tested. This is intended to test the drone’s ability to pursue the target in the 

simpler scenario of a two-dimensional plane. Incorporating the elevation angular offset to 

allow the drone to pursue a target in three-dimensional space is left as future work.  

At every frame of the video output from the camera, the CV algorithm would 

determine the azimuth angular offset of the target from the optical axis. This angular offset 

is then fed as the desired yaw angle for the drone to execute while constantly advancing 

with a forward motion vector relative to the body axis of the drone. The Pixhawk autopilot 

then uses the proportional-integral-navigation controller to eliminate the azimuth offset. In 

field tests, a forward vector of zero was used to isolate and test the yaw rotational motion. 

Ideally, in such a configuration, the drone should yaw in the azimuth plane to track the 

target as the latter moves across the camera FOV. The implementation of more complex 

guidance principles is left as future work.  

4. Guidance Algorithm 

The flight guidance algorithm workflow is described in the following steps: 

1. Arm the drone and take off to pre-determined altitude. 

2. Initialize the camera and start the CV algorithm to read the incoming 

video frame. 

3. Apply the CV algorithm to detect the target and find a bounding box. 

4. Compute the bounding box width and azimuth angular offset. 

5. Compare the bounding box width with the control objective. 

6. Intercept the target and return to launch point if the width is equal to or 

greater than the objective. 

7. Feed the azimuth offset as the desired yaw angle input command to the 

drone, if the conditions in step 6 are not met. 
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8. Command the drone to advance with a constant forward motion vector 

(relative to its body axis) while executing the yaw command. 

9. Go to step 2 to process the next incoming video frame and repeat all 

subsequent steps until the control objective is achieved.  

D. INTEGRATION CHALLENGES 

The integration process for the prototype system faced several challenges. Beyond 

physical assembly and wiring, conscious and deliberate decisions were taken to optimize 

the relative placement of various components on the airframe. The following paragraphs 

describe the challenges encountered and the mitigation actions taken.  

1. Separate Power Source for Companion Computer 

While the wiring diagram for the connection between the Raspberry Pi and the 

Pixhawk Cube FMU showed the possibility of supplying the companion computer with 5V 

power from the telemetry (TELEM2) port of the Pixhawk, this was not a feasible 

arrangement in practice as the power supply was not stable, and the Raspberry Pi was 

observed to repeatedly reboot itself when the Raspbian desktop environment was launched. 

The mitigation action taken was to add a portable battery bank to provide dedicated power 

supply for the companion computer. This, however, has the drawback of increasing the 

platform weight.  

2. Propeller Guards within Camera FOV 

Propeller guards were installed to protect the propellers from coming into contact 

with other surfaces. Nevertheless, the tips of the propeller guards appeared within the FOV 

of the camera and could partially obscure the target. Furthermore, under shady conditions, 

these tips can appear as dark areas in the FOV and be wrongly detected as false targets. 

Possible mitigation actions include changing the FOV of the camera to a narrower angle at 

the expense of reduced situational awareness. Alternatively, the mounting position of the 

camera can be adjusted to remove the propeller guard from the FOV, but care must be 

taken to balance the center of gravity of the drone vehicle. In this thesis, the FOV setting 

of the camera was adjusted to minimize the propeller guard obstruction.  
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3. Space Management and Electromagnetic Compatibility  

The prototype system made use of the DJI F450 quadrotor airframe and despite the 

450 mm airframe width, it was necessary to ensure all other components and wiring were 

clear of the four propeller blade movement areas. Consequently, there was limited space 

for the placement of components, which were concentrated in the center of the airframe. 

The prototype system made extensive use of cable ties to secure components and wiring to 

prevent unwanted movement. Component surfaces were attached together using velcro 

strips to allow easy and repeatable attachment/detachment for troubleshooting purposes.  

