

MARINE BIOLOGICAL LABORATORY.

Received
Accession No.
Given by
Place,
** No book or pamphlet is to be removed from the Laboratory without the permission of the Trustees.

東京嘸國大學紀要

理 种

第 拾 四 册

THE
 J OURNAL
 OF THE
 COLLEGE OF SCIENCE， IMPERIAL UNIVERSITY OF TŌKYŌ， JAPAN．
 Vol．XIV．

東 京 帝 國 大 學 印 行
PUBLISHED BY THE UNIVERSITY．
TŌKYŌ，JAPAN．
1904.

MEIJI XXXVII．

Publishing Committee.

Prof. K. Mitsukuri, Ph. D., Rigakuhakushi, Director of the College (ex officio).
Prof. J. Sakurai, LL. D., Rigakuhakushi.
Prof. I. Ijima, Ph. D., Rigakuhakushi.
Prof. F. Ōmori, Rigakuhakushi.
Prof. S. Watasé, Ph. D., Rigakuhakushi.

$$
2733
$$

All communications relating to this Journal should be addressed to the Director of the College of Science.

a Magnetic survey
 or
 JAPAN

REDUCED TO THE

EPOCH 1895.0 AND THE SEA LEVEL

CARRIED OUT
by order of the

EARTHQUAKE INVESTIGATION COMMITTEE.

REPORTED BY
A. TANAKADATE
niversity Tokyo.

MARINE BIOLOGICAL LABORATORY.

Received
Accession no. 2241
Given by
Place,

Publishing Committee.

Prof. K. Mitsukuri, Ph. D., Rigakuhakushi, Director of the College (ex officio).
Prof. J. Sakurai, LL. D., Rigakuhakushi.
Prof. I. ljima, Ph. D., Rigakuhakushi.
Prof. F. Ōmori, Rigakuhakushi.
Prof. S. Watasé, Ph. D., Rigakuhakushi.

$$
2733
$$

a Magnetic survey

OF

JAPAN

REDUCED TO THE

EPOCH 1895.0 AND THE SEA LEVEL

CARRIED OUT ly order of the

EARTHQUAKE INVESTIGATION COMMITTEE.

\cdots

REPORTED BY

A. TANAKADATE
Professor of Physics, Imperial University Tökyō.

PREFACE.

The magnetic survey of Japan published in the present volume was conducted under the authority of the Earthquake Investigation Committec during the four successive summers 1893-6. As will be seen from the complete list of observations, the work is the result of voluntary co-operations of the observers to whose skill and enthusiasm the success is due, and whaterer credit there is in the survey it must be attributed to them all, the writer being merely in the position of reporter representing their different parties.

The observers were:-
H. ̄̀mort, Rigakuhakusi,

Prof, of Seismology, Imperial University Tōkyo.
S. Nifimura, Rignliusi,

Now Asst. Prof. of Physics, Imperial University Tökyō.
K. Mazosma, Rigaleusi,

Now K. Miyamoto.
H. Iw.lok.l, Rigakusi,

Now Prof. of Mechanics, Higher Technical School of Trikyin.
II. Kinur.ı, Rigakusi,

Now Director of the International Latitude Observatory, Mizusawa.
K. Tureta, Rigaluhakusi,

Now Prof. of Physics, Imperial University Thokion.
K. Uzire, Rigakusi,

Now Director of the Middle School, Sendai.
A. Tmanura, Rigulusi,

Now Asst. Prof. of Seismollogy, Imperial University 'Tōkȳ̄.
Y. Кato, Rigakusi,

Now Y. Homima.
T. Tamaru, Rigakiusi,

Now Asst. Prof. of Physics, Imperial University Tōkyō.
'T. Tomod., Rigaleusi,
Now Prof. of Physics Dai-iti Kītīgakk̄̄, Tōkyō.
1). Suto, Rigakusi,

Now Prof, of Physics, Dai-iti Kōtōgakkī, Tōkyō.
S. Saxo, Rigakusi,

Now Prof. of Physics, College of Naval Engineering, Yokosuka.
S. Sinzyō, Rigalasi,

Now Asst. Prof, of Physics, Imperial University, Kyōto.

M. Hattori, Rigaleusi,

Now Prof, of Physics, Naval College Elazima.
A. Tinakidate,

The writer.
The writer wishes specially to remember Prof. Dr. D. Kikuti, Baron, the President of the Earthquake Investigation Committee at the time, whose interest on the subject and whose cordial advice both official and scientific was of great encomragement to all of us. Thanks are also due to various public anthorifies and private persons who assisted the olservers in selecting the stations; and to the three computers Messre. T. Karira, Pigukiesi, S. Kusakabe, Rigakusi and Y. Yisuda, graduate of the School of Physies in Tokev, who performed that tedions work with care and patience.

The spelling of Japanese names adopted in this rolume is slightly different either from that in common use among English speaking people in this country, or from that of the Romazikwai system to which the writer is an opponent. The Government Committee for the Improvement of the Language has lately hrought forth a system which is a kind of compromise between the previons srstems. At such a stage of orthographical reformation one might be excused to athere to what he believes the best.
'The appearance of the volume was much delayed by various circumstances under which the writer had to work. In the course of the preparation he had to make two official trips to Europe and to take a half year's rest between those two on account of his health, beside having had to attend several mavoidable committee works. But above all we regret the delay in lithographic printing which kept the work over three years. The publication however is quicker than otherwise it would have been through the kind assistance of his colleague Prof. H. Nagaoka who arranged the materials of the appendix and commenced printing during lis allsence.

A. Tanakadate.

Physical Laboratory,
Imperial University, Tükyü.
March, 1904.

Contents.

\% 1. Ohject of the Survey
\% 2. Division of Work in Each lear. \because
\% 8. Equipment and l'rocedure of Each P'arty 4
4. Instruments.. 7
5. Method of Observation 11
6. Diurnal Variation 21
7. Reduction to 1895.0 20
8. Reduction to the Sea Level. 30
9. Isomagnetics $: 8$
10. Mean Isomagnetics :31
11. Vertical Current 122
12. Vertical Variation of Magnetic Elements 129
3. Disturbance in the Vertical Variations of Magnetic Elements 141
14. Disturbing Magnetic Forces 175

Tables.

Table 1. Correction to he applied to the Estimated Fractions of Second when Page.Simple Hamonic Motion is Olserved by Eye and Ear Methorl. ... 12
TAble II. Amnal Variation of Declination. $24-25$
Table IlI ", " ", Diן. $26-27$
Table IV. " , IJorizontal Intensity. $\because 8-29$
Tabie: V. Magnctic Elements Calculated frim X, Y, Z, expresed in Spherical Harmonics fur 1885.0 by I'rof. Ad. Schmidt. 32
Table V'1. Magnetic Elements in the Neighbourhood of Japan calculated as Quadratic Functions of Longitude and Latitude, from the lata given by Spherical Hamonics for 1885.0 $3: 3$
Tabie V'lif. Declinations at 1895.0, at the Intersections of Entire Degrees of Longitude and Latitude. 3
Table VIIf. Anmal Variations of Declinations at the Intersections of Entire I legrees of Longitude and Latitnde....
Page. 40-41
Table 1 X . Dips at 1895.0 at the Intersections of Entire Degrees of Longitude and Latitude. $42-4: 3$
Table X . Horizontal Forces at 1895.0 at the lutersections of Entire Degrees of Longitude and Latitnde.. $44-45$
Thble XI. Total Forces in C.ris. at 189.0 at the lntersections of Entire Degrees of Longitnde and Latitude calenlated from the Formula for Horizontal Force :and Jip. 46-47
Tame Xll. Northward Fores (X) in C.G.S. at 1895.0 at the Intersertions of Entire legrees of Longitude and Latitude calculated from the Formule for Horizontal Force and I ectination.... $48-49$
Table XIII. Westward Ferces (Y) in C(f.ス. at 1895.0 at the Intersections of Entire Degrees of Lougitude and Latitude calculated from the Formula for Horizontal Force and Declination. 50-乞1
Table MIV. Upward Forces (\%) in C.G.S. at 1895.0 at the Intersections of Entire Degrees of Longitule and Latitude calculated from the Formule for Horizontal Force and Dip. 5:-5̈̈
Tabie $\mathcal{X V}$. Observed and Calculated Values of Magnetic Elements ($\delta, 0, \mathrm{H}$, and I) Reduced to 1895.0 and Sea Level. 54-85
Table XVI. Observed and Calculated Values of Magnetic Elements X, X, Z, and Intensity and Direction of Disturbing Forces. 86-117
Table XVII. Alphabetical List of Stations 118-121
Table XVIII. Vertical Current in Amperes per squr. kilom. at 1895.0 at the Intersections of Entire Degrees of Longitude and Latitude, Calen- lated from the Formula for llorizontal Force and Declination. ...124-120
'Iable NiN. Kectangular Components of Magnetic Force in Creat Britain. 127
Timbe NiN. Data for the Caleulation of Tertical Variations of Magnetie Ele- ments in Japan. $1: 4$
Table XXI. Vertical Variations of Magnetic Elements in Japan.... 135
Table XXIl. Data for the Calculation of Vertical Variations of Manetic Ele- ments in Austria and Hungary. $1: 36$
Table XXlII. Vertical Variations of Magnetic Elements in Austria and Ilungary. 137
Table NXIV. Data for the Calculation of Vertical Variation of Magnetic Ele- ments in Great Britain. 138
Table XXV. Vertical Variations of Magnetic Elements in Great Britain. 139
Table XXYI. Vertical Variations of Vertical Magnetic Foree on a Sphere of unit Radius due to a Unit lole. 154
TAble XXVIl. Vertical Variation of Morizontal Magnetic Force on a Sphere of unit Radius due to a Unit Pole. 155

Plates.

Plates I-LIX. Diamal Curves of Declination.
Plates Li-LXXXVII. Topographs of Stations.
Plate LAXXVIII. Map 1. Isog nic Lines for 189\%.0 and Disturbances of Declination.
Plate Lixixis. Map 2. Isocilnic Lines for 1895.0 and Disturbances of Dip.
Plate XC. Map 2. Lines of Equal Horizintal Intensity and Disturbances of Horizontal Intensity.
Plate XCL. Map 4. Lines of Equal Tutal Intensity and Disturbances of Total Intensity.

Plate XCII. Map 5. Lines of Equal North Component and Distmonecs of North Component.

Plate XCIIf. Map 6. Lines of Equal West Component and Disturbances of West Component.
Peate XCIV. Map 7. Lines of Equal Vertical Component and Disturhances of Vertical Components.

Plate XCV. Map S. Lines of Equal Vertical Current for Japan.
Plate Kfivi. Dap 9. Lines of Equal Vertical Current for Anstria and Hnngary.
Plate NCVIa. Map 9a. Lines of Equal Yertical Current for Great Britain.
Plate XCVII. Map 10. Magnetic Disturbing Forces in Japan.
Plate XCVIII. Map 11. (ieological Map of Japan.

Errata.

Page. 3 Line 14 from botion, put a comma after Sendai.

10	Line 9 "	for axil	read axle.		
2.3	Line 2 from top,	$"$	1857,51	$"$	1887.61.
.00	Line $10 \quad "$ bottom s	$"$	11	$"$	12.

5.3 put. the minus sign to the first two numbers in the table.
" (129) Line ? from top " premissed " premised.
, 147 Line 4 from bottom
, 151 Lines 7 from top and 9 from bottom
" ihove
" \{below maximum " minimum.
," 160 Line 10 from bottom
" Azimuth " Azimuths.
Plate XY'III. heading,
read Jour. Sc. Col. Vol. XIV.
Plate LX to LXNXVI. heading, for Yol. Xifi , Vol. NiV.
Plate XCVII. Map. 10. Station No. 188 Honsȳ̃, reduce the arrow line to $1.4 \mathrm{~m} . \mathrm{m}$. and turn the azimuth to 41° east of south as given in Table XVI P. 10:\%. Station No. 132 Abasiri, turn the arrow line in azimuth to 87° east of north as given in Table XVI P. 99.

Errata.

(N.B. Errata for the Appendix is given at its begimmng.)

-

A Magnetic Survey of Japan Reduced to

1895.0 and Sea Level.

\& 1. Object of the Survey.

The object of the survey was to get a closer view of the distribution of magnetic force in the country than hitherto has been done. It is hoped that we may obtain in this way some insight into the tectonic character of the country which might throw light upon the distribution of earthquake disturbances with regard to time and space.

The olject was twofold, first to obtain a general or normal, as it is sometimes called, distribution and second to get the extent and nature of local disturbances in special districts. With the first point in view a comparatively large number of stations were taken in places which were apparently free from disturbances of any great magnitude ; and with the second point in view observations were made in volcanic regions or in places where violent geological changes are supposed to have taken place. How near we have come to realize those expectations is clearly shown in the maps. It will be seen that we have done something toward the first, but for the second a much more extended series of observations are needed, although we believe that some of the prominent points are brought out by the present survey.

§ 2. Division of Work in each Year.

In 1893 the middle part of Honsyū was surveyed by two parties called for convenience the East Party and the West Party.

The East Party consisted of H. Omori, S. Nakamura, K. Mizusima and H. Kimura and began its work on July 3rd. and ended on Oct. 23rd. It made observations at 44 stations covering the district between the island of Sado on the north and the peninsula of Idu on the south, and from the Lake Suwa to the plane of Sumidagawa across the other directions. It took several observations on the active volcano Asama.

The West Party consisted of A. Tanakadate, K. Turuta, H. Iwaoka, and K. Uziie beside T. Noda who joined the Party for half of the time. It began its work on July 1st. and ended on Oct. 27th. and made observations at 47 stations in the district extending between the peninsula of Noto on the north to the harbour of Toba on the south, and from the shore of the Lake Biwa to the eastern foot of Huziyama on which several observations were taken.

This party had the mishap of breaking the spider line suspension of the magnetometer at the first station after Tökyō, and on repairing an unforeseen blunder was committed by using too thick a fibre, the erroneous effect of which was discovered at the station Gihu after making observations at 22 stations. This affected the value of the horizontal intensity but a little, its effect upon that of the declination was however too great to be allowed; hence A. Tanakadate left the rest of the party at Turuga and made re-determinations of that magnetic element at those stations except a few on the top of Huziyama.

In 1894 the Island of Hokkaido was surveyed by two parties called the North Party and the South Party.

The North Party consisted of A. Tanakadate, K. Mizusima and II. Kimura; it began its work on June 26th. and ended on Oct. 15th. and made observations at 38 stations covering the whole district lying to the north of Yūbari range and Mororan Bay.

While making observations at Asahigawa the 12th. station of the year, K. Mizusima got a sting of an insect on his eye which became so serious that medical treatment was necessary, and H. Kimura was called to take his place, who again after working on 13 stations was obliged to leave the Party at Nogami on account of ferer, so that the remaining stations were observed by Tanakadate alone.

The South Party consisted of S. Nakamura and A. Imamura and began its work on June 26th. and ended the work on Oct. 28th., it made observations at 28 stations including Tōkyō and Sendai on the southern half of the island approaching the district of the North Party at Nemuro and Setana.

In 1895 the northern part of Honsyū was surveyed by two parties called the North Party and the South Party.

The North Party consisted of A. Tanakadate, S. Sinzyō and Y. Katō, and began its work on June 23rd. and ended on Sept. 13th. and made observations at 37 stations covering the whole district lying to the north of Sendai. This Party had the assistance of Z. Tatihara near the end of the work.

The South Party consisted of S. Nakamura, A. Imamura, T. Tamaru and D. Sutō, and began its work on June 23 rd . and ended on Sept. 4th.; it made observations at 32 stations covering the district lying to the sonth of Sakata to the peninsula of Awa-Kazusa boardering on the west on the valley of

Sinanogawa. This party made observations at a few stations of the East Party of 1893.

In 1896 the southwest of Honsyū, Sikoku and Kyūsyū was surveyed by three parties, called the Kinki Party, the Seto Sea Party and the South-West Party.

The Kinki Party consisted of S. Nakamura, Y. Katō and T. Tomoda, and began its work on June 30th. and ended on Sept. 6th.; it made observations at 28 stations covering the district lying to the west of the Sea of Ise up to Okayama Bay making a point on the Island of Awadi. It took observations at a few western stations of the West Party of 1893.

The Seto Sea Party consisted of A. Tanakadate, D. Sutō and S. Sano, and began its work on June 26th. and ended on Oct. 7th.; it made observations at 43 stations covering the district lying to the north and south of the Seto Sea on the west side of Okayama Bay, and three stations on the northeast of Kyūsyū.

The South-West Party consisted of A. Imamura, S. Sinzyō and M. Hattori, and began its work on June 28th. and ended on Sept. 7th.; it made observations at 30 stations covering the whole of Kyūsyū except the three stations above mentioned.

In counting the number of stations, the base station Tōkyō and some of the repeated observations at the same station in different years are included; while those places where only dip and vibration experiments were made are excluded.

§ 3. Equipments and Procedure of each Party.

Each party was equipped with a set of magnetometers, a chronometer, a tent, a folding sofal adapted for bed, a battery of
dry cells, small electric lamps, a box of necessary tools and materials, besides the "Berliner Jahrbuch," a logarithm table and note books.

The magnetometer is described in the next section: All the chronometers used were siderial, made by Negus, New York. The tent was specially designed for the purpose, it is round 3.5 meters in diameter pitched with a center pole of 2.7 meters length. It is made in two parts, a conical top and a cylindrical wall, each of which can be folded back partly or wholly to accommodate various circumstances. It has a mosquito net fitting inside closely throughout. The top can be opened for astronomical observations and turned round after the fashion of an equatorial dome. Observations were often made with the net on, this cansed diffraction phenomena producing four images with tails round the central spot, corresponding to square meshes of the net. The effect is however of no importance for the kind of work we are concerned with. On hot days the wall was removed giving the tent an appearance of a large umbrella with hanging curtains. This defence against insects proved also to be a useful guard for the instruments against wind and dust. The tripod for the magnetometer was set on the east side and that for the dip circle on the west, and the sofa on the north; a small shelf was rigged to the center pole for laying notes and small articles.

The magnetometer, dip circle and chronometer were carried by the observers themselves in travelling by rail or carriage, in crossing over mountains they were usually carried by coolies or sometimes on horseback; the chronometer was well corked round the gimbals and the box thickly wrapped in blancket which secured it both against mechanical jars and abrupt changes of temperature.

The selection of station was done by what was called the forerumer "Senpatu-in" who came to the place a day or half before the rest of the party and made necessary examination and arrangements. Stations were taken with the usual precaution agaiust disturbances from buildings, railways, iron bridges, electric plants, factories \&c.; eare was also taken with regard to the permanency of its surroundings in order that observations may be repeated in future at the same place, although there must be allowed a large margin of uncertainty in this respect. Pl. LX to Pl. LXXXVII are topographs of stations. The objects to be represented for the identification of places are so various that the uniformity of scale and orientation could not be followed; in most cases they are sketches taken by the observers and are to be looked upon as mere substitutes for verbal description.

No member of the party was specialized to take any particular kind of work, on the contrary each had to do all the operations by regular turn including even the business part of acting as the forerumner above spoken of. This was insisted on, not on account of equal sharing of labour but for the object of eliminating personal errors of observations and peculiarities of manipulation which were likely to be thus diseovered. This gave also the party the power of continuing its prescribed work even if it be reduced to one person through aceidental failure of the rest, which unfortunately happened more than once during the survey.

In the last two years of the survey, besides making regular sets of observations in the tent, observations of dip and horizontal intensity by vibration only were made at two or three points in the neighbourhood, under the protection of a parasol from
which iron was replaced. The result verified to a certain extent the selection of the station. Local disturbances in an apparently smooth plane were sometimes surprising. Those points are not numbered in the list but are given as "Syuttyō"; Nos. 54 to 61 in the first year are of this category, and they would have been so named had they not been observed with the express view of finding the effect of Huzi.

§ 4. Instruments.

There are four sets of magnetometers belonging to the Earthquake Investigation Committee, three of which were used in the survey. Their construction is the same in principle as that adopted in the magnetometer used by the South Party of the magnetic survey of 1887, and fully described in Vol. II p. 178 and Vol. V p. 163 of this journal. The plate in the front page is the photograph of No. 1 instrument. The theodolites were ordered from Troughton and Simms of London for the special purpose. The graduated diameter of the azimuth circle is 18 cm . and that of the altitude circle 17.5 cm ., both are divided to every 10^{\prime} and are read with two verniers to $10^{\prime \prime}$. The telescope is of 4.8 cm . clear aperture and 36 cm . focal length and has five transit wires of about 10^{s} equatorial interval.

The modifications now introduced in the part of magnetometer are of minor importance being simply for the convenience of manipulation, they are :-

1. The magnetometer which is now put in a metal tube to guard against electrostatic effect of glass tube.
2. Magnetometer stand which is in the form of a tube standing upon three legs and can be fixed either to the base
plate of the theodolite for declination observation, or to the base of Y's for deflection experiments, by working the differential screw at the center. (See pl. in front page.)
3. Use of autocollimating telescopes, which makes the instrument more compact.
4. Cylindrical form of vibrating magnet which facilitates the use of transporter.
5. The transporter with which the magnet can be carried from one position to another on deflection bar or reversed in direction with great ease, without the danger of imparting heat from the hand of the observer.

It may be remarked here that Mr. Ch. Chree's objection to the Kew pattern of deflection bar was looked into in 1887 already, though not expressly stated. From the photograph in the front page, it will be seen that the correction arising from the flexure of the bar is very small in our design.
6. The use of the dip circle box for vibration box: for this purpose two Y's were provided on the base plate of the box. When the bar magnet was laid on those Y's its axis was horizontal and it was so adjusted in azimuth that its direction,
as observed by the reflected line in the foress of the telescope from its polished end, remaned nnchanged, when it was lifted up slowly by screwing up the suspension fibre.

The instrumental constants are as follows:-

Length in cm.	$\begin{aligned} & \text { No. } 1 \\ & 6.9911 \end{aligned}$	$\begin{aligned} & \text { No. } 2 \\ & 6.9907 \end{aligned}$	$\begin{aligned} & \text { No. } 3 \\ & 6.9461 \end{aligned}$
$\underset{\text { (mean) }}{\text { Diameter }} \text { " }$	0.7912	0.7982	0.8060
Weight ,, gr.	26.6940	27.16 .38	27.4545
Moment of inertia, I (gr. cm^{2}.)	109.648	112.150	111.505
Distances of centerof magnet frommagnetometrr in cm. $\left\{\begin{array}{l}r_{1} \\ r_{2}\end{array}\right.$	30.0130	29.9945	30.0363
	$2: .0023$	22.9941	22.9747
$\log 1 /(2 \pi \sqrt{T})$	2.1818%	2.17692	2.17817
$\log \mathrm{r}_{1}{ }^{5}$	7.3865%	7.38521	7.38823
$\log \mathrm{r}_{2}{ }^{5}$	c.80886	6.80808	6.8062 .5
$\log \frac{1-2!/ r_{1} r_{2}\left(r_{1}+r_{2}\right)}{2\left(r_{1}^{2}-r_{2}^{2}\right)}$	3.12872	:3.12878	3.12 .501
$=3.8$ for all the magn	ound		

Those bar magnets were selected from ten of similar ones.
The moment of inertia is calculated in two ways, once from the linear dimensions and weight, and again by comparing it with that of a brass cylinder belonging to Kew magnetometer No. 64 by vibration method: the latter gave always slightly greater ralues than the former which may be due to heterogeneity in its density; but as vibration method is not entirely free from uncertainty, inasmuch ats the time of vibration is usually affected by small fluctuation in the value of the horizontal intensity during the experiment, the mean of those two values is adopted in reducing the observations.

There are three dip circles belonging to the same committee
made by Casella, these are Nos. 5613 , j614, and 5615; after 1594 they are numbered as $1,2,: 3$, respectively and are put together with the magnetometers of corresponding numbers. Tn 1893 one dip circle (Casella No. 4865) was horrowed from the Hydrographic Bureau for the East Party and another (Dover No. SS) from the Science College for the West Party.

For reversing the magnetisation of needles a pair of coils each wound with insulated wires of three different diameters; the thinnest being put innermost, was marle for each set of instruments. They were put in a closely fitting box which acted also as sliding guide in introducing the needle safely into the narrow cores. The usual bar magnets were only carried to provide for the case of the failure of dry cells.

The declinometers were electromagnetic, the same as those nsed in the survey of 1857, the only difference being in the construction of the mirror magnetometer already described.

Simultancons ohservations were made with those instruments at varions times as is seen in the Complete List of Observations, and differences were found. They arise from the errors in the determinations of the constants, from the errors of graduation and the eccentricity of the circles, from the deviation from circular form in the axil of dip needle besides the accidental errors of observations. The difference will depend upon the local values of magnetic elements and different sets of observers to certain extent, hence we have not applied instrumental corrections in any of the results. the constants of the magnetometers were howerer determined at varions intervals during the survey.

The distribution of these instruments among the several parties were as follows:-

1893	$\left\{\begin{array}{l}\text { East Party } \\ \text { West Party }\end{array}\right.$	gnetome		Dip Circle
		No. 2^{*}	Calsella	No. 4365
		No. 3	Dover	No. 88
1894	(North Party	No. 1	Casella	No. 5613
	South Party	No. 3	"	No. 5615
1895	(North Party	No. 1	"	No. 2613
	South Party	No. 3	"	No. 561.)
1896	Kinki Party	No. 1	"	No. 5613
	Seto Sea P'arty	No. ${ }^{-}$	"	No. 5614
	South-West Parrty	No. 3	"	No. 5615

\$ 5. Method of Observation.

The Tibration Erperiment was always made before the deflection experiment in determining the horizontal intensity. This was generally done by two men, an olserrer gave signal of the transit of the reflected line in the observing telescope by making a tap with a small piece of wood, and a recorder looking at the chronometer noted down the time estimated to nearest tenth of a second ; 15 successive transits in the same direction were obserred at the beginning and end of 50 complete vibrations, the chrourmeter being placed at $2 \frac{1}{2}$ meters distance from the magnetometer.

When it was performed by a single person the eye and car method as in the case of star transit was employed ; this refuires the period of magnet to be greater than four seconds. A correction on account of the non-uniformity of the visible motion is applied which is casily found to be

[^0]$$
\frac{2 \pi}{\tau} \operatorname{tg}^{-1} \frac{\sin 2 \pi /=}{\cos 2 \pi / 5+(1-n) / n-n}
$$
where n is the estimated fiaction of a second and : the period of vibration of the magnet. Table I is constructed for the purpose.

TABLE I.

Corrections to be Applied to the Estimated Fractions of second when Simple Hamonic Motion is Observed by Eye and Ear Method.

$\begin{aligned} & n \leqslant \text { Period } \\ & \text { Fractions } \\ & \text { of seconl } \\ & \hline \end{aligned}$	$4^{\text {s }}$	- ${ }^{\text {s }}$	(i)	7^{5}	$S^{\text {s }}$
-	. 000	. 000	. 000	. 000	. 000
0 - 1	-. 030	-. 019	-. 013	--. 010	-. 007
04.2	$-.044$	-. 027	-.018	-. 014	-. 010
$0^{8} \cdot 3$	$-.042$	-. 025	-. 017	-. 012	-.009
0 ¢ 4	-. 026	-.013	-.010	-. 007	-. 005
0 ". 5	. 000	. 000	. 000	.000	. 000
$0 \times .6$	$+.026$	+.013	+.OIO	+.007	$+.005$
$0^{*} .7$	$+.042$	$+.025$	+.017	$+.012$	+.009
0 - 5	+.044	+.027	+.018	+.014	$+.010$
0 ".9	$+.030$	+.019	+.013	-1.010	$+.007$
I'.0	. 000	. 000	. 000	. 000	. 000

The magnet is suspended with two loons of silk fibre as in Fig. 2 and is free from any mechanical stress except the pressure due to its own weight. The loops weigh about $\frac{1}{2}$ milligram and
their lowest ends are nearly 2 cm. apart, so that its moment of inertia about the vertical axis is less than 0.0003 gr. cm. ${ }^{2}$ and is neglected in the calculation.

The inclination of the magnet is adjusted by moving the small tie E in Fig. 2 within fraction of a minute. The magnet is subject to a slight motion in the vertical plane caused by accidental disturbances of the air or ground tremors. This effect as

Fig. 2.

well ats that of the inclination upon the proper period of vibration was specially studied by making observations with large amomits of those error's purposely given, as follows:-

Kogota July 1st. 1895. Oiserver s. Singyö. Recorder A. Tanakabate.

Local Time		Temperature	Time of Vibration	Remark.
$11^{\text {l }}$	$24^{\text {mi }}$ А.s.	$20^{\circ} .6 \mathrm{C}$	5.8810	normal pmsition
$11^{\text {l }}$	$41^{\text {11 }}$,	20.9	5.8785	north end down 30^{\prime}
$11^{\text {h }}$. $00^{\prime \prime \prime}$ "	20.7	5.8780	fwith motion in the vertical $\left\{\right.$ plane, amplitule 30^{\prime} to 1.5
${ }^{\text {b }}$	OG' ${ }^{\prime \prime \prime}$ P.m.	$21^{\circ} .0 \mathrm{C}$.	5.8796	normal position
$1{ }^{\text {h }}$	$1.5{ }^{\text {m }}$	21.4	5.8770	north end up 27^{\prime}
$1{ }^{\text {1 }}$	$47^{\text {m' }}$	21.3	5. 8797	" .. down 30^{\prime}
$2{ }^{\prime \prime}$	$30^{\text {mi }}$ P. M.	$21^{\circ} .5 \mathrm{~S}$.	5.8851	normal position
2^{11}	$32^{\prime \prime \prime}$	21.2	5.88.5	fwith motion in the vertical \{phane, amplitude 20^{\prime} to 16^{\prime}

As these effects vary with the squares of amplitudes they will be entirely negligible when the deviation from the normal position is one or two minutes.

The Deffection Experiment was done with two distances which are fixed in each bar ($r_{1} r_{2}$ of $\S 4$). The order of various positions of the magnet was Fig. 3. as indicated in Fig. 3,
(1) (2) (3) (4),
$(-4)(-3)(-2)(-1)$ and again (1) for check, where - sign show's that the magnet is reversed end for end. This order seems to be the usual one: it is fom though too late that hetter order is $(1)(-1),(2)(-2),(3)(-3)$, (4) (-4), reversing at each particular position ; series of experiments were made for the express purpose of comparing the methods, and it wats fomed that the latter order gave more consistent values than the former. The reason is obvious, in the former method the slight change in declination during the experiment, which takes about 15 minutes in our case, produces error in the angle of deflection, while in the latter method this error is minimized.

The temperature coefficient of the magnetic moment of calch bar magnet, was fomad directly from the experiment; sufficient differences of temperature being usually oltained from the morning and afternoon observations as is seen in the complete list muder the leadings "M." and "Temp." The fractional decrement of moment per degree centigrade varied between .00070 and .00082 and the correction is applied as shown in the specimen page where t_{v} and t_{d} are the mean temperatures in vibrat tion and deffection experiment respectively.

The Dip Circle was set into the magnetic meridian by the ustal process of observing its position in which the needle stands
vertical. The reading of the azimuth thas found was compared with that found when the vibration experiment was carried. The difference between those two kept nearly constant; hence when vibration experiment was done before the dip, the magnetic meridian was obtained by applying this small difference. The method was especially convenient when experiment was done in open in "Siyuttyo."

In reversing magnetism by means of the coils the current was kept for ten seconds, at first the magnet was reversed with regard to the coils and the current reversed to eliminate any unsymmetry. It was found however in the course of the surver that this double operation was quite superflnous.

The Declination was observed in the same way as in the previous survey, the only difference consisted in taking four positions of the coil in each set of observations, reversing the coil with regard to north and south and again with regard to cast and west, although the mean of the last pair is usually sufficient.

The Astronomical Meridian was usually found by observation of the Polaris, and then transit of six stars were taken with the telescope reversed in Y^{\prime} s at the middle, each three being north, zenith and south stars. From these observations azimuth collimation and clock errors were found by Mayer's method. In setting the theodolite into the meridian, the graphical method given by the writer (Sūgaku-Buturigakkwai Kizi Vol. VI p. 21) was very handy as the azimuth could be found at a glance to fraction of a minute.

The attached specimen pages of field notes which were contered in printed schedule will illustrate the process.

Local Time and Chronometer Rate were determined at nearly erery station by taking observations in the evening and either

SPECIMEN PAGE OF OBSERVATIONS FOR

Tate, Augnist 10th. 1 Sg6.
Observer Tomoda.
Recorder Nakamura.

FINDING THE HORIZONTAL FORCE.

Observer Nakamura.
Plare, Myinzi.
Rerorder Tomona.

SPECIMEN PAGE OF OBSERVATIONS

Instrument No. 3.
Dite Oct. 6th. IS94.

MAGNETIC SURVEY OF JIPAN FOR THE EPOCH 18.\%.). 19

FOR FINDING THE DECLINATION.

Place Nemuio.

SPECIMEN PAGE OF OBSERVATIONS FOR FINDING THE DIP.

Pluee Imaiti.
Instrument No. 2.
Nepelle Io. I.
Begrin $3^{n} 3.2^{m}$ p.m.

Date Juty 31st. 1890.
(H)server Sano.

Recorler Suto.
Endel $3^{h} 3^{\prime \prime \prime \prime} 3$ p.m.

	Axis of needle	Circle	Adjusted to upper end	Adjusted to lower end	Mean
路	Direct	S	$23^{\circ} 55^{\prime}$	$23^{\circ} \quad 3{ }^{\text {S }}$	$23^{\circ} \quad 26^{\prime} .25$
		N	$22^{\circ} \quad 56^{\prime}$	$23^{\circ} \quad 16^{\prime}$	
		Mean	$23^{\circ} \quad 25^{\prime} .5$	$23^{\circ} \quad 27^{\prime}$	
	Reversed	N	$23^{\circ} \quad 26^{\prime}$	$23^{\circ} \quad 39^{\prime}$	
		S	$23{ }^{\circ} \quad 32^{\prime}$	23° 18'	$23^{\circ} \quad 2 S^{\prime} .75$
		Mean	$23^{\circ} \quad 29^{\prime}$	$23^{\circ} \quad 2 S^{\prime} .5$	
				Azimuth	$23^{\circ} \quad 27^{\prime} \cdot 5$

	-	$\begin{aligned} & \text { Adjust- } \\ & \text { ed to } \end{aligned}$	$\stackrel{\text { " }}{\text { (vernier) }}$	$\begin{gathered} b \\ \text { (vernier) } \end{gathered}$	Mean	$\begin{gathered} \prime \prime \\ \text { (vernier) } \end{gathered}$	$\begin{gathered} b \\ \text { (vernier) } \end{gathered}$	Mean
	E	np	$49^{\circ} 39^{\prime}$	${ }^{\circ} 40^{\prime}$	$49^{\circ} 42^{\prime} \cdot 5$	$49^{\circ} 47^{\prime}$	${ }^{\circ} 47^{\prime}$	$49^{\circ} 47^{\prime} .0$
		down	45^{\prime}	46^{\prime}		$47^{\prime \prime}$	47^{\prime}	
		Mean	42^{\prime}	43^{\prime}		47^{\prime}	47^{\prime}	
	W	1 p	52^{\prime}	52^{\prime}	49'5	$50^{\circ} 24^{\prime}$	24^{\prime}	$50^{\circ} 24^{\prime} .0$
		down	47^{\prime}	47^{\prime}		24^{\prime}	2.4 '	
		Mean	$49^{\prime} .5$	$49^{\prime} .5$		24^{\prime}	24^{\prime}	
	W	up	49^{\prime}	50^{\prime}	50'.75	05'	06^{\prime}	$50^{\circ} 03^{\prime} .0$
		down	52^{\prime}	52^{\prime}		00^{\prime}	01^{\prime}	
		Mean	$50^{\prime} .5$	$51^{\prime} .0$		-2'. 5	0.3'. 5	
	E	${ }^{1}$	35^{\prime}	36^{\prime}	$34 \cdot 75$	O2'	03^{\prime}	$50^{\circ} 05^{\prime} \cdot 5$
		down	33^{\prime}	35^{\prime}		08'	09^{\prime}	
		Mean	34^{\prime}	$35^{\prime} \cdot 5$		05'.0	$06^{\prime} .0$	
Mean of Means					$49^{\circ} 44^{\prime} .4$	Mean of Means		$50^{\circ} 04^{\prime} \cdot 9$
Dip						49°	' 6	

early in the morning, or at the noon the sun's transit, except when prevented hy unfarourable weather, for which cases the rate and error were interpolated from the previons and suceeeding observations.

As the state of the weather can not usually be relied upon, the first chance of making astronomical observations was always taken advantage of, be it the sun or the stars either in altitude or meridian passage. The comparatively large telescope was designed for this reason, to cnable us to observe large star's through mists or thin clouls; a still larger aperture, thongh sacrificing a little definition, will be recommendable in future.

§ 6. Diurnal Variation.

The corrections for diurnal variations are not applied, being. eliminated to a large extent by taking the mean of three or more sets of observations of all the magnetic elements in each of principal stations (see Complete List of Observations in the Appendix). I set of experiment for the determination of the horizontal intensity and the dip was made in the morning about 8 or 9 a.m., another near the middle of the day about 1 or 2 prm. and the lant in the evening about 6 , and often a set was made at night after finishing the astronomical work, when that was done under faromrable circumstances. Strict times of observations could not be followed on account of the conditions of travelling and also because of the astronomical observations, which had to be taken at whaterel time that was available.

Declination was observed at ats many intervals ats jossihle, so as to enable us to draw the dimmal curver (see Pl. I. to Pl. LIX.) at cath principal station. The mean value is obtained
by planimetric method, and is indicated by a dotted line in the plate, where unly a part of the curve is obtained the mean is inferred from those of the neighbouring curves.

The diumal curve was also useful in warning the observer's of magnetic storms, during which the regular observations had to be sustained.

8 7. Reduction to the Epoch 1895.0.

In order to reduce the observed values to a common epoch, we require to know the secular variation of cach magnetic element. It was hoped ly taking observations at the stations of the prerious survey of 1887 this might be found at each place. On carrying out the work, however, it was found that observations in most of the old stations were impracticable on account of changes that have since taken place in their surroundings. Although many of the names in the list of observations are the same, there are only 7 places where regular observations were made at the identical spot; the values of dip and horizontal intensity given in the list under the heading "Station 1887" were made again now for the sake of reference even though the surroundings had somewhat changed. Under these circumstances it was considered not expedient to derive the amual variation in the way first thought of.

The method used is to find mean secular variations by comparing the empirical expressions of magnetic elements in terms of longitude and latitude, which were already worked out by Prof. Knott, with those of the present treated in similar manner, supposing those two sets of values to represent the magnetic state of the country at the epochs corresponding to the means of
the times of observations in the two surveys: these fell respectively 1857.51 and 1895.12 during which interval the variation is assumed to have been uniform ; thus:-

$$
\begin{aligned}
& \left.\left.\left.\grave{o}=.5^{\circ} 0 .\right)^{\prime}(6+0.286\rfloor_{0}-0.14+\right\lrcorner \lambda-0.00029+(\lrcorner \lambda\right)^{2} \text { at } 1895.12
\end{aligned}
$$

and $\left.\left.\left.\frac{-10}{\lrcorner} \mathrm{t}=1.4 .9+0.00599\right\lrcorner \varphi-0.00146\right\lrcorner \lambda-0.00000 \mathrm{f} 4(\lrcorner \lambda\right)^{2}$ per annmm
where $J_{\varphi}=\left(\varphi-37^{\circ}\right)^{\prime}, J_{\lambda}=\left(\lambda-13 S^{\circ}\right)^{*} \quad$ expressed in minutes similarly

$\begin{aligned} & \left.\theta=50^{\circ} 47.4+1.06 S\right\lrcorner \varphi-0.07 .92 \lambda \lambda \\ & \left.\left.\theta=50^{\circ} .54^{\prime} 9+1.146\right\lrcorner \varphi-0.15 .56\right\lrcorner \lambda \end{aligned}$	at	$\begin{aligned} & 1895.12 \\ & 1887.61 \end{aligned}$
$J H=-7.5-0.078\lrcorner ¢ \varphi+0.0764\rfloor \lambda$	for	7.51
$\left.\left.\frac{\lrcorner A}{J t}=-1.00-0^{\prime} .010+\right\lrcorner \varphi+0.0102\right\lrcorner \lambda$		annum
$\left.\left.H=29317^{\prime}-6.12\right\lrcorner \varphi-1 .+8\right\lrcorner 1 \%$	at	1895.1.
$\mathrm{H}=29247^{\gamma}-6.17 \mathrm{f} \varphi-1.17 \mathrm{f}$ \%	"	1S57.61
	for	7.51
$\frac{J_{\mathrm{t}} \mathrm{H}}{\lrcorner \mathrm{t}}=9.33+0.0067 \mathrm{~J} \varphi-0.041 \mathrm{~J} .$		r annum

The values for 189.5.12 were derived from the results of observations at $2 S S$ stations which were seemingly free from extravagant local disturbances by the method of least squares, a process somewhat superfluous but useful in training the computers for further work. Tables II, III, IV, give these annual variations for each degree of longitude and latitude throughout the country and were used in reducing the values to the epoch 1895.0.

[^1]TABLE ANNUAL VARIATION

4^{2}	$1 ?^{\circ}{ }^{\circ}$	$1: 31{ }^{\circ}$	$1: 31^{\circ}$	$1: 3:{ }^{\circ}$	1333 ${ }^{\circ}$	134°	$13.3{ }^{\circ}$	136°	$1: 31^{\circ}$
45°									
4.5									
$4 t^{\circ}$									
$4: 3$									
$4: 0^{\circ}$									
41°									
40°									
390°									
:340									+ I '90
830°								+1.54	+1. 55
36°				+0.58	+0.82	+ I'OI	+1:13	+1.19	+1.20
35°			- o.'08	+0.23	+0.47	+0.6;	+0.78	+0. 84	+ 0. 85
$3+9$		-0.79	-0.43	- O.' 2	+o. ${ }^{\prime} 2$	+0.30	+0.43	+0.49	+ 0. 49
$33 \bigcirc$	-1.57	- I'. 55	-0.\%8	-0.48	-0.23	-0.05	+o.os	+ O.' 14	
$3 \cdot 3$		- 1. j^{0}	-I'.13	-0.83	-0.58				
810		- 1.85	- I. 48	-I.'. 8					
52	$1 \bullet 99^{\circ}$	13310	$131{ }^{\circ}$	$13: \bigcirc$	$13: 3{ }^{\circ}$	$13.4{ }^{\circ}$	$13.5{ }^{\circ}$	1336	$1: 30^{\circ}$

II.

OF DECLINATION. (Sce Trule VIII.)

134°	$13: 9{ }^{\circ}$	140°	$141^{\text {c }}$	143°	143°	144°	$14.5{ }^{\circ}$	$14 i^{\circ}$	$\therefore 0$
				$+3.82$					46°
			$+3: 76$	$+3 \cdot 46$	+3.10				4.5
			$+3^{\prime} \cdot 41$	$+3^{\prime}$ ' 11	$+2.75$	+2.33	+ I'S5	+ 1.3 I	44°
		+ 3:30	+ 3.06	$+2.75$	$+2.40$	+ 1.98	+1.50	+ 0.96	43°
		$+2.95$	+2.71	$+2.4$	+2.0;				$4 \because^{\circ}$
		+2.60	+2.36	+2.06					41°
	+2.42	+2.25	+2.01	+1.\% 1					411°
	$+2.07$	+ 1.90	+1.65	+1.36					339°
+1. 84	$+1.72$	+i.	+ 1'3I	+ I'.OI					35°
+1.49	$+1.37$	+ I'19	+0.95	+ 0. 66					330°
+1.14	+ 1.02	$\div 0.84$	+ 0.61						386°
+0. 79	+ 0.67	+ 0.49	+0.25						3.90
+0. 44	+0.32	+ O.'. ${ }_{4}$							34°
									$3: 3{ }^{\circ}$
									$\because: 30$
									31°
13.35°	$13!0^{\circ}$	140°	141°	$14: 3$	$14 ;{ }^{\circ}$	$14{ }^{\circ}$	$14 . \%^{\circ}$	$14 i^{\circ}$	i^{4}

$0{ }^{\text {i }}$	$1 \because 9{ }^{\circ}$	1330°	131°	$13:{ }^{\circ}$	$13: 3{ }^{\circ}$	134°	133°	136°	$13:{ }^{\circ}$
46°									
$4.5{ }^{\circ}$									
44°									
43°									
$4: \bigcirc$									
41°									
40°									
$39{ }^{\circ}$									
35°									-2!24
37°								-2.22	- I'SI
$36{ }^{\circ}$				-4.05	$-3 \cdot 44$	-2.82	-2! 21	- 1.60	-0.'99
33°			-4.03	$-3 \cdot 42$	- 2. $\mathrm{S}_{\text {I }}$	-2.20	- I! 59	-0.98	-0'36
34°		-4.02	-3.41	-2'So	-2.19	$-1!58$	-0.'96	-0.35	+0.26
$33{ }^{\circ}$	-4.01	$-3!40$	-2'.79	-2'is	6	-0.95	-0. 34	+0'27	
$3: 3$		-2.78	-	5	-0.94				
31°		-2.15	I'54	-0.'93					
9 i	$13!)^{\circ}$	139°	$131{ }^{\circ}$	$13: 30$	$13: 3{ }^{\circ}$	134°	135°	$136{ }^{\circ}$	137°

III.

TION OF DIP.

1335°	$139{ }^{\circ}$	140°	141°	$14{ }^{\circ}$	143°	144°	14.5	1466°	
				$-4{ }^{\prime} 17$					$41 i^{\circ}$
			$-4 \cdot 16$	-3.54	-2.93				4.50
			$-3 \cdot 53$	-2.92	$-2!31$	- 1.70	- I . 08	-0. 47	44°
		$-3 \cdot 52$	-2.91	-2! 30	- 1.68	- 1. 07	-0. 46	+o.' 5	43°
		-2'.90		67	- 1.06				$4: 0$
		-2.27		- 1.03					41°
	-2.26	$1: 65$	- I '04	-0.42					410
	- I.64	- I !	1	+. 020					39°
- 1.62	- I'OI	-0. 40	+0	+0. 82					335°
I.	-0. 39		+ 0. S_{4}						38°
-0.38	+o	+0. 85	$+1.46$						336
+ 0. 25	+ 0. 86	$+1^{\prime} 47$	+2.0S						$3.9{ }^{\circ}$
+o. 87	$+1.48$	+2.10							34°
									:3:30
									33°
									31°
135°	$139{ }^{\circ}$	1410°	$14{ }^{\circ}$	$14 \because^{\circ}$	$14:{ }^{\circ}$	$14{ }^{\circ}$	$14 .{ }^{\circ}$	$146{ }^{\circ}$	0

TABLE
 ANNUAL VARIATION OF

4λ	$139{ }^{\circ}$	130°	$131{ }^{\circ}$	$13:{ }^{\circ}$	$13:{ }^{\circ}$	134°	$13.5{ }^{\circ}$	136°	137°
$4 ;^{\circ}$									
$4.9{ }^{\circ}$									
44°									
$4: 30$									
40°									
41°									
40°									
33°									
35°									+ 12.2
33°								$+14.3$	$+ \text { II. } \mathrm{S}$
$336{ }^{\circ}$					+ 21.2	+18.8	+16.3	$+13.8$	$+11.4$
33°			+ 25.7	+ ${ }^{\text {r }}$ ¢ 3	+ 20.8	$\begin{array}{r} \gamma \\ +18.4 \end{array}$	$+15.9$	$+13.4$	$+11.0$
34°		+ 27.8	$+25 \cdot 3$	$+22.9$	$+20.4$	+ 18.0	+ 15.5	$+13.0$	$+10.6$
3:3 ${ }^{\circ}$	+29.9	$+27 \cdot 4$	+24.9	$+22.5$	$+20.0$	$+17.6$	$+15.1$	$+12.6$	
30°		$+27.0$	$+24 \cdot 5$	I	$+19.6$				
31°		+ 26.6	$\begin{array}{r} \gamma \\ +24 \cdot 1 \end{array}$	$+2 \begin{array}{r} \gamma \\ +2.7 \end{array}$					
4.2	$139{ }^{\circ}$	131°	$131{ }^{\circ}$	$13{ }^{\circ}$	$133{ }^{\circ}$	134°	1335°	136°	$13 \%^{\circ}$

IV.

HORIZONTAL INTENSITY.

$13.5{ }^{\circ}$	$139{ }^{\circ}$	140°	141°	$1+{ }^{\circ}$	143°	144°	145°	$146{ }^{\circ}$	2.
				\% +3.1					46°
			+ 5.2	7 +2.7	+ ${ }^{\gamma}$				45°
			$\%$ +4.8	7 +2.3	-0.2	-2.6	-5.1	-7.5	$4{ }^{\circ}$
		+6.8	$+43$	$\begin{array}{r} \gamma \\ +1.9 \end{array}$	-0.6	$\left[\begin{array}{c} \gamma \\ -3.0 \end{array}\right.$	-5.5	\% -7.9	4:30
		$\begin{array}{r} 8 \\ +6.4 \end{array}$	$+4.0$	$+1.5$	$\left[\begin{array}{c} \gamma \\ -1.0 \end{array}\right.$				$4 \because^{\circ}$
		+6.0	$+3.6$	+1.1					41°
	$+8.1$	$+5.6$	$\begin{array}{r} \gamma \\ +3.2 \end{array}$	$\%$ +0.7					41°
	$+7.7$	$+5.2$	$\begin{array}{r} \gamma \\ +2.7 \end{array}$	$\begin{aligned} & \gamma \\ & +0.3 \end{aligned}$					$339{ }^{\circ}$
\% +9.7	$+7 \cdot 3$	$+4.8$	$+2.3$	$\begin{array}{r} \% \\ -0.1 \end{array}$					35°
+9.3	$+6.9$		$+1.9$						33°
+8.9	$+6.5$		$+1.5$						316°
$+8.5$	$+6.1$	$+3$	$\begin{array}{r} \gamma \\ +1.1 \end{array}$						$33)^{\circ}$
$+8.1$	$+5.7$	+3.2							34°
									$\because: 3{ }^{\circ}$
									$3: 0^{\circ}$
									$: 31{ }^{\circ}$
$135{ }^{\circ}$	$13.9{ }^{\circ}$	141°	$1+1{ }^{\circ}$	$14{ }^{\circ}$	$143{ }^{\circ}$	$14{ }^{\circ}$	14.5°	146°	\vdots

This method gives only the arerage secular variations, the results are therefore partly over-corrected and partly undercorrected especially in regions under the process of tectonic change, some of which had already drawn our attention.* To minimize such effects the nearest round number of years to the mean time of all the observations is taken as the epoch to which all the olservations are reduced, the amount of maximum correction leeing about one and a half year either war.

It is to be remembered in this respect that three destructive earthquakes have occurred between the previons survey and the end of the present: the strongest in 1891 in the district of Mino-Owari and two less severe, one in Sakata in the winter of 1893 and another in Tokyō in the summer of 1895.

§ 8. Reduction to the Sea Level.

To reduce all the obscrvations to the sea level, the rertical variations of the magnetic elements were derived in the way discussed in § 11 below, using the first approximation of mean isomagnetics used in deducing annual variations. The corrections are quite sensible in some of stations which are two or three kilometers high and affect materially the amount of disturbing forces in such altitudes.

§ 9. Isomagnetics.

The reduced values of magnetic elements were put on maps, one for each element, and isomagnetics were drawn loy the tentative method of interpolation, taking care to give slight allowances with respect to second differences. In some places it was

