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ABSTRACT

As a consequence of the ever-shrinking sizes of nanoelectronic devices, hitherto

neglected quantum effects, such as tunneling, are becoming important for device

characterization. The study of electron reflection and transmission probabilities at

potential barriers is one of the important areas of active research in this field.

Analytic solutions for the quantum-mechanical transmission coefficient through a

potential energy profile of arbitrary shape do not exist. One conceivable method for

finding the transmission coefficient through such a potential involves transfer matrices.

This technique is numerically limited, unfortunately, and fails to provide adequate results

for potentials of interest in the development of practical nanoelectronic devices.

However, within its capabilities, the transfer matrix method is a useful reference to which

other results may be compared. Another method, utilizing backward recurrence, has been

proposed as a numerically stable alternative for calculating the transmission coefficient

through such potentials. This second method has yet to be widely applied.

This thesis investigates the capabilities and limitations of each method, with an

emphasis on their scope of applicability. Extensive programming, in the C language, has

been done to examine the two methods. Output from these programs has been analyzed,

and the backward-recurrence method has been shown to have wider applicability, and to

be faster and much more numerically stable.
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I. INTRODUCTION

Numerical methods are required to predict the characteristics of nanoelectronic devices,

which rely on quantum tunneling for their operation. Continuing scale reduction of modern

semiconductor electronics will inevitably result in devices which rely on the principles of quantum

physics.

In this thesis, I shall apply two different numerical methods to the problem of calculating

the transmission coefficient. One, which relies on transfer matrices, is known to have limited

applicability due to inherent numerical instabilities, but provides a useful benchmark in cases for

which it is accurate. The other is a backward-recurrence algorithm, thought to be much more

numerically stable, which potentially has wide future applicability. I have written several original

computer programs, in the C language, which utilize both the transfer matrix and backward-

recurrence techniques. These programs, and analysis of their output, are my contribution to this

research. To my knowledge, the backward-recurrence technique applied herein has not been

widely used; it proves to be powerful in solving for the transmission coefficient through difficult

potentials.

The values for the transmission coefficient obtained by each method are first compared to

a known correct result: the transmission coefficient through a single, square potential energy

barrier. In addition to this test for accuracy, the transfer matrix method contains a built-in test for

numerical instability, which also is exploited. Examples, which reveal the numerical limitations of

each method, are included as well. Graphical program output is analyzed to critique the

capabilities of the two numerical methods.
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II. QUANTUM TUNNELING

In classical physics, the motion of a particle is governed by conservation of energy: a

particle of total energy E is unable to move past any point beyond which the potential energy is

greater than E. Such a point is said to comprise a potential barrier to the particle's passage. If

electrons in semiconductor devices truly behaved as classical particles, then the tunneling diode

and zener diode would not exist, and aluminum household wiring could not conduct current

through twisted-wire junctions covered by an oxide layer which, in bulk form, is an excellent

insulator. These items all depend upon the concept of quantum tunneling.

Quantum theory allows for the penetration of barriers of energy greater than the incident

particle's energy. This phenomenon is a consequence of uncertainty in the position of the

electron, according to the uncertainty principle. (Eisberg & Resnick, 1985, pp. 65-68) The

electron's wave function, ^(x,t), has a non-zero magnitude at all points in space, though it

decreases rapidly beyond potential barriers. Since the probability of finding the electron in a

specified region is proportional to the square of the magnitude of the wave function, there results

a finite probability that the electron will be found on the other side of the barrier, in a classically

forbidden region.

For non-relativistic systems, motion is governed under quantum theory by the Schrodinger

wave equation. (Eisberg & Resnick, 1985, pp. 177-209) The general three-dimensional form of

this equation (the time-dependent Schrodinger wave equation) is

iW h
2

ih— = V2x¥+V(x,y,zy¥. (1)
dt 2m



If the potential of interest is essentially one-dimensional in form, Equation 1 simplifies to

.. ay h
2
d

2v __, XUJ „.
ih = - + V(xf¥. (2)

dt 2m dx"

In the above equations, >i=h/27t, where h is Planck's constant [6.626xl0"
34

J sec], / is the square

root of -1, m is the mass of the particle, V(x) is the potential function, x is the spatial coordinate,

and / is time. In the development of this equation, several key hypotheses must be made, which

are worth reviewing.

First, the wave equation must be consistent with de Broglie's postulate regarding the

wave-particle duality of matter, namely

'-I-
(3 >

where/? is the momentum of a particle, and X is the wavelength of the wave packet representation

of the particle. (Thornton & Rex, 1993, pp. 178-179) Second, the wave equation must be

consistent with the relation

E = -^ + V, (4)
2m

the non-relativistic expression for total energy of a particle as the sum of its kinetic and potential

energies.

It should be noted that, although Equation 4 holds only for particles moving at non-

relativistic speeds, experience has shown that the Schrodinger formalism is adequate to describe

the behavior of the systems studied in this thesis research. (Eisberg & Resnick, 1985, pp. 128-

132)

The form of the wave function, which is the solution to Equation 2, must next be



determined. For a free particle, one form of this solution is

^(xj) = cos(kx - cot) + i sin(kx - cot), (5)

where k is the wave number [2%IX\, cois the angular frequency [27tf|, t is time, and/is the

frequency. This, as required above for the case of V constant, is a traveling-wave solution. It is

also complex-valued, which is critical to the remainder of this discussion. The physical

significance of this complex-valued wave function, postulated by Born in 1926, is that the

magnitude squared of the wave function is the probability density of the particle, or, stated

another way, that

^\xjy¥(xj)dx (6)

is the probability of finding the particle between x and x+dx, at time /. f^fxj) here is the complex

conjugate of the wave function.

If the potential of interest is not a function of time, so that the system's energy is

conserved, then the left-hand side of Equation 2 may be associated with the characteristic

equation ih = EY , where E is the energy eigenvalue (a constant) of the system. The spatial

dt

and temporal dependencies of 5Pmay then be separated, so that W(x, t) = tp(x)e .

The result of this separation of variables is that the time-independent Schrodinger wave

equation is given by

~^-+V(x)¥(x) = EW{x% (7)
2m ax

where V(x) is the potential and E is the total energy. y/(x), here, represents only the spatial

dependence (on x, in this case) of the wave function T(x,t). The lull derivation is given by Eisberg



and Resnick. (Eisberg & Resnick, 1985, pp. 15 1-167)

Equation 7 is an ordinary differential equation, not a partial differential equation, this is a

major reduction in the complexity of the problem. We shall now focus on the solutions

(eigenfunctions), y/(x), of Equation 7, which hold for a region of constant potential V:

w(x) = Ae
,kx

+ Be
,kx

for E>V
y/{x) = Ce

"

a
+ De^Jor E<V,

where A,B, C, and D are constants, and k is equal to ire, with

K =^-\ '-. (9)
n

Equation 9 provides the correct propagation constant only when V is constant. While

approximating V(x) as a constant may seem limiting, it will be shown that one can obtain useful

results in spite of this approximation. Note the presence of the increasing exponential e
K
\n

Equation 8. This observation will later prove critical.

The boundary conditions for the spatial wave function are that y/(x), and its first derivative

with respect to x, must be finite, single-valued, and continuous. Eisberg and Resnick' s description

of the reasons for these restrictions is excellent. (Eisberg & Resnick, 1985, pp. 155-157) We will

utilize these boundary conditions in what follows.

As an example, let us apply these solutions to the case of a rectangular potential barrier.

Let this barrier potential be V(x)=0 for x<-a and x>a, V(x)=V for -a<x<a. Classically, if the total

energy of a particle is such that E>V , then the particle always passes the barrier; similarly, if

E<V , then the particle never passes the barrier. Since the spatial wave function if/(x) has the

form of Equation 8, for the quantum mechanical case, the behavior of the particle is different.



First, i£E>Va, there will be a nonzero probability of reflection, at both edges of the barrier.

Stated differently, there is less than a 100% chance that it will traverse the barrier. More

importantly, however, \fEV , there will be a nonzero probability of transmission through the

barrier, or tunneling, also known as barrier penetration.

The form of y/(x) in the region x -a is Ae ,kx
+Be~

,kx

, corresponding to a pair of incoming

and outgoing traveling waves. The form of the general solution in the region x a is similar,

namely Fe
,kx+Ge ,kx

. Between -a and a, however, the form is Ce'
KX
+De'

a
. Boundary conditions

require that, at x=-a, Ae'
ka
+Be'

ka=Ce
Ka+De Ka

so that y(x) is continuous. In order for the first

derivative dy/(x)/dx to be continuous, Ae lka
-Be

lka
=(iK/k)[Ce

Ka
-De

Ka
]. It is shown, in Appendix A,

that the amplitudes A and B are related to the amplitudes F and G by a matrix involving k, ic, and

the barrier width a. This matrix is called the overall transfer matrix, M. *:and k, of course,

depend directly on the particle mass aw, the total particle energy £", and the barrier height V , as

shown previously. In short, there are four physical parameters which determine M: particle mass,

energy, barrier height, and barrier width. The form of the overall transfer matrix for the case of a

simple rectangular potential is given in section A of Appendix A. The overall transfer matrix has

some interesting symmetry properties; these are developed in Appendix A. The determinant of

the overall transfer matrix in also discussed in Appendix A.





ffl. THE NUMERICAL METHODS

A. OVERVIEW

Quantum-mechanical transmission through a potential barrier is of interest. Current

microprocessors have a device scale of 0.3 u.m. The room-temperature de Broglie wavelength of

a conduction electron in silicon is approximately 0.025 |im. Future device scale reductions, by

merely a factor often, will therefore introduce significant quantum behavior. If the current pace

of microprocessor scale reduction continues, knowledge of the quantum-mechanical transmission

coefficient will be required in the design of electronic devices within the next 15 years.

(Semiconductor Industry Association, 1994) The physical meaning of the transmission coefficient

is described in full by Eisberg and Resnick. (Eisberg & Resnick, 1985, pp. 193-198) Essentially,

the transmission coefficient is a measure of the probability of barrier penetration by a quantum

particle, such as an electron.

In the preceding chapter, we discussed the wave function for a free particle. A conduction

electron in a semiconductor, however, is not a free particle: it experiences the spatially periodic

potential energy environment of the crystalline lattice. Here we invoke the effective-mass

approximation, which, for electron energies near the band energy extrema, permits us to treat the

motion of the electron in the solid as if it were a free particle having an effective mass, m*. The

value of the effective mass is a material-specific parameter. For most devices of technological

interest, the electron energies remain near the band extrema and the effective-mass approximation

is valid. A complete description of the effective mass is given by Eisberg and Resnick. (Eisberg

& Resnick, 1985, pp. 460-464)



The transmission coefficient is defined as

T = (10)

where the coefficients F and A are the magnitudes of the transmitted wave function and the

incident wave function, respectively. Let us consider a barrier which extends from x=Xl to x=Xr.

The potential outside the barrier is constant. The incident and reflected wave functions have the

form

V reflect) = Be~*.*
01)

for x<xl, and the transmitted wave function is of the form

W—„*(*) = F*« t (12)

for x>Xr, where ki is the wave number in the incident medium (before the barrier) and k2 is the

wave number in the transmitted medium (after the barrier). The wave number is a complex-

valued quantity defined by k=ix, and at is given by equation 9. Substituting the effective mass,

m*, for the mass m, results in the equation

2m'(E-V)

where V\s the constant value of the potential energy.

The two numerical methods for finding the transmission coefficient described herein both

use solutions based upon piecewise-constant potentials. The first numerical method is the transfer

matrix method, which starts by breaking up the actual potential into an approximate staircase

potential, which is piecewise constant. A two-by-two transfer matrix (N matrix) is then calculated

10



at each interface, and an overall transfer matrix (M matrix) for the entire potential is found by

matrix multiplication of the individual interfaces' matrices. The transmission coefficient for the

entire potential can then be found. A more detailed description of this procedure will be given

later.

The second method is a backward-recurrence algorithm, suggested by Luscombe

(Luscombe, 1992, pp. 1-20), which greatly increases numerical stability by eliminating the error

associated with the forward propagation of a solution involving both decaying and growing

exponential components. A complete description of this technique also appears later.

This thesis emphasizes the applications and numerical accuracy of these two techniques.

It will be shown that the transfer matrix technique has a convenient built-in test for numerical

instability. The mechanism of the numerical instability will be discussed in detail, as will the

conditions which bring it about.

The backward-recurrence method has excellent numerical stability, and also runs faster. It

does not have a comparable built-in method to test for accuracy, however. The results of

applying the method to complex potentials will be discussed.

There exists a closed-form analytical solution to the simple tunneling problem, for the case

of one square barrier in a region of otherwise constant potential. (Singh, 1997, pp. 131-135) To

test the accuracy of both numerical methods, each technique's accuracy in giving a numerical

solution to this known problem was checked.

All computer programs used in this thesis were written in ANSI-standard C. This

language allows the specification of either single- or double-precision floating point numbers, and

thus provides the ability to investigate numerical and algorithmic stability at two different

11



precision levels. The MATLAB programming language (which has built-in matrix functionality)

was not used in this work, primarily because it lacks this capability, but also due to its slower

operation in situations requiring loops, which prove to be unavoidable in finding the transmission

coefficient at multiple values of incident particle energy.

B. TRANSFER MATRIX METHOD

The interface transfer matrices were the subject of a particularly concise treatment by

Singh, which I paraphrase here: (Singh, 1997, pp. 148-149)

The transfer matrix method assumes a piecewise-constant potential approximation to the

potential of interest. Therefore, the wave function has the form

y/(x) = Ae ,kx + Be'
,kx

(14)

in each region of constant potential, as shown earlier. The incident wave is assumed to be

travelling in the positive x-direction. Each region will have its own set of coefficients A and B and

wave numbers k. Assuming that the electron's effective mass is constant in all regions, and again

applying the boundary conditions at the interface between regions, here situated at x=x .

