Cameron Stewart

Problem Statement:

(i) Verify that the polynomial in (1) on 66-2 is a Laguerre polynomial, except for a minus sign.
(ii) Find the expressions of $P_{N}(u)$ for various values of N, and compare them to a table of Laguerre polynomials.
(iii) Plot the associated Laguerre polynomials for $n=3$, and $\alpha=0,-1,-2,-3,-4$.

Solution:

i.)

The given equation is:

$$
\begin{gathered}
P_{N}(u)=u+\sum_{n=2}^{N}(-1)^{n-1} \frac{(N-1)(N-2) \ldots(N-n+1)}{n!(n-1)!} u^{n} \\
N \geq 2 \quad(\text { Eq. } 2)
\end{gathered}
$$

(Source: https://docs.google.com/file/d/0B9xP2cHngVLiT2o5NGN6LXdtcjA/edit?pli=1)

Some nomenclature is needed:
The term: $(N-1)(N-2) \ldots(N-n+1)$ can be expressed by a pochammer symbol for the falling factorial. The equation below describes this notation.

$$
(\mathrm{N})_{\mathrm{n}}=N(N-1)(N-2) \ldots(N-n+1) \quad(E q .3)
$$

(Source: https://en.wikipedia.org/wiki/Pochhammer symbol)
This can be related to a binomial coefficient by:

$$
\frac{(N)_{n}}{n!}=\binom{N}{n} \quad \text { Eq.4) }
$$

(Source: https://en.wikipedia.org/wiki/Pochhammer symbol)
Which has the explicit form:

$$
\begin{equation*}
\binom{N}{n}=\frac{N!}{n!(N-n)!} \text { for } 0 \leq N \leq n \tag{Eq.5}
\end{equation*}
$$

(Source: https://en.wikipedia.org/wiki/Binomial coefficient)
If (Eq.4) is substituted into (Eq. 1):

$$
\begin{equation*}
P_{N}(u)=u+\sum_{n=2}^{N}\binom{N}{n} \frac{(-1)^{n-1}}{N!} u^{n} \tag{Eq.6}
\end{equation*}
$$

The closed form expression for the Laguerre polynomials is:

$$
\begin{equation*}
L_{N}(u)=\sum_{n=0}^{N}\binom{N}{n} \frac{(-1)^{n}}{N!} u^{n} \tag{Eq.7}
\end{equation*}
$$

(Source: https://en.wikipedia.org/wiki/Laguerre polynomials)

(Eq. 6) is almost off by only a negative sign, but it is also missing the first term in the series (the constant term).

If I take the first two terms of (Eq. 7) outside of the sum:

$$
\begin{equation*}
L_{N}(u)=1-u+\sum_{n=2}^{N}\binom{N}{n} \frac{(-1)^{n}}{N!} u^{n} \tag{Eq.8}
\end{equation*}
$$

If I multiply (Eq. 6) by -1 :

$$
\begin{equation*}
P_{N}(u)=-u+\sum_{n=2}^{N}\binom{N}{n} \frac{(-1)^{n}}{N!} u^{n} \tag{Eq.6}
\end{equation*}
$$

I come to the conclusion that not only is the sum given in the problem statement off by a negative sign, but it is also missing the constant term.