[^2]```
MAGNETIC SURVEI OF JAPAN FOR THE EPOCH 1895.0. 31
```

difficult $t_{0}$ decide which course the curves will take, and recourse had to be made to the common sense estimute or guess work. To draw those eurves with accuracy "over even the smoothest hillside" to use Lord Kelvin's words with regard to the distribution of atmospheric electricity, "would infinitely transcend human mathematical power."

Mr. S. Nakamura and the writer starting separately on different sheets obtained curves agreeing in general appearance, but in particular details they differed widely in some places, the curves in Maps 1, 2, and 3 drawn on transparent sheets, are a compromise made ly the writer. Actual values at each station, corresponding to the nearest mark $\odot$ on the man, are given along with the curves, so that they can be reconstructed by any one to suit his own view. The controversy which has risen in this respect in the result of previous surveys is thas avoided. Those curves were prepared on a larger seale of linear dimension five times those given in this volume and were reduced by pantograph.

## § 10. Mean Isomagnetics.

The mean isomagnetics are represented by empirical formula expressing magnetic elements in terms of longitude and latitude in the usual way. Number of terms to be taken in such expressions depends upon the character of distribution of these elements in the country. By way of trial these elements were calculated for 12 points in Japan from the table of magnetic elements for the glole corresponding to 1885.0 as given ly Prof. Ad. Schmidt,* in which the expansion is carried to seventh harmonics. Table $V$ shows the distribution of these points.

[^3]
## 'CABLE V.

Magnetic Elements Calculated from X, I', Z, Expressed in Spherical llarmonics for 1885.0 hy Piof. Ald. Sclomidt.

| ; |  | 130.0 | 133.5 | 135.0 | 1:30\%.5 | 140.0 | 142.5 | 145.0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 45.0 | $\begin{gathered} 1 \\ 11 \end{gathered}$ |  |  |  |  |  | ${ }_{12} 12$$3^{\circ} 51!2$ <br> $59^{\circ} \mathrm{I} 5!8$ <br> $\vdots$ <br> 5473 |  |
| 42.5 | 11 |  |  |  |  |  |  |  |
| $40.0$ | 11 |  |  |  |  |  |  |  |
| $133^{\circ} .5$ | $\begin{aligned} & 1 \\ & \text { II } \end{aligned}$ |  |  |  |  |  |  |  |
| 35.0 | H |  |  |  | ${ }_{5}{ }_{5}^{2^{\circ} 266^{\prime 2}}$ |  |  |  |
| $3 \pm 2.5$ | 11 |  |  |  |  |  |  |  |

These values put into linear equations for horizontal force and dip, and parabolic formula for declination give residuals whose maximum values are $28 .^{i} 6$ for the horizontal force, $16 .{ }^{\prime}(;$ for the dip and $16 .{ }^{\prime} 4$ for the declination: put into quadratic form they come out

MAGNETIC SURVEY OF JAPAN FOR THE EPOCH 189\%.O. S.

$$
\begin{aligned}
& \pm .44 \pm .14 \pm .14 \pm .043 \pm .083 \pm .041
\end{aligned}
$$

$$
\begin{aligned}
& \pm .65 \pm .20 \pm .21 \pm .064 \pm .12 \pm \pm .060
\end{aligned}
$$

$$
\begin{aligned}
& \pm 2.0 \pm 0.62 \pm 0.64 \pm 0.194 \pm 0.374 \pm 0.184
\end{aligned}
$$

where $J_{\lambda}=\left(\lambda-138^{\circ}\right)^{\circ}$ and, $J_{\varphi}=\left(\varphi-37^{\circ}\right)^{\circ}$ expressed in degrees. The values calculated from these expressions are compared with the given data in Table VT.,

## TABLE VI.

Magnetic Elements calculated as Quadratic Functions of Longitude amb Latitude, from the Data given by Spherical Harmonics for 188. . .

| No. | Declination. |  |  | I ip. |  |  | Horizontal Intensity. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Data. | Cal. | Dif. | Inata. | Cal. | Dif. | Lata. | Cal. | Dif. |
| I | $2^{\circ} 05: 6$ | $2^{\circ} 04.5$ | I! ! | $46^{\circ} \quad 56.0$ | $46^{\circ} 57.4$ | -1.4 | $31375.9$ | $35381.9$ | $-6.0$ |
| 2 | $2^{\circ} 033.6$ | $2{ }^{\circ} \mathrm{0} 3!2$ | 0.4 | $46^{\circ} \quad 18^{\prime} .5$ | $46^{\circ}$ 19.1 | -0.6 | 31009.1 | 31008.9. | 0.2 |
| 3 | $2 \times 34!6$ | 2036.0 | -1.4 | $49^{\circ} \quad 47^{\prime} 5$ | 49 45: 8 | 1.7 | 30195.5 | 30188.8 | 6.7 |
| 4 | $2^{3} 32!$ S | $2^{\circ} 33!7$ | -0.9 | $49^{\circ} \quad 27^{\prime} .1$ | $49^{\circ} \quad 25: 6$ | 1.5 | 30043.9 | 30040.6 | $3 \cdot 3$ |
| 5 | $2^{\circ} 26.2$ | $2^{\circ} 26.7$ | -0.5 | $4)^{\circ} 06!2$ | $49 \quad 05 \cdot 4$ | 0.S | 208:S.0 | 29887.2 | 0.5 |
| 6 | $2^{\circ} 14.9$ | $2^{\circ} 14.9$ | - | $48^{\circ} 45!0$ | $48 \quad 45 \cdot 2$ | -0.2 | 29728.9 | 29728.6 | 0.3 |
| 7 | $2^{\circ} 45^{\prime} \cdot 3$ | 2045.1 | 0.2 | $51^{\circ} 4 I^{\prime} \cdot 4$ | 51 11:3 | O.I | 28768.2 | 2877! | -2.9 |
| s | $3^{\circ} 14^{\prime} 3$ | $3^{\circ}$ I $3^{\prime} .6$ | 0.7 | $54^{\circ} 27 \%$ | 54 20:0 | $-2.0$ | 27740.3 | $277+2.6$ | $-2.3$ |
| 9 | $2^{\circ} 59^{\prime} 2$ | $2^{\circ} 58.6$ | 0.6 | $54^{\circ}$ O6! 2 | $54 \quad 06: 7$ | -0.5 | 27657.6 | 2;660.6 | $-3.0$ |
| 10 | $3^{0} 4^{1}$ ! 3 | $3{ }^{\circ} 4 \div 3$ | 1.0 | $57^{\circ}$ 07. ${ }^{\text {\% }}$ | $57^{\circ}$ 08'3 | -0.9 | 26640.2 | $266+3.1$ | $-2.9$ |
| I I | $3^{0} 06!4$ | $3^{\circ} 07^{\prime} 0$ | -0.6 | $56^{\circ} \quad 22^{\prime} 5$ | $56^{\circ}$ 21:7 | o.S | 26550.0 | 26555.7 | $3 \cdot 3$ |
| 12 | $3^{0} 51!2$ | $3^{\circ} 51$ \% | -06 | $59^{\circ} 15!3$ | $59^{\circ} \quad 15.0$ | 0.8 | 25473.6 | 25472.4 | 1.2 |

from which we see that the quadratic formula are sufficiently near for the purpose. Some of the coefficients whose values are less than probable errors may be omitted; but since the omission of only one or two terms little lightens the labour of computation, they are all kept for the sake of uniformity.

The reduced values of magnetic elements in 241* stations which were seemingly free from large local disturbances were treated in the same manner and gave

$$
\begin{aligned}
& \pm .68 \pm .291 \pm .345 \pm .096 \pm .187 \pm .103
\end{aligned}
$$

$$
\begin{aligned}
& \pm .58 \pm .247 \pm .292 \pm .081 \pm .158 \pm .087
\end{aligned}
$$

$$
\begin{aligned}
& \pm 8.1 \pm 3.45 \pm 4.10 \pm 1.141 \pm 2.216 \pm 1.222
\end{aligned}
$$

where $J_{\lambda}=\left(\lambda-135^{\circ}\right)^{\circ}$ and $J_{\varphi}=\left(\varphi-37^{\circ}\right)^{\circ}$ expressed in degrees. Expressed in minutes they become

$$
\begin{aligned}
& \left.\left.\left.\grave{\prime}=5^{\circ} 03.15-0.1379\right\lrcorner \lambda+0.2894\right\lrcorner 4-0.0001803\right] \overline{\lambda^{2}} \\
& -0^{\prime} .00006 .57 \bar{J} \sqrt{\varphi}-0^{\prime} 0000209 \sqrt{\varphi_{\varphi}{ }^{2}} \\
& \left.\left.\theta=50^{\circ} \quad 50.61-0.1263\right\lrcorner \lambda+1^{\prime} 1376\right\lrcorner \varphi+0^{\prime} 0000821 \bar{J} \lambda^{2} \\
& -0.0001218 \mathrm{~d} \mathrm{~J} . \mathrm{J} \varphi-0.0001 .340 \sqrt{\varphi^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& -0.00036 .55-1 \lambda .1 \varphi-0.0012032 \Omega \varphi^{\gamma}
\end{aligned}
$$

The computation was carried in duplicate beside being controlled in the usual way. The mean probable error of a single ohservation is

[^4]\[

$$
\begin{array}{lll} 
\pm 66^{\prime} 46 & \text { in the Declination, } \\
\pm 5!.47 & " & , \text { Dip, } \\
\pm 73 .^{\gamma} \cdot 2 & ", & \text { Horizontal Intensity. }
\end{array}
$$
\]

The probable errors of the empirical coefficients are not in strict sense the result of accidental errors of observations, but are chiefly due to the amount of local disturbances; if we omit a few of the stations which give large residuals, they will be greatly reduced, or if we include some of the stations that were omitted in the equations of condition they will be mueh increased: they are put here simply to indicate some measure of certainty in the values of these coefficients calculated by the definite method, and also to show the danger of applying these formulæ to too large values of coordinates; their extreme amounts within the comntry are:-

$$
\text { at } \begin{aligned}
& \left\{\begin{array}{l}
\lrcorner \lambda=0 \\
\lrcorner \varphi=0
\end{array}\right.
\end{aligned} \text { at }\left\{\begin{array}{l}
\lrcorner \lambda= \pm 8^{\circ} \\
\lrcorner \varphi= \pm 8^{\circ}
\end{array}\right]
$$

Their large increase with the co-ordinates is cansed principally hy the smallness of weight in the coeflicients of $J_{i} J_{\varphi}$, and they c:lll be diminished by taking simpler formulac than the complete quadratics, the effect of increase in the weights of the coeflicients over-compensating the increase of residuals.

This is exemplified in the following reduction of the dectination by the parabolic formula, made for the purpose of finding better value of the ammal variation by comparing with the expression of the sime form obtained in the previons survey.

The same data give in this case, fhe and foc having the same meaning as above expressed in degrees,

$$
\begin{aligned}
& \pm .99 \pm .271 \pm .26 .5 \pm .033
\end{aligned}
$$

For the co-ordinates $J \lambda= \pm 8^{\circ}$ and $\lrcorner \varphi= \pm 8^{\circ}$, the probable error becomes $\pm 3.7$ instead of $\pm 15.25$, although the mean probable error of a single observation is greater, as it should, namely $\pm 6.53$ against $\pm 6 .^{\prime} 46$ of the previous result.

With this value of $\bar{n}$, its annual variation takes the form

$$
\begin{aligned}
& \left.\left.\frac{\lrcorner \lambda}{d t}=1.08-0.015\right\lrcorner \lambda+0.288\right\lrcorner \varphi-0.0013 J \lambda^{2} \text { per annum }
\end{aligned}
$$

which is preferable to the provisional formula given in p. . 2.3 ahove in estimating mean declination for few years following the epoch.

The values of the magnetic elements calculated from these formule for every romil number of degrees of longitude and latitude in the country are given in Tables VII to XIV, and in Tables XV and XVI those calculated for each of the stations together with the observed ralnes and their differences are given.

The curves in blue colour in Maps 1, 2 , and 3 are traced from these equations and can be compared with the isomagnetics drawn by tentative method by laying those shects closely muder them. In Maps $4,5,6$ and 7 the total force and its rectangular components are drawn, the differences of the observed and cal-
culated values being given in blue and red figures in eath so that the amounts of local disturbances can be seen at a glance.

Comparing the equations of p. '3t with those of p. 33 , or Table $V$ with Tables VII, IX and I below, we notice that they differ by a far greater amount than ean be ascribed to errors of observations or to secular variation. Whether this is due to want of terms in the harmonic expansion or to that of data in this part of the globe remains still to be seen.

Declinations at 189\%. 0 at the Intersections of entire Degrees $\bar{\prime}=5^{\circ} 3.1 .5-8^{\prime} .274\left(\lambda-1.38^{\circ}\right)^{\circ}+17.36 .5\left(\varphi-37^{\circ}\right)^{\circ}-0.649$

VII.
of Longitude and Latitude, calculated by the Formmla,
$\left\{\left(2-1.38^{\circ}\right)^{\circ} j^{2}-0^{\prime} 2.36\left(\lambda-138^{\circ}\right)^{\circ}\left(0-37^{\circ}\right)^{\circ}-0.07 .5\left\{\left(c-37^{\circ}\right)^{\circ}\right\}^{3}\right.$


Ammal l'ariations of Derlination at thr Intersections of entire Degrees of Longitude and Latitude

| $0 \quad \lambda$ | $129{ }^{\circ}$ | 1330 | $1311^{\circ}$ | $133 \bigcirc$ | $13: 3{ }^{\circ}$ | $134^{\circ}$ | $13 \%{ }^{\circ}$ | $1336^{\circ}$ | $139^{\circ}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $46^{\circ}$ |  |  |  |  |  |  |  |  |  |
| $45^{\circ}$ |  |  |  |  |  |  |  |  |  |
| $44^{\circ}$ |  |  |  |  |  |  |  |  |  |
| $43^{\circ}$ |  |  |  |  |  |  |  |  |  |
| $40^{\circ}$ |  |  |  |  |  |  |  |  |  |
| $41^{\circ}$ |  |  |  |  |  |  |  |  |  |
| $40^{\circ}$ |  |  |  |  |  |  |  |  |  |
| 3, $9^{\circ}$ |  |  |  |  |  |  |  |  |  |
| $38^{\circ}$ |  |  |  |  |  |  |  |  | $1: 38$ |
| $3: 30$ |  |  |  |  |  |  |  | 1.10 | I'O9 |
| $360^{\circ}$ |  |  |  | 0.84 | 0. 83 | 0. 83 | 0. 83 | O. 82 | 0.'S I |
| $33^{\circ}$ |  |  |  |  |  | O' | O. 54 | 0.53 | 0.52 |
| $34^{\circ}$ |  | 0. 25 | 0. 26 |  |  | O. 26 |  | 0. 24 | 0.23 |
| 3:30 | -0.04 | -0.04 | -0.03 | -0.03 | -0.03 | -0.03 | -0.O4 | -0.05 |  |
| 390 |  | -0. 32 | -0.32 | -0.32 | -0.32 |  |  |  |  |
| $31^{\circ}$ |  | -0.61 | 0.6 1 | - 0. 60 |  |  |  |  |  |
| 4. | $139{ }^{\circ}$ | $1330{ }^{\circ}$ | $1: 31^{\circ}$ | $133^{\circ}$ | $13: 3{ }^{\circ}$ | $134^{\circ}$ | $13.9)^{\circ}$ | $136{ }^{\circ}$ | $1333^{\circ}$ |

## VIIL.

calculated by the Formula $\frac{-\frac{1}{\mathrm{~h}}}{\mathrm{dt}}=1: 08-0.01 .9\left(\lambda-1: 38^{\circ}\right)^{\circ}+0^{\prime} 288\left(\varphi-37^{\circ}\right)^{\circ}-0.0013\left\{\left(2-1: 38^{\circ}\right)^{\circ}\right\}^{2}$.

| $138{ }^{\circ}$ | $139{ }^{\circ}$ | $1+10^{\circ}$ | $141^{\circ}$ | $143^{\circ}$ | $143^{\circ}$ | $14{ }^{\circ}$ | $14.5^{\circ}$ | $146^{\circ}$ | ${ }^{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 3.59 |  |  |  |  | $46^{\circ}$ |
|  |  |  | 3:33 |  |  |  |  |  | $45^{\circ}$ |
|  |  |  | 3.04 |  |  |  | 2.93 | 2! 89 | $4{ }^{\circ}$ |
|  |  | $2!77$ |  |  | 2.70 | 2:'67 | $2 \cdot 64$ | 2:60 | 4:3 |
|  |  | $2^{2} .48$ |  |  | $2 \cdot 41$ |  |  |  | $4 \because 0$ |
|  |  |  | 2'17 | 2.15 |  |  |  |  | $41^{\circ}$ |
|  | 1'93 | I'91 | I'89 | I! 26 |  |  |  |  | $40^{\circ}$ |
|  |  |  | :60 | 1.57 |  |  |  |  | $39^{\circ}$ |
| 1:37 | 1:35 | $1!33$ | $1: 3$ | I'29 |  |  |  |  | $35^{\circ}$ |
| 1'08 | 1'06 | r'04 | 1.02 |  |  |  |  |  | $\because \%^{\circ}$ |
| 0.79 |  | $0.76$ | o. 74 |  |  |  |  |  | $316^{\circ}$ |
| 0. 50 |  |  | 0. 45 |  |  |  |  |  | $33.5{ }^{\circ}$ |
| 0.22 | o. 20 | 0.1s |  |  |  |  |  |  | $34^{\circ}$ |
|  |  |  |  |  |  |  |  |  | 3:30 |
|  |  |  |  |  |  |  |  |  | $3: 30$ |
|  |  |  |  |  |  |  |  |  | $\because 1^{\circ}$ |
| $138{ }^{\circ}$ | $139{ }^{\circ}$ | $140^{\circ}$ | $14{ }^{\circ}$ | $1+3{ }^{\circ}$ | $143^{\circ}$ | $14{ }^{\circ}$ | $145^{\circ}$ | $146^{\circ}$ | 4 |

Dips at 189\%.0 at the Intersections of entire Degrees $\theta=-50^{\circ} .50^{\prime} 61-7.578\left(\lambda-138^{\circ}\right)^{\circ}+65^{\prime} .2 .3\left(\varphi-37^{\circ}\right)^{\circ}+0^{\prime} 296$

| $\varphi$ | 1890 | $13,30^{\circ}$ | $1331{ }^{\circ}$ | $13 \geqslant{ }^{\circ}$ | $13:{ }^{\circ}$ | $1: 34^{\circ}$ | $13.7{ }^{\circ}$ | $1336{ }^{\circ}$ | $13: \gamma^{\circ}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $46^{\circ}$ |  |  |  |  |  |  |  |  |  |
| 4i5 |  |  |  |  |  |  |  |  |  |
| $44^{\circ}$ |  |  |  |  |  |  |  |  |  |
| $4 ; 0^{\circ}$ |  |  |  |  |  |  |  |  |  |
| $4 \%{ }^{\circ}$ |  |  |  |  |  |  |  |  |  |
| $41^{\circ}$ |  |  |  |  |  |  |  |  |  |
| $4)^{\circ}$ |  |  |  |  |  |  |  |  |  |
| $990^{\circ}$ |  |  |  |  |  |  |  |  |  |
| :35 |  |  |  |  |  |  |  |  | $2^{\circ} 6$. |
| $37^{\circ}$ |  |  |  |  |  |  |  |  |  |
| $336{ }^{\circ}$ |  |  |  |  |  |  |  |  |  |
| 35\% ${ }^{\circ}$ |  |  |  |  |  |  |  |  |  |
| $34^{\circ}$ |  |  |  |  |  |  |  |  |  |
| $3: 3{ }^{\circ}$ |  |  |  |  |  |  |  |  |  |
| $33^{\circ}$ |  |  |  |  |  |  |  |  |  |
| $31^{\circ}$ |  |  |  |  |  |  |  |  |  |
| 9 | $139{ }^{\circ}$ | $1310{ }^{\circ}$ | $131{ }^{\circ}$ | $13 \because{ }^{\circ}$ | $1 \% \%^{\circ}$ | $134{ }^{\circ}$ | $13.9{ }^{\circ}$ | $1334^{\circ}$ | $133 \%^{\circ}$ |

## IX.

of Longitude and Latitude calculated ly the Formula
$\left.\left\{\left(\lambda-138^{\circ}\right)^{\circ}\right\}^{2}-0^{\prime} .438\left(i-1.38^{\circ}\right)^{\circ} i \varphi-37^{\circ}\right)^{\circ}-0^{\prime} 4^{2} 2\left\{\left(c-37^{\circ}\right)^{0}\right\}^{2}$.


Iforizontal forces in C.G.S. at 1895.0 at the Intersections of entire $\mathrm{H}=29401.4-74.97\left(\lambda-138^{\circ}\right)^{\circ}-362.45\left(\varphi-37^{\circ}\right)^{\circ}+3.497$

| $\varphi^{2}$ | $139{ }^{\circ}$ | 1330 | $131^{\circ}$ | $1: 30$ | $1: 33^{\circ}$ | $134^{\circ}$ | 13:\% | $1366^{\circ}$ | $13 i^{\circ}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $46^{\circ}$ |  |  |  |  |  |  |  |  |  |
| $45^{\circ}$ |  |  |  |  |  |  |  |  |  |
| $4{ }^{\circ}$ |  |  |  |  |  |  |  |  |  |
| $43^{\circ}$ |  |  |  |  |  |  |  |  |  |
| $4 \because \circ$ |  |  |  |  |  |  |  |  |  |
| $41^{\circ}$ |  |  |  |  |  |  |  |  |  |
| $40^{\circ}$ |  |  |  |  |  |  |  |  |  |
| $39^{\circ}$ |  |  |  |  |  |  |  |  |  |
| $35^{\circ}$ |  |  |  |  |  |  |  |  | 29114 |
| $33^{\circ}$ |  |  |  |  |  |  |  | . 29565 | 29480 |
| $316{ }^{\circ}$ |  |  |  | . 30327 | . 30215 | .30110 | .30012 | . 29921 | 29837 |
| $33^{\circ}{ }^{\circ}$ |  |  | . 30787 | . 30669 | .30558 | .30454 | . 30357 | . 30268 | $30185$ |
| $34^{\circ}$ |  | . 31242 | . 31118 | .31002 | .30892 | 30790 | . 30694 | .30606 | 30524 |
| 333 ${ }^{\circ}$ | . 31692 | .31563 | . 3144 | . 31326 | . 31218 | 3111\% | 31022 | .30935 |  |
| $3: 30$ |  | .31876 | . 31755 | . 31642 | . 31535 |  |  |  |  |
| $: 31{ }^{\circ}$ |  | . 32181 | . 32061 | .31948 |  |  |  |  |  |
| $\left\lvert\, \begin{array}{ll}\varphi & \\ \end{array}\right.$ | 1390 | $133{ }^{\circ}$ | $1: 31^{\circ}$ | $130{ }^{\circ}$ | $13 ;{ }^{\circ}$ | $134^{\circ}$ | 13.9 | $1336^{\circ}$ | $13 \%^{\circ}$ |

X.

Degrees of Longitude and Latitude calculated by the Formula
$\left\{\left(\lambda-138^{\circ}\right)^{\circ}\right\}^{2}-1.316\left(\lambda-138^{\circ}\right)^{\circ}\left(c-37^{\circ}\right)^{\circ}-4.331\left\{\left(y-37^{\circ}\right)^{\circ}\right\}^{2}$.

| $135^{\circ}$ | $1: 39{ }^{\circ}$ | $140^{\circ}$ | $1+1^{\circ}$ | $14:{ }^{\circ}$ | $14:{ }^{\circ}$ | $144^{\circ}$ | $14.5^{\circ}$ | $14 i^{\circ}$ | $\cdots$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | .25497 |  |  |  |  | $46^{\circ}$ |
|  |  |  | $26000$ | $\text { . } 25939$ | 25884 |  |  |  | $45^{\circ}$ |
|  |  |  | . 26431 | . 26371 | 26319 | 26273 | 26234 | 26202 | $44^{\circ}$ |
|  |  | . 26919 | . 26854 | . 26795 | 26744 | 26699 | 26662 | 26632 | $43^{\circ}$ |
|  |  | $.27332$ | $.27268$ | $.27211$ | $27161$ |  |  |  | $4 \because 0$ |
|  |  | . 27736 | .27673 | . 27617 |  |  |  |  | $+1^{\circ}$ |
|  | . 28200 | .28131 | .28070 | $.28015$ |  |  |  |  | $40^{\circ}$ |
|  | . 28585 | . 28518 | .28458 | 28405 |  |  |  |  | $339{ }^{\circ}$ |
| . 29035 | . 28962 | . 28896 | 28837 | 28785 |  |  |  |  | $35^{\circ}$ |
| . 29401 | . 29330 | 29265 | 29208 |  |  |  |  |  | $33^{\circ}$ |
| . 29760 | . 29689 | . 29626 | . 29570 |  |  |  |  |  | 336 |
| . 30109 | 30040 | 29978 | $\text { . } 29923$ |  |  |  |  |  | $3.3)^{\circ}$ |
| . 30450 | . 30382 | 30322 |  |  |  |  |  |  | $334^{\circ}$ |
|  |  |  |  |  |  |  |  |  | 3i3 ${ }^{\circ}$ |
|  |  |  |  |  |  |  |  |  | $3:{ }^{\circ}$ |
|  |  |  |  |  |  |  |  |  | $: 31{ }^{\circ}$ |
| $135^{\circ}$ | $1399^{\circ}$ | $140^{\circ}$ | $141^{\circ}$ | $14: 3$ | $14: 3$ | $144^{\circ}$ | 14.5 | $146^{\circ}$ | $\varphi$ |

## TABLE

Tutal Forces in C.G.S. at 189.). 0 at the Intersections of entire Degrees of Longi-

XI.
tude and Latitude calculated from the Formule for Horizontal Force and Dip.


Northection Forces (X) in (..G.N at 1895. 0 at the Intersections of entire Degrees of


## XII.

Longitude and Latitude calculated from the Formnle for Horizontal Force and Declination.


Westuard Forces ( $\mathrm{I}^{+}$) in C.G.S. at 189.). (O at the Intersections of entire Degrees of

| $4{ }^{2}$ | $139^{\circ}$ | $130^{\circ}$ | $131^{\circ}$ | $1: 30$ | $13: 3^{\circ}$ | $1: 34^{\circ}$ | $13.5{ }^{\circ}$ | $136^{\circ}$ | $133^{\circ}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $46^{\circ}$ |  |  |  |  |  |  |  |  |  |
| $4.5{ }^{\circ}$ |  |  |  |  |  |  |  |  |  |
| $44^{\circ}$ |  |  |  |  |  |  |  |  |  |
| $43^{\circ}$ |  |  |  |  |  |  |  |  |  |
| $4 \because \circ$ |  |  |  |  |  |  |  |  |  |
| $41^{\circ}$ |  |  |  |  |  |  |  |  |  |
| $40^{\circ}$ |  |  |  |  |  |  |  |  |  |
| $39^{\circ}$ |  |  |  |  |  |  |  |  |  |
| $35^{\circ}$ |  |  |  |  |  |  |  |  | . 02776 |
| $33^{\circ}$ |  |  |  |  |  |  |  | . 02723 | . 02661 |
| $36{ }^{\circ}$ |  |  |  | . 02736 | .02718 | 02689 | 02650 | . 02601 | . 02541 |
| 33. ${ }^{\circ}$ |  |  | . 02602 | . 02598 | . 02583 | O2557 | O2520 | .02472 | . 02414 |
| $34^{\circ}$ |  | . 02445 | . 02455 | . 02454 | . 02441 | O2.418 | 0238 | 02338 | . 02282 |
| $33^{\circ}$ | . 02265 | . 02289 | . 02303 | . 02304 | . 02294 | 02274 | 02242 | .02199 |  |
| $33^{\circ}$ |  | . 02127 | . 02144 | .02149 | .02142 |  |  |  |  |
| $31^{\circ}$ |  | . 01961 | . oigSo | . 01988 |  |  |  |  |  |
| 9 | $129^{\circ}$ | $1330^{\circ}$ | $131^{\circ}$ | $13 \cdot{ }^{\circ}$ | $1333^{\circ}$ | $134^{\circ}$ | $135^{\circ}$ | $1: 6^{\circ}$ | $137^{\circ}$ |

## XIII.

Longitude and Latitude calculated from the Formule for Horizontal Force and Declination.

| $135^{\circ}$ | $139{ }^{\circ}$ | $140^{\circ}$ | $141^{\circ}$ | $14 \because^{\circ}$ | $143^{\circ}$ | $144^{\circ}$ | $145^{\circ}$ | $146^{\circ}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 02970 |  |  |  |  | $46^{\circ}$ |
|  |  |  | . 03025 | . 02908 | 02782 |  |  |  | 4.5 ${ }^{\circ}$ |
|  |  |  | $02957$ | 02840 | 02714 |  | . 02436 | . 22284 | $44^{\circ}$ |
|  |  | $\text { . } 02990$ | 2883 |  |  |  | $02362$ | $02210$ | $43{ }^{\circ}$ |
|  |  | $\text { . } 02909$ | . 02802 | 02686 | $.$ |  |  |  | $4 \geqslant{ }^{\circ}$ |
|  |  | $02822$ | $02716$ | $\begin{gathered} \text { s8 } \\ .02600 \end{gathered}$ |  |  |  |  | $41^{\circ}$ |
|  |  | ${ }^{93}$ | 9s | 91 |  |  |  |  |  |
|  | . 02825 | . 02729 | .02623 | 02509 |  |  |  |  | $40^{\circ}$ |
|  | $\text { . } 02725$ | $.02630$ | $.02526$ | $.02411$ |  |  |  |  | $39{ }^{\circ}$ |
| . 02702 | . 02618 | . 02525 | . 02422 | $\begin{gathered} 102 \\ .02309 \end{gathered}$ |  |  |  |  | $35^{\circ}$ |
| . 0258 | $\begin{aligned} & 111-02507 \\ & . \end{aligned}$ | $\begin{aligned} & -\quad 110- \\ & .02415 \end{aligned}$ | $\begin{gathered} 109- \\ .02313 \end{gathered}$ |  |  |  |  |  | $330^{\circ}$ |
| $-\quad .115-$ | $\begin{array}{r} .0239 \\ .02390 \end{array}$ | $-\quad . \quad 116$ | $\text { - } 115$ |  |  |  |  |  | $366^{\circ}$ |
| $-\quad .125-$ | $.$ | $-\quad \begin{array}{r} 122 \\ .02177 \end{array}$ | $\begin{aligned} & { }^{191} \\ & .02077 \end{aligned}$ |  |  |  |  |  | :35 ${ }^{\circ}$ |
| $.02216$ | $. \quad . \quad 129$ | $\begin{aligned} & 127 \\ & .02050 \end{aligned}$ |  |  |  |  |  |  | $34^{\circ}$ |
|  |  |  |  |  |  |  |  |  | 333 ${ }^{\circ}$ |
|  |  |  |  |  |  |  |  |  | $3: \because^{\circ}$ |
|  |  |  |  |  |  |  |  |  | :31 ${ }^{\circ}$ |
| $135^{\circ}$ | $139{ }^{\circ}$ | $140^{\circ}$ | $141^{\circ}$ | $143^{\circ}$ | $143{ }^{\circ}$ | $144^{\circ}$ | $145^{\circ}$ | $146^{\circ}$ | $\bigcirc$ |

# TABLE 

Ipacard Forces ( $/ 4$ ) in C.G.S. at 1895.0 at the Intersections of entire Degrees of Longi-


## XIV.

tude and Latitule calculated from the Formule for Horizontal Force and Dip.


Observed and Calculated Talues of Magnetic Elements

| No. | Station. | Height. in km. | Year. | Latitude. |  | Longitude. |  | Declination $\bar{\delta}$ |  |  |  | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|  |  |  |  |  |  | (1)served | Caleu- <br> lated |  | Obs.-Cal. |
| $1{ }^{\text {d }}$ | 'Tiky"............ | 0.02 | 1893-96 |  | 42.0 |  |  | $139{ }^{\circ}$ | $46^{\prime}$. | $4^{\circ} 2.2 .5$ | 4 | 24.3 | + 0.2 |
| I $b$ | " | 002 | I S96.50 |  | 41.0 | 139 | 45.0 | $4 \quad 27.6$ | 4 | 24.2 | $+3 \cdot 4$ |
| 2 | Hatiōzi .......... | O. 11 | $\left.\begin{array}{l} 1893.51 \\ 1895.48 \end{array}\right\}$ |  | 40.0 | 139 | 20.0 | $4 \quad 34.5$ | 4 | 2 S. 1 | + 6.4 |
| [3] | Saruhasi ......... | 0.31 | 1893.52 |  | 36.4 | 13 S | 58.8 | $\begin{array}{lll}5 & 05.4\end{array}$ | 4 | 30.4 | $+35.0$ |
| [4] | Köhu ............ | 0.26 | 1503.52 |  | 39.5 | 138 | 34.5 | $4 \quad 53 \cdot 4$ | 4 | 34.9 | +1S.5 |
| 5 | Uminokuti ...... | 1.07 | 1893.53 |  | 59.0 | 138 | 27.3 | + 16.6 | 4 | 41.6 | $-25.0$ |
| 6 | Usuta | 0.74 | 1893.54 |  | 11.0 | 13 S | $2 \mathrm{S}$. | $4 \quad 40.7$ | 4 | 45.0 | - 4.3 |
| [7] | Komoro ......... | 0.67 | 1893.54 |  | 19.7 | 13 S | 26.0 | $4 \quad 47.5$ | 4 | 47.8 | 0.0 |
| 8 | Miyota . | 0.50 | 1 S93.54 |  | 19.5 | 138 | 30.5 | $4 \quad 42.6$ |  | 47.1 | - 4.5 |
| 9 | Karuizawa*. | 0.97 | 1 593.55 | 36 | 21.7 | 138 | 38.3 | $\begin{array}{lll}4 & 43.5\end{array}$ | 4 | 46.6 | - 3.1 |
| [10] | Kıtukake ........ | 0.99 | 1803.55 |  | 20.5 | 135 | 33.0 | ... |  | 47.1 | ... |
| 11 | Ueda | 0.43 | 1803.56 |  | 24.0 | $13 S$ | 15.6 | $5 \quad 04.7$ | 4 | 50.5 | $+14.2$ |
| 12 | Kamisuwa ...... | 0.71 | 1 So3. 56 |  | 02.3 | 13 S | 07.7 | $4 \quad 49.5$ |  | $45 \cdot 3$ | $+4.2$ |
| 13 | Matumoto | 0.69 | 1893.57 |  | 14.0 | 137 | 59.0 | $4 \quad 36.3$ | 4 | 49.9 | $-13.6$ |
| 14 | $\overline{\text { Omati ........... }}$ | 0.69 | 1893.5S |  | 28.0 | 137 | 49.5 | $4 \quad 57.0$ |  | 55.3 | + 1.7 |
| [ 15$]$ | Kıruna | 0.60 | IS93.5 |  | 4.0 | 137 | 51.0 | $4 \quad 45 \cdot 9$ | 5 | 00.9 | $-15.0$ |
| 16 | Itoigawa ......... | 0.00 | 1 S93.77 |  | 02.5 | 137 | 52.0 | 5 | 5 | 05.0 | $+3.4$ |
| 17 | Takata . | 0.00 | 1803.59 |  | 06.8 | 138 | 16.0 | $\begin{array}{lll}5 & 11.7\end{array}$ | 5 | 02.8 | + 8.9 |
| I 8 | Sekiyama ....... | 0.56 | 1893.60 |  | 56.5 | 13 S | 13.5 | $5 \quad 00.6$ | 5 | 00.2 | + 0.4 |
| 19 | Nagano .......... | 0.38 | 1893.60 |  | 39.8 | 138 | 12.0 | $4 \quad 57.8$ | 4 | 55.6 | + 2.2 |
| 20 | I iyama ........... | 0.31 | 189361 | 36 | 52.3 | 13 S | 22.2 | $5 \quad 07.1$ |  | 57.S | + 9.3 |
| 21 | Tokamati ....... | 0.16 | 1893.62 | 37 | 09.0 | 138 | 44.0 | $5 \quad$ O2.I | 4 | 59.3 | + 2.8 |

Bracketed number shows that the station is excluded in the equations of condition.
XV.
( 0,0 , H, and I) Reducerl to 189.) 0 and Sea Level.

| Dip 9. |  |  | Horizontal Force II. |  |  | Total Force I. |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (1) served | $\begin{aligned} & \text { Caleu- } \\ & \text { lated } \end{aligned}$ | (1)ns-Cal. | $\begin{gathered} \text { Oh, } \\ \text { setvel } \end{gathered}$ | $\begin{aligned} & \text { Calcul- } \\ & \text { later } \end{aligned}$ | Ohas.Cal. | $\begin{aligned} & \text { Oh- } \\ & \text { serve. } \end{aligned}$ | $\begin{aligned} & \text { Calcu- } \\ & \text { lited } \end{aligned}$ | Ofis.-Cal. |  |
| $49^{\circ} \mathrm{O} \cdot \frac{1}{7} 7$ | $49^{\circ} \mathrm{O} 0.6$ | $-4.9$ | 20760 | 29747 | + $\mathrm{I}^{Y}$ | $4543{ }^{\gamma}$ | $4548{ }^{\text {\% }}$ | - 54 | I $A$ |
| 4900.0 | 49 c8.6 | - 8.6 | 29.816 | 29754 | + 62 | 45447 | $454{ }^{\text {S }} 3$ | - 3') | Ib |
| $49 \quad 02.4$ | 49 10.0 | $-7.6$ | 29766 | $29-56$ | - 20 | 4540 S | 45553 | $-145$ | 2 |
| $49 \quad 46.2$ | 49 OS.O | $+35.2$ | 29215 | 29830 | $-\mathrm{Cr}_{5}$ | 45234 | 45590 | $-356$ | [3] |
| $50 \quad 13 \cdot 4$ | 49 I 4.3 | + 59.1 | 28899 | 2¢S39 | - 940 | 45169 | 45:01 | - 532 | [4] |
| $49 \quad 16.2$ | $49 \quad 37.5$ | $-21.3$ | 29833 | 29733 | + 100 | 45721 | 45899 | - 17\% | 5 |
| $49 \quad 47.5$ | $49 \quad 51.2$ | $-3.7$ | 299.45 | 23661 | $+2 S_{4}$ | $4638+$ | $4 \bigcirc 00 \cdot$ | $+3 \mathrm{So}$ | 6 |
| 49 54.S | 50 CI. 5 | $-6.7$ | 29502 | 29611 | $-109$ | 46791 | 46039 | $+702$ | [7] |
| $49 \quad 57.2$ | $50 \quad 00.7$ | $-3.5$ | 20655 | 20607 | + 48 | 46090 | 460-0 | + 20 | 8 |
| $49 \quad 51.1$ | $50 \quad 0 \cdot 3$ | $-11.2$ | 29719 | 29585 | 134 | 46093 | 46063 | + 30 | 9 |
| 4930.8 | $50 \quad 01.9$ | - 31.1 | 29545 | 29597 | - 49 | 45509 | 46074 | - 565 | [10] |
| $50 \quad 02.5$ | $50 \quad 07.6$ | $-5.1$ | 29874 | 29508 | $+276$ | 46514 | 46168 | + 376 | 11 |
| $49 \quad 43.9$ | $49 \quad 43.6$ | + 0.3 | 2, $8_{7} 72$ | 29735 | +135 | 46217 | 4 f001 | +216 | 12 |
| $50 \quad 00.1$ | $49 \quad 58.1$ | + 2.3 | 29505 | 29675 | $-83$ | $460+8$ | 4G14 | - 93 | 13 |
| $50 \quad 16.0$ | $50 \quad 15.4$ | + 0.6 | 29613 | 29607 | + 6 | 46327 | 46307 | + 20 | 14 |
| $50 \quad 15.5$ | $50 \quad 35.1$ | - 22.6 | 29765 | $29 ; 85$ | $+280$ | 46556 | 46458 | + 65 | [15] |
| $5 \mathrm{I} \quad 01.3$ | $50 \quad 54.5$ | + 6.5 | 29246 | 29396 | $-150$ | 46494 | 46619 | - 125 | 16 |
| $50 \quad 54.7$ | $50 \quad 56.3$ | - $\quad 1.6$ | 29362 | 29340 | + 22 | 465 CS | 46560 | + S | 17 |
| $50 \quad 53.0$ | $50 \quad 44.9$ | + 8.1 | 293:0 | 29406 | - 66 | 46505 | 46475 | + 30 | IS |
| $50 \quad 33.4$ | $50 \quad 26.1$ | + 73 | 29.342 | 29508 | - 166 | 4618; | 46328 | - 143 | 19 |
| $50 \quad 43.2$ | $50 \quad 39.1$ | + 4.1 | 29364 | 29421 | - 57 | 46351 | 46.903 | 22 | 20 |
| $50 \quad 55.2$ | $50 \quad 55 \cdot 4$ | - 0.2 | 29.36 S | 2929.4 | + 74 | 46585 | 4 $47^{2}$ | +113 | 21 |

## TABLE

Olserved and Calculated Values of Magnetic Elements

| No. | Station. | ITeight. in km. | Year. | Latitede. |  | Longitude. |  | Declination $\bar{\delta}$. |  |  |  |  | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|  |  |  |  |  |  |  | O1)- served |  | $\begin{aligned} & \text { alcu- } \\ & \text { ated } \end{aligned}$ | Obs.-Cal. |
| 22 | Nagaoka ......... | 0.03 | 1893.64 |  | 27.0 |  |  | $13 S^{\circ}$ | 52.2 |  | ${ }^{\circ} 14.3$ | 5 | 03.2 | + It. ${ }^{\text {\% }}$ |
| [23] | Kasiwazaki...... | 0.00 | 1893.63 |  | 22.5 | 138 | 34.3 |  | ... | 5 | 04.7 | $\ldots$ |
| [24] | Teradomari..... | 0.00 | IS93. 64 |  |  | 138 | 45.5 |  | $\cdots$ | 5 | 07.4 | ... |
| 25 | Niigata | 0.00 | $\left.\begin{array}{l} 1893.64 \\ 1595.62 \end{array}\right\}$ | 37 | 54.8 | 139 | 03.2 |  | 29.5 | 5 | 09.4 | $+20.1$ |
| [26] | K゙amo | 0.10 | IS93.65 |  | 37.5 | 139 | 03.0 |  | 30.4 | 5 | 04.4 | $+26.0$ |
| 27 | Sibata ........... | 0.02 | 1893.66 |  | 56.0 | 139 | 19.0 |  | 34.7 | 5 | 07.0 | $+27.7$ |
| 28 | Ebisı ............ | 0.00 | I 993.67 |  | 05.2 | 13 S | 25.5 |  | 45.5 | 5 | 18.2 | $+27.3$ |
| 29 | Wasizaki | 0.00 | 1893.67 |  | 18.5 | 138 | 31.0 |  | 43.6 | 5 | 21.1 | $+225$ |
| 30 | Aikawa .. | 0.05 | 1893.68 |  | 02.5 |  | 14.2 |  | 22.6 | 5 | 19.1 | + 3.5 |
| 31 | Ogi ............... | 0.00 | I 593.69 |  | 49.0 |  | 15.4 |  | 09.6 | 5 | 15.1 | - 5.5 |
| [32] | Ozasa | 0.90 | 1893.70 |  | 29.6 |  | 30.5 |  | 10.3 | 4 | 50.0 | $-39.7$ |
| [33] | Wrakasare ....... | 1.40 | 1893.70 |  | 24.6 | 13 S | 34.2 |  | 47.3 | 4 | 48.0 | $-60.7$ |
| [34] | Asama ........... | 2.45 | 1593.70 |  | 24.0 |  | 30.5 |  | 13.0 | 4 | 48.4 | $-95.4$ |
| 35 | Matuida | 0.26 | 1893.70 | 36 | 18.5 |  | 48.6 |  | 41.2 | 4 | 44.1 | - 2.9 |
| 36 | Takasaki | 0.10 | 1893.71 |  | 19.5 | 139 | 00.5 |  | 54.0 | 4 | 42.6 | + 11.4 |
| 37 | Numata. | 0.42 | $\left.\begin{array}{l} \text { I S9.3.72 } \\ 1595.49 \end{array}\right\}$ |  | 39.2 | I 39 | 02.0 |  | 41.0 | 4 | $4^{8.0}$ | $-7.0$ |
| 3 S | Kumagai......... | 0.03 | 1893.72 | 36 | 09.0 | 139 | 23.2 |  | 19.5 | 4 | 35.9 | $-16.4$ |
| 39 | Odawarat ......... | 0.03 | 1893.74 |  | 15.0 | 139 | 09.8 |  | 34.6 | 4 | 22.5 | $+12.1$ |
| [40] | Atami ........... | 0.00 | I 893.75 | 35 | 05.7 | I 39 | 05.0 |  | 26.7 | 4 | 20.6 | +6.1 |
| [41] | Simodir .......... | 0.00 | 1593.77 | 34 | 40.5 | 138 | 57.5 |  | 42.3 | 4 | 14.3 | $-32.0$ |
| 42 | Matuzaki | 0.00 | 1893.75 |  | 45.3 | 138 | 48.5 |  | 23.1 | 4 | 17.1 | + 6.0 |

Bracketed number shows that the station is excluded in the equations of condition.

## X V. (Continued.)

( $\delta, \theta$, H, and I) Reduced to 1895. 0 and Siea Level.

| Dip ${ }^{\text {O }}$ |  |  | Horizontal Force II. |  |  | Total Force I. |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Ob- } \\ & \text { served } \end{aligned}$ | Catcu- latert | (1)s.-Cal. | $\begin{aligned} & \text { ob- } \\ & \text { servel } \end{aligned}$ | $\begin{aligned} & \text { Calcu- } \\ & \text { lated } \end{aligned}$ | Ohse-Cal. | $\begin{aligned} & \text { Oh- } \\ & \text { served } \end{aligned}$ | $\begin{aligned} & \text { Calen- } \\ & \text { lated } \end{aligned}$ | Ols. Cal. |  |
| $51^{\circ} \quad 39.4$ | $51^{\circ} 14.7$ | + 24.7 | 29013 | 29174 | $-16 i^{i}$ | $46766^{\gamma}$ | $46605^{\gamma}$ | + $16{ }^{\text {Y }}$ | 22 |
| $\begin{array}{lll}51 & 55.3\end{array}$ | 5111.8 | $+43.5$ | $2 S^{51}$ | 29223 | $-372$ | 46780 | 46635 | $+145$ | [23] |
| $51 \quad 35.1$ | 5 I 2S.I | $+7.0$ | 29155 | 29113 | $+42$ | 46921 | 46735 | + 1S6 | [24] |
| $51 \quad 54.6$ | $51 \quad 44.6$ | $+10.0$ | 2 SS 99 | 28992 | - 93 | 46846 | 46823 | + 23 | 25 |
| 5158.2 | $5 \mathrm{I} \quad 25.2$ | $+33.0$ | 28992 | 29007 | $-105$ | 47059 | 46660 | + 399 | [26] |
| 5181.9 | 5143.9 | - 2.0 | 28924 | $2 \mathrm{S965}$ | - 41 | $4^{6666}$ | 46766 | - Ioo | 27 |
| 5151.0 | 5200.8 | - 9.8 | 29012 | $2 \mathrm{S971}$ | + 41 | 46967 | 47071 | $-104$ | $2 S$ |
| 5210.1 | $52 \quad 14.9$ | $-4.8$ | 28796 | 28SSI | $-S_{5}$ | 46949 | 47172 | - 223 | 29 |
| 5209.4 | 5150.3 | + IO.I | 28747 | 29001 | - 254 | 46857 | 47093 | $-236$ | 30 |
| 5126.0 | 5144.0 | $-18.0$ | 29257 | 29083 | + 174 | 46930 | 46959 | - 29 | 31 |
| $50 \quad 54.0$ | 5012.3 | $+41.7$ | 29539 | 29547 | - 8 | 46837 | 46165 | +672 | [32] |
| $50 \quad 00.0$ | $50 \quad 06.1$ | - 6.1 | 29870 | 29573 | +297 | 46.470 | 46106 | +364 | [33] |
| 5145.2 | $30 \quad 05.9$ | $+99.3$ | 30198 | 295So | +618 | 48781 | 46113 | $+2668$ | [34] |
| $49 \quad 59.3$ | $49 \quad 57.5$ | + 1.8 | 29627 | 29592 | + 35 | 46080 | 45996 | $+S_{4}$ | 35 |
| 50.3073 | $49 \quad 57.3$ | $+10.0$ | 29604 | 29573 | $+31$ | 46172 | 45965 | $+207$ | 36 |
| $50 \quad 19.3$ | $50 \quad 19.5$ | - 0.2 | 29443 | 29453 | - 10 | 46115 | 46133 | - IS | 37 |
| $49 \quad 5 \mathrm{~S} .4$ | 4942 S | $+15.6$ | 29559 | 29611 | - 52 | 45960 | 45794 | $+166$ | 38 |
| 49 og. 1 | 4 S 42.2 | $+26.9$ | 30217 | 29943 | + 274 | 46199 | 45371 | $+828$ | 39 |
| $4 \mathrm{~S} \quad 57.9$ | $48 \quad 31.9$ | $+26.0$ | 29353 | 30002 | - 649 | 44710 | 45306 | - 596 | [40] |
| $47 \quad 53.3$ | $48 \quad 03.3$ | $-10.0$ | 30186 | 30155 | + 31 | 45015 | 45114 | - 99 | [41] |
| $48 \quad 12.0$ | $4 \mathrm{~S} \quad \mathrm{og.S}$ | + 2.2 | 30149 | 30137 | + 12 | $45^{2} 3^{2}$ | $4518_{3}$ | + 49 | 42 |

## TALBE

Observed and Calculated Values of Magnetic Elements

$\dagger$ Epoch for the observation of $\delta . \quad *$ Epoeh for the observations of 0 and H.

## XV. (Continued.)

( $\delta, \theta, \mathrm{H}$, and I) Reduced to 1895.0 and Sea Level.

| Dip $\theta$. |  |  | Horizontal Force H. |  |  | Total Force I. |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { ob- } \\ & \text { served } \end{aligned}$ | $\begin{aligned} & \text { Calcu- } \\ & \text { lated } \end{aligned}$ | Olss.-Cal. | Observed | $\begin{gathered} \text { Caleu- } \\ \text { lated } \end{gathered}$ | Ols.-Cal. | Observed | Calculated | Obs. Cal. |  |
| $49^{\circ}$ 02. 6 | $48^{\circ} 46^{\prime} 9$ | + 15.7 | $29623{ }^{\gamma}$ | $29888^{\gamma}$ | $-265^{\gamma}$ | $4519^{\gamma}$ | 45359 | $-167^{\gamma}$ | 43 |
| $48 \quad 36.3$ | $48 \quad 39.4$ | - 3.1 | 29832 | 29906 | - 74 | 45114 | 45273 | - 159 | 44 |
| $49 \quad 50.1$ | $48 \quad 49.6$ | $+60.5$ | 29218 | 29931 | $-713$ | 45299 | 45464 | $-165$ | [45] |
| 49 14.1 | $48 \quad 59.5$ | + 14.6 | 29698 | 29891 | - 193 | 45483 | 45554 | -71 | [46] |
| $50 \quad 25 \cdot 3$ | $48 \quad 56.1$ | $+89.2$ | 288.35 | 29909 | -1074 | 45258 | 45529 | - 271 | [47] |
| $\begin{array}{ll}59 & 18.8\end{array}$ | $48 \quad 52.6$ | $+626.2$ | 26215 | 29929 | $-3714$ | 51368 | 45507 | $+5861$ | [4S] |
| $52 \begin{array}{ll}51.9\end{array}$ | $48 \quad 52.7$ | +229.2 | 29328 | 29932 | - 604 | 4S395 | 45512 | $+2883$ | [49] |
| $\begin{array}{lll}59 & 14.5\end{array}$ | $48 \quad 52.3$ | $+622.2$ | 24647 | 29934 | $-5287$ | 48193 | 45510 | $+2683$ | [50] |
| $47 \quad 42.4$ | $48 \quad 52.4$ | $-70.0$ | 31221 | 29933 | $+1288$ | 46396 | 45510 | + SS6 | [51] |
| $48 \quad 55.8$ | $48 \quad 45.3$ | $+10.5$ | 30595 | 29976 | $+619$ | 46569 | 45467 | +1102 | [52] |
| $49 \quad 15.2$ | $48 \quad 52.7$ | $+22.5$ | 29768 | $299+4$ | $-176$ | 45594 | 45531 | +63 | [53] |
| $48 \quad 50.4$ | $48 \quad 52.7$ | - 2.3 | 29700 | 29945 | - 245 | 45124 | 45532 | - 408 | [54] |
| $49 \quad 39.9$ | $4^{8} \quad 52.7$ | $+47.2$ | 29937 | 29943 | - 6 | 46252 | 45529 | + 723 | [55] |
| $40 \quad 04.5$ | $48 \quad 54.3$ | - 529.8 | 34010 | 29937 | $+4073$ | 44446 | 45545 | -1099 | [56] |
| $48 \quad 18.1$ | $48 \quad 54.3$ | $-36.2$ | 2986 | 29937 | - 77 | 44888 | 45545 | - 657 | [57] |
| $47 \quad 39.8$ | $48 \quad 54.3$ | $-74.5$ | 29109 | 29937 | $-828$ | 43221 | 45545 | -2324 | [58] |
| $46 \quad 20.8$ | $48 \quad 53 \cdot 3$ | -152.5 | 29386 | 29943 | - 557 | 42565 | 45539 | -2974 | [59] |
| $\begin{array}{lll}46 & 38.7\end{array}$ | $48 \quad 53.3$ | $-134.6$ | 26126 | 29943 | $-3817$ | 38056 | 45539 | $-7483$ | [60] |
| $42 \quad 14.9$ | $48 \quad 53.3$ | $-39 \mathrm{~S} .4$ | 31593 | 29943 | $+1650$ | 42680 | 45539 | $-2859$ | [6I] |
| $48 \quad 35.1$ | $48 \quad 43.8$ | $-8.7$ | 30275 | 29986 | + 289 | 45767 | 45460 | $+307$ | [62] |
| $48 \quad 23.0$ | $\begin{array}{lll}48 & 32.4\end{array}$ | - 9.4 | 30108 | 30019 | + 89 | 45337 | 45340 | - 3 | 63 |

Bracketed number shows that the station is excluded in the equations of condition.

## TABLE

Observed aud Calculated Values of Magnetic Elements

$\dagger$ Epoch for the ubservation of $\delta$. * Epoch for the observations of $t$ and 11 .

## XV. (Continued.)

( 1 , $\theta$, H, and I) Reduced to 1895.0 and Sea Level.

| Dip 0. |  |  | Horizontal Force II. |  |  | Total Force I. |  |  | No. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (1) served | Calen- lated | Ohs.-Cal. | (1)- | Calculated | O1-.Cal. | (1). served | $\begin{aligned} & \text { Calcu- } \\ & \text { lated } \end{aligned}$ | Ols.e.cal. |  |
| $45^{\circ} 33.1$ | $45^{\circ} 29.5$ | + 3.6 | $3015{ }^{\prime}$ | $30071^{Y}$ | $+\mathrm{Sz}^{\gamma}$ | $45552^{\gamma}$ | 45375 | +17\% | 64 |
| $\begin{array}{lll}43 & 38.3\end{array}$ | $48 \quad 35.6$ | + 2.7 | 30049 | 30110 | - 6I | 45473 | 4552 t | $-51$ | 65 |
| $48 \quad 32.8$ | $48 \quad 34.1$ | - 1.3 | 30110 | 30194 | $-S_{4}$ | 45482 | 45629 | - 147 | 66 |
| $48 \quad 23.5$ | $48 \quad 23.2$ | + 0.3 | 30255 | 30271 | $-16$ | 45563 | 4558 | - 20 | 67 |
| $48 \quad 45.6$ | $48 \quad 45 \cdot 3$ | $+0.3$ | 30133 | 30159 | - 26 | 45710 | 45746 | - 36 | 65 |
| $48 \quad 47.3$ | $48 \quad 52.0$ | - 4.7 | 30186 | 30130 | + 56 | 45817 | $45 \mathrm{SO}_{4}$ | + 13 | 69 |
| $48 \quad 48.5$ | $48 \quad 48.2$ | $+0.3$ | 30173 | 30172 | $+$ | 45SI 5 | 45 Sog | $+6$ | 70 |
| $18 \quad 38.7$ | $48 \quad 40.2$ | 1.5 | 30206 | 30224 | $-18$ | 45716 | 45767 | - 51 | 71 |
| $48 \quad 33 \cdot 3$ | $48 \quad 33.7$ | - 0.4 | 30198 | 30274 | $-76$ | 45623 | 45744 | $-121$ | 72 |
| $48 \quad 34.5$ | $48 \quad 22.7$ | + 11.8 | 30205 | 30321 | $-116$ | 45652 | 45650 | + 2 | 73 |
| $4^{8} \quad 09.0$ | $48 \quad 0.6$ | $+3.4$ | $303+5$ | 30376 | - 31 | 45483 | 45478 | + 5 | 74 |
| $47 \quad 57.2$ | $48 \quad 03.7$ | - 6.5 | 30.413 | 30374 | + 39 | 45411 | 4544 S | $-\quad 37$ | 75 |
| $48 \quad 53.7$ | $48 \quad 54.7$ | 1.0 | 30094 | 30113 | - 19 | 45774 | 45818 | - 44 | 76 |
| $48 \quad 554$ | $48 \quad 54.4$ | + 5.0 | 30084 | 3012 S | - +4 | 45786 | 45837 | - 51 | 77 |
| $49 \quad 07.7$ | $49 \quad 10.9$ | $-3.2$ | 30064 | 30057 | + 7 | $459+4$ | 459 Sz | - 3 S | 78 |
| $49 \quad 07.6$ | 4909.3 | $-1.7$ | 29,03 | 29976 | $-73$ | 45696 | 45833 | $-137$ | 79 |
| $49) 06.1$ | $49 \quad 09.5$ | - 3.4 | 29860 | 29942 | - S2 | 45607 | 457 S 5 | $-178$ | So |
| 49 10.8 | $49 \quad 06.9$ | + 3.9 | 29841 | 29951 | $-110$ | 45650 | 4575 S | - 108 | Si |
| $50 \quad 22.3$ | $49 \quad 32.5$ | $+49.9$ | 29614 | 29 S 41 | - 227 | 46430 | 45988 | $+44^{2}$ | [S2] |
| $49 \quad 37.5$ | $49 \quad 47.2$ | $-\quad 9.7$ | 29942 | 29779 | +163 | 46222 | 46123 | + 99 | $\mathrm{s}_{3}$ |
| $49 \quad 46.2$ | $49 \quad 56.5$ | $-10.3$ | 29819 | 29768 | + 51 | 46169 | 46255 | - 86 | S4 |

Bracketed number shows that the station is excluded in the eqnations of condition.

## TABLE

Observed and Calculated Values of Magnetic Elements


Bracketed number shows that the station is excluded in the equations of condition.

## X. (Continuecl.)

( $\delta, \theta$, II, and I) Reduced to 1895.0 and Sea Level.

| Dip ${ }^{\circ}$ |  |  | Horizontal Force H. |  |  | Total Force 1. |  |  | No. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Ol, - } \\ & \text { served } \end{aligned}$ | Calculated | Ohs.-Cal. | $\begin{aligned} & \text { Oh- } \\ & \text { served } \end{aligned}$ | Calculated | Obs.-Cal. | $\begin{aligned} & \text { Ob- } \\ & \text { served } \end{aligned}$ | Calculated | Obs.-ral. |  |
| $49^{\circ} 30.4$ | $49^{\circ} 33.4$ | - 3.0 | $29903^{\gamma}$ | $29856^{\gamma}$ | + 17 | $4605{ }^{\text {I }}$ | $46092^{\gamma}$ | $-4 r^{\gamma}$ | 85 |
| $49 \quad 22.4$ | 49 31.1 | $-8.7$ | 30008 | 29934 | + 74 | $4605_{7}$ | 46109 | - 22 | S6 |
| 49 28.1 | $49 \quad 29.8$ | $-1.7$ | 29950 | 29985 | - 35 | 45057 | 45167 | - So | 87 |
| $49 \quad 07.8$ | $49 \quad 11.4$ | - 3.6 | 30102 | 30117 | - 15 | 46003 | $460{ }_{2}$ | - 79 | 88 |
| $49 \quad 25.0$ | $49 \quad 32.5$ | - 7.5 | 30149 | 30040 | $+100$ | 46341 | 46295 | + 49 | S9 |
| $49 \quad 27.9$ | $49 \quad 47.7$ | $-19.8$ | 30339 | 29946 | + 393 | 46651 | 46390 | + 291 | 90 |
| $49 \quad 56.4$ | $49 \quad 52.1$ | $+4.3$ | 29895 | $298 S_{4}$ | + 11 | $4645^{\circ}$ | 46365 | $+S_{5}$ | 91 |
| $50 \quad 17.2$ | $50 \quad 14.2$ | + 3.0 | 29704 | 29799 | - 95 | $464{ }^{8} 9$ | 46590 | - 101 | 92 |
| $50 \quad 45.8$ | $50 \quad 31.0$ | + 14.8 | 29617 | 29665 | - 48 | 46823 | 46653 | +170 | 93 |
| $51 \quad 09.0$ | 5102.5 | + 6.5 | 2952S | 29459 | + 69 | 47073 | 46853 | + 220 | 94 |
| 5132.2 | $51 \quad 24.9$ | + 73 | 29205 | 29351 | $-146$ | 46953 | 4706I | $-108$ | 65 |
| $50 \quad 48.0$ | $50 \quad 33.7$ | + 14.3 | 29337 | 29581 | - 244 | 46417 | 46565 | $-148$ | 96 |
| $50 \quad 00.9$ | $50 \quad 19.9$ | $-19.0$ | 29789 | 29652 | +137 | 46358 | 46450 | - 92 | 97 |
| 5040.0 | $50 \quad 44.4$ | - 4.4 | 29485 | 29497 | - 12 | 46519 | 46610 | - 91 | 98 |
| $56 \quad 44.6$ | $\begin{array}{lll}56 & 29.3\end{array}$ | + 15.3 | 26687 | 27056 | $-369$ | 48666 | 49005 | - 339 | 99 |
| $56 \quad 17.6$ | $56 \quad 30.1$ | - 12.5 | 27243 | 27097 | + 146 | 49092 | 49096 | - 4 | 100 |
| $56 \quad 43.2$ | $\begin{array}{lll}56 & 4^{8} .5\end{array}$ | - 5.3 | 26991 | 26992 | - 1 | 49188 | 49307 | - 119 | 101 |
| $56 \quad 52.3$ | $56 \quad 57.8$ | - 5.5 | 26790 | 26893 | $-103$ | 49020 | 49330 | $-310$ | 102 |
| $56 \quad 57.8$ | $57 \quad 20.3$ | - 22.5 | 27032 | 26756 | + 276 | $495^{84}$ | 49578 | + 6 | [103] |
| $57 \quad 32.0$ | $\begin{array}{lll}57 & 18.5\end{array}$ | $+13.5$ | 26683 | 26746 | - 63 | 49707 | 49519 | + 188 | [104] |
| $57 \quad 10.3$ | $\begin{array}{lll}57 & 06.9\end{array}$ | + 3.4 | 26762 | 26769 | $-7$ | 49365 | 49303 | + 62 | [105] |

Observed and Calculated Values of Magnetic Elements

| No. | Station. | Height in km. | Year. | Latitude. | Longitude. | Declination $\hat{\delta}^{\text {. }}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | (1) served | $\begin{aligned} & \text { Calcu- } \\ & \text { lated } \end{aligned}$ | Ohs.-Cal. |
| 106 | Otaru <br> Myokenzan ... | 0.04 | 1894.62 | $43^{\circ} \mathrm{II} .9$ | $141^{\circ} 00.6$ | $6^{\circ} 17.7$ | $6^{\circ} \mathrm{I} 2.7$ | + 5. ${ }^{\prime}$ |
| 107 | Sapporo .......... | 0.00 | 1894.55 | $43 \quad 04.8$ | 14121.0 | $6 \quad 10.6$ | 6 06. 1 | $+4.5$ |
| [108] | Iwamizawa | 0.00 | IS94.56 | $43 \quad 12.9$ | 14145.0 | $5 \quad 27.3$ | $6 \quad 02.5$ | $-35.2$ |
| 109 | Soratipt.......... | 0.00 | IS94.56 | $43 \quad 34.0$ | 14154.7 | 5 50.1 | $6 \quad 05.6$ | $-15.5$ |
| 110 | Tip-Yabusi...... | 0.2 I | 1894.57 | $43 \quad 26.5$ | $142 \quad 17.2$ | $5 \quad 33.2$ | 5 5S.0 | $-24.5$ |
| III | Asahikawa...... | 0.00 | I 894.58 | $43 \quad 46.5$ | $142 \quad 20.2$ | 6 20.1 | $\begin{array}{ll}6 & 02.3\end{array}$ | +17.8 |
| [112] | Ohotukawa...... | 0.10 | 1894.59 | $43 \quad 43.2$ | 14157.0 | ... | $\begin{array}{ll}6 & 07.3\end{array}$ | ... |
| [ 1133$]$ | Porokamikotan | 0.70 | 1894.60 | $44 \quad 00.0$ | 142 об.0 | $6 \quad 12.0$ | $6 \quad 09.4$ | + 2.6 |
| I 14 | Masike........... | 0.00 | 1894.64 | $43 \quad 51.3$ | 14131.8 | $6 \quad$ og.I | $6 \quad 15.6$ | $-6.5$ |
| 115 | Sirasitomari ..... | 0.00 | IS94.64 | $44 \quad 18.7$ | 14139.0 | $6 \quad 27.5$ | $6 \quad 20.9$ | + 6.9 |
| 116 | Hūren | 0.00 | I S94.65 | $44 \quad 34.6$ | 14146 | $6 \quad 13.9$ | $6 \quad 23.1$ | $-9.2$ |
| 117 | Tesio.............. | 0.00 | 1894.66 | $44 \quad 53 \cdot 3$ | 14144.1 | $6 \quad 24 . S$ | $6 \quad 28.5$ | $-3.7$ |
| [ IIS $]$ | Pūsinai-pitari... | 0.00 | I 894.67 | $44 \quad 50.2$ | $142 \quad 03.7$ | $5 \quad 29.1$ | $6 \quad 22.8$ | $-53.7$ |
| [119] | Oknrumatoma- <br> nai. $\qquad$ | 0.04 | I 894.68 | $44 \quad 36.0$ | $1.42 \quad 17.8$ | $7 \quad 053$ | $6 \quad 15.5$ | $+49.5$ |
| [120] | Nayoropt ........ | 0.08 | I 894.69 | $44 \quad 23.4$ | $142 \quad 27.2$ | $6 \quad 5 \mathrm{t} 3$ | $6 \quad 09.8$ | $+41.5$ |
| [121] | Nuppamamoi ... | 0.01 | I 894.70 | $44 \quad 54.3$ | 14159 | ... | $6 \quad 25.0$ | ... |
| [122] | Wiakasakanai... | 0.00 | I 894.70 | $45 \quad 06.7$ | 14137.0 | ... | $6 \quad 33.7$ | ... |
| 123 | Wakkanai ....... | 0.00 | I \$94.71 | $45 \quad 24.0$ | 14139.0 | $6 \quad 49.8$ | $6 \quad 37.6$ | + 12.2 |
| 124 | Süya .......... .... | 0.00 | I S94.71 | $45 \quad 29.4$ | 14152.7 | $6 \quad 39.4$ | $6 \begin{array}{ll}6 & 35.5\end{array}$ | + 39 |
| [125] | Sarnbutu ......... | 0.00 | 1894.72 | $45 \quad 16.7$ | 14214.0 | $\begin{array}{ll}7 & 16.7\end{array}$ | $6 \quad 26.8$ | $+49.9$ |
| [126] | Exasi.............. | 0.00 | 1894.73 | $44 \quad 57.0$ | 14234.9 | $7 \quad 03.0$ | $6 \quad 16.3$ | $+46.7$ |

Bracketed number shows that the station is excluded in the equations of condition.

## XV. (Continued.)

(i, H, II, and I) Reduced to 189.5. 0 and Sea Level.

| Dip 0. |  |  | IIorizontal Force II. |  |  | Total Force I. |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { no. } \\ & \text { servent } \end{aligned}$ | $\begin{gathered} \text { Calcu-1- } \\ \text { lated } \end{gathered}$ | Obs.-Cal. | $\begin{aligned} & \mathrm{Ob}- \\ & \text { serven } \end{aligned}$ | $\begin{aligned} & \text { Calcu-u- } \\ & \text { lated } \end{aligned}$ | Obs.- 'al. | $\begin{aligned} & \text { olp- } \\ & \text { served } \end{aligned}$ | $\begin{aligned} & \text { Calcu- } \\ & \text { lated } \end{aligned}$ | Obseral. |  |
| $57^{\circ}$ oo. 4. | $57^{\circ} 06.8$ | - 6.4 | 26921 | 26750' | $+15 i^{\prime \prime}$ | $4943{ }^{\text {\% }}$ | 49303 | +1.35 | 106 |
| $57 \quad$ oS.8 | $56 \quad 56.8$ | + 12.0 | 26496 | 26799 | - 303 | 48841 | 49135 | - 297 | 107 |
| 5714.7 | $\begin{array}{ll}57 & 01.7\end{array}$ | $+13.0$ | 26492 | 26719 | $-237$ | 48945 | 49095 | - 150 | [108] |
| $57 \quad 22.2$ | $57 \quad 21.6$ | + 0.6 | 26577 | 26561 | + 16 | 49289 | 49245 | + 44 | 109 |
| $\begin{array}{lll}57 & 15.9\end{array}$ | 57 II.1 | + 4.3 | 26545 | 26593 | - 48 | 49089 | 49071 | + 18 | 110 |
| $57 \quad 30.7$ | $57 \quad 30.7$ | 0.0 | 26416 | 26449 | - 33 | 49180 | 49241 | -6I | 111 |
| $57 \quad 35.0$ | 57 30. 5 | + 4.5 | 26595 | 26494 | +101 | 49611 | 49320 | + 291 | [12] |
| $58 \quad 0.8$ | 57 46.1 | + 18.7 | 26439 | 26366 | + 73 | 50505 | 49434 | + 57 I | [113] |
| $57 \quad 34.9$ | $57 \quad 42.2$ | $-7.3$ | 26519 | 26460 | + 59 | 49463 | 49522 | - 59 | 114 |
| $58 \quad 15.8$ | 5 S | $+7.3$ | 26245 | 26258 | $-13$ | 49895 | 49747 | + 148 | 115 |
| $5 \mathrm{~S} \quad 25.5$ | $58 \quad 23.1$ | + 2.4 | 26135 | 26136 | $\bigcirc$ | 49915 | 49859 | + 56 | 116 |
| $58 \quad 49.2$ | $58 \quad 41.9$ | + 7.3 | 25923 | 26003 | - So | 50071 | 50050 | + 21 | 117 |
| $58 \quad 43.4$ | $58 \quad 36.0$ | + 7.4 | $=6077$ | 26006 | + 91 | 50267 | 49914 | $+353$ | [118] |
| $5 \mathrm{~S} \quad 22 . \mathrm{S}$ | $58 \quad 20.1$ | + 2.7 | 26126 | 26036 | $+30$ | 49832 | 4971 I | + 121 | [II9] |
| $58 \quad 12.0$ | $58 \quad 06.4$ | + 5.6 | 26206 | 26179 | + 27 | 49729 | 49550 | + 179 | [120] |
| $5^{8} \quad 58.4$ | $58 \quad 40.7$ | + 17.7 | 25786 | 259 Si | $-195$ | 5 CO 27 | 49979 | $+45$ | [121] |
| 58. 59.7 | $5^{8} \quad 56.1$ | $+3.6$ | 25779 | 25912 | $-133$ | 50345 | 50217 | $-172$ | [122] |
| $59 \quad 16.1$ | $59 \quad 12.7$ | $+3.4$ | 25783 | 25784 | - | 50453 | 50373 | + 80 | 123 |
| $59 \quad 13.4$ | $59 \quad 15.9$ | - 2.5 | 25759 | 25730 | + 29 | 50341 | 50345 | - 4 | 124 |
| $59 \quad 00.3$ | $59 \quad 00.4$ | - 0.1 | 25754 | 25803 | - 49 | 50012 | 50108 | - 96 | [125] |
| $\begin{array}{lll}59 & 38.7\end{array}$ | $5^{8} \quad 38.3$ | + 0.4 | 25182 | 2592S | $-746$ | 49830 | 49S20 | + 10 | [126] |

Onserved and Calculated Values of Magnetic Elements

| No. | Station. | Height in km. | Year. | Latiturle. | Longitude |  | Declination $\mathrm{c}_{\text {. }}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  | $\begin{aligned} & \text { Ob- } \\ & \text { served } \end{aligned}$ | $\begin{aligned} & \text { Calcu- } \\ & \text { lated } \end{aligned}$ | Obs.-Cal. |
| 127 | Pornnai .......... | 0.00 | 1894.73 | $44^{\circ} 40.0$ | $1.42{ }^{\circ}$ | 52.9 | $6^{\circ} \quad 10.6$ | $6^{\circ}$ \% $7^{\prime} .2$ | + 3.4 |
| 128 | Monbetir ........ | 0.00 | 1894.74 | 4421.7 | 143 | 21.0 | $6 \quad 00.4$ | $5 \quad 54.7$ | + 5.7 |
| [129] | Y ${ }^{\text {abluetir }}$ | o.co | 1891.74 | 4414.0 | 143 | 37.1 | $\cdots$ | $\begin{array}{ll}5 & 48.2\end{array}$ | ... |
| 13) | Nogrami ........... | O. 10 | 1594.75 | $14 \quad 02.0$ | 14.3 | 33.0 | $5 \quad 57.6$ | $5 \quad 47 \cdot 3$ | $+10.3$ |
| 131 | dinonti | 0.20 | 1594.75 | $43 \quad 48.7$ | 143 | 49.2 | $5 \quad 48.5$ | $\begin{array}{lll}5 & 38.7\end{array}$ | $+9.8$ |
| [132] | Abasiri. | 0.00 | 1894.76 | $44 \quad 01.2$ | 144 | 16.6 | 4 43.1 | $5 \quad 33.4$ | $-50.3$ |
| 133 | Syari.... | 0.00 | 1S94.76 | $43 \quad 54.9$ | 144 | 39.6 | $5 \quad 35.7$ | $5 \quad 24.9$ | + 10, 8 |
| 137 | Ramsu ........... | 0.00 | 1894.7S | $44 \quad 01.4$ | 145 | 12.0 | $4 \quad 55.9$ | 516.2 | $-20.3$ |
| 135 | Sibetı | 0.00 | 1894.79 | $43 \quad 39.1$ | 145 | oS. 5 | $5 \quad 04.6$ | $5 \quad 11.9$ | $-7.3$ |
| 135 | Makodate ....... | 0.00 | 1894.50 | 4146 | 140 | 43.5 | $5 \quad 46.0$ | $5 \quad 53.9$ | $-7.9$ |
| 137 | Mori | 0.00 | IS94.5 1 | 4207.0 | 140 | 34.5 | $5 \quad 40.5$ | $6 \quad 01.3$ | $-20.3$ |
| 135 | Setama | 0.00 | IS94.53 | $42 \quad 26.9$ | 139 | 51.0 | $6 \quad 05.4$ | $6 \quad 15.6$ | $-10.2$ |
| 139 | Кぃ!\%... | 0.00 | 1 S94.54 | $42 \quad 13.6$ |  | 49.5 | $6 \quad 26.0$ | $6 \quad 12.3$ | + 13.7 |
| 140 | Esasi | 0.00 | 1S94.55 | 4152.5 | 140 | 09.0 | $6 \quad 07.5$ | $\begin{array}{ll}6 & 02.7\end{array}$ | + 4.8 |
| 141 | Hukiryama...... | 0.00 | IS94.55 | 4126.0 | 140 | 09.0 | 549.0 | $5 \quad 55.6$ | - 6.6 |
| 142 | Sirinti ... | 0.00 | 1894.56 | $41 \quad 36.3$ | 140 | 25.5 | $\begin{array}{ll}5 & 31.7\end{array}$ | $5 \quad 55.0$ | $-23.3$ |
| 143 | Tiribetı . | 0.00 | 1894.58 | $42 \quad 20.8$ | I4I | 00.0 | $6 \quad 0 \mathrm{~S} .4$ | $5 \quad 59.4$ | + 9.0 |
| [144] | Tomakomai ..... | 0.00 | 1894.58 | $42 \quad 36.5$ | 141 | 36.0 | $5 \quad 06.2$ | $5 \quad 55.2$ | $-49.0$ |
| 145 | Sarupt............ | 0.00 | I 89.4 .59 | $\begin{array}{lll}42 & 30.4\end{array}$ | 142 | 01.5 | 6 or.i | $5 \quad 47 \cdot 4$ | +13.7 |
| 146 | Osyatinai........ | 0.10 | I S94.60 | $42 \quad 41.2$ | 142 | 13.5 | $5 \quad 50.9$ | $5 \quad 47 \cdot 3$ | + 3.6 |
| [147] | Nohnka .... .... | 0.00 | 1894.61 | $42 \quad 19.4$ | 142 | 48.0 | $6 \quad 09.1$ | $\begin{array}{lll}5 & 32.7\end{array}$ | $+36.4$ |

Bracketed number shows that the station is excluded in the equations of condition.

## XV. (Continued.)

( $0,0, H$, and I) Reduced to 1895.0 and Sea Level.

| Dip ${ }^{\circ}$ |  |  |  | Horizontal Force II. |  |  | Tutal Force 1. |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | cu- | ()) | (0), | Calcu- lated | Obr-Cal. | + $\begin{gathered}\text { Ob- } \\ \text { served }\end{gathered}$ | Calcti- lated | us. - Cal. |  |
| $55^{\circ} \quad 13 \% 6$ | $55^{\circ}$ | 19.2 | - 5.6 | $26185^{\prime \prime}$ | 26036 | +149 | $49728^{\prime \prime}$ | 49576 | $+152$ | 12 |
| $57 \quad 53.0$ |  |  | - 4.6 | 20632 | 26146 | + S6 | 49341 | 49286 | $+55$ | 128 |
| $57 \quad 42.6$ |  |  | $4 \cdot 4$ | 26289 | 26159 | $+100$ | 49211 | 49124 | $+\quad 37$ | ] |
| $57 \quad 29.9$ |  | 37.1 | $-7.2$ | 26354 | 262So | + 104 | 49102 | 490\%0 | + 32 | 130 |
| $57 \quad 12.3$ |  | 20.8 | - S.5 | 26396 | 26362 | + $3+$ | 48734 | 48857 | - 123 | 131 |
| $57 \quad 10.9$ |  | 30.5 | - 19.9 | 26684 | 26253 | $+431$ | 49235 | 4 SS 79 | + 356 | 132] |
| 57 30.4 |  |  | + 8.4 | 26223 | 26223 | - 60 | $4 S^{\text {SSI }} 5$ | 48739 | + 76 | 1331 |
| $57 \quad 17.7$ |  |  | $-7.1$ | 26353 | 26217 | + 166 | 4SS2S | 45075 | $+150$ | 134 |
| 5716.7 |  | $03 \cdot 4$ | $+13.3$ | 261 So | 26379 | - 199 | $48+32$ | 48509 | - 77 | 135 |
| $55 \quad 31.5$ |  | 41.4 | $-9.9$ | 27.456 | 27376 | + So | 48505 | 48565 | - 03 | 1361 |
| 5614.2 |  | 03.9 | $+10.3$ | 27181 | 27246 | - 65 | 4 Scos | 4 SEOG | + 102 | 137 |
| $56 \quad 12.2$ |  | 30.7 | $-18.5$ | 27396 | 2715 S | $+23 \mathrm{~S}$ | 49250 | 49220 | + 30 | 138 |
| $56 \quad 0.4 .6$ |  | 17.2 | - 12.6 | 27306 | 27251 | + 55 | $4{ }_{4} 952$ | 49098 | $-146$ | 139 |
| $55 \quad 55 \cdot 3$ | 55 | 52.4 | + 2.9 | 27272 | 27373 | - 101 | 4 Sin | 48795 | - 119 | 140 |
| $55 \quad 05.9$ | 55 | 24.6 | $-18.7$ | 27767 | 27552 | $+215$ | 48529 | 48532 | - 3 | 141 |
| $55 \quad 34 \cdot 9$ | 55 | 33.2 | + 1.7 | 27459 | 27465 | - 6 | 48550 | 48556 | + 24 | 142 |
| 56 30.8 | 56 | 14.7 | + 16.1 | 26818 | 27125 | - 307 | 48606 | 48817 | 211 | 143 |
| $56 \quad 47.9$ | 56 | 25.9 | + 22.0 | 26927 | 26981 | - 54 | 49175 | +8797 | $+375$ | [144] |
| $56 \quad 26.0$ | 56 | 16.4 | + 9.6 | 26986 | 27000 | - 14 | 4 SSOS | $486=8$ | $+180$ | 145 |
| $56 \quad 33.2$ | 56 | 25.9 | $+7 \cdot 3$ | 26932 | 26014 | + 18 | 48864 | 48675 | +159 | 146 |
| $55 \quad 56.3$ | 55 | 59.5 | - 3.2 | 27099 | 27036 | + 63 | 48384 | 4833 S | $+46$ | [147] |

TABLE
Observed and Calculated Values of Magnetic Elements

bracketed number shows that the station is excluded in the equations of condition.
XV. (Continued.)
( $\delta, 0$, H, and I) Reduced to 189.5 .0 and sea Level.

| $\begin{aligned} & \text { 'sh. } \\ & \text { vervel } \end{aligned}$ | Uip ${ }^{\circ}$. <br> (alculated |  | (1)3..Cal. |  | $\begin{aligned} & \text { Horizo } \\ & \text { (1), } \\ & \text { served } \end{aligned}$ | ntal For <br> Calcu- <br> lated | ce H. | Cal. |  | l Force <br> Calen- <br> Jated | I. Ohs.-Cal. | No. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $55^{\circ} \quad 50.9$ | $55^{\circ}$ | $4 S^{\prime} .7$ |  |  | 27192 | $27100^{\circ}$ | $+$ | $s_{3}^{\prime \prime}$ | 48437 | 48244 | +193 | [148], |
| $55 \quad 39.1$ |  | 38.0 |  | 1.1 | 27138 | 27138 |  | $\bigcirc$ | 4Sons | 48076 | + 22 | 5.49 |
| $55 \quad 53 \cdot 4$ |  | 53.0 |  | 0.4 | 27112 | 27034 | $+$ | 78 | 48347 | 48199 | $+148$ | 150 |
| $5^{6} \quad 12.7$ |  | 0.0 |  | 2.7 | 26959 | 26917 | $+$ | 42 | 48475 | な゙3+5 | $+130$ | 151 |
| $\begin{array}{lll}56 & 33.6\end{array}$ |  | 34.1 |  | 0.5 | 26809 | 26779 | $+$ | 30 | 48649 | 48605 | $+41$ | 152 |
| $56 \quad 40.6$ |  | + 4 |  |  | 26767 | 26724 | $+$ | 43 | 48724 | 48727 | - 3 | 153 |
| $56 \quad 27.4$ |  | 30.7 |  | $3 \cdot 3$ | 26737 | 26766 | - | 29 | 48387 | 48509 | - 122 | 151 |
| 56 +2.3 |  | 52.2 |  | 9.9 | 2662S | 26592 | $+$ | 36 | 48508 | $4 \leq 655$ | $-1.47$ | 155 |
| $\begin{array}{lll}56 & 16.7\end{array}$ |  |  |  | 1.7 | 27044 | 26851 | +1 | 193 | 48714 | 48330 | $+3 S_{4}$ | [156] |
| $56 \quad 40.0$ |  | 27.8 |  | 2.2 | 266\%0 | 26721 | - | 51 | 45534 | 48366 | $+168$ | 157 |
| $56 \quad 35.8$ |  | 45.9 |  | 7.1 | 26483 | 26551 | - | 6 S | 48166 | $48+44$ | $-278$ | [15S] |
| $56 \quad 47.4$ |  |  |  | 1 S.S | 26566 | 26419 | $+1$ | 147 | 45504 | 45643 | $-139$ | [159] |
| $57 \quad 17.2$ | 56 | 29.7 |  | 47.5 | 26598 | 26646 | - | 48 | 49216 | 48270 | + 946 | [160] |
| $57 \quad 29.8$ | 56 | 42.3 |  | 47.5 | 25584 | 26498 | - 9 | 914 | 47611 | 48270 | -659 | [161] |
| 5157.3 | 51 |  |  | 2.1 | 28619 | 287.46 | 1 | 127 | 46438 | 46605 | $-170$ | 162 |
| 5209.2 |  | 11.1 |  | 1.9 | 2S826 | $2 \mathrm{S6} 35$ | + | 191 | 469 Sz | 46,05 | + 277 | 163 |
| 5242.5 | 52 | 24.5 |  | 18.3 | 28179 | 28554 | - | 375 | 46516 | 46 SoS | - 292 | 16.4 |
| 5- 42.4 | 52 | 50.1 | - | 7.7 | 28303 | 2840.4 | - | 11 | 46861 | 47019 | - 15S | 165 |
| 5300.3 | 53 | os.s | - | 8.5 | 28194 | 2S291 | - | 97 | 46854 | 47170 | -316 | 166 |
| 5311.8 | 53 | 27.4 |  | 15.6 | 28267 | 28177 | $+$ | 90 | 47186 | 47323 | - 337 | 167 |
| 5333.0 | 53 | 48.6 |  | 15.6 | 2SoSI | 2 SO 32 | $+$ | 49 | 47205 | 47474 | - 209 | [16s] |

## A. TANAKADATE.

TABLE
Olserved and Calculated Values of Magnetic Elements

| No. | Station. | Height in kn. | Year. | Latitude. |  | Longitude |  | Declination $\mathrm{c}_{\text {. }}$ |  |  |  | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|  |  |  |  |  |  | $\begin{aligned} & \text { oli- } \\ & \text { served } \end{aligned}$ |  | catenl:ited | Olis. - ${ }^{\text {ala }}$ |
| [169] | Hatinohe......... | 0.0.f | 1895.60 |  | jío |  |  | $14^{\circ}$ | ${ }^{\circ} 31.3$ | ${ }^{\circ} .$. | 5 | 23.2 | , |
| 170 | Kominatotaira.. <br> (ins Simenra) | 0.00 | 1895.53 | 40 | 32.3 | 141 | $34 \cdot 3$ | $4 \quad 53 \cdot 7$ | 5 | 22.8 | - 29.1 |
| [171] | O | 0.20 | 1895.53 | 40 | 15.2 | $1+1$ | 37.8 | $4 \quad 19.7$ | 5 | 17.5 | $-57.8$ |
| 172 | Kuzi in Rikuty | 0.00 | 1895.54 | 40 | 11.6 | 141 | 47.8 | $5 \quad 02.6$ | 5 | 14.2 | - 11.6 |
| [173] | Akkil | 0.10 | 1895.54 | 39 | $59 \cdot 3$ | $14^{1}$ | 4.0 | ... | 5 | 11.8 | $\cdots$ |
| 174 | Inazawa... ..... | 0.35 | 1895.55 |  | 52.5 | 141 | 41.3 | $4 \quad 40.2$ | 5 | 10.6 | $-30.4$ |
| [175 | Iwaizumi ........ | 0.08 | 1895.55 |  | 51.6 |  | 47.6 | ... | 5 | 08.9 | ... |
| [176] | Miyako .......... | 0.00 | 1895.55 |  | 38.2 | 141 | 58.3 | $5 \quad 37.0$ | 5 | 02.8 | $+3+2$ |
| [177] | Ognmi, Rikutyū. | 0.10 | 1895.56 |  | 31.3 |  | 41.0 | ... | 5 | O5.0 | ... |
| 178 | Tono. | 0.27 | 1895.56 |  | 18.2 | 141 | 31.2 | $5 \quad 20.7$ | 5 | 03.7 | $+17.0$ |
| 179 | Kıamaisi | 0.00 | $1895 \cdot 57$ |  | 16.1 | 141 | 54.2 | $4 \quad 28.3$ | 4 | 57.9 | - 29.6 |
| 1So | Kescnmuma | 0.00 | 1895.58 |  | 53.5 | I $\dagger 1$ | $35 \cdot 3$ | $+57.8$ | $+$ | 56.1 | + 1.7 |
| $1 S_{1}$ | 1sinomitki | o.co | 1895.59 |  | 25.2 | 141 | 18.0 | + 58.2 | 4 | 52.2 | $+6.0$ |
| [182] | Ikusazawa ....... | 0.10 | 1895.60 |  | 51.1 | 140 | 37.7 | $\cdots$ | 5 | 07.7 | ... |
| $18_{3}$ | Simoinnai | 0.18 | 1895.61 | 39 | 02.3 | 140 | 25.8 | $\begin{array}{ll}5 & 23.6\end{array}$ | 5 | 13.1 | $+10.5$ |
| 18. | Yokute. | 0.06 | 1895.61 | 39 | 19.0 | 140 | 31.5 | $5 \quad 24.5$ | 5 | 16.6 | + 7.9 |
| [ $\mathrm{I}_{5} 5$ ] | Kakudate | 0.44 | 1895.61 |  | 36.6 | 140 | 33.0 | $4 \quad 37 \cdot 4$ | 5 | 21.1 | $-43.7$ |
| [186] | Kariwano | 0.03 | 1895.62 | 39 | 32.2 | 140 | 21.6 | $\ldots$ | 5 | 22.2 | ... |
| 187 | . ${ }^{\text {kita }}$ | 0.00 | 1895.62 | 39 | 42.6 | 1.40 | 07.5 | $5 \quad 21.9$ | 5 | 27.8 | $-5.9$ |
| 188 | Honzyu | 0.00 | 1895.62 | 39 | 22.0 | 1.40 | 01.5 | $5 \quad 13.7$ | 5 | $23 \cdot 3$ | - 9.6 |
| 189 | Nüsiro. | 0.00 | 1895.63 | 40 | 11.5 | 1.40 | 02.5 | $5 \quad 48.9$ | 5 | 35.7 | $+13.2$ |

Bracketed mumber shows that the station is excluded in the equations of condition.

## XV. (Continued.)

(i, A, H, and I) Rednced to 1895.0 and Sea Level.

| Dip 0. |  |  | Horizontal Force II. |  |  | Total Force I. |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| () served | $\begin{aligned} & \text { Calen- } \\ & \text { lated } \end{aligned}$ | (thes. Cal. | $\begin{aligned} & \text { Ob, } \\ & \text { served } \end{aligned}$ | $\begin{aligned} & \text { Calcu- } \\ & \text { lated } \end{aligned}$ | ()ぶ.-Cal. | $\begin{aligned} & \text { ab- } \\ & \text { served } \end{aligned}$ | $\begin{aligned} & \text { Calcu- } \\ & \text { lated } \end{aligned}$ | Whs.-Cal. |  |
| $54^{\circ} 10.6$ | $54^{\circ} \mathrm{I} 6^{\prime} 2$ | - 5.6 | $27773^{\gamma}$ | 27836 | - $63^{\gamma}$ | $47452^{\prime \prime}$ | 47667 | $-215^{\prime \prime}$ | [169] |
| 5419.0 | $54 \quad 17.2$ | + 1.8 | 27674 | 27825 | $-151$ | 47443 | 47668 | - 225 | 170 |
| $53 \quad 57.6$ | 53 5S.S | $-1.2$ | 28124 | 27935 | + 189 | 47 SoI | 47503 | $+295$ | [171] |
| $54 \quad 01.6$ | $53 \quad 53.8$ | $+7.5$ | 2 So 35 | 27950 | $+S_{5}$ | 47727 | $47+34$ | + 293 | 172 |
| $53 \quad 33 \cdot 5$ | $53 \quad 41.2$ | - 7.7 | $2 \mathrm{SI}_{3} \mathrm{O}$ | 28034 | $+96$ | 47357 | 47339 | + IS | [173] |
| 5324.3 | $53 \quad 34 \cdot 3$ | - 10.0 | 28156 | $2 \mathrm{SoS}_{1}$ | + 75 | 47229 | 47289 | - 60 | 174 |
| ... | $53 \quad 32.6$ | ... | 28386 | $2 \mathrm{SoS1}$ | $+305$ | ... | 4725S | ... | [175] |
| $53 \quad 24.4$ | $53 \quad 17.2$ | + 7.2 | 25176 | 28159 | + 17 | 47264 | 47 IO 3 | $+161$ | [ 1766 |
| $53 \quad 00.9$ | $53 \quad 11.7$ | $-10.8$ | 28130 | $2 \mathrm{~S}_{219}$ | - 89 | 46758 | 47103 | - 345 | [177] |
| 53 09.1 | $\begin{array}{lll}52 & 58.7\end{array}$ | + 10.4 | 2 S225 | 28312 | $-8_{7}$ | 47055 | 47021 | + 44 | ${ }_{17} 8$ |
| 5246.2 | 5254.0 | $-7.3$ | 28334 | 29306 | + 28 | 46832 | 46926 | - 94 | 179 |
| 5221.6 | $\begin{array}{ll}52 & 31.6\end{array}$ | 10.0 | 28409 | 2 S .167 | - 5 S | 46520 | 46791 | $-271$ | I So |
| 5146.6 | $\begin{array}{lll}52 & 02.7\end{array}$ | $-16.1$ | 28741 | 28662 | + 79 | 4644 I | 46602 | $-\mathrm{I} 61$ | ISI |
| $53 \quad 10.9$ | $52 \quad 35 \cdot 3$ | $+35.6$ | 28265 | $2 S 536$ | - 271 | 47165 | 46970 | + 195 | [182] |
| $52 \quad 57 \cdot 3$ | $52 \quad 48.9$ | + 8.4 | 2 S185 | 28477 | $-292$ | 46784 | 47116 | $-332$ | $\mathrm{I}_{5}$ |
| $53 \quad 01.5$ | $53 \quad 07.6$ | $-6.1$ | $28_{123}$ | ${ }_{28} 8_{3} 64$ | + 59 | 47255 | 47269 | $-\quad 14$ | $19_{4}$ |
| $\begin{array}{lll}53 & 20.3\end{array}$ | 5.) 25.1 | - 4.5 | 28237 | 2 S 249 | - 12 | 47291 | 47400 | - 109 | $185]$ |
| 5322.0 | $53 \quad 21.8$ | + 0.2 | 28345 | $2 \mathrm{SaS9}$ | + 56 | 47504 | 47406 | + 95 | [186] |
| $\begin{array}{lll}53 & 33.7\end{array}$ | $53 \quad 34.8$ | - 1.1 | 28298 | 2S236 | + 62 | 47646 | 47560 | + $\mathrm{S6}$ | 187 |
| 5318.1 | 5313.2 | + 49 | 2S268 | 28376 | - 105 | 47303 | 47212 | + 91 | ISS |
| $54 \quad 16.2$ | $54 \quad 06.4$ | + 9. ${ }^{\text {S }}$ | 27932 | 28053 | - 12 I | $47^{8} 31$ | 47850 | - 19 | IS9 |

## A. TANAKADATE.

NABLE
Observed and Calculated Values of Magnetic Elements

| No. | Station. | Height in km. | Year. | Latitude. Longitude. |  |  | Declination $\mathrm{j}_{\text {. }}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  | $\begin{aligned} & \text { (1)- } \\ & \text { served } \end{aligned}$ | $\begin{aligned} & \text { Caten- } \\ & \text { lated } \end{aligned}$ | Obs.-Cal. |
| 193 | Thate ............ | 0.08 | IS95.64 | $40^{\circ} 16^{\prime} .0$ | 140 | 32.5 | $5^{\circ} 35.7$ | $5^{\circ} 3{ }^{\prime \prime} .9$ | + 3. ${ }^{\text {S }}$ |
| 191 | Hirosaki ......... | 0.06 | 1895.64 | $40 \quad 36.4$ | 140 | 28.5 | $\begin{array}{ll}5 & 27.2\end{array}$ | $5 \quad 38.2$ | - 11.0 |
| 192 | Adigasawa ...... | 0.00 | IS95.64 | $40 \quad 36.5$ | 140 | 13.3 | $5 \quad 32.9$ | $5 \quad 44.2$ | - 11.3 |
| 193 | Ippongi.......... | 0.00 | 1 893.65 | $41 \quad 10.2$ | 140 | 31.3 | $5 \quad 39.9$ | 546.8 | $-6.9$ |
| [194] | Tma.............. | 0.00 | I 895.66 | 4130.0 | 140 | 54.5 | $6 \quad 20.5$ | 547.1 | $+33.5$ |
| [195] | Tamabri .......... | 0.00 | I 895.66 | 4116.1 | I. 41 | 14.0 | $6 \quad 12.3$ | $5 \quad 39.1$ | $+3.32$ |
| 195 | Makado.......... | O. IO | 1895.67 | $40 \quad 52.7$ | 141 | 09.0 | $5 \quad 51.6$ | 534.0 | $+17.6$ |
| 197 | Aomori........... | 0.00 | I 895.67 | 4049.4 | 140 | $43 \cdot 5$ | $5 \quad 28.3$ | $5 \quad 38.6$ | - 10.3 |
| 198 | Mnkaya .......... | 0.04 | 1895.49 | $36 \quad$ II .8 | 139 | 16.5 | $4 \quad 34.6$ | $4 \quad 37.8$ | $-3.2$ |
| 199 | Sakinra. | 0.03 | 1895.50 | $35 \quad 43.3$ | 140 | 13.5 | $4 \quad 21.2$ | $4 \quad 19.9$ | + 1.3 |
| 200 | Sawara | 0.01 | 1895.51 | $35 \quad 52.5$ | 140 | 30.0 | $4 \quad 24.1$ | $4 \quad 19.4$ | + 4.7 |
| 201 | Tyixsi ............ | 0.00 | 1 S95.51 | 3544.0 | 140 | 51.0 | $\begin{array}{ll}4 & 13.4\end{array}$ | $4 \quad 13.0$ | $+0.4$ |
| 202 | Itinomiya....... | 0.00 | 1S95.52 | $35 \quad 22.4$ | 140 | 22.5 | $\begin{array}{ll}4 & 14.7\end{array}$ | $4 \quad 12.3$ | + 2.4 |
| 203 | Maehara | 0.00 | 1895.53 | $35 \quad 05.8$ | 140 | 06.0 | 4 11.1 | $4 \quad 10.5$ | $+0.6$ |
| 204 | Kisaratri........ | 0.00 | 1S95.53 | $35 \quad 23.2$ | 139 | 55.5 | $4 \quad 18.3$ | $4 \quad 17.4$ | + 0.9 |
| 205 | Mito.............. | O.OI | IS95.55 | $36 \quad 21.9$ | 140 | 30.0 | 422.2 | $4 \quad 27.7$ | $-5.5$ |
| 206 | Ceda ............. | o.co | 1895.56 | $35 \quad 53.5$ | I $\ddagger 0$ | 48.0 | $4 \quad 29.7$ | 4 33.1 | $-3.4$ |
| 207 | Namie . | 0.00 | IS95.56 | $37 \quad 28.3$ | 141 | 0 O.0 | $4 \quad 21.5$ | $4 \quad 40.3$ | $-18.8$ |
| [20S] | Watari........... | 0.02 | IS95.57 | $38 \quad 02.2$ | 140 | 49.5 | $4 \quad 18.8$ | $4 \quad 51.8$ | $-33.0$ |
| 209 | Hukusima...... | 0.07 | IS95.57 | 37 45.0 | 140 | 2 S .5 | $4 \quad 58.1$ | $4 \quad 51.2$ | + 6.9 |
| 210 | Yonezawa ....... | 0. 25 | IS95.59 | $37 \quad 55.2$ | 140 | 05.0 | 4 5 I. I | $4 \quad 58.6$ | - 7.5 |

Bracketed number shows that the station is excluded in the equations of condition.

## XV. (Continued.)

( $i, \theta, \mathrm{H}$, and I) Redreed to 1895.0 and Sea Level.

| Dip 9. |  |  | Horizontal Force II. |  |  | Total Force I. |  |  | No. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (ob- | $\begin{aligned} & \text { Caleu- } \\ & \text { lated } \end{aligned}$ | Obs.-('al. | (thed | Calct1lated | O1, - - ${ }^{\text {alal. }}$ | $\begin{aligned} & \text { Wh- } \\ & \text { servell } \end{aligned}$ | (alculated | Ohn.-Cal. |  |
| $54^{\circ} \mathrm{o}{ }^{\circ} \mathrm{I}$. 1 | $54^{\circ} \mathrm{O} \quad 0.4$ | - 4.3 | $27930^{\circ \prime}$ | $27992{ }^{\prime}$ | - 62 | $4757{ }^{\prime \prime}$ | 47764 | - ISS | 190 |
| $54 \quad 15.2$ | $54 \quad 29.7$ | - 14.5 | 27966 | 27-862 | + 104 | 47871 | 47974 | - 103 | 191 |
| $54 \quad 47.5$ | $54 \quad 42.7$ | + 4.8 | 27760 | 27S09 | - 49 | 48148 | 48139 | $+9$ | 192 |
| 55 IS.0 | $55 \quad 05.0$ | + 13.0 | 27524 | 27634 | - 110 | $483+8$ | 48278 | + 70 | 193 |
| $55 \quad 2 \mathrm{~S} .3$ | $\begin{array}{lll}55 & 22.7\end{array}$ | $+5.6$ | 27089 | 27477 | - 388 | 47791 | 48363 | $-572$ | [194] |
| $55 \quad$ O.I | $55 \quad 05.7$ | $+3.4$ | 27540 | 27551 | - II | 48197 | 48148 | + 49 | [195] |
| $54 \quad 43 \cdot 3$ | $54 \quad 41.8$ | + 1.5 | 27691 | 27713 | $-22$ | 47946 | 47953 | - 7 | 196 |
| $54 \quad 57.0$ | $54 \quad 41.5$ | + 15.5 | 27711 | 27760 | - 49 | 48253 | $4 \mathrm{So}_{31}$ | $+222$ | 197 |
| $49 \quad 53.4$ | $49 \quad 46.7$ | + 6.7 | 29581 | 29601 | - 20 | 45915 | 45810 | + 75 | 198 |
| 49 oS. 1 | $49 \quad 0.4$ | - 0.3 | 29737 | 29712 | + 25 | 45451 | 45416 | + 35 | 199 |
| $49 \quad 16.7$ | $49 \quad 17.3$ | - 0.6 | 29661 | 29542 | + 19 | 45464 | 45446 | + IS | 200 |
| $48 \quad 55.7$ | $49 \quad 05.8$ | $-10.1$ | 29756 | 29673 | + $\mathrm{S}_{3}$ | 45291 | 45317 | - 26 | 201 |
| $4^{8} \quad 44.2$ | $4 S \quad 43.7$ | + 0.5 | 29762 | 29826 | - 64 | 45126 | 45217 | 9 I | 202 |
| $4 \mathrm{~S} \quad 19.0$ | 4826.1 | $-7.1$ | 29849 | 29939 | - 90 | 44885 | 45125 | - 240 | 203 |
| $48 \quad 39.5$ | $48 \quad 47.1$ | $-7.6$ | 29821 | 29848 | - 27 | 45146 | 45301 | - 155 | 204 |
| $49 \quad 50.0$ | $49 \quad 50.7$ | $-0.7$ | 29.469 | $29+66$ | $+3$ | 45688 | 45093 | - 5 | 205 |
| $50 \quad 24.5$ | $50 \quad 24.4$ | + 0.1 | 29257 | 29259 | - 2 | 45907 | 45908 | - 1 | 206 |
| $50 \quad 53.0$ | 5102.0 | $-4.0$ | 29328 | 29034 | + 294 | 46569 | 46169 | $+400$ | 207 |
| $5 \mathrm{I} \quad 3 \mathrm{I} .1$ | $51 \quad 40.5$ | - 9.4 | 29017 | 28833 | + 184 | 46632 | 46495 | +137 | [20S] |
| $\begin{array}{lll}51 & 03.2\end{array}$ | $\begin{array}{lll}1 & 23.8\end{array}$ | - 20.6 | 2917 I | 28961 | $+210$ | 46407 | 46417 | 10 | 209 |
| $51 \quad 24.7$ | $51 \quad 37.6$ | - 12.9 | 29047 | $2 \mathrm{S921}$ | +126 | 46570 | 46588 | - IS | 210 |

Obserwed and Calculated Values of Magnetic Elements

| No. | Station. | IIeight in km. | Year. | Latitude. |  | Longitude. |  | Declination $\delta$. |  |  |  | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|  |  |  |  |  |  | $\begin{aligned} & \text { Ob- } \\ & \text { served } \end{aligned}$ |  | $\begin{aligned} & \text { atcul- } \\ & \text { ated } \end{aligned}$ | Ons.-Cal. |
| 2 II | Yimagata ....... | 0.16 | 1895.59 |  | 16.5 |  |  | $1.40^{\circ}$ | 21.0 | $4^{\circ} 44.0$ | 5 | oi. 4 | $-17.4$ |
| 212 | Sinzỵ̆........... | c. 10 | 1895.60 | 38 | 46.2 | 140 | 18.0 | $5 \quad 09.6$ | 5 | 10.2 | - 0.6 |
| 213 | Sikata ........... | 0.00 | 1895.61 |  | 54.5 | 139 | 48.0 | $5 \quad 12.0$ | 5 | 18.2 | - 6.2 |
| [214] | Atumi ............ | 0.00 | IS95.61 |  |  | 139 | 35.0 | $\ldots$ | 5 | 15.7 | ... |
| 215 | Murakami ....... | 0.00 | 1 S93.61 |  | 12.0 | 139 | 28.5 | $5 \quad 10.9$ | 5 | 09.9 | + 1.0 |
| 216 | Ognni in Ľzen... | 0.10 | 1 S95.62 |  | 04.9 | 139 | 46.5 | $4 \quad 59.5$ | 5 | 04.7 | $-5.2$ |
| 217 | Tugawa.......... | 0.08 | 1895.63 |  | 39.5 | 139 | 24.0 | $5 \begin{array}{ll}5 & 08.5\end{array}$ | 5 | 01.5 | $+7.0$ |
| 218 | Wiakamatı ...... | 0.22 | I 595.64 |  | 29.5 | 139 | 57.0 | $\begin{array}{lll}4 & 48.3\end{array}$ | 4 | $52 . S$ | $-4.5$ |
| 219 | Tazima.. | 0.56 | 1895.64 |  | 11.5 |  | 46.5 | $4 \quad 41.5$ | 4 | 49.7 | - 8.2 |
| 220 | Tadami .......... | 0.37 | 1595.65 |  | 20.5 |  | 19.0 | $4 \quad 40.7$ | 4 | 56.9 | $-16.2$ |
| 221 | Nikkō ........... | 0.61 | 1895.66 |  | $44 \cdot 3$ | 139 | 37.5 | $4 \quad 26.2$ | 4 | 43.5 | $-17.3$ |
| 222 | Sukagawa........ | 0.25 | 1 895.66 |  | 15.5 |  | 21.0 | 4 51.S | 4 | 44.5 | $+7.3$ |
| 223 | Nisi-nasmmo. .... | 0.20 | IS95.66 |  | 53.0 | 139 | 5S.5 | $4 \quad 58.8$ | 4 | 42.3 | $+16.5$ |
| 224 | Utmomiya...... | 0.12 | 1895.67 |  | 33.4 | 139 | 54.0 | $4 \quad 25.6$ | 4 | 37.6 | $-12.0$ |
| 225 | Koga ............. | 0.02 | 1895.67 |  | 11.7 |  | $41 . S$ | $4 \quad 29.7$ | 4 | $33 \cdot 5$ | $-3.8$ |
| 225 | Hatimamin Oni $^{\text {a }}$ | 0.05 | 1896.50 |  | 07.8 | 135 | 0.4 .3 | 4 43.1 | 4 | 43. 1 | 0.0 |
| 227 | K yōto ............ | 0.04 | 1896.51 |  | 01.2 | 135 | $47 . \mathrm{S}$ | $4 \quad 45.2$ | 4 | 42.5 | + 2.7 |
| 228 | Saxayama........ | 0.25 | I 896.52 |  |  | 135 | 14.0 | $4 \quad 48.4$ |  | 46.0 | + 2.4 |
| 229 | Miyatı ........... | 0.05 | 1896.53 |  | 31.6 | 135 | 13.0 | $4 \quad 50.4$ | 4 | 54.4 | $-4.0$ |
| 230 | Ohama........... | 0.00 | 1895.53 |  | 30.8 | 135 | $44 \cdot 5$ | $4 \quad 56.1$ | 4 | 51.8 | + 4.3 |
| 231 | Sak:ıi ............. | 0.00 | 1896.55 | 34 | 34.9 | 135 | 28.0 | $4 \quad 30.7$ | 4 | 36.1 | $-5.7$ |

Bracketed number shows that the station is excluded in the equations of condition.

## X V. (Continued.)

( $\delta, \theta$, H, and I) Reduced to 1895.0 and Sea Level.

| Observed | Dip $)^{\circ}$ <br> Calculated | Ohs.-Cal. | Horizontal Force 1 . |  |  | Total Force I. |  |  | No. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | ( 16. | Calcalated | Obs.Cal. | $\begin{aligned} & \text { (1), } \\ & \text { served } \end{aligned}$ | $\begin{aligned} & \text { Cafer- } \\ & \text { lated } \end{aligned}$ | $01 \sim$ Cral. |  |
| $51^{\circ} 56.8$ | $51^{\circ} \quad 59.4$ | - 2.6 | 28936 | 28771 | $+165^{\gamma}$ | $469+t^{\prime \prime}$ | 46722 | + $222 \%$ | 211 |
| $52 \quad 27.8$ | 5232.3 | - 4.5 | 28722 | $2 S_{5} \mathrm{~S}_{7}$ | + 135 | 47142 | 47000 | $+142$ | 212 |
| 5245.0 | 5244.9 | + 0.1 | 28648 | 28566 | $+\mathrm{Sz}$ | 4732 S | 47191 | + 137 | 213 |
| $52 \quad 24 . S$ | $52 \quad 27.4$ | $-\quad 2.6$ | 28924 | 286,90 | $+234$ | 47418 | 47083 | $+335$ | [214] |
| 5200.4 | 5200.5 | - c.i | 28931 | $2 S S 55$ | + 76 | 46998 | 46877 | + 121 | 215 |
| $5^{1} \quad 45.6$ | 5150.5 | - 4.9 | $2 \mathrm{S95}$ S | 2 2SSo | $+\quad 78$ | 46785 | 46744 | $+4^{1}$ | 216 |
| 51 $21 . \mathrm{S}$ | $51 \quad 24.9$ | - 3.1 | 290.46 | 29062 | $-16$ | 46520 | 46598 | $-78$ | 217 |
| $51 \quad 16.4$ | 5110.0 | + 6.1 | 29019 | 290SS | - 69 | 46385 | 46387 | - 2 | 218 |
| 5110.1 | $50 \quad 51.0$ | + 19.1 | 29070 | 29209 | $-139$ | 46362 | 46265 | + 97 | 219) |
| 5105.1 | 51 0.f. 2 | + 0.9 | 29217 | 29184 | + 33 | 46513 | 46444 | + 69 | 220 |
| $50 \quad 18.0$ | 5021.4 | $3 \cdot 4$ | $29+6$ | $293 S_{4}$ | + 78 | 46123 | 46055 | + 68 | 221 |
| $50 \quad 46.2$ | $50 \quad 52 \cdot 3$ | 6.1 | 29145 | 29150 | - 5 | 46083 | +6192 | $-109$ | 222 |
| $50 \quad 28.4$ | $50 \quad 28.9$ | - c. 5 | 29400 | 29;09 | + 91 | 46194 | 46060 | + 134 | 223 |
| $50 \quad 09.1$ | $50 \quad 07.3$ | + 1.8 | $295 ;$ | 29433 | + 99 | 46089 | 45907 | $+182$ | 22.1 |
| $49 \quad 48.4$ | 4944.0 | + 4.4 | 29455 | 29575 | - 120 | 45639 | 45757 | - 118 | 225 |
| $48 \quad 52.8$ | $4^{8} \quad 55 \cdot 4$ | - 2.6 | 30191 | 30217 | - 25 | 45908 | 45988 | - So | 226 |
| $48 \quad 47.7$ | $48 \quad 49.8$ | - 2.1 | 30256 | 30278 | - 22 | 45929 | 45995 | - 66 | 227 |
| $45 \quad 57.3$ | $48 \quad 58.0$ | $-0.7$ | 30239 | 30312 | $-73$ | 46050 | 46173 | $-123$ | $22 S$ |
| $49 \quad 28.2$ | 4930.6 | - 2.4 | 30159 | 30156 | + 3 | 40409 | $46+42$ | - 33 | 229 |
| $49 \quad 22.0$ | $49 \quad 25.2$ | - 3.2 | 30074 | 30113 | - 39 | 46182 | 46291 | - I09 | 230 |
| $48 \quad 36.9$ | $4^{8} 21.1$ | + 15.8 | 303S7 | 30457 | - 70 | 45963 | 45831 | +132 | 231 |

## A. TANAKADATE.

TABLE
Olserved and Calculated Values of Magnetic Elements


Bracketed number shows that the station is excluded in the equations of condition.

## XV. (Continued.)

( $\delta$, 0 , H, and I) Reduced to 1895.0 and Sea Level.

| Dip, 5. |  |  | Horizontal Force H. |  |  | Total Force 1. |  |  | No. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { Ob } \\ \text {-rrved } \end{gathered}$ | $\begin{aligned} & \text { Calcu- } \\ & \text { lated } \end{aligned}$ | Olmereal. | $\begin{aligned} & \text { Oh, } \\ & \text { servel } \end{aligned}$ | (alculated | Obr.-C'al. | $\begin{aligned} & \text { ob, } \\ & \text { served } \end{aligned}$ | Calletilated | 113.-Cas. |  |
| $49^{\circ} 09.2$ | $49^{\circ}$ o8. 9 | $+0.3$ | $30165^{\prime \prime}$ | $303188^{\prime \prime}$ | - $153^{\prime \prime}$ | $46121^{\prime \prime}$ | $46350^{\prime \prime}$ | - 229 | 232 |
| $49 \quad 30.3$ | $49 \quad 35.2$ | - 4.9 | 30187 | 30188 | - I | 46486 | 4.565 | - 79 | 233 |
| $49+5 \cdot 3$ | 49 36.9 | + 8.4 | 30151 | 30260 | $-109$ | 46670 | 46703 | - 33 | 234 |
| 4949.1 | 4941.0 | $+\mathrm{S.1}$ | 30204 | 30291 | $-8_{7}$ | 46812 | 46817 | - 5 | 235 |
| $49 \quad 06.5$ | $49 \quad 08.3$ | - I.S | 30367 | 30429 | - 62 | 46387 | 46511 | - 124 | 236 |
| $48 \quad 39.4$ | $48 \quad 40.8$ | - 1.4 | 30543 | 30572 | - 29 | 46237 | 46302 | - 65 | 237 |
| $48 \quad 41.9$ | $4^{\text {S }} \quad 42.7$ | - o.S | 30488 | 30498 | $-10$ | 46190 | 46219 | - 29 | 238 |
| $48 \quad 29.0$ | $48 \quad 30.1$ | - 1.1 | 30451 | 30475 | - 24 | 45940 | 45993 | - 53 | 239 |
| $48 \quad 39.3$ | $48 \quad 25 \cdot 3$ | + 14.0 | 30250 | 30389 | $-139$ | 45793 | 45791 | + 2 | 240 |
| $48 \quad 03.4$ | $4 \mathrm{~S} \quad 0.3$ | - 0.9 | 30.448 | 30486 | - $3^{8}$ | 45554 | 45624 | - 70 | 241 |
| $47 \quad 56.3$ | $47 \quad 59.1$ | - 2.8 | 30506 | 30551 | - 45 | 45537 | 456.45 | $-108$ | 242 |
| $48 \quad$ co. 6 | $47 \quad 57.8$ | + 2.8 | 30531 | 30601 | - 70 | 45636 | 45700 | - 64 | 243 |
| $48 \quad 08.6$ | $48 \quad 08.8$ | - 0.2 | 30551 | 30589 | - 38 | 45786 | 45847 | -61 | 244 |
| $47 \quad 24.2$ | $\begin{array}{lll}47 & 22.9\end{array}$ | + 1.3 | 30742 | 30743 | - 1 | 45420 | +5404 | $+\quad 16$ | 245 |
| $47 \quad 25.1$ | $47 \quad 24.8$ | $+0.3$ | 30599 | 30701 | $-102$ | 45222 | 45368 | $-146$ | $[246]$ |
| $47 \quad 23.5$ | $47 \quad 23.7$ | 0.2 | 30630 | 30684 | - 54 | $45=45$ | 45327 | - S2 | 247 |
| tó 56.3 | $46 \quad 5 \mathrm{~S} .5$ | - 2.2 | 30709 | 30800 | - 9I | 44977 | $45^{141}$ | $-164$ | 248 |
| $47 \quad 27.5$ | $47 \quad 25.2$ | $+2.3$ | 30552 | 30641 | - S9 | 45187 | 45286 | - 99 | 249 |
| $47 \quad 48.4$ | $47 \quad 47 \cdot 3$ | + 1.1 | 30405 | 30509 | - 104 | $45 \div 67$ | 45409 | $-142$ | 250 |
| $48 \quad 10.2$ | $48 \quad 12.2$ | - 2.0 | 30319 | 30368 | - 49 | 45462 | 45565 | $-103$ | 251 |
| $48 \quad 25.4$ | $48 \quad 29.0$ | - 3.6 | 30867 | 30749 | + 11S | 46513 | 46390 | +123 | 252 |

Ohserved and Calculated Valnes of Magnetic Elements


Bracketed number shows that the station is excluded in the equations of condition.

## XV. (Continued.)



| Dip 0. |  |  | Horizontal Force H. |  |  | Total Force I. |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { (ob) } \\ & \text { served } \end{aligned}$ | ralenlated | O1ヶ..-Cal. | (ob- | $\begin{aligned} & \text { Calcu- } \\ & \text { lated } \end{aligned}$ | (1) |  |  |  |  |
| $4 S^{\circ} \quad 29.7$ | $4 S^{\circ} 33 \cdot 5$ | - 3.S | 30923 | $30 \mathrm{~S} 25^{\gamma}$ | + $95^{\prime \prime}$ | $4666{ }^{\gamma}$ | 46573 | + $90 \%$ | 253 |
| $43^{3} \quad 00.8$ | $47 \quad 59.6$ | + 1.2 | 31009 | 30997 | + 12 | 46354 | 463 IS | $+36$ | 254 |
| $4 \mathrm{~S} \quad 04.0$ | $4 \mathrm{~S} \quad 04 . S$ | $-\quad 0.8$ | 31047 | 31029 | + IS | 46459 | 46.44 | + 15 | 255 |
| $4^{S} \quad 24.1$ | $4 S \quad 29.3$ | - 5.2 | 31029 | 30997 | + 32 | 46737 | 46769 | - 32 | 256 |
| $4^{S} \quad 46.2$ | $4^{S} \quad 46.3$ | - 0.1 | 30985 | 30873 | + 112 | 47012 | $46 S_{45}$ | $+167$ | 257 |
| $4 S \quad 37.4$ | $4^{S} \quad 46.9$ | - 9.5 | 31145 | 30936 | + 209 | 47117 | 469.48 | +169 | 258 |
| $4 S \quad 40.3$ | $48 \quad 47 \cdot 3$ | $-7.0$ | 31109 | 31002 | + 107 | 47109 | 47055 | + 54 | 259 |
| $49 \quad 45.4$ | $49 \quad 14.4$ | $+31.0$ | 30354 | 30693 | - 339 | 46985 | 47011 | - 26 | [260] |
| $49 \quad 19.6$ | 49 06.I | $+13.5$ | 30734 | 306SI | $+053$ | 47156 | 46562 | + 294 | 261 |
| 49 II.I | $49 \quad 00.7$ | $+10.4$ | 30559 | 30636 | - 77 | 46754 | 4670S | + 46 | 262 |
| $49 \quad 37.2$ | 49 23.1 | + 14.1 | 30728 | 30517 | + 211 | 47430 | 46879 | + 551 | 263 |
| 50 | $49 \quad 40.9$ | $+23.5$ | 30261 | $3: 467$ | - 206 | 47154 | 47087 | +67 | [264] |
| $49 \quad 53.2$ | $49 \quad 46.6$ | + 6.6 | 30212 | 30390 | $-178$ | 46891 | 47c60 | $-169$ | 265 |
| $49 \quad 31.7$ | $49 \quad 22.5$ | + 9.2 | 30.493 | 30454 | + 39 | 46979 | 46772 | $+207$ | 266 |
| $48 \quad 53 \cdot 3$ | $\begin{array}{ll}49 & 02.4\end{array}$ | - 9.1 | 30926 | 30563 | $+363$ | 47034 | 46624 | + 410 | [267] |
| $48 \quad 32.4$ | $4^{S} \quad 31.7$ | $+0.7$ | 30750 | 3069.4 | + 56 | 46445 | 46348 | + 97 | 268 |
| $48 \quad 51.5$ | $4 S \quad 52.9$ | - 1.4 | $\ldots$ | 30558 | ... | ... | $4646 S$ | ... | 269] |
| $4 \mathrm{~S} \quad 49.2$ | $48 \quad 53.7$ | - 4.5 | 30670 | 30556 | +114 | 465 So | 46477 | $+103$ | 270 |
| $47 \quad 49.6$ | $47 \quad 51.2$ | - 1.6 | 30 SO 2 | 30711 | + 9I | 45879 | 4576 S | + III | 17 I |
| $47 \quad 52.4$ | $47 \quad 55 \cdot 7$ | - $3 \cdot 3$ | $30 S 26$ | 30743 | $+s_{3}$ | 45957 | 45852 | + 75 | 272 |
| $47 \quad 17.3$ | $47 \quad 17.6$ | $-0.3$ | 30959 | 30890 | + 69 | 45642 | 45544 | + 98 | 273 |

「 CABLE
Ohserved and Calculated Values of Magnetic Elements

| No. | Station. | Height in km. | Year. | Latitule. Longitnde. |  |  | Declination $\delta$. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  | $\begin{aligned} & \text { Ob- } \\ & \text { served } \end{aligned}$ | Galculated | Ohs.-Cat. |
| 274 | Nawari ........... | 0.00 | 1896.65 | $33^{\circ} 26,0$ | $134{ }^{\circ}$ | -3.0 | $4^{\circ}$ I 9.6 | $4^{\circ} \mathrm{I} 9.5$ | + o. ${ }^{\text {a }}$ |
| 275 | Kīti............... | - 00 | IS96. 65 | $33 \quad 32.8$ | 133 | $33 \cdot 3$ | $\begin{array}{ll}4 & 23.6\end{array}$ | 422.6 | + 1.0 |
| 276 | $\bar{O}$ Oti .............. | 0.35 | IS96.66 | 3341.0 | 133 | 53.0 | $4 \quad 24.9$ | $4 \quad 24.6$ | $+0.3$ |
| 277 | Susaki............ | 0.00 | 1896.67 | $33 \quad 24.0$ | 133 | 17.8 | 420.8 | $4 \quad 20.2$ | $+0.6$ |
| 278 | Nakammra ....... | 0.00 | 1896.67 | $32 \quad 57.7$ | 132 | 55.0 | $4 \quad 11.8$ | $4 \quad 12.2$ | - 0.4 |
| 279 | Uwazima ........ | 0.00 | 1896.69 | 3313.2 | 132 | 34.5 | $4 \quad 15.6$ | $4 \quad 17 \cdot 4$ | $-1.8$ |
| 2So | Wakamiya...... | 0.01 | I 896.69 | $33 \quad 32.0$ | 132 | 34.5 | $4 \quad 20.2$ | $\begin{array}{ll}4 & 23.4\end{array}$ | $-3.2$ |
| $\left[2 S_{1}\right]$ | Yithatahama .... | 0.00 | 1896.70 | $33 \quad 27.4$ | 132 | 25.7 | ... | 421.9 | ... |
| 282 | Saganoseki ...... | 0.00 | 1896.70 | 3314.5 | 131 | $53 \cdot 3$ | $\begin{array}{ll}4 & 14.5\end{array}$ | $4 \quad 17.5$ | $-3.0$ |
| 283 | Saiki.............. | 0.00 | 1896.71 | $32 \quad 56.9$ | 131 | 52.5 | $4 \quad 09.4$ | 412.0 | - 2.6 |
| 284 | Oita............... | 0.00 | 1896.72 | $33 \quad 15.0$ | 131 | 36.0 | $\begin{array}{ll}4 & 16.7\end{array}$ | $4 \quad 17.7$ | $-1.0$ |
| 285 | Matuyama ....... | 0.00 | 1896.72 | $33 \quad 52.0$ | 132 | 45.0 | $4 \quad 27.9$ | $4 \quad 29.7$ | - 1.8 |
| 2 S6 | Kıza in Iyo...... | 0.33 | 1896.73 | $33 \quad 33.8$ | 132 | 5 S. 5 | $4 \quad 22.7$ | $4 \quad 23.7$ | - 1.0 |
| 287 | Kıma , | 0.53 | 1896.73 | $33 \quad 39.4$ | 132 | 53.5 | $\begin{array}{ll}4 & 26.7\end{array}$ | $4 \quad 25.5$ | + 1.2 |
| 2 SS | Imabarı .......... | 0.00 | 1896.74 | 34 04.0 | 133 | 01.5 | 432.8 | 433.2 | - 0.4 |
| 289 | Kawanoe......... | 0.03 | I S96.75 | $34 \quad 02.0$ | 133 | 35.0 | $4 \quad 30.3$ | 431.8 | $-1.5$ |
| 293 | Marngame....... | 0.00 | 186.75 | $34 \quad 16.9$ | 133 | 49.0 | 431.0 | 436.0 | - 5.0 |
| 291 | Takamatn....... | 0.00 | 1896.75 | 3421.0 | 134 | 02.8 | $4 \quad 37.5$ | $\begin{array}{ll}4 & 36.7\end{array}$ | + 0.8 |
| 292 | Tonosȳ.......... | 0.00 | 1896.76 | $34 \quad 29.0$ | 134 | 10.5 | $4 \quad 38.6$ | 4 38.S | $-0.2$ |
| 293 | Zaikīzi | o.co | 1896.52 | $32 \quad 24.2$ | 131 | 36.8 | $4 \quad 01.2$ | 4 OI.I | + 0.1 |
| 294 | Miyazaki ........ | 0.00 | 1896.52 | 3155.2 | 131 | 25.3 | 359.0 | 351.5 | + 7.5 |

Bracketed number shows that the station is excluded in the equations of condition.

## XV. (Continued.)

( $\delta, \theta, H$, and I) Reduced to 1895. 0 and Sea Level.

| Dip ${ }^{\text {f }}$ |  |  | Horizontal Force II. |  |  | Total Force I. |  |  | No. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Served |  | Obs.-Cal. | $\xrightarrow[\substack{\text { Ol- } \\ \text { served }}]{\text { cel }}$ | Calcu- | , Obs.-Cal. | $\begin{gathered} \text { Olb- } \\ \text { servel } \end{gathered}$ | $\begin{gathered} \text { Caleu- } \\ \text { lated } \end{gathered}$ | Ols.-Cal. |  |
| $47^{\circ} 09.2$ | $47^{\circ}$ o9. 4 | - 0.2 | $31019{ }^{\prime}$ | $3097 \mathrm{I}^{\text {r }}$ | $+48^{\prime}$ | $45614^{\gamma}$ | $45547{ }^{\text {Y }}$ | + 67 | 274 |
| $47 \quad 17.4$ | 4722.0 | - 4.6 | 31069 | $3<984$ | + $\mathrm{S}_{5}$ | 45806 | 45747 | $+\quad 59$ | 275 |
| $47 \quad 32.4$ | $47 \quad 29.2$ | + 3.2 | 30971 | 30906 | + 65 | 45879 | 45735 | + 144 | 276 |
| $47 \quad 17.2$ | $47 \quad 13.4$ | + 3.8 | 31063 | 31058 | + 5 | 45793 | 45731 | + 62 | 277 |
| $46 \quad 46.8$ | $\begin{array}{lll}46 & 44.3\end{array}$ | + 2.5 | 31286 | 31239 | + 47 | 45686 | 45583 | $+103$ | 278 |
| $47^{-07.6}$ | $47 \quad 06.5$ | + 1.1 | 31205 | 31192 | $+13$ | 45864 | 45829 | + 35 | 279 |
| $47 \quad 27.0$ | $47 \quad 29.3$ | $-2.5$ | 31142 | 31691 | + 51 | $4 \mathrm{Coj}_{2}$ | 46018 | $+34$ | 280 |
| $47 \quad 34.9$ | $47 \quad 25.5$ | + 9.4 | 31116 | 31132 | - 16 | 46130 | 46015 | + 115 | [281] |
| $47 \quad$ c9.9 | $47 \quad 14.6$ | $-4.7$ | 31384 | 31261 | + 123 | 46162 | 46047 | + 115 | 282 |
| $46 \quad 58.2$ | $46 \quad 52.8$ | + 5.4 | 31297 | 31356 | - 59 | 45864 | 45873 | - 9 | 283 |
| 4721.0 | $47 \quad 18.0$ | + 3.0 | 31079 | 31291 | 212 | 45972 | 46141 | - 269 | 184 |
| $47 \quad 50.5$ | $47 \quad 52.7$ | - 2.2 | 30995 | 30963 | +32 | 46150 | 46165 | + 15 | $28_{5}$ |
| $47 \quad 31.5$ | $47 \quad 28.3$ | + 3.2 | 31067 | 31038 | + 29 | 46007 | 45917 | + 90 | 286 |
| $47 \quad 36.0$ | $47 \quad 36.0$ | 0.0 | 31008 | 31016 | S | 45985 | 45998 | - 13 | 287 |
| $48 \quad 04.3$ | $4^{8} \quad 04.9$ | - 0.6 | 30924 | 30868 | + $5^{6}$ | 46280 | 46205 | + 75 | 288 |
| $47 \quad 55.5$ | $47 \quad 57.4$ | - 1.9 | 30899 | 30821 | + 78 | 46108 | 46024 | + $8_{4}$ | 289 |
| $48 \quad 10.2$ | $\begin{array}{lll}48 & 13.4\end{array}$ | $-3.2$ | 30862 | 30714 | + 148 | 46275 | 46102 | + 173 | 290 |
| 488 | $48 \quad 16.3$ | - 1.7 | 30783 | 30669 | + 114 | 46222 | 46078 | + 144 | 291 |
| $48 \quad 24.0$ | $48 \quad 24.9$ | - 0.9 | 30643 | 30611 | + 32 | 46154 | 46120 | + 34 | 292 |
| $46 \quad 14.2$ | $46 \quad 14.3$ | - c.i | 31586 | 31559 | + 27 | 45667 | 45628 | + 39 | 293 |
| $45 \quad 39.9$ | $45 \quad 39.4$ | + 0.5 | 31737 | 31731 | + 6 | 45414 | 45397 | + 17 | 294 |

TABLE
Observed and Calculated Values of Magnetic Elements


Bracketed number shows that the station is excluded in the equations of condition.

## XV. (Continued.)

( 5 , 日, H, and I) Reduced to 159.5.0 and Sea Level.

| Dip 9. |  |  | Horizontal Force H. |  |  | Total Force I. |  |  | No. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Oh- } \\ & \text { served } \end{aligned}$ | $\begin{aligned} & \text { Calcu- } \\ & \text { lated } \end{aligned}$ | Olla.-Cal. | $\underset{\text { served }}{\text { Ob- }}$ | Calcinlated | Obs.-Cad. | Observed | Calcu- lated | Obs.-Cal. |  |
| $45^{\circ} \quad 23.7$ | $45^{\circ} \mathrm{z} 7.1$ | - 3.4 | $31825^{\circ}$ | $31838^{\prime}$ | - 13 | $45321^{\gamma}$ | $45.386^{\prime \prime}$ | - $65^{\prime \prime}$ | 295 |
| $45 \quad 05.9$ | $45 \quad c .4$ | + 1.2 | 31912 | 31507 | + 5 | 4520.4 | $45^{186}$ | + 18 | 296 |
| $44 \quad 53.2$ | 4459.8 | - 6.6 | 32036 | 31966 | $+70$ | 45217 | 45204 | + 13 | 297 |
| $45 \quad 28.2$ | $45 \quad 22.5$ | + 5.7 | 31847 | 31936 | $-\quad \mathrm{S} 9$ | 45413 | 45463 | - 50 | 298 |
| $45 \quad \mathrm{C9.1}$ | $45 \quad 33.1$ | $-24.0$ | 32319 | 3193 S | $+381$ | 45826 | 45608 | $+218$ | [299] |
| $45 \quad 12.7$ | 4501.5 | + 11.2 | 31961 | 32062 | - 101 | 45367 | 45363 | $\pm 4$ | 300 |
| $45 \quad 10.9$ | $45 \quad 11.4$ | - 0.5 | 3 2067 | 32016 | + 51 | 45496 | +5428 | + 68 | [301] |
| $45 \quad 0.1$ | $45 \quad 45.0$ | - 35.9 | 31725 | 31822 | - 97 | 44984 | 45604 | - 620 | [302] |
| $46 \quad 00.5$ | $46 \quad 07.0$ | - 6.5 | 31701 | 31719 | - 18 | 45642 | $4575{ }^{8}$ | - 116 | 303 |
| $46 \quad 00.9$ | $46 \quad 09.7$ | - S.S | 31689 | 31675 | + 14 | 45631 | 45732 | - 101 | 304 |
| $46 \quad 31.2$ | $46 \quad 31.0$ | + 0.2 | 31713 | 31649 | + 64 | $46 c 88$ | 45992 | + 96 | 305 |
| $46 \quad 06.0$ | $46 \quad 11.2$ | - 5.2 | 32063 | 31764 | + 299 | 46240 | 4;882 | $+358$ | 306 |
| $46 \quad 55 \cdot 3$ | $46 \quad 54.0$ | $+1.3$ | 31385 | 31590 | - 205 | 45952 | 46234 | - 282 | 307 |
| $47 \quad 17.5$ | $46 \quad 57.8$ | + 19.7 | 31864 | 31658 | $+206$ | 46979 | 46387 | $+592$ | [308] |
| $47 \quad 30.9$ | $47 \quad 31.4$ | $-0.5$ | 31460 | 31541 | - 81 | 46580 | 467 cS | - 128 | 309 |
| $46 \quad 27.7$ | $46 \quad 32.4$ | - 4.7 | 31699 | 31711 | - 12 | 46018 | 46102 | $-84$ | 310 |
| $46 \quad 51.4$ | $46 \quad 52.7$ | - 1.3 | 31365 | 31537 | $-172$ | 45868 | 46137 | - 269 | 311 |
| $47 \quad 03.5$ | $46 \quad 58.6$ | $+4.9$ | 31489 | 31449 | $+40$ | 46222 | 46094 | $+128$ | 312 |
| $47 \quad 22.0$ | $46 \quad 38.2$ | $+43.8$ | 31467 | 31532 | - 65 | 46460 | 45924 | $+536$ | [313] |
| $47 \quad 22.5$ | $47 \quad 23.1$ | - 0.6 | 31425 | 31461 | - 36 | 46406 | 46465 | - 59 | 314 |
| $48 \quad 01.0$ | $47 \quad 55 \cdot 4$ | $+5.6$ | 31206 | 31326 | $-120$ | 46652 | 46748 | - 96 | 315 |

Observed and Calculated Values of Magnetic Elements

| No. | Station. | Height in km. | Year. | Latitude. | Longitude. | Declination $\delta$. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\begin{aligned} & \text { obt- } \\ & \text { seerve } \end{aligned}$ | Calenlated | Ols. Cal. |
| 316 | Kokura .......... | 0.00 | I 896.64 | $33^{\circ} 53 \cdot 3$ | $130^{\circ} 5 \dot{3} \cdot 5$ | $4^{\circ}+4.1$ | $4^{\circ} 29.2$ | +14.9 |
| 317 | Nakatı .......... | 0.00 | $18,6.64$ | $33 \quad 36.5$ | 13111.3 | $4 \quad 27.0$ | $4 \quad 24.2$ | $+2.8$ |
| 318 | Nakamatama ... | 0.00 | I 896.65 | $33 \quad 36.0$ | 13130.0 | $+26.3$ | $+24.4$ | + 1.9 |
| 319 | Kıma, Bungo .. | o.cS | I 896.65 | $33 \quad 18.5$ | $130 \quad 57.0$ | $+35 \cdot 3$ | $4 \quad 17.9$ | $+17.4$ |
| 320 | Kilmatu........... | 0.00 | I 896.66 | $33 \quad 26.5$ | 12959.5 | $4 \quad 18.8$ | $4 \quad 18.3$ | $+0.5$ |

XV. (Continued.)
(i, $\theta$, H, and I) Reduced to 1895.0 and Sea Level.

| Dip 9. |  |  | Horizontal Force H. |  |  | Total Force 1. |  |  | No. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { oh- } \\ & \text { served } \end{aligned}$ | Calculated | Obs.-C'al. | $\begin{aligned} & \text { Ob- } \\ & \text { scrved } \end{aligned}$ | Calculated | Obr. Cal. | $\begin{aligned} & \text { ob- } \\ & \text { served } \end{aligned}$ | Calculated | Ons. Cal. |  |
| $48^{\circ} 16.1$ | $48^{\circ} \quad 12.7$ | $\begin{array}{r}1 \\ +\quad 3.4 \\ \hline\end{array}$ | 3 HSi | $31168^{\circ \prime}$ | 1 $+\quad 13$ | $46841^{\prime \prime}$ | $4677{ }^{\prime \prime}$ | $+69^{\prime \prime}$ | 316 |
| $47 \quad 58$ | $47 \quad 48.8$ | + 9.7 | 31141 | 31223 | - 82 | $+6517$ | 46194 | + 23 | 317 |
| $47 \quad 51.1$ | $47 \quad 45.0$ | + 6.1 | 31185 | 31190 | - 5 | 46472 | 46388 | + 84 | 318 |
| $46 \quad 59.3$ | $47 \quad 28.5$ | - 29.5 | 31281 | 31348 | - 67 | $4 ; 8 ; 6$ | 46383 | - 527 | 319 |
| $47 \quad 54.2$ | $47 \quad 48.9$ | + $5 \cdot 3$ | 31290 | 31423 | - 133 | 46676 | $4679+$ | - 118 | $3 \geq 0$ |

Observed and Calculated Values of Magnetic Elements

| Nu. | Station. | $\begin{aligned} & \text { Height } \\ & \text { in km. } \end{aligned}$ | Year. | Latitude. | Longitude. | Nortl Compt. X |  | West Compt. I |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\begin{gathered} \text { Ob- } \\ \text { served } \end{gathered}$ | Calculated | $\begin{aligned} & \mathrm{Ol} \text { - } \\ & \text { served } \end{aligned}$ | Calki- <br> lated |
| ${ }^{\prime}$ f | Tōkyō........... | 0.02 | 1893-96 | $35^{\circ} 42$ 2́o | $139^{\circ} 46^{\prime} .0$ | $20672^{\prime \prime}$ | 29659 | $2287^{\prime \prime}$ | 2285 |
| $1 b$ | " | 0.02 | 1896.50 | 3541.0 | 13945.0 | 29726 | 29666 | 2319 | 2284 |
| 2 | Hatiōzi .......... | 0.11 | $\left.\begin{array}{l} 1893.51 \\ 1895.48 \end{array}\right\}$ | 3540.0 | 13920.0 | 29671 | 29695 | 2374 | 2321 |
| [3] | Sauhasi ......... | 0.31 | 1893.52 | 3536.4 | 13858.8 | 29100 | 29738 | 2592 | 2344 |
| [4] | Köhu | 0.26 | 1893.52 | 3539.5 | 13834.5 | 28794 | 29744 | 2463 | 2384 |
| 5 | Uminokuti...... | 1.07 | 1893.53 | 3559.0 | $13827 \cdot 3$ | 29750 | 29633 | 2225 | 2433 |
| 6 | Usuta ............ | 0.74 | 1893.54 | 3611.0 | $138 \quad 28.1$ | $298+5$ | 29559 | 2.442 | 2456 |
| [7] | Kiomorv ......... | 0.67 | 1893.54 | $36 \quad 19.7$ | 13820.0 | 29399 | 29507 | 2467 | 2476 |
| $\delta$ | Miyota .......... | o.So | 1893.54 | 3619.5 | 13830.5 | 29555 | 29504 | 24.45 | 2470 |
| 9 | Kıaruzawal..... | 0.97 | 1893.55 | 3621.7 | 13838.3 | 29618 | 29482 | 24.48 | 2464 |
| [10] | Kutukake ....... | 0.99 | 1893.55 | 3620.8 | 13833.0 | ... | 29494 | ... | 2469 |
| 11 | Uela | 0.43 | 18 | $36 \quad 24.0$ | 13815.6 | 29756 | 29.492 | 2644 | 2498 |
| 12 | Kimmiouwa | 0.71 | 1893.56 | $36 \quad 02.3$ | 13807.7 | 29767 | 29635 | 2513 | 2.465 |
| 13 | Matumbete | 0.69 | 1893.57 | 3614.0 | 13759.0 | 29499 | 29573 | 2376 | 2500 |
| 14 | Onnat | 0.69 | 1893.58 | $36=8.0$ | $137+9.5$ | 2953 | 29498 | 2555 | 2541 |
| [15] | Kuruma | c. 60 | 1893.58 | 3648.0 | 13751.0 | 29662 | 29372 | $-473$ | 2577 |
| 16 | Itoigralwa......... | o.co | $\left.\begin{array}{l} 1893.59 \\ 1893.77 \end{array}\right\}$ | $37 \quad 02.5$ | 13752.0 | 29128 | 29280 | 2620 | 2605 |
| 17 | Takata | 0.00 | 1893.59 | 3706.8 | 13816.0 | 29241 | 29226 | 2659 | -581 |
| 18 | Sekiyama........ | 0.56 | 1893.60 | 3656.5 | 13813.5 | 2922 8 | 29294 | 2562 | 2565 |
| 19 | Nagano .......... | 0.38 | 1893.60 | 3639.8 | 13812.0 | 29232 | 29399 | 2539 | 2534 |
| 20 | lisama........... | 0.31 | 1893.61 | $3652 \cdot 3$ | 13822.2 | 29247 | 29311 | 2620 | 2545 |
| 21 | Toknamati ....... | 0.16 | 1893.62 | $37 \quad 69.0$ | $138+4.0$ | 29255 | 29183 | 2577 | $\pm \boxed{37}$ |

Bracketed number shows that the station is exchuded in the equations of condition.

## XVI.

X, Y, Z, and Intensity and Direction of Disturbing Forces.

| Upward Compt. <br> Z |  | North Compt. $\Delta x$ | West Compt. $\Delta Y$ | Lepward Compt. $\Delta Z$ | $1 \pi$ | $\begin{aligned} & 7 \\ & + \\ & 3 \\ & 7 \\ & 7 \end{aligned}$ | Azimuth | Altitme ${ }^{\text {ér. }}$ | No. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Oiserved | Calculated | (1)s.-Cal. | Obs.-Cal. | Obs.-Cal. | 3 |  |  |  |  |
| $-34329^{\circ}$ | $-34414^{\prime \prime}$ | + 13 | + $\quad 3$ | + $85^{\gamma}$ | ${ }_{13}{ }^{7}$ | S6 ${ }^{\prime \prime}$ | $9{ }^{\circ}$ | $+81^{\circ}$ | $1 / 1$ |
| -34299 | -34400 | + 60 | + 35 | + 101 | 69 | 123 | 30 | + 56 | 16 |
| -34290 | $-34467$ | - 24 | + 53 | + 177 | 58 | ı 86 | 114 | + 72 | 2 |
| $-34535$ | $-34477$ | - 6,38 | $+248$ | - $5^{\text {S }}$ | 685 | 687 | 159 | - 5 | [3] |
| $-34714$ | $-34615$ | - 950 | + 79 | - 99 | 953 | $95^{8}$ | 175 | - 6 | [4] |
| -34647 | $-34967$ | + 117 | - 208 | + 320 | 239 | 399 | 299 | + 53 | 5 |
| -35424 | $-35166$ | + 286 | - I4 | - 25 S | 286 | 3 S 5 | 357 | - $4^{2}$ | 6 |
| $-36320$ | $-35320$ | - 108 | - 9 | $-1000$ | 10 S | 1006 | 185 | $-S_{4}$ | [7] |
| $-35283$ | -35299 | + $5^{1}$ | - 35 | + 16 | 62 | 64 | 326 | + 14 | 8 |
| -35234 | $-35306$ | + 136 | 16 | $+\quad 72$ | 1.37 | 155 | 353 | + 2 S | 9 |
| $-34613$ | $-35312$ | ... | ... | + 699 | ... | .. | ... | + ... | [10] |
| $-35654$ | $-35432$ | + 264 | $+146$ | - 222 | 302 | 375 | 29 | $-36$ | 11 |
| -35264 | -35098 | 132 | + 48 | - 166 | 140 | 217 | 20 | - 50 | 12 |
| - 35279 | -35330 | 74 | - 124 | + $5^{1}$ | 144 | 153 | 239 | + 20 | ${ }^{1}$ |
| -35626 | $-35607$ | + 5 | + 14 | - 19 | 15 | 24 | 70 | $-\quad 52$ | 14 |
| -35799 | -3594 ${ }^{1}$ | + 290 | - 104 | + 142 | 308 | 339 | 340 | + 25 |  |
| $-36142$ | $-36183$ | - 152 | + 15 | + 41 | 153 | 158 | 174. | + 15 | 16 |
| $-36145$ | $-36153$ | + 15 | + 78 | $+\quad s$ | 79 | So | 79 | + 6 | 17 |
| $-36081$ | -35989 | - 66 | - 3 | - $9^{2}$ | 66 | 113 | 183 | - 54 | 18 |
| -35666 | -35714 | -. 167 | $+5$ | $+48$ | 167 | 174 | 178 | + 16 | 19 |
| -35901 | $-35884$ | - 64 | + 75 | - 17 | 99 | 100 | 131 | - 10 | 20 |
| $-36163$ | $-36076$ | 72 $+\quad 72$ | + 30 | - 87 | 78 | 117 | 23 | $-4^{8}$ | 21 |

* from the horison toward the zenith. - from the horison toward the nadir.

Observed and Calculated Values of Magnetic Elements

| No. | Station. | $\begin{aligned} & \text { Height } \\ & \text { in km. } \end{aligned}$ | Year. | Latitude. | Longiturle. | North Compt. X |  | West Compt. Y |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\begin{aligned} & \text { Ob- } \\ & \text { served } \end{aligned}$ | Calculated | $\begin{aligned} & \text { Ob- } \\ & \text { served } \end{aligned}$ | Calenlated |
| 22 | Nagaoka......... | 0.03 | 1893.64 | $37^{\circ} 27^{\prime} 0$ | $135^{\circ} 52.2$ | $28892^{\circ}$ | $29061^{\circ}$ | 2649 | $2570^{\circ}$ |
| [23] | Kilsiwazaki ..... | 0.00 | 1893.63 | 3722.5 | 13834.3 | ... | 29108 | ... | 2589 |
| [24] | Teradomari..... | 0.00 | 1893.64 | $37 \quad 38.2$ | $138+45 \cdot 5$ | ... | 28997 | ... | 2600 |
| 25 | Niigata.......... | 0.03 | $\left.\begin{array}{l} 1893.64 \\ 1595.62 \end{array}\right\}$ | 3754.8 | 13902.2 | 28766 | 28875 | 2766 | 2606 |
| [26] | K:mo ............ | 0.10 | 1893.65 | 3737.5 | 13903.0 | 28858 | 28983 | 2782 | 2573 |
| 27 | Sibata ........... | 0.02 | ${ }_{1} 893.66$ | 3756.0 | 13919.0 | 28787 | 28850 | 2812 | 2593 |
| 28 | Ebisu ............ | 0.00 | 1893.67 | 3805.2 | 13825.5 | 28866 | 28847 | 2911 | 2678 |
| 29 | Wasizaki. | 0.00 | 1893.67 | $38 \quad 18.5$ | 13831.0 | 28652 | 28755 | 2873 | 2694 |
| 30 | Aikawa .......... | 0.75 | 1893.68 | 3 S 02.5 | 1.3814 .2 | 28621 | 28576 | 2694 | 2688 |
| 31 | Ogi............... | $0 .: 0$ | 1893.69 | 3749.0 | 13815.4 | 29138 | 28961 | 2631 | 2662 |
| [32] | Oza $4 \mathrm{a} . . . . . . . . . . .$. | 0.90 | 1893.70 | $36 \quad 29.6$ | $138 \quad 30.5$ | 29.461 | 29442 | 2149 | 2490 |
| [33] | Wakasare | 1.40 | 1893.70 | $36 \quad 24.6$ | 13834.2 | 29805 | 29469 | 1974 | 2475 |
| [34] | Asama... | 2.45 | 1893.70 | $36 \quad 24.0$ | 13830.5 | 30151 | 29476 | 1694 | 2479 |
| 35 | Matnida ......... | 0.26 | 1893.70 | $36 \quad 18.5$ | ${ }_{13}{ }^{3} 48.6$ | 29528 | 29491 | 2421 | 2443 |
| 36 | Takasaki ........ | 0.10 | 1893.71 | $36 \quad 19.5$ | 13900.5 | 29496 | 29473 | 2529 | 2428 |
| . 37 | Numata......... | 0.42 | $\left.\begin{array}{l} 1893.72 \\ 1895.49 \end{array}\right\}$ | 3639.2 | 13902.0 | 29345 | 29350 | 2.405 | 2465 |
| 38 | Kumagai......... | 0.03 | 1893.72 | 3609.0 | 13923.2 | 29475 | 29516 | 2229 | 2374 |
| 39 | Olawara......... | 0.00 | 1893.74 | $35 \quad 15.0$ | 13909.8 | 30121 | 29856 | 2.411 | 2284 |
| [40] | Atami........... | 0.00 | 1893.75 | $35 \quad 05.7$ | 13905.0 | 29265 | 29916 | 2275 | 2272 |
| [41] | Simoda .......... | 0.00 | 1893.77 | 3440.5 | 13857.8 | 30123 | 30072 | 1951 | 2228 |
| 42 | Matuzaki.. | 0.00 | 1893.78 | $3445 \cdot 3$ | 13848.5 | 30061 | 30053 | 2305 | 2252 |

Bracketed number shows that the station is excluded in the equations of condition.

## X VI. (Contimued.)

X, Y, Z, and Intensity and Direction of Disturling Forees.

| Upward | Compt. | North Compt. $\Delta X$ | West Compt. $\Delta I$ | l'pward Compt. $\Delta /$ | ב |  | Azimuth | Altitude. | No. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Observed | Calculater | Obs.-Cal. | Obs.-Cal. | Ohis. Cal. |  |  |  |  |  |
| $-36679^{\gamma}$ | $-363+1$ | - 169 | + 79 | - 335 | 187 | 383 | $155^{\circ}$ | - $61^{\circ}$ | 22 |
| $-36824$ | $-363+2$ | .. | ... | - 482 | ... | ... | ... | - ... | [23] |
| $-36765$ | $-36560$ | ... | ... | - 205 |  | $\cdots$ | $\ldots$ | - | [24] |
| $-36570$ | $-36768$ | 109 | + 160 | - 102 | 19.4 | 219 | 12.4 | - 28 | 25 |
| -37068 | $-36475$ | - 125 | $+209$ | - 593 | $2+4$ | 641 | 121 | - 68 | [26] |
| -36622 | $-36717$ | 63 | + 229 | + 95 | 235 | 256 | 105 | + 22 | 27 |
| $-36934$ | -37099 | + 59 | + 233 | + 165 | 234 | 2 26 | S5 | $+35$ | 23 |
| -37cS2 | -3729S | - 103 | + 179 | + 217 | 207 | 300 | 120 | $+4^{6}$ | 29 |
| $-37002$ | -37104 | - 255 | + 6 | + 102 | 255 | 275 | 179 | $+22$ | 30 |
| $-3669.4$ | $-36570$ | + 177 | 31 | + 176 | ISo | 252 | 350 | $+47$ | 31 |
| $-36348$ | -35470 | + 19 | - 371 | - $\mathrm{S}_{7} \mathrm{~S}$ | 342 | 942 | 273 | - 69 | [32] |
| -35598 | $-35372$ | + 336 | - 501 | - 226 | 603 | 644 | 30.4 | - 21 | [33] |
| $-38311$ | -35375 | + 675 | - 785 | - 2936 | 1035 | 3113 | 311 | - 71 | [34] |
| -35294 | -35214 | $+37$ | 22 | - So | 43 | 91 | 329 | - 62 | 35 |
| $-35+33$ | -351SS | $+23$ | + 101 | - 245 | 104 | 266 | 77 | - 67 | 36 |
| -3549 | -3550S | - 5 | - 60 | + 17 | 60 | 63 | 265 | + 16 | 37 |
| $-35193$ | $-34933$ | 41 | - 145 | - 260 | 151 | 311 | 25.7 | - 60 | 35 |
| $-3+947$ | $-3+088$ | + 265 | + 127 | - S59 | 294 | 908 | 26 | $-71$ | 39 |
| $-33725$ | -33949 | - 651 | $+3$ | + 224 | 651 | 685 | ISo | + 19 | [40] |
| -33394 | -33555 | + 51 | - 277 | + 161 | 282 | 324 | 2 SO | + 30 | [41] |
| -33719 | -33663 | + S | $+\quad 53$ | - 56 | 54 | 7 S | Si | - 46 | 42 |

* from the horison toward the zenith. - from the horison toward the nadir.

Observed and Calculated Values of Magnetic Elements

| No. | Station. | Height in km. | Year. | Latitude. | Longitude. | North Compt. X |  | West Compt. Y |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\begin{aligned} & \text { Oh- } \\ & \text { served } \end{aligned}$ | $\begin{aligned} & \text { Calcu- } \\ & \text { lated } \end{aligned}$ | $\begin{aligned} & \text { ob- } \\ & \text { served } \end{aligned}$ | $\begin{aligned} & \text { Calex- } \\ & \text { lated } \end{aligned}$ |
| 43 | ILudisawa ....... | 0.00 | 1893.79 | $35^{\circ} 20.8$ | $139^{\circ} 29^{\prime} 3$ | $29529^{\gamma}$ | $29 \mathrm{Soz}$ | $235 \mathrm{~S}^{\text {' }}$ | $2268^{\text {¢ }}$ |
| 44 |  | 0.n0 | $\begin{array}{r} \text { IS93.SI } \\ \dagger \mathbf{I} 893.82 \end{array}$ | $35 \quad 15.4$ | 13942.5 | 2974S | 29822 | 2232 | 2236 |
| [45] | Midono .......... | 0.55 | * 1893.51 | 3520.0 | 13854.0 | 29131 | 29841 | 2252 | 2317 |
| [45] | Iusida ........... | o. $8_{4}$ | $\begin{aligned} & \dagger \text { : S93.SI } \\ & * \text { iS9.5I } \\ & \dagger \text { I Soj.8i } \end{aligned}$ | 3528.0 | $\mathrm{I}_{3} \mathrm{~S}_{4} 8.0$ | 29643 | 29799 | $\mathrm{I}_{1} \mathrm{I}_{2}$ | $23+2$ |
| [47] | Umagaesi ........ Hnzi, East side | 1.00 | * 1893.52 | 3525.0 | $13 S+7.0$ | 28737 | 29SIS | 23 So | 2337 |
| [4§] | Hnzt, Last side Syakadake... | $3 \cdot 73$ | 1893.53 | 3521.7 | $138+4.0$ | ... | 29838 | ... | 2334 |
| [49] | ,, Suinokawara near Kinmeisni. Sainokawara | 3.60 | 189353 | 3521.7 | $13 S+3 \cdot 5$ | $\ldots$ | 298.1 | ... | 2334 |
| [50] | "near (iommeisui. | 3.72 | IS93.53 | 3521.4 | $13 S+3.9$ | ... | 29843 | ... | 2334 |
| [51] | " Crater......... | 3.56 | 18 | 3521.5 | $13 S+3.9$ | ... | 29S42 | ... | 2337 |
| [52] | Murayama ...... | 0.50 | $\begin{aligned} & + \text { IS93.So } \\ & \div \text { IS93.53 } \end{aligned}$ | 3515.0 | 13 S 40.0 | 30550 | 29SS6 | 1650 | 2326 |
| [53] | Hiromibara ..... | 0.73 | $\begin{aligned} & \dagger \text { IS93.So } \\ & \div \text { I } 993.54 \end{aligned}$ | 3521.1 | ${ }_{1} 38 \quad 36.7$ | 29711 | 29Sj2 | 1710 | 2343 |
| [54] | "Lzuragoya .. | 0.69 | 1S93.54 | 3521.0 | 13836.3 | ... | 29853 | $\ldots$ | $23+3$ |
| [55] | ", Up | 0.75 | 1893.54 | 3521.1 | ${ }_{13}{ }^{5} 37.2$ | $\ldots$ | 29 $3^{1} 1$ | $\ldots$ | 2342 |
| [56] | Mituike | 0. 82 | 1593.54 | 3522.4 | 13835.9 | ... | 29845 | $\ldots$ | 2346 |
| [57] | Mituike Care... | 0.82 | 1893.54 | 3522.4 | $13 S 35.9$ | .. | 29845 | ... | 2346 |
| [5§] | Front of Minike Cine. Front of | o.S2 | 1893.54 | 35 22.4 | 13835.9 |  | 29845 | ... | 2346 |
| [59] | Hitoana ...... Itimailwa in | 0.69 | ıS93.55 | 3521.5 | $13 S 35.5$ |  | 29851 | ... | $23+5$ |
| [60] | Hitoana ...... | 0.69 | 1S93.55 | 3521.5 | ${ }_{13} S^{3} 3.5$ |  | 29851 | ... | $23+5$ |
| [61] | Front of Hitoana ...... | 0.69 | 189355 | 3521.5 | 13835.5 | $\cdots$ | 29851 | $\ldots$ | $23+5$ |
| [62] | דıiуу............ | 0.II | $\begin{aligned} & \dagger 1893.79 \\ & \cdots 1893.55 \end{aligned}$ | 3513.5 | 13 S 3 S .0 | 30187 | 29896 | 2310 | 2326 |
| 63 | Nımazı ......... | 0.00 | $\begin{aligned} & \dagger 189.3 .82 \\ & * 18 ; 3.55 \end{aligned}$ | 3505.0 | 13852.5 | 30018 | 29932 | 2324 | 2287 |

Bracketed number shows that the station is excluded in the equations of condition. $\dagger$ Eioch for the observation of $\bar{\delta}$. * Epoch for the observations of $\theta$ and II.

## XVI. (Continued.)

$\mathrm{X}, \mathrm{Y}, \mathrm{Z}$, and Intensity and Direction of Disturhing Forces.

| Upward Compt. Z |  | North Compt. | West <br> Compt. $\perp \mathrm{Y}$ | Upward Compt. $د \%$ | $\stackrel{7}{7}$ | $\begin{aligned} & 7 \\ & + \\ & \vdots \\ & 7 \\ & 7 \end{aligned}$ | Azimuth | Altitude. | No. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Observed | Calculated | Ohs.-Cal. | Obs.-Cal. | Obs.-Cal. | \% | 少 |  |  |  |
| $\underline{-34130^{\gamma}}$ | $-34119^{\circ}$ | - $273^{\circ}$ | + $90^{\prime \prime}$ | - $\because$ | 287 | 288 | $162^{\circ}$ | $-2^{\circ}$ | 43 |
| $-33844$ | -33989 | - 74 | - 4 | + 145 | 74 | 163 | 183 | $+63$ | 4.4 |
| $-34618$ | $-34222$ | - 710 | - 65 | - 396 | 713 | S16 | 155 | - 29 | [45] |
| $-3+448$ | $-34376$ | - 156 | - 530 | - 72 | 552 | 557 | 254 | - 7 | [46] |
| $-34883$ | $-34328$ | - IoSI | + 43 | - 555 | 1082 | 1216 | 178 | - 27 | [47] |
| -44174 | $-34281$ | ... | ... | - 9893 | $\cdots$ | ... | ... | - ... | [48] |
| $-38.496$ | $-34286$ | ... | $\ldots$ | - 4210 | $\cdots$ | $\cdots$ | $\cdots$ | - $\quad$. | [49] |
| $-41+14$ | $-3+283$ | ... | ... | $-7134$ | $\cdots$ | $\cdots$ | ... | - ... | [50] |
| $-34330$ | -342 SI | $\cdots$ | $\cdots$ | - 49 | $\cdots$ | $\ldots$ | $\cdots$ | - ... | [51] |
| $-35109$ | $-3+18_{7}$ | + 664 | - 676 | - 922 | 948 | 1322 | 315 | - 44 | [52] |
| $-34552$ | $-3+300$ | - 141 | - 633 | - 252 | 649 | 696 | 257 | - 21 | [53] |
| $-33972$ | $-3+300$ | $\cdots$ | ... | + 32 | ... | $\cdots$ | $\cdots$ | $+\ldots$ | [54] |
| $-35257$ | $-3+297$ | $\cdots$ | ... | - 960 | $\cdots$ | $\cdots$ | $\cdots$ | - ... | [55] |
| -28614 | $-34324$ | $\cdots$ | $\cdots$ | $+5710$ | $\cdots$ | $\cdots$ | ... | $+\ldots$ | [56] |
| $-33516$ | $-3+324$ | $\cdots$ | $\cdots$ | + SoS | $\cdots$ | $\ldots$ | $\cdots$ | $+\ldots$ | [57] |
| -31949 | $-3+324$ | $\cdots$ | $\cdots$ | $+2375$ | $\cdots$ | $\cdots$ | ... | + $\ldots$ | [58] |
| -30794 | -34311 | $\cdots$ | ... | $+3517$ | $\cdots$ | $\cdots$ | $\cdots$ | $+\cdots$ | [39] |
| $-27671$ | $-34311$ | $\cdots$ | ... | +6640 | $\cdots$ | ... | $\cdots$ | $+\ldots$ | [60] |
| $-28695$ | $-34311$ | $\cdots$ | ... | $+5616$ | $\cdots$ | $\cdots$ | ... | + $\ldots$ | [6I] |
| $-34322$ | $-34169$ | $+291$ | - 16 | - 153 | 291 | 329 | 357 | - 28 | [62] |
| -33S91 | $-33978$ | + 86 | + 37 | + $+\quad 8$ | 94 | 128 | 23 | $+43$ | 6 j |

*     + from the horison toward the zenith. - from the horison toward the nadir.

Observed and Calculated Values of Marnetic Elements

| No. | Station. | Height in km . | Year. | Latiinde. | L'ngitude. | North Compt. X |  | West Compt. Y |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\begin{aligned} & \text { ont- } \\ & \text { served } \end{aligned}$ | Calculated | $\begin{aligned} & \text { Ob- } \\ & \text { serred } \end{aligned}$ | Calculated |
| 64 | Simizı........... | 0.00 | $\begin{aligned} & \dagger 1833.79 \\ & =1893.56 \\ & +1893.78 \end{aligned}$ | $35^{\circ}$ ०0. 5 | $135^{\circ} 30.0$ | $3007{ }^{\prime \prime}$ | $29982^{\text {Y }}$ | $2203^{\prime}$ | $230{ }^{\gamma}$ |
| 65 | Nisinoto........ | 0.14 | * I 893.56 | 3502.0 | 13750.0 | 29960 | 30017 | 2305 | 2362 |
| 66 | Okazaki ........ | 0.05 | $\begin{aligned} & +1593.77 \\ & +1 S 93.57 \end{aligned}$ | $3+56.5$ | 137 OS.o | 30016 | 30099 | 2378 | 2398 |
| 67 | K̄̄wa ............ | 0.00 | $\begin{aligned} & \dagger 1893.74 \\ & * 1893.55 \end{aligned}$ | 3446.0 | ${ }_{1} 3^{6} 55 \cdot 5$ | 30158 | 30176 | $2+21$ | 2389 |
| 65 | Narumi .......... | 0.00 | $\begin{aligned} & \dagger \text { IS93.75 } \\ & * 1 S_{9} .58 \end{aligned}$ | 3505.0 | 13658.0 | 30033 | 30061 | 2449 | 2428 |
| 69 | Nagoya ......... | 0.00 | $\left.\begin{array}{c} \dagger 1893.71 \\ * 19.59 \\ 1896.76 \end{array}\right\}$ | $35 \quad 10.5$ | 13656.0 | 30084 | 30031 | 2476 | 2441 |
| 70 | Maegası ... ...... | 0.00 | $\begin{aligned} & \dagger 1893.71 \\ & +1893.59 \end{aligned}$ | 3506.0 | 13644.0 | 30073 | 30073 | 2460 | 244 |
| 71 | Yokkaiti......... | 0.00 | $\begin{aligned} & \dagger 1893.72 \\ & \div 1893.59 \end{aligned}$ | $3+5 \mathrm{~S} .5$ | 13637.5 | 30108 | 30126 | 2429 | 2434 |
| 72 | Kameyama..... | 0.09 | $\left.\begin{array}{r} \dagger 1893.72 \\ 189.39 \\ 1896.6 \end{array}\right\}$ | 3452.0 | 13628.0 | 30102 | 30176 | 2399 | 2430 |
| 73 | Tı. | 0.00 | $\begin{aligned} & \dagger \text { IS93.73 } \\ & * \text { IS93. } 60 \end{aligned}$ | 3443.0 | 13631.0 | 30113 | 30225 | 2355 | 2406 |
| 74 | Kamiyasiro..... | 0.00 | $\begin{aligned} & \dagger \text { IS9.3.73 } \\ & \cdots \text { IS93.60 } \end{aligned}$ | $3+30.0$ | 13645.0 | 30252 | 30284 | 2369 | 2365 |
| 75 | Toba | 0.05 | $\begin{aligned} & \dagger \text { IS93.73 } \\ & =\text { I } 99.61 \end{aligned}$ | 3429.0 | 13650.0 | 30321 | 302S2 | 2358 | 2357 |
| 76 | Katikawa | 0.00 | $\begin{aligned} & \dagger 1893.76 \\ & \approx 1893.61 \end{aligned}$ | 3513.0 | 13658.0 | 29991 | 30014 | 24 SS | 2445 |
| 77 | Kiyosu .......... | 0.00 | $\begin{aligned} & \dagger 199375 \\ & * 1993.61 \end{aligned}$ | 3512.0 | 13651.0 | 29984 | 3002S | 2455 | 2449 |
| 7 S | Gibu .... | 0.15 | $\begin{aligned} & +199 j .68 \\ & * 189.62 \end{aligned}$ | $35 \quad 25.5$ | 13676.0 | 29961 | 29954 | 2487 | 2484 |
| 79 | Nakatugawa ... | 0.30 | $\begin{aligned} & \dagger \text { I } 83.77 \\ & \div \\ & \div 1893.63 \end{aligned}$ | 3529.0 | $137 \quad 32.0$ | 29Soz | 29877 | 2462 | 24.1 |
| So | Iida ... | 0.53 | $\begin{aligned} & \dagger 1993.78 \\ & \div 1393.64 \end{aligned}$ | 3531.0 | 13750.0 | 29764 | 29844 | 2379 | 2423 |
| SI | Matıō ............ | 0.53 | 1893.67 | 3529.0 | 13752.0 | 29744 | 29853 | 2408 | 2417 |
| [S2] | Hnknsima ...... | 0.78 | I 99.55 | 3550.0 | $137+2.0$ | 29503 | 29739 | 2559 | 2472 |
| S3 | Nomngi ......... | 1.16 | 13)3.65 | 3602.0 | 13735.0 | 29831 | 29673 | 2580 | 2505 |
| St | Takayama ...... | 0.56 | 1593.56 | 36 os.o | 13716.5 | 29712 | 29660 | 2528 | 2539 |

Bracketed number shows that the station is excluded in the equitions of condition.
$\dagger$ Epoch for the observation of $\bar{\delta}$. * Epoch for the observations of 5 and 11 .

## XVI. (Continued.)

X, Y, $/$, and Intensity aml Direction of Disturbing Forces.

| Upward Conpt. Z | North Compt. $\Delta X$ | West Cimpt. $\Delta Y$ | $\begin{gathered} \hline \text { Tpward } \\ \text { Compı. } \\ \Delta Z \end{gathered}$ | " | "* | $\begin{aligned} & \text { Azimuth } \\ & \mathrm{N}-\mathrm{W}-\mathrm{S}-\mathrm{E}-\mathrm{N} \end{aligned}$ | Altitule. ${ }^{*}$ | No. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Observed Calculated | Ohs.Cal. | 1)1s. Cal. | Obs.Cal. | 先 | - |  |  |  |
| -34144 -330 So | + 90 | - 106 | - $16 \%$ | 7 139 | $21 \%^{\gamma}$ | $310^{\circ}$ | $-50^{\circ}$ | 64 |
| $-3+130-3+145$ | - 57 | - 57 | + 15 | SI | S2 | 225 | + 10 | 65 |
| $-34089-3+211$ | - $\mathrm{s}_{3}$ | - $\quad 20$ | + 122 | $S_{5}$ | 149 | 194 | + 55 | 66 |
| $-34067-34079$ | 15 | $+32$ | + 13 | 37 | 39 | 119 | + 19 | 67 |
| -34372 - $3+396$ | - 28 | + 21 | + 24 | 35 | 42 | 143 | $+34$ | 68 |
| $-3+468-3+498$ | $+53$ | $+35$ | $+30$ | 64 | 70 | 33 | + 25 | 69 |
| $-34477-34469$ | o | $+16$ | - S | 16 | 15 | 90 | - 27 | 70 |
| $-34315-34367$ | - 18 | - 5 | $+52$ | 19 | 55 | 196 | + 70 | 71 |
| $-34199-34293$ | 74 | - $3^{1}$ | + 94 | So | 124 | 203 | + 50 | 72 |
| $-34231-34126$ | 12 | - $5^{1}$ | - 105 | 123 | 162 | 204 | - 41 | 73 |
| $-33880 \quad-33847$ | - 32 | $+4$ | - 33 | 32 | 46 | 173 | - 46 | 74 |
| $-33722-33$-06 | + 39 | $+$ | $+S_{4}$ | 39 | 93 | I | + 65 | 75 |
| $-3+491-3+533$ | 23 | $+43$ | $+t^{2}$ | 49 | 64 | 115 | $+41$ | 76 |
| $-3+514-3+5+5$ | - $4+$ | + 6 | + $3+$ | 4 | 56 | 172 | + 38 | 77 |
| $-34742-34799$ | + 7 | $+3$ | + 57 | S | 58 | 23 | + 82 | -8 |
| $-34554-34672$ | - 75 | + 21 | + 11S | 78 | 141 | 164 | + 57 | 79 |
| $-3+473-34637$ | So | +4 | $+164$ | 91 | 1 SS | 209 | +61 | So |
| $-3+5+6 \quad-3+595$ | - 109 | - 9 | $+49$ | 109 | 120 | 185 | + 24 | SI |
| -35761-34991 | - 236 | $+\quad 8_{7}$ | - 770 | 252 | Sio | 160 | - 72 | [S2] |
| $-35213-35222$ | + 158 | + 75 | + 9 | 175 | 175 | 25 | + 3 | $8_{3}$ |
| $-352.48-35403$ | + 52 | - 11 | + 155 | 53 | 164 | 348 | + 71 | S4 |

*     + from the horison toward the zenith. - from the horison toward the nadir.


## A. TANAKADATE.

TABLE
Observed and Calculated Values of Magnetic Elements

| No. | Station. | Height in km. | Year. | Latitude. | Longiturle. | North Compt.$\mathrm{X}$ |  | West Compt. I- |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\begin{aligned} & \text { on- } \\ & \text { served } \end{aligned}$ | Calcu- <br> lated | $\begin{aligned} & \text { Olı- } \\ & \text { served } \end{aligned}$ | Calculated |
| 85 | Gero ........... | 0.58 | $1 S_{93} 67$ | $35^{\circ} 48^{\text {s.o }}$ | $137^{\circ} 16.0$ | 29799 | 297SI | 2494 | $2498^{\gamma}$ |
| S6 | Hatiman, Mino | 0.21 | 1893.67 | 3544.0 | 13657.0 | 29902 | 29829 | 2525 | 2511 |
| $S_{7}$ | Nagamine...... | 0.37 | :S93.6S | 3540.5 | 13685.0 | 29839 | 2987 S | 2577 | 2526 |
| 88 | Nagahama ...... | 0.05 | $\begin{aligned} & \text { IS93. } 60 \\ & \text { IS96. } 54 \end{aligned}$ | $35 \quad 22.5$ | 13615.0 | 29997 | 30013 | 2517 | 2507 |
| S9 | Turuga.......... | 0.00 | 1S93.69 | 3539.0 | 13602.0 | 30043 | 29931 | 2528 | 2555 |
| 90 | Takehu .......... | 0.04 | 1893.70 | 3553.0 | 13611.0 | 30229 | 29835 | 2582 | 2576 |
| 91 | Eino.............. | 0.20 | 1803.70 | 3559.0 | 13630.0 | 297 SS | 29773 | 2527 | 2570 |
| 92 | Sioya............ | 0.00 | 1803.71 | 3616.5 | 13617.0 | 29588 | $2968_{4}$ | 2620 | 2619 |
| 93 | Kanazawa....... | 0.00 | 189372 | 3633.7 | 13640.0 | 29501 | 29548 | 261S | 2631 |
| 94 | Nanao ........... | 0.00 | IS93.72 | 3703.5 | 13700.0 | 29407 | 2933S | $266 S$ | 2668 |
| 95 | Wazima | 0.00 | 1803.73 | 3722.5 | 13655.0 | 290S2 | 29226 | 2676 | 2710 |
| 96 | Toyama......... | 0.01 | 1803.74 | $3^{6} 40.0$ | 13713.7 | 29221 | 29466 | 2612 | 2606 |
| 97 | Mozumi......... | 0.40 | 1893.75 | 3628.0 | 13714.0 | 29678 | 29540 | 2567 | 2582 |
| 98 | Mikkaiti ........ | 0,00 | 1503.76 | 3651.0 | 13728.0 | 29365 | 29381 | 2655 | 2611 |
| 99 | Abuta............ | 0.00 | 1894.50 | 4233.1 | $14045 \cdot 3$ | 26534 | 26903 | 2875 | 2874 |
| 100 | Ossamanbe ..... | o.co | IS94.51 | 4230.7 | 1.4022 .4 | 27101 | $269+0$ | 2782 | 2912 |
| 101 | Suttu. | 0.00 | 1894.52 | 4247.3 | 14013.4 | 26841 | 26830 | 2839 | 2950 |
| 102 | Iwanai ........... | 0.00 | ISO4.52 | $425 S . S$ | $140 \quad 30.8$ | 26622 | 26732 | 2997 | 2935 |
| [103] | Yobetı.......... | 0.10 | 1S94.53 | 4319.7 | 14022.8 | 26884 | 26590 | 2829 | 2976 |
| [104] | Hunama .... ... | 0.00 | 1894.53 | 4319.5 | 14033.4 | 26589 | 265S2 | 2241 | 2957 |
| [105] | Otarı ............ | 0.00 | 1894.54 | 4312.0 | 14100.5 | 26604 | 26612 | 2906 | 2897 |

[^5]
## XVI. (Continued.)

S, Y, K, and Intensity and Direction of Disturbing Forces.

| Upward | Compt. | North Compt. $\Delta X$ | West <br> Compt. $\Delta V^{r}$ | Clward Compt. $\Delta \%$ | $\stackrel{3}{7}$ | $\begin{aligned} & \text { N } \\ & \underset{y}{7} \\ & \underset{7}{7} \end{aligned}$ | $\left\lvert\, \begin{gathered}\text { Azinuth } \\ \text { N-W-s-E-N }\end{gathered}\right.$ | Altitude. ${ }^{\text {\% }}$ | No. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Cberred | Calculated | Otis.etal. | 1)10.-C:al. |  | 年 | - |  |  |  |
