
Calhoun: The NPS Institutional Archive

DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2004-12

Architecture of an integrated microelectronic

warfare system on a chip and design of key components

Luke, Brian L.

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/9908

Downloaded from NPS Archive: Calhoun

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

DISSERTATION
ARCHITECTURE OF AN INTEGRATED

MICROELECTRONIC WARFARE SYSTEM ON A CHIP
AND DESIGN OF KEY COMPONENTS

by

Brian L. Luke

December 2004

Dissertation Supervisors: Douglas 1. Fouts
Phillip E. Pace

Bish ibuti6II aatliOI izcd to ".s. So; CIIhhWt Agweies 6II1s, pICmutm c disscminuti6II, ~eec be J991. 9t1 e
iil' iHlg '01 'hig ~08lt_iR' _ltg, In U'81 u~ 18 ~ltJl8liR'i!R~i!R'; "8 ~i!)(1; NOlOl POQ'~IO IIltofi! ~ tho 01; Jlo tt, '3;

t:A 93'4J-::'!OOO ela lite Bdtnsc 'fccltnlcallnftiI mad6II t:eiilCI, 8H::'! Jolm J.lltngman ltd., S'fl!) OH4, 1ft. Btl eo Ii ,
VA HMO 6118.

Approved for public release, distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

h t t p : / / w w w . n p s . e d u

DUDLEY KNOX LIBRARY.

January 25, 2011

SUBJECT: Change in distribution statement for Architecture of an Integrated Microelectronic
Warfare System on a Chip and Design of Key Components – December 2004.

1. Reference: Luke, Brian L. Architecture of an Integrated Microelectronic Warfare System on a

Chip and Design of Key Components. Monterey, CA: Naval Postgraduate School. Department of
Electrical and Computer Engineering, December 2004.
UNCLASSIFIED [Distribution authorized to U.S. Government Agencies only; premature
dissemination; December 2004].

2. Upon consultation with NPS faculty, the School has determined that this dissertation may be

released to the public and that its distribution is unlimited, effective January 25, 2011.

University Librarian
Naval Postgraduate School

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE Form Avvroved OMB No. 0704-0188

Public reporting burden for this collection of infonnation is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of infonnation. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) I 2. REPORT DATE I 3. REPORT TYPE AND DATES COVERED
December 2004 Dissertation

4. TITLE AND SUBTITLE: 5. FUNDING NUMBERS
Architecture of an Integrated Microelectronic Warfare System on a Chip and Design
of Key Components

6. AUTHOR(S) Luke, Brian L. , LCDR USN
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING

Naval Postgraduate School ORGANIZATION REPORT
Monterey, CA 93943-5000 NUMBER

9. SPONSORING I MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING I MONITORING
NlA AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION I AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
~'!I!"f~""!"l" I!"I!t!!"l,!!!e!t ~e !II!I.i!!. !!ill!!ll!!n"nl!!'!~ ~I~ !ilL!! ~ !Ii
8aanbt 200 1. ~dld tl!!qasib fM dis dl!!zmti&dhI&~ ~s ,cfUdSd k i!!qundudu!4 A
@kds 261 , 1 fm ai Fwtgmdwk i!!zituci, hfcnkn) , I!!!h 03913 £888 tl 11 f
iii I i iii iii ii ! iljiiil!i iii i! iii. iliii!! ~ iIiiI i., l!iiiliii iii ~ ~,iIiii . i i! ! HI

228£8 £ili. Approved for publ ic re lease, distribution is unl imited
13. ABSTRACT (maximum 200 words)

This dissertation investigates a mixed-signal, electronic warfare (EW) system-on-a-chip (SoC) design capable
of synthesizing false radar returns in response to imaging radar interrogations that, when integrated into the range-
Doppler processing, form an image of a false target. Detailed designs for the EW SoC components including the
false target digital image synthesizer (DIS) and a novel analog to digital converter (ADC) are provided in this re-
search. Alternative DIS architectures are presented that reduce circuit die area and power dissipation. This re-
search also describes the theory, design, implementation, simulation, and testing of a proof-of-concept application
specific integrated circuit (ASIC) providing automatic counterflow-clock pipeline skew control for the DIS. High
performance ADCs are key components of mixed-signal SoCs. Design and simulation results for an 8-bit I GS/s
robust symmetric number system (RSNS) folding ADC are presented. The gray-code properties of the RSNS
make it desirable for error control and low-power ADC implementations. A complete mathematical description of
the N-modulus RSNS redundancies is discovered, which results in closed-form expressions for the longest se-
quence of unique RSNS vectors for moduli of the form m-I , m, and m+ I , as well as an efficient search algorithm
for N-modulus systems at least six orders of magnitude faster than previously published results. Lastly, anN-
modulus RSNS-to-binary converter design procedure and a circuit design for an 8-bit. 4-modulus I GS/s RSNS-to-
binary converter are presented.
14. SUBJECT TERMS 15. NUMBER OF
Folding ADC, gray-code properties, dynamic range, residue number system, robust sym- PAGES
metric number system, inverse synthetic aperture radar, electronic warfare, system-on-a- 320

chip, wideband imaging radar, digital image synthesis, radar countermeasures, anti-ship ca- 16. PRICE CODE
pable missile, counterflow clock pipeline, automatic clock skew control
17. SECURITY 18. SECURITY 19. SECURITY 20. LIMITATION
CLASSIFICATION OF CLASSIFICATION OF THIS CLASSIFICATION OF OF ABSTRACT
REPORT PAGE ABSTRACT UU

Unclassified Unclassified Unclassified -NSN 7540-01-280-5500 StandardForrn 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release, distribution is unlimited

BISd IB&dGIi JddiblliCd W 0.3. 66:6 IiIIIdI[JigGitlES bIIIj, pI emJldle dlSSdillIidZMIi, BecaIIbCI £664. Odib Icqacszs IbI Sib
j e e t site ee edt fI pel te de t,f! de!Jl,ff IF gig j bfU I,Il teg,E! HjJ!£!88fl I itcHes 36

Tell II 11 [tcte,8T!£! I J.UI; Ild.,flTEnJJ,FLDet I, !!flJOJ!18.

ARCHITECTURE OF AN INTEGRATED MICROELECTRONIC WARFARE
SYSTEM ON A CHIP AND DESIGN OF KEY COMPONENTS

Brian L. Luke
Lieutenant Commander, United States Navy

B.S., United States Naval Academy, 1992
M.S., Naval Postgraduate School, 1998

Submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY IN ELECTRICAL ENGINEERING

Author:

Approved by:

Approved by:

Approved by:

from the

NAVAL POSTGRADUATE SCHOOL
December 2004

Brian L. Luke

Charles W. Therrien
Professor of Electrical and
Computer Engineering

Herschel H. Loomis, Jr.
Professor of Electrical and
Computer Engineering

Cynthia E. Irvine
Professor of Computer Science

Douglas J. Fouts
Professor of Electrical and
Computer Engineering
Dissertation Supervisor

Phillip E. Pace
Professor of Electrical and
Computer Engineering
Dissertation Supervisor

John P. Powers, Chair, Department of Electrical
and Computer Engineering

Julie Filizetti, Associate Provost for Academic Affairs

111

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

This dissertation investigates a mixed-signal, electronic warfare (EW) system-on-

a-chip (SoC) design capable of synthesizing false radar returns in response to imaging ra-

dar interrogations that, when integrated into the range-Doppler processing, form an image

of a false target. Detailed designs for the EW SoC components including the false target

digital image synthesizer (DIS) and a novel analog to digital converter (ADC) are pro-

vided in this research. Alternative DIS architectures are presented that reduce circuit die

area and power dissipation. This research also describes the theory, design, implementa-

tion, simulation, and testing of a proof-of-concept application-specific integrated circuit

(ASIC) providing automatic counterflow-clock pipeline skew control for the DIS. High

performance ADCs are key components of mixed-signal SoCs. Design and simulation

results for an 8-bit 1 GS/s robust symmetric number system (RSNS) folding ADC are

presented. The gray-code properties of the RSNS make it desirable for error control and

low-power ADC implementations. A complete mathematical description of the N-

modulus RSNS redundancies is discovered, which results in closed-form expressions for

the longest sequence of unique RSNS vectors for moduli of the form , , and

, as well as an efficient search algorithm for N-modulus systems at least six orders

of magnitude faster than previously published results. Lastly, an N-modulus RSNS-to-

binary converter design procedure and a circuit design for an 8-bit, 4-modulus 1 GS/s

RSNS-to-binary converter are presented.

1m − m

1m +

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

TABLE OF CONTENTS

I. INTRODUCTION..1
A. BACKGROUND ..1
B. PROBLEM STATEMENT ...2
C. ORIGINAL CONTRIBUTION ..4
D. DISSERTATION OUTLINE..5

II. DIGITAL IMAGE SYNTHESIZER ELECTRONIC WARFARE SYSTEM-
ON-A-CHIP..7
A. SYSTEM-ON-A-CHIP ARCHITECTURE...7
B. DIGITAL IMAGE SYNTHESIZER DESIGN ...8

1. Current DIS Architecture ...8
2. Alternative DIS Architectures ..12

C. DIS CLOCK-SKEW CONTROL...19
1. Counterflow-Clock Pipelining ..19
2. Automatic Synchronization Approach ..23
3. Circuit Design...26

a. Phase-Check Module ..27
b. Finite State Machine...34
c. Wrap-Around Counter..39
d. Variable Delay Module ...44

4. Simulation Results ...48
a. Phase Check Module ..49
b. Finite State Machine...52
c. Wrap-Around Counter..54
d. Variable Delay Module ...57
e. Pad-to-Pad Chip Simulation...57

5. Fabrication and Testing ..62
D. SUMMARY ..69

III. RSNS ANALOG-TO-DIGITAL CONVERTER ..71
A. SILICON-GERMANIUM MIXED-SIGNAL FABRICATION

PROCESS ...72
B. THREE-CHANNEL RSNS ANALOG-TO-DIGITAL CONVERTER74

1. Folded Waveform Generation ..76
2. Latched Comparator Design...80

C. FOUR-CHANNEL RSNS ANALOG-TO-DIGITAL CONVERTER.......85
D. SIMULATION RESULTS ..93

1. Three-Channel RSNS ADC...94
2. Four-Channel RSNS ADC ..97

E. SUMMARY ..99

IV. ROBUST SYMMETRIC NUMBER SYSTEM ..101
A. THE THREE-MODULUS RSNS ...103

vii

B. CASE-BY-CASE SOLUTION FOR THE REDUNDANCY
LOCATIONS ...113
1. Case 010 ..114
2. Case 31X ...114
3. Case 1XX...117
4. Case 2XX...121
5. Summary of Vector Redundancy Locations..................................126

C. THE N-MODULUS RSNS ..128
1. N-modulus RSNS Redundancy Analysis128
2. Case-by-Case Solution for the N-Modulus Redundancy

Locations...132
a. Case 010...132
b. Case N1X...133
c. Case 1XX ...134
d. Case 2XX through Case (N-1)XX...136

3. Summary of N-Modulus Vector Redundancy Locations137
D. M̂ FOR MODULI − + 1, , 1m m m ...138

1. M̂ Upper Bound...138
2. M̂ Lower Bound and Length ..142

E. N-MODULUS RSNS M̂ SEARCH ALGORITHM................................144
1. RSNS Redundancy Vector Graphical Representation.................144

a. Geographical Information Systems......................................145
b. RSNS Circle Representation...147

2. SmartSearch M̂ Search Algorithm ..152
F. SUMMARY ..156

V. RSNS-TO-BINARY CONVERSION...157
A. RSNS-TO-BINARY CONVERSION USING CONVENTIONAL

TECHNIQUES...158
1. ROM Conversion ...158
2. Decoder Conversion...158

B. THREE-MODULUS RSNS-TO-BINARY CONVERSION163
1. RSNS Congruence Equations ...163
2. The RSNS-RNS Relationship..172
3. RNS Least Positive Solution..174

C. THREE-MODULUS RSNS-TO-BINARY LPS CONVERTER181
1. RSNS Thermometer Code to RNS Residue Conversion181
2. RNS Position Bit, Even Residue, and MRSS Logic Equations....189
3. LPS Positional Solution and Index Expansion/Compensation198
4. RSNS-to-Binary Circuit Schematics ..200

D. N-MODULUS RSNS-TO-BINARY LPS CONVERSION.......................206
E. FOUR-MODULUS RSNS-TO-BINARY LPS CONVERTER212

1. Logic Design ...212
2. RSNS-to-Binary Decoder Schematics ..216

F. SIMULATION RESULTS ..221
1. Three-modulus RSNS-to-Binary Conversion................................221

viii

2. Four-Modulus RSNS-to-Binary Conversion223
G. SUMMARY ..225

VI. CONCLUSIONS AND FUTURE WORK...227
A. CONCLUSIONS ..227
B. FUTURE WORK...229

APPENDIX A CLOCK SYNCHRONIZATION CHIP LAYOUT.............................231
A. BASIC ELEMENT LAYOUT ..231
B. INTERMEDIATE COMPONENT LAYOUT ..235
C. MAJOR COMPONENT LAYOUT ...239

APPENDIX B CLOCK SYNCHROMIZATION DETAILED SIMULATION
RESULTS ...247
A. BASIC LOGIC GATES ..247
B. INTERMEDIATE CIRCUIT COMPONENTS..250

APPENDIX C RSNS MATLAB AND VISUAL BASIC CODE..................................259
A. M̂ SEARCH ALGORITHM CODE ..259

1. Sample M̂ Search Code Output ...260
2. startRSNSsearch.m..261
3. DynamicRangeSmartSearch.m...262
4. CalculateRedundancies.m...265
5. find_PRP_combos.m..266
6. prp_check.m ...267
7. crt.m ..268
8. PaceStyerRSNSsearch.m...269
9. Sample Program Output for Pace/Styer Search Program...........272

B. ARCGIS SHAPEFILE GENERATION CODE273
1. Sample Shapefile Generation Code Output274
2. ArcViewOutput.m..275
3. Calculate_ArcView_Redundancies.m..278
4. Generate_RSNSCircle_Shapefile.m...279
5. Generate_CircleArc_Shapefile.m...281
6. ArcGIS shapefile generation visual basic code283
7. Sample Output of ArcGIS Shapefile Generation Visual Basic

Code...289

LIST OF REFERENCES..291

INITIAL DISTRIBUTION LIST ...295

ix

THIS PAGE INTENTIONALLY LEFT BLANK

x

LIST OF FIGURES

Figure 1.1 Imaging radar and false target generation example featuring (a) the USS

Crocket, (b) AN/APS-137 imaging radar return of the USS Crockett, and
(c) simulated output of an eight-bin digital image synthesizer circuit (After
[9].)...2

Figure 2.1 Components required for the DIS EW SoC...7
Figure 2.2 Single-chip DIS architecture (From [17].)...9
Figure 2.3 Architecture detail of single pipelined range bin (From [18].).10
Figure 2.4 Simplified DIS architecture. ..11
Figure 2.5 DIS architecture using range bin I/Q rotation..13
Figure 2.6 DIS architecture with 31 I/Q rotations and distribution network.14
Figure 2.7 DIS architecture with a phase angle incrementer and bus distribution............15
Figure 2.8 High-speed incrementer circuit schematic...16
Figure 2.9 Incrementer simulation results...18
Figure 2.10 H-tree clock distribution method. ..20
Figure 2.11 Counterflow-clock distribution method without skew control.21
Figure 2.12 Counterflow-clock distribution method with skew control.22
Figure 2.13 Manual skew control method in original DIS architecture..............................23
Figure 2.14 Clock skew diagram...24
Figure 2.15 Clock phase synchronization diagram. ..25
Figure 2.16 Block diagram of a simple clock synchronization scheme..............................26
Figure 2.17 Clock synchronization design diagram..27
Figure 2.18 Phase-check module schematic..28
Figure 2.19 Timing diagram for one pair of inputs to the NAND4 gate.............................29
Figure 2.20 Timing diagram for the NAND4 output for synchronous clocks.30
Figure 2.21 NAND4 output for clocks with skew S d< . ..30
Figure 2.22 NAND4 output for clocks with skew S . ..31 d>
Figure 2.23 Timing diagram showing clock skew sign computation for negative skew. ...32
Figure 2.24 Timing diagram showing clock skew sign computation for positive skew.33
Figure 2.25 State diagram for the finite state machine module...35
Figure 2.26 Partial FSM state transition diagram (synchronous clocks).36
Figure 2.27 FSM state transition table. ...37
Figure 2.28 FSM Schematic..38
Figure 2.29 Five-bit counter circuit schematic..40
Figure 2.30 T-flip-flop functions...41
Figure 2.31 Logic table for the T-flip-flop function select signals.42
Figure 2.32 Karnaugh maps for the T-flip-flop function select signals in Figure 2.31.......43
Figure 2.33 Schematic of the five-bit counter with wrap-around logic.44
Figure 2.34 Schematic of variable delay module. ...45
Figure 2.35 Incrementally delayed clock signals. ...47
Figure 2.36 Clock synchronization schematic. ...48
Figure 2.37 Phase-check circuit simulation – synchronized clocks.50
Figure 2.38 Phase-check simulation – unsynchronized clocks with negative skew.51

xi

Figure 2.39 Phase-check simulation – unsynchronized clocks with positive skew.52
Figure 2.40 Finite state machine simulation. ..53
Figure 2.41 Five-bit counter simulation. ...55
Figure 2.42 Five-bit wrap around counter simulation...56
Figure 2.43 Variable delay module simulation. ..57
Figure 2.44 Pad-to-pad synchronization chip simulation..58
Figure 2.45 Clock signals before and after synchronization. ..59
Figure 2.46 Residual clock skew for nominal and four-corners fabrication parameters. ...61
Figure 2.47 Photograph of fabricated chip..63
Figure 2.48 Pinout diagram of the synchronization chip. ...63
Figure 2.49 Chip testing circuit board from above (top) and below (bottom).64
Figure 2.50 Chip testing setup...65
Figure 2.51 Oscillograph of synchronous clocks. ...66
Figure 2.52 Oscillograph of synchronized clocks. ..67
Figure 2.53 Oscillograph of unsynchronized clocks. ..68
Figure 2.54 Table of predicted and measured synchronization ranges.69
Figure 3.1 IBM SiGe BiCMOS process 5HP specifications (From [32].)........................73
Figure 3.2 Three-channel RSNS folding ADC. ..75
Figure 3.3 Folded waveform generation for the first channel (1 3m =).76
Figure 3.4 Folded waveform generation for the second channel ().......................77 2 4m =
Figure 3.5 Folded waveform generation for the third channel (3 5m =).77
Figure 3.6 Single folding stage circuit. ...78
Figure 3.7 Folding amplifier common resistor values. ...78
Figure 3.8 Channel one folding amplifier resistor and reference voltage values..............79
Figure 3.9 Channel two folding amplifier resistor and reference voltage values..............79
Figure 3.10 Channel three folding amplifier resistor and reference voltage values............79
Figure 3.11 Comparator design. ..81
Figure 3.12 Comparator latch using D-type flip-flop..81
Figure 3.13 Graph of folded waveform and comparator output (After [30].).....................82
Figure 3.14 Thermometer code with binary and decimal equivalents.83
Figure 3.15 Summed comparator stair-step output. ..83
Figure 3.16 SPICE code to compute comparator thresholds...84
Figure 3.17 Comparator threshold values for three-channel RSNS folding ADC..............84
Figure 3.18 Three-modulus and four-modulus RSNS moduli with85 ˆ 256M ≅
Figure 3.19 Computation of comparator equivalents for the moduli in Figure 3.18.86
Figure 3.20 Four-channel RSNS folding ADC. ..88
Figure 3.21 Channel one comparator block in four-channel RSNS ADC.89
Figure 3.22 Clock distribution block in four-channel RSNS ADC.....................................89
Figure 3.23 Folding amplifier block for m 3i = for the four-channel RSNS ADC.90
Figure 3.24 Reference voltages for individual folding stages in each channel.91
Figure 3.25 Comparator threshold values for four-channel RSNS folding ADC.93
Figure 3.26 Folded waveforms and comparator levels for six-bit ADC.94
Figure 3.27 ADC simulation showing input signal and folded output................................95
Figure 3.28 ADC simulation showing stair-step decimal output.96
Figure 3.29 INL and DNL for the six-bit ADC...97

xii

Figure 3.30 ADC simulation showing input signal and folded output................................98
Figure 3.31 INL and DNL for the eight-bit ADC. ..99
Figure 4.1 Modulus residue sequence for a three-modulus RSNS..................................103
Figure 4.2 Three-modulus RSNS structure. ..104
Figure 4.3 Plotting the residues of a three-modulus RSNS yields a folded stair-step

structure..104
Figure 4.4 Single MRS redundancy types (m = 5). ...106
Figure 4.5 A single MRS decimated into three MRSSs..106
Figure 4.6 Three-modulus RSNS MRSS plot. ..107
Figure 4.7 Parity of residue vectors...108
Figure 4.8 Table of redundancy types for three-modulus RSNS.109
Figure 4.9 Case label example. ...110
Figure 4.10 Systems of congruence equations for Case 12X..119
Figure 4.11 Systems of congruence equations for Case 13X..120
Figure 4.12 Systems of congruence equations for Case 22X..123
Figure 4.13 Systems of congruence equations for Case 22X COR shifts.124
Figure 4.14 Systems of congruence equations for Case 22X..125
Figure 4.15 Systems of congruence equations for Case 22X COR shifts.126
Figure 4.16 Three-modulus RSNS redundancy summary table..127
Figure 4.17 Table of RSNS redundancy combinations...129
Figure 4.18 Grouping N-modulus RSNS combinations into cases.130
Figure 4.19 N-modulus RSNS redundancy summary table. ...137
Figure 4.20 Tabular solutions to the CRT using the Euclidian Algorithm.140
Figure 4.21 An example of selectable data layers in a GIS (From [40].)145
Figure 4.22 Human body “geography” (From [38].). ...146
Figure 4.23 Circular representation of the RSNS..147
Figure 4.24 Circular RSNS representation with Case 2X0 redundancy arcs....................149
Figure 4.25 Plot of M̂ vs. run time using new and old search algorithms.......................153
Figure 4.26 Plot of M̂ vs. moduli sum for two-modulus to eight-modulus systems.154
Figure 4.27 Table of minimum-sum moduli sets with M̂ larger than r-bits for

. ..155 5 r≤ ≤ 15
Figure 5.1 RSNS to binary conversion using a decoding circuit.160
Figure 5.2 Thermometer-code to Gray-code conversion. ...161
Figure 5.3 Decode block for the first six RSNS vector positions.162
Figure 5.4 Three-modulus RSNS structure with [] []1 2 3 3 4 5m m m Τ Τ=163
Figure 5.5 Single MRS RSNS structure showing three MRSSs.164
Figure 5.6 Three-modulus RSNS vectors in the 0th MRSS...164
Figure 5.7 Three-modulus RSNS vectors in the 1st MRSS. ..165
Figure 5.8 Three-modulus RSNS vectors in the 2nd MRSS. ...165
Figure 5.9 Even/odd residue pattern for the 0th MRSS vectors.......................................167
Figure 5.10 Eight redundancy solutions for the residue vector []2 2 3hX Τ=171
Figure 5.11 Vectors gX and gXR for the 0th MRSS. ...173
Figure 5.12 Vectors / 2gX and with index . ..174 / 2 / 2gXR / 2g

Figure 5.13 The 0th MRSS residue vectors within M̂175
xiii

Figure 5.14 The 0th MRSS residue vectors within M̂ shifted to 0g =175
Figure 5.15 RNS residues highlighted on 0th MRSS M̂ vectors......................................177
Figure 5.16 Residues highlighted on vectors index .within / 2 / 2gXR / 2g M̂ in the 0th

MRSS...178
Figure 5.17 Positional solution for (5.34). ..180
Figure 5.18 Summary of LPS RSNS-to-binary conversion method.181
Figure 5.19 RSNS thermometer code bits for 1s ()1 3m = . ..182
Figure 5.20 RSNS thermometer code bits for and (2s 3s 2 4m = and m).182 3 5=
Figure 5.21 Conversion process from RSNS residue to RNS residue.183
Figure 5.22 Position bits corresponding to the RSNS residue s184 1

Figure 5.23 Conversion process for from RSNS residue to RNS residue (for a
RSNS vector

2s

hX from the 0th MRSS or 1st MRSS).185
Figure 5.24 Position bits for (for a RSNS vector 2s hX from the 0th MRSS or 1st

MRSS)..185
Figure 5.25 Conversion process for from RSNS residue to RNS residue (for a

RSNS vector
2s

hX from the 2nd MRSS)...186
Figure 5.26 Position bits for (for a RSNS vector 2s hX from the 2nd MRSS).186
Figure 5.27 Position bits for (for a RSNS vector 2s hX from the 0th MRSS, 1st MRSS,

or 2nd MRSS)..187
Figure 5.28 Position bits for (for a RSNS vector 3s hX from the 0th MRSS, 1st MRSS,

or 2nd MRSS)..188
Figure 5.29 Location of position bits in the compressed M̂188
Figure 5.30 Least positive solution for []1 4 4hX Τ= using position bits.189

Figure 5.31 Logic table for computing the first MRS ()1s position bits.190

Figure 5.32 Logic table for computing the first MRS ()1s position bits with error
correction. ..190

Figure 5.33 Logic minimization for the logic table in Figure 5.31.191
Figure 5.34 Logic minimization for the logic table in Figure 5.32.191
Figure 5.35 Logic table for computing the second MRS ()2s position bits.....................192
Figure 5.36 Logic minimization for the logic table in Figure 5.35.193
Figure 5.37 Logic table for computing the third MRS ()3s position bits.........................194
Figure 5.38 Logic minimization for the logic table in Figure 5.37.195
Figure 5.39 Logic table for the even residue flags (, ,)...196 1e 2e 3e
Figure 5.40 Logic minimization for the logic tables in Figure 5.39.197
Figure 5.41 Logic tables and minimization for the MRSS flags (0MRSS , 1MRSS ,

2MRSS)..198
Figure 5.42 Using an adder to implement multiplication by three....................................199
Figure 5.43 Addition for converting least positive solution to binary.200

xiv

Figure 5.44 RSNS-to-binary conversion circuit for moduli
. ..201 1 2 3[] [3 4 5]m m m Τ = Τ

Figure 5.45 Circuit for generating e , , , 1 2e 3e 0MRSS , and 2MRSS (Figure 5.44 A).202
Figure 5.46 Circuit selecting normal or reversed position bits (Figure 5.44 B)................203
Figure 5.47 Position bit connections to the LPS NAND gate bank (Figure 5.44 C).204
Figure 5.48 Positional least positive solution of congruence equations (Figure 5.44 D)..205
Figure 5.49 Converting to h using a six-bit carry look-ahead adder (Figure 5.44

E)..206
/ 2g

Figure 5.50 MRSS compensation bits logic table. ..215
Figure 5.51 Four-modulus RSNS-to-binary converter schematic.....................................217
Figure 5.52 Reverse position bit selector circuit schematic..218
Figure 5.53 Schematic of the 32-to-8 encoder circuit. ..219
Figure 5.54 Even residue flag and MRSS flag generation circuit schematic....................220
Figure 5.55 Transistor count comparison of three RSNS-to-binary conversion

methods. ...221
Figure 5.56 Three-channel ADC with decoder converter and LPS converter circuits......222
Figure 5.57 Three-channel ADC simulation results for LPS and decoder RSNS-to

binary conversion methods. ...223
Figure 5.58 Four-channel ADC with RSNS-to-binary conversion.224
Figure 5.59 Four-modulus RSNS to binary conversion. ...225
Figure A.1 Fabrication process physical layer legend. ..231
Figure A.2 Physical layout of basic circuit elements. ..232
Figure A.3 Physical layout of pad ring elements. ..234
Figure A.4 Block outline of D-flip-flop. ..235
Figure A.5 Detailed layout of D-flip-flop. ...235
Figure A.6 Block outline of T-type flip-flop..236
Figure A.7 Detailed layout of T-type flip-flop...236
Figure A.8 Block Outline of 16x1 multiplexer delay module..236
Figure A.9 Detailed layout of 16x1 multiplexer. ...237
Figure A.10 Block outline of five-bit counter..237
Figure A.11 Detailed layout of five-bit counter...238
Figure A.12 Detailed layout of the synchronization chip pad ring.239
Figure A.13 Block outline of finite state machine. ..240
Figure A.14 Detailed layout of finite state machine. ...240
Figure A.15 Block outline of phase-check circuit..241
Figure A.16 Detailed layout of phase-check circuit...241
Figure A.17 Block outline of five-bit counter with wraparound..242
Figure A.18 Detailed layout of five-bit counter with wraparound.....................................242
Figure A.19 Block outline of variable delay module. ..243
Figure A.20 Detailed layout of variable delay module. ...244
Figure A.21 Detailed layout of entire chip and pad ring..245
Figure A.22 Chip photograph...246
Figure A.23 Enlarged chip photograph showing circuit layout and pad ring detail.246
Figure B.1 Detailed simulation data for clock synchronization chip logic gates.248
Figure B.2 Logic gate noise margins. ..248

xv

Figure B.3 Logic gate rise and fall times. ..249
Figure B.4 Logic gate delay...249
Figure B.5 Graph of peak power for each logic gate. ..250
Figure B.6 Schematic of the 2-to-1 multiplexer circuit. ..251
Figure B.7 Simulation results for the 2-to-1 multiplexer circuit......................................251
Figure B.8 Schematic of D- flip-flop circuit..252
Figure B.9 Simulation results for the D-flip-flop circuit. ..252
Figure B.10 Schematic of toggle flip-flop circuit. ...253
Figure B.11 Simulation results for the toggle flip-flop circuit. ...254
Figure B.12 Schematic of the 16-to-1 multiplexer circuit. ..255
Figure B.13 Table of 16x1 multiplexer delay. ...256
Figure B.14 Graph of 16x1 multiplexer delay. ..257
Figure B.15 Table of large circuit power...257
Figure B.16 Graph of large circuit power. ...258
Figure C.1 Flowchart of M̂ search algorithm code. ...259
Figure C.2 Flowchart of MATLAB ArcGIS shapefile generation code..........................274
Figure C.3 Screen shot of the ArcGIS map showing the RSNS circle plot, a Case 210

redundancy, and associated attribute table. A single redundancy is selected
on the map and in the linked table. ..289

xvi

LIST OF SYMBOLS, ACRONYMS, AND ABBREVIATIONS

I In phase

M̂ longest sequence of consecutive unique RSNS vectors

fP fundamental period

Q Quadrature

hX vector of RSNS residues at position h

ADC Analog to Digital Converter

ASCM Antiship Capable Missile

ASIC Application Specific Integrated Circuit

C2 Counter-clock

CMOS Complementary Metal Oxide Semiconductor

COR Center of Redundancy

CRT Chinese Remainder Theorem

DAC Digital to Analog Converter

DIS Digital Image Synthesizer

DNL Differential Non-linearity

EW Electronic Warfare

FSM Finite State Machine

GIS Geographic Information System

INL Integral Non-linearity

ISAR Inverse Synthetic Aperture Radar

xvii

LPS Least Positive Solution

LSB Least Significant Bit

LUT Look-up Table

MRS Modulus Residue Sequence

MRSS Modulus Residue Sub-sequence

PRP Pair Wise Relatively Prime

RNS Residue Number System

ROM Read Only Memory

RSNS Robust Symmetric Number System

SiGe Silicon Germanium

SmartSearch MATLAB implementation of a new M̂ search algorithm

SNS Symmetric Number System

SoC System-on-a-Chip

xviii

EXECUTIVE SUMMARY

Success of naval actions in hostile environments hinges on the ability of combat-

ants to perform under enemy fire. The current strength and technical capability of the US

Navy make it unlikely that an attack would be frontal and direct. Rather, an oblique and

asymmetrical attack is expected. Modern anti-ship capable missiles (ASCM) provide ad-

versaries with a highly capable and deadly asymmetric weapon due to their relatively low

cost and advanced homing capabilities. Naval forces operating in cluttered littoral envi-

ronments are particularly vulnerable from land or sea. Therefore, the susceptibility of

Navy surface ships to asymmetric attack is strongly dependent on their capability to de-

fend against the ASCM threat.

Wideband imaging radars, such as the inverse synthetic aperture radar (ISAR), are

a unique class of radars that provide range and bearing to a target as well as the general

shape of the target. This enables an adversary to detect as well as classify a target. Con-

sequently, an adversary using an imaging radar and a classification table can segregate

high-priority targets from low priority targets or decoys. Like other types of radars, im-

aging radars are susceptible to noise jamming. However, noise jamming provokes an

ISAR to use anti-jamming techniques or switch to alternative methods of target detection

and classification. In addition, future ASCMs are also expected to use imaging seekers in

order to improve aimpoint accuracy and reject decoys. A programmable multi-chip elec-

tronic warfare (EW) system currently in development has the capability to transmit syn-

thesized false targets to an imaging radar, which when integrated by the range-Doppler

processing, will generate an image which will likely be indistinguishable from true target

returns. Unlike noise jamming, the false-target EW system will not alert an adversary to

the ongoing deception. Consequently, the ISAR will continue to track both the real and

false targets and will not switch to alternative homing methods. The circuit that gener-

ates the false images in response to an imaging radar is called the Digital Image Synthe-

sizer (DIS).

xix

This dissertation proposes a design for a high-performance, mixed-signal, EW

system-on-a-chip (SoC) capable of producing false targets in response to wideband imag-

ing radar interrogations. The minimum components required for the DIS EW SoC are an

analog-to-digital converter (ADC), high-speed memory, the DIS signal processor, and a

digital-to-analog converter (DAC). Each component in the SoC must be optimized for

low-power and small die area while maintaining a high operating frequency. Detailed

designs for the false target DIS and ADC are provided in this research.

The DIS is the largest single component in terms of die area in the proposed SoC.

Alternative DIS architectures are presented that attempt to reduce circuit die area and

power dissipation. This research also describes the theory, design, implementation, simu-

lation, and testing of a proof-of-concept ASIC providing automatic counterflow-clock

pipeline skew control for the DIS.

High performance ADCs are key components of mixed-signal SoCs. Two of the

fastest ADC architectures in use today are the flash ADC and the folding ADC. The ro-

bust symmetric number system (RSNS) folding ADC offers significant advantages over

the flash ADC in terms of conversion speed, power savings, and die area. The gray-code

property of the RSNS makes it particularly useful in direction finding interferometer an-

tenna architectures and electro-optic digital antennas as well as ADCs since it eliminates

encoding errors common in those systems. This work presents the design of an 8-bit 1

GS/s RSNS folding ADC and RSNS-to-binary converter suitable for implementation in

an EW false target digital image synthesizer SoC.

xx

ACKNOWLEDGMENTS

The entirety of this research is dedicated to the glory of God. May it be used for

His purposes and help in some small way to bring peace to the world in His name.

I wish to express my sincerest appreciation to my co-advisor, Professor Douglas

Fouts. His steadfast support and exemplary leadership helped me to plough through the

difficult and frustrating periods when the light at the end of the tunnel seemed dim. His

enthusiasm for engineering and endless stream of ideas made this work possible. I also

wish to thank my co-advisor Professor Phillip Pace. His infectious drive and constant

feedback provided the motivation for much of the research in this dissertation. My re-

spect and admiration for him is immeasurable. I want to thank my Doctoral Committee

members Professors Charles Therrien, Herschel Loomis, and Cynthia Irvine for their con-

tributions, support and inspiration. Thank you for always keeping your doors and minds

open. A special thanks goes out to David Styer for his extensive assistance.

I want to convey my gratitude to the Naval Security Group for providing me the

opportunity to pursue this program. I hope that the training and education acquired in my

doctoral studies will be invaluable to the NSG in the years to come.

This work was supported in part by the Office of Naval Research Code 313 and

the Naval Research Laboratory Code 5740. Much appreciation goes to Dr. Peter Craig,

Mr. Jim Talley, and Mr. Mike Monsma for their support and encouragement.

I wish to thank my family for their unwavering support. When the demands on

my time were the greatest, their patience and faith in me was the strongest. The support

of my wife, Heather, continues to remind me that there is faith for darkened hours, cour-

age in despairing nights, calm in stressful circumstances, and to always walk in the Light.

I also wish to thank my parents for their love and support for a son who rarely finds his

way home. Finally, I wish to thank my children, Austin and Carson, who never seemed

to notice that their Dad was too busy or too tired to play. They are the reason I continue

to pledge to my service to the United States military. May God bless this work and the

United States of America.

xxi

THIS PAGE INTENTIONALLY LEFT BLANK

xxii

I. INTRODUCTION

A. BACKGROUND

Success of naval actions in hostile environments hinges on the ability of combat-

ants to perform under enemy fire. The current strength and technical capability of the US

Navy make it unlikely that an attack would be frontal and direct. Rather, an oblique and

asymmetrical attack is expected. Modern anti-ship capable missiles (ASCM) provide ad-

versaries with a highly capable and deadly asymmetric weapon due to their relatively low

cost and advanced homing capabilities [1]. Naval forces operating in cluttered littoral

environments are particularly vulnerable from land or sea [1], [2]. Therefore, the suscep-

tibility of Navy surface ships to asymmetric attack is strongly dependent on their capabil-

ity to defend against the ASCM threat [2].

Wideband imaging radars, such as the inverse synthetic aperture radar (ISAR), are

a unique class of ASCM targeting radar that provide range and bearing to a target as well

as the general shape of the target [3], [4]. This enables an adversary to classify as well as

detect a target. Consequently, an adversary using an imaging radar and a classification

table can segregate high-priority targets from low priority targets or decoys [5]. Like

other types of radars, imaging radars are susceptible to noise jamming [6]. However,

noise jamming provokes an ISAR to use anti-jamming techniques or switch to alternative

methods of target detection and classification [7]. In addition, future ASCMs are also

expected to use imaging seekers in order to improve aimpoint accuracy and reject decoys

[5].

1

Research on the next generation of techniques to counter imaging radars and

seekers is in progress. A multi-chip electronic warfare (EW) system currently in devel-

opment will have the capability to transmit synthesized signals to an imaging radar that,

when integrated into the range-Doppler processing, form an image of a false target that

will likely be indistinguishable from true target returns [8], [9]. Unlike noise jamming,

the false-target EW system will not alert an interrogating ISAR to the ongoing deception.

Consequently, the radar will continue to track both the real and false targets and will not

switch to alternative homing methods. An example of an imaging radar return and simu-

lated false target generation on the USS Crockett is provided in Figure 1.1 (courtesy of

the Tactical Electronic Warfare Division of the U.S. Naval Research Laboratory). The

circuit that generates the false images in response to an imaging radar is called the Digital

Image Synthesizer (DIS) [8].

(a)(a)

(b) (c)
Figure 1.1 Imaging radar and false target generation example featuring (a) the USS

Crocket, (b) AN/APS-137 imaging radar return of the USS Crockett, and (c) simulated
output of an eight-bin digital image synthesizer circuit (After [9].).

B. PROBLEM STATEMENT

The design and development of effective and affordable electronic warfare sys-

tems is a difficult challenge that requires full exploitation of the most advanced technolo-

gies available. The future must include aggressive and innovative use of new technology

2

to produce systems that are operationally useful and supportable [10], [11]. Furthermore,

the next generation of EW systems must be self-contained and capable of installation in

miniature, low-power platforms such as expendable decoys and unmanned aerial vehicles

(UAV) [12], [13]. In due course, the multi-chip EW system will give way to the EW sys-

tem-on-a-chip (SoC) concept, where all analog and digital processing is performed in a

single package. SoCs are now practical because of advances in mixed-signal design

technology largely due to research in the cellular phone and wireless local area network

(WLAN) fields [14]. For example, a sub-0.25 micron silicon germanium mixed-signal

fabrication process has been used successfully for commercially available WLAN and

cellular phone SoCs [14], [15].

This dissertation proposes a design for a high-performance, mixed-signal, EW

SoC capable of producing false targets in response to wideband imaging radar interroga-

tions. The minimum components required for the DIS EW SoC are an analog-to-digital

converter (ADC), high-speed memory, the DIS signal processor, and a digital-to-analog

converter (DAC). Each component in the SoC must be optimized for low-power and

small die area while maintaining a high operating frequency. Unfortunately, SoC design

involves the construction of an entire system and therefore it has many of the same prob-

lems as with any system design (e.g., independent module design, interface standardiza-

tion, integration, etc.) [10], [11], [16]. Moreover, mixed-signal design is particularly dif-

ficult. There are few reliable mixed-signal system computer-aided design (CAD) tools

such as a combined analog and digital hardware description language (HDL) [16].

Moreover, limited verification and simulation tools are available, especially mixed-signal

circuit simulators capable of simulating analog circuits at the transistor level while simul-

taneously simulating digital circuits at the functional level in the time domain [10], [16].

Since it is extremely difficult and sometimes impossible to simulate the behavior of the

entire SoC, each module must be tested independently and operate reliably regardless of

alterations to other modules [11].

3

C. ORIGINAL CONTRIBUTION

The gargantuan task of design, simulation, and fabrication of an entire EW SoC is

beyond the scope of this dissertation. Therefore, this research focuses on two key com-

ponents of the SoC, the ADC and the DIS. The theory and circuit designs presented in

this research leverage current advances in ADC design and mixed-signal fabrication

technology to produce compact, power-efficient, high-performance EW SoC compo-

nents.

New architectures and improvements are proposed for the DIS that resulted in a

more compact, low-power design suitable for inclusion in an SoC design. A novel all-

digital automatic clock-skew-control circuit design is introduced and correct operation

verified with extensive simulation. A proof-of-concept chip implementing the skew con-

trol circuit was fabricated and tested to validate the hardware implementation of the de-

sign.

A high-speed, eight-bit robust symmetric number system (RSNS) folding ADC

design is presented and was simulated in an advanced mixed-signal fabrication process.

The ADC has lower power consumption and requires a smaller die area than comparable

high-speed ADC designs. In support of the RSNS folding ADC, comprehensive mathe-

matical and intuitive descriptions were developed for the robust symmetric number sys-

tem.

The first RSNS-to-binary conversion algorithm is presented and converts the out-

put of the RSNS ADC to a format compatible with most digital circuits. The RSNS-to-

binary algorithm was designed and simulated in an advanced mixed-signal process.

Simulation results verified the operation of the circuit and showed that the algorithmic

approach to RSNS-to-binary conversion is orders of magnitude smaller and faster than

conventional hardware conversion methods.

4

D. DISSERTATION OUTLINE

Chapter II describes and analyzes the existing DIS architecture. Several computa-

tional redundancies were discovered in the DIS architecture that, when removed, resulted

in a DIS design with a significantly reduced layout area and reduced power consumption.

In addition, it was shown that the clock distribution scheme in the current DIS requires

manual skew control adjustment whenever a change is made to the circuit. Such a design

procedure is not conducive to a mixed-signal SoC environment because of the difficulty

of performing multiple full-chip simulations. A novel design was introduced for an auto-

matic clock synchronization and skew control scheme that eliminated the necessity for

repeated manual clock skew adjustment simulations. The result was decreased SoC

design time and increased module reliability. Chapter II and its associated appendices

provide the theory, circuit schematics, simulation results, and hardware testing for a

proof-of-concept automatic clock synchronization chip.

Chapter III presents the circuit design for two robust symmetric number system

(RSNS) folding ADCs. The RSNS is a symmetric residue number system that provides

the theoretical basis for the design of high-speed folding ADCs with significant benefits

in the areas of power, speed, and die area compared to other high-speed ADC designs.

The mixed-signal fabrication process for the ADC circuit simulation is introduced and its

benefits to SoC design are described. First, a three-channel six-bit RSNS folding ADC is

presented. The ADC folding amplifiers, individual folding stages, and latched compara-

tors are described in detail. The three-channel ADC design procedure was extended to

construct a four-channel, eight-bit RSNS folding ADC that is suitable for converting the

analog radar interrogation pulses to the eight-bit digital form required by the DIS. Com-

prehensive circuit schematics and simulation results are presented for both ADC designs.

Chapter IV extends the current two-modulus RSNS theory and analysis tech-

niques. This chapter and its associated appendices provide the theory, closed-form ana-

lytic expressions, and search algorithm code to efficiently compute the size and location

of the largest sequence of unique RSNS vectors for three-modulus and N-modulus sys-

tems.
5

Chapter V introduces two simple hardware schemes, a ROM and a decoder, to

convert the digital thermometer code output of the RSNS folding ADC to binary format.

The theory behind an alternative approach was developed that leads directly to an easily

pipelined circuit occupying a die area that is orders of magnitude smaller than the other

two approaches. The three-modulus RSNS-to-binary conversion process is presented

first to illustrate the key conversion algorithm concepts. The three-modulus results are

extended to generate an N-modulus RSNS-to-binary conversion procedure. Finally, the

N-modulus conversion procedure was employed to design a four-modulus RSNS-to-

binary circuit for the four-channel ADC in Chapter III. The four-modulus RSNS-to-

binary converter provides the eight-bit binary output that meets the input requirements of

the DIS circuit. Comprehensive circuit design schematics and verification simulation re-

sults are provided for both converter designs.

In Chapter VI, the results of the previous chapters are summarized and areas for

future research are discussed.

6

II. DIGITAL IMAGE SYNTHESIZER ELECTRONIC WARFARE
SYSTEM-ON-A-CHIP

A. SYSTEM-ON-A-CHIP ARCHITECTURE

The proposed design for a high-performance, mixed-signal, EW SoC capable of

generating false targets in response to imaging radars interrogations is shown in Figure

2.1.

High Speed
Memory

Digital Image
Synthesizer (DIS)

A
na

lo
g

to
 D

ig
ita

l C
on

ve
rt

er

A
D

C

O
ut

pu
t t

o
B

in
ar

y

D
ig

ita
l t

o
A

na
lo

g
C

on
ve

rt
er

Clock Synchronization

Digital Image
Synthesizer (DIS)

Digital Image
Synthesizer (DIS)

Figure 2.1 Components required for the DIS EW SoC.

The minimum components required to implement the DIS EW SoC are an analog-

to-digital converter (ADC), high-speed memory, the DIS signal processor, a digital-to-

analog converter (DAC), and a clock synchronization and distribution system. Each

component in the SoC must be optimized for low-power and small die area while main-

taining a high operating frequency. The remainder of this chapter proposes improve-

ments to the DIS design that would make it more conducive to inclusion into the pro-

posed SoC architecture.

7

B. DIGITAL IMAGE SYNTHESIZER DESIGN

The Digital Image Synthesizer (DIS) is the largest single component in the pro-

posed EW single-chip architecture. The current DIS architecture contains at least two

sources of redundant computation that, if the circuits are redesigned properly, could pro-

duce architectures with reduced layout area. Reducing layout area is critical since there

will be several modules on the SoC and each one needs to be optimized for small die area

and low power. The first section in this chapter presents some alternative DIS architec-

tures with the goal of generating a design with a reduced die area.

Since the DIS is a pipelined synchronous machine, all of the range bins must be

clocked in such a manner that the data arrives at each pipeline stage without corrupting

the data from the previous pipeline stage. The second section in this chapter describes

the architecture of the existing DIS and describes the current DIS resolution to this clock-

ing problem, a technique known as counterflow-clock pipelining, and introduces a novel

method for automatically controlling the clock skew inherent in the pipelining technique.

1. Current DIS Architecture

The DIS architecture is essentially a 512-tap finite impulse response (FIR) filter

with each tap containing a complex modulation and is described in detail in [17]-[18].

The FIR signal processing circuit at each tap is called a range bin. The range bin gets its

name from the fact that the time delay through the range bin processing elements repre-

sent an incremental target distance to an interrogating radar. Each range bin is composed

of an adder, look-up table (LUT), gain multiplier, and two 16-bit adders. A conceptual

diagram of the DIS showing only 2 of the 512 range bin processors (first and last) is pre-

sented in Figure 2.2. The dashed line indicates the extent of the existing single-chip DIS

design.

8

Down
conversion

Amplitude
sampling

High
performance
microprocessor
image control

DACDACDACDAC

LOLO

QI

adder

decoder

latches
gain

phase data

adder

Final
adder

gain

Complex image data

LUT

(,) , (,) incg r n r nφ

E (target extent) LUT

(0,)g n

…

Up
conversion

Wideband
chirp signal

Synthesized
target signal

PROGRAMMABLE
IMAGE
SYNTHESIZER

Adder
+ delay

(0,)inc nφ (1,)inc rN nφ −

(1,)rg N n−

(,)m nφ

Inphase

Quadrature

(,)I m n

ˆ(0, ,)m nφ ˆ(1, ,)rN m nφ −

(0, ,)L m n (1, ,)rL N m n−

Amplitude to
phase
conversion

Figure 2.2 Single-chip DIS architecture (From [17].).

The integrated EW architecture proposed in this dissertation encompasses all of

the components in the figure except for the up and down conversion circuitry, local oscil-

lator, computer control, and antennas.

Since the DIS is the largest SoC component, it is the obvious focus of efforts to

reduce die area in order to minimize the size and power requirements of the SoC. By far,

the largest contributor to the size of the DIS is the size of the range bin circuit, which al-

though relatively small, is replicated 512 times in the DIS circuit presented in [18]. Fur-

thermore, increasing the number of range bins corresponds to an increase in the size of

the false target generated by the DIS (for a constant clock rate), and would be necessary

to generate larger false targets such as aircraft carriers. Figure 2.3 shows the detailed ar-

chitecture of a single pipelined range bin. Figure 2.4 is a simplified representation of the

DIS architecture showing 2 of the 512 range bins shaded in gray.

9

Phase coefficient

DRFM Phase Data

5-bit register

LUT

Phase Adder

8-bit register

11-bit register

GainGain
Coefficients

8-bit register

11-bit register

Gain

(,)inc r nφ
(,)m nφ

(,)g r n

(, ,)L r m n

16-bit adder 16-bit adder

16-bit register 16-bit register

I(r)

I(r+1) Q(r+1)

Q(r)

1616

(, ,)S r m n

ˆ(, ,)r m nφ

To r-1 modulator
Figure 2.3 Architecture detail of single pipelined range bin (From [18].).

10

5-bit adder

LUT

Gain ShiftGain Shift

16-bit Adder

16-bit Adder

I/Q to θ

θ increment

I Q

I Q

θ sample

Gain

I

Q

5-bit adder

LUT

Gain ShiftGain Shift

16-bit Adder

16-bit Adder

I Q

I Q

θ sample

5

θ increment

Gain

To all range bins

From
previous
range bin

Q

I

To DAC

Q

I

From
ADC

Figure 2.4 Simplified DIS architecture.

The inphase and quadrature (I/Q) radar pulse samples from the ADC in Figure 2.2

are converted to a phase angle sample and then distributed in parallel to each range bin.

The I/Q-to-phase-angle converter shown in Figure 2.4 and Figure 2.2 is an implementa-

tion of an unrolled CORDIC (Coordinate Rotation Digital Computer) algorithm described

in detail in [17]. Within each range bin, on every clock pulse a five-bit phase increment

is added to the phase angle samples (Doppler processing) and the result is converted back

to I/Q using an LUT. The I/Q signals from the LUT are multiplied by a gain factor (radar

cross section processing), then summed with the result from the adjacent range bin

(which includes tapped delay) and the result is passed forward. The five-bit phase angle

increment and gain factor are not necessarily the same from range bin to range bin and

depend on the image being synthesized. The following sections address the computa-

tional redundancies in the DIS architecture and presents alternative architectures that re-

move the redundancies.

11

2. Alternative DIS Architectures

The first computational redundancy addressed in this section is the conversion

from I/Q to phase angle (for Doppler processing) and the subsequent conversion from

phase angle back to I/Q. From a logical perspective, it seemed probable that eliminating

the phase angle conversion and performing all computations with the I/Q samples would

simplify the circuit and reduce layout area. The second redundancy addressed stems

from the fact that each of the 512 range bins increments the phase angle by a 5-bit value.

