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Little information is currently available on interpersonal gait
synchronization in overground walking. This is caused by
difficulties in continuous gait monitoring over many steps
while ensuring repeatability of experimental conditions. These
challenges could be overcome by using immersive virtual
reality (VR), assuming it offers ecological validity. To this end,
this study provides some of the first evidence of gait
coordination patterns for overground walking dyads in VR. Six
subjects covered the total distance of 27 km while walking with
a pacer. The pacer was either a real human subject or their
anatomically and biomechanically representative VR avatar
driven by an artificial intelligence algorithm. Side-by-side and
front-to-back arrangements were tested without and with the
instruction to synchronize steps. Little evidence of spontaneous
gait coordination was found in both visual conditions, but
persistent gait coordination patterns were found in the case
of intentional synchronization. Front-to-back rather than side-
by-side arrangement consistently yielded in the latter case
higher mean synchronization strength index. Although the
mean magnitude of synchronization strength index was overall
comparable in both visual conditions when walking under the
instruction to synchronize steps, quantitative and qualitative
differences were found which might be associated with
common limitations of VR solutions.
1. Introduction
Spontaneous gait coordination in walking has become one of
the canonical examples of an emergent behaviour between
autonomous agents [1–3]. Persistent gait coordination patterns
have been reported in dyadic walking in side-by-side [4–13]
and front-to-back [14,15] pedestrians’ arrangements. The gait
coordination strength and directionality has been shown to
strongly depend in this case on the type and the amount of
available sensory information. However, the results from dyadic
walking cannot be simply extrapolated to walking in groups and
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crowds—a situation commonly encountered in real-world settings, while data enabling gait coordination

patterns to be examined in the latter case are still sparse [16–19].
Only a few studies investigated spontaneous gait synchronization in real-life environment

[4,16,17,19]. The main reasons for this pertain to controllability of experimental conditions and
observability of measured variables. On the one hand, the desire of closely controlled setting is
difficult to realize in an environment subjected to various disturbances. On the other hand, the
inference of spatial and temporal gait variables demands a distributed instrumentation system capable
of simultaneous capture of data generated by multiple pedestrians. Consequently, alternative methods
of investigating gait adaptations between pedestrians were proposed, predominantly relying on
treadmills. However, the ecological validity of results from studies other than those enabling
overground walking can be put in question [20,21].

Considering these limitations, virtual reality (VR) technology is thought to have the potential to boost
the efficiency of research on locomotion. The current state of VR technology allows users to interact with
near-realistic virtual environments, including autonomous agents. To this day, VR locomotion studies
have been concerned with spatial cognition and awareness [22–24], locomotor training [25–33],
locomotion and perception in real-world and virtual environment [34–39], navigation [40–42], collision
avoidance [43,44] and crowd behaviour [45,46]. Locomotion interfaces allowing users to interact with
and explore the VR content include a joystick [47], walking-in-place [48,49], treadmill [50–56] and
those enabling overground walking compatible with real-world experience [35,36,57]. The last solution
shows the highest promise in capturing pedestrians’ natural behaviour [40–42,49,58,59], assuming it
employs isometric rather than non-isometric mapping. The former technique retains motion
parameters such as translation and rotation, and their time derivatives, of those from the real
environment in the virtualized equivalent, whereas the latter modifies some or all of these parameters
[60]. (For a detailed review of developments on human locomotion in VR the reader is referred to
Steinicke et al. [38].)

However, studies on the overground locomotion in VR, employing isometric mapping, are still rare
and their main focus remains the gait kinematics and sensory integration rather than interaction with
VR-based agents [35,57,61]. Furthermore, the gait enabled in these studies by VR interfaces can hardly
be considered unconstrained, as the walkers are either accompanied by a man-handled trolley
carrying PC provision or their locomotion is realized over few gait cycles.

It is important to note that VR comes with certain inherent limitations. Previous comparative studies
on gait parameters during walking in real and virtual environment found underestimation of egocentric
distances [62] as well as decrease of the walking speed and the stride length a common response to VR
immersion [63]. This was suggested to be caused by the altered distance perception in virtual reality,
often referred to as distance compression [36,64–67], which may become negligible after a 5 min
period of habituation to virtual environment [68]. Some more recent studies found walking and the
motion adaptation in VR to be quantitatively comparable to those in the real-world environment
[36,43,44,69,70]. A widely acknowledged consensus is that while quantitative differences between
virtual and real-life locomotion might still exist, the pedestrian behaviour in both environments is
qualitatively compatible [34,43,44,71,72].

To address the gap in current knowledge, the ambition of this study is to develop a VR platform
enabling unconstrained overground walking in the presence of virtual agents while preserving
ecological validity with regards to the behaviour in real-life settings. The main advantages of this
solution in human locomotion studies derive from controllability and observability [44,46], typically
associated with testing in a laboratory environment, and the ability of testing complex, uncommon or
even unrealistic scenarios [73]. To validate the platform, six subjects were asked to walk with a real
and virtual pacer in various topological arrangements while having their gait monitored. Gait
kinematics were analysed to identify any coordination patterns.