| $-35020^{\gamma}$ | $-35062^{\gamma}$ | + $13^{\prime \prime}$ | $\because$ | + 42 | $18^{\prime}$ | $4{ }^{6}$ | $347{ }^{\circ}$ | $+67^{\circ}$ | S5 |
| $-3+978$ | -35072 | $+73$ | $+14$ | + 94 | 74 | 120 | 11 | + 52 | S6 |
| -3502S | $-35103$ | - 39 | + $5^{1}$ | + 75 | 64 | 99 | 127 | + 50 | $S_{7}$ |
| $-3+788$ | $-34878$ | 16 | $+10$ | + 90 | 19 | 92 | 1.48 | + 78 | SS |
| $-35196$ | -35224 | + 112 | 27 | + 28 | 115 | 119 | 3.46 | + 14 | S9 |
| $-35+78$ | $-35+30$ | + 394 | + | - 48 | 394 | 397 | 1 | $-7$ | 90 |
| $-3555^{2}$ | $-35+49$ | + 15 | +3 | - 103 | 46 | 113 | 289 | - 66 | 91 |
| -35762 | -35812 | 96 | + 1 | $+50$ | 96 | 108 | 179 | + 2 S | 92 |
| $-36267$ | $-36007$ | - 47 | 13 | -- 260 | 49 | 265 | 195 | - 79 | 93 |
| $-36660$ | $-36+34$ | $+69$ | - | - 226 | 69 | 236 | o | - 73 | 94 |
| $-36764$ | $-36787$ | - 144 | - 34 | $+23$ | 1.48 | 150 | 193 | + 9 | 95 |
| $-35971$ | $-35963$ | - 245 | $+6$ | - s | 245 | 245 | 179 | -- 2 | 96 |
| -35521 | $-35756$ | + 138 | 15 | + 235 | 139 | 273 | 354 | + 59 | 97 |
| -35981 | $-36059$ | 16 | $+44$ | $+\mathrm{IOS}$ | 47 | 118 | 110 | + 66 | 98 |
| $-40696$ | $-40858$ | - 309 | $\pm 1$ | $+162$ | 369 | 403 | 1 So | + 24 | 99 |
| $-40839$ | $-40942$ | $+161$ | 130 | $+103$ | 207 | 231 | 321 | + 26 | 100 |
| $-41122$ | $-41262$ | + 11 | 111 | $+140$ | 112 | 179 | 276 | + $5^{1}$ | 101 |
| $-41051$ | -41353 | - 110 | + 62 | $+302$ | 126 | 327 | 151 | + 68 | 102 |
| $-41567$ | $-41738$ | + 294 | - 147 | + 171 | 329 | 371 | 333 | + 27 | [103] |
| $-41938$ | $-41674$ | + 7 | $-716$ | - 264 | 716 | 763 | 271 | - 20 | [104] |
| $-41481$ | $-41.402$ | - 8 | + 9 | - 79 | 12 | So | 132 | - $S_{1}$ | [105] |

*     + from the horison toward the zenith. - from the horison toward the nadir.

TABLE
Observed and Calculated Vahues of Magnetic Elements

| No. | Station. | Height in km. | Year. | Latitude. | Longiturle. | North Compt. X |  | West Compt. 1 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\begin{aligned} & \text { (1), } \\ & \text { served } \end{aligned}$ | Calculated | $\begin{gathered} \text { Ob, } \\ \text { served } \end{gathered}$ | Calculated |
| 106 | Otaru Myōkenzan... | 0.04 | 1894.62 | $43^{\circ} 11.9$ | $141^{\circ} 00.6$ | 26759 | $26613^{\gamma}$ | 2952 | $2 \mathrm{S97}$ |
| 107 | Sapporo ......... | 0.00 | $18_{94} 55$ | 4304.8 | 14121.0 | 26342 | 26647 | $2 \mathrm{S5}$ I | 2849 |
| [ IoS ] | Iwamizawa...... | 0.00 | 1894.56 | 4312.9 | 14145.0 | 26362 | 26571 | 2518 | 2812 |
| 109 | Soratipt......... | 0.00 | IS94.56 | 4334.0 | $1+154.7$ | 264.39 | 26411 | 2702 | 2SI9 |
| 110 | Tip-Yabusi...... | 0.21 | 1894.57 | 4326.5 | 14217.2 | 26420 | 26449 | 2569 | 2764 |
| 111 | Asahikawa..... | 0.00 | 1894.5S | 4346.5 | 14220.2 | 26255 | 26302 | 2915 | 2782 |
| [112] | Ohotukawa..... | o. 10 | I S94.59 | 4343.2 | 14157.0 | ... | 26343 | ... | 2 S 25 |
| [113] | Porokamuikotan | 0.70 | I 894.60 | 4400.0 | 14206.0 | 26284 | 26214 | 2855 | 2828 |
| 114 | Masike | 0.00 | I 894.64 | 4351.3 | 14131.8 | 26366 | 26302 | 2842 | 2855 |
| 115 | Sirasitomari .... | 0.00 | IS94.64 | $44 \quad 18.7$ | 14139.0 | 26079 | 26097 | 2954 | 2903 |
| 116 | Hūren............ | 0.00 | IS94.65 | 4434.6 | 14146.7 | 25982 | 25974 | 2837 | 2907 |
| 117 | Tesio. | 0.00 | 1894.66 | $4+53 \cdot 3$ | 14144.1 | 25761 | 25837 | 2896 | 2932 |
| [ IIS] | Pūsinai-pitari... | 0.00 | 1894.67 | $4+50.2$ | 14203.7 | 2597 S | 25845 | 2495 | 2890 |
| [ 119$]$ | Oknrumatomanai $\qquad$ | 0.04 | 1894.68 | $4+36.0$ | $14217 . S$ | 2592 | 25940 | 3224 | 2845 |
| [120] | Nayoropt........ | 0.08 | 1894.69 | 4423.4 | 14227.2 | 26018 | 26028 | 3128 | 2811 |
| [121] | Nuppamamoi... | 0.01 | 1894.70 | $4454 \cdot 3$ | 14159.0 | $\ldots$ | 25818 | ... | 2904 |
| [122] | Wrakasakamai... | 0.00 | 1894.70 | 4506.7 | 14137.0 | ... | 25742 | $\ldots$ | 2961 |
| 123 | Wakkanai....... | 0.00 | 1894.71 | $45 \quad 24.0$ | 14139.0 | 25600 | 25612 | 3066 | 2975 |
| 12.4 | Suya .............. | 0.00 | 1 S94.71 | $45 \quad 29.4$ | 14152.7 | 25585 | 25560 | 2986 | 2954 |
| [125] | Sarubutu | 0.00 | 1894.72 | $\begin{array}{lll}45 & 16.7\end{array}$ | 14214.0 | 25546 | 25640 | 3263 | 2897 |
| [126] | Esasi... | c.00 | 1894.73 | 4457.0 | 14234.9 | 24992 | 25773 | 3091 | $2 S_{32}$ |

Bracketed number shows that the station is excluded in the equations of condition.

## XVI. (Continued.)

$\mathrm{X}, \mathrm{Y}, \mathrm{Z}$, and Intensity and Direction of Disturling Forces.

| $\begin{aligned} & \text { Ulward Compt. } \\ & \text { Z } \\ & \text { (hanced Calculatel } \end{aligned}$ | North <br> Compt. <br> $\Delta \mathrm{X}$ <br> Ohs.-Cal. | $\begin{gathered} \text { West } \\ \text { Compt. } \\ \Delta Y \\ \hline \text { Ols.-Cal. } \end{gathered}$ | Upward <br> Compt. $\Delta Z$ <br> Ons.-Cal. | - | $\begin{gathered} 3 \\ + \\ + \\ \text { + } \\ \text { + } \\ \text { in } \end{gathered}$ | $\left\lvert\, \begin{aligned} & \text { Azimuth. } \\ & \text { N-W.E-E. } \end{aligned}\right.$ | Altitude. | Ňo. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $-41465^{\prime \prime}-41401 \%$ | + $146^{\prime \prime}$ | + $55^{\gamma}$ | - 64 | $156^{\prime \prime}$ | 169 | $21^{\circ}$ | - $22^{\circ}$ | 106 |
| $-41030-41183$ | - 305 | + 2 | + 153 | 305 | 341 | ISo | + 27 | 107 |
| $-41163-41189$ | - 209 | - 294 | + 26 | 361 | 362 | 235 | + 4 | [10S] |
| $-41510-41468$ | $+28$ | 117 | - 42 | 120 | 127 | $2 S_{3}$ | - 19 | 109 |
| -41292, -41241 | - 29 | - 195 | $-\quad 5^{1}$ | 197 | 204 | 262 | - 15 | 110 |
| $\begin{array}{lll}-414 S_{4} & -41536\end{array}$ | - 47 | + 133 | + 52 | 141 | 150 | 109 | + 20 | $1{ }^{1}$ |
| $-41566-41601$ | $\cdots$ | ... | - 265 | ... | ... | -.. | - ... | [112] |
| $-42443-41817$ | $+70$ | + 27 | -631 | 75 | 635 | 21 | - 83 | $\left[\begin{array}{lll}1 & 3\end{array}\right]$ |
| $-4175 \mathrm{~S}-41861$ | + 64 | 43 | + 103 | 77 | 129 | 326 | + 53 | 114 |
| $-42435-42253$ | IS | + 51 | - IS2 | 54 | 190 | 109 | - 73 | 115 |
| -42526 -42459 | $+\quad \mathrm{S}$ | - 70 | - 67 | 70 | 97 | 277 | - 44 | 116 |
| $-42838-42764$ | - 76 | $-36$ | - 74 | $S_{4}$ | 112 | 205 | - 41 | 117 |
| $-42962-42604$ | + 133 | - 395 | - 355 | 417 | $5+9$ | - 289 | - 41 | [1IS] |
| -42434 -42311 | - 14 | $\pm 379$ | - 123 | 379 | 399 | 92 | - 18 | [119] |
| $-42264-42069$ | - 10 | $+317$ | - 195 | 317 | 372 | 92 | $-\quad 32$ | [120] |
| $-42570-42695$ | $\cdots$ | ... | - 175 | ... | ... | ... | - ... | [121] |
| $-42895^{\prime}-43015$ | $\ldots$ | ... | + 120 | ... | $\ldots$ | ... | + $\ldots$ | 122] |
| $-43369-43273$ | $-\quad 12$ | + 91 | $-96$ | 92 | 133 | 98 | - $4^{6}$ | 123 |
| -43251 -43274 | + 25 | + 32 | + 23 | 41 | 47 | 52 | + 29 | 12.4 |
| $-4287 \mathrm{I}-42955$ | - 94 | + 366 | $+S_{4}$ | 37 S | 387 | 104 | + 13 | [125] |
| -42999 -42541 | - 781 | $+\quad 259$ | - 458 | 823 | 942 | 162 | - 29 | [126] |

*     + from the horison toward the zenith. - from the horison toward the nadir.

「ГABLE
Observed and Calculated Values of Magnetic Elements

| No. | Station. | Height in km . | Year. | Latitude. | Longitude. | Sorth Compt. |  | West Compt. Y |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\begin{aligned} & \text { Oh- } \\ & \text { served } \end{aligned}$ | $\begin{aligned} & \text { Calcu- } \\ & \text { lated } \end{aligned}$ | $\begin{aligned} & \text { oh- } \\ & \text { served } \end{aligned}$ | $\begin{aligned} & \text { Calcu- } \\ & \text { lated } \end{aligned}$ |
| 127 | Poronai......... | 0.00 | 1894.73 | $44^{\circ}$ 40.0 | $142^{\circ} 52.9$ | 26033 | 25SSS | $2 \mathrm{SI}_{7}$ | 2776 |
| 12 S | Monbetn......... | 0.00 | IS94.74 | 4421.7 | 14321.0 | 26088 | 26007 | 2745 | 2693 |
| [129] | Y'übetn .......... | 0.00 | 1894.74 | 4414.0 | 143 37.1 | $\ldots$ | 26055 | ... | 26.48 |
| 130 | Nogami ......... | 0.10 | 1894.75 | 4402.0 | 14330.0 | 26241 | 26146 | 2740 | 2650 |
| 131 | dinonai ......... | 0.20 | 1 194.75 | 4348.7 | 14348.2 | 26261 | 26234 | 2671 | 2593 |
| [132] | Abasiri .......... | 0.00 | 1894.76 | 4401.2 | 14416.6 | 26594 | 26130 | 2195 | 2542 |
| 133 | Syari............ | 0.00 | 1S94.76 | 4354.9 | 14439.6 | 26098 | 26166 | 2557 | 2480 |
| 134 | Rausu............ | 0.00 | 1S94.7S | 44 OI. 4 | 14512.0 | 262S5 | 26106 | 2268 | 2.408 |
| 135 | Sibetu. | 0.00 | 1894.79 | 43 39.I | $145 \quad 08.5$ | 26577 | 26270 | 2317 | 2390 |
| $13^{5}$ | Hakodate........ | 0.00 | $1894.5^{\circ}$ | 4146.5 | 14043.5 | 27317 | 27231 | 2759 | 2813 |
| 137 | Mori.............. | 0.00 | 1894.51 | 4207.0 | 14034.5 | 27048 | 27096 | 2688 | 2858 |
| 135 | Setana | 0.00 | 1894.53 | 4226.9 | 13951.0 | 27241 | 26996 | 2906 | 2961 |
| 139 | Kutō............ | 0.00 | 1894.54 | $42 \quad 13.6$ | 13949.5 | 27147 | 27091 | 3061 | 2945 |
| 140 | Esasi.. | 0.00 | 1894.55 | 4152.5 | 14009.0 | 27116 | 27221 | 2910 | 2883 |
| 141 | Hıknyama...... <br> (in Osima) | 0.00 | 1 S94.55 | 4126.0 | 14009.0 | 27624 | 27405 | 2814 | 2845 |
| 142 | Sirinti ........... | 0.00 | 1894.56 | 4136.3 | 14025.5 | 27331 | 27319 | 26.45 | 2831 |
| 14.3 | Tiribeta. | 0.00 | 1894.58 | 4220.8 | 14100.0 | 26664 | 26977 | 2868 | $2 S_{31}$ |
| [144] | Tomakomai..... | 0.00 | 1894.58 | 4236.5 | 14136.0 | 26820 | 26837 | 2395 | 2783 |
| 145 | Sarupt........... | 0.00 | 1894.59 | 4230.4 | 14201.5 | 26837 | 26862 | 2829 | 2724 |
| 146 | Osyatinai........ | 0.10 | 1 894.60 | 4241.2 | 14213.5 | 26792 | 26777 | 2744 | 2714 |
| [147] | Nuhuka... ..... | 0.00 | 1894.61 | $42 \quad 19.4$ | 14248.0 | 26943 | 26909 | 2904 | 2612 |

Bracketed number shows that the station is excluded in the equations of condition.

## Х I. (Continued.)

$\mathrm{X}, \mathrm{Y}, \mathrm{Z}$, and Intensity and Direction of Disturbing Forces.

| Upward Compt. Z | North Compt. $\Delta X$ | West Compt. $\Delta \mathrm{Y}$ | $\begin{gathered} \text { Upward } \\ \text { Compt. } \\ \Delta Z \end{gathered}$ | $1 \stackrel{v}{1}$ | \# + + 7 7 | $\left\lvert\, \begin{gathered} \text { Azimuth } \\ \text { N-W-S-E-N } \end{gathered}\right.$ | Altitude. | No. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Obsersel Calculated | Ohw. CaL . | Obs. Cal. | Ohs.-Cal. | - | 1 |  |  |  |
| $-42276{ }^{\circ}-42189^{\circ}$ | + $145^{\gamma}$ | + 41 | $-\mathrm{S}_{7}$ | 151 | ${ }_{174}{ }^{Y}$ | $16^{\circ}$ | $30^{\circ}$ | 127 |
| $-41790-41778$ | $+\mathrm{SI}$ | + 52 | - 12 | 96 | 97 | 33 | - 7 | 12 S |
| $-41601-41560$ | $\ldots$ | ... | - $4^{1}$ | $\ldots$ | ... | ... | $\ldots$ | [120]] |
| $-41411 \quad-41441$ | + 95 | $+90$ | $+30$ | 131 | 134 | 43 | + 13 | 130 |
| $-40967-41137$ | + 27 | + 7S | + 170 | S3 | IS9 | 71 | + 64 | 131 |
| $-41376-412.30$ | + 464 | - 347 | $-146$ | 579 | 598 | 323 | $-14$ | 132] |
| -41172-41045 | - 68 | + 77 | - 127 | 103 | 163 | 131 | - 51 | 133 |
| $-41088-41015$ | + 179 | $-140$ | - 73 | 227 | 239 | 322 | $-18$ | 134 |
| $-40746-4070 S$ | - 193 | - 73 | - 38 | 206 | 210 | 201 | $-10$ | 135 |
| $-39987-40116$ | + S6 | - 54 | + 129 | 102 | 164 | 328 | + 52 | 136 |
| $-40658-40492$ | - 48 | - 170 | - 166 | 177 | 242 | 254 | - 43 | 137 |
| $-40929-41050$ | + 245 | - 55 | + 121 | 251 | 279 | 347 | + 26 | 138 |
| $-40620 \quad-40840$ | $+56$ | + 116 | + 220 | 129 | 255 | 64 | + 60 | 139 |
| $-40313-40389$ | - 105 | + 27 | + 76 | $10 \$$ | 132 | 166 | + 35 | 140 |
| -39801 -39953 | $+219$ | - 31 | + 152 | 221 | 268 | 352 | + 35 | 141 |
| -40076 -400.41 | + 12 | - 186 | - 35 | 186 | 190 | 274 | - 11 | 142 |
| $-40539-40588$ | - 313 | $+37$ | + 49 | 315 | 319 | 173 | + 9 | 143 |
| $-41146-40658$ | - 17 | - 388 | - 488 | $3 S 8$ | 624 | 267 | $-51$ | [144] |
| $-40669-40444$ | - 25 | + 105 | - 225 | 108 | 250 | 104 | - 64 | 145 |
| $-40773-40557$ | + 15 | $+30$ | - 216 | 34 | 219 | 63 | - Si | 146 |
| -400S2 -40069 | + 34 | + 292 | - 13 | 294 | $29+$ | 83 | - 3 | [147] |

*     + from the horison toward the zenith. - from the horizon toward the nadir.

Observed and Calculated Values of Magnetic Elements

| No. | Station. | Height in km. | Year. | Latitude. | Longitude. | North Compt. X |  | $\begin{gathered} \text { West Campt. } \\ Y \end{gathered}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\begin{aligned} & \text { ohe } \\ & \text { served } \end{aligned}$ | Calculated | $\begin{aligned} & \text { (ob- } \\ & \text { served } \end{aligned}$ | $\begin{aligned} & \text { Calen- } \\ & \text { lated } \end{aligned}$ |
| [148] | Urakawa....... | 0.00 | 1894.62 | $42^{\circ} \mathrm{OS.S}$ | $142^{\circ}+8^{\prime} .0$ | $2703 \mathrm{~S}^{\text {\% }}$ | $26984^{\gamma}$ | $2 S 8{ }_{5}^{\gamma}$ | 259 ¢ |
| 149 | Syoya ........... | 0.00 | 1894.63 | 4201.5 | 14316.5 | 27008 | 27020 | 2650 | 2526 |
| 150 | Moyoro.......... | 0.00 | 1894.65 | 4216.4 | 143 IS.O | 26996 | 26914 | 2509 | 2543 |
| 151 | Tyūrui........... | 0.00 | I 894.65 | 4233.2 | 143 18.0 | 26841 | 26794 | 2519 | 2566 |
| 152 | Memuro ........ | 0.08 | 1894.66 | 4255.0 | 14300.0 | 26672 | 26649 | 2710 | 2634 |
| 153 | Otasoi............ | 0.27 | 1894. 67 | 4304.0 | 14249.5 | 26616 | 26590 | 2839 | 2668 |
| 154 | Syorusam........ | 0.05 | 1894.69 | $4254 \cdot 3$ | 14322.5 | 26616 | 26641 | 2535 | 2583 |
| 155 | Asyoro.......... | 0.20 | 1894.70 | 4317.5 | $143 \quad 37.5$ | 26496 | 26467 | 26.45 | 2583 |
| [156] | Utu | 0.00 | 1894.71 | 4240.5 | 14339.0 | 26897 | 26732 | 2819 | 2528 |
| 157 | Siranuka ........ | 0.00 | 1894.72 | 4256.3 | 14406.0 | 26565 | 26605 | 2361 | 2487 |
| [ 158 ] | Sibetya.......... | 0.05 | 1894.73 | 4317.7 | 14435.5 | 26351 | 26438 | 2635 | 2444 |
| [159] | Atusanupuri... | 0.46 | 1894.74 | 4337.2 | 14425.5 | 26453 | 26301 | 24.47 | 2492 |
| [160] | Sinry $\bar{u}$........... | 0.00 | I 894.75 | 4303.0 | 14450.5 | 26472 | 26539 | 2585 | 2390 |
| [161] | Nemu | 0.00 | 1 894.76 | 4320.4 | 14536.0 | 25519 | 26398 | IS2I | 2298 |
| 162 | Sendai .......... | 0.03 | $\left.\begin{array}{l} \text { I } 894.49 \\ \text { i } 894.82 \\ \text { 1 } 895.49 \\ \text { 1 } 895.69 \end{array}\right\}$ | $38 \quad 15.8$ | 14052.0 | 28505 | 28640 | 2547 | 2465 |
| 163 | Kogota.......... | 0.00 | 1895.49 | 3831.5 | 14104.0 | 28705 | 28528 | 2633 | 2470 |
| 164 | Gamon ........... | 0.01 | 1893.50 | 3 S 44.0 | 14106.0 | 28062 | 28445 | 2565 | 2488 |
| 165 | Midzusawa ..... | 0.02 | 1895.51 | 3907.6 | 14105.0 | 28276 | 2S291 | 2576 | 2528 |
| 166 | Hanamaki...... | 0.06 | 1895.51 | 3925.0 | 14106.5 | 28065 | $28_{17} 76$ | 2697 | 2551 |
| 167 | Morioka......... | 0.13 | 1 S95.51 | 3942.5 | 14107.5 | 28135 | 2 SO 5 S | 2730 | 2582 |
| [168] | Nakayama...... | 0.43 | 1895.52 | 4003.3 | $141 \quad 16.5$ | 27937 | 27911 | $28_{42}$ | 2398 |

Bracketed number shows that the station is excluded in the equations of condition.
XVI. (Continued.)
X. I. Z, and Intensity and Direction of Disturling Forces.

| Lpward Compt. \% | North Compt. $\Delta X$ | West Compt. $\Delta I$ | Cpward Compt. $\Delta \%$ | $\cdots$ | 芴 | $\begin{aligned} & \text { Azimuth } \\ & \text { N-w-s.E.-. } \end{aligned}$ | Altitule. | No. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Obserwed Calculated | Ols.-Cal. | Obs. Cal. | Ohs.-Cal. | 首 |  |  |  |  |
| -4008. ${ }_{4}^{\prime \prime}-39007$ | + ${ }^{\prime \prime}$ | $+287$ | - 177 | 292 | $34^{\circ}$ | $79^{\circ}$ | $-31^{\circ}$ | [1.48] |
| -39711 | - 12 | + 124 | - 27 | 125 | 127 | 96 | - 12 | 149 |
| -45029 -39904 | $+\mathrm{S}_{2}$ | - 34 | - 125 | S9 | 153 | 338 | - 55 | 150 |
| $-40288-40157$ | $+47$ | - 47 | - 13I | 66 | 147 | 315 | - 63 | 151 |
| $-40597-40564$ | + 23 | $+76$ | - 33 | 79 | S6 | 73 | - 23 | 152 |
| $-4.713-40746$ | + 26 | + 171 | + 33 | 173 | ${ }^{17} 6$ | SI | + 11 | 153 |
| $-40328-40.457$ | - 25 | - 45 | + 129 | 51 | 139 | 241 | + 68 | $15+$ |
| $-40545-40746$ | + 29 | + 65 | + 201 | 7 I | 213 | 66 | + 71 | 155 |
| $-40517-40186$ | + 165 | + 291 | - $33^{1}$ | 335 | 471 | 60 | - 45 | [156] |
| $-40550-40314$ | - 40 | - 126 | - 236 | 132 | 271 | 252 | - 61 | 157 |
| -40234 -40520 | $-\quad 57$ | + 191 | + 286 | 210 | 355 | 115 | $+54$ | [158] |
| $-40582-40843$ | + 152 | - 45 | + 261 | 159 | 305 | 344 | + 59 | [159] |
| $-41409-40250$ | - 67 | + 195 | $-1159$ | 206 | 1177 | 109 | - So | [160] |
| $-40153-403+7$ | - $\mathbf{S}_{79}$ | - 477 | + 194 | 1000 | 1019 | 209 | + 11 | [151] |
| $-36571-36688$ | - 135 | $+\quad S_{2}$ | + 117 | 158 | 197 | 149 | $+37$ | 162 |
| $-37100-36897$ | + 177 | + 163 | - 203 | 241 | 315 | 43 | - 40 | 163 |
| -37008 $\mathbf{- 3 7 0 8 9}^{\text {a }}$ | - 383 | + 77 | $+S_{1}$ | 391 | 394 | 169 | + 12 | 164 |
| -372 So -37469 | - 15 | $+48$ | $+180$ | 50 | 190 | 107 | + 75 | 165 |
| $-37422-37744$ | - III | $+1.46$ | + 322 | 153 | 371 | 127 | + 60 | 166 |
| $-37781-38019$ | + 77 | $+148$ | + 235 | 167 | 291 | 63 | $+55$ | 167 |
| -3 Sors -38314 | + 26 | + 244 | + 296 | 2.45 | 354 | $S_{4}$ | + 50 | [.165] |

*     + from the horison toward the zenith. - from the horison toward the nadir.

TABLE
Obsersed and Calcmlated Valnes of Magnetic Elements

| No. | Station. | Heightin km . | Year. | Latitude. | Longitude. | North Compt. N |  | West Compt. $Y$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\begin{aligned} & \text { ot- } \\ & \text { served } \end{aligned}$ | Calculated | $\begin{aligned} & \text { Oh } \\ & \text { served } \end{aligned}$ | $\begin{aligned} & \text { Caleu- } \\ & \text { lated } \end{aligned}$ |
| [169] | Hatinohe......... | 0.04 | 1 895.60 | $40^{\circ} 31.0$ | $141^{\circ} 31.3$ | ... | $27713^{\gamma}$ | $\cdots$ | $2613^{\text {Y }}$ |
| 170 | Kominatotaira. <br> (in Sameura) | 0.00 | I 895.53 | 4032.3 | 14134.3 | 27573 | 27702 | 2361 | 2605 |
| [ 171 ] | Ono ................ | 0.20 | 1595.53 | $40 \quad 15.2$ | 14137.8 | $2 \mathrm{So44}$ | 27816 | 2123 | 2576 |
| 172 | Kıuzi, Rikuty | 0.00 | 1895.54 | 40 II. 6 | 14147.8 | 27926 | 27833 | 2465 | 2551 |
| [173] | Akka ........... | 0.10 | 1895.54 | 3959.3 | 14144.0 | ... | 27919 | ... | 2539 |
| 174 | Anazawa...... .. | 0.35 | 1895.55 | 3952.5 | 14141.3 | $28: 63$ | 27967 | 2292 | 2534 |
| [175] | Iwaizumi ....... | 0.08 | 1S95.55 | 3951.6 | 1.4147 .6 | ... | 27968 | $\ldots$ | 2520 |
| [ 1766$]$ | Miyako ......... | 0.00 | IS95.55 | 3935.2 | 14158.3 | 28041 | $2 \mathrm{So50}$ | 275 S | 2477 |
| [177] | Ogıni, Rikutyū | 0.10 | 1 895.56 | 3931.3 | 14141.0 | ... | 2810S | ... | 2500 |
| 178 | Tōno ............. | 0.27 | IS95.56 | 39 IS.2 | 14131.2 | 28102 | 28202 | 2629 | 2498 |
| 179 | Kamaisi ......... | 0.00 | 1895.57 | 3916.1 | 14154.2 | 2S2.48 | 2S200 | 2209 | 2450 |
| ISo | Kesennuma .... | 0.00 | I 895.58 | 3553.5 | $1+135.3$ | 28302 | 28361 | 2458 | 2449 |
| 181 | Isinomaki ...... | 0.00 | 1895.59 | 3825.2 | 14118.0 | 28633 | 28559 | 2493 | 2433 |
| [ IS2] | Ikusazawa ...... | 0.40 | 1895.60 | $33^{51.1}$ | 14037.7 | ... | 28422 | ... | 2551 |
| $\mathrm{I}_{5}$ | Simoinnai ...... | 0.18 | I 895.61 | 3902.3 | $14025 . \mathrm{S}$ | 28060 | 28359 | 2649 | 2590 |
| I $S_{4}$ | Yokote .......... | 0.06 | 1 895.61 | 3919.0 | 14031.5 | 2S296 | 2S244 | 2679 | 2609 |
| [155] | Kakudate ....... | 0.04 | 1895.61 | 3936.6 | 14033.0 | 28145 | 28126 | 2276 | 2635 |
| [IS6] | Kariwano ....... | 0.03 | IS95.61 | 3932.2 | 14021.6 | $\cdots$ | 28165 | $\cdots$ | 26.47 |
| $1 S_{7}$ | Akita ............ | 0.00 | 1895.62 | 3942.6 | $140 \quad 07.5$ | 28174 | 28108 | 26.46 | 2685 |
| ISS | Honzşo ......... | 0.00 | 1 895.62 | 3922.0 | 1.4001 .5 | 28150 | 2S251 | 2576 | 2665 |
| IS9 | Nōsiro | 0.00 | IS95.63 | $40 \quad 11.5$ | 14002.5 | 27785 | 27919 | 2830 | 2735 |

Bracketed number shows that the station is exeluded in the equations of condition.

## Х (Continued.)

X, I, $/ 2$, and Intensity and Direction of Disturbing Forces.

| Upwar | I Compt. <br> \% | North <br> Compt. <br> $\Delta X$ | West Compt. $\Delta \mathrm{Y}$ | Upward Compt. $\Delta Z$ | "an | 烒 | Azimuth | Altitude. ${ }^{*}$ | No. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Obserred | Calculated | Ohs.-Cal. | Olis.-Cal. | Ohis.-Cal. | 1 | - |  |  |  |
| $-38475^{\prime \prime}$ | $-3869 \%^{\%}$ | . | $\because$ | $+220{ }^{\prime \prime}$ | ${ }^{\gamma}$ | $\cdots$ | ... ${ }^{\circ}$ | + ${ }^{\circ}$ | [169] |
| $-35536$ | -38703 | - 129 | - 244 | + 167 | 276 | 323 | 2.42 | $+31$ | 170 |
| $-38653$ | $-38421$ | $+228$ | - 453 | - 232 | 507 | $55^{8}$ | 297 | - 25 | [171] |
| $-3862.4$ | $-38325$ | $+93$ | \$6 | - 299 | 127 | 325 | 317 | - 67 | 172 |
| -3S097 | $-3 \mathrm{~S}_{1} 45$ | $\ldots$ | $\ldots$ | $+48$ | $\ldots$ | $\cdots$ | ... | + $\ldots$ | [173] |
| -37919 | -3So49 | + 96 | - 242 | + 130 | 260 | 291 | 292 | + 27 | 174 |
| ... | -3Solo | $\ldots$ | ... | ... | ... | ... | ... | ... | [175] |
| -379.4 S | $-37760$ | - 9 | $+2 \mathrm{SI}$ | ISS | 281 | 338 | 92 | - 34 | [176] |
| $-37350$ | $-37714$ | $\cdots$ | ... | $+364$ | ... | ... | $\cdots$ | + $\ldots$ | [177] |
| $-37663$ | -37541 | 100 | + 131 | - 122 | 165 | 205 | 127 | - 37 | 178 |
| -37288 | -37427 | + 48 | - 241 | 139 | 246 | 282 | 2 SI | + 29 | 179 |
| $-36838$ | $-37135$ | - 59 | $+\quad 9$ | + 297 | 60 | 303 | 171 | + 79 | ISo |
| $-364 \mathrm{So}$ | $-36745$ | + 74 | $+57$ | + 265 | 93 | 281 | 38 | $+71$ | ISI |
| -3775S | -37309 | ... | ... | - 449 | ... | $\cdots$ | $\cdots$ | - ... | [182] |
| $-3734^{2}$ | $-37537$ | - 299 | + 59 | + 195 | 305 | 362 | 169 | $+33$ | 183 |
| -37753 | $-37 \mathrm{~S}_{15}$ | $+52$ | + 70 | + 62 | S7 | 107 | 53 | $+35$ | I 84 |
| $-37936$ | $-3 \mathrm{So6}_{3}$ | + 19 | - 359 | + 127 | 360 | 38 I | 273 | + 19 | $\left[\mathrm{IS}_{5}\right]$ |
| $-38120$ | $-3 \mathrm{So.4O}$ | ... | ... | - So | $\ldots$ | $\cdots$ | ... | - | [186] |
| $-38332$ | -3 S270 | + 66 | - 42 | - 62 | 78 | 100 | 328 | - 38 | 187 |
| -37927 | -37959 | - 101 | - $\mathrm{S}_{9}$ | $+32$ | 135 | 138 | 221 | + 13 | ISS |
| $-38828$ | $-38763$ | - 131 | + 95 | - 65 | 162 | 174 | 144 | - 22 | I 89 |

*     + from the horison toward the zenith. - from the horison toward the nadir.

Olserved and Calculated Valnes of Magnetic Elements

| No. | Station. | $\begin{aligned} & \text { Height } \\ & \text { in km. } \end{aligned}$ | lear. | Latitude. | Longitude. | North Compt. X |  | West Compt. I |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | Olsserved | Caleu- <br> lated | Ol). served | $\begin{aligned} & \text { Calcu- } \\ & \text { lated } \end{aligned}$ |
| 190 | Tdate ........... | 0.08 | 1895.64 | $40^{\circ} 16.0$ | $140^{\circ} 3^{2} \cdot 5$ | 27797 | $2 ; 862^{\gamma}$ | 2723 | 2698 |
| 191 | Mirosaki ......... | 0.05 | 1895.64 | $40 \quad 36.4$ | 140285 | 27839 | 27727 | 2658 | 2739 |
| 192 | Adigasawa ...... | 0.00 | 1895.64 | $4036 . S$ | 14013.3 | 27630 | 27670 | 2684 | 27 So |
| 193 | Ippongi.......... | 0.00 | 1895.65 | 4110.2 | 14031.3 | 27390 | 27494 | 2717 | ${ }_{27} \mathrm{~S}_{3}$ |
| [194] | Om | 0.00 | IS | 4130.0 | 14054.5 | 26923 | 27337 | 2993 | 2770 |
| [195] | Tanabu | 0.00 | 1 895.66 | 4116.1 | 14114.0 | 27379 | 27417 | 2977 | 2713 |
| 196 | Makado.......... | 0. 10 | IS95.67 | 4352.7 | 14109.0 | 27546 | 27582 | 2827 | 2685 |
| 197 | Aomori .......... | 0.00 | 1 895.67 | 4049.4 | 14043.5 | 27585 | 27625 | 2642 | 2730 |
| 198 | Hukaya.......... | 0.04 | 1895.49 | 36 II. ${ }^{\text {S }}$ | 13916.5 | $294 S_{7}$ | 29504 | 2360 | 2389 |
| 199 | Sakura ........... | 0.03 | 1895.50 | 3543.3 | 14013.5 | 29651 | 29627 | 2257 | 2244 |
| 200 | Sawara ........... | 0.01 | 1S95.51 | 3552.5 | 14030.0 | 29574 | 2955 | 2276 | 2235 |
| 201 | Tyōsi............. | 0.00 | 1S95.51 | 3544.0 | 14051.0 | 29675 | 29593 | 2191 | 2182 |
| 202 | Itinomiya ....... | 0.00 | 1 895.52 | $35 \quad 22.4$ | 14022.5 | 29680 | 29746 | 2203 | 2187 |
| 203 | Maebara......... | 0.00 | IS95.53 | 3505.8 | 14006.0 | 29769 | 29860 | 2178 | 21 So |
| 204 | Kisaratu ......... | 0.03 | 1S95.53 | $35 \quad 23.2$ | 13955.5 | 29737 | 29764 | 2239 | 2233 |
| 205 | Mito ............. | 0.01 | 1895.55 | $36 \quad 21.9$ | 14030.0 | 29383 | 29377 | 2245 | 2292 |
| 206 | Ueda ............. | 0.00 | 1895.56 | $3^{6} \quad 53 \cdot 5$ | 1404 S.o | 29167 | 29167 | 2293 | 2322 |
| 207 | Namie........... | 0.00 | 1895.56 | $37 \quad 28.3$ | 14100.0 | 29243 | 28938 | 2229 | 2365 |
| [208] | Watari .......... | 0.02 | 1895.57 | 3 S 02.2 | 14049.5 | 28935 | 28729 | 2182 | 2444 |
| 209 | Hukusima ...... | 0.07 | 1895.57 | 3745.0 | 14028.5 | 29061 | $28 S 57$ | 2526 | 2450 |
| 210 | Yonezawa ....... | 0.25 | 1S95.59 | 3755.2 | 14005.0 | 28943 | 2 SSI 12 | 2457 | 2509 |

Bracketed number shows that the station is excluded in the equations of condition.

## XVI. (Continued.)

A, I, Z, and lutensity and Direction of Disturbing Forces.

| Tpward Obervel | Compt. $\qquad$ <br> (alculateal | $\begin{gathered} \text { North } \\ \text { Compt. } \\ \Delta X \\ \text { Ons-Cal. } \end{gathered}$ | West <br> Compt. $\Delta Y$ <br> () 1 s..-Cal. | [pward Compt. $1 \%$ <br> Obs-Cal. | $\left\lvert\, \begin{aligned} & i \\ & \vdots \\ & \frac{7}{7} \\ & i \end{aligned}\right.$ |  | Azimuth N-W-S-E-N | Altitude ${ }^{*}$ | No. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $-38516^{\prime \prime}$ | $-38703$ | - $65^{\circ}$ | + $25^{\circ}$ | + 157 | ${ }_{70}{ }^{\gamma}$ | $200^{\gamma}$ | $159{ }^{\circ}$ | + $70^{\circ}$ | 190 |
| $-38852$ | $-39054$ | $+112$ | - SI | + 202 | 138 | 245 | 324 | + 56 | 191 |
| -3934 1 | -39293 | - $4^{0}$ | - 96 | - 48 | 104 | 115 | 247 | - 25 | 192 |
| -39749 | -39588 | - 104 | 66 | - 161 | 123 | 203 | 212 | - 53 | 193 |
| -39372 | $-39798$ | - 414 | + 223 | + 426 | 470 | 635 | 152 | $+42$ | $194]$ |
| -39554 | $-39487$ | - 38 | + 264 | - 67 | 267 | 275 | 98 | - 14 | [195] |
| $-39141$ | $-39135$ | - 36 | + 139 | - 6 | $14+$ | 144 | 105 | - 2 | 195 |
| -39502 | -39195 | 40 | - S8 | - 307 | 97 | 322 | 246 | - 72 | 197 |
| $-35116$ | -35002 | 17 | - 29 | - I14 | 34 | 119 | 240 | - 73 | 198 |
| $-3+372$ | $-34349$ | + 24 | + 13 | - 23 | 27 | 36 | 28 | - 40 | 199 |
| -3445 ${ }^{8}$ | $-3+448$ | $+16$ | + 41 | - 10 | 44 | 45 | 69 | - 13 | 200 |
| $-34144$ | $-34252$ | $+\quad \mathrm{S} 2$ | + 9 | $+108$ | S2 | 136 | 6 | + 53 | 201 |
| -33921 | -33984 | - 66 | + 16 | $+63$ | 68 | 93 | 166 | $+43$ | 202 |
| $-33521$ | $-33763$ | 95 | 2 | + 242 | 91 | 259 | 181 | + 69 | 203 |
| $-33895$ | $-34078$ | - 27 | + 6 | + 183 | 28 | 185 | 167 | $+8_{1}$ | 204 |
| $-34913$ | --34924 | + 6 | 47 | + 11 | 47 | 49 | 277 | $+13$ | 205 |
| $-35376$ | $-35376$ | 0 | - 29 | $\bigcirc$ | 29 | 29 | 270 | o | 206 |
| $-36173$ | -35897 | $+305$ | - 136 | - 276 | 334 | 433 | 336 | - 40 | 207 |
| $-36503$ | $-36476$ | + 206 | - 262 | - 27 | 333 | 334 | 308 | - 5 | [208] |
| $-36092$ | $-36274$ | + 204 | + 76 | + 182 | 218 | $2 S_{4}$ | 20 | $+40$ | 209 |
| $-36402$ | $-36524$ | + 131 | - 52 | + 122 | 141 | 186 | 337 | + 41 | 210 |

*     + from the horison toward the zenith. - from the horison toward the nadir.

Observer and Calculated Values of Magnetic Elements

| No. | Station. | $\begin{aligned} & \text { Height } \\ & \text { in km. } \end{aligned}$ | Vear. | Latitude. | Longitude. | North Compt. X |  | West Compt. Y |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\begin{aligned} & \text { Ob- } \\ & \text { served } \end{aligned}$ | Calen- <br> lated | $\begin{aligned} & \text { Ob- } \\ & \text { served } \end{aligned}$ | $\begin{aligned} & \text { Calcu- } \\ & \text { lated } \end{aligned}$ |
| 211 | Vimagata ...... | 0.16 | 1895.59 | $38^{\circ} 16.5$ | $140^{\circ} 21.0$ | 28837 | $25661^{\gamma}$ | ${ }_{23} 3 S^{\gamma}$ | $2519^{\gamma}$ |
| 212 | Sinzyõ........... | 0.10 | 1895.60 | 3 S 46.2 | 140 IS.0 | 28606 | 2\$471 | 2583 | 2576 |
| 213 | Sakata........... | 0.00 | I 895.61 | 3854.5 | 13948.0 | 28530 | 28444 | 2596 | 2640 |
| [214] | Atumi ............ | 0.00 | IS95.61 | 3 S 37.1 | 13935.0 | $\cdots$ | 28569 | ... | 2631 |
| 215 | Murakami ...... | 0.00 | IS95.61 | $3 S 12.0$ | 13928.5 | 28813 | 2873S | 2613 | 2598 |
| 216 | Ogmni, Uzen... | 0.10 | IS95.62 | 3 S 04.9 | 13946.5 | $2 \mathrm{SS}_{4} 8$ | 28767 | 2520 | 2556 |
| 217 | Tugawa......... | 0.08 | 1895.63 | 3739.5 | 13924.0 | $2 \mathrm{S929}$ | 28950 | 2603 | 2546 |
| 218 | Wakamatu ..... | 0.22 | 1895.64 | 3729.5 | 13957.0 | 28917 | 28983 | 2431 | 2475 |
| 219 | Tazima........... | 0.56 | IS95.64 | 3711.5 | 13946.5 | 28973 | 29105 | 2378 | 2459 |
| 220 | Tadami | 0.37 | 1895.65 | 3720.5 | 13919.0 | 29120 | 29075 | 2383 | 2517 |
| 221 | Nikkō........... | 0.61 | 1895.66 | $3644 \cdot 3$ | 13937.5 | 29374 | 29284 | 2279 | 2420 |
| 222 | Sukagawa........ | 0.25 | 1895.66 | 3715.5 | 14021.0 | 29040 | 29050 | 2471 | 2410 |
| 223 | Nisi-nasuno. ... | 0.20 | 1895.66 | 3653.0 | 13958.5 | 29289 | 29210 | 2552 | 2404 |
| 224 | Utunomiya...... | 0.12 | I 895.67 | 3633.4 | 13954.0 | 29447 | 29337 | 2279 | 2374 |
| 225 | Koga ............ | 0.02 | 1895.67 | 3611.7 | 13941.8 | 29364 | 29481 | $230 S$ | 2351 |
| 226 | Hatiman, Ōmı.. | 0.05 | IS95.50 | $3507 . S$ | 13604.3 | 30089 | 30115 | 2483 | 2486 |
| 227 | Kyōto ............ | 0.04 | 1896.51 | 3501.2 | 13547.8 | 30152 | 30176 | 2507 | 2.485 |
| 228 | Sasayama....... | 0.25 | IS96.52 | 3504.2 | 13514.0 | 30133 | 30207 | 2534 | 2519 |
| 229 | Miyatu .......... | 0.00 | 1896.53 | 3531.6 | 13513.0 | 30052 | 30045 | 2545 | 2579 |
| 230 | Obama........... | 0.00 | 1895.53 | 3530.8 | 13544.5 | 29962 | 30005 | 2587 | 2553 |
| 231 | Sakai ............. | 0.00 | I 896.55 | 3434.9 | 13528.0 | 30293 | 30359 | 2398 | $2+44$ |

Bracketed number shows that the station is excluded in the equations of condition.

## XVI. (Continued.)

X, I, Z, and Intensity and Direction of Disturbing Forces.

| Upward Compt. Z |  | North Compt. $\Delta X$ <br> Obs.-Cal. | West <br> Compt. $\Delta Y$ <br> Ols.-C'al. | Upward <br> Compt. <br> $\Delta Z$ <br> Obs.-Cal. | $\begin{aligned} & 3 \\ & 4 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$ | $\begin{gathered} \substack{1 \\ +\\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \hline} \end{gathered}$ | $\left\|\begin{array}{c} \text { Azimuth } \\ \text { N-W-S-E-N } \end{array}\right\|$ | Altitude. | No. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Observed | Calculated |  |  |  |  |  |  |  |  |
| $-36966^{\prime \prime}$ | $-26812$ | + $176^{\prime}$ | $-13{ }^{\gamma}$ | - 154 | 219 | $265^{\circ}$ | $323{ }^{\circ}$ | $-35^{\circ}$ | 211 |
| $-373 S_{3}$ | $-37307$ | + 135 | $+7$ | $-76$ | 135 | 155 | 3 | - 29 | 212 |
| $-37674$ | $-37564$ | + 86 | - 44 | - 110 | 97 | 146 | 333 | - 49 | 213 |
| -37574 | $-37332$ | ... | ... | - 242 | $\cdots$ | $\cdots$ | ... | - ... | [214] |
| $-37038$ | $-36944$ | + 75 | + 15 | - 94 | 76 | 121 | 1 I | $-5^{1}$ | 215 |
| $-36747$ | $-36755$ | $+81$ | - $3^{6}$ | $+\quad S$ | 89 | S9 | 336 | $+5$ | 216 |
| $-36338$ | $-36425$ | - 21 | + 57 | + 87 | 61 | 106 | 110 | $+55$ | 217 |
| $-36187$ | $-36135$ | - 66 | - 44 | - 52 | 79 | 95 | 214 | - 33 | 218 |
| $-36116$ | $-35878$ | $\cdots 132$ | - Si | $-238$ | 155 | 28. | 212 | - 57 | 219 |
| $-36190$ | $-36129$ | + 45 | - 134 | - 6I | 141 | 154 | 289 | - 23 | 220 |
| $-35487$ | $-35464$ | + 90 | - 141 | - 23 | 167 | 169 | 303 | - S | 221 |
| -35697 | $-35833$ | 10 | + 6r | + 136 | 62 | 149 | 99 | + 65 | 222 |
| $-35631$ | $-35531$ | + 79 | + 148 | - 100 | 169 | 195 | 62 | $-31$ | 223 |
| $-3538.4$ | $-35229$ | 107 | - 95 | - 155 | 143 | 211 | 315 | - 47 | 224 |
| $-34563$ | -34915 | $-117$ | - 43 | $+52$ | 125 | 135 | 200 | $+23$ | 225 |
| $-34584$ | $-34667$ | - 26 | - 3 | $+83$ | 26 | $S_{7}$ | 187 | $+73$ | 226 |
| -34555 | $-34623$ | - 24 | + 22 | + 68 | 33 | 75 | 137 | + 64 | 227 |
| -34731 | $-34 \mathrm{~S}_{30}$ | - 74 | + 15 | $+99$ | 76 | 125 | 169 | $+53$ | 22 S |
| -35274 | $-35321$ | + 7 | - 34 | $+\quad 47$ | 35 | 58 | 282 | + 53 | 229 |
| -35047 | -35158 | - 43 | $+34$ | + III | 55 | 124 | $14^{2}$ | + 64 | 230 |
| -34486 | -34247 | - 66 | - 56 | - 239 | S7 | 254 | 220 | - ${ }^{0}$ | 231 |

* from the horison toward the zenith. - from the horison toward the nadir.

Observed and Calculated Valnes of Magnetic Elements

| No. | Station. | $\begin{aligned} & \text { Height } \\ & \text { in km. } \end{aligned}$ | Year. | Latitude. | Longitude. | North Compt. X |  | West Compt. Y |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | () 1 served | Calenlated | $\begin{aligned} & \text { (1)- } \\ & \text { served } \end{aligned}$ | Calculated |
| 232 | Ikuno............. | c. 25 | 1 896.55 | $35^{\circ} 10.3$ | $13+{ }^{\circ}+{ }^{\text {S }}$. 0 | $3^{\mathrm{CO}} 7$ | $30210^{\prime}$ | $254 i^{\circ}$ | 2551 |
| 233 | Toyooka......... | 0.00 | 1896.56 | $\begin{array}{ll}35 & 32.6\end{array}$ | 13449.3 | 36072 | 32076 | 2630 | 2599 |
| 231 | Tottori........... | 0.00 | 1896.56 | $35 \quad 29.7$ | $13+14.3$ | 30033 | 30147 | 2666 | 2615 |
| 235 | Hasizu .......... | 0.00 | 1896.57 | 3530.4 | 13354.0 | 30058 | 30177 | 26.1 | 262S |
| 236 | Tuyama ......... | 0.09 | 1896.5S | $35 \bigcirc 1.0$ | 13401.3 | $30=62$ | 30321 | 2527 | 2565 |
| 237 | Okayama ........ | 0.00 | 1896.58 | 3440.4 | 13355.8 | 30.442 | 30469 | 2477 | 2514 |
| 238 | Akō.............. | 0.00 | 1896.59 | $3445 \cdot 4$ | $13+23.8$ | 30388 | 30395 | 2773 | 2510 |
| 239 | Akasi | o.co | I 896.59 | 3439.2 | 13500.0 | 33353 | 30375 | 24.40 | 2473 |
| 240 | Nara | 0.06 | 1896.60 | 3440.9 | 13551.0 | 30158 | 30291 | 2352 | 2438 |
| 2.11 | Kamiiti | 0. 15 | I 896.61 | $3423 \cdot 4$ | 13552.0 | 30356 | 30392 | 2362 | 2398 |
| 242 | Myõzi ............ | 0.00 | 1896.61 | 3417.0 | 13532.3 | 30414 | . 30457 | 2362 | 2;00 |
| 243 | Wakayama .... | 0.00 | I896.61 | 3413.6 | 13511.3 | 30438 | 30506 | 2387 | 2407 |
| 244 | Sumoto | 0.00 | IS95.62 | $3+20.7$ | 13453.5 | $30+56$ | 30492 | 2403 | 2436 |
| 245 | Minabe........... | 0.03 | 1896.62 | 3345.6 | 13520.3 | 30657 | 30654 | 228.4 | 2336 |
| [246] | Tikatuyu ....... | 0.48 | 1896.63 | 3348.9 | $135 \quad 36.9$ | ... | 30012 | $\cdots$ | 2331 |
| 247 | Hongū ........... | 0.10 | I 895.64 | 3340.1 | 13547.5 | 30542 | .30596 | 2319 | 2324 |
| 248 | Kısimoto........ | 0.03 | 1895.64 | 33 2S.2 | 13547.0 | $3 \times 628$ | 30716 | 22.35 | 2275 |
| 249 | Arima .......... | 0.00 | 1895.65 | 3352.2 | 13605.5 | $30+67$ | 30553 | 2272 | 2316 |
| 250 | Nagasima........ | 0.00 | IS96.66 | 3412.2 | 13620.5 | 30317 | 30.419 | 2314 | 2318 |
| 251 | Matusaka........ | 0.00 | 1896.67 | 3434.3 | 13632.5 | 30.30 | 30274 | 2324 | 2386 |
| 252 | Mihara ........... | 0.00 | 1896.50 | $3+24 \cdot 3$ | 13305.3 | 33765 | 30647 | 2504 | 2497 |

Bracketed number shows that the station is excluded in the equations of condition.
XVI. (Continued.)

X, Y, Z, and Intensity and Direction of Disturbing Forces.

| Upward | Compt. | North Compt. $\Delta X$ | West Compt. $\perp I^{\circ}$ | I pward Compt. $\Delta \%$ | 3 | ¢ $\vdots$ j | Azimuth | Altitude. | No. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ofxerved | Calculated | (1)w-Cal. | Ols. Cal. | Oha.e.cal. | 学 | \% |  |  |  |
| -34858 ${ }^{\prime \prime}$ | $-35060$ | - $153^{\prime}$ | - 7 | + 172 | ${ }_{153}{ }^{7}$ | $230^{7}$ | 183 | $+48^{\gamma}$ | 232 |
| -35.35 ${ }^{1}$ | -3545t | - 4 | + 31 | + 103 | 31 | Ios | 97 | $+73$ | 233 |
| -35622 | -35575 | - 114 | $+5 \mathrm{I}$ | - 47 | 125 | 133 | 156 | $-21$ | 234 |
| $-35765$ | -35697 | - $\mathrm{S}_{9}$ | + 13 | - 68 | 90 | 113 | 172 | - 37 | 235 |
| $-35057$ | $-35176$ | - 59 | - 3 S | + 109 | 70 | 130 | 213 | + 57 | 236 |
| $-34713$ | -34774 | - 27 | 37 | $+61$ | 46 | 76 | 234 | + 53 | 237 |
| $-3+702$ | $-3+729$ | $-7$ | 37 | + 27 | 38 | 46 | 259 | $+35$ | 238 |
| $-34399$ | -34448 | -- 22 | 33 | + 49 | 40 | 63 | 236 | + $5^{1}$ | 239 |
| $-31379$ | $-3+255$ | - 133 | 86 | - 124 | ${ }_{5} 5 \mathrm{~S}$ | 201 | 213 | $-3^{\text {S }}$ | 2.40 |
| $-.33853$ | -33944 | - 36 | 36 | + 6I | 51 | 79 | 225 | + 50 | $24^{1}$ |
| $-33807$ | $-33913$ | - 43 | - 3 S | + 106 | 57 | 121 | 221 | + 62 | $24^{2}$ |
| -339:0 | -33942 | - 68 | 20 | + 22 | 71 | 74 | 196 | $+17$ | 2.43 |
| $-34102$ | $-31148$ | $-36$ | 33 | + 46 | 49 | 67 | 222 | $+43$ | $24+$ |
| $-33436$ | $-33412$ | $+3$ | - 52 | - 24 | 52 | 57 | 273 | - 25 | 245 |
| $-3.3298$ | $-33402$ | ... | $\cdots$ | + IC4 | $\ldots$ | ... | $\cdots$ | $\cdots$ | [246] |
| -33300 | $-33363$ | - 54 | 5 | + 63 | 54 | 83 | IS5 | + 49 | 247 |
| $-32860$ | $-33000$ | - S8 | 40 | $+140$ | 97 | 170 | 20.4 | $+55$ | 248 |
| $-33294$ | $-33345$ | - 86 | - 44 | + 51 | 97 | 109 | 207 | + 28 | 249 |
| $-33541$ | $-33633$ | 102 | - 37 | $+92$ | 108 | 142 | 198 | $+40$ | 250 |
| $+33974$ | $-33969$ | - +1 | 62 | + 95 | $7^{6}$ | 122 | 235 | $+51$ | 251 |
| +34794 | -34735 | + 118 | + 7 | - 59 | 118 | 132 | 3 | -- 27 | 252 |

* from the horison toward the zenith. - from the horison toward the nadir.

Observed and Calculated Values of Magnetic Elements

| No. | Station. | Height in km . | Tear. | Latitude | Lengiunde. | North Compt. N |  | $\begin{gathered} \text { West Compt. } \\ \mathrm{Y} \end{gathered}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\begin{aligned} & \text { O1, } \\ & \text { served } \end{aligned}$ | Calen- <br> lated | $\begin{aligned} & \text { Ob- } \\ & \text { servel } \end{aligned}$ | $\begin{aligned} & \text { Caleu-u- } \\ & \text { lated } \end{aligned}$ |
| 253 | Hirosima ........ | 0.00 | 1896.50 | $34^{\circ} 23^{\prime} .0$ | $132^{\circ} 27^{\prime} .0$ | $30 \$ 25^{\gamma}$ | $30723^{\gamma}$ | 2455 | 2505 |
| 25 + | Sitata | 0.00 | 1896.5 I | 3354.3 | 13219.5 | 30912 | 30901 | 2450 | 2437 |
| 255 | Murodzumi ..... | 0.00 | 1896.52 | 3355.7 | 13158.0 | 30949 | 30933 | 2464 | 2444 |
| 256 | Yamaguti .. | 0.04 | 1896.52 | 3411.7 | 13129.0 | 30932 | 30897 | 2452 | $24 S_{5}$ |
| 257 | Tuwano .......... | 0.16 | 1896.53 | 3428.0 | 13146.5 | 30882 | $307 \% 0$ | 2524 | 2523 |
| 25 S | Hagi.............. | 0.01 | 1896.54 | $3+25.1$ | 13122.5 | $310+7$ | 30833 | 2473 | 2518 |
| 259 | A wano .......... | 0.00 | 1896.54 | 3422.0 | 13058.0 | 31010 | 30900 | 2480 | 2510 |
| [260] | Hamada. | 0.00 | 1896.56 | 3453.7 | $13205 . S$ | 30252 | 30584 | 2485 | 2583 |
| 261 | Itiki, Iwami.... | 0.25 | 1896.56 | $3+49.5$ | 13225.0 | 30631 | 30573 | 2518 | 2568 |
| 262 | Miyosi ........... | 0.15 | 1896.57 | $3+48.7$ | 13252.0 | 30445 | 30529 | 2636 | 2559 |
| 263 | Ai | 0.32 | 1896.5S | 35 os.o | 13257.5 | 30615 | 30406 | 2634 | 2602 |
| [264] | Imaiti | 0.00 | 1896.58 | 3521.0 | 13244.5 | 30153 | 30353 | 2553 | 2636 |
| 265 | Matue. | 0.00 | 1896.59 | $35 \quad 28.4$ | 13304.0 | 30103 | 30275 | 2563 | 2646 |
| 266 | Kurosaka. | 0.09 | 1896.59 | 3511.0 | 13323.5 | 30382 | 30343 | 2594 | 2599 |
| [267] | Tōzȳ............ | 0.29 | 1896.60 | $3+53.5$ | 13318.0 | 30822 | 30.456 | 2531 | 2561 |
| 268 | Hukuyama ..... (in Bingo) | 0.00 | 1896.61 | 3428.7 | 1.3322 .5 | 30648 | 30592 | 250 S | 2502 |
| [269] | Hamahata....... | 0.08 | 1896.6I | $3+48.2$ | 13337.8 | $\ldots$ | 30452 | ... | 2540 |
| 270 | Takahasi ........ | 0.08 | IS96.6I | 3448.8 | 13337.5 | 30564 | 30450 | 2543 | 2542 |
| 271 | Tokusima ....... | 0.00 | 1896.62 | $3+04.0$ | 13435.0 | 30707 | 30616 | 2411 | $240 S$ |
| 272 | Wakimati ....... | 0.05 | IS96.63 | 3405.0 | $13+11.8$ | 30731 | 30647 | 2422 | 2424 |
| 273 | Usato.. | 0.00 | 1896.64 | 3335.0 | $13+23.0$ | 30869 | 30 SOI | 2363 | 2347 |

Bracketed number shows that the station is excluded in the equations of condition.
$\mathrm{X}, \mathrm{Y}, \mathrm{K}$, and Intensity and Direction of Disturbing Forces.

| Upwar | Compt. | North Compt. $\Delta X$ | West Compt. $\Delta Y$ | Upward Compt. $\Delta Z$ | 7 |  | $\begin{gathered} \text { Azimuth } \\ \text { N-W-S-E-N } \end{gathered}$ | Altiturle ${ }^{*}$ | No. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (Hserzed | Calculated | Obs.-tal. | ORF.-Cal. | Ons.-Cal. | - | 1 |  |  |  |
| $-34945^{\prime}$ | $-3+912^{\circ}$ | + 102 | - 50 | - 33 | $114{ }^{\gamma}$ | $11 S^{\gamma}$ | $334{ }^{\gamma}$ | $-16^{\gamma}$ | 253 |
| -34456 | $-3+418$ | + 11 | $+13$ | - 38 | 17 | 42 | 50 | - 66 | 254 |
| $-34562$ | $-3+55^{\text {S }}$ | + 16 | + 20 | - 4 | 26 | 26 | 51 | - 9 | 255 |
| -34950 | -35022 | $+35$ | - 33 | $+72$ | 4 S | S7 | 317 | $+56$ | 256 |
| $-35357$ | $-35231$ | + 112 | + 1 | - 126 | 112 | 169 | 1 | $-48$ | 257 |
| -35357 | -35315 | $+214$ | - 45 | $-4^{2}$ | 219 | 223 | 348 | - II | 258 |
| $-35376$ | -35399 | + 110 | - 30 | + 23 | 114 | 116 | 345 | + 11 | 259 |
| $-35864$ | -35608 | - 332 | - 9S | - 256 | $34^{6}$ | 431 | 196 | - 37 | [260] |
| $-35765$ | $-35421$ | $+58$ | - 50 | - 344 | 77 | 352 | 319 | - 77 | 261 |
| $-35384$ | -35257 | $-S_{4}$ | + 77 | - 127 | 114 | 171 | 137 | - 48 | 262 |
| $-36130$ | -35586 | + 209 | $+32$ | - 514 | 211 | 5S4 | 9 | - 69 | 263 |
| $-36164$ | -35902 | - 200 | $-S_{3}$ | - 262 | 217 | 340 | 203 | - 50 | [264] |
| $-35561$ | $-35932$ | $-\quad 172$ | - 83 | + 71 | 191 | 204 | 206 | + 20 | 265 |
| -35739 | -35499 | $+\quad 39$ | - 5 | - 240 | 39 | 243 | 353 | - SI | 266 |
| $-35436$ | $-35209$ | + 366 | - 30 | - 227 | 367 | 432 | 355 | - 32 | [267] |
| -34 So6 | -34727 | + 56 | + 6 | - 79 | 56 | 97 | 6 | - 55 | 26 S |
| $\cdots$ | -35007 | $\cdots$ | $\cdots$ | $\cdots$ | ... | ... | $\ldots$ | ... | [269] |
| $-35058$ | $-35021$ | $+114$ | + $\quad 1$ | - 37 | 114 | 120 | 1 | - IS | 270 |
| $-34002$ | -33933 | $+91$ | $\pm 3$ | - 69 | 91 | $\mathrm{II}_{4}$ | 2 | - 37 | 271 |
| $-34084$ | $-34057$ | $+S_{4}$ | - 2 | - 27 | S. | SS | 359 | - IS | 272 |
| -33537 | $-33467$ | + 68 | + 16 | - 70 | 70 | 99 | 13 | - 45 | 273 |

*     + from the horison toward the zenith. - from the horison toward the nadir.

Observed and Calculated Values of Magnetic Elements

| No. | Station. | $\begin{aligned} & \text { Height } \\ & \text { in km. } \end{aligned}$ | Year. | Latitude. | Longitude. | North Compt. <br> X |  | West Compt. X |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\begin{aligned} & \text { Ob- } \\ & \text { served } \end{aligned}$ | Calculated | $\begin{aligned} & \text { ob- } \\ & \text { serred } \end{aligned}$ | Calcu- <br> later |
| 274 | Ňawari .......... | 0.00 | 1896.65 | $33^{\circ} 26^{\prime} .0$ | $13+{ }^{\circ} \text { oz'o }$ | $30931^{\gamma}$ | $3088{ }_{3}^{\gamma}$ | $2340^{\gamma}$ | 2336 |
| 275 | Kı̄ti .............. | 0.00 | 1 896.65 | 3332.8 | $13333 \cdot 3$ | 30978 | $30 \mathrm{S94}$ | 2380 | 2365 |
| 2-6 | Otnti............. | 0.35 | 1896.66 | 3341.0 | 13353.0 | 30879 | 30815 | 2384 | 2376 |
| 277 | Susaki ........... | 0.00 | ${ }_{1}$ S96.67 | 3324.0 | 13317.8 | 30974 | 30c69 | 2354 | 2349 |
| 278 | Nakamura ...... | 0.00 | 1 S96.67 | 3257.7 | 13255.0 | 31202 | 31155 | 2289 | 2290 |
| 279 | U'wazima........ | 0.00 | r S96.69 | 3313.2 | 13234.5 | 31119 | 31105 | 2318 | 2333 |
| 2So | W:akamiya..... | 0.OI | 1896.69 | 3332.0 | $1323+5$ | 31053 | 31000 | 2355 | 23 So |
| [28I] | Y: ${ }^{\text {a }}$, | 0.00 | 1896.70 | 3327.4 | 13225.7 | $\ldots$ | 31041 | $\ldots$ | 2369 |
| $2 \mathrm{~S}_{2}$ | Saganoseki...... | o.co | 1896.70 | 3314.5 | 13153.3 | 31298 | 31173 | 2321 | 2339 |
| 283 | Saiki | 0.00 | 1896.71 | . 2256.9 | 13152.5 | 31215 | 31272 | 2206 | 2296 |
| $2 S_{4}$ | Oita .............. | 0.00 | 1896.72 | 3.315 .0 | 13136.0 | 30992 | 31203 | 2319. | 2343 |
| $2 S_{5}$ | Matuyama ...... | 0.00 | I S96.72 | 3352.0 | 13245.0 | 30901 | 30868 | 2413 | 2427 |
| 286 | Kuzn, Iyo....... | 0.33 | 1 Sc 6.73 | 3333.8 | 13258.5 | 30977 | 30947 | 2372 | 2379 |
| 257 | Kıma , , ..... | 0.53 | 1596.73 | 3339.4 | $13253 \cdot 5$ | 30915 | 30924 | 2403 | 2393 |
| 288 | Imabarı ........ | 0.00 | 1S96.74 | 3404.0 | 13301.5 | 30827 | 30771 | 2451 | 2451 |
| 2S9 | Kawanoc......... | 0.00 | 1896.75 | $3+02.0$ | 13335.0 | 33 SO 4 | 30725 | 2427 | 2430 |
| 290 | Marngame....... | 0.00 | IS96.75 | $34 \quad 16.9$ | 13349.0 | 30766 | 30615 | 2430 | 2463 |
| 291 | 'Takamatu....... | 0.00 | 1S96.75 | 3421.0 | 13402.8 | 30683 | 305:0 | 2482 | 2466 |
| 292 | Tonosyo......... | 0.00 | 1 S96.76 | $3+29.0$ | 13410.5 | 30342 | 30510 | 24 SI | 24So |
| 203 | Zaikōzi.......... | 0.00 | IS96.52 | 3224.2 | 13136.8 | 31508 | 31481 | 2214 | 2212 |
| 294 | Miyazaki........ | 0.00 | IS96.52 | 3155.2 | 13125.3 | 31660 | 31659 | 2205 | 2135 |

Bracketed number shows that the station is excluded in the equations of condition.
XVI. (Continued.)
$\mathrm{X}, \mathrm{J}, \%$, and Intensity and Direction of Disturbing Forces.

| Upward Compt. $\%$ |  | North Compt. $\Delta X$ | West Compt. $\Delta Y$ | Upward Compt. $\perp \%$ | $1$ | $\begin{aligned} & \text { y } \\ & \underset{\sim}{+} \\ & \underset{7}{7} \end{aligned}$ | Azimuth | Altitude. ${ }^{*}$ | No. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ob-erved | Calculater | Obs.-Cal. | Ols, Cal. | Obs.-Cal. | 主 | 肖 |  |  |  |
| -3344 | $-33393$ | $+48^{\prime \prime}$ | + $\quad 4$ | - $5{ }^{\circ}$ | $4 S^{i}$ | $69^{\prime \prime}$ | $5^{\circ}$ | $-46^{\circ}$ | 274 |
| $-33657$ | $-33656$ | $+8_{4}$ | 15 | - I | S5 | S5 | 10 | - I | 275 |
| $-33 S_{4} 6$ | -33712 | + 64 | + 8 | - 134 | 65 | 149 | 7 | - 64 | 276 |
| $-33647$ | $-33567$ | $+5$ | $+5$ | - So | 7 | So | 45 | - $\mathrm{S}_{5}$ | 277 |
| $-33293$ | -33195 | + 47 | I | - 98 | 47 | 109 | 359 | - 64 | 278 |
| $-33512$ | $-3.3576$ | + 14 | 15 | - 36 | 21 | 41 | 313 | - 60 | 279 |
| $-33027$ | -33927 | $+53$ | - 25 | $\bigcirc$ | 59 | 59 | 335 | o | 2So |
| -34054 | $-3388+$ | ... | ... | - 170 | ... | ... | ... | - | [2SI] |
| $-3355$ | $-33810$ | + 125 | - 18 | - 40 | 126 | 132 | 352 | - 18 | 2S2 |
| $-33527$ | $-334{ }_{4}$ | 57 | 27 | - 43 | 63 | 76 | 203 | - 34 | 283 |
| $-33740$ | -33909 | - 211 | - 27 | + 169 | 212 | 271 | 186 | + 39 | 284 |
| $-3+233$ | $-3+241$ | + 33 | 14 | + 8 | 36 | 37 | 337 | + 13 | 285 |
| $-33037$ | $-33538$ | $+30$ | $-7$ | - 96 | 31 | 101 | 347 | - 72 | 286 |
| -3395 | $-33967$ | - 9 | + 10 | $+\quad 9$ | 13 | 16 | 132 | + 35 | $2 \mathrm{S7}$ |
| $-34432$ | $-3+350$ | + 56 | - | - $5^{2}$ | 56 | 76 | o | - 43 | 2SS |
| $-3+226$ | $-34178$ | + 79 | 3 | - $4^{8}$ | 79 | 92 | 358 | - 31 | 289 |
| $-34480$ | $-3+3 S_{\text {I }}$ | + 151 | - 33 | - 99 | 155 | 184 | 348 | - 33 | 293 |
| $-3+482$ | $-343 \leqq 8$ | + 113 | + 16 | - 94 | 114 | 148 | 8 | - 40 | 291 |
| $-34514$ | $-3+496$ | $+32$ | + I | - 18 | 32 | 37 | 2 | - 29 | 292 |
| - 3298o | -32953 | + 27 | $+2$ | - 27 | 27 | 38 | 4 | - 45 | 293 |
| $-32483$ | $-32466$ | + 1 | + 70 | - 17 | 70 | 72 | S9 | - If | 294 |

*     + from the horison toward the zenith. - from the horison toward the nadir.


## TABLE

Observed amd Calculated Values of Magnetic Elements

| No. | Station. | $\begin{aligned} & \text { Height } \\ & \text { in km. } \end{aligned}$ | Year. | Latitude. | Longitude. | North Compt. X |  | West Compt. Y |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\begin{array}{\|c\|l\|} \text { OH1- } \\ \text { served } \end{array}$ | $\underset{\substack{\text { Calculn } \\ \text { litted }}}{\text { and }}$ | $\begin{gathered} \text { Olv-d } \\ \text { served } \end{gathered}$ | Calcu- latell |
| 295 | Miyakonczyō... | 0.14 | 1896.53 | $31^{\circ} 42.8$ |  | 31759 | 31769 | 2043 | 2098 |
| 296 | Nakamati ....... | O. | 1896.53 | 3126.2 | 13111.3 | 31846 | 31841 | 2041 | 2054 |
| 297 | Kōyama .. | 0.10 | 1896.54 | 3120.5 | 13055.5 | 31969 | 31901 | 2072 | 2036 |
| 298 | Kagosima ....... | 0.00 | 1896.54 | 3135.4 | 13032.5 | 31784 | 31869 | 2008 | 2071 |
| [299] | Itiki, Satmma ... | c.oo | 1896.55 | 3141.6 | 13016.0 | 322.42 | 31870 | 2231 | 2083 |
| 300 | Makurazaki .... | 0.00 | 1896.55 | 3117.0 | 13016.5 | 31893 | 31999 | 2089 | 2015 |
| [301] | Kiseda ........... | 0.03 | 1895.56 | 3125.0 | 13019.1 | ... | 31951 |  | 2038 |
| [302] | Yokogawa ...... | o. 18 | IS96.56 | 3154.2 | 13041.5 | 31649 | 31751 | 2196 | 2125 |
| 303 | Hitoyosi . | 12 | rS96.57 | 3212.1 | 13046.5 | 31618 | 31644 | 2298 | 2174 |
| 304 | Y unomae........ | 0.66 | 1896.57 | 3215.8 | 13059.0 | 31611 | 31600 | 2218 | 2187 |
| 305 | Yatusiro .. | OO | 1896. $5^{8}$ | 3229.7 | 13036.0 | 31635 | 31571 | 2221 | 2219 |
| 306 | Minamata | 0.00 | 1896.58 | 3212.4 | 13023.5 | 31986 | 31690 | 2221 | 2169 |
| 307 | Simabara. | 0.00 | 1S96.59 | 3246.1 | 13022.5 | 31304 | 31509 | 2255 | 2260 |
| [308] | Nagasaki ........ | 0.03 | 1396.59 | 3245.0 | 12952.5 | 31769 | 31578 | 2452 | 2247 |
| 309 | Saseioo ... | -.00 | 1896.60 | 3310.5 | $129+4.3$ | 31376 | 31456 | 2295 | 2312 |
| 310 | Matiyamaguti .. | -.ว0 | 1896.61 | 3227.5 | 13010.8 | 31625 | 31634 | 2170 | 2207 |
| 311 | Kumamoto ...... | 0.02 | 1896.61 | 3248.0 | $130+4.0$ | 31282 | 31455 | 2277 | 2269 |
| 312 | Miyadi .......... | 0.51 | 1896.62 | 3255.8 | 13107.4 | 31418 | 31365 | 2122 | 2292 |
| [313] | Mamibara ...... | 0. 54 | 1896.62 | 3239.2 | 13109.5 | 31399 | 31452 | 2063 | 2250 |
| 314 | Yanagawa....... | 0.00 | 1896.63 | 3309.6 | 13024.8 | 31341 | 31375 | 2298 | 2321 |
| 315 | Huknoka......... | 0.00 | 1896.63 | 3335.2 | 13023.8 | 31114 | 31235 | 2390 | 2388 |

Bracketed number shows that the station is excluded in the equations of condition.

## XVI.

X, $Y^{\prime}, Z$, and Intensity and Direction of Disturhing Forces.

| Upward | Compt. | North Compt. $\Delta X$ | West Compt. $\Delta Y^{-}$ | $\begin{gathered} \text { Tpward } \\ \text { Compt. } \\ \Delta \% \end{gathered}$ | $\stackrel{\pi}{7}$ | $\begin{aligned} & \text { 3 } \\ & + \\ & + \\ & 7 \\ & 7 \end{aligned}$ | Azimuth | Altitude. | No. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Observed | Calculated | Ohs.-Cal. | Ohs. Cal. | Olw.-Cal. | - | 六 |  |  |  |
| $-32267^{\circ}$ | $-32340$ | $-10^{\gamma}$ | - $55^{\prime \prime}$ | + 77 | $56^{\gamma}$ | $95^{\gamma}$ | $260^{\circ}$ | $+54^{\circ}$ | 295 |
| $-32021$ | -31995 | + 5 | - 13 | - 26 | 14 | 30 | 291 | - 62 | 296 |
| $-31909$ | $-31962$ | + 68 | $+36$ | $+53$ | 77 | 93 | 28 | $+35$ | 297 |
| -32374 | -32357 | - S5 | - 63 | - 17 | 106 | 107 | 217 | - 9 | 20.8 |
| $-32486$ | -32560 | $+370$ | $+148$ | + 74 | 399 | 405 | 22 | + II | [299] |
| $-32198$ | $-32090$ | - 106 | + 74 | - icS | 129 | 168 | 145 | - $4^{0}$ | 300 |
| -3227t | -32228 | .. |  | - 46 | ... | ... | ... | - | $\left[\begin{array}{ccc}3 & 1\end{array}\right]$ |
| $-31893$ | -32666 | -102 | + 71 | + 773 | 124 | 783 | 145 | $+\mathrm{Si}$ | $\left[\begin{array}{lll}3 & 2\end{array}\right]$ |
| $-32837$ | -32980 | 26 | + 124 | + 143 | 127 | 191 | 102 | $+48$ | 303 |
| -32S32 | $-32987$ | + 11 | + $3^{1}$ | + 155 | 33 | 158 | 70 | + 78 | $3{ }^{3}$ |
| $-33+42$ | $-33370$ | + 64 | + 2 | - 72 | 64 | 96 | 2 | - $4^{8}$ | 305 |
| -33318 | -33108 | + 296 | + $5^{2}$ | - 210 | 301 | 367 | 10 | - 35 | 306 |
| $-33564$ | -33757 | - 205 | - 5 | + 193 | 205 | 282 | ISI | $+43$ | 307 |
| $-3+5 \times 1$ | -33905 | + 191 | + 205 | - 6ı6 | 280 | 677 | 47 | - 66 | [308] |
| $-3435^{1}$ | $-34449$ | - So | - 17 | + 98 | $S_{2}$ | 12 S | 192 | + 50 | 39 |
| $-33360$ | $-33463$ | - 9 | - 37 | +103 | 35 | 110 | 256 | + 70 | 310 |
| $-33+67$ | $-33676$ | - 173 | + 8 | + 209 | 173 | 271 | 177 | + 50 | 311 |
| $-33837$ | $-33698$ | $+53$ | - 170 | - 139 | 178 | 226 | 287 | - 38 | 312 |
| $-3418 \mathrm{I}$ | $-33386$ | - 53 | - 187 | - 795 | 194 | SıS | 254 | $-76$ | [313] |
| $-34145$ | $-3+196$ | - 34 | - 23 | + 51 | 41 | 65 | 214 | + 51 | 314 |
| $-34678$ | $-34698$ | - 121 | + 2 | + 20 | 121 | 123 | 179 | + 9 | 315 |

*     + from the horison toward the zenith. - from the horison toward the nadir.

「 CABLE
Observed and Calculated Vahes of Magnetic Elements

| No. | Station. | Height in km. | Year. | Latitude. | Longitude. | North Compt. N |  | West Compt. I |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\begin{aligned} & \text { Ob- } \\ & \text { served } \end{aligned}$ | Calcu- <br> lated | served | $\begin{aligned} & \text { Caleı- } \\ & \text { lated } \end{aligned}$ |
| 316 | Kokura........... | 0.00 | 1896.64 | $33^{\circ} 53 \cdot 3$ | $130^{\circ} 53.5$ | $31075^{\gamma}$ | $31072^{\gamma}$ | 2574 | $2+38^{\gamma}$ |
| 317 | Nakatu ......... | 0.00 | 1896.64 | 3336.5 | 13111.3 | 31047 | 31131 | 2416 | 2397 |
| 318 | Nakamatama... | 0.00 | 1896.65 | 3336.0 | 13130.0 | 31091 | 31098 | 2413 | 2397 |
| 319 | Kuma, Bungo... | 0.08 | 1896.65 | 3318.5 | 13057.0 | 31181 | 31260 | 2502 | 2350 |
| 320 | Karatu ........... | 0.00 | 1896.66 | 3326.5 | 12959.5 | 31201 | 31334 | 2353 | 2359 |

Bracketed number shows that the station is excluded in the equations of condition.

## X VI. (Continued.)

S, I, \%, and Intensity and Direction of Disturhing Forces.

| Upward Compt. Z |  | West Compt. $\Delta Y$ | Upwarl Compt. $\Delta Z$ | \% | $\begin{aligned} & \text { yn } \\ & + \\ & \vdots \\ & \end{aligned}$ | Azimuth | Altitude. | No. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Observed Calculated | Obs-Cal. | Obs-Cal. | Obs - Cal. | 少 | 少 |  |  |  |
| $-3495 \delta^{\gamma}-34874$ | $+{ }^{\gamma}$ | + $136^{\prime \prime}$ | $-s_{4}^{\gamma}$ | $13{ }^{\gamma}$ | $160^{\circ}$ | $89{ }^{\circ}$ | $-32^{\circ}$ | 316 |
| -34555 -3445 | - $S_{4}$ | + 19 | - 104 | 86 | 135 | 167 | - 50 | 317 |
| $-3+45^{6}-3+338$ | - 7 | + 16 | - 118 | 17 | 119 | 114 | - 82 | 315 |
| $-33531-3+186$ | - 79 | + 152 | + 655 | 171 | 677 | 117 | + 75 | 319 |
| $-34633-34673$ | - 133 | - 6 | + 40 | 133 | 139 | 183 | + 17 | 320 |

*     + from the horison toward the zenith. - from the horison toward the madir.


## TABLE XVII.

Alphabetical List of Stations.

| Stations. | No. | Stations. | No. | Stations. | No. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Huknsima, Imasiro | 209 |
| A |  | G |  | Huknyama, Osima | 141 |
| Ahasiri | [132] | Gamon | 164 | Hukuyama, Bingo | 268 |
| Abuta | 99 | Gero | S5 | Hunama | [104] |
| Adigasawa | 192 | Gihu | 75 | Hūren | 116 |
| Ai | 263 | H |  | Hnzi | [48]...[5r] |
| Aikawa | 30 | Hagi | 25 S |  |  |
| Ainonai | 131 | Hakodate | 136 | I |  |
| Akasi | 239 | Hamada | [260] | Iida | So |
| Akita | $\mathrm{I}_{5} 7$ | Hamahata | [269] | Iivama | 20 |
| Akka | [173] | Hanamaki | 166 | Ikumo | 232 |
| $A k \bar{u}$ | 238 | Hasizu | 235 | Iku*azawa | [ $1 \mathrm{~S}_{2}$ ] |
| Anazawa | 174 | Hatiman, Mino | S6 | Imabarı | 288 |
| Aumori | 197 | Hatiman, $\overline{\text { Oni }}$ | 226 | Imaiti | [264] |
| Arima | 249 | Hatinohe | [169] | Ippongi | 193 |
| Asahikawa | III | Hatiozzi | 2 | Isinomaki | 1 SI |
| A $\times$ ana | [34] | Hiromibara | [53]...[55] | Itiki, Iwami | 261 |
| Asyoro | 155 | Hirosaki | 191 | Itiki, Satuma | [299] |
| Atami | [40] | Hirosima | 253 | Itinomiya | 202 |
| Atumi | [214] | Hitoana | [59]...[61] | Itoigawa | 16 |
| Atnsaumpuri | [159] | Hitoyori | 303 | Iwaizumi | [175] |
| Awano | 259 | Hongū | 247 | Iwamizawa | [108] |
|  |  | Honzs | 188 | Iwanai | 102 |
| $E$ |  | Hudisawa | 43 |  |  |
| Ebisu | 28 | Hukaya | 198 | K |  |
| Esasi, Kitami | [126] | Hukuoka | 315 | Kagosima | 298 |
| Esasi, Osima | 140 | Hukusima, Sinano | [S2] | Kakudate | [ $\mathrm{IS5} 5$ |

## '「ABLE XVII.(continued.)

Aphaletical List of stations.

| Stations. | No. | Stations. | No. | Stations. | No. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Kamai-i | 179 | Kıma, Bungn | 319 | Memuro | 152 |
| Kameyama | 72 | Kumıgri | 38 | Midono | [45] |
| Kamiiti | 241 | Kumamoto | 311 | Mildusama | 165 |
| Kamisuwa | 12 | Kurowakil | 266 | Milhara | 252 |
| Kamo | [26] | Kuruma | [15] | Mikkaiti | 98 |
| Kamiyaxiro | 74 | Kısimoto | 248 | Mintabe | 245 |
| Kanazawa | 93 | Kuti) | 139 | Minamata | 306 |
| Karatu | 320 | Kıntukake | [10] | Nito | 205 |
| Karimano | [186] | Kuzi, Hikutyū | 172 | Mituike | [56] ..[58] |
| Karnizawa | 9 | Kıan, I yo | 286 | Miyadi | 312 |
| Kaseda | [301] | Kyöt, | 227 | Miyako | [176] |
| Kıas wazaki | [23] | M |  | Miyakonozyō | 295 |
| Katikawa | 76 | Maebara | 203 | Miyatu | 229 |
| Kamanoe | 289 | Maegatil | 70 | Miyazaki | 294 |
| Kesennuma | 180 | Makado | 196 | Miyosi | 262 |
| Kisaratu | 20.4 | Makurazaki | 300 | Miyota | 8 |
| Kiyosa | 77 | Mamibara | [313] | Monhetn | 128 |
| Kinga | 225 | Marugame | 290 | Mori | 137 |
| Kogota | 163 | Ma*ike | 114 | Morioka | 167 |
| Kïhu | [4] | Matiyamagnti | 310 | Moyoro | 150 |
| Kokura | 316 | Matue | 265 | Mazumi | 97 |
| Kominatotaira (Sameura) | 170 | Matuida | 35 | Murakani | 215 |
| Komoro | [7] | Matumoto | 13 | Murayama | [52] |
| K̄̄ti | 275 | Matuí | SI | Murodzumi | 255 |
| Kı̄wa | 67 | Matusaka | 251 | Menzi | 242 |
| Kōyama | 297 | Matuyama | 255 | N |  |
| Kuma, lyo | 287 | Matuzaki | 42 | Nag.hama | ss |

## TABLE XVII. (continued.) <br> Alphabetical List of Stations.

| Stations. | No. | Stations. | No. | Stations. | No. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Nigamine | $s_{7}$ | Numata | 37 | $\bar{O}$ toti | 276 |
| Sigano | 19 | S ${ }^{\text {manazu }}$ | 63 | OTu, Sagami | 44 |
| Nagaoka | 22 | Nuppamamoi | [121] | $\overline{\text { Otu, Tokati }}$ | [156] |
| Nagasaki | [308] |  |  | Ozasa | [32] |
| Nagasima | 250 | O |  |  |  |
| Nagoya | $\epsilon 9$ | Ohama | 230 | $\mathbf{P}$ |  |
| Nakamatama | 318 | Thate | 190 | Porokamuikotan | [113] |
| Niakumati | 296 | Odawara | 39 | Poronai | 127 |
| Sakamura | 278 | Ogi | 31 | Pōxinaipitari | [ IIS$]$ |
| Nikatu | 317 | Ogmi, Rikutyū | [177] |  |  |
| Nakatugawa | 79 | Ogrni, Ľzen | 216 | Rausa | 134 |
| Nakayama | [168] | Ohotukawa | [ 112$]$ |  |  |
| Namie | 207 | Oita | 284 | S |  |
| Nanao | 94 | Okayama | 237 | Saganoseki | 282 |
| Nara | 240 | Okazaki | 66 | Saiki | 283 |
| Nammi | 68 | Okurumatomanai | [119] | Sakai | 231 |
| Ňitwari | 274 | Tha: | [194] | Sakata | 213 |
| Nilyoropt | [120] | Thnati | 1.4 | Sakitra | 199 |
| Nembror | [161] | Tomiya | [62] | Sapporo | 107 |
| Niigata | 25 | Ono, Etizen | 91 | Sarubutu | [125] |
| Nikk̄̄ | 221 | प̄no, Rikntyū | [171] | Saruhasi | [3] |
| Nisinavano | 223 | Coato | 273 | Sarupt. | 145 |
| Nisinoto | 65 | Osyamanbe | 100 | Sasayama | 228 |
| Nigami | 130 | Osyatinai | 146 | Siseloo | 309 |
| Nohuka | [147] | Otasci | 153 | Sawara | 200 |
| Nomugi | 83 | Otarı | 105 | Sekiyana | 18 |
| Minsiro | 189 | Otaru-Myôkenzan | 106 | Sendai | 162 |

## TABLE XVII. (Continuel.)

Alphabetical List of Stations.

| Stations. | No. | Stations. | No. | Station. | No. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Setama | 138 | Takahasi | ${ }^{2} \mathrm{O} 0$ | Umagaesi | [47] |
| Sibata | 27 | Takamatu | 291 | İminokuti | 5 |
| Sibetu | 135 | Takasaki | 36 | I'rakawa | [148] |
|  |  | Takata | 17 | Usuta | 6 |
| Sibetra | [158] | Takayama | 84 | Utumomiya | 224 |
| Simahara | 307 | Takelun | 90 | Uwazima | 279 |
| Simizu |  | Tauabu | [195] | W |  |
|  | 64 | Tazima | 219 | W |  |
| Simoda | [41] | Teradomari | [24] | Wrakamatu | 218 |
| Simoinnai | 183 | Tesio | ${ }^{117}$ | Wakamiya | 2 20 |
|  | [160] | Tikatuyu | [246] | Wakasakanai | [122] |
| Sinryiu |  | Tip-Y'abusi | 110 | Wakasare | [33] |
| Sinzs\% | 212 | Tiribetu | 143 | Wakayama | 243 |
| Sioya | 92 | Tula | 75 | Wakkana | 123 |
|  | 157 | Tokamati | 21 | Wakimati | 272 |
| Siramka |  | Tokusima | 271 | Wissizaki | 29 |
| Sirasitomari | 115 | Tōky | $1{ }^{\prime}$ | Watari | [208] |
| Sirinti | 142 | " | $1{ }^{2}$ | Wazima | 95 |
| Sitat: | 254 | Tomakomai | [144] | Y |  |
|  |  | Tōno | 178 |  |  |
| Soratipt | 109 | Tonory | 292 | Yahatahama | [281] |
| Sūya | 124 | Tottori | 234 | Yamagata | 211 |
|  |  | Toyama | 96 | Y:maguti | 256 |
| Sukagawa | 222 | Toyooka | 233 | Yamagawa | 314 |
| Sumoto | 24. | Tतuzo | [267] | Yatusiro | $\stackrel{305}{ }$ |
| Susaki | 277 | Tu | 73 | Yobetu | [ 10.0$]$ |
|  |  | Tugalwa | 217 | Yokkaiti | ${ }^{71}$ |
| Suttu | 101 | Turuga | S9 | Yokogawa | [302] |
| Syari | 133 | Tuwano | 257 | Yokote | 184 |
| Syorusam | 154 | Tuyama | 236 | Youezaw: | 210 |
|  |  | Tyoni | 201 | Yosida | [46] |
| Syoya | 149 | Tyūrıi | 151 | Y̌übetu | [129] |
|  |  | U |  | I minnae | 304 |
|  |  | Teda, Sinamo | 11 | Z |  |
| Tadami | 220 | Veda, I waki | 206 | そaikōzi | 293 |

## § 11. Vertical Current.

It is usual in magnetic surveys to calculate the amount of the rertical current of electricity by taking the line integral of the magnetic force round the periphery of the country. The same was tried here in the circuit indicated in Fig. 4 by taking the integral along the co-ordinate lines thus:-

$$
w=\frac{1}{4 \pi}\left\{\int \mathrm{~S}\left(d y-\int \mathrm{X} d x\right\}\right.
$$

which may be put for numerical calculation

$$
\left.\left.w=\frac{\mathrm{R}}{4 \pi} \boldsymbol{\Gamma}\left(\mathrm{Y}_{n} \cos \varphi_{n}-\mathrm{Y}_{s} \cos \varphi_{s}\right)\right\lrcorner \lambda-\sum\left(\mathrm{X}_{w}-\mathrm{X}_{e}\right)\right\lrcorner \varphi_{\varphi}
$$

where the suffixes $n, s, w, e$, denote the values of those quantities on the north, south, west and east side of the circuit, and $R$ the mean radius of the earth; the positive sense of the coordinates $x, y, z$ are north, west and up respectively.* Performing the operations above indicated we have

$$
\begin{aligned}
& \left.\frac{\mathrm{R}}{4 \pi} \sum\left(\mathrm{Y}_{n} \cos \varphi_{n}-\mathrm{Y}_{s} \cos c_{s}\right)\right\lrcorner \lambda=\quad 0.03973 \times \text { length of } 1^{\circ} \\
& \frac{\mathrm{R}}{4 \pi} \boldsymbol{\sum}\left(\mathrm{X}_{20}-\mathrm{X}_{e}\right) J_{\varphi} \\
& =0.04146 \times \quad, \quad, \quad, \\
& \text { whence } \\
& w=-0.0017 .3 \times \frac{\left(0.37 \times 10^{5}\right.}{4 \pi} \times .0174 .9 \\
& =-1.531 \text { c.g.s. el. mag. units. }
\end{aligned}
$$

The area of the circuit is $5.701 \times 10^{7} \mathrm{sq}$. kilom. hence the mean current density is

$$
\frac{-1.531 \times 10}{5.701 \times 10^{3}}=-0.027 \text { Ampere per sq. kilom. }
$$

minus sign indicating the downward direction.

[^6]Fig. 4.


The above method is unsatisfactory, and the small value of the mean current density is sometimes misleading; for in the first place it gives no information of current densities in different parts of the country where they might have any values with opposite signs: and in the second place the integration is carried out along the borders where the empirical formule become very poor representatives of isomagnetics owing to the increase of errors as shown in $\mathrm{p} \cdot 3 \overline{5}$ above.

Transforming the line integral into surface integral in the usual way, we get the details of its distribution thus,

## 「'ABLE

Tertical Current in Ampers per sqr. kilom. at 189.5.0 at the Intersections of entire Degrees of

| $0^{2}$ | $13 ?^{\circ}$ | 1330 | $1: 31^{\circ}$ | $13:{ }^{\circ}$ | $13:{ }^{\circ}$ | $134^{\circ}$ | $13.3{ }^{\circ}$ | $1: 36^{\circ}$ | $1: 30^{\circ}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $4 i^{\circ}$ |  |  |  |  |  |  |  |  |  |
| 4.$)^{\circ}$ |  |  |  |  |  |  |  |  |  |
| $44^{\circ}$ |  |  |  |  |  |  |  |  |  |
| $43^{\circ}$ |  |  |  |  |  |  |  |  |  |
| $4: 3$ |  |  |  |  |  |  |  |  |  |
| $41^{\circ}$ |  |  |  |  |  |  |  |  |  |
| $(1)^{\circ}$ |  |  |  |  |  |  |  |  |  |
| $3!)^{\circ}$ |  |  |  |  |  |  |  |  |  |
| $35^{\circ}$ |  |  |  |  |  |  |  |  | $-0.171$ |
| $33^{\circ}$ |  |  |  |  |  |  |  | -0.154 | -0.091 |
| $386^{\circ}$ |  |  |  | -0.299 | $-0.245$ | -0.191 | -0.134 | -0.075 | -0.014 |
| $3.3{ }^{\circ}$ |  |  | -0.262 | -0.213 | -0.163 | -O.1 II | -0.034 | 0.003 | 0.062 |
| $34^{\circ}$ |  | -0.221 | -0.177 | -O.13I | -0.08 I | -0.029 | 0.024 | 0.079 | 0.136 |
| $3: 3{ }^{\circ}$ | $-0.176$ | $-0.135$ | -0.093 | -0048 | -0.000 | 0.049 | O. 101 | O. 154 |  |
| $3: 30$ |  | $-0.053$ | -0.012 | 0.032 | 0078 |  |  |  |  |
| $31{ }^{\circ}$ |  | 0.028 | 0.067 | 0.109 |  |  |  |  |  |
| $\varphi$ \% | $10^{\circ}$ | $1331{ }^{\circ}$ | $131{ }^{\circ}$ | $133^{\circ}$ | $133^{\circ}$ | $134^{\circ}$ | $13.5{ }^{\circ}$ | $136^{\circ}$ | $133^{\circ}$ |

## XVIII.

Longitude and Latitude, Calculated from the Formule for Horizontal Force and Declination.


$$
4 \pi x=\frac{\partial Y}{i x}-\frac{i X}{i y}
$$

which in polar co-ordinates hecomes

$$
x=\frac{1}{4 \pi \mathrm{R}}\left(\frac{\partial \mathrm{Y}}{\partial \varphi}-\mathrm{Y} \operatorname{tg} \varphi-\frac{1}{\cos \varphi} \frac{\partial \mathrm{X}}{\partial \lambda}\right)
$$

or replacing $\mathrm{X}, \mathrm{I}$ by Hcoso and Hsino , we hatve

$$
\begin{aligned}
u= & \frac{1}{4 \pi}\left\{\begin{array}{l}
\frac{\partial H}{\partial \varphi} \sin \partial+H \cos \delta \frac{\partial \partial}{\partial \varphi}-H \sin \partial \operatorname{tg} \varphi \\
\\
\end{array} \quad-\frac{1}{\cos \varphi}\left(\frac{\partial H}{\partial \lambda} \cos \partial-H \sin \partial \frac{\partial \partial}{\partial \lambda}\right)\right\}
\end{aligned}
$$

in terms of the observed clements. The ellipticity of the meridian are is neglected as its correction falls within the errors of observations at present. If the rectangular components, instead of the declination, dip and horizontal force, be expandec in different powers of differential longitude and latitude the calculation becomes much simpler. The differences of rectangular components in Tables XIL and XIII give sufficiently close approximation of the differential coefficients as was found by actual trial. The currents found by the above formula are given in Table XVIII and Map 8.

By way of comparison, the current densities are calculatel for Austria and Great Britain. Map 9 gives the lines of equal vertical currents obtained from the expressions of magnetic elements in Austria given by Prof. Liznar, and Map 9a the same for Great Britain obtained from the data given by Profs. Rücker and Thorpe. In the latter, two systems of lines are given ; the dotted lines are those calculated by taking differences of rectangular components computed from elements in Talles III, VI and IX in Yol. 188 of the Philosophical Transactions of the Royal Society of London: those lines are not
naturally continuous as the magnetic elements in those tables are expressed by different formule for different districts of that country. The full lines are continnons, they are calculated from the quadratic expressions,

$$
\begin{aligned}
& \pm 5.9 \pm 1.45 \quad \pm 2.10 \pm 0.654 \pm 1.693 \pm 1.129
\end{aligned}
$$

$$
\begin{aligned}
& \pm 5.1 \pm 1.2 .5 \pm 1.82 \pm 0.961 ; 1.46 .5 \pm 0.977
\end{aligned}
$$

$$
\begin{aligned}
& \pm 6.4 \pm 1.56 \pm 2.26 \pm 0.704 \pm 1.523 \pm 1.21 .5 \\
& J_{\lambda}=\left(\lambda-4^{\circ} \mathrm{W} .\right)^{\circ} ; \quad J_{\varphi}=\left(\varphi-.53^{\circ} \mathrm{N} .\right)^{\circ}
\end{aligned}
$$

derived from the values at the 9 so called Central Stations given in Tables I, IV and VII in the same volume. Tahle XIX gives the observed and calculated valnes of these elements.

## TABLE XIX.

Rectangular Components of Magnetic Force in Great Mritain.

| 淢 | X |  |  | $Y$ |  |  | $\%$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Observed | Calcr- <br> lated | $\begin{gathered} \text { Diff: } \\ \text { (obs.-Cal. } \end{gathered}$ | ()bserved | Calcu- <br> lated |  | $\begin{aligned} & \text { (lb- } \\ & \text { set redl } \end{aligned}$ | ('aleulated | Jiti: <br>  |
| I | $\begin{gathered} \gamma \\ 14950.0 \end{gathered}$ | 14955.9 ${ }_{\text {\% }}$ | $\%$ $-\quad 5.9$ | $573^{\gamma} .$ | ${ }_{573}{ }^{\prime}$ | - 2.5 | $-46381.0$ | $-46381.3$ | $+0.3$ |
| II | 15510.0 | 15497.8 | +12.2 | 5685.0 | 5677.9 | $+7.2$ | $-45771.0$ | -45752.4 | + I. 4 |
| III | 16384.0 | 16396.5 | -12.5 | 559S.o | 5609.0 | - 11.0 | $-44853.0$ | $-44^{8}+2.5$ | -10.5 |
| IV | 17209.0 | 17204.7 | $+4.3$ | $55^{12.0}$ | 5506.0 | $+6.0$ | $-44066.0$ | $-4.4074 .4$ | + 8.4 |
| V | 15534.0 | 15534.6 | - 0.6 | 6296.0 | 6298.6 | - 2.6 | $-45744.0$ | -457.37.2 | $-0.5$ |
| VI | 15973.0 | 15968.2 | $+4.8$ | 6057.0 | 6054.2 | + 2.8 | $-45268.0$ | -45279.5 | $+11.5$ |
| VII | 17252.0 | 17249.7 | $+2.3$ | 5S19.0 | 5825.2 | $-6.2$ | $-44030.0$ | -44020.9 | $-9.1$ |
| VIII | 15956.0 | 15956.3 | - 0.3 | 6414.0 | $6+13.9$ | + 0.1 | --45267.0 | -4526S.0 | $+1.0$ |
| IX | 16829.0 | 16833.0 | $-4.0$ | 5990.0 | 5984.3 | $+5.7$ | $-44403.0$ | $-44407.3$ | $+4.3$ |

All these three survers give the line of no current through the middle of the country ; in Japan the current is upward on the Pacific side and downward on the Siberian side ; in Austria it is upward on the north and downward on the south; in Great Britain, upward on the east and downward on the west.

Whether these distributions of current density show the real average state of things during the surveys of the respective countries or not is very doubtful. The fact that the line of no current runs through the middle in each of those countries inspite of different aspects of their distributions, seem to indicate that they are the result of uncompensated local disturbances and inadequacy of the empirical formula to a large extent, if not wholly. Considering that these currents depend upon the differences of differential coefficients of the observed elements, olrservations of greater refinements than the present, both in construction of instruments and distribution of stations, will be necessary in order to settle the question more definitely ; cortainly these currents can be accounted for by the probable errors in the constants of the empirical formule, at least in the case of Japan. Even in Great Britain, where the survey was very carefully carried out by excellent hands, the two sets of lines of equal currents present very different appearances according as they are derised from the district equations or general equations for the whole country (See Map 9a).

Under such circumstances the most fascinating subject of the motion of electricity from or towards the earth's surface must be left untouched, be it due to the diarnal motion of the earth or transference of ions with water rapour and the like. These will probably be better elucidated by pursuing other methods of investigation. It may he a good plan to improve
those empirical coefficients by imposing the condition of irrotationality among them, as was suggested by the writer on previous occasion. This being premissed, the values along the line of no current will be represented nearer to the truth than the rest and should be taken in preference to values at other places in deducing the magnetic constants of the whole glote.

## § 12. Vertical Variations of Magnetic Elements.

The variations of magnetic elements due to difference of level has recently been computed by Prof. Liznar from 20.5 ohservations taken at different clevations during the magnetic survey of Austria and Hungary. He arrives at results which are more than three times as great as those obtained by taking the differential coefficients of the first term in the spherieal harmonic expansion. This discrepaney is aseribed by the author to probable causes external to the earth and doubt is thrown upon the Gaussian method of representing the magnetic potential of the eirth.

Later still, van Rijckevorsel and van Bemmelen made special investigations on the subject by taking a large number of observations on the Rigi and came to the conclusion that the rariation of dip due to height are so small that they are almost entirely masked by the instrumental and observational errors.

The chicf difliculty in such case lies evidently in the fact that observations at high level are made on momatains which are themselves more or less magnetic presenting local disturbances often exceeding the mere effect due to elevation.

The plan here adopted is to deduce those vertical variations from their values observed on level surface, supposing the electric
current flowing in the atmosphere to be negligibly small. It is free from any special assumption as to the distribution of magnetism either inside or outside the earth; local disturbances being eliminated by taking sufficient number of well distributed stations.

Taking the rectangular co-ordinates $x$ y $z$ reckoned positive towards north, west and zenith as before, we have the well known equations
and

$$
\begin{aligned}
& 4 \pi u=\frac{i Z}{i y}-\frac{i Y}{i z} \\
& 4 \pi v=\frac{i \mathrm{Y}}{i z}-\frac{i Z}{i u} \\
& 4 \pi u=\frac{\partial Y}{\partial x}-\frac{i \mathrm{X}}{i y} \\
& 4 \pi n=\frac{i \mathrm{X}}{\partial x}+\frac{\partial \mathrm{Y}}{i y}+\frac{i Z}{\partial z}
\end{aligned}
$$

where $\mathrm{X}, \mathrm{I}$, $/$, are components of magnetic force, and $" v w$ those of electric current, and ${ }^{\prime}$ the density of free magnetism.

We have no precise means of ascertaining the horizontal components of current $u$ and $v$; but from the distributions of X and Y , the rertical component $w$ has already been computed, the extreme value found being 0.43 Ampere per square kilometer. Hence supposing $u$ and $v$ to be of the same order of magnitude, the error committed by neglecting those will be of the order $4 \pi \times 0.043 \times 10^{-10} \times 10^{3}=5.4 \times 10^{-6} \cdot \frac{1}{2} r$ per kilometer which is only a little greater than what the probable errors of those coefficients will produce. The value of $4 \pi$, arising from the heterogeneity of the atmospheric air is utterly insignificant being only $6.4 \times 10^{-4}$ r per kilometer in middle part of Japan, taking the susceptibility of the air to be $3.2 \times 10^{-8} \mathrm{e}^{-\mathrm{Z} / 15.4 \text { kilom. }}$. Hence putting $u=v=0$ and $p=0$ we have

$$
\begin{aligned}
& \frac{i x}{\partial z}=\frac{i \%}{i x} \\
& \frac{i Y}{\partial z}=\frac{i \%}{i y} \\
& \frac{i \%}{i z}=-\frac{i x}{i x}-\frac{i Y}{i!y}
\end{aligned}
$$

expressing vertical variations of rectangular components in terms of their horizontal variations.* It appears at first sight that the curvature of the earth surface may be neglected for the extent of the country covering only a few degrees of longitude and Jatitude; calculation shows, however, that it plays an important part; transforming, therefore these equations into polar coordinates, we have

$$
\begin{aligned}
& \frac{i \lambda}{\partial z}=\frac{1}{1 i}\left(\begin{array}{l}
\partial / \partial \\
\partial \varphi
\end{array}-X\right) \\
& i \mathrm{I}_{\mathrm{i}}=\frac{\mathrm{I}}{\mathrm{R}}\left(\begin{array}{cc}
1 & i \% \\
\cos \varphi & i \lambda
\end{array}-\mathrm{I}\right) \\
& \frac{\partial Z}{\partial z}=-\frac{1}{\mathrm{~h}}\left(\frac{\partial \mathrm{X}}{\partial \varphi}+\frac{1}{\cos \varphi} \frac{\partial Y}{\partial \lambda}-\mathrm{X} \operatorname{tg} \varphi+2 Z\right)
\end{aligned}
$$

$R$ being the mean radius of the earth, $\lambda \varphi$ longitude and latitude measured positive toward zenith, west and north respectively. If the horizontal force, dechation and dip are, as usual, expanded in terms of the co-ordinates, we have to put

$$
\begin{aligned}
& \mathrm{X}=H \cos \theta \\
& \mathrm{Y}=H \sin \theta \\
& / /=H \operatorname{tg} \theta
\end{aligned}
$$

[^7]\[

$$
\begin{aligned}
& \frac{i X}{\partial \varphi}=\frac{\partial I I}{\partial \varphi} \cos \hat{\partial}-H \sin \partial \frac{\partial \grave{\partial}}{\partial \varphi}
\end{aligned}
$$
\]

$$
\begin{aligned}
& \frac{\partial \%}{i \lambda}=\frac{i H}{\partial \lambda} \operatorname{tg} \theta+H \sec ^{2} \theta \frac{\partial \theta}{\partial \lambda} \\
& \frac{i \%}{\partial \varphi}=\frac{i 11}{\partial \varphi} \operatorname{tg} \theta+H \sec \theta \frac{i \theta}{i \varphi}
\end{aligned}
$$

After computing the vertical variations of the rectangular components in this way, those of the observed elements ", O, H, caln conveniently be formad as follows:-

$$
\begin{aligned}
& \frac{011}{i \pi}=\frac{i}{i z} \sqrt{ } N^{2}+I^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{i)}{i \pi}=-\frac{i}{\partial \%} \operatorname{tg}^{-1} \frac{\mathrm{Y}}{\mathrm{X}} \\
& =\frac{\cos \theta^{\prime}}{H}\left(\frac{i \lambda^{\top}}{\partial z}-\log \theta^{i} \frac{i \lambda}{i z}\right) \\
& i_{i \%}^{i(1)}=-\frac{i}{i,} \operatorname{tg}^{-1} H \\
& =\frac{\cos \theta}{1}\left(\frac{\partial \%}{\partial z}-\log \theta \frac{i \operatorname{lit}}{\partial \pi}\right) \\
& =\sec \theta\left(\frac{i H}{\partial z}+Z-\frac{\partial \theta}{\partial z}\right)
\end{aligned}
$$

The reduction to the sat level of \& $S$ were calculated by these formule using the lirst approximate values nsed for deducing the annual rariations.

Tables XX to XXV give data and values of these variations for Japan, Anstria and Hungary, and Cireat Britain, at
five points in each, distributed so as to cover different quarters of the countries. In Great Britain the Central Stations of the Districts I, III, V, VII and IX are taken as representatives. The last figures of numbers exceeding 20.0 in those tables will be slightly affected by taking into account the difference of principal curvatures of the earth surface in various latitudes, but since their probable errors come to the same order of magnitude in such cistes, the mean radius is used for simplicity.

## 'IABLE XX.

Data for the Calulation of Vertical Variations of Mabnetic Elements in .Japan.


## TABLE XXI.

Vertical Variations of Magnetic Elements in - Japar.

|  | I. | II. | III. | IV. | V. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\frac{\mathrm{i}}{\mathrm{I}} \mathrm{z} \text { per kilom. }$ | $\text { - } 12.2$ | $-13.2$ | $-13.8$ | $-14^{\prime} \sigma$ | $-15 \%$ |
| $-(3 \mathrm{~h} / \mathrm{R}) \mathrm{X}$ | -12.5 | -13.4 | -14.0 | -14.4 | -149 |
| Diff. | $+.3$ | $+.2$ | $+.2$ | -. 2 | -. 3 |
| $\text { i) } \mathrm{i} \text { z per kilom. }$ | -$\ddot{0}$ | - 3.0 | $\%$ $-\quad 3.0$ | - 3.6 | -$\because$ |
| $-(31 / \mathrm{R}) \mathrm{I}^{\top}$ | - 1.3 | 1.2 | 1.2 | - 1.2 | - I. I |
| Diff. | $-2.7$ | - 1.8 | $-1.8$ | $-2.4$ | - 2.6 |
| $\frac{\pi Z}{\partial \%} \text { per kilom. }$ | * 19.2 | 17.5 | $16.8$ | $16.9$ | $16_{4}^{\gamma}$ |
| - (3h, R) \% | 19.4 | 17.4 | 16.5 | 16.3 | 15.7 |
| Diff. | -. 2 | +.I | +.3 | $+.6$ | $+.7$ |
| i) H <br> i) per kilom. | $-12.5$ | $-13.5$ | $\begin{gathered} \stackrel{Y}{0} \\ -14.0 \end{gathered}$ | $\begin{gathered} \% \\ -14.8 \end{gathered}$ | $-15 \cdot 4$ |
| $-(3 h / \mathrm{R}) \mathrm{H}$ | -12.5 | $-13.5$ | -14.0 | - I 4.4 | -14.9 |
| Diff. | 0 | 0 | 0 | $-.4$ | $-.5$ |
| $\frac{i I}{\partial z}$ per kilom. | -229 | $-22.0$ | $-21.7$ | $\begin{gathered} \ddot{\prime} \\ -22.4 \end{gathered}$ | $-22.4$ |
| -(3h/R)I | -23.1 | -22.0 | $-21.7$ | -21.8 | -21.6 |
| Diff. | +. 2 | 0 | O | $-.6$ | $-.8$ |
| $\frac{\partial i}{\partial z}$ per kilom. | -0.35 | -0.22 | - O.2. 1 | - 0. 27 | -0. 29 |
| $\frac{i \theta}{i z} \text { per kilom. }$ | - o.'or | + o.'or | + 0.102 | +o.or | + O.'O I |

[^8]
## TABLE XXII.

Data for the Calculation of Vertical Variations of Magnetic Elements in Austria and Hungary.

| $\begin{aligned} & \lambda \mathrm{E} \text { of } \mathrm{Gr} \text {. } \\ & \text { ¢ N. } \end{aligned}$ | I. | 11. | III. | IV. | $V$. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $15^{\circ}$ | $15^{\circ}$ | $20^{\circ}$ | $25^{\circ}$ | $25^{\circ}$ |
|  | $50^{\circ}$ | $45^{\circ}$ | $47^{\circ}$ | $50^{\circ}$ | $45^{\circ}$ |
| H | $19769^{*}$ | $21982^{\gamma}$ | $21474^{\prime \prime}$ | $20576{ }^{\text {\% }}$ | $2277{ }^{\text {r }}$ |
| ) W . | $9^{\circ} 50^{\prime} 3$ | $9^{\circ} 51.7$ | $7^{\circ} 34 \cdot 9$ | $4^{\circ} 45 \cdot 2$ | $5^{\circ} 42 . \mathrm{O}$ |
| $\theta$ | $-64^{\circ} 49^{\prime} 5$ | $60^{\circ} 44^{\prime} 5$ | $61^{\circ} 55!9$ | $63^{\circ} 58: 7$ | $59^{\circ} 43^{\prime} 2$ |
| X | $19479^{\circ}$ | $21657^{\prime \prime}$ | $21286{ }^{\circ}$ | $20505{ }^{*}$ | $22666{ }^{\circ}$ |
| Y | 3378 | 3765 | 2833 | 1705 | 2263 |
| Z | $-42059$ | -39238 | $-40271$ | -42147 | -39012 |
| I | 46473 | 44976 | 45638 | 46901 | 45175 |
| $\frac{0 \mathrm{H}}{\text { as }}$ per $1^{\circ}$ | -433.5 | -451.4 | -443.3 | -431. ${ }^{\prime}$ | - 449.5 |
| $\frac{\partial \mathrm{H}}{\partial \lambda^{-}} \quad,$ | - 75.6 | - 74.6 | $-80.1$ | $-85.7$ | $-84.7$ |
| $\frac{\partial i}{i \varphi} \quad "$ | - 0.14 | - o'. | - 5:S | - 11. 5 | - 11!2 |
| $\frac{00}{0 \%} \quad,$ | 30.7 | $25!2$ | $27 \cdot 2$ | 30'3 | 24.8 |
| $\frac{i \theta}{i \varphi} \quad "$ | $-45 \cdot 5$ | $-52.5$ | $-50.7$ | $-47^{\prime} 6$ | $-54.6$ |
| iot 0 \% | - 6.o | - 7. ${ }^{\text {O }}$ | - 5: 8 | $-4!2$ | - 5!2 |

## TABLE XXIII.

Vertical Variations of Magnetic Elements in Austria and Hungary.

|  | I. | II. | III. | IV. | $V$. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| is ${ }_{i}$ per kilom. | - $\begin{gathered} \\ -8\end{gathered}$ | - 8.8 | - 8.8 | - $\mathrm{r}^{\mathbf{V}} 6$ | $\%$ -9.4 |
| -(31/R) X | -9.2 | $-10.2$ | -10.0 | - 9.7 | $-10.7$ |
| Diff. | + 1.4 | + 1.4 | + 1.2 | + 1.1 | $+1.3$ |




$-\left(31_{1} / \mathrm{H}\right) \mathrm{H} \quad \frac{-9.3}{+1.5} \frac{-10.4}{+1.5} \frac{-10.3}{+1.5} \frac{-9.7}{+1.2} \frac{-10.7}{+1.3}$

$-\left(3 h_{1} / \mathrm{R}\right) \mathrm{I} \quad \frac{-21.9}{+1.9} \frac{-21.2}{+1.4} \frac{-21.5}{+1.3} \frac{-221}{+1.4} \frac{-21.3}{+.3}$


\# Since $Z$ in negative upward, + correction means upward diminution in the intensity of $Z$.

## 'TABLE XXIV.

Data for the Calculation of Vertical Variation of Magnetic Elements in rireat Britain.

|  | I. | III. | V. | VII. | IX. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2. W of Gr. | $4^{\circ} 21.5$ | $2^{\circ} \mathrm{O} 5: 9$ | $7^{\circ} 37.9$ | $3^{\circ} \mathrm{oS} . \mathrm{o}$ | $4^{\circ} 32 \cdot 6$ |
| 9 | $56^{\circ} 38^{\prime} .2$ | $53^{\circ} 24^{\prime} \cdot 2$ | $54^{\circ}$ O2.'7 | $51^{\circ} \mathrm{O} 5^{\prime} \cdot 3$ | $51^{\circ} 41.9$ |


| H | $16011^{\text {r }}$ | $17313^{\prime \prime}$ | $16761{ }^{\circ}$ | $18206^{\gamma}$ | $17863{ }^{\gamma}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 4) | $20^{\circ} 58.4$ | $18^{\circ} 51.8$ | $22^{\circ} 03^{\prime} 9$ | I $\mathrm{S}^{\circ} 38^{\prime} .4$ | $19^{\circ} 35^{\prime} 5$ |
| $\theta$ | $-70^{\circ} 57^{\prime} 3$ | $-68^{\circ} 53.6$ | $69^{\circ} 52.6$ | $67^{\circ} 32^{\prime}$ I | $68^{\circ} 05^{\prime} .2$ |
| I | $14950^{\circ}$ | 16384 | $15534^{\gamma}$ | 172523 | $16829^{\gamma}$ |
| Y | 5731 | 5598 | 6296 | 5819 | 5930 |
| 7 | $-4638 \mathrm{I}$ | -44S53 | -45744 | $-44030$ | -44403 |
| I | 49069 | $4 \mathrm{SO} \mathrm{S}^{\text {S }}$ | $4 \mathrm{S7} 17$ | 476.45 | 47863 |

$$
\begin{aligned}
& \frac{i \mathrm{H}}{\mathrm{iof}} \text { per } 1^{\circ}-3 \mathrm{~S}^{\gamma} .7-404.2-402^{\gamma} 9-426.6-413^{\gamma}-7
\end{aligned}
$$



$$
\begin{array}{llllll}
\frac{i \theta}{i \varphi} \text { per } 1^{\circ} & -34^{\prime} \cdot 5 & -37^{\prime} \cdot 2 & -35^{\prime} \cdot 4 & -41^{\prime} .4 & -33^{\prime} .7 \\
\frac{i \theta}{i \lambda},, & -6 \cdot 7 & -6.3 & -6^{\prime} .2 & -8^{\prime} .1 & -6^{\prime} .6
\end{array}
$$

## 'TABLE XXV.

Tertical Variution of Magnetic Elements in Great Britai".

$$
\begin{array}{lllll}
\text { I. } & \text { III. } & \text { V. } &
\end{array}
$$



 in per kilom. $-6.5-6.6-6.3-7.4-6.8$
$-\left(3 h_{h} / \mathrm{R}\right) \mathrm{H}$

$$
\text { Diff. } \frac{-7.5}{+1.0} \frac{-8.1}{+15} \frac{-7.9}{+1.6} \frac{-8.6}{+1.2} \frac{+8.4}{+1.6}
$$

* Since $/ Z$ is negative upward. + correction means upward diminution in the intensity of $/ Z$

Comparing those variations with the coefficients of the first term of harmonic expansion we observe that the agreement is fairly close. It is interesting to remark that even from surveys made over so small portions of the earth surface, we can see where the principal origin of the terrestrial magnetism lies, that is in Gauss's sense.

## Gouss's Circuit.

Gauss in his classical example of the Göttingen-Milan-Paris circuit, might have gone a step further and found those rariations approximately. Taking his data and reducing to c. g. s. mnits we have

|  | $\lambda$ | $\bigcirc$ | ${ }^{\circ}$ | $\theta$ | $\mathrm{H} \quad \substack{\text { Arliterary } \\ \text { unit. }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Göttingen | $9^{\circ} 58^{\prime}$ | $51^{\circ} 3.32^{\prime}$ | $18^{\circ} 39^{\prime}$ | $-67^{\circ} 56^{\prime}$ | $17813^{\prime \prime}=0.50957$ |
| Jilan | $9{ }^{\circ} 09^{\prime}$ | $45^{\circ}-28^{\prime}$ | $15^{\circ} 33^{\prime}$ | $-63^{\circ} 49^{\prime}$ | $19949^{\prime}=0$. |
| Paris | $2^{\circ} 21^{\prime}$ | $45^{\circ} 52^{\prime}$ | $22^{\circ} 04^{\prime}$ | $-67^{\circ} 2 t^{\prime}$ | $18101^{\gamma}=0.51504$ |

Whence the rectangular components are

|  | X | Y | Z |
| :---: | :---: | :---: | :---: |
| Göttingen | $16550{ }^{*}$ | . $6992{ }^{\text {² }}$ | -43942 |
| Milan | $18913^{\text {? }}$ | $6347^{*}$ | -40572 |
| Paris | 1675.5 ${ }^{\text {\% }}$ | $6800^{7}$ | - 4348.5 |

which give miquely

$$
\begin{aligned}
& \mathrm{X}=17.522^{\prime} . \mathrm{S}+137.7 \mathrm{\gamma} \text { 人 } \\
& \mathrm{Y}=6279.7-112.9^{\gamma} \mathrm{J} \lambda-92 . \gamma^{\gamma} \cdot \mathrm{J}_{\varphi} \\
& Z=-42666^{\gamma} 3+141.3 J \lambda-574^{\gamma} .5 J_{0}
\end{aligned}
$$

where $J_{\lambda}=\left(\lambda-7^{\circ} .16\right)^{\circ} \mathrm{E}$., $J_{\varphi}=\left(\varphi-48^{\circ} .62\right)^{\circ}$ expressed in degrees.

## magnetic survey of Japan for the epoch 189\%.0. 141

With these values the vertical rariations at the mean point, $\lambda=7^{\circ} .16$ and $\varphi=45^{\circ} .62$, come out :-

$$
\begin{aligned}
\frac{i \mathrm{~N}}{\mathrm{iz}} & =-7.9 & \frac{i \mathrm{Y}}{\mathrm{iz}} & =-2.9 \\
-(3 \mathrm{~h} / \mathrm{R}) \mathrm{X} & =-8.2 & -(3 \mathrm{~h} / \mathrm{R}) \mathrm{Y} & =-3.0 \\
\text { Diff. } & =+0.3 & \text { Diff. } & =+0.1
\end{aligned}
$$

He might have thus inferred the seat of the terrestrial magnetism to lie chiefly inside the earth, even before undertaking that labourious series of computations which brought to light the real state of the geomagnetism for the first time.

## § 13. Disturbances in the Vertical Variations of Magnetic Force.

The vertical variations of the terrestrial magnetic force treated in the last section, differ from $-(3 \mathrm{~h} / \mathrm{R})$ times the respective components in all the three cases. The magnitudes of the differences are greater than what can be accounted for by observational errors, being much larger than the quantities concerned in the determination of the vertical current; and their distribution is more uniform than those of the current in each country. Any one by taking observations at a dozen of well selected stations will reveal the fact if the same line of calculation be followed; as is suggested by the general resemblance of results obtained from observations of three points in Europe with those obtained from complete surveys in the two other countries.

These are no doubt due to the existence of higher harmonics in the sense of that expansion. From a physical point of vierv the irregularities in the surface crust of the carth, as observed in the upheavals of continents and depressions of ocean beds,
may naturally be expected to cause anomalies in the distribution of magnetic force, as was already remarked by many.

We may suppose with v. Bezold, Leyst and others, the terrestrial magnetic force observed at a place to consist of the average effect of all the magnetised parts superposed with anomalics of comparatively large extent, which again can be subdivided into mean anomalies of less extent superposed with smaller. In this respect the differences above spoken of may be called variational anomalies, moderstanding thereby nothing more than the results of numerical operations on the observed data conducted as above.

## Disturbance due to a Simple Source.

In order to see roughly what sort of disturbances in the rertical variation of magnetic force is likely to be met with, take as the disturbing source a simple positive pole of strength $m$, placed inside a sphere representing the earth.

In Fig. 5, let C be its center, M the position of the source. $P$ any point on the surface; and put

$$
\begin{aligned}
& \mathrm{CM}=r \\
& \mathrm{MP}=r \\
& \mathrm{MCP}=\theta \\
& \mathrm{MPC}==\text { the zenith distance of the } \\
& \text { direction of the force at } \mathrm{P} ; \\
& \text { and } \mathrm{CP}=z=\text { the variable radius vector }
\end{aligned}
$$

Fig. 5.
 through $P$ (positise outward) which is to be made equal to the mean radius R , after performing differentiation. As no restriction is laid upon the value of $r$, the result can also be applied to the case when the source is above by making $r$ greater than $R$. and paying due regard to the signs of the trigonometrical functions.

The vertical and horizontal forces at P will be

$$
\begin{aligned}
Z^{\prime} & =\frac{m}{r^{2}} \cos = \\
\mathrm{H}^{\prime} & =\frac{m}{i^{2}} \sin
\end{aligned}
$$

with the geometrical relations

$$
\left.\begin{array}{rl}
\cos s & =\frac{z-r \cos \theta}{\rho} \\
\sin & =\frac{r \sin \theta}{\varphi} \\
r^{2} & =r^{2}+\%^{2}-2 r \% \cos \theta \\
\text { or } & =(z-r)^{2}+4 r \% \sin ^{2} \frac{\theta}{2} \text { for numerical work }
\end{array}\right\}
$$

$Z^{\prime}$ and $\mathrm{H}^{\prime}$ denoting the vertical and horizontal components; the latter can again be resolved along any directions in the tangent plane.

Remembering that

$$
\frac{\partial_{\rho}}{\partial_{z}}=\cos ; \text { and } \frac{\theta_{5}}{\partial z}=-\frac{\sin ;}{!}
$$

the vertical variations of those forces are

$$
\begin{aligned}
& \frac{\partial Z^{\prime}}{\partial z}=-\frac{m}{\eta^{3}}\left(2 \cos ^{2} \xi-\sin ^{2} \xi\right) \\
& \frac{\partial \mathrm{H}^{\prime}}{i z}=-\frac{3 m}{i^{3}} \text { sin } \varsigma \cos \xi
\end{aligned}
$$

or in terms of $\theta$

$$
\begin{align*}
\frac{\partial Z^{\prime}}{\partial z} & =-m  \tag{4}\\
\gamma^{3} & \left(2-3 \frac{r^{2} \sin ^{2} \theta}{\beta^{2}}\right) \\
\frac{\partial \mathrm{H}^{\prime}}{\partial z} & =-\frac{3 m}{r^{3}} \frac{r \sin \theta(\mathrm{R}-r \cos \theta)}{r^{\prime}}
\end{align*}
$$

The Vertical Force $Z^{\prime}$ is
Maximum at $\quad \theta=0$ i.e. epicenter
and Minimum at $\theta=\pi \quad$ i.e. antipode.
When the source is above the level, the scnse of the force is reversed near the place directly below it, which we may now call subcenter; while on the antipode side the sign remains mehanged. The surface is thus divided into two regions of positive and negative rertical forces by the nodal circle

$$
\begin{equation*}
\theta=\cos ^{-1} \frac{\mathrm{R}}{i} \tag{5}
\end{equation*}
$$

within the limit $\mathrm{R}<r<\infty$;
evidently this is the circle along which a pencil of rays from the source tonches the sphere. A new maximum occurs in the positive region along the circle

$$
\begin{equation*}
\theta=\cos ^{-1}\left(2 \frac{\mathrm{R}}{r}-\frac{r}{\mathrm{R}}\right) \tag{6}
\end{equation*}
$$

within the limit $\mathrm{R}<r<2 \mathrm{R}$.
It begins with 0 at the lower limit and ends with $\pi$ at the higher.

The Itorizontal Force $\mathrm{H}^{\prime}$ vanishes always

$$
a \mathrm{at}
$$

$$
\theta=0 \quad \text { and } \quad \pi
$$

whether the source is inside or outside the sphere, being

$$
\begin{align*}
\text { Maximum at } \quad & \theta=\cos ^{-1} \frac{1}{2}\left(\sqrt{\left(\frac{r}{\mathrm{R}}+\frac{\mathrm{R}}{r}\right)^{2}}-\frac{r}{\mathrm{R}}-\frac{\mathrm{R}}{r}\right)  \tag{ㄱ}\\
& 0<r<\infty \quad ;
\end{align*}
$$

the value of $t$ remains the same by replacing $r$ by $1 / r$, so that there are two values of $r$ corresponding to the same circle of maximum horizontal force; its position changes from $\frac{\pi}{2}$ to 0 as
the source approaches the surface from the center, and back again from 0 to $\frac{\pi}{2}$ as it recedes from there to infinite distance. The reciprocal relation of inside and outside positions of the source might well be expected, considering it as a kind of an unbalanced electric image.

When the depth is small we may neglect the curvature of the surface near the point. Putting $\mathrm{D}=\mathrm{R}-$ - for the depth, (1) becomes

$$
\left.\begin{array}{rl}
\mathrm{Z}^{\prime} & =\frac{m}{\mathrm{D}^{2}} \cos ^{3} \zeta \\
\mathrm{H}^{\prime} & =\frac{m}{D^{2}} \sin \zeta \cos ^{2} \zeta
\end{array}\right\}(8)
$$

The former is maximum at the epicenter and the latter at $s=\operatorname{tg}^{-1} \frac{1}{\sqrt{2}}$ which is the result given in Thomson and Tait's Natural Philosophy § 786.

The north and west components are to be obtained by expressing $\theta$ in terms of the longitude and latitude, and multiplying the result by cosine and sine of the azimuth, thus

$$
\left.\begin{array}{l}
\mathrm{X}^{\prime}=\frac{-m \cdot\left\{\cos \varphi \sin \varphi_{0}-\sin \varphi \cos \varphi_{0} \cos \left(\lambda-\lambda_{0}\right)\right\}}{\left\{\mathrm{R}^{2}+r^{2}-2 r \mathrm{R}\left[\sin \varphi \sin \varphi_{0}+\cos \varphi \cos \varphi_{0} \cos \left(\lambda-\lambda_{0}\right)\right]\right\}^{\frac{3}{2}}} \\
\mathrm{Y}^{\prime}=\frac{m r \cos \varphi_{0} \sin \left(\lambda-\lambda_{0}\right)}{\left\{\mathrm{R}^{2}+r^{2}-2 r \mathrm{R}\left[\sin \varphi \sin \varphi_{0}+\cos \varphi \cos \varphi_{0} \cos \left(\lambda-\lambda_{0}\right)\right]\right\}^{\frac{3}{2}}}
\end{array}\right\}(9)
$$

where $\lambda_{0}$ and $\varphi_{0}$ are the longitude and latitude of the epi- or subcenter, or pericenter which we substitute for the two words.

The North Component $\mathrm{X}^{\prime}$ vanishes along the nodal line

$$
\cos \left(\lambda-\lambda_{0}\right) \operatorname{tg} \varphi=\operatorname{tg} \varphi_{0}
$$

It is the locus of points where the circles of equal horizontal force touch the meridian ares, and consists of a pair of spherical ellipses, one through the pericenter and its nearest geodetic
pole, and the other throngh the antipode and its nearest pole. Their form is independent of the depth or height of the source, being determined solely by the co-ordinates of the pericenter. When the pericenter is close to either of the poles, they are nearly circles which gradually flatten until they coincide with the equator and the meridian, when the source comes to the plane of the equator.

Inside both of those ellipses, the force $\mathrm{X}^{\prime}$ is positive and in the irregular zone between them negative. Fig. 6 is the stereographic projection of those curves for the
 intervals of $15^{\circ}$ in the values of $\varphi_{0}$.

The West Component $\mathrm{Y}^{\prime \prime}$ vanishes over the meridian circle

$$
\lambda=\lambda_{0} \text { and } \lambda_{0}+\pi
$$

this corresponds to the nodal ellipse in the case of the north component ; the force is positive on the west half and negative on the east half of the surface.

The maximum and minimum of the north component are on this circle, the latitude to be found from the value of $\theta$ in (7). Those of the west component are either on the nodal ellipse or on the meridian circle which is at quadrature with that through the source, at the same distance from the pericenter as those of the north component.

The Vertical Variation of the Vertical Component $\frac{\partial Z^{\prime}}{\partial z}$ is (algebraically)

Maximum at $\quad \theta=\pi \quad$ i.e. antipode
Minimum at $\quad \theta=0 \quad$ i.e. pericenter.
There is another pair of such points, namely
Maximum at $\quad \theta=\cos ^{-1}\left(\frac{\mathrm{R}}{r}-\frac{r}{\mathrm{R}}+\sqrt{\left(\frac{r}{\mathrm{R}}\right)^{2}-\left(\frac{\mathrm{R}}{r}\right)^{2}+1}\right)$
Minimum at $\left.\quad \theta=\cos ^{-1}\left(\frac{\mathrm{R}}{r}-\frac{r}{\mathrm{R}}-\sqrt{\binom{r}{\mathrm{R}}^{2}-\left(\frac{\mathrm{R}}{r}\right)^{2}+1}\right),\right\}$
the maximum is possible for all positive values of $r$ within

$$
\begin{align*}
& \sqrt{\frac{1}{2}(\sqrt{5}-1)} \mathrm{Ii}<r<\infty  \tag{12}\\
& (\fallingdotseq .7861 .5 \mathrm{li})
\end{align*}
$$

and the minimmm within

$$
\sqrt{\frac{1}{2}(\sqrt{5}-1)} \mathrm{R}<r<\mathrm{R}
$$

At the lower limit the two values coincide at

$$
\begin{align*}
& \theta=\cos ^{-1}\left(1 / \sqrt{\frac{1}{2}(\sqrt{5}-1)}-\sqrt{\frac{1}{2}(\sqrt{5}-1)}\right)  \tag{13}\\
& \doteqdot 60^{\circ} \text { 55's from the epicenter. }
\end{align*}
$$

The variation vanishes at
and

$$
\left.\begin{array}{c} 
\pm \theta=\sin ^{-1} \sqrt{\frac{2}{3}} \frac{\mathrm{R}}{r}-\sin ^{-1} \sqrt{\frac{2}{3}} \quad \text { source }\left\{\begin{array}{l}
\text { abbove } \\
\text { below }
\end{array}\right.  \tag{14}\\
\theta=\pi-\sin ^{-1} \sqrt{\frac{2}{3}} \frac{\mathrm{R}}{r}-\sin ^{-1} \sqrt{\frac{2}{3}}
\end{array}\right\}
$$

This is possible for all positive values of $r$ within

$$
\begin{equation*}
\sqrt{\frac{2}{3}} \mathrm{R}(\doteqdot .81650 \mathrm{R})<r<\infty \quad ; \tag{1.5}
\end{equation*}
$$

at the critical value of $r$ the two circles coincide with that of the maximum variation at

$$
\begin{equation*}
\theta=\frac{\pi}{2}-\sin ^{-1} \sqrt{\frac{2}{3}} \doteq 35^{\circ} 15.9 \quad \text { from the epicenter. } \tag{16}
\end{equation*}
$$

When the depth of the source is small, neglecting the curvature of the surface as before, the first of (3) takes the form

$$
\begin{equation*}
\frac{\partial Z^{\prime}}{\partial z}=-\frac{m}{D^{3}}\left(3 \cos ^{5} \varsigma-\cos ^{3} \varsigma\right) \tag{17}
\end{equation*}
$$

D being the depth of the source and s the same as before; this holds either for the source above or below, D and coss changing sign at the same time. The variation is now maximum at $\varsigma=\operatorname{tg}^{-1} 2$, and vanishes at $s=\operatorname{tg}^{-1} \sqrt{ } 2 \div 54^{\circ} 44.1$ and $\frac{\pi}{2}$.

The effect can be described in words as follows (see Fig. 7 below): -Suppose at first the source to be placed at the center of the sphere, the vertical variation of the vertical component arising from it will be uniform all over the surface being $-\frac{2 m}{\mathrm{R}^{3}}$. Now displace it along any particular line through the center, the upward decrease will be greatest at the epicenter and least at the antipode: as it recedes further from the center, the maximum and minimum will become more and more pronounced, and when the source reaches the critical depth of about 0.21 R , a new set of maximum and minimum will begin to appear at the angular distance of $60^{\circ} .9$ from the epicenter. After this value is passed there will be two circles on the sphere, on one of which the decrease is less and on the other greater than any values in their neighbourhoods. As the depth becomes still less, the place of least decrease will be shifted toward the epicenter becoming more and more prominent, and the minimum toward the antipode becoming more and more smooth; and
when the depth of about 0.18 R is reached, the value of the maximum becomes zero at about $35^{\circ} \frac{1}{4}$ from the epicenter. Beyond this limit, there will be two circles on which the variation vanishes with a circle of maximum variation between them. The surface is now divided into three regions by those circles; on the epicenter and antipode sides the force will decrease upward, but in the middle zone it will increase upward, the effect due to the change of direction accompanying the increase of height being greater than the opposite effect due to the increase of distance. In this zone, if the variation of vertical force alone be considered, it would appear as if there lies a disturbing source of opposite kind below.

As the source approaches closer to the surface, the circle of no variation on the epicenter side as well as that of the maximum variation will shrink round that point, while the circle of the minimum variation fades toward the antipode. The other circle of no variation takes the assymptotic position at $70^{\circ} \frac{1}{2}$ from the epicenter, dividing, in the limit, the spherical surface into two parts, the region of upward increase on the epicenter side, and the region of upward decrease on the antipode side.

When the source is above the level, the vertical force still decreases upward in regions directly below the source. This apparent paradox will be easily cleared, if we reflect that when the positive source is below the level, the force is in positive sense being directed upward, and it decreases in positive sense: but, when it is above, the force is in negative sense, being directed downward, and the upward increase of this negative force is algebraically equivalent to a decrease of positive force. Were there no other magnetic force except that due to the disturbing source such as now described, it may be an easy matter to tell
which way the source lies by observing the vertical force and its vertical variation at the place: but when the effect is superposed with a larger field of force as usually the case is, what is now described in algebraic sense will happen in arithmetical sense, and it will be impossible to decide, from the variations of vertical component alone, which way the seat of that field lies, unless we have some means of separating the two effects.

The succession of various states of the distribution of vertical variation on the sphere, as the source recedes from it, is reversed essentially in similar way to that which was observed when it approached the surface from below, only reduced in magnitude.

When the height of the source is small, the circle of no variation and that of maximum variation will be found close to the subcenter, the other circle of no variation being found in the neighbourhood of $70^{\circ} \frac{1}{2}$ from the subcenter dividing the surface into three regions as before. The circle of minimum variation is now wanted, being confounded with the ill-defined maximum at the antipode.

As the source recedes further from the sphere all those places of demarkation will be shifted toward the antipode, the maxima and minima becoming less and less distinct, the variation itself subsiding in assymptotic decay. The limiting positions of the circles of no variation are $54^{\circ} \frac{3}{4}$ and $135^{\circ} \frac{1}{4}$ from the subcenter and that of the greatest variation $90^{\circ}$ from the same point.

The Variation of the Horizontal Component

$$
\frac{\partial \mathrm{H}^{\prime}}{\partial z}=-3 m \frac{r \sin \theta(\mathrm{R}-r \cos \theta)}{\rho^{5}}
$$

vanishes always at $\theta=0$ i.e. pericenter

$$
\text { and } \theta=\pi \quad \text { i.e. antipode. }
$$

When the source is above, it vanishes also at

$$
\begin{aligned}
& \theta=\cos ^{-1} \frac{\mathrm{R}}{r} \text {, the nodal circle of the vertical force. } \\
& \mathrm{R}<r<\infty
\end{aligned}
$$

always changing sign at those points. The maximum and minimum are given by roots of the cubic equation

$$
\begin{equation*}
\cos ^{3} \theta+\left(2 \frac{r}{\mathrm{R}}-\frac{\mathrm{R}}{r}\right) \cos ^{2} \theta-\left(4+\left(\frac{\mathrm{R}}{r}\right)^{2}\right) \cos \theta+\left(4 \frac{\mathrm{R}}{r}-\frac{r}{\mathrm{R}}\right)=0 . \tag{18}
\end{equation*}
$$

When

$$
0<r<\mathrm{R}
$$

there is only one possible value of $\theta$ which gives maximum value of the variation, the angle lying between 0 and $\frac{\pi}{2}$.

When $\quad \mathrm{R}<r<\infty$
there are two possible values of $\theta$; the smaller angle gives the maximum and the larger minimum ; the value are 0 and $\pi$ when $r=\mathrm{R}$, and tends to $\frac{\pi}{4}$ and $\frac{3 \pi}{4}$ for large values of $r$.

When the depth is small, neglecting the curvature and putting $D$ for the depth as before, the second of (3) becomes

$$
\begin{equation*}
\frac{\partial \mathrm{H}^{\prime}}{\partial z}=-\frac{3 m}{1 D^{3}} \sin \varsigma \cos ^{4} 5 \tag{19}
\end{equation*}
$$

which is maximum at $s=\operatorname{tg}^{-1} \frac{1}{2}$ or at a distance of half the depth from the epicenter measured on the surface.

In words, suppose the source is placed at the center of the sphere, there is no horizontal force and no variation all over the surface; displace it slightly, the horizontal force decreases upward at every point of the sphere except at the epicenter and antipode where it vanishes, and greatest in the vicinity of the great circle midway between these points. As the source recedes further from there, the circle of the greatest upward decrease shifts in
the same direction becouing more and more pronounced until it touches the source at the surface where the variation will be indefinitely great.

When the source is above the level, the variation changes sign on the subcenter side, and the force increases upward, while on the antipode side it decreases as before: the circle of no variation being the same as the nodal circle of the vertical force. When the height of the source is small, the maximum is close to the subcenter and the minimum to the antipode from where they expand, as the source rises, approaching the assymptotic positions $54^{\circ} \frac{3}{4}$ from either of the extreme points; the circle of no variation begins at the subcenter and tends to bisect the sphere in the limit.

If the horizontal force is resolved along any given directions in the horizontal plane, the magnitude of the variation will change in the same ratio as its respective components. Taking components along the cardinal directions as before we have

$$
\begin{align*}
& \frac{\partial \mathrm{X}^{\prime}}{\partial z}=-\frac{-3 m r\left\{\mathrm{R}-r\left[\sin \varphi \sin \varphi_{0}+\cos \varphi \cos \varphi_{0} \cos \left(\lambda-\lambda_{0}\right)\right]\right\}}{\left\{\mathrm{R}^{2}+r^{2}-2 r \mathrm{R}\left[\sin \varphi \sin \varphi_{0}+\cos \varphi \cos \varphi_{0} \cos \left(\lambda-\lambda_{0}\right)\right]\right]^{\frac{5}{2}}} \times \\
& \left.\left[\cos \varphi \sin \varphi_{0}-\sin \varphi \cos \varphi_{0} \cos \left(\lambda-\lambda_{0}\right)\right]\right\}  \tag{20}\\
& \frac{\partial \mathrm{Y}^{\prime}}{\partial z}=-\frac{3 m r\left\{\mathrm{R}-r\left[\sin \varphi \sin \varphi_{0}+\cos \varphi \cos \varphi_{0} \cos \left(\lambda-\lambda_{0}\right)\right]\right\}}{\left.\left\{\mathrm{R}^{2}+r^{2}-2 r \mathrm{R}\left[\sin \varphi \sin \varphi_{0}+\cos \varphi \cos \varphi_{0} \cos \lambda-\lambda_{0}\right)\right]\right\}^{\frac{5}{2}} \cos \varphi_{0} \sin \left(\lambda-\lambda_{0}\right) .}
\end{align*}
$$

The Variation of the North Component always vanishes on the nodal ellipse. When the source is below the level, the space inside both of those ellipses is the region of upward decrease of the north component, and the outside zone that of upward increase.

When the source is above, the variation vanishes besides on
the nodal circle of the vertical force, on the subcenter side of which the sign of the variation is to be changed. If the nodal circle does not cut the ellipse, the whole space inside the ellipse on the subcenter side becomes region of upward increase and that between the ellipse and the circle that of upward decrease, the rest remaining the same; if it cuts the ellipse, the space within it as well as that of the zone is divided into two regions; if it touches the ellipse at all, it must touch it at the pole, when the discontinuity at the point becomes a cusp.

The T'ariation of the West Component ranishes all over the meridian whose plane passes through the source. When the source is above, its sign within the nodal circle is to be changed, as in the case of the north component, dividing the surface into four regions of alternately positive and negative variations.

The maximum and minimum of the variations of the north component, are on the meridian circle whose plane contains the source, and those of the west component either on the nodal ellipse or the meridian which is at quadrature with the above.

Tables XXVI and XXVII give the values of those vertical variations for several values of $r / \mathrm{R}, m$ and R being taken as unity; and Figs. 7 and 9, their graphs in polar co-ordinates; the values are positive outward and negative inward from the circumference of the circle which represents a section of the sphere through the source. This method is adopted for the easy apprehension of the various positions on the sphere although it has the disadvantage of making the positive and negative magnitudes appear unsymmetrical on account of the convergence of the radial lines. Figs. 8 and 10 are the same for the case of the plane surface.

## TABLE XXVI. <br> Values of $\frac{\partial \mathrm{Z}^{\prime}}{\partial z}$ for Varions Values of $\frac{r}{\mathrm{R}} ; \quad m=1, \mathrm{R}=1$.

| $\theta$ | $\frac{r}{\mathrm{~h}}=0.5$ | $\begin{aligned} \frac{r}{\mathrm{R}} & =\sqrt{\frac{V_{5}-1}{2}} \\ & =.78615 \end{aligned}$ | $\begin{aligned} \frac{r}{K} & =\sqrt{\frac{2}{3}} \\ & =8165\end{aligned}$ | $\frac{r}{\mathrm{R}}=0.85$ | $\frac{r}{\mathrm{R}}=0.9$ | $\stackrel{r}{R}=1$ | $\frac{r}{\mathrm{R}}=2$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $0^{\circ}$ | - 16.00 | - 204.50 | -323.68 | - 592.59 | -2000.00 | $-\infty 0+\infty$ | - 2.00 |
| $10^{\circ}$ | - 14.02 | - 65.16 | - 68.50 | - 60.96 | - 5.26 | + 184.51 | - 1.52 |
| $10^{\circ} 23^{\prime} 2$ |  |  |  |  |  |  |  |
| $14^{\circ} 06^{\prime} 5$ |  |  |  |  | + 14.89 |  |  |
| $19^{\circ} \circ 7^{\prime} 5$ |  |  |  | $\bigcirc$ |  |  |  |
| $20^{\circ}$ | - 9.93 | - 8.67 | - 4.78 | + 0.65 I | + 9.75 | + 21.74 | - 0.629 |
| $24^{\circ} 44.5$ |  |  |  | + 1.67 |  |  |  |
| $30^{\circ}$ | - 6.35 | - 1.48 | - 0.153 | + 1.33 | $+3.33$ | $+\quad 5.76$ | $-0.025$ |
| $30^{\circ} 3^{8.4}$ |  |  |  |  |  |  | ○ |
| $33^{\circ} 155^{\prime} .9$ |  |  | 0 |  |  |  |  |
| $40^{\circ}$ | - 4.04 | - 0.555 | $-0.046$ | $+0.48 \mathrm{I}$ | + 1.16 | + 2.04 | + 0.210 |
| $47^{\circ} 12$ \% 0 |  |  |  |  |  |  | + 0.241 |
| $50^{\circ}$ | - 2.70 | $-0.44 \mathrm{I}$ | - 0.202 | + 0.039 | $+\quad 0.348$ | $+0.769$ | $+0.238$ |
| 51 $1^{\circ} 24^{\prime} 3$ |  |  |  |  |  |  |  |
|  | - 1.92 | - 0.433 | - 0.301 | - 0.168 | $+\quad 0.003$ | $+0.250$ | $+0.192$ |
| $60^{\circ}$ ○S. ${ }^{\prime}$ |  |  |  |  |  |  |  |
| $\mathbf{6 0}^{\circ} 55.8$ |  | $-\left\{\begin{array}{l} 0.433 \\ 0 \end{array}\right\}$ |  |  |  |  |  |
| $710^{\circ}$ | - $\quad 1.47$ | - 0.43 I | $-0.348$ | - 0.265 | $-\quad 0.156$ | + 0.009 | $+0.133$ |
| $880^{\circ}$ з 1.8 |  |  |  |  |  | - |  |
| $80^{\circ}$ | - 1.19 | - 0.425 | - 0.367 | - 0.309 | - 0.233 | - 0.113 | + 0.079 |
| $90^{\circ}$ | - 1.00 | - 0.415 | - 0.37 | - 0.328 | - | 0.177 | $+0.036$ |
| $100^{\circ}$ | - 0.877 | - 0.403 | - 0.369 | - 0.334 | - 0.288 | - 0.212 | + 0.003 |
| $101^{\circ}$ ธо! 2 |  |  |  |  |  |  | $\bigcirc$ |
| $1111^{\circ} 47^{\prime} 4$ |  |  |  | - 0.335 |  |  |  |
| $120^{\circ}$ | - 0.725 | - 0.381 | - 0.357 | - 0.332 | - 0.298 | - 0.24 I | - 0.039 |
| $123{ }^{\circ} 12{ }^{\prime} 2$ |  |  |  |  | - 0.298 |  |  |
| $140^{\circ}$ | - 0.645 | - 0.365 | - 0.344 | - 0.324 | - 0.296 | - 0.249 | - 0.061 |
| $160^{\circ}$ | - 0.605 | - 0.354 | - 0.336 | - 0.318 | - 0.293 | - 0.250 | - 0.071 |
| $180^{\circ}$ | - 0.593 | - 0.351 | - 0.334 | - 0.316 | - 0.292 | - 0.250 | -0.074 |

Numbers in black types are maxima, those in small types minima.

## TABLE XXVII.

Values of $\frac{\partial \mathrm{H}^{\prime}}{\partial z}$ for Various Values of $\frac{r}{\mathrm{R}} ; m=1, \mathrm{R}=1$.

| 0 | $\stackrel{r}{\mathrm{R}}=0.5$ | $\begin{aligned} & n=\sqrt{\frac{V_{5-1}}{2}} \\ & \mathrm{R}=.78655^{2} \end{aligned}$ | $\begin{aligned} & r=\sqrt{\frac{2}{3}} \\ & \mathrm{R} \\ &=0.8165 \end{aligned}$ | $\frac{r}{\mathrm{R}}=0.85$ | ${ }_{\mathrm{R}}^{\mathrm{R}}=0.9$ | $\stackrel{r}{\mathrm{R}}=1$ | $\stackrel{r}{\mathrm{R}}=2$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $0{ }^{\circ}$ | - | - | - | - | - | $-\infty 0+\infty$ | - |
| $3^{\circ} 3^{\prime} \cdot 9$ |  |  |  |  | -824.53 |  |  |
| $4^{\circ} 45 \cdot 5$ |  |  |  | $-238.77$ |  |  |  |
| $5^{\circ} 59$ 'r |  |  | -128.33 |  |  |  |  |
| $\gamma^{\circ} 8.4$ |  | - 79.89 |  |  |  |  |  |
| $10^{\circ}$ | $-3.65$ | - 72.28 | -100.75 | $-140.48$ | -197.74 | - 49.18 | +0.871 |
| $17^{\circ} 24^{\prime} .9$ |  |  |  |  |  |  | $+1.07$ |
| $\because 0^{\circ}$ | - 5.07 | - 28.46 | $-30.74$ | - 31.82 | - 29.47 | - 12.25 | + 1.05 |
| $\because 1^{\circ} 34.6$ | - 5.09 |  |  |  |  |  |  |
| $30^{\circ}$ | - 4.65 | - 11.31 | - 11.20 | - 10.74 | - 9.42 | - 5.41 | $+0.751$ |
| $40^{\circ}$ | $-3.65$ | - 5.48 | - 5.29 | - 5.00 | - 4.43 | - 3.01 | $+0.396$ |
| $50^{\circ}$ | - 2.71 | - 3.11 | -- 2.98 | - 2.82 | - 2.53 | - 1.90 | $+0.158$ |
| $60^{\circ}$ | - 2.00 | - 1.96 | - 1.88 | - 1.79 | - $\quad 1.63$ | - 1.30 |  |
| $70^{\circ}$ | - 1.49 | 1.34 | - 1.28 | - 1.22 | - 1.13 | $-0.933$ | $-0.071$ |
| $80^{\circ}$ | - 1.12 | - 0.956 | - 0.920 | - 0.879 | - 0.817 | - 0.695 | -0.100 |
| $90^{\circ}$ | $-0.859$ | - 0.708 | - 0.683 | - 0.655 | - 0.612 | - 0.530 | -0.107 |
| $1000^{\circ}$ | - 0.664 | + - 0.537 | - 0.518 | $-0.498$ | - 0.469 | $-0.411$ | -0.103 |
| $1 \because 0^{\circ}$ | - 0.401 | $1-0.317$ | - 0.307 | - 0.296 | - 0.280 | - 0.250 | - 0.080 |
| $140^{\circ}$ | $-0.231$ | $1-0.181$ | - 0.176 | - 0.170 | - 0.162 | $-0.145$ | $-0.053$ |
| $160^{\circ}$ | - 0.106 | 6 - 0.083 | - 0.08 r | - 0.078 | - 0.074 | $-0.067$ | $-0.026$ |
| $180^{\circ}$ |  | - | $\bigcirc$ | $\circ$ | $\bigcirc$ | - | $\bigcirc$ |

Numbers in black types are maxima, those in small types minima.

Fig. 8.



## Location of Magnetic Image from Vertical Variations of the Observed Magnetic Elements.

The simplest case now discussed can be applied to sources of finite extent if its distribution of magnetism is centrobaric, or to cases where it can be represented by finite number of images by mere addition of the rectangular components above given. Any other distribution whose potential is known in finite form can also be treated in similar manner.

If the potential is expanded in harmonic series, no matter how far that expansion be carried, its application to the variation of the force in neighbourhood of the source will be utterly untenable, unless the distribution be such as can be exactly represented by finite number of terms. The presence of minute ripples in the imitation of known curves by 80 harmonics worked out with Michelson's analyser shows us to what danger we are exposed in similar cases.*

