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TRANSLATOR'S PREFACE.

THE solution of problems of all kinds by purely

graphic methods forms an important branch of study

in the training of a Continental Engineer, and the

publication of such considerable works as those of

JReuleaux, Culmann, Bauschinger, and Levy, affords

the best proof of the value attached to the subject.

In England, notwithstanding the valuable contribu-

tions to Graphic Statics made by Professor Clerk-

Maxwell and the late Professor Eankine, the subject

can hardly be said to have received the recognition it

merits. It is true indeed that the power and facility con-

ferred by certain isolated processes, such for instance

as that of stress diagrams, are universally acknow-

ledged; but these processes have for the most part

been viewed as mere artifices for effecting special pur-

poses, and not as applications of the principles of an

important general method.

The present work, which has in Germany already

gone through three editions, is for its size one of the

most complete elementary treatises on the subject,

while its essentially practical character and the ex-

treme simplicity of the mathematics involved will, it

is hoped, render it widely useful in an English form.

In carrying out the translation the Author's text
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iv PREFACE.

has, as far as possible, been adhered to
; but the pecu-

liarities of German idiom cannot always be literally

rendered, and in such cases a certain amount of freedom

must necessarily be claimed.

It was thought advisable to omit entirely the first

portion of the work treating of Graphic Arithmetic,

which, though it certainly forms a useful and appro-

priate introduction to the study of Graphic procedure,

has not been much used in practice.

Some few notes have been added where further

explanation seemed desirable, or where, as in the case

of the treatment of wind pressure on roofs, a divergence

from English practice seemed to call for some remark.

All such additional matter incorporated with the

Author's text has been enclosed in brackets,

COOPERS HILL, June, 1876.
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GRAPHIC STATICS.

PAET L

COMPOSITION OF FOKCES.

[!N order that a line may be employed to represent a

force, it is necessary, 1st. That its length should be

proportional to the magnitude or intensity of the force.

2nd. That its position should correspond to the line of

action of the force. 3rd. That an arrow should be

attached showing the " sense
"

of the force, i. e. the

direction along the line in which it acts.

In the following paragraphs the only theorem bor-

rowed from Analytical Statics is that of the Paral-

lelogram of Forces,

which may be stated

as follows.

If two forces PuPa
whose directions and

magnitudes are given

by two lines a 0, b

(Fig. 1) act at a point

0, then the diagonal r of the completed parallelogram

a 1 r gives the magnitude of the resultant E of those

forces. Hence if staiting from a point two lines a.,
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r are drawn parallel

'

to and in the same direction as

two forces PI, P2 , then by joining r a triangle r a O
is obtained of which the third side r gives the mag-
nitude and position of the resultant E of P15 and P2 .

The arrow indicating the direction of this resultant will

point in the reverse direction round the triangle to the

arrows indicating the direction of the forces. A force

maintaining equilibrium with the two given forces will

have the same magnitude as E, but its direction arrow

will be that of E reversed.

Conversely, if lines parallel to the directions and

proportional to the magnitudes of three forces acting

at a point, form a triangle, the three forces are in

equilibrium.

It should be observed that in such a triangle the

three forces act in the same direction all round the

triangle, and this is always the case. Hence if the

direction of one of the forces forming the triangle is

known, that of the others is known also.]

1. Forces acting in the same Straight Line. If a

number of forces whose magnitudes are expressed by
lines representing them on any scale, act in the same

straight line at a point, then (forces acting in one direc-

tion being reckoned positive and in the other direction

negative) the algebraical sum of the lines gives the

magnitude of the resultant and the sign (4- or )

of that sum indicates its direction or sense.

2. Forces acting in any Directions at a Point. If

any number of forces P1? P2 . . . Pw act in any direc-

tions at a point, then the resultant of those forces can

always be obtained graphically. Combine the forces

P! and P2 by means of the parallelogram of forces

obtaining a resultant rx ,
then combine r4 and P3 for
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a new resultant r2, and proceed in the same way till

all the forces have been combined and the general
resultant K obtained.

Thus in Fig. 2, P1? P2 . . . . P6 are forces acting at

a point 0, the lengths PL 0, P2 0, . . . . etc., repre-

senting their respective magnitudes on any convenient

scale. Starting from Pj draw P! a equal and parallel

to P2 ;
then a O is the resultant rx of Px and P2 ;

draw a b equal and parallel to P3 ; then & is the

resultant r2 of P!, P2 ,
and P3 ; proceeding in this way

we finally obtain e as the resultant E of Px . . . . P6 .

FIG. 2.

In practice the dotted lines a 0, & 0, etc., ne<

not be drawn, and we obtain therefore the following

rule.

When any number of forces act in any direction at a

B 2
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point, their resultant can le obtained "by combining end to

end the lines representing them in direction and magni-

tude; then the line closing the rectilinear polygon so

obtained gives the resultant loth in direction and magni-
tude. The direction arrow of that resultant points in

the opposite way round the polygon to the direction

arrows of the forces.

The forces acting at 0, Fig. 2, will be in equilibrium
if a 7th force E equal in magnitude to their resultant

but acting in the opposite direction to that indicated

by the arrow is interposed. Hence,

If any number of forces acting at a point are in equi-

librium, lines drawn successively in the direction of the

forces and proportional to their magnitudes must form a

closed polygon.

This polygon is termed the Polygon of Forces, and

the above theorem will hold whatever is the order in

which the forces are taken.

3. Forces acting on a Rigid Body. If forces P! , P2 ,
P3

.... act on a rigid body, the latter must be supposed
to be replaced by a system of rigid rectilinear rods

which intersect the directions of the forces and form a

polygon. The several sides of this polygon must be

capable of resisting the external forces (whether tensile

or compressive) which are brought to bear upon them.

Such a polygon replacing a rigid body is termed a

Funicular Polygon if its sides are in tension, and

a Line of Resistance or Linear Arch if its sides are

compressed. In general it may be called a Polygonal
or Jointed Frame. Its angular points are called Joints

or Nodes, and the forces developed in the sides of the

polygon by the exterior forces are termed Interior

Forces.
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In order to distinguish whether the force in any one

of the sides of the polygon is tensile or compressive,
resolve the exterior forces acting at both its end points
in directions coinciding with that side and the adjacent
sides. Then insert arrows showing the directions of

the components of the resolved exterior forces ; these

arrows in Fig. 3 point outwards, and there evidently
arises in the polygon sides a tensile stress

;
if however,

the arrows point inwards, as in Fig. 4, the polygon side

will be in compression.

FIG. 4.

Since the interior forces act in directions opposite

to the resolved components of the exterior forces, place

at the ends a and & of the polygon side a 5 arrows in the

opposite direction to those of the resolved components ;

thus we obtain the following arrow combinations :

T , . f Compression
Interior forces < .

{ Tension . .

-r, , . f Compression
Exterior forces < ^ .

{ Tension . .
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4. Equilibrium of the Forces acting on the Jointed

Frame. Let the polygon Kj, K2 ,
K3 , Fig. 5, be in

equilibrium under the action of the exterior forces

P1? P2 ,
P3 . . . ., then evidently the exterior force acting

at any joint must be in equilibrium with the two

interior forces or stresses acting in the two sides of

the frame which meet at that joint.

FIG. 5.

ft

Let Si, S2 ,
S3 . . be the stresses in the several

sides of the polygon, then as a necessary condition of

equilibrium of the joint K19 the three forces Px , Sx and

S6 acting at that joint must combine to form a triangle

1 6. Similarly the forces P2,
Sx and S2 which are in

equilibrium at K2 must form a triangle 012, which has

a side 1 (
= Sx) common to the first triangle 016.

Similarly as a condition of equilibrium of the joint

K3 ,
the three forces P3 , S3 and S2 must form a triangle

023 having a side 2 common to the triangle 012,
and so on. Hence, as a condition of equilibrium of
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the whole jointed frame, the successive triangles of

forces must have one side in common.

Hence the theorem,

If the forces P19 P2 ,
P3 . . . . acting on a jointed frame

are in equilibrium, it must be possible to form them into

a closed polygon 1, 2, 3 . . . , and the lines drawn from
the angles 1, 2, 3 ... of this polygon parallel to the sides

Si , S2 S3 . . . of the jointed frame must meet in the same

point 0, termed the pole. Then, the lines Ol, 02, 03 ...

radiatingfrom this pole determine perfectly the magni-
tudes of the stresses S^ S 2, S3 . . . . in the sides of the

polygonalframe.
From the above theorem follows the important

corollary that if the given exterior forces acting on a

jointed frame are in equilibrium, then the assumption
of any two consecutive sides of the frame determines

all its other sides, and if the form of the frame and the

directions of the exterior forces are given, then the

magnitudes of all the exterior forces are determined if

one of them is given or assumed.

It is also clear that if the forces acting on a polygonal

frame are not in equilibrium, the closing side of the

polygon of those forces determines their resultant in

direction and magnitude.

[The polygon K19 E*, K3 . . . is termed the Funicular

Polygon of the Forces PI, P2 ,
P3 ... with respect to

the pole 0. By taking different positions of this pole

different funicular polygons are obtained. The form of

the polygon Kx ,
K2 , 3 ... is evidently that which a

flexible string suspended from two fixed points, Kx ,
K6

and strained by the forces P2 ,
P3 , P4 , and P5 would

assume, and hence the term "
funicular," which has,

Lirwever, obtained a purely geometrical meaning. The
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general conditions of the equilibrium of a rigid body

may be summed as follows : 1st. The polygon formed

by the exterior forces must close. 2nd. Any funicular

polygon of those forces with respect to any pole must

also close.]

In the case of Fig. 5 all the sides of the frame are

evidently in tension.

FIG. 6.

Suppose in a polygonal frame, Fig. 6, that two of its

sides Kj Kg and K4 Kg are cut across, then evidently, in

order that equilibrium may be maintained, forces having
the same magnitude and direction as the stresses S6

and S4 must be applied at the points of section. Hence

the resultant B of the stresses S6 and S4 holds in equi-

librium all the exterior forces acting on the frame on

the right or on the left of the section plane a ft. The

direction and magnitude of K is given by the diagonal
46 of the polygon of forces, since from what has been

said, E must form a closed polygon both with the forces

P1? P2 ,
P3 ,

P4 ,
and also with P5,

P6 . Moreover, the re-

sultant B of S
6
and S4 must evidently pass through D,

the intersection of the cut sides produced. B therefore

acts on the one hand as the resultant of the forces
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PI, 1*2, PS and P4 , and on the other hand as the

resultant of P5 and P6 .

Hence generally,

The resultant E of all the exterior forces acting "between

any two sides of the funicular polygon passes through the

intersection D of those sides produced, and the direction

and magnitude ofE is determined by the polygon offorces.
This theorem plays an important part in the whole

subject of Graphic Statics, and enables forces to be

resolved and composed by the aid of the funicular

polygon and polygon of forces. Thus, suppose the

force E is to be resolved into two other forces P5 , P6

having given directions. Produce E backwards in the

funicular polygon, and from any point E on it draw

E K5 ,
EK6 parallel to the sides 45, 56 of the polygon

of forces, then from K5 draw P5 equal and parallel to K6 ,

and from K6 draw P6 equal and parallel to 56. Then

evidently the forces P5 and P6 replace the force E.

5. Parallel Exterior Forces. If the exterior forces

acting on the funicular polygon are parallel, then, in

order that equilibrium may obtain, some of them must

act in opposite directions, and the sum of the forces

acting in one direction must be equal to that of the

forces acting in the other direction. The polygon of

forces will in this case be a straight line. Moreover,
at any node of the funicular polygon the components of

the stresses perpendicular to the directions of the exte-

rior forces must be all equal. For, since the latter can

only counterbalance those components which are parallel

to themselves, therefore as a condition of equilibrium of

the node, the components of the stresses at right angles
to the direction of the exterior forces must be in equi-

librium, which will be the case only when those compo-
nents are equal in magnitude and opposite in sense.
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Hence we have the following theorem,

If the exteriorforces acting at the angles of a funicular

polygon are parallel, then the components of the stresses at

right angles to the direction of the forces are equal in

magnitude.

If the exterior forces are vertical, the constant hori-

zontal component of the stresses is called the horizontal

thrust, or tension.

In Fig. 7 the funicular and force polygons which

constitute the conditions of equilibrium of the parallel

forces P! ,
P2 , . . . .P5 are shown. The mutual relations

between these two polygons are the same as in those of

Fig. 5, so that this figure may be considered as illustrat-

ing merely a special case of the preceding paragraph.
The constant horizontal thrust (H) is evidently given

by the line Oft drawn from O perpendicular to A3.
This line is termed the "

polar distance."

FIG. 7.

We will now proceed to the application of the results

thus far obtained, applying them first to the case of

parallel forces, which is one of the most common occur-

rence in practice.
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EFFECT OF PAEALLEL FOKCES ACTING ON A SIMPLE

BEAM.

6. Determination of the Transverse Forces. Suppose
the beam A F, Fig. 8, resting on two supports, to be

loaded with weights P1? P2 , P3,P4 ,
we shall first deter-

mine Dj and D2 , the pressures on the supports, and then

the vertical or transverse stresses at any cross section

ol the beam.

FIG. 8.

r

Set the given forces Px P2 . . . . off in succession along

a line A'F. The line A'F is thus the polygon of the

given forces, and F' A' its closing line, is their resultant.

Take any point as pole and draw the radii A', 01,

02, 03, 04. Then describe the funicular polygon

a, 6. . . ./ by drawing a I parallel to A', terminating

ill Pj produced; be parallel to O x , terminating in the
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prolongation of P2 ,
and finally ef parallel to F and

terminating in the prolongation downwards of D2 .

The funicular polygon is now closed by the line

/ a, and a line S is drawn through the pole parallel

to fa. Then, as a condition of equilibrium,

D1
= A'SandD2

= SF

Let the transverse or shearing forces in the several

cross sections of the segments A B, B 0, C D . . . . etc.

be designated by Vi,Y2 ,V3 , etc. respectively.

Then,

V2 = Dx
- P

x
= A' S - A' 1 = S 1

V3
= D! - PL

- P2 = A f S - A' 1 - 12 = S2

or the shearing forces are equal to the distances of the

various points of the polygon offorces from S.

Accordingly in Fig. 8 A the shearing forces have

been taken from the polygon of forces and used as ordi-

nates of the segments of A F to which they correspond.

[Thus the hatched figure is obtained, which is termed

the "shearing force diagram," and the vertical ordi-

nates of this diagram give the shearing force at any
section of the beam A F.]

From the funicular polygon the resultant of two or

more of the forces can be obtained. Thus g, the inter-

section of e d and/e produced, gives a point on the line

of action of the resultant of P3 and P4 . Further, r, the

intersection of at and/e produced, gives a point on

the resultant of all the forces acting between a and /,

i. e. of the loads Px ,
P2 ,

P 3 ,
P4 .

7. Determination of the Bending Moments. Since the

dimensions proper to the various cross sections of the

beam depend more particularly upon the statical mo-
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ments of the exterior forces, the determination of these

moments is of the greatest importance in practice.

By statical or bending moment at any section a ft of

the beam A F, Fig. 8, is understood the product of the

resultant K of all the forces acting on one or other

side of the section into the perpendicular distance I of

the line of action of E from aft. In the case of the

section a ft}

E = D! - R = S 1

and the point of application of E is i, the point in which

those sides of the funicular polygon which are cut by
a ft meet.

Drop the perpendicular i Jc from i on a ft, this perpen-
dicular is then equal to Z, and the bending moment at

the section a ft is

M = EJ=Sl.a
This product can readily be obtained graphically.