It was hypothesized that a VR locomotor interface enabling unconstrained overground walking can
evoke gait coordination patterns between a real pedestrian and a virtual reality avatar similar to those
observed when walking in the corresponding conditions in the real-life environment. Informed by the
previous studies on walking in pairs [9,10] and groups [16–19], it was expected that the spontaneous
synchronization of gait between walkers, if present, would be of transient nature [9,10]. Given a
sufficiently long walking path is provided, it was expected that the spontaneous synchronization of gait
would be relatively weak. Due to a lesser number of available synchronization stimuli when compared
to walking in a group of pedestrians [16,19], it was expected that the synchronization strength in dyadic
walking would be, on average, higher than that for walking in a group. Furthermore, it was expected
that the instruction to synchronize steps would cause the synchronization strength to be significantly
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higher than in the case of lack thereof [19]. Finally, it was expected that the synchronization strength for

walking front-to-back would be higher than that for walking side-by-side [16,19].
The rest of the paper is organized as follows. Section 2 introduces the developed VR platform, test

subjects, experimental protocol, instrumentation and data processing. The numerical results are
provided in §3. Section 4 presents the discussion of the results in the context of previous studies.
Conclusions are given in §5.
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2. Method
2.1. Virtual reality platform
A bespoke experimental platform was developed for the purpose of this study, relying on an immersive
VR environment and a distributed motion capture system. The VR environment contained a virtual
pedestrian, of which gait characteristics could be closely controlled, within a space closely resembling a
real-world environment in which the experimental campaign took place. The main idea underlying the
development of the experimental platform was to enable kinematic gait data to be recorded during
dyadic walking with a pacer, that being either a real human or their anatomically and biomechanically
representative VR avatar.

The following three main steps were implemented to create a VR platform enabling overground
walking in the presence of an avatar. Firstly, walking cycles of a real person were recorded using a
motion capture suit (MCS) to serve as a blueprint for the avatar’s movement. The recordings were
taken with a real person walking along straights and turns at various pacing frequencies. Secondly, a
realistic humanoid character to be presented in VR had to be created together with an animation
controller responsible for driving the movement of the avatar. Thirdly, a state-of-the-art navigation
system, using artificial intelligence, was set up and used to move the avatar within the VR environment.

2.1.1. Motion capture

Eight OptiTrack Prime 13 cameras were used to record the motion of a 25-year-old male performer
(height: 1.825m, weight: 80 kg) wearing a motion capture suit equipped with 37 reflective markers
placed on body landmarks. All data were recorded at the sampling rate of 120Hz and transferred
through a gigabit Ethernet network compliant with the IEEE 802.3 standard to the processing unit,
where they were logged and post-processed using proprietary Motive:Body 2.1.1 software [74]. Four
types of walks were performed at pacing frequencies, fp, ranging from 1.3 to 2.0 Hz, at 0.1 Hz
increments, enforced with an audible beat of a metronome: walk in a straight line and along circular
arcs with the radii of 0.635m (25 in), 1.27m (50 in) and 2.54m (100 in).

The initial MCS data post-processing was done in Motive:Body software, where gaps in markers’
positions were filled using cubic or linear polynomial interpolants, depending on the trajectory of a
marker. The raw data were smoothed by applying a low-pass fourth-order two-way Butterworth filter
with the cut-off frequency of 6 Hz. This was done to remove any motion artefacts caused by the
MCS’s fabric movement and any changes in the tracking quality due to fluctuations in the lighting
conditions and ambient temperature. The final stage of post-processing was performed in Autodesk
MotionBuilder 2018 [75], where the MCS data were down-sampled to 30 frames s−1. The software
enabled to adjust details, such as feet’s floor contact and fingers’ positions. Finally, to minimize the
repeatability of performer’s motions and to preserve the variability of gait, multiple gait cycles
recorded at the same pacing frequency and walking path during different takes were extracted. They
were then stitched together in an arbitrary order to create looping sequences of performer’s motion
containing an integer number of gait cycles, each slightly different than another.

2.1.2. Avatar creation

A virtual representation of the performer to be incorporated within VR was created in Adobe Fuse CC
1.2 [76]. The geometry and appearance of body segments, including face expression, were chosen to
match, as closely as possible, those of the performer. The character, hereafter referred to as the avatar,
was then imported into (Adobe) Mixamo web service [77] where it was rigged, i.e. where its skeleton
was created and tied with its geometry to facilitate the control of avatar’s motion. The avatar was then
imported into Unity 2018.4.0f1 game engine [78] where a custom animation controller was built using
pre-recorded performer’s walking sequences, as outlined in §2.1.1. The animation controller relied on a



Table 1. Basic information about the test subjects of the experiment.

test subject ID

S1 S2 S3 S4 S5 S6

gender female male male male male male

age 28 30 36 47 22 35

mass (kg) 77.0 80.1 81.6 74.4 84.9 87.8

height (cm) 172.0 191.6 173 189.5 180.5 183.5
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linear blending algorithm based on two variables: the pacing frequency and the instantaneous direction of
progression. Therefore, having been prompted by a command from within a custom-written Unity3D
program, the avatar could walk in a manner closely resembling the performer in terms of anatomy,
biomechanics and appearance at any pacing frequency (hence speed) and in any direction, in near real time.

The auditory stepping cues were incorporated by adding a sound source to each of avatar’s feet. The
sound sources were populated with a database of step sounds recorded on various walking surfaces,
with 10 slightly different step sounds per surface. This allowed to play a non-repeating step sound,
appropriate to the walking surface, every time the game engine detected a collision of avatar’s foot
with the virtual walking surface.

2.1.3. Steering system

Polarith AI 1.6 [79] was implemented to navigate the avatar around the VR scene. Polarith AI is a state-
of-the-art fully programmable artificial-intelligence navigation system based on a multi-objective
optimization algorithm. The workflow of the algorithm is divided into two stages. Firstly, it samples
the scene to detect the position of obstacles and destination relative to the driven avatar. Secondly, it
uses the inbuilt optimization algorithm to find the best local solution for the optimization problem
[80]. The solution represents an optimal direction of movement which is fed directly to the avatar’s
animation controller, outlined in §2.1.2. A simple ‘path follow’ action was programmed for the
purpose of the tests, where the avatar was following a pre-programmed path.

2.2. Test subjects
The basic information about six test subjects recruited for the study is given in table 1. Before taking part
in the experiment, test subjects were required to familiarize themselves with an information letter, fill in a
physical activity readiness questionnaire, and sign an informed consent form. Test subjects wore casual
clothing and flat sole shoes.