As we recede from the source, however, the higher harmonics tend to vanish in the well known way, approaching more and more nearly to be centrobaric as the distance of the source becomes great compared with its extent. If the distribution is not extravagantly irregular, a few number of images properly disposed will give a fairly good approximation at tolerable distances from it. A pair of positive and negative images of equal strength will give the effect of a simple magnet. When its length is short (1) and (3) may be differentiated with respect to its axis and the strength of pole $m$ replaced by the magnetic moment.

[^9]If the poles be of mequal strength, the excess of the stronger over the weaker only will be felt at great distances. Such a magnet of an apparently odd pair of poles may be produced by local heterogeneity of magnetization in a body like the earth, one pole being concentrated at a place and the other widely spread out over the rest, when the effect of the former can be represented by a single image for approximate purpoze. The same will also be the case when the length of the magnet is excessively long, compared with the region through which the disturbance is considered.

Turning to Table XXI p. 185, we observe that in Japan there is a close coincidence of the vertical variations of the north and upward components with $-3 \mathrm{~h} / \mathrm{R}$ times the respective forces, but we are struck by a remarkable discrepancy in those of the west component. It stands so peculiar among those of the other components that some arithmetical error was suspected, and the calculations were examined repeatedly through, till a thought occurred that the effect might be due to the presence of the continent on the west; the extent of that effect throughout the whole country showing that the origin of the disturbance is likely to be found at some distance.

Assuming then that a large part of the disturbance can be represented by a simple magnetic image, we are much helped by the presence of a few points of demarkations in the country in locating its position. Taking for the first approximation, those variational anomalies to be the variations $\frac{\partial X^{\prime}}{\partial z}, \frac{\partial Y^{\prime}}{\partial z}, \frac{\partial Z^{\prime}}{\partial z}$ given above for a simple source, we notice that the sign of $\frac{\partial X^{\prime}}{\partial z}$ changes in middle of the country between III and IV, while that of $\frac{\partial Y^{\prime}}{\partial z}$ remains the same. Hence it seems that we are crossed by one of the nodal ellipses; the fact is further
confirmed by the large variations of the west component which has its maximum value on that curve : two points of this curve, if accurately known, are sufficient to assign the line through the image and the earth center by (10).

Again $\frac{i Z^{\prime}}{i z}$ changes sign in the North Japan between I and II, so that one of the circles of no vertical variation of the vertical force passes also through the country. This assigns at once the maximum limit to the depth of the image, 0.1835 times earth radius by (15).

The vertical variations of the rectangular components of the horizontal force being resolved in the same ratio as the forces themselves, the plane of the great circle whose azimuth is determined by considering these variations as vectors, will pass through the image provided there is such in existence; and since their signs are contrary to those of the forces when the image is below, and the same within the nodal circle of no vertical force when it is above; we can determine the sense of the force and hence the sign of $m$ when the position of the image is known. From the first and second rows of differences in Table XXI those azimuths are

| I. | II. | III. | IV. | V. |
| :---: | :---: | :---: | :---: | :---: |
| $96 .{ }^{\circ} 3$ | $96 .{ }^{\circ} 3$ | $96 .{ }^{\circ} 3$ | $85 .{ }^{\circ} 3$ | $83 .{ }^{\circ} 4$ |

measured in the direction north-west-south-cast.
Great circles drawn in those azimuths through each of the points, give twenty points of intersections, ten of which lie in Asia and the other ten about South America. In order to save arithmetical labour for the rough work, those circles were layed on a large terrestrial globe of 30 inches diameter which was carefully covered all over with flexible Japanese tracing
paper.* The coordinates of the points of intersections of the first ten are

| I | and | ${ }^{\text {a }}$ II | Leng. $72^{\circ} \mathrm{V}$ | Weights .OOI | $\begin{aligned} & \text { Lat. } \\ & 7^{\circ} \mathrm{N} . \end{aligned}$ | Weights. <br> .OOI |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| I | , | III | 68 | . 003 | 3 | . 047 |
| I | " | IV | 109 | . 013 | 35 | . 184 |
| I | " | V | 107 | . 012 | 33 | . 110 |
| II | " | IIT | 62 | . 002 | -I | . 003 |
| II | " | IV | 122 | . 015 | 35 | . 493 |
| II | " | V | 117 | .OI I | 33 | . 544 |
| II[ | " | IV | 131 | . 02 I | 35 | 2.747 |
| III | " | V | 124 | . 13 | 33 | . 662 |
| IT | " | V | SI | . 000 | 28 | .050 |
|  | Mea |  | $116: 311$ |  | 34.0 |  |

Those coordinates have very different weights depending upon the angles at which the circles cross each other, and upon the probable errors of the azimuths. Supposing the latter to increase with the distance from the middle of the country, as already discussed under the mean isomagnetics, it is taken to be 1 for the point III, 2 for II and IV, and 3 for I and V ; and the weight of the point of intersection of any two circles is taken inversely proportional to the sum of squares of their azimuth errors and directly as the square of the sine of the angle at which they cross each other. The weights of the longitude and latitude are resolved parts of the weights so found.

There was no appreciable improvements by restoring the last figures of those coefficients which were cut off in the table ahove

[^10]as uncertain: undoubtedly the very crude nature of the result is due both to noncentrobaric distribution, and probably more to the slenderness of the data.

Fig. 11.


Fig. 11 is the reproduction of those ares, from which we see that, notwithstanding the widely seattered distribution of the points of intersections, the ares all pass through the region within a few degrees of the mean co-ordinate, apparently showing the feasihility of the assumption.

The angular distances of the five points from this mean point of intersection, or the values of $\theta$ are
I.
$2 . .^{\circ} 2$
II.
19. ${ }^{\circ} 7$
III.
$17 .{ }^{\circ} 6$
IV.
$14 .{ }^{\circ} . \overline{ }$
V .
$12 .{ }^{3} 3$

The point of no vertical variation is about $20 .{ }^{\circ} 5$ by interpolation. This excludes the possibility of the point being an antipode by the second of (14) which shows that there can be no such circle within $54^{\circ}$ a of that point, so that the position of the image must be given by either

$$
r=\sqrt{\frac{2}{3}} \frac{R}{\sin (.5+. \overline{7}+20.05)}=.8+t \mathrm{R}
$$

or a depth of about 992 kilom. if the point be an epicenter.

$$
\text { or } r=\sqrt{\frac{2}{3}} \frac{R}{\sin \left(.9 .0^{\circ} 7-20.05\right)}=1.4 .53 \mathrm{~B}
$$

or a height of about 2890 kilom. if the point be a subcenter.
Taking the latter value, we are wholly within the nodal circle of no vertical force which will be about $46 .{ }^{\circ} 5$ from the pericenter, and therefore the horizontal force $H^{\prime}$ must be of the same sign as its vertical variation, that is, the upward decrease of the west components found in the variational anomalies must be looked upon as upward increase of eastward forces diverging from the pericenter, and consequently the image must be positive. This contradicts however the observed positive values of the variations of the rertical component on the west and its negative value on the east. The image must therefore be below the surface and negative in sign, and the horizontal force $\mathrm{H}^{\prime}$ must be considered as converging toward the point, that is negative calculated in the sense of increasing $\theta$, and its vertical variation positive; or practically there must be an upward increase of eastward force, or decrease of westward force which is just what is found.

We may next find the zenith distances 5 of the forces from (:3) by eliminating $m$ aud $i^{\prime \prime}$, thus,

$$
\zeta=\frac{1}{2}\left\{\operatorname{tg}^{-1} \frac{1}{\mu} \pm \sin ^{-1} \frac{1}{3 \sqrt{1+p^{2}}}+u \pi\right\}
$$

$l^{\prime}$ being the ratio $\frac{\partial Z^{\prime}}{\partial z} / \frac{\partial H^{\prime}}{\partial z}$, the sign of the second term and the value of $n$ depending upon $r$ and $\theta$. Confining the inverse sines within the first quadrant, these are
within

$$
0<r<\sqrt{\frac{2}{3}} \mathrm{R}
$$

$$
\begin{equation*}
s=\frac{1}{2}\left\{\sin ^{-1} \frac{1}{\sqrt{1+p^{2}}}+\sin ^{-1} \frac{1}{3 \sqrt{ } 1+p^{2}}\right\}_{0<\theta<\pi} \tag{21}
\end{equation*}
$$

within $\quad \sqrt{\frac{2}{3}} \mathrm{R}<r<\mathrm{R}$

$$
\begin{align*}
& ==\frac{1}{2}\left\{\sin ^{-1} \frac{1}{\sqrt{ } 1+p^{2}}+\sin ^{-1} \frac{1}{3 \sqrt{1+p^{2}}}\right\} 0<0<\sin ^{-1} \sqrt{\frac{z}{3} \mathrm{R}}-\sin ^{-1} \sqrt{\frac{2}{3}} \\
& \text { or } \pi-\sin ^{-1} \sqrt{\frac{\pi}{3} \frac{\mathrm{R}}{r}}-\sin ^{-1} \sqrt{\frac{\overline{2}}{3}}<0<\pi \\
& \text { in eitlier case } p \text { is positive }  \tag{29}\\
& ==\frac{1}{2}\left\{\pi-\sin ^{-1} \frac{1}{\sqrt{ } 1+p^{2}}+\sin ^{-1} \frac{1}{3 \sqrt{ } 1+p^{2}}\right\} \\
& \begin{array}{c}
\sin ^{-1} \sqrt{\frac{2}{3} R^{2}}-\sin ^{-1} \sqrt{\frac{2}{3}}<0<\pi-\sin ^{-1} \sqrt{\frac{2 R}{3}}-\sin ^{-1} \sqrt{\frac{2}{3}} \\
\text { or in the case } p \text { neyative }
\end{array}
\end{align*}
$$

within $\quad \mathrm{R}<r<\infty$

$$
\begin{align*}
& c=\frac{1}{2}\left\{2 \pi-\sin ^{-1} \frac{1}{\sqrt{ } 1+p^{2}}-\sin ^{-1} \frac{1}{3 \sqrt{ } 1+p^{2}}\right\}_{0<0<\sin ^{-1} \sqrt{2}-\sin ^{-1} \sqrt{\frac{2}{3}} \mathrm{R} .} . \\
& ==\frac{1}{2}\left\{\pi+\sin ^{-1} \frac{1}{\sqrt{1}+p^{2}}-\sin ^{-1} \frac{1}{3 \sqrt{ } 1+p^{2}}\right\}_{\sin ^{-1} \sqrt{\frac{2}{3}}-\sin ^{-1} \sqrt{\frac{2}{3} \mathrm{R}}<\theta<\cos ^{-1} \frac{12}{2}}^{2} \\
& \zeta=\frac{1}{2}\left\{\pi-\sin ^{-1} \frac{1}{\sqrt{1}+p^{2}}+\sin ^{-1} \frac{1}{3 \sqrt{ } 1+p^{2}}\right\}_{\cos ^{-1} \frac{R}{r}}<\theta<\pi-\sin ^{-1} \sqrt{\frac{2}{3}}-\sin ^{-1} \sqrt{\frac{2}{3} R}  \tag{23}\\
& \zeta=\frac{1}{2}\left\{\quad \sin ^{-1} \frac{1}{\sqrt{ } 1+p^{2}}+\sin ^{-1} \frac{1}{3 \sqrt{ } 1+p^{2}}\right\} \pi-\sin ^{-1} \sqrt{\frac{2}{3}}-\sin ^{-1} \sqrt{\frac{2}{3} \frac{1}{3}}<0<\pi
\end{align*}
$$

In the first and third $p$ is negative.
In the second and fourth $p$ is positive.
Applying the first and second of (22) to the values in table XXI, we get
1.
11.
111.
IV.
V.

$$
\begin{array}{lllll}
54 . \circ^{\circ} S & 53 . .^{\circ} 1 & 49 . \circ^{\circ} 9 & 47 . \circ 5 & 46 .{ }^{\circ} 9
\end{array}
$$



Fig. 12 shows the lines drawn with those zenith distances at each point, the different planes of $\theta$ 's being made coincident by turning then about the vertical line through the epicenter. We observe that those lines form a kind of canstic which apparently converge below the epicenter found by tracing azimuths from each point.

Were there a real source below the level, the greater permeability of the earth's crust compared with that of the air, will cause magnetic refraction making the position of the image deeper than that of the source. As a trial, several values of permeabilities $\mu$ between 1 and 3 were taken and lines were drawn with increased zenith distances $\xi^{\prime}=\operatorname{tg}^{-1}(0,1 \operatorname{tg} 5)$; but none of the values gave satisfactory focus. Though it is an eas! matter to bring those lines to a focus by assigning suitable permeabilities to different layers, such an artificial procedure will be altogether a superfluous refinement with the present data.

The depths of the image as determined by the points of intersections of those lines with the vertical through the epicenter are

$$
\begin{array}{ccccccc}
\text { I. } & \text { II. } & \text { III. } & \text { IV. } & \text { V. } & \text { Mean. } & \\
940 & 1030 & 1090 & 1040 & 950 & 1010 & \text { kilom. }
\end{array}
$$

and the distances $\rho$ of these points from the respective points taken in the data are

| I. | II. | 111. | N: | V: |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mu=2450$ | 2.240 | 2070 | 1800 | 1.570 | kilom. |

From those values and zenith distances we get by (3) the values of the strength of the image

$$
\begin{aligned}
& m=-\frac{2 \theta^{3}}{1+3 \cos 2-\quad \partial z}=-\frac{2}{3} \sin ^{\prime 2} \quad \partial H^{\prime} \\
& \begin{array}{rrrrrr}
\text { I. } & \text { II. } & \text { III. } & \text { IV. } & \text { V. } & \text { Merll. } \\
=-2.92 & -1.42 & -1.10 & -.94 & -.68 & -1.41 \times 10^{10} \\
& & & & & \text { C.(G.S. unit. }
\end{array}
\end{aligned}
$$

The values of $m$ increase regularly with the values of ${ }^{\prime \prime}$. This might be either due to systematic errors in the empirical formula for isomagnetics, or else to the state of distribution of magnetism being widely spread over the region under consideration.

Taking the first supposition, we may adopt the mean value of $m$ as the approximate strength of the image, which give the disturbance of the rertical field at the epicenter.

$$
-\frac{1.41 \times 10^{15}}{(1010)^{2} \times 10^{10}}=-.13 \mathrm{~s} \quad \text { C.G.S. units. }
$$

Fig. 13 gives the residual intensities of the rertical and horizontal components of the terrestrial magnetie field after dedueting those due to the mean magnetization, or what corresponds to

Fig. 13.
The Earth Magnetic Field after deductiug the Field due to the Mean Magnetization 188.).


Full lines show equal residual upward magnetic forces, and dotted lines those of downward forces, figures indicate intensity in $1000 \%$ or, .01 (cli.s. mnits, the arrow lines magnitude and direction of the residual horizontal forees.
the distribution represented by the second and higher harmonics in Gaussian expansion. It is reconstructed from Bauer's reduction with slight modifications as to the convension of representing those magnitudes.* We observe in this map, a center of attraction not far from the epicenter now found. Bauer gives the position of this point,

Longitude $110^{\circ} \mathrm{E}$., Latitude $35^{\circ} \mathrm{N}$. and the intensity of the residual vertical field -. 139 C.G.S. units (i.e. downward).

The accidental agreement of these results, howerer, should not be looked upon as showing any possible existence of such a source. If this were really the case, there must be large variational anomalies in middle of China. Recent observations at a few points near this region by Sinzyō, Otani and Yamagawa give no indication of such :-

[^11]| * |  |  | $\varphi$ | $\varphi$ | X | Y | \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hongkong | $114^{\circ}$ | 10.\% | $22^{\circ}$ | $18^{\prime} .2$ | $36837^{7}$ | $-207^{\gamma}$ | $-22342^{\gamma}$ |
| Kikawei | $121^{\circ}$ | 2.8 | $31^{\circ}$ | 11.6 | $32908^{\text {r }}$ | $1354^{\gamma}$ | $-33644^{\gamma}$ |
| Hankow | $114^{\circ}$ | 17.5 | $30^{\circ}$ | 35.5 | $33922^{\text {\% }}$ | $716^{\gamma}$ | $-33737^{\text {r }}$ |
| Syasi | $112^{\circ}$ | 14'8 | $30^{\circ}$ | 18.'I | $34112^{\text {r }}$ | $246^{\gamma}$ | $-33673^{\gamma}$ |

which give approximately at $\lambda=116 .{ }^{\circ} 3 \quad \varphi=28 .{ }^{\circ} 0$

$$
\begin{array}{rrrr}
\frac{\partial \mathrm{K}}{\partial z}=-17 . .^{Y} \mathrm{~S} & \frac{\partial \mathrm{Y}}{\partial z}=-1 . .^{\gamma} 4 & \frac{\partial \mathrm{Z}}{\partial z}=16 . .^{Y} 2 & \text { per kilom. } \\
(31 \mathrm{~h} / \mathrm{R}) \mathrm{X}=-16.3 & (3 \mathrm{~h} / \mathrm{R}) \mathrm{Y}=-0.2 & (3 \mathrm{~h} / \mathrm{R}) \mathrm{Z}=14.1 & \\
\frac{\partial \mathrm{X}^{\prime}}{\partial z} \fallingdotseq-1.5 & \frac{\partial \mathrm{Y}^{\prime}}{}=-1.2 & \frac{\partial \mathrm{Z}^{\prime}}{\partial z} \fallingdotseq+2.1 & \quad, \quad \text { " }
\end{array}
$$

while those due to the image

$$
\begin{aligned}
& m=-1.41 \times 10^{15}, \quad \theta=1180 \mathrm{kilom}, \quad \theta=6,{ }^{\circ} \quad \text { give } \\
& \frac{\partial \mathrm{X}^{\prime}}{\partial z}=-10 . .^{\gamma} 6, \quad \frac{i Y^{\prime}}{\partial ;}=0.0, \quad \frac{i Z^{\prime}}{i \pi z}=+11 ._{\%}^{\%} \text { per kilom. }
\end{aligned}
$$

differing from the olserved values by more than five times.
Taking the second supposition, that the distribution is represented by varying image, we see that it is nearly proportional to the cube of the distance $;:-$

$$
\begin{array}{ccrcccc}
m_{\text {I. }} & \text { II. } & \text { III. } & \text { IV. } & \text { V. } & \text { Mean. } & \\
r^{3}{ }^{3}=-1.96 & -1.26 & -1.24 & -1.62 & -1.75 & -1.57 \times 10^{-10} & \text { C.G.S. }
\end{array}
$$

This makes $m$ at the point $\lambda=116 . \sigma^{\circ} 3 \mathrm{E} . \quad \varphi=28^{\circ} \mathrm{N}$.

$$
-1.57 \times 10^{-10} \times(1.18)^{3} \times 10^{21}=-2 . .58 \times 10^{14} \text { C.f.S.S }
$$

and the rariational anomalies

[^12]
## magnetic survey of japan for the epoch 1895.0.

agreeing much closer with the observed values, although it reduces the residual field at the epicenter to about one-fifth of the previous value.

Treating similarly the variational anomalies in Europe given in Tables XXIII and XXV, we observe that the arcs from the five points in Austria and Hungary converge very nearly to the south west of Norway, while those from the stations in Great Britain converge towards the south east of Greenland, except the arc from the Station IX which intersects three of the ares in south of England. This last discrepancy would seem to be due to local anomaly of the west component in the district, as is seen from Map 9 of the report of that survey, by a large number of stations in this district having disturbance toward the west compensated by a few stations in north of Wales ; namely, out of 85 disturbances 53 are positive and 32 negative. The azimuth from the station IX is hence omitted.

Since those variational anomalies are affected by various disturbances of small extent as well as errors in the expressions of mean isomagnetics, we take for the first trial, one image at the mean point of intersections of the four British ares and five Austro-Hungarian ares, instead of two distinct images. This point comes out:-

$$
\text { Longitude } 9 .^{\circ} 0 \mathrm{~W} . \quad \text { Latitude } 65 . .^{\circ} 1 \mathrm{~N} \text {. }
$$

The vertical variation of the vertical force $\frac{\partial Z^{\prime}}{\partial z}$, is negative
all over the region and increases numerically toward the mean point of intersections of these arcs，or pericenter in the nomenclature now adopted ；that of the horizontal force $\frac{\partial \mathrm{H}^{\prime}}{\partial z}$ is also negative in the sense measured from the pericenter（practically southward）， and is numerically maximum somewhere between the Stations I and VII in Great Britain．

The equality of signs of $\frac{\partial \mathrm{Z}^{\prime}}{\partial z}$ and $\frac{\partial \mathrm{H}^{\prime}}{\partial z}$ within the critical value of $\theta, 35^{\circ \frac{1}{4}}$ ，shows that the image must be placed below the level ；and their negative signs show that its sign must be positive． We thus find for each of the points taken，

|  | Azimuth <br> N．to W． | $\theta$ | Zenith <br> Dist．$\zeta$ | Dep．of Image kilm． | Dist．of St． fr．Image $\rho$ kilm． | Strength of Image $m$ | $\frac{m}{\rho^{3}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| I | II.$^{\circ} 3$ | $8 .{ }^{\circ} 9$ | 15.8 | 2230 | 2380 | I． 74 | 1.29 |
| EIII | II． 3 | I2． 2 | 26．I | 1850 | 2180 | 1.33 | 1.28 |
| $\stackrel{\stackrel{\rightharpoonup}{\tilde{\circ}}}{\stackrel{\rightharpoonup}{5}}\{V$ | 7．I | II． 2 | 27．I | 1670 | 1980 | 1.02 | 1.32 |
| 遏 VII | 9． 5 | 14． 4 | 25.6 | 2070 | 2450 | I． 53 | 1.04 |
| IX | I8． 4 | I3． 7 | 28． 0 | 1870 | 2270 | I． 49 | 1.27 |
| 荗 I | $26 .{ }^{\circ} 6$ | 19．${ }^{\circ} 9$ | $32 .{ }^{\circ} 6$ | 2040 | 2730 | 2.36 | 1．16 |
| 河 II | 19． 6 | 24． 3 | 44． 9 | 1550 | 2810 | 2.19 | ． 99 |
| を | 30．I | 24． 0 | 36． 6 | 2010 | 2980 | 2.56 | ． 97 |
| －IV | 47． 7 | 23． 4 | 33． 2 | 2180 | 3020 | 3.25 | 1.18 |
| ${ }_{4}^{4} \mathrm{~V}$ | 34． 6 | 27． 6 | 43． 6 | 1710 | 3110 | 3．16 | 1.05 |
|  |  | Mean |  | 1918 kilm． |  | $2.06 \times 10^{15}$ | 1.16 |
|  |  |  |  |  |  |

Figs． 14 and 15 show these azimuths and zenith distances． This value of mean depth makes the value of $\frac{r}{R} \doteq 0.7$ which gives by（18）the circle of minimum variation（numerically maximum） of the horizontal force $\frac{\partial \mathrm{H}^{\prime}}{\partial z}$ at $11 .^{\circ} 2$ from the epicenter ；it passes therefore through the north of England and Ireland，roughly agree－ ing with the observed position．

The disturbance of the vertical field at the epicenter is

$$
\frac{2.06 \times 10^{15}}{1918^{2} \times 10^{10}}=.056 \text { C.G.S. unit upward. }
$$

or if we take the image to vary as the cube of the distance of the stations

$$
1.16 \times 10^{-10} \times 1918 \times 10^{5}=.022 \text { C.G.S. unit upward. }
$$

From the five AustroHungarian stations only, we get the epicenter at

Longitude $7 . .^{\circ} 3 \mathrm{E}$, Latitude $57 .{ }^{\circ} 9 \mathrm{~N}$.
The mean value of $m$ is $.732 \times 10^{15}$ C.G.S. unit at a mean depth of 1328 kilometers, giving disturbance at the epicenter . 042 or .014 C.G.S. units upward, according as the strength of the image is taken to be constant or to vary as the cube of distance of stations. The four British stations
 give epicenter at

Longitude $16 .{ }^{\circ} 6 \mathrm{~W}$. Latitude $73 .{ }^{\circ} 3 \mathrm{~N}$.
The mean of five values of image is $4.02 \times 10^{15}$ C.G.S. at a mean depth of 2634 kilometers, giving vertical disturbance at the epicenter . 058 or .033 C.G.S. units upward, according as the strength of the image is taken to be constant, or to vary as the cube of distance of stations.

Bauer gives the maximum disturbance of the vertical field near Shetland Islands to be .1061 C.G.S. units upward at the point, Longitude $0^{\circ}$, Latitude $60^{\circ} \mathrm{N}$. Either of the values now found come much short of that amount.

Were the data and the assumption sufficiently reliable, we might have proceeded to the second and further approximations by taking account of the disturbing forces in the observed values of $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$. For the present, we content ourselves with the result that the variational anomalies in Japan show an excessive distribution of negative magnetism above the mean value in the east of Asia, and those in Austria-Hungary and Great Britain that of positive magnetism in north west of Europe, similar to those shown by the higher harmonics in Gaussian expansion.

Strictly speaking, the mode of distribution of the magnetism must remain perfectly indeterminate as long as we adhere solely to the observed elements, there being an infinite variety of ways to fulfil those values; and inasmuch as the surface integral of the force over the earth vanishes, the so called seat of action may be placed either inside or outside.

It is often erroneously believed that the expansibility of the earth magnetic potential in negative powers of the radius vector is a proof that the source of action is inside the earth. To say nothing of the possible magnetization of the surrounding medium, such is no proof even from the pure theory of action at a distance. To turn the subject into hydrokinetic analogy, a circulation very similar to the lines of force in the earth magnetism can be produced in frictionless liquid of infinite extent, by initial pressure applied orer any singly connected surface of finite or infinite extent with a circular hole. The imitation can be made closer by taking several such surfaces instead of but one. Imagine a spherical
net of infinitely thin thread to be placed symmetrically with respect to the circulation; microbes living on the net may find that the velocity of the fluid on different parts of the net can be expressed very approximately by a function of descending powers of the radius vector, but they have no right to assert thereby, that the flow must have been produced by a piston or pistons inside the globe. If some of the bold animalcules make an adventurous expedition inside the net in search of the cause of the circulation, they may be perfectly disappointed to find no trace of pistons ever having been there. To make this a magnetic problem, we have only to substitute a double sheet of attracting and repelling matter for the surface where the initial pressure is supposed to have been exerted.

The question of the seat of action, must be sought by considering physical circumstances, analysis can not settle it, for the simple reason of the vanishing of the surface integral, unlike that in the case of gravity or electrostatics. It is difficult to understand, how some magneticians have come to conclusions with regard to the seat of action from mere observations on the earth surface. Of course there is the common sense judgment without going into logical process; but that is no proof. We may take two convergent series one for an internal and another for an external distribution at the upstart, as Gauss did, and comparing the coefficients with observed values, find that they fit very nearly with the former. But the converse of this may or may not be true as just shown.

It is curious that the rigorous mathematician, while discussing the possibility of the existance of the atmospheric current, and after enunciating the admirable theorem with regard to magnetic shells, confines his attension to the coefficients of scaler potential
whose convergence or divergence has nothing to do with the "sitz" of action." The indeterminateness of the problem in the general case, is fully considered in Article XXVIII of Sir William Thomson's Reprint of Papers on Electrostatics and Magnetism, of which the present is a particular case.

The image must therefore be taken in literal sense, no pretension whatever being made as to the physical reality of either its strength or position, except that the variational anomalies can be partly accounted for by numerical calculations performed on certain number of constants and rariables. We must also bear in mind, that the electric current in the atmosphere is entirely neglected in the calculation; for if the intensity of such current is greater than 0.1 Amperes per square kilometer, the above result will be materially affected.

The great depths of the images now found are just as might be expected, for were they within a few kilometers from the surface and of the sizes above given, an enormous number of terms will be required in Gaussian expansion even for an approximate representation. The comparatively small depth of the Asiatic image might account for the differences spoken of in § 10 p. 37 above.

The writer regrets not to have access to a valuable work of Paul Passalskij, who, according to Leyst, seems to have treated similar subject from harmonic analysis point of view. Section 12 is signed Aug. 7th. 1900 Mitake, and was read to the Physico Mathematical Society of Tokyo on Sept. 29th. of that year. The main features of the present section were only qualitativly refered to and are now worked out for the report.

[^13]
## § 14. DISTURBING FORCES.

The differences of the observed and calculated values of rectangular components given in Table XV, under the headings $J \mathbb{N}, J Y, J Z$ are taken to be those of the disturbing force at a place, following the plan of Profs. Rücker and Thorpe. The resulttant force $=\sqrt{\Lambda^{2}+\bar{\Lambda}^{2}+\overline{\Lambda Z}^{2}}$, its asimuth and altitude are given in following columns of the same table. By way of control these elements were calculated from the differences of observed and calculated values of declination, dip and horizontal intensity in Table NIV by the formulæ

$$
\begin{aligned}
& J \mathrm{X}=\cos \grave{\partial}\lrcorner \mathrm{H}-\mathrm{H} \sin \grave{\partial}\lrcorner \grave{\partial} \\
& J \mathrm{Y}=\sin \grave{\mathrm{H}}+\mathrm{H} \cos \grave{\partial}\lrcorner \\
& J \mathrm{Z}=\operatorname{tg} \theta\lrcorner \mathrm{H}+\sec ^{2} \theta \mathrm{H} \partial \theta
\end{aligned}
$$

giving results which agreed very closely with the former, except in cases of extravagant differences such as those obtained in Huzi and Asama.

In Map 10 the horizontal components of the disturbing forces $\sqrt{J \mathrm{~N}^{2}+J \^{2}}$ are represented in magnitude and direction by black lines with arrow heads starting from each station. In a few places where the determination of the declination fails, the magnitude of the difference of the observed und calculated values of the horizontal intensity $J \mathrm{H}(\doteqdot \mathrm{\fallingdotseq}$ ), is indicated by vertical lines without arrow heads extending both ways through the point. The vertical component $J Z$ is represented by a blue or red line according as its direction is downward or upward. The scale of intensity is 1 mm . for 100 r or 0.001 C.G.S. unit of magnetic force for either component.

Since the results of observations are subject to various sources of errors, and the empirical expressions of mean isomagnetics can never be exact representatives of magnetic state of the whole country, the disturbing forces calculated as above are attended with greater uncertainty than the magnetic elements themselves. Hence much discretion is required in drawing any inference from them.

We have seen that the mean probable errors of a single observation are $\pm 6 .^{\prime} 46, \pm 5 .^{\prime} 47$, $\pm 73 .^{\gamma} 2$, for declination, dip and horizontal intensity, while those of the calculated values depend upon the co-ordinates of stations, amounting in extreme cases to more than double the above magnitudes. As already remarked, however, those probable errors are rather due to the disturbing forces themselves than to errors of observations ; it would seem that they can be more relied upon than is indicated by the sole assumption of promiscuous occurrance of errors in the applied method of least squares. The directions of those disturbing forces are still more uncertain than their intensities, especially in places where they are small, in the extreme case of which they become altogether indeterminate.

Distribution of these forces in different regions, when the stations are taken in sufficient number to represent the main characteristics, can not fail to be of interest for the physics of the earth's crust. As they now stand, it is difficult to co-ordinate them with anything like satisfaction. The rapidity with which they vary from place to place, as is seen in the neighbourhood of Huzi and Asama (see Map 10), shows us what a rough approximation we come to by simple interpolation or inspection. Crude as they are, they may be better than nothing, and when studied in connection with collateral facts and interpreted with proper
precaution, may lead us to thoughts with regard to tectonic conditions which might otherwise lie too hidden for our mental sight.

The above cited English magneticians have inaugurated a convenient nomenclature to designate various groups of disturbing forces; according to them, a place is called a magnetic ridge or peak when disturbing forces converge towards it, and a valley when they diverge from it. In land topography an eye estimate is of great help: even from a few barometric determinations of heights on prominent points, a fairly approximate set of contour lines can be drawn in this way. In magnetic survey we are utterly deprived of such means; the circumstance is even worse than that of sea sounding, where nothing but the depths of observed points can be known ; for we do not get what corresponds to depths and heights directly, but only what corresponds to slopes or rates of gradiant. If a magnetic survey could be so extended as to enable us to draw equipotentials of the disturbing forces, the ridges and valleys would become more distinct. In the absence of such we are much involved in ambiguity at present. Thus if there are numbers of stations which give disturbing forces pointing in the same direction, we are not certain whether this is due to attraction to the one side or repulsion from the other.

In Kitakami Plateau in the north east of Honsyū, this is exemplified. Almost all disturbing forces round this plateau diverge from it, showing apparently the presence of a magnetic valley along its length as indicated by the thick dotted line. But looking on the west, the station No. 185, Kakinodate, has a disturbing force pointing towards the east, we are thus called upon to reflect whether the observed disturbances along the banks of the Kitakami River (Nos. 165, 166, 167, 168) are due to re-
pulsions from the plateau or attractions towards the volcanic range which runs parallel to it on the west side.

Again the disturbance observed in Miyako, No. 176, looks so singular among its neighbouring stations in having its direction contrary to the rest, that some arithmetical mistake was suspected ; a close examination into the notes shows no such blunder; turning to the previous observations of Knott and Nagaoka, which were made in a different part of the town across the river, even a greater effect in the same sense is found. Whether this disturbance is limited to the vicinity of the place, or extends along the coast, must be found by further observations; if the latter be the case, there will be a ridge along the coast probably rumning partly in the sea, and what is apparently a valley line in the middle of the plateau may turn out to be nothing but a magnetic plane.

The existence of such a ridge along the edge of a district of older geological formation is suggested by the presence of a similar line on the north coast of the granitic region of Tyūgoku. This ridge in Sanindo would seem as if to have continued with that along the coast of Hokurikudo, had it not been obliterated in the middle by the rupturous entrance of Wakasa Bay.

Remarks similar to those apply to all the ridge and valley lines marked on the map; their details are scarcely worth mentioning, suffice it to say that they are no more than traits of the writer's imagination.

Approximate lines of Force:-In the island of Sikoku and Peninsula of Kisyn̄, the disturbing forces seem to be arranged so systematically, that an attempt is made to draw approximate lines of force by tracing their envelope in a rudimentary way. (see Map 10). Though those lines appear to show a submarine source of disturbance off the Pacific coast, our results are yet too
premature to make any definite statement. Let it be remarked however, that this region is peculiar as being the most extensive part which is free from volcanic rocks, and still there is a record of a remarkable submergence of the south coast of Tosa during

Fig. 16.
Huzi District.

an earthquake in the fall of 684 A.D. Similar attempt is made in the Huzi district as shown in Fig. 16, though the points of observation are so few and disturbances so great that the map is to be looked upon only as a mere suggestion.

Map 11 at the end of the volume represents the geological aspect of the country, it can be slipped under the Map 10 or any of the maps of equal declinations, dips, or horizontal intensities.

## APPENDIX

## COMPLETE LIST

OF

MAGNETIC OBSERVATIONS
$1893-1896$

Reduced to
1895.0 and SEA LEVEL

## Errata to the Appendix.

| Page. | (2) | Oct. $19^{\text {th }} 7^{\text {h }} 1^{\text {nh }}$ in $\delta$, | for | $4^{\circ} 22^{\prime} 4^{\prime \prime}$ | read | $4^{\circ} \because 22^{\prime} 6^{\prime \prime}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| " | (3) | June $26^{\prime h} 19^{h} 22^{n} .4$ in $\delta$, | " | $4^{\circ} 27^{\prime} 37^{\prime \prime}$ | " | $4^{\circ} 29^{\prime} 37^{\prime \prime}$. |
| " | (5) | July $18^{\text {th }} 19^{\text {d }} 48^{m} . S$ in $\delta$, | " | $4^{\circ} 23^{\prime} 41^{\prime \prime}$ | " | $4^{\circ} 22^{\prime} 41^{\prime \prime}$ 。 |
| " | (7) | line 8 from top, | " | Tlme | " | Time. |
| " | (8) | July $4^{t h} 19^{h} 43^{m} .4$ in Mean Temp., | , | 26.3 | " | $26 .{ }^{\circ} 0$. |
| " | (9) | Oct. $18^{\text {th }} 9^{\prime} 5^{5 / n}$ in H , | " | 0.28703 | " | 0.29703. |
| " | (9) | Oct. $18^{\text {th }} 14^{h} 222^{m}$ in H , | " | 0.26746 | " | 0.29746. |
| " | (10) | Sept. $6^{\text {th }} 23^{h} 50^{m}$ in H , | " | 0.28916 | " | 0.29816. |
| " | (10) | Sept. $7^{\text {th }} 8^{h} 13^{m}$ in $\varphi_{2}$, | " | 34638.8 | " | 1346 3s.s. |
| " | (10) | Sept. $6^{t h} 8^{h} 13^{m}$ in Obserrer, | " | Hatori | " | Inatori. |
| " | (13) | Table 3, | " | East | " | South. |
| " | (14) | July Se $23^{h} 44^{n} . S$ in Observer, | " | Omore | " | Omori. |
| " | (14) | 0, | " | 40.2 | " | 46.2. |
| " | (17) | 6 Reduction to Sea Level, | " | 0.06 | " | -0.06. |
| " | (19) | 9 Karuisawa, | " | Eest | " | Eats. |
| " | (20) | 11 Ueda, | $"$ | West | " | East. |
| " | (20) | Line 2 from bottom, | " | 0.03 | " | -0.03. |
| , | (22) | Line 4 from bottom, | " | 29.4 | " | 29:07. |
| " | (27) | Dip in Date and Hour, | " | July | " | Oct. |
| " | (27) | H in Date and Ifour, | " | $8{ }^{\prime \prime}$ | " | $3{ }^{r \prime \prime}$. |
| " | (35) | Table 2, | " | ¢ | " | $\theta$. |
| " | (36) | Aug. $22^{n d} 10^{h} 4^{\prime \prime 2} .2$ in Observer, | " | Yakimura | " | Nakamura. |
| " | (37) | 2.) Niigata, | " | $23{ }^{\text {th }}$ | " | $23{ }^{\text {rol }}$. |
| " | (38) | Dip in Dite and Hour, | " | $23^{n d}$ | " | $28^{3} \mathrm{rl}$. |
| " | (40) | Aur. 30th $2^{\text {h }} 9^{\text {nh }}$ in Observer, | " | Kimuaa | " | Kimura. |
| " | (41) | Dip, | " | South | " | Eist, |
|  |  | and | " | 1894 | " | 1893. |
| " | (41) | Aug. $80^{t h} 10^{h} 15^{m}$ in Mean Temp., | " | 30.2 | " | 31.4. |
| " | (41) | Aug. 30th $10^{h} 15^{m}$ in Temp. $t_{\text {D }}$, | . | 81.4 | " | 30.2. |
| " | (41) | Declination in Date and Hour, | " | $81^{t h}$ | " | $31^{s t}$. |
| " | (12) | Horizontal Intensity, | " | Texep. | " | Temp., |
|  |  | and | " | Rescorder | " | lecorder. |
| " | (42) | Sept. $1^{\text {st }} 5^{h} 51 \mathrm{~m}$ in Mean Temp., | " | 29.0 | " | 22.0. |
| " | (4:3) | Sept. $1^{\text {st }} 5^{t^{t}} 511^{m}$ in Observer, | $"$ | Makamura | " | Nakamura |


| Page. | (43) | Sept. $3^{r r t}, 18^{h} 6^{m}$ in $\varphi_{2}$, | for | 155661 , | read | 155651.0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| " | (44) | Sept. $6^{\text {th }} 13^{h} 44^{m}$ in Mean Temp., | " | $25 .{ }^{\circ} 6$ | " | $26 .{ }^{\circ} 6$. |
| " | (44) | Sept. $6^{\text {th }} 13^{h} 44^{m}$ in Temp. $\mathrm{t}_{\mathrm{v}}$, | " | 2.). 7 | " | 27.5 |
| " | (44) | Sept, $7^{\text {th }} 23^{h} 54^{m}$ in Observer, | " | Midzasma | " | Midzusima |
| , | (45) | Declination in Sea level, | " | 0.06 | " | -0.06. |
| " | (48) | Declination, | " | 1896 | " | 189\%. |
| " | (50) | Sept. $18^{\text {th }} 11^{h} 1^{m}$ in Mean Temp., | " | 26.2 | " | 21.2. |
| " | (52) | Iforizontal Yutensity, | " | South | " | Eist. |
| " | (55) | Horizontal Intensity, | " | South | " | East. |
| " | (58) |  | " | Delection | , | Declinatio |
| " | (59) | Declination, | " | 1805 | " | 1893. |
| " | (65) | July $12^{\text {th }} 17^{\text {h }}$ in Date and Hour, | " | $3.1{ }^{m}$ | " | 31 m . |
| " | (71) | 60 and 61 in Sear level, | " | 0.08 | " | -0.08. |
| , | (52) | Dip, in Reduction to Sea Level, | " | 0.01 | " | -0.01. |
| " | (73) | Dip, in Date and Hour, | " | Juy | " | July. |
| " | (76) | Dip, in Sea Level, | " | 0.02 | " | -0.02 . |
| $"$ | (76) | Declination in $\hat{\delta}$, | " | $4^{\circ} 28.9$ | " | $4^{5} 29.0$. |
| " | (75) | Dip, in Reduction to 1895.0, | " | 0.43 | " | -0.43. |
| " | (78) | Horizontal Intensity in Date and |  |  |  |  |
|  |  | Hour, | " | $29^{\prime /}$ | " | $80^{\prime \prime}$ |
| " | (81) | Addition to Table 3, Observations |  | the Seto sea | party | , 1896. |
| " | (83) | Uip in Reduction to 1895.0, | " | 0.99 | " | -0.99. |
| " | (84) | Declination, | , | West party, 18 | 93. | Kinki part |
| " | (88) | Declination in Date and Hour, | " | 2.5 " ${ }^{\text {d }}$ | " | $25^{\prime \prime \prime}$. |
| " | (92) | Aug. $15^{t h} 8^{h} 5^{m}$ in Observer, | " | Uziik | " | Uziie. |
| " | (94) | Horizontal Intensity in Date and |  |  |  |  |
|  |  | Hour, | " | $2 \cdot t$ | " | $22^{n \prime \prime}$. |
| " | (94) | Aug. 23ヶ\%, | " | $16^{h} 2^{n}$ | " | $16^{\prime}-1^{\prime \prime}$. |
| " | (95) | Dip in 0 , | " | 11.6 | " | 11:1. |
| " | (95) | Declination, | " | $25^{1 / h}$ | " | $26^{\prime \prime \prime}$. |
| " | (95) | Aug. $26^{\text {th }} 16^{h} 30^{m}$ in 6, | " | " | " | $4 .{ }^{\circ}$ |
| , | (96) | Aug. 28th $13^{h /} 29^{\prime \prime}$ in Time of |  |  |  |  |
|  |  | 1-Vibn., | " | 56.132 | " | 5.6732. |
| " | (97) | Aug. 30th $15^{\text {h }} 26^{\text {nt }}$ in Mean Temp., | " | $27 .{ }^{\circ} \mathrm{CC}$ | " | $29 .{ }^{\circ} \mathrm{C}$. |
| " | (98) | Declination, | " | Daet | " | Date. |
| " | (100) | Declination in $\delta$, | " | 49.0 | " | 49.80. |
| " | (101) | July 15 $5^{\text {th }} 22^{h} 2^{m}$ in M, | " | 424.23 | " | 422.4\%. |
| " | (101) | Nagahama, | " | July 18 ${ }^{\prime \prime} 24$ | " | July $1 c^{\text {th }} 18$ |
| " | (101) | Niggahama in $\theta$, | " | $5!9^{\circ} 7.0$ | " | $49^{\circ} \mathrm{7}: 0$. |


| Page. | (102) | Declination in Date and Hour, f | for | 3 rd | read | " |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| " | (103) | Sept. 18, $8^{\prime /} 1.5^{h /} 29^{m}$, | " | 20.8 | " | 30.8. |
| " | (103) | Horizontal Intensity in Mean, | " | 0.30221 | $"$ | 0.30321. |
| " | (104) | Dip in 0, | " | 56.8 | " | 56.39. |
| ,. | (108) | Horizontal Intensity, | "Wazima party, $9 \overline{5}$, |  |  | West party, 1893. |
| " | (115) | Dip Ang. 18/h, | " | $47^{m}$ | " | $4.7{ }^{\text {m }}$. |
| " | (119) | July $21^{s t} 16^{2}$ 58 $8^{n} .4$ in Observer, | " | Tanakedata $22^{2}$ th | " | Tanakadate. |
| . " | (120) | Dip, | " |  | " | $22^{\text {nd }}$. |
| " | (120) | Declination, | $"$ | $24^{n d}$ | " | $24^{\text {th }}$. |
| " | (122) | Itorizontal Intensity in Time of |  |  |  |  |
|  |  | 1-Vibn., | " | 5.98817 | " | $5 s$ s, 9931. |
| " | (124) | Dip in Sea level, | " | 0.1² | " | 0.02 . |
| " | (124) | Dip in 0, | " | $57^{\circ} 3.3 .0$ | " | $57^{\circ} 34.9$. |
| " | (1:4) | Horizontal Intensity in Sea level, | " | 1099 | " | 147. |
| " | (124) | Horizontal Intensity in H , | " | 0.26 .99. | " | 0.26 .586. |
| " | (124) | Table 4, | " | ${ }^{6}$ | " | $\delta$. |
| " | (128) | Horizontal Intensity in $\%$, | " | $783: 36.2$ | " | 73236.2. |
| " | (131) | Horizontal Intensity, | " | West | " | Nurth. |
| " | (140) | Dip in Date and Howr, | " | 2 rc | " | $2^{n d}$. |
| , | (140) | Dip in Date and Hour, | $"$ | $8^{\text {/h }}$ | " | $3{ }^{r \prime \prime}$. |
| " | (140) | Horizontal Intensity in Date and |  |  |  |  |
|  |  | Hour, | " | $2^{r a}$ | " | $2^{n \prime \prime}$. |
| " | (140) | Horizontal Intensity in Date and |  |  |  |  |
|  |  | Hour, | " | $3^{t h}$ | " | $3^{r d}$. |
| " | (15:3) | Declination in Date and Honr, | " | , , 441.1 | " | Aug. $1^{s t} 4$ 41.1. |
| " | (163) | Declination in Date and Hotir, | " | $4.2 \because$ | " | 4.2. |
| " | (166) | Siranuka, | " | Coffice | " | Office. |
| " | (174) | Table 4 in $p_{n}$, | " | 6396.6 | " | 6396.9 |
| " | (174) | Table 4 in Temp. $t_{\text {d }}$, | " | 151 | " | 15.1. |
| " | (175) | Table 1, | " | Defleetion | , | Deflection. |
| " | (175) | Table 2, | " | 1894 | " | 189.5. |
| $"$ | (176) | Table 4 in Mean Temp., | " | $25 .{ }^{\text {c }} 9$ | " | 26.9. |
| " | (175) | Table 2 in Observer, | " | Koto | " | Katō. |
| " | (190) | Akka, | " | vegitable | " | Vegetable. |
| $"$ | (191) | Table 1, | " | 9 | " | $\delta$. |
| " | (197) | Kesennuma Syuttyo (1) in Date |  |  |  |  |
| " | (199) | Table 3 from top in Date and Hour, | " | 19 m | " | $4{ }^{-m}$. |
| , | (199) | Table 6 from top, | " | Hour | " | Hour. |

Page. (199) Table 6 from top in 0,
" (205) Table 2 in $\theta$, "
" (205) Akita Syuttyō (Dip) in Recorder, ,
" (207) Declination in Date and Hour,
(207) Declination in Reduction to 1895.0, "
(210) Declination in $\delta$, "
(212) Declination in Date and Hour, ,
" (215) Horizontal Intensity in Recorder, "
" (218) Makado Synttyō, "
" (2.21) Tisble 3 from Top, "
" (2:21) 198, "
" ( $\because 2.2$ Horizontal Intensity in Date and Hour,
(222) 199 Sakura,
(202) Hnkusima,
(233) Yonezawa,
(236) Sakata,
(242) Horizontal Intensity,
(253) Declination in $\hat{c}$,
(254) Declination in $\delta$,
(256) Declination in $\delta$,
(259) 0 ,
(260) Horizontal Intensity,
" (261) Horizontal Intensity in Temp. $t_{D}$,
" (264) Line 28 from top, "
" (271) Dip in $\theta$, "
" (278) Horizontal Intensity in Temp. $t_{D}$, "
" (279) Declination in $\delta \quad "$
" (2st) Table 4 from top in Temp. $t_{v}$, ,
" (287) 0 ,
(2Ss) Horizontal Intensity,
(290) Matue Syuttyo in Mean,
(291) Dip in Sea level,
" (294) 269,
", (294) Himahata,
" (302) Horiz ntal Intensity,
" ( 329 ) Declination, in Recorder,
" (321) Declination in Recorder,
," (332) Declination,
"
for $51^{\circ} 46.4$ read $52^{\circ} 34.9$.
$53^{\circ} 38.8 \quad, \quad 53^{\circ} 33!7$.
Sinzō " Sinzyō.
4th,$\quad$. .
1.47 ", 1.47 .
$5^{\circ} 30^{\prime} 4^{\prime \prime} \quad, \quad 5^{\circ} 30^{\prime} 43^{\prime \prime}$.
" ", " 81.99 ", ,, 8 19.9.
Sinzyō.
needle.
East.
Hukaya.
" $833 \quad$ " 633.
" graund " ground.
$207 . \quad$ " 209.
"North $\quad$ South.
$61 \% \quad$ " 213.
1894 " 1895.
$55942 \quad, 45942$.
„ $317 \quad$ " „ 3137.
, $418 \quad, \quad, 441$.
" $49^{\circ} 2!0 \quad$ " $0 \quad 49^{\circ} 2!9$.
, Temp. $t_{v} \quad$, Temp. $t_{D}$.
$327 \mathrm{C} \quad, \quad 32^{\circ} .7 \mathrm{C}$.
$1865.0 \quad$, 1895.0.
$46^{\circ} 56 .^{\circ} 0 \quad, \quad 46^{\circ} 56.0$.
$30^{\circ} \mathrm{C} \quad, \quad 30 .^{\circ} 4 \mathrm{C}$.
, 34 $0 \quad$, , 3t 30.
" $3^{\circ} .83 \mathrm{C} \quad, \quad 38 . \circ$. C .
" $49^{\circ} 39: 3 \quad, \quad 49^{\circ}$ 22!.3.
" $189.5 \quad$ " 1596.
" $\quad$ " $0.28217 \quad$ " $\quad 0.30468$.
" 10.01 "
" $10.01 \quad$, -0.01 .
". Hamabata ", Hamaliata.
" Horur ", Hour.
" lg ", by.
, Ilottori ,, Mattori.
" Hattorl ", Hattori.
" Wiast " West.

## 1 a TOKYO．

Play ground of Tōkyō Imperial University（束京帝國大學迻動場）。
DECLINATION
（ $\delta$ ）
Observations of the East Party， 18 st；


Olservations of the West Party，18：33．

| Date and Homr （Mean Local＇Iime） |  |  |  |  | $\delta$ |  | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Tuly | $4^{\text {th }}$ | $5^{11}$ | $49^{m}$ | 4 | $33^{\prime}$ | $26^{\prime \prime}$ | Noda | Noda |
|  | ＂ | 6 | ． | ＂ | 31 | 42 | ＂ | ， |
| ．， | ＂ | 7 | 14 | ， | 34 | 41 | ． | ＂ |
|  | ＂ | 8 | 1.5 | ＂ | 27 | 26 | Turnta | T＂\＃． |
|  | ， | 11 | 2.5 | ＂ | 35 | 4.5 | Turuta | Cdziie |
|  | ＂， | 11 | 41 57 | ＂， | 27 21 | 51 45 | Iwaoka | ＂ |
|  |  |  |  |  |  |  | ＂ | ＂ |
| Mean． |  |  |  | 4 | $30^{\prime}$ | $42^{\prime \prime}$ |  |  |
|  |  |  |  | Reduction |  |  | $30!70$ |  |
|  |  |  |  |  | 1.27 |  |
|  |  |  |  | sea | 0.00 |  |
|  |  |  |  |  | 32.10 |  |

Olservations of the West Party，189：3．

| Date and Howr （Mean Local Time） |  |  |  | $\delta$ |  |  | O1server | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Oct．$"$$"$$"$$"$$"$$"$$"$$"$$"$$"$$"$$"$$"$$"$$"$$"$$"$ | $10^{1 /}$ | 181 | $40^{\mathrm{m}}$ | 4 | $24^{\prime}$ | $30^{\prime \prime}$ | Iwarka | Turuta |
|  | ， | 18 | 55 | ＂ | 23 | 26 | ， | Noda |
|  | ： | 20 | 1 | ， | 21 | 9 | ， | ．． |
|  | ＂ | 20 | 28 | ， | 25 | 51 | ， | ＂ |
|  | ， | 21 | ！ | ，， | 24 | 50 | ．， | ．， |
|  |  |  | 31 | ，＇， | 25 | 54 | ， | Twata |
|  |  | 0 | 47 | ＂ | 22 | 14 | ．， | Iwaoka |
|  | ， | 1 | 7 | ＂， | 23 | 35 | ，＂ | ， |
|  | ，． | 6 | 16 | ＂ | 24 | 17 | ，． | ＂ |
|  | ， | 6 | 42 | ， | 22 | 3 | ．， | ＂ |
|  | ， | 7 | 16 | ，＂ | 20 | 23 |  | Turuta |
|  | ，＂ | 8 | 15 | ＂， | 20 | 47 | Turuta | Iwaoka |
|  | ＂， | 8 | 27 | ＂ | 22 | 30 |  |  |
|  | ．， | 9 | 55 | ＂ | 23 | $3 \pm$ | Iwaoka | Turuta |
|  | ．， | 10 | 15 | ＂ | 22 | 7 | Turnta | ＂ |
|  | ， | 10 | 30 | ＂， | 29 | $3 \pm$ | Iwaokit | ， |
|  | ．， | 10 | ． 4 | ＂ | 24 | 7 |  | ＂ |
|  |  | 11 | 4 | ， | 25 | 2 | ＇Turuta | Iwaoka |
|  | ＂ | 11 | 5 | ＂ | 21 | 50 | Iwaoka | Turuta |
| ＇To be continued． |  |  |  |  |  |  |  |  |

Continued.


Observations of the West linty, 1893.


Continued.


Olservations of the North Party, 1894.

| Date and Honr (Mean Local Time) | $\delta$ |  |  | Onserver | liocorder |
| :---: | :---: | :---: | :---: | :---: | :---: |
| June $26^{\text {th }} \quad 8^{\text {h }} 39.7 \mathrm{~m}$ | 4 | $19^{\prime}$ | $12^{\prime \prime}$ | . |  |
| ., ,, 111.8 | , | 2.5 | 17 |  |  |
| .. .. $1 \pm 0.2$ | , | 27 | 29 |  |  |
| .. $\quad$. 1711.4 | , | 21 | 47 | . |  |
| ,. $\quad \begin{array}{llll} & 20 & 15.9\end{array}$ | " | 24 | 44 | . |  |
| ,. $27^{\text {th }} 528.3$ | " | 22 | 38 | . | $\cdots$ |
| ,. $\begin{array}{lllll} & 7 & 33.2\end{array}$ | ", | 211 | $3:$ | . |  |
| ..  116.5 | , | 22 | 50 | . |  |
| $\begin{array}{lllll},, & 19 & 54.7\end{array}$ | " | 25 | 3 | . |  |
| Mean | $t$ | $23^{\prime}$ | $39^{\prime \prime}$ |  |  |
|  | Reduction to 1 |  |  | 23:35 |  |
|  |  |  |  | 0.44 |  |
|  |  |  | sea | 0.61 |  |
|  |  |  |  | $24!1$ |  |

Asservations of the south party, $18: 14$.


Observations of the South Party, 1894.


Observations of the South Party, 1834.


Observations of the North Party, 1895.

| Date and Hour (Mean Lucal 'Time.) | $\delta$ |  |  | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: |
| June $23{ }^{\mathrm{rl}} 1 \mathrm{Clh}^{\mathrm{h}} 35 \mathrm{~m}$ | 4 | $25^{\prime}$ | $17^{\prime \prime}$ |  |  |
| , \# 1419 | , | 29 | 32 |  |  |
| .. $244^{41} \quad 6 \quad 13$ | .. | 18 | 18 | Tanakadate | Katō |
| $\begin{array}{llll} & 7 & 7 & 13\end{array}$ | " | 17 | 28 | Sinzyō |  |
| ", " 14 4 | , | 30 | 24 |  | Sinzyō |
| Mean | 4 | $22^{\prime}$ | $31^{\prime \prime}$ |  |  |
|  | Reduction to 1 |  |  | $4^{\circ} \quad 22.51$ |  |
|  |  |  |  | -0.41 |  |
|  |  |  | sea | 0.00 |  |
|  | $\delta=4 \quad 22!1$ |  |  |  |  |

Observations of the South Party, 1895.

| $\underset{\text { Mea }}{\mathrm{D}_{2}}$ | te and I Local | Horr Time.) |  | $\delta$ |  | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Tuly | $17^{\text {th }} 10^{\text {h2 }}$ | $16.1^{\mathrm{m}}$ | $4^{\circ}$ | $22^{\prime}$ | $11^{\prime \prime}$ | Nakammra | Nakamura |
| , | , 10 | 52.4 | , | $\because 2$ | 57 | Tamar? | Tamarn |
| " | , 12 | 13.7 | ., | 26 | 22 | ", | In $\quad$. |
|  | , 16 | 3.9 | " | 25 | 9 | Imammra | Imamiria |
| " | , 16 | 18.4 | " | 24 | 44 | " | , |
| " | " 17 | 32.4 | :, | $\because 3$ | 16 | " |  |
|  | , 18 | 17.4 | ", | 22 | 58 |  | 'ramarn |
|  | \% ${ }^{21}$ | 22.1 | " | $\because 4$ | 14 | Tamaru | ," |
| " | $18: 115$ | 4.6 | ", | 22 | 2 | , | ., |
| , | , 5 | 55.1 | , | 20 | 32 | , | ., |
|  | , 7 | 55.6 | .. | 20 | 22 | , | , |
| " | - 9 | ${ }^{4.8}$ | ", | 22 | 8 | Vo, |  |
| " | " 10 | 10.7 | " | 23 | 44 | Nakamma | Nakammra |
| " | ., 11 | $\bigcirc{ }^{5} 1$ | " | 25 | 14 | Tamarn | Tamaru |
| " | , 12 | 4.6 | ., | 23 | 12 |  | Imammra |
| " | " 13 | 25.9 | , | 27 | 5 | Imaminra | Tamorn |
| " | , 14 | 26.4 | , | 26 | 29 | Nakamura | Tamarn |
| " | $\cdots$ | 13.4 |  | 25 | 43 | Tamaru | Im.inmra |
|  | 716 $" \quad 17$ | 12.4 | ", | 24 | 42 | Imamuril | - |
|  | ", 18 | 25.7 | ". | 23 | $\stackrel{17}{27}$ | Nakämura | Nakämma |
|  | , 19 | 45.8 | " | 23 | 41 | " | , |
| Mean |  |  | $4 \quad 233^{\prime} \quad 43^{\prime \prime}$ |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |

(H)-ervationts of the Sonth West Party, IS)f.

（6）
DII（ $\theta$ ）
Observations of the East Farty，1893，

| Date and 1 ［our <br> （Mean Local＇Time．） | Needle No． | $\theta$ | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: |
| July $4^{\mathrm{th}_{1}} \quad 3 \mathrm{Cl}^{11} \quad 56.00^{\mathrm{mm}}$ | 1 | $48^{\circ} \quad 52!4$ | 万̄mori | Midznsima |
| Mean |  | $48^{\circ} \quad 52!4$ |  |  |
|  | Rernction | $\begin{array}{r} \theta= \\ 1895.0= \\ \text { sea level }= \\ \theta= \end{array}$ | $\begin{gathered} 52!4 \\ 1.35 \\ 0.00 \\ 5.3!8 \end{gathered}$ |  |
|  | Olservations of the West Party， 1893. |  |  |  |


| Date and Hour <br> （Mean Local Time．） |  |  |  | Needle No． |  | $\theta$ | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| July＂，$⿻ 丷 木 口$ |  | $15^{11}$ | $39^{\mathrm{m}}$ | 2 | 49 | 1！ 4 | Iwaoka | Uziie |
|  |  | 18 | 58 | 1 | 48 | 57.11 | Norla | Turuta |
|  | $4^{\text {th }}$ | 11 | 4 | $\stackrel{1}{1}$ | 49 | 5.8 | ＇T＇uruta |  |
|  |  |  | 12 | 3 | ， | 2.7 | ．， | Iwaoka |
| Mean |  |  |  |  | 49 | 1.7 |  |  |
|  |  |  |  | $\begin{aligned} \text { Redluction to } & =49 \\ , \quad, \quad, \quad \text { sear level } & = \end{aligned}$ |  |  | $1: 7$ |  |
|  |  |  |  | 1.35 |  |
|  |  |  |  | 0.00 |  |
|  |  |  |  |  |  |  | $3!1$ |  |
|  |  |  |  | Observations of the West Party，1893． |


| Wate and 1rome <br> （Mean Local Time．） |  |  |  | Neerlle No． |  | $\theta$ | Olserver | Tiecoder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 3 | $49^{\circ}$ | 2！ | T＇uruta | Turnta |
|  |  |  |  | 3 | 48 | 59.5 | 1 wraka | ， |
|  |  |  |  | － | 49 | 2.6 | Turntı | Iwaoka |
|  |  |  |  | － |  | 11.5 | ＂ | ＂ |
|  |  |  |  | － | 48 | 59.2 | － | Turuta |
|  |  |  |  | － | ＂ | 58.3 59.5 | Iwaokat Turuta | 1wabka |
| Mean |  |  |  |  |  |  |  |  |
|  |  |  |  |  | 49 | 1！） |  |  |
| $\theta$ $=49^{\circ}$ <br> Tieduction to $\quad 1895.0$ $=$ <br> ，．，$\quad$ sea level $=$ |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  | $1.0 \mathrm{~s}$ |  |
|  |  |  |  |  |  |  | $0 . c 0$ |  |
| $\theta=49 \quad 3.0$ |  |  |  |  |  |  |  |  |

Observations of the North Party， 1894.

| Date and Hour <br> （Mean Local Time．） | Neatle No． | $\theta$ |  | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 |  | 14.4 4.2 | Tavakadate | Tanakadate |
|  |  | 49 | 2.8 |  |  |
|  |  |  |  |  |  |

Olservations of the South Party， 1894.

| Date and Hour （Mean Loeal Time．） | Needle No． |  | $\theta$ | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Tune $26^{\text {th }} 15^{\text {h }} 39.8{ }^{\text {m }}$ | 2 | 4.1 | $3!9$ | Imamura | Imamura |
| ，． $27^{\text {th }}$ 9 14.5 | 1 | ， | 13.1 | Nakamura | Nakamura |
| ，．．． 11127.5 | 1 | ．， | 8.7 | Imamura | Imamura |
| ．．．． 17 5．2 | 1 | ， | 127 | Nakamura | ．， |
| Mean |  | 49 |  |  |  |
|  | $\theta$ $=49^{\circ}$ <br> lieduction to $\quad 189.5,0$ $=$ <br> ,. ．．sea level |  |  | 9！${ }^{\text {a }}$ |  |
|  |  |  |  | 0.47 |  |
|  |  |  |  | 0.00 |  |
|  |  |  |  | 10：1 |  |

Observations of the South Party, 1834.



Olscrvations of the Sonth Party, 1895.

| Date and Hour <br> (Mean Local Time.) | Neerle No. |  | $\theta$ | Olserver | Recorter |
| :---: | :---: | :---: | :---: | :---: | :---: |
| June 23rit .. | 1 | 49 |  | Imamura | Tamarı |
|  |  |  |  |  |  |

Observations of the South Party, 1895.


Observations of the Seto Sea larty, 1896.

| Date and Hour (Mean Local Time.) | Neerlle No. | $\theta$ |  | Observer | Recorter |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Nov. $6^{\text {th }} 15^{\text {h }} 47^{\mathrm{m}}$ | 2 | 49 | 3.0 | Sano | $\left\{\begin{array}{l}\text { Sano } \\ \text { Suto }\end{array}\right.$ |
| $\begin{array}{llll} , & 7^{\text {th }} & 9 & 42 \\ " & " & 16 & 54 \end{array}$ | $\begin{aligned} & 2 \\ & 2 \\ & \hline \end{aligned}$ |  |  | Suti <br> Sano | Sinte <br> Sano |
| Me:ın |  |  |  |  |  |
|  |  |  |  |  |  |

HORIZONTAL INTENSITY (II)
(*'alue deduced from Vibration only by assuming 「'tue of M.)
Onservations of the East Party, 1893.

(O)servations of the West Party, 1893.



| Date and Homr (Mean Local Time.) | 11 | .l/ | Mean <br> Temp. | Time of$1-\mathrm{YiL}, \underline{12} .$ | Temp. $t_{v}$ | Mean Deflection: |  | $\underset{t_{b}}{\text { Temp }}$ | Observer | Reporder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $Q_{1}$ | $\varphi_{2}$ |  |  |  |
| June. $22^{+7^{7} 1} 1^{1 / 2} 17.0 \mathrm{~m}$ | 0.29704 | 457.98 | 30.9 C | 5.685 |  | $63931 \% 0$ | 1572 | 30.8 C | Tanakadate | Tanakardate |
| , 270034.8 | *0.29731 | 559.25 | 23.8 | 5.640 | 23.8 | - - 0 | - | - | ", |  |
| - 29742.0 | 0.29699 | 458.89 | $2 \% 0$ | 5.6449 | 25.5 | 5434.0 | 15943.8 | 20.5 | , | , |
| Mean | 0.2708 |  |  |  |  |  |  |  |  |  |


| $1 I=$ | 0.29708 |  |  |
| ---: | ---: | ---: | ---: |
| Teduction to | $1895.0=$ | 231 |  |
| ., | ., sea level | $=$ | 3 s |
|  | $1 I=$ | 0.29711 |  |

(1)servations of the fouth Party, 1 sot.


Olservations of the South Party, $18: 11$.

| Date acd Hour (Mean Local Time.) |  |  |  | II | $1 /$ | Mean <br> Temp. | $\begin{aligned} & \text { Time of } \\ & \text { 1-Vib. } \end{aligned}$ | Temp. | Mean Deflections |  | Temp.$t_{\mathrm{b}}$ | Ohserver | 1iecorder | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|  |  |  |  | $\psi_{1}$ |  |  |  |  | $\varphi$ \% |  |  |  |
| Oct. | $15^{\text {th }}$ | $17^{11}$ | $33^{1 \mathrm{~m}}$ |  | 0.29724 | 410.29 | 20.5 C | 5.8089 | 20.4 C | (622'40\% ${ }^{\prime}$ | 14,32'51!9 | 20.6 C | Kato Imamura | $\left\{\begin{array}{l} \operatorname{Lmamuraz} \\ \text { Katō } \end{array}\right.$ |
|  | $18^{\text {th }}$ | $!$ |  | (1)28703 | 440.04 | 21.11 | 5.8124 | 20.7 | ( 22363.9 | 143241.2 | 21.3 |  | Nakamura |
|  | " | 10 |  | 0.29702 | 440.11 | 21.9 | 5.8124 | 21.7 | 62240.6 | $1432 \pm 6.9$ | 2.21 | Nakamura | Imamura |
| , | , | 11 | 2! | 0.29692 | 439.77 | 225 | 5.8155 | 22.4 | (; 2223.1 | 143155.11 | $\because 2.7$ | Imamura | Nakamura |
| , | , | 12 | $f$ | 11.29760 | 433.57 | 22.5 | 5.8161 | 22.4 | 6213.8 | 14:3145.6 | 22.6 | Nakamaria | Imamura |
| , | " | $1 . t$ | 2 | 0.26746 | 438.97 | 24.2 | 5.18189 | 25.7 | 62133.4 | 143010.6 | 22.8 | Imamura | Nakamura |
| " | , | 14 | 51 | 0.29725 | 439.69 | 22.2 | 5.8137 | $\because 2.6$ | (532 10.6 | 143141.9 | 21.8 | Nakamura | Imamura |
| " | ,. | 16 | 0 | 0.29740 | 440.73 | 197 | 5.8048 | 19.4 | 62.51 .2 | 143312.5 | $19 \%$ | Imamura | Nakamura |
| , | , | 16 | $5: 3$ | 0.29705 | 440.94 | 185 | 5.8165 | 18.4 | 62320.6 | 14348.1 | 18.5 | Nakammra | Imamurat |
| .. | , | $1!1$ | 9 | 0.29687 | 441.51 | 16.7 | 5.8047 | $16 . \%$ | 62414.4 | 113618.1 | 16.7 | Imanurar | Nakamura |
| " | $\cdots$ | 20 | : | 0.29687 | 440.82 | 17.5 | 5.8091 | 17.5 | 02343.8 | 143521.9 | 17.4 | Nakamura | Jmamurat |
| " | 19\% | , | 37 | 0.29712 | 442.60 | 14.0 | 5.7949 | 14.1 | (i 2447.5 | 143723.1 | $13 .!$ | Imamura | Nakamura |
| " | " | 3 | 18 | 0.29739 | 442.03 | 14.2 | 5.7963 | 14.4 | 62426.3 | 143723.1 | 14.0 | Nakamura | Imamulit Nakamiza |
|  | , | 4 | 10 | 0.29728 | 442.02 442.17 | 1.1 .2 $1+4$ | 5.7965 5.7969 | 14.11 | 62423.8 62434.4 | 14378.1 143720.0 | 14.4 14.3 | Imamura Nakamura | Nakamura Imamura |
|  |  |  | 4.5 | 0.29721 0.29721 | 442.17 | 14.4 | 5.9969 5.7972 | 14.5 14.2 | $62+34.4$ 62416.9 | 143645.0 | 15.0 | Imamura | Nakamura |
| Mean |  |  |  | 11.26715 |  |  |  |  |  |  |  |  |  |

$$
\begin{array}{rlrl} 
& H & =0.29715 \\
\text { Seduction to } \quad 1895.0 & = & 092 \\
, \quad, \quad \text { sea level } & = & 38 \\
H & =02.916
\end{array}
$$

(1)servations of the North Party, $18: 35$.

(10)

Observations of the Sonth Party, 1895.

| Date and Hour (Mean Local Time.) | 11 | U | Me.n Temp. | 'Time of 1-Yibㄹ. | Temp. | Mean Deflections |  | $\underset{t_{b}}{\text { Temp }}$ | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\varphi_{1}$ | $\varphi_{2}$ |  |  |  |
| $\begin{array}{lllll}\text { June } 23{ }^{\text {rd }} & 5 & 5^{\text {h }} & 1.7\end{array}$ | 0.29779 | $43 i \mathrm{i} .53$ | 21.1 C | 5.8284 | 21.0 C | ¢19'5!'6 | $14 \cdot 25^{\prime} 13!1$ | $21: 2 \mathrm{C}$ |  | . |

$M=0.2977!$

| ,,$\quad$ sea level $=$ | -212 |
| :--- | ---: |

$\Pi=0.29777$
Observations of the South Party, 1895.


Observations of the Seto sea Party, 1896.


Observations of the South West Party, 1896.

| Date and Hour (Mean Local Time.) |  | 11 | M | Mean <br> Temp. | Time of 1-Vibn. | $\underset{t_{v}}{T e m p .}$ | Mean Deflections |  | Temp. | Observer | Recorter | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|  |  | $\varphi_{1}$ |  |  |  |  | $\varphi_{2}$ |  |  |  |
| Sept. $6^{\text {th }} 13^{\text {h }}$ | $43^{\mathrm{m}}$ |  | 0.29850 | 416.34 | 35.1 C | ${ }_{5}^{5} .9596$ | 35.7 C | $6^{\circ} 1^{\prime} 1!3$ | $133^{\prime \prime} 8$ 8! 8 | 34.5 C | Sinzyō | Hattori |
| " , 15 | 25 | 0.29816 | 417.26 | 34.0 | 5.9601 | 34.5 | $6{ }_{6}^{6} \quad 132.5$ | 13448.8 | 33.6 | Hattori | Sinzy 0 |
| ", , 16 | 1 | 0.29836 | 417.59 | 33.8 | 5.9564 | 34.4 | 6138.8 | 134422.5 | 33.2 | Sinzyō | Hattori |
| " , 1; | 44 | 0.29804 | 417.88 | 31.9 | $5.954 t$ | 31.6 | 6 $\stackrel{2}{4}$ 1.3 | 134521.3 | 32.3 |  |  |
| , , 17 | 31 | 0.29780 | 418.4 ; | 30.0 | 5.9551 | 30.5 | (i) 38.8 | 134756.3 | 29.6 | Hottori | Sinzyō |
| , , , 19, | 14 | 0.29816 | 419.61 | 27.8 | 5.9412 | 27.7 | 6 3 28.8 | 134841.3 | 28.0 |  |  |
| " ., 20 | 6 | 0.23819 | 419.88 | 27.5 | 5.9400 | 27.7 | $\begin{array}{llll}6 & 345.1\end{array}$ | 134910.0 | 27.3 | Siuzyō | Tattori |
| " " 2 3 | 11 | 0.29839 | 419.80 | 26.7 | 5.9385 | 26.9 | $\begin{array}{llll}6 & 3 & 42.5\end{array}$ | 134930.0 | 26.6 |  |  |
| \% $\quad 7{ }^{23}$ | 50 | 0.28716 | 420.08 | 26.6 | 5.9387 | 26.7 | 6 <br> 4 <br> 4 | 134950.0 | 26.5 | Hattori | Sinzyō |
| " $7^{\text {th }} 4$ | 42 | 0.29805 | 419.84 | 26.8 | 5.9412 | 26.8 | ${ }_{6}^{6} 3355.0$ | 134942.5 | $\stackrel{26.8}{2.5}$ |  |  |
| " " 5 | 54 | 0.29817 | 419.97 | 26.6 | 5.9393 | ${ }_{26.8}^{26.8}$ | $\begin{array}{ll}6 & 3 \\ 6 & 57.5 \\ 6 & 3\end{array}$ | 134950.0 134933.8 | 23.5 27.6 | Sinzyō | Hattori |
| ", ", 7 | 31 37 | 0.29805 0.29814 | 419.87 419.54 | 27.2 28.5 | 5.9393 5.9429 | 26.8 28.6 | $\begin{array}{lll}6 & 3 & 38.8 \\ 6 & 3 & 38.8\end{array}$ | 134933.8 134913.8 | 27.6 <br> 284 <br> 8 | " | " |
| ",$\prime \prime$ 7 <br> , 8 | 37 13 | 0.29814 0.29793 | 419.54 418.83 | 30.5 | 5.9429 5.9459 | 29.3 | $\begin{array}{ll}6 & 2 \\ 6 & 236.3\end{array}$ | $\begin{array}{r}104913.8 \\ 34638 \\ \hline\end{array}$ | 31.7 | Hatori | Sii'zyō |
| ", ", 8 | 20 | 0.29803 | 418.69 | 30.5 | 5.9459 | 29.3 | 6230.0 | 134638.8 | 31.7 | , | ", |
| Mean |  | 0.29814 |  |  |  |  |  |  |  |  |  |
| $I I$ $=$ 0.29814 <br> Reduction to 1895.0 $=$ <br> . -754  <br> . sea level $=$ <br>  $3 \times$  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

## 1 b TÖKYO． <br> Central Meteorological Observatory（中央氯魅臺）

DECLINATION（ $\delta$ ）
Observations of the South West Pariy， 1896.


DIP $(\theta)$
Ohservations of the South West Party，189\％．


HORIZONTAL INTENSITY（II）
Olservations of the South W＇est Party，189fi．


## 2．HATIŌZI．

Hongō Kawara（本 鄉 河 原）
DECLINATION（ $\delta$ ）
Observations oc the East Party， 1893.

（）bservations of the routh larty， 1895.


DIP（ $\theta$ ）
Observations of the East Party， 1893.


Observations of the Sonth I＇arty， 1595.

| Date and Hour （Mean Local Time．） |  |  |  | Neenle No． |  | $\theta$ | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{cccc} \text { June } & 25^{\prime h} & 24 & 23^{n 12} \\ " & 26, t_{1} & 7 & 26 \\ " & , & 10 & 25 \\ " & " & 16 & 17 \end{array}$ |  |  |  | 1 | 45 | 59\％ | Imamura | Imamura |
|  |  |  |  | － | 49 | 6.2 |  | Nakromura |
|  |  |  |  | 1 | 49 4 | $\begin{aligned} & 0.4 \\ & י .1 \end{aligned}$ | Timaria <br> Nak：mura | Tamarn |
| Mean |  |  |  |  | $49^{\circ}$ | $1!9$ |  |  |
| $\theta$ $=4!$  $1!0$ <br> Reduction to 1895.0 $=$  <br> Rea level $=$  -0.39 <br>    -10.01 <br>   $=4!$, $1!3$ |  |  |  |  |  |  |  |  |

HORIZONTAL INTENSITY（ $/ 1$ ）
（＊Tolue delucel from Vibration only by＂sseminy brebe of 3）
Observations of the East Party， 1893.


Reduction to $1895.0=11: 29727$
：）sealevel＝ 1410
$H=0.297 .55$
Observations of the East Pariy， $1 \times 55$.

| Date and Hour （Mean Local Time．） | II | $1 /$ | Meau <br> ＇Temp． | Time of 1 1-「ib? | $\underset{t_{v}}{T}$ |  | Hections <br> $\hat{Y}_{2}$ | $\begin{gathered} \text { Tem }]^{\prime} \\ t_{1} \end{gathered}$ | fheervar | Hecoriter |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| June $25^{\text {hl }} 18^{\text {h }} 44^{\text {m }}$ | 0.29786 | 437.12 | 20：5C | 5.8240 | 20.50 | （1） 1936 | 1425＇54．＇4 | 20.56 | Nakamma | Tamaru |
| ＂，\＃， 2124 | 0.29794 | 436.99 | 20.1 | 5.8249 | 20.5 | 61927.5 | 14264.4 | 19.8 | Imammat | Nakammar |
| ＂， 264118 | $0.2978: 5$ | 437.19 | 19.8 | 5.8238 | 20.0 | 611933.2 | 142616.9 | 19.7 | Timarir | cörlo |
| ，，„， 15 33 | 0.29824 | 436.33 | 21.1 | 5.8260 | 21.4 | 61832.5 | 14245.0 | 20.8 | Nakammat | Tumaru |
| Mean | 11.29798 |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |

## 3．SARUHASI．

North bank， 110 m ．down the bridge．（猿橋ノ下流一甽許ノ北常雷中）
DECLNA＇TION（ $\delta$ ）
Observations of the East Party， 1893.

| $\begin{gathered} \mathrm{D} \\ \text { (Mea } \end{gathered}$ |  |  |  |  | lina |  | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| July | $\begin{aligned} & s^{+1} \\ & ", \\ & ", \\ & ", \\ & " \\ & " \\ & ", \\ & ", \\ & ", \\ & ", \end{aligned}$ | 11 12 14 15 17 17 18 18 211 5 5 7 8 10 | 57 m 59 5 25 2 18 25 47 52 8 5 5 7 45 12 | $5$ | $\begin{array}{r} 14^{\prime} \\ 15 \\ 7 \\ 7 \\ 4 \\ 4 \\ 5 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 2 \\ 2 \\ 11 \\ 11 \\ 2 \end{array}$ | $\begin{aligned} & 22^{\prime \prime} \\ & 55 \\ & 51 \\ & 44 \\ & 17 \\ & 51 \\ & 13 \\ & 19 \\ & 5 \\ & 25 \\ & 25 \\ & 22 \\ & 30 \\ & 21 \\ & 2 \end{aligned}$ | Kimura Dmori Kimura ＂＂ Nakamma ＂＂， Mlidzusima ＂， Makanna Kimura | Timori <br> Mitzonsima <br> Nakamura <br> Kimmra <br> ＂ <br> Tmori <br> Miilzunsima <br> Kimura <br> Nakamma |
| Mean |  |  |  | $5{ }^{\circ}$ | $4^{\prime}$ | $2^{\prime \prime}$ |  |  |
| Reduction to |  |  |  |  |  |  |  |  |

DIP（ $\theta$ ）
Otservations of the East larty， $1 \times 93$.

| Date and How＇ （Mean Lecal Time．） |  |  |  | $\begin{gathered} \text { Needle } \\ \text { No. } \end{gathered}$ |  |  | Ol：server | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| July$"$$"$ |  | $15^{\text {h }}$ | 3.8 m | 1 |  |  | Limura | Nakamura |
|  |  | 23 |  | I |  | 46.1 | Omore |  |
|  |  |  |  | 1 | ．， | 11.9 | Midzusima | Midzasima |
| Mean |  |  |  |  | 49 | 45 ！ |  |  |
|  |  |  |  | Reduction |  | $\theta=$ | $45!$ |  |
|  |  |  |  |  | ． $0=$ | 0.45 |  |
|  |  |  |  |  | $\mathrm{l}=$ | $-0.03$ |  |
|  |  |  |  |  |  | $\theta=$ | 40.2 |  |

HORIZONTAL INTENSITY（II）
（＊Chlue deduced from Vibration only by rassuming Falue of M．） Observations of the East Party， 1833.


## 4．KŌHU

## In old castle（售城內）

DECLINATION（ $\delta$ ）
Observations of the East Party， 18.33.

| Date and Hour （Mean Local Time．） |  |  |  | Declination |  |  | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| July | $10^{1 / 1}$ | $15^{\text {h }}$ | $59^{\mathrm{m}}$ | 4 | $55^{\prime}$ | $7{ }^{\prime \prime}$ | Midzusima | Kimura |
| ，． |  | 17 | 50 | ， | 52 | 4 |  |  |
| ＂， |  | 18 | 48 | ，． | 52 | 2 | Kimmra | Midzusima |
| ＂ | $11^{\text {th }}$ | 1 | 0 | ， | 51 | 25 | Ömori | Nakamma |
| ， |  | 5 | ： 14 | ， | 50 | 3 |  |  |
| ， |  | 7 | 14 | ＂ | 45 | 10 | Nakamura | Omori |
| ＂ | ． | 7 | 33 | ＂ | 47 | 23 | Ómori | Nakamura |
| ，＂ | ＂ | 8 | 57 | ，＂ | 46 | 53 | Kimura | Kimura |
| ， | ＂ | 9 | 25 | ＂ | 48 | $\bigcirc$ |  | Midzusima |
| ， | ．． | 10 | 44 | ＂ | 51 | 27 | Midzosima | Kimuza |
| ＂ |  | 11 | 1 | ，＂ | 51 | 57 |  |  |
| ，＂ |  | 12 | 1 | ＂ | 55 | $1!$ | Kimura | Midzusima |
| ＂ |  | 13 | 18 | ． | 54 | 27 | Milzusima | Kimura |
| ＂ |  | 13 | 47 | ．， | 54 | 3 |  |  |
| ＂ | ＂ | 14 | 22 | ， | 55 | 14i | Nakamura | Nakamura |
| ＂， | ＂ | 15 | 2 | ．， | 57 | 3．5 |  | Omori |
| ．， | ＂ | 15 | 51 | ． | 51 | 30 | Omori | Nikkamura |
| ＂ | $12^{+h}$ | 7 | 16 | ， | 51 | 42 | Milzusima |  |
| ．， | ．， | 8 | 51 | ，＂ | 52 | 57 | Kimura | Cmori |
| ＂ | ．． | 10 | 21 | ， | 55 | ： | Omori | Kimura |
| ＂ | ， | 11 | 43 | ，＂ | 58 | 24 | Kimura | Omori |
| ， | ．， | 12 | 40 | ， | 5 | 47 | Omori | Fimura |
| ．， | ＂ | 13 | 50 | ．， | $5!$ | 51 | Kimura | Nakamura |
| ＂ | ， | 14 | 42 |  | 5.9 | 45 | Nakamura | limura |
| ， | ． | 15 | 26 | ．． | 55 | 51 | Midzusima | Nakamura |
|  |  |  |  |  | con | nred |  |  |

Continned

| Date and Hour (Mean Local 'Time.) |  |  |  | $\delta$ |  |  | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| July |  | $16^{\text {h }}$ | $12^{\mathrm{m}}$ | 4 | $55^{\prime}$ | $12^{\prime \prime}$ | Nakamura | Midzusima |
|  | " | 16 | 55 | " | 57 | 10 | Minlzusima | Nakamura |
|  | " | 18 | 9 | " | 56 | 45 | Nakamura | Mildzusina |
| " | " |  | 47 | " | 50 | 40 | Midzusima | Nakamura |
|  |  | 21 | 8 | " | 50 | 34 | Kimura | 万omori |
| Mean |  |  |  | 4 | $51^{\prime}$ | $53^{\prime \prime}$ |  |  |
|  |  |  |  | Reluction |  |  | 4 51!88 |  |
|  |  |  |  |  | 1.55 |  |
|  |  |  |  |  | $-0.02$ |  |
|  |  |  |  |  | $433!4$ |  |

D1P ( $\theta$ )
Ohservations of the East larty, 1893.

| Date and Hour (Mean Local Time.) |  |  |  | $\begin{gathered} \text { Needle } \\ \text { No. } \end{gathered}$ |  |  | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| July | 10 ${ }^{\text {th }}$ | 181 | $25.3{ }^{\text {m }}$ | 1 | 50 | 11:8 | Midzusima | Kimura |
| " | $11^{\text {th }}$ | 8 |  | 1 | , | 12.9 | 万mori | Nakamura |
| " | $12^{\text {th }}$ | 1 |  | 1 | " | 12.1 | Nakamura | Midzusima |
| " | " |  | 50.3 | 1 | " | 15.6 | Midzusima | Nakamura |
| Mean |  |  |  |  |  | 13:1 |  |  |
|  |  |  |  | Reduction $t$ |  |  | $\begin{gathered} 13!1 \\ 0.30 \\ 0.02 \\ \hline 13!4 \end{gathered}$ |  |
|  |  |  |  | $\begin{aligned} & \theta \\ & 1895.0=50\end{aligned}$ |  |  |
|  |  |  |  |  | $\mathrm{l}=$ |  |  |
|  |  |  |  |  |  | $\theta=50^{\circ}$ |  |  |

IIORIZONTAL INTENSITY (II)
(* V'olue deluced from Vibretion only by assuming P'ubue of ill)
Observations of the East l'arty, 1893.


## 5．UMINOKUTI．

Osidori Hot Spring（鶚 蔦 温 泉）
DECLINATION（ $\delta$ ）
Olservation：of the East Party， 1893.


DIP（ $\delta$ ）
Observations of the East Party， 1893.

| Date and Hour （Mean Local Time．） |  |  | $\begin{aligned} & \text { Needlle } \\ & \text { No. } \end{aligned}$ |  |  | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ．July |  | $210_{17}$ | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ | $4!$ | 17！ <br> $14 . \%$ | $\begin{gathered} \text { Midzanima } \\ \text { Omori } \end{gathered}$ | OMori <br> Kimura |
| Mean |  |  |  | 4.$)$ | 16.0 |  |  |
|  |  |  | Reduc | $\begin{aligned} & \text { o } \\ & , \quad \text { se } \end{aligned}$ | $\begin{aligned} & \theta=49 \\ & 0= \\ & \mathrm{el}= \\ & \theta=49 \end{aligned}$ | 0 <br> 29 <br> 09 <br> 2 |  |

HORIZONTAL INTENSITY（II）
（＊idlue deduced from Viluration only by assaming Value of M．） Observations of the East Party， 1893.


## 6．USUTA

In mulberry field，near to Jinjya（神社近傍ナル桑烟ノ中）
DECLINATION（ $\delta$ O
Observations of the East Party， 1893.

| Date and Hour （Mean Local Time．） |  |  |  |  | $\delta$ |  | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| July ＂， ＂， ＂， ＂， ＂， ＂， | $15^{\text {tl }}$ <br> $16{ }^{1 / 1}$ <br> $"$ <br> $"$ <br> $"$ <br> $"$ <br> $"$ <br> $"$ | 20,11 1 4 7 8 10 11 13 | 48 m 23 5 13 53 46 34 5 | 4 <br> $"$, <br> $"$ <br> $"$ <br> , | $\begin{aligned} & 38^{\prime} \\ & 3 x \\ & 37 \\ & 34 \\ & 32 \\ & 39 \\ & 42 \\ & 49 \end{aligned}$ | $\begin{gathered} 36^{\prime \prime} \\ 7 \\ 24 \\ 7 \\ 8 \\ 39 \\ 15 \\ 28 \end{gathered}$ | Midzusima <br> $"$ <br> ＂， <br> Kimura <br> Nakämura Kimura | Kimura Midzusima ＂ ＂， Nakamura Kimora $\qquad$ |
| Mean |  |  |  | 4 | $38^{\prime}$ | $5 i^{\prime \prime}$ |  |  |
|    <br> Feduction to $=438!93$  <br> 1895.0 $=$ 1.78 <br> $\cdots \quad . \quad$ sea level $=$ -0.05 <br> $\delta$ $=440!i$  |  |  |  |  |  |  |  |  |

DII＇（ $\theta$ ）
Ohservations of the East larty，185\％：

| Date and Homr （Mean Local Time．） | Needle No． | $\theta$ | Obserwer | Recorder |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{cccl}\text { July } & 15^{\text {th }} & 22^{\text {th }} & 10!2 \mathrm{~mm} \\ \% & 16^{\text {th }} & 8 & 24.8\end{array}$ | 1 | $\begin{array}{cc} 49 & 49.3 \\ \hdashline & 46.1 \end{array}$ | Ömori <br> Nakamura | Nakamura Kimura |
| Mean |  | $49 \quad 17!7$ |  |  |
|  | Reduct $\qquad$ | $\begin{array}{r} \theta= \\ 1895.0 \\ \text { sea level }= \\ \theta= \end{array}$ | $\begin{gathered} 47!7 \\ -0.15 \\ 0.066 \\ \hline 47!5 \end{gathered}$ |  |

HORIZONTAL INTENSITY（II）
（＊Ialue deduced from I Tbration only by assuming Value of M）
Observations of the East Party， 1893.


## 7．KOMORO．

Sakanoue No． 3018 （圾ノ上三个○十八番池）

## DECLINATION（

Observations of the Easi Party，18：33．


Dl1＇（ $\theta$ ）
Onservations of the East Party，1s：33．

| Date and Hour （Mean Local Time．） |  |  |  | Needle No． |  | $\theta$ | Observer | Rerorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| July | $16^{+12}$ | $21^{\mathrm{h}}$ | $23.2{ }^{\text {m }}$ | 2 | $511^{\circ}$ |  | Midzusima | Midzusima |
|  |  | 11 | 13.9 | 1 |  | 44.6 | Nakamurat | Kimura |
|  |  | ， | 23.6 | 1 | 50 |  | Omori | Omori |
|  |  | 19 | 8.0 | 1 |  | 0.5 | Midzusima |  |
| ：， | ．， | 17 | 7.9 | 1 | 49 | 47.1 | Nidkammra | Kimura |
| ＂ | ． | 18 | 1.8 | 1 |  | 50.6 | Kimura | Nakamurat |
| ， |  | 18 2 | 58.0 16.7 | 1 |  | 3.9 59.5 | Nakamura Nidzusima | Kimura Nakamura |
| ＂ |  | 2 | 13.5 | 1 |  | 52.7 | Nikammra | Jitzusima |
| Mean |  |  |  |  | $49^{\circ}$ | 55：4 |  |  |
| $\theta$ $=49$ 55.4  <br> Reduction to 1895.0 $=$ -0.5 s <br> $\cdots$ sea level $=$ -0.04 <br> $\theta$ $=49$ 54.4  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |

HORLZONTAL INTENSITY（II）
Ohservations of the East Party， 1893.


## 8．MIYOTA．

Common School．（小 學 校）
DECLINATION（ $\delta$ ）
Observations of the East Party＂ 1893.


DIP（ 6 ）
Ubservations of the East Party， 1893.

| Date and Hour <br> （Mean Local Time．） | Needle No． | ${ }^{\text {Dip }}$ | Observer | Recurder |
| :---: | :---: | :---: | :---: | :---: |
|  | $\frac{1}{1}$ | $\begin{array}{rrr}49 & 56.2 \\ 3 & 52.2 \\ 50 & 4.6\end{array}$ | Midzusima Nakamura Omori | Nakamura Midzusima ＂ |
| Mean |  | $49^{7} \quad 57!7$ |  |  |
|  | Reluction to$\theta$ $=49^{\circ}$ $57!7$ <br> 1895.0 $=$ -0.44 <br> ,$\quad$ sea level $=$ -0.06 <br> $\theta$ $=49^{\circ}$ $57!2$ |  |  |  |

HORIZONTAL INTENSITY (II)
Observations of the East Party, 1893.

| Date and Hour (Mean Local Time.) | I/ | M | Mean Temp. | $\begin{aligned} & \text { Time of } \\ & \text { 1-Yib". } \end{aligned}$ | Temp. | Mean Deflections |  | $\underset{t_{\mathrm{D}}}{\mathrm{Temp}} .$ | (1)server | Iecorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | \% | $\phi_{2}$ |  |  |  |
| July $18^{\text {th }} 11^{\text {hi }} 26^{\text {ma }}$ | 0.29634 | 474.65 | 31.6 C | ${ }^{\text {5 }}$ 8.55¢2 | 31.5 C | 1 5 56 | 1545'25! ${ }^{\prime}$ | 31.7 C | Imori | Kimura |
| " , 12 3: | 0.29633 | 474.51 | 33.7 | 5.5569 | 33.5 | (; 56) 5.0 | 154410.0 | 33.9 | Mndzusima | Nakamura |
| Mean | 0.29134 |  |  |  |  |  |  |  |  |  |


| Reduction to | $1895.0=$ | 1110 |
| ---: | ---: | ---: |
| $\cdots \quad$, | sea level $=$ | 1032 |
|  | $H=$ | $0.2965 \%)$ |

## 9. KARUISAWA.

DECLINATION ( $\delta$ )
Olservations of the Eest Party, 1893:


DIP ( $\theta$ )
Observations of the East Farty, 1893.


HORTKONRL JNTENSTRY（II）
Olservations of the East larty， 1893.


10．KUTUKAKE．
Pine wood by Asama road．（淺間街道道傍ノ松林） DII $\left.{ }^{( } \theta\right)$
Ohservations of the East Party，I893．


## 11．UEDA．

Play ground of high common school．（高等小學校運動場）
HECLINATION（8）
Olservations of the West Party， 1893.


DIF $(\theta)$
(月nervatious of the East Party. 1s.)3.

| Date and frour (Mean Leval Time) | Neatle No. |  |  | (inserver | Rerorder |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 |  | $\begin{aligned} & 3.5 \\ & 3.1 \end{aligned}$ | Midzusima <br> Nakamma | Nakamura <br> Milzusima |
| Me:an |  | 56 | 33.3 |  |  |
|  |  |  |  |  |  |

## HORIZONTAL INTENSITY ( $h$ )

(" V'elure terduced from Vibration only by assming bolue of M) Ollservations of the East Party, 1893.

| Date and Homr (Mean Local Time.) | $1 /$ | .1/ | $\begin{aligned} & \text { Mean } \\ & \text { Temp. } \end{aligned}$ | Time of 1-Yib!. | Temp. $t_{V}$ | Me:n D <br> $\varphi_{1}$ | $\qquad$ | $\left\lvert\, \begin{array}{\|c\|} \operatorname{Temp}_{\mathrm{t}} \\ \mathrm{t}_{\mathrm{b}} \\ \hline \end{array}\right.$ | Observer | Raxomer |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{array}{r} 0.29838 \\ 0.29866 \\ 0.29860 \end{array}$ | $\begin{aligned} & 473.86 \\ & 474.83 \\ & 474.86 \end{aligned}$ | $\begin{aligned} & 28.0 C^{\prime} \\ & 23.8 \\ & 23.7 \end{aligned}$ | $\begin{aligned} & 5^{5} .5291 \\ & 5.5188 \\ & 5.5196 \end{aligned}$ | $\begin{aligned} & 29.1 \mathrm{C} \\ & 23.8 \\ & 23.9 \end{aligned}$ | $\begin{gathered} 652 \prime 50!0 \\ 655129.4 \\ 65345.0 \end{gathered}$ | $\begin{gathered} 153 i^{\prime} \\ 15 \% 1 \\ 153429.4 \\ 1539 \\ 3.6 \end{gathered}$ | $\begin{aligned} & 2\left(26.9 C^{+}\right. \\ & 23.6) \\ & 23.5 \end{aligned}$ | Kimura Midzusima Nakamura | Midzusima Nakamura Midzusima |
| Mean | 0.29555 |  |  |  |  |  |  |  |  |  |
|  |  |  |  | Rerluction | to .. se | $\begin{aligned} H & =0.2 \\ 1895.0 & = \\ \text { a level } & = \\ I I & =11 . \end{aligned}$ | $\begin{aligned} & 9855 \\ & 1324 \\ & 555 \\ & 9 \times 74 \end{aligned}$ |  |  |  |

## 12. KAMISUWA.

DECLINATION ( $\delta$ )
( Anervations of the East lanty, ls:


DII ${ }^{\prime}(\theta)$
Olservations of the Last larty, 1893.

| Date and Hour (Mean Local Time.) |  |  | Needle No. |  |  | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Tul ${ }^{-1}$ | $24^{\text {th }} 22^{\text {a }}$ | $7.4^{\mathrm{m}}$ | 1 |  | 14: | Nakamura | Nakamurit |
| ,. | $25^{\text {th }} 12$ | 13.8 | 1 |  | 19.4 |  | Kimura |
| .. | ,$\quad 17$ | 8.3 | 1 |  | 50.2 | Migzusima | Nakamma |
|  | 36 26 |  | 1 |  | 41.4 36.5 | Kimmra | Kimura |
| Mean |  |  |  |  | 1 |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |

HORIZONTAL 1NTENSITY (IL)
(*'elue tecturel from Vibration only by assuming Felue of 11.) Observations of the East Party, 1893.

13. MATUMOTO. Middle School.
DECLINATION ( $\delta$ )
Ulservations of the East Party, 18:\%3.


| Date and Hour <br> (Mean Local Times.) |  |  |  |  | $\delta$ |  | Ohserver | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| July | 29 ' | 311 | 81 m | 4 | 41, | $19^{\prime \prime}$ | Kimura | Tmori |
| ", | ., | 4 | 21 | .. | 40 | 46 | Ómori | Kimura |
| " | , | $\bigcirc$ | 13 | .. | 38 | 41 | Kimmra | Omori |
| " | , | 7 | 37 | " | 34 | 15 | Omori | Kimura |
| " | .. | \% | 7 | .. | 33 | 57 | Kimura | Omori |
| " | " | S | 31 | $\because$ | $3: 3$ | 8 | Omori | Kimura |
| " | " | 9 | 48 | . | 36 | 51 | Nakamura | Midzusima |
| , | " | 11 | 52 | - | 41 | 4 | Mirlzusima | Nakamura |
| " | " | 11 | 44 | " | 42 | 52 | Nakamura | Midzusima |
| .. | .. | 12 | 55 | . | 47 | 4 | Midzusima | Nakamura |
| , | . | 13 | 1 | . | 45 | 26 |  |  |
| ," | .. | 13 | 41 | ,. | 45 | 35 | Nakamura | Mridzusin: |
| ," | .. | 14 | 21 | .. | 4 | 48 | OTmori | OTmori |
| ", | ., | 14 | 52 | ., | 43 | 49 | ,, | ,, |
| ", | .. | 15 | 21 | .. | 43 | 20 | ", | " |
| , | , | 15 | 51 | .. | 42 | 46 |  |  |
| ", | " | 17 | 1 | ., | 40 | 22 | Midzusima | Nakamura |
| ., | ,. | 17 | 31 | ., | 39 | $3!$ | Nakamura | Midzusima |
| " | , | 18 | 12 | " | 39 | 48 |  |  |
| .. | .. | 18 | 40 | ., | 34 | 21 | Midzusima | Nakamura |
| ., | " | 19 | 33 | ., | 40 | 30 |  |  |
| ., | ., | 20 | 8 | ," | 40 | 14 | Omori | Midzusimat |
| .. | . | 21 | 30 | , | 39 | 58 |  | Nakamura |
| , | , | 22 | 38 | , | 38 | 24 | Nikamura | ., |
| ., | $\cdots$ | 23 | 45 | ,. | 38 | 20 | ., | , |
| .. | $30^{+11}$ | 1 | 25 | . | 38 | 38 | ., | " |
| " | , | 12 | 30 | ., | 37 | 33 | :. | .. |
| " | ., | $\stackrel{2}{2}$ | 47 | " | 37 | 42 | .. | , |
| ., | - | 5 | 51 | " | 35 | 39 | " | , |
| , | ., | (i) | 12 | ., | 35 | 19 | .. | " |
| Mean |  |  |  | 4 | $40^{\prime}$ | $0^{\prime \prime}$ |  |  |
|  |  |  |  | Reduction to $1595.0=1.80$ |  |  |  |  |

DIP ( $\theta$ )
Observations of the East Party, 18:93.

| Date and Jour <br> (Mean Local Time.) |  |  |  | Nearle No. | $\theta$ |  | Olsserver | Hecorder | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| July | $28^{\text {th }}$ | $8^{\text {h }}$ | $55.5{ }^{\text {m }}$ | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ | 5049 | $\begin{array}{r} 3!0 \\ 59.0 \end{array}$ | Kimura Midznsima | Nakamura <br> Midzasima |
| " | " | 12 | 18.7 |  |  |  |  |  |
|  | „, |  | 23.5 | 1 |  |  | .. | ., |
| , | ,. | 14 | 24.8 | 1 |  | 59.8 1.2 | .. | , |
| " | " |  | 34.7 | 1 | .. 1.0 |  | . | $\because$ |
| " | , |  | 20.6 | 1 | ., 1.8 |  | " | .. |
| " | " | 17 |  | 1 | 1.7 |  | . | . |
| " | $\stackrel{\square}{\prime}$ | 19 19 | 5.5 24.7 | 1 | ,', 1.6 |  | " | $\cdots$ |
|  | " |  |  |  | 1.8 |  |  | .. |
| Mean |  |  |  |  | $50^{\circ}$ | 1:2 |  |  |
| Reduction to $\quad \begin{aligned} \quad 1895.0 & =50^{\circ} \quad 1!2 \\ & =0.72\end{aligned}$ <br> , sea level $=-0.06$ |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |

HORIZONTAL NTENSITY (II)
Observations of the East Party, 1893.

| Date ant Hour Mean Xocal Time.) | / | H | Mean <br> Temp. | Time of $1-\mathrm{Vib} b^{n}$ | $\begin{gathered} \mathrm{T} \mathrm{~m}, \mathrm{~m} . \\ \mathrm{t}_{\mathrm{r}} \end{gathered}$ | Mean D <br> $Q_{1}$ | Hections <br> $\varphi_{2}$ | $\begin{gathered} \text { Temil } \\ t_{v} \end{gathered}$ | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| July $27^{\text {th }} 133^{\text {h }}$ [0m | *0.29578 | 473.24 | 28.10 | 5.5377 | 29.6 C | (6506) 1 ! 5 | $15^{\circ} 44^{\prime}$ ! $3^{\prime} 4$ | $28.4 \mathrm{C}^{\circ}$ | Kimmia | Nakaturara |
|  | 0.29585 | 476.56 | 17.2 | 5.5354 | 17.1 | 65931.2 | 15.22 .4 .6 | 16.9 | Nakammara | Kinura |
| ,. $28^{\text {+17 }}$ \& 8 \% | 0.2957 | 475.82 | 19.6 | 5.5419 | 20.5 | 65910.0 | 155158.1 | 18.7 | Kimura | Nakamura |
|  | 0.99585 | 477.01 | 16.0 | 5.532:3 | 15.9 | 65934.4 | 15 5! 24.4 | 16.0 | Omori | Kimura |
| ", , ¢ 50 | 0.24561 | 476.34 | 18.9 | 5.5194 | 19.5 | 65935.7 | 15 9238.1 | 18.1 | Kimura | Ömori |
| ,. | 0.2 21552 | 474.33 | 25.8 | 5.5550 | 27.9 | 658 6.! | 154910.6 | 23. ${ }^{\text {c }}$ | Nakamura | Midzusima |
| ,. ${ }^{2}$ | 0.25551 | 473.80 | 26.5 | 5.5570 | 27.7 | 65730.6 | 154758.7 | 25.4 | Midzusima | Nakamura |
| ", | 0.29556 | 473.88 | 26.5 | 5.5510 | 26.6 | 657 6.9 | 154956.9 | 26.4 | Nakamua | Midzasima |
| $\because \% \quad$.. 12 43 | 0.29603 | 472.64 | 30.3 | 5.5582 | 30.9 | 65552.5 | $15+448.1$ | 29.7 | Midzasima | Nakamura |
| $\because \% \quad, \% 13$ 32 | 0.29540 | 472.63 | 31.1 | 5.5630 | 31.8 | 65559.4 | 154351.9 | 30.5 | Nakamma | Midzusima |
| $\begin{array}{lllll}\because \\ \% & ., & 16 & 50\end{array}$ | 0.29603 | 471.05 | 34.2 | 5.5672 | 34.5 | 6548.1 | 154030.6 | 33.5 | Midzusima | Nakamura |
|  | 0.29564 | 472.85 | 29.0 | $5.56,00$ | 29.3 |  | 154434.4 <br> 1545 <br> 154 | 28.8 | Vilkamura | Midzusima <br> Varamura |
| ,. $\quad$, 1913 | 0.29584 |  | 26.7 | 5.5514 | 26.9 | 65643.1 | 154554.4 | 24, 9 | Midzonima <br> (Ōmeri | Nakammra |
| ,. .. 2112 | 0.29572 | 473.92 | 25.9 | 5.5536 | 26.2 | 6572.5 | 154648.1 | 20.5 | \{ ., | Nakamma |
| ,. .. 2211 | 0.29590 | 474.19 | 24.4 | 5.5187 | 24.3 | $657 \quad 6.9$ | 154719.4 | 24.5 | Nakamma | Omori |
|  | 0.29573 |  |  |  |  |  |  |  |  |  |
| $H=0.29573$ |  |  |  |  |  |  |  |  |  |  |
|  |  |  | Reduction to |  |  | $1895.0=$ | 1287 |  |  |  |
|  |  |  |  |  |  | level = |  |  |  |  |
|  |  |  | $\Pi=0.295: 5$ |  |  |  |  |  |  |  |

## 14. ŌMATI.

## 1)ECLINATION ( $\delta$ )

Olservations of the East Party, 18:3:

| Date and Hour (Mean Local Time.) |  |  |  |  | $\delta$ |  | Observer | lieomber |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Juty | $30^{\text {th }}$ | $21^{1 /}$ | $51^{\mathrm{m}}$ | $t$ | $55^{\prime}$ | $54^{\prime \prime}$ | Nakamura | Kimura |
| ," | ,, | 22 | 59 | , | 56 | 4 | Midzusim? | Mintansima |
| " | $\because$ | 23 | 45 | . | 5.5 | 418 | .. | :. |
| " | $31^{\text {st }}$ | 0 | 43 |  | 55 | 18 | . | ., |
| " | " | 1 | 52 | " | 54 | 52 |  |  |
| ", | ", | 2 | 30 | " | 54 | 21 | * | " |
| ", | ", | 4 | 14 | , | 51 | 51 | ., | ., |
| , | ,, | 5 | 0 | , | 54 | 21 | , | .. |
| " | ," | (; | ! | , | 52 | 53 | .. | ,. |
| " | " | ${ }_{6}^{6}$ | 50 | .. | 51 | 7 | . | ., |
| ", | , | 7 | :8 | ., | 50 | 111 | . | ," |
|  | ", | \% | 24 | .. | 51 | 11 | * | .. |
| ", | , | 9 | 1 | .. | 51 | ' | ., | , |
| ,. | ,. | $!$ | 26 | .. | 52 | ! | $\cdots$ | , |
| " | , | 10 | $1: 3$ | , | 54 | 11 |  |  |
| ", | .. | 11 | 51 | ,. | 58 | :11 | Kimura | Nakamma |
| ", | ,. | 12 | 27 | , | 59 | 10 | Nakammra | Kimura |
| " | " | 13 | 2 | $\bar{\square}$ | 0 | 4 |  | Nakamurn |
| " | " | 18 | 3:3 | 4 | 59 | 44 | Kinuma |  |
| " | " | 14 | 13 | , | 5 | $3!$ | Nakaumura | himura |
| , | " | 15 | 17 | : | 5n | 39 | Kimuris | Omori |
| ", | ", | 16 | 19 | " | Si | ${ }^{\text {t. }}$ | Omori | Nikamura |
| ", | ", | 17 | 58 | " | 51 | 3 | Ommori | Nekamina |
| , | ", | 19 | 39 | .. | 55 | 3: | Nakamuza | Omori |
| " | ,. | 20 | 30 | ., | 55 | 25 | Omori | Kimura |
| AMg. | 'ist | 21 | 49 | " | 5.5 | $!$ | Kimura |  |
| Ang. |  |  | 0 4 4 | ". |  | 17 1 | Ommi | Omori <br> Kimnara |
| Mean |  |  |  |  |  |  |  |  |
|  |  |  |  | $4{ }^{\circ}$ | $55^{\prime}$ | $10^{\prime \prime}$ |  |  |
|  |  |  |  | Retuction to |  |  | 56.17 |  |
|  |  |  |  |  |  |  | 1.91 |  |
|  |  |  |  |  | $-0.0 .5$ |  |
|  |  |  |  |  | 37.1 |  |

I) [1' ( $\theta$ )

Onervations of the East Pats, $1 \times 33$.


HORIZONTAL 1NTENSI'TY (II)
(*'Hlue dolweed from Vibration only by assuming lialue of M)
Oliservations of the East Party, 1893.


## 15. KURUMA.

DECLINATIONS ( $\delta$ )
OIservations of the East Party, 1893.


DII ( $\theta$ )
Observations of the East Party, 1x:t3.

\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Date and Hom \\
(Mean Local Time.)
\end{tabular} \& Needle No. \& \& - \& Observer \& Hecorder \\
\hline  \& 1 \& ¢!

, \& \[
$$
\begin{aligned}
& 14!4 \\
& 19.1
\end{aligned}
$$

\] \& Kimura Nakamura \& | Omori |
| :--- |
| Nakamuia | <br>

\hline Mean \& \& 50 \& 16:8 \& \& <br>
\hline \& \multicolumn{5}{|l|}{} <br>
\hline
\end{tabular}

HORIZONTAL NNTENSIIY (IL)
Olservations of the East Party, 1893.


## 16 ITOIGAWA.

DECLINATION ( $\delta$ )
Ohservations of the West Party, 18:8.3.


D1P ( $\theta$ )
(1)mervations of the East Party, 1893.

| Date and frour <br> (Mean Local Time.) | Needle No. | $\theta$ | Observer | Recorter |
| :---: | :---: | :---: | :---: | :---: |
|  | 1 | $\begin{array}{ll} 51 & 8: 4 \\ & 6.3 \end{array}$ | ̄̄mori | Fimurat Nakamma :. |
| Mean |  | $51^{\circ} \quad 7!4$ |  |  |
|  |  |  |  |  |

Observations of the West Party, 1893.

| Date and Homr <br> (Mean Local Time.) |  |  | Needle No. |  | $\theta$ | Olserver | Recorter |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| July | $8^{\text {h }} 11^{\text {h }}$ |  |  | 51 | 5) \% | Turuta | Turuta |
|  | $9^{7}{ }^{\text {th }} \quad \begin{array}{r}16 \\ 0\end{array}$ |  |  | " | $\begin{aligned} & 55.11 \\ & 57.2 \end{aligned}$ | Iwaoka | Iwaoka |
| Mean |  |  |  | 50 | 58:2 |  |  |
| $\theta$ $=50$ $58!2$  <br> Reduction to  1895.0 $=$ <br>  -1.37   <br> .$\quad \because \quad$ seab level $=$ 0.00  <br> $\theta$ $=50$ $56!8$  |  |  |  |  |  |  |  |

HORIZONTAL INTENSITY (H)
Observations of the East Party, 1893.


Observations of the West Party, 1893.

| Date and Hour (Ifean Local Time.) | II | M | Mean Temp. | $\begin{aligned} & \text { Time of } \\ & \text { 1-Vib, }, \end{aligned}$ | $\begin{gathered} \operatorname{Temp} \\ \mathrm{t}_{\mathrm{v}} \end{gathered}$ | $\left\lvert\, \begin{gathered} \text { Mean De } \\ \varphi_{1} \end{gathered}\right.$ | flections <br> $\varphi:$ | $\text { Temp }_{t_{D}}$ | Observer | Hecorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| OMet. 8th $9^{\text {at }} 10 \mathrm{~m}$ | 0.29277 | 452.62 | 21.4 C | 5.7715 | $20.6 \overline{\mathrm{C}}$ | $639733 \%$ | $1512{ }^{\prime} 40 \div 0$ | 22.2 | Iwnoka Turutir | Turuta I waoka |
| " , , $14 \begin{array}{ll} \\ \end{array}$ | 0.29300 | 451.80 | 23.9 | 5.7777 | 24.5 | $63 \times 15.0$ | 151048.0 | 23.3 | I wäoka | Turuta |
| ., ,. 1750 | 0.29278 | 453.39 | 18.7 | 5.7704 | 19.8 | 64051.0 | 151539.0 | 17.6 | Turuta | I waoka |
| Mean | 0.29285 |  |  |  |  |  |  |  |  |  |
| $I I$ $=0.29285$   <br> Reductions to 1895.0 $=$ 1171 <br> $, \quad, \quad$ sea level $=$ 000  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |

## 17. TAKATA.

DECLINATION ( $\delta$ )
Observations of the East Party, 1893.


| Date and Hour （Mean Local Time．） |  |  |  | $\delta$ |  |  | Ohiserver | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & 15^{51} \\ & 16 \\ & 17 \\ & 17 \\ & 18 \\ & 18 \\ & 19 \\ & 20 \\ & 20 \\ & 21 \\ & 21 \\ & 22 \\ & 23 \\ & 11 \\ & 0 \\ & 1 \\ & 2 \\ & 3 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 16 \\ & 6 \\ & 9 \\ & 9 \\ & 10 \\ & 11 \\ & 12 \\ & 12 \\ & 13 \\ & 14 \\ & 14 \\ & 15 \\ & 15 \\ & 16 \\ & 16 \\ & 17 \\ & 18 \\ & 18 \\ & 19 \end{aligned}$ | 20 m <br> 25 <br> 5 <br> 34 <br> 17 <br> 17 <br> 50 <br> 73 <br> 26 <br> 26 <br> 5.2 <br> 18 <br> 20 <br> 5 <br> 3 <br> 3 <br> 51 <br> 51 <br> 36 <br> 35 <br> 45 <br> 46 <br> 24 <br> 2 <br> 20 <br> 26 <br> 21 <br> 21 <br> 53 <br> 43 <br> 40 <br> 17 <br> 59 <br> 31 <br> 19 <br> 47 <br> 7 | \％ | $\begin{gathered} 14^{\prime} \\ 11 \\ 10 \\ \vdots \\ \vdots \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ 6 \\ 7 \\ 7 \\ 7 \\ 3 \\ 3 \\ 5 \\ 6 \\ 6 \\ 11 \\ 11 \\ 12 \\ 13 \\ 1: 3 \\ 14 \\ 13 \\ 11 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 13 \end{gathered}$ |  | Omori <br> Nakamura Omori lakamura Omori Nakamura $\qquad$ －＊ <br> Mithsim： $\qquad$ ．． $\qquad$ $\ddot{\square}$ ．． ＂， O＂mori Vakamura <br> Nakämu：a Omori Nakamura Omori Mid\％usima $\because$ $*$ $*$ s ：4 Nakammra Midzusim： | Nakamura Omori Nakamura Omori Nakamura Omori Nakamura ＂ Midzusima <br>  <br> Nakamura Omori Nilkamura Ömori Nakamura Ōmori Nakamura Mic\％usim $\because$ $\because$万品ori Midzusima Nakamura |
| Mean |  |  |  |  | $9^{\prime}$ | ：33＇ |  |  |
|  |  |  |  |  |  |  |  |  |

DII＇（ $\theta$ ）
Onservations of the East Party，1893．

| $\begin{aligned} & \text { Dat } \\ & \text { Mean } \end{aligned}$ | $\begin{aligned} & \text { amd } \\ & \text { Loc:al } \end{aligned}$ | $\begin{array}{r} \mathrm{Hou} \\ 1 \mathrm{TO} \end{array}$ | ime.) | Needle No． |  |  | （1）smer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Aug． | $4^{\text {th }}$ | $21^{\text {h }}$ | $32.4{ }^{\text {m }}$ | 1 | $50{ }^{\circ}$ | 55\％ | Mitynsima | $\overline{\text { Omori }}$ |
| ．， | 5 th | 12 | 35.6 | 1 |  | 58.5 |  | Midzusim： |
| ．． | ， | 16 | 49.2 | 1 | ．， | 55.5 | Nakiamunt | Omori |
| ： | $\because$ | 19 | 18.9 | 1 | ＂ | 52.6 | Ōmori | Nakamura |
| ＂， | 瑗 | 0 | 29.8 | 1 | ＂ | 58.1 | Midzusima | Midzusima |
| － | ．－ | 10 | 15.2 | 1 | ， | 54.4 | Omori | Nakamur |
| ： | ．， | 12 | 39.4 | 1 |  | 52.6 | Nakamma | Omori |
| ＂ | ．． | 16 | 0.5 | 1 | ．． | 57.5 | Midzusima | Midzusima |
| ， | ．， | 18 |  | 1 | ， |  | Nakamma |  |
| ， |  | 20 | 10.8 | 1 | ＂ | 59.1 | Midzusinat | Omori |
| Mean |  |  |  | $50-56.0$ |  |  |  |  |
|  |  |  |  | Reduction to 1895. |  |  | 56.0 |  |
|  |  |  |  | $\begin{array}{r} -1.27 \\ 0.00 \end{array}$ |  |
|  |  |  |  | ．， | ，，sea lerel $=$ |  |
|  |  |  |  | $\theta=500^{2} 51 \%$ |  |

HORTZONTAL INTENSITY (II)
Olservations of the East larty, 1893.


## 18. SEKIYAMA.

DECLINATION ( $\delta$ )
Observations of the East Party, 1893.

| $\underset{\text { Da }}{\stackrel{\text { Mea }}{ }}$ | and | $\begin{array}{r} \text { Hou } \\ \text { al Tir } \end{array}$ | e.) |  | $\delta$ |  | Ohserrer | Recurtar |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ang. | $7^{\text {th }}$ | ith | $37^{\mathrm{m}}$ | - | $1{ }^{\prime}$ | $42^{\prime \prime}$ | Midrusima | Kimma |
| , | .. |  | 19 | - | 11 | 33 |  |  |
| : |  |  | 30 | " | 58 | 51 | Nakamura | Midzusim: |
| ., |  |  | 40 | 4 | 59 | 32 | Ómori | Nakamura |
| - | .. | ? | 29 | . | 5\% | 20 | Nakamura | Omori |
| " | * | 2 | 20 | " | 87 | 4 | Ommi | Nakamuria |
| $\stackrel{.}{ }$ | " | 3 | 2 | " | 5. | 3 | Niskamman | Omori |
|  |  |  |  |  |  |  |  |  |
| Mean |  |  |  | 4 | $58^{\prime}$ | $35^{\prime \prime}$ |  |  |
| $\delta=4 \quad 58.5 ¢$ |  |  |  |  |  |  |  |  |
|  |  |  |  | Reduction $t$ |  | $\begin{array}{r} 1895.0= \\ \text { sea level }= \end{array}$ | $\begin{array}{r} 2.03 \\ -10.05 \end{array}$ |  |
|  |  |  |  |  |  |  |
|  |  |  |  | 杨 | 0.6 |  |  |

DI' ( $\theta$ )
Observations of the East larty, 1893.

| Date and Hour (Mean Local Time.) | Neerle No. | $\theta$ | Whserver | Recorrter |
| :---: | :---: | :---: | :---: | :---: |
|  | 1 1 1 | $\begin{array}{cc}50^{\circ} & 52.4 \\ " & 55.4 \\ " & 54.4\end{array}$ | Nakamura त̄mori Nakamurit |  |
| Mean |  | $50^{\circ} \quad 54!1$ |  |  |
|  | Rentuction <br> 110R1Z0 <br> bservation | $\begin{array}{r} \theta= \\ 180)= \\ \text { seat level }= \\ \hline \theta= \end{array}$ <br> L INTENSI the East P: | $54!1$ <br> -1.12 <br> 0.03 <br> 53.0 <br> $(I I)$ <br> 1893. |  |


| Date and Hour (Mean Local Time.) | IL | M | $\begin{gathered} \text { Mean } \\ \text { Temp. } \end{gathered}$ | Time of1.Vib | $\begin{gathered} \mathrm{Te} \cdot \mathrm{~m}_{1} \\ \mathrm{t}_{v} \end{gathered}$ | Mean Deflections |  | $\begin{gathered} 1 \cdot m \mathrm{~m} \\ \left.\mathrm{t}_{\mathrm{p}}\right) \end{gathered}$ | Onserver | Recorter |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\varphi_{1}$ | $\varphi_{2}$ |  |  |  |
| Ang. $7^{\text {th }} 18{ }^{\text {ch }} 0 \mathrm{~m}$ | 0.29309 | 470.32 | 28.8 C | 5.5986 | $28.7{ }^{\circ}$ | $658{ }^{\prime \prime} 718$ | $15.51{ }^{\circ} 31 \% 2$ | $28.80^{\prime}$ | Nakammra | Omori |
| ., :, $20 \quad 17$ | 0.29318 | 471.55 | 26.0 | 5.5914 | 26.6 | 155849.2 | 155116.3 | 25.5 | Midyrnsim: | Kimmra |
| .- $8^{\text {th }}$ 0 23 | 0.29325 | 471.97 | 23.9 | 5.5874 | 24.1 | 6598.8 | 155214.3 | 23.5 | Tomori | Nakamura |
| " $\quad . \quad 113$ | 0.29330 | 471.41 | 25.5 | 5.5900 | 25.5 | (15835.0 | 15514.4 | 25.6 | Nakammrı | Omori |
| Mean | 0.29320 |  |  |  |  |  |  |  |  |  |


| Reduction |  | $11=$ | 0.29320 |
| :---: | :---: | :---: | :---: |
|  | to | $1895.0=$ | 1218 |
| ,. | .. | sea level = | 7.4 |
|  |  | $1 /=$ | 11.213 .11 |

19. NAGANO.

DECIINATION
( $\delta$ )
Ohservations of the East Party, 1893.


DIP ( $\theta$ )
Observations of the East Party, 18:53.


HORIZONTAL INTENSITY (ll)
(* V'alue deduced fiom Tilutalion ouly by assmuing Vielue of M.)
Olservations of the East Party, 1893.

| Dite and Hour (Mean Local Time.) | II | . $1 /$ | Mean Temp. | Time of 1-Vib ${ }^{n}$. | Temp. ${ }_{5}$ | Mean Deflections |  | Temp | (1)server | Firecmiter |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | F1 | $\psi_{2}$ |  |  |  |
| Aug. $8^{\text {th }} 20^{\text {fi }} 1^{\text {m }}$ | 0.29295 | 471.31 | 27.6 C | 5.5939 | 27.00 | 6.58'25\% 6 | $1550 \cdot 32!5$ | 27.10 | Kimuria | Gmori |
| ,. , 2226 | 0.29313 | 471.55 | 27.0 | 5.5911 | 27.2 | fi5838.8 | 155044.4 | 27.9 | Nakammra | Midzusima |
| ., $\quad 9^{\text {th }} 93031$ | 0.29287 | 470.35 | 31.7 | 560104 | 31.7 | 05728.8 | 154731.9 | 31.8 | Kimura | Onnori |
| ,. $\quad$, 1119 | 0.29336 | 468.32 | 34.7 | 5.6068 | 35.2 | ¢ 55538.8 | 154445.7 | 34.2 | Omori | Kimura |
| \% $\quad, \quad 1232$ | 0.29362 | 468.76 | 35.1 | 5.6160 | 36.1 | 65618.1 | 154513.7 | 34.3 | Kimura | 1)mori |
| :. $\quad 16 \quad 1631$ | 0.29339 | 470.33 | 29.9 | 5.5969 | 30.1 | 65721.2 | 154752.5 | 29.4 | Nakamuma |  |
| ", ", 18505 | *0.29312 | 471.11 | 26.6 | 5.5936 |  |  |  |  | Comori | Niakitumat |
| " $\% \quad \begin{array}{llll} & 20 & 25 \\ " & 23 & 23\end{array}$ | 0.29439 0.29307 | 470.77 471.98 | 26.2 24.5 | 5.5900 5.5892 | 26.3 24.7 | 6575.5 .0 659 659.0 | 155016.9 155132.5 | ${ }_{26}^{24.1}$ |  |  |
| " $\%$ 10\% $0^{\text {th }} 6381$ | 0.29308 | 471.54 | 23.8 | 5.5918 | 24.0 | 6590 | 155150.0 | 23.5 | Omori $^{\text {Ond }}$ | akamurat |
| " $\quad$, 741 | 0.29299 | 471.40 | 25.2 | 5.5936 | 25.5 | 65849.1 | 155116.2 | 25.9 | Nakamura | Omori |
| " $\quad$ " 81043 | 0.29319 | 469.96 | 28.7 | 5.5932 | 28.4 | 65716.9 | 15484.4 | 29.0 | ()mori | Sikamuria |
| " $\% \quad 1080$ | 0.29349 | 468.68 | 33.7 | 5.6060 | 34.2 | 65555.6 | 15450.6 | 33.2 | Midzusima | Kimura |
| .. $\quad 12120$ | 0.29315 | 469.05 | 34.7 | 5.6074 | 35.8 | (6) 5619.4 | 154511.8 | 33.5 |  | ., |
| Mean | 0.24325 |  |  |  |  |  |  |  |  |  |


|  | $\pi=$ | 11.29:3\% |
| :---: | :---: | :---: |
| Reduction to | $1895.0=$ | 1 111 |
| , .. | sea level = | 5211 |

20. IYAMA.

DECLINATION
( $\delta$
Observations of the East Party, 1833.


1III ( $\theta$ )
Ober Fations of the Jiast liarty, In:

| Date atal homr <br> (Mean S.ocal Time.) | Needle No. | ${ }^{\text {Li }}$, |  | Observer | Fiecorder |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Aug. $11^{\text {th }} \quad 18^{\text {h }}$ 49.3m | 1 | 31 | 15.5 | Ömori | Nakamura |
| , „ | 1 | " | 44.3 | Kimura | Kimura |
| . 1Eth in 18.9 | 1 | . | 43.2 | $\overline{\text { Omori }}$ | Nakamurat |
| , .. 11 10.: | 1 | . | 11.4 | Nakamura | Omori |
| Mean |  | $510^{\circ}$ | $44!3$ |  |  |
|  | lieduction to |  | $\theta=$ | $\begin{gathered} 41: \% \\ -1.11 \\ -0.012 \\ 43: \overline{2} \end{gathered}$ |  |
|  |  |  | $18: 5.0=$ |  |  |
|  | .. | s | lesel = |  |  |
|  |  |  |  |  |  |

## HORTZONTAL 1NTENSTTY (1I)

(* Thue deducal from Vibration only by assuming Value of M.)
Observations of the East Party, 1s!! ;


## 21．TOKAMATI．

Bleaching ground（有 㑂 シ 場）
DECLINATION（ $\delta$ ）
Observations of the Fast l＇arty． $18 \% 3$.


DII（ $\theta$ ）
Oliservations of the Last Party， 1893.

| Inate and Hour （Mean Local Time．） | $\begin{aligned} & \text { Needte } \\ & \text { No. } \end{aligned}$ |  | $\theta$ | Observer | liecortor |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & 1 \\ & \hline- \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ | $\begin{gathered} 50 \\ ", \\ " \\ ", \\ \therefore \\ =9 \\ " \\ " 9 \end{gathered}$ | $\begin{aligned} & 57.5 \\ & 58.9 \\ & 56.8 \\ & 55.9 \\ & 56.5 \\ & 54.3 \\ & 53.2 \\ & 56.5 \end{aligned}$ | Ömori Nakamura Midzasima <br> Ömori <br> Mirzösima | Omori <br> Nakamura <br> ＂ <br> Midzusima <br> Ömori <br> Midzusima <br> Omori |
| Mean |  | $50^{\circ}$ | 5f\％ 2 |  |  |
|  | Reduct |  | $\begin{array}{r} \theta=5 \\ 1895.0= \\ \text { level }= \\ \hline \theta=5 \end{array}$ | $\begin{gathered} 50!3 \\ -0.97 \\ -0.01 \\ \hline 55!2 \end{gathered}$ |  |

HORIZON IAL INTENSITY（H）
Observations of the East Party， 1993.

| Date and Hour （Mean Local Time．） | 11 | M | $\begin{gathered} \text { Mean } \\ \text { Temp. } \end{gathered}$ | Time of 1－Vib… | Temp． | Mean Deflections |  | $\operatorname{Temp}$ | Obserrer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $Q_{1}$ | 9. |  |  |  |
| Ang． $14^{\text {th }} 1^{\text {h }} 38{ }^{\text {m }}$ | 0.29355 | 471.54 | 22.9 C | 5.5860 | 22.6 C | $6^{\circ} 58^{\prime} 6!2$ | $15^{\circ} 49^{\prime} 36 \% 9$ | 23：2C | Nakamura | Midzusima |
| ，$\quad$ ， 7 45 | 0.23426 | 470.32 | 27.7 | 5.5904 | 27.8 | 65630.6 | $1546 \quad 6.2$ | 27.6 | Midzusima | N．kammra |
| ＂，\＃！ 33 | 0.29326 | 468.14 | 32.9 | 5.6113 | 33.5 | 65525.6 | 154314.4 | 32.3 | Kimnra | Omori |
| $\because \quad \% \quad 10 \quad 36$ | 0.29308 | 468.14 | 34.7 | 5.6132 | 35.3 | 65512.5 | $1542 \quad 3.7$ | 34.2 | On ori | Kimura |
| ．，．． $12 \quad 27$ | 0.29311 | 467.20 | 36.8 | 5.6189 | 37.5 | 654.9 .4 | 153931.9 | 36.1 | Kimura | Omori |
| ，＂， $13 \times 28$ | $0.2936{ }^{2}$ | 467.27 | 36.3 | 5.6126 | 36.6 | 65347.5 | 153915.0 | 36.1 | Omori | Kimura |
| \＃$\quad 1 \begin{array}{lll}18 & 19\end{array}$ | 6.29318 | 468.19 | 30.7 | 5．C040 | 31.1 | 65528.7 | 154254.4 | 30.5 | Midzasima |  |
| $\because \quad 3.21 .45$ | 0.29388 | 470.92 | 24.0 | 5.5887 | 24.7 | 65718.1 | 154738.8 | 23.4 | Kimmra | Ōncri |
| ＂ $15^{\text {th }}$ ¢ $10 \begin{gathered}3 \\ 3\end{gathered}$ | 0.29364 | 471.38 | 22.5 | 5.5871 | 22.7 | 65746.3 | 154831.9 | 22.3 | Minzusim | vi, 品sima |
| ＂$\quad 7 \quad 3 \quad 39$ | 0.29369 | 471.42 | 22.3 | 5.5860 | 22.3 | 65735.0 | 154755.6 | 22.3 | Omori | Midzusima |
| Mean | 0.23356 |  |  |  |  |  |  |  |  |  |


| $H$ | $=$ | 0.29356 |
| ---: | ---: | ---: |
| Reduction to 1895.0 | $=$ | 11.3 .5 |
| ,$\quad$ sea level | $=$ | 210 |
| $H$ | $=0.29,318$ |  |

## 22．NAGAOKA．

Sakagami School．（坂上學梭）
DECLINATION（ $\delta$ ）
Observations of the East Party， 1895.

| Date and Hour （Mcan Local Time．） |  |  |  | $\delta$ |  | Observe： | Recerder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ang． | $26^{\text {th }} 21^{\text {h }}$ | 27 m | $5^{\circ}$ | $12^{\prime}$ | $27^{\prime \prime}$ | Nakamura | Ōmori |
| ＂ | ＂ 21 | 42 | ＂ | 12 | 32 |  |  |
| ： | $\cdots 23$ | 19 | ＂ | 13 | 3 | Omori | Nakamura |
| ， | $27^{\text {\％}} 11$ | 26 | ， | 12 | 21 | Nakammra | Omuri |
| ： | ．， 6 | 5 | ＂ | 14 | 37 | ．． | Nithmura |
| ， | ．．${ }^{6}$ | 29 | ＂ | 13 | 21 |  | Omori |
| ＂ | ．． 7 | 25 | ＂， | 3 | 32 | Omori | Nakamma |
| ＂ | $\cdots$ | 57 | ＂ | 7 | 55 | Nakamurat | Omori |
| ， | ．， 8 | 39 | ＂ | 6 | 22 | Kimura | Kimura |
| ＂ | ．． 9 | 2 | ＂ | 6 | 42 | ， | ， |
| ．． | －． 111 | ${ }^{6}$ | ＂， | 7 | 41 | ．． | ＂ |
| ＊ | ． 11 | 111 | ， | 11 | 14 | ， | ＂ |
| ：－ | ．． 11 | 11 | ， | 10 | 50 |  | ＂ |
| ＂ | ．， 12 | 12 | ＂， | 13 | 35 | Nitkammet | Nakamura |
| ， | ， 12 | 37 | ＂ | 13 | 48 | ：， | ， |
| ＂ | ， 13 | 3 | ＂， | 14 | 14 | ＂ | ．， |
| ＂ | －， 13 | 20 | ＂， | 14 | 23 | ＂ | ．， |
| ＂ | ，． 13 | 42 | ＂， | 14 | 52 | ＂ | ， |
| Mean |  |  | $5^{\circ}$ | $12^{\prime}$ | $17^{\prime \prime}$ |  |  |
|  |  |  | $\delta=5^{C} \quad 1222 \mathrm{~S}$ |  |  |  |  |
|  |  |  | Recluction to |  | $1895.0=$ | 2.04 |  |
|  |  |  | －， |  | gear | 0.00 |  |
|  |  |  | $8=5^{\circ} \quad 14!3$ |  |

D1P ( $\theta$ )
Olservations of the East Party, 1893.

| Date and Homr (Mean Local 'Time.) |  |  |  | Needle No. |  | $\theta$ | Observer | Becorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ang. <br> $" \#$ <br> $"$. <br> $"$. <br> $"$. <br> $"$ <br> $"$ <br> $"$ | $\begin{aligned} & 15^{\text {th }} \\ & 16^{\mathrm{th}} \\ & \text { " } \\ & \ddot{18} 8^{\mathrm{th}} \\ & " . \\ & . " \\ & \hline \end{aligned}$ | 20 3 3 7 9 1 6 7 8 8 | 57.5 13.8 3.2 18.2 28.2 7.7 13.8 50.3 33.4 | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & \hline 1 \end{aligned}$ | 51 <br> $"$ <br> $"$ <br> $"$ | $\begin{aligned} & 38.0 \\ & 34.6 \\ & 40.1 \\ & 43.6 \\ & 38.2 \\ & 34.8 \\ & 34.7 \\ & 37.6 \\ & 37.6 \end{aligned}$ | Midzusima <br> Nakamura <br> Kimura <br> Omori <br> " <br> 9) <br> Midzusima <br> Nakamura | Ōmori Nakamura Kimura Ōmorí <br> *) <br> 3) <br> $\because$ <br> Nakamura <br> " |
| Mean |  |  |  |  | $51^{\circ}$ | $37!9$ |  |  |
|  |  |  |  | Reduction to | se | $\begin{array}{r} 6 \\ 1895.8 \\ a \text { leve } \end{array}$ | $\begin{gathered} 37!9 \\ -0.96 \\ 0.00 \\ \hline 36.9 \end{gathered}$ |  |


| I)ate and Hour (Mean Local Time.) | Needle No. |  |  | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{cccc}\text { Ang. } & 27^{\text {th }} & 6.64 & 6.1 \mathrm{~m} \\ , 0 & , & 10 & 41.7\end{array}$ | 1 | $51^{\circ}$ | 46.7 38.9 | Kimura | Kimura |
| Mean |  | $51^{\circ}$ | 12\% |  |  |
| - | Reductio | se | $\theta=51$ $\theta=$ $1=$ $\theta=51$ |  |  |
|  | HORIZONTAL INTENSITY |  |  |  |  |

Observations of the East Party, 1893.


23．KASIWAZAKI．
Kasiwazaki Street（栝 崎 时
I）IJ＇（ $\theta$ ）
Inservations of the East Inrty， $18: 13$.


HORIZONTAL INTENSITY（H）．
（＊ielne dotuced from Vibration only by Assuming liolne of 11）
（O）servations o ${ }^{\circ}$ the East Party， 1893.


## 24．TERADOMARI．

DII（ $\theta$ ）
Ubstriations of the East l＇arty， 1893.

| Date und Hour （Mean Jocal Time．） |  |  | $\begin{aligned} & \text { Ncenlle } \\ & \text { No. } \end{aligned}$ |  |  | （）bserver | Reenrder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ang． <br> $\#$ <br>  <br> $\#$ | $\begin{array}{cl}22^{\text {nd }} & 10^{\text {h }} \\ \# & 11 \\ \because, & 11 \\ \# & 12 \\ \# & 13\end{array}$ | 4.2 m 17.2 54.3 33.9 7.1 | 1 | $5 \mathrm{t}^{\circ}$ <br> . <br> $\because$ <br>  <br> . |  | yakamura <br> Ömori <br> Kimura | Kimura Omori Nakamura Öncori |
| Mern |  |  |  |  | 36.5 |  |  |
|  |  |  |  |  |  |  |  |

HoRIZONTAL NTENSTAY（II）
Onmervations of the East Party，1893．


## 25．NIIGATA．

Play ground of Ordinary Normal School（待常師䉐學校速動場）
DECLINATION（ $\delta$ ）
（hservations of the East Party，1893．

| Dete and Hour <br> （Mean Lacal Time．） |  |  |  | $\delta$ |  |  | O1server | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Aug． | $23^{\text {h }}$ | $19^{\text {h }}$ | 5 m | － | $11^{\prime}$ | 371 | Nakamura | Nakamura |
| ＂ | ： | 19 | 23 | ．． | 41 | 52 | ，＂ | ，＊ |
| ＂ | ：， | 19 | 50 | ＊ | 11 | 33 | ， | ＂ |
| ＂ | ．． | 20 | 34 | ＊ | 11 | 37 | －，＂ |  |
| － | ．， | 21 | 1 | ．． | 12 | ${ }^{6}$ | Kimura | Ómori |
| ＂ | ．， | 22 | 30 | ． | 12 | 10 |  |  |
| $\because$ | $20{ }^{\text {ch }}$ | $2: 3$ 3 | 59 46 | ＊ | 42 | 2 | Omori | Kimura |
| $\stackrel{.}{\square}$ | 2 | 4 | 46 30 | ，． | 43 41 | 6 30 | Kimura | Ömori |
| ．． | ．， | 5 | 58 | ．． | 37 | 16 | $\overline{\text { Omori }}$ | Kimura |
| － | ．． | i | 59 | ，． | 35 | 32 | ，， | ＂ |
| ． | ＂ | 8 | 51 | ．． | 37 | 5 |  | ， |
| ． | ．． | 8 | 58 | ．． | 39 | 9 | Nakammu | Nakamura |
| ＂ | ．． | ！ | 15 | ， | 38 | 21 | ，． | ．， |
| ． | － | 10 | 14 | ．． | 38 | 29 | ＂ | ， |
| ＂ | － | 110 | 31 | ． | 36 | 30 | ＊ |  |
| ． | ． | 11 | 11 |  | $: 39$ | 17 |  | Kimura |
| $\cdots$ | － | 11 | 38 | ． | 40 | 41 | Kimura | Nakamura |
| ． | ．． | 12 | 24 | ． | $3!$ | 58 | Nakamum | Kimura |
| － | ．． | 13 | $1!1$ | ＊ | 38 | 55 | Kimura | Nakamura |
| ＊ | ， | 13 | 2 | ． | 39 | 31 |  | Kimura |
| － | ．． | 11 | $\stackrel{2}{3}$ | ． | 40 | 41 | Omori | Omori |
| ． | $\cdots$ | 16 | 56 | ＂， | 40 | 8 |  | Nakamura |
| ， | \％ | 17 | 49 | ，． | 39 | 57 | Omori | Omori |
| － | ．， | 19 | 3 | ．． | （1） | ：38 |  |  |
| ．， | ．， | 19 | 55 | ．． | 41 | 10 | ＂ |  |
| ， | \％ | 20 | 8 | ，＂ | 40 | 11 | Kimura | Nakammara |
| ， | $2)^{\text {\％}}$ | 1 | 11 | ＂， | 40 | 8 |  |  |
| $\checkmark$ | － | 7 | 8 | ， | 35 | 48 | Nakamura | Kimura |
| $\cdot$ | － | 7 | 58 | － | 33 | 30 | Kimura | Nakamura |
| $\because$ | ．， | 8 | 36 | ： | 34 | 55 | Nakamura | Kimura |
| $\because$ | ．． | 9 | ${ }^{6}$ | ， | 34 | 51 | Kimura | Nakamura |
| － | ．． | 111 | 10 | ． | 35 | 6 | Omori | Omori |
| － | ．， | 13 | 39 | － | 38 | 6 |  | ＂ |
| ＂ | ． | 14 | 19 | ． | 37 | 53 | ＂ | ＂ |
| ＂ | ． | 14 | 58 | ＊ | 37 | 10 | к＂ | ＊，＂ |
| ．， | ＂ | 15 | 52 34 | ． | 35 | 32 | Kimura | Nakamura |
| ＂， | ＂， | 18 | 2 | $\because$ | 34 | 47 | Nakammra | Kinura |
| ＂ |  | 18 | 33 | ： | 37 | 46 |  |  |
| Mean |  |  |  | $5{ }^{\circ}$ | $40^{\prime}$ | $29^{\prime \prime}$ |  |  |
|  |  |  |  | $\delta=5 \quad 40448$ |  |  |  |  |
|  |  |  |  | Red | ion |  | 2.27 |  |
|  |  |  |  |  |  |  | 0.00 |  |
|  |  |  |  |  |  |  | 4．2！8 |  |

Olservations of the South Party, 1875.

| $\begin{gathered} \mathrm{D} \\ \text { (Mea } \end{gathered}$ | te and 1 <br> n Local | our. <br> Time.) |  | $\delta$ |  | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Aug. | $16^{\text {th }} 22^{\text {h }}$ | $26.9^{\text {m }}$ | 5) | $10^{\prime}$ | $43^{\prime \prime}$ | Nakamura | Sutō |
| " | ,1742 | 59.4 | ," | 17 | 13 | Sutō | , |
| " | $17^{\text {th }} 3$ | 4.7 | " | 16 | 34 | " | " |
| " | , 3 | 48.8 | " | 16 | 25 | , | " |
| " | " 5 | 7.1 | " | 16 | 13 | " | ", |
| " | " $\overline{5}$ | 56.7 | " | 14 | 55 | " | " |
| , | " 6 | 59.7 | ", | 13 | 21 | , | " |
| " | 7 | 58.0 | " | 13 | 11 |  |  |
| " | " 8 | 32.1 55.3 | , | 13 | 46 | Imamura | Imamura Nakamura |
| " | 7 | 55.3 52.9 | ", | 16 19 | 59 6 | Nakümura |  |
| " | ", 11 | 39.1 | ", | 20 | 13 | Imamura | Imämura |
| ., | $\cdots \quad 12$ | 22.1 | " | 21 | 3 | "》 | Nakamura |
| " | - 13 | 27.3 | " | 21 | 0 | Nakamura |  |
| " | ., 14 | 24.4 | , | 21. | 11 | Imamura | Sutio |
| " | .. 15 | 19.2 | " | 19 | 27 | Sutō | Imamurat |
| ", | $\because \quad 16$ $\cdots \quad 17$ | 19.7 29.6 | ", | 17 | 34 | Suto | „, |
| " | ", 18 | 17.3 | ," | 17 | 16 | Nakämura | Imamura |
| " | $\cdots 19$ | 17.8 | , | 17 | 20 | Nakamura | Sutō |
| Mean |  |  | $5{ }^{\circ}$ | $17^{\prime}$ | $13^{\prime \prime}$ |  |  |
|  |  |  | $\delta=5^{\circ} \quad 17!22$ |  |  |  |  |
|  |  |  | Reduction to |  | $1895.0=$ | -1.04 |  |
|  |  |  |  |  |  | 0.00 |  |
| 墭 16!2 |  |  |  |  |  |  |  |

DIP ( $\theta$ )
(1)servations of the East Tarts, 1893.


Ubservations of the Sonth Party, 1895.


Olservations of the East Party， 1893.

| Date and Hour （Mean Local Time．） | II | M | Mean Temp． | $\begin{aligned} & \text { Time of } \\ & 1-\text { Vib } \end{aligned}$ | $\operatorname{Temp}_{t_{V}}$ | Mean De $\varphi_{1}$ | flections <br> ${ }_{2}$ | $\begin{gathered} \text { Tem } \\ t_{1} \end{gathered}$ | Ohserver | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ang． $23{ }^{\text {rd }} 22^{\text {h }} 15^{\text {m }}$ | 0.28831 | 468.39 | 26.5 C | 5．${ }^{\text {s }} 6561$ | 26.4 C | $7{ }^{7} \quad 240!7$ | 15＇59＇56！5 | 26．60 | Kimura | Omori |
| ，， 2337 | 0.28853 | 468.53 | 26.2 | 5.6543 | 26.7 | 7240.6 | 155958.5 | 25.8 | Omori | Kimura |
| ，， $24^{\text {th }}$ \％ 41 | 0.28841 | 468.49 | 26.1 | 56552 | 26.3 | 7247.9 | 159024.6 | 25.9 | Kimura | Ōmori |
| ＂„， $12 \quad 21$ | 0.28854 | 466.81 | 30.4 | 5.6652 | 31.0 | 7123.9 | 155733.3 | 29.8 |  | Nakamura |
| ＂，＂， 138 | 0.28836 | 467.15 | 31.1 | 5.6654 | 32.0 | 7127.1 | 155648.7 | 30.2 | Nakamura | Kimura |
| ，＂ 1642 | 0.28859 | 469.49 | 23.6 | 5.6472 | 23.7 | $7{ }_{7}^{7} 13.1$ | 16050.7 | 23.5 |  | Omori |
| ＂，$\quad 17 \quad 33$ | 0.28853 | 468.75 | 23.3 | 5.6518 | 23.2 | $\begin{array}{lllll}7 & 3 & 3\end{array}$ | 168115.9 | 23.3 | Omori | Nakamura |
| ， $25^{\text {th }} 6654$ | 0.28884 | 469.84 | 22.1 | 56476 | 21.9 | 7351.0 | $16 \quad 212.5$ | 22.4 | Nakamura | Kimura |
| ＂$\quad$ ， 743 | 0.28848 | 468.84 | 22.8 | 5.6512 | 22.5 | $7 \quad 310.4$ | 16135.6 | 23.1 | Kimura | Nakamma |
| Mean | （1）．28844 |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |

Observations of the South Party， 1895.

| Date and Hour （Mean Local Time．） | II | M | $\begin{gathered} \text { Mean } \\ \text { Temp. } \end{gathered}$ | Tine of 1-Yib!. | $\underset{t_{v}}{\text { Temp. }}$ | Mean De $\varphi_{1}$ | flections <br> $\varphi_{2}$ | $\begin{gathered} \text { Temp. } \\ t_{\underline{\underline{0}}} \end{gathered}$ | Onserver | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Aug． $7^{\text {th }}$ gh $38{ }^{\text {mi }}$ | 0.28927 | 429.92 | 32，9C | ${ }^{5} .9580$ | $32: 4 \mathrm{C}$ | 6 $33 \times 16$ | 14＇35＇51＂4 | 33．5C | Imamura | Nakaminra |
| ．．$\because \quad 125$ | 0.28946 | 429.56 | 32.1 | 5.9625 | 32.9 | 62351.3 | 143620.0 | 31.3 | Nakamura | Iamamiura |
| ＂＂， 150 | 0.28993 | 429.33 | 31.1 | 6.9590 | 31.9 | 65355.0 | 143630.6 | 30.4 | Sutō |  |
| ．，＂， 1620 | ＊0．28944 | $430.15^{\circ}$ | 31.2 | 5.9565 | 31.2 | ．． | ．． | ．． | Imamura | Nakamura |
| ，${ }^{2} \quad . \quad 16 \quad 39$ | ＊0．28906 | $430.30^{\circ}$ | 30.7 | 5.9593 | 30.7 |  | ． | $\cdots$ | Nakamura | Imamura |
| ．，＂17 17 | ＊0．28979 | 430.10 | 29.8 | 5.9539 | 29.8 | － | ． |  | ＂ |  |
| ．．， 21 9 | 0.28936 | 431.44 | 26.9 | 5.9479 | 26.8 | （6） 2523.1 | 143341.9 | 26.9 | ＂ | $\left\{\begin{array}{l}\text { Suto } \\ \text { Imamıra }\end{array}\right.$ |
| Mean | 0.28947 |  |  |  |  |  |  |  |  |  |
| $I I$ $=$ 0.28947 <br> Reduction to 1895.0 $=$ <br> $\because \quad$ sea level -437  <br>  $I I=$ 0.28943 |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |

## 26．KAMO．

Seikaizinzya．（西海滆塥）
DECLINATION（ $\delta$ ）
Ohiervations of the East Party， 1893


1）1P（ $\theta$ ）
（ Inservations of the East Party，189：3．


HORIZONTAL INTENSITX（H）
（Hservations of the East Party，189：3．

| Date and Hour （Mean Liocal Time．） | 11 | I | $\begin{aligned} & \text { Mean } \\ & \text { Temp. } \end{aligned}$ | Time of 1－Yibn． | Temp. | Mean Deflections |  | $\begin{gathered} \text { Temp } \\ t_{\mathrm{p}} \end{gathered}$ | （haserver | Recorder | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|  |  |  |  |  |  | $P_{1}$ | P2 |  |  |  |
|  | 11．2x！146 | 469.25 | 21.5 C | 5.6356 | 21.5 C | 7 1／25\％ | 15．57＇11！ 5 | 21.60 | Kimura | Tomeri |
|  | 0.28997 | 169.12 | 2：3．1 | 5.6361 | 23．3 | 718.8 | 155644.2 | 23.1 | $\overline{\text { amoli }}$ | Kimura |
|  | 0.28963 | 466.75 | 29.7 | 5.6549 | 30.3 | 65915.7 | 155146.3 | 29.1 | Nakamura | Omori |
|  | 11.28987 | 4663 | 29.7 | 5.6518 | 29.8 | 65857.5 | 155132.5 | 29.7 | Omori | Nakammat |
|  | 10.28 .978 | 468.26 | 24.1 | 5.6424 | 24.2 | 7039.1 | 155528.9 | 24.1 | Nakamura | Kimmar |
| Mean | 0.28982 |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
| Reinction to$\begin{array}{rr} \text { to } \quad 1895.0= & 801 \\ \because \quad \text { sea level }= \\ \hline \quad & \quad 13=0.289 .92 \end{array}$ |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

## 27．SIBATA． Parade ground （綝兵場） <br> DECLINATION（ $\delta$ ）

Observations of the East Party， 1893.


UII＇（ $\theta$ ）
Olservations of the Sonth Party， 1894.

| Date and Hour （Mean Local Time．） | Needle No． |  | $\theta$ | Observer | liecorder |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Ang． $30^{\text {th }} 5^{\text {h }}$ 44．6 $6^{\text {m1 }}$ | 1 |  |  | Midzusima | Midzusima |
| \begin{tabular}{lllll}
\hline
\end{tabular} | ， |  |  | Kimura | Nakamura |
| $\begin{array}{lllr}\text {＂，} & , & 14 & 1.2 \\ , " & \text { 14 } & 32.2\end{array}$ | $\stackrel{2}{1}$ |  | 43.9 427 | Omori <br> Nakamura | Ömori |
| Mean |  | $51{ }^{\circ}$ | 13．0 |  | － |
|  | $\theta=51^{\circ} \quad 43!0$ |  |  |  |  |
|  | Reduction to 1895. |  |  | $-1.07$ |  |
|  |  |  |  | 0.00 |  |

HORIZONTAL INTENSI＇IY（ $H$ ）
Observations of the East Party， 1833.

| Date and Homr （Mean Local Time．） | I／ | M | Mean <br> Temp． | $\begin{aligned} & \text { Time of } \\ & \text { 1-Vib } \end{aligned}$ | Temp. | Mean Deflections |  | Temp. | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $p_{1}$ | 9. |  |  |  |
| Aug．30th $1^{\text {h }} 43^{\mathrm{m}}$ | 0.28955 | 469.07 | 20.6 C | 5.6893 | 2）：7C | $7^{\circ} \quad 2{ }^{\prime} 4 \prime 4$ | $1559{ }^{\prime} 934$ | 20.5 C | Kimura | Nakamura |
