

en.smant

Digitized by the Internet Archive in 2012

CYCLOMATHESIS: OR A N

EASYINTRODUCTION

TO THE
SEVERAL BRANCHES OFTHE

MATHEMATICS;

Being principally defigned for the
Instruction of Young Students,
Before they enter upon the more
Abstruse and Difficult Parts thereof.

Scribere laus magna eft; Sed foriptis adderc luccia
Hoc vero egregice dextcritatis opus. Rus. Med.

In TEN V OLUMES.

$$
\mathrm{L} O \quad \mathrm{~N} D \mathrm{O} \quad \mathrm{~N}:
$$

Priticed for J. Nourse, in the Strand; Doeafolier in Ordinary to his MAJESTY.
$12 \int_{0}+\infty^{2 c^{2}}$

$$
\int 26,566
$$

EEn Ehasid Cudams
fulu-z=1891.

XÁAdams. 770.Em 30
v.l

GENERALCONTENTS

 OF THE
TEN V O L U M E S

OF THE

CYCLOMATHESIS.

VOLUME I. Containing,

1. General Introduction to the Cyclomathefis.
2. A

A Treatife of Arithmetic.
V O L. II.

1. The Doctrine of Proport:on, Arithmetical and Geometrical.
2. The Elements of Geometry.

Note, The above two Volumes may be bound in cone.
V O L. III.

1. The Elements of Trigonometry, Plain and Spherical.
2. A Table of Natural Sines and Tangents.
3. A Table of Logarithmic Sines and Tangents.
4. A Table of Logarithms from 1 to $10,000$.
V O L. IV.

A Treatife of Algebra, in Two Books.
V O L. V.

1. The Arithmetic of Infinites, and the Difficrential Method.
2. Elements of the Conic Seetions.
3. The Nature and Properties of Curve Lines.
VOL.

C O N T E N T S.

V O L. VI.

The Elements of Optics and Perfpective.
V OL. VII.

1. Mechanics, or the Doctrine of Niotion.
2. The Projection of the Sphere, Orthographic, Stereogiaphic, and Gnomonical.
3. The Laws of Centripetal and. Centrifugal Force.

> V O L. VIII.

A Syftem of Aftronomy.
V O L. JX.
т. The Mathematical Principles of Geography.
2. The Theory of Navigation, Spherical and Spheroidical.
3. Dialling. Or the Art of Diawing Dials on all forts of Planes.
V O L. X.

1. The Dogrine of Combinations, Permutations, and Compolitions of Quantities.
2. Chronology: Or the Art of Reckoning Time. With a Chronological Table.
3. Calculation, Libration, and Menfuration: Or the Art of Reckoning, Weighing, and Meafuring.
4. The Art of Surveying, or Meafu:ing of Land.

CYCLOMATHESIS:

> ORAN

EASY INTRODUCTION

To the feveral Branches of the

MATHEMATICS.

Being principally defigned for the Infruction of young Students, before they enter upon the more abftrufe and difficult parts thereof.

Scribere laus magna eft: Sed foriptis adderc lucem, Hoc verò egregice dexteritatis opus. Ruf. Med.
L O N D O N,

Printed for J. Nourse, Bookfeller in Ordinery to his MAJESTY.

$$
\overrightarrow{\mathrm{F}}
$$

$$
\begin{align*}
& \text {, N-17 } 8 \text { 2 }
\end{align*}
$$

$$
\begin{aligned}
& \because 97 T, \quad 2 F A 2 \pi R O B A
\end{aligned}
$$

General Introduction

Concerning the

NATURE, USEFULNESS, and CERTAINTY

OF THE

M ATHEMATICS.

AS man is endued with the noble faculty of reafon, and likewife with a ftrong innate defire of knowledge; it is natural for him to exert this his dittinguifhing talent in the purfuit of knowledge. Truth alone is the object of knowledge; for it is impoffible to know a falfe thing to be true: and evidence is the certain mark or criterion of truth; and this confifts in the perception of the agreement or difagreement of our ideas in the mind, according as the things in nature agree or difagree. As there is no ftronger paffion in the human toul than the love of truth, and no greater defire for any ching than to find it out; fo, when it is found, there is no greater pleafure to the underftanding, than the contemplation thereof in the feveral branches of fcience; even when the fearch of it is attended with the greateft labour and pains. Truth is of fuch a nature, as always to be confiftent with itfelf, and needs nothing to enforce or recommend it, but its
own native evidence. It is but one fimple, uniform, invariable thing; whillt its oppofite, falfhood, is infinitely various, inconfiftent, and contradictory. As truth is what all men admire, and every one aims at; and error what every man hates, that is not blinded by felf-intereft; it is neceffary that we take care never to receive any thing for truth, which does not bring its proper evidence along with it, For it is evidence alone that can gain our affent, and remove all our doubts; and when that appears, the mind can neither expect nor defire any thing further. By the help of this we are enabled to diftinguifh truth from falfhood, right from wrong; and we likewife have a power of furpending our affent till that evidence appears; and when it does appear, it compels our affent, and carries abfolute conviction. Truth, when expreffed in words, is the fame thing as a true propofition; and, as evidence is a neceflary voucher for truth, we ought never to give affent to a doubtful or obfcure propofition; but fhould deny it as long as we can, and not give our judgment as long as we can withhold it, in fuch things as we can have an evident knowledge of.

Now fince truth is of fo amiable a nature, and fo defirable to the underftanding, it will be afked where it is to be found, and how fhall we come to the knowledge of it? I anfwer, it is to be found in the writings of the mathematicians, where the method of finding it is clearly explained. In the mathematical fciences truth appears moft confpicuous, and fhines in its greateft luftre. In other fciences it is either felf evident, and then it affords little pleafure to the mind; or elfe it appears with fo much obfcurity, that falfhood is often miftaken inftead of it. The evidence for it is fo dim, that it is only feen as in a milt; and truth, feen through fuch a dull medium, will hardly be known to be truth; the mind will be loft in doubt and obfcurity, and will
be unable to make any certain conclufion. But in the mathematics, all their demonftrations are free from any obfcurity, every ftep has a clear and intuitive evidence; and where that falls fhort, the matter is chrown out as not delerving a place among mathematical truths.

The manner whereby truth is found out, is by reafoning, which is performed by firft laying down, as a foundation, certain evident principles, or fuch as catinot be denied; and then proceeding from thefe by leveral fteps till they come at the conclufion; which fteps are fo to be linked with each other, and laid in fuch order, that the underftanding may perceive their connection and agreement; which being every where true and right, the conclufiun mult infallibly be true: for all the parts being locked together by truth; the laft refult, though never lo long, muft be equally true.

Thus mathematicians, from a few plain and fimple principles, and a continued chain of reafoning, proceed to the difcovery and demonitration of truths that appear at firft fight beyond human capacity. The art of finding proofs, and the admirable methods they have invented for finding out and laying in order, thole intermediate ideas that fhew the connection of the feveral fteps of the proof, or the feveral links of thischain of reafoning; is that which has carried them fo far, and produced fuch wonderful and unexpected difooveries. In this fcience there appears to be an inexhauftible fund in the feveral branches thereof; any one of which a man may purfue as far as he pleafes, and ftill improve his knowledge further and further: and thus, by the help of truths already known, more and more may ttill be found out ad infmintum.

When the mind works on mathematical ideas, it works fecurely, which cannot be done in other things fo truly; becaufe one cannot keep fo ftriatly to the: definitions, or the meaning of words, in other fubjects;
where the ideas are often confounded. But matheticians take care not to confound theirs; for none ever miftook the idea of a fquare for that of a circle. Therefore mathematical demonftrations are the moft proper means to cleanfe the mind from errors, and to give it a relifh of truth; which is the natural food and nourifhment of the underfanding.

Reafoning, which is the exercife of reafon, is beft learned from the examples and practices of the mathematicians. It is certain, that no fort of human knowledge can lay fo juft a claim to an unfhaken evidence and certainty, or boaft fo great a ftrength of its demonftrations, or produce fuch a multitude of undeniable truths, as the mathematics. All that beautiful analogy, and that harmonious connection and confiftency, is quite loft in other fciences. Wherefore it is no wonder that greater improvements have been made in the mathematical fciences, than in all the reft put together. By following their methods, a habit of right reafoning is obtained by frequent practice, like otherthings; and the caufe why many people reafon fo badly is, for want of practice, due attention, and confideration. They proceed in that tract which chance has put them into, being ignorant of true fcience, and of thofe univerfal invariable principles, upon which true reafoning depends: as is evident from the many inftances of falfe reafoning and ignorance, wherewith the difcourfes and writings of mankind abound.

In purfuance of our reafoning in the mathematical way, we are often forced to draw diagrams, in order to reprefent the thing in queftion; likewife to form ideas of the feveral parts, compound them, divide them, abftract from them; to confult the memory, to fee what has been done and what is to do; to infpect tables, books, inftruments, Egc. to call up all fuch axioms, theorems, experiments, and obfervations, as are already known, and which can be ufeful

INTRODUCTION.

to us. And then the mind examines, compares, methodizes, and alters them; till the feries be laid in a proper order, from the firft principles to the laft conclufion. For the principal thing required in ftrict reafoning is, to lay the feveral fteps in due order, to fee that they be firmly connected, and properly expreffed, without any rhetorical flourifhes, and to aim at truth by the fhorteft method. This indeed requires cool, fedate, and fober thinking; as allo frequent application and practice, without which nothing can be done to the purpofe. To which we may add, a fixt, conftant, and firm refolution to embrace truth wherever we find it; and to fhun error and faliehood, when we find ourlelves in danger of falling into them.

There is but one method of true reafoning, fuch as has been defcribed; but the grounds of falie reafoning are many, fuch as thefe, want of faculties, want of learning, defects of memory, want of due reflection, not connecting the fteps of the proof, trufting too much to the fenfes, paffions, appetites, prejudices, cuftom, felf-intereft, errors of education, wrong ftating the queftion, not underftanding the terms, want of proofs, vulgar received opinions, weak authorities, precipitancy of judgment, E ${ }^{2}$ c. thefe will frequently difturb us in our fearch after truth, and are apt to bials the mind in reafoning upon all other fubjects; but few or none of them intrude in the mathematical fciences. Mathematcians never attempt to refolve any pioblems with ut proper data.

It muft be owned that the progrefs of this fort of knowledge is but now, owing to the difficulty of the feveral branches that come under contideration; but then it is fure and certain; the acquilition here gained is real knowledge. For this reafon it is the work of ages to bring even a fin le branch to perfection: and every fucceeding age improves upon the foregoing.

And therefore it is no wonder if the ancients have, in many cafes, made ufe of round-about methods to encompals their ends, and given us long and tedious demonftrations, and laid down many propofitions, either of no ufe, or too fimple and trifling to be taken notice of. Whence moft of their inventions may be demonftrated fhorter, propounded eafier, difpofed in a better method, and taught in a more compendious way.

But befides the pleafure a man finds in the fearch and attaining of knowledge, and the agreeable furprize the mind is affected with, at the difcovery of new and difficult truths; the advantages arifing to mankind from thefe fciences, in all the parts of human life, are endlefs. By help thereof we are able to keep our accounts regular and juft, and manage all our tranfactions with one another; to caft up and calculate immenfe fums, for nothing lies without the power of numbers; to meafure and divide lands and eftates; and alfo all manner of furfaces or folids; to meafure inaccefible diftances and altitudes, and find the hight of the clouds; to build houfes, caftles, छ c. by which we enjoy the principal delights of life, and fecurity of health; to make fortifications to defend us from the enemy; to make guns and other inftruments of war, and to fhew how to ule them in our defence; to refolve all manner of pleafant and fubtle queftions; to build fhips, and by the help of wind and fails, and the rules of art, to fail upon the fea, and find our way through it to diftant countries, and traffick with foreign nations, whereby our wealth is increafed; to contrive inftruments to weigh and meafure all forts of commodities, and give every man his juft weight and meafure; to make engines for raifing and removing huge bodies; to invent innumerable machines, ufeful in private life, and neceffary for our living commodiounly, fuch as clocks, watches, jacks, pumps, E_{c}. to make dials and other inftruments for keeping
a regular account of time; to make ephemerides and chronological tables, to fhew and account for the return of the various feafons of the year, and to keep account of remarkable tranfactions and events; to defcribe the feveral countries of the earth, and make maps and reprefentations thereof, and even to meafure the whole earth and fea; to account for the rifing and falling of the tides; to number the ftars, and range them in their proper order; to meafure the magnitude and diftances of the planets, and explain the laws of their motion, and fet bounds to their wandering courfes; to afcertain the fituation of all the great bodies of the univerfe, and hew the fabrick and conftruction of the whole world; and to admire that wonderful power that contrived and framed it; to lead us through the dark mazes of nature, and through the intricate labyrinths and hidden fecrets of philofophy; to make proper inftruments to improve the fight, and even refore it in old age; and to magnify fmall bodies, imperceptible to the naked eye, and make them become vilible; and to caufe remote invifible things to appear to us large and diftinct; to give the tiue reprefentation or draught of any object, fuch as towers, caftles, trees, towns, $\mathcal{F}^{\circ} c$. and to fix in the mind a method and habit of right reafoning, a thing of the utmoft confequence, without which a man can hardly be called a rational creature.

The time would fail me in attempting to enumerate all the ufes and advantages of mathematical learning; and no words can fully exprefs the prailes of that fcience, which wanders through the heavens, the earch, and the feas: nor is it poffible to fet any bounds to fo extenfive a fcience. In this age, the number of its admirers and profeffors are many, and daily increale more and more. Moft people feem to be infpired with the love of mathematical learning, and to be inamoured with its char:ns, and to court

A lemma is a fhort preparatory propolition, laid down in order to fhorten the demonftration of the main propofition which follows it.

A corollary, or confectary, is a confequence drawn from a propofition already demonftrated.

A fcholium is a remark made on any propofition, corollary, or other difcourfe.

Principles are the firft grounds, rules, or foundations, of any fcience; as definitions, axioms, poftulates, and hypothefes.
A definition is the explication of any word or term, in any fcience; every definition ought to be clear, and contain no word or term but what is perfectly underftood.

An axiom, or maxim, is a felf-evident propofition. Thefe appear to be true at firft hearing, and no body can deny them, without contradicting common fenfe and reafon. Here nothing ought to be allowed for an axiom, but what is clear and felf-evident: as this, the whole is greater tban a part. Out of an infinite number of felf-evident truths that occur to the mind, men felect fuch as are general, and of moft ufe in demonftrating any fcience, and lay them up in ftore, to have recourfe to, as need requires. And though men in their reafoning do not always mention fuch and fuch axioms; yet the mind perceives the force of them, and what they mean, without ftopping to repeat the words, or name them.

A poftulate, or petition, is fomething required to be done, which is fo eafy, that no body will difpute it.

An bypothefis is a fuppofition affumed to be true, by which a man is to argue, and build his reafoning upon.

Demonftration is the collecting the feveral proofs and arguments, and laying the:n in fuch order, as to Thew the truth of the propofition under confideration. Thefe proofs are to be drawn only from firft principles,
principles, and from propofitions already demonftrated. Here we muft keep ftrictly to one and the fame fenfe of each definition; and when nothing is admitted but definitions, and axioms, and fuch pofulates and hypothefes as are agreeable to the nature of the thing; and the conftruction of figures in geometrical fubjects; and demonftrated propofitions; and when the feveral arguments, or fteps, are rightly connected together, fo as one is plainly feen to be directly inferred from another, through the whole feries or chain of reafoning: the conclufion at laft obtained muft be certain and true. Thus one truth is drawn from another, and from thefe a third, and thus continuing to deduce truths from truths, through the whole train of truths, we come at laft to the conclufion or truth fought after.

A direet, pofitive, or afirmative demonfiration, is that which concludes with the certain and direct proof of the propofition in hand. This kind of demonftration is moft fatisfactory to the mind; and therefore is called an ofenfive demonfration.

A negative, or indirect demonfration, is that which Shews a propofition to be trie, by fome abfurdity which would neceffarily follow if the propofition advanced fhould be falfe: this is called reductio and $a b$ furdunn; and fhews the abfurdity and falhood of all fuppofitions, but that contained in the propefition. This is frequently made ufe of for eafe and brevity's rake, and to avoid a long perplext ofinfive demonitration. But alchough this fort equally convinces the mind, and forces affent, yet it does not equally enlighten it. For it does not fo much demonftrate the truth iffelf direetly, as the confequent abfurdity or impoffibility of the oppofite fuppofition; whence it follows certainly (though indirectly) that the propofition is true. When, at the fame time, the original reafon of its truth, or by what intrinfic catife ie comes to be fo, remains quite obfcure and in the daik.

A geometrical demonfration, is that which depends on the principles of geometry.

It has been fhewn, that when the firft principles are all true, upon which the reafoning relies; and all the fteps truly and evidently connected together; that the conclufion we come to at laft, muft neceffarily be true.

But if we lay down a falfe hypothefis, and argue upon it as true, although we carry on our reafoning ever fo rightly, yet the conclufion will moft certainly be falfe. For from falfe premifes nothing but falhood can follow. And therefore, on the contrary, when we argue from a precarious hypothefis, and conduct our reafoning with the greateft rigour of truch, and at laft come to a falfe conclufion; we may be affured, the hypothefis we argued from is falfe. For there is no other poffible caule for falling into a falfe conclufion. And this is the foundation of that way of reafoning before mentioned, called reductio ad abfurdums vel impooffibile. And this teaches us how to detect falfe hypotheres.

Again, if our hypothefis and other principles be all true; and we happen to reafon wrong, either by giving a falfe meaning to any term, or making ufe of falfe propofitions, in the courfe of our reafoning; or not connecting the feveral fteps rightly together; then falhood and not truth muft again be the conclufion; except it be by mere chance, that one erro: may correct another. And if our firf principles and reafoning be both falfe; it is a thoufand to one but the conclufion will be falfe, and truth here muft have a poor chance for appearing.

Metbod is the art of difpofing a train of arguments, in a right order, either to find out the truth, or falihood of a propofition; or to demonftrate it to others, when we have found it out. This is either analytical or fynthetical.

Analyfis,

I NTRODUCTION.

Analyis, or the analjtic metbod, is the art of finding out the truth of a propofition,' by fuppofing the thing to be done; and going back ftep by itep, till we arrive' at fome known truth. This is called the metboit of invention, or refolution, and is generally ufed in alge bra.

Syntbefis, or the fyntbetic method, is the fearching out truth, by firft laying down fome fimple and eafy principles, and purfuing the confequences till we come at the conclufion. This method begins at the moft fimple and eafy things, and proceeds to the more compounded and general. It is alfo called the metbod of compofition, and is contrary to the analytic method; as this proceeds from known principles to an unknown conclufion; whilft the other goes in a retrograde order from the thing fought, as if it was known, to fome known principle. And therefore when any truth has been found out by the analytic method; it may be demonftrated in a backward order, by fynthefis.

Thus you have an account of the rules and methods, whereby the mathematicians manage this their fcience, and handle their feveral fubjects. Methods fo clear and inftructive, that they may juftly challenge the world to produce any others, of equal perfpicuity, evidence, and certainty. And the ftructures they treet thereby are equally ftrong and impregnable, as well as admirable and furprizing. For in the firft place, they premife fome general principles to begin with, as definitions, axioms, Efc. from thefe they derive fome fimple and eafy propofitions ; and from thefe others are drawn fill harder; and then by degrees they arrive at the more difficult ones; what goes before being always helpful for finding out the following. Thus a chain of arguments is carried on in an uninterrupted feries, and their truth confirmed by infallible reafoning. Then the mof general and ufeful propofitions are collected together, and drawn
up in order, and put into a body or magazine, and referved for ufe, to be called forth, as occafion requires, for the inveftigation and demonftration of others. Thus they form fo many fyttems of mathematical truths, according to the various fubjects they examine ; which mult ftand as principles for finding out new ones, or as tefts for trying the truth of others. For any propofition being once proved true, muft eternally remain true, and can never vary: it being the nature and effence of truth to continue invariable.

Now thefe feveral fyftems, or branches of the mathematics, that is, the divifion of the mathematical fciences, have been differently made and reckoned up, by different men. But the principal branches or parts thereof, at leaft thofe of moft ufe, may be reckoned to be thefe: arithmetic, geometry, proportion, trigonometry, projection of the fphere, menfuration, furveying, guaging, dialling, gunnery, geography, conic fections and curve lines, navigation, mechanics, optics, perfpective, chronology, algebra, centripetal forces, aftronomy, fluxions, increments. I have already publifhed feveral of thefe in feparate tracts; and from the regard I always had for thefe arts, and the great defire I have of feeing them flourif, I intend from time to time, in the courfe of this work, to publifh the reft, as foon as they can be got ready for the prefs. Which done, I doubt not but the young ftudent will be furnifhed with a compleat courfe of the mathematics, fufficient to inftruct him in his progrefs, through thefe difficult paths, and to make him fit and able to read larger, and more elaborate treatifes.

A

TREATISE

$$
0 F
$$

A R I T H M E T I C,

CONTAINING

All the Practical Parts thereof;

$$
\begin{aligned}
& \text { WOTHIN } \\
& \text { VULE LGAR FRACTICRS, } \\
& \text { AND DECIMALS. } \\
& \text { LIKEWISE } \\
& \text { The THEORY of NUMBERS, } \\
& \text { And their Principal Properties, demonftrated in a } \\
& \text { plain and eafy manner. }
\end{aligned}
$$

Dodores, elementa velint ut difcere prima. Hor.

$$
\begin{aligned}
& -\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+1 \\
& 4 \\
& 4 \\
& 1+\quad, \quad+\quad+1,0 \\
& -\frac{1}{-}+1+2+
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
1 \\
1 \\
-1 \\
\hline
\end{array} \\
& 1+2 \\
& --\square-\square \\
& \square-\infty
\end{aligned}
$$

T H E

PREFACE.

HE that would make any confiderable progress in the matbematics, muft begin at the firft principles, and proceed gradually forward from one brancb of that fcience to anotber; according as they are naturally conneiled togetber, and bave a dependance upon one anolker. This will make the progrefs as eafy, flort, and intelligible, as the nature of the thing will admit of. Wbilf be that takes a contrary courfe, will always be involved in difficulty, doubt, and obfcurity; the knoweledge be gains will be imperjeet; and for want of evidence, the mind will want that conviEtion which is neceffary for eftablifbing truth.

Aritbmetic may be jufly faid to be the bafis of all the ctber parts of matbematics. All things of whatever kind they are, may be reduced to numbers, and their quantities and proportions, calculated by numbers. All ciber branches bave need of aritbmetic, fome xway or ctber; ard would often be at a fland witbout it. Tet aritbmetic bas no nced of tbem, but flands Solely upon its own principles. In all parts of the matbematics, no problem of any fort is deemed to be compleatly folved, sill is be calculated aritbmetically, and its value brougbt out in numbers. And fince it is of fuch confequence, it is abfolutely neceffary for the young fludent, who would lay a good fourdation for attaining a comperent knorvlerlge in tbe matbematics, firls of all 10 make bimfelf ac-
quainted with all the parts of aritbmetic, and the nature and properties of numbers : without which it would be in vain for bim to attempt any tbing.

And as it is of fuck great ufe in the fciences, so it is equally ferviceable in buman actions and employments. He muft be very little versed in the common affairs of life, that does not know the great ufefulness of aritbmetic in every inftance thereof. No bufinefs can be carried on witbout the belp of numbers; no trade or commerce exercijed without regular accounts: So that in all fituations of life, aritbmetic is a neceffary accomplifbment.

As to the enfuing treatife, I bave in the firft book, fully, and yet very concifely bandled all the parts of common aritbmetic; and bave made all the rules thereof, as Mort as polfible, fo as to be intelligible; and the reader cannot fail of underftanding them, by means of the examples there given, wbich I fuppofe are fufficient for that end, and no more. I bave alfo endeavoured to give the reafons for the feveral operations in the fundamental parts of this art, wbich cannot mifs pleafing the reader, as be will bave bis judgment and underftanding inforned, at the fame time be is learning the practice.

In the fecond book, I bave delivered the fubtance of what Euclid and others bave written about the properties of numbers, adding whatever I thougbt of any consequence in the theory of numbers. And bere I bave for the moft part demonftrated the propofitions of Euclid after a different manner from bim, and often more generally. And though the theory ought to precede the praftice, in any fience: yet bere it was bardly poffible to obferve that rule. For there is not only frequent ufe made of multiplication, divifon, \&xc. but there is a good deal of abftrait reafoning about the properties of

The PREFACE.
numbers, wbich could not well be underfood, till the reader was well acquainted with the operations of aritbmetic; wowich is tbe reafon I bave put it laft. I knowo of notbing that is wanting in this treatife, except it be a greater variety of examples; and this would require more room; and the intelligent reader can eafily Jupply thefe of bimjelf; to whom I wilb fuccefs, anfwerable to bis endearours.

W. Emerfon.

$$
\begin{aligned}
& 1, \\
& 1 \\
& \text { (2) }
\end{aligned}
$$

THE

C O N T E N TS.

DEFINITIONS

Page
Notation

- 1

Axioms, $\xi^{\circ} \mathrm{c}$.
Chap. I. Whole Numbers.
Numeration

Divifion
24
Extraction of the fquare root

Extraction of the cube root32

Extraction of the cube root - 3^{6}
Chap. II. Vulgar Fractions.

Reduction
Addition
Subtraction
Multiplication
Divifion
Square root
Cube root

Chap. III. Decimal Fractions.
Notation Subtraction
Multiplication
Divifion
Reduction
Square root
Cube root
72

\longrightarrow

75

B O O K II.

The Theory of Numbers.

> CHAP. I. Even and odd numbers; prime and compofite numbers, fquares, cubes, E'c.

Chaf. II. Proportional numbers, mean pro-
portionals, plane and folid num-
bers
Chap.III. Particular numbers, divifors, aliquot parts, circulating numbers - 218
Chap.IV. Numerical problems - 228

ARITHMETIC.

D EFINITIONS.

1.

ARITHMETIC is the art of computing by numbers; it is called vulgar or comsmon Aritbmetic, when it treats of whole numbers.
2. Unity is that by which every thing is called one; and a unit is the beginning of number.
3. Number is a multitude of units: by this every thing is reckoned.
4. An integer is any whole thing.
5. A whole number is a precife number without any parts annext.
6. A mixt number is a whole number with fome part annext.
7. A fraEtion is a part or parts of an unit.
8. A proper fraction is lefs than a unit.
9. An improper fraction is greater than a unit.
10. An aliquos part is that which is contained a precife number of times in another.

Cor. Hence I is an aliquot part of any number : but a number cannot be called an aliquot part of itfelf.
11. An aliquant part is fuch as is contained in another, fome number of times, with fome part or parts over.
12. One number is faid to be multiple of another, when it contains it a precife number of times.
13. One number is faid to meafure another, when it is contained in the other a precife number of times, without a remainder. The faid meafure is alfo a divifor.

Cor. Any number is a meafure to itfelf. And I is a meafure to any number.
14. An even number is that whofe half is a whole number.
15. An odd number is that which cannot be divided into two equal whole numbers.

Cor. The numbers one, two, three, four, $E^{3} c$. are alternately odd and even for ever.
16. A prime number is that which can only be meafured by a unit.
17. Numbers are faid to be prime to one anotber, when only a unit meafures both. Thefe are alfo called coprimes.

Cor. Therefore I is prime to every number.
18. A compofite number is that produced by multiplying feveral other numbers together, called faitors or multipliers. Alfo what is produced by fuch multiplication, is called a product.
19. Numbers are faid to be compofed to one another, when fome number (greater than a unit) meafures both.
20. A plane number is the number produced by multiplying two other numbers.

2 I . A folid number is the product of three numbers.
22. A Square number is the product of a number by itfelf.
23. A cube number is the product of a number, and its fquare.
24. Like or fimilar plane or folid numbers, are thofe whofe fides or multipliers are proportional.

D EFINITIONS.

25. A perfera number is that which is equal to the fum of all its aliquot parts.
26. The power of any number, lignifies, that the number (called the root) fhall be fo often multiplied, as is denoted by the number (or index) exprefling the power. Thus the 2 d power of 5 , is 5 multiplied by 5 , or 25 ; the 3 d power of 5 , is 25 mul tiplied by $5, \mathrm{E}^{2} c$.
27. Four numbers are faid to be proportional, or in the fame proportion, when comparing two and two; the firft is the fame multiple, or the fame part or parts of the fecond, as the third is of the fourth, thus: $6,2,9$ and 3 , are proportional; for 6 contains 2 thrice, and 9 contains 3 thrice. Alfo 4,6 , so, 15 , are proportional; for 6 is once and half 4 , and 15 is once and half 10 . And the feveral numbers are called the terms of the proportion; and the quotient arifing, by dividing the former by the latter number, is called the Ratio.
28. Numbers are faid to be in continual proportion, or in geometrical progreffion, when the firtt has the fame proportion to the fecond, as the fecond to the third, and as the third to the fourth, and f_{0} on, thus: $2,6,18,54, छ^{c}$. are continual proportionals.
29. Mean proportionals are all the intermediate. terms, between the extremes, in a geometrical progreffion.
30. Surds are fuch numbers as have no exact roots.

N O T A TION.

1. The charatters by which numbers are exprefied, are thefe ten: $0,1,2,3,4,5,6,7,8,9$; 0 is called a cypber; and the reft, or rather all of them, are called figures, or digits. The names and fignification of thefe characters, and the origin or generation of the numbers they ftand for, are licre fet down:

1 one, or a fingle thing called

$$
\text { then } \begin{aligned}
1+1 & =2 \text { two. } \\
2+1 & =3 \text { three. } \\
3+1 & =4 \text { four. } \\
4+1 & =5 \text { five. } \\
5+1 & =6 \text { fix. } \\
6+1 & =7 \text { feven. } \\
7+1 & =8 \text { eight. } \\
8+1 & =9 \text { nine. }
\end{aligned}
$$

then $9+1=$ ten, which has no fingle character; and thus by the continual addition of 1 , all numbers are generated.
2. The value of any number depends not on the figure or figures alone, but upon the figures and places where they ftand, jointly. And the order of places is backward from the right hand towards the left. The firft place is called the place of units; the fecond, tens; the third, hundreds; the fourth, thoufands; the fifth, ten thoufands; the fixth, hundred thoufands; the feventh, millions; and fo on. Thus in the number $765487654 ; 4$ in the firtt place fignifies only $4 ; 5$ in the fecond place fignifies five tens or fifty; 6 in the 3 d place fignifies fix hundred; 7 in the 4 th place is feven thoufand; 8 in the 5 th place is eighty thoufand; 4 in the 6th place is four hundred thoufand; 5 in the 7 th place is five millions; and fo on.
3. A cypher, though of no value by itfelf, yet it occupies a place, and advances the figures on the left hand into higher places, from whence they have a greater value. Thus 3 fignifies only 3, but 30 fignifies 3 tens or thirty, and 300 fignifies 3 hundred.
4. The values of all figures increafe in a tenfold proportion from the right hand towards the left, each following place being ten times greater than the foregoing. Thus in the number 33333333; 3 in the firlt place is three; in the fecond, 30 thirty; in the third,
third, 300 three hundred; in the fourth, 3000 three thoufand; in the fifth, 30000 thirty thoufand, \mathcal{E}° c. And thus I fignifies one, 10 fignifies ten, 100 fignifies a hundred, 1000 fignifies a thoufand, and fo on; and in general, ten units make 1 ten, ten tens make - I hundred, ten hundred make I thoufand, $\xi^{3} c$.
5. Hence, placing $1,2,3, \mathcal{E}^{3}$. cyphers on the right hand of any number, makes it ten, a hundred, a thoufand times, \mathcal{E}^{c}. greater than before. But placing cyphers on the left hand does not alter the value, becaufe every figure remains in the fame place as before.

This method of exprefling numbers, by the different values of the figures in different places, is an admirable invention; without which it had been neceffary to have as many different characters, as there are numbers to be expreffed; which would have been impoffible.

A X I O M S.

1. If two numbers are equal to a third, they are equal to one another.
2. If equal numbers be added to equal numbers, the wholes will be equal.
3. If from eçual numbers the fame or equal numbers be taken away, the remainders will be equal.
4. Thofe numbers are equal, which are the fame multiple of equal numbers.
5. Thofe numbers are equal, which are the fame part of equal numbers.
6. The fame powers, or the fame roots of equal numbers, are equal.
7. Unity or a neither multiplies nor divides; that is, the product or quotient is itill the fame number.
8. If a number be compofed of two numbers, multiplied together; either of them meafures it by the other.
9. If a number meafures feveral other numbers;
it likewife meafures the fum (or difference) of thefe numbers.
10. If a number meafures another; it aifo meafures every number which that other meafures.
ir. If a number meafures the whole, and a part taken away ; it alfo meafures the refidue.

The Signification of other Cbaratlers here ufed.
Characters.
Signification.

+ more, and, to be added, being an affirmative fign. Thus $7+3$ fignifies 3 added to 7 ; and $\mathrm{A}+\mathrm{B}$ denotes the fum of A and B.
- lefs, leffened by, abating, being a negative fign. Thus $7-3$ means 3 taken out of 7 , and $A-B$ denotes the remainder, when B is fubtracted from A, \times multiplied by, as 7×3 fignifies 7 times 3 ; alfo $\mathrm{A} \times \mathrm{B}$ or AB , is the product of A and B multiplied together. Where note, if letters ftand to denote numbers, they are commonly fet together, like letters in a word.
\div divided by, thus $6 \div 3$ fignifies 6 divided by 3 ; alfo 3) 6 (fignifies 6 divided by 3 ; alfo $\frac{6}{3}$ fignifies 6 divided by 3 ; and in general $\mathrm{A} \div \mathrm{B}$, or B) A , or $\frac{A}{B}$, is the quotient of A divided by B.
A^{2} the fquare of A, that is, AA. A^{3} the cube of A , that is, AAA.
A^{n} the $\mathrm{n}^{\text {th }}$ power of A , the index n being any number.
$\sqrt{ }$ the Square root, thus $\sqrt{16}$ is the fquare root of 16 , and $\sqrt{ } A$ is the fquare root of A.

CHAR ACTERS. 要索E?

Characters.
$\sqrt[3]{ }$ the cube root, as $\sqrt[3]{8}$ is the cube root of 8 , and $\sqrt[3]{ } \mathrm{A}$ is the cube root of A .
$=$ equal to, as $7+3=10,7$ and 3 equar to 10 .
\therefore A note of proportion, thus $2: 3:: 4: 6$, fignifies 2 is to 3 , as 4 to 5 ; and $A: B:: a: b, A$ is to B, as a to b, fometimes written thus, $\mathrm{A}-\mathrm{B}-\mathrm{a}-\mathrm{b}$.
\because continual proportionals, $\mathrm{A}: \mathrm{B}: \mathrm{C}: \mathrm{D} \div$, $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ are in continual proportion.
$\overline{A+B+C}$ the fum of A, B, and C; a line drawn over feveral numbers, denctes the fum of them.

[8]
 B O O K I.

The Practice of Arithmetic.

C H A P. I.

The fundamental Rules of common or vulgar Aritbmeric.
PROBLEMI.

To read or exprefs any Number weritten.

THIS is called Numeration, and is eafily performed by help of the following table, which fhews the names of the feveral places, and confequently of the figures ftanding there, as explained before in the Notation.

NUMERATION TABLE.

438765438765

R ULE.

R U L E.

1. Begin at the units place, and divide, or rather diftinguifh your number into periods of 6 figures apiece, called grand periods, or double periods. The firtt period to the right is units, the fecond millions, the third bi-millions, the fourth tri-millions, the $5^{\text {th, }} 6$ th, \mathcal{c}. quadri-millions, quinti-millions, fexti-millions, fepti-millions, octi-millions, nonimillions, deci-millions, $\mathcal{E}^{\circ} c$.
2. Likewife diftinguif thefe grand periods into two parts, called fingle periods of three figures apiece ; in thefe write (or fuppofe to be written) units over the firft place, tens over the fecond place, and hundreds over the third place.
3. Begin to read at the left hand, expreffing hundreds, tens, units, as you come to the refpective places where thefe figures are ; and at the end of each fingle period (on the left hand) always pronounce thoufands; and at the end of the grand period, exprefs its title or furname belonging to it; proceeding thus to the right hand where the number ends.

$$
\begin{aligned}
& \text { Ex. I. } \\
& \text { Read the number 50765. }
\end{aligned}
$$

tu htu

$$
50765
$$

Having diftinguifhed the number into periods, and written u over units, t over tens, h over hundreds, it will be read thus: fifty thoufand, feven hundred and fixty-five.

$$
\text { Ex. } 2 .
$$

$$
\begin{aligned}
& \text { To read } 43876543876543 . \\
& \text { tu } \\
& 43 \\
& 43 \\
& 476543 \\
& 576543
\end{aligned}
$$

Forty three bi-millions, eight hundred and feventy fix thoufand, five hundred and forty three millions, eight hundred and feventy fix thoufand, five hundred and forty three.

Ex. 3.
Read this number 2418579643219004613254768096 .

$$
\begin{aligned}
& \text { htu htu htu htu htu } \\
& 2418579643219004613254768096
\end{aligned}
$$

Two thoufand, four hundred and eighteen quadri-millions;
Five hundred feventy nine thoufand, fix hundred forty three tri-millions;
Two hundred nineteen thoufand, and four bi-millions;
Six hundred thirteen thoufand, two hundred fifty four millions;
Seven hundred fixty eight thoufand, and ninety fix.

PROBLEM II.

To add whole numbers together.
Addition is the rule by which feveral numbers are put together, in order to find the fum of them all.

R U L E.

1. Place all the numbers fo, that units may ftand under units, tens under tens, hundreds under hundreds, $\mathcal{E} c$. and draw a line underneath.
2. Begin at the units place, and reckon up all the figures in that place from the bottom to the top, and what overplus there is above even tens, fet down, and carry fo many to the next row as there were tens.
3. Reckon up all the figures in the place of tens, together with what you carried, and fet down the overplus, carrying the tens to the next row; and fo proceed to the latt.
4. If you don't choofe to reckon forward, you may make a prick when you have reckoned to ten or more, carrying on the overplus; and then add fo many to the next row as you have pricks.

Ex. I.

Let thefe numbers be added together :
9482
590
307

85 \quad| |
| :--- |
| 10464 |\quad Beginning

Beginning at 5 , fay the fum of 5 and 7 is 12 and 2 is 14 , fet down 4 and carry 1 . The fum of 1 and 8 is 9 and 9 is 18 and 8 is 26 , fet down 6 and carry 2. Then 2 and 3 is 5 and 5 is 10 and 4 is 14 , fet down 4 and carry I. Laftiy, I and 9 is $\mathbf{1 0}$, which being the laft, fet it down.

The reafon of carrying the tens to the next place is plain; for the fum of 5,7 and 2 being 14, the 4 belongs to the units, and the 1 to the tens. Again, the fum of $1,8,9$ and 8 being 26 , which are tens, the 6 belongs to the tens, and the 2 to the next fuperior place, which is hundreds. Then the fum of 2, 3,5 and 4 being 14, viz. 14 hundreds, the 4 belongs to that place, and the 1 to the place above, which is thoufands. Laftly, the fum of I and 9 is 10 , that is ro thoufand, that is o in the place of thonfands, and I in the place of ten thoufands. In fhort, thus:

> The fum of the row of units
> The fum of the row of tens
> 14
> The fum of he row of
> 2,50
> The fum of the row of hundreds
> 1200
> The fum of the row of thoufands
> 9000
> total
> 10464
> Ex. 2.

Add thefe numbers together.
350709
31806500
339087
4601 I
2935
fum
32545242
The proof of Addition is this: begin at the top, and add all the numbers downwards, by the fame rule as you added them upwards before; then if the total fums agree, the work is right.

PROBLEM III.

To add numbers of Several denominations together.

R U L E.

I. Place the numbers fo, that thofe of the fame denomination may ftand directly under one another, then draw a line under them.
2. Begin at the loweft denomination firf, and reckon upwards till you get as many as makes one of the next denomination above; then make a prick, and carry the overplus, or excefs, to the next figures; and fo reckon forward, always pricking when you have as many as makes one of the next denomination. Proceed thus till that denomination is finifhed, and fet down the overplus at bottom.
3. Reckon your pricks in the denomination you have finifhed, and carry fo many, to be added to the next denomination, which muft be added up by the fame rule ; and fo of the reft. In the laft denomination, add them up as whole numbers.

> Ex. 1. Money.

Add thefe fums of money together.

| f. | s. | d. |
| ---: | ---: | ---: | ---: |
| 57 | 6 | 8 |
| 127 | 14° | 0 |
| 0 | 9 | $6 \frac{1}{2}$ |
| 17 | 0 | $3^{\frac{3}{4}}$ |
| 202 | 10 | $6 \frac{1}{4}$ |

Note, 4 farthings make 1 penny, 12 pence 1 fhilling, 20 Thillings 1 pound.

Ex.

Chap. I.
Ex. 2. Troy Weight.
oz. pros. grs.

Note. In Troy weight, 24 grains make a pennyweight, 20 penny-weights an ounce, 12 ounces a pound.

Ex. 3. Apothecary's Weight.

Note, In Apothecary's weight, 20 grains make 2 fcruple (3), 3 fcruples a dram (3), 8 drams an ounce (ξ), 12 ounces a pound ($(\mathrm{I}$).

Ex. 4. Averdupoize lefter weight.

$l b$.	$0 z$.	$d r$.
15	11^{0}	12
4	10	0
12	0	13°
0	15°	9
33	6	2

Note, 16 drams make an ounce, 16 ounces a pound.. Ex

Ex. 5. Averdupoize greater weight.

Note, 14 pounds make ad atone, 8 tone : hundred weight, 20 hundred weight it un.

Ex. 6. Long Measure. dds. feet inch.
$3.7{ }^{2 .} 11^{\circ}$

7	0	3
8	1	10°
4	2	5
5^{8}	1	5

Note, 3 barley-corns make an inch, 12 inches a foot, 3 feet a yard; alfo $5^{\frac{1}{2}}$ yards make a pole, 22 yards a chain, 10 chains a furlong, 8 furlongs a mile.

Liquid Meafure.

2 pints make a quart, 2 quarts a pottle, 2 pottles a gallon, $8 \frac{\pi}{2}$ gallons a firkin or anker, 6 firkins a hogfhead of ale, 63 gallons a hoghead of wine.

Dry Meafure.

2 pints make a quart, 2 quarts a pottle, 2 pottles a gallon, 2 gallons a peck, 4 pecks a bufhel, 8 bufhels a quarter, 4 quarters a chaldron, 10 quarters a lat.
SC HO LI UM.

If a long lift of numbers is to be added up, di-

Chap. I. SUBTRACTION.
vide it into feveral parcels, and add them feparately; and then add all thefe parcels together.

The proof of this rule is the fame as the laft; only in reckoning downward, make croffes inftead of pricks, to avoid confufion.

PROBLEM IV.

To fubtrait one whole number from another.
Subtraction is the taking one number from another, to find their difference.

R U L E.

I. Place the greater number uppermoft, and the other under it, fo as units may be under units, tens under tens, $\mathcal{E}^{\circ} c$. and draw a line under them.
2. Begin at the right hand or place of units, and fubtract the lower figure from the upper, and fet down the difference underneath them; do the fame with the reft of the figures.
3. When the lower figure is greater, borrow 10 , and add it to the upper number, from which fubtract the lower, and fet down the remainder; carry I to be added to the next lower figure, and fubtract the fum from the upper, and fet down the remainder; and fo on from one row to another.

The reafon of this operation is plain, only when the lower number is lefs, 10 is added to the upper number, as here, 5 is lefs than 1 , therefore 1 is borrowed from 8 to make II, then 5 from II remains 6; then the next figure 6 ought in reality to be taken
from 7 , inftead of 8 ; but the difference will be the fame, whether you take 6 from 7 , or add the 1 borrowed to 6 , and take the fum 7 out of 8 , in either cafe 1 remains.

$$
\begin{aligned}
& \text { Ex. } 2 . \\
& \text { from } 30076058972 \\
& \text { take } 17078032863 \\
& \text { rem. } 12998026109 \\
& \text { Ex. } 3 . \\
& \text { One born in 1682, bow old is be in } 1763 \text { ? } \\
& 1763 \\
& 1682 \\
& 81 \text { anfwer. }
\end{aligned}
$$

The proof of Subtraction is to add the remainder to the leffer number, which ought to make up the greater, if the work be right.

PROBLEMV.

To fubtrait numbers of different denominations.

> R U L E.
I. Place the numbers, fo that the greater may be uppermoft, and that thofe of the fame denomination may ftand directly under one another, and draw a line under them.
2. Begin at the loweft denomination, and take the lower number from the upper one, and fet down the difference, or remainder, underneath. Do the fame with the next denomination, and fo on till the laft, which muft be fubtracted as whole numbers.
3. When the lower number in any denomination happens to be the greater, borrow I, that is, add as

Chap. I. . S U B TRACTION.
many to the upper number as makes one of the next higher denomination, and then fubtract the lower number, and fet down the remainder. Then carry I , and add it to the lower number of the next denomination, and then fubtract as before.
Ex. 1. Money:

Ex. 2. Money.

Ex. 3. Troy Weight.

PROBLEMVI.

To multiply one wobole number by another:
Multiplication is taking the multiplicand, or numb ber to be multiplied, fo many times as there are units in the multiplier; and the refult is called the product. Multiplication is a compendious method of addition, and is petformed by help of the following table, which muft be got by heart.

Multiplication Table.

1	2	3	4	5	6	7	8	9
2	4	6	8.	10	12	14	16	18
3	6	9	12	15	18	21	24	27
4	8	12	16	20	24	28	32	36
5	10	15	20	25	30	35	40	45
6	12	18	24	30	36	42	48	54
7	14	21	28	35	42	49	56	63
8	16	24	32	40	48	56	64	72
9	18	27	36	45	54	63	72	81

The ufe of the table is this: find one figure on the fide of the table, and the other at top; then in the angle of meeting is their product. Thus the product of 5 and 7 is 35 ; and the product of 9 times 8 is 72 .

\author{

1. A general R U L E.
}
2. Place the multiplier under the multiplicand, the units under units, $E_{c} c$. and draw a line under them.
3. You muft multiply from the right hand to the left, thus: begin with the units or loweft figure of the multiplier, by which multiply the loweft figure of the multiplicand, and fet down the overplus above the tens, and carry the tens. Then multiply the 2 d figure of the multiplicand by the fame, adding fo many units, as you had tens to carry; and fet down the overplus, and carry the tens as before. Do thus

Chap. I. MULTIPLICATION.
till you come to the laft figure, whofe product muft be fet down entire.
3. Then take the fecond figure of the multiplier, and multiply by this as you did before; fetting the firft figure of the product under the figure you multiply with; do fo with the reft of the figures in the multiplier; fetring the firf figure of each product under, or in the fame place as the figure you multiply by. Or, which is the fame thing, fetting each product fo many places back towards the left hand, as the multiplying figure is diftant from the firt figure.
4. Laftly, add all there products together, for the product of the two numbers given.

Note, you may eafily multiply by 12 in one line, as if it was a fingle figure, if you get by heart all the products of all the natural numbers by 12 , as far as 9 . Ex. 1. multiply 60735
by 7
product $\overline{425145}$

Explanation.

7 times 5 is 35 ; fet down 5 and carry 3.7 times 3 is 21 and 31 carry is 24 ; fet down 4 and carry 2 . 7 times 7 is 49 and 2 carried is 51 ; fee down 1 and carry 5. 7 times 0 is o but 5 is 5 ; fet down 5 and carry 0 . 7 times 6 is 42 , which fet down.

Ex. 2.
multiply 2760325
by $\frac{37072}{5520650}$

19322275
193222750
8280975
product 102330768400

Demonfration of the rule.

In Ex. I. 7 multiplying 5 produces 35, the 5 will fall in the place of units, and the 3 belongs to the tens. Then 7 multiplying 3 in the 2 d place, or place of tens, produces 21 , of which I belongs to the tens, to which the 3 carried being alfo tens, mutt be added, which makes 4 tens; and the 2 belongs to the 3 d place, or hundreds. Then 7 multiplying 7 in the third place, makes 49 , the 9 belongs to the 3 d place, to which add the 2 , which alfo belongs to the 3 d place, the fum is 5 I ; I belongs to the third place and 5 to the 4 th place. Then 7 times 0 is 0 , (in the 4 th place) but 5 is 5 . Laftly, 7 times 6 is 42 , the 2 belongs to the 5 th place, and 4 to the 6th. Thefe particular products will ftand thus:

60735
7
35
21.
$49 \ldots$
$0 \ldots$
$42 \ldots$
425145

And in Ex. 2. 2 multiplying 5 produces 10 , the \checkmark is in the place of units, and fo on. Again, 7 mulriplying 5 makes 35 , the 5 is in the 2 d place, becaufe the multiplier is really 70 . Again, 7 in the 4 th place multiplying 5 makes 35 , and the 5 will be in the $4^{\text {th }}$ place, becaufe you really multiply by 7000 , and fo for all the reft.

Ex. 3.
If I bog/bead coft I 3 pound, what will 18 coft ?
18
104

13
anfw. 234 pounds:

2 R U L E.

When one or both the numbers end with cyphers, neglect the cyphers and multiply the remaining figures as before; and to the product, annex the cyphers that are in both numbers.

$$
E x .4 \cdot
$$

3 R ULE.

When any number is to be multiplied by 10, $100,1000, \varepsilon^{2} c$. annex fo many cyphers at the end of the number, as there are in the multiplier.

$$
\text { Ex. } 5 .
$$

Multiply 23079 by 100, the product is 2307900.

$$
4 \text { R ULE. }
$$

In large multiplications, make a table of the multiplicand multiplied by all the 9 digits. Then you have no more to do, but to take out the refpective product for each figure of the multiplier, and add them all together.

TABLE.

1	70500768
2	141001536
3	21502302
4	282003072
5	352503840
6	423004608
7	493505376
8	564006144
9	634506912

Ex. 6.

The proof of Multiplication, is by making the multiplicand to be the multiplier; then if the product comes out the fame as before, your work is right.

That two numbers will give the fame product, whichever is the multiplier, will appear thus: fuppofe the numbers 4 and 36 . Then 36 times 1 is the fame with once 36 ; and therefore 36 times $1+1+1+1$, or 36 times 4 is the fame with 4 times 3^{6}; and fo of others.

SCHOLIUM.

There is a way of proving multiplication by cafting away the nines, which though not infallible, ferves to confirm the other, and is very expeditious. It is thus, fee Ex. 4. make a crofs, and add all the figures or digits of the multiplicand together, as units, thus $5+7+3=15$, throw away the nines, and fet the remainder 6 on one
 fide of the crofs. Do the fame with the multiplier $4+2=6$, fet the remainder on the other fide of the crofs. Do the like with the product, and fet the remainder at top. Laftly, multi- multiply the figures on the fides, and throw away the nines, and fet the remainder at bottom, which muft be the fame with the top, if the work is right.
P R O B L E M VII.

To multiply numbers of different denominations, by a given number.

> I R ULE.

If the multiplier be a fingle figure; begin at the loweft denomination, and multiply it by the given number, and fee how many of the next denomination is contained in the product; fet down the odds, and carry fo many to the next. Then multiply the next denomination, adding what you carried; and fet down the odds. Proceed thus till all be multiplied.

This method is rather reckoning than multiplying.

Ex. I. Money.

	f.	s.	d.
multiply	49	13	10
by			7
product	347	16	10
		IV	

multiply	II	2	${ }^{1} 3$
by			6

product

2 R ULE.

If the multiplier be a great number made up of feveral others multiplied together. Multiply fucceffively by the parts, inftead of the whole.

$$
\mathrm{C}_{4} \quad E x .
$$

Ex. 3.

multiply	E.	s.	$\begin{gathered} d . \\ 9 \\ 5 \end{gathered}$
	127	13	
	63.8	8	9

9

3 R ULE.
If the multiplier is not compofed of others; find two or more numbers, whofe product comes neareft : then multiply as before, and add what is wanting, or fubtract what is over.

P R O B L E M VIII.

To divide one wbole number by another.
Divifion teaches to find how often one number, called the divifor, is contained in another, called the dividend. Or it fhews how to find fuch a part of the dividend as the divifor expreffes. The number here fought is called the quotient.

1. A
I. A general R ULE.
2. Set down the dividend, and the divifor on the left hand of it, within a crooked line; alfo make another crooked line on the right hand, for the quotient.
3. Enquire how oft the firft figure of the divifor is contained in the firtt figure of the dividend, or in the two firft figures, when that of the divifor is greater ; and place the anfwer in the quotient.
4. Multiply the whole divifor by the quotient figure, and fet the product orderly under the dividend towards the left hand, and fubtract it therefrom. But note, if this product be greater than that part of the dividend; a lefs figure muft be placed in the quotient.
5. Make a prick under the next figure of the dividend to mark it, and bring it down, annexing it to the remainder; then this number is called the dividual.
6. Seek how oft the divifor is contained in the dividual, and fet the anfwer in the quotient; then multiply and fubtract as before; and proceed thus till all the figures in the dividend are brought down one by one. And note, for every figure brought down, a figure (or a cypher) muft be placed in the quotient.

Note, fince there is a neceffity of trial, to find out the true quotient figure ; therefore, before it be fet down, multiply 2 or 3 figures of the divifor on the left hand, by that figure in mind, to fee if it exceed the dividual.

> Ex. I.

Divide 14122 by 46 . 46) 14122 (307 the quotient. 138.

322
322
Expla-

Explanation.

Firt I afk how oft 4 in 1 , which is no times at all : then how oft 4 in 14, which is 3 times; then I place 3 in the quotient, and then multiply 46 by 3 , and fet the product 138 under 141, and fubtracting there remains 3. Then I prick the 2 and bring it down to 3 , which then is 32 for a dividual ; then enquiring how oft 4 in 3 , the anfwer is 0 , which I place in the quotient. Then I prick, and bring down the next figure 2 , and the dividual is now S22, then I afk how oft 4 in 32, the anfwer would be 8 ; but then 46 multiplied by 8 would exceed 322, therefore I place 7 in the quotient, by which I multiply 46 , and the product is 322 ; and that fubtracted from 132, leaves nothing. Then 307 is the quotient.

$$
\text { Ex. } 2 .
$$

> Divide 18972584 by 6023 . 6023) 18972584 (3150 the quotient. $18069 \cdots$

$\frac{9035}{6023}$
30128
30115

134 the remainder.

Demonfration of the rule.

In Ex. 1. fince 46 is contained 3 times in 141, therefore it is contained 300 times in 14122 ; that is, 3 muft be in the third place.

Alfo fince 46 is contained 7 times in the remainder 322 ; therefore 46 is contained in the whole dividend 307 times.

Chap. I.
DIVISION.
And in Ex. 2. fince 6023 is contained 3 times in 18972 ; it is contained 3000 times in 18972584 ; and 100 times in the remainder 903584, and 50 times in the next remainder 301284 ; and o times in the laft remainder 134 . Therefore the divifor is contained in the whole dividend, 3150 times.

2 R ULE.

When the divifor ends with cyphers, cut them off, and likewife cut off as many places of the dividend on the right hand; and perform the divifion by the remaining figures. And when the divifion is finifhed, annex the figures cut off to the remainder.

$$
E_{x} \cdot 3 .
$$

Divide 745678 by 30400 .
304|00) 7456178 (24 quotient. 608°

1376
1216
16078 remainder:

3 R ULE.

To divide by $10,100,1000, \mathcal{E}^{\circ}$. cut off from the dividend fo many places as the divifor has cyphers; and that will be the quotient; and the figures cut off the remainder.
$E x .4$.
Divide 78607 by 100.

The quotient is 786 , and 07 remaining.
4. R ULE:

When you have a large dividend, and your divifor is often repeated; make a table of all the products table divifion may be wrought by infpection, only by the help of addition and fubtraction. For you have no more to do, but only to take out of the table the number always the next lefs than each dividual, and the quotient figure along with it ; which numbers are to be continually fubtracted from thefe dividuals, as in the general rule.

Ex. 5.
Divide 40377982057 by 35016 .

1 35010 2 70032	$35016) 40377982057$ (1153129. $35016 \cdots \cdots$
3105048	
	53619
5175080	
${ }^{6} 210196$	186038
7 7 8 28015128	175080
9315144	109582
$1 \mathrm{IO}_{350100}$	105048
	$\begin{aligned} & 45340 \\ & 350 \text { I } 6 \end{aligned}$
	$\begin{gathered} 103245 \\ 70032 \end{gathered}$
	$\begin{aligned} & 332137 \\ & 315144 \end{aligned}$
	16993 remains.

5 RULE.

When you are to divide by a fingle figure, you need not fet down the operation at large, but perform it in mind; the fame may be done with 12 .

Ex. 6.
7) 30721

4388 quotient. 5 rem.

Thus 30721 divided by 7 , the quotient is 4388 , and 5 remaining.

Divifion is proved by multiplying the divifor and quotient together, and adding the remainder, when there is any; which muft be equal to the dividend, when the work is right.

Or it may be proved by cafting away nines, as in multiplication. Caft away the nines in the divifor and quotient, and fet the remainders on the fides of the crofs. Do the fame with the dividend, and fet the remainder at top.
 Multiply the figures on the fides, throw away the nines, and fet the remainder at bottom, which muft be equal to the top. See Ex. I. Note, if there be a remainder, it muft be added to the product, on the fides of the crofs, and the nines thrown out as before.

PR O B L E M IX.

To divide a number of different denominations by a given number.

1 RULE.

If the divifor be a fingle figure, begin at the higheft denomination, which divide by the given divifor, and fet the anfwer in the quotient, and to be of the fame denomination; what remains muft
be multiplied by the number of parts in the next inferior denomination, and added to the given number of that denomination, and then divide as before. Proceed thus through all the denominations.

Explanation.

Say how oft 7 in 58,8 times; which fet in the quotient, then 8 times 7 is 56 , which fubtracted from 5^{8}, leaves 2. But 2 pounds are 40 fhillings, to which add 10 , the fum is 50 . Then fay how oft is 7 in 50 , anfwer 7 times, which fet in the quotient for fhillings; then 7 times 7 is 49 , which taken from 50 leaves I fhilling, or 12 pence, to which add 3, the fum is 15 . Then fay how oft 7 in 15 , the anfwer is 2 , which fet in the quotient for pence, then 2 times 7 is 14, which taken from 15, I remains. So the anfwer is 8 l .7 s .2 d. ; and I penny remaining.

Chap. I.

$$
\text { Ex. } 2 . \quad c . \quad \rho t .
$$

What is the 6 th part of $72 \quad 6$ II?
c. At. lb. c: f. ll.
6) 72611 (12 o 15 the quotient.
$\frac{72}{7)} 6(0$
$\frac{0}{6=84}$
6)
$\frac{95}{50}$ remains.

If the divifor be a great number made up of feveral others by multiplication. Divide fucceffively by the parts, inftead of the whole.

$$
\text { Ex. } 3 \text {. }
$$

\&. s. d
Divide $320 \quad 12$ by 35 .
f. s. d. 7) f. s. d.
5) $3^{220} \quad 12 \quad 8(64)_{6} \quad 2 \quad 6 \frac{1}{4}\left(\begin{array}{lll}9 & 3 & 2 \frac{1}{2} \\ 3 & \text { quotient. }\end{array}\right.$ 320

$0=0$	$1=20$
5) $\begin{array}{ll}12 & \text { 7) } 22(3 \\ 10 & 21\end{array}$	

$$
\begin{aligned}
& 2=24 \quad: \quad 1=12 \\
& \begin{array}{ll}
\text { 5) } \begin{array}{ll}
\overline{32} & \begin{array}{l}
\text { 7) } \\
\frac{30}{80}(2 \\
2=8
\end{array} \\
\frac{14}{4}=16
\end{array}, ~
\end{array} \\
& \text { 5) } \overline{8}(1 \quad 7) \overline{17}(2 \\
& \frac{5}{3} \text { rem. } \frac{14}{3} \text { rem. }
\end{aligned}
$$

PROBLEM X.
 To extract the Square root.

1. A genbral RULE.

I. Begin at the units place, and point every other figure on the top, dividing it into feveral periods.
2. Find the greateft fquare that is contained in the firt period, towards the left hand. Set the root in the quotient, and fubtract the fquare from the figures of that period.
3. To the remainder bring down the two figures under the next point, for a refolvend. This is always to be repeated.
4. Double the quotient for a divifor, and fee how oft it is contained in the refolvend (excepting the laft figure); and fet the anfwer in the quotient, and alfo after the divifor. This muft always be repeated; for a new divifor mult be found for every figure.
5. Then multiply this whole divifor by that quotient figure, and fubtract the product from the whole refolvend; but if that product be greater, a lefs figure muft be placed in the quotient. Proceed thus till all the figures or periods be brought down.
6. Note, inftead of doubling the quotient every time for a divifor, you may always add the laft quotient figure to the laft divifor, for a new divifor; and proceed as before.

$$
E x .1 .
$$

Extract the fquare root of 393129 .

Explanation.

The neareft fquare to 39 the firft pointing, is 36 , whofe root 6 I place in the quotient; and fubtract the fquare 36 from 39, the remainder is 3 .

Then I bring down 31, the next point, and annex it to 3 , and the refolvend is 331 . Then I double the quotient for a divifor, which is 12 ; and I feek how oft 12 in 33 , the anfwer is 2 , which I place in the quotient, and alfo after 12 ; then the divifor becomes 122; and 122 multiplied by 2 produces 244, which I fubtract from 33I, the remainder is 87 .

Laftly, I bring down 29, the next point, and the refolvend is 8729 . Then I either double the quotient 62 , which is 124 ; or I add the quotient figure 2 to 122 , the laft divifor, which is 124 ; and this is a new divifor. Then I afk how oft 124 in 872 , the anfwer is 7 times. Then I multiply 1247 by 7 , and fubtract the product 8729 from 8729 , and there remains o. So the root is exactly 627 .

Ex. 2.,
Extract the root of " 733120000.
733120000 (27078 the root.

Ex. $3 \cdot$
What is the root of 3272869681 ?

2 R U L E.

When more than half the figures of the root are found; all the reft will be found as truly by plain divifion; as is hewn more at large in the extraction of the roots of decimal fractions. But if common divifion be ufed, you muft bring down as many figures, as there were periods to come down, when you began with divifion.

Chap. I. SQUARE ROOT.

Ex. 4.

Let 14876008357020684 be given.

$$
1487 \dot{6} 00835702068 \dot{4} \text { (} 121967243
$$

I ••••••

$$
\text { 22) } 48
$$

$$
+244
$$

$$
\text { 241) } 476
$$

$$
+1241
$$

$$
2429) 23500
$$

$$
\begin{array}{r}
+921861
\end{array}
$$

$$
24386) \text { 163983 }
$$

$$
+6146316
$$

$$
\text { divifor } \overline{24392)} \overline{176675}
$$

$$
170744
$$

$$
59317
$$

$$
48784
$$

$$
105330
$$

$$
97568
$$

$$
77622
$$

$$
\frac{73176}{4446}
$$

The proof is, to multiply the root by itfelf, and add the remainder; which muft be equal to the number given to be extracted, if the work be right.

P R O B L E M XI.

To extract the cube root.

R U L E.

1. Begin at the units place, and point every third figure; that is, the $1 \mathrm{ft}, 4 \mathrm{th}, 7$ th, $\mathcal{E}^{\circ} c$. miffing two places.
2. Find the neareft lefs root of the figures of the firft punctation on the left hand, fubtract its cube from the number given; to the remainder annex the next figure, for the refolvend.
3. Take $\frac{1}{5}$ of the refolvend for a dividend.
4. And for a divifor, take the fquare of the root, added to half the root, (or rather added to the product of the root, and the next quotient figure, leaving out the laft figure of the product).
5. Divide the faid dividend by that divifor, the quotient is the fecond figure of the root.
6. Begin the operation anew, viz. cube the two figures of the root, and fubtract the cube from the given number, annexing another figure, for the refolvend.
7. Take the third part of the refolvend for a dividend, and the fquare of the root added to half the root (or rather added to the product of the root, and next quotient figure, ftriking off the laft figure of the product) for a divifor.
8. This divifion gives another figure of the root, but the divifion is to be continued on to two figures, by the contraction in divifion of decimals, or otherwife.
9. Repeating the operation with 4 figures in the root, you will get 4 more by a new divifion, which gives 8 figures in the root; and from 3 to $16,8 \%$. always double.

Chap. I. CUBE R O OT.

10. Note, when the cube exceeds the number given, a lefs figure muft be writ in the quotient. And obferve every divifion gives one figure, and the reft are found by continuing the divifion, and dropping a figure of the divifor every time.

$$
\text { Ex. } 1
$$

Extract the cube root of 7892485271 .

I	19
3) $\overline{68}$ refolvend	19
divifor I) 22 (9	171
+1 18	19
true divifor 24	361
	19
78924 (3249
6859	361
3) $\grave{3} 334$ refolvend	6859

$$
\begin{array}{r}
17 \\
+1402 \\
\hline
\end{array}
$$

true divifor 378) 43 hence the root is 1991:
Then 1991 cubed is 7892485271 , and therefore 1991 is exactly the root required.

Explanation.
I being the greateft cube contained in 7 , the firft point; fubtract I there remains 6 , to which annex 8 , and the refolvend is 68, the, third part is 22 for a dividend. Then I the fquare of the root being a divifor, fay how oft I in 22 , the quotient would give more than io, but fince we can have no figure above 9 , we will take 9 by guefs for the quotient ; then 9 times the root I is 9 , which is very near Io, throw away the O and add I to the root I, which makes 2

$$
\text { D } 3 \text { for }
$$

for the true divifor; then to have the true quotient figure, fay how oft 2 in 22 , anf. 9 times, for we can take no more; therefore 9 is rightly taken.

Then the root 19 being fquared gives 361 , and cubed is 6859 . This cube fubtracted from 78924 leaves 10334 the refolvend, which divided by 3 gives 3445 for a dividend; and 361 is the divifor, and the quotient is 9 ; then the root 19 multiplied by 9 gives 171 , therefore add 17 to 361 gives 378 for the exact divifor. Then by dividing you will get 91 : and the root 1991.

$$
\text { Ex. } 2 .
$$

To extract the cube root of 28373625 .

All the root might have been had at once by bringing down another figure, and that is becaufe the fecond figure happens to be o.

Thus 2837
27
3) 137
9) $4.5(05$

Chap. I. CUBE ROOT.

Ex. 3.
To extract the cube root of 8302348000000 .
8302348000000 (202 $=1$ root 8
3) 3
4) $1(02$
o
10
then 202 fquared is 40804 , and cubed is 82424.08 .

$$
\begin{aligned}
& 83023480 \\
& 8242408 \\
& \text { 3) } 599400 \\
& \text { 40804) } 199800(48 \\
& \frac{3}{4} \text { root } 101163620 \\
& \overline{40905} \overline{36180} \\
& 32724 \\
& 3456
\end{aligned}
$$

therefore the root is 20248 , or very near 20249 .

$$
\text { Ex. } 4 .
$$

Extr. the cube root of 118248245000000000000000 .

D 4
Then

Then 49 fquared is 2401 , and cubed is 117649 .

$$
\begin{aligned}
& \begin{array}{l}
1182480 \\
117649
\end{array} \\
& \text { 3) } 5990
\end{aligned}
$$

divifor 2401) 1996 (08; and the root is 4908.

$$
1920
$$

76
Then the fquare of 4908 is 24088464 , and its cube 118226181312, therefore proceed

	$\begin{array}{r} 3) \\ \left.24088_{464}\right) \\ 1472 \end{array}$	$\begin{array}{r} 220636880 \\ 73545626 \\ 72269808 \end{array}$	refolvend (3052	$\begin{array}{r} 4908 \\ 3 \end{array}$
divifor	24089936	$\begin{aligned} & 1275818 \\ & 1204496 \end{aligned}$		1472/4
		$\begin{aligned} & 71322 \\ & 48180 \end{aligned}$		
		23142,	$\mathrm{E}^{\circ} \mathrm{c}$.	

Therefore the root is 49083052, or very near 49083053.

The proof of your work is, to multiply the root by itfelf and the product by the root; which muft equal, or nearly equal, the number given to be extrâted.

CHAP.

DEFINITIONS.

1. A FRACTIO N is fome part or parts of an integer or whole thing, reprefented by I; as $\frac{3}{4}$ is a fraction denoting three fourch parts of an integer or 1. Every fraction confifts of two numbers, placed one above the other, with a line between them, as in this fraction $\frac{3}{4}$. The lower number 4 is called the denominator, and fhows how many parts the integer is divided into; the upper number 3 is called the numerator, and expreffes how many of thefe parts the fraction confifts of. And both numerator and denominator are called terms of the fraction.
2. A proper fraction is that where the numerator is lefs than the denominator, as $\frac{3}{4}$.
3. An improper fraction is that wherein the denominator is lefs than, or equal to, the numerator, as $\frac{4}{3}$ or $\frac{3}{3}, \mathcal{E}^{2} c$.
4. A fingle fraction is that which confifts of but one numerator and one denominator.
5. A compound fracion, or fraction of a fraction, is that whofe parts are vulgar fractions, connected with the word of, as $\frac{1}{2}$ of $\frac{2}{3}$ of $\frac{4}{5}$.
6. A mixt number is a whole number with a fraction annexed, as $15 \frac{2}{3}$.
7. Denomination is the name of any integer or thing. Thus pounds, fhillings and pence are feveral denominations; where fhillings are of a lower denomination than pounds, and higher than pence.