On the other hand, the concentration of components meant that the electronics, 

power supplies, and antennas (for remote control, telemetry, Wi-Fi, and GPS) as well as 

power and data cables were all in proximity, giving rise to electromagnetic compatibility 

concerns. During field tests, the telemetry screen in Mission Planner showed intermittent 

compass calibration errors despite several attempts at compass re-calibration. It was 

observed that such error messages typically occurred when the autonomous drone drifted 

and flew in an unplanned manner. Nonetheless, the error messages could not be replicated 

consistently across all test flights, which frustrated attempts at troubleshooting.  

The portable battery bank appeared to be a possible contributing factor as the same 

battery bank also resulted in intermittent magnetic interference error messages when it was 

mounted on the 3DR Solo drone to power the GPS module during the initial CV algorithm 

test flights. As no suitable alternative portable battery bank was available during the test 

flights, the compass error messages could not be resolved definitively. Future work, 

however, may need to consider the use of suitable electromagnetic shielding or appropriate 

separation between such components to reduce electromagnetic compatibility issues.  

E. FLIGHT TEST OBSERVATIONS AT CAMP ROBERTS 

Flight tests were conducted at Camp Roberts on 15–16 August 2019. Initially, when 

all the hardware components on the drone were assembled and tested indoors, the 

Raspberry Pi companion computer was able to receive video feed from the GoPro camera. 

These components were then disassembled for transportation to Camp Roberts. After the 

same components were assembled again for the field tests, the Raspberry Pi was unable to 
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receive video feed. Troubleshooting had isolated the fault to a possible malfunction in the 

HDMI bridge module. As there was no spare HDMI bridge module available, the flight 

tests at Camp Roberts were limited to testing arbitrary flight commands by using the 

Raspberry Pi to run DroneKit software function calls. The drone successfully demonstrated 

vertical take-off/landing, rotational (yaw), and translational motion. This gave assurance 

that the integration between the DroneKit software and the drone hardware was working 

as intended.  

On the other hand, it was also observed that the yaw motion of the drone was not 

stable. When the drone was commanded to execute continuous 90o yaw movement in a 

software loop (without any other motion vectors), it was not executing the yaw movements 

along a fixed axis; i.e., as the drone yaws, the axis of yaw rotation also drifts. Figure 60 

shows snapshots of the yaw movements. A possible cause of the drift could be weak or 

fluctuating GPS signals given the GPS antenna is mounted in proximity to other 

electronics, antennas, power supply, and the plane of the rotors on the airframe, all of which 

could contribute to electromagnetic interference. Future designs could explore adding a 

GPS antenna mast on the drone as well as a GPS RTK base station to improve the drone’s 

GPS self-localization performance.  
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Figure 60. Snapshots of Unstable Yaw Movements 

F. FLIGHT TEST OBSERVATIONS AT IMPOSSIBLE CITY 

The camera sub-system comprising a GoPro camera, HDMI bridge module, and 

HDMI cable was replaced by the Raspberry Pi Camera module v2 (see Figure 61). This 

camera module is directly compatible with the camera port of the Raspberry Pi and does not 

require any further modification to the prototype system. Hence, it was used as a quick 

solution to resolve the video feed problem. A plastic casing was also fabricated using 3D 

printing to physically protect and mount the camera module on the airframe (see Figure 62). 
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Figure 61. Raspberry Pi Camera Module v2 

 

Figure 62. Camera Casing 

A static target in the form of a 30 cm-wide black color cardboard mounted on a 

tripod was set up for the field test at Impossible City on 30 August 2019 (see Figure 63). 

The drone was placed 5 m away from the target board and the flight guidance algorithm 

Camera 

casing 
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was run. Ideally, the drone was expected to approach the target board and return to launch 

once it achieved the control objective (i.e., reached the stopping distance). However, erratic 

motion was observed. When observing the video output on the telemetry laptop, it was 

evident that the CV algorithm was detecting erroneous targets as large patches of dark-

colored vegetation in the background, which contributed image artifacts. The intermittent 

appearance of image artifacts generated unwanted motion vector commands that caused 

the drone to navigate in an erratic manner.  