| ，＂„ $\quad 8 \quad 53$ | 0.28930 | 466.41 | 28.4 | 5.6595 | 28.8 | 65956.9 | 155415.0 | 28.1 | Naliamura | Ömori |
| ，，， 1015 | 0.28868 | 466.34 | 30.2 | 5.6683 | 32.5 | 7025.9 | 155427.8 | 31.4 | Ómori | Nakamura |
| „，，， 1.519 | 0.28880 | 466.62 | 32.1 | 5.66631 | 32.1 | 65923.8 | 155153.7 | 32.3 |  | － |
| ＂$\quad$ ， 1612 | 0.28940 | 465.60 | 32.0 | 5.6623 | 31.5 | 658826.3 | 155014.4 | 32.2 | Nakamura | Ōmori |
| Mein | 0.28915 |  |  |  |  |  |  |  |  |  |

$\quad I I=0.28915$
lieduction to $1895.0=\quad 844$ „ ，．sea level $=\quad 27$

## 28．EBISU．

Bank of the Lake Kamo．
（加茂湖畔）
DECLINATION（ $\delta$ ）
Observations of the East Purty， 1893.


D11 ( $\theta$ )
Olservations of the East Party, 1893.

| Date and Hour (Mean Local Time.) |  |  |  | Needle No. |  | $\theta$ | Observer | liecorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Aug. | $31^{\text {st }}$ | $17^{\text {h }}$ | $13.2{ }^{\text {m }}$ | 1 | $51^{\circ}$ | 51.3 | Midzusima | Kimura |
|  | " |  | 8.6 | 1 | , | 56.4 | Kimnra |  |
| Sept. | $1{ }^{\text {st }}$ | 6 | 34.7 | 1 |  | 53.7 | Nakamma | Midzusima |
| , | " | 9 | 4.3 | 1 | " | 56.5 | Kimura | Kimura |
| " | " |  | 57.3 | 1 |  | 52.0 | Midznsima |  |
| " | - | 12 | 50.2 | 1 |  | 48.6 | Omori | Nakamura |
| $\stackrel{ }{ }$ | ". | 16 |  | 1 |  | 51.7 | Nakamura | Kimbra |
|  |  |  | 10.4 | 1 |  | 54.0 | Kimura | " |
| Mean |  |  |  |  |  | 52.9 |  |  |
|    $=51$ <br> Reduction to $52!9$   <br> ,$\quad 1895.0$ $=$ -1.88  <br> ,$\quad$ sea level $=$ 0.00  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
| $\theta=51^{\circ}$ $51!0$ <br> HORIZONTAL INTENSITY $(I I)$ <br> Observations of the East Party, 1893. |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |



## 29. WASIZAKI.

DECLINATION ( $\delta$ )
Observations of the East Party, 1893.

| $\underset{\text { Da }}{\text { Dar }}$ |  | $\begin{gathered} \text { Hou } \\ 1 \mathrm{Tin} \end{gathered}$ |  |  | $\delta$ |  | Onserver | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sept. | $2^{\text {nd }}$ | $18^{7}$ | $31^{\mathrm{m}}$ | 5 | . $12{ }^{\prime}$ | $41^{\prime \prime}$ | Omori | Kimura |
| .. | .. | 19 | 28 | , | 43 | 20 | Lidzusima | Omori |
|  |  | 23 | 40 | , | 40 | 57 | Omori | " |
| $\cdots$ |  | 0 | 51 | , | 40 | 53 | ., | ", |
| - | " | 3 | 9 | , | 42 | 23 | , | , |
| .. | , | 4 | 32 | ,, | 42 | 34 | " | ", |
| .. | .. | 5 | 15 | ," | 42 | 17 | .. | " |
| ., | , | 5 | 52 | , | 40 | 35 | " | " |
| " | , | ${ }^{6}$ | 38 | , | 38 | 48 | ., | " |
| " | , | 7 | 12 | , | 37 | 37 | ,. |  |
| " | ., | 8 | 1 | " | 36 | 0 |  | Nakammat |
| " | " | $\stackrel{8}{*}$ | 47 | , | 36 | 38 | Nakamma | Omori |
| * | " | 9 | 24 | " | 36 | 59 | " | " |
| .. | $\because$ | 10 | 17 | , | 39 | 8 58 | ,. | " |
| ", | ... | 12 | 9 19 | '" | 40 43 | 7 7 | ", | Nakumuri |
|  |  | 13 | 28 | " | 42 | 19 | OMmori | Onori |
| Mean |  |  |  | $5^{\circ}$ | $41^{\prime}$ | $5^{\prime \prime}$ |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |

DII ${ }^{(\theta)}$
Observations of the East larty, 1413.



## 30. AIKAWA.

DECLINATION ( $\delta$ )
Observations of the East Party, 1sis.


OHservations of the East Party, 189:3.


HoRIZONTAL INTENSITY ( $I$ )
Olservations of the East Party, 1893.

| Date and Hour (Hean Local Time) | $1 /$ | M | $\begin{gathered} \text { Mean } \\ \text { 'Temp. } \end{gathered}$ | Time of 1-Yibn. | $\begin{gathered} \text { Tem } \\ t_{v} \end{gathered}$ | Mean J $\varphi_{1}$ | Hections <br> $\varphi_{2}$ | $\underset{t_{D}}{\text { Temp }_{1}}$ | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sept. ( $0^{\text {th }} 13^{31} 4^{\text {m }}$ m | 0.28722 | 465.94 | 25.6 C | 5.6839 | 25.7 C | $7{ }^{7} 237!8$ | $15^{\circ} 0^{\prime} 17!5$ | 25.7C | Midzusima | Omori |
| ., „, 14 31 | 1.28723 | 466.02 | 26.4 | 5.6823 | 26.9 | 7232.5 | 1601.9 | 26.0 | Ómori | Midzusima |
| $\because, \quad ., 19 \quad 29$ | 0.28707 | 467.22 | 21.9 | 5.6759 | 22.1 | 7348.2 | 15247.5 | 21.8 | Nakammra | Ōmori |
| $\cdots$ | 0.28788 | 468.92 | 19.8 | 5.6572 | 19.9 | 7420.2 | 16416.5 | 19.7 | Midzusima | Nakamura |
| " $7^{\text {th }} 01018$ | 0.28731 | 467.80 | 19.6 | 5.6692 | 19.5 | $7+10.0$ | 16358.1 | 19.7 | Nakamura | Midzusima |
| " $\quad$, 1 28 | 0.28725 | 468.18 | 18.7 | 5.6678 | 18.7 | 7430.0 | 15440.2 | 18.7 | Midzusima | Nakamura |
| Mean | 0.28734 |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |

## 31. OGI.

DECLINATION ( $\delta$ )
Olservations of the East Party, 1893.


DIP $(\theta)$
Observations of the East Party，18．33．


HORIZONTAL LNTENSTTY（II）
Observations of the East Party， 1833.


## 32．OZASA．

（字鳴尻ヶ原大字南水山小字三本松）
DECLINATION（ $\delta$ ）
Olsservations of the East Party， 1893.

| Date and Hour （Mean Local Time．） |  |  | $\delta$ |  |  | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sept． | $\begin{array}{cc}12^{\text {th }} & 13{ }^{13} \\ " & 13 \\ " & 14 \\ " & 15 \\ " & 15 \\ " & 16\end{array}$ | $15{ }^{\text {m }}$ 56 35 15 57 31 | 4 $"$ $"$ $"$ $"$ | $14^{\prime}$ 13 12 31 10 9 | $\begin{gathered} \hline 24^{\prime \prime} \\ 32 \\ 9 \\ 8 \\ 33 \\ 38 \end{gathered}$ | Midzusima Nakämura a＇mori | $\begin{gathered} \text { Omori } \\ \text { Midzusima } \\ ", \\ \text { OMori } \\ \text { Nakamura } \end{gathered}$ |
| ．Mean |  |  | $4^{\circ}$ | $8{ }^{\prime}$ | $40^{\prime \prime}$ |  |  |
|  |  |  |  |  |  |  |  |

DH' ${ }^{\prime}(\theta)$
Observations of the East Party, 1893.

| Date and Hour (Mean Local 'Time.) | Needle No. |  | $\theta$ | Olsserver | lieeorder |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Sept. $12^{\text {th }} 12^{\text {h2 }} 00.8 \mathrm{~m}$ | 2 |  | 55! 4 | Midzusima | Milznsimat OMmori |
| " $\quad, \quad 3229.9$ | 2 |  | 53.8 | Ōmori | Midzasima |
| $\begin{array}{llll}\text { ", } & \text { ] } & 14 & 59.5 \\ 16 & 16.5\end{array}$ | 9 |  | 52.1 | Nakamura | Ōmori |
| " , , 16 16.5 | 2 | " | 57.1 | Midzusima | Nakamura |
| Mean |  | $50^{\circ}$ | 54:6 |  |  |
| $\theta$ $=50^{\circ} 51!$  <br> Reruction to $=0.5$  <br> 1895.0 $=$ -0.52 <br> ,$\quad$ sea level $=-0.05$  <br> $\theta$ $=50^{\circ}$ 54.0 |  |  |  |  |  |

HURIZONTAL INTENSITY (H)
Observations of the East Party. 189:3.


## 33. WAKASARE. <br> DECLINATION ( $\delta$ )

Ohservations of the Enst Party, $18 \%$



HORIZONTAL INTENSITY (H)
Observations of the East Party, 1893.


## 34. ASAMA.

DECLINATION ( $\delta$ )
Observations of the East Party, 1833.

| Date acd llour (Mean Local Time.) | $\delta$ |  |  | Onserver | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Sept. 13, $3^{\text {H2 }} \quad 12^{\text {h }} \quad 24^{\text {m }}$ | 3 |  | 311 | Nakamura | Omori |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
| $\begin{array}{rrr}\text { Reduction to } \quad 1895.0= & 1.63 \\ . . \quad \text { sea level }= & -10.17\end{array}$ |  |  |  |  |  |
|  |  |  |  |  |  |
| DIP ( $\theta$ ) <br> Olservations of the East Party 1893 |  |  |  |  |  |


| Bate and Homr <br> (Mean Local Time.) | Needle No. | $\theta$ | O1server | Recorter |
| :---: | :---: | :---: | :---: | :---: |
| July. $21^{\text {st }} 12^{\text {h }} 22.0 \mathrm{~m}$ | 2 | 52 $216: 7$ | Midzusima | Omori |
|  |  |  |  |  |

Observations of the Last Party, 1893.

| Date and Hour <br> (Mean Local Time.) | Neenle No. | $\theta$ | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & 2 \\ & 2 \\ & 2 \end{aligned}$ | $\begin{array}{cc} 50^{\circ} & 45!8 \\ " & 44.0 \end{array}$ | Ömori <br> Nakamura | Omori <br> Nakamma |
| Mean |  | $50^{\prime} \quad 44.9$ |  |  |
| $\theta$ $=50^{\circ}$ $4!!9$  <br> Reduction to 1895.0 $=$ -0.39 <br> ,$\quad$ sea level $=$ -0.17  <br> $\theta$ $=50^{\circ}$ $\frac{-0.14}{44!4}$  |  |  |  |  |

HORIZONTAL INTENSITY (II)
(* Velue deducel from Vibration only ly assuming Vubue of $M$ )
Observations of the Last Party, 1893.

| Date and Hour (Mean Local Time.) | II | $\begin{array}{ll\|l} \hline & \text { IIcan } \\ & \text { Temp. } \end{array}$ |  | Time of 1-Yib. | $\begin{gathered} \text { Temp. } \\ t_{\mathrm{v}} \end{gathered}$ | Mean Deflections |  | TemI ${ }_{\text {T }}$ | Observer | Recorder | |
|---|---|---|---|---|---|---|---|---|---|---|---|
|  |  |  |  | $\varphi_{1}$ |  | $\varphi_{2}$ |  |  |  |
|  | *0.3015f | 169.72 470.05 | $\begin{aligned} & 20.2 \mathrm{C} \\ & 18.6 \end{aligned}$ |  | 5. 5.5373 5.5353 | $\begin{aligned} & 2(\because, 2 \mathrm{C} \\ & 20,3 \end{aligned}$ | $\begin{gathered} (6.4753!1 \\ 64536.9 \end{gathered}$ | $\begin{aligned} & 15^{\circ} 22^{\prime 2} 29! \\ & 152016.9 \end{aligned}$ | $\left\lvert\, \begin{aligned} & 17: 8 C \\ & 16.9 \end{aligned}\right.$ | $\overline{\text { 万 mori }}$ <br> Nakamura | Nakamura Omori |
| Me:n | 0.30156 |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |

35. MATUIDA.

DECLINATION ( $\delta$ )
Ohservations of the East Party, 1896.


Observations of the East Party, 1893.


HORIZONTAL INTENSITY ( $H$ )
Olservations of the East Party, 1893.

| Date anci Hour (Mean Local Time.) | II | M | Mean Temp. | Time of$1 \text {-Tibln. }$ | $\begin{gathered} \text { Temp. } \\ t_{v} \end{gathered}$ | Mean Deflections |  | Temp. | Observer | Tecorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\varphi_{1}$ | $\varphi_{2}$ |  |  |  |
|  | 0.29661 | 466.37 | 21.9 C | ${ }_{5}^{5} .6041$ | 22.3 C | $60^{\circ} 9 \times 31!5$ | $15^{\circ} 29^{\prime} 38{ }^{\prime \prime} 4$ | 21:6C | Midzusima | Kimura |
|  | 0.29607 | 465.69 | 21.8 | 5.6129 | 21.8 | 64931.4 | 152949.6 | 21.8 | Nakamura |  |
|  | 0.29599 | 464.84 | 24.5 | 5.6176 | 23.9 | 64943.5 | 152818.5 | 25.1 | Kimura | Nakamura |
|  | 0.29601 | 464.88 | 24.5 | 5.6189 | 24.7 | 64843.8 | 152745.9 | 24.4 | Midzusima | " |
|  | 0.29598 | 435.84 | 21.0 | 5.6133 | 21.2 | 64948.1 | 153020.6 | 20.8 | Kimura | " |
| Mean | 0.29613 |  |  |  |  |  |  |  |  |  |
| $\bar{I}=0.29613$ |  |  |  |  |  |  |  |  |  |  |
|  |  |  | Reduction to |  | $\begin{array}{r} 1895.0= \\ \text { sea level }= \end{array}$ |  | 1020 |  |  |  |
|  |  |  | 335 |  |  |  |  |  |  |  |
|  |  |  |  |  |  | $H=0.2$ | 627 |  |  |  |

## 36．TAKASAKI．

1）ECLINATION（ $\delta$ ）
Onservations of the East Party，1ヵ， 3

| Date acd Holl （Mean Local Time．） |  |  |  | j |  |  | Observer | Herorter |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sept． | $16^{\text {th }}$ | 1．5 ${ }^{\text {h }}$ | 53 m | 4 | ！${ }^{\prime \prime}$ | \％＇ | Midzusima | Sitkumutat |
| ， | ， | 16 | 52 | ， | 3 | 20 | Nak：umura | ＂ |
| ，． | －． | 17 | 32 | ， | 3 | 1.7 | ， |  |
| ， | ． | 15 | －4 | ， | 3 | 8 | Fi＂ | Kimura |
| ， | ＂． | 19 20 | $\cdots$ | ． | 5 | 41 | Kimura | Nakammra |
| ， | ＂． | 20 21 | $\begin{array}{r}1 f \\ 3 \\ \hline\end{array}$ | ， | 3 | 11 | Nakamurit | Kimura |
| ．． | $\because$ | 21 | 83 12 | ， | ？ | 12 | Midznsima | Midzusima |
| ． | $\because$ | 229 | 12 27 | ． | ： | ： | ．． | ．， |
| ．． | $1 \ddot{7}$ | 23 0 | 27 40 | ＂ | 3 | 3.5 | ．， | ，． |
| ， | $17^{\text {．}}$ ． | 1 | 40 47 | ， | 5 | 12 | ．． | ．． |
| ＂． | ． | 1 | 47 31 | ＂． | 51 | 17 24 24 | ． | ．． |
| ．． | ， | 3 | 3 | ，． | 91 | 9 |  |  |
| ．． | $\cdots$ | 4 | 37 | ＂ | 51 | 27 | ．． | ＂ |
| ．． | ，． | 5 | 36 | ，． | $5!$ | $\stackrel{1}{ }$ |  |  |
| ． | ， | $\stackrel{6}{6}$ | 15 | ， | ！！ | 57 | ． | ． |
| ， | ．， | 7 | 15 | ， | tis | $\therefore$ |  |  |
| ．． | ．， | \％ | 11 | ， | 51 | ${ }^{\prime \prime}$ | Kimura | Nikamura |
| ，． | ， | 8 | 37 | ． | $\mathrm{bl}^{1}$ | 1s | Nakamura | ．． |
| ＊ | － | $!$ | 3： | ． | 32 | 5 | ．． | ，． |
| ． | ， | 10 | $2 \cdot$ | ＂ | 33 | Qr | ． |  |
| ＂ | － | 11 | 111 | ， | 5.5 | $2: 3$ | ．． | $\cdots$ |
| ＊ | － | 11 | 40 | ．， | 5 5 | 22 |  |  |
| ＂ | ， | 12 | 34 | ，． | 5 | ：1 | Kimmura | Kimura |
| ， | ．， | 1： | 23 | ．， | $\stackrel{5}{\prime \prime}$ | 51 | Nakamura | ．． |
| ＊ | ， | 14 | $1 t$ | ． | 3i | 42 | Kimmra | ， |
| ＊ | ．． | 15 | 21 | ＂ | 94 | O |  |  |
| ＂ | ． | 18 | 14 | ＂ | 34 | － | Mintasima | Miclzusima |
| ＂ | ＂ | 16 | 10 | ＂ | －3： | 3 | ．． | ．${ }^{\text {a }}$ |
|  | ＂， | 19 | is | ＂ | 5 | 31 | ＂＂ | ，． |
| ，＇， | ， | 20 | 16 | ＂． | 52 | $2!1$ | Kimura | Nakämura |
| ， | ， | 21 | 32 | ．． | 52 | 2. | Vakanmra | Kimmra |
| ． | ．． | 22 | 22 | ，． | 52 | $3:$ | ．． | Nakamura |
| － | 10ヶt | 23 | 12 | ， | 4. | 4 | ．． | ＂ |
| ＂． | ．， | 1 | 17 | ．． | 50 | 2く | $\cdots$ |  |
| ， | ．． | 2 | 14 | ．， | 51 | 1：3 | ， |  |
| ． | ．． | J | 13 | ，， | 50 | 319 |  |  |
| ． | ．， | 6 | 9 | ．， | 51 | ：311 | Kimura | Kinuma |
| ， | ．． | 1 | 15 | ， | 31 | ： | ，． |  |
| ＊ | － | í | 20 | ＂ | 21 | 23 | Mi，${ }^{\text {a }}$ |  |
| $\ddot{\square}$ | ＂， | 10 | 13 | ＂ | 50 50 50 | 10 | Midznsima | Minzusima |
| $\stackrel{\square}{.}$ | ，＂， | 11 | 15 | ． | 5.5 | 43 | ＊ | $\because$ |
| ． | ， | 12 | ． | ．， | 54 | 42 |  |  |
| ． | ．， | 12 | 50 | ＂ | 5.5 | $\stackrel{4}{4}$ |  |  |
| ． | ．． | 13 | 319 | ， | 55 | 41 | Kimura | Kimura |
| ＊ | ， | $1 \pm$ | 57 | ＂ | 51 | 3 | ．． | ．． |
|  | ＂， | 19 | $\because 4$ | ＂， | －2 | 35 | Nakänıra | Nalkiommat |
|  | ．， | 20 | $\because$ | ＂ | 5： | 35 |  |  |
| Mean |  |  |  | 4 | $5 \cdot 21$ | $34^{\prime \prime}$ |  |  |
|  |  |  |  |  |  |  |  |  |

Observations of the East Party， 1 s 93.


## 37．NUMATA．

## （天王䀡队）

DECLINATION（ $\delta$ ）
O）servations of the East Party，1893．


Observations of the somth Party, 1 $5: \%$.

| Date and Honr <br> (Mean Local Time.) |  |  |  | $\delta$ |  |  | Olserver | Liecomiter |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| June. | $S^{\text {cth }}$ |  | 22.10 m | 4 | $4!9$ | (is ${ }^{\prime \prime}$ | Nakammra | Tamaru |
| " | " | 22 | 22.2 | .. | $4!1$ | 111 | .. | Imannra |
| " | gur | 23 | 22.15 |  | 47 | ! | - | Nakamara |
| ., | $30^{\text {th }}$ | $\stackrel{3}{1}$ | 46.6 | " | 113 | 13 | . | .. |
| , | " | 1 | 58.7 | . | 47 | 5 | " | - |
| .. | " | (i) | 6.8 | ,. | 49 | 3.7 | , | . |
| " | " | 13 | 54.4 | . | 14 | 32 | 'Tuma | $\because$ |
| - | " | 7 | 87.2 | " | 4.5 | 11 | Tımaru | Imamur: |
| . | , | ! | 21.4 | . | 47 | $2!$ |  |  |
| ., | " | 11 | 21.8 | . | 4 | $5 \times$ | Imamura | Tamarn |
| . | .. | 11 | 28.4 | * | 54 | 0 | ,. | Imamuria |
| ., | " | 11 | 42.1 | .. | 51 | $\because 3$ | . | .. |
| .. | - | 12 | 11.3 | - | 1 | 3 | " | $\cdots$ |
| ", | - | 12 | 10.3 | " | 82 | 3 |  |  |
| .. | . | 13 | 5 | .. | 2 | 21 | Nakamurit | Nakammat |
| ", | . | 14 | 13.3 | " | 52 | 34 | Tamarn | Imamura |
| ". | - | 15 | 10..1 | . | 53 | 3 | Imamura |  |
| $\cdots$ | ', | 15 | $\stackrel{39.1}{20.1}$ |  | 5 | $\cdots$ | Tamar | Tamarn |
| . | ". | 16 | 56.7 |  | 50 | 41 | Tamaru | Imamurie |
| .. | . | 17 | 46.1 |  | 51 | : | Imamura |  |
| " | ., | 18 | 49.7 |  | 50 | 42 | Nakamura | Nakamura |
| Jula. | , | 20 | 18.9 |  | $4!$ | 14 | 'Tamaru | Imanıra |
| Jul!. | $1{ }^{\text {st }}$ | 0 | 49.7 | . | 47 | 53 | Imamma |  |
| Mean |  |  |  | 4 | $4 \%^{\prime}$ | $4^{\prime \prime}$ |  |  |
|  |  |  |  |  |  |  |  |  |

1) IP $^{\prime} \quad(\theta)$
()hservations of the East Party, 1433 .

| Date and Hour (Mem Loeal Time.) |  |  |  | $\begin{gathered} \text { Needle } \\ \text { No. } \end{gathered}$ |  | , | (haserver | Recoriler |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| sept. | $19 \%$ | $21^{12}$ | $22.6{ }^{\text {m }}$ | 2 | 50 | $21!9$ | Millzasima | Midzanimat |
|  | 30 th | 5 | 57.6 | 2 |  | 25.2 | Nakamura | Niakamura |
|  | .. | ${ }^{(1)}$ |  | 2 | , | 24.4 | ", |  |
|  | .. | 13 |  | $\because$ |  | 25.8 | Midzusima | Midmsimat |
|  | .. | 14 |  | 2 | . | 26.5 | Kinıura | Kimura |
|  | .. |  | 5.4 | $\stackrel{2}{2}$ | .. | 2\%: 2 |  | Naktımura |
|  |  |  | 32.4 | 2 |  | 26.7 | Nakamma | Kimurıt |
| Mean |  |  |  |  |  | 24.7 |  |  |
|  |  |  |  |  |  |  |  |  |

Observations of the somth Party, 1895.

| Date adod Homr <br> (Mean Local Time) |  |  |  | Neerlle No. |  | $\theta$ | Ohserver | lecorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Tane. | $30^{\text {th }}$ " |  |  | 1 |  | $12!7$ 13.7 | Nakamura Imamura | Nakamura Tamarn |
| ". |  | 13 | 47 | 1 | , |  | Nakamura | Nikamura Imamira |
| Jtuly. | $1{ }^{\text {st }}$ | 1 | : 1 | 1 | , | 16.2 | Imamura | - |
| Mean |  |  |  |  | 51 | 14:1 |  |  |
|  |  |  |  |  |  |  |  |  |

HORIZONCAL INTENSTIY (II)
(* Vidue dmbucel from Vibration only by "ssuming Fitwe of M) Observations of the South Party, $1 \times: 33$.


## 38. KUMAGAI

beGLINATION ( $\delta$ )
Olservations of the East Party, 14)?


1）IP（ $\theta$ ）
Oluservations of the East 1＇arty， $1 \times 3$


Horizontal intencity（II）
（＊Vulue delucel from l＇ibration on＇y by－Isseming Jinlue of M）
Observations of the East Party，1893．


## 39．ODAWARA．

## Common School． <br> （小學 校） <br> DECLINATION（ $\delta$ ）

Observations of the East Party， 1893.

| Date and Hour （Mean Local Time．） |  |  |  | $\delta$ |  |  | Observer | Ticorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| sept． | 20611 | 12 h | $15^{m}$ | 4 | $: 31$ | $513^{\prime \prime}$ | Tictzosima | Kimura |
| ．， | ．， | 13 | 51 | ．， | $3!$ | 53 | $\cdot$ | Minlznsima |
| ．， | －， | 14 | 34 | ．， | 39 | 15 |  |  |
| ＂ | ＂， | 15 | 24 | ， | $: 36$ | 4.2 | ＇ | $\stackrel{.}{\text { ．}}$ |
| ＂ | ＂， | 16 | 28 | ．． | 34 | 57 | ，＊ | ＂， |
| $\cdot$ | ， | 17 | 15 | ， | 34 | 51 | ， | ＂ |
| ＂ | － | 18 | 12 | ＂ | 34 | $\pm 1$ | ．， | ＂ |
| －， | ， | 19 | 18 | ＂ | 31 | 7 |  |  |
| $\stackrel{ }{ }$ | ＂ | 29 | ！ | ＂ | ：34 | 3 | Kimma | Nakamuma |
| ．， | ＂ | 21 | 17 | ，． | 32 | 21 | Nukamura | Kimura |
| ＂ |  | 22 | 34 | ， | 31 | 52 |  | Nakammra |
| ＊ | 27 | 1 | 8 | ， | 31 | $\therefore 1$ | Kimura | Kimura |
| ．， | ， | $\cdots$ | 3 | ＂ | 32 | 49 |  |  |
| ＂ | － | 3 | 36 | ＂ | 28 | 52 | Nakammra | Nakamura |
| ＇， | ＂ | $\pm$ | 17 | ＂ | 29 | 30） | － | ＂ |
| ＂ | ＂ | 5 | 43 | ＂ | ：1 | 19 | ＂ | －， |
| ＂ | ＂ | i； | $\stackrel{2}{2}$ | ＂ | 30 | 58 | ＂ | ＂ |
| ＂ | ＂， | 7 | 51 | ＂ | 311 | 31 | Kimpra | ＂ |
| ＂ | ， | ！ | ：3 | ＇， | 3：3 | 52 | Midzusima | Minzösimia |
| ＂ | ＂ | 9 | 17 | ：， | 35 | 48 | ＂， |  |
| ＇ | ＂ | 10 | 4 | ＊ | ：35 | 55 | ， | ． |
| － | ， | 11 | 3！ | ．， | ：37 | 40 |  |  |
| ， | ＂ | 12 | 23 | ＂ | 3！） | 7 |  |  |
| ： | ＂ | 13 | $\stackrel{\mathrm{S}}{ }$ | ．， | 35 | 45 | Kiminra | Nalamomra |
| ＂ | ＂， | 15 | 4 | ．， | 35 | 52 | Nakamura | － |
| ＂ | ＇， | 1.5 16 | 38 | ＂ | ：35 | 32 | ．． | ．， |
| ＂ | ＂ |  | － | ＂ | .38 | 0 | ＂ | ＂ |
|  |  |  |  |  | $1{ }^{\prime} \mathrm{O}$ | ned． |  |  |

Continuterl

1)11 ( $\theta$ )

Ohservations of the Rast Party, 18:13.


HORIZUNTAL INTENSITY (II)
Onservations of the East Party, 1893.


Olservations of the East Party, $18 \% 3$.

()bservations of the East Party, 1893.


11ORIKONTAL IN TENSI'TY (II)
(Hservations of the South Party, 1893

| Date and Hour (Mean Local I'ime.) | II | M | $\begin{aligned} & \text { Mean } \\ & \text { Temp. } \end{aligned}$ | Time of 1-Yib, | Temp. <br> $t_{r}$ | Mean D $\varphi_{1}$ | flections <br> $\varphi_{2}$ | $\operatorname{Tem}_{t_{0}}$ | Ohserver | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Oct. 2nd $11^{\text {h }} 10 \mathrm{~m}$ | 0.29384 | 463.75 | 26.71 | 5.6459 | 26.6 C | $650 \cdot 23: 44$ | 15.31'12.'5 | 26.86 | Midzusima | $\left\{\begin{array}{c} \text { Nakamura } \\ \text { Kimura } \end{array}\right.$ |
| ,. $\quad$ : 1ヶ 57 | 0.29354 | 464.44 | 23.4 | 5.6447 | 23.8 | 6 5153.0 | 15351.0 | 23.1 | Nakamura | Kimmra |
| ". | 0.29371 | 40.4 .57 | 22. 8 | 5.6428 | 23.2 | 65146.4 | 153448.4 | 22.5 | Kimura | Nakamıra |
| $\therefore \quad 3 \mathrm{Br} \quad 3 \quad 6$ | 0.29876 | 464.62 | 21.7 | 5.6412 | 21.7 | 65159.9 | 153551.4 | 21.8 | Midzusima | Midzusima |
| ,. , 9 11 | 0.29292 | 464.87 | 21.3 | 5.6455 | 21.0 | 65252.2 | 15378.5 | 21.7 | Kimura | Nakamura |
| $\because \quad \because \quad 9 \quad 57$ | 0.29325 | 465.13 | 22.5 | 5.6429 | 22.1 | $65: 27.7$ | $1535 \quad 5.0$ | 23.0 | Nakamıra | Kimura |
| $\because \quad$ : 15 2 | 0.29318 | 464.79 | 20.7 | 5.6455 | 20.6 | $6525 ; .6$ | 153759.4 | 20.9 | Kimura | Nakamma |
| Mean | 0.29346 |  |  |  |  |  |  |  |  |  |
| Recuretion to $18150=110.298 \pm 45$ |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  | $\mu=0$. | 135:3 |  |  |  |

DECLINATION ( $($ )
()bservations of the East Party. 189:3.

| Date and Homr (Mean Local Time.) |  |  |  |  | ; |  | (1)werrer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| O.t. | $7^{\text {h }}$ | $11^{\text {b }}$ | 26 m | ; | 4s | $21^{\prime \prime}$ | Kimılı | Nakamura |
| ,. | .. | 12 | 9 | .. | 4: | 25 | Midzusim: |  |
| " | " | 12 | 54 | .. | 19 | 10 | Nakamura | Minzusima |
| ,. | " | $1 \pm$ | 12 | . | 47 | 33 | Nimar: | Kimura |
| - | " | 15 | 17 | * | 4.5 | 23 |  | ,., |
| , | " | 16 | 9 |  | 45 | 8 | Minzusima | , |
| " | " | 17 | ${ }^{11}$ | * | 4 | $5!$ | Kimmat | Min |
| $\cdots$ | " | 17 | 41 | . | 43 | 34 | Mivzusimat | Miclznsima |
|  |  | 18 | i | " | 49 | 114 | Vakammer | Nakümura |
| ". |  | 23 | 51 | ", | :3: | 4 | Nimammat | Niakammrat |
| ,. |  | 0 | 52 | , | 34 | 411 | .. | .. |
| ,. | " | $\because$ | :3 | , | $3 \times$ | 7 | .. | ., |
| .. | " | 3 | 54 | ., | 3 | 38 | .. | .. |
| , | " | 5 | 5 | .. | 37 | 42 | " | ,. |
| ,. | " | 5 | 49 | .. | 37 | $3!$ |  | , |
| ,. | " | ${ }^{6}$ | $3!$ | .. | 37 | 31 | Nakaminit | Nakamura |
| " | " | 7 | 55 | " | 35 | 21 |  |  |
| ,. | " | $\stackrel{8}{9}$ | 47 | ,. | +2 | 11 | Iflizusima | Midzusima |
| " | ", | 10 | 50 | .. | 4.1 | 1.) | Kinura | Kimmin |
| ," | ., | 11 | 39 | , | 45 | 5: | Sidzanima | ," |
| , | ". | 12 | 30 | .. | 41 | $5!$ |  |  |
| , | .. | 1:3 | 39 | ., | 4 | 1 | Nakammra | Nakammral |
| .. | " | 14 | 34 | .. | 45 | 36 |  |  |
| ., | - | 1.$)$ | 7 | , | $4 \pm$ | 31 | Midzusima |  |
| Mean |  |  |  | 3 | $41^{\prime}$ | :3:3" |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |


| Date and Holir (Mean Local Time.) |  |  |  | Needle No. |  | $\theta$ | Observer | Recorter |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Oet. | $7^{14}$ | $11^{1 /}$ | $11.1{ }^{\mathrm{m}}$ | 1 | 4 |  | Min\%nsimat | Nakamura |
| , | ,. | 1:3 | 47.2 | : | . |  | Kimura | Kimura |
| ,. | " | 14 | 56.3 | I | - |  |  |  |
| , | $\ddot{\square}$ | 15 | 0.5 | 1 | ., |  | Minzrasima | Midzusima |
| , | $8^{\text {th }}$ | 0 | 20.3 | 1 | , | 52.8 | Nakammra | Nakamura |
| " | " | $\stackrel{6}{7}$ | 21.2 | 1 | , |  | .. | .. |
| * | " | ${ }^{7}$ | 33.5 | 1 | . |  |  |  |
| " | " |  |  |  | . | 52.11 |  |  |
| Mean |  |  |  |  |  | $52!1$ |  |  |
| Reduction to $\quad 18950=4=\quad 1.2: 3$ |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  | HORIZONTAL INTENSITY (II) Observations of the East Party, $18 \% 3$. |  |  |  |  |
|  |  |  |  |  |  |  |  |  |


| Iste and Hour (3I-an Lemal Time.) | II | H |  | Time of 1-Tibn. | $\begin{gathered} \text { Temp } \\ t_{v} \end{gathered}$ | $\frac{\text { Mein }}{\psi_{1}} \text { De }$ | Hections. <br> 42 | Tomp $t_{0}$ | Oliserver | Recorrer |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ().t. $7^{\text {h/ }} 12{ }^{\text {he }} 1 \mathrm{~m}$ | 0.50185 | 46.4 .70 | 22:0C | 5.56 .35 | $2.1{ }^{2}$ | $64033!93$ | $15^{\circ} \quad 1{ }^{\prime} 5{ }^{\prime \prime} 0$ | 21.90 | Nakamura | Midzısimıt |
| $\because \quad, \quad 1244$ | 0.30171 | 464.51 | 22.2 | 5.9664 | $0 \cdot 2.2$ | 64033.5 | 15 S 411.2 | 2.3 | Midzusima | Nakamma |
| $\because \quad . \quad 16$ 4 40 | 0.30182 | 164.30 | 21.7 | 5.5673 | 22.3 | 640 40.0 | 1.51919 .5 | 21.3 | Kimura | Midzusima |
|  | 0.30176 | 465.40 | 19.2 | 5.561 | $1: 1.1$ | ( $\mathrm{i}+121.5$ | 151026.3 | 19.0 | Midznsima | - |
| .. .. 11133 | 0.30183 | 464.6 | 23.0 | 5.56411 | 2:3.1 | (i41125.6 | 15 \& 14.0 | 2:3. 1 | Kimura |  |
| Mean | $0.3017!$ |  |  |  |  |  |  |  |  |  |



## 42. MATUZAKI.

DECLINATION ( $\delta$ )
Observations of the Fast Party, 1893.


DIP ${ }^{(\theta)}$
Olservations of the East Party, 1893.


HORIZONTAL INTENSITY (II)
Observations of the East Party, 18: $:$

43. HUDISAWA.

DELECTION ( $\delta$ )
Observations of the East Party, 1893.

| $\begin{array}{r} \mathrm{Da} \\ \text { Mean } \end{array}$ | and <br> Local | Hou Tin |  |  | $\delta$ |  | Olserver | Recorter |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Oct. | $17^{\text {th }}$ | $17^{12}$ | $58^{m}$ | $4^{\circ}$ | 32 | $24^{\prime \prime}$ | Midzusima | Kimura |
| " | " | 18 | 48 | , | 30 | 57 | Kimura | " |
| " | " | 20 | 10 | " | 30 | 54 |  | " $"$ |
| " | " | 21 | 11 | , | 31 | 34 | Nidzusima | Midzusima |
| " | " | 21 | 35 | " | 31 | 55 | " | ", |
| " | " | 22 | 25 | , | 30 | 43 | ,, | " |
| " | , | 23 | 19 | , | 30 | 41 | " | ", |
| " |  | $\bigcirc 3$ | 55 | " | 80 | 32 | " | , |
| " | $18^{\text {th }}$ | 0 | 53 | , | 31 | 40 | " | " |
| " |  | 2 | 0 | " | 33 | 13 | " | , |
| " | " | $\stackrel{2}{3}$ | 41 | " | 32 | 14 | ., | ", |
| " | " | $\stackrel{3}{5}$ | 56 .45 | " | 32 30 | 17 52 | " | ", |
| " | " | 6 | 25 16 | ", | 30 30 | 52 38 | " | Kimura |
| ", | " | 7 | 18 | " | 30 | 12 | Kimura | Midzusima |
| ", | " | 7 | 48 | ", | 30 | 40 | " | Kimura |
| " | " | 9 | 0 | ", | 30 | 4 | , | " |
| ", | " | 9 | 55 | " | 33 | 4 | , | " |
| " | , | 10 | 54 | " | 35 | 22 |  | ", |
| " | ", | 11 | 57 | ," | 37 | 51 | Midzasima | , |
| ", | " | 12 | 42 | " | 37 | 42 | ,, | " |
| " | " | 13 | 35 | " | 38 | 55 | , | Midzusima |
| ", | ", | 14 | 19 | ", | 38 | 43 | ," | " |
| " |  | 15 | 9 | " | 35 | 50 | " | ", |
| " | , | 15 | 50 | " | 31 | $3{ }^{3}$ | ", | " |
| " | ", | 16 | 45 | ", | 35 | 4 | " | , |
| " | " |  | 59 | " | 34 | 0 |  | " |
| " | " | 18 | 27 | " | 33 | 40 | Kimura | Kimura |
| " | " | 17 | 31 | " | 33 | 26 | " | " |
| Mean |  |  |  | $4^{\circ}$ | $32^{\prime}$ | $54^{\prime \prime}$ |  |  |
|  |  |  |  | Reduction |  | $\delta=4^{\circ} \quad 32!90$ |  |  |
|  |  |  |  |  | 0.96 |  |
|  |  |  |  | , | sea | 0.04 |  |
|  |  |  |  | $\delta=4 \quad 33!9$ |  |  |  |

DIP ( $\theta$ )
Observations of the East Party, 1893.


HORIZONTAL INTENSITY (II)
Observations of the East Party, 1893.


## 44. ÖTU.

DECLINATION ( $\delta$ )
Observations of the East Party, 1835.

| $\underset{\text { (Mea }}{\mathrm{D}_{\mathrm{i}}}$ | te and n Loc | eal | ur. <br> ime.) |  | $\delta$ |  | Obstrver | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Oct. | $22^{\text {nd }}$ |  | $16^{\mathrm{m}}$ | $4{ }^{\circ}$ | $12^{\prime}$ | $55^{\prime \prime}$ | Midzusima | Kinıura |
| " | " | 9 9 | 0 37 | ", | 14 | 27 | 下i" |  |
| ", | ", | 9 10 | 37 25 | ", | 115 | $\begin{array}{r}7 \\ 5 \\ \hline\end{array}$ | Kimura | Midzusima |
| ", | ", | 11 | 24 | ", | 16 | 59 | Midzusima | Kimura |
| " | ,, | 12 | 15 | ", | 21 | 36 | Midzusima | Kimura |
| " | " | 13 | 2 | ," | 22 | 48 | Kimura |  |
| " | ", | 14 | 17 | ", | 22 | 30 |  | $\stackrel{\square}{*}$ |
| " | ,' | 15 | 9 | ', | 21 | 21 | Midzusima | ". |
| , | " | 16 | 11 | ," | 19 | 31 | Kimura | ", |
| " | " | 17 | 13 | ", | 17 | 58 |  | ", |
| " | , | 18 | 12 | " | 17 | 13 | Midzusima | * |
| " | , | 19 | 16 | , | 15 | 42 |  |  |
| " | " | 20 | 9 | " | 17 | 23 | Kimura | Midzusima |
| ,", | ", | 21 | 26 | " | 15 | 53 | Nidzusima | Kimura |
| ", | " | 22 | $\stackrel{21}{25}$ | , | 16 | 1 |  | " |
| ", | $2{ }^{\prime \prime} 3^{\text {rd }}$ | 23 | 25 42 | " | 15 | 58 | Rimura | .. |
| ", | " | 0 2 | 42 | ", | 15 | 17 | .. | ,. |
| ", | ", | 5 | 7 | ", | 15 | 17 25 | " | " |
| " | " | ${ }_{6}^{6}$ | 11 | ", | 15 | 28 | Midzorsima | ,". |
| " | " | 7 | 15 | ", | 13 | 29 | " | Midzusima |
| " | " | 8 | 12 | " | 11 | 56 | ", |  |
| " | ., | 9 | 6 | " | 12 | 8 | ., | ", |
| ", | " | ${ }^{9}$ | 55 | " | 14 | 20 | .. | ", |
| ", | " | 10 | 54 | " | 18 | 5 | .. | ,. |
| ", | " 1 | 11. | 53 | " | 21 | 37 | .. | , |
| ", | " | 12 | 42 32 | " | 23 | ${ }^{6}$ | ." | , |
| ", | " ${ }^{1}$ |  | 32 25 | " | 22 | 1 | Kimura |  |
| " | ", 1 | 15 | 25 |  | 20 19 | 27 | Midzusima | Kimura |
| " | ", 1 | 16 | 18 | ", | 17 | 50 | " | Midzusima |
| " |  | 17 | 14 | " | 16 | 18 | " |  |
| Mean |  |  |  | $4{ }^{\circ}$ | $16^{\prime}$ | $37^{\prime \prime}$ |  |  |
|  |  |  |  |  |  |  | $16!62$ |  |
|  |  |  |  | $0.88$ |  |
|  |  |  |  |  |  |
|  |  |  |  | $\delta=4$ |  |  |  |  |

DIP ( $\theta$ )
Olservations of the East Party, 1893.

| Date and Hour (Mean Local Time.) |  |  |  | Neerlle No. |  |  | Obscreer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Oet $20 \mathrm{nd} 10^{\text {h }} 441{ }^{\text {mm }}$ | $22^{\text {nd }}$ | $10^{12}$ | $44.1{ }^{\text {n }}$ | $\begin{aligned} & 2 \\ & 2 \\ & 2 \end{aligned}$ | $45^{\circ} \quad 37!8$ |  | Kimura Midzusima | Midzusina |
| " | " | 11 | 9.9 |  |  | 38.3 |  |  |
|  | , | 11 | 42.5 |  |  | 30.3 |  | Kimura |
| " | " | 12 | 4.4 |  |  | 33.4 | \%' | " |
| " | " | 13 | 54.9 | - |  | 33.6 | Kimura | " |
| " | " | 16 |  | - |  | 34.4 | " | " |
| " | " | 17 |  | -- |  | 33.5 | Midzusima | ", |
| ", | ${ }_{23}^{3} \mathrm{rd}$ | 14 | 15.8 | - |  | 39.5 |  | ", |
| " | " | 16 | 31.2 | - |  | 34.7 |  | " |
| " | " | 16 | 57.0 | - | , |  | Kimmra | Midzusimat |
| Mean |  |  |  | $45^{\prime} \quad 35!0$ |  |  |  |  |
|  |  |  |  | Reluction to |  | $\theta=48^{\circ}$ | 35!0 |  |
|  |  |  |  | 1895. | 1.31 |  |  |
|  |  |  |  | leve | 0.00 |  |  |
|  |  |  |  |  |  |  | 36:3 |  |

HORIZONTAL INTENGITY $H$ )
Observations of the East Party, 1893.


## 45. MIDONO.

DECLINATION ( $\delta$ )
Observations of the West Party, 1833.

| $\begin{aligned} & \text { Da } \\ & \text { (Mea } \end{aligned}$ | $\begin{aligned} & \text { e and } \\ & \text { Loc } \end{aligned}$ | $\begin{gathered} \mathrm{Hov} \\ \text { al } \mathrm{Ti} \end{gathered}$ |  |  | $\delta$ |  | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Oct. | $25^{!} 1$ | $16^{\mathrm{h}}$ | 30 m | $4^{\circ}$ | $24^{\prime}$ | $41^{\prime \prime}$ | Tanakadate | Tamakadate |
| " | , | 17 | 6 | , | 25 | 10 | - |  |
| " | " | 18 | 12 | ", | 26 | 15 | " | ", |
| " | " | 18 | 32 | , | 24 | 3 | " | ", |
| " | ," | 19 | 11 | $\because$ | 22 | 29 | " | ", |
| , | " | 20 | 19 | " | 24 | 53 | " | ", |
| " | $\because$ | 21 | 13 | " | 24 | 9 | ., | " |
| , | $26^{\text {th }}$ | 1 | 48 | " | 21 | 48 | , | , |
| " | " | 4 | 10 | : | 22 | 20 | " | , |
| ", | " | 7 | 29 | " | 23 | 13 | " | " |
| " | ", | 8 | 23 | , | 23 | 59 | , | " |
| ," |  | 8 | ¢9 | " | 23 | 33 | " | ,' |
| ," | " | 9 | 37 | " | 23 | 36 | ., | " |
| ", |  | 10 | 14 | " | 24 | 38 | " | , |
| " |  | 11 | 4 | " | 23 | 31 | " | " |
| " | " | 11 | 32 | ' | 27 | 25 |  | " |
| " | " | 12 | 15 | " | 27 | 55 | " | " |
| " | " | 13 | 6 | " | 27 | 48 | " | " |
| , | , | 14 | 8 | " | 26 | 16 | " | " |
| " | " | 15 | 9 | " | 25 | 24 | " | " |
| " " 16 - |  |  |  | , | 24 | 46 | " | " |
| Mean |  |  |  | $4^{\circ}$ | $24^{\prime}$ | $1^{\prime \prime}$ |  |  |
|  |  |  |  | 根 $4 \quad 24 \% 2$ |  |  |  |  |
|  |  |  |  | Reduction to |  | $\begin{aligned} & \delta=4 \\ & 1875.0=\end{aligned}$ | 1.16 |  |
|  |  |  |  |  |  | sea lo | $-0.03$ |  |
|  |  |  |  |  | $\delta= \pm$ | 25!2 |  |

DII ${ }^{\prime}(\theta)$
Observations of the West Party, 189\%.

| Date and Hour (Mean Local Time.) |  |  | Needle No. |  | $\theta$ | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| July |  | $34{ }^{\text {m }}$ 9 | 3 3 |  | $48: 1$ 50.8 | Iwaoka | Tanakadate Uziie |
| Mean |  |  |  | $49^{\circ}$ | 49.5 |  |  |
| $\begin{array}{rlrl} & & & =49^{\circ} \\ \text { Reduction to } & 49!5 \\ 1895.0 & = & 0.67 \\ , \quad, & \text { sea level } & = & -0.07 \\ \theta & =49^{\circ} & 50!1\end{array}$ |  |  |  |  |  |  |  |

HORIZONTAL INTENSITY ( $H$ )
Observations of the West Party, 1893.


Reduction to $1895.0=870$
,, sea level $=\quad 693$
(62)

## 46. YOSIDA.

DECLINATION ( $\delta$ )
Olservations of the W'est Party, 1893.

|  | e and <br> Incea | $\begin{gathered} \text { Hon } \\ 1 \mathrm{Tin} \end{gathered}$ |  |  | $\delta$ |  | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Oct. | $24^{\text {th }}$ | $9^{1 /}$ | 21 m | $3{ }^{\circ}$ | $21^{\prime}$ | $53^{\prime \prime}$ | Tanakadate | Tanakadate |
| " | , | 9 | 53 | " | 25 | 14 | , | , |
| , | -• | 10 | 39 | , | 27 | 3 | , | ,, |
| " | , | 11 | 51 | " | 30 | 36 | , | , |
| ", | ", | 12 | 43 | ", | 30 | $2 ;$ | " | „, |
| ., | , | 13 | 17 | " | 30 | 44 | " | " |
| , | ,. | 14 | 22 | ". | 80 | 16 | ", | ., |
| ", | ," | 15 | 18 | " | 29 | 14 | " | ,, |
| , | , | 16 | 15 | " | 28 | 31 | , | -• |
| ", | , | 17 | 15 | , | 28 | 53 | " | ., |
| ," | ", | 18 | 8 | " | 29 | 6 | " | , |
| ., | ,, | 19 | 30 | ., | 29 | 15 | " | " |
| " | , | 29 | 32 | " | 28 | 28 | " | , |
| ", | $25^{\text {th }}$ | $t$ | 0 | " | 20 | 5.7 | ", | , |
| ", | , | 4 | 56 | " | 27 | 27 | " | ., |
| " | ", | 6 | 45 | " | $2!1$ | S | ", | ,, |
| .. | ", | 7 | 30 | ,. | 2 S | ${ }^{6}$ | ", | .. |
| .. | " | S | 8 | , | 2 ; | 13 | ," | " |
| .. | .. | K | 32 | " | $21 ;$ | 49 | " | - |
| $\cdots$ |  |  |  | , | 26 | 56 | " | " |
| Mean |  |  |  | 3 | $28^{\prime}$ | $38^{\prime \prime}$ |  |  |
|  |  |  |  | Reduction to |  | $\begin{array}{rlrl} \delta & =3 & 28663 \\ 1895.0 & = & 1.30 \\ \text { sea level } & = & -0.05 \\ \hline \delta & =3 & 29!9 \end{array}$ |  |  |
|  |  |  |  |  |  |  |

DIP ( $\theta$ )
Observations of the West Party, 1893.


HORIZONTAL IN'TENSITY (II)
Ohservations of the West Party, 1893.


47．UMAGAESI．
Suzugahara，foot of Mt．Huzi（嵩士山椚字鉿ヶ原（吉田口））
DECLINATION（ $\delta$ ）
Observations of the West Party， 1893.


Observations of the West Party， 1893.

| Date and Hour （Mean Local Time．） |  |  |  | Needle |  |  | Olserver | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| JuIy． $\#$ $"$ $"$, $"$ | （ ${ }_{\text {cth }}^{\text {cth }}$ | 20 h 8 16 19 9 | 17 m 59 59 6 11 | 3 3 3 3 3 | 50 $"$ $"$ $"$ | $\begin{aligned} & 22!7 \\ & 26.7 \\ & 22.7 \\ & 29.1 \\ & 23.0 \end{aligned}$ | Uziie <br> Turuta <br> Iwroka Tanakalate | Turuta Uziie Tanakadite Cziie „ |
| Mean |  |  |  |  | $50^{\circ}$ | 24！8 |  |  |
|  |  |  |  | $\theta$ $=50^{\circ}$ <br> Reduction to 1895.0 $=$ <br> ,$\quad$ sea level $=$ |  |  | 24！ 8 <br> 0.59 <br> －0．10 <br> 25 |  |

HORIZONTAL INTENSITY（H）
Observations of the West Party， 1893.


Observations of the West Party， 1893.

| 64） | Observations of the West Party，1893．（吉田口四合目 小屋前） |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Date and Hour <br> （Mean Local＇Time．） | $\begin{gathered} \text { Needle } \\ \text { No. } \end{gathered}$ |  | $\theta$ | Observer | Recorder |
| July $100^{\text {th }} 15^{\text {h }} \quad 13^{\mathrm{m}}$ | 3 |  | 13！3 | Turuta | I waoka |


| Date and Hour <br> （Mean Local Time．） | Needle <br> No． | $\theta$ | Observer | Recorder |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| July $16^{\text {th }}$ | $18^{\mathrm{ha}}$ | $25^{\mathrm{ma}}$ | 3 | 45 | $37!3$ |

（吉四口六合五句目字鎌罘 石室ノ上方）

| Date and Hour （Mean Local Time．） | Neerlle No． | $\theta$ | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: |
| July $\quad 11^{\text {th }} \quad 9^{\text {h }} \quad 29^{\text {mi }}$ | 3 | $50.29!$ | Tanakadate | Uziie |

（吉田口八合目）

| Date and Hour <br> （Mean Local Time．） | Needle <br> No． | $\theta$ | Observer | Recorder |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| July | $11^{\text {th }}$ | $14^{\text {h }}$ | $5^{\text {m2 }}$ | 3 | 60 |

48．HUZI．
East side of Syakadake（䆁䢙ヶ獄ノ東）
DIP ${ }^{(\theta)}$
Ohservations of the West Party， 1893.

| Date and Hour （Mean Local Time．） |  |  | Needie No． | $\theta$ | Observer | Tiscorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| July | $11^{\text {th }}$ $12^{\text {th }}$ $19^{\text {h }}$ | 28 m 50 | － | $\begin{array}{ll}55^{\circ} & 246 \\ \# & 12.5\end{array}$ | Iwaoka Turuta | Uziie ＂ |
| Mean |  |  |  | 59 18！ |  |  |
|  |  |  |  |  |  |  |

HORIZONTAL INTENSITY（II）
Observations of the West Party， 1893.

| Date and Hour （Mean Laceal Time．） | II | M | Mean Temp． | Time of 1－Vibn． | Temp. | Mean Deflections |  | $\begin{gathered} \text { Temp. } \\ t_{D} \end{gathered}$ | Observer | Tecorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | is | $\varphi_{2}$ |  |  |  |
|  | $\begin{aligned} & 0.26142 \\ & 0.26174 \end{aligned}$ | $\begin{aligned} & 477.32 \\ & 477.19 \end{aligned}$ | $\begin{aligned} & 9.1 \mathrm{C} \\ & 12.4 \end{aligned}$ | $\begin{gathered} \mathrm{s} .9538 \\ 5.938 \\ 5.9487 \end{gathered}$ | $\begin{aligned} & 10.5 \mathrm{C} \\ & 13.0 \end{aligned}$ | $\begin{aligned} & 7^{\circ} 53 \prime 36 \prime 2 \\ & 75212.5 \end{aligned}$ | $\begin{array}{ll} 18^{\circ} & 6^{\prime} \\ 18 & 21!0 \\ 18 & 29.0 \end{array}$ | $\begin{gathered} 7.7 \\ 11.9 \end{gathered}$ | Iwak： | Tanakadate Turuta |
| Mean | 0.26158 |  |  |  |  |  |  |  |  |  |
|  |  |  |  | duction | $\begin{array}{lr} \text { to } \quad 1 \\ , \quad & \quad \text { sea } \\ \hline \end{array}$ | $\begin{aligned} I I & =0.2 \\ 395.0 & = \\ \text { evel } & = \end{aligned}$ | $\begin{aligned} & 6158 \\ & 1032 \\ & 4700 \\ & \hline \end{aligned}$ |  |  |  |

22 Centimeters above ground（地上二十二糎）
HORIZONTAL INTENSI＇TY（ $I f$ ）
（＊＇alue deduced from Vibration only by assuming Value of $I$ ） Observations of the West Party， 1893.

| Date and Honr （Mean Local Time．） | 11 | M | Mean Temip． | Time of $1-\mathrm{Vib}$ ． | $\begin{gathered} \text { Temp } \\ t_{v} \end{gathered}$ | Mean Deflections |  | $\mathrm{t}_{\mathrm{n}}$ | Onserver | Iiccorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\varphi_{1}$ | $\varphi_{2}$ |  |  |  |
| July．12？h $9^{\text {h }} \quad 26^{\text {ma }}$ | ＊0．25574 | 477.62 | 10.9 C | 6.0143 | 10．9C | ． | ． | ． | Turuta | Uziie |

120 Centimeters above ground（地上百二十雨）
HORIZONTAL IN＇IENSITY（ $H$ ）
（＊＇alue deduced from Vilnation only by assuming Felue of M）
Observations of the West Party， 1893.

| Date and Hour （Mean Local Time．） | II | 3 | Jean． <br> Temp． | $\begin{aligned} & \text { Time of } \\ & \text { 1-Vib". } \end{aligned}$ | $\underset{t_{v}}{\text { Temp. }}$ | Mean Deflections |  | Temp. | Olserver | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\varphi_{1}$ | $\varphi_{2}$ |  |  |  |
| July．12 $2^{\text {th }} 99^{\text {h }} 55^{\text {mm }}$ | 0.25114 | 477.14 | ＋ $12: 2 \mathrm{C}$ | 5.9544 | $12: 2 \mathrm{C}$ | ． | $\cdots$ | ． | Turuta | Ǔziie |

## 49．HUZI．

Sainokawara near Kinmeisui $\underset{\text { DIP }}{(\theta)}$（企明水近傍ナル㿽ノ河原）
Observations of the West Party， 1893.

| Date and Hour （Mean Local Time．） | Needle No． |  |  | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: |
| July． $12^{\text {th }} \quad 17^{\text {h }} \quad 3.1^{\text {n }}$ | 3 | 523 | $41!7$ | Itraoka | Uziie |
|  | $\theta$ $=52^{\circ}$ $41 / 7$  <br> Reduction to 1895.0 $=$ 0.59 <br> ,$\quad$, sea level $=0$ -0.40 <br> $\theta$ $=52^{2}$ $41!3$  |  |  |  |  |

HORIZONTAL INTENSITY（II）
（＊Value dediced from Vibration only by assuming Vatue of M Observations of the West Party， 1893.

| Dite and Homr （Mean Local Time．） | II | 3 | Mean Temp． | ＇Time of 1－Tib． | $\begin{gathered} \text { Temp. } \\ t_{v} \end{gathered}$ | Mean Deflections |  | $\mathrm{TeH}_{\mathrm{p}} \mathrm{p}$ | Observer | Recorter |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | 41 | 9.2 |  |  |  |
| $\begin{array}{cccc}\text { July．} & 12^{\text {th }} & 19 \mathrm{ll} & 16^{\mathrm{mm}} \\ , & , & 19 & 50\end{array}$ | $\begin{array}{\|l} * \\ * 0.292 .297 \\ * 0.29297 \end{array}$ | 478.50 478.40 | 8.8 C 8.9 | 5．${ }^{\text {s }}$（1888 5.6151 | 8.50 8.9 | $\cdots$ | ． |  | Iwaoka Uziie Iwaoka | Uziie Iwaoka Turut： |
| Mean | 0.29272 |  |  |  |  |  |  |  |  |  |
| $1 l$ $=$ 0.29272 <br> Reduction to $\quad 1895.0$ $=$ $10: 32$ <br> .,$\quad$ sea level $=$ 4536 <br> $I I$ $=1.293 .2 \mathrm{n}$  |  |  |  |  |  |  |  |  |  |  |

## 120 Centimeters above ground（地上百二十旅）

HORIZONTAL INTENSITY（II）
（＊Tabue deducer from Tibration nin＇y thy assuming To＇ue of M）


22 Centimeters above ground（地上二十二糎）
HORIZONTAL INTENSITY（II）
（＊＇alue deduced from．Vibration only by assuming Va＇ue of M）
Observations of the West Party， 1893.

| Date and Honr （Mean Local Time．） | II | II | Mean <br> Temp． | Time of 1－Vib… | $\begin{gathered} \text { Temp. } \\ t_{5} \end{gathered}$ | Mean Defllections |  | $\begin{gathered} \text { Temp } \\ t_{\mathrm{t}} \end{gathered}$ | Orserver | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\varphi_{1}$ | $\varphi_{2}$ |  |  |  |
| July． $13^{\text {th }}$ 6 $6^{3} 40 \mathrm{~m}$ | 0.29101 | 478.53 | 8．4C | ${ }_{5}^{8.6324}$ | 8.40 |  | ． |  | Iwata | Tauakutate |

## 50．HUZI．

Sainokawara near Ginmeisui（銀明水近傍ナル寒ノ河原）
Observations of the West Party， 1893.

| Date and Hour （Mean Local Time．） | $\begin{gathered} \text { Needle } \\ \text { No. } \end{gathered}$ | $\theta$ | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: |
| July． $13^{\text {h／}}$ ， $9^{\text {h }} \quad 3^{\text {m }}$ | 3 | $59{ }^{\circ} 14!3$ | Uzie | Turuta |
| Mean | ， |  |  |  |
|  | $\begin{gathered} \text { Reductior } \\ \quad, \quad \end{gathered}$ | $\begin{array}{r} \theta= \\ 1895.0 \\ \text { sea lavel } \end{array}=\begin{array}{r} = \\ \hline \theta \end{array}$ | $\begin{array}{r} 14!3 \\ 0.5! \\ -0.41 \\ \hline 14!5 \end{array}$ |  |

HORIZONTAL INTENSITY（IL）
Ohservations of the West Party，1893．


51．HUZI．
Bottom of Crater（人穴／奥）
DII．（ $\theta$ ）
Observations of the West Party．1893．

| Date and Hour <br> （Mean Local Time．） | $\begin{gathered} \text { Needle } \\ \text { No. } \end{gathered}$ | $\theta$ | （1）server | Recorder |
| :---: | :---: | :---: | :---: | :---: |
| July．$\quad 13^{\text {th }} \quad 12^{\text {h }} \quad 2^{\mathrm{m}}$ | 3 | $47^{\circ} \quad 42 \times 2$ | 1 waoka | Tanakalate |
|  |    $=47$ <br> Reduction to $42!2$   <br> 1895.0 $=$ 0.59  <br> $\cdots \quad \#$ sea level $=$ -11.39 <br> $\theta$ $=47$ $42!4$  |  |  |  |

HORIZONTAL INTENSITY（ $H$ ）
（＊Vorlue dolued from Jihration only by assuming Velue of（IL） Observations of the West Party，18：3．

| Date and Homr （Mean Local Time．） |  |  | 11 | M | Mean Temp． | Time of＇ 1－Vib＂ | $\operatorname{Tem}_{\mathrm{l}} .$ | Mean Deflections |  | $\operatorname{Tem}_{t_{\mathrm{p}}} \mathrm{p}$ | Onserver | Rucorder | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|  |  |  | $\varphi_{1}$ |  |  |  |  | $\varphi_{2}$ |  |  |  |
|  | $13^{\text {th }} 12^{\text {l }}$ |  |  | ＊0．31257 | 476.66 | 13.5 C | 5.4298 | 13.5 C | ． | ． | $\ldots$ | Turuta | Tramakandate |
|  | ＂ |  | ＊0．31099 | 476.73 476.36 | 13．3 | 5.4423 | 13.3 | ． | ． | $\cdots$ | Iwaoka | ， |
|  | ＂ 13 |  |  |  | $14 .$. | 5．$\pm 410$ |  | ． | ． | ． | ＂ | ．． |
| Mean |  |  | 0.31166 |  |  |  |  |  |  |  |  | 4 |
| Reduction to 18 |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  | vel $=$ | 85\％ |  |  |  |

## 52．MURAYAMA．

Aza Arasinotaira（字風，鉎）
DECLINATION（ $\delta$ ）
Oloservations of the West Party， 1993.


DH＇${ }^{(\theta)}$
Oliservations of the West Party， 1433.

| Date and Hour <br> （Mean Local Time．） |  |  |  | $\begin{aligned} & \text { Needle } \\ & \text { No. } \end{aligned}$ |  | $\theta$ | Obserrer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Jnly . .. | $15^{\text {th }}$ <br>  <br> $"$ | ${ }_{17}^{15}$ | $37^{m}$ 23 8 | 海 3 3 3 | 48 | $\begin{aligned} & 58!9 \\ & 48.9 \\ & 57.5 \end{aligned}$ | Uziie Iwaoka Turnta | Uziie <br> Tinrutio <br> Iwaoka |
| Mean |  |  |  |  | 48 | $55!1$ |  |  |
|  |  |  |  |  |  |  |  |  |

HORIZONTAL INTENSITY（II）
Ohservations of the West Party， 1893.


53．HIROMIBARA．
Kamiidemura Koaza Warabidaira（上并出村小字茂平）
DECLINATION（ $\delta$ ）
Observations of the West Party， 1893.


DIP $(\theta)$
Olservations of the West Party， 1893.

| Date and Hour （Mean Local Time．） | Needle No． | $\theta$ | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: |
| July． $16^{\text {th }}$ $15^{\text {h }}$ $41^{\mathrm{m}}$ <br>  $17^{\text {th }}$ 7 10 <br> $"$ $"$ 20 48 | $\begin{aligned} & 3 \\ & 3 \\ & 3 \end{aligned}$ | $\begin{array}{cc} 49^{\circ} & 1+!7 \\ " & 16.7 \\ " & 12.8 \end{array}$ | Tanakadate Uziie <br> Tanakadat 3 | Tanakalate Turnta Uziie |
| Mean |  | $49^{\circ} \quad 14: 7$ |  |  |
|  | Reduct | $\begin{array}{r} \theta= \\ 1895.0= \\ \text { sea level } \end{array}$ | $\begin{gathered} 14!7 \\ 0.58 \\ -0.08 \end{gathered}$ |  |

HORIZONTAL INTENSITY（II）
Observations of the West Party， 1833.


## 54．HIROMIBARA． Down Uzuragawa about 500 meters west（下䳬小屋） <br> DIP（ $\theta$ ）

Observations of the West Party， 1893.

| Date and Hour <br> （Mean Local Time．） | Needle No． | $\theta$ | Observer | Recorler |
| :---: | :---: | :---: | :---: | :---: |
| July． $17^{\text {th }} 17^{\text {h }} 14^{\text {m }}$ | 3 | $45^{\circ} \quad 4 \% 3$ | Turuta | Uziie |
|  |  |  |  |  |

HORIZONTAB INTENSITY（II）
（＊Гulue delucel from Vibration ouly by assaming V＇ulue of $M$ ） Observations o．the West Party， 1893.


55．HIROMIBARA．
Up Uzuragoya about 800 meters east（上鶉小屋） DIP（ $\theta$ ）
Observations of the West Party， 1893.

| Date and Homr （Mean Local Time．） | $\begin{gathered} \text { Needle } \\ \text { No. } \end{gathered}$ | $\theta$ | Observer | Recorrier |
| :---: | :---: | :---: | :---: | :---: |
| July． $17^{\text {th }} 18^{1 / 2} \quad 266^{\text {mi }}$ | 3 | $49^{\circ} \quad 3944$ | Iwaoka | Trankardate |
|  |  |  |  |  |

HORIZONTAL INTENSITY $(H)$
（＊＇ralue deduced from Libration only by ressming Value of M）
Observations of the West Party， 1893.


## 56．MIITUIKE．

First Cave Hitoanamura（人穴村第一洞）
DIP $(\theta)$
Observations of the West Party， 1893.


HORIZONTAL INTENSITY（II）
（＊Trlue deduced from Vibration only by assuming Value of M）
Observations of the West Party， 1893.

| Date and Ifour （Mean Local Time．） | II | 3 | Mean | Time of 1－Yib？ | Temp． $t_{v}$ | $\begin{gathered} \text { Mean } \\ \varphi_{1} \end{gathered}$ | tions $\varphi_{2}$ | Temp． <br> $\mathrm{t}_{1}$ ） | Observer | Liecorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{array}{\|l} * 0.33965 \\ * 0.34013 \end{array}$ | $\begin{aligned} & 472.33 \\ & 472.43 \end{aligned}$ | $\begin{aligned} & 19: 2 \mathrm{C} \\ & 18.9 \end{aligned}$ | $\begin{aligned} & \mathrm{s} \\ & 5.2322 \\ & 5.2279 \end{aligned}$ | $\begin{aligned} & 19: 2 \mathrm{C} \\ & 18.9 \end{aligned}$ | $\cdots$ | ． | $\cdots$ | Iwauka | ＇I＇anakarate |
| Mean | 0.33989 |  |  |  |  |  |  |  |  |  |
|  |  |  | Re | Inetion to | $\begin{array}{r} 18! \\ , \quad \text { sea } 1 \\ \hline \end{array}$ | $\begin{array}{r} I I= \\ 95.1= \\ \text { evel }= \\ 11= \end{array}$ | 064 <br> 133 <br> 1 |  |  |  |

57．MITUIKE CAVE．
Second Cave Hitoanamura（人穴村第二洞）
lIP（ $\theta$ ）
Ohservations of the West Party， 1893.


| Date and Howr （Mean Local Time．） | II | II | Mean Temp． | Time of 1－Vib＂． | $\begin{gathered} \text { Temp. } \\ t_{v} \end{gathered}$ | Mean Deflections |  | Temp. | Olserver | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\varphi_{1}$ | $\varphi_{2}$ |  |  |  |
| July 18th $15^{\text {12 }}: 300^{\text {min }}$ | ＊0．29839 | 473.05 | 17．4C | 5.5777 | 17．4C |  | ． | ． | Iwaoka | Tanakadate |

Reduction to $1995.0=1064$
sea level $=\quad 103: 3$

$$
I=0.29866
$$

58．FRONT OF MITUIKE CAVE．
Hitoanamura（人 穴 村）

$$
\operatorname{DIP} \quad(\theta)
$$

Observations of the West Party， 1893.

| Date and Homr （Mean Local＇Time．） | $\begin{aligned} & \text { Neerlle } \\ & \text { No. } \end{aligned}$ |  | ， | Observer | liecortler |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | ： | $47^{\circ}$ | 39.4 | Turuta | I waoka |
|  |  |  |  |  |  |
| HORIZONTAL INTENSITY (II) <br> Fiolne detued from．Vibretion only loy assuming Velue of II） Observations of the West Party， 1893. |  |  |  |  |  |


| Dite and Hour （Mean Local Time．） | II | 3 | $\begin{gathered} \text { Mean } \\ \text { Cemp. } \end{gathered}$ | Time of 1－Vib＂． | $\binom{\text { Temц }}{t_{\mathrm{v}}}$ | Mean Deflections |  | $\operatorname{Tem}_{\mathrm{t}_{\mathrm{p}}}$ | （inserver | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\varphi_{1}$ | $\varphi_{2}$ |  |  |  |
| July $18^{\text {th }} 1 \mathrm{~s}^{\prime \prime} 500^{\text {m }}$ | \％ 0.24088 | 471.31 | $2 \because .2 \mathrm{C}$ | $5^{\text {5 }} .6601$ | 22.3 C | ． | ．． | ．． | Iwatokit | Turuta |

$$
\begin{array}{rlrl} 
& & I I & =0.29088 \\
\text { Fedurtion to } \quad 1895.0 & =1064 \\
\cdots \quad \text { a } \quad \text { a level } & =103: 3 \\
& I I & =0.2910: 1
\end{array}
$$

## 59．FRONT OF HITOANA．

Cbservations of the West Party．18！ 3.

| Dite ：and Hour （Mean Local Time．） | Neerlle No． | $\theta$ | Observer | Recorter |
| :---: | :---: | :---: | :---: | :---: |
| Jily lath on $22^{\text {m }}$ | 3 | 4620.4 | Turuta | Cziie |
|  | $\begin{aligned} \theta & =45^{\circ} & 20!4 \\ \text { Tierfuetion to } \quad 1895.0 & = & 0.44 \\ \because \quad \text { sea level } & = & -10.08 \\ \theta & =1 ; & 20 \% \end{aligned}$ |  |  |  |

HGHEZONTAL INTEASITY（ 11 ）．

Observations of the West Party，1893．


## 60 ITIMAIIWA IN HITOANA

（人穴內一枚北）
DIP ${ }^{(\theta)}$
Observations of the West l＇arty， 1893.


HORIZONTAL INTENSITY（II）．
（＊＇alue deducen from V＇ibration only by assuming I＇elue of M）
Observations oc the West l＇arty， 1893.


## 61 FRONT OF HITOANA

DIP（ $\theta$ ）
Observations of the West larty，Is，33．


HORIZONTAL INTENSITY．（II）
Observations of the West Party，1593．

| Date and Hour （Mean Local Time．） | II | 3 | Mean Temp． | Time of $1-Y^{\prime} i l{ }^{n}$ | $\begin{gathered} \text { Temp. } \\ t_{v} \end{gathered}$ | $\frac{\text { Mear }}{\varphi_{1}}$ | $\begin{aligned} & \text { tions } \\ & \varphi_{2} \end{aligned}$ | ＇Temp＇ $t_{p}$ | Onserver | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & * 0.3158 .1 \\ & * 0.31564 \end{aligned}$ | $\begin{array}{r} 474.41 \\ 474.69 \end{array}$ | $\begin{aligned} & 13.1 \mathrm{C} \\ & 12.3 \end{aligned}$ | $\begin{aligned} & 5.41: 33 \\ & 5.4133 \end{aligned}$ | $\begin{aligned} & 13: 10 \\ & 12.3 \end{aligned}$ |  |  | $\ldots$ | Tanakarlate Tuntar | Turuta Tanakarlate |
| Mean | 0.31574 |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |

## 62．OMMIYA

Nisihatikōzimura Sanbonmatu（西八小路村三本松）
IDECLINATION（ $\delta$ ）
Olservations of the West Party， 1893.


DIP（ $\theta$ ）
Observations of the West Party， 1893.


HORIZONTAL INTENSITY（IL）
Observations of the West Party， 1893.

| Dite and Hour （Me：n Local Time．） | II | M | Mean Temp． | Time of 1－Tibn． | $\left\|\begin{array}{c} \text { Temp. } \\ t_{v} \end{array}\right\|$ | Mean Deflections |  | $\begin{array}{\|c} T \mathrm{Temp} \\ t_{\mathrm{D}} \end{array}$ | Observer | Recorter |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\varphi_{1}$ | $\varphi_{2}$ |  |  |  |
|  | 0.30234 | 467.19 | 31．3C | 5.5924 | $31: 0 \mathrm{C}$ | $6^{\circ} 399^{\prime 2} 2{ }^{\prime \prime \prime} 8$ | $15^{\circ} 12^{\prime} 45$ \％ 0 | 31.7 C | $\left\{\begin{array}{c} \text { Turuta } \\ \text { Uziie } \end{array}\right.$ | $\left\{\begin{array}{l}\text { Uziie } \\ \text { Turuta }\end{array}\right.$ |
| ＂．．． 133 | 0.30331 | 468.93 | 30.2 | 5.5747 | 30.9 | 63958.8 | 151355.0 | 29.5 | Iwaoka | Tanakalate |
| ＂， 223 | 0.30223 | 469.56 | 25.5 | 5.5796 | 25.5 | 64130.6 | 151658.8 | 25.4 | $\left\{\begin{array}{c}\text { Tanakadate } \\ \text { Turuta }\end{array}\right.$ | $\left\{\begin{array}{c}\text { Turnta } \\ \text { Tanakadate }\end{array}\right.$ |
| Mean | 0.30263 |  |  |  |  |  |  |  |  |  |

## 63. NUMAZU.

## DECLINATION ( $\delta$ )

Observations of the West Party, 189\%.


DIP $\quad(\theta)$
Observations of the West Party, $183 \%$.


HORIZONTAL INTENSITY (II)
Observations of the West Party, 1893.

| Date and Hour (Mean Local Time.) | 11 | M | $\begin{gathered} \text { Mean } \\ \text { Temp. } \end{gathered}$ | Time of1-Vib?. | $\left\lvert\, \begin{gathered} \operatorname{Tem}_{\mathrm{t}} \\ \mathrm{t}_{\mathrm{v}} \end{gathered} .\right.$ | Mean Deflections |  | $\begin{gathered} \text { Tem } \\ \mathrm{t}_{\mathrm{t}}, \end{gathered}$ | Onserver | R corder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\varphi_{1}$ | $\varphi_{2}$ |  |  |  |
| July. $21^{\text {st }} 16^{\text {h }} 11^{\text {n/ }}$ | 0.30054 | 468.07 | $30 \% \mathrm{C}$ | 5.6058 | 31.5C |  | $1517 \times 31 \% 1$ | $2!.8 \mathrm{C}$ | Turuta | Iwaoka |
| " ", 2156 | 0.30184 | 467.93 | 24.8 | 5.5927 | 24.9 | 6428.8 | 15213.8 | 24.8 | ,, | \{Tanakarlate |
| " ," 9 13 | 0.30059 | 467.96 | 32.0 | 5.6045 | 31.9 | 64148.8 | 15178.8 | 32.1 | 'Tanakadate |  |
| Mean | 0.30099 |  |  |  |  |  |  |  |  |  |


|  | II= | 0.300:9 |
| :---: | :---: | :---: |
| Reduction to | $1895.0=$ | 943 |
| " | sea level = | 0 OH |

64. SIMIZU.

DECLINATION ( $\delta$ )
Observations of the West Party, 1893.



| Date and Hour (Mean Local Time.) | 11 | 3 | Mean <br> Temp. | Time of 1-Vib". | $\begin{gathered} \text { Temp. } \\ t_{\mathrm{v}} \end{gathered}$ | Mean Deflections |  | $\begin{gathered} \mathrm{Teml}_{1} \\ \mathrm{t}_{\mathrm{D}} \end{gathered}$ | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\varphi_{1}$ | 9.2 |  |  |  |
| July. $22^{\text {nut }} 2 \sim^{\text {h }} 22^{\mathrm{m}}$ | 0.30161 | 470.59 | 27.2 C | 5.5802 | 27.5 C | $6^{\circ}+3^{\prime} 8$ 8'8 | 15:20'30\%0 | 26.90 | Iwaoka Uziie | Tziie <br> Iwnoka |
| $\begin{array}{llll}\text { \% } & 23 & 9 & 19\end{array}$ | 0.30086 | 466.81 | 32.0 | 5.6094 | 32.2 | 64113.8 | 151948.8 | 31.8 |  | Noda |
| $\begin{array}{cccc}" & & 14 & 57 \\ " & \# & 22 & 5\end{array}$ | 0.31 .073 0.30249 | 466.21 470.11 | 32.6 27.0 | 5.6151 5.5743 | 33.6 27.2 | 64048.8 64216.3 | $\begin{aligned} & 151530.0 \\ & 151942.5 \end{aligned}$ | $\begin{array}{r} 31.9 \\ 26.8 \end{array}$ | Turnta Uziie | Türuta |
| Mean | 0.30142 |  |  |  |  |  |  |  |  |  |



## 65. NISINOTO.

DECLINATION ( $\delta$ )
Chservations of the West Party, 1sy:3.


DIP ( $\theta$ )
Olservations of the West Party, 1893.

| Date and Hour (Mean Local 'lime.) | Needle No. |  | $\theta$ | Observer | liecorder |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 3 3 3 3 | 48 $״$ $״$ | $\begin{aligned} & 45.0 \\ & 35.9 \\ & 3 . .6 \end{aligned}$ | Uziie Turuta Tanakadate | Tanakadate C'ziie Toruta |
| Mean |  | $48^{\circ}$ | $40!2$ |  |  |
|  | Reduct $\qquad$ | $\begin{aligned} & \text { to } \\ & , \quad \text { se } \end{aligned}$ |  | $\begin{array}{r} 40!2 \\ 0.00 \\ -0.02 \\ \hline 40!2 \end{array}$ |  |

HORIZONTAL INTENSITY (IL)
Observations of the West Party, 1893.

| Date and Hour(Mean Local Time.) | II | M | Mean <br> Temp. | Time of 1-Vib‥ | Temp. | Mean Deflections |  | Temp | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\varphi_{1}$ | $\varphi_{2}$ |  |  |  |
| $\begin{array}{cccc}\text { July } & 266^{\text {hl }} & 13^{\mathrm{h}} & 37^{\mathrm{m}} \\ , \quad, & 20 & 26\end{array}$ | $\begin{aligned} & 0.30052 \\ & 0.3000^{2} \end{aligned}$ | $\begin{aligned} & 46549 \\ & 469.01 \end{aligned}$ | $\begin{aligned} & 31.2 \mathrm{C} \\ & 24.3 \end{aligned}$ | $\begin{gathered} s^{s} 621 \\ 5.6221 \\ 5.6036 \end{gathered}$ | $\begin{aligned} & 32.2 \\ & 24.6 \end{aligned}$ | $\begin{aligned} & i^{\circ} 41^{\prime} 18^{\prime \prime} 8 \\ & 6415.0 \end{aligned}$ | $\begin{aligned} & 1517 \prime 51!3 \\ & 152258.8 \end{aligned}$ | $\begin{aligned} & 31.10 \\ & 24.1 \end{aligned}$ | Uzilt T'urutit | Nola <br> Tanakadate |
| Mean | 0.36027 |  |  |  |  |  |  |  |  |  |
| $I I=0.30027$ |  |  |  |  |  |  |  |  |  |  |
|  |  |  | Reduction to 1 |  |  | 895.0 = | 1293 |  |  |  |
|  |  |  |  | $\because$ | ,, sea | level = | 176 |  |  |  |

DIP（ $\delta$ ）
Observations of the West Party，18：3．


HORIZONFAL INTENSITY（II）
（＊V＇the rlenuced from．Vibration on＇y by Assuminy Velue of וM．）
Observations of the West Party， 1893.


Rerlucion to $1895.0=1290$ seal level $=176$ $I I=0.3005$ ；
66．OKAZAKI．
No 10 Ōaza Hane Aza Okuyama（大䆘旸根字奥山十番地）
DECLINATYON（ ${ }^{(8)}$
Observations of the West Party， 1893.



Ohservations of the West Party，1893．

| Date and Hour （Mean Local＇lime．） | Needle No． | $\theta$ | Obserser | Recorder |
| :---: | :---: | :---: | :---: | :---: |
|  | 3 3 3 | $\begin{array}{cc} 4 S^{C} & 35.0 \\ " & 32.7 \\ " & 32.0 \end{array}$ | Uziit <br> Turnta | Norla |
| Itean |  | $45^{\circ} \quad 33!2$ |  |  |
|  |  |  |  |  |

HORIZONTAL INTENSITY（IL）
Observations of the West Party， 1893.


## 67．KŌWA．

Goryōti．（山）上御料地）
DECLINATION（ $\delta$
Observations of the West Party， 1893.

（78）
1）II＇（ $\theta$ ）
Observations of the WFest larty，1sy3．


HORIZON＇TAL INTENSI＇Y（II）
Ohservations of the West Party， 1893.


68．NARUMII．
Aza Ikenoue embankment（字池，上堤防）
DECLINATION（ $\delta$ ）
（1）servation of the West Party，183：3．


DIP $(\theta)$
Olservations of the West Party， 1893.

| Date and Hour <br> （Mean Lucal Time．） | Needle No． | $\theta$ | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: |
|  | 3 -3 | $\begin{array}{ll}48 & 45.9 \\ = & 47.6 \\ = & 45.3\end{array}$ | Tanakadate Iwaoka ＂ | Uziie lwaoka Tanakadate |
| Mean |  | $45^{\circ} 46 \% 3$ |  |  |
| $\theta$ $=48^{\circ}$ $46!3$  <br> Reduction to 1895.0 $=$ -0.71 <br> ,$\quad$ sea level $=$ 0.00  <br> $\theta$ $=45^{\circ}$ $45!6$  |  |  |  |  |

HORIZONTAL INTENSITY（ $H$ ）
Observations of the West Party， 1893.


69．Nagoya．
In tent near Magnetic Observatory in Meteorological Observatory （测候所内磁力嚾测所佼／天幕内）

DECLINATION（ 8 ）
Observations of the West Party， 1893.


Ohservations of the Seto Sea Party, 1sen.


DIP ( $\theta$ )
Observations of the West Party, 1893.

| Date and Hour (Mean Local Time.) | Needle No. | $\theta$ | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: |
|  | 3 3 3 | 48 46.8 <br>  46.0 <br> $"$ 48.3 | Turutia Uziie Iwaoka | Iwaoka Uziie , |
| Mean |  | $48 \quad 47 \% 0$ |  |  |
|    $=48$ <br> lieduction to 47.0   <br> 1895.0 $=$ -0.85  <br> $"$, sea level $=$ 0.00 <br> $\theta$ $=48$ $46!1$  |  |  |  |  |

(In olsservatory)

| Date and Monr <br> (Mean Local Time.) | Needle No. |  | $\theta$ | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Ang. $2^{\text {nd }}$ $14^{\text {h }}$ 50 mm <br> , , 22 7 | 3 |  | 52.6 54.6 | Turuta | Uziie Turuta |
| Mean |  | 48 | 53! $\%$ |  |  |
|  |  |  |  |  |  |

Oliservations of the Seto Sea larty, 1896.


HORIZONTAL INTENSITY（II）
Observations of the West Party，15：13．


| Date and Hour （Mean Local Time．） | II | M | Nean <br> Temp | Time of 1-Tilon. | $\begin{gathered} \text { Temp. } \\ t_{v} \end{gathered}$ | Mean D $\psi_{1}$ | flections $\psi:$ | $\begin{gathered} \text { Temp } \\ t_{1} \end{gathered}$ | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Oct． $3^{\prime \prime \prime} 14^{h 15}$ | 0.30312 | 402.84 | 27.7 C | $6.0321$ | 28：2C | 546 ＇15．＇6 | $134^{4} 363$ | 27．3C | $\left\{\begin{array}{c}\text { Sano } \\ \text { Thamadate }\end{array}\right.$ | $\left\{\begin{array}{c}\text { Tanakatdate } \\ \substack{\text { Sano }}\end{array}\right.$ |
| －，，． 198 | 0.30284 | 402．8t | 20.9 | 6.0163 | 21：2 | 54521.2 | 13852.5 | 20.7 | $\left\{\begin{array}{c}\text { sano } \\ \text { Tamakata }\end{array}\right.$ | $\left\{\begin{array}{c}\text { Tanakalate } \\ \text { Sano }\end{array}\right.$ |
|  | 「．30278 | 404.58 | 23.2 | 6.0208 | 23：．1） | 54753.8 | 13751.2 | 23.4 | $\left\{\begin{array}{c}\text { Sano } \\ \text { T＇makatate }\end{array}\right.$ | $\left\{\begin{array}{c} \text { Tha akarlate } \\ \text { Sano } \end{array}\right.$ |
| Mean | 0.30291 |  |  |  |  |  |  |  |  |  |
| $\begin{array}{rlrl}1 I & = & 0.30291 \\ \text { Reduction to } & 1895.0 & = & -109 . \\ \cdots \quad, \quad \text { sea level } & = & 0010\end{array}$ |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |

Neighbourhood of the above station（名古屋出張）
DIP（ $\theta$ ）
Observations of the West Party，1893．

| Date and Hour <br> （Mean Local Time．） | Needle <br> No． | $\theta$ | Observer | liecorder |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Aug． $17^{\text {th }} \quad 10^{11}$ | $14^{n n}$ | 3 | 48 | $45 \cdot 3$ | Turnta |

HORIZONTAL INTENSITY（IL）
Olservations of the West Party， 1893.

| Date and Hour （Mean Local Time．） | II | M | $\begin{gathered} \text { Mean } \\ \text { Temp. } \end{gathered}$ | Time of 1－Vibn． | Temp. | Mean De 41 | flections <br> $\varphi:$ | $\begin{gathered} \operatorname{Temp}_{1} \\ \mathrm{t}_{\mathrm{t}}, \end{gathered}$ | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Aug． $17^{\text {th }} 11^{11} 30^{121}$ | 0.30011 | 460.91 | 31.0 C | 5.6504 | 30．60 | （1）35＇35， 6 | 15） 2 2 $50 \%$ | ：31．4C | Ťziie ＇Turuta | Turuta <br> Iziie |
|  |  |  |  |  |  |  |  |  |  |  |

## 70．MAEGASU．

Aza Nakayama near the branching point of Ikedagawa （字中山池田川ノ分伎點近傍）

DECLINATION（ $\delta$ ）
Observations of the West Party，i 893.


DIP（ $\theta$ ）
Olservations of the West Party， 1893.

| Date and Hour <br> （Mean Loral＇I ime．） |  |  | Needle No． |  | ， | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ang． $\#$ $"$ | $\begin{array}{cc}3 \mathrm{rl} & 17 \mathrm{~h} \\ \\ 3+3 \\ 4^{\text {th }} & 9\end{array}$ | 40 m 35 15 | 3 3 3 |  | $50: 2$ 50.0 $4 \times .1$ | Uziie Truruta Uziie | lwaoka T＇uruta Tanakadate |
| Mean |  |  |  |  | 49！ 4 |  |  |
|  |  |  | $\begin{aligned} \theta & =45 \\ \text { Reluction to } \quad 1895.0 & = \\ \square \quad \because \quad \text { sea level } & = \\ \theta & =44^{\circ} \end{aligned}$ |  |  | $\begin{array}{r} 49!4 \\ -0.85 \\ 0.00 \\ \hline 48!5 \end{array}$ |  |

HORIZONTAL INTENSITY（II）
Observations of the West Party， 1893.

| Date and Hour （Mean Local Time．） | II | ， 1 | $\begin{gathered} \text { Mean } \\ \text { Temp. } \end{gathered}$ | Time of \| 1-Yib". | $\underset{t_{v}}{T \operatorname{Temp}} .$ | Mean <br> D <br> $\varphi_{1}$ | flections <br> $\varphi=$ | $\left\lvert\, \begin{gathered} \text { Temp } \\ t_{D} \end{gathered}\right.$ | Olserver | Recorter |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ang． $33^{\text {rl }} 21^{12} 30^{\mathrm{mm}}$ | 0.50131 | 465.41 | $27: 2 \mathrm{C}$ | $\stackrel{\mathrm{s}}{5.6131}$ | 27：2C | $635^{\prime} 31!2$ | $15^{\circ} 8^{\prime 5} 5 \times 3$ | 27.2 C | $\left\{\begin{array}{l}\text { Turnta } \\ \text { Iwaoka }\end{array}\right.$ | $\left\{\begin{array}{l}\text { Iwaokat } \\ \text { Thuruta }\end{array}\right.$ |
| ＂，$t^{\text {th }} 7551$ | 1）．30179 | 465.59 | 25.3 | 5.6073 | 25.3 | 63851.3 | 15113.8 | 25.3 | $\left\{\begin{array}{c}\text { Uziie } \\ \text { Tanakadate }\end{array}\right.$ | $\left\{\begin{array}{c} \text { Tanakalate } \\ \text { Uziie } \end{array}\right.$ |
| ＂＂，13 44 | 0.30162 | 463.76 | 31.9 | 5.6211 | 32.2 | 6372.5 | 15621.2 | 31.5 | Iwaoka | Turnta |
| Mean | 0.30157 |  |  |  |  |  |  |  |  |  |


| $H$ | $=$ | 0.30157 |
| ---: | :--- | ---: |
| lieduction to | 1895.0 | $=$ |
| $, \quad 16,24$ |  |  |
| ,$\quad$ sea level | $=$ | 000 |
| $H$ | $=0.3(1773$ |  |

## 71．YOKKAITI．

Idamura Oaza Noda（非四村大字野龱䆘上ノ絹四百四二卜胙）
DECLINATION（ $\delta$ ）
Observations of the West Party， 1893.

DIP（ $\theta$ ）
Ohservations of the West Party，18：3．

| Date and Hour <br> （Mean Local Time．） | Neerlle No． |  | A | Onserver | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 3 3 3 |  | $\begin{aligned} & 3712 \\ & 40.5 \\ & 40.8 \end{aligned}$ | Iwaokat Uzile Twaoki | Turnta Iwaoka UTziie |
| Mean |  | 45 | 39.7 |  |  |
|  |  |  |  |  |  |

## HORIZONTAL INTENSITY（II）

Observations of the West Party， 1873.


## 72．KAMEYAMA．

## Idamura（井田村大字和字荻野官林）

DECLINATION（ $\delta$ ）
Gbservations of the West Party， 1893.


DECLINATION（ $\delta$ ）
Observations of the West Party， 1893.

| $\underset{\text { Mea }}{\substack{D_{a}}}$ | and <br> Loca |  |  |  | $\delta$ |  | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | ch 10 11 11 13 11 15 15 17 19 19 20 21 0 2 2 3 4 5 6 7 7 8 | $51^{\mathrm{m}}$ <br> 32 <br> 31 <br> 30 <br> 37 <br> 40 <br> $+1$ <br> 6 <br> 3 <br> 12 <br> 11 5 34 3 <br> 5 34 3 20 <br> 30 43 <br> 52 <br> 55 <br> 36 <br> 22 47 <br> 40 | 4 $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ $"$ | $\begin{aligned} & 34^{\prime} \\ & 36 \\ & 35 \\ & 33 \\ & 36 \\ & 35 \\ & 33 \\ & 32 \\ & 32 \\ & 31 \\ & 32 \\ & 32 \\ & 32 \\ & 32 \\ & 32 \\ & 31 \\ & 31 \\ & 30 \\ & 30 \\ & 30 \\ & 30 \\ & 31 \\ & 34 \\ & 36 \end{aligned}$ | $\begin{gathered} 10^{\prime \prime} \\ 20 \\ 55 \\ 37 \\ 40 \\ 10 \\ 9 \\ 34 \\ 25 \\ 51 \\ 15 \\ 34 \\ 52 \\ 19 \\ 47 \\ 2 \\ 11 \\ 32 \\ 36 \\ 48 \\ 5 \\ 23 \\ 15 \end{gathered}$ | Nakamura Tomoda Nakamura Tomoda Nakamura Tomoda Nakamura Tomoda ＂ Nakimura Tomoda ＂ ＂ 99 $\because$ ＂ Nakamma Tomoda $"$ | Tomoda Nakammra <br> Tomola <br> Nakamura <br> Tomoth Nakamura <br> Tomoda Nakamura Tomoda <br> ＂ <br> 9 <br> $\rightarrow 3$ <br> 93 <br> Nakamura <br> Tomoda <br> ＂ |
| Mean |  |  |  | $4{ }^{\circ}$ | $33^{\prime}$ | $1^{\prime \prime}$ |  |  |
| Reluction to $\delta$ $=4^{\circ}$ 33.02 <br> 1895.0 $=$ -1.54 <br> ,$\quad$ sea level $=$ -0.01  <br> $\delta$ $=4$ 31.4 |  |  |  |  |  |  |  |  |

(85)

DIP ( $\theta$ )
Olservations of the West Party, 1893.

| Date and Hour <br> (Mean Local Time.) |  |  |  | Needle No. |  | - | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ang. , ", | fin ${ }_{\text {¢ }}$ | $11^{11}$ 15 22 | 10 m 13 19 | 3 3 3 |  | $34!2$ 34.4 35.1 | Iwaoka Uziie Turuta | Uziie 'Tanakadate |
| Mean |  |  |  |  | $50^{\circ}$ | 34:6 |  |  |
| $\begin{array}{rlrl} \theta & =48^{\circ} & 34!6 \\ \text { Reduction to } & 1895.0 & = & -0.9 \mathrm{~S} \\ , \quad \text { sea level } & = & -0.01 \\ \theta & =45 & 33!5 \end{array}$ |  |  |  |  |  |  |  |  |

Observations of the Kinki Party, 1896.


HORIZONTAL INTENSITY (II)
Observations of the West Party, 1893.


Observations of the Kinki Party, 189\%.


73．TU．
Meteorological Observatory（測侯所）
DECLINATION（ $\delta$ ）
Olservations of the West Party， 1893.


1）［P（ $\theta$ ）
Onservations of the West larty， $189: 3$ ．


HORIZONTAL INTENSITY（ $H$ ）
Observations of the West Party， 1593.

| Date and Hour （Mean Local Time．） | II | $1 /$ | Mean <br> Temp． | Time of 1－Vibı． | Temp． $t_{V}$ | Mean Deflections |  | $\begin{gathered} \text { Temp } \\ t_{b} \end{gathered}$ | Obserrer | Riecorter | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|  |  |  |  |  |  | $\psi_{1}$ | $\varphi_{2}$ |  |  |  |
| $\left\|\begin{array}{cccc} \text { Ang. } & 7^{\text {th }} & 0^{1 / 2} & 7^{\mathrm{ma}} \\ " & 8^{t h 1} & 8 & 0 \\ " & " & 8 & 13 \\ " & " & 12 & 53 \end{array}\right\|$ | 0.30175 | 463．40 | 28：2C | 5.6212 | 28：4C | $6037{ }^{\prime} 7!5$ | 15 7＇11：2 | 28.10 | Iwaoka | Uziie |
|  | 0.31211 | 463.85 | 26.9 | 5.6144 | 26.8 | 63655.0 | 1.5638 .8 | 27.1 | Turuta | Iwaoka |
|  | 0.30195 | 463.99 | 27.3 | 5.6144 | 26.8 | 63659.0 | 15631.3 | 27.8 | Iwaok | Turuta |
|  | 0．3017：3 | 461．93 | 33.7 | 5.6318 | 34.2 | 63525.0 | $15 \quad 229.0$ | 33.3 | T Turuta | Iwaoka Turuta |
| Mean | 11.00188 |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
| $I I$ $=0.30188$  <br> Reduction to 1895.0 $=1680$ <br> $\cdots \quad . \quad$ sea level $=0$ 0.00 |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

## 74. KAMIYASIRO.

DECLINATION ( $\delta$ )
Observations of the West Party, 1893.

| $\underset{\text { Mean }}{\mathrm{Da}_{2}}$ | e an <br> Loc: | $1 \mathrm{Hor}$ | re.) |  | $\delta$ |  | Observer | Recerder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sept. | $233^{\text {ri }}$ | $18^{1}$ | $45^{\text {m }}$ | 4 | $2 s^{\prime}$ | $16^{\prime \prime}$ | Tanakatlate | Tanakalate |
| ., | , | 1!) | 33 | , | 28 | 11 | " | " |
| " |  | 21 | 28 | " | $\bigcirc$ | 14 | " | " |
| " | $24^{\text {th }}$ | $\stackrel{2}{3}$ | 24 | " | $\because 7$ | 22 | ., | " |
| " | , | 3 | 23 | " | $\stackrel{27}{ }$ | 25 | " | ", |
| " | " | 6 | 44 | . | 26 | 5 | * | .. |
| " | " | 7 | 30 | , | $\cdots 5$ | 20 | " | " |
| " | " | 8 | ¢ | " | $\stackrel{2}{4}$ | 41 | , | ., |
| " | " | $\stackrel{3}{4}$ | 41 | " | 24 | 57 | , | ., |
| " | ., | 11 | 416 | - | $\cdots$ | 11 | " | ,. |
| " | " | 111 | 33 | " | 27 | 24 | * | ,, |
| " |  | 11 | 26 | " | 28 | 55 | - | " |
| " |  | 12 | 49 19 | " | :30 | 311 | " | " |
| " |  | 15 | 49 | " | 31 <br> 29 <br> 9 | 14 | " | ", |
| ", | ", | 16 | $5!$ | " | 2 S | 2 | " | , |
| ., | " | 17 | 19 | ", | 28 | 25 | ", | ", |
| " | .. | 18 | 19 | ", | 2 S | 37 | ", | " |
| " | , | 18 | 29 | " | -23 | 39 | , | ", |
| Mean |  |  |  | 4 | $27^{\prime}$ | $42^{\prime \prime}$ | 24.4 |  |
|  |  |  |  | liernction |  | $\begin{aligned} \delta & =4 \\ 18.5 .0 & = \end{aligned}$ | 27.70 |  |
|  |  |  |  | 0.98 <br> 0.00 |  |  |
|  |  |  |  | $\begin{array}{r} \text { se: level }= \\ \delta= \end{array}$ |  |  |
|  |  |  |  | 4-28!7 |  |  |

DIP $\quad(\boldsymbol{\theta})$
Observations of the West Party, 1833.


HOFIZONTAL INTENSITY (Il)
Oliservations of the West Party, 1893.

| Date and Hour(Mean Local Time.) | II | M | Mean <br> Temp. | Time of 1 -Vibn. | $\underset{t_{\mathrm{V}}}{\text { Temp. }}$ | Mean Deflections |  | $\begin{gathered} \operatorname{Tem}_{1} \\ t_{10} \end{gathered}$ | Observer | Reworder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\varphi_{1}$ | $\varphi_{2}$ |  |  |  |
|  | 0.301331 | 463.24 | 27.4C | 5.6075 | 27.5 C | $6 \% 35^{\prime} 10 \%$ | $15 \cdot 311!3$ | 27.4 C | U'ziie | Turuta |
| " ", \& 20 | 0.30313 | +13.43 | 27.4 | 5.6073 | 27.1 | $635 \quad 8.8$ | $15 \quad 227.5$ | 27.6 | Turuta | I wioka |
| ". 1155 | 0.30310 | $\pm 30.97$ | 36.0 | 5.6235 | 36.0 | 63332.5 | 145540.0 | 36.1 | I waoka |  |
| " ", 13 51 | 0.30353 | 459.68 | 37.4 | $5.60 \times 2$ | 37.8 | 63133.7 | 145423.7 | 37.19 | Uziie | Tauakiulate |
| Mean | 0.30329 |  |  |  |  |  |  |  |  |  |


Reduction to $1895.11=\quad 1611$
$\ldots \quad \quad \because$ sea level $=\frac{1 \mathrm{~m}}{1 /=}$

## 75．TOBA．

## Aza Umanotani Utikosi No． 155 （字馬ノ谷打越百正．十五番地）

DECLINATION（ $\delta$ ）
Observations of the West Party， 1833.

| Date and Hour． <br> （Mean Local Time．） |  |  | $\delta$ |  |  | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sept． | $25^{\text {nd }} 15^{\text {l }}$ | 40 m | $4^{\circ}$ | 311 | $0^{\prime \prime}$ | Tanakadate | Tanakaulate |
| ＂ | ， 16 | 37 | ＂ | 30 | 9 | ，， | ， |
| $\cdots$ | ， 17 | 45 | ，＂ | 29 | 50 | ， | ， |
| ＂ | ， 21 | 43 | ＂ | 24 | 20 | ， | ， |
| ＂ | ， 22 | 24 | ＂ | 25 | 30 | ＂ | ＂ |
| ＂， | ，23 | 24 | ＂ | 25 | 4 | ＂， | ， |
| ＂ | $26^{\text {th }} 3$ | 57 | ， | 24 | 16 | ＋， | ．， |
| ＂ | ， 7 | 14 | ＇， | 21 | 40 | ＂ | ＂ |
| ＂ | ， 7 | 45 | ＇， | 20 | 51 | ＂ | ， |
| ＂ | ， 8 | 11 | ＂ | 20 | 13 | ＂ | ， |
| ， | $\cdots$－ 8 | 46 | ＂ | 20 | 48 | ＂， | ，， |
| ＂ | $\because 9$ | 12 | ＂ | 21 | 50 | ＂ | ’ |
| ， | $\cdots \quad 10$ | 8 | ＂ | 23 | 56 | ， | ， |
| ＂， | ， 11 | 13 | ， | 27 | 25 | ．， | ， |
| ＂ | ， 11 | 42 | ＂ | 28 | 25 | ＂ | ， |
| ＂ | ， 12 | 13 | ＂ | 30 | 3 | ， | ， |
| ＂ | － 12 | 37 | ＂ | 30 | 33 | ， | ＂ |
| ＂ | ， 13 | 12 | ＂ | 31 | 1 | ，． | ．． |
| ＂ | － 13 | 32 | ＂ | 31 | 11 | „ | － |
| ＂ | ， 13 | 50 | ＇， | 31 | 11 | ， | ， |
| ＂ | ， 14 | 5 | ， | 30 | 39 | － | ＂ |
| ＂ | ．， 14 | 33 | ＂ | 29 | 8 | ， | ＂ |
| ＂ | ， 15 | 9 | ， | 28 | 0 | ＂ | ＂ |
| ＂ | ，， 16 | 19 | ‘ | 26 | 47 | ＂ | ， |
| ＂ | － 17 | 24 | ， | 26 | 14 | ＂ | ＂ |
| ＂ | $\cdots 18$ | 31 | ， | 27 | 6 | ， | ， |
| ＂ | ， 18 | 57 | ＂ | 26 | 26 | ＂ | ＂ |
| ＂ | ＂ 19 | 30 | ， | 26 | 36 | ，． | ， |
| „ | ， 19 | 44 | ，＂ | $\bullet 6$ | $\because 6$ | ， | ， |
| ＂ | $\cdots \quad 20$ | 17 | ， | 25 | 45 | ， | ， |
| ＂ | ．， 20 | 46 | ＂ | 24 | 55 | ， | ，＂ |
| ＂ | ， 21 | 12 | ＂， | 25 | 11 | ．， | ＂ |
| ， | ，23） | 7 | ＂ | 26 | 21 | ＂， | ＂ |
| Mean |  |  | $4^{\prime}$ | $25^{\prime}$ | $53^{\prime \prime}$ |  |  |
|  |  |  | Red | ion | sea | $\begin{array}{r} 4^{\circ} \quad 25!88 \\ 0.94 \\ 0.00 \end{array}$ |  |

DIP（ $\theta$ ）
Observations of the West Party，1893．


HORIZONPAL NTTENSTTE（ 11 ）
（Hservations of the West Party，1893．


## 76．KATIKAWA．

No．2023，Katikawamura near Subara Zinsya．
（須原神社近傍勝川村字南束山二千二十三雷）
DECLINATION（ $\delta$ ）
Onservations of the West Party， $18: 13$ ．


1）11（ $\theta$ ）
（）hservations of the West Piarty，1s！\％

| 1）at＂aml Home <br> （ Want Loc：al＇lime．） |  |  |  | Nepalle No． |  |  | Onserser | liemmier |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ang． ＂ |  |  | $54^{m}$ 54 50 | 3 3 3 |  | 3331 50.8 57.7 | Timakarlate Iwatka （\％itio | Iそiie Iwaoka |
| Me：1n |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |

HORIZONTAL NVENSTGY（H）
observations of the West Party， 1893.


## 77．KIYOSU．

Aza Baba Gozyōgawa embankment（字馬場五條川東岸堤防上）
DECLINATION（8）
0）onervations of the Weat lariy，1sin．


1） $1{ }^{\prime}$（ $\theta$ ）
Observations of the West Larty，Ixy：？

| Date and Homr <br> （Mean Local Time．） |  |  | Neenlle No． |  | $\theta$ | Olserver | Recorter |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Aug． |  | $\begin{aligned} & 50^{\prime \prime \prime} \\ & 18 \\ & 1 ; \end{aligned}$ | $: ;$ | 418 | $\begin{array}{r} 5(:!) \\ 0.2 \\ 53.0 \end{array}$ | IWaokil <br> Turuta ＇I＇makaldate＇ | Tanakulate Iziie ＇I＇anakatate |
| 11 ean |  |  |  |  | 50.1 |  |  |
|  |  |  |  |  |  |  |  |

HORIZONTAL INTENSITY（IL）
Olservations of the West Party，1893．


## 78．GIHU

Play ground at Tyūgaku（中學校運動場）
DECLINATIUN（ $\delta$ ）
Observations of the West Parly，1sy：
Mate and Hour
Mean Locial Time．）


HOTIZONTAL INTENSHTY．
Observations of the West Party， 1853.


## 79．NAKATUGAWA．

Park of Aza Uegane（字上金公園）
DECLINJTIUN（ $\delta$ ）
（H）ervations of the West liarty， $18 \% \%$ ．

| $\mathrm{IN}_{\mathrm{i}}$ | ： 13 Lue | $\begin{gathered} \text { Hon } \\ { }_{1} 1 \mathrm{~T} \end{gathered}$ |  |  | $\delta$ |  | Olserver | liecorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Oct． | がい | $17^{11}$ | $8^{111}$ | 1 | $1: 3^{\prime}$ | $26 "$ | T＇amakimlate | Tamakiulate |
| ．． |  | 17 | 47 | ． | 11 | 0 | $\bullet$ | $\bullet$ |
| ．${ }^{\text {．}}$ | ＂， | 1s | （3） | ＂ | 11 | 1 | ， | ， |
| ＂ | ：， | 1：1 | ！ | － | 1\％ | 35 | ＂ | ＂ |
| ＂ | ．， | 20 | $3: 3$ | ， | 12 | 50 | － | － |
| － |  | 21 | 1.5 | ， | 4： | $2: 3$ | ＂ | ＂ |
| ．， |  | 1 | 34 | ， | 11 | －1］ | － | ， |
| ．， | ．． | 5 | 15 | － | 11 | 2．${ }^{\text {a }}$ | ． | ＂ |
| ．， |  | 7 | 15 | ＊ | 11 | 50 | －• | ＂ |
| ．， | ．． | 7 | $5 \pm$ | － | 11 | $1 ;$ | ， | ， |
| － | ． | ＊ | $3: 3$ | ＂ | ：3！ | If； | ＇ | ＇ |
| $\cdot$ | ．． | ！ | 11 | ＂ | i！ | 5 | ， | ＂ |
| ．． | ． | 9 | 45 | ， | ：3！ | $\cdots$ | ． | ＂ |
| ＂ | ＂ | 10 | 30 | ．， | 111 | $\cdots$ | $\because$ | ， |
| ＂ |  | 11 | 28 | ＂ | 111 | 51 | － | ＊ |
| ．， | ．． | 12 | 23 | ．． | 11 | 25 | ．． | ＂ |
| － | － | 11 | 36 | ， | 12 | 45 | ＂ | ＊ |
| ． | ．． | 15 | 4 | ， | t． | 1：） | － | ＂ |
| ． | ．， | 15 | 58 | ． | 12 | 1.4 | － | ＂ |
| $\cdot$ | ， | 17 | 24 | － | 12 | ¢ | － | ＂ |
| － | ＂ | 17 | 57 | ，． | 12 | 1.5 | ， | $\cdots$ |
| $\cdots$ | ． | 17 | 37 | ．， | 1 | 14 | ＂ | ＂ |
| Mearl |  |  |  | 1 | $12^{\prime}$ | $8^{\prime \prime}$ |  |  |
| $\delta=1 \quad 12!13$ |  |  |  |  |  |  |  |  |
|  |  |  |  | lieduction to$\qquad$ |  | $\begin{array}{r} 1895.0= \\ \text { seid level }= \end{array}$ | 1．3\％ |  |
|  |  |  |  | $-0.02$ |  |  |
|  |  |  |  |  | 43： |  |

111（ $\boldsymbol{\prime}$ ）
Ohservations of the West Party，18：3：3．


HORLZONTAL NTENSITY（II）
Olservations of the West Parly，189：3．


## 80．IIDA．

Aza Imamiya（字宣宫切班地）

$$
\text { 1)ECLDNATION }(\delta)
$$

Oloservations of the West larty，1s：3：

| $\begin{aligned} & \mathrm{D}_{2} \\ & \text { (Neil } \end{aligned}$ | $\therefore \text { alld }$ Local |  |  |  | $\delta$ |  | Onserver | liccortler |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Aug． | 232 nc | $7^{11}$ | $44^{\mathrm{mm}}$ | 1 | 2 $\breve{\prime}^{\prime}$ | ：2＇2 | Tanakatate |  |
| ， | ＂ | ！ | 7 | ， | ：11 | 31 | Iworkar | Mrimkial Cziie |
| ＂ | ＂ | 111 | 27 | ， | ：3 | 11 | ＇Tauskadate |  |
| ＂ | － | 11 | 7 | ， | ： 3 | 18 | 1 waoka | Tanaikutate |
| ， | ．， | 11 | 15 | ， | ：35 | ${ }^{1}$ | L＇ziie |  |
| － | ，． | $1: 3$ | 38 | ＂ | ： 6 | 1 | Timakiulate | V＂ziue |
| ＂ | ＂ | 15 | 11 | ， | 33 | 3： |  | Lratak |
| $\stackrel{.}{ }$ | ． | 16 | 19 | ， | ：3： | 11 | Cziic |  |
| ．＂ | ＂ | 17 | 1.5 | ＂ | ：31 | \％ | I waokit | Uziic |
| ． | ． | $1: 1$ | 111 | ， | ：2 | 211 | ．． | Tuntianmat． |
| － | ＂ | 21 | 15 | ： | ： 4 | 3.5 | ＂． | Timakatat． |
| ＂， | ＂ | 22 | 24 | ， | 32 | 31 | ＂ | $\stackrel{.}{ }$ |
| ， | － | 23 | 26 | ， | ： 2 | 1 | ．， |  |
| Ifeau |  |  |  | 1 | ：3＇ | （ ${ }^{\prime \prime}$ |  |  |
|  |  |  |  | Ficdnction to |  |  | 132.111 |  |
|  |  |  |  | 1.14 |  |
|  |  |  |  | $-0.0: 3$ |  |
|  |  |  |  | $\delta=1-33.5$ |  |


| liate abd Honr <br> (Mean Local 'lime.) |  |  |  |  | $\delta$ |  | Ohserver | liecorter |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Uet. | $11^{\prime \prime}$ | blt | $\because 1 \mathrm{~m}$ | 1 | 3.1 | $1^{\prime \prime}$ | ' ${ }^{\text {anuakumiate }}$ | 'l'anabatato |
| ., | , | 9 | 14 | , | 31 | 51 | ,. | -, |
| ", | $"$ | 10 | $2: 3$ | -, | $3!$ | 51 | " | " |
| " | " | 11 | 32 | - | : | 3 | : | " |
| ", |  | 12 | $\because 1$ | " | 3 | :3 | " | " |
| , | , | $1: 3$ | 29 | , | 3-3 | 1.5 | $\cdots$ | " |
| ", | " | 13 | :3 | , | 03 | 11 | " | - |
| ", | " | 11 | 1! | - | : 1 | 3i' | " | " |
| " | , | 1.5 | 27 | " | 3:3 | 51 | - | " |
| - | " | 16 | 30 | , | :3, | .1) | -• | -, |
| " | , | 17 | 36 | " | : $: 3$ | 11 | $\cdot$ | * |
| , | " | 19 | 1 | " | :3:3 | $\because 1$ | " | " |
| . |  | 32 | $5: 3$ | , | $3: 3$ | 1 | - | - |
| " | $12^{\text {h }}$ | $1)$ | 22 | - | 3: | 31 | " | " |
| .. |  | $\stackrel{2}{2}$ | 21 | " | :31 | :3: | - | , |
| , | , | 5 | $4!$ | . | 31 | 20 | " | " |
| Mean |  |  |  | 1 | $3: 3$ | :37" |  |  |
| $\delta=1 \quad 33!62$ |  |  |  |  |  |  |  |  |
|  |  |  |  |  | tion | 0 | $=1.30$ |  |
|  |  |  |  |  |  | sta | $=0.0: 3$ |  |
|  |  |  |  |  | $=4$ - 34.1 |  |

Observations of the West lariy, 183.


HORIZONTAL LNTENSITY (II)


## 81. MATUO. <br>  <br> OECJINA'LON ( $\delta$

Olnservations of the West Party, 189:3

| Wate amd Homr (30 1 Local Time.) |  |  |  |  | $\delta$ |  | Observer | liecorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ang. | $2: 31$ |  | $12^{m}$ | 1 | $11{ }^{\prime}$ | バ" | Tanakadate | Iiziie |
| ., | , | 12 | :38 | ., | $1: 3$ | 5 | ( zilc |  |
| ,. | . | 13 | $5: 3$ | , | 11 | 1i8 | " | " |
| .. | .. | 1.5 | 28 | ., | 111 | 17 | 1weroku | ĽBiie |
| . | " | 16 | $\stackrel{\square}{2}$ | . | 837 | 111 | Wenok | ¢ |
| ., | ." | 1.5 | : | " | $\because 1$ | ! | -• | " |
| .. | , | 20 | 1:3 | , | $\because 1$ | $\because 1$ | $\because$ | " |
| " |  | $\because 1$ | 25 | , | 1:3 | $\therefore$ | " | $"$ |
| . | $21^{114}$ | 1 | 1.5 | , | .i> | in | " | ", |
| Nean |  |  |  | 1 | $3 i^{\prime}$ | 15 |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |

Ohservations of the Weas Party．19y3．

| Date and Home （Mean Loeal Time．） | Neerlle No． | $\theta$ | Observer | Reserniler |
| :---: | :---: | :---: | :---: | :---: |
| Arg． $23^{\mathrm{ram}}$ $11^{1 / 4}$ 59 m <br> $:$, , 17 29 | 3 3 | 49 | Iwakat Iziie | Triie Twaoka |
| Mean |  | $4911!1$ |  |  |
|  |  |  |  |  |
|  |  |  |  |  |



## 82．HUKUSIMA．

No．1846，Hukusimamura（福鳥村下八白佻十六番地）
Observations of the West I＇arty，1s33．


DIP（ $\theta$ ）
Observations of the West Paty，1x：\％）


HORIZONTAL INTENSITY (II)
Ohservations of the West Party. 1893

83. NOMUGI.

Aza Simonohara (n) (宗
Onservations of the West Party, $18 \% 3$.


DII ( $\boldsymbol{\theta}$ )
(A)servations of the West Party, 18:3.


HORIZON'TAL LNTENSITY (II)
Observations of the West Piuty, 1893.


84．TAKAYAMI．
Onatamura（火名男禁大家姫名子字守展夕洞官林）
Olservations of the West Party， 1893.

| Date and Ifomr （Mean Lecal Time．） |  |  |  |  | $\delta$ |  | Observer | Iecorser |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Aug． | $39^{1 / 2}$ | \％ 11 | $1^{17}$ | 4 | $47^{\prime}$ | $\mathrm{t}^{\prime \prime}$ | Itraoka | 1 waoka |
| ， | ．， | 10 | 2.2 | ＂ | $4)$ | 15 | Turuta | Tanakadate |
| ，． | ， | 11 | 31 | ＂ | 5 | 15 | Iwaoka | Turutit |
| ，＂ | ． | 12 | 24 | ．， | 52 | 59 | Turnta | Uziie |
| ，＂ | ＂， | 13 | 4 | ． | 53 | 3． | I＇ziie | Turnta |
| ＂， | ＂， | $1 \pm$ | ：0 |  | 53 | 2.7 | Turnta | Uziie |
| ＂， | ＂， | 1.5 | 52 | ＂ | 53 | 17 | Uziie | Turnta |
| ＂， | ＂ | 17 | $\cdots$ | ， | 50 | 31 | Thruta | ， |
| ＂ | ＂ | 19 | 43 | ，． | 51 | 51 | Tanakadate | ， |
| ．． | ＂ | 21 | 21 | ， | 50 | $\cdots!$ | ： | ＂ |
| ＂ | ＂ | $2 \cdot$ | 23 | － | $4)$ | ：17 | ．． | ． |
| － | $\because$ | 23 | 24 | ＂ | t！ | 47 | ． |  |
| ＂， | ：31 ${ }^{\text {st }}$ | 5 | 6 | ． | $4 \times$ | 111 | 1 waoka | V＇ziie |
| ＂ | ， | 7 | 3.3 | ．， | 45 | 4.7 | Vziie | I waoka |
| ＂， | ＂ | ！ | 11 | ＂ | 4 | 4：3 | IWaoka | Uziie |
| ＂， | ，． | 17 22 | 489 | ＂． | 19 50 50 | $\cdots$ | $\begin{gathered} \text { Vzziie } \\ \text { Iwaoka } \end{gathered}$ | Iwaoka Uziie |
| Mean |  |  |  |  |  |  |  |  |
|  |  |  |  | 4 | 50 | ＇＂ |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |

Onservations of the Weat Party． 1493 ．


HORIZONTAL INTENSITY（ $H$ ）
Observations of the West Partv， 1993.

| Date and Homr （Mean Local Time．） | II | II | $\begin{aligned} & \text { Mean } \\ & \text { Temp. } \end{aligned}$ | Time of 1－Tib？ | $\begin{gathered} \text { Temp. } \\ \mathrm{t}_{4} \end{gathered}$ | Mean D | eflections | $\begin{gathered} \text { Temp. } \\ t_{5} . \end{gathered}$ | Olserver | Teeorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ang． $30^{\text {h }} 15^{\text {h }}$ 2 $20^{\mathrm{ma}}$ | 0.29858 | 458.31 | 27.0 C | 5.18832 | 2.5 .76 |  | $157^{\prime} 36^{\prime \prime} 3$ | $28.4 C$ | ＇Juruta | Uziie |
| ＂ $311^{\text {st }} 65$ | 0.29791 | 461.46 | 13.7 | 5.6681 | 19.7 | 6． 1036.3 | 15157.5 | 19.7 | Tziie Imaoka | Iwaokal Uziie |
| $\because \quad 7 \quad 9$ | 0.29809 | 161.12 | 21.0 | 5.6681 | 21.0 | （6）3957．5 | 1513.10 .6 | 21.0 | ，＂ | ＂ |
| ＂＂， 918 | 0.29791 | 457.31 | 32.6 | 5.6947 | 32.5 | 63643.1 | $15 \% 6.3$ | 32.7 | ＂ | ＂ |
| ＂，＂，111 57 | 0.29751 | 457.73 | 31.7 | 5．6957 | 33.0 | （6）37 35．0） | 1.5759 .4 | 30.4 | ＂ | ， |
| ＂，，， 1222 | 0.29811 | 456.12 | 36.2 | 5.7012 | 36.7 | 639522.5 | 15247.5 | 35.4 | ＂ | $\cdots$ |
| ＂„，1：3 47 | 0.29510 | 456.71 | 33.5 | 5.8976 | 3：3．9 | 6；369．4 | 15455.6 | 33.1 | ＂ | ＂ |
| ，„ $\quad 1456$ | 0.29800 | 457.16 | $31 . \%$ | 5.6976 | 32.7 | 63647．5 | 15 （ $: 27.5$ | 80.9 | ＂， | ，＇， |
| ＂，，16 7 | 0.29782 | 45891 | 25.5 | 5．CRS 82 | $\because 7.11$ | 63392.5 | 151147.5 | 24.0 | ＂， | ＂， |
| ，＂，＂ 17 16 | 0.29736 | 461.84 | 21.1 | 5.67143 | 21.0 | 6， 40 （1．3 | 151123.1 | 21.2 | ＂ | ＂ |
| ＂＂，18 $\quad 29$ | 0.29812 | 461.12 | $2 i) 8$ | 5.66924 | 21.2 | 6.1011 .3 | 151415.0 | 20.5 | ＂ | ＂ |
| ＂，＂ 21 ； 3 | 0.29812 | 461.33 | 19.5 | 5.16873 | 19.7 | 64031.3 | 151520.0 | 19.4 | ．， | ＂， |
| Mean | 0.29797 |  |  |  |  |  |  |  |  |  |


|  | $11=0.29797$ |  |
| :---: | :---: | :---: |
| Feduction to | $1495.0=$ | 1437 |
| ，，， | sea level＝ | 722 |

85．．Gero．
Oaza Morigumi（大字森組）
DECLINAIION（o）
Observations of the West Party， 1893.


DIP $(\theta)$
Olservations of the West Farty， 1893.

| Date and Hour （Mean Local Time．） |  |  | Needle No． |  |  | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sept． $\#$ $"$ | $\begin{array}{ll}1^{\text {st }} & 233^{\text {r }} \\ 2^{\text {nd }} & 10 \\ י, & 14\end{array}$ | $11^{\mathrm{m} 2}$ 8 50 | $\frac{3}{3}$ |  | 29.0 31.1 34.0 | I waoka －Uziie Turuta | Uziie Iwaoka Uziie |
| Mean |  |  |  |  | 31！ 4 |  |  |
|  |  |  |  |  |  |  |  |



## 86．HATIMAN．

Fatimanmati Ōaza Simatani Aza Imamati（八幡町大字島谷字今町） DECLINATIUN（ $\delta$ ）
Observations of the West Party， 1893.


Olsemations of the West larty， $1 \times 5$ ．


## 87．NAGAMIINE．

Nagaminemura Aza Umanose（長䈌村字馬 ノ濑）
DECLINATITN（ $\delta$
O1servations of the West Jarty，1893．


DIP（ $\theta$ ）
Observations of the West $I^{2}$ arty，18＇）：＇．

| Dite and Ifomr <br> （Mean Local Time．） |  |  |  | Needle No． |  | ； | Oberrer | Riecorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sept ＂ ＂， | sth ＂ ＂ | （10 10 14 17 | 39 m 2 51 5. | $\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$ | 49 $\because$ $\because$ $\because$ | $\begin{aligned} & 33.11 \\ & 23.4 \\ & 330.1 \\ & 27.9 \end{aligned}$ | Truie <br> Turuta <br> Twaoka <br> Tanakarlate | Triie <br> Tanakiudate Iwaoka Tziie |
| Mean |  |  |  |  | $43^{\circ}$ | 29.6 |  |  |
|  |  |  |  |  |  |  |  |  |

HORIZONTAL INTENSITY（II）
Onservations of the West Party． 1893

| Date and Hour （Ifean Local Time．） | II | II | Mean <br> T－mp． | Time of 1 －Vib＝ | Temp． $t_{v}$ | Mean Deflections |  | $\begin{gathered} \text { Temp. } \\ t_{D} \end{gathered}$ | Observer | Recorder | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|  |  |  |  |  |  | $\varphi_{1}$ | $\varphi_{2}$ |  |  |  |
| Sept． sth $^{\text {a }}$ 7 $51^{\text {m }}$ | 0.29333 | 453.89 | 22.5 C | ${ }^{\text {5 }}$ 8．7117 | $22^{\circ} .4 \mathrm{C}$ | $8332{ }^{\prime} 10!0$ | 1455 ${ }^{\circ} 35$ ！${ }^{\prime}$ | 22.6 C | Uziie <br> Iwaoka | $\left\{\begin{array}{c} \text { Iwaoka } \\ \text { Vziie } \end{array}\right.$ |
| ．． | $\begin{aligned} & 0.2974 \\ & 0.29907 \end{aligned}$ | $\left\|\begin{array}{l} 451.71 \\ 453.47 \end{array}\right\|$ | 28.7 23.2 | $\begin{aligned} & 5.7153 \\ & 5.7(175 \end{aligned}$ |  | $\begin{array}{lll} 630 & 2.5 \\ 632 & 13.8 \end{array}$ | $\begin{aligned} & 145040.6 \\ & 145547.5 \end{aligned}$ | $\begin{array}{r} 28.3 \\ 23.0 \end{array}$ | Iwăoka | Tanakadate Uziie |
| Mean | 0.29923 |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

## 88．NAGAHAMA．

Ruin of Old Castle（碓城趾）
DECLINATION（ $\delta$ ）
Observations of the West Party， 1893.


DECLINATION（ $\delta$ ）
O！servations of the Kinki Party，18）3．


Observations of the West Party，1893．


IIORIZONTAL INTENSITY（ $H$ ）
Observations of the West Party， 1813.

| Date and Hour （Mean Local Time．） | $1 I$ | M | Mean Temp． | Time of 1－Yibn． |  | Me：n Deflections |  | $\begin{gathered} \text { Temp. } \\ t_{b} \end{gathered}$ | Olserver | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\varphi_{1}$ | $\varphi_{2}$ |  |  |  |
| $\left\|\begin{array}{cccc} \text { Selt. } & 9 \text { h } & 19^{\mathrm{h}} & 16^{\mathrm{m}} \\ " & 10^{\text {th }} & 8 & 21 \\ " & " & 13 & 32 \end{array}\right\|$ |  | $\begin{aligned} & 452.67 \\ & 451.57 \\ & 449.88 \end{aligned}$ | $\begin{aligned} & 25.5 \mathrm{C} \\ & 23.4 \\ & 33.7 \end{aligned}$ | $\begin{gathered} { }_{8}^{8} \\ 5.6367 \\ 5.7007 \\ 5.7128 \end{gathered}$ | $\begin{aligned} & 25: 2 \mathrm{C} \\ & 28.8 \\ & 35.2 \end{aligned}$ | $\begin{aligned} & 629^{\prime} 5!0 \\ & 62745.0 \\ & 62620.0 \end{aligned}$ | $\begin{aligned} & 14^{\prime} 15^{\prime} 11!3 \\ & 144516.3 \\ & 144151.3 \end{aligned}$ | $\begin{aligned} & 26.3 \mathrm{C} \\ & 30.0 \\ & 32.3 \end{aligned}$ | $\left\{\begin{array}{c} \text { Turuta } \\ \text { Tanakadate } \\ \text { Eziie } \\ \text { Tanakadate } \end{array}\right.$ | $\left\{\begin{array}{c} \text { Tanakaliate } \\ \text { Turnuta } \\ \text { Tanakalate } \\ \text { Uziie } \end{array}\right.$ |
| Mean | 0.30089 |  |  |  |  |  |  | － |  |  |
|  |  |  | Red | luction to |  | $\begin{aligned} I I & =0.300 \\ 25.0 & = \\ \text { evel } & = \\ H & =0.301 \end{aligned}$ | $\begin{aligned} & 89 \\ & 1653 \\ & 64 \\ & 46 \end{aligned}$ |  |  |  |

HORIZONTAL INTENSITY（II）
Obserrations of the Kinki Party， 1890.

| Date and Honr （Mean Local Time．） | II | II | Mean ＇Temp． | Time of1-Yibn. | $\mathrm{Temp}_{\mathrm{t}}$ | Mean Deflections |  | $\underset{t_{\mathrm{n}}}{\text { Temp }}$ | Onserver | Recorter |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | ${ }^{1}$ | \％ 2 |  |  |  |
| July $15^{\text {th }} 222^{1 / 2} \quad 2^{\text {ma }}$ | ＊0．30129 | 42423 | 23.5 C | ${ }^{8} .5096$ | 23．4C | （6 $6^{\circ} 4^{\prime} 46.12$ | $133^{\prime} 48^{\prime} 4.5{ }^{\prime \prime} 1$ | 23.65 | $\left\{\begin{array}{c} \text { Tomoriza } \\ \text { Kitōor } \end{array}\right.$ | $\left\{\begin{array}{c} \text { Kate } \\ \text { Tomoda } \end{array}\right.$ |
| ＂ 16868 | 0.30111 | 422.26 | 29.5 | 5.8433 | 29.0 | 635.0 | 134251.9 | 30.0 | Tomorla | Katō |
| $\cdots \quad, \quad 14 \quad 37$ | 0.30108 | 421.93 | 31.0 | 5.8495 | 32.1 | $6 \quad 30.0$ | 134225．6 | 24.9 | Kٌıtō | －Tonionla |
| Mean | 0．3011； |  |  |  |  |  |  |  |  |  |

$I I=0.30116$
Rerluction to $1895.0=-1954$
．，．．sea level $=\quad$ 6．1

$$
I I=0.30097
$$

Nagahama（長溜へ出張）
At station，observed in 1887.
Olservations of the Kinki Party，1s．m．

| Date and Hour <br> （Mean Local＇Time．） | Needle No． | $\theta$ |  | （ fbserrer | liecoriler |
| :---: | :---: | :---: | :---: | :---: | :---: |
| July $\quad 18^{\mathrm{h}} \quad 24^{\mathrm{m}}$ | 3 | $5!$ | 7．0 | Kıatō | ， |

（102）
HORIZONTAL INTENSITT（II）
（＊Filue deduced from．Tibration ondy ly assuming Firlue of 12 ）
Observations of the Kinki Party， 189 G.

| Date and Tlonr （Mern Local Time．） | II | M | Mean Temp． | Time of$1-\mathrm{Y}^{2} \mathrm{~B}^{\mathrm{n}} .$ | $\begin{gathered} \text { Temp. } \\ t_{v} \end{gathered}$ | Mean Deflections |  | $\underset{t_{\mathrm{p}}}{\operatorname{Temp}}$ | Observer | Fecorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\varphi_{1}$ | $\varphi_{2}$ |  |  |  |
|  | ＊0．36064 | 423.14 | 27.4 | 5.8181 | 27.5 C | ． | ． |  | Kato | Kato |

## 89．TURUGA．

Matubaramura Ōaza Matusima（陉原村大字松島第百八號字野畑第五番畑） DECLINATION（ $\delta$ ）
Observations of the West Party， 1893.


DII ${ }^{(\theta)}$
Olservations of the West Party， 1893.

| Date and Mour （Mean Local Time．） | $\begin{gathered} \text { Needle } \\ \text { Ni. } \end{gathered}$ | $\theta$ | Ohserver | Recorder |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{cccc}\text { rept．} & 1 I^{\text {th }} & 10^{\mathrm{h}} & 34^{\mathrm{m}} \\ \because י & \cdots & 14 & 57 \\ \cdots & \cdots & 20 & 33\end{array}$ | $\frac{3}{3}$ | $\begin{array}{cc}49 & 27!2 \\ \cdots & 26.4 \\ \cdots & 26.9\end{array}$ | Uziie Iwaoka Turuta | Turuta <br> Iwaoka <br> Turuta |
| Mean |  | $49^{\circ} \quad 26: 8$ |  |  |
|  | Rethe $\qquad$ | $\begin{array}{r} 1895 . \\ \text { sea level } \end{array}$ | $\begin{gathered} 26.8 \\ -1.8: 3 \\ 0.10 \\ 2.50 \end{gathered}$ |  |

Onservations of the West Party， 1893.


90．TAKEHU．
Aza Yokodoi embankment．（武生町字僙土居䤼阬）
Observations of the West Party， 1893.


Observations ef the Wast Party，19： 3 ．

| Date and Hour （Mean Local Time．） |  |  | Needle No． |  | ， | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sept ＂， | $\begin{array}{ll}\text { 12 th } & 19 \mathrm{l} \\ 13^{\text {th }} & 10 \\ =, & 15\end{array}$ | 56 2 29 29 | 3 3 3 | 49 <br> $"$ | 27.4 31.0 20.8 | Tornta Cziie Iwhoka | Uziie |
| Mean |  |  |  | $4{ }^{\circ}$ | 29.7 |  |  |
| $\theta \ldots 40$ $2.2!4$  <br> Reduction to $18!5.11=$ -1.82 <br> $\therefore \quad$, seal level $=$ 0.00 <br> $\theta=49$ $27!2$  |  |  |  |  |  |  |  |
| HORIZONTAL INTENSITY（II） <br> Observations of the West Party， 1593. |  |  |  |  |  |  |  |



## 91．ONO．

Ōnomati 151．Aza Nisidōyasiki No 1．（大里町百五十一字西堂属败一番）
UECLINATION（ $\delta$ ）
Observations of the West Party， 1893

(Continmerl)


DIP. ( $\theta$ )
Observations of the West Farty, 1893.

| Date and Hour (Mean Local Time.) | $\begin{gathered} \text { Needle } \\ \text { No. } \end{gathered}$ | $\theta$ | Olserver | Fecorder |
| :---: | :---: | :---: | :---: | :---: |
|  | 3 $\cdots$ 3 | $\begin{array}{cc}4! & 50.3 \\ " & 58.7 \\ " & 51.3\end{array}$ | Twnoka Tziie 'Juruta | Turuta Iwaoka Turnta |
| Mean |  | 4) 5s゙1 |  |  |
|  | Pieduc $\qquad$ | $\theta$ $=1$ <br> 1895.0 $=$ <br> to $\quad$ sea level $=$ | $58!1$ <br> -1.69 <br> -0.0 .2 <br> 50.95 |  |

HORIZONTAL INTENSITY (II)
Observations of the West Party, 1893.
 92. SIOYA.

DECLINATION ( $\delta$ )
Observations of the West Party, 1893.



| Date ant Momr （Mean Local Time．） | II | M | Mean <br> Temp． | Time of 1－Tiln． | Temp． $t_{v}$ | Mean Deflections |  | Templ $t_{D}$ | （ 1 server | Recorter |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\varphi_{1}$ | $\varphi_{2}$ |  |  |  |
| Sept．16ill $19^{\text {h }} 10 \mathrm{~m}$ | 0.29687 | 453.69 | $22: 0 \mathrm{C}$ | 5.7268 | 22.10 | 60.57 7！5 | $15^{\circ} 2^{\prime} 10^{\prime} \%$ | 21.96 | Turita | Twaoka |
| ＂ $17^{\text {th }}$ a 0 | 0.29651 | 452.89 | 24.3 | $5.734^{\prime}$ | 24.0 | 63.347 .5 | 15050.0 | 24.5 | C＇ziie | Vzöio |
| ＂．． 1302 | 0.29721 | 452．28 | 21.3 | 5.7326 | 24.7 | 633：45．0 | 145933.1 | 23.9 | Iwaoka <br> Turnta | Thant： 1 waok： |
| Mean | 0.29687 |  |  |  |  |  |  |  |  |  |


| $1 I=$ | 11.29657 |  |
| ---: | ---: | ---: |
| Peduction to | $1895.0=$ | 170.3 |
| $, \quad, \quad$ sen level | $=$ | 100 |

## 93．KANAZAWA．

 Parade ground（陸軍練兵場） I ECLINATION（ $\delta$ ）Ohservations of the West Party，1893．


Observations of the West Party， 1893


## 94．NANAO．

Aza Dezaki（字 出 崎）
DECLINATION（II）
Olservations of the West Party．1ヶ．l：3


DIP（ $\theta$ ）
Onservations of the West Party，1893．

| Date and Four <br> （Man Lemal Time．） | Neenle No． | $\theta$ | Onserver | Riscorder |
| :---: | :---: | :---: | :---: | :---: |
|  | 3 | $\begin{array}{cc}51 & 11! \\ . & 10.1 \\ " & 11.15\end{array}$ | Urziie I waoka Turuta | ITziie Turuta Iwaoka |
| Mean |  | $51^{\circ} 11!2$ |  |  |
| $\begin{aligned} & & =51^{\circ} & 11!2 \\ \text { Reduction to } & 1895.0 & = & -2.18 \\ י \quad, & \text { sea level } & = & 0.50\end{aligned}$ |  |  |  |  |

HORTZONTAL INTENSETY．（II）
Observations of the West Party，18：3．


## 95．WAZIMA．

## Kawaimati Rokuaza（河井町六字）

HECLINATIUN（ $\delta$ ）
Observations of the West Party， 1893.



HORIZONTAL INTENSITY (Il)
Olservations of the Wizima Paty, 95.


## 96. TOYAMA.

DECLINATION ( $\delta$ )
(onservations of the West Jarty, 1sis:


DII' ( $\theta$ )
(H)Nervations of the West Party, $15: 93$.

| Date and Hour <br> (Mean Locnl Tine.) |  |  |  | Needle No. |  | $\theta$ | Observer | liecorter |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sept | $2 S^{\text {th }}$ | $10^{11}$ | $22^{m}$ | : | 5 | 54.5 | Turuta | Turuta |
|  | ., | $11 ;$ | 25 | 2 | , | 53.1 | I waoka | Iwaokt |
|  | , | 21 | 30 | :3 | " | 17.7 | Turuta | Turuta |
|  | $w^{\text {H }}$ | 10 | 24 | 3 | .. | 43.1 | " | " |
| " | ,. | 1.5 | 37 | : | " | 46.4 | IWätal | ". |
| " | " | $\bigcirc 0$ | 55 | 3 | " | 47.0 |  | " |
| Mean |  |  |  |  | 50 | $19 \%$ |  |  |
|  |  |  |  | lieduction to " " |  |  | $\begin{array}{r} 1!! \\ -1.6! \\ 0.10 \\ \hline \end{array}$ |  |
|  |  |  |  | 18:5. |  |  |
|  |  |  |  |  |  |  |  |  |

HORIZONTAL INTENSTTY (1l)
Observations of the West Party, 18013.

| 1hate and Hour (Mean Local Jime.) | 11 | $1 /$ | Me:n <br> 'Temp. | $\begin{aligned} & \text { Time of } \\ & 1-\text { Vib }: \end{aligned}$ | $\operatorname{Temp}_{\mathrm{t}_{\mathrm{r}}} \mathrm{p} .$ | $\frac{\text { Itean De }}{\psi_{1}}$ | eflections <br> 4: | $\begin{gathered} \text { Templ. } \\ \mathrm{t} \end{gathered}$ | Ob ierver | liecorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sept. $28^{\text {th }} 14^{\text {fin }} 17^{\text {m }}$ | 0.29311 | 450.34 | 29.2 C | 5.7880 | $30^{\circ} .5 \mathrm{C}$ | 6371205 | $15^{\circ} 8^{\prime} 37.15$ | 27.80 | J waokar Turnta | 'Inrutat 1 waoka |
| " „, 20 3 | 0.21315 | 452.!2 | 22.1 | 5.7691 | 22.7 | 63945.0 | 151312.5 | 21.5 | Iwaoka | Turuta |
| ,, $29^{11} \times 8$ 8 | 0.29314 | 452.67 | 23.1 | 5.75011 | 22.2 | 6397.5 | 151146.9 | 23.9 | \{ Turnta | Iwaokn |
| " " 1321 | 0.29351 | 450.81 | 28.3 | 5.7788 | 28.8 | ¢ 3716.9 | 15730.6 | 27.8 | lwaokat | Thuruta |
| ,. „, 18 27 | $0: 293325$ | 452. .fi | 21.6 | 5.7682 | 2?.1 | 63931.2 | 151252.5 | 21.1 | Iwaoka <br> Turnta | 'Turnta Iwask: |
| Mean | 0.29323 |  |  |  |  |  |  |  |  |  |


| $\mu I=$ | 0.29323 |  |
| ---: | ---: | ---: |
| liculuction to | $1 \times 95.0=$ | 1381 |
| ,$\quad$, | sea level $=$ | 13 |

## 97. MOZUMI.

DECLINATION ( $\delta$ )
Observations of the West l'arty, 149\%.


（110）
HORIZONTAL INTENSITY（II）
Observations of the West Pary， 1893.


## 98．MIKKAITI．

Mikura cemetery（三日市町大字三日市村字御藏共有暮地） DECLINATION（ $\delta$ ）
Observations of the West Party，1873．

| Date and Thom． <br> （Mean Loe 1 Time．） |  |  |  |  | $\delta$ |  | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Oct． |  | 1.11 | 4.5 m | 9 | $5 '$ | $20^{\prime \prime}$ | Turata | Twnoka |
|  | ．， | 11 | 11 | ， | 5 | 7 | Iwaoki | Turuta |
| ＂ | $\stackrel{.}{ }$ | 11 | 21 | ， | 5 | 43 | ，． | ．． |
|  | ，． | 11 | 3．） | ， | 7 | $1)$ |  | ＂ |
| ＂ | ．， | 112 | 1 | $"$ | s | 2 | ＇I＇urutic | Iwaukit |
| ＂ | ， | 12 | 56 | $\because$ | 8 | 50 |  | ＇Turuta |
| ＂， | － | 13 | 21 | ＇， | 1 | 11） | ＂ |  |
| ＂ | ＊ | 15 | 45 | ＂ | 10 | \％ | ＂ | ＂ |
| ＂． | － | 1.5 | 4 | － | 10 | $\underline{2}$ | ＇u＇urata | ＂ |
|  | ＂ | 10 | 40 | ， | 9 | 7 | Twaok： | ， |
| ＂． | ＂ | 17 | ：35 | ＂． | － | $3: 3$ | ＇I＇uruta | 1 Wetoka |
| ＂ | ＂， | 17 | 52 | ，． | 7 | 0 | Iwaokia | Turuta |
| ， | ＂ | 1ら | 7 | ＂， | 7 | 11 | － | ＂ |
| －， | ＂ | 1ヶ | $\cdots$ | ＂ | ！ | 1） | ＂ | － |
| ， |  | 19 | 50 | ＂ | $\stackrel{\text { ¢ }}{\sim}$ | 7 | ＇， | ＂ |
| ＂ |  | 21 | 33 | ＂ | 7 | 13 | 「＂uta | ＂ |
| ＂ |  |  | 8 | ＂ | 1 | 411 | Turuta | － |
| ， | ＂ | 5 | 14 | ， | ！ | $\pm 0$ | ＂ |  |
| $\cdots$ | ＂ | 1 | $\underline{2}$ | ＂ | $\underline{1}$ | $\because 4$ | ＂ |  |
| ＂ | ＂ | 18 | 45 | $\because$ | 1 | 16 | ＂ | ＂ |
| ＂ | ． | 7 | 11 | ．， | Ki | 5．） | Iwayk | Iwäuka |
| ．， | ＂ | S | 32 | ＂ | 5 | 17 | Iwiokt | Turuta |
| ＂， | ＂ | 1 | 11 | ， | 9 | 7 | Turnat | Iwaok： |
| ＂ |  | 11 | 2 | ＂． | $11)$ | 4． | Iwaoka | Turuta |
| ＂． | ＂ | 1.3 | ：35 | ＂， | 10 | 45 | ．． | Iwaoka |
| － | ：， | 14 | 1．1 | ， | 10 | S＇ | ：• | ＂ |
| $\because$ | ＂ | 15 | 2 S | ＂ | 8 | 54 | ＂ | Taruta |
| － | ＂ | 16 | 9 | ＊ | － | 51 | － | ， |
| ＂ |  | 16 | $3{ }^{3}$ | ．． | 9 | 53 |  | Iwakat |
| ＂ | ＂． | 17 17 | 6 17 | ＂ | ！） | 32 26 | Turuta <br> Iwaoka | Iwatokit <br> Turuta |
|  |  |  |  |  |  |  |  |  |
| ．．． | Mean |  |  | 4 | $8^{\prime}$ | $5^{\prime \prime}$ |  |  |
|  |  |  |  | $\delta=5^{\circ} \quad 8: 05$ |  |  |  |  |
|  |  |  |  | lieduction to |  |  | 1.983 |  |
|  |  |  |  |  |  | $4{ }^{4}$ | 0.00 |  |
|  |  |  |  |  |  |  | －10：9 |  |

$1)$ IP $(\theta)$
Oneervations of the West Parly， 1893.


FORIZONTAL NTEESSITY (Il)
(H)servations of the West Party, 18:3


## 99. ABUTA.


DECLINATION ( $\delta$ )
Observations of the North Party, is.4.

| $\begin{aligned} & \text { Dat } \\ & \text { Mean } \end{aligned}$ | $\begin{gathered} \text { e and } \\ \text { Lceat } \end{gathered}$ | $\begin{aligned} & \text { THor } \\ & \text { Ti1 } \end{aligned}$ | ir <br> me.) |  | $\delta$ |  | Observer | Recoriler |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Snly. | $1^{\text {st }}$ | $18^{\text {h }}$ | 33.0 m | $i^{\circ}$ | $10^{\prime}$ | $4^{\prime \prime}$ | T'anakadate | Midzusima |
| , |  |  | 27.1 | ., | 9 | 16 | , |  |
| , | $2^{\mathrm{nd}}$ | 1 | 0.0 | .. | 8 | 59 | " | Tanakarlate |
| " |  | 4 | 3.2 | " | S | 14 |  |  |
| " | " | 5 | 43.3 | , | 6 | 23 | Midzusima | Midzusima |
| " | , | 7 | 16.4 | " | $\pm$ | 13 |  | Tanakadate |
| " | , | 8 | 17.8 | , | 5 | 0 | 'Tanakadate | Midzusima |
| , |  |  | 54.0 | " | ! | 83 |  |  |
| , | , |  | 57.5 | , | 10 | 59 | Midzusima | 'T:uakadate |
| " |  |  | 24.1 | " | 14 | $5:$ | " | Midz.nsiña |
| ., |  |  | 30.0 | ., | 15 | 41 |  | :, |
| , | ., |  | 20.11 | ., | 14 | 21 | 'I'makadate |  |
| " |  |  | 17.7 | , | 13 | 18 | Midzusima | Tanakatate |
| , | ., |  | 11.7 | ., | 12 | 48 | 'Tanakadate | Midzusima |
| , |  |  | 39.1 | " | 10 | 46 | , | , |
| , | " |  | 35.0 | " | 10 | 20 | " | , |
| Mean |  |  |  | $i^{\circ}$ | $9^{\prime}$ | $35^{\prime \prime}$ |  |  |
|  |  |  |  | Reluction to |  | $\begin{aligned} \delta & =6^{\circ} \\ 1895.0 & = \\ \text { sea level } & = \end{aligned}$ | - 9.58 |  |
|  |  |  |  | 1.52 |  |  |
|  |  |  |  | 0.00 |  |  |
|  |  |  |  | $\delta=6{ }^{\circ}$ | 11! 1 |  |

DIP ( $\theta$ )
Observations of the North Party, 1894.



Perbetion to $18: 5.0=2.38$
．．sen level $=\quad 0.00$

## 100．OSYAMANBE．

Osyamanbe Syōgaku（長萬部小學校）
DECLINATION（ $\delta$ ）
Observations of the North Party， 1894.



HORIZONTAL INTENSITY（ $H$ ）

Onservations of the North Party，1－94．


[^14]
## 101．SUTTU．

Suttu office（尌都村戸長役場）
DEC＇LINATIUN（ $\delta$ ）
Onservations of the North Party，I894．


DI］＇（ $\theta$ ）
Ohservations of the North Party， 189.4

| Date and flomr <br> （Mean Local Time．） | Nerille No． | $\theta$ | Onserver | lieemrder |
| :---: | :---: | :---: | :---: | :---: |
|  | $\frac{2}{2}$ | $\begin{array}{cc} 56 & 44!2 \\ . & 44: 3 \\ = & 4: 1 \end{array}$ | Midzusima Trunakialate Midzasima | Midznsima Tanakanate |
| Mean |  | $5644!9$ |  |  |
|  |  |  |  |  |

HORIZONTAL INTENSLTY（H）
Olservations of the North l＇arty， 1 s9 1.


## 102．IWANAI．

Prefecture（郡 役 所）
DECLINATION（ $\delta$ ）
Olservations of the North Party， 1894.

| Date and Honr <br> （Mean Local Time．） |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

DIP $\quad(\theta)$
Onservations of the North Party，1894．


HORIZONTAL INTENSITY（II）
Onservations of the North Party， 1894.

| Date and Homr （Mean Local＇lime．） | II | I | $\begin{aligned} & \text { Mean } \\ & \text { Temp. } \end{aligned}$ | Time of | $\begin{gathered} \text { Temp } \\ t_{V} \end{gathered}$ | Mean Deflections |  | $\begin{gathered} \text { Temp. } \\ t_{11} \end{gathered}$ | （bserver | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $p_{1}$ | 92 |  |  |  |
| $\left[\begin{array}{cccc} \text { Jnly. } & 11^{\text {th }} 13^{\mathrm{h}} & 22^{\mathrm{m}} \\ " & 2 & 20 & 28 \\ " & 12^{\text {th }} 10 & 20 \end{array}\right.$ | 0.26796 | 459.11 | 23.3 C | $5_{5}^{5.9440}$ | 2：3C | $72 t^{\prime 3} 34^{\prime \prime} 4$ | 16551＇43：＇8 | 22.9 C | Midzusima | STanakalate |
|  | 0.26807 | 460.07 | 20.1 | 5.935.$)$ | 20.4 | 72512.5 | $1653 \quad 0.0$ | 19.8 | Midzonsima | Tanákadate |
|  | 0.29375 | 458.47 | 24.6 | 5.9521 | 24.9 | 72418.8 | 165049.0 | 24.2 | Tanakadate | ＂， |
| Mean | 0.26787 |  |  |  |  |  |  |  |  |  |
| $I I=0.26787$ |  |  |  |  |  |  |  |  |  |  |
|  |  |  | Reanction to |  |  | $\begin{aligned} & 95.0= \\ & \text { evel }= \end{aligned}$ | $\begin{aligned} & 2.55 \\ & 0.010 \end{aligned}$ |  |  |  |
|  |  |  |  |  |  | $\Pi=0.2$ | 7！！） |  |  |  |

## 103. YOBETU.

DECLINATION ( $\delta$ )
Olservations of the North larty, 1 sig.


DII ${ }^{(\theta)}$
Onservatious of the North Party, 1894.

| Date and Hour (Mean Local 'Time) | Needle No. |  | $\theta$ | Observer | liecorder |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{ccccc}\text { July. } & 133^{\text {h }} & 15^{\text {h }} & 19.0 \mathrm{~mm} \\ " & 14^{\text {th }} & 9 & 39.5 \\ ", & " & 13 & 31.2\end{array}$ | $\frac{2}{2}$ |  | 0.8 0.0 57.7 | Midzusima Tanakadate | Tanakudate Micansima " |
| Mean |  |  |  |  |  |
|  |  |  |  |  |  |

HOREZONTAL ENTENSITS (II)
Olservations of the North l'arty, 1894.


## 104．HUNAMA．

（船澗市中）
DECLINATION（ $\delta$ ）
Olsservations of the North Party， 1894.


DIP（ $\theta$ ）
Olservations of the North Parts， $18: 11$.

| Date and Hour <br> （Mean Local Time．） | Neealle No． | $\theta$ | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: |
|  | $\stackrel{2}{2}$ | $\begin{array}{cc}57^{\circ} & 32.3 \\ = & 36.0 \\ . & 30.1\end{array}$ | Thamakiate Minzusima Tamakalate | Midzusima <br> Tamakurlate |
| 14 |  | 578 |  |  |
|  | Liceduction | $\begin{aligned} \theta & =57 \\ 1895.0 & = \\ \text { sea level } & = \\ \theta & =57 \end{aligned}$ | $\begin{gathered} 33!4 \\ -1.57 \\ 0.00 \\ 32!0 \end{gathered}$ |  |

HORIZONJAL INTENSITY（II）
（＊＇relue detuced from libration only by assuming Value of 11．）
Osservations of the North Party， 1894.


## 105. OTARU.

DECLINATION ( $\delta$ )
Observations of the North Party, In:l!.


DIP ( $\theta$ )
Observations of the North Party, 1 sit.


HORIZONTAL INTENSITY (IL)
(*'thue dertured from Vibration ouly liy assuminy l'alue of M.)
Olservations of the North Party, 184.


## 106. OTARU-MYÖKENZAN.

DECLINATION ( $\delta$ )
Observations of the North Party, 1894.

| Date and Hour (Mean Local Time.) |  |  |  | $\delta$ |  |  | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Aug. | $15^{\text {th }}$ |  | 44.9 m | $6^{\circ}$ | $21^{\prime}$ | $48^{\prime \prime}$ | Tanakadate | Tanakadate |
| , | " | 17 | 56.1 | " | 17 | 45 | , | " |
|  | ", |  | 13.5 | " | 15 | 37 | " | , |
|  |  | 21 | 58.7 | " | 15 | 17 | " | , |
| ", | $16^{\text {th }}$ | 4 | 43.5 | ", | 13 | 23 | - | " |
| " | , | 8 | 1.3 | , | 11 | 32 | , | " |
| , | ," | 8 | 325 | " | 12 | 5.5 | " | " |
| , | ", | 10 | 58.3 | , | 20 | 5.5 | " | " |
| " | " | 11 | 35.6 | , | 21. | 20 | , | " |
| " | , | 12 | 8.4 | " | 21 | 42 | " | " |
| " |  | 14 | 26.1 | " | 21 | 41 | . | " |
| , |  | 15 | 33.3 | , | 19 | 51 | , | " |
| , | " | 16 | 16.9 | " | 17 | 1 | " | " |
| " | " | 19 | 1.4 | " | 13 | 41 | " | " |
| " | " | 20 | 3.7 | " | 15 | 8 | " | " |
| , | $17^{\text {th }}$ | 0 | 4.7 | " | 16 | 3 | " | " |
| " |  | 4 | 2.9 | :, | 14 | 56 | ", | " |
| " | ", | 7 | 20.7 | , | 12 | 35 | " | ; |
| " | , | 8 | 55.9 | , | 15 | 18 | " | " |
| " | , | 10 | 0.7 | " | 17 | 58 | " | " |
| " | , | 11 | 33.1 | " | $\because 1$ | 7 | " | " |
| , | " | 12 | 47.8 | ,, | 22 | 3 | , | , |
| ", | " | 13 | 31.5 | , | $\because 1$ | 3:3 | " | ", |
| , |  | 15 | 7! | " | 19 | 57 | " | " |
| " | ,, | 16 | 37.7 | ., | 17 | 22 | , | , |
| " | $\cdot$ | 18 | 21.3 | , , | 16 | 16 | " | :, |
| , |  | 19 | 53.7 | " | 16 | 28 | .. | " |
| , | $15^{\text {th }}$ | 0 | 30.8 | " | 15 | 57 | , | " |
| " | , | 4 | 27.0 | , | 15 | 3 | , | , |
| " | , | 7 | 46.5 | , | 11 | $3 i$ | , | " |
| " |  | ! | 4.7 | , | 13 | 10 | , | " |
| , | , | 10 | 31.9 | ., | 15 | 53 | " | ", |
| " | " | 11 | 41.5 | " | 18 | 5 | ., | " |
| " | ", | 13 | 58.3 | ", | 20 | 25 | , | " |
| Mean |  |  |  | 6 | $13^{\prime}$ | $2)^{\prime \prime}$ |  |  |
| $\delta=6 \quad 16!48$ |  |  |  |  |  |  |  |  |
|  |  |  |  | Peduction to |  |  | 1.19 |  |
|  |  |  |  | st |  |  | -0.01 |  |
|  |  |  |  |  |  |  | $10^{\circ} 17: 7$ |  |
|  |  |  |  | DIP ( $\theta$ ) |  |  |  |  |

Observations of the North Party, 1s)4.


| Date and Hour (Mean Local Time. | H | M | $\begin{gathered} \text { Mean } \\ \text { Temp. } \end{gathered}$ | Time of 1-Yibl. | $\operatorname{Tem}_{t_{v}}$ | Mean Deflections |  | $\left\lvert\, \begin{gathered} \operatorname{Temp}_{\mathrm{t}} \\ \mathrm{t}_{\mathrm{D}} \end{gathered}\right.$ | Observer | liecorder | |
|---|---|---|---|---|---|---|---|---|---|---|---|
|  |  |  |  |  |  | $\varphi_{2}$ | $\varphi 2$ |  |  |  |
|  | 0.26914 | 455.92 | 24.0 C | 5.9511 | 24.2 C | $71{ }^{\prime} \cdot 244^{\prime \prime} 0$ | 1639'37! 5 | 23.9 C | 'Ianakulate | Tanakatate |
| , $17^{\text {th }}$ 17 175 | 0.2692 .25 | 455.43 | 25.3 | 5.9510 | 26.0 | $71+0.0$ | 163855.0 | 21.7 | " | " |
| , 18th 8 S 24 | 0.26419 | 455.90 | 21.7 | 5.9525 | 25.8 | 71935.1 | $1640 \quad 1.0$ | 23.7 |  |  |
| Mean | 0.26919 |  |  |  |  |  |  |  |  |  |
| - $11=0.26919$ |  |  |  |  |  |  |  |  |  |  |
|  |  |  | lictuction to |  | o $1895.1=$ <br> sea level = |  | $\begin{gathered} 15 \% \\ 155 \end{gathered}$ |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  | $\Pi=0.2$ |  | 21 |  |  |  |

## 107．SAPPORO．

Sapporo Nōen（札幌農園）
DECLINATION（ $\delta$ ）
Observations of the North Party， 1894


DIP $(\theta)$
Observations of the North Party， 1894.

HORZONTAL INTENSITT（II）
Observations of the North Party，1894．

机 幌 出 張（显湘 候 所 跡）
DIP（ $\theta$ ）
Observations of the North Party， 1894.

| Date and Hour （Mean Local Time．） | Neralle No． | $\theta$ |  | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{ccccc} \hline \text { July. } & 22^{2 t h} & 14^{\mathrm{h}} & 50.6 \mathrm{~m} \\ " & " & 16 & 50.0 \end{array}$ |  | 57 $\therefore$ | $\begin{aligned} & 13!0 \\ & 10.4 \end{aligned}$ | Tanakalato Midzusima | Miclzusima <br> Thnakidate |
| Mean |  |  | 11.7 |  |  |

HORIZONTAL INTENSITY（II）
 Observations of the North Party，1894．


108．IWAMIZAWA．
Bank of River Ikusyunbetu（幾 春 別 河 畔）
DECLINATION（ $\delta$ ）
Observations of the North Party， 1894.


Olservations of the North Party, 1 sind.


HORIZONTAL INTENSITY (IL)
Observations of the North Party, 1s:A.


## 109. SORATIPT.

DECLINATION ( $\delta$ )
Observations of the North Party, 1894.


$$
\text { 1) Iए. } \quad(\theta)
$$

Observations of the North Farty, 1894.

(122)

HORIZONTAL DNTENSITY ( 11 )

Onservations of the North Party, $1 \mathrm{~s}: 4$.


## 110. TIP-YABUSI.

DECLINATION ( $\delta$ )
Ohservatious of the North Party, 18)t.

| $\begin{gathered} \mathrm{D} \\ \mathrm{M}_{\mathrm{i}} \end{gathered}$ | $\begin{aligned} & \text { an } \\ & \text { an } 1 \end{aligned}$ | $\begin{gathered} 1 \mathrm{H} \\ \text { cel } \end{gathered}$ | ir |  | $\delta$ |  | Observer | Fifoneder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| July. | $29^{+11}$ | $11^{\text {h }}$ | 17.3 m | 5 | $3: 3$ | $233^{\prime \prime}$ | 'Tanakadate | Midzusim: |
| ," | ,» | 12 | 24.4 | , | 36 | 21 | , | ," |
| .. | " | 12 | 32.11 | , | 3 | 13 |  |  |
| , | " | 13 | 22.17 | " | 37 | 17 | Midzusima | 'Tanakadate |
| " | " | 14 | 26.2 | , | 37 | 29 | Tranolzadate |  |
| , | " | 1.5 | 27.1 | ,, | 35 | 54 | Tanakadate | Midzasima |
| " | " | 16 | 54.3 | " | 33 | 2 | Midzusima | Tanakadate |
| " | " | 17 | 0.5 | ", | 32 | 23 |  |  |
| " | " | 18 19 | 4.2 48.1 | , | 31 | 19 32 | Tanakadate | Midznsima |
| , | " | 19 21 | 45.1 | " | 31 | 52 | " | " |
| ", | , | 23 | 19.8 | ", | 31 | 33 | " | Tanakadate |
| ", | 30 th | 3 | 14.7 | , | 30 | 9 | " | , |
| " | " | 6 | 25.7 | .. | 27 | 36 | , |  |
| " | " | 7 | 9.3 | ", | 27 | 44 |  | Midzusima |
| " | " | 7 | 58.9 | " | 27 | 38 | Midzusima | Tanakalate |
| ", | " | 9 | 43.3 | " | 33 | 33 | Tanabatate | Midzorsima |
|  | ", |  | 49.1 32.7 | ,", | 35 | 8 47 | Tanakatate | Alazosima |
| " : |  |  |  |  |  |  | 寺 |  |
| Mean |  |  |  | $5^{\circ}$ | $31^{\prime}$ | $59^{\prime \prime}$ |  |  |
|  |  |  |  |  |  |  | $\delta=5031.97$ |  |
|  |  |  |  | 1.27 |  |
|  |  |  |  | Reduction to, |  | $\begin{array}{r} 1895.0= \\ \text { sea level }= \end{array}$ | -0.0.13 |  |
|  |  |  |  |  |  |

Observations of the Nort? Tarty, 1894.


| $\begin{gathered} \text { Date and Hour } \\ \text { (Mean Local Time.) } \end{gathered}$ | II | M | $\begin{gathered} \text { Mean } \\ \text { Temp. } \end{gathered}$ | Time of1-Vibn. | Temp. | Mean Defections. |  | Temp. | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\varphi_{1}$ | $\varphi_{2}$ |  |  |  |
| July. $29^{\text {th }} 14^{\text {h }} 7 \mathrm{~m}$ | 0.26558 | 455.58 | $29^{\circ} .5 \mathrm{C}$ | $5.99317$ | 29.6 C | $7{ }^{-2} 4^{\prime} 50!0$ | $16^{\circ} 52^{\prime 2} 21^{\prime \prime} \cdot 2$ | $29^{\circ} 5{ }^{\circ}$ | $\{$ Tanakndute | Nidzusima |
| " " 2118 | 0.26541 | 456.93 | 23.7 | 5.9866 | 24.5 | $7263 \times .8$ | 165627.5 | 23.3 | $\left\{\begin{array}{c}\text { Pal } \\ \text { Tinala }\end{array}\right.$ | $\left\{\begin{array}{l}\text { Midzusima }\end{array}\right.$ |
| , 30*h $7 \quad 39$ | 0.26522 | 456.53 | 21.6 | 5.9908 | 24.8 | 72632.5 | 165620.0 | 24.4 | $\left\{\begin{array}{l} \text { Mingusima } \end{array}\right.$ | \{lanakadate |
| Mean | 0.26541 |  |  |  |  |  |  |  |  |  |

## 111. ASAHIKAWA.

DECLINATION ( $\delta$ )
Olservations of the North Party, 1594.


DIP ( $\theta$ )
Ubservations of the North I'arty, 1894.


HORIZONTAL INTENSTTY (II)
(* Vi'ne detucel from Vibration onty by ussumiuy Vabue of M.)
Olservations of the North Party, 1894.


## 112. ОНOTUKAWA.

DECLINA'IIUN ( $\delta$ )
Observations of the North Party, 1894.

| Date and Hour <br> (Mean Local Time) | $\delta$ |  |  | Observer | liecorder |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{clll} \text { Aug. } & 3^{\text {rul }} & 19^{11} & 41.0^{\text {min }} \\ " & " & 21 & 38.0 \end{array}$ | \% | $\begin{aligned} & 53 \prime \\ & 54 \end{aligned}$ | $\begin{gathered} 46^{\prime \prime} \\ 0 \end{gathered}$ | Tunakadate " | Tanakadate |
| Mean | 6 | $53^{\prime}$ | $533^{\prime \prime}$ |  |  |

DIP ( $\theta$ )
Observations of the North Party, 1 每左.

| Date and Hour (Mean Local Time.) | Needle No. | ${ }^{\theta}$ | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: |
| Ang. $4^{\text {th }} \quad 7^{71} \quad 33.5^{17}$ | 2 | $57 \quad 36: 1$ | Tanakalate | Tanakadnte |
|  |  |  |  |  |

HORIZONTAL INTENSITY ( $I L$ )
Observations of the North Party, 1894.

| Date and Homr (Mean Local Time.) | 11 | M | Mean <br> 'remp. | Time of 1- Vib". | $\underset{t_{v}}{\text { Temp. }}$ | $\underbrace{}_{\varphi_{1}}$ | fections $\varphi_{2}$ | $\underset{t_{D}}{T e m p}$ | Observer | liecorter |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Aug. $4^{\text {th }} 5^{\text {l }} 100^{\mathrm{mm}}$ | 0.26581 | 459.71 | 16.0C | 5.95 | 15.5C | $7{ }^{2} 8^{\prime \prime} 9 \times 0$ | $16^{5} 5930 \% 0$ | 16.60 | Midzusima | Tamaladate |


|  | $I T=0.264 .58 .4$ |  |
| :---: | :---: | :---: |
| Reduction to | $1895.0=$ | 188 |
| , ., | seat level= | 102! |

## 113. POROKAMUIKOTAN.

DEC'LINATION ( $\delta$ )
Observations of the North Pirty, 1894.

|  | and <br> Loc | $\begin{gathered} \text { Her } \\ \text { al } \end{gathered}$ | me.) |  | $\theta$ |  | Ulserver | Recorder | | |
|---|---|---|---|---|---|---|---|---|---|---|
| Ang. | $6^{\text {h }}$ | $14^{11}$ | $35.9^{1 / 1}$ | i | $15^{\prime}$ | $41^{\prime \prime}$ | Tamakitlate | Tanakatlate |
| ," | , | $1 ;$ | 3.9 | " | 16 | 2 | , | - |
| ., |  |  | 19.5 | , | 71 | S | , | , |
| " | $7{ }^{\text {h }}$ |  | 26.4 | , | $\delta$ | 10 | . | , |
| . | , | $t$ | 45.9 | " | 7 | 19 | .. | ", |
| " | " | 7 | 4.3 | " | 4 | 119 | " | , |
| , | , |  | 38.11 | . | 3 | 33 | -• | " |
| " | , |  | 52.5 | " | 7 | 53 | " | -• |
| - | ", |  | 54.11 | " | 9 | 10 | ", | * |
| , | ", |  | 21.1 | - | 10 | 35 | " | " |
| " |  |  | 11.3 | " | 11 | 33 | - | , |
| , |  |  | 45.8 | " | 12 | 4 | , | , |
| " | " |  | 25.6 | " | 15 | 34 | " | , |
| " | , |  | 46.9 | , | 15 | 43 | , | , |
| " | " |  | 29.4 | , | 15 | 35 | " | " |
| Mear |  |  |  | (6) | $10^{\prime}$ | $50^{\prime \prime}$ |  |  |
|  |  |  |  | $\delta=6 ; \quad 10183$ |  |  |  |  |
|  |  |  |  | liceluction to |  | $1895.0=$ | 1.28 |  |
|  |  |  |  | seal | $-0.09$ |  |
|  |  |  |  |  |  |  |  |  |  |  |

10IP ( $\theta$ )
Observations of the North Party, ls'mt.


HORIZONTAL INTENSITY（IL）
Observations of the North Party， 189.1.


Onservations of the North Party， 1894.

| Date and Honr （Mean Local＇Time．） | Neerlle No． | $\theta$ | Ohserver | Recorter |
| :---: | :---: | :---: | :---: | :---: |
|  | 2 | $57 \quad 210$ | Tanakalate | Tanakarlate |

114．MASIKE．
（䚡 毛 町）
DECLINATION（ $\delta$ ）
Observations of the North Party，1s：4．


DIP（ $\theta$ ）
Observations of the North I＇arty， $1 \times 9$ ．

| Date and Hour （Mean Local Time．） |  |  |  | Nientle No． |  | － | （））serrer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | － |  |  | Tiunakiulate | Kimura |
|  |  |  |  | － |  |  | Kimura | ＇Tanakadate |
|  |  |  |  | － |  |  | Tamakarate | Kimura |
|  |  |  |  | － | ＂ |  | Tamakalste | ＂ |
| Mean |  |  |  |  |  | 3691 |  |  |
| $\theta$ $=57$ <br> lieduction to1995.0 $=$ <br> ,, sea level$=$  |  |  |  |  |  |  | $\begin{array}{r} 36!1 \\ -1.17 \\ 0.60 \end{array}$ |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |

HORIZONPAL INTEASITX（Il）
Olservations of the North lanty， 1844.