Draw the constant horizontal thrust H, then the triangle

S 1 is similar to the triangle i m n, and hence

S 1 mnT = T
or if m n = y and for S 1 its value E is substituted,

we have

andM = E. I = H.y

The lending moment M for any cross section is there-

fore directlyproportional to the ordinate y of thefunicular

polygon at that cross section.

If the constant horizontal thrust or "
polar distance

"

H is taken as the unit of force, then

M = y
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In this case the bending moments are directly given

by the vertical ordinates of the funicular polygon.
It is evident from the figure that the maximum

bending moment occurs always at one of the sections

through which an exterior force acts, also that the

above construction applies to any parallel forces whether

vertical or not.

TRAVELLING LOAD.

8. Effect of a Travelling Load on the Shearing Forces

and Bending Moments. Since the effects of parallel

forces are simply additive, any force P additional to the

four forces P1? P2 , P3 ,
P4 (Fig. 8) entering within the

limits of A F can be investigated separately in respect

of its action on any particular cross section a/3 and

the results obtained added to those previously found.

FIG. 9.

In Fig. 9 a construction similar to that of Fig. 8 is

made for the load P acting on A F. Then the reac-

tions of the supports at A and F (Di and D2, Fig. 8)

will be increased by D, = A' S and D2
= F S (Fig. 9),

while the moment-ordinate y at the cross section a/3

will be increased by y' (Fig. 9).

In order to deal with the effect of a single travelling

load P on the shearing force V at the cross section a/3
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(Fig. 9), distant x from A, let us investigate the two

following cases.

1st. Suppose P to lie to the right of a /3, then the

N F
shearing force V = DI =

If we consider forces acting upwards as positive, then

in the present case V is positive and will evidently be

greater the greater N F is, that is the nearer the load P

approaches the section a /3.

FIG. 10.

2nd. Suppose P to lie to the left of aft, then the

shearing force V at a p is (Fig. 10),

V = A - P

but D1= F
NF

therefore

or V * - P.
AN
AF

In this case the shearing force is negative and will

be numerically greater the nearer P approaches to the

section a 8.
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Hence generally,

Every single travelling load exerts a positive or negative

shearing force according as it lies to the right or left of

any particular section, and this shearing force increases

in value as the load approaches the section.

Suppose the beam acted upon by a system of travel-

ling loads, as is the case of a railway bridge when a

train is passing over it. Then the pressure on every

wheel axle to the right of any section a ft will exert a

positive shearing force, and that on every axle to the left

of the section a negative shearing force. If therefore a

positive shearing force only is brought to bear on a sec-

tion a ft by the train, the latter must evidently come

on the bridge from the right abutment F and move up
to the section a ft. If on the other hand the train

comes from the left abutment and does not pass aft

then a negative shearing force only is brought to bear

on a ft by the load on any wheel axle.

Hence generally,

The greatest numerical value of the shearing force at

any section is reached when a train coming from tlie

further abutment arrives at that section, so that the

leading locomotive axle is vertically over that section.

From Figs. 9 and 10 it appears that every load

applied to the beam right or left of the section a ft

increases the ordinate y of the funicular polygon, and

this increment is greater the nearer the load approaches

to that section. Since the moment M at any section

varies as the corresponding ordinate y of the funicular

polygon it follows that

The moment M of the exterior forces P19 P2 ,
P3 , etc.,

acting at any section, a ft (Fig. 8) is increased ly every

force P interposed between the supports A, F, and this
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increment is greater the nearer P approaches to that

section.

Hence in "bridges the moment of the exterior forces is a

maximum at any section if the whole "bridge is fully

loaded and the greatest sinlge load is concentrated as

near as possible to that section.

Since further, the greatest ordinate of a funi-

cular polygon must always pass through one of

its angles, the moment at any section must be a

maximum when one of the greatest loads is at that

section.

It can be ascertained in any particular case by
means of the funicular polygon which load must be at

any section so as to give rise to the maximum bending
moment at that section.

9. Example. The following example will serve to

explain the method of operation.

Fig. 11 shows a bridge of 40' span supporting an

express engine and tender. The weights on the leading,

driving, and trailing axles of the former are 9, 15, and

7 tons respectively ;
those on the three tender wheels

are each 7 tons. The axle intervals of the engine are

8' 0", and of the tender 5' 6". The interval between

the trailing axle of the locomotive and the leading
axle of the tender is 8',

The maxima shearing forces and bending moments

due to the passing of the engine and tender will now be

determined.

1st. Determination of the Maxima Shearing Forces.

Having selected a suitable scale for the weights, draw

first the polygon of forces or load line A', I B
corresponding to the six given loads, and construct

the funicular polygon I, II ... VI, relative to a pole

c
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taken at a distance from A' B' equal to any convenient

number on the scale of weights, say 30 tons.

Fio. 11.

Z* w v . rr

D'QQQ-

Now the maximum shearing force at a section C,

whose distance from A is #, will be exerted when the

train coming on the bridge at B (the farther abutment)
arrives at C so that the leading axle I is vertically

over C.
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In order to obtain the shearing force at C when the

load is in the above position, draw a horizontal line I a

from the angle I of the funicular polygon, make I a

C A, and produce a I to b making a b equal to A B the

span. Draw the vertical lines ai,Jcb cutting the extreme

sides of the funicular polygon (produced if necessary)
in i and Jc. Join i Jc, then i k is the closing line of the

funicular polygon, and if S is drawn in the polygon
of forces parallel to this closing line i k, then according
to para. 6 the length A' S represents the magnitude of

the shearing force V at the section C.

Now it is just possible that if the load II were largely

in excess of I, the maximum shearing stress might
arise when II was vertically over C. The diagram
enables this to be tested instantly. Eepeat the abo\e

construction for the point II of the funicular polygon,
thus obtaining p r as the new closing line. Draw S
in the polygon of forces parallel to p r, then the new

shearing force at C is A' S' A' I or S' I, which is less

than A' S'.

By proceeding in the way above described the

shearing force at any section with any positions of the

given loads can be obtained.

Since for every positive shearing force exerted during
the passage of the load from the right to left of the

bridge, there is a corresponding, numerically equal,

negative shearing force exerted during its passage from

left to right, at a point having the same distance from

the centre of the bridge, we obtain a diagram of the

form shown in Fig. 12, the ordinates of which give the

maximum shearing forces at every section of the bridge.

2nd. Determination ofthe Maxima Bending Moments.

Since, from what has been said (para. 8) the maximum
c 2
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bending moment at any section is exerted when the

bridge is fully loaded and one of the greatest loads is

vertically over that section, hence the maximum bending
moment at any section C at a distance x feet from A

(Fig. 13) will be exerted when the train comes on the

bridge at B and either the load III or II is vertically

over C.

Suppose first that the load III is at C.^ From the

angle III of the funicular polygon (Fig. 11) draw Ilia"

equal to as and produce a" III to b" making a" I" equal

to AB the span. Draw the vertical lines a"m, n

cutting the sides I II and V VI produced in m and n

respectively. Join m n, then m n is the closing line of

the funicular polygon when the train is in such a posi-

tion that the load III is at C and (para. 6) the ordinate

y multiplied by the polar distance, or constant horizontal

tension H gives the bending moment at C.

FIG. 13.

It must now be ascertained whether the bending
moment is not greater when II is at C.

Make II a' equal to x, and proceeding exactly as

before we obtain p r as the new closing line and y' as

the new ordinate.
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Since y' is greater than y, the maximum bending
moment at the section C is exerted when II is at C
and is equal to y' x H, or y' x 30 foot tons.

By treating a sufficient number of sections after the

method above described we obtain a sufficient number

of ordinates to enable the curve of maximum bending
moment (Fig. 13) to be drawn. Since the curve is

symmetrical about the centre line it will only be

necessary to extend the construction to half of the

bridge.

If now a scale is drawn one-thirtieth of the linear

scale, then the ordinates of the curve read off on this

scale give the maximum bending moment at any section

of the bridge in foot tons.

[It will be seen that the principle of the above method

consists in supposing the beam A B to be moved to the

right or left, the loads remaining stationary. Thus the

funicular polygon having been made once for all for the

given weights at the given intervals, an alteration of

the position of the beam relative to that of the loads

merely affects the closing line of the polygon, and on

this closing line both the shearing forces and bending
moments depend.

It is clear that in the case above investigated the

maxima shearing forces and moments obtained are those

due to the passing of the given engine and tender only,

and that different results might ensue if a second

engine and tender were coupled to the first. In order

to investigate the shearing forces and moments arising

in the latter case, it would be necessary to draw the

funicular polygon corresponding to the twelve axle

pressures of the two engines and tenders and then to

proceed to move the beam A B to the right or left as
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before. In fact the funicular polygon should be drawn

in the first instance so as to correspond to a length of

the heaviest portion of the heaviest train equal to twice

the span of the bridge.

The curve of maxima bending moments (Fig4 13)
has cusps which would be apparent if the scale to

which it is drawn were larger.]

10. Approximate Method of determining the Maxima
Moments. Although the mode of procedure above de-

scribed entails very little labour, the result can be

obtained in a quicker way by the use of an approximate
method published by Professor Dr. E. Winkler in the

Austrian *

Ingenieur
- und Architeckten - Verein

'

for

1870, part II., page 33, where it is stated that

In order that the moment at any section may be a maxi-

mum, the train must be in such a position that the loads

on both sides of that section have nearly the same ratio

to each other as the lengths into which the section divides

the bridge ; or, that the loads per unit of length on both

sides of the section are nearly equal.

In conclusion, it remains to be said that in long rail-

way bridges the greatest travelling load is usually taken

to be a train of two or three of the heaviest locomotives

fully equipped followed by such a number of the

heaviest goods waggons loaded to their maximum that

the train is of length sufficient to cover the whole

bridge.

[In England it is usual to take as the heaviest tra-

velling load for railway bridges, a train of locomotives

of the heaviest class, fully equipped, sufficiently long
to cover the whole bridge. For bridges of large span,

however, a uniformly distributed, arbitrarily chosen load
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FIG. 14.

of from 1 to 1 tons per foot run for each line of rail is

usually taken in place of the concentrated loads.]

STATIONAKY LOADS.

11. Effect of a stationary Load having any fixed Dis-

tribution. A load distributed over the whole length

of a beam can evidently be supposed to be split up into

a number of single loads, so near to each other that the

funicular polygon becomes a curve which follows the

same laws as the polygon.

Suppose the partial load over each unit of length

of the beam AB, Fig. 14, to be set up as an ordi-

nate. Thus the figure A A' 0' D' B' B is obtained.

This figure is called

the "loading area" of

the beam, and evidently

represents the load dis-

tribution.

The funicular curve

corresponding to this

load distribution must

now be drawn.

Suppose the loading area cut up into strips AC',
CD' DB', and that in place of the distributed load

the concentrated loads P1? P2 ,
P3 , acting at the centres

of gravity Si S2 S3 of these strips, are substituted.

Set off the weights P19 P2 ,
P3 on the load line Ax B!

and draw the funicular polygon a 6X &2 &s & relative to

any pole O. The angles \ Z>2 63 of the funicular

polygon are vertically under Sx S2 S3 the centres of

gravity of the strips into which the loading area has

been cut,
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Now if the size of the strips is supposed to diminish

indefinitely, the number of sides of the funicular

polygon increases indefinitely, and this polygon
becomes the funicular curve acdb,to which curve the

sides of the original polygon abl9 b^, b2 b3 ,
b3 b, are

tangents at the points a, c, d, b vertically under the

bounding lines A' A, C'C, D'D, B'B of the strips into

which the loading area was originally divided.

Hence the loading curve having been first drawn, any

required number of tangents to the corresponding
funicular curve can be obtained as well as their points

of contact with the curve. The curve can therefore be

drawn, and by its means the bending moments and

shearing forces at any cross sections of the beam can be

determined as in paras. 6 and 7.

12. Uniformly distributed Dead Load. If P is the

whole load uniformly dis-

tributed over a beam A B
of length /, then the load

per unit of area is

Set up p over A B as

a constant ordinate, thus

the rectangle A a B b (Fig. 15) is obtained as the

loading area of the beam A B.

Since the whole load is uniformly distributed, the

reactions of the two supports A and B are evidently

equal, or
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The shearing force V at a section C for which

A C = x is given by the equation

...(a)

and for

Also V is a maximum when x = 0, for then

When
.-<Y *

Since by equation (a) V decreases as a? increases and

becomes zero when x= ~ ;

hence the shearing force

diagram will be bounded

by a straight line L I/

(Fig. 15) cutting the axis

AiBi at its centre, and

will have as ordinates

at the two points of sup-

port.

The bending moment at the section C (Fig. 16) is

When a; = 0, or # = Z ; M = 0; andM is a maximum
I

when x =
^
or

M = ^r- (7)
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Equation (/3) shows that the curve of bending moments
obtained for a uniformly distributed load is a parabola
a s b whose vertex s is vertically under the centre of

V I
2

a I and at a distance from a b, m s = *-~-
o

This parabolic funicular curve can readily be drawn

by means of its tangents, then the bending moments at

the various sections are given by the ordinates of the

curve.

In the polygon of forces make A' B' = p . I = P and

O A' = B'. Then a I, I b parallel to O A' and B'

respectively are tangents to the funicular curve at a

and b. Draw h perpendicular to A' B' which it will

bisect.

Then the triangle aim is similar to the triangle

OA!h; hence
I m am

or

Im
J7l
~2

whence

If the pole O is so taken that h = H the unit on

the scale of forces, then

T P' 12
I M = _

Hence the vertex 8 of the parabola bisects I m*

In order to draw tangents at any point to the

funicular curve under any section C, it must be re-
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meinbered that by the preceding paragraph the inter-

sections &! and &2 of the required tangents with a I and

b I must lie vertically under the centres of gravity of

the loads on the segments A C and B C of the beam

A B. In the present instance, since the load is uni-

formly distributed, these centres of gravity must lie

at the middle points of those segments. We have

therefore the following sim-

ple construction for obtain-

ing the tangents. Divide

a I, 61 (Fig. 17) into an

equal number of equal parts,

and join the points of divi-

sion as shown. Then the

lines so obtained are tangents to the funicular curve,

and moreover the points of contact of successive tan-

gents bisect the distance between the points in which

the tangents cut those adjacent to them on either side.

[In practice, if the scales are so arranged that the

ordinate m s (Fig. 17) of the vertex is not greater than

one-eighth of a &, the span, then a circle passing

through a, s, b will sufficiently approximate to the

required parabola.]

The polar distance or horizontal thrust H having
been made equal to the unit on the scale of forces, then

the vertical ordinates of the funicular curve give the

bending moments at the sections corresponding to

them. Thus if H = 1, the ordinate y (Fig. 16) is equal
to the bending moment M at the section C. But if H
is not unity, then M = H . y.

13. Reduction of concentrated Loads to a uniform

Loading. Since by the preceding paragraph the deter-

mination of the bending moments at any section of a
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uniformly loaded beam is extremely simple, it is not

unusual in practice to reduce the concentrated loads to

a uniform loading giving rise to the same maximum

lending moment.

Suppose that by means of para. 9 the maximum
moment M, for the centre of the beam has been ob-

tained, then a uniformly distributed load which would

cause the same maximum bending moment at the centre

of the beam is calculated. By the preceding paragraph
the maximum bending moment due to a uniform load

P
distribution is expressed by -, where p is the load

per unit of length and I the clear span.

Hence putting

we obtain
8M , v

*=-?- ........ w
as the required uniformly distributed load per unit of

length.

For any section of the beam other than that at the

centre however, the moment obtained on the hypothesis

of a uniform distribution does not agree with that to

which concentrated loads would give rise at that sec-

tion.

Still greater will be the error arising in the values of

the shearing forces obtained on this hypothesis.

