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We calculate the lifetime of the deuteron with dimension-nine quark operators that violate baryon
number by two units. We construct an effective field theory for jΔBj ¼ 2 interactions that give rise to
neutron-antineutron (n-n̄) oscillations and dinucleon decay within a consistent power counting. We
calculate the ratio of the deuteron lifetime to the square of the n-n̄ oscillation time up to next-to-leading
order. Our result, which is analytical and has a quantified uncertainty, is smaller by a factor ≃ 2.5 than
earlier estimates based on nuclear models, which impacts the indirect bound on the n-n̄ oscillation time and
future experiments. We discuss how combined measurements of n-n̄ oscillations and deuteron decay can
help to identify the sources of baryon-number violation.
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At the classical level the standard model (SM) has two
accidental global Uð1Þ symmetries associated with baryon-
number (B) and lepton-number (L) conservation [1–3]. At
the quantum level only B − L is conserved, while Bþ L is
anomalous. Since it can be expected that all global
symmetries are only approximate, it is plausible that
beyond-the-SM (BSM) physics violates B, L, and B − L
separately. For instance, extending the SM with the only
gauge-invariant dimension-five operator leads to violation
of L by two units [1–3]. Additional B- and L-violating
operators appear at the dimension-six level, while the first
gauge-invariant operators that violate B by two units
(jΔBj ¼ 2) appear at dimension nine [4].
The best limits on B-violating interactions come from the

observed stability of the proton. The limit on its lifetime
translates into a scale ΛjΔBj¼1 ≳ 1013 TeV for grand unified
theories [5]. Such energies are out of reach of colliders.
However, models exist wherein B is only violated by two
units and the proton is stable [6–8]. These interactions lead
to the oscillation of neutral baryons into antibaryons, in
analogy to strangeness-changing SM interactions that lead
to kaon-antikaon oscillations. In particular, a neutron in a
beam can oscillate into an antineutron [9] that annihilates
with a nucleon in a target, producing several pions with a
few hundred MeVof energy [10]. An ILL experiment sets a
lower limit on the neutron-antineutron (n-n̄) oscillation
time of τnn̄ > 0.86 × 108 s ≃ 2.7 yr (90% C.L.) [11],
which converts to a BSM scale ΛjΔBj¼2 ≳ 102 TeV,
within reach of future colliders. An experiment at the
European Spallation Source can improve τnn̄ by two orders

of magnitude [12], probing regions of parameter space
relevant for the observed baryon asymmetry of the
Universe [13].
Apart from “in-vacuum” n-n̄ oscillations, jΔBj ¼ 2

interactions also induce the decay of otherwise stable
nuclei. A bound neutron can oscillate inside the nucleus
into an antineutron, which then annihilates with another
nucleon. Since a neutron and an antineutron have very
different potential energies, the typical nuclear lifetime is
far greater than τnn̄ [4]. Alternatively, two nucleons can
annihilate directly. If n-n̄ oscillations are the dominant
mechanism, one can calculate how the nuclear lifetime and
τnn̄ are related. This relation was previously obtained from
phenomenological models of the nuclear wave function and
the nucleon-antinucleon potential [10], a procedure that
suffers from unknown uncertainties.
In this Letter, we improve the theory of jΔBj ¼ 2

interactions in the simplest nucleus, the deuteron, with
effective field theory (EFT). EFT allows for all interactions
and processes consistent with the symmetries. Figure 1
shows the two classes of diagrams that represent deuteron
decay. The left diagram shows a process that converts a
neutron into an antineutron, which then annihilates with the
proton. It includes “in-medium” modifications of the
oscillation time [14]. The right diagram involves direct
two-nucleon (NN) annihilation. We show that for most
jΔBj ¼ 2 sources we consider the deuteron decay rate is
indeed dominated by free n-n̄ oscillations contained in
Fig. 1(a). We then calculate Rd, the ratio of the deuteron
lifetime Γ−1

d and τ2nn̄ up to next-to-leading order (NLO) in
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the systematic EFT expansion. We extract a bound on τnn̄
from the existing limit Γ−1