The flight tests also showed that the criteria for meeting the control objective need 

to be more robust. As the flight guidance algorithm relied solely on the bounding box 

width, large bounding boxes due to background artifacts triggered the drone to terminate 

the pursuit behavior prematurely. One possible way to make the criteria more robust in 

response to artifacts is to factor in additional stopping conditions such as the area of the 

bounding box or other distinctive bona fide target characteristics.  

 

Figure 63. Target Board  
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VIII. CONCLUSIONS AND RECOMMENDATIONS 

This chapter summarizes the conclusions to the research questions posed in Chapter 

I and lists the recommendations for future work that would advance the efforts of this thesis 

in the implementation of a practical and effective counter-UAS capability. 

A. SUMMARY 

This thesis developed a color-space segmentation CV algorithm for object detection 

and localization, and presented a technique for monocular estimation of the relative range 

and angular position of a nominal drone target, using a COTS camera. A prototype system 

was also built to implement and demonstrate the concept. 

Field testing was first conducted at Impossible City and Camp Roberts to record 

video footage of a 3DR Solo drone as the nominal drone target platform. The video 

recording was done with a GoPro Hero4 Black camera mounted on another hovering 3DR 

Solo drone acting as the observer platform. The CV algorithm was first developed based 

on the flight videos at Impossible City and later modified for the landscape and sky 

conditions at Camp Roberts.  

The range estimation performance was assessed against GPS-based distances at 

Impossible City and waypoint-based distances at Camp Roberts. First, the upper range 

bound of the proposed algorithm was established to be 0.95o in terms of the angular size of 

the target, which for the small-size UAS of width 33 cm corresponds to about 20 m range 

from the camera. For larger targets, such as the ScanEagle UAS featuring a 3.1 m wingspan 

(Huber 2018), the detection range would be in the order of approximately 190 m. Second, 

because of the way the bounding box is drawn after image processing (which adds pixels 

to the target image’s edges through morphological dilation operations), the box width is 

always larger than the true target width. Consequently, the inverse relationship between 

the target width and target distance from camera means that the target distance is always 

underestimated. Hence, a correction factor needs to be introduced. The limited tests 

conducted within this study suggest that the correction factor can be as large as 0.55. 
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A symmetrical set of waypoints was planned to evaluate the angular estimation 

performance of the CV algorithm. At Impossible City, significant asymmetry in the actual 

waypoints flown by the target was visually observed in the video frames and confirmed by 

GPS measurements. This affected evaluation of the angular estimation performance at 

Impossible City as the asymmetry in spatial positioning of the target is confounded with 

true angular estimation.  

The field tests were repeated at Camp Roberts with an additional set of waypoints 

flown at closer range to the camera. As no GPS data was available, evaluation of the 

angular estimation performance was compared solely against planned waypoints. For the 

nine waypoints observed at 20 m away from the camera, the azimuth errors ranged from 

1.5o to 18.4o in magnitude, while the elevation errors range from 0.1o to 5.6o in magnitude. 

For waypoints observed at 10 m away from the camera, the azimuth errors range from 3.9o 

to 11.4o in magnitude, while the elevation errors range from 0.3o to 4.9o in magnitude. The 

aforementioned results of the angular estimation did not reveal any dependency in the 

estimation error from the actual target position within the image frame, contrary to initial 

expectations. Nevertheless, the results of range estimation showed that a correction factor 

is needed, depending on the prior camera calibration. This paves the way for future work 

to further investigate feasible techniques for accurate monocular range estimation. 

Alternatively, the target should always be positioned in the middle of the image frame (i.e., 

aligned with optical axis) via active gimbal control to reduce estimation errors. 