> SCHOLIUM.

Any fraction, as $\frac{3}{4}$, may be confidered either as $\frac{1}{4}$ of the number 3 , or as $\frac{3}{4}$ of 1 . For $\frac{1}{4}$ of 3 being thrice as much as $\frac{x}{4}$ of I, and $\frac{3}{4}$ af I being alfo thrice as much as $\frac{\pi}{4}$ of 1 ; it follows, that $\frac{1}{4}$ of 3 , and $\frac{3}{4}$ of I fignify the fame quantity.

Likewife in any fraction as $\frac{3}{4}$, the numerator 3 may be confidered as a dividend, and the denominator 4 as a divifor. For as $\frac{3}{4}$ fignifies the fourth part of 3 , it intimates a divifion by 4 ; therefore 3 becomes a dividend and 4 a divifor, by the nature of divifion, and $\frac{3}{7}$ reprefents the quotient.

When an integer is divided into any number of parts (denoted by the denominator); the fewer or more parts taken, the lefs or greater is the fraction, that is, the lefs or greater the numerator, the lefs or greater is the fraction. And if the number of parts taken be the fame as the integer is divided into, that is, if the numerator be equal to the denominator, then that fraction will be equal to the whole or integer. Thus 2 halfs, 3 thirds, \mathcal{E}^{c}. that is, $\frac{2}{2}$ or $\frac{3}{3}$ or $\frac{4}{4} \mathcal{E}^{2} c$. is equal the whole thing, or equal to I the integer. And therefore when the numerator is lefs or greater than the denominator, the fraction is lefs or greater than I.

From what has been faid, if one fraction or mixt number as $18 \frac{14}{14}$, be to be divided by another as $4 \frac{3}{5}$, it may be written thus, $\frac{18 \frac{1}{4},}{4 \frac{3}{5}}$, and if any fuch fractional quantity as this $\frac{18 \frac{1}{1} \frac{1}{4}}{14 \frac{3}{5}}$ occur, it denotes a divifion of the number $18 \frac{1}{4} \frac{1}{4}$ by $4 \frac{3}{5}$.

PR O B L E M I.

To reduce a fraition into anotber of equal value.

R U L E.

Multiply (or divide) both terms of the fraction by one and the fame number, and you will have a new fraction equivalent to the fraction given.

> Example.

Let the fraction be $\frac{3}{5}$, multiply both terms
by 6 produces $\frac{18}{30}$ for the new fraction; that is, $\frac{3}{5}=\frac{3 \times 6}{5 \times 6}=\frac{18}{30}$. On the contrary, in the fraction $\frac{18}{30^{\circ}}$, divide both terms by 6 , gives $\frac{3}{5}$, with is equivalent to $\frac{18}{30}$.

For in the fraction $\frac{3}{5}$, it is plain the 5 th part of 3 is all one as the roth part of 6 , or the 15 th part of 9 , and fo on; that is, the 5 th part of 3 , is the fame as the $\overline{6 \times 5}$ th part (30 th part) of 6×3 or 18 .

Or thus, in the improper fraction $\frac{4}{2}, 4$ contains 2 as oft as 3 times 4 (12), contains 3 times 2 (6); that is, $\frac{4}{2}=2$ for the quotient, and $\frac{12}{6}=2$ for the quotient, therefore $\frac{4}{2}=\frac{12}{6}, \Xi^{3} c$.

In like manner it is evident that 3 pennies contain I penny, as oft as 3 groats contain I groat; or as oft as 3 fhillings contain I fhilling. That is, $\frac{3}{I}=$ $\frac{3 \times 4}{1 \times 4}=\frac{3 \times 12}{1 \times 12}, \xi^{3} c$.

And the fame holds equally true for divifion, that is, $\frac{3 \times 12}{1 \times 12}=\frac{3}{1}, \mathcal{E}^{\circ} c$.

PR O B L E M II.

To reduce a whole number to the form of a fraction:

> R U L E.

Place I under it for a denominator. Example.
Suppofe 7 is the whole number, then it becomes $\frac{7}{x}$ for the fractional cuantity required.

PRO.

PROBLEM III.

To reduce a woble number to a fraction of a given denominator.

R U L E.
Multiply the whole number by the given denominator, and under the product write the fame denominator.

Example.

Suppofe 7 to have the denominator II.
7
$\frac{11}{77}$, then $\frac{7 \times I I}{1 I}$ or $\frac{77}{11}$ is the fraction required.
For $\frac{7 \times I I}{I I}=\frac{7}{I}=7$.
P. R O B L E M IV.

To reduce a compound fraction into a fingle one.
R U L E.

Multiply all the numerators together for a new numerator, and all the denominators together for a new denominator, of the fingle fraction.

$$
E x .1 .
$$

Let the fraction be $\frac{1}{2}$ of $\frac{3}{5}$ of $\frac{2}{7}$.

$$
\begin{array}{ll}
2 & 7 \\
\frac{3}{6} & \frac{5}{35} \\
\frac{1}{6} & \frac{2}{70}
\end{array} \text { then } \frac{1 \times 3 \times 2}{2 \times 5 \times 7}=\frac{6}{70} \text { the fingle fraction. }
$$ For $\frac{1}{5}$ of $\frac{2}{7}$ is the fame as $\frac{2}{7}$ divided by 5 , or $\frac{2}{5 \times 7}$, therefore $\frac{3}{5}$ thereof will be 3 times as much or $\frac{3 \times 2}{5 \times 7^{\circ}}$. Laftly, the whole fraction being now $\frac{3 \times 2}{5 \times 7^{7}}$ the

Chap. II. VULGAR FRACTIONS.
45 the $\frac{1}{2}$ of it is $\frac{3 \times 2}{5 \times 7}$ divided by 2 , or $\frac{1 \times 3 \times 2}{2 \times 5 \times 7}=\frac{6}{70^{\circ}}$.

$$
\text { Ex. } 2 .
$$

What fraction of a pound is $3 \frac{1}{2} d$. ?
$3 \frac{1}{2} d_{0}=\frac{7}{2}$ of $\frac{1}{12}$ of $\frac{1}{20}$ of a pound,
that is, $3 \frac{1}{2} d .=\frac{7 \times 1 \times 1}{2 \times 12 \times 20}=\frac{7}{480}$ of a pound.
And thus $\frac{2}{3}$ of $\frac{3}{4}$ of $\frac{4}{5}$ of a pound is $\frac{24}{60}$ or $\frac{8}{20}$ of a pound or 20 fhillings, that is, 8 fillings. For $\frac{4}{5}$ of a pound is 16 hillings, and $\frac{3}{4}$ of 16 fhillings is 12 fhillings, and $\frac{2}{3}$ of 12 fhillings is 8 hillings.

PROBLEMV.

To reduce a mixt number into an improper fraction.

R U L E.

Multiply the whole number by the denominator of the fraction, and to the product add the numerator; and the fum is a new numerator, and the denominator the fame as before.

Example.

The mixt number is $32 \frac{5}{7}$.
32
$\frac{7}{224}$
$\frac{+5}{229}$ then $\frac{32 \times 7+5}{7}=\frac{229}{7}$ is the fraction required.

For 32 wholes or $\frac{32}{\mathrm{I}}=\frac{23 \times 7}{7}=\frac{224}{7}$ or 224 re venths, to which if the other 5 fevenths be added, the whole is 229 fevenths or $\frac{229}{7}$.
PRO.

PROBLEM VI.

To reduce an improper fraction into a whole or mixt number.

R U.L E.
Divide the numerator by the denominator, and the quotient is the whole number. Then what remainder there is, place it over the denominator, and annex this fraction to the quotient before found.
Example.

Let $\frac{63 \mathrm{I}}{16}$ be propofed; 631 divided by 16 gives 39 for the quotient, and 7 remaining, therefore $399^{\frac{7}{5}}=\frac{631}{16}$ as required.

$$
\text { 16) } \begin{aligned}
& 631 \\
& \frac{48^{8}}{151} \\
& \frac{144}{7}
\end{aligned}
$$

For the fraction $\frac{631}{16}$ fignifying 6_{31} fixteenths, therefore every 16 makes 1 , and therefore the quotient 39 fhows how many ones are contained in the number, and the 7 fixteenths which remains, muft therefore be placed as a fraction.

PROBLEMVII.

To find the greateft common divifor for the numerator and denominator of a fraction, or for any two numbers.

1. RULE,

I R U L E.

Divide the greater by the leffer, and the laft divifor by the remainder, and fo on continually till nothing remain; then the laft divifor is that required.

Or in dividing take the neareft quotient, and the difference between the dividend and that multiple, for the next divifor, $\underbrace{3} c$.

> Ex. I.

Let $\frac{252}{364}$ be propofed; dividing according to rule, the laft divifor is 28 , which is the greateft number that will divide both numerator and denominator, without a remainder.

Note, if the laft divifor be 1 , the 2 numbers are prime to one another.

For fince 28 meafures in 2 , it likewife meafures twice 11^{1}, or 224 ; and therefore 28 meafures $224+28$, or 25^{2}.

Again, fince 28 meafures 112 and 25^{2}, therefore it mealures $25^{2}+112$, or 364 ; and fo on. Therefore 28 meafures beth 252 and 364 .

Now 28 is the reatelt common meafure; for if there be a greater G, then fince G meafures 252 and 3 4, it alfo meafures the 1emainder 112, and fince G 28 , that is, the greater meafures the lefs, which is absurd.

2 RU LE.

If the numbers given be mixt numbers, or factons ; reduce them to a common denominator; and take the two new numerators, and proceed as in the firlt rule to find their greateft common meafure; make it a numerator, under which put the common denominator; and that fraction will be the greaten common meafure fought.

$$
\text { Ex. } 2 .
$$

Let $9^{\frac{3}{7}}$ and I_{3} be proposed.
There reduced to a common denominator are $\frac{39}{4}$. and $\frac{52}{4}$, then 39) 5_{39}^{52} (1
13) 39 (3 fo $\frac{13}{4}$ is the greater 39 common meafure of - $9^{\frac{3}{4}}$ and 13 .

PROBLEM VIII.

To reduce a fraction to its leaf terms.

i. A general RULE.

Find the greater common meafure, by which divide both terms of the fraction; the quotients will be the terms of the fraction required.

$$
E x . \mathrm{I} .
$$

Let the fraction be $\frac{252}{364}$, whore greateft common meafure is 28 , divifion being performed, we have $\frac{9}{13}$, that is, $\frac{252}{364}=\frac{9}{13}$.

Chap. II. VULGAR FRACTIONS.
$\begin{array}{lll}\text { 28) } & 25^{2}(9 & 28) \\ 25^{2} & \frac{364}{26}\end{array}$
\square
\square
-

Particular RULES.

$$
2 \text { R U Ĺ E. }
$$

When the terms of the fraction are even numbers, divide them by 2 continually.

$$
\text { Ex. } 2 .
$$

$\frac{48}{272}$, being continually halfed is $\frac{48}{272}\left|\frac{24}{136}\right| \frac{12}{68}\left|\frac{6}{34}\right| \frac{3}{17}$, therefore $\frac{48}{23^{2}}=\frac{3}{17}$.
3. When both terms end with 5 ; or one with 5 , and the other with a cypher; divide both by 5 .

$$
\text { As } \frac{225}{475} ; \begin{aligned}
& \text { Ex. } 3 . \\
& \text { 5) } \frac{225}{475}\left(\frac { 4 5 } { 9 5 } \left(\frac{9}{19} .\right.\right.
\end{aligned}
$$

4. When both terms end with cyphers, cut off equal cyphers in both.

$$
\text { Ex. } 4 .
$$

$$
\text { As } \frac{10000}{25700^{\circ}} \text {, which becomes } \frac{100}{2.57^{\circ}}
$$

5. If you can efpy any number which will divide both terms, divide by that number.

$$
\text { Ex. } 5
$$

As $\frac{21}{39}$, divide by 3$) \frac{21}{39}\left(\frac{7}{23}\right.$.
6. For expedition, try all numbers 2,$3 ; 4,5, \mathcal{E}^{3}$ c. till you find fome that will divide both, if any there be.

$$
E \quad E x .
$$

Ex. 6.
As $\frac{119}{168}$; trying $2,3,4,5,6$, none of them will do, but trying 7 it fucceeds, 7$) \frac{119}{168}\left(\frac{17}{24}\right.$.

PROBLEM IX.

To reduce fraEtions of different denominators, to thofe of equal value, baving a common denominator.

1. A general RULE.

Multiply each numerator by all the denominators except its own, for a new numerator; then multiply all the denominators together for a new denominator.

$$
\begin{aligned}
& \text { Ex. 1. } \\
& \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \text { become } \frac{40}{60}, \frac{45}{60}, \frac{48}{60} . \\
& 2 \\
& \frac{4}{8} \\
& \frac{4}{9} \\
& \frac{3}{9} \\
& \frac{-4}{16}
\end{aligned} \frac{4}{12} .
$$

For in each fraction, both terms are multiplied by the fame number; and therefore its value is not altered.

> Particular RULES.

$$
2 \mathrm{R} \text { U L E. }
$$

Divide the denominators by their greateft common divifor; and multiply both terms of each fraction, by all the other quotients, which will produce as many new fractions. This is the beft rule for 2 fractions, as

Chap. II. VULGAR FRACTIONS.
Ex. 2.
$\frac{5}{12}, \frac{7}{18}$. Divide by 6) $\frac{5}{12}, \frac{7}{18}$, the quotients are 23
2,3. Then $\frac{5 \times 3}{12 \times 3}=\frac{15}{36}$, and $\frac{7 \times 2}{18 \times 2}=\frac{14}{36^{\circ}}$.
3 R U LE.
In feveral fractions, divide all the denominators by their greateft common divifor, fetting the quotients underneath; then find the leaft number which all thefe quotients can meafure; and divide this number feverally by all thefe quotients, and fet thefe new quotients underneath. Then multiply the terms of each fraction by its new quotient, gives the correfpondent fraction required, and all thefe will be in their leaft terms.

$$
\text { Ex. } 3 \text {. }
$$

3) $\frac{13}{36} \frac{1}{24} \frac{11}{18} \frac{7}{12} \frac{4}{9}$, the greateft com. divifor is 3 . $\begin{array}{llll}12 & 8 & 6 & 4 \\ 3\end{array}$, the leaft number they mea$\begin{array}{lllll}2 & 3 & 4 & 6 & 8\end{array}$ fure is 24 . $\frac{26}{72} \frac{3}{72} \frac{44}{7^{2}} \frac{42}{72} \frac{32}{7^{2}}$ the fractons required.
It is evident each of thefe is of the fame value as that given, having both its terms multiplied alike. And they will be in the leaft terms, becaufe 24 is the leaft number that the firit quotients meafure.
SCHOLIUM.

By this problem the greateft of two or more fractions may be difcovered.

PROBLEM X.

Several fractions being given; to find as many wokole numbers, in the fame proportion.

R U L E.

Reduce the fractions to a common denominator, then the feveral numerators will be to one another as the fractions given.

E 2
Exans-

Suppore $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}$. Thefe are reduced to $\frac{6}{12}, \frac{4}{12}$, $\frac{3}{12}$, therefore the fractions $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}$, are as the numbers 6,4 , and 3 .
PROBLEM XI.

To find the value of a vulgar frailion. in known parts of the integer R U L E.
Multiply the numerator by the number of parts contained in the integer, and divide the product by the denominator, the quotient fhews the known parts. If there be any remainder, multiply it by the next inferior denomination, and divide by the denominator as before: and continue this work till you come at the loweft denomination.

Example.
What is $\frac{3}{17}$ of a pound fterl.? Anf. 3 s. 6 d. $I_{17}^{7} f$.

PROBLEM XII.

Io reduce a frattion of one denomination to the fraction of another denomination.

$$
\mathrm{R} \cup \mathrm{LE} .
$$

1. From a lefs to a greater denomination; multiply the denominator by all the denominations, from that given, to that fought.
2. From a greater to a lefs denomination; multiply the numerator by all the denominations, from that given, to that fought.

> Ex. I.

Given $\frac{3}{5}$ of a penny ; what fraction of a pound is it?

$$
\text { Anfw. } \frac{3}{5 \times 12 \times 20}=\frac{3}{1200} \text { of a pound. }
$$

$$
\text { Ex. } 2 .
$$

$\frac{3}{5}$ of a pound, what is that of a penny?
Anf. $\frac{3 \times 20 \times 12}{5}=\frac{720}{5}$ of a penny.
For $\frac{3}{5}$ of a penny is $\frac{3}{5}$ of $\frac{1}{12}$ of $\frac{1}{20}=\frac{3}{5 \times 12 \times 20^{\circ}}$.
And $\frac{3}{5}$ of a pound reduced to pence is $\frac{3}{5} \times 20 \times 12$.

PR O B L E M XIII.

To add fractions together.

i. A ceneral R U Le.

Reduce compound fractions to fingle ones; mixt numbers to improper fractions; and fractions of different denominators to a common denominator.

Then add the numerators, and fublcribe the common denominator.

$$
\text { E. }_{3} \quad \text { Ew. }
$$

Ex. I.

What is the fum of $\frac{2}{9}$ and $\frac{3}{9}$?

$$
{ }_{\text {add }}^{\text {to }} \frac{2}{5} \text { anf. } \frac{5}{9} .
$$

$$
E_{x .2 .}
$$

What is the fum of $\frac{3}{4}$ and $\frac{3}{5}$?
When reduced to a common denominator they are

$$
\frac{15}{20} \text { and } \frac{12}{20},
$$

$$
\text { to } 15
$$

add $\frac{12}{27}$ the fum $\frac{27}{20}$ or $1 \frac{7}{25}$.

$$
\text { Ex. } 3 .
$$

What is the fum of $\frac{1}{3}$ of $\frac{1}{4}$, and $\frac{3}{8}$, and $1 \frac{1}{4}$? $\frac{1}{3}$ of $\frac{1}{4}=\frac{1}{12}$, alfo $1 \frac{1}{4}=\frac{5}{4}$. Then

$\frac{1}{12}, \frac{3}{8}$ and $\frac{5}{4}$, reduced to a common denominator, | are $\frac{2}{24}, \frac{9}{24}$ and $\frac{30}{24}$ | 2 |
| :--- | :--- |

$$
\frac{30}{41}
$$

$$
\text { the fum } \frac{4 \mathrm{I}}{24} \text { or } \frac{17}{27}{ }^{\frac{7}{4}} \text {. }
$$

Particular RULES.

2 RULE.

When many fractions are given, firft add two of them, and to the fum add a third, and to that fum a fourth, and fo on.

Chap. II. VULGAR FRACTIONS.

$$
\text { Ex. } 4
$$

Add together $\frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{5}{6}$.
$\frac{2}{3}$ and $\frac{3}{4}$ are reduced to $\frac{8}{12}$ and $\frac{9}{12}$, whofe fum is $\frac{17}{12}$. Then
$\frac{17}{12}$ and $\frac{4}{5}$ are reduced to $\frac{85}{60}$ and $\frac{48}{60}$, whofe fum is $\frac{133}{60}$. Then $\frac{133}{60}$ and $\frac{5}{6}$ are reduced to $\frac{133}{60}$ and $\frac{50}{60}$, whofe fum is $\frac{183}{60}$ or $3 \sigma^{\frac{3}{6}}$, the fum of all the four fractions.

3 RULE.

When mixt numbers are to be added, firft add the fractions to the fractions; and then the whole numbers by themfelves.

$$
\text { Ex. } 5 \cdot
$$

Let $3 \frac{1}{2}$, $4 \frac{1}{3}$, and $10 \frac{3}{8}$ be added.
$\frac{1}{2}, \frac{1}{3}$ and $\frac{3}{8}$ are reduced to $\frac{12}{24}, \frac{8}{24}$ and $\frac{9}{24}$, 12
$\frac{9}{29} \quad \frac{29}{24}$ or $1 \frac{5}{27}$ is the fum of the fractions,

$$
4 \text { R ULE. }
$$

In fractions of different denominations, reduce them to thofe of a common-denomination, and then to a common denominator. Then add the numerators, and fubfcribe the common denominator.

$$
\mathrm{E}_{4} \quad \text { Ex. }
$$

Ex. 6.

Add together
$\frac{3}{5}$ of a pound, $\frac{5}{10}$ of a frilling, and $\frac{7}{8}$ of a penny.
$\frac{5}{10}$ of a filing is $\frac{5}{200}$ of a pound, and $\frac{7}{8}$ of a penny is
$\frac{7}{1920}$ of a pound.
Then

$$
\begin{aligned}
& \frac{3}{5}, \frac{5}{200} \text { and } \frac{7}{1920} \text { are reduced to } \frac{5760}{9600}, \frac{240}{9600}, \frac{35}{9600} . \\
& \begin{array}{r}
5760 \\
240
\end{array} \\
& \frac{35}{6035}
\end{aligned}
$$

The fum of the fractions is $\frac{6035}{9600}$ of a pound, or $\frac{1207}{1920}$ in left terms.

Or the fractions may be reduced to fillings, or pence.
PR OB LE M XIV.

To subtract one fraction from another.

i. A general RULE.

Reduce compound fractions to fingle ones; mist numbers to improper fractions; and fractions of different denominations to thole of the fame denomination ; and laftly, fractions of different denominators to a common denominator.

Then fubtract the numerators, and fubfcribe the common denominator.

$$
E x .1 .
$$

$$
\text { From } \frac{4}{5} \text { take } \frac{2}{5}
$$

from 4

$$
\text { take } \frac{2}{2} \text {, the remainder is } \frac{2}{5} \text {. }
$$

Chap. II. VULGAR FRACTIONS.

Ex. 2. From $\frac{6}{13}$ take $\frac{3}{8}$.
Reduced to $\frac{48}{104}, \frac{39}{104}$.
from 48
take $\frac{39}{9}$, the rem. $=\frac{9}{104}$.

$$
\text { Ex. } 3 .
$$

Take $\frac{2}{3}$ of $\frac{4}{5}$ from $\frac{2}{3}$.
$\frac{2}{3}$ of $\frac{4}{5}$ is reduced to $\frac{8}{15}$.
Then $\frac{8}{15}$ and $\frac{2}{3}$ are reduced to $\frac{8}{15}$ and $\frac{10}{15}$.
10
$\frac{8}{2}$. The remainder is $\frac{2}{15}$.

$$
\text { Ex. } 4 .
$$

From $25^{\frac{3}{8}}$, take $21 \frac{1}{4}$.
Reduced to $\frac{203}{8}$ and $\frac{85}{4}$.

$$
\frac{203}{118}, \text { the rem. }=\frac{118}{4}=29 \frac{2}{4}, \text { or } 29 \frac{r}{2} \text {. }
$$

Ex. 5.
From $\frac{1}{3}$ of a pound take $\frac{7}{9}$ of a filing. $\frac{1}{3}$ of a pound $=\frac{20}{3}$ of a chilling.

20
$\frac{7}{13}$, the rem. $=\frac{13}{3}$ of a shilling $=4 \frac{7}{3}$ filing.
Or $\frac{7}{9}$ of a chilling may be reduced to pounds, $\xi^{\circ} c$.

Particular RULES.

2 RULE.

In mist numbers, take the fraction from the fraction, and the whole number from the whole number, remembering to reduce the fractions to a common denominator: and if the fraction to be rubtracted is less, barrow i.

Ex. 6.
Take $2 I_{4}^{\frac{1}{4}}$ from $25 \frac{3}{5}$.
$\frac{1}{4}$ is reduced to $\frac{2}{8}$. Then

$$
\text { Ex. } 7 \text {. }
$$

From $108 \frac{3}{4}$ take $92 \frac{5}{6}$.
$\frac{3}{4}$ and $\frac{5}{6}$ reduced to a com. denom. are $\frac{9}{12}$ and $\frac{10}{12}$. from $108 \frac{9}{T z}$
or $107 \frac{2 \pi}{12}$
take
remains
$15^{\frac{2 x}{12}}$
$15^{\frac{1}{1}} \frac{8}{2}$
here as 10 is greater than 9 ; add 1 , that is, $\frac{12}{12}$ to 9 makes $\frac{21}{12}$, then 10 from 21 , remains 11 twelfths, then carry I to 2 makes 3 ; and 3 from 8 , remains 5 , 9 from 10 remains 1 .

Ex. 8.
From $272 \frac{7}{12}$ take 14.

$$
\text { remains } \frac{\begin{array}{c}
272 \mathrm{~T}^{\frac{7}{2}} \\
14
\end{array}}{25^{\frac{7}{T} \overline{2}}}
$$

3 R U L E.

A fraction from 1 or an integer; fubtract the numerator from the denominator, the remainder is the numerator to be placed over the given denominator.

$$
\begin{gathered}
\text { Ex. } 10 . \\
\text { Take } \frac{17}{23} \text { from } .
\end{gathered}
$$

23
$\frac{17}{6}$. Then the remainder is $\frac{6}{23^{\circ}}$.

$$
4 \text { RULE. }
$$

A proper fraction from any whole number; fubtra a the numerator from the denominator, for the numerator of the fraction, which is to be annext to the whole number leffened by 1 .

Ex. 11.

Take $\frac{17}{23}$ from 57 , the remainder is $56 \frac{6}{35}$. from 57
take $\underline{0 \frac{17}{23}}$
rem. $56 \frac{6}{2} \frac{6}{7}$
The reafon of the rules in addition and fubtraction, is evident ; for when fractions are reduced to the fame denominator, they have the fame name; therefore as 2 fhillings and 3 fhillings make 5 hillings,
\{o 2 twentieths and 3 twentieths, make 5 twentieths. And 2 twentieths from 3 twertieths leaves 1 twentieth. That is, $\frac{2}{20}+\frac{3}{20}=\frac{5}{20}$, and $\frac{3}{20}-\frac{2}{20}$ $=\frac{1}{20^{\circ}}$. And for the fame reafon $\frac{2}{9}$ and $\frac{3}{9}$ make $\frac{5}{9}$. And $\frac{2}{5}$ from $\frac{4}{5}$, remains $\frac{2}{5}, \mathcal{E}^{2} c$.

> PR O B L E M XV.

To multiply fractions together.
i. A general R ULE.

Reduce mixt numbers to fractions; then multiply the numerators together for a new numerator, and the denominators together for a new denominator.

> Ex. I.

Multiply $\frac{2}{3}$ by $\frac{5}{7}$. The product is $\frac{2 \times 5}{3 \times 7}=\frac{10}{21}$.
Ex. 2.
Multiply $7 \frac{1}{2}$ by $\frac{3}{4}$.
$7 \frac{1}{2}$ is reduced to $\frac{15}{2} ;$ then the product is $\frac{15 \times 3}{2 \times 4}=\frac{45}{8}$, or $5 \frac{5}{8}$.

$$
\text { Ex. } 3 .
$$

Multiply $3 \frac{4}{7}$ by 13 .
There are reduced to $\frac{25}{7}$ and $\frac{13}{1}$.

Parti-

Chap. II. VULGAR FRACTIONS. 61

Particular RULES.

2 RULE.

When the numerator of one and denominator of the other, can be divided by any number; take the quotients inftead thereof.

$$
\begin{gathered}
\text { Ex. 4. } \\
\text { Multiply } \frac{3}{8} \text { by } \frac{4}{7} \text { : }
\end{gathered}
$$

Divide by 4.

$$
\text { 4) } \frac{3}{8} \times \frac{4}{7} \text {, then } \frac{3}{2} \times \frac{1}{7}=\frac{3}{14} \text { the }
$$

product.

$$
E_{x .5} .
$$

Multiply $\frac{3}{8}$ by $\frac{4}{9}$.
3) $\frac{3}{8} \times \frac{4}{9}=\frac{1}{2} \times \frac{1}{3}=\frac{1}{6}$ the product.

3 RULE.

A mixt number or fraction, to multiply by a whole number; multiply the whole number by the whole number; and then multiply the numerator by the faid whole number, and divide by the denominator, and add this quotient to the former product.

Ex. 6.
Multiply $\frac{3}{4}$ by 9 . Then $\frac{3 \times 9}{4}=\frac{27}{4}$ the product.

4 RULE.

When a fraction is to be multiplied by a number which happens to be the fame with the denominator; take the numerator for the product.

$$
\text { Ex. } 8 .
$$

Multiply $\frac{3}{5}$ by 5 , the product is 3 .

5 RULE.

When feveral fractions are to be multiplied; ftrike out fuch multipliers as are found both in the numerators and denominators.

$$
\text { Ex. } 9 .
$$

Multiply thefe $\frac{2}{7}, \frac{14}{15}, \frac{5}{8}$.

$$
\text { That is, } \frac{2 \times 14 \times 5}{7 \times 15 \times 8} .
$$

This becomes $\frac{1 \times 2 \times 1}{1 \times 3 \times 4}$, or $\frac{1 \times 1 \times 1}{1 \times 3 \times 2}=\frac{1}{6}$.
For 2 and 8 become 1 and 4,14 and 7 become 2 and 1 , and 5 and 15 become 1 and 3 ; by dividing refpectively by 2,7 , and 5

A fraction is multiplied by any number, by multiplying the numerator by that number, or dividing the denominator by it, when it can be done;
as to multiply $\frac{3}{4}$ by 9 , the product is $\frac{27}{4}$. For fince 3 of any denomination multiplied by 9 produces 27 of that denomination, therefore 3 fourths multiplied by 9 produces 27 fourths, or $\frac{27}{4}$. And fince $\frac{3}{4}$ $=\frac{3 \times 9}{4 \times 9}=\frac{27}{36}$, therefore if $\frac{3}{4}$ or $\frac{27}{36}$ be multiplied by 9, the product is $\frac{27 \times 9}{36}$, or $\frac{27 \times 9}{4 \times 9}=\frac{27}{4}$, the fame as dividing 3^{6} (the denominator of $\frac{27}{3^{6}}$) by 9 .

The reafon of the general rule is this; $\frac{2}{3}$ multiplied by $\frac{5}{7}$, makes $\frac{2 \times 5}{3 \times 7}$ or $\frac{10}{21}$. For to take $\frac{2}{3}$ once we Chall have juit $\frac{2}{3}$, but to take $\frac{2}{3}$ only $\frac{1}{7}$ of a time, we fhall only have $\frac{2}{3 \times 7}$, or $\frac{2}{21}$, becaufe dividing any fraction by any number as 7 , is but multiplying the denominator by that number 7 . Again, taking $\frac{5}{7}$ of $\frac{2}{3}$ is taking 5 times as much as $\frac{1}{7}$, that is, 5 times $\frac{2}{21}$, and this will be $\frac{2 \times 5}{21}$, becaufe multiplying any fraction by any number 5 , is the fame as multiplying the numerator by that number 5 ; and therefore the product is $\frac{10}{21}$.

And in the particular contracted rules, fince both numerator and denominator are divided by the fame numbers, the fraction will be of the fame value.

Multiplication of fractions is only reducing a compound fraction to a fingle one, for to multiply $\frac{2}{3}$ by $\frac{5}{7}$, is no more than to take $\frac{5}{7}$ of $\frac{2}{3}$.

In multiplication of proper fractions, the product is lefs than either the multiplier or multiplicand. As if $\frac{2}{3}$ be multiplied by $\frac{5}{7}$; if $\frac{2}{3}$ be multiplied by 1 , the product will be juft $\frac{2}{3}$; but if $\frac{2}{3}$ be taken not fo much as once, as only $\frac{5}{7}$ of a time, the product will be lefs than $\frac{2}{3}$. And for the fame reafon it will be lefs than $\frac{5}{7}$, if $\frac{2}{3}$ be the multiplier.

PROBLEM XVI.

To divide one fration by anotber.

$$
1 \text { A general RuLe. }
$$

Reduce compound fractions to fingle ones, mixt numbers to improper fractions, and fractions of different denominations to thofe of the fame denomination. Then multiply the denominator of the divifor by the numerator of the dividend, for a new numerator; alfo multiply the numerator of the divifor by the denominator of the dividend, for a new denominator ; the new fraction is the quotient.

$$
E x . \text {. }
$$

$$
\begin{gathered}
\text { Divide } \frac{5}{8} \text { by } \frac{3}{7} \\
\left.\frac{3}{7}\right) \frac{5}{8}\left(\frac{7 \times 5}{3 \times 8}=\frac{25}{24}=1 \frac{1}{24}\right. \\
\text { Ex. } 2
\end{gathered}
$$

Divide $\frac{3}{5}$ of a pound by $\frac{8}{9}$ of a fhilling.
$\frac{8}{9}$ of a fhilling is reduced to $\frac{8}{180}$ of a pound $=\frac{2}{45}$ of a pound. $\left.\frac{2}{45}\right) \frac{8}{9}\left(\frac{360}{18}=20\right.$.

Chap. II. VULGAR FRACTIONS.

$$
\text { Ex. } 3 .
$$

Divide $1 I_{\frac{2}{5}}$ by 2_{4}^{3}.
There are reduced to $\frac{35}{3}$ and $\frac{11}{4}$.

$$
\begin{gathered}
\left.\frac{\text { iI }}{4}\right) \frac{35}{3}\left(\frac{140}{33}=4 \frac{8}{35} .\right. \\
\text { Ex. } 4 . \\
\text { Divide } 7 \text { by } \frac{3}{5} . \\
\left.\frac{3}{5}\right) \frac{7}{1}\left(\frac{35}{3}=1 I^{\frac{2}{3}} .\right. \\
\text { PARTICULAR RULES. }
\end{gathered}
$$

2 RULE.
When it can be done, divide the numerator of the dividend by the numerator of the divifor, and the denominator by the denominator, for the quotient.

> Ex. 5. Divide $\frac{8}{15}$ by $\frac{2}{3}$. $\frac{8}{15}\left(\frac{4}{5}\right.$ the quotient. 3 R U L E.

When the two numerators, or the two denominators, can be divided by any number; take the quotients inftead thereof.

$$
\text { Ex. } 6 .
$$

Divide $\frac{12}{27}$ by $\frac{8}{5}$.

$$
\begin{aligned}
& 2 \\
& \left.\frac{8}{5}\right)^{3} \frac{12}{27}\left(\frac{15}{54} .\right.
\end{aligned}
$$

$$
\left.\frac{2}{45}\right) \frac{8}{9}\left(\frac{4}{1}=20\right.
$$

4 R U L E.
A fraction by a whole number; multiply the denominator by the whole number.

Ex. 8.
Divide $\frac{13}{15}$ by 7 , the quotient $\frac{13}{15 \times 7}=\frac{13}{105}$.

5 R U L E.

If the denominators are equal, place the numayator of the dividend over the numerator of the divifor, for the quotient.

$$
\text { Ex. } 9 .
$$

Divide $\frac{8}{19}$ by $\frac{3}{19}$, the quotieni is $\frac{8}{3}$, or $2 \frac{2}{3}$.
To demonftrate that $\frac{5}{8}$ divided by $\frac{3}{7}$, gives $\frac{35}{24}$ in the quotient, let them be reduced to a common denominator, then $\frac{3}{7}=\frac{24}{56^{\prime}}$ and $\frac{5}{8}=\frac{35}{56}$; then it is plain $\frac{5}{8}$ divided by $\frac{3}{7}$ is the fame as $\frac{35}{56}$ divided by $\frac{24}{56}$. but 35 fifty fixths contain 24 fifty fixths, as oft as 35 contains 24 , therefore the quotient is $\frac{35}{24}$ or $\frac{7 \times 5}{3 \times 8^{\prime}}$, as by the rule.

Alfo a fraction is divided by a whole number by multiplying the denominator by that number. As if $\frac{13}{15}$ be divided by 7 , the quotient is $\frac{13}{15 \times 7}=\frac{13}{105}$.

For $\frac{13}{15}=\frac{13 \times 7}{15 \times 7}=\frac{91}{105}$: now if we take the 7 th part of $\frac{13}{15}$, or its equal $\frac{91}{105}$, this is the fame as dividing 91 hundred and fifths by 7 , and the quotient is 13 hundred and fifths, or $\frac{13}{105}=\frac{13}{15 \times 7}$. And hence a fraction is divided by a whole number, by dividing the numerator by that number, when it can be done; for $\frac{91}{105}$ divided by 7 , gives $\frac{13}{105}$ for the quotient.

In divifion of fractions, if the divifor be a proper fraction, the quotient will always be gréater than the dividend. For it is evident, when any quantity or dividend is to be divided by $\mathbf{1}$, the quotient will be equal to the dividend: therefore if it is divided by a proper fraction, which is lefs than 1, the cuotient will then be greater than the dividend: for a lefs divifor will be oftener contained in the dividend, than a greater divifor.

PROBLEM XVII.

To extrait the Square root of a freciion, \&xc.
R U L E.
i. Reduce them to the leaft terms; then extract the root of the numerator for a new numerator; and the rnot of the denominator for a new denominator.
2. When they have not exact roots, add an equal number of cyphers to both terms, and then extract : or
3. When neither numerator nor denominator has an exact root, multiply the numerator by the denominator, and extract the root of the product, for a numerator, and under it place the faid denominator.
4. To find the fractional part of the root of a whole number nearly, take the remainder for a numerator, and twice the root (+ I if you will) for a denominator, of the fractional part.

Or more exactly, make twice the remainder a numerator; and add 1 to 4 times the root, for a denominator.

$$
\text { Ex. } \mathrm{I} .
$$

Extract the Iquare root of $\frac{50}{18}$.
Here $\frac{50}{18}=\frac{25}{9}$, and the root of 25 is 5 , and the root of 9 is 3 ; therefore the root of $\frac{25}{9}$ is $\frac{5}{3}$, or $\frac{2}{3}$. Ex. 2.
Extract the root of $5 \mathrm{~T}^{\frac{3}{6}}$.
$5^{\frac{3}{\delta}}=\frac{83}{16}$, then the root is $\frac{\sqrt{83}}{4}=\frac{9}{4}$ nearly.
Or thus.
$\frac{83}{16}=\frac{83000}{16000}$, and the root of $\frac{83000}{16000}$ is $\frac{\sqrt{1328000000}}{16000}$ $=\frac{36441}{16000}=\frac{9110}{4000}=\frac{911}{400}$ near.

Ex. $3 \cdot$
To extract the root of $\frac{2}{3}$.
Here $\frac{2}{3}=\frac{20000}{30000^{\circ}}$. But the root of 20000 is 141 ; and the root of 30000 is 173 ;
Therefore the root of $\frac{2}{3}$ is $\frac{141}{173}$.
Or thus.

$$
\frac{2}{3}=\frac{200}{300} \text {, and } 200 \times 300=60000, \text { whole root }
$$

is 245 , then the root is $\frac{245}{300}=\frac{49}{60}$.

$$
\text { Ex. } 4
$$

Extract the root of $27 \frac{3}{5}$.
$27 \frac{3}{5}=\frac{13^{8}}{5}$, and $138 \times 5=690$, and the root of 690 is 26 , then the root is $\frac{26}{5}=5^{\frac{2}{5}}$, nearly, but too fall.

Chap. II. VULGAR FRACTIONS. 69

$$
\text { Ex. } 5 .
$$

Extract the root of 22 , or $\frac{22}{1}$.
22 ($4 \frac{6}{5}$, or $4 \frac{6}{8}$ the root. Or thus.

$$
\begin{aligned}
& \frac{22}{16}\left(4^{\frac{1}{r} 7}\right. \text { the root. } \\
& \frac{4}{6} \\
& \frac{2}{16} \frac{4}{16+1}=1 \% .
\end{aligned}
$$

Ex. 6.
To extract the root of 253 .
253 ($15 \frac{28}{\frac{2}{3}}$, or $155^{\frac{2}{5} 5}$ the root.
25) $\ddagger 53$

125 or more exactly $15 \frac{9}{6} \frac{6}{5}$ is the root.
28
Ex. 7.
Here $8 \times 7=56$. And the root of 56 is $7 \frac{7}{74}$, or $7 \frac{7}{13}$.
$5 \dot{6}\left(7 \frac{7}{54}=7 \frac{1}{2}:\right.$ And the root is $\frac{7 \frac{1}{2}}{8}=\frac{15}{16}$.
7 or more exactly $\frac{7 \frac{1}{2} \frac{4}{2}}{8}$.
PROBLEM XVIII.
To extract the cube root of a fraction.

> RULE.
I. Reduce the fraction to the leapt terms ; then extract the roots of the numerator and denominator, if they have any, for the numerator and demominator of the fraction.

$$
\mathrm{F}_{3}
$$

2. If
3. If they have not exact roots, add an equal number of cyphers to both terms, and then extract : or
4. If neither of them have exact roots, multiply the numerator by the fquare of the denominator, and extract the root of the product for a numerator, and under it place the faid denominator. And here you may add cyphers to both, before you begin, as before.
5. To find the fractional part of the cube root of a whole number; make the remainder a numerator, and thrice the fquare of the root a denominator.
Or more exactly, make twice the remainder a numerator, and add 3 times the root to 6 times its fquare, for a denominator.

But the moft general method is to reduce the fraction to a decimal, and then extract the root, as hereafter.

Ex. $\mathbf{1}$.

$$
\text { Extract the cube root of } \frac{1}{27} \text {. }
$$

The root of 1 is x, and the root of 27 is 3 , then, $\frac{7}{3}$ is the root.

$$
\text { Ex. } 2 .
$$

To extract the root of $\frac{24}{375^{\circ}}$
$\frac{24}{375}$ is reduced to $\frac{8}{125}$, whofe root is $\frac{2}{5}$.

$$
E_{n \cdot 3} .
$$

Extract the root of $\frac{2}{3}$.
$\frac{2}{3}=\frac{20000}{30000}$, the root of 20000 is 27 , and the root of 30000 is 37 , therefore the root of $\frac{2}{3}$ is $\frac{27}{37}$.

Chap. II. VULGAR FRACTIONS. Or thus.
$2 \times 3 \times 3=18$. And the root is $\frac{\sqrt[3]{18}}{3}$. But $\sqrt[3]{18}$ $=2 \frac{5}{6}$.

$$
{ }_{8}^{18} 2_{52}^{10}=2 \frac{5}{6} \text { the numerator. }
$$

Extract the cube root of $13 \frac{4}{7}$.
$13 \frac{4}{7}$ is reduced to $\frac{95}{7}$, then $\frac{95}{7}=\frac{95000}{7000}$.
The root of 95000 is 45 the numerator.
And the root of 7000 is 19 the denominator.
And the root $\frac{45}{19}=2 \frac{7}{15}$.

Otherwise.

$95 \times 7 \times 7=4655$, whore root is 16 or 17 ; therefore the root is between $\frac{16}{7}$ and $\frac{17}{7}$.
Or thus.

4655 (6
4096
rem. 559 , and thrice the fquare of $16=768$, and the root is $16 \frac{559}{768}=16^{3}$ i nearly, the numerator. Therefore the root of $13 \frac{4}{7}$ is $\frac{16_{7}^{\frac{8}{2}}}{7}=2 \frac{30}{77}$.

$$
\mathrm{F}_{4}
$$

CHAP

C H A P. III. DECIMAL FRACTIONS.

Notation.

ADECIMAL FRACTICN is a fraction whofe denominator is I wish one or more cyphers; thus, $\frac{1}{10}, \frac{3}{10}, \frac{5}{100}, \frac{27}{100}, \frac{9}{1000}$, are decimal fractions.

Here ' 1 ', or the integer, is always fuppofed to be divided into 10, 100, 1000, Ejc. equal parts; or, which is the fame thing, I is fuppofed to be' divided into io equal parts, and each of thefe parts into 10 equal parts, and each of thefe into 10 parts more, and fo on, by a continual fubdivifion.

A decimal fraction is expreffed without the denominator, by writing only the numerator and prefixing a point on the left hand of it. And the number of places in the numerator is always equal to the number of cyphers in the denominator; thus $: 3$ fignifies $\frac{3}{10}, .03$ fignifies $\frac{3}{100}, .37$ fignifies $\frac{37}{100}$, and .004 fignifies $\frac{4}{1000}$; therefore when the numerator hath not fo many places as the denominator has cyphers, the void places muft be filled up with cyphers towards the left hand. And from hence is difcovered how many cyphers the denominator confits of.

Cyphers on the right hand of a decimal do neither increafe nor diminith the value; thus .3 and .30 and $-300,8^{\circ} \mathrm{c}$. are all equal, becaufe $\frac{3}{10}=\frac{30}{100}=\frac{300}{1000}$, Egic. as is plain from vulgar fractions: and therefore decimals

Chap.III. DECIMAL FRACTIONS. 73
decimals are foon reduced to a common denominator, by annexing cyphers.

The notation of decimal fractions, will be plain from the following table.

As in whole numbers, the Ift place contains units, the fecond place to the left, tens; the third, hundreds; $\mathcal{E}^{2} c$. So in decimals the order of places is contrary, for the firft place in decimals is tenths; the 2 d place to the right is hundred parts ; the 3 d , is thoufand parts; Ec. And as whole numbers increafe from the right hand to the left in decuple proportion, or decreafe from the left to the right in a fubdecuple proportion; fo decimals alfo increafe from the right to the left in a decuple proportion, and decreare from the left to the right in the fame fubdecuple proportion. Thus in the table above, 3 fignifies $\frac{3}{10}, 2$ fignifies $\frac{2}{100}, 8$ fignifies $\frac{8}{1000}$.

But in reading any decimal, as. 328 , we do not fay 3 tenths, 2 hundredths, 8 thoufands; but firft reduce them all to the denominator of the greateft; and call them all by that name. Thus $\frac{3}{10}=\frac{300}{1000}$, $\frac{2}{100}=\frac{20}{1000}$, and $\frac{8}{1000}$ remains the fame; and collecting them together, we have $\frac{328}{1000}$, that is, three hundred $+.020+.008=.328$.

A mixt number, is made up of a whole number and a decimal, which are feparated from one another by a point. Thus 32.17 fignifies $32 \frac{1 \%}{1 \frac{7}{0} \%}$. And 5.03 fignifies 5 Tr $^{3} 5$.

Hence any mixt number, as 5.03 , may be expreffed thus, $\frac{503}{100}$, or $\frac{5030}{1000}$, or $\frac{50300}{10000}, 8^{3}$. and 32.17 $=\frac{32.17}{1}=\frac{321.7}{10}=\frac{3217}{100}=\frac{32170}{1000}, 89 c$.
Numeration, or the reading of decimals, is the very fame as that of whole numbers, only adding the name of the parts fignified by the decimal. Thus 3.28 .328 fignifies 328 thoufands, and 328 thoufand parts.

Since decimals as well as whole numbers decreafe to the right hand in a fubdecuple proportion, therefore decimals have the fame properties as whole numbers, and are fubject to the fame rules of operation. For in any whole number, the feveral parts of it are, in effect, but decimal parts of one another.

PROBLEMI.
 Io add decimal fractions.

R ULE.

Place all the points directly under each other, then tenthis will be under tentlis, and hundred parts under hundredths, \mathcal{E}°. then add them together as if they were whole numbers; and laftly, put a point under the other points, which will prick off the amber of decimal places in the fum.

Chap. III. DECIMAL FRACTIONS. 75

	$\begin{gathered} .3527 \\ 62.013 \\ .002 \\ .5 \end{gathered}$
fum	62.8677
	Ex. 2.
	$\begin{aligned} & .0035 \\ & .02761 \\ & .81017 \end{aligned}$ 22
	.017
fum	1.07828

$$
\text { Ex. } 3^{\circ}
$$

	32.
	5.07
	. 20571
	. 0035
fum	38.08925

PROBLEM II.

To fubtract one decimal from anotber.

R U L E.

Place the greater number uppermoft, the points under the points, tenths under tenths, $\mathcal{E}^{\circ} c$. then fubtract Separation under the other points.

PROBLEM III,

To multiply decimals together.

1. A general RULE.

Multiply the decimals as if they were whole numbers; and from the product cut off as many decimal places, as there are in both numbers. If there be not fo many places, make them out with cyphers on the left.

Chap.III. DECIMAL. FRACTIONS. 77
Ex. 1 .
. 9087
.852
18174
45435
72696
product $\overline{.7742124}$
Ex. 2.
. 23.17
2.016

13902
product $\frac{4634}{\frac{2317}{46.71072}}$

7^{8} MULTIPLICATION OF BookI.

To prove the truth of the rule, let 9087 be multiplied by 852 ; thefe are equivalent to $\frac{9087}{10000}$ and $\frac{852}{1000}$, whence if the numerators be multiplied together, and the denominators alfo, the product will be $\frac{7742124}{10000000}$, that is, .7742124 confifting of as many decimal places as there are cyphers, that is, of as many places as are in both the numbers.

For the fame reafon $\frac{2717}{100}$ multiplied by $\frac{2016}{1000}$, produces $\frac{4671072}{100000}$, or 46.71072 .

Particular RULES for contracting the work.

2 R ULE.

In large decimals, you muft multiply in a contrary order, thus : Begin with the left hand figure of the multiplier, by which multiply the whole multiplicand.

Then prick off the laft figure of the multiplicand on the right, and multiply the reft by the next figure of the multiplier on the left.

Then prick off another figure of the multiplicand; and multiply the reft by the next figure of the multiplier. Go on thus with all the figures of the multiplier; always pricking off a figure in the multiplicand, at each multiplying. And obferve what is to be carried from the preceding figure, when you begin each multiplication.

Set the firft figure of each product directly in a line under one another, to be added together.

Laftly, when you multiply by the units place, obferve what place of the multiplicand it begins with ; and cut off fo many decimals, in the product.

Or, obferve the places of any two decimals that begin the multiplication, and the fum of them gives the number of decimal places in the product.

Chap. III. DECIMAL. FRACTIONS. 79

Note, inftead of pricking of the figures gradually in the multiplicand; you may know where to begin to multiply every time thus: If the firft figure on the left of the multiplier, begins with the firtt figure on the right of the multiplicand; then the 2 d figure begins with the 2 d ; and the 3 d with the 3 d ; and fo on.

$$
E_{x .1}
$$

multiply by	$\begin{array}{r} 76.84375 \\ 8.21054 \end{array}$
	61475000
	1536875
	76843
	3842
	307
product	630.92867

$$
\text { Ex. } 2 .
$$

	. 3570643
	. 021057

$$
35706_{4}
$$

 214
 product $\overline{.007518916}$

Explanation.

In Ex. i. 8 multiplying the whole multiplicand, gives 61475000 for the product. .Then prick off 5 , and multiply by 2 , faying 2 times 5 is 10, carry 1 , and t is $7, \mathcal{E}^{\circ} c$. and the product is $\mathbf{1} 536875$. Again, prick off 7 , and fay once 3 is 3 ; once 4 is $4, \varepsilon^{3} c$. and that product is 76843 . Then prick off 3, and fay 0 times 4 is 0 ; again, prick off 4 , and fay 5 times 4 is 20 , carry 2 , then 5 times 8 is 40 , and 2 is $42, \delta^{3} c$. and the product is 3842 . Laftly, prick off 8 , and fay 4 times 8 is 32 , carry 3 ; then 4 times 6 is 24 and 3 is 27,4 times 7 is 28 , and 2 is 30 , and that product is 307 . And the fum of all 630.92867 . And fince 8 the units begins with 5 in the 5 th place, there muft be 5 places of decimals.

And fince 2 begins to multiply at 7,1 at 3 , o at 4,5 at 8 , and 4 at 6 ; it is plain the firft figure of each product will be in the 5 th place of decimals; becaufe the fum of the places of the two multipliers always makes 5 .

In the 2 d Ex. 2 begins to multiply at 3, I at 4, o at 6,5 at 0,7 at 7,6 at 5 . Where the fum of both places makes 9 ; therefore there are 9 places of decimals.

3 R ULE.
When any decimal is to be multiplied by 10 , 100, 1000; E'c. remove the feparating point fo many

Chap. III. DECIMAL FRACTIONS. 8r many places to the right hand, as there are cyphers.

$$
\begin{aligned}
& \text { Ex. } 8 . \\
& \text { Ex. } 9 . \\
& 4 \text { R ULE. }
\end{aligned}
$$

In large multiplications, make a täble of all the products of the multiplicand by the 9 digits; and then the feveral products, are eafily taken out of the table and writ down, as directed in multiplication of whole numbers.
PROBLEM IV.

To divide one decimal by anotber.

> 1. A general RULE.

Divide as if they were whole numbers. Then cut off as many decimal places in the quorient, as the number of decimal places in the dividend exceeds the number in the divifor; if there are not fo many in the divifor, prefix fo many cyphers.

G

Or thus, the firft figure of the quotient (or indeed any quotient figure) is of the fame degree as that f_{i} gure of the dividend, under which the units place of the product ftands.

Annex cyphers to the dividend, when there are not places fufficient. Likewife by continually annexing cyphers, the divifion may be continued as far as you pleafe.

> Ex. I.
> Divide 13.4 by 3207.3

Explanation.
As the dividend wants places, I add cyphers at pleafure; and there being fix places of decimals in the dividend, and I in the divifor; there will be 5 in the quotient; therefore 2 cyphers muft be prefixt before 417 , and the quotient is .00417 as required.

Or thus, fince 9 the units place (of the product of the divifor by 4) ftands under the third place of decimals, therefore 4 is in the third place of decimals.

Chap. III. DECIMAL FRACTIONS. 83
Ex. 2 :
Divide 271.5 by 5.746
5.746) 271.50000 (47.25
$\frac{22984^{\circ}}{41660}$
40222
14380
11492
$\overline{28880}$
28730
150 Esc.
Ex. 3.
Divide .4368 by .0078
.0078) . 4368 (56. 390°

468
468

Ex. 4.
Divide . 052701 by 36 . 36) . 052701 (.001.463
$\frac{36 \cdots}{167}$
$\frac{144}{230}$
$\frac{216}{141}$
$\frac{108}{33}$
G 2
To

To prove the rule; fince the number of decimals in the dividend is equal to the number in both divifor and quotient; it follows that the quotient contains as many as the dividend exceeds the divifor.

Again, the quotient contains as many decimals, as 12829 (the product of 3207 . by 4) contains, (for there are none in 3207 the divifor); and that is, as many as are in the dividend 13.400, under which it ftands to be fubtracted; therefore it follows, that the quotient figure 4 is of the fame degree as 9 , the product of the units place of the divifor, or as (0) the figure above it in the dividend. Therefore 4 the quotient figure is in the 3 d place of decimals.

2 R U L E.

To contract the work in large divifions, inftead of pricking one down from the dividend, prick one figure off the divifor each operation; and in multiplying leave out thefe figures prickt off, only you muft have regard to what is to be carried from the figure laft prickt off.
Note, if the firft figure in the quotient begins to multiply at the firft figure in the divifor, then the 2d begins at the 2 d , the 3 d at the $3 \mathrm{~d}, \mathrm{E}_{\mathrm{c}} \mathrm{c}$.

$$
\begin{aligned}
& \text { Ex. } 5 \text {. } \\
& 76.84375) 630.92878(8.21054 \mathrm{I} \\
& \frac{61475000}{1617878} \\
& \begin{array}{r}
1536875 \\
81003
\end{array} \\
& 76843 \\
& 4159 \\
& \frac{3842}{317} \\
& \frac{307}{10} \\
& \frac{7}{3}
\end{aligned}
$$

Chap. III. DECIMAL FRACTIONS. 8 s
Explanation.
Here 8 is multiplied into 76.84375 ; then 2 is multiplied into 76.8437 (carrying 1); then 1 is multiplied into 76.843 ; the multiplication of 7684 by 0 , is omitted; then 768 by 5 ; then 76 by 4 , laftly 7 by I .

3 R U L E.

To divide by 10, roo, 1000, $\mathcal{E}^{\circ} c$. remove the feparating point, fo many places to the left hand as there are cyphers.

$$
\begin{gathered}
\text { Ex. } 6 . \\
\text { Divide } 32.075 \text { by } 10 . \\
\text { quotient } 3.2075 \\
\text { Ex. } 7 .
\end{gathered}
$$

Divide 25.7 by 1000 . quotient . 0257

4 R ULE.

In large divifions, make a table of the products of the divifor and all the 9 figures. And then divifion will be wrought by infpection; for the feveral products are eafily taken out of the table, as you want them, according to the directions in divifion of whole numbers.

> PROBLEM.V.

To reduce or cbange a vulgar frastion to a decimal fration.

R U L E.

Add cyphers at pleafure to the numerator, reprefenting fo many places of decimals; and then divide by the denominator, as far as you pleafe.

$$
\mathrm{G}_{3} \quad E x .
$$

Ex. I.

Reduce $\frac{3}{4}$ to a decimal.
4) $3.0000(.7500$, or .75

20
20
.00

Ex. 2.
Reduce $13 \frac{4}{7}$ to a decimal or mist number.
7) $4.000000(.571428$

35
50
49 then $13 \frac{4}{7}=13.571428$
$\begin{array}{r}10 \\ 7 \\ \hline 30\end{array}$
28
20
14
60
5^{6}
4 E $\%$

Chap. III. DECIMAL FRACTIONS. 87

$$
\text { Ex. } 3 .
$$

To reduce $\frac{16}{3}$ to decimals.
3) $16.00000\left(5,333 \mathrm{E}_{\mathrm{c}} \mathrm{I}=\frac{16}{3}\right.$.

15
$\frac{9}{10}$
-9

Ex. 4.
To change $\frac{\mathbf{1}}{243}$ to a decimal.
243) $\frac{1.00000000}{} \frac{972 \cdots}{280} . .004115=\frac{1}{243^{\circ}}$.

243
370
243
-1270
1215 $55 \mathrm{E}^{2} c$.

Scholium.
To reduce a decimal to a vulgar fraction, is no more than dividing by the greateft common meafure; the denominator of the decimal being $10,100,1000$, $\mathrm{E}^{\circ} \mathrm{c}$.

G 4

1. R O-

PROBLEMV.

To reduce the knowo part or parts of nay integer to a decimal.

R U L E.

Begin at the laft part, and feduce it to a vulgar fraction, of the next fuperior denomination, and fo to a decimal. Then take that, and the next part, if there is any, which alfo reduce to a decimal of the next fuperior denomination; and fo on to the laft.
Ex. I.

What decimal of a frilling is three half-pence?
3 half-pence is $=\mathrm{I} \frac{1}{2} d .=1.5 d$. , then $\frac{1.5}{12} d$. $=$ the fraction of a hilling, by dividing, $\frac{1.5}{12}=.125$ the decimal of a fhilling.

Ex. 2.
Reduce 6 s. $3 \frac{1}{\ddagger} d$. to the decimal of a pound.
Here $\frac{1}{4}$ of a penny $=.25$, and $3^{\frac{1}{4}}$ or 3.25 divided by 12 , that is, $\frac{3.25}{12}=.270833$ the fraction of a fhilling; and 6 s. $3 \frac{1}{4} d$. or 6.270833 divided by

Chap. III. DECIMAL FRACTIONS. 89

 $20\left(\frac{6.270833}{20}\right)$ is $=.31354166$ the decimal of a pound.Ex. 3.
What decimal of a hundred weight is 3 ft .7 lb . 9 oz . ; at 14 lb . to the ftone.
$90 z .=\frac{9}{16} \mathrm{lb} .=.5625 \mathrm{lb} .$, and $\frac{7.5625}{14}=.540178 \mathrm{fl}$. and $\frac{3.540178}{8}=.442522$ hundreds.

Hence the following decimal table is made.

Money. 1 l. the integer. 1 s . $=.05$ I $d .=.00416667$ I f. $=.00104167$	Averdupoije weight. ilb. the integei. $1 \mathrm{oz} .=.0625$ $1 d r .=.00390625$
Troy weight. rlb. the integer. $\begin{aligned} & 1 \mathrm{oz} .=.0833333 \\ & 1 \text { prot. }=.0041666 \end{aligned}$ $1 g r .=.0001736$	Averdupoije weight. hundred the integer. $1 q r .=.25$ $1 l b .=.00392857$ 1 oz. $=.00055803$
Apotbecary's weight. I oz. the integer. $1 d r .=.125$ 1 for. $=.0416666$ ${ }_{1} \mathrm{gr} .=.0020833$	Long meafure. A yard the integer. $\begin{aligned} & \mathrm{f} .=.3333333 \\ & \mathrm{I} \text { in. }=.0277777 \end{aligned}$
Time. I day the integer. i bo. $=.04 \mathrm{I} 6666$ 1 min. $=.0006944$ 1 Sec. $=.0000115$	Square and Solid meafure. 1 in. $=.006945$, the decimal of a fquare foot. 1 in. $=.0005787$, the decimal of a cubic foot.

PRO-

PROBLEM VII.

To find the value of a decimal in known parts of the integer.

RULE.

Multiply the decimal by the number of parts contrained in the next inferior denomination, gives the parts required : and if the decimal cut off be multiplied by the next lower denomination, you'll have the parts of that denomination; and fo on.

$$
E_{x .} \mathrm{I} .
$$

How much money is .732 of a pound?

$$
\begin{aligned}
& \frac{.732 \mathrm{l} .}{\frac{20}{1}} \\
& \frac{14.640 \mathrm{~s} .}{12} \\
& \frac{7.680 \mathrm{~d} .}{} \\
& \frac{4}{2.72 \mathrm{f} .}
\end{aligned}
$$

$$
\text { Ex. } 2 .
$$

What weight is 5.7305 lb . averdupoife ?

$$
\begin{gathered}
\begin{array}{c}
5.7305 \\
16
\end{array} \\
\begin{array}{c}
43830 \\
7305
\end{array} \\
\frac{\begin{array}{c}
11.6880 \\
16
\end{array}}{\frac{4128}{688}} \\
\frac{11.008}{} d r .
\end{gathered}
$$

$$
16 \text { Anf. } 5 \mathrm{lb} . \text {. } 1 \mathrm{oz} .11 \mathrm{dr} \text {. }
$$

Chap. III. DECIMAL FRACTIONS. 9I

> P R O B L E M VIII.

To change a common divifor into a common multiplier.

> RULE.

Divide I by that divifor, the quotient is a multiplier. If the divifor be a vulgar fraction, invert it, making the numerator the denominator, $\Xi^{3} c$.

$$
E_{x .} \text { I. }
$$

If 2150.4 be a divifor, what is the multiplier to effect the fame thing ?
2150.4) 1.000000000 (. 00046503 the multiplier. $86016 \cdots$
139840
129024
108160
107520
64000
64512
Ex. 2.
If $\frac{5}{8}$ be a divifor, what is the multiplier ?
$\left.\frac{5}{8}\right) \frac{\mathrm{x}}{\mathrm{x}}\left(\frac{8}{5}\right.$ the multiplier $=\mathrm{r} .6$
PROBLEM IX.

To extrait the fquare root of a decimal, or mixt number:

R ULE.

Annex cyphers on the right hand as many as you pleafe, and begin at the units place and point every ceded to extract in all refpects as if it was a whole number; and cut of as many whole numbers in the root, as there are points in the whole number, and as many decimals, as points in the decimals. And the operation may be continued as far as you will, by adding pairs of cyphers.

Ex. 1.
Extract the root of 2211.8209
2211.8209 (47.03 the exact root.
$\frac{16}{87) 611}$
$9403)$

609
28209
28209

Ex. 2.
What is the fquare root of 10 ?
10.0000 (3.16227 E C. the root.

Ex.

Chap. III. DECIMAL FRACTIONS. 93

$$
\text { Ex. } 3 .
$$

Extract the fquare root of . 00123.4
$0.001234(.0351283362$ the root near.
$\frac{9}{65)} \frac{9}{334}$
+5
$\begin{aligned} & 701) \\ & \frac{32}{+1} \\ & 7022\end{aligned} \frac{3^{2} 500}{19900}$
$7 2 \longdiv { 1 4 0 4 4 }$
$7 0 2 4 8 \longdiv { 5 8 5 6 0 0 }$
$\begin{array}{r}561984 \\ \hline \begin{array}{r}23616 \\ 21074 \\ \hline 2542 \\ 2107 \\ \hline 435\end{array}\end{array}$
421
14
14
-

$$
\text { Ex. } 4 \text {. }
$$

To extract the fquare root of $\frac{7}{9}$. $\frac{7}{9}$ reduced to a decimal is $.777777, E^{\circ} \mathrm{c}$.

PROBLEM IX.
To exitrait the cube root of a decimal, or mixt number.

R U L E.

Add cyphers at pleafure on the right hand, that the decimals may confift of $3,6,9,12, \xi^{2} c$. places; and begin at the units place and point every third figure

Chap. III. DECIMAL FRACTIONS. 95 figure both to the left and right hand. Then extract the root as if it was a whole number; and the extraction may be continued as far as you will, by ftill adding ternaries of cyphers. At laft cut off as many places of whole numbers, as there are points in the whole numbers, and the like for decimals.

Note, if you defire the laft quotient to go true to more places of figures, do thus; add half the laft quotient to the laft root, and fquare the fum for a divifor, and divide over again.

$$
\text { Ex. } \mathrm{I}
$$

Extract the cube root of 146708.483

Ex. 2.

What is the cube root of 2 ?

Ex.

Chap. III. DECIMAL FRACTIONS. 97 Ex. 3.
What is the cube root of .0001357? $0.000135700000{ }^{\circ}\left(.05138 \mathrm{E}^{\circ} \mathrm{c}\right.$, the root.

$$
125
$$

3) 107	
25) 35 (1	
227	
27 8	1 root 51
,	fquare 260
1357000	cube 132651
132651	
3) 30490	
2601) 10163 (38	
157848	
26162315	
- 2093	
222	

$$
\text { Ex. } 4
$$

Extract the cube root of $13 \frac{2}{3}$.
Reduce $\frac{2}{3}$ to a decimal, and the number is 13.666666

Or thus.

Ex. 5.
What is the cube root of 171.46776406 ?

Chap. III. DECIMAL FRACTIONS. 99

C H A P. IV.

Serveral Practical Rules in Aritbmetic.

PROBLEMI.

To refolve a quefion in reduction.

REduction defcending is when fome integers of a greater denomination are to be reduced to thofe of a lefs.

Reduction afcending is when the leffer denomination is to be reduced to the greater.

R U L E.

In reduction defcending, multiply continually by all the denominations from the given one to that fought; adding to each product by the way, thofe of the fame denomination with itfelf, if fuch there be.

In reduction afcending, where the quantity is to be reduced to a higher denomination; divide continually by all the denominations from the given one to that fought. Sometimes both rules mult be ufed promifcuoully as occafion requires.

$$
\begin{gathered}
\text { Ex. I. } \\
\text { In } 415 \text { pounds, how many pence? } \\
\frac{415}{\frac{20}{8300}} \\
\frac{12}{16600} \\
\frac{8300}{} \\
\text { Anfwer } 99600 \text { pence. }
\end{gathered}
$$

Ex. 2.
In 3076%. 13 s. $11 \frac{1}{4} d$. how many fhillings, pence, and farthings?

$$
3076-13-11 \frac{1}{4}
$$

$$
20
$$

61533 fhillings adding 13
12
123077
${ }^{6} 533$
73^{8407} pence adding 11
4
2953629 farthings adding I

84975 perinyweights 24

339919
169952
2039439 grains

Ex. 4.
In 48067 ounces averdupoife, how many hundred weight?

```
                            14) 8)
16) 48067 ( 3004 lb . ( 214 ff . ( \(26 \mathrm{C} .6 \mathrm{ff} .8 \mathrm{lb} .30 \mathrm{z}_{\text {. }}\)
\(4^{\circ} \cdots \quad 28^{\circ} \quad 16^{\circ}\)
\begin{tabular}{lll}
\begin{tabular}{l}
067 \\
64 \\
\(\frac{3}{2}\)
\end{tabular} & \(\frac{14}{64}\) & \(\frac{48}{6}\) \\
\(\frac{56}{8}\) & -
\end{tabular}
```

Ex. 5.
In 11923 pence, how many pounds? 20)
12) 11923 (993 fillings (49 pounds.
$108^{\circ} 80^{\circ}$

112	193
108	

43	
36	13

7

Chap. IV. REDUCTION.

Ex. 6.
In 20\%l. 15s. 6d. how many pieces (at 7 s. $3 \frac{1}{2}$ d. per piece) gowlands (at 7 pieces per gowland) and ringlets (at II gowlands a ringlet)?

7 s.	$3^{\frac{1}{2}} \mathrm{~d}$.	$207 l .15 \mathrm{s} 6 d.$.
$\frac{12}{87}$	$\frac{20}{4155}$	
$\frac{2}{175}$	$\frac{12}{8316}$	
halfpence	$\frac{4155}{49866}$	

175) $\frac{2}{9973^{2}}{ }^{7}$) ${ }_{569}$ (1) pieces (81 gowl. (7 ringl.

$$
\begin{array}{ll}
\frac{875^{\circ}}{1223} & \frac{56}{9} \\
\frac{1050}{173^{2}} & \frac{7}{2} \\
\frac{1575}{157} & -
\end{array}
$$

$$
E_{x .} .7 .
$$

If 27 pounds be divided among 3^{1} perfons, what is the fhare of each?

$$
\begin{aligned}
& 27 \% \\
& \text { 31.) } \frac{20}{540} \text { (17 s. 5d. of. anfwer. } \\
& \frac{31^{\circ}}{230} \\
& \frac{217}{13} \\
& \text { 31) } \frac{12}{156} \\
& \frac{155}{1} \\
& \text { 31) } \frac{4}{4} \text { (0 }
\end{aligned}
$$

In 8769 dollars, at 4 s. 7 d. per dollar, how many groats, fhillings, crowns, and pounds?
-4s. 7 d.

12

55 pence

8769
$\begin{array}{r}55 \\ \hline 43^{845}\end{array}$
43845
4) 482295 (120573 groats: rem. 3 pence
4)
3) 120573 (4019 fhil. (8038 crowns (2009 pounds. 1 rem. 2 rem.
The proof of reduction is to work the queftion backwards.
PROBLEM II.