V(0 = V(0

dx x
° dx *°

(15)

we see that the coefficients A and B can be related to each other by the matrix equation

B,

= N
A

2

B,
(16)

where A\ and B\ are the coefficients of the wave function for x x , and A? and B2 are the

corresponding coefficients for x x . The matrix N is called the interface transfer matrix. This

12



two-by-two matrix can be shown, in the general case of a potential with interfaces at points x,

separating regions of potential Vi+i, to have components

N,(U)

K(12) =

1+1
1 +

v K

,teX*w-*i!

1
k,+x

\c
(
-'x

'
)[k"l+K)

\ V

1
^' +1 U"' )<*»+ + *'>

(17)

•! + l

1 + ,(-*;-)(*w -*iJ

The matrix product of all of the N matrices yields the total transfer matrix for the potential, M.

We use the total transfer matrix to calculate the overall transmission coefficient, by the relation

1

T =
|M(1,1)|

(18)

This method is robust for simple potentials, but runs into difficulties if the barrier height, barrier

width, or number of interfaces is too great. This will be discussed in greater detail later. The

program shows perfect agreement with the analytic form of the transmission coefficient for one

square barrier.

C. BACKWARD-RECURRENCE METHOD

The backward-recurrence method used in this thesis is that described by Luscombe.

(Luscombe, 1992, pp. 1-20) As he states,

relevant device variables must ... be specified within close tolerances, and clearly

the most efficient means of developing a realistic [microprocessor] design is

through computer modeling based on fundamental physical laws, e.g. the Poisson

and Schrodinger equations By providing the tools to explore, in detail, and

before fabrication, the effects of varying ... [device] parameters ..., modeling

13



optimizes the development cycle and provides a cost-effective method for

validating and refining device concepts. (Luscombe, 1992, p. 2)

Before discussing the backward-recurrence method in detail, we note the following

observations. The Schrodinger equation is a second-order differential equation, and, as such, has

two linearly independent solutions. In the classically forbidden potential regions, the physical

solution for the wave function ifr(x) is strictly decreasing as a function of distance. (Since E< Fin

the classically forbidden regions, the second derivative of ^is strictly positive.) Now, as is simple

to check, for example by examining the Wronskian relation associated with the Schrodinger

equation, if one solution is monotonically decreasing, the other, linearly independent solution is

monotonically increasing. This second, linearly independent solution is therefore not physical. In

numerical methods that propagate, through the use of iteration, both the growing and decaying

solutions on equal footing (as in the transfer matrix method), the slightest round-off error will

trigger the growth of the unwanted, growing solution in the classically forbidden potential

regions. By employing backward iteration, however, the physical solution becomes dominant,

increasing resolution in the direction of backward iteration.

The transfer matrix method, while accurate in limited applications, is numerically unstable,

as stated above. This instability is implicit in the N matrices (interface matrices) described earlier,

(discussions with James Luscombe, May-June 1997)

The backward-recurrence method works as follows. We shall assume the electron's

effective mass to be constant throughout, and equal to

m'=0.067m
e ; (19)

14



we therefore need not change it from region to region (me , here, is the electron mass). The only

thing that changes spatially is the potential, V. As with any numerical solution to a differential

equation, we employ the finite difference approximation. We sample the wave function at discrete

points x„=nA, where A is the step size, and is chosen to be sufficiently small to accurately resolve

the potential. We begin with the incremental Taylor series expansions

A2

y/(x + A) = y/(x) + A y/'
(
x) H y/"(x) + (higher - order terms)

2
(20)

A2

y/(x - A) = y/(x) - Ay/'(x) -\ yf"{x) + (higher - order terms).

An expression for y/",

ys"(x) =^ )—^-
2

1 ^, (21)

can then be derived. The algorithm progresses from right to left, through the perturbation

described below, in spatial steps of size A. The solution at the 11
th

step may be written as

y/= ^,+yr
.-2yv (22)

The time-independent Schrodinger equation,

-^Vn+Vy/ = Eyf, (23)
2/w

is equivalent to a three-term recurrence relation,

V^.+Wi+^Vn^ (24)

where bn is given by

^2m*An
h

2
(E-V„)-2. (25)

15



Finally, using the definition

r„ = -^, (26)

the above three-term recurrence relation can be rewritten as

r»
=rr— '

(27)

which is easily recognizable as a two-term backward-recurrence relation. It is this relation which

is the heart of the backward-recurrence method.

The potential being analyzed must consist of an irregularity of finite spatial dimensions,

beyond which the potential is constant. The irregularity in the potential may be of arbitrary height

(eV), curvature, and width (nm). There must also exist two regions of constant potential, which

we designate as right-hand and left-hand regions. Each has an associated wave number, kR and kL .

The constant potential energies in these two regions need not be the same, necessarily, but for

simplicity they are assumed to be identical in this thesis.

Defining r to be the value of r at the edge of the left-hand region, it is easily seen that

„ = _^ ^[(0)(A)] _ 1+j
•

r-. (4(-l)(A)] e-** +Re*>"
(28)

where t/r„= i/r(x) =e'
kLx

+ e' and x=nA, and that the reflection coefficient R is given by

re~*iA -1
R = — rr- (29)

o

Similar logic can be applied to the right-hand region of constant potential, by writing rN+ i as
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¥nu _ Te
:k RA(N+\)

A/ + 1

¥, Te
ikRA(N)

= e'
k«& = r,N '

(30)

ik„x
where if/ n

= y/(x) = Te rX
.

We know rN+! if we know kR and the step size, A. The expression for kR is

** =
2m-U-VR ), (31)

where VR is the constant potential in the right-hand region. An analogous expression exists for kL ,

h =
(irn^

^ J

(E-VL ). (32)

We have derived one expression for R, Equation 29. T\s related to R by the expression

|7f
= !J5M(l-)*fV (33)
cm t A \ /sin/:RA

where T and R are the overall transmission and reflection coefficients, respectively. (Luscombe,

1992, p. 7) Equation 33 may be rewritten as

\jf
=

r sinkLA }( (4 sin kLA) Im(r
)

smkRA l-2Re(^A
) + |r

|

(34)

which the program uses to calculate T once it has found the value of ra .

D. ANALYTIC SOLUTION

The analytic solution to the problem of one square barrier, used to test the transfer matrix

and backward-recurrence methods, is simple to derive. (Eisberg & Resnick, 1985, pp. 199-201)

(Singh, 1997, pp. 131-134) Consider a square barrier of height V and width a, extending from

x=0 to x=a. The potential everywhere outside the barrier is zero. Define the region to the left

and right of the barrier to have wave number &/, and the barrier to have associated wave number
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kn . These wave numbers are given by

2m
rlE-o)

'2m*^
(35)

(E-K).
V " )

As stated earlier, the solution to the Schrodinger wave equation in a region of constant potential

has the form y/{x) = Ae lkx + Be~
,kx

. Call the region in which x<0 region I, the region in which

0<x<a region II, and the region in which x a region III. The wave functions in these regions are

y, =Ae'
k

'
x +Be~ ,k

'
x

y/u =Ce*»
x
+De-*°

x
(36)

¥m=Feik>x
,

assuming that there is only a right-moving wave in region III. Applying the boundary conditions

on the wave functions given by Equations 15, at x=0 and x=a, and performing algebraic

simplification, one arrives at the expression

T2 =
T"/C t f\ f 7 t-

ia(ku -k,

(*,+*„) -fa-tn)*"*
(37)

which is the expression plotted by the programs to check the accuracy of the two numerical

methods.
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IV. THE PROGRAMS

A. TRANSFER MATRIX PROGRAM

A copy of the transfer matrix program, method 1 c, is attached as Appendix C, Section A.

The program is written in ANSI C.

Since ANSI C contains no built-in complex numbers capability, a global variable structure

called complex is defined, consisting of two double-precision floating point numbers representing

the real and imaginary parts of the complex number. Also, since the potential, V, and wave

number, k, as functions of x, are required in multiple functions, they are defined globally. All

other variables have local scope.

The functions addc, subc, mule, and dive have been written to perform the four basic

mathematical functions on complex arguments. They all take two arguments of type complex,

and return type complex. The function expc computes e
x

, where x is a complex argument, and

returns type complex. The function absc, given a complex argument, returns the (real) magnitude

of the complex number, as a double-precision floating-point number. The function

determinantcomplex takes four arguments of type complex, which represent the elements of a

two-by-two overall transfer matrix, and returns the (complex) determinant of the matrix.

Nl 1 complex, N12complex, N21 complex, and N22complex calculate the values of the

elements of the interface transfer matrix, using Equation 17. They take four arguments of type

complex, representing the wave vector left and right of the interface, their ratio, and the value ofx

at the interface.
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Finally, the function makeV initializes the potential energy array, V. In this program, the

potential energy profile is a series of square barriers of height Vo, width BARWIDTH, and

separated by BARWIDTH. BARRIERS represents the number of barriers present. ERIGHT,

ELEFT, and EPTS represent the highest and lowest values of incident particle energy, and the

number of energy values used, respectively Vo, BARWIDTH, BARRIERS, ERIGHT, ELEFT,

and EPTS are all predefined constants, listed as #define statements.

Three other physical constants are used. One is the effective mass, defined as a ratio,

m— , equal to 0.067, and represented by EFFMASS. This is an appropriate value of the effective
m

e

h
2

2
mass for GaAs semiconductors. The value of , in units ofeVnm , is defined by H20VER2M

2m
e

as 0.0381, and is constant for all materials. Finally, the program calculates a constant, C, which is

, 2m „ L . ,
, J EFFMASS

equal to —=-
. C, obviously, may be expressed as

h-
r H20VER2M

Function main generates the program's output, and controls the execution of the transfer

matrix method algorithm. The printf("%. 12f\t%. 12f\n",E,T), statement lists the values of incident

particle energy and transmission coefficient in two columns, to the screen. To generate the graphs

found herein, the program's output has been saved in a file using indirection, and plotted using the

commercially available program Spyglass Plot.

The basic execution of main is as follows. A value of incident particle energy is assigned

by the for(ec=0.0;ec<epts;ec+=l .0) statement. This loop goes through all desired values of

energy, from ERIGHT down to ELEFT, dividing the energies into EPTS steps. As EPTS is an
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integer, the variable epts is introduced to promote it to a double-precision floating-point number

in order to be type compatible with the variable ec. This also prevents errors, which might be

caused by inadvertent integer division.

Once a value of£ has been defined by the E=ERIGHT-(ERIGHT-ELEFT)*(ec/epts);

statement, the variables Ml /, Ml 2, M21, and M22, all of type complex, are initialized. These

variables are the matrix elements of the overall transfer matrix. Since the overall transfer matrix

will be calculated by matrix multiplication of all intervening interface transfer matrices, it is

initialized as a two-by-two identity matrix by the

oldMl 1 .imag=oldM 1 2.imag=oldM2 1 .imag=oldM22.imag=0.0;

oldMl l.real=oldM22.real=1.0;

oldM12.real=oldM21.real=0.0;

statements.

The next step is to initialize the wave vector array, k, at the current value ofE. The

for(xc=0;xc<XPTS;xc++) loop handles this. At each point, the wave vector will be either purely

real or purely imaginary, and is given by Equation 1 3

.

The for(xc=l;xc<XPTS;xc++) loop, which follows, goes through the potential profile and

identifies interfaces; that is, it finds values ofx at which k changes. When an interface is found,

the if((k[xc].real!=k[xc-l] .real)||(k[xc].imag!=k[xc-l].imag)) statement executes, causing the

interface transfer matrix to be calculated and matrix multiplied by the "running total" overall

transfer matrix, given by elements oldMll, oldM12, oldM21, and oldM22, all of type complex.

Upon completion of this if statement, the program checks for numerical instability.

The Mdet=determinantcomplex(newMl l,newM12,newM21,newM22); statement checks

the determinant of the calculated overall transfer matrix. The subsequent
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if((Mdet.real>l. 000 l)||(Mdet.real<0. 9999)) statement checks to see if the determinant is one. If it

is not, within four-digit precision, then the program halts execution and prints the listed error

message.

The transmission coefficient, T, is then found using Equation 1 8, by the

T=sqrt(1.0/(absc(newMl l)*absc(newMl 1))); statement. It is then printed out in two columns, as

mentioned before. Spyglass Plot then produces graphs from the output.

B. BACKWARD-RECURRENCE PROGRAM

A copy of method2.c, which employs the backward-recurrence method, also is included

in Appendix C, Section B. The functions addc, subc, mule, dive, expc, and absc are re-used here,

to perform the basic operations on complex numbers. The predefined constants are also the same

as those used in method 1 c, with the exception that VL, fM, and VR have been added to allow the

specification of different potential in the left-hand and right-hand constant-potential regions, and

between the potential barriers. The program operates as follows:

Variables r, ro, rnplusJ, and bnfXPTSJ, of type complex, hold the values required in the

backward-recurrence relation given by Equation 27. Function makeV, as before, creates a

potential profile consisting of square barriers. The barriers have height Vo, and separation and

width given by BARW1DTH . Other versions of this program have been written which calculate

the transmission coefficient through different potentials. Only makeV need be changed to

accomplish this.

The for(ec=0.0;ec<epts;ec+=1.0) loop counts through the values of incident particle

energy, from ERIGHT down to ELEFT, using the E=ERIGHT-(ERIGHT-ELEFT)*(ec/epts);
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statement. At each value of incident particle energy, the for(xc=0;xc<XPTS;xc++) loop initializes

the bn array, bn is given by Equation 25, which is

bn[xc].real=C*delta*delta*(E-V[xc])-2.0;

bn[xc].imag=0.0,

in the C language.

kl and kr represent the wave numbers in the left-hand and right-hand regions of constant

potential, respectively, and are given by Equations 3 1 and 32 and by

kl=sqrt(C*(E-VL));

kr=sqrt(C*(E-VR));

Equation 30 gives rN+! , the value of r in the right-hand region of constant potential. The variable

rnplusl represents rN+ , in the program, and it is initialized by the

rnplusl real=cos(kr*delta);

rnplusl imag=sin(kr* delta);

statements.