The CV algorithm was not adaptive to different landscapes and sky conditions. In 

addition, imperfections in image processing resulted in residual artifacts in the image 

frame, which affected the accuracy of the bounding box in tracking the true position of the 

target. Flight videos recorded at Impossible City suffered from image artifacts and had to 

undergo post-processing to remove outliers, which would otherwise worsen the angular 

estimation accuracy. Such post-processing would not be feasible for real-time flight 

guidance. Other means of feature tracking were explored, and the MSER feature detection 

algorithm was found to be promising as it was observed to be resistant to the presence of 

image artifacts. The drawback of MSER feature tracking, however, is that it lacks the visual 

cue for range estimation, unlike bounding boxes with finite area, height, and width. A 
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possible strategy is to employ both bounding box construction and MSER feature detection 

functions to improve tracking accuracy. 

A prototype system was built to implement the counter-UAS concept, and it 

successfully demonstrated vertical take-off/landing, rotational (yaw), and translational 

motion in field tests at Camp Roberts, based on arbitrary software flight commands. Yet, 

it was observed that the yaw motion of the drone vehicle was not stable. It is postulated 

that the unstable yaw motion might be due to weak or fluctuating GPS signals arising from 

the GPS antenna’s proximity to other sources of electromagnetic interference on the 

airframe. The implementation of the prototype system encountered several integration 

challenges involving provision of stable power supply for the companion computer, 

minimizing structural obstructions within the camera FOV, space management, and 

electromagnetic compatibility between components on the airframe. 

Field testing of the flight guidance algorithm was conducted at Impossible City. 

Erratic motion of the drone was observed. This is attributed to the intermittent appearance 

of image artifacts in the video frame, which generated unwanted motion vector commands 

that caused the drone to navigate in an erratic manner. The flight tests also showed that the 

criteria for meeting the control objective need to be more robust. One possible way to make 

the criteria more robust in response to artifacts is to factor in additional stopping conditions 

based on other distinctive bona fide target characteristics.  

B. RECOMMENDATIONS FOR FUTURE WORK  

Through the development and testing of the prototype system, the future work is 

recommended in the following areas: 

 

 Develop an alternative CV object detection and localization algorithm to 

adapt to different landscapes and sky conditions. For example, deep 

learning-based approaches would require a training dataset of video 

frames with annotated drone and suitable hardware to support the 

computational demand, but the potential payoff is an adaptive drone 

detection capability.  
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 Improve the technique for monocular estimation of relative range and 

angular offset of target from the camera optical axis with lower estimation 

errors.  

 Implement a drone vehicle with more stable aerodynamic performance. 

Using a stable drone platform for research helps to decouple the 

performance of the underlying CV and flight guidance algorithms from the 

inherent aerodynamic performance of the drone. This facilitates 

troubleshooting to improve the algorithms.  

 Explore different guidance principles to optimize the performance of the 

drone in intercepting a target. This study implemented a simple guidance 

principle for the prototype system; however, further improvements in 

flight performance could possibly be reaped through modeling and 

simulation to determine the optimal trajectory control scheme and to fine 

tune the control gains configuration in the FMU for a practical prototype 

system.  

The abovementioned recommendations are aimed at addressing the drawbacks and 

limitations encountered in the development and testing of the prototype system. These 

would collectively aid the implementation of a practical and effective counter-UAS 

capability. 
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APPENDIX A. MATLAB CODE FOR CV ALGORITHM 

(IMPOSSIBLE CITY) 

This appendix contains the MATLAB code for the CV algorithm used to process 

all drone flight videos recorded at Impossible City. 

clear all; 

close all; 

clc; 

 

%% initialize variables 

 

r = 5; % r is the radius of the plotting circle 

j=0:.01:2*pi; %to make the plotting circle 

 

centroids=[0;0];%initialize empty variable 

 

%read inputs and test play the video 

dronevid = VideoReader(‘video file.mp4’); 

get(dronevid); 

 

nframes = dronevid.NumberOfFrames; 

 

pos_2=540; %initialize tracker to centre of FOV 

pos_1=960; 

 

hbb=zeros(1,4); %create empty array for bbox to initialise 

area=0; 