| Date and Hour （Mean Local Time．） | II | M | Mean Temp． | Tine of 1-Vib!. | $\underset{t_{v}}{ }$ | Mean $\square$ $\varphi_{1}$ | flections <br> $\varphi_{2}$ | $\begin{gathered} \text { Temp. } \\ t_{\mathrm{p}} \end{gathered}$ | Observar | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ang． $21^{\text {st }}$ 4,14 $43^{\mathrm{m}}$ <br> $"$ , $1: 3$ 30 <br> ,$"$ , 23 20 | 0.26498 | 457.28 | 20.6 C | $5.9882$ | 20．7C | $7{ }^{\circ} 27^{\prime} 31 /{ }^{\prime \prime} 9$ | $1658^{\prime} 166^{\prime \prime} 8$ | 20.5 C | $\left\{\begin{array}{c} \text { Kimura } \\ \text { T:anakarlate } \end{array}\right.$ | $\left\{\begin{array}{c} \text { Tanakadate } \\ \text { Kimura } \end{array}\right.$ |
|  | 0.26514 | 455.83 | 22.1 | 5.9963 | 22.4 | 72551.2 | 165423.7 | 21.9 | Kimura | $\{\text { Ťa, }$ |
|  | 0.26543 | 457.15 | 18.9 | 5.9838 | 19.0 | 72643.7 | 165628.1 | 18.8 | \{Tanakarlate | Kimura |
| Меаи | 0.26518 |  |  |  |  |  |  |  |  |  |
| II $=0.2651 \mathrm{~s}$ |  |  |  |  |  |  |  |  |  |  |
|  |  |  | Reduction |  | $\qquad$ <br> sea level＝ |  | $\begin{aligned} & 120 \\ & \text { uco } \end{aligned}$ |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |

## 115．SIRASITOIMARI．

## Ekiden and Post Office，about $300^{\prime \prime \prime}$ ，East of the Ridge

（驛偳埩郵便局）
HECLINATION（ $\delta$ ）
Otservations of the North Party， 18.4.


DIP（ $\theta$ ）
Observations of the North Party， 1894.


HORIZONTAL INTENSITY（II）
Observations of the North Party， 1894.


## 116．HÜREN．

Field（稚苛堂束北原野）
DECLINATIN（ $\delta$ ）
Onservations of the Nrith liarty， 1894.


DIP（ $\theta$ ）
Ohservations of the Noth Party， 1894.


HORIZONTAL NNTENSITY（Il）
onservations of the North Party， 1894.


## 117．TESIO．

Field（天 覽 原 野）
DECLINATION（ $\delta$ ）
Observations of the North Party， 1894.


DIP $(\theta)$
Observations of the North Party， 1894.


HORIZONTAL INTENSITY (II)
Observations of the North Party, 189.

| Date and Hour (Mean Local Time.) | II | M | Mean Temp. | Time of 1-\ibon。 | Temp. | Mean Deflections |  | $\begin{gathered} \text { Temp. } \\ \left.\mathrm{t}_{\mathrm{p}}\right) \end{gathered}$ | Onserter | Reenriler |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\varphi_{1}$ | F2 |  |  |  |
|  | 0.23938 | 453.94 | 27.0 C | 9, $0^{5} 1757$ | 27.3 C | 7'33'55:'2 | 1713 3 4 ! 3 | 26.8 C | Kimura Tanakadate | $\left\{\begin{array}{c} \text { Tanakaliate } \\ \text { Kimurar } \end{array}\right\}$ |
| - $300^{\text {mh }}$ \& 1 | 0.25930 | 455.84 | 21.2 | 6.06:31 | 21.4 | 7364.6 | 171824.0 | 21.1 | Kimmra | Tanakalate |
| ", , 17 58 | 0.25897 | 454.17 | 25.4 | 6.11808 | 26.6 | 73430.11 | 17151.9 | 24.3 | Tanakatate | Kinıma |
| Mean | 0.2592. |  |  |  |  |  |  |  |  |  |
| $I=0.25!132$ |  |  |  |  |  |  |  |  |  |  |
|  |  |  | Reeruction to |  | $\text { () } \begin{array}{r} 1895.1= \\ \text { a sea level }= \end{array}$ |  | $\begin{aligned} & 1102 \\ & 1206 \end{aligned}$ |  |  |  |
|  |  |  | $11=0.2 .5923$ |  |  |  |  |  |  |  |

## 118. POSINAI PITARI.

DECLINATION ( $\delta$ )
(Hservations of the North Party, 1894.


DII ${ }^{(\theta)}$
Observations of the North Party, 18:4.

| Date and Homr <br> (Mean Local Time.) | Nesille No. | $\theta$ | Onserver | Reconter |
| :---: | :---: | :---: | :---: | :---: |
|  | - | 5゙ 44:5 | Kimura | Kimmura |
|  |  |  |  |  |

HORIZONTAL INTENSITY (II).
(*Thlue deducel from Jibrotion mely hy "sswning litlue of M.)
Onservations of the North Party, 1894.


119．OKURUMATONIANAI．
Islet in River Tesio（天監河中，嶋嬹）
HEC＇INATION（ $\delta$ ）
Onservations of the North Party， 1894.

| $\begin{aligned} & \text { Dat } \\ & \text { (Mean } \end{aligned}$ | $\begin{aligned} & \text { and } \\ & \text { Local } \end{aligned}$ | $\begin{aligned} & \text { Hon } \\ & 1 \mathrm{Tin} \end{aligned}$ | me．） |  | $\delta$ |  | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sept． |  |  | ${ }^{0} 33^{\text {m }}$ | 7 . | i＇ | 17＂ | Tanakadate Kimur | Kimura <br> Tanakadate |
| ＂， |  |  | ！ 1.1 | ＂． | 1 | 1 | ， | ， |
| ＂ | ， | 15 | 38.4 | ．． | \％ | ＋ | dut |  |
| ＂ | ＂ |  | 53.4 | ＂ | $!$ | \％ | Tamakadate | Kimmra |
| $\because$ |  |  | 15.6 42.3 | ＂ | 8 | 27 | ＂ | ＂ |
| ＂， |  | 1 | 55.1 | ＂． | 2 | 46 | ＂ | ＂， |
| ， | ， | 5 | 22.7 | ， | 2 | $1!$ | Kimma | Tanakadate |
| ， | ，． | ${ }^{6}$ | 12.5 | $1 ;$ | $5!$ | 32 | ，＂ | ＂， |
| ，． | ＂ | 7 | 21.9 | ， | 58 | $3:$ | ．， | ＂ |
| ＂ | ． | $\stackrel{1}{4}$ | 26.2 | 7 | 58 | 24 |  |  |
| ＂ | ， | ！） | 263 | 7 | 11 | $5:$ | Tauakadate Kimura | Kimura |
| ， | ＂ | 10 | 40．2 | ＂ | ${ }_{10}^{4}$ | 59 16 | Kimura | Tanakadate |
| ＂ | ＂， | 1：3 | ：30．3 | ．． | 111 | 42 | Tanakadate | Kimura |
| ， |  |  | 23.8 | ＂ | ！ | 20 | ＂ | ， |
| Mean |  |  |  | $7{ }^{\circ}$ | $4^{\prime}$ | $17^{\prime \prime}$ |  |  |
|  |  |  |  | Reduction to |  |  | $\begin{array}{rrr} \delta=7 & 4!29 \\ 1895.0 & = & 1.07 \\ \text { sea level } & = & -0.01 \end{array}$ |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  | $\delta=7 \quad 5!3$ |  |  |

DIP $(\theta)$
Onservations of the North Party， 1894.


HORIZONTAL INTENSTTY（ll）
（＊！＇alue doduced from Vibretion omly by assuming lidue of M．）
Olservations of the Noth Party， 1894.


## 120．NAYOROPT．

## Bank of River Tesio（天 監 河 畔）

DECLINATYON（ $\delta$ ）
Observations of the North Party， $18 \% 4$.

| Date and Hour <br> （Mean Local Time．） |  |  |  | $\delta$ |  |  | Olserver | liecorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sept． | $8^{4}$ | $13^{\text {h }}$ | $11.1{ }^{\text {m }}$ | $1 i^{\circ}$ | $51{ }^{\prime}$ | $12{ }^{\prime \prime}$ | ＇Tanakirlate | Kimura |
| ．， | 号 |  | 11.7 | ．， | 55 | 31 | ＂ | ， |
| ＂ | ＂ |  | 23：3 | ，＂ | $5: 3$ | 2 | ， |  |
| －， | ＂ |  | 2．2．15 | －• | 51 | 51 | Kimmra | ＇Timakadate |
| ＂ | ．， |  | $5!3$ | ＂ | 51 | 111 |  |  |
| －， | － |  | 5.2 | ．． | －1 | 28 | Tanakulate | Kimuta |
| ＂ | ＂ |  | 11.10 | ， | 51 | 111 | Kimmra | Thnakarlate |
| ＂ |  |  |  | ， | 511 | 30 | Tanakulate | Kimura． |
| ， | $9^{\prime \prime}$ |  | 36.1 | ．， | 19 | 1 |  | Trankatate |
| － | ＂ | 1 | 34.11 | ＂ | 18 | 12） | Kimura | Kimura |
| ＂ | ＂ |  | 1.1 | ．． | 17 | $5 \%$ | Tharkarlate | ， |
| ＂ | ＂ | 7 | $\bigcirc 1.9$ | － | 16 | 36 | kimurit | Timakimate |
| ＂ | ， | S | 37.8 | ， | 1.5 | 5） | ＇Tanakadate | Kimura |
| － | － | ！ | ： 1.4 | － | 17 | 31 |  |  |
| ＂ | －• |  | 24.9 | ， | $5)$ | 21 | Kimmme | Tanakathate |
| ＂ | ＂ |  | 24.2 | ， | 51 | 3i | ＇lanakarate | Kimura |
| ＂ | － |  | 12.4 | － | 51 | （i） | ．， | ． |
| ＊ | ＊ |  | 11．8 | ．． | $5: 3$ | $4!1$ |  |  |
| ．． | ．， |  | 5：．6 | ＂ | 53 | 17 | Kimura | Tanakhlate |
| Mean |  |  |  | $1 i$ | $30^{\prime}$ | $11^{\prime \prime}$ |  |  |
|  |  |  |  | lieduction |  | $\begin{array}{rlr}\delta & =15 & 30!27 \\ 18950 & 0.90\end{array}$ |  |  |
|  |  |  |  | to | $=0.90$ |  |
|  |  |  |  | sea | $=-0.01$ |  |
|  |  |  |  |  | 枹 51.3 |  |  |

DIP（ $\theta$ ）
（1）servations of the North l＇arty，18y．


HOLIZONYAL INTENSITY（II）
Observations of the West Party， 1811.


121．NUPPAMAMOI．
South of Poromoi，Islet．（睍モイノ南，天籃河中ノ小嬹）
DII ${ }^{(\theta)}$
Observations of the North larty， 1894.

| Date and Hour <br> （ I ean Local Time．） |  |  |  | Neenle No． |  | $\theta$ | Olserver | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | － | 54 | 1！2 | Kimura | Tanakatate |
|  |  |  |  | － | 55 | 57.3 | Tauakiulate | Kimura |
|  |  |  |  | － |  | 59.5 | Kimura | Tanakadate |
|  |  |  |  | － | $5!$ | 0.1 | Tanakarlate | Kimura |
| Mean |  |  |  |  |  | 59.5 |  |  |
|  |  |  |  |  |  |  | $\begin{gathered} 59!5 \\ -1.07 \\ 0.60 \end{gathered}$ |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |

HOLIZONTAL NTTENSITY（IL）
（））servations of the North l＇arty，18：1．


122．WAKASAKANAI．
D11（ $\theta$ ）
Observations of the North l＇itry，1s：）．

| Date and Homr <br> （Mean Local＇time．） | Neelle Nu． |  | $\theta$ | （）bserver | liecorter |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Sept． $14^{\text {th }} \quad 2 \cdot 22^{1 /} 37.6^{1+1}$ | $\cdots$ | $5!$ | $0!9$ | Thnakadate | Kimura |
|  |  |  |  |  |  |

HORIZUN＇LAL INDENSLIT（ $l /$ ）
（＊intue reduced from Vibralion only by assuming Value of M．）
Observations of the North larty， 1894


## 123. WAKKANAI.

DECLINATION ( $\delta$ )
Observations of the North Party, 18:1.


DII ${ }^{(\theta)}$
Olservations of the North l'arty, 1som.


HORIZONTAL INTENSITY (II)
Observations of the North Party, 1894.


124．SŌYA．
Coast，near to Common School（小學校附近）海岸）
DECLINATHON（ $\delta$ ）
（）nservations of the North Party，18：1．

| $\underset{\text { Dat }}{\substack{\text { Dean }}}$ | cand Loea |  | ur <br> me．） |  | $\delta$ |  | Observer | Recorter |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sept． | $17^{\text {th }}$ | $17^{1 /}$ | 37.8 m | $1 ;$ | $3{ }^{\prime}$ | $22^{\prime \prime}$ | Thankardate | Tiuakatate |
| ，． | ．． |  | 10.2 | $\because$ | $3 \times$ | 19 | ，， |  |
| ， | － | $\stackrel{21}{20}$ | 44.3 | ． | 38 |  | ＂ | ．， |
| ． | ivt |  | 20.7 | ， | 37 | 3． | ．． | ＂ |
| ． | $1{ }^{+11}$ | $\stackrel{1}{4}$ | 53.1 19.7 | ． | ：35 | 58 | ． | ＂ |
| ． | ．， | $\stackrel{\square}{4}$ | 19.7 | ＂ | 3.5 | $3!$ | ＊ | ＂ |
| ．． | ＂ | ！ 11 | 20.1 | － | ：3 | 43 | ＂ | ＂ |
| ＂， |  |  | 24.11 14.5 | $\because$ | 138 | 8 | ＂ | ＂ |
| ＂． |  |  | 45.1 | ＂， | 11 | 31 | ＂ | ＂， |
| $\cdots$ | ＂ | 14 | 11.6 | ， | 11 | 11 | ．， | ， |
| ．． | ．． | 15 | 16.3 | ．， | 33 | ． 30 | ．． | ， |
| ．， | ．． | 17 | 1：3．6 | ．． | ：38 | 3 | ， | ＂ |
| ．． | ．． | 18 | 56.1 | \％ | $3 \times$ | 14 | ．． | ．， |
| － | ．． | $\because 0$ | 22.4 | ．． | 34 | 5 | ＂ | ．． |
| Meatn |  |  |  | （5） | $34^{\prime}$ | $14^{\prime \prime}$ |  |  |
| $\delta=6$ 38：23 |  |  |  |  |  |  |  |  |
|  |  |  |  | lierluction to |  |  | $\begin{aligned} & 1895.0= \\ & \text { sea level }= \\ & 0.1 .30\end{aligned}$ |  |
|  |  |  |  | sea |  |  |  |  |
|  |  |  |  | $\delta=6 ; 30!4$ |  |  |

DIP（ $\theta$ ）
Observations of the North l＇arty， 1831.


## HORIZONTAL INTENSITY（II）

Observations of the North Party， 1894.


## 125．SARUBUTU． Bank of Rivor Sarubutu（猿拂 河 畔）

DECIINATION（ $\delta$ ）
Observations of the North Party，183．4．


1）1P（ $\theta$ ）
（i）servations of the North Party， 1824.


HOR：IZON＇TAL INTENSTTY（ $/$ ）
I boservations of the North Party．14！4．


## 126．ESASI．

Esasi office（戶長役場）
DECLINATION（ $\delta$ ）
Ohervations of the North l＇arty， 1894.


DIP（ $\theta$ ）
Oheervations of the North Jarty， 1894.

| Date aud Hour （Mean Lacal Time．） | Neprlle No． |  | $\theta$ | nbserver | Tiecordew |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Sept．2．2mi $2.2453 .5{ }^{\text {m }}$ | － | $5!$ | 38：1 | Tranakarlate | Tanakadate |
|  | $\because$ |  | 40.9 | ．， | ，， |
| ＂ 0 18 54.0 | －－ |  | 3！\％ | －• | ．． |
| Mean |  |  | $30!3$ |  |  |
|  | $\theta=59{ }^{\circ}$ |  |  | 39\％ 6 |  |
|  | lieduction to |  | 1895.0 | －0．00 |  |
|  |  | ．，se | leve | 0.60 |  |
|  |  | $\theta=5!{ }^{\circ} \quad 38!7$ |  |  |  |

HORJZONTAL INTENSI＇TY（II）
Ohservations of the North l＇arty，18：4．


## 127. PORONAI.

Ekiden (懐 傳)
DECLINATION ( $\delta$ )
Observations of the North Party, 189.


DIP ( $\theta$ )
Onservations of the North Party, 1894.

| Date and Homr (Mean Local Time.) | Needle No. | $\theta$ | Observer | Recorter |
| :---: | :---: | :---: | :---: | :---: |
|  | 2 2 2 | $\begin{array}{cc} 55 & 14!3 \\ " & 14 . \overline{5} \\ " & 14.4 \end{array}$ | Kimura Tamakadate Kimura | Tanakaliate Kimura Tanakalate |
| Mean |  | $58 \quad 14!1$ |  |  |
| $\begin{array}{rlrl}\theta & =58^{\circ} & 14!4 \\ \text { Reduction to } \quad 1895.0 & = & -0.75 \\ -" \quad \text { sea level } & = & 0.010 \\ \theta & =58^{0} & 13!3\end{array}$ |  |  |  |  |

HORIZONTAL INTENSI'Y ( $/ 1$ )
Olservations of the North Party, 1894.

| Date and Hour (Mean Local Time.) | II | II | Mean <br> Temp. | Time of$1-\mathrm{V}^{\prime} \mathrm{i} \mathrm{~b}^{n} .$ | $\operatorname{Tem}_{\mathrm{t}_{\mathrm{v}}} \mathrm{p}$ | Me:m Deflections |  | $\begin{gathered} \text { Temp. } \\ t_{\mathrm{p}} \end{gathered}$ | (haserver | liscorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\varphi_{1}$ | $\varphi:$ |  |  |  |
| $\left\lvert\, \begin{array}{cccc} \text { Mept. } & 25^{\text {th }} & 88^{h} & 41^{\mathrm{m}} \\ " & " & 11 & 58 \\ " & " & 17 & 4 \\ , & 26^{\text {th }} & 7 & 35 \end{array}\right.$ | 0.26182 | 454.81 | ${ }^{21.10} \mathrm{C}^{\text {a }}$ | 6:0427 | 22:1C | $730152!5$ | $17^{\circ} \mathrm{f}^{\prime} 111^{\prime \prime 2}$ | 20.00 | 'Tanakalate | T'anakadate |
|  | 0.26184 | 453.41 | 20.2 | 6.0502 | 26.4 | $7285 \mathrm{sk.1}$ | $\begin{array}{ll}17 & 1 \\ 1\end{array} 37.5$ | 24.1 | $\left\{\begin{array}{c}\text { limura } \\ \text { Tanakalata }\end{array}\right.$ | Kinunra |
|  | 0.26170 | 453.73 | 23.4 | 6.0503 | 24.0 | 72955.0 | $17 \times 7.5$ | 22.8 | $\{\text { Kimura }$ | \{Tanakulate |
|  | 0.26198 | 451.33 | 16.4 | 6.10279 | 15,6 | 73154.3 | 17840.0 | 16.7 | Tanakadate | Kimura |
| Mean | 0.26184 |  |  |  |  |  |  |  |  |  |
| $I=0.2618 t$ |  |  |  |  |  |  |  |  |  |  |
|  |  |  | $\begin{gathered} \text { Redraction io } \begin{array}{c} 1895.0= \\ , \\ , \end{array} \quad \text { sea level }= \\ \hline \end{gathered}$ |  |  |  | $\begin{array}{r} 154 \\ 000 \\ \hline 105 \end{array}$ |  |  |  |
|  |  |  | $11=0.24185$ |  |  |  |  |  |  |  |

128．MIONBETU．
Common School（小 學 校） 1 ECLINATHON（8）
（1）：errations of the North larty．J8\％．

| Date and Home （Mean Lecal Time．） |  |  |  | $\delta$ |  |  | Obserrer | Tecorder | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
|  |  | $17^{\mathrm{h}} 57.9^{\mathrm{m}}$ |  | 亏 |  | － －$^{\prime \prime}$ |  | Fimnra |
| ， | ， | 19） | 34.6 |  |  |  | Tanamate |  |
| ．， | ， | 20 | 51.6 | ＂ | 5： | 11 | Kimm： | ， |
| ＂， | ， | 21 | 50.6 | ＂ |  | $11 ;$ |  | ＂， |
| ＂， | $\because$ | 23 | 26.8 | ＂ | 54 | 45 | ， | ＂， |
| ， | $22^{46}$ | 1 | 39.8 | ．． | ． 77 | 52 | ＂ | ＂， |
| ＂， | ，． | 3 | 49.8 | ＂ | 5 | 21 | ＂ | ， |
| ＊ | ， | 4 | 34．9 | ＂ | －3 | 27 | Tambandate |  |
| ＂ | ，． | 6 | 27.9 | ＂ | 3 | 3. |  | Tinnakadate Kimura |
|  | ＂ | 7 | 38.1 | ， | 57 | 14 | Kiontu： |  |
| ， | ， | 8 | 55.0 | ， | \％ | 12 | Tanakarlate |  |
| ＂ | ＂ | 10 | 4．i |  | －1 | 5： |  | Ta：äkarate |
|  | ＂ | 11 | 29 | ${ }^{4}$ | 1 | 11 | KimuraCanakalate |  |
| ．， | ＂ | 12 | （6．） | ， | 3 | 9 |  | Kimura |
| ， | ＂ | 12 | 35.11 | ＂ | ： | 51 | ，， | ＂ |
| ＂ | ，． | $1 \pm$ | 10 | ．． | $\because$ | 57 | ， | ＂ |
| ． | ＂ | 15 | 11.6 | ＊ | $\stackrel{2}{1}$ | $1!1$ | ＂ | ＂ |
| ＂ | ＂ | 18 | 49．1 | ＂ | 1 | $2 \cdot 11$ | Kimmar | Tunakadate |
|  | ， |  |  | \％ |  | 11 |  |  |
| Mean |  |  |  | 5 50 |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |


| Date and How <br> （Menn Local＇time．） | $\begin{aligned} & \text { Ficedle } \\ & \text { No. } \end{aligned}$ |  | $\theta$ | Observer | Reeorder |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Nept． $27^{\text {th }}$ 20 h 10.1 m <br> $"$ $28^{\text {th }}$ 7 9.0 <br> $"$, $"$ 10 37.0 | 2 | 57 | $\begin{aligned} & 5333 \\ & 526 \\ & 54.8 \end{aligned}$ | Kimura Tamakadate Kimma | Tannkalate Kimura T＇amakadate |
| Meam |  | 57 | 53n |  |  |
|  |  |  |  |  |  |
| HORIZONTAL INTENSITY $\begin{aligned} & \theta=57^{\circ} 53! \\ & \text {（II）}\end{aligned}$ Observations of the North Party， 1894. |  |  |  |  |  |


| $\begin{gathered} \text { Date and Honr } \\ \text { (Mean Lecal Time.) } \end{gathered}$ | $1!$ | Y | Mean Temp. | Time of 1-Yib"!. | $\underset{t_{V}}{\text { Temp. }}$ | $\frac{\text { Nean De }}{\varphi_{1}}$ | flections <br> $\varphi:$ | $\begin{gathered} \text { Temp. } \\ t_{\mathrm{b}} \end{gathered}$ | onserver | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0.2452 <br> （1）24：3！： <br> 0.26289 | 45734 455.13 458.90 | 13.3 C <br> 19.2 <br> 12.19 | 6.1208 <br> （1；1：3：3 <br> 6.0012 | $\begin{aligned} & 13.1 \mathrm{C} \\ & 19.7 \\ & 12.4 \end{aligned}$ | 7：32 $37!1$ <br> 73012.5 <br> 73311.2 | 17 ！ $1 / 59!14$ <br> 17 55：．3 <br> 1711 2：3．0 | $\begin{aligned} & 13.19 \\ & 18.8 \\ & 11.6 \end{aligned}$ |  | $\left\{\begin{array}{c} \text { Tunakadate } \\ \text { Kimura } \\ \text { T'anakatate } \\ \text { Kimura } \end{array}\right.$ |
| Mean | 0.26232 |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |

## 129．YÜBETU．

1）$(\theta)$
Observations of the North Party，18：4．



## 130．NOGAMI．

South West of Ekiden No． 18. （驛傳十八路ノ西南）
DECLINATION（ $\delta$ ）
（1）servations of the North Party， $18 \%$ ．


DIP ${ }^{(\theta)}$
Uhservations of the North Party， 1834.


HORLZONTAL，INTENSITY（II）
Observations of the North Party，189．t．

（140）

## 131．AINONAI． <br> North West of Ekiden（騄 傳／西 北） <br> DECLINATION（ $\delta$ ）

Observations of the North larty， 1894.

| $\begin{aligned} & \text { Da } \\ & \text { (Mea } \end{aligned}$ | aud <br> Loc： |  | $\begin{aligned} & \text { or } \\ & \text { me.) } \end{aligned}$ |  | $\delta$ |  | Observer | liecorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Oct． | 2nd | $1 \%^{11}$ | $35.0{ }^{\text {mi }}$ | 5 | $1!9$ | $11^{\prime \prime}$ | ＇lauakadate | Tanakadate |
| ＂ | ， | 17 | 25.9 | ＂ | 45 | 15 | ， | ＂ |
| ＂ | ．， | 13 | 48.2 | ＂ | 48 | 18 | ＂ | ＂ |
| ； | 3 | 2 | 24.2 | ＂ | 47 | 37 | ＂ | ＂ |
| ＂ |  | 1 | 36.6 | ＂ | 115 415 | 12 | ＂ | ＂ |
| ＂ | ＂ | ${ }_{5}$ | 57.2 | ＂， | 4 | 3 | ＂ | ＂ |
| ＂， | $"$ | $\stackrel{6}{8}$ | 54.8 43.8 | ＂， | ＋2 | 15 | ＂， | ＂， |
| ＂， |  | 9 | 26.5 | ＂， | 45 | 42 | ＂， | ＂ |
| ＂， |  | 111 | 53.2 | ， | 18 | 27 | ．． | ＂， |
| ＂ |  | 12 | 13.3 | ，＂ | 51 | 13 | ．． | ， |
| ＂ |  | 13 | 40.5 | ．， | 51 | $51 ;$ | ＂ | ＂ |
| ．， | ．， | 14 | 28.8 | ＂ | 52 | 22 | ．， | ＂ |
| ， | ．， | 15 | 49．6 | ，． | 51 | 0 | ． | ＂ |
| ＂ | ， | 16 | 47.7 | ， | 1！ | 0 | ＂ | ＂ |
| ， |  | 17 | 26.0 | ， | 4 | 25 | ＂ | ＂ |
| Mean |  |  |  | 5 | $17^{\prime}$ | $\therefore 4^{\prime \prime}$ |  |  |
|  |  |  |  | Rentuction to |  |  | 5 17！ 01 |  |
|  |  |  |  | 0.61 |  |
|  |  |  |  | －0．0．2 |  |
|  |  |  |  | 45 |  |

1）I1＇${ }^{(\theta)}$
Onservations of the North P＇arty， 1 s91．

| Date aud Hour （Mean Local Time．） |  |  |  | Needle No． |  | $\theta$ | Onserver | 1iecorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Oct． . $=$ | ＂${ }^{\text {a }}$ | 19 h 10 15 | 3.2 m 16.9 7.6 | $\because$ | 54 <br> , | $11 \%$ 14.4 11.3 | T＇unakadiate | Tanakadate |
| Mean |  |  |  |  | 57 | 12：7 |  |  |
| Leduction to$\theta$ $=57$ <br> 1895.0 $=$ <br> $\because \quad$ seat level $=$ <br> $\theta$ $=57$ |  |  |  |  |  |  | $\begin{array}{r} 12: 7 \\ -0.44 \\ 0.04 \\ 12!3 \end{array}$ |  |

HORIZONTAL INTENSITY（II）
（＊Talue detucet form Vibretion on＇y by ussenting Vapue M）
Observations of the North Party， 1894.

| Date and Hour （Mean Local Time．） | II | $1 /$ | Me：m Temp． | ＇Time of$1-\text { Yib } \vdots$ | $\underset{t_{\mathrm{v}}}{\mathrm{Temp}_{\mathrm{p}}}$ | Mean Deflections |  | $\begin{gathered} \text { Temp } \\ t_{1} \end{gathered}$ | Olserver | liecorder | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|  |  |  |  |  |  | 91 | 82 |  |  |  |
|  | ＊ 0.268389 | 456.40 | 13.8 C | 5.9781 | 14：4C | （ $7^{\circ} 28^{\prime} 36.2$ | $170^{\prime} 46 \%$ | 13．8C） | Tanakadate | Tamakadate |
|  | ＊0．26405 | $45(6)$ | 13.3 | 5.9817 | 13.3 | （7 2847.5 | $\begin{array}{lllll}17 & 1 & 32.5\end{array}$ | 13．4） | ＂ | ＂ |
|  | 0.29389 | 455.05 | 20.4 | 6.0147 | 20.6 | 72710.0 | 165724.0 | 20.3 | ．， | ，＂ |
| Mean | 0.26394 |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

132．ABASIRI．
Abasiri Meteorological Observatory（網走测攸所）
DECLINATION（ $\delta$ ）
Observations of the North Party， 1894.

| Date and IHour <br> （Mean Local Tíme．） |  | $\delta$ |  | Observer | Tiecorder |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Oct． $4^{\text {tim }} 21^{\text {hi }} 31.1^{\mathrm{m}}$ | $4^{\circ}$ | $42^{\prime}$ | $0^{\prime \prime}$ | Trnakadate | Tamakadate |
| ＂，$\because$ 23 29.15 | ＂ | 41 | 35 | ＂ | ．， |
|  | ＂ | 39 | 36 | ＂ | ＂ |
| ＂，＂，i 15．1 | ＂ | 33 | 39 | ＂ | ， |
| ＂$\quad 7 \quad 737 . 久$ | ＂， | 40 | 10 | ＂， | ＂， |
| ＂，，！ $24 . \pm$ | ＂ | 35 | 44 | － | ．． |
| ＂，$\quad 10 \quad 27.5$ | ＂ | 40 | 55 | $\bullet$ | ＂ |
| ＂, 11 56.2 | ＂ | 45 | 20 | ＂ | ＂ |
| ＂，＂，12 50．1 | ＂ | 47 | 55 | ＂ | ＂ |
| $\cdots$ ．，, 1418.5 | ＂ | 18 | 9 | ．， | ， |
| ＂，＂， 1515.6 | ＂， | 17 | 19 | ．， | $\because$ |
| ＂，＂， 16 56．4 | ＂ | 41 | 33 | ＇， | ， |
| ，，， 17 57．6 | ＂ | 44 | 41 | ＂ | ．， |
| ，，$\quad 19$ 30．0 | ＂， | 12 | 38 | ， | ＂ |
| ＂，＂， 20 20．4 | ， | 43 | 1） | ＂ | ， |
| ＂$\quad, \quad 2145.3$ | ＂ |  | 53 | ， | $\bullet$ |
| ．， 2.31 .7 | ＂ | 42 | 18 | ， | － |
| Mean | 4 | $42^{\prime}$ | $32{ }^{\prime \prime}$ |  |  |



DII ${ }^{\prime}(\theta)$
Observations of the North Pariy，18．14．


HORIZONTAL INTENSITY（IL）
Observations of the North Party， 1884.


## 133．SYARI．

Coast，South West of Hotel Kikuti（菊池ふテルノ西南ケル海洨） DECLINATION（ $\delta$ ）
Observations of the North Party，18：1．


DIP（ $\theta$ ）
Observations of the North Party， $18 \%$ ．


HOR1ZONTAL INTENSTTY（IL）
Observations of the North Party，180．


## 134．RAUSU．

1EGLFNATHON（ $\delta$ ）
Ohservations of the North Jiarty，189－4

| Date and Honr <br> （Jtan Local Time．） |  |  | § |  |  | Observer | Tiecorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Oet． | $11^{\text {th }} 9^{\text {l／}}$ | $30.2{ }^{\text {m }}$ | 4 | $53^{\prime}$ | $26^{\prime \prime}$ | Timakadate | Tanakadate |
| ， | ， 10 | 8.6 | ＂ | 53. | 53 | ， | ＂ |
| ．． | ，${ }^{1} \quad 11$ | 17.0 0.0 | ， | $5{ }^{5}$ | 3.5 17 | ＂． | $\because$ |
| ． | ，1：3 | 0.0 33.2 | ＂， | 5. | 411 | ＂ | $\stackrel{\square}{*}$ |
| ＂， | $\cdots$ | 40 | ， | 57 | 4 | $\stackrel{.}{ }$ | ＂， |
| ＂． | ，． 19 | 43.4 | ．． | 55 | 42 | ＂ | ．． |
| ， | ．．is | 14.7 | ＂ | 5.5 | 32 | ＂ | ， |
| ．． | ． 19 | 35．4 | ， | 5 | 33 | ．． | ， |
| ＂ | ， 22 | 0.4 | ＂ | 55 | 33 | ＂ | ＂ |
| ．， | $12^{\text {th }} 2$ | 54.2 | ＂ | 54 | 26 | ＂ | ＂ |
| ＂ | ， 19 | 9.0 | ＂ | 5 | 47 | ＂ | ＂ |
| ＂ | ＂ 8 |  | ＂ | 53 | 30 | $\because$ | ．＂ |
|  | ， 0 |  | ＂， | 52 | 57 | ＂， | ＂， |
| ＂， | ＂， 10 | 191 |  | 53 | 37 | ， | ＂ |
| Mean |  |  | $450^{\prime} 24^{\prime \prime}$ |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |

$\operatorname{DIP}(\theta)$
Observations of the North Party， 1894.

| Date and Fona Mean Local＇ime． | Needle No． | $\theta$ | O1server | Recorder |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{ccccc}\text { Oet．} & 11^{\text {th }} & 12^{\text {l }} & 23.59^{m 1} \\ " & 17 & 17 & 35.15 \\ " & 122^{\text {th }} & 7 & 45.1\end{array}$ | － | $\begin{array}{cc} 57 & 18!5 \\ " & 17.8 \\ " & 17.8 \end{array}$ | Tinakatate ＂ | Tanakadate ＂， |
| Mean |  | 57 184 |  |  |
| $\theta=57^{\circ} \quad 18!()$ <br> Reduction <br> $\begin{array}{rrr}\text { Fieduction to } & 1895.0 & = \\ \text { sea level } & = & -10.2 \% \\ & 0.60\end{array}$ |  |  |  |  |

HORIZONTAL INTENSITY（II）
Ohservations of tho North Tarty， 18 ＇H

| Date and Home （Mean Local Time．） | 11 | M | $\begin{array}{\|l\|} \hline \text { Mean } \\ \text { Temp. } \end{array}$ | Time of$1-\mathrm{Tib}^{\eta} .$ | $\left\|\begin{array}{c} \Gamma_{\mathrm{em}} \mathrm{~s} \\ \mathrm{t}_{\mathrm{v}} \end{array}\right\|$ | Mean Deflections |  | $\begin{gathered} \text { Temp. } \\ t_{n} \end{gathered}$ | Onserver | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $Q_{1}$ | $\varphi_{2}$ |  |  |  |
|  | $\begin{aligned} & 0.2: 3396 \\ & 10.21: 373 \\ & 1223391 \end{aligned}$ | $\begin{aligned} & 455.11 \\ & 456.50 \\ & 455.288 \end{aligned}$ | $\begin{aligned} & 15.9 \mathrm{C} \\ & 12.8 \\ & 15.8 \end{aligned}$ | Rivo6t <br> 6．n07！ <br> 6，0050 | $\begin{gathered} 15.7 \mathrm{C} \\ 13.1 \\ 14.9 \end{gathered}$ | $\begin{array}{ll} 7.27 & 53!8 \\ 7.2! & 3.1 \\ 7.24 & 8.1 \end{array}$ |  | $\begin{aligned} & 16.11 \\ & 10.5 \\ & 16.5 \end{aligned}$ | Tamakadate ＂， | Tanakndate |
| Nean | 0.26384 |  |  |  |  |  |  |  |  |  |
|  |  |  | Rei | Inction | $\begin{array}{r} 18 \\ 0 \\ \cdots \end{array}$ | $\begin{aligned} H & =0.24 \\ 95.0 & = \\ & \\ & =0.2 \end{aligned}$ | 3384 <br> $-12: 3$ <br> （10） <br> 63：3 |  |  |  |

Rausu Syattyo（羅臼胜張）
Crater（篗6䗭火口） $1)^{1}{ }^{\prime}(6)$
Ohserrations of the Nortli Paty，1nd

| Date and Howr <br> （Mean Local Time．） | $\begin{gathered} \text { Needle } \\ \text { No. } \end{gathered}$ | $\theta$ | Observer | Pecomiter |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $5!103$ | Timakatate | Tanakarlate |

## 135. SIBETU.

DECLINATHN ( $\delta$ )
Observations of the North Party, 1891.


DIP ( $\theta$ )
Onservations of the North Party, 1894.


HORIZONTAL INTENSITY (II)
Observations of the North Party, 199)


## 136．HAKODATE．

Aza Omorihama（字大森演商䙪學校附屬地）
DECLINATION（ $\delta$ ）
Olservations of the South Party，1894．

| $\begin{aligned} & \text { Date } \\ & \text { (Mean } \end{aligned}$ | and <br> Loea |  | ime |  | $\delta$ |  | （1）${ }^{\text {aterer }}$ | Recorter |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Jnly | 2 | $20^{11}$ | $274^{m}$ | \％ | $4: 3$ | $5!$ ，＂ | Inamma | Tratmmat |
| ．． | ， | 21 | 3，39 | ， | 41 | ？！ 1 | ， | ．． |
| ＂ | $\ddot{3} \mathrm{rl}$ | $2: 3$ | 15．2 | ＂ | 4 | 43 | T－1an |  |
| ＊ |  | $\pm$ | 4.6 | ． | 11 | 23 | N：kammab | Nikatmmat |
| ．． |  | 5 | 41.7 | － | 111 | 57 | ．． | ．． |
| ＂ |  | ${ }_{7}$ | ＋2．01 | ＂ | 43 | 15 | － | ， |
| ， | ． | 7 | 41.7 | ． | 12 | 51 | ＂${ }^{\prime}$ | ， |
| ．． | ．． | S | 39.0 | ． | 4 | ： 1 | Imanura | ： |
| ＂ | ．． | ！ | 31.4 | － | 41 | 4.5 | Nakammar | Imamma |
| －． | ＂ | 11. | 36.5 | ．． | $11 ;$ | 11 | ．． | ，, |
| ＂ | ，． | 11 | 38.2 | ＂ | 47 | 5 | ＂ | － |
| －． | ． | 11 | 45.5 |  | 47 | 51 |  | $\cdot$ |
| ．． | ． | $1: 3$ | 3.11 | ， | 48 | $1: 9$ | Imamma | ．． |
| ＂ | ．， | 14 | 16．9 | ．． | 48 | 28 | Nakamma | ．， |
| ．． | ．． | 1.5 | 48.9 | ， | 41 | $4{ }^{3}$ | Imaminal | ．， |
| ．． | ．， | 17 | 32.8 | ．． | 4 | 41 | Nakamma | － |
| ，． | ．． | 18 | 16.5 | ． | 43 | 11 | ．． | Nitkammra |
| － | ．． | 19 | 41.1 | ， | 42 | 51 | ， | ， |
| ＊ | ．． | 211 | 28.7 | ，． | 42 | ！！ | ＂ | ．． |
| $\because$ | ， | －01 | 49.5 | $\stackrel{ }{+}$ | $1:$ | 53 | ＂ | ＂ |
| ．． |  |  |  |  | 41 41 | 12.2 | $\cdots$ | ． |
|  |  |  |  | ． |  |  | ， | ， |
| Mrean |  |  |  | 5 | $44^{\prime}$ | ： $4^{\prime \prime}$ |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |

$1)$ IP（ $\theta$ ）
（）bservations of the somth Party． 1894.

| Date and HKour （Mean Lomal Time．） |  |  | $\begin{aligned} & \text { Neerlle } \\ & \text { No. } \end{aligned}$ |  | $\theta$ | （bserver | Recortir | | |
|---|---|---|---|---|---|---|---|---|---|
| Tuly | $3^{\text {ral }} \quad 9^{\text {l }}$ | $14^{m}$ | 2 |  | 340 | Nakamuria | Imamura |
| ．， | $\cdots$ | 12 | 2 | $\cdots$ | $2: 1$ | Imaminar | Nikammia |
|  | $4^{+11} \quad 7$ | ： 11 |  | ．， | ：31：3 | Nakammra | Imamura |
|  | ＂12 | 57 | 2 | ＂ | 34！ | Smamma | ，， |
| Mean |  |  | $55) 32!7$ |  |  |  |  |
|  |  |  | $\begin{gathered} \text { Terluction } 10 \\ ., \end{gathered}$ |  | $\begin{aligned} \theta & =55 \\ 1 \times!5.0 & = \\ \text { seal level } & = \end{aligned}$ | $3: 3: 7$-1.1111.11$31!4$ |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |

## HORIZONTAL INTENSITY（II）

Observations of the Gonth larts： 1 net．


# 137．MORI． <br> Race ground（巨長役場ノ後方競馬場） 

DECLINATION（ $\delta$ ）
Observations of the South Party， 183.1.


DIP（ $\theta$ ）
Observations of the South Party， 1894.

| Date and Hour （Mean Local Time） |  |  |  | Needle No． |  |  | Observer | Recoriler |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $1)^{\text {h }}$ | $28^{m}$ | 2 |  | 17！ 4 | Imamura | Imamura |
| ， |  | 7 | 45 | 2 |  | 13.6 | Nakamura | Nakamura |
| ＂， |  | 8 | 39 | 2 |  | 162 | ＂ | ＂ |
| ＂ |  |  |  |  |  |  |  |  |
| Mean |  |  |  |  |  | 15．5 |  |  |
|  |  |  |  | Reduction to |  | $\theta=56^{\circ}$ | $\begin{gathered} 15!5 \\ -1.27 \\ 0.60 \end{gathered}$ |  |
|  |  |  |  | 1895.0 |  |  |
|  |  |  |  | leve |  |  |
|  |  |  |  |  | 14：2 |  |  |  |
|  |  |  |  | HORIZONTAL INTENSITY（II） |  |  |

Onservations of the South I＇arty，18：4．


138．SETANA．
Goryōkyoku Syuttyōsho（御 料 局 出 張 所）
DECLINATION（ $\delta$ ）
Observations of the South Party， 1894.


DIP（ $\theta$ ）
Observations of the south Party，1824．


HORIZONTAL INTENSITY（ $H$ ）
Observations of the Sonth Party，189）

| Date and Hour （Mean Local Time．） | II | II | $\begin{aligned} & \text { Mean } \\ & \text { Temp. } \end{aligned}$ | Time of 1－Yib＂． | Temp | Mean Deflections |  | $\begin{gathered} \text { Temp. } \\ t_{\mathrm{b}} \end{gathered}$ | Obserser | Hecorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\psi_{1}$ | 4. |  |  |  |
| July $13^{\text {th }} 8^{\text {h }}{ }^{4} 45^{\text {m }}$ | 0.27376 | 443.03 | $24: 2 \mathrm{C}$ | $\stackrel{\text { s }}{6.0332}$ | 23.3 C | $60^{6} 58^{\prime} 19 \% 4$ | $15^{\prime} 566^{\prime} 30 \% 6$ | 25.0 C | Imamura | Nakammra |
| ＂，＂ 138 | 0.27409 | 443.40 | 26.7 | 6.0315 | 27.6 | 6588.1 | 155515.6 | 25.9 | Nakamura | Imamura |
| ＂$\quad 178$ | 0.27391 | 443.55 | $\underline{2.9}$ | 6.0312 | 23.3 | ${ }^{6} 5857.5$ | 155755.6 | 22.5 | Imamura | Nakamura |
| ＂$\quad$＂ 20 l 38 | 0.27395 | 445：2！ | 18.9 | 6.6187 | 19.3 | 703 \％． 1 | 16149.4 | 18.5 | Nakamura | Imamura |
| Mean | C．27393 |  |  |  |  |  |  |  |  |  |

$-11=0.27393$
sea luvel $\quad$ UNO
$11=0.27345$

## 139．KUTO． <br> Police station（警察署構内束渪）

1）ECLINATION（ $\delta$ ）
Observations of the Sonth Party， 1894.


DIL＇（ $\theta$ ）
Onservations of the South Party， $18 \% 4$.


HOKIZUN＇AL INTENSITY（IL）

Olservations of the South P＇arty， 1894.


## 140．ESASI．

Syokonsya（招魂社队）
DECTINATION（ $\delta$ ）
Olnervations of the South liarty， $1 \times 94$


DIP（ $\theta$ ）
Oluservations of the houth ferty，1s：1\}.


HOLIIZONTAL INTENSITY（II）
Observations of the South Party，189．4．


141．HUKUYAMA．
Common School（小 學 校）
DECLINATION（ $\delta$ ）
Onservations of the South Party， $18 \% \%$


DIP（ $\theta$ ）
Ohservations of the South l＇arty， 1851.


HORIZONTAL INTENSITY（II）
Olservations of the South Party， 1891.


## 142．SIRIUTI．

## West bank of River Siriuti（知内川 西岸）

DECLINATION（ $\delta$ ）
Olservations of the Fouth Party，18） 4.


DII（ $\theta$ ）
Olservations of the Sonth Party， 1894.

| Date and Hour <br> （Man Local Time．） |  |  |  | Nemalle No． |  |  | Ohserver | lieorter |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| July | $233^{\text {rl }}$ | 20\％ | $6^{69}$ | 2 | 55 | $35: 2$ | Nakamma | Nakamura |
| ，． | $24^{\text {th }}$ | 12 | 32 | ， | ＂ | 30.8 | $\underset{\text { Imamura }}{\text { Vakamura }}$ | ， |
| ＂ |  | 15 | 8 | $\stackrel{2}{2}$ |  | 37.1 | Nakamura | ．， |
| ，． |  |  | 34 | 2 | ＂ | 348 | ， | ， |
| Mean |  |  |  |  | 55 | ：30 |  |  |
| $\theta=55^{\circ} \quad 30 \%$ |  |  |  |  |  |  |  |  |
|  |  |  |  | Reduction to |  | 1895.1 | $\begin{array}{r} -1.10 \\ 0.00 \\ \hline \end{array}$ |  |
|  |  |  |  | leve |  |  |
|  |  |  |  |  | 34.9 |  |  |

HORIZONTAL INTENSITY（II）
（＊Fithe dedured from，Vithration on＇y by＂ssmming l＇olue of M．） O：servations of the Gonth Party，15\％4．


143．TIRIBETU． Military ground（屯田兵司令部所轄地）

1）ECLINATION（ $\delta$ ）
Observations of the Sonth Party， 189.

| $\begin{gathered} \mathrm{D}_{\mathrm{i}} \\ \text { (Mea) } \end{gathered}$ | ancl <br> Loca |  | me.) |  | $\delta$ |  | Observer | Reeorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| July | $29+3$ | $15^{\text {h }}$ | 45.9 m | $10^{\circ}$ | 9 | $4 s^{\prime \prime}$ | Natamma | Nakamura |
| ＂ | ：， | 16 | 20.7 | － | \％ | 57 | ，． |  |
| ＂ | ．， |  | 1.4 | ． | \％ | 41 | ＊ | ． |
| ＂ | ， | 15 | 18.4 | ， | ${ }_{6}$ | 15 | ＂ | ． |
| ． | ．． | 19 | 19.1 | ．． | 1 | 111 | $\cdots$ | ＂ |
| ＂ | ， | 20 | 23.7 | ．． | $1{ }^{\text {i }}$ | 22 | ． | ＂ |
| － | 3．1． | 23 | 45.8 | ．， | \％ | 29 | ＂ |  |
| ， | 31,14 | 5 | 53.2 | ． | ： | 111 | ＂ | ＂ |
| ， | ＂ | 6 | 54.3 | ．． | 1 | 42 | ＂ | ． |
| ＂ | ＂ | 7 | 57.6 | ． | 1 | 42 | ＊ | ． |
| ． | ＂ |  | 1.8 | ． | 5 | $\stackrel{3}{11}$ | ＂ | ． |
|  | ＂ |  | 12.7 1.8 | ＂ | 11 | 11 | ＂ | ， |
| ＂， | ＂ | 11 | 11．2 | ．， | 11 | 11 | ＂ | ＂ |
| ＂ | ＂ | 13 | 11．2 | ＂ | 1：3 | 3， | ． | ＊ |
| ＂， | ＂ | 14 | 10.0 | ，． | 12 | 35 | ＂ | ＂ |
| ＂ | ＂， |  | 0.5 | ．． | 11 | 52 | ．． | $\because$, |
| ＂ | ＂ |  | 50.9 | ． | ！ | 28 | ＂ |  |
| Mean |  |  |  | $6^{\circ}$ | $7 \prime$ | $6^{\prime \prime}$ |  |  |
|  |  |  |  | Rembution to $1895.11=$ <br> ，．sea level＝ |  |  | ；7！10 |  |
|  |  |  |  | 1.25 |  |
|  |  |  |  | 13.00 |  |
|  |  |  |  | $\delta=1 ;$ | ； 3 \％！ |  |

D1P（ $\theta$ ）
Observations of the roath Party，1s：4．


HOREZONTAL INTENSITY（II）
 （haservations of the sonth Party，1sti．


## 144．TOMAKOMAI．

## Race ground（戶長役場ノ西競馬場內）

10ECTINATION（ $\delta$ ）
（1）nserrations of the South Pattr， $1 \times 94$ ．


DIJ ${ }^{(\theta)}$
Ohservations of the South Party，1894．

| Date and Thomr （Mean Local Time．） |  |  | Neerlle No． | $\theta$ | 1）1server | lisorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ang． <br> ＂ | $\begin{array}{ll}10 t & ! \\ " & 1 . \\ " & 1 .\end{array}$ | $27^{\text {m }}$ 10 7 | $\frac{2}{2}$ | $\begin{array}{rrr}5 ; & 49: 2 \\ . & 49.3 \\ . & -45.2\end{array}$ | Nakamma | Nakamma |
| Nean |  |  |  | 50，450．0 |  |  |
|  |  |  |  |  |  |  |

HORI\％ONTAL INTENSETY．（II）
Observations of the fouth Party．1s：4．

（154）

## 145．SARUPT． <br> Common school（小 學 校）

DECLINATTON（8）
Onservations of the Sonth Party，1894．

| $\begin{gathered} \text { Da } \\ \text { (Mear } \end{gathered}$ | an'l |  | $\begin{aligned} & \text { ur } \\ & \text { ime.) } \end{aligned}$ |  | $\delta$ |  | Observer | Recerder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ang． | $4^{\text {th }}$ | $10^{1 /}$ | $52.5{ }^{\text {m }}$ | （i） | $1^{\prime}$ | $23^{\prime \prime}$ | Nakamura | Inıamura |
| ，＂ | ， | 11 | 21.0 | ．， | 2 | 24 | ， | Nakamura |
| ＂ | ＂ | 12 | 23.6 | ，． | 4 | 16 | ＂ | Imamura |
| ， | ， | 13 | 21.1 | ， | 5 | 51 | ＂ | Nakamura |
| ＂ | ＂ | 14 | 28.9 | ， | 4 | 45 | Imamma | ＂ |
| ，＂ | ＂ | 15 | 27.1 | ．． | 4 | （1） |  | ＂ |
| ＂ | ＂ | 16 | 56．4 | ，＂ | 1 | 55 | Nakamura | Imamura |
| ＂ | ＂ | 17 | 58.1 | ＂ | 1 | ！ | Imamura | Nakamura |
| ＂ | ．． | 19 | 59.8 | ＂， | 1 | 17 | Nakamura | ，＂ |
| ＂ |  | 20 | 0．f | ，． | 1 | 45 | ＂， | ＂ |
| ＂ |  |  | 58.1 |  | 1 | 31 |  | ＂， |
| ＂ |  | 0 | 28.4 | 5 | 58 | 54 | Imamira | Imamura |
| ＂ |  | 4 | 52.6 | ， | 57 | 27 | Nakamura | Nakamura |
| ， | ＂ | 5 | 56.7 | ＂ | 55 | 23 | ＂， | ＂ |
| ＂ | ＂ | ${ }_{8} 8$ | 50.8 | ＂ | 54 | ${ }^{2}$ | ＂ | ＂ |
| ＂ |  | 8 | 2.9 | ＂ | 53 | 41 | ＂ | ＂ |
| ＂ |  | ！${ }^{1}$ | 17.4 | 1 | 3 | 21 | ＂ | Imam |
| ＂ |  | 10 |  | ${ }^{\prime}$ | 3 | 28 | ＂ | Imamura |
| ＂ |  | 10 | 58.4 | ＂ | 4 | 4 | ＂ | ， |
| Mean |  |  |  | $6^{\circ}$ | 600 |  |  |  |
|  |  |  |  | Reduction to |  |  | $0!00$ |  |
|  |  |  |  | 1.10 |  |
|  |  |  |  | 0.119 |  |
|  |  |  |  | －$\delta=66^{\circ} 1!111$ |

DIP $(\theta)$
Observations of the South Party， 1894.



## 146．OSYATINAI．

West corner of village ground（長知队村小央ノ空地ノ西隅） DECLINATION（ $\delta$ ）
Observations of the Sonth Party， 1894.


DI1 ${ }^{\prime}(\theta)$
Olservations of the South l＇arty，1s．）


HORIZONTAL INTENSITY（ $H$ ）
Observations of the Sonth Party， 159 ．


147．NOHUKA．
Pasture of Sekisinsya（溏心刑牧場）
DECLINATION（ $\delta$ ）
Ohservations of the Sonth Party， 1894.

| $\begin{gathered} \text { Da } \\ \text { (Mear } \end{gathered}$ | $\begin{aligned} & \text { rand } \\ & \text { Local } \end{aligned}$ | $\begin{gathered} \mathrm{Hov} \\ 1 \mathrm{Ti} \end{gathered}$ | ${ }^{\text {ur }} \text { me.) }$ |  | $\delta$ |  | Onserver | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ang． | $12^{\text {ti }}$ | 1：31 | $54.5{ }^{\text {m }}$ | $1{ }^{\circ}$ | $11^{\prime}$ | $1 \prime$ | I mam и\％ | Nakamura |
| ，． | ，， | 14 | 52.1 | ． | 11） | 50 | Nakamura | ， |
| ． | ．， | 1is | 19.9 | ＂ | 111 | 41 | 1nıamima | ＂ |
| ． | ， | 17 | 57.5 |  | 8 | 53 | －＂， | ${ }^{\prime}$ |
| ＊ | ．． | 19 | 8.0 | ＂ | 7 | 52 | Nalkamura | Imamurat |
| ． | ．， | 19 | 53.11 | ＂ | s | $!$ | Imamura | Nakammai |
| ， | ＂ | 21 | 13.3 | ＂ | ì | 12 | Nakamura | ＂ |
| ． | $\because$ | $2 \cdot 2$ | 40.3 | ， | $\stackrel{8}{2}$ | 211 |  | Im， |
| ， | $1:)^{\text {th }}$ | ． | ¢，．： | ＂ | 5 | 11 | Imamura | Imamira |
| ＂ | －• | 1 | 7.3 | ＂ | 1 | 20 | Nikamurn | Nakammat |
| － | ，＂ | 7 | 11.5 | ，． | 4 | 37 | ＂ | ＂ |
| － | ．． | $\stackrel{4}{4}$ | 20.3 | ＂ | \％ | $\begin{array}{r}9 \\ 3 \\ \hline\end{array}$ | Ima゙u | Im＂urn |
| － | －． | ！ | 26.0 | ， | 8 | 38 | Jmamma | Imamurat |
| ． | － | 11 | 17.7 | ＂ | 11 | 4 | Nakammat | Nakamura |
| ．， | ．． | 14 | 1.3 |  | 111 | 4：3 | ＂ | Imämura |
| ．． | ．． | 1 I | 51.4 | ． | 10 | 36 | 1mamura | ＂ |
| Mean |  |  |  | 6 | $n^{\prime}$ | $8^{\prime \prime}$ |  |  |
|  |  |  |  | Rechuction to ，＂，sea |  |  | $1!1: 3$0.910.019$1!!1$ |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |

1：IP（ $\theta$ ）
（H）servations of the South Party， $18 \% 4$.


## HORIZON＇1＇AL INTENSITY（II）

Olservations of the Sonth Party， 184.


## 148. URAKAWA.

DECLINATLON ( $\delta$ )
Olservations of the South I'arty, 1 8. t .


1II' ( $\theta$ )
Olservations of the sonth lanty, 14. 1 .


HORIZON'AL INTENSITY (IL)
Alservations of the South Panty, 1894,


## 149．SYOYA．

Field behind Syoya（庶野村後方ノ原野）
DECLINATION（ $\delta$ ）
Observations of the Sonth Party， 1894.


DII＇${ }^{(\theta)}$
Observations of the Sonth Party，1s94．

| Date and Hour （Mean Local Time．） |  |  | Neenlle No． |  | $\theta$ | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ang． ＂， ＂， |  | $266^{\text {m }}$ 10 6 | 2 2 2 2 |  | $\begin{aligned} & 37!2 \\ & 39.3 \\ & 42.1 \end{aligned}$ | Imamura Nakamura Imamura | Imamura <br> Nakämura |
| Mean |  |  |  | $55^{\circ}$ | 39.5 |  |  |
|  |  |  | Reduction to | to , se | $\begin{array}{r} 1895 . \\ \text { a leve } \end{array}$ | $\begin{gathered} 30.5 \\ -0.40 \\ 0.00 \\ \hline 391 \end{gathered}$ |  |

HORIZONTAL INTENSTTY（IL）
（＊＇alue deduced from Vibration only by assumiug Value of M．） Olservations of the South Party， 1894.


## 150．MOYORO．

## Interior of Zinsya（神祉境內）

DECLINATION（ $\delta$ ）
Observations of the South Party， 1834.


DIP ${ }^{(\theta)}$
（1）servations of the south Farty，1s 4 ．

| Date and Honr （Meas Local Time．） |  |  | $\begin{aligned} & \text { Necalle } \\ & \text { No. } \end{aligned}$ |  | － | Observer | Recoriler |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ang． | $\begin{array}{cc}24^{\text {th }} & 19^{\prime \prime} \\ 25^{\text {th }} & \vdots \\ " & 14\end{array}$ | 32 m 42 34 | $\frac{2}{2}$ |  | $52!4$ 53.1 55.1 | Nakamura Imamina | Nakamura Imäanra |
| Mean |  |  |  | 55 | $53 \%$ |  |  |
| $\theta$ $=55^{\circ} \quad 533$  <br> Terluction to $\quad 1895.0$ $=$ -0.42 <br> ,$\quad$ ，$\quad$ sea level $=0.00$  <br> $\theta$ $=55$ $53!!$ |  |  |  |  |  |  |  |

HOTIZONTAL INTENSITY（II）
（A）eervations of the Fonth Party，189．4．


## 151. TYURUI.

DECLINATION ( $\delta$ )
Onservations of the South Party, 1894.

|  | and Ho Local Ti | $\begin{aligned} & \operatorname{lnr} \\ & m e .) \end{aligned}$ |  | $\delta$ |  | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ang. | $27^{\text {th }} 20^{\text {h }}$ | $4.2{ }^{\text {m }}$ | $5^{\circ}$ | 211 | $1^{\prime \prime}$ | Imamura | Inamura |
| " | ,, 20 | 18.3 | .. | 20 | 111 | r ${ }^{\text {c }}$ | , , |
| ", | , 23 | 48.5 | , | $\stackrel{21}{11}$ | 15 | Nakammial | -• |
| " | $2 \mathrm{Sth}^{\text {h }} 5$ | 31.4 | ,. | $1!1$ | 18 | , | Nakammaa |
|  | :, $\quad$ - | \$30.8 | " | 19 | 1 | " | " |
|  | , $\quad$; | 52.8 | , | 17 | 5 | Imamilit | Imamixa |
| " | $\cdots 7$ |  | , | 17 | 7 | - " |  |
| , | , 8 | 45.7 | ,, | 19 | 21 | Nakamina | Nakammia |
| " | , 10 | 6.5 | " | 21 | 20 |  | ' |
| " | ,. 11 | 0.1 | , | 23 | 3 S | Imaminra | , |
|  | ,, 12 | 13.1 | " | 24 | 18 | , | Imammia |
| , | , 13 | 7.11 | , | 24 | 3 S | Voknma | $\stackrel{ }{ }$ |
| " | ,$\quad 13$ |  | - | 2.3 0.2 | 12 | Nakamula | - |
| " | $\square$ <br> $\cdot$ | 58.9 | " | 211 | 37 | Imamba | " |
| " | ., 11i | 50.9 | ", | 20 | 40 |  | ", |
| " | , 17 | 54.4 |  | 20 | 29) | Nakammia | Nakanemra |
| Mean |  |  | $5^{\circ}$ | $20^{\prime}$ | $52^{\prime \prime}$ |  |  |
| $\delta=5^{\circ} \quad 2(187$ |  |  |  |  |  |  |  |
|  |  |  | Tedmetion to |  |  | $=0.80$ |  |
| - |  |  | - |  | sen level $=0.60$ |  |  |
|  |  |  |  |  |  | $=5$ 21! 7 |  |

D[P $(\theta)$
Observations of the Sonth Pinty, INAL.

| Date and THour ( Wean Loesl 'Jime.) |  |  |  | $\begin{gathered} \text { Neprlle } \\ \text { No. } \end{gathered}$ |  | $\theta$ | Cbserver | Tecorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ang. | 27 th | 2 L | $29^{m}$ | $\because$ | 56 | 10:7 | Imamura | Nakamuria |
| ," | $25^{\text {a }}$ | 11) | 10 | 2 | ,. | 16.4 | Nakamura | Imammia |
| ", | , | 13 | 37 | $\cdots$ | ., | 13.5 | Inamma | Nakammiat |
|  |  | 18 | 30 | 2 | , | 12.0 | Nakamura | Imambia |
| Mean |  |  |  |  |  | $13: 2$ |  |  |
|  |  |  |  | $\theta=5 ;$ <br> lieduction to $1895.0=$ <br> sea level= |  |  | $13: 2$ |  |
|  |  |  |  | $-11.45$ |  |
|  |  |  |  | 0.00 |  |
|  |  |  |  | $0=5 \overline{12!}$ |  |

HORIZONTAL INTENSITY (II)

Observations of the conth P'arty, 1s'j.


## 152．MEMUURO．

## Obihiro road，West of River Memuro（芽室河ノ西方帶厝街道）

DECLINATION（ $\delta$ ）
Observations of the fouth Piaty， 1894.


1）［1（ $\theta$ ）
（Hservations of the south Party，189） 4.

| Wate and Hom （Mean Local Time．） |  |  |  | $\begin{aligned} & \text { Nealle } \\ & \text { No. } \end{aligned}$ |  | － | （）nscrever | Penorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ang． | $30+11$ |  | $48^{\prime \prime \prime}$ | 2 |  | ：3！1 | Nilkamura | Nakamura |
| ．， | ． $311^{\text {st }}$ | 6 | f11 | 2 |  | 35.3 | Imanmura | 1 mammla |
| ＊ | ＂ |  | 41 | $\cdots$ |  | 35.4 | Nakamura | Nakamura |
| ＂ |  |  | 45 | 2 |  | 32.1 | Imammra | － |
| Mran |  |  |  |  | $5 \%$ |  |  |  |
|  |  |  |  |  |  |  |  |  |

HOREZONTAL LNTENSHTY（II）
（＊Jitue detuced from Jilnotion only by assuming Velue of ．M．）
Observations of the South l＇arty，1silt．

| 1）ate and Hour （Tram Local Time． | II | －1／ | Mean <br> Temp． | Time of 1－ゾib＂． | $\begin{gathered} \text { Temp } \\ t_{v} \end{gathered}$ | Mean I） <br> $\varphi_{1}$ | eflections <br> $\varphi_{2}$ | $\underset{t_{1}}{ }$ | Obserwer | Tiecorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & 411.48 \\ & 4+2.71 \\ & 410.510 \\ & 410.10 \end{aligned}$ | $\begin{aligned} & 19.7 \mathrm{C} \\ & 19.1 \\ & 23.8 \\ & 21.8 \end{aligned}$ | $\begin{aligned} & \mathrm{s} \\ & 6.1100 \\ & 6.11 .27 \\ & 6.1127 \\ & 6.11 \div 1 \end{aligned}$ | $\begin{aligned} & 20.0 \mathrm{C} \\ & 19.4 \\ & 23.8 \\ & 24.8 \end{aligned}$ | $\left.\left\lvert\, \begin{array}{ccc} 7 & 6 & 0!0 \\ 7 & 7 & 6.9 \\ (7 & 10 & 3.1 \\ 7 & 4 & 17.5) \end{array}\right.\right)$ | $\begin{aligned} & 1614^{\prime} 934 \\ & 161625.6 \\ & 162232.5 \\ & 161122.5 \end{aligned}$ | $\begin{aligned} & 19.50 \\ & 18.8 \\ & 24.1) \\ & 24.1) \end{aligned}$ | Nilkamura Imamura Nakamura Imamiva | Thaาแmit Nakamma Imammra Nakamuxa |
| Mean | 0.26908 |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |

## 153. OTASOI.

## Penke Otasoi

DECLINATION ( $\delta$ )
Observations of the South Party, 1894.


DIP ( $\theta$ )
Observalions of the sont'i P'arty. 1894.


HORIZONTAL INTENSITY (II)

Observations of the South Party, 1894.


## 154．SYORUSAM． West bank of River Tokati（十勝川ノ西岸ナル畑中）

$$
\text { DECLINATION ( } \delta \text { ) }
$$

Observations of the Soath P＇arly， 1894.


III（ $\theta$ ）
Olservations of the Sonth Party，is 34.


HORIZONTAL INTENSL＇TY（IL）
（＊Wlue deducel from Jibration ouly by（1ssuming Jotue of M．）
Observations of the South Party，1894．


## 155. ASYORO.

DECLINATION ( $\delta$ )
Ulservations of the South Party, 1894.


D1I ( $\theta$ )
Onservations of the Sonth Party, 1894.


HORIZONTAL INTENSTTY (II)
Observations of the South Party, 1894.


## 156．OṪU．

Common School（小學棱構内）
DECLINATION（ ${ }^{(\delta)}$
（H）berrations of the Sonth Party；18：4．


DIP（ $\theta$ ）
Observations of the Sunth Piarty，18J．


HORIZONTAL INTENSITY（11）
Glservations of the Sonth Party，15\％．


157．SIRANUKA．
Village Coffice．（白棣村戶長役易）
DECLINATION（ $\delta$ ）
Observations of the South Party， 189.

| $\begin{aligned} & \text { Date } \\ & \text { (Mean } \end{aligned}$ | and 1 I <br> Local＇T | me．） |  | $\delta$ |  | Olserver | Recortler |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sept． | $21^{\text {st }} 12^{4}$ | $19.1{ }^{\text {m }}$ | 5 | s＇ | $19^{\prime \prime}$ | Nakamura | Nakamura |
| S． | ，， 13 | 14.8 | ＂ | 9 | 16 | Imamura | Imamura |
| ＂ | ，1t | 18.3 | ＂， | 9 | 15 | Nakamura | ，， |
| ＂ | ＂， 15 | 18.4 | ＂ | 7 | 5.17 | Imamura | ＂ |
| ＂， | ，16 16 | 28.5 | ＂， | \％ | 47 | Tabor | vaknom |
| ＂ | ， 17 | 30.7 | ＂ | ： | 55 | Nakamura | Nakamura |
| ＂， | ， 17 | 39.1 | ＂ |  | 1 | ＂ | ＂ |
| ＂ | ＂ 13 | 30.2 | ＂ |  | 4 |  |  |
| ， | ＂ 19 | 28.9 | ＂ |  | 4 | Imamua | Imamurat |
| ＂， | $\begin{array}{ll}1, & 21 \\ ", & 21\end{array}$ | 3.4 36.1 | ＂， |  | 51 | Nakämura | Nakamura |
| ＂， | 23nd 2 | 35.1 | ＂， | $\because$ | 49 | Imammra | Imamura |
| ＂， | ，${ }^{\text {a }}$ | 40.2 | ＂ | 1 | 18 | ， | ，， |
| ＂ | ， 7 | 2.9 | ＂ | 1 | 41 |  |  |
| ＂ | ＂ 8 | 39.3 | ＂ | 1 | 34 | Nakamurat | Nakamura |
| ＂ | ＂$\quad 3$ | 44.6 | ＂ | $\stackrel{2}{4}$ | ？ | Imammra | Imamura |
| ＂， | 7,10 <br> 11 |  | ＂， | $\begin{aligned} & 4 \\ & 1 ; \end{aligned}$ | 29 31 | Nakamura Imamura | Nakamura Imamira |
| Nean |  |  | 5 | $4 \prime$ | $4^{\prime \prime}$ |  |  |
| $\begin{array}{rlrl} & \delta=5 & 4!07 \\ \text { Reduction to } & 1895.0 & = & 0 .(61 \\ \text { ，} & \text { sea level } & = & 0.14,\end{array}$ |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
| $\delta=5^{\circ} 4!7$ |  |  |  |  |  |  |  |
| DII ${ }^{(\theta)}$ |  |  |  |  |  |  |  |

Onservations of the South l＇arty， 1 s＇s．


HORIZONTAL INTENSITY（II）
Observations of the Sonth Party， $18 \% 4$.

| Date and Horr | $1 /$ | M | Men Temp． | $\begin{gathered} \text { Time of } \\ \text { I-Vib. } \end{gathered}$ | $\begin{gathered} \operatorname{Temp} \\ t_{\mathrm{v}} \end{gathered}$ | Mean Deflections |  | $\begin{gathered} \text { Temp. } \\ t_{\mathrm{D}} \end{gathered}$ | Obserrer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mean Local Time．） |  |  |  |  |  | $\varphi_{1}$ | $\varphi_{2}$ |  |  |  |
| Sept． $21^{\text {st }} 133^{1 / 5} 56^{\mathrm{mm}}$ | 0．26661 | 439.81 | 23.5 C | （\％．1420） | 25.2 C | $7{ }^{\circ} 653!1$ | $16^{\circ} 15^{\prime} 45 \prime \prime 6$ | 21.7 C | Niakamura Imamura | Imamura |
| ，．．， 1710 | 0.26860 | 442.48 | 15.7 | 6.1185 | 15.9 | 7853.2 | 162028.8 | 15.19 |  | Nakamua |
| ，＂，＂，${ }^{2} 2{ }^{2}$ 1t | 0.26354 | 444.04 | 12.5 | 6.1089 | 12.6 | 7108.8 | 162220.0 | 12.4 | Nakamura | Imamura |
| ＂ $22^{\text {nd }}$－ 23 | 0.26702 | 442.97 | 15.0 | 6.1112 | 16.2 | $\begin{array}{lll}7 & 857.5\end{array}$ | $1620+1.9$ | 15.9 | Imamum | Nakamura |
| ＂，＂＂，＂ | 0.26670 | 141.02 | 21.3 | 6.1271 | 20.7 | 788.8 | 161621.9 | 21.9 | Nakamura | Jmamilra |
| Mean | 0.26671 |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  | $I=0.2$ | 661 |  |  |  |
|  |  |  |  | Retuction | to | $895.0=$ level $=$ | -195 -600 |  |  |  |
|  |  |  |  |  |  | II－11 |  |  |  |  |

## 158．SIBETYA． Sibetya Secondary Meteorological Observatory

## （標茶二等测候所構內）

DECJINATION（ $\delta$ ）
Observations of the south Party，1s！t．


DIP（ $\theta$ ）
Observations of the Nouth Party，18．4．


THORIZON LAL INTENSITY（II）
Ohservations of the South Party，189t．

（168）
159．ATUSANUPURI．
Yard of Yasuda Company．（安田硫黄山事務處前庭）
DECLINATION（ $\delta$ ）
Onservations of the sonth Party， 1894.

| $\begin{aligned} & \text { Dat } \\ & \text { Mean } \end{aligned}$ | Ton | $\begin{gathered} \mathrm{Ho} \\ 1 \mathrm{Ti} \end{gathered}$ | me.) |  | $\delta$ |  | Oliserver | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Siept． | $26^{\text {th }}$ | $18^{h}$ | $16.4{ }^{\text {m }}$ | 5） | $16^{\prime}$ | $5!1 \prime$ | Imambia | Nakamura |
| ， | ，＂ | 19 | 6.8 | ．， | 17 | ： 31 | ， | Imamura |
| ＂， | ＂， |  | 32.5 | ．， | 17 | $3!$ | Natamata | － |
| ＂ | ， |  | 41.6 | ， | 17 | 32 | ， | Nakamura |
| ＂， | $27^{\text {th }}$ | 6 | 7.6 | ＂ | 15 | 6 | ＂ | Imamura |
| ＂， | ， | 7 | 19.1 | ．， | 15 | 29 | Imammara | Nakamira |
| ， | ＂ | 8 | 30.5 | ， | 15 | 11 i | ＂ | ＂ |
| ， | ．， | 9 | 42.8 | ＂ | 15 | $5 \times$ | Nakamima | ＂ |
| ， | ＂， | 10 | 55.3 | ＂ | 16 | 50 | ＂ | ＂ |
| ， | ＂ | 12 | 2.9 | ， | 17 | 44 | Imamiara | Imamura |
| ＂ | ＂ | 13 | 8.5 | ， | 17 | 42 | Nakammia | Nakamura |
| ， | ＂ | 14 | 26.8 | － | 17 | 35 | Imamura | Imamura |
| ＂ | ＂ | 15 | 51.0 | ， | 17 | 2 | ＂ | ＂ |
| ＂ | ＂ |  | 3.$) 7$ | ＂ | 16 | 4 | vil：＂m | Nakammla |
| ＂， | ， | 17 | 47.4 | ， | 16 | 3.$)$ | Nakamula | ＂ |
| Mean |  |  |  | $5^{\circ}$ | $16^{\prime}$ | $35^{\prime \prime}$ |  |  |
|  |  |  |  | $\delta=5 \quad 16.58$ |  |  |  |  |
|  |  |  |  | Terbuction to |  |  | 0.59 |  |
|  |  |  |  |  |  | ， | － 0.0115 |  |
|  |  |  |  | 517 ！ 1 |  |  |

DIP ${ }^{(\theta)}$
Ohservations of the Sonth Party， 1891.


Observations of the Sontl Party， 1894.


160．SINRYU．
Sinryū School（黄龍學棌）
DECLINATION（ $\delta$ ）
Observations of the Sonth Party， 1894.

| Date and Hour <br> （IIean Local Time．） |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

DIP（ $\theta$ ）
Olservations of the South Party， 1994.


HORIZONTAL INTENSITY（II）
Observations of the Sonth Party， 1894.


161．NEMURO．
Old Site of Kentyō（根室啋廂跡）
DECLINATION（ $\delta$ ）
Observations of the South Party， 1894.

| $\begin{gathered} \text { Dat } \\ \text { (Mean } \end{gathered}$ | ar | $\begin{array}{ll} \mathrm{l} \\ \mathrm{l} \\ \mathrm{Ti} \\ \hline \end{array}$ | $\begin{aligned} & \text { our } \\ & \text { ime.) } \end{aligned}$ |  | $\delta$ |  | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Oct． | $6^{\text {th }}$ | $14^{\text {h }}$ | $58.5{ }^{\text {m }}$ | 4 | $8 \prime$ | H6＂ | Imamura | Nakamura |
| ， | ， | 15 | 31.9 |  | 7 | 50 |  | Imamura |
| ＂ | $\because$ | 16 | 53.8 | ＂， | 5 | 48 | Nakamura | Imamira |
| ＂ | ．． | 18 | 19.9 | ．， | 5 | 25 | ＂ | ＂， |
| ＂， | ．， | 20 | 34.1 | ＂ | 4 | 59 | ＂， |  |
| ＂ | ， | 21 | 54.2 | ，＂ | 5 | 16 | ，＂ | Nakamura |
| ＂ |  |  | 4.4 | ＂ | 5 | 29 | ＂， |  |
|  |  | 3 | 10.9 | ＂， | 4 | 22 | ＂， | ＂， |
| ＂ | ＂ | 4 | 49.8 | ＂ | 2 | 17 | ＂ | ＂ |
| ＂ | ＂ |  | 32.2 | ．， | 2 | 31 | ＂ | ＂ |
| ＂ | $"$ |  | 24.5 | ＂ | 2 | 58 |  |  |
| ＂ | ＂ | 9 | 18.0 22.0 | ＂ | 1 | 45 | Imamura | Imamura |
| ＂ | $"$ | 10 | 22.0 21.0 | ， | 0 | 7 | Nakamura | Nakamura |
| ＂ | ＂， |  | 10.6 | ＊ | 1 | 45 | Imamura | Imamura |
| ＂＇， | ＂， | 11 | 46.1 | ＂ | 3 4 | 55 | ＂ | ＂ |
| ＂ | ＂ | 12 | 51.8 | ，． | 7 | 1 | Naka＂mura | ＂， |
| ＂， | ＂， | 13 |  | ＂ | 8 | 20 | Imamura | Nakamura |
|  | ＂ |  | 56.3 | ＂ | 7 | 20 | Nakamura | Imamura |
| Mean |  |  |  | 4 | $4^{\prime}$ | $29^{\prime \prime}$ |  |  |
|  |  |  |  | Reduction to |  |  | $\delta=4^{\circ} \quad 4!48$ |  |
|  |  |  |  | 0.42 |  |
|  |  |  |  |  |  | sea | 0.00 |  |

DIP（ $\theta$ ）
Observations of the South Party， 1894.


Observations of the South Party， 1894.


## 162．SENDAI．

Magnetic observatory．（第二高等學校磁力計室內ノ西北隅）
DECLINATION（ $\delta$ ）
Observations of the South Party， 1894.


Observations of the Sonth Party， 1894.

| Date and Hour （Mean Local Time．） |  |  |  | $\delta$ |  |  | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Oct． $25^{\text {th }} 10^{\text {h1 }} 18.7{ }^{\text {m }}$ |  |  |  |  | $2 \prime$ | 23 ＂ | Nakamura | Imamura |
| ＂ | ＂ | 11 | 8.4 | ＂ | 3 | 30 |  | Nakamura |
| ＂ | ＂ | 12 | 13.0 |  | 5 | 7 | Ina＂mura | Imamura |
| ＂ | ＂ |  | 33.9 | ＂ | ${ }_{5}^{6}$ | ${ }_{6}^{6}$ |  |  |
|  | ＂ |  | 54.9 | ＂， | 5 | 43 | Nakamura | Nakamura |
| ＂ | ＂ |  | 32.6 |  | 5 | 4 |  | Imamura |
|  | ＂， |  | 10.0 53.9 |  | 4 | 47 | Imamura | Nakamura |
| ＂ | ＂， | 20 | 43.9 | ＂ | 4 | 59 | ＂ | Imamuria |
| ＂ |  | 21 | 37.4 |  | 4 | 47 | ＂， | ＂ |
| ＂ | $26^{\text {th }}$ | 2 | 14.7 | ＂ | 4 | 3 | Nakämura | Nakämura |
| ＂ | ＂ | 5 |  | ＂ | 6 | 54 | Imamura | Imamura |
| ＂ | ＂ | 5 |  | ＂， | 4 | 11 | Nakamura | Nakamura |
|  | ＂， |  |  | ＂ | 4 <br> 3 | 10 | ， | ＂ |
|  | $"$ |  |  | ＂， | 3 2 | 35 12 | ＂， | ＂ |
|  |  |  |  |  | Con | ned |  |  |

©ontimer


Observations of the North Party, 1895.

| Dite and Hour (Mean Local Time.) |  | $\delta$ |  | Observer | Fiecorter |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Jaue. $23^{\text {th }} 8^{\text {71 }} 44.3{ }^{\mathrm{m}}$ | 5 | $2 \prime$ | 21.1 | T'anakadate | Kato |
| ," ,, 10 37.9 | , | 5 | 54 | ? Kato | Sinzyo |
| ", ", 1151.3 | , | 8 | :35 | Sinzyó | Katō |
| ", , 1340.7 | , | 11 | 5 | Tanakadate |  |
| ," $\quad$ ", 15021.7 | " | S | $5: 3$ | Sinzyō | Tanakadate |
| " $\quad 16170$ | " | i | 15 | Tanakadate | Kato |
| ", 17 | ," | 6 | 14 | Katō | Sinzyō |
| ", $\quad$ " $\quad 1913.1$ | , | ( | 20 | 'Tanakadate | Katō |
| $\cdots$, $\because \quad \because 152.6$ | , | 7 | 20 | " | 'Tianakadate |
| $\cdots 7^{2}$ th 119.0 | " | 10 | 50 | , | " |
| ", ,, 419.2 | " | 5 | 51 | , | , |
| " $\quad$, $\quad 1 \quad 50$ | ', | 3 | 45 | , |  |
| " $\quad, \quad 7 \quad 30.1$ | ,, | $\stackrel{3}{4}$ | 24 |  | Katō |
| ", $8 \quad 30.3$ | " | 2 | 50 | $\operatorname{Sin} 2 y^{\circ}$ | " |
| To be contimutal |  |  |  |  |  |

(173)

Continmer


D1ए ( $\theta$ )
Observations of the South Party, 1894.

| Dite and Hour (Mean Local Time.) | Needle No. | $\theta$ | Olserver | Pecorder. |
| :---: | :---: | :---: | :---: | :---: |
| June. $29^{t h} \quad 13^{\mathrm{h}} \quad 15^{\mathrm{m}}$ | 2 | 51 52! 1 | Nakammra | Imamura |
| , , 1717 | 1 | 5.30 .6 | lmamura | Nakanera |
| , $\quad$, 23.45 | 1 | 5157.3 | Nakammrat | Imamura |
|  | 2 | , 51.9 | Imambia | - Sakamura |
| , ", 1610 | 2 | 57.1 | Nakamara | -. Imamura |
| Mean |  | 3150 |  |  |
|  | - $\theta=51$ 56! 1 |  |  |  |
|  | Reductio | $1895.1)=$ | 0.10 |  |
|  |  | seatevel= | 0.60 |  |
|  |  |  | $56!4$ |  |

Olservations of the Soutli Parly, 1894


DIP ${ }^{(\theta)}$
Observations of ${ }^{\boldsymbol{r}}$ the North Party, 1895.


DIP $\langle\theta)$
Observations of the North Party, 1895.


HORIZONTAL INTENSITY (II)
Olservations of the South Party, 18:3t.


HORIZONTAL INTENSITY (II)
Observations of the Sonth Party, 1894.


Observations of the North 1＇arty， 1895.

| Date and Hour （Mean Local Time．） | II | M | Mean Temp． | Time of1-Vibn. | $\left.\begin{gathered} \text { Temp } \\ t_{v} \end{gathered} \right\rvert\,$ | Mean Defleetions |  | $\left\lvert\, \begin{gathered} T e m_{1} \\ t_{0} \end{gathered}\right.$ | Onserver | Tecorter | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|  |  |  |  |  |  | $\varphi \cdot$ | $\varphi_{2}$ |  |  |  |
| July $26^{\text {th }} 13^{\text {h }} 34^{\mathrm{mm}}$ | 0.28604 | 435.84 | 20.4 C | 5．9023 | 20.5 C | $6334^{\prime} 57 \% 0$ | $145 f^{\prime} 17!5$ | 26.3 C | Tanaka ${ }^{\text {ate }}$ | Katō |
| ＂， 1355 | 0.28587 | 436.33 | 18.2 | 5.9008 | 18.4 | fi35 52.5 | 145842.5 | 18.0 | $\left\{\begin{array}{l}\text { Sinzyō } \\ \text { Katō }\end{array}\right.$ | $\left\{\begin{array}{l}\text { sinzyō } \\ \text { Sin }\end{array}\right.$ |
| ， $27^{\text {th }}$ \＆ 810 | 0.28587 | 437.01 | 17.6 | 5.8959 | 17.6 | 63615.0 | 145913.8 | 17.5 | $\left\{\begin{array}{l}\text { Tanakadate }\end{array}\right.$ | $\left\{\begin{array}{c} \text { Tanakadate } \\ \text { Katō } \end{array}\right.$ |
| ＂， 12 7 | 0.28534 | 435.09 | 19.3 | 5.9043 | 19.2 | ¢3532．5 | $14572: 3$ | 19．4 | $\left\{\begin{array}{c}\text { Kato } \\ \text { Sinzyō }\end{array}\right.$ | $\left\{\begin{array}{c}\text { Sinzyō } \\ \text { Katō }\end{array}\right.$ |
| ，„ 13.32 | 0.28600 | 436.211 | 20.11 | 5.8997 | 19.8 | 6357.5 | 145631.3 | 20.2 | f Tanizadate | STanakadate |
| $\text { ,. }, 2141$ | 0.28039 | 436.72 | 19.7 | 5.8932 | 19.9 | 63511.3 | 145640.0 | 19.5 | $\left\{\begin{array}{c}\text { Katō } \\ \text { Sinzyō } \\ \text { Tin }\end{array}\right.$ | $\{$ Käto |
| ＂ $25^{\text {sth }}$ S 81 | 0.28617 | 436.45 | 20.4 | 5.8968 | 20.4 | C） 356.3 | 145622.5 | 210.4 | $\left\|\begin{array}{c} \text { Tanakadate } \\ \text { Katō } \end{array}\right\|$ | Tanakadate |
| ＂\＃14－23 | 0.28602 | 432.99 | 29.3 | 5.9220 | 29.2 | 63213.8 | 145012.5 | 29.4 | finzyo | $\begin{gathered} \text { Sinzyo } \\ \text { Katō } \\ \hline \end{gathered}$ |
| Mean | 0.26800 |  |  |  |  |  |  |  |  |  |
| Reduction to $\begin{aligned} 11 & =0.25600 \\ 1895.0 & =0-114\end{aligned}$ |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |

Observationsof the North Party， 1894

| Date and Hour （Mean Local Time．） | 11 | M | Mean Temp． | Time of 1－Vil）？． | $\begin{gathered} \text { Temp } p . \\ t_{v} \end{gathered}$ | Mean <br> $\varphi_{1}$ | Deflections <br> $\varphi_{2}$ | $\underset{t_{D}}{T e m p}$ | Obserrer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\left\lvert\, \begin{array}{cccc} \text { Sept. } & 9^{\text {hh }} & 7^{\mathrm{l}} & 38^{\mathrm{m}} \\ & , & 15 & 21 \end{array}\right.$ | $\begin{array}{r} * 0.28593 \\ 0.28604 \end{array}$ | $\begin{aligned} & 430.95 \\ & 430.41 \end{aligned}$ | $\begin{aligned} & 26.7 \mathrm{C} \\ & 28.2 \end{aligned}$ | 5．9371 6.94193 | $\begin{aligned} & 26.7 \mathrm{C} \\ & 28.4 \end{aligned}$ | $f^{\circ} 29^{\prime} 46!3$ | $14^{\circ} 44^{\prime} 12!5$ | $\begin{gathered} - \\ 28: 1 \mathrm{C} \end{gathered}$ | $\left\{\begin{array}{c} \text { Tanakadate } \\ \text { Sinzyō } \\ \text { Tanakadate } \end{array}\right.$ | $\left\{\begin{array}{c} \text { Sinzyō } \\ \{\text { Tanakadate } \\ \text { Sinzyō } \end{array}\right.$ |
| Mean | 0.23599 |  |  |  |  |  |  |  |  |  |


| $I I$ | $=0.2859 .1$ |
| ---: | :--- |
| Reduction to $\quad 1995.0$ | $=-161$ |

sea level $=\quad$ u

$$
I I=0.2859
$$

Sendai Syuttyō．（仙 臺 出 張）
Olservations of the North Party． 1895.
（1）
（瑞鳥寺曋屋下）

| Date and Hour <br> （Mean Local Time．） | Needle <br> No． | $\theta$ | Observer | Recorder |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sep：． $9^{\text {th }} \quad 17^{\mathrm{h}}$ | $1^{\mathrm{m}}$ | 13 | $51^{\circ}$ | $5 \rho, 7$ | Sinzy |  |


| Date and Hour （Mean Local Time．） | $1 I$ | M | Mean <br> Temp． | Time of 1－Yib． | $\begin{gathered} \text { Temp. } \\ t_{v} \end{gathered}$ | Mean Deflections |  | Temp. | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\varphi_{1}$ | $\varphi_{2}$ |  |  |  |
| Sept． $9^{\text {th }} 16^{\mathrm{h}} 26^{\mathrm{ma}}$ | ＊0．28559 | 430.90 | 26.9 C | 5.9411 | 26.9 C | － | － | － | Tauakadate | Kinzyô |


| （2） |  | （第二商等學校運動場内北方） |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Date and Hour <br> （Mean Local Tine．） | $\begin{aligned} & \text { Needle } \\ & \text { No. } \end{aligned}$ | $\theta$ | Observer | Recorder |
| Sept．$\quad 9^{\text {th }} \quad 188^{\text {h }} \quad 30^{\text {m }}$ | 13 | $51^{\circ} \quad 475$ | Sinzyó | Tanakadate |


| Date and Hour （Mean Local Time．） | II | If | Mean <br> ${ }^{\text {＇Tomp．}}$ | Time of 1－Tibn． | Temp． $t_{v}$ | Mean Deflections |  | $\begin{gathered} \text { Temp } \\ t_{1}, \end{gathered}$ | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\varphi_{1}$ | 42 |  |  |  |
| Sept． $9^{\text {th }} 17^{\text {h }} 51{ }^{\text {m }}$ | ＊0．28495 | 431.50 | 25．3C | ${ }_{5}^{5.9435}$ | 25.3 C | － |  | － | Tanakadate | Sinzyō |


| Date and Hour <br> （Mean Local Time．） | Needle <br> No． | $\theta$ | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Sept． $10^{0^{\text {th }}} 118^{\text {h1 }} \quad 47^{\mathrm{ni2}}$ |  | $\left.51^{\circ} 57!\right)$ | Sinzyō | Tanakadate |



163．KOGOTA．
Aza Hunairi（小午田村字船人）
DECLINATION（ ${ }^{(8)}$
Observations of the North Party，1895．

| $\begin{aligned} & \text { Date } \\ & \text { (Mean } \end{aligned}$ | and <br> Local | ${ }_{\text {Hol }}$ | r |  | $\delta$ |  | Observer | liecorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| June | $29^{\text {th }}$ | $12^{1}$ | $23.8{ }^{\text {n }}$ | 5 | $17^{\prime}$ | $47^{\prime \prime}$ | Katō | Sinzyó |
| ．， | ＂ | 12 | 54.6 | ， | 18 | 17 | Tanakadate | Tan |
| ＂ | ＂ |  | 40.0 | ， | 1.9 | 10 | Sinzyo． | Tanakadate Ninzyō |
| ＂ | ＂ |  | 49.8 | ＂． | 18 | 83 | Tanakadate |  |
|  | ＂ | 19 | $\begin{array}{r}32.7 \\ \hline 18\end{array}$ | ＂， | 18 15 | 11 | Kato | Tanakadate |
| ， | ， | 20 | 11.6 | ，＂ | 1.5 | 36 | ，． | Katō |
| ， | ＂ | 21 | 179 | ＂ | 15 | 41 | $"$ | ． |
| ， | ， | 2：3 | 21.9 | ＂ | 15 | 4 | ＂ | ＂ |
| ， | Sitlo | ： | 18．3 | ． | 13 | 9 | ， | $\cdots$ |
| ＂ | － |  | ${ }_{56.3}^{44.3}$ | ＂ | 11 | 48 |  | －ankatate |
| ＂， | ＂， | 9 | 7.0 | ＂， | 10 | 53 | Tamakardate | Sinzyō |
| ＂， | ，＂ | 10 | 2.9 | ．． | 15 | 40 | Katō |  |
| ＂． | ＂ | 11 | 32.7 | ． | 18 | 13 | Sinzyo | Tanatakate |
| ＂， |  | 12 | 57.6 31.8 | ＂ | 19 | 51 | 1：l sinzyō | ， |
| ＂ | ， | 15 | 45.3 | ＂， | 14 | s | Kato | ＂ |
| ， | ， | 17 | 6.9 | ＂ | 17 | 19 | ＂ | ＂ |
| ，． |  | 18 | 13.0 | ．． | 19 | ！ | ＂ | ＂ |
| ， |  | 18 | 53.7 | ＂ | 17 | 50 | ＂ | ＂ |
| ， | ＊ | 1. | 57.8 | ＂ | 15 | 5 | ＂ | ＂ |
| ＂ | ＂ | 20 | 51.7 | ，． | 15 | 25 | ＂ | ．． |
| ＂ | ＂， | 21 23 | 5.36 31.0 | ＂ | 1. | 57 | ＂， | ＂， |
| Mean |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
| $\begin{array}{rrrr}\text { Tiduction to } 1895.0 & = & -0.74 \\ \text { ．．sea level } & = & 10.00\end{array}$ |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
| $\delta=5^{\circ} \quad 14.5$ |  |  |  |  |  |  |  |  |

DIP（ $\theta$ ）
Observations of the North Party， 1895.


HORIZONTAL INTENSITY（II）
Observations of the North Party， $18: 55$.

| Date and Honr （Mean Local Time．） | II | M | Mean Temp． | Time of1-Tibㄹ. | $\begin{gathered} \text { Temp. } \\ t_{v} \end{gathered}$ | Mern Deflections |  | $\mathrm{Temp}_{\mathrm{t}_{\mathrm{D}}}$ | Observer | Recorder | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|  |  |  |  |  |  | $9_{1}$ | ？ |  |  |  |
| June 29th $14^{\text {m }}$ 8m | 0.28850 | 434.63 | 25．0C | $5{ }^{8}$ ． 8889 | 26.4 C | $6^{\circ} 30,53 \% 8$ | $14^{\circ} 47^{\prime} 113$ | 23.6 C | $\left\{\begin{array}{c}\text { Sinzyō } \\ \text { Kotō }\end{array}\right.$ | $\left\{\begin{array}{c}\text { Katō } \\ \text { Sinzyō }\end{array}\right.$ |
| ＂，＂is 36 | 0.28741 | 436.62 | 18.9 | 5.8725 | 19.2 | 63237.5 | 145116.3 | 18.5 | $\left\{\begin{array}{c}\text { Tanakalate } \\ \text { Sinzyó }\end{array}\right.$ | \｛Tanakndate |
| ，3ith 8 8 43 | 0.29782 | 437.13 | 17.2 |  | 17.3 | 63325.0 | 145218.8 | 17.2 | $\left\{\begin{array}{c}\text { Tabakadate }\end{array}\right.$ | sinzyó |
| Mean | 0.289 .27 |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Kogota Syuttyō（小尔四出張）
Observations of the Nort•1 Party， 1895.
（1）

| Date and Hour （Mean Local Time．） |  |  | Needle No． |  | $\theta$ | Obscrver | Recorde： |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Tune | $\begin{array}{cc}30+h & 17^{\text {a }} \\ =18\end{array}$ | ${ }^{2.49}$ | 113 |  | 19.5 14.4 | Sinzyō Tanakadate | Sinzyō Tanakalate |
| Mean |  |  |  |  | 17！ 0 |  |  |


| Date and I－uar（Mean Local Time．） | II | M | Mean <br> Temp． | Time of1-Vibl르․ | Temp． $t_{V}$ | Mean Deflections |  | $\begin{gathered} \text { Temp. } \\ t_{\mathrm{p}} \end{gathered}$ | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\varphi_{1}$ | $\varphi_{2}$ |  |  |  |
| $\left\lvert\, \begin{array}{cccc}\text { June } & 30^{\text {th }} & 16^{\text {h }} & 42^{\mathrm{m}} \\ " & , & 16 & 51\end{array}\right.$ | $\begin{aligned} & * 0.28757 \\ & * 0.28741 \end{aligned}$ | $\begin{array}{\|l\|} 437.06 \\ 437.16 \end{array}$ | $\begin{aligned} & 18.2 \mathrm{C} \\ & 17.9 \end{aligned}$ | $\begin{aligned} & \mathrm{s} \\ & 5.5780 \\ & 5.8787 \end{aligned}$ | $\begin{aligned} & 18.2 \mathrm{C} \\ & 17.9 \end{aligned}$ | － | － | －－ | Sinzyō | Tanakadate |
| Mean | 0.28751 |  |  |  |  |  |  |  |  |  |

（2）
（小午用村字牛䏤）

| Date and Howr （Mean Local Time．） | Needle No． | $\theta$ | Observer | Recorter |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{cccc}\text { June } & 30^{\text {th }} & 21^{\mathrm{h}} & 3 \\ \# & 3 & 3.2 & 17\end{array}$ | 14 3 | $\begin{array}{cc}52 & 23!2 \\ = & 26.4\end{array}$ | Sinzyō Tanakadate | $\begin{aligned} & \text { Tanakadnte } \\ & \text { Sinzyō } \end{aligned}$ |
| Mean |  | $52,24!9$ |  |  |

（178）

| Date and Hour （Mean Local Time．） | 11 | M | Mean Temp． | Time of1-Yib? | $\operatorname{Temp}_{t_{v}}$ | Mean Deflections |  | Temp. | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | 91 | $Q_{2}$ |  |  |  |
| $\begin{array}{cccc}\text { June } 30^{\text {th }} & 20^{\text {h }} & 28 \mathrm{~m} \\ , \quad, & , & 20 & 41\end{array}$ | $\left\|\begin{array}{\|} { }^{*} 0.28643 \\ { }^{*} 0.28623 \end{array}\right\|$ | $\left\|\begin{array}{l} 438.13 \\ 438.29 \end{array}\right\|$ | $\begin{aligned} & 150^{\circ} \mathrm{C} \\ & 14.5 \end{aligned}$ | $\begin{aligned} & \mathrm{s} \\ & 5.8885 \\ & 5.8833 \end{aligned}$ | $\begin{aligned} & 15.0 \mathrm{C} \\ & 14.5 \end{aligned}$ | 二 | － | － | Tanakadate Sinzyō | Sinzyō <br> Tanakadate |
| Mean | 0.28633 |  |  |  |  |  |  |  |  |  |

（3）

| Date and Honr （Mean Local Time．） | Needle No． | $\theta$ | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: |
| Sept． $13^{\text {th }}$－ |  | $52^{\circ} \quad 12 / 7$ | Sinzjō | Sinzyō |


| Date and Hour （Mean Local Time．） | H | 3 | Nean Temp． | Time of 1－Yib，… | $\mathrm{Temp}_{\mathrm{t}_{\mathrm{v}}}$ | Meam Deflections |  | $\begin{gathered} \text { l'emp. } \\ t_{\mathrm{p}} \end{gathered}$ | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\varphi_{1}$ | $\psi_{2}$ |  |  |  |
| Sept． $13^{\text {th }}-$ | ＊0．28714 | 431.20 | 26.2 C | 5.9229 | 26．2C | － | － | － | Tatibara | Sinzyō |

（4）

| Date and Hour <br> （Mean Local Time．） | Needle <br> No． | $\theta$ | Observer | Recorder |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Sept． $133^{\text {th }}-$ | - | - | $52^{\circ}$ | $8 \%$ | Tatibara |


| Date and Hour （Mean Local Time．） | II | M | Nean Temp． | Time of$1-\text { Yiblen }^{2}$ | $\begin{gathered} \text { Temp. } \\ t_{v} \end{gathered}$ | Mean Deflections |  | $\begin{gathered} \text { Temp } \\ t_{\mathrm{b}} \end{gathered}$ | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\varphi_{1}$ | $\varphi_{2}$ |  |  |  |
| Sept． $13^{\text {th }}$－－ | ＊0．28747 | 432．60 | 22.6 C | $5^{8} .9097$ | 22.6 C | － | － | － | Tatibara | Sinzyō |

## 164．GAMON．

Wakayanagimachi（若柳町字我門）
DECLINATION（ $\delta$ ）
Observations of the North Party， 1895.


DIP（ $\theta$ ）
Olservations of the North Party， 1895.

> HORIZONTAL INTENSITY (IL)
> Observations of the North Party, 1895.
（1）
Gamon Syuttyō（我阫出張）
Observations of the North Party，18：15． （石越村字熊纾堂）

| Dat and Fonr <br> （Mean Local Time．） | Needle <br> No | 0 | Observer | Recorder |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sep，t． | $8^{\text {th }}$ | $8^{\text {h }}$ | $32^{\mathrm{mm}}$ | 13 | $52^{\circ}$ | 30.5 |


| Date and Hour （Mean Local Time） | II | 11 | Mean Temp． | Time of$1-\mathrm{Vib}^{n} \underline{n}$ | $\text { Temp }_{\mathrm{t}_{\mathrm{v}}}$ | Mean Deflections |  | $\mathrm{Temp}_{\mathrm{t}_{\mathrm{D}}}$ | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\varphi{ }_{1}$ | $\varphi_{2}$ |  |  |  |
| Sept． $8^{\text {th }} 7^{\mathrm{h}} 47^{\mathrm{m}}$ | ＊0．28188 | 431.21 | 26.3 C | $\begin{gathered} \mathrm{s} .9779 \end{gathered}$ | 26.3 C | － | － | － | Tanakadate | Sinzyō |

（2）（熊野堂卜八幡山ノ間ニアル䙺中，カャノ木ノアリシ覤）

| Date and Mour <br> （Mean Local Time．） | Needle <br> No． | $\theta$ | Observer | Recorder |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Sept． | Sth $10^{\mathrm{h}}$ | $47^{\mathrm{mm}}$ | 13 | $52 \quad 43!1$ | Sinzyō |


| Date and Hour （Mean Local Time．） | II | M | Mean <br> ＇Temp． | Time of 1－Tib， | $\underset{t_{v}}{\operatorname{Tem}}$ | Mean Deflections |  | $\begin{gathered} \operatorname{Tem}_{\mathrm{l}} \\ \mathrm{t}_{\mathrm{D}} \\ \hline \end{gathered}$ | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $9_{1}$ | $\varphi_{2}$ |  |  |  |
| $\begin{array}{cllll}\text { Sept．} & 8{ }^{\text {th }} & 9^{\text {h }} & 45^{\text {m }} \\ \# & \# & 9 & 55\end{array}$ | $* 0.28117$ $* 0.28123$ | $\begin{array}{\|l\|} 430.24 \\ 430.24 \end{array}$ | $\begin{aligned} & 28: 50 \\ & 28.8 \end{aligned}$ | $\begin{aligned} & 5.9924 \\ & 5.9945 \end{aligned}$ | $\begin{aligned} & 28_{0}^{\circ} .5 \mathrm{C} \\ & 28.8 \end{aligned}$ | － | － | －－ | Tanakadate <br> $"$ | $\begin{gathered} \text { Sinzyō } \\ ״, \end{gathered}$ |
| Mean | 0.28120 |  |  |  |  |  |  |  |  |  |

（3）MI．Yahata（八幡山）

| Date and Hour <br> （Mean Local Time．） | Needle <br> No． | $\theta$ | Observer | liecorder |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Sept． 8 sth $14^{1_{1}}$ | $12^{141}$ | 13 | 52 | $33: 2$ | Sinzyō |

（180）

| Date and Hour （Mean Local Time．） | II | M | Mean <br> Temp． | Time of 1－Yib？． | $\begin{gathered} \text { Temp. } \\ t_{v} \end{gathered}$ | Mean Deflections |  | $\begin{gathered} T \in m p, \\ t_{p} \end{gathered}$ | Observer | Recorter |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\varphi_{1}$ | $\psi_{2}$ |  |  |  |
| Sept． $8^{\text {th }} 13^{\text {h }} 29$ | ＊0．28155 | 430.78 | 27.1 C | 5.9818 | 27.4 C | － | － | － | Tanakadate | Sinzyō |

（4）
（志波姬村字白诱龍昌寺境内小字殹檌閶）

| Date and Hour （Mean Local Time） | Neerlle No． | $\theta$ | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: |
| Sept．$\quad 8^{\text {th }} \quad 15^{\text {h1 }} \quad 58^{\text {m }}$ | 13 | 52 41：3 | Sinzyö | Tanakalate |


| Date aud Hour （Mean Local Time．） | II | 11 | Mean Temp． | Time of | $\begin{gathered} \text { Temp. } \\ t_{v} . \end{gathered}$ | Mean Deflectious |  | $\begin{gathered} \operatorname{Tem}_{p} \\ t_{p} \end{gathered}$ | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\varphi_{1}$ | $\varphi_{2}$ |  |  |  |
| Sept． $8^{\text {th }} 15^{\text {h }} 16^{\text {m }}$ | ＊0．28154 | 430.08 | 29：2C | 5.9896 | 29：2C | － | －－ | － | Tanakadate | Sinzyō |

## 165．MIDZUSAWA．

Fiodakazinsya（日高朔形境内）
DECLINATION（ $\delta$ ）
Observations of the North Party， 18.55.


DIP（ $\theta$ ）
Onservations of the North Party， $18 \% 5$.

| Dite and Hour <br> （Nean Local Time．） | Needle No． | $\theta$ | Observer | Recorter |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{cccc}\text { July } & 4^{\text {th }} & 17^{\text {lit }} & 40^{\text {m }} \\ " & " \% & 18 & 38 \\ " & 5^{\text {th }} & 8 & 4\end{array}$ | 13 13 13 | $\begin{array}{cc}52^{\circ} & 42!1 \\ " & 43.2 \\ " & 41.4\end{array}$ | $\begin{gathered} \text { Kato } \\ \text { Sinzyo } \\ \text { Tanakadate } \end{gathered}$ | Sinzyō Katō |
| Mean |  | $522^{\circ} \quad 42!2$ |  |  |
|  | $\begin{gathered} \text { Reduct } \\ \hline, \end{gathered}$ | $\begin{aligned} & \theta= \\ & \text { to } \quad 1895.0= \\ & \Rightarrow \text { sea level }= \\ & \theta= \end{aligned}$ | $\begin{gathered} 12.2 \\ 0.20 \\ 0.60 \\ 42!4 \end{gathered}$ |  |

HORIZONTAL INTENSITY（II）
Observ tions of the No th Party， 1995.


Midzusawa Syuttyō（水 澤 出 張）
Obsetvations of the North Party， 1895.
（1）
Ruin of old castle（蒚 城 践）

| Date aud Hour <br> Miean Local Time．） | Needle <br> No． | $\theta$ | Observer | Recorder |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| July | $5^{\text {th }}$ | $15^{\mathrm{h}}$ | $5^{\mathrm{m}}$ | 13 | 52 |


| Date and Hour （Mean Local Time．） | II | 11 | $\begin{gathered} \text { Mean } \\ \text { Temp. } \end{gathered}$ | Time of 1－Vibu． | Temp. | Mean Deflections |  | Temp $t_{D}$ | Observer | Jiecorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\psi_{1}$ | $\%_{2}$ |  |  |  |
| $\begin{array}{cclll}\text { July } & 5^{\text {th }} & 17^{\text {h }} & 14^{\mathrm{ma}} \\ , & \# & 17 & 21\end{array}$ | $* 0.28369$ $* 0.23300$ | 433.97 433.56 | ${ }_{26}^{26.6}{ }^{2}$ | $\begin{aligned} & 5 . \\ & 5.9397 \\ & 5.9415 \end{aligned}$ | $\begin{aligned} & 26.6 \mathrm{C} \\ & 27.0 \end{aligned}$ | － | － | － | $\begin{aligned} & \text { Katō } \\ & \text { Sinzyō } \end{aligned}$ | Sinzyó Kats |
| Mean | 0.28365 |  |  |  |  |  |  |  |  |  |

## 166．HANAMAKI．

DECLINATION（ $\delta$ ）
Olsservations of the North Party， 195.


Observations of the North Party， 1895.

| Date and Hour （Mean Local Time．） |  |  |  | Needle No． |  | ， | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| July | $6^{\text {th }}$ | $11^{\text {h }}$ | $23^{\text {m }}$ | 14 | $52^{\circ}$ | 590 | Katō | Sinzyó |
| ＂ | ＂ | 11 | 56 | 11 |  | 57.8 | Sinzyō | Katō |
| ＂ | ＂ | 16 | 36 | 13 |  | 57.4 | ＇Tanakadate | Sinzyō |
| ＂ | ＂ | 18 | 28 | 13 | 53 |  | Sinzyō | Katō |
| ， |  |  | 33 | 13 | ＂ | 2.1 | Tanakadate | Sinzyö |
| Mean |  |  |  |  | $52^{\circ}$ | $59!9$ |  |  |
| $\theta=52^{\circ} \quad 59: 3$ |  |  |  |  |  |  |  |  |
| $\theta$ $=52$ <br> Reduction to  <br> 1895.0 $=$ <br> ,$\quad$ sea level $=$ |  |  |  |  |  |  | 0.35 |  |
|  |  |  |  |  |  |  | 0.00 |  |
| $\theta=533^{3} \quad 0.3$ |  |  |  |  |  |  |  |  |

HORIZONTAL INTENSITY（H）
Observations of the North Party， 1895.

| Date and Hour （Mean Local Time．） | 11 | M | Mean Temp． | Time of$\text { 1-Vib } \underline{n} .$ | Temp. | Mean Deflections |  | $\operatorname{Tem}_{t_{p}}$ | Observer | Recorder | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|  |  |  |  |  |  | $\varphi_{1}$ | $\varphi_{2}$ |  |  |  |
| July $6^{6}{ }^{\text {th }} \quad 88^{\text {h }} 52^{\mathrm{m}}$ | 0.28226 | 435.30 | 24.5 C | 5.9443 | 24.0 C | $6^{\circ} 39^{\prime} 18^{\prime \prime} 1$ | $15^{\prime} 6^{\prime} 8!1$ | $25: 0 \mathrm{C}$ | $\left\{\begin{array}{l}\text { Sinzyō } \\ \text { Katō }\end{array}\right.$ | $\left\{\begin{array}{c}\text { Katō } \\ \text { Sinyzō }\end{array}\right.$ |
| ＂＂， $13 \quad 20$ | 0.28191 | 433．42 | 28.0 | 5.9618 | 27.5 | 63755.6 | $15 \quad 257.5$ | 28.6 | \｛ Sinzyō | \｛ Fäto |
| ＂$\quad$ ， 214 | 0.28167 | 435.67 | 20.5 | 5.9488 | 20.4 | 64050.0 | 15951.3 | 20.6 | $\left\{\begin{array}{c} \text { Tanäkadate } \end{array}\right.$ | $\left\{\begin{array}{c} \text { Tanakadate } \\ \text { Sinzyō } \end{array}\right\}$ |
| Mean | 0.28195 |  |  |  |  |  |  |  |  |  |
| $I I$ $=$ 0.28195 <br> Reduction to 1895.0 $=$ <br> ,$\quad 137$   <br> ,$\quad$ sea level $=$ 8.2  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  | $\Pi=0.28$ | 194 |  |  |  |

Hanamaki Syuttyō（花 爱 出 張）
Observations of the North Party， 1995.
（1）Fark Toriyagasaki ruin of Hanamaki castle（花忞城趾鳥谷ヶ崎公園）

| Date and Hour <br> （Mean Local Time．） | Nedle <br> No． | $\theta$ | Observer | Recorder |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| July $\quad 7^{\text {th }}$ | $8^{\text {h }}$ | $36^{\mathrm{mm}}$ | 13 | 53 | $2!4$ | Tanakadate <br> $\%$ | Tanakadate |


| Date and Hour （Mean Local Time．） | II | M | Mean Temp． | Time of$1 \text {-Vibu. }$ | $\begin{gathered} \text { Temp. } \\ \mathbf{t}_{\mathrm{v}} \end{gathered}$ | Mean Deflections |  | $\operatorname{Tem}_{t_{b}} .$ | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\varphi \ell$ | $\varphi_{2}$ |  |  |  |
|  | $\left\lvert\, \begin{array}{\|c} * 0.28133 \\ * 0.28132 \end{array}\right.$ | $\begin{aligned} & 43.1 .11 \\ & 4: 34.06 \end{aligned}$ | $\begin{aligned} & 26.4 \mathrm{C} \\ & 26.6 \end{aligned}$ | $\begin{gathered} \stackrel{8}{5} 80 \\ 5.9630 \\ 5.9641 \end{gathered}$ | $\begin{aligned} & 26.4 \mathrm{C} \\ & 26.6 \end{aligned}$ | － | － | － | Sinzyō <br> Tanakadate | Tanakadate Sinzyō |
| Mean | 0.28136 |  |  |  |  |  |  |  |  |  |

## 167．MORIOKA．

## Inarimae（下剭川村字稻荷前）

DECLINATION（ $\delta$ ）
Observations of the North Party， 1895.

| Date and Hour （Mean Local Time．） |  | $\delta$ |  | Observer | 1 Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: |
| July $\quad 7^{\text {th }} \quad 15^{\mathrm{h}} \quad 22.25 \mathrm{~m}$ | $5^{\circ}$ | $87^{1}$ | $13^{\prime \prime}$ | Tanakadate | latō |
| ＂＂ $16 \quad 55.3$ | ＂ | 34 | 6 | Sinzyō |  |
| ＂$\quad \begin{array}{lll}\text { \％} & 18 & 42.5\end{array}$ | ＂， | 32 | 33 | Tanakadate | Sinzyō |
| $\cdots \quad 1851.4$ | ＂ | 32 | 23 | ， | ＂ |
| ＂，＂$\quad 19$ 19 49.5 | ＂ | 33 | 14 |  |  |
| ＂$\quad$ ， 20054.5 | ＂ | 33 | $\because 1$ | Katō | Katō |
| $\prime \prime$ $\ddot{3}$ 22 4.5 <br> th 1 39.6  | ＂， |  | 40 33 | ＂ |  |
| ＇To be Continued |  |  |  |  |  |

（183）

| Continued |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Date and Hour （Mean Local Time．） |  |  |  | $\delta$ |  |  | Observer | Recorder |
| July | $\mathrm{cth}^{\text {cth }}$ | $2^{\text {h }}$ | $14.8{ }^{\text {m }}$ | $5{ }^{\circ}$ | $33^{\prime}$ | $13^{\prime \prime}$ | Kató | Katō |
| ， | ＂ | 4 | 26.1 | ＂ | 32 | 33 | ＂ | ＂ |
| ＂ | ＂ | 6 | 17.0 | ＂ | 30 | 12 | ＂ | ＂， |
| ＂ | ＂ | 7 | 20.2 | ＂ | 28 | 0 | ＂ | ＂， |
| ＂ |  | 8 | 36.5 | ， | 27 | 59 | ＂ | ＂， |
| ＂ |  | ！ | 50.8 | ＂ | 30 | 53 | ＂ | ＂ |
| ＂ | ＂ |  |  | ＂ | 35 | 19 | ＂ | ＂ |
| ＂ |  |  | 42.1 | ＂ | 38 | ${ }^{3}$ |  | ＂ |
| ＂ | ＂ |  | 11.5 28.4 | ＂ | 39 | 10 | Tanakadate | ＂ |
| ＂， | ．＂， | 15 | 30.7 | ＂ | 38 | 109 | ＂ | ＂ |
| ＂ |  | 16 | 24.9 | ＂ | 36 | 5.2 | ＂ | ＂， |
| Mean |  |  |  | $5{ }^{\circ}$ | $33^{\prime}$ | $31^{\prime \prime}$ |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |

DIP（ $\theta$ ）
Observaions of the North Party， 1895.

| Date and Hour （Mean Local Time．） |  |  |  | Needle No． |  |  | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| July $"$ $"$ | $7^{\text {th }}$ $8^{\text {th }}$ ＂ | 16 9 14 | $23{ }^{\mathrm{m}}$ 19 56 | $\begin{aligned} & 14 \\ & 14 \\ & 13 \end{aligned}$ |  | $\begin{aligned} & 12.0 \\ & 11.3 \\ & 11.0 \end{aligned}$ | Sinzyō Tanakadate Katō | $\begin{gathered} \text { Katō } \\ \text { Sinzyō } \\ \text { Tanakadate } \end{gathered}$ |
| Mean |  |  |  |  |  | 11.4 |  |  |
| $\theta$ $=53$ <br> Reduction to $\left.\begin{array}{rl}1895.9 & = \\ , \quad \text { sea level } & =\end{array} \quad \begin{array}{rl}1\end{array}\right)$  |  |  |  |  |  |  | $\begin{gathered} 11!4 \\ 0.41 \\ 0.01 \end{gathered}$ |  |

HORIZONTAL INTENSITY（ $I$ ）
Observations of the North Party， 1895.

| Date and Hour （Mean Local Time．） | II | M | Mean Temp． | Time of 1－Vib ${ }^{n}$ ． | Temp.$t_{v}$ | Mean Deflections |  | Temp. | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\varphi_{1}$ | $\varphi_{2}$ |  |  |  |
| $\begin{array}{cccl}\text { Inly } & 7^{\text {th }} & 19^{\text {h }} & 24^{\mathrm{m}} \\ , & 8 \text { th } & 8 & 11 \\ ", & " & 13 & 25\end{array}$ | 0.29262 | 435.03 | 21.4 C | 5.9444 | 21.8 C | $6^{\circ} 39^{\prime} 81.2$ | $15^{\circ} 5^{\prime} 52 \prime 5$ | 20.9 C | $\left\{\begin{array}{c}\text { Tanakadate } \\ \text { Sinzyō }\end{array}\right.$ | Sinzyō <br> Tanakalate |
|  | 0.28269 0.28268 | 435.61 | 21.3 | 5.9367 | 20.5 | 63858.8 | $15 \quad 527.5$ | 22.2 |  | Tanakailate |
|  |  |  |  |  |  | 63711.0 |  |  | nakadate |  |
| Mean 0.28266 |  |  |  |  |  |  |  |  |  |  |
| $H=0.28266$ |  |  |  |  |  |  |  |  |  |  |
|  |  |  | Reduction to |  | $\begin{array}{r} 1895.0= \\ \text { sea level= } \end{array}$ |  | $\begin{array}{r} 128 \\ -1.77 \end{array}$ |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | IT |  |  |  |  |  |  |  |

Morioka Syuttyō（盛 岡 出 張）
（1）

| （1） |  |  |  |  | （䓵上田村宿茶屋） |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Date and Honr （Mean Local Time．） |  |  |  | Needle No. |  |  | Observer | Recorder |
| July | $8^{\text {th }}$ | $19^{\text {b }}$ | $19^{\text {m2 }}$ | 14 | $53^{\circ}$ | $15!3$ | Tanakadate | Katō |


| Date and Hour （Mean Local Time．） | II | M | Mean Temp． | Time of1-Vib. | $\begin{gathered} \text { Temp. } \\ \mathbf{t}_{\mathrm{V}} \end{gathered}$ | Mean Deflections |  | Temp． $t_{D}$ | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\varphi 2$ | $\varphi_{2}$ |  |  |  |
|  | $* 0.28159$ $* 0.28127$ | $\begin{array}{\|c} 435.95 \\ 436.32 \end{array}$ | 19.4 C 18.3 | 5． <br> 5．9479 <br> 5.9487 | $\begin{aligned} & 19.40 \\ & 18.3 \end{aligned}$ | 二 | － | － | Tanakadate Katō | Katō <br> Tanakadate |
| Mean | 0.28143 |  |  |  |  |  |  |  |  |  |

North shore of Riv．Kuriya（㢄川北宸）

| Date and Howr <br> （Mean Local Tiıie．） | Needle No． | $\theta$ | Observer． | Recorder |
| :---: | :---: | :---: | :---: | :---: |
| Sept． $7^{\text {th }} 133^{h_{1}} \quad 23^{\text {m }}$ | 13 | $53^{\circ} \quad 7!8$ | Sinz：ō | Tanakadate |


| Date and Hour （Mean Local Time．） | II | ． 1 | $\begin{aligned} & \text { Mean } \\ & \text { Temp. } \end{aligned}$ | Time of 1-Yib" | $\begin{gathered} \text { Temp } \\ t_{v} \end{gathered}$ | $\begin{gathered} \text { Mean } \\ \hdashline p_{1} \end{gathered}$ | $\frac{\text { ctions }}{\varphi_{2}}$ | $\operatorname{lemp}_{t_{\mathrm{D}}}$ | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\left\lvert\, \begin{array}{cccc} \text { Sept. } & 7^{\text {th }} & 12^{\mathrm{h}} & 29^{\mathrm{m}} \\ ", & " & 12 & 40 \end{array}\right.$ | $\begin{array}{r} 0.28315 \\ * 0.28283 \end{array}$ | $\begin{aligned} & 429.07 \\ & 428.87 \end{aligned}$ | $\begin{aligned} & 31.8 \mathrm{C} \\ & 32.5 \end{aligned}$ | $\begin{aligned} & 8.9796 \\ & 5.999 \\ & 5.9814 \end{aligned}$ | $\begin{aligned} & 31.5 \mathrm{C} \\ & 32.5 \end{aligned}$ | － | － | － | Tanakadate | Sincy <br> $\cdots$ |
| Mean | 0.28302 |  |  |  |  |  |  |  |  |  |

（3）Ruin of old castle，Morioka（藘岡萻城趾本规内中ノ口西）

| Date and Hour （Mean Local Times．） | Neerle No． | $\theta$ |  | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Sept．$\quad 6^{\text {th }} 166^{\text {h }} \quad 41^{\text {mi }}$ | 13 |  | $7!1$ | Sinzyō | Tanakadate |


| te and Hour | 11 | M | Miean <br> Temp． | Time of 1－Vib？ | Temp． tv | Mean Deflections |  | Temp. | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| （İean Local Time．） |  |  |  |  |  | $\varphi_{1}$ | 42 |  |  |  |
| Sept． $7^{\text {ih }} 15^{\mathrm{h}} 49^{\mathrm{ml}}$ | ＊0．2821 | 429.69 | 30.20 | ${ }_{5}^{\text {s．}}$ 5855 | 30：2C | － | － | － | Tanakadate | Sinzyō |
| ＂，， $15 \quad 58$ | ＊0．28192 | 429.65 | 30.3 | 5.9885 | 30.3 | － | － | － | ， | ＂ |
| Mean | 0.28205 |  |  |  |  |  |  |  |  |  |

## 168．NAKAYAMA．

Goryōti（缶目子御料地字中山大塚野地）
DECLINATION（ $\delta$ ）
Observations of the North Party， 1895.


Observations of the North Party， 1895.

| Date and Hour （Mean Local Time．） |  |  |  | Needle No． | $\theta$ |  | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| July | $9^{\text {ch }}$ |  |  | 13 | $53^{\circ}$ |  | Tanakadate | Katō |
| ＂ | \％${ }_{\text {ch }}$ | 20 | 22 | 14 | ＂ | 34.8 | Katō | Tanakadate |
| ＂ | $10^{\text {th }}$ | 8 | 45 | 14 | ＂ | 31.8 | Tanakadate | Kató |
| ＂ | ＂ | 11 | 17 | 14 | ＂ | 30.0 | Sinzyö |  |
| ＂ |  |  | 26 | 14 | ＂ | 36.2 | Katô | Sinzyoo |
| Mean |  |  |  |  | 53 | $32!5$ |  |  |
|  |  |  |  |  |  |  | 32.5 |  |
|  |  |  |  | 0.52 |  |
|  |  |  |  | 0.02 |  |

HORIZONTAL INTENSTTY（II）
Observations of the North Party， 1895.


Nakayama Syuttyō（中 山 出 張）
Observations of the North Party， 1895.
（西円子触料地字カリジヤ）

| Date and Hour （Mean Local Time．） |  |  |  | Needle No． |  |  | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| July | $9^{\text {eth }}$ | $16^{17}$ 17 | ${ }_{3}^{31}$ | 14 |  | $\begin{aligned} & 52!3 \\ & 50.3 \end{aligned}$ | Sinzyō | Kato |
| Mean |  |  |  |  |  | 51：3 |  |  |


| Date and Hour （Mean Local Time．） | II | M | Mean Temp． | Time of 1 －Vibn． | Temp． $t_{v}$ | Mean Deflections |  | Temp． $t_{D}$ | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\varphi_{1}$ | $\varphi:$ |  |  |  |
|  | 0.28029 0.28006 | $\begin{array}{\|} 434.46 \\ 431,47 \end{array}$ | $\begin{aligned} & 23.40 \\ & 23.4 \end{aligned}$ | $\begin{aligned} & 5.9-21 \\ & 5.9215 \\ & 5.9745 \end{aligned}$ | $\begin{aligned} & 23.4 \mathrm{C} \\ & 234 \end{aligned}$ | － | － | － | Sinzyō | Katō |
| Mean | 0.28018 |  |  |  |  |  |  |  | ．， | ＂ |

169．HATINOHE．
Siragizinsya ${ }_{\text {DIP }}^{\text {（ } \theta \text {（ }}$（八戶長者山新羅神刘）
Observations of the North Party， 1895.

| Date and Hour （Mean Local Time．） | Needle No． |  |  | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: |
| July $\quad 12^{\text {th }} \quad 88^{\text {th }} \quad 00^{\text {m }}$ | 14 | $54^{\circ}$ | $9 \% 9$ | Sinzyö | Kato |
|  | $\theta$ $=54$ <br> Reduction to1895.0 $=$ <br> $, \quad, \quad$ sea level $=$  |  |  | $\begin{aligned} & 9!9 \\ & 0.72 \\ & 0.00 \end{aligned}$ |  |

（186）
HORIZONTAL NTEESITY（II） Onservations of the North Party， $18 \%$.


Hatinohe Syuttyō（八 戶 出 張）
Observations of the North Party， 1895. （1）

| Date and Hour <br> （Mean Local Time．） |  |  |  |
| :--- | :--- | :--- | :--- |
| Sept． | $6^{\text {th }}$ | $18^{\mathrm{h}}$ | $5^{\mathrm{m}}$ |


| Needle <br> No． | $\theta$ | Observer | Recorder |
| :---: | :---: | :---: | :---: |
| 13 | $54^{\circ} \quad 84$ | Sinzyō | Sinzyō |



## 170．KOMINATOTAIRA．

Field in Samemura（鮫 村 原 野）
DECLINATION（ $\delta$ ）
Onservations of the North Party， 1895.


Observations of the North Party， 1895.

| Date and Hour （Mean Local Time．） |  |  |  | NeedIe No． |  | $\theta$ | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| July ＂ ＂ | $122^{\text {th }}$ 13 $13^{\text {th }}$ | 161 20 9 | $33^{m}$ 35 | 14 4 13 |  | $\begin{aligned} & 14!1 \\ & 17.0 \\ & 24.2 \end{aligned}$ | $\begin{gathered} \text { Tanakadate } \\ \text { Sinzyō } \\ \text { Katō } \end{gathered}$ | $\begin{gathered} \text { Kato } \\ \text { Sirzyo } \\ \text { Tanakatate } \end{gathered}$ |
| Mean |  |  |  |  | $51^{\circ}$ |  |  |  |
|  $\theta$ $=54^{\circ}$ $18!4$ <br> Reduction to 1895.0 $=$ 0.63 <br> ,$\quad$,  sea level $=$ <br>   0.40  <br>  $=54^{\circ}$ $19!0$  |  |  |  |  |  |  |  |  |

HORIZONTAL INTENSITY（II）
Observations of the North Party， $18 \% 5$.


Kominatotaira Syuttyō（小盘渡本出張）
Observations of the North Party， 1895.

| （1） | Date and Hour （Mean Local＇Time．） |  |  | 11 | II | $\begin{gathered} \text { Mean } \\ \text { Temp. } \end{gathered}$ | Time of $\text { 1-Vib } \underline{n} \text {. }$ | Temp. $t_{v}$ |  |  | $\begin{gathered} \text { Temp. } \\ t_{\mathrm{i}} \end{gathered}$ | Observer | Fiecorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | July | $13^{\text {th }} 16^{\text {l／}}$ | $6^{\mathrm{m}}$ | ＊0．27308 | 435.46 | 18．6C |  | 18：6C | － | － | －－ | Tanakadate | Sinzyō |
| （2） |  | ， 16 |  | ＊0．27270 | 436.14 | 17.9 | 6.0423 | 17.6 | － | 一 | － | Tanakadate | Sinzyō |
| （3） |  | ， 16 |  | ＊0．27570 | 436.14 | 17.9 | 6.0099 | 17.6 | － | －－ | － | Tanakadate | Sinzyō |
| （4） |  | ＂ 17 |  | ＊0．27348 | 435.23 | 17.3 | 6.0333 | 17.3 | － | － | － | Tanakadate | Sinzyō |

## 171．ONO．

Simokawara（下 河 原）
DECLINATION（ $\delta$ ）
Observalions of the North Party， 1895.


## （188）

| Date and Hour （Mean Local Time．） |  |  |  | $\delta$ |  |  | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| July． $15^{\text {th }}$ $10^{\text {h }}$ 5.5 <br> $" 11$    <br> , 11 14.2  <br> $"$, 12 12 52.7 <br> $"$ $"$ 13 43.2 <br> $"$, 14 40.6  <br> $"$, 15 55.8  <br> $"$ $"$ 17 5.9 <br> $"$ $"$ 18 26.3 |  |  |  | $4{ }^{\circ}$ | $19^{\prime}$ 21 | $13^{\prime \prime}$ 4 | Tanakadate Katō | Sinzyo Tanakadate |
|  |  |  |  | ＂ | 21 <br> 24 <br> 20 | 4 | hato | Tanakadate |
|  |  |  |  | ＂， | 25 | 9 3 | Tanalkadate | Kintō |
|  |  |  |  | ＂， | 25 | 14 |  | Tanakadate |
|  |  |  |  | ＂， | 24 | 26 |  | Katō |
|  |  |  |  | ＂ |  |  |  |  |
| Mean |  |  |  | 4 | $20^{\prime}$ | $44^{\prime \prime}$ |  |  |
|  |  |  |  | $\delta=4 \quad 20!73$ |  |  |  |  |
|  |  |  |  | Iieduction to |  | $1895.0=$ | －1．04 |  |
|  |  |  |  | －0．02 |  |  |
|  |  |  |  |  |  |  |

DIP（ $\theta$ ）
Observations of the North Party， 1895.


HORIZONTAL INTENSTTY（II）
Observations of the Norih Party， 1845

| Date and Hour （Mean Local Time．） | II | M | Mean <br> ＇Temp． | Time of 1－Yibn | Temp. | Mean Deflections |  | Temp. | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\varphi_{1}$ | $\varphi_{2}$ |  |  |  |
| July． $14^{\text {th }} 21^{\text {h }} \quad 8^{\mathrm{mm}}$ | 0.28109 | 436.48 | 16.5 C | 5.9504 | 16.9 C | $642 \% 30 \%$ | $15^{\circ} 13^{\prime 2} 23^{\prime \prime} 8$ | 16.1 C | $\left\{\begin{array}{c} \text { Tanakadate } \\ \text { Sinzyō } \end{array}\right.$ | $\left\{\begin{array}{c} \text { Sinzyö } \\ \text { Tanakadate } \end{array}\right\}$ |
| ，＂ $15^{\text {th }} 3015$ | 0.28127 | 436.62 | 17.2 | 5.9475 | 17.6 | 64222.5 | 151310.0 | 16.9 | $\{$ Tanảkadate | Siňzyō |
| ＂$\quad$＂ $14 \quad 20$ | 0.28129 | 435.25 | 18．9 | 5.9569 | 19.4 | 64133.0 | 15127.5 | 18.4 | $\left\{\begin{array}{c}\text { Katō } \\ \text { Tanakadate }\end{array}\right.$ | $\left\{\begin{array}{c} \text { Tanakadate } \\ \text { Katō } \end{array}\right.$ |
| Mean | 0.28122 |  |  |  |  |  |  |  |  |  |

$I=0.28122$
－64
274
Ono Syuttyō（大 野 出 張）
Olservations of the North l＇arty， 1895.
（1）
（大野字瑇三平）

| Date and Hour （Mean Local Time．） | 11 | M | Mean <br> Temp． | Time of$1-Y i b .$ | Temp. | Mean Deflections |  | $\begin{gathered} \text { Temp } \\ t_{\mathrm{b}} \end{gathered}$ | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\varphi_{2}$ | $\varphi_{2}$ |  |  |  |
|  | $* 0.28039$ $* 0.28014$ | $\begin{aligned} & 436.69 \\ & 436.78 \end{aligned}$ | $\begin{aligned} & 15.3 \mathrm{C} \\ & 15.0 \end{aligned}$ | $\begin{aligned} & 5.9553 \\ & 5.9575 \end{aligned}$ | $\begin{aligned} & 15.3 \mathrm{C} \\ & 15.0 \end{aligned}$ | － | － | － | Sinzyō Katō | $\begin{aligned} & \text { Katō } \\ & \text { Sinzyō } \end{aligned}$ |
| Mean | 0.28027 |  |  |  |  |  |  |  |  |  |


| （2） |  |  |  |  |  | （大野字中山） |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Datejand Hour （Mean Local Time．） | 11 | M | Mean Temp． | Time of 1－Yib？ | $\begin{gathered} \text { Temp } \\ t_{v} \end{gathered}$ | Mean Deflections |  | $\underset{t_{D}}{T T_{1}}$ | Observer | Recorder |
|  |  |  |  |  |  | $\varphi_{1}$ | $\varphi_{2}$ |  |  |  |
|  | $\begin{aligned} & { }^{*} 0.27994 \\ & { }_{00.27996} \end{aligned}$ | $437 .(12$ $437.10$ | $\begin{aligned} & 14: 0 \mathrm{C} \\ & 13.7 \end{aligned}$ | $\begin{aligned} & 5^{8} .575 \\ & 5.956 \\ & 5.9574 \end{aligned}$ | $\begin{aligned} & 14.0 \mathrm{C} \\ & 13.7 \end{aligned}$ | － | －－ | － | $\underset{\text { Katō }}{\text { Sinzyō }}$ | $\begin{array}{r} \text { Katō- } \\ \text { Sinzyō } \end{array}$ |
| Mean | 0.27995 |  |  |  |  |  |  |  |  |  |

172．KUZI．
Tyōkyūzimura（久慈町長久寺村新井田）
DECLINATION（ $\delta$
Observations of the Nroth Party，1×95．

| $\underset{\text { (Ne }}{\frac{1}{2}}$ | ne ar | $\begin{gathered} \text { d Ho } \\ \text { Hil } \end{gathered}$ | ar <br> ne．） |  | $\delta$ |  | Olserver | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| July | $1 \mathrm{f}^{\text {th，}}$ | $12^{\text {h }}$ | $57.3^{\text {ma }}$ | 5 | $5^{\prime}$ | $46^{\prime \prime}$ | ＇Tanakadate | Katō |
| ＂， | ＂ | 1 t | 13.9 | ＂ | 1 | 21 | Kato | Tanakadate |
| ＂ | ＂ | 16 | 135 | ＂ | 6 | 17 | Sinzyo | Katō |
| ＂， | ＂， | 17 | 2.3 | ， | 5 | 40 | Tanakadiate | Sinzyō |
| ＂ | ＂ | 18 | 0 | ， | 4 | 33 | Kató |  |
| ＂ | ＂ | 19 | 35.6 | ＂ | 3 | 20 | Sinzyo | Katō |
| ＂ | ＂ | 21 | 8.4 | ＂ | 2 | 48 | ＂ | Sinzyō |
| ＂ |  | 23 | 17.0 | ＂ | $t$ | 1 | ， | ， |
| ＂， | $17^{\text {th }}$ | $1)$ | 32.0 | ， | 3 | 55 | ＂ | ， |
| ＂ | ＂ | $\stackrel{2}{2}$ | 22.5 | ， | 3 | 39 | ＂ | ，＂ |
| ＂ |  | 5 | 19.8 | ＂ | 1 | 35 | ＂ |  |
| ， | ， | 7 | 30.2 | ．， | 0 | 21 |  | ＇lanakadate |
| ＂ |  | 8 | 54.1 | ＂， | 1 | 11 | ＇Tanakadate | Katō |
| ＂ |  | 10 | 13.1 | ＂ | $\stackrel{1}{2}$ | 0 | Katò | ＇lanakadate |
| ＂ | ， | 11 | 27.2 | ＂， | ：3 | 48 | ， | Katō |
| － | ＂ | 12 | $\because 7.3$ | ， | 5 | $4 ;$ | ．， | $\cdots$ |
| ． | ＂ | 13 | $29 . t$ | ＇， | （i） | $1 t$ |  |  |
| ＂ | ＂ |  | 29.6 19.3 | ， | ； | 25 | Sinzy | Sinzyō |
| ＂， 1519.3 |  |  |  | ＂ | 9 | 21 | ＂ | ＂ |
| Mean |  |  |  | $5^{\circ}$ | $3^{\prime}$ | $31^{\prime \prime}$ |  |  |
|  |  |  |  | Fieduction to |  |  | 3 $5=5$ 3！57 |  |
|  |  |  |  | $-1.02$ | － |
|  |  |  |  | 0.00 |  |
|  |  |  |  | 5 2！ |  |

DI＇（ $\theta$ ）
Observations of the North Party， 1895.

| Date and Hour （Mean Local Tine．） |  |  |  | Needle No． |  | $\theta$ | Olserver | liecorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| July | $16_{\text {，}}^{\text {th }}$ | ${ }_{19}^{15}$ | ${ }_{3}^{3} 3^{\text {m }}$ | 14 14 | $54^{\circ}$ |  | Tanakarate | Katō |
| Mean |  |  |  |  | 54 |  |  |  |
|  |  |  |  |  |  |  | 1：2 |  |
|  |  |  |  |  |  |  | 0.38 |  |
|  |  |  |  |  |  |  | 0.00 |  |
|  |  |  |  |  |  |  | 1！6 |  |
| HORIZONTAL INTENSTIY（II） Observations of the North Party， 1895. |  |  |  |  |  |  |  |  |



Kuzi Syuttyō（久 慈 出 張）
Observations of the North Party， 1895.

（910）

| Date and Hour （Mean Local Time．） | 11 | M | Mean Temp． | Time of 1－Vib？． | $\underset{t_{v}}{\text { Temp. }}$ | Mean Deflections |  | $\underset{t_{D}}{T e m p}$ | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\varphi:$ | $\varphi_{2}$ |  |  |  |
| $\begin{array}{cclll}\text { July } & 17^{\text {th }} & 17^{\text {h }} & 28^{\mathrm{m}} \\ ,, & , & 17 & 37\end{array}$ | $\begin{array}{\|} * \\ * 0.28203 \\ * 0.28207 \end{array}$ | $\left.\begin{array}{\|} 435.75 \\ 435.82 \end{array} \right\rvert\,$ | $\begin{aligned} & 19.3 \mathrm{C} \\ & 19.0 \end{aligned}$ | $\begin{aligned} & 8.9445 \\ & 5.9436 \end{aligned}$ | $\begin{aligned} & 19: 3 \mathrm{C} \\ & 19.0 \end{aligned}$ | － | － | － | Sirzyō Katō | $\underset{\text { Kinzyō }}{\text { Kā }}$ |
| Mean | 0.28205 |  |  |  |  |  |  |  |  |  |


| Date and Hour （Mean Local Time．） | II | M | $\left\lvert\, \begin{gathered} \text { Mean } \\ \text { Temp. } \end{gathered}\right.$ | $\begin{aligned} & \text { Time of } \\ & 1-V i b ? \end{aligned}$ | $\mathrm{Tem}_{\mathrm{t}}$ | Mean Deflections |  | $\begin{gathered} \text { Temp. } \\ t_{\mathrm{b}} \end{gathered}$ | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\varphi_{1}$ | $\varphi_{2}$ |  |  |  |
| $\begin{array}{ccccc}\text { July } & 17^{\text {th }} & 199^{\text {l／}} & 9^{\mathrm{ma}} \\ , \quad & , & 19 & 19\end{array}$ | $\left\|\begin{array}{\|c} * 0.28213 \\ * 0.28221 \end{array}\right\|$ | $\begin{array}{\|l\|} 436.07 \\ 436.12 \end{array}$ | $\begin{aligned} & 189 \mathrm{C} \\ & 17.8 \end{aligned}$ | $\begin{aligned} & 5.9412 \\ & 5.9403 \end{aligned}$ | $\begin{aligned} & 18.0 \mathrm{C} \\ & 17.8 \end{aligned}$ | －－ | － | －－ | Katō Sinzyō | $\underset{\text { Katō }}{\substack{\text { Sinzȳ }}}$ |
| Mean | 0.28217 |  |  |  |  |  |  |  |  |  |

## 173．AKKA．

Mr．Tamasawa＇s vegitable ground（玉澤氏所有烟）．
DII ${ }^{(\theta)}$
Observations of the North Party， 1935.

| Fate and Horur <br> （Mean Local Time．） | $\begin{aligned} & \text { Needle } \\ & \text { No } \end{aligned}$ | $\theta$ | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: |
|  | 14 | $5 \% \quad 33: 2$ | Siuzyō | Katō |
|  | $\begin{array}{r} \text { Reduction to } \begin{array}{r} 1895.9 \end{array}= \\ 0 \quad \text { sea level }= \end{array}$ |  | $\begin{gathered} 33!2 \\ 0.34 \\ 0.60 \\ 33!5 \end{gathered}$ |  |

HORIZONTAL INTENSITY（LI）
Observations of the North Party， 1895.


174．ANAZAWA．
Nakagawara（小川村穴澤中河原）
DECLINATION（ $\delta$ ）
Observations of the North Party， 1835.

| Date and Hour （Mean Local Time．） |  |  |  | $\delta$ |  |  | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| July | $19^{\text {th }}$ | $17^{\text {¹ }}$ | $6.8{ }^{\text {m }}$ | 4 | $42^{\prime}$ | $7{ }^{\prime \prime}$ | Katō Sinzyō | Tinakadate Katō |
| ， |  | 18 | 26.5 | ＂ | 41 | 28 |  |  |
| ＂ | ＂ | 19 | 37.6 | ， | 41 | 24 | ruto | ＂ |
| ＂ | ＂ |  | 11.4 | ＂ | 41 | 43 | Katō | ＂ |
| ＂ |  |  |  | ＂ | 42 | 32 | ＂ | ＂ |
| ， |  | $\stackrel{2}{7}$ |  | ＂， | 41 36 | 56 49 | ＂， | ＂ |
| ＂， |  | 9 |  | ＂ |  | ＋29 | Tanakad te | Sinzyō |
| To be continmer |  |  |  |  |  |  |  |  |


| Date and Hour （Mean Local Time．） |  |  |  | $\theta$ |  |  | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| July＂，$"$$"$ | 20 ，th | $10^{1 /}$ | $38.0^{\text {m }}$ | 4 | $40^{\prime}$ | $41^{\prime \prime}$ | Tunakadate | Sinzyō |
|  |  | 12 |  | ＂ | 43 | 20 | ＂， | ＂ |
|  | ＂ | 13 |  | ＂， | 4.3 43 4 | 47 36 | sinzyō | Kätō |
|  |  | 16 |  | ＂， | 42 | 39 | Katō |  |
| Mean |  |  |  | $4^{3}$ | $41^{\prime}$ | $12^{\prime \prime}$ |  |  |
| $\delta=4$ $11!2$  <br> Reduction to $1895.0=$ -1.00 <br> ，．$\quad$ sea level $=$ -0.03 |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |

1）IP（ $\theta$ ）
Observations of the North Party， 1895.

| Date and Hour （Mean Local Time．） |  |  |  | Needle No． |  | $\theta$ | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| July ：， ＂， | $19{ }^{\text {th }}$ $2 \%$ $20{ }^{\text {th }}$ | 17 20 14 | 23 m 29 29 | 14 13 14 | 58 ＂， ＂ | 26.4 24.3 21.2 | $\begin{gathered} \text { Minzyō } \\ \text { Tanakadate } \\ \text { Katō } \end{gathered}$ | Kato Sinzyō Katō |
| Mean |  |  |  |  | $53{ }^{\circ}$ | 24： |  |  |
|  |  |  |  |  |  |  |  |  |
| HORIZONTAL INTENSITY（II） <br> bservations of the North Party， 1895. |  |  |  |  |  |  |  |  |



Anazawa Syuttyō（究 澤 出 張）


## 175．IWAIZUMI．

（岩泉字中屋．畑中）
HORIZONTAL INTENSITX（II）
Ohservations of the North Party， 1895.
（＊Value deduced from Vibration only by assuming Value of M）


Iwaizumi Syuttyō（岩 泉 出 張）
Gbservations of the North Party， 1895.
（旒泉村大学枋木）

| Date and Honr （Mean Local Time．） | $1 /$ | II | Nean <br> Temp． | Time of 1－Vib… | Temp． $\mathrm{t}_{\mathrm{v}}$ | Mcan Deflections |  | $\mathrm{Temp}_{\mathrm{t}_{\mathrm{p}}}$ | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\varphi_{1}$ | $\varphi \mathrm{q}$ |  |  |  |
| July $21^{\text {st }} 13^{\text {l }}$ ］ $2^{\text {m2 }}$ | ＊0．25259 | 433.92 | 21.2 C | 5.9517 | 24.2 C | －－ | － | － | Katō | Sinzyō |

## 176．MIYAKO． <br> Hudiwarakawara（藤 原 河 原） <br> DECLINATION（ $\delta$ ） <br> Observations of the North Party， 1895.



DIP $(\theta)$
Ob ervations of the North Party， 1895.



## 177．OGUNI．

（小國字末何．榊原所有畑）
DIP（ $\theta$ ）
Olservations of the North Party， 1895.

| Date and Honr （Mean Local Time．） |  |  |  | $\begin{aligned} & \text { Needle } \\ & \text { No. } \end{aligned}$ |  | ， | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| July |  | $14^{18}$ | $5^{51}$ | $\begin{aligned} & 14 \\ & 14 \end{aligned}$ | 52 53 5 | $\begin{array}{r} 58!4 \\ 3.0 \end{array}$ | Tanakadate Kitō | Kati <br> Tanakalate |
| Mean |  |  |  |  | 53 | 0.7 |  |  |
|  |  |  |  |  |  |  |  |  |

HORIZONTAL INTENSJTY（II）
（＊「alue derluced from T＇ibution only by assuming Vilue of M．）
Observations of the North Party， 1895.

| Date and Hour （Mean Local Time．） | H | M | Mean Temp． | Time of 1－Vib？ | $\underset{t_{v}}{\text { Temp. }}$ | Mean Deflections |  | Temp | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\psi_{1}$ | 4. |  |  |  |
|  | $\begin{aligned} & * 0.28158 \\ & * 0.28100 \end{aligned}$ | $\begin{aligned} & 432.11 \\ & 433.39 \end{aligned}$ | $\begin{aligned} & 30.8 \mathrm{C} \\ & 26.0 \end{aligned}$ | $\begin{aligned} & \mathrm{s} \\ & 5.9748 \\ & 5.9721 \end{aligned}$ | $\begin{aligned} & 30.8 \mathrm{C} \\ & 26.0 \end{aligned}$ | － | －－ | － | Tanakadate Kató | $\begin{gathered} \text { Katō } \\ \text { Tanakadate } \end{gathered}$ |
| Mean | 0.28129 |  |  |  | － |  |  |  |  |  |
|  |  |  | Rer | ＂， | $\text { or } 18$ | $\begin{aligned} & I I= \\ & 5.0= \\ & \mathrm{vel}= \\ & I I= \end{aligned}$ | $\begin{aligned} & 70 \\ & .35 \end{aligned}$ |  |  |  |

## 178．TONO． <br> Siroiwa，Kamo Zinsya（白岩村加茂神礼） <br> DECLINATINO（ $\delta$

Onservations of the North Party， 1895.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Da \\
（Mean
\end{tabular} \& e an Loc \& Ho

Ti \& | 11 |
| :--- |
| me．） | \& \& $\delta$ \& \& Observer \& Recorder <br>

\hline July \& $266^{\text {a }}$ \& $10^{\text {h }}$ \& $37.3{ }^{\mathrm{m}}$ \& 5 \& $19^{\prime}$ \& $5 i^{\prime \prime}$ \& Tiunakadate \& Sinzyo <br>
\hline ，＂ \& ， \& \& 57.2 \& ， \& 24 \& 3.9 \& \& Kato <br>
\hline ＂， \& ＂， \& \& 3.9 \& ＂ \& 2.5 \& 21 \& Kato \& Sinzyo <br>
\hline ＂ \& ，， \& \& 39.3 \& ＂ \& 25 \& 43 \& ， \& <br>
\hline ＂ \& ， \& \& 45.9 \& ＂ \& 24 \& 54 \& ，＂ \& Kıato <br>
\hline $\bullet$ \& ＂ \& \& 44.6 \& ， \& 23 \& 14 \& ， \& ， <br>
\hline $\cdots$ \& ＂ \& \& 42.6 \& ， \& 22 \& 36 \& ＂ \& ， <br>
\hline ＂ \& ， \& \& 38.6 \& ＂ \& 22 \& 47 \& ， \& ， <br>
\hline －• \& ＂ \& \& 28.6 \& ＂ \& 22 \& 58 \& Tanakadate \& <br>
\hline ，， \& \& \& 22.6 \& ， \& 21 \& 52 \& Sinzy ${ }^{\text {a }}$ \& Sinzy ${ }^{\circ}$ <br>
\hline ， \& 27 th \& 0 \& 32.4 \& ＂ \& 20 \& 15 \& ＂ \& ，， <br>
\hline ＂ \& ，， \& \& 23.9 \& ＂ \& 20 \& ¢ \& ，， \& ，， <br>
\hline ， \& ， \& \& 50.4 \& ＂ \& 18 \& 48 \& ， \& ， <br>
\hline ．． \& ＂， \& \& 45.3 \& ＂ \& 19 \& 36 \& ， \& ，， <br>
\hline ＂ \& ， \& \& 55.3 \& ＂ \& 1！） \& 18 \& ， \& ，， <br>
\hline ．， \& ＂ \& \& 49.7 \& ＂， \& 19 \& 18 \& 7oto \& ， <br>
\hline ＂ \& ， \& 7 \& 27.1 \& ， \& 18 \& 5 \& Tanakalate \& matule <br>
\hline ＂ \& ＂ \& \& 81.5 \& ＂ \& $1!1$ \& 1 \& ＂ \& Tanakadate <br>
\hline \& ， \& \& \& ＂， \& 19 \& f \& ＂ \& ， <br>
\hline \& ＂ \& \& 27.0 \& ＂， \& 20 \& 3 \& ＂ \& ＂ <br>
\hline \multicolumn{4}{|c|}{Mean} \& $5{ }^{\circ}$ \& $21^{\prime}$ \& $46^{\prime \prime}$ \& \& <br>
\hline \multicolumn{9}{|c|}{$\delta=5^{\circ} \quad 2133^{\prime}$} <br>
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{}} \& \multicolumn{3}{|l|}{Reduction to} \& $-0.92$ \& <br>
\hline \& \& \& \& \multicolumn{2}{|c|}{，．} \& \& $-0.02$ \& <br>
\hline \& \& \& \& \multicolumn{4}{|r|}{$\delta=5 \quad 20 \%$} \& <br>
\hline
\end{tabular}

I）IP $(\theta)$
Observations of the North Party， 1895.

| Date and Hoar （Mean Local Time．） |  |  |  | Needle No． |  | 相 | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| July $\#$ $"$ | $26^{\text {th }}$ <br> $25^{\text {th }}$ <br>  <br>  | 11 6 10 |  | 14 13 13 | $59^{\circ}$ $"$ $"$ |  | $\begin{gathered} \text { Sinzyō } \\ \text { Tanakadate } \end{gathered}$ | $\begin{gathered} \text { Katō } \\ \text { Sirzyō } \\ \text { Tanakadate } \end{gathered}$ |
| Mean |  |  |  |  | $53^{\circ}$ | $8!$ |  |  |
| Reruction to $1895.0=$ ＿．，＂sea level＝ |  |  |  |  |  |  | $8!1$ 0.17 0.01 $!!1$ |  |

HORIZONTAL INTENSITY（II）
Observations of the North Farty 1895.


Tōno Syuttyō（遠 野 出 涱）
Onservations of the North Party， 1995.

（2）
（烃崎邿字白岩早濑河畔ナル水本ノ東）


| Date and Hour （Mean Local Time．） | 11 | M | Mean <br> Temp． | Time of 1－Yibn． | $\begin{gathered} \text { Temp. } \\ t_{1} \end{gathered}$ | Mean Deflections |  | Temp． <br> $t_{1}$ | Observer | Pecorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\varphi_{1}$ | 42 |  |  |  |
| Tuly $26^{\text {th }} 15^{\text {h }} 36^{\text {m }}$ | ${ }^{(0.29203}$ | 432.82 | 27.34 | 5．$\% 652$ | 27：8C | － | － | － | ． | ． |

（3）
（遠野町授办憼覓院東）

| Date and Hour （Mean Local Time．） | $\begin{gathered} \text { Needle } \\ \text { No. } \end{gathered}$ | $\theta$ | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: |
| July $\quad 23^{\text {thl }} \quad 18^{\text {h }} \quad 33^{\text {m }}$ | 14 | 5311 ） | Ninzyó | Tanakadate |


| Date and Hour （Mean Local Time．） | II | II | Mean Temp． | Time of Temp．$1-\mathrm{Vib}^{\prime} . \quad \mathrm{t}_{\mathrm{v}}$ |  | Mean Deflections |  | $\begin{gathered} \text { Temp } \\ t_{v} \end{gathered}$ | Ouserver | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | 41 | 42 |  |  |  |
| July ． $26^{\text {th }} 17^{\text {h }} 29 \mathrm{~mm}$ | ＊0．2220） | 433.42 | 25.5 C | 5.1607 | 25.5 C | － | － | － | Tanakadate | Sinzyō |

179．KAMAISI． Suga－kaigan（釜石町字須賀海岸）

DECLINATION（ $\delta$
Ulservations of the North Party， 1895.

| $\begin{gathered} \mathrm{Da}_{2} \\ \text { (Mea) } \end{gathered}$ | e and Loca | $\begin{gathered} \mathrm{Ho} \\ \hline \mathrm{Ti} \end{gathered}$ | 17 <br> me．） |  | $\delta$ |  | Olserver | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| July | $28^{1 /}$ | $11^{11}$ | 57.9 m | 4 | $31^{\prime}$ | $59^{\prime \prime}$ | Timakadate | Sinzyō |
| ，＂ | ．， |  | 37.1 | ＂ | 32 | 21 | Kiato | Tanakadate |
| ， | ＂， |  | 470 | ．． | 3：2 | 7 |  | s．＂ |
| ＂ | ．， |  | 37.9 | ，． | 32 | 14 | Timakadate | Sinzyō |
| ＂ | ， |  | 2.6 | ．， | 31 | 58 | ＂${ }^{\text {a }}$ | － |
| $\because$ | ＂ |  | 31.1 | ： | 31 | 38 | Sinzyo | ．， |
| ＂， | ， |  | 22.1 | ， | 31 | 59 | ， | ， |
| ， | ， | $11 ;$ | 18.8 | ， | 31 | $\because$ |  | ， |
| ＂ | ．， | 18 | 16.1 | ， | $2: 1$ | 53 | Tonakiclate |  |
| ， | ， | 20 | 0.5 | ， | 29 | 41 | Sinzyo | Tanakadate |
| ＂， |  | 21 | 32.9 | ， | 28 | 52 | ＇lianakadate | Sinzy－ |
| ， | $\cdots$ | 1 | $3 \cdot 4.7$ | ， | 28 | 35 | Kató | Katō |
| ＂ | －， | 1 | 5.1 | $\bullet$ | $\xrightarrow{9}$ | 33 | － | － |
| ＂ | ， | 4 | 10.3 | － | 27 | 59 | $\stackrel{ }{ }$ | － |
| － | ．， | 5 | 6.1 | ．， | 23 | 54 | $\cdots$ | ＂ |
| ．， | ， | ${ }^{1}$ | 4.1 | ．， | 27 | 7 | ， | ， |
| － | ， | （； | 57.1 | ， | 25 | 51 | ， | ． |
| －• | ， | 7 | 42.7 | ．， | 24 | 27 | －＇ |  |
| ， | ， | ！ | 1.9 | ， | 27 | $5!$ | Sinzyo | Sinzy |
| ＂ | $\cdots$ | ！ | 492 | － | 28 | 44 | ＇Tanakadate |  |
| ．， | $\cdots$ |  | 55.3 | ＂ | 30 | 3 | Sinzyo | Tamakidate |
| － | ＂ | 12 | 237 | － | 31 | 23 | ．， | ；＊ |
| Nean |  |  |  | 4 | $2)^{\prime}$ | $12^{\prime \prime}$ |  |  |
| $\delta=4 \quad 29!20$ |  |  |  |  |  |  |  |  |
|  |  |  |  | Ieeduction to |  |  | $=-0.90$ |  |
|  |  |  |  | ＂，，＂sea |  |  | 0.06 |  |
|  |  |  |  |  |  |  | $\delta=1 \quad 2 \mathrm{~S}!3$ |  |

DLP $(\theta)$
Ubservations of the Nurth larty， 1855.


HORIZONTAL INTENSTTY（II）
Olservations of the North Party，189．）．

| Date anal Hour （Mean Local line） | ／I | U | Mean <br> Temp． | lime of 1－Yibッ． | $\begin{gathered} T \in m p . \\ t_{v} \end{gathered}$ | Mean <br> D $\varphi_{1}$ | eflections <br> $\varphi_{2}$ | Temp. | Olserver | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| July $\mathrm{Lb}^{\text {th }} 1 \mathrm{f}^{\text {h }}$（0m | 0.28311 | $4: 3.81$ | 24.8 C | 5．9540 | 25.1 C | $6^{\circ} 366^{\prime} 10!6$ | $14^{\circ} 59^{\prime} 44^{\prime \prime} 4$ | 24.6 C | $\left\{\begin{array}{c} \text { Kato } \\ \text { T'anakarlate } \end{array}\right.$ | $\left\{\begin{array}{c} \text { T'anakadate } \\ \text { Katō } \end{array}\right.$ |
| ，＂，20 505 | 0.28345 | 434.16 | 21.2 | 5.9385 | 21.3 | 63721.3 | $15 \quad 2$ 2．5 | 21.0 | $\left\{\begin{array}{c} \text { Sinzyo } \\ \text { Tanakadate } \end{array}\right.$ | $\left\{\begin{array}{l} \sin \% y_{0} \end{array}\right.$ |
| ＂，23th 8 \＆ 21 | 0.28333 | 434．4！ | 20.8 | 5.9397 | 20.9 | 63745.0 | $15 \quad 313.8$ | 20.7 | $\left\{\begin{array}{l} \text { Sinzyo } \end{array}\right.$ | $\{\text { Thanakulate }\}$ |
| ＂， 11 31 | 0．28：337 | 433.57 | 24.3 | 5.9 10：0 | 21.4 | 636：36．3 | 15017.5 | 24.3 |  |  |
| Mean | 0.25334 |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |

Kamaisi Syuttyō（釜 石 出 張）
Observations of the North Party， 1895.

| Date and Hour （Mean Local Time．） |  | $1 I$ | ．1／ | $\begin{aligned} & \text { Mear } \\ & \text { Temp. } \end{aligned}$ | Time of 1－Yibn． | $\underset{t_{v}}{T e m p .}$ | Mean Deflections |  | $\underset{t_{\mathrm{p}}}{\text { Temp. }}$ | Observer | Recorder | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
|  |  | $\varphi_{1}$ |  |  |  |  | 4.2 |  |  |  |
| July $28^{\text {th }}$ | － |  | ＊0．28373 | 434.47 | 21.9 C | 5.9356 | 21.9 C | － | － | － | Katō | Tadakadate |

180．KESENNUMA．
Motomatigawara（元 町 河 原）
Observations of the North Party， $1 \times 95$.

| Date and Hour <br> （Mean Local Time．） |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

DIP（ $\theta$ ）
Onservations of the North Party， 1895.


HORIZONTAL IN＇TENSITY．
Observations of the North Party， 1855.


Kesennuma Syuttyo（氣 仙 沼 出 張）
Observations of the North Party， 1895.
（1）
（字队）脇河原）

| Date and Hour <br> （Mean Local Time．） | Needle No． | $\theta$ | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: |
|  | 14 | $52.24 \%$ | Tanakadate | Tanakadate |



181．ISINOMAKI．
Kadonowaki coast（門脇後町潅淮）
DECLINATION（ $\delta$ ）
Onservations of the North I＇arty， 1895.

| Date and Homr （Mean Local Time） |  |  |  |  | $\delta$ |  | Onserver | Liecorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Aug．$"$$"$$"$$"$$"$ | $6^{\text {th }}$ | $7^{\text {h }}$ | $59.8{ }^{19}$ | 4 | $54^{\prime}$ | 48 | Tanakadate | Katō |
|  |  | ！ | 0.5 |  | 57 | 52 |  |  |
|  | ＂ | 110 | 2.3 | 5 | ， | 22 | Kató | Tanakadate |
|  | ＂ | 10 | 59.1 | ， | 3 | 13 |  | Tanakadate |
|  | ＂， |  |  | ＂， | 3 | 19 | sinzyó |  |
| To be continued |  |  |  |  |  |  |  |  |

（198）


DIP（ $\theta$ ）
Olservations of the North larty， 1895.

| Dite and Hour （IVen Local Time．） |  |  | Neenlle No． |  | $\theta$ | Obscrver | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ang．＂，$\#$ | $6^{\text {th }} \quad 99^{\prime \prime}$ | $41^{111}$ | 14 | $51^{\circ}$ | $45!7$ | Katos | ＇ranakarlate |
|  | －$\quad 13$ | 24 | 13 | ．， | 16．1 | Ninzyó |  |
|  | ＂， 20 | 16 | 14 | ＂ | 15．9 | ＂ | Sinzyō |
|  | Mean |  |  | 51 | 15！6 |  |  |
|  |  |  |  |  |  | 4！！ |  |
|  |  |  | 0.1 |  |
|  |  |  | 0.0 |  |
|  |  |  |  |

HORIZONTAL INTENSITY（II）
（＊Vilue clatured from Vibration omly by asswminty Valme of M．） Observations of the North Party， $18: 5$.


Isinomaki Syuttyō（石 参 出 根）

| （1） | Observations of the North Party， 1815. Hiyoriyama <br> （日 和（11） |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Dite and Hour （Mean Lincal Time．） | Needle No． |  | $\theta$ | Ohserver | Recorder |
|  | 1：3 | $51^{\circ}$ | $11 . .3$ | ＇lamakatate | ＇lanakitute |


| Date and Hour （Mean Lneal Time） | 11 | M | Mean Temp． | Time of Temp． 1－Yib＂．$t_{v}$ |  | Mean Deflections |  | $\operatorname{Temp}_{\mathrm{t}_{\mathrm{p}}}$ | Ohserver | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | 41 | $\varphi_{3}$ |  |  |  |
| Aug． $6^{\text {th }} 15^{\text {h }} 34^{\mathrm{m}}$ | ＊0．29732 | 433.99 | $24: 1 \mathrm{C}$ | 5.9019 | 24.10 | － | －－ | － | ＇Tanakadate | ＇Tanakadate |


| （2） | Station， 1887 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Date and Hour <br> （Mean Lrcal Time．） | Neerlle No． |  | $\theta$ | Observer | Recorder |
| Aug． $7^{\text {th }} 10^{\text {m }} 19^{\text {m }}$ | 14 | $51^{\circ}$ | 43： | Sinzyō | Tanakalate |



| Date and Homr （Mean Local＇Line．） | II M | $\begin{gathered} \text { Mean } \\ \text { Temp. } \end{gathered}$ | $\begin{aligned} & \text { Time of } \\ & 1-V^{\prime} i b{ }^{n} . \end{aligned}$ | Temp． <br> $t_{-}$ | Mean <br> ${ }_{4}$ | Deflection． <br> 42 | Temp. | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sept．12th $7^{\text {th }} 5^{\text {m }}$ | ＊）． 29419432.50 | 22：80 | 5.9444 | 22：8C | － | － | － | Tatibara | Ninzy |

（•）Top of Mit．Kinkwa（金热山 ）絕頂）

| Date and Honr <br> （Mean Local Time．） | Needle <br> No． | $\theta$ | Observer | Recorder |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Sept．12th | $122^{4}$ | $54^{\mathrm{m}}$ | 14 | $51^{\circ}$ | 45.4 |


| Date and Hour （Mean Local Time．） | 11.1 | Me．n <br> Temp． | ＇Time of 1-Vib? | Temp． $t_{v}$ | Mean <br> $\varphi_{1}$ | Deflection． <br> $\varphi_{2}$ | $\begin{gathered} \text { Temp } \\ t_{\mathrm{b}} \end{gathered}$ | Ohserver | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sept．12 ${ }^{\text {th }} 11^{\text {h }} 35^{\text {min }}$ | ＊0．28838 432．5．5 | 22.7 C | 5.9504 | 22.7 C | －－ | － | － | Tatiban | Ninzy |

182．IKUSAZAWA．
Oniköbemura，Ikusazawa（鬼首村字戰譱）
DIP．${ }^{(\theta)}$
Observations of the North Party， 1895.

（200）
HORIZONTAL INTENSITY（II）
 Olservations of the North Party， 1895.



## 183．SIMMOINNAI．

South shore of Riv．Omono（御物川／南岸字田用橋）
DECLINATION（ $\delta$ ）
Observations of the North＂Party， 1895.

| Date and Hour <br> （Mean Local Time） |  |  |  |  | $\delta$ |  | Olserver | Recorter |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Arg． | $9^{\text {h }}$ | $2{ }^{\text {h }}$ | $5.5{ }^{\text {m }}$ | 50 | 20＇ | $57^{\prime \prime}$ | Tanakadate | Katō |
| ＂， | ， | 22 | 11.4 | ，． | 2.5 | 31 | Katō | ，． |
| ＂ | 10th | 23 | 3．6 | ， | 95 | 10 | ＂ | ．， |
| ＂ | $10^{\text {th }}$ |  | 53.2 | ＂ | 23 | 39 | ＂ | ＂ |
| ＂ | ＂ |  | 44.4 4.0 | ＂ | 22 | ＋ 49 | ＂ | ＂ |
| － | ＂ | 5 | 2．06 | ＂， | 21 20 | 11 | ＂ | ＂ |
| ＂ | ＂ | ${ }_{6}$ | 40.1 | ＂ | 17 | 29 | ＂ | ＂ |
| － | ， | 8 | 6.9 | ， | 19 | 12 | Tauakadate | Sinzyō |
| ＂， |  | 9 | 14.7 | ＂ | 22 | 9 | Sinzyō | Tanakadate |
| ＂ |  | 10 | 12.5 | ， | 24 | 14 | － | Sinzyō |
| $\cdots$ |  |  | 35.0 | ， | 26 | 45 | ＂ | ，＂ |
| ＊ |  |  | 37.1 | ， | 30 | 5 | ＂ |  |
| „ |  | 12 | 29.5 | ，， | 30 | 49 |  | Tanakadate |
| ， |  | 13 | 43.2 | ．， | 29 | 34 | Katō | Katō |
| ＂ |  | 14 | 39.8 | ＂， | 27 | $\stackrel{2}{3}$ | Sinzuso | ，， |
| ， |  | 16 | 25.0 | ，． | 25 | 51 | Katō | ．， |
| ＂， |  | 17 | 31.4 | ．． | 26 | 31 |  | ， |
| ，， |  | 18 | 20.4 | ． | 2.$)$ | 316 | Sinzyō | ．． |
| ＂ |  | 19 | 47.0 | ． | 25 | 29 | Katō |  |
| ， |  | 24 | 52.8 | － | 22 | 10 | Sinzyō | Sinzyō |
| ， | ， | 21 | 24.4 | ，． | 23 | 46 | ＂ | „ |
| ．， | ，． | 22 | 50.2 | ．， | 21 | 47 | ．， | ， |
| ＂ |  | 23 | 41.0 | ． | 23 | 55 | ．， | ．， |
| ， | $11^{\text {th }}$ | 0 | 42.1 | ＂， | 23 | 41 | ．， | ，． |
| ＂ | ＂ | 2 | 19.1 | ，． | 26 | 1 | ．， | ，． |
| ．， | ＂ | 4 | 1.6 |  | 23 | 47 | ．， | ．， |
| ＂ | ＂ | 5 | 26.5 | ＂ | 23 | 10 | ： | ＂ |
| Mean |  |  |  | 5 | $24^{\prime}$ | $42^{\prime \prime}$ |  |  |
|  |  |  |  | Reduction to |  |  | $5^{\circ} 2477^{0}$ |  |
|  |  |  |  | $-1.11$ |  |
|  |  |  |  | $-0.112$ |  |

DIP $(\theta)$
Observations of the North Party， 1895.



Simoinnai Svuttyō（下院内出張）
Onservations of the North Paty，1s：5．
1）
Stasion， 1887 （村役場震ノット測點）

| Date and Homr （Mean Local Time．） | Neerlte No． | $\theta$ | O1sserver | Recoriler |
| :---: | :---: | :---: | :---: | :---: |
| Ang． 1 （ith $\quad 17{ }^{\text {n }}$ | 11 | 32560 | রinzyō | 人in\％「ご |


（2）
（下院内後町

| Date and Hour <br> Mean <br> Local Time．） |  |  |  |
| :---: | :---: | :---: | :---: |
| Ang． | $11^{\text {th }}$ | Sl | $13^{\mathrm{m}}$ |


| Neerlle No． | $\theta$ | （1）server | liecorrter |
| :---: | :---: | :---: | :---: |
| $1: 3$ | 52－59\％1 | Sinzoio | Sinzō |


| I hate and Homr （Mean Lecal Time．） | H | i／ | $\begin{gathered} \text { Me:m } \\ \text { Temp } \end{gathered}$ | Time of1-Yibın. | $\left\lvert\, \begin{gathered} \text { Temp. } \\ t_{v} \end{gathered}\right.$ | Mean Detlertions |  | Temp. | 1）nservar | liecorter |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | 41 | f |  |  |  |
| Angr $11^{\text {th }} \quad 7^{\text {l }} \quad 57^{\text {m }}$ | \％0．28321 | 4：2．31 | 27．6C | 5．9．64 | 27．6C | － | － | － | Sinzyö | Sinzyō |

## 184．YOKOTE．

## Hatiman－zinsya（八幡村八幡神刑）

## DECLINATTON（ $\delta$ ）

Observations of the North l＇arty． 1895.

| $i_{i}^{1}$ | $\begin{gathered} \text { e and } \\ \text { Local } \end{gathered}$ | 1 Tip | me．） |  | $\delta$ |  | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ang | $11^{\text {th }}$ | $1.5{ }^{1 /}$ | $18.4{ }^{\text {m }}$ | \％ | $25^{\prime}$ | $1 .{ }^{\prime \prime}$ | Tanakimlate | Kati） |
| ．． | － | 15 | 53.1 | ， | 27 | 26 | Ninzy | ．． |
| ，． | ．． | 17 | $\pm 7.7$ | ．， | 21 | 51 | ， | ． |
| ，． | ＂ |  | －0．1 | ，＂ | 2.5 | 5 |  |  |
| ，． | ＂， | 21 | 6， 6 | ．． | $\cdots$ | 32 | T＇anakalate | Tanakatiate |
| ．， | ． | 22 | 16．8 | ， | $\because 5$ | 16 | ．． | ．． |
| ．． |  |  | 33.7 | ．． | 2.5 | 15 | ， | ．． |
| ，． |  | 1 | 43.3 | ， | 2.5 | 1.1 | ．． | ．， |
| ．． | ， | 1 | 47.4 | ，＂ | 21 | 4 | ， | ．． |
| ＂ | ＂． | 5 | 59.0 | ．． | $2: 3$ | 511 | ．． | ．． |
| ．， | ，． | 15 | 57.0 | ．． | $2: 3$ | 11 | ．． |  |
| ， | ．． | $\stackrel{5}{8}$ | 23.5 | ＂ | $2: 3$ | （1） |  | Katī |
| － | ． | ！ | 38.7 | ，． | 23 | 3 S | K：ati | ，． |
| ， |  |  | 41.0 | ．． | 211 | 4 | ． | ． |
| － |  | 11. | 11.8 43.8 | ， | 97 | 41 | ． | ＂ |
| ．． | ．＂ | 13 | ＋2．8 | ．． | $\underline{29}$ | 10 | ．． | ． |
| ．． |  | 15 | 7.8 | ．． | 24 | 40 | ．． | ＂． |
| Mean |  |  |  | 5 | $25^{\prime}$ | $33^{\prime \prime}$ |  |  |
| $\delta=5$ $25!62$  <br> lieduction to 1895.0 -1.15 <br> $" \quad, \quad$ sea level $=$ -0.11 <br>  $\delta=5$ 24.5 |  |  |  |  |  |  |  |  |