Thus, since a 5-bit binary number has only 32 unique values, at least 480 of the 512 range

bins are performing redundant calculations on each clock cycle.

Figure 2.5 shows an alternative architecture that eliminates the phase angle con-

version. In this architecture, the phase adder and LUT in each range bin were replaced by

a mathematically equivalent I/Q rotation operation. The process of using the CORDIC

algorithm to convert I/Q to five-bit phase angle requires almost exactly the same hard-

ware as rotating the I/Q vectors by a five-bit phase angle [19]. The only significant dif-

ference in the algorithm is the initialization values. Therefore, the transistor count for the

I/Q to phase angle converter from [17] will be used as an approximation for the transistor

count of the I/Q vector rotator circuit. Unfortunately, the I/Q rotation circuit as presented

in [17] requires almost 50,000 transistors, which is 33 times larger than the phase adder

and LUT. Therefore, although the architecture in Figure 2.5 appears less complex than

the original DIS architecture, it has approximately 33 times more transistors and no ap-

parent increase in speed.

12

Gain ShiftGain Shift

16-bit Adder

16-bit Adder

I Q

I Q

Gain

Gain ShiftGain Shift

16-bit Adder

16-bit Adder

I Q

I Q

Gain

From
previous
range bin

Q

I

Q

I

Rot I

I

Q

Rot Q

8

8

θ increment

Rot I Rot Q

θ increment

To DAC

From ADC

Figure 2.5 DIS architecture using range bin I/Q rotation.

Figure 2.6 represents an alternative DIS architecture that eliminates both phase

angle conversion and redundant range bin phase increment addition. In this design, each

I/Q sample pair is fed into 31 parallel I/Q rotation circuits, which simultaneously com-

pute all possible 31 rotations of the input sample. The rotated samples are then distrib-

uted to the 512 range bins via a distribution network (bus, tree, butterfly, etc.). The range

bins shown in gray are a mere half of their original size in terms of transistor count.

However, computing the savings in terms of transistors for the entire DIS circuit yields a

negative result. The 31 I/Q rotation circuits add 1,550,000 transistors, while the elimina-

tion of 512 phase adders and LUTs remove only 768,000 transistors. This computation

ignores the overhead in wiring and switches necessary for the distribution network, which

will not be negligible. Therefore, this architecture does not provide any savings in terms

of die area until the number of range bins reaches 1024 or more. Even if there were more

than 1024 range bins, the distribution network would most likely require so much addi-

tional wiring and switching circuitry as to make this architecture impractical.

13

Gain ShiftGain Shift

16-bit Adder

16-bit Adder

I Q
Gain

Gain ShiftGain Shift

16-bit Adder

16-bit Adder

I Q

From
previous
range bin

Q

I

Q

I

Rot I/Q

I

Q

Rot I/Q Rot I/Q

8-bit 32 to 512 distribution network

Gain

θ inc θ inc θ inc

I

I Q

Q I Q I Q

I Q

To DAC

From ADC

I Q

Figure 2.6 DIS architecture with 31 I/Q rotations and distribution network.

An interesting observation about this architecture is that the I and Q portions of

the range bins are decoupled. That is, the range bins can be split into I range bins and Q

range bins that can be physically separated into independent pipelines. Therefore, this

architecture may be useful if layout flexibility is important.

Figure 2.7 represents a final alternative DIS architecture that eliminates both

phase angle conversion and redundant range bin phase increment addition. In this design,

each I/Q sample pair is fed into an I/Q rotation circuit. The rotation circuit converts the

I/Q samples to a phase angle sample as in the original DIS architecture. The phase angle

sample is then passed to an incrementer, which increases the phase angle by one on each

clock cycle. The incremented phase angle is then converted back to I/Q with a LUT and

the result is placed onto a high-speed I/Q increment bus. A second incrementer is used to

keep track of the number of increments applied to the phase angle sample. The count of

the second incrementer is placed on a second high-speed bus. Both busses connect to

every range bin in parallel. The latch in each range bin captures the value on the I/Q bus

14

when the pre-loaded latch code in the particular range bin matches the increment count

on the second bus.

Increment
Count

Gain ShiftGain Shift

16-bit Adder

16-bit Adder

I Q

Gain ShiftGain Shift

16-bit Adder

16-bit Adder

I Q

From
previous
range bin

Q

I

Q

I

I/Q to θI

Q

θ incrementer LUT

Latch I Latch Q Latch I Latch Q

I Q
5

8

32x faster clock32x faster clock

8

Gain Gain

Latch
Code

Latch
Code

I Q I Q

To DAC

From
ADC

Figure 2.7 DIS architecture with a phase angle incrementer and bus distribution.

The transistor count of each range bin is reduced by approximately one-third and,

like the previous architecture, the I and Q portions of the range bin are decoupled provid-

ing more layout flexibility. The downside of this architecture is that the portion of the

design drawn with patterned lines (i.e., incrementers, LUT, distribution buses, and range

bin latches) must be clocked 32 times faster than the rest of the circuit. This must be

done to maintain the same overall clock rate as the original DIS architecture.

A five-bit version of the fast incrementer in [20] was designed and simulated in

the same fabrication process as the DIS to test the practicality of the architecture in

Figure 2.7. A schematic of the high-speed incrementer is provided in Figure 2.8.

15

Figure 2.8 High-speed incrementer circuit schematic.

16

The lower half of the schematic shows the priority-based incrementer and the up-

per half of the schematic shows two levels of dynamic latches that feed the incrementer

output back to the input. The circuit was designed and simulated using Tanner Research

software. The simulation parameters were provided by MOSIS (Metal-Oxide Semicon-

ductor Implementation System). MOSIS is a low-cost prototyping and small-volume

production service for VLSI (Very Large Scale Integration) circuit development at the

University of Southern California with support from the National Science Foundation.

MOSIS keeps the cost of fabricating prototype quantities low by gathering together mul-

tiple projects into one fabrication run. This allows customers to share overhead costs as-

sociated with mask making, wafer fabrication, and assembly. The fabrication process

used for simulation was the Taiwan Semiconductor TSMC CL018 process used to simu-

late the existing DIS schematic. The TSMC process is for 1.8-volt applications and has a

thick oxide layer for making 3.3-volt transistors and is described in detail in [17]. Simu-

lation results for the circuit are provided in Figure 2.9.

17

0

1

2
High-Speed Incrementer/Decrementer

CL
K

 (V
)

0

1

2

D
EC

in
0

(V
)

0

1

2

D
EC

in
1

(V
)

0

1

2

D
EC

in
2

(V
)

0

1

2

D
EC

in
3

(V
)

0 2 4 6 8 10 12 14 16 18
0

1

2

D
EC

in
4

(V
)

Time (ns)
Figure 2.9 Incrementer simulation results.

Correct operation of the circuit was achieved up to a frequency of 2.85 GHz. The

DIS must operate at a minimum frequency of 500 MHz in order to be effective against

modern imaging radars [18]. Thus, the fast incrementer must operate at a frequency of at

least 5 MHz, or 16 GHz. Thus, the incrementer is approximately six

times slower than necessary. In order for this architecture to be practical against modern

imaging radars, the design must be implemented in a fabrication process that allows for

the incrementer to run at a pipelined speed greater than 16 GHz.

00 32 16,000× =

18

In summary, although the alternative DIS architectures presented in this section

do not represent all the possible improvements to the original DIS architecture, this re-

search demonstrates that it is unlikely that removing the redundant range bin phase addi-

tion reduces the transistor count in the DIS circuit. The redundant addition of the phase

increment in each range bin can be eliminated by pre-computing 31 phase increments.

However, the problem of distributing the 32 samples to each range bin in a single DIS

clock cycle requires either a large and complex distribution system or a high-speed bus.

However, both distribution methods were proven impractical in the current DIS fabrica-

tion process. Furthermore, revising the DIS circuit to eliminate the phase conversion did

not provide the anticipated layout area reduction. The sheer size of the I/Q rotator circuit

prevents its use in the range bin and, as long as the number of range bins remains rela-

tively low, the phase angle conversion, although redundant, produces a circuit with a

minimal transistor count.

While the transistor count of the DIS was not reduced using the architecture de-

signs presented in this section, the DIS has a pipeline clock skew control scheme that is

not conducive to the mixed-signal SoC environment. The DIS architecture improvement

in the next section provides a novel and effective solution for automatically controlling

the DIS pipeline clock skew.

C. DIS CLOCK-SKEW CONTROL

1. Counterflow-Clock Pipelining

Since the DIS is a pipelined synchronous machine, all of the pipeline latches must

be clocked in a manner such that the data in one stage does not corrupt the data in the fol-

lowing pipeline stage. The obvious solution is to clock each pipeline latch at exactly the

same instant at an appropriate frequency. From a practical sense, this is an impossible

task and realistically each pipeline latch is clocked with some skew relative to the other

latches. There are many methods for reducing clock skew [21] but one of the most

prevalent is the H-tree method shown in Figure 2.10.
19

O
ff-

C
hi

p
D

at
a

R
B

P
#1

R
B

P
#2

R
B

P
#3

R
B

P
#4

R
B

P
#5

R
B

P
#6

R
B

P
#7

Off-Chip Clock

Figure 2.10 H-tree clock distribution method.

The clock delay path to each range bin pipeline latch, represented by the patterned

lines, is theoretically identical. In practice however, the clock distribution wiring is

rarely exactly the same length and process variations across the chip impart variable de-

lay on the buffers. Although effective at limiting skew, the H-tree has the side effect of

clocking all latches at the same time causing ground bounce and power supply drop,

which can be disastrous to chips with low noise margins [21]. An alternative clocking

scheme particularly effective on architectures such as the DIS with primarily unidirec-

tional data flow is a technique known as counterflow-clock (C2) pipelining [21]. The ad-

vantages of C2 pipelining include application of simple local timing constraints inde-

pendent of clock skew and reduced switching noise due to fewer simultaneously clocked

switches. Although there are several ways to implement C2 pipelining, the current DIS

architecture implements the C2 pipelining scheme in a manner depicted in Figure 2.11.

20

O
ff

-C
hi

p
D

at
a

R
B

P
#1

R
B

P
#2

R
B

P
#3

R
B

P
#4

R
B

P
#5

R
B

P
#6

R
B

P
#7

Off-Chip Clock

Clock
Skew

Problem

Variable
Skew

O
ff

-C
hi

p
D

at
a

R
B

P
#1

R
B

P
#2

R
B

P
#3

R
B

P
#4

R
B

P
#5

R
B

P
#6

R
B

P
#7

Off-Chip Clock

Clock
Skew

Problem

Variable
Skew

Figure 2.11 Counterflow-clock distribution method without skew control.

Notice that the clock signal flows in a direction opposite to the data. The only

clock skew problem occurs at the point where the off-chip data, driven by an off-chip

clock, coincides with the counterflow clock. Depending on the number of range bins,

wiring delay, and number of buffers, the two clocks could be out of phase by as much as

180 degrees. The way the current DIS architecture solved the skew problem is by using

manually adjusted variable delay elements in each range bin as shown in Figure 2.12.

21

O
ff

-C
hi

p
D

at
a

R
B

P
#1

R
B

P
#2

R
B

P
#3

R
B

P
#4

R
B

P
#5

R
B

P
#6

R
B

P
#7

Off-Chip Clock

v v v v v v v

Clocks synchronized using manually adjustable variable delay elements

O
ff

-C
hi

p
D

at
a

R
B

P
#1

R
B

P
#2

R
B

P
#3

R
B

P
#4

R
B

P
#5

R
B

P
#6

R
B

P
#7

Off-Chip Clock

vv vv vv vv vv vv vv

Clocks synchronized using manually adjustable variable delay elements

Figure 2.12 Counterflow-clock distribution method with skew control.

Synchronization is achieved by measuring clock skew with an oscilloscope and

adjusting the variable clock delay in each range bin until the counterflow clock is syn-

chronized with the off-chip clock at the coincidence point. The problem with this method

is that it requires time consuming human involvement to perform the measurement and

adjustment. Also, the skew adjustment is static; thus if circuit timing drifts due to tem-

perature, voltage changes, or component aging, the manual adjustment does not auto-

matically compensate. The variable delay element in each range bin is shown in Figure

2.13. The clock delay is adjustable by an amount equal to the delay through two mini-

mum-sized inverters.

22

Delay SelectDelay Select

Figure 2.13 Manual skew control method in original DIS architecture.

Much research has been published on clock synchronization using static [22] and

dynamic [23]-[25] techniques. All of the dynamic methods published to date have em-

ployed the use of analog circuits as either synchronization detection or correction mecha-

nisms. The next section in this chapter introduces a novel all-digital method for auto-

matically and dynamically synchronizing the off-chip and counterflow clock signals. The

method also reduces the clock skew caused by variations in chip parameters.

2. Automatic Synchronization Approach

For the purposes of this research, clock skew is defined as the absolute value of

the time difference between the positive rising edges of two clock signals. One clock

signal is considered the reference clock and the skew of a second clock signal is meas-

ured relative to the reference clock. This concept is illustrated in Figure 2.14.

23

Global Clock

Negative Clock Skew

t

Positive Clock Skew

-S

+S

T

Global Clock

Negative Clock Skew

t

Positive Clock Skew

-S

+S

T

Figure 2.14 Clock skew diagram.

In the diagram, the reference clock is the global clock, referring to the concept

that the global clock is the reference for other synchronous chips or modules. Relative to

the global clock, the remaining two clock signals show positive clock skew, where the

leading edge of the skewed clock occurs before the positive edge of the global clock, and

negative clock skew, where the positive edge of the skewed clock occurs after the posi-

tive edge of the global clock. Consequently, the skew limits are

0
2
TS> ≥ , (2.1)

where T is the clock period and S is clock skew. Although not possible in a practical

sense, clock signals with a relative skew of exactly T/2 can be defined as either positive

or negative depending on the application. The clock signals presented in Figure 2.14

have a 50% duty cycle; however the clock signals considered in this research are not lim-

ited to a 50% duty cycle nor must they both have the same duty cycle for the purposes of

the synchronization method presented in this dissertation.

The clock synchronization scheme presented in this research consists of three

components: a phase-check module, a phase-adjustment module, and a control module.

This scheme is shown in Figure 2.15.

24

Phase
Check

Phase
Adjust

Control

global clock

pipeline clock

ph
as

e
ad

ju
st

ed
 c

lo
ck

Figure 2.15 Clock phase synchronization diagram.

The phase-check module compares two clock signals and determines if they are in

phase within a certain tolerance. If the two clock signals are out of phase, the phase-

check module also determines whether the C2 pipeline clock has positive or negative

skew relative to the global clock. If the phase-check module determines that the global

clock and C2 pipeline clock are out of phase, the phase-adjustment module incrementally

increases or decreases the delay applied to the C2 pipeline clock based on the sign of the

phase difference. The control module regulates the timing of the phase-check/phase-

adjustment cycle such that the full effect of the incremental phase adjustment influences

the C2 pipeline clock before the next phase check occurs. Since the phase-adjustment

module adjusts the phase of the skewed clock in increments, several phase-check/phase-

adjustment cycles may be required to synchronize the two clocks. For notational pur-

poses, the adjustment increment is defined as 2τ seconds, where τ is the average delay

of a minimum-sized inverter. To avoid infinite adjustment oscillations, the phase-check

module must detect a skew with an absolute value less than or equal to τ as in-phase and

a skew with an absolute value greater than τ as out of phase.

25

3. Circuit Design

The block diagram in Figure 2.16 presents a more detailed design of the clock

synchronization scheme described in the previous section. In this implementation, the

phase-adjustment module is composed of a counter driving a variable delay module. The

variable delay module represents the variable delay elements contained in the range bins

shown in Figure 2.13. The control module is implemented with a finite state machine

(FSM). The phase-check module design is the same as described in the previous section.

Starting with the global clock and the pipeline clock signals entering from the left of the

figure, the data flow is through the blocks in a clockwise fashion.

Variable
Delay

Phase Check

Finite State
Machine

Counter

global clock

pipeline clock

COUNT

UP

C
ou

nt
er

O

ut
pu

t

IN
PH

A
SE

SI
G

N

delay-adjusted
pipeline clock

Figure 2.16 Block diagram of a simple clock synchronization scheme.

Stepping through the data flow diagram, the global clock enters the phase-check

module directly while the pipeline clock first receives some delay in the variable delay

module. The global clock and delay-adjusted pipeline clock (DPCLK) are inputs to the

phase-check module. The phase-check module determines whether the global clock and

26

the delay-adjusted pipeline clock are synchronous within a certain tolerance, τ . The

output of the phase-check module is an INPHASE signal, which is asserted only if the

two clock signals are synchronous, and a SIGN signal, which is asserted if the delay-

adjusted pipeline clock skew is positive with respect to the global clock and negated if

the delay-adjusted pipeline clock skew is negative with respect to the global clock. The

FSM provides the correct timing for the clock phase synchronization cycle as well as

COUNT and UP signals to the counter. These two signals enable the counter to count up,

count down, or hold the current count. The binary value of the counter determines the

amount of delay added to the pipeline clock in the variable delay module.

A more comprehensive block diagram of the clock synchronization circuit using

generic clock labels is provided in Figure 2.17. The second variable delay circuit is

added for testing purposes to impart controlled skew on the Clock B signal. The opera-

tion and schematics of each module are presented in detail in the following sections.

Variable
Delay

Variable
Delay

Phase Check

Finite State
MachineCounter

Clock A

Clock B

COUNT

UP

Q
 (0

..4
)

IN
PH

A
SE

SI
G

N

R
ES

ET

(For testing)

Figure 2.17 Clock synchronization design diagram.

a. Phase-Check Module

The heart of the clock synchronization scheme is the phase-check module.

The module has four inputs as shown in the schematic in Figure 2.18.

27

Figure 2.18 Phase-check module schematic.

28

All circuit schematics presented in this section were constructed using

Tanner Research software described in [17]. In Figure 2.18, the first two inputs are clock

signals labeled CLKA and CLKB, which represent the global clock and C2 pipeline clock

respectively. The third input is a RESET signal from the FSM, and the last input is a

chip-wide CLEAR signal that, when asserted, returns all modules to a known initial state.

The two outputs of the phase-check module are the INPHASE and SIGN signals de-

scribed in the previous section. The four-input NAND gate (NAND4) in the center of the

schematic determines whether the two clock signals are synchronized. The top two in-

puts to the NAND4 are the CLKA signal with a two-inverter delay (CLKA2t) and an in-

verted CLKA signal with a seven-inverter delay (CLKA7t). The bottom two inputs to the

NAND4 are the same as top two inputs using the CLKB signal. The three inverter gates

and the NOR gate with no output connection at the top of the schematic are included for

electrical load balancing. Each pair of inputs has the timing shown in Figure 2.19.

CLKB7t

CLKB2t

d
t

CLKB7t

CLKB2t

d
t

Figure 2.19 Timing diagram for one pair of inputs to the NAND4 gate.

The time between the rising edge of the delayed clock and the falling edge

of the inverted clock is a constant, d. The parameter d also corresponds to the amount of

time that the pair of signals are both in the logic high state. Defining a single inverter de-

lay as τ, the value of d in this case is 5τ. When the clocks are perfectly synchronous,

combining all four inputs with the NAND4 yields the timing diagram shown in Figure

2.20.

29

d

t

CLKA7t

CLKB7t

CLKA2t

CLKB2t

NAND4

d

t

CLKA7t

CLKB7t

CLKA2t

CLKB2t

NAND4

Figure 2.20 Timing diagram for the NAND4 output for synchronous clocks.

The shaded areas in the diagram show which edge of each input affects the

NAND4 output. Notice that in the NAND4 output, a downward pulse of width d indi-

cates that the clocks are synchronous. Figure 2.21 shows the NAND4 output for the case

where CLKB has some negative skew S, which is less than d.

≈d-S

t

S

S

CLKA7t

CLKB7t

CLKA2t

CLKB2t

NAND4

≈d-S

t

S

S

CLKA7t

CLKB7t

CLKA2t

CLKB2t

NAND4

Figure 2.21 NAND4 output for clocks with skew S d< .

The NAND4 output still shows a synchronization pulse, but the pulse

width is Observe that when skew is applied to CLKB, both the inverted and de-

layed versions of CLKB are displaced by the same skew amount. The negative-going

leading edge of the NAND4 output synchronization pulse is determined by the second

.d S−

30

leading edge of the two-inverter delayed clocks (A or B), while the positive-going trailing

edge of the synchronization pulse is determined by the first falling edge of the seven-

inverter delayed clocks (A or B). Therefore, if the skew S becomes greater than d, there

is no synchronization pulse as shown in Figure 2.22. The latched output of the NAND4

is the INPHASE signal and is one of the two phase-check module outputs.

t

S

S
CLKA7t

CLKB7t

CLKA2t

CLKB2t

NAND4
t

S

S
CLKA7t

CLKB7t

CLKA2t

CLKB2t

NAND4

Figure 2.22 NAND4 output for clocks with skew S d . >

The other phase-check module output is the SIGN signal that represents

the sign of the clock skew. The SIGN signal is computed by the two-input NAND and

two-input OR gates in the center of Figure 2.18. If the two clock signals are in phase,

then the sign of the skew is meaningless. However, if the two clock signals are not in

phase, the sign of the skew is computed by combining the delayed CLKB signals in

Figure 2.19 with a three-inverter delayed CLKA signal, CLKA3t. The logic high states of

CLKB2t and CLKB7t always overlap by d. Thus, the two-input NAND gate produces a

pulse of width d when CLKB2t and CLKB7t are the inputs. The output of the two-input

NAND gate is used as one input to a two-input OR gate with CLKA3t as the other input.

When the skew is negative, the output of the OR gate is a pulse as shown in Figure 2.23.

31

t

d

t
OR output

NAND4

d

CLKB7t

CLKA3t

CLKB2t

NAND4
t

d

t
OR output

NAND4

d

CLKB7t

CLKA3t

CLKB2t

NAND4

Figure 2.23 Timing diagram showing clock skew sign computation for negative skew.

When the skew is positive, the output of the OR gates is a constant logic

level as shown in Figure 2.24. The latched output of the OR gate is the SIGN signal and

is the second phase-check module output.

32

t

t

d

OR output

NAND4

CLKB7t

CLKA3t

CLKB2t

NAND4
t

t

d

OR output

NAND4

CLKB7t

CLKA3t

CLKB2t

NAND4

Figure 2.24 Timing diagram showing clock skew sign computation for positive skew.

The sign of the clock skew changes at only two points. One is when

 and the other is when 0S = 2,S T= where T is the clock period. At these two points,

the exact sign of the skew is ambiguous. The sign ambiguity at S 0= is inconsequential

because the two clocks are synchronized and the sign of the skew is meaningless. How-

ever, the ambiguity at 2S T= is still a concern and will be solved by an initialization

technique described in following sections.

It was determined in a previous section that, in order to avoid infinite

phase adjustment oscillations, the phase-check module must detect a skew with an abso-

lute value less than or equal to τ as in-phase and a skew with an absolute value greater

than τ as out of phase. In order for the phase-check circuit to realize these tolerances,

the transistors composing the NAND4 gate must be sized appropriately, or tuned. The

size of the transistors affects the NAND4 gate sensitivity and determines the synchroniza-

tion threshold. Therefore, the clock-synchronization circuit is not process independent.

However, the phase-check module is a very small circuit that was easy to simulate. The

simulation results helped determine the correct transistor sizing for the NAND4 as well

33

as the optimum number of delay inverters preceding the NAND4 for the desired operat-

ing frequency. The phase-check tuning simulation is much shorter than the simulation

for the entire DIS circuit used to manually tune the variable delay elements. Further-

more, tuning the phase-check module needs to be performed only once, regardless of any

subsequent changes to the DIS architecture.

b. Finite State Machine

The FSM provides the timing for the COUNT and UP signals used by the

counter module as well as the RESET signal used by the phase-check circuit. The timing

is set such the phase adjustment is manifest on the pipeline clock before the next phase-

check cycle. Figure 2.25 provides the state transition diagram for the FSM.

34

Enable
Counter

Wait
State 3

Reset
Phase

Check 1

Evaluate
Phase
Check

Check
Phase &

Sign

Reset
Phase

Check 2

Wait
State 2

Wait
State 1

A

D

F

B

E H

C

G

IN
PH

AS
E

=
0

INPHASE = 1

Enable
Counter

Wait
State 3

Reset
Phase

Check 1

Evaluate
Phase
Check

Check
Phase &

Sign

Reset
Phase

Check 2

Wait
State 2

Wait
State 1

A

D

F

B

E H

C

G

IN
PH

AS
E

=
0

INPHASE = 1

Figure 2.25 State diagram for the finite state machine module.

For simplicity, the FSM outputs are not shown on the state transition dia-

gram. The FSM outputs are listed in the state transition table provided in Figure 2.27.

From the state diagram above, in state A the FSM evaluates the result of the phase-check

module comparison of the global clock and C2 pipeline clock. If INPHASE is asserted

(the clock signals synchronous), the FSM transitions to state B and then to state C while

providing a RESET signal to the phase-check module. In state D, the reset phase-check

module tests the phase of the input clocks and provides the results in the form of the

INPHASE and SIGN signals to the FSM. The FSM then transitions back to state A and

evaluates the phase-check module results. The subset of the state transition diagram

where the clocks are synchronized is shown in Figure 2.26. The COUNT signal is ne-

gated for the entire cycle when the clocks are synchronized.
35

Reset
Phase

Check 1

Evaluate
Phase
Check

Check
Phase &

Sign

Reset
Phase

Check 2

A

D

B

C

INPHASE = 1 Reset
Phase

Check 1

Evaluate
Phase
Check

Check
Phase &

Sign

Reset
Phase

Check 2

A

D

B

C

INPHASE = 1

Figure 2.26 Partial FSM state transition diagram (synchronous clocks).

If the clocks are not synchronized, the states transition first around the

outer ring then around the inner ring of the state diagram shown in Figure 2.25. Starting

again in state A, if INPHASE is negated (the clocks are not synchronous), the FSM tran-

sitions to state E and enables the counter module to increment or decrement in the direc-

tion indicated by the SIGN signal from the phase-check module. If SIGN is asserted (i.e.,

the clocks have positive relative skew), the FSM asserts the UP signal to the counter indi-

cating that an increase in the delay of the pipeline clock is required. If SIGN is negated

(i.e., the clocks have negative relative skew), the FSM negates the UP signal indicating to

the counter that a decrease in the delay of the pipeline clock is required. The state transi-

tion table showing the FSM output signals and corresponding state labels is shown in

Figure 2.27.

36

NEXT
STATE

NEXT
STATE

INPHASE = 0 INPHASE = 1
q 2 q 1 q 0 Label Label Label COUNT RESET HOLD
0 0 1 A E B 0 0 0
0 0 0 B C C 0 1 X
0 1 0 C D D 0 1 X
0 1 1 D A A 0 0 1
1 0 1 E F F 1 X X
1 1 1 F G G 0 X X
1 1 0 G H H 0 X X
1 0 0 H B B 0 X X

OUTPUTSSTATE

Figure 2.27 FSM state transition table.

The HOLD signal is internal to the FSM and allows the FSM to latch and

hold the SIGN signal from the phase-check circuit during the phase-adjustment portion of

the synchronization cycle. Using the state table in Figure 2.27 and Karnaugh maps for

logic minimization, the logic equations for the FSM state bits are

0 2 1 2 1 0 1 0

1 2 0 2 0

2 2 1 2 0 1 0

(1) () () () () () () () (

(1) () () () (),

(1) () () () () () () ().

q n q n q n q n q n q n q n q n INPHASE n

q n q n q n q n q n

q n q n q n q n q n q n q n INPHASE n

+ = + +

+ = +

+ = + +

),

 (2.2)

Similarly, the logic equations for the outputs generated by the FSM are

2 1 0

0

1

COUNT () () (),

RESET (),
HOLD ().

q n q n q n

q n
q n

=

=
=

 (2.3)

A schematic of the FSM circuit is provided in Figure 2.28.

37

Figure 2.28 FSM Schematic.

The top three D-flip-flops represent the state of the FSM. The fourth flip-

flop is a storage element for the SIGN input from the phase-check circuit. The bottom T-

flip-flop is a part of the solution to the skew sign ambiguity problem introduced in the

previous section. An assumption is made that when the synchronization circuit is initially
38

activated (i.e., during power-on), the skew between Clock A and Clock B can be any

value, including one in which a sign ambiguity exists. However, once the clocks are syn-

chronized, the assumption is that any subsequent clock skew perturbations that result in

the clocks losing synchronization will be smaller than the skew that causes a sign ambi-

guity. For a clock with a 50% duty cycle, this means that there must not be a skew

change of 2T in a single synchronization adjustment cycle, nor should the skew change

continuously in a single direction faster than the synchronization adjustment cycle can

correct. Either of these conditions could potentially lead to a state where the skew sign is

ambiguous, which could lead to infinite oscillation in the synchronization adjustment cy-

cle. Therefore, the only problem remaining to be solved is how to deal with two clock

signals that have an ambiguous skew sign as an initial condition. The solution imple-

mented in this circuit is to force the counter to only count up when the circuit is initial-

ized, regardless of the state of the SIGN signal from the phase-check circuit, until the

clocks are synchronized. Once the clocks are synchronized, the SIGN signal is enabled

and the counter can increment or decrement the delay of Clock B according to the value

of the SIGN signal. The INIT output of the FSM is asserted anytime the clock synchro-

nization circuit receives the global CLEAR signal, such as during power-on. The INIT

signal and counter UP signal remain asserted until the two clock signals are synchronized

at which time the INIT output is negated and the UP signal is determined by the sign of

the relative clock skew.

c. Wrap-Around Counter

The counter module is essentially a synchronous, loadable and resettable,

five-bit parallel counter. A schematic of the core of the counter is shown in Figure 2.29.

39

40
Figure 2.29 Five-bit counter circuit schematic.

The state of the counter is controlled by five T-flip-flops, each with three

possible functions: toggle, load, and clear. The particular function performed by the flip-

flops is determined by the inputs s0, and s1, according to Figure 2.30.

s 1 s 0 Function
0 0 TOGGLE
0 1 LOAD
1 0 CLEAR

Figure 2.30 T-flip-flop functions.

Additional logic must be added to the counter in Figure 2.29 that enables

the counter to load a maximum count value and wrap around to that maximum value. For

instance, at some point in a synchronization adjustment cycle, it is likely that the counter

will be at zero and the FSM will require the counter to count down. Similarly, it is

equally possible that the counter will be at its pre-loaded maximum value and be required

to count up. The algorithm for the wrap around counter logic is

• Clear the counter when the count equals the maximum count value and the
FSM requires a count up or when the CLEAR signal is asserted. T-flip-
flops use the clear function.

• Load the counter with the maximum count value when the count is zero
and the FSM requires a count down. T-flip-flops use the load function.

• Otherwise, count normally according to the input signals COUNT and UP
from the FSM. T-flip-flops use the toggle function.

The logic table for the T-flip-flop function select signals based on the al-

gorithm above is presented in Figure 2.31.

41

COUNT
ASSERTED

CLEAR
ASSERTED

COUNT
AT

ZERO

COUNTING
DOWN

COUNT
AT MAX

T-flip-flop
co cl z dn mx Function s 1 s 0

0 0 0 0 0 TOGGLE 0 0
0 0 0 0 1 TOGGLE 0 0
0 0 0 1 0 TOGGLE 0 0
0 0 0 1 1 TOGGLE 0 0
0 0 1 0 0 TOGGLE 0 0
0 0 1 0 1 TOGGLE 0 0
0 0 1 1 0 TOGGLE 0 0
0 0 1 1 1 X X
0 1 0 0 0 CLEAR 1 0
0 1 0 0 1 CLEAR 1 0
0 1 0 1 0 CLEAR 1 0
0 1 0 1 1 CLEAR 1 0
0 1 1 0 0 CLEAR 1 0
0 1 1 0 1 CLEAR 1 0
0 1 1 1 0 CLEAR 1 0
0 1 1 1 1 X X
1 0 0 0 0 TOGGLE 0 0
1 0 0 0 1 CLEAR 1 0
1 0 0 1 0 TOGGLE 0 0
1 0 0 1 1 TOGGLE 0 0
1 0 1 0 0 TOGGLE 0 0
1 0 1 0 1 TOGGLE 0 0
1 0 1 1 0 LOAD 1
1 0 1 1 1 X X
1 1 0 0 0 CLEAR 1 0
1 1 0 0 1 CLEAR 1 0
1 1 0 1 0 CLEAR 1 0
1 1 0 1 1 CLEAR 1 0
1 1 1 0 0 CLEAR 1 0
1 1 1 0 1 CLEAR 1 0
1 1 1 1 0 CLEAR 1 0
1 1 1 1 1 X X

X

X

1
X

X
Figure 2.31 Logic table for the T-flip-flop function select signals.

The lower-case italicized signals at the top of the logic table are asserted

when the corresponding condition is satisfied. For example, co is asserted when the FSM

asserts COUNT, dn is asserted when the FSM negates UP, z is asserted when the all bits

of the counter are a logic zero, and so on. Some rows of the table are clearly impossible

42

in a practical sense, such as a counter reaching its maximum count value and a value of

zero simultaneously. Such rows are marked as don’t care conditions (X). The Karnaugh

maps for the wrap-around counter logic table are given in Figure 2.32.

dn mx
cl z 00 01 11 10

00 0 0 0 0
01 0 X X 0
11 1 X X 1
10 1 1 1 1

s 1

co = 0

dn mx
cl z 00 01 11 10

00 0 1 0 0
01 0 X X 1
11 1 X X 1
10 1 1 1 1

s 1

co = 1

dn mx
cl z 00 01 11 10

00 0 0 0 0
01 0 X X 0
11 0 X X 0
10 0 0 0 0

s 0

co = 0

dn mx
cl z 00 01 11 10

00 0 0 0 0
01 0 X X 1
11 0 X X 0
10 0 0 0 0

s 0

co = 1

dn mx
cl z 00 01 11 10

00 0 0 0 0
01 0 X X 0
11 1 X X 1
10 1 1 1 1

s 1

co = 0

dn mx
cl z 00 01 11 10

00 0 1 0 0
01 0 X X 1
11 1 X X 1
10 1 1 1 1

s 1

co = 1

dn mx
cl z 00 01 11 10

00 0 0 0 0
01 0 X X 0
11 0 X X 0
10 0 0 0 0

s 0

co = 0

dn mx
cl z 00 01 11 10

00 0 0 0 0
01 0 X X 1
11 0 X X 0
10 0 0 0 0

s 0

co = 1

Figure 2.32 Karnaugh maps for the T-flip-flop function select signals in Figure 2.31.

The resulting logic equations are

1s cl co z dn co dn mx= + ⋅ ⋅ + ⋅ ⋅ (2.4)

and

0s cl z dn co= ⋅ ⋅ ⋅ . (2.5)

Using (2.4) and (2.5), the schematic for the five-bit wrap-around counter is given in

Figure 2.33. The MC0 through MC4 inputs are the binary representation of the maxi-

mum counter value. The CLEAR input returns all modules to a known initial state. The

UP and COUNT signals are from the FSM, and the Q0 through Q4 outputs are connected

to the variable delay module. The state of the signals Q0 through Q4 determines the

amount of delay added to Clock B in the variable delay module.

43

Figure 2.33 Schematic of the five-bit counter with wrap-around logic.

d. Variable Delay Module

The variable delay module is instantiated twice in the clock synchroniza-

tion design presented in Figure 2.17 and serves two functions − to impart skew on Clock

B for testing, and to impart delay on Clock B for synchronization. Consequently, if two

clock sources with controllable relative skew are not available for testing the clock syn-

chronization chip, a single clock can be used. The single clock signal represents the

global clock (Clock A) and is also an input to the first variable delay module, which is

used to create a second clock signal with known relative skew (Clock B). The schematic

for the variable delay module is shown in Figure 2.34.

44

Figure 2.34 Schematic of variable delay module.

A chain of minimum-sized inverters is connected to two 16x1 multiplexers

such that there are two inverters between each multiplexer input. The total clock delay at

the output of the multiplexer pair is at least

2 2mux muxd dτ τ+ + + , (2.6)

where is the delay of the 16x1 multiplexer. A change in the least significant select

line causes a relative change in the delay of the output of exactly two minimum-sized in-

muxd

45

verters. Similarly, a change in the next least significant select line causes a relative

change in the delay of the output by four minimum-sized inverters, and so on. If the se-

lect lines are all zeros, the delay is

4 2 muxdτ + . (2.7)

If the select lines are all ones, the delay is

64 2 muxdτ + , (2.8)

which makes the total possible adjustment delay for this circuit

() ()64 2 4 2 60mux muxd dτ τ+ − + = τ . (2.9)

Therefore, the maximum correctable skew is 61 .τ Using (2.1), this design has the capa-

bility to maintain continuous synchronization between two clocks with period

61T τ≤ . (2.10)

For clocks with periods greater than 61 ,τ this clock synchronization design would still be

effective only if the skew was guaranteed to be less than 60 .τ

At this point, it is necessary to discuss the computation of the maximum

counter value. Ideally, when rolling over the counter from zero to maximum count or

from maximum count to zero, the change in the delay of the adjusted clock should still be

just 2 .τ Figure 2.35 shows a clock signal as well as several incrementally delayed ver-

sions of the clock signal.

46

Clock B

t

Clock B 2τ delayed

Clock B 4τ delayed

Clock B 6τ delayed

Clock B 8τ delayed

Clock B 10τ delayed

Clock B 12τ delayed

Clock B 14τ delayed

Clock B 16τ delayed

Clock B 18τ delayed

Clock B 20τ delayed

2τ

Clock B

t

Clock B 2τ delayed

Clock B 4τ delayed

Clock B 6τ delayed

Clock B 8τ delayed

Clock B 10τ delayed

Clock B 12τ delayed

Clock B 14τ delayed

Clock B 16τ delayed

Clock B 18τ delayed

Clock B 20τ delayed

2τ

Figure 2.35 Incrementally delayed clock signals.

Notice that Clock B delayed by 20τ has the same phase as the original

clock B signal. Thus, for this example, a maximum counter value would be one that pro-

duced a delay of 18τ . Consequently, the computation for the maximum count is

(2) / 2MC T τ τ= −   . (2.11)

The maximum count is always rounded up so that no infinite oscillations occur due to

counter rollover. It would be more conservative to use a maximum counter value of

/ 2MC T τ=    , (2.12)

47

which means the delay after rollover is approximately the same. However, a maximum

counter value computed using (2.12) could add an additional synchronization cycle to the

clock synchronization process.

4. Simulation Results

The clock synchronization chip implementation in this research is composed of

approximately two thousand transistors divided among the four major modules. A sche-

matic of the overall design is provided in Figure 2.36.

Figure 2.36 Clock synchronization schematic.

Inputs to the circuit are CLKAIN and CLKBIN, the two clock signals to be syn-

chronized. CLKAIN serves as the global clock for all synchronous devices in the circuit.

Other inputs are VD0 through VD4, which connect to the variable delay module that im-

poses skew on CLKBIN for testing, MC0 through MC4, which is the binary representa-

tion of the maximum counter value, and a global CLEAR signal, which resets the circuit

to a known initial state.

48

The outputs of the circuit are the two synchronized clocks, CLKAOUT and

CLKBOUT, the INPHASE signal from the phase detector module, the binary representa-

tion of the counter output DELAY0 through DELAY4, and the INIT signal which indi-

cates when the circuit is in the initialization phase. All outputs except CLKBOUT are for

chip testing and verification purposes.

All simulations were performed using both Silvaco Parallel SmartSpice version

2.6.0.R and Tanner T-Spice Pro version 7. The simulation results for each schematic

were consistent for both versions of SPICE. The simulation results provided in this sec-

tion are from the Tanner software. The device models and model parameters were pro-

vided by MOSIS for the AMI Semiconductor (AMIS) ABN process. The AMIS ABN

process has two metal layers, two polysilicon layers and a recommended design lambda

of 0.8 micrometers [26]. The model parameters obtained from MOSIS were the average

of measured parameters taken from test structures on several wafers in the same lot as the

wafer containing the clock synchronization chip.

Simulation results for individual logic gates and minor components in the clock

synchronization circuit are provided in Appendix B. Simulation results for all major cir-

cuit components are presented in the following sections. For the simulations in the fol-

lowing sections, all input signals are 50% duty cycle, 100-MHz square-wave signals with

rise and fall times of 250 picoseconds unless otherwise noted.

a. Phase Check Module

The simulations for the phase check module circuit focused on verifying

correct operation of the circuit as well as sizing the transistors in the NAND4 gate to

match the average incremental delay of the minimum-sized inverter. Detailed data for

the minimum-sized inverter delay is in Appendix B. The average delay of a pair of in-

verters is approximately 600 picoseconds, previously defined as 2τ . Therefore, to avoid

infinite synchronization oscillations, the synchronization threshold must be greater than

,τ or 300 picoseconds. The transistors in the NAND4 were sized such that a relative

skew of approximately 400 picoseconds triggered the synchronization threshold.

49

The simulation results provided in Figure 2.37, Figure 2.38, and Figure

2.39 verify the correct operation of the phase check circuit when the clocks are synchro-

nized, unsynchronized with negative skew, and unsynchronized with positive skew re-

spectively.

0

2

4

Phase Check Module - Synchronized Clocks

CL
K

A
 (V

)

0

2

4

CL
K

B
(V

)

0

2

4

CL
EA

R
(V

)

0

2

4

IN
PH

A
SE

 (V
)

0 5 10 15 20 25 30 35 40
0

2

4

SI
G

N
 (V

)

Time (ns)
Figure 2.37 Phase-check circuit simulation – synchronized clocks.

50

0

2

4

Phase Check Module - Negative Skew

CL
K

A
 (V

)

0

2

4

CL
K

B
(V

)

0

2

4

CL
EA

R
(V

)

0

2

4

IN
PH

A
SE

 (V
)

0 5 10 15 20 25 30 35 40
0

2

4

SI
G

N
 (V

)

Time (ns)
Figure 2.38 Phase-check simulation – unsynchronized clocks with negative skew.

51

0

2

4

Phase Check Module - Positive Skew

CL
K

A
 (V

)

0

2

4

CL
K

B
(V

)

0

2

4

CL
EA

R
(V

)

0

2

4

IN
PH

A
SE

 (V
)

0 5 10 15 20 25 30 35 40
0

2

4

SI
G

N
 (V

)

Time (ns)
Figure 2.39 Phase-check simulation – unsynchronized clocks with positive skew.

b. Finite State Machine

The simulation results for the FSM are shown in Figure 2.40. In the fig-

ure, the INPHASE signal is asserted from 25 nanoseconds (ns) until approximately 150

ns, simulating that the clocks are synchronized. The FSM cycles through states A, B, C,

and D as required by the state table in Figure 2.27. At 150 ns, the INPHASE signal

changes state simulating that the clocks are no longer synchronized. The FSM cycles

through each of the states in Figure 2.27 corresponding to a negated INPHASE signal.

52

Notice that the COUNT signal is asserted twice at approximately 175 ns and 275 ns,

showing two full cycles of phase adjustment.

0

2

4

Finite State Machine
CL

K
 (V

)

0

2

4

CL
EA

R
(V

)

0

2

4

IN
PH

A
SE

 (V
)

0

2

4

Q
0

(V
)

0

2

4

Q
1

(V
)

0

2

4

Q
2

(V
)

0 50 100 150 200 250 300
0

2

4

CO
U

N
T

(V
)

Time (ns)
Figure 2.40 Finite state machine simulation.

53

c. Wrap-Around Counter

Figure 2.41 shows the simulation results for the five-bit counter. The sig-

nals S0 and S1 reset the counter until about 25 ns. At 25 ns, the S0 and S1 signals transi-

tioned to enable the counter load function. An arbitrary value of 27 was loaded into the

counter until about the 45 ns point. From 45 ns to just before 100 ns, the counter was al-

lowed to count up from 27 to 31, at which time the counter rolled over to zero and con-

tinued to count up. At 200 ns, the UP signal was negated and the counter reversed direc-

tion and counted down. At 375 ns, the counter reached zero, rolled over to the maximum

counter value of 31, and continued counting down. At 450 ns, the COUNT signal was

negated. The counter stopped counting and held its value.

54

0
2
4

Five-bit Synchronous Counter

CL
K

 (V
)

0
2
4

EN
A

BL
E

(V
)

0
2
4

U
P

(V
)

0
2
4

S0
 (V

)

0
2
4

S1
 (V

)

0
2
4

Q
0

(V
)

0
2
4

Q
1

(V
)

0
2
4

Q
2

(V
)

0
2
4

Q
3

(V
)

0 50 100 150 200 250 300 350 400 450 500
0
2
4

Q
4

(V
)

Time (ns)
Figure 2.41 Five-bit counter simulation.

Figure 2.42 shows simulation results of testing the five-bit counter with

wrap-around circuitry. The RESET signal was asserted until about 25 ns at which time

the RESET signal negated and the counter began counting up from zero. At 300 ns, the

counter reached the maximum pre-loaded count value of 27, rolled over to zero, and con-

tinued to count up. Just as the counter reached a value of 5, the SIGN signal switched

states and the counter reversed direction. At just after 400 ns, the counter reached zero,
55

rolled over to the maximum value of 27, and continued counting down. At 450 ns, the

COUNT signal negated causing the counter to stop and hold its value.

0
2
4

Five-bit Wrap Around Counter
CL

K
A

 (V
)

0
2
4

RE
SE

T
(V

)

0
2
4

CO
U

N
T

(V
)

0
2
4

LS
IG

N
 (V

)

0
2
4

A
0

(V
)

0
2
4

A
1

(V
)

0
2
4

A
2

(V
)

0
2
4

A
3

(V
)

0 50 100 150 200 250 300 350 400 450 500
0
2
4

A
4

(V
)

Time (ns)
Figure 2.42 Five-bit wrap around counter simulation.

56

d. Variable Delay Module

Figure 2.43 shows the simulation results for the variable delay module.

The top graph shows the clock signal input. The bottom graph shows the output clock

signals for four consecutive multiplexer inputs. The relative delay between the output

clock signals is roughly a constant and is equal to approximately 600 picoseconds, as ex-

pected.

0

1

2

3

4

5

Variable Delay Module

CL
K

B
(V

)

0 10 20 30 40 50 60

0

1

2

3

4

5

D
EL

A
Y

ED
 C

LK
B

(V
)

Time (ns)
Figure 2.43 Variable delay module simulation.

e. Pad-to-Pad Chip Simulation

Figure 2.44 shows the simulation results of the entire clock synchroniza-

tion chip and pad ring. The inputs to the circuit are two clock signals with arbitrary rela-

57

tive skew. The figure shows the INIT signal asserted while the two clocks are initially

unsynchronized, then negated once synchronization is achieved.

0
2
4

Clock Synchronization Chip
C

LK
A

IN
 (V

)

0
2
4

C
LK

B
IN

 (V
)

0
2
4

IN
IT

 (V
)

0
2
4

IN
PH

A
SE

 (V
)

0
2
4

C
O

U
N

T
(V

)

0
2
4

A
0

(V
)

0
2
4

A
1

(V
)

0
2
4

A
2

(V
)

0
2
4

A
3

(V
)

0 100 200 300 400 500 600 700 800 900 1000
0
2
4

A
4

(V
)

Time (ns)
Figure 2.44 Pad-to-pad synchronization chip simulation.

Figure 2.45 shows a close-up view of the clock signals before and after

synchronization. Examining the leading edges of the clock signals reveals that there is

negligible skew after synchronization.

58

20 25 30 35 40 45 50

0

2

4

6

8

Before Synchronization

vo
lts

CLK A
CLK B

880 885 890 895 900 905 910

0

2

4

6

8

After Synchronization

Time (ns)

vo
lts

CLK A
CLK B

Figure 2.45 Clock signals before and after synchronization.

The same simulation was repeated using nominal fabrication parameters

for all values of relative skew from 0 ns to 10 ns in increments of 200 picoseconds (ps).

This encompassed all possible skew values for the 100 MHz clock signals. The residual

skew remaining after synchronization for each simulation was recorded and is shown in

the top graph of Figure 2.46. Chip manufacturers traditionally use the following three

terms to describe the boundary performance of transistors [27]:

• Nominal
• Fast
• Slow

59

Since there are two types of transistors in Complementary Metal Oxide

Semiconductor (CMOS) processes, n-type and p-type, the four boundary conditions for

the process can be listed as the following:

• Fast-n fast-p (fastfast)
• Fast-n slow-p (fastslow)
• Slow-n slow-p (slowslow)
• Slow-n fast-p (slowfast)

To provide better assurance of correct circuit operation after fabrication,

the full-chip simulations run with nominal parameters were also run using the four sets of

boundary fabrication parameters listed above. The model parameters for all four bound-

ary conditions for the AMIS ABN process were obtained from the MOSIS website [26].

The residual skew for each of the simulation runs is provided in the bottom four plots of

Figure 2.46.

60

-200

0

200

400

600

Clock Skew using "nominal" Fabrication Parameters

O
ut

pu
t S

ke
w

 (p
s)

-200

0

200

400

600

Clock Skew using "fastfast" Fabrication Parameters

O
ut

pu
t S

ke
w

 (p
s)

-200

0

200

400

600

Clock Skew using "fastslow" Fabrication Parameters

O
ut

pu
t S

ke
w

 (p
s)

-200

0

200

400

600

Clock Skew using "slowslow" Fabrication Parameters

O
ut

pu
t S

ke
w

 (p
s)

0 1 2 3 4 5 6 7 8 9 10
-200

0

200

400

600

Clock Skew using "slowfast" Fabrication Parameters

O
ut

pu
t S

ke
w

 (p
s)

Input Clock Skew (ns)
Figure 2.46 Residual clock skew for nominal and four-corners fabrication parameters.

The figure shows that the residual skew between the synchronized clocks

ranged from about +400 ps to −100 ps. Since the Variable Delay circuit has an incre-

mental delay resolution of approximately 600 ps, then the results of the simulation indi-

cate that the chip is functioning as intended. Furthermore, since a skew of 10% or less is

61

normally considered acceptable ([21], [23], [24]), then an average residual skew of 400

ps, which represents a mere 4% of the clock period, is an excellent result.

Additional simulations were run that tested the ability of the synchroniza-

tion circuit to resynchronize the clocks sometime after initial synchronization. This case

represents additional clock skew possibly due to a change in chip operating temperature

or power supply voltage, or component aging. For each simulation, the two clocks were

allowed to synchronize. Then, additional delay was introduced onto Clock B during the

simulation using the variable delay module. In each instance, the circuit automatically

re-synchronized Clock A and Clock B as expected.

5. Fabrication and Testing

A proof-of-concept chip implementation of the dynamic clock synchronization

scheme described in the previous sections was designed and fabricated using the Ameri-

can Microsystems Incorporated Semiconductor (AMIS) 5-volt, 1.5 micron scaleable

CMOS process available through MOSIS. Chip layout is provided in Appendix A. A

photograph of the center of the 40-pin ceramic dual-inline package (DIP) showing the 2.2

mm by 2.2 mm square chip and bond wires is provided in Figure 2.47. A pin-out dia-

gram of the chip using the labels from the schematic in Figure 2.36 is provided in Figure

2.48.

62

Figure 2.47 Photograph of fabricated chip.

DELAY0

DELAY1

DELAY2

CIRCUIT GND

CIRCUIT PWR

CHIP PWR

INPHASE

CHIP GND

DELAY4

DELAY3

CLKBIN

CLKAOUT

VD0

VD1

VD2

VD3

VD4

CHIP PWR

CHIP GND

MC4

M
C

3

M
C

2

M
C

1

M
C

0

IN
IT

C
LK

A
IN

C
LK

B
O

U
T

C
LEA

R

DIP package

Figure 2.48 Pinout diagram of the synchronization chip.