To refolve a queftion in the rule of tbree.
Here are three numbers given to find a fourth in proportion. If a greater number requires a greater, or a lefs requires a lefs, it is called the rule of three divect.

But if a greater requires a lefs; or a lefs requires a greater number; it is called the rule of three inverfe.

i. A general 'R U L E.

1. To ftate the queftion, place the three given terms fo, that the firft and third may be of one name, the third being that which afks the queftion. And the fecond mutt be of the fame name with the fourth term fought. And let them be reduced to their loweft denomination, where the firft and third muft be of the fame.
2. Then fay, if the firft term give or require the fecond, what does the third give or require. If more be required, mark the leffer extreme; if lefs be required, mark the greater extreme, for a divifor. Multipiy the other two numbers together, and divide

Chap. IV. RULE OF THREE. Ios by this divifor. The quotient is the anfwer, of the fame denomination with the fecond term.
3. What remains will either make a fractional part; or it muft be reduced to a lower denomination, and divided as before.

$$
\text { Ex. } 1 .
$$

If 18 lb . of Sugar coft 12 fhillings, what will 150 coft?

$$
l b . \quad \jmath .
$$

$$
18: 12:=150
$$

Here, if 18 lb . coft 12 fhillings, 15 olb . muft coft more, therefore divide by 18 the leffer extreme.
18) $\frac{150}{1800}$ (100 fhillings
$\frac{18 .}{00}$
20) 100 (5l. the anfwer. 100

Ex. 2.

If 35 yards of cloth coft 391. 7s. 6d. how many yards may be bought for 19 l.: $2 \mathrm{s}$..6 d .?

$$
\begin{aligned}
& \text { * } 18 \\
& 12 \\
& 150 \\
& \frac{12}{300}
\end{aligned}
$$

Ex. 3.
If $40 \frac{1}{2} l b$. of tobacco oft $3 l$. how much can 1 buy for 7 l. 15s.?

155
3240
$3^{2} 4^{\circ}$
648
60) $\overline{100440(16)}$ (1674 ounces (104 lb. 100 oz . $16 \cdot$
$\frac{74}{64}$
$\frac{10}{10}$

Or thus by vulgar fractions.
$3: 40 \frac{1}{2} \quad \therefore: 7^{\frac{3}{4}}:$
is $3: \frac{8 \pi}{2} \because: \frac{3 r}{4}=$
$\frac{81}{\frac{31}{81}}$
$\left.\frac{243}{8}\right)$
$\frac{2511}{8}\left(\frac{837}{8}=104 \frac{5}{8} l b\right.$.

Chap. IV. RULE OF THREE. 107 Or thus by decimals.
$3 l .: 40.5 \mathrm{lb} .:: 7.75 \mathrm{l}$.

$$
\text { 3) } 313875(104.625=104 \% .100 z
$$

$$
3750
$$

$$
625
$$

$$
10.000
$$

Ex. 4.

If 6 men be 10 days in finifhing a piece of work, how long will 8 men be?

$$
6 m: 10 d .: 8 m . *
$$

Here 8 men will be leis time than 6 , therefore more requires leis ; and 8 , the greater extreme, is the divifor.

$$
\begin{aligned}
& 6: 10: 8^{*} \\
& \frac{6}{60}\left(7 \frac{4}{8}=7 \frac{1}{2}\right. \text { days. }
\end{aligned}
$$

$\frac{56}{4}$

Ex. 5
If I lend a perron 300 l . for a year, how long ought he to lend me 500 l . to requite me?

$$
300 l \text { : } 365 \text { d. : } 500 \text { l. * }
$$

$$
300
$$

5100) $\overline{1095100 ~(219 \text { days. }}$
Here less time is required, and 500 the divifor, by the inverfe rule.

$$
E_{x} .
$$

How many yards of cloth, a yard and a quarter broad, will line a piece of tapeltry 10 yards long, and $3^{\frac{1}{2}}$ broad?

$$
\begin{array}{rl:l}
3^{\frac{1}{2}} b_{0}: & 10 l . & : \frac{1}{4} b_{0}{ }^{*} \\
\text { that is, } \frac{7}{2} & : 10 & : \\
\frac{5}{4} &
\end{array}
$$

7
$\frac{10}{70}$

$$
\left.\frac{5}{4}\right) \frac{70}{2}\left(\frac{280}{10}=28 y d s\right.
$$

2 Rule for contracting the work.
When the divifor and either of the other terms, can be exactly divided by fome common divifor; then divide them, and take the quotients instead of there terms. And proceed thus as oft as you can.

$$
\text { Ex: } 7 .
$$

If 6_{3} gallons of brandy coff 42 . what will 72 gallons cot? Here 6_{3} is the divifor.

Divide by 9) ${ }^{*} 63: 4^{2}:: 7^{2}$

$$
\text { 7) } \begin{aligned}
& 7: 42::{ }^{8} \\
& { }^{*}: 48 \\
& 1
\end{aligned}
$$

Ex. 8.
There is a pafture which will feed 18 horfes for 7 weeks; how long will it feed 42 horfes? Here 42 is the divifor, and the rule inverfe.

$$
\begin{aligned}
& \text { 7) } 18: 7: 12^{*} \\
& \text { 6) } 18: 1:: 6^{*} \\
& 3 \text { : } 1 \text { : } x^{*}: 3 \text { weeks; answer. }
\end{aligned}
$$

1). $3(3$

$$
\text { Ex. } 9
$$

If $\frac{3}{8}$ of a yard colt 27 fillings; what will $\frac{7}{8}$ of a yard cont?

The proof is made by multiplying the quotient by the divifor, adding the remainder; which muft be equal to the product of the other two numbers.

P R O B L E M III.

To refolve a queftion in the double rule or compound rule of three.

R U L E.

1. Here, as in the fingle rule of three, put that term into the fecond place, which is of the fame denomination with that fought; and the terms of fuppofition one above another in the firlt place; alfo the terms of demand in the fame order, one above another, in the third place. Then the firft and third of every row will be of one name, and muft be reduced to the fame denomination, viz. the lowelt concerned.
2. Then proceed with each row as with fo many feparate queftions in the fingle rule of three, in order to find out the feveral divifors; ufing the fecond term in common for each of them. That is, in any row, fay, if the firft term give the fecond, does the third require more or lefs? if more, mark the lefjer extreme; if lefs, the greater, for a divifor.
3. Multiply all thefe divifors together for a divifor; and all the reft of the numbers together,for a dividend. The quotient is the anfwer, and of the fame name with the fecond term.
4. To contract the work, when the fame numbers are concerned in both divifor and dividend, throw them out of both. Or divide any numbers by their greateft common divifor, and take the quotients inftead of them.

Ex. 1.

If 16 horfes in 6 days eat up 9 bufhels of oats; how many horfes muft there be to eat up 24 bulhels in 7 days?

* $9 b$. $-16 b$. $24 b$.

9
$\frac{7}{63}$ divifor

Explanation.

Say, if 9 bufhels ferve 16 horfes, 24 bufhels will ferve more horfes, therefore mark the leffer extreme 9 for a divifor.

Again, fay if 6 days require 16 horfes to eat up any quantity, 7 days will require fewer horfes to eat them; fo mark the greater extreme 7 for divifor.

Then $9 \times 7=63$ for divifor, and $16 \times 24 \times 6$ $=2304$ for a dividend; and the quotient is $36 \frac{1}{2} \frac{2}{7}$ horfes $=36_{\frac{4}{7}}$.

Chap. IV. OF THREE.

Ex. 2.
If 9 ftudents fpend 12 pounds in 8 months, how much will ferve 24 ftudents 16 months?
*9f. $-12 l .-24 f$.

* 8 m .—— 16 m 。

72
$\overline{144}$

24

384
12

768
72) 4608 (64 pounds; anfwer. $\frac{43^{\circ}}{288}$

288

Or thus by contraction.
3) * 9 ft . -12 l. -24 ft .
8) $* 8 \mathrm{~m}$. 16 m .

And further.

$$
\text { and then } \begin{gathered}
3)^{*} 3-12-8 \\
{ }^{*} \mathrm{I}-4-8 \\
\text { divifor } \frac{-1}{16} \\
\frac{4}{64} \text { anfwer. }
\end{gathered}
$$

If 8 men be 6 days in digging 24 yards of earth; how many men mutt there be to dig 18 yards in 3 days?

Contracted.

Ex. 4.
If a garrifon of 6000 men may have each 15 ounces of bread to laft 16 weeks, how much mut 5000 men have a-piece to laft 24 weeks?
1000) 6000 m .——150z.——5000 m. * 8) $16 w$.

Contracted.

Chap.IV. OUF THREE. $1 / 8$ Ex. 5.
What principal will gain 20 pounds in 8 months, at 5 per cent. per annum?

$12 \mathrm{~m} . \mathrm{m} 100 \mathrm{l} . \mathrm{m}-8 \mathrm{~m}$ 。 *

* 5g.—n- 20 g .

Here the principal is 100% and the time 12 months.
Dividend $=\frac{12 \times 100 \times 20}{8 \times 5}=($ by contraction $) \frac{3 \times 100 \times 4}{2 \times 1}$
$=\frac{3 \times 100 \times 2}{1 \times 1}=600 \mathrm{l}$. principal, the anfwer.

$$
\text { Ex. } 6
$$

If the carriage of , 5 hundred weight cont $3 \% .7 \mathrm{~s}$. 6 d . for 150 miles, what will the carriage of $7^{\frac{3}{4}}$ hundred weight come to for 64 miles?

* 150 m . $\quad 64$

Dividend $\frac{810 \times 31 \times 64}{20 \times 150}=\frac{27 \times 31 \times 32}{10 \times 5}$, by contraction.

10
5

27
31
27

12) 535 (44 fill. (2 pads.

AnT. 21. 4 s. $7 \frac{1}{2}$ d.
510) $\frac{2678 / 4 \text { (} 535 \text { pence }}{34}$
50) $\frac{4}{136}$

If the carriage of 150 feet of wood, that weighs 3 ftone a foot, comes to 31 . for 40 miles, how much will the carriage of 54 feet of free ftone, that weigh 8 tone a foot, colt for 25 miles?

$$
\begin{aligned}
& * 150 f-3 l-54 f . \\
& 3 \mathrm{ft}
\end{aligned}
$$

$$
40 \mathrm{~m}=25 \mathrm{~m}
$$

Dividend $\frac{54 \times 8 \times 25 \times 3}{150 \times 3 \times 40}=\frac{54 \times 1 \times 25 \times 1}{150 \times 1 \times \frac{1}{5}}=\frac{54 \times 5}{150}$

$$
=\frac{54}{30}=\frac{18}{10}
$$

10) 18 (1 1.165 . answer.

Ex. 8.
If 248 men, in $5 \frac{1}{2}$ days of 11 hours each, dig $=$ trench of 7 degrees of hardnefs and $232 \frac{1}{2}$ yards long $3^{\frac{2}{3}}$ wide, and $2 \frac{1}{3}$ deep; in how many days of 9 hours, will 24 men dig a trench, of 4 degrees of hardness, and $337^{\frac{1}{2}}$ yards long, $5^{\frac{3}{5}}$ wide, and $3^{\frac{1}{2}}$ deep ?
 $\frac{248.11 .7 \cdot \frac{11}{2} \cdot \frac{675}{2} \cdot \frac{7}{2} \cdot \frac{28}{5}}{\frac{465 \cdot \frac{11}{2} \cdot \frac{7}{3} \cdot 24 \cdot 9 \cdot 4}{248.11 .7 \cdot 11.675 \cdot 7 \cdot 28}} \frac{265 \cdot 9}{46511 \cdot 7 \cdot 24 \cdot 9 \cdot 4} \times \frac{2}{8 .}$

$$
\begin{aligned}
& 248 \mathrm{~m} \text {. }-5 \frac{1}{2} \mathrm{~d} \text {. }-24 \mathrm{~m} \text {. } \\
& 11 \mathrm{~b} \text {. } 9 \mathrm{~b} \text {. }{ }^{*} \\
& 7 \mathrm{deg} \text {. } \\
& 4 \text { deg. } \\
& \text { * } 232 \frac{1}{2} l \text {. ———— } 337 \frac{1}{2} l \text {. } \\
& \text { * } 3^{\frac{2}{3}} \text { vo. } \\
& 2 \frac{1}{3} \text { deep - } 3^{\frac{1}{2}} \text { deep. }
\end{aligned}
$$

$$
\begin{gathered}
\quad=\frac{248 \cdot 11 \cdot 675 \cdot 7 \cdot 28.2}{465 \cdot 24 \cdot 4 \cdot 8 \cdot 5}=\frac{31 \cdot 11 \cdot 675 \cdot 7 \cdot 28}{465 \cdot 24 \cdot 2 \cdot 5} \\
=\frac{31 \cdot 11 \cdot 135 \cdot 7 \cdot 7}{93 \cdot 6 \cdot 2 \cdot 5}=\frac{11 \cdot 27 \cdot 7 \cdot 7}{3 \cdot 6 \cdot 2}=\frac{11 \cdot 9 \cdot 7 \cdot 7}{6 \cdot 2}=\frac{11 \cdot 3 \cdot 7 \cdot 7}{2.2} \\
=\frac{1617}{4}=404 \frac{1}{7} \text { days, the anfwer. All this by }
\end{gathered}
$$ throwing equal quantities out of both numerator and denominator.

The proof of this rule is, by multiplying the quotient and all the divifors together; whofe product mult be equal to the product of all the other numbers, when the work is right.
S CHOLIUM.

Any queftion in the compound rule of three mav alfo be refolved at feveral operations, by the fingle rule of three, but with more labour, thus:

The queftion being rightly ftated, take the three terms in the firft row, and find a fourth term, by the fingle rule. Make this the fecond term in the fecond row; from thefe three terms in the fecond row find a fourth term. Proceed thus to the laft.

As if the queftion in Ex. 1. was propofed, fay, if 9 bufhels ferve 16 horfes any time, how many horfes will 24 bufhels ferve for the fame time; they will ferve more horfes, and therefore 9 is the divifor, and the anfwer is $42 \frac{2}{3}$ horfes.
Again fay, if 6 days require $42 \frac{2}{3}$ horfes to eat up any quantity, how many do 7 days require. Here fewer horfes are required, therefore 7 is divifor, and the anfwer is $36 \frac{4}{7}$ horfes.

PROBLEM IV.

To refolve a queftion by the rule of practice.
When a queftion in the rule of three has I for the fritt term, it is more expeditioully refolved, by tak- ing fome aliquot part or parts of the thing propofed: and this is called the rule of practice.

1. A general R ULE.

Firft value the integers, obferving to multiply integers by integers; and for the inferior denominations take what aliquot part you can get, and for what is wanting take parts of that part, and fo on. Then fum up the whole.

Ex. 1.
What will 37 c .3 . 12 lb . come to, at 5 l .15 s . $7 \frac{1}{2} d_{0}$ the hundred weight?

Explanation.

Firf I multiply 37 by 5 gives 185 . Then fince ${ }^{15} 5$. is $\frac{3}{4}$ of a pound, or $\frac{1}{2}$ and $\frac{1}{2}$ of that. Therefore I take half 37 which 181 . 1os. and half of that which is $9 l .55$. and the fifth part of $9 l .5 \mathrm{~s}$. is Il . 17s. the price at 1 s . the hundred weight. Then becaufe $\eta_{2}^{\frac{1}{2}} \mathrm{~d}$. is the half of a hilling, and a fourth of that half. Therefore half of $1 l .17 s$. is r 8 s .6 d . and $\frac{1}{4}$ of that is 4 s. $7 \frac{1}{2} d$: : fo now the integers are valued.

Then $\frac{3}{4}$ of a hundred being a half and half of that half, I take half of $5 \% .155 .7 \frac{1}{2} \mathrm{~d}$. which is 2 l . 17 s . $9 \frac{3}{4} d$. and half that 1 l .8 s . I id. Laftiy, fince 12 lb . is $\frac{12}{28}$ or $\frac{3}{7}$ of a quarter, I take $\frac{1}{7}$ of $\mathrm{I} l .8 \mathrm{~s}$. I d . which is $4 \mathrm{~s} .1 \frac{4}{7} \mathrm{~d}$. and triple that is $12 \mathrm{~s} .4_{\frac{x}{2}} \mathrm{~d}$. the price of 12 pounds. And the fum of all thefe, is 218% 17 s. $2 \frac{3}{4}$ d.

Particular RULES.

2 R U L E.

Sometimes the value may be eafily found by reckoning the price fome even number above what is given, which done, take fome aliquot part for what it is above, and fubtract it from the former.

$$
E_{x: 2} .
$$

If a pound of tobacco cofts IId. what is a hundred weight?

$$
\begin{aligned}
& \text { II2l. (at Is.) } \\
& \text { III l. (at Id. is } \frac{1}{12} \text {) } \\
& \text { fubt. } \\
& \\
& \hline
\end{aligned} \begin{array}{cccc}
\text { f. } & \text { s. } & d . \\
5 & 12 & 0 \\
0 & 9 & 4 \\
\hline
\end{array}
$$

3 RULE.

When the price is fhillings, or pounds and fhillings. Firft multiply the quantity by the pounds, if there be any ; then multiply by half the (even) number of Thillings, obferving to write double the product of the firft figure for millings, and the reft of the product for pounds. And for an odd thilling take $\frac{1}{20}$ of the quantity.

Ex. 3.
What comes 43 yards to, at 2 filing a yard? 413

Ann. Ax $\overline{l .:} 6 s$.

$$
\text { Ex. } 4 .
$$

If an ounce coots 12 fillings, what will $\eta 6$ coff ?

Ex. 5.
What is the price of 796 grofs, at 13 s. the grows? $\begin{array}{r}796 \\ \hline 6\end{array}$

Ane. 517. : 08s.

$$
\text { Ex. } 6 .
$$

If a hundred weight colt $2 l$. Ifs. what will 238 cont ?

4 RU LE.

When the price is pence, or fillings and pence. Multiply the quantity by the fillings, if there be any. Then for the pence take forme aliquot part or parts of the quantity proposed.

Ex. 7.
What comes 472 ounces to, at 8 d . an ounce?

Ex. 8.
What will 74 yards of cloth copt, at 13 s .9 d . the yard?

$$
74
$$

$$
13 \quad 9
$$

$$
222
$$

$$
74
$$

$$
\text { 2) } 74-\begin{array}{llll}
\overline{962} & 0 & \text { at } & 135 \\
-37 & 0 & \text { at } & 6 d .
\end{array}
$$

2) $74-37 \circ$ at $6 d$.
3) $74-18$, 6 at $3 d$.

$$
\text { An } \frac{1017 \% .6 \mathrm{~d}}{50 \mathrm{l} .17 \mathrm{~s} .} 6 \mathrm{~d} .
$$

$$
\begin{aligned}
& \text { 3) } 472 \text { (157s. } 4 \mathrm{~d} \text {. at } 4 \mathrm{~d} \text {. } \\
& 157 \text { 4. at } 4 d, \\
& \text { 20) } 314 \mathrm{~s} .8 \mathrm{~d} \\
& \text { inf. } 15 \text { l. 14s. } 8 \mathrm{~d} \text {. }
\end{aligned}
$$

$$
\text { Ex. } 9
$$

What comes 150 hundred weight to, at $2 l .11 s .8 \frac{2}{2} d$. or 51 s .8 d . the hundred?

150
518
150

5 R U L E.

When the price is an aliquot part or parts of a pound; then take fuch aliquot parts of the quantity propofed.

Ex. 10.
What does 63 gallons come to, at 5 fillings a gallon?

$$
\begin{aligned}
& \text { l. s. } \\
& \text { 4) } 63(15: 15 \text { anf. } \\
& \text { Ex. II. }
\end{aligned}
$$

If I gain 13s. 4 d. for a dozen, what do I gain for roo dozen?
3) $100-33-\begin{array}{llll}3 & 8 & 8 \\ 33 & 6 & 8\end{array}$ s. $8 d$.

Anf. $\begin{array}{lll}66 & 13 & 4\end{array}$

6 RULE.

6 R ULE.

If farthings be concerned in the price, take fuch aliquot parts as you can find; or parts of aliquot parts.

$$
\text { Ex. } 12 .
$$

What comes 37 I gallons to, at $13 \frac{1}{2} d$. per gallon?

Ex. 13.
How much money can I get for 347 French crowns, at 4 s. $5^{\frac{1}{4}} d$. a piece?

The proof of this rule is to work the queftion by different methods.

Scholium.

Other queftions that may occur, are eafily refolved by the rules of compound multiplication.

When it happens that the firft term is more than 1; work by the foregoing rules as if the firft term to the rules of compound divifion. But fuch queftions as thefe are beft refolved by the rule of three.

PROBLEMV.

To refolve a quefion in the fingle rule of fellowefbip.
The fingle rule of felloreship, is that which determines how much gain or lofs, is due to every partner concerned; by having the whole gain or lols, and their particular ftocks, given.

i. A general RULE.

Say by the rule of three, as the whole ftock : is to the whole gain or lofs :: fo is every man's particular ftock : to his particular part of the gain or lofs.

Ex. 1.

Two partners A, and B, make a ftock of 56 pounds; A puts in 24 l ; and B 32 l . They gain 7l. by trade. What is the gain of each ?

24
32
(1) $\overline{56}: 7: 24$

7
56) 168 (3 $\%=$ A's gain.

168
(2) $5^{6}: 7:: 3^{2}$

$$
\text { 56) } \frac{7}{224}(4 l=\text { B's gain: }
$$

—

Chap. IV. FELLOWSHIP.
Ex. 2.
Three men A, B, C, freight a fhip with wine; A had 284 tuns; B, 140, and C, 64. By a ftorm at fea, they were obliged to caft 100 tuns overboard. What lofs does each fuftain?

> A 284
> B 140
> C 64
> (1) $488: 100:: 284$ 100
> 488) $28400\left(58 \frac{96}{488}\right.$ tuns $=A^{\prime}$ s lofs: 2440°
> 4000
> 3904
> 96
(2) $488: 100:: 140$
488) 14000 ($28 \frac{3}{4} \frac{36}{88}$ tuns $=$ B's lofso
$\frac{976}{4240}$
3904
33^{6}
(3) $488: 100:: 64$

Where many partners are concerned; find the fhare of I integer, by dividing the whole gain or lofs by the whole, ftock, and the quotient will be a common multiplier ; by that multiply every man's part of the ftock, and it will give his fhare of the lofs or gain.

$$
\text { Ex. } 3 \text {. }
$$

Four men trade together, A puts in 200 l. B 150, C $85, \mathrm{D}_{70}$; and they gain 60%. What is the fhare of each ? A 200 505) 60.0 (.11881 a common multiplier.

B 150 C 85	505
D. 70	950
	505
505	
	$\begin{array}{r} 4450 \\ -4040 \end{array}$
	4100
	4040

\%11888	11881	i^{11881}	.11881
200	150	85	70
$\begin{gathered} 23.762 \mid 00 \\ 20 \end{gathered}$	59405 11881	$\begin{array}{r} 59405 \\ 95048 \end{array}$	$\begin{gathered} 8.31670 \\ 20 \end{gathered}$
$\begin{array}{r} 15.24 \\ 12 \end{array}$	$\begin{gathered} 17.8215^{0} \\ 20 \end{gathered}$	$\begin{gathered} 10.09885 \\ 20 \end{gathered}$	6.334100
2.88	16.43100	1.977100	4.008

A gains 23 l. 15 s. 2.9 d.
$\begin{array}{llll}\text { B } & 17 & 16 & 5 \cdot 2\end{array}$
C 10 I $11: 8^{\prime}$
D

Chap. IV. FELLOWSHIP.

Ex. 4.

'Five captains plundered the enemy of 1200%. The firtt had 20 men, the fecond 40 , the third 55, the fourth 55 , the fifth 70 . What muft each captain have in proportion to his number of foldiers?

1200

3 R U L E.

When there are a great number of parners; the beft way is to make a table, after this manner. Divide the gain or lofs by the whole ftock, to find what is the gain or lofs of I. Then by continual addition of this, make your table as far as 10; then by the continual addition of the gain or lofs of 10, continue the table through all the tens to 100: add in like manner, for all the hundreds to 1000 , if there be occafion. Then you have no more to do, but take every man's fhare out of the table (at once or oftener) and write it down:

$$
\text { Ex. } 5 \text {. }
$$

There is a certain townhip, which is to raife a tax of 56\%.8s. 3 d. To find what each much pay towards

* 26 SINGLE RULE OF Book. towards it, the inhabitants being rated as in the following table.

Here 883 l . 10 s. $=883.5 \%$. and $56 \mathrm{l} .8 \mathrm{~s} .3 \mathrm{~d} .=56.4125 \%$

$\begin{array}{r}115 \\ 88 \\ \hline\end{array}$
27

Chap.,IV. FELLOWSHIP.
So Il. is is. 3 d. $1.297 f$. whence the following table is made.

Etc. f. s. d. f.
Hence the flare of A for 100 is $\begin{array}{lllllll}6 & 7 & 8 & 1.7\end{array}$ for 50 is $3 \cdot 3$ 10 $0: 85$
total flare of A $\begin{array}{llll}9 & \text { II } & 6 & 2.55\end{array}$
The flare of B
for 100
$\begin{array}{cccc}6 . & \text { s. } & \text { d. } & f . \\ 6 & 7 & 8 & 1.7\end{array}$
$\begin{array}{rrrrr}20 & 1 & 5 & 6 & 1.94 \\ 5 & 0 & 6 & 4 & 2.48\end{array}$
Whole flare of B $\begin{array}{llllll} & 1 & 19 & 7 & 2.42\end{array}$

128 DOUBLE RULE OF BookT. and fo on with the reft; whence we get the following bill.

The proof is made, by adding together all the fhares, which muft be equal to the whole gain or lofs.

PROBLEM VI.

To refolve a quefion by the double rule of fellow/bip.
The double rule of fellowohip, is that which determines how much gain or lofs is due to every partner concerned; by having the whole gain or lofs, and the particular ftocks, and their times of continuance, given.

I R U LE.

Multiply every man's ftock, by the time it is employed; then by the rule of three, fay, as the fum of thefe products : to the whole gain or lofs : : fo each of thefe products : to each man's gain or lofs.

Ew. 1.

Three merchants, A, B, C, enter into partnerfinip. A puts in $65 l$. for 8 months; B 781 . for 12 ; and C 84 for 4 months, and 6 l . viz. 90 l . for 2 months. They gain 166 l .12 s . What is each man's fhare of the gain ?

 7888.

 for C.

$$
\text { Ex. } 2 .
$$

Four men, A, B, C, D, hold a pasture in common, for which they pay 60%. A had 24 oxen 32 days; B 12 oxen 48 days; C 16 oxen for 24 days; and B had 10 oxen for 30 days. What mut each pay?

$$
\begin{array}{r}
24 \times 32=768 \\
12 \times 48=576 \\
16 \times 24=384 \\
10 \times 30=300
\end{array}
$$

Then 2028 : 60l.: : fo each product: to its fare. That is $169: 510:: 768: 22^{\frac{12}{122}} \frac{1}{65}$ and

$$
\begin{aligned}
& 169: 5:: 576: 17 \frac{7}{169} \\
& 169: 5 \\
& 169: \\
& 169:: 384: 11600 \\
& 5
\end{aligned}
$$

$$
f_{0} \quad s_{0} \quad d .
$$

Hence there is paid by A, $22 \quad 14 \quad 5_{4}^{x}$

B,	17	0	10
C,	11	7	$2 \frac{2}{7}$
D,	8	17	$6 \frac{1}{7}$

2 RULE:

$$
\begin{aligned}
& \frac{936}{9996} \\
& 4998 \\
& 14994 \\
& \text { 1972) } 155937.6 \text { (} 79 \frac{15}{952}=79 \text { l. is. } 6 \frac{1}{7} d \text {. } \\
& 13804^{\circ} \\
& \text { for B. } \\
& 17897 \\
& 17748 \\
& 149
\end{aligned}
$$

2 R U L E.

When many people are concerned; divide the whoie gain or lofs, by the firft term or fum of the products; the quotient is a common multiplier, by which multiplying the feveral products, you'll have the feveral fhares.

$$
\text { Ex. } 3 \text {. }
$$

Four merchants trade after this manner.
A puts in $100 l$. for 8 months.
B puts in 80%. for 5 months, and then puts in 40%. more for 3 months longer.
C puts in $176 l$. for 4 months, and then takes out 50 . for four months more.
D puts in 230%. for 6 months, and then takes out the whole.
They gained $212 l$. IOs.; then what is the gain of each merchant.

The feveral products of the ftock and time will be as follows.

$230 \times 6-\frac{1380}{}$ for D.

K 2 a common multiplier.

.05123 800	.05123 760	.05123 1208	$\begin{array}{r} .05123 \\ 4380 \end{array}$
$40.984$$\text { for } A \text {. }$	30738	40984	40984
	35861	614760	15369
	38.9348	61.88584	5^{123}
	for B.	for C.	70.6974

B's	38	18	$8 \frac{1}{4}$
C's	61	17	$8 \frac{1}{2}$
D's	70	13	$11 \frac{x}{4}$

The proof is had, by adding all the parts of the gain or lofs together, which muft be equal to the whole.

> PROBLEM VII.

To refolve a queftion in the rule of alligation medial.
Alligation medial teaches how to find the mean rate of a mixture, when the particular quantities mixt, and their feveral rates are given.

R U L E.

Multiply the quantities of the mixture by their refpective prices, and divide the fum of the products by the fum of the quantities, gives the mean rate.

$$
\text { Ex. } \mathbf{I}
$$

A man would mix 10 bufhels of wheat, at 4 fhillings a bufhel, with 8 bufhels of rye at $2 s .8 d$. a buhel.

Chap. IV. A LLIG A T I O N.
a bufhel. At what price mult the mixture be fold?
for \quad.
$10 \times 48=480$ the wheat.
$8 \times 3^{2}=\underline{256}$ the rye.
18) $736\left(40 \frac{8}{9}\right.$, or 3 s. 5 d. a bufhel very near, 7° the price of the millegin.

$$
\text { Ex. } 2 .
$$

A vintner would mix 30 gallons of Malaga, at 7 s .6 d . the gallon; with 18 gallons of Canary, at 6 s .9 d ; and 27 gallons of white wine, at 4 s .3 d . how muft the mixture be fold ?

$$
\begin{aligned}
& 90 \times 30=2700 \\
& 81 \times 18=145^{8} \\
& 51 \times 27=1377 \\
&75) \\
& \frac{5255}{5535} \\
& \frac{5^{2} 5^{285}}{\frac{225}{60}}
\end{aligned}
$$

The proof is made, by finding the value of the whole mixture at the mean price; which mult be equal to the total value of the feveral ingredients.

PROBLEM VIII.

To refoive a queftion in the rule of alligation alternate.
Alligation alternate fhows how to find the particular quantities concerned in any mixture; when the particular rates of each fort, and alfo the mean rate, are given.

Preparation.

Set down the feveral rates in order from the greateft to the leaft, as the letters a, b, c, d; and the mean price (m) behind in its due order.

Couple every two rates together by an arch, fo as one rate may be greater and another lefs than the mean, till they be all coupled. Where note, that one rate may be coupled with feveral others one by oné, as of as you will.

Take the difference between each rate and the mean rate, and place it alternately, that is, againft all its yoke-fellows. Do thus with all the rates; then the differences will ftand as p, q, r, s. When feveral differences happen to ftand againft one rate, add them all together. Then,

1 R U L E.

When no quantity is given of any of thefe forts; the numbers (or differences) ftanding againft the feveral rates, are the quantities required.
Ex. I.

A man would mix wheat at 4 s . a buthel, with rye at 2 s . 8 d . a bufhel; to fell it at 3 s .6 d . per buthel. How much of each muft he take? d.
$\left.\left.\begin{array}{ll}4^{2} & 48 \\ 32\end{array}\right) \left\lvert\, \begin{array}{c}\text { Io buthels of wheat } \\ 6 \text { buhhels of rye. }\end{array}\right.\right\}$ the anfwer.

Ex. 2.
A vintner would mix Malaga at 7s. $6 d$. per gallon, with Canary at 6 s .9 d . and white wine at 4 s .3 d ; to fell it at 5 s .2 d . per gallon. What quantity of each mult he take?

Explanation of Ex. 2.
The difference between 62 and 51 is 11 , which I fet againft 81, and allo againft 90. The difference between 62 and 81 is 19 , which I place againft 5 I . The difference between 62 and 90 is 28 , which I alfo fet againft 5 I. Then 19 added to 28 is 47 . So the differences, to work by, will be 1 I, II, 47 .

2 R U L E.

In alligation partial, where one of the quantities (to be mixed) is given. Say, by the rule of three,

As the difference ftanding againft the price of the given quantity :

To the given quantity : :
So are the feveral other differences:
To the refpective quantities required.

$$
\text { Ex. } 3 \text {. }
$$

I would mix 10 bufhels of wheat at 5 s . with rye at 3 s .6 d . and barley at 2 s .4 d .; to be fold at 4 s . per bufhel. How much rye and barley muft I take?
\(\left.4^{8}\left\{\begin{array}{ll}wheat \& 60

rye \& 42

barley \& 28\end{array}\right) \right\rvert\,\)| 6.20 | 26 |
| :---: | :---: |
| 12 | 12 |
| 12 | |

Then $26: 10:: 12: 4 \frac{8}{13}$ bufhels of rye and of barley.

$$
\mathrm{K}_{4} \quad E x .
$$

$$
\text { Ex. } 4 .
$$

How much Malaga at $7 s, 6 \mathrm{~d}$. the gallon, fherry at 5 s. white wine at 4 s . 3 d . muft be mixt with 24 gallons of Canary at $6 s .9 \mathrm{~d}$; ; that the whole may be fold for 6 s. per galion?

Or tbus.

Then the quantity of Canary being given, fay by the firft method, $21: 24::$ fo is each difference : to its refpective quantity; that is,
As $7: 8::\left\{\begin{array}{ccc}12: 13 \frac{5}{7} & \text { gal. Malaga } \\ 18: 20 & \text { fherry } \\ 9: 10 & \text { w. wine }\end{array}\right\}$ anfwer,
Or thus, by the latter metbod.
As $12: 24::\left\{\begin{array}{c}21: 42 \text { gal. Malaga. } \\ 9: 18\end{array}\right.$

3 R U L E.

In alligation total, where the total fum of the quantities (to be mixt) is given; add up all the differences together, then fay by the rule of three,

As the fum of the differences :
To the quantity given : :
So every particular difference :
To its refpective quantity.

$$
\text { Ex. } 5 \text {. }
$$

A goldfmith would mix gold of 24 carracts, with fome of 21 carracts, and with fome other of 19 car-

Chap. IV. ALLIG A TION.

137 racts fine, and with a due quantity of allay; fo that iço ounces might bear 17 carracts fine. How much of each fort mult he take?

$|$| 17 | here allay is to be reckon- |
| :--- | :--- |
| 17 | ed o carracts. |
| 17 | |
| $\frac{13}{64}$ | |
| oz. | |

Then $64: 190::\left\{\begin{array}{l}17: 50 \frac{15}{3} \text { of the } 3 \text { forts of gold. } \\ 13: 38 \frac{1}{3} \frac{5}{2}\end{array}\right.$
Ex. 6.
A mixture of wine is to be made up conffifing of I30 quarts, from thefe five forts, whofe prices are 7 d., $9 \mathrm{~d} .$, , 10 d., 14 d., and 15 d . a quart: and the whole is to be fold at 12 d . a quart. Quere, how much of each?

Here being 5 quantities concerned, they will admit of feveral alternations.

fecond way.

tbird way.

15	2.4.5 ${ }^{1}$
12 14)	2.4 .5 I
122104	3.2
84	3.2
7	

The operation, by the laft way, is thus.

Scholium.

Although the feveral ways of combining or coupling the rates, as before directed, afford fo many different folutions to the queftion; yet they do not give all the anfwers the queftion is capable of. To remedy which, and to make the method more general; you may repeat any two alternate (or correfponding) differences as often as you will; and the like for any other two, $\mathcal{E} c$. This will give a great variety of folutions, from which the eafieft, and smot fuitable may be felected. Or rather proceed by the following rule.

4 R ULE, universally.

Having coupled the rates as before directed; then inftead of any couple of the differences, take any equimultiples thereof; that is, multiply them both by any number you will; do the like for any other couple, E° c. By this means, you'll have a new fet of differences, to work with.

$$
\text { Ex. } 7 .
$$

A grocer would mix 12 lb . of fugar at rod., with two other forts of 8 d ., and 5 d .; fo that the mixture may be fold at 7 d . How much muft he take?

Here the couple of differences againft io and 5 being 2 and I , I multiply them both by 2 , and they
become 4 and 2. Again, the couple againft 8 and 5 , being 2 and 3, I multiply them both by 3 , and they become 6 and 9 . 'I hen you will have $4,6,11$ for a new fet of differences. Therefore

$$
4: 12::\left\{\begin{array}{llll}
6: 18 \mathrm{lb} . & \text { at } 8 \mathrm{~d} . \\
11 & : & 33 \mathrm{lb} . & \text { at } \\
\mathrm{d} .
\end{array}\right.
$$

Ex. 8.
A farmer would mix wheat at 4 s . with rye at 3 s . and barley at $2 s$. and oats at $1 s$. per bufhel; to have a quantity of 120 bufhels, to be fold at $2 s .4 \mathrm{~d}$. the bufhel. How much of each mult he take?
d.

Then $168: 120$, or $7: 5:: \begin{cases}48: 34^{\frac{2}{7}} \text { bufh. } & \text { wheat. } \\ 20: 14 \frac{2}{7} & \text { rye. } \\ 40: 28 \frac{4}{7} & \text { barley. } \\ 60: 42 \frac{0}{7} & \text { oats. }\end{cases}$
The proof is had by finding the value of the whole mixture at the mean rate; which mult be equal to the total value of the feveral fimples. And moreover, in alligation total, the fum of the particulars, muft agree with the fum given.

PROBLEM IX.

To refolve a queftion in the fingle rule of falfe.
This rule makes a fingle fuppofition of fome falfe number to refolve the queftion, by mearis whereof the true number or numbers are found out.

RULE.

R U L E.

Suppofe fome fit number, and proceed with this according to the tenor of the queftion. Then fay by the rule of three,

As the falfe number refulting:
To the true number given : :
So the whole or any part of the falfe number:
To the whole or refpective part of the number fought.
Ex. I.

A man would divide 30 crowns among 3 perfons; fo that the firft fhould have half; the fecond, a third; and the third, a fourth part. To find each one's hhare.

Take a number which is divifible by $2,3,4$; fuppofe 12 , then 2) $12(6$. 3) $12(4$. 4) 12 (3 .

Ex. 2:

A, B, and C buy a parcel of timber, which cofts 48 . and it is agreed that B fhall pay a third part more than A , and C a fourth more than B . What fum muft each pay?

Suppofe A pays 3 , then B pays 4 , and C pays 5 . But $3+4+5=12$, which fhould be 48. Therefore fay,

$$
\text { As } 12: 48 \text {, or as } 1: 4::\left\{\begin{array}{lll}
3: 12, & \text { A's fhare. } \\
4: 16, & \text { B's share. } \\
5: 20, & \text { C's Share. }
\end{array}\right.
$$

$$
\text { Ex. } 3 .
$$

There are 3 cocks, A, B, C, belonging to a ciftern; A can fill it in I hour, B in 2, and C in 3 . In what time will they all fill it?

Suppofe they fill it in half an hour ; then fay,
bour. ciftern. bour.
As $1=1-\frac{1}{2}-\frac{1}{2}$ ciftern for A.
$2-1-\frac{1}{2}-\frac{1}{4}$ ciftern for B.
$3-1-\frac{1}{2}-\frac{1}{6}$ ciftern for C.
But $\frac{1}{2}+\frac{1}{4}+\frac{1}{6}=\frac{11}{12}$ ciftern, which fhould be 1 cift.
Therefore $\frac{11}{12}$ cift. : I cift. : $: \frac{1}{2}$ hour $: \frac{6}{\text { II }}$ hour the time fought.

The proof of this rule is made, by fumming up the feveral parts, which muft be equal to the whole.

PR O B L E M X.

To refolve a quefion in the double rule of falje.
This rule refolves queftions, by making two fuppofitions of falfe numbers; by means of which, the true number, which anfwers the queftion, is found out.

1 RULE.

1. Take fome number by guefs, for a firf fuppofition, and try if it will anfwer the queftion. If not, fet the error under it, and mark it with + if it exceeds the truth, or with - if it fall fhort. Then make a fecond fuppofition with another number, and proceed the fame way with it. (It is ufual to fet a crofs between them).
2. Multiply alternately the firlt number by the 2 d error, and the 2 d number by the Ift error. And divide the fum of the products by the fum of the errors, when the errors are of different kinds, (that is, when one is greater and the other lefs than the truth;) or the difference of the products by the difference of the errors, when both errors are of one kind; and the quotient is the true number fought, for which the fuppofitions were made.

In fhort thus, addito difimiles, fubtrabitoque pares.

Ex. I.

A workman agreed to thrafh 60 bufhels of corn, part of it wheat, and part oats; at the rate of $2 d$. per bufhel for the wheat, and $1 \frac{1}{2} d$. for the oats. At laft he received 8 fhillings for his labour. How much of each did he thrafh ?
I. Firft, I fuppofe there are 30 bufhels of wheat; then there are alfo 30 bufhels of oats.

Chap. IV. OF F A LSE. 43

Ex. 2.
A man hired a labourer for 40 days, on condition that he fhould have 20 pence for every day he wrought, and forfeit io pence for every day he idled. At laft he received 4 Is .8 d . for his labour. How many days did he work, and how many was he idle?

1. Suppofe he wrought 24 days 480 pence. then he idled 16 160 received but $\overline{320}$
inftead of 4 xs .8 d . or
500
1 error fhort $-\overline{180}$
2. Suppofe he wrt. 32 days 640 pence.

Ex. 3 .
Two merchants, A, B, lay out an equal fum of money in trade. A gains 126l. and B lopes 87. And A's money is now double to B's. What did each lay out?

1. Suppofe each lays out 200%. then $200 \quad 200$

$126 \quad 87$

A's money $=326 \quad \overline{113}=\mathrm{B}$'s money. $+100+50$
1 error $\frac{226}{+100} \frac{2}{226} \quad \frac{5^{100}}{50} \frac{25000}{10000} 10000$
2. Suppose each lays out 250 l. 150° the and.
 2 error $+50 \overline{326}$

Ex. 4.
A perfon finding feveral beggars at his door, gave each of them 3 pence a-piece, and had 5 pence remaining. He would have given them 4 pence a-piece, but he wanted 7 pence to do it. How many beggars were there?

1. Suppofe 14 beggars. 14

3	-4
42	56
+5	-7

his money $=47$
49
1 error +2
49 hismon. $2 \mid 28$
20

- alfo.

4) 48 (12 beggars the anfwer.
2. Suppofe io beggars. Io

$\frac{3}{30}$	$\frac{4}{40}$
+5	
2 35	$\frac{-7}{33}$
2 error -2	-

En. 5
A and B play at cards; A ftakes B 8 s . to 6 s . every game. After 28 games they leave off play, and find that neither of them are winners. How many games did each win?
9. Suppofe A won 12, then B won 16: and A wins 72 s . and (B wins 128 s . or A) lofes 128 s . that is, he lofes 56 s . therefore ift error $=-56$.

2 R U L E.

You muft proceed as directed in the ift rule, till you have found the errors, and their figns, then
I. Multiply the difference of the fuppofed numbers, by the leaft error, and divide the product by the difference of the errors, if they are like; or by the fum if unlike: The quotient is the correction of the number belonging to the lealt error.
2. Obferve whether this be the leffer or greater number, as alfo whether the errors have like or unlike figns.
If it is the leffer number, and like figns, fubtract the correction; if unlike figns, add it.
If the greater number, and like figns, add the correction; if unlike figns, fubtract it : fo you'll have the true number required.

Or in other words,
If like figns, fubtract from the leffer, or add to the greater number.
Unlike figns, add to the leffer, or fubtract from the greater number; to get the true number.

Ex. 6.
A certain man being afked what was the age of his four fons; anfwered, that his eldeft was 4 years older than the fecond, and the fecond 5 years older than the third, and the third 6 years elder than the fourth, which was half the age of the eldeft. How old was each?

1. Suppofe 16 for the eldeft, then the youngeft is I half the eldeft 8

$$
1 \text { error }-7
$$

2. Suppofe 20 for the eldeft, the youngeft 5
half the eldeft 10

Ex. 7.
Two perfons difcourfing of their money; fays A, if you will give me $25 l$. I fhall have as much as you; fays B, if you will give me $22 l$. I fhall have twice as much as you. How much had each ?

There is a crown weighing 60 lb . which is made of gold, brafs, tin, and iron. The weight of the gold and the brafs together is 40 lb . of the gold and tin, 45 ; of the gold and iron 36 . Quere, how much gold was in it?

$$
\frac{3}{12)} \frac{3}{18} \quad\left(1 \frac{1}{2}=\right.\text { cor, }
$$

A factor delivers 6 French crowns, and 2 dollars for 45 fillings. And at another time 9 French crowns, and 5 dollars for 76 fill. What is the value of each? 1. Suppofe 5 s. $=1$ crown., 2. Suppofe $7 s .=1$ crown.
(I) $6 \times 5=\begin{aligned} & 45 \\ & 30\end{aligned}$
(2) $6 \times 7=\underline{45}$

2 doll. $={ }_{15}$
1 doll. $=7 \frac{1}{2}$
$9 \times 5=45$
$5 \times 7: \frac{1}{2}=37^{\frac{1}{2}}$

1 error $+6 \frac{x}{2}$
2 doll.
1 doll. $={ }^{1} \frac{1}{2}$

$$
9 \times 7=63
$$

$$
5 \times 1 \frac{1}{2}=7 \frac{1}{2}
$$

76

$$
+6 \frac{1}{2}-5^{\frac{\pi}{2}}
$$

$$
\overline{70 \frac{1}{2}} \quad \overline{2}
$$

2 er. $\left.-5^{\frac{1}{2}} \quad 12\right) 11\left(\frac{1 x}{12}=\right.$ cor. a crown $\equiv 6 \frac{7}{T_{1}^{2}}$
a dollar $=4 \frac{1}{\frac{1}{2}}$
Ex. 10.
To find the logarithm of 740326 .

I. I fuppofe 5.8694077 to be its log.; but by a table of logarithms, it proves only to be the logarithm of 740300.

$$
740326
$$

740300
1 error - 26

$$
5.8694664
$$

2. 1 fuppofe $5.869+66+$ for the \log. .0000587 but this by the table is the log. of 740400.

$$
\begin{array}{ll}
\frac{740400}{740326} & \frac{74}{26}-\frac{2552}{3} \\
\frac{1174}{100} \cdot 0015262
\end{array}
$$

The proof of this rule is, by trying the number found, according to the conditions of the queftion, in the fame manner as you find out the errors. And if it agree, the work is right.

Scholium.

It will fometimes fhorten the work, by fuppofing one of the numbers O , and you may fuppofe the other I , if you pleafe. A great many queftions may be refolved by this rule, which cannot be refolved by any other rules in arithmetic. But there are many queftions, where it cannot be certainly known, whether they can be refolved by it or not, till they be tried.

The rule is founded upon this fuppofition, hat the firft error is to the fecond; as the difference between the true and firft fuppofed number, to the difference between the true and fecond fuppofed number. When this does not happen, the rule of falfe does not give the exact anfwer, except the two fuppofed numbers be taken very near the true one: as in the laft example.

In the rule of falfe, whatever operations the queftion requires to be performed with the number lought, and any given number or numbers; the fame operations in every refpect are to be made with the two fuppoled numbers, and the fame given numbers. From the refult of thefe three operations, are collected the errors, which are nothing elfe, but the differences between the true refult, and each of the falfe refults. Hence if the errors are unlike, the true number lies between the fuppofed numbers: out them both.

The rule of falfe, efpecially the latter, will refolve any the moft difficult queftion, by many trials; provided the queftion can any way be proved, if the true refolution was given. But then the fuppofed numbers mult be taken near the truth. And after each operation is over, you mult take the laft refult for one of the next fuppofed numbers; and the neareft of the two former (or that with the leaft error), for the other. And by repeating this procefs, the anfwer will continually approximate to the true number, within any degree of exactnefs you pleafe. For this reafon it is of prodigious fervice in the abftrufer parts of the mathematics. For in many difficult problems, there is hardly any other way to come at a folution, but by this metbod of trial and error.

PROBLEM XI.

To refolve a queftion in the rule of excbange.
When feveral different forts of things are compared together, as to their value; this rule teaches to find, how many of one fort is equal to a given number of another fort.

R U L E.

Place the terms in two perpendicular columns, fo that there may not be found in either column, two terms of one kind. Then the numbers in the leffer column muft be multiplied for a divifor; and the numbers in the greater column, where the odd term. is, for a dividend. The quotient is the anfwer.

Note, to abridge the work, throw out any numbers that you can find in both columns.

Ex. 1.
If 6 lb . of fugar be equal in value to $\eta \mathrm{lb}$. of raifons, 5 pound of raifons to 4, yards of ribbon, 10 yards of tibbon to 40 nutmegs, and 7 nutmegs to 18 pence; what is 3 pound of fugar worth?

6 fug. 7 raif. 2100) 33600 (16 pence.
5 rif. 4 rib.
io r.b. 40 nut.
7 nit. 10 pnce.

```
- 3 fug.
2100
33600
```

Or thus.

$$
\frac{7 \times 4 \times 40 \times 10 \times 3}{6 \times 5 \times 10 \times 7}=\frac{4 \times 40 \times 3}{6 \times 5}=\frac{4 \times 8}{2}=16
$$

Ex. 2.
If 3 pair of gloves be worth 2 yards of lace, 3 yards of lace equal to 7 dozen of buttons, 6 dozen of buttons to 2 penknives, and 21 penknives to 18 pair of buckles; how many pair of gloves is equal to 28 pair of buckles?

$$
\text { Ex. } 3 \text {. }
$$

If 9 thillings Englifh be equal in value to 2 French crowns, and i French crown to 3 livrés, and 4 livrés to 3 guilders, and 9 guilders to 4 rix dollars, and 4 rix dollars to 3 Barcelona ducats; what is 5 Barcelona ducats worth in Englifh money ?

PR O B L E M XII'

To refolve a queftion by belp of a table of logaritbms.
Logaritbms are a certain fet of artificial numbers, fitted to the feries of natural numbers, and formed into a table; whofe property is fuch, that they perform the fame thing by addition and fubtraction, which the natural numbers do by multiplication and divifion.

A logarithm confifts of two parts, a decimal fraction and an integer. The decimal part is always affirmative, the integer may be either affirmative or negative, and is called the cbaraEierific. It always fhews how far the firt figure of the abfolute number is diftant from the units place. Thus when the characteriftic is $0,1,2,3, \mathcal{E}^{2} c$. the firft figure of the correfponding number will be units, tens, hundreds, thoufands, E^{c}. refpectively. And if it be - $1,-2$, $-3, E_{c} c$. then the firft figure of the number belonging, is in the firf, fecond, third, $E^{\prime} c$. place of decimals.

In many tables, the characteriftic is not fet down, becaufe it is eafily fupplied, for any given number, from the rule before inentioned; by only confidering how many places of integers, $\mathcal{E}_{c} c$; the given number confifts of.

Though the decimal part of the log. is always affirmative, yet in fome particular cafes, where the characteriftic is negative, it is neceffary to reduce it to another form, where the whole is negative. Thus the log. -2.3406424 which fignifies the fame as $-2 .+.3406424$, is reduced to -1. -6593576 ; or - 1.6593576 , where the whole is negative; which is done by fubtracting the decimal from 1 . But when the operation is over, it muft be reduced to its original form. Or it may be otherways reduced fo as to be expreffed in two parts, without making the decimal negative, by adding equal numbers to both the negative and affirmative part. Thus - $2.3406 \dot{4}_{24}$ is equivalent to $-3 .+\mathrm{I} .3406424$, or $=-4 \cdot+2.3406424$ $=-5 \cdot+3 \cdot 3406424, \mathcal{E} c$. where the latter part is entirely affirmative : and this way is more commodious for fome fort of operations.

Having a number given to find its log. and the contrary. Look through the column of numbers, till you find the given number, againft this is its logarithm. Or when the log. is given, look through the column of logarithms till you find it, or the neareft thereto, and againft it is the number. Thus if the number is 2191 , the log. is 3.3406424 . And if the log. be 2.8241900 , the number is 667.1 ; and fo of others. But if the number exceed the table, that is, if it conlifts of more than 4 places, proceed as in Ex. io. Prob. 10, to find the log. or the contrary.

The table of logarithms is too large for this book, its principal ufe being in trigonometrical operations, See my Trigonometry, Edit. 2.

1 R ULE.

After the queftion is refolved in form, and the numbers are ready for operation. To find the product of any numbers multiplied together. Set down all the numbers and their logarithms againft them; then add all the logarithms together. When you come at the characteriftics, add what you carried, to the affirmatives, and take the difference between the fum of the affirmatives, and the fum of the negatives, and fet it down with the fign of the greater. This is the characteriftic of the product; whofe number muft be found in the table.

$$
E_{x . ~ I . ~}^{\text {. }}
$$

What is the product of 37×250 ?

$$
\begin{aligned}
& \text { 37-- - 1.5682017 } \\
& 250 \text { - - } 2.3979400 \\
& \text { prod. } 9250 \text {. . . } 3.9661417
\end{aligned}
$$

$$
\text { Ex. } 2 .
$$

What is the product of $7 \times 486 \times .0042$?

$$
\begin{aligned}
& 7 \text { •- } 0.8450980 \\
& 486 \text {. . } \quad 2.6866363 \\
& .0042 \text { - - } 3.6232493 \\
& \text { prod. near } 14.29 \cdots \overline{+1.1549836}
\end{aligned}
$$

$$
2 \mathrm{R} \text { U L E. }
$$

When a quantity appears in form of a fraction, to find the quotient arifing by dividing the numerator by the denominator. Subtract the log. of the denominator from the log. of the numerator. If you carry 1 , add it to the lower charact. if + , or fubtract it, if -; which done, if the charact. have unlike figns, add them with the fign of the upper; if like figns, figns, fubtract with the fame fin; except the lower be the greater, and then with a contrary fign.

If either numerator or denominator is any product of certain numbers, its log. mut be found by, Rule 1.

Ex. 3.
What is the value of $\frac{43^{8}}{73}$?

Divide 125 by 3125 .
125 - - 2.0969100
$3125-3.4948500$
quotient .04 - - -2.6020600
Ex. 5 .
Divide 34^{2} by .035 .

Ex. 6.
What is the value of $\frac{.54 \times .0157}{48}$?

3 RU LE.

When a number is to be fquared, cubed, $E^{3} c_{0}$. multiply its log. by the index of the power. Obferving, when the characteriftic is negative, to fubtract what you carry thither. Then find the number answering.

$$
E x .7 .
$$

What is the fquare root of 2 ?

$$
42 \overline{6}-2.6294096
$$

$$
\text { fquare } 181500-\overline{5.2588192}
$$

$$
\text { Ex. } 8 .
$$

What is the cube of 405 ?

$$
\begin{array}{r}
.405-\quad-1.66074550 \\
3
\end{array}
$$

$$
\text { cube } .05643 \cdots-2.8223650
$$

$$
\text { Ex. } 9 .
$$

To find the 4 th power of .09054 .

$$
\text { 4th power } .0000672-\frac{-2.956840445}{-5.8273620}
$$

4 RULE.

When any root is to be extracted; divide the log. of the number by the index of the root. Remembring to reduce the log. if the characteriftic be negative, when there is occafion.

Ex. 10.
What is the fquare root of 2 ?

root | $2.414-2)$ |
| :--- |
| 1.414 |$\quad-\quad 0.3010300$

Ex. II.
Find the fquare root of 4823 .

Ex. 12.
What is the cube root of .005832 ?
root $\left..00583_{2}-3\right)-3.7658175$

Ex. 13.
To find the cube root of .02456 .

$$
\begin{aligned}
& .02456---^{2.3902284} \\
& \text { reduced }-{ }^{2} \text { - } 1.6097716 \text { all neg. } \\
& \text { reduce this back }-0.5365905
\end{aligned}
$$

root . 2907 - - 1.4634095
Or thus.
The log. - $\mathbf{2 . 3 9 0 2 2 8 4}$ is equal to $-3 .+1.3902284$

$$
\text { root } .2907 \ldots \begin{array}{r}
3)-3 .+1.3902284 \\
-
\end{array} \begin{array}{r}
4634095 \\
\hline
\end{array}
$$

Ex. 14.
What is the 5 th root of .004705 ?

$$
004705--3.6725596
$$

$$
\text { reduced to 5) }-5+2.6725596
$$

root . 3424 - - 1.5345119

5 RULE.

When in the folution of a queftion, you come at fome compound quantity, confifting of products, powers, roots, $\mathcal{J c}$. connected by the figns + and -; they muft be wrought feparately by the fore. going rules, and the numbers found and collected, according to the figns.

$$
E x .15 .
$$

To find the number expreffed by this quantity.

$$
\frac{350 \times 20 \times 11-108 \times 13^{2}}{11 \times 13 \times 15} .
$$

This is the fame as the two quantities $\frac{350 \times 20 \times 11}{11 \times 13 \times 15}$ $-\frac{108 \times 13 \times 13}{11 \times 13 \times 15}$. That is $\frac{350 \times 20}{13 \times 15}-\frac{108 \times 13}{11 \times 15}$.

350 20	2.5440680	13 15	$\begin{aligned} & 1.113943 \\ & 1.1760913 \end{aligned}$
	3.845098 c		2.2900346
fubt.	2.2900346		

$\left.\begin{array}{rr|ll}108 & 2.0334238 & 11 & 1.0413927 \\ 13 & 1.1139433 & 15 & \begin{array}{l}1.1760913\end{array} \\ \text { fubt. } & \underline{3.1473671} \\ 2.2174840\end{array}\right) \quad \underline{2.2174840}$
$8.509 \quad 0.929883 \mathrm{t}$
the fecond part. Then from 35.900
the number fought, $\frac{8.50 \mathrm{y}}{27.391}$

Ex. 16.
Suppofe in a certain queftion, I come to this conclufion for the number fought, $\frac{12 \times 37 \times 20+\overline{25^{3}}}{37 \times 25-12 \sqrt{37 \times 20}}$, what is the number?
n. \log.

12	1.0791812
37	1.5682017
20	1.3010300
3.9484129	

numb. 8880.

37	$\overline{1.5682015}$
25	$\begin{array}{r}1.3979400 \\ \hline 2.9661417 \\ \text { numb. } 925.0 \\ \hline\end{array}$

$$
n . \quad \log .
$$

$25 \left\lvert\, \begin{array}{r}1.3979400 \\ 3 \\ \hline\end{array}\right.$
4.1938200
numb. 15620

$$
\begin{array}{r|r}
37 \\
20 & \frac{1.5682017}{1.3010300} \\
\text { half } \\
12 & \frac{2.8692317}{1.4346158} \\
\frac{1.0791812}{2.5137970}
\end{array}
$$

numb. $\quad 326.4$
The folution becomes $\frac{8880+15620}{925.0-326.4}=$
$\frac{24500}{598.6}$
log. $4 \cdot 3891661$
log. 2.7771367

1. 6120294
the numb. 40.93 anfwer.

P R O B L E M XIII.

To refolve the ufual quefions about the intereft of money, and annuities.
Intereft is the money paid for the ufe or loan of any fum or principal; and is generally eftimated at
fo much per hundred for a year, as 4 per cent. 5 per cent. ; $\mathcal{E}^{2} c$. which is calleed the rate of intereft.

Simple intereft is that which is charged only upon the principal, for any length of time after it is due.

Compound interef, or intereft upon intereft, is that which arifeth from both principal and intereft ; this fuppofes that the intereft itfelf, fhall alfo gain intereft, after the time it becomes due.

Rebate is the abatement made by paying a fum of money before it is due.

Amount is the quansity of money in arrear, confifting of the principal or annuity, together with its intereft, forborn for fome time after it is due.

Several queftions in the bufinefs of intereft being very difficult to refolve folely by arithmetic ; I have therefore inferted the four following tables; by ht lp of which all the common queftions relating to intereft and annuities may very fpeedily be refolved, for any numbers that come within the reach of thefe tables.

Their ufe is eafy and evident at fight: for the rate of intereft being found at the top, and the time of continuance on the fide; at the angle of meeting, you have the amount of I pound, (Tab. I and 3); or of I pound annuity (Tab. 2 and 4), at either fimple or compound intereft. But their ufefulnefs will more clearly appear from the following rulles and examples.

$$
\because \mathrm{R} U \mathrm{LE} \text {. }
$$

When, the fimple interef for days, is required; divide the rate by IOO , to have the rate for 1. Then multiply the principal, the rate for 1 pound, and the number of days, continually; and divide the product by 365 ; the quotient is the intersf.

What is the intereft of $160 l$. for 85 days, at 3 per cent. ?

z RULE.

To find the prefent worth of $1 l$. in money, due any number of years hence; or of $1 l$. annuity to continue any number of years, at a given rate either of fimple or compound intereft.

For 1 l. in money. Look into Tab. I. for fimple, intereft, or Tab. III. for compound intereft, and under the given rate, and againft the number of years, you'll find a number for a divifor, by this divide \mathbf{I}, the quotient is the prefent worth.

For 1l. annuity. Confult the Tables I. and II. for fimple intereft ; or III. and IV. for compound intereft. And tander the given rate, and againft the number of years; in both tables, you'll find two numbers, which take out, and divide the latter by the former, for the prefent worth.

$$
\text { Ex. } 2 .
$$

What is the present worth of 1%. due 14 years hence, at 4 per cent. at fimple or compound interest?
Numb. Tabs. - 1.56) 1.000 (.64102 the pref. worth 93^{6} at limp. inter. 640
624
160 ${ }^{1} 56$

400
Num.Tab.III.-- I. 73167)1.000000(. 577476 tie pref. 865835 worth at comp. $\begin{array}{r}134165 \\ 121217 \\ \hline 12948\end{array}$
12122
826
$\begin{array}{r}\frac{693}{133} \\ 121 \\ 12 \\ \hline\end{array}$
Ex: 3:
What is the prefent worth of 12 . annuity to continue 14 years, at 5 per cent. fimple and compound interest?

164 I N T EREST. Book 1.
Tab. II. $--\frac{18.55}{1.7}=$ prefent worth at fimp. intereft.
That is, 1.7) 18.55 (10.91176 the prefent worth at
 fimple intereft.

$$
\begin{array}{r}
155 \\
153 \\
\hline 20 \\
17 \\
\hline 30 \\
17 \\
\hline 130 \\
119 \\
\hline 11
\end{array}
$$

Tab. IV. $--\frac{19.59863}{1.97993}=$ prefent worth at comp. inter.
Tab.III. $-\frac{1}{}$.
That is, 1.97993) 19.59863 (9.89865 the pref. worth 1781937 at compound intereft.
177926
i 58394
19532
$\frac{17819}{1713}$
$\frac{1584}{129}$
118
II

3 R U L E.

Queftions, where principal, annüity, amount, $\mathcal{E}^{\circ} c$. are concerned, are likewife to be folved by the tables. For there are fimilar numbers in the tables analogous to thofe given; and therefore having three terms given, a proportion or analogy muft be made by the rule of three, between the numbers given in the queftion, and thofe in the proper table, for the fame rate and time, in order to find the 4 th term, which is either the thing itfelf which is fought, or it will hiew it by the table. And as 1 is commonly a term'in the proportion, the queftion will generally be folved by multiplication or divifion.

If any thing is wanting to make the proportion, or to carry on the procefs, it mult be found from what is given in the queftion.

$$
\text { Ex. } 4 .
$$

If 250%. be put out to intereft, what will it amount to in 2 I years, at $4 l$. per cent. fimple or compound intereft?

By Tab. I. the amount of $\mathbf{I l}$. for 21 years, at 4 per cent. is 1.84; therefore fay, as 1 (principal) : 1.84 (amount)::250 (principal):1.84×250=460, the amount required, at fimple intereft.

Again, by Tab. III. the amount of 1 l. is 2.27877 ; Therefore fay, as I (pr.) : 2.27877 (am.) ::250 (pr.): $2.27877 \times 250=569.6925 l$. the amount required, at compound interent.

$$
\text { Ex. } 5 .
$$

What principal put out for 21 years will amount to 460 l . at 4 per cent. fimple intereft ?

By Tab. I. the amount of $1 l$. is 1.84 for the given time and rate; then fay, $1.84 \mathrm{am} .-1 \mathrm{pr} .-460 \mathrm{am}$. $\frac{460}{1.84}=250 l$. the principal fought.

Ex: 6.

In what time will 250 l. amount to 569.6925 , being put out at 4 per cent, compound intereft?

Say, as 250 pr. $: 569.6925 \mathrm{am}: ~:: 1 \mathrm{pr} .: \frac{569.6925}{250}$ $=2.27877$ the amount of x . Seek this number in Tab. III. col. 4 per C. and you'll find it againft 2 I years, the time fought.

$$
\text { Ex. } 7 \text {. }
$$

At what rate of rimple interest will 250 l . amount to 460 l . in 21 years?

By Tab. I. fay, 250 pr. $-460 \mathrm{am} .-\mathrm{I}$ pr. $-\frac{460}{250}$ $=1.84$, the amount of $1 l$. ; which being fought for againt 21 years, will fall in col. 4 per C. the rate of intereft required.

Ex. 8.

If 320 . yearly rent be forborn for 12 years, what will be in arrear at that time, at $4 \frac{1}{2}$ per cent. fimple and compound intereft?

By Tab. II, the amount of $1 l$, annuity for 12 . years is 14.97 ; then fay, 1 am . - 14.97 am . -320 an . $-14.97 \times 320=4790.4$ l. the arrear fought, at rimple interelt.

Again, by Tab. IV. the amount of $\mathrm{I} l$. annuity is 15.46403 ; therefore fay, as 1 rent -15.46403 am . $-320 \mathrm{r} .-15.46403 \times 320=4948.49 \mathrm{l}$, the amount, at compound interest,

$$
\text { Ex. } 9 .
$$

What yearly rent being forborn 12 years, will amount to $494^{8.49}$, at $4 \frac{1}{2}$ per cent. comp. intereft ?

By Tab. IV. the amount of xl , annuity is $\mathbf{1 5 . 4 6 4 0 3 \text { ; }}$ then fay, as $15.46403 \mathrm{am} .-1$ r. -4948.49 am . $\frac{4948.49}{35.46 .403}=320 \%$ the rent fought

$$
\text { Ex. } 10 .
$$

In what time will 320 l . yearly rent, amount to 4790.4 l . at $4 \frac{1}{2}$ per cent. fimple intereft?

Say, 320 rent -4790.4 am. - 1 rent $-\frac{4790.4}{320}$
$=14.97$, the amount of I l. annuity; which being found in col. $4 \frac{1}{2}$ per C. Tab. II. ftands over-againft 12 years, the time fought.

> Ex. II.

At what rate of compound intereft, does 320%. rent, amount to 4948.49 l. in 12 years?

Say, as 320 rent-4948.49 am.-1 rent- $\frac{4948.49}{3^{20}}$ $=15.46403$ the amount of 1%, annual rent. Seek this number over-againft 12 years in Tab. IV. and it is found under $4 \frac{1}{2}$ per C. the rate fought.

$$
E_{x .} 12 .
$$

What is the prefent worth of 65 l. a year, to continue 40 years, at 5 per cent. fimple and compound intereft?

By Rule 2, find the prefent worth of $1 l$, annuity at fimple intereft, for the time and rate given, which is $\frac{79}{3}$; then fay,
As I ann $-\frac{79}{3}$ pr. -65 an. $-\frac{65 \times 79}{3}=1711.66$ the prefent worth fought, at fimple intereft,

Again, by Rule 2, find the prefent worth of 1%. annuity at compound intereft, which is $\frac{120.79977}{7.03999}$; then fay,
1 an. $-\frac{120.7}{7.0} \&$ c. pr. $-65 \mathrm{am} .-\frac{120.79977 \times 65}{7.03999}$
$=1115.34 \mathrm{z}$ the prefent worth fought, at comp, intereft.

M4 Ex.

Ex. 13.

What annuity to continue 40 years, will 1711.66% feady money purchafe, at 5 per cènt. fimple intereft?

By Rule 2, find the prefent worth of I l. annuity, which is $\frac{79}{3}$; then fay, $\frac{79}{3}$ pr.-1 an.-1711.66pr. $\frac{3 \times 171 \mathrm{r} .66}{79}=5_{5}$ l. the annuity required.

$$
\text { Ex. } 14 .
$$

How long may one have a leafe of 65 l. a year, for 1711.66% ready money, at 5 per cent. limple intereft?

Say, as 65 rent-1711. 66 pr.-I rent- $\frac{1711.66}{65}$
$=26.33$, the prefent worth of 1% annuity, for an unknown time. Then,

Take fome year by guefs, and find the amount by Tab. II. and the prefent worth of that amount, by Tab. I. If this agrees not with 26.33 , try again, and by a few eafy trials you'll come to the truth.

In fhort thus, fet down the correfpondent numbers in Tab. II. and I. fractionwife, to approach continually to 26.33 , which at laft you'll obtain.