2.3. Location
The Charles Wilson Sports Hall located within the main campus of the University of Leicester was chosen
as an experimental location. The sports hall is 16.7 m wide and 33.5m long and has the clear height of the
ceiling at 5.6m. The wooden floor of the hall was covered with a dark monotone carpet tiles for the
purpose of the experiment, to mask the floor markings hence eliminating visual reference cues which
could have affected test subjects’ behaviour.

2.4. Experimental protocol
Test subjects were given habituation time to familiarize themselves with the experimental environment.
Each test subject was then asked to perform 16 walks, each consisting of eight laps comprising two 10m
straights and two turns along half of the circumference of a circle with 5m in diameter. During each
walk, the test subject was asked to walk together with a pacer. The pacer was either the same male
subject used to animate the avatar, as described in §2.1.1, hereafter referred to as PacerRL, or an animated
virtual avatar, as described in §2.1.2, hereafter referred to as PacerVR. Therefore, the movement of the
pacer accompanying the test subject was compatible in the real-life (RL) and virtual environment (VR).
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To account for any potential directional bias in pedestrian behaviour, each walk was performed in

clockwise and anticlockwise directions along the looping path. Test subjects walked either next to the
pacer, i.e. side-by-side on the inward of the loop, hereafter denoted SbS, or behind the pacer, i.e. front-
to-back, hereafter denoted FtB. During the first eight walks, hereafter referred to as uninstructed
synchronization and denoted US, the test subjects were only told to maintain their prescribed position
relative to the pacer throughout the test. For the final eight walks, hereafter referred to as instructed
synchronization and denoted IS, the test subjects were also instructed to walk in step with the pacer,
such as to match the timing of their footsteps made with ipsilateral legs.

The pacing frequency of PacerRL was controlled by using a pair of over–ears Pioneer SE-M521
headphones connected to KORG MA-1 metronome, whereas the pacing frequency of PacerVR was
directly set in the animation controller described in §2.1.2 The pacing frequency was established for
each test subject individually, based on the Froude number, FR, equal to 0.15 and described by the
following formula

FR ¼ v
gl
,

where v is the walking speed (expressed in m s−1), g is the gravitational acceleration (expressed in m s−2)
and l is the test subject’s leg length (expressed in m). The Froude number was used to obtain dynamically
compatible gait patterns for all test subjects by compensating for differences in their anatomical (i.e.
geometric) characteristics [81]. Due to practical reasons, the leg length was estimated based on the test
subject’s height and gender using the relationships established by Pheasant [82] and explicitly given
in Bocian et al. [83]

l ¼ 0:7028 hm � 0:3091
0:6797 h f � 0:2781

�
,

where hm and hf is the height for male and female test subjects (expressed in m), respectively.
Finally, the walking speed was converted to the corresponding pacing frequency, fp, using the

relationship obtained in Soczawa-Stronczyk et al. [19]

f p ¼ 0:66vþ 0:99:

Following this procedure resulted in test subjects’ walking with the mean speed (given with ± s.d. where
applicable) of vRL = 1.28 ± 0.07m s−1 and vVR = 1.20 ± 0.03m s−1 in the RLandVRenvironments, respectively.

2.5. Instrumentation
A motion capture system consisting of 24 OptiTrack Prime 17W and 10 OptiTrack Prime 13 cameras was
deployed in the sports hall. During VR tests, test subjects wore Oculus Rift CV1 head-mounted display
(HMD) equipped with reflective markers to track its movement. The HMDwas connected to MSI VR One
7RE backpack PC used to generate VR environment. HMD’s positional data were streamed from Motive:
Body 2.1.1 software running on MCS data processing unit to the backpack PC through a wireless
network compliant with IEEE 802.11n-2009 [84] standard, using the NatNet 3.0.1 [85] server broadcast
protocol. This was to ensure untethered experience, i.e. for the test subjects to move freely within the
capture volume of the MCS. The MCS latency, defined as the time elapsed from the cameras’
exposure to the tracking data packages fully solved by Motive software and ready for transmission
over IEEE 802.11n-2009 wireless network, was measured ex post facto. It did not exceed 4.7 ms. The
latency of the data transmission over IEEE 802.11n-2009 wireless network was estimated to be
approximately 3 ms, based on the median value of a typical consumer grade, uncongested wireless
network [86]. Although the latencies due to scene rendering and display in the HMD were not
directly measured, a similar set-up was previously used in [43]. No discomfort due to the visual
information delay was reported in post hoc interviews with the test subjects. If the latency had a
strong debilitating effect on our results, we would have expected the mean phase difference to differ
significantly between corresponding tests in RL and VR environment under the instruction to
synchronize steps (IS). However, this was not the case, as discussed in §3.3.3.

The VR environment used in the tests, shown in figure 1, was created using ARCHICAD 23 software
[87]—a state-of-the-art building information modelling (BIM) tool. It consisted of a highly detailed
representation of the Charles Wilson Sports Hall including three-dimensional doors, windows, lighting
features and basketball infrastructure. The walls and the ceiling were covered in solid colours and
the floor was rendered using a dark monotone carpet tile texture with the resolution of 288 px m−1.



Figure 1. A collage with, on the right panel, test subject S1 wearing head-mounted display being tracked with a set of motion
capture cameras and, on the left panel, a screenshot from virtual reality containing PacerVR.
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The appearance of these components was closely matching the real-world environment. To increase
realism, a global (Sun) light was positioned outside the modelled room. The global light was casting
inner shadows, thus providing variable brightness surface patterns facilitating optic flow and distance
estimation. An exemplar VR scene used during the experimental campaign is available as a part of the
dataset supporting this study (see Data accessibility).