 

for t= S_frame:nframes 
  
 % load the image 
 frame=read(dronevid,t); 
  
 hsv = rgb2hsv(frame); %convert to HSV colorspace 
 BW = rgb2gray(frame); %convert to grayscale 
  
 hframe=hsv(:,:,1); %get HSV frame in hue values 
  
 lightmask=hframe>=0.55; %create mask in hue frame to 

eliminate foreground 
 lm2=BW>=130; 
  
 se = strel(‘disk’,35); 
 se2 = strel(‘disk’,5); 
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 erode = imerode(lightmask,se); %get rid of small patches in 

foreground mask  
 imshow(erode); 
  
 jj=and(lm2,erode); 
 jj2=medfilt2(medfilt2(jj)); 
 jj3 = imdilate(jj2,se2); 
 jj4=imerode(jj3,se); 
  
 maskbw=immultiply(jj4,BW); % apply foreground mask to 

grayscale image 
  
 imshow(frame); 
  
 regions = detectMSERFeatures(maskbw); %detect MSER region 

in masked grayscale image 
 hold on; 
  
 if numel(regions.Location)>2 
 mserpoint=mean(regions.Location); 
 else 
 mserpoint=regions.Location; 
 end 
  
 if ~isempty(regions) 
 pos_1=mserpoint(1); 
 pos_2=mserpoint(2); 

 
 % process image for edge detection 
  
 edgeBW = edge(maskbw,’sobel’); 
 seline5 = strel(‘line’,5,0); 
 closeBW=imclose(edgeBW,seline5); %morpholoigcal close to 

form image blob 

 
 m1=medfilt2(closeBW, [1 5]);  
 m2=medfilt2(m1, [5 1]); %median filtering to remove horizon 

lines 

 
 sedisk5 = strel(‘disk’,5); 
 edgemask=imdilate(m2,sedisk5); %create edge mask 

 
 edgeBWframe=immultiply(edgemask,maskbw); %apply edge mask 

to masked grayscale image 

 
 sbox = regionprops(edgemask,’BoundingBox’); 
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 if ~isempty(sbox) 
 ctd = regionprops(edgemask,’Centroid’); 
 a = regionprops(edgemask,’Area’); 
 area=a.Area; 
  
 hbb = sbox.BoundingBox; 

 
 boxwidth=hbb(3); 
 boxheight=hbb(4); 
  
 k1=pos_1; 
 k2=pos_2; 
  
 centroids = ctd.Centroid; 
 position =[50+k1 k2; 50+k1 25+k2; 50+k1 50+k2];  
 value= [k1 k2 boxwidth]; 
 RGB = 

insertText(frame,position,value,’AnchorPoint’,’LeftBottom’,

... 

 

‘FontSize’,12,’BoxColor’,’yellow’,’BoxOpacity’,0.5,’TextCol

or’,’black’); 
 imshow(RGB); 
 hold on; 
  

 

rectangle(‘Position’,[hbb(1),hbb(2),hbb(3),hbb(4)],’EdgeCol

or’,’y’,’LineWidth’,2); 
 else 
 k1=pos_1;  
 k2=pos_2; 
 end 
  
 end 
  
 %% define variables for time history plots 
  
 time(t)=dronevid.CurrentTime; 
 framenum(t)=t; 
 width(t)=hbb(3); 
 height(t)=hbb(4); 
 area_t(t)=area; 
  
 centx(t)=centroids(1); 
 centy(t)=centroids(2); 
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 %% plot the images with the tracking 
 plot(r*sin(j)+ pos_2 ,r*cos(j)+ pos_1 ,’.r’); % red circle 

shows the MSER point 
 hold off 
 pause(0.1) 

end 

 

%% generate time history plots after end of video 

 

figure(2); 

subplot(3,1,1); 

plot(framenum,width); 

title(‘Width vs time’); 

xlabel(‘frame’);  

ylabel(‘pixels’); 

 

subplot(3,1,2); 

plot(framenum,centx); 

title(‘centx vs time’); 

xlabel(‘frame’);  

ylabel(‘pixels’); 