Suppofe 30 years $-\frac{51.75}{2.5}=20$. E c. too little.

$$
\begin{aligned}
& 38 \text { years }-\frac{73.15}{2.9}=25.2 \text { \&'c. too little: } \\
& 40 \text { years }-\frac{79}{3}=26.33 \text { juft. So } 40
\end{aligned}
$$

years is the time required.

$$
E x .{ }_{15} .
$$

If one give 1115.34 l. ready money, for the purchafe of an annuity of $65 l$ a year, to continue 40 years ; what is the rate at compound intereft?

Say, as 65 an. - 1115.34 pr. - I an. - $\frac{1115.34}{65}$ $=17.159$, the prefent worth of $1 l$. annuity, at an unknown rate.

Take fome rate of intereft by guefs, and find the amount for 40 years by Tab. IV; and the prefent worth of that amount by Tab. III. repeat this work with other rates, till the refult be 17.159 .

Or in fhort thus, fet down the correfpondent numbers in Tab. IV. and III. fractionwife, and you will approach to the rate fought by a few trials. Thus,

Suppofe 3 per cent. $-\frac{75 \cdot 4}{3 \cdot 2}=23$, too great.

$$
\begin{aligned}
& 4 \text { per cent. }-\frac{95.0}{4.8}=19.8 \text {, too great. } \\
& 5 \text { per cent. }-\frac{120.799}{7.0399}=17.159, \text { juft. }
\end{aligned}
$$

Therefore 5 per cent. is the rate required.

4 R U L E.

When freehold eftates are to be valued; divide I by the rate of $1 l$. the quotient fhows how many years purchafe it is worth, at compound intereft.

Or if the annuity or rent be required; multiply the purchafe money by the rate of $\mathrm{I} l$. for the annuity.

$$
\text { Ex. } 16 .
$$

What is an effate at $30 l$. a year worth, at $3 \frac{1}{2}$ per cent.?
Here $\frac{1}{.035}=28.571$ years purchafe.
Or $28.57 \mathrm{I} \times 30=857.13 l$. the purchafe money:

$$
\text { Ex. } 17 .
$$

What annuity can I buy for 857.13 l. at $3 \frac{1}{2}$ per cent. ? Here $857.13 \times .035=29.999 \%$ or 30 l. the annuity.

$$
5 \mathrm{R} \text { ULE. }
$$

5 R U L E.

When feveral fums of money are out at fimple intereft, and are to be paid in ; at different times; to find the time, when the whole may be paid in at once, without lofs to the debtor or creditor.

Multiply every fum of money by the time it is to continue; and divide the fum of the products, by the total fum of all the money, the quotient will be the mean time of payment.

And the fame rule holds true, very near ; when feveral fums of money are due at different times, only it makes the mean time a fmall matter too big.

$$
\text { Ex. } 18 .
$$

I have three fums of money let out to intereft, for different times; viz. 50 l . continues for 2 years, 40%. for $3 \frac{1}{2}$ years, and 20%. for $4 \frac{1}{2}$ years. But it is now agreed, that they fhall be all paid at once. The queftion is, when muft I receive the whole together?

50	40	20	50	100
2	$3^{\frac{1}{2}}$	$4^{\frac{1}{2}}$	40	140
100	120	80	$\underline{20}$	$\underline{90}$
	20	10		330 (3 years; anfwer. 330
	140	90		

Ex. 19:
A man has three feveral fums of money due atdifferent times, 50%. at the end of 5 months, 84%. at the end of 10 months, and 361. a year and half hence. But he would receive them all at once; in what time fhall he receive the whole fum?
pap. IV, IN TEREST.

50 $84 \quad 38$	$50 \quad 250$
5, 10 18	84840
	$36 \quad 684$
$\begin{array}{r} 50840304 \\ -\quad 38 \\ \hline \end{array}$	170)47
	170°
684	
	$\begin{aligned} & 74 \\ & 68 \end{aligned}$
	60

The proof, in all queftions of intereft, is to change he data, and work the queftion backwards.
SCHOLIUM.

It is contrary to law to let out money at compound htereft. Yet in the valuation of annuities, it is alays the cuftom to allow compound intereft; for by, mple intereft, they would be overvalued.

TAB?

Tab. I.
A table of the amount of 1 pound for years, at fimple intereft.

Years.	3 perc.	$3^{\frac{1}{2}}$ per C.	4 per C.	$4^{\frac{1}{2}}$ per C.	5 perc.
1	1.03	1.035	1.04	1.045	1.05
2	1.06	1.070	1.08	1.0.90	1.10
3	1.09	1.1'05	1.12	1.135	1.15
4	1.12	1.140	1.16	1.183	1.20
5	1.15.	1.175	1.20	1.225	1.25
6	1.18	< 1,210	1.24	1.270	1.30
7	I. 21	1.245	1.28	1.315	1.35
8	1.24	1.280	1.32	1.3 to	1.40
9	1.27	1.315	- 1.36	1.405	1.45
10	1.30	1.350	1.40	1.450	1.50
11	1.33	1. 385	1.44	1.495	1.55
12	1. 36	1.420	1.48	1.540	1.60
13	1.39,	1.455	1.52	1.585	1.65
14	1.42	$1.49{ }^{\circ}$	1.56	1.630	1.70
15	1.45	1.525	1.60	1.675	: 75
16	1.48	1.560	1.64	1.720	1.80
17	1.51	1.595	1.68	1.765	1.85
18	1.54	1.630 .	1.72	1.810	1.90
19	1.57	1.665	1.76	1.855	1.95
20	1.60	1.780	1.80 :	1.900	2.00
21	1.63	.1.735	1.84	1.945	2.05
22	1.66	1.770	1.88	1.990	2.10
23	1.69	1.805	1.92	2.035	2.15
24	1.72	1.840	1.96	2.080	2.20
25	1.75	1.875	2.00	2.125	2.25
26	1.78	1.910	2.04	2.170	2.30
27	1.81	1.945	2.08	2.215	2.35
28	1.84	1.980	2.12	2.260	2.40
29	ฯ. 87	2.015	2.16	2.305	2.45
30	1.93	2.0;0	2.20	2.350	2.50

TAB. I.

Y ears.	3 per C.	$33^{\frac{1}{2}}$ per C.	4 per C.	4 $\frac{1}{2}$ per C.	5 per C.
31	1.93	2.085	$2.24{ }^{1}$	2.395	2.55
32	1.96.	2.120	2.28	2.440	2.60
33	1.99	2.155	2.32	2.485	2.65
34	2.02 .	2.190	2.36	2.530	2.70
35	2.05	2.225	2.40	2.575	2.75
36	2.08	2.260	2.44	2.620	2.80
37	2.11	2.295	2.48	2.665	2.85
38	2.14	2.330	2.52	2.710	2.90
39	2.17	2.365	2.56	2.755	2.95
40	20	2.400	2.60	2.800	3.00
41	2.23	2.435	2.64	2.845^{\prime}	3.05
42	2.261	2.470	2.68	2.890	3.10
43	2.29	2.505	2.72	2.935	3.15
44	2.32 :	2.540	2.76	2.980	3.20
45	$2.35{ }^{-1}$	2.575	2.80	3.025	3.25
46	2.38	2.610	2.84	3.070	$3 \cdot 30$
47	2.41	2.645	2.88	3.115	$3 \cdot 35$
48	2.44	2.680	2.92	3.160	$3 \cdot 40$
49	2.47	2.715	2.96	3.205	3.45
50	2.50	2.750	3.00	3.250	$3 \cdot 50$
51	2.53	2.785	3.04	3.295	
5^{2}	2.56	2.820	3.08	3.340	3.60
\bigcirc	2.59	2.855	3.12	$3 \cdot 385$	3.65
54	2.62	2.890	3.16	3.430	3.70
55	2.65	2.925	3.20	3.475	3.75
56	2.68	2.960	3.24	3.520	3.80
57	2.71	2.995	3.28 .	3.565	3.85
5^{8}	2.74	3.030	3.32	3.610	3.90
59 60	2.77 2.80	3.065	3:36	3.655	3.95
60	2.80	3.100	3.40	3.700	4.00

Tab. II.
A table of the amount of 1 pound annuity for years, at fimple intereft.

Years.	3 per C.	$3^{\frac{7}{2}}$ per C.	4 per C.	$44^{\frac{x}{2}}$ per C	5 per C.
1	1.00	1.000	1.00	1.000	1.00
2	2.03	2.035	2.04	2.045	2.05
3	3.09	3.105	3.12	3.135	3.15
4	4.18	4.210	4.24	4.270	$4 \cdot 30$
5	$5 \cdot 30$	$5 \cdot 350$	$5 \cdot 40$	$5 \cdot 450$	$5 \cdot 50$
6	6.45	6.525	6.60	6.675	6.75
7	7.63	$7 \cdot 735$	7.84	$7 \cdot 945$	8.05
8	8.84	8.980	9.12	9:260	9.40
9	10.08	10.260	10.44	10.620	10.80
10	11.35	11.575	11.80	12.025	12.25
11	12.65	12.925	13.20	13.475	13.75
12	13.98	14.310	14.64	14.970	15.30
13	15.34	15.730	16.12	16.510	16.90
14	16.73	17.185	17.64	18.095	18.55
15	18.15	18.675	19.20	19.725	20.25
16	19.60	20.200	20.80	21.400	22.00
17	21.08	21.760	22.44	23.120	23.80
18	22.59	23.355	24.12	24.885	25.65
19	24.13	24.985	25.84	26.695	27.55
20	25.70	26.650	27.60	28.550	29.50
21	27.30	28.350	29.40	30.450	31.50
22	28.93	30.085	31.24	32.395	33.55
23	30.59	31.855	33.12	34.385	35.65
24	32.28	33.660	35.04	36.420	37,80
25	34.00	$35 \cdot 500$	37.00	38.500	40.00
26	35.75	37.375	39.00	40.625	42,25
27	37.53	39.285	41.04	42.795	44.55
28	39.34	41.230	43.12	45.010	46.90
29	41.18	43.210	45.24	47.270	49.30
30	43.05	45.22 .5	47.40	49.575	51.75

Tab. II.

Years.	3 per c.	$3 \frac{1}{2}$ per C.	4 per C.	+2, per C.	5 per C.
31	44.95	47.275	49.60	51.925	54.25
32	45.88	49.360	51.84	$54 \cdot 320$	56.80
33	$4^{8.84}$	51.480	54.12	56.760	59.40
34	50.83	53.635	56.44	59.245	$6 z .05$
35	52.85	55.82;	58.80	61.775	64.75
36	54.90	58.050	61.20	64.350	67.50
37	$56.98{ }^{-}$	60.310	6364	66.97 c	70.30
38	59.09	62.005	66.12	69.635	73.15
39	61.23	64.935	68.64	72.345	76.05
40	63.40	67.300	71.20	75.100	79.00
41	65.60	69.700	73.80	77.900	82.00
42	67.83	72.135	76.14	80.745	85.05
43	70.09	74.605	79.12	83.635	88.15
44	72.38	77.110	8184	85.570	91.30
45	74.70	79.650	84.60	89.550	94.50
46	77.05	82.225	87.40	92.575	97.75
47	79.43	84.835	90.24	95.645	101.05
48	81.84	87.480	93.12	98.760	104.40
49	84.28	90.160	96.04	101.920	107.80
50	86.75	92.875	99.00	105.125	111.25
51	89.25	95.625	102.00	108.375	114.75
52	91.78	98.410	105.04	III.670	118.30
53	94.34	101.230	108.12	115.010	121.90
54	$9^{6.93}$	104.085	111.24	118.395	. 125.55
55	99.55	106.975	114.40	121.825	129.25
56	102.20	109.900	117.60	125.300	133.00
	104.88	112.860	120.84	128.820	136.80
58	107.59	115.855	124.12	132.385	140.65
59	110.33	118.885	127.44	135.995	144.55
60	113.10	121.950	130.80	139.650	148.50

TAB. IH.

A table of the amount of I pound for years, at compound intereft.

Years.	3 per C.	$3 \frac{1}{2}$ per C.	4 per C.	$4 \frac{\mathrm{I}}{2}$ per C.	5 per C.
1	1.03000	1.03500	1.04000	1.04500	1.05000
2	1.06090	i. 07122	1.08160	1.09202	1.10250
3	1.09273	1.10872	1.12486	1.14116	1.15762
4	1.12551	1.14752	1. 16986	1.19252	1.21550
5	1.15927	1.18769	1.21665	1.24618	1.27628
6	1.19405	1.22925	1.26532	1.30226	1.34009
7	1.22987	1.27228	1.31593	1. 36086	1.40710
8	1.25677	1.31681	I. 36857	1.42210	1.47745
9	1.30477	1.36290	1.42331	1.486c9	i. 55132
10	1.34391	1.41060	1.48024	1. 55297	1.62889
11	$1.3^{8} 423$	1.45997	1.53945	1.62285	1.71034
12	1.42576	1.51107	1.60103	1.69588	1.79585
13	1.46853	1.56395	1.66507	1.77219	1.8856
14	1.51259	1.61567	1.73167	1.85194	1.97993
15	1.55797	1.67535	1.80094	1.93528	2.07893
8.16	1.604,0	1.73398	1.87298	2.02237	2.18287
17	1.65285	1.79467	1.94790	2.11338	2.29202
18	1.70243	1.85749	2.02582	2.20848	2.40552
19	1.75350	1.92250	2.10685	2.30786	2.52695
20	1.80611	1.98979	2.19112	2.41171	2.65330
21	1.86029	2.05943	2.27877	2.52024	2.78596
22	1.91610	2.1315^{1}	2.36992	2.63365	2.92526
23	1.97359	2.20611	2.46471	2.75216	3.07152
24	2.03279	2.28333	2.56330	2.87601	3.22510
25	2.c9378	2.35324	2.655^{83}	3.00543	$3 \cdot 38635$
26	2.15659	2.4459^{6}	2.77247	3.14068	3.55567
27	2.22129	2.53157	2.88337	3.28201	3.73345
28	2.28793	2.52017	2.99870	$3 \cdot 42970$	3.92013
29	2.35656	2.71188	3.1186	$3 \cdot 58403$	4.11613
30	2.42725	2.80679?	3.24340	3.74532	4.32194

T_{A} b. III.

	3 per C.				5 per C.
31	2.50008	2.90503	3.37313	3.91386	4.53804
32	2.57508	3.00671	3.50806	4.08998	4.76494
33	2.65233	3.11194	3.64838	4.27403	5.00319
34	2.73190	3.22086	3.79431	4.46636	5.25335
35	2.81386	3.33359	3.94609	4.66735	$5 \cdot 51601$
36	2.89828	3.45026	4.10393	4.87738	5.79181
37	2.98523	3.57102	4.26809	5.09686	6.081 .11
38	3.07478	3.69601	$4 \cdot 43881$	$5 \cdot 32622$	6.38548
39	3.16703	3.82537	4.6163 t	$5 \cdot 56590$	6.70475
40	3.26204	3.95926	4.80102	$5: 81636$	7.03999
41	3.35990	4.09783	4.99306	6.07810	7-39199
42	3.46069	4.24126	5.19278	6.35161	$7 \cdot 76159$
43	3.56452	4.38970	5.40049	6.63744	8.14967
44	3.67145	4.54334	5.61651	6.93612	8.55715
45	3.78159	4.70236	5.84117	7.24825	8.98501
46	3.89504	4.86694	6.07482	7.5744^{2}	943426
47	4.01189	5.03728	6.31781	7.91527	9.90597
48	4.13225	$5 \cdot 21359$	6.57053	8.27145	10.40127
49	4.25622	$5.3960 t$	6.83335	8.64367	10.92133
50	4.38390	5.58492	7.10668	$9 C 3263$	11.46740
51	4.51542	5.78040	7.39095	9.43910	12.04077
52	4.65088	5.98271	7.68659	9.86386	12.64281
53	4.79041	6.19211	7.99405	10.30774	13.2749 ;
54	4.93412	6.40883	8.31381	10.77158	13.93869
55	5.08215	6.63314	8.64637	11.25631	$14.635^{6} 3$
5^{6}	$5 \cdot 23461$	6.86530	8.99222	11.76284	
57	$5 \cdot 39165$	7.10558	9.35191	12.29217	16.13578
5^{8}	$5 \cdot 55340$	7.35428	9.72599	12.84532	16.94257
59	$5 \cdot 72000$	7.61168	10.11502	13.42335	17.78970
60	5.89160	7.87809	10.51963	14.02741	18.67918

TAb. IV.
A table of the amount of 1 poind annuity for years, at compound intereft.

Years.	3 per C.	$3 \frac{1}{2}$ per C.			
1	1.00000	1.00000	1.00000	1.00000	1.00000
2	2.03000	2.03500	2.04000	2.04500	2.05000
3	3.09090	3.10622	3.12160	3.13702	3.15250
4	4.18363	4.21494	4.24646	4.27819	4.31012
5	$5 \cdot 30913$	$5 \cdot 36246$	$5 \cdot 41632$	$5 \cdot 47071$	$5 \cdot 5^{2} 5^{6} 3$
6	6.46841	6.55015	6.63297	6.71689	6:80191
8	7.66242	$7 \cdot 77941$	7.89829	8.01915	8.14201
8	8.89233	9.05169	9.21422	9.38001	9.54911
9	10.15910	10.36849	10.58279	10.80211	11.02656
10	11.46388	11.73139	12.00611	12.28821	$12.5777^{8} 9$
11	12.80779	13.14199	13.48635	13.84118	14.20679
12	14.19203	14.60196	15.02580	15.46403	15.91713
13	15.61779	16.11303	16.62684	17.15991	17.71298
14	17.08632	17.67698	18.29191	18.93211	19.59863
15	18.59891	19.29568	20.02359	20.78405	21.57856
16	20.15688	20.97103	21.82453	22.71934	23.65749
17	21.76159	22.70501	23.69751	24.74171	25.84036
18	23.41443	24.49969	25.64541	26.85508	28.13238
19	25.11687	26.35718	27.67123	29.06356	30.53900
20	26.87037	28.27968	29.77808	31.3714^{2}	33.06595
21	28.67648	30.26947	31.96920	33.78314	35.71925
22	30.53678	32.32890	34.24797	$36.3033{ }^{8}$	38.50521
23	32.45288	34.46041	36.61789	38.93703	+1.43047
24	34.42647	36.66653	39.08260	41.68919	44.50200
25	36.45926	38.94986	41.64591	44.56521	47.72710
26	38.55304	41.31310	44.31174	$47 \cdot 57064$	51.11345
27	40.70963	43.75906	$47.084=1$	50.71132	$5 \cdot 4 \cdot 66912$
28	42.93092	46.29063	49.96758	53.99333	58.40258
29 30	$45 \cdot 21885$	48.91080	52.96628	57.42303	52.32271
30	147.57541	51.62268	56.08494	161.00707	66.43885

Chap. IV.
 INTEREST.

Tab. IV.

	3 P				
3					
32	52.502	57.33450	62.70147		
33	55.07784	60.34121	66.20953	72.	
34		63.45315	69.85791		
35		66.67401			
36					
3.			81.70224		
38		77	85	96.13820	
39	72.23		90.40915	$101.4{ }^{64} 44^{2}$	
40	75.		95.02551		
41	\%				
42	82.023	92.60737	104.81		
43		96.8486	110.012		
44		101.23	115.4		
45	92.7		121.0		
46					
4	100.39				
48		12	10		
50					
50					
51	117	136			
52	121.69620	$14^{2} \cdot 36323$	167.16472	196.97477	232.8:618
53	126.34708	148.34	174.85130	205.83	245.49897
5	131.13				
55	13	160:94689	1.91		5.7.712
56					
57	146.38838	174.44533	208.	250.9	302.71566
5	151.7800	181.55092	21	263:2:2928	
59 60	157				

C HAP.

C H A P. V.
A collection of quefions to exercife the Several rules of aritbmetic.

Quef. 1.

AMerchant buys 890 C. $3 q$. grofs weight of goods, but tare is to be fubtracted at the rate of $\mathrm{I}_{4} \mathrm{lb}$. to the hundred of grofs weight, how much neat weight will remain?

Grols weigbt is the weight of the goods, together with the cheft, bag, \mathcal{E}_{6}.

Tare is the cheft, bag, but, cafk, ξ°. which contains the goods.

Neat weight is the weight of the goods alone. $890 \frac{3}{4} \times 8=7126$ fone, and 14 lb . = 1 ftone, and $112 l b .=8 \rho$.
then 8 f . : i ta. $:: 7126$ f. $: \frac{7126}{8}=89^{\frac{3}{4}}$ ftone, the tare.
from 7126
take $89 \frac{3}{4}$
remains $7036 \frac{1}{4}$ the neat weight.

2uef. 2.

A merchant buys 235 lb . weight of goods, but is to have an additional allowance of 4 lb . tret for every 100 lb . weight of goods. Then how much weight does he receive of all?

Tret is the allowance made to the buyer, of fo much per hundred, \mathcal{E}^{2} c. over and above. And Clof another allowance of the fame kind.

Chap. V, QUESTIONS.
add 4
Say as, $100: 104:: 235: 244.4 \mathrm{lb}$. Anfwer,

$$
\text { 2ueft. } 3 .
$$

If 200 lb . weight of goods coft $3 l$. at what price muft a pound be fold, to gain 10 l . in the hundred laid out?
$\frac{100}{10}$
$100: 110:: 3: 3.3$ advanced price.
$200: 3.3:: 1: .0165 l$. the price of $1 l b$.
but $0165 l .=3.96$ pence, near 4d. a pound.

2 uef. 4.

How much fugar, at 8 d . a pound, may be bought for roC. weight of tobacco, at $3 l$, the C.?

ェ. : 3 l.: : $\mp \circ C$. : 30 l. the value of the tobacco.
then, fince 8 d. is $\frac{7}{3}$ of a pound, $\frac{1}{30} l .: 1 \mathrm{lb} .:: 30 \mathrm{l} .: 30 \times 30=900 \mathrm{lb}$. of fugar.

2uef. 5.

Two merchants, \mathbf{A} and \mathbf{B}, barter with one another thus, A has 43 yards of broad cloth, worth $9 \mathrm{s}$.2 d . per yard, but in barter he will have 11 s . a yard. B has fhaloon, worth 2 s. per yard, which he charges at $2 s .6 d$. How much fhaloon muft A receive for his cloth; and what does he gain or lofe by the bargain?

$$
\mathrm{N}_{3}
$$

In this queftion, firft find what the cloth comes to at the advanced price; then how much maloon, at its advanced price, may be bought for that money; and lattly the true value of both.
I y.: IIs. : : 43 y .: 473 s. the price of the cloth. $2 \frac{1}{2} s$. : $1 y$. : : 473 s. $189 \frac{1}{5}$ yards of the fhaloon received.
then $1 y$. : $9 \frac{\mathrm{x}}{6} s .:: 43 y$. : $394 \frac{\mathrm{r}}{\frac{1}{5}}=394 \mathrm{~s} .-2 \mathrm{~d}$.
the value of the cloth.
and $1 y .: 2 s$. : : $189 \frac{2}{3} y$. $: 378 \frac{2}{5}=378 \mathrm{~s} .-4 \frac{3}{4} d$.
the value of the fhaloon.
diff. 15 s.- $9 \frac{1}{7} d$.
So A lofes i5s. $-9 \frac{1}{4} d$. by the bargain.

2uef. 6.

A hath 100 pieces of filk, worth $3 l$. a-piece; but he charges them at $4 l$. a piece, and barters them with B for wool worth 7l--10s: the C weight. How much wool muft A receive from B for the filk, that both may be equal gainers?

In this queftion the price of B's wool muft be advanced in the fame proportion as A's fillk.
$3 l .: 4 l .:: 7 \frac{1}{2} l .: 10 l$. the advanced price of the wool.
then $100 \mathrm{l} . \times 4=400 \%$ the value of the filk. $10 \mathrm{l}: 1 \mathrm{C} .:$: $400 \mathrm{l} .: 40 \mathrm{C}$. the quantity of wool.

2uef. 7.

How many ducats, at 5 s. -6 d . may be had for 250 dollars, at 4 s. -3 d. a-piece?
66 d : = a ducat, $51 \mathrm{~d} .=\{$ dollar. $250 \times 51=12750$ d the value of 250 dollars. $\frac{12750}{66}=193 \%^{2}$ ducats.

2ueft. 8.

A man would exchange 200 l . for dollars, at 54 d . ducats at 68 d . and crowns at 73 d . and would have 2 ducats and 3 crowns for 1 dollar. How many of each mult he have?

	$\begin{array}{r} 200 \\ 20 \end{array}$
$54=1$ dollar	
$2 \times 68=136=2$ ducats	4000
$3 \times 73=219=3$ crowns	12
409 = fum,	48000

Now it is plain, as oft as 409 is contained in 48000 , fo often I dollar, 2 ducats, and 3 crowns muft be taken.

$$
\begin{aligned}
\frac{48000}{409}= & 117 \frac{147}{409} \text { the dollars, } \\
& 234^{\frac{294}{4} 95} \text { the ducats, } \\
& 35^{2} \frac{32}{4} \frac{3}{9} \text { the crowns. }
\end{aligned}
$$

$$
\text { 2ueft. } 9 \text {, }
$$

A man buys 120 ftaves at 3 a penny, and after. wards 120 more for 2 a penny; how muft he fell them out to lofe nothing?
3) $120=40 \mathrm{~d}$. for the firt bargain.
2) $120=60 \mathrm{~d}$, for the fecond bargain,
240 100

100 d. : 240 f. : : 1 d. : $2 \frac{2}{5}$ f. per penny; that is, 12 ftaves for 5 pence.

$$
\mathrm{N}_{4} \quad \text { Quef. }
$$

Quef. 10.

A tradefman begins the world with roo, 1 . and finds that he can gain roool. in 5 years by land trade alone, and that he can gain 1000%. in 8 years by fea trade alone; and likewife that he fpends roool. in $2 \frac{1}{2}$ years by gaming. How long will his eftate laft, if he follows all three?

$$
\begin{aligned}
& \frac{1000}{5}=200 \text { his gain by land trade in } 1 \text { year. } \\
& \frac{1000}{8}=125 \text { his gain by fea trade in I year. } \\
& \frac{325}{} \text { his whole gain. } \\
& \frac{1000}{2 \frac{1}{2}}=400 \text { his lofs by gaming in I year. }
\end{aligned}
$$

the difference 75 his lofs by all three in 1 year. then 75%. : 1 y . : : $1000 \mathrm{l}: \mathrm{:}^{\prime} \mathrm{I}^{\frac{1}{3}}$ years his eftate will laft.

$$
\mathscr{Q}_{2}
$$

There were 25 coblers, 20 taylors, 18 weavers, and 12 combers, fpent 133 hillings at a meeting; to which reckoning 5 coblers paid as much as 4 taylors, 12 taylors as much as 9 weavers, and 6 weavers as much as 8 combers; how much did each company pay?

Find 4 numbers by the rule of three to exprefs thefe proportions, as thefe, coblers, taylors, weavers, combers, that is, 5 coblers paid as much as 4 taylors, or 3 weavers, or 4 combers. Suppofe each company

Chap. V. QUESTIONS. paid 1 fhilling, then, by the fingle rule of falfe, 1 man in each company will pay $\quad \frac{2}{5} \quad \frac{1}{4} \quad \frac{5}{3} \quad \frac{2}{4}$ $\begin{array}{llllll}\text { which multiply by the number } & 25 & 20 & 18 & 12\end{array}$
of men produces whofe fum is 19; then it will be
$5 \quad 5 \quad 6 \quad 3$

$$
19: 133:\left\{\begin{array}{l}
5: 35 \mathrm{~s}, \text { for the coblers. } \\
5 \\
6
\end{array}: 35\right. \text { taylors. }
$$

2 2uef. 12.

There is an inland 72 miles about, and two footmen fet out together to trayel round it the fame way. A travels 9 miles a day, and B7. To find the time they will be together again.

It is plain A will overtake B when he leads him the circumference of the ifland.

$$
\begin{aligned}
& \mathrm{A}-9 \\
& \mathrm{~B}-7
\end{aligned}
$$

2 miles gained by A in 1 day. then $2 \mathrm{~m} .: 1 \mathrm{~d} .:: 7^{2 m} .: 3^{6}$ days, the Anfwer.

2uef. 13.

There is an iffand 73 miles round, and 3 footmen all ftart together, to travel the fame way about it. A travels 5 miles a day, B 8, and C 10. When will they all come together again?

B gains 3 miles a day of A.

C gains 5 miles a day of A.
then $3 m: 1 d .:: 73 m .24 \frac{1}{3}$ days when A and B [meet, and $5: 1: 73: 14 \frac{3}{5}$ days when A and C [meet,
Now $24 \frac{1}{3}$ days being the period of B's meeting with A, and $14 \frac{3}{5}$ days, the period of C's meeting with A; and they can never meet but at the end of thefe periods. Therefore B and C can never both meet with A, but when fome number of B's periods is equal to foime number of C^{\prime} 's periods. Therefore find two whole numbers which are in the fame proportion, as $24 \frac{1}{3}$ to $14 \frac{3}{5}$, which will be 365 and 219 . Therefore after 365 of B's periods, or 219 of A's; all three men will-meet again, and not before, as 365 and 219 are in their leaft terms. Therefore the time of meeting is $219 \times 24 \frac{1}{3}=5329$ days,

2uef. 14:

A clock hath two hands or pointers, the firf, A, goes round once in 12 hours, the fecond, B , once in an hour. Now, if they both fet forward together, in what time will they meet again?

Here A goes only $\frac{\gamma^{2}}{T 2}$ of the circumference in an hour.

And B goes the whole ciroumference in an hour.
So B gains $\frac{1}{1} \frac{1}{2}$ of A in that time.
 Ib. : $5^{\frac{5}{11}} m$. the Anfwer.

2uef. 15.

A greyhound is courfing a hare, which is 100 her leaps before him; and the hare takes 4 leaps or every 3 leaps of the greyhound; but 2 of the reyhound's leaps are equal to 3 of the hare's. How iany leaps muft he take before he catch her?
$g r .: 3 b a .:: 3 g r .: 4 \frac{1}{2}$ hare's leaps $=3$ of the greyhound's.
Therefore, for every 3 leaps of the greyhound, the are lofes $\frac{1}{2}$ of one of hers. Therefore
b. : 3 gr . : : $100 \mathrm{l} .: 600$ of the greyhound's leaps; the Anfwer.

2uef. 16.

Four merchants, A, B, C, D, gain 2000 l. by dde, whereof $\frac{1}{2}$ of A's fhare is equal to $\frac{3}{4}$ of B's, of C's, and $\frac{5}{6}$ of D's. What fhare had each?
Take a number at pleafure, and divide in prortion to their fhares, then procced. by the fingle le of falfe.
A 120
B 80
C 75
D 72

2uef. 17.
Two merchants together make up a tock of 600%. s ftock continued in company 9 months, and B's they gain 200 l . which they divide equally. ow much did each put in?

Since the gains are equal, A's ftock multiplied b his time 9 , is equal to B^{\prime} 's fock multiplied by his tim II; therefore A's flock is to B's fock as II to 9 . II

$$
\frac{9}{20}: 600::\left\{\begin{array}{l}
11: 330 \text { A's ftock. } \\
9: 270 \text { B's ftock. }
\end{array}\right.
$$

2uef. 18.
An apothecary has feveral fimples, A hot in degrees, B hot in 1, C semperate, D cold in and he intends to make up $¥ 7$ drams, to be in degree of cold. How much of each mult be taker

Put 1, 2, 3, \&c. for the 4 th, 3 d, 2d, \&c. d gree of cold, and proceed by the rule of alligation

2uef. 19.
A factor delivers 6 French crowns and 4 dolla for $53 \mathrm{~s} .-6 \mathrm{~d}$. and at another time 4 French crow and 6 dollars for 49 s.-Iod. What was the val of each?
Suppofe, by the double rule of falfe, there are French crowns; then 4 doll. $=53^{\frac{1}{2}}, 1$ doll. $=13^{\frac{3}{8}}$. and $4 \mathrm{cr} .+6$ doll. $=80_{4}^{\frac{1}{2}}$ $49 \frac{10}{12}$
$1 \mathrm{er} .+30^{\frac{5}{x}}$

$$
+30^{\frac{5}{12}}+25
$$

Again, fuppofe 1 crown, then 4 dollars $=47 \frac{1}{2}$, d I dollar $=11 \frac{7}{8}$,
d 4 crowns +6 dollars $=75^{\frac{1}{4}}$
2 er. $+\frac{49 \frac{10}{12}}{25 \frac{5}{12}}$
ff. er. 5) $30 \frac{5}{T^{2}}\left(6_{\frac{1}{12}}=6 s .-1 d\right.$. the value of a crown.
d $4 \frac{3}{4}$ or $4^{f}-3 d .=$ a dollar.

2uef. 20.

Three companies of foldiers paffing by a shepherd, e firft takes half his flock and half a fheep, the cong takes half the remainder and half a hep, the fid takes half the lat remainder and half a hep; ter which the Shepherd had 20 Sheep remaining. low many had he at first?

By the double rule of false, ppofe two numbers, as folps.

2uef. 21.

There is a fifh whofe head is 9 inches in length, and his tail is as long as his head and half his body, and his body as long as his head and tail. How long was the fifh?
I fup. body 0.2 fup. body I

2uef. 22:
There is an annuity of 75% in reverfion, which is not to commence for feven years, and then it is to continue for 14 years; what is the prefent value of it at 4 per cent. compound intereft?

Chap. V. QUESTIONS. ig

Find the prefent worth of the annuity of $I l$. for 4 years, and then the prefent worth of that fum f money for 7 years, which multiply by the annuity.
By Tab. III. and IV. the prefent worth of $1 . l$. nnuity is $\frac{18.29191}{1.73167}=10.56313$. Then by Tab. III. he prefent worth of 1 l. 7 years hence, is $\frac{1}{1.35593^{2}}$ his multiplied by 10.56313 gives $\frac{10.56313}{1.31593}=$ 3.02713, the prefent worth of $1 l$. annuity in reverion; laftly, $8.02713 \times 75=602.035$. the prefentalue required.

$$
\text { Quef. } 23 .
$$

There is a houfe rented at 25 l. a year for 21 years; put the tenant is defirous to pay rool. fine (or prefent noney). How much :ent then muft he pay, allowgg 5 per cent. compound intereft?
By Tab. III. and IV. the prefent worth of $1 l$. nnuity for 21 years, is $\frac{35.71925}{2.78596}$; then fay,
5.71925 (pr.) : il. (an.) $:=1001$ (pr.) $: \frac{278.596}{35.7192}$ $=7.7997$ l. the rent anfwering the fine of 100% hen from 25.0000 take 7.7997
semains 17.2003 the rent fought.

B O O K It.

The Theory of Numbers.

C HAP. 1.

Numbers produced by addition, fubtraction, multiplication, and divifion. Of odd and even numbers. Prime and compofite numbers. Numbers that are prime to one another; and fuch as meafure others. Powers and products of Squares, cubes, \&c.

PROP. I.

If A and B be two numbers; then A added to B is the fame fum as B added to A .

FOR if both of them be refolved into its units, and placed in a right line, they will count to the fame number, begin at which end you will.

Cor. Hence if Several numbers are to be added together, they weill amount to the fame fum, whatever order tbey are placed in. Or if feveral numbers are to be fubtracted, it is the fame tbing, whether they be fubtrailed one after axotber, or all togetber.

Chap. I. of NUMBERS.
PROP. II.
If two numbers A, B, are to be multiplied togetber; the product of A multiplied by B , is equal to the product of B multiplied by A .

For A times $\mathrm{I}=$ to the units in $A=i c e A$. And A times $B=B$ times that product, that is $=B$ times A.

Cor. I. If Several numbers are to be multiplied together; they will make the fame produc, in whatever order they are multiplied.

Cor. 2. If seieral numbers, $\mathrm{A}, \mathrm{B}, \mathrm{C}$, are to be multiplied togetber; it is the Same tbing, whetber. A be multiplied by the product of the reft BC ; or A be multiplied firt by B , and the product by C ; and fo on. For by either method the product will be $A B C$.

Cor. 3. And on the contrary, if a number ABC - is to be divided by another BC ; it is the fame thing whether, ABC is divided by BC at once; or it be divided firft bv one faitor B , and then the quotient by anotber factor C , and so on.

$$
\text { For } \frac{A B C}{B C}=A(A x .8) ; \text { and } \frac{A B C}{B}=A C(A x \cdot 8) \text {, }
$$

$$
\text { and then } \frac{A C}{C}=A(A x .8) \text {, that is, }=\frac{A B C}{B C} \text {. }
$$

P R O P. III.

If the number S; be made up of the parts $\mathrm{A}, \mathrm{B}, \mathrm{C}$; the product of S, by any number M, is equal to the fum of the feveral products, made by multitly:ng feparately, each particular part A, B, C, by M.

For $\mathrm{M} \times \mathrm{S}=\mathrm{M} \times \overline{\mathrm{A}+\mathrm{B}+\mathrm{C}}(\mathrm{Ax} .4)=\overline{\mathrm{A}+\mathrm{B}+\mathrm{C}} \times \mathrm{M}$ (Pr. 2). But $\overline{\mathrm{A}+\mathrm{B}+\mathrm{C}}$ times M is nothing elfe but taking M as oft as there are units in $A+B+C$; that is, as oft as there are units in A, and alfo as oft as there are units in B , and alfo in C ; and that is, $A M+B M+C M$. Therefore $M S=A M+B M$ $+\mathrm{CM}=(\operatorname{Pr} .2) \mathrm{MA}+\mathrm{MB}+\mathrm{MC}$.

$$
\begin{array}{r}
\mathrm{A}, \mathrm{~B}, \mathrm{C}, \\
\mathrm{~S}, 13=3+4+6 \\
\mathrm{IM}, 5 \\
\hline 65=\frac{5}{15+20+30}
\end{array}
$$

Cor I . If D be the difference of two numbers A and B; then D mulliplied by any number M , is equal to the difference of the products, of A by M , and B by M .

$$
\begin{aligned}
& \mathrm{A}, \mathrm{~B}, \\
& \mathrm{D}, 2=9-7 \\
& \mathrm{M}, 5 \\
& -5 \\
& \mathrm{IO}=45-35
\end{aligned}
$$

Cor. 2. If $\mathrm{S}=\mathrm{A}+\mathrm{B}+\mathrm{C}$, and $\mathrm{M}=\mathrm{F}+\mathrm{G}$; then the product of the woboles, $\mathrm{S} \times \mathrm{M}=$ fum of the products of all the parts of one, by all the parts of the other, $\mathrm{FA}+\mathrm{FB}+\mathrm{FC}+\mathrm{GA}+\mathrm{GB}+\mathrm{GC}$.
$F_{\text {or }} S M=M A+M B+M C=\overline{F+G} \times A+\overline{F+G}$ $\times \mathrm{B}+\overline{\mathrm{F}+\mathrm{G}} \times \mathrm{C}=\mathrm{FA}+\mathrm{GA}+\mathrm{FB}+\mathrm{GB}+$ $\mathrm{FC}+\mathrm{GC}$.

> PROP. IV.

The quotient arising by dividing the fum of two or more numbers $(\mathrm{A}+\mathrm{B})$, by any divifor D ; is equal to the Sum of the quotients arifing by dividing the parts A, B, Separately by the fame divijor. That is,

$$
\begin{array}{ll}
\frac{A+B}{D}=\frac{A}{D}+\frac{B}{D} & \frac{A+B}{D} \cdot \\
& \frac{A}{D}+\frac{B}{D} \\
& \frac{3}{3}+\frac{6}{3} .
\end{array}
$$

For let the whole be called S, then fince $A+B$ $=S$, any part of A, together with the fame part of $B=$ the like part of $S(A x .5)$; that is,
$\frac{A}{D} \div \frac{B}{D}=\frac{S}{D}=\frac{A+B}{D}$.

> PROP. V.

If any multitude of even numbers be added together, the fum will be even.
For fince an even number may be divided into two equal whole numbers, let thefe numbers be $2 \mathrm{~A}, 2 \mathrm{~B}$, ${ }_{2} \mathrm{C}, \mathcal{E}^{\circ} c$. then the fum will be $2 \mathrm{~A}+2 \mathrm{~B},-2 \mathrm{C}, \mathcal{E}_{\mathrm{c}}$; and the half is $A+B+C, \xi^{\circ}$. a whole number (Def. 14).

Cor. If an even number be taken from an even number, the remainder is even.

> PROP. VI.

If an even mulitude of odd numbers be added togetber, their fum is even.
For thefe odd numbers may be reprefented 9 by $2 \mathrm{~A}+1,2 \mathrm{~B}+\mathrm{I}, \mathcal{E}^{\circ} \mathrm{c}$. And the fum of 7 2 A and $2 \mathrm{~B}, \mathrm{\xi}^{\circ} \mathrm{C}$. is an even number (Pr .5). 5 And an even number of units, is an even 3 number. Therefore their fum is an even . number.

Cor. An odd multitude of odd numbers added-together makes an odd number.

PROP. VII.

If there be taken an even number from an odd number, or an odd number from an even number; the remainder. is odid.
For let 2 A be an even number, then $\quad 7$ Io fince 2 A taken from an even number, leaves an even number (Cor. Pr. 5); therefore 2 A taken from that even num- 3 ber and I more, will leave 1 more; that is, an odd number will remain: and alfo $2 \mathrm{~A}+\mathrm{I}$ (an odd number) taken from that even number, I lefs will remain; that is, an odd number remains.

Cor. If an odd nunsber be taken from an odd number, the remainder is even.

PR O P. VIII.

If an odd number be multiplied by an odd number, the product woill be odd.
For the product confifts of an odd number taken an odd number of times, and therefore is odd (Cor. Pr. 6).

Cor. I. If an odd number be divided by an odd num. ber, the quotient will be odd.

Cor. 2. Every number is odd, wbich meafures an odd number. Or an even number cannot meafure an odd number.

> PROP. IX.

If an even number be multiplied by any number, even or odd, the product rvill be even.

For the product confifts of the even 6 number taken fo many times as there are units in the multiplier, and therefore will be cven (Pr. 5).
$12 \quad 18$
Cor. r. If an even number be divided by an odd number, the quotient will be even.

Cor. 2. If an odd number meafures an even number, it Ball alfo meafure balf of it.

Cor. 3. If an odd number A, be prime to any number B , it Jall be prime to its double 2 B .

For no even number can meafure A (Cor. 2. Pr. 8); and an odd number which meafures 2 B , will alfo meafure B (Cor. 2); and then A and B would not be prime.

Cor. 4. A number wobich is prime to any in a double progreflion, is prime to them all.

PROP. X.

If there be two numbers, A the greater, and B tbe leffer, and the lefer B be continually taken from the greater A ; and the remainder C from B ; and the next remainder D from C ; and ibe next remainder E froms D , and fo on, till notbing remains. I Say, the laft number E that remained, will be the greateft common meafure of the numbers A and B.

For E meafures D , fince o remains; and it alfo meafures C which is fome multiple (once or oftener) of D with Eover (Ax.io, iI). For the fame reafon it meafures B, which is a multiple of C with D over; and laftly, it meafures A, which is a multiple of
27) $75(2$
$\frac{54}{21) 27(1}$
$\frac{21}{6)} 21(3$
$\frac{18}{3) 6(2}$
$\frac{6}{0}$

And it is the greateft; for if there was one F greater than E , then fince F is fuppofed to meafure A and B , it alfo meafures C (Ax. i1); and for the fame reafon fince F meafures both B and C , it alfo meafures D ; and fince it meafures both C and D , it alfo meafures E , the greater the lefs; whiich is abfurd.
O_{3}
Cor.

Cor. 1. If there be two numbers given, and the greater be divided by the lefs; and then the leffer divided by the remainder; and this remainder by the next remainder, and So on, fill making the laft remainder a divifor. By proceeding tbus, if 1 remains at laft, then the two given numbers are prime to one anotber.

Ex. 28 and 19.
19) 28 (7

19
9) $19(2$

18

1) 9 (9

9

Cor. 2. If a number F meafures feveral numbers, it woill alfo meafure their greateft common meafure E .

This is plain from the demonftration of this prop. For if F meafures A and B , it alfo meafures E , the greateft common meafure of thefe two quantities. And if F meafures E and a third number: it meafures their greateft common meafure; that is, it meafures the greateft common meafure of all the three numbers; and fo on.

P R O P. XI.

If the number N be the leaft, which Several otber numbers meafure; thefe numbers ball only meafure all the multiples of N , buit no otber number befides.

For fince they meafure N , they fhall alfo meafure ${ }_{2} \mathrm{~N},{ }_{3} \mathrm{~N}, \mathcal{E}_{c}$. or in general $r \mathrm{~N}($ Ax. 10), r being any number.

But they can meafure no other number as P; for take $r \mathrm{~N}$ the neareft multiple to P ; then fince they meafure both $r \mathrm{~N}$ and P , they will alfo meafure their difference (Ax. 9). But that difference is lefs than N; therefore N is not the leaft number which they meafure ; contrary to the hypothefis.

Cor. If feveral numbers meafure any number; the leaft which they meafure Sball alfo meafure the Same number; that is, their leaft common dividend, Ball aljo meafure it.

P R O P. XII.

If N be the leaft number (or the leaft common dividend) that feveral prime numbers, $\mathrm{A}, \mathrm{B}, \mathrm{C}$, meafure: no other prime D Jball meafure the Same.

For if the prime D meafures it, then D muft be a factor in N , as well as $\mathrm{A}, \mathrm{B}, \mathrm{C}$, are ; and then N would not be the leaft number, which $\mathrm{A}, \mathrm{B}, \mathrm{C}$, meafure.

P R O P. XIII.

If two numbers, A, B, be prime to one another; the number C , which meafures one of them A , will be prime to the other B .

$$
\begin{array}{ll}
\mathrm{A}, 9 . & \mathrm{B}, 4 . \\
\mathrm{C}, 3 . & \mathrm{D} . .
\end{array}
$$

For if C and B be not prime to C, 3. D.. one another, let D meafure both. But becaufe D meafures C, it alfo meafures A (Ax. 1o); confequently A and B are not prime to one another : contrary to the hypothefis,

P R O P. XIV.

If two numbers, A, B, be prime to any number C , their product AB will be prime to it.

For no numbers can meafure $A B$ and C, but fuch (prime) factors as A, B, and $\mathrm{C}, \mathrm{A}, 5 . \mathrm{C}, 8$. are made up of. But in A and C there are none that are common to both; becaufe A and $C A B, 15$. are prime to one another; nor in B and C for the

O 4
fame ther, becaufe there is no factor comman to both, therefore their equals $A B$ and C are prime to one another.

Cor. 1. If feveral numbers, bose many fo ever, A., B, C, D, छc. be each of them prime to any number F ; their product, $\mathrm{ABCD} \mathrm{E}^{c}$. will alfo be prime to the Same F.

For (by this prop.) AB and C are both prime to F ; therefore ABC is prime to F . Again, ABC and D are both prime to F; therefore $A B C D$ is prime to F .

Cor. 2. If one number A be prime to another F; its Square, cube, or any power A^{n}, Jhall alfo be prime to the fame number F .

This is evident from Cor. I. by fuppofing A, B, C, D, ξ_{c}, all equa!.

PROP. XV.

If two numbers, A, B, be prime to one number C , and alfo to another D ; their products AB and CD foall alfo be prime to one another.

For $A B$ is prime to C, and alfo to $D(P r .14)$; therefore $A B$ is prime to $C D$.

Cor. I. If feveral numbers, $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$, Es.c. be prime to each of the numbers $\mathrm{F}, \mathrm{G}, \mathrm{H}, 1, \mathcal{E}_{\mathrm{c}}$. then their produits, ABCD , and FGHI , \mathcal{c}. will be prime to one anotber.

For (by this prop.) $A B$ is prime to $F G$, and fince AB and C are prime to FG and H ; therefore ABC is prime to FGH. Again, fince $A B C$ and D, are prime

Chap. I. of N U M BERS. 201 prime to FGH and I , therefore ABCD is prime to FGHI, छંc..

Cor. 2. If two numbers, A, F, be prime to one another; then any power of one A^{m}, will be prime to ary power of the other F^{a}.

This follows from Cor. r. by fuppofing B, C, D, $\dot{\xi}^{2} c_{.}=A$, and $\mathrm{G}, \mathrm{H}, \mathrm{I}, \mathcal{E}_{c_{0}}=\mathrm{F}$.
PR O P. XVI.

If two numbers, A, B, be prime to one another, and each of them meafures fonse number D ; then their product AB fall meafuire the fame number D .

For fince A and B are prime to one another, there is no factor common to both; and fince they both of them meafure D , therefore they both are factors in D. Therefore let $D=A B F$, then A and B meafure $A B F$, and it appears that $A B$ meafures $A B F$ or D.

Cor. If feveral numbers $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathcal{E}^{2}$. be prime to one another; and èach of them meafures another D ; then their product $\mathrm{ABC}, \mathrm{E}^{\circ} \mathrm{c}$. Ball meafure the Same number D.

PROP. XVII.

If two numbers, A, B, be prime to one another; their fum $\mathrm{A}+\mathrm{B}$ will be prime to either of therr.

If you deny it , let D be the common meafure of A and $A+B$, then it will meafure the refidue $B(A x \cdot 1$,$) .$ Therefore A, B, are not prime : againft the hypothefis.

Cor. If a number be prime to one of its parts; it is alfo prime to the remaining part.

PROR.

PROP. XVIII.

If the number A be prime to B ; then A fall meafure no multiple of B , lefs than $\mathrm{A} \times \mathrm{B}$; or wobofe multiplier is lefs than A.

Let r be any number, and fuppofe r times B, or $r \mathrm{~B}$ to be fome multiple of B . Now the numbers A, B, being prime to one another, there is no factor common to both A and B : therefore if A meafures $r \mathrm{~B}$, it muft meafure r alone. But it can never meafure r lefs than itfelf: therefore r muft be equal to A, or to fome multiple of A.

Cor. If A, B, be prime to one another; then A fall meafure all the multiples of AB , and no otber multiples of B befides.

PROP. XIX.

More prime numbers may be found, than any propofed multitude, $\mathrm{A}, \mathrm{B}, \mathrm{C}$.

Let N be the leaft number which $\mathrm{A}, \mathrm{B}, \mathrm{C}$, meafure; then if $N+1$ be a prime number, another prime is found. But if it is a compofite number, then fome other prime, as D , meafures $i t$, and fo the prime D is found.

P R O P. XX.

Let M be any number, $\mathrm{I}, \mathbf{2}, 3,4, \mathcal{E}^{c}$. then $\mathrm{M} \times 6 \rightarrow \mathrm{I}$, and $\mathrm{M} \times 6+\mathbf{1}$, confitute a Series, which contains all prime numbers above 3 .

For thofe left out of the feries are no primes. For $6 \mathrm{M}+2$, and $6 \mathrm{M}-2$, are not primes, being divifibie by 2. Alfo $6 \mathrm{M}+3$, and $6 \mathrm{M}-3$, being divifible by 3 , are no primes. But thefe are all the numbers left out.

P R O P. XXI.

No number is a Square number, that confifts not of two equal factors; nor a cube, that confists not of tbree equal faitors: and fo for bigher powers.

This appears from the definition of fquare and eube numbers; and other higher powers. For a fquare requires to have two equal multipliers, or elfe a fquare could not be produced; and a cube muft have three. And fo on.

Cor. I. There is no fuch thing as the exail Square root of $2,3,5,6,7,8,10, \mathrm{C}^{2} c$. Nor the exact cxbe root of $2,3,4,5,6,7,9$, छ'c.

For there are no fuch factors to be found in thefe numbers, and infinite others. For example, the two factors in 2 , are I and 2 ; in 3,1 and 3 ; in 6 , 2 and $3, \mathcal{E}$. and therefore they are no fquares. Again, the three factors in 2 , are 1,1 , and 2 ; in 3 , are 1,1 , and 3 ; in 12 , they are 2,2 , and $3, \mathcal{E}^{2}$. which are no cubes.

Cor. 2. All numbers are furds, wobofe roots are not Fome of the natural feries, $1,2,3,4,5,6, \mathcal{C}$. ad infinitum.

P R O P. XXII.

The fum of two numbers differing by a unit, is equal to the difference of their Squares.
Let N and $\mathrm{N}+\mathrm{r}$ be the numbers;

$$
\begin{aligned}
& \text { multiply }-N+\mathbf{N}+\mathbf{N} \\
& \text { by }-\quad N+1
\end{aligned}
$$

the fquare of $\mathrm{N}+\mathrm{r}--\mathrm{NN}+\mathrm{N}+\mathrm{N}+\mathrm{I}$ the fquare of N - . . NN fubtract
remains $-\quad-\overline{\mathrm{N}+\overline{\mathrm{N}+\mathrm{I}}}$ the fum of the two numbers. Cor.

Cor. The differences of the Squares of $0,1,2,3,4$, छc. proceed by the odd numbers, 1, 3, 5,7, ₹'c.

PROP. XXIII.

The Sum of any number of terms (n), of the Series of odd numbers $1,3,5,7, \xi^{c}$. is equal to the Square (nn) of that number.

Set down the feries of $101^{2} 2^{2} 3^{2} 4^{2} 5^{2} 6^{2} 7^{x}$.
 rences, according to Cor. Pr. 21 . and by adding them we fhall have
$0 \frac{1}{1}$ or the fum of 1 term $=I^{2}$ or 1 ,
$1+3$ or the fum of 2 terms $=2^{2}$ or 4 ,
$4+5$ or the fum of 3 terms $=3^{2}$ or 9 ,
$9+7$ or the fum of 4 terms $=4^{2}$ or 16 ,
$16+9$ or the fum of 5 terms $=5^{2}$ or 25 , and foon. Whence it is plain, let n be what number you will, the fum of n terms will be $=m$,

PR O P. XXIV.

The fum of two numbers multiplied by their difference, is equal to the difference of their Squares.

Let the numbers be A, E; which multiplied together will produce AA-EE (Prop.3, and Cor. I).

Cor. The difference of the Squares of two numbers, is divifible, by cither the fum or difference of the e numbers.

PROP. XXV.

The fum of two cube numbers is divifible by the fum of their roots. Or the fum of any two numbers will meafure the fum of their cubes.
Let the numbers be A, E; multiply $\mathrm{AA}-\mathrm{AE}+\mathrm{EE}$

$$
\text { by } A+E
$$

$$
\begin{aligned}
& A^{3}-A^{2} E+A E E \\
& +A^{2} E-A E E+E^{3}
\end{aligned}
$$

by Pr.3. and Cor.) product, $A^{3} \cdots \cdots+E^{3}$
Therefore $A^{3}+E^{3}$ is divifible by $A+E$ ($A x .8$).

PROP. XXVI.

be difference of any two numbers will madure the difference of their cubes.
f A, E, be the umbers;
mult. $\mathrm{AA}+\mathrm{AE}+\mathrm{EE}$
by $A-E$

$$
\begin{gathered}
A^{3}+A^{2} E+A E E \\
-A^{2} E-A E E-E^{3}
\end{gathered}
$$

the product (Pr.3) $A^{3} \quad-\cdots-E^{3}$
Therefore the product $\mathrm{A}^{3}-\mathrm{E}^{3}$ is divifible by $\mathrm{A}-\mathrm{F}$ Ax. 8).

PROP. XXVII.

be produIt of two Square numbers, is a Square number: and of two cube numbers, a cube number: and 50 on.

For $A \mathrm{~A} \times \mathrm{BB}=\mathrm{AABB}=\mathrm{AB} \times \mathrm{AB}$, the fquare AB.
Alfo $\mathrm{A}^{3} \times \mathrm{B}^{3}=\mathrm{AAABBB}=\mathrm{ABABAB}$, the cube $A B$, and fo of others.

Cor. If a Square number divide or meafure a Square number; or a cube number a cube number; \&sc. the quotient will be a Square, or cube number, \&c. refpectively,
For $\frac{A A B B}{B B}=A A(A x .8)$, the fquare of A.
and $\frac{A^{3} B^{3}}{B^{3}}=A^{3}$, the cube of $A ; \mathcal{V}^{2} c$.

PROP. XXVIII.

Every power of a Square number is a Square number; and every power of a cube number is a cube number. and fo on.
For AA or A^{2} is the fquare of A; and $\overline{A A}^{2}$ or A^{4} is the fquare of $A A$. $\overline{A A}^{3}$ or A^{6} is the fquare of $A^{3} . \overline{A A}^{5}$ or A^{10} is the fquare of $A^{5}, \xi^{3} c$.

Again, $\overline{A A A^{2}}{ }^{2}$ or A^{6} is the cube of $A A$: and $\overline{\mathrm{AAA}^{3}}$ or A^{9} is the cube of A^{3} : alfo $\overline{\mathrm{AAA}^{4}}$ or A^{12} is the cube of $A^{4}, \xi^{3} c$. and fo of others.

CH A P. II.

f proportional numbers, and thole in geometrical progreflion. Mean proportionals. Like plane and jolid numbers.

PR OP. XXIX.

four quantities, $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$, are proportional; the product of the means is equal to the product of the extremes, $\mathrm{AD}=\mathrm{BC}$.
G OR fine $\mathrm{A}: \mathrm{B}:: \mathrm{C}: \mathrm{D}$; then $\frac{\mathrm{A}}{\mathrm{B}}=\frac{\mathrm{C}}{\mathrm{D}}=r$ Def. 27); and $\mathrm{A}=\mathrm{Br}, \mathrm{C}=\operatorname{Dr}(\mathrm{Ax} .4,5)$. Whence $\mathrm{D}=\mathrm{BrD}$, and $\mathrm{BC}=\mathrm{BDr}(\mathrm{Ax} .4)$; therefore $\mathrm{D}=\mathrm{BC}(\mathrm{Ax} . \mathrm{I})$.
Cor. I. The frt is to the third, as the Second to the urth; $\mathrm{A}: \mathrm{C}:: \mathrm{B}: \mathrm{D}$.
For fince $A D=B C$, then $\frac{A D}{C D}=\frac{B C}{C D}(A x .5)$, ar is, $\frac{A}{C}=\frac{B}{D}$, or $A: C:: B: D$.

Cor. 2. The Second is to the 'frt, as the fourth the third, or $\mathrm{B}: \mathrm{A}:: \mathrm{D}: \mathrm{C}$.
For fince $B C=A D, \frac{B C}{A C}=\frac{A D}{A C}(A x .5)$, that is, $=\frac{\mathrm{D}}{\mathrm{c}}$.
Cor. 3. $\mathrm{A}: \mathrm{B}:: \mathrm{A}+\mathrm{C}: \mathrm{B}+\mathrm{D}:: \mathrm{A}-$: B-D.
For fince $\frac{A}{B}=r$, and $A=B r, C=D r$; then $+\mathrm{C}=\mathrm{Br}+\mathrm{D} r=\overline{\mathrm{B}+\mathrm{D}} \times r(\mathrm{~A} x .2)$; there$\frac{A+C}{B+D}=r=\frac{A}{B}(A x, I)$.

In like mannner $\mathrm{A}-\mathrm{C}=\mathrm{Br}-\mathrm{D} r=\mathrm{B}-\mathrm{D}$ $\mathrm{x} r$; and $\frac{\mathrm{A}-\mathrm{C}}{\mathrm{B}-\mathrm{D}}=r=\frac{\mathrm{A}}{\mathrm{B}}$, whence $\mathrm{A}: \mathrm{B}:: \mathrm{A}$ $+\mathrm{C}: \mathrm{B}+\mathrm{D}:: \mathrm{A}-\mathrm{C}: \mathrm{B}-\mathrm{D}$ (Def. 2 7).

Cor. 4. If any like parts or multiples of A and B be denoted by r, then $\mathrm{A}: \mathrm{B}:: r \mathrm{~A}: r \mathrm{~B}$.
For $\frac{r \mathrm{~A}}{\mathrm{~A}}=r=\frac{r \mathrm{~B}}{\mathrm{~B}}$; therefore $r \mathrm{~A}: \mathrm{A}:: r \mathrm{~B}:$ B (Def. 27); and $r \mathrm{~A}: r \mathrm{~B}:: \mathrm{A}: \mathrm{B}($ Cor. 1$)$.

Cor 5. If $\mathrm{A}: \mathrm{B}:: \mathrm{C}: \mathrm{D}$; then D can only be a wobole nimber, when A meafures the product BC .

For $A D=B C$, and $D=\frac{B C}{A}(A x .5)$.
Cor. 6. If three numbers, $\mathrm{A}, \mathrm{B}, \mathrm{C}$, are in continual proportion; then the Square of the mean is equal to the product of the extremes, $\mathrm{BB}=\mathrm{AC}$.

This is plain, by fuppofing the two middle terms to be equal; and then the fourth becomes the third.

P R O P. XXX.

If two numbers, A, B, are prime to one another, no other numbers can be found in that proportion, but wobat are fome multiple of A and B .
Let C, D be others in the fame $\mid \mathrm{A}, 5 . \mathrm{B}, 3$. proportion, then fince $\mathrm{A}: \mathrm{B}:: \mid \mathrm{C}, 10 . \mathrm{D}, 6$. $\mathrm{C}: \mathrm{D}$, then $\mathrm{AD}=\mathrm{BC}(\operatorname{Pr} .29)$; and $\mathrm{D}=\frac{\mathrm{BQ}}{\mathrm{A}}$ (Ax. 5). Now D can only be a whole number, when A meafures BC (Cor. 5. Yr. 29). But A being prime to B , there is no factor common to both; thereford if A meafures BC , it muft meafure C alone ; that is C is fome multiple of A , and confequently D is fome multiple of B .

Cor. I. Numbers, A, B, that are prime to one an otber, are the leaft of all numbers in the fame proportion.

Cor. 2. Numbers, A, B, that are the leaft in a given proportion, are prime to one another.

Chap. iI. of NUM BERS.

For if they are not prime, they may be reduced to lefs numbers in the fame proportion.

PR O P. XXXI.

If there be a Series of numbers, $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$, (greater than I) in continual proportion; and the extrerizes A, D prime to one anotb r; there cannot be found anotber number in the fame proportion.
Let E be ánother term, $\mathrm{A} \cdot \mathrm{B}: \mathrm{C}: \mathrm{D}: \mathrm{E}$ if poffible; then $\mathrm{A}: \mathrm{B}:: \quad \begin{array}{lllll}8 & 12 & 18 & 27\end{array}$

$\mathrm{D}: \mathrm{E}$; and $\mathrm{A}: \mathrm{D}:$:

B : E (Cor. 1. Pr. 29); but A, D, are prime to one another by fuppofition; therefore B, E are multiples of A and D (Pr. 30.); therefore A meafures B. Find fince A meafures B , therefore B meafures C , and C meafures D (Def. 27); therefore A meafures D (Ax. 10). Therefore A and D are not prime to one another: contrary to the hypothefis.

Cor. I. If two numbers (greater than I) be prim? to one another, there cannot be found a tbird number in the fame proportion.

P R.O P. XXXII.

If there be feveral numbers, $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$, in continual proportion, and the extremes A, D prime to one anther; then these numbers are the leaft of all numbers in the fame proportion. And the contrary.
For let E, F, G, H, be other A : B : C : D numbers in the fame proportion. $\quad 8 \quad 12 \quad 18 \quad 27$ Then fince $\mathrm{A}: \mathrm{B}:: \mathrm{E}: \mathrm{F}, \mathrm{E} \mathrm{F}$ G H therefore $\mathrm{A}: \mathrm{E}:: \mathrm{B}: \mathrm{F}::$ $C: G:: D: H(C o r .1$. Pr. 29). And A : D : : E : H (ib.). But A and D are prime to one another, by fuppofition, and therefore the leaft in that proportion (Cor. ı.Pr. 30.) therefore E, H are greater than A, D; and all of them, A, B, C, D, are lefs than F, F, G, H.

On the contrary, if A, B, C, D are the leaft in that proportion, then A and D are prime to one another. For if you fuppofe E, H to be prime to one another, then $\mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{H}$ will be the leaft in that proportion: contrary to the hypothefis.

Cor. If $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ be in continual proportion, and the extremes A, D prime to one another; then all other numbers, E, F, G, H, in the fame proportion, muft be fome multiple of $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$.

For it being $A: D:: E: H$, and A, D being prime to one another (this Prop.), E, H muft be fome multiple of A, D ($\operatorname{Pr}, 30$). Thereforè E, F, G, H are multiple of A, B, C, D.

PROP. XXXIII.

In a feries of numbers the leaft in continual proportion; if there be tbree numbers, the extremes are fquares; if four, cubes; and in general if there be n numbers, the extremes are the $n-I^{\text {th }}$ powers of two numbers, wobich are the leaft in that proportion.
For let A, B

$$
\mathrm{A}, 4: \mathrm{B}, 6: \mathrm{C}, 9 .
$$

be the lealt in $A, 8: B, 12: C, 18: D, 27$. that proportion, then $\mathrm{AA}, \mathrm{AB}, \mathrm{BB}$ are continual proportionals, in the fame proportion of A to B (Cor. 4. Pr. 29). And fince A, B are prime to one another (Cor. 2. Pr. 30), AA and BB will be prime to one another (Cor. 2. Pr. 15); therefore $A A, A B$, and $B B$ are the leaft in the proportion of A to $\mathrm{B}(\operatorname{Pr} .28)$; where the extremes are fquares.

For the fame reafon $A^{3}, A^{2} B, A^{2}, B^{3}$ are the leaft in continual proportion of A to B; where the extremes are the cubes of A and B. And fo of others.

Cor. 1. Between two Square numbers there is one mean proportional; between two cubes, two means. And in general, between two $n^{\text {in }}$ porvers, there are $n-1$ means.

Chap. II. of N U M B ER S.
For between $A \mathrm{~A}$ and BB there is the mean AB , and between the cubes A^{3} and B^{3} are the means $A^{2} B$, $A B^{2}$. And fo forward.

Cor. 2. In a Series of numbers, the leaft in continual proportion; two numbers, which are the leaft in that proportion, meafure all the means.

For both A and B meafure AB , the mean of three proportionals. Alfo both A and B meafure $\mathrm{A}^{2} \mathrm{~B}$ and $A B^{2}$, the two means of four proportionals. And fo on.

Cor. 3. If there be three numbers the leaft in continual proportion, the fum of any two is prime to the other.

For in the numbers $\mathrm{AA}, \mathrm{AB}, \mathrm{BB}$ no number can meafure any one of them, and alfo the fum of the other two.

PROP. XXXIV.

In a feries of numbers in continual proportion, if the firft meafure not the fecond; neither fall any one meafure any otber.

I fay, for example, B does
 not meafure E . For, as E is the fourth from B , take the four numbers, F, G, H, I, the leaft in that proportion; then $\mathrm{B}: \mathrm{C}:$: $\mathrm{F}: \mathrm{G}$; therefore $\mathrm{B}: \mathrm{F}:: \mathrm{C}: \mathrm{G}:: \mathrm{D}: \mathrm{H}$: : E : I (Cor. 1. Pr. 29); and B : E : : F : I (ib.). But F, I are prime to one another (Pr. 32). Therefore F does not meafure I (except F be I), and confequently B does not meafure E .

Here F is not I , for $\mathrm{A}: \mathrm{B}:: \mathrm{F}: \mathrm{G}$. If F was I, F would meafure G , and A meafure B ; contrary to the hypothefis.

Cor. If the firft meafure the laft, it 乃all alfo meajure the fecond.

For if you fay it meafures not the fecond, then it fhall not meafure the laft : againft the hypothefis.

$$
\mathrm{P}_{2} \quad \mathrm{PROP}
$$

PR O P. XXXV.

If between two numbers there fall feveral mean pro-' portionals; So many faall alfo fall between two other numbers, baving the Same proportion.
For fuppofe the four quan-
$27: 3^{6}: 48: 64$
tities, $A^{3}, A^{2} B, \mathrm{AB}^{2}, \mathrm{~B}^{3}$, to $54: 72: 96: 128$ be the leaft in that proportion. Then, fince A^{3} and B^{3} are prime to one another ($\operatorname{Pr} .32$), all other numbers, in that proportion, muft be fome multiple thereof (Cor, Prop: 32). Take any number, r, and let $r A^{3}, r B^{3}$ be the extremes; then $r \mathrm{~A}^{2} \mathrm{~B}$ and $r \mathrm{AB}^{2}$ will be the means (Cor. 4. Pr. 29). And the like for any other number of mean proportionals.

PROP. XXXVI.

If between two numbers, prime to one ayotber, there fall Several mean proportionals; so many foall aljo fall between either of them and a unit. And the contrary.
For in the four proportional numbers, $A^{3}, A^{2} B$, $A B^{2}, B^{3}$, there are two means, $A^{2} B, A B$, between A^{3} and B^{3}, which fuppofe to be prime. Now put $A=1$, then the four proportionals become $1, B$, $\mathrm{B}^{2}, \mathrm{~B}^{3}$; where B and BB are the two means. Again, put $B=1$, then the four proportionals become A^{3}, $\mathrm{A}^{2}, \mathrm{~A}, \mathrm{I}$; where A and AA are the two means.

And on the contrary, between A^{3} and B^{3} two mean próportionals fall (Cor. 1. Prop. 33). And fo of others.

PR O P. XXXVII.

If there be a Series of numbers continually proportional; and the firft be a Square, the third Joall be a Square. If the firt be a cube, the fourth Sall be a cube. If the firft be a fouxth power, the fifth foall be a fourth power.