For all the walks, test subjects were instrumented with two APDM Opal™ wireless attitude and
heading reference systems (AHRS), one attached at the level of fifth lumbar vertebra and the other
one on the right ankle using elastic straps. The data recorded by the AHRS were time-locked and
sampled at 128Hz. Only the data from the ankle sensor were used in subsequent analysis, as they
carried information allowing unequivocal determination of the stage of a gait cycle. For this purpose,
the vertical component of the acceleration vector (i.e. that aligned with gravity) was extracted by
resolving the recorded three-dimensional acceleration signals from the local (i.e. sensor) to the global
coordinate system using quaternion algebra.

The PacerRL was equipped with a set of AHRS of the same type and placed at the same body
landmarks, and time-locked to those of the test subject thus enabling synchronization to be readily
quantified based on compatible signals. However, this was impossible to realize during VR walks.
In this case, the PacerVR limb’s displacement measured at the location corresponding to the placement
of AHRS was recorded within the game engine at a sampling rate of approximately 50 Hz. Since
that signal was not time-locked with the signals from AHRS, the following time alignment
procedure was implemented. One AHRS was strapped to a rigid body tracked by the MCS and
controlling the motion of an object in VR. The displacement of that virtual object was recorded by
the game engine together with the displacement of the skeleton driving PacerVR. Before and after
each of the VR walks, the rigid body with the attached AHRS was waved slowly in sinusoidal
motion to create a signal for the time alignment of data from the two systems (i.e. AHRS and VR) in
post processing.
2.6. Data analysis
All analyses of synchronization are based on vertical velocity signals from the ankle. This is because the
acceleration signals from AHRS and displacement signals from PacerVR had to be reconciled to a
common physical quantity before further processing.
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2.6.1. Signal processing

PacerVR’s signal was up-sampled from the sampling rate of approximately 50 to 128 Hz using resample
function [88] implemented in Matlab R2019b [89], to match the sampling rate of the signals from AHRS
monitors. Next, the AHRS signals (acceleration in m s−2) and the up-sampled signals from the game
engine (displacement in m) were brought to a common kinematic variable, that being velocity (expressed
in m s−1). To numerically integrate the AHRS’ acceleration signal, a fourth-order two-way band-pass
Butterworth filter was used with the frequency band set to preserve the first three harmonics of the
original signal. The signal was integrated using the cumulative trapezoidal numerical integration
method [90] and then filtered using high-pass, fourth-order Butterworth filter with the cut-off frequency
equal to half of the frequency of the first harmonic. The numerical differentiation of the game engine’s
displacement signal was performed by calculating a one-dimensional numerical gradient of the
displacement vector aligned with gravity and dividing it by the constant numerical gradient of the
corresponding time. The resulting velocity vector was filtered using the fourth-order band-pass
Butterworth filter with the frequency band set to preserve the first three harmonics of the signal, as in
the case of numerical integration.

Having obtained signals representing the same physical quantity, it was possible to use two signals
from the rigid body–AHRS couple to find the delay using finddelay function [88] in Matlab R2019b and
align them in time.

The exemplar results of the signal processing procedures described in this section are shown in
figure 2a,b. Figure 2c,d is included here for the clarity of presentation, although the relevant discussion
is given in §2.6.2.

Two types of signals were used in the subsequent analysis: (i) the original signals, containing the
entire walking path, hereafter referred to as loops, and (ii) the truncated signals, created by removing
sections of the loops containing data from the turns, hereafter referred to as straights. The locations of
the individual straights in the velocity signal were identified by using the angular velocity data
recorded by the AHRS attached at the test subject’s ankle.

For both types of signal, the first and the last straight sections of each walk were discarded, as they
contained gait initiation and termination stages, respectively. This resulted in 15 straights per each walk
type, with the exception being the virtual anticlockwise FtB walk under US experimental conditions
undertaken by test subject S5 who performed seven laps around the path instead of eight.
2.6.2. Quantification of synchronization

Following previous studies [8–10,12,13], an analytic signal was employed herein to derive an instantaneous
phase of the captured signals. Prior to obtaining the analytic signal, the velocity signals from the anklewere
band-pass filtered using the fourth-order Butterworth filter with a frequency band limited by 0.70 times the
minimum stride frequency and 1.25 times the maximum stride frequency from the pair of considered
walkers, as was the case in van Ulzen et al. [9]. The analytic signal, containing information on the
instantaneous amplitude and phase angle,was obtained usingHilbert transform, commonly defined as [91]

va(t) ¼ v(t)þ i
p
P:V:

ðþ1

�1

v(t0)
t� t0

dt0,

where t is the real-valued time variable, v(t) is the real-valued velocity signal, va(t) is its analytic representation
and P.V. is the Cauchy principal value of the integral. The instantaneous phase angle time series, ϕ(t), was
obtained by calculating the angle between the real, R, and imaginary, I, parts of the analytic signal [92]

f(t) ¼ tan�1 I[v
a(t)]

R[va(t)]
:

The bivariate phase difference signal, ϕp,s(t), was obtained by subtracting test subject’s phase angle time
series, ϕs(t), from pacer’s phase angle time series, ϕp(t)

f p,s(t) ¼ fp(t)� fs(t):

An exemplar signal representing the evolution of phase difference in time is shown in figure 2c, and the
corresponding histogram of phase difference is shown in figure 2d. The rate of change of phase difference
varies throughout the record, such that it is the fastest when passing through the extreme values and slows
down around the state indicating no phase difference. Consequently, the phase difference distribution is
skewed towards the values at and around 0 rad.
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The bivariate synchronization strength index, ρp,s, was then calculated, based on the Shannon entropy,
Ep,s, of the phase difference distribution [92]

Ep,s ¼ �
XN
k¼1

Pk
p,s lnP

k
p,s,

where Pk
p,s is the probability of the phase difference, ϕp,s(t), falling into a kth bin of π/8 rad in size and N is

the total number of bins. To allow for synchronization strength index to be comparable for different
walks and test subjects, the index was normalized by the maximum attainable Shannon entropy in
the case of the perfect phase synchronization

r p,s ¼
lnN � Ep,s

lnN
:

The index can take values from 0 to 1, where 0 relates to a uniform distribution of phase difference,
i.e. lack of synchronization, whereas 1 corresponds to Dirac-like distribution of phase difference, i.e.
perfect synchronization.
3. Results
3.1. Average gait characteristics
The average stride frequency, �f , and average stride length, �l, were calculated for each test to evaluate the
difference in gait characteristics between walking in RL and VR environment. The Welch’s t-test [93] at
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5% significance level (p = 0.05) was then used to test the hypotheses that the means of f and l were equal.
The data collected under US only were used in this analysis since the instruction to synchronize steps
had overridden naturally occurring gait patterns, as discussed in §4.3.1 Moreover, walks in SbS and
FtB were considered separately due to the difference in the distance travelled by test subjects in these
two topological arrangements.

The average stride frequency, obtained using the fast Fourier transform, during walking SbS was
�fRL:USSbS ¼ 0:829+ 0:043Hz and �fVR:USSbS ¼ 0:822+ 0:053Hz in the RL and VR environment, respectively.

The corresponding values for walking FtB were �fRL:USFtB ¼ 0:832+ 0:032Hz and �fVR:USFtB ¼ 0:852+ 0:044Hz,
respectively. Hence the test subjects’ stride frequency in VR environment was on average lower by 0.77%
and higher by 2.35% for walking SbS and FtB, respectively. In both cases, the difference was statistically
insignificant, pSbS = 0.748 and pFtB = 0.226.

The average stride length for walking SbS was �l
RL:US
SbS ¼ 1:38+ 0:10m and �l

VR:US
SbS ¼ 1:26+ 0:09m in

the RL and VR environment, respectively. The corresponding values for walking FtB were
�l
RL:US
FtB ¼ 1:42+ 0:08m and �l

VR:US
FtB ¼ 1:41+ 0:09m, respectively. Hence the test subject’s stride length in

VR environment was on average lower by 8.19% and 2.00% for walking SbS and FtB, respectively.
The difference was statistically significant for walking SbS, pSbS = 0.010, and statistically insignificant
for walking FtB, pFtB = 0.402.

In a similar fashion, pacers’ average stride frequencies were extracted and compared to those of test
subjects for corresponding walks. Under US experimental condition, the difference was equal to
�fRL:US
P�S ¼ 0:058+ 0:044Hz and to �fVR:US

P�S ¼ 0:052+ 0:054 in the RL and VR environment, respectively.
Hence, on average, the pacer walked with a higher stride frequency than the test subject.

A closer match between stride frequencies was found for IS experimental condition. The average

stride frequency difference was �fRL:ISP�S ¼ 0:005+ 0:017Hz and �fVR:ISP�S ¼ 0:006+ 0:017 in RL and VR
environment, respectively. Hence, on average, the pacer walked with a slightly higher stride frequency
than the test subject.

3.2. Gait cycle variability
One of the requirements of the experimental protocol was to retain similar gait variability of the pacer in
all experimental conditions in order to preserve this natural gait characteristic and obtain a compatible set
of results. To verify this condition, the coefficient of variation of the stride frequency, fCoV, was calculated
to assess the gait variability of the pacer and all test subjects. The outcomes are shown in figure 3. Overall,
the timing of the pacer’s footsteps was repetitive, which is represented by the CoV values not exceeding
1.33% during any of the walks. It is worth pointing out that, due to the way the experimental campaign
was designed, the pacer’s gait variability was not directly affected by the instruction to synchronize, i.e.
the change of the experimental conditions from US to IS. This is to say that the effort spent to coordinate
the timing of footsteps was unidirectional, with the test subjects adjusting their steps to match those
of the pacer. Moreover, the PacerVR was hard-programmed to a pre-established average pacing
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frequency while accounting for certain variability in the timing of footsteps (see §2.1), and by its very
nature remained unaffected by test subject’s behaviour throughout the duration of the test. However,
even though subtle, the gait variability difference between the human and AI-driven pacer was
distinguishable. The mean CoV of the stride frequency for PacerRL is �fRLCoV:P ¼ 1:02+ 0:10%, with the
minimum and maximum values of min fRLCoV:P ¼ 0:86% and max fRLCoV:P ¼ 1:33%. The corresponding
mean value for PacerVR is �fVRCoV:P ¼ 0:59+ 0:19%, with the minimum and maximum values of
min fVRCoV:P ¼ 0:34% and max fVRCoV:P ¼ 1:03%.

Overall, the gait variabilityof test subjectswashigher than that of thepacer; however, formost of thewalks
the CoV of test subjects’ stride frequency did not exceed 6%. Under the US, the mean CoV of test subjects’
stride frequency was �fRL:US

CoV:S ¼ 2:76+ 0:96% for walks in the RL environment and �fVR:US
CoV:S ¼ 2:24+ 0:74%

for walks in the VR environment. Under the IS, the mean CoV of test subjects’ stride frequency was
�fRL:ISCoV:S ¼ 2:72+ 1:56% for walks in the RL environment and �fVR:ISCoV:S ¼ 2:96+ 1:91% for walks in the
VR environment.

The highest gait variability under US was found for S6 in RL, at max fRL:US
CoV:S6 ¼ 5:69%, and for S4 in

VR, at max fVR:US
CoV:S4 ¼ 3:87%. Overall, the gait variability under US did not show any systematic

relationships between test subjects. The highest gait variability under IS was consistently found for S5,
with max fRL:ISCoV:S5 ¼ 8:64% and max fVR:ISCoV:S5 ¼ 9:36% for RL and VR walks, respectively.
Sci.7:200622
3.3. Synchronization strength

3.3.1. Statistical analysis

AWilcoxon signed-rank test [94] was performed using IBM SPSS Statistics 26 [95] to determine the effect
of the type of the analysed signal (loops or straights) on the bivariate synchronization strength index.
The examination of the difference scores revealed near symmetrical data distribution. The difference
between the two types of the signal was not statistically significant, z =−1.07, p = 0.286. As a
consequence, only the values for the truncated signals, consisting of straights, will be presented
throughout this paper, to ensure a level of compatibility between the outcomes of this and previous
studies carried out along straight paths.