By proceeding on the hypothesis of a uniformly dis-

tributed load furnished by the above value for p, we

introduce therefore a more or less considerable error in

the determination of V and M. In fact, the values of

M and V obtained on the supposition of this imaginary
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loading differ the more from their true values the

greater the difference between the concentrated loads

and the shorter the beam is.

14. Example. The following simple example will

serve to make the above clear.

Fig. 18 shows a bridge beam of 22 feet span carrying
locomotive whose wheel base is 8 feet. The weights on

the leading and trailing axles are taken as 10 tons

each, that on the driving axle as 12 tons. The driving
axle is over the centre of the beam.

FIG. 18. I6tan9

1

The reaction of each of the supports vfill be

1Q + 12 + IQ

2
16 tons.

The bending moment at the centre C2 of the beam will

be a maximum.

Hence

Mm=D x A C2
- 10 x 8=16 x 11 - 10 x 8 = 96 foot tons.

And by equation (a) of the preceding paragraph,

p 1 -256 tons per foot run.

We will now calculate the moment M at a section C,

due to a uniform load distribution p.
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From Fig. 19,

M = 3 x D - 3# x 1-5 = 35-796 foot tons.

But for the moment M' at Cx due to the load distribu-

tion indicated in Fig. 18, we have

M' = 3D = 16 x 3 = 48 foot tons,

a result considerably in excess of that obtained on the,

hypothesis of a uniformly distributed load.

T, FIG. 19.

9

We will now obtain the maxima shearing forces at

the centre of the beam, 1st, for the uniformly distributed

load, and 2nd, for the real distribution.

1st. From Fig. 20 we have for the centre of the beam

and taking moments about B,

D x22 = ll_p x 5-5.

Hence
V = 3*454 tons.
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2nd. From Fig. 21 we obtain

and taking moments about B we have

D x 22 = 10 x 11 + 12 x 3.

Hence
V= 6 * 64 tons nearly.

The latter value of V differs therefore considerably
from the former.

FIG. 21.

fltar*

From the above example we gather that the deter-

mination of M and V on the hypothesis of an imaginary
uniform load distribution involves considerable error.

The proper mode of procedure is therefore that indi-

cated in para. 9.

[Note. If, however, only one concentrated load acts

on the beam, the imaginary and the real load distribu-

tion give the same results.]

15. Combined effect of the permanent and accidental

loading of a Beam. The simultaneous action of the

weight of a beam and of its accidental or temporary load

(the former of which makes itself more especially felt in

the case of bridges of long span) can evidently be dealt

with by a combination of the methods above described.

Suppose however, that for a first approximation to the

calculation of the shearing forces and moments at any
section of beam under consideration, the weight of the
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beam is uniformly distributed along its length, then

the results if obtained according to paras. 9 and 12

must be combined. To effect this the weight of the

bridge may be obtained from empirical formulae de-

duced from numerous structures of a similar class.

For instance, calling w the weight of the bridge, then,

as an average for single line bridges,

?= 1763 68 + 20- 16 I,

where w is in Ibs. and I the span in feet. [A better

formula for deducing approximately the weight of a

girder from its known load is given in Professor Unwin's
1 Iron Bridges and Koofs.'

Cs-Zr
Where
W = Total external distributed weight in tons (exclusive of girder).W = Weight of girder itself in tons.

/ = Clear span in feet.

s = Average stress in tons per square inch of the gross section

of the booms, at the centre, usually 4.

r = Ratio of depth to span.

C a coefficient depending on the description of girder.

VALUES OF C IN DIFFERENT BRIDGES.

Conway, tubular .............. 1700

Britannia ............ 1461

Torksey ............ 1197

Cannon Street, box-girder ........ 1540

plate-girder ........ 1598

Charing Cross, lattice ...... .. .. 1880

Cruinlin, Warren ............ 1820

Lough Ken, bowstring .......... 1490

Small plate girders, 30 ft. to 60 ft..... 1280]

Having ascertained the greatest shearing forces and

bending moments at any sections due to the weight of

the bridge (estimated by the above formula) and to the

greatest temporary load, the dimensions of these sec-

tions must be calculated and from tiiem the real weight
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of the bridge. Then the maxima shearing forces and

bt nding moments for the various sections must be again
determined on the basis of the corrected weight of the

structure together with its temporary loading, after

which the dimensions of the various sections should be

redetermined.

In road bridges the maximum temporary load is that

which arises from a crowd of people. Now from five to

six persons is the maximum number which could be

accommodated per square yard, and the average weight
of a man does not amount to more than 155 Ibs. Hence

in road bridges the maximum temporary load v;ill be

from 775 to 930 Ibs.

For bridges on turnpike roads the greater number can

be considered as the limit.

[In English practice the weight of a crowd of people
has been taken at 40 to 50 Ibs. per square foot. The

weight of a dense crowd may attain to 84 Ibs. Generally,
the load on the footways of bridges may be taken at

70 Ibs. per square foot, while for bridges carrying road

traffic from 80 to 120 Ibs. per square foot of roadway

may be allowed.]

KESOLUTION OF FORCES.

16. Resolution of a Force in two directions. A force

P, Fig. 22, can be resolved into two components

having given directions by FlG 22< FlG 22A Q

means of the parallelogram

of forces, i.e. by the appli-

cation of the theorem stated

on page 1. The direction

arrow of P is reversed, and

then, as in Fig. 22 A, P is made the closing line or

D
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third side of the triangle of forces. The arrows will

now point the same way round this triangle and will

give the sense of the components.
17. Resolution of a Force in three directions. Suppose

that the force P, Fig. 23, is to be resolved into three

components having the given directions P1? P2 , P3 .

Produce P to cut one of the given directions P! in s.

Then, as in para. 1 6, resolve P in the direction of P2

and of the line E, joining s with t the intersection

of the other two given directions. Kesolve K (again

reversing the direction arrow) in the directions P2

and P3 . Then the closed polygon P, P^P^Pg gives

the directions and magnitudes of the three components
Px ,

P2,P3 oftheforceP.

FIG.

[The forces Jt*!, P2 ,
P3 and the reversed force P form

a system in equilibrium, hence the direction arrows

of these forces point the same way all round the

figure.]

If a force is to be resolved in more ilian three given
directions, the problem is indeterminate.

[The problem is also indeterminate if the three given
directions are parallel to that of the given force, or if

they meet in a point.]
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INTERIOR FORCES OR STRESSES.

18. Determination of the interior Forces or Stresses dm
to the exterior Forces. Since the exterior forces main-

tain equilibrium with, and act in opposite directions to

the interior forces or stresses, the latter are equal in

magnitude to the resolved components of the exterior

forces to which they are due. In determining these com-

ponents therefore, the direction arrows of the exterior

forces must not be reversed, otherwise merely the

resolved components of the exterior forces would be

obtained.

For example, if the reaction D of the support A
acting on the two bars AX, A Z, Fig. 24, is known, then

the stresses 1 and 2 in

those bars respectively
are obtained by resolving
D along their directions

without reversing the

direction arrow of D.

Thus D resolved in the directions of the bars AX
and A Z gives & c and c a the required stresses in mag-
nitude and sense.

Note. If from the interior force S in a bar the cor-

responding stresses in two other bars meeting at the

game joint are to be determined
(i.

e. if an interior force

is to be resolved again into interior forces), then the

process described in para. 16 must be carried out, and

the direction arrow of JS must be reversed.

D2
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PAKT II.

BRACED STRUCTURES.

19. General Considerations. In the foregoing para-

graphs it is established that a force fully determined

can be resolved into two or three other components

having given directions. If therefore girders made up
of many parts are so put together that not more than

three bars are cut across by any particular section plane,

then the resultant of the exterior forces on one side

of the section plane can be distributed in the directions

of the cut bars without indeterminateness, and thus

the stresses in those bars can be obtained.

If moreover, a bar is strained by a force acting along
its axis, then this force, whether tensile or compressive,

is uniformly distributed over the whole cross section of

the bar.

On the other hand, if a bar is lent by the exterior

forces, then evidently the stresses due to the bending
are unequally distributed in the interior of the bar, and

the stress over the area of any cross section is not

uniform.

A good structure should therefore be made up asfar as

possible of members in which only longitudinal stresses

arise. This is the case in braced learns.

A simple bracing in its most general form consists of
two booms connected by bars forming a succession of

triangles in such a way that the several members are
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strained only in the direction of their length, i. e. they are

either in direct tension or compression.

It is necessary however, that the bars at their points
of junction should be connected by a simple joint bolt,

or that they should be "
articulated/' as it is termed.

Then the rotation of the bars not being prevented, they
are capable of placing themselves parallel to the direc-

tions of the forces forming the polygon of forces, and

they thus form the corresponding polygonal frame.

In all following examples it will therefore be supposed
that every pair of bars are connected at their intersec-

tion by a bolt. It will also be supposed that the joints
form exclusively the loading points, as is the case in a

properly constructed braced beam, in which the loads -

on the cross girders are transferred to the joints of the

main girder.

If further, the weight of the whole structure is sup-

posed to be equally distributed over the length of the

frame, the weight between any two joints must be con-

sidered to belong half to each joint.

In constructing the diagram of forces for the deter-

mination of the stresses in the several members of the

bridge, the following course of operation will be

followed.

After the distribution of the load on all the joints

is settled, one of the exterior forces (preferably the

reaction of one of the supports) is resolved in the

directions of the bars meeting at the end joint by
para. 16. Then at the next joint the stress obtained is

combined with the exterior forces acting at that joint,

and the resultant is resolved in the directions of the

new set of bars, and so on. The combination of the

successive figures obtained forms what is termed the
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"
stress diagram." For the sake of clearness the stresses

denoted by the lines of the stress diagram are dis-

tinguished by the same numbers as the corresponding
bars in the skeleton drawing or "frame diagram" of

the structure. Moreover, tensile stresses are denoted

by single, compressive stresses by double, and resultants

by dotted lines. Bars in compression are termed
"
struts," those in tension "

braces," or " tension bars."

Although after what has been said in para. 3 no

doubt should arise as to the sense of the interior

forces or stresses, it may be again stated that the

direction arrow of an interior force as obtained from

the stress diagram, is transferred to the bar to which

it corresponds, being placed nearest to the joint at

which the resolution was commenced. Then an arrow

in the opposite direction is introduced near the other

extremity of the bar, and according to para. 3 we

obtain

_, . , . ( compressionFor interior forces { ,

*

tension

while the reverse arrow combination obtains for the

exterior forces.

Suppose the bar under consideration to be cut across,

that part of it only remaining which lies nearest to the

ioint at which the resolution of the forces was made,
and that in place of the portion cut away, the stress

obtained from the stress diagram acts as an exterior

force. Then if the direction arrow of the latter points

outwards, i. e. away from the joint, the stress in the bar

is tensile, if inwards, i. e. towards the joint, compressive.

20. Equilibrium of the Forees in a braced Structure.

-If a braced structure is in equilibrium under tha
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action of the loads applied to it, then evidently the

exterior and interior forces acting at each joint must

be in equilibrium ;
it must therefore be possible to form

them into a closed polygon.
Hence we are able

1st. To ascertain whether the requirements of the

several bars meeting at a joint have been properly
fulfilled.

2nd. With n bars meeting at a joint to ascertain the

stresses of two of them, if the exterior forces acting at

the joint and the stresses of n 2 of the bars are given
in direction, sense, and magnitude.
For example, suppose that the forces P, 4, 5 and 9

acting at the joint K (Fig. 25) are known and 7 and 8

unknown. Combine the known forces 4, P, 9, 5 for a

resultant R, reverse the direction arrow of E and resolve

it into the two components 8 and 7 by drawing lines

through its extremities parallel to their directions.

We will now proceed to the construction of stress

diagrams for braced structures, dividing the latter into

the two following classes, viz. :

a. Braced beams subject to a constant load.

b. Braced beams subject to a travelling load.

In the first class are braced beams employed in

roof construction, also lattice, suspension and combined
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lattice and suspension arrangements together with

cranes, etc.; while to the second class belong bridge

girders.

BRACED STRUCTURES WITH CONSTANT LOADS.

21. Roof Trusses. In making calculations for roof

constructions a uniform vertical load is usually assumed

to act upon the rafters. This is not strictly correct, as

the wind pressure varies from the horizontal through an

angle of about 10. Since, moreover, greater safety

will be ensured if the greatest wind pressure is assumed

to act simultaneously with the greatest snow pressure,

in practice it is usual to make a single calculation based

on the above hypothesis, this course will be followed

here for the sake of simplicity.
The loads on a roof will therefore consist of

1. The dead weight of the structure, or the perma-
nent load.

2. The weight of the greatest snowfall covering it.

3. The greatest wind pressure.

DEAD WEIGHT OF KOOFS.

22. The following table gives approximately the

weights in kilos, per square metre and Ibs. per square

foot of various kinds of roof coverings :

WOODEN Boors.
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SNOW PRESSURE.

23. The greatest depth of snowfall in Mid-Europe is

about 0*625 metre, or 2 feet nearly. The specific

gravity of snow is about one-eighth that of water.

Since 1 cubic metre of water weighs 1000 kilos., the

snow pressure will amount to 78 kilos, per square metre,

or 15 '6 Ibs. per square foot

over the horizontal projection

of the roof.

This pressure decreases per

square foot in the ratio of

the half span f- (Fig. 26)*
j-

'

to the length of the rafter I.

The following table gives its value for the different

values of the ratio -
s

SNOW PEESSFBB.
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[In England a snow pressure of from 5 to 6 Ibs. per

square foot of area covered may be taken as giving suffi-

cient security.]

WIND PRESSURE.

24. The magnitude in kilogrammes per square metre

of the pressure p which the wind exerts on a plane

normal to its direction, is given by the empirical

formula

where v is the velocity of the wind in metres per second ;

or if v is taken in feet,

p = 00 231 v2 Ibs. per square foot.

Since the direction of the wind usually makes an

angle of about 10 with the horizontal, its direction will

make an angle a + 10 with a

plane A B inclined a. Draw
AD perpendicular to the direc-

tion of the wind meeting B D
parallel to that direction in D,
then the wind pressure acting on

a surface of length A B and

having a unit of breadth is

or since

we have

AD = ABsin. (a 4- 10)

W=#.ABsin. (+ 10).

Hence the wind pressure per unit of area on A B is

W
^ = ^=P-^.(a + W) . . . L
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Kesolve w into a vertical component g and a compo-
nent 8 acting along A B, then

q _ sin, (a + 10) ^

but

Hence

w sn.

90 - a.

1 _ sin - ( + 10)
?

"~

cos. a

and substituting the value of w obtained in L,

p. sin.
2
(a + 10) .... II.

cos. a

If v = 31 * 6 metres is taken as the maximum velocity

of the wind, then

p = 113 kilogrammes per square metre;

taking v = 100 feet, we have

p = 23 Ibs. per square foot.

If h is the height of the roof and s the span, then

2h
tan. a =

s

The following table gives the values per unit of area

of the vertical component of the wind pressure on roof

planes having various inclinations.

VERTICAL COMPONENT OF THE WIND PRESSURE.
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By adding together the permanent load, the maximum

weight of snow, and the vertical component of the wind

pressure, the total vertical load is obtained.

25. [Note. The above treatment of the question of

wind pressure cannot be regarded as satisfactory. It has

been pointed out by Professor Unwin that wind

pressure, like fluid pressures generally, acts normally
to the roof surface instead of vertically, as is the case

of the other loads to which a roof is subject. The

usual direction of the wind is probably horizontal, and

though it is quite possible that this direction may
occasionally make a considerable angle with the

horizontal, becoming, for example, normal to roofs of

high pitch, it can very rarely, if ever, act vertically.