63

The test chip DIP was inserted into a wire-wrapped socket on a project board as

shown in Figure 2.49. Figure 2.50 provides a picture of the testing setup. A pulse gen-

erator provided the Clock A signal to the chip as well as a trigger signal to a second pulse

generator. The second pulse generator added programmable skew to the Clock A signal,

thereby producing the Clock B signal. Both pulse generators were capable of producing

pulses at frequencies up to 500 MHz. The synchronization chip output was captured on a

Tektronics TDS 640A 4-channel, 500-MHz digitizing oscilloscope. The chip was tested

using 10-MHz square-wave clock signals. Since the period of the input clock signals was

greater than the maximum delay possible in the variable delay module, the maximum

count was set to the highest possible value.

DIP
package

underside
of socket

Figure 2.49 Chip testing circuit board from above (top) and below (bottom).

64

Figure 2.50 Chip testing setup.

Figure 2.51 shows an image from the oscilloscope where the two input clocks

(Clock A and Clock B) were perfectly synchronized. Not surprisingly, the two output

clocks were also synchronized. The distorted shape of the output signals is due to the

fact that the chip output drivers are not sufficient to effectively drive the capacitive load

of the digitizing oscilloscope.

65

Clock A In

Clock B In

Clock A Out

Clock B Out

Figure 2.51 Oscillograph of synchronous clocks.

Figure 2.52 shows an image from the oscilloscope where the two input clocks

(Clock A and Clock B) were out of phase by almost 25 nanoseconds. The figure shows

that the output clocks are synchronized despite the skew present between the input

clocks.

66

Clock A In

Clock B In

Clock A Out

Clock B Out

Figure 2.52 Oscillograph of synchronized clocks.

Figure 2.53 shows an image from the oscilloscope where the two input clocks

(Clock A and Clock B) were out of phase by more than 30 nanoseconds. In this instance,

the two output clocks are not able to synchronize due to the fact that there is not enough

delay in the variable delay module to correct the skew. The oscilloscope image shows

the Clock B signal even more distorted than the previous synchronized images. This is

because the Clock B signal is rapidly searching for phase lock while the variable delay

module continually changes the delay on the signal. In order to comprehensively test the

circuit, the relative skew was set to zero and increased in increments of 100 picoseconds

until the circuit could no longer synchronize the two clock signals.

67

Clock A In

Clock B In

Clock A Out

Clock B Out

Figure 2.53 Oscillograph of unsynchronized clocks.

Figure 2.54 shows the predicted and measured results for four different maximum

count values. The predicted synchronization range was based on the simulated incre-

mental delay value of 600 picoseconds. The measured synchronization ranges were lar-

ger than the simulations predicted and corresponded to an average equivalent incremental

delay of 851 picoseconds. The increase in incremental delay is likely due to variation in

fabrication parameters as well as wire capacitances not taken into account in simulation.

However, the change in incremental delay merely extended the capture range of the syn-

chronization circuit and did not adversely affect the ability of the circuit to achieve syn-

chronization.

68

Max
Count

Predicted Skew
Synchronization

Range

Measured Skew
Synchronization

Range

Equivalent
Incremental

Delay

31 18 ns 25.8 ns 860 ns
15 9 ns 12.7 ns 846 ns
11 6.75 ns 9.1 ns 871 ns
7 4.5 ns 6.1 ns 827 ns

Figure 2.54 Table of predicted and measured synchronization ranges.

D. SUMMARY

Although the current DIS architecture contains at least two sources of redundant

computation, no alternative architectures were found which produced a reduced transistor

count that was compatible with the DIS fabrication process. The alternative architecture

utilizing the I/Q high-speed bus distribution design is promising in terms of reducing

transistor count, but the DIS would have to be fabricated using another process that

would allow for a six-times increase in the speed of the incrementer.

Since simulating an entire SoC is prohibitively time consuming if possible at all,

each SoC component must be reliable regardless of changes to the other components on

the chip. The clock synchronization design presented in this chapter was proven to be an

effective method for automatically controlling the clock skew inherent in counterflow-

clock pipelined circuits. Use of the clock synchronization architecture in the current DIS

design would render manual synchronization adjustments unnecessary. Furthermore, the

clock synchronization technique provides continuous automatic synchronization of off-

chip and counterflow clock signals due to clock skew caused by unanticipated fabrication

process variations or dynamic changes in chip operating characteristics. The advantages

of this design over other dynamic synchronization techniques are that this design uses

only digital components and uses less power than phase-locked loop based designs [24].

Moreover, all components except the phase-check NAND4 gate are scalable as opposed

to analog components that must be completely redesigned with each fabrication process

change.
69

The next chapter addresses the analog-to-digital converter design for the EW SoC.

Similar to the DIS and the clock synchronization circuit, the primary design constraints

for the ADC were low-power operation and compact layout. The ADC design marks a

transition from the all-digital components presented in this chapter to analog and digital

components requiring mixed-signal design techniques.

70

III. RSNS ANALOG-TO-DIGITAL CONVERTER

One of the goals of this dissertation was to advance mixed-signal system-on-a-

chip technology to the point where an entire electronic decoy system can be implemented

on a single chip. To accomplish this goal, the ADC must have a small die footprint and

operate at extremely low power. However, the ADC must maintain a high sample rate.

Two of the fastest ADC architectures in use today are the flash and folding architectures

[28], [29]. The characteristics of RSNS folding ADCs provide benefits in the areas of

conversion speed, power savings, and die area. Folding ADC architectures offer the most

resolution at high speeds of any existing ADC architecture [29]. Compared to traditional

ADC designs, the number of comparators is minimized using the RSNS design and the

interpolation circuitry can be eliminated completely [30]. This reduces both the die foot-

print and power consumption.

The ADC is the most fundamental building block in a signal processing system.

The first ADC presented in this chapter is a six-bit ADC conceptually identical to the de-

sign described in [30]. The ADC is a folding ADC that is designed to implement the

RSNS in order to realize the advantages mentioned above. In an RSNS folding ADC, the

analog input signal is fed into parallel data channels where it is folded into periodic, tri-

angular waveforms associated with unique relatively prime moduli. The first ADC pre-

sented in this chapter is a three-channel ADC. The ADC design in [30] was a purely

asynchronous analog design and was simulated using generic models for the circuit ele-

ments. In order to produce a proof-of-concept hardware implementation of the ADC pre-

sented in [30] that includes synchronous CMOS decoding circuitry, the ADC design must

be modified and subsequently simulated using realistic circuit element models and pa-

rameters for a mixed-signal fabrication process. The first section in this chapter describes

a mixed-signal fabrication process for implementation of a proof-of-concept RSNS ADC.

The second section presents an RSNS ADC design based on [30] suitable for fabrication

in the mixed-signal process.

71

The second ADC presented in this chapter is a four-channel, eight-bit RSNS

ADC. Since the inputs to the DIS described in Chapter II are 8-bit digital I and Q signals,

two 8-bit ADCs are required to convert the analog I and Q signals to digital. Therefore,

the second section in this chapter provides just such a circuit and compares the size and

power of the eight-bit, four-channel RSNS ADC to an eight-bit, three-channel ADC.

Furthermore, the eight-bit ADC illustrates the procedure for designing N-channel k-bit

RSNS ADCs. The final section in this chapter provides simulation results for both the

three-channel and four-channel RSNS ADCs.

A. SILICON-GERMANIUM MIXED-SIGNAL FABRICATION PROCESS

Due to the low-volume nature of proof-of-concept VLSI fabrication, many proto-

type chips from academic institutions are fabricated using processes available through

MOSIS. Although MOSIS provides access to a few mixed-signal processes, the IBM

silicon-germanium (SiGe) process provides a promising mix of analog and complemen-

tary metal-oxide semiconductor (CMOS) performance.

The IBM BiCMOS 5HP process was chosen for simulating the ADC circuits in

this chapter because it offered adequate analog and digital performance within budget

constraints. The IBM BiCMOS 5HP integrates a high-performance trench-isolated SiGe

heterojunction bipolar transistor (HBT) with a 3.3-V, 0.5-µm CMOS base. Therefore, in

addition to being analog and radio-frequency (RF) friendly, the IBM 5HP process is a

true mixed-signal technology. IBM SiGe has higher performance in terms of cutoff and

maximum oscillation frequencies (ft and fmax) and higher Early Voltage (Beta-VA product)

than silicon, while also having a lower turn-on voltage, lower power, and lower 1/f noise

than gallium-arsenide (GaAs) [31]. Furthermore, the cost to fabricate SiGe chips is typi-

cally much lower than GaAs because SiGe runs are performed on readily available sili-

con fabrication process lines. The specifications for the IBM SiGe 5HP process are pro-

vided in Figure 3.1.

72

Figure 3.1 IBM SiGe BiCMOS process 5HP specifications (From [32].).

Circuit design of the ADCs in this chapter was performed using Tanner Tools

SEdit. Unfortunately, the circuit simulator provided by Tanner was not compatible with

the circuit element models provided by IBM and, therefore, Silvaco SmartSpice was used

for simulation of the ADC circuits. Unfortunately, IBM relies solely on the Cadence de-

sign environment for design and simulation of their SiGe processes. Therefore, the for-

mat of the Cadence models and model parameters provided by IBM for the 5HP SiGe

process were significantly modified to be compatible with the format required by the

SmartSpice simulator. Details of the modifications are not published in this dissertation

due to IBM proprietary restrictions.

73

B. THREE-CHANNEL RSNS ANALOG-TO-DIGITAL CONVERTER

The ADC presented in this section is a unipolar, six-bit, three-channel RSNS fold-

ing ADC. The moduli are identical to [30] with m1 3= , m2 4= , and . Using

these moduli, the number of unique RSNS vector residue values, which ultimately deter-

mine the dynamic range of the RSNS ADC, is 43. The computation of the number of

unique RSNS vector residue values for a given set of moduli is the subject of the Chapter

IV. The 43 integer values can be represented with 6 bits with some unused combinations.

The least significant bit (LSB) voltage is the smallest input voltage change that causes an

output RSNS residue transition. In this design and in [30], the LSB is chosen to be 12

mV. Therefore, the dynamic range of the ADC in volts is

3 5m =

()()43 0.012 mV 0.516 V= . (3.1)

Using notation similar to [30], the folding period for each channel is

2iT qN im= V, (3.2)

where q is the size of the LSB in volts, N is the number of channels, and the subscript i is

the channel number. Thus, the folding periods for each channel are

1

2

3

216 mV,
288 mV,
360 mV.

T
T
T

=
=
=

 (3.3)

Figure 3.2 shows the schematic of the three-channel RSNS folding ADC. The

structure is virtually identical to the design in [30]. The labels in the figure are as fol-

lows: sij are the output bits in thermometer code, CVij are the comparator threshold lev-

els, and compij are the comparator output, where the index i is the channel number and

the index j is the bit number (0j = indicates the least significant bit). The three folding

amplifiers in the schematic fold the input signal multiple times with a folding period

equal to the values in (3.3).

74

RSNS Folding
Amplifiers

Folded
Output

Figure 3.2 Three-channel RSNS folding ADC.

75

1. Folded Waveform Generation

The folding amplifiers for each channel are composed of several identical, but in-

dependent, folding stages and are shown in Figure 3.3, Figure 3.4, and Figure 3.5.

1 mA

Figure 3.3 Folded waveform generation for the first channel (m). 1 3=

76

1 mA

Figure 3.4 Folded waveform generation for the second channel (). 2 4m =

1 mA

Figure 3.5 Folded waveform generation for the third channel (m). 3 5=

The resistor value Rval controls the width of the fold; the voltage RefVolt deter-

mines the position of the peak of the fold. The voltage increments shift1, shift2, and

shift3 allow the folded waveforms for each channel to be shifted right or left by multiples

of the LSB in order to correctly align the folded waveforms. The folded waveforms need
77

to be accurately aligned to form the RSNS and also to position the dynamic range such

that the code for the first RSNS vector in the longest sequence of unique RSNS vectors

occurs at the output of the ADC when the input is at zero volts (or anywhere else de-

sired). Computation of the shift values will be discussed later in this section. The indi-

vidual folding stage from [30] is shown in Figure 3.6.

R1 R1R2 R2 R3 R3

R4 R4

Rval Rval

R5

R6

1 mA

1 mA

Figure 3.6 Single folding stage circuit.

The resistor values common to all folding amplifier stages are provided in Figure

3.7.

Re sis tor
Labe l

Value
(ohms)

R1 2000
R2 500
R3 900
R4 5
R5 300
R6 400

Rval see channel
tables

Figure 3.7 Folding amplifier common resistor values.

The unique values Rval and RefVolt for each individual stage in each folding am-

plifier are provided in Figure 3.8, Figure 3.9, and Figure 3.10. Notice that, for each chan-
78

channel, the difference in RefVolt between successive folds is exactly the value given in

(3.3). Notice also that Rval varies slightly between folds. This compensates for a slight

rise in the valley of each fold as more folds are added. For most applications, an average

value for Rval can be used.

Fold
Rval

(ohms)
Reference Voltage

RefVolt (V)
1 100 -0.108+shift1
2 100 0.108+shift1
3 100 0.324+shift1
4 99 0.540+shift1
5 99 0.756+shift1
6 98 0.972+shift1
7 98 1.188+shift1
8 97 1.404+shift1
9 97 1.620+shift1

Channel 1 (m 1 = 3)

Figure 3.8 Channel one folding amplifier resistor and reference voltage values.

Fold
Rval

(ohms)
Reference Voltage

RefVolt (V)
1 174 -0.132+shift2
2 174 0.156+shift2
3 174 0.444+shift2
4 173 0.732+shift2
5 173 1.020+shift2
6 172 1.308+shift2
7 171 1.596+shift2

Channel 2 (m 2 = 4)

Figure 3.9 Channel two folding amplifier resistor and reference voltage values.

Fold
Rval

(ohms)
Reference Voltage

RefVolt (V)
1 235 -0.156+shift3
2 235 0.204+shift3
3 234 0.564+shift3
4 233 0.924+shift3
5 233 1.284+shift3
6 232 1.644+shift3

Channel 3 (m 3 = 5)

Figure 3.10 Channel three folding amplifier resistor and reference voltage values.

79

Each channel must fold the input signal over the entire dynamic range. From

[30], the minimum number of folds (folding stages) in each channel is

ˆ
Number of folds

2 i

M
Nm

 
=  

 
, (3.4)

where M̂ is longest sequence of unique RSNS vectors (RSNS dynamic range). The

number of folding stages shown in Figure 3.3, Figure 3.4, and Figure 3.5 are more than

the minimum number of stages computed using (3.4). This is because this ADC imple-

mentation in this chapter is used to test various aspects of the RSNS, including the capa-

bility to move the dynamic range to any point by varying value of the parameters shift1,

shift2, and shift3. Therefore, the number of folding stages in each channel is much larger

than minimum to accommodate the dynamic range shift during testing. The folding

waveforms at the output of each folding amplifier are amplitude analyzed using a parallel

configuration of latched comparators as shown in Figure 3.2.

2. Latched Comparator Design

In most ADC designs, the comparator is one of the two most critical elements in

terms of affecting the speed and power consumption of the circuit. Extra attention must

be paid to maximizing the clock rate while maintaining low-power operation. A com-

parator consists of an amplifier and a latch. A key feature of the RSNS folding ADC de-

sign is that the number of comparators is minimized. With the RSNS, the number of

comparators is the sum of the channel moduli. In this case, the number of comparators is

twelve as shown in Figure 3.2. Alternative high-speed ADC designs, such as a flash

ADC, require as many as 63 comparators for a six-bit ADC (32 comparators using inter-

polation), and 14 comparators for a conventional folding ADC. Thus, the die area sav-

ings and power reduction are significant using RSNS techniques. The comparator for this

ADC is shown in Figure 3.11. The resistor values are the same as for the folding circuits

and are listed in Figure 3.7

80

R1 R1R2 R2 R1 R1

R5

1 mA 1 mA 1 mA 1 mA

1 mA

Figure 3.11 Comparator design.

The comparator consists of nested differential amplifiers buffered to a second dif-

ferential amplifier. The nested differential amplifier evaluates the two comparator inputs

and the second differential amplifier amplifies the comparator output so that the voltage

swing is compatible with CMOS circuits. The labels OUT and OUTnot in the schematic

above correspond to the non-inverted (compij) and inverted outputs of the comparator

symbols in Figure 3.2. The comparator latch latches the amplified difference and is

formed from a D-type flip-flop shown in Figure 3.12 where the latched output is Q and

the inverted output is Qnot.

Figure 3.12 Comparator latch using D-type flip-flop.

The comparator input is labeled D and is connected to the non-inverted compara-

tor output compij as shown in Figure 3.2. The comparator used in this design is not the

fastest or most power efficient available but it provides adequate speed and serves to il-

81

lustrate the benefits of the RSNS folding ADC. Notice that although the circuits for the

latched comparator and the single folding amplifier stage are similar, the comparator has

approximately twice the number of circuit elements. This observation will be useful

when considering N-channel RSNS ADC designs in the next section.

The number of comparators associated with each channel of the RSNS ADC is

equal to the modulus of the channel. The voltage reference level for each comparator is

set such that the voltage between the comparator threshold level intersections with the

folded waveform are exactly three LSBs apart. Figure 3.13 shows a plot of the folded

waveform, comparator threshold levels, and the comparator output for the first channel.

Note that in each channel, a comparator threshold is crossed every Nq. That is, only one

comparator threshold is crossed at a time within the system and alternates between the

channels every q volts.

s12

s11

s10

3q

9q

15q

CV12

CV11

CV10

1

0

1

0

1

0

Folded
Waveform

ADC Input Voltage (LSB)
0 15 30 45 60

Channel 1 (m1 = 3)

Comparator Output

3q

T1 = 18q = 216 mV

Figure 3.13 Graph of folded waveform and comparator output (After [30].).

82

Similar plots are provided in [30] for all three channels. These results can be ex-

tended to the N-channel ADC where the folded waveform and comparator threshold in-

tersections are N LSBs apart.

The output from the bank of comparators is usually referred to as a thermometer

code due to the particular form of the output. Figure 3.14 shows the equivalent decimal

value, binary value, and thermometer code for a three-bit binary number.

Decimal
Value

Binary
Value

Thermometer
Code

0 000 0000000
1 001 0000001
2 010 0000011
3 011 0000111
4 100 0001111
5 101 0011111
6 110 0111111
7 111 1111111

Figure 3.14 Thermometer code with binary and decimal equivalents.

Summing the thermometer code output of the three comparators in the first chan-

nel yields the characteristic RSNS stair-step graph in Figure 3.15. A similar graph can be

formed for the second and third channels.

s10 + s11 + s12

3

2

1

0

ADC Input Voltage (LSB)
0 15 30 45 60

Channel 1 (m1 = 3)
Comparator Output

Figure 3.15 Summed comparator stair-step output.

83

One method of computing the comparator thresholds is to perform a DC analysis

simulation in SPICE for each of the folding amplifiers in Figure 3.3, Figure 3.4, and

Figure 3.5. In each of the DC analysis simulations, the SPICE code lines shown in

Figure 3.16 (or something similar depending on the version of SPICE used) located the

correct comparator threshold values for the first folding channel as well as the peak and

valley voltages. In the SPICE code provided, q is the LSB and RefVolt is any fold peak

voltage from the third column of Figure 3.8. This concept can be extended to find the

comparator values for the second and third channels as well.

.measure dc FoldPeak find v(FoldOut) when InputSig='RefVolt'

.measure dc CV12 find v(FoldOut) when InputSig='RefVolt +(3*q*0.5)'

.measure dc CV11 find v(FoldOut) when InputSig='RefVolt +(3*q*1.5)'

.measure dc CV10 find v(FoldOut) when InputSig='RefVolt +(3*q*2.5)'

.measure dc FoldValy find v(FoldOut) when InputSig='RefVolt +(3*q*3.0)'

Figure 3.16 SPICE code to compute comparator thresholds.

All comparator threshold values for the three-channel RSNS folding ADC shown

in Figure 3.2 were computed using this method and are provided in Figure 3.17.

Comparator
Input

Threshold
Voltage (V)

CV10 0.4733
CV11 0.8925
CV12 1.3314
CV20 0.4998
CV21 0.7927
CV22 1.0938
CV23 1.3943
CV30 0.4721
CV31 0.7057
CV32 0.9445
CV33 1.1855
CV34 1.4198

Figure 3.17 Comparator threshold values for three-channel RSNS folding ADC.

84

C. FOUR-CHANNEL RSNS ANALOG-TO-DIGITAL CONVERTER

The DIS requires eight-bit I and Q digital inputs, which must be converted from

analog signals by means of ADCs. To realize an eight-bit binary output, the longest se-

quence of unique RSNS residue vectors (M̂) must be greater than or equal to 256. Thus,

the N moduli for the N-channel eight-bit ADC must produce this unambiguous RSNS

range. Only three-modulus and four-modulus systems were considered for the eight-bit

ADC since pair-wise relatively prime RSNS moduli sets for produce an 5N ≥ M̂ that is

much greater than 256. Methods of computing M̂ for any moduli set will be shown in

the next chapter. Figure 3.18 shows a small sample of the hundreds of possible moduli

sets that produce an . The Moduli Sum column indicates the total number of

comparators required.

ˆ 256M ≅

Moduli
Sum

m 1 m 2 m 3 m 4

32 9 10 13 276
34 10 11 13 264
34 10 11 13 264
35 7 11 17 267
35 7 11 17 267
35 7 13 15 312
36 9 11 16 258
36 7 10 19 261
27 3 5 8 11 265
27 4 5 7 11 287
28 3 5 7 13 312
29 3 5 8 13 285
29 4 5 7 13 286
29 3 7 8 11 287
29 5 6 7 11 360
29 5 7 8 9 407

M̂

Figure 3.18 Three-modulus and four-modulus RSNS moduli with . ˆ 256M ≅

85

Only the RSNS moduli combinations with the lowest sum were included since the

moduli set with the lowest sum minimizes the number of comparators in the ADC.

Moreover, the number of folding amplifiers required is equal to the number of moduli,

and the approximate number of individual folding stages for each amplifier is computed

using (3.4). Figure 3.19 shows the number of comparators (moduli sum) and individual

folding stages for each of the moduli combinations in Figure 3.18. Since the output of

the ADC is limited to eight bits, the RSNS dynamic range was truncated to 256 for all the

moduli sets. Therefore, the computation of the values in the following table assumed that

. The last column in the figure provides a computation of comparator equiva-

lents assuming that the folding stages are approximately half the size of the comparators.

ˆ 256M =

m 1 m 2 m 3 m 4
Folding

Amplifiers
m 1

stages
m 2

stages
m 3

stages
m 4

stages
Folding
Stages

Comparators Comparator
Equivalents

9 10 13 3 5 5 4 14 32 39
10 11 13 3 5 4 4 13 34 40.5
10 11 13 3 5 4 4 13 34 40.5
7 11 17 3 7 4 3 14 35 42
7 11 17 3 7 4 3 14 35 42
7 13 15 3 7 4 3 14 35 42
9 11 16 3 5 4 3 12 36 42
7 10 19 3 7 5 3 15 36 43.5
3 5 8 11 4 11 7 4 3 25 27 39.5
4 5 7 11 4 8 7 5 3 23 27 38.5
3 5 7 13 4 11 7 5 3 26 28 41
3 5 8 13 4 11 7 4 3 25 29 41.5
4 5 7 13 4 8 7 5 3 23 29 40.5
3 7 8 11 4 11 5 4 3 23 29 40.5
5 6 7 11 4 7 6 5 3 21 29 39.5
5 7 8 9 4 7 5 4 4 20 29 39

Figure 3.19 Computation of comparator equivalents for the moduli in Figure 3.18.

86

For the four-channel ADC design, a moduli combination with a low number of

comparator equivalents was chosen, which is the four-modulus RSNS with

. Using these moduli, the number of comparators required is 27, the

number of folding amplifiers required is 4, and the total number of individual folding

stages is 25. In retrospect, may have been a better choice since the

[3 5 8 11]im =

[5 7 8 9]im =

comparator equivalents are low and the number of comparator levels per channel is lim-

ited to nine instead of eleven. The reduction in comparator levels relaxes the comparator

tolerances and allows the ADC to operate at higher frequencies. Moreover, although the

number of comparator equivalents is approximately the same for the three-modulus and

four-modulus RSNS for this particular M̂ , converting the RSNS residues to binary is

much simpler for the four-modulus case than the three-modulus case. RSNS-to-binary

conversion is covered in detail in Chapter V.

(

Using the same 3.3-V IBM SiGe fabrication process described in the first section,

the LSB was chosen to be 6 mV, which yielded the ADC dynamic range

())256 0.006 mV 1.536 V= . (3.5)

The schematic for the eight-bit, four-channel RSNS folding ADC is shown in Figure

3.20. The four folding amplifiers and comparators are connected in exactly the same way

as the three-channel ADC in the previous section. For simplicity, only the details of the

first channel are shown for the four-channel ADC. Figure 3.21 provides the comparator

circuit block, Figure 3.22 shows the clock distribution block, and Figure 3.23 shows the

folding amplifier block.

87

88
Figure 3.20 Four-channel RSNS folding ADC.

Figure 3.21 Channel one comparator block in four-channel RSNS ADC.

Figure 3.22 Clock distribution block in four-channel RSNS ADC.

89

1 mA

Figure 3.23 Folding amplifier block for 3im = for the four-channel RSNS ADC.

The resistor values common to all individual folding amplifiers for the four-

channel ADC are the same as the three-channel ADC and are given in Figure 3.7. Figure

3.24 shows the unique values for Rval and RefVolt for each folding stage in each channel.

90

Fold
Rval

(ohms)
Reference
Voltage (V)

Rval
(ohms)

Reference
Voltage (V)

Rval
(ohms)

Reference
Voltage (V)

Rval
(ohms)

Reference
Voltage (V)

1 40 -0.072+shift1 130 -0.120+shift2 250 -0.192+shift3 350 -0.264+shift4
2 40 0.072+shift1 130 0.120+shift2 250 0.192+shift3 350 0.264+shift4
3 40 0.216+shift1 130 0.360+shift2 250 0.570+shift3 350 0.792+shift4
4 40 0.360+shift1 130 0.600+shift2 250 0.960+shift3 350 1.320+shift4
5 40 0.504+shift1 130 0.840+shift2 250 1.344+shift3
6 40 0.648+shift1 130 1.080+shift2
7 40 0.792+shift1 130 1.320+shift2
8 40 0.936+shift1 130 1.560+shift2
9 40 1.080+shift1

10 40 1.224+shift1
11 40 1.368+shift1
12 40 1.512+shift1

Channel 4 (m 4 = 11)Channel 1 (m 1 = 3) Channel 2 (m 2 = 5) Channel 3 (m 3 = 8)

Figure 3.24 Reference voltages for individual folding stages in each channel.

The eight-bit RSNS ADC illustrates a problem that was not as apparent in the six-

bit ADC. That is, the magnitude of the dynamic range voltage is dependent on the posi-

tion of M̂ in the fundamental period of the RSNS. For the six-bit ADC, M̂ started at

vector 79 and stopped at vector 122, which is equivalent to vectors 79 to 121, inclusive.

Multiplying by the LSB from the previous section (12 mV) results in a dynamic range

starting at 0.948 V and ending at 1.464 V. These values are well within the 3.3-V range

of the 5HP fabrication process. However, for the eight-bit ADC with M̂ truncated to

256, the start vector was at 2616 and the stop vector was at 2872. Multiplying by the

eight-bit ADC LSB (6 mV) results in a dynamic range starting at 15.696 V and ending at

17.232 V, which is clearly outside of the voltage limits for the fabrication process. There

are two methods to alleviate this problem. The first solution is to choose a set of moduli

that has an M̂ that starts at a position in the RSNS fundamental period at or near zero.

For instance, the moduli set m from Figure 3.19 has an [9 10 13]i = M̂ that starts at

zero. However, in the general case there is no guarantee that a practical moduli set with

an M̂ and a start position compatible with a particular voltage range even exists. A sec-

ond technique involves shifting each channel individually so that the start of the dynamic

range is within the voltage range of the fabrication process. This technique can ensure

that the code for the first M̂ vector occurs at the output of the ADC when the input is

91

zero volts, which is particularly desirable for a unipolar ADC. The procedure is simply

to shift each channel left by an LSB multiple equal to the start position of M̂ (mod

2Nmi). Note that this shift can be positive or negative. This is in addition to the shift al-

ready required to form the RSNS. As an example, the Refvolt shift for each channel in

the eight-bit ADC described above with an M̂ start position of 2616h = is

LSB
LSB
LSB
LSB

0 mV
.006) 0.138

.006) 0.036
.006) 0.126

=
=

=
=

,
m
mV

m

1 1

2 2

3 3

4 4

(0 2616 (mod 2)) (0 0)(0.006)
(1 2616 (mod 2)) (1 24)(0 V,
(2 2616 (mod 2)) (2 8)(0 ,
(3 2616 (mod 2)) (3 24)(0

shift Nm
shift Nm
shift Nm
shift Nm

= − + = − +
= − + = − −
= − + = − −
= − + = − − V.

 (3.6)

Of course, shifting the folding waveform necessitates the inclusion of an additional indi-

vidual folding stage circuit in some of the folding amplifiers, because the folding amplifi-

ers must fold the input signal plus any added shift voltage.

Finally, to complete the design description, the comparator threshold voltages

were computed using the technique from Figure 3.16 and are provided in Figure 3.25.

92

Comparator
Input

Voltage
Level (V)

CV10 0.456
CV11 0.8752
CV12 1.3307

CV20 0.4595
CV21 0.6918
CV22 0.9331
CV23 1.179
CV24 1.4188

CV30 0.4148
CV31 0.599
CV32 0.7077
CV33 0.8584
CV34 1.0104
CV35 1.163
CV36 1.3153
CV37 1.4454

CV40 0.3507
CV41 0.4482
CV42 0.5598
CV43 0.6728
CV44 0.7868
CV45 0.9015
CV46 1.0166
CV47 1.1319
CV48 1.247
CV49 1.361
CV410 1.4491

Figure 3.25 Comparator threshold values for four-channel RSNS folding ADC.

D. SIMULATION RESULTS

All simulations were performed using Silvaco SmartSpice using the IBM SiGe

5HP fabrication process models and parameters described previously in this chapter.

Post-simulation processing and plotting was carried out in MATLAB. Each component

of the ADC was simulated individually to ensure correct operation. For the simulation of

the entire ADC circuit, a voltage ramp was presented as an input to the ADC and the

RSNS thermometer code was observed at the comparator output.

93

1. Three-Channel RSNS ADC

For the three-bit ADC ramp-input simulation, the clock rate for the comparators

was fixed at 1 GHz and voltage ramp rate was set to 0.005 volts per nanosecond. Since

the LSB was chosen to be 0.012 V, there were approximately two clock periods within

each LSB. Figure 3.26 shows the output of the folding amplifiers and the comparator

threshold levels, which coincide with the results in [30]. Figure 3.27 shows simulation

results for the six-bit ADC. The top plot shows the input ramp and the bottom three plots

show the summed comparator output.

Comparator
Thresholds

Figure 3.26 Folded waveforms and comparator levels for six-bit ADC.

94

0

0.5

1
ADC Input Signal

V
ol

ts

0

1

2

3
Modulus 3 Thermometer Code Sum

Re
sid

ue
 V

al
ue

0

2

4
Modulus 4 Thermometer Code Sum

Re
sid

ue
 V

al
ue

0 20 40 60 80 100 120
0

2

4

Modulus 5 Thermometer Code Sum

Re
sid

ue
 V

al
ue

time (ns)
Figure 3.27 ADC simulation showing input signal and folded output.

The thermometer code comparator output was converted to binary using an

RSNS-to-binary conversion algorithm discussed in detail in Chapter V. The three-

channel ADC binary output converted to decimal is shown in Figure 3.28.

95

Figure 3.28 ADC simulation showing stair-step decimal output.

The differential nonlinearity (DNL) is the maximum deviation in the output step

size from the ideal value of one LSB, while the integral nonlinearity (INL) is the maxi-

mum deviation of the output stair step from a straight line passed through its endpoints

[28]. The INL and DNL for the three-channel ADC are shown in Figure 3.29. An ADC

is considered to have good linearity if it has an INL and DNL of less than one half of a

LSB [28]. Figure 3.28 shows that the three-channel RSNS folding ADC is well within

that standard for both INL and DNL.

96

Figure 3.29 INL and DNL for the six-bit ADC.

2. Four-Channel RSNS ADC

For the eight-bit ADC ramp-input simulation, the clock rate for the comparators

was fixed at 1 GHz and ramp rate was set to 0.0025 volts per nanosecond. Since the LSB

was chosen to be 0.006 V, there were approximately 2 clock periods within each LSB.

Figure 3.30 shows simulation results for the eight-bit ADC. The top plot shows the input

ramp and the bottom four plots show the summed comparator output.

97

0

1

2
ADC Input Signal

V
ol

ts

0

1

2

3
Modulus 3 Thermometer Code Sum

Re
sid

ue
 V

al
ue

0

2

4

Modulus 5 Thermometer Code Sum

Re
sid

ue
 V

al
ue

0
2
4
6
8

Modulus 8 Thermometer Code Sum

Re
sid

ue
 V

al
ue

0 500 1000 1500 2000 2500
0

5

10
Modulus 11 Thermometer Code Sum

Re
sid

ue
 V

al
ue

time (ns)
Figure 3.30 ADC simulation showing input signal and folded output.

The thermometer code comparator output was converted to binary using an

RSNS-to-binary conversion algorithm discussed in detail in Chapter V. The INL and

DNL are shown in Figure 3.31. The INL and DNL in the figure that are greater than half

an LSB are due to the fact that the comparators chosen for this implementation probably

do not have the resolution to support a 6-mV LSB.

98

Figure 3.31 INL and DNL for the eight-bit ADC.

E. SUMMARY

The ADC is the most fundamental building block in a signal processing system.

To realize a single-chip electronic decoy system, the SoC ADC must have a small die

footprint and operate at extremely low power. Folding ADC architectures offer the most

resolution at high speeds of any existing ADC architecture as well as a reduced die area

and power consumption by minimizing the number of comparators and eliminating inter-

polation circuitry.

The three-channel, six-bit RSNS ADC extended the design described in [30] by

modifying the circuit for implementation in a mixed-signal fabrication process.

The lessons learned designing the six-bit ADC led directly to the design proce-

dure for a four-channel, eight-bit RSNS ADC. An eight-bit ADC is necessary for the im-

plementation of the false target EW SoC since the inputs to the DIS described in Chapter

99

II are 8-bit digital I and Q signals, and thus require two 8-bit ADCs to convert the analog

I and Q signals to digital. Furthermore, the eight-bit ADC is used to provide a the proce-

dure for designing N-channel k-bit RSNS ADCs. The simulation results for both RSNS

ADCs verified error-free high-speed operation.

The next chapter represents a departure from the EW SoC component-centric dis-

sertation presented up to this point. Chapter IV describes RSNS in detailed mathematical

terms and examines the unique properties of the number system that produce the RSNS

error-tolerant Gray-code properties. The RSNS analysis enables the design of N-channel

ADCs as well as the RSNS-to-binary conversion circuits presented in Chapter V.

100

IV. ROBUST SYMMETRIC NUMBER SYSTEM

This chapter presents the number theory behind the Robust Symmetrical Number

System (RSNS) used to design the ADCs in Chapter III. Up to this point, comprehensive

analysis on the RSNS was limited to systems with two moduli [33] and a special three-

modulus case [30]. This chapter extends the current two-modulus RSNS theory and

analysis to provide the closed-form analytic expressions and search algorithm code to ef-

ficiently compute the size and location of the largest sequence of unique RSNS vectors

(M̂) for three-modulus and N-modulus RSNS. The results in this chapter enable the im-

plementation of efficient N-modulus, k-bit ADCs as well as the RSNS-to-binary convert-

ers in Chapter V.

Like residue number systems (RNS), symmetrical number systems (SNS) use

modulo arithmetic to decompose an integer value into one or more residue integers.

Unlike the RNS and other SNS, the RSNS has a structure with built-in redundancy that is

specifically designed to eliminate encoding errors in electronic or mechanical systems

that quantize analog signals into a digital integer representation. Thus, all published

RSNS research as well as this dissertation present the theory of the RSNS in terms of its

application to real systems rather than in abstract mathematical terms.

In an RSNS employing N relatively prime moduli { }1 1 Nm m mL , any integer can

be converted to an N-dimensional vector of RSNS integer residues. Using notation simi-

lar to [28], a is a real number and h a=   

ih

 is the greatest integer less than or equal to a.

The N-dimensional RSNS residue vector representing h is denoted Xh. An individual

residue in the vector is denoted x , where i is the vector row index. In the RSNS, when

comparing the vectors hX and 1hX + , all elements of the vectors are the same except for

the elements in a single row, and the elements in the row that are not the same vary by

exactly . This Gray-code property makes the RSNS particularly useful in folding ana-

log-to-digital converters [30], direction finding interferometer antenna architectures [34],

and electro-optic digital antennas [35] since it eliminates encoding errors common in the

1±

101

previously mentioned systems. In these applications, the analog signal is folded a num-

ber of times (preprocessed) before digitization.

An ambiguity is a repeated residue or repeated vector of residues. Because of the

presence of ambiguities, the set of integers within each symmetrical number system

modulus residue sequence do not form a complete residue system by themselves. The

ambiguities are resolved by taking into account the combined values from all modulus

residue sequences [28]. Thus, in most practical systems, the vector hX must be decoded

to find the integer h as an approximation to the real number a. Since the RSNS is peri-

odic, the unambiguous decoding of h can only be accomplished within a finite range of

vectors. This range of vectors, denoted M̂ , is the largest series of consecutive non-

redundant RSNS vectors. For residue number systems, M̂ is simply denoted M and is

the product of the moduli. However, the ambiguities in the RSNS reduce M̂ compared

to the RNS and other SNS and is very difficult to compute [35]. Recently, formulas for

computing the length of M̂ for a two-modulus RSNS have been found [33]. Computer

search algorithms, however, have to be used to find the position of M̂ in the RSNS fun-

damental period for the two-modulus case. Because of the large RSNS fundamental pe-

riods, this approach becomes cumbersome and slow for systems with many moduli or

systems with large moduli.

In this chapter, the two-modulus RSNS results in [33] are extended to determine

the length and position of M̂ for a three-modulus and, subsequently, N-modulus RSNS.

The technique in [33] focused on computing the locations of all redundant vectors rather

than searching for sequences of non-redundant vectors. That is, it was more efficient to

compute the finite locations of the redundancies than to search the entire fundamental pe-

riod for a sequence of non-redundant vectors of unknown length. The technique involved

identifying basic redundancies for each modulus residue sequence, combining the basic

redundancies into four cases, and then solving the cases to produce an analytic formula

for the length of the two-modulus M̂ . This chapter starts by identifying all modulus

residue sequence redundancies and then combines the modulus residue sequence redun-

dancies across all moduli to solve for all vector redundancy locations for the three-
102

modulus RSNS. The end result is an analytical expression for the length and position of

M̂ for a popular set of moduli 1, , 1m m m− + , and an efficient M̂ search algorithm for

the N-modulus RSNS.

0,0,1,1, 1,1, ,x L L

m m m

,1,1,m

(… 1
6m3m 3m+1 3m+2 3

This chapter is organized into five sections. The first section develops the struc-

ture of the three-modulus RSNS and defines the three fundamental modulus residue se-

quence redundancies in the system. The next section organizes the redundancies and

moduli combinations into several distinct cases and provides analytical solutions to the

corresponding redundant vector locations. The three-modulus RSNS results are then ex-

tended to produce a comprehensive description and solution for the N-modulus RSNS.

The last two sections develop an expression for the location and length of M̂ for the

three-modulus RSNS with moduli of the form 1, , 1m m m− + , introduce a novel geo-

graphic RSNS display technique, and produce an efficient search algorithm for the N-

modulus RSNS.

A. THE THREE-MODULUS RSNS

The structure for a single-modulus residue sequence (MRS) in an N-modulus

RSNS is

[0,0, , , , , , , 1,1]h m m m= L L L L . (4.1)

Each integer residue is repeated N times, forming a sequence with length , where m

is the modulus [28]. For the three-modulus case, the RSNS modulus residue sequence

and corresponding index h are shown in Figure 4.1. The length of the sequence is 6m.

2mN

0 0 0 1 1 1 … m-1) (m-1) (m-1) 1 1
0 1 2 3 4 5 … m+3 3m+4 3m+5 … -3 6m-2 6m-1h

x h

Figure 4.1 Modulus residue sequence for a three-modulus RSNS.

103

When forming the RSNS, all moduli are required to be pair-wise relatively prime

(PRP). Once the PRP moduli are chosen, each MRS is fashioned according to Figure 4.1.

Next, the MRS for one modulus is circularly shifted left one position while the MRS for a

second MRS is circularly shifted left two positions relative to the non-shifted MRS. Fi-

nally, the three MRSs are repeated a number of times and stacked in modulus-index order

to form vectors. Figure 4.2 shows a portion of the three-modulus RSNS structure for the

moduli []3 4 5i =m .

(m 1 = 3) 0 0 0 1 1 1 2 2 2 3 3 3 2 2 2 1 1 1 0 0 0 1 1 1 …
(m 2 = 4) 0 0 1 1 1 2 2 2 3 3 3 4 4 4 3 3 3 2 2 2 1 1 1 0 …
(m 3 = 5) 0 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 4 4 4 3 3 3 2 2 …

h 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 …

X h

Figure 4.2 Three-modulus RSNS structure.

The Gray-code properties can be clearly seen by noticing that only a single MRS

transitions to the next integer at each position. Figure 4.3 shows a plot of the residues

from Figure 4.2.

0 10 15 20
h

25 30 35 40

2
1
0

5
4

1
0

4
3

2
1
0

3

xh

3

2

xh

xh

5

m1 = 3

m2 = 4

m3 = 5

Figure 4.3 Plotting the residues of a three-modulus RSNS yields a folded stair-step

structure.

104

Plotting the residues for each MRS versus the index h yields a folded, stair-step

structure which clearly shows the result of the left-shift in the second and third MRSs.

For consistency, the analysis in this research assumes that the MRS corresponding to

moduli m1, m2, and m3 are always circularly left-shifted by 0, 1, and 2 positions, respec-

tively, and that m1 < m2 < m3. It has been shown that the size of M̂ in any particular

RSNS is independent of which MRS receives the left-shifts. However, the location of

M̂ is affected by the choice of MRS that receives the left-shifts [30]. The fundamental

period for the three-modulus RSNS is [30]

1 26f 3P m m m= . (4.2)

The ith MRS has a length, or folding period, of 6mi that is repeated exactly iM m

times in the RSNS fundamental period where M is the product of the system moduli and

mi is the modulus of the ith MRS. The remainder of this chapter is original work on the

analysis of the three-modulus and N-modulus RSNS and formulation of fundamental ana-

lytic equations describing the structure of the RSNS.

There are three fundamental types of redundancies in each MRS as illustrated by

Figure 4.4. First, since the MRS is periodic there exist redundancies from period to pe-

riod, which are defined in this dissertation as Type 0 redundancies. In addition, the

symmetry of the MRS (illustrated by the fold in the plot above) creates a redundancy on

the rise of the fold and on the fall of the fold. These redundancies exist within a single

MRS and are defined in this dissertation as Type 1 redundancies. Finally, the residues

are repeated three times each (causing the stair step appearance of the plot) and are de-

fined as Type 2 redundancies.

105

Type 0 Redundancy
Type 1 Type 2

0 10 15 20
h

25 30 35 40

2
1
0

5
4
3xh

5

Figure 4.4 Single MRS redundancy types (m = 5).

Formulation of a straightforward analytical expression for the MRS redundancies

is difficult because of the stair-step form of the MRS plot. The task is made simpler,

however, by decimating each MRS into three sub-sequences. Each modulus residue sub-

sequence (MRSS) is composed of values from the original MRS at positions where

, h , and 0 (mod3)h ≡ 1 (mod3)≡ 2 (mod3)h ≡ . Figure 4.5 illustrates decimating an

MRS (m1 = 3) into three MRSSs.

m 1 = 3 x h 0 0 0 1 1 1 2 2 2 3 3 3 2 2 2 1 1 1 0 0 0 1 …

h = 0 (mod 3) x h 0 1 2 3 2 1 0 1
h = 1 (mod 3) x h 0 1 2 3 2 1 0
h = 2 (mod 3) x h 0 1 2 3 2 1 0

h 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 …

…
…
…

Figure 4.5 A single MRS decimated into three MRSSs.

The top row in the figure is the original MRS and below it are the three MRSSs

and finally the position index h. Notice that the positions of the MRSS integers do not

align with each other. Every integer value h falls within one and only one MRSS. Figure

4.6 provides a plot of the three MRSSs in each MRS for the []3 4 5im = case.

106

2
1
0

5
4

1
0

4
3

2
1
0

3

xh

3

2

xh

xh

0th MRSS

1st MRSS

2nd MRSS

10 15 20
h

25 30 35 400 5

m1 = 3

m2 = 4

m3 = 5

Figure 4.6 Three-modulus RSNS MRSS plot.

By forming the three MRSSs, the Type 2 redundancy is eliminated. However, all

redundancies in each of the three MRSSs must be analytically described instead. Since

the three MRSSs in each MRS are mutually exclusive in terms of the position index h,

corresponding MRSSs can be analyzed as a group across the three main MRSs. Further-

more, the MRSSs shown in Figure 4.6 do not have the stair-step structure of the main

MRS in Figure 4.3, but rather have a form similar to the well-understood folded SNS

structure described in [36]. As a result, familiar methods of solving N-modulus SNS can

be applied to the MRSS systems.

Since Type 2 redundancies do not exist in the MRSSs, all redundancies must be

either Type 0 or Type 1. Following the methodology in [28] and looking at the parity of

the residues forming the vector hX (even, odd)e o= = provides insight into the mini-

mum separation between redundant vectors. Figure 4.7 shows a RSNS even/odd perio-

dicity of length six for the three-modulus RSNS example and therefore the distance be-

tween redundant vectors must always be a multiple of six.

107

m 1 = 3 e e e o o o e e e o o o e e e o o o e …
m 2 = 4 e e o o o e e e o o o e e e o o o e e …
m 3 = 5 e o o o e e e o o o e e e o o o e e e …

h 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 …

X h

Figure 4.7 Parity of residue vectors.

Redundant vectors at positions h and h k+ are written h h kX X += . Thus, from

the analysis above, k must be a multiple of six for the three-modulus RSNS.

Next, the basic redundancies for individual MRSs are defined. Given that Type 0

redundancies are redundancies that occur at multiples of the MRS period, 6m, an expres-

sion for the position of the redundancy for a single MRS such that h h kx x += is given by

0 (mod 6)k m≡ . (4.3)

Note this redundancy is independent of the starting position h. Type 1 redundancies are

redundancies that occur within an MRS period due to the symmetry of the MRS. An ex-

pression for the position of the Type 1 redundancy for a single MRS such that h h kx x +=

is given by

th() 0 (mod 6), if 0 (mod 3) (0 MRSS)h h k m h+ + ≡ ≡ , (4.4)

st() 2 (mod 6), if 1 (mod 3) (1 MRSS)h h k m h+ + ≡ ≡ , (4.5)

and

nd() 4 (mod 6), if 2 (mod 3) (2 MRSS)h h k m h+ + ≡ ≡ . (4.6)

Note that this redundancy is dependent on the start position h as well as the sub-sequence

number (0th, 1st, or 2nd MRSS). The MRSS number is also referred to as the MRSS index.

Equations (4.3)-(4.6) are extensions of the two-modulus RSNS results given in

[28]. Furthermore, since Type 0 redundancies occur between different folding periods

and Type 1 redundancies occur inside of a single folding period, they are mutually exclu-

sive and any redundancy must be either Type 0 or Type 1, but not both. Therefore, to

find all redundancies in the fundamental period for the three-modulus RSNS, it is neces-

108

sary to find all combinations of both Type 0 and Type 1 redundancies for all three MRSs.

In other words, there is a redundant vector pair in the three-modulus RSNS wherever all

three of the individual MRS redundancies (whether Type 0 of Type 1) align. Since there

are three MRSs each with two possible types of redundancies (Type 0 and Type 1), there

are 23 or 8 possible redundancy permutations. All of the possible redundancy permuta-

tions are summarized in the rows of the table in Figure 4.8 as separate cases. All cases

that have at least one Type 1 redundancy have three sub-cases because Type 1 redundan-

cies have three MRSSs.

Case
Label

MRS 3
Redundancy

Type

MRS 2
Redundancy

Type

MRS 1
Redundancy

Type

Combination
Decimal
Value

Ordered Decimal
Value Becomes

Combination Number
(second label digit)

Case 010 Type 0 Type 0 Type 0 0002 = 0 1
Case 110
Case 111
Case 112
Case 120
Case 121
Case 122
Case 130
Case 131
Case 132
Case 210
Case 211
Case 212
Case 220
Case 221
Case 222
Case 230
Case 231
Case 232
Case 310
Case 311
Case 312

Type 0

Type 0

Type 1

Type 0

Type 1

Type 1

Type 1

Type 0

Type 1

Type 0

Type 1

Type 0

Type 1

Type 1

Type 1

Type 0

Type 0

Type 1

Type 1

Type 0

Type 1

0012 = 1

0102 = 2

1002 = 4

0112 = 3

1012 = 5

1102 = 6

1112 = 7

2

3

1

1

2

3

1

Figure 4.8 Table of redundancy types for three-modulus RSNS.

109

The labeling of the cases is different than in [28] due to the increase in the number

of cases to be analyzed. Furthermore, for systems with more than three MRSs, the num-

ber of cases increases so dramatically that a logical case labeling system must be devel-

oped that is suitable for implementation in a computer algorithm. For consistency, each

case is labeled with three identifier digits, as shown in the first column of Figure 4.9.

Case 2 2 0
Number of Type 1 Redundancies

Combination Number

MRSS Number

Case 2 2 0
Number of Type 1 Redundancies

Combination Number

MRSS Number
Figure 4.9 Case label example.

The first digit in the case label represents the number of MRSs that contain a

Type 1 redundancy, and ranges from zero to three for the three-modulus RSNS. For ex-

ample, in the three-modulus RSNS, all Case 1XX redundancies have only one MRS with

a Type 1 redundancy and therefore the two remaining MRSs must be Type 0 redundan-

cies. The second digit in the case label represents the particular assignment of Type 0

and Type 1 redundancies to specific MRSs. For instance, referring to the second row of

Figure 4.8, the first combination of Case 1XX shows that MRS two and MRS three have

a Type 0 redundancy, and MRS one has a Type 1 redundancy. Moreover, omitting the

word “Type” before each redundancy, the combinations form binary numbers whose

decimal value is given in the fourth column of Figure 4.8, sorted smallest to largest

within each major case grouping indicated in the figure by the double separator lines.

Sequentially numbering the combinations within each major case group as shown in the

last column in the figure results in the unique combination number for each case group

and is the second digit in each case label. Lastly, the third digit in the case label repre-

sents the MRSS index and ranges from zero to two for the three-modulus RSNS. An il-

lustrative example follows. For the case label in Figure 4.9, Case 220, a two as the first

digit specifies that there are two Type 1 redundancies (and therefore one Type 0 redun-

dancy) for the three MRSs. The two as the second digit signifies that the particular order

110

of the redundancies is the second largest binary value (1012 5=). The zero in the third

digit of the example case label indicates the redundancies are computed for the 0th MRSS

only.

Once the redundancy types have been defined and the number of cases has been

established, it is necessary to form the congruence equations for each MRS in the three-

modulus RSNS. Once the congruence equations are formed for each individual MRS,

they will be combined in the next section into systems of congruence equations and

solved for the locations of the redundant vectors.