The for(xc=(XPTS-BARPTS);xc>=BARPTS;xc--) loop, while deceptively short, actually

performs all of the backward-recurrence steps, using Equation 27, and updating the value of

rnplusl before each iteration. Finally, having computed ro, the program calculates the value of

the transmission coefficient, T, using Equation 34. This is done by the

temp.real=0.0;

temp . imag=kl * delta;

temp2=mulc(ro,expc(temp));

T=sqrt((sin(kl*delta)/sin(kr*delta))*(4.0*sin(kl*delta)*ro.imag)/(1.0-

2.0*temp2.real+absc(ro)*absc(ro)));
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statements. The values ofE and Tare then printed out, in columns, as before, and the results

plotted using Spyglass Plot.
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V. PERFORMANCE AND NUMERICAL STABILITY

A. TRANSFER MATRLX METHOD

The transfer matrix method, as mentioned, contains a testable quantity which allows one

to determine when its output has begun to be unreliable. It is shown in Section B of Appendix A

that the determinant of the overall transfer matrix, M, for a system must equal one. This has been

used to find the point at which the program's output begins to deteriorate.

By testing the determinant in this way, one also may find the specific value of incident

particle energy at which the transfer matrix method breaks down. Extensive results of these tests

are attached as Appendix B, for a simple test potential composed of a series of square barriers,

whose number, height, and width/separation may be changed until the program detects numerical

instability. From these test cases, it is clear that the transfer matrix method can be numerically

unstable in many applications. Examples of this instability will be given shortly.

In Appendix B, Section A is the output of the transfer matrix method program,

methodic, when single-precision floating-point numbers are used. These numbers have the

equivalent of six decimal places of precision. Consider the case in Appendix B, Section A, Part 1

(B.A. 1 .) , of one five nanometer (nm) barrier which is 0.2 electron volts (eV) tall. In this case, for

single-precision numbers, the method breaks down at an incident particle energy of 0.010702 eV.

method l.c analyzes particle energies beginning with the largest value, so for any particle energy

less than this value, the transfer matrix method returns inaccurate results. Compare this result to

that in B.B. 1., which is the same physical case, analyzed using double-precision floating-point

numbers, which carry 12 digits of precision. No numerical instability occurs with the double-
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precision numbers; this is not surprising, since more precision is available in the calculations used

in the program. There is no number of digits of precision, however, which is sufficient to entirely

prevent numerical instability of the transfer matrix method. Note in B.B. 1., for instance, that

inaccuracy occurs when the height of a single, 5 nm barrier is increased to 5 eV.

In B.A.2. and B.B. 2., the barrier width has been varied. Note that for both single- and

double-precision floating-point numbers, there exists a value of barrier width which causes

numerical instability of the transfer matrix method. Similarly, in B.A.3. and B.B. 3., this is

observed when the number of square potential energy barriers is increased. In each case, the

value of incident particle energy at which instability occurs is listed. Observe that, as the

parameters of the calculation are pushed beyond the point at which instability just starts, the

minimum incident particle energy rises. This effect can be seen for either single- or double-

precision floating-point numbers, throughout Appendix B.

The question arises: how severe is this effect in the transfer matrix method? At this point,

methodic is applied to a situation with a known, analytic solution, in order to find out the answer

to this question. The following paragraphs will refer to various figures, all of which have been

collated in Appendix D.

The test case chosen is that of one square potential energy barrier, of width 5.0 nm and

height 0.23 eV. In B.A.2., it has been shown that the transfer matrix method breaks down at

incident particle energy 0.013768 eV, for single-precision numbers. It does not fail if double-

precision numbers are used. Figure 1 shows the output of the program using double-precision

numbers. This figure is a familiar sight in introductory quantum physics texts. (Eisberg &

Resnick, 1985, p. 202) (Singh, 1997, p. 135) There is a positive transmission coefficient for
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incident particle energies less than the barrier height, indicating that quantum tunneling will occur.

There is also a region of non-unity transmission coefficient at values above the barrier height,

indicating the presence of quantum scattering.

In Figure 2, the transfer matrix method solution minus the value of the transmission

coefficient calculated by the analytic solution for one square barrier has been plotted. Note that

the transfer matrix solution is exact. The same figure resulted from running the program with

single-precision floating-point numbers. It is apparent that, when the determinant of the overall

transfer matrix is 1.0001 instead of 1.0000, significant degradation of the numerical solution is not

observed.

This is an interesting dilemma, since analytic solutions for the transmission coefficient are

so rare in practical quantum tunneling problems. When is the output of the transfer matrix

method useful? What are the limitations of the method? Only qualitative answers are available to

the first question; the method is useful when it is numerically stable. Instability may be detected

by means of the determinant of the overall transfer matrix. The limitations of the transfer matrix

method, however, are tested in this thesis by five test potentials: a single square barrier, sequences

of two, three, and five parabolic barriers, and a resonant-tunneling diode (RTD) potential.

The results, in the case of the RTD potential, clearly demonstrate the inadequacy of the

transfer matrix method in dealing with elaborate potential profiles. Appendix C, Section E

describes ml para, c, which tests the transfer matrix method against potential energy profiles

composed of series of parabolic barriers, rather than square barriers. An example of a potential

used in this program is given in Figure 3. In this figure, one can clearly see the difficulty posed by

potentials consisting of smooth curves: the potential must be carved into sub-bins, each of which
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is piecewise-constant. The partitioning must be such that the character of the potential in

preserved, which, for steep slopes in the potential, may require small step sizes. Recall that the

number of bins (barriers) tends to drive the method into instability, as shown previously.

Figures 4, 5, and 6 are the output ofml para, c for the cases of 2, 3, and 5 parabolic

barriers. In each of these cases, the "safety check" of the determinant of the overall transfer

matrix has been performed for each value of energy, and program execution halted when the

determinant differs from 1 .0 by more than 0.0001 . In the case shown in Figure 4, instability did

not occur. In Figure 5, it occurred after 952 out of 1000 energy points had been analyzed. In

Figure 6, it happened after only 908. Each graph, however, shows only the values of T which

were calculated before instability occurred. These values are therefore known to be accurate.

It has been established that the output of the transfer matrix method is correct, even when

the determinant of the overall transfer matrix differs slightly from one. When the discrepancy in

the determinant is less than 0.0001, therefore, the program's output is accurate. These figures

will be used as a basis for evaluating the performance of the backward-recurrence method, applied

to the same potentials, in Section B of this chapter.

The results seen in Figure 4 seem reasonable. There is a peak transmission coefficient of

1.0 when the energy equals the height of the barriers, which agrees with observations based on

systems of square barriers. Scattering occurs for incident energies above the barrier energy, as

expected. Since there are two barriers, one expects a resonant-tunneling energy to exist, and

there is, in fact, a peak in the T versus E curve for incident energies below the barrier energy. The

performance of the transfer matrix method in this case is acceptable.
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Figure 5, for the case of three parabolic barriers, demonstrates that the technique is fairly

accurate, as well. There is a scattering region above the barrier energy, as expected, and there is

also a resonant-tunneling energy. In addition, we see the expected twinning of transmission

resonances due to the presence of two energy wells between the three barriers. However, as noted

above, the method breaks down at low energies.

In Figure 6, similar performance occurs. This figure is plotted with a logarithmic vertical

axis, to better show the range of values. Again, twinning of transmission resonances appears,

with four resonances this time. This is due to the four energy wells that exist between the five

energy barriers. Performance degrades at low energies once more, and instability sets in at lower

energies this time, as anticipated.

Finally, the transfer matrix method is applied to a truly difficult (and physically relevant)

potential: the resonant tunneling diode (RTD) potential. This potential is shown in Figure 7, for

an AlAs/InGaAs/InAs RTD. (Luscombe, 1992, p. 4) Note the steeply-sloping sides of the central

well, in combination with the smooth curve on which the central well rests. These features make

it extremely difficult to approximate this potential by a piecewise-constant model.

Figure 8 shows the results obtained from the transfer matrix method in this case. The

program's output, even using double-precision numbers, is so inaccurate that the transmission

coefficient is not calculated between 0.75 and 0.87 eV, and the method breaks down completely

below about 0.55 eV. Only the energies of the two peaks are correctly predicted, and the method

completely misses a third, low-energy peak, as described in Section B of this chapter.

In defense of the method, it must be said that for those potentials which are simple enough

for it to handle, it performs perfectly. However, the transfer matrix method does have the
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observable disadvantage of considerably longer execution time, for the same potential, when

compared to the backward-recurrence method. The observed time difference has been as much as

several minutes, on a Sun SparcStation 5 workstation, depending on the specific problem.

The method also proves to be able to operate accurately even when the determinant of the

overall transfer matrix differs slightly from one, but it rapidly becomes unstable for determinant

values which differ from one by more than 0.001 . Such differences may easily occur if the

number of interfaces is greater than ten. Difficulties arise when the program is required to

continue to handle many more, lower, incident particle energies, beyond that energy which first

caused the determinant not to equal one. The incident energies are analyzed in decreasing order,

so that the method first encounters the cases least likely to cause numerical instability. Cases do

exist, however, for which the transfer matrix method is grossly incapable of calculating the

transmission coefficient, and it fails completely. As these cases are of significant interest in the

development of nanoelectronic devices (like the RTD), the transfer matrix method proves not to

be powerful enough for these applications.

B. BACKWARD-RECURRENCE METHOD

The backward-recurrence method has proven to be considerably faster, easier to program,

and less prone to numerical instability than the transfer matrix method. In fact, it has not been

demonstrated to fail numerically at all, though the fine detail of the T versus E curves of some

potentials can also be a factor, as will be shown below, on page 32.
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Since it lacks a built-in test for numerical accuracy, the best tests for the backward-

recurrence method are comparisons with known transmission coefficient versus energy curves.

For example, again consider the case of one square barrier.

In Figure 9, the output of the backward-recurrence program has been plotted on the same

axis as that of the analytic expression for T for one square barrier. Note the close agreement

between the numerical and analytic solutions. In Figure 10, the difference between the analytic

result and the backward-recurrence result is shown. The agreement is perfect, to the limits of

precision of the calculation.

The only other reference which one can compare to the results of the backward-recurrence

method are known correct results from the transfer matrix method. (This makes clear why the

transfer matrix method has been considered: it can tell the user when it has generated correct

results.) The T versus E profiles of Figures 4 through 6, generated using the transfer matrix

technique, can be used for comparison.

The case depicted in Figure 1 1 is the same as that of Figure 4, except calculated with the

backward-recurrence technique. Comparison of the two graphs suggests that the agreement of

these two figures is perfect. From this analysis, it is clear that the backward-recurrence results and

the transfer matrix results agree to within the calculations' precision.

Similar comparisons have been done between the data of Figure 12 and Figure 5, and

between that of Figure 13 and Figure 6, for the cases of three and five parabolic barriers. For

both of these potentials, the backward-recurrence method exactly reproduces the known-correct

results obtained from the transfer matrix method. The backward-recurrence method executes

these calculations in approximately one-tenth the time required by the other algorithm, as well.
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Plot resolution impacts the quality of the program output, even when the individual data

pairs (E,T) are correct. The rate of change of T with changes in E is so sharp in the neighborhood

of the maxima, that with 1000 energy points, the peak itself is stepped over. Figure 13 contains

this error, which is unrelated to the accuracy of the individual values of T. We see in Figure 13

that the magnitudes of T at the four maxima located at about 0.06 eV are not all 1.0. They should

be, as Figure 14, which uses 10,000 energy points instead of 1000, demonstrates.

As an example of this phenomenon, compare the leftmost maximum near 0.06 eV in

Figure 13, with the same maximum in Figure 14. In Figure 13, the frequency at which energy

values are sampled is insufficient, and this T maximum appears to be less than 1.0. In Figure 14,

the energy values are sampled frequently enough to show the true maximum of 1 .0. Required

graphical resolution for plots of this type may easily exceed the specified energy sample rate. This

highlights the importance of correct sample settings to the proper use of these numerical

techniques. Fortunately, for nanoelectronic devices, the number of layers, and thus the number of

material interfaces, will be finite; this will alleviate some of this problem, since it will limit the

slope of, and the number of maxima in, the T versus E profile of the device.

Using backward recurrence, the transmission coefficient for the RTD potential profile was

easily calculated. These results have been included as Figure 15. This figure was plotted with

10,000 energy points after noting that the maximum at about 0.6 eV had a value of T which was

less than 1.0, when plotted using 1000 energy points. Note the full coverage, lack of numerical

instability at low energies, and three energy peaks. This result is in agreement with Luscombe's

original paper, taking into consideration differences in the effective masses of the media.

(Luscombe, 1992, p. 4) The backward-recurrence method proves itself to be quite capable of
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attacking the RTD potential, and it no doubt is capable of analyzing the potential profiles of other

nanoelectronic devices. This method has great promise, and wide future applicability.
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VI. CONCLUSION

The backward-recurrence method has much greater stability and much faster speed of

execution, as well as a much wider scope of applicability than does the transfer matrix approach.

Both methods reproduce, with no observable error, the transmission coefficient (7) versus

incident particle energy (E) curve for the classic square potential barrier, as seen in Figures 1 and

2.

That the determinant of the transfer matrix equals one, means that the results produced by

the transfer matrix method are credible. This fact has been used to calculate T versus E curves for

other potentials, such as the parabolic barrier potentials seen in Figures 4 through 6. These T

versus E curves found with the transfer matrix method have been compared with the output from

the backward-recurrence method, when applied to the same potential. Regardless of the

potential's shape, it has been shown that the backward-recurrence method produces the same

output as the transfer matrix method, when the potential does not cause the transfer matrix

method to become instable.