Now a horizontal or normal wind can act on only one

side of a roof, and it is evidently possible that this

partial or unsymmetrical loading may produce a much

greater distorting effect on the structure generally, and

greater stresses in parts of the bracing than a uniformly

distributed vertical load. Moreover, even on the sup-

position of a wind acting vertically, there will be a

horizontal component which it would be unsafe to leave

out of calculation.

It is therefore evidently necessary to ascertain what

will be the effect of a horizontal or normal wind acting

on one side of the roof, thus one stress diagram will not

suffice.

The following formula deduced by Hutton from

experiment gives the value of the normal pressure of

the wind on any plane surface in terms of P the

pressure on a plane surface perpendicular to its

direction and i the angle of inclination of that

direction to the plane of the surface.

Normal pressure P =P sin.
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The maximum force of the wind in England has

been variously taken at 40 and 50 Ibs. per square loot

of surface perpendicular to its direction. Substituting

either of these values of P in the above equation the

normal pressure on the surface is obtained if the

direction of the wind is known. Supposing the direc-

tion of the wind to be horizontal, i is equal to the

inclination or pitch of the roof. The horizontal and

vertical components of th wind's normal pressure can

be obtained either by construction or by calculation.

The following table, taken from Professor Unwin's
* Iron Bridges and Roofs,' gives the values of the normal

pressure (Ptt),
and of its horizontal and vertical com-

ponents (PA and PJ for a horizontal wind acting with

a force of 40 Ibs. per square foot of vertical surface

exposed to it, on roofs of various pitch.

To determine the stresses in the various members of

a roof truss it will be necessary therefore

1st. To draw a diagram corresponding to the dead or

permanent load, including the weight of snow if it is

thought necessary.

2nd. Assuming the direction of the wind to be

horizontal, to draw either (a) a diagram corresponding
to the normal pressure obtained, as in the above table,

or (&) to draw two diagrams, one corresponding to the
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vertical and the other to the horizontal component of

the wind pressure. The latter mode of procedure (b)

will in some cases be simplest, though in other cases

the diagram of the horizontal component may, from

the coincidence of a large number of lines, give a bad

figure.

Now if the wind instead of being horizontal is

supposed to have a direction normal to the roof surface,

it is evident that on the one hand the normal pressure

diagram for a horizontal wind read off on a different

scale will give the stresses due to a wind acting

normally, while on the other hand the horizontal com-

ponent diagram for a wind acting horizontally, read off

from a new scale, will give the stresses due to the

horizontal component of a wind acting normally.

Similarly the vertical component diagram for a hori-

zontal wind can be used to obtain the stresses due to

the vertical component of a normal wind. It is usual

to assume the direction of the wind to be horizontal,

but it is possible that a normal wind may produce

greater stresses on some bars.

Having constructed the stress diagrams, it will be

necessary to make three tables, one giving the stresses

due to the dead load, another those due to the wind

pressure, and a third giving the total stresses due to

the wind and dead load together. The third table will

then give the maximum stresses on each member of

the roof.

In roofs provided with an arrangement permitting

expansion at one of the supports, it will be necessary to

draw diagrams to determine the wind pressure on each

side of the roof separately, since only one of the

supports can furnish the necessary reaction.]
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STKESS DIAGRAMS.

26. The German Truss, Fig. 28. The rafter A B ia

divided in this case into two equal segments A E and

E B at the joint E. Suppose the load 2 P to act on

each segment of the rafter, then P will act at the

extremity of each segment. Hence on the middle

joints E, B, F, there acts a load 2 P (since these joints

are loaded on both sides), but at the extremities A
and D of the rafters there is only the load P.

FIG. 28.

Each of the two supports has to supply a reaction

equal to half the total load. Each reaction is therefore

4 P P = 3 P, and this reaction must be considered to

act as an exterior force on the adjacent bars.

In the stress diagram the reaction 3 P = a b is first

resolved into the stresses 1 and 2 of the bars A E and

A C. At the joint E there are now the forces 1, 2 P, 3

and 4, of which 1 and 2 P are known. Combine
2 P = a d with 1 for a resultant c d and resolve e d
into the stresses 3 and 4 which are the required com-

pressions. Proceeding to the joint B, combine 4 and
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df for a resultant ef and resolve it into the forces 5

and 6. The remaining half of the diagram will, on

account of the symmetry of the structure, be similar

to that already drawn.

27. The English Eoof Truss, Fig. 29. Suppose each

of the four segments of the rafter to be loaded with

2 P so that each of the two supports has to supply a

reaction of (8
-

1) P

FIG. 29.

In the stress diagram, resolve the reaction a b = 7 P
into 1 = a G parallel to A E and 2 = c ~b parallel to A F.

Proceeding to the joint E, combine 1 with a d = 2 P
for a resultant e d and resolve c d into 3 = c e parallel

to E F and 4 = e d parallel to E G. Then passing to

the joint F, combine 2 and 3 for a resultant eb and

resolve e I into 5 = e f parallel to F G and 6 = bf
parallel to F H. Proceed to G and combine 4 and

2 P = dg with 5 for a resultant gf, resolve gf into 7

parallel to G H and 8 = hg parallel to G F. At the

next joint H combine 6 and 7 and obtain h b, resolve h b

into 9 = h i parallel to H J and 10 = ib parallel to H G.

At J combine 8, 2 P, and 9 for a resultant i k and resolve

i "k into \\ = il parallel to J C and 12 = IJc parallel to

J B. Finally, at the joint B combine 12 and 2 P for a



TEE BELGIAN TBUSS. 49

resultant 2m and resolve Im into 13 = mn parallel to

B C and 14 = I n parallel to B D.

From the symmetry of the structure the stresses in

the corresponding bars on the other side of the centre

line are identical with those already obtained.

28. The Belgian, or French Roof Truss, Fig. 30.

Suppose that each of the four segments of the rafters

are loaded with a weight 2 P, so that the load distribu-

tion is the same as in the last case*

FTG. 30.

In the stress diagram, resolve the reaction 7 P = a I

into 1 = a e parallel to A E and 2=cl parallel to A F.

At the joint E combine 1 ac with 2 P = a d for a
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resultant e d and resolve cd into 3=ce parallel to EF
and 4 = ed parallel to EG. Passing to F, 2=cl and

3 = c e are combined for a resultant & e and b e is resolved

into 5 = ef parallel to P G and 6 =/&. At G, the

resultant of the three known forces 4, 5 and 2 P must

be resolved into three forces in the directions G C, G J

and G H
;
and this resolution is indeterminate. We

must therefore determine one of the three unknown

forces for example 7. Now from the symmetry of the

position of the two tension bars G F and G J with re-

spect to G C the stresses 5 and 9 may be assumed to be

equal since they resist 2 P in a similar way. The com-

pression 7 on the strut G C must therefore be taken as

the resultant of the two equal tensions 5 and 9 and of

that component of 2 P which is parallel to G C. Hence

e g must be made equal to 5 and parallel to G J, and

g k equal to hi, then fk is parallel to 7. Thus h k is

the resultant of 7, 5, 4 and 2 P, and h k must therefore

be resolved into two components k I = 9 and I h = 8.

The resultant & k of 6 = If and 7 = / k is resolved

into 10 =s Im and 11 = k m, then 8 = I h and 2 P = h n

are combined and their resultant In is resolved into

12 = v n and 13 = v I Finally the resultant of 11, 9

and 13 is vm = 14.

29. The Bowstring Roof, Fig. 31. In this form of

roof which is employed to cover a wider and higher

space, the snow and wind pressure cannot be assumed to

be the same per unit of area over the several segments

AC, C E, EG, G J, and therefore the vertical com-

ponent of the wind pressure and the weight of snow

per unit of area of each individual segment must be

separately determined from the tables given in pages
41 and 43. Only the weight of the structure, L-e. the
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permanent load, can be considered as uniformly dis-

tributed over the several segments.

FIG. 81.

Suppose that Pn P2 and P3 are the loads on the

three upper joints C, E, Gr, then each reaction will be

D = P1 + P2 + P3 .

In the stress diagram the reaction D = a 5 is resolved

into Issae parallel to A and 2 = b c parallel to> A D.

E 2



62 GRAPHIC STATICS.

At the joint C, 1 and Pj are combined for a resultant

cd, and this resultant is resolved into 3 = ce parallel to

C D and 4 = e d parallel to C E. Passing to the joint D
combine the already determined forces 2 and 3 for a

resultant I e and resolve the latter into 5 = ef parallel

to El? and 6 =/& parallel to DF. At the joint E,

obtain fg the resultant of 4, 5, and P2 and resolve fg
into 7 =fh parallel to EF and 8 = hg parallel to

E G. From 6 and 7 the resultant I h is obtained and

resolved into 9 = h i parallel to G F and 10 = i b

parallel to FH. Finally, 8, 9, and P3 are combined

and their resultant b i is resolved into 11 = ik parallel

to GH and 12 = k I parallel to G J.

BEAMS SUPPORTED AT BOTH ENDS.

30. The Simple Truss, Fig. 32. In this form of truss

the beam A B is suspended at its centre C by an iron

FIG. 32.

(L 6

rod, or by a wooden king-post to the joint D of the rafters

A D and B D, and supported at its ends. The half of the

load 2 P concentrated at C falls on each of the supports

since A C = C B. In the stress diagram make a I = P
and resolve ab into 1 parallel to AC and 2 parallel to

A D. For the joint C combine 2 P = a d with 1 for a

resultant c d and resolve c d into 3 parallel to CD and
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5 parallel to C B. Since finally the forces 2, 3 and 4

acting at D are in equilibrium, they must form a closed

polygon, hence b e = 4.

From the symmetry of the figure 2 = 4 and 1 = 5.

But since the tension bar CD must directly support
the load 2 P, the triangle of forces abc will suffice

for the determination of all the stresses.

31. The Simple Inverted Truss, Fig. 33. This is

merely a simple truss inverted, and its bars will there-

fore have to resist stresses of
FlG

the opposite kind to those of

the simple truss.

Now the strut C D must

directly support the load 2 ?
and the forces 1 and 5 must

from the symmetry of the

positions of the bars be equal. Hence it is merely

necessary to construct the triangle a b e.

N.B. Suppose in the two preceding paragraphs that

the load 2 P instead of being concentrated at C is

uniformly distributed over the beams A B, then half of

this load is borne on AC and half on C B. By reason

p
of the load P over the segment A C, ^ will act at A

a

and also at C, and by reason of P over the segment C B
p- will act at C and B. Thus at A and B there is a

p
reaction ^ and at C a load P. Hence the new stress

43

diagram will give stresses only half the amount of

those given above, i. e. a simple truss will bear a uni-

formly distributed load twice as great as that which it

could support concentrated at its centre.
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32. The Queen-post Truss, Fig. 34. If the beam if

suspended at two points, and loaded at those points

FIG. 34.

- r, * T f

with a weight P, then by symmetry the reaction arising

at each support will be P. Eesolve the reaction P= a&

into 1 = I c parallel to A E and 2 = c a parallel to A C.

Resolve the interior force 1 (reversing its direction

arrow) into 4 parallel to EF and 3 parallel to EC.

Finally for the joint C draw the quadrilateral aled
made up of the forces P, 2, 3, and 5 acting at C ; thus

From the symmetry of the figure it is evident that

1 = 7; 2 = 8; and 3 = 6.

33. The Inverted Queen-post Truss, Fig. 35. This is

merely the queen-post truss of Fig. 34, inverted, con-

sequently the similarly

designated bars of both

structures suffer stresses

equal in magnitude but

opposite in kind.

Since now by para. 32

the forces 2, 5 and 8 are

equal and the force 4

is equal to 5 but of opposite kind. Hence (since

1 = 7 and 3 = 6) the triangle of forces a & o suffices

for the determination of the required stresses.

The numerous other forms of truss can be simi-

larly treated, but since some of them can be, brought

FIG. 35.

L
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under the head of "braced" or "lattice" girders

we shall not make a separate reference to them

here.

BEAMS FIXED AT ONE END, CANTILEVERS.

34. The Simple Cantilever, Fig. 36. In this struc-

ture the beam BA is loaded at A, suspended by a

tie-rod A C and made fast in the wall at B.

Resolving P into 1 and 2, we have 1 as the tensile

stress in CA and 2 as the compressive stress in BA.

FIG. 36.

If (as in Fig. 37) the beam AB is supported at A
by a strut C A from beneath, the above conditions of

stress are merely reversed.

35. The Braced Cantilever, Fig. 38. In this case the

only exterior force is the load P suspended at A. For

the stress diagram draw a b = P and resolve it into

1 parallel to A C and 2 parallel to A B. Proceed to B
and resolve 2 = a c into 3 parallel to B C and 4 parallel
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to B D. For the joint C combine 1 and 3 for a resultant

b d and resolve it into 5 parallel to C D and 6 = b e

parallel to CE. Finally for the joint D combine

4 and 5 for a resultant e a and resolve it into 8 = af
parallel to D F and 7 = ef parallel to 13 E.

36. The "Perron" Roof, Fig. 39. This roof can

evidently be treated as a braced cantilever. Suppose
P to be the load on each of the four segments of the

rafter A H, then at the extremities of the latter there

p
acts a load

^ ,
and at each of the intermediate joints a

load P.

For the stress diagram draw a "b =
-^ and resolve it
JL

into 1 = a e parallel to A C and 2 = b e parallel to A B.

Proceeding to B combine 2 with P = b d for a resultant

d e and resolve it into 3 = ce parallel to B C and 4 = e d

parallel to D B. Now for the joint C combine 1 with 3 for

a resultant ea and resolve e a into 6 = a/ parallel to C E
and 5 = ef parallel to C D. For the joint D combine

5, 4, and P = dg for a resultant/^ and resolve fg into

7 = fh parallel to DE and 8 = gh parallel to DF.
The forces meeting at the joints E, F, Gr, and H are

similarly treated, and we obtain 9 = ^*; 10 = at;
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37. The Lattice Cantilever, Fig. 40. Suppose the

structure loaded merely with a weight P suspended

at A, to be fixed in the wall at B and C, and to be

symmetrical about the horizontal line A X.

FIG. 40.

P

f

In the stress diagram begin by resolving the exterior

force P = a 6 into 1 and 2 respectively parallel to the

directions of the bars A E, A F ;
the force 1 must now

be resolved into the forces 3, 4 and the force 2 into 5, 6,

since 1, 3, 4 and 2, 5, 6 meet in E and F respectively.

We thus arrive at the joint G, for which the two

known forces 3 and 5 must be combined and their

resultant resolved into 7 and 8, i. e. in the stress diagram
3 = ~be is combined with 5 = e/and their resultant /&
is resolved into 7 parallel to G J and 8 parallel to G K,

Proceeding similarly, the stresses in the bars meeting at

the remaining joints H, J, K . . . are determined and

the stress diagram obtained is symmetrical about the

axis XX'; only one half of it therefore need be con-

structed. For instance, by reason of their symmetrical

disposition with respect to P and to the axis XA,
3 =2; 3 = 6; 4 = 5; and so on. These equal stresses

will however, be opposite in kind ; those indicated in
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the diagram by single lines being tensile, and by
double lines compressive.

38. Braced Structures of tlie most general form with

fixed Load. In Fig. 41 such a structure is shown,

having for the sake of simplicity of figure only four

FIG. 41.

bays. It is formed of two polygonal booms ACE..
and A B D . . divided by verticals into unequal bays.

It is symmetrical about the centre line E D, and

has two diagonals inclined in the same direction.