Ohservations of the North Party， 1895.

| Date and Hour （Mean Local Time．） |  |  |  | Needle No． |  |  | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ang． | $11^{\text {th }}$ $12^{\text {th }}$ ， | 1711 14 | $\begin{aligned} & 13^{\mathrm{m}} \\ & 10 \\ & 33 \end{aligned}$ | $\begin{aligned} & 14 \\ & 14 \\ & 13 \end{aligned}$ |  | $2!4$ 59.7 0.7 | Tanakadate Katō <br> Tanakadate | Katō <br> Tanakadate |
| Mean |  |  |  |  |  |  |  |  |
| $\theta=53^{\circ}$ 1.5 <br> HORIZONTAL INTENSITY  <br> $(I I)$  |  |  |  |  |  |  |  |  |


| Date and Hour （Mean Local Time．） | II | －II | Mean <br> Temp． | Time of 1－Vibn． | $\begin{gathered} \text { Temp. } \\ t_{v} \end{gathered}$ | Mean De <br> $\varphi_{1}$ | flections <br> $\varphi_{2}$ | $T \mathrm{Temp} .$ | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{cccc} \text { Aug. } 11^{1 \mathrm{~h}} & 15^{\mathrm{h}} & 24^{\mathrm{m}} \\ , & 12^{\mathrm{hh}} & \boxed{ } & 57 \\ , & , & 13 & 20 \end{array}$ | $\begin{aligned} & 0.28415 \\ & 0.28426 \\ & 0.28434 \end{aligned}$ | $\left\|\begin{array}{l} 430.80 \\ 432.99 \\ 430.13 \end{array}\right\|$ | $\begin{aligned} & 31.3 \mathrm{C} \\ & 26.0 \\ & 35.3 \end{aligned}$ | $\begin{gathered} \hline \mathrm{s} \\ 5.9593 \\ 5.9380 \\ 5.9616 \end{gathered}$ | $\begin{aligned} & 32.2 \mathrm{C} \\ & 25.1 \\ & 36.0 \end{aligned}$ | $\begin{aligned} & 633^{\prime} \quad 0!0 \\ & 63 t \quad 8.1 \\ & 63155.0 \end{aligned}$ | $14^{\circ} 51^{\prime} 47!5$ <br> 14548.8 <br> 144913.8 | $\begin{aligned} & 30.5 \mathrm{C} \\ & 27.0 \\ & 34.6 \end{aligned}$ | $\left\{\begin{array}{c} \text { Katō } \\ \text { Sinzyō } \\ \text { Sinzyō } \\ \text { Tanakadate } \\ \text { Kitō } \end{array}\right.$ | $\left\{\begin{array}{c} \text { Sinzyō } \\ \text { Katō } \\ \text { Tanakadate } \\ \text { Katō } \\ \text { Tanakadate } \end{array}\right.$ |
| Mean | 0.28425 |  |  |  |  |  |  |  |  |  |
| $I I$ $=$ 0.28 .425  <br> Reduction to 1895.0 $=$ -240 <br> $"$, sea level $=$  <br>   8.25  <br>  $I I$ $=$ 0.28423 |  |  |  |  |  |  |  |  |  |  |

Yokote Syuttyō（横 手 出 根）
Observations of the North Party． 1895.
Garden of Kosakaya
（小坂屋庭前）

| Date and Hour <br> （Mean Local Time．） | Needle <br> No． | $\theta$ | Observer | Mecorder |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Ang． $12^{\text {th }} \quad$ Th | $13^{\mathrm{m}}$ | 14 | 53 | $5!2$ | Katō |


| Date and Hour （Mean Local Time．） | II | M | Mean <br> Temp． | Time of 1-Vib ! | Temp. | Mean D <br> $\varphi_{1}$ | Deflections <br> $\varphi_{2}$ | $\begin{gathered} T+m p . \\ t_{p} \end{gathered}$ | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $* 1.28367$ $* 0.28370$ | $\begin{aligned} & 43375 \\ & 433.78 \end{aligned}$ | $\begin{aligned} & 23.8 \mathrm{C} \\ & 23.7 \end{aligned}$ | $\begin{aligned} & \mathrm{s} \\ & 5.9415 \\ & 5.94419 \end{aligned}$ | $\begin{aligned} & 23.8 \mathrm{C} \\ & 23.7 \end{aligned}$ | － | － | －－ | Sinzyō Katō | $\begin{aligned} & \text { Kintō } \\ & \text { Sinzyō } \end{aligned}$ |
| Mean | 0.23369 |  |  |  |  |  |  |  |  |  |

## 185．KAKUDATE．

## Nakagawamura（中 川 村） <br> DECLINATION（ 8 ）

Observations of the North Party， 1895.

| Date and Howr （Mean Local Time．） |  |  |  |  | $\delta$ |  | Observer | Rifcorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ang．$"$$"$$"$$"$$"$$"$$"$$"$ | $133^{+1 /}$ | $4^{11}$ | $3.2{ }^{\text {m1 }}$ | $4^{\circ}$ | $39^{\prime}$ | ＇99 | Kato | Kato |
|  | ， | 6 | 2.1 |  | 37 | 42 | ，＂ |  |
|  |  | 6 | 53.9 | ＂ | 36 | 26 |  | Tanakndate |
|  | ，， | 8 | 4.9 | ，， | 35 | 45 | Tanakata＇e | Sinzyō |
|  | ．， | 8 | 39.0 | ＂ | 36 | $1)$ | Sinzyō | Tanakatate |
|  | ＂ |  | 30.3 | ＂ | 36 | 32 | ，＂ | $\stackrel{ }{ } \stackrel{ }{ }$ |
|  | ＂ |  | 36.6 | ＂， | 38 | 51 | ， | ， |
|  | ＂ |  | 4.7 | ＂ | 41 | 50 | Tanakadato | ， |
|  | ＂， |  | 28.1 | ， | 42 | 44 | ＂ | ＂ |
|  |  |  |  |  | con | ned |  |  |

Continued

| Date and Hour （Mean Local Time．） |  |  |  | $\delta$ |  |  | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Aug 13 ${ }^{\text {th }} 14^{\text {ch }}$－5 5 m |  | $14^{1 /}$ | $45.5^{\text {m }}$ | $1^{\circ}$ | $41^{\prime}$ | $35{ }^{\prime \prime}$ | Sinzyō | Sizzyō |
| ＂ | ＂ |  | 33.4 | ＂ | 40 | 22 |  |  |
| － | ＂ | 17 | 106 | ．． | 343838 | 50 | ，＂ | ＂ |
| ＂ | ＂ | 18 | 7．3 | ， |  | 7 |  | ＂， |
| ＂ | ＂ | 19 | 37.9 | ， | 37 | 51 | Tamakadata | ＂， |
| ， | ＂ | 21 |  | ， | 37 |  | Sinzyō | Sinzyó |
| ＂ | i＂th |  |  | ， | 38 | 17 | ＂ |  |
| ＂ | $14^{\text {th }}$ | ${ }^{1}$ |  | ＂ | 38 | 11 | ，＂ | ＂， |
| ＂， | ，＂ |  |  |  | 38 | 1：1 | ＂ | ＂ |
|  | ＂， | 5 | 41.2 | ＂， | 34 38 | 0 7 | Tanakadate | Tanaikalate |
| Mean |  |  |  | 4 | $33^{\prime}$ | $40^{\prime \prime}$ |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |

DIP ${ }^{(\theta)}$
Olservations of the North Party，1855．


HORIZONTAL INTENSITY（II）
Observations of the North Party， 1895.

| Date and Hour （Mean Local Time．） | II | M | Mean Temp． | Time of$1 \text {-Vibㄹ. }$ | $\begin{gathered} \text { Temp. } \\ t_{v^{\prime}} \end{gathered}$ | Mean Deflections |  | $\begin{gathered} \text { Temp. } \\ t_{0} \end{gathered}$ | Olserver | Recorter | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|  |  |  |  |  |  | 41 | $\psi_{2}$ |  |  |  |
| $\left\|\begin{array}{cccc} \text { Aug. } & 13^{3 \mathrm{~h}} & 7 ?^{\mathrm{l}} & 41^{\mathrm{m}} \\ " & , " & 14 & ! \\ , & " & 19 & 4 \end{array}\right\|$ | 0.28242 | 432.72 | 25.4 C | $5^{8} .9617$ | 25.4 C | $6^{\circ} 37^{\prime} 0 \% 0$ | $151{ }^{\prime} 2!5$ | 25．50 | S＇amakadate | Sinzyō |
|  | 0.25260 | 431.77 | 29.8 | 5．9：83 | 29.5 | 6362.5 | 145850.0 | 28.2 | $\left\{\begin{array}{c}\text { Tanakakate } \\ \text { Kaī̀ }\end{array}\right.$ | $\left\{\begin{array}{l}\text { Tas akalate } \\ \text { Kato }\end{array}\right.$ |
|  | 0.24215 | 432.01 | 26.0 | 5.5709 | 23.6 | 63652.5 | 15041.3 | 25.4 | $\left\{\begin{array}{c}\text { Sirzyō } \\ \text { Tauakadate }\end{array}\right.$ | ， |
| Mean | 0．28239 |  |  |  |  |  |  |  |  |  |
| $H$ $=$ $0.282: 39$  <br> Herluction to 1895.0 $=$ -245 <br> , sea level $=$ 55 <br> $H$ $=0.2 \times 2: 37$   |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Kakudate Syuttyō（角 䠉 出 張）
Ubservations of the North Party， 1895.
（1）
Kakudate Simonokawara（仵䈇下ノ河原）

| Date and Hour （Mean Local＇Time．） | Neenlle No． | $\theta$ | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: |
| Ang． $13^{\text {th }} 166^{\text {h }}$ 3 $3^{\text {m }}$ | 11 | 3 \％ | ＇＇anakadate | Tanakakate |

（204）

| Dite and Houir （Mean Local Time．） | H | II | $\begin{aligned} & \text { Mean } \\ & \text { Temp. } \end{aligned}$ | Time of$1-\mathrm{V}^{2} \mathrm{iln} .$ | $\begin{gathered} \text { Templ. } \\ t_{v} . \end{gathered}$ | Mean Deflections |  | $\begin{gathered} \text { remp } \\ \mathrm{t}_{\mathrm{D}} \end{gathered},$ | Observar | Recorter |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | 41 | 42 |  |  |  |
| Aug． $13^{\text {th }} 15^{\text {h }} 57^{\text {ma }}$ | ＊0．28281 | 431.13 | 29.8 C | 5.9688 | 29.80 | － | － | － | Katō | Tamakadate |

（2）
（中川朴鰍瀨河々岸）

| Date and Hour （Mean Lecal Time．） | Needle No． | $\theta$ | Oloserver | liecorder |
| :---: | :---: | :---: | :---: | :---: |
|  | 11 | 541112 | Sinzy ${ }^{\circ}$ | Sinzyō |

## 186．KARIWANO．


DIP（ $\theta$ ）
Observations of the North liaty，18：5．


HORIZONTAL INTENSTTY（II）
 Olservations of the North Party，14．5．


## 187．AKITA．

Site of old castle（蓶城趹：内小學校速動場）
DECLINATION（ $\delta$ ）
Otservations of the North l＇urty， $185 \%$ ．

| Date and 1 1 Iour （Mean Local Tinie．） |  |  |  | $\delta$ |  |  | Observer | Recorter |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ang． | $14^{1 / 2}$ | $2 u^{1 / 1}$ | 30.3 m | S | $\because{ }^{\prime}$ | 1．9＂ | Sinzuō | Kitō |
| ＂， | ， | 21 | 8． 8 | ， | 3 | 4！ | Tanakadate |  |
| ， |  |  | 31.8 | ＂ | 23 | 14 | ．， | Tamakialate |
| ＂ | $15^{\text {th }}$ | 1 | 3.7 | ＂ | 23 | 12 | ＂ | ＂ |
| ＂ | ＂ | 1 | 33.7 | ＂ | 2 | 32 | ＂ | ， |
| ＂ | ．， |  | 36.9 | ＂ | 21 | 17 | ＊ | ＂ |
| ＊ | ＂ |  |  | ＂ | － 0 | 318 | ＂ | ＂ |
| ＂ | ＂ |  | 15.7 | ＂ | 21 | 218 |  | K＂ato |
| ， | $\because$ |  | 25．0 | ＂， | 21 | 3： | Kato | Sinzyo |
| ＂ |  |  | 35.3 | ＂， | 24 | ：36 | ＂ | Katō |
| ＂ | ＂ | 11 | 27.2 | ＂ | 25 | 10 |  | ＂ |
| ＂ | ， | 12 | 16.4 | ＂ | 24 | 11 | ＊inzē | ， |
| ＂ | ＂ | 13 | 28.3 | ＂ | 23 | 26 | ．． | ＂ |
|  |  |  |  |  | cout | nued |  |  |

Continned

| Date and Honr <br> （Mean Local Time．） |  |  |  | $\delta$ |  |  | Observer | Recorler |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Aug． | $15^{\prime}$ | $1.1{ }^{1 /}$ | $27.8{ }^{\text {m }}$ | $\overbrace{}^{\circ}$ | $25^{\prime}$ | $32^{\prime \prime}$ | Kato | Katō |
| ＂ | ， |  | 43.2 | ， | 24 | 14 |  |  |
| ＂ | ＂ | 17 | 34.4 | ＂ | $\cdots 2$ | 51 | Sinzyó | Sinzyō |
| － | ， | 18 | 15 | ．， | 22 | 415 | ，＂ | ．， |
| ＂ | ．， |  | 21.4 | ．， | 23 | 18 | ＂ | ，． |
| ， | ＂ |  | 4.7 | ．， | $\because 3$ | 22 | ．． | ，＂． |
| ＂ | ＂ |  | －0．0 | ， | $2 \cdot$ | $\underline{6}$ | ．． | ．． |
| ＂ | $\ddot{\square}$ |  | 37．5 | ＊ | $2:$ | $1: 1$ | ＂， | ＂ |
| ＂ | $16^{\prime \prime}$ | $\cdots$ | 16.1 | ．． | $\because 2$ | 24 | ＂ | ＂， |
| ＂ | ＂ |  |  | ， | 22 | 7 | ＂ | ， |
|  |  |  |  | ＂． |  | 31 14 | ．， | ＂ |
| Hean |  |  |  | 9 | 2：3＇ | $13^{\prime \prime}$ | F |  |
|  |  |  |  | lieduction to $\begin{aligned} & 1895.0=5 \\ &\end{aligned}$ |  |  | 2：3：2\％ |  |
|  |  |  |  | $-1.30$ |  |
|  |  |  |  |  |  |  | 0.00 |  |
|  |  |  |  | $\bar{\delta}=5$ | $\bigcirc 1!!$ |  |

D11）（ $\theta$ ）
Oloservations of the North Party， 18.95.


HORIZON CAL INTENSITY（IL）
Olservations of the North Party， 1895.

| Dite and Hour （Menu Local Time．） | II | －11 | NeanTemp． | Time of 1－Tib＇ | $\begin{gathered} \text { Temp. } \\ t_{r} \end{gathered}$ | Mean Deflections |  | $\underset{\text { Temp }}{\substack{t_{1} \\ \hline}}$ | Ohserver | Recorrler |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\psi_{1}$ | $\psi_{2}$ |  |  |  |
| $\left\|\begin{array}{cccc} \text { Alogr. } & 15^{+11} & \text { oh } & 1 \mathrm{1m} \\ ", & " & 1: 3 & 4 \\ " & , & 18 & 17 \end{array}\right\|$ | $0.28: 319$ | 433.33 | 25.0 C | 5.9495 | 25.1 C | fis6＇18＂\％ | $145 y^{\prime} 8!8$ | 25.00 | Sinzyo Katō | Kato Sinzyō |
|  | 0.28292 | 4：30．50 | 32.7 | 5.9748 | 33.8 | 6；3417．5 | 145431.3 | 31.7 | Sinzyó | Kıtō |
|  | 0.28292 | 431.61 | 28.8 | 5.9667 | 29.8 | 63518.8 | $145 ; 49.8$ | 27.9 | Katō <br> Ninzyo | Ninzyo hitto |
| Mean | 0.253301 |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |

Akita Syuttyo（秋 田 出 張）
Observations of the North larty， 1895.
（1）


| $\left\lvert\, \begin{gathered} \text { Bate and Honr } \\ \text { (Mem Local Tine.) } \end{gathered}\right.$ | 11 | ． $1 /$ | $\begin{aligned} & \text { Mean } \\ & \text { Temp. } \end{aligned}$ | Time of$1-Y i b ?$ | Temp． $\mathrm{t}_{\mathrm{r}}$ | Ilean Deflections |  | $\begin{gathered} \text { Temp } \\ t_{p} \end{gathered}$ | Olserver | Recorter |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\psi_{1}$ | $\varphi_{3}$ |  |  |  |
| Aug． $15^{\text {th }} 16^{\text {h／}} 15^{\text {min }}$ | ＊0．28．295 | 132．13 | 27.96 | ${ }^{5}$ 5．9601 | 27：9C | － | － | － | Kiato | Sinzyóor |




| Date and llomr （Mean Local＇Time．） | Needle No． | $\theta$ | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: |
|  | 14 | $53^{\circ} \quad 329.9$ | Kato | Kato |

## 188．HONZYO．

## Daisenziyama（大们寺 山）

 declination（ $\delta$ ）Ulservations of the North Party，1895．


| Date ablllllour （Mean Local Time．） |  |  |  | Neerlle No． | $\theta$ | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Aug． ＂， ＂， | $16{ }^{\text {th }}$ <br> $177^{\text {th }}$ <br>  | 201 9 14 | $10^{m}$ 2 56 | 14 13 11 | $\begin{array}{ll}53 & 17.1 \\ " & 19.7 \\ " & 15.0\end{array}$ | Sinzyo Tanakadate | Sinzyō <br> Tauakualate |
| IIean |  |  |  |  | $53^{\circ} \quad 17!3$ |  | － |
|  |  |  |  |  |  |  |  |


| Date and Ho：$r$ （Mann Local Time．） | II | M | HORIZONCAL［NTENSTTY（ $H$ ） Observations of the North Party， 1875. |  |  |  |  | （207） |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Menn Temp． | $\begin{aligned} & \text { Time of } \\ & \text { 1-Yibn. } \end{aligned}$ | $\operatorname{Temp}_{t_{v}}$ | Mean Deflections |  | $\begin{gathered} \text { Tem }_{1} \\ t_{s} \end{gathered}$ | Observer | Recolder |
|  |  |  |  |  |  |  |  |  |  |  |
| Ang．16th $12^{\text {h }} 12^{\mathrm{m}}$ | 0.28265 | 431.35 | 28：4C | 5.80692 | 28.5 C | $6355^{\prime} 24!4$ | $14^{\circ} 57^{\prime} 22!5$ | 28.20 | T Tanakadate | Sirzyō |
| ，，17th 745 | 0.28241 | 433.19 | 22.9 | 5.9577 | 22.7 | 63715.0 | 15121.3 | 23.1 |  | Tumakarate |
| ＂$\quad 1 \begin{array}{lll}3 & 13 & 23\end{array}$ | 0.28808 | 430.31 | 33.1 | 5.9744 | 34.1 | 6.345 .0 | 145421.3 | 32.1 | T＇arakadate | Sinzrō |
| Mean | 0.29271 |  |  |  |  |  |  |  |  |  |
|  |  |  | II $=0.28271$ |  |  |  |  |  |  |  |
|  |  |  | Rectuction to ${ }_{\text {，}}$ ，sea |  |  | $895.0=$ | －312 |  |  |  |
|  |  |  |  |  |  | level＝ | 110 |  |  |  |
|  |  |  |  |  |  | M＝0．2 | 268 |  |  |  |

Honzyō Syuttyō（本菲出張）
Ohservations of the North Party， 18.75.
（1）

| Date and Honr <br> （Mean Iocal <br> Ang．$\quad 17^{\text {th }}$ | $11^{\mathrm{hh}}$ | $52^{\mathrm{h}}$ |
| :--- | :--- | :--- |

Old castle（若 城 趾）

（2）
（不7 ク）

| Date and Hour （Mean Local Time．） |  |  |  | Needle No． |  | $\theta$ | Observer | Recorier |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ang | 17 m | $17^{11}$ | $17^{\mathrm{m}}$ | 14 | $53{ }^{\circ}$ | 16 | Sinzy | Siuzy |

## 189．NÖSIRO． <br> Usiroyati（後 谷 地）

DECLINATION（ 8 ）
Olservation；of the North Party， 1895.


Observations of the North k＇arty， $1 \leq 45$.

| Date and Homr <br> （Mean Local Tinse．） |  |  | Needle No． |  | $\theta$ | Observer | Recorter |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ang． . . . |  | 57 23 19 | $\begin{aligned} & 13 \\ & 13 \\ & 14 \end{aligned}$ |  | $\begin{aligned} & 16.1 \\ & 15.9 \\ & 13.4 \end{aligned}$ | Sinzyō Tinnakadate | Tanakardats |
| Mean |  |  |  | 54 | 15：1 |  |  |
| $\theta$ $=54$ <br> Reduction to $\quad 1895.0$ $=$ <br> ．，sea level $=$ |  |  |  |  |  | $\begin{gathered} 15!1 \\ 1.13 \\ 01.101 \\ 16: 2 \end{gathered}$ |  |

HORIZONTAL LNTENSLTY（II）
Observations of the Forth Party， 1875.

| Date and Hour <br> （Mean Local Time．） | II | I／ | Mean <br> Temp＇． | Time of 1－Yib？ | $\begin{gathered} \text { Temp. } \\ t_{v} \end{gathered}$ | Mean De <br> 41 | flections <br> 4, | $\left\lvert\, \begin{gathered} \text { Гем } \\ t_{n} \end{gathered}\right.$ | Ohserver | Fiecorter |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ang．19th $7^{\text {h }} 50^{\mathrm{m}}$ | 0.27930 | 432.25 | 2．1．7 ${ }^{\circ}$ | 5.9993 | $24.4 C$ | $1 ;+1{ }^{\prime} 16 .: 3$ | $1511^{\prime} 0!0$ | 25.06 | $\left\{\begin{array}{c} \text { Ninzyo } \\ \text { Tamakadate } \end{array}\right.$ | $\left\{\begin{array}{c} \text { Tanakadat } \\ \text { Sinzyō } \end{array}\right.$ |
| ，，．， 13 23 | 0.27949 | 430.32 | 32.4 | 6.01 i 2 | 32.8 | $63: 39$ | 15555.0 | 32.0 | － | Katō |
| ＂．，， 13 4 | 0.27965 | 430.55 | 32.5 | 6.0080 | 33.11 | （i3） 2.5 | $15 \quad 555.0$ | 32.0 | ， |  |
| $\cdots \quad, \quad 1749$ | 0.27918 | 431.23 | 28.5 | 0.0087 | 29.2 | 641125.0 | $15 \times 55.1$ | 27.8 | ＂ | ， |
| Man | 0.27935 |  |  |  |  |  |  |  |  |  |

Nōsiro Syuttyō（能 代 出 張）
（1）

| Date and Hour <br> （Mean I．ocal Time．） | Needle No． | $\theta$ | Oh．erver | Recer mider |
| :---: | :---: | :---: | :---: | :---: |
| Aug．1， th $^{11^{11}} \quad 25^{\text {m }}$ | 13 | 54250 | Tanakadate | Tasaladate |


| Jate and Homr （Mean Laca＇＇Time．） | II | ． $1 /$ | $\begin{aligned} & \text { Mean } \\ & \text { Temp. } \end{aligned}$ | $\begin{aligned} & \text { Time of } \\ & \text { 1-Tib.n. } \end{aligned}$ | [empl. | $\begin{gathered} \text { Mean } \\ \psi_{1} \end{gathered}$ | reflection <br> $\varphi_{2}$ | $\begin{gathered} \operatorname{Temp}_{t_{\mathrm{p}}} \end{gathered}$ | （）hserver | Recorater |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ang．19th－－－ | ＊0．277：8 | ＋31．4； | 28.30 | （6．0182 | 28.3 C | － | －－ | － | Smakadrte | Tonakadate |

（2）
Station， 1887 （ノツト觀測翌）

| Date and Homr （Mean Local＇Time．） | Needle No． | $\theta$ |  | （）hserver | liecorter |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Ang．19th $15^{11} \quad 29^{m}$ | 13 | 54 | $10: 4$ | Sinzy | Ninzyo |


| $\begin{gathered} \text { Date and Hom } \\ \text { (Mean Local Time.) } \end{gathered}$ | II | M | $\begin{aligned} & \text { Mean } \\ & \text { Temp. } \end{aligned}$ | Time of $1-Y^{\prime} \mathbf{i b}^{n} .$ | Temp. | $\begin{gathered} \text { Mam I } \\ \psi_{1} \end{gathered}$ | Deflection <br> $\varphi:$ | $\begin{gathered} \text { Temp } \\ t_{i}, \end{gathered}$ | Observer | Recorver |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ang 19th $14^{11} 54^{m}$ | ＊0．2792］ | 430.71 | 30.5 C | $6.0104$ | 30.50 | － |  |  | Kato | Ninzy |

## 190．ODATE．

## （上川沿村字根下戸牧場）

DECLINATION（ $\delta$ ）
Ohserrations of the Nortl Party，1895．


DIP（ $\theta$ ）
Observations of the North Party， 1895.


HORIZONTAL INTENSITY（ $I$ ）
Observations of the North Party， 1895.


Ōdate Syuttyō（大 號 出 張）
Observations of the North Party， 1895. Station， 1887 （花園旅舘聂ノツト觀測點）

| Date and Hour <br> （Mean Local Time．） | Needle <br> No． | $\theta$ | Observer | Recorder |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Aug． $21^{\text {st }} \quad 17^{\mathrm{h}}$ | $0^{\mathrm{m}}$ | 14 | $53^{\circ}$ | $57!8$ | Katō |


| Date and Hour （Mean Local Time．） | II | ．11 | Mean <br> Temp． | Time of 1－Tib！． | $\underset{t_{v}}{\text { Temp. }}$ | Mean Deflections |  | Temp. | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\varphi_{1}$ | $\psi_{2}$ |  |  |  |
| Aug． $21^{\text {st }} 6^{\text {h }} 30{ }^{\text {m }}$ | ＊0．27821 | 433.98 | 20.4 C | 5.9977 | 20：4C | － | － | － | Tanakadate | Sinzyō |

（2）
（下川湾字片山村天神堂）

| Date and Hour <br> （Mean Local Time．） | Needle <br> No． | $\boldsymbol{\theta}$ | Observer | Recorder |  |  | | |
|---|---|---|---|---|---|---|---|---|
| Aug． $21^{\text {st }}$ | $9^{\mathrm{h}}$ | $41^{\mathrm{m}}$ | 13 | $54^{\circ}$ | $5!4$ | Tanakadate | Tanakadate | The |
| :---: |


| Date and Hour （Mean Local Time．） | II | M | $\begin{gathered} \text { Mean } \\ \text { Temp. } \end{gathered}$ | Time of 1－Vib． | $\begin{gathered} \text { Temp. } \\ t_{v} \end{gathered}$ | Mean Deflections |  | Temp | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\psi_{1}$ | $\varphi_{2}$ |  |  |  |
| Aug． $21^{\text {st }} 10^{\mathrm{h}} 42^{\mathrm{ms}}$ | ＊0．27906 | 431.48 | 25.6 C | 6．${ }^{\text {s }}$（064 | $25^{\circ} 6 \mathrm{C}$ | － | － | － | Tanakadate | Tanakadate |

## 191．HIROSAKI．

Old castle（弘前嚄城三ノ丸丙）
DECLINATION（ $\delta$ ）
Observations of the North Party， 1895.


DIP（ $\theta$ ）
Observations of the North Party， 1895.


HORIZONTAL INTENSITY（H）
Observations of the North Party， 1895.

| Date and Hour Mean Local Time．） | II | M | Mean Temp． | Time of 1－Vib． | $\underset{t_{V}}{T e m p .}$ | Mean Deflections |  | $\left\lvert\, \begin{gathered} \text { Temp. } \\ t_{\mathrm{D}} \end{gathered}\right.$ | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\varphi_{1}$ | $\varphi_{2}$ |  |  |  |
| $\left\|\begin{array}{ccc} \text { Aug. } & 22^{\mathrm{nd}} 13^{\mathrm{h}} & 1^{\mathrm{m}} \\ ", & " & 18 \\ \hline & 23 \\ " & 23^{\mathrm{rd}} & 7 \end{array}\right\|$ | 0.27998 | $\left\lvert\, \begin{aligned} & 429.75 \\ & 431.97 \\ & 431.59 \end{aligned}\right.$ | $\left\{\begin{array}{l} 34.7 \mathrm{C} \\ 26.2 \\ 28.3 \end{array}\right.$ | $\begin{gathered} \hline 6.0103 \\ 5.9938 \\ 5.9988 \end{gathered}$ | $\left\lvert\, \begin{array}{l\|} 35.2 \mathrm{C} \\ 26.5 \\ 27.7 \end{array}\right.$ | $6^{\circ} 37$＇38＂${ }^{\prime \prime}$ | $15^{\prime} 2^{\prime} 26 \% 3$ | 34.10 | $\left\{\begin{array}{c}\text { Sinzyō } \\ \text { Tanakadate }\end{array}\right.$ | $\left\{\begin{array}{c}\text { Tanakadate } \\ \text { Sinzyō }\end{array}\right.$ |
|  | 0.27949 |  |  |  |  | 64018.8 | 15820.0 | 26.0 | $\left\{\begin{array}{c}\text { Katō } \\ \text { TaLakadate }\end{array}\right.$ | $\left\{\begin{array}{c} \text { Tanakadate } \\ \text { Jatn̄ } \end{array}\right.$ |
|  | 0.27957 |  |  |  |  | 63940.0 | $15 \quad 7 \quad 2.5$ | 28.8 | Katō | $\left\{\begin{array}{c}\text { Tanakadate }\end{array}\right.$ |
| Mean | 0.27968 |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
| $\begin{array}{rlrl}I I & =0.27968 \\ \text { Reduction to } & 1895.0 & = & -207 \\ , \quad, \quad \text { sea level } & = & 83\end{array}$ |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  | $H=0.279$ |  |  |  |  |

Hirosaki Syuttyō（弘 前 出 張）
（1）
Observations of the Ncrth Party，18：5．
Station， 1887 （旅管石塲久藏震園ノット・觀測點）

| Date and Hour <br> （Mean Local Time．） | Needle <br> No | $\theta$ | Observer | Recorder |
| :--- | :---: | :---: | :---: | :---: |
| Aug． $22^{\text {nd }} 16^{\mathrm{h}} 45^{\mathrm{m}}$ | 13 | $54^{\circ} \quad 15!\bar{\omega}$ | Sinzyō | Katō |


| Date and Hour ＇Mean Local Time．） | II | M | $\begin{gathered} \text { Mean } \\ \text { Tcmp. } \end{gathered}$ | Time of 1 －Ti！n． | $\begin{gathered} \text { Temp. } \\ t_{v} \end{gathered}$ | Mean Deflections |  | Temp. | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $Q_{1}$ | $\varphi_{2}$ |  |  |  |
| $\begin{array}{cccc}\text { Aug．} & 22^{\text {nd }} & 15^{\text {h }} & 55^{\mathrm{m}} \\ \# & \# & 16 & 13\end{array}$ | $* 9.27925$ $* 0.27424$ | $\begin{aligned} & 431.1 \mathrm{i} \\ & 431.29 \end{aligned}$ | 25.6 C | 6．0089 | 29．9C | － | － | －－ | Katō | Sinzyō |
| Mean | 0.27925 |  |  |  |  |  |  |  |  |  |

（2）
（舊城大手門內竹贁）

| Date and Hour <br> （Mean Local Time．） | Needle <br> No． | $\theta$ | Observer | Recorder |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Aug． $23^{\mathrm{rd}} \quad 11^{\mathrm{h}} \quad 24^{\mathrm{mi}}$ | 13 | $54^{\circ}$ | $12: 1$ | Katō | Katō |


| Date and Hour （Mean Loca！Time） | II | M | Mean Temp． | Time of I－Vibn． | $\left\lvert\, \begin{gathered} \text { Temp. } \\ t_{v} . \end{gathered}\right.$ | Mean Deflections |  | $\begin{gathered} \text { Temp. } \\ \mathrm{t}_{\mathrm{p}} . \end{gathered}$ | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\psi_{1}$ | $\varphi_{2}$ |  |  |  |
| Aug． $23^{\mathrm{rl}} 10^{\mathrm{h}} 5{ }^{\text {am }}$ | ＊0．27970 | 430.29 | 32：4C | ${ }_{6}^{6} .0080$ | 32.4 C | －－－ | － | － | Katō | Katō |

192．ADIGASAWA．
Wrestling ground（䚢ヶ澤神社角力場）
DECLINATION（ $\delta$
Obscrations of the North Party， 1895.


| Date and Hour （Mean Local Time．） | Needle No． |  | $\theta$ | Olserver | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Aug． $2 t^{\text {th }}$ $14^{\text {l／}}$ 50 m <br> $"$ $\#$ 19 11 <br> $"$, $25^{\text {th }}$ 10 10 | $\begin{aligned} & 13 \\ & 1: 3 \\ & 14 \end{aligned}$ | $54^{\circ}$ <br> $"$ | $\begin{aligned} & 45: 2 \\ & 46.8 \\ & 46.5 \end{aligned}$ | Katō <br> Tanakadate ， | Tanakadnte Katō <br> Tamakadate |
| Mean |  |  | 45：2 |  |  |
|  | Rednct | sei | $18!5.0=$ levtl＝ | $46!2$ $1.2!$ 0.00 $47!5$ |  |

HORHZONTAL INTENSITY（11）
Observations of the North Party， 1895.

| Date and Hour （Mean Local Time．） | 11 | M | Mean <br> Temp． | Time of 1 －Vibn． | Temp． $t_{v}$ | Mean Deflections |  | Temp $t_{D}$ | Observer | Recorder | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|  |  |  |  |  |  | $\varphi_{1}$ | $\varphi_{2}$ |  |  |  |
| Ang． $24^{\text {th }} 13^{13^{\text {l }}} 34^{\text {mm }}$ | 0.27790 | 430.49 | 23.6 C | $6^{8} .0253$ | 29.4 C | $6^{\circ}+1^{\prime} 12.5$ | $15^{1} 10^{\prime} 46{ }^{\prime \prime} \cdot 3$ | $29^{\circ} \mathrm{SC}$ | $\left\{\begin{array}{c}\text { sinzyō } \\ \text { Tanakadate }\end{array}\right.$ | $\left\{\begin{array}{c} \text { Tanakialate } \\ \text { Sinzyō } \end{array}\right.$ |
| ．，，． 18 3 | 0.27820 | 430.53 | 28.7 | 6.0239 | 29.3 | 64158.8 | 151223.8 | 28.1 | Tauakakate | Katō |
| ， $25^{11} \quad 754$ | 0.27701 | 431.50 | 24.7 | 6.0277 | 24.5 | 64328.8 | 151550.6 | 24.9 | $\left\{\begin{array}{c}\text { Katō } \\ \text { Turakadite } \\ \text { Kato }\end{array}\right.$ | $\left\{\begin{array}{c} \text { T'unakadate } \\ \text { Katō } \end{array}\right.$ |
| ＂$\quad$ ， 8 32 | 0.27739 | 431.83 | 25.4 | 6.0232 | 26.0 | 64328.8 | 151550.6 | 24.9 | ＇Tanakadate | Fatō |
| Mean | 0.27713 |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Adigasawa Syuttyō（鮻兮澤出張）
Olservations of the Nurth larty，1895．
（1）

| Date and Hom （Menn Loeal Time．） | Needle No． | $\theta$ | Observer | liecorder |
| :---: | :---: | :---: | :---: | :---: |
|  | 13 | 51 13：7 | Ninzu0 | Liato |

（213）

| Date and Hour （Mean Local Time．） | II | II | Mear Temp． | Time of 1－Vib． | $\int_{t_{v}}^{\text {Temp. }}$ | Mean Deflections |  | $\begin{gathered} \text { Temp. } \\ t_{\mathrm{p}} \end{gathered}$ | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\varphi_{1}$ | $\varphi_{2}$ |  |  |  |
| Aug． $24^{\text {th }} 8^{1 /} 15^{\prime \prime \prime}$ | ＊0．27900 | 430.70 | 28．7C | 6.0121 | 28：7C | － | － | － | Tanakadate | Katō |

（2）Maitomura（舞戶村字富田海岸）

| Date and Hour． <br> （Mean Local Time．） | Needle <br> No． | $\theta$ | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: |
| Aug．24th $10^{\text {ti }}$ | $21^{\mathrm{mu}}$ | 13 | $54 \quad 47!7$ | Sinzyō |


| Date and Hour （Mean Local Time．） | II | M | Mean Temp． | Time of 1－Vibn． | $\begin{gathered} \text { Temp. } \\ t_{v} \end{gathered}$ | Mean Ieflections |  | Temp. | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\varphi_{1}$ | $\varphi_{2}$ |  |  |  |
| Aug． $24^{\text {th }} 9^{\text {h }} 54^{\mathrm{m}}$ | ＊0．27841 | 430.21 | 36.1 C | ${ }_{6}^{\text {c }}$（0224 | 30.1 C | － | － | － | Tanakadate | Katō |

## 193．IPPONGI．

DECLINATION（ $\delta$ ）
Observations of the North Party， 1895.

| Date and Hour （Mean Local Time．） |  |  |  |  | $\delta$ |  | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Aug． | $26^{\text {th }}$ | $19^{\text {h }}$ | $49.8{ }^{\mathrm{m}}$ | $5{ }^{\circ}$ | $4.2{ }^{\prime}$ | $0^{\prime \prime}$ | Tanakadate | Sinzyō |
| ＂ | ＂ | 20 | 37.5 | ， | 41 | 43 |  | for |
| ＂ | ＂ | 21 | 56.2 | ＂， | 41 | 46 | Katō | Kato |
| ．， | $\cdots$ | 22 | 48.9 | ＂， | 41 | 49 | ＂ | ， |
| ＂ | 27 th | 0 | 33.0 | ＂ | 41 | 35 | ＂ | ＂ |
| ＂ | ， | $\stackrel{2}{4}$ | 44.6 | ＂ | 40 | 29 | ， | ＂ |
| ＂ | ＂ | 4 | 20.7 | ， | 39 | 58 | ＂， | ＂ |
| ＂ | ＂ | 5 | 51.6 | ＂， | 38 | 59 | ＂ | ＂ |
| ＂ | ＂ | 7 | 10.0 | ＂ | 38 | 35 |  | Trumbarate |
| ， | ＂ | 7 | 50.4 | ＂ | 37 | 49 | Sinzyō | Tanakarlate |
| ＂ | ， | 9 | 7.5 | ＂ | 48 | 28 19 | Tanakadate | －inzyō |
| ， |  | 11 | 20.9 22.3 | ＂， | 13 | 59 | Tanahadate |  |
| ＂， | ＂． | 12 | 33.3 | ．． | 45 | 47 |  | ， |
| ， |  | 13 | 52.6 | ＂ | 45 | 17 | Katō |  |
| ＂ |  | 14 | 44.6 | ＂ | 44 | 41 |  | Katō |
| ＂ | ， | 16 | 26.7 | ＂， | 43 | 5 | Sinzyō |  |
| ＂， | ＂， | 17 19 | 28.7 21.8 | ＂， | 412 | 59 | Katō <br> Thmakal：te | $\begin{gathered} \text { Sinzyō } \\ \text { Katō } \end{gathered}$ |
| ＂ |  | 20 | 34.5 | ＂ | 41 | 37 | ， | ， |
| Mean |  |  |  | $5{ }^{\circ}$ | $41^{\prime}$ | $3 ५^{\prime \prime}$ |  |  |
|  |  |  |  | $\delta=5 \quad 41: 63$ |  |  |  |  |
|  |  |  |  | Reduction to |  | $\begin{array}{rr} 1895.0= & -1.71 \\ \text { sea level }= & 0.00 \end{array}$ |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  | $5 \cdot 39!9$ |  |
|  |  |  |  | DIIOhservations of the（ ${ }^{(\theta)}$ North Party， 1895. |  |  |  |


（214）
HORIZONTAL INTENSITY（ $H$ ）
Observations of the North Party， 1895.


Ippongi Syuttyō（一 木 木 出 張）
Obscrvations of the North Party，1893．
Imabetu Hatiman（今別入蜉社前）

| Date and Hour （Mean Local Time．） | Neerlle No． | $\theta$ | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: |
| Aug． $27^{\text {th }} 14^{\text {l／}} 34^{\text {m }}$ | 13 | $55^{\circ} \quad 13!0$ | Sinzyō | Tanakadate |


| Date and Huur ＇Mean Local Time．） | H | M | Mean <br> Temp． | Time of1-Vibㄲ. | $\begin{gathered} \text { Temp. } \\ t_{\mathbf{v}} \end{gathered}$ | Mean Deflections |  | $\operatorname{Temp}_{t_{p}}$ | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | ？ 1 | 92 |  |  |  |
| Ang． $27^{\text {th }} 15^{\text {h }} 1^{\mathrm{m}}$ | ＊0．27543 | 431.64 | 25.5 C | ${ }_{6}^{8.0444}$ | 25：5 2 | －． | － | － | Tanakadate | Sinzyō |

194．ŌMA．
DECLINATION（ $\delta$ ）
Olservations of the North Party， 1895.


DIP（ $\theta$ ）
Observations of the North Party， 1895.


HORIZONTAL INTENSITY（ $H$ ）
Olservations of the North Party， 1895.


| Date and Hour <br> （Mean Local Time．） | II | M | Mean <br> Temp． | Time of 1 －Vibn． | $\underset{t_{\mathrm{v}}}{\mathrm{Temp}} .$ | Nean <br> $\psi_{1}$ | tions <br> $\varphi_{2}$ | $\operatorname{Temp}_{t_{b}}$ | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | ＊0．27346 | $\left\|\begin{array}{l} 432.40 \\ 432.45 \end{array}\right\|$ | $\begin{aligned} & 22.6 \mathrm{C} \\ & 22.5 \end{aligned}$ | $\begin{aligned} & \mathrm{g} \mathrm{8} 0.09 \\ & 6.0655 \\ & 6.065 \end{aligned}$ | $\begin{aligned} & 22.6 \mathrm{C} \\ & 22.5 \end{aligned}$ | － | － | － | Sinzyō | Sinzyō |
| Mean | 0.27325 |  |  |  |  |  |  |  |  |  |

（2） $\bar{O} m a$ Zizōdō（大 間 地 藏 堂）

| Date and Hour <br> （Mean Local Time．） | Needle <br> No． | $\boldsymbol{\theta}$ | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: |
| Ang． $29^{\text {th }} \quad 15^{\mathrm{h}} \quad 38^{\mathrm{m}}$ | 13 | $55^{\circ} \quad 32!2$ | Katō | Katō |


| Date and Hour （Meau Locnl Time） | II | M | Mean Temp． | $\begin{aligned} & \text { Time of } \\ & 1-V i b n . \end{aligned}$ | $\underset{t_{r}}{\operatorname{Temp}} .$ | Mean Deflections |  | $\mathrm{Temp}_{\mathrm{t}_{\mathrm{p}}} .$ | Observer | Recordor |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\varphi_{1}$ | 42 |  |  |  |
| Aug． $29^{\text {th }} 15^{\text {h }} 7^{\mathrm{m}}$ | ＊0．27085 | 432.51 | $22: 3 \mathrm{C}$ | 6.4893 | 22.3 C | － | － | － | Sinzyō | Kato |

（下北都御料地大字田名部字内田四十二號）一） DECLINATION（ $\delta$ ）
Observations of the North Party， 1895.


DIP $(\theta)$
Observations of the North Party， 1895

| Date and Hour （Mean Local Time．） |  |  |  | Needle No． |  |  | Observer | Recor ler |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Avg． | $31^{\text {st }}$ | $9^{\text {h }}$ | $12^{\text {m }}$ | 13 | $55^{\circ}$ | $8!4$ | Katō | Tanakalate |
| ＂ | ＂ | 14 | 14 | 13 | ，， | 6.5 | Tanakadate | Sinzy ${ }^{\text {a }}$ |
| ， | ， | $=0$ | 25 | 13 | ＂ | 8.8 | Sinzyō | ．， |
| Mean |  |  |  |  |  | 79 |  |  |
| $\theta=55^{\circ} \quad 7!9$ |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |

HORIZONTAL INTENSTTY（II）
Observations of the North Party， 1895

| Date and Honr （Mean Local Time．） | II | M | Mean <br> Temp． | Time of 1－Yib＂． | Temp． $t_{1}$ | Mean Deflections |  | Temp. | Obserrer | Recorter |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 1－Yib |  | $\psi_{1}$ | $\varphi \cdot$ |  |  |  |
| Aug． $31^{\text {st }} \quad 8^{\text {ht }} \quad 3^{\mathrm{m}}$ | 0.27539 | 433.30 | 21.5 C | ${ }_{6}^{\text {6．0331 }}$ | 21.4 C | $66^{\circ} 47^{\prime} 29.4$ | $15^{\circ} 24^{\prime} 51 / 9$ | $\underline{21.6 C}$ | $\left\{\begin{array}{c}\text { Tamakalate } \\ \text { Katō }\end{array}\right.$ | Kati <br> Tanakalate |
| ＂，＂， $12 \quad 46$ | 0.27535 | 431．03 | 25.7 | 6.0497 | 25.6 | 64533.8 | 152046.2 | 25.7 | $\{$ Tanakadate | Sinzyō |
| ，，， 193 | 0.27551 | 432.65 | 21.0 | 6.0380 | 21.6 | 64710.0 | 152425.0 | 20.5 | ，． | ， |
| Mean | 0.27542 |  |  |  |  |  |  |  |  |  |

$\begin{array}{rrr}H= & 0.27542 \\ \text { Rerluction to } & 1895.0= & -202 \\ י \quad, \quad \text { sea level }= & 00\end{array}$

$$
i l=0.27540
$$

Tanabu Šyuttyō（四名部出張）
Observations of the North Party， 1895.
（1）

| Date and Hour （Mean Local Time．） | Needle No． | $\theta$ | Observer | Recoriler |
| :---: | :---: | :---: | :---: | :---: |
| Ang． $31^{\text {st }} \quad 166^{\text {h }} \quad 5.3^{\text {m }}$ | 13 | $55 \quad 21!4$ | Sinzyō | Sinz $\mathrm{y}^{\circ}$ |


| Date and Hour （Mean Lecel Time．） | $1 /$ | M | Mean <br> Temp． | Time of1-Tibn. | $\begin{gathered} \text { Temp. } \\ t_{v} \end{gathered}$ | Mean Deflections |  | $\int_{t_{D}}$ | Observer | Recoriler |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | Pi | 9. |  |  |  |
| $\begin{array}{cccc}\text { Aug．} 31^{\text {st }} & 155^{\text {h }} & 52 \mathrm{~m} \\ \# & , & 16 & 8\end{array}$ | $* 1.2745$ $* 0.2334$ | 431.41 431.11 | 23.5 C 29.2 | $\begin{aligned} & \mathrm{s} \\ & 6.0564 \\ & 6.0620 \end{aligned}$ | $\begin{aligned} & 26.5 \mathrm{C} \\ & 26.2 \end{aligned}$ | － | － | － | Sinzyō | Sinzyō |
| Mean | 0．27！23 |  |  |  |  |  |  |  |  |  |

（2）
（内田四拾二跋ノ一）

| Date ard Homir <br> （Mean Lceal Tine．） | Neerlle No． | $\theta$ | Observer． | Tecoider |
| :---: | :---: | :---: | :---: | :---: |
| Sept． $1^{\text {st }}$ Sth $3!^{\text {mm }}$ | 1：3 | 558119 | Tanakadate | Tamakadate |


| Date and Hour （Mean Loeal Time．） | II | M | Mean <br> Temp． | Time of 1－Yib？ | $\begin{gathered} \text { Temp. } \\ t_{V} \end{gathered}$ | Mean Deflections $\vartheta_{1} \quad \varphi_{2}$ | $\left\lvert\, \begin{gathered} \operatorname{Tem}_{\mathrm{n}} \\ \hline \end{gathered} .\right.$ | Olserver | Ticcorter |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sept． $1^{\text {st }}$ fin 41 m | ＊0．27．4．38 | 432.66 | 22.8 C | 6．148） | 22．8C |  | － | Sinzy ${ }^{\circ}$ | Sinzyo |

## 196．MAKADO．

Aza Toriitai（字 鳥 居 平）
DECTINATION $(\delta)$
Observations of the North larty， 1995.


| Dite and 1Fomr （Mean Local Time．） |  |  |  |
| :---: | :---: | :---: | :---: |
| Siopt． |  | （1） | $6^{17}$ |
|  |  |  | 49 |
|  |  | ！ | 5 |
| Mean |  |  |  |


| Neadle No． |  | $\theta$ | （1）serrer | Recoliter |
| :---: | :---: | :---: | :---: | :---: |
| 13 | 51 | 4216 | T＇anakaulate | Katō |
| 13 | ＂ | 40.4 | Kato | ， |
| － | ， | 432 | Sinzyö | Sinzyō |
|  |  | $42!1$ |  |  |
| Tenuction | $\begin{aligned} \theta & =5.4 \\ 1895.0 & =\end{aligned}$ |  | $12!1$ |  |
|  |  |  | 1.11 |  |
|  | ．sea | a level | 0.01 |  |
|  |  |  | 1：3！ 3 |  |

HORIZONTAL INTENSITY（II）
（＊Value deduced from Vibration only by assuming T＇alue of $M$ ．）
Observations of the South Party， 1895.


Makado Syuttyō（騎 阿 出 張）
Observations of the North P＇arty， 1895.
（1）
Hurukawa coast（时䢬地古川海学）

| Date and Hour <br> （Mean Local Time．） | Needle | $\theta$ | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: |
| Sept．$\quad 2^{\text {nd }} 11^{\text {h }} \quad 60{ }^{\text {mi }}$ | 13 | $54^{\circ} \quad 34!3$ | Tanektate | ：it |


| Date and Honr （Mean Local Time．） | 11 | M | Mean Temp． | Time of 1－Yilon． | Temp． tv | Mean Deflections |  | Temp. | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\psi_{1}$ | 4. |  |  |  |
| Sept． $2^{\text {nd }} 11^{\text {h }} 57^{\mathrm{m}}$ | ＊0．27734 | 431.90 | 24.0 C | ${ }^{\text {8 }}$ 8．0217 | 240 C | － | － | － | Katō | Tanakadate |


| （2） |  | Toriitai（鳥 居 韦） |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Date and Hour <br> （Mean Local Time．） | Ncedle No． | $\theta$ | Onserser | Recorder |
| Sept．$\quad 2^{\text {nd }} \quad 14^{\text {h }} \quad 23^{\text {m }}$ | 13 | $54 \cdot 37.5$ | Tanakalate | Kato |


| Date and Hour（Mean Local Time．） | II | M | Mean <br> Temp． | Time of 1－Vibn． | Temp， $t_{v}$ | Mean Deflections |  | $\operatorname{Tem}_{t_{D}}$ | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\varphi_{1}$ | $\varphi_{2}$ |  |  |  |
| Sapt． $2^{\text {nd }} 12^{\text {h }} 44^{\text {mm }}$ | ＊0．27705 | 431.38 | 25.4 C | ${ }_{6}^{8} 8.0297$ | 25.4 C | － | － | － | Katō | Tanakadate |

（3）
Siraiwa（野鳈地字白岩河原）

| Date and Hour <br> （Me．an Local Time．） | Needle <br> No． | $\theta$ | Onserver | Pecorder |
| :---: | :---: | :---: | :---: | :---: |
| Sept． $2^{\text {nd }} \quad 16^{1 \mathrm{~h}}$ | $39^{\mathrm{m}}$ | 13 | $54 \quad 27!9$ | Tanakadate |


| Date and Honr （Mean Local Time．） | II | M | Nean <br> Temp． | $\begin{aligned} & \text { Time of } \\ & \text { 1-Vib? } \end{aligned}$ | Temp. | Mean Deflections |  | $\begin{gathered} \text { Temp. } \\ t_{\mathrm{D}} \end{gathered}$ | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\varphi_{1}$ | 42 |  |  |  |
| Sept．2nd $16^{\text {h }} 3^{\text {mi }}$ | ＊0．27699 | 432.17 | 23.3 C |  | 23.3 C | － | － | － | Katō | Tunakadate |

（4）

## Toriitai（字鳥居平海岸）

| Date and Hour <br> （Mean Local Time） | Neerlle No． | $\theta$ | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: |
| Sept． $3^{\text {rd }} 12^{1 /} \quad 11^{1 \mathrm{~m}}$ | 13 | $5 \pm 38: 7$ | Sinzyō | Sinzjo |


| $\left(\begin{array}{c} \text { Diate and Hour } \\ \text { (Mean Local Time.) } \end{array}\right.$ | II | $1 /$ | Iean <br> Temp． | Time of$1 \text { - Yib }$ | $\begin{gathered} \text { Temp. } \\ t_{v} \end{gathered}$ | Mean Deflectiors |  | $\begin{gathered} \text { Temp } \\ t_{\mathrm{b}} \end{gathered}$ | Observer | Recorter |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | T 1 | $?$ |  |  |  |
| Stipt． $3^{\text {ral }} 100^{\text {h }}$ | $* 0.27668$ $* 0.27601$ | 430.06 480.64 | $\begin{aligned} & 28.5 \mathrm{C} \\ & 28.8 \end{aligned}$ | 9， 6.421 6.0431 | $\begin{aligned} & 24.8 \mathrm{C} \\ & 28.8 \end{aligned}$ | － | － | － | Sinzyō | Sinzyō |
| Mean | 0.27635 |  |  |  |  |  |  |  |  |  |

（5）
Syōkonsya（招 魂 刑 前）

| Date and Hour （Mean Local Time） | Neerlle No． | $\theta$ | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: |
| Sept．$\quad 3^{\text {m }} \quad 16^{\text {an }} \quad 6^{\text {m }}$ | 13 | $54 \quad 318$ | Sinzyō | Sidzyō |


| （6）Station， 188 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Date and Hour （Mean Local Time．） | $\begin{aligned} & \text { Nee.lle } \\ & \text { No. } \end{aligned}$ | $\theta$ | Observer | Recorder |
|  | 1.3 | $54 \quad 32!3$ | Sinzyō | Katō |


| Date and Hour （Mean Local Time | II | M | $\begin{aligned} & \text { Meau } \\ & \text { Temp. } \end{aligned}$ | $\begin{aligned} & \text { Time of } \\ & 1 \text { - } \mathrm{Vib}^{n} . \end{aligned}$ | $\underset{t_{v}}{ }$ | Meam Deflections |  | Temp. | Olserver | Recorler |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | 41 | $\varphi_{2}$ |  |  |  |
|  | 0.27736 | 431.51 | 25．0C | ${ }_{6}^{5} .024$ | 25：0C | － | － | － | TKıtō | Sinzyō |

## 197．AOMORI．

Okidate（Obama）（瀧队村人字洲館䒚小演五 1 三番） DECLINATION（ $\delta$ ）
Olservations of the Nortly Party， $18 \% 5$.

| Date and Hour <br> （Mean Local Time） |  |  |  | $\delta$ |  |  | Observer | liecorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sept． | $3^{\text {ra }}$ | $2 \%$ | $49.7{ }^{\text {m }}$ | 5 | $2 \%^{\prime}$ | $52^{\prime \prime}$ | Sinzyo | Tanakadate |
| ，， | $\cdots$ | 23 | 52.9 | ， | 2.1 | 3.5 | ＂ | Sinzyō |
| ， | $t^{\text {th }}$ | 0 | 35.4 | ＂ | 29 | 10 | ， | ．， |
| ， | ， | $\because$ | 37.9 | ， | 25 | $\stackrel{8}{ }$ | ．， | ，． |
| ．， | ＂ | 5 | 1.0 | ． | $\because 2$ | 19 | ．， | ，＂ |
| ＂ | ＂ | 5 | 41.6 | ． | 27 | 25 | ，＂ | ＂， |
| ＂， | ， | ${ }_{7}^{6}$ | 31.3 | ＂ | 25 | 57 |  | ＂， |
| ， | ， | 7 | 485 | ．． | 9. | 14 | Tamakadate | Timakiarde |
| ， | ＂ | $\stackrel{8}{1}$ | 30.5 | － | 0.7 | 31 | ．， | ＂ |
| ． | ＂ |  | ${ }^{42.5}$ | ． | 27 | $\because 4$ | ．． | ．， |
| ＂ | － |  | 54.4 | ． | 23 | 317 | ， | ， |
|  | ． |  | 37.1 | ＂ | 31 | 39 | ． | ： |
| ＂ | ＂ |  | 24.1 10.1 | ， | 33 | 14 | － |  |
| ．， | ＂ |  | 11.1 13.8 | ＂ | 31 | 12 | ， | Sinzyō |
| ＂ | ＂ |  | 13.8 | ＂ | 33 | 53 |  | ＂ |
| ＂ | ＂ | 15 | 15.4 31.3 | ， | 32 | $\stackrel{3}{3}$ | Sinzyō | ， |
| ＂， | ＂ | 17 | 29.1 | ． | 31 | 16 27 | Tanakadate | Tanbounte |
| ＂， | ， | 18 | 9.9 | ，． | 32 | 7 | ＂ | Sinzyō |
| ，， |  |  | 20.9 | ．， | 31 | 39 | ．， |  |
| ＂ | ＂ |  | 49.9 | ，＂ | 30 | 24 | Siozā |  |
| ， |  |  | 37.3 | ：， | 30 | 32 | ＇Tavakadate | T＇anakadate |
| ＂ |  |  | 53.0 | ．， | 30 | 28 | ．， | ，＂ |
| ， | $5^{\text {th }}$ |  | 31.6 | ， | 29 | 20 | ， | ＂， |
| ， | ， |  | 54.4 | ＂ | 30 | 47 | ＂ |  |
|  |  |  |  |  | cor | med |  |  |



D11 ${ }^{(\theta)}$
Olservations of the North larty， 1895.


HORTZONTAL INTENSITY（II）
Observations of the North Party， 1895.

| Date and IIonr（Mean Local Time．） | II | M | $\begin{aligned} & \text { Mean } \\ & \text { Temp. } \end{aligned}$ | Time of 1－Yil） | Temp. | Mean Deflections |  | Temp | Observer | liecorter | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|  |  |  |  |  |  | $\varphi_{1}$ | $\varphi_{2}$ |  |  |  |
| $\begin{array}{cccc} \text { Sept. } & 1^{\mathrm{H}_{1}} & 7 \mathrm{~h} & 22^{\mathrm{m}} \\ " & " & 13 & 51 \\ , & , & 18 & 56 \\ \hline \end{array}$ | 0.27745 | 4．32．31 | 23.6 C | $8_{6}^{8} .0164$ | 23.1 C | （f） $43^{\prime 2} 26$ | $1515.39!4$ | 24：1C | $\left\{\begin{array}{c}\text { Tinnakulate } \\ \text { Sinzyo }\end{array}\right.$ | $\left\{\begin{array}{c}\text { Sinzyo } \\ \text { Tamakadate }\end{array}\right.$ |
|  | 0.27739 | 424．4！ | 31.2 | 6.0353 | 31.5 | 64113.8 | 151054.4 | 20.9 | Tıuabadate | Sinzyō |
|  | 0.27697 | 131.15 | 25.6 | 6．03：3： | 25.8 | 64411.2 | 151730.0 | 25.5 | sinzyō | Tanakadiate |
| Meam $\quad 0.27714$ |  |  |  |  |  |  |  |  |  |  |
| $1 I$ $=$ 0.27711  <br> lieduction to 1895.1 $=$ -2.41 <br> $\because \quad " \quad$ sea level $=$ 1.11  <br>  $I I$ $=11.27711$  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Aomori Syuttyō（黄 森 出 張）
C inservations of the North larty，1895．
（1）
Near Okidate－inari（沖館揞徾形近㒀）

| Date and Hour （Mean Local Time．） | Necalle No． | $\theta$ | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: |
| Sept． $4^{\text {th }} \quad 17^{\text {h }} \quad 46^{\text {m }}$ | 13 | 54 58\％ | Sinzyō | Siuzyō |


| Date and Hour （Mean Local Time．） | II | II | Mean <br> Temp． | Time of1-Yib". | $\underset{t_{v}}{\text { Temp. }}$ | Mean | tions | $\operatorname{Pemp}_{\mathrm{t}_{\mathrm{n}}}$ | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | 41 | $¢_{4}$ |  |  |  |
| Sept． $5^{\text {th }} 15^{11} \cdot 21^{\text {mi }}$ | ＊ 0.2789 | 132.16 | 21.06 |  | 21.00 | － | － |  | Sinzyō | Tanakadate |


| （2） | Near | Roa |  | 眐田街道附近） |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Dite int Hour } \\ & \text { (Mean Local 'Time.) } \end{aligned}$ | $\begin{aligned} & \text { Neenle } \\ & \text { Nole } \end{aligned}$ |  | － | Onserver | Recorler |
| Sept． $5^{\text {th }} 17^{\text {h }}$ | 13 | 54 | 55：3 | Tiunakalate | Sinzyō |


| Date and Hour （Mean Local Time．） | 11 | M | Mean <br> Temp． | Time of Temp． 1－Yibn．$t_{v}$ |  | Mean Deflections |  | $\left\lvert\, \begin{gathered} \text { Tem } \\ t_{1} \end{gathered}\right.$ | Observer | Pecouder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | 4. | 42 |  |  |  |
| Sept． $5^{\text {th }} 16^{\text {h }}$ 5 $5^{\text {mm }}$ | ＊0．27679 | 431．4．） | 25.80 | $5: 03108$ | 25.8 C | － | － | － | Sinzyō | Tanakarate |

（3）Easte bank of the River Tutumi（堤 川東岸）

| Dite and Hour （Mean Lecal Time．） | $\begin{aligned} & \text { Needle } \\ & \text { No. } \end{aligned}$ | $\theta$ | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: |
|  | 13） | －4 1\％2 | Tanaknalate | Sirzyō |


| Date and Hour （Mean Local＇Iime．） | II | II | $\begin{aligned} & \text { Mean } \\ & \text { Temp } \end{aligned}$ | Time of 1－Vib ${ }^{\text {² }}$ ． | Templ． $t_{v}$ | Mean | tions | $\operatorname{Tem}_{t_{D}}$ | Observer | R corder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $p$ | $\varphi$, |  |  |  |
|  | $* 0.277 \times 2$ 0.27792 | 431.76 431.63 | 25.1 C <br> 25.4 | fi． 6.0176 6.0175 | 25.16 25.4 | － | － | － | Sinzyo Tanakadate | Tanakadate Sinzyou |
| Me：m | 11.27787 |  |  |  |  |  |  |  |  |  |

## 198．FUKAYA．

 Tenrikyōkwai（天理敎會構队）DECLTNATION（ $\delta$ ）
Observations of the Sonth Party， 1895.


DIP（ $\theta$ ）
Obscrations of the South l＇arty， 1855.


HORIZONTAL INTENSITY（II）
Observations of the South Party， 1895.


## 199．SAKURA．

Parade graund（隐軍襕兵場）
DECLINATION（ $\delta$ ）
Observations of the South Party， 1895.



## 200．SAWARA．

Araku Hudō（アラクノ不動內）
DECTINATION（8）
Observations of the Sonth Party， 1895.

| $\underset{\text { (Meal }}{\mathrm{D}_{2}}$ | $\begin{aligned} & \text { enud } \\ & \text { Loce } \end{aligned}$ | $\begin{gathered} \mathrm{A} \mathrm{Ho} \\ \mathrm{al} \\ \hline \mathrm{Ti} \end{gathered}$ | $11 r$ <br> me．） |  | $\delta$ |  | Observer | Recorter |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| July |  | $23^{12}$ | $2.11^{\mathrm{m}}$ | 4 | $22^{\prime}$ | $55^{\prime \prime}$ | Imamura | Inamura |
| ，． |  | $\stackrel{2}{1}$ | 51.8 | ＂ | 23 | 58 | ＂ | ＂ |
| ＂ |  | 4 | 45.0 | ＂ | 23 | 34 | ，＂ |  |
| ＂ | ＂ | $\stackrel{6}{7}$ | 26.9 33.0 | ＂ | 21 | 1 | ＇T＂ |  |
| ＂， |  | 7 | 33.0 | ＂ | 21 | 4 | Tamarn | Taniarn |
| ， |  | $!$ | 42.9 | ．， | 1） | 55 | Nakamma | Imamura |
| ， |  | 11 | 49.9 | ＂ | 28 | 47 |  | Nakamura |
| ＂ | ＂ | 12 | 34.4 | ， | 29 | 42 | Timary |  |
| ＂ |  | $1 \pm$ | 1.5 | ，＂ | 3） | 34 | Nakamura | Tamarı |
| ＂ |  | 15 | 3.9 | ．， | 28 | 54 |  | Nakamura |
| ＂ |  | 119 | 12.7 | ， | 26 | 46 | Imamura | ， |
| ＂ |  |  | 33.5 | ＂， | 25 | 21 | ，， | ，． |
| ＂ | ， |  | 47.6 0.0 | ＂ | $\bigcirc$ | 26 | ＂ | ＂， |
| ＂， | ＂， |  | 5.0 | ＂ | 24 | 39 24 | Naks＂ | ＂ |
| ＂ | ＂， | 19 | 13.0 | ＂， | 24 | 16 |  |  |
| ＂ | ， | 20 | 4.8 | ， | 24 | 37 | Tamarı | Tamaru |
| ＂ |  | $\underline{2}$ | 14.4 | ， | 24 | 33 | Nakamma |  |
| ＂ |  |  | 0.8 | ＂ | 24 | 31 |  | Nakamura |
| ＂ |  | 3 | 12. | ， | 23 | 27 | Tamarı | Tamarn |
| ＂ |  | 6 6 | 52．1 | ＂ | 211 19 | 48 | ＂ | ＂ |
| ＂， | ＂ | 7 |  | ＂， | 1 ； | 55 |  | ＂ |
| ＂ |  | 9） | 2.6 | ， | 20 | 9 | Nakamura | Nakämura |
| Mean |  |  |  | $4^{\circ} \quad 24^{\prime} \quad 32^{\prime \prime}$ |  |  |  |  |
|  |  |  |  | $\begin{array}{rlrl}  & \delta & =4 & 2:!53 \\ \text { Reduction to } & 18.75 .0 & = & -15.10 \\ , \quad, \quad \text { sea level } & = & 0.60 \\ \delta & =4 & & 24!1 \end{array}$ |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |

DIP（ $\theta$ ）
Onservations of the Sontl Party，189．5．


HORIZONTAL INTENSIIY（II）
Cliservations of the South Party， 1895.


## 201．TYOSI．

## Wakamiya Hatiman（若窓八幡宮）

DE（LINATION（ $\delta$ ）
Onservations of the Sionth Party， 1895.


DIP $(\theta)$
Observations of the South Party，1895．

| Date and Hour （Mean Local Time．） |  |  |  | $\begin{gathered} \text { Needle } \\ \text { No. } \end{gathered}$ |  | $\theta$ | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| July |  | $5^{17}$ | 5 sm | － | $49^{\circ}$ | 14 | Nakamura | Nakamura |
| ＂ | ＂ | ${ }_{16}$ | 53 | － |  | 52.9 | Tamaru | Tamaru |
| ＂ | ＂ | 16 | 1 | 1 |  | 56.0 | Imamura | Imamura |
|  |  | 18 | $1 \pm$ | 1 |  |  | Nakämura | ＂ma |
| Mean |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  | 56.9 |  |  |
|  |  |  |  | $\theta$ $=48^{\circ}$ <br> Reduction to1895.0 $=$ <br> $, \quad, \quad$ sea level $=$  |  |  | 56.5 |  |
|  |  |  |  | －0．77 |  |
|  |  |  |  | 0.00 |  |
|  |  |  |  | $\bigcirc \theta=48^{\circ} \quad 55!7$ |  |

HORIZONTAL INTENSITY（II）
Observations of the South P＇arty， 1895.


## 202．ITINOMIYA．

North Bank of the River Itinomiya（一宮川北崖芝地）
DECLINATION（ $\delta$ ）
Observations of the South Party， 1595.


DIP（ $\theta$ ）
Observatious of the Sonth Party， 1895.


HORIZONTAL INTENSITY（ $H$ ）
Observations of the Soath Party， 1895.


## 203．MAEBARA．

## Kamogawa Gakkō（鴨 川 學 校）

DECLINATION（ $\delta$ ）
Observations of the South Party， 1895.


Observations of the South Party，1895．



## 204．KISARATU．

Kisaratu Aduma Zinsya（木更津町近郊，吾妻新形境队）
DECLINATION（ $\delta$ ）
Observations of the South Party， 1895.


DIP $(\theta)$
Observations of the Sonth Party， 1895.

| Date and Hour （Mean Local Time．） |  |  | Needle No． |  |  | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| July $"$ $"$ $"$ $"$ | $\begin{array}{ll}14^{\text {th }} & 17^{\text {h }} \\ " 7 & 19 \\ 15^{\text {th }} & 6 \\ " & 12 \\ " & 15\end{array}$ | 20 m 40 20 28 2 | － <br> 1 <br> 1 | 48 <br> $"$ <br> $"$ <br> $"$ | 42.8 44.9 39.1 37.8 35.9 | ＇l＇amarr Nalkamura ＂ Tamaru Nakamura | $\begin{gathered} \text { Nakamura } \\ " \neq \\ \text { Tamaru } \\ \text { Nakamura } \end{gathered}$ |
| Меаи |  |  |  | $45^{\circ}$ | $40!1$ |  |  |
|  |  |  |  |  |  |  |  |

HORIZONTAL INTENSITY（ 1 ）
Observations of the South Party， 1895

| Date and Hour （Mean Local Time．） | II | M | Mean Temp． | $\begin{aligned} & \text { Time of } \\ & \text { 1-Vib. } \end{aligned}$ | $\underset{t_{v}}{\text { Temp. }}$ | Mean Deflections |  | $\left\lvert\, \begin{gathered} \text { Temp } \\ t_{D} \end{gathered}\right.$ | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $Q_{1}$ | $\varphi_{2}$ |  |  |  |
|  | 0.29830 | 433.17 | 28：30 |  | 29：4C | 615 | 1415＇55\％ 0 | 27．2C | Nakamura | Tamaru |
|  | 0.29811 | 434.60 | 23.4 | 5.8113 | 24.6 | 61724.4 | 142122.5 | 22.2 | Tamaru | Nakamura |
|  | 0.29816 | 436.09 | 19.3 | 5.8277 | 19.3 | 6184.4 | 142231.3 | 19.3 | Nakamura | Tamaru |
|  | 0.29829 | 433.61 | 27.5 | 5.8437 | 27.5 | 61539.4 | 141658.8 | 27.4 | Tamaru | Nakamura |
|  | 0.29829 | 434.21 | 25.5 | 5.8399 | 25.7 | 6167.5 | 141753.8 | 25.4 | Nakamura | Tamaru |
| Mean | 0.29823 |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
| $\begin{array}{rrr}I I= & 0.29823 \\ \text { Reduction to } & 1895.0= & -202 \\ , \quad \text { sea level }= & 0\end{array}$ |  |  |  |  |  |  |  |  |  |  |
| $H=0.29821$ |  |  |  |  |  |  |  |  |  |  |

## 205．MITO． <br> Mito Middle School（中 學 校 構 內） <br> DECLINATION（ $\delta$ ）

Observations of the South Party， 1895.


DIP（ ${ }^{(\theta)}$
Observations of the South Party， 1895.


HORIZONTAL INTENSITY（II）
Olservations of the Sonth Party， 1895.


## 206．UEDA．

Ueda Gakkō（椎 田 學 检） DECLINATION（ $\delta$ ）
Observations of the South Party， 1895.


DIP $(\theta)$
Observations of the South Party， 1895.

| Date and Hour <br> （Mean Local Time．） |  |  |  | Neerlle No． |  | $\theta$ | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| July | $22^{\text {nd }}$ | $20^{1 /}$ | $45^{\mathrm{m}}$ | 1 |  | $23!2$ | Imamura | Imamura |
| ＂ | $23{ }^{\text {rad }}$ | ${ }^{6}$ | $3:$ | 1 |  | 28.1 | Tamarn | Tamaru |
|  | ＂ | 11 | 8 |  |  | 23.5 | Nakamura | Nakamurat |
|  |  |  | 13 | 1 |  | 25.2 | Tamaru | Imamura |
| Mean |  |  |  |  | $50^{\circ}$ | 25.0 |  |  |
| $\theta$ $=50$ 25.11  <br> Reduction to 1895.0 $=$ -11.45 <br> ,$\quad$, sea level $=$ 0.60 |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  | 24.5 |  |
| HORIZON［AL INTENSITY（II） |  |  |  |  |  |  |  |  |

Observations of the Sonth Party， 1895.

| Date and Hour （Mian Local Time．） | 11 | M | Mean <br> Temp． | Time of Temp．$1-V_{i} b_{\sim}^{n} . \quad t_{V}$ |  | Mean Deflections |  | Temp． $t_{1}$ | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\varphi_{1}$ | $\varphi_{2}$ |  |  |  |
|  | 0.29258 | 433.91 | 25：0C | 5.8986 | 25．2． C | 6 $233 \% 0$ | 14＊35＇25 ${ }^{\prime \prime} 6$ | 24.12 | Tamaru | Nakamurit |
|  | 0.29270 | 433.99 | 24.2 | 5.8964 | 24.1 | （i）2331．3 | 143541.3 | 24.2 | Imamura | Tamarra |
|  | 0.29222 | 432.82 | 27.2 | 5.9095 | 27.2 | 62254.4 | 143358.8 | 27.1 | Nakamura | Imamura |
|  | 0.29282 | 433.05 | 27.5 | 5.9011 | 27.2 | 62210.0 | 143215.6 | 27.8 | lmamura | Nakamurit |
| Mean | 0.23258 |  |  |  |  |  |  |  |  |  |
| $\bar{H}=0.29258$ |  |  |  |  |  |  |  |  |  |  |
| lieduction to 18 |  |  |  |  |  | $95.0=$ | －111 |  |  |  |
|  |  |  | ，，，seat level＝ |  |  |  | 11 |  |  |  |

## 207．NAMIE． <br> Namie Gakkō（浪 iI：學 校）

DECTINATION（ $\delta$ ）
Observations of the Sonth Party，1895．


Observations of the Sonth Party， 1995.

| Date and Hour （Mean Local Tine．） |  |  |  | Needle No． |  | $\theta$ | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| July | $25^{\text {th }}$ | $6^{17}$ | $34^{\mathrm{m}}$ | － |  |  | Nakamura | Nakammra |
|  | ．， | 11 | 23 | 1 |  |  | Imamura | Imamura |
| ＂ | ＂ | 116 | 23 | 1 | ＂ |  | Tamaru | Tamaru |
| ＂ |  |  | 35 | 1 | ＂ | 57.1 | Nakamura | Imamura |
| Mean |  |  |  |  | $50^{\circ}$ | $5 ¢, 3$ |  |  |
| － |  |  |  |  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |

HORIZONTAL INTENSITY（II）
Observations of the South Party， 1895.


## 208．WATARI．

Watari Common School（五理小學校）
DECLINATION（ $\delta$ ）
Observations of the South Party， 1895.

| Date and Hour （Mean Local＇time．） |  |  |  | $\delta$ |  |  | Observer | Recorter |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| July | $27^{\text {th }}$ | $13{ }_{1}$ | $45.3{ }^{\text {m }}$ | 4 | $21^{\prime}$ | $45^{\prime \prime}$ | Imamura | Tamaru |
| ＂ | ， | 14 | 1.8 | ， | 22 | 0 | ， | ＂ |
| ＂ | ＂ | 14 | 57.1 | ＂ | 23 | 1 | T＂ | ＂， |
| ＂ | ＂ | 16 | 8.5 | ＂， | 23 | 5 | Tamaru | Imamnra |
| ＂ | ＂ | 17 | 16.3 | ， | 19 | 13 | Nakamma | ＂ |
| ＂ | ＂ | 17 | 32.7 | ＂ | 19 | 115 | Namarnura | ＂ |
| ＂ | ＂ | 17 | 44.2 | ＂ | 18 |  | Nakamura | ＂ |
| ， | ＂ | 17 | 54.1 | ， | 18 | 6 | Imamura | Nakamma |
| ＂ |  | 19 | 1.3 | ＂ | 20 | 18 |  | Tamarr |
| ＂ |  | 20 | 12.3 | ＂ | 20 | 1 | Nakamura | Nakamura |
| ＂ |  | 22 | 32.1 | ＂ | 19 | 32 | Imamura | Tamaru |
| ＂ | $28^{\text {th }}$ | 0 | 25.6 | ．， | 18 | 45 | Nakamma | Nakamma |
| ＂ |  | 4 | 50.4 | ＂ | 15 | 58 | ＂ | ， |
| ＂ |  | 5 | 46.2 | ＂， | 17 | 28 | ．， | ＂ |
| ＂ |  | 6 | 9．0 | ＂， | 17 | 5 | ＂ | ＂ |
| ＂， | ＂ | 6 | 52.0 | ＂， | 16 | ${ }_{6}^{6}$ | Trern | Tam |
| ＂ | ＂ | 8 | 3.8 | ， | 18 | 17 | Cumarn | Tamarm |
| ＂ | ＂ | 8 | 45.3 | ＂ | 19 | 5 | ＂ | ＂ |
| ＂ | ＂ | 9 | 18.2 | ＇， | 19 | 51 | ＂ | ＂ |
| ＂ | ＂ | 11 | 5.0 1.1 | ＂ | 22 | 45 | ＂， | Nakamma |
| ＂， | ＂， | 11 | 56.4 | ＂， | 23 | 5 | ： | Tamam |
| ＂ | ＂， | 12 | 55.9 | ＂ | 22 | 33 |  |  |
| ＂ | ＂ | 14 | 30.3 | ＂ | 22 |  | 1anart |  |
| Mean |  |  |  | 4 | $19^{\prime}$ | $35^{\prime \prime}$ |  |  |
| $\delta=4^{\circ} 19: 33$ |  |  |  |  |  |  |  |  |
|  |  |  |  | Reduction to |  |  | －0．78 |  |
|  |  |  |  | 0.0 |  |

（232）
DIP $(\theta)$
Observations of the South Party， 1895.

| Date and Hour <br> （Mean Local Time．） |  |  |  | Needle No． |  |  | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| July ＂ ＂， |  | 16 21 2 7 11 | 6m 33 28 28 58 | 1 |  | $\begin{aligned} & 31.5 \\ & 31.2 \\ & 32.1 \\ & 30.1 \end{aligned}$ | Nakamura Tamarn Nakamura Tamaru | Tamarn Imamura Nakamura Tamaru |
| Mean |  |  |  |  |  | 31！2 |  |  |
|  |  |  |  | Reductio |  | $\begin{aligned} \theta & = \\ 395.0 & = \\ \text { level } & = \\ \theta & = \end{aligned}$ | $\begin{gathered} 31!2 \\ -0.06 \\ 0.00 \\ 31!1 \end{gathered}$ | － |

HORIZONTAL INTENSITY．
Observations of the South Party， 1895.


## 207．HUKUSIMA． <br> Hukusima Normal School（福島帚常師範學校附螣地）

DECLINATION（ $\delta$ ）
Observations of the South Party， 1895.


1）IP $\quad(\theta)$
Observations of the Sonth Party，1895．


HORIZONTAL INTENSTTY（II）


## 210．YONEZAWA． Play ground of Yonezawa Middle School（尋常中學棇運動場）

1）ECLINATION（ $\delta$ ）
Olservations of the North Party， 1895.


1）11＇（ $\theta$ ）
Oliservations of the South Party， 1895.


HORIZONTAL INTENSITY（II）
Observations of the Sonth Party， 1895.


## 211．YAMAGATA．

## Yamagata Middle School（山）形衰常中學校） DECLINATION（ $\delta$ ）

Observations of the Sonth Party， 1895.


D1P $(\theta)$
Olservations of the South Party， 1895.

| Date and Hour （Mean Local Time．） |  |  |  | Needle No． |  | － | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ang． | $5^{\text {th }}$ | $8^{\text {fr }}$ | $55^{\mathrm{m}}$ | － |  |  | Tamarn | Tamara |
| ， | ， | 15 | 43 | － |  | 52.4 | Nakammra | Nakamura |
|  |  |  | 8 20 | － |  | 55 | Tumaru | Tamaru |
|  |  |  |  |  |  |  |  |  |
| Mean |  |  |  |  | $51^{\circ}$ | 56！6 |  |  |
| $\theta$ $=51$ <br> Reduction to$1895.1 t$ $=$ <br> ，sea Ievel $=$ ，ser  |  |  |  |  |  |  | $56!$ |  |
|  |  |  |  |  |  |  | 11.24 |  |
|  |  |  |  |  |  |  | （1）01） |  |
| $\theta=51-36$ |  |  |  |  |  |  |  |  |

HORIZONTAL INTENSITY（II）
Observations of the sinath Party．1895．


212．SINZYŌ．
Tozawa Zinsya（今 澤 确 社）
DECLINATION（ $\delta$ ）
Olservations of the South larty， 1495.

| Date and Jour <br> （Mean Local Time．） |  |  |  | $\delta$ |  |  | Onserver | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Aug． | $7^{\text {th }}$ | $15^{1 /}$ | $3: 3.8{ }^{\text {m }}$ | 5 | $15^{\prime}$ | $14^{\prime \prime}$ | Nakamama | Imamura |
| －• | －• | 16 | 1.8 | ，． | 14 | 44 | Imamura | Nakamura |
| ．， | ， | 17 | 2.0 | ＂ | 13 | 0 | $"$ | Sutö |
| ＂ | ， | 18 | 2.8 | ＂ | 12 | 0 | －＂， |  |
| ， | ＂ | 19 | 7.2 | ＂， | 12 | 32 | Nakammra | Nakimura |
| ， | ＂ | 19 | 58.8 | ＂ | 12 | 59 |  | Sutō |
| ．， | $\because$ | 21 | 27.5 | ， | 13 | 14 | Imamatia |  |
| ，． | $3^{1 / 1}$ | 4 | 42.0 | ， | 14 | 34 | ＂ | Imamura |
| ＂ | ＂ | （i） | 18.7 | ， | 12 | $31 ;$ | ， | ＂ |
| $\cdot$ | ＇， | （i） | 45.5 | ， | 11 | 13 | －＂${ }^{\text {c }}$ | ＋＂${ }^{\text {a }}$ |
| ＂ | ＂ | 7 | 51.3 | ＂ | 16 | $2:$ | Nalsumbra | Nakrmora |
| ， | －， | ！ | 20．8 | ， | 15 | 54 | ＂ | Sutō |
| ， | ， | $!$ | 20.2 | ＂ | $\because$ | 33 | ＂ |  |
| ＂ | ＂ | 10 | 51.2 | ＂ | $2 \pm$ | 5.3 | ＂ | Nakamura |
| ＂ | ＂ | 11 | 40.1 | ＂ | 319 | 13 | ＂ |  |
| ＂ | ＂ | 11 | 138 | ＂ | 20） | 28 |  | Suto |
| ， | ＂ | 12 | 53.3 | ＂ | 21 | 2！ | Snto | Imamula |
| ＂ | ＂ | 1.3 | 19.0 | ， | $\geq 1$ | 14 | Nakammat | S＇utō |
| ＂ | ＇ | 14 | 11.5 | ， | 11： | 11 | ， |  |
| ＂ | ＂ | 15 | 19.7 | ．， | 11 | 19 | Imatmura | Nakamuma |
| ， | ＂ | 15 | 46.1 | ， | 1：3 | 11 | ＂ |  |
| ＇， | ＂ | 17 | 22.7 | ＂ | 11 | 17 | ， | Suto |
| ， | ＂ | 15 | \＄2．7 | ．， | 10 | 54 | Sinto | Nakamura |
| ＇， | ＂ | $1!9$ | 33．1； | ， | 11） | 16 | ＂ | Sutō |
| ＇， | ＂ | 20 | 49.8 | ＂ | 11. | 1 |  |  |
| ＇ |  | 21 | 11.3 | ．． | 11 | 5 | Nakimumat | Nakamurit |
| ＂ |  | 23 | 52.7 | ＂ | $11)$ | 39 | ＂ | ＂ |
| ＂ |  | 1 | 31.4 | ＇ | ！） | It | ＂， | ＂ |
| ，． | ＂ |  | 43.9 | ＂， | N | 5.5 | ， | ＂ |
| ＂ | ， |  | 29.9 | ＂ | ！ | ！ | ，＂ | ， |
| ＂ | ＂ | 7 | 31.2 | ＂ | 5 | 35 |  |  |
| ＂ | ＂ |  | 41.3 | ＂， | ${ }^{\circ}$ | 38 | Sutō | Suto |
| ＂ | ＂ | 9 | 39.5 | ＂ | S | 54 | ＂ | ， |
| Mean |  |  |  | 5 | 16. | $42^{\prime \prime}$ |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  | $\because$ |  | rea | －0．01 |  |

Olservations of the South Party， 1895.


HORTZONTAL INTENSITY（II）
Observations of the South Party．18：5．


## 613．SAKATA．

Sakata Common School（酒田小學 校）
DECLINATION（ $\delta$ ）
Observations of the Sonth Party， 1895.

| Date and Homr （Mean Local Time．） |  |  |  | $\delta$ |  |  | Olserver | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ang． | $10^{\text {th }}$ | $11^{\mathrm{h}}$ | 41.17 m | 5 | $17^{\prime}$ | $10^{\prime \prime}$ | Imamma | Nakiamma |
| －• | ： |  | 55.0 | ， | 15 | 8 |  | ＂ |
| ＂ | ， | 13 | 1.8 | ＂ | 14 | 47 | suto | Sinto |
| ．， | ．， | 11 | 16.3 | ＂ | 15 | 0 | ，${ }^{\text {a }}$ | ， |
| ．． | ．， | 11 | 51.4 | ＂， | 13 | 59 | Imamma | $\cdot$ |
| － | ＂ |  | 36.9 | ＂ | 15 | 11 | ＂ | $\cdot$ |
| ．， | ＂ | 16 | 17.8 | ， | 12 | 8 | ＂ | Imamurit |
| ．， | ＂ | 17 | ！19 | ＂ | 12 | 42 | ＂ | $\bullet$ |
| ＂ | ＂ | 17 | 23.1 | ＂ | 13： | 58 | －＂ | ＊＂ |
| ＂ | ， | 18 | $\because 7.7$ | ．， | 1：3 | 31 | Nakamura | Nakiommat |
| ：， | ＂ | 19 | $\because 5.1$ | ： | 13 | $11)$ | ＂ | ＂ |
| ＂ | ＂ |  | 50.1 | ．． | ！ | 13 | $\begin{aligned} & \text { Imamuza } \\ & \text { sintó } \end{aligned}$ | ＂ |
| ．． | $\bullet$ |  | ：3．5．： | ．， | 12 | 21 | Nakamma | Suto |
| ， |  |  | 52.6 | ， | 1： | 25 | ， | Niakatmurat |
| ＂ | $11^{\text {th }}$ | ： | 21.2 | ＂ | 13 | 36 | ＂， | Sutō |
| ， | $\stackrel{ }{\prime}$ | 4 | 10.4 | ＂ | $1 t$ | $11 ;$ | ．． | Nakamura |
| ＂ | ， | 5 | 48.5 | ＂ | 11 | ， | ＂ | ，， |
| ， | ， | 1 | 51.1 | ＂ | ४ | 41 | ＂ | ＂ |
|  |  |  |  |  | con | ued |  |  |


| Dite and Hour (Mean Local Time.) |  |  |  |  | $\delta$ |  | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Aug. | $11^{\text {th }}$ | $5^{3}$ | $9.1{ }^{\text {m }}$ | $5{ }^{\circ}$ | $9^{\prime}$ | $5 i^{\prime \prime}$ | Nakamma | Nakamura |
| ", | " | 8 | 57.3 | " | 11 | 51 | " | " |
| , | , | 10 | 3.0 | ", | 13 | 43 | , | , |
| " | , | 10 | 22.6 | ", | 11 | 56 | ,. | , |
| " | , | 11 | 0.6 | ,, | 15 | 33 | ,. | " |
| " | " | 11 | 33.0 | , | 13 | IU | .. | , |
| " | ", | 11 | 10.1 | , | 9 | 57 | - | ., |
| , | , | 11 | 56.8 | , | 15 | 34 | ., | , |
| " | , | 12 | 10.7 | ., | 16 | 40 | , | ., |
| , | " | 13 | 14.7 | , | 17 | 33 | , | " |
| " | " |  | 3.5 | - | 18 | 0 | , | , |
| , | ", | 15 | 1.7 | - | 17 | 10 | " | ., |
| Mean |  |  |  | 5 | $13^{\prime}$ | $11^{\prime \prime}$ |  |  |
|  |  |  |  |  $\delta=5^{\circ}$ $13!18$ <br> Tieduction to $\quad 1895.0$ $=$ -1.14 <br> $, \quad, \quad$ sea level $=$ 0.04 |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |

DIP ( $\theta$ )
Ohservations of the sonth Party, 1895.

| Date and Honr (Mean Local Time.) |  |  |  | Neenle No. |  | $\theta$ | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Aug. | $10^{\text {th }}$ | $16^{11}$ | $52^{17}$ | 1 | 52 | 11.1 | Imamura | Imamura |
| " | " | 19 | 25 | 1 | " |  | Sutō | Imamura |
| " | " | 23 | 49 | - | " | 48.4 | Nakamura | Nakamma |
| Mean |  |  |  |  | $52^{\circ}$ | 44!3 |  |  |
|  |  |  |  |  |  |  | $44!3$0.670.01$45!1$ |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |

HORIZONTAL INTENSUTY (II)

Onservations of the South l'arty, 1895.


## 214. ATUMI.

DIP $(\theta)$
Observations of the South Party, 1895.

| Date and Hour (Mean Local 'lime.) |  |  | Needle No. |  | $\theta$ | Olsserver | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Aug. ", $"$ $"$ | $\begin{array}{cc}11 \mathrm{th} & 14^{\mathrm{th}} \\ " & 15 \\ " & 19 \\ 12 \mathrm{th}^{\prime} & 7\end{array}$ | $8^{1 m}$ 51 18 8 | $\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$ |  | $\begin{aligned} & 26!5 \\ & 28.4 \\ & 20.2 \\ & 22.1 \end{aligned}$ | $\begin{aligned} & \text { Imamma } \\ & \text { Sutō } \\ & \text { Imammra } \end{aligned}$ | Sutō Imamura Süto |
| Mean |  |  |  |  | $24!3$ |  |  |
| Reduction to $1 \times 95.0=$ sea level $=$ |  |  |  |  |  | $\begin{gathered} 04!3 \\ 0.5: 3 \\ 0.100 \\ \hline 21!8 \end{gathered}$ |  |



## 215．MURAKAMI．

Murakami High Common school（村上高等小學校）
DECLINATION（ $\delta$ ）
Observations of the south Party， 1845.

| Date and Hour |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mean Loeal Time） |

DIP ${ }^{(\theta)}$
Observations of the South Party， $18 \% 5$.

| Dite and Hour （Mean Local Time．） |  |  |  | Needle No． |  | ， | Observer | Recorter |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ang． | $12^{411}$ | $18^{1}$ |  | 1 |  |  | Nakamurat | Suto |
| ＂ |  | 0 | 36 | 1. |  |  | Imamura | Imamura |
| ＂ | ＂ | 6 | 12 | 1 | 51 | 58.7 | Sưtō | S＇utō |
| ＂ |  |  | 14 | 1 | ＂ | 59.2 |  |  |
| Mean |  |  |  |  | $51^{\circ}$ | $59: 8$ |  |  |
| $\theta=51^{\circ} 59!3$ |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  | 1895. | 0.55 |  |
|  |  |  |  | a leve | 0.00 |  |
|  |  |  |  |  |  |  |

HORIZONTAL NTTENSITY（ $/ l$ ）
Ohservations of the South Party，1895．


## 216．OGUNI．

## Oguni Police Station（小國警察唄）

DECLINATION（ $(\mathbf{)}$
Observations of the South Party， 1895.


DIP $(\theta)$
Olservations of the South Party， 1895.

| Date and Homr （Mian Local Time．） |  |  | Needle No． |  |  | Olserter | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ang． ＂， ＂， | $\begin{array}{cc}14^{(1)} & 15^{11} \\ \# & 18 \\ 7 & 23 \\ 15^{(1)} & 6\end{array}$ | 37 m 37 35 59 | 1 -1 | 51 $"$ $"$ $"$ | 48.11 43.7 45.0 44.1 | In Samura <br> Nakamma <br> ＂ | $\begin{gathered} \text { Sutō } \\ \text { Nakamura } \\ , " \end{gathered}$ |
| Mean |  |  |  | $51^{\circ}$ | 45：2 |  |  |
|  |  |  |  |  |  | $45!2$ <br> 0.43 <br> 0.00 |  |

（240）
HORIZONTAL INTENSITY（II）
Olservations of the South Party，18！5．


## 217．TUGAWA． Tugawa High Common School（津川高等小學校）

DECLINATION（ $\delta$ ）
Observat：ons of the South l＇arty， 1895.

| Date and Hour |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| （Iean Local Time．） |

DIP（ $\theta$ ）
Olnervations of the Sonth Party，1895．

| Date and Homr <br> （Mean Local Time．） | Needle No． | $\theta$ | Observer | Recorler |
| :---: | :---: | :---: | :---: | :---: |
|  | 1 1 1 1 | 51 19.9 <br> $"$ 22.7 <br> $"$ 21.7 <br> , 21.3 | Imamura $\begin{gathered} \text { Nakammra } \\ \text { Sutō } \end{gathered}$ | $\begin{aligned} & \text { Imamura } \\ & \text { Nakamura } \\ & \text { Sutō } \end{aligned}$ |
| Mean |  | $51^{\circ} \quad 214$ |  |  |
| $\theta$ $=51^{\circ}$ $21!4$  <br> Teduction to 21895.0 $=$ 0.3 s <br> $-\cdots \quad \because \quad$ sea level $=$ 0.00  <br> $\theta$ $=51 \quad 21!9$   |  |  |  |  |

HORIZONTAL：INTENSITY（ $I$ ）
Observations of the south Party， 1895.

| Date and Hour Mean Local Time．） | II | M | $\begin{aligned} & \text { Mean } \\ & \text { Temp. } \end{aligned}$ | Time of 1－Yibn． | Temp． tv | Me：n De $\varphi_{1}$ | Hections． <br> $\varphi$ ． | Temp $t_{\text {b }}$ | Observer | Recorter |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ang．19th $8^{81} 250$ | 0.29053 | 430.48 | 29.8 C | 5.9408 | 29：0C | 622：39\％8 | $1 \pm^{\circ} 3310 \% 0$ | 30\％ | Nakamua | Sntō |
| ．．．， 1155 | 0.29063 | 429.64 | 32.9 | 5.9472 | 32.6 | 62145.0 | 14315.0 | 33．2 | Imamura | Nakamura |
| ：，$\because \quad 121$ | 0.29066 | 429.61 | 33.1 | 5.9477 | 33.1 | 62145.0 | $11: 31 \quad 5.0$ | 33.2 |  |  |
| ，，．， $15 \quad 27$ | 0.29049 | 429.06 | 34.1 | 5.9543 | 31.3 | 62136.9 | 143045.0 | 33.6 | Sntio | ＂． |
| ＂．，20 ：3 | 0.29015 | 431.35 | 26.2 | 5.9405 | 26.2 | $62!40.0$ | $1+36+0.9$ | 26.2 | ， | Imamura |
| lean | 0．2，\％ 49 |  |  |  |  |  |  |  |  |  |

$11=0.29015$
lieatuction to $18: 9.0=-375$
＿．＿．＂．sea level $=\quad 10$

## 218．WAKAMATU

## Aizu Middle School（會渄䠟常中學校）

DECLINATION（ $\delta$ ）
Olservations of the south Party， 1895.


1）IP（ $\theta$ ）
Ohservations of the sonth Tarty，1s：5．


HORIZONTAL ENTENSITY（IL）
Olservations of the South Party， 1894.


## 219．TAZIMA．

## Tazima Common School（田 鳲 小學 校）

DECLINATION（ $\delta$ ）
Observations of the South Party，1895．


DIP（ $\theta$ ）
Onservations of the Sonth Party， 1895.

| Date and Hour （Mean Local Time．） |  |  |  | Neerlle No． |  | $\theta$ | Observer | Recorter |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ang． | $23{ }^{\text {rd }}$ | $5^{\text {h }}$ | $51^{\mathrm{m}}$ | 1 | $51^{\circ}$ | 8：7 | Sutō | Sutō |
|  | ， | 11 | 26 | 1 | ， | 10.2 | Nakamura | Imamura |
|  | ＂ | 15 | 12 |  | ＂． | 13.4 | Imamura | ， |
| ＂ |  |  | 3 | 1 | ＂ | 8.1 | Nakamura | ， |
| Mean |  |  |  |  |  | 10！1 |  |  |
|  |  |  |  | Reduction to |  | $\theta=51^{\circ}$ | $10!1$ |  |
|  |  |  |  | 1895. | 0.001 |  |
|  |  |  |  |  |  | leve | －0．02 |  |

HORIZONTAL INTENSITY (II)
Observations of the South Party, 1895.


## 220. TADAMI.

DECLINATION ( $\delta$ )
Ubservations of the South Party, 1835.

| $\begin{gathered} \text { Dat } \\ \text { (Mea) } \end{gathered}$ | Loe | Hour | $\begin{array}{ll} \mathrm{nr} \\ \text { ime.) } \end{array}$ |  | $\delta$ |  | Olserver | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ang. | 24.1 | $22^{11}$ | $24.0{ }^{\text {m }}$ | $4^{\circ}$ | $41^{\prime}$ | $40^{\prime \prime}$ | Nakamura | Nakamura |
| :, | $\because$ |  | 48.4 | ", | 41 | 40 |  | , , |
| " |  |  | 53.5 | ", | 40 | 28 |  |  |
|  | " |  | 16.1 | " | 38 | 50 | Suto |  |
| , | " |  | 31.7 | ," | 37 | 58 | Tmamura | Imamura |
| " | " |  | 36.9 | " | 38 | 30 |  |  |
| " | " |  |  | , | 40 | 56 | Suto | Sutō |
| , | , |  | 45.3 | " | 43 | 35 | Intamura | Imamura |
| " | " |  | 19.1 | " | 45 | 3 | Suto | Sutō |
| " | " | 13 | 5.6 | " | 44 | 36 | Imamura | Imatmura |
| Mean |  |  |  | $4^{\circ}$ | $41^{\prime}$ | $36^{\prime \prime}$ |  |  |
|  $\delta$ $=t^{\circ}$ 41.40 <br> Reduction to 1895.0 $=$ -0.92 <br> , , sea level $=$ <br>  -0.03   |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |

DIP ( $\theta$ )
Olservations of the Sonth Party, 1895.

| Date and Hour (Mean Local Time.) |  |  | Needle No. |  |  | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Aug. <br> ", | $\begin{array}{cc}24^{\text {th }} & 23^{3 / 1} \\ 25 \\ 25^{\text {th }} & 5 \\ , & 10\end{array}$ |  | $\frac{-}{1}$ |  | $\begin{aligned} & 5!2 \\ & 4.6 \\ & 5.0 \end{aligned}$ | $\begin{aligned} & \text { Nokamurat } \\ & \text { I mamura } \end{aligned}$ | $\begin{aligned} & \text { Nakamura } \\ & \text { Imumura } \end{aligned}$ |
| Mean |  |  |  |  | 49 |  |  |
| Redraction to$\begin{array}{rlrl} \theta & =51^{\circ} \quad 4!3 \\ 1895.0 & =0.26 \\ 0 & 0.02 \\ \text { sea level } & =-0.02 \\ \theta & =51^{\circ} & 5!1 \end{array}$ |  |  |  |  |  |  |  |

HORIZONTAL INTEENSITY (IL)
Observations of the South Party, 1895.

| Date and Hour (Mean Local Time.) | II | M | Mean <br> Temp. | Time of 1-Vibn. | Temp. $t_{V}$ | Mean Deflections |  | Temp | Observer | Reeorter | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|  |  |  |  |  |  | $\varphi_{1}$ | $\varphi \cdot$ |  |  |  |
|  | 0.29163 | 430.15 | $24 \%$ C | 5.9339 | 25.1 C | $62117!5$ | $14^{\prime} 30^{\prime} 6.2$ | 24:7C | 1maturial | Sutō |
|  | 0.29216 | 431.78 | 24.3 | 5.916:3 | 24.0 | (; 2140.0 | 143035.6 | 24.6 | Sutō | Nakamura |
|  | 0.29268 | 428.19 | 36.2 | 5.9356 | 35.6 | 61730.6 | 142059.4 | 36.7 | Imamura | Snıō |
| Mean | 0.2921 .6 |  |  |  |  |  |  |  |  |  |
| 11 $=$ 0.29216  <br> Fieduction to 1895.0 $=$ -388 <br> ,$\quad$, sea level $=$ 485 <br> 11 $=$ $10.2 \% 217$  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

221．NIKKŌ．
Hotel Kamiyama（神 山 旅 管）
DECLINA＇TION（ $\delta$ ）
Onservations of the south Party， 1895.

|  | $\begin{aligned} & \text { ant } \\ & \text { Loca } \end{aligned}$ | $\begin{aligned} & \text { Hor } \\ & 1 \mathrm{Ti} \end{aligned}$ | re．） |  | $\delta$ |  | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Aug． | 28 tlı | $17^{\text {h }}$ | 5.310 | 4 | $26^{\prime}$ | $2 y^{\prime \prime}$ | Imaminea | Imamura |
| ＂， | ＂ | 17 | 35.1 | ， | 26 | 10 | Sutó | ＂ |
| ：， | ＂ | 18 | 57.5 | ＂ | 26 | $4!$ | Imamura | suto |
| ＂ |  | $\stackrel{1}{5}$ | 1.11 | ＂， | $\stackrel{27}{26}$ | 14 | Imamma | Imămura |
| ＂， | ， | 6 | 12.3 | ， | 21 | 41 | ＂， | ．， |
| ＂， | ＂ | 7 | 20.2 | ＂ | 23 | 36 | ＂ |  |
| ＂ | ， | 8 | 6.2 | ＂ | 23 | 59 | suto | suto |
| ， | ： | 9 | 19.6 | ＂ | 26 | 4 | ＂ | ＂ |
| ＂ | ＂ | 10 | 14.3 | ＂ | 25 | 3 | In＂ | Imämura |
|  |  | 11. |  | ＂， | 2；） | 82 | intō | suto |
| ＂ |  |  | 39.7 | ＇， | 29 | 14 | Nakamura | Nakamura |
| Mean |  |  |  | $4{ }^{\circ}$ | $27^{\prime}$ | $2^{\prime \prime}$ |  |  |
| $\delta=4 \quad 27.03$ |  |  |  |  |  |  |  |  |
|  |  |  |  | Renuction to |  |  | $-19.77$ |  |
|  |  |  |  |  |  |  | －0．04 |  |
|  |  |  |  | $\pm 20: 2$ |  |

DIP（ $\theta$ ）
Olservations of the Sonth Party，IS55．


HORIZONTAL INTENSITY（II）
Observations of the South Party，1895．

| Date and Hour （Mean Local Time．） | II | M | Mean Temp． | Time of1-Yib․ | Temp. | Mean Deflections |  | $\begin{gathered} \text { Temp. } \\ t_{D} \end{gathered}$ | Observer | Fecorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | 41 | 4. |  |  |  |
|  | 0.29486 | 431.64 | $22^{\circ} 9 \mathrm{C}$ | 5.8923 | 22.7 C | $6^{\circ} 18^{\prime} 211^{\prime \prime 2}$ | $14.2357!5$ | 23.2 C | Inammara | suto |
|  | 0.29452 $0.29+60$ | 431.68 430.18 |  | $\begin{aligned} & 5.8926 \\ & 5.9014 \end{aligned}$ | $\begin{aligned} & 21.7 \\ & 26.1 \end{aligned}$ | $\begin{aligned} & 61840.0 \\ & 61655.6 \end{aligned}$ | $\begin{aligned} & 142356.9 \\ & 1+1940.6 \end{aligned}$ | 27.7 | Imamiria | Sutō |
| Mean | 0.29457 |  |  |  |  |  |  |  |  |  |

## 222．SUKAGAWA．

## Sukagawa Common School（須賀川小學校

DECLINATION（ $\delta$ ）
Observations of the South Party， 1895.


DIP（ $\theta$ ）
Olservations of the South Party， 1895.

| $\begin{aligned} & \text { Dat } \\ & \text { (Mear } \end{aligned}$ | $\begin{aligned} & \text { and } \\ & \text { Lhoc } \end{aligned}$ | $\begin{gathered} \text { Hou } \\ \text { H Thir } \end{gathered}$ |  | Neerlle No． |  |  | Observer | Tiecorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Aug． | $30^{\text {th }}$ | $33^{12}$ | $54^{112}$ | 1 | $50^{\circ}$ | $44!7$ |  | Suto |
| ＂， | ， | 8 | 20 | ．－ | ＂， | 47.9 | Nakamura | Nakamura |
| ， | ， | 13 | 59 |  | ＂ | 47.2 | Sutö | ＂ |
|  | ， | 16 | 43 | 1 | ＂ | 44.9 | Imamuli | Inamirra |
| Mean |  |  |  |  | $50^{\circ}$ | 46.3 |  |  |
|  |  |  |  | $\theta=50^{\circ} \quad 46!3$ |  |  |  |  |
|  |  |  |  | Rechuction to |  | 1895.0 | －0．13 |  |
|  |  |  |  |  | ，se | leve | $-0.01$ |  |
|  |  |  |  | $\theta=5 v^{\circ}-\frac{16!2}{46}$ |

HORIZONTAL INTENSITY（II）
（＊＇relue deduced from Vibration only liy asseming l＇alue of M．）
Observations of the Sonth Party， 1895.


## 223．NISINASUNO． Nisinasuno Common School（洒那須野小學校）

DECLINATION（ $\delta$ ）
Observations of the South Party，1895．


DIP（ $\beta$ ）
Observations of the South Party， 1895.


HORIZONTAL INTENSITY（II）
Observations of the South Party， 1895.

| Date and Hour （Mean Local Time．） | II | II | $\begin{aligned} & \text { Mean } \\ & \text { Temp. } \end{aligned}$ | $\begin{aligned} & \text { Time of } \\ & 1-\mathrm{Vib}^{\mathrm{n}} . \end{aligned}$ | Temp． <br> $t_{v}$ | Mean Deflections |  | $\begin{gathered} \text { Temp } \\ t_{j} \end{gathered}$ | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\varphi_{1}$ | $\varphi \cdot$ |  |  |  |
| Arg．31 ${ }^{\text {st }} 14^{\mathrm{h}} 56^{\mathrm{m}}$ | 0.29402 | 428.79 | 30：3C | 5.9208 | 30\％C | $6^{\circ} 17^{\prime} 0 \% 0$ | $1420^{\prime} 818$ | 29：7C | Imamura | Nakamura |
| ＂$\quad 1748$ | 0，29402 | 429.36 | 28.3 | 5.9167 | 29.6 | 61730.0 | 142112.5 | 28.3 | ．Sutō | Imamura |
| ＂，＂， 2157 | 0.29423 | 430.65 | 25.7 | 5.9042 | 25.8 | 61819.4 | 142315.6 | 25.7 | Imamura | Sutō |
| Wepht．${ }^{\text {st }}$（ 811 | 0.29371 | 430.65 | 25.5 | 5.9095 | 25.6 | 61847.5 | $14 \% 40.6$ | 25.5 | Nakamura | Imamura |
| Mean | 0.24400 |  |  |  |  |  |  |  |  |  |
| Reduction to |  |  |  |  | $I=0.29400$ |  |  |  |  |  |
|  |  |  |  |  |  | $5.0=$ | $-282$ |  |  |  |
|  |  |  |  |  | sea le | $\mathrm{vel}=$ | 266 |  |  |  |

## 224．UTUNOMIYA．

DECLINATION（ $\delta$ ）
Observations of the South Party， 1895.


DIP（ $\theta$ ）
Observations of the Sonth Party， 1895.

| Date and Honr （Mean Local Time．） |  |  |  | Needle No． |  | $\theta$ | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sept． <br> 9 <br> ＂） |  |  | $55^{m}$ | 1 | 50 | 11：7 | Nakammra | Nukamura |
|  |  |  | 35 | 1 | ， | 8.1 | Imamua | Imamma |
|  |  |  | 43 27 | 1 | ＂ | 8.2 |  | ， |
|  |  |  |  |  | ＂ |  |  | ＂ |
| Menn |  |  |  |  |  | 93 |  |  |
|  |  |  |  | $\theta=50$ <br> Rerdnction to $1895.0=$ <br> ．．．，sea level＝ |  |  | $9!4$ |  |
|  |  |  |  | $-0.33$ |  |
|  |  |  |  | －0．01 |  |

HORIZONTAL INTENSI＇TY（IL）
Observations of the houth Party 18：95．

| Date and Hour （Mcan Local Time．） | II | M | Mean <br> Temp． | Time of 1－ブib？。 | $\begin{gathered} \text { Temp. } \\ t_{v} \end{gathered}$ | Mean Deflections |  | Temp． $t_{0}$ | onserver | Tecorrler | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|  |  |  |  |  |  | $\varphi_{1}$ | $\varphi_{2}$ |  |  |  |
|  | 0.29513 | 429.56 | 28．2C | 5.9023 | 24.3 C | $6^{\circ} 16{ }^{\prime} 1{ }^{\prime \prime} 9$ | $14^{\circ} 17^{\prime} 43 \prime \prime 1$ | 28：10 | Nakamura | Imamu |
|  | 0.29555 | 430.17 | 25.4 | 5.8535 | 25.2 | 61548.8 | 141655.6 | 25.6 | 1 mamura | Sutō |
|  | 0.29507 | 430.25 | 27.5 | 5.8968 | 26.9 | 61625.6 | 141834.4 | 25.2 | Sutō | Nakamura |
|  | $0.2955{ }^{\circ}$ | 427.83 | 34.1 | 5.9114 | 34.4 | 6145.0 | 141327.5 | 33.7 | Imamura | ＂ |
| Mean | 0.29533 |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

## 225. KOGA.

DECLINATION ( $\delta$ )
Observations of the Soath Party, 1895.


DIP ( $\theta$ )
Observations of the Sonth larty, 1845.


HORIZONFAL INTENSITY (If)
OLservations of the fouth Party, 1895.


## 226．HATIMAN．

## Suwa－zinsya（岡山村字小䑢木諏胁神祗）

DECLINATION（ $\delta$ ）
Observations of the Kinki Iarty，189\％．

| $\underset{\text { alea }}{\mathrm{D}_{\mathrm{a}}}$ | Loc | $\begin{gathered} \text { Hor } \\ \text { al } \end{gathered}$ |  |  | $\delta$ |  | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| July | $1^{\text {st }}$ | $14^{1 /}$ | $49^{\text {m }}$ | 4 | $47^{\prime}$ | $44^{\prime \prime}$ | Kato | Tomota |
| ＂ | ， | 16 | 14 | ＂ | 16 | $\because$ | Tomenta | Katō |
| ＂， |  | 16 | 45 | ＂ | 45 | 411 | ．， | ＂ |
| ＂ | ＂ | 18 | 17 | ＂ | 41 | 53 |  | ＂ |
| ， |  | 19 | 54 | ＂ | 41 | 4 |  | Türa |
| ＂ |  | 2 | 59 50 | ＂ | 4 | $\bigcirc$ | Tomota | Tumoda |
| ＂ |  | 1 | 49 | ＂ | 43 | 4！） | ＂， | ＂， |
| ＂ | ．， | 7 | $1 ;$ | ，， | 41 | 21 |  |  |
| ．， | ： | 8 | 22 | ，＂ | 41 | 8 | Kato | Katō |
| ＂ |  | 9 | 42 | ．， | 41 | 52 | ＇Tomoda | ， |
| ＂ | ， | 11 | 5 | ，＂ | 45 | 23 | Katō | Tomoda |
| ＂ | ＂ | 12 | 2.5 | ，＂ | 47 | 14 | ＇Somerda |  |
| ， | ＂ | 13 | 53 | ＂ | 47 | 52 | ，， | Katō |
| Hean |  |  |  | 4 | $11^{\prime}$ | 371 |  |  |
|  |  |  |  | Tieluction to |  |  | $\begin{array}{rrr}\delta=t & 44!62 \\ 1595.0 & = & -1.53\end{array}$ |  |
|  |  |  |  |  |  |
|  |  |  |  | －．．．．，seal level |  |  | 10.04 |  |
|  |  |  |  | 43：1 |  |  |

DIP（ $\theta$ ）
Observations of the Kinki Party， $18 \%$ ．


HORIZONTAL INTENSITY（II）
Observations of the Kinki Party， $18 \% 6$.

（250）

## 227．KYŌTO． <br> Imperial University（京都帝國大學）

DECLINATION（ $\delta$ ）
Olservations of the Kinki Party， 1896.

| $\begin{gathered} \mathrm{Da} \\ \text { (Xea } \end{gathered}$ | and | $\mathrm{Hol}$ |  |  | $\delta$ |  | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| July | $3{ }^{1}$ | $16^{17}$ | $5^{\text {m }}$ | 4 | $17^{\prime}$ | ：35＂ | Katō | ＇Tomota |
| ， | ＂， | 17 | 10 | ．． | 47 | 4 | Tomorla | Kato |
| ＂ | ， | 18 | 35 |  | 16 | 4：3 |  |  |
| ＂ | ．， | 19 | 38 | ＂． | 46 | 33 | Kıtō | Tomoda |
| ， | － | 21 | ！ | ．． | 49 | 46 | ．． |  |
| ＂ |  | 22 | 42 | ． | 47 | 2 | ， | Kato |
| ． | $4^{1 / 4}$ | 1 | 8 | ．． | 4 ： | 4 | ＂ | ＂ |
| ＂ | ， | 2 | 47 | ， | 4 | $\because$ | ： | ＂， |
| ＂ | ， | 5 | 32 | ．， | 4 | s | ．． | ．． |
| ．， | ＂ | 7 | 21 | ．． | 13 | － | ＂ | ＂ |
| ， |  | 8 | 47 | ，， | 42 | 19 |  | Tomota |
| ＂ | ．． | 9 | 57 | ．， | $4 t$ | 25 | Tomodia | Kato |
| ＂ | ， | 12 | 24 | $\cdots$ | 51 | 35 | liato | ＇Tomoda |
| ＂ | ＂ | 13 | 34 | ．， | 51 | $51 ;$ | Tomorla | Katō |
| ： | ， | 11 | 44 | ．． | 51 | 111 | Katō | ＇Tomodia |
| ＂ | ．． | 15 | 44 | ．． | 50 | 5 |  |  |
| ＂ | ＂， | 16 | 44 | $\stackrel{ }{\prime}$ | 47 | 58 | Tomoda | Kiatō |
| ．． | ＂ | 17 | 41 | ＂ | 47 | 18 | Kato |  |
| ， |  | 14 | 31 | $\cdots$ | 48 | 18 | Tomoda | ＇Tomoda |
|  |  | 20 | 10 | ＂ | 48 | 29 | ， | ， |
| Mean |  |  |  | $4 \quad 16^{\prime} \quad 11^{\prime \prime}$ |  |  |  |  |
|  |  |  |  | Licaluction to |  |  | $\delta=146 \% 6$ |  |
|  |  |  |  | $-1.45$ |  |
|  |  |  |  | 0.00 |  |
|  |  |  |  | DII＇（ $\theta$ ）$\delta=4^{\circ} \quad 45!2$ |  |  |  |  |
|  |  |  |  |  |

Olservations of the Kinki Party， 1896.


HORIZUNTAL INTENSITY（IL）
Olservations of the Kinki Party， 1896.

| Dite and Hour （Mean Local Time．） | 11 | II | Mean <br> Temp． | Time of 1－Vib‥ | $\begin{gathered} \text { Temp. } \\ t_{v} \end{gathered}$ | Mean Deflections |  | $\underset{t_{b}}{\text { Temp }}$ | Observer | liecorder | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|  |  |  |  |  |  | $Q_{1}$ | 4. |  |  |  |
| July $33^{\text {rol }}$ 20h $33^{\mathrm{mm}}$ | 0.302108 | 425.411 | 23.9 C | 5.8063 | 23.9 C | $6_{6} 3^{\prime} 40 \%$ | $13 \pm 3^{\prime} 48^{\prime \prime} 1$ | $23: 8 \mathrm{C}$ | Tomota Katō | Katō <br> Tomoda |
| ＂， $4^{\text {the }} 888$ | 0.30323 | 424.62 | 25.5 | 5.8052 | 24.2 | 6217.5 | 134051.3 | 26.9 | Tomoda | Kato |
| ＂， $11 . \quad 26$ | 0.30266 | 422.88 | 29.2 | 5.8252 | 30.2 | $6{ }_{6}^{6} 155.6$ | 134116.2 | 28.3 |  | Tomoda |
| ＂$\quad$ ， 1938 | 0.303065 | 425.65 | 22.0 | 5.8088 | 22.1 | $6 \pm 10.15$ | 13459.4 | 21.9 | Tomota Kato | $\left\{\begin{array}{c}\text { Katō } \\ \text { Tomota }\end{array}\right.$ |
| Mean | 0.30276 |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

228．SASAYAMA．
Hōmeigizyuku（凮 鳴 義 熟）
DECTINATION（ $\delta$ ）
Observations of the Kinli Party， 1896


DIP $\quad(\theta)$
Observations of the Kinki Party， 1896.


HORTZONTAL INTENSITY（ $I$ ）
Ohservations of the Kinki Party， $18: \%$ ．

| Date and Honr （Mean Local Time．） | II | M | Mean Temp． | Time of 1－Yibn． | $\begin{array}{\|c\|} \text { Temp } \\ t_{v} \end{array} .$ | Nean De $\varphi_{1}$ | flections <br> $\psi_{2}$ | Temp． <br> $t_{\text {D }}$ | Ohserver | Tecorter |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| July $7^{\text {th }} 19^{\text {h }}$（ $4^{\text {m }}$ | 0.30314 | 423.74 | 26.0 C | $5_{5}^{5} .8148$ | 26．2C | $6^{\circ} 2 \times 35 \%$ | $13^{\circ}+2^{\prime} 213 \% 2$ | 25.9 C | Tomoda | Katō <br> ＇Comoda |
| ， 8 8ih 842 | 0.30207 | 424．33 | 24.8 | 5.8156 | 24.8 | 636.2 | 134241.2 | 24.7 | ${ }_{\text {Tomoda }}^{\text {Katō }}$ | Katō |
| ，＂， 14.29 | 030283 | 423．8． | 25.6 | 5.8165 | 26.5 | 6230.6 | 134128.8 | 26.7 | Tomoda | Kato |
| ，＂， $18 \quad 49$ | 0.30232 | 424.40 | 23.6 | 5.8143 | 23.8 | 6338.1 | 134358.1 | 23.5 | Somoda | Katō Tomoda |
| Mean | 0.30259 |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |

## 229．MIYATU． <br> High Common School（第一高等小嚳梭運動場）

DECLINATION（ $\delta$ ）
Observations of the Kinki Party， 1836.


DIP（ $\theta$ ）
Olservations of the Kinki Party， 1896.


HORIZONTAL INTENSITY（IL）
Onservations of the Kinki Party，189\％．

| Date and Jour （Mean Local Time．） | II | H | Mean <br> Temp． | $\begin{aligned} & \text { Time ot } \\ & \text { 1-Vib } . \end{aligned}$ | $\underset{t_{v}}{\operatorname{Temp}}$ | Mean Deflections |  | Temp． $t_{p}$ | Olserver | Recorter |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $Y_{1}$ | \％？ |  |  |  |
| July $10{ }^{\text {（th }} 14^{\text {h }} 30 \mathrm{~m}$ | 0.30196 | 423．19 | 28．4C | 5.58304 | 28.7 C | $6{ }^{2} 59.4$ | 1： $4231 \% 9$ | 28.10 | Tomodat Kato Tomoda Katō ＇Tomoda Katō <br> Tomota Kato | $\left\{\begin{array}{c} \text { Katō } \\ \text { Tomorla } \\ \text { Katō } \end{array}\right.$ |
| ＂$\quad$＂ 2012 | 0.30172 | 424.65 | 21.9 | 5.8217 | 22.4 | $6+38.1$ | 134323.1 | 21.5 |  |  |
| ＂ $111^{\text {th }} 888$ | 0.30181 | 424.27 | 23.8 | 5.8233 | 23.5 | 647.5 | 134514.4 | 24.0 |  | $\left\{\begin{array}{c} \text { Tomorla } \\ \text { Katō } \\ \text { Tomola } \end{array}\right.$ |
| \＃＂， 1417 | 0.30182 | ＋22．59 | 28.8 | 5.8337 | 29.4 | （6） 246.3 | 13426.3 | 28.3 |  |  |
| Mean | $\underline{0.30183}$ |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  | $J I=0.3$ | 018：3 |  |  |  |
|  |  |  |  | anction | $\begin{array}{lr} \text { to } & 1 \\ \cdots & \text { sea } \end{array}$ | $\begin{aligned} & 995.0= \\ & \text { level }= \end{aligned}$ | $\begin{array}{r} -2366 \\ 0041 \end{array}$ |  |  |  |
|  |  |  |  |  |  | $1 I=11$. | 10159 |  |  |  |

230. OBAMA.

DECLINATYON ( $\delta$ )
Observations of the Kinki Party, 1896.


DIP ( $\theta$ )
Observations of the Kinki Party, 1896.


HORIZONTAL TNTENSITY (II)
Observations of the Kinki Party, 1896.


231．SAKAI．
Ohama Park（大演四丁遊園地）
DECLINATION（ 8 ）
Observations of the Kinki Party， 1893.


DIP ${ }^{(\theta)}$
Observations of the Kinki Party， $189 \%$ ．


HORIZONTAL INTENSITY（II）
Observations of the Kinki Party． 1896 ．


> 232. IKUNO.
> Common School (學 校 敷 地) DECLINATION ( $\delta$ )
> (255)
> Olservations of the Kinki Party, 1896.
> Dl1 ${ }^{(\theta)}$
> Olservations of the Kinki Party, 1896
> HORIZONIAL INTENSITY (II)
> Observations of the Kinki Party, 18:O.

## 233．TOYOOKA． Middle School（豐岡喜常中學校䇩地）

DECLINATION（ $\delta$ ）
Observations of the Kinki Party， 1897 ．


DIP（ $\theta$ ）
Observations of the Kinki Party， $18 \%$ ．

| Dite and Hour （Mean Local Time．） | $\begin{gathered} \text { Needle } \\ \text { No. } \end{gathered}$ | $\theta$ | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: |
| July $23^{\text {rd }} \quad 9^{\text {h }} \quad 37^{\mathrm{mm}}$ | － | $49^{\circ} \quad 31!1$ | Nukamura | Tomoda |
| ＂$\quad$ ， 11 33 | － | ， 28.3 | Katō | ，， |
| ＂$\quad \begin{array}{lll}0 & 18 & 8 \\ 00 & 40\end{array}$ | － | ＂ 25.2 | Tomoda | $\because \prime$ |
|  | － | $7 \quad 25.8$ <br>  | Katō | Kato |
| Mean |  |  |  |  |
|  |  | $49^{\circ} \quad 27.0$ |  |  |
| $\theta=49^{\circ} \quad 27.0$ |  |  |  |  |
|  | Reduction to $\quad 1895.0=$ <br> ，，，sea level $=$ |  | 3.28 |  |
|  |  |  | 0.60 |  |
|  | $\theta=49^{\circ} \quad 30 \% 3$ |  |  |  |

HORIZONTAL INTENSITY（11）
Observations of the Kinki Party， $18 \% 6$.

| Date and Honr （Mean Local Time．） | $1 /$ | II | $\begin{aligned} & \text { Mean } \\ & \text { Temp. } \end{aligned}$ | Time of＇Temp．$1-\mathrm{Vib} \underline{\underline{n}} .$ |  | Mean I | eflections | Temp $t_{D}$ | Olserver | Recorder | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|  |  |  |  |  |  | $\varphi_{1}$ | $\psi_{2}$ |  |  |  |
| $\left\|\begin{array}{cccc} \text { Jnly } & 23^{\mathrm{rd}} & 8^{1} & 35^{\mathrm{m}} \\ " & " & 13 & 21 \\ , & , & 16 & 40 \end{array}\right\|$ | $\begin{aligned} & 0.302300 \\ & 0.30208 \\ & 0.30232 \end{aligned}$ | $\left\lvert\, \begin{aligned} & 421.055 \\ & 419.56 \\ & 419.85 \end{aligned}\right.$ | $\begin{aligned} & 32: 6 \mathrm{C} \\ & 37.2 \\ & 35.5 \end{aligned}$ | 5.8133 | $32: 3 \mathrm{C}$ | $6^{\circ} 1^{\prime} 1{ }^{\prime \prime} 9$ | $13^{\circ} 38^{\prime} 18{ }^{\prime \prime} 8$ | 33.0 C | $\left\{\begin{array}{c}\text { Tomoda } \\ \text { Kato }\end{array}\right.$ | $\left\{\begin{array}{c}\text { Kato } \\ \text { Tomoda }\end{array}\right.$ |
|  |  |  |  | 5.8556 | 37.9 | 55935.6 | 133441.9 | 36.7 | $\left\{\begin{array}{l}\text { Nakämura }\end{array}\right.$ | $\left\{\begin{array}{c} \text { Nakamurara } \\ \text { Katō } \end{array}\right.$ |
|  |  |  |  | 5.8521 | 36.9 | 55951.9 | 133535.6 | 34.7 | $\left\{\begin{array}{c} \text { Nakamura } \\ \text { Tomoda } \end{array}\right.$ | $\left\{\begin{array}{c} \text { Katō } \\ \text { Nakamura } \end{array}\right.$ |
| Mean | 0.30213 |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

## Normal School（鳥取尌常瑡範學核）

DECLINATION（ 8 ）
Observations of the Kinki Party，1896．


DIP（ $\theta$ ）
Onservations of the Finki Party，18：\％．


HORTZONTAL INTENSTTY（Il）
（＊Iatue dedured from Vinnatoin mly by assmming lithe of 11．） Usservations of the Kinki Party， 1 sim．

（258）

## 235．HASIZU． <br> Ruin of Fort（焦 堇 場） <br> DECLINATION（ $\delta$ ）

Observations of the Kinki Party， 1896.

| $\begin{aligned} & \text { Dat } \\ & \text { QMear } \end{aligned}$ | and <br> Loca |  |  |  | $\delta$ |  | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| July | $27^{\text {th }}$ | $0^{\text {h }}$ | $57^{\mathrm{m}}$ | $5^{\circ}$ | $2^{\prime}$ | 23 ＂ | Katō | Katō |
| ＂， | ＂ | 1 | 19 | ， | $\stackrel{2}{1}$ | 27 | ， | ＂ |
| ＂ | ＂ | 4 | 28 | $"$ | 1 | 23 | ＂ | ＂ |
| ＂ | ＂ | $\frac{6}{7}$ | 58 | 4 | 58 | 38 52 | Tomoda | Nakamıra |
| －• | ＂ | 9 | 2 | ＂， | 59 | 52 | Nakamnra | Tomoda |
| ＂ |  | 9 | 37 | ¢ | 0 | 41 | Tomoda | Nakamura |
| ＂， |  | 10 | 43 | ＂ | 2 | 45 | Nakamura | Tomoda |
| ＂ | ＂ | 11 | 34 | ＂ | 4 | 10 | Tomodia |  |
| ＂ | ＂， | 12 | 36 | ＂， | ${ }_{6}$ | 8 | Katō | Nakamura |
| ＂ | ，． | 13 | 21 | ， | 7 | 8 | Nakamura | Katō |
| ＂ | ， | $1 \pm$ | 11 | ＂， | 6 | 51 | Katō | ＂ |
| ＂ | ＂ | 15 | $1]$ | ＂， | 4 | 59 | Nakamura |  |
| ＂ | ， | 16 | 10 | ＂ | $\stackrel{2}{2}$ | 59 | Katō | Nakamura |
| ＂ | ， | 17 | 2 | ＂ | 1 | 51 | Nakamuaa | Katō |
| ＂ | ．， | 19 | 2 | ＂ | 2 | 53 | ，， | Nakamura |
| ＂ | ＂ | 19 | 55 | ＂ | 3 | 5 | Kıō | ＂ |
| ＂， | ＂， | $\stackrel{20}{21}$ | 37 40 | ＂， | 2 | 20 20 | Nakamura | Katō |
| ， |  | 23 | 6 | ＂， | 3 | 5 | Katō | Nakamura |
| Nean |  |  |  | $5 \cdot$ | $2^{\prime}$ | $29^{\prime \prime}$ |  |  |
| $\cdots \delta=5^{\circ} \quad 2!48$ |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  | $\begin{array}{r} 1895.0= \\ \text { sea level }= \end{array}$ | －1．49 |  |
|  |  |  |  |  |  |  | 0.00 |  |
|  |  |  |  | $\delta=5$ |  |  | 50 |  |

DIP（ $\theta$ ）
Observations of the Kinki Party， 1896.


HORIZONTAL INTENSITY（II）
Onservations of the Kinki Party， 1896.


## 236．TUYAMA． <br> Middle School（津山尋常中學校數地）

## DECLINATION（ $\delta$ ）

Obervations of the Kinki Party， $15 \%$ ．

| Dat （Mean |  | Hour $1 \mathrm{Tir}$ |  |  | $\delta$ |  | Obserrer | Fecorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| July | $29^{\text {th }}$ | $18^{\text {h }}$ | $54^{m}$ | $t$ | $4 \times$ 4 4 | $32{ }^{\prime \prime}$ |  | Nakamura Katō |
| ， | ＂ | 19 60 | 18 | ， | 14 49 | 31 | Nakanumaz Katō | Katō ＇lomoda |
| ＂ | ＂ | 20 <br> 20 <br> 2 | 18 3 | ＂ | 19 48 | 4 | Katō Tomoda | Tomoda |
| ， | ， | 22 | 3 57 | ＂ | 48 | 44 10 | Tomoda | ＂ |
| ＂ |  | 22 | 57 <br> 84 <br> 1 | ＂ | 48 47 | 10 | ＂， | ＂ |
| ＂ | $30^{\text {th }}$ | 1 | 20 50 50 | ＂ | 47 46 | 18 7 | ＂ | －＂ |
| ＂ | ＂ | 5 | 52 | ， | ＋ 46 | 8 | Kintō |  |
| ＂， | ＂． | 6 7 | 30 | ＂ | 45 | 14 | Nakamura | Kato |
| ＂， | ＂， | 8 | 25 | ＂， | 14 | 54 | Natō | Nakamure |
| ＂， | ， | 9 | 25 | ， | 15 | 7 | Nakamura | Katō |
| ＂ | ， | 10 | 19 | ＂ | 46 | 23 | Katō | Nakamura |
| ＂ | ， | 11 | 18 | ．． | 47 | 51 | Nakamura | Katō |
| ＂ | ， | 12 | 31 | ＂ | 4.4 | 42 | Kato | Nakamura |
| ＂ | ＂ | 13 | 11 | ． | 50 | 0 | Tomecta | Kato |
| ， | ＂ | 14 | $!$ | ． | S0 | 5 | Kato | Tomoda |
| ＂ | ＂ | 15 | ¢ | ＂ | 4. | 1！ | Nakamura | Tomoda |
| ＂ |  | 16 17 | 1. |  | 19 +4 | 11 | Ruato | Nakamura |
| ＂， |  | 18 | 1：3 |  | 15 | 28 | Nakamura | Kato |
| ，＂ |  | 19 | 2！ | ＂ | 45 | 15 | Katō | Nakamura |
| Mean |  |  |  | 4 | $47^{\prime}$ | $42^{\prime \prime}$ |  |  |
| $\delta=4 \quad 17!0$ |  |  |  |  |  |  |  |  |
|  |  |  |  | Rerduction to |  |  | －1．28 |  |
|  |  |  |  |  |  |  | $-0.01$ |  |
|  |  |  |  |  |  | $\delta=4^{\circ}+6!4$ |  |  |

Observations of the Kinki Party， 1896.

| Date and Hour （Mean Local Time．） |  |  |  | $\begin{aligned} & \text { Needle } \\ & \text { No. } \end{aligned}$ |  | $\theta$ | Obserrer | Recorrler |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| July | $30{ }^{\text {ch }}$ | $0{ }^{3}$ | $45^{3 m}$ | －－ | 45 | 51\％ | ＇lomoda | Tomoda |
|  | ， | 8 | 51 | －－ | 49 |  | Nakamura | Katō |
| ， | ，． | 11 | 3 | －－ | ， | 7.5 | Katō | Nakamura |
| ＂ | ＂ | 14 | 4.5 | －－ | ＂， | 3.1 | Kator | Tomorl： |
| $\because$ | ，＇， | 16 | 31 | －－ | ＂， |  | Nakamura | Katō |
|  |  | 19 | 53 | 一 | ， | 3.7 | ， | ，＂ |
| Mēan |  |  |  |  | 49 |  |  |  |
|  |  |  |  | $\theta$ $=19$  <br> Reduction to $1895 . \theta$ $=$ <br> ，． ．sea level $=$ |  |  | $\begin{array}{r} 200 \\ 3.64 \\ -0.01 \\ \hline \end{array}$ |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |

HORILONTAL INTENSITY（ $I L$ ）
Observations of the Kinki Party， $189 \%$ ．


## 237．OKAYAMA． <br> Bleaching ground on river bank（西大河々畔布昷場）

DECLINATION（ $\delta$ ）
Onservations of the kinki lourty，18：\％

| Date and llour <br> （Mean Local Time．） |  |  |  |  | $\delta$ |  | Observer | liecorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ang． | 1 ＊t | $11^{1 /}$ | $\left(1^{m 1}\right.$ | 4 | $40^{\prime}$ | $5 i^{\prime \prime}$ | Nakamma | T＇omoda |
| ． | ．． | 11 | 27 | ． | ＋1 | 215 | Tomoda | Nakamura |
| ＂ | ＂ | 12 | 25 | ． | 13 | 18 | Katō | ＂ |
| ． | ＂， | 13 | 34 | ＂ | 4.4 | 7 | Nakamura | Tomoda |
| ． | ．． | 14 | 15 | ． | 4 | 7 | Tomodr | Nakammra |
| ．． | ． | 1.5 | 23 | ＂ | 12 | 3.5 | Nakamura |  |
| ．， | ， | 16 | 20 | ＂ | 11 | 45 | Kato | Tonoola |
| ， | ．． | 17 | 20 | ＂ | 41 | 10 | Tomoula | Katō |
| ， | ，． | 18 | 4 | ，． | 40 | 31 | Katō | ， |
| － |  | 19 | 37 | ． | 41 | 7 | 「＂ |  |
| ， | － | 21 | 11 | ． | ：38 | S5 | Nakamurat | Tomoda |
| ．， |  | 2 | 50 | ＂ | 411 | 54 | ＂ | Nakamma |
| ＂ |  | 0 | 58 | ＂ | 40 | 59 | ＂ | ，． |
| ＂ | ， | I | 59 | ＂ | 39 | 31 | ＂ | ， |
| ＂ | ，． | $t$ | －2 | ＂ | 38 | 41 | ＂ |  |
| ＂ | ． | 7 | 58 | ， | 35 | 7 |  | Katō |
| ． | ， | 8 | 30 | ＂ | 36 | 46 | Kato | Tumoda |
| ＂ | ＂ | ！ | 25 | ＂ | 38 | 18 | Nakamura | －1amur |
|  | ＂ | 11 | 45 | ＂ | 11 | 51： | Comort | Nakamura |
|  | ＂， | 12 | 3 | ， | 42 | 37 | Nikamura | Tomoda |
| ＂ | ＂ | 13 | 5 | $\bullet$ | 44 | 38 | Tomorla | Nakamura |
| Mean |  |  |  | 1 | $10^{\prime}$ | $1^{\prime \prime}$ |  |  |
| $\delta=t$ $10!07$  <br> Reduction to $1895.0=$ -1.01 <br> ., sea level $=$ 0.00 |  |  |  |  |  |  |  |  |

DIP $(\theta)$
Olservations of the Kinki Party， 1896 ．


| Date and Hour <br> （Mean Local Time．） | 11 | II | $\begin{aligned} & \text { Nean } \\ & \text { Temp. } \end{aligned}$ | Time of 1-Yibu. | $\begin{gathered} \text { Temp. } \\ t_{v} \end{gathered}$ | Mean <br> D <br> $\psi_{1}$ | eflections <br> $4:$ | $\underset{t_{v}}{\text { T'emp. }}$ | Ohserver | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Alng． $1^{\text {st }} 13^{\text {h }} 55^{\text {ma }}$ | 0.30578 | 420.08 | $32: 10$ | 5.8151 | $32: 2 \mathrm{C}$ | $5^{\circ} 55 \prime 37!5$ | $13 \cdot 25^{\prime} 32^{\prime \prime} 5$ | 32：1C | $\left\{\begin{array}{c} \text { Katō } \\ \text { Nakamura } \\ \text { Katō } \\ \text { Tomoda } \end{array}\right.$ | $\left\{\begin{array}{c}\text { Nikammra } \\ \text { Tumoda } \\ \text { Nakamura } \\ \text { Katō }\end{array}\right.$ |
| ＂， $16 \quad 167$ | C． 30598 | 420.47 | 31.1 | 5.8111 | 31.5 | 55555.6 | 132625.6 | 30.8 |  |  |
| ＂，．， $22 \quad 29$ | 11.30538 | 421.27 | 29.7 | $5 . \times 10.1$ | 2 S .9 | 5571.9 | 132830.6 | 28.5 | $\left\{\begin{array}{c} \text { Nakimura } \\ \text { Tomoda } \\ \text { Nakamura } \end{array}\right.$ | $\left\{\begin{array}{l} \text { Nakiomura } \\ \text { Tomodia } \end{array}\right.$ |
| ，2nd ！8 | 11.30576 | 420．55 | 32.2 | 5.8108 | 31.9 | 55558.8 | 13221.9 | 32.6 |  |  |
| Nean | 0.30572 |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  | II＝ 0.3 | 557： |  |  |  |
|  |  |  |  | duction | to 1 | $595.0=$ | －2912 |  |  |  |
|  |  |  |  |  | ， －sea | level＝ | 000 |  |  |  |

Old Castle（奮 城 趹：
DECLINATION（ $\delta$ ）
Oloservations of the Kinki Party， $1 \times 5 \%$ ．


DIP（ $\theta$ ）
Olserrations of the Kinki Party， 1893.

| Date and Hour （Mean Local Time．） |  |  |  | $\begin{gathered} \text { Needle } \\ \text { No. } \end{gathered}$ |  | $\theta$ | Observer | liecorter |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Aug． |  | $11^{\text {h }}$ | $2^{11}$ | － |  | $39 \%$ | Tomoda | Kato |
| ＂ |  | 15 | 11 | － |  | 37.2 | Katō | Tumoda |
| ＂ | ， | 15 | ：7 |  | ＂ | 39.5 | Tomorla | Kato |
| － | ＂ | 20 | 1 | － | ＂ | 38.8 | ， | Tomotia Nakamura |
|  |  | $\stackrel{21}{21}$ |  | － | ＂， |  | Nakammara Katō | Tomodia |
| Mean |  |  |  |  |  |  |  |  |
|  |  |  |  |  | $48^{\circ}$ | 38！ 9 |  |  |
| $\theta$ $=45^{\circ}$ $38!\cdot 1$  <br> Retuction to  395.0 $=$ <br>  3.01   <br> $\cdots$ sea level $=$ 0.00 <br> $\theta$ $=44^{\circ}$  41.9 |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |

HORIZONTAL INTENSITY（II）
Observations of the linki Party， $18 \% 6$ ．

| Date and Hour | 11 | $1 /$ | Mean | Time of | Temp． | Mean D | flections | Temp． | Olserver | Iecord |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Aug． $3^{\mathrm{rax}^{\mathrm{l}} 133^{\mathrm{h}}} 32^{2 \mathrm{~m}}$ | 0.36520 | 419.99 | 33：1C | 5.82 .20 | 33.6 C | $5.56{ }^{\prime 2} 26$ | $13^{\circ} 27^{\prime} 38^{\prime \prime} 1$ | 327.0 | Tomera | Katō |
| ＂„ 1722 | 0.30504 | 420.11 | 32.6 | 5.8213 | 33．5 | 55033.1 | 182747.5 | 31.7 | S Nakamura | Somora |
| ＂，＂21 2 | 0.30505 | 121.32 | 28.4 | 5．813， | 28.6 | 55750.6 | 133056.9 | 28.2 | Katō | a |
| ，． $4^{\text {lh }} 780$ | 0.30516 | 421.76 | 28.3 | 5.8087 | 28.4 |  | $13: 3039.4$ | 24.3 | （ Nakamura | Katō <br> Nakamura |
| Mean | 0．30516； |  |  |  |  |  |  |  |  |  |


|  | $1 /=$ | 11.30516 |
| :---: | :---: | :---: |
| lieduction to | $1595.11=$ | －2798 |
| ，＂ | sea level＝ | 000 |
|  | $11=$ | 10.30488 |

（衛濤䗆ノ東五十米許ナル海濱）
DECLINATION（ $\delta$ ）
Observations of the Kinki Farty， 1896 ．

| －Date and Hour （Mean Local Time．） |  |  |  | $\delta$ |  |  | Onserver | Jiecorder | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Aug． | $4^{\text {th }}$ | $20^{1 /}$ | $35^{\text {m }}$ | 4 | $31^{\prime \prime}$ | $39^{\prime \prime}$ | Nakamura | Tomoda |
| ＂， | $\ddot{\square}$ | 21 | 53 | ， | 37 | 18 | ， | Nakamura |
| ， | $5^{\text {th }}$ | 1 | 8 | ＂ | 36 | 16 | ， | ＂ |
| ， | ， | 0 | 49 | ，＂ | 36 | 30 | ， | ＂ |
| ＂， |  | 4 | 19 | ＂ | 36 | 15 | ，． | ， |
| ＂ |  | 5 | 21 | ＂ | 35 | 8 | ＂， | ＂ |
| ， |  | 6 | 22 |  | 34 | 7 | ＂ | ．． |
| ＂， |  | 7 | 18 | ，＂ | ：3：3 | 40 |  | ． |
| ， |  | 7 | 49 | ＂， | 34 | 28 | Katō | ＇Tomoda |
| ， |  | s | 56 | ，＂ | 36 | 1 | Tomoda | Katō |
| ＂ |  | 9 | 54 | ，． | 37 | 22 | Katō | Tomoda |
| ．， | ．， | 10 | 56 | ＂ | $3 \times$ | 39 | Nakamura |  |
| ＂ |  | 11 | 55 | ＂， | ：38 | 54 | Katō | Nakamuria |
| ＂ |  | 12 | 56 | ＂ | 38 | 54 | Tomoda |  |
| ＂ | ．， | 14 | 1 | ＂， | 38 | 45 | Nakamura | Katō |
| ．． | ．， | 15 | 12 | ， | 38 | ：7 | ＂ | Nakamura |
| ＂ | ＂ | 16 | 16 | ＂ | 37 | 52 | ＂ | ＇0＂ |
| ， | ．． | 17 | 18 | ＂ | 37 | 23 | ＂ | ＇Tomoda |
| ， | ， | 18 | 30 | ＂ | 37 | 54 | ＂， | ，＂ |
| ＂ |  |  |  | ＂ |  |  | ＂ | ＂ |
| Mean |  |  |  | $37^{\prime} \quad 4^{\prime \prime}$ |  |  |  |  |
|  |  |  |  | $\delta$ $=4^{\circ}$ 38.1 .0 <br> Reduction to   <br> 1895.0 $=$ -1.24 <br> 0, 0.00  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |  |  | $35!8$ |  |
| －－ |  |  |  |  |  |  |  | Observations of the Kinki Party． 1896. |  |  |  |  |



HOLIZONTAL INTENSITY（IL）
Observations of the Kinki Party，1897．


240．NARA．
Nara Park（牵 良 公 猿）
DECLINATION（ $\delta$
Olservations of the Kinki Party， 1890 ．

| Date and Hour <br> （Mean Lneal Time．） |  |  |  | $\delta$ |  |  | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ang． | $6^{\text {th }}$ | $18^{\text {h }}$ | $39^{\mathrm{m}}$ | $4^{\circ}$ | $28^{\prime}$ | $46^{\prime \prime}$ | $\begin{aligned} & \text { Nakamura } \\ & \text { Katō } \end{aligned}$ |  |
| ， | ．． | 19 | 21 | ，． | 28 | 26 |  |  |
| ， | ， | 19 | 58 |  | 28 | 42 | Tomoda | Nakamura |
| ，． | ．， | 21 | 99 | ＂， | 23 | 30 | Nakamura |  |
| ， | $\stackrel{ }{ }$ | 22 | 25 | ， | 28 | 39 | Katō |  |
| ＂ | $\stackrel{\square}{\text { \％}}$ | 23 | $\stackrel{9}{5}$ | ＊ | $\stackrel{28}{97}$ | 50 | ．， | Katō |
| $\because$ | $7^{\text {th }}$ | 1 | 35 | ＂． | $\stackrel{27}{ }$ | 40 | ． | ．． |
| ＂ |  | 4 | 11 | ， | 25 | 3：3 | ． | ． |
| ＂ | ， | 5 | 4 | ． | 25 | ： | － | ＂ |
| ＂， |  | 6 7 | 33 31 | ， | －24 | 1 | Comora | Nakämurn |
| ＂ |  | 7 | 46 |  | $2 \times$ | 40 |  |  |
| ＂ |  | 8 | 59 | ＂． | 24 | 28 | Nakamura | Tomorla |
| ， |  | ！ | 29 |  | 28 | 1. |  |  |
| ， |  | 111 | 38 | ＂， | 310 | 45 | Fato | Nakamum |
| ＂ |  | 11 | 2！ 3 | ．． | 32 | 57 | ．． | Katō |
| ＂ | ＊ | 12 | 52 | ．， | 32 | 29 | ＂ | ＂ |
| ＂， |  | 13 | 29 | $\stackrel{\square}{\square}$ | 38 | 111 | Nakamura | Seram |
| ， | ＂ | 14 | 9 | ， | 35 | $1 i^{\prime}$ | Katō | Tomoda |
| ， | ，． | 15 | 19 | ＂． | 31 | 85 | Tomoda | Katō |
| ．． | ，＂ | 13 | 10 | ＂， | $: 31$ | 1 | Nakamura | Nakamura |
| ， | ＂ | 119 | 42 | ＂ | 31 | 24 | Katō | Tomoda |
| ＂， |  | 17 | 41 |  | $\begin{aligned} & 31 \\ & 31 \end{aligned}$ | 136 | Tomota Nakamura | NakamuraTomoda |
| ， |  | 15 | 55 |  |  |  |  |  |
| Mean |  |  |  | $4^{\circ} \quad 25^{\prime} \quad 55^{\prime \prime}$ |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |

DII（ $\theta$ ）
Olservations of the Kinki Party， 1896.


HORIZONTAL INTENSITY．
（＊I＇ilue dediced from ribratione only by asssminy Pietur of M．） Olservations of the Kinki Party， 1896.

241. KAMIITI.

DECLINATION ( $\delta$ )
Observations of the Kinki Party, 1世:

| $\begin{gathered} \mathrm{Da} \\ \text { (Mea } \end{gathered}$ | $\mathrm{e} \text { an }$ Loo | $\mathrm{Ho}$ |  |  | $\delta$ |  | 0)nserver | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ang. | $8^{\text {th }}$ | $16^{\mathrm{h}}$ | $4^{m \prime}$ | 4. | $30^{\prime}$ | $7 \prime$ | Katō | Tomoda |
| , | , | 16 | 54 | , | 29 | 210 | Tomoda | Kato |
| , | " | 18 | 15 | , | 28 | 48 | Nakammra |  |
| , | ", | 19 | 16 | ., | 23 | $\cdots$ | Tomoda | Tomorla |
| .. | ,. | 20 | 16 | ", | 28 | 47 | Nakamma | Nakamura |
| $\bullet$ | , | 211 | 48 | . | 28 | 51 | .. | Tomora |
| " | , | 21 | 59 | ", | 28 | ${ }^{1}$ | ., | Nakamura |
| . | $9{ }^{\text {th }}$ | 1 | 1 | " | 28 | 20 | ., | - |
| , | $\bullet$ | 1 | $1{ }^{1}$ | " | 28 | 4 | , | ", |
| , | " | 2 | 51 | " | 26 | 50 | , | , |
| . | , | 4 | 25 | " | 27 | 9 | " | , |
| " | $\cdot$ | 5 | 49 | " | 25 | 15 | , | , |
| " | $"$ | 13 | 49 | " | 24 | 49 | .. | " |
| , | $\cdots$ | 7 | 50 | , | 24 | 54 |  | Tomodar |
| " | " | 9 | $\pm$ | " | 25 | $5!$ | Kato |  |
| * | -• | 10 | 5 | , | 27 | 11 | , | Fato |
| , | , | 11 | $\because 3$ | , | 29 | 53 | Tomoda | " |
| , | , | 12 | 26 | , | 31 | 13 | Kato | , |
| - | " | 13 | 26 | " | 31 | 14 | Tomoda | To" |
| " | " | 14 | 29 | " | 30 | 15 | Katō | Tomoda |
| , | ., | 15 | 7 | " | 30 | 5 | 'Tomoda | Katō |
| , | " | 15 | 33 | ., | 29 | 49 | Katō | .. |
| " | " | 15 | 56 | , | 29 | 35 | , | " |
| " | " | 16 | 41 | " | 29 | 17 | " | Tomoda |
| Mean |  |  |  | $4^{\circ}$ | $28^{\prime}$ | $2 \prime$ |  |  |
| $\delta=4^{\circ} \quad 28!03$ |  |  |  |  |  |  |  |  |
|  |  |  |  | Reduction to |  |  | $-1.16$ |  |
|  |  |  |  | , |  | $\text { sea level }=-0.01$ |  |  |
|  |  |  |  |  |  |  | 4 26! 9 |  |

DTP ( $\theta$ )
Observations of the Kinki Party, 1896.

| Date and Hour (Mean Lecal Time.) |  |  |  | Needle No. |  | $\theta$ | Observer | Recorder | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
|  |  |  |  | - | $48^{\circ}$ $1!6$ <br> 77 59.2 <br> 48 2.8 <br> 4 3.0 <br> , 3.0 |  | Kati <br> Nakammra <br> - Tomoda Kató | Nakamura Katō <br> Tomoda |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  | - |  |  |  |  |
| Mean |  |  |  | $45^{\circ} \quad 25$ |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |

HORIZONTAL INTENSITY ( $H$ )
Observations of the Kinki Party, 1896.


242．MYŌZI．
（巨長役塲裏，河原ノ石ノ上）
DECLINATION（ $\delta$ ）
Olservations of the Kinki Party， 1896.


DIP（ $\theta$ ）
Observations of the Kinki Party， 1890.


HORIZONTAL INTENSITY（II）
Observations of the Kinki Party，1896．

| Date and Hour （Mean Local Time．） | 11 | ．$/$ | Mean <br> Temp． | Time of 1－Tib＂． | Temp. | Mean D $\psi_{1}$ | tlections <br> $\varphi_{2}$ | $\begin{gathered} \text { Temp } \\ t_{p} \end{gathered}$ | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ang． $10.4 \mathrm{ll} 13^{\mathrm{h}} 19^{\mathrm{m}}$ | 0.30531 | 419.55 | 33.1 C | 5.8232 | $33^{\circ} .2 \mathrm{C}$ | $555122!5$ | $13.25^{\prime} 44^{\prime \prime} 4$ | 33．10 | $\left\{\begin{array}{c}\text { Tomoria } \\ \text { Kito }\end{array}\right.$ | $\left\{\begin{array}{l} \text { Katō } \\ \text { Tomoda } \end{array}\right.$ |
| $", \quad 18+$ | 0.30500 | 420.89 | 27.4 | 5.8168 | 28.2 | $55713.8$ | $1329 \quad 1.6$ | 26.7 | $\left\{\begin{array}{c}\text { Tomodr } \\ \text { Nakamma }\end{array}\right.$ | $\left\{\begin{array}{l} \text { Nakamura } \\ \text { Tomoda } \end{array}\right.$ |
| ，，ご 33 | 0.305331 | 421.83 | $2+.6$ | 5.8069 | 21.9 | 55743.8 | 133012.5 | 24.4 | Tomoda | Nakamura |
| ， 11 m \＆ 14 | 0.30554 | 121.8 | 25.11 | 5.80139 | 24.7 | 55726.2 | 132941.0 | 2.5 .2 | $\{\text { Nakamura }$ | $\{\text { 'lomota }$ |
| Mean | 0.30529 |  |  |  |  |  |  |  |  |  |

$$
\begin{array}{rrr}
H & = & 0.31529 \\
\text { Reduction to } & 1895.0= & -2.284 \\
, \quad, & \text { sea level } & = \\
& & 0.300 \\
\hline & & 0.305016 ;
\end{array}
$$

## 243．WAKAYAMA． <br> Normal School（和歌山尋常阨範學校琎動場）

DFCTANATION（8）
Observations of the Kinki Party， 1896

| $\underset{\text { Dear }}{\text { Da }}$ | $\begin{aligned} & \text { e and } \\ & \text { Local } \end{aligned}$ | Hon |  |  | $\delta$ |  | Onserrer | Recorter |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Aug． | $11^{\text {th }}$ | $17^{11}$ | 41 m | 1 | $2{ }^{\prime \prime}$ | $15^{\prime \prime}$ | Tomorla | Nakamura |
| ， |  | 17 | 52 | ，＂ | 30 | 7 | Katio |  |
| ＂ | ＂， | 18 | 53 | ．． | 311 | $\stackrel{3}{ }$ | Nakamura | ＇Tomoriti |
| ＂ | ＂， | 20 | 24 | ＂ | 311 | 18 | Tomota |  |
| ， | ＂． | 20 | 51 | ， | 301 | 36 | Nakamura | Katō |
| ＂ | ， | 22 | 0 | ．， | ：0 | 0 | Katō | Nakammra |
| ＂， |  | 23 | 48 | ， | $2 \cdot 1$ | 5.5 | ， | Katō |
| ， | $12^{\text {th }}$ | 0 | 38 | ＂ | 21 | 13 | ．， | ＂ |
| ， | ． | $\because$ | 13 | ， |  | 7 | ＂ | ，． |
| ，＂ | ．， | 4 | 19 | ．， | $\cdots 2$ | 17 | ．． | ．． |
| ， |  | 1 | 51 | ＂ | $\stackrel{2}{4}$ | 14） |  | ＊ |
| ， | ．， | 1； | $\cdots$ | ． | 26 | 4：） | ． | ＂ |
| ， | ， | 7 | $\because$ | － | 25 | 32 | －${ }^{\text {anm }}$ |  |
| ， | －． | 8 | 11： | ．， | 25 | $: 3$ | Nakamma | Tumota |
| ．． | $\stackrel{\square}{ }$ | 9 | 11 | ． | 23 | 14 | Tomoda | Nakamura |
| ，． | ．． | 111 | $1{ }^{1}$ | － | 28 | 48 | Nakammra | ．． |
| ． | ． | 10 | 54 | ＊ | 30 | 19 | ， | ． |
| ＂ | － | 11 | $5:$ | ．． | 33 | 41 | ド̈to | ． |
| ＂ |  | 18 13 | 54 | ＂ | 35 | $\frac{3}{17}$ | Nakamura | K̆ato |
| ＂ | $\stackrel{.}{ }$ ． | 14 | 55 | ，＂ | 83 | 211 | Katō | Nakamura |
| ， | ＂ | 15 | 57 23 | $\stackrel{\prime}{\prime}$ | 31 30 | 168 | $\begin{gathered} \text { Nakamura } \\ \text { Kat̄̄ } \end{gathered}$ | Katō <br> Nakamurit |
| ＂ | ， | 16 | 2. | ， |  | sn |  |  |
| Mean |  |  |  | $4^{\circ}$ | 2.9 ＇ | $58^{\prime \prime}$ |  |  |
| $\delta=4 \quad 29!97$ |  |  |  |  |  |  |  |  |
| Reduction to $\begin{array}{rr}1895.0= & -1.00 \\ & 0.00\end{array}$ |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
| －＂${ }^{\circ}$ |  |  |  |  |  |  |  |  |

DIP（ $\theta$ ）
Observations of the Kinki Pirty， 1896


HORIZONTA：WNTENSITY（II）

01servations of the Kinki Party， $18 \% 6$.

| Date and Honr （Mean Local Time） | H | 1／ | $\begin{aligned} & \text { Mean } \\ & \text { Temp. } \end{aligned}$ | Time of $1-\text { Vibn. }$ | $\begin{gathered} \text { Temp. } \\ \mathrm{t}_{\mathrm{V}} \end{gathered}$ | Mean De $\psi_{1}$ | Hections $\varphi_{2}$ | Temp. | Observer | Hecorter |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ang． $11^{\text {th }} 19 \mathrm{~h} 31 \mathrm{~m}$ | 0.30582 | 420.68 | 29.50 | $5.8111$ | 30：1C | $556,15 \% 0$ | 1326＇57＂＇s | 2 2 .9 C | $\left\{\begin{array}{l} \text { Nakamuru } \\ \text { Katō } \end{array}\right.$ | $\left\{\begin{array}{c} \text { Kato } \\ \text { Sakamura } \end{array}\right.$ |
| ＂„ 2138 | ＊0．30562 | 420.84 | 28.2 | 5.8205 | 28.7 | （55625．6 | 132715.0 | －8．2） | \｛ Nakamura | hätō |
| ，， $12^{\text {th }}$ 8 847 | 0.30583 | 420.20 | 29.4 | 5.8181 | 29.5 | 55615.6 | 132653.8 | 29.4 | Tomoda | Nakamura |
| ，，， $13 \begin{array}{ll} & 37\end{array}$ | 0.30514 | 419.46 | 32.0 | 5.8228 | 32.3 | 55531.9 | 132515.0 | 31.6 | $\left\{\begin{array}{c}\text { Nakammiza } \\ \text { Katō }\end{array}\right.$ | $\left\{\begin{array}{l}\text { Kato } \\ \text { Nakammra }\end{array}\right.$ |
| Меаи | 0.31555 |  |  |  |  |  |  |  |  |  |
| $\mu$ $=$ 11.31555  <br> Teduction to 1895.0 $=$ -2436 <br> .$\quad$, sea level $=$ 000 <br> $I I$ $=11.315: 31$   |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |

## 244．SUMOTO．

Mituai（河添町字三ッ合七，吹＋洲）
DECLINATION（ $\delta$ ）
Observations of the Kinki Party， $159 \%$ ．

| Date and Hour |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mean Local Time．） |

DIP ${ }^{(\theta)}$
Onservations of the Kinki Party． 1896.


HORIZONTAL INTENSITY（II）
Observations of the Kinki Party，18\％\％．


## 245．MINABE． <br> Station，1887（村役塲裏海演芝地，藮觀測所） <br> Declination（ $\delta$ ）

Observations of the Kinki Party， 1896


DII（ $\theta$ ）
Observatious of the Kinki Purly， 1896.


HORIZONTEAL INTENSITY（11）
Observations of the Kinki Party， 1896

(269)

## 246. TIKATUYU.

DIP ${ }^{(\theta)}$
Ubservations of the Kinki Party, 1896.

| Date and Hour (Mean Local Time.) |  |  |  | Needle No. |  | - | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Aug. ". ". | $18{ }^{\text {th }}$ $\stackrel{3}{ }$ , |  | $28^{10}$ 9 93 | - |  | $\begin{aligned} & 29!5 \\ & 19.1 \\ & 24.4 \end{aligned}$ | Nakamura Tomoda Nakamura | Nakamura Tomoda |
| Mean |  |  |  |  | $47^{\circ}$ | 24!3 |  |  |
| $\theta$ $=47^{\circ}$ $24!3$ <br> Reduction to 0.85  <br> 0.05 .0 $=$ 0.85 <br> ,$\quad$ sea level $=$ -0.08 <br> $\theta$ $=47$ $25!1$ |  |  |  |  |  |  |  |  |

HORIZONTAL INTENSITY (II)
(*Value deduced from Fibiation onty by assuming lialue of M.) Observations of the Kinki Party, 1896.


## 247. HONGŪ.

DECLINATION ( $\delta$ )
Olservations of the Kinki Panty, 1896.


Observations of the Kinki Yarty， $18 \%$ ．

| Date and Hour <br> （Mean Local＇linie：） | $\begin{aligned} & \text { Needle } \\ & \text { No. } \end{aligned}$ | $\theta$ | Observer | Recorter |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{cccc} \text { Ang. } & 20 \mathrm{nth} & 6^{14} & 1^{\mathrm{mm}} \\ ", & , & 11 & 20 \\ \because: & \ddots & 13 & 39 \\ \because, & . & 19 & 5 \end{array}$ | － | $\begin{array}{cc} 47^{\circ} & 24!2 \\ . & 21.7 \\ " & 20.8 \\ ., & 22.7 \end{array}$ | $\begin{gathered} \text { Nakamurat } \\ \text { Kiatō } \\ \text { Nakamural } \\ \text { Kietō } \end{gathered}$ | Nokamura Katō Nakamuru $"$ |
| Yean |  | $47^{\circ} \quad 229$ |  |  |
|  | $\begin{gathered} \text { Reducti } \\ \hline \end{gathered}$ | 1895.0 sea lerel $\delta$ | $\begin{array}{r} 22!9 \\ 11.65 \\ -0.02 \\ \hline 23!5 \end{array}$ |  |

HORIZONTAL INTENSITY（II）
Olservations of the Kinki Party， 1896.


248．KUSIMOTO． At Pasture Ground（牧 場 内）

DECLINATION（ $\delta$ ）
Observations of the Kinki Party， 1896.


Ohservations of the hinki Party, 1 son.


HORIZONTAL INTENSITY (II)
Ohservations of the linki Party, 1896.


## 249. ARIMA.

1)ECLINATION ( $\delta$ )

Observations of the Kinki Party, 189ti.

1)IP $\quad \theta$

Observations of the Kinki Party, 189\%.

| Date and Hour <br> (Mean Local Time.) | Neealle No. | $\theta$ | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{cccc} \text { Ang. } & 26^{\text {th }} & 12^{\mathrm{h}} & 22^{\mathrm{m}} \\ " & " & 16 & 3 \\ " & 2 \ddot{7} & 21 & 40 \\ " & 27^{\text {th }} & 6 & 20 \end{array}$ | - | $\begin{array}{cc} 47^{\mathrm{c}} & 26.9 \\ " & 26.7 \\ \because & 26.0 \\ " & 28.5 \end{array}$ | Tomoola Nakamuria Tomorla Nikamura | Nakamura Tomeda Nakamura |
| Mean |  | 47) $27!0$ |  |  |
|  | Reducti | $\begin{aligned} \theta & =1 \\ 1895.0 & = \\ \text { sea level } & = \\ \theta & =4 \end{aligned}$ | $\begin{array}{r} 27!! \\ 11.50 \\ 0.00 \\ 27.5 \end{array}$ |  |

HORTZONTAL 1NTENSITY (II)
Observations of the Kinki Party, 1896

| Date and Honr (Mean Local Time.) | II | M | $\begin{gathered} \text { Mean } \\ \text { Temp. } \end{gathered}$ | Time of$1-\mathrm{Y} i \mathrm{~b}$ | $\underset{t_{v}}{\text { Temp. }}$ | Mean Deflections |  | $\text { Tem }_{1}$ | Observer | Recorder | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|  |  |  |  |  |  | $P_{1}$ | $\varphi$. |  |  |  |
| Ang. $26^{\text {th }} 133^{\text {h }} 19^{\text {m }}$ | 0.30570 | 417.68 | 35:2C | 5.8332 | 35.7 C | $5553 \cdot 45 \% 0$ | $13^{\circ} 21^{\prime} 15^{\prime \prime} 16$ | 34.8 C | 'Tomoda | Nakamura |
| ", , 17 2.) | 0.30572 | 419.31 | 29.3 | 5.8204 | 29.4 | 5553.8 | 132414.4 | 29.3 | $\left\{\begin{array}{l} \text { Nukamura } \end{array}\right.$ | Tomoda |
| .. ., 26 26 | 0.30579 | 419.41 | 28.1 | $5.81 \times 8$ | 28.1 | 55518.1 | $1325 \quad 5.6$ | 28.2 | Tomodia | Nakamura |
| " 27 th 719 | 0.31569 | 420.56 | 25.3 | 5.8123 | 25.6 | 55619.4 | $1327 \quad 8.8$ | 25.1 | Nakamura | Tomoda |
| Mean | 0.30573 |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

## 250. NAGASIMA.

DECLINATION ( $\delta$ )
Observations of the Kinki Party, 1896.


DIP（ $\theta$ ）
Onservations of the Kinki Party， 1596.


Onservations of the Kinki Party， 1896.

$\pi=0.30425$
＂$\quad$ sea lerel＝$\quad-2046$
$I=0.304155$
251．MVATUSAKA． Racing Ground（競 馬 場 內）

1）ECLINATION（ $\delta$ ）
Obscrrations of the Kinki Party， 1896.


Observations of the Kinki Party, 1896.


HORIZONTAL INTENSITY (IL)
(* ledue derluced from libration only by assuming 「'alue of M.)
Observations of the Kinki Party, 180f.


## 252. MIHARA.

## DECLINATION <br> ( $\delta$ )

Observations of the Seto Sea Party, 1896.

| $\begin{gathered} \text { Dat } \\ \text { (Mea } \end{gathered}$ | and <br> Hoc | $\begin{aligned} & \text { Hon } \\ & \text { al Ti } \end{aligned}$ |  |  | $\delta$ |  | Observer | Recorter |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| July | 1 st. | $9^{\text {h }}$ | $10^{\mathrm{m}}$ | 4 | $35^{\prime}$ | $54^{\prime \prime}$ | Tanakadate | Sutō |
| , | , | 9 | 52 | , | 37 | 6 | Sntō | Sano |
| , |  | 10 | 37 | " | 38 | 57 | Sano | Sutō |
| ", | , | 12 | 28 | " | 41 | 47 | Sutō | Sano |
| „ | ," | 14 | 26 | ,. | 42 | 55 | Tanaliarlate | Sutō |
| " |  | 14 | 50 | , | 42 | 55 | " | c" |
| * | .. | 16 | 49 | , | 40 | 57 | Suto | Sano |
| " | , | 13 | 11 | ., | 40 | 9 |  |  |
| ,• |  | 14 | 33 | , | 40 | 2 | Sano | Suto |
| .. | .. | 21 | 29 | ., | 40 | 17 | Tauakarlate | Tauakarlate |
| - |  | 23 | 3.4 | - | 39 | 44 | - | ., |
| " |  | 2 | 7 | " | 39 | 20 | " | ," |
| : |  | 5 | 23 | ., | 38 | 52 | $\cdots$ | .. |
| , |  | 7 | 15 | .. | 33 | 16 | .. |  |
| " |  | 8 | 23 | ., | 35 | 1! | ", | Sano |
| : | " |  | 10 | $\because$ | 35 | 45 | , ${ }^{\text {, }}$ | , |
| Mean |  |  |  | $!$ | $39^{\prime}$ | $46^{\prime \prime}$ |  |  |
|  |  |  |  | $\delta=4^{\circ} \quad 39!77$ |  |  |  |  |
|  |  |  |  | Recauction to |  |  | -0.52 |  |
|  |  |  |  | " |  | sea | 0.00 |  |
|  |  |  |  | - $\delta=4^{\circ} \quad 39!2$ |  |  |  |  |

DIP（ $\theta$ ）
Observations of the Seto Sea Party， 1896.


HORIZONTAL INTENSITY（ $H$ ）
Observations of the Seto sea Party， 1896.


253．HIROSIMA．
Park（公 園 地）
DECLINATION（ $\delta$ ）
Observations of the Seto Sea Party， $18 \% \%$ ．

| Date and Hour <br> （Mean Local Time．） |  |  |  | $\delta$ |  |  | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| July | 2 L | $15^{1 /}$ | 28 | $4^{\circ}$ | 3：3＇ | $44^{\prime \prime}$ | Tinakadate | Sutō |
| ．， | ， | 19 | 27 | ＂ | 33 | 31 | Sutō | T＇anakadate |
| ， |  | 20 | 57 | ＂ | 33 | 17 | Sano | Sano |
| ．， |  | 1 | 23 | ，＂ | ：33 | 2 C | ，， | ＂ |
| ： | ＂ | 3 | 29 | ，＂ | 32 | 51 | ＂ | ＂ |
| － | ．． | 1 | 49 | ， | 32 | 25 | Tanakadate | Sütō |
| ＂ |  | 6 7 | 19 | ＂ | 30 30 30 | 47 | Tanakadate |  |
|  |  | ！ | 21 | ＂， | 31 | 1 15 | Sütō | Tanakadate |
| ＂， | ，＂ | 10 | 25 | ＂ | 32 | 55 | ， | ＂ |
| ．， | ， | 11 | 22 | ＂ | 35 | 1 | Tronto |  |
| － | ＂ | 12 | 3 | ，＂ | 36 | 20 | Tomakadate | Sntō |
| ＂ | ＂ | 13 | 56 | ， | 36 | 2 | Sano | Sano |
| ． | ．． | 15 | 32 | ， | 35 | 33 | Sutō | ＂ |
| $\cdots$ | ， | 17 | 9 | ＂ | 34 | 54 | Tanakadate | ＂ |
| $\because$ | 4th | 18 0 | 45 41 | ＂， |  | 3 | Tanakadate <br> ＂ | Tanakadate |
| Mean |  |  |  | $4^{\circ}$ | $33^{\prime}$ | $31^{\prime \prime}$ |  |  |
| Reduction to <br> $\begin{array}{rlrlrl}\delta & =1 & 33.52 \\ 1895.0 & = & -0.35 \\ \text { sea level } & = & & -0.60 \\ \delta & =1 & & 33!2\end{array}$ |  |  |  |  |  |  |  |  |

Observations of the Seto Sea Party， 1896.

| Date and Hour （Mean Local Time．） |  |  |  | Needle No． |  | $\theta$ | Olserver | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| July ＂， | $2^{\text {nd }}$ <br> $3^{\text {rd }}$ <br>  | $17^{11}$ 8 18 | 5. 55 4 4 | 2 2 2 |  | $\begin{aligned} & 27!9 \\ & 24.0 \\ & 24.5 \end{aligned}$ | $\begin{aligned} & \text { Sutō } \\ & \text { Tanakadate } \\ & \text { Sano } \end{aligned}$ | Sano Sntō Tanakadate |
| Mean |  |  |  |  | $48^{\circ}$ | 25.5 |  |  |
| Reduction to 1895.0 $=48^{\circ}$ 25.5 <br> $", ~$ 4.21   <br> $"$ sea level $=$ 0.00  <br> $\theta$ $=48^{\circ}$ $29: 7$  |  |  |  |  |  |  |  |  |

HORIZONTAL INTENSITY（II）