The backward-recurrence method shows great promise in the numerical solutions of T

versus E curves for potential energy profiles encountered in real devices, like the resonant

tunneling diode potential shown in Figure 7. In contrast, the transfer matrix method proves itself

to be incapable of any reasonable accuracy in this case. Other practical potential profiles for

nanoelectronic devices also are probably within the capabilities of this algorithm.

The backward-recurrence method for calculating transmission coefficients has been shown

to be worth further development. The transfer matrix method, while limited in applicability, can
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act as a worthwhile benchmark, against which future versions of the backward-recurrence code

may be tested.
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APPENDIX A.

MATHEMATICAL PROPERTIES OF TRANSFER MATRICES

A. SYMMETRY OF THE OVERALL TRANSFER MATRIX, M

1. The Example of One Square Barrier

It can be shown that, for a single square barrier of height F and width 2a, the

overall transfer matrix, M -
M(l,l) M(l,2)

M(2,l) M(2,2)
is given by

M
cosh 2Ka h— sinh 2Ka \e

2 'ka

2 )

ITJ
sinh2Kor

IT] t

sinh2*ra
IE

cosh 2«or-— sinh 2kci \e
2

2

where k = J—^-(E - 0) is the wave number outside the barrier, and k - J—r-(V - E) is

V % V h"

the magnitude of the purely imaginary wave nurrtber inside the barrier {k
barner

= ik ).

Also in this expression for M are two aggregate constants, rj and s , which are given by

77 =

K k k

(k k

yk K

Since, in this construction, k and k are purely real, s and 77 are real as well.

(Merzbacher, 1961, pp. 91-92)

2. The General Case

The symmetry property of the overall transfer matrix, M, is obvious from its form

given above. M has the form
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M =
M(l,l) M(l,2)'

M(2,l) M(2,2)

a, +b,i a, +bj
•\ • "\

a
3
+Z>

3
/' a4 +b4i

where ci2=ci3=0, ai=a4 , bj= -b4 , and bi= -b3. In other words, the (1,2) and (2,1) elements

ofM are complex conjugates of each other, and are both purely imaginary. The (1,1) and

(2,2) elements are also complex conjugates of each other, but each has both real and

imaginary components. This symmetry is not limited to the case of one square barrier;

rather, the one square barrier case has been provided as an illustrative example.

B. DETERMINANT OF THE OVERALL TRANSFER MATRIX, M

The determinant of the overall transfer matrix, M, is identically one. This

condition is true for all potentials, not just for square barriers. This property can be

verified in the M given for the square barrier example, as follows:

V ic- \ (M(l,l) M(l,2)

M(2,l) M(2,2)
cosh 2kci h— sinh 2ko

2
cosh 2fca sinh 2kci

2

-l T]

sinh" 2fca

V

= cosh
2
2Ka +

\

4 4
sinh

2
2kq = cosh

2
2kq - sinh

2
2kq = 1.

C. SYMMETRY AND PROGRESSION OF INTERFACE TRANSFER

MATRICES, N

The interface transfer matrices have different symmetry than does the overall

transfer matrix, M. In fact, when the numerical version of the transfer matrix solution

begins to degrade, it is these properties of the interface transfer matrices which are

involved. The following is output from the transfer matrix program for a condition

known to cause numerical instability, taken from Appendix B, section B.3. The output is



for a sequence of square barriers whose up-steps occur at x=5, 1 5,25. . . and whose down-

steps happen at x= 10,20,30...

BARRIERS = 10

BARWIDTH = 5.000000 nm

Vo = 0.230000 eV
E=0. 1 96624 eV

When x=5.000000, N is

-1.3361 13e-01 +-8.990499e-02 j

-1.3361 13e-01 +8.990499e-02 j

When x=l 0.000000, N is

-1.799812e-01 +-1.479897e+01 j

8.299747e-02 +8.161 762e-02 j

'

When x- 15.000000, N is

-7.773521e-03 +-1.198140e-02 j

-7.773521e-03 +1.198140e-02j

When x=20.000000, N is

-6.730543e+01 +-1.527079e+02 j

9.609614e-03 +3.772008e-03 j

When x=25.000000, N is

-2. 1 74860e-04 +- 1 .2478 1 5e-03 j

-2.174860e-04+1.247815e-03j

When x=30.000000, N is

-1.37338 le+03 +-1.286365e+03 j

9.151 546e-04 +-2.647852e-05 j

When x=3 5.000000, N is

2.565397e-05 +-1.093629e-04j

2.565397e-05 +1.093629e-04 j

When x-40.000000, N is

-1.993362e+04 +-7.270083e+03 j

7.373917e-05 +-3.398770e-05 j

When x=45.000000, N is

1.783441e+00 + 3.417415e-01j

•1.783441e+00 + -3.417415e-01 j

-1.799812e-01 + 1.479897e+01 j

8.299747e-02 + -8.161762e-02j

-2.001004e+01 + -4.341330e+00
j

-2.001004e+01 + 4.341330e+00j

-6.730543e+01 + 1.527079e+02j

9.6096 14e-03 + -3.772008e-03 j

1.883595e+02 + -1.3351 19e+02j

1.883595e+02+ 1.3351 19e+02j

-1.373381e+03 + 1.286365e+03 j

9.151 546e-04 + 2.647852e-05 j

1.363410e+03 + -2.217759e+03 j

•1.363410e+03 + 2.217759e+03 j

-1.993362e+04 + 7.270083e+03
j

7.373917e-05 + 3.398770e-05 j
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5.896356e-06 +-8.029830e-06
j

5.896356e-06 +8.029830e-06 j

When x=50.000000, N is

-2.389105e+05 +1.273344e+04 j

4.833746e-06 +-5.337304e-06 j

When x=5 5. 000000, N is

7.602998e-07 +-4.500235e-07 j

7.602998e-07 +4.500235e-07 j

When x=60.000000, N is

-2.421817e+06 + 1.1 8850 le+06 j

2.087238e-07 +-6.035369e-07 j

When x=65. 000000, N is

7.767776e-08 +-1.027182e-08
j

7.767776e-08 +1.027182e-08 j

When x=70.000000, N is

-1.986518e+07 +2.303671e+07 j

-3.961913e-09 +-5.649675e-08 j

When x=75. 000000, N is

6.6943 3 5e-09 +1.863506e-09 j

6.694335e-09 +-1.863506e-09 j

When x=80.000000, N is

-1.041891e+08 +3.267910e+08 j

-2.288082e-09 +-4.471323e-09 j

When x=85.000000, N is

4.813270e-10 +3.848460e-10 j

4.813270e-10 +-3.848460e-10
j

When x=90.000000, N is

3.643030e+08 +3.850378e+09 j

-3.42171 le-10 +-2.852034e-10 j

When x=95. 000000, N is

2.588327e-ll +4.813621e-l 1 j

2.588327e-l 1 +-4.813621e-l 1
j

When x=100.000000, N is

2.080449e+10 +3.832754e+10 j

-3.783386e-ll +-1.136730e-ll
j

-4.335545e+03 + -2.903269e+04 j

-4.335545e+03 + 2.903269e+04
j

-2.389105e+05 + -1.273344e+04
j

4.833746e-06 + 5.337304e-06 j

8.340682e+04 + -3.203 155e+05j

8.340682e+04 + 3.203 155e+05 j

-2.421817e+06 + -1.1 8850 le+06 j

2.087238e-07 + 6.035369e-07 j

2.281527e+06 + -2.953693e+06
j

2.281527e+06 + 2.953693e+06 j

1.986518e+07 + -2.30367 le+07j

-3.961913e-09 + 5.649675e-08 j

3.672609e+07 + -2.054894e+07 j

3.672609e+07 + 2.054894e+07 j

-1.041891e+08 + -3.267910e+08j

-2.288082e-09 + 4.471323e-09 j

4.718089e+08 + -5.07493 le+07j

4.718089e+08 + 5.07493 le+07 j

3.643030e+08 + -3.850378e+09 j

-3.42171 le-10 + 2. 852034e-10j

5.118289e+09+ 1.559857e+09j

5.1 18289e+09 + -1.559857e+09 j

2.080449e+10 + -3.832754e+10j

-3.783386e-ll + 1.136730e-l 1 j
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Overall, M is

-6.842685e+04 +5.333000e+05 j 4.766 148e+05 + -2.488562e+05 j

4.766148e+05 +2.488562e+05 j -6.842685e+04 + -5.333000e+05 j

Broke due to numerical inaccuracy @ E=0. 196624 eV

The program output shows the symmetry and progression of the N matrices. At

an interface where a step increase in potential occurs (up-step), the form ofN is

NuP

c + di a + bi

c-di a- bi

On the other hand, at an interface where a step decrease in potential occurs (down-step),

N has the form

Ndown

a + bi a- bi

c + di c - di

where, in each case, a, b, c, and d are real constants. Note that the Nup and Ndown matrices

have distinctly different symmetry. It is interesting that the matrix product of all of the N

matrices has diagonal symmetry.

Note that, as x increases, the magnitudes ofa and b, for both the Nup and Ndown

matrices, get very large, while the magnitudes of c and d get very small. At the point that

either type ofN matrix' c±di elements approach the numerical limitations of double-

precision floating-point numbers, the determinant of the overall transfer matrix, M,

begins to diverge from one. When this happens, the transfer matrix method breaks down,

as it has in the above example.

41



42



APPENDIX B.

TRANSFER MATRIX METHOD NUMERICAL INSTABILITY
AS SEEN IN PROGRAM OUTPUT

A. SINGLE-PRECISION FLOATING-POINT NUMBERS USED

Barrier Height Varied

% ACC withfloat

% withfloat

BARRIERS = 1

BARWIDTH = 5.000000 nm
Vo = 0. 100000 eV

% ACC withfloat

% withfloat

BARRIERS = 1

BARWIDTH = 5.000000 nm
Vo = 0.200000 eV
Broke due to numerical inaccuracy @ E=0.010702 eV

% ACC withfloat

% withfloat

BARRIERS = 1

BARWIDTH = 5.000000 nm
Vo = 0.500000 eV
Broke due to numerical inaccuracy @ E=0. 173308 eV

% ACC withfloat

% withfloat

BARRIERS = 1

BARWIDTH = 5.000000 nm
Vo= 1.000000 eV
Broke due to numerical inaccuracy @ E=0.680638 eV

2. Barrier Width Varied
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% ACC withfloat

% withfloat

BARRIERS = 1

BARWIDTH = 5.000000 nm
Vo = 0.230000 eV
Broke due to numerical inaccuracy @ E=0.013768 eV

% ACC withfloat

% withfloat

BARRIERS = 1

BARWIDTH = 6.000000 nm
Vo = 0.230000 eV
Broke due to numerical inaccuracy @ E=0.0361 12 eV

% ACC withfloat

% withfloat

BARRIERS = 1

BARWIDTH = 7.000000 nm
Vo = 0.230000 eV
Broke due to numerical inaccuracy @ E=0.072364 eV

% ACC withfloat

% withfloat

BARRIERS = 1

BARWIDTH = 8.000000 nm
Vo = 0.230000 eV
Broke due to numerical inaccuracy @ E^0.098584 eV

% ACC withfloat

% withfloat

BARRIERS = 1

BARWIDTH = 9.000000 nm
Vo = 0.230000 eV
Broke due to numerical inaccuracy @ E=0. 1 18420 eV

% ACC withfloat

% withfloat

BARRIERS = 1

BARWIDTH - 10.000000 nm
Vo = 0.230000 eV
Broke due to numerical inaccuracy @ E=0. 161284 eV
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3. Number of Barriers Varied

% ACC withfloat

% withfloat

BARRIERS = 1

BARWIDTH = 5.000000 nm
Vo = 0.230000 eV
Broke due to numerical inaccuracy @ E=0.013768 eV

% ACC withfloat

% withfloat

BARRIERS = 2

BARWIDTH - 5.000000 nm
Vo = 0.230000 eV
Broke due to numerical inaccuracy @ E=0. 147604 eV

% ACC withfloat

% withfloat

BARRIERS = 5

BARWIDTH = 5.000000 nm
Vo = 0.230000 eV
Broke due to numerical inaccuracy @ E=0.221248 eV

B. DOUBLE-PRECISION FLOATING-POINT NUMBERS USED

1. Barrier Height Varied

% ACC withdouble

% withdouble

BARRIERS = 1

BARWIDTH = 5.000000 nm
Vo = 0. 100000 eV

% ACC withdouble

% withdouble

BARRIERS = 1

BARWIDTH = 5.000000 nm
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Vo = 0.200000 eV

% ACC withdouble

% withdouble

BARRIERS = 1

BARWIDTH = 5.000000 nm
Vo- 0.500000 eV

% ACC withdouble

% withdouble

BARRIERS = 1

BARWIDTH = 5.000000 nm
Vo= 1.000000 eV

% ACC withdouble

% withdouble

BARRIERS = 1

BARWIDTH = 5.000000 nm
Vo = 2.000000 eV

% ACC withdouble

% withdouble

BARRIERS = 1

BARWIDTH = 5.000000 nm
Vo = 5.000000 eV
Broke due to numerical inaccuracy @ E=0. 800680 eV

% ACC withdouble

% withdouble

BARRIERS = 1

BARWIDTH = 5.000000 nm
Vo= 10.000000 eV
Broke due to numerical inaccuracy @ E=5.629874 eV

2. Barrier Width Varied

% ACC withdouble

% withdouble

BARRIERS = 1
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BARWIDTH = 5.000000 nm
Vo = 0.230000 eV