The upper joints only are supposed loaded, and joints

symmetrically situated about the centre line have equal
loads. The reactions D at A and A' are therefore each

equal to

For the stress diagram &b = D is drawn first and

resolved in the direction of the bars A C, A B, thus 1

and 2 are obtained as the stresses in those bars. Pro-

ceeding to B, 2 = fcc is resolved into 3 parallel to BC
and 4 parallel to B D. For the joint C combine 3, 1,

and P for a resultant e d and resolve it into 5 parallel

to CD and 6 parallel to CE. For D combine the

known forces 4 and 5 for a resultant/b and resolve the

latter into 7 parallel to D E and 8 parallel to D B.

Similarly for E, obtain from the known forces Q, 6 ancj

7 the forces 9 and 10, and for B x obtain from 8 and 9
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the forces 11 and 12. Finally 13 is the closing line of

the four-sided figure formed of the forces 11, 10, P, 13,

which act at C^.

The structure shown in Fig. 42 differs from that in

Fig. 41 only in that the diagonals have opposite posi-
cu

FIG. 42.

tions. The corresponding stress diagram shows that the

similarly figured diagonals differ only in being strained

in the opposite directions. It follows therefore that if

in a braced beam the diagonals have opposite positions

to those of a similar beam, then the stresses in those

diagonals will be of opposite kinds; i.e. if they are

tensile in the one structure they will be compressive in

the other, and vice versa.

39. The Combined Braced Beam, Fig. 43. Suppose
that the two single braced beams shown in Figs. 41 and
42 are placed one upon another and combined so that
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the combined braced beam (Fig. 43) results. Then it

may be assumed that the combined braced beam will

bear as much load as the two single beams together.

If the stresses in the members of the combined

beam (Fig. 43) are to be ascertained, suppose the latter

to be resolved into the two single beams (Figs. 41

and 42), and determine the stresses for each single

beam on the supposition that it bears only one half of

the total load to be borne by the combined beam.

Now, suppose the two beams recombined, and obtain

finally the stresses of the boom segments and of the

verticals in the combined beam by adding their values

as obtained for the single beams.

A braced beam with any number of bays can be

similarly treated.
FIG. 44.

40. Braced Beam with parallel Booms and fixed Load,

Pig. 44, The structure shown is symmetrical about its
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centre line E F and has to sustain over each bay a

uniformly distributed load P, so that at each of the

middle joints D, F, D: , there is a load P and at each

p
of the end joints B, Bx a load -~ . For the reactions at

4
A and Aj

D = 2P.

The vertical end pillar A B has evidently to support
the reaction D directly, hence the bar A C appears to

be unstrained. The force acting at A can therefore be

removed to B without disturbing equilibrium, and con-

sequently the resolution of D is commenced at B.

For the stress diagram make a d = D, and since part
p

of the reaction is balanced by the load ~- at B, make
&

P 3
a b equal to the remainder D ^ = ^ P, and resolve

&

\ P = a I into 2 parallel to B D and 3 parallel to B C.
da

For the joint C resolve 3 into 5 parallel to CD and

6 parallel to C E. Passing to the joint D combine

5 and 2 with P for a resultant e d and resolve it into

7 parallel to DE and 8 parallel to DF. The centre

strut F E has to bear at its top a load P only, and thus

in F E there is a compressive stress 9 = P. Since

the beam is symmetrical about FE the stresses of

the bars forming its right half are identical with those

of the similarly figured bars of the left half.

The beam shown in Fig. 45 differs from that of

Fig. 44 only in the opposite position of its diagonals,

the diagonals of Fig. 45 therefore, undergo the opposite

stresses to the corresponding diagonals of Fig. 44, as the

stress diagram shows.
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The two end pillars A B, Ax BL each suffer stresses of

P P
J5 only, since portions of the reactions equal to D ~ >

i>F

FIG. 45.

\T

e F

-V*

4
* C^ 2 C* 3 2

Jp-* jg

D-if

or - P are directly supported by the bars A D and

AiDi. Moreover the bars BD, D1 B1 appear to be

unloaded, as is also the case with the centre vertical

bar E F, the load P at F being directly supported by
the bars FC and Fd.

41. The Braced Beams of Figs. 44 and 45 combined.

Suppose the two single beams, Figs. 44 and 45,

superposed and combined. We thus obtain the form

of structure shown in Fig. 46, in which the stresses

of those members which coincide must be added while

those of the diagonals remain unchanged. Since the

vertical struts in the two single beams, with the excep-
tion oi the two end pillars, suffer opposite stresses*
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iicnce for each of the centre verticals of the combined

beam we have only the compression P, while fbr the

end pillars we have 2 P.
^ tv ,4-;v

FIG. 46.

IP

St

C

42. Braced Beams with parallel Booms and without

Verticals. In the single braced beam, Fig. 47, the

FIG. 47.

*

9 10

parallel booms are connected by diagonals only. Suppose
in this case also a uniformly distributed load on the

upper boom BBXI then if the total load on the beam
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together with its weight is 4 P, we shall have the load

distribution indicated in the figure, and the reactions

D = 2 P. A portion of these reactions equal to -= will

p
evidently be directly balanced by the loads -~ acting at

Q
B and B!, while the remainder equal to - P will be

<Q

transmitted by the end pillars AB, A^to B and Blf

and thence to the bars 3 and 4. Hence in A C and

A^! the.(e exist no stresses.

q
For Ihe stress diagram, the partial reaction P

transmitted to B is resolved into the bar-stresses

3 parallel to BC and 4 parallel to BD. From 3 the

stresses o = c d and 6 = d b are obtained, the resultant

d e of 5, 4 and P is then resolved into 7 =fd and

8 = ef. Finally 6 and 7 are combined for a resultant

fb and fb is resolved into 9 = fg and 10 = g b.

Suppose now that a second braced beam, having an

equal load and differing solely in the reversed positions

FIG. 48.

r r r r r r r

of its diagonals, is superposed upon, and combined

with the first. Then the booms will coincide, and we

obtain the lattice girder shown in Fig. 48, which will

sustain twice the load of the single girder (Fig. 47).
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The stresses on the members of this structure are

obtained by adding the stresses of the coinciding booms

and leaving those of the diagonals unaltered.

[Lattice girders and girders with parallel booms

generally, are more usually treated by calculation than

by the graphic method.]

BRACED BEAMS WITH PERMANENT AND TRAVELLING

LOAD. (BRIDGE GIRDERS.)

43. Effect of a travelling Load on braced Structures.

Bridge girders have, besides their own dead weight,
which is constant, to sustain a load over the whole

bridge due to the heaviest passing train, The weight
of the bridge may be supposed uniformly distributed

over its whole length, and hence by para. 12 we can very

easily obtain the bending moments and shearing forces

at any section, due to it. It is however, different in

the case of the travelling load. It is necessary in thia

case to determine for what position of the load the

stresses on the various constructional parts of the

girder attain a maximum For this purpose we shall

investigate first the effect produced by a concentrated

load on the bars to the right and left of it, and then

proceed to apply the results obtained.

[Note. In the following figures those portions of a

girder which are left out of consideration are dotted.]

44. Maximum Stress of the Booms. In order to de-

termine the effect which a concentrated load P applied

on the right of the section a /? (Fig. 49) exerts on the

boom E G, i. e. to ascertain whether the stress in E G
is tensile or compressive, suppose the girder cut into

two parts by a section plane aft and that imaginary
exterior forces X, Y, Z, are applied at the points oi

F



66 GBAPSIC STATICS.

section, capable of maintaining equilibrium. Now on

the left portion A E F of the girder there are acting

only the three forces X, Y, Z, and the reaction D at A
due to the concentrated load P. These four forces must

FIG. 49.

therefore be in equilibrium, and hence the algebraic

sum of their statical moments about any point in their

plane must be nil. In order to eliminate the forces Y
and Z, take moments about F the intersection of the

directions of those forces. Thus if d and % are the

perpendiculars dropped from F on the directions of D
andX,

The direction arrow of X indicates that the seg-

ment E G of the upper boom is in compression under

the action of P, and hence every load applied on the

right of the section plane a /3 exerts a compressive stress in

that segment of the upper boom which is cut
Try

the plane.

The effect produced by a load P applied to the left

of the section plane a ft (Fig. 50) can be similarly in-

vestigated. Taking moments about F,

-D1 .c?1 + X.aj = 0; or X = 5ll* .
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The direction arrow indicates that E G is again in

compression ; thus, every load applied to the left of the

segment E G exerts in E G a compressive stress.

FIG. 50.

A&-.

The above reasoning will of course hold good for any
section between E and G.

Hence generally-

The upper loom suffers compressive stress only, and

this stress attains a maximum when the whole girder is

fully loaded.

In a similar way the condition of maximum stress in

the lower boom can be investigated. Suppose a con-

centrated load P to be applied to the right of aft

(Fig. 49). Take moments about G and call d and z the

perpendiculars dropped on the directions of D and Z

respectively. Then

D.<*-Z.3 = or Z =

The direction arrow of Z indicates a tensile stress in

the segment F H of the lower boom.

If the load P is applied to the left of F H (Fig. 50),

then taking moments about G,
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The stress in F H is therefore again tensile, and

hence generally

The lower loom is subject to tension only, and, this

tension is a maximum when the girder is fully loaded.

45. Maximum Stresses of the Bracing Bars. Under

the term "
bracing bar

"
are included those members of

the structure which serve to unite the upper and lower

booms, e. g. the vertical and diagonal bars in Fig. 49.

In order to obtain the stress Y in a diagonal bar F G
(Fig. 49), suppose a concentrated load P applied to

the right of the section

plane a /3, and obtain the

condition of equilibrium for

the left portion (Fig. 51)

of the structure. Taking
moments about the point

in which the boom seg-

ments E G and F H meet

if produced. Then if y and

S are the respective perpendiculars dropped from on

the directions of Y and of D,
D.S

The direction arrow of Y indicates that any load

applied to the right of the lar F G exerts a compressive

stress in F G.

Suppose the load P to be applied on the left of the

section a /3 (Fig. 52), then taking moments about O
and calling y and ^ the respective perpendiculars

dropped from on Y and on Dx the reaction of the

support due to P,
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The direction arrow of Y indicates tensile stress in

FG. Hence

Every load applied to the left of the "bracing bar F G
will exert in that bar a tensile stress.

FIG. 52.

Since then, loads applied on opposite sides of any

diagonal bar produce opposite stresses, hence

A bracing bar is in the condition of maximum stress if

the girder on one side of it is fully loaded and on the

other is unloaded.

The same rule holds in the case of the vertical bars.

To ascertain the maximum stress in J K (Figs. 49 and

50), suppose the girder cut by a section plane 7 e, so

that only three bars including J K are divided. Let a

force P be now applied, 1st, to the right of the section

plane 7 e, and 2nd, to the left of that plane, and obtain

the condition of equilibrium of the two other bars by

taking moments about u, their intersection when pro-

duced. It will then be seen that in the girder (Figs.

49 and 50) any concentrated load P applied to the

right of J K produces in J K a tensile stress, while a

load applied to the left produces a compressive stress.

Hence generally in a braced girder

Each bracing bar is in the condition of maximum stress

when every joint of the girder either on the right or on the

left of the bar is fully loaded.
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46. Girders with parallel Booms. In the case of

braced girders with parallel booms the above method
of investigating the greatest stresses in the several

parts can equally be employed.
In order, for example, to determine the effect pro-

duced by a concentrated load applied to the right of

the section plane a /3 (Fig. 53). Suppose as before,

that by the application of the forces X, Y, Z at the

points of section the equilibrium of the left portion

(Fig. 54) is maintained.

Kesolve vertically, then

f Ycos. (90 -<) = D;

FIG. 54.
x

JK

*' \F I

or, Y =
sin.

In this case Y tends to

produce a right-handed

rotation, and the corresponding direction arrow evi-

dently indicates that the stress in F G due to P is

tensile.

Treating the case of a concentrated load applied to

the left of a P (Fig. 55) in a precisely similar way, we
obtain

sin.



GIRDERS WITH PARALLEL BOOMS. 71

In this case the direction arrow of Y indicates a com-

pressive stress in the bar F Gr.

Hence generally

Every concentrated load applied to the right of the

diagonal bar F G produces tension in it, while a load

applied to the left produces compression. Any diagonal

of a braced girder with parallel booms is consequently in

the condition of greatest stress when the girder is loaded

to Us maximum on one side of that diagonal.

FIG. 55. FIG. 56.

\
P A

The same rule holds also for the vertical bars.

For instance, in order to determine the greatest stress

in the third vertical E F (Fig. 53) draw the section line

7 8 and investigate the effect of a concentrated load P

applied to the right of this section plane, and producing
a reaction D at A (Fig. 56). Apply the forces X, V, Z,

at the sectional parts and resolve vertically, thus

V = D.

Hence the bar F E is in compression.

Again if the load P is applied to the left of 7 S and

produces a reaction D! at B (Fig. 57), then resolving

vertically,

And the direction arrow of V indicates a tensile stress

inEF.
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Hence generally
The vertical lars suffer opposite stresses when the load

'B applied on the right and on the left of them, and their

greatest stress occurs when the girder is loaded to its maxi-

mum extent on one side of them.

F.G.57.

'v F_
In conclusion with regard to the greatest values of

the stresses X and Z of the two horizontal segments
of the booms (F H and E G, Fig. 53), these stresses

will as in all braced girders be a maximum when the

whole structure is fully loaded. Moreover in the case

of parallel booms X and Z are the only horizontal

forces which enter into the case, therefore since no

variation in a horizontal direction can arise,

BRACED GIRDERS FOE KAILWAY BRIDGES.

47. General Case. By means of the results obtained

in the foregoing paragraphs it will not be difficult to

determine the greatest stresses on the various construc-

tional parts of a braced girder.

It must first be ascertained what amount of the dead

load and of the greatest live load on the whole bridge
falls on a single girder. If the total load is borne by n
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equally strong girders, then the dead load together
with the aggregate axle pressures of the heaviest trains

covering the bridge, must be divided by n. Then by
construction obtain, as in paras. 9 and 12, the greatest

shearing forces (Y) and moments (M) at the various

joints of a single girder due to the dead and to the live

loads.

This having been effected we pass to the determina-

tion of the stresses in the booms.

FIG. 58.

Stresses of the Booms. Fig. 58 represents a braced

girder with single diagonals and M: , M2 , M3 . . . . the

maximum total moments at its successive joints ob-

tained by adding the values of the moments given by
the dead and live loads. In order to determine the

stress in any segment FH of the boom, suppose the

girder cut into two parts by a section plane aft and

the right half having been removed apply the forces

X3 , Y3 , Z3 at the points of section. Let V3 be the

shearing force due to the exterior forces acting on

the left portion of the girder, and in order to obtain Xj
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take moments about G the intersection of the directions

of Y3 and Z3 , thus

V3 .*3
- X3 .03 = 0; or X3

= ^l3
.

But the product V3 .v3 is the moment M3 of the exte-

rior forces acting on the left portion of the girder.

Hence

Similarly the stresses of all the remaining segments
of the boom can be obtained. The segments A C, AD
however, which meet at the support, can be most easily
treated by a direct resolution of the maximum support
reaction along their directions. This maximum reaction

will evidently arise when the train moves from B to A
and the leading locomotive axle is over A.

Stresses of the diagonal Bars. The maximum stress

of the bracing bars arises when the moving load covers

one side of the girder and when the larger portion of

the girder ;
i. e. the portion between the bar in question

and the farther abutment, is covered by the moving
load. But since the dead load is constant, it will be

best to determine first the stresses caused in the several

bracing bars by this dead load and then to pass to the

determination of the maximum stresses due to the

moving load. By adding the stresses thus obtained

(having due regard to their sign) we obtain the maximum
total stress on the various bracing bars. The stress

due to the dead load can be treated as has already been

shown for the case of braced structures with a fixed load.

JElence it will be unnecessary to treat it further, and
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we can therefore proceed to the determination of the

stresses in the bracing bars due to the moving load.

