
Calhoun: The NPS Institutional Archive

DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2008-09

An engineering context for software engineering

Riehle, Richard D.

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/10379

Downloaded from NPS Archive: Calhoun

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

DISSERTATION

Approved for public release; distribution is unlimited

AN ENGINEERING CONTEXT FOR SOFTWARE
ENGINEERING

by

Richard D. Riehle

September 2008

 Dissertation Supervisor: J. Bret Michael

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for
reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and
reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information
Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2008

3. REPORT TYPE AND DATES COVERED
Dissertation

4. TITLE AND SUBTITLE: An Engineering Context for Software Engineering
6. AUTHOR(S) Richard D. Riehle

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
New engineering disciplines are emerging in the late Twentieth and early Twenty-first Century. One such emerging

discipline is software engineering. The engineering community at large has long harbored a sense of skepticism about the
validity of the term software engineering. During most of the fifty-plus years of software practice, that skepticism was probably
justified. Professional education of software developers often fell short of the standard expected for conventional engineers;
software practice seemed to be a “hit or miss” approach; and the available knowledge, tools, and language designs were not
sufficiently mature to support an engineering model for software practice.

Much progress has occurred in recent years, due to improved tools and languages along with a better ways of
reasoning about and designing software products. This progress has contributed to the increase in success in the way software
is developed and managed. However, even with a growing number of software successes, there are still enough horror-stories
to reinforce the skepticism of the larger engineering community. Those skeptics continue to ask the reasonable question,
“Where is the engineering in software engineering?”

The primary contribution of this dissertation is to establish a foundation for answering the question at the end of the
previous paragraph. Another contribution is a foundation for answering that same question for other emerging engineering
disciplines. We call this foundation a context. The context is derived from: a study of conventional engineering, a review of
contemporary software practices, recent advances in software engineering and computer science, and analysis of the
relationships between those four concerns.

This engineering context for software engineering includes two chapters on the topic of engineering. It opens the
door to a dialogue about both the philosophical and practical concerns of emerging engineering disciplines. It also includes
chapters mapping the engineering context to both current and expected trends in software engineering practices.

15. NUMBER OF
PAGES

139

14. SUBJECT TERMS Software Engineering, Programming, Computer Software, Engineering,
Software Process, Pre-Conditions, Post-Conditions, Invariants, Ada, Risk Management, Predictable
Outcome, Linguistic Continuity, Software Physics, Design Metrics, Design to Tolerances

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

AN ENGINEERING CONTEXT FOR SOFTWARE ENGINEERING

Richard D. Riehle
Visiting Professor, Computer Science Department

B.A., Brigham Young University, 1965
M.S., National University, 1990

Submitted in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY IN SOFTWARE ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
September 2008

Author: __
Richard D. Riehle

Approved by:
______________________ _______________________
Dr. J. Bret Michael Dr. Peter J. Denning
Professor of Computer Science Chair, Computer Science Dept.
Dissertation Supervisor Dissertation Committee Chair

______________________ _______________________
Dr. Dan Boger Dr. Mikhail Auguston
Interim Vice Provost and Associate Professor
and Dean of Research of Computer Science

______________________ _______________________
Dr. Mantak Shing Dr. Qiaoyun “Liz” Li
Associate Professor SkySurfer Systems & Motorola
of Computer Science

Approved by: ___

Dr. Peter J. Denning, Chair, Department of Computer Science

Approved by: ___

Douglas Moses, Associate Provost for Academic Affairs

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

New engineering disciplines are emerging in the late Twentieth and early Twenty-

first Century. One such emerging discipline is software engineering. The engineering

community at large has long harbored a sense of skepticism about the validity of the term

software engineering. During most of the fifty-plus years of software practice, that

skepticism was probably justified. Professional education of software developers often

fell short of the standard expected for conventional engineers; software practice seemed

to be a “hit or miss” approach; and the available knowledge, tools, and language designs

were not sufficiently mature to support an engineering model for software practice.

Much progress has occurred in recent years, due to improved tools and languages

along with a better ways of reasoning about and designing software products. This

progress has contributed to the increase in success in the way software is developed and

managed. However, even with a growing number of software successes, there are still

enough horror-stories to reinforce the skepticism of the larger engineering community.

Those skeptics continue to ask the reasonable question, “Where is the engineering in

software engineering?”

The primary contribution of this dissertation is to establish a foundation for

answering the question at the end of the previous paragraph. Another contribution is a

foundation for answering that same question for other emerging engineering disciplines.

We call this foundation a context. The context is derived from: a study of conventional

engineering, a review of contemporary software practices, recent advances in software

engineering and computer science, and analysis of the relationships between those four

concerns.

This engineering context for software engineering includes two chapters on the

topic of engineering. It opens the door to a dialogue about both the philosophical and

practical concerns of emerging engineering disciplines. It also includes chapters mapping

the engineering context to both current and expected trends in software engineering

practices.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION AND OVERVIEW ..1
A. THESIS ORGANIZATION..1
B. WHAT PROBLEM ARE WE TRYING TO SOLVE?2

1. Problem Sources...2
2. Bounding the Problem...3

C. CONTRIBUTION SUMMARY ...5
1. The Dual Path...5
2. The Engineering Path..5
3. The Software Science Path..6
4. The Converging Path...6
5. The Contribution Summary..8

D. METHODOLOGICAL APPROACH..9
1. Assumptions and Constraints ...9

a. The Early Pioneer’s Vision...9
b. Software Process ...9

2. Research Approach..10
a. Literature Review ..10
b. Survey of Engineers ..10
c. Interviews ..12
d. Reading..12
e. Developed Examples ...13

E. EVALUATION ISSUES..13

II. SURVEY OF PREVIOUS WORK...15
A. INTRODUCTION TO SURVEY ...15

1. The Larger Literature ...15
2. Process Literature..15
3. Observations from the Literature Review.......................................16

a. Observation One..16
b. Observation Two ...16
c. Observation Three...17

B. SOFTWARE ENGINEERING DEFINITIONS ...17
1. Representative Software Engineering Definitions17

C. SOFTWARE ENGINEERING – YESTERDAY AND TODAY...............22
1. Origins...22
2. Software Engineering - Education and Industry23
3. Pro and Con..24

D. SOFTWARE ENGINEERING CHALLENGES..27
E. PERSONAL OBSERVATIONS...28

III. THE ENGINEERING CONTEXT ..31
A. PURPOSE OF THIS CHAPTER ...31

1. Establishing Context..31

 viii

2. Terminology..31
B. CHAPTER THESIS ..31
C. ENGINEERING GOALS..32

1. Absence of Ambiguity..32
2. Predictability ..33
3. Absence of Failure..33
4. Serviceability ..34
5. Economic Feasibility..35
6. Summary of Goals..35

D. ENGINEERING DEFINITIONS ...35
1. Current Engineering Definitions ..36

a. ABET ...36
b. Shaw and Garlan ..37
c. Rogers ..38
d. Florman...38
e. Wright ..38

E. SUMMARY OF CURRENT DEFINITIONS ...39
F. TRADITIONAL VIEW IS TOO NARROW ..40
G. NEEDED: AN UPDATED DEFINITION ...40

1. Improving the Definition...41
a. Current Definitions...41
b. The Engineer...42
c. The Contemporary World of Engineering43
d. A Revised Definition of Engineering43

2. Summarizing the Updated Definition ..44

IV. ELEMENTS OF THE ENGINEERING CONTEXT?...47
A. INTRODUCTION..47
B. DESIGN ..47
C. THE ROLE OF KNOWLEDGE ..48

1. Settled/Dependable Knowledge ..48
2. Knowledge from Science ...49
3. Knowledge from Engineering Experience50

D. FORCE(S)...51
1. The Concept of Force...51
2. Non-Physical Forces...52
3. Forces of Nature...52
4. Conflicting Forces ..54

E. RISK MANAGEMENT AND CONTROLS ...55
F. PREDICTABILITY (PREDICTABLE OUTCOME)................................55
G. CONSTRAINTS AND TOLERANCES ..58
H. ECONOMICS ..58
I. STATE TRANSITIONS AND DISPLACEMENT.....................................59
J. OTHER ASPECTS OF ENGINEERING..59
K. CHAPTER SUMMARY..60

V. SOFTWARE ENGINEERING AS ENGINEERING...63

 ix

A. INTRODUCTION..63
B. PURPOSE OF THIS CHAPTER ...63
C. CHAPTER THESIS STATEMENT ..64
D. SOFTWARE CONTEXT..64

1. The Algorithm Issue ..64
2. Change ..66
3. The Management of State Changes..67

E. SOFTWARE IN PRACTICE ...68
1. Software Architecture ...68
2. Software Engineering ..69
3. Programming..69
4. Supporting Activities ...70

F. THE ENGINEERING CONTEXT – A REVIEW......................................70
1. Nature (Natural Forces) ..71
2. Intersection of Software and Physical Engineering........................73

G. MAPPING SOFTWARE ENGINEERING TO ENGINEERING............73
1. Forces ..74

a. Conflicting Forces ..74
b. Conflicting Forces: An Example..76

2. Dependable (Settled) Knowledge..77
a. Software Engineering Knowledge ..78
b. Measurement and Metrics ..79
c. Software Engineering Knowledge (SWEBOK)......................84

3. Design to Tolerances ..85
4. Controls for Failure Prevention ...85

H. WHAT WE CANNOT YET ENGINEER IN SOFTWARE......................86
1. Computer Programming...87
2. Risk, Testing, and Quality Management ...87
3. Human Factors...88
4. The Ideal Process ...88

VI. DESIGN METRICS: DESIGNING TO TOLERANCES?....................................89
A. INTRODUCTION..89
B. CHAPTER THESIS STATEMENT ..89
C. TOLERANCES, CONSTRAINTS, AND CONTROLS.............................90

1. Design Issues...90
2. Nature of Design Tolerances ...91

a. Software Tolerance Properties ...91
3. Categories of Software Tolerance...92
4. Software Engineering Enabling Mechanisms94
5. Design Tolerances in Practice ...99
6. Fault-Tolerant Design..99
7. Tolerances in Software ..100
8. Modeling for Tolerances..101

D. ADDITIONAL SOFTWARE TOLERANCES ...101
1. Historical Perspective ..101

 x

2. Assertions..101
3. Constraints..102

a. Data Constraints ...103
b. Behavioral Constraints ...104
c. Contract Constraints ...104

4. Language and Tool Support ...104
E. UNLIKELY SOFTWARE DESIGN TOLERANCES105
F. CHAPTER SUMMARY..106

VII. SUMMARY AND FUTURE WORK...107
A. DISSERTATION SUMMARY...107
B. FUTURE WORK...109

BIBLIOGRAPHY..111

INITIAL DISTRIBUTION LIST ...121

 xi

LIST OF FIGURES

Figure 1. Specific Contribution Summary ..8
Figure 2. Engineering Process...19
Figure 3. Revised Definition of Engineering ..44
Figure 4. Intersection of Non-Engineering and Engineering ..53
Figure 5. Engineering , Software Engineering and Nature ...53
Figure 6. Engineering Definition...71
Figure 7. Restricted Integer ...76
Figure 8. Opaque Restricted Integer..76
Figure 9. ADT Stack Object Package Example ..95
Figure 10. ADT Stack Type Example ...96
Figure 11. ADT Own_Integer Example ..97
Figure 12. Generic Integer ADT Example ..97
Figure 13. Floating-point ADT Example ..98

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF TABLES

Table 1. Survey of Practicing Engineers..11
Table 2. Tentative Matrix for Evaluating Maturity of Emerging Engineering

Discipline ...61

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

ACKNOWLEDGMENTS

The many people who contributed to this work include my dissertation

committee, my students, many colleagues from a variety of disciplines.

My committee Chair, Dr. Peter Denning, set the guidelines and constraints for this

work, and gave me the benefit of his insight and experience. Dr. Bret Michael, my

dissertation supervisor, understood early the importance of what I was attempting to

accomplish. Dr. Mikhail Auguston continually provided me with articles from scholarly

journals, which enhanced my research and my thinking. Dr. Man-tak Shing provided

frequent guidance, intellectual support and encouragement. Dr. Qiaoyun Li gave me well-

reasoned feedback whenever I needed her advice. Without Dr. Dan Boger, I would not

have had the opportunity to pursue this project at all. He is the person who took the risk

of inviting me to be a member of the NPS faculty. I am also thankful to Dr. Luqi for her

enduring faith in me. I must also thank Dr. Valdis Berzins for his sometimes annoying

habit of finding some flaw in my reasoning just about the time I had some good idea

nailed-down. I also need to thank my NPS colleague, Professor Charles Calvano.

I have many students from my software engineering classes to thank. In the

foundry of the classroom, I was able to test some of my ideas and measure student

reactions to them. This work would not have been possible without the contributions of

many engineering and software professionals who have written copiously about topics in

both engineering and software. They are too numerous to name here. Many appear in my

cited bibliography and others appear in my “works consulted” section.

Finally, my family has been supportive throughout this entire process. Without

the encouragement of my wife, Sera Hirasuna, as well as her superb editing skills, this

work would not have been possible.

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION AND OVERVIEW

Samuel Florman writes, “We can examine engineering indefinitely without

coming close to exhausting its possibilities, its meanings and the way people feel about

it” [Flo96, p. 117]. This document is limited to some of what we regard as valuable about

engineering to satisfy the intent of the thesis, not as a comprehensive exposition of

everything there is to know about engineering. Robert Glass tells us that much of what

has been written about software engineering is more about software than about

engineering. He counsels us that there is a need for an engineering reference discipline

for software engineering [GVR02]. This suggestion should hold true for all emerging

engineering disciplines. This thesis is written with the engineering reference discipline as

its foundation. Fritz Bauer informs us that, “Software engineering is that part of computer

science that is too difficult for computer scientists” [Bau73, p. 553].

A. THESIS ORGANIZATION

There are seven chapters in this work. The first chapter introduces the topic and

the problem being solved. It also includes some of the conclusions and discussion of the

methodology used to arrive at those conclusions. Chapter II is a review of relevant

literature. The third and fourth chapters are important because they set the engineering

context and provide details about that context. Chapter V builds on the foundation from

Chapters III and IV to evaluate software practices as engineering practices. Chapter VI

exemplifies the principles from Chapter V with the notion of design metrics along with

an emphasis on “designing to tolerances,” This example illustrates on-going challenge in

software engineering. Finally, the last chapter (Chapter VII) discusses some of the future

work that will derive from this work.

 2

B. WHAT PROBLEM ARE WE TRYING TO SOLVE?

1. Problem Sources

In a conversation with Peter Denning, he noted his long-standing effort to

overcome the objections in the traditional science community for the claim of computer

science as a legitimate branch of science. The same concern manifests itself in the

engineering community in any discussion of software engineering as a legitimate branch

of engineering.

The research leading to the present form of this work has required reading the

viewpoints of the leading thinkers in the world of software along with many books,

papers, and journals on other engineering disciplines. However, opinion is not a sufficient

foundation to satisfy the vision or the goals of my own work. Therefore, it has been

necessary to pursue a formulation of a view of software engineering that conforms to the

more rigorous set of concepts of classical engineering. Those concepts include the

principles, methods, and practices that characterize conventional engineering in the

physical world. From this foundation, we can develop an inquiry into whether emerging

disciplines such as software engineering deserve to be regarded as legitimate engineering

disciplines.

We will see in this discussion that many traditional engineers acknowledge that it

would be nice if software could be engineered, but argue that there is little indication of

engineering in what they see of current software practice. To some extent, this is because

many practicing engineers are unfamiliar with the progress being made in the application

of engineering practices in the improvement of software practice. However, those

engineers are correct in their observation that the vast majority of software development

and management falls short of what they would accept as engineering. In fact, some

software developers also reject the notion of software being engineered. There is even a

trend away from engineering that has alarmed some in the software engineering

community. This trend is described in Balancing Agility with Discipline [Boehm2003].

Although much of software engineering practice has failed to live up to its promise, that

failure does not give us license to abandon the pursuit of an engineering foundation for its

 3

future success. On the other hand, prominent members of the software engineering

community such as Phillipe Kruchten and others have suggested that the attempt to find a

correspondence between software engineering and conventional engineering may be a

futile pursuit due to the unique properties of software [Kru04], [LEW00], [Bry00].

The observations from the previous paragraph, lead to several questions that we

attempt to address in this dissertation:

1. Is it necessary or appropriate to regard any aspect of software practice as
an engineering activity?

2. What aspects of software practice qualify for the application of
engineering principles, methods, and practices?

3. Can engineering principles, methods, and practices be applied where there
is a seeming absence of the constraints of natural forces?

4. Which engineering principles, methods, and practices inform and support
the claim that some aspects of software practice can be engineered?

2. Bounding the Problem

It is important to note that our approach to software engineering is not a

restatement of the many process-oriented models that have characterized so much of the

engineering literature and practice of the last thirty-plus years. Rather, we are concerned

with an engineering model for software practice that is independent of process models.

While process models are important for successful engineering, they are only part of the

story.

One concern in this work is to discover how engineering is demarcated from non-

engineering. Once this demarcation is established, it will be possible to investigate the

possibilities and the limitations of engineering software solutions to real problems. In this

respect, this dissertation is unique and original. We will investigate how this demarcation

can be framed in Chapter III and Chapter IV of this work.

Even as we strive to present a more definitive context for evaluating software

engineering as an engineering discipline, it has become clear that our conclusions will

leave more questions unanswered than answered.

 4

We focus on the engineering problems in software, not programming problems.

The engineering problems involve the many relationships between the components of a

software environment. The engineering problems for software are not physical

engineering problems unless one thinks of time as a problem in physical engineering.

A good historical example of a software engineering problem that was solved as a

software engineering problem was Dr. Denning’s work on thrashing [Den68]. While

there was a physical component to the problem, it was also a software engineering

problem. Similar engineering solutions are represented with the Rate Monotonic Model

(RMA) developed at the Software Engineering Institute and Carnegie-Mellon University

[Liu73]. RMA, along with other scheduling algorithms for real-time, concurrent software

systems, has been the topic of considerable research. Schedulability for real-time

software promises to become one of the most important topics for future computing as

the configuration of the hardware architectures moves more and more toward multi-

processing models. The problem of schedulability is one place where operations research,

systems engineering, and software engineering intersect as a multi-discipline engineering

problem that has little to do with so-called natural forces.

As software becomes more intrusive in the creation of devices that society

requires for both commerce and entertainment, the engineering problems associated with

software become more pervasive and more difficult. To suggest that these software

problems do not represent engineering is to ignore a pressing reality. Even so, much of

the software being produced is not engineered in the usual sense of engineering. The

burden of the engineering details is often deferred to the lowest level of the development

process: computer programming. While we have been able to tolerate this downward

shift of responsibility in earlier software systems, it is essential that the software

community reassert the need for more dependable approaches as society becomes

increasingly dependent on software, not merely for commerce and entertainment, but for

its very survival. An engineering imperative for software engineering is not a nicety. It is

an essential part of the future of software practice.

 5

C. CONTRIBUTION SUMMARY

1. The Dual Path

The original contribution of this dissertation follows a dual path from both

traditional engineering and software science in an attempt to merge those two paths into a

common discipline where the principles and practices of traditional engineering drive the

development, management, maintenance, evolution, and utilization of software

engineering products. We are developing a model that invigorates the notion of a

software engineering culture [Wei96] as well as a model for software engineering

practice.

In the previous paragraph, we emphasize sufficiency of the intersection. We must

also ask whether there are properties of engineering not present in software practice that

prevent it from being considered to be an engineering practice. Is software practice a craft

rather than an engineering practice? Those who regard software practice as purely a

matter of computer programming are probably correct in their “craftsmanship” view

[McB02]. On the other hand, experienced software practitioners understand that

programming is only a small part of software practice. As noted earlier, Kruchten

suggests that attempting to overlay classical engineering on software is the wrong

approach [Kru04]. In his view, “...we tried to impose techniques from other engineering

disciplines onto software development models without understanding the real nature of

software.” We agree with Kruchten up to a point, but accept the proposition that some

aspects of software practice are also an engineering practice. That is the underlying vision

of this dissertation, and the proposition we will attempt to support.

2. The Engineering Path

Modern engineering started in the middle of the Nineteenth Century and rapidly

matured in the early years of the 20th century with the application of more rigorous

mathematics and science along with new discoveries in the world of natural phenomena

 6

[Bl82], [Di80], [Hol08], [RaW63], [Wri89]. Toward the middle of the 20th century,

engineering diversified into a large number of sub-disciplines, and that diversification

continues in modern times.

The rigor and discipline required of engineering makes entrance into the

engineering community difficult to achieve. This is as it should be since the

responsibilities of the professional engineer often involve the safety and security of the

larger public – a public that uses the products and services developed by engineers.

Engineering is largely about developing solutions characterized by predictability --

predictable operation, predictable life-cycle, predictable maintainability, and the absence

of surprise [Rie05].

3. The Software Science Path

Software science is a subset of computer science. The hardware side of computer

science is heavily dependent on physical engineering, especially electrical engineering.

This corresponds to and supports the widespread belief by many contemporary engineers

that engineering, to be credible, must involve the world of natural phenomena and natural

forces. Few engineers would argue against computer hardware design as engineering.

Many of those same advocates of computer hardware as an engineering discipline would

argue with some ferocity that software design is not engineering.

The software science path, originally represented by computer programming, is a

different story. Software science includes a wide range of disciplines such as automata

theory, formal methods, design-by-contract, design metrics, large-scale systems design,

software architecture, parallel computing, computer programming, compiler design,

applications development, operating systems design, and more.

4. The Converging Path

This dissertation seeks a converging path where engineering can merge with

software practice to evolve toward a more rigorous engineering model for software. That

converging path will legitimize the convergence of software engineering and standard

engineering and inform efforts to map emerging engineering disciplines to a model that

 7

helps them come into their own as engineering practices. Such a convergence needs to be

derived from the best of both of the two paths: the accepted concepts of engineering

combined with the best contributions of software science. It also learns from the failures,

misunderstandings, user frustrations, and other experiences that, when studied as lessons

learned, contribute to the progress of all aspects of software practice.

To create a new path, it is necessary to examine the principles and practices that

represent both traditional engineering and software engineering and find commonality

between them. To many, in both software and traditional engineering, the software

engineering path is properly a subset of software science (ergo, a sub-sub-set of computer

science). In this dissertation, we will try to present an alternative perspective. Software

engineering has many threads of its own including risk management, scheduling

algorithms, software reuse, economic analysis, control theory, software quality assurance,

project and process management, and software modeling. Not everyone agrees that these

are the ideal topics for software engineering [Gla03, pp. 46-47] suggests that reuse is too

difficult a problem to be of general use in software engineering.

We do not argue that all of software practice is engineering. Instead we identify a

few areas that clearly involve engineering, while noting that some (perhaps many)

software practices fall short of engineering, in their present form and practice. We present

the following four questions and attempt to address them in this work.

1. How is engineering different from non-engineering? This includes
guidelines to demarcate engineering from non-engineering.

2. What is required of software practice if it hopes to be accepted in the
contemporary engineering community as an engineering practice?

3. What current software practices that do qualify as engineering and how do
we justify those which, while required in software practice, fail to conform
to engineering practices?

4. How can we develop a model/framework for software engineering through
convergence of multiple disciplinary paths – engineering, computer
science, software science, and mathematical science – into a single path
that represents the kind of engineering discipline necessary for the future
of software practice in modern society?

 8

These concerns lead to two important scenarios:

1. Software engineering becomes accepted by the main engineering
community as a respected engineering discipline, and

2. Well-engineered software combines the best of mainstream engineering
and software practices, so a society that depends more and more on
software is provided the best products and services possible. In other
engineering practices, this concern is the province of the Professional
Engineer (PE). However, the PE model is not yet part of software
engineering practice.