d > 1.18 × 1031 yr (90% C.L.)
obtained in the SNO experiment [15]. We argue that one
can partially identify the fundamental jΔBj ¼ 2 operators
at the quark level from combined τnn̄ and Γ−1

d data.
Central to our analysis are the gauge-invariant jΔBj ¼ 2

operators. As each quark field has B ¼ 1=3, operators with
at least six quarks are required. Since we expect ΛjΔBj¼2 to
lie well above the electroweak scale, we focus on the four
operators [4,16–18] that are invariant under the full SM
gauge group SUð3Þc ⊗ SUð2ÞL ⊗ Uð1ÞY . At the QCD
scale μ ∼ 1 GeV, we write

LjΔBj¼2 ¼ C1Q1 þ C2Q2 þ C3Q3 þ C4Q4 þ H:c:; ð1Þ

where the six-quark operators Qi are multiplied by
complex Wilson coefficients Ci expected to scale as
OðciΛ−5

jΔBj¼2
Þ, with ci dimensionless constants. The oper-

ators can be expressed via diquark fields [19]

DL;R ≡ qiTCPL;Riτ2qj; Da
L;R ≡ qiTCPL;Riτ2τaqj;

Dabc
L;R ≡Dfa

L;RD
b
L;RD

cg
L;R −

1

5
ðδabDfd

L;RD
d
L;RD

cg
L;R

þδacDfd
L;RD

b
L;RD

dg
L;R þ δbcDfa

L;RD
d
L;RD

dg
L;RÞ; ð2Þ

where qi ¼ ðui diÞT is the quark doublet with color index i,
C is the charge-conjugation matrix, PL;R are left- and right-
handed projectors, τa (a ¼ 1, 2, 3) are the Pauli isospin
matrices, and fg denotes symmetrization. Color singlets are
formed by contracting the color indices suppressed on the
left-hand side of Eq. (2) with the tensors

TSSS ≡ εikmεjln þ εiknεjlm þ εjkmεiln þ εjknεilm;

TAAS ≡ εikmεjln þ εiknεjlm: ð3Þ

The resulting gauge-invariant operators are given in Table I,
where τ� ¼ ðτ1 � iτ2Þ=2.

Low-energy hadronic and nuclear observables such as
τnn̄ and Γ−1

d are difficult to calculate due to the breakdown
of the perturbative expansion in the strong coupling
constant. We use chiral EFT (χEFT) [20,21], the low-
energy EFT of QCD with nucleons and pions as effective
degrees of freedom. Pions play an important role as pseudo-
Goldstone bosons of the spontaneously broken, approxi-
mate SUð2ÞL ⊗ SUð2ÞR symmetry of QCD. In χEFT one
can calculate observables at momentaQ≲mπ ≃ 140 MeV,
the pion mass, in an expansion in powers of Q=Λχ , where
Λχ ∼ 2πFπ ∼mN is the chiral-symmetry-breaking scale,
with Fπ ≃ 185 MeV the pion decay constant and mN ≃
940 MeV the nucleon mass.
The first step towards the calculation of jΔBj ¼ 2

observables is to construct the chiral Lagrangian of
QCD supplemented by Eq. (1). The EFT includes all chiral
interactions that transform as the terms in this extended
Lagrangian. Each term comes with a low-energy constant
(LEC) that subsumes the nonperturbative QCD dynamics.
These LECs have to be calculated with nonperturbative
methods, preferably lattice QCD, or estimated, e.g., by
naive dimensional analysis (NDA) [22].
In the single-baryon sector, we write the B-conserving

Lagrangian for nonrelativistic (anti)nucleons N ¼ ðpnÞT
(Nc ¼ ðpc ncÞT) interacting with pions πa as

Lð2Þ
ΔB¼0 ¼ N†

�
i∂0 þ

∇2

2mN

�
N þ Nc†

�
i∂0 þ

∇2

2mN

�
Nc

þ gA
Fπ

ðN†σkτ
aN þ Nc†σkτ

aTNcÞ∇kπ
a

−
1

2
πað∂2 þm2

πÞπa þ…; ð4Þ

where σk (k ¼ 1, 2, 3) are the Pauli spin matrices and
gA ≃ 1.27. Here and below the dots stand for terms that
only contribute at higher orders in our calculation.
The chiral Lagrangian relevant for n-n̄ oscillations has

recently been constructed in Refs. [23–25], viz.