To gain an insight into general dependencies between the bivariate synchronization strength index and
the experimental conditions, the first-order multiple linear regression analysis [96] was therefore performed
adopting the significance level of 5% (p = 0.05). The statistical model took the following factors as the
explanatory variables: (i) the environment in which the test took place (real-life environment, RL, or
virtual environment, VR); (ii) the presence of the instruction to synchronize (uninstructed
synchronization, US, or instructed synchronization, IS); (iii) the walking direction (clockwise or
anticlockwise); and (iv) the relative position of the walkers (side-by-side, SbS, or front-to-back, FtB). The
results showed that the presence of the instruction to synchronize had the strongest influence on the
synchronization strength index, t = 17.92, p < 0.0005. This was followed by a much weaker, yet
statistically significant influence of the environment, t =−2.04, p = 0.045. The remaining explanatory
variables were not statistically significant predictors of the synchronization strength index. Therefore,
from here onwards, the data will be presented separately for each of the environmental and experimental
conditions and the walkers’ collocation. No distinction will be made between clockwise and
anticlockwise walking direction.

The synchronization strength indices are presented in figure 4a,b and accompanied by the mean
circular direction indicating the directionality of the phase difference distribution in figure 4c,d. The
mean circular direction, �m, was calculated by transforming all phase difference values into a two-
dimensional vector μ = (cos α, sin β) and averaging over the number of data points [97]. According to
the adopted convention, negative and positive values indicate the test subject is lagging and leading
the pacer, respectively.
3.3.2. Uninstructed synchronization

The mean values of the synchronization strength index obtained for US in the two visual environments are
rather low. In the RL environment, these values are �rRL:US

SbS ¼ 0:063+ 0:097 and �rRL:US
FtB ¼ 0:060+ 0:110

for walking SbS and FtB, respectively. In the VR environment, the corresponding values are
�rVR:US
SbS ¼ 0:067+ 0:122 and �rVR:US

FtB ¼ 0:016+ 0:018. Only three synchronization strength indices reach
above 0.21, previously suggested to signify the synchronization threshold for walking in pairs [12].
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The directionality of synchronization, quantified by the mean circular direction, is
�mRL:US
SbS ¼ 0:04p+ 0:67p rad and �mRL:US

FtB ¼ �0:35p+ 0:58p rad for walking SbS and FtB in RL, respectively.
In the VR, the corresponding values are �mVR:US

SbS ¼ �0:16p+ 0:55p rad and �mVR:US
FtB ¼ �0:06p+ 0:63p rad.

Considering the results for both visual environments, the negative and positive values of the mean circular
direction were recorded in 58.3% and 41.7% of cases, respectively.

3.3.3. Instructed synchronization

The mean values of the synchronization strength index for all walks obtained for IS exceed 0.21, previously
suggested to signify the synchronization threshold for walking in pairs [12]. In the real environment, these
values are �rRL:ISSbS ¼ 0:560+ 0:176 and �rRL:ISFtB ¼ 0:619+ 0:086 for walking SbS and FtB, respectively. In the
virtual environment, the corresponding values are �rVR:ISSbS ¼ 0:490+ 0:196 and �rVR:ISFtB ¼ 0:506+ 0:186. The
synchronization strength index values obtained for walking in RL are, on average, higher by 15.6% than
their VR counterparts. Considering the results for both visual environments, the highest mean values of
the synchronization strength index were obtained for walking FtB.

In the real environment, themean values of themean circular direction are �mRL:IS
SbS ¼ �0:07p+ 0:08p rad

and �mRL:IS
FtB ¼ �0:07p+ 0:05p rad for walking SbS and FtB, respectively, with 91.7% of data points taking

negative values. In the virtual environment, the corresponding values are �mVR:IS
SbS ¼ �0:02p+ 0:29p rad

and �mVR:IS
FtB ¼ 0:06p+ 0:24p rad, with only 45.8% of data points taking negative values.
4. Discussion
4.1. Average gait characteristics
The average stride frequency and stride length of test subjects forwalking SbS and FtB underUSwas similar
between the corresponding tests conducted in RL andVRenvironment. This is apart from the average stride
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length in walking SbS for which there was a statistically significant difference. However, this occurrence

cannot be considered as evidence supporting the notion of gait parameters being adversely affected by
the VR immersion. This is because the average duration of tests in RL and VR environment was in this
case different, at 206 and 230 s, respectively. This is not the case for walking FtB, for which the average
duration of tests in RL and VR environment was similar, at 231 and 228 s, respectively. In both cases (SbS
and FtB walking), the difference must be predominantly attributed to the intra-subject variability of the
pacer. This is because the requirement of accompanied walking imposed by the experimental protocol
determined the walking speed of the test subjects, hence their stride frequency and stride length, during
each test. This is to say that the gait characteristics exhibited by the pacer during recording of the
walking gait data for use in the avatar animation (i.e. PacerVR), as described in §2.1.1, and those during
the tests in RL (i.e. PacerRL) differed. Therefore, the comparison of average gait parameters for walking
SbS is not informative as to the influence of VR on gait characteristics.

Overall, it is concluded that the effect of reduction in gait parameters pertaining to the spatial and
temporal reference frames, associated with VR immersion [36,62–68], is not evident in the obtained
results. However, it needs to be borne in mind that the current study was not designed to address this
particular problem.