（＊Value detuced from Vibration only by assuminy Value of M．） Oluservations of the Seto Sea Party， $189 \%$

| Date and Hour（Mean Local Time．） | 11 | M | Меаи <br> Temp． | $\begin{aligned} & \text { Time of } \\ & 1-\mathrm{Vib} \text {. } \end{aligned}$ | $\begin{gathered} \text { Temp. } \\ t_{v} \end{gathered}$ | Mean Deflections |  | $\left\lvert\, \begin{gathered} \text { Temp } \\ t_{D} \end{gathered}\right.$ | Observer | Recorter |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\varphi_{1}$ | $\varphi_{2}$ |  |  |  |
| July $3^{\text {rad }} \quad 7^{\text {la }} 10{ }^{\text {m }}$ | 0.30963 | 409.59 | 23.3 C | $\stackrel{5}{5}^{\text {s }} .9175$ | 23.3 C | $5{ }^{\circ}+4^{\prime} 6 \frac{\prime \prime 2}{2}$ | $125853!7$ | 23.3 C | $\left\{\begin{array}{c} \text { Sutō } \\ \text { Tanakadate } \end{array}\right.$ | $\left\{\begin{array}{c} \text { Tanakadate } \\ \text { Sutō } \end{array}\right.$ |
| ＂，＂ 12411 | ＊0．30934 | 408.97 | 25.9 | 5.9026 | 26.1 | （5 4335.0 | 125716.2 | 25．9） | $\{\text { šutō }$ | $\{\text { Tauakadate }$ |
| ＂${ }^{\prime} \quad 1919$ | 0.30972 | 409.92 | 23.0 | 5.9147 | 23.3 | 54423.1 | 125933.7 | 22.8 | $\left\{\begin{array}{c} \text { Simo } \\ \text { Tanakuate } \end{array}\right.$ | Säno |
| Mean | 0.30956 |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  | ，， | to $1895.0=$ <br> ，．seit level＝ |  | $\begin{array}{r} -3309 \\ 000 \end{array}$ |  |  |  |
|  |  |  |  |  |  | $\Pi=0.3$ | 0923 |  |  |  |

Hirosima Syuttyō（廣 島 出 張）
Observations of the Seto Sea larty， 1896.

| Date and Hour （Mean Local Time．） | II | 3 | Mean Temp． | Time of1-Vibㅡ. | Temp． $t_{v}$ | Mean Deflections |  | Temp. | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\psi_{1}$ | $\psi_{2}$ |  |  |  |
| July $\mathrm{t}^{\text {th }}$－${ }^{\text {a }}$－${ }^{\mathrm{m}}$ | ＊0．31086 | 409.30 | $24^{\circ} \mathrm{SC}$ | $5^{\text {s }} .9164$ | 24.8 C | － | － | － | Sano | Tanakadate |
| ＂＂， 910 | ＊0．30830 | 409.74 | 23.3 | 5.9351 | 23.3 | － | － | － | ＂ | ，＂ |
| ＂＂ | ＊0．31029 | 409.84 | 22.9 | 5.9180 | 22.9 | － | － | － | ＂ | ＂ |
| Mean | 0.30982 |  |  |  |  |  |  |  |  |  |

## 254．SITATA．

Hatiman Zinsya（下田八墙神社）
Observations of the Seto Sea Party， 1896.

| $\begin{gathered} \text { Dat } \\ \text { (Mleal } \end{gathered}$ |  |  |  |  | $\delta$ |  | Observer | liecorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| July |  | $11^{1 /}$ | $48^{\mathrm{m}}$ | 4 | $33^{\prime}$ | $19^{\prime \prime}$ | Tinakaulate | Sauo |
| ＂ |  | 13 | 36 | ＂ | $: 7$ | 36 | ＂ | Sano |
| ＂ |  | 15 | 24 | ＂ | 35 | 18 | ＂， | Suto |
| ＂ |  | 16 | 35 | ， | 32 | 59 |  | s＂ |
| ＂ | ＂ | 17 | 33 | ＂ | ：$\%$ | 31 | Sutō | Sano |
| ＂ |  | 18 | 16 | ＂ | 38 | 9 |  |  |
| ＂ |  | 20 | 35 | ， | 30 | 16 | Tanakalate | Tanakadate |
| ＂ |  | 2.2 | 13 | ＂ | 32 | 59 |  | Sano |
| ＂ |  | 22 | 34 0 | ＂ | 32 | 43 $: 36$ | Sano <br> Tanakadate | ＂， |
| ＂ |  | 5 | 11 | ＂， | 29 | 40 |  |  |
| ＂ | ＂ | 7 | 47 | ，＂ | 27 | 41 | Sintō | Sutō |
| Mean |  |  |  | 1 | $31^{\prime}$ | $58^{\prime \prime}$ |  |  |
|  |  |  |  | lieiluction to |  |  | $\delta=4 \quad 3197$ |  |
|  |  |  |  | $=-0.03$ |  |
|  |  |  |  | $=11.00$ |  |
|  |  |  |  |  |  |  |  |  |

DIl＇（ $\theta$ ）
Observations of the seto sea liarty．18\％


HORHZONTAL INTENSHTY（II）
（＊Vatue teduced from lithation only by assuming Vialue of M．）
Observations of the Seto Sea Party， $18: \%$ ．

| Date and Hour Mean Local Time．） |  | II | II | Nean <br> Temp． | Time of 1－Vibn． | $\underset{t_{v}}{\text { Temp. }}$ | Mean Deflections． |  | $\mathrm{Tem}_{\mathrm{p}} \mathrm{P}$ | Olserver | Recorder | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|  |  | $\psi_{1}$ |  |  |  |  | 42 |  |  |  |
| July | $5^{\text {th }} 13^{1 / 2} \quad 8^{\text {111 }}$ |  | ＊0．31034 | 407.59 | 28.4 C | $\begin{gathered} \mathrm{s} \\ 5.903: 3 \end{gathered}$ | 28.20 | （5 $41^{\prime}+3$＇ 1 | $12^{\circ} 53^{\prime \prime} 7!5$ | 28．5C） | Sano | $\left\{\begin{array}{l}\text { Sutö } \\ \text { Sano }\end{array}\right.$ |
|  | ＂ 1859 | ＊0．31020 | 409.51 | 23.6 | 5.9125 | 23.6 | （5 4240.0 | 125620.6 | 22．9） | Tanaka date | $\left\{\begin{array}{c}\text { Tanakadate } \\ \text { Snto }\end{array}\right.$ |
|  | （6th © 41 | 0.31076 | 408.94 | 24.7 | 5.9113 | 24.6 | $5 \pm 23.7$ | 125511.2 | 24.8 | $\left\{\begin{array}{c}\text { Sano } \\ \text { Tianakiatate }\end{array}\right.$ | $\left\{\begin{array}{c} \text { Ta nakadate } \\ \text { Sano } \end{array}\right.$ |
|  | He：m | 0.31043 |  |  |  |  |  |  |  |  |  |
| $I I$ 0.31043  <br> Reduction to $18!5.0$ $=$ -3350 <br> ,$\quad$, sea level $=$ <br> 1 $=0.3100$  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

## 255．MURODZUMI． <br> Common School（小 學 校） DECLINATION（ $\delta$ ）

Olservations of the Seto Siea Party， $189 \%$ ．


DIP $\{\theta\rangle$
Observations of the Seto Sea Party， 1896.


HORIZONTAL INTENSITY（ $H$ ）
Olservations of the Seto Sea Party，189．


Murodzumi Syuttyō（室 穔 出 振）
Observations of the Seto Sea Party， 1896.
Hayanaga Hatiman（早長八幡）

| $\begin{gathered} \text { Dut } \\ \text { MILear } \end{gathered}$ | Land | $\begin{aligned} & \text { Hour } \\ & 11 \text { Tin } \end{aligned}$ |  | Neealle No． | $\theta$ |  | Ohserver | Recorter |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| July | $8^{\text {th }}$ | $15^{11}$ | $18^{\text {m }}$ | 2 | 45 | 1！5 | Sutō | Samo |


| Date and Hour （Mean Local Time．） | II | M | Mean <br> Temp． | $\begin{aligned} & \text { Time of } \\ & 1-\mathrm{Vi}, \underline{\prime} . \end{aligned}$ | Temp． $t_{v}$ | Mean | tions | $\mathrm{Temp}_{\mathrm{t}_{\mathrm{D}}}$ | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\varphi_{1}$ | $4:$ |  |  |  |
| July $8^{\text {th }} 14^{\text {h }} 40^{\text {m }}$ | ＊0．31084 | 409.85 | 22.5 C | $5^{\text {s }} .9040$ | 22.5 C | － | － | － | $\left\{\begin{array}{c} \text { Tanakadate } \\ \text { Sutō } \end{array}\right.$ | $\left\{\begin{array}{c} \text { Sutō } \\ \text { Tanakadate } \end{array}\right.$ |

## 256．YAMAGUTI． <br> Play ground of Yamaguti High School（山口高等學梭速動場）

DECLINATION（ $\delta$ ）
Observations of the Seto Sea Party， 1895.


DIP（ $\theta$
Observations of the Seto Sea Purty， 1896.


HORLZONTAL INTENSITY（II）
Ulservations of the Seto Sea Party， 1896.

| Date and Ifour Mean Local Time．） | $1]$ | M | Mean <br> Temp． | Time of 1－Tib，n． | Temp. | Mean Deflections |  | Temp. | Ohserver | Iecorder | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|  |  |  |  |  |  | $\varphi_{1}$ | $\psi_{2}$ |  |  |  |
| $\left\lvert\, \begin{array}{cccc} \text { July } & 90^{\text {th }} & 13^{\mathrm{h}} & 37^{\mathrm{m}} \\ " & " & 21 & 14 \\ , & 10 \text { th } & 7 & 46 \\ \hline \end{array}\right.$ | 0.31165 | 409.37 | 23.3 C | 5.9059 | 23．6C | $5{ }^{\circ}+2^{\prime} 15$＂${ }^{\prime}$ | $122^{2}+11 / 3$ | 23.1 C | $\left\{\begin{array}{c}\text { l＇dziie } \\ \text { Thnakadate }\end{array}\right.$ | Tanakndate Udziie |
|  | 0.31030 | 409.98 | 21.8 | 5.9032 | 22.3 | 5437.5 | 125635.0 | 21.3 | Sutō | Sntō Tanakadate |
|  | 0.31101 | 409.76 | 23.0 | 5.9023 | 22.7 | 54240.6 | 125540.0 | 23.4 | $\left\{\begin{array}{c}\text { Tanaknlate } \\ , \ldots\end{array}\right.$ | sutō |
| Mean | 0.31065 |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Yamaguti Syuttyō（山 口 出 張）
Olservations of the Seto Sea Party，1896．
（平非 人 犬場）

| Date and Hour <br> Mean Local Time．） | Needle <br> No． | $\theta$ | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: |
| July | 10 h | $19^{\mathrm{h}}$ | $18^{\mathrm{mm}}$ | $\varrho$ |


| Date and Hour （Mean Local＇lime．） | H | M | Mean Temp． | Time of 1－Yibn． | Temp． $t_{V}$ |  |  | $\frac{\operatorname{Tem}_{\mathrm{p}}}{\mathrm{t}_{\mathrm{p}}}$ | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| July $10^{\text {th }} 18^{\text {h }} 50^{\text {m }}$ | ＊0．30987 | 409．13f | 22.9 C | 5.9147 | 22.9 C | － | － | － | Sutō | Tanakadate |

## 257．TUWANO

DECLINATION（ $\delta$ ）
Observations of the Seto Sea Party， 1896.


DIP（ $\theta$ ）
Observations of the Seto Sea Party，189f．


HORIZONTAL MNTENSITX（H）
Onservations of the Seto Sea Party， 1896.


## 258．HAGI．

Hagimati，Kikugahama（萩町字菊ヶ演）
DECLINATION（ $\delta$ ）
Observations of the Seto Sea Party， 1896.


DIP（ $\theta$ ）
Observations of the Seto Sen P＇arty，189\％．


HORLZONTAL INTENSITY（II）
Observations of the Seto Sea Purty，18：06．


Hagi Syuttyō（萩 出 張）
Observations of the Seto Sea Party， 1893.
North side of Sumiyosi Zinsya（珄吉耐祀）北方）


| Date and Hour （Mean Local Time．） | $H$ | 11 | $\begin{gathered} \text { Mean } \\ \text { Temp. } \end{gathered}$ | Time of 1－Vib？ | $\begin{array}{\|c} \text { Temp. } \\ t_{V} \end{array}$ | Mean Deflections |  | Temp. | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | P1 | $\varphi_{2}$ |  |  |  |
| Suly $15^{\text {th }} 18 \mathrm{ch} 48^{\text {m }}$ | ＊0．31156 | 409.07 | 24.0 C | ${ }^{8} .9027$ | 24.0 C | － | － | －－ | Sano | Tanakadate |

259．AWANO．
River side near Ferry（粟野村字渡働，河原ノ中） DECLINITION（ $\delta$ ）
（1）servations of the Seto Sea Party， 1896.


DIP（ $\theta$ ）
Observations of the Seto Sea Party， 1896.


HORIZONTAL INTENSITY（II）
（＊＇ilue ，Ieduced from V＇ibration only by assuming Vialue of 14．） Observations of the Seto Sea Party， 1896.


## 260．HAMADA．

West side of Hamade River（演田川西岸，畑中）
DECLINATION（ $\delta$ ）
Olservations of the Seto Sea Party， 1 sim．


DIP（ $\boldsymbol{\theta}$ ）
Observations of the Seto Sea l＇arty， 1896.


HORIZUNTAL INTENSITY（1I）
（＊Value deduced from Vibration only by assuminy Value af II．）
Observations of the Seto Sea Party，189G．

| Date and Hour （Mean Local Time．） | 11 | 11 | Mean <br> Temp． | Time of1-Vibn. | $\begin{gathered} \text { Temp. } \\ t_{\mathrm{t}} \end{gathered}$ | Hean Deflections |  | Temp． $t_{D}$ | Olserver | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\varphi_{1}$ | 4. |  |  |  |
| July $21^{\text {st }} 20^{\text {h }} 40 \mathrm{~mm}$ | ＊0．30381 | 408.06 | 26.3 C | $\stackrel{\mathrm{s}}{5.9852}$ | 26．3C | － | $13^{\circ} 10^{\prime} 1!!^{\prime 2}$ | － | Sano | ＇Tanakadate |
| ， $22^{\text {nd }} 818$ | 0.30374 | 407.54 | 27.5 | 5.9900 | 27.6 | $5^{\circ} 48^{\prime} 57!5$ |  | 27：4C |  | $\left\{\begin{array}{l}\text { Sutō } \\ \text { Sino }\end{array}\right.$ |
| ＂$\quad 1 \begin{array}{lll}14 & \pm\end{array}$ | 0.30413 | 405.79 | 34.0 | 5.9993 | 33.9 | 54653.8 | 13521.2 | 34.0 | Tanakadate | $\left\{\begin{array}{c} \text { Tanakadate } \\ \text { Sutō } \end{array}\right.$ |
| ， $233^{\text {rd }} \quad 7 \quad 22$ | 0.30392 | 407.15 | 29.9 | $5.9885$ | 28.7 | 5483.8 | 13 758．8 | 31.0 | $\left\{\begin{array}{c} \text { Sutō } \\ \text { Tanakadate } \end{array}\right.$ | $\left\{\begin{array}{c} \text { Tanakadate } \\ \text { Sntō } \end{array}\right.$ |
| Mean | 0.30390 |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  | II＝ 0. | 30390 |  |  |  |
|  |  |  |  | duction to | to 1 | $895.0=$ | －3610 |  |  |  |
|  |  |  |  |  |  | level $=$ | 000 |  |  |  |
|  |  |  |  |  |  | $\Pi=0$. | 30354 |  |  |  |

Hamada Syuttyō（溶 田 出 張）
Observations of the Seto Sea Party， 1896.
（1）
Station， 1887 （千八百八十七年ノ觀測點）

| Date and Hour <br> （Mean Local Time．） | Needle <br> No． | $\theta$ | Observer | Recorder |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| July $23^{\mathrm{rd}} \quad 11^{\mathrm{h}}$ | $14^{\mathrm{m}}$ | 2 | $49^{\prime}$ | 54.0 | Sutō |


| Date and Hour （Mean Local Time．） | 11 | 11 | $\begin{aligned} & \text { Mean } \\ & \text { Temp. } \end{aligned}$ | Time of 1－Vil… | ＇Temp． $t_{v}$ | Mean Deflections |  | Temp. | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\varphi_{1}$ | $\varphi_{2}$ |  |  |  |
| July $23{ }^{\text {rd }}$－－ | ＊0．3026\％ | 404.51 | 38．30 | 6.1238 | 3.83 C | － |  | － | Sutō | Tanakadate |

（2）Common School（演田壽常小學校）

| Date and Hour <br> （Iean Local Time．） | Needle <br> No． | $\theta$ | Observer | Recorder |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| July． $23^{\text {rad }} \quad 13^{\mathrm{h}}$ | $0^{\mathrm{mu}}$ | 2 | $49^{\circ}$ | $37!2$ | Tanakadate |



## 261．ITIKI．

Itiki－mura No．2073，（市木村二千七十三番地）
DECLINATION（ $\delta$ ）
Observations of the Seto Sea Party， 1896 ．


DIP $(\theta)$
Observations of the Seto Sea Party， 18.16.

| Date and Hour （Mean Local Time．） |  |  |  | Needle No． |  | $\theta$ | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| July <br> ＂， | $\begin{aligned} & 24^{\mathrm{th}} \\ & \Rightarrow 25^{\mathrm{th}} \end{aligned}$ | 15 h 23 9 | 51 m 31 21 | 2 <br> 2 <br> 2 | 49 $"$ $"$ | $\begin{aligned} & 13: 7 \\ & 14.1 \\ & 15.9 \end{aligned}$ | Sano Sutō Tanakadate | Sutō <br> Tanakadate |
| Mean |  |  |  |  |  |  |  |  |
|  |  |  |  | $\begin{aligned} \theta & = \\ \text { Reduction to } 1895.0 & = \\ ., \quad \text { sea level } & =\end{aligned}$ |  |  | $\begin{array}{r} 14!6 \\ 4.99 \\ -0.04 \\ \hline 196 \end{array}$ |  |

HORIZONTAL INTENSITY（ $I$ ）
（＊Vitue deduced from Vibration only by assuming Tratue of 11．）
Observations of the Seto Sea Party， 1896.


Itiki Syuttyō（市 术 出 張）
Observations of the Seto Sea Party 1596.
Kwannondö（䔩章堂前）

| Date and Hour <br> （Mean Local Time．） | Needle <br> No． | $\theta$ | Observer | Recorder |  |  | | |
|---|---|---|---|---|---|---|---|---|
| July $25^{\text {th }}$ | $15^{\text {h }}$ | $0^{\text {ma }}$ | 2 | $49^{\circ}$ | $8!1$ | Tanakadate | | Tanakadate |
| :---: |

Nanukaiti－gawara（馬洗川南宸七日市河原）
DECLINATION（ $\delta$ ）
Observations of the Seto Sea larty， 1896.

| Date and Hour （Mean Local Time．） |  |  |  | $\delta$ |  |  | Obserrer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Tuly | $26^{\text {th }}$ | $19^{\text {h }}$ | $0^{\text {m }}$ | $1^{\circ}$ | $56^{\prime}$ | $3!^{\prime \prime}$ | Tanakadate | Sano |
| ＂ | ＂ | 21 | 37 | ＂ | 57 | 33 | Süō |  |
| ＂， | $27^{\text {th }}$ | 23 | 19 | ＊ | 57 | 5 | ＂ | ＂ |
| ＂， | $\because$ | 4 | 17 | ＂， | 56 | 23 | ＂ | ＂ |
| ＂ | ＂ | 5 | 13 | ，． | 50 | 26 |  | ＂n |
| ＂ | ＂ | $\stackrel{6}{7}$ | 37 | ＂ | 54 | 5 | lanakadate | Sano |
| ＂ | ＂ | 9 | 54 17 | ＂， | 5 | 15 | Sano | Tanảkadate |
| ＂ | ＂， | 10 | 40 | ＂， | 57 | 57 | Tanakadate | Sano |
| ＂， | ＂， | 12 | 22 | ＂ | 61 | 8 | Sutō | ＂ |
| ， | ＂ | 14 | 22 | ＂ | 63 | 0 | ＂ | ＂ |
| ＂ |  | 16 | 898888 | ＂， | 59 | 25 | Sann | ＂， |
| ＂ |  | 21 | 8 | ＂． | 58 | 36 | Sutō | ＂， |
| Mean |  |  |  | 4 | $57^{\prime}$ | $33^{\prime \prime}$ |  |  |
| $\delta=4 \quad 57!63$ |  |  |  |  |  |  |  |  |
|  |  |  |  | Rer | ion | $\begin{array}{r} 1895.0= \\ \text { sea level= } \end{array}$ | －0．74 |  |
|  |  |  |  |  |  |  | $-0.01$ |  |
|  |  |  |  | $\delta=1$ |  |  | 1 5 $56!$ |  |

DIP（ $\theta$ ）
Olservations of the Seto Seat Party， 14.46.


Olservations of the Seto Sea Party， 1896.


Miyosi Syuttyō（三 次 出 張）
Observations of the Seto Sea Party， 1896.
（1）High Common School（高等小學校運動場）

| Date and Hour <br> （Mean Local Time．） | Needle <br> No． | $\theta$ | Observer | Recorter |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| July $27^{\text {th }} 220^{\text {h }}$ | $19^{\text {un }}$ | 2 | 49 | 306 | Sntō |


| Date and Hour （Mean Local Time．） | 11 | 1／ | Mean <br> Temp． | Time of 1－「ib？． | Temp. | Mean I ${ }^{\text {deflections }}$ |  | Temp.$t_{D}$ | Ohserver | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | 41 |  |  |  |  |
| July $27^{\text {th }} 17^{\text {h }} 23^{\mathrm{m}}$ | ＊0．3028 0 | 405.32 | 31.3 C | ${ }^{\text {6．1）157 }}$ | 34.3 C |  | － |  | Sano | Sutō |


| （2） | Matubara |  |  | （字 松 原） |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Date and Homr <br> （Mean Local Time．） | Nechll |  | $\theta$ | Obserrer | Recorter |
| July $\quad 27^{\text {th }} \quad 22^{11} \quad 33^{\text {m }}$ | 2 |  | 14！ 1 | Sinno | Sutō |


| Date and Hour （Mean Local Time．） | 11 | II | $\begin{aligned} & \text { Mean } \\ & \text { Temp. } \end{aligned}$ | Time of $\text { 1- } \mathrm{Tib}^{n} \text {. }$ | $\underset{t_{V}}{\text { Temp. }}$ |  | $\begin{aligned} & \text { Teflections } \\ & \varphi_{2} \end{aligned}$ | $\begin{gathered} \text { Temp } \\ t_{\mathrm{b}} \end{gathered}$ | Observer | Tecorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| July $27^{\text {th }} 19 \mathrm{~h} 16^{\text {m }}$ | ＊0．303：18 | 407.45 | 27：8C｜ | 5.9880 | 27：80 |  | － | － | Sano | Sntō |

## 263．AI．

Common School（阿井尋常小學校）
DECLINATION（ $\delta$ ）
Observations of the Seto Nea Party， 189.


1）IP（ $\theta$ ）
Observations of the Seto sea Party，18：m．


HORIZONTAL INTENSITY（ $H$ ）
Olservations of the Seto Sea Party， 1895.

| Date and Hour （Mean Local Time．） | 11 | 1 H | Mean <br> Temp． | Time of $1-\mathrm{Vib}^{n} .$ | $\begin{array}{\|c\|} \operatorname{Tem}_{\mathrm{p}} \\ \mathrm{t}_{\mathrm{v}} \end{array}$ | Mean D <br> $\varphi_{1}$ | eflections <br> $\varphi_{2}$ | Temp | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| July $29^{\text {th }} \quad 8^{\text {h }} 22^{\mathrm{m}}$ | 0.30765 | 406.51 | 27：4C | 5.9587 | 27：2 C | $544^{\prime} 17!5$ | $13^{\circ} 032!5$ | 27．7C | $\left\{\begin{array}{c}\text { Sutō } \\ \text { Tanakadate }\end{array}\right.$ | $\left\{\begin{array}{c} \text { Tranakadate } \\ \text { Sutō } \end{array}\right.$ |
| ＂＂， 144 | 0.30740 | 404.55 | 35.2 | 5.9751 | 35.7 | 54226.2 | 12556.9 | 34.8 | Sano | Sano |
| ＂$\quad$ ， 2119 | 0.30770 | 407.52 | 26.4 | 5.9517 | 26.7 | 54442.5 | 13033.8 | 26.1 | $\left\{\begin{array}{l} \text { Sano } \\ \text { Suto } \end{array}\right.$ | $\left\{\begin{array}{l} \text { Sutō } \\ \text { Sanō } \end{array}\right.$ |
| Mean | 0.30758 |  |  |  |  |  |  |  |  |  |
| $H$ $=$ 0.30758  <br> Reduction to 1895.0 $=$ -3371 <br> ,$\quad$, sea level $=$ 413 |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |

## Ai Syuttyō（阿 井 出 張）

Onservations of the Seto Sea Party， 1896.
（阿非尋常小學校ノ下流ニアル河原，堤防キ距ル三間餘）

| Date and Hour （Mean Local Time）． | Neerlle No． | $\theta$ | Observer | Recorter |
| :---: | :---: | :---: | :---: | :---: |
| July $29^{\text {th }} \quad 88^{\text {l }} \quad 2^{\text {m }}$ | 2 | 4） $37!3$ | Sutō | Sano |


| Date and Hour （Mean Local Time） | II | II | Mean <br> Temp． | $\begin{aligned} & \text { Time of Temp. } \\ & 1 \text {-Vib } b . \end{aligned} t_{v}^{n} .$ |  | Mean Deflections |  | $\operatorname{Temp}_{t_{D}}$ | Ohserver | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\varphi_{1}$ | 42 |  |  |  |
| Suly 29 th $10^{\text {h }} 10^{\mathrm{m}}$ | ＊0．30651 | 405.61 | 32：7C | 5.9769 | 32：7C | － | －－ | －－ | Sano | Sutō |

## 264．IMAITI．

HECLINATION（ $\delta$ ）
Observations of the Seto Sea Party， $18 . \%$ ．


DIP $\langle\theta)$
Olservations of the Seto Sea Party， 1896.


HORIZONTAL INTENSITY（ $H$ ）
Olservations of the seto Sea Party， 1896.

| Date and Hour （Mean Local Time．） | II | M | $\begin{gathered} \text { Mean } \\ \text { Temp. } \end{gathered}$ | Time of1-Tibn. | $\begin{gathered} \text { Temp. } \\ t_{v} \end{gathered}$ | Mean Deflections |  | $\begin{gathered} \text { Temp. } \\ \mathrm{t}_{\mathrm{p}} \end{gathered}$ | Observer | Tecorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\varphi_{1}$ | 92 |  |  |  |
| July $31^{\text {st }} 13^{\text {h }} 25^{\mathrm{m}}$ | 0.30282 | 406.70 | 29：1C | $6_{6}^{\mathrm{s} .0057}$ | 29.30 | $5^{\circ} 49^{\prime} 12!5$ | $13^{\circ} 10^{\prime} 27!5$ | 28.9 | $\left\{\begin{array}{c} \text { Sutō } \\ \text { Tanakadate } \end{array}\right.$ | $\left\{\begin{array}{c} \text { Tanakalate } \\ \text { Sutō } \end{array}\right.$ |
| ＂„ $21 \quad 49$ | 0.30307 | 407.27 | 27.0 | 5.9991 | 27.2 | 54931.2 | 131116.2 | 26.8 | $\left\{\begin{array}{l}\text { Sano } \\ \text { Sutō }\end{array}\right.$ | $\left\{\begin{array}{l}\text { Sano }\end{array}\right.$ |
| Ang． $1^{\text {st }} 812$ | 0.30296 | 407.26 | 27.9 | 5.9996 | 27.8 | 54928.8 | 13113.8 | 27.9 | \{Tanakadate | $\left\{\begin{array}{c} \text { Tanakadate } \\ \text { Sutō } \end{array}\right.$ |
| Mean | 0.30295 |  |  |  |  |  |  |  |  |  |
|  |  |  | Teduction t |  | $\begin{array}{r} 18 \\ 0 \\ \hline \end{array}$ | $\begin{aligned} I I & =0.31 \\ 55.0 & = \\ 3 \text { elel } & = \end{aligned}$ | $\begin{array}{r} 1245 \\ -3381 \\ 000 \end{array}$ |  |  |  |
| － |  |  |  |  |  | $11=0.31$ | 1261 |  |  |  |

Imaiti Syuttyō（今 市 出 張）
Observations of the Seto siea Party，189\％．
Sanzyūsangasyo Kwannondō（三十三所觀音堂）

| Date and Honr （Mean Local Time．） | Noerlle No． | $\theta$ |  | Onserver | Recorter |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Aug． $1^{\text {st．}} \quad 10^{\text {h }}$ 2 $23{ }^{\text {m }}$ | 2 | 50 | $1!1$ | Sutō | Sino |


| Date and Hour （Mean Local Time．） | 11 | M | Mean Temp． | Time of 1-Yibon. | Temp． $t_{V}$ | $\frac{\text { Mea }}{\varphi_{1}}$ | tions <br> $\varphi_{2}$ | $\begin{gathered} \text { Temp. } \\ t_{1} \end{gathered}$ | Onserver | Tecorrler |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ang． $1^{\text {st }} 9^{\text {l／}} 55^{\text {mm }}$ | ＊0．30129 | 106．36 | 29.8 C | ${ }_{6}^{\text {s }}$ | 29：8C | － | － | － | Simo | Sinto |

## 265．MATUE．

Near Kentyō（息根倸聽對 宸）

## DE（LINATION（ $\delta$ ）

Observations of the Seto Sea Party， 1806 ．

| Date and Howr （Mean Lncal Time．） |  |  |  | $\delta$ |  |  | O）Oserver | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ang． | $1^{\text {st }}$ | $2 \cdot 311$ | $52^{19}$ | $4{ }^{\circ}$ | $52{ }^{\prime}$ | $10^{\prime \prime}$ | Suto | Sutō |
| ＂ | $2^{\text {nd }}$ | 11 | 30 | ．， | 51 | 57 | ，． | ，＂ |
| ， | ．． | 2 | 11 | ＂ | 50 | 23 | ＂ | ，＂ |
| ，． | ． | 4 | 51 | ．． | 50 | 13 | ．， | ．． |
| ＂ | － | 5 | 59 | ， | 49 | 23 |  |  |
| ， | ．． | 6 | 31 | ， | 48 | 41 | Tanakadate | Sano |
| ＂ | ＂ | 8 | 9 | ． | 50 | 42 | ．， | ＂ |
| ＂ | ＂ | 8 | 55 | ＂ | 52 | 33 | c＂ | Tanaladate |
| ＂ |  |  | 2.8 | ＂ | 51 | 26 | Tanakalate | Tanakadate Sano |
| To be continued |  |  |  |  |  |  |  |  |



DIP $(\theta)$
Observations of the Seto Sea Party， 1896.


HORIZONTAL INTENSITE（II）
（＊Thlue deduced from Tilration only by assaming Vilue of M．） Observations of the Scto sea Party， 1896.


Matue Syuttyō（松 江 出 張）
Ohservations of the Seto Sea Party， 1896.

## Near Electric Iightning Plant

（電僜合㕱附近）

| Date and Hour （Mean Local Time．） | II | M | Mean <br> Temp． | $\begin{aligned} & \text { Time of } \\ & \text { 1-Vibly. } \end{aligned}$ | $\begin{gathered} \text { Temp. } \\ t_{v} \end{gathered}$ | Mean Deflections |  | Temp. | Obscerver | Tecorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\varphi_{1}$ | $\varphi_{2}$ |  |  |  |
| $\begin{array}{cccc}\text { Aug．} & 2^{\text {nd }} & 19^{\text {h1 }} & 9^{\text {m／}} \\ \cdots & \cdots & 19 & 30\end{array}$ | $\left\{\begin{array}{\|} * \\ * 0.30810 \\ * 0.30095 \end{array}\right\}$ | $\begin{aligned} & 406.87 \\ & 406.87 \end{aligned}$ | $\begin{aligned} & 28.0 \mathrm{C} \\ & 27.9 \end{aligned}$ | 5 <br> 5.9493 <br> 6.0224 | $\begin{aligned} & 28.0 \mathrm{C} \\ & 27.9 \end{aligned}$ | －－ | － | － | Sutō | Tanakadate |
| Mean | 0.28217 |  |  |  |  |  |  |  |  |  |

266．KUROSAKA．
Indigo Field（藍 烟 中）
DECLINATION（ $\delta$ ）
Observations of the Seto Sea Party， 1896.

| $\begin{gathered} D_{i z} \\ \text { (Mear } \end{gathered}$ | and Ho Local＇l＇i |  |  | $\delta$ |  | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Aug． <br>  |  | $\begin{aligned} & 35^{11} \\ & 10 \\ & 27 \\ & 34 \\ & 42 \\ & 43 \\ & 33 \\ & 58 \\ & 3 \\ & 6 \\ & 6 \\ & 5 \\ & 59 \\ & 32 \\ & 28 \\ & 28 \\ & 37 \\ & 44 \\ & 57 \end{aligned}$ | 4 | $\begin{aligned} & 55^{\prime} \\ & 54 \\ & 55 \\ & 55 \\ & 54 \\ & 54 \\ & 54 \\ & 54 \\ & 53 \\ & 53 \\ & 51 \\ & 52 \\ & 53 \\ & 55 \\ & 55 \\ & 54 \end{aligned}$ | $\begin{aligned} & 522^{\prime \prime} \\ & 24 i \\ & 58 \\ & 20 \\ & 37 \\ & 14 \\ & 18 \\ & 41 \\ & 29 \\ & 295 \\ & 13 \\ & 19 \\ & 54 \\ & 39 \\ & 35 \\ & 39 \end{aligned}$ | Sutō Tauakadate Suto ＂＂， $"$, ＂， Tanakarlate ＂＂， Sutō ＂， ＂， Tanakadate | Sano T＇unakadate Sano $"$ $"$ Tanakadate $"$ $"$ $"$ sutō $"$ $"$ $"$ |
| Mean |  |  | $4{ }^{\circ}$ | $53^{\prime}$ | $59^{\prime \prime}$ |  |  |
|  |  |  |  |  |  |  |  |

DIP（ $\theta$ ）
Olservations of the Seto Sea Party， 1896.


HORIZONTAL INTENSITY（II）
Observations of the Seto Sea Party， $18 \% 6$.

| Date and Hour （Mean Loeal Time．） | 11 | M | Nean Temp． | Time of1-Vibü. | Temp. | Mean Deflections |  | $\underset{t_{D}}{\operatorname{Temp}}$ | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\varphi_{1}$ | $\varphi_{2}$ |  |  |  |
| $\left\|\begin{array}{cccc} \text { Ang. } & 4^{\text {th }} & 13^{\mathrm{h}} & 55^{\mathrm{nh}} \\ " & , & 22 & 20 \\ , & 5^{\text {th }} & 8 & 57 \end{array}\right\|$ | 0.30498 | 406.27 | 29．3C | 5.9868 | 29：2C | $54612!5$ | $133^{\prime} 26.2$ | 29.5 C | $\left\{\begin{array}{c}\text { Tanakadate } \\ \text { Sutō }\end{array}\right.$ | $\left\{\begin{array}{c} \text { Sutō } \\ \text { Tanakadate } \end{array}\right.$ |
|  | 0.30540 | 407.63 | 24.8 | 5.9727 | 24.8 | 54725.0 | $136 \quad 36.2$ | 24.8 | \｛ Tanakkadate | \｛ Su＇0̄ |
|  | 0.30536 | 406.54 | 28.5 | 5.9803 | 28.1 | 54613.8 | 13358.8 | 29.0 | $\left\{\begin{array}{c}\text { Sutō } \\ \text { Tanakadate }\end{array}\right.$ | $\left\{\begin{array}{c} \text { Tanakadat } \\ \text { Sutō } \end{array}\right.$ |
| Mean | 0．305：2 |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |

Kurosaka Syuttyō（黑 坂 出 張）
Hiziri Zinsya（梨神䄀）
Observations of the Seto Sea Party， 1836.

| Date and ITour <br> （Mean Local Time．） | Needle No． | $\theta$ | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: |
| Aug． $5^{\text {th }} 15^{\text {h }} \quad 13^{\text {m }}$ | 2 | $49^{\circ} 34.0$ | Tanakadate | Sutō |


| Date and Hour （Mean Local Time） | II | M | Mean <br> Temp． | Time of 1－Yibn． | Temp． $t_{V}$ | Mean Deflections |  | Temp. | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | 4. | $\varphi_{2}$ |  |  |  |
| Ang． $5^{\text {th }}$－－ | ＊0．30399 | 405.50 | 31．9C | s.00 | 31．9C | － | － | － | Sutō | Tanakadate |

## 267．TŌZYŌ．

DEULINATION（ $\delta$ ）
Observations of the Seto Sea Party， $18 \% 6$.


DIP（ $\theta$ ）
Observations of the Seto Sea Party， 1896.


HORLZONTAL 1NTENSITY（II）
Olsservations of the Seto Sea Party， 1846.

| Date and Hour （Mean Local Time．） | 11 | 11 | Mean Temp． | Time of 1 －Vibn． | Temp. | Mean Deflections |  | $\begin{gathered} \text { Temp } \\ t_{\mathrm{D}} \end{gathered}$ | Obserser | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | Yi | $\varphi_{2}$ |  |  |  |
| Aug．（th $222^{14} 48^{m}$ | 0.30955 | 407.95 | 23：3C | 5.9308 | 23：8C | $543^{\prime} 5!0$ | $1256^{\prime} 46$ \％ 2 | 22.8 C | $\left\{\begin{array}{c} \text { Sutō } \\ \text { Tanakadate } \end{array}\right.$ | $\left\{\begin{array}{c} \text { Tanakadate } \\ \text { Sutō } \end{array}\right.$ |
|  |  |  | $I I=$ 0.30955  <br> Reduction to $1895.0=$ -32.26 <br> ,$\quad$, sea level $=$ 371 |  |  |  |  |  |  |  |

## 268．HUKUYAMA．

Middle School（福山尋常中學校）
DECLINATION（ $\delta$ ）
Olservations of the Seto Sea l＇arty， 1896


DIP $(\theta)$
Olservations of the Seto Nea Party， 1896.


Observations of the Seto Sea Party， 1896


Hukuyama Syuttyō（福 山 出 張）
Observations of the Seto Sea Party，18：6．

| Date and Hour <br> （Mean Local Time．） | Needle <br> No． | $\theta$ | Observer | Recorder |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Aug． $16^{\text {thl }}$ | $18^{\text {h }}$ | $34^{\mathrm{m}}$ | 2 | $48^{*}$ | 266 |


| Date and Hom （Mean Local Time．） | II | M | Meau Temp． | Time of Tewr．$1-\text { Vib }_{n}^{n} . i_{V}$ |  | Mean Deflections |  | Temp. | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\varphi 1$ | $\varphi_{2}$ |  |  |  |
| Aug． $1 u^{\text {th }} 17^{\text {h }} 58^{\mathrm{m}}$ | ＊0．30777 | 406.58 | 27.8 C | 5.9576 | 27.8 C | － | － | － | Sutō | Tanakadate |

269．HAMABATA．
Hamahata No．1231．（松山村字演畑干二百八十一番地）
DIP（ $\theta$ ）
Observations of the Seto Nea P＇arty， 1896.


## 270．TAKAHASI．

Near Epidemic Asylum（高梁避病院附近ノ烟中）

$$
\text { DECLINATION }(\delta)
$$

Observations of the Seto Sea Party， 1896.

| Date and ITonr （Mean Local Time．） |  |  |  | $\delta$ |  |  | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Aug． | $11^{\text {th }}$ | $14^{\text {h }}$ | $19^{11}$ | $4^{\circ}$ | $51^{\prime}$ | $36^{\prime \prime}$ | Tasakildate | Sutō |
| ＂， | ， | 15 | 42 | ＂， | 48 | 50 |  |  |
| ＂ | ＂ | 117 | 54 | ： | 46 | 58 | Sutō | Tanakadate |
| ＂ | ＂ | 17 | 39 | ＂ | 46 | 11 |  | Sutō |
| ＂ | ＂ | 19 | 45 | ＂ | 47 | 27 | Tauakadate | T＇makadate |
| ＂ | ＂ | 21 | 15 | ＂ |  | 1 |  | Sntō |
| ＂， | $\ddot{\sim}$ | 22 | 44 | ＂ | 46 46 | 47 3 3 | Sutō | ＂ |
| ＂ | ， | 4 | 34 | ＂， | 45 | 51 | ＂ | ＂， |
| To be continued |  |  |  |  |  |  |  |  |

Continned

| Date and Hour． <br> （Mean Local Time．） |  |  |  | $\delta$ |  |  | Ohserver | Recorrler |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ang． | $12^{\text {th }}$ | 5 |  | 4 | $44^{\prime}$ | $53{ }^{\prime \prime}$ | Sutō | Sutō |
| ＂ | ＂ | 6 | 34 | ＂ |  | ${ }^{2}$ | Täbate | ， |
| ＂ | ＂ | 7 |  | ＂ | 42 | 16 | Tanakadate | Tanobatate |
| ＂ | ＂ | ！ |  | ＂ | 42 | 17 | ＂ | Tanakalate |
| ＇ | － | 11 |  | ＂ |  | 17 |  | ＂ |
| ＂ | ＂ | 12 | 49 | ＂ | 51 | 4 | Tanakadate | Sưō |
| ＂ | ＂， | 14 | ！ | ，＂． | 50 | 11 | ， | Tanakadate |
|  | ＂ | 15\％ | 13 | ＂， | 49 | 23 | ， |  |
| Mean |  |  |  | $4^{\circ}$ | 49 | $30^{\prime \prime}$ |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |

Observations of the Seto Sea Party， 1896.

| Date and Hour <br> （Mean Loeal Time．） | Neerlle No． | $\theta$ | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{cccc}\text { Aug．} & 11^{\text {th }} & 22^{\text {h }} & 2^{\text {th }}\end{array} 5^{\text {mi }}$ | 2 2 2 | $\begin{array}{cc} 45^{\circ} & 4.7 \\ " & 46.3 \end{array}$ | Tanakarlate | $\begin{aligned} & \text { Sutō } \\ & , \end{aligned}$ |
| Mean |  | $45^{\circ} \quad 45.5$ |  |  |
| $\begin{array}{rlrl}\theta & =48^{\circ} & 45!5 \\ \text { lieduction to } & 1895.0 & = & 3.70 \\ , \quad \therefore \quad \text { sea level } & = & -0.01 \\ \theta & =45^{\circ} & 45: 2\end{array}$ |  |  |  |  |

HORIZONTAL INTENSL＇Y（II）
（＊Value defucerl from I＇ibration only by assuming Tralue of M．） Observations of the Seto Sea l＇arty，189\％．

| Date and Hour （Mean Local Time．） | 11 | $1 /$ | Mern Temp． | $\begin{aligned} & \text { Time of } \\ & 1-\text { Vibl }^{n} \text { ? } \end{aligned}$ | $\begin{gathered} \text { Temp. } \\ \mathrm{t}_{\mathrm{v}} \end{gathered}$ | Mean De <br> ${ }_{4} 1$ | eflections <br> $\varphi:$ | $\begin{gathered} \text { Temp. } \\ t_{\mathrm{p}} \end{gathered}$ | Observer | Recorter |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ang． $11^{\text {st }} 19^{\text {h }} 13^{\mathrm{m}}$ | 0.30699 | 400.80 | 20.20 | $5.9628$ | 28.4 C | 504474.5 | $13^{\circ} 00^{\prime 3} 36$ | 25.96 | $\left\{\begin{array}{c}\text { Sutō } \\ \text { Tanakadate }\end{array}\right.$ | $\left\{\begin{array}{c}\text { Tanakadate } \\ \text { Sntō }\end{array}\right.$ |
| ＂，120 ${ }^{\text {th }} 723$ | 0.30697 | 406.84 | 25.3 | 5.9633 | 25.4 | 54450.0 | 130468.3 | 25.3 | $\left\{\begin{array}{l}\text { Sư̄ō }\end{array}\right.$ | \｛Tanaka ${ }^{\text {atate }}$ |
| ＂„，13 24 | ＊0．30697 | 403.78 | 35.3 | 5.9867 | 35.3 | － | － | － |  |  |
| ＂＂，13 45 | 0.30708 | 403.97 | 3.1 .7 | 5.9837 | 34.5 | 5423.8 | 125428.8 | 34.9 | Tanakadate | Suto |
| Mean | 0.30700 |  |  |  |  |  |  |  |  |  |
| $\checkmark$ |  |  | Tierluction to |  | $H=0.3000$ |  |  |  |  |  |
|  |  |  | ．，sea 1 |  | $\begin{array}{r} 31977 \\ 102 \end{array}$ |  |  |  |

Takahashi Syuttyō（高 梁 出 張）
Onservations of the Seto Sea Party， 1896.
Play ground of Common School（亮梁素常小學校連動筫）

| Date and Hour （Mean Local＇Time．） | Neentle No． | $\theta$ | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: |
| Ang $12^{\text {th }} \quad 16^{14} 58^{\text {m2 }}$ | 2 | 150 $4 \pm 3$ | Sutō | Sutó |


| Date and Hour （Mean Local Time．） | 11 | M | Mean Temp． | Time of 1－Vib… | Temp． $t_{v}$ | Maan Deflections |  | $\begin{gathered} \text { Temp. } \\ t_{1}, \end{gathered}$ | Observer | Recorver |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | 41 |  |  |  |  |
| Aug．120 ${ }^{\text {th }} 16^{\text {h }} 22^{\text {mim }}$ | ＊0．30707 | 402.92 | $38: 0 \mathrm{C}$ | 5.9921 | 35.0 C | － | － | － | Sutō | Tanakadate |

## 271．TOKUSIMA．

Adakemura No．6．（德嶋市安宅村第六號字百間地東）
DECLINATION（ $\delta$ ）
Observations of the Seto Sea Party， 1896.


DIP（ $\theta$ ）
Observations of the Seto Sea Party， 1890.

（＊Frhve deduced from Tibration on＇y by assuminy Volue of M．）
Observations of the Seto Sea Party， 1895.

| Date and Hour （Mean Local Time．） | II | I | Mean <br> Temp． | Time of 1－Yib． | $\begin{gathered} \text { Temp. } \\ t_{v} \end{gathered}$ | Mean Deflections |  | Temp | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | 41 | $\varphi:$ |  |  |  |
| Ang． $14^{\text {th }} 22^{\mathrm{h}} 28^{\mathrm{mm}}$ | 0.30834 | 406.43 | 26.6 C | 5.9537 | 26.9 C | $5{ }^{\circ} 43^{\prime} 11{ }^{\prime \prime} 2$ | $12^{\circ} 56^{\prime} 37!5$ | 26.3 C | Sutō | Tanakadate |
| ＂ $15^{\text {th }} 88 \quad 20$ | ＊0．30818 | 404.93 | 31.3 | 5.9580 | 30.6 | （54146．2 | 125345.0 | 31，3） | $\left\{\begin{array}{c}\text { Tanakadate } \\ \substack{\text { Sutō }}\end{array}\right.$ | $\left\{\begin{array}{c} \text { Sutō } \\ \text { Tanakadate } \end{array}\right\}$ |
| ＂＂ 13 29 | 0.30836 | 405.94 | 28.0 | 5.9559 | 27.6 | 54220.0 | 125459.4 | 28.4 | $\{$ Tanakadate | $\{\text { sutō }$ |
| Mean | 0.30829 |  |  |  |  |  |  |  |  |  |
|  |  |  | Renluction to |  |  | $I I=$ | $\begin{array}{r} 0.30829 \\ -2693 \\ 000 \end{array}$ |  |  |  |
|  |  |  |  |  |  | $1895.0=$ |  |  |  |  |
|  |  |  |  |  |  | －level $=$ |  |  |  |  |

Tokusima Syuttyō（德 咄 出 張）
Observations of the Seto Sea Party，1896．
Hukusima，Miya no Nisi（酤鳥町宮ノ西，畑ノ中央）

| Date and Hour <br> （Mean Local Time．） | Neerlle No． |  | $\theta$ | thserver | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2 |  | 47：7 | Tanakadate | Tanakadate |


| Date and Hom （Mean Local Time．） | II | M | Vean <br> Temp． | $\begin{aligned} & \text { Time of Temp. } \\ & \text { 1-Vill.n. } \quad t_{v} \end{aligned}$ |  | Mean Deflections |  | $\begin{gathered} \operatorname{Tem}_{\mathrm{p}} \\ \mathrm{t}_{\mathrm{p}} \end{gathered}$ | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | 41 | $\varphi_{2}$ |  |  |  |
| Ang， $15^{\text {th }} 16^{\text {h }}$ 4 $45^{\mathrm{m}}$ | ＊0．30857 | 405.56 | 29.3 C | － 5.9576 | 29.3 C | $\sim$ | － | － | Tanakadate | Suti |
| ＂＂－－ | 0．0184 | 405.50 | 29.5 | 5.5092 | 29.0 |  |  | － |  |  |
| Mean | 0.30851 |  |  |  |  |  |  |  |  |  |

## 272．WAKIMATI．

## Uenohara（上 野 原）

DECLINAIION（ $\delta$ ）
Observations of the Seto Sea Party， 1896.


| Date and Hour （Mean Lncal Time．） |  |  |  | $\delta$ |  |  | Observer | Recorter |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ang． | $19^{\text {th }}$ | $\overbrace{10}^{9 \mathrm{~h}}$ | ${\stackrel{49}{ } 9^{\mathrm{m}}}^{4}$ | 1 | 31 38 3 | $10^{\prime \prime}$ 15 | Tanakadate |  |
| ，． | ． | 10 11 | 31 7 | ＂， | 33 33 3 | 15 | Sutō | Tanakadate <br> $\substack{\text { Sano }}$ |
| ＂ | $\stackrel{.}{ }$＂ |  | ${ }_{4}^{7}$ | ＂ | 33 | 48 | ．， | fano |
| ＂． | ＂， | 14 | 15 | ．． | 33 | 42 | Tanakadate |  |
| ．． | ．， | 15 | 14； | ＂， | 32 | 5 | Sutō | Tanakadate |
| ． | ，＂ | 16 | 43 | ．． | 31 | 27 | ．． | ．． |
| ．． | ． | 17 | 39 | ， | 31 | 13： | ， | － |
| － | ．， | 18 | 40 | ＂ | 31 | 4 |  |  |
| ＂ | ．， | 21 | 12 | ．， | 31 | 20 | Sano | Sano |
| ＂ | $\because$ | 22 | 35 | ．． | 30 | $2: 1$ | ， | ． |
| ， | $20^{+17}$ | 2 | 26 | ．． | $2!1$ | 10 | ． | ．． |
| ．， | ， | $\pm$ | $3: 1$ | ．． | 29 | 22 | ．． | $\cdots$ |
| ＂ | ，． | $\stackrel{\square}{\square}$ | 50 | ＂ | 29 | 20 | Tamalate | sinto |
| ＂ | ＂ | 7 | 14 21 | ，． | 28 | 30 |  | ，． |
|  |  | 9 | 20 | ＂ | 29 | 4 S | ．， |  |
| Mean |  |  |  | 1 | $31^{\prime}$ | $5^{\prime \prime}$ |  |  |
| $\delta=t^{\prime} 3108$ |  |  |  |  |  |  |  |  |
| Reduction to $1895.0=-0.72$ |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |

DIP（ $\theta$ ）
Observations of the Seto Sea Party， 1896.


HORIZONTAL INTENSITY（II）
（＊Value Apolucerl from Tilnation only by rssuming T＇alue of M．）
Observations of the Seto Sea Party 1890.


## 273．OSATO．

## Osatomura（大里村）

DE（＇LINATION（ $\delta$ ）
Observations of the seto Sea Party， 1896 ．


DIP ( $\theta$ )
Observations of the Setu Sea Party, 1896.


|  | $\theta=47^{\circ}$ | 15.5 |
| :---: | :---: | :---: |
| Reduction to | $1895.0=$ | 1.80 |
| , " | sea level $=$ | 0.00 |

HORIZONTAL INTENSIT'Y (If)
(*Lelue deduced from Vibration on'y by assuming Valme of M.)
Olservations of the Seto Sea Party, 1895.

274. NAWARI.

DECLINATION ( $\delta$ )
Olservations of the Seto Sea Party, 1896.


DIP（ $\theta$ ）
Observations of the Seto Sea Party， 1896


HORIZONTAL INTENSITY（1I）
Onservations of the Seto Sea Party， 1896.


Nawari Syuttyō（奈牛利出張）
Observations of the Seto Sea Party， 1896.
Grave yard near Tenzinmatubara（火融松原新平民㩐地）

| Diate and Ifour <br> （Mean Local＇Lime．） | Neerlle No． | $\theta$ |  | Observer | liecorder |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Ang． $24^{\text {th }} \quad 17^{\text {足 }} \quad 51^{\text {m }}$ | 2 | 17 | $5!9$ | Tranakadate | Sutō |


| Date and Hour （Mean Local Time．） | II | M | Mean <br> Temp． | Time of 1－Tibn． | Temp． $t_{v}$ | Mean Deflections |  | Temp． <br> $t_{D}$ | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\psi_{1}$ | $4:$ |  |  |  |
| Ang． $24^{\text {th }} 18^{\text {l }} 51^{111}$ | ＊0．31017 | 406.03 | 26.6 C | 5.9384 | 27.1 C | － | － | － | Tanakadate | Sutō |

## 275．KŌTI．

Bötutumi（浦 戶 港 棒 堤）
DECLINATION（ $\delta$ ）
Olsservations of the Seto Sea Party， 1896.

| Date and Hour （Mean Local Time．） |  |  |  |  | $\delta$ |  | Observer | Recorter |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ang．＂＂，＂，＂＂，＂， | $26^{1 / 2}$ | Wh | $59^{m}$ | 1 | 231 | $50^{\prime \prime}$ | Tanalatate | Sano |
|  | ＂ | ！ | 31 | － | 24 | 47 | ＂ | ， |
|  | ＂， | 10 | 37 | ＂ | 26 | 38 | ， | ，＂ |
|  | ，＂ | 12 | 33 | ．， | 27 | 4 | ， | ＂ |
|  | ＂ | 14 | 4 | ．， | 27 | 1 |  | ＂ |
|  | ＂ | 15 | 45 | ＂ | 21 | 10 | Siallo | ＂ |
|  | ＂， | 17 | 1 | ＂ | 23 | 13 | Tanakadate | ＂ |
|  | ＂， | 19 | 14 | ， | 24 | 2 | ＂ | ，． |
|  |  |  |  |  | con | ned |  |  |

Continued


DIP ( $\theta$ )
Olservations of the Seto Sea Party, 1896.

| Date and Hour <br> (Mean Local Time.) | Needle No. | $\theta$ | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{cccc}\text { Ang. } & 26 \mathrm{th}^{\prime} & 19 \mathrm{~h}_{1} & 9 \mathrm{~m} \\ " & " & 18 & 9 \\ " & 27 \mathrm{th} & 8 & 39\end{array}$ | 2 2 2 2 | $\begin{array}{cc}17 & 13!8 \\ . & 15.2 \\ . & 15.3\end{array}$ | Tanakadate心no <br> Tanakadate | Sano Tanakadate <br> - |
| Mean |  | $17^{\circ}$ 14! |  |  |
| $\theta=47^{\circ} \quad 14!4$ |  |  |  |  |
| Ferluction to $\quad 1895.0=\quad 2.64$ <br> .. $\quad$, sea level $=\quad$ u.0u |  |  |  |  |
|  |  |  |  |  |
|  | $\theta=47 \quad 17!4$ |  |  |  |

11ORIZONTTAL INTENSITY (IL)
Oluservations of the Seto Sea Pirty, 1896 .


## 276. ОТОТІ

DECLINATION $(\delta)$
Uloservations of the Sieto Sea Party, 18tti.


DIP（ $\theta$ ）
Observations of the Seto Nea Party，1896．

| Date and Humr （Mean Local Time．） |  |  | Needle No． |  |  | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ang． ＂ ＂， | $\begin{array}{cc}28^{\text {th }} & 15^{\text {h }} \\ 22^{\text {th }} & 1 \\ \% & 9\end{array}$ | 834 16 10 | 2 2 2 | 47 <br> ＂， | $\begin{array}{r} 30!8 \\ 30.1 \\ 29.0 \end{array}$ | T＇anakadate Sano <br> ＇Tanakadate | $\begin{gathered} \text { Sano } \\ \text { Tanakadate } \\ \text { Sano } \end{gathered}$ |
| Mean |  |  |  |  | 300 |  |  |
|  |  |  |  |  |  |  |  |

HORIZONTAL INTENSITY（ $I$ ）
（＊＇ulue deduced from I＇ibration only dy ussuminy Value of IU．）
Observations of the Seto Sea Party， 1896.

| Date and Homr （Mean Local Time．） | II | M | Mean Temp． | Time of $1-\mathrm{Vil}{ }^{1}$ | $\begin{gathered} \text { Temp. } \\ \mathrm{t}_{\mathrm{r}} \end{gathered}$ | Mean De <br> $\psi_{1}$ | flections <br> 9.2 | $\begin{gathered} T \in m_{1} \\ t_{\mathrm{b}} \end{gathered}$ | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Aug． $28^{\text {th }} 13^{\text {l }} \quad 7^{\mathrm{m}}$ | 0.30992 | 404.23 | 31.6 C | 5.9544 | 31.6 C | $5 \cdot 39$＇13：＇1 | $124751!2$ | 31.5 C | $\left\{\begin{array}{c} \text { Nano } \\ \text { Tanakarate } \end{array}\right.$ | $\left\{\begin{array}{c} \text { Tanakadate } \\ \text { Sano } \end{array}\right.$ |
| ，$\quad$ ， 2217 | 0.30987 | 407.18 | 22.4 | 5.9340 | 23.1 | 5122.5 | 125115.0 | 21.7 | $\left\{\begin{array}{c} \text { Sama } \\ \text { Tanakadate } \end{array}\right.$ | $\left\{\begin{array}{l} \text { Tanakadate } \\ \operatorname{Sano} \end{array}\right.$ |
| ， $299^{\text {th }} 75$ | 0.31001 | 407.08 | 24.1 | 5.9315 | 23.1 | 54120.6 | 125228.8 | 24.5 | $\left\{\begin{array}{c} \text { Nano } \\ \text { Tanakadate } \end{array}\right.$ | $\left\{\begin{array}{c} \text { Tanakadate } \\ \text { Sano } \end{array}\right.$ |
| ＂ | ＊0．31c09 | 404.99 | 29.4 | 5.9471 | 29.1 | － | － | － | Samo | Tanakádate |
| Mean | 0.30397 |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |

Ōtoti Syuttyō（夫桭 出 張）
Olservations of the Seto Sea Party， 1896 ．
Hatiozimiya（八王子窓境队）

| Date and Hour <br> Mean Local Time．） | Needle <br> No． | $\theta$ | Observer | Recorder |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Ang． | $29^{t h}$ | $13^{12}$ | $2\left(1^{21}\right.$ | 2 | 17 |

## 277．SUSAKI．

Sea Shore（海濩 ノ 松 原）
DECLTNATION（ $\delta$ ）
Olservations of the Seto Sea Party， 1836.

| $\begin{gathered} \mathrm{Da} \\ \text { (Nea } \end{gathered}$ | te and | Ho |  |  | $\delta$ |  | Obserrer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Aug． | $31^{\text {st }}$ | $7^{11}$ | $46^{\mathrm{m}}$ | 4 | $10^{\prime}$ | $513^{\prime \prime}$ | Tamakadate | Sano |
| ， | ， | 8 | 57 | ， | 15 | $5: 3$ | ， | ＂ |
| ＂ | ＂ | 10 | 40 | － | 24 | $3: 3$ | ，＂ | ， |
| ＂ | ＂ | 11 | 36 | ＊ | 25 | $5!$ | ，， | ＂， |
| ＂ | ＂ | 13 | $\cdots 4$ | ．， | 24 | 49 | ， | ＂， |
| ＂ | ＂ | 15 | 17 | ， | 22 | 13． |  |  |
| ＂ | ＂ | 16 | 27 | ．． | 20 | 52 | Sano | Tanakadute |
| ． | ＂ | 18 | 10 | \％ | 21 | 0 | Tanakadate | Sano |
| ＂ | ＂ | 20 | 15 5.5 | ＂ | 20 | 33 | ， | Tanarate |
| ＂， |  | 21 | 55 49 | $\stackrel{.}{ }$ | 20 20 | 1 34 | $\stackrel{.}{\text {＂，}}$ | Tanakrdate |
| Sept． |  | 1 | 18 | ＂， | 24 | 11 | Hano | Sino |
| ＂ | ＂ | \％ | 54 | $\because$ | 19 | 43 | ＂ | ， |
| ＂ | ＂ | \％ | $\pm$ | ＊ | 17 | 133 | ＂ | ， |
| ＂ | ＂ | 13 | 55 | ＊ | 17 | 31 | Tunabatat |  |
| ＂ | ， | 7 | 51 56 | ＂ | 17 | 13 | Tanakalate | Tauakadate |
| ＂， | ＂ | ？ | 10 | ＇， | 18 | 20 | ＂， | ＂ |
|  |  | 12 | 16 | ＂ | 2.5 | 14 |  | Söno |
| Mean |  |  |  | $\pm \quad 20^{\prime} \quad 50^{\prime \prime}$ |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
| $\delta=4 \quad 2018$ |  |  |  |  |  |

Observations of the Feto Sea Party， 1890.

| Date and Hour （Mean Local Time．） | Needle No． | $\theta$ | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{cccc}\text { Aug．} & 31^{\text {st }} & 9^{\text {h }} & 48^{\mathrm{mm}} \\ ., & , & 14 & 28 \\ ., & " & 19 & 48\end{array}$ | 2 2 2 2 | $\begin{array}{cc}47 & 15!6 \\ \# & 13.2 \\ , & 14.3\end{array}$ | Sano <br> Tanakadate ＂ | $\begin{gathered} \text { Tunakadate } \\ \text { Sano } \\ \text { ", } \end{gathered}$ |
| Mean |  | $47 \quad 14!4$ |  |  |
|     <br> Reduction to $=47^{\circ}$ $14!4$  <br> $, \quad, \quad$ sea level $=$  2.84 <br>   0.00  <br> $\theta$ $=47^{\circ}$ $17!2$  |  |  |  |  |

HORIZONTAL INTENSITY（ $H$ ）
Onservations of the Seto Sea Party， $189 \%$ ．


Susaki Syuttyō（須 㓓 出 張）
Observations of the Seto Sea Party， 1896.
Revenue office（收原器前芝地）

| Date and Hour <br> （Mean Local Time．） | Needle <br> No． | $\theta$ | Ohserver | Recorder |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Sept． | $1^{\text {st }}$ | $15^{\text {hi }}$ | $21^{\mathrm{m}}$ | 2 | 47 |


| Date and Femr （Mean Local Time．） | ／1 | II | $\begin{aligned} & \text { Mean } \\ & \text { Terup. } \end{aligned}$ | Time of1-Tibor | $T \in m p .$ | Meau Deflection |  | $\begin{gathered} \text { Temp } \\ t_{\mathrm{D}} \end{gathered}$ | Ohserver | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |
| Sept． $1^{\text {st }} 15^{\text {h }} \quad 55^{\text {m }}$ | ＊0．31159 | 404．84 | 290\％ | － $8^{8} .9336$ | 29\％ 6 | －－ | － | － | Sano | Tanakadate |

## 278．NAKAMURA．

Nakamura，Ōsima（中村大字大峆）
DECLINATION（ $\delta$ ）
Observations of the Seto Sea Party， 1896.

| Date and Hour <br> （Thean Local Time．） |  |  |  | $\delta$ |  |  | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sept． | $3^{\mathrm{rd}}$ |  | $14^{\mathrm{m}}$ | $4^{\circ}$ | $16^{\prime}$ | $30^{\prime \prime}$ | Tanakadate | Siano |
| ＂ | ＂ | 13 | 13 | ， | 16 | 47 | ， | ，． |
| ，． |  | 14 | 20 | ＂ | 11 | 50 | ， | ，． |
| ＂ |  | 15 | 4 | ＂ | 12 | 35 | ，＂ | ， |
| ＂ | ＂ | 18 | 1 | ＂， | 11 | 49 | $\because$ | ， |
| ＂ | ＂ | 19 | 0 | ， | 11 | 50 | Sano | ＂ |
| ＂ | ，． | 19 | 30 | ， | 11 | 40 | Tanakadate | \％ |
| ， | ＂ | 21 | 0 | ：， | 11 | 55 | ＂ | ＂ |
| To be contimued |  |  |  |  |  |  |  |  |

## （304）

Continned


1）IP．（ $\theta$ ）
Observations of the Seto Sea Party， 1896.


HORIZONTAL INTENSITY（ $H$ ）
Observations of the Seto Sea Party， 1896.


## 279．UWAZIMA．

## High Common School（宇和嶋高等小學校）

DECLINATION（ $\delta$ ）
Ohservations of the Scto Sea Party， 1896.

| Date and Four （Mean Local Time） |  |  |  | $\delta$ |  |  | Onserver | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sept． | $6^{\text {th }}$ | $23^{11}$ | $6^{\text {m }}$ | 1 | $14^{\prime}$ | $1 f^{\prime \prime}$ | Tanakadate | Sano |
| ＂ | 7 | 5 | 55 | ， | 12 | 54 | Sano |  |
| ＂ | ．． | 13 | 24 | ， | 12 | 2） | ．． | ＂， |
| ＂ | ＂ | 8 | 22 | ， | 12 | 15 |  | ＂， |
| ＂ | ＂ | 8 | 35 | ＂ | 12 | 55 | Tanakadate | ＂， |
| ＂ | ＂ | 9 | 34 | ， | 16 | 35 | ＂ | Tambore |
| ＂ | ＂ | 10 | 53 | ＂， | $1!9$ | 31 | ， | Tanakadate |
| ＂ | $"$ | 11 13 | $\begin{array}{r}51 \\ \hdashline\end{array}$ | ＂ |  | 54 9 | ＂， | ＂ |
| To be continned |  |  |  |  |  |  |  |  |

（305）


DIP（ $\theta$ ）
Observations of the Seto Sea Party，1890．

| Date and Hour （Mean Local Time．） |  |  |  | Neealle No． |  |  | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sept． | $7{ }^{\text {th }}$ | $10^{17}$ | $18^{m}$ | 2 | $47^{\circ}$ | $5!1$ | Tanakadate | Tanakadate |
|  | ， |  | 10 | 2 | ， | 4.1 | ：， | ＂ |
|  |  |  | 55 | 2 | ＂ | 3.1 | ＂， | ＂ |
| Mean |  |  |  |  | $47^{\circ}$ | $4!2$ |  |  |


|  | $\theta=47^{\circ}$ | $4!2$ |
| :---: | :---: | :---: |
| Reruction to | $1895.0=$ | 3.37 |
| ，－， | seat level＝ | 0.00 |
|  | $\theta=47^{\circ}$ | $7!6$ |

HORIZONTAL INTENSITY（II）
（＊Telue dduced from Vibation only Iny assuming Velue of M．）
Olservations of the Seto Sea Party， 1896.

| Date and Hour （Mean Lncal Time．） | II | M | Mean <br> Temp． | Time of1-Tilon. | $\begin{gathered} \text { T'emp. } \\ t_{v} \end{gathered}$ | Mean Defleetions |  | $\begin{gathered} \text { Templ } \\ t_{\mathrm{p}} \end{gathered}$ | （haserver | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\varphi_{1}$ | P： |  |  |  |
| Sept． $7^{\text {the }}$ 8in $8^{\text {m }}$ | ＊0．312．24 | 405.78 | 25．10 | 5.9207 | 25.1 C | （5：38＇27！5 | $12^{\circ} 45^{\prime 2} 294$ | 25：9C） | $\left\{\begin{array}{c} \text { Sano } \\ \text { Tamakalate } \end{array}\right.$ | $\left\{\begin{array}{c} \text { Tranakadate } \\ \text { Sano } \end{array}\right.$ |
| ，，12 3 | 0.312 （\％） | 404.66 | 29.1 | 5.9241 | 28.4 | 53632.5 | 124142.5 | 29.9 | $\left\{\begin{array}{c} \text { Sano } \\ \text { Tinnakiate } \end{array}\right.$ | $\left\{\begin{array}{c} \text { Tinakndate } \\ \text { Sano } \end{array}\right.$ |
| ，． $8^{\text {th }} 711$ | 0．3124：3 | 405，35 | 26.0 | 5.9221 | 26.2 | 53740.0 | 124427.5 | 25.8 | T＇anakadate | Tanakarlate |
| Mean | 0.31241 |  |  |  |  |  |  |  |  |  |


|  | $1 L=$ | 10．31241 |
| :---: | :---: | :---: |
| Rerluelion to | $1895.0=$ | －3606 |
| ．，．， | sea level＝ | 010 |
|  | $11=$ | 0.31205 |

Uwazima Syuttyō（宇 和 島 出 張）
observations of the rieto Sea Party， $18: 16$.
Mikotama Zinsya（和 喛 神 瓶）

| Date and Hour （Mean Local Time．） | II | M | $\begin{aligned} & \text { Mean } \\ & \text { Temp. } \end{aligned}$ | ＇Time of 1－Vibn． | Temp． $t_{V}$ | Meav Deflections |  | Temp. | Onserver | Tiecorter |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | 41 | $4:$ |  |  |  |
| Sept． $8^{\text {th }} 11^{\text {th }}$ S $8^{10}$ | ＊0．31237 | 415.24 | 26.7 C | $5.92 \cdot 9$ | 26．7． | － | －－ | － | Tanakalate | Tanakadate |

280．WAKAMIYA．
Kitamura，Wakamiya（喜多村大字若宮）
DECLINATION（ $\delta$ ）
Observations of the Seto Sea Party， 1896


DIP（ $\theta$ ）
Observations of the Seto Sea Party， 1896.


HORIZONTAL INTENSITY（II）
（＊Vatue dedured from Vilnation mily by assuming l＇alue of M．） Olservations of the Seto Sen Party，is96．


281 YАНАТАНАМА

Observations of the Seto Sea Party, 1896


HORIZONTAL INTENSITY (II)
(*Value deduced from Vibration ouly by assuminy Vilue of 11. .)
Observations of the Seto Sea Party, 1896.

| $\left\|\begin{array}{c} \text { Date and Hour } \\ \text { (Mean Locnl Time) } \end{array}\right\|$ | II | II | $\begin{array}{\|c\|\|} \hline \text { Mean } \\ \text { Temp. } \end{array}$ | Time of $1-\mathrm{Vi} \mathrm{l}, \underline{2}$. | Temp. $t_{v}$ | Mean Deflections |  | $\begin{gathered} \text { Temp. } \\ t_{p} \end{gathered}$ | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\varphi$ | 42 |  |  |  |
|  | $\begin{aligned} & * 0.31166 \\ & * 0.31140 \end{aligned}$ | $\begin{aligned} & 405.75 \\ & 405.75 \end{aligned}$ | $\begin{aligned} & 25.2 \mathrm{C} \\ & 25.2 \end{aligned}$ | $\begin{aligned} & \hline s \\ & 5.9261 \\ & 5.9286, \end{aligned}$ | $\begin{aligned} & 25.2 \mathrm{C} \\ & 25.2 \end{aligned}$ | - | - | - | Sano | Tanakadate |
| Mean | 0.31153 |  |  |  |  |  |  |  |  |  |

Ieduction to $1895.0=-373$
".,. sea level= 000

## 282 SAGANOSEKI Garandō

Observations of the Seto Sea Party, 1896.


DIP ( $\theta$ )
Obser rations of the Seto Sea Party, 1896.

| Date and Hour (Mean Local Time.) |  |  |  | Needle No. |  |  | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\qquad$ | $13^{31}$ | $9^{1 /}$ | $2^{\text {m }}$ | 2 | $47^{\circ}$ | $4!4$ | Sano | Sano |
|  | " | 14 |  | 2 | " | 8.9 | Tanakadate | " |
|  | " | 17 | 51 | $\stackrel{2}{2}$ | " | 2.7 | ,, | " |
|  |  |  |  |  | " | 7.3 | " | " |
|  | Meau |  |  | - | 47 | 5! 5 |  |  |
|  |  |  |  | $\theta$ $=47$ <br> Reduction to1895.0 $=$ <br> ,$\quad$, sea level$=$  |  |  | $\begin{aligned} & 5!8 \\ & 4.08 \\ & 0.00 \\ & \hline \end{aligned}$ |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |  | 9.9 |  |

HORIZONTAL INTENSITY（ $H$ ）
Observations of the Seto Sea Party， 1896.

Saganoseki Syuttyō（佐賀關出張）
Observations of the Seto Sea Party， 1896.

| （1） | Sea Shore |  |  | （海 岸） | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Date and Hour （Mean Local Time．） | $\begin{gathered} \text { Needle } \\ \text { No. } \end{gathered}$ |  |  | Observer |  |
| Sept． $14^{\text {th }} \quad 13^{\text {h }} \quad 14^{\mathrm{m}}$ | 2 |  | $5!5$ | Tanakadate | Tauakadate |



## 283 SAIKI

DECLINATION（ $\delta$ ）
Observations of the Seto Sea Party， 1896.


DIP（ $\theta$ ）
Observations of the Seto Sea Party， 1896.

| Date and Huur （Sean Local Time．） |  |  |  | Needle No． |  | $\theta$ | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sept ＂ | $15^{\text {th }}$ $16^{\text {th }}$ $"$ | 21 h 10 14 | $\begin{gathered} 5.5 \\ 1 \\ 40 \end{gathered}$ | 2 2 2 2 |  | $\begin{aligned} & 50: 3 \\ & 50.4 \\ & 56.3 \end{aligned}$ | Sano <br> Tamakadate （ ．， | Tanakadate S"̈no |
| Mean |  |  |  |  |  | 54：3 |  |  |
| $\theta$ $=45^{\circ}$ $54!3$  <br> Tieduction to 1895.0 $=$ 3.93 <br> $, \quad, \quad$ sea level $=$ 0.010  |  |  |  |  |  |  |  |  |

HORIZONTAL INTENSITY．（H）
Observations of the Seto Sea Party， 1896.


## Saiki Syuttyō（佐 伯 出 張）

Observations of the Seto Sea Party， 1896.
（1）

| Date and Hour <br> （Mean Local Time．） | Needle <br> No． | $\theta$ | Observer | Recorder |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Sept． $16^{\text {th }} 18^{\mathrm{h}} \quad 16^{\mathrm{mm}}$ | 2 | 46 | $55 \cdot 0$ | Tanakadate | Tanakadate |


| Date and Hour （Mean Local Time．） | II | $1 /$ | Mean <br> Temp． | Time of 1－Yibn． | Temp． $t_{V}$ | Mean Deflections |  | 'emp.$t_{D}$ | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\varphi_{1}$ | $\varphi:$ |  |  |  |
|  | $\begin{aligned} & * 0.31233 \\ & =0.31256 \end{aligned}$ | $\left\|\begin{array}{l} 405.46 \\ 405.96 \end{array}\right\|$ | $\begin{aligned} & 25.4 \mathrm{C} \\ & 23.8 \end{aligned}$ | $\begin{aligned} & \mathrm{s}^{5} .9216 \\ & 5.9156 \end{aligned}$ | $\frac{25.4 C}{23.5}$ | － | 二 | － | ＇Tanakadate ＂ | Tanakadate |
| Mean | 0.31245 |  |  |  |  |  |  |  |  |  |

（2）Ubutama Zinsya（鶴ヶ阔字坂浦產靈神社鳥居前）

| Date and Homr <br> （Mean Local Time．） | Needle <br> No． | $\theta$ | Observer | Recorder |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Sept． $17^{\mathrm{th}}$ | $9^{\mathrm{h}}$ | $4^{\mathrm{m}}$ | 2 | $46^{\circ}$ | $52!4$ |


| Date and Hour （Mean Local T＇ime．） | II | M | $\begin{gathered} \text { Mean } \\ \text { Temp. } \end{gathered}$ | Time of 1－Yibn． | $\begin{gathered} \text { Temp. } \\ t_{r} \end{gathered}$ | Mean Deflections |  | Temp. | Observer | Tecorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\varphi_{1}$ | $\varphi_{2}$ |  |  |  |
| Sept． $17^{\text {th }} \quad y^{\text {f }} 55^{\mathrm{m}}$ | ＊0．31310 | 405.96 | $23: 6 \mathrm{C}$ | ${ }^{5} 5.9107$ | 23.64 | － | － | － | Sano | ＇Tanakadate |

## 284．OITA．

DECLINATION（ $\delta$ ）
Observations of the Seto Sea Party，1896；

| Date and Hour （Mean Local Time．） |  |  |  | $\delta$ |  |  | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sept． | 17 ${ }^{\text {th }}$ |  | 44 m | 4 | $15^{\prime}$ | $47^{\prime \prime}$ | ＇Tanakadate | Tanakadate |
| ， |  |  | 6 | ．， | 15 | 47 |  |  |
| ＂ |  | 0 | 36 | ＂ | 15 | 42 | ， | ，＂ |
| ＂ | ＂ | 2 | 24 | ， | 15 | 15 | ， | ， |
| ＂ | ＂ | 4 | 31 | ＂ | 14 | $5 \times$ | ＂ | ．， |
| ＂ | ＂ | 5 | 13 | ＂ | 15 | 52 | ＂ | ．， |
| ＂ | ＂ | 6 | 4 | ＂， | 15 | 42 | ＂ | ＂ |
| － | ＂ | 7 | 17 |  | 12 | 16 | ＂ | Sano |
| ＂ | ＂ | 8 | 15 49 | ， | 10 | 18 | ＂ | ＂， |
| ＂ |  | 11 | 49 | ＂ | 11 | 20 |  | ， |
| ＂ |  | 111 | 23 | ＂ | 16 | 8 | Nano | ， |
| ＂ |  | 13 | $\stackrel{14}{24}$ | ＂ | 20 22 | 53 118 | Timakadate | ， |
| ＂ |  | 14 | 44 | $\because$ | 18 | 55 | Timakadato | ＂， |
| ．， | ，＂ | 15 | 49 | ＂ | 15 | 51 | sano |  |
| ＂ | ＂ | $1{ }^{19}$ | 45 | ＂ | 15； | 45 | ＂ | ＂， |
| ＂ | ＂ | 17 | 22 | ＂ | 15 | 35 | ＂ | ， |
| ＂ | ＂ | 17 | 48 | ＂， | 18 | 15 | ＂ | ＂ |
| ＂ | ＂ | 18 | 6 | ＂， | 20 | 1 | － | ＂ |
| ＂， | ＂ |  | 37 13 | ＂， |  | 56 42 42 | Tanakadate | Tanaladate |
| ＂ |  | 20 | 13 | ＂ |  | 12 |  |  |
| Mean |  |  |  | $15^{\prime} \quad 58^{\prime \prime}$ |  |  |  |  |
|  |  |  |  | $\begin{array}{rrrr}\delta=4 & 15: 97 \\ \text { leduction to } & 1895.0= & 0.77 \\ , \quad, & \text { sea level }= & 0.00\end{array}$ |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  | $=t \quad 16: 7$ |  |
|  |  |  |  | va |  | IP | 1arty，18\％\％ |  |


| Date and Hour （Mean Local Time．） | Needle No． | $\theta$ | Observer | liecorder |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{cccc}\text { Sept．} & 18^{\text {th }} & 0^{1 / 1} & 40^{m} \\ " & " & 10 & 27 \\ " & " & 14 & 29\end{array}$ | 2 2 2 2 | $\begin{array}{cc} 47 & 145 \\ " & 15.1 \\ " & 14.9 \end{array}$ | $\begin{gathered} \text { Tanakadate } \\ \text { Sano } \\ \text { Tanakadate } \end{gathered}$ | $\begin{gathered} \text { Tanakadate } \\ \text { Sano } \\ " \end{gathered}$ |
| Mean |  | 47 165 |  |  |
| $\theta$ $=17$ 16.5  <br> Tieduction to  1895.0 $=$ <br>  4.47   <br> $, \quad, \quad$ sea level $=$  0.00 <br> $\theta$ $=47^{\circ}$ 21.0  |  |  |  |  |

HORIZONTAL INTENSITY（II）
Observations of the Seto Sea Party， 1896.


Oita Syuttyō（大 分 出 張）
Observations of the Sets nea larty， 1896 ．

| Date and Hour <br> （Mean Local Time．） | Needle <br> No． | $\theta$ | Observer | Recorder |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Sept． 1 sth $^{2}-$ | - | 2 | $47^{\circ}$ | $20: 7$ | Tanakadate |

## Dōgomura，Motida（道後村字持田） <br> DECLINATION $(\delta)$

Observations of the Seto Sea Party， 1896.


Onservations of the Seto Sea Party，189\％．


HORIZONTAL INTENSITY（ $I$ ）
Observations of the Seto Sea Party， 1896.


Observations of the Seto Sea Party，189\％．

| Date and Hour （Mean Local Time．） | 11 | If | Mean <br> Temp． | Time of 1－Tib，… | Temp．Mean Deflections |  |  | Temp | Observer | Recorter |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | $\mathrm{t}_{\mathrm{V}}$ | $\varphi 1$ | $\varphi:$ |  |  |  |
| Sept． $21^{\text {st }} 10^{\mathrm{h}} \quad 4^{\mathrm{m}}$ | ＊0．31011 | 407.67 | 20.2 C | 5.9307 | 20.2 C | － | － | －－ | Tanakadate | Tanakadate |

## 286．KUZU．

DECLINATION（ $\delta$ ）
Observations of the Seto Sea Party， 1896.

| $\underset{\text { Da }}{\text { Dea }}$ | e and Loce | $\begin{gathered} \text { Hou } \\ \hline \end{gathered}$ |  |  | $\delta$ |  | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sept． | $21^{\text {st }}$ | $23^{\text {h }}$ | $15^{\mathrm{m}}$ | $4^{\circ}$ | $22^{\prime}$ | 5917 | Tanakadate | Tanakarlate |
| ，， | $22^{\text {nd }}$ | 1 | 29 | ＂ | 21 | 28 | ＂， | ．． |
| ＂， | ， | 2 | 21 | ＂， | 21 | 10 | ＂ | ＂， |
| ， | ＂， | 6 | 1 | ＂ | 21 | 1 | S＂ | ＂ |
| ＂ | ，． | 7 | 30 | ，＂ | 19 | 38 | Sano | Sano |
| ：， | ，＂ | 8 | 40 | ＂， | 20 | 39 | ＂ | ， |
| ＂ | ， | 10 | 4 | ＇， | 24 | 37 | ＂ | ， |
| ， | ， | 11 | 49 | ＂ | 27 | 411 | ＂ | ， |
| ， | ， | 12 | 42 | ＂ | 27 | 38 | ．， | ＂ |
| ， | ＂ | 14 | 47 | ＂ | 24 | 21 | ， | ＂ |
| ＂ | ＂ | 15 | 55 | － | 23 | 16 | ＂ | ， |
| ＂， | ．， | 17 | 45 | ， | 23 | 36 | ， | ＂ |
| ＂ | ， | 19 | 20 | ＂ | 23 | 2 | ＂ | ＂ |
| ， | ＂ | 21 | 18 | ， | 22 | $3 \pm$ | － | ＂ |
| ＂ | ， | 23 | 58 | ＂ | 21 | 53 | ， | ＂ |
| ＂， | $233^{r d}$ | 0 | 22 | ，＂ | 21 | 47 | ， | ， |
| ＂ | ．， | 3 | 0 | ＇， | 20 | 26 | ： | ， |
| ＂， | ， | 5 | 16 | ＂ | 20 | 8 | $\cdots$ | ．， |
| ＂ | ＂ | 6 | 26 | ＂ | 20 | 25 | ＂ | ＂ |
| ， | ＂ | 7 | 8 | ＂ | 20 | 22 • |  | ＂ |
| ＂ | ． | 7 | 48 | ＂ | 19 | 22 | Tanakalate | Tanatradate |
| ＂ | ＂ | 9 | 1 | ．， | 22 | 36 | － | Tanakadate |
| ＂ | ＂ | 13 | 35 | ＂ | $\underline{1}$ | 21 | ， | Sano |
| Mean |  |  |  | $4^{\circ}$ | $22^{\prime}$ | $43^{\prime \prime}$ |  |  |
| $\delta=4 \quad 22!72$ |  |  |  |  |  |  |  |  |
|  |  |  |  | Reduetion to |  |  | $=-0.05$ |  |
|  |  |  |  | ＂ |  | sea level $=-0.0$ |  |  |
|  |  |  |  |  |  |  | 42297 |  |

DIP（ $\theta$ ）
Onservations of the Neto Nea Party，18！）．


JHORIZONTAL INTENSITY（II）
Olservations of the Seto Sea Party， 1896.

| Date and Hour （Mean Local Time．） | II | ． 1 | $\begin{array}{\|c\|} \hline \text { Mean } \\ \text { Temp. } \end{array}$ | Time of 1-Tibn. | $\begin{gathered} \text { Temp. } \\ t_{\mathrm{v}} \end{gathered}$ | Mean D <br> $\varphi_{1}$ | flections $\% 2$ | Temp | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sept． $23^{\mathrm{rll}} \quad 8^{12} \quad 32^{\mathrm{m}}$ <br> ，， 1316 | 0.31059 0.31136 | $\begin{aligned} & 406.29 \\ & 405.27 \end{aligned}$ | $\begin{aligned} & 21.4 \mathrm{C} \\ & 24.2 \end{aligned}$ | 5.9311 5.9320 | $\begin{aligned} & 2100 \\ & 24.4 \end{aligned}$ | $50+6 \quad 6!2$ $53844.1$ | $12^{\circ} 49^{\prime} 32!{ }^{\prime} 5$ <br> 124550.0 | $\begin{aligned} & 21.8 \mathrm{C} \\ & 24.0 \end{aligned}$ | $\left\{\begin{array}{c} \text { Sano } \\ \text { Tanakadate } \\ \text { Sano } \\ \text { Thnakadate } \end{array}\right.$ | $\left\{\begin{array}{c} \text { J'nakadate } \\ \text { Sano } \\ \text { Tanakadate } \\ \text { Sano } \\ \hline \end{array}\right.$ |
| Mean | 0.31098 |  |  |  |  |  |  |  |  |  |
| $H$ $=$ 0.31098 <br> Reduetion to 1895.0 $=$ <br> 0.3508   <br> , sea level $=$ <br> $H$ $=0.31067$  |  |  |  |  |  |  |  |  |  |  |

## 287．KUMA． <br> Race Course（久萬町村嚄䵮） <br> DECLINATION（ $\delta$ ）

Observations of the Seto Sea Party， 1896.


1；IP（ $\theta$ ）
Observations of the Seto Sea Party，18．

| Diate and Ifour （Mean Local Time．） | Needle No． | $\theta$ | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{cccc}\text { Sept．} & 24^{\text {th }} & 10^{11} & 46^{121} \\ \# & ", & 15 & 17\end{array}$ | $\begin{aligned} & 2 \\ & 2 \\ & 2 \end{aligned}$ | $\begin{array}{cc} 47 & 35!8 \\ " & 29.2 \end{array}$ | $\begin{aligned} & \text { Tanakadate } \\ & \text { Sano } \end{aligned}$ | $\begin{gathered} \text { Sano } \\ \text { Tanakadate } \end{gathered}$ |
| Mean |  | $47^{\circ} 32.5$ |  |  |
| $\theta$ $=47^{\circ}$ 32.5 <br> Reduction to 3895.0 $=$ <br> $0 \quad n \quad$ sea level $=$ -0.63 <br> $\theta$ $=47^{\circ}$ 36.0 |  |  |  |  |

HOI：IZONTAL INTENSITY（II）
Observations of the Seto Sea Party， 1896.


## 288．IMABARU．

Hukiage Zinsya，Old Castle（今治嚄城内吹揚神社）
DECLINATION（ $\delta$ ）
Observations of the Seto Sea Party， 1896.

| Date and Hour （Mean Local Time．） |  |  |  | $\delta$ |  |  | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sept． | $25^{\text {th }}$ | $16^{1 /}$ | $29^{11}$ | 4 | ：3：3＇ | $12^{\prime \prime}$ | Tanakadate | San） |
| ＂ | ， | 18 | 20 | ．． | 34 | $1: 3$ | ，＂ | ， |
| ＊ | ＂ | 19 | 57 | ＂ | 31 | 27 | ＂ | ＂， |
| ＂ | ＂ | 21 | 25 | － | 3：3 | 51 | ＂ |  |
| ＂ |  | 23 | 42 | ＂ | ：33 | 1 | ＂， | Tanakadate |
| ＂ |  | 3 | 37 | ， | ： | 7 | ＂ | ．， |
| ＂ | ＂ | $\stackrel{6}{7}$ | 18 | ．． | 3 | ：36 | ＂ |  |
| ＂ | ＂ | 7 | ${ }_{1}^{6}$ | ＂ | $3: 3$ | 13 | ＂ | Sano |
| ＂ | ＂ | 8 | 14 | ＂ | 32 | 40 | s＂̈o | ＂ |
| ＂ | ＂ | 11 | 40 | ＂ |  | 37 | Sano | ＂ |
| ＂ |  | 12 | 20 | ＂， | 34 | 5 1 | ＂， | Tanakadate |
| To be continued |  |  |  |  |  |  |  |  |

Continued

| Date and Hour （Mean Local Time．） |  |  |  | $\delta$ |  |  | Observer | liecorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sept． | $26^{\text {t1 }}$ | $13{ }^{1}$ | $21^{\mathrm{mm}}$ | $1{ }^{\circ}$ | 34 | $44^{\prime \prime}$ | Tanakadate | Sano |
| ， | ＂ | 1. | 1 | ＂ | 34 | 59 | ＂ | ＇rinakadate |
| ＂ | ＂ | 15 | 7 | ＂ | 34 | 57 | ＂ | ＂ |
| ＂ | ＂ | 119 | 14 | ， | 33 | 513 | ＂ | ＂ |
| ＂ | ＂ | 18 | 10 | ＂， | 32 | 54 | ＂ | ＂ |
| ＂ | ， | 18 | 53 | ＂ | 33 | 0 | ＂， | ＂ |
| ＂ |  | 22 | 0 | ＂ | 33 | 24 | ＂ | ＂ |
| ＂ | $27^{\text {th }}$ | $\stackrel{2}{2}$ | 5 | ＂ | 36 | 52 | ．， | ＂ |
| ＂ | ＂ | 3 | 18 | ＂ | 36 | 1 | ＂ | ＂ |
| ＂ | ＂ |  | 8 | ＂ | 34 | $3{ }^{2}$ | ＂， | ＂， |
| ＂ | ＂ |  |  | ＂ |  |  | ＂ | ＂ |
| Mean |  |  |  |  |  | $13{ }^{\prime \prime}$ |  |  |


DII（ $\theta$ ）
Olservations of the Seto Sea Party， $18: 0$.


HGRIZONTAL INTENSITY（H）
Observations of the Seto Sea Party， $18 \%$ ．

| Date and Hour （Xean Local Time．） | 11 | II | MeanTemp | Time of1-Yibn. | $\begin{gathered} \text { Terap. } \\ t_{5} \end{gathered}$ | Mean Deflections |  | $\operatorname{Tem}_{t_{b}}$ | Observer | Recorder | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|  |  |  |  |  |  | $\varphi_{1}$ | 92 |  |  |  |
| $\left\|\begin{array}{cccc} \text { Sept. } 25^{\text {th }} & 20^{\mathrm{h}} & 57^{\mathrm{m}} \\ , & 266^{\mathrm{th}} & 7 & 46 \\ " & . . & 1: 3 & 5 \end{array}\right\|$ | 0.30977 | 406.28 | 21.3 C | $\begin{gathered} \mathrm{s} \\ 5.9405 \end{gathered}$ | 21：3C | $5411^{\prime 2} 1!2$ | $12^{\circ} 52^{\prime} 42!5$ | 21：3C | Sano | STanakadate |
|  | 0.30955 | 406.66 | 19.2 | 5.9389 | 19.1 | 54148.8 | 125340.0 | 19.3 | Sano | Tanakadate |
|  | 0.30948 | 406.55 | 19.6 | 5.9412 | 19.9 | 54146.2 | 125323.1 | 19.3 | $\left\{\begin{array}{c} \text { Sano } \\ \text { T'anakadate } \end{array}\right.$ | $\left\{\begin{array}{c}\text { Tanakadate } \\ \text { Sano }\end{array}\right.$ |
| Mean | 0.30960 |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

## 289．KAWANOE．

## Sea Side Embankment（海演）堤 防）

DECLINATION（ $\delta$ ）
Olservations of the Seto Sea Party，1s：

| Date and Hour <br> （Mean Local Time．） | $\delta$ |  |  | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Sept． $28^{\text {th }} 12^{\text {h }} 56^{\mathrm{m}}$ | 4 | 3：＇ | $9{ }^{\prime \prime}$ | Tanakadate | Sano |
| ，，$\quad$ ， 14.2 | ．． | ：3：3 | $1!$ | ＂ | ， |
| ＂＂， 15 I | ＂ | ：3： | 3 | ＂ | ， |
| ，．＂16 21 | ， | ：31 | 37 | ＂， | ， |
| ＂＂， 17 \＆ | ， | 30 | $4!$ | ＂ | ＂ |
| ＂，＂，18 44 | ＂， | 31 | 1 | ＂ | ＂ |
| ＂$\quad, \quad 20 \quad 3$ | ＂ | 31 | 1 | ＇＂ | ＂ |
| ＂ 29 th 0 | ＂ |  | 312 | Sano | ， |
| ＂＂，3 25 | ， | 30 | 12 | ＂ | ＂ |
|  | ＇Io | con | ned |  |  |

Continned

| Date and Hour （Mean Local Time．） |  |  |  | $\delta$ |  |  | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sept． | $29+11$ | $5^{\text {h }}$ | $40^{\mathrm{m}}$ | 4 | $30^{\prime}$ | 19＂ | Sano | Sano |
| ，， | ＂ | 5 | 57 | ， | 30 | 21 | ＂ | ＂ |
| ＂ | － | 7 | $\stackrel{1}{7}$ | ＂ | 29 | 34 | Tamanate | ＂ |
| ＂ | ＂ | 7 | 47 | ＂ | 28 | 22 | Tanakadate | Tan ${ }^{\text {ºn }}$ |
| ＊ | ＂ | ！ | （11） | ＂ | 27 | 24 | ， | Trnakalate |
| ＂， | ＂， | 11 | 33 | ＂ | 31 | 57 | ， | ＂ |
| ＂， | ，． | 12 | 27 | ．， | 32 | 59 | Säno | Sano |
|  |  | 13 | 9 | ．． | 31 | 2 | ，＂ | ．． |
| Mean |  |  |  | 4 | $30^{\prime}$ | 52＇： |  |  |
|  |  |  |  | Reduction to$\qquad$ |  |  | 130.87 |  |
|  |  |  |  | －0．5！ |  |
|  |  |  |  | 0.80 |  |
|  |  |  |  | 301：3 |  |

DII $(\theta)$
Observations of the Seto Sea Party， 1896.

（＊「alve derduced from Vibration only liy assuming J＇alue of M．） Observations of the Seto Sea Party， 1896.

| Date and Hour （Mean Local Time．） | II | M | Mean <br> ＇Temp＇ | Time of 1－Yibn． | $\begin{array}{\|c} \text { Temp. } \\ t_{v} \end{array}$ | Jcan D $\varphi_{1}$ | efflections <br> $\varphi_{2}$ | $\underset{t_{1}}{T e m p .}$ | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{cccc} \text { Sept. } 28^{\text {th }} & 13^{\mathrm{h}} & 35^{\mathrm{m}} \\ " & , & 19 & 37 \\ " & 299^{\mathrm{h}} & 8 & 20 \\ " & . . & 8 & 42 \end{array}$ | 0.30919 0.30910 0.30957 0.30942 | 405.86 407.18 405.58 405.49 | $\begin{aligned} & 21.1 \mathrm{C} \\ & 16.8 \\ & 22.1 \\ & 23.7 \end{aligned}$ | $\begin{aligned} & 5.9495 \\ & 5.9460 \\ & 5.9468 \\ & 5.9475 \end{aligned}$ | $\begin{array}{l\|} 21.7 \mathrm{C} \\ 17.3 \\ 22.1 \\ 22.9 \end{array}$ | $\begin{gathered} 541^{\prime} 50!0 \\ 5430.6 \\ - \\ 54039.4 \end{gathered}$ | $\begin{gathered} 12^{\circ} 54^{\prime} 1!!2 \\ 125634.4 \\ - \\ 125058.1 \end{gathered}$ | $\begin{gathered} 20.6 \mathrm{C} \\ 16.4 \\ - \\ 24.6 \end{gathered}$ | $\begin{aligned} & \left\{\begin{array}{c} \text { Suno } \\ \text { Tanakadate } \\ \text { Sano } \\ \text { Tanakadate } \\ \text { Sano } \end{array}\right. \\ & \left\{\begin{array}{c} \text { Tanakadate } \end{array}\right. \end{aligned}$ | $\left\{\begin{array}{l} \text { Tanakadate } \\ \text { Sano } \\ \text { Tanakodate } \\ \text { Sano } \\ \text { Tanakadate } \\ \text { Sano } \end{array}\right.$ |
| Mean | 0.30932 |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |

Kawanoe Syuttyō（川，江：出 張）
Obserrations of the Seto rea Party， $18: 6$.


290．MARUGAME．

## Middle School（丸䑥常尋中學校）

## DECLINATION（ $\delta$ ）

Observations of the Seto Sea Party， 1896.


DIP（ $\boldsymbol{\theta}$ ）
Observations of＊the Seto Sea larty，1896．


HORIZONTAL INTENSITY（If）
Observations of the seto Sea Party，18．96．


## 291．TAKAMATU． <br> Old Castle（萑 城 內） <br> DECTINATION（ $\delta$ ）

Observations of the Seto Sea Party， 1893.


DIP（ $\theta$ ）
Observations of the Seto Nea Party， 1896


HORIZONTAT IN IENSITY（II）
Olservations of the Seto Sea Party， $189 \%$.


DECLINATION ( $\delta$ )
Observations of the Seto Sea Party, 1896.


DIP ( $\theta$ )
Observations of the Seto Sea Party, 1896.


1IORIZON'TAL INTENSITY (II)
Observations of the Neto Sea Party, 1896.


Tonosyō Syuttyō（土，庄 出 張）
Observations of the Seto siea Party， 1890.
Saikōzi（阮 光 寺）

| Date and Hour （Mean Local Time．） | 11 | ． $1 /$ | ITead Temp． | Time of 1－Yibn． | $\operatorname{Temp}_{\mathrm{t}_{\mathrm{v}}}$ | Mean Deflections |  | $\begin{gathered} \text { Temp. } \\ \mathrm{t}_{\mathrm{n}} \end{gathered} .$ | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\zeta_{1}$ | $\varphi_{2}$ |  |  |  |
| Oct． $4^{\text {th }} 15^{\text {l }}$ 1 $37^{\mathrm{m}}$ | ＊0．30667 | 405.43 | 21.2 C | 5.9761 | 21.2 C | － | － | － | Sano | ＇Lanakadate |
| ，，„， $15 \quad 59$ | ＊0．30676 | 405.55 | 20.9 | 5.9745 | 20.9 | － | － | － | Tanakadate | Sano |
| Mean | 0.30872 |  |  |  |  |  |  |  |  |  |

## 293．ZAIKOZI．

Zaikōzihara（富高村大字財光寺字小狹間財光寺原）
DECLINATION
（ $\delta$ ）
Olservations of the Sunth West Party， 1896.

| Dite and Hour （Mean Local Time．） |  |  |  |  | $\delta$ |  | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| July |  | 9h | 12 m | ： | $56^{\prime}$ | $34^{\prime \prime}$ | Imamura | Hattori |
| ＂ | ＂ |  | 58 | ＂ | 57 | 17 |  | Imamura |
| ＂ |  | 11 | 19 51 | ＂ | 59 | 4 | Sinzyō | Hattori |
| ＂ | ＂ | 11 | 51 |  | 59 | 3 | ＂ | ＂ |
| ＂， | ＂ | 13 | 51 | 4 | $\stackrel{2}{3}$ | 19 34 | Inı＂ | Sinzō |
| ＂， |  | 1. | 31 | ＂ | 3 | 14 | Inamura | Sinzyō |
| ＂ | \％ | 15 | 23 | ＂， | 2 | 14 | Imannura | Sinzyo |
| ＂ | ＂ | 16 | 33 | ＂ | 1 | 23 | Hattori | Imamura |
| ＂ | ＂ | 17 | 21 | ＂ | 0 | 25 | Imamurat | ．． |
| ＂， | ， | 18 | 22 | ＂ | 0 | 22 | ，， | ＂ |
| ＂， | ＂ | 19 | 39 | ＂ | 0 | 39 | ， | ＂ |
| ＂ | ＂ | 20 | 53 | ＂ | ${ }_{0}$ | 26 | ＂${ }^{\text {a }}$ | ＊ipzö |
| ＂ |  | 22 | 25 | ， | 0 | 31 | Sinzyō | Sinzyō |
| ＂ | 8 th | 1 | 8 | ． | － | 19 | ，＂ | ．， |
| ， | ＂ | ： | 58 | 3 | 59 | 42 | ， | ＂ |
| ＂ | ＂ | 5 | 23 | ．． | 58 | 37 | ＂ | ．， |
| ＂ | ＂ | ${ }_{6}$ | 2 | ＂ | 58 | $\because$ | In＂ | Imamura |
| ＂， | ， | 7 8 | ${ }_{1}^{4}$ | ＂ | 57 | 31 | Imamura | ．， |
| ＂ | ＂ |  | 11 | ＂ | 57 | 34 | ＂ | ＂ |
| Mean |  |  |  | $4^{\circ}$ | ${ }^{\prime}$ | －＂ |  |  |
|  |  |  |  | Reduction to |  |  | $\delta=4^{\circ} \quad 0008$ |  |
|  |  |  |  | I．I1 |  |
|  |  |  |  | 0.00 |  |
| （ $\delta=4 \quad 1!2$ |  |  |  |  |  |  |  |  |

DIP（ $\theta$ ）
Observations of the South West Party， 1896.


HORIZONTAL INTENSITY（II）
Olservations of the Sonth West Party， 1896.


Zaikōzi Syuttyō（犑光寺出張）
Observations of the South West Party， 1896 ． Station， 1887 in Hiliya（日 知 屋 著 觀 测 點）

| Date and Hour <br> （Mean Local Time．） | Needle No． | $\theta$ | Observer | Recorter |
| :---: | :---: | :---: | :---: | :---: |
|  | 1 | $45^{\circ} \quad 14!4$ | Sinzyō | Sinzyō |


| Date and Honr （Mean Local Time．） | 11 | II | Mean Temp． | Time of$1-\mathrm{Vib}_{-}^{n} .$ | $\begin{gathered} \text { Temp. } \\ t_{v} \end{gathered}$ | Mean Deflections |  | $\begin{gathered} \operatorname{Tem}_{\mathrm{p}} \\ \mathrm{t}_{\mathrm{D}} \\ \hline \end{gathered}$ | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\psi_{1}$ | 4. |  |  |  |
|  | ＊0．31576 | 422.65 | 31.2 C | 5．7528 | 31：2C | － | － | － | Hattori | Sinzyō |
| ＂$\quad$ ， $18 \quad 16$ | ＊0．31582 | 422.65 | 31.3 | 5.7523 | 31.3 | － | － | － | ＂ | ＂ |
| Mean | 0.31579 |  |  |  |  |  |  |  |  |  |

## 294．MIYAZAKI．

Play Ground of Normal School（宮崎寻常師範學校運動場）
DECLINATION（ $\delta$ ）
Olservations of the Sorth West Party， 1896.

| $\begin{aligned} & \text { Da } \\ & \text { (Mear } \end{aligned}$ | $\begin{gathered} \text { eanc } \\ \text { Looc } \end{gathered}$ |  |  |  | $\delta$ |  | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| July | $y^{\text {th }}$ | $7^{1 /}$ | $34^{11}$ | $3^{\circ}$ | $55^{\prime}$ | $26^{\prime \prime}$ | Imamnra | Sinzyo |
| ＂ | ＂ | 7 | 47 | ．． | 55 | 36 | Sinzyö | „， |
| ，＂ | ＂ | 9 11 | 18 | ＂ | 57 | 13 | Imamura |  |
| ＂ | ＂ | 10 | 3 |  | 58 | 34 | Sinzyō | Hattori |
| ＂ |  | 11 | 12 | 1 | 0 | 12 | Hattori | Sinzyo |
| ＂ | ＂ |  | 12 | ， | 11 | 49 | Imamura | Hattori |
| ＂， |  | 14 | ${ }_{6}$ | 3 | 59 | 16 41 | Sinzyō | ＇， |
| ＂， |  | 15 | 24 | ＂ | 58 | 41 | Hattori | нinzyō |
| ＂ |  | 16 | 42 | ，． | 58 | 8 | Imamura |  |
| ＂ | ＂ | 17 | $5 \pm$ | ， | 57 | 26 |  | Imamura |
| ＂ | ＂ | 19 | 13 | ＂ | 56 | 17 | Hattori | Hattori |
| ＂ | ＂ | 20 | 9 | ＂ | 55 | 48 | ＂ | ＂ |
| ＂ | ， | 20 | 4. | ， | 56 | 18 | ＂ | ＂ |
| ＂ | ， | 21 | 4.5 | ＂ | 57 | 48 | ＂ | ＂ |
| ＂ | ＂ | $2: 3$ | 1 | ＂ | 57 | $\because 3$ | ＂， | ＂ |
| ＂ |  | $2: 3$ | 38 | ＂ | 57 | 39 | ， | ＂ |
| ＂ |  | 1 | 38 | ， | 57 | 26 | ＂ | ＂ |
| ＂ | ＂ | 3 | 21 | ＂ | 56 | 49 | ＂ | ＂ |
| ＂， | ＂， | 4 6 | 56 | ＂ | 56 54 | 39 | ＂ | ＂ |
| ILean |  |  |  | $3{ }^{\circ}$ | $57^{\prime}$ | $30^{\prime \prime}$ |  |  |
| $\delta=3^{\circ} \quad 57!60$ |  |  |  |  |  |  |  |  |
|  |  |  |  | Reduction to |  |  | $1895.0=\quad 1.37$ |  |
|  |  |  |  |  |  | ，sers | 0.00 |  |
|  |  |  |  | $\delta=3{ }^{\circ}-59.0$ |  |  |  |  |

DIP（ $\theta$ ）
Observations of the Sonth！West Party，1893．


HORIZONTAT INTENSITY（ $I$ ）
Onservations of the Sonth West larty， 1896.

| Date and Hour （Mean Local Time．） | H | M | $\begin{array}{\|l\|} \hline \text { Mean } \\ \text { Temp. } \end{array}$ | $\begin{aligned} & \text { Time of } \\ & 1-\text { Vib }^{n} . \end{aligned}$ | $\begin{gathered} \text { Temip. } \\ t_{\mathrm{v}} \end{gathered}$ | Mean De $\varphi_{1}$ | flections <br> $\varphi_{2}$ | $\underset{t_{D}}{\operatorname{Tem}_{p}}$ | Observer | Recorrter |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| July 9th ${ }^{\text {ch }} 59 \mathrm{~m}$ | 0.31797 | 424.35 | 26.5 C | 5.7177 | 25.6 C | $5{ }^{\prime} 44^{\prime} 19!4$ | $13^{\circ} 4^{\prime} 16^{\prime \prime} 9$ | 27：4C | Sinzyō Imamura | $\operatorname{Imamura}_{\text {Sinzyō }}$ |
| ．，， 1313 | 0.31814 | 423.26 | 28.0 | 5．72t； 4 | 28.0 | 5 4341.3 | $13: 30.6$ | 28.0 | Sinzyō | Imamıura |
| ＂$\quad, \quad 18 \quad 1$ | 0.31707 | 424.17 | 24.4 | 5.7300 | 24.6 | 54528.8 | 13641.3 | 24.1 | Battori <br> Sinzyō | Sinzyō <br> Hattori |
| Mean | 0.31773 |  |  |  |  |  |  |  |  |  |
|     <br> Reduction to  0.31773  <br> ． 1895.0 $=$ -3572 <br> ．，seat level $=$ 000  |  |  |  |  |  |  |  |  |  |  |

## 295．MIYAKONOZYO．

Prefecture（郡 役 所）
DECLINATION（ $\delta$ ）
Observations of the south West Party， 1 s\％r．


Onservations of the Fonth West Party， 1896

| Date and Hour （Mean Local Time．） |  |  |  | Neerlle No． |  | $\theta$ | Onserver | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| July ＂， ＂ | $11^{\text {th }}$ $"$ $"$ | ${ }^{12} 1{ }^{96}$ | $11^{\mathrm{mm}}$ 8 50 | 1 1 1 |  | $\begin{aligned} & 20!8 \\ & 19.8 \\ & 21.4 \end{aligned}$ | Sinzyō Imamura Hattori | Hattori Sinzyō |
| Mean |  |  |  |  | $45^{\circ}$ |  |  |  |
|  |  |  |  |  |  |  |  |  |

HORIZONTAL 1NTENSITY（II）
Observations of the South West Party， $189 t$.


296．NAKAMATI．
Play Ground of Common School（福嶋中町尋营小學校運動埧）
JECLINATION（ $\delta$ ）
Observations of the Sonth West Party， $18 \%$ ．

（323）
DIP $(\theta)$
Observations of the South West Party， 1896.


HORIZONTAL INTENSITY（ $I$ ）
Observations of the South West Party，189\％．


## 297．KŌYAIMA．

## Common School（高川村小學校）

DECLINATION（ $\delta$ ）
Observations of the South West Party， 1896 ．


IIP（ $\theta$ ）
Ubservations of the South West Party， 1896.


HORIZONTAL INTENSITY（II）
Ollservations of the South West Party， 1896.


Play Ground oî High Common School（尋常中學校高等小學校運動場）
DECLINATION（ $\delta$ ）
Observations of the South West Party， 1890.


1IP（ $\theta$ ）
Observations of the South W＂est I＇arty， 1896.


HURIZONTAL INTENSI＇TY（IL）
Olservations of the South West Party，18：16．

| Date and Hour （Mean Local Time．） | II | II | Mean <br> Temp． | Time of 1－Vikn． | $\left.\begin{gathered} \operatorname{Tem}_{\mathrm{t}_{v}} \mathrm{p} \end{gathered} \right\rvert\,$ | Mean De $\varphi_{1}$ | Hections． $\varphi_{2}$ | $\underset{t_{\mathrm{b}}}{\mathrm{Tem}_{1}}$ | Observer | Recorter |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| July $17^{\text {th }}!^{\text {d }} 21^{\mathrm{m}}$ | 0.31859 | 420.69 | 32.9 C | $\stackrel{5}{5} .7371$ | 31．9C | $540{ }^{\prime} 333^{\prime} 1$ | $12^{\prime} 55^{\prime} 38!1$ | 34.0 C | Hattori Imamura | Imamura Hatturi |
| ＂．． 1411 | 0.31911 | 42.01 | 33．0 | 5.7261 | 33.0 | 54130.6 | 125758.8 | 33.0 | Sinzyo Hattori | $\ddot{\sin z y o ̄}$ |
| ，．$\quad$ ，1ti 14 | 0.31857 | 42.34 | 30.2 | 5.7245 | 30.4 | 5 ＋2（6．9 | 125919.4 | 30.1 | Imamura Sinzyō | Imamura |
| Mean | 0.31887 |  |  |  |  |  |  |  |  |  |
| Heduction to $1895.0=-3963$ ＂．$\quad$ ，sea level $=\quad 009$ |  |  |  |  |  |  |  |  |  |  |

299．ITIKI．
Sea Shore in murayakuba（村役場弿海演）
DECLINATION（ $\delta$ ）
Olservadions of the South West Party， 1896.

| Date ancl Hour |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| （Mean Local Time．） |

DIP ${ }^{(\theta)}$
Observations of the Sonth West Party， 1896.


HORIZONTAL INTENSITY（II）
Observations of the Sonth West Party， $18 \%$ fi．


## 300．MAKURAZAKI．

Common School（忧峆小學校運動場）
DECLINATION（ $\delta$ ）
Observations of the Sonth West Party， 1896.

| Date and Hour <br> （Mean Local Time．） |  |  |  |  | $\delta$ |  | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| July | $20^{\text {th }}$ | $18^{17}$ | 17 m | ： | ．11＇ | $57^{\prime \prime}$ | Imamura | Hattori |
| ，＂ | ， | 18 | 52 | ， | 41 | 45 | Sinzyō | Sinzyo |
| ＂ | ＂ | 20 | 2 | ， | 13 | 54 | Imamura | Imamura |
| ＂ | ＂ | 22 | $\stackrel{2}{2}$ | ＂ | 13 | 38 | Hattori | Hattori |
| ＂ | $\ddot{ }$ | 23 | \％ | ＂ | 13 | 32 | ， | Imamurat |
| ＂ | $21^{\text {st }}$ | 1 | 13 | ，． | 12 | 32 | ．． | Hattori |
| ＂ | ＂ | 3 | 10 | ＂ | 12 | 110 | ， | ＂ |
| ＂ | － | 5 | 25 | ＂ | 41 | 20 | ．＂ |  |
| ， | － | 7 | 7 | ， | 40 | 7 | Ninzyo | Sinzyo |
| ， | ． | $\stackrel{8}{8}$ | 18 | ， | 11 | 38 | ，＂ |  |
| ， | ， | $\stackrel{9}{4}$ | 12 | ．． | $t 1$ | 47 | ， | Hattori |
| ＂ | ， | 10 | 12 | ＂ | 4.3 | 48 | ，＂ |  |
| ＂ | ， | 11 | 44 | ， | 13 | 54 | ＊ | Sinzyō |
| ＂ | ＂ | 12 | 25 | ＂ | 43 | 29 | Hattori | ＂ |
| ＂ |  | 14 | 0 | ， | 42 | 57 | ．， | ＂ |
| Mean |  |  |  | $3{ }^{\prime} 42^{\prime} \quad 23^{\prime \prime}$ |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |

DIP（ $\theta$ ）
Observations of the south West Party，1896．


HORIZONTAL INTENSITY（Il）
Observations of the South West Party， 1896 ．


## 301．KASEDA．

## Common School（加世田小學椶運動場）

DIP $\quad(\theta)$
Onservations of the South West Party，1s：g．


## HORIZONTAL INTENSITY（IL）

（＊＇olue deluced from Vi＇nation mly by assuminy V＇alue of M．）
Observations of the routh West Party， 1 s．$\%$ ．

(328)
302. YOKOGAWA.

DECJINATION ( $\delta$ )
Ouservations of the South West Party, 1890 .


DIP ( $\theta$ )
Observations of the South West Party, 1896.

| Date and Hour (Mean Local Time.) |  |  |  | Neenle No. |  |  | Observer | Recorter |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $24^{\text {th }}$ | $21^{\text {h }}$ | ${ }^{19}$ | 1 | $45^{\circ}$ | 1:5 | Sinzyō | Sivzyō |
|  | $25^{\text {th }}$ | 8 | 32 | 1 |  | 6.2 | Mattori | Hattori |
|  |  | 11 | 12 | 1 | " | 3.9 | Imamura | Imamura |
| Nean |  |  |  |  | $45^{\circ}$ | $5!5$ |  |  |
|  |  |  |  | Reduction to |  | $\theta=45^{\circ}$ | $5 .$. |  |
|  |  |  |  | $\begin{array}{r} 1895.0= \\ \text { ses level }= \end{array}$ |  | 3.59 |  |
|  |  |  |  | -0.0.4 |  |

HORIZONTAL INTENSIT (ll)
Observations of the south West Party, 18:\%.

| Date and Hour (Mean Local Time.) | II | M | Mean <br> Temp. | 'ilime of 1-Vibn. | $\begin{gathered} \text { Temp. } \\ t_{V} \end{gathered} .$ | Mean 1 <br> $\varphi_{1}$ | Deflections <br> 42 | $\begin{gathered} \text { Temp } \\ t_{\mathrm{p}} \end{gathered}$ | Onserver | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| July $24^{\text {th }} 10^{\text {h }} 6^{\text {m m }}$ | 0,31749 | 423.87 | 25.1 C | 5.7287 | 25:6C | $5^{\circ} 44^{\prime} 50 \% 0$ | $13^{\circ} 5^{\prime} 21!3$ | $25: 2 \mathrm{C}$ | Sinzyō <br> Imamura | Imamura Sinzyū |
| , $255^{\text {th }} 735$ | 0.31752 | 423.91 | 26.6 | 5.7233 | 25.1 | 5445.0 | 13 326.2 | 28.1 | Sinzy | Imämura |
| , " 1238 | 0.31788 | 419.71 | 36.9 | 5.7512 | 36.2 | 54030.0 | 125526.2 | 37.7 | ITattori <br> Imamura | Hättori |
| Mean | 0.31763 |  |  |  |  |  |  |  |  |  |



## 303．HITOYOSI．

Nakagawara（人吉中河原兩橋上流）
DECLINATION（ $\delta$ ）
Obserrations of the South West Party， 1896.


DIP（ $\theta$ ）
Observations of the Sonth West Party， 1896.


HORIZONTAL INTENSITY（II）
Olservations of the South West Party，1s？c．

| Date and Hour （Mean Local Time．） | 11 | II | $\left\lvert\, \begin{gathered} \text { Mean } \\ \text { Temp. } \end{gathered}\right.$ | Time of 1－Vibn． | $\left\lvert\, \begin{gathered} \operatorname{Templ}_{\mathrm{p}} . \\ \mathrm{t}_{\mathrm{v}} \end{gathered}\right.$ | Mean D $\varphi_{1}$ | flections $\varphi_{2}$ | $\begin{gathered} \text { Temp }_{1} \\ t_{b} \end{gathered}$ | Onserver | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| July $26^{\text {th }} 19^{\mathrm{h}} 15^{\mathrm{m}}$ | 0.31739 | 422.75 | 27：0C | 5．73×1． | 27．5C | $5{ }^{\prime} 44^{\prime} 17!5$ | $13^{\circ} 4^{\prime} 25!0$ | 26.5 C | Imamura Sinzyô | Sinzyō Imamura |
| ， $27^{\text {th }} \quad 6 \quad 13$ | 0.31760 | 423.80 | 23.7 | $5.726!$ | 23.2 | 54441.3 | 13526.3 | 24.2 | Ha＇ttori | Hattori Sinzyō |
| ＂„， 1329 | 0.31717 | 418.73 | 37.1 | 5.7657 | 36.7 | 54035.0 | 125535.0 | 37.4 | Sinzyō | Hätori |
| Mean | 0.31739 |  |  |  |  |  |  |  |  |  |
| $11=0.31739$ |  |  |  |  |  |  |  |  |  |  |
|  |  |  | Reduction to |  | $\begin{array}{r} 1895.0= \\ \text { sea level= } \end{array}$ |  | $\begin{array}{r} -3988 \\ \quad 146 \\ \hline \end{array}$ |  |  |  |
|  |  |  |  |  |  | $11=0.3$ |  |  |  |  |

## 304. YUNOIMAE.

DECLINATION ( $\delta$ )
Observations of the South West Party, 1896.


DIP ( $\theta$ )
Observations of the Sonth West Party, 1896.


HORIZONTAL INTENSITY (II)
Observations of the South West Party, 1896.


305．YATUSIRO．
Common School（小 學 校）
DECLINATION（ $\delta$ ）
Observations of the South West Party， 1896.


Observations of the South West Party， 1896.


306. MINAIMATA.

UEULINATION ( $\delta$ )
Observations of the South Whast Purty, 1836.

| $\begin{array}{r} \mathrm{Da} \\ \text { (Mea } \end{array}$ | and <br> Loc | $\begin{gathered} \text { Hou } \\ \text { Tir } \end{gathered}$ |  |  | $\delta$ |  | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Aug. | $1^{\text {st }}$ | ! ${ }^{\text {h }}$ | $18^{\mathrm{m}}$ | $3^{\circ}$ | $52^{\prime}$ | $56^{\prime \prime}$ | Imamura | Sinzyō |
| " | " | 10 | 19 | , | 54 | 56 | " | ふiny |
| " |  |  | 9 | ", | 56 | 12 | " | , |
| ", |  |  | 17 | " | 59 | 47 |  |  |
| " | ", |  | 11 | " | 59 | 56 | Sinzyo | Imamura |
| ", | ", | 14 | 6 | 4 | 0 | 14 | Hattori | Sinzyo. |
| ", | " | 15 | 4 | ; | 59 | 59 | Sinzyō | Hattori |
| " | $"$ | 16 | 24 | " | 57 | 18 | Imamura | " |
| , | , | 17 | 30 | " | 57 | 8 | Sinzyō | Sinzyo |
| ", | " | 18 | 21 | " | 56 | 49 | Imamura | Hattori |
| " | " |  | 32 | " | 56 | 17 |  | " |
| ", | ", | 20 | 38 | " | 56 | 23 | Hattori | , |
| " | " | 22 | 19 | , | 57 | 38 | " | " |
| , | , | 22 | 55 | , | 57 | 24 | , | " |
| " |  | 1 | 7 | , | 56 | 53 | , | " |
| " | " | 3 | 47 | " | 55 | ! | " | " |
| " | " | 4 | 59 | " | 55 | 8 | , | " |
| , | " | 5 | 17 | " | 51 | 33 | " | " |
| " | " | 5 | 54 | " | 54 | 21 | $\operatorname{Sinzyo}$ | Imamina |
| Mean |  |  |  | $3^{\circ}$ | $56^{\prime}$ | $24^{\prime \prime}$ |  |  |
|  |  |  |  | $\delta=3^{\circ} \quad 50!40$ |  |  |  |  |
|  |  |  |  | Teduction to |  |  | 1.87 |  |
|  |  |  |  | ,, |  | sea | 0.00 |  |
|  |  |  |  | $\delta=3^{\circ}$ |  |  | $3^{\circ} 58!3$ |  |

DIP ( $\theta$ )
Observations of the South West Party, 1896.


HORIZONTAL INTENSITY (II)
Oluservations of the houth West Party, 1896.

| Date and Hour (Mean Local Time.) | 11 | M | $\begin{array}{\|c} \text { Mean } \\ \text { Temp. } \end{array}$ | Time of1-Vibor. | $\begin{gathered} \text { Temp. } \\ t_{v} \end{gathered}$ | Mean Deflections |  | Temp | Observer | Recorder | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|  |  |  |  |  |  | $\varphi_{1}$ | $\psi_{2}$ |  |  |  |
| $\begin{array}{cccc} \text { Aug. } & 1^{\text {st }} & 10^{h} & 54^{\mathrm{m}} \\ , . & , & 13 & 45 \\ , & , & 19 & 8 \end{array}$ | 0.3209 .4 | 420.93 | $30: 8 \mathrm{C}$ | ${ }^{\text {5 }}$ 5.7161 | 30.4 C | 5:38'37!5 | $21^{\circ} 51 / 21^{\prime \prime 2}$ | 31.3C | $\int_{\text {Imamura }}^{\text {Sinzyō }}$ | Sinzyō Imamura |
|  | 0.32141 | 420.09 | 35.0 | 5.7203 | 35.4 | 53745.0 | 124910.0 | 34.6 | Hätori | Hattori Sinzyō |
|  | 0.32077 | 421.72 | 27.8 | 5.7139 | 28.0 | 53933.8 | 125318.8 | 27.7 | Imämura | $\underset{\text { Hattori }}{\text { Imamura }}$ |
| Mean | 0.32104 |  |  |  |  |  |  |  |  |  |
| $I I$ $=$ 0.32104  <br> Reduction to 1895.0 $=$ -4147 <br> ,$\#$ sea lerel $=$ 000 |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

## Old Castle（息 原 晋 城）

DECLINATION（ $\delta$ ）
Observations of the South West Party， 1896.


| Date aud Hour （Mean Local＇Time．） |  |  | Needle No． |  |  | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ang． | 3 rd $6^{\mathrm{h}}$ <br>  9 <br> $"$ 14 | $233^{\mathrm{m}}$ 21 16 | 1 1 1 |  | $\begin{aligned} & 51!1 \\ & 50.8 \\ & 49.6 \end{aligned}$ | Sinzyō <br> Hattori Imamura | Sinzyō <br> Imamura Hattori |
| Mean |  |  |  |  | 505 |  |  |
|  |  |  |  |  |  |  |  |

HORIZONTAL INTENSITY（II）
Observations of the South West Party，1s：K．


## 308．NAGASAKI．

## Sakura no Baba（櫻 ノ 馬 場） <br> DECLINATION（ $\delta$ ）

Observations of the South West Party， 1896.


DIP（ $\theta$ ）
Observations of the South West Party， 1896.


HOLIZONTAL INTENSITY（II）
Observations of the South West Party， 1896.


DECLINATION ( $\delta$ )
Observations of the Sonth West Party, 1896.


Observations of the Sonth West Party, 1890.


MORIZONTAL INTENSITY ( $I$ )
Olservations of the South West Party, 1896.

（336）
310．MATIYAMAGUTI．
Conmon School（尋 常 小學校）
DECLTNATION（ $\delta$ ）
Observations of the South West Party， 1896.


DIP（ $\theta$ ）
Observations of the South West Party， 1896.


HORIZONTAL NNTENSITY（II）
Observations of the wonth West Party， 1896.


## 311．KUMAMOTO．

Fifth High School（第五高等學校）
DECLINA＇IION（ $\delta$ ）
Olservations of the Sonth West Party， 1896.

| Date and Hour （Mean Local Time．） |  |  |  |  | $\delta$ |  | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ang． | $10^{\text {th }}$ | $17^{17}$ | $44^{\mathrm{m}}$ | 1 | $7^{\prime}$ | $34^{\prime \prime}$ | Imamura | Sinzyou |
| ，， | ．， | 18 | 18 | ，． | 7 | 50 | Sinzyō | Hattori |
| ， | ， | 19 | 24 | ， | $\stackrel{\text { S }}{ }$ | 2.7 | ， | ， |
| ， | －， | 22 | 52 | ．， | 7 | 41 | Imamura | Imamina |
| ，． | ， | 23 | $2!$ | － | 7 | 1！） | ＂ | ，＇ |
| ，． | $11^{+11}$ | 1 | 53 | ， | 7 | 4 | ， | ．． |
| ＂， | ， | 4 | 54 | ＂ | 5 | is | ＂ | ＂ |
| ， | ．， |  | 2 | ，， | 1 | 5 S | ＇，＇＂ | c＇， |
| ＂， |  | 7 | 12 | ＇， | 2 | 54 | Sin750 | Sinzyo |
| ， | ＂ | 7 | 37 | － | ： | 4.5 | ， |  |
| ．． |  | 7 | 58 | ， | ： | 47 | ＂， | Hattori |
| －• |  | ！ | 13 | ，． | 1 | $\therefore 9$ | ， | Ninzyō |
| ， | ．． | 111 | 24 | ， | 7 | 17 | ， | ，${ }^{\text {a }}$ |
| ．． | ， | 11 | 2！） | ＂ | ！ | ： | ＂ | Imamura |
| ， |  | 12 | 23 | ＂ | 11 | 12 | ， | Hattori |
| ，． | ．， | 13 | 16 | ，． | 12 | 42 | Tmamnra | Sinzyō |
| ， | ， | $1 \pm$ | 111 | ， | 11 | 57 | Sinzy 0 | Imamurit |
| ＂ |  | 15 | 15 | ， | 110 | 17 | Hattori | Hattori |
| ＂， | ．， | 16 | 32 |  | 7 | 38 | Sinzy ${ }^{\text {a }}$ | Sinzyō |
| Mean |  |  |  | 4 | $7{ }^{\prime}$ | $39^{\prime \prime}$ |  |  |
|  |  |  |  | Perluction to sea |  |  | 7！${ }^{\text {a }}$ |  |
|  |  |  |  | 1.12 |  |
|  |  |  |  | 19.1010 |  |
|  |  |  |  | （9） 1 |  |

DIP $(\theta)$
Olservations of the South West Pirty， 1896.


HORIZONTAL INTENSITY（II）
Ulservations of the South West Party，189\％．


## 312．MIYADI． <br> High Common School（阿蘇中部高等小學椶運動塲） <br> DECLINATION（ $\delta$ ）

Observations of the South West Party， 1896.

| $\begin{aligned} & \text { Dat } \\ & \text { (Mea } \end{aligned}$ | $\begin{aligned} & \text { and } \\ & \text { Loca } \end{aligned}$ | $\begin{array}{r} \text { Hou } \\ \text { al Tit } \end{array}$ |  |  | $\delta$ |  | Observer | Recorder | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|
| Aug． | $13+1$ | 7 h | $58^{m}$ | $3{ }^{3}$ | $44^{\prime}$ | $51^{\prime \prime}$ | Imamura | Sinzyō |
| ＂ | ＂ | 8 | 28 | ＂ | 45 | 40 | Sinzyô | Ifattori |
| ＂ | ＂ | 9 | 46 | ＂， | 48 | 25 | Hattori | Sinzyō |
| ＂， | ＂， | 10 | 52 | ＂ | 53 | 37 | Imamura | ， |
| ，＂ | ，， | 11 | 1 | ＂， | 53 | 47 | ＂ | ， |
| ＂ | ＂ | 11 | 52 | ＇． | 54 | 31 | Hentori | ＂ |
| ＂ | ． | 13 | 15 | ，． | 5 | 19 | Hattori | In ${ }^{\text {a }}$ |
| ． | ．． | 14 | 18 | ， | 51 | 59 |  | Inamura |
| ＂ | ＂ | 15 | 18 | ＂ | 53 | 55 | Sinzyo | ＂ |
| ．． | ， | 115 | 22 | ， | 52 | 29 | ¢ ${ }^{\text {arurar }}$ |  |
| ＂ | ．． | 17 | 22 | ． | 51 | $5{ }^{5}$ | 1 mamura | Sinzyô Imamura |
| ， | ＂ | 18 | 17 | ＂ | 51 | 24 | ＂ | Imamura |
| ＂ | ， | 18 20 | 46 54 | ＂ | 51 50 | 16 | Sinzyo | sinzyō |
| ＂ | ＂ | 20 | 54 37 | ＂． | 50 | 41 | － |  |
| ＂， | $1{ }^{\prime \prime}{ }^{\text {th }}$ | 4 | 28 | ＂ | 49 | 11 | ＂ | ＂ |
| ＂ | ＂ | 5 | 52 | ＂ | 48 | 20 | ＂ | ＂ |
| ，， | ， | 6 | 29 | ＂ | 45 | 59 | ＂ | ＂ |
| ， | ＂ | 6 | 55 | ＂ | 45 | 52 | ＂ | ＂ |
| ＂ |  | 7 | 29 | ＂ | 45 | 17 | ＂ | ＂ |
| Mean |  |  |  | 3 | $50^{\prime}$ | $41^{\prime \prime}$ |  |  |
|  |  |  |  | Reduction to |  |  | $\begin{array}{rrr} \delta & =3^{\circ} & 50!68 \\ 1895.0 & = & 1.10 \\ \text { sea level } & = & -0.03 \end{array}$ |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |  | $\bigcirc \delta=3^{\circ} \quad 51: 8$ |  |  |  |  |

DIP（ $\theta$ ）
Observations of the South West Party， 1896.


Observations of the South West Party， 1896.


DECLINATION（ $\delta$ ）
Observations of the South West Party，1896．


Observations of the Sonth West Party， 1896.


| Date and Hour （Mean Local Time．） | $1 i$ | M | $\begin{aligned} & \text { Mean } \\ & \text { Temp. } \end{aligned}$ | Time of 1－Vibn． | Temp. | Mean Deflections |  | $\begin{gathered} \operatorname{Tem}_{1} \\ \mathrm{t}_{\mathrm{D}} \end{gathered}$ | Observer | Iitcorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | is | $4 \cdot$ |  |  |  |
| Ang．15th Sh $^{\text {am }}$ | 0.31513 | 421.16 | 27．5C | 5，7666 | 27.0 C | $545^{\prime} 245$ | $13^{\circ} 5^{\prime} 55^{\prime \prime} 8$ | 28.00 | Imamuxa Hattori | $\left\{\begin{array}{c}\text { Hattori } \\ \text { Inamura }\end{array}\right.$ |
| ＂，， 13 46 | 0.31480 | 410.11 | 31.0 | 5.7871 | 31.7 | 5440.0 | $13 \quad 331.3$ | 30.3 | Sinzyō | $\left\{\begin{array}{l}\text { Rinzyō } \\ \text { Hattori }\end{array}\right.$ |
| ＂＂， 1351 | 0.31487 | 419.30 | 30.4 | $5.787 t$ | 31.7 | 54420.0 | 13 ：18．8 | 29.0 | Mattori | \｛ Sinzyō |
| ＂＂$\quad 17$ 8 | 0.31521 | 420.79 | 27.3 | 5.7706 |  | 5451.3 | 13.610 .0 | 27.1 | Sinzyō Inamura | $\left\{\begin{array}{c} \text { Inamura } \\ \text { Sinzyó } \end{array}\right.$ |
| Mean | 0.31500 |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  | $11=$ | 1500 |  |  |  |
|  |  |  |  | duction t |  | $595.0=$ | －3959 |  |  |  |
|  |  |  |  |  | ，ser | level $=$ | Gifi |  |  |  |

Observations of the South West Party， 1890.


1）IP $(\theta)$
Observations of the South West larty， 1896.


HORIZONTAL 1NTENSITY（H）
Observations of the South West l＇arty， $18: 0$.


## 315．HUKUOKA．

Play Ground，Syūyūkwan（修解馆運動㘯）
DECLINATIUN（ $\delta$
Olservations of the South West l＇arty， 1896.

| ${ }_{\substack{\text { Da } \\ \text { Mea }}}$ | and | $\begin{gathered} \text { Hon } \\ \text { Tin } \end{gathered}$ |  |  | $\delta$ |  | Observer | Tecorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Aug． | $19^{\text {th }}$ | $7^{11}$ | $53^{m}$ | 1 | $19^{\prime}$ | $56^{\prime \prime}$ | Jrammara | Hattori |
| ，＂ |  | 8 | 35 | ，， | 20 | 35 | Sinzyō | ， |
| ＂， | ，＂ | 9 | 27 | ＂， | 22 | 21 | Imamura | Sinzyo |
| ＂ | ，． | 10 | 28 | ，＂ | 25 | 12） |  | Hattori |
| ： | ＂ | 11 | 30 | ＂， | 26 | 53 | Mattori | Sinzyō |
| ，＂ | ＂， | 12 | 25 | ，． | 27 | 25 | Sinzyō | Hattori |
| ＂ | ＂ | 13 | 35 | ， | 26 | 16 | Hattori | Sinzyo |
| ＂ | ， | 14 | 38 | ，＂ | 24 | 31 | ＂ | Hattori |
| ＂ | ， | 15 | 46 | ，， | 21 | 42 | ， | ＂ |
| ＂ | ：， | 16 | 41 | ， | 21 | 21 |  | ＂ |
| ＂ | ＂ | 17 | 4.2 | ， | 21 | 15 | Sinzyó | Hattor ${ }^{\text {i }}$ |
| ＂， | ，， | 18 | 26 | ，， | 21 | 43 | Imamura | Sinzyō |
| ＂ | ＂， | 20 | 12 | ，＂ | 22 | 52 | Sinzyö | ＂ |
| ＂ | ，， | 20 | 47 | ， | 23 | 3 | ， | ， |
| ， | － | 23 | 4 | ， | 22 | S | ．， | ， |
| ＂ | $\because$ | 23 | 56 | ， | 22 | 16 | ＂ | ＂ |
| ．． | $20^{\text {th }}$ | 4 | 40 | ， | 21 | $\stackrel{2}{2}$ |  |  |
| ＂ | ＂ | 5 | 12 | ＂， | 19 | 27 | 1 Fattori | Mattori |
| ＂ | ．， | $1 ;$ | 8 | ， | 19 | 13 | ＂ | ＂ |
| ＂ | ＂ | 7 | 52 | ＂ | 20 | 1 | ， | ＂ |
| Mean |  |  |  | $4^{\circ}$ | $22^{\prime}$ | $32^{\prime \prime}$ |  |  |
|  |  |  |  | ，$\delta=4^{\circ} \quad 22!53$ |  |  |  |  |
|  |  |  |  | Rerunction to |  | $1895.0=$ | 1.00 |  |
|  |  |  |  | －， |  | sen level $=$ | 0.00 |  |
|  |  |  |  |  | $23!5$ |  |

DIP（ $\theta$ ）
Olservations of the South West Party， 1896.

| Date and Hour （Mean Local Time．） |  |  |  | Needle No． |  | ， | Observer | Recorder | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Ang． | $1 y^{\text {l／}}$ | $6^{1 /}$ | $48^{11}$ | 1 |  |  | Sinzyō | Imamura |
| ＂ | ＂ | 13 | 55 | 1 |  |  | Imamura | Hattori |
|  |  |  | 13 | 1 |  | 55.5 | ：1Iattori | Sinzyō |
| Mean |  |  |  |  | $47^{\circ}$ | 55：5 |  |  |
|  |  |  |  | $\begin{aligned} \theta & =17^{\circ} \\ \text { Teeduction to } 1895.0 & = \\ , \quad \text { sea level } & = \end{aligned}$ |  |  |  |  |
|  |  |  |  | $\begin{aligned} \theta & =17^{\circ} & & 55!5 \\ 1895.0 & = & & 5.54 \\ \text { sea level } & = & & 0 .(0) \end{aligned}$ |  |
|  |  |  |  |  |
|  |  |  |  | ．，$\quad . \quad$ sea level $=10.0{ }^{\text {a }}$ |  |
|  |  |  |  | （＊Vetue deduced from Vibration only by assuming Vulue of M．） Observations of the Soutl West Party， 1596. |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |

Observations of the South West Party， 1596.


Hukuoka Syuttyo（福 阔 出 張）
Observations of the South West Party， 1896.
Station，1887．（干八百八十七尔ノ觀測點）

| Date and Hour （Mean Local Time．） |  |  |  | Needle No． |  | ， | Observer | liecurder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ang. | $19 \mathrm{th}^{2}$ |  | $2^{5^{\mathrm{m}}}$ | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ |  | $\begin{aligned} & 56.0 \\ & 57.3 \end{aligned}$ | Imamura Sinzyō | Sinzyō <br> Imamura |
| Mean |  |  |  |  |  | $56!7$ |  |  |


| Date and Hour （Mean Local Time．） | II | M | Mean Temp． | Time of 1－Vib？． | $\begin{gathered} \text { Temp. } \\ t_{v} \end{gathered}$ | Mean Deflections |  | Temp． $t_{D}$ | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\varphi_{1}$ | $\psi_{2}$ |  |  |  |
| Aug． $19^{\text {th }} 14^{\text {h }} \quad 56^{\mathrm{mm}}$ | 0.31265 | 420.20 | 29.7 C | 5.7980 | 29.7 C | － | － | － | Imamura | Siuzjō |
| ，．，＂ $15 \quad 6$ | 0.31290 | 419.47 | 31.3 | 5.8010 | 31.3 | － | － | － | s．＂ | ，＂ |
| ＂＂$\quad 1515$ | 0.31279 | 419.00 | 33.1 | 5.8052 | 33.1 | － | － | － | Sinzyō | Imamura |
| Mean | 0.31278 |  |  |  |  |  |  |  |  |  |

## 316．KOKURA．

Play Ground of High Common School（高等小學校運動場）

## DECLINATION（ $\delta$

Observations of the South West Party， 1896.


DIP（ $\theta)$
Observations of the Sonth West Party， 1893.


HORIZONTAL INTENSITY（II）
Observations of the South West Party， 1896.


## 317．NAKATU．

Nakatu Park（中 津 公 園）
DECTINATION（ $\delta$ ）
Observations of the South West Party，1896．


DIP（ $\theta$ ）
Observations of the Sonth West Party， 1896.


HORIZONTAL INTENSITY（ $H$ ）
Observations of the Sorth West Party， 1896.


## 318．NAKAMATAMA．

Hamanisi（中呉玉村字溶西原野）
DECLINATION（ $\delta$ ）
Observations of the South West Party，18\％f．


DIP．（ $\theta$ ）
Observations of the South West Party， 1896.


HOHIZONTAL IN＇PENSITY（H）
Observations of the South West Party， 1896


319．KUMA．
Bank of the Tikugogawa（日田隈町筑後河々原）
DECLINATION（ $\delta$ ）
Ulservatios of the fouth West Party， 1896.


DIP（ $\theta$ ）
Ubservations of the south West Farty， 1896.


HORIZONTAL INTENSITY（A）
Observations of the South West Party， 1896.


## 320．KARATU．

Site of Daisyōin（唐津西ノ演萑大㠫院跡）
DECLINATION（ $\delta$ ）
Observations of the South West Party， 1896.


DIP ( $\theta$ )
Observations of the South West Party, 1896.


HORIZONTAL INTENSITY. ( $H$ )
Olservations of the South West Party, 1896.

| Date and Hour (Mean Local Time.) | H | M | Mean Temp. | Time of 1-Vibn. | $\begin{gathered} \text { Temp. } \\ t_{v} \end{gathered}$ | Mean Deflections |  | Temp. | Observer | Recorder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\varphi_{1}$ | 42 |  |  |  |
| $\left\|\begin{array}{cccc} \text { Aug. } & 29^{\text {th }} & 20^{h} & 3^{\mathrm{mm}} \\ " & 30^{\text {th }} & 7 & 28 \\ " & , & 14 & 31 \end{array}\right\|$ | 0.31299 | 420.49 | 26:3C | $5.7941$ | 25:8C | $5 \cdot 47{ }^{\prime} 8!7$ | $13^{\circ} 10^{\prime} 46{ }^{\prime \prime} 3$ | 25.9 C | $\left\{\begin{array}{l}\text { Hattori } \\ \text { Sinzy } \\ \text { a }\end{array}\right.$ | $\underset{\text { Sinzyō }}{\text { Hattori }}$ |
|  | 0.31363 | 421.43 | 27.2 | 5.7785 | 26.6 | 54645.0 | 13948.8 | 27.8 | $\left\{\begin{array}{l}\text { Hattori } \\ \text { Siozyō }\end{array}\right.$ | Sinzyō |
|  | 0.31316 | 419.54 | 28.8 | 5.7976 | 29.6 | 54616.3 | 13920.0 | 27.9 | Hättori | Sinzzō |
| Mean | 0.31336 |  |  |  |  |  |  |  |  |  |
| $H$ $=$ 0.31336 <br> Reduction to 1895.0 $=$ -4625 <br> ,$\quad$ sea level $=$ 000 <br> $M$ $=$ 0.31290 |  |  |  |  |  |  |  |  |  |  |

Jour. Sc. Coll. Vol. XIV. PI. I.
Observations of 1893 (East Party)


Observations of 1893 (East Parte)


Observations of 1893 (East Party)


Observations of 1893 (East Party)



Observations of 1893 (East Party)


Jour Sc Coll. Vol. XIV, PI. VI.
Observations of 1893 (East Party)


Jour. Sc.Coll. Vol. XIV. PI. VII.
Observations of 1893 (East Party)


Observations of 1893 (East Party)


Jour. Sc. Coll. Vol. XIV. PI. IX.
Obsorvations of 1893(West Party)


Obsatrations of 1893 (West Party)

.

Jour. Sc. Coll. Vol. XIV. PI. XI.
Observations of 1893 (West Partr)
 Observations of 189.3 (Hest Party)


Observations of 1893 (West Party)


Obsorvations of 1893 (West Party)


Observations of 1893 (West l'arty)


Observations of 1893 (West Party)


Observalions of 1894 (North Party)


Observations of 1894 (North Party)


Ohservations of 1894 (North Parts)


Jour. Sc.Coll. Vol. XIV. PI. XX.
Observations of 1894(North Party)


Jour. Sc.Coll. Vol. XIV. PI. XXI.
Observations of 1894 (Torth Party)


Observations of 1894 (North Party)


Jour. Sc.Coll. Vol. XIV. PI. XXII.
Observations of 1894 (South Purte)




Jour. Sc.Coll. Vol. XIV. PI. XXV.
Observations of 1894 (South Party)


Obse Observalions of 1894 (South Party)


Ohservations of 1894 (South Party)


Observations of 1894 (South Paxty)


Jour. Sc. Coll. Vol. XIV. PI. XXIX.
Observations of 1895 (North Patrer)


Jour. Sc.Coll. Vol. XIV. PI, XXX.
Observations of 1895 (North Party)


Jour. Sc. Coll. Vol. XIV. PI. XXXI.
Obsorvations of 1895 (North Parṭ)


Jour. Sc.Coll Vol. XIV. PI. XXXII.
()hservations of 18.95 ( Worth Parter)


Jour. Sc. Coll. Vol. XIV. PI. XXXIII.
Ohservations of 1895 (Vorth Partr)


Jour. Sc. Coll. Vol. XIV. PI. XXXIV.
Observations of 1895 (Vorth Party)


Observations of 1895 (South Party)


Jour. Sc.Col/. Vol. XIV. PI. XXXVI.
Obsequations of 1895 (South Paxty)


Observations of 1895 (South Party)


Obser Observations of 1895 (South Party)



Observations of 1895 (South Party,


Jour Sc.Coll. Vol. XIV. PI. XLI.
Ohsarvations of 1896(hinki Parter)


Jour. Sc. Colf. Vol. XIV PI. XLII.
Ohselvations of m896(hỉnki loarte)

.

Jour. Sc. Coll. Vol. XIV. PI. XLIII.
Observations of 1896 (Hinki Parter)


Jour. Sc Coll. Vol. XIV. PI. XLIV.
Observations of 1896(hinki Party)


O/mservitions of 1896 (hwhin Purter)



Ohserrations of 1896(Seto Sea Porty


Observations of 1896 (Seto Sea Partr)


Jour. Sc.Colf. Vol. XIV PI. XLVIII.
Ohserratious of 1896 (Seto Sea Partr)



Jour. Sc. Coll. Vol. XIV. PI. XLIX.
O7servations of 1896 (Seto Sea Party)


Jour. Sc. Coll. Vol. XIV. PI. L.
Ohsorvations of 1896 (Seto Sea Parter)


Observations of 1896 (Seto Sea Party)


Observations of 1896 (Seto Sea Party)


Ohservations of 1896 (Seto Sea Party)


Observations of 1896 (South West Party)



Jour. Sc. Coll. Vol. XIV. PI. LV.
Observations of 1896 (South West Party)


Jour Sc. Coll. Vol. XIV. PI. LVI.
Obserrations of 1896 (South West Partar)


Observations of 1896(South Hest Raty)


Observations of 1896(South Hest Perty)


Ohservations of 1896 (South West Partr)


Vo. 1. Tōzyō. 1887. 1833, and following years.


No. 4 hähur


Ni. 7 fímoro.
/uly 17-18, tsos


## No. 10 hiululiafio <br> hilly zon, Ans:



No. 2 Ilatic=i July $\overline{5}-7,1893$
tune $25-26,1005$


Main sitrect.
S.L. 5 Tminomali.
. Fulty 14, 1893


No. 8 Mitgota.

- Jul! 18,1893


Nis. 11 Tralue.
fuly za-2\%.1393


To. 3 Sírnfursi.


Dos 6 l'sula.
.huly 15-16, 1 наз


No. 9 Liarचi=awな.
July 18-20, 1893


Vo. 12 Kímishust.
$J_{u 17}: \geq-26$, tans



Vo. 16 Itoigana.
Alug. 2-3, \&. Oct.8-9, 18.93


No. 19 Nagatro.
Auq. 8-10, 1893


No. ン2 Nagaotia.
Aug. 15-18, and Aug.26-27,1893


No. 17 Dimati.


No. 17 Takata.
dug. 4-6, 1893


Fo. 20 fiyama.
Alug. $11-12,1893$


No. 23 Fāsivazaki.
Aug. $18-21,1693$


Fo. 15 hérzumare.
dug. 1-2. 189.3


No. 18 Sekiyama.


To. 21 Tōiamati.
Aug. 13-15,1893


Vo. 34 Terudomarz. Aug. 22, 1893


Jour. Sc. Col!. Vol. XIII. PI. LXII.



Wo. 31 Ogi.
sept. 7-9, 1893


Fo. 34 Asanut.
Sipt. 13, 1893

F. こ'6 Ḱано

Aug. 28, 1693


No. 29 Wrisizuli.
Sspt. 2-3. 1893


No. 32 Ōzasa



No. 33 Hakasare.
Scpt. 12-13, 18:93
Hikinya
$\hat{0}$
]
$\square$

Wo. 36 Takasaki sept. 16-18, 1893

Sug. 29-30. 1893

To 30 Aikana.
sipt. ©-7. 1893


Jour. Sc. Coll. Vol. XIII. PI. LXIII.
Nō. 37 Vumata.
sept. 19-20,1893 June 29-July 1. 1895


To. 10 Atami.
Oct. 2-3, 1893


No. 1.5 Midono
Juhy s-6, and Oct.25-26i, 1893


Fo. 38 Kunnagai.
Sept. 21-22. 1893


To. f1 Simoda.
Oct. 7 - B, 189.3


1o. 39 Oclanara.
Sept. $26-28,1893$


No. AY Mculuzalii. Ocl. 11-12, 18:33


5o. ft Otuc
Oct. 22-23. 1893


Ir. 46 Tósides.
JuTy 7. and elt.24-25, sa93
Fo. 17 /Truagarsi.
Juls 8 -10, and Oct.2:-2:3,1893

Jour. Sc. Coll. Vol. XIII. PI. LXIV.

Wo. 53 Thurayarna.
Suly 15, and Oct. 19-20, 189.3


No. 64 Simizu


No. 67 Köwa.
July 29-30, arnd Sept.27-29, 1893


No. 70 Macgasu.
Aug 3-4, and Sept.17-19.1893


No 62 Ómiya


Na. 65 Vivinoto.
July 26-27, and Oct.13-14,1893


No. 68 Varzmmi
Suly is-duy.1, and Oct.3-3,1895


Wo. 71 Dokhuifi.
Sug. 5, and Sepl.19-20, 1893


Vo. 63 Vinma:"


Vo. 66 Okazaki.
July 2b-29, and Oct.3-4, Oct. 15, 1893


Fo. 6.9 Tagoya.
lug 1-3, and Sept. we,1893
Oct.6-7,1896


Vo. T2 Fruncyruma.
Aug. $6-7$, und ticpt $=0-22.1393$ Sept. 5-6, 1896


Jour. Sc. Coll. Vol. XIII. PI. LXV.
.1\%. 7.3 Tu


Vo. 76 Káatikawa.


No. 79 Vakatugama.
Augt 39, rend Oct.e-9. 1693

15. 8\% Futiusirma
flug 26, 18.93
年

1918 1043


To if Fiencizusir"


No. 77 K'žョasu
Aug. 13-14, and Sept so Oct 2, 1893


No. 80 Tikla
Ang. 22-23, and Uct.4-12, 1893


Fó. 83 Vomugi
Aug. 28. 18.93


No. 7.5 Toba
Alug. n-10, urnd Sopl. 25-26. 1893

Itho-funi
Itiliosi


No. 78 Gihu
Aug. 15-17, and Sept 6=7, 189.3


No. 81 Matuö
fuy. 23-26, 18:93


Fo. B4 Takaturau.
Sug. 30-31, 8393


Jour. Sc. Coll. Vol. XIII. PI. LXVI.

Vo. 85 Geto
Sept. 1-2, 1893


No. B8 Negrahame.
Scpt. 9 - 10, 189.3


末г. 91 О̄ио
Scpt. 14 - 15, 1893


No. $\mathrm{Tf}_{8}$ Nataa.
Scpif. 20-22,1893
(d:a) Desalii

Jour. Sc. Coll. Vol. XIII. PI. LXVII.

No. 97 No: Oct1-3,1803


Vo. 18 Mikkaili. Oct. 5-6. 109:


Jour. Sc. Coll. Vol. XIII. PI. LXVIII.

No. 99 Abuta Tuly $1-2,1895$


Vo. 102 Iwanai
万uty 11-12, 1894


No. 105 Otarv


To. 1088 Fwamizawa
July 23-25, 1899


No. 100 Gsyamanbe
fuly $4-7,1894$


Fo. 103 Föbetu
Tuly 13-14, 1894


No. 106 Otaru Myōkensan


No. 109 Soratipt.
July 25-26, 1895


Vo. 101 Suttu
Juty $s-3$ 189:


No. 10 \& /Huнama
Juhy 15-16, 189:


So. 1117 Sapporo
July 20-22, 1897


No. 110 Tip-tjabusi
Fuly $29-30,1894$


Jour. Sc. Coll. Vol. XIII. PI. LXIX.

No. 111 Asahikana
dug. 1-2, 1839


Fio. 111 Hewike
dug. 20-22, 1894


Fo. 117 Tresio
A119.2.29-30,1894


No. 1:1 Níppe-rmamoi
sepf. 11 -12, 1894


No. 112 Ohotuliank


Fi. 11.5 Sirasitomatr
Alug. 23-25, 189:


No. 119 Oknermmatommenai
Scpt. 5-6, 189:


Tr. 123 Wakłanai
sept. 15-17, 1898


Vo. 113 Porokamuikotan

.5. $1 / 6$ Kiuren
sug. 25-20, 1894


Vo. 120 Nayoropt
Sept. a-9, 1894


No. 12. Singa
Sept. 17-18, 189 4

Sea


Jour. Sc. Coli. Voi. XIII.PI. $\subseteq X X$.


No. 13.5 Sibetu
Oct. 14-15, 189:


Jour. Sc. Coll. Vol. XIII. PI, LXXI.

No. 136 Matiodate
July $2-4,1894$

Syögyö-gatiko Huzoliuti


No. 139 K̄̄tó
July 15-17, 1895


No. AHZ Siviufi.
.July 23-25, 1895


No. 145 Sarupt.
Aug. -5 - 189:


No. 137 . Morri
Julf 6-7, 1894


To. HfO Eisasi.
July 18-20, 1894


No. 1\&3 Tiribetu.
. Fuly $29-30$, 1894


No. 1460 Osyntinai.
Aug. $6-\tau$, 1894


Vo. 133 Setranct
.fuly. 12-13, 1894


Vo. H1/1 Hukiugurma.


No. 1+1. Tomahomai.
. Fuly 31-dieg. 1, 1894


No. 117 Vohetire.
dueg. 12-13, 1894


Jour. Sc. Coll. Vol. XIII. PI. LXXII.

No. $1 \not 18$ Irakama.
Aug. 18-15, 1894


No. 151 Tyйтиi.
Aug. 27-28, 189f


No. 151. Syortesam.
Sept. 7-B, 1894


No. 157 Sïranutia.
Sept. 31-22, 1894


No. 149 Syoya.
Aug. 19-21, 1994


No. 152 Memuro.
fug. 30-31, 1894


No. 155 Asyoro.
Sept. 11-13, 1894


No. 158 Sibelya.
Sept. 24-25, 1894


No. 150 Moyom.
Aug. 24-25, 1894


Vo. 153 Otusai.
Sept. 3-4, 1834


No. 156 Ötu.
Sept 18-19, 1894


No. 159 Atzesurumpuri.
Sept. 26-27, 1994


Jour. Sc. Coll. Vol. XIII. PI. LXXIII.

No. 160 Sïnzyu.
Sept so-Oct.1, 1894


No. 161 Nemzero
Oct 6-7, 189\%


Jour. Sc. Coll. Vol. XIII. PI. LXXIV.

No. 162 Sendai
June 29-30, and Act. 25-28, 1894 Jume 26-28, and Sept.9-10, 1695


No. 165 Mridzusawa
July 4-5, 1895


No. 168 Nakayama
July 9-10, 1895


Vo. 16:3 Kogota
Jume 29-30, 189:


No. 166 Hanamaki
July 6-7, 1895


No. 169 Matinohe
Suly, 11-12, and Sept.6, 1895


## No. 172 Kuzi

July 16-17, 1895


Jour. Sc. Coll. Vol. Xill. PI. LXXV.

No. 176 Riýjako
Tuly 22-23, 1895


Hudiwara-mura


No. 179 Kamaisi
July $28-29,1895$


No. 182 Mausazawa


No. 185 Kakudate
dug. 13-14. 1895


No. 177 Ogreati


No. 180 Kesennuma
July 31 -Aug.1, 1895


No. 183 Sïnoinnai
Ang. 10-11, 1895


No. 187 Ahila
Aug. 14 -16, 1895


To. 178 Tōno
Juhy 25-27, 1805

| Fámo Zinsya <br> Sïrainy -mzura e e $\square$ H |
| :---: |

No. 181 Isinomaki
Aug. 6-7, 1825


No. 18t Yokote
dug. 11-12, 1895


No. 188 Horizyo
Aug. 16-17, 1895


Jour. Sc. Coll. Vol. XIII. PI. LXXVI.


No. 192 Adigasawa.
Aug. 24-25, 1895


No. 195 Tanabu.
Aug. 3世-Scpt. 1, 1895


No 190 Ödute.
Aug. 20-21, 1895


To. 193 Ippongi.
Aug. $26-27,1895$


No. 196 Makado
Sept. 2-3, 1995


No. 191 IVirosaki,
Alug. 22-33, 1895


No. 101. Önca.
Aug. 28-29, 1895


Do. 197 domori.
Sept. 3-6, 1896


Jour. Sc. Coll. Vol. XIII. PI. LXXVII.

No. 198 Hukaya
Tume -8-39, 1895


No. 201 Tyōsz.
July 7, 1895


No. 201. Kisarvatu.
Thely 14-15, 1895

Azuma-zinsya


No. 207 Namie.
fuly 24-25, 1895


No. 199 Saliwa
Tuly 2-3, 1295


No. 202 Ttinomiya.
Juhy 9-10, 1895


No. 205 Jito.


No. 208 Watari.
Tuly 27-28, 1895


Jour. Sc. Coll. Vol. XIII. PI. LXXVIII.


Jour. Sc. Coll. Vol. XIII. PI. LXXIX.


Th. 22: Sukigawr.
fug. 30, 1995


No. 225 Koga.


Do. 223 Nismasuno
Alug. 31-Sept.1, 1895


No. 22\& Thumomiya.
Sept. 1-2, 1895



Jour. Sc. Coll. Vol. XIII. PI. LXXX.


No. 231 Sakai
July 17-18, 1896


No 234 Tottori
July 25-26, 1896


Tottori-Zinzyō-Sihangakiō


No. 230 Obama
July 12-13, 1896


No. 232 Huzno
Juły 20-21, 1896


No. $22 \mathcal{E}$ Sasayama
July 7-8, 1896


No 88 Nagahama
Juby 15-16, 1896


No. 233 Toyootia




No. 236 Tuyamua
Tuly 29-30, 1896


Jour. Sc. Coll. Vol. XIII. PI. LXXXI.

No. 237 Oliayama
Aug. 1-2, 1896


No. 240 Vara
Aug. 6-7, 1896


No. 213 Wakayama
Aug. 11-12, 1896


No. 238 dko
Aug. 3-7, 189ヶ


No. 211 Kamizti
dreg. $8-9,1896$


No. 24f Sumolo
dug. 13-14, 1896


1o. 2t8 Tíusimoto
Aug. 23-29, 1896


No. 239 Ahasi
Aug. $=-5,1896$


No. 242 Myözi
Aug. 10-11, 1896


No. $2 f 6$ Tikatuyu
Aug. 18, 1896


Vo. $2 \neq 9$ drima
Ang. 26-27, 1896.



Jour. Sc. Coll. Vol. XIII. PI. LXXXIII.

Wo. - - fal ltiliti


To. 262 MFizosi
July 26-27, 1896


No. 265 Maturye
dug. 1-3. 1896


Vo. 263 di
July 28-29, 1896


No. 266 Kurosaka
dug. 4-5, 1896


No. 268 Mukzyama
Aug. $8-10$, 1896


No. 270 Takahasi
Aug. $11-12,1896$


No. 271 Tokusima
dug. 14-15, 1896



No. 274 Nawari
dug. 28-25, 1898


Jour. Sc, Coll. Vol. XIII. PI. LXXXIY.
30. 275 Koti

Aug. $26-27,1896$


Vo. 278 Vrakemmera
Sept. 8-4, 1896


Vo. 276 D̄tofi
dug. 28-29, 1896


Vo. 27.9 1'wazinna
sept. 6-8, 1896


No. 277 Susuli


No. $2 B O$ Matamiza


Wo. 282 Sagarosefi
$S_{\text {Cfit. }}$ 12-14, 1896


No. 385 Matuyamue
Sept. 19-21. 1896


No. 383 Fraiki
Scept. 15-17, 1896


No. 286 fiuzue


Jour. Sc. Coil. VoI. XIII. PI. LXXXY.


No. 290 Marugatme
Sept. 29-30,1896


No. 291 Takamatue


No. 293 Zaikoti


Vo. 296 Vakamati
July 12-13, 1896


No. 294. Mfiyazaki
July. $9-10,1896$


No. 297 Fíyanıa
July 15-15. 1896


No. 295 Mizationozyo
Thly. $10-11,189 a$


No 298 Kagosima
July 16-17, 1896

.

Jour. Sc. Coll. Vol. XIII. PI. LXXXXII.

No. 299 Itiki
July 18-19, 189e


To. 302 Yokiogawa
.Tuhy 24-25, 1806


No. 305 Tähustro
Fiely 29-30, 1896


1o. 308 Vagasaki


No. 300 Makurrazaki
fuly. 20-21, 189s


No. 306 Minamata
Alug. 1-2, 1896


No. 301 Ḱaseda
Fuly 22. 1896


No. 30t Fimomae
Fuly 27-28, 1896


Vo. 307 Simabara
Areg. 2-3, 1896


No. 309 Sasebo
Aug. $6-7$, 2896


No. 310 Matiyamageti
Aug. 9-10, 1896


Jour. Sc. Coll. VoI. XIII. PI. LXXXVII.

तo. 311 Fúmamoto
Aug. 10-11, 1896


No. 31t Fänagawa
Alug. 17-18, 1896


Fo. 317 Nakatu

$\sqrt{\frac{\text { Aug. 22-23, 1890 }}{\square}-1 \text { Honsya }}$| Haiden |
| :---: |
| -0 |



Park $\xrightarrow{\longrightarrow}$ $\phi$


No. B12 Miyadi
Aug. 13-16, 1896


No. 315 Thekuoka


No. 318 Nakamatama


No. 313 Mamibara
dug. $15-16,1896$


No. 316 Kokura
Aug. $20-21,1896$


No. 319 Kıma
Aug. 27-28, 1890


4
$+3$
+

## MAP 1.

ISOGONIC LINES (Ô)


MAP 1.

## ISOGONIC LINES (o) FOR 1895.0

Deduced from Observations at $2!1$ Stations by the Method of Least Squares.

## dISTURBANCES OF DECLINATION

Minutes of Are.

Red Figures indicate that the Westerly Declination is Greater than the Calculated Value. Blue Figures
$\delta_{1020}=5^{\circ} 3^{\prime} .146-0^{\circ} .1379\left(\lambda-138^{\circ}\right)^{\prime}+0^{\circ} .2894\left(\varphi-37^{\circ}\right)^{\prime}$
$-0^{\circ} .0001803\left(\bar{\lambda}-138^{\circ}\right)^{2}-0^{\prime}, 0000657\left(\lambda-138^{\gamma}\right)^{\prime}\left(\varphi-37^{*}\right)^{\prime}-0^{\circ} .0000200\left(\bar{\varphi}-37^{\circ}\right)^{2}$
Sccular Variation per Annum
$J \delta=\left\{1 . .^{\prime} 08-0^{\prime} .00027\left(\lambda-138^{\circ}\right)^{\prime}+0^{\prime} .0048(\varphi-37)^{\prime}-0^{\prime} .00000027\left(\lambda-138^{\prime}\right)^{2}\right\}(T-1805,0)$


MAP 2.

ISOCLINIC LINES ( $\theta$ )

## ISOCLINIC LINES

from
Ohaerved Valnes of Dips reduced to 1895, 0


ISOCLINIC LINES 0) FOR 1895.0
Diflacil fiom fol arratrons at ISI Nlathon. by the $M$, 1 if Letast Sipaare

## DISTURBANCES OF DIP

Minutes of $A n$.

 Blue Figures


-

## MAP 3.

LINES OF EQUAL HORIZONTAL INTENSITY (H)

## 

Ubuerved Talues of Horizoutal Lutersities wime th to 1895.0


LINES OF EQUAL HORIZONTAL INTENSITY (H) FOR 1895.0
Deduch from Observitums at ifl Statoms by the Method of Least Squeres

DISTURBANCES OF HORIZONTAL INTENSITY. ror 0.00001 C. C.S.S. Units.

Rid Figures indicute that the Horisontal intrisity is Greater than the Calculated Value. Blize Fuques
$\mathrm{H}_{12050}=29401^{\prime} .39 \quad 1^{\prime} .2494\left(\lambda-188^{\prime}\right)-6^{\prime} .0409\left(\%-37^{\prime}\right)$ $+0^{\prime} .0 n 09712\left(\lambda-138^{\circ}\right)^{2}-0.000365 \mathrm{G}\left(\lambda-138^{\gamma}\right)\left(\varphi-37^{\prime}\right)^{i}-0^{\gamma} .0013032\left(\varphi-37^{\circ}\right)^{2}$

## MAP 4.

LINES OF EQUAL TOTAL INTNESITY (I)

## LINES OF EQUAL TOTAL INTENSITY I FOR 1895.0

and
DISTURBANCES OF TOTAL INTENSITY

Yornomoro C.C.S. Onits.
Hed Figures indu ate that thic Tolul Intensity is Greater than the Catculated Diatue. Bhue Fegures

, Less


-

## MAP 5.

LINES OF EQUAL NORTH COMPONENT (X)


LINES OF EQUAL NORTH COMPONENT (X) FOR 1895.0

## DISTURBANCES OF NORTH COMPONENT

ror 0.00001 C. G. S. Units.

Red Finures induate thet the Niorth Component is Greater than the C'aleulated Value. Blue Figures


## MAP 6.

LINES OF EQUAL WEST COMPONENT (Y)

LINES OF EQUAL WEST COMPONENT Y FOR 1895.0

## DISTURBANCES OF WEST COMPONENT

, O.UHUO1 C. G. S. Thits.


Llu, Fumes
" .. Less

## MAP 7.

LINES OF EQUAL VERTICAL COMPONENT (Z)

## MAP 7

LINES OF EQUAL VERTICAL COMPONENT Z) FOR 1895.0
dISTURBANCES OF VERTICAL COMPONENT

rour 0.10001 C G. S. Units

Inel Fiontes molncete that the Vertical Componewt is Cirentor than the Cutontint il Value. Blue litpures

## MAP 8.

LINES OF EQUAL VERTICAL CURRENT

LINES OF EQUAL VERTICAL CURRENT

1 mperes per Squure Kilometre.

+ upuard.
- downuard.


## MAP 9. <br> LINES OF EQUAL VERTICAL CURRENT IN AUSTRIA,



Amperes per Square Kilometre.

+ Upward.
- Downward.

Full Lines Derived from Quadractic Expressions for the Whole Country. Dotted Lines Derived from Emperical Expressions for Different Districts.

Jour. Sc. Coll. Vol. XIV. PI. XCVI.a


Black Lines indicate the Directions and Magnitudes of the Hurizontal C'omponents of Disturbang Forces.

Blue Lines indicate the Magnitudes of Downurard Ciomponents of Disturbing Forces. Red Lines indicate the Magnitudes of Upward Components of Disturbing Forces.




[^0]:    * In 189:3 the har magnet No. I was uned with the magnetometer No. 2 and the reduction is earried accordingly.

[^1]:    * The origin is taken at rom number of deyrees insteal of the mean ralue for facilitating the use of the formuls, the slight increase of probable errors in the computed values thas caused is quite insigniforant.

[^2]:    * The Disturbances of Isomagnetics attending the Mino-Owari Earthquake of 1891, A. Tanakalate and H. Nagaoka, Joumal of Science College, Vol. V. part II.

[^3]:    * Aus dem Archiv der Demtechen Seewarte XXI Jahrgang 1s'ds No. 2̈, pr 6I.

[^4]:    * These stations are distinguished by non-bracketed numbers in Tables XV and XVI.

[^5]:    Brackeled number shows that the station is excluded in the equations of condition.

[^6]:    * This is the same as that adopted by Prof. Schuster; the sense of $y$ and $z$ are contrary to that used by Gauss and other continental writers.

[^7]:    * After the volume was put into print, Prof. DC. Nagabka lats drawn the writer's attention to the Sixth Chapter of F . Nemman's "Theorte des Potentials" where the same problem is discussed, thongh approathed in ditlerme way.

[^8]:    * Since $/ /$ is negative npward, + correction means upward diminntion in the intensity of $Z$.

[^9]:    * Ihil. Mag. Vol. XLV, Fifih Series Pl. XII to XVII.

[^10]:    * To draw those eireles on the globe through the points, the rotation axis was inclined to the horizon (irele at an angle $\sin ^{-1}(\cos \% \sin A)$ and by rotating the globe the point is brought to the phane of the horizon cirele whieh i.s then the circle required,

[^11]:    * Terrestrial Magnetism Vol. IV p. 44,

[^12]:    * Tōkỹa Sugaku-buturigakkwai Hökoku Vol. II. p. 4s,

[^13]:    * Gauss Gesammelt Werke Bd. V p. 171.

[^14]:    $I=10.27240$
    Reduetion to $\quad 1895.0=\quad 2.75$
    sea level $=\quad 0.00$