Let $\mathrm{AA}: \mathrm{B}: \mathrm{C}$; then $\mathrm{AAC}=\mathrm{BB}$ (Cor. 6 . Pr. 29), and $C=\frac{B B}{A A}$; therefore C is a fquare (Cor, Pr. 27).

Again, let $A^{3}: B: C: D$; then $B B=A^{3} C$ (Cor. 6. Pr. 29), and $B^{3}=A^{3} B C$ (Ax. 4), and $B C$ $=\frac{B^{3}}{A^{3}}(A x .5)$. Alro $A^{3} D=B C$ (Pr. 29), and confequently $A^{3} D=\frac{B^{3}}{A^{3}}$, and $D=\frac{B^{3}}{A^{6}}$; therefore D is a cube (Cor. Pr. 27).

Likewife if $A^{4}: B: C: D: E$. Then $C=\frac{B B}{A^{4}}$, and $A^{4} E=B D=C C=\frac{B^{4}}{A^{8}}$, and $E=\frac{B^{4}}{A^{2}}$, a fourth power, whofe root is $\frac{B}{\mathrm{~A}^{3}}$. And fo on.

P R O P. XXXVIII.

In a Series of numbers continually proportional, beginning at I ; any prime number, that meafures the laft, Sall meafure all the reft after the unit.
Let the feries be $1: A: A A: A^{3}: A^{4}: A^{5}$; and let the prime P meafure A^{5}; then if you deny that P meafures A , then P is prime to A , and therefore it is prime to A^{5} (Cor. 2. Mr. 14); contrary to the hypothefis?

Cor. I. If any number meafures the lefs and not the firft (after the unit), it is a compofite number.

Cor. 2. If the firft term (after the unit) be a prime, no other prime Joall meafure the laft.

Cor. 3. In a Series of continual proportionals froms I , if the term next I be a prime; no sumber Soall sneafure the laft, but thofe in that feries.

For $A, A^{2}, A^{3}, \mathcal{E}^{3} c$, all meafure A^{5}; and no others. do, becaufe' A is a prime number (Cor. 2. Pr. 14).

$$
\mathrm{P}_{3} \quad \mathrm{PROP}
$$

P R O P. XXXIX.

If four numbers are proportional, and tbree of them Squares, the fourth is a Square; and if tbree of them be cubes, the fourth is a cube; and fo on.
Suppofe AA : BB : : CC : D, then $\mathrm{AAD}=$ $\operatorname{BBCC}(\operatorname{Pr}, 29)$, and $\mathrm{D}=\frac{\mathrm{BBCC}}{\mathrm{AA}}(\mathrm{Ax.5})$; therefore D is a fquare (Cor. Pr, 27).

Again, $A^{3}: B^{3}:: C^{3}: D$; then $A^{3} D=B^{3} C^{3}$, and $D=\frac{B^{3} C^{3}}{A^{3}}$, and D is a cube (Cor. Pr. 27).

Cor. Hence the proportion of a Square number to one not Square, cannot be expreffed by two Square numbers; neitber can the proportion of a cube number to one not cube, be expreffed by two cube numbers.
P R O P. XL.

The produEZ of two like plane numbers is a Square number; and of three like folid numbers, a cube; \&c,
Let $a b, \mathrm{AB}$ be two like plane numbers; then fince $a: \mathrm{A}:: b: \mathrm{B}$, we fhall have $a \mathrm{~B}=\mathrm{A} b(\operatorname{Pr} .29)$. But $a b \times \mathrm{AB}=a \mathrm{~B} b \mathrm{~A}=\mathrm{A} b \times b \mathrm{~A}$, or $a \mathrm{~B} \times a \mathrm{~B}$, a fquare, whofe root is $a \mathrm{~B}$ or $\mathrm{A} b$.

Again, let $a b c$, ABC, EFG, be three like cube numbers; then fince $a: b:: \mathrm{A}: \mathrm{B}$, and $a: c$ $:: \mathrm{E}: \mathrm{G}$; alfo $\mathrm{B}: \mathrm{C}:: \mathrm{F}: \mathrm{G}$; therefore $a \mathrm{~B}=$ $b \mathrm{~A}, a \mathrm{G}=c \mathrm{E}$, and $\mathrm{CF}=\mathrm{BG}$; then $a b c \times \mathrm{ABC} \times$ $\mathrm{EFG}=a \times b \mathrm{~A} \times c \mathrm{E} \times \mathrm{BG} \cdot \times \mathrm{CF}=a \times a \mathrm{~B} \times$ $a \mathrm{G} \times \mathrm{BG} \times \mathrm{BG}=a^{3} \mathrm{~B}^{3} \mathrm{G}^{3}$, a cube, whofe root is $\square \mathrm{BG}$ or $a \mathrm{CF}$, or $b \mathrm{AG}$, or $b \mathrm{CE}$, or $c \mathrm{AF}$, or $c \mathrm{BE}$.

Cor. I. If the product of two numbers be a Square: or of three numbers a cube; they are fimilar plane or Solid. wumbers.

For if it is not $a: \mathrm{A}:: b: \mathrm{B}$, then it is not $a \mathrm{~B}=\mathrm{A} b$, but rather $a \mathrm{~B}=\mathrm{D} b$, and then we fhould not have $a \mathrm{~B} \times b \mathrm{~A}$, or $a \mathrm{~B} \times a \mathrm{~B}$, a fquare number (but rather $a \mathrm{~B} \times b \mathrm{D}$); contrary to the hypothefis.

Cor.

Cor. 2. Two difinilar plane numbers cannot produce a Square.

For a fquare is only produced from fimilar nombens (Cor. I).

Cor. 3. If the Square of a number, A , be a cube, the number itself, A', is a cube.

For A^{3} is a cube by nature, and A^{2} is a cube by fuppofition; therefore $\frac{A^{3}}{A^{2}}$ or A is a cube (Cor. Pr. 27).

Cor. 4. If any number measure or divide a Square number; the quotient weill be a plane number, Similar to the divisor.

PR OP. XLI.

Between two like plane numbers there is one mean proportional; between two like Solid numbers there are two means; and fo on.
Let $a b, \mathrm{AB}$ be two like plane numbers; then there numbers $\{a: A$ are proportional $\{\quad b: B$ $\left.\begin{array}{l}\text { whence there are } \\ \text { proportional }\end{array}\right\} a b: \mathrm{A} b: \mathrm{AB}$ (Cor. 4. Pr. 29).

Again, let $a b c, A B C$ be two fimilar folid numbers; then
 And fo on for others.

Cor. I. These are like plane numbers, that have one mean proportional between them; and like Solid numbers, that have two means: And fo on.

For fince $a b: \mathrm{A} b: \mathrm{AB}$; therefore $a b \mathrm{AB}=$ $A b A b$ (Pr. 29), and $a B=A b(A x .5)$; aldo $\frac{a B}{A B}$ $=\frac{\mathrm{A} b}{\mathrm{AB}}(\mathrm{ib})$) or $\frac{a}{\mathrm{~A}}=\frac{b}{\mathrm{~B}}$, therefore $a ; \mathrm{A}:: b: \mathrm{B}$ (Def. 27). P 4. Like-

Likewife $a b c \times A B c=A b c \times A b c$, or $a B=A b$, whence $a: \mathrm{A}:: b: \mathrm{B}$; alfo $a b c \times \mathrm{ABC}=\mathrm{A} b c$ $\times \mathrm{AB} c$, or $a \mathrm{C}=\mathrm{Ac}$, whence $a: \mathrm{A}:: c: \mathrm{C}$. And fo cf others.

Cor. 2. Between two nonfimilar numbers, one or more means cannot be found.

For if there were any means, the numbers would be fimilar (Cor. I).

P R O P. XLII.

Like plane numbers are to one another, as the Squares of their fimilar fides or factors; and like folid numbers are as their cubes; and So on.
For if $a b, A B$ be fimilar planes, then $a: A::$ $b: \mathrm{B}$, and $\mathrm{aB}=\mathrm{Ab}$; but $a b: \mathrm{AB}:: a \mathrm{ab}$: aAB or AAb : : a a : AA (Cor. 4. Pr. 29).

Again, if $a b c, A B C$ are fimilar cubes, then fince $a B=A b$, and $a C=A c$, therefore $a b c: A B C:$: $a a \times a b c: a a \times \mathrm{ABC}$ (Cor.' 4. Pr. 29) : : $a^{3} \times b c$ $: A \times A b \times A c:: a^{3}: A^{3}$ (Cor. 4, Pr. 29).

Cor. No numbers prime to one cnother, except Squares, cre finilar plane numbers.

For if they be fimilar plane numbers, they are not prime; for if a be prime to A , yet b and B are fome equal multiple of $a, \mathrm{~A}$; and therefore are not prime to one another ($\operatorname{Pr} .30$).

P R O P. XLIII.

If a number of any powier meafures inother number of the fame power; then the root of the firft will meafure the root of the laft. And the contrary.
For in the continual proportionals, $\mathrm{A}^{3}, \mathrm{~A}^{2} \mathrm{~B}, \mathrm{AB}^{3}$, B^{3}; fince A^{3} meafures B^{3}, it alfo meafures $A^{2} B$ the fecond term (Cor. Pr. 34) But fince $A^{3}: A^{2} B$: : A : B (Cor. 4. Pr. 25); therefore if A^{\prime} meafures $A^{\wedge} B$, A will meafure B (Def. 27). On the contrary, if A meafures B, A^{3} will meafure $A^{2} B$; and $A^{2} B$, $A B^{2}$; and $A B{ }^{2} B^{3}$: therefore A^{3} meafures B^{3}, (Ax. io).

Cor. If the power does not meafure the power, neitber Soall the root meafure the root; and the contrary.

For if you fay A meafures B, then fhall A^{3} meafure B^{3}; contrary to the hypothefis.

And if you fay that A^{3} meafures B^{3}, then A will meafure B; likewife againft the hypothefis.

CHAB.

C H A P. III.

The properties of particular numbers. Divifors and aliquot parts. Circulating numbers, and fuch as terminate, or run on ad infinitum by divifion.

PROP. XLIV.

LL the powers of any number, 'ending in 5 , will alfo end in 5 : and if a number ends in 6 , all its powers end in 6 .
For 5 times 5 is 25 . And 6 times 6 is 36 .
PR O P. XLV.

No number is a Square, that ends in $2,3,7$, or 8 .
This is plain by fquaring all the natural numbers to 10.

PROP. XLVI.

Any even Square number is divifible by 4.
The root is even (Pr. 9), therefore let $2 n$ be the root, then $4 \pi n$ is the fquare of it; and 4 meafures or divides 4 mm .

Cor. A number confifing of two, tbree, \&xc. even Squares, is divijble by 4.
P R O P. XLVII.

An odd Square number, divided by 4, leaves a remainder of 1 .
The root of an odd fquare is odd (Pr. 8), therefore let $2 n+1$, be the root, which multiplied by 4 itfelf, meafure $4 n n+4 n$, and I will remain.

Cor. If a number confifing of two odd squares, be divided by 4 , it leaves a remainder of 2 ; of three odd fquares, it leaves a remainder of 3 .

P R O P. XLVIII.

In every Square number, the number of divijors is odd; in nonquadrate numbers, even.

Let $36(a a b b)$ be a fquare \quad I $3^{6} \mid$ I $a a b b$ number; now fince any di- 2 18 a $a b b$ | vifor and its quotient, are two | 3 | 12 | b | $a a b$ |
| :--- | :--- | :--- | :--- | :--- | \(\left.\begin{aligned} \& divifors; therefore if they be

\& fet down together, you will\end{aligned}{ }^{4} \quad 6{ }^{6}{ }^{9} \right\rvert\,\)| $a a$ | $b b$ |
| :--- | :--- | :--- | :--- |
| $a b$ | | find them to proceed by couples, till you come to the fquare root, where the divifor and quotient are the fame, and therefore that makes an odd one. But in a number not fquare, there is no fuch odd divifor, for they proceed by couples to the laft, and make an even number of divifors.

Cor. If the number of divifors be odds, it is a Square number ; if even, it is no Square.

PROP. XLIX.

Any poweer of a prime number batb as many aliquot parts, as is the dimenfion of its power.
As if a be a prime, then any power as a^{3} contains the 3 aliquot parts $\mathrm{I}, a, a a$. Alfo a^{4} contains thefe, I, $a, a a, a^{3}$, which are 4 ; and fo on.

Cor. The number of divijors in any power of a prime number, is equal to the index of the next fuperior power thereof.

For it is I more than the number of aliquot parts.

PR ○ P. L.

In any number made up of different primes or their porvers; the number of divifors thereof, is equal ta the continual product of the indices of the next fuperior powers of the ele primes.

For the divifors of a^{3}, are $\mathrm{r}, a, a a, a^{3}$ (Cor. Pr. 48); that is 4 . And the divifors
of $a^{2} b^{3}$, are fuch as are produced by multiplying $1, a, a a, a^{3}$, by each of
$\left.\begin{array}{lrr}\mathrm{I}, & a, & a a, \\ b, b a, b a a, & a^{3} \\ b a^{3}\end{array}\right\}$ I2. the divifors in b^{2}, that
is, by $1, b, b b$, which will make 4×3 or 12 divifors. Likewife the divifors in $a^{3} b^{2} c$, are had by multiplying thefe twelve into $1, c$, the two divifors of c, which witl be $4 \times 3 \times 2=24$; and fo on.

Cor. If the porvers of Several different prime numbers be multiplied together; the number of divifors in the product, is equal to the product made by the number of divijors in each power, multiplied togetber.

For the number of divifors in a^{3} is 4 , in b^{2} is 3 , in c is 2 ; and in $a^{3} b^{2} c$ is $4 \times 3 \times 2=24$.

P R O P. LI.

Any number divided by 9, woill leave the Same remainder, as the fum of its figures or digits divided by 9 .
Let there be any number, as 7604 ; this feparated into feveral parcels becomes $7000+600+4$; but $7000=7 \times 1000=7 \times 999+1=7 \times 999+7$. In like manner $600=6 \times 99+6$. Therefore 7604 $=7 \times 999+7+6 \times 99+6+4=7 \times 999+$ $6 \times 99+7+6+4$. Therefore $\frac{7604}{9}=\frac{7 \times 999+6 \times 99}{9}$ $+\frac{7+6+4}{9}($ Ax. 5$)$; but $7 \times 999+6 \times 99$ is evidently divifible by 9 , therefcre 7604 divided by 9 leaves the remainder nothing elfe but the fum of the digits $7+6+0+4$. And the fame holds for any other number.

Cor. I. If any number is divifille by 9 , the fum of its figures or digits is divifible by 9 . And the contrary-

For then the remainder will be nothing, in both of them.

Cor. 2. Any number divided z_{y} g, leaves the famm remainder, as when all the figures of it are any way transpofed, and then divided by 9 .

For the fum of the digits ftill remains the fame.

PROP. LII.

Any number divided by 3, will leave the fame remainder, as the fum of its figures or digits divided by 3 .

For fuppofe any number, as 7604 , and proceeding as in the laft Prop. we have $7604=7 \times 999+6$ $\times 99+7+6+4=7 \times 3 \times 333+6 \times 3 \times 33+7$ $+6+4$, and $\frac{7604}{3}=\frac{21 \times 333+18 \times 33}{3}+\frac{7+6+4}{3}$.
But it is evident $21 \times 333+18 \times 33$ is divifibly by 3 , confequently there remains only $7+6+4$ to be ilvided by 3 , which is the fum of the digits, as was propofed.

Cor. s. If any number is divifible by 3, the fum of its digits is alfo divifible by 3 : and the contrary.

For in both cafes nothing will remain.
Cor. 2. Axy number divided by 3, leaves the Saine remainder as it would do, when its digits are transpofed and placed in any otber order.

For the fum of the digits remains the fame in any pofition.

If any two numbers are Separately divided by 9 , and the two remainders multiplied together, and that product divided by 9 , this laft remainder woill be the fame, as if you divice ibe produEL of the two firt numbers by 9 . For let $9 \mathrm{~A}+a$, and $9 \mathrm{~B}+b$, be two numbers; a, b, being the two remainders. Then the product of the two numbers is $9 \times 9 \mathrm{AB}+9 \mathrm{~A} b+9 \mathrm{~B} a+a b$. But $9 \times 9 A B+9 A b+9 B a$ is divifible by 9 ; therefore there is no remainder but what is had by dividing $a b$ by 9 .

Cor. This Prop. bolds equally true for the number 3; and is demonftrated the fame way.

P R O P. LIV.

If one number be divided by another prime to it, and the divifon continued on indefinitely; the number of figures which circulate (or return again) in the quotient, will be alroays lefs than the number of units in the divifor.
Suppofe 6 divided by 7 ; here the divifor being 7 , the remainder muft be always lefs than it, and muft be either $1,2,3,4,5$, or 6 . So that in the 7 th place, if not before, one of thefe remainders muft needs return a fecond time; and the fame remainder returning, as before, a repetition of the fame figures muft return again in the quotient: and fo forward. And it is evident the fame will hold for any divifor ; the number of remainders, being always leís than the number of units in it.

PROP. LV.

If one number divide another prime to it, the quotient will end after a certain number of figures, when the divifor is compounded of 2 or 5 , or both: In all others cafes, the quotient will never end.

For fince dividing by any power of 2 is equivalent to dividing, firft by 2 , and then the quotient by 2 , and fo on; alfo dividing by any power of 5 is the fame as dividing firft by 5 , and then the quotient by 5 , and fo forward; and laftly, fince any number may be divided by 2 or 5 , at moft by adding a cypher: therefore it is plain, when the divifor is a compofite number made up of the powers of 2 and 5 , if the divifion be performed continually by the fingle numbers 2 , and 5 , as often as they are involved; that fo many feveral operations will end the divifioh, and the quotient be at an end.

On the contrary; any number \mathbf{P} that is prime to 2 and 5 , will be prime to 2×5 or 10 (Prop. 14). And the fame being prime to 10 , will be prime to 100, 1000, $10000, \xi^{\circ} c$. ad infinitum (Cor.2. Pr. 14) and therefore P can meafure none in that feries. Likewife if Q be prime to P, then P will be prime to $10 \mathrm{Q}, 100 \mathrm{Q}, \xi^{2} c$. (Pr. 14). So that P can ftill meafure none in this laft feries. Whence if P divide any of thefe, the quotient will continue without end. Yet the numbers will at laft circulate, according to Prop. 54.

P R O P. LVI.

In any circulating number, the whole circulating or repeating part, running on for ever; is equal to a vulgar fraction whofe numerator is the number repeating (or the repetend), and denominator as many 9 's as. there are figures in the repetend.

As in the number 24.35076507650765076 Ec . ad infinitum; $507650765076 \xi^{3} c_{c}=\frac{5076}{9999}=\frac{564}{1111^{2}}$ in the leaft terms.

For let $C=$ whole circulating part, $R=$ repetend or repeating figures 5076 ; then from the whole circulating part, that is, from. 50765076507650765076 E'c. $=$ C, take

$$
.507650765076507688^{2} c .=\frac{1}{10000} \mathrm{C},
$$

rem. $.5076=\mathrm{R}$.
But this taking away from C the 10000th part of itfelf, is equivalent to multiplying C by i $\frac{1}{10000}$ or by $\frac{10000-1}{10000}$, that, is by $\frac{9999}{10000}$, where there are as many cyphers and 9 's, as there are places of figures in the repetend. Therefore $\frac{9999}{10000} \mathrm{C}=\mathrm{R}=.50-6$, and $C=\frac{10000 \times \cdot 5076}{9999}=\frac{5076:}{9999 .}=.507650765076$ \mathcal{E}^{2} c. ad infinitum. And it is evident from the procefs, that it holds equally for any circulating number.

Cor. I. The circulation may be fuppofed to begin at any figure of the repetend, and therefore 24.350765076 5076 Egc. for ever, is $=24 \cdot 3 \frac{5076}{9999}=24.35 \frac{\circ 765}{9.959}$ $=24.350 \frac{7650}{9995}=24.3507 \frac{6.507}{9999}=24.35076 \frac{5.76}{9999}$ $\& c$.

Cor. 2. Hence if the repetend be divided by as many 9 's as it confits of places; the quotient will be the wobole circulating f rt, or the figures of the repetend, repeated over and civer for ever.

For $\frac{5076}{9999}=C$.
Cor. 3. And if the whole circulating part be multiplied by a number. confiting of as many 9 's, as there be places in the repetend (confidered as a decimal); the product will be the repetend.

Chap. III. of N U M B ER S.

For $9999 \mathrm{C}=5076$, and $.9999 \mathrm{C}=.5076$, the firft repetend.

Cor. 4. If any circulating number be multiplied by any given number, the product will be a circulating number; and the repetend will confift of the fame number of figures as before.

For in the circulating number 50765076 E cc. every repetend 5076 being equally multiplied, muft produce the fame product. And if thefe products confift of more places, the overplus in each being alike, is carried to the next, fo that each product is equally increafed, and therefore every four places continue alike. And the fame holds for any other number. For example, $5076 \times 13=65988$, but the 6 belongs to the firt place of the next repetend; which being every where added, the repetend now appears to be 5994 .
But the fame thing does not hold in divifion.
Cor. 5. If you take any prime number (except 2 and 5) for a divijor; and by it divide 1.0000 \&c. till 1 remains, or divide 99999 \&c. till o remains; the number of cypbers or -nines made ufe of, will be equal to the number of foures in the repetend; when the dividend is any number which is prime to the divifor.

For in dividing $\mathrm{I} .00 \mathrm{E}_{\mathrm{c}} \mathrm{c}$. by any number, when 1 remains, the figures in the quotient begin then to repeat over again, as you had i at firt to begin with. And fince $999 \mathcal{E}^{c}$. is lefs by 1 than $1000 \mathcal{E}^{\circ} c$. therefore o mult remain here when the repening figures are at their period. Whatever number of pepeating figures we have when this dividend is 1 ; we fhall have the fame number of figures in the repetend, whatever the dividend be, by Cor. 4. Therefore altering the dividend at pleafure, does not alter the number of places in the repetend, the divifor continuing the fame; provided the divifor and dividend
be prime to one another. For when the contrary happens, the quotient will circulate in fewer figures.

Cor. 6. If a circulating decimal bas a repetend of any number of figures, it may be confidered as baving a repetend of twice or thrice that number of figures, or any multiple thereof.

Thus in the number $4.137,37,37$, having the repetend 37 of 2 places; it may be confidered as having the repetend 3737 , or 373737 ; of 4 or 6 places, ξ° c.

Cor. 7. If twe or more numbers be added togetber, that have repetends of equal places; the fum will bave a repetend of the Same number of places.

This appears from Cor. I, and by the reafoning in Cor. 4. For every column of periods or repetends amounts to the fame fum.

P R O P. LVII.

If A, B, be two numbers, prime to one another; and each of them divides a number prime to it, and gives in the quctients two repetends of C and D places: I fay, the fame number divided by the product AB , weill give a repetend of fo many places, as is denoted by the leaft dividend of C and D .

For let N be the leaft number that C, D, divide; and let $a \times \mathrm{C}=\mathrm{N}=b \times \mathrm{D}$. Now it is plain that a periods of C will end with b periods of D ; and therefore they both terminate together after N places, if they begin together, as they may be fuppofed to do (Cor. I. Pr. 56). And they do not end fooner, becaufe N is the leaft dividend. Therefore the repetend confifts of N places, and no more.

To make it plainer, fuppofe $\frac{1}{11 \times 37}$ or $\frac{1}{407}$ to be the fraction propofed. Then fince $\frac{1}{15}=09 \mathrm{E}_{\mathrm{is}}$.

Chap. III. of N U M B E R S. 227 repeats in 2 places, and $\frac{1}{37}=.027, \mathcal{E}_{c}$. repeats in three places. And the leaft common dividend of $\mathbf{2}$ and 3 is 6 , therefore we may fuppofe them both to repeat in 6 places (Cor. 6. Pr. 56;. And fince 99 is divifible by 11 ; therefore $99,99,99$ is alfo divifible by 11 ; and fince 999 is divifible by 37 , therefore 999,999 , is alfo divifible by 37 . Therefore 999999 is divifible both by It and 37 ; and therefore it is divifible by 11×37 or 407 (rop. 16). And therefore the repetend of $\frac{1}{407}$ will confift of 6 places (Cor. 5. Pr. 56).

Cor. If the Several divifors $\mathrm{A}, \mathrm{B}, \mathrm{C}$, \&cc. be prime to one another, and repeat in $\mathrm{E}, \mathrm{F}, \mathrm{G}, \& \mathrm{c}$. places, respectively. And if N be the leaft dividend of $\mathrm{E}, \mathrm{F}, \mathrm{G}$, $\& \mathrm{c}$. then if the product $\mathrm{ABC}, \& \mathrm{c}$. be made a divijor, the quotient will repeat in N places.

This follows from Cor. 1'rop. 16, and the reafoning in this Prop.

$$
Q_{2} \quad C H A P
$$

C H A P. IV.

Numerical Problems.

PROBLEMI.

To find the greateft common meafure of two or more numbers.

R U L E.

TAKE two of the numbers, and divide the greater by the leffer, and the leffer by the remainder, and the laft divifor by the laft remainder, and fo on, till nothing remain : then the laft divifor is the greateft common meafure of thefe two numbers.

If there be more numbers, take the number laft found and another of the given numbers, and find their greateft common meafure as before: then this is the greateft common meafure of the three given numbers. And fo on. This procefs is plain from Prop. ${ }^{10}$.

Ex. 1.
Find the greateft common meafure of 72 and 60.

$$
\left.60^{\circ}\right) 72(1
$$

So 12 is the greateft common meafure of 72 and 60.

$$
E_{x .2} .
$$

To find the greateft common meafure of 72,60 and 28 .

Find 12 the greateft common meafure of 72 and 60 ; then find the greateft common meafure of 12 and 28.

$$
\begin{aligned}
& \text { 12) } \begin{array}{l}
28(24 \\
\frac{24}{4)} 12(3 \\
122
\end{array} \\
& \hline
\end{aligned}
$$

So 4 is the greateft common meafure of 72,60 , and 28.

P R O B L E M II.

Two or more numbers being given, to find the leaft numsbers, that bave the fame proportion with them.

R U L E.

Divide the feveral numbers by their greateft common meafure; and the quotients will be the numbers required. By Cor. I. Pr. 30.

Ex. I.

Let 12 and 18 be propofed, then 6 is the greateft common meafure, found by Prob. I.

$$
\text { 6) } 12(2 \quad 6) 18(3
$$

Then 2 and 3 are the numbers fought.

$$
\text { Ex. } 2 .
$$

Let 6,4 , and 8 be the numbers given; their greateft common divifor is 2 .
2) $6(3$
2) $4(2$
2) 8 (4.

Then $3,2,4$, are proportional to 6,4 , and 8 , and the leaft in that proportion.

$$
\text { Q3 } \quad \text { PRO. }
$$

PROBLEM III.

Two or more numbers being given, to find out their leaft common dividend.

R U L E.

Take two of the numbers, and divide their product by the greateft common meafure of thefe numbers; the quotient is the anfwer for thefe two numbers.

Then take a third number and the laft quotient, and divide their product by their greatelt common meafure; and the quotient is the leaft number which thefe three numbers meafure. And fo on.

For let the two numbers be $\mathrm{A}, \mathrm{B}:$ let P, Q, be the leaft in that proportion, M their greateft common meafure; then $\mathrm{PM}=\mathrm{A}, \mathrm{QM}=\mathrm{B}$. Then AQ or $\frac{A B}{M}$ is the leaft number A and B can divide or meafure.

If you fuppofe F to be lefs; let $\frac{F}{A}=G, \frac{F}{B}=H_{3}$ or $\mathrm{F}=\mathrm{AG}$ or BH , then by proportion $\mathrm{P}: \mathrm{Q}:$: $\mathrm{A}: \mathrm{B}:: \mathrm{AG}$ or $\mathrm{BH}: \mathrm{BG}:: \mathrm{H}: \mathrm{G}$ (Cor. 4. Pr. 29). But P meafures H ; and Q meafures G (Prop. 3°). And $Q: G:: A Q: A G$. And fince Q meafures G, therefore $A Q$ or $\frac{A B}{M}$ meafures $A G$ or F; that is, the greater meafures the lefs; which is abfurd.

And if there be three numbers A, B, C; let $D=$ $\frac{A B}{M}$ be the leaft dividend of A and B, and let E be the leaft that C and D meafure. Then E will be the leaft that A, B, C, meafure.

For if you fay there is a lefs, as F; then fince D is the leaft that A, B, meafure; therefore D meafures F (Cor. Pr. 11) ; and fince E is the leaft that C, D meafure; therefore E meafures F , the greater the lefs: which is abfurd.

$E x .1$.

To find the leaft number which 12 and 15 meafure, or their leaft dividend. 12

The greateft common meafure is $3 . \quad \overline{60}$

$$
\begin{aligned}
& \frac{12}{180} \\
& \frac{18}{0}
\end{aligned}
$$

Ex. 2.
To find the leaft number that 12,15 , and 24 meafure.

60 is the leaft dividend of 12 and 15 . Then the greateft common meafure of 60 and 24 is 12.

24
60
12) 1440 (120 , the leaft common dividend.
PROBLEM IV.

To find out the leaft numbers continually proportional, as many as 乃all be required, in a given proportion.

R U L E.

Find A, B, the leaft numbers in the given proportion (Prob. 2) ; then $A^{2}, A B, B^{2}$, will be the three leaft ; and $A^{3}, A^{2} B, A B^{2}, B^{3}$, will be the four leaft numbers. And in general if $n+1$ denote the number of terms required, then $A^{n}, A^{n-1} B, A^{n-2} B^{2}, A^{n-3} B^{3}$, $\xi^{\circ} c$. to B^{n} will be the numbers fought.

This is plain from Prop. 33. and Cor. I.
Ex. I.

To find three the leaft numbers in proportion as 8 to 12. Two the leaft are 2 and 3 , therefore the 3 numbers are $4: 6: 9$.

Ex. 2.
To find the four leaf numbers, as 4 to 6 .

$$
\text { Inf. } 8: 12: 18: 27
$$

Ex. 3.
To find five the leaf numbers, as 2 to 3 . Ant. $16: 24: 36: 54: 8 \mathrm{I}$. PROBLEM V.
Several proportions being given in the leaf terms; to find out the leaf numbers that continue these propertons.

RU LE.

Let $A: B, C: D, E: F$ be the feveral proportions;
$A: \stackrel{B}{C}: D$ proportions being placed as
$\frac{E: F}{A C E: B C E: B D E: B D F}$ in the margin; multiply the two firft terms A, B, by the leading terms of all the other proportions, C, E; this gives the two firft terms.

Multiply the latter term D in the fecond proporzion, by fuch factors as the firft term C is multiplied by : this is the third term.

Multiply the latter term F in the third proportion, by fuck factors as the former E is multiplied by, for the fourth term. And proceed thus through all the proportions.

Laftly, divide all by their greateft common meafore, when there is any foch. By Cor. 4. Pr. 2g.

Ex. 1.
Let the proportions be $6: 5$, and $10: 9$.

Ex. 2.
Suppose $6: 5$, and $4: 3$, and $2: 7$.

PROBLEM VI.

To resolve a number into all its component parts or factors.

> RU LE.

Divide the number by 2 as oft as you can, then by 3 , then by 5 , by 7 , and all the fmalleft prime numbers, till you get a prime number in the quotient. Then you have all the compounding prime numbers, which being continually multiplied, produce the number given. Def, 18.

$$
E x . \mathrm{I}_{0}
$$

Let 60 be propofed.

$$
2,3
$$

2) $60(30(15)$ (5. then $2 \times 2 \times 3 \times 5=60$:

Ex. 2.

What are the component parts of 360 ?

$$
\text { 2) } 360(180)(90(45)
$$

Therefore $2 \times 2 \times 2 \times 3 \times 3 \times 5=360$.

PR O BLEMVII.

To find all the juft divifors of a given number.

$$
\mathrm{R} \text { U L E. }
$$

Divide it and all the fucceeding quotients by the fmalleft prime numbers in order, till the laft quotient be I. Then you have all the prime divifors. Then multiply every two together, and every three, and every four, and fo on. : And thus you will have all the compound divifors thereof.

This follows from Prop. 50.

$$
\text { Ex. } 1 .
$$

What are all the divifors of 48 .
2) 48 ($24 \stackrel{2}{2}$ (12 $\stackrel{2}{6}$ (6) ${ }^{3}$ (ir.U) Then $1,2,2,2,2,3$, are all the prime divifors, and $1 \times 2,1 \times 3,2 \times 2$, 2×3, and $2 \times 2 \times 2,2 \times 2 \times 3$, and $2 \times 2 \times 2 \times 2$, $2 \times 2 \times 2 \times 3$, and $2 \times 2 \times 2 \times 2 \times 3$; that is, $1,2,30$ $4,6,8,12,16,24$, and 48 , are all the divifors.

Ex. 2.

What are all the divifors of $a b b c^{3}$?
The fimple divifors are i, a, b, b, c, c, c. And all the divifors will be $i, a, b, c, a b, a c, b c, a b b, a b c$, $a c c, b b, c c, b b c, b c c, c^{3}, a b b c, a b c c, b b c c, a c^{3}, b c^{3}, a b b c^{2}$, $a b c^{3}, b b c^{3}, a b b c^{3}$.

PR O B L E M VIII.

- find a number that Shall bave a given multitude of divijors.

R U L E.

Take the powers of as many prime numbers as is onvenien, fo that their ndices being each lefiened y 1 , and then mutciplied together, may be equal to te number of divifors. I fay, thefe powers all mulmifu together is the number fought. And the leffer he primes, the leffer the number will be.
This is plain by l'rop. 50 .

Example.

To find a number having 20 divifors.
Here $0=10 \times 2=5 \times 4=5 \times 2 \times 2$. Then ike $a, b, c, d, \& c c$. and any of thefe $a^{19}, a^{9} b, a^{4} b^{3}$, $4 b c$, will do. Let $a=2, b=3, c=5$. Then '9, $2^{9} \times 3,2^{4} 3^{3}, 2^{4} \times 3 \times 5$; that is, 524288,1536 , 32,240 , will any of them anfwer the queftion.

SCHOLIUM.

The number of aliquot parts, being I lefs, is pund the fame way. And by this operation it apears how to find all the different ways it can be deoted : which in this example are but four. But ny prime numbers may be ufed in each of thefe ays.

PR O B L EM IX.

To reduce a given fraEzion, or a given ratio, to the leaft terms; and as near as may be, of the fame value.

$$
1 \mathrm{R} \text { U LE. }
$$

Let A, B, be the two numbers. Divide the latter B by the former A, and you will have I for A; and fome number and a fraction annext, for B, call this C. Place thefe in the firlt ftep.

Then fubtract the fractional parts, from the denominator, and what remains put after $\mathrm{C}+1$, with a negative fign. Then throw away the denominator, and place 1 and that laft number in the fecond ftep. This is the foundation of all the reft.

If the fractional parts in both be nearly equal, add thefe two fteps together; if not, multiply the leffer by fuch a number as will make the fractional parts, in both, nearly equal, and then add. And this multiplier is found by dividing the greater fraction by the leffer, fo far as to get an integer quotient. When you add the fteps together, you muft fubtract the fractional parts from one another, becaufe they have contrary figns.

The procefs is to be continued on, the fame way, adding the laft ftep, or its multiple, to a foregoing ftep, viz. to that which has the leaft fraction.

Note. The ratios thus found will be alternately greater and leffer than the true one, but continually approaching nearer and nearer. And that is the neareft in fmall numbers, which precedes far larger numbers : and the excefs or defect of any one is vifible in the operation.

Ex. .
To find the ratio of 10000 to 7854 , in fmall numbers.

Explanation.

The ratio of 10000 to 7854 is the fame as \mathbf{I} to +.7854 or 1 to $1-.2146$; here I and I is the firlt atio. But 2146 being lefs than 7854 , divide the atter by the former, and you get 3 in the quotient, hen multiply I and $\mathrm{I}-.2146$ by 3 , produces 3 and $3-.6438$ as in the 3 d ftep. This third ftep added o the firft ftep produces 4 and 3 for the integers, and fubtracting the fractional parts, leaves .1416 . So the 4 th ftep is 4 and $3+.1416$; and the integers 4 and 3 is the 2 d ratio. In this manner it is continued to the end; and the feveral ratios approximating nearer and nearer, are $\frac{1}{1}, \frac{4}{3}, \frac{5}{4}, \frac{9}{7}, \frac{14}{11}$, $\frac{219}{172}, \frac{233}{183}, \frac{452}{355}, \frac{1137}{893}$, and $\frac{5000}{3927}$. Here $\frac{14}{11}$ is the neareft in fmall numbers, the defect being only $\frac{44}{10000}$.

$$
\text { Ex. } 2 .
$$

To find the ratio of 268.8 to 282 in the leaft numbers.

$$
\begin{aligned}
& \text { 2688) } 2820\left(\mathrm{I}_{2} \frac{132}{2688}=2-\frac{2556}{26888^{\circ}} .\right. \\
& 2688
\end{aligned}
$$

132

So the feveral ratios are $\frac{1}{1}, \frac{20}{21}, \frac{4 \mathrm{I}}{43}, \frac{61}{64}, \frac{224}{235^{\circ}}$. And the defect or excefs is plain by infpection, e.g. $\frac{41}{43}$ differs from the truth only $\frac{36}{2688}$ parts; and $\frac{20}{21}$, but 48 fuch parts.

The reafon of this procefs is evident from Cor. 3. Pr. 29. For if the terms of equal ratios be added ogether, the fums will be in the fame ratio.

2 R U L E.

Divide the greater number by the leffer, and the livifor by the remainder, and the laft divifor by the aft remainder, and fo on till o remain. Then
I divided by the firf quotient, gives the firft ratio.
And the terms of the firlt ratio multiplied by the econd quotient, and I added to the denominator, ives the fecond ratio.
And in general, the terms of any ratio, multiplied y the next quotient, and the terms of the foregoing atio added, gives the next fucceeding ratio.

Ex. 3.
Let the numbers be 10000 and 31416 , or the ratio 0000
1416°

$$
10000) 31416(3
$$

30000
1416) $10000(7$

9912	
88) 1416	
	536
	528

8) $88(11$

88

Thes

Then $\frac{1}{3}=$ firft or leaf ratio.
$\frac{1 \times 7}{3 \times 7+1}$ or $\frac{7}{22}=$ fecond ratio.
$\frac{7 \times 16+1}{22 \times 16+3}$ or $\frac{113}{355}=$ third ratio.
$\frac{113 \times 11+7}{355 \times 11+22}$ or $\frac{1250}{3927}=$ fourth ratio.

$$
\text { Ex. } 4 .
$$

The ratio of 268.8 to 282 is required.
2688) 2820 (1 2688
132) $2688(20$ $\frac{264^{\circ}}{48)} 132(2$

12) $36(3$
$\frac{36}{0}$
Then $\frac{1}{x}=$ firft ratio.
$\frac{1 \times 20}{1 \times 20+1}$ or $\frac{20}{21}=2 \mathrm{~d}$ ratio.
$\frac{20 \times 2+1}{21 \times 2+1}$ or $\frac{41}{43}=3$ d ratio.
$\frac{41 \times 1+20}{43 \times 1+21}$ or $\frac{61}{64}=4$ th ratio.
$\frac{61 \times 3+41}{64 \times 3+43}$ or $\frac{224}{235}=5$ th ratio.

To prove the truth of this rule, let $\frac{10000}{31416}$ be the ratio propofed; this is reduced to $\frac{\mathrm{I}}{3 \cdot 14 \times 6^{\circ}}$. It is plain that $\frac{1}{3}$ is the firft ratio, or that expreffed in the leaft terms. Now inftead of 3 take $3 \frac{1416}{\frac{1}{10000}}$ or $3 \frac{1}{7}$, which is more exact than 3 . Then inftead of $\frac{1}{3}$ we fhall have $\frac{1}{3^{\frac{1}{7}}}$ or $\frac{1 \times 7}{3 \times 7+1}=\frac{7}{22}$ for the 2 d ratio. Now intead of 7 take $7 \frac{88}{T 418}$ or nearly $7 \frac{1}{5 \sigma}$, which is nearer than 7. Then $\frac{1 \times 7}{3 \times 7+1}$ becomes $\frac{1 \times 7 \frac{1}{5} 7}{3 \times 7 \frac{1}{15}+1}$ or $\frac{\times 7 \times 16+1}{3 \times 7 \times 16+16+3}=\frac{7 \times 16+1}{22 \times 16+3}$ for the third ratio, which is equal to the 2 d ratio multiplied by 16, he ift ratio. Again, for 16 take $16_{\frac{8}{8} 8}$ or $16_{\frac{1}{T}}$, which will be more exact ftill; then $\frac{7 \times 16+1}{22 \times 16+3}$ pecomes $\frac{7 \times 16_{7}^{\frac{1}{T}}+1}{22 \times 16_{T}^{\frac{1}{T}}+3}$ or $\frac{7 \times 16 \times 11+11+7}{22 \times 16 \times 11+3 \times 11+22}$ $=\frac{7 \times 16+1 \times 11+7}{22 \times 16+3 \times 11+22}$ for the 4 th ratio, which is qual to the 3 d ratio multiplied by it, + the 2 d atio. And fo forward, if there were more.

PROBLEMX.

To reduce a decimal to a vulgar fraction.

R U L E.

Place the decimal as a numerator over 1 and as any cyphers as there are figures, for a denominator. Chen reduce it to the loweft terms.
If the decimal circulate, place the figures of the epetend for a numerator, and as many 9 's for a deominator: and reduce as before. This appears rom Prop. 5^{6}.

$$
\mathrm{R} \quad \bullet E x_{0}
$$

$$
\text { Ex. } 1 .
$$

Let .3065 be propofed.
$.3065=\frac{3065}{10000}$, divide by 5 , then $\frac{613}{2000}$ is the fraction required.

$$
\text { Ex, } 2 .
$$

To reduce $6.32309309309 \mathrm{Eg}^{2}$. to the form of a vulgar fraction.
 $=6 \frac{32 \frac{2103}{100}}{100}=6 \frac{10759}{33300}$.
PROBLEM XI.

Having a vulgar fraction given in the loweft terms, and the denominator a prime (neither 2 nor 5); to find the number of figures that circulate, by dividing the numerator by the denominator.

> R U L E.

Divide 9999 E c c. by the denominator till o remains, then the number of 9 's made ufe of, will be equal to the number of places in the repetend.

By Cor, 5. Prop. 56.
Ex. I.

Suppore $\frac{287}{37}$, to be given.
37) 99999 (027 . Here are three nines ufed, therefore 74° the repetend confifts of 3 places.

259
259

Ex. 2.
Let $\frac{I}{I I}$ be propofed.
11) 999 (9. Here are 2 nines made ufe of, therefore 99 the repetend has 2 places.

0

$$
\text { Ex. } 3
$$

$$
\text { Let } \frac{2}{7} \text { be given. }
$$

7) 9999999 (142857 . Here are 6 nines, and the repetend confifts of 6 places.

PROBLEMXI.

Having a vulgar fration in the loweft terms, and the denominator made up of two or more different primes (neither 2 nor 5); to find the number of figures circulating, by dividing thereby:

> R U L E.

Find the number for each fingle prime in the denominator, by Prob. ir. Then find the leaft dividend of all thefe numbers, by Prob.3. And that is the number of figures circulating.

This appears by Prop. 57. and Cor.
Ex. . .

$$
\text { Let } \frac{13}{11 \times 37} \text { be propofed. }
$$

The repetend by 1 I confifts of 2 places; and that by 37 of 3 places; and 6 is the leaft number that 2 and 3 divide; therefore if 13 be divided by 407 , the repetend in the quotient will confift of 6 places.

Ex. 2.
Let the fraction be $\frac{1}{3 \times 7 \times 1 \times 37}$ or $\frac{1}{8547}$.
The repetend by $3,7,11$, and 37 , is $1,6,2,3$, refpectively; and the leaft number which $1,6,2$, and 3 meafure, is 6 , for the number of places in the repetend.

It is not my defign here to fhew the feveral ways of working with circulating numbers, or repeating decimals. It is fufficient for me to explain the general principles thereof; that the reader may have an idea of the nature of them. For almoft all operat tions may be as fpeedily performed by the fhort rules delivered in multiplication and divifion of decimals, They that would fee more of it may confult Mr. Cun's treatife of circulating numbers.

$$
F \quad I \quad N \quad I \quad S_{8}
$$

ERRRA T A.

Page	Line	Reau
79	8	Ex.5.
	17	Ex.6.
80	27	In Ex. 5th.
18	In Ex.6th:	
	22	Ex. 7.

THE

D O C T R I N E

 OF
PROPORTION,

ARITHMETICAL

AND
GEOME TRICAL.

Together with a general Method of arguing by proportional Quantities.

Si Proportionis Doctriname Matbef abfuleris, nibil fere preclarum aut egregium relinques.

Wh. Tac. Eucl.

LONDON,
rinted for J. Nourse, Bookfeller in Ordinary to his MAJESTY. MDCOLXIIT.

鈤

THE

PREFACE.

s$I N C E$ all manner of quantities require to be compared together, in matbematical computations, and their varisus relations fearcbed ut and determined; and as mof of our knowledge in matbematical fubjects depends on the proportions of Several things to one anotber: So it is requifte bat the nature of proportion, and the methods of reafoning thereby, be diftinctly laid down and well. nderflood. It is a method of reafoning So very Vort, fubtle, folid, and ceriain, and likevife Jo Peful in all parts of the mathematics, that it is mpolible to make the leaft progrefs weithout it. It sthe marrow of the matbematics, and the very pul of geometry and geometrical reajoning. Therepre it is abfolutely neceflary, that every one woba ppects to fucceed in bis mathematical fudies, pould make bimfelf açuainted witb the nature reafoning weith proportional quantities, and beme ready and quick in the ufe thereof.
I bad before, in the Treatije of Aritbmetic, emonfrated fome ferw tbings relating to proporons ; but no more than I bad then prefent occafion r, in treating of the properties of numbers. ut in this fmail tract, I bave demonfrated the Ctrine of proportions univerefally, for all quantiis whatfoever, as weell as numbers.

The PREFACE.

The metbod I bave bere followed is this : Sect. I. treats of aritbmetical proforition and progreffion. And Sect. II. of geometrical proportion. And berein I bave taken the liberty to deviate from Euclid, by giving a different definition of proportional quantities; bis being abftrufe and unintelligible, efpecially to young Jtudents. This bere laid down being evidently agreeable to, and deducible from, the firf, fimple, and natural idca we form of proportion. Neitber bave I followed bis order of propofitions, or method of demonfration: but bave omitted many of his propofitions as of little. ufe, and added feveral other more ufeful ones, wubich be bad not. And thefe I bave demonfirated from that moft fimple idia of proportion before mentioned, with the greateft cafe and perfpicuity imaginable. And becaufe the metbod of arguing by a general proportion is vafily Jocrier and eafier than the common zoay with four terms; therefore I have in Sect. III. demonfrated the fundamental propopitions it depends on; and bas Jbewn and explained the way of proceeding, according to that method. And therefore I lope this will bo:b ing truct and delight the diligent reader.
W. Emerfon.

A X I O M S.

r. The whole is equal to all the parts taken together.
2. If equal quantities be added to equal quantities; the fums will be equal.
3. If equal quantities be taken from equal quantities; the remainders will be equal.
4. If equal quantities be equally multiplied; the products will be equal.
5. If equal quantities be divided by equal numbers; the quotients will be equal.
6. Equal quantities have the fame proportion to any third quantity : and any quantity has the fame ratio to equal quantities.
7. Thofe quantities are equal, that have the fame ratio to any third; or when a third has the fame ratio to each of them.
8. Thofe ratios or quantities, that are equal to a third, are equal to one another.
9. A greater quantity has a greater ratio to a third, than a leffer quantity has. And that which has the greater ratio, is the greater quantity.

If there be two equal ratios, and one be greater than a third, the other will be greater; if lefs, the other will be lefs.

The fignification of the Signs or Characters here used.

+ to be added.
- to be fubtracted.
$\times \quad$ multiplied by, or AB is A multiplied by B .
\div divided by, or $\frac{A}{B}$ is A divided by B.
$=$ equal to.
$::$ geometrical proportion, as $\mathrm{A}: \mathrm{B}:: \mathrm{C}: \mathrm{D}$, fignifies A is to B, as C is to D.
\propto is as; a mark of general proportion.
\div continual proportion, or geometrical progreflion. As $A: B: C: D \div$, fignifies that A is to B, as B to C, as C to $\mathrm{D}, \mathrm{E}^{2}$.
$\because \quad$ arithmetical proportion, as A.B $\because \cdot$ C. D.
\because arithmetical progreffiona,
\therefore harmonic proportion.
\therefore harmonic progreffion,

S E C T. 1.

 Arithmetical Proportion.

 Arithmetical Proportion.}

DEFINITIONS.

1.

ARITHMETIC proportion, is the relation that two quantities, of the fame kind, have to one another, in refpect of their difference. The former quantity is called the $a n-$ feredent; and the latter, the confequent. And there are called the terms of the proportion.
2. Ratio is the difference between the antecedent and confequent. Therefore arithmetic ratio is of the fame kind as the quantities themfelves. This is commonly called the common difference.
3. 2uantities aritbmetically proportional, are thofe that have the fame arithmetic ratio, when compared two and two ; fo that the antecedents, may be every where fubtracted from the confequents; or elfe the confequents from the antecedents.
4. Continued proportion is when the firft has the fame proportion to the fecond, as the fecond to che third.
5. Aritbmetical progreffion, is when a feries of quantities are in the fame arithmetical propertion, Or when they increafe, or decreale by equal differences.
6. Mufical proportion, and progrefion, is when there is a feries of quantities, where the numerators are the fame, and the denominators in arithmetic progreffion.

$$
A_{4} \quad \text { PROP. }
$$

ARITHMETICAL

$$
\text { P.R O P. } 1 .
$$

If four quantities are aritbmetically proportional, $\mathrm{A}: \mathrm{B} \because \mathrm{C} . \mathrm{D}$; the fum of the extremes is equal to the fum of the means, $\mathrm{A}+\mathrm{D}=\mathrm{B}+\mathrm{C}$.

For $\mathrm{A}-\mathrm{B}=\mathrm{C}-\mathrm{D}$ (Def. 3), and adding $\mathrm{B}+\mathrm{D}, \mathrm{A}-\mathrm{B}+\mathrm{B}+\mathrm{D}=\mathrm{C}+\mathrm{B}-\mathrm{D}+\mathrm{D}$ (Ax. 2); that is, $\mathrm{A}+\mathrm{D}=\mathrm{C}+\mathrm{B}$.

Cor. If three quantities be in aritbmetic progreflion, the fum of the extremes is double the mean.

PROP. II.

If there be two ranks of quantities in aritbmetic proportion; their ' Jums and differences fhall alfo be in aritbmetic proportion. If $\mathrm{A}, \mathrm{B} \because \mathrm{C}, \mathrm{D}$, and $P \cdot Q \because R . S ;$ then $A+P \cdot B+Q \because C+R$. $\mathrm{D}+\mathrm{S}$, and $\mathrm{A}-\mathrm{P} \cdot \mathrm{B}-\mathrm{Q} \because \mathrm{C}-\mathrm{R}$. D - S.

For let $\mathrm{A}-\mathrm{B}=\mathrm{C}-\mathrm{D}=m$, and $\mathrm{Q}-\mathrm{P}=$ $S-R=n$. Then $B=A-m, D=C-m$, $\mathrm{Q}=\mathrm{P}+n, \mathrm{~S}=\mathrm{R}+n$. And $\mathrm{B}+\mathrm{Q}=\mathrm{A}-m$ $+\mathrm{P}+n, \mathrm{D}+\mathrm{S}=\mathrm{C}-m+\mathrm{R}+n$. But $\mathrm{A}+\mathrm{P} \cdot \mathrm{A}-m+\mathrm{P}-n \cdot \mathrm{C}+\mathrm{R} \cdot \mathrm{C}-m+$ $\mathrm{R}+n$ (Def. 3).
Again, $\mathrm{B}-\mathrm{Q}=\mathrm{A}-m-\mathrm{P}-n$, and D -$\mathrm{S}=\mathrm{C}-m-\mathrm{R}-n . \quad$ But $\mathrm{A}-\mathrm{P} . \mathrm{A}-m-$ $\mathrm{P}-n \because \mathrm{C}-\mathrm{R} . \mathrm{C}-m-\mathrm{R}-n$ (Def. 3)

PROP. III.

If three quantities are in arritbmetic progrefion; the rectangle of the extremes, together with the $\sqrt{\text { quare }}$ of the common difference, is equal to the Square of the mididle term. If $\mathrm{A}, \mathrm{B}, \mathrm{C} \div$, then $\mathrm{AC}+\overline{\mathrm{B}-\mathrm{A}}^{2}$, $=\mathrm{BB}$.

For let $D=B-A=C-B$, and $A=B-D$, $C=B+D$; then $A C=\overline{B-D} \times \overline{B+D}=B B$ $+\mathrm{BD}-\mathrm{BD}-\mathrm{DD}=\mathrm{BB}-\mathrm{DD}$. And $\mathrm{AC}-$ $D D=B B(A x .2)$.

Cor. A fet of arithmetical proportionals, wobofe comnon difference is exceeding fmall, is nearly a Set of geonetrical proportionals. See the next fection.
PR O P. IV.

In a Series of quantities in aritbmetical progreffion; be fum of the extremes is equal to the fum of any two keans, equally diftant from the extremes. If A.B. D. D.E.F. $\mathrm{G} \because$; then $\mathrm{A}+\mathrm{G}=\mathrm{B}+\mathrm{F}=$ $\not \subset \mathrm{E}, \mathrm{E}^{\circ} \mathrm{c}$.
For fince $A . B \because F \cdot G$ (Def. 5), therefore $+G=B+F$ (Prop. I). And fince B. $C: \because$ E. , therefore $\mathrm{C}+\mathrm{E}=\mathrm{B}+\mathrm{F}=\mathrm{A}+\mathrm{G}, \mathrm{E}_{\mathrm{c}} \mathrm{c}$.
Cor. Hence the fum of the extremes is double the ean, when the number of terms is odd.

PROP. V.

If out of a. Series of quantities in aritbmetical proefion, there be taken any feries of equidijtant terms; is feries will alfo be in aritbmetic progreflion.
If A.B.C.D.E.F.G.H.I.K.L.M \because,
pen B E H L are
For $\quad C-B=D-C=E-D=R$, and iding all together, $\mathrm{E}-\mathrm{B}=3 \mathrm{R}$.
1fo $\mathrm{F}-\mathrm{E}=\mathrm{G}-\mathrm{F}=\mathrm{H}-\mathrm{G}=\mathrm{R}$, and $1-\mathrm{E}=3 \mathrm{R}$.
gain, $\quad \mathrm{I}-\mathrm{H}=\mathrm{K}-\mathrm{I}=\mathrm{L}-\mathrm{K}=\mathrm{R}$, and $-\mathrm{H}=3_{\mathrm{R}}^{\mathrm{R}}, \mathrm{E}_{\mathrm{c}}$.
herefore, $\mathrm{E}-\mathrm{B}=\mathrm{H}-\mathrm{E}=\mathrm{L}-\mathrm{H}(\mathrm{Ax} .8)$.
nd

$$
\text { B.E.H.L } \because(\text { Def. } 5) .
$$

PROP.

PR O P. VI.

In a feries of quantities in aritbmetic progreffion, A.B.C.D.E, whofe number is n, and common difference x; the laft term $(\mathrm{E})=\mathrm{A}+\overline{n-1} \times *$ in an increafing progreffion, or laft term $(\mathrm{E})=\mathrm{A}-$ $n-I \times x$ in a decreafing one.

For the difference between A and B, B and C , C and D, D and E , being x; the difference between A and E will be fo many times x, as are the terms beyond A ; that is, $\overline{n-1} \times x$. Whence $\mathrm{A}-\mathrm{E}$, or $\mathrm{E}-\mathrm{A}=\overline{n-1} \times x$. And $\mathrm{E}=\mathrm{A}+\overline{n-1} \times x$, or $=\mathrm{A}-n-1 \times \times(\mathrm{Ax} .2,3)$.

Cor. The common difference is equal to the difference of the extremes, divided by the number of terms.less one.

$$
\text { For } x=\frac{\mathrm{A}-\mathrm{E} \text { or } \mathrm{E}-\mathrm{A}}{n-\mathrm{I}}(\mathrm{Ax} \cdot 5) \text {. }
$$

> PROP. VH.

The fum, of a Series of quantities in aritbmetic progreffion, is equal to balf the product, of the fum of the extremes, multiplied by the number of terms.
If A. B. C. D. $\mathrm{E} \because$, then the fum $=\frac{\overline{\mathrm{A+E}} \times n}{2}$, n being the number of terms.
 Therefore twice the fum is equal to as many times $A+E$, as there are terms, or the fum $=$ $\frac{A+E}{2} \times n$ 。

PROP.

PROP. VIII.

In a Series of quantities in arithmetical progreffion from o, their differences are equal; in their Squares, the differences of the differences, or the Second differences, are equal; in their cubes, the third differences are equal; and So on.

Let the ferries be $0, a, 2 a, 3 a, 4 a, 5 a, 6 a, \mathcal{E}^{3} c$. then θ, aa $4 a a$ qa 16aa $25 a a$ E$^{2} c$. (quires. aa ja ja ja qa 1 differences. $2 a a \quad 2 a a \quad 2 a a \quad 2 a a \quad 2$ differences.
Again, o $a^{3} 8 a^{3} 27 a^{3} \quad 64 a^{3}$ cubes.

$$
\begin{array}{lll}
a^{3} 7 a^{3} & 19 a^{3} & 37 a^{3} \\
6 a^{3} & \text { I differences. } \\
6 a^{3} & 6 a^{3} & 18 a^{3}
\end{array} \quad 2 \text { differences. } \quad 3 \text { differences. }
$$

And fo for higher powers.
Cor. 1. In the $n^{\text {th }}$ powers, the $\overline{n+1}{ }^{\text {th }}$ differences are 0.

Cor. 2. The equal differences in the laterals, Squares, cubes, biquadrates, \&c. are $1 a, 1 \times 2 a a, 1 \times 2$ $\times 3 a^{3}, 1 \times 2 \times 3 \times 4 a^{4}$, soc. refperively.

S E C T. II.
 Geometrical Proportion.

DEFINITIONS.

1. EOMETRICAL proportion, is the relation or refpect, that two quantities, of the fame kind, have to one another in regard to their bignefs. The former quantity is called the antecedent; and the fecond, the confequent.
2. Ratio is the quotient arifing by dividing the antecedent by the confequent : Or it is the number which expreffes how oft the antecedent contains the confequent ; which number may be either whole, fractional, or furd. When the antecedent and confequent are equal; it is called a ratio of equality; if not, of inequality.
3. Terms of the ratio, are the antecedent and its confequent.
4. Froportional quantities are thofe that have the fame ratio or proportion, when compared two and two together; that is, when the firft is to the fecond, as the third to the fourth; or when the firft contains the fecond, as oft as the third contains the fourth; and the contrary.
5. Homologous or alternate terms, are the antecedents of feveral ratios, or elfe the confequents. And any antecedent and its confequent, are called analogous terms.
6. Direct proportion, is when the fame proportion holds from the firt term to the fecond, and
from the third to the fourth, as if A, B, C, D, be four quantities; then it is direerly $\mathrm{A}: \mathrm{B}:=$ C: D.
7. Reciprocal or inverse proportion, is when one fort of quantity increafes, in the fame proportion that another decreafes.
8. Dijcreet proportion, is when out of four terms, the fecond has not the fame proportion to the third, which the firft has to the fecond, or the third to the fourth.
9. Continual proportion, is when the frt term has the fame proportion to the fecond, as the frond to the third.
10. Geometrical progrefion, is when a feet of quantities are in continual proportion; or when the firft has the fame ratio to the fecond, as the fecond to the third, and as the third to the fourth, and the fourth to the fifth, $\mathcal{E}^{\circ} c$.
11. Extreme and mean ratio, is when a quantity s fo divided, that the leffer part, the greater part, ind the whole, are in continual proportion.
12. Complicate ratio, is that which aries by moliplying feveral other ratios together.
13. Duplicate, triplicate, ratio, \&cc. is the quatre, cube, \mathcal{E}^{c}. of rome given ratio.
14. Harmonical ratio, is when a quantity is diided into three parts, fo that the whole is to one art, as the fecond part to the third. And when he fecond and third are equal ; it is called barmonic apportion continued.

$$
P R O P
$$

If Several pairs of quantities are in the fame proportion, $\mathrm{A}: \mathrm{B}:: \mathrm{C}: \mathrm{D}:: \mathrm{E}: \mathrm{F}:: \mathrm{G}: \mathrm{H}$; then as any antecedent to its consequent, fo is any other antecedent to its consequent, $\mathrm{A}: \mathrm{B}:: \mathrm{G}: \mathrm{H}$.

For fince $\frac{A}{\mathrm{~B}}=\frac{\mathrm{C}}{\mathrm{D}}=\frac{\mathrm{E}}{\mathrm{F}}=\frac{\mathrm{G}}{\mathrm{H}}($ Def. 4), therefore $\frac{A}{B}=\frac{G}{H}(A x .8)$; whence $A: B:: G: H$ (Def. 4).
PR OP. II.

If four quantities are proportional, $\mathrm{A}: \mathrm{B}:: \mathrm{C}$ $: \mathrm{D}$; and if the firs A , be greater than the Second B; then the third C, fall be greater than the fourth D. If equal, they shall be equal; if le es, le ss.

For fence $\frac{A}{B}=\frac{C}{D}($ Def. 4), by the nature of fractional quantities, if A be greater than B, the quotient or ratio will be more than 1 , and therefore C greater than D. But if A be equal to B, $\frac{A}{B}=1$, and $C=D$. But if A be less than B, the quotient is lees than r , and therefore C left than D .
PR OP. III.

If four quantities are proportional, $\mathrm{A}: \mathrm{B}:: \mathrm{C}: \mathrm{D}$; they fall also be proportional by reverfion; that is, the fecond B is to the first A ; as the fourth D , is to the third C ; or $\mathrm{B}: \mathrm{A}:: \mathrm{D}: \mathrm{C}$.

For let $\frac{A}{B}=\frac{C}{D}=r$ the ratio, then $A=B r$, and $\mathrm{C}=\mathrm{Dr}(\mathrm{Ax} .4)$; and $\mathrm{B}=\frac{\mathrm{A}}{r}$, and $\mathrm{D}=\frac{\mathrm{C}}{r}$ (Ax. 5); also $\frac{B}{A}=\frac{1}{r}$, and $\frac{D}{C}=\frac{I}{r}$ (ib.); whence $\frac{B}{\mathrm{~A}}=\frac{\mathrm{D}}{\mathrm{C}}(\mathrm{Ax} .8)$; therefore $\mathrm{B}: \mathrm{A}:: \mathrm{D}: \mathrm{C}$ (Def. 4).

PROP. IV.

If four quantities of the fame kind are proportional, A : B :: C : D; they fall be proportional alterlately or by permutation; that is, the firft A, Ball be - the third C ; as the Second B , is to the fourth D .

For $\operatorname{let} \frac{\mathrm{A}}{\mathrm{B}}=\frac{\mathrm{C}}{\mathrm{D}}=r$, then $\mathrm{A}=\mathrm{B} r$, and $\mathrm{C}=$
$\operatorname{Pr}(A x .4)$; then $\frac{A}{C}=\frac{B r}{D_{r}}=\frac{B}{D}(A x .5)$; thereore A : C : : B : D (Def. 4).

PROP. V.

Quantities are in the fame ratio, as their equiultiples; A : B :: $n \mathrm{~A}: n \mathrm{~B}$.
For let $\frac{\mathrm{A}}{\mathrm{B}}=r$, then $\mathrm{A}=\mathrm{B} r(\mathrm{Ax} .4)$; and $n \mathrm{~A}$ $=n \mathrm{Br}(\mathrm{ib}$.$) ; and \frac{n \mathrm{~A}}{n \mathrm{~B}}=r(\mathrm{Ax} .5)$; therefore $\frac{\mathrm{A}}{\mathrm{B}}=$ $\frac{\mathrm{A}}{3}$ (Ax. 8 ; ; therefore $\mathrm{A}: \mathrm{B}:: n \mathrm{~A}: n \mathrm{~B}$.
Cor. I. Quantities are in the fame ratio, as their. te parts.
For $n \mathrm{~A}: n \mathrm{~B}:: \frac{n \mathrm{~A}}{n}: \frac{n \mathrm{~B}}{n}:: \mathrm{A}: \mathrm{B}$.
Cor. 2. The like parts of two quantities, taken an wal number of times, are as the quantities themselves.

PROP. VI.

If four quantities are proportional, $\mathrm{A}: \mathrm{B}:: \mathrm{C}$ D; and two homologous or analogous terms be both them equally multiplied, or divided; the four terms ill fill be proportional.
For $\mathrm{C}: \mathrm{D}:: n \mathrm{C}: n \mathrm{D}(\operatorname{Pr} . \mathrm{V}):: \frac{\mathrm{C}}{n}: \frac{\mathrm{D}}{n}(\mathrm{Pr}$.
Cor. I); therefore $\mathrm{A}: \mathrm{B}:: n \mathrm{C}: n \mathrm{D}: \therefore$ $: \frac{D}{n}$ (Prop. I).
Again,

Again, A : C :: B : D (Prop. IV) :: $n \mathrm{~B}: n \mathrm{D}$ $\frac{\mathrm{B}}{n}: \frac{\mathrm{D}}{n}$ (Prop. VI). Therefore $\mathrm{A}: n \mathrm{~B}:: \mathrm{C}: n \mathrm{D}$. And $A: \frac{B}{n}:: C: \frac{D}{n}$ (Prop. IV).

Cor. I. If two correspondent terms be multiplied by one number, and the other two terms by another number; the refulting terms will be proportional: If $\mathrm{A}: \mathrm{B}:: \mathrm{C}: \mathrm{D}$, then $m \mathrm{~A}: m \mathrm{~B}:: n \mathrm{C}: n \mathrm{D}$; or $m \mathrm{~A}: n \mathrm{~B}:: m \mathrm{C}: n \mathrm{D}$.

Cor. 2. And if two correfpondent terms be divided by one number, and the.other two by anotber number; the quotients will be proportional.

Cor. 3. Hence, inftead of any two correfpondent terms; two otbers, proportional to them, may be put in their room.

P R O P. VII.

If four quantities are proportional; and inftead of two factors, in two analogous terms, if there be fubAituted two other quantities, in the Same ratio; the four quantities will fitll be proportional: If $\mathrm{A}: \mathrm{B}$ $:: \mathrm{PQ}: \mathrm{RS}$; and $\mathrm{Q}: \mathrm{S}:: \mathrm{M}: \mathrm{N}$. Then $\mathrm{A}:$ $B:: P M: R N$.

For fince $\mathrm{A}: \mathrm{B}:: \mathrm{PQ}: \mathrm{RS}$; by dividing the antecedents by P , and the confequents by R , $\frac{A}{P}: \frac{B}{R}:: Q: S:: M: N$ (Prop. VI. Cor.); then multiplying the antecedents by P , and the confequents by R , we have $\mathrm{A}: \mathrm{B}:: \mathrm{PM}: \mathrm{RN}$.

PR O P. VIII.

If the parts taken away from two whole quantities, be as the wholes; then the remainders, fhall. be as the roboles. If $\mathrm{A}: \mathrm{C}:: \mathrm{A}+\mathrm{B}: \mathrm{C}+\mathrm{D}$; then $\mathrm{B}:$ $D:: A+B: C+D$.

For $\mathrm{A}: \mathrm{A}+\mathrm{B}:: \mathrm{C}: \mathrm{C}+\mathrm{D}$ (Prop. IV); and $A+B: A: C+D: C$ (Prop. III); and $\frac{A+B}{A}=\frac{C+D}{C}\left(\right.$ Def. 4); that is, $x+\frac{B}{A}=1+$ and $\frac{B}{A}=\frac{D}{C}(A x .3)$; therefore $B: A:: D$ C , and $\mathrm{B}: \mathrm{D}:: \mathrm{A}: \mathrm{C}$ (Prop. IV) : : $\mathrm{A}+$ $: C+D$.

Cor. The fame things fuppofed, the remainders ball be as the parts taken away, A : B : : C : D.

P R O P. IX.
The fum of the greateft and leaft, of four proortional quantities, is greater than the fum of the ther two.

Suppofe A:B::C:D, and let A be the reateft term, then of confequence D is the leaft rop. II) : then $\frac{A}{B}=\frac{C}{D}=r$. Now fince A is reater than B, r is greater than I , therefore put $=\mathrm{I}+s$. Whence $\mathrm{A}=r \mathrm{~B}=\mathrm{B}+s \mathrm{~B}$, and C $r \mathrm{D}=\mathrm{D}+s \mathrm{D}(\mathrm{Ax} .8)$. Then $\mathrm{A}+\mathrm{D}=\mathrm{B}+$ +D , and $\mathrm{B}+\mathrm{C}=\mathrm{B}+\mathrm{D}+s \mathrm{D}$. But B is eater than D , and $s \mathrm{~B}$ greater than $s \mathrm{D}$; therefore $+\mathrm{D}+s \mathrm{~B}$ is greater than $\mathrm{B}+\mathrm{D}+s \mathrm{D}$; or A D greater than $B+C$.

Cor. The fum of A and $\mathrm{D}=$ fum of B and $\mathrm{C}+$ $\overline{-1} \times \overline{B-D}$.