% ACC withdouble

% withdouble

BARRIERS = 1

BARWIDTH = 6.000000 nm
Vo = 0.230000 eV

% ACC withdouble

% withdouble

BARRIERS = 1

BARWIDTH = 7.000000 nm
Vo = 0.230000 eV

% ACC withdouble

% withdouble

BARRIERS = 1

BARWIDTH - 8.000000 nm
Vo = 0.230000 eV

% ACC withdouble

% withdouble

BARRIERS = 1

BARWIDTH = 9.000000 nm
Vo = 0.230000 eV

% ACC withdouble

% withdouble

BARRIERS = 1

BARWIDTH = 10.000000 nm
Vo = 0.230000 eV

% ACC withdouble

% withdouble

BARRIERS = 1

BARWIDTH = 20.000000 nm
Vo = 0.230000 eV
Broke due to numerical inaccuracy @ E=0.003964 eV
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% ACC withdouble

% withdouble

BARRIERS = 1

BARWIDTH = 30.000000 nm
Vo = 0.230000 eV
Broke due to numerical inaccuracy @ E=0. 107932 eV

% ACC withdouble

% withdouble

BARRIERS = 1

BARWIDTH = 40.000000 nm
Vo = 0.230000 eV
Broke due to numerical inaccuracy @ E=0. 161512 eV

% ACC withdouble

% withdouble

BARRIERS - 1

BARWIDTH = 50.000000 nm
Vo - 0.230000 eV
Broke due to numerical inaccuracy @ E=0. 187504 eV

3. Number of Barriers Varied

% ACC withdouble

% withdouble

BARRIERS = 1

BARWIDTH = 5.000000 nm
Vo = 0.230000 eV

% ACC withdouble

% withdouble

BARRIERS = 2

BARWIDTH = 5.000000 nm
Vo = 0.230000 eV

% ACC withdouble

% withdouble

BARRIERS = 5

BARWIDTH - 5.000000 nm
Vo = 0.230000 eV
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Broke due to numerical inaccuracy @ E=0.046372 eV

% ACC withdouble

% withdouble

BARRIERS = 10

BARWIDTH = 5.000000 nm
Vo = 0.230000 eV
Broke due to numerical inaccuracy @ E=0. 196624 eV

% ACC withdouble

% withdouble

BARRIERS = 15

BARWIDTH = 5.000000 nm
Vo = 0.230000 eV
Broke due to numerical inaccuracy @ E=0.2 15776 eV

% ACC withdouble

% withdouble

BARRIERS = 20

BARWIDTH = 5.000000 nm
Vo = 0.230000 eV
Broke due to numerical inaccuracy @ E=0.220792 eV

% ACC withdouble

% withdouble

BARRIERS = 50

BARWIDTH = 5.000000 nm
Vo = 0.230000 eV
Broke due to numerical inaccuracy @ E=0.227176 eV
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APPENDIX C.

CODE FOR C PROGRAMS WRITTEN FOR THIS THESIS

A. TRANSFER MATRIX METHOD (methodl.c)

/* Francis E. Spencer III */

/* Thesis. Summer 1997*/

/* Prof. Luscombe */

/* Inclusions */

#include <stdio.h>

#include <math.h>

#include <stdlib.h>

/* Definitions */

#define BARRIERS 1 /* dimensionless */

#define BARPTS 10 /* dimensionless */

#define BARWIDTH 5.0 /* nm */

#define MAXX ((2.0*BARWIDTH*BARRIERS)+BARWIDTH) /* nm */

#defme XPTS ((2*BARPTS*BARRIERS)+BARPTS) /* dimensionless */

#define EPTS 10000 /* dimensionless */

#define EFFMASS 0.067 /* dimensionless */

#define H20VER2M 0.0381 /* eV-nm2 */

#define C (EFFMASS/H20VER2M) /* l/(eV-nm2) */

#define Vo 0.23 /* eV */

#define ELEFT 0.000

1

/* eV */

#define ERIGHT (Vo-0.0001) /* eV */

/* Function Prototypes */

void makeV(void);
struct complex addc(struct complex a struct complex b);

struct complex subc(struct complex a. struct complex b);

struct complex mulc(struct complex a, struct complex b);

struct complex divc(struct complex a struct complex b);

struct complex expc(struct complex a);

double absc(struct complex a);

struct complex Nl lcomplex(struct complex kminus, struct complex kplus. struct complex kratio, struct

complex x);

struct complex N12complex(struct complex kminus, struct complex kplus, struct complex kratio, struct

complex x);

struct complex N21complex(struct complex kminus, struct complex kplus, struct complex kratio, struct

complex x);

struct complex N22complex(struct complex kminus, struct complex kplus, struct complex kratio, struct

complex x);

struct complex determinantcomplex(struct complex Mil. struct complex Ml 2, struct complex M21, struct

complex M22);

/* Global Variable Definitions */

struct complex

{

double real;

double imag;
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};

double V[XPTS1;

struct complex k[XPTS];

/* Body of Program follows: */

void main(void)

/* This function controls program execution */

{

int ec.xc;

double E.epts.xpts.T;

struct complex

newMl l,newM12,newM21.newM22,oldMl l,oldM12.oldM21,oldM22,Nl l,N12,N21,N22,x,kratio,Mdet;

x.imag=0.0; /* x is a purely real number */

epts=EPTS;

xpts=XPTS;

makeV();

for(ec=0.0;ec<epts;ec+=1.0)

{

E=ERIGHT-(ERlGHT-ELEFT)*(ec/epts); /* DOWN-counting through E values */

oldM 1 1 . imag=oldM 1 2.imag=oldM2 1 .imag=oldM22 .imag=0 . 0;

oldMll.real=oldM22.real=1.0;

oldM12.real=oldM21.real=0.0; /* "old" M initially an identity matrix */

for(xc=0;xc<XPTS;xc+-f) /* initialize k */

{

if(E>=V[xc]) /* k is purelv real */

{

k[xc].real=sqrt(C*(E-V|xc]));

k[xc].imag=0.0;

}/*endifE>=V*/
else /* k is purely imaginary */

{

k[xc].real=0.0;

k[xc].imag=sqrt(C*(V[xc]-E));

}/* end else E<V */

}/* end for xc (init k) */

for(xc- 1 ;xc<XPTS;xc++)

{

x.real=(xc/xpts)*MAXX;

if((k[xcl.real!=k[xc-l].real)||(k[xc].imag!=k[xc-l].imag))

{

kratio=divc(k[xc],k[xc-l]);

Nl 1=N1 lcomplex(k[xc-l],k[xc],kratio,x),

N12=N12complex(k[xc-l],k[xc],kratio,x);

N21=N21complex(k[xc-l].k[xcj.kratio.x);

N22=N22complex(k[xc-l],k[xcl.kratio,x),

newMll=addc(mulc(oldMll,Nll),mulc(oldM12,N21));

newM 1 2=addc(mulc(oldMl 1 ,N 12).mulc(oldM 1 2.N22));

newM2 1=addc(mulc(oldM2 1 ,N 1 1 ).mulc(oldM22,N2 1 ));

newM22=addc(mulc(oldM21.N12),mulc(oldM22.N22));

oldMll=newMll;
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oldM12=newM12
oldM21=newM21
oldM22=newM22

}/*endifk[.\c] ... */

}/* end for xc */

Mdet=detenninantcomplex(newMll.newM12,newM21,newM22);

if((Mdet.real>1.0001)||(Mdet.real<0.9999))

{

printf("Broke due to numerical inaccuracy @ E=%f eV\n\n".E);

break;

}
/* THE "SAFETY" IS ON */

else

{

}

T=sqrt(l,0/(absc(newMl l)*absc(newMl 1)));

pnntf("%. 12f\t%. 12f \n'\E,T);

}/* end for ec */

}/* end MAIN */

void makeV(void)
/* This function initializes die potential energy array, V */

{

int xcount,y;

for(xcount=0;xcount<XPTS;xcount++)

{

y=xcount/BARPTS;

if((y%2)==0)

V[xcount]=0.0;

else

V[xcount]=Vo;

}/* end for xcount */

}/* end MAKEV */

struct complex addc(struct complex a, struct complex b)

/* This function adds two complex numbers passed to it */

{

struct complex sum;

sum. real=a.real+b. real;

sum.imag=a.imag+b.imag;

return(sum);

}/* end ADDC */

struct complex subc( struct complex a. struct complex b)

/* This function subtracts complex number b from complex number a */

{

struct complex difference;

difference.real=a.real-b.real;

difference . imag=a. imag-b . imag;

return(difference)

;

}/* end SUBC */

struct complex mulc( struct complex a. struct complex b)

/* This function multiplies two complex numbers passed to it */
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{

struct complex product;

product.real=a.real*b.real-a.imag*b.imag;

product.imag=a.real*b.imag+a.imag*b.real;

return(product);

}/* end MULC */

struct complex divc(struct complex a. struct complex b)

/* This function divides complex number a bv complex number b */

{

struct complex quotient;

double denom;

denom=b.real*b.real+b.imag*b.imag;

quotient.real=(a.real*b.real+a.imag*b.imag)/denom;

quotient. imag=(b.real*a.imag-a.real*b.imag)/denom;

return(quotient);

}/* end DIVC */

struct complex expc(struct complex a)

/* This function computes the exponential of a complex number */

{

struct complex exponential;

exponential. real=exp(a.real)*cos(a.imag);

exponential.imag=exp(a.real)*sin(a.imag);

return(exponential);

}/* end EXPC */

double absc(struct complex a)

/* This function returns the magnitude of complex number a */

{

return(sqrt(a.real*a.real+a.imag*a.imag));

}/* end ABSC */

struct complex Nl lcomplex(struct complex kminus, struct complex kplus, struct complex kratio, struct

complex x)

/* This function finds the matrix element Nl 1 of the interface */

{

struct complex one, j, N;

one.real=1.0;

one.imag=0.0;

j.real=0.0;

j.imag=1.0;

N=mulc(addc(one,kraUo),expc(mulc0.mulc(x,subc(kplus.kminus)))));

N.real*=0.5;

N.imag*=0.5;

return(N);

}/*endNHCOMPLEX*/

struct complex N12complex(struct complex kminus. struct complex kplus, struct complex kratio, struct

complex x)

/* This function finds the matrix element N 12 of the interface */

{

struct complex one, minusj, N;

one.real=1.0;

one.imag=0.0;

minusj. real=0.0;
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minusj.imag=-1.0;

N=mulc(subc(one.kratio).expc(muJc(minusj,muJc(x,addc(kplus.kminus)))));

N.real*=0.5;

N.imag*=0.5;

return(N);

}/*endN12COMPLEX*/

struct complex N21complex(struct complex kminus. struct complex kplus, struct complex kratio, struct

complex x)

/* This function finds the matrix element N2 1 of the interface */

{

struct complex one, j, N;

one.real=1.0;

one.imag=0.0;

j.real=0.0;

j.imag=1.0;

N=mulc(subc(one,kratio),expc(mulc(j.mulc(x,addc(kplus.kminus)))));

N.real*=0.5;

N.imag*=0.5;

return(N);

}/* end N21COMPLEX*/

struct complex N22complex(struct complex kminus, struct complex kplus, struct complex kratio, struct

complex x)

/* This function finds the matrix element N22 of the interface */

{

struct complex one, minusj. N;

one.real=1.0;

one.imag=0.0;

minusj. real=0.0;

minusj.imag=-l .0;

N=mulc(addc(one,kratio),expc(mulc(minusj,mulc(x,subc(kplus,kminus)))));

N.real*=0.5;

N.imag*=0.5;

retum(N);

}/* end N22COMPLEX */

struct complex determinantcomplex(struct complex Mil, struct complex Ml 2, struct complex M21, struct

complex M22)
/* This function calculates the determinant of the transfer matrix as a check for accuracy */

{

return(subc(mulc(Ml l.M22),mulc(M2 1,M12)));

}/* end DETERMINANTCOMPLEX */

B. BACKWARD-RECURRENCE METHOD (method2.c)

/* Francis E. Spencer III */

/* Thesis, Summer 1997*/

/* Prof. Luscombe */

/* Inclusions */

^include <stdio.h>

#include <math.h>
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#include <stdlib.h>

/* Definitions */

#define BARRIERS 1 /* dimensionless */

#define BARPTS 5000 /* dimensionless */

/* NOTE: set BARPTS so that there are 0.01 run per point (BARWIDTH/BARPTS)=( 1/100) */

#define BARWIDTH 5.0 /* nm */

#define MAXX ((2.0*BARWIDTH*BARRIERS)+BARWIDTH) /* nm */

#define XPTS ((2*BARPTS*BARRIERS)+BARPTS) /* dimensionless */

#define EPTS 10000 /* dimensionless */

#define EFFMASS 0.067 /* dimensionless */

#define H20VER2M 0.0381 /* eV-nm2 */

#define C (EFFMASS/H20VER2M) /* l/(eV-nm2) */

#define Vo 0.23
.