For the first MRS, where 1 ,m m= rearranging the single MRS congruence equa-

tions (4.3)-(4.6) yields

10 (mod)
6
k m≡ (4.7)

for Type 0 redundancies and

th
1(mod), if 0 (mod 3) (0 MRSS)

6 3
k h m h≡ − ≡ , (4.8)

() st
1

1
(mod), if 1 (mod 3) (1 MRSS)

6 3
hk m h

−
≡ − ≡ , (4.9)

and

() nd
1

2
(mod), if 2 (mod 3) (2 MRSS)

6 3
hk m h

−
≡ − ≡ (4.10)

for Type 1 redundancies. For the second MRS, where 2 ,m m= rearranging the single

MRS congruence equations (4.3)-(4.6) while applying a one position left shift (h = h + 1)

yields

20 (mod)
6
k m≡ (4.11)

111

for Type 0 redundancies and

th
2(mod), if 0 (mod 3) (0 MRSS)

6 3
k h m h≡ − ≡ , (4.12)

() st
2

1
(mod), if 1 (mod 3) (1 MRSS)

6 3
hk m h

−
≡ − ≡ , (4.13)

and

() nd
2

1
(mod), if 2 (mod 3) (2 MRSS)

6 3
hk m h

+
≡ − ≡ (4.14)

for Type 1 redundancies. For the third MRS, where 3 ,m m= rearranging the single MRS

congruence equations (4.3)-(4.6) while applying a two position left shift (h = h + 2)

yields

30 (mod)
6
k m≡ (4.15)

for Type 0 redundancies and

th
3(mod), if 0 (mod 3) (0 MRSS)

6 3
k h m h≡ − ≡ , (4.16)

() st
3

2
(mod), if 1 (mod 3) (1 MRSS)

6 3
hk m h

+
≡ − ≡ , (4.17)

and

() nd
3

1
(mod), if 2 (mod 3) (2 MRSS)

6 3
hk m h

+
≡ − ≡ (4.18)

for Type 1 redundancies.

Equations (4.7) through (4.18) represent all possible single-MRS redundancies.

Notice that the only unique elements of (4.8)-(4.10), (4.12)-(4.14), and (4.16)-(4.18) are

the MRS moduli and the numerators of the symmetrical residues, which can be easily

represented in matrix form. The first column of the matrix is composed of the numera-

112

tors of the symmetrical residues from (4.8)-(4.10), while the second column comes from

(4.12)-(4.14), and the third column comes from (4.16)-(4.18), resulting in

0 0 0
1 1
2 1

h h h
h h h
h h h

2
1

+ + + 
 − − +
 


− + + 

, (4.19)

or simply

0 0 0
1 1 2
2 1 1

 
 − − 
 − 

. (4.20)

The MRS number indexes the columns of the matrix and the MRSS number in-

dexes the rows. The simplified matrix in (4.20) shows a particular structure. Starting

with the leftmost column, each successive column is the previous column circularly

shifted toward the top of the matrix with each element incremented by one. This matrix

structure and pattern is particularly useful for automatically generating the congruence

equations in computer algorithms as well as efficiently describing systems with greater

than three MRSs.

B. CASE-BY-CASE SOLUTION FOR THE REDUNDANCY LOCATIONS

While the previous section defined all redundancies for each individual MRS, this

section combines the single-MRS congruence equations on a case-by-case basis into sys-

tems of congruence equations in order to find all of the vector redundancy locations. All

combinations of single-MRS congruence equations must be computed following the table

in Figure 4.8. Moreover, since the MRSSs are mutually exclusive, all Type 1 redundan-

cies must be from the same MRSS for each case. Solving the resulting systems of con-

gruence equations produces analytical solutions to the corresponding RSNS vector re-

dundancy locations.

113

1. Case 010

For Case 010, only Type 0 redundancies are chosen for MRSs 1, 2, and 3 as

shown in the first row of Figure 4.8. The expressions for the individual MRS Type 0 re-

dundancies are given by (4.7), (4.11), and (4.15), which when combined yield the system

1

2

3

0 (mod),
6

0 (mod),
6

0 (mod).
6

k m

k m

k m

≡

≡

≡

 (4.21)

The system in (4.21) has the solution that k is a multiple of 6 . In other

words, the solution to this case is the redundant vector that occurs at multiples of the fun-

damental period. This is not surprising since it coincides with the definition of the fun-

damental period. Since all redundancies in this case are Type 0, there are no sub-cases.

The redundancies found in this case are uninteresting due to the fact that the problem is

focused on finding redundancies within the fundamental period. Case 010 is useful be-

cause it introduces a solution common to all systems of equations with structure similar

to (4.21) and is referenced in subsequent cases.

1 2 3m m m

2. Case 31X

Cases 31X are considered next because they are relatively simple to solve and,

like Case 010, have a fundamental solution that subsequent cases utilize. For the three-

modulus RSNS, Case 31X represents the condition where the congruence equations for

each MRS are all chosen from the Type 1 Redundancy column, corresponding to the last

row of Figure 4.8. Because only Type 1 redundancies are chosen, there is only one Case

3XX combination (albeit with three sub-cases) to analyze. For Case 310, the system of

congruence equations formed from the individual MRS redundancy expressions (4.8),

(4.12), and (4.16) is

114

1

2

3

(mod),
6 3

(mod),
6 3

(mod),
6 3

k h m

k h m

k h m

≡ −

≡ −

≡ −

 (4.22)

where each equation is chosen from the 0th MRSS. The solution to (4.22) is a particularly

simple Chinese Remainder Theorem (CRT) problem [28]. Since
6 3
k h

= − is one solu-

tion, all solutions are 1 2 3(
6 3
k h a m m m= − +) , where a is any integer. Rearranging and

solving for h yields the form

310 1 2 3(3)
2Case
kh a m m m= − . (4.23)

Therefore, a redundancy occurs at h h k= + , which is

310 1 2 3(3)
2Case
kh k a m m m+ = + . (4.24)

Since the Case 310 vector redundancies occur at 1 2 3(3)
2
ka m m m ± , multiples of

are defined as centers of redundancy (COR) [28].

1 2 33m m m

For Case 311 and Case 312 (1st and 2nd MRSSs of Case 31X) the systems of con-

gruence equations are

()

()

()

1

2

3

1
(mod),

6 3
1

(mod),
6 3

2
(mod)

6 3

hk m

hk m

hk m

−
≡ −

−
≡ −

+
≡ −

 (4.25)

115

for Case 311, and

()

()

()

1

2

3

2
(mod),

6 3
1

(mod),
6 3

1
(mod)

6 3

hk m

hk m

hk m

−
≡ −

+
≡ −

+
≡ −

 (4.26)

for Case 312. After [28], the form of the solutions to (4.25) and (4.26) is exactly the

same as the form of the 0th MRSS solution (4.23) except their COR are shifted by a con-

stants, 31shift Xh , which are the least positive solutions (LPS) of the system of congruence

equations

()

()

()

311
1

311
2

311
3

1
0 (mod),

3
1

0 (mod),
3

2
0 (mod)

3

shift

shift

shift

h
m

h
m

h
m

−
≡

−
≡

+
≡

 (4.27)

for Case 311, and

()

()

()

312
1

312
2

312
3

2
0 (mod),

3
1

0 (mod),
3

1
0 (mod)

3

shift

shift

shift

h
m

h
m

h
m

−
≡

+
≡

+
≡

 (4.28)

for Case 312. To see why this is so, let be the LPS to (4.27). Now, given that

 and is a redundancy for Case 310,

311shifth

310Caseh 310Caseh + k 310 311Case shifth h+ and

 is a redundancy for Case 311 for the following reason. Letting

 for the Case 311 system of congruence equations in (4.25) yields the

system

310Case

Cah h=

311ift k+ +

311shifth+

shh h

310se

116

() ()

() ()

() ()

310 311 311 310 310
1

310 311 311 310 310
2

310 311 311 310 310

 1 1
(mod),

3 3 3 3 6
 1 1

(mod),
3 3 3 3 6
 2 2

3 3 3 3

Case shift shift Case Case

Case shift shift Case Case

Case shift shift Case Case

h h h h h k m

h h h h h k m

h h h h h

+ − −
− = − − ≡ − ≡

+ − −
− = − − ≡ − ≡

+ + +
− = − − ≡ − 3(mod).

6
k m≡

 (4.29)

Therefore, the translation by of the Case 310 redundancy results in the

Case 311 redundancy. A similar proof can be formed for the Case 312 redundancy. The

system of congruence equations in (4.27) and (4.28) can be solved using the general form

of the CRT. After solving for and , the solution to the location of the Case

311 redundancies becomes

311shifth

h311shifth 312shift

()311 1 2 3 311(3)
2Case shift
kh a m m m h= + −

)

, (4.30)

while the solution to the Case 312 redundancies becomes

(312 1 2 3 312(3)
2Case shift
kh a m m m h= + − . (4.31)

This represents all solutions to all Case 31X redundancies for the three-modulus RSNS

system.

3. Case 1XX

Case 1XX redundancies represent redundant RSNS vectors with individual MRS

elements composed of one Type 1 and two Type 0 redundancies. Contrary to the previ-

ous two cases considered, there are three different ways to combine one Type 1 and two

Type 0 redundancies. The three combinations are shown in rows two, three, and four of

Figure 4.8. For Case 110, the system of congruence equations formed from (4.8), (4.11),

and (4.15) is

117

1

2

3

(mod),
6 3

0 (mod),
6

0 (mod).
6

k h m

k m

k m

≡ −

≡

≡

 (4.32)

The bottom two equations in (4.32) have the same form as the three equations in (4.21)

from Case 010 and the resulting solution is that k must be a multiple of . Substi-

tuting this solution for k into the top equation in the system in (4.32) yields

2 36m m

2 3 1(mod)
3
hm m m− ≡ , (4.33)

which has the solution

Case 110 2 3 13 (3h m m a)m= − + , (4.34)

where a is any integer. This solution is interpreted as follows: there is a Case 110 vector

redundancy at every position h and h k+ where k is a multiple of 6 and

 plus any integer multiple of . Comparing (4.34) and (4.23), it is apparent

that 3 is a COR for Case 110 redundancies.

2 3m m

2 33h m= −

1m

m 1m3

For Case 111, the system of congruence equations formed from (4.9), (4.11), and

(4.15) is

1

2

3

(1) (mod),
6 3

0 (mod),
6

0 (mod).
6

k h m

k m

k m

−
≡ −

≡

≡

 (4.35)

The congruence equations in (4.35) are the same as (4.32) except for the top equation,

which is chosen from the 1st MRSS of MRS 1 rather than the 0th MRSS. Examining the

similarities of (4.32) and (4.35), it is clear that if there is a redundancy at positions

and there is also a redundancy at and

110Caseh

110Caseh + k 111Caseh 111Caseh k+ , with

118

Case111 Case110 1h h= + . The proof of which is simply to substitute h h into

the Case 111 system of congruence equations given in (4.35) and see that the result is ex-

actly the Case 110 system of congruence equations given in (4.32).

Case111 Case110 1= +

Case112 Case110 2h h= +

1

3

Case 120

0 (mod)
6

(mod
6 3

0 (mod)
6

k m

k h m

k m

≡

≡ −

≡

1

3

Case 122

0 (mod)
6

(1) (mod
6 3

0 (mod)
6

k m

k h

k m

≡

+
≡ −

≡

For Case 112, the system of congruence equations formed from (4.10), (4.11), and

(4.15) is

1

2

3

(2) (mod),
6 3

0 (mod),
6

0 (mod).
6

k h m

k m

k m

−
≡ −

≡

≡

 (4.36)

The congruence equations in (4.36) are the same as (4.32) except for the top equation,

which is chosen from the 2nd MRSS of MRS 1 rather than the 0th MRSS. As in Case 111,

the solution to Case 112 redundancies is a shifted version of the 0th MRSS solution, so

there is a redundancy at positions and 112Caseh 112Caseh k+ , with .

Thus, all redundancies have been identified and analytic solutions provided for all Case

11X redundancies.

According to Figure 4.8, there are two more Case 1XX combinations (Case 12X

and Case 13X) corresponding to rows three and four. Fortunately, they are solved in the

same way as Case 110, Case 111, and Case 112. For completeness, the systems of con-

gruence equations for Case 12X including all MRSSs are shown in Figure 4.10.

2)

1

2

3

Case 121

0 (mod)
6

(1) (mod)
6 3

0 (mod)
6

k m

k h m

k m

≡

−
≡ −

≡

2)m

Figure 4.10 Systems of congruence equations for Case 12X.

119

The solution, found in the same manner as Case 11X, is that for all MRSSs, k is a

multiple of 6 and 1 3m m

120 1 3 2

121 120

122 120

= 3 (3),
1,
1.

Case

Case Case

Case Case

h m m a
h h
h h

m− +
= +
= −

 (4.37)

Similarly, the systems of congruence equations for Case 13X including all MRSSs are

shown in Figure 4.11.

1

2

3

Case 130

0 (mod)
6

0 (mod)
6

(mod)
6 3

k m

k m

k h m

≡

≡

≡ −

1

2

3

Case 131

0 (mod)
6

0 (mod)
6

(2) (mod)
6 3

k m

k m

k h m

≡

≡

+
≡ −

1

2

3

Case 132

0 (mod)
6

0 (mod)
6

(1) (mod)
6 3

k m

k m

k h m

≡

≡

+
≡ −

Figure 4.11 Systems of congruence equations for Case 13X.

The solution, found in the same manner as Case 11X, is that for all MRSSs, k is a

multiple of 6 and 1 2m m

130 1 2 3

131 130

132 130

3 (3
2,
1.

Case

Case Case

Case Case

h m m a
h h
h h

),m= − +
= −
= −

 (4.38)

Placing the unique elements of the solutions for all Case 1XX equations in a ma-

trix with (4.34) in the first column, (4.37) in the second column, and (4.38) in the third

column yields

110 120 130

110 120 130

110 120 130

1 1
2 1

Case Case Case

Case Case Case

Case Case Case

h h h
h h h
h h h

 
 + +
 + − 

2 ,
1

− 
−

 (4.39)

120

or simply

0 0 0
1 1 2
2 1 1

 
 − 
 − − 

, (4.40)

where the columns represent the MRSs and the rows represent the MRSSs. The interest-

ing pattern that emerges is that the matrix columns of (4.40) are simply the negatives of

the circularly shifted and incremented columns found in (4.20). Again, this matrix struc-

ture is particularly useful for generating the solutions for systems of congruence equa-

tions in computer algorithms as well as calculating redundancy locations for systems with

greater than three MRSs. Since the matrix given in (4.40) is the same for every three-

modulus RSNS regardless of the choice of moduli, once the 0th MRSS solution is found

for each Case 1XX combination, the 1st and 2nd MRSS solutions can be found simply by

shifting the 0th MRSS solution by the values found in (4.40), thereby rendering the com-

putation for the remaining MRSSs unnecessary. This completes the identification and

analytic solution to all Case 1XX redundancies.

4. Case 2XX

Case 2XX redundancies represent redundant RSNS vectors whose individual

MRS elements are composed of one Type 0 and two Type 1 redundancies. Similar to the

previous case, there are three different ways to combine one Type 0 and two Type 1 re-

dundancies. The three combinations are shown in rows five, six, and seven of Figure 4.8.

For Case 210, the system of congruence equations formed from (4.8), (4.12), and (4.15)

is

1

2

3

(mod),
6 3

(mod),
6 3

0 (mod).
6

k h m

k h m

k m

≡ −

≡ −

≡

 (4.41)

121

The consequence of the third equation in (4.41) is simply that k is a multiple of 6 . The

remaining two equations are solved in a manner similar to the Case 310 equations and

therefore have the solution

3m

210 1 2(3)
2Case
kh a m m= − , (4.42)

with the h h redundancy at k= +

210 1 2(3)
2Case
kh k a m m+ = +

m

. (4.43)

Analogous to Case 310, a Case 210 COR is discovered at . In addition,

since it is known that k is a multiple of , by substituting the least positive k into

(4.43) the solution above can also be expressed as

1 23m m

36m

210 1 2 3(3) 3Caseh a m m= − , (4.44)

with the h h redundancy at k= +

210 1 2 3(3) 3Caseh k a m m m+ = + . (4.45)

The solutions for the other two sub-cases (Case 211 and Case 212) are found ex-

actly like Case 311 by simply shifting the Case 210 COR by a constant equal to the LPS

to the following systems of congruence equations. For Case 211, h is the LPS to 211shift

()

()

211
1

211
2

1
0 (mod),

3
1

0 (mod),
3

shift

shift

h
m

h
m

−
≡

−
≡

 (4.46)

which can be solved using the general form of the CRT. The resulting solution to the

Case 211 vector redundancy is

()211 1 2 211(3)
2Case shift
kh a m m h= + − , (4.47)

122

with the h h redundancy at k= +

()211 1 2 211(3)
2Case shift
kh k a m m h+ = + + . (4.48)

For Case 212, h is the LPS to 212shift

()

()

212
1

212
2

2
0 (mod),

3
1

0 (mod),
3

shift

shift

h
m

h
m

−
≡

+
≡

 (4.49)

which can be solved using the general form of the CRT. The resulting solution to the

Case 212 vector redundancy is

()212 1 2 212(3)
2Case shift
kh a m m h= + −

)

, (4.50)

with the h h redundancy at k= +

(212 1 2 212(3)
2Case shift
kh k a m m h+ = + + . (4.51)

According to Figure 4.8, there are two more Case 2XX combinations (Case 22X

and Case 23X) corresponding to rows six and seven of Figure 4.8. Fortunately, they are

solved in the same way as Case 210, Case 211, and Case 212. For completeness, the sys-

tems of congruence equations for Case 22X including all MRSSs are shown in Figure

4.12.

1

2

3

Case 220

(mod)
6 3

0 (mod)
6

(mod)
6 3

k h m

k m

k h m

≡ −

≡

≡ −

1

2

3

Case 221
(1) (mod)

6 3

0 (mod)
6

(2) (mod)
6 3

k h m

k m

k h m

−
≡ −

≡

+
≡ −

1

2

3

Case 222
(2) (mod)

6 3

0 (mod)
6

(1) (mod)
6 3

k h m

k m

k h m

−
≡ −

≡

+
≡ −

Figure 4.12 Systems of congruence equations for Case 22X.

123

The solution, found in the same manner as Case 21X, is that for all MRSSs, k is a

multiple of 6 and 2m

()

()

220 1 3

221 1 3 221

222 1 3 222

(3) ,
2

(3) ,
2

(3) .
2

Case

Case shift

Case shift

kh a m m

kh a m m h

kh a m m h

= −

= +

= +

−

−

 (4.52)

The redundant vectors are located at h k+ for each MRSS and are

()

()

220 1 3

221 1 3 221

222 1 3 222

(3) ,
2

(3) ,
2

(3) .
2

Case

Case shift

Case shift

kh k a m m

kh k a m m h

kh k a m m h

+ = +

+ = + +

+ = + +

 (4.53)

The shifts for the 1st and 2nd MRSSs are the LPS to the systems of congruence

equations shown in Figure 4.13, which can be solved using the general form of the CRT.

The systems of congruence equations for Case 23X including all MRSSs are shown in

Figure 4.14.

()

()

221
1

221
3

Case 221 COR shift

1
0 (mod)

3
2

0 (mod)
3

shift

shift

h
m

h
m

−
≡

+
≡

()

()

222
1

222
3

Case 222 COR shift

2
0 (mod)

3
1

0 (mod)
3

shift

shift

h
m

h
m

−
≡

+
≡

Figure 4.13 Systems of congruence equations for Case 22X COR shifts.

124

1

2

3

Case 230

0 (mod)
6

(mod)
6 3

(mod)
6 3

k m

k h m

k h m

≡

≡ −

≡ −

1

2

3

Case 231

0 (mod)
6

(1) (mod)
6 3

(2) (mod)
6 3

k m

k h m

k h m

≡

−
≡ −

+
≡ −

1

2

3

Case 232

0 (mod)
6

(1) (mod)
6 3

(1) (mod)
6 3

k m

k h m

k h m

≡

+
≡ −

+
≡ −

Figure 4.14 Systems of congruence equations for Case 22X.

The solution, found in the same manner as Case 21X, is that for all MRSSs, k is a

multiple of 6 and 1m

()

()

230 2 3

231 2 3 231

232 2 3 232

(3) ,
2

(3) ,
2

(3) .
2

Case

Case shift

Case shift

kh a m m

kh a m m h

kh a m m h

= −

= +

= +

−

−

 (4.54)

The redundant vectors are located at h k+ for each MRSS are

()

()

230 2 3

231 2 3 231

232 2 3 232

(3) ,
2

(3) ,
2

(3) .
2

Case

Case shift

Case shift

kh k a m m

kh k a m m h

kh k a m m h

+ = +

+ = + +

+ = + +

 (4.55)

The shifts for the 1st and 2nd MRSSs are the LPS to the systems of congruence

equations shown in Figure 4.15, which can be solved using the general form of the CRT.

This represents all solutions of the Case 2XX redundancies for the three-modulus RSNS.

125

()

()

231
2

231
3

Case 231 COR shift

1
0 (mod)

3
2

0 (mod)
3

shift

shift

h
m

h
m

−
≡

+
≡

()

()

232
2

232
3

Case 232 COR shift

1
0 (mod)

3
1

0 (mod)
3

shift

shift

h
m

h
m

+
≡

+
≡

Figure 4.15 Systems of congruence equations for Case 22X COR shifts.

5. Summary of Vector Redundancy Locations

The table in Figure 4.16 summarizes the solutions to the RSNS vector redundancy

locations. It is interesting to note that all of the redundancies smaller than the fundamen-

tal period are symmetric around a center of redundancy. In addition, reading down the

table the spacing between the redundant vectors (k) increases while the spacing between

the COR decreases. Furthermore, the moduli used to calculate the value of k for each

case are never the same moduli used to calculate the COR, and all of the moduli are used

to calculate either one or the other. Of course, none of this is coincidence and all of these

facts can be used to extend the three-modulus RSNS redundancy results to solve the more

general N-modulus RSNS redundancies.

126

Case
Label

Redundancies occur at h and h +k
where h is

and k is a
multiple of COR

Case 010 Any position in the fundamental period

Case 110

Case 111

Case 112

Case 120

Case 121

Case 122

Case 130

Case 131

Case 132

Case 210

Case 211

Case 212

Case 220

Case 221

Case 222

Case 230

Case 231

Case 232

Case 310

Case 311

Case 312

 6

220 1 3(3)
2Case
kh a m m= −

()222 1 3 222(3)
2Case shift
kh a m m h= + −

230 2 3(3)
2Case
kh a m m= −

()231 2 3 231(3)
2Case shift
kh a m m h= + −

()232 2 3 232(3)
2Case shift
kh a m m h= + −

210 1 2(3)
2Case
kh a m m= −

()211 1 2 211(3)
2Case shift
kh a m m h= + −

()212 1 2 212(3)
2Case shift
kh a m m h= + −

130 3 (3)
2Case

k
h a m= −

()131 3 (3) - 2
2Case

k
h a m= −

()132 3 (3) 1
2Case

k
h a m= − −

Case 110 1(3)
2
k

h a m= −

()Case 111 1(3) 1
2
kh a m= + −

() 112 1(3) 2
2Case
kh a m= + −

120 2 (3)
2Case

k
h a m= −

()121 2 (3) 1
2Case

k
h a m= + −

()122 2 (3) 1
2Case

k
h a m= − −

310 1 2 3(3)
2Case
kh a m m m= −

()311 1 2 3 311(3)
2Case shift
kh a m m m h= + −

()312 1 2 3 312(3)
2Case shift
kh a m m m h= + −

()221 1 3 221(3)
2Case shift
kh a m m h= + −

1 3(3)a m m

1 3 222(3) shifta m m h+

2 3(3)a m m

2 3 231(3) shifta m m h+

2 3 232(3) shifta m m h+

1 2(3)a m m

1 2 211(3) shifta m m h+

1 2 212(3) shifta m m h+

3(3)a m

3(3) 2a m −

3(3) 1a m −

1(3)a m

1(3) 1a m +

1(3) 2a m +

2(3)a m

2(3) 1a m +

2(3) 1a m −

N/A

1 2 3(3)a m m m

1 2 3 311(3) shifta m m m h+

1 2 3 312(3) shifta m m m h+

1 3 221(3) shifta m m h+

1 2 36m m m

2 36m m

1 36m m

1 26m m

36m

26m

16m

127
Figure 4.16 Three-modulus RSNS redundancy summary table.

C. THE N-MODULUS RSNS

1. N-modulus RSNS Redundancy Analysis

The three-modulus RSNS redundancy model has repeatable and exploitable struc-

ture that can be extrapolated to form the general N-modulus RSNS congruence equations

and solutions. Starting with the single MRS redundancies, the three-modulus RSNS con-

gruence equations for a single MRS given in (4.3) through (4.6) can easily be extended to

the N-modulus RSNS. Given that Type 0 redundancies are redundancies that occur at

multiples of the MRS period, which is 2Nm for the N-modulus case, an expression for the

position of the redundancy for a single MRS such that h h kx x += is given by

0 (mod 2)k Nm≡ . (4.56)

Note that this redundancy is not dependent on the starting position h. Type 1 redundan-

cies are redundancies that occur within an MRS period due to the symmetry of the MRS.

Expressions for the position of the N-modulus Type 1 redundancies for all MRSSs in sin-

gle MRS such that h h kx x += is given by
th

st

nd

() 0 (mod 2), if 0 (mod) (0 MRSS),
() 2 (mod 2), if 1 (mod) (1 MRSS),
() 4 (mod 2), if 2 (mod) (2 MRSS),

() 2(1) (mod 2), if 1 (mod)

h h k Nm h N
h h k Nm h N
h h k Nm h N

h h k N Nm h N N

+ + ≡ ≡

+ + ≡ ≡

+ + ≡ ≡

+ + ≡ − ≡ −

M
th(MRSS).N

 (4.57)

Note that this redundancy is dependent on the start position h as well as the MRSS num-

ber. To find all redundancies in the fundamental period for the N-modulus RSNS, it is

necessary to find all combinations of both Type 0 and Type 1 redundancies for all N

MRSs and associated MRSSs. In other words, there is a redundancy vector in the N-

modulus RSNS wherever all N of the individual MRS redundancies (whether Type 0 of

Type 1) align.

Computing the number and type of cases for N-modulus RSNS is only slightly

more complicated than the three-modulus RSNS. The table in Figure 4.17 shows the

combinations of Type 0 and Type 1 redundancies for three-, four-, and N-modulus RSNS.

The three-modulus RSNS column of the table below corresponds to the rows in Figure
128

4.8, where there are 22 total cases and sub-cases organized into eight rows (combina-

tions).

Three-
Modulus

RSNS

Four-
Modulus

RSNS

N -Modulus
RSNS

Type 0/Type 1
Combinations

Number of
combinations

8 16 2N

Total number of
combinations

(including sub-cases)
22 61

0 0 0
0 0 1

1 1 0
1 1 1

M

0 0 0 0
0 0 0 1

1 1 1 0
1 1 1 1

M

0 0 0 0
0 0 0 1

1 1 1 0
1 1 1 1

L

L

M

L

L

()2 1NN 1− +

Figure 4.17 Table of RSNS redundancy combinations.

There are 2N distinct redundancy type combinations for the N-modulus case and

all but the first combination (which contains all Type 0 redundancies) will have N sub-

cases. This is due to the existence of the N MRSSs shown in (4.57). Thus, the expres-

sion for the total number of combinations in the N-modulus RSNS is given by

 ()2 1 1 2N NN N 1N− + = − + . (4.58)

The Type 0/Type 1 combinations are grouped into cases and labeled according to

the same rules as the three-modulus RSNS. As a quick review of the case label notation,

the first digit in the case label represents the number of MRSs that contain a Type 1 re-

dundancy, which ranges from zero to N for the N-modulus RSNS. For example, all Case

1XX redundancies have only one MRS with a Type 1 redundancy and the remaining

MRSs are Type 0 redundancies. The second digit in the case label is the particular com-

bination of Type 0 and Type 1 redundancies and represents the ranking (or order) of the

corresponding decimal value. That is, the combinations for each case are numbered se-
129

quentially starting with the combination with the smallest decimal value. The third digit

in the case label represents the sub-case corresponding to the particular MRSS index

within the set of N-modulus Type 1 redundancy congruence equations (4.57). The third

digit is in the range of zero to 1N − . Since the MRSSs are mutually exclusive, all Type

1 redundancies must be from the same MRSS for each sub-case.

Computing the number of combinations in each case requires the use of the bino-

mial coefficient formula. Figure 4.18 shows the computation of the number of combina-

tions for each N-modulus case.

Number of Case 0XX: 1
0

Number of Case 1XX:
1

!Number of Case 1XX:
2 2(2)!

Number of Case XX: 1

!where
!()!

N

N
N

N N
N

N
N

N

N N
k k N k

 
= 

 
 

= 
 
 

=  − 

 
= 

 

 
=  − 

M

Figure 4.18 Grouping N-modulus RSNS combinations into cases.

Like the three-modulus RSNS, the particular form of each individual MRS and

associated MRSSs must be individually defined. The form of the ith MRS Type 0 redun-

dancy is given by

0 (mod)
2 i
k m
N

≡ , (4.59)

which is simply a generalization of (4.7), (4.11), and (4.15). For the Type 1 ith MRS con-

gruence equations, the three-modulus matrix structures in (4.19) and (4.20) have a struc-

ture that can be extended to form the N-modulus Type 1 equations. The resulting N-

modulus matrix structure used to form the Type 1 ith MRS congruence equations is
130

()

0 0 0

1 1 1 (

2 2

1 1 1

h h h h

h h h N h

h h N h h

h N h h h

+ + + + 
 
 
 − − − + +
 
 
 − − + +
 
 
 − − + + +  

L

� � M N

L

� M � M N M

L

M � M � �

L

0

1)

2

1

N −

0

1

2

−
M

, (4.60)

or simply

()

0 0 0

1 1 1

2 2

1 1 1 1

N N

N

N

 
 
 
 − − − +
 
 
 − −
 
 
 − −  

L

M

L

M M

L

M M

L

, (4.61)

where the column index is the MRS number and the row index is the MRSS index. Like

the three-modulus RSNS and starting with the leftmost column, each successive column

is the previous column circularly shifted toward the top of the matrix with each element

incremented by one as shown by the arrows in (4.60). Recall from the three-modulus

case that the entries in the matrix are the numerators for the residues in the system of

congruence equations. Consequently, using the pattern in the columns of the matrix, the

expression for the N-modulus Type 1 redundancies for a single MRS is given by

()

()

()

(mod), 0 (mod),
2

1
(mod), 1 (mod),

2

1
(mod), 1 (mod),

2

1
(mod), 1 (mod).

2

i

i

i

i

k h m if h N
N N

hk m if h N
N N

h ik m if h N i N
N N

hk m if h N N
N N

≡ − ≡

−
≡ − ≡

+ −
≡ − ≡ − +

+
≡ − ≡ −

M

M

 (4.62)

131

Equations (4.59) and (4.62) represent all redundancies for each individual MRS including

all MRSSs for the N-modulus RSNS.

In order to find the vector redundancy locations for the N-modulus RSNS, the

single-MRS congruence equations for all cases must be combined into systems of con-

gruence equations. Solving the resulting systems of congruence equations will produce

expressions for the N-modulus RSNS vector redundancy locations.

2. Case-by-Case Solution for the N-Modulus Redundancy Locations

The previous section defined the redundancies present in each individual MRS of

an N-modulus RSNS. In order to find the vector redundancies in the N-modulus number

system, the individual MRSs must be combined. The vector redundancies occur wher-

ever individual MRS redundancies align across all N MRSs. The study of the N-modulus

redundancy cases in this section follows the same process as the previously analyzed

three-modulus system. First, an even/odd analysis of the N-modulus RSNS vectors simi-

lar to that performed in Figure 4.7 reveals that the N-modulus vector repetitions occur at a

minimum distance of . Next, the following sections provide analytic expressions for

the vector redundancy locations for each case in Figure 4.18.

2N

a. Case 010

Like the three-modulus RSNS, there is just one N-modulus Case 0XX, la-

beled Case 010, and it has no MRSSs. The form of Case 010 is given by

1

2

0 (mod),
2

0 (mod),
2

0 (mod),
2 N

k m
N
k m
N

k m
N

≡

≡

≡

M

 (4.63)

132

which always has the solution that k is a multiple of

2f
i

P N= im∏ , (4.64)

so long as mi are PRP. In other words, like the three-modulus RSNS there is a redun-

dancy at multiples of the fundamental period. Again, the redundancies found in this case

are uninteresting due to the fact that the problem is finding redundancies within a funda-

mental period.

b. Case N1X

Cases N1X are considered next because they are relatively simple to solve.

The three-modulus RSNS Case 31X is equivalent to Case N1X for the N-modulus RSNS.

Fortunately, it is solved in a similar manner. For the N-modulus RSNS, Case N1X repre-

sents the condition where the congruence equations for each MRS are all chosen from the

Type 1 redundancy equations (4.62). Because only Type 1 redundancies are chosen,

there is only one Case NXX combination to analyze (with N sub-cases). For Case N10,

all congruence equations are formed from the top line of (4.62), which is the 0th MRSS

and have the form

(mod)
2 i
k h m
N N

≡ − . (4.65)

All solutions are given by

10
1 2

N

CaseN n
n

kh a N m
=

 
= − 

 
∏ , (4.66)

with the h h redundancy at k= +

10
1 2

N

CaseN n
n

kh k a N m
=

 
+ =  

 
∏ + , (4.67)

where k is a multiple of . For Case N10 there are exactly two COR: one at zero and

one at . Like Case 31X in the three-modulus RSNS, the remaining solutions for the

 MRSSs of Case N1X are shifted forms of the Case N10 solution and are given by

2N

/ 2fP

1N −

133

1X 1
1 2

N

CaseN n shiftN X
n

kh a N m h
=

  
= +  

  
∏ − , (4.68)

with the h h redundancy at k= +

1X 1
1 2

N

CaseN n shiftN X
n

kh k a N m h
=

  
+ = + +  

  
∏  . (4.69)

Furthermore, the shift (1shiftN Xh) of the COR in the equations above for each MRSS is

computed by finding the LPS to the congruence equations formed in the same manner as

the three-modulus RSNS (4.27) and (4.28). The resulting systems of equations can be

solved using the general form of the CRT. Repeating this method for each sub-case, all

Case N1X redundancies can be found for the N-modulus RSNS.

c. Case 1XX

Case 1XX redundancies represent redundant RSNS vectors with elements

comprised of redundant residues that are all Type 0 except for one that is of Type 1.

There are only N such combinations, as shown in the second line in Figure 4.18 (read as

N choose 1). The Case 1XX three-modulus RSNS expressions can be extended to pro-

duce the N-modulus Case 1XX solutions. For Case 1X0, all but one of the congruence

equations for the N-modulus RSNS come from (4.59) and will have the form

0 (mod)
2 j
k m
N

≡ , (4.70)

where the subscript j corresponds to the indices of all MRSs that have Type 0 redundan-

cies. The final congruence equation is chosen from the 0th MRSS of (4.62) and has the

form

(mod)
2 i
k h m
N N

≡ − , (4.71)

where the subscript i corresponds to the channel that has the Type 1 redundancy. For this

case only where there is only one Type 1 redundancy, the subscript i also represents the

combination number (second case label digit). The simple solution to the set of congru-

ence equations formed by (4.70) mandate that k must be a multiple of

134

2
i

MN
m

, (4.72)

where

1

N

n
n

M m
=

= ∏ . (4.73)

Substituting the least positive value for k into (4.71) results in the solution

1 0 ()Case X i
i

Mh a m
m

= − N , (4.74)

for Case 1X0 where the subscript i represents the combination number and ranges from 1

to N. For the solutions to the remainder of the 1N − MRSSs, Case 1X1 through Case

1X(N-1), the results of the three-modulus RSNS Case 1XX are again essential. The ma-

trices in (4.39) show that once the 0th MRSS solution is found, the rest of the MRSSs are

just shifted versions of the 0th MRSS solution. Therefore, the expression for the solution

to the rest of the N-modulus Case 1XX redundancies is given by

()1 1 ()Case is i shift is
i

Mh a m h
m

= + − N , (4.75)

where i is the MRS index with the Type 1 redundancy and s is the MRSS index. The

shifts for the COR (1shift ish) are given by the matrix

()

1

0 0 0

1 1 1 1

2 2

1 1 1 1

shift is

N N
h

N

N

 
 
 
 

0

2

− − − + −
 

⇔  
 − −
 
 
 − −  

L

M

L

M M

L

M M

L

M , (4.76)

where i corresponds to the column and s corresponds to the row. This method produces

all the solutions for the N-modulus Case 1XX redundancies.

135

d. Case 2XX through Case (N-1)XX

For the N-modulus RSNS systems, a generalization of the three-modulus

Case 2XX analysis method can be used to provide solutions to all remaining N-modulus

RSNS Case 2XX through Case (N-1)XX. For each case, the number of modulus combi-

nations can be found by the binomial coefficient formula shown in Figure 4.18. Each

modulus combination has N sub-cases. The congruence equations that represent the Type

0 redundancies determine the length of the redundancy. In other words, for each case, k

is a multiple of

2 j
j

N m∏ , (4.77)

where j are the indices of all MRSs with Type 0 redundancies (e.g., there are

MRSs with Type 0 redundancies for Case 2XX,

2N −

3N − MRSs with Type 0 redundancies

for Case 3XX, etc.). The congruence equations that represent the Type 1 redundancies

affect the location of the COR. The solution always has the form

()
2i shiftXXX

i

kh a N m h
= +

 
∏ 

− , (4.78)

with the h h redundancy at k= +

()
2i shiftXXX

i

kh k a N m h
+ = + +

 
∏ 

 , (4.79)

where i are the indices of all MRSs with Type 1 redundancies and the unshifted COR is

i
i

N m∏ . (4.80)

The COR shift shiftXXXh is the shift of the COR for Case XXX and is found by computing

the LPS to the system of MRSS congruence equations formed only from the MRS Type 1

redundancy equations. Some examples of forming the system of MRSS congruence

equations are given in (4.27), (4.28), (4.46), and Figure 4.13. The LPS to the MRSS sys-

tem of congruence equations can be found using the general form of the CRT. The shift

of the COR for all 0th MRSSs are always zero. In other words, . Using this 0 0shiftXXh =

136

procedure, analytical expressions for all N-modulus RSNS Case 2XX through Case

()XX redundancies can be produced. 1N −

Case

Case 01

Case 1X

Case 1X

Case 2X
(N-1)X0

Case 2X
(N-1)X

Case N

Case N

3. Summary of N-Modulus Vector Redundancy Locations

The table in Figure 4.19 summarizes the N-modulus RSNS vector redundancy lo-

cation solutions.

 Label
Redundancies occur at h and h +k where

h is
and k is a
multiple of COR

0 Any position in the fundamental period None

0

X

0 ... Case

X ... Case
X

10

1X

()1 1 ()
2Case is i shift is
k

h a m h= + −

1 0 ()
2Case X i
k

h a m= −

10
1 2

N

CaseN n
n

kh a N m
=

 
= − 

 
∏

1X 1
1 2

N

CaseN n shiftN X
n

kh a N m h
=

  
= + −  

  
∏

2i shiftXXX
i

k
h a N m h

  
= + −  

  
∏

2i
i

k
h a N m = − 

 
∏

1()i shift i sa m h+

()ia m

1

N

n
n

a N m
=

 
 
 

∏

1
1

N

n shiftN X
n

a N m h
=

 
+ 

 
∏

i sh iftXXX
i

a N m h  + 
 

∏

i
i

a N m 
 
 

∏

2N

2
i

MN
m

2 j
j

N m∏

1

2
N

f n
n

P N m
=

= ∏

Figure 4.19 N-modulus RSNS redundancy summary table.

The subscript j represents the MRSs with Type 0 redundancies, the subscript i

represents the MRSs with Type 1 redundancies, and the parameter s is the MRSS index.

All of the redundancies smaller than the fundamental period are symmetric around a cen-

ter of redundancy. Notice that as the case number increases, the spacing between the re-

dundant vectors (k) increases while the spacing between the COR decreases. Further-

more, the moduli used to calculate the value of k for each case are never the same moduli

used to calculate the COR, and all of the moduli are used to calculate one or the other.

For the two-modulus RSNS, the vector redundancy expressions for four cases

were combined to produce a closed-form analytical expression for M̂ of certain moduli
137

classes [28]. That approach is not practical for any N-modulus RSNS other than the two-

modulus case due to the exponential increase in the number of vector redundancy cases.

However, the expressions for the three-modulus and N-modulus RSNS redundancies can

be used to produce useful results as shown in the following sections.

D. M̂ FOR MODULI − + 1, , 1m m m

Based on the analysis of the three-modulus RSNS, an analytic expression for M̂

for the three-modulus RSNS with PRP moduli of the form [1 1]im m m m= − + is pre-

sented in this section. The moduli [1 1]im m m m= −

1]r +

+ can also be written in the more

familiar form with the restriction that must be an even inte-

ger. This does not mean the variable r has to be an integer or even a rational number, as

will be seen shortly. The longest sequence of unique RSNS vectors for this particular

class of moduli has an upper bound that is determined by particular Case 312 redundancy

and a lower bound that is determined by a particular Case 220 redundancy. This can be

proven by calculating all of the redundancies for all the cases listed in Figure 4.16, order-

ing all redundancies consecutively in the fundamental period, and then calculating which

redundancy vectors bound the largest series of non-redundant RSNS vectors. Expres-

sions describing the length and position of the redundancies in Case 312 and Case 220

have already been provided in Figure 4.16. Therefore, it is possible to form an analytic

solution for

[2 1 2 2r r
im = −

ˆ

2r

M for this particular class of moduli.

1. M̂ Upper Bound

The longest sequence of unique RSNS vectors for [1 1]im m m m= − + is

bounded by the Case 31X redundancy with the largest COR. This corresponds to Case

312. The Case 312 system of congruence equations from (4.25) is

138

1

2

3

(2) (mod),
6 3

(1) (mod),
6 3

(1) (mod),
6 3

k h m

k h m

k h m

−
≡ −

+
≡ −

+
≡ −

 (4.81)

and have the solution

()312 1 2 3 312(3)
2Case shift
kh a m m m h= + − , (4.82)

where is found from the LPS to 312shifth

()

()

()

312
1

312
2

312
3

2
0 (mod),

3
1

0 (mod),
3

1
0 (mod).

3

shift

shift

shift

h
m

h
m

h
m

−
≡

+
≡

+
≡

 (4.83)

For this case, k is a multiple of six. Rearranging and simplifying, the system of equations

in (4.83) become

0 1

0

0 3

1 (mod),
0 (mod),
0 (mod),

x m

2x m
x m

≡
≡
≡

 (4.84)

where

()312
0

1

3
shifth

x
+

= . (4.85)

The system of equations in (4.84) can be solved using the CRT. The well-known

solution to the CRT is

0 i i
i i

Mx a b
m

= ∑ , (4.86)

139

where ai are the residues and bi can be found by the Euclidian Algorithm [28]. Since

only the residue a1 is non-zero in (4.84), equation (4.86) reduces to

0 2 3 1 1x m m a b= . (4.87)

According to the Euclidian Algorithm, the coefficient bi is the factor that solves

() 1i i i
i

M b m c
m

 
+ = 

 
, (4.88)

where bi and ci are any integers. The table in Figure 4.20 shows results of repeatedly

solving (4.88) using the Euclidian Algorithm with moduli [2 1 2 2 1]r r r
im = − +

3

5

7

 for se-

lected values of r.

r m1 = 2r - 1 m2 = 2r m 3 = 2r + 1 b 1 b 2 b 3

2 3 4 5 2 3
log26 5 6 7 3 5 4

3 7 8 9 4 7
log210 9 10 11 5 9 6
log212 11 12 13 6 11 7
log214 13 14 15 7 13 8

4 15 16 17 8 15 9
5 31 32 33 16 31 1

Figure 4.20 Tabular solutions to the CRT using the Euclidian Algorithm.

By inspection of Figure 4.20, it is apparent that for moduli with the form

 the b[2 1 2 2 1]r r r
im = − + i coefficients have the form

1
1

2
1

3

2 ,

2 1,

2 1

r

r

r

b

b

b

−

−

=

= −

.= +

 (4.89)

Note that nowhere is r required to be an integer or even a rational number. Only 1
1 2rb −=

is required to be an integer, which means that 2 must be an even integer. The validity of

the coefficients can be proved by substitution into (4.88). For the coefficient b

r

1, the proof

is

140

1 2 1
2 3 1

1 2 1

3 1 2 1 3 1 2 2 1

2 1 2 1 2

2 2

()(2) ()(2 2 1)

(2)(2 1)(2) (2 1)(2 2 1) 1
(2 2) (2 2 2 1) 1

(2 2) 2 1 1
2 2 1

1 1

r r r

r r r r r r

r r r r r

r r r

r r

m m m− −

− −

− − − −

− −

1

1
.

+ − − − =

+ + − − − − =

+ + − − + + =

+ − + =

− + =
=

 (4.90)

For the coefficient b2, the proof is

2
1 3 2

2

3 2 3 2

()(2 1) ()(2 2 1)

(2 1)(2 1)(2 1) (2)(2 2 1) 1
(2 2 2 1) (2 2 2) 1

1 1

r r r

r r r r r r

r r r r r r

m m m 1

.

− + − + + =

− + − + − + + =

− − + − − − =
=

 (4.91)

For the coefficient b3, the proof is

1 2
1 2 3

1 2

3 1 2 2 1 3 1 2 1

2 1 2 1 2

2 2

()(2 1) ()(1 2)

(2 1)(2)(2 1) (2 1)(1 2) 1
(2 2 2 2) (2 2 2 1) 1

(2 2) 2 1 1
2 2 1

1 1

r r

r r r r r

r r r r r r r

r r r

r r

m m m− −

− −

− − − −

− −

1

1

1

1
.

+ + − =

− + + + −

+ − − + − + − + =

=

− + + + =

− + + =
=

 (4.92)

Although only b1 is of interest for the calculation of the Case 312 COR, the analytical so-

lution for b2 and b3 will be essential in subsequent sections. Andraos and Ahmad [37]

calculated similar results for the analytical expressions of the coefficients using a differ-

ent method of analysis and limiting r to integer values.

Returning to Case 312, the solution to the general form of the CRT for the Case

312 COR from (4.85) and (4.87) is

()312
0 2 3 1

1

3
shifth

1x m m a b
+

= = . (4.93)

All quantities are known and the solution can be expressed in terms of the parameter r as

141

() ()()()312 1 3 1 2
1

(2) 2 1 1 2 2 2
3

shift r r r r r
h

1− −
+

= + = + − . (4.94)

Rearranging, the solution becomes

()3 1 2 1
312 3 2 2 1r r

shifth − −= + − . (4.95)

Since by definition, M̂ cannot contain both redundant vectors in the Case 312 redun-

dancy, the upper bound for M̂ must be one less than the upper bound of the Case 312 re-

dundancy. Therefore, substituting (4.95) into the solution for the Case 312 system of

congruence equations (4.82) and subtracting one yields

()
()

312

3 1 2 1

3 1 2 1

1
2

3 2 2 1 3 1

3 2 2 1,

shift

r r

r r

kUB h

− −

− −

= + −

= + − +

= + +

− (4.96)

using the least positive value for k and the least positive COR. This is the upper bound

for M̂ for moduli of the form m m[1 1]i m m= − + .

2. M̂ Lower Bound and Length

The lower bound for M̂ for the moduli [1 1]im m m m= − + is constrained by

the lower bound of a particular Case 220 redundancy. The congruence equations for this

case are provided in (4.41) and have the solution of

220 2 1 33 (3)

3(2) 3(2 1)(2 1),
Case

r r r

h m a m m

a

= − +

= − + − +
 (4.97)

using the least positive k. Unfortunately, the choice for the parameter a is not straight-

forward. Multiples of the Case 220 COR start at zero and repeat every . Since the

fundamental period of the RSNS is 6 , there are exactly Case 220 COR in

the fundamental period. The Case 220 COR of interest, , is the largest one that

1 23m m

1 2 3m m m 32m

1 3)m(3a m

142

is less than or equal to the Case 312 COR (4.95) used to calculate the M̂ upper bound.

Substituting (and (for and , the resulting inequality and solution is 2 1)r − 2 1)r + 1m

()

3m

3 1

1 1

3 2

2 2− −

2 1

2

2

2 2
2 2

2

r r

r

r r

− −

−

1

1

1 a

a

a

a

− ≥

+ ≥

≥

≥

+
−

1>
12r−

ˆ

2r−

M

M̂

3 (

(2
2r r

a

− −

+3(
3(2

LB m= −

= − 3(2
2)

m

−

2

1

1

2

2

r r

r r

B
− −

− −

+

2 1

3 2

3(2

M UB= −

1

)r

+

+

1 1−

[2 1= − 2 1]r +

1
3 1
2 2

3 1 2 2

3 1 2

1

3(2 1)(2 1)

(2 1)

(2 1)
.

r r

r r r

r r

− −

− −

−

+ − +

−

+ − +L

 (4.98)

Since a must be an integer and for the sum of all the factors in the last line of (4.98)

to the right of is a positive fraction, then the choice for a must be . Since by

definition,

r
1

 cannot contain both redundant vectors in the Case 220 redundancy, the

lower bound for must be one more than the lower bound of the Case 220 redundancy.

Using this result and the lower bound of the Case 220 redundancy from (4.97), the lower

bound of M̂ is

2 1 3

1

3 1 1

3) 1

2)) 1)(2 1) 1
1.

r r r r

r

m
−

+ +

− + +

= − +

 (4.99)

Therefore, the size of M̂ is given by

()3 1 1 3 1 1

ˆ

3(2 2 2)

2 1.

r r r

L
− −= + − − −

= + +

 (4.100) +

Pace, Styer, and Akin [30] conjecture that, based on repeated example, M̂ for

moduli m with r an integer is given by 2r r
i

2
1

5 7m m+ + . (4.101)

The following proof demonstrates that (4.101) agrees with the results of (4.100) pre-

sented in this paper.

143

2 2 1 1
1 1

1 2 1 2 1 1

2 1 1 2 1 1

2 1 1 1 2 1 1

2 1 1

3 15 7 3(2 2 2) 1
2 2

3(2)(2 1) 15(2)(2 1) 7 3(2 2 2) 1
3(2 2) 15(2) 1 3(2 2 2) 1

3(2) 3(2) 3(2) 12(2) 1 3(2 2 2) 1
3(2) 3(2) 6(2) 3(2

r r r

r r r r

r r r r r r

r r r r r r r

r r r r

m m − −

− − − −

− − − −

− − − − −

− −

r

+ + = + + +

− + − + = + + +

− + + = + + +

− + + + = + + +

+ + − 2 1 1

2 1 1 2 1 1

) 1 3(2 2 2) 1
3(2) 3(2) 3(2) 1 3(2 2 2) 1.

r r r

r r r r r r

− −

− − − −

+ = + +

+ + + = + +

+

+

 (4.102)

The benefit of the research presented here over the previous work by Pace, Styer,

and Akin is that (4.100) provides both length and location of M̂ , while the previous

work produced conjectured length calculations only. Furthermore, this research extends

the solution to all PRP moduli of the form [1im m m 1]m= − + .

It is very likely that more special classes of moduli exist for the RSNS N-modulus

case that have closed-form analytical expressions for M̂ . However, the need still exists

for an efficient search algorithm to find M̂ for an arbitrary set of N moduli.

E. N-MODULUS RSNS M̂ SEARCH ALGORITHM

1. RSNS Redundancy Vector Graphical Representation

The expressions for the N-modulus RSNS redundancies developed in the previous

sections provide a complete mathematical description of the RSNS. However, in their

current form, the redundancy expressions do not provide any insight into how they may

be used to compute the location and size of M̂ for an arbitrary set of PRP moduli. This

section describes a novel RSNS graphical display that provides an intuitive presentation

of the vector redundancy equations. The inspiration for the new display springs from an

unlikely source, a geographic information system (GIS).