4.2. Gait variability
The values of gait variability obtained for the pacer are slightly lower than the average gait variability for
overground walking at normal speeds [98]. This is deemed acceptable since the protocol requirement of
the gait of the pacer to exhibit some variability had to be reconciled with the requirement of having to
produce a gait rhythm at the predefined (mean) frequency. Another acceptable circumstance is the
difference between mean CoV of stride frequency of the real-life and virtual pacer at 0.42%.

The analysis of the gait variability of test subjects did not highlight any noteworthy dissimilarities
between the two experimental conditions, except S5 exhibiting more variable gait in the VR environment.

4.3. Synchronization strength
The effect of the instruction to synchronize steps on the synchronization strength index obtained for
walking in the VR environment is comparable to that obtained in the RL environment. This is the
case for both considered topological arrangements (i.e. SbS and FtB). However, quantitative and
qualitative differences were found between gait coordination patterns from corresponding tests in the
RL and VR environments.

4.3.1. The effect of the instruction to synchronize steps

The mean synchronization strength indices obtained in the RL and VR environments are comparable
under US for walking SbS. For walking FtB, the index obtained in the VR environment is much lower
than that obtained in the RL environment. The magnitude of synchronization strength index under US
is generally low, and there is a considerable spread of the mean circular direction data, suggesting the
behaviour of pedestrians is highly random and any persistent gait coordination patterns are seldom
present. This is unlike the results for walking under IS.

The mean synchronization strength indices under IS are much higher than those obtained under US
and so is the variability of the results. This is due to the conscious effort spent on gait coordination, as
dictated by the experimental protocol, and considerable intra- and inter-subject variability in this respect.
The synchronization strength index for walking FtB is consistently higher than that for walking SbS for
tests conducted in the same visual conditions. This agrees with the results of previous investigations
probing the influence of pedestrians’ topological arrangement on the synchronization strength for
walking in the RL environment [16,19].

4.3.2. Comparison with previous studies on walking in dyads

The vast majority of walks performed under the US was characterized by low synchronization strength
index, much below the theorized synchronization threshold of 0.21 [12]. This is in line with findings from
van Ulzen et al. [9,10]. However, the current results stand in opposition to those from some other studies
reporting that the gait synchronization in walking dyads is rather widespread, with synchronization
signatures present in 25–70% of performed walks, as shown in table 2. This is believed to be caused
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by insufficiently long walking paths adopted in those studies, ranging from 15 to 70m. In comparison,

each test subject covered the distance of approximately 286m along the entire walking path (approx.
150m of straight sections) during a single walk in this study, and 593m in the study reported by van
Ulzen et al. [9], albeit conducted for walking on a treadmill rather than overground. The problem with
the quantification of synchronization strength based on the phase difference distribution, using signals
of short duration, is illustrated here based on a theoretical argument and the data collected in this study.

The evidence suggests [9,10,18] that the coordination of gait between a pair of walkers is most often
not a persistent occurrence, which can be maintained throughout an extended period. Instead, gait
synchronization emerges spontaneously, and it dies out after a few gait cycles. This transient nature of
the phenomenon, together with a relatively narrow range of pedestrian stride frequencies adopted in
walking gait, can be the root cause of a systematic error in the quantification of synchronization
strength index.

If the analysed gait signals are too short, the most likely outcome is the apparent high values of
synchronization strength index. This is because the evolution of phase difference in time for two
pedestrians walking with similar, but not the same, stride frequencies is relatively slow. For example,
imagine two pedestrians walking at the same speed next to each other, hence their walk having the
dyadic property, but adopting different, time-invariant stride frequencies: 0.96 and 0.98 Hz. Therefore,
the expected synchronization strength index is zero. Since the synchronization strength index relies on
a histogram of phase difference, this is only true if the distribution is uniform. Assuming sufficiently
high sampling rate of the recorded (digital) signals, this condition is met if the duration of the
analysed record is 50 s or its integer multiples. The error in synchronization strength estimates due to
the deviation from this condition will generally diminish with the signal length. However, the effect of
the insufficient test duration will be particularly debilitating in the case of tests lasting less than 50 s.
Assuming the pedestrians’ walking speed is close to that typically observed for normal walking,
e.g. 1.5 m s−1, this corresponds to the distance of 75m.

Now, consider the synchronization strength indices calculated separately for each 10m long straight
section of the path used in this study, corresponding to approximately seven full gait cycles. The
synchronization strength index under US is then 0.279 ± 0.251 and 0.289 ± 0.215 for walking in the RL
and VR environments, respectively, which is above the proposed synchronization threshold [12]. This
would lead to a false conclusion that the gait synchronization was ubiquitously present during US
tests. On the other hand, under the IS, where the gait coordination was genuinely present, the
analysis of individual straights would yield the mean synchronization strength indices higher by 20%
and 30% for walking in the RL and VR environments, respectively, from those obtained by
aggregating phase difference data from all straights prior to further processing.

It is concluded, based on these arguments, that the coordination of gait in overground walking in
dyads with a real or virtual pacer, in the absence of sensory cues promoting synchronization other
than visual and auditory, is relatively weak under US.

4.3.3. Dyad versus group walking

The synchronization strength indices obtained for dyad walking under IS are approximately 50% higher
than those previously reported from a group of walkers [19]. This can be mainly attributed to the
attention tuning. The dominant focus of attention during dyad walking in an experimental environment
characterized by low-complexity, which is the case for most laboratory-based investigations, is the fellow
pedestrian. The visual and auditory cues provided by the fellow pedestrian constitute relatively strong
stimulus for gait coordination. By contrast, concurrent sensory stimuli from multiple pedestrians are
available during walking in a group, with the most prominent gait coordination cues generated by the
pedestrians in the immediate vicinity of the observer [19]. The abundance of sensory information, in this
case, tends to break any persistent gait coordination patterns.

