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ABSTRACT

This thesis is concerned with a problem of scheduling

that arises in naval shipyards as well as in many other

organizations. The problem considered is that of minimizing

the total cost of a project with limited manpower available

from the various shops and where the number of mandays to

accomplish each activity in the project is specified. Total

project cost consists of normal direct labor cost, overtime

cost, and a penalty for exceeding some specified target date,

It is shown that this problem includes several other, more

common scheduling problems such as job-shop scheduling. The

relationship among the various problems is described includ-

ing the use of existing solution procedures to solve special

cases of the shipyard problem. A mixed integer programming

model and a nonlinear programming model are used to describe

the system. The mixed integer model consists of several

transportation problems linked by precedence relations. An

application of dynamic programming to the single shop case

of the nonlinear model results in an efficient solution

procedure

.
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I. INTRODUCTION

A. THE NAVAL SHIPYARD

The naval shipyard is the industrial activity of the

United States Navy. This highly complex organization as-

sembles a wide range of talents and equipment to ensure the

operational readiness of the Navy's warships. Shipyard work

in support of this mission varies from the single routine

repair operation to the complicated network of tasks which

is the full scale overhaul. The many different levels of

work require many different personnel skills as well as a

variety of tools and machines.

Each shipyard is composed of a number of shops whose

personnel perform the actual work on the assigned ships.

Although the level of skills in each shop may vary, the na-

ture of the type of work to be performed by each shop member

is nearly uniform within the shop . Each shop performs some

particular class of work such as machining, electrical work,

pipe fitting, sheet metal work, etc.

Shipyard management personnel are responsible for con-

ducting several repair operations at the same time. Each

ship's overhaul is a project that requires the services of

the shop personnel. A limited number of workers are avail-

able from each shop so the projects cannot be conducted In-

dependently of one another. The common denominator is the

shared manpower from the various shops. This restriction on
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the use of manpower on projects presents the manager with a

difficult problem. Standard PERT/CPM techniques are not us-

able when resource constraints are present. The Naval Ship

Systems Command has developed a management information sys-

tem called the NAVSHIPS MIS [63] for use in naval shipyards.

This system uses PERT/CPM with no resource allocation fea-

tures to plan and control project schedules. Aggregate

workload forecasting is, however, performed to develop es-

timates on the numbers of the various shop personnel needed

to perform the various activities of each project.

B. THE SCHEDULING PROBLEM

The goal of the shipyard commander is to provide as good

an overhaul as possible for each ship assigned. This goal

must be effected in an atmosphere of severe budgetary re-

strictions. An additional requirement placed on the commander,

therefore, is that of carrying out the mission of the shipyard

at as low a cost as possible.

Each project being conducted by the shipyard contributes

to total operating cost. Taking a smaller view, each project's

total cost is composed of direct labor costs, shop overhead

costs, costs for hotel services to the ship, and penalty

assessments for exceeding the time alloted for the ship's

overhaul.

The variable project costs are the only costs considered

here since only these can be lowered. Thus, this thesis con-

siders a project's total cost to consist of direct labor

12





costs (normal and overtime) and a penalty cost for exceeding

a prespecified due date. Labor costs in the shipyard are

measured in dollars per manday and the penalty cost is in

dollars per day when the project continues past the target

date. Hotel services are functions such as garbage collec-

tion, steam, water, and electricity and are not related to

shipyard personnel assignments. Overtime labor may not be

used indiscriminately to reduce project duration. There is

a ceiling on the number of overtime manday s that may be

expended on any one project.

The scheduling problem faced in the shipyard then, is

to minimize the total project cost subject to constraints on

the number of various shop personnel employed on the activi-

ties that make up the project. Personnel are employed during

the normal working day and on overtime, if necessary, to

attempt to achieve minimum cost. The total overtime that

can be expended is, however, bounded.

This thesis formulates and solves several portions of

the shipyard scheduling problem. Chapter II outlines the

various problems and solution procedures that make up the

theory of scheduling in general. It also shows how the

shipyard scheduling problem is related to several other

general scheduling problems. This relationship is explored

in greater detail in Chapter V where several existing sched-

uling methods are used to solve some special cases of the

shipyard problem.

13





Chapter III discusses a mixed integer programming model

for shipyard project duration minimization and then for the

total cost problem. Then Chapter IV uses a nonlinear pro-

gramming model to solve a similar problem. An application

of dynamic programming leads to an efficient solution pro-

cedure for the case of a single shipyard shop. Chapter V

shows the conditions under which some existing solution pro-

cedures can be applied to the shipyard scheduling problem.

Finally, Chapter VI gives some ideas for future research

in this area of scheduling.

14





II. RESOURCE ALLOCATION IN PROJECT NETWORKS

Allocating scarce manpower in a naval shipyard so that

the total cost of completing a project is minimized is one

problem in scheduling that fits into a much larger class.

This class of scheduling problems often is given the name

resource allocation in project networks. This body of sched-

uling theory can be broken down into several subclassifica-

tions depending on the nature of various scheduling decisions

that must be made

.

This chapter is devoted to the description of several

factors which combine to form this large group of scheduling

problems. Each of the classifications is explained and some

indications of progress in approaching and solving the vari-

ous problems are given. Following this, some problems

closely related to these are described. The chapter con-

cludes with a description of the shipyard scheduling environ-

ment and how it fits into the broader classification. The

purpose of organizing this chapter in this manner is to show

the interrelationship among several scheduling problems and

associated solution methods. A summary of this section is

given in Appendix A in the form of a taxonomy of scheduling

literature

.

A. CLASSIFICATION OF PROBLEMS

Problems in the allocation of resources in project net-

works can be classified in many different ways. Often, when

15





characteristics of the shipyard problems coincide with those

of other scheduling problems, existing solution techniques

can be applied. This is more fully explored in Chapter V.

Different scheduling environments can often be distin-

guished by the criteria chosen for evaluating an appropriate

schedule. Minimum cost, shortest duration and minimum re-

source expenditure are examples of possible optimizing cri-

teria. Various kinds of resource availability constraints

faced by schedulers also generate different types of problems.

Additionally, in many different scheduling situations activity

characteristics can vary. Some organizations keep track of

activity duration while others keep track of the number of

manhours or mandays expended on an activity. Combinations

of these categories can form together to yield a specific

problem type.

1. Optimization Criteria

The criteria aginst which different schedules are

evaluated can vary according to an organization's goals.

Frequently used criteria are the allocation of resources to

minimize total cost or project duration, adjusting a project

to achieve level resource expenditures and trading off be-

tween cost and time until an acceptable schedule is arrived

at

.

a. Resource Allocation

(1) Cost Minimization

Many scheduling situations require that an

optimal schedule be one that achieves the minimum total cost
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of completing the project. The method of computing total

project cost may vary depending on the situation. As men-

tioned in Chapter I, the total project cost in the shipyard

consists of direct normal and overtime labor costs along

with a penalty for exceeding some prespecified target date.

Chapters III and IV of this thesis deal with this criterion

for evaluating schedules. Hadley [38, p. 263] uses it in

his model formulation. Unfortunately, he suggests no solution

procedure

.

A more common variation of the total cost

criterion includes the cost of changing resource levels.

Mason and Moodie [58] have constructed a branch and bound

algorithm for minimizing total cost of a project. Three cost

terms were involved in their objective function. These costs

represented the cost of an increase in resource usage for

each activity, the cost of reducing resource level and the

cost associated with a change in project duration. This

algorithm Is applicable only for a single resource. The

algorithm, in effect, finds the optimal tradeoff between

minimizing project duration and leveling the resource.

A continuous approximation to a problem

similar to that approached by Mason and Mcodie was used by

Cullingford and Prideaux [20]. A cost of changing resource

levels and a project duration cost were included in the cost

minimization objective. The problems most easily attacked

with this procedure are those which have a nearly serial

network representation with few activities in parallel.
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This permits sequential resource allocation decisions to be

made. The continuous approximation can then be made if there

are a large number of stages (time periods) associated with

completion of the project. Once again, only a single re-

source is employed on the activities. The problem was formu-

lated as a variational problem and the Euler equations were

derived. Several problems with and without resource con-

straints were examined. The results obtained by applying

this method to a project provide planning information in

the form of a lower bound on project cost and a suggested

project duration.

Another cost objective function included

costs of idle and overtime resources, overhead costs related

to project duration and costs of changing resource levels.

This objective function was included in the SPAR-1 heuristic

model developed by Wiest [84]. Wiest' s model covered a wide

variety of situations and is one of the best scheduling methods

that is presently available for very large projects. Wiest

has reported [85] that this heuristic method has been pro-

grammed in FORTRAN IV to accommodate projects with up to

6000 activities and 25 resource types. Another, easily

applied, heuristic procedure is described by Moder and

Phillips [61, p. 158].

Each of these papers has been concerned

with a cost minimization objective. The nature of activity

durations and resource constraints for these problems was

not dealt with in this section but is described in later

sections pertaining to the appropriate classifications.

18





(2) Duration Minimization

Finding a schedule that completes a project

in the shortest possible time is the goal of the vast majori-

ty of scheduling methods. The methods discussed in this sec-

tion all have in common the duration minimization objective

but differ in their types of resource constraints and other

characteristics. These other aspects are discussed in later

sections of this chapter.

The goal of minimizing project duration is

related to the cost minimization objective in that each of

the expressions for total project cost include some function

of project length. In some cases this consists of a penalty

cost and in others simply a cost associated with lengthening

or shortening the project.

Among the earliest of the methods for mini-

mizing project duration were the PERT and critical path tech-

niques [45], [56]. Since these methods did not take scarce

resources into account, many authors have attempted to extend

these results to include the restrictions on resources.

The earliest successful results employed

heuristic rules for scheduling activities. Kelley [47] de-

scribed several methods for ordering activities and then

selecting them for a schedule. Although his methods did not

guarantee optimality, they did provide a feasible solution

to a large combinatorial problem. Some modifications to

Kelley' s methods were later made by Patton [67]- Patton

constructed a branch and bound algorithm which guaranteed
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an optimal schedule for small projects. Lambourn [49] de-

scribed a proprietary system called RAMPS which used heu-

ristics to solve a wide variety of scheduling problems

including the problem of minimizing project duration.

Wiest [83] described some properties of

schedules which were later used as a basis for heuristic

rules in his SPAR-1 model [84]. He defined a "critical

sequence" of activities that resembled the critical path in

unconstrained resource procedures. Activities not in this

critical sequence could be shifted to other positions in

the schedule much like slack activities in the critical path

method. Wiest' s methods for attacking constrained resource

problems are briefly described in Reference 85.

Implicit enumeration procedures have been

used to solve a wide variety of combinatorial problems. Two

applications of branch and bound procedures that have received

notoriety are Land and Doig's solution to integer programming

problems [50] and the traveling salesman algorithm of Little

and others [55]. Because of the combinatorial nature of

resource constrained scheduling problems, an implicit enu-

meration technique is a logical choice to arrive at a solution

method. The earliest applications of branch and bound to

scheduling were in the area of job shop sequencing. These

methods are included in Section B of this chapter.

Fisher [29] formulated the job-shop schedu-

ling problem as a zero-one program. All the variables in

the constraints of his formulation have coefficients which
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are zero or one. Fisher developed a column generation pro-

cedure for solving the problem in this form. When a more

general network scheduling problem is formulated, the coeffi-

cients are no longer zero or one and the column generation

procedure is no longer applicable. Fisher proposed an implicit

enumeration procedure for this case.

Johnson [43] developed a branch and bound

method for minimizing the duration of a small project with

constraints on resource availability. In his thesis,

Johnson assumed that once an activity had begun, the resources

assigned to it remained fixed throughout the duration of

the activity. This assumption was also made by Schrage [76]

in his branch and bound method for minimizing project dura-

tion. Schrage' s approach is discussed in somewhat more de-

tail in Chapter V. This assumption was relaxed by Patton

in his doctoral dissertation [67]. His branch and bound pro-

cedure allowed activities to exhibit a quality that Conway,

Maxwell, and Miller [19, p. 169] call preemptive resume. That

is, activities may be scheduled for a time, interrupted and

then resumed when possible. Each activity is completed when

its total duration equals some prescribed length of time.

Patton' s thesis presents an interesting method for enumerating

all the schedules that need be evaluated. Preemptive resume

is also allowed by Schrage [77] in a modification to his ear-

lier procedure. None of these methods will accommodate very

large projects but do provide a means for evaluating heuristics

and for providing insight into scheduling problems.
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The use of disjunctive graphs to represent

scheduling problems has been investigated by several authors.

Balas [2], [3], Gorenstein [3], and Raimond [70], [71] have

each formulated the problem of minimizing project duration

subject to resource constraints using disjunctive graphs.

Disjunctive graphs and their application to the shipyard

scheduling problem are discussed in Chapter V. Each of the

above authors has represented his disjunctive graph formu-

lation by a mixed integer program. The differences in the

methods devised by the authors arise from the different in-

teger programming solutions. Balas used the Benders parti-

tioning procedure [7] for the mixed integer problem and his

additive algorithm [1] to solve a zero-one programming prob-

lem then generated. His method consists of solving an

alternating sequence of simple critical path problems and

zero-one programming problems. Raimond used a direct search

algorithm of Lemke and Spielberg [53] to solve the mixed

integer programming problem. Gorenstein' s method is an im-

plicit enumeration solution to a mixed integer programming

problem. Although each of these methods solves only small

problems, the use of disjunctive graphs in solving scheduling

problems should be promising in the future.

An assembly line balancing algorithm devel-

oped by Gutjahr and Nemhauser [36] provided an analogy to

the resource constrained scheduling problem for Davis and

Heidorn [26]. Each activity in their method is broken up

into a series of tasks each requiring a single unit of time
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for accomplishment. All feasible ways of scheduling activi-

ties in each time interval are generated and a shortest path

algorithm is then used to find the schedule with the shortest

duration. The article reports that the algorithm has been

programmed to accommodate up to 220 tasks and 5 resource

types. This severely limits the lengths of activities that

may be present in the original network.

The interest in three other duration mini-

mization problems [9], [73], and [74] lies in the nature

of resource constraints and activity characteristics and

are discussed in the appropriate sections.

b. Resource Leveling

The usual objective of resource leveling proced-

ures is to assign men from various shops in order to achieve

near constant resource allocations over time. A due date

for the project is normally fixed in advance and resource

allocations must then be made over this fixed horizon.

The earliest attempts at devising methods for

achieving constant workloads were heuristic in nature.

Burgess and Killebrew [14] described the relationship be-

tween arrow diagrams and Gantt charts and showed how to

graphically shift jobs (activities) until a constant resource

allocation over time was achieved. In their paper, computer

programs were presented which generated a manpower loading

chart and minimized the variation in resource allocation

throughout the course of the project. A modification to

this procedure appears in the book by Moder and Phillips
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[61, p. 163]. At nearly the same time Levy and others [54]

developed a system for smoothing manpower requirements for

shops in naval shipyards. Their procedure attempts to re-

duce the peak manpower requirements by first scheduling jobs

in accordance with their earliest possible starting times

and then moving appropriate jobs to slack periods. This is

done by fixing a "trigger level" at one resource unit below

the peak resource requirement for each shop. An attempt is

then made to schedule all jobs so that the activity manpower

requirements are below this trigger level.

A few years later Moodie and Mandeville [62]

showed a relationship between resource leveling and assembly

line balancing. They adapted an integer programming model

of Bowman [12] to the resource smoothing problem and were

able to solve some very small problems. The method proved

to be impractical for large networks. This connection be-

tween resource leveling and assembly line balancing led Davis

and Heidorn [26] to their solution procedure for minimizing

project duration.

Razumikhin [72] addressed a resource leveling

problem where a specified number of mandays to perform each

activity was given. He solved the problem by minimizing the

mean square deviation of resources expended from a constant.

Razumikhin' s method was interesting in that a hydrostatic

model was used to model the situation. The potential energy

of the fluid mechanic system corresponded to the mean square

deviation of resource level from a constant. A method of

2k





successive approximations was used to solve it. In a later

paper, Razumikhin [73] approached the same problem, this

time using a nonlinear programming model. An algorithm ex-

hibiting monotone convergence was given for solving the

nonlinear programming problem.

Beale's method of quadratic programming [6] was

applied by Voronov and Petrushinin [8l] to a resource lev-

eling problem. In their problem, each of the event times were

assumed fixed in advance and a fixed number of mandays was

required for each activity's completion. The objective used

was the minimization of the squared difference between re-

sources expended and a constant. The assumption of fixed

event times was also required by Petrovic [68] in his solu-

tion to the resource leveling problem. He formulated the

problem as a multistage decision problem and utilized dynamic

programming for its solution. The large amount of computa-

tion involved caused Petrovic to suggest several successive

approximation techniques for solving the problem. The ob-

jective function for the resource leveling problem was again

quadratic. Additionally, Petrovic mentioned several other

resource allocation problems that could, in principle, be

solved by this method. The primary targe of his paper, how-

ever, was the leveling of expended resources.

c. Time/Cost Tradeoff

Time/Cost tradeoff procedures are those which

arrive at a schedule for a project network which has the

"best" balance between project duration and total resource
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expenditure (usually dollar cost). Most methods of this

class involve no restrictions on resources and the relative

value between duration and cost is determined by management.

Several authors have developed procedures for

solving problems of this type when each activity has a linear

relationship between cost and duration. These procedures

have been treated extensively elsewhere so are not discussed

here. Some of the papers concerned with this problem are

References [18], [46], [79], [30], and [17]. Some modifica-

tions to the original linearity assumptions have been made

to correspond to other scheduling environments.

Berman [8] investigated the time/cost tradeoff

problem where activity cost was a convex function of activity

duration. An iteration procedure was given for balancing

a network so that for each event the sum of the slopes of

the cost functions for all activities leading into the event

equalled the sum of slopes for all activities leading out of

the event. It was shown that when the network is balanced

in this manner, for fixed duration, total project cost is

minimized. A convex programming algorithm was used by

Lamberson and Hocking [48] in solving a similar problem.

The purpose of their procedure was to reduce the duration

of a project by allocating additional resources along the

critical path. Each activity had associated with it a cost

which was a convex function of time.