5. The Contribution Summary

The following chart provides a summary view of the principle contributions:

UnclassifiedUnclassified September 1, 2008September 1, 2008 66

Specific Contribution SummarySpecific Contribution Summary

The first of many that need to
be identified as actual
engineering tasks instead of
programming tasks.

Ensures that other
contributions are grounded in
real-life examples to parry
argument about SWE

Demonstrate how engineering,
as defined above, has already
contributed to software
engineering

Helps refine understanding of
the relationship of these three
responsibilities

Clarifies responsibilities and
reinforces the need for better
engineering practice relative to
software

Tying back individual
responsibilities to the
definition

Contribute to understanding of
SWE as an engineering
discipline

Helps defuse arguments about
engineering versus software
engineering

Map software engineering to
engineering

Demonstrates how software
engineering can become more
of an engineering discipline

Leads to uniformity of
decision-making in future
contract negotiations

Conforming definition for
software engineering

Opens a dialogue based on a
more comprehensive concept
of engineering

Assists in future decisions by
program managers dealing
with DoD contractors

Demarcating definition for
engineering in 21st Century

Contribution Importance to DoD Importance to Software Engineering

1.

2.

3.

4.

5.

Reframing the argument; not settling the argument

Figure 1. Specific Contribution Summary

 9

D. METHODOLOGICAL APPROACH

1. Assumptions and Constraints

a. The Early Pioneer’s Vision

The original report from the 1969 NATO working meeting where the term

software engineering was officially coined, described software engineering as, “the

application of engineering to the creation of software” [NaR69]. At that time, this was a

vision, not a fact. That vision was in reaction to a perceived software crisis and the

urgency to do something about that crisis. Ever since the NATO meeting, people in the

software community have been striving to satisfy that vision. It is still more of an ideal

vision than an accomplished reality. Many believe that the closer we can get to realizing

that original vision, the more effective software practitioners will be at producing

software that is as dependable as the products and services provided through traditional

engineering disciplines.

b. Software Process

The focus of this dissertation is different from earlier works regarding

software engineering in that we go beyond the traditional topics of software engineering

as listed in the recent SWEBOK documents [Moo06]. Those documents tend to reinforce

the process view of software engineering. The process approach to software engineering

is what Agresti, Bauer and others have characterized as the Industrial Engineering

approach to software engineering [Agr81]. While we affirm the progress that has been

made with the process approach, we do not want to repeat, nor even evaluate the process

literature. Instead, we seek an engineering foundation more closely aligned with the

properties of classical engineering disciplines [Tek04].

 10

2. Research Approach

a. Literature Review

We examined many books, journals, scholarly papers and treatises related

to software engineering. We also conducted a small survey of engineers from outside the

software field. We also looked at a large number of definitions of software engineering,

and found all of them lacking.

This led to the one of the central questions of this dissertation, “What is

engineering?” Without a clear and unambiguous answer to that question, we concluded

that it is difficult to get a clear idea of what we mean by software engineering. Therefore,

one of the first tasks in developing an engineering context for software engineering was

to develop a definition for engineering.

This question can also be stated as, “What demarcates engineering from

other creational activities?” It seems odd that, just as no one has a sufficiently rigorous

definition of software engineering, none of the published definitions for engineering were

sufficiently crisp to demarcate engineering from other practices. Engineers seemed to be

caught up in the “I’ll know it when I see it,” mentality, and even the ABET definition fell

short of what was required.

b. Survey of Engineers

In addition to a literature search, I sent out survey forms to engineers from

many disciplines to gather a representative sample of opinions and viewpoints.

The main questions, using a Likert Scale, on the survey are shown below.

The questions were augmented with demographic questions such as what kind of

relationship the respondent has with software practice or engineering.

 11

1. Real engineering depends on or requires natural forces (e.g., physics, chemistry, etc.).

2. Natural forces, for engineering purposes, includes solutions to timing problems.

3. Software engineering falls short of the requirement for natural forces.

4. Software development is too complex to be engineered.

5. Software is more concerned with computer programming than with engineering.

6. Software engineering is a legitimate branch of engineering.

7. Software people are not as well prepared for engineering as traditional engineers.

8. Software engineers should be licensed just as other engineers are licensed.

9. For embedded systems (radar, avionics, etc.), software is a part of the engineering solution.

10. Future software developers must find a way to apply more engineering to their practice.

Table 1. Survey of Practicing Engineers

From the questionnaire (above) most engineers in the classical engineering

disciplines responded to the question (1) about natural forces with Strongly Agree or

Agree. This corresponded with my one-on-one interviews with other engineers as well as

with the ABET viewpoint. It is clear that those involved in conventional engineering

place a high value on the presence of and ability to predict outcomes based on the

knowledge of natural phenomena.

For question Six, where we ask whether software engineering is a

legitimate branch of engineering, most engineers responded with Disagree. This was no

surprise given the responses to question number One. The other significant response was

to question number Ten where we ask about the need for a future model of software

Strongly Agree Agree No Opinion Disagree Strongly Disagree

Strongly Agree Agree No Opinion Disagree Strongly Disagree

Strongly Agree Agree No Opinion Disagree Strongly Disagree

Strongly Agree Agree No Opinion Disagree Strongly Disagree

Strongly Agree Agree No Opinion Disagree Strongly Disagree

Strongly Agree Agree No Opinion Disagree Strongly Disagree

Strongly Agree Agree No Opinion Disagree Strongly Disagree

Strongly Agree Agree No Opinion Disagree Strongly Disagree

Strongly Agree Agree No Opinion Disagree Strongly Disagree

Strongly Agree Agree No Opinion Disagree Strongly Disagree

 12

practice that does conform to engineering. On this question, the Agree and Strongly

Agree were overwhelming even from those who disagree that software engineering, as

currently practiced, is anywhere close to being an engineering discipline.

c. Interviews

In some cases, the research was conducted as interviews on Internet

Usenet sites. Other interviews were conducted in-person. Most engineers interviewed

were agreed in their view that 1) engineering requires physical forces, 2) software

engineering is not really engineering, but 3) it would be good if software could be

engineered with the same rigor expected of other kinds of engineering.

I also interviewed software practitioners. During those interviews, I found

that, the more experienced the software developer, the more pessimistic they are about

any chance of software practice being a real engineering discipline. There was near

universal agreement that software professionals are not as well prepared for engineering

as traditional engineers. This reflects the reality that few computer science graduates have

any education or training in engineering during their undergraduate or graduate programs.

An increasing number of software developers seem to reject the notion of an engineering

model for software, opting instead for the so-called “agile” approaches [McB02],

[Coc06], [Bec00].

d. Reading

In pursuit of providing an engineering context for software engineering, I

read a large number of books and papers on general engineering, some of which will be

cited or quoted throughout the dissertation. I also examined the curricula of several

engineering programs such as that at San Jose State University. The reading part of the

research included papers both praising and disparaging the concept of software

engineering.

 13

The paper written by Robert Glass [GVR02] was mentioned earlier. The

key point of that paper was the need for an engineering reference discipline for software

engineering. If there was any paper that inspired this document, that was it. The concept

of a reference discipline is a kind of touchstone, throughout this work.

e. Developed Examples

Some software engineering concepts are best demonstrated with examples.

Unfortunately, examples sometimes have to be in the form of computer programs. We

include some programming examples to illustrate a few of the ideas, coded primarily in

either Ada or SPARK. Most of the programs are my own creation. Other examples will

cite real projects where source code is only incidental to the actual software engineering.

The fact that coded examples are included in the dissertation should not be

construed to mean that software engineering is about programming. That is only one

aspect of software engineering practice, often not the most important. However, without

the existence of source code there would be no software products. An engineering design

must ultimately have a realization or it is little value to anyone.

E. EVALUATION ISSUES

Many practicing engineers believe the current engineering models and definitions

are adequate. This is yet another place where this dissertation makes a contribution.

Engineering, from its earliest beginnings, has constantly evolved to include new

practices, new views of itself, and entirely new kinds of engineering. It has also

diversified into large variety of sub-specialties. One can see examples of this

diversification where civil engineering involves the specialty of structural engineering, or

chemical engineering propagates to problems in combustion engineering. In some cases,

diversification, rather than separating disciplines, actually consolidates existing practices

into an umbrella of engineering disciplines such as systems engineering.

The universally accepted concepts of traditional engineering can also provide a

reference discipline for software engineering. Specific kinds of engineering give us a

more fine-grained view of the relationship of software engineering to general

 14

engineering. Some of the important reference disciplines for software engineering include

industrial engineering, systems engineering, process engineering, control engineering,

and electrical engineering.

We recognize that engineering is overkill for many software projects, but insist

that some aspects of engineering are essential, even demanded, for development of large-

scale, complex, safety-critical, and mission-critical projects.

This dissertation will require us to present examples from other branches of

engineering to show which software engineering practices are really engineering. To

make the case, we will also find it necessary to reframe and broaden the definition of

engineering, even as we narrow the definition of software engineering. It is important that

those aspects of software practice that conform to engineering be separated from those

software practices that fall short of real engineering discipline (e.g., those that are more

like craftsmanship than engineering).

 15

II. SURVEY OF PREVIOUS WORK

A. INTRODUCTION TO SURVEY

1. The Larger Literature

The body of literature about software engineering is large. Much of that literature

is an assessment of what is wrong with software and how it can be made better [Bro95],

[Boe84], [JeT79], [Jon96], [McB02], [MaR05], [Pfl9191], [GJ96]. The principle focus in

most of these works is on processes, methods (e.g., waterfall, spiral, agile, etc.), tools,

schedules, and the management of people. While these are important considerations, they

are not sufficient to establish software engineering as a credible engineering discipline.

The published work is full of advice about how to improve some aspect of software

engineering practice such as processes, project management, estimation, risk

management, better use of humans, improvement in tools, approaches to automated

methods, and after-the-fact metrics, but very little about engineering.

2. Process Literature

Much of what has been published about software engineering is process or

project-oriented. For example, the highly influential book by Frederick Brooks [Bro95]

emphasizes the importance of people and process in the management of software.

Humphrey provides several works that advance the notion of process in software

engineering. In his first book, Managing the Software Process [Hum89], identified five

levels of software process and launched a new area of practice referred to as process

improvement. In subsequent works, Humphreys refined the scope of his process

contribution to focus on the responsibilities of individual software engineers [Hum95],

and software engineering teams [Hum06]. Current trends in software practice emphasize

processes.

 16

3. Observations from the Literature Review

a. Observation One

Some of the observations from Glass [GVR02], et al., include:

Regarding reference disciplines, [Software Engineering] research seldom
relies on other disciplines as the basis for its work. Although there have
been discussions, over the years, of the relationship between SE research
and such fields as cognitive psychology, quality, engineering, and
manufacturing, at this point in time there is little evidence that SE seeks to
assimilate learning from other fields.

and

For the most part SE research eschews reliance on other fields for its
fundamental theories and/or concepts. Ninety-eight percent of the papers
examined had no reference discipline.

also, when discussing software engineering in the same paper,

It is interesting that there was no reliance on such fields as Mathematics,
Engineering, or any of the Sciences... it is clear that SE research tends to
be quite self-contained, not relying on any other disciplines for its
thinking.

b. Observation Two

When the question, “Is software engineering really engineering?” is asked,

it is often answered with, “No!,” or “Not Yet.” Software professionals such as

McConnell, quoted earlier in this dissertation [Mcc04, p. 30], answers, “No” to the

question, but qualifies his answer with, “Professional software development should be

engineering. Is it? No. But should it be? Unquestionably, yes.” Software engineering

educator, Mary Shaw notes that software practice could someday be engineering, but it is

not there yet [Sha90].

 17

Other software professionals, those of my personal acquaintance, call

themselves software engineers, and write about software engineering, but concede that

we are on shaky ground, and are almost apologetic, when comparing software

engineering to generally accepted engineering disciplines.

c. Observation Three

In “Finding a History for Software Engineering,” Michael Mahoney

[Mah04] provides a comprehensive treatment of the many stages of software engineering

practice. From Mahoney’s work, it becomes clear that much of what has passed for

software engineering has been heavily influenced by industrial engineering.

B. SOFTWARE ENGINEERING DEFINITIONS

A survey of the literature and previous work would not be complete without

recognizing some of definitions that have been proposed during the nearly four decades

since the term was coined. So many have been proposed that only a representative sample

is possible in this chapter. The author of each software engineering textbook consulted

for this research includes a definition, usually in an early chapter. Other authors also

include definitions of software engineering as part of articles, general books on software,

and books on object technology. For this section, we select a few representative

definitions.

1. Representative Software Engineering Definitions

As noted earlier, there is no shortage of definitions for software engineering.

There is a shortage of definitions that conform to standard definitions of engineering. As

mentioned in the first chapter, the original vision of software engineering from Naur, et

al., sought an engineering approach for a definition. Although he does not define what he

means by “sound engineering principles,” he offers the following:

Software engineering is the establishment of sound engineering principles
in order to obtain economical software that is reliable and works
efficiently on real machines [NaR69].

 18

Shaw [Sha90] laments that this is more of a wish for an engineering model of

software than an actual description of it.

As far back as 1975, Ross, et al., [RGI80] wrote a paper where they tried to define

software engineering by describing the goals and principles of software engineering.

They listed the goals as: reliability, modifiability, efficiency, understandability. We have

chosen to restate and refine those goals in Chapter III of this dissertation as: 1) absence of

ambiguity, 2) predictability, 3) absence of failure, 4) serviceability, and 5) economic

feasibility. Those authors in that same article go on to specify the principles of software

engineering as: abstraction, information hiding, modularity, localization, uniformity,

completeness, confirmability. An entire treatise could be written on each of these

principles, but that is beyond the scope or intent of this dissertation. For a good

discussion of the work of Ross, et al., we recommend reading the detailed commentary

by Grady Booch [Boo94, pp. 17-25].

The goals and principles in the Ross, et al., article are compatible with the goals

and principles of any good engineering practice, not just software engineering, especially

when goals such as measurability and economics are included. The problem with the

article is that it does not provide a rigorous definition within an engineering reference

discipline.

McConnell does reference classical engineering in his recent work on software

practice with,

Some ... object that commercial software is too dependent on changing
market conditions to permit careful, time-consuming engineering ... The ...
objections are based on narrow and mistaken ideas of engineering.
Engineering is the application of scientific principles toward practical ends
[Mcc04, p. 33].

While McConnell implicitly acknowledges the reference disciplines, his notion of

engineering is not quite rigorous enough to stand against the scrutiny of engineers from

other disciplines. This is an on-going problem with much of what is written about

software engineering. In a later section, McConnell lays out the problem in a different

way, one that is more compatible with the goals of this dissertation. He asks whether the

 19

practice should be called software engineering or software engineering, where his italics

imply a difference of emphasis [Mcc04, p. 182]. In one case, he says we have engineers

who are software apprentices. In the other, we have software practitioners (programmers,

etc.) who are engineering apprentices. The software engineering program at McMaster’s

University in Canada, formerly under the direction of David Parnas, teaches engineering

first, then software with goal of eliminating the apprentice model with education in both

disciplines [Par99].

In their textbook, Peters and Pedrycz state that, software engineering is:

... a practical, orderly, and measured development of software. The
principle aim is to produce satisfactory systems on time and within budget.
... The engineering approach is practical because it is based on proven
methods and practices in software development [PeP00], Chapter 1.3].

The Institute of Electrical and Electronics Engineers (IEE90) defines software

engineering in its publication numbered, IEEE Std. 610.12, as:

(1) The application of a systematic, disciplined, quantifiable approach to
the development, operation and maintenance of software, that is, the
application of engineering to software. (2) The study of approaches as in
(1)

Jim Moore, in a book published by IEEE, elaborates on the concept of

engineering with, “engineering can be viewed as a closed feedback loop ... An

engineering process consists of related activities performed in response to a statement of

needs and consuming resources to produce a product” [Moo06, p. 4], In support of his

view, Moore includes the following compelling diagram.

Figure 2. Engineering Process

Control

Process

Goals
Constraints

Measurement

Needs

Action

Product

Resources

 20

This important diagram illustrates the role of control in engineering. Control is

one of the most important facets of engineering, including software engineering. A large

part of any design involves ensuring that the construction [Roy89, p. 79] of that design

will satisfy the goals of engineering discussed earlier, and control is an essential element

of every engineering design, including correctly designed software. Moore’s work makes

it clear that attention to developing appropriate controls must not be overlooked in the

haste to produce a completed software product.

Moore recognizes that the techniques, including processes, for engineering

software can be viewed, in part, as specialization of the general disciplines, such as

project management, systems engineering, and quality management. He notes, “These

contextual disciplines are important because ... software engineering standards must often

be applied in conjunction with the standards from other disciplines.” The inclusion of

constraints in this diagram is essential for building a complete model of software

engineering [Moo06, p. 5].

An added perspective on this same theme from Boehm suggests,

Software engineering is the practical application of scientific knowledge
in the design and construction of computer programs and the associated
documentation to develop, operate, and maintain them. It is also known as
Software Development or Software Production [Boe84].

One problem with Dr. Boehm’s definition is that it fails to mention the

relationship of software engineering to other engineering practices. Further, it implies

that software engineering is more like computer programming instead of promoting it to

the larger ideas that contribute to software engineering as an engineering practice. This is

not representative of Dr. Boehm’s actual understanding of software engineering since his

professional contributions extend far beyond computer programming.

In one of its early documents, the IEEE defines software engineering as, “the

systematic approach to the development, operation, maintenance, and retirement of

software” [IEE90].

 21

As with the other definitions, this one fails to satisfy us in our quest for an

engineering vision of software practice. It could just as easily describe a COBOL

programmer creating a printed report from a database. Richard Fairley presents one of the

definitions reminiscent of industrial engineering practice,

... the technological and managerial discipline concerned with systematic
production and maintenance of software products that are developed and
modified on time and within cost estimates [Fair85, p. 2].

Fairley's contribution represents what is sometimes called Taylorism [Tay11].

Frederick Winslow Taylor was a founder of what he called “scientific management.”

Scientific management eventually evolved into modern Industrial Engineering. The

recent reaction against Taylorism among software professionals has motivated the

growing interest in so-called Agile software development processes [Coc02], [StP03],

[Sch02], [Bec00]. The criticism from Beck, Schwaber, Cockburn, et al., has focused on

abandoning the application of Taylor’s principles of industrial engineering. In fact, others

could reasonably make the argument that most of software engineering best practices are

simply a subset of modern industrial engineering rather than a subset of computer science

[Agr81]. In that case, computer science would be the underlying science, but industrial

engineering would be the engineering practice. One problem with this is that the list of

accepted engineering practices, for Professional Engineering certification, often excludes

industrial engineering. A refreshing disclaimer is found in Roger Pressman’s discussion

of a definition for software engineering,

... almost every reader will be tempted to add to this definition. It says
little about the technical aspects of software quality; it does not directly
address the need for customer satisfaction or timely product delivery; it
omits mention of the importance of measurement and metrics; it does not
state the importance of a mature process. And yet Bauer’s definition
provides us with a baseline. What are the “sound engineering principles”
that can be applied to computer software development? How to
“economically” build software so that it is “reliable”? What is required to
create computer programs that work 'efficiently' on not one but many
different 'real' machines:? These are the questions that continue to
challenge software engineers [Pre05].

 22

The following definition, not framed in terms of an engineering reference discipline,

from a textbook on software engineering by Pfleeger,

Designing and developing high-quality software. Application of computer
science techniques to a variety of problems. We are problem-solvers rather
than theoreticians [Pfl91].

It would be possible to fill many pages with definitions of software engineering.

This representative sample of attempted software engineering definitions should be

sufficient to make clear that many definitions fall short of what is required to actually

make the case for, or even establish the context for, software engineering as an

engineering discipline, especially when seeking a definition framed in the context of an

engineering reference discipline.

Consequently, for a more engineering-oriented definition of software engineering,

it is necessary to examine engineering itself and determine whether a definition for

software engineering can be developed in terms of an engineering reference discipline. Is

there a definition for engineering that encompasses mechanical, chemical, electrical, civil

and also includes emerging engineering disciplines such as software engineering? Can

that definition be useful in support of a model of software engineering that can be agreed

upon in both the engineering community and software engineering community?

C. SOFTWARE ENGINEERING – YESTERDAY AND TODAY

1. Origins

The term software engineering originated in a 1967 initiative that resulted in a

NATO sponsored conference in Garmisch, Germany. The theme of the conference was

described as follows:

In late 1967 the Study Group recommended the holding of a working
conference on Software Engineering. The phrase ‘software engineering’
was deliberately chosen as being provocative, in implying the need for
software manufacture to be based on the types of theoretical foundations
and practical disciplines, that are traditional in the established branches of
engineering [NaR69].

 23

Naur’s use of the word “manufacture” does not match what many software

practitioners would us. Engineering is not the same as manufacturing. Rather, it is more

focused on design. The above summary from Naur has been restated as: “... the

application of engineering to software ...” [IEEE Std 610.12].

2. Software Engineering - Education and Industry

The results of a Google search shows that software engineering is now a part of

the graduate curriculum in a growing number of universities. Some of the undergraduate

programs are ABET accredited. Often, software engineering is in the engineering school

instead of the computer science department [Fre98]. Even so, a review of the curricula on

university web sites indicates that students majoring in undergraduate software

engineering are more often educated in computer science than in engineering. This is

somewhat analogous to a scenario in which chemical engineers would be educated in

chemistry and have to learn the engineering as a self-study exercise.

Graduate programs in software engineering typically reside in the computer

science departments rather than the schools of engineering. Parnas suggests that software

engineering is an “unconsummated marriage” where the science of programming and the

disciplines of engineering have never been able to find compatibility [Par99]. After

exploring the explicitly stated question “What is Engineering,” Maibaum writes:

If we take the above characteristics of engineering and engineering
knowledge and apply it to software engineering curricula, we quickly
come to realize that the latter do not generally transmit knowledge and
skills which prepare our students to be professional engineers [Mai97].

Maibaum goes on to observe:

Most of the material presented in such courses either suffers from
confusing craftsmanship and engineering or does not take cognizance of
the difference between mathematics/science and engineering [Mai97].

 24

3. Pro and Con

Many articles have been published that purport to make the case for software

engineering. Others, however, have denounced the notion of software engineering almost

characterizing it as the equivalent of “snake oil.” There is no evidence that anyone has

successfully made the case for software engineering with definitive, irrefutable examples.

It is difficult to find a clear mapping of those aspects of software practice that correspond

to “real” engineering and those which we are obliged to exclude.

The following statement originates with Mary Shaw, of Carnegie-Mellon

University.

Software engineering is a label applied to a set of current practices for
software development. Using the word engineering to describe this
activity takes considerable liberty with the common use of that term
[Sha96].

In an earlier work from the IEEE publication, Software, Shaw writes:

Although software engineering is not yet a true engineering discipline, it
has the potential to become one. Older engineering fields are examined to
ascertain the character that software engineering might have. The current
state of software technology is discussed, covering information processing
as an economic force, the growing role of software in critical applications,
the maturity of development techniques, and the scientific basis for
software engineering practice. Five basic steps that the software
engineering profession must take to become a true engineering discipline
are described. They are: understanding the nature of expertise, recognizing
different ways to get information, encouraging routine practice, expecting
professional specializations, and improving the coupling between science
and commercial practice [Sha90].

Commenting on a conference in 1996 devoted to the history of software

engineering, Cerruzi writes,

A 1996 conference on the history of software engineering ... came to the
unintended conclusion that the attempt to establish software engineering
on the whole had failed [Cer98, p. 105].

In a paper on the History of Software Engineering by Mahoney, we have the

further damning conclusion.

 25

Software engineering... practitioners disagree on what software
engineering is, although most of them freely confess that, whatever it is, it
is not (yet) an engineering discipline [Mah02], [Mah04].

Also, from the same article,

Software engineering began as a search for an engineering discipline on
which to model the design and production of software. That the search
continues after 35 years suggests that software may be fundamentally
different from any of the artifacts or processes that have been the object of
traditional branches of engineering [Mah02].