For one of thefe fums exceeds the other by $s \times \overline{B-D}$.

P R O P. X.

If feveral quantities are proportional; $\mathrm{A}: \mathrm{B}:$: $\mathrm{C}: \mathrm{D}:: \mathrm{E}: \mathrm{F}:: \mathrm{G}: \mathrm{H}$; as one of the antecedents, to its confequent; fo is the fum of all the antecedents, to the fum of all the confequents; $\mathrm{A}: \mathrm{B}:$ $A+C+E+G: B+D+F+H$.

For let $\frac{\mathrm{A}}{\mathrm{B}}=r$, or $\mathrm{A}=\mathrm{B} r, \mathrm{C}=\mathrm{D} r, \mathrm{E}=\mathrm{F} r$, $\mathrm{G}=\mathrm{H} r$, and $\mathrm{A}+\mathrm{C}+\mathrm{E}+\mathrm{G}=\mathrm{B} r+\mathrm{D} r+$ $\mathrm{Fr}+\mathrm{Hr}=\overline{\mathrm{B}-\mathrm{H}+\mathrm{D}+\mathrm{F}+\mathrm{H}} \times r$ (Ax. 8); therefore $\frac{A+C+E+G}{B+D+F+H}=\frac{\overline{B+D+F}+H}{B+D+F+H}$ $=r$; therefore $\frac{\mathrm{A}}{\mathrm{B}}=\frac{\mathrm{A}+\mathrm{C}+\mathrm{E}+\mathrm{G}}{\mathrm{B}+\mathrm{D}+\mathrm{F}+\mathrm{H}}$; therefore, $\mathcal{V}^{2} c$.

P R O P. XI.

If there be twoo ranks of propartional quantities, and the two means be the fame in both; the extremes will be reciprocally proportional. If $\mathrm{A}: \mathrm{B}:: \mathrm{C}: \mathrm{D}$, and $\mathrm{E}: \mathrm{B}:: \mathrm{C}: \mathrm{F} ;$ then $\mathrm{A}: \mathrm{E}:: \mathrm{F}: \mathrm{D}$.

For let $\frac{\mathrm{A}}{\mathrm{B}}=\frac{\mathrm{C}}{\mathrm{D}}=r$, and fince $\mathrm{B}: \mathrm{E}:: \mathrm{F}: \mathrm{C}$ (Pr. III) ; therefore let $\frac{\mathrm{B}}{\mathrm{E}}=\frac{\mathrm{F}}{\mathrm{C}}=s$. Then $r s=$ $\frac{A}{B} \times \frac{B}{E}=\frac{C}{D} \times \frac{F}{C}(A x .4)$; that is, $\frac{A}{E}=\frac{F}{D}$; or A: E: F: D.

Cor. In two ranks of proportional quantities, if the extremes be the fame in both; the means will be reciprocelly proportional.

For if $B: A:: D: C$, and $B: E:: F: C$; then by reverfion $\mathrm{A}: \mathrm{B}:: \mathrm{C}: \mathrm{D}$, and $\mathrm{E}: \mathrm{B}$ $:: C: F$. Whence $A: E:: F: D$ (Prop. XI).

P R O P. XII.

If four quantities are proportional; A:B::C:D; the product of the extremes is equal to the product of the means, $\mathrm{AD}=\mathrm{BC}$.

For let $\frac{A}{B}=\frac{C}{D}=r$, then $\mathrm{A}=\mathrm{B} r$, and $\mathrm{C}=$ $\mathrm{Dr}(\mathrm{Ax}$. 4); whence $\mathrm{AD}=\mathrm{Br} \mathrm{D}$, and $\mathrm{BC}=\mathrm{Br} \mathrm{D}$ (Ax. 4); therefore $\mathrm{AD}=\mathrm{BC}(\mathrm{Ax.8})$.

Cor. I. If two products are equal, $\mathrm{AD}=\mathrm{BC}$; be fides or factors are reciprocally proportional, $A: B: C: D$.

For let $A: B: C: Q$, then $A Q=B C$ (Prop. (II) $=A D$ (hyp.); therefore $Q=D(A x .5)$; nd A : B : : C : D (Ax. 7).

Cor. 2. If three quantities are continually proporonal; the rectangle of the extremes is equal to the uare of the mean. And the contrary.

Cor. 3. In four proportional quantities, if one treme be multiplied by any number, and the other treme, divided by it; the quantities will fill be proortional. The fame holds of the means. Conjequently wy two faftors in the two extremes may change places; in the two means.
For if $A: B:: C: D$, then $A D=B C$, and $\mathrm{AD}=n \mathrm{BC}(\mathrm{Ax} .4)$; then $n \mathrm{~A}: \mathrm{B}:: n \mathrm{C}: \mathrm{D}$ Cor. 1) : : C : $\frac{\mathrm{D}}{n}$ (Cor. I. Prop. 5).

Scholium.
It is fuppofed here that two analogous terms are numbers, or at leaft, that they are reprefented by numbers.

PR OP. XIII.

If four quantities are proportional, $\mathrm{A}: \mathrm{B}:: \mathrm{C}$: D ; and if the analogous terms be compounded any way by addition or Subtraction; So that both pairs be ordered alike; then they will fill be proportional.

$$
\text { If } \mathrm{A}: \mathrm{B}:: \mathrm{C}: \mathrm{D} .
$$

Then $A: A+B:: C: C+D$.
$A: A-B:: C: C-D$.
$A: B-A:: C: D-C$.
$\mathrm{A}+\mathrm{B}: \mathrm{B}:: \mathrm{C}+\mathrm{D}: \mathrm{D}$.
$A-B: B: C-D: D$. $B-A: B: D-C: D$. $A+B: A-B:: C+D: C-D$. $A+B: B-A:: C+D: D-C$. $A: B:: A+C: B+D$. $\mathrm{A}: \mathrm{B}:: \mathrm{A}-\mathrm{C}: \mathrm{B}-\mathrm{D}, \mathcal{E}^{2}$. and the revere thereof.

For in any cafe, the product of the means is equal to the product of the extremes.

Cor. When the quantities are compounded after any of the foregoing ways, then it will be, A:B::C : D.

PROP. XIV.

If, one quantity has the fame proportion to Several quantities Separately; as a Second quantity has to as many others: then the firft has the fame proportion to the fum of the first Set, as the Second has to the sum of the last set.

$$
\text { If } A:\left\{\begin{array}{l}
B \\
C \\
D
\end{array}: \begin{cases}G & \text { then } \\
\mathrm{D}: \mathrm{B}+\mathrm{C}+\mathrm{D}:: \\
\mathrm{I} & \mathrm{~F}: \mathrm{G}+\mathrm{H}+\mathrm{I} . \\
\text { For }\end{cases}\right.
$$

PROPORTION.

For $\left.\left.\begin{array}{cc}B \\ C \\ D\end{array}\right\}: A:: \begin{array}{c}G \\ \hline\end{array}\right\}: F($ Prop. III), then
$=\frac{G}{\mathrm{~F}}, \frac{\mathrm{C}}{\mathrm{A}}=\frac{\mathrm{H}}{\mathrm{F}}, \frac{\mathrm{D}}{\mathrm{A}}=\frac{\mathrm{I}}{\mathrm{F}}$ (Def. 4). There-
re $\frac{B}{A}+\frac{C}{A}+\frac{D}{A}$ or $\frac{B+C+D}{A}=\frac{G}{F}+\frac{H}{F}+$ or $\frac{G+H+I}{F}(A x .2)$; therefore $B+C+D$ $\mathrm{A}:: \mathrm{G}+\mathrm{H}+\mathrm{I}: \mathrm{F}($ Def. 4$)$; and $\mathrm{A}: \mathrm{B}+$ $+\mathrm{D}:: \mathrm{F}: \mathrm{G}+\mathrm{H}+\mathrm{I}$ (Prop. III).

Cor. I. If one quantity be Separately to two quanes; as a Second is to two others: the first will be the difference of the first two o; as the Second, is to -difference of the last two.
If $A:\left\{\begin{array}{l}\mathrm{B} \\ \mathrm{C}\end{array}:: \mathrm{F}:\left\{\begin{array}{l}\mathrm{G} \\ \mathrm{H}\end{array}\right.\right.$. Then $\mathrm{A}: \mathrm{B}-\mathrm{C}::$
G-H.
For then $\frac{B}{A}-\frac{C}{A}=\frac{G}{F}-\frac{H}{F}(A x .3)$; and
$\frac{-C}{F}=\frac{\mathrm{G}-\mathrm{H}}{\mathrm{F}}$.

For. 2. The fame things supposed as in Cor. I, then C : : G : H.
or $\frac{B}{A}=\frac{G}{F}$, and $\frac{C}{A}=\frac{H}{F}$, whence $B: C:$:
or $\frac{G}{F}: \frac{C}{A}$ or $\left.\frac{H}{F}::\right) \mathrm{G}: H(\operatorname{Pr} . V$. and Cor. 1$)$.

GEOMETRICAL
 PROP. XV.

If there be two ranks of quantities; and it be, i, the fe two ronks, as the forft to the Second, fo is the firtt to the fecond; and as the fecond to the third So the fecond to the third; and so on: then will the firft be to the laft, as the firft to the laft, in the two ranks. If $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$; and $\mathrm{F}, \mathrm{G}, \mathrm{H}, \mathrm{I}$, are two ranks; and it be, $\mathrm{A}: \mathrm{B}:: \mathrm{F}: \mathrm{G}$, and $\mathrm{B}:$ $:: \mathrm{G}: \mathrm{H}$, and $\mathrm{C}: \mathrm{D}:: \mathrm{H}: \mathrm{I}$; then $\mathrm{A}: \mathrm{D}$: : F : I.

For $\frac{A}{B}=\frac{F}{G}$, and $\frac{B}{C}=\frac{G}{H}$, and $\frac{C}{D}=\frac{H}{I}$ (Def: 4) therefore $\frac{A B C}{B C D}=\frac{F G H}{G H I}(A x .4)$, or $\frac{A}{D}=\frac{F}{I}$; tha is, $\mathrm{A}: \mathrm{D}:: \mathrm{F}: \mathrm{I}$.

P R O P. XVI.

If two or more rows of quantities are refpectivel proportional; the like terms are proportional, in ans two rows.

$$
\begin{aligned}
& \text { If } \mathrm{A}: \mathrm{B}: \mathrm{C}: \mathrm{D}:: \mathrm{P}: \mathrm{Q}: \mathrm{R}: \mathrm{S} \text {. Then } \mathrm{B} \\
& \mathrm{D}:: \mathrm{Q}: \mathrm{S}, \mathrm{\theta}^{c} \text {. }
\end{aligned}
$$

Quantities are respecively proportional, when in the feveral rows, the firft term is to the firft, th fecond to the fecond, the third to the third, Bot in the fame proportion. And like terms are thof that are alike fituated in all the rows; as the third term and the third, the fourth and the fourth, \mathcal{E}_{0}.

For fince $B: C:: Q: R$, and $C: D:: R: S$ therefore $\mathrm{B}: \mathrm{D}:: \mathrm{Q}: \mathrm{S}($ Prop. XV) ; and fo o others.

> Or thus.

If thefe are re- $\mathrm{A}: \mathrm{B}: \mathrm{C}: \mathrm{D}: \mathrm{E}:$: fpectively propor- $\mathrm{F}: \mathrm{G}: \mathrm{H}: \mathrm{I}: \mathrm{K}:$: tional,

$$
\mathrm{L}: \mathrm{M}: \mathrm{N}: \mathrm{O}: \mathrm{P}::
$$

$$
\mathrm{Q}: \mathrm{R}: \mathrm{S}: \mathrm{T}: \mathrm{V}::
$$

others.

$$
\text { then } \mathrm{A}: \mathrm{D}:: \mathrm{Q}: \mathrm{T} \text {; and fo o }
$$

For $A: B:: Q: R$, and $B: C:: R: S$, and $\mathrm{C}: \mathrm{D}:: \mathrm{S}: \mathrm{T}$. Therefore $\mathrm{A}: \mathrm{D}:: \mathrm{Q}$: T . In like manner $\mathrm{G}: \mathrm{K}:: \mathrm{R}: \mathrm{V}$, and $\mathrm{A}: \mathrm{E}:: \mathrm{L}: \mathrm{P}$, and $\mathrm{B}: \mathrm{E}:: \mathrm{R}: \mathrm{V}, \mathrm{E}^{\gamma} c$ all the ways they can be thus compared.

PR OP. XVII.

If there be two sets of quantities; and if it be os the first to the Second (in the first Set), So the last but one to the lat (in the Second Set); and as the Second to the third, So the lap but two, to the left but one; and So on. Then the frt will be to the last (in the first (et), as the first to the lat (in the Second Set).

$$
\begin{aligned}
& \text { First Set A, B, C. } \\
& \text { Second Set F, G, H. }
\end{aligned}
$$

If $\mathrm{A}: \mathrm{B}:: \mathrm{G}: \mathrm{H}$, and $\mathrm{B}: \mathrm{C}: \mathrm{F}: \mathrm{G}, \mathcal{E}^{2} c$. then $\mathrm{A}: \mathrm{C}:: \mathrm{F}: \mathrm{H}$.

For $\frac{A}{B}=\frac{G}{H}$, and $\frac{B}{C}=\frac{F}{G}$ (Def. 4, 2); therefore $\frac{A B}{B C}=\frac{G F}{H G}(A x .4)$, or $\frac{A}{C}=\frac{F}{H}$, and $A: C$ F: H.

PR O P. XVIII.

If there be four proportional quantities in one rank, and four more in another; and Several fuch ranks; then the products of the like terms will be proportonal.
If $\mathrm{A}: \mathrm{B}:: \mathrm{C}: \mathrm{D}$,
and $\mathrm{F}: \mathrm{G}:: \mathrm{H}: \mathrm{I}$,
and $\mathrm{P}: \mathrm{Q}: \mathrm{R}: \mathrm{S}$,
then $\mathrm{AFP}: \mathrm{BGQ}:: \mathrm{CHR}: \mathrm{DIS}$.

For $\frac{A}{B}=\frac{C}{D}$, and $\frac{F}{G}=\frac{H}{I}$, and $\frac{P}{Q}=\frac{R}{S}$ (Def.
 PGQ : : CHR : DIS.

Cor. I. If $\mathrm{A}: \mathrm{B}:: \mathrm{C}: \mathrm{D}$,
and $\mathrm{B}: \mathrm{P}:: \mathrm{H}: \mathrm{I}$, and $\mathrm{P}: \mathrm{Q}:: \mathrm{R}: \mathrm{S}, \mathcal{E}^{2}$. then $\mathrm{A}: \mathrm{Q}:$: CHR : DIS.

For $\mathrm{ABP}: \mathrm{BPQ}:: \mathrm{A}: \mathrm{Q}:: \mathrm{CHR}: \mathrm{DIS}$.
Cor. 2. The fame things fuppofed with two rainks of proportionals, the quotients of the like terms will be proportional. $\quad \frac{\mathrm{A}}{\mathrm{F}}: \frac{\mathrm{B}}{\mathrm{G}}:: \frac{\mathrm{C}}{\mathrm{H}}: \frac{\mathrm{D}}{\mathrm{I}}$.

For $\mathrm{AD}=\mathrm{BC}$, and $\mathrm{FI}=\mathrm{GH}$ (Prop. XII); therefore $\frac{A D}{F I}=\frac{B C}{G H}(A x .5)$; therefore $\frac{A}{F}: \frac{B}{G}::$ $\frac{\mathrm{C}}{\mathrm{H}}: \frac{\mathrm{D}}{\mathrm{I}}$ (Cor. I. Prop. XII).

Cor. 3. The like powers, or the like roots of proportional quantities, will be proportional. If $\mathrm{A}: \mathrm{B}::$ $\mathrm{C}: \mathrm{D}$, then $\mathrm{A}^{n}: \mathrm{B}^{n}:: \mathrm{C}^{n}: \mathrm{D}^{n}$, and $\sqrt{\mathrm{A}}: \sqrt{ } \mathrm{B}:: \sqrt{ } \mathrm{C}:$ ${ }^{*} \mathrm{D}: n$ being any number.

This is plain, by fuppofing A, F, P all equal ; as alfo B, G, Q; and C, H, K; and alfo D, I, S.

P R O P. XIX.

If between any two quantities propofed, there be interpofed any number of terms; the proportion of the firft to the laft, is compounded of the firft to the fecond, the fecond to the third, and so on to the laft. Suppofe A, B, C, D, E, F.

The proportion of A to F , is compounded of A to B , B to C, C to D, D to E , and E to H .

For $\frac{A}{B} \times \frac{B}{C} \times \frac{C}{D} \times \frac{D}{E} \times \frac{E}{F}$ or $\frac{A B C D E}{B C D E F}=\frac{A}{F}$, all the intermediate terms deftroying one another, in the dividend and divifor.

PROP. XX.

In a Series of quantities in geometrical progrefion, $\mathrm{A}: \mathrm{B}: \mathrm{C}: \mathrm{D}: \mathrm{E}: \mathrm{F}: \mathrm{G} \div$; the product of the extremes is equal to the product of any two means, equally diftont from the extremes: $\mathrm{AG}=\mathrm{BF}=\mathrm{CE}$, \&c.

For fince $A: B:: F: G$ (Def. so); therefore $\mathrm{AG}=\mathrm{BF}$ (Prop. XII). And fince $\mathrm{B}: \mathrm{C}:: \mathrm{E}:$ F ; therefore $\mathrm{CE}=(\mathrm{BF} \Rightarrow) \mathrm{AG}$, and fo on,

Cor. Hence the product of the extremes, is equal to the Square of the middle term; when the number of terms is odd.

P R O P. XXI.

If, out of a feries of quantities in geometrical progrefion, there be taken any feries of equidiftant terms; that feries will alfo be in geometrical progreffion.
If $\mathrm{A}: \mathrm{B}: \mathrm{C}: \mathrm{D}: \mathrm{E}: \mathrm{F}: \mathrm{G}: \mathrm{H}: \mathrm{I}: \mathrm{K}: \mathrm{L}: \mathrm{M}, i n \div \div$, then B: $\quad \mathrm{E}: \quad \mathrm{H}: \quad$ Larealfo \div.

For $\frac{\mathrm{B}}{\mathrm{C}}=\frac{\mathrm{C}}{\mathrm{D}}=\frac{\mathrm{D}}{\mathrm{E}}=r$, and $\frac{\mathrm{BCD}}{\mathrm{CDE}}=r^{3}=\frac{\mathrm{B}}{\mathrm{E}}$ (Ax. 4). Alfo $\frac{\mathrm{E}}{\mathrm{F}}=\frac{\mathrm{F}}{\mathrm{G}}=\frac{\mathrm{G}}{\mathrm{H}}=r$, and $\frac{\mathrm{EFG}}{\mathrm{FGH}}$ or $\frac{\mathrm{E}}{\mathrm{H}}=r^{3}$; alfo $\frac{\mathrm{H}}{\mathrm{I}}=\frac{\mathrm{I}}{\mathrm{K}}=\frac{\mathrm{K}}{\mathrm{L}}=r$, and $\frac{\mathrm{HIK}}{\mathrm{IKL}}$ or $\frac{\mathrm{H}}{\mathrm{L}}$ $=r^{3}, \xi^{2} c$. Therefore $\frac{\mathrm{B}}{\mathrm{E}}=\frac{\mathrm{E}}{\mathrm{H}}=\frac{\mathrm{H}}{\mathrm{L}} छ^{2} c$. (Ax. 8); and B : E : H : L E c. are \because (Def. ı0).

PROP. XXII.

If there be a feries of quantities in geometrical progreffion, $\mathrm{A}: \mathrm{B}: \mathrm{C}: \mathrm{D}: \mathrm{E}: \mathrm{F}, \& \mathrm{c} . \div$; their differences will alfo be in the fame geometrical progreffion, A: B:: $\mathrm{A}-\mathrm{B}: \mathrm{B}-\mathrm{C}: \mathrm{C}-\mathrm{D}, \mathrm{E}_{\mathrm{c}}$.

For fince $A: B:: B: C:: C: D, छ($. (Def. ıo); therefore $\mathrm{A}: \mathrm{A}-\mathrm{B}:: \mathrm{B}: \mathrm{B}-\mathrm{C}:: \mathrm{C}: \mathrm{C}-\mathrm{D}$ Ec. (Prop. XIII). And A : B : : A - B : B-C, and $\mathrm{B}: \mathrm{C}:: \mathrm{B}-\mathrm{C}: \mathrm{C}-\mathrm{D}$ (Prop. IV). That is, $\mathrm{A}: \mathrm{B}: \mathrm{C}, \mathcal{E}^{2} c:: \mathrm{A}-\mathrm{B}: \mathrm{B}-\mathrm{C}: \mathrm{C}-\mathrm{D}$, \mathcal{E}°.

Cor. The fecond, third, fourth differences, \&zc. Shall alfo be in the fame geometrical progreffion.

PROP. XXIII.

If there be a Series of quantities in geometrical progreflion; the ratio of the first, to the fecond, third, fourth, \&c. is in the fimple, duplicate, triplicate, \&x. ratio of the firft to the fecond, respectively. If $\mathrm{A}: \mathrm{B}:$
$\mathrm{C}: \mathrm{D}: \mathrm{E}, \& \mathrm{c}$. then $\frac{\mathrm{A}}{\mathrm{B}}=\frac{\mathrm{A}}{\mathrm{B}}, \frac{\mathrm{A}}{\mathrm{C}}=\frac{\mathrm{AA}}{\mathrm{BB}}, \frac{\mathrm{A}}{\mathrm{D}}=\frac{\mathrm{A}^{3}}{\mathrm{~B}^{3}}$, $\frac{A}{E}=\frac{A^{4}}{B^{4}}, \delta r c$.

For $\frac{A}{B}=\frac{B}{C}=\frac{C}{D}=\frac{D}{E}$, δ^{c}. (Def. 10). And $\frac{A}{C}=\frac{A}{B} \times \frac{B}{C}=\frac{A A}{B B}($ Def. 13 $), \frac{A}{D}=\frac{A}{B} \times \frac{B}{C} \times \frac{C}{D}$ $=\frac{A^{3}}{B^{3}} ;$ alfo $\frac{A}{E}=\frac{A}{B} \times \frac{B}{C} \times \frac{C}{D} \times \frac{D}{E}=\frac{A^{4}}{B^{4}} ; \xi c$.

PR O P. XXIV.

If $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{E}^{c}$. be a Set of quantities in geometrical progreflion, whofe differences are infinitely fmall; and n any number; then it will be, A^{n} : $\mathrm{A}^{n}-\mathrm{B}^{n}:: \mathrm{A}: n \times \overline{\mathrm{A}-\mathrm{B}}$.

Since the differences are infinitely fmall, they will be (nearly) equal, $\mathrm{A}-\mathrm{B}=\mathrm{B}-\mathrm{C}=\mathrm{C}-\mathrm{D}, \mathrm{E}^{2}$. and $A-C=\overline{A-B}+\overline{B-C}=2 \times \overline{A-B}$; $A-D=3 \times \overline{A-B} ; A-E=4 \times \overline{A-B}, \varepsilon_{c} c$. But $A^{2}: B^{3}:: A: C$, and $A^{3}: B^{3}:: A: D, \mathcal{F}_{c}$. (Prop. XXIII) ; then

$$
A^{2}: A^{2}-B^{2}:: A: A-C=2 \times \overline{A-B}(\operatorname{Pr} . X I I) .
$$

alfo $A^{3}: A^{3}-B^{3}:: A: A-D=3 \times \overline{A-B}$. and $\mathrm{A}^{n}: \mathrm{A}^{n}-\mathrm{B}:: \mathrm{A}^{n}: n \times \overline{\mathrm{A}-\mathrm{B}}$.

> PROP.
P R O P. XXV.

In a rank of quantities in geometrical progreffion, $\mathrm{A}: \mathrm{B}: \mathrm{C}: \mathrm{D}: \mathrm{E}$, whrle number is n; and the ratio $r=\frac{A}{B} ;$ the laft term $(\mathrm{E})=\frac{\mathrm{A}}{r^{n-1}}$ or $\left.\frac{B}{A}\right|^{n-1} \times \mathrm{A}$.

$$
\text { For } \frac{\mathrm{A}}{\mathrm{~B}}=r, \text { or } \mathrm{A}=\mathrm{B} r, \mathrm{~B}=\mathrm{C} r, \mathrm{C}=\mathrm{D} r, \mathrm{D}=
$$ Er.

And $\mathrm{A}=\mathrm{Br}=\mathrm{C} r r=\mathrm{D} r^{3}=\mathrm{E} r^{4}$.
Therefore $\mathrm{B}=\frac{\mathrm{A}}{r}$ the 2 d term.

$$
\begin{aligned}
& \mathrm{C}=\frac{\mathrm{A}}{r_{r}} \text { the } 3 \mathrm{~d} \text { term. } \\
& \mathrm{D}=\frac{\mathrm{A}}{r^{3}} \text { the } 4 \text { th term. } \\
& \mathrm{E}=\frac{\mathrm{A}}{r^{4}} \text { the } 5 \text { th term. }
\end{aligned}
$$

And in general the $n^{\text {th }}$ term $=\frac{\mathrm{A}}{r^{n-1}}$:

P R O P. XXVI.

In a rank of quantities in geometrical progrefion, $\mathrm{A}: \mathrm{B}: \mathrm{C}: \mathrm{D}: \mathrm{E}$, whofe number is n, and common ratior $=\frac{A}{B}$; the fum of all the terms is, $\frac{A A-B E}{A-B}$ $=\frac{B E-A A}{B-A}$.
For $\mathrm{A}: \mathrm{B}:: \mathrm{B}: \mathrm{C}:: \mathrm{C}: \mathrm{D}:: \mathrm{D}: \mathrm{E}$ (Def. 10). And $\mathrm{A}: \mathrm{B}::(r: \mathrm{I}:: \mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{D}: \mathrm{B}+\mathrm{C}$ $+\mathrm{D}+\mathrm{E},($ Prop. X$)$; that is, (putting $S=$ fum), $A: B:: S-E: S-A$. Therefore $S A-A A=$ $\mathrm{BS}-\mathrm{BE}$ (Prop. XII) ; and $\mathrm{SA}-\mathrm{SB}=\mathrm{AA}-$ $B E$, or $S B-A S=B E-A A(A x .2,3)$; therefore $S=\frac{A A-B E}{A-B}$ or $\frac{B E-A A}{B-A}(A x .5)$.

Cor.

Cor. I. The fum of the terms $=A+\frac{A-E}{A-B} B$, or $A+\frac{E-A}{B-A} B$.

For $A+\frac{A-E}{A-B} B=\frac{A A-A B+A B-B E}{A-B}=$ $\frac{A A-B E}{A-B}, \varepsilon_{c}$.

Cor. 2. In a decreafing geometrical progrefion, the Fun of all the terms $=\frac{r \mathrm{~A}-\mathrm{E}}{r-1}$.

For finger $: 1:: S-E: S-A$. Therefore $S-$ $\mathrm{E}=r \mathrm{~S}-r \mathrm{~A}($ Prop. XII) ; and $r \mathrm{~S}-\mathrm{S}=r \mathrm{~A}-\mathrm{E}$ $(A x .2,3) ;$ whence $S=\frac{r A-E}{r-I}(A x .5)$.

Cor. 3. In an increasing geometrical progreffion; put $\mathrm{R}=\frac{\mathrm{B}}{\mathrm{A}}$, then the fum of the terms $=\frac{\mathrm{R}^{n}-\mathrm{I}}{\mathrm{R}-\mathrm{I}} \mathrm{A}$.

For $B=R A, C=R B=R^{2} A, D=R C=R^{3} A$, $\mathrm{E}=r \mathrm{D}=r^{4} \mathrm{~A}$, or $\mathrm{E}=r^{n-1} \mathrm{~A}$. But $1: \mathrm{R}::$ $S-E: S-A$, and $S-A=R S-R E($ Prop. XII), and $\mathrm{RS}-\mathrm{S}=\mathrm{RE}-\mathrm{A}=r^{n} \mathrm{~A}-\mathrm{A}(\mathrm{Ax} 2,3$.$) ;$ whence $S=\frac{r^{n} A-A}{r-1}(A x .5)$.

PR O P. XXVII.

In an infinite decreafing geometrical progreffion, A : $\mathrm{B}: \mathrm{C}: \mathrm{D}: \mathrm{E} \div \& \mathrm{c}$. Put the ratio $\frac{\mathrm{A}}{\mathrm{B}}=\frac{m}{n}$; then the fum of all the terms ad infinitum $=\frac{\mathrm{AA}}{\mathrm{A}-\mathrm{B}}$ or $\frac{m \mathrm{~A}}{m-n}$.

For. the fum $=\frac{A A-B E}{A-B}$ (Prop. XXVI); but when the progreflion is infinitely continued, the laft term E is 0 , and then the fum becomes $\frac{A A}{A-B}$. Alfo (by Cor. 2. Prop. XXVI), the fum $=\frac{r \mathrm{~A}-\mathrm{E}}{r-\mathrm{I}}$ becomes $\frac{r \mathrm{~A}}{r-1}=\frac{\frac{m}{n} \mathrm{~A}}{\frac{m}{n}-1}=\frac{m \mathrm{~A}}{m-n}$.

S E C T. III. General Proportions.

Definition and Notation.

$\mathrm{FA}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}_{\mathrm{c}}$. be any variable quantities, and a, b, c, d, \&cc. other values thereof; and if they be fo dependent on one another, that when A is increafed or diminifhed to $a ; \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathcal{E}^{2} c$. become $b, c, d, \& c$.

Then $A \propto B$, fignifies that A is directly as B, or that $\mathrm{A}: a:: \mathrm{B}: b$.
Likewife $A \propto \frac{1}{C}$, denotes that A is reciprocally as C , or that $\mathrm{A}: a:: \frac{\mathbf{1}}{\mathrm{C}}: \frac{\mathbf{1}}{c}$.
Alfo $A \propto \frac{B C}{D}$, fignifies that A is directly as B and C, and reciprocally as D, or that $A: a:: \frac{B C}{D}$ $\frac{b c}{d}$.
And if $A B \propto \frac{C}{D}$, the product of A, B is directly s C, and reciprocally as D; or $A B: a b:: \frac{C}{D}: \frac{c}{d}$.
And on the contrary, if $\mathrm{A}: a:: \mathrm{B}: b$, then $1 \propto B, \varepsilon_{c}$.
PROP. I.

If one quantity A is as a second B ; then, on the contray, the Second B is as the firft A . If $\mathrm{A} \propto \mathrm{B}$, then $B \propto A$.

For $A: a:: B: b$ (Def.).
Therefore B:b::A:a; that is, B $\propto A$ (Def.).

PR OP. II.

If one quantity A is as a second B , and the second B as the third C , and the third C as a fourth D , \&c. then the first A is as the last D . If $\mathrm{A} \propto \mathrm{B} \propto$ $C \propto D$, then $A \propto D$.
\therefore For Ala: B: b,
and ${ }^{-} \mathrm{B}: b:: \mathrm{C}: c$,
and $\quad \mathrm{C}: c:: \mathrm{D}: d$ (Def.)
therefore $\mathrm{A}: a: \mathrm{D}: d$ (Prop.I. Sect. II).
therefore $A \propto \subset$ (Def.).
Cor. If one quantity A is as a second B , and the second B reciprocally as a third C .- Then the fir f A is reciprocally as the third C . If $\mathrm{A} \propto \mathrm{B} \propto \frac{1}{\mathrm{C}}$, then $A \propto \frac{\mathrm{I}}{\mathrm{C}}$.

For $\mathrm{A}: a:: \mathrm{B}: b: \frac{1}{\mathrm{C}}: \frac{1}{c} ;$ and $\mathrm{A} \propto \frac{1}{\mathrm{C}}$ (Def.).

PR O P. III.

If one quantity A be as a second B , and also as a third C ; then the firth A will be as the fum or difference of the Second and third, C and D . If $A \propto B \propto C$, then $A \propto B+C$, or $A \propto B$ C.

For A : $a:: \mathrm{B}: b:: \mathrm{C}: c$. Therefore A : $a:$: $\mathrm{B}+\mathrm{C}: b+c$, or $\mathrm{A}: a ;: \mathrm{B}-\mathrm{C}: b-c$ (Prop. X. Sect. II). And A $\propto B \pm C$.
PR OP. IV.

Either fide of a general proportion, may be muliplied or divided by any given quantity. If $\mathrm{A} \propto \mathrm{B}$, ben $\mathrm{A} \propto n \mathrm{~B}$, or $\mathrm{A} \propto \frac{B}{n}$.

For A : $a:: \mathrm{B}: b:: n \mathrm{~B}: n b$ (Prop. V. Sect. II) $\frac{B}{n}: \frac{b}{n}$ (Cor. 1. ibid.).
PROP. V.

If both fides of a general proportion be multiplied or ivided by any variable quantity, they will fill be prorational. If $\mathrm{A} \propto \mathrm{B}$, and C a variable quantity, en $\mathrm{AC} \propto \mathrm{BC}$.

For A : $a:: \mathrm{B}: b$ (Def.). And CA : $c a:: \mathrm{CB}$: (Prop. VI. Cor. I) ; that is, $\mathrm{CA} \propto \mathrm{CB}$.
Alfo A $: a:: \mathrm{B}: b$; and $\frac{\mathrm{A}}{\mathrm{C}}: \frac{a}{c}:: \frac{\mathrm{B}}{\mathrm{C}}: \frac{b}{c}$ (Cor, 2. rep. VI); that is, $\frac{\mathrm{A}}{\mathrm{C}} \propto \frac{\mathrm{B}}{\mathrm{C}}$:

Cor. I. If $Q \propto B C$, then $\frac{Q}{B} \propto C$, and $\frac{Q}{B C}$ a given quantity, or always the fame.

For $\frac{\mathrm{Q}}{\mathrm{BC}}$ is as I , an invariable quantity.
Cor. 2. If $\mathrm{A} \propto \frac{\mathrm{I}}{\mathrm{B}}$, then $\mathrm{B} \propto \frac{\mathrm{I}}{\mathrm{A}}$.
For $A B \propto \perp$ (Prop. V), $\frac{A B}{A}$ or $B \propto \frac{1}{A}$ (ibid.).

PROP. VI.

Infead of any quantity in one fie of a general proportion, one may fubfitute any other quantity proportonal thereto. If $\mathrm{A} \propto \mathrm{BC}$, and $\mathrm{C} \propto \mathrm{D}$; then $\mathrm{A} \propto \mathrm{BD}$.

For fince $C \propto D, B C \propto B D($ Prop. $V)$ whence A \propto BD (Prop. II).:

PROP. VII.
If the two fides of one general proportion, be multiplied or divided by the two fides of another general propor ion; they will fill be proportional. If $\mathrm{A} \propto \mathrm{B}$, an $\mathrm{C} \propto \mathrm{D}$; then $\mathrm{AC} \propto \mathrm{BD}$, and $\frac{\mathrm{A}}{\mathrm{C}} \propto \frac{\mathrm{B}}{\mathrm{D}}$.

For $\mathrm{A}: a:: \mathrm{B}: b$, and $\mathrm{C}: c:: \mathrm{D}: d$, therefor $\mathrm{AC}: a c:: \mathrm{BD}: b d$ (Prop. XVIII. Sect. II); that is, $A C \subset B D$.
And $\frac{\mathrm{A}}{\mathrm{C}}: \frac{a}{c}:: \frac{\mathrm{B}}{\mathrm{D}}: \frac{b}{d}$ (ibid. Cor. 1); that is, $\frac{\mathrm{A}}{\mathrm{C}} \propto$ B $\overline{\mathrm{D}}$.

Cor. I. The equal powers or roots of both fides any general proportion, will fill be proportional.
$A \propto B$, then $A^{2} \propto B^{2}, A^{3} \propto B^{3}, \sqrt{2}^{2} A \propto \sqrt{2}^{2}$ 8%

This is plain by putting $C=A$, and $D=B, \delta^{\circ} c$. Cor. 2. If $\mathrm{A} \propto \mathrm{B} \propto \mathrm{C}$, then $\mathrm{AA} \propto \mathrm{BC}$.

PROP. VIII.

If any quantity Q be as the product of feveral. otbers $\mathrm{A}, \mathrm{B}, \mathrm{E}_{\mathrm{c}} \mathrm{c}$ then if $\mathrm{B}, \mathrm{E}^{c}$. be given, $\mathrm{Q} \propto \mathrm{A}$; and if A, \&c. be given, $\mathrm{Q} \propto B$.

For by Prop. IV. fince $Q \propto A B$, and B given; $Q \propto A$. And if A be given, $Q \propto B$ (ibid.).

Cor. If any rariable quantity Q depends on feveral others A, B; and if $\mathrm{Q} \propto \mathrm{A}$, ruben B is invariable; and $\mathrm{Q} \propto \mathrm{B}$, when A is invariable; then $\mathrm{Q} \propto \mathrm{AB}$, when all are variable.

P R O P. IX:

Axy general proportion may be turned into an equation, by multiphing one fide by a proper bomologous quantity.

If $\mathrm{A} \propto \mathrm{BC}$, then $\mathrm{A}=n \times \mathrm{BC}$. n being Some given quantity.

For fince $\mathrm{A} \propto \mathrm{BC}$, therefore $\mathrm{A}: a:: \mathrm{BC}: b c$ (Def.); and $\mathrm{A} \times b c=a \times \mathrm{BC}$ (Prop. XII. Sect. II); and $\mathrm{A}=\frac{a}{b_{c}} \times \mathrm{BC}$, therefore $n=\frac{a}{b_{c}}$ the quantity affumed for a multiplier.

Or if $m \mathrm{~A}=\mathrm{BC}$, it will be found that $\frac{b c}{a} \times \mathrm{A}=$ $B C$, or that $m=\frac{b c}{a}$.

> P R O P. X. Problem.

- Any general proportion being given, $\mathrm{A} \propto \frac{\mathrm{B}^{2} \mathrm{C}}{\mathrm{D}}$; to find the proportion any one bas to the reft.

This is done by help of the foregoing propofimons.

Since $A \propto \frac{B^{2} C}{D}$;
Multiply by D , then $\mathrm{AD} \propto \mathrm{B}^{2} \mathrm{C}$ (Prop. V).
Divide by A, then $D \propto \frac{B^{2} C}{A^{\prime}}$ (Prop. V).
Divide $\left(A D \propto B^{2} C\right)$ by B_{2}^{2} and then $C \propto \frac{A D}{B^{2}}$ (Prop. V).
Divide $\left(A D \propto B^{2} C\right)$ by C, and then $B^{2} \propto \frac{A D}{C}$ (Prop. V).
Extract the fquare root, $B \propto \sqrt{\frac{\mathrm{AD}}{\mathrm{C}}}$.
And the fame may be done by affuming a given quantity m, and making $m \mathrm{~A}=\frac{\mathrm{B}^{2} \mathrm{C}}{\mathrm{D}}$; and the foregoing procefs is the fame as in the reduction of algebraic equations.

$$
E I N I S
$$

THE

LEMENTS

 OF
E O M E TRY.

IN WHICH,
e principal Propofitions of Euclid, Archimedes, and others, are demonfrated after the moft eafy manner.

To which is added,
Collection of ufeful Geometrical Problems.
veniri ad fummum, nif ex principiis, non potef.
Quint.

L O N D O N,
ted for J. Nourse, Bookfeller in Ordinary to his MAJESTY. MDCCLXIII.

THE

R E F A C E.

ITAVING in the firft volume treated of aritbmetic, which is one of the main pillars of the mathematics; I come now geometry, which is the other pillar, on which efe fciences are fupported. On thefe troo foundamis, all the other brancbes are built; and froin em they derive their whole firength and evidence. nd thefe two fciences are effentially different; former confiders numbers, witbout any regard. extenfion; the latter confiders extenfion, withany regard to numbers. And both of them at their farticular fubjects in the moft abfract nner.
Geometry is of so excellent a nature and of fuch enjive ufe, that it lays the foundation of all the les to work by, in the common affairs of life, bout robich we could do notbing. For inftance, diftances of places, or remote objects, and their ation in refpect of one another; cannot be had thout meafuring, and the rules of geometry. draizing of maps or charts can only be done by metry. The meafuring and dividing of lands, give every man bis due Jbare, cannot be perned, witbout meafuring certain figures, and ing tbeir contents. Houfes and torons cannot uilt without knowing the figures and dimenfons

$$
\text { A } 2 \text { thereof. }
$$ to refift the attacks of an enemy. Tradefmen $m u$ be acquainted with the meafures of length ail capacity. Foiners, mafons, \&xc. muft underftal bow to form their materials into proper figur where there will be frequent occafion for parallel a perpendicular lines. And the figures they bave pe petually to deal with, are triangles, fquares, pare lelograms, circles, \&c. and fuch folids as pyramd cones, cubes, prifnes, Spheres, \&c. the nature which can only be knowen from geometry. T dimenfions and areas of plane figures, the conten of folid bodies, cannot be bad without it. So the geometry gives life and fpirit to all arts.

Geometry examines the nature of all figur compares them together, and finds out their prope ties. It is a key to all the other branches. I elements of plane geometry, are likervije the fou dation of the bigher geometry, relating to all fon of curve lines, their nature and properties; a is a neceffary introduction to the knoveledge of the

Geometry is a fcience inexbauftible, and wob? knows no bounds. In it there is always room 1 for the difcovery of new theorems. It is alfo moft excellent logic, teaches men bow to reas truly, and accuftoms the mind to a babit of al and frict reafoning.

The fcience of geometry is certainly very of for look as far back as we will, we Joall alwe find men who bave been profeffors and encourag of geometry, and the value the ancients fet up it, may be knowen from this famous motto of Pl

The P R E F A C E.

sioitw. Some of the principal among them who ftudied it were, Thales, Pythagoras, Plato, Ariftotle, Euclid, Archimedes, Appollonius, Ptolomy, and many more. But we are not to fuppofe that in thefe ancient times, this fcience was any tbing near the perfection it is now in: but in fucceeding ages, men of great genius, by their fludy and induffry, by degrees added new improvements; till at laft it arrived at the pitch weve now See it. So that wee need not wonder ibat Euclid, or even Archimedes, bave taken round-about methods in demonftrating many of their propofitions, which are now done vaftly florter and clearer. For it cannot be denied, tbat Euclid's elements abound with a great many trifing propofitions, which are of no other ufe but to demonjtrate, in bis way, the propofitions that follow after. But they are dijpofed in no proper order or metbod. For le frequently treats of different fubjects, promifcuoully together, in the fame place; without any regard to the nature of things, or their connection with one another. And as often, bas the fame fubject to confider in different places; which can breed notbing but confufion. But there are likewife a great many propofitions in the prefent fyltens of geometry, which thefe ancient mathematicians knew nothing of; and wibich are equally ufeful with thofe of Euclid.

One metbod of demonftration, webich Euclid and the ancients frequently make ufe of, is reductio ad abfurdum, wobich is generally fhorter than the direct metbod, and equally certain. For it is an axiom in logic, that that fuppofition mult needs

The PREFACE.

be true, which deftroys the contrary fuppofition. But though it be equally true, yet it gives not that \int itisfaction to the mind, which a pofitive proof gives.

It is a common practice among geometers, after a propofition is p oved, for them to prove the reverfe of it. But this in many cafes is needlefs and impertinent. For where ibe effential property of a fubject is found; there, moft certainly, you will find that fubject, witbout fartber inquiry. For example, when it is proved to be the property of parallel lines, when cut by a third line, to make the alternate angles equal; or the fum of the internal angles eyual to two right angles: it is fuperfluous to prove, that when the alternate angles are equal, or the fum of the internal angles equal to two right ones, that thefe lines are parallel; becaufe it was proved before to be the abfolute rigbt and property of parallel lines. Likerwife when it is proved to be the diftinguifling property of a right-angled triansle, that the Square of ibe bypotbenufe is equal to the fum of the Squares of the troo fides. It need not be proved, that when thefe Squares are equal, the angle is right. In fuch cajes, there needs, at moft, notbing but an illuftration, and then this method (reductio ad abfurdum) is very properly applied.

There are alfo many propofiticus in geometry, which are convertible; that is, where the property or predicate may become the fubject; and the fubject, the predicate, being of equal extent. And bere a deal of labour might be javed in demonftrating the propofition both ways. For inflance, weben
the two fides of a triangle are equal, it may be proved, that the trwo oppofite angles are equal. Or when the two angles of a triangle are equal, it may be proved, that the oppafite fides are equal. But it need not be proved botb back and forward. And bere can want notbing but the application of the former rule (reductio ad abfurdum), to illuftrate the reverfe. But matbematicians bad rather prove too much than too little; they bad rather bave fomething ex abundanti, than be defective. Thougls for my own part, I bave often faved my Jelf that fuperfluous labour.

To give fome account of the method wherein I bave bandled this fubject; it is in floort this. The firft book treats of right lines. The fecond of triangles. The tbird of polygons. The fourth of the circle. The fifth of planes. The fixth of folids. The fevinth of the jphere. The eigbth is geometrical problems. This is the metbod I bave clofen to digeft thefe tbings in, as being agreeable to the natu e of the fubject, and the mutual dependance of the feveral parts upon one anotber. The laft book contains a collection of the moft ufeful greometrical problems. I bave Spent but little time in demonftraing them, as moft of them do not need it, being perfuaded that they wobo underfand the elements, will eafly perceive their evidence, without any more words. They that would fee more problems of this kind, may confult the weriters of practical geometry.
W. Emerfon.

THE

CONTENTS.

Page
Definitions, \&c. - - - - - -
Book I. Of angles, and right lines, and their rectangles - - - - — - 5
Book II. Of triangles $-\quad$ - $\quad 12$
Book III. Of quadrangles, and polygons - 3^{6}
Book IV. Of the circle, and its infcribed, and circumfcribed figures - - - - 50

Book V. Of planes, and folid angles - 85
Book VI. Of folids - - - — - 97
' Book VII. Of the sphere, and its infcribed and circumscribed bodies - — - - 125
Book VIII. The confruction of geometrical problems — - - - - - ${ }_{15}{ }^{6}$

THE

ELEMENTS

$0 \dot{O}$

gEOMETRY.

DEFINITIONS.

VEOMETRX is a faience which teaches FIG. and demonftrates the properties, affections, and meafures of all forts of magnitude.
2. Magnitude is continued quantity, any thing at is extended; as a line, furface, or folid.
3. A point is that which has no parts.
4. A line is a length without breadth or thickis.
Cor. The extremes of a line are points.
5. A right line is that which lies evenly, or in
e fame direction, between two points A, B. A Ii rue line continually changes its direction.
Cor. Hence there can only be one species of bht lines, but there is infinite variety in the Species curves.
6. Parallel lines are thole which are always at the ne diftance from one another, as $\mathrm{AB}, \mathrm{CD} .=2$,
7. An angle is the inclination of two lines, to e another, meeting in a point, called the angular $n t$. When it is formed by two right lines, it is plain angle, as A ; if by curve lines, it is a cur-

8. A right angle is that which is made b one right line $A B$ falling upon another $C D$, an making the angles on each file equal, $\mathrm{ABC}=$ ABD ; fo that AB does not incline more to on fide than another: $A B$ is called a perpendicular All other angles are called oblique angles.
9. An obtuse angle is greater than a right angle 5. as R.
10. An acute angle is lefs than a right angle as S .
II. Contiguous angles, are thole made by one lin falling upon another, and joining to one another as R, S.
12. Opposite angles, are thole made on contra fides of two lines interfecting one another,
G. A, B.
13. A surface is that magnitude which hath on length and breadth.

Cor. The extremes or limits of a surface are lines.
14. A plane is that furface which lies perfect l even between its extremes; or in which, right line any way drawn, do coincide.
15. A plain figure, is a plain furface, bounce on all fides by one or more lines.
16. A rigbt-lined figure, is a plain figure, bound ed with right lines only.

Cor. Every rigbt-lined figure has as many angle as fides.
17. A folid is a magnitude extended every way or which has length, breadth, and depth.

Cor. The terms or extremes of a felid, ar surfaces.
13. The faure of a right line is the face in clouded by four right lines equal to it, feet per pendicular to one another.
19. The rectangle of two lines is the face in cluded by four lines equal to them, fer perpendicu lar to one another, the oppofite ones being equal.
20. Commenfurable magnitudes, are fuch as may meafured by one and the fame meafure.
21. Incommenfurable magnitudes, are fuch as have o common meafure.
22. Rational magnitudes, are thofe that are exreffed by a rational number, or by one that inludes not a furd.
23. Irrational magnitudes, are fuch as are denoted y a furd, as $\sqrt{2}, \sqrt{ } 3, \sqrt{5}, \mathcal{E}^{3} c$.

AXIOMS or MAXIMS.

1. Things equal to the fame thing, are equal one another.
2. The whole is equal to all its parts taken toether.
3. If equal things be added to equal things, the holes will be equal.
4. If equal things be taken away from equal ings, the remainde s will be equal.
5. If equal things be equally multiplied, the oducts will be equal.
6. If equal things be equally divided, the quonts will be equal.
7. All right angles are equal to one another.
8. Thofe magnitudes are equal, which being plied, exactly agree or coincide with one another.

POSTULATES.

1. Between any two points a right line may be avi.
2. That a right line or plane may be produced far as we pleafe.
3. That a circle may be defribed from any cenat any diftance. See Book IV. Def. I.
4. That any magnitude being given, an equal gnitude may be made.

$$
\text { B } 2
$$

5. That

CHARACTERS.

5. That any magnitude may be fo often multi plied, as to exceed any magnitude of the fame kind.
6. That any magnitude may be divided into a many equal parts as we pleare.

Explanation of Cbaracters.

+ added to, being the fign of addition.
fubtracted from, the fign of fubtraction-
\times multiplied by.
\div divided by.
$=$ equal to.
$::$ the mark of proportion.
\div geometrical progreffion.
us difference.
- fquare.
\square rectangle.
$\sqrt{ }$ fquare root.
$\sqrt[3]{ }$ cube root.
A^{2} A fquared; alfo $\overline{\mathrm{AB}}^{2}$ is AB fquared.
$A^{3} A$ cubed; and $A B^{3}$ is $A B$ cubed.
\angle an angle.
\# parallel.
\perp perdendicular.
Sometimes one letter denotes a line ; but if a lin is expreffed by two letters, as $A B$, then the letter A, B denote the extreme points of that line.

When one letter denotes an angle, it is fuppofe to ftand at the angular point; but if three letter exprefs the angle, the-middle one is at the angula point; the other two in the fides.

When three letters ftand for a rectangle, as ABC it fignifies $A B \times B C$; where $A B, B C$ are the fide Or when four letters ftand for a rectangle, $A B \times C D ; A B$ and $C D$ are the fides.

The citations are thus to be underftood; the fir number denotes the Prop. the fecond the Booll When proportion is referred to, it fignifies ged metrical proportion.

[5]

B O O K I.

f Angles, and Right Lines, and their Rectangles.

PROP. I.

If to any point C in a rigbt line AB , feveral otber FIG. tht lines DC, EC are draren on the fame fide; all 7. angles formed at the point C , taken togetber, are cal to two rigbt angles, $\mathrm{ACD}+\mathrm{DCE}+\mathrm{ECB}$ two rigbt angles.

TOR fuppofe $P C$ to be perpendicular to $A B$, then since $A C P$ and $P C B=$ two right angles, ef. 8); and thefe angles $A C D, D C E, ~ E C B$ cupy the fame angular fpace; therefore they are equal to two right angles (Ax. 2).
Cor. 1. All the angles made about one point in a ene, being taken togetber, are equal to four right gles.
Cor. 2. If all the angles at C , on one fide of the e AB , bappen to be equal to two right engles; then CB is a ftraight line.

> P R O P. II:

If two rigbt lines, AB, CD, cut one another ;' the pofite ang'es E and G will be equal.
For $A E C+E=$ two right angles (Prop. I), $\mathrm{d} A E C+G=$ two right angles (ibid.); there$\mathrm{re} \mathrm{AEC}+\mathrm{E}=\mathrm{AEC}+\mathrm{G}(\mathrm{Ax} . \mathrm{I})$, and $\mathrm{E}=\mathrm{G}$ $\mathrm{x}, 4$). After the fame manner $\mathrm{AGC}=\mathrm{BGD}$.

FIG. Cor. If AB is a right line, and CEB bappen to b4 equal to AGD , or E equal to G ; then CD is a rigb line.

PROP. III.

9. A right line AB , which is perpendicular to one of trwo parallels FH , is perpendicular to the otber DC .

For fuppofe the end HC of the figure CBAH , be raifed up, and turned over the line $A B$, fo that HC may fall towards $F D$, the line $A B$ remaining fixed. Then fince the $\angle \mathrm{BAH}=\mathrm{BAF}(\mathrm{Ax} .7)$ therefore the line $A H$ will fall upon $A F$, and le the line BC fall on the line $\mathrm{B} d$. Draw the line $d \mathrm{DH}$ perpendicular to HF. Now fince FH, DC ard paraliels; therefore the diftances BA, DF, and $d \mathrm{I}$ (or CH) are all equal (Def. 6); therefore the point D, d muft coincide ; and therefore the line $\mathrm{B} d$ coincides with $B D$. Therefore $\angle A B C=A B D=$ right angle (Def. 8).

Cor. 1. Hence two lines FH, DC, perpendicular ts the fane line AB , are parallel.

Cor.2. Hence the fegments of two parallels, in tertepted between two perpendiculars AB, HC, ar equal, $\mathrm{AH}=\mathrm{BC}$.

For fince the angles at $\mathrm{A}, \mathrm{H}, \mathrm{B}, \mathrm{C}$ are right therefore the two lines $A B, H C$, interfecting $A H$ and being both perpendicular thereto, are paralle (Cor. 1); and therefore $\mathrm{AH}=\mathrm{BC}$ (Def. 6).

> PROP. IV.
10. If a rigbt line CG , interfect two parallels AD , FH ; the allernate angles, ABE , and BEH , weill bd equal.

Let $A E, B H$ be perpendicular to $A D$, and $F H$ Then fince $\mathrm{AE}=\mathrm{BH}($ Def. 6), and $\mathrm{AB}=\mathrm{EH}$ (Prop. IlI. Cor. 2), and the angles at A and H right
right ; therefore if the figure EHB be laid upon FIG. $B A E$, the $\angle H$ upon A, and $H E$ upon $A B$, and IO. confequently HB will fall upon AE ; and the whole figure EHB coincides with the figure BAE , and the angle $H E B$ with $E B A$, and confequently thefe angles are equal. Likewife the angles $D B E$ and FEB will be equal, being the remainders to two fight angles (Ax.4).

Cor. I. The external angle CBD, is equal to the internal angle on the fame fide BEH.

For $\mathrm{CBD}=\mathrm{ABE}=\mathrm{BEH}$ (Prop. 2).
Cor. 2. The two internal angles on the fame fide are equal to two right angles; $\mathrm{DBE}+\mathrm{BEH}=$ two right angles.

For $\mathrm{EBA}=\mathrm{BEH}$ (Prop. IV), and DBE + $\mathrm{EBA}=$ two right angles, $=\mathrm{DBE}+\mathrm{BEH}$.

Cor. 3. If the angles CBD and BEH are equal; or ABE and BEH equal ; or $\mathrm{DBE}+\mathrm{BEH}$ be equal to two right angles; the lines AD, FH are parallel.

For if any angle is greater than is here mensioned, it deftroys the parallelifin of the lines $A D$, FH.

PR O P. V.

Two lines drawn between two parallels AB, CD, 11. making equal angles with either of them, will be equal, $A C=B D$.

Draw CF, DH perpendicular to FB , then fince $\angle A C D=B D I$; alfo FCD and HDI right angles (Prop. III), the remainders FCA and 1 HDB are equal ; and the angles at F and H being right, and $\mathrm{FC}=\mathrm{HD}$ (Def. 6); therefore if HD be laid on FC , the line $D B$ will fall on $C A$, and HB on $F A$, and B on A; therefore $D B=C A$.

FIG. Cor. I. If the lines AC and BD are equal, then the angles ACD and BDI are equal.
1 I.
For if one angle was greater, it would make the lines $A C, B D$ unequal.

Cor. 2. The parts intercepted are equal, AB $=\mathrm{CD}$.

For $\mathrm{FA}=\mathrm{HB}_{3}$ and adding $\mathrm{AH}, \mathrm{AH}+\mathrm{HB}$, or $\mathrm{AB}=\mathrm{FA}+\mathrm{AH}$, or $\mathrm{FH}=\mathrm{CD}$ (Cor. 2 . Prop. III).

Cor. 2. If two equal and parallel lines AB, CD, be joined by two other's AC, BD; they fall alfo be equal and parallel.

> PR OP. VI,
12. Right lines AB, CD, parallel to the fame right line EF , are parallel to one another.

Let GI cut the three lines, then fince AB, EF are parallel, $\mathrm{AGI}=\mathrm{EHI}$ (Cor. I. Prop. IV); and because EF and CD are parallel, $\angle \mathrm{EHI}=\mathrm{DIG}$ (Prop. IV). Therefore AGI $=\mathrm{DIG}(\mathrm{Ax} .1)_{\mathbf{2}}$ whence AB, CD, are parallel (Cor. 3. Prop. IV).

PROP. VII.

13. parallel to two other lines EC, CH, which also cut one another; they fall contain equal angles $\mathrm{ABD}=\mathrm{ECH}$.

For produce EC to interfect BD in F ; then by reason of the parallels $\mathrm{AB}, \mathrm{EF}, \angle \mathrm{ABD}=\mathrm{EFD}$ (Cor. I. Prop. IV) ; and fince BD and CH are parallel, $\mathrm{EFD}=\mathrm{ECH}$ (ibid;) ; therefore $\mathrm{ABD}=\mathrm{ECH}$.

P R O P. VIII.

Two rigbt lines AF, AB being given; and one of 14. thems AB be divided into Jeveral parts; the reetangle under the two whole lines, will be equal to all the rectangles contained under the whole line, and the feveral fegments of the other; $\mathrm{ABGF}=\mathrm{ADHF}$. + DEIH + EBGI.

For let AF be perpendicular to AB , and DH , EI, BG equal to $A F$, and alfo perpendicular to $A B$. Then $A D \times A F=$ rectangle $A D H F$, and HD $\times \mathrm{DE}$, or $\mathrm{FA} \times \mathrm{DE}=$ rectangle DEIH , and $\mathrm{IE} \times \mathrm{EB}$, or $\mathrm{AF} \times \mathrm{EB}=$ rectangle EBGI (Def. 19); but the fum of thefe rectangles fill the fame fpace as ABGF, and therefore they are equal (Ax. 8).

Cor. I. If both lines be divided into parts, the foum of the reEtangles of all the parts, is equal to the rectangle of the wboles.

Cor. 2. If the two given lines be equal; the fum of the rectangles under the wobole and the parts, is equal to the fauare of the whole.

P R O P. IX.

If a line AC be divided into two parts at B ; the rectangle under the wobole, and one of the Segments, $\mathrm{AC} \times \mathrm{BC}$, is equal to the reetangle of the Segments and the Square of the faid Jegment, $A B \times B C+B C^{2}$.

Suppofe $A F, B E, C D$ all equal to $B C$, and perpendicular to AC ; then the rectangle ACDF $=A C \times C D=A C \times B C($ Def. 19); alfo $A B \times B C$ $=\mathrm{AB} \times \mathrm{BE}=$ rectangle ABEF , and $\mathrm{BC} \times \mathrm{CD}$ or $\mathrm{BC}^{2}=\mathrm{BCDF}$ (Def. 18). But $\mathrm{ABEF} \times \mathrm{BCDE}$ Gill the rectangle $A C D F$, and therefore they are fqual (Ax. 8).

PROP.

```
P R O P. X.
```

FI G.
16.

If a right line AC be divided into trwo parts, AB , $B C$; the fquare of the whole line is equal to the Squares of botb the parts, and twice the rectangle of the parts, $A C^{=}=A B^{2}+B C^{2}+2 A B \times B C$.

Let $\mathrm{AG}, \mathrm{BH}, \mathrm{CI}$ be equal to AC , and perpendicular thereto, and $\mathrm{AD}, \mathrm{BE}, \mathrm{CF}$ equal to AB ; then $\mathrm{FI}=\mathrm{BC}, \mathcal{\delta}_{c}$. then ABED is the fquare of AB (Def. 18), and EFIH is the fquare of BC ; and the figures BF and $E G$, are the rectangles of BC and BE , and DG and DE ; or of AB and BC twice taken (Def. 19). But all thefe fill the fquare AI_{2} and therefore are equal to it (Ax.8).

P R O P. XI.

16. The fquare of the difference of two lines AC, BC, is equal to the fum of their Squares, wanting troice their reftangle, $\mathrm{AB}^{2}=\mathrm{AC}^{2}+\mathrm{BC}^{2}-2 \mathrm{AC} \times \mathrm{BC}$.

For the fquare AI contains the fquare $A E$, the rectangle CH , and rectangle DH ; that is, $\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{CH}+\mathrm{DH}$; and adding FH , $\mathrm{AC}^{2}+\mathrm{FH}=\mathrm{AB}^{2}+\mathrm{CH}+\mathrm{DI}$; that is, $A C^{2}+B C^{2}=A B^{2}+2 A C B$, and $A B^{2}$ or $\overline{\mathrm{AC}-\mathrm{BC}^{2}}=A C^{2}+\mathrm{BC}^{2}-2 \mathrm{ACB}$.

P R O P. XII.

16. The rectangle of the fum and difference of two lines AC, AB, is equal to the difference of their Squares, $\overline{A C+A B} \times B C=A C^{2}-A B^{2}$.

For the difference of the fquares AI and AE is the rectangles $\mathrm{CH}+\mathrm{HD}=\overline{\mathrm{BH}}+\overline{\mathrm{HG}} \times \mathrm{BC}=$ $\overline{A C+A B} \times B C$.

P R O P. XIII.

The Square of the fum, togetber with the Square of the difference of two lines, is equal to twice the jum of their Squares.

Let the lines be A, E. Then the fquare of $A+E=A^{2}+E^{2}+2 A E(\operatorname{Prop} . X)$. the fquare of $A-E=A^{2}+E^{2}-2 A E$ (Prop.XI). then $\overline{A+E}+\overline{A-E}^{2}=2 \mathrm{~A}^{2}+2 \mathrm{E}^{2}(\mathrm{Ax}$. 3).

PROP. XIV.
The difference of the fquares, made of the fum and difference of two rigbt lines, is equal to four times their rectangle.

For if A, E be the lines, then
$\overline{A+E}^{2}=A^{2}+E^{2}+2 A E$.
$\overline{A-E}^{2}=A^{2}+E^{2}-2 A E$.
difference $=\quad 4 \mathrm{AE}$.
Cor. T'be fquare of the fum is equal to the Square of the difference, together with four times their rectangle.

B O O K II. Of Triangles.

DEFINITIONS.

1. ATriangle is a plain figure bounded by three right lines, called the fides of the triangle.
2.'An equilateral triangle is that which has three equal fides.
2. An equiangular triangle is that which has three equal angles.
3. An ifofceles triangle is that having two fides equal.
4. A right-angled triangle is that which has a right angle. The fide oppofite to the right angle is called the bypotbenufe.
5. An oblique triangle is that having oblique angles.
6. An obtufe angled triangle has one obtufe angle.
7. An acute angled triangle has three acute angles.
8. A fcalenous trianole has three unequal fides.
9. Similar triangles are thofe whofe angles are refpectively equal, each to each. And bomologous fides are thofe lying between equal angles.
10. Bafe of a triangle, is the fide on which a perpendicular is drawn from the oppofite angle called the zertex; the two fides, proceeding from the vertex, are called the legs.

Book II. of GEOMETRY.
PROP. I.
In any triangle ABC , if one fide BC be árawon out : the external angle ACD will be equal to the troo internal oppofite angles A, B.

Draw $C E$ parallel to $A B$, then the $\angle A=A C E$, (4. \mathbf{r}); alfo the $\angle B=E C D$ (Cor. r. ibid.) ; therefore $\mathrm{A}+\mathrm{B}=\mathrm{ACE}+\mathrm{ECD}=\mathrm{ACD}(\mathrm{Ax} .3)$.
PROP. II.

Inany triangle ABC , the fum of the three angles is equal to treoright angles, $\mathrm{A}+\mathrm{B}+\mathrm{C}=$ two right angles.

For $A+B=A C D$ (Prop. I), and $A+B+C$ $=A C D+\operatorname{ACB}(A x .3)=$ two right angles (1.I).

Cor. I. If two angles in one triangle, be equal to two angles, in another; the third will alfo be equal to the third.

Cor. 2. If one angle of a triangle be a right angle, the fum of the other two will be equal to a right angle.

Cor. 3. There can only be one perpendicular drawn, to any line, from a given point.
P R O P. III.

The angles at the baje of an ifoficles triangle, are equal $\angle C=B$.

For let $A D$ bifect the angle BAG; then if the triangle DAC be laid upon the triangle DAB ; then by reafon of the equal angles at A, and $A C=A B$, $A C$ will coincide with $A B$, and C with B, and $C D$ with $B D$; and therefore $\angle A C D=A B D$.

Cor. i. If the angles B, C at the baje be equal, the Fodes AB, AC are equal.

Cor. 2. An equilateral triangle is alfo equiangular; and the contrary.

The ELEMENTS

FIG. Cor. 3. The line which is perpendicular to the bafe of an ifofceles triangle, bijects it and the vertical angle.

Cor. 4. Only two equal lines can be drawn from a given point to a right line.

For if $A B=A D=A C$; then $\angle B$ as well as $\angle D=\angle C$, which is abfurd (Prop. I).

> PROP. IV.

In any triangle, the greateft fide is oppofite to the greateft angle, and the leaft to the leaft. $A B$, then the $\angle A D B=A B D$ (Prop. III), but $A D B=D B C+D C B$ (Prop. I) ; therefore ADB is greater than C; whence $A B D$ is greater than C, therefore much more is $A B C$ greater than C. After the fame manner it is proved, that $A B C$ is greater than A.

And if $A B$ be the leaft fide, C is lefs than $A B C$; and may be proved in like manner to be lefs than A.
PR O P. V.

In any triangle ABC , the fum of any two fides BA , AC , is greater than the third BC .

Produce the fide $B A$, and let $A D=A C$, and draw $D C$; then fince $\angle A C D=D$ (Prop. III) ; therefore BCD is greater than D ; and therefore the oppofite fide $E D$ is greater than $B C$, that is, $\mathrm{BA}+\mathrm{AC}$ is greater than BC .

Cor. 1. A rigbt line is the foorteft difance between any two points.
21.

Cor. 2. The fum of treo lines BD, DC, drawn from twon angles to any point within the triangle, is lefs than the two fides of the triangle; $\mathrm{BD}+\mathrm{DC}$ is less than $\mathrm{BA}+\mathrm{AC}$, but contain a greater angle.

Book II. of GEOMETRY.
For drawing BDE, then, in the triangle BAE, FIG. BE is lefs than $\mathrm{BA}+\mathrm{AE}$ (Prop. V), add EC, then $\mathrm{BE}+\mathrm{EC}$ is lefs than $\mathrm{BA}+\mathrm{AC}$. And int the triangle $\mathrm{DEC}, \mathrm{DC}$ is lefs than $\mathrm{DE}+\mathrm{EC}$; add $B D$, and $B D+D C$ is lefs than $B E+E C$, and much lefs than $B A+A C$.

Alfo $\angle B D C$ is greater than DEC, which is greater than A (Prop. I).

PR O P. VI.

If two triangles ABC , abc, bave two fides and 22. the included angle equal in each; thefe triangles, and their correfpondent parts, foall be equal.

For fince the $\angle A=a$, and $A B=a b$, allc $A C$ $=a c$, therefore if A be laid upon c, fo that $A B$ fall upon $a b$, then AC will fall upon $a c$, the point B will coincide with b, and C with c; therefore the whole triangles coincide. Whence the bafe $\mathrm{CB}=c b, \angle B=b$, and $\mathrm{C}=c$. And the whole. triangles are equal.

Cor. If two triangles $\mathrm{ABC}, a b c$, bave two fides refperfively equal; that robich bas the greater baje, bas the greater oppofite angle; and the contrary.

For if the fides CA, BA intercept a greater bafe $B C$, the angle at A will be fo much the wider or greater; and as the angle increafes, the more of the bafe it intercepts, as is evident.

P R O P. VII.

If troo triangles ABC and abc, bave two angles 22. and a fide equal, each to each; the remaining parts Joall be equal, and the whole triangles equal.

For fince two angles are equal, the third will be equal (Cor. I. Prop. II); therefore if the equal fides $B C$ and $b c$ be laid one upon another, then, by reafon of the equal angles B and b, C and c, the

FIG. the fides BA and $b a$ will coincide, as alfo CA and $c a$, and A will fall on a; whence all the parts will be equal (Ax. 8).

PR O. P. VIII.

If two triangles have all their fides respectively equal; all the angles will be equal, and the wholes equal.

For if the bale of one be laid upon the bale of the other, the other two fides will coincide, proviced the correfpondent ones lie the fame way. For if you fay they don't coincide, let one triangre be $A B C$, the other $A B D$: then fince $A B, A C$ are equal to $A B, A D$ (hyp.), and the angle $B A D$ greater than BAC , therefore BD is greater than BC (Cor. Prop. VI) ; contrary to the hypothefis.

Cor. I. From two points in a right line, as A and B , two lines equal to AC, BC cannot be drawn to any other point D.

Cor. 2. Triangles mutually equilateral, are mutually equiangular.