 

subplot(3,1,3); 

plot(framenum,centy); 

title(‘centy vs time’); 

xlabel(‘frame’);  

ylabel(‘pixels’); 

 

%generate plots for 8-frame moving average 

meanx=movmean(centx,8); 

meany=movmean(centy,8); 

meanwidth=movmean(width,8); 

 

figure(3); 

subplot(3,1,1); 

plot(framenum,meanwidth); 

title(‘Width vs time’); 

xlabel(‘frame’);  

ylabel(‘pixels’); 

 

subplot(3,1,2); 

plot(framenum,meanx); 

title(‘centx vs time’); 

xlabel(‘frame’);  
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ylabel(‘pixels’); 

 

subplot(3,1,3); 

plot(framenum,meany); 

title(‘centy vs time’); 

xlabel(‘frame’);  

ylabel(‘pixels’); 

 

%generate plots for 16-frame moving average 

meanx2=movmean(centx,16); 

meany2=movmean(centy,16); 

meanwidth2=movmean(width,16); 

 

figure(4); 

subplot(3,1,1); 

plot(framenum,meanwidth2); 

title(‘Width vs time’); 

xlabel(‘frame’);  

ylabel(‘pixels’); 

 

subplot(3,1,2); 

plot(framenum,meanx2); 

title(‘centx vs time’); 

xlabel(‘frame’);  

ylabel(‘pixels’); 

 

subplot(3,1,3); 

plot(framenum,meany2); 

title(‘centy vs time’); 

xlabel(‘frame’);  

ylabel(‘pixels’); 
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APPENDIX B. MATLAB CODE FOR MODIFIED CV ALGORITHM 

(CAMP ROBERTS) 

This appendix contains the MATLAB code for the modified CV algorithm used to 

process all drone flight videos recorded at Camp Roberts. 

clear all; 

close all; 

clc; 

 

%% initize variables 

 

r = 5; % r is the radius of the plotting circle 

j=0:.01:2*pi; %to make the plotting circle 

 

centroids=[0;0];%initialize empty variable 

 

%read inputs and test play the video 

dronevid = VideoReader(‘video file.mp4’); 

get(dronevid); 

 

nframes = dronevid.NumberOfFrames; 

 

pos_2=540; %initialize tracker to centre of FOV 

pos_1=960; 

 

hbb=zeros(1,4); %create empty array for bbox to initialise 

area=0; 

 

for t= S_frame:nframes 
  
 % load the image 
 frame=read(dronevid,t); 
  
 hsv = rgb2hsv(frame); %convert to HSV colorspace 
 BW = rgb2gray(frame); %convert to grayscale 
  
 hframe=hsv(:,:,1); %get HSV frame in hue values 
  
 lightmask=hframe>=0.61; % create mask in hue frame to 

eliminate foreground 
 lm2=BW<=45; 
  
 jj2=and(lm2,lightmask); 
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 se2 = strel(‘disk’,5); %define structuring element for 

dilation 

 
 jj3 = imdilate(jj2,se2);  
 maskbw=immultiply(jj3,BW); % apply foreground mask to 

grayscale image 
  
 imshow(frame); 
  
 regions = detectMSERFeatures(maskbw); %detect MSER region 

in masked grayscale image 
 hold on; 
  
 if numel(regions.Location)>2 
 mserpoint=mean(regions.Location); 
 else 
 mserpoint=regions.Location; 
 end 
  
 if ~isempty(regions) 
 pos_1=mserpoint(1); 
 pos_2=mserpoint(2); 