144

a. Geographical Information Systems

GIS is a method to visualize, manipulate, analyze, and display spatial data

[38]. GIS is computer software that combines geographic information (where things are)

with descriptive information (what things are) in a single display and analysis tool.

Unlike a flat paper display, a GIS can simultaneously present many selectable layers of

information as shown in Figure 4.21.

Figure 4.21 An example of selectable data layers in a GIS (From [40].)

The geographic data can be thought of as layers of information underneath

the computer screen. Each layer represents a particular feature of the display. For ex-

ample, on a digital map, one layer could be made up of all the streets in an area. Another

layer could represent all the buildings in the same area. Yet another could represent the

customers of a particular business. These layers can be laid on top of one another, creat-

ing a stack of information about the same geographic area. Each layer can be selected or

deselected individually, like peeling a layer off a stack of transparencies. Furthermore,

each “smart map” layer has an associated database such that each feature in a layer is

linked to information related to the feature. For instance, the database entry associated

with a building on a layer may have information about the purpose, age, or square foot-

age of the particular building. In a GIS, the user controls the amount of information dis-

played about any area desired, at any time, on any specific map [39].

145

GIS is often called "mapping software." Maps are usually associated with

physical geography, but Figure 4.22 demonstrates that GIS is flexible enough to map any

kind of terrain, even the human body.

Figure 4.22 Human body “geography” (From [38].).

It is estimated that 80% of all data, not just geographic, has a spatial com-

ponent [38]. Surprisingly, this includes the robust symmetric number system. Conse-

quently, GIS software can be used to analyze this particular number system by displaying

user-selected information symbolized to highlight specific characteristics. Moreover,

pattern recognition is something at which human beings excel. There is a vast difference

between seeing data in a table of rows and columns and seeing it presented in the form of

a map. The difference is not simply aesthetic, it is conceptual - it turns out the way data

is seen has a profound effect on the connections made and the conclusions drawn from it.

GIS provides the layout and drawing tools that help present facts with clear, compelling

visualizations [40]. The next section presents a unique display of the RSNS vectors and

redundancies, which allows the viewer to apply innate pattern recognition skills to gain

insight into the nature of the RSNS.

146

b. RSNS Circle Representation

Since the RSNS is periodic, it is permissible to represent the number sys-

tem as a circle that, when plotted using a GIS, provides a more intuitive display than a

linear representation. The circle has a fixed radius and a finite width and can be consid-

ered a “map.” This enables the principles of geometry to be leveraged against the prob-

lem of locating M̂ . Furthermore, a GIS permits data to be associated with each element

on the plot, allowing a user to drill down into the RSNS display for linked non-graphical

information. Figure 4.23 shows one such circular RSNS representation where each block

in the circle represents an RSNS vector starting at 0h = at the three o’clock position on

the circle and increasing counterclockwise.

243

3
1
1

h

h

X

=

 
 =  
  

0

0
0
0

h

h

X

=

 
 =  
  

Figure 4.23 Circular representation of the RSNS.

The example in the figure and all other examples in this section is a three-

modulus RSNS with unless otherwise noted. The GIS software used for

the display and analysis of the RSNS circle plot was the ArcGIS suite produced by ESRI.

ArcGIS contains visualization and analysis features that enable the RSNS to be studied in

greater detail than before. ArcGIS provides selectable layers with associated database ta-

bles, transparent layers to enable simultaneous multiple layer visualizations, and built-in

analytical functions for querying or sorting by geographic features and database fields.

[3 4 5]im =

147

Furthermore, the ArcGIS software is extendable by using common programming lan-

guages (e.g., Visual Basic) to create additional custom GIS functionality. MATLAB was

used to create text files of the RSNS vectors, redundancy locations, and M̂ locations.

The text files were converted to ArcGIS format using a custom Microsoft Visual Basic

program that created the various data layers, called “shapefiles,” and the associated data-

base tables. The fully-commented MATLAB and Visual Basic programs used to create

the shapefiles are in Appendix C.

To understand the relationships between the various case vector redundan-

cies, it is useful to think of the RSNS vectors and redundancies as areas. To facilitate this

concept, arcs whose endpoints correspond to the redundant vectors represent the vector

redundancies in the circle plot. An example of the RSNS circle representation showing

the Case 210, Case 220, and Case 230 redundancy arcs is provided in Figure 4.24.

148

Case 210

Redundant vectors plotted
as arcs with endpoints at a
distance of 6m3 and with

centers plotted at multiples
of 3m1m2

Case 220

Redundant vectors plotted
as arcs with endpoints at a
distance of 6m2 and with

centers plotted at multiples
of 3m1m3

Case 230

Redundant vectors plotted
as arcs with endpoints at a
distance of 6m1 and with

centers plotted at multiples
of 3m2m3

Case 2X0

All three Case 2X0
redundancy arcs plotted on

the same graph

Figure 4.24 Circular RSNS representation with Case 2X0 redundancy arcs.

The redundancy arcs in the figure were plotted using the expressions for

the vector redundancies from the table in Figure 4.16 using the least positive k. Using

larger k would result in larger symmetric arcs centered at the same COR. Thus, if the

endpoints of the arc using the larger k restricted the size of M̂ , the redundancy arc with

the smaller k would restrict the size of M̂ even more. Therefore, it was only necessary

to consider the redundancy arcs plotted using the least positive k value.

149

Analysis of the RSNS circle representation using ArcGIS provided several

insights regarding the nature of the RSNS. The list below details a few of the more im-

portant findings with regard to the RSNS redundancy locations.

• The largest arc of the circle that does not completely overlap a redundancy
arc is M̂ .

• Only redundancy arcs computed using least positive k affect M̂ .
• All redundancy arcs have an equal-sized redundancy arc (same size and

case only, not necessarily composed of the same vectors) on the opposite
side of the circle (i.e., the COR are separated by exactly) / 2fP

• The 0th MRSS redundancy arcs are symmetric about the vertical and
horizontal bisectors (diameters) of the circle.

• All MRSS redundancies for any case can be found by computing the 0th
MRSS redundancy and shifting each COR by an amount equal to the shift
computed for the corresponding Case N1X MRSS.

The first point stems from the fact that, by definition, M̂ contains no ambiguities

and therefore no redundant vectors. Since the redundancy arcs represent redundant vec-

tors, the M̂ arc cannot fully overlap a redundancy arc (but partial overlap is permitted).

The second point was discussed in the previous paragraph. The third point can be proven

by the following argument. Given a COR for any case at

i
i

h a N m 
= 

 
∏ 

)

, (4.103)

where the subscript i are the indices of all MRSs with Type 1 redundancies, there is also a

COR at because (/ 2fh P+

12

() ()

,

N
f

i i n
i i n

i i
i i j

j i
j i

i
i

P
a N m a N m N m

a N m N m m

a m N m

b N m

=

   
+ = +   

   
  

= +   
  

  
= +  

  
 

=  
 

∏ ∏ ∏

∏ ∏ ∏

∏ ∏

∏

j
 (4.104)

150

where a and b are any integers, j correspond to the MRSs with Type 0 redundancies, and

i correspond to the MRSs with Type 1 redundancies.

The fourth point, although easy to see on the circle plot in Figure 4.24, is

more difficult to prove. First, the expressions in the table in Figure 4.19 show that there

are always an even number of COR in each case. This is because given the COR in

(4.103), the number of COR in a fundamental period is

1

2

2 .

N

n
f n

i
i i

j
j

N mP
N m N m

m

==

=

i

∏
∏ ∏

∏

 (4.105)

Since the number of redundancies is even and there is always a 0th MRSS redundancy at

, geometry says there must always also be a 00h = th MRSS redundancy at .

Geometry also mandates that, since the COR are evenly spaced throughout the circle and

there are COR centered at and

/ 2fh P=

0h = / 2fh P= , there must be an equal number of evenly

spaced COR above and below the horizontal diameter of the circle. Similarly, since there

is an equal number of evenly spaced COR above and below the horizontal diameter of the

circle, they must be symmetric on either side of the vertical diameter of the circle.

The last point in the list above is a conjecture based on pattern recognition

in the structure of the RSNS circle plot, which has proven correct through the thousands

of moduli sets tested thus far. The thrust of the conjecture is that the 0th MRSS redun-

dancies and the COR shifts computed in Case N1X provide necessary and sufficient con-

ditions to completely describe all redundancies for any N-modulus set of PRP moduli.

The consequences of the points above lead directly to the following con-

clusions, which are used to formulate an efficient RSNS N-modulus M̂ search algorithm:

• Every M̂ has an identically sized M̂ composed of different vectors on
the exact opposite side of the circle (i.e., the corresponding points in each
arc are separated by). / 2fP

151

• There is always at least one M̂ in the upper-half of the circle and in the
lower half of the circle so it is only necessary to consider the vectors from

 to when searching for h = −N ()/ 2fh P= N+ M̂ .

• When computing the 0th MRSS redundancy arcs, only the arcs in the first
quadrant need to be computed and the rest of the quadrants can be found
by reflection.

• The redundancy arcs for all MRSSs other than the 0th MRSS can be
computed by shifting the 0th MRSS arcs.

• The redundancy arcs limit the length of M̂ , so the case with the smallest
distance between the leading and trailing edges of consecutive redundancy
arcs provides an upper bound on the length of M̂ .

• Any redundancy arc that is larger than M̂ length upper bound does not
affect the size of M̂ and can be ignored.

• Once all redundancies smaller than the M̂ length upper bound have been
computed and combined, M̂ is found where the largest sequence of
vectors exists between the leading and trailing edges of consecutive
redundancy arcs across the different cases.

2. SmartSearch M̂ Search Algorithm

A new M̂ search algorithm based on the conclusions detailed in the previous sec-

tion was created and implemented using MATLAB. The name given to the algorithm is

SmartSearch. The fully-commented MATLAB programs realizing the SmartSearch al-

gorithm are in Appendix C. SmartSearch drastically reduces the time required to find the

M̂ size and location by more than five orders of magnitude compared to an unpublished

search program by Pace and Styer. Furthermore, since the search algorithm in this re-

search was based on a circular RSNS representation, it correctly identifies those unique

sequences of RSNS vectors that wrap around at the fundamental period boundary. The

Pace/Styer search program was used to compute the data presented in [30] and is also

provided for reference in Appendix C. Figure 4.25 shows a plot of M̂ versus computa-

tion time for the two search programs using hundreds of N-modulus moduli sets.

152

3-modulus SmartSearch
4-modulus SmartSearch
5-modulus SmartSearch
6-modulus SmartSearch
7-modulus SmartSearch
8-modulus SmartSearch
3-modulus old algorithm
4-modulus old algorithm
5-modulus old algorithm

3-modulus SmartSearch
4-modulus SmartSearch
5-modulus SmartSearch
6-modulus SmartSearch
7-modulus SmartSearch
8-modulus SmartSearch
3-modulus old algorithm
4-modulus old algorithm
5-modulus old algorithm

L
og

 (

)
M̂̂M

Log(Run Time) (seconds)

Loglog Plot of vs. Run TimeM̂

Figure 4.25 Plot of M̂ vs. run time using new and old search algorithms.

The figure illustrates the efficiency of the search algorithm developed in this re-

search, which is based on computing redundancies, compared to the previous search algo-

rithm, which is based on searching the vector strings for M̂ . From the figure, it is evi-

dent that the SmartSearch algorithm is as much as five orders of magnitude faster than

the old search algorithm, and that the advantage of SmartSearch increases with the length

of M̂ . In fact, based on linear interpolation of the data in the figure, it would take the

Pace/Styer program more than 32 years to find M̂ for the same 8-modulus RSNS realiza-

tion that the SmartSearch algorithm computed in less than 2 hours. Moreover, the

SmartSearch algorithm uses far less memory than the Pace/Styer algorithm and therefore

can find the N-modulus M̂ for moduli sets with much larger fundamental periods. For

153

example, the SmartSearch algorithm successfully computed M̂ for an eight-modulus

system with a fundamental period of close to one billion, while the Pace/Styer algorithm

could not successfully compute an RSNS moduli set with a fundamental period of only

three million due to memory limitations. Therefore, since the SmartSearch algorithm

was uniquely able to compute M̂ for thousands of N-modulus RSNS moduli sets in a

relatively short time, it was possible to find M̂ for many moduli sets and to study the ad-

vantages N-modulus RSNS. For instance, Figure 4.26 shows a plot of M̂ versus moduli

sum . i
i

m 
 
 
∑

0 30 50 70
10

1

10
2

10
3

10
4

10
5

Lo
g

(

)
M̂

0
10

1

10
2

10
3

10
4

10
5

0
10

1

10
2

10
3

10
4

10
5

Lo
g

(

)
M̂̂M

10 20

40 60 80 90 100

Semilog Plot of vs. Moduli Sum

Moduli Sum

2-modulus
3-modulus
4-modulus
5-modulus
6-modulus
7-modulus
8-modulus

M̂

10 20 30 40 50 60 70 80 90 10010 20 30 40 50 60 70 80 90 100

Semilog Plot of vs. Moduli Sum

Moduli Sum

2-modulus
3-modulus
4-modulus
5-modulus
6-modulus
7-modulus
8-modulus

M̂

Figure 4.26 Plot of M̂ vs. moduli sum for two-modulus to eight-modulus systems.

From the figure, it is evident that for any moduli sum, the largest M̂ occurs in the

RSNS with the largest number of moduli. In some cases, an increase in M̂ greater than

two orders of magnitude was accomplished simply by regrouping the same moduli sum

into a larger number of moduli. Put in terms of hardware design of an ADC using the
154

RSNS, this translates to an increase of two orders of magnitude in M̂ with little if any

increase in hardware.

1
1
1
2
2
2
4
5

1
2
3

M̂

Most practical r-bit ADCs are designed so that their dynamic ranges are on

boundaries. Therefore, the table in Figure 4.27 was generated using the SmartSearch

program and lists all two-modulus through eight-modulus minimum-sum moduli sets that

have an

2r

M̂ greater or equal to k-bits.

Sum m 1 m 2 m 3 m 4 m 5 m 6 m 7 m 8 P f Start Stop
r -bit

2r

13 6 7 168 17 49 33 5 32

12 3 4 5 360 79 121 43 5 32
24 11 13 572 5 69 65 6 64
16 4 5 7 840 -2 63 66 6 64
45 22 23 2024 49 177 129 7 128
24 7 8 9 3024 733 865 133 7 128
23 3 5 7 8 6720 2070 2250 181 7 128
32 9 10 13 7020 -2 273 276 8 256
29 5 7 8 9 20160 8060 8466 407 8 256
30 3 4 5 7 11 46200 2336 2755 420 8 256
44 11 16 17 17952 6815 7340 526 9 512
35 7 8 9 11 44352 1361 2010 650 9 512
34 3 5 7 8 11 92400 23247 23934 688 9 512
62 18 19 25 51300 -2 1029 1032 10 1024
47 9 11 13 14 144144 67580 68825 246 10 1024
40 5 7 8 9 11 277200 56908 57984 077 10 1024
43 3 4 5 7 11 13 720720 218663 220276 614 10 1024
61 13 15 16 17 424320 193099 195172 074 11 2048
50 7 9 10 11 13 900900 188310 190625 316 11 2048
47 3 5 7 8 11 13 1441440 673896 676217 322 11 2048
64 7 11 13 16 17 2722720 450759 455021 263 12 4096
57 5 7 8 9 11 17 5654880 802784 807881 098 12 4096
62 3 4 5 7 11 13 19 15975960 7100574 7107079 6506 12 4096
67 7 9 10 11 13 17 18378360 7335188 7344640 9453 13 8192
64 3 5 7 8 11 13 17 28588560 12345388 12354000 8613 13 8192
76 5 7 8 9 11 17 19 125349840 53253852 53273736 9885 14 16384
79 3 4 5 7 11 13 17 19 310390080 47189369 47213577 4209 14 16384
83 3 5 7 8 11 13 17 19 620780160 48265355 48299734 4380 15 32768

M̂ M̂

Figure 4.27 Table of minimum-sum moduli sets with M̂ larger than r-bits for
5 1r 5≤ ≤ .

For example, using the figure above, an ADC with a 10-bit can be designed

with a 3-modulus, 4-modulus, 5-modulus, or 6-modulus RSNS using the moduli sets pro-

vided above. Moreover, the 7-modulus or 8-modulus RSNS provided above would also

155

suffice, but they would require more hardware while providing no additional benefit.

There is also a 2-modulus RSNS that has a 10-bit M̂ , but the moduli would be very large

relative to the moduli sets presented above.

F. SUMMARY

The Gray-code property of the RSNS makes it particularly useful in folding ana-

log-to-digital converters (ADC), direction finding interferometer antenna architectures,

and electro-optic digital antennas since it eliminates encoding errors common in these

systems. Although [33] provided an expression for the length of M̂ for a two-modulus

RSNS, inefficient computer search algorithms had to be used to find the M̂ position for

the two-modulus case as well as for M̂ for all RSNS with greater than two moduli. This

chapter presented detailed mathematical descriptions of the three-modulus RSNS, as well

as an analytic expression for M̂ length and position for a popular set of moduli

 for m even. Furthermore, the three-modulus results were extended into a

detailed mathematical description of the N-modulus RSNS. Although the mathematical

description of the N-modulus redundancies was complete, the expressions themselves

were not enough to provide insight into the nature of the RSNS. Therefore, a novel geo-

graphic-based RSNS circle representation was developed to provide a format more suit-

able to visual analysis and pattern recognition. As a result, enough exploitable properties

of the RSNS were discovered and enabled the development of an efficient

1, , 1m m m− +

M̂ search al-

gorithm, SmartSearch. The speed and memory efficiency of SmartSearch is several or-

ders of magnitude above the only other known M̂ search algorithm. Sample results from

the SmartSearch algorithm were presented that provided efficient RSNS moduli sets for

the design of 5- to 15-bit ADCs.

The next chapter builds on the RSNS theory presented herein to develop a proce-

dure for RSNS-to-binary conversion. The RSNS-to-binary conversion procedure is used

to construct digital circuits capable of converting the thermometer-coded output of the

ADCs from Chapter III to binary.

156

V. RSNS-TO-BINARY CONVERSION

Chapter IV and [41] present essential theory and methods required to compute an

entire fundamental period of RSNS residue vectors and determine the longest sequence of

unique vectors (M̂) given a set of pair-wise relatively prime moduli. Chapter III pro-

vides the design of an RSNS folding ADC that produces a thermometer-coded r

tation of an RSNS residue vector. However, one of the fundamental difficulties in a

hardware application of the RSNS, such as an analog-to-digital converter, is the conv

sion of the thermometer-coded RSNS residue vector to the corresponding position of the

residue vector in the fundamental period of the RSNS. Furthermore, since it is very

likely that the residue vector occurs at multiple positions in the RSNS fundamental pe-

riod, it is necessary to determine which position occurs within ˆ

epresen-

er-

M [42]. In a residue

number system (RNS), the residue vector can be converted to a position in the fundamen-

tal period by forming a single system of congruence equations that can be solved using

the CRT. Furthermore, each residue vector occurs only once in the RNS fundamental pe-

riod. By contrast, the RSNS symmetrical residues cannot be converted to a position in

the fundamental directly using the CRT since the integers within each RSNS modulus

residue sequence are ambiguous. This chapter presents three methods of converting the

thermometer-coded RSNS residue vectors to a binary representation of the residue vector

position within M̂ . The first two methods are straightforward schemes, which convert

the thermometer code to binary using a ROM and a decoder. The third method is an al-

gorithmic approach that takes advantage of an underlying RNS structure present in

RSNS.

157

A. RSNS-TO-BINARY CONVERSION USING CONVENTIONAL
TECHNIQUES

1. ROM Conversion

A read only memory (ROM) is conceptually the simplest hardware means of con-

verting the RSNS residues to binary. Furthermore, it is the only method mentioned in

published research that converts the RSNS residues to binary. Unfortunately, it is also

the slowest technique and requires more die area than any of the alternative approaches

proposed in this dissertation. Moreover, a ROM decoding scheme does not lend itself

easily to pipelining. To facilitate the size comparison between the three decoding

schemes, an RSNS with moduli

1

345 2

3

3
4
5

m
M m

m

   
  = = 
   
      

, (5.1)

is used as an example throughout this chapter. The RSNS ROM decoding method in-

volves decoding the 12 comparator outputs that drive 212
 address lines in a 212 by 6-bit

ROM. A more efficient ROM implementation is one that converts the thermometer bits

in each channel to a Gray code using the algorithm in [28], thereby reducing the 12 com-

parator output bits to 8 bits. As a result, an 8 to 28 address line decoder drives the inputs

to a 28 by 6-bit ROM. In round numbers, the first ROM design requires approximately

129,000 transistors while the second design requires only 6000 transistors. These are

conservative estimates that include only the transistors necessary to complete the required

logic functions. No additional circuitry, such as buffers, are included in the estimates.

2. Decoder Conversion

The second method to convert the RSNS thermometer code to binary is a decod-

ing scheme. The thermometer code is converted to Gray code like the second ROM de-

sign in the previous section. The resulting 8 bits and their complements are used to form

43 product terms corresponding to the 43 unique residue vectors in the M̂ produced by
158

the RSNS with the moduli in (5.1). Finally, the product terms are encoded to form the

six-bit binary output. Figure 5.1 shows the structure of the decoder with the Gray code

encoder block and the eight product term blocks. Each product term block produces six

product terms except the final block, which produces only one product term.

159

RSNS residues
Gray code encoder

Product term
decode blocks

Binary output

Out 0

Out 1

Out 2

Out 3

Out 4

Out 5

(12 thermometer-coded bits)

160
Figure 5.1 RSNS to binary conversion using a decoding circuit.

Figure 5.2 shows the structure of the thermometer-to-Gray-code conversion as de-

scribed in [28], and Figure 5.3 shows the first decode block that generates the first six

product terms.

Figure 5.2 Thermometer-code to Gray-code conversion.

161

Figure 5.3 Decode block for the first six RSNS vector positions.

The total size of the decoder is approximately 1700 transistors. Other than the

size advantage, the benefit of this conversion method over the ROM design is that it can

be pipelined. The drawback to the ROM and decode methods is that as the number of

ADC thermometer output bits (or comparators) increases, the number of transistors used

to form the decoding schemes increases exponentially. Furthermore, the number of pipe-

line registers needed to pipeline the decoder scheme is equal to M̂ . Thus, both simple

schemes are extremely inefficient for ADCs much larger than six bits. A more efficient

algorithmic approach to converting RSNS to binary that exploits the underlying structure

of the RSNS is presented in the next section.

162

B. THREE-MODULUS RSNS-TO-BINARY CONVERSION

This section develops an RSNS-to-binary conversion method based on finding the

least positive solution (LPS) to multiple RNS systems of congruence equations. The

conversion method presented herein produces a hardware implementation that is orders

of magnitude smaller in terms of transistor count than the ROM and decoder conversion

methods, and is easily pipelined to achieve fast conversion speeds. The following sec-

tions reveal the congruence equations for resolving the unknown incoming value from the

RSNS residues, identify the crucial RSNS to RNS relationship, and finally describe the

RSNS-to-binary LPS solution method.

1. RSNS Congruence Equations

Before presenting the congruence equations for converting the RSNS residues to

binary, it is necessary to review the structure of the three-modulus RSNS from Chapter

IV shown in Figure 5.4.

(m 1 = 3) 0 0 0 1 1 1 2 2 2 3 3 3 2 2 2 1 1 1 0 0 0 1 1 1 …
(m 2 = 4) 0 0 1 1 1 2 2 2 3 3 3 4 4 4 3 3 3 2 2 2 1 1 1 0 …
(m 3 = 5) 0 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 4 4 4 3 3 3 2 2 …

h 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 …

X h

Figure 5.4 Three-modulus RSNS structure with [] []1 2 3 3 4 5m m m Τ Τ= .

Figure 5.5 illustrates decimating a single MRS ()1 3m = into three MRSSs. Each

MRSS is composed of values from the original MRS at positions where ,

, and .

0 (mod3)h ≡

1 (mod3)h ≡ 2 (mod3)h ≡

163

m 1 = 3 x h 0 0 0 1 1 1 2 2 2 3 3 3 2 2 2 1 1 1 0 0 0 1 …

h = 0 (mod 3) x h 0 1 2 3 2 1 0 1
h = 1 (mod 3) x h 0 1 2 3 2 1 0
h = 2 (mod 3) x h 0 1 2 3 2 1 0

h 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 …

…
…
…

Figure 5.5 Single MRS RSNS structure showing three MRSSs.

The top row in the figure is the original MRS and below it are the three MRSSs

and the position index h. Notice that the positions of the MRSS integers do not align

with each other. Every integer value h falls on one and only one MRSS. The position

index h of each MRSS can be re-indexed to simplify the congruence equations, where the

relationship between the old index h and the new index is given by g

,
3
hg = (5.2)

for the first MRSS,

(1) ,
3

hg −
= (5.3)

for the second MRSS, and

(2) ,
3

hg −
= (5.4)

for the third MRSS. The RSNS vectors for the three re-indexed MRSSs are shown in

Figure 5.6, Figure 5.7, and Figure 5.8.

m 1 = 3 0 1 2 3 2 1 0 1 2 3 2 1 0 1 2 3 2 …
m 2 = 4 0 1 2 3 4 3 2 1 0 1 2 3 4 3 2 1 0 …
m 3 = 5 0 1 2 3 4 5 4 3 2 1 0 1 2 3 4 5 4 …

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 …

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 …

X h

h

/ 3g h=
Figure 5.6 Three-modulus RSNS vectors in the 0th MRSS.

164

m 1 = 3 0 1 2 3 2 1 0 1 2 3 2 1 0 1 2 3 2 …
m 2 = 4 0 1 2 3 4 3 2 1 0 1 2 3 4 3 2 1 0 …
m 3 = 5 1 2 3 4 5 4 3 2 1 0 1 2 3 4 5 4 3 …

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 …

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 …

X h

h

()1 / 3g h= −
Figure 5.7 Three-modulus RSNS vectors in the 1st MRSS.

m 1 = 3 0 1 2 3 2 1 0 1 2 3 2 1 0 1 2 3 2 …
m 2 = 4 1 2 3 4 3 2 1 0 1 2 3 4 3 2 1 0 1 …
m 3 = 5 1 2 3 4 5 4 3 2 1 0 1 2 3 4 5 4 3 …

2 5 8 11 14 17 20 23 26 29 32 35 38 41 44 47 50 …

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 …

X h

h

()2 /3g h= −
Figure 5.8 Three-modulus RSNS vectors in the 2nd MRSS.

A three-modulus RSNS vector is denoted

1

2

3

h

s
X s

s

 
 =  
  

, (5.5)

where the RSNS residues are in the range

{ }
{
{ }

1 1

2

3 3

0, 1, , ,

0, 1, , ,

0, 1, , .

s m

s

s m

=

=

=

L

L

L

}2m

1

2

3

 (5.6)

Because of the structure of the RSNS MRSS shown in the previous figures, each residue

integer except 0 and m occurs twice in a single period. Using this fact, the congruence

equations describing the position of a residue vector for the 0

i

th MRSS are

1 1 1 1

2 2 2 2

3 3 3 3

(mod 2) or 2 (mod 2),
(mod 2) or 2 (mod 2),
(mod 2) or 2 (mod 2).

g s m g m s m
g s m g m s m
g s m g m s m

≡ ≡ −
≡ ≡ −
≡ ≡ −

 (5.7)

165

The congruence equations for the 1st MRSS are

1 1 1 1 1

2 2 2 2 2

3 3 3 3

(mod 2) or 2 (mod 2),
(mod 2) or 2 (mod 2),
1 (mod 2) or 2 1 (mod 2).

g s m g m s m
g s m g m s m
g s m g m s m

≡ ≡ −
≡ ≡ −
≡ − ≡ − − 3

2

3

 (5.8)

The congruence equations for the 2nd MRSS are

1 1 1 1 1

2 2 2 2

3 3 3 3

(mod 2) or 2 (mod 2),
1 (mod 2) or 2 1 (mod 2),
1 (mod 2) or 2 1 (mod 2).

g s m g m s m
g s m g m s m
g s m g m s m

≡ ≡ −
≡ − ≡ − −
≡ − ≡ − −

 (5.9)

The goal, given a RSNS residue vector []1 2 3hX s s s Τ= , is to find the index by

solving the systems of congruence equations in (5.7), (5.8), and (5.9). The index can

then be converted to the incoming value h using (5.2), (5.3), or (5.4) based on the MRSS

of the residue vector

g

g

hX . Because there are three rows of congruence equations for each

MRSS (5.7), (5.8), and (5.9), with two possible choices in each row, each residue vector

can produce up to eight systems of congruence equations. This means that any particular

vector of residues []1 2 3hX s s s Τ= can have up to eight redundancies within the funda-

mental period of a three-modulus RSNS. Recall that the fundamental period for the

three-modulus is [30]

1 2 36fP m m m= . (5.10)

Note, however, that if a particular MRS residue is a maximum ()is m= i

)

i

 or a minimum

 then the congruence equation choices corresponding to the MRS with the maxi-

mum or minimum reduce to a single equation

(0is =

(mod 2)ig s m≡ , (5.11)

or

1 (mod 2)ig s mi≡ − , (5.12)

166

depending on the form of the original MRS equation in (5.7), (5.8), or (5.9). Therefore,

the number of vector redundancies in a fundamental period is reduced by a factor of two

for each MRS that contains a maximum or minimum.

In order to determine which set of congruence equations (5.7), (5.8), or (5.9) to

apply to a particular residue vector, it is necessary to scrutinize the residue vectors in

Figure 5.6. A noticeable even-odd pattern occurs in the residue vectors. The residue vec-

tors at even indexes are all even and the residue vectors at odd indexes are all odd, as

shown in Figure 5.9. Therefore, the 0th MRSS equations (5.7) are applied to the residue

vector when the residues are either all even or all odd. Extending this analysis to the

other two MRSSs, the 1st MRSS equations (5.8) are applied when the hX vector residue

pattern is []e e o Τ or []o o e Τ , and the 2nd MRSS equations (5.9) are applied when the hX

vector residue pattern is []e o o Τ or []o e e Τ .

m 1 = 3 e o e o e o e o e o e o e o e o e …
m 2 = 4 e o e o e o e o e o e o e o e o e …
m 3 = 5 e o e o e o e o e o e o e o e o e …

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 …

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 …

X h

h

/ 3g h=
Figure 5.9 Even/odd residue pattern for the 0th MRSS vectors.

Note that residue vectors with the pattern []e o e Τ or []o e o Τ do not exist in the

MRSSs shown in this chapter. This is because the 1st, 2nd, and 3rd MRSs are shifted left

by zero, one, and two positions, respectively, while each residue is repeated three times in

each MRS. Since the MRS shifts are consecutive and their sum equals the number of

residue repetitions, there will always be at least two adjacent residues with the same par-

ity in each three-modulus RSNS vector. If the RSNS was formed by shifting the MRSs

in a different manner, the vector patterns []e o e Τ or []o e o Τ could exist and would cor-

respond to a particular MRSS.

167

The previous concepts are illustrated by the following three examples. Given an

RSNS with the moduli in (5.1), the residue vector []1 3 3hX Τ= is from the 0th MRSS

because it is []o o o Τ and contains no maximums or minimums. Applying this residue

vector to the congruence equations from (5.7) yields

1 (mod 6) or 5 (mod 6),
3 (mod 8) or 5 (mod 8),

3 (mod 10) or 7 (mod 10).

g g
g g

g g

≡ ≡
≡ ≡

≡ ≡
 (5.13)

Choosing one congruence equation from each row of (5.13) forms eight unique systems

of congruence equations:

1 (mod 6),
3 (mod 8),
3 (mod 10),

g
g
g

≡
≡
≡

 (5.14)

1 (mod 6),
3 (mod 8),
7 (mod 10),

g
g
g

≡
≡
≡

 (5.15)

1 (mod 6),
5 (mod 8),
3 (mod 10),

g
g
g

≡
≡
≡

 (5.16)

1 (mod 6),
5 (mod 8),
7 (mod 10),

g
g
g

≡
≡
≡

 (5.17)

5 (mod 6),
3 (mod 8),
3 (mod 10),

g
g
g

≡
≡
≡

 (5.18)

5 (mod 6),
3 (mod 8),
7 (mod 10),

g
g
g

≡
≡
≡

 (5.19)

168

5 (mod 6),
5 (mod 8),
3 (mod 10),

g
g
g

≡
≡
≡

 (5.20)

5 (mod 6),
5 (mod 8),
7 (mod 10).

g
g
g

≡
≡
≡

 (5.21)

Each system of congruence equations can be solved using the general form of the CRT,

producing a total of eight unique solutions. After converting the solution g to the index h

using (5.2), each solution is a position of the vector []1 3 3hX Τ= within the RSNS

fundamental period.

As a second example, the residue vector []0 4 4hX Τ= is also from the 0th

MRSS because it is []e e e Τ . It contains a minimum residue 1(s 0)= and a maximum

residue . Therefore, the congruence equations for this residue vector using (5.7)

are

2(4s =)

0 (mod 6),
4 (mod 8),

4 (mod 10) or 6 (mod 10),

g
g

g g

≡
≡

≡ ≡
 (5.22)

which produce only two systems of three congruence equations and consequently have

only two unique solutions within the RSNS fundamental period.

As a final example, the residue vector []0 0 0hX Τ= is also in the 0th MRSS

and the residues are minimums. The congruence equations are

0 (mod 6),
0 (mod 8),
0 (mod 10),

g
g
g

≡
≡
≡

 (5.23)

and there is only one solution within the fundamental period, which happens to be at

. 0g h= =

169

The discussion thus far has produced a procedure to find the unknown incoming

value h that corresponds to the residues 1 2 3 []hX s s s Τ= within M̂ . The procedure is:

• Select the set of congruence equation choices from (5.7), (5.8), or (5.9)
based on the even-odd pattern of the RSNS residue vector.

• Expand the congruence equation choices into one, two, four, or eight
systems of congruence equations.

• Compute the solution to each system of congruence equations using the
generalized form of the CRT to find the index g.

• Convert index g to index h using (5.2), (5.3), or (5.4) based on the even-
odd pattern of the RSNS vector residues.

• The unique solution h that is within M̂ is the only position of the residue
vector 1 2 3 []hX s s s Τ= within M̂ .

As an example, consider the three-modulus RSNS with the moduli in (5.1) where

the lower bound of M̂ is h and the upper bound is 79= 121h = [30]. Given the residue

vector []2 2hX = 3 Τ , the goal is to find the h value within M̂ that corresponds to this

particular residue vector. Following the procedure above, the first step is to recognize

that the residue vector has the pattern []e e o Τ , which means it is from the 1st MRSS.

Thus, applying the 1st MRSS congruence equations from (5.8) yields

2 4 (mod 6),
2 6 (mod
2 6 (mod 10).

g or g
g or g
g or g

8),
≡ ≡
≡ ≡
≡ ≡

 (5.24)

The congruence equation choices in (5.24) can be expanded to form eight unique

systems of congruence equations. The solution to each system of congruence equations

can be found using the CRT, yielding the index g. Applying the 1st MRSS index conver-

sion h g from (5.3) to the solutions for index g yields all positions of the RSNS

residue vector

3 1= +

[]2 2 3hX Τ=

[

 in the fundamental period and are shown in Figure 5.10.

Since the vector]2 2hX 3 Τ= has a redundancy at 79h = , which is within M̂ ,

 is the unknown position of the residue vector within 79h = M̂ (mod). 360fP =

170

2 (mod 6)
2 (mod 8) 7
2 (mod 10)

2 (mod 6)
2 (mod 8) 79
6 (mod 10)

2 (mod 6)
6 (mod 8) 187
2 (mod 10)

2 (mod 6)
6 (mod 8) 259
6 (mod 10)

4 (mod 6)
2 (mod 8) 247
2 (mod 10)

4

g
g h
g

g
g h
g

g
g h
g

g
g h
g

g
g h
g

g

≡
≡ →
≡

≡
≡ →
≡

≡
≡ →
≡

≡
≡ →
≡

≡
≡ →
≡

≡ (mod 6)
2 (mod 8) 319
6 (mod 10)

4 (mod 6)
6 (mod 8) 67
2 (mod 10)

4 (mod 6)
6 (mod 8) 139
6 (mod 10)

g h
g

g
g h
g

g
g h
g

≡ →
≡

≡
≡ →
≡

≡
≡ →
≡

=

=

=

=

=

=

=

=

Figure 5.10 Eight redundancy solutions for the residue vector []2 2 3hX Τ= .

Unfortunately, it is extremely hardware intensive to simultaneously solve eight

generalized CRT solutions for index g, convert to index h, and compare the results to the

M̂ lower and upper bounds. Therefore, the formulation of an alternative approach is

necessary and requires a closer examination of the solutions to the congruence equations

(5.7), (5.8), and (5.9).

171

The congruence equations (5.8) and (5.9) for the hX residue vectors of the form

, [, [, and [[]e e o Τ]o o e Τ]o e e Τ]e o o Τ actually convert the hX residue vector to the

form [or [. Equation (5.24) in the example above provides an illustration

of this concept. Moreover, the 1

]e e e Τ]o o o Τ

]e e e Τ

st and 2nd MRSS residue vectors are converted to the

closest 0th MRSS [or []o o o Τ vector with the smallest h index. This means that

the solution for the 1st MRSS and 2nd MRSS residue vectors can be found by using (5.7)

to compute the h index of the converted 0th MRSS residue vector, then incrementing the

0th MRSS solution by one or two depending on the MRSS of the original hX residue vec-

tor. As a result, the following sections focus solely on developing an efficient solution to

the 0th MRSS equations (5.7).

2. The RSNS-RNS Relationship

To facilitate the development of an efficient solution to (5.7), it is necessary to re-

view a few terms and define some new ones. The vector 1 2 3[h]X s s s Τ= is the RSNS

residue vector at index h. Each residue vector in the 0th MRSS has the form [or

. Each residue vector in the 0

]e e e Τ

[o o o Τ]

1

2

3

th MRSS, when combined with (5.7), forms up to

eight systems of congruence equations. Writing (5.7) in vector form results in

1 1 1

2 2 2

3 3 3

or 2
or 2 mod 2
or 2

s m s m
g s m s m

s m s m

−   
 ≡ −  
  −   

 
 
 

  

, (5.25)

or simply

1

2

3

mod 2g

m
g XR m

m

  
  ≡   
    

, (5.26)

172

where gXR is the residue number system vector representing a single system of congru-

ence equations, meaning each ()isor 2i is m − choice has been made. The solution to

the system of congruence equations (5.26) is the index , and is one of the redundant po-

sitions of the residue vector

g

1 2 3[]gX s s s Τ= in the 0th MRSS. Note that the vector

1 2[3g]X s s s Τ= in the 0th MRSS is the same vector as 1 2 3[h]X s s s Τ= in the RSNS,

where g is related to h by (5.2). Therefore, the key concept from this analysis is that

every vector gX in the 0th MRSS can be combined with (5.25) to form a system of con-

gruence equations uniquely represented by (5.26) and the vector gXR that has a solution

of . Figure 5.11 shows the vectors g gX and the corresponding vectors gXR at each in-

dex . g

m 1 = 3 0 1 2 3 2 1 0 1 2 3 2 1 0 1 2 3 2 …
m 2 = 4 0 1 2 3 4 3 2 1 0 1 2 3 4 3 2 1 0 …
m 3 = 5 0 1 2 3 4 5 4 3 2 1 0 1 2 3 4 5 4 …

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 …
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 …
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 …

g 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 …

XR g

X g

Figure 5.11 Vectors gX and gXR for the 0th MRSS.

Notice that the rows in the figure corresponding to gXR vectors form a residue

number system (as opposed to a symmetrical residue number system) with moduli 2 ,

where the index i is the MRS number. This is a remarkable discovery since it demon-

strates a direct relationship between the RSNS and the RNS. The RNS has no ambigui-

ties in a fundamental period and is well studied while the RSNS is relatively new and has

somewhat unpredictable ambiguities. Another useful observation is that each residue

vector

im

gXR is either all odd or all even and has the relationship

173

1

1

3

1
1 mod 2
1

g g

m
XR XR m

m
+

  

2

  
  


  ≡ +  


  

  


         

. (5.27)

Therefore, it is possible to exploit this structure by decimating the RNS vectors by a fac-

tor of two. Dividing the vector gXR , index , and the system moduli by two creates the

RNS vectors shown in Figure 5.12.

g

0 2 2 0 2 2 0 2 2 …
0 2 4 2 0 2 4 2 0 …
0 2 4 4 2 0 2 4 4 …

0 1 2 0 1 2 0 1 2 …
0 1 2 3 0 1 2 3 0 …
0 1 2 3 4 0 1 2 3 …
0 1 2 3 4 5 6 7 8 …

RNS Vectors
(PRP moduli)

RSNS Vectors

/ 2

2
gXR

/ 2gX

/ 2g
Figure 5.12 Vectors / 2gX and with index . / 2 / 2gXR / 2g

Consequently, the RSNS residue vectors hX are transformed into RNS residue

vectors with PRP moduli, whose index positions can be solved using the CRT. Alas,

there are still up to eight systems of RNS congruence equations to solve for each RSNS

residue vector. Fortunately, using the lower and upper bounds of M̂ found by means of

the search algorithm developed in Chapter IV, the problem of finding the solution within

M̂ is reduced to finding the least positive solution of the eight systems of congruence

equations. This concept will be explained in the next section.

3. RNS Least Positive Solution

The longest sequence of unique RSNS vectors for moduli given in (5.1) occurs

from to , inclusive [30]. These boundaries correspond to RSNS residue

vectors and

79h =

79X

121h =

[2 2 3]Τ= 121 [2 0 1]X Τ= . The using the procedure described in

174

the previous section, the closest 0th MRSS vectors are and

. Using (5.2), the index h is converted to index g and the vectors

78 [2 2 4]X Τ=

120 [2 0 0]X Τ= gX

within M̂ for the 0th MRSS are displayed as the first three rows of Figure 5.13. The sys-

tems of congruence equations formed using the two boundary vectors gX are represented

by the RNS vectors 26 [2 2 6]XR Τ= and 40 [4XR 0 0]Τ=

2 3 2 1 0 1 2 3 2 1 0 1 2 3 2
2 3 4 3 2 1 0 1 2 3 4 3 2 1 0
4 3 2 1 0 1 2 3 4 5 4 3 2 1 0

2 3 4 5 0 1 2 3 4 5 0 1 2 3 4
2 3 4 5 6 7 0 1 2 3 4 5 6 7 0
6 7 8 9 0 1 2 3 4 5 6 7 8 9 0

0 31 32 3

 and are displayed in the

next three rows of Figure 5.13.

m 1 =
m 2 =
m 3 =

…
…
…

…
…
…

g … 26 27 2

XR g

X g

3 34 35 36 37 38 39 40

345M

13 14

 3 …
 4 …
 5 …

…
…
…

8 29 3 …

Figure 5.13 The 0th MRSS residue vectors within M̂ .

Subtracting the vector 26 [2 2 6]XR Τ= from each gXR vector in Figure 5.13

 effectively shifts the lower bound of (mod) M̂ from an arbitrary position in the

fundamental period down to as shown in Figure 5.14. 0g =

m 1 = 3 … 2 3 2 1 0 1 2 3 2 1 0 1 2 3 2 …
m 2 = 4 … 2 3 4 3 2 1 0 1 2 3 4 3 2 1 0 …
m 3 = 5 … 4 3 2 1 0 1 2 3 4 5 4 3 2 1 0 …

… 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 …
… 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 …
… 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 …

g … 0 1 2 3 4 5 6 7 8 9 10 11 12 …

XR g

X g

Figure 5.14 The 0th MRSS residue vectors within M̂ shifted to . 0g =

175

This makes the location of the residue vector 1 2 3[g]X s s s Τ= that falls within M̂

equal to the least positive solution of the eight systems of congruence equations. Fur-

thermore, the 0th MRSS solution position , and consequently the RSNS position h is

found relative to the lower bound of

g

M̂ rather than a seemingly arbitrary position in the

RSNS fundamental period. Thus, the solution will be in the range 1 43h≤ ≤ rather than

, which is desirable since the former can be contained in a 6-bit binary num-

ber and the latter requires 7 bits.

79 121h≤ ≤

A method of finding the least positive solution to multiple systems of congruence

equations that is easily adaptable to a hardware implementation is a positional alignment

solution technique. A positional alignment solution technique symbolically marks the

positions of the RNS residues on the gXR vectors in Figure 5.14.

The following example illustrates the positional alignment solution technique.

Given the RSNS residue vector []0 2 1hX Τ= , and an M̂ with bounds 79 ,

the goal is to find the position of

121h≤ ≤

hX within the bounds of M̂ . Since hX is []e e o Τ ,

it is a 1st MRSS vector and (5.8) is used to convert the hX RSNS residues to gXR RNS

residues that form the congruence equations

0 (mod 6),
2 (mod 8) or 6 (mod 8),

0 (mod 10) or 8 (mod 10).

g
g g

g g

≡
≡ ≡

≡ ≡
 (5.28)

The RNS residue choices from (5.28) for each MRS from (5.24) are highlighted in gray

in Figure 5.15.

176

m 1 = 3 … 2 3 2 1 0 1 2 3 2 1 0 1 2 3 2 …
m 2 = 4 … 2 3 4 3 2 1 0 1 2 3 4 3 2 1 0 …
m 3 = 5 … 4 3 2 1 0 1 2 3 4 5 4 3 2 1 0 …

… 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 …
… 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 …
… 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 …

g … 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 …

XR g

X g

Figure 5.15 RNS residues highlighted on 0th MRSS M̂ vectors.

The position at which the gray residue blocks align is at 30g = , which is the cor-

rect solution within M̂ . Applying (5.2) converts 30g = to 90h = . This solution is a 0th

MRSS solution, and since []0 2 1hX Τ= is []e e o Τ it is a 1st MRSS vector. The

0th MRSS solution must be incremented by one to compute the 1st MRSS solution.

Therefore, is the final and correct solution. Ambiguous results can occur using

this method if

91h =

M̂ does not start on a 0th MRSS boundary and end on a 2nd MRSS bound-

ary. Therefore, M̂ should either be truncated accordingly or the boundary vectors must

be treated as special cases in a hardware implementation. Examples of both scenarios are

provided in later sections.

The shaded blocks in Figure 5.15 further illustrate the concept introduced in

Figure 5.12. Notice in the example that 1 0s = (i.e., has even parity) and the shaded

blocks occur only in the even positions. If was odd instead of even (e.g., in the vec-

tor), then all the shaded residues would occur in the odd positions.

Thus, if is odd, the odd

1s

g 1s

[1 1 3hX Τ
=

1s

] g

gXR vector can be converted to the even gXR vector by sub-

tracting []1 1 1 Τ from the odd gXR vector following (5.27). The information regarding

the parity of is retained to reverse the compression later in the conversion process.

This reduces the number of unique solution vectors by a factor of two like in Figure 5.12,

leaving only the RNS solution vectors in Figure 5.16.

1s

177

m 1 = 3 … 2 2 0 2 2 0 2 2 …
m 2 = 4 … 2 4 2 0 2 4 2 0 …
m 3 = 5 … 4 2 0 2 4 4 2 0 …

… 1 2 0 1 2 0 1 2 …
… 1 2 3 0 1 2 3 0 …
… 3 4 0 1 2 3 4 0 …
… 13 14 15 16 17 18 19 20 …

/ 2

2
gXR

/ 2gX

/ 2g

Figure 5.16 Residues highlighted on vectors index .within / 2 / 2gXR / 2g M̂
in the 0th MRSS.

The total M̂ compression factor in this example is six. That is, using only the 0th

MRSS compresses the number of vectors in M̂ by three, and exploiting the parity of

yields an additional compression factor of two. Thus, given the residue vector MRSS

number and the parity of , only

1s

1s

ˆ 43 8
6 6
M   = =     

, (5.29)

RNS vectors are needed to find the LPS solution for the index g. In the general case, the

compression factor is because there are N MRSSs in the general case, with the addi-

tional factor of 2 stemming from the knowledge of the parity of . Thus, the number of

RNS vectors required to find g in the general case is

2N

1s

ˆ

2
M
N

 
 
 

. (5.30)

For a comprehensive example combining all the previous concepts, consider the

residue vector []1 4 4hX Τ= , which has the form []o e e Τ and is a 2nd MRSS vec-

tor. Using (5.9), the congruence equations are

1 or 5 6
3 mod 8

3 or 5 10
g

   



  ≡ 


  

 


      

. (5.31)

178

Equation (5.31) expands to only four systems of congruence equations since in 2s hX is

a maximum. Given that all of the residues in (5.31) are odd, they are all converted to

even residues by subtracting []1 1 1 Τ (mod 345M) and the odd parity of is recorded

for later use. The resulting congruence equations are

1s

0 or 4 6
2 mod 8

2 or 4 10
g

   



  ≡ 


  

 


      

. (5.32)

Dividing both sides of (5.32) by two represents the factor of two compression since the

residue vectors are reduced to the nearest even 0th MRSS vectors with positions less than

or equal to the original index h. The resulting congruence equations are

0 or 2 3
1 mod 4

2
1 or 2 5

g
   



  ≡ 


  

 


      

. (5.33)

From Figure 5.16, the lower bound of M̂ is 26 / 2 [1 1 3]XR Τ= . Subtracting this vector

from the residues in (5.33) (mod 345M) shifts the lower bound of M̂ down to an index of

 and yields / 2 0g =

2 or 1 3
0 mod 4

2
3 or 4 5

g
   



  ≡ 


  

 


      

. (5.34)

Shading the residues from (5.34) on the RNS solution vectors within M̂ from Figure

5.12 results in Figure 5.17.

179

m 1 = 3 2 2 0 2 2 0 2 2 …
m 2 = 4 2 4 2 0 2 4 2 0 …
m 3 = 5 4 2 0 2 4 4 2 0 …

0 1 2 0 1 2 0 1 …
0 1 2 3 0 1 2 3 …
0 1 2 3 4 0 1 2 …
0 1 2 3 4 5 6 7 …

/ 2

2
gXR

/ 2gX

/ 2g

Figure 5.17 Positional solution for (5.34).

The solution that falls within M̂ is found at position / 2 4g = where all the gray

shaded blocks align. To compute the unknown position h corresponding to the RSNS ex-

ample vector []1 4 4hX Τ=

odd

, the even-odd compression and MRSS compression must

be reversed. Defining F as the even-odd compensation factor, and MRSSF as the MRSS

compensation factor, and using relationship between g and h given by (5.2), the expres-

sion for h is

3() ,odd MRSSh g F F= + + (5.35)

where

1

1

th

st

nd

0 if is even
,

1 if is odd

0 if 0 MRSS
. 1 if 1 MRSS

2 if 2 MRSS

odd

MRSS

s
F

s

F

 
=  

 

 
 

=  
 
 

 (5.36)

For []1 4 4hX Τ= , because is odd, and 1oddF = 1s 2MRSSF = because hX is from the

2nd MRSS. Therefore, the solution to (5.35) is

3(8 1) 2 29h = + + = , (5.37)

which is the correct solution for the residue vector []1 4 4hX Τ= within M̂ , where

. Figure 5.18 summarizes the LPS RSNS-to-binary conversion method. 1 h≤ ≤ 43

180

Solve
for

LPS

Compress vectors
into nearest 0th

MRSS vectors

Compress vectors
into nearest even 0th

MRSS vectors

Compute RSNS
vector MRSS

factor

Compute 1st

MRS residue
even/odd factor

Expand
solution

index

Apply even/odd
compensation

factor

Expand
solution

index

Apply MRSS
compensation

factor

Shift DR
lower bound

to zero

M̂

Solve
for

LPS

Compress vectors
into nearest 0th

MRSS vectors

Compress vectors
into nearest even 0th

MRSS vectors

Compute RSNS
vector MRSS

factor

Compute 1st

MRS residue
even/odd factor

Expand
solution

index

Apply even/odd
compensation

factor

Expand
solution

index

Apply MRSS
compensation

factor

Shift DR
lower bound

to zero

M̂

Figure 5.18 Summary of LPS RSNS-to-binary conversion method.