Mahoney goes on to cite an alternative to software engineering,

... at the 1969 NATO conference, I.P. Sharp came at the issue from an
entirely different angle, arguing that one ought to think in terms of
‘software architecture’ (design), which would be the meeting ground for
theory (computer science) and practice (software engineering) [Mah02].

This is a cogent and, at first, appropriate argument. However, it oversimplifies the

difference between engineering and architecture. I will address the difference between

software engineering and software architecture later in this dissertation.

There is widespread disagreement about the role of software engineering and its

place in among academic disciplines. Some prefer that it be in the computer science

department; others vote for inclusion in one of the engineering departments as part of the

engineering curriculum. For example, from a conference keynote speech by David

Parnas,

It is essential that those in Software Engineering learn more about
classical engineering and that those in classical engineering recognize
Software Engineering as a new branch of their profession [Par99].

In that same conference keynote, Parnas also states that:

A ... member of the software engineering profession should know that
subset of computer science that is relevant to software design, but they
must also have the knowledge of mathematics, and other sciences that are
traditionally known by engineers... It is time that another such specialty,
software engineering, be identified and defined [Par99].

 26

A review of existing software engineering textbooks reveals that many of them

correspond to the view expressed above.

This section would be incomplete if the recently published critique about software

engineering were excluded. It is representative of many such viewpoints, which denounce

the very notion of the application of engineering in the development and management of

software. In an article in the Communications of the ACM, Wei-Lung Wang writes,

“Beware the Engineering Metaphor.”

Fundamentally, engineering operates within the framework of the
immutable laws of nature. These laws dictate the realm of engineering
possibility, and engineers work by designing and constructing within the
bounds of these laws. Their permanence and universality allow
engineering principles, which signal the boundary of what is safely
possible, to be established. For example, engineers who violate known
electrical circuit guidelines are potentially breaching the physical limits
imposed by the forces of electricity. These guidelines can be established
simply because their applicability is universal. Competent engineers
observe well-known limits that cannot be breached, while negligent
engineers who fail to observe these limits are potentially negligent.

Software engineering, on the other hand, has no fixed framework in which
to operate. At its heart, software is the embodiment of a Turing program
[Wang02].

Wang’s view of engineering not only puts software engineering on the defensive

as an engineering discipline, it also eliminates much of contemporary industrial

engineering and some of systems engineering from its scope. Wang’s challenge requires

us to develop a model of software engineering that satisfies his critique. Later, we

describe some of the elements necessary to accomplish this task. Engineering, according

to this point-of-view, must be based on the constraints of natural forces. Our position, in

this dissertation, is that natural forces are not essential to engineering practice. His

suggestion that software is nothing more than the “embodiment of a Turing program”

suggests that he has not examined the full range of software engineering practices very

thoroughly. Even so, it is statements such as this in the computing literature that feed the

misperception that software engineering is not really engineering.

 27

Natural forces are simply those forces that we directly or indirectly observe using

the currently available measuring and observation tools. Engineering must also be

concerned with logical forces. Logical forces are characterized by the state transitions

that occur in a software entity. Abrial calls the discrete model of software transition

systems [Abr04]. State transitions are a kind of action that is equivalent to the

displacement actions in physical systems. One can make the case that the influence of

logical forces (state transitions) in software engineering practice are as powerful as

natural forces in mechanical engineering, although those logical forces may not be as

immediate or easy to detect by a casual observer.

D. SOFTWARE ENGINEERING CHALLENGES

Software engineering’s traditional emphasis on process, noted earlier, is one more

motivation for seeking an alternative approach. We need a new focus for software

engineering that is grounded in the reference discipline model recommended by Glass, et

al. It is certainly true that every kind of engineering requires a disciplined process.

However, even the best process, by itself, is not enough to justify calling a practice

engineering. Consequently, this dissertation is not concerned with process as a central

theme.

An engineering model for software engineering must be independent of whatever

process is chosen. That is, Waterfall, Spiral, V-Model, Unified Process, and eXtreme

Programming are all candidate processes that can be used for software engineering

[Pre05], [PeP00], [Roy98]. As noted earlier, notwithstanding the progress in the domain

of software engineering process, this thesis is not about process. It is only mentioned

occasionally to reinforce the fact that our research did include this aspect of software

engineering.

It is also important to admit that software engineering will not be entirely

conformant to every aspect of every other kind of engineering. Software is unique in

many ways. One of the most important of these is the heavy use of conditional constructs

in a software product. The variety of alternative paths through a computer program

increases as the number of conditional statements increases and it is impossible to trace

 28

every path of a large program with many conditional statements. In this respect,

software’s most important capability, the source of its power, is arguably, also the

greatest source of its errors. One of the most important responsibilities of the software

engineer is to discover, assess, and either prevent or mitigate the risks – the potential for

failure -- that devolve from the ability to develop these conditional constructs. This is the

vital risk management and control responsibility that characterizes much of what we

expect in other kinds of engineering [RieN07], [Flo87, p. 151], [Gla99].

As noted above, a fundamental idea in all of engineering is control. The risks

alluded to in the previous paragraph demand that the software engineer understand the

methods and principles of controls as a facet of engineering. One challenge for anyone in

creating software is to understand how to create appropriate levels of control within a

design abstraction. Recall that Moore’s diagram also puts great emphasis on the

importance of control [Moo06, p. 5].

Another aspect of software engineering that needs more emphasis is design

metrics. Design metrics are common in other branches of engineering. Engineering has

always had a quantitative/mathematical viewpoint toward its artifacts. Although this is

sometimes seen as irrelevant by software practitioners, design metrics are as critical a

part of software engineering as it is in other kinds of engineering [RieJ07].

E. PERSONAL OBSERVATIONS

Any written work will reflect the primary interests of its author. This dissertation

is not different in that respect, particularly since this author has many years of experience

with software and the software industry. The title of this dissertation and much of its

content is influenced by my professional experience collaborating with engineers in other

disciplines where software was an essential component of the finished product. As noted

earlier, traditional engineers not directly involved in design and development of the

software, frequently ridicule software engineering as not being “real” engineering.

However, even the most severe critics of the term software engineering fully understand

the importance of “getting it right” when their own engineering designs depend on

correct software.

 29

While there is no shortage of software horror stories, there is seldom mention of

the thousands of software success stories that benefit from an engineering approach in

their development. In my own experience, these successes include a large number of

military software systems programmed in Ada such as the Hellfire missile, the Navy’s

Aegis system, BSY-2 submarine combat system, and others. Those successes also include

non-military software systems programmed in Ada such as Intelsat-VII [Rie94] (and

many other communications satellites), the Boeing 777 (and more recently, Boeing 787),

and railway management systems in the U.S. and Europe. The above named systems are

successful, in large part, because of the emphasis on engineering rather than

programming. The engineering is software-intensive, and the behavior of the software is

as dependent on software control mechanisms as it is on the mechanical and electronic

systems. Without sound software engineering, the above named systems would never

have become operational.

 30

THIS PAGE INTENTIONALLY LEFT BLANK

 31

III. THE ENGINEERING CONTEXT

A. PURPOSE OF THIS CHAPTER

1. Establishing Context

This chapter is intended to provide an engineering context for emerging

engineering disciplines, including software engineering. It will provide a foundation for

an engineering reference discipline suggested (and previously referenced) by Robert

Glass. The focus of this chapter is engineering, not software engineering. A later chapter

will focus on what aspects of software engineering conform to the context described here.

One purpose of this chapter is to demarcate engineering from non-engineering. This will

allow us to later determine whether any part of software engineering qualifies as an

engineering discipline.

2. Terminology

In this chapter, currently accepted engineering practice will be called classical

engineering, or traditional engineering as contrasted with non-traditional, non-classical

engineering. A key problem throughout discussions of engineering, especially software

engineering is the inconsistency of the linguistic model [Rie06].

B. CHAPTER THESIS

The thesis of this chapter is stated in the four points listed below. These are the

assumptions that provide the foundation for the rest of this dissertation.

1. Engineering is a unique and rigorous discipline with goals, principles,
rules, and practices for solutions to complex “real-world” problems that
are different from those in non-engineering disciplines.

2. A rigorous definition for engineering will conform to engineering goals,
principles, rules and practices, and would serve to demarcate engineering
from other, non-engineering, disciplines.

3. An engineering definition needs to be relevant to both classical/traditional
engineering as well as to newer, emerging engineering practices.

 32

4. An emerging engineering discipline, to become a legitimate branch of
engineering, must fall within the demarcation zone that conforms to
classical engineering.

C. ENGINEERING GOALS

Engineering is concerned with the practical issues necessary for creating products

and services that solve defined problems [Flo87], [Wri89]. According to published

descriptions on engineering, an engineered object/product, when used for its intended

purpose, will have utility. A review of the engineering literature shows that engineering

practice converges on the following goals.

1. Absence of Ambiguity

Prevention of and absence of ambiguity is an implied goal for an engineered

product or service. Therefore, one would exclude poetry engineering, psychotherapy

engineering, or child-rearing engineering. Although complete absence of ambiguity is the

goal, the presence of conflicting forces in a design may conspire to require some

ambiguity on some engineering projects. The inability to achieve total disambiguation in

a design often results in engineering trade-offs where even the ambiguities are prioritized.

Absence of ambiguity is just as essential for emerging engineering disciplines as

it is for traditional engineering. In traditional engineering, disambiguation has often been

possible because of the presence of natural forces and constraints. Natural forces such as

gravity, coefficient of friction, and speed of light are less ambiguous than literary or

social forces. Gerald Weinberg illustrates this with his “Mary had a little lamb,” example

where he discusses the ambiguity of the meanings of “had,” “lamb,” and even “Mary.”

Did Mary eat some lamb, or cheat a lamb? Is lamb a synonym for baby? Is Mary a

Biblical figure or just some woman who gave birth to a child [Wei89, pp. 94-97]?

Engineering does not involve supernatural, occult, or other such forces. Rather,

some forces originate in well-established intellectual disciplines such as mathematics,

computer science, or process management. Where natural forces are absent or supplanted

by non-natural forces (e.g., mathematical rigor), an engineering design must consider

 33

other forces and constraints to prevent or mitigate ambiguity. Sometimes, prevention of

ambiguity requires the introduction of non-natural constraints (e.g., logical properties

such as the Hoare Triple) [Ghezzi2002, p. 323].

2. Predictability

Predictability is a complement of disambiguation. This goal is sometimes known

as the “principle of least surprise” [Rie05]. Engineered products and services are intended

to be predictable during their use. An ethical trial lawyer, regardless of how carefully s/he

prepares a case, and notwithstanding a body of evidence that seems irrefutable, cannot

engineer a predictable outcome from a jury (short of bribery). A sporting event, even

when the opposing sides are unevenly matched, is never predictable at a level of

confidence required of engineering. Engineered products and processes are often

designed to statistically significant tolerances to ensure a high level of confidence in

predicting that each instance of the engineered product or service will dependably and

unambiguously carry out its intended purpose. Often pre-established standards dictate the

composition of an engineered product or service, and predictability is an outcome of the

constraints in those standards. Admittedly, engineered products and services sometimes

fall short of being fully predictable, but predictable outcome is an engineering goal, even

for emerging engineering disciplines.

3. Absence of Failure

In the early days of computer programming, the acronym, GIGO (garbage-in,

garbage-out) was a commonly accepted viewpoint. If the users entered bad data, it was

not considered the fault of the software designer. It was so-called, “user error.” The

program performs as intended if the user does the right thing. Under the GIGO doctrine,

once the program works, the user must use it correctly. Even today, many programming

languages and applications are designed with inherent opportunities for error, and the

programmer is expected to know how to use those languages correctly. This is somewhat

analogous to the strike-anywhere matches. If you use the match safely, there will be no

problem. If you allow the box of matches to linger on a shelf in your barn where the mice

 34

can gnaw on them and start a fire, its your own fault. In farm country, these matches are

often nicknamed, “barn burners.” The matches work exactly as intended, but also include

hazards.

It is not enough to ensure that something works as expected; it is equally

important to anticipate the potential for aberrations in the completed product. Prevention

of aberrant behavior is a central goal in every branch of engineering [RieS07]. Most

engineers focus part of their analysis and design process on reliability engineering.

Failure analysis requires evaluation of potential risks in a product, elimination of those

defects, and controls to deal with unknown defects should they be detected during

operations. Failure prevention is a byproduct of risk-management. Risk is concerned with

uncertainty. Each risk is a associated with a potential for failure. When a risk is

identified, and the level of risk exposure (RE) computed, an engineering design must

include accommodation for that risk. When a failure can occur, the engineer must

understand the causes of failure, predict when and where they might occur in a design,

and include design features that anticipate and tolerate those occurrences. It is a

fundamental principle that engineers try to design for unidentified risks and include

controls to respond to events than could not be predicted [Rie96].

“An airplane exhausted its fuel supply after the pilot incorrectly set the [software-

based] inertial navigation system to 270 instead of 027. Twelve people died when the

plane was forced to land in the Brazilian jungle” [VOL, p. 147]. GIGO is no longer an

acceptable excuse in engineering, including software engineering. Every engineer is

responsible for the absence of failure, including the software engineer.

4. Serviceability

Once a product or service is deployed, it should perform as expected in the

environment for which it was designed. Serviceability can be augmented by sub-goals

such as maintainability, modifiability, efficiency, and ease of use. The required

serviceability level will vary from one design to another, often depending on a trade-off

between economic constraints and dependability expectations.

 35

5. Economic Feasibility

One of the most important aspects of modern engineering is the need for

economic feasibility. This is a relatively recent goal in engineering. However, it has

become a guiding principle in most engineering projects of the past 100 years. If this goal

is not met, a proposed engineering project is almost sure to be cancelled.

Economics is not only about money. It is about scarcity. It nothing were scarce,

there would be no economic problems. The scarcity could be related to fuel capacity (as

in the airplane accident cited above), limitations on weight, or available memory for a

satellite computer system. Sometimes scarcity will manifest itself in terms of human

capital. That is, the kind of human skills needed for successful completion of a project

may be limited, not by pecuniary concerns, but the simple unavailability of people who

have those skills. Many other examples of scarcity in engineering could be given. The

main point is that the fundamental concern of economics is present in every engineering

design, and the more complex the design, the more intrusive this concern becomes [WRI,

p. 109], [VOL, p. 416]. Thuesen, et al., criticize those engineers who “restrict themselves

to consideration of physical factors and leave the economic and humanistic aspects of

engineering to others” [Thu89, p. 5].

6. Summary of Goals

There is no expectation that these goals will be exactly met in every engineering

project. Any engineering project involves trade-offs between conflicting goals along with

conflicting properties of the design elements. The problem of trade-offs between

conflicting goals is common to every engineering effort. Therefore, the goals are never

absolute.

D. ENGINEERING DEFINITIONS

In an earlier section, we reviewed definitions for software engineering. From

those definitions, we concluded that one of the best software engineering definitions was

from the original NATO conference: the application of engineering practices to the

 36

development and management of software. This chapter examines a context for software

engineering by reviewing definitions for classical engineering. Then after critiquing those

definitions, we offer a more suitable definition for engineering that will encompass many

emerging engineering disciplines, including software engineering while still demarcating

engineering from other kinds of disciplines.

1. Current Engineering Definitions

A discussion of some common definitions of engineering is appropriate when

presenting the engineering context for software engineering. This section summarizes a

few of those definitions from articles, textbooks, professional organizations, and

engineering folklore. We choose a few representative definitions, although there are

dozens more throughout the engineering literature.

a. ABET

The official Accrediting Board for Engineering Technologies (ABET)

adapts a definition of engineering from a very old source [ECPD58]:

… the profession in which knowledge of the mathematical and natural
sciences gained by study, experience, and practice is applied with
judgment to develop ways to utilize, economically, the materials and
forces of nature for the benefit of mankind [Die83].

We will have more to say about this definition in a later part of this

document. The principle things to note in this definition are the emphasis on “forces of

nature” and the word “economically” Holtzapple [Hol08, p. 97] describes this as a

“painfully contrived definition and notes that there are missing elements such as

creativity and problem-solving ability. The ABET definition does not really describe the

uniqueness of engineering. That is, it does not precisely demarcate engineering from non-

engineering.

 37

b. Shaw and Garlan

The ABET definition is not rigorous enough to demarcate engineering

from other disciplines. It fails to uniquely differentiate engineering from other design

activities. Shaw and Garlan offer a better definition.

...common usage refers to the disciplined application of scientific
knowledge to resolve conflicting constraints and requirements for
problems of immediate, practical significance [ShG96].

Some of the key ideas necessary for describing engineering are present in

that description. In the engineering section of their book, Shaw and Garlan expand on the

ABET definition with a description of five properties of engineering practice:

• cost-effective solutions. Engineering is not just about solving
problems; it is about solving problems with
economical use of all resources.

• practical problems ... Engineering of practical problems with
solutions matter outside the engineering
domain: the customers.

• scientific knowledge Engineering solves problems in a particular
way; by applying science, mathematics

• building things Engineering emphasizes solutions, which
are usually tangible artifacts

• conflicting constraints A central problem of all engineering

Shaw and Garlan continue:

Engineering relies on coding scientific knowledge about a technological
problem domain in a form that is directly useful to the practitioner,
thereby providing answers for questions that commonly occur in practice
... Engineering practice allows ordinary practitioners to create
sophisticated systems that work -- unspectacularly, perhaps, but reliably.

... engineering emerges from commercial exploitation to supplant craft;
modern engineering relies critically on adding scientific foundations to
craft and commercialization ... science and engineering support each other
... engineering generates good problems for science ... good scientific
problems often follow from an understanding of the problems [of]
engineering ...

 38

c. Rogers

The ABET definition does explicitly acknowledge the importance of

engineering experience. Vincenti [Vin90] in a book about aeronautical engineering places

great emphasis on engineering experience. Throughout the book, he repeats the

importance of experience, even for the well-educated engineer. Vincenti also quotes

British engineer G.F.C. Rogers with the following definition,

Engineering refers to the practice of organizing the design and
construction of any artifice which transforms the physical world around us
to meet some recognized need.

When Rogers crafted that definition, computer software was not regarded

as a part of the engineering problem. Consequently, the engineering of his time was

strictly concerned with the physical world. Vincenti adds the need for “operation” in the

definition, and then goes on to explain that organize is meant to convey a sense of “bring

into being,” “get together,” or “arrange.” He then examines the notion of “design” in

some depth making the activity of design the central idea derived from Rogers’ definition

an additional theme of his book on engineering.

d. Florman

Samuel Florman [Flo87] provides this interesting definition:

Business, government, academic, or individual efforts in which knowledge
or mathematical and/or natural sciences is employed in research,
development, design, manufacturing, systems engineering, or technical
operations with the objective of creating and/or delivering systems,
products, processes, and/or services of a technical nature and content for
use.

e. Wright

Paul Wright [Wri89] says this:

Engineering is a profession in which the knowledge of mathematics and
the natural sciences is applied with discretion and judgment in order to use
economically the materials and forces of nature for the benefit of people

 39

It differs from other learned professions in a number of ways: in the type
of service provided, in the training requirements for its practitioners, in the
diversity of its leadership, and in the lack of uniformity and rigidity in its
registration laws.

Engineers are concerned with the creation of structures, devices, and
systems for human use. In contrast to other professionals, engineers tend
to create machines, structures, processes, and the like for the use of groups
of people rather than for an individual. They seldom deal with the users of
their works or beneficiaries of their services, while other professionals
(e.g., attorneys, physicians, psychologists, and dentists) commonly do.

Wright’s definition is important because it emphasizes the professional

nature of engineering. The implication is one of adherence to high-standards, specialized

education, and recognition by a peer group that one has acquired the required credentials

to practice the given profession. An important distinction in this definition is the

acknowledgement of “processes” as a part of the domain of creation.

In this definition, the engineer is distant from the users or implementers of

a design. A surgeon may have a well-designed routine for a procedure, but because of the

immediacy of the surgeon in the carrying out of the design, it is not an engineering

activity, if we accept the definition given by Wright.

E. SUMMARY OF CURRENT DEFINITIONS

With the exception of the definition from Florman and the inclusion of processes

by Wright, the definitions rely on the concept of natural forces. Combining elements of

the representative definitions given, along with many others gleaned from the engineering

literature, primarily [Vol04], [Hol08], [Wri89], [Flo87], [Pet85], and [Pet96], leads to a

partial list of concepts and practices that characterize engineering;

1. organization

2. management (including risk management)

3. conflicting forces (including physical and non-physical forces)

4. practicality

5. creational/design process (slightly different from creative0

6. previous engineering experience

 40

7. accepted knowledge (usually settled knowledge)

8. tools of science

9. tools of mathematics

10. tools of logic (a specialized branch of mathematics)

11. leveraging technology

12. constraints (physical and non-physical)

13. design to tolerances

14. predictability

15. economic constraints and trade-offs

16. continuous control and feedback process

Taken together, these sixteen elements help us with our goal of demarcating

engineering from other disciplines. Taken independently, they do not. Even natural forces

are evident in many kinds of non-engineering crafts such as pottery and woodcarving.

F. TRADITIONAL VIEW IS TOO NARROW

Many published definitions, including the one from ABET, have placed emphasis

on the narrow viewpoint where “forces of nature” is an essential part of the definition of

engineering. With the emergence of new kinds of engineering, such a view is too narrow.

Contemporary society requires dependable products and services. This need demands that

those charged with developing those products and services understand the engineering

model. They must meet the challenges of applying engineering goals, principles,

methods, and practices in this kind of development, including physical entities and non-

physical products, processes, and services.

G. NEEDED: AN UPDATED DEFINITION

Modern engineering is increasingly concerned with the design of processes, some

of which are still governed by or include an element dependent on natural forces.

However, natural forces are not always the controlling or even the constraining element

of an engineering design. Increasingly, human factors, software controls, and process

flow are emerging as essential elements of an engineered design. It is human factors that

 41

guide the decision to engineer a product in a certain way. For example, it might be known

that, under a given set of circumstances, a knob is more conveniently dialed clockwise

instead of counter-clockwise and the engineering design must account for that factor. Or,

the economics of a proposed design may suggest that the engineer consider a different set

of materials from those which might be ideal to enable lower manufacturing costs, while

being careful not to compromise the safety and security of those who will use the

product. All of the above discussion points to a model of engineering that is much more

complex and comprehensive than the oft-espoused purely mechanical view of

engineering [Voland2004]. The quote from astronaut, Alan Shepard regarding the

economics of space systems design is instructive. Just prior to launch and noted, Shepard

glanced around the cabin and was struck with the thought, “all of this was built by the

lowest bidder” [Shepard].

The updated engineering definition must accommodate emerging engineering

practices, not just the traditional engineering disciplines with their exclusionary emphasis

on “forces of nature.” At the same time, once an engineering definition is accepted that

demarcates engineering from non-engineering, any aspirant to the engineering club must

conform to that definition. This includes software engineering.

1. Improving the Definition

a. Current Definitions

Although the concept of “natural forces” and “physical world” have been

important in traditional engineering, modern engineering requires the development of

new practices across a larger range of problems. These new engineering practices require

that we raise the level of abstraction for engineering, and broaden its domain in subtle,

complex, and increasingly sophisticated ways. The associated problems and constraints

of those practices are equal in importance to the natural forces model that has served

traditional engineering. As new members of modern engineering community, there is the

same demand for discipline, knowledge, and attention to technical detail as has been

required in mechanical, electrical, civil, and chemical engineering. Insistence on an

 42

engineering governed primarily by natural forces serves only to discourage and delay the

benefits that can derive from the application of engineering practices necessary in an

increasingly technological society.

An examination of the many contemporary definitions for engineering

(and software engineering) for our review of the literature made clear that the currently

published definitions:

• are not inclusive enough to make a clear demarcation between engineering
and other activities,

• fail to account for the emerging engineering disciplines that have become
essential for modern society,

• place unnecessary restrictions on what engineering is, and

• fall short of what engineering could be.