Lð2Þ
jΔBj¼2

¼ −δmnc†nþ H:c:þ…; ð5Þ

where δm is a LEC that can be made real by a Uð1Þ
transformation on the nucleon and antinucleon fields.

FIG. 1. The two classes of diagrams for deuteron decay. The
crossed circle denotes the deuteron. Single lines with arrows to
the right (left) denote (anti)nucleon propagators. In the left
diagram, the blob depicts a one- or two-nucleon process that
converts two nucleons into a nucleon and an antinucleon, and the
circle their annihilation into a mesonic final state (dashed lines).
In the right diagram, the blob depicts the propagation of two
nucleons, and the square their direct annihilation into the same
final states.

TABLE I. The independent jΔBj ¼ 2, SM gauge-invariant,
dimension-nine operators with u and d quarks, and the irreducible
chiral representations they belong to [19].

Operator Notation of Ref. [16] Chiral irrep

Q1 −DRDRD
þ
RT

AAS=4 O3
RRR ð1L; 3RÞ

Q2 −DLDRD
þ
RT

AAS=4 O3
LRR ð1L; 3RÞ

Q3 −DLDLD
þ
RT

AAS=4 O3
LLR ð1L; 3RÞ

Q4 −D33þ
R TSSS=4 ðO1

RRR þ 4O2
RRRÞ=5 ð1L; 7RÞ

PHYSICAL REVIEW LETTERS 122, 172501 (2019)

172501-2



Because of the chiral properties of the operators in Table I
onlyQi with i ¼ 1, 2, 3 contribute at lowest orders [18], δm
scaling as OðciΛ2

χF4
π=Λ5

jΔBj¼2
Þ. The case Q4 is discussed

below. The n-n̄ oscillation time reads [23–25]

τnn̄ ¼ ðδmÞ−1½1þOðm2
π=Λ2

χÞ�: ð6Þ

δm has recently been calculated in lattice QCD [26,27].
To calculate deuteron decay we exploit the fact that the

deuteron binding energy is only Bd ≃ 2.225 MeV. The
fine-tuning represented by the small binding momentum
κ ≡ ffiffiffiffiffiffiffiffiffiffiffiffi

mNBd
p

≃ 45 MeV can be incorporated by assigning
to NN LECs an enhanced scaling with respect to NDA
[28]. The deuteron arises as a bound state when the leading
NN interaction is iterated to all orders. Pion exchange
between nucleons can be treated as subleading interactions
in a perturbative expansion in Q=ΛNN [29], where ΛNN ≡
4πF2

π=g2AmN ∼ Fπ and Q ∼mπ ∼ κ. This scheme has been
applied successfully to the electromagnetic form factors of
the deuteron [30–33]. Since the nucleon-antinucleon (NN̄)
isospin-triplet 3S1 scattering length an̄p has a natural value,
similar enhancements of NN̄ interactions are not necessary.
The B-conserving Lagrangian for NN and NN̄ scattering

we write as

Lð4Þ
ΔB¼0 ¼ −ðC0 þD2m2

πÞðNTPiNÞ†ðNTPiNÞ

þ C2

8
½ðNTPiNÞ†ðNTPið∇⃗ − ∇⃖Þ2NÞ þ H:c:�

−H0ðNcTτ2Ya
i NÞ†ðNcTτ2Ya

i NÞ þ…; ð7Þ

where Pi ≡ σ2σiτ
2=

ffiffiffi
8

p
(Ya

i ≡ σ2σiτ
2τa=2) projects an NN

(NN̄) pair onto the isospin-singlet (triplet) 3S1 state. The
term with C0 is the leading NN interaction, the real part of
which scales as ReC0 ¼ Oð4π=mNκÞ. One-pion exchange
and one insertion of the subleading LECs ReC2 ∼ ReD2 ¼
Oð4π=mNκ