For example, the maximum stress Y3 in the diagonal
F G (Fig. 58) will by para. 45 occur when the train, with

two of the heaviest locomotives at its head, coming from

the right abutment B, arrives at the section plane a /3.

Obtain, as in para. 9, the shearing force V3 corresponding
to this position of the load, then Y3 will (since only one

portion of the girder is loaded) be the reaction at the

abutment A.

If then the portion a A /3 (Fig. 59) is in equilibrium

under the forces X3 ,
Y3 ,

Z3 and V3 acting on it, the

algebraic sum of the statical moments of these forces

about any point in their plane must be nil. Hence

taking moments about the intersection of the direc-

tions of X3 and Z3 ,

Since V3 tends to cause left-handed rotation Y3 will

tend to cause right-handed rotation, and hence the

direction arrow of Y3 indicates that the greatest stress

in F G is tensile.
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Note. If the intersection of the directions of the

orces X3 and Z3 is unavailable, the determination of Y3

can be dealt with according to para. 17. Kesolve the

shearing force V3 acting at A, Fig. 60, in the direc-

tion of tha three other forces X3 ,
Y3 and Z3 . Produce

one of them X3 to meet Y3 in s, then the resultant of

V3 and X3 must be equal to the resultant of Y3 and Z3

and have G 8 as its direction. Make a = V3 draw

from the extremities of a lines parallel to X3 and Gs,
and resolve b the resultant of V3 and X3 into Y3 = I o

and Z3
= c 0.

It has been shown above that the maximum stress

in the diagonal bar F G (Fig. 58) is tensile and arises

when the train coming from the right abutment arrives

at the section plane a/3. According to para. 45 the

same diagonal will suffer the greatest compressive
stress when the train coming from the left arrives

at a/3.
FIG. 61.

15
-"'"^ ^

..-'' Xo.

>,.-:'.-

*"-:-.

Let V3 be the shearing force corresponding to thia

position of the load. Then considering the portion

lying to the right of the section plane a ft Fig. 61, on

which, besides the forces X3 ,
Y3 , Z3 ,

there acts only

the reaction V3 ,
and taking moments about 0,

TT . TT f\ "VT Q VQ
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The diagonal F G will consequently be in the condi-

tion of maximum tensile or compressive stress accord*

ing as the train arrives at a ft from the right or from

the left.

Similar conditions obtain in the case of all the dia-

gonals of the left half-girder.

In the right half-girder opposite conditions of stress

obtain on account of the reversed position of the dia-

gonals with respect to the centre line ; i. e. the diagonals
of the right half-girder are in the state of maximum
tension if all the bays to the left of them are loaded,

and in that of maximum compression if all the bays to

the right are loaded.

If in any bay, e. g. the third, a diagonal bar E H,

Fig. 58, leaning to the right is substituted for FG
leaning to the left, then this bar will evidently suffer

stress of opposite kind to that in F G, and it will in fact

suffer the same stress as M N to which its position is

symmetrical.
Stresses of the vertical Bars. By para. 45 the vertical

bars also, are in the condition of maximum stress when

the structure on one side of

them is fully loaded.

Suppose that it is required

to determine U2 the maxi-

mum stress of the second

vertical bar EF, Fig. 62,

then the train coming from

the right abutment must

have arrived at E F. Obtain as in para. 9 the shearing

force V2 corresponding to this position of the wheels, then

V2 will act as a reaction at the abutment A. Suppose
that the portion 7$ A is in equilibrium under the
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action of the forces X2 , U2 , Z-j, and Y2 , then taking
moments about 0,

Since in this case TJi tends to produce right-handed

rotation, its direction arrow indicates that the maximum
stress in E F is compressive.

If the train comes from the left abutment and arrives

at E F, then E F is in the condition of maximum tensioa.

Let V2 be the shearing force due to this position of

the load, then as a condition of equilibrium of the por-

tion 7 B S, taking moments about 0,

V 2 .02 -f- U2 .w2
= 0; or U2

= ^' %

and the direction arrow of U2 now indicates a tensile

stress.

\
ry FIG. 63.

\ F ._~==TV==^ Va

0.^

All the other vertical bars of the left half-girder are

subject to similar conditions
;
that is to say, they are

in the condition of maximum compression if the train

covers all the bays to the right of them, and in that of

maximum tension if the train occupies all the bays to

the left of them.

In the right half-girder, it results from the reversed

positions of the diagonals with respect to the centre
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line, that the vertical bars also, are strained in the

opposite way ;
i. e. the verticals of the right half-girder

are in a condition of maximum compression or tension

according as the train occupies the bays on the left or

right.

48. Crossed, or redundant Diagonals. It has been

shown that in a braced girder of the general form

given in Fig. 58, the bracing bars are alternately in

tension and compression. Since however, it is not

easy to arrange and connect bars capable of resisting

both tension and compression, it is usual to introduce

crossed diagonals in every bay in which the single

diagonals would be subject to both tension and com-

pression. If both these diagonals are constructed as

tension bars incapable of resisting compression, then

each bar will be subjected to stress only by that load

disposition which causes tension in it. In the braced

girder with redundant diagonals (Fig. 64,) therefore,

only the maxima tensile stresses, determined in the

case of the single braced girder, Fig. 58, need be taken

into consideration. For instance, in the third bay there

comes into play in the diagonal FG the tension Y3

(max.) and in E H the tension Y6 . In the same way
the stresses of the crossed diagonals of the remaining

bays can be obtained directly from Fig. 58.
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If the redundant diagonals are constructed solely as

tension bars incapable of resisting compression, then

evidently the vertical bars must be capable of resisting

the maximum compressions arising in them. These

maximum compressions (U) can be determined as in

the case of the girder with single diagonals, Fig. 62.

In conclusion it should be noticed that on account

of the symmetrical arrangement with respect to the

centre line of the various bars of the girder with

redundant bracing (Fig. 64), the symmetrically situated

bars will undergo equal stresses. Thus

Xj = X8 ;
X2
= X

7 ; X3
= X6 ;

X4
= X5 ;

Zi = Z8 ;
Z2
= Z7 ;

Z3
= Z6 ;

Z4
= Z5

and so on.

Note. If the crossed diagonals are so constructed as

to be capable of resisting compression only (as is the

case in wooden structures), then the diagonals or struts

will take up only the greatest compressions, and the

verticals only the greatest tensions of the corresponding

singly braced girder.

49. Special Cases. The determination of the stresses

in the " Pauli
"
and parabolic bowstring girders can be

proceeded with in the same way as in the case of the

bowstring suspension shown in Fig. 64.

The former has virtually the same form as the bow-

string suspension, while the latter is of the form shown

in Fig. 65. The upper joints lie on a parabola whose
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vertex is at the centre joint s and the lower joints are

in a straight line. More rarely the reverse arrange-
ment is met with.

In the " Schwedler
"
girder, Fig. 66, in the girder

with parallel booms, Fig. 67, and in the half parabolic

girder, Fig. 68, the crossed or redundant diagonal
braces are required only in the respective centre bays,

since it is in these bays only, that the diagonals are

subject to both tension and compression. For further

information with respect to the systems above named
the reader is referred to the '

Baumechanik,' published

by Dominicus of Prague.

FIG. 66.

PIG. 67.

PIG. 63.

50. Fixed Load in place of travelling Load. The

graphic determination of the stresses in bridge girders

becomes still simpler if (as has hitherto been the almost

universal practice) a corresponding fixed load is taken

into consideration in place of the real travelling load.

This mode of procedure leads, however, to results which

are far from correct, more especially in the case of

G
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railway bridges of short span ;
it is however, permissible

in the case of road bridges, since for them the worst

case of loading is usually taken as a crowd of people.

The maximum bending moments are obtained as in

para. 12 by means of a parabola, while the shearing

forces corresponding to a load covering the bridge on

one side of any section can be determined by means of

the funicular curve and polygon of forces.

Since the determination of the maximum bending
moments has been fully explained in the paragraph
above named, it will be necessary only to deal with that

of the shearing forces due to a travelling load partially

covering a beam.
FIG. 69.

Am

T"

Let q be travelling load per unit of length of a beam

A B, Fig. 69, and I the length of the beam. Then the

total travelling load is q . I and the reactions (if the load

covers the beam) are both equal to =^ . The funicular
t

polygon corresponding to this position of the load

becomes a parabola whose vertex 8 is obtained by
.

making m s =^^ ,
where H is the polar distance in the

corresponding polygon of forces. In this polygon of

forces A! B! = q . I and Ax h = h Bx
=

-^- . Suppose that
Zt

the maximum shearing force due to the travelling load
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is to be determined for any cross section C distant x

fi-om A, then the load must cover B C the greater por-

tion (or the distance of C from the farther abutment)

only, and the portion of the load q . x on the smaller

portion A C must be supposed removed. This portion

of the load can (as in para. 9) be immediately cut away

by drawing a tangent to the parabolic funicular curve

at e (vertically under C) and producing it to cut a ver-

tical dropped from the nearest "support in %. Then
aL l> is the new closing line of the funicular polygon cor-

responding to the partial loading of the beam. In the

polygon of forces draw Sx parallel to ax I through O
the pole and set off Aj V on the line of loads equal to

q . x, then SXV will be the new reaction at the support A
and SXV is therefore the required shearing force at C.

51. Concentrated Loads on small Spans. In bridges
of small span the stress due to a heavily laden waggon

may be greater than that due to a crowd of men. In

Figs. 70, 71, and 72, three different load distributions

are given. That of Fig. 70 serves for bridges in ordi-

nary country roads, that of Fig. 71 for bridges in

turnpike roads, and that of Fig. 72 for bridges in large

FIG. 70.

towns, where not unfrequently from the transport of

heavy machines, boilers, railway waggons, and dis-

mounted locomotives, very considerable axle pressures

have to be provided for.

G 2
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The weight of a pair of horses has been taken in

each case as 0*6 ton. Bridges constructed for the load

indicated in Fig. 72 can also be used for tramways.
The determination of the shearing forces and bending

moments can be proceeded with as in para. 9.

FIG. 71.

CONSTRUCTION OP THE LINE OF KESISTANCE OF AN
AKCH.

52. In conclusion it is proposed to determine the

conditions of stability of a symmetrically formed and

symmetrically loaded arch, by the construction of its

line of resistance.

Let A B C D (Fig. 73) be any portion of an arch

whose thickness perpendicular to its face will in the

following investigations be considered as unity. Two
forces G and P act on this fragment, of which the first

ia the weight of the portion A B C D of the arch-ring

Together with its superincumbent load BE EC, while

the second is the pressure transmitted from the adjacent
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portion of the arch. The resultant of G and P must be

balanced by the reaction of C D.

If then the portion ABCD rests in stable equilibrium
on the skewback C D under the FIG. 73.

action of these forces. Then

1. In order that rotation about

the edges C and D may not take

place, the resultant R of P and

G must cut the plane C D some-

where between those edges.

2. In order that no sliding

may take place along C D, the

angle < made by B with the normal N S must be less

than the angle of friction of the stone of which the

arch is built, which angle is about 30.

3. The greatest pressure per unit of area on any part
of the plane C D must not exceed the safe resistance of

the material.

In order therefore that every portion of the arch

may be in stable equilibrium, these three conditions

must hold at every joint.

By joining the successive points in which the re-

sultant of the exterior forces cuts the successive joints a

continuous line, termed the " Line of Kesistance," is ob-

tained, which line is clearly the funicular polygon of the

exterior forces acting on the several portions of the arch.

The best distribution of pressure in the arch-ring
would therefore occur if this line of resistance co-

incided with the curve passing through the centre point
of each joint, for then the pressure would be uniformly
distributed over the plane of every joint.

In practice however, such a high degree of stability

is seldom attained and it is usual only to provide that
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the stress on every joint should nowhere change its

sign ; i. e. become a tension instead of a compression.
Let AB (Fig. 74) be any joint, then the limiting

condition of the compression on A B
is that this compression should be

nil at A and increase uniformly
from A to B. The resultant com-

pression on A B will therefore be

represented by a triangle, and if

A B = b and B C (the maximum

^ compression at B) = N,

Since under these conditions E must pass through
the centre of gravity of the triangle BOA, the point
O in which E cuts A B is determined by making

BO =
5 AB.o

Hence, it follows that in a properly constructed arch the

line of resistance should cut every joint within the centre

third of the length of that joint.

From equation (a)

and this equation therefore gives the value per unit of

area of the maximum compression N, which maximum

compression is double as great as it would be if E
passed through the centre point of A B.

Considering the symmetrically formed and sym-

metrically loaded arch in Fig. 75, it is evident that

the two halves A B C D and A B Cj Dj produce equal

but opposite moments relatively to the skewbaeks I) O
and DiCj exerting at the crown a mutual horizontal
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thrust H. The same conditions of equilibrium must

evidently obtain in the case of both half arches, hence

the half A BOD alone need be taken into considera-

FIG. 75.

tion, the other half being supposed replaced by the

horizontal thrust H.

The question arises, how to determine the height
above A of the point of application of H ?

In order that the arch may have the highest degree

of stability, the line of resistance should pass through
the middle point of A B

; this would therefore be the

point of application of H. If however, it is merely
intended that the designed arch should possess a degree
of stability which comes within the prescribed limits,

i.e. that the line of resistance should nowhere cut a

joint outside the middle third of its length, then the

point of application of H will be within the centre third

of AB. According to the theory of least resistance,

the horizontal thrust on AB will be the minimum
consistent with the maintenance of equilibrium. Sup-

pose provisionally that the arch is stable and let G be

the weight of the half arch together with its load, then

the resultant of G and H ought to cut the joint C D
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within its middle third. Then taking moments about

the point s,

H.A = G.<7;orH =^ . . (y)

Thus H is greater the greater h is and the less g is,

and in the limiting case B = -5- and C s = -5-o o

In order to simplify the construction of the line of

resistance, the load on the arch is reduced to such an

equivalent mass of the arch material, as will exert the

same pressure as the actual load.

Thus if 7 is the weight of a cube foot of the arch

material, 7! the weight of a cube foot of the superin-
cumbent material, and h its height above any point on

the extrados of the arch, then the height y of the corre-

sponding equivalent load is given by the equation

7X . h = y . y ;
whence y = -^- . . . (S)

If the arch is a bridge arch the live load must be

taken into account and must also be represented by an

equivalent mass of arch material. The live load per

square foot of roadway may be taken in street bridges
at 80 Ibs. and in railway bridges at 290 Ibs. Thus if

g is the weight per square foot of the live load on a

bridge and 7 the weight of a cubic foot of arch

material, then the height (yi) of homogeneous material

equivalent to the live load is given by the equation

ff
= y-yii Or

2/i
= ~ ()

[In English practice it is usual to allow about 70 Ibs.

per square foot as the weight of a crowd of people,
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and for railway bridges about 2 tons per foot for each

line of rail.]

In Fig. 76 an arch with its load line deduced from

equations (8) and (e) is shown. The line of resistance

of this arch is to be drawn.

FIG. 76.

Assuming the thickness of the arch perpendicular to

the plane of the paper to be 1 foot and the weight of a

cube foot of tbe arch material to be taken as the unit

of the forces acting on the arch, then the areas

A C G! A1? Ax Cj C2 A2 , etc., are evidently proportional
to the weights of the several vertical strips and may
therefore be taken to represent those weights.
The weight of the vertical strip above the skewback

is borne entirely by the abutment and does not there-

fore enter into the question of the determination of the

stability of the arch.

The breadths of the strips should be so small that
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they are nearly trapeziums* The areas of these trape-

ziums will then be equal to the product of their

breadths into their mean heights, and their centres of

gravity will be approximately in their centre lines.