C. THREE-MODULUS RSNS-TO-BINARY LPS CONVERTER

The hardware implementation of the RSNS-to-binary LPS method developed in

the previous section is realized in this section. The process is essentially the same as

Figure 5.18. The first step is the RSNS to RNS residue compression and the and oddF

MRSSF

ˆ

 computation. In this step, the RNS residues and compensation factors are con-

verted from integers to a digital representation. The second step is the implementing the

M shift and computing the least positive positionally aligned solution to the eight sys-

tems of congruence equations. The third step is the conversion from the positional least

positive solution to the unknown incoming value. The output is in the range 1 4

and therefore can be represented by a 6-bit binary value.

3h≤ ≤

1. RSNS Thermometer Code to RNS Residue Conversion

The first step in the conversion process is to translate the RSNS residues hX to

RNS residues gXR and compute the even-odd and MRSS compensation factors and oddF

MRSSF . Since the moduli are small in this case, it is feasible to convert the RSNS ther-

mometer code residues to RNS residues using logic-minimizing Karnaugh maps. The

notation for this section is as follows. The vector 1 2 3[h]X s s s Τ= is the RSNS residue

181

vector and corresponds to the position h within M̂ . Individual residues themselves are

encoded in a thermometer code. Consequently, the residue , which is in the range of

, is represented in thermometer code with bits. Figure 5.19 shows the

thermometer code bits for ()

is

0 is m≤ ≤ i im

1s 1 3m = .

RSNS
residue
value

s 1 12 s

RS
erm
code

s

S
mete
 bits

0
1
1
1

1s

ibs

4 m

RS
re
va

s 22

RS
mo

s 34

R

m

s 11 10

0 0 0
1 0 0
2 0 1
3 1 1

N
th o r

Figure 5.19 RSNS thermometer code bits for ()1 3m = .

Each of the bits in the thermometer code is labeled , where the index i repre-

sents the MRS in the RSNS residue vector, and the index b is the bit position in the ther-

mometer code, with corresponding to the least significant bit position. Figure 5.20

shows the thermometer code for the and (

0b =

2s 3s 2m = and 3 5=).

NS
sidue
lue

s 2 s 23 s 21 s 20

0 0 0 0 0
1 0 0 0 1
2 0 0 1 1
3 0 1 1 1
4 1 1 1 1

NS
ther meter code

bits

RSNS
residue
value

s 3 s 33 s 32 s 31 s 30

0 0 0 0 0 0
1 0 0 0 0 1
2 0 0 0 1 1
3 0 0 1 1 1
4 0 1 1 1 1
5 1 1 1 1 1

SNS thermometer
code bits

Figure 5.20 RSNS thermometer code bits for and (2s 3s 2 4= and m). 3 5=

182

The next step is the conversion of the RSNS residue to the corresponding RNS

residue. The simplest case is the first MRS residue and will be considered first. Exami-

nation of (5.7), (5.8), and (5.9) reveals that the first line of each set of equations is identi-

cal. This means that the conversion of the first MRS RSNS residue to RNS residue is the

same regardless of the MRSS. Figure 5.21 shows the conversion process for from

RSNS to RNS.

1s

RSNS
Residue

0 0 0 0 0 0 0
1 1 5 0 4 0 2
2 2 4 2 4 1 2
3 3 3 2 2 1 1

RNS
Residue Even RNS Residue

RNS Residue for
PRP Moduli (r)

1s 1even()s16 s− 1even(6)s−
1even()

2
s 1even(6)

2
s−

1s or or or

Figure 5.21 Conversion process from RSNS residue to RNS residue.

Starting with the first MRS RSNS residue shown in the first column of Figure

5.21, the RNS residues in the second and third column are found by application of the top

equation from (5.7),

1s

1 1 1 1(mod 2) or 2 (mod 2)g s m g m s m≡ ≡ − 1 . (5.38)

The odd RNS residues are then converted to the nearest even RNS residues by subtract-

ing one as shown in columns four and five. Finally, the even RNS residues are divided

by two, which form the RNS residues that correspond to PRP moduli shown in the last

two columns of Figure 5.21. These RNS residues correspond to the top row of the

 vector in Figure 5.17. / 2 / 2gXR

Since there are three possible RNS residue values in the last two columns of

Figure 5.21, representing the RNS residues in digital format is accomplished using three

position bits. Each unique RNS residue value must be represented by a single position bit

because the hardware implementation of the positional alignment solution technique re-

183

quires physical alignment of the RNS residues. The position bits are denoted irp , where

the index i is the MRS and r spans the range of the RNS residue values in the last two

columns of Figure 5.21, which is ()ir m0 1≤ ≤ − . The position bit corresponding to the

RNS residue in either column is asserted. For example, the three position bits for the

RSNS residue are 1s 10p , 11p , and 12p . Looking at the second row of the last two col-

umns of Figure 5.21, the two RNS residues are 0 and 2. Therefore, the position bits 10p

and 12p would be asserted and 11p would be negated, thereby representing the RNS resi-

dues in digital form. Using this notation, Figure 5.22 shows the position bits correspond-

ing to the RNS residues from Figure 5.21.

RSNS
Residue

0 0 0 0 0 1
1 0 2 1 0 1
2 1 2 1 1 0
3 1 1 0 1 0

RNS Residue for
PRP Moduli (r)

Position
Bits

1s
1even()

2
s 1even(6)

2
s−

12p 11p 10por

Figure 5.22 Position bits corresponding to the RSNS residue . 1s

Next, the position bits for s and are computed. The position bits for are

only slightly more complicated to compute than the position bits for . Notice that the

form of the second row of the MRSS congruence equations in (5.7), (5.8), and (5.9) is not

the same for all three sets of equations. This means that the position bits corresponding

to will have one arrangement given a residue vector

2 3s 2s

1s

2s hX from the 0th MRSS or 1st

MRSS, and a different arrangement given a residue vector hX from the 2nd MRSS. For a

residue vector hX , the 0th MRSS and 1st MRSS the RNS residues for are found by ap-

plication of the second row of (5.7) and (5.8),

2s

2 2 2 2(mod 2) or 2 (mod 2)g s m g m s m≡ ≡ − 2 . (5.39)

184

The conversion process from the residue to RNS residue (for a RSNS vector 2s hX from

the 0th MRSS or 1st MRSS) is shown in Figure 5.23 and the corresponding position bits

are shown in Figure 5.24.

RSNS
Residue

0 0 0 0 0 0 0
1 1 7 0 6 0 3
2 2 6 2 6 1 3
3 3 5 2 4 1 2
4 4 4 4 4 2 2

RNS
Residue Even RNS Residue

RNS Residue for
PRP Moduli (r)

2s 2even()s28 s− 2even(8)s−
2even()

2
s 2even(8)

2
s−

2s or or or

Figure 5.23 Conversion process for from RSNS residue to RNS residue (for a

RSNS vector
2s

hX from the 0th MRSS or 1st MRSS).

RSNS
Residue

0 0 0 0 0 0 1
1 0 3 1 0 0 1
2 1 3 1 0 1 0
3 1 2 0 1 1 0
4 2 2 0 1 0 0

RNS Residue for
PRP Moduli (r)

Position Bits for
s 2 if X h is in

the 0th or 1st

MRSS

2s
2even()

2
s 2even(8)

2
s−

23p 22p 21p 20por

Figure 5.24 Position bits for (for a RSNS vector 2s hX from the 0th MRSS or 1st

MRSS).

For the 2nd MRSS, the RSNS to RNS equation for that comes from the second

row of (5.9) is

2s

2 2 2 21 (mod 2) or 2 1 (mod 2)g s m g m s m≡ − ≡ − − 2 . (5.40)

185

Using this equation, the conversion process for from RSNS residue to RNS residue

(for a RSNS vector

2s

hX from the 2nd MRSS) is shown in Figure 5.25 and the correspond-

ing position bits are shown in Figure 5.26.

RSNS
Residue

0 7 7 6 6 3 3
1 0 6 0 6 0 3
2 1 5 0 4 0 2
3 2 4 2 4 1 2
4 3 3 2 2 1 1

RNS
Residue Even RNS Residue

RNS Residue for PRP
Moduli (r)

2s 2even(1)s −
27 s− 2even(7)s−

2even(1)
2
s − 2even(7)

2
s−

2 1s − or or or

Figure 5.25 Conversion process for from RSNS residue to RNS residue (for a

RSNS vector
2s

hX from the 2nd MRSS).

RSNS
Residue

0 3 3 1 0
1 0 3 1 0
2 0 2 0 1
3 1 2 0 1
4 1 1 0 0

RNS Residue for PRP
Moduli (r)

Position Bits for
s 2 if X h is in

the 2nd MRSS

0 0
0 1
0 1
1 0
1 0

2s 23p 22p 21p 20p
2even(1)

2
s − 2even(7)

2
s−or

Figure 5.26 Position bits for (for a RSNS vector 2s hX from the 2nd MRSS).

Comparing the position bits for in Figure 5.24 and Figure 5.26, it is apparent

that the order of the position bits for the 2

2s

2s nd MRSS are the reverse of the 0th and 1st

186

MRSS position bits. This is illustrated in Figure 5.27. This fact will be very useful when

constructing the circuit for the RSNS-to-binary converter.

0 0 0 1
1 0 0 1
1 0 1 0
0 1 1 0
0 1 0 0

Position Bits for
s 2 if X h is in

the 0th or 1st

MRSS

23p 22p 21p 20p
1 0 0 0
1 0 0 1
0 1 0 1
0 1 1 0
0 0 1 0

Position Bits for
s 2 if X h is in

the 2nd MRSS

23p 22p 21p 20p

RSNS
Residue

0
1
2
3
4

2s

Figure 5.27 Position bits for (for a RSNS vector 2s hX from the 0th MRSS, 1st MRSS,

or 2nd MRSS).

The position bits for are found in exactly the same manner as and . In

this case, the RNS residue is found by application of the third row of (5.7), (5.8), and

(5.9). Similar to the position bits for , the position bit arrangement is different depend-

ing on the MRSS of the residue vector

3s 1s 2s

2s

hX . The position bits for s (for a RSNS vector 3

hX from the 0th MRSS, 1st MRSS, or 2nd MRSS) are shown in Figure 5.28. Similar to

the position bits for , the order of the position bits for for an RSNS vector 2s 3s hX from

the 1st and 2nd MRSSs are the reverse of the position bits for for an RSNS vector 3s hX

from the 0th MRSS.

187

RSNS
Residue

0 0 0 0 0 1 1 0 0 0 0
1 1 0 0 0 1 1 0 0 0 1
2 1 0 0 1 0 0 1 0 0 1
3 0 1 0 1 0 0 1 0 1 0
4 0 1 1 0 0 0 0 1 1 0
5 0 0 1 0 0 0 0 1 0 0

Position Bits for s 3

if X h is in the 0th

MRSS

Position Bits for s 3

if X h is in the 1st or

2nd MRSS

34p 33p 32p 31p 30p 34p 33p 32p 31p 30p3s

Figure 5.28 Position bits for (for a RSNS vector 3s hX from the 0th MRSS, 1st MRSS,

or 2nd MRSS).

Since the position bits uniquely correspond to the RNS residues for PRP moduli,

they are used to compute the positional alignment solution in the hardware implementa-

tion of the RSNS-to-binary converter. In fact, the direct correspondence between the

RNS residues and the position bits enable the position bits to replace the RNS residues in

Figure 5.15 as shown in Figure 5.29. Notice that the first subscript in each position bit is

the row of the RNS residue vector and the second subscript in each position bit is the

same as the corresponding RNS residue.

m 1 = 3 2 2 0 2 2 0 2 2
m 2 = 4 2 4 2 0 2 4 2 0
m 3 = 5 4 2 0 2 4 4 2 0

…
…
…

0 1 2 3 4 5 6 7

Position
Bits

…
…
…

…
34p33p 30p34p33p32p31p30p

23p22p21p 20p23p22p21p20p
12p11p 12p11p10p 11p10p 12p

/ 2gX

/ 2g

Figure 5.29 Location of position bits in the compressed M̂ .

As an illustration of the use of the position bits to find the positionally aligned so-

lution, consider the RSNS residue vector []1 4 4hX Τ= from the 2nd MRSS and the

corresponding congruence equations provided in (5.31)-(5.34). The values of the posi-

188

tion bits for s , , and are extracted from Figure 5.22, Figure 5.24, and Figure 5.26

using the residue values in the vector

1 2s 3s

[]1 4 4hX Τ= and the 2nd MRSS columns in the

case of , and . The positional solution is shown in Figure 5.30 with the asserted po-

sition bits highlighted in gray. This solution

2s 3s

()/ 2 4g = is the same as computed in

Figure 5.17 using the same residue vector []1 4hX 4 Τ= .

m
m
m

1 = 3 2 2 …
2 = 4 2 0 …
3 = 5 2 0 …

0 1 …
0 0 …
0 0 …
6 7 …

Position
Bits

2 2 0 2 2 0
2 4 2 0 2 4
4 2 0 2 4 4

0 1 1 0 1 1
1 0 0 0 1 0
0 0 0 1 1 0
0 1 2 3 4 5

/ 2gX

/ 2g

Figure 5.30 Least positive solution for []1 4 4hX Τ= using position bits.

2. RNS Position Bit, Even Residue, and MRSS Logic Equations

Given the RSNS thermometer code bits and the corresponding position bits from

Figure 5.22, Figure 5.24, and Figure 5.26, the minimized logic equations for computing

the position bits can be found using logic tables and Karnaugh maps. Furthermore, error

correction can be built in to the thermometer code to position bit conversion.

The only allowable combinations of thermometer code bits for the moduli given

in (5.1) are shown in Figure 5.19 and Figure 5.20, which is less than all possible binary

combinations for the number of thermometer bits. The combinations that are invalid

thermometer codes can be treated as don’t cares (X) in the logic table as shown in Figure

5.31.

189

s 12 s 11 s 10 p 12 p 11 p 10

0 0 0 0 0 1
0 0 1 1 0 1
0 1 0 X X X
0 1 1 1 1 0
1 0 0 X X X
1 0 1 X X X
1 1 0 X X X
1 1 1 0 1 0

1st MRS Residue
RSNS
Residue

Position Bits

Figure 5.31 Logic table for computing the first MRS ()1s position bits.

The unused combinations can also be treated as errors and corrected to the ther-

mometer code that minimizes the Hamming distance [43] as shown in Figure 5.32.

s 12 s 11 s 10 s 12 s 11 s 10 p 12 p 11 p 10

0 0 0 0 0 1
0 0 1 1 0 1

0 0 0 0 0 1
0 1 1 1 1 0

0 1 1 1 1 0
1 0 0 0 0 0 0 0 1

0 0 1 1 0 1
1 1 1 0 1 0

1 1 0 1 1 1 0 1 0
1 1 1 0 1 0

1st MRS Residue
RSNS
Residue

Error
Correction

Position
Bits

0 1 0 or

1 0 1 or

Figure 5.32 Logic table for computing the first MRS ()1s position bits with error
correction.

190

When the distance is the same between the residue error value and two different

thermometer codes, the thermometer code that produces a simpler logic function is se-

lected. Figure 5.33 and Figure 5.34 show the logic minimization for the logic tables in

Figure 5.31 and Figure 5.32.

00 01 11 10
0 0 0 1 X
1 X X 1 X

s 12
s 11 s 10 p 11

00 01 11 10
0 1 1 0 X
1 X X 0 X

s 12
s 11 s 10 p 10

00 01 11 10
0 0 1 1 X
1 X X 0 X

s 12
s 11 s 10 p 12

Figure 5.33 Logic minimization for the logic table in Figure 5.31.

00 01 11 10
0 0 0 1 1
1 0 0 1 1

s 12
s 11 s 10 p 11

00 01 11 10
0 1 1 0 0
1 1 1 0 0

s 12
s 11 s 10 p 10

00 01 11 10
0 0 1 1 1
1 0 1 0 0

s 12
p 12s 11 s 10

Figure 5.34 Logic minimization for the logic table in Figure 5.32.

191

Using the results of Figure 5.33 and Figure 5.34, the logic equations for the first

MRS residue position bits without error correction are

10 11

11 11

12 10 12

,
,

,

p s
p s

p s s

=
=

=

 (5.41)

and the logic equations for the first MRS residue position bits with error correction are

10 11

11 11

12 10 12 11 12 10 11

,
,

.

p s
p s

p s s s s s s

=
=

= + +

 (5.42)

No error correction will be performed in this design since the thermometer code input is

guaranteed to be error-free. The logic table for the second MRS residue position bits is

given in Figure 5.35 and the logic minimization is provided in Figure 5.36.

s 23 s 22 s 21 s 20 p 23 p 22 p 21 p 20

0 0 0 0 0 0 0 1
0 0 0 1 1 0 0 1
0 0 1 0 X X X X
0 0 1 1 1 0 1 0
0 1 0 0 X X X X
0 1 0 1 X X X X
0 1 1 0 X X X X
0 1 1 1 0 1 1 0
1 0 0 0 X X X X
1 0 0 1 X X X X
1 0 1 0 X X X X
1 0 1 1 X X X X
1 1 0 0 X X X X
1 1 0 1 X X X X
1 1 1 0 X X X X

2nd MRS Residue

RSNS Residue Position Bits

Figure 5.35 Logic table for computing the second MRS ()2s position bits.

192

s 2 3 00 01 11 10
s 22 00 0 1 1 X

01 X X 0 X
11 X X 0 X
10 X X X X

p 23s 21 s 20

s 2 3 00 01 11 10
s 22 00 1 1 0 X

01 X X 0 X
11 X X 0 X
10 X X X X

s 21 s 20 p 20

s 2 3 00 01 11 10
s 22 00 0 0 0 X

01 X X 1 X
11 X X 1 X
10 X X X X

s 21 s 20 p 22

s 2 3 00 01 11 10
s 22 00 0 0 1 X

01 X X 1 X
11 X X 0 X
10 X X X X

s 21 s 20 p 21

Figure 5.36 Logic minimization for the logic table in Figure 5.35.

Using Figure 5.36, the logic equations for the second MRS residue position bits

are

20 21

21 21 23

22 22

23 20 22

,

,
,

.

p s

p s s
p s

p s s

=

=
=

=

 (5.43)

The logic table for the third MRS residue position bits is given in Figure 5.37 and the

logic minimization is provided in Figure 5.38.

193

s 34 s 33 s 32 s 31 s 30 p 34 p 33 p 32 p 31 p 30

0 0 0 0 0 0 0 0 0 1
0 0 0 0 1 1 0 0 0 1
0 0 0 1 0 X X X X X
0 0 0 1 1 1 0 0 1 0
0 0 1 0 0 X X X X X
0 0 1 0 1 X X X X X
0 0 1 1 0 X X X X X
0 0 1 1 1 0 1 0 1 0
0 1 0 0 0 X X X X X
0 1 0 0 1 X X X X X
0 1 0 1 0 X X X X X
0 1 0 1 1 X X X X X
0 1 1 0 0 X X X X X
0 1 1 0 1 X X X X X
0 1 1 1 0 X X X X X
0 1 1 1 1 0 1 1 0 0
1 0 0 0 0 X X X X X
1 0 0 0 1 X X X X X
1 0 0 1 0 X X X X X
1 0 0 1 1 X X X X X
1 0 1 0 0 X X X X X
1 0 1 0 1 X X X X X
1 0 1 1 0 X X X X X
1 0 1 1 1 X X X X X
1 1 0 0 0 X X X X X
1 1 0 0 1 X X X X X
1 1 0 1 0 X X X X X
1 1 0 1 1 X X X X X
1 1 1 0 0 X X X X X
1 1 1 0 1 X X X X X
1 1 1 1 0 X X X X X

RSNS Residue Position Bits
3rd MRS Residue

Figure 5.37 Logic table for computing the third MRS ()3s position bits.

194

s 31 s 30
s 33 00 01 11 10

s 32 00 1 1 0 X
01 X X 0 X
11 X X 0 X
10 X X X X

s 34 = 0

p 30 s 31 s 30
s 33 00 01 11 10

s 32 00 X X X X
01 X X X X
11 X X 0 X
10 X X X X

s 34 = 1

p 30 s 31 s 30
s 33 00 01 11 10

s 32 00 0 0 1 X
01 X X 1 X
11 X X 0 X
10 X X X X

s 34 = 0

p 31 s 31 s 30
s 33 00 01 11 10

s 32 00 X X X X
01 X X X X
11 X X 0 X
10 X X X X

s 34 = 1

p 31

s 31 s 30
s 33 00 01 11 10

s 32 00 0 0 0 X
01 X X 0 X
11 X X 1 X
10 X X X X

s 34 = 0

p 32 s 31 s 30
s 33 00 01 11 10

s 32 00 X X X X
01 X X X X
11 X X 1 X
10 X X X X

s 34 = 1

p 32 s 31 s 30
s 33 00 01 11 10

s 32 00 0 0 0 X
01 X X 1 X
11 X X 1 X
10 X X X X

s 34 = 0

p 33 s 31 s 30
s 33 00 01 11 10

s 32 00 X X X X
01 X X X X
11 X X 0 X
10 X X X X

s 34 = 1

p 33

s 31 s 30
s 33 00 01 11 10

s 32 00 0 1 1 X
01 X X 0 X
11 X X 0 X
10 X X X X

s 34 = 0

p 34 s 31 s 30
s 33 00 01 11 10

s 32 00 X X X X
01 X X X X
11 X X 0 X
10 X X X X

s 34 = 1

p 34

Figure 5.38 Logic minimization for the logic table in Figure 5.37.

Using Figure 5.38, the logic equations for the third MRS residue position bits are

30 31

31 31 33

32 33

33 32 34

34 30 32

,

,
,

,

.

p s

p s s
p s

p s s

p s s

=

=

=

=

=

 (5.44)

The logic table used to compute the even residue flags for each MRS (, , and) is

shown in Figure 5.39 and the logic minimization is provided in Figure 5.40. The term

flag is used in this instance to signify a single bit condition indicator. That is, the even

residue flags are single bit indicators that are asserted then the corresponding residue is

even and negated when the corresponding residue is odd.

1s 2s 3s

195

s 12 s 11 s 10 e 1

0 0 0 1
0 0 1 0
0 1 0 X
0 1 1 1
1 0 0 X
1 0 1 X
1 1 0 X
1 1 1 0

1st MRS Even Flag
(e 1)

s 23 s 22 s 21 s 20 e 2

0 0 0 0 1
0 0 0 1 0
0 0 1 0 X
0 0 1 1 1
0 1 0 0 X
0 1 0 1 X
0 1 1 0 X
0 1 1 1 0
1 0 0 0 X
1 0 0 1 X
1 0 1 0 X
1 0 1 1 X
1 1 0 0 X
1 1 0 1 X
1 1 1 0 X
1 1 1 1 1

2nd MRS Even Flag
(e 2)

s 34 s 33 s 32 s 31 s 30 e 3

0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 X
0 0 0 1 1 1
0 0 1 0 0 X
0 0 1 0 1 X
0 0 1 1 0 X
0 0 1 1 1 0
0 1 0 0 0 X
0 1 0 0 1 X
0 1 0 1 0 X
0 1 0 1 1 X
0 1 1 0 0 X
0 1 1 0 1 X
0 1 1 1 0 X
0 1 1 1 1 1
1 0 0 0 0 X
1 0 0 0 1 X
1 0 0 1 0 X
1 0 0 1 1 X
1 0 1 0 0 X
1 0 1 0 1 X
1 0 1 1 0 X
1 0 1 1 1 X
1 1 0 0 0 X
1 1 0 0 1 X
1 1 0 1 0 X
1 1 0 1 1 X
1 1 1 0 0 X
1 1 1 0 1 X
1 1 1 1 0 X
1 1 1 1 1 0

3rd MRS Even Flag
(e 3)

Figure 5.39 Logic table for the even residue flags (, ,). 1e 2e 3e

196

e 3
s 33 00 01 11 10
s 32 00 1 0 1 X

01 X X 0 X
11 X X 1 X
10 X X X X

s 34 = 0

s 31 s 30 e 3
s 33 00 01 11 10
s 32 00 X X X X

01 X X X X
11 X X 0 X
10 X X X X

s 34 = 1

s 31 s 30

00 01 11 10
0 1 0 1 X
1 X X 0 X

s 12
e 1s 11 s 10

s 23 00 01 11 10
s 22 00 1 0 1 X

01 X X 0 X
11 X X 1 X
10 X X X X

e 2s 21 s 20

Figure 5.40 Logic minimization for the logic tables in Figure 5.39.

Using Figure 5.40, the logic equations for the even flags for each MRS are

1 10 11 12

2 23 20 21 22

3 33 34 30 31 32

,

,

.

e s s s

e s s s s

e s s s s s

= +

= + +

= + +

 (5.45)

Finally, the logic table and logic minimization maps for the computation of the

MRSS flags is provided in Figure 5.41. Using Figure 5.41, the logic equations for the

three MRSS flags are

0 3

1 3

2 2

,
,
.

1

2

1

MRSS e e
MRSS e e
MRSS e e

= ⊕
= ⊕

= ⊕

 (5.46)

In summary, the logic equations in this section compress the three thermometer-

coded RSNS residues in the incoming vector hX to position-bit-coded even 0th MRSS

RNS residues. Furthermore, this section provides the logic equations for the and oddF

MRSSF compensation factors. The next steps in the RSNS-to-binary conversion process as

shown in Figure 5.18 are computing the LPS positional solution, index expansion, and

index compensation.

197

e 3 e 2 e 1 MRSS 2 MRSS 1 MRSS 0

0 0 0 0 0 1
0 0 1 1 0 0
0 1 0 X X X
0 1 1 0 1 0
1 0 0 0 1 0
1 0 1 X X X
1 1 0 1 0 0
1 1 1 0 0 1

MRSS Flags

e 2 e 1 MRSS 1
00 01 11 10

0 0 0 1 X
1 1 X 0 0

e 3

e 2 e 1 MRSS 2
00 01 11 10

0 0 1 0 X
1 0 X 0 1

e 3

e 2 e 1 MRSS 0
00 01 11 10

0 1 0 0 X
1 0 X 1 0

e 3

Figure 5.41 Logic tables and minimization for the MRSS flags (0MRSS , 1MRSS ,

2MRSS).

3. LPS Positional Solution and Index Expansion/Compensation

The LPS positional alignment method computes the least positive solution to the

eight systems of congruence equations resulting from the application of (5.7) to the in-

coming RSNS vector residues. Aligning the RNS residue position bits computed in the

previous section as shown in Figure 5.29 is accomplished in hardware by using eight 3-

input NAND gates. Each NAND gate represents a column of position bits in Figure 5.29.

When M̂ starts on a 0th MRSS boundary and ends on a 2nd MRSS boundary, for each

RSNS residue vector within M̂ , the output of only one NAND gate will be asserted.

However, since this is not the case for this implementation, additional logic is necessary

to adjust for the fact that M̂ does not fit exactly within the solution range of the eight

NAND gates. The additional logic ensures that any solution in the center six NAND

gates has priority over a redundant solution that may appear in the first or eighth NAND

gate. This additional logic would not be necessary if M̂ were truncated to start on a 0th

MRSS boundary and end on a 2nd MRSS boundary. The output of the eight NAND gates

is converted to three binary bits using an 8-to-3 encoder.

198

The left circular shift of the position bits that relocate the M̂ lower bound to zero

is accomplished by wiring the position bits to the appropriate NAND gate. For instance,

referring to the position bit shift in Figure 5.29, the position bits are not wired to the

NAND gates in numerical order. Instead, position bits are rearranged as shown in the

figure, and then wired to the NAND gate bank in the order shown. No logic gates are re-

quired to perform the shift. This step is made even clearer by the schematics provided in

the following section.

The final step in the process is the conversion from the least positive solution to

the binary representation of the position of the RSNS vector within the bounds of M̂ .

The output of the NAND gates is the three-bit value , so a left shift (implemented

with wiring) converts the least positive solution to the four-bit index . Following

(5.35), is computed next. The factor

/ 2g

g

oddg F+ 1eoddF = since e is asserted when the first

MRS residue is even and therefore its complement is asserted when the first MRS

residue is odd. Furthermore, since is a four-bit left-shifted version of the three-bit

, the least significant bit (LSB) of is guaranteed to be zero. Therefore,

1

(1s

()1s

)

g

g/ 2g 1e can re-

place the LSB of with no additional logic required. Next, (5.35) requires the computa-

tion of

g

13()g e+

3 2

. Since a multiplier is a complex hardware function, it is easier to im-

plement X X X+= in hardware using a wired shift and an adder. To accomplish this

function, 1g e+ is shifted left one position to form ()1g e+2 and used as the inputs to a

six-bit adder. The concept is illustrated in Figure 5.42, where the notation refers to

the b

bg
th bit of the binary representation of index g.

3 2 1 0 1

3 2 1 0 1

' ' ' ' ' '
5 4 3 2 1 0

0g g g g e

g g g g e

h h h h h h

+
2X
X

3X

+

()

()

1

1

1

2

3

g e
g e

g e

+

+ +

+

Figure 5.42 Using an adder to implement multiplication by three.

199

Finally, (5.35) requires the addition of the MRSSF compensation factor. The MRSSF

compensation factor is represented by the signals 0MRSS and 2MRSS from (5.46), which

are the signals asserted if the residue vector is from the 1st or 2nd MRSS, respectively.

Fortunately, the left shift of 1g e+ provides a free LSB slot and the carry-in to the adder

provides another free LSB slot. This permits 1eg + , ()1g e2 + , 0MRSS , and 2MRSS to

be summed in a single adder as shown in Figure 5.43.

3 2 1 0 1 0 2

3 2 1 0 1

5 4 3 2 1 0

carry-ing g g g e MRSS MRSS

g g g g e

h h h h h h

←

+

Figure 5.43 Addition for converting least positive solution to binary.

The output of the adder is the binary representation of the position h within M̂

for the vector []1 2 3hX s s s Τ= . The next section provides the circuit descriptions and

schematics that implement the logic equations developed above.

4. RSNS-to-Binary Circuit Schematics

Figure 5.44 is a schematic of the hardware implementation of the RSNS-to-binary

conversion process for moduli [1 2 3] [3 4 5]m m m Τ Τ= . The dashed lines in the fig-

ure indicate the portions of the schematic that are shown enlarged in subsequent figures.

200

A

B

C

D

E

Figure 5.44 RSNS-to-binary conversion circuit for moduli

1 2 3[] [3 4 5]m m m Τ Τ= .

Figure 5.45 shows the portion of the design that applies (5.45) and (5.46) to gen-

erate e , e , e , 1 2 3 0MRSS , and 2MRSS from the RSNS residue thermometer code.

201

Figure 5.45 Circuit for generating e , e , e , 1 2 3 0MRSS , and 2MRSS (Figure 5.44 A).

Figure 5.46 shows the portion of the design that applies (5.41)-(5.44) to convert

the RSNS residue thermometer code to RNS residue position bits and select normal or

reversed position bits based on the residue vector MRSS. Nine two-to-one multiplexers

using the MRSS signals 0MRSS and 2MRSS as select inputs provide the mechanism for

generating normal or reversed position bits. Notice that only the position bits for the sec-

ond and third residue MRS require multiplexers as indicated in (5.7), (5.8), and (5.9).

202

Figure 5.46 Circuit selecting normal or reversed position bits (Figure 5.44 B).

Figure 5.47 highlights the portion of the converter design that connects the posi-

tion bits to the bank of eight LPS NAND gates.

203

Figure 5.47 Position bit connections to the LPS NAND gate bank (Figure 5.44 C).

204

Each NAND gate represents a column in Figure 5.29 and consequently each gate

has as many inputs as the columns have elements. The shift of the position bits to relo-

cate the M̂ lower bound to an index of zero is accomplished by wiring the position bits

to the appropriate NAND gate. Figure 5.48 shows the portion of the schematic that con-

verts the least positive solution from the bank of NAND gates to the three-bit posi-

tion.

/ 2g

Figure 5.48 Positional least positive solution of congruence equations (Figure 5.44 D).

The output of the eight NAND gates is converted to three binary bits using an 8-

to-3 encoder. The additional NAND, NOR, and inverter gates marked with an X in the

figure ensure that any solution in the center six NAND gates has priority over a redun-

dant solution that may appear in the first or last NAND gate. Redundancies can occur in

this scheme because M̂ in this case was not truncated to begin on a 0th MRSS boundary

and end on a 2nd MRSS boundary. If M̂ was truncated appropriately, the additional

gates would not be necessary and the circuit would be much simpler. The size of the M̂

would only be 36 rather than 43 and only 6 NAND gates would be required to compute

the least positive positional solution. Figure 5.49 shows the portion of the circuit that

converts the three-bit index to the six-bit index h using a five-bit carry look-ahead

adder with carry-out.

/ 2g

205

Figure 5.49 Converting to h using a six-bit carry look-ahead adder

(Figure 5.44 E).
/ 2g

Using the logic equations from the previous section, the LPS RSNS-to-binary cir-

cuit was relatively straightforward to construct and required only 550 transistors, which is

less than a third of the size of the decoder and one-tenth the size of the ROM (based on

transistor count). Furthermore, this circuit can be pipelined with as few as six pipeline

registers to achieve fast operation speeds. The techniques used to form the three-modulus

LPS RSNS-to-binary converter can be extended to the general N-modulus converter case.

The next section presents a procedure for the design of compact, high-speed N-modulus

RSNS-to-binary converters.

D. N-MODULUS RSNS-TO-BINARY LPS CONVERSION

The N-modulus RSNS-to-binary conversion follows the same procedure as the

three-modulus RSNS-to-binary conversion process detailed in Figure 5.18. The N-

modulus form of (5.35) is

()odd MRSSh N g F F ,= + + (5.47)

206

where

()

1

1

th

st

st

0 if is even
,

1 if is odd

0 if 0 MRSS
1 if 1 MRSS

.

1 if -1 MRSS

odd

MRSS

s
F

s

F

N N

 
=  

 

 
 
 =  
 
 − 

M M

 (5.48)

The index g for the N-modulus case is computed in a similar manner to the three-

modulus case. The first step is the computation of the RNS position bits from the RSNS

thermometer code bits. Recall that the logic equations for the three-modulus position bit

computation from (5.41), (5.43), and (5.44) are

10 11

11 11

12 10 12

,
,

,

p s
p s

p s s

=
=

=

 (5.49)

for a modulus of three,

20 21

21 21 23

22 22

23 20 22

,

,
,

,

p s

p s s
p s

p s s

=

=

=

=

 (5.50)

for a modulus of four, and

30 31

31 31 33

32 33

33 32 34

34 30 32

,

,
,

,

,

p s

p s s
p s

p s s

p s s

=

=

=

=

=

 (5.51)

for a modulus of five. Extending these examples to the general case results in the RNS

position bit logic equations

207

0 1

1 1 3

2 3 5

3 5 7

(3) (1)
1

2

(2)
2

(4) (2)
1

2

(3) 6 8

(2) 4 6

(1) 2 4

(1) 0 2

,

,

,

,

,

,

,

,

,

,

,

i ii

ii

i ii

i

i

i

i

i i

i i i

i i i

i i i

i m i mm
i

i mm
i

i m i mmi

i m i i

i m i i

i m i i

i m i i

p s

p s s

p s s

p s s

p s s

p s

p s s

p s s

p s s

p s s

p s s

− − − 
 

− 
 
 

− − + 
 

−

−

−

−

=

=

=

=

=

=

=

=

=

=

=

M

M

 (5.52)

when the modulus is even, and results in the RNS position bit logic equations

208

0 1

1 1 3

2 3 5

3 5 7

(4) (2)
1

2

(1)
2

(3) (1)
1

2

(3) 6 8

(2) 4 6

(1) 2 4

(1)

,

,

,

,

,

,

,

,

,

,

i ii

ii

i ii

i

i

i

i

i i

i i i

i i i

i i i

i m i mmi

i mm
i

i m i mmi

i m i i

i m i i

i m i i

i m

p s

p s s

p s s

p s s

p s s

p s

p s s

p s s

p s s

p s s

p

− −  −    

−  
    

− −  +    

−

−

−

−

=

=

=

=

=

=

=

=

=

=

M

M

0 2 ,i is s=
 (5.53)

when the modulus is odd. The variable is the modulus and the subscript i is the MRS

number.

im

The conditional position bit reversal is accomplished in the same manner as the

three-modulus case. The position bits in all MRSs except the first MRS are wired to 2-

to-1 multiplexers, with the bits ordered according to (5.52) and (5.53) connected to one

input of the multiplexer and the reversed bits connected to the other multiplexer input.

The multiplexer select is controlled by the MRSS flags as in the three-modulus case.

Like the three-modulus case, the N-modulus LPS RSNS-to-binary conversion re-

quires computation of the even residue flags and the MRSS residue flags. The logic

equations for the three-modulus even residue flags from (5.45) are

209

1 10 11 12

2 20 21 22 23

3 30 31 32 33 3

,

,

.

e s s s

e s s s s

e s s s s s

= +

= + +

= + + 4

 (5.54)

Extending these examples to the general N-modulus case results in

0 1 2 3 4 (ii i i i i i i me s s s s s s 1)−= + + + +L , (5.55)

for an even modulus, and

0 1 2 3 4 (2) (i ii i i i i i i m i me s s s s s s s 1)− −= + + + +L , (5.56)

for an odd modulus. Similarly, the logic equations for the three-modulus MRSS flags

from (5.45) are

0 3

1 3

2 2

,
,
.

1

2

1

MRSS e e
MRSS e e
MRSS e e

= ⊕
= ⊕

= ⊕

 (5.57)

Extending these examples to the N-modulus case produces

1 1 2

2 2 3

2 2

1 1

0 1

,
,

,

,

.

N

N

N N

N N

N

MRSS e e
MRSS e e

MRSS e e

MRSS e e

MRSS e e

−

−

1− −

−

= ⊕

= ⊕

= ⊕

= ⊕

= ⊕

M
 (5.58)

Like the three-modulus example, the computation of the N-modulus least positive

solution is performed using a bank of NAND gates. The index compression factor was

determined in the previous section to be 2N the number of N-input NAND gates required

in the LPS bank was given by (5.30) where M̂ is the longest sequence of unique RSNS

vectors in the fundamental period. For the N-modulus case, M̂ is assumed to be trun-

cated such that it begins on a 0th MRSS boundary and ends on an MRSS bound-th(1)N −

210

ary. This means that M̂ will be an even multiple of 2N and there will be no redundancy

problems at the extreme ends of the NAND gate LPS bank.

Correctly connecting the position bits to the LPS NAND gate bank shifts the

lower bound of M̂ to the first NAND gate. Consequently, all M̂ vector positions are

contained within the number of NAND gates given by (5.30). The position bits in each

MRS computed by (5.52) or (5.53) must be left shifted by an amount equal to the corre-

sponding RNS residue in the vector
starthXR , where starth is the index of the 0th MRSS vec-

tor greater or equal to the lower bound of M̂ .

Since the output of only one LPS NAND gate is asserted for each RSNS residue

vector within M̂ , the output of the NAND bank is converted to a binary representation

with a standard encoder. The output of the encoder is the index . The number of bits

required for the binary representation of the index at the output of the encoder is

/ 2g

/ 2g

2

ˆ
log

2
Mb
N

 
= 

 
 . (5.59)

Like the three-modulus case, the last step in the RSNS-to-binary conversion proc-

ess is computing the unknown value h from the b-bit index . This is accomplished

by means of the relationship provided in (5.47), which represents the expand and com-

pensate portion of the compress-solve-expand-compensate procedure described in Figure

5.18. First, the binary representation of is shifted left one position to form the index

g. Next, since the compensation factor is always

/ 2g

/ 2g

oddF 1e as shown in the three-modulus

converter, 1e becomes the LSB, forming oddg F+ . The next expansion, multiplying this

result by N, is an interesting problem. For the three-modulus case, the trick

 was used so that a simple adder could be used in place of a multiplier. For

a case where the number of MRSs is a power of two, the multiplication can be accom-

plished solely by wired shifts. For other cases, combinations of wired shifts and adders

may be used. As an example, for the six-modulus case, 6X

3X 2X= X+

4X 2X= + , where 4X and

2X may be formed by two-bit and one-bit wired shifts, respectively. As a last resort, a

211

multiplier may be used to compute ()oddN g F+ . Finally, the MRSS compensation flag

bits MRSSF generated using (5.58) can be incorporated into the empty least significant bits,

created by the left-shifts of the addend, and the carry-in of the adder as in the three-

modulus case. However, if N is a power of two, the MRSS compensation flag bits are the

least significant bits of the final solution and no adder or multiplier is required. Evi-

dently, when N is a power of two, there are several advantages to RSNS-to-binary con-

version using the LPS solution method. The next section implements a four-modulus

RSNS-to-binary converter to illustrate an application of the theory presented in this sec-

tion as well as decode the output of the four-channel ADC designed in Chapter III.

4()oddh g F+ +

1

1

0 if
1 if

0 if 0
1 if 1
2 if 2
3 if 3

odd

s
s


= 



= 



E. FOUR-MODULUS RSNS-TO-BINARY LPS CONVERTER

1. Logic Design

For the four-modulus RSNS-to-binary converter, the conversion equation from

(5.47) is

,MRSSF= (5.60)

where

th

st

nd

rd

 is even
,

 is odd

 MRSS
 MRSS

.
 MRSS
 MRSS

MRSS

F

F




 








 

 (5.61)

Since the four-modulus RSNS-to-binary converter designed in this section will decode

the thermometer code bits from the output of the four-channel ADC in Chapter III, the

design moduli must be identical. The moduli set used for the ADC and the converter was

[] []1 2 3 4 3 5 8 11m m m m = .

212

The position bit logic equations for the first MRS, modulus 3, and the second

MRS, modulus 5, were given in (5.49) and (5.51). The third MRS has an even modulus,

modulus 8, so the position bit logic equations using (5.52) are

30 31

31 31 33

32 33 35

33 35 37

34 36

35 34 36

36 32 34

37 30 32

,

,

,

,
,

,

,

.

p s

p s s

p s s

p s s
p s

p s s

p s s

p s s

=

=

=

=
=

=

=

=

 (5.62)

The fourth MRS, modulus 11, is odd so (5.53) is applied and the position bit logic equa-

tions are

40 41

41 41 43

42 43 45

43 45 47

44 47 49

45 49

46 48 410

47 46 48

48 44 46

49 42 44

410 40 42

,

,

,

,

,
,

,

,

,

,

.

p s

p s s

p s s

p s s

p s s
p s

p s s

p s s

p s s

p s s

p s s

=

=

=

=

=

=

=

=

=

=

=

 (5.63)

The conditional position bit reversal is accomplished in the same manner as the

three-modulus case. The position bits in all MRSs except the first MRS are wired to 2-

to-1 multiplexers, with the normal position bits connected to one input of the multiplexer

and the reversed position bits connected to the other input.

213

From (5.55) and (5.56), the logic equations for the even residue flag computation

for each MRS are

1 10 11 12

2 20 21 22 23 24

3 30 31 32 33 34 35 36 37

4 40 41 42 43 44 45 46 47 48 49 410

,

,

,

.

e s s s

e s s s s s

e s s s s s s s s

e s s s s s s s s s s s

= +

= + +

= + + + +

= + + + + +

 (5.64)

From (5.58), the logic equations for the MRSS flags are

3 1 2

2 2 3

1 3 4

0 4 1

,
,
,

.

MRSS e e
MRSS e e
MRSS e e

MRSS e e

= ⊕

= ⊕

= ⊕

= ⊕

 (5.65)

Using (5.30) and the fact that M̂ for the 8-bit ADC was truncated to 256, the

number of 4-input NAND gates required in the LPS solution bank is 32. Using the

search algorithm from Chapter IV, the lower bound of the truncated M̂ was found to be

, and the RNS vector was determined to be 2616starth = []2616 7 8XR Τ= 0 2 . There-

fore, left shifting the first, second, third, and fourth MRS position bits by zero, two,

seven, and eight positions, respectively, before connecting them to the LPS NAND gate

bank shifts the lower bound for M̂ to the first NAND gate.

The 32-bit output of the LPS NAND gate bank is converted to a 5-bit binary value

using a 32-to-8 encoder. The 5-bit output of the encoder is the index . The relation-

ship provided in (5.60) is used to convert to the unknown incoming value h. First,

the 5-bit is shifted left one position and the compensation factor

/ 2g

/ 2g

/ 2g 1=oddF e becomes

the LSB to form . Multiplying this result by four is be accomplished by a two-

bit wired shift since four is a power of two and therefore a special case in the LPS RSNS-

to-binary conversion. Thus, the binary representation of the unknown incoming value h

thus far is

oddg F+

[] []7 6 5 4 3 2 1 0 4 3 2 1 0 1 0 0h h h h h h h h g g g g g e= . (5.66)

214

The two least significant bits represent the MRSS compensation flag bits MRSSF and are

the binary representation of the MRSS of the incoming residue vector hX generated us-

ing (5.65). The MRSSF bits corresponding to the RSNS vector MRSS are provided in

Figure 5.50.

MRSS MRSS 3 MRSS2 MRSS1 MRSS 0

0 0 0 0 0 0 1
1 0 1 0 0 1 0
2 1 0 0 1 0 0
3 1 1 1 0 0 0

MRSS Compensation Bits

0fMRSS1fMRSS

Figure 5.50 MRSS compensation bits logic table.

Using Figure 5.50, the logic equations for the MRSS compensation are

0 0

1 2

,
,

1

3

fMRSS MRSS MRSS
fMRSS MRSS MRSS

= +
= +

 (5.67)

where 0fMRSS and 1fMRSS are the bit that make up the two-bit binary representation of

the MRSS compensation factor MRSSF . Therefore, the final binary representation of the

position h for the thermometer-coded residue vector hX is

[] []7 6 5 4 3 2 1 0 4 3 2 1 0 1 1 0h h h h h h h h g g g g g e fMRSS fMRSS= . (5.68)

Consequently, this section has provided all of the necessary logic equations and concepts

to construct the circuits for the hardware implementation of the four-modulus LPS

RSNS-to-binary converter.

215

2. RSNS-to-Binary Decoder Schematics

This section provides the circuit schematics for the four-modulus RSNS-to-binary

converter for [] []1 2 3 4 3 5 8 11m m m m = , based on the logic equations in the

previous section. Figure 5.51 provides the schematic for the four-modulus RSNS-to-

binary converter showing the position bit generation, LPS NAND gate bank, and associ-

ated M̂ lower bound shift wiring. Figure 5.52 shows the details of the reverse position

bit selectors for each MRS. Figure 5.53 provides a schematic of the 32-to-8 encoder. Fi-

nally, Figure 5.54 provides a schematic of the even residue flag and MRSS flag genera-

tion circuitry.

216

MRSS
FMRSS bit 0

FMRSS bit 1

FoddMRSS
FMRSS bit 0

FMRSS bit 1

Fodd

217
Figure 5.51 Four-modulus RSNS-to-binary converter schematic.

Figure 5.52 Reverse position bit selector circuit schematic.

218

Figure 5.53 Schematic of the 32-to-8 encoder circuit.

219

Figure 5.54 Even residue flag and MRSS flag generation circuit schematic.

In round numbers, the transistor count for this implementation was approximately

900 minimum-sized transistors. In contrast, conservative estimates for the ROM and de-

coder methods proposed at the beginning of this chapter are 295,000 transistors and

11,000 transistors, respectively. Consequently, the four-modulus RSNS-to-binary im-

plementation is at least an order of magnitude smaller than the decoder and two orders of

magnitude smaller than the ROM. Figure 5.55 shows a graph transistor count versus M̂

for five representative four-modulus systems. The obvious trend is that the LPS RSNS-

to-binary conversion method is consistently over 10 times smaller than the decode con-

version method and over 100 times smaller than the ROM conversion method. Further-

more, the conversion implementation presented in this section is easily pipelined to pro-

duce high-speed circuit operation.

220

0 500 1000 1500 2000 2500
10

2

10
3

10
4

10
5

10
6

10
7

10
8 Estimated Transistor Count for RSNS-to-Binary Conversion Methods

Longest Sequence of Unique RSNS Vectors

Tr
an

sis
to

r C
ou

nt
 (l

og
 sc

al
e)

Algorithm conversion
ROM conversion
Decoder conversion

Figure 5.55 Transistor count comparison of three RSNS-to-binary conversion

methods.

F. SIMULATION RESULTS

1. Three-modulus RSNS-to-Binary Conversion

The RSNS thermometer code output of the three-channel ADC from Chapter III

was used to test the three-modulus RSNS-to-binary conversion circuit. Both the decoder

and the LPS conversion circuits shown in Figure 5.1 and Figure 5.44 were connected to

the ADC in parallel as shown in Figure 5.56 so that each conversion circuit received the

same thermometer code signals from the ADC. The circuit was clocked at 200 MHz be-

cause neither conversion circuit was pipelined to match the 1-GHz speed used for testing

the front end of the ADC.

221

Figure 5.56 Three-channel ADC with decoder converter and LPS converter circuits.

The simulation results for both converters are shown in Figure 5.57. The two

conversion methods produced the exact same binary output within the ADC dynamic

range. The DNL and INL are the same as shown in Chapter III and are less than one half

of an LSB for both conversion methods, as expected.

222

Figure 5.57 Three-channel ADC simulation results for LPS and decoder RSNS-to

binary conversion methods.

2. Four-Modulus RSNS-to-Binary Conversion

The RSNS thermometer code output of the four-channel ADC from Chapter III

was used to test the four-modulus LPS RSNS-to-binary conversion circuit. The circuit

was clocked at 250 MHz because the four-modulus converter design was not pipelined to

match the 1-GHz clock used for testing the front end of the four-channel ADC. The

simulation results for the four-channel ADC with LPS RSNS-to-binary conversion are

shown in Figure 5.58. The binary output is linear, monotonic, and no codes are missing.

The DNL and INL are the same as shown in Chapter III.

223

0

100

200

300
Decimal Output

D
ec

im
al

 V
al

ue

0

1

2

3
Modulus 3 Thermometer Code Sum

Re
sid

ue
 V

al
ue

0

2

4

Modulus 5 Thermometer Code Sum

Re
sid

ue
 V

al
ue

0

2

4

6

8
Modulus 8 Thermometer Code Sum

Re
sid

ue
 V

al
ue

0 500 1000 1500 2000 2500
0

5

10

Modulus 11 Thermometer Code Sum

Re
sid

ue
 V

al
ue

time (ns)
Figure 5.58 Four-channel ADC with RSNS-to-binary conversion.

The four-modulus RSNS-to-binary conversion circuit was also simulated in the

same fabrication process as the DIS circuit to see if the conversion circuit would be able

to produce I and Q signals at the rate required by the DIS circuit. The fabrication process

used was a Taiwan Semiconductor 0.18-micrometer CMOS process. Since the process

was not a mixed-signal process, the four-channel ADC was unable to be used in the simu-

lation. Instead, the SmartSpice simulator generated the ADC thermometer code bits. The

results of the simulation are shown in Figure 5.59. The decimal output ramp is perfectly

linear, monotonic, and has no missing codes. Furthermore, since perfect thermometer

code bits were generated by the simulator, the DNL and INL were both zero at each out-

put code.

224

0

100

200

300
Decimal Output

D
ec

im
al

 V
al

ue

0

1

2

3
Modulus 3 Thermometer Code Sum

Re
sid

ue
 V

al
ue

0

2

4

Modulus 5 Thermometer Code Sum

Re
sid

ue
 V

al
ue

0

2

4

6

8
Modulus 8 Thermometer Code Sum

Re
sid

ue
 V

al
ue

0 50 100 150 200 250 300
0

5

10

Modulus 11 Thermometer Code Sum

Re
sid

ue
 V

al
ue

time (ns)
Figure 5.59 Four-modulus RSNS to binary conversion.