A branch and bound algorithm for finding the

minimum total project cost for concave activity cost-time
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curves was developed by Falk and Horowitz [27]- Their pro-

cedure yields the optimal cost by successively underestimating

by linear interpolation the concave cost-time functions. At

each step the activity with the "worst underestimate" is

chosen as a branching variable and underestimation at the

next stage is performed with two line segments. Each itera-

tion produces an upper bound which is lower than all previous

stages and a lower bound. Branching on the lowest current

lower bound, the algorithm terminates when upper and lower

bounds are equal.

The presence of constraints on resources in the

time/cost tradeoff problem was investigated by Nikonov and

Pluzhnikov [65]. This paper presented an algorithm for

constructing the project cost curve when a constraint on

the number of resources (other than cost) used between event

times was added. The resource constraint considered by

Nikonov and Pluzhnikov was piecewise linear. The algorithm

employed was an extension of that developed by Kelley [46].

Jewell [42] presented a solution for a critical

path problem in which some activities do not have a unique

location in the network. These activities may be moved to

other locations or divided into smaller tasks and these

subtasks moved to various specified locations in the network.

The Dantzig-Wolfe decomposition procedure [22], [23] was

applied to the divisible activities case to provide a solu-

tion method. A branch and bound solution to an integer

programming formulation of the movable activities case was

given in the paper.
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2. Nature of Resource Constraints

A wide variety of restrictions can be imposed on the

quantity of resources that are available to a manager for em-

ployment on a project. The number of available resources at

any time may be specified by a step function of time or re-

source profile. Another way is specifying some fixed total

number of resources that can be made available for a project.

Each of these types of resource restrictions generates a

different problem for the scheduler.

a. Resource Availability Profiles

Resource availability profiles are step functions

which represent the number of resources of a certain type

that are available at any given instant during the course

of a project. There are three types of resource availability

profiles: fixed, variable, and constant.

(1) Fixed Resource Availability

A fixed resource availability profile can

be represented by a step function similar to that in Figure 1

This is a fixed resource profile if the times x^ 3 t^,..., t

at which changes in resource availability occur are fixed and

known in advance by the scheduler. R. represents the number

of resources of type k available at time t. This number is

an upper bound on the quantity of resources of that type that

can be employed on any activity in the network at time t.
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This is the nature of the restriction on

the use of various shop personnel in the shipyard scheduling

problem. Fixed resource availability profiles are used in

the mixed integer programming formulation of the shipyard

problem in Chapter III of this thesis and again in Chapter

V.

This type of resource constraint is not only

applicable to the naval shipyard, however. This is the form

of the resource constraints that are present in Wiest's

SPAR-1 [84] and Lambourn's RAMPS [49]. Karush [44] developed

a method for enumerating all schedules necessary for evalua-

tion when resources are constrained by a fixed resource
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availability profile and each activity exhibits a nonincreas-

ing resource usage profile. This term is defined in a later

section in this chapter.

(2) Variable Resource Availability

A profile representing variable resource

availability is shown in Figure 2. Note that the break-

points of the step function are numbered t.. , tp, ..., t„.

These times represent the node or event attainment times of

the project and are thus variable. R then represents the
z
±

number of resources of type k available between events i

It
and i+1 . Henceforth, this will be represented by R.

.

Variable resource availability profiles do

not have much physical meaning in themselves but they can be

used as an approximation to the fixed resource availability

profile

.

This thesis uses this approximation in

Chapter IV to obtain an efficient solution procedure for the

shipyard scheduling problem. This method of constraining

resources was also used by Nikonov and Pluzhnikov [65] in

a resource constrained time/cost tradeoff problem.
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(3) Constant Resource Availability

Figure 3 is a graphical representation of

a constant resource availability profile. A fixed quantity

of resources is available at every time point throughout the

project. R represents the maximum number of resources that

can be utilized by any activity of the project.

Because of its simplicity, this type of

resource constraint is the most often used in scheduling

procedures. This form of resource constraint was employed

in references 2, 3, 26, 3^, ^7, 67, 70, 71, 76, and 77-

These papers were briefly described in the section on opti-

mization criteria and are not discussed further here.
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Figure 3

b. Bounded Resource Volume

A constraint in the form of a restriction on the

total volume of a resource that can be utilized throughout

a project has sometimes been imposed in certain scheduling

situations. A resource type that could fit into this cate-

gory is some construction material that once used is no

longer available.

Bershchanskii [9] solved the problem of minimizing

project duration subject to bounds on total resources of

various types employed. Each activity's duration was a convex

function of the resources employed on the activity. Lagrange

multipliers were introduced and a saddle point analysis of

the Lagrangian was performed. This led to an iterative

procedure based on Rosen's gradient projection method [75].
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If the activity duration function is linear Bershchanskii

shows that Kelley's procedure [46] could be used.

Razumikhin [73] » [7^] gave two approaches for

the problem of minimum duration with a bounded resource

volume. One of these [7^] developed a hydrostatic model for

the scheduling system. The other paper [73] required a

strict ordering of the events so that the event times satisfy

t, < t„ < • • • < t . The problem in this case was solved12 n

as a linear programming problem.

3. Activity Characteristics

a. Activity Duration Estimate

The most common estimate associated with an

activity in project scheduling is a duration estimate.

Most of the references mentioned in the previous two sections

require that each activity have a fixed duration associated

with it. Then corresponding to this fixed duration is a

level of resources required to complete the activity within

that time period.

b. Fixed Resource-Time Unit Requirements

Some schedules require that a fixed number of

resource-time units be expended in order that an activity be

completed. Examples of some often used resource-time units

are manhours, mandays, and machine-hours. In naval shipyards

the normal unit for measuring work is the manday and this

unit is used throughout this thesis.

Mason and Moodie [58] associated a fixed number

of resource-time units with each activity in their branch
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and bound algorithm for cost minimization. Cullingford and

Prideaux [20] adopted a similar method for total activity

work performed. Fixed resource-time units were required by

Bershchanskii [9] and Razumikhin [731, [7*0 in their duration

minimization procedures. Finally, Petrovic [68], Razumikhin

[72], [73], and Voronov and Petrushinin [8l] each used manday

estimates in leveling manpower.

c. Resource Usage Profiles

Another way to represent activity accomplishment

is with a resource usage profile. An example of a resource

usage profile is shown in Figure k for an activity (i,j)

with start event i and total duration T. . . The number of

resources of type k employed at time t on activity (i,j) is

given by i\j,(t) .

A\ <«;

,

111
"

1 ' 1 ' 1

1

' 1

1 1

1

1 *—

t: tj.+Tjj

Figure 4
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Karush [44] coined the term activity resource

profile and gave conditions under which minimum duration

schedules could be generated for a project whose activities

had resource profiles associated with them. This is further

discussed in Chapter V.

d. Time/Cost Tradeoffs

In the critical path approach [30] there is

associated with each activity a linear cost function of the

form shown in Figure 5(a). This gives the possible durations

T.. that the activity (i,j) can assume and the cost associ-

ated with those durations. Figure 5(b) illustrates a similar

case where the possible durations and associated costs are

discrete. Moder and Phillips [6l, p. 196] presented a pro-

cedure for calculating minimum project duration where

discrete time/cost tradeoff points were associated with each

activity. The solution so generated is not guaranteed to be

optimal.

C crash

'normal

LIJ

(a)

Uij

C<>-
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U
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l
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ii

Figure 5
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B. RELATED PROBLEMS

A number of frequently encountered problems in the theory

and application of scheduling are closely related to the net-

work-based problems described above. Some problems in sched-

uling that are similar to resource allocation in projects

are job-shop scheduling, flow-shop scheduling, assembly line

balancing, and multiproject scheduling. The relationships

between these problems and resource allocation problems are

briefly described below.

1. Job-Shop Scheduling

Job-shop scheduling problems are often phrased:

"Determine the order of processing of n jobs on m machines

so that the time to process all jobs is minimized. A fixed

ordering of machines for each job is specified in advance."

This type of problem can be represented by a project network

with a constraint on resources. If a machine can only pro-

cess one job at a time then the resource availability is

one for that type, of machine.

Consider the following example: Minimize the time to

process all jobs on all machines where the machine orderings

and processing times for each job are given in Table I.

Table I

Job Machine (Process Time)

1 A(3) B(3) C(7) D(6)

2 B(5) A(6) D(2) C(2)

3 A(4) C(2) D(3) B(4)
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This problem can be represented by the project net-

work of Figure 6. Each activity represents the operation of

processing a job by a machine. Each chain from node 1 to

node N represents a job. The resources of type k (k stands

for machine A, B, C, or D in this case) employed on each

activity must not exceed 1. A generalization of this is

created when the paths from source to sink are not required

to be parallel. The job shop scheduling problem with a

general network relationship between operations is called,

in this thesis, the network job shop scheduling problem. A

more complete examination of the relationship between job-

shop scheduling and resource allocation in project networks

is made in Chapter V.

2h
_A(3U

<Ih
_B(3U<3>_c(7L^ 5

.

Figure 6
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2. Flow-Shop Scheduling

Flow-shop scheduling is a special case of job shop

scheduling where each job has the same order of machines as-

sociated with it . Suppose the previous example had the machine

ordering A, B, C, D for each job. This situation can then

be illustrated by Figure 7 • An identical resource constraint

is imposed.

Figure 7

3 . Assembly Line Balancing

An excellent comparison of assembly line balancing

with resource constrained projects was made by Moodie and

Mandeville [62]. An assembly line can be represented by a

network in which the nodes are operations that must be per-

formed in order that the product be assembled. The arcs of

the network ensure that the operations are performed in the

correct technological order. A work station is assigned to

perform one or more of the operations in the network. It
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is usually assumed that each operation requires some fixed

length of time to accomplish. As more operations are assigned

to a work station, the longer the product to be assembled is

held in the work station. The cycle time is the largest

processing time of all the work stations and is the time

between assemblies of the product. Two different optimiza-

tion criteria are often used to balance assembly lines [19

»

p. 140]. One of these is to minimize the number of work

stations while each work station processing time cannot ex-

ceed some constant. The other is to assign operations to

work stations so that the maximum work station processing

time is a minimum. Each of the parameters of the assembly

line balancing problem corresponds to a parameter of the

constrained resource problem. Moodie and Mandeville compared

the problem entities in a manner similar to Table II.

• Table II

Assembly Line Resource Allocation in
Balancing Problem Project Networks

Operation Activity

Operation Processing Activity Resource Level
Time

Number of Work Activity Duration
Stations (Discrete Units)

Cycle Time The Largest Activity
Resource Level

The two assembly line balancing problems are anal-

ogous to two problems of allocating scarce resources in
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projects. The first of these is to minimize the time to com-

plete all activities while maintaining all activity resource

levels below some constant. The other problem is to sched-

ule activities in time periods so that the maximum activity

resource level is minimized. This is the resource leveling

problem. This clear-cut correspondence between the two prob-

lems was used by Moodie and Mandeville to describe the resource

leveling problem and by Davis and Heidorn [26] to solve the

resource constrained duration minimization problem. A re-

view of the literature of assembly line balancing up to 1965

was presented by Ignall [40].

4 . Multiproject Scheduling

Coordinating an organization's many individual pro-

jects is the goal of a multiproject scheduling system. Usu-

ally, independent project networks can be connected by dummy

activities forming a giant project network. Then, conceptual-

ly, any of the objectives and procedures can be applied to

the entire multiproject network. The large size of such a

network makes this procedure infeasible. In addition, each

project composing the multiproject system may have a due

date. Special procedures are needed to handle such problems.

The heuristic multiproject system RAMPS (Resource

Allocation and Multi-Project Scheduling) [49] was designed

to perform several analyses of multiproject networks. The

RAMPS system is able to handle 700 activities, 60 resources

and 6 projects each with their own desired due dates. Re-

strictions on the resources such as those described in previous
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sections are included in the package, (available only from

CEIR, Inc.). Parikh and Jewell [66] presented a procedure

for analyzing a large network which could be decomposed

into several subprojects. Associated with each sub-project

was a piecewise linear project cost curve. By considering

each subproject as a single activity with a piece-wise linear

time/cost tradeoff curve, standard time/cost tradeoff pro-

cedures could be used. This is nearly parallel to the multi-

project system where there are no resource restrictions and

each project's cost curve has been determined.

Pritsker, Watters, and Wolfe [69] formulated a zero-

one programming problem for the multiproject scheduling

problem. The program's versatility allows the inclusion of

a wide variety of objectives but, because of the combinatorial

nature of the problem, can only be used for very small

sub-projects.

C. THE NAVAL SHIPYARD SCHEDULING PROBLEM

The shipyard scheduling environment is similar to that

of any multiproject organization. The overhaul or repair

operations performed on a single ship provide the activities

and events for a single project. Each of the projects share

fixed resources and each contributes to the total cost of

operating the shipyard. A typical naval shipyard has several

of these projects going on at the same time. Each of the

ships must be returned to its operational duties at or near

some prespecified date. The shipyard must then attempt to

41





perform the necessary work on all of its assigned ships

within some strict time frame at the lowest possible cost.

It is further required that each ship's work package be

completed as close as possible to the specified departure

date. A high cost is assessed for failure to meet a ship's

departure date.

Fixed numbers of personnel in each of the shipyard shops

place additional difficulties on project scheduling. Per-

sonnel may not be hired or fired simply because an additional

project is accepted or a project is dropped by the shipyard.

Therefore, when some project is accepted by the shipyard,

each shop can make manpower available in the form of a fixed

resource profile such as shown in Figure 1.

Each element of the work package is an activity in the

project network that represents the entire work package.

Some specified' amount of work must be performed to complete

each activity. Most operations have been performed many times

in the past so each shop foreman can, based on experience,

make a good estimate of the number of mandays required to

perform the operation.

The scope of this dissertation is limited to the single

project case. It is assumed here that a project is faced by

a fixed resource profile and cannot borrow resources from

other projects (except during overtime). It Is also assumed

that if the total cost of each single project Is minimized,

then so is the shipyard operation cost. This assumption is

valid for fixed assignments of shop personnel to projects.
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This is the situation that faces a shipyard when an addi-

tional ship is assigned to the shipyard for repair after

most resources have been committed for other projects. The

idle resources on all other projects then form the resource

profiles for the various shops.
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III. MIXED INTEGER PROGRAMMING MODEL

A. INTRODUCTION

Integer programming models provide means of expressing

complex problems that are not easily formulated using other

mathematical models. Since the appearance of Wagner's in-

teger programming model of the job-shop [8l] many authors

have used integer programming to describe their scheduling

problems. Some of these papers have concentrated on job shop

type problems [11], [21], [29], [35], [57], and [80], while

others have been concerned with more complex scheduling prob-

lems such as assembly line balancing [62], project scheduling

[38], [67], and multiproject scheduling [69]. The models

contributed by these papers have provided a foundation for

scheduling theory and have often led to efficient solution

methods for specific problems.

In this chapter, the problem of minimizing total cost

of a shipyard project with restrictions on the available

resources is formulated as a mixed integer-linear programming

problem. The formulation is begun by characterizing the

minimization of project duration. This is then extended to

the cost minimization problem.

B. ASSUMPTIONS AND NOTATION

A project is composed of m activities related by the

logical sequences in which they must be performed. The

logical relationships among the activities are the same as





the precedence relations in PERT/CPM. The ordered pair (i,j)

represents the activity starting at event (node) i and ter-

minating at event j. There are n events in the project and

N represents the collection of activities and events making

up the project. Each activity (i,j) in the project requires

a fixed number of mandays M . for completion. There are K

shops available and each activity utilizes men from exactly

one shop. It is assumed that the project can be completed

within T days. On day t, shop k, k = 1, 2, ..., K, has a

limited number of men available given by R. , t = 1, 2, ..., T.

These men may be utilized by any activities that are permitted

by the precedence relations to be in progress on day t and

that require men from that particular shop.

Let r . . be the number of men from shop k employed on

day t in the performance of activity (i,j). Then the number

of men utilized over the entire project on activity (i,j) is

T
Z r<,. ; (i,j) e S, , k = 1, 2, ..., K.
:-l

"ijt »

t

Here S is the set of all activities requiring shop k man-

power. Then the total number of men from shop k employed

on day t is

L
(i,j) e s

k
1Jt

Two assumptions that must hold for the mixed integer pro-

gramming model to be valid are:

45





1. The network precedence relations among the activities

must be maintained.

2. Activities may not be separated and are an integer

number of days in length.

Assumption 1 means that no men may be employed on activity

(i,j) until all activities (k,i) are completed. Assumption

2 requires that once men are assigned to an activity then

there must be nonzero manpower assignments to that activity

until it is completed. This second assumption is relaxed

in Section III-D-3.

C. MINIMIZATION OP PROJECT DURATION

The first task is to minimize the duration of a project

while ensuring that no more than the available numbers of

men are used, the activity precedence relations are not vio-

lated, and that the required number of mandays to complete

each activity is expended.

1. Transportation Problem Representation

The first sets of constraints can be developed by

noting that the total number of men from shop k employed on

day t must not exceed the number of men from that shop that

are available on that particular day. This is represented by

(II1 - C - 1
>

z
(1 ,j)e Sl(

rijti R
t • m- |; ;;;;

*.

In addition, the total number of mandays expended on activity

(I,j) must equal the number of mandays required to complete
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the activity. This is

T
(III-C-2) Z r* = M

±J
; (i,j) e S

k
, k = 1, 2, . .., K.

It is also required that the manpower allocations be nonnega-

tive. The inequality (III-C-1) and the equation (III-C-2)

together are, for fixed k, in the same form as the constraints

of the transportation problem with inequalities [37 3 p. 312].

Each R, , t = 1, 2, . .., T can be viewed as the availability

at an origin and each M.., for every (i,j) e N is the demand

at a destination. With every shop k, k = 1, 2, ..., K

there is then associated a set of transportation problem con-

straints with T origins and m, destinations. Here m. is the
k k

number of activities in the set S. . The right-hand side of
k to

the constraints (III-C-1) can be represented graphically by

a resource profile similar to that of Figure 1 of the previous

chapter.

If the time to complete the project is to be mini-

mized, the earlier time periods should be made more attrac-

tive for resource allocations than the later ones. To do

this a low cost could be assigned to the first time period

manpower allocation for each activity, a larger cost for the

second allocation for each activity and so forth until each

possible allocation had a cost associated with it. The

objective would then be to minimize total cost. This is

47





K T
(III-C-3) Minimize Z Z

k=l t=l (i s j)eSk
t
r
ijt

with c^ < c' < ... < cl. An appropriate assignment of costs12 T
might be to put c ' = g , c ' = g , . .

.
, c ' = g where g is

some positive constant larger than 1.