4.3.4. Qualitative differences between IS tests in RL and VR

Although the difference in the magnitude of mean synchronization strength indices for corresponding
tests in RL and VR environments under IS is small (figure 4), it is accompanied by a distinct
qualitative change in the pedestrian behaviour. On the one hand, approximately 92% of the walks
performed in the RL environment are characterized by negative values of the mean circular direction.
According to the sign convention adopted in this study, this means that the test subjects were most
often lagging behind the pacer. On the other hand, approximately 54% of the corresponding walks in
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the VR environment are characterized by positive values of the mean circular direction, indicating the test

subjects were, slightly more often, leading the pacer.
Given the unidirectional nature of the interaction, i.e. the PacerVR not reacting to any actions in its

surroundings, this could be a consequence of the test subjects’ anticipatory behaviour. It was
previously speculated that such behaviour could emerge as a result of the collision avoidance
mechanism present in walking FtB [99]. In order to enable more efficient gait corrections, the follower
would try to arrive at the double stance phase of gait faster than the pedestrian positioned in front.
This, however, does not explain the presence of anticipatory gait behaviour for walking SbS.

It was observed during some of the SbS tests in the VR, although not measured directly, that the test
subject either tried to fall back slightly behind the pacer, so that the pacer was within their sight, or
turned their head towards the pacer. This intermittent behaviour might have been the result of the
limited horizontal field of view (FoV) provided by the HMD, confined to around 90 degrees [100]. In
comparison, the unobstructed FoV of an average human spans approximately 200 degrees in the
horizontal direction [101], which is significantly more than that of the HMD. It was previously shown
that limiting horizontal FoV can impact one’s perception of space [102], which might have led to more
conscious stepping behaviour.

Another possible explanation of the anticipatory behaviour during VR walks is associated with the
repetitiveness of PacerVR’s motions which allowed for greater predictability of its gait cycle. The effect
could have been magnified by more secluded conditions offered by the virtual environment.
Although the VR environment was designed to be a near-identical copy of the real space where the
experimental campaign took place, VR isolated test subjects from peripheral stimuli (i.e. the research
team supervising the experimental procedure) present in the RL environment. The lack of peripheral
stimuli decreased test subjects’ cognitive load and allowed for greater focus on PacerVR’s movements.
However, this was not reflected by an increase of the synchronization strength index in VR
environment, as the index took lower values than in RL environment.
4.3.5. Limitations and future work

The main limitations of the VR technology used in this study are associated with the relatively narrow
FoV provided by the current generation of consumer-grade HMD, test subjects lacking the self-
embodiment, i.e. virtual body presence, and unidirectional gait adaptation. Whether or not the lack of
body presence can significantly affect gait in virtual environments remains unclear [35,103]. However,
it is believed to contribute to the discrepancy in the performance of tasks requiring body
coordination, such as those considered herein. The interaction with the pacer was unidirectional in the
current study, whereas in the real world the interaction for walking in dyads would probably exhibit
signs of bidirectionality.

The limited extent of visual field can be addressed by using a new generation of HMDs with a high
refresh rate and wide FoV in vertical and horizontal directions. The self-embodiment can be provided by
employing a greater number of motion capture cameras to minimize the influence of tracking markers’
occlusions on the tracking quality, hence body reconstruction, or by fusing data from other
instrumentation systems. Another layer of complexity can be added to the AI-driven virtual avatar by
implementing bidirectional gait coordination with the neighbouring real walker. This would, however,
require a deeper understanding of the bidirectional interactions while walking in dyads. Finally, the
simulations can be extended to include a crowd of intelligent virtual walkers interacting with the
VR-immersed real walker. Work is currently underway to realize this ambition.
5. Conclusion
The spontaneous gait coordination between a pair of pedestrians, in the absence of sensory cues promoting
synchronization other than visual and auditory, is generally weak. The mean synchronization strength
index derived from Shannon entropy reaches up to 0.07. This is consistent regardless of the type of
visual environment and pedestrians’ topological arrangement applied during the tests. Any gait
synchronization patterns, if present, are in this case of transient nature and the mode of synchronization
shows high variability, consistent between all walking conditions.

The instruction to synchronize gait significantly increases the synchronization strength index
regardless of the type of visual environment and pedestrians’ topological arrangement applied during
the tests. However, quantitative and qualitative differences are found between results for walking in
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the real-life and virtual environment. The mean synchronization strength index is generally higher for

walking with a real rather than virtual pacer, reaching 0.56 and 0.62 for walking side-by-side and
front-to-back, respectively. The corresponding values for walking in the virtual environment are 0.49
and 0.51. Walking in front-to-back arrangement consistently yields higher synchronization strength
index than walking side-by-side for both visual environments. Walking in the virtual environment is
characterized by higher variability of the synchronization strength index than walking in the real-life
environment. The test subjects lag the pacer in close to 92% of the cases while walking in the real-
life environment, but they lead the pacer in just over 54% of the cases while walking in the virtual
environment. Although this may seem like a significant qualitative difference, the quantitative
difference in mean circular direction is relatively small. The average values in the real-life environment
are �0:07p rad both for walking side-by-side and front-to-back. The corresponding values in the
virtual environment are �0:02p and 0:06p rad. The main difference lies in the variability of the mean
circular direction, which is 3.6 and 4.8 times higher for walking side-by-side and front-to-back,
respectively, in the virtual reality when quantified in terms of the standard deviation. The observed
effect is probably due to the lack of self-embodiment in the virtual environment and limited field of
view of the head-mounted display.

Overall, the results presented herein support the notion of the VR technology showing high promise
for human locomotion studies, in the context of interpersonal gait coordination. Work is currently
underway to extend the investigations on locomotion in virtual reality from walking in dyads to
groups and crowds of pedestrians represented as intelligent avatars.
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