In supposing that at the joint m n the weight
A A3 C3 C of the first three trapeziums acts, there is

an error, since the real weight acting at that joint will

be less than A A3 C3 C by the triangle A3 m n. Hence

the joint at which the weight A A3 C3 C acts must be

FIG. 77.
somewhere a little lower

down. To obtain this joint

bisect A3 m (the base of the

triangle of error), join o the

point of bisection with C3

and draw A3 3 parallel to

o C3 . Then the joint passing

through 3 is the one re-
'"

quired, and on this joint

act the combined weights
of the three first strips.

This correction of the

joint amounts to reducing a

triangle a h e to a parallelo-

gram adli (Fig. 77) having as one of its sides the hypo-
thenuse a c of the triangle produced to a fixed point d.

Now a o = o I, and cf is parallel to o I and d e, hence

the area a d I i or I c d Ifit is equal to a "b c. For

and

but

or

A abe = ao.be

Icdlfk = adli = fe.dg,

Therefore A ale = area Icdlfh.
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By means of the above construction obtain a new

series of joints on which, the weights of the strips?

ACu AC2 , AC3 act. Then determine the horizontal

thrust H by equation (7) or more correctly from

where r is the radius of curvature in feet at the

crown of the arch and z the height of the point C
above the crown A.*

In order to investigate the stability of the arch with

respect to its several joints, the line of resistance must

be drawn, i. e. the horizontal thrust H must be com-

bined successively with the weights of the portions

A d, A C2 ,
A C3 ... and the intersections ilf i2 , i3 , . . *

of the resultants so obtained with the corresponding

joints 11, 22, 33 .... will then give points on the

required line of resistance.

The construction can be made in the following way.
Draw the diagram of forces as shown in Fig. 76, making
O L equal to the horizontal thrust H. Then set off

PI> Pi + PI> Pi + p* 4- p3
. . . . (the weights of the

strips A Ci, A C2 , A C3 . . . .) from L on L L^ the line

of loads, thus obtaining the resultants Kj, E2 , E3 ....

In order to obtain the lengths representing pl9 p^ 9

%>3t .... scale off the breadth and mean height of each

strip from the drawing, and obtain the areas of all the

strips in square feet. Then take off the numbers so

obtained from any convenient scale and set them off

from L along LI^. The thrust H (obtained from

equations 7 or f) must of course be taken off from the

same scale.

Through a the intersection of H with pl draw a line

* The proof of this equation is given in Professor von Ott's
' Buu-

mechauik,' Jst part, p. 56.
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parallel to the ray K15 then il9 the point in which a b

cuts the joint 11, is a point on the line of resistance.

From b draw b c parallel to E2 ,
thus obtaining i2 in the

joint line 22, which is a second point on the line of

resistance. The points i3 and *4 in the joints 33 and

44 respectively are similarly obtained.

If now the line of resistance passes within the centre

third of each joint, the arch possesses the degree of stability

against rotation necessary in practice. If moreover, the

line of resistance makes with the normal to each joint an

angle less than the angle of friction of the arch material

(about 30) the arch possesses sufficient stability against

sliding. If finally the maximum normal pressure

N
(
= -7-

)
"brought to bear on the joints is less than the

safe resistance of the arch material to crushing, (using a

factor of safety of 30 for a bridge of about 100 feet span,)

the arch is safe against crushing.

It is evident that in flat arches the line of resistance

i ^ i2 i3 4 will approximately coincide with the line of

pressure abcde, and hence in such arches the degree of

stability can be inferred merely from the line of pressure.

In order to determine whether the abutment is

strong enough, combine the resultant of H and the

weight of the portion A B D C, which resultant is

given by the ray B4 ,
with the weight of the abutment

p5 obtaining a new resultant K5 , and see whether R5

cuts the ground surface F J in such a way as to fulfil

the three above conditions.

The moving load has been taken only as covering

the arch and not the abutment, and hence the reduced

load line C D E K is in Fig. 76 a broken and not a con-

tinuous line.
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PAET III.

ELEMENTS OF THE THEOEY OF STEENGTH
OF MATEEIALS.

53. Strength of a Prismatic Bar. The tensile or

cornpressive strength of a prismatic bar comes into play
when P, the resultant of the exterior forces, coincides

in direction with the axis of the bar and is exerted

either as a tension or compression according as P tends

to produce an elongation, or compression between two

neighbouring cross sections. Hence, if in addition to

the external loading, the weight of the bar is taken into

account, the bar must be placed vertically in order that

its normal strength may be exerted. In short bars

however, such as those which usually occur in braced

structures, the effect of the weight of the bar may be

left out of consideration, since it is very small relatively

to the exterior forces.

The tensile or compressive strength of a bar, i. e. its

resistance to tension or compression in the direction of

its length, is directly proportional to the cross section,

since evidently the greater that cross section is the

more fibres there are to resist tearing or crushing.

That weight which is just capable of tearing or crush-

ing a prism whose cross section is a unit of area is

termed the "
coefficient," or " modulus

"
of resistance to

tension or compression.
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If K is the modulus of resistance to tension,

K! compression,
F the area of the cross section of a bar,

P the force which will tear or crush it.

Then P is given by the equations,

P = K . F

P = K 1 .FI
(a)

The following table gives the mean value of the

moduli of resistance of the most important materials,

the pound being taken as unit of weight and the square
inch as unit of area.

In actual practice we have to deal less with the force

by which a prism can be torn asunder or crushed than

with the load which that prism can safely support:

for the time intended, and it is therefore usual to

load each unit of section with a fixed fraction of the

modulus of resistance only, this fractional portion of

the modulus of resistance being called the "safe"

or "
working load." If the working load is -th of the

n
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modulus of resistance, n is termed the " factor of

safety."

If therefore n is the factor of safety, k the working
load for tension and kL that for compression, then

Hence the safe load of a bar of cross section F is

P = k.F
or

If however, the actual and the working loads are

given, then the cross section is determined by

The proper degree of security to be assumed, i. e. the

value of the factor of safety n, depends not only on the

nature of the material but also on the purpose for which

the bar in question is intended. In general n should be

greater for a travelling than for a fixed load and n

should moreover be greater the greater the vibration to

which the bar is subjected by the travelling load is.

For instance, in calculating the dimensions of the struc-

tural parts of a wrought-iron bridge, n is taken at 5 for

the main girders and 6 for the cross girders which are

subject to greater vibration
;
while in building where

the loads are mostly stationary n may be taken at

3 or 4*
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The following table gives the usual values assigned
to n for different materials.

Hence referring back to the first table we have the

following as the mean value of the working load, i. e.

the permissible load per unit of sectional area, taking as

before the pound as the unit of weight and the square
inch as the unit of area.

Example. What must be the diameter of a wrought-
iron rod capable of sustaining a load of 10,000 Ibs. taking
of the breaking weight as the safe load ?

p
By equation (d) F = ^-.

Let d be the diameter of the
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bar, then its cross section is
^
d2

, and since P = 10000

, 7 57000 Mnnand k = g
- = 11400. Hence

5

TTlOOOO

whence $ = 1 -05 inches nearly.

KESISTANCE TO BENDING OF A SIMPLE STRAIGHT

BEAM.

54. General Considerations. A body will be subject

to bending stress when the exterior forces are per-

pendicular to its axis, i. e. perpendicular to the line

joining the centres of gravity of all cross sections, and

when the forces lie in one plane passing through the

axis of the body.
The forces may be partly concentrated loads and

partly loads distributed over the whole length, or over

particular portions of the length of the beam. The re-

actions of the supports moreover, belong to the exterior

forces. Through the action of all the exterior forces,

the beam, which may be conceived to be a bundle of

fibres running parallel to its axis and fast bound

together, undergoes a bending which is supposed how-

ever, to be so slight that the limit of elasticity is not

passed ;
i. e. that on the removal of the load the elas-

ticity of the material will restore it to its original form.

Consider any portion A C of a beam A B (Fig. 78) in

equilibrium, and let C, Cx be two sections indefinitely

near and parallel to each other, then after bending
lias taken place these sections are no longer parallel

H
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but are normal to the bent fibres, and cut each other

if produced in a straight line O, Fig. 78.

Since after the bending the two sections C and GX

converge, it follows that the fibres of different layers

FIG. 78.

intercepted between them have different lengths. Thus

a lengthening, i. e. a tension of the fibres lying on the

under, or convex side of the beam has taken place and

a shortening, i.e. a compression of the fibres on the

upper, or concave side.

Hence between the fibres in tension and those in

compression there must be a layer of fibres which are

neither in tension nor compression and which retain
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their original length in spite of their curvature. This

layer is called the neutral surface ; its intersection with

any cross section the neutral axis of that section, and

the curve in which the plane of forces cuts the neutral

surface is termed the line of mean fibre.

From the neutral surface outwards the extension and

compression of the fibres gradually increase towards the

exterior fibres and attain their greatest value at those

exterior fibres. This lengthening and shortening of

the fibres may be supposed to be such that the two

contiguous cross sections remain perpendicular to the

axis after bending has taken place.

55. Determination of the Stresses at any particular

Cross Section, By the term stress is understood the

interior force per unit of area of section.

Suppose a beam AB, Fig. 78, acted upon by the

external forces Dx , P! . . . D2 and in equilibrium, to be

cut into two portions A C and B C by a section plane

aft. Now the exterior forces acting on one portion

of the beam cannot maintain equilibrium unless new

exterior forces are applied at the plane of section. These

new exterior forces restoring equilibrium must evidently
be equal to the interior forces acting in the beam at

the position of the section plane a /3 before separation

took place.

Consider the portion AC and in place of the exterior

forces acting on this portion, take into account their

resultant, i. e. the shearing force V, Fig. 78, corre-

sponding to the section C and obtained as in para. 6.

Thus in order that equilibrium may be maintained an

exterior force must be applied at the point of section of

every fibre, coinciding in direction with the length of

the fibre, and equal to the stress which existed in that

H 2
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fibre previous to the section. The resistances to stress

of individual fibres can be considered as horizontal

forces if the bending, as has been already premised,
does not exceed the elastic limit of the material and is

in fact very small.

Besides the horizontal forces replacing the fibre

stresses there must also be applied at the section C a

vertical force acting downwards maintaining equilibrium

with the shearing force V and therefore having a mag-
nitude V.

Hence at the section C there exists besides the re-

sistances in the direction of the length of the fibres, a

resistance to shearing acting along the section plane
a /? equal in magnitude but opposite in direction to V.

In ascertaining the fibre stresses acting at the section

C, it must be remembered that by reason of the flexure

which is supposed to have taken place, the originally

straight and equal elementary fibres lying between

two indefinitely near and originally parallel cross sec-

tions C and G! have become curved, so that after flexure

they take the form of small circular arcs of different

lengths and different radii having a common centre

in 0.

To obtain the amount of extension and compression
of the fibres, draw i k through C parallel to the plane
ml nl9 then the portions of arcs intercepted between

C i and C m give the extensions and those intercepted

between C n and C k the compressions which the several

elementary fibres at different distances from the neutral

surface and of the original length C Cx have undergone

during the flexure of the beam A B.

These extensions and compressions are evidently pro-

portional to the distances of the fibres from the neutral



.r ii ;
101

surface CC^ and by Hooke's law the alterations of

length are also proportional to the stresses, hence the

stress in any fibre is proportional to its distance from the

neutral surface.

Let s be the stress of a fibre at a unit of distance

from the neutral axis N N! , then the stress in a fibre

distant y from the neutral axis is s . y.

In order to ascertain the fibre stresses at different

points on the plane of section, suppose the area of the

section to be cut up into indefinitely small strips parallel

to the neutral axis N Nx . Then, if / is the area of an

elementary strip distant y from the neutral axis, the

stress in the strip in question is s.y.f.

This stress is a tension, or positive stress if the

elementary strip in question lies below the neutral axis

and a compression, or negative stress if above the neutral

axis.

If now the portion A C of the beam is in equilibrium,

then, since no part of the horizontal stresses can be

balanced by the vertical shearing force V, the algebraic

sum of these horizontal stresses must be nil. Hence

employing the symbol of summation S,

or, since 8 is a common factor to every term of the series

and cannot be zero,

2(y./) = 0.

Now f. y is the statical moment of an elementary
area about the neutral axis JSTNi, hence by the last

equation the sum of the moments of all tho elementary
areas about the neutral axis is zero. By the properties

of the centre of gravity of a plane area the product of

the whole area into the distance of its centre of gravity
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from any point is equal to the sum of the products of

the elementary areas into their distances from the

same point.

Hence the equation 2 (y ./)
= o shows that the

neutral axis passes through the centre of gravity of the

cross sections.

Again, since the portion AC of the beam is in

equilibrium and no rotation takes place, the algebraic

sum of the statical moments of all the forces acting on

A C about any axis, e. g. the neutral axis, must be

zero. Hence M the moment of the shearing force V
which tends to cause left-handed rotation, must be equal
to the sum of the statical moments of all the fibre

resistances of the elementary areas, each of which

resistances tends to cause right-handed rotation in A C.

The statical moment of the fibre resistances of an

elementary area distant y from the neutral axis is

a.y./.y; or s.f.f.

Hence as a condition of equilibrium

or, taking out the common factor s,

n = ..2(/y).

Now 2 (/-2/
2
) the sum of the products of the

elementary areas into the squares of their distances

from the neutral axis is termed the moment of inertia

of the whole sectional area about the neutral axis.

Putting I for the moment of inertia,

M = s.I ........ (a)

It is necessary to bring in a more practically useful

expression instead of s the stress per unit of area of
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the fibres at a unit of distance from the neutral axis.

The exterior fibres which are at the greatest distance

from the neutral axis suffer the greatest stress, which

stress, if the beam is not strained beyond its elastic

limit, must not exceed a certain fixed value depending
on the strength or elasticity of the material, a proper

proportion of which fixed value can be substituted in

equation (a) in place of s.

Let e and el be the respective distances of the extreme

extended and compressed fibres, and suppose Jc and Jcl

to be the greatest permissible extension and com-

pression per unit of area of those fibres. Then, since

the stresses of the fibres are proportional to the dis-

tances of the latter from the neutral axis,

whence

Sl , 8 1
=- =-

; and 7
= ->

k e' e

Jc
Jc,

8 = -
;

or s =
e e,

Substituting these values in equation (a)

M =
fl; orM = ~'.I . ...08)"

Cj

Jc Jc

The expression
-

. I or I is called the moment of6 e

resistance of the cross section. Hence
The moment of resistance of any cross section is equal

to the lending moment M, or the moment of the shearing

force V at that section.

From equations (/?)
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Hence a well-constructed beam should be so designed
that the greatest permissible tensile and compressive
stresses in the exterior fibres are simultaneously brought
into action.

For steel, wrought iron, and wood Jc = 7cl nearly, in

beams formed of these materials therefore, the cross

sections will be symmetrical about their neutral axis.

For cast iron, however, the resistance to compression
is at least twice as great as the resistance to tension, a

cast-iron beam should therefore be so designed that

the extreme compressed fibres are at least twice as far

from the neutral axis as the extreme extended fibres.

Moreover, since the material nearest to the neutral

axis is least strained, it follows that in a well-designed

beam the material will be disposed as far as possible

from the neutral surface.

k k
The equation - = shows that it is indifferent in

e e,

k k
practice whether the equation M = -

. I, or M = . I
e ei

is made use of; it is more usual, however, to employ
the former.

Jc

56. Practical Applications. The equation M = -
. I

6

is most important in the case of beams subject to

flexure, since on the one hand it serves to determine

the sectional dimension proper to any part of the beam
so as to offer an adequate resistance to the known

loading, while on the other hand it serves to determine

the stresses of the most strained portions of the beam,
due to an ascertained load distribution.