Using a method described by Hadley [37, p. 312]

(III-C-1) and (III-C-2) can be transformed into equations.

The method corresponds to simply adding dummy destinations

representing the total slack added in (III-C-1). This then

becomes the K separate transportation problems

K T
Minimize Z Z Z c' r.

k=l t=l (i,j)eS
k

z 1Jt

Subject to

(III-C-4) Z
( n » r* = R* ; t = 1, . . . , TU,j;ebk ijt v

k = lj ^ K

X r
ijt

= Mir (1 >J' )eSk>
k = l

-
•••• K

r
ijt - ° ; V 1

) J> k
>

t-

S* is the set S, with the addition of slack variables. This

representation does not, of course, take into account the

precedence relations among activities.
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It Is now convenient to place (111-0-4) in matrix

form. Let

ck~ ^
c
l'

c 2> "•» cjp» k = 1> '"' K and

x = Tr
k

r
k

r
k

r
k

r
k

1 k = 1 $
k L al ' a2' " ' * aT'

"• , 01' *''' 0T J '
x,...,i.

Here (•) represents a row vector and [•] denotes a column

vector. Additionally a, . ..,0 represent activities and

{a, ... ,3) = S*. Also let

A
k*< I^U.jJeS* r

ijt : * " 1 T
l

where
|

|

* |
| denotes a matrix. Also

ai- ~ LRt j • • • J RmJ J

and

b
k

= [M
a , ..., M

B
].

The K transportation problems are then represented by
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Minimize c n x n + C/«Xx + ... + c;,x T

Subject to

'lfl ^2 *•• C
K)
X
K

A
l
x
l

= a
l

B
l
x
l

= b
l

(III-C-5) A
2
x
2

= a
2

B
2
x
2

= b
2

A
K
X
K
= a

K

B
K
X
K~

b
K

X-i j x_ ? . . . j x„ _> u

Constraints indicating the precedence of the activities must

now be added.

2. Precedence Relationships

In order that the logical sequence of activities be

preserved, certain relationships concerning the allocations

r must hold. If an activity (i,j) must immediately pre-

cede another activity (j,p), then for any time period t In

which r. ., > then r? ,=...= r? . = 0. The superscript
ijt jpl J,P,t

q simply shows that (j,p) may use a different shop. Also,

activities may not be separated so for some activity (i,j),

if r
i,j,t-i > ° and r

ij t
=

° then r
i,j,t + i

= ••• = r
ijT

= °-
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Finally, if activity (j,p) is preceded by activity (i,j),

then (j,p) cannot begin until

T
k

I r. .. = M...
t=l ljt lJ

One way to represent these requirements is to add a

set of constraints which include the r. . , and some zero-one

variables. One possible set of such constraints is given

below. In these constraints suppose that activity (i,j)

must precede activity (j,p).

T k
(III-C-6) z r... - (M. . - 1)6.. - M. .y. . <

for t = 1, 2, . .
.

, T-l

T k
(III-C-7) S r* - 6.. - M..y,. >

t=1 ijt ijt ij 'Ijt -

for t = 1, 2, . .
.

, T-l

(III-C-8) r? ., - M. v., <
J,P,t+1 JP

tijt -

for t = 1, 2, . .
. , T-l

(III-C-9) 5
±jT

+ Yljx
< 1, t = 1, 2, ..., T-l

(III-C-10) -6,, + 6, , ±1 > 0, x = 1, 2, ..., T-2
ijx I, J ,x+l -

51





(III-C-11) -Y±JT
+ YijjjT+1 10, t = 1, 2, . .., T-2

6
ij ' Yij

= or 1, \j\±,j),T

A block of constraints such as (III-C-6)-(III-C-ll) would

be associated with each activity that is an immediate pre-

decessor of another.

The inequalities (III-C-6) and (III-C-7) along with

(III-C-9) state that the total allocation in (0,x] is either

less than M. . and greater than zero, equal to zero, or is

equal to M. . . This when considered with (III-C-8) requires

that activity (j,p) not be started until

I rf ., = M. ..

t=l
ljt 1J

Inequality (III-C-10) requires an additional allocation in

period t+1 if the activity was not completed in period t .

Inequality (III-C-11) is added to ensure that if activity

(i,j) is completed in period t then

T
k

T+1 k T
k

t=i Ut
t-1

ljt
t-1

ijt lj

Suppose these constraints are now represented in

matrix form. The entire set of constraints can be represented

by the matrix sum

D-X. + n x„ + ... + Dv xv + Gy > d
1 J e. e IS. i\ —
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where D. is the matrix of coefficients of the allocations,

G is the matrix of coefficients of the zero-one variables,

and y is the column vector of zero-one variables. Addition-

ally, d is the right hand side of the precedence constraints,

The complete problem (Ml) can then be written as

Minimize c, x, + CpX„ + ... + c„x
K

(Ml)

Subject to

Vi = a
i

Vi = b
l

ii^An = a
2

B
2
x
2

= b
2

A
K
X
K

= a
K

B
K
X
K

= b
K

D
1
X
1

+ D
2
X
2

+ + D
K
X
K

+ Gy - d

«rL ^ ) !* r\ y • • • ^ " tj" WL

l' "2 3 '' ' ~K -

y, e y = or 1.

3 • Partitioning Procedure

A solution procedure for (Ml) can be developed by

applying the Benders partitioning procedure [7]- This
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procedure is described in Benders' paper as well as by

Geoffrion and Marsten [33], Hu[39, p. 259], and Lasdon [51,

p. 370].

For fixed y, (Ml) can be partitioned yielding the

linear programming problem

Minimize c n x.. + ... + c„x„
J. X a ft

(M2)

Subject to

. AA = a
i

Vi = b
l

A
K
X
K

= a
K

B
K
X
K

= b
K

D,x + . . . + D„x„ >_ d - Gy

-X.-. y O y * * * 5 V*

This is a large linear programming problem in block

diagonal form. For fixed y this could, in principle, be

solved using the Dantzig-Wolfe decomposition procedure [22],

[23]. The dual of (M2) is
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Maximize u,a.. + v n b n + ... + u„a„ + v„b„ + w(d-Gy)11 11 j\i\ j\xv

Subject to

(M2D) u A + v
1
B
1

+ wD < c.

U
K
A
K

+ V
K
B
K

+ WD
K i C

K

u.. , ...j u„, vn , . .., v.. unrestricted, w >
1 J\ 1 J\

—

For some extreme point, (u , v ,w ), feasible in (M2D) , this

is

(M2D 1

) Max ufa, + <b
n

+ ... + u^av + v%b v + wp (d-Gy)

.

11 11 IS. J\ A A

Then, following Benders' procedure, this leads to

Minimize z

Subject to

(Ml 1
)

z >• ^Ma£ n {u? a i
+ v?b i

+ ••• + wp (d-Gy)}
~ (up ,vP ,wP )

1 1 1 X

y. e y = or 1

or equivalently
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Minimize z

Subject to

(Ml*)
z > uP a + vPb + . . . + wp (d-Gy) , p = 1, 2, . . . , P

yi
e y = or 1

where P is the number of extreme points of (M2D)

.

Now return to problem (M2D) . If the partitioning

procedure is again performed by fixing w then problem (SI)

is obtained. It is

Maximize u,a
1

+ v.b- + ... + u„a„ + v„b T .11 11 J\ n. K K

Subject to

(SI)
U
1
A
1

+ V
1
B
1 i C

l~
wD

l

U
K
A
K

+ V
K
BK^ C

K"
WD

K

u, , . .
.
,u„,v, , . .

.
,vv unrestricted.

i j\ l j\

The dual of (SI) is
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Minimize (c,-wD )r + ... + (c„-wD„)r
T
.

J. J. J. K J\ K

Subject to

(SID) A^ = &1

Vl = b
l

A
K
r
K

a a
K

B
K
r
K

= b
K

r., j Pp , . . . , r„ _ u

.

This is again K separate transportation problems. Once again,

following Benders' procedure, for some extreme point

(r^, ..., r^) and combining (M2D) and (SID) the problem

c^v— 1^becomes

Maximize Z

Subject to

(SID')
Z <_ w(d-Gy) + Min

w >

Z < w(d-Gy) + Min { (c -wD )r + . . . + (c
K
-wD

K
)r
K }

frq rq )

This is a" linear programming problem with variables w. The

solution procedure can now be described with an algorithm.
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4 . Solution Procedure

The Benders partitioning procedure is applied twice

to obtain the subproblems defined above. This double appli-

cation of the procedure is now summarized by an algorithm.

Algorithm 1

STEP 1:

STEP 2

STEP 3:

STEP 4

Find an extreme point (u, ,v , . .
.
,u„,v^,w) of the

feasible region of problem (M2D) . Solve the K

separate transportation problems (SID) to get an

initial (rn) ...,rr ). Go to STEP 2.

Solve the zero-one integer programming problem (Ml*)

for y, z using any zero-one code (e.g., Balas [1]).

Go to STEP 3.

Using y from STEP 2 and current (r n ,...,r„) solve
1 is.

the linear programming problem (SID') for w. Go

to STEP 4.

Using w from STEP 3 solve the linear programming

problem (SID) for a new (r.. , . . . ,r„) . Denote it
J. is.

v r_ j . • . j r„ j . xi

Z - w(d-Gy> < (c
1
-wD

1
)r

1
+ ... + (c

K
-wD

R
)r

K

then go to STEP 5. Otherwise go to STEP 3 adding

the additional constraint

Z <_ w(d-Gy) + (c -wD )r + + ( c
K
~wD

K
)r

K'

STEP 5 : Using w obtained in STEP 3, solve the linear pro-

gramming problem (SI) for (u ,v , . .
.
»u„, v ) . If

z >_ u, a
1

+ v^b + + u
K
a
R

+ v
R
b
K

+ w(d-Gy)
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then go to STEP 6, Otherwise go to STEP 2 adding

the constraint

z > u,a n + v,b n
+ ... + u„a._ + v„b T/r

+ w(d-Gy)— 11 XX J! a. i\ is.

to the existing set of constraints.

STEP 6 : Using the y obtained in STEP 2, solve the linear

programming problem (M2) . Let the optimal solution

to this be (x*,...,x*), then the optimal value of
j. j\

the objective function is c.x* + ... + c„x*. The11 is. J\

optimal allocations are given by x*,...,x*.
1 i\

It was proved in Reference 7 that the Benders par-

titioning procedure terminates after a finite number of iter-

ations with the optimal solution to a mixed integer linear

programming problem. The duration minimization algorithm

composed of two applications of this procedure then, is also

a finite method.

D. PATTON'S PROJECT SCHEDULING MODEL

1. Model Description

In his doctoral dissertation [67], George Patton

proposed a mixed integer linear programming model for the

network job-shop scheduling problem. It is shown in the

next section that his model is a special case of the shipyard

scheduling model presented in this thesis. As mentioned in

Chapter II, a network job-shop scheduling problem is a resource

allocation problem in which all available resources of a par-

ticular type are employed on one activity at a time until It
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is complete. Some additional notation is now necessary

before describing Patton's model.

Suppose that all of some resource k, k = 1, 2, . .., K

must be employed on one activity at a time. Each activity

that must be processed by this resource then has a demand for

a certain amount of processing time from that resource. In

addition, each resource is available for some period of time

during the project. Suppose d. . denotes the total time

demand expressed for resource type k by activity (i,j) and

x. ., denotes the amount of time spent on activity (i,j) by

resource type k during time period t. Then the amount of

time necessary to complete activity (i,j) is

T
(III-D-1) Z x* = <£, ; V<i»J) e N

t-1
Lljt 1J

xv ~
* J.jC)*«»jU»

Also, if a. is the total amount of time available in time

period t then

(III-D-2) I x^ < a^ ; k = 1,2,...,K

Note that (III-D-1) and (III-D-2) are also the constraints

for a transportation problem with inequalities as were

(III-C-1) and (III-C-2). The units of measurement differ

between these models however. Patton's model is expressed

in time units while the variables in the shipyard scheduling

model are resources per unit time. This permits expressing

a somewhat more general problem.
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In order to minimize project duration, Patton intro-

duced a dummy activity (n,n+l) . Associated with this dummy

activity is a unit time demand and availability of a dummy

resource. It was shown that if

T
(III-D-3) Minimize Z (t-l)V ., .

, _-, n,nt-XjX;

was used as the objective function with (III-D-1) and

(III-D-2) then the result was minimum project duration. The

relations

T
Z x . ., . = 1

t=i
n,n+l,t

and

x ... . < 1 ; t = 1,2, . . . ,T
n,n+l,t — ' ' ' '

must, of course be added to the constraint set (III-D-1),

(III-D-2). This model accounted for activity precedence

relations by associating zero-one variables S.. s t = 1, . . . ,T

with each event j and adding the constraints

(III-D-H) xj
pt

<6.
t
a£ ; (j,p)eS

q

j = 1, 2, . .
.

, n

K t-1
Z Z Z x*

k=l (i,j)eS, s=l 1JS

(III-D-5) 6 <
g ;

j=2,3,...,n

k=l (i,j)eS
k

lj z *>*>

6. , = or 1

.
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The constraints (III-D-4) and (III-D-5) allow the interrup-

tion of work on an activity. For constraints of this nature

to apply in this thesis, assumption 2 of Section B of this

chapter must be relaxed.

2. Simplifying the Shipyard Scheduling Model

If two additional assumptions are stated, the mixed

integer linear program (III-C-l)-(III-C-3) can be stated in

the form of Patton's model (III-D-l)-(III-D-5) . Also if

this model is to be valid, assumption 2 must be relaxed.

This allows activities to be separated. The new assumptions

that must be satisfied are concerned with the manner in

which the shop personnel are employed. They are:

3. Each shop exhibits a constant resource profile.

4. All available personnel from a shop must work on a

single activity at a time.

Assumption 3 states that the same number of workmen are

available from a shop on any given point in time during the

project. This assumption, along with assumption 4, amount

to the fixing of a crew size from each shop working on an

activity.

Suppose the constant number of workers available

from shop k is R . Also, it is known that each activity

(I,j) in the project requires M. . mandays to accomplish. If

assumption 4 is satisfied and the time periods t = 1,2,...,T

are single days, then for the shipyard problem, a, = 1 . That

is, there is one day of resource type k available in any unit

time period t. The time demand for activity (i,j) is the
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number of days to meet the activity manday requirement M. .

.

This necessitates representing (III-C-2) as an inequality.

Then

d
iJ

±1

where {x} represents the smallest integer which is greater

than or equal to x. The mixed integer linear programming

model for shipyard project duration can then be expressed

directly as (III-D-l)-(III-D-5) . The relaxation of assump-

tion 2 is necessary to permit the use of precedence con-

straints of the form (III-D-4), (III-D-5). Solution methods

for the problem when cast in this network job-shop scheduling

problem form appear in Chapter V.

3. Revised Precedence Relations

The constraints involving zero-one variables (III-D-4),

(III-D-5) can be adjoined to the shipyard project duration

model (III-C-l)-(III-C-3) without converting it to Patton's

model. Assumptions 3 and 4 need not be satisfied. Once

again, however, assumption 2 must be relaxed. The substitu-

tion of the revised constraints reduces the number of zero-

one variables and precedence constraints immensely. Instead

of associating two zero-one variables with each activity and

time period, one binary variable is associated with each

event and time period.
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The revised constraints are, for event j and time

period t:

(III-D-6) r; < 6. Rq

T-l K
(III-D-7) 2 I l r* > [ E M, ,] 6. .

t=l k=l (i,j)eS
k

1Jt (i,j)
lj JT

These constraints ensure that the logical requirement that

each activity that must be completed prior to event j's

attainment time is satisfied. Work on these activities may

be interrupted and resumed.

The number of zero-one variables 6., and continuous

variables r. ., employed may be reduced by eliminating those

which are unnecessary. For example, if two activities (i,j)

and (j,p) are in series, activity (j,p) could never be pro-

cessed in time period 1. Likewise (i,j) could never be pro-

cessed in time period T. The observance of serial relation-

ships such as these in a large network can reduce greatly

the number of zero-one variables necessary to show precedence

E. COST MINIMIZATION IN PROJECTS

1 . Minimum Total Cost Formulation

In Chapter I it was stated that total project cost in

the naval shipyard consists of the total direct labor cost

(during normal working hours), overtime cost, and a penalty

cost for exceeding a due date. In this section, the mixed

integer linear programming model Is extended to account for

these costs.
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Associated with each shop k and activity (i,j) is a

It
cost c... This is the cost in dollars for one manday of work,

during the normal workday, by shop k personnel on activity

(i,j). This cost is normally the same for each activity on

which shop k is employed but occasionally may differ. Another

labor cost, d. . is the cost of an overtime rnanday employed

on activity (i,j) by shop k. The third and final cost in

the total project cost is a penalty cost C* for exceeding

some target date T* . T* is measured in days from project

commencement as is project duration. There is an upper

limit on the number of overtime mandays that can be expended.

This bound is specified by shipyard management personnel and

consists of a fixed percentage of total project mandays

Z M
(i,j)eN lj

The project duration can be represented in a manner

similar to (III-D-3) if an artificial activity (n,n+l) is

added. In order for (n,n+l) to be completed, one artificial

resource unit must be expended during one time period. On

any given day, only one unit of this fictitious resource is

available. The project duration can then be expressed as

T
Minimize E (t-l)r

t=1
n,n+l,t

The constraints

T
(III-E-1) Z r . . . - 1

t=1
n,n+l,t
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and

(III-E-2) r
n>n+1>t

< 1 S t - 1, 2, .... T

must be added to the constraint set (II1-C-1), (III-C-2)

The penalty cost can then be represented as

(III-E-3) C* [J (t-Dr
n>n+lf1 .

- T»]

where

C*[x] =
{

C*x for x >

for x < 0.

The artificial activity must, of course, be represented in

the precedence constraints. The total cost of labor during

the normal workday is represented by

(III-E-4)
k

K
E E c\

k=l'(i,j)eS
k

iJ

T
k

E r...
t=l lJt

and the total overtime cost is

(III-E-5)
„ .k k
E d . . s . .

(i,j)eN 1J 1J

In place of Equation (III-C-2), the constraints

(III-E-6)
T
E r. ., + s . .

f1
1Jt iJ

= M
iJ

k

k

1, 2, , K
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are added. If (III-E-6) is solved for

T k
Z r

iit
t-1 1Jt

and this result is substituted into (III-E-4), the normal

workday cost coefficient becomes zero and the total overtime

cost becomes

(III-E-7) S (<£ - c* )s* .