It is appropriate for engineering definitions to be conservative with regard

to what can be classified as engineering. Even so, a comprehensive definition must also

be inclusive enough to include emerging engineering disciplines. The goals for

engineering stated in Chapter III are essential for engineering. Those goals are also

conservative, but achieving them does not require “forces of nature,” as that term is

usually understood.

b. The Engineer

Ultimately, engineering is performed by human beings [Pet86]. A

definition of engineering must also account for the professional qualities of the practicing

engineer. Those qualities are summed up in the word, “responsibility” [Flo87], [Wri89].

The conservative character – the very personality -- of the professional engineers is

driven by the word, responsibility. The need to be responsible is one reason why

engineers are reluctant to abandon the idea that natural forces are so central to

engineering. It is an old-saw in engineering that, “Gravity is cheap and dependable.” The

responsible engineer favors practices that are known to be dependable within known

economic constraints. That is, engineering practices strive to support the goals described

 43

earlier: unambiguous, dependable, serviceable, and economical. Engineers are also taught

to watch for what might go wrong and develop safeguards and controls to prevent

mistakes from occurring in the operational version of the product they have designed.

c. The Contemporary World of Engineering

Modern engineering requires a definition, for emerging engineering

disciplines, that supports the goals, principles, and practices of engineering as well as the

character of the engineer. The widespread introduction of new technologies (including

software) that control everything from medical devices to transportation equipment

indicates that such a definition must also include the many new and non-traditional

emerging engineering practices. Any practice that falls short of our criteria (as

epitomized in the forthcoming definition) also falls short of being a full member of the

engineering community. A credible definition must sustain the rigor that affirms the

values of traditional engineering while opening the door to new kinds of engineering.

To insist that we cannot engineer anything in the absence of natural forces

is to abandon that very trait of responsibility cited earlier. The fact that something is

difficult to engineer is all the more reason to seek an engineering model that works for it.

This is especially true when we are building systems where risks to human safety or

economic disaster can result. Giving up in exasperation because we are unable to find

immediate engineering solutions to seemingly intractable problems contradicts one of the

goals of of engineering stated earlier: an overarching dedication to responsibility.

Expansion of the range for engineering solution-space is not simply a nice

idea. In modern society, it is an essential paradigm that cannot be ignored simply because

some classical engineers fail to see it as a real engineering discipline. We cannot give up

on finding engineering models for emerging engineering disciplines just because it is

hard.

d. A Revised Definition of Engineering

Given the discussion above, we provide, below, a composite definition

that demarcates engineering from other activities. This definition serves as the core

 44

argument for the rest of this dissertation, especially in our chapter on software

engineering. Therefore, we also describe, in some depth, what each of the components

means.

Figure 3. Revised Definition of Engineering

Each component of that definition is important to the overall

understanding of what makes engineering different from other creational practices.

Taken together the elements of the definition converge on the important engineering

attitude of “responsibility” cited earlier.

Note that this definition contains no value judgments such as ABET’s

‘benefit to mankind.’ There is no mention of ‘natural forces.’ Rather, we are concerned,

in modern engineering, with many kinds of forces, not all of which are natural forces. A

key item in the definition is the word controlled. Engineers incorporate many kinds of

control in their designs. Control is used for managing risk, errors, and feedback, as well

as for ensuring that a design satisfies its own goals, objectives, and obligations. The

notion of control is of fundamental importance in our later discussion of software

engineering. Where natural forces are absent, other kinds of controls are imperative.

2. Summarizing the Updated Definition

The elements of the above definition of engineering support the goals, principles,

rules, and practices of engineering. It preserves the requisite discipline expected by the

professional engineer. It allows for the development of new kinds of tools in the support

of modern engineering. It opens the opportunities to develop new fields of engineering.

Finally, it gives us deeper insight into the nature of engineering practice.

Engineering is the organization, application, and management of settled
(dependable) knowledge using the tools of science, mathematics, and logic,
along with knowledge, experience, and artifacts derived from previous
engineering efforts, for reconciling conflicting forces/constraints, controlled
within defined tolerances, to effect an economical, risk-averse, maintainable,
fault-tolerant design toward the goal of a predictable outcome.

 45

This summary is derived from the definition and expanded upon in the next

chapter.

1. Dependable/Settled Knowledge

2. Force(s)

3. Control

4. Predictable outcome

5. Tolerances and Constraints

6. Economics

7. Resource management

8. Design but not implementation of design

Other aspects of engineering, many of which involve processes, policies, statutory

regulations, and specialized tools could also be included, but are not in the scope of this

present work. They do not demarcate engineering from other practices. Even the ethical

practices and licensing issues, while essential to professional engineering practice, are not

essential to a demarcating definition.

This chapter laid out the boundaries or demarcation line for what is or is not

engineering. The demarcation led to a more comprehensive definition for engineering,

one that satisfies the continual emergence of new kinds of engineering. Subsequent

chapters will explore specific topics related to these boundaries in greater depth.

 46

THIS PAGE INTENTIONALLY LEFT BLANK

 47

IV. ELEMENTS OF THE ENGINEERING CONTEXT?

A. INTRODUCTION

The previous chapter enumerated the elements for demarcating engineering from

other disciplines. This chapter looks at some of those elements, point-by-point. We

derived much of the information for this and the preceding chapter from books on

engineering, especially the book titled “Introduction to Engineering” by Simon Wright,

supplemented by the many insights from Robert Florman and Henry Petroski [Wri89],

[Flo87], [Pet85], along with many other textbooks on engineering. The focus is on

engineering, not on software engineering. A later chapter on software engineering will

use the elements described in this chapter. We choose not to footnote every statement

since most engineering textbooks are in agreement with regard to our less controversial

observations.

B. DESIGN

One of the things that sets engineering apart from many other creational

disciplines (e.g., craftsmanship or skilled trade) is the emphasis on design separate from

implementation. Architecture is also about design and we will deal with the differences

between architecture and engineering elsewhere in this document. Engineering is largely

different from craftsmanship in two ways: 1) immediacy of the design and 2) realization

of a design, 3) concern for failure. The engineer, and there are exceptions, is often

removed from the site where the realization of the design will be deployed. Further, the

design may include a long lead-time of reviews and approvals before it is given

authorization for construction.

In craftsmanship and other non-engineering activities (e.g., computer

programming), the craftsperson responsible for the design is also responsible for its

construction. This immediacy between design and construction is often regarded as a

good thing in the software domain, and new so-called “agile” processes are touting this as

 48

the way to create software that is on-time, within budget, works as intended, and is low

risk. Choosing an agile process does not absolve the software developers from producing

an engineering design when engineering is required.

C. THE ROLE OF KNOWLEDGE

1. Settled/Dependable Knowledge

We use the word “settled” to describe engineering knowledge. Settled knowledge

implies the agreed-upon scientific and engineering knowledge fundamental to most kinds

of engineering. Above all, it must be dependable knowledge. In fact, the notion of

dependable knowledge might be the most important starting point for any kind of

engineering. The notion that knowledge must originate in “nature” overlooks the many

kinds of dependable knowledge that are derived from experience and experimentation

rather than from the pure sciences. Engineers often depend on a range of acceptable

values or statistical significance for engineering to “best fit.” This knowledge is often use

for designing to predetermined tolerances.

Vincenti has this to say about engineering knowledge:

Engineers, unlike physicists, are after useful artifacts and must predict the
performance of the objects they design ... and this fact is essential to their
analysis [Vin90, p. 130].

Vincenti goes on to list some of the kinds of knowledge necessary to produce

predictable results. These can be summarized as follows:

• Knowledge from previous engineering experience

• Artifacts from previous engineering projects

• Standards and published data sheets and tables of data

• Information from stakeholder requirements development

• Continual discoveries in many kinds of science

Knowledge evolves with each new cycle of engineering; that is, a new collection

of knowledge from previous engineering projects, leads to an increase in the knowledge

that can be used in future engineering projects. In this way, engineering continues to

 49

reinforce its own professional standing. There are many accounts of Thomas Edison

searching for a filament for his light-bulb. Most of these say he tried 8,000 different kinds

of material. When he was finally successful, he noted that he now knew 8,000 things do

not work along with one material that does. This is how engineering knowledge

advances: both failure and success leading to an increase in knowledge that can be used

in successive engineering projects.

The concept of settled knowledge is somewhat analogous to the concept of settled

law. Every engineering discipline, including software engineering, uses settled

knowledge. The world of settled knowledge includes settled science, settled mathematics

and knowledge gained from previous engineering practice (i.e., experience). Engineering

is rarely about pure research even though some engineers make their contribution through

research. The engineer is designing solutions to real problems. Use of settled knowledge,

including data in published tables and statutory codes, along with prior experience is

critical to engineering success. To reduce the amount of surprise in the resulting design,

the engineer often depends on that published knowledge.

2. Knowledge from Science

Knowledge might be thought of as an organized composite of information.

Science is often the process that results in that organization. Engineering, while often

concerned with deriving new knowledge from existing information, is also focused on

using that information in its already organized form: settled knowledge.

There is no disagreement among engineers that settled science is a fundamental

requirement for engineering. The engineer needs to know what kind of settled knowledge

from science is most appropriate for the kind of problems presented. This is true of new

realms of engineering as well as well-established classical engineering fields.

To illustrate the application of settled knowledge from science we can use the

following example from Shaw and Garlan. Chemistry is a science. Chemical engineering

depends on the science of chemistry [Sha96]. A science is mainly concerned with the

discovery and recording of knowledge. An engineering design is concerned with the

application of that knowledge, along with knowledge from experience with the intent of a

 50

predictable outcome. A chemical experiment is designed to discover some new

phenomena; and surprise is often greeted with joy. An engineering experiment is

disappointing if it does not produce the expected result or solve the intended problem.

Predictable outcome is the concern in engineering [Rie05].

3. Knowledge from Engineering Experience

Vincenti makes the point that engineering knowledge is often derived from what

we learn in previous engineering experience [Vin90]. In his book on engineering practice,

Vincenti describes many engineering decisions in the discipline of aircraft design that

could not have been made simply by relying on natural science and a collection of

equations. Sometimes the engineering experience is as simple as knowing that a pilot

turning a knob clockwise in a cockpit is more effective than turning it counter-clockwise,

or that a flat toggle-switch on a gun-turret is better than a rounded one.

The product of engineering is expect to work as intended, based on some set of

stated requirements. Surprises are unwelcome [Rie05]. While some theoretical elements

may be incorporated into prototypes and experimental designs, the engineered product

relies mainly on what is known, not on guesswork, theory, or ‘hit or miss’ tactics. Large

engineering designs that work are often built from the knowledge gained through smaller

designs that already behave in predictable ways. The smaller designs, sometimes referred

to in software practice as modules, are expected to be well-understood, have predictable

behavior, published metrics, and standard interfaces. Knowledge in standard interfaces

helps the engineer organize the smaller designs according to a commonly understood, and

known-to-be-dependable, set of protocols.

As noted earlier, settled knowledge must sometimes be revised to account for new

scientific discoveries. This means that settled knowledge is sometimes only settled until

science or experience unsettles it. Often, the engineer is required to accept “good

enough” knowledge, settled for now, but subject to future alteration. Although engineers

may infer new information through mathematical reasoning, those inferences originate in

settled knowledge.

 51

Settled knowledge does not guarantee the success of an engineering project. That

knowledge must be used correctly in a given design. The engineer must bring the tools of

reasoning for a design that involves new configurations of what is known. For example,

we may know the coefficient of friction for two entities, but we must also reason about

what happens when they are combined into a design. Does one set of coefficients

potentially cancel the effect of the other? Software engineers often define a set of

constraints for a module. Does the complexity of a constraint sometimes become self-

contradictory? Engineers often need to refine their understanding of the relationships

between design artifacts and the corresponding constraints derived from settled

knowledge. This requires experimentation, prototyping, testing, and refactoring to ensure

the validity of that knowledge in its new context

Even reusable components, the ultimate in using settled knowledge, are subject to

the need for confirmability when incorporated into a new design. The maiden-flight of

the Ariane V rocket demonstrated how a perfectly good component might behave as

expected and still give the wrong result in a new design [SOM-web]. The Ariane V

reused software components from Ariane IV that were known to work properly on that

rocket, but failed to consider the changes in the design of Ariane V. This is analogous to

a physician giving a patient a perfectly good medicine that works for almost everyone

without considering medical history of the person for who it is being prescribed.

Engineers are required to evaluate settled knowledge in the new context where it is

expected to be used. They must also ask the question, “How could it fail?” and design for

the answer to that question.

D. FORCE(S)

1. The Concept of Force

The concept of force [Jam99], and reconciliation of conflicting forces, is a

fundamental concern in every facet of engineering. Engineers, in the physical world,

usually think of force as something that “causes or changes motion or displacement”

[Ste05]. Each displacement can also be thought of as a change-of-state.

 52

2. Non-Physical Forces

In modern engineering, the forces extend beyond those imposed by Mother

Nature. These include economic, statutory, social, political, and ethical forces [Hol08].

We devote a separate section of this chapter to economic forces, but leave most of the

discussion of other non-physical forces to people such as Samuel Florman [Flo87].

Statutory forces have become more and more important in engineering.

Governmental standards and codes often restrict what kind of design an engineer may

present for implementation. One might say that building codes reflect a reasoned body of

knowledge regarding physical forces (e.g., design to withstand earthquakes), but that is

only part of the story. Building codes also derive from community standards regarding

esthetics, bigotry, and economics. The chemical engineer may be concerned with human

factors such a flavor or scent, which are not so easy to engineer, notwithstanding their

natural properties. A colleague of mine at Cornell is a chemical engineer specializing in

developing natural flavors for artificial foods. Predictability in flavor-engineering is an

elusive goal, and depends heavily on a research component, even as existing knowledge

contributes to its development. Also, some components of an otherwise successful food

design violate statutory constraints.

3. Forces of Nature

The ABET definition puts emphasis on designing within constraints imposed by

the forces of nature. There is an underlying epistemological question that could be

argued regarding the theory of nature. Nature can be framed in terms of physics. Physics,

in turn, can be examined using mathematics. Mathematics can lead to abstractions that

predict abstract concepts of physics that are not directly observable in classical physics. A

kind of “chicken or egg” ontological argument can be formulated for nature that inquires

about the precedence of mathematics over physics or physics over mathematics.

Epistemology and ontology, while of theoretical interest, are beyond the practical

concern of this present inquiry.

 53

It is enough, at this point, to agree that managing nature, using mathematics, has

been one of the principle concerns of traditional engineering over the centuries. Nature,

alone, is not enough. Designing within the constraints of nature is also a common thread

in activities such as baking a pie, performing an appendectomy, or changing a diaper.

Figure 4. Intersection of Non-Engineering and Engineering

For example, in the abstract Venn Diagram (above), we might see that a chemical

engineer designing a pipe to carry a caustic liquid from one part of a production facility

to another. S/he is concerned with natural forces, and has standard data about the

materials involved to calculate the effectiveness of a design. At the same time, the

economic considerations and safety issues are essential in planning an effective design.

On the other hand, a surgeon doing well-planned open-heart surgery is beyond

predictable design. As the surgeon’s hands slosh around in the chest cavity of a patient,

s/he could be required to make sudden adjustments in the procedure if a vessel begins to

bleed or the heart stops in mid-suturing.

There is an immediacy issue in these scenarios. Both the chemical engineer and

the surgeon are dealing with natural forces. They are both using their knowledge to do the

job. However, there is urgency in the work of the surgeon (or surgical team) that would

be unusual in most kinds of engineering. One would be hard-pressed to classify the

efforts of a surgeon, regardless of skill level, as engineering.

Figure 5. Engineering , Software Engineering and Nature

Nature

Engineering

non-Engineering

Nature?
Engineering

Software Engineering

 54

In the above diagram, one of the central issues is highlighted: the question of

natural forces in the design, development, and realization of software. Some in the

software engineering community would insist that every construct that can be described

mathematically is a natural force. Others will note that, in real-time concurrent software

systems, time is a natural force and the one force managed almost exclusively by the

software design [Shaw2001, pp. 91-149]. Further, a careful study of the complexity of

interactions between the elements of concurrent communicating processes in a real-time

system involves serious engineering problems, not programming problems [Burns01] and

also [Shaw2001].

Most contemporary engineers will agree that engineering practice involves more

elements than the constraints imposed by nature. However, some will also insist that,

without the constraints of nature, “real” engineering is absent. This restrictively-framed,

natural forces viewpoint, is a common, exclusionary, theme in classical engineering. As

noted earlier, there is some comfort the engineer can take from knowing that the

immutable laws of nature are in play for a final design. However, to ignore the dynamics

of the non-natural (e.g., social and economic forces) world for modern engineering is like

wearing a pair of horse-blinders.

4. Conflicting Forces

The engineering definition provided in this dissertation includes the phrase,

“reconciliation of conflicting forces.” Sometimes this is stated as simply as “resolving

trade-offs.” All engineering involves trade-offs. Conflicting forces, in modern

engineering, is an idea that goes far beyond natural forces.

If there were no conflicting forces, there would be no requirement for

engineering. Everything would simply fit together as if designed that way by nature.

Conflicting forces include economic constraints, statutory forces, risk management

forces, human factors conflicts, and many more. Note that conflict, in this sense, is not

like the kind of dialectic conflict that characterizes Hegelian philosophy or even the kind

of conflict resolution that one finds in literature, competitive games, and social

interactions.

 55

Reconciliation of conflicting forces usually requires the engineer to reason with

well-defined tools from science, mathematics, and logic. This means that the engineer

can select from an array of tools for the disciplined creation of a design. Not every set of

conflicting forces suggests the same kind of science, the same kind of mathematics, or the

same kind of reasoning skills. Sometimes an engineer needs to invent some new tools,

often leveraging the settled knowledge of the existing tools.

E. RISK MANAGEMENT AND CONTROLS

Risk management for an engineering design must be based on realistic

knowledge, not guesswork [Hall97], [Jon94], [Jon96], [HeK92], [Gel06]. Risk is

fundamentally about uncertainty, and the engineer must design with that reality always in

mind. The awareness of risks, anticipated and unexpected, leads to the need for

engineering designs to include controls to prevent failure.

For complex engineering projects, it is not enough to simply design a product and

turn it loose to do its work. The design of controls is another fundamental aspect of

engineering that demarcates it from other disciplines. A part engineering design is to

understand how to account for and plan for both the expected and unexpected deviations

for the deployed design. An entire subset of process engineering called control

engineering deals with this category of concerns [Ogata97]. In a Systems Engineering

curriculum, control engineering is a required course of study. Every engineering effort

involves some consideration for controls in the product or process, including design for

the unexpected events that may occur [Rie98]. Practitioners in emerging engineering

disciplines, including software engineers, must subscribe to this notion if they are to be

credible as engineers.

F. PREDICTABILITY (PREDICTABLE OUTCOME)

The earlier quote from Vincenti mentions predictability. In engineering, the

“principle of least surprise” remains important. This principle, spoken or unspoken, is a

common thread throughout all serious engineering. A courtroom battle, even when the

case in question seems to be “open and shut,” cannot guarantee a predictable result. Two

 56

boxers may be unequal in skill, one vastly superior, but neither boxer can be guaranteed a

predictable outcome. The “lucky punch,” while rare, does occur. Engineers work

cooperatively to resolve conflicting forces to achieve a predictable outcome.

When engineers work together, they are in a cooperative, not a competitive

enterprise. They are participating, as a team, in the reconciliation of conflicting forces

and designing controls to ensure the design will be stable and predictable under all

anticipated (and sometimes unanticipated) circumstances. Even as they disagree on

approaches to the design, becoming themselves, conflicting forces, they are ultimately

committed to solving the conflicting forces for a predictable outcome, not simply for

winning a game.

The concept of predictable outcome is not the same as perfect, exact, or absolute

outcome. Rather, predictable, in the engineering sense, includes being within the range of

acceptable tolerances over a defined set of constraints. Consequently, engineers apply,

whenever possible, a set of measurable constraints (often from standard/published data

sheets) over a design that has the potential for unexpected failure. One can think of these

constraints as analogous to fuses or circuit-breakers [RIE98]. As with a simple fuse,

when one of the design constraints is exceeded, detection of that violation can safely shut

down a device/system, or in some circumstances, restores the engineered product to a

stable state, a state with predictable attributes and behavior.

An important property of predictable outcome is the prevention of failure.

This theme runs throughout the work of Petroski in his discussions of the design of a

mechanical pencil, the engineering of an aluminum can, and his description of the earlier

failures in commercial jet aircraft designs [Pet89]. It is also a central theme in

engineering textbooks, regardless of the branch of engineering being studied.

As engineers strive for a predictable outcome, they reason about the potential for

failure in their designs, and exercise multiple tests against both the designs and the

prototypes. As Petroski notes:

An idea that unifies all of engineering is the concept of failure. Virtually
every calculation an engineer performs ..., is a failure calculation... to ...
provide the limits that cannot be exceeded ...

 57

As an engineer calculates the forces and deflections of a trial design, each
resulting numerical calculation takes on meaning and becomes acceptable
only in comparison to failure criteria, which may have been determined by
careful laboratory experiments on the materials and components in
question.

What distinguishes an engineer from a technician is largely the ability to
formulate and carry out the detailed calculations of forces, deflections,
concentrations, and flows, voltages and currents, which are required to test
a proposed design on paper with regard to failure criteria...

The ability to calculate is the ability to predict the performance of a design
before it is built and tested ... Calculations that indicate failure conditions
in a design enable the engineer to modify and re-modify the design until it
is ready to be realized [Pet85].

Engineering failures do occur in all engineering domains. One famous example,

the Tacoma Narrows Bridge, sometimes known as “Galloping Gertie,” has become a case

study in most books about engineering [Vol04]. Voland makes the point,

... the collapse ... should remind engineers that they must be familiar with
historical design failures if they want to avoid repeating the mistakes of
the past.

P.G. Neumann of SRI maintains a column in Association Computing Machinery

(ACM) Software Engineering Notes (SEN) in which he regularly reports on failures

related to technology. Neumann’s book [Neu95] on risks should be a motivating jeremiad

for software practitioners. The lesson in Neumann’s book is that, even with our best

engineering efforts, it is impossible to always predict failure. Often the failures are

traceable to inadequate requirements analysis, unpredictable environmental factors, or

simply failing to ask all the questions necessary to prevent operational aberrations. Also,

engineers, especially software engineers, are frequently stretching the limits of what they

are trying to accomplish to beyond the limits of what they actually know. That is, they are

presenting designs at the boundary where research stops and engineering begins, even as

they strive for predictable outcome. This is one of the major risks in the effort to apply

engineering practices to the creation of dependable technology-based products and

services.

 58

G. CONSTRAINTS AND TOLERANCES

For the traditional engineer constraints and tolerances, along with risks, are taken

as a given concern of every problem domain. The constraints of the natural world are

always present in physical engineering. These are augmented by additional constraints

from the non-physical world. They are part of the settled knowledge and require the

trade-off analysis that leads to reconciliation of conflicting constraints and forces.

The phrase, “design to constraints/tolerances” poses a particularly difficult

problem for software practice. Chapter VIII examines this concept in terms of software

engineering.

H. ECONOMICS

Economics, as noted earlier, is about scarcity. Scarcity is concerned with many

kinds of resources. Financial scarcity is one, but only one of them. Others could include

limited space for deployment of some design; limited fuel capacity for launching an

artifact of a given weight in a communication satellite; too low a velocity of some

moving object; insufficient time for a particular process to complete before its results are

required. Scarcity might govern the speed of a cruise missile that needs sufficient

computation power to evaluate “event horizons.”

The economics of an engineering problem are central to every solution. Without

an economic consideration, there is no engineering. An engineering design that ignores

the economic factors of that design falls short of being a real engineering solution. In a

history of engineering, we find the following passage.

When it became obvious in the early nineteenth century that ... a structure
or mechanical device designed to carry maximum contemplated loads or
perform a specific function and no more was more economical than one
designed on the basis of ‘experience,’ engineering science began to
develop rapidly [Kwdk90].