With regard to the former application of the equation

it has to be decided whether the beam is to have a um-
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form, or a varying section. If the former, (which is

allowable only in beams of small length on account of

the greater simplicity of manufacture,) it is evident

that the uniform section must be that calculated for

the particular section of the beam at which the bending
moment M of the exterior forces is a maximum, i. e.

for the breaking, or dangerous section.

In the case of long beams however, not only would

unnecessary material be used by assuming a uniform

section, but the supporting power of the beam would

be diminished. For long beams therefore, a varying
cross section corresponding as closely as possible to the

bending moment at various positions along the beam
should be adopted. A beam so designed evidently

combines an equal resisting power along its whole

length with the least waste of material.

57. Determination of the Moment of Resistance. The

equation M = - I involves four quantities, hence if one

of them is to be determined the remaining three must

be known.

Usually the three known quantities are the length I

of the beam, the material of which it is to be formed

and the amount and disposition of the load.

Having given the length I and the disposition and

amount of the load, the bending moment M can be de-

termined by the methods previously indicated.

Since however, k is settled by the choice of the

material, it will usually be necessary only to determine

the moment of inertia I = S (/. y
2
) by which in

general the form of the section is given and its height,

which in beams of uniform section amounts to from J

to ^ of the length I.
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The moment of inertia of various forms of section

can be obtained both graphically and analytically.

Sinos the determination of moments of inertia in

simple ways, i. e. without the use of the calculus is very

circuitous, and moreover the moments of inertia of

sections of simple form are to be found in every text-

book of Mechanics or of the Strength of Materials, the

graphic method alone is given here.

Suppose the portion A C of the beam, Fig. 78, to be

bent by the action of the shearing force V to such an

extent that the stresses per unit of area of the outer-

most fibres have attained their greatest permissible

values Jc and h . Determine E and E! the respective

resultants of the horizontal tensile and compressive
stresses acting at the cross section m n as well as o and

O
L
their points of application whose distance apart is z,

then as a condition of equilibrium

E- EI:=O; or E = Et ;

and in order that rotation may not take place the

algebraic sum of the moments of the forces acting on

the portion A C with respect to any point in the plane
of those forces must be zero.

Thus taking moments about ol

V.a E.ooI
= o; or V.a = E.oo[

Putting M for V.a and z for oo^

But by equation (/?)
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Hence the moment of inertia is given by the equation

We shall now proceed to determine the moments of

resistance and of inertia for the section given in Fig. 79.

Let I be the breadth of the undermost layer of fibres

m n and Jc the stress per unit of area in it. Then b.k is

the resistance of this layer

of fibres, or if Jc is taken as

representing unity on the

scale of resistances I will be

the resistance of the layer.

It is required to deter-

mine p the resistance of

any layer of fibres pp at a

distance a from the neutral

axis N NX and having a

breadth . By para. 55

the stress s per unit of area of the fibres at a unit of

distance from N N! is equal to -
, or if k = 1, s = -

,

6 6

hence the resistance of the layer pp is given by the

equation R
. a

Thus p is a fourth proportional to the three magni-
tudes e, a, /?,

and can therefore be easily obtained

graphically.

Project pp perpendicularly on to the base line mn
and join both the points p' p' to C the centre of gravity

of the section, then the lines p' C, p' C cut off on pp the

required resistance rs = p. For the triangle Cp'p is
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similar to the triangle C r 8 and in similar triangles the

bases are as the heights, hence

ft : p : i e : a or p =
6

Similarly the resistances of other fibre-layers of the

.lower half of the section are obtained and their end

points are jointed by a continuous curve, the included

area being cross lined in the figure.

Suppose that the stress k of the undermost layer of

fibres acts uniformly over the whole of the lined area

C rm n s C
;
k having been taken as the unit on the

scale of resistances. Then K the total resistance to

tension of the lower half section is obtained by mul-

tiplying F the area of C r. . . . C, by k, or

and the point of application of E is the centre of

gravity of the plane figure C r. . . .0, which figure may
be termed the " resistance area

"
(Widerstandsflache).

[The term resistance area is applied to an area which

expresses in magnitude and distribution the direct

stresses on any cross section of a beam.]

Proceeding in the same way the total resistance to

compression Ex (= K) of the upper portion of the sec-

tion lying above the neutral axis N JS^ is obtained. If,

however, the uppermost layer tu is not at the same

distance from N N 1 as m n, then the reduction of the

resistances must be made relatively to the layer ml nl

situated at a distance from NNj equal to that of

m n the resistance of which (k per unit of area) has

been taken as unity on the scale of resistances.

If the section is symmetrical about the neutral axis,

it will be necessary only to obtain E and the point 0,
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then BL
is equal to B and Ot will be at the same dis-

tance from N N! as O.

Having determined K and the distance C^ = z, then

the moment of resistance of whole section M = K . z

p
and the moment of inertia I =

j-
.B.3.

But B = F.& ;
hence I =e.~F.z, where F is the

resistance area.

Note. In determining the moments of inertia and

resistance of a section by means of the above method it

is necessary to be able to obtain the centres of gravity
of irregular plane areas.

In the following paragraph it is briefly shown how
such centres of gravity can be found and at the same

time another method is indicated for determining the

moment of inertia of a plane area by means of the

funicular and force polygons.

58. Graphic determination of the Centre of Gravity

and Moment of Inertia of a Plane Area. Let ABC,
Fig. 80, be the given figure of area F, whose centre of

gravity and moment of inertia about an axis passing

through the centre of gravity and parallel to Z Zx are

to be determined.

Draw lines parallel to Z Zx cutting the area ABC
into small strips /i,/2,/3 ,

. . . .
,
whose breadths are so

small that each strip may be considered to be a trape-

zium whose area/ is equal to the product of the breadth

into the mean height. Draw the polygon of forces cor-

responding to the elements fl9 /2 , /3 . . . . and also a

funicular polygon, making the polar distance H equal
TCI

to -~ and bisecting a & at right angles so that the angle

a O I is a right angle.

Produce the outermost sides of the funicular polygon
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to meet in s, then (para. 6) the resultant of /i,/2 . . . .

passes through s, hence a line through s parallel to Z l
Z v

passes through the centre of gravity of the whole area

FIG. 80. <**

ABC. Hence if A B C is symmetrical about the axis

A! A, the point S is its centre of gravity. If the figure is

not symmetrical, then the above construction must be

repeated and a second line passing through the centre

of gravity and parallel to another axis Z2 Z2 must be

obtained. Then the intersection of this second line with

the line through s parallel to Zx Zx will be the required

centre of gravity.

(If the section is a very irregular figure, its centre of

gravity can be obtained by drawing the figure on card

or stiff paper and cutting it out. The cut out figure

is suspended vertically by a pin passing through any

point near its edge, then a plumb line suspended from
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the same pin traces on the figure a line passing through
its centre of gravity. This line must be marked on the

figure, and the process having been repeated by sus-

pending the figure about another point a second line is

obtained which will intersect the first in the required

centre of gravity.)

Having determined the line S s and having calculated

F! the area cf t^o figure fsg'k enclosed by the funicular

polygon and its produced sides fs and gs, then the

moment of iue. tia I of the figure ABC about an axis

Ss is given by the equation

I = F.rt ........ (a)

And if Ij is the moment of inertia about Z x Zx ,

I1
= F(F1 + F2) ...... (6)

where F2 is the area of the triangle i k s enclosed by the

axis Zi Z l
and the two produced sides of the funicular

polygon g s and fs.

To prove the truth of the above, produce any two

adjacent sides of the funicular polygon to cut the line

S s in m and /. Then the triangle Im n is similar to the

triangle dOe in the polygon of forces. Let y\ y y^ y^
etc., be the respective distances from Ss of the lines

parallel to S s passing through the centres of gravity of

/i>/2,/3 tnen since in similar triangles the bases

are as the heights,
ml de

But
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therefore ml _f*
~* "I

V

Hence

ro^'Sk /y! = triangle Imn. ...((?)Z JD

But F! the area of the figure fsgJc is made up of the

Bum of the areas of all the other triangles corresponding
to I m n.

Thus

and 2 (/y
2

)
is the moment of inertia of the plane

fiure ABC about an axis S 8. Hence

Again, if Ix is the moment of inertia of A B C about

an axis Zl Z1 parallel to and at a distance d from S s
;

Ii = I 4- F . d 2
,
but since the triangles iJc 8 and a b

are similar, a - F
-2-T F

2

hence t "k = 2 <?.

The area of the triangle iJcs is d2
, hence

I, = F (F! + F2).

59. Moments of Inertia of Simple Sections. In the

case of sectional areas composed of rectangles one side

of which is parallel to the axis about which the moment

of inertia is to be obtained, the latter is determined

more readily and accurately by analytical processes.

Thus the moment of inertia of the rectangle ABC D



MOMENT OF INEETIA. 113

Fig. 81, about an axis Z Z passing through its centre

of gravity can be obtained by means of the formula

I s= e F.3 (para. 57) and is

(1)

By making use of this fundamental formula the

moments of inertia of the five following forms of section

can be obtained.

I. The sections given in Figs. 82 and 83 can be

regarded as the difference of the two rectangles B.H
and b . h, hence their moments of inertia about the axis

zzare

1 =
12

(2)

II. The section, Fig. 84, can be regarded as the sum

of the two rectangles b.h and V^u hence for this

section,

1 " J ~
12"^ (3)

III. For the section, Fig. 85,
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IV. For the section, Fig. 86,

I = B.H'-t.y-^.&.'-MJ! t (5)

V. For a circular section, Fig. 87, the moment of

inertia about a diameter as axis is

VL Hence for the annular section, Fig. 88,

FIG. 85.

B

(6)

(7)

Jju 2 _2. _

.t-

FIG. 80.

-B

FIG. 87.

!

* I
FIG. 88.

:

-.-

60. Examples in Resistance to Flexure. I. A fir baulk

of rectangular section (8" x 12") length 20' 0" is sup-
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ported at both ends. What uniformly distributed load

over its whole length can it support taking -jV of the

breaking weight as the safe load ?

The bending moment is greatest at the centre of

the baulk, and ifp is the load per unit of length,

But

TIT ^T T, 7
850 WM = - I

; where K = -^- ;
e = 6 ;

6 J.U

I = ~ X 8 x 123 == 1152
; and I = 210 inches

Lt4

Hence

7 8x8500x1152
P -I = nA* *

-
T7T-r 240 x 6 x 10

and

p = 272 Ibs. per foot run.

The weight W of the baulk, supposing that of a cube

foot of fir to be 30 Ibs., is

W = -^ x 20 x 30 = 400 Ibs.

The total load which the baulk can support there-

fore is

p. I- W = 5040 Ibs.

II. What must be the form of a beam A B, Fig. 89,

of variable height h and constant breadth ft, so that it

may offer an equal resistance to flexure at every section,

when strained by a concentrated load P acting at its

centre ?

p
The reaction of the supports is D =

-^
;
hence the

i 2
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bending moment at the centre of the beam ia

P IM = - . - and at a section distant x from A the
i- z

p
moment Mx

=
^.a*

FIG. 89.

But M = -
I, and in the present case e = | and

6 A

I = -= . fc?/
3

. Hence

or

therefore

27i2

This is the equation to a parabola with its vertex at A
2 h2

and parameter -y-
. The requisite form of the beam

therefore is that of two parabolas whose vertices are at

the supports A B and whose common ordinate is h ;

and since

-.-=-1c.l.W,

therefore

* =
S\/

5
0-
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A beam of the above form is said to have uniform

strength or to offer uniform resistance to flexure.

For x = 0, the equation (a) gives y = 0, and the

section at the points of support would be nil. Since

p
however, the reactions

-^
act at these supports as

a

shearing forces, the height h of the sections at A and B
must be made to depend on these shearing foices.

y*
Now if b is the breadth of the section, b =

, where

pV = -~
;

a- is the resistance to shearing per unit of seo
&

tional area which in this case is

' 6 k and for the rectangular sec- FlG- 90<

tion, Fig. 90, z = ^ hQ ; hence

or

Note. If the beam A B were uniformly loaded with

a load p per unit of length, then the bending moment

M for the middle of the beam is equal to
*-g-

and for a

section distance oj from A the moment

But

p. I p.x
2

p.x n= <* - - = ~
(

M = -
I, where e = | ,

and \=
e & J--J

* The ratimdle of this formula is given in Prof, von Ott's * Baume-
ohanik,' Part I., page 78.
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hence
2h -r

This equation is that of an ellipse whose major axis

A B = I and whose minor axis h is given by the equation

from which

The height h of the section of the beam at the points
of support is obtained in the same way as before and

79 v

III. What is the length of a wrought-iron beam of

the section shown in Fig. 91 capable of supporting a load

of 600 Ibs. per foot run including its

own weight? The beam to be sup-

ported at both ends and the greatest pos-

sible stress 11200 Ibs. per square inch.

Taking an inch as the unit of length,

^ the length I can be found by means
i of the formula

where p = ~ Ibs. ; Jc = 11200
; e =

|
= 4; and
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therefore
50 J2

8

11200
X 70 -625.

Fro. 93.

P 31640 inches.

I = 178 inches nearly = 14'- 10".

61. Eesistance to Crippling. If the length L of a

compression bar A B, Fig. 92, is from five to ten times

the middle sectional dimensions D, then by continuing
the axial loading the bar will not FlG 92

be more compressed, but it will be

bent and finally broken across by
the load. A bar so broken is said

to fail by crippling. Kesistance

to crippling is therefore a combi-

nation of resistance to crushing
and flexure. Since the theory of

resistance to crippling would take

up too much space and moreover

this theory does not give results

in accordance with the rules de-

duced by Hodgkinson from expe-

riment, we shall merely give two

empirical formulas for the resistance of a bar liable to

failure by crippling, which agree with experiment.
For a bar free at both ends the resistance P is given

by the formula

P - fc-F- 1 /
>

"I + CF.L2
' ' ' ' w

Where F is the sectional area.

1 the moment of inertia of the cross section about
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an axis passing the angle the centre of gravity and

perpendicular to the bending plane.

L the length.

k and ^ the safe loads which the material can bear

in compression, and tension respectively.

C an experimental coefficient depending on the

material.

The values of C and Jc and
Tc^ for different materials

are given in the following table.

In the case of cast-iron struts P should be calculated

from both the above formulae, and the least of the two

values should be taken. For steel, wrought-iron, and

wooden struts, the formula (a) only need be used.

For example, to determine the load which a wooden

bar of square section (F = D2
) can safely support, we

have I =
Y^
D4

,
and hence

700 P4

"D2
-f 0-00264 La

where D and L are both in inches.

10

- = 11023 87-43

30

53-91 32-96

40

21-28 14-66

100
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The formulae (a) and (/3) are applicable only to bars

whose extremities are free; if however the ends of a bar

are fixed, the bar undergoes the change of form shown

in Fig. 93, and the resistance can be found by putting

for L in formulae (a) and
(/9).

i

Hence in the case of a bar whose ends are fixed

(Fig. 93),

4I + C.F.L"
or

4E..F.I
C.F.L'-4I

..... (

Example. What is the resistance to crippling of a

wrought-iron bar of rectangular section (2" x 4") length

10', fixed at both extremities ?

Here k= 8500, = 0- 00009, F= 2" x 4" = 8 square

inches. L = 120". I- ^ A J8- 2 66.

Substituting thesu values in equation (7)

TJ__4x8500 x 8x2-66
=
4 X 2-66 + 0-00009 x 8 x 120)*

=

nearly.

The sale compression per square inch of section is

therefore

34440

8
= 4305 Ibs.

For a cast-iron strut calculate P from (7) and (S),

and take the least of the values obtained, while for a

steel, wrought-iron, or wooden strut P need be calculated

from (7) only.

K
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