(i,j)eN 1J 1J 10

The total overtime is constrained by an upper bound B. Thus,

the constraint

(III-E-8) Z sJ.<B
(i,j)eN 1J

is added to the constraint set.

The resulting mixed integer linear programming problem

is called the total cost problem and is labelled (TCP1)

.

This problem is summarized below.
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Minimize { E (d? ,-c*

,

)s* . + C* [ E (t-l)r ... .

(i,j)eN
l0 lJ « t=l

n,n+l,t
- T*]}

Subject to

Z 4 + s* = M ; V(i»J)eN

T
E r .- . = 1

t=i
n,n+l,t

(TCP1) (i,J)eS
k

r. ... < R, .,

k . k = 1, 2, ..., K

t - 1, 2, . . ., T

E s. . < B
(i,J)eN 1J

< r
n>n+lit

< 1 ; t - 1, 2, ..... T

r? < 6. Rq ;
J = 1, 2,

T = 1, 2,

> n

t-1 K
E E r* > [ E MJ4 ] 6

J*
= 1, 2,

t=l k=l (i,j)eS.
.

ljt
(i,j) lj JT '

t = 1, 2,k

. . , n

*% t
> 0, s^ > 0, 6

jx
- or 1.

Also it must be true that

C*(x) = I

C*x for x >

for x < 0.
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This could be represented in matrix form as was the minimum

duration problem (Ml). A similar solution procedure can then

be applied to (TCP1)

.

2. Solution Procedure

The method for finding the minimum total cost of the

project is an extension of Algorithm 1 in Section III-C-4.

A provision must be made to ensure that the penalty cost term

is nonzero when project duration .exceeds the target and zero

when the project completion time occurs before the target.

A procedure for incorporating this requirement is

summarized in the following algorithm.

Algorithm 2

STEP 1 : Using Algorithm 1 solve the minimum total cost

problem (TCP1) . Associated with solution is a

project duration D. Go to STEP 2.

STEP 2 : If (a) D _> T* stop, the optimal solution has been

obtained. Otherwise, go to STEP 3-

STEP 3 : If (a) All s^. = stop, the optimal solution has

been obtained. Otherwise, there exists an s. . > 0,

k
vary s . . parametrically until D = T* then Stop with

optimal solution.

F. SUMMARY

A method has been presented in this chapter that solves,

in principle, the problem of minimizing project cost when

resources are restricted and a fixed manday requirement must
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be met. This chapter shows that a shipyard scheduling project

can be represented by several transportation problems linked

by precedence constraints. There is one transportation

problem for each shop.

As a computational procedure the method is not presently

feasible. One difficulty is in finding an initial basic

feasible solution to problem (M2D) which is needed for the

algorithm. Another problem is that a large zero-one pro-

gramming problem must be solved in STEP 2 of Algorithm 1.
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IV. NONLINEAR PROGRAMMING FORMULATION

A. INTRODUCTION

This chapter considers the problem of minimising total

project cost subject to several resource constraints. A

known and fixed number of mandays must be allocated for com-

pletion of each activity in the project. A dynamic program-

ming approach to a special case of this problem leads to a

solution procedure for minimizing project duration. The

Benders partitioning procedure [7] is then applied to the

total cost problem and a solution method is obtained. Some

characteristics of the multiple resource problem are explored.

Very few approaches to scheduling problems have been con-

cerned with problems in which a specified number of resource-

time units are needed to complete an activity. Bershchanskii

[9] addressed two problems under this framework. The first

was the minimization of project duration subject to a restric-

tion on the total amount of various resources used. His other

problem was to allocate the minimum quantity of resources to

complete a project by a fixed due date. In both problems, a

fixed number of resource-time units was specified for each

activity. Mason and Mcodie [58] developed a branch and bound

for minimizing project cost. The costs involved were penalty

costs for changing resource levels and exceeding a specified

due date. The use of dynamic programming in solving sched-

uling problems of the type considered In this thesis was dis-

cussed by Petrovic [68]. A disadvantage of his approach was
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the requirement that all event times be known and fixed.

Razumikhin [72], [73] > [7^] attacked several problems in

which a fixed number of mandays had to be used to complete

each activity in a project. In two of these papers [72] and

[7^] > a. hydrostatic model was presented and solution methods

using principles of fluid mechanics were given. The formula-

tion of the total cost model in Section C of this chapter is

an extension of the problem statement in the last two papers.

B. ASSUMPTIONS AND NOTATION

The following notation is used throughout this chapter:

(i,j) = The activity starting at event (node) i and ter-

minating at event j

.

m = The total number of activities in the network.

n = The total number of events in the network.

N = The collection of activities and events making

up the project.

t. = The time at which event i takes place.

k
:

ij

k
c . . = The normal cost per manday for shop k in the per-

formance of activity (i,j).

d . . = The overtime cost per manday for shop k in the
ij

performance of activity (i,j)

ir

r. .(t) = The number of men from shop k employed on activity

(i,j) at time t.

s. . = The number of overtime mandays expended on ac-
ij

tivity (i,j) by shop k

M . . = The number of mandays required to accomplish

activity (i,j).
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R
k = The number of men from shop k available between

events 1 and i+1.

K = The total number of shops.

B = The upper bound on total overtime mandays allowed,

usually a fixed percentage of total project man-

days, S M .

T* = The due date for the project measured in days from

project commencement time t,.

C* = A penalty cost per day incurred when the project

is completed after the due date.

The resources of type k are ~often referred to as men from

shop k and the unit of time is considered to be a day. This

is not critical to the development of the problem and is only

done for convenience. Any resource type and resource-time

unit might apply.

Four assumptions must be made in order that the develop-

ment in this chapter be valid. The assumptions are:

1. The events of the project must be ordered 1, 2, ..., n

such that t, < t
2

< ... It and if an activity (i,j) exists

then t , < t .

.

2. The project can be partitioned into subsets of ac-

in-1
tivities P , P

2
, ..., P

n_ x
where N =

|J"=1
P
±

and the sub-

scripts correspond to the event times t , tp^ •••> t
n_i

resource availabilities FT, i = 1, 2, ..., n-1, are imposed

over the time intervals [t., t J, i = 1, 2, ..., n-1.

3. Only one resource type is required by each activity.
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4. r..(t) is a step function of t with the possible
ij

discontinuities occuring at the event times t . ,t ..,,... ,t. , .

x 1+1 ' j-1
k fJ_ s ... i:

-J

small e > and a = i, i+1, . .., j-1

That is, it is assumed that r. . (t ) = r. . (t ., - e) for' ij a ij a+1

To illustrate assumptions 1 and 2 consider the network in

Figure 8. Only one resource type is needed for this network.

R. is the amount of resource available between events i and

i+1. In Figure 8 activity (1,3) can utilize the resources

available in both [t, , t
? ) and in [t~> tO where t. , t~j

and to are the times of occurrence of events 1, 2, and 3.

Assumptions 1 and 2 are quite severe for many projects. Some

possible methods for making these two assumptions more

palatable are disucssed in Section F.

C. MODEL DEVELOPMENT

The development can now proceed. The objective is to

find an allocation of men from the various shops that will

minimize the total cost of completing the project. Total

project cost is considered to be the sum of direct labor

costs, overtime costs, and the penalty cost incurred when the

due date is exceeded. The specified number of mandays required

for completion of each activity must be utilized. The sum of

normal and overtime mandays expended must equal this number.

Constraints are imposed on the number of normal mandays that

can be expended in each Inter-event interval. Finally there

is an upper bound on the total number of overtime mandays

which can be expended in completing the project.
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Rj ,

R

R
R,

R.

R,

t,=o t2 t 3 U t 5 t* t

Figure 8

The total number of mandays expended on activity (i,j)

can be represented by the integral

n k
/ rjj(t) dt.

Outside the interval [t., t.) the resource allocation on
i J

activity (i,j) is zero. That Is

r* (t) for t < t and t > t
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Employment during the normal workday Is then represented by

/ r*.(t) dt.

The following problem then acts as a model for this

situation:

(IV-C-1) Minimize [ E [c^. /
J

r^.(t) dt]
(i,j)eN 1J t, 1J

Subject to

E d^.s^. + C*(t - T*)]
(i.J)eN

lj 1J

(IV-C-2) /
" rjj(t) dt + s£j = M

±j
; \/(i,j)eN

(IV-C-3) T. r^.(t) < R j k = 1, 2 9 .. . , K
Vlsj;t' r

q q = 1, 2, .. ., n-1

t e [t
q

, t
q+1 )

(IV-C-4) Z s. . < B
(i,j)eN 1J

(IV-C-5) s^ > 0, t
±

> 0, t
1

= 0, rj-(t) <

> for t.<t<t,

= for t<t. or

t > t.

and

(IV-C-6) C*(x) = I
C*x for x >

for x <
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The objective function (IV-C-1) then represents the total

cost. Equation (IV-C-2) and the inequalities (IV-C-3) 3

(IV-C-4) represent the constraints specified in the problem

statement. Equations (IV-C-6) ensure that the penalty cost

is only incurred when the due date is exceeded. If the re-

source involved is men then r. .(t) must also be an integer.

If Assumption 4 is now adhered to, each of the integrals

representing normal mandays expended become summations of

the form

" k 3
~ J

k
/ r.,(t) dt = Z r..(t )[t .. - t ]

. lj . ij a a+1 a

where t..,, ..., t. , are the event times that occur while
i+l' » j-1

activity (i,j) is in progress. (IV-C-1) -(IV-C-3) then be-

come

k J" 1
k

(IV-C-7) Minimize { Z c . . [ Z r..(t ) [t .. - t ]]
/. . v M ij . ij or L a+1 a JJ
(i,j )eN ° a=i °

+ E d^.s^. + C*(t - T*)}
(i,j) eN « «

Subject to

j-l
(IV-C-8) ^ ^(t

a )Cta+1
- t

a
] + s^ = M..; V(i,j)eN

(IV-C-9) I r^(t)<Rk
;

k = !> 2
>

•••> K

(i,j)eP 1J q Q
q = 1, 2, ..., n-1.
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v J" 1

(IV-D-1) Minimize { E c* [ I r, , (tj [t .., - t ] ]

(i,J)eN
lj

a=i 1J a a+1 a

+ c*t
n

>

Subject to

0-1
(IV-D-2) i r (t

a
)[t

a+1
- t

a ] = M ; \f(±,i) eN
a=i

(IV-D-3)
(i,J)eP,

r
ij

(t
q

) - R
q

; Q = 1 ' 2 ' , "' n" 1

(IV-D-4) r
ij

(t
a ) - ° ; a = i»i+l*.--»J-l

t, =
9 t

±
y ; i = 2,3, . •• ,n,

This problem can now be represented as a complex feed-

forward loop system and can be described by a block diagram

[64, p. 204]. Figure 10 is an example of this for the

network of Figure 9. Note that in Figure 9 the events can

be ordered so that t-. < t
?

< t~ < t^.

Figure 9
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The relations (IV-C-4)-(IV-C-6) remain the same. The problem

as formulated by (IV-C-5)-(IV-C-9) is a nonlinear programming

problem which is very difficult to solve. This total cost

formulation is an extension of the model proposed by

Razumikhin [72], [7^]. In [72] the goal was to level

resources. This was done by minimizing the square deviation

of resource expenditures from a constant. It was shown in

that paper that this was equivalent to minimizing the maximum

resource allocation. The objective of [74] was to minimize

project duration. Principles of fluid mechanics were

utilized to provide a solution procedure in both papers.

Razumikhin' s mechanical model is described below in Section

IV-G. The normal resource constraints of the total cost

problem (IV-C-8)-(IV-C-9) are similar to resource constraints

in [72] and [7*0 with no overtime included.

This chapter first considers the case wehre overtime is

not used (B = 0) . It is then shown that solving this form

of the problem becomes one of minimizing project duration.

The results are then extended to the total cost problem.

D. DYNAMIC PROGRAMMING APPROACH

1. Duration Minimization for a Single Constrained
Resource

In this section only a single resource is required

by all of the activities in the project. In addition, over-

time is temporarily omitted from the model. The reduced

total cost model then becomes

79





CO

Q

CVl

Q

CVJ

Q

=3

4*

80





In the dynamic programming formulation each stage

represents a portion of an activity. Stage ij(k) stands for

activity (i,j) at the breakpoint t. e [t., t.). The deci-
K 1 J

sion D. .,. >, represents the number of men assigned to activity
ij (k) & J

(i,j) over the time interval [t, , t, - ) . The individual

stage return is p. .,, v and

'lj(k) " c
ij

D
ij(k)

[t
k+l " t

k
3

Stage n represents the decision to increase or decrease

project duration t . For each of the stages there are two

state variables, m. .,, >. and t, . The state variable m. .,, n
' ij(k) k ij(k)

represents the number of mandays available for input to stage

ij(k) while t is the time of event k output from all stages

ij(k). The stage transformation for m. . ,, ^ is given by

m
ij(k-l) " m

ij(k) " D
ij(k) Ctk+l " t

k
]>

The stage transformation for time is described later. The

serial system composed of stages ij(i), ij(i+l), ... 5
ij(j-l)

represents a single activity. The state variable m..,, v

only appears in this serial system. On the other hand, time

connects all stages of the complex system.

Consider now an arbitrary activity (i,j) and the

serial system associated with it. The block diagram for this

serial system is shown in Figure 11.

81





D
ij( j-l) D ij(j-2)

i

y
Mil ^_

ij(j-l)

mm-&
ij(j-2)

m
ij(j-J)

* tr
j

•

'

Vi

1

'

tj-2

p
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p
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P
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Figure 11

Beginning with stage ij(i) the minimum ij(i), ij(i+l).

..., ij(ij(j-l) stage returns can be developed. Denote the

minimum ij(k) stage return by f
±

. ,

fc j
(m

(k)
, t

k
, t

k+1 ) . Then

for stage ij (i)

(IV-D" 5) fi3(D (m
iJ(i)' V 'w' "

D
Min pij(i)

(m
ij(i)' V *!+!• ^(i))

ij(i)

Subject to

m
ij (i-1) " m

ij(i) ' D
ij(i) Ct i+l ~ t

i
]

and
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E D, . , . v < R

.

(k,l) eP
1

kl(l) " X

D
kl(i) i°5 Ck,l) eP

±

Since (IV-D-2) requires equality, the total number of man-

days remaining at stage ij(i) must be expended, m. .,. ,% =

and (IV-D-5) becomes

f
iJ(i)

(m
iJ(i)' V t

i+l )
=

n
Mln C

ij
D
ij(i)

[t
i+ l - t

i
]

1J (l)

(IV-D-6) Subject to

D
ij(i) = <

mil
*!+! " t

± >
fc
i+l

> t
l

; otherwise

and

I D. , , . x < R. ,

(k,l)eP.
kl(l) " x

This is simply

(IV-D-7) f
ij(i)

(m
ij(i)' V t

i+l ) ~ C
ij
m
ij(i)

with
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t
"

- t.
+ =^,1)^ D

kl(1)
<R.,

11 ± (k,l)*(i,j)

Proceeding to stage ij(i+l)

f
ij(i+l)

(m
ij(i+l) 5 t

i+l 3 t
i+2)

=

n
Min [f

ij(i)
(m
ij(i+l)' *!+!• WDij(i+D

+ pij(i+l)
(m
ij(i+l)> t

i+l J t
i+2 J D

ij(i+1) )]

Subject to

m
ij(i) = m

lj(
.

+1)
- D

1J(1+1)
Ct1+2

- t±+1 ]

and

(k.i)«p1+1
Dkl(1+1) - Rl+r

Following the development of (IV-D-7) this becomes

(IV-D-8) fijd+D^ijd+i). t±+1 , t
1+2 ) = c

±
.mlH± + 1

.

with

"ijCi +D m
iJ(i) + E(k 1)eP D <R

. _ .

MK)i, "i+l U
kl(i + 1) - K

i+1
C
i+2

r
i+l (k, 1)^(1, j)
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It can be shown by induction that each succeeding stage

exhibits this same performance and we have for the final

stage

(IV-D-9) f../. in(M.., t. ,, t.) = c. .M.

.

with

M. . - m. . , . „>.

t _ t

L
(k,l) P

D
kl(j-1) - R

j-1
j j_1

(k,l)^(i,j)

The choice of activity (ijj) was arbitrary and each activity

in the network exhibits the same behavior. The optimum

stage return for each stage is independent of the time input

to and output from the stage. The stage decisions can be

summarized as follows:

(a) If an activity is commenced at event i then the

decision is

.

D
±j(i)

=
m
iJ(D •

t
±+l ~ t

±

(b) If event k is an intermediate event for activity

(i,j) then

n _
m
i,1(k) " m

l,j(k-l)

c
k+l

r
k
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(c) If an activity terminates at event j then

M. .
- m. . , . „>.

Dij(j-D t t

(d) If t. = t, ,, then D. . ,. , = 0.
k k+1 ij(k)

Each resource constraint

Z D , , < R ; q = 1, 2, ..., n-1
(i,j)eP

q

ljCq} q

then takes the form

m./s m.
. / v - m.

. , , >.

I qjCq) + E
1.1(g) i.i (q-1)

M. , , - m
+ E

l ,q+l i,q+Kq) < R ; q = 1, 2, ..., n-1,

(i,q+D t
q+1

- t
q

This leads to the recursion

q+1 - Q R
q ( q ,j)

QJ<<i) (ij) iJ(q) U(Q-l)

i<q<j

(IV-D-10)
+ Z (M. ,, - m. , , , v

)

(i.q+1)
l3Q+1 i>q+1 (q)

;

for q = 1, 2, ..., n-1 and R > 0. Then (IV-D-10) is the

stage transformation for the event times.
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This can now be simplified. Let

(IV-D-11) x
iJ(k)

= m..
(k)

- m
1J

.

Ck-1)
; k = i, i+1, ..., j-2

and

(IV-D-12) x. . / . n v = M. . - m. . /, v.
iJU-1) iJ ij(k-2)

Substituting (IV-D-11) and (IV-D-12) into (IV-D-10)

t ,, >t +5— [ E x . , > + E x..,v+ E x. ,-,/ >nq+1 ~ Q R
q (q,J)

qj(Q) Ci,J) 1J(Q) (i,q+l) 1^+1^^
i<q<j

for q = 1, 2, ..., n-1 and R > 0. Or, this can be written

(IV-D-13) t
q+1

> tQ+ i[ ^ x..
(q)

].

i<q<j

This leads to a useful expression for project duration.