G. SUMMARY

225

This chapter presented three methods to convert RSNS thermometer code to bi-

nary. The ROM and decoder conversion methods, although conceptually simple, pro-

duced designs that were at least ten to one hundred times larger in terms of transistor

count than the LPS conversion method. Furthermore, the LPS conversion method lends

itself nicely to pipelining in order to achieve high operation speeds. The circuit schemat-

ics were presented for three-modulus and four-modulus RSNS-to-binary converters, and

correct operation was verified by SPICE simulation of the decoders connected to the

ADCs from Chapter III. In addition, a simple, detailed design procedure was presented

that facilitates the construction of N-modulus LPS RSNS-to-binary converters.

The next chapter summarizes the research accomplishments presented in this dis-

sertation. The essence of the original contributions offered in this work reiterated. Sug-

gestions for future work are also provided.

226

VI. CONCLUSIONS AND FUTURE WORK

This dissertation investigated the concept of an electronic warfare system-on-a-

chip that includes a digital image synthesizer capable of producing false targets in re-

sponse to imaging radar interrogations. In order to make the concept feasible, the DIS

was studied in detail to obtain the optimum architecture. A new circuit was then devel-

oped for global-clock-signal distribution and synchronization since this problem, if left

unresolved, would prevent implementation. Next, a novel compact, high-speed, and low-

power RSNS folding ADC design was presented. The ADC is a necessary and critical

component of the system-on-a-chip. In the course of the ADC research and design, new

three-modulus and N-modulus RSNS theory was developed and used to create analytic

formulas and an efficient search algorithm to compute the largest sequence of unique

RSNS vectors. The remainder of this chapter describes the research and conclusions of-

fered in this dissertation and outlines areas of future work.

A. CONCLUSIONS

Chapter II analyzed the current DIS architecture. Two particular computational

redundancies were discovered that, if replaced with the mathematically equivalent cir-

cuits provided in the chapter, would result in a DIS design with a significantly reduced

layout area and reduced power consumption. In addition, it was shown that the clock dis-

tribution scheme in the current DIS was inefficient and not compatible with a SoC design

process. A novel automatic clock synchronization and skew control scheme was intro-

duced that decreased SoC design time and increased counter-click pipelined circuit reli-

ability. The C2 pipeline synchronization theory, circuit schematics, and simulation results

provided a comprehensive description and verification of the automatic synchronization

design. Furthermore, fabrication and testing of the proof-of-concept automatic clock

synchronization chip provided additional verification of the design.

 227

Chapter III presented the circuit design for two RSNS folding ADCs. Both de-

signs were simulated using a SiGe mixed-signal fabrication process used for commercial

SoC products. The circuit design for the folding amplifiers, individual folding stages,

and latched comparators used in the RSNS folding ADC were described in detail. The

three-channel RSNS ADC design procedure was extended to construct a four-channel,

eight-bit RSNS folding ADC for converting the analog radar interrogation pulses to the

eight-bit digital form required by the DIS. Comprehensive circuit schematics were pro-

vided for both ADC designs. Correct operation was verified by simulation results.

Chapter IV extended the previous two-modulus RSNS research into detailed

mathematical descriptions for the three-modulus and N-modulus RSNS. Using the theory

developed in the chapter, a new expression for the M̂ length and position for the popular

set of moduli (for m even) was presented. A novel GIS-based RSNS cir-

cle representation was developed to provide a format more suitable to visual analysis of

the RSNS pattern recognition. As a result, enough exploitable properties of the RSNS

were discovered that enabled the development of a new and efficient

1, , 1m m m− +

M̂ search algo-

rithm, SmartSearch. The speed and memory efficiency of SmartSearch is several orders

of magnitude above the only other known M̂ search algorithm.

Chapter V presented three methods to convert RSNS thermometer code to binary.

The ROM and decoder conversion methods, although conceptually simple, produced de-

signs that were at least ten to one hundred times larger in terms of transistor count than

the LPS conversion method. Furthermore, the LPS conversion design is easily pipelined

to achieve high operation speeds. The circuit schematics were presented for three-

modulus and four-modulus RSNS-to-binary converters, and correct operation was veri-

fied by SPICE simulation of the decoders themselves and also with the decoders con-

nected to the ADCs from Chapter III. In addition, a general N-modulus LPS RSNS-to-

binary converter design procedure was presented.

 228

B. FUTURE WORK

There is extensive opportunity for future research in the areas covered by this dis-

sertation. The most obvious is completing the design, fabrication, and testing of the DIS

EW SoC. The remaining DAC and high-speed memory components must be designed,

or purchased from commercial intellectual property (IP) core manufacturers, and inte-

grated with the DIS, eight-bit RSNS folding ADC, and eight-bit RSNS-to-binary con-

verter.

The automatic clock synchronization scheme presented in Chapter II should be in-

tegrated into the current DIS design. The primary modification to the design is that the

variable delay module in the clock synchronization circuit is replaced by the delay ad-

justment elements in each DIS range bin.

Although the mathematical description of the RSNS redundancies in Chapter IV

is complete, there is still the task of eliminating the M̂ search program and discovering a

closed-form analytic solution for the longest sequence of unique RSNS vectors for the

general N-modulus case. Furthermore, an overall theorem that encompasses all SNS

formulations as special cases is also of interest.

Future work for the ADC designs in Chapter III include design of a more efficient

and compact comparator and the layout, fabrication, and testing of a hardware implemen-

tation of an RSNS folding ADC. Similarly, the RSNS-to-binary converter designs in

Chapter V should be implemented in a field programmable gate array (FPGA) to provide

hardware verification of the conversion algorithm.

 229

THIS PAGE INTENTIONALLY LEFT BLANK

 230

APPENDIX A CLOCK SYNCHRONIZATION CHIP LAYOUT

The physical layout for the clock synchronization chip is provided in this Appen-

dix. The layout was performed using Silvaco Expert version 3.4.10.R. The first section

provides illustrations of the layout for basic circuit elements such as simple logic gates

and pads. The second section provides images of the physical layout for intermediate

modules such as flip-flops. The final section provides images of all major modules and

the pad ring. A legend for the fabrication process layers used in the layout illustrations in

this Appendix is provided in Figure A.1.

Active

Poly

Metal 1

Metal 2

Contact

Via

N-select

P-select

N-well

Glass

Pads

Active

Poly

Metal 1

Metal 2

Contact

Via

N-select

P-select

N-well

Glass

Pads
Figure A.1 Fabrication process physical layer legend.

A. BASIC ELEMENT LAYOUT

 231

Layout for the basic circuit elements used in the clock synchronization circuit is

shown in Figure A.2. They include a minimum-sized inverter, a double-sized inverter, a

passgate, NAND and NOR gates with two, three, four, and five inputs, a buffer, and a

two-input XNOR. The figure also shows the layout for a 2-to-1 multiplexer and the

tuned four-input NAND (NAND4x2) used in the phase check module.

Figure A.2 Physical layout of basic circuit elements.

 232

The top of the figure shows the relative size of the elements as well as their dis-

play name. The bottom of the figure shows the detailed layout of the logic elements cor-

responding to the blocks at the top of the diagram. As much as possible, the physical

layout distance between the power and ground supply rails was kept constant and the gate

inputs and outputs were placed in uniform position from gate to gate so that they could be

connected together without unnecessary additional routing.

The circuit elements used in the pad ring are shown in Figure A.3. They include a

driver for driving off-chip signals, a pad for external connections, a receiver for driving

on-chip signals, and an electrostatic discharge (ESD) protection circuit.

 233

Figure A.3 Physical layout of pad ring elements.

 234

B. INTERMEDIATE COMPONENT LAYOUT

The layout for the intermediate circuit components used in the clock synchroniza-

tion circuit is provided in this section. The D-flip-flop is shown in block form in Figure

A.4 and with details in Figure A.5. Notice the heights of the inverters are the same and

the inputs to the inverters are on the left while the outputs are on the right. This enables a

compact layout for larger modules with a minimum of additional wiring. Furthermore,

modules such as the D-flip-flop can be neatly stacked or attached end-to-end to form lar-

ger compact layouts.

Figure A.4 Block outline of D-flip-flop.

Figure A.5 Detailed layout of D-flip-flop.

The toggle flip-flop is shown in block form in Figure A.6 and with details in

Figure A.7. The left-most section of the layout shows the custom-designed function se-

lect passgates that form the logic behind the hold, clear, load, and toggle functions of the

toggle flip-flop.

 235

Figure A.6 Block outline of T-type flip-flop.

Figure A.7 Detailed layout of T-type flip-flop.

Figure A.8 and Figure A.9 provide the block structure and detailed layout of the

16-to-1 multiplexer delay modules. The inverter chain surrounding the 16-to-1 multi-

plexer is connected such that there are two minimum-sized inverters between each multi-

plexer input.

Figure A.8 Block Outline of 16x1 multiplexer delay module.

 236

Figure A.9 Detailed layout of 16x1 multiplexer.

Figure A.10 and Figure A.11 provide the block and detailed layout of the five-bit

counter, which is primarily composed of four toggle flip-flops and a few two-input

NAND and NOR gates.

Figure A.10 Block outline of five-bit counter.

 237

Figure A.11 Detailed layout of five-bit counter.

Finally, Figure A.12 provides the layout of the pad ring that surrounds the clock

synchronization circuit. Only 26 of the 40 pins were used for input and output signals,

power, and ground. The nine driver circuits for driving signals off-chip are clearly visi-

ble on the diagram. The four corner pads supply power and ground to the pad ring ele-

ments.

 238

Figure A.12 Detailed layout of the synchronization chip pad ring.

C. MAJOR COMPONENT LAYOUT

The layout for the major components used in the clock synchronization circuit is

provided in this section. They include the FSM, phase-check circuit, five-bit wraparound

counter, and variable delay module. Finally, the layout for the entire chip is presented at

the end of the section along with a photograph of the fabricated chip. The FSM is shown

in block form in Figure A.13 and with details in Figure A.14.

 239

Figure A.13 Block outline of finite state machine.

Figure A.14 Detailed layout of finite state machine.

 240

Figure A.15 and Figure A.16 provide the block and detailed layout of the phase-

check circuit. In the center of the circuit is the tunable NAND4x2 that is the heart of the

phase-check circuit.

Figure A.15 Block outline of phase-check circuit.

Figure A.16 Detailed layout of phase-check circuit.

 241

Figure A.17 and Figure A.18 provide the block and detailed layout of the five-bit

wraparound counter. The circuit primarily consists of the five-bit counter from the previ-

ous section with additional logic to implement the roll over function.

Figure A.17 Block outline of five-bit counter with wraparound.

Figure A.18 Detailed layout of five-bit counter with wraparound.

 242

Figure A.19 and Figure A.20 provide the block and detailed layout of the variable

delay module. The circuit consists two 16-to-1 multiplexer delay modules connected in

series. No additional glue logic is required.

Figure A.19 Block outline of variable delay module.

 243

Figure A.20 Detailed layout of variable delay module.

Figure A.21 provides detailed physical layout of the entire proof-of-concept clock

synchronization test chip. The two variable delay modules are on the left of the diagram,

the counter is in the center, and the FSM and phase-check module are on the right. No-

tice that the design uses less than half of the 2.2 by 2.2 square millimeter chip cavity.

 244

Figure A.21 Detailed layout of entire chip and pad ring.

Figure A.22 is a picture of the fabricated chip and bond wires in the ceramic pack-

aging. Figure A.23 is the same picture with the center enlarged approximately six times

so that the structure of the layout from Figure A.21 is visible.

 245

Figure A.22 Chip photograph.

Figure A.23 Enlarged chip photograph showing circuit layout and pad ring detail.

 246

APPENDIX B CLOCK SYNCHROMIZATION DETAILED
SIMULATION RESULTS

The first section in this Appendix provides detailed simulation data on all of the

logic gates employed in the design of the clock synchronization chip. The second section

provides schematics and verification simulation results for the intermediate circuit ele-

ments used compose the major modules described in Chapter II. All simulations were

performed using both Silvaco Parallel SmartSpice version 2.6.0.R and Tanner T-Spice

Pro version 7. The simulation results for each gate or module were consistent for both

versions of SPICE. The simulation results provided in this section are from the Silvaco

software. The device models and model parameters were provided by MOSIS for the

AMI Semiconductor (AMIS) ABN process [26]. The model parameters obtained from

MOSIS were the average of measured parameters taken from test structures on several

wafers in the same lot as the wafer containing the clock synchronization chip.

A. BASIC LOGIC GATES

The logic gates from the clock synchronization design are listed in the table in

Figure B.1.

Logic gate NMH (V) NML (V) RISE (s) FALL (s) TPLH (s) TPHL (s) PWR (W)
Inverter 1.73 1.18 7.11E-10 9.28E-10 3.96E-10 5.33E-10 3.72E-03
Inverter2x 1.72 1.16 4.87E-10 6.21E-10 2.85E-10 4.17E-10 5.98E-03
Buffer 2.72 2.35 4.92E-10 5.47E-10 7.00E-10 6.64E-10 5.93E-03
NAND2 1.75 0.88 7.49E-10 1.66E-09 4.20E-10 8.08E-10 3.51E-03
NAND3 1.98 0.55 7.91E-10 2.47E-09 4.39E-10 1.15E-09 3.33E-03
NAND4x2 1.56 0.67 7.08E-10 1.67E-09 4.16E-10 8.22E-10 4.03E-03
NOR2 1.52 1.18 1.39E-09 1.09E-09 7.53E-10 6.35E-10 2.75E-03
NOR3 1.32 1.22 2.19E-09 1.28E-09 1.19E-09 7.07E-10 2.74E-03
NOR5 (4) 1.8 0.57 1.57E-09 2.20E-09 7.64E-10 2.64E-03
NOR5 (2) 1.8 0.57 2.64E-09 1.12E-09 1.50E-09 5.46E-10 2.64E-03
XNOR2 2.6 2.35 7.37E-10 1.66E-09 1.14E-09 1.48E-09 3.92E-03
Passgate (4) 1.79E-09 1.58E-09 4.60E-10 3.30E-10 2.30E-04
Passgate (2) 1.09E-09 9.31E-10 2.44E-10 1.82E-10 2.30E-04

247

Figure B.1 Detailed simulation data for clock synchronization chip logic gates.

The columns in the figure are noise margin high (NMH) and noise margin low

(NML), rise time (RISE) and fall time (FALL), gate delay propagating low-to-high

(TPLH) and high-to-low (TPHL), and the power consumed by the gate (PWR). The cor-

rect operation of the logic gates was verified using simulations with 100-MHz, 50%-

duty-cycle square-wave input signals. The rise and fall times of the input signals were

approximately one nanosecond. For each simulation, the output of each gate was loaded

with four minimum-sized inverters except for the passgate and NOR5, which were simu-

lated with four inverter loads as well as two inverter loads. NMH and NML do not apply

to the passgate and so are represented by blank cells figure. The blank cell representing

the NOR5 rise time with four inverter loads is due to the fact that the logic gate could not

achieve a logic high under the stimulation conditions described above. Graphs of the

data in Figure B.1 are provided in Figure B.2, Figure B.3, Figure B.4, and Figure B.5.

Noise Margins

0

0.5

1

1.5

2

2.5

3

Inverter Inverter2x Buffer NAND2 NAND3 NAND4x2 NOR2 NOR3 NOR5 (4) NOR5 (2) XNOR2

Logic Gate

V
ol

ts NMH (V)
NML (V)

Figure B.2 Logic gate noise margins.

248

Logic Gate Rise and Fall Times

0.00E+00

5.00E-10

1.00E-09

1.50E-09

2.00E-09

2.50E-09

3.00E-09

Inv
ert

er

Inv
ert

er2
x

Buff
er

NAND2

NAND3

NAND4x
2

NOR2
NOR3

NOR5 (
4)

NOR5 (
2)

XNOR2

Pass
ga

te
(4)

Pass
ga

te
(2)

Logic Gate

Se
co

nd
s

RISE (s)
FALL (s)

Figure B.3 Logic gate rise and fall times.

Logic Gate Delay

0.00E+00

5.00E-10

1.00E-09

1.50E-09

2.00E-09

2.50E-09

Inv
ert

er

Inv
ert

er2
x

Buff
er

NAND2

NAND3

NAND4x
2

NOR2
NOR3

NOR5 (
4)

NOR5 (
2)

XNOR2

Pass
ga

te
(4)

Pass
ga

te
(2)

Logic Gate

Se
co

nd
s

TPLH (s)
TPHL (s)

Figure B.4 Logic gate delay.

249

Peak Power Per Logic Gate

0.00E+00

1.00E-03

2.00E-03

3.00E-03

4.00E-03

5.00E-03

6.00E-03

7.00E-03

Inv
ert

er

Inv
ert

er2
x

Buff
er

NAND2

NAND3

NAND4x
2

NOR2
NOR3

NOR5 (
4)

NOR5 (
2)

XNOR2

Pass
ga

te
(4)

Pass
ga

te
(2)

Logic Gate

W
at

ts

PWR (W)

Figure B.5 Graph of peak power for each logic gate.

B. INTERMEDIATE CIRCUIT COMPONENTS

The intermediate circuit components are the circuits used to the major modules of

the clock synchronization chip described in Chapter II. They include the 2-to-1 multi-

plexer, D-flip-flop and toggle flip-flop, and 16-to-1 multiplexer. Complete schematics

and verification simulation results are provided in this section for the intermediate circuit

components. In addition, power dissipation simulation results are provided at the end of

this section for all intermediate circuits as well as for the major modules.

The schematic for the 2-to-1 multiplexer circuit is given in Figure B.6. Although

this design is not as compact as passgate-based multiplexers, it provides better drive ca-

pability and a more predictable path delay when used as a building block in a larger mul-

tiplexer. The operation of the two-to-one multiplexer circuit was verified by simulation

and a plot of selected simulation results is provided in Figure B.7.

250

Out

InA

InB
Select

Select_not

Figure B.6 Schematic of the 2-to-1 multiplexer circuit.

0

2

4

Two-to-One Multiplexer

in
A

 (V
)

0

2

4

in
B

(V
)

0

2

4

Se
le

ct
 (V

)

0 20 40 60 80 100 120
0

2

4

Se
le

ct
N

ot
 (V

)

Time (ns)
Figure B.7 Simulation results for the 2-to-1 multiplexer circuit.

The schematic of the D-flip-flop is provided in Figure B.8. This is a fairly stan-

dard design for this type of flip-flop and includes logic for a synchronous reset capability.

Simulation results for this circuit are displayed in Figure B.9.
251

QD

Clk

RESET

Qnot

PG
at

e

PGate PGate

PG
at

e

Figure B.8 Schematic of D- flip-flop circuit.

0

2

4

D-flip-flop with Reset

CL
K

 (V
)

0

2

4

RE
SE

T
(V

)

0

2

4

D
 (V

)

0

2

4

Q
 (V

)

0 10 20 30 40 50 60 70 80 90 100
0

2

4

Q
no

t (
V

)

Time (ns)
Figure B.9 Simulation results for the D-flip-flop circuit.

252

The schematic of the toggle flip-flop is provided in Figure B.10. This design is

unique in that the input to the flip-flop is selectable. Using passgates with dual select in-

puts, the flip-flop can perform the functions toggle, hold, clear, and load data. Simulation

results for this circuit are given in Figure B.11.

Q

Clk

Qnot

T

S0
S1

S0not
S1not

DATA

PG
at

e

PGate PGate

PG
at

e

PGate

PGate2S PGate

2S PGate

2S PGate

Core

Figure B.10 Schematic of toggle flip-flop circuit.

253

0

2

4

Toggle flip-flop with Clear and Load

CL
K

 (V
)

0

2

4

S0
 (V

)

0

2

4

S1
 (V

)

0

2

4

LO
A

D
 (V

)

0

2

4

T
(V

)

0

2

4

Q
 (V

)

0 20 40 60 80 100 120 140
0

2

4

Q
no

t (
V

)

Time (ns)
Figure B.11 Simulation results for the toggle flip-flop circuit.

The schematic for the 16-to-1 multiplexer circuit is given in Figure B.12. This is

a fairly simple design that uses 15 2-to-1 multiplexers to form the 16-to-1 multiplexer cir-

cuit.

254

In6

In5

In4

In3

In2

In1

In0

In15

In14

In13

In12

In11

In10

In9

In8

In7

S3

S2

S1

S0

Out

Snot

S

1

0

Snot

S

1

0

Snot

S

1

0

Snot

S

1

0

Snot

S

1

0

Snot

S

1

0

Snot

S

1

0

Snot

S

1

0

Snot

S

1

0

Snot

S

1

0

Snot

S

1

0

Snot

S

1

0

Snot

S

1

0

Snot

S

1

0

Snot

S

1

0

Figure B.12 Schematic of the 16-to-1 multiplexer circuit.

The multiplexer path delay analysis in Chapter II assumes that the change in delay

through the variable delay module is due solely to the multiplexer select lines moving the

multiplexer input tap along the delay chain. However, this assumption is not completely

accurate. Detailed analysis of the path delay through the 16x1 multiplexer revealed that

the delay was not constant, but rather varied by as much as 80 picoseconds between

paths. Figure B.13 provides a table showing the delay through the 16x1 multiplexer for

each multiplexer delay line tap.

255

Decimal
Select Value

Multiplexer
Delay (ns)

Mux Delay
Difference (ns)

Incremental
Delay (ns)

0 3.20 0.00 0.00
1 3.76 0.56 0.56
2 4.36 1.16 0.60
3 4.95 1.75 0.59
4 5.62 2.42 0.67
5 6.17 2.97 0.55
6 6.77 3.57 0.60
7 7.37 4.17 0.60
8 7.95 4.75 0.58
9 8.55 5.35 0.60
10 9.15 5.95 0.60
11 9.74 6.54 0.59
12 10.39 7.19 0.65
13 10.97 7.77 0.58
14 11.57 8.37 0.60
15 12.18 8.98 0.61
Figure B.13 Table of 16x1 multiplexer delay.

Figure B.14 is a plot of the data in the third column of Figure B.13, which shows

the incremental delay of the multiplexer and inverter chain. Ideally, this graph should be

a horizontal line corresponding to the value of delay attributed to two minimum-sized in-

verters, which was approximately 600 ps for this technology. However, the structure of

the 16x1 multiplexer imposes a variable delay on the output signal that is a function of

the path through the multiplexer. Fortunately, the use of a multiplexer for the delay-

adjustment module was for proof-of-concept purposes only. A more practical application

utilizing the proposed clock synchronization technique would most likely make use of a

5-to-32 decoder connected to 32 identical 2-to-1 multiplexers located in the DIS range

bins. In this case, the delay increments would be approximately equal and would not

show the variations portrayed in Figure B.14

256

16x1 Multiplexer Incremental Delay

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Decimal Select Value

na
no

se
co

nd
s

..

Figure B.14 Graph of 16x1 multiplexer delay.

Figure B.15 shows the power requirements for all modules larger than the basic

logic gates. A graph of the data is provided in Figure B.16.

Logic Block PWR (W)
Mux2x1 3.31E-03
DFF 5.60E-03
TFF 7.57E-03
Mux16x1 1.06E-02
Phase Check Module 1.80E-02
Finite State Machine 2.10E-02
Five bit counter 3.05E-02
Wraparound Counter 9.87E-02
Variable Delay Module 1.77E-01
Clock Sync Chip 5.36E-01
Clock Sync Chip and Pad Ring 2.18E+01
Figure B.15 Table of large circuit power.

257

Logic Block Power

0.00E+00

1.00E-01

2.00E-01

3.00E-01

4.00E-01

5.00E-01

6.00E-01

Mux2x1 DFF TFF Mux16x1 Phase Check
Module

Finite State
Machine

Five bit
counter

Wraparound
Counter

Variable
Delay

Module

Clock Sync
Chip

Logic Block

W
at

ts

Figure B.16 Graph of large circuit power.

258

APPENDIX C RSNS MATLAB AND VISUAL BASIC CODE

The first section of this Appendix provides the MATLAB code for the N-modulus

M̂ search algorithm and the MATLAB code for the Pace/Styer M̂ search program. The

second section of this Appendix provides the MATLAB and Microsoft Visual Basic code

used to convert the RSNS redundancy equations into the ArcGIS RSNS circle plot for-

mat. Figure C.1 shows the flow of the SmartSearch M̂ search program.

A. M̂ SEARCH ALGORITHM CODE

startRSNSsearch.m

Start function that uses the following
sub-functions to calculate for N-

modulus RSNS whose moduli have the
sum between an input min and max.

DynamicRangeSmartSearch.m

Calculates size, location, and bounding cases for a single
set of moduli.

CalculateRedundancies.m

Calculates all RNSN redundancies in the first half of
the fundamental period for all combinations and sub-

cases of the input redundancy case.

find_PRP_combos.m

Finds all of the N-modulus PRP
combinations whose moduli have a sum

between an input min and max.

crt.m

Uses the Euclidian Algorithm to
the calculate a solution to the
Chinese Remainder Theorem.

prp_check.m

Checks to see if the input
moduli are PRP

Auxiliary MATLAB functionsMain MATLAB Program Flow

M̂

M̂

Figure C.1 Flowchart of M̂ search algorithm code.

259

The following sections provide well-documented MATLAB code and sample pro-

gram output for the SmartSearch program. The last section provides an M̂ search

program and sample output from Pace and Styer used for comparison to the SmartSearch

program. Since these programs were written with an ADC application in mind, the term

dynamic range is used synonymously with M̂ , channel is equivalent to MRS, and MRSS

is equivalent to MRSS in the following programs.

1. Sample M̂ Search Code Output

This SmartSearch sample MATLAB output shows M̂ computation for all three-

modulus PRP moduli whose sum is between 1 and 18.

>> num2str(startRSNSsearch(3,1,18,0))
Computing PRP combinations for 3 moduli that sum to 1 up to 18.
9 combinations remaining
Time = 0.00033333 minutes, 8 combinations remaining
Time = 0.00033333 minutes, 7 combinations remaining
Time = 0.00016667 minutes, 6 combinations remaining
Time = 0.00066667 minutes, 5 combinations remaining
Time = 0.00033333 minutes, 4 combinations remaining
Time = 0.00033333 minutes, 3 combinations remaining
Time = 0.00016667 minutes, 2 combinations remaining
Time = 0.00033333 minutes, 1 combinations remaining
Time = 0.00033333 minutes, 0 combinations remaining

ans =

12 3 4 5 360 79 220 121 312 43 0.02
14 3 4 7 504 17 231 67 232 51 0.02
15 3 5 7 630 207 312 266 220 60 0.04
16 3 5 8 720 278 211 338 230 61 0.02
16 4 5 7 840 -2 310 63 311 66 0.01
18 3 4 11 792 -2 310 68 110 71 0.01
18 3 4 11 792 -2 110 68 230 71 0.01
18 3 4 11 792 5 231 75 221 71 0.01
18 3 4 11 792 286 220 356 230 71 0.01
18 3 4 11 792 293 231 363 111 71 0.01
18 3 4 11 792 293 111 363 311 71 0.01
18 3 7 8 1008 196 220 275 230 80 0.02
18 4 5 9 1080 12 222 86 230 75 0.02
18 4 5 9 1080 132 312 206 230 75 0.02
18 5 6 7 1260 298 220 379 312 82 0.02

where the columns are:
sum m1 m2 m3 Pf start case stop case DR time (s)

260

2. startRSNSsearch.m

function [MODLIST] = startRSNSsearch(Nc,SUM_MIN,SUM_MAX,savefile)

%**
%* StartRSNSsearch Calculates all of the dynamic ranges for N-channel
%* RSNS whose moduli have the sum between CMIN and CMAX, inclusive.
%*
%* MODLIST = startRSNSsearch(Nc,SUM_MAX,SUM_MIN,0) returns a matrix of
%* all combinations of N relatively prime moduli whose sum is between
%* SUM_MIN and SUM_MAX. The columns of the matrix are as follows:
%* Moduli Sum, Moduli (N of them), Fundamental Period, DR lower bound,
%* DR lower bound Case, DR upper bound, DR upper bound Case, Dynamic
%* Range (DR), and run time.
%*
%* If the savefile flag is zero, no files will be saved to disk. If
%* the savefile flag is not zero, a .mat and .txt file containing the
%* matrix described above will be saved in the current directory
%*
%* Author: LCDR Brian Luke
%* Last Modified: 18AUG04
%*
%* Called Functions: find_PRP_combos, DynamicRangeSmartSearch
%* Calling Functions: None
%*
%**

global CMIN CMAX N Pf MODLIST COUNT COMBINATIONS MIN_DYNRANGE MAX_DYNRANGE

% Assigning global variables
N = Nc;
CMAX = SUM_MAX;
CMIN = SUM_MIN;

% This variable holds the result of the dynamic range search for all moduli
% combinations
MODLIST = [];

% This variable holds all of the pairwise relatively prime (PRP) moduli
% combinations
COMBINATIONS = [];

% This variable holds the count of the number of PRP combinations
COUNT = 0;

disp(['Computing PRP combinations for ',num2str(N), ...
 ' moduli that sum to ',num2str(CMIN),' up to ',num2str(CMAX),'.'])

% This loop finds all PRP moduli combinations of size N with a sum from
% CMIN to CMAX starting from (3 4 5 ... N+2)

for i = N:-1:1
 mods = 2+[1:N];
 find_PRP_combos(i,mods);
end

disp([num2str(COUNT),' combinations remaining'])

% This loop finds the dynamic range for each PRP moduli combination and

261
% adds it as a row to the MODLIST matrix.

% There may be more than one dynamic range for each moduli combination and
% there will be a separate row in the
% MODLIST matrix for each dynamic range found.

for i = 1:size(COMBINATIONS,1)
 mods = COMBINATIONS(i,:);
 tic % start the MATLAB timer
 result = DynamicRangeSmartSearch(mods); % main search function
 t = toc; % stop the MATLAB timer
 s = size(result,1);

 % This loop adds all of the dynamic ranges to MODLIST for each set of
 % moduli
 for ii = 1:s
 MODLIST = [MODLIST; [sum(mods) mods 2*N*prod(mods) ...
 result(ii,:) t]];
 end

 COUNT = COUNT - 1;
 disp(['Time = ',num2str(t/60),' minutes, ',num2str(COUNT), ...
 ' combinations remaining'])
end

MODLIST = sortrows(MODLIST,1);

% These statements save the data to disk in .mat and .txt format
if savefile ~= 0
 total_time_desktop = sum(MODLIST(:,size(MODLIST,2)))
 filename = [num2str(N),'Chan',num2str(CMIN),'to',...
 num2str(CMAX),'_desk'];
 eval(['save ',filename]);
 eval(['save ',filename,'.txt MODLIST -ASCII -TABS']);
end

3. DynamicRangeSmartSearch.m

function [dynamic_range] = DynamicRangeSmartSearch(modli)

%**
%* DynamicRangeSmartSearch Calculates the dynamic ranges for input set of
%* moduli. dynamic_range = DynamicRangeSmartSearch(moduli) returns
%* a matrix whose rows contain information about the of all dynamic
%* ranges for the input set of moduli. The columns of the matrix
%* are as follows: Moduli Sum, Moduli (N of them), Fundamental Period,
%* DR lower bound, DR lower bound Case, DR upper bound, DR upper
%* bound Case, and Dynamic Range (DR).
%*
%* Author: LCDR Brian Luke
%* Last Modified: 19AUG04
%*
%* Called Functions: crt, CalculateRedundancies
%* Calling Functions: startRSNSsearch
%*
%**

global CMIN CMAX N Pf MODLIST COUNT COMBINATIONS MIN_DYNRANGE MAX_DYNRANGE

dyn_ranges = [];
comb_dyn_ranges = [];

262

intervals = [];

% Fundamental period for PRP moduli
Pf = 2*N*prod(modli);

% This loop forms the circularly shifted and linearly increasing NxN
% channel matrix (chan). Channels are in the rows and SUB-CHANNELs are in
% the columns
chan = [];
for i = 1:N
 hshift = [0:-1:-N+1]+i-1;
 if i > 1
 hshift = [hshift(i:max(size(hshift))) hshift(1:i-1)];
 end
 chan(i,:) = hshift;
end

% This loop computes binomial coefficients to determine how many
% combinations are in each case. The result put into a 2^N x N
% matrix of 1's and 0's called sortedBin
binChar = dec2bin([0:2^N-1]',N);
pad = repmat(' ',max(size(binChar)),1);
for i = 1:N
 binChar_pad(:,2*i) = pad;
 binChar_pad(:,2*i-1) = binChar(:,i);
end
binNum = str2num(char(binChar_pad));
binNum(:,N+1) = sum(binNum,2);
sortedBin = sortrows(binNum,[N+1 1:N]);

% This loop uses the CRT to find all Case N1X COR, which are the
% fundamental COR shifts for all other cases and sub-cases
% The vector holding the COR is called COR, and the vector redundancyID
% contains the case label of the corresponding COR
COR = [];
redundancyID = [];
for subchan = 0:N-1
 ch = chan(:,subchan+1)';
 m = max(ch);
 a = (m-ch)/N;
 center_of_redundancy = crt(a,modli)*N-m;
 if center_of_redundancy < 0
 center_of_redundancy = center_of_redundancy + N*prod(modli);
 end
 COR = [COR center_of_redundancy];
 redundancyID = [redundancyID ...
 str2num([num2str(N),'1',num2str(subchan)])];
end

% This loop computes the Case N1X redundancies and adds them to the vector
% called dyn_ranges, which will be used to compute the zones of maximum
% possible dynamic ranges in which to search for the dynamic range
[CORtemp,index] = sort(COR);
CORtemp = [CORtemp Pf/2];
redundancyID = [redundancyID(index) str2num([num2str(N),'10'])];
for i = 1:length(CORtemp)-1
 dyn_ranges = [dyn_ranges; [CORtemp(i)-N+1 redundancyID(i) ...
 CORtemp(i+1)+N-1 redundancyID(i+1) ...
 CORtemp(i+1)+2*N-CORtemp(i)-1]];
end

263
% The following statements set the maximum and minimum dynamic range based

% on the current moduli set and the fact that the minimum dyanamic range
% for an n-channel RSNS is always larger than the minimum dynamic range for
% an (n-1)-channel RSNS.
dyn_ranges_loop = flipud(sortrows(dyn_ranges,5));
MAX_DYNRANGE = dyn_ranges_loop(1,5);
MIN_DYNRANGE_limits = [1 1 42 116 419 1615]; % values are from previous runs

if N > length(MIN_DYNRANGE_limits)
 MIN_DYNRANGE = MIN_DYNRANGE_limits(length(MIN_DYNRANGE_limits));
else
 MIN_DYNRANGE = MIN_DYNRANGE_limits(N);
end

% This loop calculates all redundancies for all cases by calling the
% function CalculateRedundancies and stores them in a matrix
redundancy_vector = [];
for i = N:-1:1
 redundancy_vector = [redundancy_vector; ...
 CalculateRedundancies(COR,sortedBin,modli,i)];
end

% These statements sort the redundancies and prepare the redundancy vector
% for searching
temp_vector = sortrows(redundancy_vector,[2 1]);
[B,I,J] = unique(temp_vector(:,2));
redundancy_vector = temp_vector(I,:);
redundancy_vector = [redundancy_vector [1:length(redundancy_vector)]'];

% This next section searches through the matrix of redundancies to find
% consecutive redundancies. Once consecutive redundancies are found, the
% number of vectors between the endpoints of the redundancies is a
% potential dynamic range. The largest string of such vectors is the
% dynamic range. The search routine finds all intervals and then chooses
% the largest one(s) as the dynamic range.

% find the first redundancy
interval_start = redundancy_vector(1,:);
len = size(redundancy_vector,1);
start_pointer = 2;

% compute the starting position of all redundancies (all_starts) and the
% ending position of all redundancies (all_stops) for redundancies that are
% smaller than the maximum dynamic range
max_dynrange2 = MAX_DYNRANGE + 2;
all_stops = find(redundancy_vector(start_pointer:len,3) <= ...
 (interval_start(1)+max_dynrange2));
stop_vector = redundancy_vector(all_stops+start_pointer-1,:);
all_starts = find(stop_vector(:,1) >= interval_start(1));
intervals = [interval_start];

% loop through all of the redundancies and compute the distance bewteen the
% start and end points of consecutive redundancies (intervals)
% which are all potential dynamic ranges
while isempty(all_stops)~= 1
 sorted_stops = sortrows(stop_vector(all_starts,:),3);
 interval_stop = sorted_stops(1,:);
 intervals = [intervals; interval_stop];
 interval_start = interval_stop;
 find_stop = find(stop_vector(:,5) == interval_stop(5));
 start_pointer = start_pointer+find_stop;
 all_stops = find(redundancy_vector(start_pointer:len,3) <= ...

264
 (interval_start(1)+max_dynrange2));

 stop_vector = redundancy_vector(all_stops+start_pointer-1,:);
 all_starts = find(stop_vector(:,1) >= interval_start(1));
end

% This section computes the sizes of the intervals and keeps only the
% largest intervals which are the dynamic ranges
len = length(intervals);
interval_sizes = [intervals(1:len-1,1)+1 intervals(1:len-1,4) ...
 intervals(2:len,3)-1 intervals(2:len,4)];
interval_sizes(:,5) = interval_sizes(:,3)-interval_sizes(:,1)+1;

dynamic_range = interval_sizes(find(interval_sizes(:,5)== ...
 max(interval_sizes(:,5))),:);

4. CalculateRedundancies.m

function [redundancies] = CalculateRedundancies(cor,sortedBin,modli,CaseID)

%**
%* CalculateRedundancies Calculates all RNSN redundancies in the first
%* half of the fundamental period for the all combinations of the input
%* CaseID.
%*
%* redundancies = CalculateRedundancies(cor,sortedBin,modli,CaseID)
%*
%* Author: LCDR Brian Luke
%* Last Modified: 18AUG04
%*
%* Called Functions: None
%* Calling Functions: DynamicRangeSmartSearch
%*
%**

global CMIN CMAX N Pf MODLIST COUNT COMBINATIONS MAX_DYNRANGE MIN_DYNRANGE

redundancies = [];

% Finds all of the combinations that match the CaseID and stores them in a
% matrix called allBinaryNums which has 1's and 0's in each row that
% represents a particular of Type 1 and Type 0 redundancies. Each row
% represents an individual combination of Type 1 and Type 0 redundancies
% for the particular case.
[rows,cols] = find(sortedBin(:,min(size(sortedBin))) == CaseID);
allBinaryNums = sortedBin(rows,1:N);
s = size(allBinaryNums,1);

% This loop goes through each combination and computes and labels the
% redundancies from 0 to Pf/2 for every SUB-CHANNEL.
for ii = 1:s

 %form the string identifier for this particular case
 strID = [num2str(CaseID),num2str(ii)];

 % find all Type 1 and Type 0 redundancies
 f1 = find(allBinaryNums(ii,:)==1);
 f0 = find(allBinaryNums(ii,:)==0);

 % computing partial results for the length and COR of the redundancy
 m = prod(modli(f0));

265

 mm = prod(modli(f1));

 % redundancy length
 redundancy_len = 2*N*m;

 % continue only if the redundancy will affect the maximum dynamic range
 if redundancy_len <= MAX_DYNRANGE

 % compute all COR and labels for the 0th subchannel
 CORvector = [0:N*mm:Pf-1];
 numID = str2num([strID,'0']);
 tempCORvector = [CORvector' repmat(numID,length(CORvector),1)];

 % compute all COR and labels for all other SUB-CHANNELs
 for sub_chan = 1:N-1
 numID = str2num([strID,num2str(sub_chan)]);
 tempCORvector_shift = [CORvector'+cor(sub_chan+1) ...
 repmat(numID,length(CORvector),1)];
 tempCORvector = [tempCORvector; tempCORvector_shift];
 end

 % adjust COR so that they are all in a single Pf
 f = find(tempCORvector(:,1)>Pf);
 tempCORvector(f,1) = tempCORvector(f,1)-Pf;

 % Only keep COR located in 0 to Pf/2 since the rest are redundant
 f = find(tempCORvector(:,1)<=Pf/2);
 tempCORvector = tempCORvector(f,:);

 % compute start and stop endpoints in a vector of the form
 % [StartPoint COR StopPoint CaseLabel]
 startstop_vector = [tempCORvector(:,1)-N*m tempCORvector(:,1) ...
 tempCORvector(:,1)+N*m tempCORvector(:,2)];
 redundancies = [redundancies; startstop_vector];

 % compute the maximum dynamic range for this case and if it is
 % smaller than the previous maximum, replace with current max.
 case_max_dynrange = N*mm+redundancy_len-1;
 if MAX_DYNRANGE > case_max_dynrange
 MAX_DYNRANGE = case_max_dynrange;
 end
 end
end

5. find_PRP_combos.m

function [pos,mods] = find_PRP_combos(pos,mods)

%**
% find_PRP_combos Finds all of the PRP combinations starting from
% the moduli mods and incrementing all moduli above position pos
% until the sum exceeds the global variable CMAX. The PRP
% combinations are stored in the global variable COMBINATIONS
% and the PRP combinations count is stored in COUNT. The function
% calls itself recursively to search through all possible moduli.
%
% Usage: [pos,mods] = find_PRP_combos(pos,mods)
%
% Author: LCDR Brian Luke

266

% Last Modified: 18AUG04
%
% Called Functions: prp_check, find_PRP_combos (recursive)
% Calling Functions: startRSNSsearch
%
%**

global CMIN CMAX N MODLIST COUNT COMBINATIONS

% This function takes a set of moduli and a pointer at a single modulus.
% If pointer is pointing at the last modulus, then the function increments
% the last modulus until the maximum sum is reached and checks each set of
% moduli created for PRP. If the pointer is not pointed at the last
% modulus, the function increments the modulus at the pointer, increments
% the pointer, and calls itself recursively.

if pos == N
 while (sum(mods) <= CMAX)
 if (prp_check(mods) == 1) & (sum(mods) >= CMIN)
 COUNT = COUNT + 1;
 COMBINATIONS = [COMBINATIONS; mods];
 end
 mods(N) = mods(N)+1;
 end

else
 temp_mods = mods;
 temp_mods(pos) = mods(pos)+1;

 while (sum(temp_mods) <= CMAX)
 [n,mods] = find_PRP_combos(pos+1,temp_mods);
 temp_mods = mods;
 temp_mods(pos) = mods(pos)+1;
 temp_mods(pos+1:N) = mods(pos)+[1:N-pos];
 end
end

6. prp_check.m

function [prp] = prp_check(mods)

%***
% prp_check Checks to see if the moduli in mods are PRP. If yes,
% then the prp flag set to 1, otherwise 0. The function
% accomplishes this by finding all factors of all moduli and
% compares this to the unique factors of all moduli. If
% they are not the same, then there are duplicate factors
% among the moduli and they are not prp.
%
% Usage: [prp] = prp_check(mods)
%
% Author: LCDR Brian Luke
% Last Modified: 18AUG04
%
% Called Functions: None
% Calling Functions: find_PRP_combos
%
%***

267

global N

factors = [];
for i = 1:N
 factors = [factors unique(factor(mods(i)))];
end

f = unique(factors);

if size(f) == size(factors)
 prp = 1;
else
 prp = 0;
end

7. crt.m

function [x] = crt(a,moduli)
%**
% crt This function uses the Euclidian Algorithm to the calculate
% a solution to the Chinese Remainder Theorem. The solution is of the
% form x = sum([M/m1 M/m2 ...].*[a1 a2 ...].*[b1 b2 ...]) where
% M=prod([m1 m2 ...]) and [b1 b2 ...] come from the Euclidian
% Algorithm.
%
% Usage: x = crt([a1 a2 a3 a4 ...],[m1 m2 m3 m4 ...])
%
% Author: LCDR Brian Luke
% Last Modified: 19AUG04
%
% Called Functions: None
% Calling Functions: find_PRP_combos
%
%**

M = prod(moduli); % product of moduli
Mmi = []; % This vector holds the M/mi values
b = zeros(size(a)); % This vector holds all of the solution coefficients

for i = 1:max(size(moduli))

 % Initialize Euclidian Algorithm:
 % M/mi(1) + mi(0) = M/mi
 % M/mi(0) + mi(1) = mi
 %
 % where the c matrix contains the coefficients
 % in parenthesis in the above equations
 c = [1 0; 0 1];
 mi = moduli(i);
 Mm = [M/mi mi];

 % Loop until M/mi(c21) + mi(c22) = 1
 while Mm*c(2,:)' ~= 1
 r0 = Mm*c(1,:)';
 r1 = Mm*c(2,:)';
 r = floor(r0/r1);
 c_new(2,:) = c(1,:) - c(2,:)*r;
 c_new(1,:) = c(2,:);
 c = c_new;

268

 end

 % Save the modulus and the coefficient
 Mmi = [Mmi M/mi];
 b(i) = c(2,1);
end

% Compute the solution to the CRT using the coefficients from the Euclidian
% Algorithm and adjust to choose the least positive solution.
x = sum(Mmi.*a.*b);
if x < 0
 x = x + M*(floor(abs(x/M))+1);
elseif x >= M
 x = x - M*(floor(abs(x/M)));
end

8. PaceStyerRSNSsearch.m

This program is the M̂ search program written by Pace and Styer used for com-

parison to the Smartsearch search program.

% THIS PROGRAM FINDS MAXIMAL STRINGS OF NON-REDUNDANT
% VECTORS FOR THE N (N >2 AND ANY INTEGER) CHANNEL ROBUST SNS.

clear all

% DEFINE THE CHANNEL NUMBER,THE VALUES OF CHANNELS AND
% THE NUMBER OF SEARCH WRT FUNDEMENTAL PERIOD

disp('This program finds the maximal strings of non-redundant vectors');
disp('for the N channel ROBUST SNS');
chanum=input('Enter the Number of Channels for ROBUST SNS >> ');

M=1;
for i=1:chanum
 m(i)=input(['Enter ' int2str(i) '.Channel Value >> ']);
 M=M*m(i);
end
period=2*chanum*M;
nsearch=period+10;

prompt='y';

% DEFINE THE SHIFT AMOUNT OF CHANNELS
while (prompt=='y')|(prompt=='Y')

 for i=1:chanum
 s(i)=input(['Enter ' int2str(i) '. Channel Shift Value >> ']);
 end

 % INITIATE THE VARIABLES TO ZERO
 i=0;
 ii=0;
 j=0;
 jj=0;

269

 k=0;
 funper=0;
 dynrange=0;

 % DEFINE THE WAVEFORM FOR CHANNEL m(1),m(2)...m(n) IN THE FORM OF MATRIX g

 for r=1:chanum
 mm(r,[1 2])=[m(r) s(r)];

 for i=1+s(r):chanum*m(r)+s(r)
 g(r,i)=floor((i-s(r))/chanum);
 end

 for i=chanum*m(r)+1+s(r): 2*chanum*m(r)+s(r)
 g(r,i)=floor((2*chanum*m(r)+chanum-i+s(r)-1)/chanum);
 end

 g(r,2*chanum*m(r)+s(r)+1:4*chanum*m(r)+s(r))=...
 g(r,1+s(r):2*chanum*m(r)+s(r));
 g(r,4*chanum*m(r)+s(r)+1:8*chanum*m(r)+s(r))=...
 g(r,1+s(r):4*chanum*m(r)+s(r));
 g(r,8*chanum*m(r)+s(r)+1:16*chanum*m(r)+s(r))=...
 g(r,1+s(r):8*chanum*m(r)+s(r));
 g(r,16*chanum*m(r)+s(r)+1:32*chanum*m(r)+s(r))=...
 g(r,1+s(r):16*chanum*m(r)+s(r));
 g(r,32*chanum*m(r)+s(r)+1:64*chanum*m(r)+s(r))=...
 g(r,1+s(r):32*chanum*m(r)+s(r));
 g(r,64*chanum*m(r)+s(r)+1:128*chanum*m(r)+s(r))=...
 g(r,1+s(r):64*chanum*m(r)+s(r));
 g(r,128*chanum*m(r)+s(r)+1:256*chanum*m(r)+s(r))=...
 g(r,1+s(r):128*chanum*m(r)+s(r));
 g(r,256*chanum*m(r)+s(r)+1:512*chanum*m(r)+s(r))=...
 g(r,1+s(r):256*chanum*m(r)+s(r));
 end

 % DEFINE MATRIX ga AND THIS MATRIX IS THE TRANSPOSE OF MATRIX g

 ga=g';

 % DEFINE MATRIX gb AND THIS MATRIX GIVES THE ROW NUMBER IN COLUMN 1,
 % AND THE VECTOR FOR THAT ROW IN COLUMNS 2 THROUGH THE NUMBER OF CHANNEL
 % DEFINED IN MATRIX ga

 gb(:,[2:(chanum+1)])=ga(:,[1:chanum]);
 [sgbr,sgbc]=size(gb);
 gb(:,1)=(1:1:sgbr)';

 % DEFINE THE MATRIX gc.THIS MATRIX GIVES THE ROW NUMBER THROUGH
 % THE NUMBER OF SEARCH (eliminate the parts of the matrix beyond
 % the search length)

 gc=gb;
 gc(nsearch+1:sgbr,:)=[];
 [sgcr,sgcc]=size(gc);

 % FIND THE FIRST REDUNDANCIES IN MATRIX gc

 k=1;
 for ii=2:nsearch; % ii is row index into gc
 xrec=gc(ii,[2:(chanum+1)]);
 for jj=ii+1:sgcr;

270
 if gc(jj,[2:(chanum+1)])==xrec

 redun=gc(jj,1);

 % DEFINE THE MATRIX h WHICH IS THE MATRIX OF
 % FIRST REDUNDANCIES

 h(k,1)=ii;
 h(k,2)=redun;
 k=k+1;
 break
 end
 end
 end

 % DEFINE THE MATRIX hsort AND SORT BY THE REDUNDANCY COLUMN IN MATRIX h

 hsort=h;
 [yoy,ioi]=sort(hsort);

 % DEFINE THE MATRIX hsorted

 hsorted=[yoy(ioi(:,2),1) yoy(:,2)];
 hsorted;

 % DEFINE THE MATRIX hreduced.
 % ELIMINATE THE ROWS OF THE MATRIX hsorted THAT DO NOT ALLOW
 % THE FIRST COLUMN TO BE MONOTONE INCREASING
 % ssr - rows of hsorted
 % ssc - columns of hsorted
 % a - value in last row of h (hsort)
 % rx - rows in hreduced
 % cx - columns in hreduced

 [ssr,ssc]=size(hsorted);
 hreduced=hsorted;
 a=hsort(ssr,1);
 [rx cx]=size(hreduced);
 for k=1:ssr
 for i=1:ssr
 if i<rx
 if hreduced(i,1)==a
 hreduced(i+1:rx,:)=[];
 break
 elseif hreduced(i+1,1)<hreduced(i,1)
 hreduced(i+1,:)=[];
 break
 end
 end
 [rx cx]=size(hreduced);
 end
 end
 hreduced;

 % DEFINE THE MATRIX H THAT SHOWS WHICH SETS OF ROWS
 % ARE MAXIMAL FOR NO REDUNDANCIES AND THEIR LENGTHS.