2ΛNNÞ appear at relative Oðκ=ΛNNÞ. Neglecting
small imaginary parts discussed below, these LECs are
determined from NN observables [29,34], e.g.,

C0¼
4π

mNðκ−μÞþ…;

C2¼
4π

mNðκ−μÞ2ΛNN

�
rnpΛNN

2
−1þ8ξ

3
−2ξ2

�
þ…; ð8Þ

where μ is the renormalization scale, rnp ≃ 1.75 fm [35] is
the 3S1 np effective range, and ξ≡ κ=mπ ≃ 0.32. The LEC
H0 is the leading interaction in the 3S1 n̄p channel, which is
complex due to annihilation [36,37]. Calculating the 3S1 n̄p
scattering amplitude and matching to the effective-range
expansion, we obtain up to NLO

H0 ¼
4πan̄p
mN

�
1þ μan̄p þ

2ðμ −mπÞ
3ΛNN

�

þ 4π

mNΛ2
NN

�
4μ

9
−
3mπ

2

�
þ… ð9Þ

We use the value an̄p ¼ ð0.44 − i 0.96Þ fm obtained
with a chiral potential [38,39] fitted to state-of-the-art
NN̄ partial-wave amplitudes [40,41]. The natural size of
an̄p justifies the assignment H0 ¼ Oð4π=mNΛNNÞ and the
use of perturbation theory.
The presence of jΔBj ¼ 2 interactions has two

consequences. First, the B-conserving NN LECs get
imaginary parts because two nucleons can now annihilate.
The imaginary part is strongly suppressed, since it
requires two jΔBj ¼ 2 insertions; for example, ImC0 ¼
Oðδm2Λ2

χ=κ2Λ4
NNÞ, where we account for a ðΛNN=κÞ2

enhancement due to renormalization by LO NN scattering
on both sides of the vertex [28,30]. Second, we need to
consider the NN ↔ NN̄ interactions

Lð4Þ
jΔBj¼2

¼ iB̃0½ðNTPiNÞ†ðNcTτ2Y−
i NÞ−H:c:�þ…; ð10Þ

where B̃0 is a complex LEC. The NN interaction enhances
it over NDA, B̃0 ¼ Oð4π δm=κΛ2

NNÞ, and implies that
ImB̃0=C0 ∝ ðκ − μÞImB̃0 is μ independent, which becomes
important below. Some interactions are further enhanced
thanks to the one-body character of δm. For example, we
find ReB̃0 ¼ Oð4π δm=κ2ΛNNÞ: requiring the NN and NN̄
scattering amplitudes to be independent of the renormal-
ization scale leads to a renormalization-group equation
whose solution is

ReB̃0 ¼ −mNδmReC2=
ffiffiffi
2

p
þ… ð11Þ

The mesonic final states in Fig. 1 contain hard pions with
energies outside of the regime of χEFT. Instead of directly
calculating deuteron-decay diagrams we determine the
imaginary part of the pole of the deuteron propagator.
The hard pions then only appear as intermediate states that
can be integrated out. Following Ref. [30], we write the
propagator for a deuteron with four-momentum pμ ¼
ð2mN þ p⃗2=4mN þ Ēþ…; p⃗Þ in terms of the irreducible
two-point function ΣðĒÞ, which contains all diagrams that
do not fall apart when cutting any ReC0 vertex, and expand
around Bd, i.e.,

GðĒÞ ¼ ΣðĒÞ
1þ iReðC0ÞΣðĒÞ

¼ iZd

Ēþ Bd þ iΓd=2
þ…; ð12Þ

where the wave function renormalization Zd is real and

Γd ¼
2Im(iΣðĒÞ)

Re(diΣðĒÞ=dĒ)

������
Ē¼−Bd

þ… ð13Þ
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is the deuteron decay rate. Up to NLO [30],