Theorem : The project duration t satisfies the inequality

j-l
i

(IV-D-14) t > E E ^- x, . , s .

n — / , . s _. R ij (a)
(i,j) a=i a JV

Proof: Put t = 0. From (IV-D-13)

'ai 4 ci!j)
XlJ(1)
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Now assume that

n-2
x

i<q<J

Then from (IV-D-13)

n ~ n-1 R
n-1 (i,j) U(n-l)

i<q<j

and after rearranging terms

3-1
1

t > E E ^— x. . ,
>,n — , . ., n _ 4 R ij (a)

(i,j) a=i a d

and the theorem is proved.

The total project cost is given by

E c. .M. . + C*(t - T*)
(i,j)eN 1J 1J n

and cost is minimized when project duration is minimized.

2. Linear Programming Solution

The theorem of Section D-l gives an expression that

project duration must satisfy. In addition to (IV-D-14),

the total number of mandays consumed by an activity (i,j)

must be M... The minimum project duration subject to the
ij ° °

resource restrictions can then be found by solving the

linear programming problem
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J-l
!

(IV-D-15) Minimize I I ^- x . ., »

(i,j) a=i
R
a

lj(a)

Subject to

J-l
(IV-D-16) E x

±J(a)
= M

±J
; \j{l,3)zK

x.

.

f v > 0.

This is simply m independent linear programming prob-

lems each with a single constraint. The solution, therefore,

is to put

(IV-D-17) x. ,,% = M, .

ij(cx) ij

for

a a=i, . .
. , j-l a

and

(IV-D-18) x, w N
=0 otherwise.

ij(a)

Each event time t , q = 1, 2, . .., n can then be determined

using (IV-D-13). The resource allocations are then given by

(IV-D-19) r
li

( t
a )

=
t ^^t '

a " ij 1+lj "" J_1
J a+l a
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Up to this point the only requirement placed on

r..(t ) has been nonnegativity . If the resource to be allo-

cated is manpower, then r . (t ) must also be integer. The

solution to the linear programming problem (IV-D-15), (IV-D-16)

guarantees that x. ., x, a = i, 1+1, ..., j-1 are integer

valued but r . (t ) found from (IV-D-19) will not, in general

,

be integral. Therefore, under the present assumptions, the

procedure is not valid for manpower allocation and some

revised procedure must be used.

Suppose r..(t ) is thought of as the time average

manpower allocated over the time interval [t , t ,, ) . Then

define another variable r*.(t* ) to be the actual manpower

allocation over the time interval [tr , t, )CZ[t , t ,, )0' ' — a 5 a+1

and require that it be an integer. For the activity (i,j)

to be completed it is necessary that

r
Ij

(t
Sl

)[t
6
2
-\1=

\i

An expression for r. .(t ) can now be given as

n

fc

a+l
(IV-D-20) r.At) = / r« (t) dt.

1J a
t ., - t t 1J
a+1 a a

One possible value for r*.(t. ) might be to set
1 J O -1

r
ij

(t
6

}
= R

a ; V<i»J>eN.
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That is, use all available resources in the performance of

activity (i,j) until it is completed. Then, if time t ,

has not been reached, employ R men on some other activity

which is not a predecessor of activity (i,j). This is

continued until all activities have been scheduled.

It is necessary to show that this revised procedure

does not change the cost or the duration of the project.

Putting

r
!j

(V " R
a

and carrying out the integration (IV-D-20)

r
ct+l

z
a

Since M. . mandays are necessary for completion of (i,j)

V«K*o«L " *a ]
= R

«
(t

6 ,
" V =MU

and

M .

fc

«„
=

*«.
+ -'•'

2 "1 R
o

for

t < t. < t. < t ,.
a — 6, — 6p — a+1
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This procedure is carried out for every (i.j) in P until each

is completed. For the first (i s j) under consideration in P

put 6, = a. Commence the next activity at t~ and continue
1 °2

this way until all activities are completed. Then

M. .

a+1 ~ a r • -\ t> R(i,j)eP
a

a

which is the same as the result given by the solution to

the linear programming problem (IV-D-15), (IV-D-16). This

method insures that an integer number of men is employed on

each activity. An example of this appears in Section E-2.

E. COST MINIMIZATION

1 . Cost Minimization for a Single Constrained Resource

The results of the previous sections are now extended

to the problem of minimizing the total cost in a project sub-

ject to constraints on a single resource over time. The

total cost problem (TCP2) for a single resource can be stated

as

3-1
(IV-E-l) Minimize { I c. ,[ Z r,,(t )[t

+1
- t ]]

(i,j)eN 1J o-i lj X

+ E d,.s,, + C*(t - T*)}
(i,j)eN 1J 1J n

Subject to

J" 1 w
(IV-E-2) Z r

ij
(t

a
)[t a+l " t

a ] + S
ij

= M
ij ; V(i,J)eN
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(IV-E-3)

(IV-D-4)

(IV-E-5)

E r. . (t ) < R ; q = 1, 2, .

Cl,J>eP„ 1J q " q

E s . < B
(I,j)eN 1J

.
.

, n-1

s. . > 0, t . > 0, t n
= 0, r. . (t)<

> for t.<t<t

.

i- J

e for t<t or

t >t

.

J

and

(IV-E-6) C*(x) =
^

C*x for x >

for x < 0.

Note that from (IV-E-2)

UV-E-7) Jj1
(t )[t :

. „ _

a=1
ij a a+1 a ij ij

Then (IV-E-7) can be used to replace the first term of

(IV-E-1) . The objective function then becomes

Minimize E c. , [M. , - S..] + E d..s., + C*(t - T*

)

(i,j) E N « « « (i,J) eN « «

then, collecting terms and ignoring constant terms, this

becomes

(IV-E-8) Minimize E [d. , - c,,]s.. + C*(t - T*) .

(iJ)eN ij ^ij J "ij n
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Suppose now that all s. . are fixed at some feasible value,

say s* \/Ci,J)eN. That is,

E s*. < B
(i,J)eN 1J

and

< s*. < M. . ; \/(l,j)eH,

Call (IV-E-8) and (IV-E-2)-(IV-E-6) the total cost problem

and label it (TCP2) . The Benders partitioning procedure [7]

can then be applied to (TCP2) after transposing all the

fixed terms involving overtime to the right hand side. For

T* < t , the problem becomes

(IV-E-9) Minimize C*t
n

Subject to

(IV-E-10) Z_ r
ij

(t
a
)Cta+l " t

a ]
= (M

ij
" S

ij
) ; W 1^)^

(IV-E-11) I r. ,(t ) < R ; q = 1, 2, ..., n-1,
(i,j)eP„ W q " q

From Section IV-D- 2 the problem (IV-E-9) -(IV-E-11) is

equivalent to
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Minimize C*[ E E ^ x, , , y]
(i,j)eN a=i R

a
lj (C°

Subject to

(ELP1) E x. j(a)
= (M

±
. - s|.) ; \/(l,i)eK

X
ij(a) i °

The equivalent problem (ELP1) is a linear programming prob-

lem with solution given by (IV-D-17), (IV-D-18) if M. . is

replaced by (M. . - s*.) for every activity. Since (ELP1)

is a linear programming problem, it has a dual which is

(IV-E-12) Maximize E (M. . - s*.)u..
(i,J)eN 1J 1J 1J

Subject to

(IV-E-13) u,. '< C* £- ; a = i, i+1, . .., j-1
±J " R

a

u . . unrestricted.

The dual constraint (IV-E-13) is equivalent to

(IV-E-14) u <

Max R
a=i,...,j-l a
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As explained in [7] the feasible region of (IV-E-12),

(IV-E-14) does not depend on s . . and an optimal solution to

this system always occurs at an extreme point of the feasible

region. Additionally, since it is required that < s.. < M.
.

,

(i,j)eN then (M. . - s* . ) >_ 0, (i,j)eN and the optimal

solution is

(IV-E-15) u. -
ij Max R

ct=i, . . . ,j-l a

We then have

Max £ [M. . - s* ]u. . = Min C*t .

Ci,J)cN 1J lj lj n

Following Benders' procedure combine (IV-E-12), (IV-E-14)

(with u. . given by (IV-E-15)) with the original problem

(TCP2) to obtain

Minimize Z

Subject to

Z > { Z [d - c ]s

(i,J)eN
lj 1J lj

c*
+ Max [ E [M, . - s,.] -,,

(i,j)eN 1J 1J Max R J

a
a=i, . .

. ,
j-1

E s, , < B
(i,j)eN 1J

- s
ij - M

ij
; V^^) eN
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This is equivalent to the linear programming problem

Subject to

Minimize Z h. .s. .

(i,j)eN 1J 1J

(ELP2) I s. . < B
(i,j)eN 1J ~

where

< s . < M ; (i,j)eN
-L J -LJ

0*
h
lj " [<J

1J
- °ij MS 1" 1 i V(1,J)^N.

a=i, . . , ,j-l "a

The overtime allocation is easily found by solving

(ELP2) . It is then a simple matter to find the normal re-

source allocations r..(t ) by solving (ELP1) . The procedure
ij "

described above is summarized by an algorithm and an example

is explained in the next section.

2. An Algorithm and an Example

Before the procedure is summarized, it is necessary

to prepare for one contingency. If the solution to the

total cost problem yields a project duration less than the

due date, the relation (IV-E-6) has been violated. It is

then necessary to reallocate overtime until the project

duration and the due date become coincident. This is done

by decreasing the most expensive overtime until this condi-

tion is met.
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Algorithm 3

STEP 1 : Put s.. =0; (i,j)eN. Go to STEP 2.

STEP 2: Put x..,*v = (M. . - s. .) for 1/R„ = Mln 1/R :ij(a) lj ij' a . . , 'a'

x -i(n\
= Q* otherwise for (i,j)eN. Find the project

duration
0-1

t = E E (1/R )x. . , v .

n
(i,J)eN o-i

a lj(a)

(a) If t = T* or t < T* and all s. . = then
n n lj

terminate the algorithm. The present value of

x . . / \ , \/(i,j)eN, a=i,i+l, . .
. ,
j-1 are optimal,

(b) If t > T* go to STEP 3-
n

(c) If t < T* and there exists an s. . / 0, go to
il J- (J

STEP k.

STEP 3 : Solve the linear programming problem (ELP2) . Go to

STEP 2.

STEP 4: Find s. . > such that d. . is a maximum. Then put

g = Max{( Sij - R
a
(T» - t

n )) ; 0}

*ij(6D
= M

ij " §
ij*

If t = T* terminate the algorithm. The optimum

has been reached. Otherwise t < T* and there
n

exists an s.. > 0, repeat STEP 4.

The workings of the procedure are now illustrated by

an example. Consider a project with parameters as specified

in Table III. In addition, a target date has been set at

38 days from the time of commencement of the project (T* = 38)
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A penalty cost of C* = $100 Is assessed for each day beyond

this target.

Table III

Normal Cost/ Overtime Cost/ Required
Activity Manday ($) Manday ($) Mandays

(i.J) < ciJ> <V <v
(1,2) 6 9 45
(2,3) 8 12 24
(2,4) 8 12 50
(2,5) 6 9 90
(4,6) 4 6 36
(5,6) 10 15 12

(5,7) 6 9 56
(6,8) 6 9 24
(7,8) 8 12 40
(8,10) 10 15 20
(9,10) 6 9 21

It is also specified that only 21 mandays of overtime

may be employed to attempt to meet the due date. The problem

is to schedule normal and overtime personnel to minimize the

total cost of completing the project. The resource restric-

tions R. given by Table IV must also be met. The project can

be represented by the network of Figure 12.

Table IV

Event (i) 1

Resources (Rj_)

Available in 15
ct

±
, t

i+1 )

10 10

7 8

8 8 10
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(D—Kg

Figure 12

Following the algorithm, all overtime is set equal

to zero and the minimum project duration is found using

STEP 2. A summary of this procedure appears in Table V.

The minimum value of 1/R for each activitv is marked with
a

an asterisk.

The event times are then found using (IV-D-13).

They are: t
]_

= 0, t„ = 3, t, = 7, t^ = 12, t,- = 24, tg = 26,

t
7

= 33j tn = 4l, t
q

= 43, and the project duration t,
n

= 46.

The project duration of 46 days exceeds the due date by 8

days. Then, as specified by the algorithm, the linear pro-

gramming problem (ELP2) is solved. The solution to this

problem as shown In Table VI, consists of putting s„. = 21

mandays (the maximum permissible overtime). Since ML, = 24

there are 3 mandays left to be allocated during the normal

working day. All other resource allocations remain the same.
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Table V

Activity
Ci.J)

State
Variable

x
ij(a)'

a=1 '" »j-l 1/R
a

Value of
X
ij(a)

(1,2)
(2,3)
(2,4)

(2,5)

(4,6)

(5,6)
(5,7)

(6,8)

(7,8)
(8,10)

(9,10)

X12(l)
x23(2)
x24(2)
x24(3)
x25(2)
x25(3)
x25(4)
x46(4)
x46(5)
x56(5)
x57(5)
x57(6)
x68(6)
x68(7)
x78(7)

x8,10(8)
x8,10(9)
x9,10(9)

1/15*
1/6*
1/6
1/10*
1/6
1/10
1/10*
1/10*
1/6
1/6*
1/6
1/8*
1/8
1/8*
1/8*
1/10*
1/7
1/7*

45
24

50

90
36

12

56

24
40
20

21

Table VI

(i,j)
'U

d., C*/R
a

l

ij

(1,2)
(2,3)

6

8

9
12

6.67
16.67

3-67
•12.67

(2,4) 8 12 10.00 - 6.00
(2,5) 6 9 10.00 - 7.00
(4,6) . 4 6 8.33 - 6.33
(5,6) 10 15 16.67 -11.67
(5,7) 6 9 12.50 - 9-50
(6,8) 6 9 12.50 - 9.50
(7,8) 8 12 12.50 - 8.50
(8,10) 10 15 10.00 - 5.00
(9,10) 6 9 14.29 -11.29

101





The minimum total cost is $3386 consisting of $2624 in normal

labor costs, $252 for overtime, and a penalty of $510 for

exceeding the target date by 5.1 days. The total cost of

minimizing duration only is $2792 + $800 = $3592. The

optimal time-oriented network and the final resource profile

are illustrated in Figure 13- Note that all of the resource

available is applied to one activity at a time. This was

done to ensure integral numbers of men.

F. APPLICATION OF THE PROCEDURE

The solution procedure developed in this chapter depends

heavily on the four assumptions stated in Section B. Assump-

tion 1, the event ordering requirement and assumption 2, the

resource availability assumption cause the greatest restric-

tions on the application of the procedure to a realistic

problem. It is worthwhile to examine these assumptions more

closely and to suggest methods for reducing the limitations

caused by these assumptions.

1. Ordering the Events

a. Role of the Event Ordering Assumption

Assumption 1 requires that each of the events in

the project be numbered l,2,...,n so that their attainment

times are nondecreasing, t, <_ to < ... <_ t . This requirement

can be very restrictive on the application of the procedure

to a real problem.

In order to illustrate a case in which this

assumption is severe, consider a project represented by a

102





ro

CJ

3

U8UU

103





series-parallel network such as In Figure 14. The network

form of the n job m machine job shop scheduling problem has

this structure. Suppose each event must be numbered before

the solution procedure can be applied. The optimal solution

so obtained might be meaningless in this situation. The

objective of the job shop scheduling problem is, in fact, to

find the best event numberings and their associated attain-

ment times.

There are some projects, on the other hand,

whose events can be numbered naturally so that the assumption

would be automatically satisfied. The network of Figure 15

illustrates this case. Most projects, however, fall some-

where in between these two extremes. For those projects,

the extent to which assumption 1 is restrictive very much

depends on the network structure

.

Figure 14
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Figure 15

b. Enumeration of Event Orderings

In order to state that a given solution to a

given network cost minimization problem is optimal, it should

remain optimal for any numbering of the events. To find this

optimal solution, then it is necessary to obtain every pos-

sible event numbering scheme either implicitly or explicitly.

This is no simple task for most real project networks.

A method is now presented which yields every

feasible event ordering. A feasible event ordering is a

numbering of the events so that if an activity (i,j) exists

then i < j. Fulkerson [31] provided an algorithm for finding

some feasible ordering for any acyclic network. There may be

many feasible orderings for a given network and the present

task is to discover all of them.

The procedure for generating all the feasible

event orderings uses the notion of disjunctive activities.
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•Several authors [2], [3], [4], [15], [16], [34], [70], [71]

have used disjunctive graphs (networks composed of both

normal and disjunctive activities) to provide solution pro-

cedures to various scheduling problems.

A disjunctive activity (arc), (i,j) is an activity

which can either be directed from event i to event j or from

event j to event i but not both. Figure 16 illustrates the

graphical representation of the disjunctive activity (i,j).

The event ordering generation procedure consists of first

connecting all nodes either by existing activities, chains

of existing activities, or disjunctive activities. All

orientations of the disjunctive activities which do not yield

cycles are then generated. For any fixed acyclic orientation

of the disjunctive activities, Fulkerson's event numbering

procedure [31] can be utilized to obtain the associated

unique event numbers

© *-« (D

Figure 16

The first step is to label (number) all events

that can be numbered uniquely. There are at least two label-

led events. The source node is labelled 1, the sink node n.

If all events have been labelled, the procedure can be ter-

minated and only one feasible event ordering exists. For

most realistic cases, there will be a set of nodes that are
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not labelled. Call this set U. In this set connect each

pair of events 1 and j by an arrow leading from i to j if in

the project network activity (I,j) exists or if there is a

chain of activities from i to j. All of the remaining events

in U are then connected pairwise by disjunctive activities.

Prom the last labelled node scan all arrows (i,j)

and make every possible orientation of the disjunctive

activities connecting those nodes j . Call the set of these

scanned nodes S. If fixing a disjunctive activity in a

particular direction generates a cycle, the reverse orienta-

tion must be established. Each fixed orientation may or may

not generate a new numbered node. If a new node is labelled,

the procedure is repeated scanning arrows emanating from the

labelled node. If a new node is not labelled all arrows

emanating from the noeds in S are scanned and the procedure

is repeated. Each fixed orientation of a disjunctive activ-

ity describes the unique ordering of a pair of events. If

the number of disjunctive activities in the network is p

then the number of event orderings is at most 2 . Many of

these generated orderings may be infeasible.