 59

Even the ABET definition, quoted earlier, notes the importance of economics in

engineering. When Jack Kilby was inspired to design a new approach to integrated

circuits, he was largely influenced by his father’s (another engineer) admonition that

engineering was as much an exercise in economics (balancing resources) as it was the

leveraging of science.

If nothing were scarce, there would be no need for any kind of economics.

Example (from personal experience on a project):
Consider the case of a communications satellite with on-board computers
[Rie94]. The ideal computer would have been a micro-miniaturized
computer for this application. Ambient radiation demanded a radiation-
hardened computer instead. This, in turn, led to the choice of a computer
that was not a miniaturized as hoped for. Weight considerations, along
with limited on-board real-estate dictated a MIL-STD 1750A. These
decisions, based on scarcity (economics) led to some exceptional
engineering problems in the design of the software environment. In this
case, scarcity required software engineering solutions commensurate with
the economics of the environment.

I. STATE TRANSITIONS AND DISPLACEMENT

Physical displacement is often measured as then change of one object relative to

another object. This change is sometimes called the context of motion. The context of

motion is also a change of state. By raising the level of abstraction from context of motion

to change of state, we broaden the meaning of change. Engineering is about state change,

whether physical or non-physical.

Research in physics along with engineering experience provides volumes of

formulae (settled knowledge) that describe state/displacement transitions. Engineers

benefit daily from those published results and use that knowledge in the design of new

products and services, including software, new medicines, and new kinds of food

products.

J. OTHER ASPECTS OF ENGINEERING

The concerns of engineering as described so far are not restricted to those

enumerated in the definition. We summarize a few of those concerns below for the

 60

purpose of presenting a more complete view. However, the following concerns are

present in many other creational and project-oriented disciplines, and they are not unique

to engineering.

While there are many other topics that could be covered in this discussion, few

qualify as specific to engineering. These include human factors, development processes,

project planning, and many more. A longer, extended version of this dissertation, in the

form of a complete book, will present an expanded discussion of these issues as part of

the total picture. For this dissertation, we have chosen to bound the discussion to those

issues inherent in any kind of engineering, and to focus on those that, when combined as

a set of topics, define engineering as a unique discipline. This combination of topics,

when considered in the context of the definition given at the beginning of this chapter,

sets the tone for the final chapter in which we explore the notion of whether any part of

software engineering practice conforms to the definition provided in this chapter.

K. CHAPTER SUMMARY

An effective engineering model for some emerging engineering disciplines can be

both elusive and incomplete. It is necessary to re-frame the entire concept of engineering

so it is inclusive of, not only software, but also the many other engineering candidates

(e.g., genetic engineering).

Even as we reframe and/or redefine the notion of engineering, we must remain

faithful to the underlying goals, principles, and demands of engineering. The discipline

must be our guide, and the rigor must be our master. When the discipline falls short of

what is required under the new definition given in this chapter, that discipline must be

excluded from the engineering club. It might be a rigorous model of development, but it

might also fall short of qualifying as a fully-developed engineering practice.

No one can disagree with the fact that software now permeates the design of

nearly every artifact of modern life. This includes fly-by-wire commercial aircraft, digital

cameras, high-definition television sets, portable telephones, software-based automotive

control systems, children’s toys, and a long list of other examples. One consequence of

this fact is that software safety has become an important area of research and study. By

 61

safety, we mean to include physical safety, safety of such things as financial records,

personal information (e.g., identity theft), government security systems, and hazard

information management. All of these domains, and others, are now controlled by

software. Anyone who asserts that an engineering model is unnecessary to manage risks

inherent in such systems is simply not paying attention. Therefore, both classical

engineers (especially systems engineers) and software engineers must collaborate,

without bickering about what is or is not engineering to address these concerns. Below is

a tentative matrix for evaluating the maturity of an emerging engineering discipline. This

is not a decisive model and it might vary greatly by discipline, but it is offered as a

starting point for future evaluations.

Emerging Engineering Level Level Level Level Level Level
 Zero One Two Three Four Five
Consistent Process No Yes Yes Yes Yes Yes
Design Metrics No No Yes Some Some Yes
Controls-based Design No No No No Some Yes
Natural Forces Govern None None None None Some Yes
Professional Education Required No No No Some Yes Yes
Design to Tolerances No No No Some Some Yes
Constrained Design No No Yes Yes Yes Yes
Low or No Ambiguity No No No Yes Yes Yes
Reconcile Conflicting Forces No Yes Yes Yes Yes Yes
Predictable Outcome No No No Some Yes Yes
Can Design for Failure No No No Some Yes Yes
Risk Management in Place No No Some Yes Yes Yes
Linguistic Continuity No No Yes Yes Yes Yes

Table 2. Tentative Matrix for Evaluating Maturity of Emerging Engineering Discipline

Each level represents a maturity index. Readers will recognize this as reminiscent

of the work of Watts Humphrey’s Capability Maturity Model [Hum89]. Only at the

highest level do we required natural forces. At Level Zero, we assume that everything is

ad hoc or dependent on the star designer, the superhero, or the exceptional individual.

Level One is a little better organized. At Level Two, we assume there is an exceptional

manager supervising the designers. At Level Three, there are some standards in place.

 62

Levels Three, Four, and Five begin to converge on good engineering practices. For

emerging engineering disciplines, they need to get to a minimum of Level Four to be

regarded as real engineering practices.

 63

V. SOFTWARE ENGINEERING AS ENGINEERING

A. INTRODUCTION

Previous chapters examined the fundamental concepts of engineering. Of special

importance were the chapters titled, “The Engineering Context,” (Chapter III) and

“Elements of the Engineering Context” (Chapter IV) where we presented a set of

essential properties for any discipline that aspires to be an accepted member of the

engineering community. This was preparation for the present chapter which examines the

legitimacy of software engineering as engineering. If the term software engineering is to

have any credibility, the principles and practices described for engineering must also

apply. As noted earlier, Glass, et al., call this a reference discipline and suggest that the

lack of a reference discipline is one of the missing elements in finding a discipline of

software engineering.

We acknowledge that the number of available examples of engineered software is

much smaller than we would like. However, many of the tools, ideas, and methods for a

professional practice of software engineering that conforms more closely to engineering

are already in place.

B. PURPOSE OF THIS CHAPTER

This chapter is focused on the specific reference engineering concerns that map

software engineering with traditional engineering. The topic of designing to tolerances, a

design metrics concept fundamental to most of standard engineering, is deferred to later

chapter.

The question, “Does software engineering conform to the level of rigor demanded

of other branches of engineering,” is addressed here. It will be clear that not all software

development activities can be accorded the legitimacy of engineering. As evidenced by

the survey mentioned earlier in another chapter, many people in the software field, as

well as those in other engineering fields agree that many computer programming

 64

practices fall far short of engineering. Even so, the attempt at mapping some existing and

potential software practices to what is expected of standard/traditional engineering may

open the doorway into future research and provide a context that can guide that future

research. This may eventually lead to a stronger model for software engineering as a

legitimate engineering discipline. The chapter attempts to establish the engineering bona

fides for at least some aspects of software practice.

C. CHAPTER THESIS STATEMENT

1. Software engineering is an emerging engineering discipline with the
promise of eventually becoming a fully eligible member of the
engineering community. It needs to be examined in the context of an
engineering reference discipline.

2. Some current software practices do correspond to what would be expected
of engineering. A point-by-point mapping of traditional engineering model
reveals there is some conformity between practices of traditional
engineering and software engineering.

3. Many contemporary software practices fall short of what would be
expected from the rigor of other contemporary engineering disciplines.
Computer programming, as currently practiced, is not an engineering
discipline. Instead, as Pete McBreen [MCB] emphasizes in his book on
this subject, most computer programming is best characterized as
craftsmanship, not engineering.

4. Software practice must continue to evolve as an authentic engineering
discipline, not for its own sake, but for the society that is increasingly
vulnerable to defects and hazards in engineered products that depend on
software as an intrinsic part of their total design.

D. SOFTWARE CONTEXT

1. The Algorithm Issue

Computer programs have been described in many ways, both formally and

informally. Some descriptions use mathematical notation. Other descriptions rely on

natural language. Almost every attempt at a brief description is incomplete and

oversimplified. There are so many ways to design computer programs, and so many

language models for doing so, that a common description of programming is “nailing

jello to a wall.” From an engineering perspective this is not satisfactory.

 65

One of the most often quoted statements about computer software is the cogent

and laconic description of software from Niklaus Wirth [Wir1976] in his famous

definition of a computer program:

Program = Algorithms + Data

In its most elementary form, software is simply a computer program. However,

modern software engineering is characterized by more than algorithms and data as

evidenced in examples from a software literature that goes beyond algorithmic reasoning

[Boe84], [Bro85], [Mah02], [PeSv96], [Pro98], [Ber92], [BC85], [BW77], [BCk07],

[BR99], [ER03]. It is true that algorithms lurk beneath the surface and are an essential

part of a software construction. It is also obvious that incorrect algorithms are the source

of many software problems.

However, large-scale contemporary software systems are more appropriately seen

as levels of abstraction, not simply as a collection of algorithms. These abstractions are

organized, modeled, and constructed from many other software components, building-

blocks. The above artifacts include types/classes, methods, class attributes, simple

variables, packages, modules, patterns, and many kinds of reusable components. These

facets of the software engineering problem are, in turn, tied together in a variety of

relationships and configurations that include: dependencies, generalizations,

specializations, associations, compositions, aggregations, collaborations, and temporal

interactions. As engineering is applied to the design and construction of software, internal

controls are as important as algorithms.

The recognition and acknowledgement of components and relationships simplifies

software reasoning and also complicates it. In my software engineering classes, I tell

students that, for large-scale software products, the concern involves components,

connections, configuration, and controls. Even so, every design eventually comes to the

point where someone must develop computer programs. Sometimes this requires

inventing entirely new algorithms or revisions of existing algorithms.

 66

2. Change

The first thing to note about a computer program is that it is concerned (in most

cases) with change. A software entity (in most circumstances):

1. effects change,

2. detects change,

3. or both.

In this respect, a computer program corresponds to the engineering issues relative

to forces described in Chapter IV. If change is neither required nor present, it is unlikely

there will be a need for a software solution. The software analogue of displacement is a

change of state. An engineering question is what is required to ensure the change of state

is appropriate to the existing state of the context in which the change of state is effected?

This is primarily an engineering problem, not a programming problem. Its solution is

often left to the programmer, but that is simply an abdication of responsibility on the part

of the engineer. On one project where I was a minor player, a communications satellite

project being programmed in Ada, every line of code in the programs had to be justified

in terms of the engineering specification. This project required almost line-by-line

annotation of the code. Programmers were not encouraged to be creative. Controls were

designed for each change of state by the software engineers to ensure that changes of

state were continually checked for accuracy and correctness. Programmer source code

was expected to carry out the state changes as prescribed. The software engineer can

include assertion controls in software specifications that bound the inventiveness of an

exuberantly creative programmer.

Associated with, and in collusion with state changes, software has many kinds of

behavioral and informational properties. These include computations, decision-making,

modification of data, transfer of control, and recording of actions. Böhm and Jacopini

summarize these as: sequence, selection, and iteration in their famous paper on

elementary control structures [Boh66]. The variety of mechanisms to effect these

changes is too numerous to enumerate here. However, anyone with even a meager

knowledge of software will appreciate the complexity as well as the quantity of both data

representation and actions that can be applied to the data.

 67

It is the complexity of software, and the corresponding potential for both success

and failure that is at the heart of this inquiry into the potential or, even the necessity for,

the application of engineering principles and methods for software creation, management,

and control.

3. The Management of State Changes

In the world of physical design, where change is also a factor, most changes can

be measured in terms of some kind of displacement (included in definition of “work.”). In

software, change can be identified, but not always measured, as change of state(s). The

software may detect a change of state in the external environment and record/report that

change of state. Or, the software may actuate a change of state in the external

environment and record its own action on some media.

The change of an integer in a computer program from one value to another is a

change of state resulting from the force of the logical constructs in the design of that

program. The implications of this change are no less grave than the same kind of change

in a physical environment. Further, if the new value of that integer is critical to correct

operation of the program in a safety-critical environment, the physical and software

changes of state are equally important.

Software changes, even in computer programs can sometimes be measured, even

when they are discrete events. However, discrete events cannot give us information such

as sensitivity analysis. That is, the classical y = f(x) is not applicable to discrete

phenomena. Some changes of state, at a level of abstraction beyond discrete data can be

measured, and potentially predicted within the discipline of sensitivity analysis. Consider

a function,

function Compute (Data : in Float) return Float;

 68

In the above example, the function is dealing with data that represents a non-

discrete value. Even though the underlying machine representation might be (not required

to be) composed of discrete binary digits (bits), The software abstraction is well beyond

the limitations of that representation. A software engineering artifact is much larger and

much more complex than simply a set of discrete states.

A strict boolean view of the computer where software is deployed leads to the

error of reasoning that software is also confined to a true-false model. Since the

underlying computer is bi-statal, in which bits can be turned on and off, there is the

temptation to think that reasoning about software is restricted to boolean entities. Modern

software engineering tools are in place to help us transcend that level of abstraction.

When we were programming in Octal by entering data through the front-panel switches,

we had to think at this bit-oriented level. When displaying a message-box in MS-

Windows, we need to perform a logical OR on the bit-field for a low-level function to

effect a particular kind of message-box. In higher level languages such as Python, Ada, or

Java, using a class-oriented programming model, we can display that message-box

without knowing anything about the underlying bit-mapping of the parameter list. In

early computer programming, we once needed to understand the bit-mapping of the

word-oriented machine for floating-point arithmetic. It is should be unusual for anyone,

except a compiler designer, to be concerned about such low-level details.

E. SOFTWARE IN PRACTICE

Prior to the detailed discussion of software engineering, in an engineering context,

it is appropriate to summarize the differences between three distinct, but closely inter-

connected aspects of software practice: software architecture, software engineering, and

the programming activity.

1. Software Architecture

An architecture is concerned mainly with a high-level design that describes the

artifacts most likely to satisfy the requirements of stakeholders. Patterns, standards,

esthetics, and consistency are essential. The architecture, once established, should remain

 69

a stable model throughout the entire process. The architecture is made-up of components,

connectors, and a configuration. Architecture is a foundation onto which the stakeholder

requirements can be represented in more detailed during engineering and programming

[BCK07], [ShG96], [Gor06], [Pau02]. For example, the software architecture may

describe the artifacts of the design in terms of a stakeholder view, but may defer

consideration of the controls needed to enforce that design stability to the engineering

phase.

2. Software Engineering

Engineering is also a design activity [Pet85], [Wri89]. Ideally, the engineering

will not alter the architecture, but there are sometimes unpredictable issues that require

revisiting the architecture [Gor06]. An engineering process, including a software

engineering process, must specify the details for implementation of the design. Those

details include derived requirements, quality assurance, risk management, economic

trade-offs, constraints, and controls, along with the other engineering concerns [Pre05].

Of particular concern is how the engineer extends and refines the model to maximize the

absence of the kind of errors that typically occur during the programming process.

Components specified by the engineer must include assertions, constraint management,

levels of abstraction, well-factored modules, components and classes, and error

management mechanisms (controls for error detection/prevention/correction) that will

ensure maximum integrity of the final product that comes from the construction process

carried out by the programmers. Engineering is focused on (with apologies to Gerald

Weinberg for the pun) GIGOless programming [Wei98].

3. Programming

This is the construction process. While it is far more complex than driving nails

into the studs of a building under construction, it continues to be more craftsmanship than

engineering [Mcb02], [ER03, Chapter 4]. The programmer is similar to an engineering

technician, but requires a more sophisticated skill-set than is usually required of a

technician. The skill requirements for the programmer are even more important in the

 70

absence of well-designed architectures and poorly developed engineering specifications.

Under the best of circumstances, the specifications for a given computer program are

completely specified by the software engineer. However, this is rarely the case in real

software projects. Consequently, completion of software depends heavily on the skill and

knowledge of the programmer [Hum95], [Bec00], [Mcb02]. This reality runs counter to

sound engineering practice, but will be the prevailing practice until there is a raising of

the level of competence among the engineering designers.

4. Supporting Activities

Requirements development is a specialized activity that requires more than design

and architectural skills. It requires a combination of a research, technology, and human-

factors that people with a software technology focus often do badly. In some cases, they

are weak in the technology of the application domain. In other cases, they represent

extraordinary technological power, but fall short in their human interaction capabilities. I

have written an entire separate book on requirements development, including case

histories. The topic of requirements is beyond the scope of this present work.

Software engineering includes numerous other specialty areas such as risk

management, programming languages, operating systems, automata, and algorithm

analysis that software engineers need to understand, but often don’t. While these

supporting activities are important – even essential, they are not the focus of the

engineering model software engineering in this work.

F. THE ENGINEERING CONTEXT – A REVIEW

Chapter III laid down the engineering context for software engineering. It also

presented a definition of engineering and promised to examine, within the bounds of that

definition, whether some practices in software development and management conformed

well enough to that definition to legitimize the term “software engineering.” To review,

our definition of engineering was,

 71

Engineering is the organization, application, and management of
settled(dependable) knowledge using the tools of science, mathematics,
and logic, along with knowledge, experience, and artifacts derived from
previous engineering efforts, for reconciling conflicting forces/constraints,
controlled within defined tolerances, to effect an economical, risk averse,
maintainable, failure-tolerant design with a predictable result.

This definition is summarized in the following Venn diagram.

Figure 6. Engineering Definition

As shown in the Venn Diagram, many of the properties of traditional engineering

are (or should be) present in software engineering. The element often outside the

intersection is called “forces of nature.” One natural force common to both software

engineering and standard engineering is time. While the issue of natural forces is a

concern in other branches of engineering, other factors loom larger in software

engineering. Even so, it is important to deal with the issue of natural forces early before

going on to the other aspects of engineering.

1. Nature (Natural Forces)

Earlier, we acknowledged the absence of natural forces (i.e., physical

displacement) in software. This is sometimes regarded as an obstacle to a credible model

of engineering for software practice. In software, every action (force) involves some

change of state, logical and/or physical. The presence of state transitions (i.e., virtual

• forces of nature

• conflicting forces/constraints
• controls
• tools of science and mathematics
• settled/dependable knowledge
• predictable outcome
• economics (balance resources)
• design to tolerances
• failure/fault prevention
• engineering experience
• management of entire effort

Traditional Engineering Software Engineering

• time

 72

displacement) is fundamental to software. In fact, contemporary software modeling tools

such as UML include State and change-of-state as fundamental features of the model

[RuJB05, pp. 597-614]. The mapping of state changes in real-world objects to their

corresponding state changes in software is common in contemporary software design

practice. This is due, in large part to the increased awareness and use of object

technology [ScM92]. Object technology is a significant departure from the earlier style of

software design where the emphasis was on the procedures and algorithms.

In a discrete domain such as software a relationship is either true or false. The

result is that one instance of false can cause an entire design to fail. In the continuous

domain, minute fractional differences can occur, and those differences can foretell a

potential problem before a failure occurs, but that foretelling can signal the need for

preventive action. In a discrete environment such as a computer system, failure of a

single-bit is likely to be unpredictable. This requires the software engineer to design in a

completely different way from the engineer in the natural world. Modern software

engineering tools and practices can support a model of failure-tolerant design even

though that majority of software is not designed that way. This is analogous to the

physical engineer that anticipates failure in the design rather than letting a system fail

during critical operation.

Chapter III also presented an engineering perspective that demonstrated how the

essence of engineering can be present even in the absence of natural forces. Further, the

entire notion of natural forces is not exclusive to those tangible elements of nature.

Rather, natural forces are those, which inherently constrain an engineering design,

whether they are logical, mathematical, physical, or economical. As noted in that chapter,

the recognition of the constraints of economics was a major factor in the development of

modern engineering. Further, we found that the notion of engineering as simply applied

science in the sense of physical sciences is a naive view in today’s world.

Some important work in natural forces for software included pursuit of a concept

of software physics [Kol85]. While this was interesting work, it failed to materialize in to

a definitive model of natural forces, and left software engineering exactly where it had

been before this bold research was published. The absence of natural forces in software

 73

does not absolve the software engineer from the responsibility to apply best engineering

practices to a software design. Rather, the very absence of natural forces requires, even

demands, that software used in mission-critical and safety-critical applications be

subjected to the best possible engineering practices available. These include process

practices, but process practices are not sufficient. We also require that engineered

software be correct and defect-free by design. This means software engineers must go

beyond the programming practices that have characterized software during the past fifty-

plus years and insist on applying best engineering practices, as described in the mapping

to the reference discipline described in earlier chapters.

2. Intersection of Software and Physical Engineering

The intersection of software engineering and traditional engineering (i.e.,

engineering based on natural forces) is derived from the Venn Diagram. This includes:

1. conflicting forces/constraints (trade-offs),

2. continuous control with feedback,

3. rigorous design tools based on science, mathematics, and logic,

4. settled/dependable knowledge,

5. predictable outcome,

6. economics (balance resources)

7. design to tolerances and defined constraints

8. failure/fault prevention (including risk management and software safety),

9. engineering experience

10. management of entire engineering effort.

Note that there are ten items in the current list where there are eight in the list

from Chapter III. This is because we have separated the two topics, constraints and

design-to-tolerances into two separate topics.

G. MAPPING SOFTWARE ENGINEERING TO ENGINEERING

The following discussion is a mapping of software engineering to the engineering

definition given in Chapter III, titled “The Engineering Context.” The reader will recall

 74

that Chapter III concludes with a discussion of those facets of software practice that

continue to elude even the most earnest attempts to apply engineering to the design and

construction of software products. It must be noted that the contribution of John V.

Guttag [Gut77] is essential to the success of this mapping, along with the work of

Bertrand Meyer [Mey00]. Also, we use the Ada programming language to illustrate the

mapping when source code is appropriate. All three of these resources enable us to map

the work from the chapter on “The Engineering Context” to engineering examples as

actual software artifacts

Since this paper must be bounded to a reasonable size, there is an emphasis on

four of the items from the above list:

1. forces, especially conflicting forces,

2. settled (dependable) knowledge,

3. design to tolerances; this is a separate chapter

4. failure prevention.

1. Forces

Having determined in Chapter III the fundamental importance of reconciling

conflicting forces, it is time to examine this idea in the context of software. Also, earlier

in this chapter we acknowledged the absence of the kind of conflicting physical forces

that characterize more traditional engineering. Even so, conflicting forces are present in

software design just as they would be in any kind of engineering effort.

a. Conflicting Forces

In software, the trade-off might be whether an algorithm is better designed

with a loop or with recursion. Another trade-off might be whether the data structure for a

design is better as a depth-search or a breadth-search tree. Of course, these trade-offs will

trace directly back to the physical environment in terms of the storage-space versus

compute-time, but they are still software trade-offs, and present a set of engineering

challenges. Many of the data structure problems in software introduce engineering trade-

off problems. These include the concerns about such things as data base normalization,

 75

whether to use a sequential structure or a random structure for the storing of data, and the

potential for corruption of data when multiple processes require read/write access to it.

For each of the problems just described, the software engineer must

calculate the offsetting benefits of the conflicting design options. In many of these

situations, the data becomes a kind of “force of nature” simply because of its magnitude,

required availability, and potential for corruption when managed in error.

The very structuring of the data closely conforms to an engineering

problem in the physical world, and that structuring is in the domain of the software

professional. For example, when there is a need for some kind of repository in a software

design, the engineer must examine the relative merits of known kinds of data structures.

Questions include whether the data should be persistent (reside in secondary memory) or

volatile (reside in primary memory); does the data require some kind of indexing scheme;

will it be transported through the system; will it be transformed or augmented during the

life of the software that processes it; what controls are required to keep the data stable as

it passes from one stage of processing to another; are there security issues? These

questions, along with many more, are required to effect an engineering solution to the

management of that data.