Re

�
diΣðĒÞ
dĒ

�����
Ē¼−Bd

¼ m2
N

8πκ

�
1þmN

2π
ðκ − μÞ½C2κðμ − 2κÞ þD2m2

π�

þ 2

ΛNN

�
κ − μþ mπ

1þ 2ξ

�	
: ð14Þ

Figure 2 shows diagrams that give nonvanishing con-
tributions to Im(iΣðĒÞ) up to NLO. We power count
diagrams with the following rules [28,30]: Q5=ð4πmNÞ
for each loop integral,mN=Q2 for each nucleon propagator,
1=Q2 for each pion propagator, and the product of the LECs
appearing in each diagram. The dominant contribution to
deuteron decay is due to Fig. 2(a), which isOðδm2m2

N=κ
2Þ.

A diagram with two δm insertions but no NN̄ vertex is real
and does not contribute to ImðiΣÞ. Figures 2(b)–2(f) are
Oðκ=ΛNNÞ relative to 2(a) and give NLO corrections.
Figures 2(b)–2(d) are similar to 2(a) but involve an addi-
tional insertion of a subleading NN vertex (C2 or D2), a B-
conserving pion exchange, or the leading NN̄ vertex H0.
Figures 2(a)–2(d) come from the left diagram in Fig. 1; they
depend solely on δm and are directly related to the free n-n̄
transition. Figures 2(e), 2(f) are a mixture of both diagrams
in Fig. 1. They are proportional to, respectively, ImB̃0 and
ReB̃0, the latter being related to δm by Eq. (11). From these
diagrams we obtain

Im(iΣð−BdÞ)

¼−
�
m2

Nδm
8πκ

�
2

ImH0

�
1þmN

2π
ðκ−μÞ½C2κðμ−2κÞþD2m2

π�

þ 8

3ΛNN

�
κ−μþ mπ

1þ2ξ

�
þmN

2π
ðκ−μÞReH0

−
2

ffiffiffi
2

p
κðκ−μÞ

mNδm

�
ImB̃0

ImH0

þmN

4π
ðκ−μÞReB̃0

�	
: ð15Þ

The deuteron decay rate up to NLO is then

Γd¼−
mN

κτ2nn̄
Iman̄p

�
1þ κ

�
rnpþ2Rean̄p

−
g2AmN

3πF2
π

2−2ξ−5ξ2þ6ξ3

1þ2ξ
−

ðκ−μÞImB̃0ffiffiffi
2

p
πδm Iman̄p

��
: ð16Þ

This result is independent of the renormalization scale, as it
should be. It relates Γd to τnn̄ through known quantities and
one unknown NLO constant ðκ − μÞImB̃0, encoded in the
ratio Rd ≡ Γ−1

d =τ2nn̄. Numerically we find

Rd ¼ −
�
mN

κ
Iman̄pð1þ 0.40þ 0.20 − 0.13� 0.4Þ

�
−1

¼ ð1.1� 0.3Þ × 1022 s−1: ð17Þ

The NLO corrections from known LECs affect the result by
roughly 50% and are dominated by the effective-range
correction. We account for the unknown value of ImB̃0 as
an uncertainty of the same size as the effective-range
correction. The explicit pion contributions amount to only
13%. The limit mπ → ∞ recovers the result of Pionless
EFT [36], where pions are integrated out and ImB̃0 absorbs
the surviving pion term. Use of an auxiliary dibaryon
field [36] automatically accounts for the enhancement
of Eq. (11).
Our central value for Rd is smaller by a factor ≃ 2.5 than

the often-used result from Ref. [42] based on nuclear
models for the nucleon-(anti)nucleon interactions. We have
checked that when the expressions from Refs. [42,43] are
applied to a zero-range potential we recover our LO term in
Eq. (17). The difference therefore stems from the smaller
Iman̄p [44] of the NN̄ potentials of Ref. [42], and from
corrections to the zero-range limit. The diagrammatic
approaches of Refs. [45,46] also reduce to our LO for a
zero-range potential. (Reference [47] disagrees from these
results by a factor of 2.)
Our result is based on a systematic and improvable