The procedure is now illustrated by a simple

example. Consider the project network of Figure 17(a).

Following the procedure described above, label all nodes

that can be numbered uniquely. Only nodes 1 and 6 can be

labelled uniquely. U is the set of unlabelled nodes and is

represented by the dotted line in Figure 17(b). The unlabel-

led nodes are temporarily marked a-d for identification
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purposes. Then the heavy arrow (a,d) represents the only

chain in U. Then in Figure 17(c) the remaining node pairs

(a,b) and (c,b) are connected by disjunctive activities.

There are then, at most, 2 = k different orderings of the

nodes in U.

Node 1 was the last labelled node so the nodes

a and b are placed in S and the two possible orientations of

disjunctive activity (a,b) are examined. These two orienta-

tions are shown in Figure 17(d) and (e) . Note that the

orientation in Figure 17(d) permits labelling of node 2 and

hence changes the composition of U while the orientation

of Figure 17(e) leaves U unchanged.

Branching from the network of Figure 17(d) we

further obtain the networks of Figure 18(a) and (b). Like-

wise from Figure 17(e) we obtain Figures 18(c) and (d) .

Note that the network of Figure 18(d) yields the cycle

b-a-c-b hence yields an infeasible ordering. The three

possible event ordering combinations of this project network

are shown in Figure l8(a)-(c).

In order to find the minimum total cost for a

project with this network configuration it would be necessary

to use the cost minimization algorithm three times, once for

each feasible event ordering combination.

c. Heuristics

The size of the project network may prevent the

use of the event ordering method. If so, it is necessary to

pick one or more event ordering combinations and use them
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with the cost minimization algorithm. The selection of an

ordering combination might be accomplished by using some

rule of thumb to order the events. One possible heuristic

rule might be to order the events based on increasing total

M. . values of activities incident to the events. In any

case, a heuristic scheme cannot guarantee the discovery of

the optimal solution.

An alternative to using a heuristic might be to

randomly generate the event orderings while ensuring that

the destination of each activity has a higher event than

its origin. This procedure also cannot ensure optimality.

d. An Example

The cost minimization algorithm was programmed

in FORTRAN IV for the Naval Postgraduate School's computer,

an IBM 360/67. The 70 feasible orderings for the example of

Section IV-E-2 were determined by hand using the event

ordering procedure suggested in Section b above. The minimum

total cost for each of these possibilities was then determined

using the algorithm. The minimum total cost computed in this

manner was $2378. The feasible ordering combination that

yields this cost is shown in Figure 19- This is also the

ordering generated by the suggested heuristic rule. The

maximum total cost was $3825.
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Figure 19

The cost minimization routine was performed for

groups of 10 or more possible orderings within a DO loop

allowing efficient use of compilation time. The average time

for computing the minimum total cost for each event ordering

combination was 0.53 seconds. The program required 5^ x 10-'

bytes of storage for this 10 event 13 activity problem. A

more detailed description of computation appears in Appendix

B.

2. Resource Availability

a. Role of the Resource Availability Assumption

The planning of real shipyard projects must

normally be done subject to scarce resources. The resource

constraints must usually be represented in a form such as in

Chapter III of this thesis. Assumption 2 of Section B of

this chapter requires that the resources availability break-

points be at the event times rather than at fixed points in
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time. Although this assumption made the solution of the

single resource problem very simple, it might not be valid

for a realistic project. If, after performing the cost

minimization, the resource availability break points coincide

with the appropriate event times then the procedure is valid

for that particular project. Most of the time, however, this

will not be the case. Very often some resource constraints

will be violated while other resources will be idle.

The effects of this assumption might be reduced

by dividing some activities into two or more sub-activities

in series. The total manday requirements for the sub-

activities are required to equal the total activity manday

requirements. This assumption might also be more acceptable

if shipyard policy allows resources to be transferred among

various projects in the shipyard for short periods of time.

Idle resources from some projects could be shifted to resource

constraint violations in other projects.

b. Approximate and Exact Solutions — An Example

Consider a project represented by the network of

Figure 20(a). The numbers on the activities are manday

requirements. Suppose the problem is to minimize the project

duration subject to resource restrictions over time illus-

trated by the project resource profile of Figure 20(b). The

cost of minimization algorithm with overtime and penalty

omitted from the model yields the minimum duration. Suppose

now that the resource profile used in the algorithm is given

by Table VII. The algorithm yields a minimum duration of
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15 5/8 days. The associated project resource profile is

shown as a dashed line on Figure 21. The solid line in this

figure is the actual resource availability profile. Note

that the cost minimization algorithm results in an approxima-

tion to actual conditions

.

Table VII

Event (i) 12 3 4 5 6

Resource 5 3 8 13 2

Availability (R )

Now suppose some activities are broken into sub-

activities with manday requirements divided among them.

Suppose the activities (2,3), (2,5), (3,7), (4,6), and (4,7)

are each divided into two serial activities. The revised

network and appropriate manday requirements are illustrated

in Figure 22. Now if the resource availabilities of Table

VIII are used, the minimum duration is 22 days and the assoc-

iated resource usage profile coincides with the actual resource

availability profile.

The purpose of this example is to show that for

some networks there is a division of activities that can be

made to more closely approximate reality. Judicious separa-

tion of the activities can often result in a closer approx-

imation to an existing resource profile.
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Table VIII

1 1 2 3 ^ 5 6 7 8 9 10 11 12 13 1^ 15 16 17

555533388 1 1 1 3 3 3 3 2

G. MULTIPLE RESOURCES

The development in this chapter has applied only to the

case where a single resource is constrained over time. If

there are several resource types v/hose availabilities are

limited, other approaches must be taken.
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Some authors 1682, [72], [8lJ have succeeded in developing

solution procedures to similar scheduling problems by stating

a very restrictive assumption. These formulations require

that each of the event times t. , t
? , . .., t be fixed and

known. That is, the starting times of each of the activities

in the project are specified in advance. Each of the papers

mentioned attacked a resource leveling problem where several

resource types were involved. These approaches are interesting

and are briefly described in this section. The total cost

model developed in this chapter is then examined after the

addition of the fixed activity starting time assumption.

Figure 22
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1. A Hydrostatic Model

A Soviet operations research analyst, B. S. Razumikhin,

developed a hydrostatic model to describe a resource leveling

problem [72]. For this problem a project is made up of ac-

tivities which require a fixed number of resource-time units

for completion. This condition, just as in the total cost

model, can be represented by

(IV-G-1) Z r* (t )(t ,. - t ) = M, . ; \/(±,J)zN.s
ij a a+1 a Ij v

a=i " °

This system of equations is represented by Razumikhin with a

fluid mechanic model. Each resource allocation r. .(t ) is
ij a'

the height of a cylinder whose width is t ... - t and whose° a+1 a

thickness is unity. The cylinder contains an incompressible

fluid. For a single resource type k and a set of activities

(i,j) which require the use of this resource there are n-1

cylinders of this type placed side by side. This can be

illustrated by Figure 23. The network of Figure 23(a) re-

quires a single resource type. Some set of resource alloca-

tions are represented for this network in Figure 23(b)

.

The fluid in the cylinders for a single activity can

communicate freely. The total volume of fluid for cylinders

of activity (i,j) must remain constant at M . so if the height

of one cylinder say r, _.(t,) decreases then the cylinder

height r--(t
3 ) must increase. The cylinder sides (event

times) t, > t„, ..., tu are fixed. Razumikhin showed that if

the cylinder heights (resource allocations) are varied until
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the minimum potential energy is attained, the result is the

same as minimizing the mean square deviation of resources

from a constant. Or, this results in a leveling of the

resources

.

If K different resources are required for the project

then there are K independent cylinder systems such as in

Figure 24. Razumikhin provided a method of successive
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approximations for finding the minimum potential energy for

this system.

It was then stated that if the intermediate event

times t, , t_, . .., t _, were allowed to vary, then the optimal

resource allocation in the project would correspond to equi-

librium in the hydrostatic model. If the cylinder walls

t.. , t
? , . .., t are movable, equilibrium corresponds to the

situation where the system has minimum potential energy and

the pressure on each cylinder side wall is the same. Noticing

this, Razumikhin presented another successive approximation

technique to allow variation of the event times.

Figure 24
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The procedure is summarized briefly below.

STEP 1: Fix t, , t„, .... t and find the resource allocations12 ' n

r. .(t) which yield minimum potential energy of the

cylinder system. Go to STEP 2.

STEP 2: Vary t,, t_, ..., t (and consequently r..(t)) so

that the force exerted by the fluid on each cylinder

wall is constant. Then return to STEP 1 with these

values of t.. Terminate the procedure when there

is little change in potential energy and force at

succeeding iterations.

In a later paper [7^]» Razumikhin extended this fluid

mechanic model to represent the problem of minimizing project

duration with a bounded total expenditure of resources. No

computational considerations are given in either paper.

2 . Dynamic Programming

Petrovic [68] approached a resource leveling problem

using dynamic programming. The problem attacked had constraints

on resources similar to those of the minimum duration model

of Chapter III. The event times for each activity were fixed

and this yielded a discrete multistage system suitable for

solution by dynamic programming. Finding the optimal resource

allocations at each stage with multiple resources is an ex-

tremely difficult task in itself. Petrovic outlined a few

techniques for reducing the amount of computation needed to

perform this.
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3. Quadratic Programming

Beale's quadratic programming method [6] was applied

by Voronov and Petrushinin [8l] to the same resource leveling

problem that Razumikhin approached. The problem with the ob-

jective the minimization of the mean square deviation of

resources from a constant can be written as

n-1 . 2

(IV-G-2) Minimize E [ E r?,(t )] (t ., - t )

a=l (i,j)eS 1J a a+1 a

Subject to

(IV-G-3) V (t a+1
- t

a
)r^.(t

a
) = M.. ; \f<l,3UX

Utr JL

with

(IV-G-4) r^.(t ) <(

ij a

= for a < i or a >_ j

> for i < a < j

.

When the event times t. , t OJ ..., t are fixed the above12' ' n

problem becomes a quadratic programming problem with the

additional constraints (IV-G-4). The authors applied the

Kuhn-Tucker conditions and extended the Beale quadratic pro-

gramming algorithm to solve the problem. This is an interesting

method for solving the resource leveling problem because it

is very simple. The assumption that event times are known

in advance, however, is very restrictive and limits the

acceptability of this procedure.
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4 . A Generalized Transportation Problem

The total cost problem (TCP2) of Section E of this

chapter can be greatly simplified if the fixed event time

assumption mentioned above is made . The total cost problem

is stated again for convenience . The problem is

(IV-G-5) Minimize [ E (d*. - c
k
.)s

k
. + C*(t - T*)]

(i,J)eN *J U ^ n

Subject to

J-l
(IV-G-6) E rf.(t )[t ., - t ] + sj. = M... ; \/(i»J) £N

a=i

(IV-G-7)

(IV-G-8)

(IV-G-9)

(IV-G-10)

q = 1, 2, . .
. , n-1

E rf.(t ) < R
k

:
k - 1, 2, ... s K

(1.3)eP
q

1J q " q

E s* < B
(i,j)eN 1J

sf. > 0, t. > 0, t n
= 0, r^.(t) <(

ij

C*(x) = <

IJ

C*x for x >_

for x < 0.

> for t.<t<t.- i- J

= for t<t.

or t >t

.

Suppose now that t, , t„, ..., t are fixed and the

values are known. The penalty cost term then drops out of

the objective function and each of the time intervals

t ., — t : a = 1, ..., n-1 are constants a . The problem
a+1 a ' a

can then be written as
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(IV-G-11) Minimize Z (rf, - c^.)s^,
(i,J)eN iJ lj lj

Subject to

(IV-G-12)
J

Z

X

a r
k

.

+ s
ij

= M
ij ; VU.J>eN

a-i a 1Ja

(IV-G-13) S r* < R* ;

(i,j)eP
q

1Jq q q = 1, 2, ..., n-1

(IV-G-14) i s
k

< B
(iJ)eN ij ~

_> for i £ a < j

(IV-G-15) sj. > 0, r*
J e for a < i or a > j

The problem (IV-G-11) -(IV-G-15) is a generalized

transportation problem [37j p. 31*0 • The constraints

(IV-G-15) on r. . can be taken care of by assigning an arbi-

trarily large cost to the variables r . . when a < i or

a > j .

If the time differences a are of unit length the
a

problem is placed In a form similar to that given in Chapter

III. Since each of the event times are known, however,

there is no need to adjoin constraints involving zero-one

variables.

H. SUMMARY

A nonlinear programming formulation for the total cost

problem was given in this chapter. In its most general form,
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the model is extremely complex. When additional assumptions

are made, however, simple solution procedures can be applied.

The cost minimization algorithm for a single constrained

resource is very simple and can compute the minimum cost of

a project very quickly (See Appendix B) . The limitation here

is that the events must be ordered in a particular way. This

may or may not impose a severe restriction on the scheduler,

depending on the project in question. Finally, if the

manager is willing to specify activity starting times in

advance, the problem is again very simple.
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V. FIXED RESOURCE PROFILES

A. INTRODUCTION

The scheduling of resource constrained projects to satisfy

any objective function is an extremely difficult task. The

combinatorial nature of these scheduling problems usually

requires the statement of simplifying assumptions permitting

the use of known solution methods. The nature of the assump-

tions and the restrictions caused by them determine whether

the solution obtained compares favorably with reality or not.

A class of resource constrained project scheduling prob-

lems that for many problems is quite realistic is that of

projects composed of activities with fixed resource profiles.

An activity resource profile is a graph of the resources

required to perform the activity over time. An example of

an activity resource profile is shown in Figure 25. In the

example, r. units of resource must be used on activity (i,j)

at time t. and must be employed until time t. + d-. . Time

interval d, is the duration over which r-, units must be

employed on activity (i,j). The activity is completed when

each of the required resource units has been used for the

appropriate lengths of time.

A special case of the fixed resource profile which also

can represent a realistic use of manpower is the constant

resource profile. This type of activity resource profile is

represented in Figure 26. To complete an activity it Is

necessary to employ r . units of the required resource for
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a length of time equal to T.., the activity duration. If

the manager is willing to specify how many men will work on

an activity and for how long then some existing scheduling

procedures can be used. This specification amounts to

constructing a constant resource profile for each activity.
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Figure 25

In this chapter, the shipyard scheduling problem of

minimizing project duration with fixed activity manday

requirements and restrictions on available resources is

examined. When certain conditions exist and when fixed

activity profiles are adopted, some existing scheduling

methods can be employed.
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Figure 26

B. CONSTANT RESOURCE AVAILABILITY

1. The Network Job-Shop Scheduling Problem

The term network job-shop scheduling problem is a

name givenj in this thesis only, to a scheduling problem

which has been approached by several authors [2], [3], [*0»

[34], [67], [70], [71], [77], [78]. In each of these papers

the problem was called project scheduling subject to resource

constraints. The special name is used to show the distinc-

tion between this problem and the more general type of

problem developed in Chapters III and IV. The attributes of

the network job shop scheduling problem are first described

and then the relation between it and the more general

scheduling problem are outlined.
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The network job-shop scheduling problem objective is

to minimize the duration of a project composed of a number

of activities connected by precedence relations in the usual

manner. Associated with each activity is an activity dura-

tion and a resource necessary for performing the activity.

Examples of resources in this context are a machine and a

fixed size work crew. The resource cannot be split and can

be assigned to only one activity at a time. This is the

resource constraint for this problem. The fixed activity

duration is the time required by the resource to process the

activity from start to finish. A special case is the n job

m machine job-shop scheduling problem. That is, given n

jobs and m machines minimize the time to process all jobs on

all machines where the order of machines and machine proces-

sing time for each job are given. A network representation

of this type of problem was given in Figure 6 of Chapter II.

It is quickly apparent that if in the problem des-

cribed in Chapters III and IV each shop is considered as a

fixed resource then the problem can be viewed in the frame-

work of the network job-shop problem. The assumptions

necessary for a mixed integer programming representation for

this case were given in Section III-D-2 . So, if a constant

number of workmen are available from each shop and if this

fixed number of workmen is viewed as a work crew, the resource

constrained project scheduling problem with fixed manday

requirements becomes a network job-shop scheduling problem.
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The shipyard scheduling problem can then be solved by

methods such as those suggested by the authors listed above.

2. Available Solution Techniques

A few of the most pertinent solution procedures that

can be used to solve network job-shop scheduling problems

and hence the shipyard problem with the additional assumptions

are now briefly described.

a. Implicit Enumeration

Because of the combinatorial nature of network

job-shop scheduling problems the most frequently used solu-

tion procedures are implicit enumeration or branch and bound

methods. A theory of implicit enumeration for combinatorial

problems has been examined by several authors [10], [60],

[78]. More specialized applications of branch and bound

methods have been constructed for the traveling salesman

problem [55], integer programming [1], [5], [32], [50],

scheduling [13], [41], [433, [58], [67], [76], [77] and, of

course, many other problem areas.

The use of implicit enumeration in solving net-

work job-shop scheduling problems is best exemplified by a

paper by Schrage [76]. In his paper a correspondence is

drawn between the possible permutations of the activities in

the project and all the active schedules. A schedule is an

assignment of starting times to all activities that does not

violate the resource constraints. A schedule is active if

no activity start times can be decreased without changing

the starting times of any other activities. It has been
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shown [19], [44], [67] that in order to find an optimal

schedule, it is only necessary to search among the active

schedules. Schrage's paper gives a procedure for nonredun-

dantly enumerating all active schedules. The procedure is

valid for problems whose objective functions are non increasing

functions of the activity start times. This includes the

objective of minimizing project duration.

For the project duration minimization objective

it is not necessary with Schrage's procedure to explicitly

evaluate each active schedule. Two lower bounding methods

are given for implicitly evaluating each active schedule and

discarding those schedules which are not as good as some ex-

isting schedule. Some extensions of the method are also given

in the paper. These generalizations, when made, also apply

to the shipyard scheduling problem with appropriate changes

in the assumptions made.

b. Disjunctive Graphs

The representation of scheduling problems by dis-

junctive graphs has led to some interesting solution proced-

ures. The use of disjunctive graphs in scheduling has been

examined by Balas [2], [3], [4], Charlton and Death [15],

[16], Gorenstein [34], and Raimond [70], [71]. The method

of Balas [2] is briefly described here to illustrate the

role that disjunctive graphs play in resource constrained

project scheduling. A few definitions must first be given.