 
 % process image for edge detection 
  
 edgeBW = edge(maskbw,’sobel’); 
 seline5 = strel(‘line’,5,0); 
 closeBW=imclose(edgeBW,seline5); %morpholoigcal close to 

form image blob 

 
 m1=medfilt2(closeBW, [1 5]);  
 m2=medfilt2(m1, [5 1]); %median filtering to remove horizon 

lines 

 
 sedisk5 = strel(‘disk’,5); 
 edgemask=imdilate(m2,sedisk5); %create edge mask 

 
 edgeBWframe=immultiply(edgemask,maskbw); %apply edge mask 

to masked grayscale image 

 
 sbox = regionprops(edgemask,’BoundingBox’); 
  
 if ~isempty(sbox) 
 ctd = regionprops(edgemask,’Centroid’); 
 a = regionprops(edgemask,’Area’); 
 area=a.Area; 
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 hbb = sbox.BoundingBox; 

 
 boxwidth=hbb(3); 
 boxheight=hbb(4); 
  
 k1=pos_1; 
 k2=pos_2; 
  
 centroids = ctd.Centroid; 
 position =[50+k1 k2; 50+k1 25+k2; 50+k1 50+k2];  
 value= [k1 k2 boxwidth]; 
 RGB = 

insertText(frame,position,value,’AnchorPoint’,’LeftBottom’,

... 

 

‘FontSize’,12,’BoxColor’,’yellow’,’BoxOpacity’,0.5,’TextCol

or’,’black’); 
 imshow(RGB); 
 hold on; 
  

 

rectangle(‘Position’,[hbb(1),hbb(2),hbb(3),hbb(4)],’EdgeCol

or’,’y’,’LineWidth’,2); 
 else 
 k1=pos_1;  
 k2=pos_2; 
 end 
  
 end 
  
 %% define variables for time history plots 
  
 time(t)=dronevid.CurrentTime; 
 framenum(t)=t; 
 width(t)=hbb(3); 
 height(t)=hbb(4); 
 area_t(t)=area; 
  
 centx(t)=centroids(1); 
 centy(t)=centroids(2); 
  
  
 %% plot the images with the tracking 
 plot(r*sin(j)+ pos_2 ,r*cos(j)+ pos_1 ,’.r’); % red circle 

shows the MSER point 



104 

 hold off 
 pause(0.1) 

end 

 

%% generate time history plots after end of video 

 

figure(2); 

subplot(3,1,1); 

plot(framenum,width); 

title(‘Width vs time’); 

xlabel(‘frame’);  

ylabel(‘pixels’); 

 

subplot(3,1,2); 

plot(framenum,centx); 

title(‘centx vs time’); 

xlabel(‘frame’);  

ylabel(‘pixels’); 

 

subplot(3,1,3); 

plot(framenum,centy); 

title(‘centy vs time’); 

xlabel(‘frame’);  

ylabel(‘pixels’); 

 

%generate plots for 8-frame moving average 

meanx=movmean(centx,8); 

meany=movmean(centy,8); 

meanwidth=movmean(width,8); 

 

figure(3); 

subplot(3,1,1); 

plot(framenum,meanwidth); 

title(‘Width vs time’); 

xlabel(‘frame’);  

ylabel(‘pixels’); 

 

subplot(3,1,2); 

plot(framenum,meanx); 

title(‘centx vs time’); 

xlabel(‘frame’);  

ylabel(‘pixels’); 

 

subplot(3,1,3); 

plot(framenum,meany); 

title(‘centy vs time’); 
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xlabel(‘frame’);  

ylabel(‘pixels’); 

 

%generate plots for 16-frame moving average 

meanx2=movmean(centx,16); 

meany2=movmean(centy,16); 

meanwidth2=movmean(width,16); 

 

figure(4); 

subplot(3,1,1); 

plot(framenum,meanwidth2); 

title(‘Width vs time’); 

xlabel(‘frame’);  

ylabel(‘pixels’); 

 

subplot(3,1,2); 

plot(framenum,meanx2); 

title(‘centx vs time’); 

xlabel(‘frame’);  

ylabel(‘pixels’); 

 

subplot(3,1,3); 

plot(framenum,meany2); 

title(‘centy vs time’); 

xlabel(‘frame’);  

ylabel(‘pixels’); 
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