framework for all interactions, and we showed that NLO
corrections are significant but of the expected size. In
addition, we have used an up-to-date n̄p scattering length
[39]. We therefore propose to use Eq. (17) in comparisons
of deuteron stability and n-n̄ oscillation beam experiments.
Taking the largest value of Rd allowed by Eq. (17), the SNO
limit on Γ−1

d [15] gives

τnn̄ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffi
RdΓd

p
> 5.1 yr ¼ 1.6 × 108 s; ð18Þ

about a factor of 2 stronger than the direct ILL limit.
At higher orders we find some of the nuclear effects

discussed in the literature, two examples being shown in
Fig. 3. Figure 3(a) can be seen as an in-medium modifi-
cation of the n-n̄ oscillation [14], due to the emission or

(a)

(c) (d)

(e)

(b)

(f)

FIG. 2. Diagrams that contribute to ImðiΣÞ up to NLO. Circles
denote gA or H0 vertices, the circled circle denotes C2 or D2, and
squares denote jΔBj ¼ 2 vertices. The dashed line represents a
pion. Only one ordering per diagram is shown.
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absorption of pions in the n-n̄ transition required by chiral
symmetry and contained in the dots of Eq. (5). It is
nominally of relative Oðκ2=ΛNNmNÞ, but it actually van-
ishes. Corrections of this type should, therefore, be no
larger than about 5%, to be compared with the 25%–30%
estimated for heavier nuclei in Ref. [48]. The effect of
direct two-nucleon annihilation [18], the right diagram in
Fig. 1, is represented by Fig. 3(b). It is proportional to the
absorptive part of NN interactions, ImC0, and appears at
next-to-next-to-leading order (N2LO), Oðκ2=Λ2

NNÞ.
So far we have not discussed the operator Q4. Since it

belongs to the ð1L; 7RÞ irrep it can only contribute to τ−1nn̄ if
additional sources of isospin violation are included. The
lowest-order contribution to τ−1nn̄ involves two insertions
of the electric charge, leading to a suppression of
αem=4π ∼Oðm3

π=Λ3
χÞ, where αem is the fine-structure con-

stant. ImC0 induced by C4 does not require the inclusion of
extra isospin violation. For the case in which deuteron
decay is dominated by Q4, i.e., c4 ≫ c1;2;3, the imaginary
part of diagram 3(b) is Oðm6

N=Λ2
NNQ

4Þ relative to diagram
2(a) and is expected to dominate the deuteron decay rate.
At LO,

ΓdjQ4
¼ −κðκ − μÞ2ImC0=π ¼ −4κ3Imanp=mN; ð19Þ

in terms of the imaginary part of the 3S1 np scattering
length anp. In this case Γ−1

d and τnn̄ are not dominated by
the same jΔBj ¼ 2 LECs, resulting in a smaller value of Rd.
This implies that if deuteron decay and free n-n̄ oscillation
are both observed, one could infer whether jΔBj ¼ 2
violation is dominated by Q1;2;3 or by Q4 (or strange-
ness-changing operators we have not considered [18,49]).
In closing,webriefly comment onwhat our findings imply

for heavier nuclei. Because of the low deuteron binding
momentum, the expansion in Q=ΛNN ∼ κ=ΛNN allows for
analytical results. In denser nuclei, such as 16O, this expan-
sion is likely not valid and we need to resum Q=ΛNN
corrections by treating pion exchange nonperturbatively.
While this complicates the calculations, it only partially
affects the power-counting estimates. Contributions from
Q ∼ ΛNN are transferred from LECs to explicit pion
exchange. The infrared enhancement by κ−1 in the decay
rate Eq. (17), which increases the overall sensitivity to τnn̄,
should become less pronounced, but intrinsic two-nucleon
effects due to jΔBj ¼ 2 pion exchange and short-range NN
annihilation, and NN → NN̄ interactions with unknown
LECs appear in the chiral expansion only at N2LO,

OðQ2=Λ2
χÞ, or beyond. Therefore, in conjunction with free

n-n̄ transitions, stability experiments with denser nuclei also
partially discriminate among jΔBj ¼ 2 operators.
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