 [hsr,hsc]=size(hreduced);
 H(1,1)=(chanum-1);
 H(2:hsr+1,1)=hreduced(1:hsr,1)+1;
 H(1:hsr,2)=hreduced(1:hsr,2)-1;
 H(hsr+1,2)=nsearch;
 H(1:hsr+1,3)=H(1:hsr+1,2)-H(1:hsr+1,1)+1;

271

 % FIND THE DYNAMIC RANGE OF N-CHANNEL RSNS

 HH=max(H);
 dynrange=HH(:,3);

 % DISPLAY A MATRIX THAT SHOWS THE BEGIN-END POSITION,
 % DYNAMIC RANGE AND ALSO CHANNEL-SHIFT VALUES

 disp(' ')
 disp(' ')
 disp(['THE FUNDEMANTAL PERIOD IS ',num2str(period),' '])
 disp(' ')
 disp(' ')
 disp(['THE DYNAMIC RANGE IS ',num2str(dynrange),' '])

 fprintf('\n BEGIN POSITION END POSITION DYNAMIC RANGE\n')
 fprintf(' -------------- ------------ -------------\n')
 fprintf('%11.0f %16.0f %12.0f \n',H')

 fprintf('\n CHANNEL VALUES SHIFT VALUES\n')
 fprintf(' -------------- ------------\n')
 fprintf('%11.0f %17.0f \n',mm')

 prompt=input('Would you like to try another shift (y/n) ? >>','s');

end

9. Sample Program Output for Pace/Styer Search Program

This program finds the maximal strings of non-redundant vectors
for the N channel ROBUST SNS
Enter the Number of Channels for ROBUST SNS >> 3
Enter 1.Channel Value >> 3
Enter 2.Channel Value >> 4
Enter 3.Channel Value >> 5
Enter 1. Channel Shift Value >> 0
Enter 2. Channel Shift Value >> 1
Enter 3. Channel Shift Value >> 2

THE FUNDEMANTAL PERIOD IS 360

THE DYNAMIC RANGE IS 43

 BEGIN POSITION END POSITION DYNAMIC RANGE
 -------------- ------------ -------------
 2 29 28
 7 30 24
 8 41 34
 13 51 39
 23 52 30
 24 57 34
 41 65 25
 61 103 43
 81 111 31

272
 107 130 24

 114 131 18
 115 148 34
 126 159 34
 131 160 30
 132 164 33
 142 165 24
 143 177 35
 161 184 24
 180 209 30
 187 210 24
 188 221 34
 193 231 39
 203 232 30
 204 237 34
 221 245 25
 241 283 43
 261 291 31
 287 310 24
 294 311 18
 295 328 34
 306 339 34
 311 340 30
 312 344 33
 322 345 24
 323 357 35
 341 364 24
 360 370 11

 CHANNEL VALUES SHIFT VALUES
 -------------- ------------
 3 0
 4 1
 5 2
Would you like to try another shift (y/n) ? >>n

B. ARCGIS SHAPEFILE GENERATION CODE

This section provides the MATLAB and Microsoft Visual Basic code used to

convert the RSNS redundancy equations into the ArcGIS RSNS circle plot format.

Figure C.2 provides the program flow that converts the MATLAB-generated RSNS re-

dundancy locations to the ArcGIS shapefile format.

273

ArcViewOutput.m

Calculates and redundancies for a single
set of moduli and produces output text files for

creating ArcGIS shapefiles.

Calculate_ArcView_Redundancies.m

Calculates all RNSN redundancies in the
fundamental period for all combinations and

sub-cases of the input redundancy case.

Generate_RSNSCircle_Shapefile.m

Generates the text file used to compute
the RSNS circle plot in ArcGIS.

Generate_CircleArc_Shapefile.m

Generates the text file used to
compute the redundancy arc

shapefiles in ArcGIS.

crt.m

Uses the Euclidian Algorithm to
the calculate a solution to the
Chinese Remainder Theorem.

Auxiliary MATLAB functionsMain MATLAB Program Flow

M̂

Figure C.2 Flowchart of MATLAB ArcGIS shapefile generation code.

1. Sample Shapefile Generation Code Output

The sample output provided in this section is a comma-delimited text file that is

converted to a geographic shapefile in ArcGIS using the Visual Basic code in this Ap-

pendix.

Lon,Lat,h_mod_N,h,RSNS
0,0,0,0,New
5.00000000000000,0.00000000000000,0,0,"0 0 0"
4.99923847578196,0.08726203218642,0,0,"0 0 0"
4.91198530428718,0.08573902241278,0,0,"0 0 0"
4.91273353740028,0.00000000000000,0,0,"0 0 0"
5.00000000000000,0.00000000000000,0,0,"0 0 0"
0,0,0,0,New
4.99923847578196,0.08726203218642,1,1,"0 0 1"
4.99695413509548,0.17449748351250,1,1,"0 0 1"
4.90974083286692,0.17145192788877,1,1,"0 0 1"
4.91198530428718,0.08573902241278,1,1,"0 0 1"
4.99923847578196,0.08726203218642,1,1,"0 0 1"
0,0,0,0,New
4.99695413509548,0.17449748351250,2,2,"0 1 1"
4.99314767377287,0.26167978121472,2,2,"0 1 1"
4.90600080682724,0.25711260744662,2,2,"0 1 1"

274

4.90974083286692,0.17145192788877,2,2,"0 1 1"
4.99695413509548,0.17449748351250,2,2,"0 1 1"

2. ArcViewOutput.m

function [dynamic_range] = ArcViewOutput(modli)

%**
%* ArcViewOutput Calculates the dynamic ranges for input set of
%* moduli and generates the text files that ArcGIS uses to
%* generate shapefiles. dynamic_range = ArcViewOutput(moduli) returns
%* a matrix whose rows contain information about the of all dynamic
%* ranges for the input set of moduli. The columns of the matrix
%* are as follows: Moduli Sum, Moduli (N of them), Fundamental Period,
%* DR lower bound, DR lower bound Case, DR upper bound, DR upper
%* bound Case, and Dynamic Range (DR).
%*
%* Author: LCDR Brian Luke
%* Last Modified: 19AUG04
%*
%* Called Functions: Generate_RSNSCircle_Shapefile,
% Calculate_ArcView_Redundancies, crt
%* Calling Functions: None
%*
%**

global N Pf MIN_DYNRANGE MAX_DYNRANGE RADIUS

dyn_ranges = [];
comb_dyn_ranges = [];
intervals = [];

% Fundamental period for PRP moduli
N = max(size(modli));
Pf = 2*N*prod(modli);

% Set the radius of the RSNS circle
RADIUS = 5;

% generate RSNS circle plot filename and shapefile
fname = [num2str(N),'Channel'];
for i = 1:N
 fname = [fname,'_',num2str(modli(i))];
end
fname = [fname,'_CirclePlot'];
Generate_RSNSCircle_Shapefile(modli,fname);

% This loop forms the circularly shifted and linearly increasing NxN
% channel matrix (chan). Channels are in the rows and SUB-CHANNELs are in
% the columns
chan = [];
for i = 1:N
 hshift = [0:-1:-N+1]+i-1;
 if i > 1
 hshift = [hshift(i:max(size(hshift))) hshift(1:i-1)];
 end
 chan(i,:) = hshift;
end

275

% This loop computes binomial coefficients to determine how many
% combinations are in each case. The result put into a 2^N x N
% matrix of 1's and 0's called sortedBin
binChar = dec2bin([0:2^N-1]',N);
pad = repmat(' ',max(size(binChar)),1);
for i = 1:N
 binChar_pad(:,2*i) = pad;
 binChar_pad(:,2*i-1) = binChar(:,i);
end
binNum = str2num(char(binChar_pad));
binNum(:,N+1) = sum(binNum,2);
sortedBin = sortrows(binNum,[N+1 1:N]);

% This loop uses the CRT to find all Case N1X COR, which are the
% fundamental COR shifts for all other cases and sub-cases
% The vector holding the COR is called COR, and the vector redundancyID
% contains the case label of the corresponding COR
COR = [];
redundancyID = [];
for subchan = 0:N-1
 ch = chan(:,subchan+1)';
 m = max(ch);
 a = (m-ch)/N;
 center_of_redundancy = crt(a,modli)*N-m;
 if center_of_redundancy < 0
 center_of_redundancy = center_of_redundancy + N*prod(modli);
 end
 COR = [COR center_of_redundancy];
 redundancyID = [redundancyID ...
 str2num([num2str(N),'1',num2str(subchan)])];
end

% This loop computes the Case N1X redundancies and adds them to the vector
% called dyn_ranges, which will be used to compute the zones of maximum
% possible dynamic ranges in which to search for the dynamic range
[CORtemp,index] = sort(COR);
CORtemp = [CORtemp Pf/2];
redundancyID = [redundancyID(index) str2num([num2str(N),'10'])];
for i = 1:length(CORtemp)-1
 dyn_ranges = [dyn_ranges; [CORtemp(i)-N+1 redundancyID(i) ...
 CORtemp(i+1)+N-1 redundancyID(i+1) ...
 CORtemp(i+1)+2*N-CORtemp(i)-1]];
end

% The following statements set the maximum and minimum dynamic range based
% on the current moduli set and the fact that the minimum dyanamic range
% for an n-channel RSNS is always larger than the minimum dynamic range for
% an (n-1)-channel RSNS.
dyn_ranges_loop = flipud(sortrows(dyn_ranges,5));
MAX_DYNRANGE = dyn_ranges_loop(1,5);
MIN_DYNRANGE_limits = [1 1 42 116 419 1615]; % values are from previous runs

if N > length(MIN_DYNRANGE_limits)
 MIN_DYNRANGE = MIN_DYNRANGE_limits(length(MIN_DYNRANGE_limits));
else
 MIN_DYNRANGE = MIN_DYNRANGE_limits(N);
end

% This loop calculates all redundancies for all cases by calling the
% function CalculateRedundancies and stores them in a matrix
redundancy_vector = [];
for i = N:-1:1

276

 redundancy_vector = [redundancy_vector; ...
 Calculate_ArcView_Redundancies(COR,sortedBin,modli,i)];
end

% These statements sort the redundancies and prepare the redundancy vector
% for searching
temp_vector = sortrows(redundancy_vector,[2 1]);
[B,I,J] = unique(temp_vector(:,2));
redundancy_vector = temp_vector(I,:);
redundancy_vector = [redundancy_vector [1:length(redundancy_vector)]'];

% This next section searches through the matrix of redundancies to find
% consecutive redundancies. Once consecutive redundancies are found, the
% number of vectors between the endpoints of the redundancies is a
% potential dynamic range. The largest string of such vectors is the
% dynamic range. The search routine finds all intervals and then chooses
% the largest one(s) as the dynamic range.

% find the first redundancy
interval_start = redundancy_vector(1,:);
len = size(redundancy_vector,1);
start_pointer = 2;

% compute the starting position of all redundancies (all_starts) and the
% ending position of all redundancies (all_stops) for redundancies that are
% smaller than the maximum dynamic range
max_dynrange2 = MAX_DYNRANGE + 2;
all_stops = find(redundancy_vector(start_pointer:len,3) <= ...
 (interval_start(1)+max_dynrange2));
stop_vector = redundancy_vector(all_stops+start_pointer-1,:);
all_starts = find(stop_vector(:,1) >= interval_start(1));
intervals = [interval_start];

% loop through all of the redundancies and compute the distance bewteen the
% start and end points of consecutive redundancies (intervals)
% which are all potential dynamic ranges
while isempty(all_stops)~= 1
 sorted_stops = sortrows(stop_vector(all_starts,:),3);
 interval_stop = sorted_stops(1,:);
 intervals = [intervals; interval_stop];
 interval_start = interval_stop;
 find_stop = find(stop_vector(:,5) == interval_stop(5));
 start_pointer = start_pointer+find_stop;
 all_stops = find(redundancy_vector(start_pointer:len,3) <= ...
 (interval_start(1)+max_dynrange2));
 stop_vector = redundancy_vector(all_stops+start_pointer-1,:);
 all_starts = find(stop_vector(:,1) >= interval_start(1));
end

% This section computes the sizes of the intervals and keeps only the
% largest intervals which are the dynamic ranges
len = length(intervals);
interval_sizes = [intervals(1:len-1,1)+1 intervals(1:len-1,4) ...
 intervals(2:len,3)-1 intervals(2:len,4)];

% generating a shapefile for plotting all intervals
interval_vector = [interval_sizes(:,1) interval_sizes(:,3)
repmat(nan,size(interval_sizes,1),1)];
Generate_CircleArc_Shapefile(interval_vector,modli,'_Intervals');

277
interval_sizes(:,5) = interval_sizes(:,3)-interval_sizes(:,1)+1;

dynamic_range = interval_sizes(find(interval_sizes(:,5)== ...
 max(interval_sizes(:,5))),:);

% generating a shapefile for plotting all dynamic ranges
dynamic_range_vector = [dynamic_range(:,1) dynamic_range(:,3)
repmat(nan,size(dynamic_range,1),1)];
Generate_CircleArc_Shapefile(dynamic_range_vector,modli,'_DynamcRange');

3. Calculate_ArcView_Redundancies.m

function [redundancies] = Calculate_ArcView_Redundancies(cor,...
 sortedBin,...
 modli,...
 CaseID)

%**
%* Calculate_ArcView_Redundancies Calculates all RNSN redundancies in the
%* fundamental period for the all combinations and sub-cases of the
%* input case and generates the text files ArcGIS uses to create
%* shapefiles.
%*
%* redundancies = Calculate_ArcView_Redundancies (cor, ...
%* sortedBin,modli,CaseID)
%*
%* Author: LCDR Brian Luke
%* Last Modified: 18AUG04
%*
%* Called Functions: Generate_CircleArc_Shapefile
%* Calling Functions: ArcViewOutput
%*
%**

global N Pf MAX_DYNRANGE MIN_DYNRANGE

redundancies = [];

% Finds all of the combinations that match the CaseID and stores them in a
% matrix called allBinaryNums which has 1's and 0's in each row that
% represents a particular of Type 1 and Type 0 redundancies. Each row
% represents an individual combination of Type 1 and Type 0 redundancies
% for the particular case.
[rows,cols] = find(sortedBin(:,min(size(sortedBin))) == CaseID);
allBinaryNums = sortedBin(rows,1:N);
s = size(allBinaryNums,1);

% This loop goes through each combination and computes and labels the
% redundancies from 0 to Pf for every SUB-CHANNEL.
for ii = 1:s

 %form the string identifier for this particular case
 strID = [num2str(CaseID),num2str(ii)];

 % find all Type 1 and Type 0 redundancies
 f1 = find(allBinaryNums(ii,:)==1);
 f0 = find(allBinaryNums(ii,:)==0);

 % computing partial results for the length and COR of the redundancy
 m = prod(modli(f0));
 mm = prod(modli(f1));

278

 % redundancy length
 redundancy_len = 2*N*m;

 % compute all COR and labels for the 0th subchannel
 CORvector = [0:N*mm:Pf-1];
 numID = str2num([strID,'0']);
 tempCORvector = [CORvector' repmat(numID,length(CORvector),1)];

 % compute all COR and labels for all other SUB-CHANNELs
 for sub_chan = 1:N-1
 numID = str2num([strID,num2str(sub_chan)]);
 tempCORvector_shift = [CORvector'+cor(sub_chan+1) ...
 repmat(numID,length(CORvector),1)];
 tempCORvector = [tempCORvector; tempCORvector_shift];
 end

 % adjust COR so that they are all in a single Pf
 f = find(tempCORvector(:,1)>Pf);
 tempCORvector(f,1) = tempCORvector(f,1)-Pf;

 % compute start and stop endpoints in a vector of the form
 % [StartPoint StopPoint Length CaseLabel]
 redundancy_vector = [tempCORvector(:,1)-N*m tempCORvector(:,1)+N*m, ...
 tempCORvector(:,2)];

 % create shapefile
 Generate_CircleArc_Shapefile(redundancy_vector,modli,'_Case_');

 % continue only if the redundancy will affect the maximum dynamic range
 if redundancy_len <= MAX_DYNRANGE

 % Only keep COR located in 0 to Pf/2 since the rest are redundant
 f = find(tempCORvector(:,1)<=Pf/2);
 tempCORvector = tempCORvector(f,:);

 % compute start and stop endpoints in a vector of the form
 % [StartPoint COR StopPoint CaseLabel]
 startstop_vector = [tempCORvector(:,1)-N*m tempCORvector(:,1) ...
 tempCORvector(:,1)+N*m tempCORvector(:,2)];
 redundancies = [redundancies; startstop_vector];

 % compute the maximum dynamic range for this case and if it is
 % smaller than the previous maximum, replace with current max.
 case_max_dynrange = N*mm+redundancy_len-1;
 if MAX_DYNRANGE > case_max_dynrange
 MAX_DYNRANGE = case_max_dynrange;
 end
 end
end

4. Generate_RSNSCircle_Shapefile.m

function Generate_RSNSCircle_Shapefile(modli,fname)

%**
%* Generate_RSNSCircle_Shapefile This function generates the RSNS circle
%* plot text file that ArcGIS uses to generate a shapefile. These files

279
%* can get very long so only use for small channel numbers and moduli.

%*
%* Usage: RSNS = Generate_RSNSCircle_Shapefile([m1 m2 ...],filename)
%*
%* Author: LCDR Brian Luke
%* Last Modified: 19AUG04
%*
%* Called Functions: None
%* Calling Functions: ArcViewOutput
%*
%**

global RADIUS N Pf

% Set the width of each block in the RSNS circle
binwidth = (2*pi*RADIUS)/Pf;

% This loop creates the N individual channels in the RSNS Pf corresponding
% to each of the input moduli
for i = 1:N
 m = modli(i);

 % Make half on one period for one channel
 half_rsns = floor([0:(N*(m+1))-1]/N);

 % Make the other half and join into one period
 rsns = [half_rsns,fliplr(half_rsns(N+1:max(size(half_rsns))-N))];

 % If not the 1st channel, circularly shift the channel period
 % by the number of positions equal to one less than the channel number
 if i > 1
 rsns = [rsns(i:max(size(rsns))) rsns(1:i-1)];
 end

 % Replicate the channel period to a length equal to Pf
 rsnsPf(i,:) = repmat(rsns,1,ceil(Pf/max(size(rsns))));
end

% The following section generates the text file that ArcGIS uses to make a
% shapefile (RSNS circle plot)

% Check for a correct filename
if ischar(fname) ~= 1
 error('Not a valid filename')
end
fname = [fname '.txt'];
fid = fopen(fname,'wt');

% Provide labels for the columns (ArcGIS works in Longitude and Latitude)
fprintf(fid,'Lon,Lat,h_mod_N,h,RSNS\n');

% Create an isosceles trapezoid shape for each RSNS vector and associate
% corresponding RSNS vector information for the ArcGIS database
for rho = 0:Pf-1

 % ['0,0,0,0,New\n'] indicates a new shape
 fprintf(fid,['0,0,0,0,New\n']);

 % get the vector information
 chanels = num2str(rsnsPf(:,rho+1)');

 % compute the corner locations

280
 [corner(1,1),corner(1,2)] = pol2cart(rho*2*pi/Pf,RADIUS);

 [corner(2,1),corner(2,2)] = pol2cart((rho+1)*2*pi/Pf,RADIUS);
 [corner(3,1),corner(3,2)] = pol2cart((rho+1)*2*pi/Pf,RADIUS-binwidth);
 [corner(4,1),corner(4,2)] = pol2cart(rho*2*pi/Pf,RADIUS-binwidth);

 % write the corner locations and associated information to the file
 fprintf(fid,[num2str(corner(1,1),'%1.14f'),',',num2str(corner(1,2),...
 '%1.14f'),',',num2str(mod(rho,N)),',',num2str(rho),...
 ',"',chanels,'"\n']);
 fprintf(fid,[num2str(corner(2,1),'%1.14f'),',',num2str(corner(2,2),...
 '%1.14f'),',',num2str(mod(rho,N)),',',num2str(rho),...
 ',"',chanels,'"\n']);
 fprintf(fid,[num2str(corner(3,1),'%1.14f'),',',num2str(corner(3,2),...
 '%1.14f'),',',num2str(mod(rho,N)),',',num2str(rho),...
 ',"',chanels,'"\n']);
 fprintf(fid,[num2str(corner(4,1),'%1.14f'),',',num2str(corner(4,2),...
 '%1.14f'),',',num2str(mod(rho,N)),',',num2str(rho),...
 ',"',chanels,'"\n']);
 fprintf(fid,[num2str(corner(1,1),'%1.14f'),',',num2str(corner(1,2),...
 '%1.14f'),',',num2str(mod(rho,N)),',',num2str(rho),...
 ',"',chanels,'"\n']);
end

fclose(fid);

5. Generate_CircleArc_Shapefile.m

function [] = Generate_CircleArc_Shapefile(plot_circle_arcs,modli,arcType)

%**
%* Generate_CircleArc_Shapefile This function generates the RSNS
%* redundancy arcs text file that ArcGIS uses to generate a shapefile.
%*
%* Author: LCDR Brian Luke
%* Last Modified: 19AUG04
%*
%* Called Functions: None
%* Calling Functions: Calculate_ArcView_Redundancies,
%* ArcViewOutput
%*
%**

global RADIUS N Pf

% Set the width of each arc in the RSNS circle
binwidth = (2*pi*RADIUS)/Pf;

% find each case
CaseLabels = unique(plot_circle_arcs(:,3));

% generate a seperate shapfile for each redundancy case
for ii = 1:length(CaseLabels)
 f = find(plot_circle_arcs(:,3)==CaseLabels(ii));
 circle_arc = plot_circle_arcs(f,:);

 % generate the filename, open the file, and label the data fields
 fname = [num2str(N),'Channel'];
 for i = 1:N
 fname = [fname,'_',num2str(modli(i))];
 end

281

 if isnan(CaseLabels(ii))==1
 fname = [fname, arcType, '.txt'];
 else
 fname = [fname, arcType, num2str(CaseLabels(ii)), '.txt'];
 end
 fid = fopen(fname,'wt');
 fprintf(fid,'Lon,Lat,NotUsed,length,Case\n');

 % arc lengths
 circle_arc_length = circle_arc(:,2)-circle_arc(:,1)+1;

 % Make the text for the Shapefile
 for i = 1:size(circle_arc,1)

 clear corner
 fprintf(fid,['0,0,0,0,New\n']);

 endln = repmat('\n',circle_arc_length(i)+1,1);
 notused = repmat(',0,',circle_arc_length(i)+1,1);
 len = repmat(num2str(circle_arc_length(i)), ...
 circle_arc_length(i)+1,1);
 case_string = repmat([',Case ',num2str(CaseLabels(ii))],...
 circle_arc_length(i)+1,1);

 [corner(1:circle_arc_length(i)+1,1),...
 corner(1:circle_arc_length(i)+1,2)] = pol2cart((...
 [circle_arc(i,1):...
 circle_arc(i,2)+1]')...
 *2*pi/Pf,RADIUS);

 fprintf(fid,[num2str(corner(1:circle_arc_length(i)+1,1),...
 '%+1.14f,'),num2str(corner...
 (1:circle_arc_length(i)+1,2),'%+1.14f'),...
 notused,len,case_string,endln]');

 [corner(circle_arc_length(i)+2:...
 circle_arc_length(i)*2+2,1),...
 corner(circle_arc_length(i)+2:...
 circle_arc_length(i)*2+2,2)] = ...
 pol2cart(([circle_arc(i,2)+1:-1:circle_arc(i,1)]')...
 *2*pi/Pf,RADIUS-binwidth*(mod(CaseLabels(ii),N)+1));

 fprintf(fid,[num2str(corner(circle_arc_length(i)+2:...
 circle_arc_length(i)*2+2,1),'%+1.14f,'),...
 num2str(corner(circle_arc_length(i)+2:...
 circle_arc_length(i)*2+2,2),'%+1.14f'),...
 notused,len,case_string,endln]');

 if isempty(corner) == 0
 fprintf(fid,[num2str(corner(1,1),'%+1.14f,'),...
 num2str(corner(1,2),'%+1.14f,'),...
 num2str(0),',',num2str(circle_arc_length(i)),...
 ',Case ',num2str(CaseLabels(ii)),'\n']);
 end
 end
 fclose(fid);
end

282

6. ArcGIS shapefile generation visual basic code

Sub MultipleFiles()

 '**
 ' MultipleFiles() This is the main function that reads in a
 ' set of text files created by MATLAB that represent
 ' RSNS redundancies.
 '
 ' Modify the parameters strShapePath, N, and intArrayModuli
 ' below before running this function.
 '
 ' Author: LCDR Brian Luke
 ' Last Modified: 20AUG04
 '
 ' This code was created using examples of shapefile
 ' creation code from the ESRI ArcGIS website
 '**

 ' loop indexes
 Dim i As Integer
 Dim ii As Integer
 Dim iii As Integer

 ' Number of channels and moduli
 Dim N As Integer
 Dim intArrayModuli As Variant

 ' Strings for filenames
 Dim strCaseFiles As String
 Dim strDynRangeFiles As String
 Dim strArrayFiles() As String
 Dim strShapePath As String
 Dim strPrefix As String
 Dim strShapeName As String

 '**
 ' Change these parameters to use program
 '
 ' strShapePath is the path to the text files and where the shape
 ' files will be placed after creation
 '
 ' N is the number of channels
 '
 ' intArrayModuli are the individual moduli
 '**

 strShapePath = "C:\this_path\this_directory\"
 N = 3
 intArrayModuli = Array(3, 4, 5)

 '**

 ' form filenames to match MATLAB filenames
 strPrefix = CStr(N) + "Channel_"
 For i = 1 To N
 strPrefix = strPrefix + CStr(intArrayModuli(i - 1)) + "_"
 Next

283
 strCaseFiles = "CirclePlot DynamicRange Intervals"

 Dim combinations As Integer

 For i = 1 To N
 combinations = Factorial(N) / (Factorial(i) * (Factorial(N - i)))
 For ii = 1 To combinations
 For iii = 0 To N - 1
 strCaseFiles = strCaseFiles + _
 " Case_" + _
 CStr(i) + _
 CStr(ii) + _
 CStr(iii)
 Next
 Next
 Next

 ' split filenames into an array and loop through each file
 strArrayFiles = Split(strCaseFiles)

 Dim strFilename
 Dim strTempFilename() As String
 Dim strDynRge As String
 Dim intDynExists As Integer

 For Each strFilename In strArrayFiles

 ' shapefile name that appears on the ArcGIS display
 strShapeName = strFilename

 'form complete path to MATLAB text file
 Dim strInputTextFile As String
 strInputTextFile = strShapePath + strPrefix + strFilename + ".txt"

 'create the shapefiles
 Dim pFeatureClass As IFeatureClass
 Set pFeatureClass = CreatePolygonShapefile(strShapePath, strShapeName)

 'open text file
 Close #1
 Open strInputTextFile For Input As #1

 Dim dblLon As Double
 Dim dblLat As Double
 Dim pPoint As IPoint
 Dim pPointCollection As IPointCollection
 Dim int_Field1 As Integer
 Dim int_Field2 As Integer
 Dim str_Field3 As String
 Dim int_Field1Value As Integer
 Dim int_Field2Value As Integer
 Dim str_Field3Value As String

 'Get the header
 Dim strHeader As String
 Line Input #1, strHeader

 ' Loop through the file forming each polygon
 Dim lngCounter As Long
 lngCounter = 0
 Do While Not (EOF(1))
 'input the data row and create the new polygon point
 Input #1, dblLon, dblLat, int_Field1, int_Field2, str_Field3
 lngCounter = lngCounter + 1

284

 Set pPoint = New Point
 pPoint.PutCoords dblLon, dblLat

 If str_Field3 = "New" Then

 If lngCounter = 1 Then
 'first polygon, don't write previous
 Else
 'write previous polygon
 Call AddPointCollection2FeatureClassPOL(pFeatureClass, _
 pPointCollection, _
 int_Field1Value, _
 int_Field2Value, _
 str_Field3Value)

 End If

 'start the new pointcollection
 Set pPointCollection = New Polygon

 ElseIf str_Field3 <> "" Then

 'add the data fields and add the point to the polygon
 int_Field1Value = int_Field1
 int_Field2Value = int_Field2
 str_Field3Value = str_Field3
 pPointCollection.AddPoint pPoint

 End If

 Loop
 Close #1

 'write last polygon
 Call AddPointCollection2FeatureClassPOL(pFeatureClass, _
 pPointCollection, _
 int_Field1Value, _
 int_Field2Value, _
 str_Field3Value)

 'Add the shape file to ArcMap, label it, and make it 50% transparent
 Dim pFLayer As IFeatureLayer
 Dim pFLayerEffects As ILayerEffects
 Set pFLayer = New FeatureLayer
 Set pFLayer.FeatureClass = pFeatureClass
 pFLayer.name = pFeatureClass.AliasName
 Set pFLayerEffects = pFLayer
 pFLayerEffects.Transparency = 50

 'zoom the map to the new layer
 Dim pMxDoc As IMxDocument
 Set pMxDoc = ThisDocument
 pMxDoc.FocusMap.AddLayer pFLayer

 'refresh map
 pMxDoc.ActiveView.Refresh
 pMxDoc.UpdateContents

Next

MsgBox "Done..."

285

End Sub

Public Function CreatePolygonShapefile(strFolder As String, _
 strShapeName As String) _
 As IFeatureClass

 '**
 ' CreatePolygonShapefile(strFolder,strShapeName)
 ' This function creates a polygon shapefile in the folder
 ' and with the name specified by the input. This function
 ' also adds the numeric and string fields that will be in
 ' the database table associated with the shapes in the
 ' layer.
 '**

 Const strShapeFieldName As String = "Shape"

 ' Open the folder to contain the shapefile as a workspace
 Dim pFWS As IFeatureWorkspace
 Dim pWorkspaceFactory As IWorkspaceFactory
 Set pWorkspaceFactory = New ShapefileWorkspaceFactory
 Set pFWS = pWorkspaceFactory.OpenFromFile(strFolder, 0)

 ' Set up a simple fields collection
 Dim pFields As IFields
 Dim pFieldsEdit As IFieldsEdit
 Set pFields = New esriCore.Fields
 Set pFieldsEdit = pFields

 Dim pField As IField
 Dim pFieldEdit As IFieldEdit

 ' Make the polygon shape field
 Set pField = New esriCore.Field
 Set pFieldEdit = pField
 pFieldEdit.name = strShapeFieldName
 pFieldEdit.Type = esriFieldTypeGeometry

 Dim pGeomDef As IGeometryDef
 Dim pGeomDefEdit As IGeometryDefEdit
 Set pGeomDef = New GeometryDef
 Set pGeomDefEdit = pGeomDef
 With pGeomDefEdit
 .GeometryType = esriGeometryPolygon
 Set .SpatialReference = New UnknownCoordinateSystem
 End With
 Set pFieldEdit.GeometryDef = pGeomDef
 pFieldsEdit.AddField pField

 ' Add Field 1, integer, h (mod N)
 Set pField = New esriCore.Field
 Set pFieldEdit = pField
 With pFieldEdit
 .name = "hModN"
 .Type = esriFieldTypeInteger
 End With
 pFieldsEdit.AddField pField

 ' Add Field 2, integer, vector position h
 Set pField = New esriCore.Field
 Set pFieldEdit = pField

286

 With pFieldEdit
 .name = "h"
 .Type = esriFieldTypeInteger
 End With
 pFieldsEdit.AddField pField

 ' Add Field 3, string, shape description (i.e., case label)
 Set pField = New esriCore.Field
 Set pFieldEdit = pField
 With pFieldEdit
 .name = "Case"
 .Type = esriFieldTypeString
 .Length = 30
 End With
 pFieldsEdit.AddField pField

 ' Create the shapefile
 Dim boolIsDeleted As Boolean
 boolIsDeleted = DeleteShapeFile(strFolder, strShapeName)

 'Make shapefile as featureclass
 Set CreatePolygonShapefile = pFWS.CreateFeatureClass(strShapeName, _
 pFields, _
 Nothing, _
 Nothing, _
 esriFTSimple, _
 strShapeFieldName, _
 "")

End Function

Public Function DeleteShapeFile(strFolder As String, _
 strShapeName As String) _
 As Boolean

 '**
 ' DeleteShapeFile(strFolder,strShapeName)
 ' This function deletes a polygon shapefile in the folder
 ' and with the name specified by the input. This is used
 ' when a file is to be overwritten.
 '**

 On Error GoTo EH

 Dim pDS As IDataset
 Dim DeleteFile As Boolean

 ' try shapefile and delete if it exists
 Dim pFClass As IFeatureClass
 Set pFClass = OpenShapeFile(strFolder, strShapeName)
 If (Not pFClass Is Nothing) Then
 Set pDS = pFClass
 pDS.Delete
 DeleteFile = True
 Exit Function
 End If

EH:
 DeleteFile = False

End Function

287

Public Function OpenShapeFile(dir As String, _
 name As String) _
 As IFeatureClass

 '**
 ' OpenShapeFile(dir,name)
 ' This function opens a shapefile for adding data.
 '**

 Dim pWSFact As IWorkspaceFactory
 Dim connectionProperties As IPropertySet
 Dim pShapeWS As IFeatureWorkspace
 Dim isShapeWS As Boolean

 Set OpenShapeFile = Nothing

 Set pWSFact = New ShapefileWorkspaceFactory
 isShapeWS = pWSFact.IsWorkspace(dir)
 If (isShapeWS) Then
 On Error GoTo ErrHandler
 Set connectionProperties = New PropertySet
 connectionProperties.SetProperty "DATABASE", dir
 Set pShapeWS = pWSFact.Open(connectionProperties, 0)
 Dim pFClass As IFeatureClass
 Set pFClass = pShapeWS.OpenFeatureClass(name)
 Set OpenShapeFile = pFClass
 End If

ErrHandler:

End Function

Sub AddPointCollection2FeatureClassPOL(pFeatureClass As IFeatureClass, _
 pPointCollection As IPointCollection, _
 int_Field1 As Integer, _
 int_Field2 As Integer, _
 str_Field3 As String)

 '**
 ' AddPointCollection2FeatureClassPOL(pFeatureClass,pPointCollection,
 ' int_Field1,int_Field2,str_Field3)
 ' This function adds a shape to a layer and adds the associated
 ' data to the database.
 '**

 Dim pFeature As IFeature
 Set pFeature = pFeatureClass.CreateFeature
 Set pFeature.Shape = pPointCollection
 pFeature.Value(pFeature.Fields.FindField("hModN")) = int_Field1
 pFeature.Value(pFeature.Fields.FindField("h")) = int_Field2
 pFeature.Value(pFeature.Fields.FindField("Case")) = str_Field3
 pFeature.Store

End Sub

Function Factorial(N)

 '**
 ' Factorial(N)

288

 ' This function computes the factorial of a number (N!)
 '**

 If N <= 1 Then
 Factorial = 1
 Else
 Factorial = Factorial(N - 1) * N
 End If
End Function

7. Sample Output of ArcGIS Shapefile Generation Visual Basic Code

Figure C.3 Screen shot of the ArcGIS map showing the RSNS circle plot, a Case 210

redundancy, and associated attribute table. A single redundancy is selected
on the map and in the linked table.

289

THIS PAGE INTENTIONALLY LEFT BLANK

290

LIST OF REFERENCES

[1] Office of Naval Research, “A Future Naval Capability: Missile Defense.”
[http://www.onr.navy.mil/media/extra/fncs_fact_sheets/missile_defense.pdf]. Last
accessed Sep. 2004.

[2] Office of Naval Research, “A Future Naval Capability: Platform Protection.”

[http://www.onr.navy.mil/media/extra/fncs_fact_sheets/platform_protect.pdf].
Last accessed Sep. 2004.

[3] N. J. Porter, R. J. A. Tough, and K. D. Ward, ISAR Imaging of Maritime Targets:

Theory and Simulation, Defence Research Agency Malvern report 4577 Sep.
1992.

[4] R. Madden, An Introduction to the Functionality of the ISAR Radar, Naval

Research Laboratory Radar Division document NRL/MR/5313-01-8533, Feb.
2001.

[5] P. E. Pace and G. D. Burton, “Antiship Cruise Missiles: Technology, Simulation

and Self-Defense,” Journal of Electronic Defense, vol. 4, pp. 11-15, Nov. 1998.

[6] C. J. Condley, “Some System Considerations for Electronic Countermeasures to

Synthetic Aperture Radar,” Proceedings of the IEE Colloquium on Electronic
Warfare Systems, pp. 8/1-8/7, 14 Jan. 1991.

[7] S. L. Fearnley and E. P. Meakin, “EW Against Anti-Ship Missiles,” Proceedings

of the IEE Colloquium on Signal Processing Techniques for Electronic Warfare,
pp. 7/1-7/4, 31 Jan. 1992.

[8] D. J. Fouts, P. E. Pace, C. Karow, and S. R. T. Ekestorm, “A Single-Chip False

Target Radar Image Generator for Countering Wideband Imaging Radars,” IEEE
Journal of Solid-State Circuits, vol. 37, pp. 751-759, Jun. 2002.

[9] P. E. Pace, D. J. Fouts, C. Karow, and S. R. T. Ekestorm, “Digital False-Target

Image Synthesizer for Countering ISAR,” IEE Proceedings on Radar Sonar
Navigation, vol. 149, pp. 248-257, Oct. 2002.

[10] G. G. E. Gielen and R. A. Rutenbar, “Computer-Aided Design of Analog and

Mixed-Signal Integrated Circuits,” Proceedings of the IEEE, vol. 88, pp. 1825-
1854, Dec. 2000.

291

[11] K. Kundert, H. Chang, D. Jefferies, G. Lamant, E. Malavasi, and F. Sendig,
“Design of Mixed-Signal Systems-on-a-Chip,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 19, pp. 1561-1571, Dec.
2000.

[12] A. Finn, K. Brown, and T. Lindsay, “Miniature UAVs & Future Electronic

Warfare,” presented at the Land Warfare Conference, Brisbane, Australia, 22 Oct.
2002. [http://www.aerosonde.com/downloads/Aerosonde_DSTO_EW.pdf]. Last
accessed Sep. 2004.

[13] D. Ledger, “Electronic Warfare Capabilities of Mini UAVs,” presented at the

2002 Electronic Warfare Conference, Kuala Lumpur, 2002.
[http://www.aerosonde.com/downloads/electronic_warfare_ledger.doc]. Last
accessed Sep. 2004.

[14] D. L. Harame, D. C. Ahlgren, D. D. Coolbaugh, J. S. Dunn, G. G. Freeman, J. D.

Gillis, R. A. Groves, G. N. Hendersen, R. A. Johnson, A. J. Joseph, S. Subbanna,
A. M. Victor, K. M. Watson, C. S. Webster, and P. J. Zampardi, ”Current Status
and Future Trends of SiGe BiCMOS Technology,” IEEE Transactions on
Electron Devices, vol. 48, pp. 2575-2594, Nov. 2001.

[15] E. Liu, C. Wong, Q. Shami, S. Mohapatra, R. Landy, P. Sheldon, and G.

Woodword, “Complete Mixed-Signal Building Blocks for Single-Chip GSM
Baseband Processing,” Proceedings of the IEEE 1998 Custom Integrated Circuits
Conference, pp. 101-104, 11 May 1998.

[16] D. Leenaerts, G. Gielen, and R. Rutenbar, “CAD Solutions and Outstanding

Challenges for Mixed-Signal and RF IC Design,” Proceedings of the IEEE/ACM
International Conference on Computer Aided Design, pp. 270-277, 4 Nov. 2001.

[17] R.C. Altmeyer, “Design, Implementation, and Testing of a VLSI High

Performance ASIC for Extracting the Phase of a Complex Signal,” Master’s
thesis, Naval Postgraduate School, Monterey, California, Sep. 2002.

[18] P. E. Pace, D. J. Fouts, C. Karow, and S. Ekestorm, “An All-Digital Image

Synthesizer for Countering High-Resolution Imaging Radars,” Naval
Postgraduate School Technical Report, NPS-EC-00-005, Feb. 2000.

[19] B. Parhami, Computer Arithmetic: Algorithms and Hardware Designs, Oxford

University Press: New York, 2000.

[20] C. Huang, J. Wang, and Y. Huang, “A High-speed CMOS Incrementer/Dec-

rementer,” IEEE International Symposium on Circuits and Systems, vol. 4, pp. 88-
91, May 2001.

292

[21] J. Yoo, G. Gopalakrishnan, and K. Smith, “Timing Constraints for High-Speed
Counterflow-Clocked Pipelining,” IEEE Transactions on Very Large Scale
Integration Systems, vol. 7, no. 2, pp. 167-173, Jun. 1999.

[22] Y. Elboim, A. Kolodny, and R. Ginosar, “A Clock-Tuning Circuit for System-on-

Chip,” IEEE Transactions on Very Large Scale Integration Systems, vol. 11, no.
4, pp. 616-626, Aug. 2003.

[23] S. H. Embabi and D. E. Brueske, “Clock Synchronization for WSI Systems,”

Proceedings of the IEEE International Conference on Wafer Scale Integration,
pp. 228-234, Jan. 1994.

[24] D. E. Brueske and S. H. Embabi, “A Dynamic Clock Synchronization Technique

for Large Systems,” IEEE Transactions on Components, Packaging, and
Manufacturing Technology, vol. 17, no. 3, pp. 350-361, Aug. 1994.

[25] H. Lee, H. Q. Nguyen, and D. W. Potter, “Design Self-Synchronized Clock

Distribution Networks in an SOC ASIC Using DLL with Remote Clock
Feedback,” Proceedings of the 13th Annual IEEE International ASIC/SOC
Conference, pp. 248-252, Sep. 2000.

[26] The MOSIS Service, AMI Semiconductor 1.5 micron ABN process.

[http://www.mosis.org/products/fab/vendors/amis/abn/]. Last accessed Oct. 2004.

[27] N. Weste and K. Eshraghian, Principles of CMOS VLSI Design: A Systems

Perspective, Addison-Wesley: New York, 1994.

[28] P. E. Pace, Advanced Techniques for Digital Receivers, Artech House: Norwood,

Massachusetts, 2000.

[29] P. E. Allen and D. R. Holberg, CMOS Analog Circuit Design, Oxford University

Press: New York, 2002.

[30] P. E. Pace, D. Styer, and I. A. Akin, “A Folding ADC Preprocessing Architecture

Employing a Robust Symmetrical Number System with Gray-Code Properties,”
IEEE Trans. Circuits Syst. II, vol. 47, pp. 462-467, May 2000.

[31] S. Subbanna, G. Freeman, D. Ahlgren, D. Greenberg, D. Harame, J. Dunn, D.

Herman, B. Meyerson, Y. Greshishchev, P. Schvan, D. Thornberry, G. Sakamoto,
and R. Tayrani, ”Integration and Design Issues in Combining Very-High-Speed
Silicon-Germanium Bipolar Transistors and ULSI CMOS for System-on-a-Chip
Applications,” IEEE International Electron Devices Meeting, pp. 845-848, Sep.
1999.

293

[32] IBM technical report G522-0353-00, BlueLogic BiCMOS 5HP Technology: SiGe
BiCMOS process for high performance, IBM Microelectronics Division, New
York, Jun. 1998.

[33] D. Styer and P. E. Pace, “Two Channel RSNS Dynamic Range,” IEEE Trans.

Circuits Syst. I, vol. 49, pp. 395-397, Mar. 2002.

[34] P. E. Pace, D. Wickersham, D. C. Jenn, and N. S. York, “High-Resolution Phase

Sampled Interferometry Using Symmetrical Number Systems,” IEEE
Transactions on Antennas and Propagation, vol. 49, pp. 1411–1423, Oct. 2001.

[35] P. E. Pace, D. C. Jenn, and J. P. Powers, “Symmetrical Number Systems: Theory

and Applications,” Transworld Research Network Journal, pp. 91-121, Jan. 2002.

[36] P. E. Pace, R. E. Leino, and D. Styer, “Use of the Symmetrical Number System in

Resolving Single-Frequency Undersampling Ambiguities,” IEEE Trans. on
Signal Processing, vol. 45, pp. 1153–1160, May 1997.

[37] S. Andraos and H. Ahmad, “A New Efficient Memoryless Residue to Binary

Converter,” IEEE Trans. Circuits and Systems, vol. 35, pp. 1441-1444, Nov.
1988.

[38] ESRI, “What is GIS?” ESRI PDF presentation.

[http://www.gis.com/whatisgis/whatisgis.pdf.]. Last accessed Sep. 2004.

[39] ESRI, “Geography Matters,” ESRI white paper, ESRI, Redlands, CA, Sep. 2002.

[http://www.gis.com/whatisgis/geographymatters.pdf.]. Last accessed Sep. 2004.

[40] ESRI, “What is GIS?” ESRI tutorial document.

[http://www.gis.com/whatisgis/index.html.]. Last accessed Sep. 2004.

[41] B. L. Luke, P. E. Pace, and D. Styer, “Three Channel RSNS Dynamic Range,”

paper submitted to the IEEE Trans. Circuits Syst. I.

[42] P.E. Pace and D. Styer, “An Optimum SNS-to-Binary Conversion Algorithm and

Pipelined Field-Programmable Logic Design,” IEEE Trans. Circuits Syst. I, vol.
47, pp. 736-745, Aug. 2000.

[43] S. Lin and D. J. Costello, Error Control Coding: Fundamentals and Applications,

Prentice-Hall: Englewood Cliffs, New Jersey, 1983.

294

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center

Ft. Belvoir, VA

2. Dudley Knox Library

Naval Postgraduate School
Monterey, CA

3. Chairman, Code EC

Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA

4. Professor Douglas Fouts (EC/Fs)

Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA

5. Professor Phillip Pace (EC/Pc)

Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA

6. Professor Herschel Loomis (EC/Lm)

Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA

7. Professor Charles Therrien (EC/Ti)

Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA

8. Professor Cynthia Irvine (CS/Ic)

Department of Computer Science
Naval Postgraduate School
Monterey, CA

9. Commander Naval Security Group, Code N6

Fort Meade, MD

10. Commanding Officer, Naval Information Warfare Activity

Fort Meade, MD

295

296

11. Dr. Peter Craig, Office of Naval Research, Code 313

Arlington, VA

12. Dr. Chip Grounds, Office of Naval Research, Code 313

Arlington, VA

13. Mr. Mike Monsma, Office of Naval Research, Code 313

Arlington, VA

14. Mr. Jim Talley, Office of Naval Research, Code 313

Arlington, VA

15. Mr. Greg Hrin, Naval Research Laboratory, Code 5740

Washington, DC

16. Dr. Ted Roberts, Naval Research Laboratory, Code 5720

Washington, DC

17. Mr. Alfred DiMatessa, Naval Research Laboratory, Code 5700

Washington, DC

18. Dr. Frank Klemm, Naval Research Laboratory, Code 5700

Washington, DC

19. Commissioner Dennis Luke and Mrs. Joanne Luke
 Bend, OR

20. Mr. Paul Young and Mrs. Pat Young
 Pensacola, FL

21. LCDR Brian Luke

Naval Information Warfare Activity
Fort Meade, MD

	I.INTRODUCTION
	A.BACKGROUND
	B.PROBLEM STATEMENT
	C.ORIGINAL CONTRIBUTION
	D.DISSERTATION OUTLINE

	II.DIGITAL IMAGE SYNTHESIZER ELECTRONIC WARFARE SYSTEM-ON-A-CHIP
	A.SYSTEM-ON-A-CHIP ARCHITECTURE
	B.DIGITAL IMAGE SYNTHESIZER DESIGN
	1.Current DIS Architecture
	2.Alternative DIS Architectures

	C.DIS CLOCK-SKEW CONTROL
	1.Counterflow-Clock Pipelining
	2.Automatic Synchronization Approach
	3.Circuit Design
	a.Phase-Check Module
	b.Finite State Machine
	c.Wrap-Around Counter
	d.Variable Delay Module

	4.Simulation Results
	a.Phase Check Module
	b.Finite State Machine
	c.Wrap-Around Counter
	d.Variable Delay Module
	e.Pad-to-Pad Chip Simulation

	5.Fabrication and Testing

	D.SUMMARY

	III.RSNS ANALOG-TO-DIGITAL CONVERTER
	A.SILICON-GERMANIUM MIXED-SIGNAL FABRICATION PROCESS
	B.THREE-CHANNEL RSNS ANALOG-TO-DIGITAL CONVERTER
	1.Folded Waveform Generation
	2.Latched Comparator Design

	C.FOUR-CHANNEL RSNS ANALOG-TO-DIGITAL CONVERTER
	D.SIMULATION RESULTS
	1.Three-Channel RSNS ADC
	2.Four-Channel RSNS ADC

	E.SUMMARY

	IV.ROBUST SYMMETRIC NUMBER SYSTEM
	A.THE THREE-MODULUS RSNS
	B.CASE-BY-CASE SOLUTION FOR THE REDUNDANCY LOCATIONS
	1.Case 010
	2.Case 31X
	3.Case 1XX
	4.Case 2XX
	5.Summary of Vector Redundancy Locations

	C.THE N-MODULUS RSNS
	1.N-modulus RSNS Redundancy Analysis
	2.Case-by-Case Solution for the N-Modulus Redundancy Locations
	a.Case 010
	b.Case N1X
	c.Case 1XX
	d.Case 2XX through Case (N-1)XX

	3.Summary of N-Modulus Vector Redundancy Locations

	D.� FOR MODULI
	1.� Upper Bound
	2.� Lower Bound and Length

	E.N-MODULUS RSNS � SEARCH ALGORITHM
	1.RSNS Redundancy Vector Graphical Representation
	a.Geographical Information Systems
	b.RSNS Circle Representation

	2.SmartSearch � Search Algorithm

	F.SUMMARY

	V.RSNS-TO-BINARY CONVERSION
	A.RSNS-TO-BINARY CONVERSION USING CONVENTIONAL TECHNIQUES
	1.ROM Conversion
	2.Decoder Conversion

	B.THREE-MODULUS RSNS-TO-BINARY CONVERSION
	1.RSNS Congruence Equations
	2.The RSNS-RNS Relationship
	3.RNS Least Positive Solution

	C.THREE-MODULUS RSNS-TO-BINARY LPS CONVERTER
	1.RSNS Thermometer Code to RNS Residue Conversion
	2.RNS Position Bit, Even Residue, and MRSS Logic Equations
	3.LPS Positional Solution and Index Expansion/Compensation
	4.RSNS-to-Binary Circuit Schematics

	D.N-MODULUS RSNS-TO-BINARY LPS CONVERSION
	E.FOUR-MODULUS RSNS-TO-BINARY LPS CONVERTER
	1.Logic Design
	2.RSNS-to-Binary Decoder Schematics

	F.SIMULATION RESULTS
	1.Three-modulus RSNS-to-Binary Conversion
	2.Four-Modulus RSNS-to-Binary Conversion

	G.SUMMARY

	VI.CONCLUSIONS AND FUTURE WORK
	A.CONCLUSIONS
	B.FUTURE WORK

	APPENDIX A CLOCK SYNCHRONIZATION CHIP LAYOUT
	A.BASIC ELEMENT LAYOUT
	B.INTERMEDIATE COMPONENT LAYOUT
	C.MAJOR COMPONENT LAYOUT

	APPENDIX B CLOCK SYNCHROMIZATION DETAILED SIMULATION RESULTS
	A.BASIC LOGIC GATES
	B.INTERMEDIATE CIRCUIT COMPONENTS

	APPENDIX C RSNS MATLAB AND VISUAL BASIC CODE
	A.� SEARCH ALGORITHM CODE
	1.Sample � Search Code Output
	2.startRSNSsearch.m
	3.DynamicRangeSmartSearch.m
	4.CalculateRedundancies.m
	5.find_PRP_combos.m
	6.prp_check.m
	7.crt.m
	8.PaceStyerRSNSsearch.m
	9.Sample Program Output for Pace/Styer Search Program

	B.ARCGIS SHAPEFILE GENERATION CODE
	1.Sample Shapefile Generation Code Output
	2.ArcViewOutput.m
	3.Calculate_ArcView_Redundancies.m
	4.Generate_RSNSCircle_Shapefile.m
	5.Generate_CircleArc_Shapefile.m
	6.ArcGIS shapefile generation visual basic code
	7.Sample Output of ArcGIS Shapefile Generation Visual Basic Code

	LIST OF REFERENCES
	INITIAL DISTRIBUTION LIST
	04Dec_Luke_PhD_Modified Pages.pdf
	New Page 1 from 04Dec_Luke_PhD
	New Page 3 from 04Dec_Luke_PhD
	New Page 5 from 04Dec_Luke_PhD