A disjunctive graph denoted G = (X,A,B) is a

directed graph composed of a set X of nodes or events, a
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set A of conjunctive arcs and a set B of disjunctive arcs.

A conjunctive arc is a directed arc in the usual sense. A

disjunctive arc (i,j) is a pair of arcs (i,j) and (j,i) con-

necting two nodes i and j . At most one of this pair of arcs

may be traversed by a path from the source to the sink of

the network. Associated with each disjunctive arc are dura-

tions d.. and d. . . A selection of a disjunctive arc implies
ij ji

a specification of the arc's direction. If a complete selec-

tion or a specification of direction for all disjunctive arcs

in a network is made then the disjunctive graph is simply a

directed graph G = (X,A) . This graph may or may not contain

loops

.

The problem confronted by Balas, Gorenstein, and

Raimond is called the network job-shop scheduling problem in

this thesis. That is, the objective is to minimize project

duration subject to precedence relations and a resource con-

straint. This constraint is that the resource may be employed

on only one activity at a time. Once again, the length of

time that the resource must be employed on each activity is

specified.

In the absence of resource constraints this

problem may be stated as a simple critical path problem

(V-B-l) Minimize t - t,
n 1

Subject to

(V-B-2) tj - t
i

> d
±J

t. unrestricted.
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In the network job-shop scheduling problem disjunctive arcs

can be used to show the sharing of a common resource. The

scheduling problem must first be represented by a network in

which each activity has a unique starting time. That is,

each activity to be scheduled must be the only activity inci-

dent from the node representing the commencement of that ac-

tivity. This may require the addition of dummy nodes and

arcs. The nodes representing the starting events for each

activity sharing a common resource are then connected by

disjunctive arcs. The placement of disjunctive arcs repre-

sents a sequencing of the activities through the constrained

resource. The durations d. . and d.. of the disjunctive ac-
ij Ji

tivity (i,j) are the same as the durations of the activities

(i,k) and (j,p) respectively. That is, the durations of the

single activities incident from nodes i and j

.

This can be more readily understood by looking

at an example. Suppose a project is described by the net-

work in Figure 27(a). The pair of numbers on each activity

represents first the resource type and then the duration of

the activity. There are two resource types in the example.

Each activity duration is the length of time necessary to

accomplish a specified number of resource-time units using

the specified resource. Note that activities (1,2), (l,«k)

and (2,4), (2,3) do not have unique starting events. It is

then necessary to add artificial activities and nodes. This

is illustrated in Figure 27(b). Ordinarily dummy activities

would be represented by dashed lines but here they are not.
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This is to prevent confusion between dummy activities and

disjunctive activities. The dummy activities have no resource

associated with them. Figure 27(b) represents the same

project as Figure 27(a).

In order to represent the constraints on the

two available resources, disjunctive activities are added.

To show the common use of resource type 1, nodes 1 and 5 are

connected by the disjunctive activity (1,5). The same is

done for nodes 3, 4, and 6 to show the sharing of the second

resource. This is shown in Figure 27(c). The numbers on the

activities are now simply activity durations. Note that

d = 3 and d„ = 4. Since only one of the two possible
15 51

orientations of (1,5) can apply, a fixing of a direction of

(1,5) specifies a sequencing of (1,2) and (1,4) on resource

type 1. Any (acyclic) selection for the network of Figure

27(c) then corresponds to a (feasible) schedule for the pro-

ject. Associated with each acyclic selection G
R

is a criti-

cal path with length v
R

. If V is the set of all acyclic

selections G. of the disjunctive graph G, a minimaximal path

in G is given by

v* = Min v .

G
k
eV

The minimum project duration with restrictions on the resources

corresponds to the selection of a minimaximal path in the

disjunctive graph G.
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The methods for finding a minimaximal path in G

vary. Balas [2 3, [33 s and Raimond [70] formulated the

problem as a mixed integer programming problem. Balas ap-

plied the Benders decomposition procedure [73 using his ad-

ditive algorithm to solve the associated zero-one integer

programming problem. A sequence of critical path problems

generates the coefficients of the zero-one variables in the

constraints that are added at each iteration. Raimond r s

method consisted of an application of mixed continuous-zero-

one programming by direct search developed by Lemke and

Spielberg [533. The number of zero-one variables in each

case is equal to the number of disjunctive activities in

the disjunctive graph. A zero-one variable y. . associated

with a disjunctive activity (i,j) is zero if the activity is

oriented in one direction and one if the activity is comple-

mented (oriented in the opposite direction).

Balas [4] developed an implicit enumeration method

for finding a minimaximal path in a disjunctive graph which

is superior to his previous efforts. No integer programming

problem need be solved. A sequence of critical path problems

is generated and only disjunctive activities on the critical

path of the previous selection are complemented. No compu-

tational experience is given, so it is difficult to ascertain

how large a problem may be solved using the method.

More recently, Samuel Gorenstein [3^3 modified

some of the earlier methods to more quickly solve the network

job-shop scheduling problem. His method accommodates the
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presence of more than one of each resource type . The algorithm

presented uses partial enumeration to solve a mixed integer

programming problem. The largest problem solved optimally

by Gorenstein was a five job eight machine job-shop scheduling

problem with 3 of each machine type

.

These methods have been briefly described to show

what methods are available for solving the shipyard scheduling

problem when a fixed crew size is available for employment on

an activity. Methods used to approach the case where there

is more than one of each resource type available [3], [3^3

can also be used in the shipyard problem. This can be done

by simply assuming there is more than one crew of fixed size

available from each shop. An example of the formulation and

solution of a project using disjunctive graphs is given next.

c . An Example

The duration of the project represented by the

network of Figure 27 can be minimized using disjunctive

graphs. The representation by disjunctive graph is given

by Figure 27(c). The relations (V-B-l), (V-B-2) for a simple

CPM problem can be extended to model a disjunctive graph.

The problem becomes

(V-B-3) Minimize t - t nn 1

Subject to

(V-B-4) t, - t
±

> d
±J

; \/{l I i)ch
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(V-B-5)

(V-B-6)

t - t. > d.
p k — kp

or t. - t > d
,k p — pk

\/(±,3)eB.

t. unrestricted
1

In this formulation, A is the set of conjunctive activities

and B is the set of disjunctive activities. Disjunctive

constraints of the form (V-B-5), (V-B-6) have been dealt

with by many authors. Balas and Raimond formulated the prob-

lem in a manner similar to that below. If a zero-one variable

y. . is associated with each disjunctive activity and if

y. . = signifies orientation in one direction and y. . = 1

signifies the opposite orientation, the problem (V-B-3)-(V-B-6)

can be stated as a mixed integer programming problem with

zero-one variables. This formulation is

(V-B-7) Minimize t - t,
n 1

Subject to

(V-B-8) t. - t
±

> d.j ; \/(i,j')eA

(V-B-9)

(V-B-10)

t - t, + My. > d.
p k J kp - kp

t, - t - My. > d . - M
k p J kp — pk

> (k,P)eB

t unrestricted, y.. = or 1, where M

is some sufficiently large positive number.
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Following the procedure of Benders, for fixed

y. . (i.e., a selection of disjunctive activities), the prob-

lem becomes a critical path problem with some redundant con-

straints. The dual of (v-B-7)-(V-B-10) for fixed y is

(V-B-ll) Maximize E d. .u. .

(i,j)eN 1J 1J

Subject to

(V-B-12) Eu =

1

1

u. . >
ij -

where E is the associated node-arc-incidence matrix. Also

d
±

. , \/(i,j)eN is the right-hand side of (V-B-8)-(V-B-10) with

terms involving M and y transposed. This new right-hand side

is represented by (d - Dy) . The maximum of (V-B-ll) occurs

at an extreme point of (V-B-12). For fixed y, a critical

path solution to (V-B-7)-(V-B-10) yields an extreme point

of (V-B-12). That is, if (i,j) is on the critical path,

u . . = 1 and if (i,j) is not on the critical path, u. . =0.
ij '"

' ij

At each iteration a zero-one program of the form given below

must be solved.
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(V-B-13) Minimize z

Subject to

(V-B-14) z > (d - Dy)u

y = or 1.

One additional constraint is added at each iteration and each

constraint is of the form

z > 2 d + Z (d - My ) + Z (d, . - M + My,,)
" (i,j) 1J (i,j) 1J 1J (i,j) 1J 1J

e(ADX)
e ( B

+
nx) e(B

_
nx)

+
where A is the set of conjunctive arcs, B is the set of

"normally" oriented disjunctive arcs and B is its complement.

X is the set of all activities for which u. . = 1. Normally

oriented refers to the direction established for the activity

(i,j) when y, . =0. This is simply established by convention.

k k
The procedure terminates when z = v where v is the length

of the critical path at the K iteration.

The example is now continued. Table IX shows the

coefficients for the mixed integer program representing

Figure 27(c). Start the procedure by putting all y.. =0.
-i- (J

(This establishes the normal orientation for each disjunctive

activity.) Then find the critical path of the directed net-

work generated. The critical path is shown in Figure 28 as

a heavy line. The critical path length is 13 and the values

of u , are u =u =u =u n K=iw=ii£ =1 and u. .
= otherwise.
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Table IX

t
x

t
2

t t„ t
5

t
6

t
?

y15 y 34 y36
u

-1 +1

-1

-1

-1

+1

+1

-1

+1

+1

>

>

>

>

>

3

6

2

4

2

U
12

U
37

u
46

U
56

u
67

-1 +1 +M > 3 u
is

+1

-1

+1

-1

+1

+1

-1

-1

+1

-1

-M

+M

-M

+M

-M

>

>

>

>

>

4-M

6

2-M

6

2-M

U
51

u
34

U
H3

U
36

U
63

Figure 28
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The first constraint generated for the zero-one

program Is then

z > 13 - My
3i|

The u..'s which minimize z in this case are y u = 1. All

other y. .'s are maintained at zero and the new critical path

problem is solved. The procedure stops when z = v =13-

Table X shows the progress of the iterations and Figure 29

is the network representing the optimal solution.

Table X

k d y15 y
34

y
36

Solution z v
k

1 13 -M y
3 4

=1 13-M 13

2 13-M +M -M y 36
=y

3^
=1 13-M 13

3 15-M -M +M y 15
=y

36
=y

3^
=1 15-M 17

4 17-2M +M +M y15
=i 13 17

5 17-M +M -M all y.^0 13 13
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Figure 29

C. VARIABLE RESOURCE AVAILABILITY

The heading for this section means that there is a re-

source availability profile associated with each shipyard

shop. A typical resource profile is shown In Figure 30.

The difference between a resource availability profile in

this section and the profile of Chapter IV is that the re-

source availability breakpoints occur at fixed points in

time, not at the variable event times. For any point in

time T*, the resource availability profile gives the number

of men available R . The existence of the variable resource

availability profile makes the scheduler's job increasingly

difficult. The only successful approaches to the minimiza-

tion of duration in a resource constrained project with a

variable resource availability profile have been heuristic
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Figure 30

in nature. Only one approach, that of Karush [44], has

dealt directly with the problem analytically. Chapter III

of this thesis provides a mixed integer programming formula-

tion for this problem. Jerome Wiest [83], [84], [85] and

Moder and Phillips [6l, p. 158] have applied heuristic rules

to get a feasible and hopefully a good solution to the problem.

Any successful approaches in this area would be quite

meaningful for the shipyard scheduler. The resource avail-

ability profile is identical to the form of availability of

shipyard shop workers. Once again, activity resource usage

profiles are required to be specified in advance.
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1. Nonincreasing Activity Resource Profiles

For the case where activity resource usage profiles

are nonincreasing, Karush [44] developed a method for enu-

merating the schedules necessary for comparison to obtain

minimum project duration. Examples of nonincreasing activity

resource profiles are shown in Figure 31(a) and (b)

.

ijM

(a)

Figure 31

Karush called the set of schedules that require eval-

uation the set of all left-packed schedules. This term is

very similar to the term "active schedule" defined earlier

but is more appropriate in the context of a variable resource

availability profile.
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In order to obtain all of the left-packed schedules.

It is -necessary to generate all feasible sequences of activi-

ties and schedule each of these activities as early as possi-

ble in the order they appear in the sequence. If each ac-

tivity in the project has associated with it a nonincreasing

resource profile, a minimum duration schedule will be found

by evaluating the durations of all the schedules generated

in this manner. Since it is necessary to completely enumer-

ate all left-packed schedules, this procedure presents much

more difficulty than the constant activity resource profile

case

.

2. An Example

The use of sequential left-packing as described by

Karush is most easily understood by looking at an example.

Consider the small project network of Figure 32(a). The

activities are numbered arbitrarily 1 through 5 and these

numbers appear on the arcs. The resource usage profile for

each of these activities are shown in Figure 32(b)-(f). It

is desired that the activities be scheduled so that the pro-

ject duration is a minimum and the available resources are

not exceeded. The resource availabilities are given by the

project resource profile of Figure 33. All feasible permu-

tations of the activities are then generated. A permutation

is infeasible if the precedence relations are violated. For

each of these permutations the activities are scheduled as

early as possible. That is, if activity i must immediately

precede activity j because of the form of the project network,
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then activity j may not be commenced until activity i has

been completed. If, however, activity k does not immediately

precede activity j in the network but does precede j in the

permutation, then activity j may be scheduled at the same

time as activity k providing sufficient resources are

available. The start time of activity j in this case must

not be less than the start time of activity k.

R
t

, k

—i-

2
—i

—

128 14

t

Figure 33

For the example, the possible permutations and the

associated schedules are shown in Figure 34(a)-(k). There

is a tie between the schedules (a) and (d) for the minimum

duration. Each of these schedules can be completed in eight

days and are optimal.
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D . SUMMARY

If a manager is willing to make certain simplifying

assumptions concerning the method of employment of resources

the problem of minimizing project duration subject to resource

constraints and fixed manday requirements can be placed in

a form for which solution methods are presently available.

Some of these assumptions can be quite realistic and in many

cases do not seriously weaken a solution obtained. For in-

stance, the fixed crew size assumption is often a very

reasonable assumption for many projects.

A difficulty, once again, is in the combinatorial nature

of scheduling problems. Even with the simplifying assumptions,

it Is difficult to use existing methods to solve realistically

large problems. Wiest's heuristic SPAR-1 model and the Moder

and Phillips heuristic [61, p. 158] still provide the best

methods for actually scheduling large projects. Although

they cannot guarantee optimal solutions, they can yield

feasible schedules for very large projects in a reasonable

amount of time.
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VI . DIRECTIONS FOR FURTHER RESEARCH

Investigation into a problem as complex as shipyard sched-

uling is certain to lead to many unanswered questions. The

shipyard scheduling problem has a very general structure which

encompasses many smaller scheduling problems. There is a

great deal of work to be done both on the smaller problems

and the general scheduling model. Much of the progress on

the smaller problems such as the job shop scheduling problem

will depend on advances in combinatorial methods. As these

procedures improve the special cases of the shipyard problem

will be solved more easily also.

The mixed integer programming model proposed in Chapter

III gives a very meaningful description of the total cost

problem. Additionally, this model provides a structure for

typing together several scheduling problems which are solvable.

As a computational technique, however, the model is not directly

applicable. Geoffrion and Marsten [33] have described some

research that is attempting to improve the computational

ability of Benders' algorithm. At present, most of these

methods involve approximate solutions to the zero-one problem

such as obtained through the use of continuous linear pro-

gramming up to some specified point in the iterations. Ad-

vances in the computational efficiency of this powerful pro-

cedure will most likely allow the mixed integer programming

model to be useful for modest size projects. In order to

utilize any new methods It is still necessary to find an
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initial basic feasible solution to the dual of the parti-

tioned total cost problem (M2D). This is not a trivial task

and the discovery of a method for finding this would definitely

be worthwhile.

The transportation problem structure of the total cost

problem is very interesting. It would certainly be gratifying

to be able to utilize this structure directly. Perhaps the

special structure of the zero-one problem could be used to

generate costs for sequences of transportation problems thus

allowing the use of efficient transportation algorithms. The

mixed integer programming model would then be an outstanding

model of the scheduling system and could even be adapted to

solve the lesser included problems.

After the discovery of techniques like those described

above, the scheduling model could be generalized even more.

The introduction of minimum and maximum crew sizes would lead

to a capacitated transportation problem structure. This

would, in turn, require more research into the efficient

solution of this type of transportation problem.

The nonlinear programming model of Chapter IV, like the

mixed integer model, provides a good description of the sys-

tem. This model has an efficient solution procedure for a

special case of the shipyard total cost problem. There are

several improvements that could be made on this model. The

first and most desirable change would be the expression of

the model in a form not requiring the strict event ordering

assumption. This would improve the acceptability of any
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subsequent solution procedures. Failing this, it would be

worthwhile to develop an alternative to the complete enumera-

tion of all possible event orderings . It is possible that

some means of implicitly generating all orderings could be

devised. A thorough testing of heuristic methods of event

ordering might also prove fruitful.

A procedure for direct solution of the multiple resource

nonlinear programming mode] would definitely be welcomed.

This looks doubtful but any results in this area would warrant

further investigation. Further examination of this problem

using dynamic programming for nonserial systems [64, p. 184]

might also be worthwhile.

Another area that could be more fully explored is that

of making the variable and fixed resource profiles more

closely coincident. A possible way to approach this would

be to develop heuristic rules for separating activities.

Along with this it would be necessary to assign the proper

resource availability values between events. This can be

done by trying every possible assignment of resources to

inter-event intervals but more efficient methods would be

better.

Because of the interconnection between the shipyard sched-

uling problem and many other scheduling problem types, ad-

vances in the methods of solving one will benefit the others.

A worthwhile endeavor, then, would be to attempt to find solu-

tions to problems like the job-shop scheduling problem with

total cost objective functions. As the ability to solve large
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combinatorial problems increases, the solution of these

complex scheduling problems will become easier.
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VII. CONCLUSIONS

The shipyard cost minimization problem is sufficiently

general to bring together many other scheduling problems.

The job-shop and flow-shop scheduling problems, the network

job-shop problem, and several other resource allocation prob-

lems can all be viewed as subproblems of the shipyard sys-

tem. The formulations presented in this thesis can therefore

describe many other scheduling environments. This structure

is more general than that of most problems found in the lit-

erature of scheduling and, in fact, includes many of these

scheduling systems.

