1: Calculate the real screen size.
If the led display you required: Width X meters*Height Y meters;
The Cabinet size: Width M meters*Height N meters. $\mathrm{M}=$ =integer*the width of module; $\mathrm{N}=$ integer* the height of module.
1.1 The quantity of cabinet for 1 pcs led display:

- Width quantity $=X / M$ (round-off number)
- Height quantity=Y/N(round-off number)

The total quantity of cabinet= the width quantity*height quantity
1.2The real screen size: $\mathrm{m} 1=x 1^{*} \mathrm{y} 1$

Width of $\operatorname{screen}(\mathrm{x} 1)=\mathrm{M}^{*}$ width quantity
Height of screen $(\mathrm{y} 1)=\mathrm{N}^{*}$ height quantity.
2. Calculate the price

A: the cost of led display $=\mathrm{m} 1^{*}$ unit price/sq.m
B:the cost of control system $=1$ pcs sending card cost+receiving cost(the total quantity of cabinet ${ }^{\star}$ the unit price of receiving card)

The total price of led display=A+B

If the sign is $10^{\prime *} 3^{\prime}=3.048 \mathrm{~m}^{*} 0.9144 \mathrm{~m}$

1. Calculate the real screen size

1.1 the total quantity of cabinet

Regarding your screen size, we use the cabinet size 1000*1000mm
The width quantity of cabinet $=3.048 \mathrm{~m} / 1 \mathrm{~m}=3 \mathrm{pcs}$
The height quantity of cabinet $=0.9144 / 1=1 \mathrm{pcs}$
The total quantity $=3$ pcs* 1 pcs=3pcs
1.2 The real screen size

The width size of screen $=3$ pcs* $1 \mathrm{~m}=3 \mathrm{~m}$
The height size of screen $=1 \mathrm{pcs} * 1 \mathrm{~m}=1 \mathrm{~m}$
The total screen size $=3 \mathrm{~m}^{*} 1 \mathrm{~m}=3$ sq.m
2. Calculate the total price: p12.5 led display(US\$1180/SQ.M); sending card:US\$280/pcs;

Receiving card: US\$70/pcs(each led display have 1 pcs sending card, each cabinet have 1 pcs receiving card, each led display have many cabinets).
A: The led display cost=3sq.m*US\$1180=3540
B: The control system cost=US\$280+US\$70*3pcs=US\$490
The total price=A+B=US\$3540+US\$490=US\$4030