A key correctness-by-design [Bar03] concern of every software engineer

is the continual validation of the data being managed in a software product. This concern

often requires rigorous design with data-types and formal constructs such as pre-

conditions, post-conditions, and invariant statements [MiM02]. The design of constraints

for typed-data is a common practice in software engineering. While the engineer for the

physical domain might specify a range of values for a solution, the software engineer will

refine that range as a set of well-formed types to prevent conflicts between or corruption

of the specified data.

 76

b. Conflicting Forces: An Example

An example of the above is the Ada protected-type where data that needs

to be accessed by multiple software processes (tasks) can be insulated from unwarranted

references. The software engineer designs this kind of protection into the product without

any input from the engineer in the physical domain.

Figure 7. Restricted Integer

In this example, the tolerances for the type Restricted_Integer are tightly

bound to a predetermined range and a fixed number of bits (Size = 8 bits). This

specification is inviolable. The programmer cannot make a mistake with this. The

management of the Restricted_Integer is guaranteed to be updated in mutual exclusion

even in an environment where multiple concurrent threads are trying to use it. It is

guaranteed never to exceed its own bounds (-127 through 127). Any programmer that

tries to misuse values of this type will be thwarted by the compiler.

Figure 8. Opaque Restricted Integer

package Restricted_Integer_Definition is
type Restricted_Integer is private;
protected Restricted_Integer_Management is
 procedure Update_Restricted_Integer (Input : in Restricted_Integer);
 function Read return Restricted_Integer;
private
 Data : Restricted_Integer := 0;
end Restricted_Integer_Management;

private
type Restricted_Integer is range -127..127;
for Restricted_Integer’Size use 8;

end Restricted_Integer_Definition;

package Restricted_Real_Definition is
type Restricted_Real is private;
function “+” (L, R : Restricted_Real) return Restricted_Real;
function “-” (L, R : Restricted_Real) return Restricted_Real;
function “*” (L, R : Restricted_Real) return Restricted_Real;
function “/” (L, R : Restricted_Real) return Restricted_Real;
function “=“ (L, R : Restricted_Real) return Boolean;
function “>“ (L, R : Restricted_Real) return Boolean;
function “<“ (L, R : Restricted_Real) return Boolean;

private
type RReal;
type Restricted_Real is access RReal;

 77

In this opaque-type example, anyone that needs to use Restricted_Real

will have no access to any information about its structure. Everything is deferred to a

package body (the implementation) where tightly controlled, designed to tolerances,

methods will be designed to prevent any of the typical problems associated with floating-

point values. For this discussion, it is not necessary to examine the implementation. We

could apply pre-conditions and post-conditions to each of the numerical methods, but the

details of the invariant type, Restricted_Real are hidden in the private part, thereby

allowing rigorous low-level implementations of the corresponding functions.

We alluded earlier to the potential for engineering conflicts in the design

of algorithms. The metrics for the chosen set of algorithmic options, when understood by

the well-trained software engineer, will be taken into consideration in the choice the

algorithm. Even the best set of choices will still required several levels of evaluation to

ensure that those choices are conflicting with each other.

Creation of reusable components is an especially powerful engineering

idea when leveraged in the environment of a good software reuse library. One of the

most useful reuse libraries for military software is CAMP, the Common Ada Missiles

Programs (a classified set of library routines), that are used in the development of a wide-

range of military software systems. Another set of reusable software routines for

engineered software are the well-known Booch components, used in a large number of

Ada software systems. The availability of libraries helps the software engineer to make

decisions about the trade-offs represented by the relative merits of the algorithms. There

is still a great deal of work to be done to bring software reuse to the point where software

engineering practitioners are satisfied with them.

2. Dependable (Settled) Knowledge

Chapter III stated that settled knowledge is that knowledge agreed-upon by

practitioners in some engineering field. The need for a larger knowledge base is an on-

going problem for software engineers. The concept of settled knowledge is as important

in software practice as well as in standard engineering practice. Further, engineering

 78

knowledge continues to expand for software practice just as it does for other kinds of

engineering. Software engineering does not yet have the extensive reusable knowledge

base available to classical engineering practitioners.

Many software practitioners are either ignorant of, or cavalier about the available

settled knowledge from computer science and software experience. Many others do

benefit from that knowledge. One example of this kind of knowledge is the so-called

“Big O” performance notations used in software design metrics. Another is the growing

library of pre-coded software routines that populate the specialized software reuse

libraries.

As noted in Chapter III, engineering knowledge is characterized by its

dependability, regardless of its origins. Dependable knowledge can originate in the non-

physical world or the physical world. The important thing is validate its authenticity, its

relevance, and its value to the engineering project. If the knowledge cannot be verified as

authentic, it is of little value. This chapter includes an assessment of this assertion in the

realm of software, particularly for what we would like to call software engineering.

a. Software Engineering Knowledge

As noted above, knowledge must be dependable. Fundamental is the

principle of least surprise [Rie05]. This is particularly true when following a correctness

by design approach to engineering the software. The question for software engineers is

whether a given item of knowledge satisfies the dependability rule. Further, knowledge

must support the goal of predictable outcomes. A predictable outcome, for our purposes

implies three predictable properties. The first two are due to Boehm as described in

Pressman [Pre05] and called validation versus verification.

1. solving the right problem (i.e., valid result)

2. solving the problem correctly (i.e., solution is correct)

3. time to solve problem is bounded [Burns01], [BR99], [PeSV96]

 79

There is an implication in this list that the resulting product will be defect

free, do exactly what it was supposed to do, and do it within a predetermined time

constraint. If these properties can be satisfied, it is probably safe to say that an

engineering approach was, at least a contributing factor to the success.

Satisfying this is one of the central challenges of software engineering

practice. Instead of applying engineering discipline to the design and creation of

software, a lot of deployed software has been driven by unrealistic time and budget

constraints that emphasize the notion of “good enough” instead of well-engineered. This

approach is based on the dictum, “Just get it done. We’ll worry about the niceties later.”

The attempt to apply engineering practices, the “niceties,” had to be subordinated to

getting operational software deployed and executing.

The third property of measurement, “time ...” is especially elusive. A

review of the literature about software metrics, including algorithm metrics and deployed

program metrics reveals that there are so many variables in software that absolute

predictability remains an unsolved problem. Some progress has been made in this area,

but the ability to apply predictable design metrics remains a difficult problem [PeSV96].

b. Measurement and Metrics

Engineering knowledge [Vin90] is characterized by some unique

properties. One of the most important is its measurability. Traditional engineering, in the

natural world, has benefitted from the ease with which observable physical phenomena

can be measured. Such measurements, often called metrics, are often collected, classified,

and published in standard tables. The torque of a standard bolt composed of a specified

substance makes the job of a mechanical engineer much less of a guesswork problem

than the performance of a for ...loop translated from a high-level language into machine-

code for a targeted computer. The mechanical engineer can calculate the relationship of

that bolt’s torque relative to where it will be used and specify what setting should be used

on a torque-wrench used in a manufacturing (or repair) process. The software engineer is

often unable to make such exact computations due to the variations in the targeted

environment.

 80

(1) Dependability and Reliability. It is often noted that

software is concerned with discrete phenomena. This information is used to suggest that,

because a single bit in a machine can corrupt the entire operational environment, the kind

of design metrics that prove so dependable in physical engineering are not as available to

software engineering. Further, those same naysayers observe that, since every algorithm

depends on the evaluation of discrete conditions, the instability of a design at higher

levels of abstraction suffers from the same vulnerabilities. While this may have some

truth when considered in the context of conventional programming practice, it is not an

inevitability. In particular, it is not inevitable when the knowledge accumulated from

good software engineering practices are applied to the design of software.

The fact that most of contemporary software practice does not

subscribe to the concept of collection, classification, and utilization of relevant

knowledge is not a reason to dismiss its importance. For example, it is often noted that

probability is not applicable to software because of its discrete nature. Yet, the

accumulation of knowledge for risk management can lead to the use of Bayesian analysis

for the prediction of errors of a particular variety in a given domain. A software

development organization that designs and publishes software for inventory systems can

know, from good record-keeping, that a particular kind of error(s) typically appears at a

known stage of the development process, they can take action that will foreclose on and

prevent that kind of error more easily. Settled knowledge, in software engineering

requires documentation of the history of error-creation process. Such knowledge allows

the engineer to apply risk prevention and mitigation strategies. This is the essence of

process improvement, but it is seldom seen as important in software organizations.

Instead, most organizations where I have worked, and most that I know of, are

concentrating on getting the job done as soon as possible, not as accurately and error-free

as possible. This leads to the old-saw, “Why is there always time to do it over, but never

time to do it right?”

While there is a need for more information to be collected and

published for the desired level of dependability engineering in software practice, the

absence of such information is more a lack of engineering attitudes among software

 81

professionals, not the inability to collect it. Information about errors in the software

process needs to be recorded and used as part of future engineering efforts. The

knowledge of errors, defects, and difficulties can be passed from one project to another.

In this case, every new project is begun using institutional or standard engineering

knowledge relevant to each new project. This is an engineering attitude which will have

a major impact on the dependability of future software. Instead of relying on individual

knowledge, or folklore, accumulated engineering knowledge, from past software

engineering projects, will feed into the reliability of future software efforts [RieN07].

This is not to say that knowledge is not accumulated or never

passed on. Much of the work done in the fertile fields of software reuse is devoted to the

accumulation, classification, and standardization of software knowledge. In fact, the still

emerging field of software reuse, and the continued work on designing and creating

software components, at both the source code and executable levels, represents one of the

best engineering practices in software engineering. Unfortunately, there is a widespread

“not invented here” (NIH) attitude among programmers, along with an incomplete

taxonomy scheme to make reuse as widespread as it should be. Also, the proliferation of

software components, developed in a multiplicity of languages with a plethora of inter-

operability problems, sometimes presents more problems than it solves.

Even so, software reuse is more widespread than many software

engineers realize. The executable frameworks for “windows” programming and database

management are largely built over reusable components. Scientific programmers

routinely reuse Fortran code provided by both their peers and from public sources.

Libraries of algorithms and data structures are widely available. No programmer should

ever write another stack, linked-list, square root, or fast-Fourier transform routine. It is

absurd for a professional programmer to code a routine to convert floating-point numbers

to text. Huge libraries of reusable software have been placed in accessible repositories.

Practicing programmers often do not know about these repositories, or the difficulty in

finding the library routine s/he wants is greater than simply writing it from scratch. I

sometimes give the following exercise to a programming class:

 82

Write a routine that will take two items in a
parameter list and return them as a swapped
pair.
This routine is already in any library of pre-coded routines, and

should never have to be written, in any language. However, the exercise has the benefit of

demonstrating the vulnerability of even the simplest of routines. It is amusing to see how

many experienced programmers get it wrong on the first try. When such a simple

algorithm can be in error, how much more likely is it for a complex algorithm to be in

error?

As noted in the preceding paragraphs, a lot of software engineering

knowledge is readily available in the form of pre-published algorithms, classes,

subroutines, and library modules. These libraries are analogous to the kind of published

knowledge the mechanical engineer uses when choosing a given bolt of specified torque

and threads-per-inch. As long as the knowledge from those software libraries is

dependable, it is as real as any knowledge from the natural world. It is engineering

knowledge – software engineering knowledge – but valuable in the engineering of

complex software systems where dependability and predictability are the primary goals.

(2) Performance Knowledge. There is a lot of metrics data

available already for software performance engineering. One of the most overlooked

metrics is the so-called “Big O” metric. While Big O is not an absolute metric, it does

provide relative performance metrics between algorithms. The “Big O” metric can help

the engineer make design choices from among a collection of alternatives for which such

relative metrics have been developed and published.

At a lower level, the engineer can use a technique analogous to

therblig analysis in computing the efficiency of a set of instructions as they are linked to

together at the lowest level of the machine [Mog80]. This is rarely done for large-scale

software, but it is not an unusual practice in response-time intensive embedded software.

Peter Denning demonstrated the importance of performance

metrics in his contribution on thrashing. In this work, Denning designed a software

engineering solution to what was, in part, a physical engineering problem called

 83

“thrashing.” This problem originated with how a specific operating system managed the

swapping of information between a secondary memory device and the primary memory

of a large mainframe computer. The solution was a clear example of how engineering

principles could be applied in software to control, not only the thrashing problem itself,

but also to accommodate the additional demands of the control software within the

operating system [Den68].

Another important kind of performance analysis is that used in the

design of software that involves concurrent, communicating processes [Burns01]. It is

here that one of the most difficult natural forces comes into play in the design of

software: time. In the real-time domain, multiple processes are frequently interacting with

each other. The ability to dependably schedule these processes is a serious engineering

problem. This problem is compounded when those processes are required to

communicate. For example, a signal is received, as an interrupt, in some part of the

CPU’s memory. That signal is immediately stored in a software buffer where it can be

retrieved by yet another program. Depending on whether the design is synchronous or

asynchronous, other programs come into play to ensure the signal is handled properly.

There might be ten different programs (tasks/threads/processes) involved in this process,

each of which must communicate with another, but without writing over the data before it

is relayed to another process. There is no more difficult engineering effort than the design

of a system based on concurrent-communicating processes, and that difficulty is greater

as the number of processes (tasks) becomes larger. The engineers who specialize in this

kind of design are focused almost entirely on the software, not on the hardware. The

mathematical challenges of schedulability and mutual exclusion are real engineering

problems.

Another problematic engineering challenge is software stability.

By stability, we mean the software is not subject to whims or opinions that can be

exploited according to each situation in which it occurs. Gravity is always gravity.

Gravity is cheap. It is also dependable. It can be measured. No one can express an

 84

opinion about its validity. Though its effect may vary with the square of the distance

between objects, that is an effect that can be measured, and conforms to the settled

knowledge that we have about gravity.

What is true about gravity is true of most phenomena in the natural

world. Conformity with the laws of nature is one of the foundation ideas of every

accepted engineering practice. The ability to exploit those laws, the settled knowledge

about those laws, is what has made engineering so successful in so many ways.

The challenge for any other discipline that aspires to become a

member of the engineering club is to find a similar knowledge set that can provide the

same level of measurability, predictability, and consistency as the knowledge that

supports respectable branches of engineering. Without that kind of knowledge,

membership in the club will continue to be denied.

c. Software Engineering Knowledge (SWEBOK)

There is a recently published work from the IEEE referred to throughout

the Software Engineering community as SWEBOK [1]. SWEBOK represents a large

collection of concepts and ideas, and standards based on software engineering research,

analysis, and experience.

The categories of knowledge covered in SWEBOK are:

• Software Requirements

• Software Design

• Software Construction

• Software Testing

• Software Maintenance

• Software Configuration Management

• Software Engineering Management

• Software Engineering Process

• Software Engineering Tools and Methods

• Software Quality

 85

Taken as a whole, this is an impressive list of requirements. However, it

does not establish software practice as an engineering discipline beyond what one would

expect of any other discipline. For example, a similar list could be constructed for the

practice of neurosurgery, funeral home director, or curriculum development specialist.

The concern is not that this list is unacceptable. Rather, the list is not complete with

respect to understanding software engineering as an engineering discipline.

3. Design to Tolerances

This is covered in the following chapter.

4. Controls for Failure Prevention

There are a large number of opportunities for the application of controls in

software. Many software designs overlook those opportunities in the haste to produce a

solution to a problem quickly so the next problem can be solved. A lot of software is

design according to the washing-machine example. The set of computer programs moves

from one cycle to another blindly.

This is where the software engineer is different from the computer programmer

and more like a conventional engineer [Ayu03], [Hal97]. While the experienced and

conscientious programmer is dedicated to producing a program that works under all

circumstances, the software engineer digs deeper into the design to ask questions about

the risks, the unexpected, and the unknown. Then that engineer specifies a set of controls

for the software that deals with those risks. Controls will often be in the form of

assertions in the specification part of the source code (e.g., Eiffel contracts, Ada range

constraints, Java IContract specifications) [MiM02]. Where the programmer may resist

the inclusion of such controls (“They slow down the execution time”), the engineer

understands the essential nature of them.

In contemporary software development, controls design is an engineering

responsibility. In the absence of a software physics that impose controls based on natural

forces, the software engineering must invent the physics of the software environment.

This involves specifying the upper and lower bounds for numeric values, the set of

 86

allowable states for instances of an object class, and the rules for relationships between

the many entities of the software being developed, where the concept of state is

fundamental in modern software engineering practice [ScM92].

The design of those controls is as important as the design of the corresponding

algorithms. This is one of the most vital responsibilities for the modern software

engineer. It requires experience, knowledge from past failures, a body of documented

history from similar projects and a substantial amount of intuition. The controls emanate

from the fundamental question every engineering, whether in software or traditional

engineering must ask, “Where could my design fail?”

If the software engineer is not designing for failure, the design is not complete. If

the designer does not anticipate what can go wrong as well as what is required to produce

the intended solution to a problem, the design is wrong. This ability to design for

unexpected failures as well as for routine success is what makes an engineer, including a

software engineer, a professional rather than a skilled tradesperson, a craftsperson, or a

day-to-day programmer.

This is not to suggest that conscientious programmers do not design for success

and try to anticipate failures. They do just that. Some programmers are also good

engineers. However, the programmer is often under the stress of just getting the job done

so s/he can move on to the next project. Just as standard accounting benefits from a

separation of responsibilities, in the domain of controls design for software, the

professional software engineer must be in a position to take responsibility for failures in a

design specification, including those that should have anticipated failure.

H. WHAT WE CANNOT YET ENGINEER IN SOFTWARE

This section reflects the opinions of the author, but it is based on years of software

experience rather than intensive research. Even with an engineering model built over the

original vision of this dissertation, we much recognize that there is a long way to go

before we have a comprehensive model for software engineering that satisfies the kind of

rigor we identified in the foregoing pages.

 87

1. Computer Programming

As noted several times, software engineering is a discipline that helps to control

and stabilize the software construction process. As reusable components and patterns are

added to the repertoire of options in software reuse repositories, more and more

programming will be able to make use of those components. However, it is the nature of

software, and of humans who conceive of problems that can be solved with software, that

new kinds of software solutions will be required for as long as mankind is able to be

creative and imaginative. Therefore, people who can write working computer programs

will be as necessary in the future as they are today.

That being said, the continual advances in the engineering models will inevitably

produce new tools and languages that will make future programmers view present-day

programming with the same admiration we have for those who could carve gigantic

pillars from solid rock using nothing but a chisel and a mallet. As long as we expect

programmers to code algorithms over and over in the languages currently in use, they

will be the equivalent of those ancient stone carvers.

2. Risk, Testing, and Quality Management

The craft of testing does present many opportunities for engineering. However,

testing is largely about anticipating and managing the risks associated with the

construction of engineered artifacts. While there will be a growing number of regimens

for accomplishing this task, and those regimens will be continue to be grounded in

engineering, the ability to anticipate risks is a skill that depends on human experience.

That experience enables a creative approach to the anticipation of risk.

Risk management is one of the most important aspects of all kinds of engineering.

Barry Boehm [BOE] can be credited for forcefully bringing it to the attention of the

software engineering world, and this may someday be credited to him as one of his most

important contributions to software engineering.

 88

3. Human Factors

Industrial engineering, mentioned several times in this paper, was once noted for

how it treated human beings as if they were interchangeable parts [Mog80], [Tay11].

That early model of industrial engineering has largely vanished. However, a similar

phenomenon intruded into the management styles of software organizations and resulted

in decades of dependence on counter-productive approaches to software management

such as Royce’s Waterfall, and its many variations [Roy70], [Roy98]. The recent

revolution in software practice, largely software process that emphasizes people over

process has changed how humans are managed throughout much of the software industry.

That trend is likely to continue [Bec00], [Mcb02].

Even as human beings are treated with greater respect, we must keep in mind the

need for sound engineering principles and practices in the creation and management of

future software projects.

4. The Ideal Process

Little needs to be said about the ideal process or the ideal engineering model,

software or physical. Neither exists. That being the reality, it does not absolve software

professionals from striving toward an ideal. Software engineering, when practiced as an

engineering discipline, move the practice a little closer to the ideal. There is the

obligation to do exactly that.

 89

VI. DESIGN METRICS: DESIGNING TO TOLERANCES?

A. INTRODUCTION

In the chapter on the engineering context, we noted the importance of designing to

tolerances. In my published paper on this topic [RieJ07], I call this “snugness of fit.” It is

a concept not commonly included in the design of software since the notion of tolerances

is seldom applied in ordinary computer programming. Tolerances are often used in

craftsmanship. For example, I have watched Japanese joinery craftsmen snugly fit a

complex arrangement of wooden pegs into beams and trusses to build nail-free furniture

and temple structures. In the case of the joinery process, the design is in the mind of the

craftsman along with the actual building of the artifact.

What do we mean by tolerances? In this discussion, engineering tolerances

include the relationships between the artifacts of a design along with the constraints and

controls required to ensure the stability and predictability of that design.

In traditional engineering, tolerances are part of the overall design, but the

designer (engineer) is rarely the person who does the actual building of the design. This

means the designer/engineer must produce a design that can be realized by a separate

builder. Therefore, the software engineering challenge is to offer design artifacts where

the tolerances are pre-set so the craftsperson (e.g., programmer) cannot introduce

common errors or to ensure that such errors, whether at run-time or during construction,

can be detected. Once detected, they must be mitigated in some way. This is an

engineering responsibility, not a programming task. It is also a risk management task.

B. CHAPTER THESIS STATEMENT

1. Engineering is more about design than implementation of a design.
Therefore, the software engineer must focus on doing the best possible
design so the programmers can have a clear concept of what is required.

2. There is a model of software engineering that can be managed with design
constraints and design tolerances that can limit the programmer from
doing ad hoc actions that violate those constraints and tolerances.

 90

3. There exist programming languages and software tools to support the
implementation of design to tolerances and constraints.

4. When software is designed and implemented according to a
constraint/tolerance model, that software fulfills an important part of our
definition of engineering. We can say that such software has been
engineered.

C. TOLERANCES, CONSTRAINTS, AND CONTROLS

1. Design Issues

When a software design includes a set of tolerances, those tolerances become the

constraints and controls that govern the behavior of the resulting programs. In turn, those

constraints and controls govern what the programmer can do during the implementation

of the engineering design. In software engineering, those constraints and controls

substitute for the “natural forces” that restrict the traditional engineer from trying to do

things that are impossible in the physical world.

The goals of engineering (ergo, also software engineering) as described in

Chapters III and IV requires us to include capabilities that will support those goals.

Physical engineering disciplines automatically support an ability to design to tolerances.

This same concept is a challenge for software engineering. The purpose of design

tolerances is to enhance the dependability of the engineered product. This is no less

important in software engineering than in any other kind of engineering. The goal is

“correctness by design” at term often used in the development of software using the

SPARK Examiner [Bar03], [Mey00], [MiM02].

The software engineer that understands how to design to tolerances will help the

programmer create more dependable working programs. That is the responsibility of the

engineer – the software engineer – not simply the province of the craftsperson (computer

programmer).

 91

2. Nature of Design Tolerances

We examine tolerances in terms of their inherent properties along with the levels

of tolerance in a given design.

a. Software Tolerance Properties

For our purposes, tolerances include the following properties:

a. constraints

b. behavior

c. availability (possibly visibility)

d. metrics

e. rules of interaction

Tolerances are not simply the numeric values of an entity. They also

include the constraints and controls on each entity of the design relative to other entities

in that design. In traditional engineering, the constraints include those imposed by nature.

For example, gravity and friction are constraints engineers must acknowledge in a

mechanical design. These constraints are based on the physical nature of the non-

software world, but also, in modern engineering, include the constraints of the social,

economic, and political world.

The second property, behavior is about what that entity is allowed to do

and the context in which it is allowed to do it. Again, in the natural world we can predict

the behaviors of the artifacts of nature, but not always the relationships between those

artifacts.

The last three properties (availability, metrics, and rules of interaction) are

important in software engineering design; they also exist in various forms for engineering

in the natural world.