> PR OP. IX.
24. of the one, be equal to ar, cb of the other; and an oppofite angle A equal to the correspondent oppofite angle a; and the other oppofite angles B, b, either both acute or both obtuse ; the remaining parts of the triangles will be equal.

For if cab be laid upon CAB, fo that ca fall upon CA; then fince the $\angle a=A, a b$ will fall upon ABD. And as c falls upon C ; $c b$ will fall upon either CB or CD (Cor. 4. Prop. III); which here will be CB, as the angle at b is obtufe. Therefore the triangles coincide, and all the parts are equal.

PROP. X.

FIG.
Triangles BCA, BCF, fonding upon the Same bafe, 25 . and between the fame parallels, are equal.

Let CD be parallel to BA , and BE to CF . Then the triangle $\mathrm{CBA}=\mathrm{ADC}$ (Prop.VI); for $\overrightarrow{\mathrm{BA}}=\mathrm{CD}(5.1)$; and $\mathrm{CB}=\mathrm{AD}$ (Cor. 2. ibid.), and $\angle \mathrm{B}=\mathrm{D}(4 \cdot 1)$. Therefore the triangle BCA $=$ half of BCDA . For the fame reafon $\mathrm{BCF}=$ $\mathrm{BEF}=$ half of CBEF.

Again, the triangles BAE, CDF are equal, having two fides and the contained angle equal; add the figure BCDE , and then $\mathrm{BCDA}=\mathrm{BCFE}$, and their halves $\mathrm{BCA}=\mathrm{BCF}$.

Cor. 1. Triangles of equal bafes and bigbts are equal.
Fo: if their bafes be laid upon one another, the engular points of both (by reafon of their equal hight) will fall in the fame parallel; and are therefore equal (Prop. X).
Cor. 2. Every triangle is equal to balf the reetangle its bafe and bigbt.
For fuppofe CBA to be a right angle, then it was proved that the triangle CBA is half of the ectangle CBAD; and CBF (equal to it), is thereore equal to half that rectangle.

PROP. XI.

Triangles $\mathrm{ABC}, \mathrm{ABD}$, of the Same bigtt, are in $2 \sigma_{0}$ roportion to one anotber as their bajes BC , and BD .

Divide BC into any number of equal parts BF , $\mathrm{F}, \mathrm{GH}, \mathrm{HC}$; and BD into fome number of the ame equal parts, $\mathrm{BI}, \mathrm{IK}, \mathrm{KD}$. The triangles $\mathrm{ABF}, \mathrm{AFG}, \Xi^{2} c$. and $\mathrm{ABI}, \mathrm{AIK}, \xi^{3} c$. are all equal Cor. I. Prop. X); and the triangle ABC contains C ABF

FIG. $A B F$ as oft as $B C$ contains $B F$; alfo $A B D$ contains 26. ABI or ABF as oft as BD contains BI or BF ; whence $A B F: B F:: A B C: B C:: A B D: B D$ (Def. 4. Proportion and Cor. 2. Prop. XIV. ibid.).

Cor. 1. Hence triangles are to one another as their bajes and altitudes.

It follows from this Propofition, and Cor. 2. Prop. X. therefore,

Cor. 2. Triangles of equal bajes, are as their bigbts.

P R O P. XII.

27. If a line DE be drawn parallel to one fide BC , of a triangle; the Segments of the otber fides will be proportional; $\mathrm{AD}: \mathrm{DB}:: \mathrm{AE}: \mathrm{EC}$.

For draw BE, DC; then the triangle DEB = triangle DEC (Prop. X); and triangle ADE : BDE : : $\mathrm{AD}: \mathrm{BD}$ (Prop. XI); and triangle ADE : CDE : : AE : CE (ibid.) ; therefore $\mathrm{AD}: \mathrm{DB}:: \mathrm{AE}$: EC (Prop. I. Proportion).

Cor. I. If the fegments be proportional, $\mathrm{AD}: \mathrm{DB}$ $:: \mathrm{AE}: \mathrm{EC}$; then the line DE is parallel to the fide $B C$.
For if thefe lines were not parallel, the triangles DEB and DEC would not be equal (Cor. 2. Prop. X); and the fegments would not be proportional.

Cor. 2. If feveral lines be drawon parallel to one fide of a triangle, all the fegments will be proportional.

Cor. 3. A line, drawn parallel to any fide of a triangle; cuts off a triangle similar to the whole.

For $\angle D=B$, and $\angle E=C$ (Cor. r. Prop. IV. I) ; therefore they are fimilar (Def. 10).

Cor. 4. The subole fides are as the fegments: $\mathrm{AB}: \mathrm{DB}:: \mathrm{AC}: \mathrm{EC}$.

look II. of GEOMETRY.

For it is $\mathrm{AD}: \mathrm{DB}:: \mathrm{AE}: \mathrm{EC}($ Prop. XII), FIG. phence $A D+D B(A B): D B:: A E+E C\left(f_{2} C\right)$

P R ○ P. XIIİ.

In fimilar triangles, the bomologous fides are pro- 28. fortional $; \mathrm{AB}: \mathrm{AC}:: \mathrm{DE}: \mathrm{DF}$.

In the longer fide AC make $\mathrm{A} f=\mathrm{DF}$, the longer iide. And in the fhorter fide AB , make the fhorter ide $\mathrm{DE}=\mathrm{Ae}$; and draw ef; then the $\angle \mathrm{A}$ being uppofed $=$ to D, and the comprehending fides qual, \angle Aef $=\mathrm{E}$, and $\mathrm{A}_{\mathrm{f}} \mathrm{fe}=\mathrm{F}$ (Prop. VI). Cherefore $\mathrm{Aef}=\mathrm{B}$, and $\mathrm{Afe}=\mathrm{C}$; confequently f is parallel to BC (Cor. I. Prop. 4. I); thereore $\mathrm{AB}: \varepsilon \mathrm{B}:: \mathrm{AC}: \int_{\mathrm{C}}($ Cori 4. Prop. XII); and $A B: A B-e B(A e):: A C: A C-f C(A f)$, Prop. KIII. Proportion). That is, $\mathrm{AB}: \mathrm{DE}:: \mathrm{AC}: \mathrm{DE}$, or AB : AC : : DE : DF (Prop. IV. Proportion).

And if a triangle was made at the $\angle C$ equal to DFE; it will appear the fame way, that $\mathrm{AC}: \mathrm{CB}$: DF : FE. Whence $A B$: $\mathrm{CB}:: \mathrm{DE}: \mathrm{EF}$ Prop. XV. Preportion).

Cor, A line AE drawn fromit the oppofite ongle A, cuts wo parallel lines proportionally; $\mathrm{BE}: \mathrm{EC}:: \mathrm{DI}: \mathrm{IF}$.
For $\mathrm{BE}: \mathrm{DI}:: \mathrm{AE}: \mathrm{AI}:$: EC : IF.

PROP. XIV:

If two trinngles bave one angle equal to one, and the 28 . Fdes about the equal angles proportional; thefe triingles are fimilar.

For let $\angle \mathrm{D}=\mathrm{A}$, and let the triangle DEF be laid upon $A B C$; then, by reafon of the equal angles, the ides DE, DF will fall upon AB, AC, the points E , upon e and f. Then fince $\operatorname{DE}\left(A_{e}\right): \operatorname{DF}(A f)::$ $A B: A C$, or $A c: A B:: A f: A C$, therefore $A e$:

FIG. eB : : Af: f C (Prop. XIII. Proportion); whence of 28. is parallel to BC, (Cor. I. Prop. XII) ; and $\angle e$ or $\mathrm{E}=\mathrm{B}$, as alfo f or $\mathrm{F}=\mathrm{C}$ (Cor. ı. Prop. IV. I). Whence the triangles $\mathrm{DEF}, \mathrm{ABC}$ are fimilar (Def. io).

> PROP. XV.
30. If two triangles bave all their fides refpectively proportional, thefe triangles are fimilar; $\mathrm{AB}: \mathrm{DE}:: \mathrm{BC}$: EF : : AC: DF.

Let the $\angle \mathrm{FEG}=\mathrm{B}$, and $\mathrm{EFG}=\mathrm{C}$, then $\mathrm{G}=\mathrm{A}$ (Cor. 1. Prop. II) ; whence GE: EF $:: \mathrm{AB}: \mathrm{BC}$ (Prop. XIII) :: DE : EF (hyp.); therefore $\mathrm{GF}=\mathrm{DE}$, (Ax. 7. Proportion). Likewife GF: EF : : AC : BC : : DF : EF; therefore $\mathrm{GF}=\mathrm{DF}$ (Ax. 7. Proportion). Whence the triangles DEF, GEF have all their fides refpectively equal; and are therefore equiangular; therefore $\mathrm{G}=\mathrm{D}=\mathrm{A}, \mathrm{DEF}=\mathrm{GEF}=\mathrm{B}$, and $\mathrm{GFE}=\mathrm{DFE}=\mathrm{C}$.

P R O P. XVI.

If two triangles bave one angle in each, equal; and the fides about the fecond angles proportional; and the tbird angles both of one kind, acute or obtufe; thefe triangles are fimilar.

Let $\angle A=D$, and $A B: B C:: D E: E F$. Make $\angle A B G=D E F$, then $\angle G=F$ (Cor. I. Prop. II.); whence $\mathrm{AB}: \mathrm{BG}:: \mathrm{DE}: \mathrm{EF}$ (Prop. XIII.) $:: A B: B C$, therefore $B G=B C$, and $B C G$ is an ifofceles triangle, and AGB is obtufe, of the fame kind with DHE; and ACB is acute, the fame as DIE ; whence the angles F and G , or I and C , muft be of the fame kind, to have the triangles fimilar.

Scholium.

This does not always hold good, if the angles B and E are required to be of the fame kind, inftead
of G and F. For if $A B C$ be acute, $A B G$ will alfo Fig. be acute; but ABG is not fimilar to DEI, nor ABC 3 I. to DEF ; though ABC be fimilar to DEI, and ABG to DEF.

P R O P. XVII.

Equal triangles, that bave one angle equal, bave the fides about the equal angles reciprocally proportional.

Let the oppofite angles at B be the equal angles, and $\mathrm{ABC}, \mathrm{DBE}$, the two equal triangles; then $\mathrm{AB}: \mathrm{BE}:: \mathrm{DB}: \mathrm{BC}$ (hyp.).

Draw CE, then $\mathrm{AB}: \mathrm{BE}:$: triangle ABC or DBE : triangle CBE (Prop. XI) : : DB : BC.

Cor. I. Thofe triangles are equal, that bave the ides about the equal angles, reciprocally proportional.
For triangle ABC : CBE : : AB : BE (Prop. XI) : DB : BC (hyp.) : : triangle DBE : CBE; thereore triangle $\mathrm{ABC}=\mathrm{DBE}$ (Ax. 7. Proportion).

Cor. 2. Equal triangles bave their bafes and bigbts: eciprocally proportional.
For each triangle is equal to a right-angled triangle f the fame bafe and hight (Prop. X); and then he fides about the right angles, are reciprocally proortional (Prop. XVII).

PROP. XVIII.

Like triangles ABC and DEF are in the duplicate atio, or as the Squares of, their bomologous fides, BC, F.

Let there be taken BG , fo that $\mathrm{BC}: \mathrm{EF}:$: $F: B G$, and draw $A G$. Then fince $A B: D E$: BC : EF (Prop. XIII) : : EF : BG (Conftruct.); erefore the triangle $A B G=D E F$. But $A B C$ ABG or DEF : : BC: BG (Prop. XI) : : BC ${ }^{2}$ EF^{2} (Prop. XXIII. Proportion).

$$
\mathrm{C}_{3} \quad \mathrm{PROP}
$$

FIG.
34.
PROP. XIX.

Triangles that bave one angle equal to one, are to one enotber in the complicate ratio of the fides about the equal angles; $\mathrm{ABC}: \mathrm{EBD}:: A B \times B C: E B \times B D$.

Draw $C E$, then $C D, A E$ being ftraight lines, the angles at B are equal (Prop. 11. 1). Then triangle $\mathrm{ABC}: \mathrm{CBE}:: \mathrm{AB}: \mathrm{BE}$ (Prop. XI), and CBE : $\mathrm{EBD}:: \mathrm{CB}: \mathrm{BD}$ (ibid.) ; therefore $\mathrm{ABC}: \mathrm{EBD}:$: $A B \times C B: B E \times B D$ (Cor. 1. Prop. XVIII. Proportion).
PROP. XX.
35. In a rigbt-angled triangle BAC , if a perpendicular be let fall from the right angle upon the bypothenule, it will divide it into two triangles fimilar to one another and to the robole, $\mathrm{ABD}, \mathrm{ADC}$.

For in the triangles $A B D, A B C$, the angle B is common to both, and angles D and $B A C$ are right ones; therefore the remaining angles BAD and BCA are equal ; therefore the triangles $A B D$ and $A B C$ are fimilar.

Again, in the triangles $A C D$ and $A C B, \angle C$ is common, $\angle D=C A B$, and therefore $\angle D A C=B$, therefore $A C D$ and $A B C$ are fimilar; and confequently $A B D$ and $A D C$.

Cor. I. The reEtangle of the bypotbemufe and either fegmene is equa! to the fauare of the adjcining fide.

For $\mathrm{BD}: \mathrm{BA}: \mathrm{BA}: \mathrm{BC}$ (Prop. XIII), and CD$)$: $C A:: C A: C B$ (ibid.) ; whence $B D \times B C=B A^{2}$, and $C D \times C B=C A^{2}$ (Prop. XiI. Proportion).

Cor. 2. The rectangle of the bypothenufe end perpendicular, is equal to the reizangle of the legs.

For $\mathrm{BC}: \Lambda \mathrm{B}:: A C: A D$ (Prop. XIII), and $A B \times A C=B C \times A D$ (Mrop. XII. Proportion).

Cor. 3. The perpendicular is a mean proportional be- FI G. tween the fegments of the bypothenufe.

For $\mathrm{BD}: \mathrm{DA}: \mathrm{DC}$, and $\mathrm{BD} \times \mathrm{DC}=\mathrm{DA}^{2}$.
Cor. 4. The fergments of the bypothenufe are as the Squares of the adjcining fides.

For by this Prop. BD : DA : : BA : AC (Prop. $\lambda I I^{1}$), and $\mathrm{BD}^{2}: \mathrm{DA}^{2}:: \mathrm{BA}^{2}: \mathrm{AC}^{2}$ (Cor 3 Prop. XVIII. Proportion). And by Cor. 3. (and Prop. XYIII. Proportion) BD : $\mathrm{LC}:: \mathrm{BD}^{2}: \mathrm{DA}^{2}:: \mathrm{BA}^{2}: \mathrm{AC}^{2}$.

Cor. 5. As the perpendicular, to the bypotbenufe; fo' the reetangle of the Jegments, to the rectangle of the legs.

For $A D: A B:: C D: C A$, by the fim. triangles BAD, DAC.

And $\mathrm{BA}: \mathrm{BC}:: \mathrm{BD}:$ BA by the fim. triangles B C, BAD.

Therefore AD : BC :: BDC : BAC (Cor, I , Prop. XVIII. Proportion).

Cor. 6. The diflance of the rigbt angle, from the middle of the bypotbenufe, is equal to balf the bypothenufe.

For let $\mathrm{B}_{0}=0 \mathrm{C}$, and draw on, or parallel to AC, AB; and draw Ao. Then $\mathrm{B} n=n \mathrm{~A}$, and $\mathrm{Cr}=\mathrm{rA}$ (Prop. XII); and the angles at n and r are right (Cor. I. Prop. IV. I). Then the triangles Bon, Aon, as alfo the triangles Cor, Aor, have two fides, and the included angle, equal; therefore $\mathrm{Bo}_{0}=\mathrm{A}_{0}=\mathrm{Co}_{0}$ (Prop. VI).

PR O P. XXI,

In a rigbt-enjled triangle BAC , the fquare of the bypotbenufe BC , is equal to the fum of the Squares of the two fides, $B A, A C$.
$\mathrm{C}_{4} \quad$ For

FIG． 36.

For let $B G$ be the fquare defcribed on $B C$ ，and draw ADF perpendicular to BC ，or parallel to CG or BE ．Then $\mathrm{BA}^{2}=$ rectangle of BD and BC or BE （Cor．1．Prop．XX）$=$ rectangle BF．Also the square of $A C=$ rectangle of $C D$ and $C B=$ rec－ tangle CF （ibid．）：but rectangle $\mathrm{BF}+\mathrm{CF}=$ fquare $\mathrm{BG}(A x .8)$ ；therefore BG or the fquare of $B C=B A^{2}+A C^{2}$.

Cor．1．The Square of either file is equal to the difference between the Squares of the bypothenuse and the other file； $\mathrm{BA}^{2}=\mathrm{BC}^{2}-\mathrm{AC}^{2}$ ，and CA^{2} $\mathrm{BC}^{2}-\mathrm{BA}^{2}$ ．

Cor．2．The rectangle of the fum and difference of the bypotbenuife and one of the fides，is equal to the Square of the other side．

For $\mathrm{BA}^{2}=\mathrm{BC}^{2}-\mathrm{AC}^{2}($ Cor． I$)=\overline{\mathrm{BC}+\mathrm{AC}}$ $\times \overline{\mathrm{BC}-\mathrm{AC}}$（Prop．XII．I）．

Cor．3．If the Square of one side of a triangle be equal to the fum of the Squares of the other two fides； then the angle comprehended by them is a right angle．

For if it was greater or left than a right angle，the oppofite file would be greater or lefs than the hypo－ thenufe of a right－angled triangle（Cor．Prop．VI）； and its fquare greater or lees than the fquares of the other fides．

Cor．4．A perpendicular CA is the nearest diftance of a point C ，from a right line BA ．

Cor．5．In any triangle ACB ，if a perpendicular be let fall from the opposite angle A ，on the base CB．The difference of the Squares of the fides，is equal to the difference of the 保uares of the Segments， $A B^{2}-A C^{2}=B D^{2}-C D^{2}$.

For $A B^{2}-B D^{2}=A D^{2}=A C^{2}-C D^{2}$（Cor． I ． Prop．XXI）．And $A B^{3}-\Lambda C^{2}=B D^{2}-C D^{2}$ （Ax． 3,4 ）．

PROP．

P R O P. XXII.

FIG.
37.

In an obtufe angled triangle ABC , if a perpendicular be let fall upon the bafe; or one fide adjoining, to the obtufe angle B; then the Square of the fide oppofite to that obtufe angle is equal to the fum of the Squares of the two leffer fides, together with twice the reEZangle of the bafe and the diffance of the perpendicular from the obtufe angle: $\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{CB}^{2}+2 \mathrm{CBD}$.

For $A C^{2}=A D^{2}+C D^{2}$ (Prop. XXI) $=A D^{2}$ $\mathrm{CB}^{2}+\mathrm{BD}^{2}+2 \mathrm{CBD}(10.1)=A B^{2}+C B^{2}$ ${ }_{2}$ CBD (Prop. XXI).
Cor. The diftance of the perpendicular from the ibtufe angle, $\mathrm{BD}=\frac{\mathrm{AC}^{2}-A \mathrm{AB}^{2}-\mathrm{CB}^{2}}{2 \mathrm{CB}}$.

P R O P. XXIII.

If a perpendicular be let fall upon the bafe, or fide djoining to an acute angle B , of any triangle. Then,
The fquare of the fide oppofite to tbat acute angle, toetber with twice the reetangle, of the baje, and the iftance of the perpendicular from the acute angle; is qual to the fum of the Squares of the two other fides: $\mathrm{AC}^{2}+{ }_{2} \mathrm{CBD}=\mathrm{AB}^{2}+\mathrm{BC}^{2}$.
For $\mathrm{AC}^{2}=\mathrm{AD}^{2}+\mathrm{DC}^{2}\left(\right.$ Prop. XXI) $=\mathrm{AD}^{2}$
$B C^{2}+B D^{2}-2 B D \times B C($ Prop. XI. I $)=A B^{2}$
$\mathrm{BC}^{2}-2 \mathrm{CBD}$ (Prop, XXI). And $\mathrm{AC}^{2}+2 \mathrm{CBD}$
$A B^{2}+B C^{2}(A x .3)$.
Cor. The diftance of the perpendicular from the acute rgle B is $=\frac{\mathrm{AB}^{2}+\mathrm{BC}^{2}-\mathrm{AC}^{2}}{2 \mathrm{CB}}$.

PR O P. XXIV.

In any triangle ABC , let fall a perpendicular AD So difference of the fides, $\mathrm{AC}-\mathrm{AB}$: 10 difference of the fegments of the bafe, $\} C F$. or the allernate baje
For $\mathrm{CA}^{2}-\mathrm{AB}^{2}=\mathrm{CD}^{2}-\mathrm{DB}^{2}$ (Cor. Prop. XXI) ; that is,
$\overline{C A+A B} \times \overline{C A-A B}=C F \times C B$ (Prop. XII. I) whence $\mathrm{CB}: \mathrm{CA}+\mathrm{AB}:: \mathrm{CA}-\mathrm{AB}: \mathrm{CF}$ (Cor. 1 Prop. XII. Proportion).

Cor. The difference of the Squares of the Sides, equel to twice the rictangle of the bafe, and the dijlano of the perpcidicular from the middle of the bafo $C A^{2}-A B^{2}=2 C B \times 0 D$.

For if $C_{0}=o B$, then $C i^{2}-A B^{2}=C A$ $\times C B=\frac{1}{2} \mathrm{CF} \times{ }_{2} \mathrm{CB}$; but $\frac{1}{2} \mathrm{CF}=\mathrm{DO}$; for (Fig. 40 $C E=2 B o-F B$, and $\div C F=\mathrm{Bo}_{0}-\mathrm{BD}=\mathrm{Do}$ And (Fig. 4I) $\mathrm{CF}=2 \mathrm{Bo} \div \mathrm{FB}$, and: $\mathrm{CF}=\mathrm{B}$ $+B D=D 0$.

PROP. XXV.

42. If an angle A of a tricugle 3 AC be bifacted by rigibt line AD , which cuits the bafe; the jegmats the bafe will be proporticnal to the raljoining fiaes of th triangle; $\mathrm{BD}: \mathrm{DC}:: \mathrm{AB}: \mathrm{AC}$.

Produce BA , and make $\mathrm{AE}=\mathrm{AC}$, and draw the line LE ; becaufe $\mathrm{AE}=\mathrm{AC}$, the $\angle A C E=\mathrm{F}$ $($ Prop. II: $)=\frac{1}{2} \mathrm{BAC}($ Prop. I $)=$ BAD (hyp.) Therefore DA, (E are parallels (Cor. 3. Irop. IV) Therefore BA: AL or AC : : BD : DC (irop. XII)

Cor. I If the fidies be as the fegments of the bofe she line AD , bifects the andle A.

For fince $B A: A C$ or $A E:: B D: D C, D$ and CE are parallels (Cor. 1. Prop. XII); and $B A D=\angle E$, and $D A C=A C E=E($ Prop. $I I)$) Whence $\mathrm{BAD}=\mathrm{DAC}$, and A is bifected by AD .

Cor. 2. If a line bifening the certical ande of triangle cuts the bare, is will be

Book II. of G E OMETRY.
As the fum of the fides, $\mathrm{BA}+\mathrm{AC}$:

So the bafe, BC :

to difference of the fegments $\mathrm{BD}-\mathrm{DC}$.
For $\mathrm{BA}: \mathrm{AC}:: \mathrm{BD}: \mathrm{DC}$ (Prop. XXV), and $B A+A C: B A-A C:: B D+D C(B C)$: BD - DC or 2DO (Prop. XIII. Proportion); where O is the middle point of the bafe BC .

PROP. XXVI.

If an angle A of a triangle ABC , be bifected by a rigbt line AD , which cuts the bafe; the fquare of the bifecting line, together with the rectangle of the fegments, is equal to the reEtangle of the fides; $A D^{2}+B D C=B A C$.

Produce $A D$ and make the $\angle D B P=D A C$. Then the three triangles $\mathrm{CDA}, \mathrm{PDB}$, and PBA are fimilar. For $\mathrm{AD}=\mathrm{PBD}=\mathrm{PAB}, \mathrm{CDA}=\mathrm{PDB}$ (2.I), whence $C=P$, and $A D C=A B P$ (Cor. r. Prop. II). Therefore $\mathrm{CD}: \mathrm{DA}:: \mathrm{PD}: \mathrm{BD}$ (Prop. XIII), whence $\mathrm{DA} \times \mathrm{PD}=\mathrm{CD} \times \mathrm{BD}$ (12. Proportion). Again, CA : DA : : AP or $A D+D P: A B$ (Prop. XIII), therefore $C A \times$ $\mathrm{AB}=\mathrm{AD}^{2}+\mathrm{DA} \times \mathrm{DH}\left(12\right.$. Proportion) $=\mathrm{AD}^{2}$ $+\mathrm{CD} \times \mathrm{BD}(\mathrm{Ax}$.).

PROP. XXVII.

In an ifofceles triangle ABC , if a line be drawn from the vertex to cut the bafe; the fquare of that line, together with the reciangle of the fegments of the bafe, is equal to the fquare of the $\sqrt{2}$ e $; \mathrm{BE}^{2}+\mathrm{AEC}=\mathrm{BA}^{2}$.

Let BD be perpendicular to the bafe, then $\mathrm{BA}^{2}=\mathrm{BD}^{2}+\mathrm{AD}^{2}$ (Prop. XXI) $=\mathrm{BD}^{2}+$ ${\overline{\mathrm{AE}+\mathrm{ED}^{2}}}^{2}=\mathrm{BD}^{2}+\mathrm{AE}^{2}+\mathrm{ED}^{2}+2 \mathrm{AED}$ $($ Prop. X. I. $)=\mathrm{BE}^{2}+\mathrm{ABE}^{2}+2 \mathrm{AED}($ Prop. XXI $)$ $=B E^{3}$
$\mathrm{FIG} .=\mathrm{BE}^{2}+\mathrm{AE} \times \overline{\mathrm{AE}+2 \mathrm{ED}}$ (Prop. IX. I)
44. $=\mathrm{BE}^{2}+\mathrm{AE} \times \mathrm{EC}$, becaufe $\mathrm{AE}+2 \mathrm{ED}=\mathrm{EC}$. For $2 A E+2 E D=A C$, therefore taking away $A E, A E+2 E D=E C$.

PROP. XXVIII.

In any triangle BAC , if a line AD be drawn from the vertex to the middle of the bafe. The fum of the Squares of the fides, is equal to twice the Square of baif the bafe, together with twice the fquare of the line that bijects the baje; $\mathrm{AB}^{2}+\mathrm{AC}^{2}=2 \mathrm{AD}^{2}+2 \mathrm{DC}^{2}$.

For $\mathrm{AC}^{2}+{ }_{2} \mathrm{CDP}=\mathrm{AD}^{2}+\mathrm{DC}^{2}$ (Prop. XXIII), and $D C=D B$ (hyp.),
therefore $\mathrm{AC}^{2}=\mathrm{AD}^{2}+\mathrm{DC}^{2}-2 \mathrm{CDP}(\mathrm{Ax} .4)$;
and $A B^{2}=A D^{2}+\mathrm{DB}^{2}+2 \mathrm{CDP}$ (Prop. 22) therefore $A B^{2}+A C^{2}=2 A D^{2}+2 D C^{2}(A x .3)$.

Cor. $A B^{2}-\mathrm{AC}^{2}=\left(4 \mathrm{CDP} \Rightarrow{ }_{2} \mathrm{BC} \times \mathrm{DP}\right.$.

P R O P. XXIX.

46. If through any point E , wittin a triangle ABC , three lines TQ, VR, PS, be drawn parallel to the tbree fides of the triangle; the product or folid made by the alternate fegments of thefe lines, will be equal. $\mathrm{TE} \times \mathrm{PE} \times \mathrm{RE}=\mathrm{QE} \times \mathrm{SE} \times \mathrm{VE}$.

The triangles TEV, PEQ, SER, and ABC are all fimilar (7. I), whence

$$
\begin{aligned}
& \text { TE :VE : : AC : BC (Prop. XIII). } \\
& \text { PE:QE:AAB:AC. } \\
& \text { RE:SE::BC:AB. }
\end{aligned}
$$

whence $\mathrm{TE} \times \mathrm{PE} \times$ RE: $\mathrm{VE} \times \mathrm{QE} \times \mathrm{SE}:: \mathrm{AC}$ $\times A B \times B C: B C \times A C \times A B$ (Prop. XVIII. Proportion). But the two laft terns are equal, therefore $T E \times P E \times R E=V E \times Q E \times S E($ Prop. II . Propoftion).

P R O P. XXX.

If three lines $\mathrm{AF}, \mathrm{BG}, \mathrm{CD}$, be drawn througb 46. any point E , woitbin a triangle ABC , to the oppojite fides; the products of the alternate fegments of the fides are equal; that is, $\mathrm{AG} \times \mathrm{CF} \times \mathrm{BD}=\mathrm{CG} \times \mathrm{BF} \times$ AD.

For drawing TQ, VR, PS parallel to the fides of the triangle, then

$$
\begin{aligned}
& \mathrm{AG}: \mathrm{GC}:: \mathrm{TE}: \mathrm{QE} \text { (Cor. Prop. XHI). } \\
& \mathrm{CF}: \mathrm{BF}:: \mathrm{RE}: \mathrm{VE} . \\
& \mathrm{BD}: \mathrm{AD}:: \mathrm{PE}: \mathrm{SE} .
\end{aligned}
$$

whence $\mathrm{AG} \times \mathrm{CF} \times \mathrm{BD}: \mathrm{GC} \times \mathrm{BF} \times \mathrm{AD}:: \mathrm{TE} \times$ RE \times PE: $\mathrm{QE} \times$ VE \times SE (Prop. XVIII. Proportion), but the two laft are equal (Prop. $X \times 1 \times$); therefore $A G \times C F \times B D=G C \times B F \times A D$ (Prop. II. Proportion).

PROP. XXXI.

Three lines drawn from the three angles of a triangle to the middle of the oppofite fides, all meet in one point.

Let $B D, A E$ bifect the oppofite fides $A C, B C$; and through the point of interfection G , draw CGK , and EL, DI parallel to it.

Now fince $\mathrm{BE}=\mathrm{EC}$, and $\mathrm{AD}=\mathrm{DC}$, we have $\mathrm{BL}=\mathrm{LK}$, and $\mathrm{AI}=\mathrm{IK}$ (Prop. XII). Alfo fince $\mathrm{BE}=\frac{1}{2} \mathrm{BC}$, and $\mathrm{AD}=\frac{1}{2} \mathrm{AC}$, it will be $\mathrm{EH}=$ $\frac{1}{2} \mathrm{CG}=\mathrm{DF}$ (Prop. XIII). Therefore the triangles DGF, HGE, having all the angles equal (4. I), are fimilar and equal (Prop. VII); whence $\mathrm{FG}=$ GE, and confequently $\mathrm{IK}=\mathrm{KL}$ (Cor. 2. Prop. $\mathrm{XII})$, therefore $\mathrm{AI}=\mathrm{IK}=\mathrm{KL}=\mathrm{LB}=\frac{x}{4} \mathrm{AB}$. And $\mathrm{AK}=\mathrm{KB}$. And therefore if the line CK be drawn through the middle point K , it will pafs through G; otherwife the line paffing through G, would make AK greater or leffer than KB. This may alfo be demonftrated from Prop. XXX.

Cor.

FIG. Cor. Hence the diftance of the point of inter \int ection 47. G, from any angle, is twice the difance from the oppoSite fide, $\mathrm{BG}=2 \mathrm{GD}, \mathrm{E}_{\mathrm{c}} \mathrm{c}$.

For fince $B K=2 K I$, and $A K=2 K L$, there fore $\mathrm{BG}={ }_{2} \mathrm{GD}$, and $\mathrm{AG}=2 \mathrm{GE}$. Alfo fince $\mathrm{DI}=\mathrm{DF}+\mathrm{FI}=3 \mathrm{HL}$ or ${ }_{3} \mathrm{FI}$, therefore $2 \mathrm{FI}=$ $\mathrm{DF}=\mathrm{GK}=\mathrm{EH}=\frac{1}{2} \mathrm{CG}$.

P R O P. XXXII.

Three perpendicular lines erected on the middle of the tbree fides of any triangle, all meet in one point.

Let E, F be the middle points of AB, CB, FO, EO two perpendiculars. From O draw OD perpendicular to AC . The right-angled triangles $\mathrm{COF}, \mathrm{BOF}$ are fimilar and equal, and $\mathrm{CO}=\mathrm{OB}$ (Prop. VI) ; alfo the right-angled triangles BOE , AOE , are fimilar and equal, whence $\mathrm{BO}=\mathrm{OA}$ (ibid.), therefore $\mathrm{CO}=A \mathrm{O}$; therefore in the ifofceles triangle $A O C$, the perpendicular OD bifects the bale AC (Cor. 3. Prop. III) : and if it bifects the bafe, it paffes through 0 .

Cor. The point of interfection O , of the three perpendiculers, will be equally difant from the tbree angles.

For the triangles COF, BOF, are fimilar and equal (Prop. VI), and $\mathrm{OB}=\mathrm{OC}$. Alfo the triangles $C O D, A O D$, are fimilar and equal (ibid.), and $C O=A O=B O$.

PROP. XXXIII.

49.

If two right-angled triangles BID, BED, be described upon one bypotbemufe BD, lying on different fides thereof, and the line EI drawn to the oppefite angles; I fay, the engles DBI ond DEI are equal, wowich fland upon the fanne fide DI.

Make $B C=C D$; draw ECF and CI. Then FIG. $\mathrm{CD}, \mathrm{CI}, \mathrm{CB}$, and CE are all equal (Cor. 6. Prop. 49. XX). The external ang.e $\mathrm{ICD}=\mathrm{CIB}+\mathrm{CBI}$ (Prop. I) $={ }_{2}$ CBI (Prop. III). Alfo the external angle $I C F=E I C+I E C={ }_{2}$ IEC (ibid.). Alfo $F C D=C D E+C E D=2 C E D$ (ibid.). Therefore by addition ICF +FCD , that is, $\mathrm{ICD}=2 \mathrm{AED}=$ 2 CBI , and $\mathrm{AED}=\mathrm{CBI}$, or $\mathrm{IED}=\mathrm{IBD}$.

PROP. XXXIV.

Three perpendiculars drawn from the three angles of triangle, upon the oppofite fides, all meet in one point.

Let $A I, C E$ be perpendicular to $C B, A B$; and hrough the point of interfection D draw BDF ; lraw CK perpendicular to CA, alfo draw Ef.
The oppofite angles IDC and EDA are equal 2. I), and the angles at E and I are right, therepre the triangles ADE and CDI are fimilar, vhence $\mathrm{D}: \mathrm{HD}:: \mathrm{CD}: \mathrm{DI}$ (Prop. XIII); therefore the -iangles $\triangle D C$, and EDI are fimilar (Prop. XIV), ad angle DFI $=$ DAC $=I C K$ (Prop. XX). But he triangles DBE, DBI are right-angled at E and whence $\angle D E I=$ DBI (Prop. XXXIII); therere DBI or $\mathrm{FBC}=\mathrm{ICK}$, and therefore BF is pallel to CK (Cor. 3. Prop. IV), or perpendicular AC . And if BF be perpendicular to AC , it ill pafs through D.

PR O P. XXXV.

Three lincs bifering the three angles of a triangle, meet in one point.
For let CDF and ADE bifect the angles C, A; d through D, the point of interfection, draw G . Then $\mathrm{BC}: C G:: B D: \Gamma G:: B A: A G$ rop. XXV) ; and $\mathrm{BC}: \mathrm{BA}: \mathrm{CC}: \mathrm{AG}$ (Prop. Proportion), whence BDG bifects the angle B

FIG. (Cor. i. Prop. XXV), therefore the line bifecting 51. the $\angle B$, paffes through D.

Cor. I. If two lines bifect two angles of a triangle, the point of interfection D , is equally diftant from the three fides.

Let $\mathrm{D} n, \mathrm{D} o, \mathrm{D} p$ be perpendicular on the three fides. Then the triangles $\mathrm{BD} n, \mathrm{BD}_{0}$ have one fide and all the angles equal, therefore $\mathrm{D} n=\mathrm{D} d$ (Prop. VII) ; allio the triangles $\mathrm{AD} 0, \mathrm{AD}_{p}$, have one fide and all the angles equal ; therefore $\mathrm{D}_{0}=$ $\mathrm{D} p$ (ibid.) $=\mathrm{D} n$.

Cor. 2. Segment $\mathrm{Ap}+$ the oppofite fade $\mathrm{BC}=$ hal the fum of the fides.

For half the fum of the fides $=2 \mathrm{~A} p+2 \mathrm{C} n+2 \mathrm{~B} n$

P R O P. XXXVI.

52. If the three angles of a triangle be bijected by th. lines $\mathrm{AC}, \mathrm{BC}, \mathrm{DC}$, and any one BC continued to th oppofite fide, and CP be drawn perpendicular to tha fide, AD ; I fay, the angle $\mathrm{ACE}=\mathrm{DCP}$, or $\mathrm{ACP}=$ DCE.

For fince $\angle A+B \div D=$ two right angles (Prop. II), therefore $\mathrm{CAB}+\mathrm{CBA}+\mathrm{CDP}=$ right angle $=\mathrm{DCP}+\mathrm{CDP}$ (Cor. 2. Prop. II) therefore $\mathrm{CAB}+\mathrm{CBA}$ or $\mathrm{ACE}($ Prop. 1$)=$ DCP.

P R O P. XXXVII.

53.

The area of a rigbt-angled triangle ABC , is equa to the rectangle under balf the perimeter, and its exce/s above the bypothemufe.

The perimeter or circumference is the fum the three fides. Now fince the triangle ABC right-angled at C , the area $=\frac{\mathrm{AC} \times \mathrm{CB}}{2}$ (Cor. 2_{2} Prop. X) ; and $A B^{2}=A C^{2}+C^{2}$ (Prop. XXI) or $\mathrm{AC}^{2}+\mathrm{CB}^{2}-\mathrm{AB}^{2}=0$. Hence four times

But $\frac{A C+C B-A B}{2}=\frac{A C+C B+A B}{2}-A B$.
Cor. The area of a right-angled triangle, is equal to the rectangle under the two excefes, of half the perimeter above each side; $\frac{A C+C B+A B}{2}-B C$, and $\frac{A C+C B+A B}{2}-A C$.

For $\frac{A C+C B+A B}{2}-C B=\frac{A B+A C-B C}{2}$,
and $\frac{A C+C B+A B}{2}-A C=\frac{A B+C B}{2}-A C$,
$\frac{A B+A C-B C}{2} \times \frac{A B+B C-A C}{2}=$
$\frac{A B+\overline{A C-\overline{C B}}}{2} \times \frac{A B-\overline{A C-\overline{C B}}}{2}=\frac{A B^{2}-\overline{A C-C B^{2}}}{4}$
$\frac{A B^{2}-A C^{2}-C B^{2}+2 A C B}{4}($ Prop. XXI $)=$
4
$\frac{A C B}{2}=\operatorname{area}($ Cor. 2. Prop. X).

PR O P. XXXVIII.

In any triangle ABC ; add the three fides together unto one fun; and likevije from the fum of every two ides, Subtract the third; and you will have three rewinders. Then take the product of the Said fum, nd one of the remainders; and likeroife the growth the other two remainders.
Then I fay, four times the area of the triangle, is mean proportional, between these two products.

Take $A E$, and $A F$, equal to $A C$, and draw $C F$, E ; alpo draw $C D$ perpendicular to $A B$. Then D

FIG. $A B \times C D=$ twice the area (Cor. 2. Prop. X).
54. And the angle FCE is a right angle ; for AFC = ACF (Prop. III), and AEC $=\mathrm{ACE}$ (ibid.) ; therefore $\mathrm{AFC}+\mathrm{AEC}=\mathrm{ACF}+\mathrm{ACE}=\mathrm{FCE}(\mathrm{Ax} .3)$ $=$ a right angle (Cor, 2. Prop. II). And $A D=$ $\frac{A B^{2}+A C^{2}-C B^{2}}{2 A B}$ (Cor. Prop. XXIII).
Now $D E=A E-A D=A C-A D$
$=\frac{A C \times 2 A B-A B^{2}-A C^{2}+C B^{2}}{2 A B}=$
$\frac{\overline{\mathrm{CB}+\overline{A B-} \overline{A C}} \times \overline{\mathrm{CB}+\mathrm{AC}-\overline{A B}}}{-2 \mathrm{AB}}$ (II. I).
Alfo $\mathrm{FD}=\mathrm{FE}-\mathrm{DE}=2 \mathrm{AC}-\mathrm{DE}=\frac{2 \mathrm{AC} \times 2 \mathrm{AB}}{2 \mathrm{AB}}$ $-D E=\frac{2 A C \times 2 A B-A C \times 2 A B+A B^{2}+\mathrm{AC}^{2}-C^{2}}{2 A^{2} B}$
$=\frac{A B^{2}+A C^{2}+2 A C \times A B-C B^{2}}{2 A B}=$
$\frac{\overline{A B+A C+B C} \times \overline{A B+A C-B C}}{2 A B}(12 . I)$; but $D C$ is a mean between DE and DF (Cor. 3. Prop. XX), therefore $\mathrm{DC} \times 2 \mathrm{AB}$ is a mean between $\mathrm{DE} \times 2 \mathrm{AB}$ and $\mathrm{DF} \times 2 \mathrm{AB}$ (Prop. V. Proportion); that is, four times the area of the triangle $A B C$, is a mean proportional, between $\overline{\mathrm{CB}+\overline{\mathrm{AB}}-\mathrm{AC}}$ $\times \overline{\mathrm{CB}+\mathrm{AC}-\mathrm{AB}}$, and $\overline{\mathrm{AB}+\mathrm{AC}+\mathrm{BC}} \times$ $\overline{\mathrm{AB}}+\overline{\mathrm{AC}}-\mathrm{BC}$.
55. Cor. 1. From balf the fum of the three fides of any triangle ABC , fubtrait each fide Separately. Then take the produst of that balf fum and one remainder; and alfo the product of the other two remainders.

Then I fay, the area of the triangle is a mean proportional between the e two products.

For $\frac{C B+A B-A C}{2} \times \frac{C B+A C-A B}{2}$: area $A B C: \frac{A B+A C+B C}{2} \times \frac{A B+A C-B C}{2}$
(Cor. 1. Prop.V. Proportion) are in continual pro- FI G. portion (Prop. XX×VIII).
But $\frac{C B+A B-A C}{2}=\frac{C B+A B+A C}{2}-A C$.
and $\frac{C B+A C-A B}{2}=\frac{C B+A B+A C}{2}-A B$.
and $\frac{A B+A C-B C}{2}=\frac{C B+A B+A C}{2}-B C$.
therefore, $E^{2} c$.
Cor. 2. Let $\mathrm{S}=\mathrm{AC}+\mathrm{BC}, \mathrm{D}=\mathrm{AC}-\mathrm{BC}$, 5^{6}. then the area ABC is a mean proportional between $\frac{1}{4} \times \overline{S S-} \overline{A^{2}}$, and $\frac{1}{4} \times \overline{A B^{2}-D \bar{D}}$.
For $\frac{1}{4} \times \overline{\mathrm{SS}-\overline{A B^{2}}}=\frac{S+\mathrm{AB}}{2} \times \frac{S-\mathrm{AB}}{2}=$ $\frac{A C+B C+A B}{2} \times \frac{A C+B C-A B}{2}$, and
$\frac{1}{4} \times \overline{A B^{2}-D D}=\frac{A B+D}{2} \times \frac{A B-D}{2}=$
$\frac{A B+A C-B C}{2} \times \frac{A B+}{2} \frac{B C-A C}{2}$, which is the ame, as Cor. I. fuppofing two terms in the extremes - change places, by Cor. 3. Prop. XII. Yroportion.
PR O P. XXXIX.

Tibe Square of the fide of an equilateral triangle, to the area; as 4 to $\sqrt{ } 3$.

Let $C D$ be perpendicular to $A B$, then $A D=$ $\mathrm{B}=\frac{1}{2} \mathrm{AB}$. Then $\mathrm{CD}^{2}=\mathrm{CA}^{2}-\mathrm{A}^{2} i^{2}$ (Cor. 1 . rop. XXI$)=A B^{2}-\frac{1}{4} A B^{2}=\frac{3}{4} A B^{2}$. And $C D=$ $\frac{3^{A} B^{2}}{4}=\frac{A B}{2} \sqrt{ } 3$. But the area of the triangle is $B \times \frac{1}{2} C D=A B \times \frac{A B}{4} \sqrt{ } 3$, and $4 \times$ area $=A B^{2} \times \sqrt{3}$ or. 2. Prop. X); whence $A B^{2}:$ area $:: 4: \sqrt{ } 3$.
Cor. The Square of the perpendicular is equal to the Square of the fide; $\mathrm{CD}^{2}={ }_{4}^{3} \mathrm{CA}^{2}$.
For $\mathrm{CD}^{2}=\mathrm{CA}^{2}-\mathrm{AD}^{2}($ Cor. XXI$)=\mathrm{CA}^{2}-$
$\mathrm{AA}^{2}={ }_{4}^{3} \mathrm{CA}^{2} . \quad \mathrm{D}_{2} \quad \mathrm{BOOK}$

Of Quadrangles and Polygons.

DEFINITIONS.

PI G. I. Quadrangle or quadrilateral, is a plane figure Θ bounded by four right lines.
58. 2. A parallelogram is a quadrangle whofe oppofite fides are parallel, as AGBH. The line AB drawn to the oppofite corners is called the diameter on diagonal. And if two lines be drawn parallel to the two fides, through any point of the di.gonal ; they divide it into feveral others, and then C, D ar called parallelograms about the diameter: and E, the complements: and the figure EDF a gnomon.
3. A reitangle is a parallelogram whole fides ar perpendicular to one another.
4. A fquare is a rectangle of four equal fides.
5. A rbomzus is a parallelogram, whofe fides ar equal, and angles oblique.
6. A rbomboides is a parallelogram, whofe fide are unequal, and angles oblique.
60. 7. A trapezcid is a quadrangle, having only tw fides parallel.
61.
8. A trapezium is a quadrangle, that has n two fides paraliel.
9. A polygon is a plane figure enciofed by man right lines. If all the fides and angles are equal it is called a regular polygon, and denominated aq cording to the number of fides, as a pentagon fides, a bexagon 6 , a beptagon 7 , E c.

10. The diagonal of a quadrangle or polygon, is FIG. a line drawn between any two oppofite corners of 62 . the figure, as AB .
11. The bight of a figure is a line drawn from the top, perpendicular to the bafe, or oppofite fide, on which it ftands.
12. Like or fimilar figures, are thofe whofe feveral angles are equal to one another; and the fides about the equal angles, proportional.
13. Homologous fides of two figures, are thofe between two angles, refpectively equal.
14. The perimeter or circumference of a figure, is the compafs of it, or fum of all the lines that inclofe it.
15. The internal angles of a figure, are thofe on the infide, made by thofe lines that bound the figure, ADC.
16. The external angle of a figure, is the angle made by one fide of a figure, and the adjoining
77. fide drawn out, BAF.

> PROP. I.

In any parallelogram the oppofite fides, and angles, are equal; and the diagonal divides it into troo equal triangles: $\mathrm{AB}=\mathrm{CD}, \mathrm{AC}=\mathrm{BD}$, and triangle $\mathrm{ABD}=\mathrm{ADC}, \mathrm{E}^{\circ} c$.

For fince $A B$, and $C D$ are parallel (Def. 2), $\angle B A D=\operatorname{ADC}(4 . I):$ alfo, becaufe $A C$ and $B D$ are parallel, $B D A=C A D$ (ibid.). Therefore the triangles ABD and DCA , are equal in all refpects (7. II).

> PROP. II.

The diagonals of a parallelogram, interject each other in the middle.
In the triangles $A P C, B P D, \angle C A P=B D P$, and $\mathrm{ACP}=\operatorname{DBP}(4 . \mathrm{I})$, and $\angle \mathrm{BPD}=\mathrm{APC}$. $2 . I$), and $\mathrm{AC}=\mathrm{BD}(\operatorname{Prop} . \mathrm{I})$; therefore $\mathrm{AP}=\mathrm{PD}$, and CP $=\mathrm{PB}$ (7. II). $\quad \mathrm{D}_{3} \quad \mathrm{PROP}$.

FIG.
PR O P. III.
Any line BC pafing througb the middle of the diagonal of a parallelogram P , divides the area into two equal parts.

For in the triangles $A B P$, and $D C P, A P=P D$ (Prop. II); and all the angles are equal (4. I). Therefore the triangle $\mathrm{ABP}=\mathrm{DCP}(7 . \mathrm{II})$; and $\mathrm{BP}=\mathrm{PC}$ (ibid.). And fince triangle $\mathrm{AED}=\mathrm{AFD}$ (Prop. I) ; the remainders BPDE and CPAF are equal ; therefore $\mathrm{BPDE}+\mathrm{PDC}=\mathrm{CPAF}+\mathrm{APB}$, that is, $\mathrm{EBCD}=\mathrm{BAFC}$.

Cor. Any right line BC drawn through the middle point P of the diagonal of a parallelogram, is bifected in that point ; $\mathrm{BP}=\mathrm{PC}$.

PROP. IV.

66. In any paral'elogram ABDC , the complements CI , and IB, are equal.

For triangle $\mathrm{ADC}=\mathrm{ABD}$ (Prop. I), and AHI $=A G I$, and IED $=I F D$ (ibid.); therefore parallelogram $\mathrm{HE}=$ paralielogram GF (Ax. 4).
PROP. V.
66. The parallelograms HG, EF, which are about the diameter AD , of any parallelogram CB , are fimilar to the whole CB , and to one another.

The parallelograms HG, EF are equiangular to the whole CB (4. I), and to one another. The triangles $\mathrm{ACl}, \mathrm{ABD}$, as alfo AHI, AGI, and IED, IFD, are fimilar and equal (Prop. I). Therefore $\mathrm{AH}: \mathrm{HI}$ or $\mathrm{AG}:: \mathrm{AC}: \mathrm{CD}$ or $\mathrm{AB}:: \mathrm{IE}: \mathrm{ED}$ or IE, therefore the parallelograms are like (Def. 12).
P R O P. VI.

Parallelograms ABCD , and EBCF, fanding upon 67. the Same bafe and between the fame parallels, are equal.

For $\mathrm{AD}=\mathrm{BC}=\mathrm{EF}$ (Prop. I); add DE , then $\mathrm{AE}=\mathrm{DF}$, and $\mathrm{AB}=\mathrm{DC}$ (Prop. I), and $\angle A=\operatorname{CDF}$ (Cor. 1. 4. I). Therefore triangle $\mathrm{ABE}=\mathrm{DCF}$ (6. II); fubtract DGE; then the figure $\mathrm{ABGD}=\mathrm{EGCF}$; add BGC , then $\mathrm{ABCD}=\mathrm{BEFC}$.

Cor. 1. Parallelograms of equal bafes and bigbts, are equal.

For if their bafes be laid upon one another, the tops of both will fall in the fame parallel, being of equal hight ; and therefore they are equal (this prop.).

Cor. 2. Every parallelogrom is equal to the rettangle of its bafe and laight.

Cor. 3 Figures of the fame area, may bave tbeir compafs vajily different. And figures of equal compafs may contain very different areas.

PR O P. VII.

A parallelogram is double to a triangle of the fame or an equal baje and bigbt.

For the triangle $A C D=A B D$ (Prop. I), that is,
the triangle $A C D$, on the bafe $C D$, is half the parallelogram ACDB on the fame bafe CD , and between the fame parallels. And fince any triangle of an equal bafe and hight is $=A C D$, and any parallelogram of the fame or an equal bafe and hight $=A C D B$. Therefore any triangle is half the parallelogram of the fame or equal bafes and hights.

$$
\mathrm{D}_{4} \quad \text { PROP. }
$$

PROP. VIII.

Parallelograms of the fame hight, are to one another as their bales; $\mathrm{DC}: \mathrm{GF}:: \mathrm{BC}: \mathrm{GH}$.

Draw the diameters BA, EH. Then the triangles BCA, GHE, of the fame hight, are as their bales BC, GH (II. II). Therefore $2 \mathrm{BCA}: 2 \mathrm{GHE}$ $:: \mathrm{BC}: \mathrm{GH}$ (Prop. V. Proportion) : that is, parallelogram BCAD : parallelogram GHFE : : bale BC : bare GH.

Cor. I. Parallelograms of equal bayes, are as their bights.

By Cor. 2. Prop. VI. as likewife
Cor. 2. Parallelograms are to one another, as their bayes and bights.
PR OP. IX.
69.

Equal paralleiograms having one angle equal to one; have the fides about the equal angles rectprocally proportional. If $\mathrm{ABCD}=\mathrm{EFGH}$, then $\mathrm{AB}: \mathrm{BG}:: \mathrm{BE}: B C$.

Let the opposite angles at B be equal ; produce DC and G to H . Then $\mathrm{AB}: \mathrm{BG}:: \mathrm{BD}: \mathrm{BH}$ (Prop. VIII) :: BF : BH (Ax. 6. Proportion) : : BE : BC (Prop. VIII).

Cor. I. Those parallelograms are equal; which dave one angle equal to one; and the fides about the equal angles, reciprocally proportional.

For $\mathrm{BD}: \mathrm{BH}:: \mathrm{AB}: \mathrm{BG}$ (Prop. VIII) $:: \mathrm{BE}$: BC (hyp.) :: BF : BH (Prop. VIII). Therefore parallelogram $\mathrm{BD}=$ parallelogram BF .

Cor. 2. Equal parallelograms, have their bafes and bights, reciprocally proportional.

Cor. 3. If four lines are proportional; the rectangle of the means, is equal to the rectangle of the extremes. PROP.

PROP. X.

Equiangular parallelograms AC, EG, are in the 70. complicate ratio of their bomologous fides, ABC, EBG.

Produce DC, FG to H . Then parallelogram $\mathrm{AC}: B H:: A B: B G$ (Prop. VII!), and parallelogram $B H: B F:: C B: B E$ ibid.). Therefore parallelogram $A C$: parallelogram $B F:: A B \times C B$: BG \times EE (Cor. 1. Prop. XVIII. Proportion).

Cor. 1. Parallelograms are to one anotber, in the complicate ratio of their bafes and bigbts.

Cor. 2. The rectangle of two lines, is a mean proportional between tbeir Squares.

For fuppofing $A C$, $E G$, to be fquares; then $\mathrm{AC}: \mathrm{BH}::(\mathrm{AB}: \mathrm{BG}:: \mathrm{BC}: \mathrm{BE}::) \mathrm{BH}: \mathrm{BF}$.

PROP. XI.

In any parallelogram AD, the fum of the fquares of 71. the diagonals, is equal to the fum of the fquares of all the fides: $A D^{2}+\mathrm{CB}^{2}=C A^{2}+A B^{2}+B D^{2}+\mathrm{DC}^{2}$.

For $C E=E B$, and $A E=E D$ (Prop. II). Alfo $\mathrm{CD}^{2}+\mathrm{DB}^{2}=2 \mathrm{DE}^{2}+2 \mathrm{CE}^{2}$ (23. II). And ${ }_{2} C^{2}+{ }_{2} D^{2}={ }_{4} D^{2}+{ }_{4} C E^{2}$, that is, $C D^{2}$ $+A B^{2}+D B^{2}+C A^{2}=D A^{2}+C B^{2}$.

P R O P. XII.

If from any point. O , in the rectangle AD , lines be drawn to all the angles; the fum of the fquares of the lines drawn to the oppofite corners, will be equal: $\mathrm{AO}^{2}+\mathrm{OD}^{2}=\mathrm{BO}^{2}+\mathrm{OC}^{2}$.

Draw $A D, B C$, to interfect in P, then $A D=C B$ (6. II), and their halfs, $A P=P C=P D$. Then $\mathrm{CO}^{2}+\mathrm{OB}^{2}=2 \mathrm{CP}^{2}+2 \mathrm{OP}^{2}(28 . \mathrm{II})=2 \mathrm{AP}^{2}$ $+2 O P^{2}=A O^{2}+O D^{2}(28.1 I)$.

In any trapezium ABDC , let E, F be the middle poinis of the diagonals, AD, BC. Then the fum of the Squares of the fides, is equal to the fum of the Squares of the diagonals, together with four times the Square of the diftance, between the middle points of the diagonals: $\mathrm{AB}^{2}+\mathrm{BD}^{2}+\mathrm{CD}^{2}+\mathrm{CA}^{2}=\mathrm{AD}^{2}$ $+\mathrm{CB}^{2}+4 \mathrm{EF}^{2}$.

For $\mathrm{AE}^{2}+\mathrm{ED}^{2}=2 \mathrm{AF}^{2}+{ }_{2} \mathrm{EF}^{2}$ (28. II). Alfo $\mathrm{AB}^{2}+\mathrm{AC}^{2}=2 \mathrm{CE}^{2}+2 \mathrm{AE}^{2}$ (ibid.); allo BD^{2} $+\mathrm{DC}^{2}=2 \mathrm{CE}^{2}+2 \mathrm{DE}^{2}$. And adding the two laft equations, $\mathrm{AB}^{2}+\mathrm{BD}^{2}=\mathrm{DC}^{2}+\mathrm{CA}^{2}=4 \mathrm{CE}^{2}$ $+2 \mathrm{AE}^{2}+{ }_{2} \mathrm{ED}^{2}=\mathrm{CB}^{2}+4 \mathrm{AF}^{2}+4 \mathrm{EF}^{2}=\mathrm{CB}^{2}$ $+\mathrm{AD}^{2}+4 \mathrm{EF}^{2}$.

PROP. XIV.

In any trapezium ADBC , let E, F, be the middle points of two oppofite fides. Then the fum of the Squares of the other two fides, together with the Squares of the diagonals, is equal to the jum of the Squares of the bijected fides, togetber with four times the Square of the diftunce of the pe middle points: $\mathrm{AC}^{2}+\mathrm{DB}^{2}+\mathrm{AB}^{2}$ $+C D^{2}=A D^{2}+\mathrm{CB}^{2}+4 \mathrm{EF}^{2}$.

Draw AE, ED. Then $\mathrm{AE}^{2}+\mathrm{ED}^{2}=2 \mathrm{AF}^{2}$ $+2 \mathrm{EF}^{2}$ (28.II), and $\mathrm{AB}^{2}+\mathrm{AC}^{2}={ }_{2} \mathrm{CE}^{2}+2 \mathrm{AE}^{2}$ (ibid.), and $\mathrm{DB}^{3}+\mathrm{DC}^{2}=2 \mathrm{CE}^{2}+2 \mathrm{DE}^{2}$ (ibid.). Add the tiwo laft equations, $\mathrm{AB}^{2}+\mathrm{AC}^{2}+\mathrm{DB}^{2}$ $+\mathrm{DC}^{2}=4 \mathrm{CE}^{2}+2 \mathrm{AE}^{2}+2 \mathrm{ED}^{2}=\mathrm{CB}^{2}+4 \mathrm{AF}^{2}$ $+4 \mathrm{EF}^{2}=\mathrm{CB}^{2}+\mathrm{AD}^{2}+4 \mathrm{EF}^{2}$.

PROP. XV.

75. In any trapeziunn ADBC , if lines be drawn to the middle of the oppofite fides; the fum of the Squares of the diagonals, is equal to twice the fum of the Squares of the bijecring liues: $\mathrm{AB}^{2}+\mathrm{CD}^{2}=2 \mathrm{EF}^{2}+2 \mathrm{PQ}^{2}$..

For $\mathrm{AB}^{2}+\mathrm{DC}^{2}+\mathrm{BD}^{2}+\mathrm{CA}^{2}=A D^{2}+C B^{2}+4 \mathrm{EF}^{2} \mathrm{FIG}$. (Prop. XIV).
And $\mathrm{AB}^{2}+\mathrm{DC}^{2}+\mathrm{BC}^{2}+\mathrm{DA}^{2}=\mathrm{AC}^{2}+\mathrm{DB}^{2}+4 \mathrm{PQ}^{2}$ (ibid.). and adding thefe equations,
$2 \mathrm{AB}^{2}+2 \mathrm{DC}^{2}+\mathrm{BD}^{2}+\mathrm{CA}^{2}+\mathrm{BC}^{2}+\mathrm{DA}^{2}$ $=A D^{2}+C B^{2}+A C^{2}+1 B^{2}+4 E F^{2}+4 \mathrm{PQ}^{2}$, and fubtracting what is common, $2 \mathrm{AB}^{2}+2 \mathrm{DC}^{2}$ $=4 E F^{2}+4 \mathrm{Q}^{2}$, and $A B^{2}+D C^{2}=2 E F^{2}$ $+2 R^{2} \mathrm{Q}^{2}$.

PR O P. XVI.
The fum of the four internal angles of any quadrilateral figure, is equal to four right angles.

Draw the diagonal AC ; then the fum of all the angles in the triangle ABC , or ADC , is two right angles (2 II) ; therefore the fum of both is four right angles.

Cor If two angles of a quadrangle be rigbt angles; the fum of the other two amounts to two rigbt angles.

PR O P. XVII.

The fum of all the internal angles of a polygon, makes twice as many rigbt angles, abating four, as the polygon bas fides.
For drawing lines from all the angles, to a point O within the figure, it comes to be divided into as many triangles, as the figure has fides or angles. And each triangle contains two right angles (2. iI), fo thefe amount to twice as many right angles, as the figure has fides ; but the angles at O are to be abated, and thefe amount to four right angles (Cor. I. Prop. I. I).

Cor. Hence all right-lined figures, of the Same number of fides, bave the fum of all the internal angles equal. PROP.

PROP. XVIII.

The fum of the external angles of any polygon, is equal to fair rigkt angles.

For all the internal angles, together with the external angles at the points $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathcal{E}_{i}$. make twice as many right angles, as the figure has fides (I. I); and the fum of all the angles of the triangles ABO , $\mathrm{BCO}, \mho^{\circ} \mathrm{c}$. amounts to the fame (2. II). Take away all the angles, $\mathrm{EAB}, \mathrm{ABC}, \mathrm{\Xi}^{\circ} \mathrm{c}$. and there remains - all the external angles $A, B, C, \Xi^{c} c$. equal to all the angles at O, that is, four right angles (Cor. r. (Prop. i. I).

+ Cor. All right-lined figures, bave the fum of their external angles equal.

Scholium.

If any of the angles be greater than two right angles, as A; the external angle will run into the figure, and muft be fubtracted from the fum of the reft.

> P R O P. XIX.
79. In two fimilar figures AC, PR; if two lines BE , QT, be drawn after a like manner, as ऽuppose, to make the angle $\mathrm{CBE}=\mathrm{RQT}$; then there lines bave the fame proportion, as any two bomologous fides of the figure, BC to $\mathrm{QR}, \mathrm{E}^{2}$.

Since $\angle C B E=R Q T$, and $R=C$ (hyp.); therefore $\mathrm{BE}: \mathrm{QT}:: \mathrm{BC}: \mathrm{QR}$ (I3. II) : : BA : QP (Def. 12) : : AD : PS (ibid.) : : DC : SR, Alfo $\mathrm{BC}: \mathrm{CE}:: \mathrm{QR}: \mathrm{RT}$; and $\mathrm{BC}: \mathrm{BE}:: \mathrm{QR}$: QT, छ̇c.

Cor. 1. Hence all fimilar figures are made up of fimilar triangles.

Book III. of GEOMETRY.
Draw $B D, Q S$; and $A C, P K$; then BE: QT FIG.
$\mathrm{BC}: \mathrm{QR}$ (this prop.) : : CD : RS (Def. I2) 79.
CE : RT (this prop.) :: DE : ST (Prop.VIII. Proportion); therefore the triangles BCE and QRT are fimilar; and BED and QTS are fimilar.

Again, the $\angle A=P$, and $A B: A D:: P Q: P S$ (Def. 12); therefore BAD, QPS are fimilar (14. II). Alfo $\angle B=Q$, and $A B: B C:: P Q: Q R$, therefore ABC and PQR are fimilar (14. II). Laftly, $\angle D=S$, and AD: DC : : PS : SR (Def. 12); therefore ADC, PSR are fimilar (14. II).

Cor. 2. Hence it may be laid doron, as a difinguifhing property of fimilar figures, that they are made up of fimilar triangles, placed in the fame order.

PROP. XX.

All fimilar figures are to one another as the fquares of their bomologous fides.

Let $A D, P S$ be fimilar polygons; draw $A C, A D, 80$. PR, PS, which will divide the figures into triangles (Cor. i. Prop. XIX).

Recaufe $A B: Y Q:$: $A C: P R:: A D: P S(13 . I I) ;$ therefore
$\mathrm{AB}^{2}: \mathrm{PQ}^{2}:$: triangle $\mathrm{ABC}: \mathrm{PQR}$ (i8. II). and $A B^{2}: \mathrm{H}^{2}:: A C^{2}: P R^{2}::$ triangle $A C D$: PRS (ibid.).
and $A B^{2}: I Q^{2}:: A D^{2}: P S^{2}:$: triangle $A D E$: PST (ibid.).
therefore $A B^{2}: \mathrm{PQ}^{2}::$ triangle $\mathrm{ABC}+\mathrm{ACD}+$ ADE : triangle $\mathrm{PQR}+\mathrm{PRS}+\mathrm{PST}$ (Prop. X . Proportion) : : figure ABCDE : figure $\mathrm{PQRS1}$.

Cor. If three lines A, B, C be incontinual proportion; then as the firft to the third, fo any for wre deforibed on the firft, to a fimilar one upon the fecond.

For $\mathrm{A}: \mathrm{C}:: \mathrm{A}^{2}: \mathrm{B}^{2}$ (Prop. XXIIt, Propertion) : : figure upon A : figure upon B (this prop.).

FIG.
8 I.
If four lines be proportional, $\mathrm{AB}: \mathrm{DE}:: \mathrm{GH}$: LM; fimilar figures, alike defcribed upon, two and two, 乃ball alfo be proportional: ABC : DEF : : GHIK : LMNO.

And if four figures be proportional, and two and two be fimilar ; their like fides fall be proportional.

For fince $\mathrm{AB}: \mathrm{DE}:: \mathrm{GH}:$ LM (hyp.), therefore $\mathrm{AB}^{2}: \mathrm{DE}^{2}:: \mathrm{GH}^{2}: \mathrm{LM}^{2}$ (Cor. 3 . (Prop, XVIII. Proportion).
whence ABC: DEF : GHI : LMN (Prop. XX). Again, if the figures be fimilar,
and ABC:DEF:: GHIK : LMNO (hyp.).
then $\mathrm{AB}^{2}: \mathrm{DE}^{2}:: \mathrm{GH}^{2}: \mathrm{LM}^{2}$ (Prop. XX). whence $\mathrm{AB}: \mathrm{DE}:: \mathrm{GH}: \mathrm{LM}$ (Cor. 3. 18. Proportion).

P R O P. XXII.

Any figure defcribed on the bypotbenufe of a rigbtangled triangle, is equal to two Similar figures deforibed the fame way upon the two fides: BFC = ALC +AGB .
For fig. $\mathrm{BCF}: \underset{\mathrm{BAG}}{\mathrm{CAL}}:=\mathrm{BC}^{2}: \mathrm{CA}^{2}$ (Prop. XX). therefore, $\mathrm{BCF}: \mathrm{CAL}+\mathrm{BAG}:: \mathrm{BC}^{2}: \mathrm{CA}^{2}$ $+\mathrm{AB}^{2}$ (14. Proportion).

But $\mathrm{BC}^{2}=\mathrm{CA}^{2}+A \mathrm{~B}^{2}$ (21. II); therefore BCF $=\mathrm{CAL}+\mathrm{BAG}$ (Prop. II. Proportion).

P R O P. XXIII.

$\$ 3$.
The area of a trapezoid ABCD , is equal to the rectangle of balf the fium of the parallel fides, and the perpendicular between them: $\frac{B A+C D}{2} \times B P$.

Draw AF parallel to BD , and BP perpendicular FIG. to $C D$. Then the area $\mathrm{ABDF}=\mathrm{AB} \times \mathrm{BP}$ or FD 83. $\times B P($ Cor. 2. Prop. $V I)=\frac{A B+F D}{2} \times B P$. And the area of the triangle $\mathrm{ACF}=\frac{1}{2} \mathrm{CF} \times \mathrm{BP}$ (Cor. 2 . (Prop. X. 11). Therefore CAF + AFDB or the trapezoid $C A B D=\frac{A B+D F+C F}{2} \times B P=$ $\frac{A B+C D}{2} \times B P$.

PROP. XXIV.

The area of a trapezium ABDF, is equal to balf 84. the rectangle under the diagonal AD , and the fum of the perpendiculars falling thereon from the oppofite angles: $\mathrm{AD} \times \frac{\mathrm{BC}+\mathrm{EF}}{2}$.

For the triangle $\mathrm{ABD}=\frac{\mathrm{AD} \times \mathrm{BC}}{2}$ (Cor. 2. 10 . II) ; and the triangle $\mathrm{AFD}=\frac{\mathrm{AD} \times \mathrm{FE}}{2}$ (ibid.): therefore $\mathrm{ABD}+\mathrm{AFD}$ or the trapezium $\mathrm{ABDF}=$ $A D \times \overline{B C+F E}$.

2
PR O P. XXV.
Any regular figure ABCDE , is equal to a triangle, whole bafe is the perimeter ABCDEA; and bight, the perpendicular $O P$, drawn from the center, perpendicuar to one fide.