/* eV */

#define VL 0.0 /* eV */

#define VM 0.0 /* eV */

#define VR 0.0 /* eV */

#define ELEFT 0.000

1

/* eV */

#defineERIGHT(Vo-0.0001) /* eV */

/* Function Prototypes */

void makeV(void);

struct complex addc(struct complex a, struct complex b);

struct complex subc(struct complex a, struct complex b);

struct complex mulc(struct complex a, struct complex b);

struct complex divc(struct complex a, struct complex b);

struct complex expc(struct complex a);

double absc(struct complex a);

/* Global Variable Definitions */

struct complex

{

double real;

double imag;

};

double V[XPTS];

/* Body of Program follows: */

void main(void)

/* This function controls program execution */

{

int ec,xc;

double E,epts,xpts,barpts.T,delta.kl,kr;

struct complex j.minusl.x,rn.rnplusl.ro,bn[XPTS],temp,temp2;

x.imag=0.0; /* x is a purely real number */

epts-EPTS;

xpts=XPTS;

barpts=BARPTS;

delta=BARWIDTH/barpts:

j.real=0.0;

j.imag=1.0;

minus l.real=- 1.0;

minus l.imag=0.0;

makeV();
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for(ec=0.0;ec<epts;ec+= 1.0)

{

E=ERIGHT-(ERIGHT-ELEFT)*(ec/epts); /* DOWN-counting througli E values */

for(xc=0;xc<XPTS;xc++) /* initialize bn*/

{

bn[xc].real=C*delta*delta*(E-V[xc])-2.0;

bn(xc].imag=0.0;

}/* end for xc (init k) */

kl=sqrt(C*(E-VL));

kr=sqrt(C*(E-VR));

mplus 1 .real=cos(kr*delta);

rnplus 1 . imag=sin(kr*delta);

left flat zone */

for(xc=(XPTS-BARPTS);xc>=BARPTS;xc«) /* edge of right flat zone to edge of

{

rn=divc(minusl,addc(bn[xc],rnplusl));

rnplus 1 real=rn.real;

rnplus 1 . imag=rn. imag;

}/* end for xc */

ro.real=rn.real;

ro.imag=rn.imag;

temp.real=0.0;

temp.imag=kl *delta;

temp2=mulc(ro,expc(temp));

T=sqrt((sui(kl*delta)/sui(kr*delta))*(4.0*sin(kl*delta)*ro.imag)/(1.0-

2.0*temp2.real+absc(ro)*absc(ro)));

printf("%. 12f\t%. 12f\t%. 12f\t%. 12f\n",E,T);

}/* end for ec */

}/* end MAIN */

void makeV(void)

/* This function initializes the potential energy array, V (square barriers) */

{

int xcount,y;

for(xcount=0 ;xcount<XPTS ;xcount++)

{

v=xcount/BARPTS;

if((y%2)==0)

{

if(xcount<BARPTS) V[xcount]=VL; I* LEFT flat zone */

else if(xcount>(XPTS-BARPTS)) V[xcount]=VR; /* RIGHT flat zone */

else V[xcount]=VM; /* flat zone between barriers */

}/* end if y */

else

V[xcount]=Vo; /* inside a barrier */

}/* end for xcount */

}/* end MAKEV */

struct complex addc(struct complex a, struct complex b)
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/* This function adds two complex numbers passed to it */

{

struct complex sum;

sum.real=a.real+b. real;

sum.imag=a.imag+b. imag;

return(sum);

}/* end ADDC */

struct complex subc(struct complex a, struct complex b)

/* This function subtracts complex number b from complex number a */

{

struct complex difference;

difference.real=a.real-b.real;

difference. imag=a. imag-b. imag;

return(difference)

;

}/* end SUBC */

struct complex mulc(struct complex a. struct complex b)

/* This function multiplies two complex numbers passed to it */

{

struct complex product;

product. real=a.real*b.real-a.imag*b. imag;

product.imag=a.real*b.imag+a.imag*b. real;

return(product);

}/* end MULC */

struct complex divc(struct complex a, struct complex b)

/* This function divides complex number a bv complex number b */

{

struct complex quotient;

double denom;

denom=b.real*b.real+b.imag*b.imag;

quotient.real=(a.real*b.real+a.imag*b.imag)/denom;

quotient.imag=(b.real*a.imag-a.real*b.imag)/denom;

return(quotient);

}/* end DIVC */

struct complex expc(struct complex a)

/* This function computes the exponential of a complex number */

{

struct complex exponential;

exponential. real=exp(a.real)*cos(a.imag);

exponential.imag=exp(a.real)*sin(a. imag);

return(exponential);

\l* end EXPC */

double absc(struct complex a)

/* This function returns the magnitude of complex number a */

retum(sqrt(a.real*a.real+a.imag*a.imag));

}/* end ABSC */

C. TRANSFER MATRIX METHOD COMPARED TO ANALYTIC
METHOD (mlwithref.c)
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/* Francis E. Spencer III */

/* Thesis. Summer 1997*/

/* Prof. Luscombe */

/* Inclusions */

#include <stdio.h>

#include <math.h>

#include <stdlib.h>

/* Definitions */

#define BARRIERS 1 /* dimensionless */

#define BARPTS 10 /* dimensionless */

#define BARWIDTH 5.0 /* nm */

#define MAXX ((2.0*BARVvTDTH*BARRffiRS)+BARVVTDTH) /* nm */

#define XPTS ((2*BARPTS*BARRIERS)+BARPTS) /* dimensionless */

#define EPTS 10000 /* dimensionless */

#define EFFMASS 0.067 /* dimensionless */

#define H20VER2M 0.038

1

/* eV-nm2 */

#define C (EFFMASS/H20VER2M) /* l/(eV-nm2) */

#define Vo 0.23 /* eV */

#define ELEFT 0.000

1

/* eV */

#define ERIGHT (5.0*Vo) /* eV */

/* Function Prototypes */

void makeV(void);

struct complex addc(struct complex a. struct complex b);

struct complex subc(struct complex a, struct complex b);

struct complex mulc(struct complex a, struct complex b);

struct complex divc(struct complex a, struct complex b);

struct complex expc(struct complex a);

double absc(struct complex a);

struct complex Nl lcomplex(struct complex kminus, struct complex kplus, struct complex kratio, struct

complex x);

struct complex N12complex(struct complex kminus, struct complex kplus, struct complex kratio, struct

complex x);

struct complex N21complex(struct complex kminus, struct complex kplus, struct complex kratio, struct

complex x);

struct complex N22complex(struct complex kminus, struct complex kplus, struct complex kratio, struct

complex x);

struct complex determinantcomplex(struct complex Mil, struct complex Ml 2, struct complex M21, struct

complex M22);

double Tref finder(void);

/* Global Variable Definitions */

struct complex

{

double real;

double imag;

};

double V[XPTS];

struct complex k[XPTS];

/* Body of Program follows: */

void main(void)

/* This function controls program execution */
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{

int ecxc:

double E.epts,xpts,T;

struct complex

newMll.newM12,newM21,newM22.oldMll,oldM12,oldM21,oldM22,Nll.N12,N21,N22,x,kratio,Mdet.

x.imag=0.0; /* x is a purely real number */

epts=EPTS;

xpts=XPTS;

makeV();

for(ec=0.0;ec<epts;ec+= 1.0)

{

E=ERIGHT-(ERIGHT-ELEFT)*(ec/epts); /* DOWN-counting through E values */

oldM 1 1 . imag=oldM 1 2. imag=oldM2 1 .imag=oldM22.imag=0.0;

oldMl l.real=oldM22.real=1.0;

oldM12.real=oldM21.real=0.0; /* "old" M initially an identity matrix */

for(xc=0;xc<XPTS;xc++) /* initialize k */

{

if(E>=V[xc]) /* k is purely real */

{

k[xc].real=sqrt(C*(E-V[xc]));

k[xc).imag=0.0;

}/*endifE>=V*/
else /* k is purely imaginary */

{

k[xc].real=0.0;

k[xcj.imag=sqrt(C*(V[xc]-E));

}/* end else E<V */

}/* end for xc (init k) */

for(xc= 1 ;xc<XPTS;xc++)

{

x.real=(xc/xpts)*MAXX;

if((k[xc).real!=k[xc-l].real)||(k[xc].imag!=k[xc-l].imag))

{

kratio=divc(k[xc],k[xc- 1 ]);

Nll=Nllcomplex(k[xc-l],k[xc],kratio.x);

N12=N12complex(k[xc-l],k[xc],kratio,x);

N21=N21complex(k[xc-l],k[xc],kratio,x);

N22=N22complex(k[xc-l],k[xc],kratio,x);

newMll=addc(mulc(oldMll,Nll),mulc(oldM12,N21));

newM12=addc(mulc(oldMll,N12).mulc(oldM12,N22));

newM2 1 =addc(mulc(oldM2 1 ,N 1 1 ),mulc(oldM22,N2 1 ));

newM22=addc(mulc(oldM21,N12).mulc(oldM22,N22)):

oldMll=newMll;
oldM12=newM12,
oldM21=ne\vM21;

oldM22=newM22;
}/*endifk|xcl ... */

}/* end for xc */
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/*Mdet=deteniunantcomplex(newMll,newM12,newM21,newM22);*/

/*if((Mdet.real>1.0001)||(Mdet.real<0.9999))

{

printf("Broke due to numerical inaccuracy @ E=%f eV\n\n",E);

break;

}*/ /* THE "SAFETY" IS OFF */ /* restore Mdet line above, also, to turn it on again */

/*else

{*/

/*}*/

T=sqrt(1.0/(absc(newMl l)*absc(newMl 1)));

printf("%. 12f\t%. 12f\t%. 12f\t%. 12An",E,T,Tref_finder(),(T-Tref_finder()));

}/* end for ec */

}/* end MAIN */

void makeV(void)
/* This function initializes the potential energy array, V */

{

int xcounty;

for(xcount=0;xcount<XPTS;xcount-H-)

{

y=xcount/BARPTS;

if((y%2)==0)
V[xcount]=0.0;

else

V[xcount]=Vo;

}/* end for xcount */

}/* end MAKEV */

struct complex addc(struct complex a, struct complex b)

/* This function adds two complex numbers passed to it */

{

struct complex sum;

sum.real=a.real+b.real;

sum.imag=a.imag+b. imag;

return(sum);

}/* end ADDC */

struct complex subc(struct complex a, struct complex b)

/* This function subtracts complex number b from complex number a */

{

struct complex difference;

difference . real=a. real-b . real

;

difference. imag=a. imag-b. imag;

return(difference);

}/* end SUBC */

struct complex mulc(struct complex a, struct complex b)

/* This function multiplies two complex numbers passed to it */

{

struct complex product;

product, real =ra.real*b.real-a.imag*b. imag;

product.imag=a.real*b.imag+a.imag*b.real;

return(product);
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}/* end MULC */

struct complex divc(struct complex a, struct complex b)

/* This function divides complex number a by complex number b */

{

struct complex quotient;

double denom;

denom=b.real*b.real+b.imag*b.imag;

quotient.real=(a.real*b.real+a.imag*b.imag)/denom;

quotient. imag=(b.real*a.imag-a.real*b.imag)/denom,

rerurn(quotient);

}/* end DIVC */

struct complex expc(struct complex a)

/* This function computes the exponential of a complex number */

{

struct complex exponential;

exponential.real=exp(a.real)*cos(a.imag);

exponential. imag=exp(a.real)*sin(a.imag);

return(exponential);

}/* end EXPC */

double absc(struct complex a)

/* This function returns the magnitude of complex number a */

{

return(sqrt(a.real*a.real+a.imag*a.imag));

}/* end ABSC */

struct complex Nl lcomplex( struct complex kminus. struct complex kplus. struct complex kratio, struct

complex x)

/* This function finds the matrix element N 1 1 of the interface */

{

struct complex one, j, N;

one.real=1.0;

one.imag=0.0;

j.real=0.0;

j.imag=1.0;

N=mulc(addc(one.kratio),expc(mulc(j,mulc(x,subc(kplus.kminus)))));

N.real*=0.5;

N.imag*=0.5;

return(N);

}/* end NilCOMPLEX*/

struct complex N12complex( struct complex kminus. struct complex kplus, struct complex kratio. struct

complex x)

/* This function finds the matrix element N 12 of the interface */

{

struct complex one, minusj, N;

one.real=1.0;

one.imag=0.0;

minusj. real=0.0;

minusj.imag=- 1.0;

N=mulc(subc(one,kratio),expc(mulc(ntinusj,mulc(x,addc(kplus,kminus)))));

N.real*=0.5;

N.imag*=0.5;

return(N);
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}/* end N12COMPLEX */

struct complex N21complex(struct complex kminus, struct complex kplus, struct complex kratio. struct

complex x)

/* This function finds die matrix element N2 1 of the interface */

{

struct complex one, j, N;

one.real=1.0;

one.imag=0.0;

j.real=0.0;

j.imag=1.0;

N=muIc(subc(one,kratio),expc(mulc(j,mulc(x,addc(kplus,kminus)))));

N.real*=0.5;

N.imag*=0.5;

return(N);

}/* end N21COMPLEX*/

struct complex N22complex(struct complex kminus, struct complex kplus, struct complex kratio, struct

complex x)

/* This function finds the matrix element N22 of the interface */

{

struct complex one, minusj, N;

one.real=1.0;

one.imag=0.0;

minusj. real=0.0;

minusj.imag=-l .0;

N=mulc(addc(one,kratio),expc(mulc(minusj,mulc(x,subc(kplus,kminus)))));

N.real*=0.5;

N.imag*=0.5;

return(N);

}/* end N22COMPLEX */

struct complex determinantcomplex(struct complex Mil, struct complex Ml 2, struct complex M21, struct

complex M22)
/* This function calculates the determinant of the transfer matrix as a check for accuracy */

{

return(subc(mulc(Mll,M22),mulc(M21,M12)));

}/* end DETERMTNANTCOMPLEX */

double Treffinder(void)

/* This function computes the analytic transmission coefficient

for the one-barrier system of height Vo and width BARWIDTH */

{

struct complex numdenom,kl,k2,two,four,barwidth,j,terml,term2;

two.real=2.0;

two.imag=0.0;

four.real=4.0;

four.imag=0.0;

barwidth.real=BARWIDTH;
barwidth.imag=0.0;

j.real=0.0;

j.imag=1.0;

kl.real=k[0].real.

kl.imag=k[0].imag;

k2.real=k[BARPTS+l].real;

k2.imag=k[BARPTS+ 1 ] imag;
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num=mulc(mulc(mulc(expc(muJc(mulc(subc(k2,kl).barv\'idth),j)).k2),kl),four).

terml=mulc(addc(kl.k2),addc(kl.k2));

term2=mulc(mulc(subc(k 1 .k2).subc(k 1 .k2)).expc(mulc(mulc(mulc(k2,banvidth)j).two)));

denom=subc(tenn 1 .term2);

return(sqrt(absc(divc(num.denom))*absc(divc(num.denom))));