 92

3. Categories of Software Tolerance

For this discussion, tolerances can be organized into five general categories:

• absolute

• range (tolerance limits)

• conditional

• relative

• probabilistic/statistical

The notion of absolute tolerances for software may sound oxymoronic, especially

when viewed in the context of tolerances in general engineering. However, absolute

tolerances are like those in general engineering because they are stated in actual values.

Those actual values can be a range constraint, an enumeration of specific values, or an

invariant bounds (even as a percentage) for the elements of a component or for the

component itself. An example of an enumerated absolute tolerance is the Ada enumerated

type where each value of the type is stated, by name, independently of its machine

representation. Sometimes we might want to specify the values of a type along with its

machine representation. For example (using Ada),

type Status is (Low, Medium, High);
for Status’Size use 8;
for Status use (Low => 16#A4#, Medium => 16#A7#,
 High => 16#A9#);

Where the values are explicit as Low, Medium, High (none other are possible),

the number of bits for each value is eight, and the machine representation is in

hexadecimal. These are absolute and will not vary from one implementation to another,

nor from one machine platform to another. When the engineer defines these tolerances,

the programmer is only concerned with the values (Low, Medium, High), not with the

underlying constraints on those values.

Range tolerances are closely related to absolute tolerances and many of the

constraint capabilities allowed for absolute tolerances, such as size in bits, machine

representation, etc., can be applied to range tolerances. Range tolerances will include a

 93

tolerance interval as well as tolerance limits. Each software element can include an upper

and lower bound of acceptable values. This can provide compatibility management such

as ensuring that a metric scale is not used where a non-metric scale should be used.

A conditional tolerance is one that is dependent on the state of an element within

the code. Sometimes, the condition will be tested in conjunction with or according to the

state of some other element(s). Programmers commonly do his kind of thing with in-line

conditional testing (e.g., if statements, case statements, etc.). Where programming

language support is available (e.g., SPARK, Eiffel, Ada, etc.), these tolerances are often

stated as assertions, usually invariants. Another approach to assertions is the property-

table, where the properties of each element/component are enumerated, bounded, and

described, along with source code constructs for deviations from those properties.

A relative tolerance is a bit like a conditional tolerance, but it is not tested within

the software. Instead, it is used as a design metric. That is, a relative tolerance does not

raise an exception or violate some design feature of the program. An example of a

relative tolerance is the well-known Big-O notation. For Big O, the performance

tolerances are specified in terms such as O(n), O(log n), etc., but the absolute tolerance is

a function of the platform on which the software will execute. Relative tolerances are

useful for making engineering decisions regarding which component (and its underlying

algorithm) will provide the best throughput in a design. The engineer can evaluate

competing designs using these relative performance metrics. Actual performance will

require field testing to be sure there are no hidden platform-related issues at deployment

(e.g., optimization, cache layer management, etc.).

Probabilistic and statistical tolerances are often seen in the domain of general

engineering. For example, in physical systems, Morrison’s technique of variance

synthesis for refinement of fine-grained errors can be applied to a design to correct

deviations from expected results [Mor01]. Software engineers are at a disadvantage in

this respect. That disadvantage is not because statistical tolerances are impossible, but

because software engineers rarely have the collected knowledge from previous designs

 94

with similar components or behavioral properties to inform their new designs. Without

quantified knowledge from prior projects, each new project is nearly greenfield. Any

application of probability is likely to be guesswork.

Each of the above examples of design tolerances is further challenged by the

concept of sensitivity analysis. In sensitivity analysis, a small change can be measured

and evaluated for its potential effect on the larger design. Meyer [Mey00] suggests the

term “continuity” for this in software. He shows one approach for how a software entity

can be designed to prevent signal-to-noise ratio problems, thereby preventing some

sensitivity problems. Even so, sensitivity analysis continues to be difficult enough that

much more research will be required, and new software tools and methods developed,

before it can be managed as deftly as it is in physical engineering systems.

4. Software Engineering Enabling Mechanisms

As noted earlier, constraints in standard engineering as imposed by the natural

world. The software environment needs a different set of mechanisms for its constraints.

The enabling mechanisms for designing to tolerances are already in place in many

existing software tools and languages. These include:

1. Data abstraction (including object technology)

2. Assertions

3. Performance metrics (e.g., Big O notation)

4. Cohesion and Coupling metrics [Pre05]

5. Management of Scope and Visibility (where scope is a separate concern
from visibility)

6. Defect Prediction and Prevention Strategies

7. Process Improvement Strategies (e.g., CMM, CMMI, etc.)

8. Concurrency and Resource Management Metrics and Strategies

From the above list, data abstraction is one of the most important. However, the

techniques of data abstraction are not well understood by the larger community of

software professionals. Data abstraction, as represented by the Abstract Data Type

 95

[Gut77] is seldom used as effectively as it could be. This is, in part because many

programming languages fall short of what is possible, and also because of the failure to

educate software developers to think beyond the concept of a algorithmic reasoning.

Guttag, in his PhD dissertation on the topic of abstract data types (ADT), clarifies

the potential for the design of well-formed software artifacts that are rigorously designed

to behave according to a strict set of rules. Bertrand Meyer takes this even further with

his Eiffel Language [Mey02]. And the SPARK Ada design represents one of the few

tool-sets that bridging the gap between formal methods and software implementation

[Bar03].

In an Abstract Data Type, all of the operations on an instance of that type will be

completely defined as part of the type. It might be helpful, at this point, to enumerate the

fundamental properties of a software type. In a non-formal sense, a type has:

1. an identifier (the name of the type

2. a set of possible states (e.g., range of allowable values)

3. a set of operations, methods, operators

4. a set of rules governing interactions between instances of its own type and
instances of other types.

An illustration of these rules might be helpful. The following ADT is in Ada.

Figure 9. ADT Stack Object Package Example

generic
 type Item is private;
package Stack is
 procedure Push(Data : in Item);
 procedure Pop (Data : out Item);
 function Is_Full return Boolean;
 function Is_Empty return Boolean;
 function Item_Count return Natural;
 Overflow : exception;
 Underflow : exception;
end Stack;

 96

In this example, the only operations allowed on a Stack are those enumerated in

the package specification. In this case, there can be only one instance of a stack for the

data type, Item. Also, the generic formal parameter, type Item, can be any other data type.

Many alternative designs are possible.

Here is an example where the Stack is an abstract data type.

Figure 10. ADT Stack Type Example

In the above example, the ADT is designed so there are no operations (not even

assignment or test for equality) provided. The set of behaviors is restricted to only those

methods shown in the public part of the package.

We can take this kind of example ever further, designing our own numeric types.

In the example that follows, we see that the type Int has been designed so there are no

multiplication or division operations available. Also, the range of values has been

restricted to values between a lower-bound of -500 and an upper-bound of 500. This is an

example where the tolerances include both the range constraint and the restricted set of

operations.

generic
 type Item is private;
package Stacker is
 type Stack is limited private;
 procedure Push(Data : in Item;
 Onto : in out Stack);
 procedure Pop (Data : out Item;
 From : in out Stack);
 function Is_Full (S : Stack) return Boolean;
 function Is_Empty (S : Stack) return Boolean;
 function Item_Count(S : Stack) return Natural;
 Overflow : exception;
 Underflow : exception;
private
 -- expanded definition of type Stack
 -- can be expanded many different ways
end Stacker;

 97

Figure 11. ADT Own_Integer Example

An even more generalized version of this package could be designed as a generic

reusable component,

Figure 12. Generic Integer ADT Example

where the upper and lower bounds are set using a constrained integer type defined

elsewhere, but further constrained in the operations provided in the package where it will

be used. This example can be extended to floating-point types as well as to many other

package My_Number is -- 1
 type Int is private; -- 2
function “+” (L, R : Int) return Int; -- 3
function “-” (L, R : Int) return Int; -- 4
function “=“ (L, R : Int) return Boolean; -- 5
function “>“ (L, R : Int) return Boolean; -- 6
function “>=“ (L, R : Int) b Boolean; -- 7
function “<“ (L, R : Int) return Boolean; -- 8
function “<=“ (L, R : Int) b Boolean; -- 9
Upper_Bound_Violation : exception; -- 10
Lower_Bound_Violation : exception; -- 11

private -- 12
 type Local_Integer is range -500..500; -- 13
 type Int is record -- 14
 Value : Local_Integer := 0; -- 15
 end record; -- 16
end My_Number; -- 17

generic -- 1
 type Item is range <>; -- 2
package My_Number is -- 3
 type Int is private; -- 4
function “+” (L, R : Int) return Int; -- 5
function “-” (L, R : Int) return Int; -- 6
function “=“ (L, R : Int) return Boolean; -- 7
function “>“ (L, R : Int) return Boolean; -- 8
function “>=“ (L, R : Int) b Boolean; -- 7
function “<“ (L, R : Int) return Boolean; -- 9
function “<=“ (L, R : Int) return Boolean; -- 10
Upper_Bound_Violation : exception; -- 11
Lower_Bound_Violation : exception; -- 12

private -- 13
 type Local_Integer is range Item’First..Item’Last; -- 14
 type Int is record -- 15
 Value : Local_Integer := 0; -- 16
 end record; -- 17
end My_Number; -- 18

 98

types. While most programmers do not use this approach in their own practice, it is a tool

available to software engineers that can ensure greater dependability and reduce errors

during software development. When used by an experienced software engineer, the ADT

can be designed with even more fine-grained constraints. For example, in the numeric

example, above, we might want to eliminate the option of doing any kind of greater-than

test. We simply do not provide such a method for the ADT, and it becomes impossible

for the programmer to do it. We can even provide ADT’s for floating-point types,

records, etc. that includes the exact range and precision required as well as the restricted

set of methods for that type. For example,

Figure 13. Floating-point ADT Example

In the above example, we have eliminated the division operator in favor of a

division procedure where the components of division are explicitly stated. If one were

doing a problem in matrix algebra or quaternions where the associative, distributive, and

commutative laws are not in applicable, this design approach would be practical.

package My_Float_Number is -- 1
 type Real is private; -- 2
function “+” (L, R : Real) return Real; -- 3
function “-” (L, R : Real) return Real; -- 4
function “*” (L, R : Real) return Real; -- 5
procedure Divide (Dividend : in Real; -- 6
 By_Divisor : in Real; -- 7
 Giving : out Real); -- 8
function “=“ (L, R : Real) return Boolean; -- 9
function “>“ (L, R : Real) return Boolean; -- 10
function “>=“ (L, R : Real) b Boolean; -- 11
function “<“ (L, R : Real) return Boolean; -- 12
function “<=“ (L, R : Real) return Boolean; -- 13
Upper_Bound_Violation : exception; -- 14
Lower_Bound_Violation : exception; -- 15

private -- 16
type Local_Real is digits 7 -- 17
 range -20_000.0 .. 50_000_000.0 -- 18

 type Int is record -- 19
 Value : Local_Real := 0; -- 20
 end record; -- 21
end My_Float_Number; -- 22

 99

5. Design Tolerances in Practice

Tolerances suggest the idea that components fit together at the level of “snugness”

where the wobble-interaction between them is neither to tight not too loose. The

tolerances for a set of bearings on a camshaft must allow the cams to move while also

reducing the amount of “wobble” over the shaft. An X-Ray therapy machine must give

the correct radiation dose to a patient while no allowing too much radiation to be emitted.

Further the operations allowed for that machine can be designed as an ADT where the

behavioral options are restricted even as the range of values is constrained [Lev95, pp.

515-553].

Another example from the mechanical world is that of a bolt and its

corresponding nut. A bolt with ten threads per centimeter will not work with a nut that

has ten threads per inch. That bolt would also have other physical properties constraining

torque, etc. The design of an ADT for a bolt can accommodate all of these factors so

there is not chance for mismatch between a [software] bolt and its corresponding

[software] nut.

In the physical world, where modest increments in measurement are possible,

tolerances are easy to define and often easy to enforce. In software, where so much of the

solution space is discrete it is often difficult to implement such subtle opportunities.

6. Fault-Tolerant Design

Design to tolerances is not quite the same as fault-tolerant design. However, the

notion of fault-tolerance is embodied in the overall concept. In fault-tolerance we see the

notion of “...systems whose failures can be tolerated” [IsZ03]. This idea is a little

different from the “correctness by design” approach mentioned in the previous section.

One might design a system to be fault-tolerant using design metrics. Such designs

will include fault prevention, fault removal, fault forecasting, and finally, fault tolerance.

The last of these, fault-tolerance is usually characterized by run-time techniques

involving error-detection and recovery or error-detection and compensation. That is, we

can detect and error, return the system to an error-free state, and continue processing; or

 100

we can include code that allows for errors, but continues to produce the correct outcome

anyway. An example of the latter is ignoring an attempt to divide by zero in an algorithm

over a long series of numbers when such an error has no effect on the final result of a

calculation. The other three items,

1. forecasting,

2. removal,

3. prevention.

are in the domain of design tolerance metrics.

7. Tolerances in Software

Designing to tolerances implies that we can achieve a correct program by design.

This further implies that we have tools to evaluate the tolerances in the design before the

software is released for execution. Since software does not have physical properties that

can be measured in the same way one measures something such as the threshold

temperature of a liquid, or the torsion of a steel bar under stress, we need some other way

to specify those tolerances.

In addition, it is not appropriate to wait for testing or failure during execution to

determine that a design violates its own tolerances. Rather, deviations should be

observable or predictable even as the design is effected. While stress-testing and other

approaches at exercising the final software product are valuable, the ideal tolerances are

those where out-of-tolerance can be noted using methods and tools that allow the

evaluation of that design even before it is actually executed.

Even when engineering depends on the constraints of the natural world, the ideal

is not always a reality. Stress testing a physical artifact to determine that a design actually

behaves as predicted continues to be an important part of every kind of engineering.

Consequently, we cannot expect to achieve an ideal in software that is seldom possible in

traditional engineering.

 101

8. Modeling for Tolerances

Tolerances must be part of any engineering design. According to Fowler,

A model is a representation of a process. ... The purpose of a model is to
formulate a description, in mathematical terms, and the analysis of the
resulting model leads to a result that can be tested against observations
[Fow98].

D. ADDITIONAL SOFTWARE TOLERANCES

1. Historical Perspective

The previous section mentioned C.A.R. Hoare. In the article quoted, Hoare says,

“...the programmer should make a number of assertions which can be checked

individually, and from which the correctness of the whole program easily follows.” In the

preceding sentence, Hoare was speaking as a programmer. However, what he was

describing was a practice that would eventually become one of the more important

practices in software engineering – a practice still ignored by most programmers, and still

unavailable in most programming language designs. More recently, the Laser Summer

School on Software Engineering in 2004, sponsored by ETH in Zurich, Switzerland,

included papers relative to methods for modeling discrete systems. One of the significant

contributions at that conference was from J.R. Abrial [Abr04]. In his paper, Abrial

presented a formal approach to discrete systems modeling (he calls them transitional

systems). While his is not the only research in this area, it is exemplary of much of the

research that is being done to develop a approach to managing the complexity of

tolerances in software systems.

2. Assertions

Hoare was the inventor of an assertion construct sometimes called the Hoare

Triplet. Briefly, it is stated as:

pre-condition {process} post-condition.

 102

This is a simple idea with major implications. Before a program statement is

permitted to successfully enter a given process, it must satisfy the pre-condition for that

process. When the process completes, the post-condition must be satisfied. This was one

of the most important ideas leading to today’s concept of “correctness by design.” In the

Hoare Triple(t), the assertions could only be checked during run-time, and this is how it

is implemented in many of the languages that use it. For example, Eiffel, extended with

some addition kinds of assertions, is one of the more successful languages using the

Hoare Triplet. However, even in Eiffel, the assertions are trapped at run-time, not as a

consequence of some kind of compile-time theorem-proving [Mey92]. More recently,

GNAT Ada has adopted this model. Also, there is third-party support for the Hoare

Triple(t) in Java [MiM02].

3. Constraints

Wirth states, in his book describing Pascal, that a program is Data + Algorithms

[Wir76]. In modern software practice, with its emphasis on abstract data types and

software objects, this is a somewhat out-of-date proposition. In modern software,

constraints are an important part of the design of both modules and the methods within

those modules. Also, constraints have now become a part of the UML in the form of an

Object Constraint Language (OCL) [Wak03]. The need for constraints on both methods

and data is a current trend that bodes well for the progress toward engineering software.

The more carefully constraints are designed by the software engineer, the less

opportunity there is for a programmer to violate those constraints. Of course, as with

Eiffel and Ada, those constraints must be an inherent part of the source code contract for

them to be useful. Comment assertions are not very helpful in software engineering.

Weinberg [op cit., p. 182] suggests that the more strict the constraints, the fewer

options one has in for solving a problem. In the movie adaptation of a book by Raphael

Sabatini [Sab52], a young fencing student is being instructed on how to hold his foil. The

instructor says, “If you hold it too tight you will crush it. If you don’t hold it tight

 103

enough, it will fly away.” Constraints are similar. The engineer must be careful to design

constraints so they do not prevent the solution from being realized; and they most not

inhibit the required efficiency of that realization.

In the engineering definition from Shaw and Garlan [ShG96] in Chapter III, we

saw the phrase, “resolution of conflicting constraints”. It is important to keep in mind that

engineering is largely about the reconciliation of conflicting constraints and conflicting

forces. The very fact of conflicting constraints is an important raison d’être for any kind

of engineering. Ensuring absence of failure in reconciling these conflicts is a fundamental

engineering problem.

a. Data Constraints

Programming language data constraints (as constrained data types) were

included in languages such as Ada in the late 1970’s. Those constraints were more like

invariants. Prior to the notion of a constrained type, languages in the C family (C, C++,

etc), as well as older languages such as COBOL and Fortran, relied on types that mapped

directly to the underlying hardware platform on which programs were intended to

execute. Therefore, an int on a thirty-two bit machine would have a default range of -

2**31 though 2**31 -1 even when the number to be represented was very tiny. A C

programmer can insert an if statement to protect values of the type, but that once again

relies on the programmer. Relying solely on the programmer creates a potential point of

failure in the overall design. Counter-examples can be seen in Ada:

type Some_Number is range -200..200;
for Number’Size use 8;

where the type with the name, Some_Number is constrained to never be less than -200

nor greater than 200. Further, a representation clause forces this value to be represented

in eight bits. This definition will still raise a run-time exception, but no if statements are

required in a program to ensure it is within range. Ada does provide a simple if statement

to determine whether the value is valid before it is used. The statement, if X’Valid (where

X is the instance of some scalar type) will produce a true/false result and prevent X from

 104

being used if it is not valid within the constraints given for it in a specification. For this to

work properly, the software engineer must have prescribed the constraints for X’s data

type well in advance of its being used by the programmer.

Using the model just described, any numeric type can be specified with a

range bounds, a precision (for floating-point), a storage-size, and other properties that

strictly constrain instances of the type. Ada’s model of type-safety is more rigorous than

that of most other popular languages, and this type model, along with other properties of

the language make it useful for satisfying our quest for design metrics and the ability to

design to tolerances.

b. Behavioral Constraints

Where invariants are primarily associated with data, other kinds of

assertions can be applied to behavior, or as a consequence of behavior. Often these are

still expressed in terms of data, but they control or result from behavior.

c. Contract Constraints

A contract constraint is most often associated with object technology, or

sometimes, an Abstract Data Type. In this case, the design tolerances include the set of

permitted behaviors, set of possible states (e.g., range of values), and set of rules relative

to instances of this ADT and instances of other types. Further, a contract is an agreement

between two or more parties. Therefore, a contract constraint requires that the interacting

software entities concur with each other during that interaction. For example, if the

contract specifies that an instance of one data type (e.g., and ADT) is not allowed to

interact with an instance of some other data type, the environment (programming

language) must enforce that contract. In this case, there is a constraint that proscribes

such interaction.

4. Language and Tool Support

There has been no paucity of languages and tools for solving the problems

associated with software. The most rigorous of these languages include those mentioned

 105

(e.g., Ada and Eiffel). Other, new languages are emerging with the same level of rigor for

the support of an engineering model for software engineering. More and more software

professionals are recognizing the need for more rigorous tools and languages. Even as

this is being written, new languages are probably on the threshold of being announced.

Also, mentioned earlier is SPARK [Bar03], probably the most ambitious attempt in actual

use for rigorous engineering of safety-critical software.

E. UNLIKELY SOFTWARE DESIGN TOLERANCES

We first address the issue of what is not currently possible in designing software

to tolerances. The binary model used in most computer designs precludes the designer

from doing the kind of fine-grained tolerance computations available to other kinds of

engineers. When a boolean proposition fails in an algorithm, the entire program can fail.

A single wayward bit can destroy months of computation, or cause an entire computer

system to crash. The fault-tolerance methods, including exception-handling, are intended

to accommodate such anomalies during the execution of a program. Including exception-

handling is common in most modern software systems even though it was denounced by

none other than C. A. R. Hoare in his Turing Award Lecture [Hoa81] where his principle

criticism of Ada was “... features and notational conventions, many of the unnecessary

and some of the, like exception-handling, dangerous.” In current programming language

design, exception-handling is a standard feature that everyone expects. For a language

such as Java, one cannot write simple programs without including a lot of try-catch

blocks. While this approach may satisfy some of the fault-tolerance requirements, it does

not represent the “correctness by design” approach we would expect from a model of

designing to tolerances using design metrics.

Computer programming, absent a discipline of design metrics, rarely exhibits any

attention to designing to tolerances. Instead, if...endif statements are (often as an

afterthought) sprinkled throughout a program in an effort to redirect an algorithm when it

approaches some limit or set of conditions that might be problematic. Yet every

 106

programmer knows that conditional statements in any program are the weak link. A

decision made from a conditional statement can often contain non-obvious logic errors

that do not show up until after many iterations of program execution.

F. CHAPTER SUMMARY

More could be written on the topic of designing software to tolerances. In

addition, more research is required on this topic. At present, there is more to be done than

has been done. Eventually, new languages, methods, tools, and notations will come into

existence to support this concept more fully.

Even though there is much to do in the development of design to tolerances, it is

essential that it be done. Until we have a more substantive set of tools and methods for

designing software to tolerances, along with a more effective model for constraints and

controls, software will continue to be deprecated as an engineering wannabee. Those who

deprecate the progress that has been achieved are simply not well-enough informed about

the current opportunities for doing real engineering for software. Those in the software

community to continue to ignore those opportunities will eventually find themselves

obsolete and out-of-date, still hacking away at their own programs, but not able to cope

with the increasing demands that society is placing on software – engineered software.

 107

VII. SUMMARY AND FUTURE WORK

A. DISSERTATION SUMMARY

The central contribution of this dissertation is to present software engineering in a

completely different way than it has been presented in the past. This has required us to

examine the engineering context as a reference. Our conclusions, while controversial, are

not so easily dispelled simply because of the soft nature of the product, or the difficulty

of engineering a basically discrete environment. We note that it is the very difficulty of

engineering software that is its imperative.

The emerging discipline of software engineering must be examined in an

engineering context that conforms to the rigor demanded of other engineering practices.

That context, while important, is not alone sufficient given the substantial differences

between traditional elements of classical engineering and those of software practice.

Those differences do not exempt software engineering from conformance to the essential

goals, principles, and constraints that characterize more widely accepted engineering

practices.

In this work, we have examined the fundamental character of engineering and

how it is generally regarded by the community of practicing engineers. On examining the

viewpoint of both the practicing engineers, and the academic approach required for

engineering education, we concluded that the viewpoint is too narrow. This required that

we expand the definition of engineering to encompass a larger number of disciplines, but

also required that that expansion not dilute the essential nature of engineering. The goals,

principles, and practices remain the same even as the new definition embraces a wider

range of practices.