The cost minimization objective function provides for

more generality than the usual duration minimization criteri-

on. If the proper parameter specifications are made, in fact,

cost minimization becomes duration minimization. Additionally,

the use of manday requirements to characterize activity com-

pletion is more general than the more common fixed crew size,

fixed duration specifications. This again is a generalization

since the fixed manday requirements model includes the fixed

crewsize, fixed duration model after appropriate assumptions

are made

.

This thesis, in approaching the general shipyard problem,

shows the relationship between it and several other problems.

The relationship Is strong enough to permit solving special

cases of the shipyard scheduling problem with existing solu-

tion procedures. The limitations on the size of shipyard

155





project that can be dealt with depends on the efficiency of

the existing method used. The operation of most of the pre-

sent scheduling methods is hindered by the combinatorial na-

ture of even the smallest scheduling problem.

The mixed integer programming and nonlinear programming

formulations of this complex problem allow more complete

understanding of the shipyard total cost problem as well as

the included sub problems. The mixed integer model repre-

sents the total cost problem as several transportation prob-

lems linked by precedence constraints. Advances in integer

programming solution procedures will improve the acceptability

of this mixed integer model. Fixing the event times of the

nonlinear cost model led to several generalized transportation

problems which were not connected by precedence relations.

The mixed integer programming model with fixed event times

is, in fact, a special case of this nonlinear programming

model. The application of dynamic programming to the single

resource case of the nonlinear programming model led to an

efficient solution procedure. This method finds a minimum

cost solution for a large project network very quickly.
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A. SUMMARY CLASSIFICATION OF SCHEDULING PROCEDURES

This appendix references several papers concerning

resource constrained project scheduling in the format of

Chapter II. An Arabic numeral represents a reference in the

bibliography while a Roman numeral and letters in parentheses

represent a section in this thesis.

A. OPTIMIZATION CRITERIA

1. Resource Allocation

a. Cost Minimization: 20, 38, 58, 84, (III-E),

(IV-E).

b. Duration Minimization: 2, 3, 4, 9, 13, 15, 16,

21, 26, 34, 35, 41, 43, 44, 47, 49, 56, 57, 67, 69, 70, 71,

73, 74, 76, 77, 82, 83, 84, 85, (III-C), (IV-D), (V).

2. Resource Leveling : 14, 49, 54, 62, 68, 72, 73, 81.

3. Time/Cost Tradeoff : 17, 18, 27, 30, 42, 45, 46, 48,

65, 66, 79.

B. NATURE OF RESOURCE CONSTRAINTS

1. Resource Availability Profiles

a. Fixed Resource Availability: 38, 44, 47, 49,

67, 84, (III), (V-C).

b. Variable Resource Availability: 65, (IV).

c. Constant Resource Availability: 2, 3, 4, 11,

13, 15, 16, 21, 26, 34, 35, 41, 43, 57, 67, 69, 70, 71, 76,

77, (V-B).

2. Bounded Resource Volume: 9, 73, 74.

157





C. ACTIVITY CHARACTERISTICS

1. Activity Duration Estimate : Same as for B-l-c.

2. Fixed Resource-Time Unit Requirements : 9, 20, 68

72, 73, 74, 81, (III), (IV).

3. Resource Usage Profiles: 44, (V-C)

.
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B. COMPUTATIONAL RESULTS

Algorithm 3 of Section IV-E-2 is a method for minimizing

project cost with a single constrained resource. The

FORTRAM IV computer program immediately following this

appendix was run on the Naval Postgraduate School's IBM

360/67 computer to test the algorithm. The results of these

tests are presented in Table XI and Figure 35.

Table XI

Total
Number Number Execute CPU

Problem of of Time Time Storage
Number Events Activities (Sec.) (Sec . ) (k-bytes) Remarks

1-9 10 13 1.30 6.87 54 1
10-25 10 13 1.96 7.74 54 1
26-35 10 13 1.69 7.92 54 1
36-57 10 13 - 7.62 54 1,2
58-70 10 13 - 6.77 54 1,2

71 10 13 0.53 6.16 54 3,7
72 34 44 0.71 6.89 56 4,7
73 58 75 0.99 6.47 56 5,7
74 82 107 1.33 7.23 56 6,7
75 106 138 1.59 7.33 56 6,7
76 130 169 1.92 7-75 56 6,7
77 15^ 200 2.43 9.00 56 6,7

Remarks

1. The 70 possible event combinations for the example

of Section IV-E-2.

2. Used UCLA's QUICKRUN which gives only total CPU time.

3. The example of Section IV-E-2.

4. Network only [59, p. 73].

5. Network only [28, p. 99].
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6. Network and parameters generated randomly.

7. Plotted in Figure 35-

A total of 77 problems were solved using the cost mini-

mization program. In order to provide some continuity among

the projects tested, only projects with the same network

density were used. Johnson [43] defined the network density

to be the ratio of the number of events to the number of

activities. All of the networks of Table XI have a density

of 0.77. Each subsequent project after problem 71 has 24

more events than the preceeding project.

The first 70 problems consist of all the feasible event

orderings for the example in Section IV-E-2 . These were

generated by hand using the procedure suggested in Section

IV-E-1. Problem 71 is the example of Section IV-E-2 and is

one of the feasible orderings of problems 1-70. This project

was run alone where the first 70 problems were tested in the

groups indicated in Table XI. The minimum total project

.cost for problems 1 through 70 ranged from $2378 to $3825.

Only one feasible ordering yielded the minimum cost and this

was problem 54 illustrated in Figure 19. In this case the

ordering was the one generated by the heuristic rule of

IV-F-1. This will not be true in every case, however.

Problem 72 uses only the network of a factory extension

problem of McLaren and Buesnell [59, P- 73]- The costs and

manday requirements were contrived by this author. The

network for problem 73 was a modified version of a nuclear

reactor construction project [28, p. 991- Problems 7^—77
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were developed in a random fashion, ensuring that network

density was constant at 0.77. The largest project attempted

was number 77 with 15^ events and 200 activities. The

execution of this problem only required 56x10 bytes of

computer storage. In order to prepare this project for

solution by the program, it was necessary to key punch 36l

data cards. The program requires one card for each event

and activity and seven parameters must be entered. The

instructions for entering this data are given at the

beginning of the program. The computational results for

problems 71-77 are plotted on the graph of Figure 35.
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C
C COST MINIMIZATION IN PROJECT NETWORKS
C
C S

THIS PROGRAM DETERMINES THE NORMAL AND OVERTIME R E-
C SOURCE ALLOCATIONS THAT WILL MINIMIZE TOTAL PROJECT
C COST. TOTAL PROJECT COST CONSISTS OF NORMAL MANDAY
C CCST, OVERTIME COST AND A PENALTY COST FOR EXCEEDING
C A TARGET DATE. A SINGLE RESOURCE IS CONSTRAINED BE-
C TWEEN THE EVENTS. A FIXED NUMBER OF MANDAYS MUST BE
C EXPENDED TO COMPLETE AN ACTIVITY.
C
C SUBROUTINES CALLED:
C
C DURMIN: CALCULATES THE MINIMUM DURATION FCR THE s

C EXISTING COMBINATION OF XIJ (NORMAL MAN-
C DAYS) AND (OVERTIME MANDAYS).
C
C COSTMN: CCSTMN SOLVES THE LINEAR PROGRAMMING PROB-
C LEM OF STEP 3 OF THE ALGORITHM AND YIELDS
C OPTIMAL OVERTIME ALLOCATION.
C
C REDUOT: PERFORMS THE PARAMETRIC ANALYSIS CN OVER-
C TIME TO EXTEND PROJECT DURATICN UP TO THE
C DUE DATE.
C
C OUTPUT: PRINTS OUT THE OPTIMAL ALLOCATIONS, TOTAL
C COST, RESOURCE AVAILABILITIES AND THE
C EVENT TIMES.
C
C EVENTS ARE READ INTO THE PROGRAM BY LISTING THEM IN
C THE FOLLOWING MANNER:
C
C J, RAVAIL(J), J=l,2„. ., NEVENT
C
C WHERE:
C
C J=EVENT NUMBER, R A VAI L ( J ) =RESCURC ES AVAILABLE AT EVENT
C J. NEVENT IS THE NUMBER OF EVENTS IN THE PROJECT.
C J IS AN INTEGER, RIGHT-JUSTIFIED IN COLUMNS 1-10, AND
C RAVAIL(J) IS A FLOATING-POINT NUMBER WITH TWO DECIMAL
C PLACES, RIGHT-JUSTIFIED IN COLUMNS 11-20.
C
C ACTIVITIES ARE READ INTO THE PROGRAM BY LISTING THEM
C IN THE FOLLOWING MANNER:
C
C I, ISTART(I), lEND(I), COST(I), OTCOST(I), ^ANDAY(I),
C 1=1,2 ,... ,NOACTS
C
C WHERE:
C
C INACTIVITY NUMBER, AN INTEGER R I GHT- JUST I F I ED IN COL-
C UMNS 1-10. ISTA 3 T( I l=INITIAL EVENT FOR ACTIVITY I,
C AN INTEGER R I GHT- JUST I F I ED IN COLUMNS 11^20. IEND(I) =

C TERMINAL EVENT FOP. ACTIVITY I, INTEGER, CCLUMNS 21-30.
C COST( I )=NORMAL COST PER MANDAY OF ACTIVITY I,
C FLOATING-POINT WITH TWO DECIMAL PLACES IN CCLUMNS 31-
C 40. OTCOST(

I

)=OVERTIME COST PER MANDAY OF ACTIVITY I,
C TWO-PLACE FLOATING-POINT, COLUMNS <U-bO. MANDAY(I)=
C REQUIRED MANDAYS FOP ACTIVITY I'S COMPLETION, INTEGER,
C COLUMNS 51-60. NOACTS IS THE NUMBER OF ACTIVITIES IN
C THE PROJECT.
C
C THE NUMBER OF EVENTS (NEVENT), THE NUMBER CF ACTIV-
C ITIES (NOACTS), THE DUE DATE (TARGET), THE LIMIT ON
C OVERTIME (BOUND) AND THE PENALTY CCST (PCCST) MUST BE
C ENTERED IN THE MAIN PROGRAM dY THE USER.
C
C LCW AND NOPROb ARE THE FIRST AND LAST PRCBLEM NUMBERS
C FOR MULTIPLE PROBLEMS AND ARE THE SAME IF A SINGLE
C PRCBLEM IS ENTEP.tD.
C
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C THE COMMON STATEMENTS IN THE MAIN PROGRAM AND ALL SUB-
C ROUTINES WILL ACCOMODATE UP TO 200 EVENTS AND 200
C ACTIVITIES. THESE MUST BE CHANGED FOR LARGER PROJECTS
C THE DIMENSION STATEMENTS IN COSTMN AND REDLCT MUST
C ALSO BE CHANGED IN THAT CASE.
C

c
COMMON I ST ART (200) , I END (200) , COST ( 200 )

,

OTCCST ( 200 )

,

1HANCAY( 200 ) , RAV A I L ( 200 ) , X IJ ( 200 ) , SI J ( 200 ) , I ALFA (200)

,

2TIME(200) ,XAVAIL(200)
N0ACTS=200
TARGET=500.00
BCUND=200.G0
PCOST=3500.00
LCW=76
N0PR0B=76
NEVENT= 154
NTERM=NEVENT-1
DC 103 J=1,NTERM
RFAD(5, 102)J,RAVAIHJ )

102 F0PMAT(I10,F10.2)
103 CONTINUE

DC 5999 NR=LOW,NOPRGB
DO 101 I=1,N0ACTS
RE AD (5, 100)1, I STARK I ) , IENDCI ) , COSK I ) , OTCCST { I )

,

1PANDAYC I)
100 FORMAT(3I10,2F10.2,I10)
101 CONTINUE

DO 104 I=1,N0ACTS
SIJ( I ) = 0.0
XIJ( I )=0.0

104 CCNTINUE
CALL DUP:MIN( NEVENT, NOACTS)
IF(TIME(NEVENT) . LE .T AP GET ) GO TO 105
CALL C0STMN(N0ACTS,PC0ST,80UND)
CALL DURMIN(NEVENT,NOACTS)
IF(TIME(NEVENT) .LT .TARGET)GO TO 105
GO TO 1C9

105 CONTINUE
DC 106 1 = 1, NOACTS
IF(SIJ( I) .GT.O.OJGO TO 107

106 CONTINUE
GO TO 109

107 CCNTINUE
IF(TIME(NEVENT) .GE .TARGET) GO TO 1C9

108 CALL REDUCKNOACTS, TARGET, NEVENT)
CALL DUPMIN(NEVENT,NUACTS)
IFtTIME(NEVENT) . Gb .TARGET ) GO TO 109
GC TO 105

109 WRITE(6, 110)NR
110 FCRMAT( « 1' ,T21,

•

PROBLEM NUMBER ',12,/)
CALL OUTPUT(NOACTS,PCOST, NEVENT, TARGET)

5999 CONTINUE
STCP
END

SUBROUTINE COSTMN ( NOACTS, PCOST , BOUND)

CCMMON I START (200) , I END (200)

,

COST (200)

,

OTCCST (200 )

,

I M AND AY ( 200 ),PAVAIL(2 00),XIJ(200),SIJ(200),IALFA(200),
2TIME(20C) ,XAVAIL(200)
DIMENSION HIJ(200)
DC 300 1 = 1, NOACTS
HIJ(I )=OTCOST( I )-COST( I

) -PCCST / X AV A I L ( I )

300 CONTINUE
TCTOT=0.0
NEND=N0ACTS-1

304 CONTINUE
DC 301 I=i,NEND
IF(HIJ( 1 + 1) .LE.HIJ( 1 ) )G0 TO 301

](,'-\





SIJU ) = MANDAY( I)
TCTOT=TCTOT+SIJ(I i

HIJ(I )=-999999.9
IF(TOTOT.GT.BOUND)GO TO 302

301 CONTINUE
IFCTOTOT.LT. BOUND)GO TO 304
GC TO 303

302 CONTINUE
S.IJU )=MANDAY(I) - ( TOTCT-BOUND)

303 CONTINUE
RETURN
END

201
200

SUBROUTINE REDUOT (NOACTS , TARGET ,NEVENT)

COMMON I ST ART (200) , I END (200) , CO ST (200 J ,OTC0ST(200)

,

1MANDAY(200),RAVAIL (200) , X IJ (20 ) , S I J ( 20 ) , I ALFA ( 20 )

2TIME(200) ,XAVAIL( 200)
DIMENSION DIJ(200)
DC 200 1=1, NOACTS
IF(SIJ( IJ.GT.O.OJGO TO 201
DIJ( I) = -999999.9
GO TO 200
DIJ( I) = OTCOST( I

)

CONTINUE
DSTAR=DIJ( 1)
MG=l
NNN=N0ACTS-1
DO 202 1=1
IF(DIJ( I + i

.NNN
i .LE.DSTARJGO TO 202

MC=I+1
DSTAR=DIJ( 1+1)

202 CONTINUE
SIJ(MQ)=SI
IF(SIJ(MQ)

J(MQ)-XAVAIL(MQ)*(TARGET-TIME(

N

EVENT )

.LT.0.0)SIJ(MQ)=0.0
XIJ{MQ)=FLOAT(MANDAY(MQ))-SIJ(MQ)
RETURN
END

SUBROUTINE DURMI N I NEV ENT , NOACTS

)

COMMON I ST ART (200) , I END ( 200 ), COST { 200)

,

OTCCST1200) »

1MANDAY( 200),RAVAIL(200) ,XIJ(200),SIJ(20 0),IALFA(200)
2TIME(200) ,XAVAIL (200)
DO 1000 1=1, NOACTS
Q = C.O
I I=ISTART( I

)

I I 1=1 END( I )-l
DO 1000 J=II ,111
IF(RAVAIL( J

)

.LE.QJGO TO 1000
XIJCI )=FLOAT(MANDAY(I ) )-SIJ ( I

)

Q=RAVAIL(J)
IALFA( I )=J
XAVAIL( I )=RAVAIL( J

10CO CONTINUE
T IME C 1 )=0.0
NTERM=NEVENT-1
DO 1001 J=l,NTERM
TIME( J+1)=TIME( J

)

DO 1001 1=1, NOACTS
IF( IALFA( I ) .EQ.J )T

1001 CONTINUE
RETURN
END

IMF( J + 1) = TIME

(

J+IJ+XIJ(I) /RAVAIL( J

)
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SUBROUTINE OUTPUT ( NGACTS, PCOST , NE VENT, TARGET)

402
40C
403

404

40!

406
4C7

410

C
1M
2T

to

D
W
F
C
F

1'
T
D
T
C
I

1(
w
F
N
D
W
C
F
W
F

409 F
408 C

R
E

CMMON
ANDAY(
IME120
RITE(6

400
PITE(6
ORMATt
CNTINU
OPMATl
OVERTI
CTC=0.

404
OTC=TO
ONTINU
FtTIME
TIME(N
PITE(6
ORMAT(
END=NE
G 406
RITE (6
CNTINU
ORMATt
RITE(6
CPMAT(
DO 408
WRITE(
DPMAT(
CNTINU
ETURN
ND

I START (2 00) , I END (200) , CO ST (200) , 0TCCST(200)

,

200) ,RAVAIL(200),XIJ(200) ,SIJ(200) ,IALFA(200),
0) ,XAVAIL(20C)
,403)
I=L,N0ACTS
,402) I START (I ) , IEND( I) ,XIJ( I),SIJ ( I )

TLLf •
( >I3f ' t't I3t'1 * iT31iF10.2 t T51tF10.2)

E
•0» ,TL2,« ACTIVITY' ,T3i, 'NGRi'AL MANCAYS « ,T50

,

ME MAN DAYS',/)

1 = 1 ,NOACTS
TC+COST( I )*XIJ( I HOTCOSTt I)*SIJ(I

)

E
(NEVENT) .GT.TARGETJTOTC = TGTC + PCCST *
EVENT J-TARGET)
,405)T0TC
'0'

, Til, 'TOTAL PROJECT COST =»,F10.2)
VENT-1
J=1,NEND
,407)J,RAVAIL( J )

E
'0' ,T11,I3,T21,F10.2)
,410)
• 1« ,T21,

'

PROJECT EVENT TIMES ARE:',/)
J=1,NEVENT
6,409) J,TIME(J )

T21, »T(» , 13, » ) =',F10.2,' DAYS')
E
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