}/* end TREFFINDER */

D. BACKWARD-RECURRENCE METHOD COMPARED TO ANALYTIC
METHOD (m2withref.c)

/* Francis E. Spencer III */

/* Thesis. Summer 1997*/

/* Prof. Luscombe */

/* Inclusions */

#include <stdio.h>

#include <math.h>

#include <stdlib.h>

/* Definitions */

#define BARRIERS 1 /* dimensionless */

#defme BARPTS 500 /* dimensionless */

/* NOTE: set BARPTS so that there are 0.01 run per point (BARWIDTH/BARPTS)=( 1/100) */

#define BARWIDTH 5.0 /* run */

#defme MAXX ((2.0*BARWIDTH*BARRIERS)+BARWIDTH) /* nm */

#define XPTS ((2*BARPTS*BARRIERS)+BARPTS) /* dimensionless */

#define EPTS 10000 /* dimensionless */

#define EFFMASS 0.067 /* dimensionless */

#define H20VER2M 0.038

1

/* eV-nm2 */

#define C (EFFMASS/H20VER2M) /* l/(eV-nm2) */

#define Vo 0.23 /* eV */

#defme VL 0.0 /* eV */

#define VM 0.0 /* eV */

#define VR 0.0 I* eV */

#define ELEFT 0.000

1

/* eV */

#define ERIGHT (5.0*Vo) /* eV */

/* Function Prototypes */

void makeV(void);

struct complex addc(struct complex a. struct complex b);

struct complex subc(struct complex a, struct complex b);

struct complex mulc( struct complex a. struct complex b);

struct complex divc(struct complex a. struct complex b);

struct complex expc(struct complex a);

double absc(struct complex a);

double Tref finder(double kl, double E);

/* Global Vanable Definitions */

struct complex

{

double real;

double imag;

};

double V[XPTS];
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/* Body of Program follows: */

void main(void)

/* This function controls program execution */

{

int ec,xc;

double E.epts,xpts,barpts,T,delta.kl,kr;

struct complex j,minus l.x.rrurnplusl,ro,bn[XPTS],temp,temp2;

x.imag=0.0; /* x is a purely real number */

epts=EPTS;

xpts-XPTS;

barpts-BARPTS;

delta=BARWIDTH/barpts;

j.real=0.0;

j.imag=1.0;

minus l.real=- 1.0;

minus l.imag=0.0;

makeVO;

for(ec=0.0;ec<epts;ec+=1.0)

{

E-ERIGHT-(ERIGHT-ELEFT)*(ec/epts); /* DOWN-counting through E values */

for(xc=0;xc<XPTS;xc++) /* initialize bn*/

{

bn[xc].real=C*delta*delta*(E-V[xc])-2.0;

bn[xc].imag=0.0;

}/* end for xc (init bn) */

kl=sqrt(C*(E-VL));

kr=sqrt(C*(E-VR));

rnplus 1 .real=cos(kr*delta)

;

rnplus 1 . imag=sin(kr*delta);

for(xc=(XPTS-BARPTS);xc>=BARPTS;xc--) /* edge of right flat zone to edge of

{

left flat zone */

rn=divc(minusl,addc(bn[xc],rnplusl));

rnplus 1 . real=rn. real

;

rnplus 1 .imag=rn. imag;

}/* end for xc */

ro.real=rn.real;

ro.imag=rn.imag;

temp, real=0.0;

temp .imag=kl *delta;

temp2=mulc(ro,expc(temp))

;

T=sqrt((sin(kl*delta)/sin(kr*delta))*(4.0*sin(kl*delta)*ro.imag)/(1.0-

2.0*temp2.real+absc(ro)*absc(ro)));

printf("%. 12f\t%. 12f\t%. 12f\t%. 12f\n",E,T.Tref_finder(kl,E),(T-Tref_finder(kl,E)));

}/* end for ec */

}/* end MAIN */

void makeV(void)
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/* This function initializes the potential energy array. V (square barriers) */

{

int xcount,y;

for(xcount=0.xcount<XPTS;xcount++)

{

V=xcount/BARPTS;

if((y%2)==0)

{

if(xcount<BARPTS) V[xcount]=VL; /* LEFT flat zone */

else if(xcount>(XPTS-BARPTS)) V[xcount]=VR; /* RIGHT flat zone */

else V[xcount]=VM; /* flat zone between barriers */

}/* end ify*/
else

V[xcount]=Vo; /* inside a barrier */

}/* end for xcount */

}/* end MAKEV */

struct complex addc(struct complex a, struct complex b)

/* This function adds two complex numbers passed to it */

{

struct complex sum;

sum.real=a.real+b.real;

sum.imag=a.imag+b.imag;

return(sum);

}/* end ADDC */

struct complex subc(struct complex a, struct complex b)

/* This function subtracts complex number b from complex number a */

{

struct complex difference;

difference. real=a.real-b. real;

difference. imag=a. imag-b. imag;

retum(difference);

}/* end SUBC */

struct complex mulc(struct complex a, struct complex b)

/* This function multiplies two complex numbers passed to it */

{

struct complex product;

product. real=a.real*b.real-a.imag*b. imag;

product.imag=a. real *b.imag+a.imag*b. real

;

return(product);

}/* end MULC */

struct complex divc(struct complex a. struct complex b)

/* This function divides complex number a by complex number b */

{

struct complex quotient;

double denom;

denom=b.real*b.real+b.imag*b.imag;

quotient.real=(a.real*b.real+a.imag*b.imag)/denom;

quotient. imag=(b.real*a.imag-a.real*b.imag)/denom;

return(quotient);

}/* end DIVC */

struct complex expc(struct complex a)
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/* This function computes the exponential of a complex number */

{

struct complex exponential;

exponential. real=exp(a.real)*cos(a.imag);

exponential . imag=exp(a. real ) *sin(a. imag)

;

retum(exponential);

}/* end EXPC */

double absc(struct complex a)

/* This function returns the magnitude of complex number a */

{

return(sqrt(a.real*a. real+a.imag*a. imag));

}/* end ABSC */

double Tref_finder(double kl, double E)

/* This function computes the analytic transmission coefficient

for the one-barrier system of height Vo and width BARWIDTH */

{

struct complex num,denom.kl,k2.two,four,barwidth,j,terml,term2;

two.real=2.0;

two.imag=0.0;

four.real=4.0;

four.imag=0.0;

barwidth.real=BARWIDTH;

barwidth .imag=0 . ;

j.real=0.0;

j.imag=1.0;

kl.real=kl;

kl.imag=0.0;

if(E>=V[BARPTS+ 1 ]) /* k2 is purely real */

{

k2.real=sqrt(C*(E-V[BARPTS+l]));

k2.imag=0.0;

}/*endifE>=V*/
else /* k2 is purely imaginary */

{

k2.real=0.0;

k2.imag=sqrt(C*(V[BARPTS+l]-E));

}/* end else E<V */

num=mulc(mulc(mulc(expc(mulc(mulc(subc(k2,kl),barwidth)j)),k2),kl),four);

term 1 =mulc(addc(k 1 ,k2),addc(k l,k2));

term2=mulc(mulc(subc(kl,k2),subc(kl,k2)),expc(mulc(mulc(mulc(k2,barwidth)j),two)));

denom=subc(term 1 ,term2);

return(sqrt(absc(divc(num,denom))*absc(divc(num,denom))));

}/* end TREF FINDER */

E. TRANSFER MATRIX METHOD APPLIED TO PARABOLIC BARRIERS
(mlpara.c)

/* Francis E. Spencer III */

/* Thesis, Summer 1997*/

/* Prof. Luscombe */

/* Inclusions */
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#include <stdio.h>

#include <math.h>

#include <stdlib.h>

/* Definitions */

#define BARRIERS 1 /* dimensionless */

#define BARPTS 1000 /* dimensionless */

#define BARWIDTH 5.0 /* nm */

#define MAXX ((2.0*BARWIDTH*BARRIERS)+BARWIDTH) /* nm */

#define XPTS ((2*BARPTS*BARRIERS)+BARPTS) /* dimensionless */

#define EFTS 1000 /* dimensionless */

#define EFFMASS 0.067 /* dimensionless */

#define H20VER2M 0.0381 /* eV-nm2 */

#define C (EFFMASS/H20VER2M) I* l/(eV-nm2) */

#define Vo 0.23 /* eV */

#define ELEFT 0.001 . I* eV */

#define ERIGHT (2.0*Vo) /* eV */

/* Function Prototypes */

void makeV(void);

struct complex addc(struct complex a struct complex b);

struct complex subc(struct complex a, struct complex b);

struct complex mulc(struct complex a. struct complex b);

struct complex divc( struct complex a, struct complex b);

struct complex expc(struct complex a).

double absc(struct complex a);

struct complex Nl lcomplex(struct complex kminus, struct complex kplus, struct complex kratio, struct

complex x);

struct complex N12complex(struct complex kminus, struct complex kplus, struct complex kratio, struct

complex x);

struct complex N21complex(struct complex kminus, struct complex kplus, struct complex kratio, struct

complex x);

struct complex N22complex(struct complex kminus, struct complex kplus. struct complex kratio, struct

complex x);

struct complex determinantcomplex(struct complex Mil. struct complex Ml 2, struct complex M21, struct

complex M22);

/* Global Variable Definitions */

struct complex

{

double real;

double imag;

};

double V[XPTS];

struct complex k[XPTS];

/* Body of Program follows: */

void main(void)

/* This function controls program execution */

{

int ec.xc;

double E.epts.xpts.T,

struct complex

newMll,newM12.newM21.newM22.oldMll,oldM12.oldM21,oldM22.Nll,N12,N21,N22,x,kraUo.Mdet;

x.imag=0.0; /* x is a purely real number */

epts-EPTS;
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xpts=XPTS;

makeVQ;

for(ec=0;ec<EPTS;ec++)

{

E=ERIGHT-(ERIGHT-ELEFT)*(ec/epts);

oldMl 1 imag=oldM12.imag=oldM2 1 .imag=oldM22.imag=0.0;

oldMl l.real=oldM22.real=1.0;

oldM 12.real=oldM2 1 real=0.0;

for(xc=0,xc<XPTS;xc-H-)

{

if(E>=V[xc])

{

}

else

{

k[xc].real=sqrt(C*(E-V[xc]));

k[xc].imag=0.0;

k[xc].real=0.0;

k[xc].imag=sqrt(C*(V[xc]-E));

}

}

for(xc= 1 ;xc<XPTS;xc++)

{

x.real=(xc/xpts)*MAXX;

if((k[xc].real!=k[xc-l].real)||(k[xc].imag!=k[xc-l].imag))

{

kratio=divc(k[xc],k[xc-l]);

Nl 1=N1 lcomplex(k[xc-l],k[xc],kratio,x)

N12=N12complex(k[xc-l],k[xc],kratio,x)

N21=N21complex(k[xc-l],k[xcj,kratio,x)

N22=N22complex(k[xc-l],k[xc],kratio,x)

newM 1 1=addc(mulc(oldM 1 1 ,N 1 1 ),mulc(oldM 1 2,N2 1 ))

newM 1 2=addc(mulc(oldMl 1 ,N 12),mulc(oldM 1 2,N22))

newM2 1=addc(muJc(oldM2 1 ,N 1 1 ),mulc(oldM22,N2 1 ))

newM22-addc(mulc(oldM21,N12),mulc(oldM22,N22))

oldMl l=newMll;

oldM12=newM12;
oldM21=newM21;
oldM22=newM22;

}

Mdet=determinantcomplex(newM 1 1 .newM 12,newM2 1 ,newM22);

if((Mdet.real>1.0001)||(Mdet.real<0.9999))

{

printf("Broke due to numerical inaccuracy (a), E=%f eV\n\n",E);

break;

}
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else

{

T=sqrt( 1 0/(absc(newMl 1 )*absc(newM 1 1 )));

if(T>=0.001)

pnntf("%. 12f\t%. l2f\n",E,T);

}

}

}/* end MAIN */

void makeV(void)

/* This function initializes the potential energy array, V */

{

int xcount,xcount2,barcount',

double barpts,x.barVfBARPTS].tempV[XPTS],avg,pts;

xcount=0,

barpts-BARPTS;

for(x=(-2.0*Vo);x<=(2.0*Vo);x+=(4.0*VoVbarpts)

{

barV[xcount]=Vo-(x*x)/(4.0*Vo);

xcount++:,

}/* end for x */

for(xcount=0;xcount<BARPTS;xcount++)

{

V[xcount)=0.0;

}/* end for xcount */

for(barcount=0;barcount<BARRIERS;barcount-H-)

{

xcount2=0,

for(xcount-BARPTS+(barcount*2*BARPTS);xcount<(2*BARPTS)+(barcount*2*BARPTS);xco

unt++)

{

V[xcount]=barV[xcount2]

;

xcount2++;

}/* end for xcount */

for(xcount-(2*BARPTS)+(barcount*2*BARPTS);xcount<BARPTS+((barcount+l)*2*BARPTS);

xcount++)

{

V[xcount|=0.0;

}/* end for xcount */

}/* end for barcount */

pts=BARPTS/ 100.0;

for(xcount=0;xcount<XPTS;xcount++)

{

avg=0.0;

if((V(xcount]!=V[xcount-l])&&(xcount!=0))

{

for(xcount2=0;xcount2<(BARPTS/100);xcount2++)

{

avg+=V[xcount+xcount2]

;

}/* end for xcount2 (create avg) */

avg=avg/pts.
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for(xcount2=0;xcount2<(BARPTS/100);xcount2++)

{

tempV[xcount+xcount2]=avg;

}/* end for xcount2 (write to tempV) */

xcount+=((BARPTS/ 1 00)- 1 );

}/* end if V */

else /* "V+ = V-" */

tempV[xcount]=V[xcount];

}/* end for xcount (create tempV) */

for(xcount=0;xcount<XPTS;xcount++)

{

V[xcount]=tempV[xcount];

}/* end for xcount (transfer to V[xcount]) */

}/* end MAKEV */

struct complex addc(struct complex a, struct complex b)