After describing a more comprehensive concept of engineering, we examine

software practice in that context. It became clear that much of what passes for

engineering in the world of software practice falls short of engineering. This is

particularly true of the actual process of computer programming. However, that

 108

examination also revealed that a lot of software engineering practice is not concerned

with computer programming. We noted that the creation of software involves three major

activities: architecture, engineering, construction. Each of those activities has a set of

tasks, some of which overlap or require a kind of incremental repetition. For example,

there is a requirements process at each level.

Architectural design provides the construction model for a software product.

Engineering design introduces the constraints and controls needed to ensure the

construction process is carried out correctly. Construction is required to conform to those

controls and constraints as well as remain consistent with the architecture.

One of the key contributions in this dissertation is to identify control as a key

artifact of the engineering activity. In the past, control was largely the province of the

computer programmer. Once we promote this responsibility to the engineering level, the

programmer is constrained by the controls as well as the problem statement. We also

identified other responsibilities for the software engineer that are intended to improve

software performance and reduce both predictable and unpredictable defects.

In much of software practice, the responsibilities we describe are not yet in place.

Even so, they are increasingly important in software for such safety-critical environments

as commercial avionics (e.g., Boeing 777/787) and military weapon systems (e.g., cruise

missiles). As software engineering practice continues to mature, and as software

engineering education improves, we expect that a recognition of these responsibilities

will become more widespread. In my personal visits to software developers in Japan and

elsewhere, I am encouraged to see an increasing awareness of the need for this kind of

responsibility in software engineering.

 109

B. FUTURE WORK

The present work is a starting point for a larger contribution on software

engineering. It establishes an engineering context, but not a plan for how that context can

be advanced to a more comprehensive model. That kind of plan is the logical next step in

my research.

An essential idea in this work has been the emergence of new kinds of

engineering in the Twenty-first Century. As noted earlier, the definition of engineering

currently in-use originated in the middle of the Twentieth-century, and it has not been

updated since 1958. Future work will include research into how those emerging

engineering disciplines can become more mature as authentic models of engineering. In

this respect, I plan to refine the work on the maturity model for emerging engineering

disciplines described in Chapter IV. The engineering maturity model will require input

and ideas from the larger engineering community, and I will need to persuade that

community that such an effort is necessary to legitimize those emerging engineering

disciplines.

I have already begun work on several threads that have importance for that future

work. My draft of a book on software evolution has the potential for becoming the

medium in which I can plant the ideas from this dissertation. I have also written a book

on requirements development that is used at NPS by myself and other instructors, and

some of the ideas from this dissertation will find their way into the next edition of that

book. Also, I will continue to contribute papers to computer and software engineering

publications as my research develops additional new ideas.

Most important, the topic of this dissertation is a culmination of many years of

thinking and studying software, software development, and software management. My

future work will be to continue that thread of study.

My intention is to continue work on a larger book that derives from the research

in this dissertation along with future research into the relationship of software practice to

classical engineering. My hope is that such a book will be a larger contribution than this

 110

dissertation, when completed. There will be new chapters in that book that will break

new ground. In particular, the topic of software risk management, mentioned several

times in this work, will require some new approaches. I have already published papers

on this topic and plan several more based on the engineering principles already discussed.

There is also a need for more comprehensive work in the domain of software

engineering education. Several initiatives are in place under the sponsorship of the

Association for Computing Machinery (ACM) and the Institute for Electrical and

Electronics Engineers (IEEE). One of these is Graduate Software Engineering Reference

Curriculum (GSwERC). We intend to use the work from this dissertation to assist in the

development of a comprehensive engineering model for the GSwERC initiative.

 111

BIBLIOGRAPHY

[Abr04] Abrial, J.R., “Discrete Systems Models,” Laser Summer School on
Software Engineering, Elba, Italy, Sponsored by ETH, Zurich,
Switzerland, 2004.

[Agr81] Agresti, W. W., “Software Engineering as Industrial Engineering,”
Software Engineering Notes, vol. 6, no. 5, 1981, pp. 11-12.

[Ale64] Alexander, Christopher, Notes on the Synthesis of Form,
Cambridge, MA: Harvard University Press, 1964.

[Ayu03] Ayyub, Bilal M., Risk Analysis in Engineering and Economics,
Boca-Raton, FLA: Chapman & Hall/CRC, Chapters 1 and 2, 2003,
pp. 127-136.

[Bar03] Barnes, John G. P., High Integrity Software, Menlo Park: CA:
Addison-Wesley, 2003.

[Bau73] Bauer, Fritz, “Software Engineering,” Software Engineering, also
edited by Fritz Bauer, Springer, Heidelberg, Germany, 1973.

[BCK07] Bass, Len, Paul Clements, and Rick Kazman, Software
Architecture in Practice, 2nd ed., Addison-Wesley/Pearson
Education, Boston, MA, 2007.

[BL82] Beakley, George and H.W. Leach, Engineering: An Introduction to
a Creative Profession, 4th ed., Macmillan Publishing Co., 1982.

[BW77] Becker, Shirley A. and James A. Whittaker, Cleanroom Software
Engineering Practices, London: Idea Group Publishing, 1977.

[Bec00] Beck, Kent, Extreme Programming Explained, Addison-Wesley,
Boston, MA, 2000.

[Ber92] Berard, Edward V., Essays on Object-Oriented Software
Engineering, Upper Saddle River, NJ: Prentice-Hall, 1992.

[BC85] Bergeretti, J. F. and B.A. Carre, “Information-Flow and Data-Flow
Analysis of While-Programs,” ACM Transactions on
Programming Languages and Systems, vol. 7, January 1985, pp.
37-61.

[BT03] Boehm, Barry and Richard Turner, Balancing Discipline and
Agility, Reading, MA: Addison-Wesley, 2003.

 112

[Boe84] Boehm, Barry, “Verifying and Validating Software Requirements
and Design Specifications,” IEEE Software, January 1984, pp. 75-
88.

[Boh66] Bohm, Corrado and Jacopini, Giuseppe, “Flow Diagrams, Turing
Machines and Languages with Only Two Formation Rules,”
Communications of the ACM, 9 (5), 1966, pp. 366-371.

[Boo94] Booch, Grady, Bryan, Doug, Peterson, Charles, Software
Engineering with Ada, Third Edition, Benjamin Cummings, Menlo
Park, CA, 1994.

[BR99] Briand, Loic P. and Daniel M. Roy, Meeting Deadlines in Hard
Real-time Systems: The Rate Monotonic Approach, New York:
IEEE Computer Society, 1999.

[Bro95] Brooks, Frederick P., The Mythical Man Month, Reading, MA:
Addison-Wesley, Anniversary ed., 1995.

[Bry00] Bryant, A., “Metaphor, Myth, and Mimicry: The Bases of Software
Engineering,” Annals of Software Eng., vol. 10, 2000, pp. 273–
292.

[Burns01] Burns, Alan and Wellings, Andy, Real-time Systems and
Programming Languages, Third Edition, Addison-Wesley, Harlow,
England, 2001.

[Coc02] Cockburn, Alistair, Agile Software Development, Addison-Wesley,
Boston, MA, 2002.

[Cer98] Cerruzi, Paul E., A History of Modern Computing, MIT Press,
Cambridge, MA, 1998.

[CE00] Czarnecki, Krzysztof and Ulrich W. Eisenecker, Generative
Programming, New York: Addison-Wesley, 2000.

[Den68] Denning, Peter J., The working set model for program behavior,
Communications of the ACM, vol. 11 no. 5, May 1968, pp. 323-
333.

[Die83] Dieter, G, Engineering Design, New York: McGraw-Hill, 1983.

[DP00] Dym, Clive L and Patrick Little, Engineering Design: a Project-
based Introduction, New York: John Wiley & Sons, Inc., 2000, p. 8.

 113

[ECPD58] Engineer’s Council for Professional Development, 26th Annual
Report for the Year Ending September 1958 (quoted in Thatcher,
Charles M., Fundamentals of Chemical Engineering, Charles M.
Merrill Books, Columbus, OH, 1962.

[ER03] Endres, Albert and Dieter Rombach, A Handbook of Software and
Systems Engineering: empirical observations, laws, and theories,
New York: Pearson Addison Wesley, 2003.

[ET02] Erdogmus, Hakan and Oryal Tanir, Eds., Advances in Software
Engineering, New York: Springer-Verlag, 2002.

[Fair85] Fairley, Richard, Software Engineering Concepts, McGraw-Hill,
1985.

[Flo87] Florman, Samuel C., The Civilized Engineer, St. Martins Griffin,
New York, NY, 1987.

[Flo96] Florman, Samuel C., The Introspective Engineer, St. Martins
Griffin, New York, NY, 1996.

[Fow98] Fowler, A.C., Mathematical Modeling in the Applied Sciences,
Cambridge University Press, 1998.

[Fre98] Frezza, Stephen T., “An Undergraduate Software Engineering
Program within Electrical Engineering,” presented at Frontiers in
Education Conference, Tempe, AZ, November 4-7, 1998,
http://fie.engrng.pitt.edu/fie98/papers/1386.pdf (accessed February
2008).

[FW96] Fuggetta, Alfonso and Alexander Wolf, Software Process, New
York: John Wiley & Sons, 1996.

[GE06] Galorath, Daniel D. and Michael W. Evans, Software Sizing,
Estimation, and Risk Management, Boca Raton, FL: Auerbach
Publications, 2006, pp. 347-395.

[GJ96] Garg, Pankaj and Mehdi Jazayeri, “Process-Centered Software
Engineering Environments: A Grand Tour,” in Software Process
(Alfonso Fuggetta and Alexander Wolf, Eds.). New York: John
Wiley & Sons, 1996, pp. 25-51.

[GaW89] Gause, Donald C. and Weinberg, Gerald M. Exploring
Requirements: Quality before Design, New York: Dorset House
Publishing, 1989, pp. 94-97.

 114

[Ghezzi2002] Ghezzi, Carlo, Jazayeri, Mehdi, Mandrioli, Dino, Fundamentals of
Software Engineering, Second Edition, Prentice-Hall, Upper
Saddle River, NJ, 2002.

[Gla03] Glass, Robert L., Facts and Fallacies of Software Engineering,
Addison-Wesley/Pearson Education, Boston, MA, 2003.

[Gla99] Glass, Robert L., Computing Calamities, Prentice-Hall, Upper
Saddle River, NJ, 1999.

[Gor06] Gorton, Ian, Essential Software Architecture, New York: Springer,
2006.

[GVR02] Glass, R. L., I. Vessey, V. Ramesh, “Research in Software
Engineering: an Analysis of the Literature,” Information and
Software Technology, vol. 44, no. 8, 2002, pp. 491-506.

[Gut77] Guttag, John, “Abstract Data Types and the Development of Data
Structures,” Communications of the ACM, vol. 20, no. 6, June
1977.

[Hal97] Hall, Elaine, Managing Risk: Methods for Software and Systems
Development, 1997, Addison-Wesley, New York, NY, 1997.

[Hoa81] Hoare, C.A.R., “The Emperor’s Old Clothes,” Communications of
the ACM, February 1981, pp. 75-83.

[Hod92] Hodson, William K., Ed., Maynard’s Industrial Engineering
Handbook, 4th ed., New York: McGraw-Hill, Inc., 1992.

[Hol08] Holtzapple, Mark T and W. Dan Reece, Concepts in Engineering,
2nd ed., New York: McGraw-Hill, 2008.

[Hum89] Humphrey, Watts, S., Managing the Software Process, Reading,
MA: Addison-Wesley, 1989.

[Hum95] Humphrey, Watts S., A Discipline for Software Engineering,
Reading, MA: Addison-Wesley, 1995.

[Hum 06] Humphrey, Watts S., TSP – Coaching Development Teams,
Reading, MA: Addison-Wesley, 2006.

 [IEE90] IEEE Standard Computer Dictionary: a Compilation of IEEE
Computer Glossaries: 610, New York: IEEE Computer Society,
1990.

 115

[IsZ03] Issary, Valerie and Apostolos Zarras, “Software Architectures and
Dependability” in Formal Methods for Software Architecture:
Third International School on Formal Methods for the Design of
Computer, Communication and Software Systems (Lecture Notes
in Computer Science), Marco Benardo and Paola, Inverardi, Eds.,
New York: Springer-Verlag, 2003, p. 259.

 [Jam99] Jammer, Max, Concepts of Force, Mineola, NY: Dover
Publications, 1957 and 1999.

[JeT79] Jensen, Randall W. and Charles C. Tonies, Software Engineering,
Upper Saddle River, N.J.: Prentice-Hall, 1979.

[Jon94] Jones, Capers, Assessment and Control of Software Risks, Upper
Saddle River, N.J.: Prentice-Hall, 1994, pp. 202-208.

[Jon96] Jones, Capers, Patterns of Software Systems Failure and Success,
Boston, MA: International Thompson Computer Press, 1995.

[KWDK90] Kirby, Richard Shelton; Sidney Withington, Arthur B.Darling, and
Frederick G. Kilgour, Engineering in History, Dover Publications,
Mineola, NY, 1990, p. 378.

[Kol85] Kolence, Kennth, An Introduction to Software Physics, New York:
McGraw-Hill, 1985, pp. 11-14.

[Kru04] Kruchten, Phillipe, “Putting the 'Engineering' into Software
Engineering,” Australian Software Eng. Conf. (ASWEC 2004), P.
Strooper, ed., IEEE CS Press, 2004, pp. 2–8.

[Lew00] Lewerentz, C and Rust, H “Are Software Engineers True
Engineers?” Ann. Software Eng., vol. 10, 2000, pp. 311–328.

[Lev95] Levenson, Nancy G., Safeware:Safety System Safety and
Computers, Addison-Wesley, Reading MA, 1995.

[Mah02] Mahoney, Michael S., “Software as Science – Science as
Software,” in History of Computing: Software Issues (U.
Hahsagen, R. Keil-Slawik, and A. Norberg, Eds.), Berlin:
Springer-Verlag, 2002.

[Mah04] [Mahoney, Michael S., “Finding a History of Software
Engineering,” in IEEE Annals of the History of Computing, No. 26
(January-March), 2004, pp. 8-19.

 116

[Mai97] Maibaum, T. S. E., “What We Teach Software Engineers in the
University: Do We Take Engineering Seriously?” Proceedings of
6th European Conference on the Foundations of Software
Engineering, Zurich, Switzerland, 1997, pp. 22-25.

[Mar05] Marasco, Joe, The Software Development Edge, Addison-
Wesley/Pearson Education, Upper Saddle River, NJ, 2005.

[Mcc04] McConnell, Steve, Professional Software Development, Addison-
Wesley (Pearson Education), Boston, MA, 2004.

[Mcb02] McBreen, Pete, Software Craftsmanship: The New Imperative,
Addison-Wesley, Boston, MA, 2002.

[Mey00] Meyer, Bertrand, Object-oriented Software Construction, 2nd ed.,
Upper Saddle River, NJ: Prentice-Hall, 2000.

[Mey92] Meyer, Bertrand, Eiffel the Language, Prentice-Hall, Upper Saddle
River, NJ, 1992.

[MiM02] Mitchell, Richard and McKim, Jim, Design by Contract by
Example, Boston: Addison-Wesley, 2002, pp. 189-213.

[Mog80] Mogensen, Alan, Common Sense Applied to Time and Motion
Study, 7th ed., New York: John Wiley & Sons, 1980. (First written
in 1932).

[Moo06] Moore, James W., The Roadmap to Software Engineering; A
Standards Based Guide, Wiley-IEEE Computer Society, Hoboken,
NJ, 2006.

[Mor01] Morrison, S.J., “Quality Engineering Design,” Manufacturing
Engineer, vol. 80, issue 3, June 2001, pp. 110-112.

[NaR60] Naur, P, and B. Randell, eds., Software Engineering: A Report on
a Conference Sponsored by the NATO Science Committee, NATO,
1969.

[Neu95] Neumann, Peter G., Computer-Related Risks, ACM Press,
Reading, MA: Addison-Wesley, 1995.

[Ogata97] Ogata, Katsuhiko, Modern Control Engineering, Third Edition,
Prentice-Hall, Upper Saddle River, NJ, 1997.

[Pan 04] Pandian, C. Ravindranath, Software Metrics: A Guide to Planning,
Analysis, and Application, Boca Raton, FL: CRC Press, 2004.

 117

[Par99] Parnas, David Lorge, “Software Engineering Programmes are not
Computer Science Programmes,” Annals of Software Engineering,
vol. 6, no. 1-4, April 1999, pp. 39-59.

[Pau02] Paulish, Daniel J., Architecture-Centric Software Project
Management, Addison-Wesley, Reading, MA, 2002.

[PeP00] Peters, James and Pedrycz, Witold, Software Engineering : An
Engineering Approach, Wiley, 2000.

[PeSV96] Perry, Dewayne E; N. Staudenmeyer, L. G. Votta, “Understanding
and Improving Time Usage in Software” Software Process,
Alfonso Fuggetta and Alexander Wolf, eds., New York: John
Wiley & Sons, 1996, pp. 112-135.

[Pet96] Petroski, Henry, Invention by Design; How Engineers Get from
Thought to Thing, Cambridge, MA: Harvard University Press,
1996.

[Pet85] Petroski, Henry, To Engineer is Human, New York: St. Martin's
Press, 1985.

[Pfl9191] Pfleeger, Shari Lawrence, Software Engineering: the Production of
Quality Software, 2nd ed., New York: Macmillan, 1991.

[Pre05] Pressman, Roger, Software Engineering: A Practitioner’s
Approach, Sixth Edition, McGraw-Hill, New York, NY, 2005.

[Pro98] Prowell, Stacy J., C.J. Trammell, R.C. Linger, and J.H. Poore,
Cleanroom Software Engineering: Technology and Process,
Reading, MA: Addison-Wesley (for S.E.I.), 1998.

[RaW63] Rapport, Samuel and Wright, Helen, Eds., Engineering, New
York: New York University Press, 1963.

[Rie05] Riehle, Richard D., “Engineering on the Surprise Continuum,”
Software Engineering Notes (SEN), vol. 30, Number 5, September
2005.

[RieS07] Riehle, Richard D., “Failure-driven Software Safety,” Software
Engineering Notes (SEN), vol. 32, no. 5, September 2007.

[Rie94] Riehle, Richard D., “Ada in Space,” Embedded Systems
Programming Magazine, November 1994.

 118

[RieJ07] Riehle, Richard D. “Designing Software Components to
Tolerances,” Software Engineering Notes (SEN), vol. 32, no. 4,
July 2007.

[Rie98] Riehle, Richard D., “The Software Circuit-breaker,” Journal of
Object-oriented Programming (JOOP), November 1998, pp. 69-
73.

[Rie96] Riehle, Richard D., “Managing Run-time Faults,” Journal of
Object-oriented Programming (JOOP), September 1996, pp. 73-
77.

[Rie 06] Riehle, Richard D., “Linguistic Continuity in Software
Engineering,” Software Engineering Notes (SEN), vol. 31, no. 1,
January 2006.

[RieN07] Riehle, Richard D., “Institutional Memory and Risk Management,”
Software Engineering Notes (SEN), vol. 32, no. 6, November
2007.

[RGI80] Ross, D.T., J. Goodenough, and C. Irvine, “Software Engineering:
Process, Principles, and Goals,” in Tutorial on Software Design
Techniques, P. Freeman and A. Wasserman, Eds., Long Beach,
CA: IEEE Computer Society Press, 1980.

[Roy98] Royce, Walker, Software Project Management: A Unified
Framework, Reading, MA: Addison-Wesley, 1998.

[Roy70] Royce, Winston, “Managing the Development of Large Software
Systems: Concepts and Techniques,” Proceedings of IEEE
WESCON, August 1970, pp. 1-9.

[RuJB05] Rumbaugh, James, I. Jacobson, G. Booch, The Unified Modeling
Language Reference Manual, 2nd ed., Reading, MA: Addison-
Wesley, 2005.

 [Sab52] Sabatini, Raphael, Scaramouche, screenplay by Ronald Millar,
Loew’s, 1952.

[ScM92] Schlaer, Sally and Stephen J. Mellor, Object Lifecycles: Modeling
the World in States, Englewood Cliffs: Prentice-Hall, 1992, pp. 4-
6.

[Sei00] Seife, Charles, Zero: The Biography of a Dangerous Idea, New
York: Viking, 2000.

 119

[ShG96] Shaw, Mary and D. Garlan, Software Architecture: Perspectives on
an Emerging Discipline, Upper-Saddle River, NJ: Prentice-Hall,
1996.

[Sha90] Shaw, Mary, “Prospects for a Discipline of Software,” IEEE
Software, vol. 7, no. 6, November 1990, pp. 15-24.

[Shaw01] Shaw, Alan C., Real-time Systems and Software, John Wiley &
Sons, New York, NY, 2001.

[Shepard] Shepard, Aland, quoted in
http://www.brainyquote.com/quotes/quotes/a/alanshepar179873.html
(accessed July 2008).

[Som05] [SOM] Sommerville, Ian, Software Engineering, 7th ed., Pearson
(Addison-Wesley), 2005.

[StP03] Steinberg, Daniel H. and Daniel W. Palmer, Extreme Software
Engineering: a Hands-On Approach, Upper Saddle River:
Prentice-Hall, 2003.

 [Ste05] Stern, David, Chapter 16, “Newton and His Laws: in From
Stargazers to Starships [a web book], March 2005, http://www-
istp.gsfc.nasa.gov/stargaze/Smap.htm (accessed July 2008).

[Tay11] Taylor, Frederick Winslow, The Principles of Scientific
Management, New York: Harper and brothers, 1911. (Out-of-print
but available electronically for several WWW sources and at
university libraries.)

[Tek07] http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.27.8684
University of Pennsylvania, (accessed July 2008).

[Thu89] Thuesen, G. J., Fabrycky, W.J., Engineering Economy, Prentice-
Hall, Englewood Cliffs, NJ, 1989.

[Vin90] Vincenti, Walter G., What Engineers Know and How They Know
It, Baltimore: Johns Hopkins University Press, 1990, p. 6.

[Vol04] Voland, Gerard, Engineering by Design, 2nd ed., Upper Saddle
River: Pearson/Prentice-Hall, 2004.

[WaK03] Warmer, Jos and A. Keppe, The Object Constraint Language:
Getting Your Models Ready for MDA, 2nd ed., Reading, MA:
Addison-Wesley, 2003.

 120

[Wang02] Wang, Wei-lung, “Beware the Engineering Metaphor,”
Communications of the ACM, vol. 45, no. 5, May 2002, p. 27.

[Wei89] Weinberg, Gerald M. and Gause, Donald C., Exploring
Requirements, Dorset House Publishing, New York, NY, 1989.

[Wei98] Weinberg, Gerald M. and Gause, Donald C., The Psychology of
Computer Programming, (originally 1971), Dorset House
Publishing, New York, NY, 1998.

[WhB97] Whitaker, James A. and Shirley A. Becker, Cleanroom Software
Engineering Practices, Harrisburg, PA: Idea Publishing Group,
1997.

[Wie96] Wiegers, Karl E., Creating a Software Engineering Culture, Dorset
House, New York, NY, 1996.

[Wir76] Wirth, Niklaus, Algorithms + Data Structures = Programs,
Englewood Cliffs, NJ: Prentice-Hall, 1976.

[Wri89] Wright, Paul, H., Introduction to Engineering, New York: John
Wiley & Sons, 1989, pp. 47 and 49.

 121

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Dr. Peter J. Denning
Computer Science Department
Naval Postgraduate School
Monterey, California

4. Dr. J. Bret Michael
Computer Science Department
Naval Postgraduate School
Monterey, California

5. Dr. Mantak Shing
Computer Science Department
Naval Postgraduate School
Monterey, California

6. Dr. Mikhail Auguston
Computer Science Department
Naval Postgraduate School
Monterey, California

7. Dr. Dan Boger
Naval Postgraduate School
Monterey, California

8. Professor Charles Calvano

Systems Engineering Department
Naval Postgraduate School
Monterey, California

9. Dr. Qioayun Li

Skysurfer Communications, Inc.
 San Jose, California