/* This function adds two complex numbers passed to it */

{

struct complex sum;

sum. real=a.real+b. real;

sum.imag=a.imag+b. imag;

return(sum);

}/* end ADDC */

struct complex subc(struct complex a, struct complex b)

/* This function subtracts complex number b from complex number a */

{

struct complex difference;

difference . real=a. real-b .real

;

difference. imag=a. imag-b. imag;

return(difference);

}/* end SUBC */

struct complex mulc(struct complex a. struct complex b)

/* This function multiplies two complex numbers passed to it */

{

struct complex product;

product. real=a.real*b.real-a.imag*b. imag;

product.imag=a.real*b.imag+a.imag*b. real;

return(product);

}/* end MULC */

struct complex divc(struct complex a, struct complex b)

/* This function divides complex number a by complex number b */

{

struct complex quotient;

double denom;

denom=b.real*b.real+b.imag*b.imag;

quotient.real=(a.real*b.real+a.imag*b.imag)/denom;

quotient.irnag=(b.real*a.irnag-a.real*b.imag)/denom;

return(quotient);

}/* end DIVC */
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struct complex expc(struct complex a)

/* This function computes the exponential of a complex number */

{

struct complex exponential;

exponential. reaJ=exp(a.real)*cos(a.imag);

exponential.imag=exp(a.real)*sin(a.imag);

retum(exponential);

}/* end EXPC */

double absc(struct complex a)

/* This function returns the magnitude of complex number a */

{

return(sqrt(a.real*a.real+a.imag*a.imag));

}/* end ABSC */

struct complex Nl lcomplex(struct complex kminus. struct complex kplus, struct complex kratio, struct

complex x)

/* This function finds the matrix element Nl 1 of the interface */

{

struct complex one, j, N;

one.real=1.0;

one.imag=0.0;

j.real=0.0;

j.imag=1.0;

N=mulc(addc(one.kratio),expc(mulc(j,mulc(x,subc(kplus,kminus)))));

N.real*=0.5;

N.imag*=0.5;

return(N);

}/*endNHCOMPLEX*/

struct complex N12complex(struct complex kminus, struct complex kplus, struct complex kratio, struct

complex x)

/* This function finds the matrix element N 12 of the interface */

{

struct complex one, minusj, N;

one.real=1.0;

one.imag=0.0;

minusj. real=0.0;

minusj.imag=-1.0,

N=mulc(subc(one,kraUo),expc(mulc(minusj,mulc(x,addc(kplus,kminus)))));

N.real*=0.5;

N.imag*=0.5;

retum(N);

}/*endN12COMPLEX*/

struct complex N21complex( struct complex kminus. struct complex kplus, struct complex kratio. struct

complex x)

/* This function finds the matrix element N2 1 of the interface */

{

struct complex one, j, N;

one.real=1.0;

one.imag^O.O;

j.real=0.0;

j.imag=1.0;

N=mulc(subc(one.kratio),expc(mulc(j,mulc(x,addc(kplus,kminus)))));
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N.real*=0.5;

N.imag*=0.5;

return(N);

}/* end N21COMPLEX*/

struct complex N22complex( struct complex kminus. struct complex kplus, struct complex kratio, struct

complex x)

/* This function finds the matrix element N22 of the interface */

{

struct complex one. minusj, N;

one.real=1.0;

one.imag=0.0;

minusj. real^O.O;

minusj. imag^-l.O;

N=mulc(addc(one,kratio).expc(mulc(minusj,mulc(x.subc(kplus,kminus)))));

N.real*=0.5;

N.imag*=0.5;

return(N);

}/* end N22COMPLEX */

struct complex determinantcomplex(struct complex Mil, struct complex Ml 2, struct complex M21, struct

complex M22)
I* This function calculates the determinant of the transfer matrix as a check for accuracy */

{

return(subc(mulc(Mll,M22),mulc(M21.M12)));

}/* end DETERMINANTCOMPLEX */

F. BACKWARD-RECURRENCE METHOD APPLIED TO RESONANT-
TUNNELING DIODE (RTD) POTENTIAL (m2RTD.c)

/* Francis E. Spencer III */

/* Thesis, Summer 1997*/

/* Prof. Luscombe */

/* Inclusions */

#include <stdio.h>

#include <math.h>

#include <stdlib.h>

/* Definitions */

#define PI 3.141592654 /* dimensionless */

#define MAXX 50.0 /* nm */

#define XPTS 5000 /* dimensionless */

#define EPTS 1000 /* dimensionless */

#define EFFMASS 0.067 /* dimensionless */

#define H20VER2M 0.0381 /* eV-nm2 */

#define C (EFFMASS/H20VER2M) /* l/(eV-nm2) */

#define Vo 1.45 /* eV */

#defme VL -0.

1

/* eV */

#define VR -0.3 /* eV */

#define ELEFT (VL+0.001) /* eV */

#define ERIGHT (Vo-0.001) /* eV */

/* Function Prototypes */
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void makeV(void):
struct complex addc(struct complex a. struct complex b);

struct complex subc(struct complex a. struct complex b);

struct complex mulc(struct complex a. struct complex b);

struct complex divc(struct complex a. struct complex b);

struct complex expc( struct complex a);

double absc(struct complex a):

double absval(double x);

/* Global Variable Definitions */

struct complex

{

double real;

double imag;

double V[XPTS];

/* Body of Program follows: */

void main(void)

/* This function controls program execution */

{

int ec.xc;

double E,epts,xpts,barpts,T,delta,kl,kr;

struct complex j,minusl,x.rn.rnplusl.ro,bn[XPTS].temp,temp2;

x.imag=0.0: /* x is a purely real number */

epts=EPTS;

xpts=XPTS:

delta=MAXX/xpts:

j.real=0.0;

j.imag=1.0;

minusl.real=-1.0;

minusl.imag=0.0;

makeV():

for(ec=0.0;ec<epts;ec+= 1.0)

{

E=ERlGHT-(ERIGHT-ELEFT)*(ec/epts): /* DOWN-counting through E values */

for(xc=0;xc<XPTS;xc++) /* initialize bn*/

{

bn[xc].real=C*delta*delta*(E-V[xc])-2.0;

bn[xc].imag=0.0;

}/* end for xc (init bn) */

kl=sqrt(C*(E-VL));

kr=sqrt(C*(E-VR));

rnplus 1 .real=cos(kr*delta);

rnplus 1 . imag=sin(kr*delta);

for(xc=(XPTS- 1 );xc>=0;xc~) /* edge of right flat zone to edge of left flat zone */

{

rn=divc( minus l,addc(bn|xc|, rnplus 1));

rnplus l.real=rn.real;

rnplus 1 . imag=rn. imag;

}/* end for xc */

ro.real=rn.real;
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ro.imag=rn.imag;

temp.real=0.0;

temp.imag=kl*delta;

temp2=rnulc(ro,expc(teinp));

T=sqrt((sin(kl*delta)/sin(kr*delta))*(4.0*sin(kl*delta)*ro.imag)/(1.0-

2.0*temp2.real+absc(ro)*absc(ro))).

printf("%f\t%f\n",E,T);

}/* end for ec */

}/* end MAIN */

void makeV(void)

/* This function initializes the potential energy array, V */

{

int xcount,xcount2.PTS;

double barpts,x,xtwo.tempV[XPTS),avg,pts.xpts,last;

xpts=XPTS;

for(xcount=0;xcount<XPTS;xcount-H-)

{

x=xcount*(PI/xpts)-PI/2.0;

V[xcount]=(-0. l*atan(x))-0.2;

}/* end for xcount (create the ATAN shape) */

for(xcount=0;xcount<XPTS;xcount++)

{

x=xcount*(MAXX/xpts);

xtwo=xcount*(Pl/xpts)-PI/2.0;

if((x>=18.8)&&(x<19.0))

V[xcountl=((-0.1*atan(xtwo))-0.2)+(1.55/0.2)*(x-18.8);

else if((x>=19.0)«fe&(x<21.0))

V[xcount]=1.45-(0.05/2.0)*(x-19.0);

else if((x>=21.0)&«&(x<21.2))

V[xcount]=1.40-(1.55/0.2)*(x-21.0);

else if((x>=21.8)&&(x<22.0))

V[xcount]=((-0.1*atan(xtwo))-0.2)-(0.2/0.2)*(x-21.8);

else if((x>=22.0)&&(x<24.0))

V[xcount]=-0.35-(0.05/2.0)*(x-22.0);

else if((x>=24.0)&&(x<24.2))

V[xcount]=-0.40+(0.2/0.2)*(x-24.0);

else if((x>=24.8)&&(x<25.0))

V[xcountH(-0.1*atan(xtwo))-0.2)+(1.55/0.2)*(x-24.8);

else if((x>=25.0)«fe&(x<27.0))

V[xcount]=1.35-(0.05/2.0)*(x-25.0);

else if((x>=27.0)&&(x<27.2))

V[xcountl=1.30-(1.55/0.2)*(x-27.0);

else; /* leave V unchanged */

}/* end for xcount (add the 3 peaks) */

}/* end MAKEV */

double absval(double x)

/* This function returns the absolute value of a double, x. */

{
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if(x<0) x=-x;

return(x);

}/* end ABSVAL */

struct complex addc(struct complex a. struct complex b)

/* This function adds two complex numbers passed to it */

{

struct complex sum;

sum.real=a.real+b.real;

sum.imag=a.imag+b.imag;

return(sum);

}/* end ADDC */

struct complex subc(struct complex a, struct complex b)

/* This function subtracts complex number b from complex number a */

{

struct complex difference;

difference. real=a.real-b. real;

difference. imag=a. imag-b. imag;

return(difference);

}/* end SUBC */

struct complex mulc(struct complex a, struct complex b)

/* This function multiplies two complex numbers passed to it */

{

struct complex product;

product.real=a.real*b.real-a.imag*b.imag;

product.imag=a.real*b.imag+a.imag*b.real;

return(product);

}/* end MULC */

struct complex divc(struct complex a, struct complex b)

/* This function divides complex number a by complex number b */

{

struct complex quotient;

double denom;

denom=b.real*b.real+b.imag*b.imag;

quotient. real=(a. real *b . real+a. imag*b. imag)/denom;

quotient. imag=(b.real*a.imag-a.real*b.imag)/denom;

return(quotient);

}/* end DIVC */

struct complex expc(struct complex a)

/* This function computes the exponential of a complex number */

{

struct complex exponential;

exponential.real=exp(a.real)*cos(a.imag);

exponential. imag=exp(a.real)*sin(a. imag);

return(exponential);

}/* end EXPC */

double absc(struct complex a)

/* This function returns the magnitude of complex number a */

{

retum(sqrt(a.real*a. real+a. imag*a.imag)); }/* end ABSC */
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APPENDIX D.

FIGURES

1 Square Barrier, 0.23 eV, 5,0 nm
Method 1 (Transfer Matrices)
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Figure 1 . Transfer Matrix Method Applied to a Single Square Barrier
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1 Square Barrier, 0.23 eV, 5.0 run

Method 1 (Transfer Matrices, "Safety" Off)
minus Analytic Expression (for 1 square barrier)
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Figure 2. Difference Between Analytic Solution and Transfer Matrix Solution, for the

Case of One Square Barrier
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Figure 3. Potential Energy Profile for Three Parabolic Barriers
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2 Parabolic Barriers, 0.23 eV, 5.0 nm
Method 1 (Transfer Matrices)
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Figure 4. Transfer Matrix Method Applied to a Two-Parabolic-Barrier Potential
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3 Parabolic Barriers, 0.23 eV, 5 . nm
Method 1 (Transfer Matrices)

1.00

0.75 -

en

(D

d

a °- 50
c
a)

e

^ .25 -

0.00

0.000 0.375 0.500

Figure 5. Transfer Matrix Method Applied to a Three-Parabolic-Barrier Potential
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5 Parabolic Barriers, 0.23 eV, 5 . nm
Method 1 (Transfer Matrices)
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Figure 6. Transfer Matrix Method Applied to a Five-Parabolic-Barrier Potential
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Potential Energy versus Distance for an
AlAs/InGaAs/InAs Resonant Tunneling Diode,
as in Luscombe's Article
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Figure 7. Potential Energy Profile for a Resonant Tunneling Diode
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RTD Potential Profile (erroneous)
TRANSFER MATRIX "SAFETY" OFF
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Figure 8. Transfer Matrix Method Applied to the Resonant Tunneling Diode Potential
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1 Square Barrier, 0.23 eV, 5.0 nm
Method 2 (Backward Recurrence)
Compared to Analytic Expression
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Figure 9. Backward-Recurrence Method Applied to the Square Barrier of Figure 1
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1 Square Barrier, 0.23 eV, 5.0 nm
Method 2 (Backward Recurrence)
Minus Analytic Express xon
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Figure 10. Difference Between Analytic Solution and Backward-Recurrence Solution,

for the Case of One Square Barrier
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2 Parabolic Barriers, 0.23 eV, 5.0 ran

Method 2 (Backward Recurrence)

1.00

0.00

0.000 0. 500

Figure 1 1 . Backward-Recurrence Method Applied to the Two-Parabolic-Barrier

Potential of Figure 4
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3 Parabolic Barriers, 0.23 eV, 5.0 nm
Method 2 (Backward Recurrence)
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Figure 12. Backward-Recurrence Method Applied to a Three-Parabolic-Barrier Potential
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5 Parabolic Barriers, 0.23 eV, 5.0 nm
Method 2 (Backward Recurrence)
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Figure 13. Backward-Recurrence Method Applied to a Five-Parabolic-Barrier Potential
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5 Parabolic Barriers, 0.23 eV, 5.0 run

Method 2 (Backward Recurrence)
Using 10,000 Energy Points
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Figure 14. Backward-Recurrence Method Applied to the Five-Parabolic-Barrier Potential

of Figure 13, Using Ten Thousand Energy Points
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RTD Potential Profile
Using Method 2 (backward recurrence)
(10, 000 E points)
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