Two perpendiculars, as PO, ftanding on the widdle of two fides, meet in the center, O (g. II). Dr two angles A, B bifected by two right lines, meet n the center, O (Cor. 1. 3. II): whence all the ines $O A, O B, O C$ are equal ; and all perpendicuars drawn from O, upon $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}, \mathrm{E}^{2} c$. are qual. And all the triangles $\mathrm{AOB}, \mathrm{BOC}, \mathcal{E}^{\circ}$. are

FIG. equal and fimilar. The fum of all the triangles 85. make up the figure, that is, $\frac{A B \times O P}{2}, \frac{B C \times O P}{2}, \mathcal{F}^{\circ} c$. or $-\mathrm{AB}+\mathrm{BC}+\mathrm{CD}+\mathrm{DE}+E A$ a triangle whore bale is ABCDEA , and hight OP $=$ the figure.

Cor. The area of a regular polygon is equal to the rectangle of one fade into the perpendicular from the center upon that gide, and that multiplied by balf the number of fides.

Scholium.

Any polygon, regular or irregular, may be divided in as many triangles, lefs 2 , as the figure has fides; by drawing diagonal lines.

PROP. XXVI.

Only three forts of regular figures can fill up a plane surface; and the fe are fix triangles, four Squares, and three hexagons.

It is required to place forme number of thee figures, with their angles upon one point, fo that being joined clofe together, they may fill the whole face around it, and leave no vacancy.

It is plain the angles about one point are four right angles (Cor. I. It 1), which want to be filled up. Now if the angles of the feveral figures be computed by Prop. XVII, they will be found as follows.

A triangle $\frac{2}{3}$ of a right angle $=\mathrm{A}$.
A square 1 right angle $=B$.
A pentagon $1 \frac{1}{5}$ right angle.
A hexagon $\mathrm{I}_{\frac{1}{3}}$ a right angle $=\mathrm{C}$. $8 c$.
Now $\frac{2}{3}$ of a right angle 6 times repeated, makes 4 right angles, and therefore fills all the face ; that is, 6 angles of an equilateral triangle fills it.

Book III. of GEOMETRY.
Alfo 4 angles of a fquare (or 4×1), makes 4 FIG. right angles.

But 3 angles of a pentagon (or $3 \times \frac{1}{5}$) falls fhort; and 4 angles (or $4 \times 1 \frac{1}{5}$) exceeds.

Alfo. 3 angles of a hexagon (or $3 \times 1 \frac{1}{3}$) makes 4 right angles. And thefe are all; for

The angle of a heptagon (and other figures) is bigger, and therefore 3 angles will exceed 4 right ones. And to have two angles, each muft be right angles, which is abfurd.

BOOK IV.

Of the Circle, and infcribed and circumfcribed Figures.

DEFINITIONS.

FIG. I. A Circle is a plane figure described by a right 87. it is a figure bounded by one line equidiftant from a fist point.
2. The center of a circle, is the fixt point about which the line moves, C .
3. The radius, is the line that defcribes the circle, CA.

Cor. All the radii of a circle, are equal.
4. The circumference is the line defcribed by the extreme end of the moving line, ABDA.
88. 5. The diameter, is a line drawn through the center, from one fide to the other, AD.
6. A Semicircle, is half the circle, cut off by the diameter, as ABD .
7. A quadrant, or quarter, is the part between two radii perpendicular to one another, as CDE.
89.
8. An arch is any part of the circumference, AB.
9. A sector, is a part bounded by two radii, and the arch between them, ACB .
10. A figment, a part cut off by a right line, DEF, or DABF.
11. A cord, a right line drawn through the circle, FIG. as DF .
12. Angle at the center, is that whore angular point is at the center ACB.
13. Angle at the circumference, is when the angular point is in the circumference, BAD.
14. Angle in a Segment, is the angle made by two lines drawn from lome point of the arch of that regmint, to the ends of the bale; as BCD is an angle in the fegment BCD .
15. Angle upon a Segment, is the angle made in the oppofite fegment, whole fides ftand upon the bale of the firft; as BAD, which ftands upon the ferment BCD.
16. A tangent is a line touching a circle, which produced, does not cut it, as GAF.
17. Circles are faid to touch one another, which meet, but do not cut one another.
18. Similar arches, or Similar feciors, are thole bounded by radii that make the fame angle.
19. Similar figments are thole which contain fimilar triangles, alike placed.
20. A figure is faid to be infcribed in a circle, or a circle circumscribed about a figure; when all the anguar points of the figure are in the circumference of the circle.
21. A circle is faid to be iefiribed in a figure, or a figure circumscribed about a circle; when the circle touches all the fides of the figure.
22. One figure is infcribed in another, when all the angles of the infcribed figure, are in the fides of the other.

> PROP. I.

The cord of any arch $A B$, falls entirely within the archie.
For draw $C A, C B$; and $C D$ to any point of the ord; then $\angle A=B$ (3. II). And $\angle C D B=$

$$
\mathrm{E}_{2} \quad \mathrm{~A}+
$$ (4. II) ; therefore D is within the circle.

P R O P. II:

Tide radius CR , bijects any cord at right angles, which pales not through the center, as AB .

For draw AC, BC, and if $\mathrm{AF}=\mathrm{FB}$, then fince $\mathrm{AC}=\mathrm{CB}$, and CF common; therefore $\mathrm{CFA}=$ $\mathrm{CFB}(8.11)=\mathrm{a}$ right angle ; and angle ACF $=\mathrm{BCF}$.

Or if $\mathrm{AFC}=\mathrm{CFB}$ and $\mathrm{A}=\mathrm{B}$, then $\mathrm{ACF}=$ BCF ; and CF being common, $\mathrm{AF}=\mathrm{FB}$. This prop. follows from Cor. 3. Prop. III. Book II.

Cor. 1. If a line bijects a cord at right angles, it pales through the center of the circle.

Cor. 2. The radius that bifects the cord, also bisects the arch.

For fince $A C R=R C B$. If $C B R$ be laid upon CAR, the point B will fall upon A, and therefore $\mathrm{RB}=\mathrm{RA}$.

Cor. 3. If two right lines do not both pass through the center, they cannot both be bifected by each other.

For if they could, they mut both make right angles with the radius.

PR OP. III.

93.

In a circle, equal cords AB, GD, are equally diftant from the center, C .

For let CE, CF be perp. to the cords; and draw CD, CA; then in the triangles, $\mathrm{ACF}, \mathrm{DCE}$, $\mathrm{AC}=\mathrm{CD}, \mathrm{AF}=\mathrm{DE}$ being half the cords (Prop. II) ; and angles at F, E right ; and the angles at C , both acute, therefore $\mathrm{CF}=\mathrm{CE}$ (9. II).

- Cor. If feveral lines be drawen through a circle, the FIG. greateft is the diameter, and thofe that are nearer the 93. center HI, are greater than thoje that are fartber off, DG.

For draw CH , then CH is greater than OH (4. II), and therefore 2 CH or the diameter is greater than HI. And fince $\angle \mathrm{HCI}$ is greater than $\mathrm{DCG}, \mathrm{HI}$ is greater than DG (Cor. 6. II).
PROP. IV.

If from a point G , out of the center, feveral lines GD, 94. $\mathrm{GE}, \mathrm{E}^{\circ} \mathrm{c}$. be drawn, the greatef is that GF which pafles through the center, and thofe nearer to GF are greater. than thofe furtber off.

Alfo GH (the remainder to GF) is the leaft, and thofe nearer to it, as GA, are lefs than thofe further off, GB.

Draw $C E, C D, C A, C B$, from the center C. Then GC + CE or GF is greater than GE (5. II). Alfo in the triangles, GCE, GCD; GC, EC are equal to GC, DC; but $\angle E C G$ is greater than DCG; therefore EG is greater than DG.

Alfo CG +GD is greater than CD or CH , take away CG, and GD is greater than GH. After the fame manner GA is greater than GH ; and GB greater than GA.

Cor. 1. Only two lines drawn from G to the circumference can be equal; and lie on different fides of the diameter HF.

For no two lines on the fame fide can be equal.
Cor. 2. If from any point, three equal right lines can be drawn to the circumference; that point is the center, C.

Cor. 3. No circle can cut another in more tban two points.

E 3 For

FIG. For then three equal lines might be drawn from a point out of the center to the circumference; which is absurd.
PROP. V.

If from a point G without a circle, Several rig bt lines be drawn to cut it. Of tho \sqrt{e} that pals to the concave part, the greateft is that GF which pales through the center, and thole nearer to GF are greater than tho fe further off.

But of those that go to the convex part, the leaf is that GH , which continued would pass through the center, and thole nearer to that, as GA, are less than tho fe further off, GD.

For in the triangle GCE, GC +CE or GF is greater than GE. And in the triangles GCE GCB ; GC, CE are equal to GC, CB, and $\angle \mathrm{GCE}$ greater than GCB, therefore GE is greater than GB.

Alfo in the triangle CGA, CA $+A G$ is greater than CG or $\mathrm{CH}+\mathrm{HG}$ (5. II); take away $\mathrm{CA}=$ CH , and AG is greater than HG. And in the triangles CAG, CDG; CG, CA are equal to CG, CD; and angle GCA lefs than GCD; therefore GA is less than GD (Cor. 6. II).

Cor. 1. There can only two equal lines be drawn frown the point G to the circumference of the circle. - For no two are equal on one fade of GF.

Cor. 2. The greatest to the convex part, or the leaf k to the concave part, is the tangent to the circle.

PR OP. VI.

In any circle, if Several radii be drawn making eçual angles; the arches and Sectors comprehended thereby will be equal, if $\mathrm{ACB}=\mathrm{BCD} ;$ then, arch $\mathrm{AB}=$ arch BD ; and Sector $\mathrm{ACB}=\mathrm{BCD}$.

Book IV. of GEOMETRY.
For fince $\angle A C B=B C D$, and $C A=C D ; F I G$. therefore if the angle DCB be laid upon BCA, DC 96. will fall upon $C A$, and D upon A, and confequently the arch DB will coincide with AB , as well as the fector DBC with $A B C$, confequently arch $D B=A B$, and fector $D B C=A B C(A x .8)$.

Cor. I. In equal circles, the radii making equal angles, comprebend equal arches, and Sectors.

Cor. 2. In the fame or equal circles, the radii making equal angles, comprebend equal cords AB, BD.

For thefe will coincide with one another. It alfo follows from Prop. VI. II.

Cor. 3. Equal cords cut off equal arcbes, and enual) Segments, in the fame circle.

For if laid upon one another, they perfectly coin-] cide, as has been proved.

PROP. VII.

In the fame or equal circles, the arches, and alfo the feciors, are proportional to the angles intercepted by the radii.

Take any arch AB as fmall as you will, and let $\mathrm{AB}=\mathrm{BC}, \mathcal{\vartheta}^{3}$. alfo $\mathrm{AB}=\mathrm{QR}=\mathrm{RS}, \mathcal{E}^{2} c$. and drawing $C A, C B, C D, \mathcal{J}_{c}$. and $\mathrm{PQ}, \mathrm{PR}, \mathrm{PS}, \mathrm{\Xi}^{\circ} c$. then all the angles $A C B, B C D, Q P R, R P S, \Xi^{\circ}$. are equal (Cor. I. Prop. VI). Whence AF is as multiple of $A B$, as the angle $A C F$ is of $A C B$. Therefore $A B: A F:: A C B: A C F$ (Prop. V. Proportion). Alro $Q V$ is as multiple of $Q R$ or $A B$, as $Q P V$ is of $Q P R$ or $A C B$, whence $A B: Q V:: A C B$: QPV (ibid.); whence $A F: Q V:: A C F: Q P V$ Cor. 2. 14. Proportion).
The faine reafoning holds in the fectors, for fect. ACF is as multiple of ACB ; as $\angle \mathrm{ACF}$ is of the $\angle A C B$. And fect. QPV is as multiple of QPR or E 4 ABC;

FIG. $A B C$; as $\angle Q P V$ is of $A C B$. Therefore fect. 97. ACF : fect. $\mathrm{QPV}:$: angle $\mathrm{ACF}: \angle \mathrm{Q} P \mathrm{~V}$.

Cor. Thbe angle ACF is to 4 right angles; as the arch AF , is to the wbole circumference.

PROP. Vill.

98. In all circles, fimilar arches are as the radii of the circles.

Let the circles AFG and afg be both defcribed from the fame center, C. Draw the radii CA, CF : then the arches AF, of are fimilar (Def. 18). Draw CB extremely near CA . Then the figures or fectors $\mathrm{Cab}, \mathrm{C} A \mathrm{~B}$, approach very near to ifofceles triangles, which are fimilar to one another, becaufe the \angle at C is common (3. II). Therefore $\mathrm{C} a: a b$ $:: \mathrm{CA}: \mathrm{AB}(13 . \mathrm{II})$; and $\mathrm{C} a: \mathrm{CA}:: a b: \mathrm{AB}$ (4. Proportion). Now if you fuppofe BF divided into more arches, equal to AB ; and more radii CB drawn ; $b f$ will then contain as many arches equal to $a b$. Therefore $a f$ is as multiple of $a b$, as AF is of AB ; therefore $a b: \mathrm{AB}:$: af : AF (5. Proportion); whence $\mathrm{C} a: \mathrm{CA}:$: af : AF (1 . Proportion).

PROP. IX.

98. The circumferences of circles are to one another, as their diameters.

For AF : circumference AFGA : $\angle \mathrm{ACF}: 4$ right angles (Cor. 7) : : $\angle a C f: 4$ right angles : : af : cir cumference afga. And AFGA : afga:: AF : af (4. Proportion) :: CA : ca (Prop. VIII) ;:2CA ${ }_{2} \mathrm{Ca}$ (5. Proportion).

Cor, Thbecircumferences of circles are as their radiz.

PROP. X.
A right line AG, perpendicular to the diameter AD 88. of a circle, at the extreme point A, touches the circle in that point; and lies wholly witbout the circle.

To any point O in the line GAF, draw the line CO from the center. Then the hypothenufe $O C$ is greater than the fide AC (4. II). Therefore O is without the circle. And fo it is for any point befides A; therefore the line GF is entirely out of the circle.

Cor. I. Hence a right line touches a circle on? in in one point.

Cor. 2. If a rigbt line touches a circle in one point, it is perpendicular to the diameter in that point.

Cor. 3. All circles, wobofe centers are in the line AD, and whofe circuraferences pafs through the point A, touch one anotber, and tbe line GAF, in the fame point A.

Cor. 4. Hence, if two circles touch one anotber, eitber inwardly or outwardly; the line pafing througs their centers, C, B, D, Jball alfo pafs through the point of contaEt, A.

Otherwife a line, touching both circles in that point, could not be perpendicular to both diameters.

Cor. 5. Two circles, can only touch in one point.
From the centers B, D, draw BO, DO, to a point O in the exterior circle. Then in the triangle $\mathrm{BOD} ; \mathrm{DB}+\mathrm{BO}$ is greater than DO or DA or $\mathrm{DB}+\mathrm{BA}(5 . \mathrm{II})$. Whence BO is greater than BA ; therefore the point O, is without the circle AE. In like manner, drawing CO ; $\mathrm{DO}+\mathrm{CO}$ is greater than DA + CA, and CO greater than CA, therefore O falls without the circle AL .

PROP.

PR OP. XI.

FIG.
100.

The angle of contact between a right line and a circle MAi, is less than any right-lined angle whatever, BAL.

Draw BE perpendicular to AL , then the fide BA opposite to the right angle BEA, is greater than the fine BE oppofite to the acute angle BAE (4. II). Therefore the paint E , and fo the whole line AEL, falls within the circle.

Cor. 1. Hence the angle of a Semicircle BAI is grater than any acute angle wobatever.

Cor. 2. The angle of contact DAI; is infinitely less. than a right angle.

For if it was in a finite proportion to a right angle, then an acute angle might be found equal to it.
Corr. If any other circle be defcribed through A, with any radius greater than $A B$, it will fall entirely between the tangent AD and the circle AL , and makes the angle of contact le ss. And circles may be defrribed ad infinitum, which Bal only touch one another in A; their centers being all in the line AB produced.

All this appears by Cor. 5. Prop. C . compared with this prop.

PR OP. XII.

10\%. In a circle, the angle at the center is double the 102. angle at the circumference, funding upon the Jame arch; $\mathrm{BDC}=2 \mathrm{BAC}$.

Cafe i . When one fire AF pafies through the cen-ter-, in the ifofeles triangle $\mathrm{ADC}, \angle \mathrm{DAC}=\mathrm{DCA}$ (3. H), and the $\angle \mathrm{FDC}=\mathrm{DAC}+\mathrm{DCA}(\mathrm{I} . \mathrm{II})$ $\Rightarrow 2 E A C$.
-9 Cafe ez. If the center of the circle be within the angle BAC ; draw $A D F$, then by Cafe $\mathrm{I}, \mathrm{FDC}=$ 2 FAC ,
${ }_{2} \mathrm{FAC}$, and $\mathrm{FDB}=2 \mathrm{FAB}$, therefore the whole FIG. $B D C=2 B A C$. IOI.
Cafe 3. If the center of the circle be without 102. the angle, BAC ; draw ADF, then by Cafe I , $\mathrm{FDB}={ }_{2} \mathrm{FAB}$, and $\mathrm{FDC}=2 \mathrm{FAC}$, therefore the remainder $\mathrm{BDC}={ }_{2} \mathrm{BAC}(\mathrm{Ax} .4)$.

Cor. I. The angle at the circumference ftanding upon any arch, is equal to balf the angle at the center, upon the fame arch; or to the angle at the center upon balf the arch.

Cor. 2. In the Jame or equal circles, the angles at the circumference, are equal, which- tand upon equal arches or equal cards.

This is plain from Cor. 1, 2. Prop. VI.

P R O P. XIII.

All angles in the fame fegment of a circle, are equal, 103. x $\mathrm{DAC}=\mathrm{DBC}$, and $\mathrm{DGC}=\mathrm{DHC}$.

For $\angle D G C$ and $D H C$ are each equal to the angle at the center, on half the arch DABC. And $D A C, D B C$ are each of them equal to the angle at the center, on half the arch AGHC.

Or thus.
The $\angle D G C=\frac{1}{2} D O C=D H C$ (Prop. XII). Again, $\angle \mathrm{DFC}=\mathrm{DAF}+\mathrm{ADF}(\mathrm{I} . \mathrm{II})=\mathrm{DBC}$ + BCF (ibid.), but $\mathrm{ADF}=\mathrm{BCF}$ (Prop. XII); therefore DAF or $\mathrm{DAC}=\operatorname{DBC}\left(\mathrm{Ax}^{\prime} 4\right)$.

Cor. If the extremities of two equal arcbes DA, BC, be joined by rigbt lines, DC, AB; they will be parallel.

For $\angle B A C=D C A(C o r .2 .12$), therefore AB, CD are parallel (Cor. 3. 4. I).

FIG. 104.
PROP. XIV.

The angle ABC in a semicircle is a right angle.
For draw BD to the center, then $\mathrm{BDA}, \mathrm{BDC}$ are two ifofceles triangles, therefore $\mathrm{DAB}=\mathrm{DBA}_{\text {, }}$ and $\mathrm{DCB}=\mathrm{DBC}(3 . \mathrm{II})$, And $\mathrm{DAB}+\mathrm{DCB}=$ $\mathrm{DBA}+\mathrm{DBC}=\mathrm{ABC}(\mathrm{Ax} \cdot 3)=$ half of two right angles (2. II) $=$ a right angle.

Cor. I . The angle ABG , in a greater Segment. ABFG, is less than a right angle; and the angle ABF , in a lees Segment ABF , is greater than a right angle.

This is evident by infecting the figure.
Cor. 2. If a line be drawn from the middle of the bypothenuse (of a right-angled triangle), to the right angle; it cuts the triangle into two ijofceles riangles.
PR O P. XV.

If trow lines cutting a circle, interject one another in A; and there be made at the center, $\angle \mathrm{ECF}=$ BAD;

Then arch $\mathrm{BD}+\mathrm{GH}=2 \mathrm{EF}$, if A is within the circle; or arch $\mathrm{BD}-\mathrm{GH}=2 \mathrm{EF}$, if A is without.

For draw HI parallel to GD , then $\mathrm{DI}=\mathrm{GH}$ (Cor. 13); and angle $\mathrm{BHI}=\mathrm{BAD}=\mathrm{ECF}(4 . \mathrm{I})$. Therefore $\mathrm{EF}={ }_{2} \mathrm{BI}($ Cor. 1. 12) ; and $2 \mathrm{EF}=$ $\mathrm{BI}=\mathrm{BD}+\mathrm{GH}$, when A is within, but $=\mathrm{BD}$ -GH , when A is without the circle.

Cor. I. If from a point without, two lines touch a circle; the angle made by them is equal to the angle at the center, ftanding on ball the difference, of the fe two parts of the circumference.

This is plain, by fuppofing B, H, and G, D FIG. to coincide in the periphery, then half their diffe- ro5. rence will be = EF.

Cor. 2. The angle $\mathrm{A}=\angle \mathrm{BHD}+\mathrm{HDG}$, when A is within; or $\mathrm{A}=\mathrm{BHD}-\mathrm{HDG}$, when A is witbout the circle (I. II).
P R O P. XVI.

In a circle, the angle made at the point of contart -106 . between the tangent and any cord, is equal to the angle in the alternate fegment; $\mathrm{ECF}=\mathrm{EBC}$, and $E C A=E G C$.

Through the center O , draw the diameter COD, which is \perp to CF (Cor. 2. 10). The $\angle C E D$ is right (Prop. XIV); therefore $\angle \mathrm{D}+\mathrm{DCE}=\mathrm{a}$ right angle (Cor. 2. 2. II) $=\mathrm{DCE}+\mathrm{ECF}$; therefore $\mathrm{D}=\mathrm{ECF}$, or $\mathrm{EBC}=\mathrm{ECF}$ (Prop. XIII).

Again, $\mathrm{CEG}+\mathrm{ECG}+\mathrm{G}=$ two right angles (2. II) $=\mathrm{GCF}+\mathrm{ECG}+\mathrm{ECA}$ ($\mathrm{I} . \mathrm{I}$), CEG $+\mathrm{G}=\mathrm{GCF}+\mathrm{ECA}$, but $\mathrm{CEG}=\mathrm{GCF}$ (this prop.), therefore $\mathrm{G}=\mathrm{ECA}$ (Ax. 4).

Cor. A tangent to the middle point of an arch, is barallel to the cord of $i t$.
For if arch $\mathrm{CB}=\mathrm{CE}$, then cord $\mathrm{CB}=\operatorname{cord} \mathrm{CE}$ (Prop.VI. and Cor. 2); whence $\angle E=B=E C F$ (this prop.), whence BE, CF are parallel (Cor. 3 .

> P-R O P. XVII.

If from any point B in a semicircle, a perpendicular 10 g. 3D be let fall upon the diameter, it will be a mean proportional between the fegments of the diameter: $\mathrm{AD}: \mathrm{DB}:: \mathrm{DB}: \mathrm{DC}$.

For drawing $A B, B C$, the triangles $A B C, A B D$, $\triangle B C$ are fimilar, for, $\angle A B C$ is right (Prop. XIV),

FIG. and angles at D are right, and $B A D=B A C$, 107. $\mathrm{ABD}=\mathrm{BCD}$, and therefore $\mathrm{DBC}=\mathrm{BAD}$. Therefore $\mathrm{AD}: \mathrm{DB}:: \mathrm{DB}: \mathrm{DC}(13 . \mathrm{II})$.

Cor. The cord is a mean proportional between the adjoining fegment, and the diameter; $\mathrm{AD}: \mathrm{AB}: \mathrm{AC}$. And CD : CB : CA \div.

This is evident from the fimilarity of the triangles.

P R O P. XVIII.
r08. In a circle, if the diameter AD be drawn, and from the ends of the cords AB, AC, perpendiculars be drawen upon the diameter; the Squares of the cords will be as the fegments of the diameter; $\mathrm{AE}: \mathrm{AF}$ $:: \mathrm{AB}^{2}: \mathrm{AC}^{2}$.

For $A E \times A D=A B^{2}$ (Cor. 17), and $A F \times A D$ $=A C^{2}$ (ibid.) ; therefore $\mathrm{AB}^{2}: \mathrm{AC}^{2}:: \mathrm{AE} \times \mathrm{AD}$: : AF $\times \mathrm{AD}:: \mathrm{AE}: \mathrm{AF}$ (Cor. 1. 5 . Proportion).

P R O P. XIX.

109.

If two circles touch one anotber in P , and the line PDE be drawn through their centers; and any line PAB is drawn tbrougb that point, to cut the circles, that line will be divided in proportion to the diameters; PA : PB : : PD : PE.

For drawing AD, BE; the triangles $\mathrm{PAD}, \mathrm{PBE}$, are right-angled at A, B (I4), and confequently fimilar, therefore PD : PE : : PA : PB (13. II).

Cor. The arches AD, BE are fimilar ; as alfo the arches PA, PB; and thefe arches are as the whole circunferences of the circles, or as the diameters; $\mathrm{AD}: \mathrm{BE}:: \mathrm{PA}: \mathrm{PB}:: \mathrm{PD}: \mathrm{PE}, \mathcal{E}^{\circ} c$.

They are fimilar by Def. 18, and proportional by Prop.VIII.

PR OP. XX.

FIG.
If through any point F in the diameter of a circle, 110. any cord L. FD is drawn; the rectangle of the ferments of the cord, is equal to the restangle of the ferments of the diameter; $\mathrm{CFD}=\mathrm{AFB}$.

Draw AC, BD; then the triangles $\mathrm{CAF}, \mathrm{BDF}$ are fimilar, for the angle F is common, and CAF $=\mathrm{BDF}$, and $\mathrm{ACF}=\mathrm{DBF}$ (Cor. 2. 12); therefore $A F: F C:: F D: F B$ ($13 . \mathrm{II}$), and $A F \times F B$ $=C F \times F D$ (12. Proportion).

Cor. I. Let O be the center; then the rectangle CFD, is equal to radius Square - the Square of the dijfance from the center $; \mathrm{CFD}=\mathrm{AO}^{2}-\mathrm{OF}^{2}$:

For $\mathrm{AF} \times \mathrm{FB}=\overline{\mathrm{AO}+\mathrm{OF}} \times \overline{\mathrm{AO}-\mathrm{OF}}=$ $A O^{2}-\mathrm{OF}^{2}$ (12. I).

Cor. 2. If Several cords CD, EG, be drazon through the fame point F , the rectangles of their Segments will be all equal to one another; $\mathrm{CFD}=$ EFF.

For they are all equal to the rectangle AFB .

PR O P. XXI.

If through any point F out of the circle in the III. diameter BA produced, any line FCD is drawn through the circle; the rectangle of the whole line and the external part, is equal to the rectangle of the whole line paling through the center, and the external part; $\mathrm{DFC}=\mathrm{AFB}$.

For drawing DA, CB, the triangles DFA and $B F C$ are fimilar; for $\angle F D A=F B C$, and F is common; therefore AF : FD : : CE : $\mathrm{FB}(13 . \mathrm{II})$; and $\mathrm{AF} \times \mathrm{FB}=\mathrm{CF} \times \mathrm{FD}$.

Cor.

FIG. 111. CFD is equal to the Square of the diftance from the center - radius Square; $\mathrm{CFD}=\mathrm{FO}^{2}-\mathrm{AO}^{2}$.

For $\mathrm{AF} \times \mathrm{FB}=\overline{\mathrm{FO}-\mathrm{AO}} \times \overline{\mathrm{FO}+\mathrm{AO}}=$ $\mathrm{FO}^{2}-\mathrm{AO}^{2}$ (12. I).

Cor. 2. Let HF be a tangent at H ; then the rectangle $\mathrm{CFD}=$ square of the tangent FH .
For $\mathrm{FO}^{2}-\mathrm{AO}^{2}=\mathrm{FO}^{2}-\mathrm{OH}^{2}=\mathrm{FH}^{2}$ (Cor. 1. 21. II).

Cor. 3. If feveral lines FD, FG, are drawen from the Same point F ; the rectangles of the whole and external fegment, will be all equal to one another; $\mathrm{CFD}=\mathrm{EFG}$.

For they are all equal to the rectangle AFB.
Cor. 4. If from the fame point F , two tangents bo drawn to the circle, they will be equal; $\mathrm{FH}=\mathrm{FI}$.

For the fquare of either of them is equal to the rectangle AFB.

P R.O P. XXII.

112. If a line PFC be drawen perpendicular to the diame ter AD of a circle; and ony line drawn from A th sut the circle and perpendicular; then the rectangle o the diffances of the fections from A, will be equal to tb rectangle of the diemeter and the diftance of the per pendicular from $\mathrm{A} ; \mathrm{AB} \times \mathrm{AC}=\mathrm{AP} \times \mathrm{AD}$.

For draw $B D$, and the triangles $A B D$, $A P C$ are fimilar, for \angle at A is common, and $\angle P$ and are right (14); therefore $\mathrm{AD}: \mathrm{AB}:: \mathrm{AC}: \mathrm{AF}$ (13. II), and $A D \times A P=A B \times A C$ (12. Pro portion).

Cor. I. If PF cuts the circle in K , then $\mathrm{AB} \times \mathrm{AC}$ $=A K^{2}$.

Cor. 2. If more lines AEF be drawn, all the rect- FIG. angles EAF, BAC are equal.

For they are all equal to the rectangle PAD.

PR O P. XXIII.

In a circle EDF whofe center is C, and radius CE, 113. if the points B, A, be o placed in the diameter produced, that $\mathrm{CB}, \mathrm{CE}, \mathrm{CA}$ be in continual proportion, then wo lines BD, AD drawn from thefe points, to any point in the circumference of the circle, will altoays be in the given ratio of BE to AE .

Draw DP perpendicular to the diameter EF , then $\mathrm{DP}^{2}=\mathrm{EP} \times \mathrm{PF}(17)=2 \mathrm{CE} \times \mathrm{EP}-\mathrm{EP}^{2}$, whence $A D^{2}={\overline{\mathrm{AE}}+\mathrm{EP}^{2}}^{2}+\mathrm{PD}^{2}(21 . \mathrm{II})=\mathrm{AE}^{2}+\mathrm{F} \mathrm{P}^{2}$ $+2 \mathrm{AEP}+2 \mathrm{CEP}-\mathrm{EP}^{2}(\mathrm{r} 0 . \mathrm{I})=A \mathrm{~A}^{2}+2 \mathrm{CE}$ $\mathrm{EP}+2 \mathrm{AE} \times \mathrm{EP}$. Alfo $\mathrm{BD}^{2}=\overline{\mathrm{BE}-\mathrm{EP}^{2}}+$ $\mathrm{D}^{2}(2 \mathrm{I} . \mathrm{II})=\mathrm{BE}^{2}-2 \mathrm{BEP}+\mathrm{EP}^{2}+2 \mathrm{CEP}$ $E P^{2}(1 . I)=\mathrm{BE}^{2}+2 \mathrm{CE} \times \mathrm{EP}-2 \mathrm{BE} \times \mathrm{EP}$. And fince $\mathrm{CA}: \mathrm{CE}: \mathrm{CB} \div$, therefore AE . CE : : EB : CB (13. Proportion), or AE: EB $: \mathrm{CE}: \mathrm{CB}$ (4. Proportion). Alfo $\mathrm{AE}^{2}: \mathrm{EB}^{2}::$ $\mathrm{E}^{2}: \mathrm{CB}^{2}:$: $\mathrm{CA}: \mathrm{CB}$ (23. Proportion) :: CE $-\mathrm{AE}: \mathrm{CE}-\mathrm{EB}:: 2 \mathrm{CE} \times \mathrm{EP}+2 \mathrm{AE} \times \mathrm{EP}$ ${ }_{2} \mathrm{CE} \times \mathrm{EP}-2 \mathrm{~EB} \times \mathrm{EP}$ (5. Proportion). And $\mathrm{E}^{2}: \mathrm{EB}^{2}:: \mathrm{AE}^{2}+2 \mathrm{CE} \times \mathrm{EP}+2 \mathrm{AE} \times \mathrm{EP}:$ $\mathrm{B}^{2}+2 \mathrm{CE} \times \mathrm{EP}-2 \mathrm{~EB} \times \mathrm{EP}$ (10. Proportion) $\mathrm{AD}^{2}: \mathrm{BD}^{2}$. And $\left.\mathrm{AE}: \mathrm{EB}:: \mathrm{AD}: \mathrm{BD}\right)$ Cor. 3. 18. Proportion).

PROP. XXIV.

If D, C be two points in the diameter of a circle, 1 is. uidiftant from the center O; and if two lines be aron from thence to any point E , in the circumference, e fum of their Squares will be equal to the fum of the uares of the fegments of the diameter; $\mathrm{DE}^{2}+\mathrm{CL}^{2}$ $=A C^{2}+C B^{2}$.

Fig. For draw EO to the center O, then $\mathrm{DE}^{2}+\mathrm{CE}^{2}$ 414. $=2 \mathrm{DO}^{2}+2 \mathrm{OE}^{2}(28 . \mathrm{II})=2 \mathrm{AO}^{2}+2 \mathrm{OC}^{2}$. But $\mathrm{AC}^{2}+\mathrm{CB}^{2}={\overline{\mathrm{AO}}+\mathrm{OC}^{2}}^{2}+{\overline{\mathrm{AO}-O O^{2}}}^{2}=\mathrm{AO}^{2}$ $+\mathrm{OC}^{2}+2 \mathrm{AOC}+\mathrm{AO}^{2}+\mathrm{OC}^{2}-2 \mathrm{AOC}$ $(+\mathrm{O} . \mathrm{II})=2 \mathrm{AO}^{2}+2 \mathrm{OC}^{2}=\mathrm{DE}^{2}+\mathrm{CE}^{2}$.

Cor. 1. Hence the fum of the fquares of DE, CE is equal to twice the Square of the radius + twice the Square of the diftance of one of the points from the center; $\mathrm{DE}^{2}+\mathrm{CE}^{2}=2 \mathrm{AO}^{2}+2 \mathrm{OC}^{2}$.

Cor. 2. Thbe fum of the fquares of any two correfpondent ones will be equal.

For they are all equal to the fame given quantity.

PROP. XXV.

If any cord PQ be drawn parallel to the diameter AB , of a circle; and from a given point C in that diameter, the lines CP, CQ be drawn to the two ends of the cord'; I fay the fum of their Squares is equal to the fum of the Squares of the fegments of the diameter: $\mathrm{CP}^{2}+\mathrm{CQ}^{2}=\mathrm{AC}^{2}+\mathrm{CB}^{2}$.

For draw $\mathrm{PS}, \mathrm{QR} \perp$ to the diameter AB , then PS^{2} or $\mathrm{QR}^{2}=\mathrm{PC}^{2}-\mathrm{SC}^{2}=\mathrm{QC}^{2}-\mathrm{RC}^{2}(2 \mathrm{I} . \mathrm{II})$; that is, $\mathrm{PC}^{2}-{\overline{\mathrm{SO}+\mathrm{OC}^{2}}}^{2}=\mathrm{QC}^{2}-{\overline{\mathrm{SO}-\mathrm{OC}^{2}}}^{2}$; or $\mathrm{PC}^{3}-\mathrm{SO}^{2}-{ }_{2} \mathrm{SOC}-\mathrm{OC}^{2}(10 . \mathrm{I})=\mathrm{QC}^{2}$ $-\mathrm{SO}^{2}+2 \mathrm{SOC}^{2}-\mathrm{OC}^{2}$, becaufe $\mathrm{OQ}=\mathrm{OS}$. Therefore $\mathrm{PC}^{2}=\mathrm{QC}^{2}+4 \mathrm{SOC}$, but $\mathrm{AC}^{2}+\mathrm{CB}^{2}$ $=\overline{\mathrm{AO}+\mathrm{OC}^{2}+\overline{\mathrm{AO}}-\mathrm{OC}^{2}=2 \mathrm{AO}^{2} \times 2 \mathrm{OC}^{2}}$ (10, II. I), But $\mathrm{PC}^{2}=A O^{2}+\mathrm{OC}^{2}+2 \mathrm{SOC}$ (22. II) $=\mathrm{QC}^{2}+4$ SOC. Therefore

$$
\mathrm{QC}^{2}=\mathrm{AO}^{2}+\mathrm{OC}^{2}-2 \mathrm{SOC}
$$

$\mathrm{PC}^{2}=\mathrm{AO}^{2}+\mathrm{OC}^{2}+2 S O C$
therefore $\mathrm{PC}_{2}+\mathrm{QC}^{2}=2 \mathrm{AO}^{2}+2 \mathrm{OC}^{2}=\mathrm{AC}^{2}$ $+\mathrm{CB}^{2}$.

Book IV. of GEOMETRY.
Cor. I. The fum of their fquares, $\mathrm{PC}^{2}+\mathrm{QC}^{2}=$ FIG. $2 \mathrm{AO}^{2}+2 \mathrm{OC}^{2}$.

Cor. 2. The difference of their squares, $\mathrm{PC}^{2}-\mathrm{QC}^{2}$ $=4$ SOC.

Cor. 3. All the ee things bold good, if the point C is taken witbout the circle.

PROP. XXVI.

In a circle, if a perp. DB be let fall from any point $11 \bar{\delta}$. D, upon the diemseter CI, and the tengent DO drawn from D ; then $\mathrm{AB}, \mathrm{AC}, \mathrm{AO}$, will be continually proportional.

Draw the radius DA, then the triangles ABD , ADO , are fimilar, for the angles at B and D are right (Cor. 2. 10), and angle A common; whence $A B: A D:: A D: A O$; that is, $A B: A C: A O \div \cdot$

PROP. XXVII.

If a triangle ADC be infcribed in a circle; and if 117. BC be draren parallel to the tangent AT ; then AB , AC, AD, are continually proportional.

For the triangle $A B C$, is fimilar to $A C D$; for $\angle D=\operatorname{TAC}(16)=\operatorname{ACB}(4.11)$, and A is common; therefore $\mathrm{AB}: \mathrm{AC}:: \mathrm{AC}: \mathrm{AD}(\mathbf{1} 3.11)$.

Cor. $\mathrm{AD}: \mathrm{DC}:$: AC : CB.

PROP. XXVIII.

If a triangle BDF be inforibed in a circle, and a 118. perpendicular DP let fall from D on the oppofite fide BE , and the diameter DA drawn; then as the perpendicular, is to one fide including the argle D ; so the other fide, to the diameter of the circle; DP : DA :: DF ; DA.

FIG. For drawing AF, the triangles. BDP, and ADF 118. are fimilar; for $\angle A=B$ (I3), and angles at P and F are right (14) ; therefore $\mathrm{DP}: \mathrm{DB}:: \mathrm{DF}$: DA (13. II).

Cor. The rectangles of the fides of an inforibed triangle; is equal to the reEtangle of the diameter, and the perp. on the third fide.

P R O P. XXIX.

119. If a triangle BAC be infcribed in a circle, and the angle A bijected by the right line AED; then as one Jide, to the fegment of the bifecring line, witbin the triangle; So the whole bifecting line, to the otber fide: $\mathrm{AB}: \mathrm{AE}:: \mathrm{AD}: \mathrm{AC}$.

Draw $B D$, then the triangles $A B D, A C E$ are fimilar; for $\angle \mathrm{D}=\mathrm{C}$ (Cor. 2. 12), and $\mathrm{BAD}=$ EAC (hyp.); therefore $\mathrm{AB}: \mathrm{AD}:: \mathrm{AE}: \mathrm{AC}$ (13. II) ; and $\mathrm{AB}: \mathrm{AE}:: \mathrm{AD}: \mathrm{AC}$ (4. Proportion).

Cor. If an angle of a triangle (infcribed in a circle) be bifected; the rectangle of the fides, is equal to the rectangle of the whole bifeciing line witbin the circle, and the fegment roitbin the triangle: BAC = DAE.

PR O P. XXX.

120.

If a circle be infribed in a triangle ABC , and lines be drawn from the center D , to the points of contar $\mathrm{E}, \mathrm{F}, \mathrm{G}$; then any fegment BF or BE joining to the angle B, is equal to balf the fum of the threc fides the oppofite fide AC.

For the triangles $\mathrm{BDF}, \mathrm{BDE}$ are fimilar and equal (9. II) ; for $\angle F=\angle E$ a right one (IO), and $\mathrm{DE}=\mathrm{DF}$, and BD common; whence $\mathrm{BF}=\mathrm{BE}$. In like manner $\mathrm{CF}=\mathrm{CG}$, and $\mathrm{AE}=\mathrm{AG}$. .Then fince the fum of the fides is $B C+C A+A B=$ 2 BF

Book IV. of GEOMETRY.
$2 \mathrm{BF}+{ }_{2} \mathrm{CG}+2 \mathrm{AG}$, therefore half the fum $=\mathrm{FIG}$.
$B F+C G+A G=B F+A C$, therefore $B F=120$. $\frac{1}{2}$ fum - AC.

Cor. The area of the triangle BAC, is equal to the rectangle of the radius DF , and half the fum of the three Jibes.

For the triangle $A B C$ is made up of the three triangles $\mathrm{ADB}, \mathrm{BDC}, \mathrm{CDA}$, whole common hight is the radius DF .

PR OP. XXXI.

If a quadrilateral ABCD be inscribed in a circle, the fum of two opposite angles is equal to two right angles; $A D C+A B C=$ two right angles.

Draw $A C, B D$, and produce $A B$ to E; then the external angle $\mathrm{CBE}=\mathrm{BCA}+\mathrm{BAC}$ (1. II) $=$ $\mathrm{BDA}+\mathrm{BDC}(13)=\mathrm{ADC}$; therefore $\mathrm{CBE}+$ $\mathrm{CBA}=\mathrm{ADC}+\mathrm{CBA}=2$ right angles ($\mathrm{I} . \mathrm{I}$).

Cor. If one side of a quadrangle (inscribed in a circle) be produced, the external angle EBC is equal to the internal opposite angle ADC.

PR O P. XXXII.

If a quadrangle be infcribed in a circle; the rectangle of the diagonals, is equal to the fum of the rectangles of the opposite fides; $\mathrm{AC} \times \mathrm{BD}=\mathrm{AB} \times \mathrm{CD}+\mathrm{AD}$ \times BC.

Make the angle $\mathrm{ABF}=\mathrm{CBD}$, then $\mathrm{ABD}=\mathrm{CBF}$; and fince the $\angle \mathrm{CDB}=\mathrm{FAB}(13)$, the triangles FAB , and CDB are fimilar, whence $\mathrm{DC}: \mathrm{DB}$ $: A F: A B(13 . I I)$, and $C D \times A B=B D \times A F$ (12. Proportion). Alfo fince $\angle B C F=B D A$ (13), the triangles CBF and DBA are fimilar; whence $C B: C F:: D B: D A(13 . I I)$, and $C B$ F 3
122.

70
 The ELEMENTS

FIG. $\times \mathrm{DA}=\mathrm{BD} \times \mathrm{CF}$ (i2. Proportion). Therefore 122. $C D \times A B+C B \times D A=B D \times A F+B D \times C F$ $=\mathrm{BD} \times \mathrm{AC}(\mathrm{Ax} .3)$.

PROP. XXXIII.

A circle is equal to a triangle robofe bafe is the circumference of the circle; and bight, its radius.
123.

Let $A B$ be equal to the length of the circumference, and let the circle touch it in I; draw Cl , and $C D$ extremely near it. Then by reafon of the extreme fmallnefs of the arch DI, the fector CD coincides with the triangle CDI, and the arch with a portion of the right line. Now fince the circle DEGF may be fuppofed to be made up of fuch fectors CDI, and the triangle ACB of as many triangles CDI equal to the fector CDI; it follows that all thefe fectors are equal to all the triangles, or the circle $\mathrm{DEGF}=$ the triangle ABC .

- This is alfo evident by the 25 . III. for a circle may be confidered as a regular polygon of an infinite number of fides, whofe hight is the radius of the circle.

Cor. The Sector of a circle is equal to a triangle, wobole bafe is the arch, and bigbt the radius.

> PROP. XXXIV.
123. T'be area of a circle is equal to the rectangle of balf the circumference and balf the diameter.

For the circle EGF is equal to the triangle $A B C$ (33), and that triangle is equal to the rectangle of half the bafe AB and hight CI , that is, of half the circumference DFGED, and half the diameter CI (Cor. 2. 10. II).

Cor. x . The fector of a circle is equal to the rectangle of half the arch and the radius.

Cor. 2. Sectors are to one another in the complicate FIG. ratio of their arches and radii.

For triangles, to which they are equal, are in that ratio (Cor. I. II. II).

PROP. XXXV.

Circles (that is, their areas) are to one another as the Squares of their diameters.
For circumference EFGE : cir. IHKI : : AB : CD (9) ; and the areas of the circles EFG, and IHK
are $\frac{\mathrm{EFG} \times \mathrm{AB}}{4}$, and $\frac{\mathrm{IHK} \times \mathrm{CD}}{4}(34)$; therefore circle $\mathrm{EF}: \stackrel{4}{4}_{\mathrm{c}}^{\mathrm{c}} \mathrm{I} \mathrm{IH}:: \mathrm{EFGE} \times \mathrm{AB}: \mathrm{IHKI} \times \mathrm{CD}$ (5. Proportion) : : $\mathrm{AB}^{2}: \mathrm{CD}^{2}$ (7. Proportion).

Cor. I. Circles are to one another as the Squares of the radii, or as the fquares of the circumferences.

For thefe are all in the fame ratio (Prop. IX).
Cor. 2. A circle made on the hypotbenuse, is equal to two circles made alike on the two fides, of a rightangled triangle.

PROP. XXXVI.

Similar polygons defcribed in circles, are to one another, as the circles woberein they are infcribed.

Draw CK, AG, then becaufe fimilar polygons
124. may be refolved into fimilar triangles- (Cor. 2. 19. III), therefore $\mathrm{AF}: \mathrm{AG}:: \mathrm{CH}: \mathrm{CK}$, and AG $: A B:: C K: C D(13 . I I)$, therefore $A F: A B$ $:: \mathrm{CH}: \mathrm{CD}$. Or at once, $\mathrm{AF}: \mathrm{AB}:: \mathrm{CH}: \mathrm{CD}$ (19. III). And polygon EF : polygon IH : : AF $: \mathrm{CH}^{2}: \mathrm{AB}^{2}: \mathrm{CD}^{2}$ (20. III) : : circle EF : circle IH (35).

FI G. Cor. I. Like polygons infcribed in circles, are as the 124. Squares of the diameters.

Cor. 2. The peripheries of like polygons inforibed in circles, are as the dianieters of the circles.

For $\mathrm{AF}: \mathrm{CH}:: \mathrm{FG}: \mathrm{HR}:: \mathrm{GB}: \mathrm{KD}:: \mathrm{BE}$. : DI : : EA : IC (Def. 12), therefore AFGBEA : CHKDIC : : AF : CH (io. P'roportion) : : AB : CD (19. III).

PR O P. XXXVII.

A circle is to any circumfcribed rectilineal figure; as the circle's periphery, to the periphery of the figure.
125. From O, the center of the inicribed circle, draw OP perp. to the fide AD. Then the figure AC confifts of the triangles $\mathrm{ABO}, \mathrm{BCO}, \mathrm{CDO}, \mathrm{DAO}$, whofe common hight is the radius OP. Therefore its area $=\frac{A B C D A}{2} \times O P$; and the circle $=$ circumference $\frac{P R Q}{2} \times P O-(34)$; but $\frac{A B C D A \times O P}{2}$ $: \frac{\mathrm{PRQ} \times \mathrm{OP}}{2}:: \mathrm{ABCDA}:$ circumference PQR (5. Proportion).

Cor. 1. Any polygon circumfcribed about a circle, is equal to a triangle whofe bight is the radius, and bafe the circumference of the polygon.

Cor. 2. Of figures of equal compafs, the circle is the biggeft or moft capacious.

For if the fides of the figure be fuppofed to tauch the circle, they will be greater than the circumference of the circle, contrary to the fuppofition. Therefore they will fall within the circle, and then the perpendicular upon them will be fhorter than the radius. And therefore the polygon will be lefs than the circle, becaufe the triangle (to which it is equal)

Book IV. of GEOMETRY.
has the fame bafe, and a lefs hight, than the triangle FIG. to which the circle is equal.

Cor. 3. All figures circumscribing the fame circle, are to one another as their circumferences.

P R O P. XXXVIII.

The area of a crowen, ring, or annulus ABC (con- 126. tained between the circumferences of two circles), is equal to the rectangle under the breadth RF, and boiff the fum of the perimeters.

Let C, c be the circumferences of the greater and leffer circles, then $\mathrm{KF}: c:: \mathrm{KR}: \mathrm{C}(9)$, and KF : KR :: $c: C$ (4. Proportion), and $\mathrm{KF}: \mathrm{RF}$ $:: c: C-c$ (13 . Proportion), whence $K F \times$ $\overline{\mathrm{C}-c}=\mathrm{RF} \times c$.

But the annulus $=$ difference of the circles $=$ $\frac{\mathrm{RK} \times \mathrm{C}}{2}-\frac{\mathrm{KF} \times c}{2}=\frac{\mathrm{RF} \times \mathrm{C}+\mathrm{FK} \times \mathrm{C}-\mathrm{FK} \times c}{2}$
$=\frac{\mathrm{RF} \times \mathrm{C}+\mathrm{FK} \times \overline{\mathrm{C}-\bar{c}}}{2}=\frac{\mathrm{RF} \times \mathrm{C}+\mathrm{RF} \times c}{2}$
$=\frac{\mathrm{C}+c}{2} \times \mathrm{RF}$.
Cor. If FG be perp. to RP, and a mean proportional between the two radii; then the circle defcribed, with the radius FG , is equal to the annulus ABC .

For $\mathrm{FG}^{2}=\mathrm{KG}^{2}-\mathrm{KF}^{2}$ (Cor. I. 21. III) ; therefore the circle whofe radius is FG is equal to the difference of the circles whofe radii are KG or KR and KF (22. III).

P R O P. XXXIX.

Let ABCD be a trapezium infrribed in a circle, and 127. put $\mathrm{R}=$ the radius, $\mathrm{P}=\mathrm{AB} \times \mathrm{BC}+\mathrm{CD} \times \mathrm{DA}$, $Q=A B \times C D+B C \times A D, T=A B \times A D$ $+\mathrm{BC} \times \mathrm{CD}$. Then the area of the trapezium will $b_{c}=\frac{\sqrt{\mathrm{PQT}}}{4^{\mathrm{R}}}$.

For $\frac{A B \times A D}{2 R}=$ perp. from A upon $B D(28)$, and $\frac{B C \times C D}{2 R}=$ perp. from C on $B D$ (ibid.), and $\frac{A B \times A D+B C \times C D}{2 R}=\frac{T}{2 R}$ is the fum of the perpendiculars.

Therefore $\frac{\mathrm{T} \times \mathrm{BD}}{2 \mathrm{R}}=$ twice the area of the trapezium (24. III); and in like manner $\frac{A B \times B C+A D \times D C}{2 R} \times A C$ or $\frac{P \times A C}{2 R}=$ twice the fame area. Therefore $\mathrm{T} \times \mathrm{BD}=\mathrm{P} \times \mathrm{AC}$, and $A C=\frac{T \times B D}{P} . \quad$ But $A C \times B D=A B \times C D+$ $\mathrm{AD} \times \mathrm{CB}(32)=\mathrm{Q}=\frac{\mathrm{T} \times \mathrm{BD}^{2}}{\mathrm{P}}$, and $\mathrm{BD}^{2}=$ $\frac{P Q}{T}$, and $B D=\sqrt{\frac{P Q}{T}} . \quad$ Whence $\frac{T \times B D}{2 R}=$ $\frac{T}{2 R} \cdot \sqrt{P Q}=\frac{\sqrt{P R T}}{2 R}=$ twice the area; and the area $=\frac{\sqrt{\mathrm{PQT}}}{4 \mathrm{R}}$.

Cor. 1. $\mathrm{BD}^{2}=\frac{\mathrm{PQ}}{\mathrm{T}}$, and $\mathrm{AC}^{2}=\frac{\mathrm{QT}}{\mathrm{P}}$.
Cor. 2. $B D: A C:: P: T:: A B \times B C \nleftarrow$ $C D \times D A: A B \times A D+B C \times C D$.

PROP. XL.

127. If ABCD be a trapezium inscribed in a circle, and each Side be fubtracted from the fum of the other three, there will be four remainders; then take the product of two of these remainders, and likewise the product of the other two; I fay, 4 times the area of the trapezium will be a mean proportional, between these tevo products.

Book:IV. of GEOMETRY.
From A let fall the perpendiculars AF, AP FIG. upon $C B, C D$. Then fince $\angle A B E=A D C 127^{\circ}$ (Cor. 31); the firft pert. falls without, and the fecond within the figure. Also the angles B, P, being right, the triangles $A B F, A P D$, are fimilar. Therefore $A B: B F:: A D: D P=\frac{A D \times B F}{A B}(13$. II), and $A F=\sqrt{A B^{2}-F B^{2}}(2$ I. II), also $A B:$ $A F:: A D: A P=\frac{A D}{A B} \sqrt{A B^{2}-F B^{2}}$. Draw $A C$, then $\mathrm{AB}^{2}+\mathrm{BC}^{2}+2 \mathrm{BC} \times \mathrm{BF}=\mathrm{AC}^{3}=\mathrm{AD}^{2}+$ $C^{2}-2 C D \times \frac{A D \times B F}{A B}(22,23$. II $)$. Whence ${ }_{2} \mathrm{BC} \times \mathrm{BF}+\frac{2 \mathrm{CD} \times \mathrm{AD}}{\mathrm{AB}} \times \mathrm{BF}=\mathrm{AD}^{2}+\mathrm{CD}^{2}-$ $A B^{2}-\mathrm{BC}^{2}$, and $\frac{B F}{A B}=\frac{A D^{2}+C D^{2}-A B^{2}-B C^{2}}{2 A B \times B C+2 C D \times D A}$ $=\frac{A D^{2}+C D^{2}-A B^{2}-\mathrm{BC}^{2}}{2 \mathrm{P}}$ (putting $\mathrm{P}=$ $A B \times B C+C D \times D A)$. And $\frac{A B+B F}{A B}=$ $\frac{C D^{2}+2 C D \times A D+A D^{2}-A B^{2}+2 A B \times B C-B C^{2}}{2^{\mathrm{P}}}$

$=\frac{\mathrm{AB}^{2}+2 \mathrm{AB} \times \mathrm{BC}+\mathrm{BC}^{2}-\mathrm{CD}^{2}+2 \mathrm{CD} \times \mathrm{AD}-\mathrm{AD}^{2}}{2 \mathrm{P}}$
$=\frac{\overline{A B+B C}^{2}-\overline{C D}-A D^{2}}{2 P}$.
But twice the area $=\mathrm{AF} \times \mathrm{BC} \neq \mathrm{AP} \times \mathrm{CD}$ (24. III) $=B C \sqrt{\mathrm{AB}^{2}-\mathrm{BF}^{2}}+\frac{\mathrm{CD} \times \mathrm{AD}}{\mathrm{AB}} \sqrt{\mathrm{AB}^{2}-\mathrm{BF}^{2}}$
$=\frac{\mathrm{AB} \times \mathrm{BC}+\mathrm{CD} \times \mathrm{AD}}{\mathrm{AB}} \sqrt{\mathrm{AB}^{2}-\mathrm{BF}^{2}}=$
$\frac{\mathrm{P}}{\mathrm{AB}} \sqrt{\mathrm{AB}^{2}-\mathrm{BF}^{2}} ;$ and $4 \times$ area fquare $=$
$P P \times \frac{\overline{A B^{2}-B F^{2}}}{A B^{2}}=P P \times \frac{A B+B F}{A B} \times \frac{A B-B F}{A B}$
Cor. If $S=$ balf the fum of the four fides, then the
area is a mean proportional between these rectangles
$\overline{S-A B} \times \overline{S-B C}$, and $\overline{S-C D} \times \overline{S-D A}$.
For area ${ }^{2}=\frac{C D+A D+A B-B C}{2} \times \mathcal{V}^{\circ}$. but
$S-A B=\frac{C D+A D+A B+B C}{2}-A B=$
$\frac{C D+A D-A B+B C}{2}$, and fo of the reft.

PROP. XLI.

128. If an cquilateral triangle ABC be inforibed in a circle; the Square of the fide thereof, is equal to tbree times the forire of the radius: $\mathrm{AB}^{2}=3 \mathrm{AD}^{2}$.

Draw the diameter AE, and the cord BE. Then the triangle BDE is equiangular (Cor. 1. 2. II), for $\angle \mathrm{BDE}=\mathrm{BAC}($ Cor. I . 12$)=\mathrm{BCA}=\mathrm{BED}$, and $\mathrm{EE}=\mathrm{DB}$ (Cor. 1. 3. II). Then $\mathrm{AB}^{2}+\mathrm{BE}^{2}$ $=\mathrm{AE}^{2}(2 \mathrm{I} . \mathrm{II})=4 \mathrm{DB}^{2}=4 \mathrm{BE}^{2}$, and $\mathrm{AB}^{2}=$ ${ }_{3} \mathrm{BE}^{2}={ }_{3} \mathrm{BD}^{2}$.
Cor. I. $\mathrm{AB}^{2}: \mathrm{AF}^{2}:: 4: 3$.
For $\mathrm{AB}^{2}: \mathrm{AF}^{2}:: \mathrm{AE}: \mathrm{AF}$ (23. Proportion). : : 4 : 3 .

Cor. 2. $\mathrm{DF}=$ balf DE .
Cor. 3. The fide BC of the equilateral triangle, cuts off a fourth part of the diaineter.

PROP.

PROP. XLII.

A square infcribed in a circle, is equal to treice the 129. Square of the radius ; $\mathrm{AB}^{2}=2 \mathrm{BO}^{\circ}$.

For $\mathrm{AB}^{2}=A O^{2}+O B^{2}(21$. II $)=2 \mathrm{AO}^{2}$.
Cor. The circumfcribed fquare EG is double the infrribed Square, AC.

For EG is the fquare of the diameter or 4〔quares of the radius, and therefore equal to two of the infcribed fquares, $A B C D$.

PROP. XLIII.

If two diagonals BD, EC be drawn to cut one ano130. ther, in an infcribed regular pentagon. The greater fegments EF, BF, will be equal to the side of the pentagon, AB .

For fince the arch $A E=B C$, and $A B=E D$, therefore EC is parallel to AB , and BD parallel to AE (Cor. 13); therefore ABFE is a parallelogram, and $\mathrm{EF}=\mathrm{AB}=\mathrm{AE}=\mathrm{BF}$ (I . II) .

Cor. I. The diagonals BD, CE cut one anotber in extreme and mean proportion; $\mathrm{BD}: \mathrm{BF}:: \mathrm{BF}: \mathrm{FD}$.

For $\angle D C F=C D F=C B D$ (Cor. 2. 12); therefore the triangles $\mathrm{CDF}, \mathrm{CDB}$ are fimilar, $\mathrm{BD}: \mathrm{DC}$ $:: \mathrm{DC}: \mathrm{DF}$ (13. II) ; that is, $\mathrm{BD}: \mathrm{BF}:: \mathrm{BF}$: FD.

Cor. 2. The diagona! CE is paralle? to AB , and BD to AE.

Cor. 3. The fille of the pentogonin BC , is to the didgonal BD , as a to $\frac{1+\sqrt{ } 5}{2}$.

FIG. For $\mathrm{BD} \times \mathrm{FD}$ or $\mathrm{BD} \times \overline{\mathrm{BD}-\mathrm{BC}}=\mathrm{BF}^{1}($ Cor. I$)$;
130. that is, $\mathrm{BD}^{2}-\mathrm{BD} \times \mathrm{BC}=\mathrm{BC}^{2}$; add $\frac{1}{4} \mathrm{BC}^{2}$, then $\mathrm{BD}^{2}-\mathrm{BD} \times \mathrm{BC}+\frac{1}{4} \mathrm{BC}^{2}=\frac{5}{4} \mathrm{BC}^{2}$; that is, $\overline{\mathrm{BD}-\frac{1}{2} \mathrm{BCl}^{2}}=5 \times \frac{\mathrm{BC}^{2}}{4}$, and the root is BD $\frac{1}{2} C=\frac{B C}{2} \sqrt{ } 5$, and $B D=\frac{B C}{2}+\frac{B C}{2} \sqrt{5}=B C$ $x \frac{1+\sqrt{ } 5}{2}$.
Cor. 4. The angle BCF is double to the angle CBF.
For it ftands on double the arch.

PROP. XLIV.

130. If a regular pentagon be infcribed in a circle; the square of the radius AH , is to the 'fquare of its fide, AB ; as 2 to $5-\sqrt{5}$.

Let HG bifect $A B$ in I, and make $I O=I G$. Then the angles AIO, AIG are right (Cor. 3. 3. II). And put $\mathrm{R}=$ radius AFI. The $\angle \mathrm{GHA}=$ $\frac{2}{5}$ of a right angle (1. 1), and IAH $=\frac{3}{5}$ of a right angle (Cor. 2. 2. II); but IAG or IAO $=\frac{1}{2} \mathrm{GHA}$ (12) $=\frac{1}{5}$ of a right angle, therefore $\mathrm{OAH}=$ $\frac{2}{5}$ of a right angle (Ax. 4) $=\mathrm{OHA}$, whence HO $=\mathrm{OA}=A \mathrm{G} . \quad 2 \mathrm{R} \times \mathrm{GI}=\mathrm{GA}^{2}($ Cor. 1 1 $)=$ $\mathrm{HO}^{*}=\overline{\mathrm{R}-{ }_{2} \mathrm{GI}^{2}}=\mathrm{RR}-4 \mathrm{R} \times \mathrm{GI}+4 \mathrm{GI}^{2}$ (II. I), and $4 \mathrm{GI}-6 \mathrm{R} \times \mathrm{GI}+\mathrm{RR}=0$ (Ax. 3 . 4), and $\mathrm{GI}^{2}-{ }_{2}^{3} \mathrm{R} \times \mathrm{GI}+\frac{1}{4} \mathrm{RR}=\mathrm{O}$ (Ax. 6); add ${ }^{5}{ }^{5} \mathrm{RR}$, then $\frac{9}{16} \mathrm{RR}-\frac{3}{2} \mathrm{R} \times \mathrm{GI}+\mathrm{GI}^{2}=\frac{{ }_{1}^{4}}{16} R \mathrm{GR}$; that is, $\overline{\frac{3}{4} R-G I^{2}}=5 \times \frac{R R}{16^{2}}$, whence the root ${ }^{3} \mathrm{R}-\mathrm{GI}=\frac{\mathrm{R}}{4} \sqrt{5}$, and $\mathrm{GI}=\frac{3-\sqrt{ } 5}{4} \mathrm{R}$. But $\frac{3}{2} \mathrm{R} \times \mathrm{GI}-\mathrm{GI}^{2}=\frac{1}{4} \mathrm{RR}$. And $\mathrm{AI}^{2}=2 \mathrm{R} \times \mathrm{GI}$ $-\mathrm{GI}^{2}(\mathrm{I} 7)=\frac{1}{2} \mathrm{R} \times \mathrm{GI}+\frac{3}{2} \mathrm{R} \times \mathrm{GI}-\mathrm{GI}^{2}=$ $\frac{1}{3} R \times G I+\frac{2}{4} R R=$

Book IV. of GEOMETRY.
$\mathrm{RR} \times \frac{5-\sqrt{ } 5}{8}$, and $4 \mathrm{AI}^{2}$ or $\mathrm{AB}^{2}=\mathrm{RR} \times \frac{5-\sqrt{ } 5}{2}$. FIG.
Cor. I. The Square of the perpendicular HI, upon the side of the pentagon, is equal to $\frac{3+\sqrt{ } 5}{8} \mathrm{RR}$.

For $\mathrm{HI}^{2}=\mathrm{R}^{2}-\mathrm{AI}^{2}=\frac{8 \mathrm{R}^{2}-5 \mathrm{R}^{2}+\sqrt{5} \cdot R \mathrm{R}}{8}$ $=\frac{3+\sqrt{ } 5}{8} R R$.

Cor. 2. T'be Square of radius AH, is to the Square of the diagonal BD , as I to $\frac{5+\sqrt{ } 5}{2}$.

For BC or $\mathrm{AB}=\frac{2 \mathrm{BD}}{1+\sqrt{ } 5}($ Cor. 3. 43), and
$A B^{2}=\frac{4 B^{2}}{1+\sqrt{5}}=\frac{-4 \mathrm{BD}^{2}}{1+5+2 \sqrt{5}}(10 . \mathrm{I})=\frac{4 \mathrm{BD}^{2}}{6+2 \sqrt{5}}$, and $A B^{2}=R R \times \frac{5-\sqrt{5}}{12}(44)$, therefore $\frac{4 B D^{2}}{5+2 \sqrt{ } 5}$ or $\frac{2 B D^{2}}{3+\sqrt{5}}=R R \times \frac{5-\sqrt{5}}{2}$, and $2 B D^{2}$ $=R R \times \frac{5-\sqrt{5} 5}{2} \times 3+\sqrt{5}=R R \times \frac{15+5 \sqrt{ } 5-3 \sqrt{ } 5-5}{2}$
(Cor. . . 8. $I)=R R \times \frac{10+2 \sqrt{5}}{2}$; that is, $B D^{2}$ $=R R \times \frac{5+\sqrt{ } 5}{2}$.

Cor. 3. If CE be the diagonal of the pentagon, ${ }^{9} 134$ and OLD be drawn; then DL $=\mathrm{R} \times \frac{5-\sqrt{ } 5}{4}$.
For DL $=\frac{D E^{2}}{D F}($ Cor. 17 $)=R R \times \frac{5-\sqrt{5}}{4 R}=$ $R \times \frac{5-\sqrt{5}}{4}(44)$.

PROP.

FIG. PROP. XLV.
13 I.
The side of a regular bexagen infcribed in a circle, is equal to the radius of the circle: $\mathrm{BE}=\mathrm{BD}$.

For $\angle B D E=\frac{1}{6}$ of four right angles (Cor. i. $\mathrm{I})=\frac{1}{3}$ of two right angles. And the angles B and E together $=\frac{2}{3}$ of two right angles (2. II), whence $\mathrm{BED}=\frac{1}{3}$ of two right angles (3. II) $=$ BDE ; therefore $\mathrm{BE}=\mathrm{BD}$ (Cor. 1. 3. II).

PROP. XLVI.

132. Tibe fquare of the fide of a regular octagon, $i n$ scribed in a circle; is equal to the fquare of balf the Side of the infcribed Square, together with the Square of the difference of that balf fide and the radius; $A B^{2}=A P^{2}+{\overline{O B}-A P^{2}}^{2}$

For $A B^{2}=A P^{2}+\mathrm{PB}^{2}(2 \mathrm{r}$. II), but $\angle \mathrm{PAO}=$ POA (Cor. 1. 12); therefore $P O=A P$, and $B P=O B-O P=O B-A P ;$ and $A B^{2}=$ $\overline{\mathrm{OB}-\mathrm{AP}^{2}}+\mathrm{AP}^{2}$.

Cor. The fquare of radius, is to the Square of the Jide of the otzagon; as 1 to $2-\sqrt{ } 2$.

For $\mathrm{AP}=\sqrt{\frac{1}{2} \mathrm{AO}^{2}}$, and $\mathrm{PB}^{2}=\overline{\mathrm{BO}-\mathrm{AP}^{2}}=$
 ${ }_{1}^{\frac{1}{2}} \mathrm{AO}^{2}-\mathrm{AO}^{2} \sqrt{2}$, add $\mathrm{AP}^{2}=\frac{1}{2} \mathrm{AO}^{2}$, and AP^{2} $+\mathrm{BP}^{2}$ or $\mathrm{AB}^{2}=2 \mathrm{AO}^{2}-\mathrm{AO}^{2} \sqrt{2}$.
PROP. XLVII.
133.

The radius of a circle is a mean proportional, between the fide of an infcribed regular decagon, and the fum of that fide and the radius; $\mathrm{AB}: \mathrm{DA}:: \mathrm{DA}:$ $D A+A B$.

Book IV. of GE OMETRY.

Produce AB to F , fo that BF may be $=\mathrm{BD}$; FIG . and draw DF, DB. Then $\angle A D B=\frac{1}{5}$ of two 133. right angles, and therefore DAB and DBA tonethe $=\frac{4}{5}$ of two right angles (2. II), and ABD $=\frac{2}{5}$ of two right angles (3 .II) $=\mathrm{BDF}+\mathrm{BFD}$ $(\mathrm{I} . \mathrm{II})={ }_{2} \mathrm{BDF}(3 . \mathrm{II})$; therefore BDF or BFD $=\frac{\pi}{5}$ of a right angle $=A D B$. Therefore the sriangles $A D B$, and $A D F$ are fimilar, for $F=A D B$; and A is common, whence $A F$ or $A B+B D$: $A D:: A D: A B$.

Cor. I. If the radius be cut in extreme and mean ratio, the greater ferment is the gide of the decagon, AB.

For fine $A B+A D: A D:: A D: A B$. Therefore $\mathrm{AB}: \mathrm{AD}:: \mathrm{AD}-\mathrm{AB}: \mathrm{AB}$ (13. Proportion), or $\mathrm{AD}: \mathrm{AB}:: \mathrm{AB}: \mathrm{AD}-\mathrm{AB}$, thereore AD is cut in extreme and mean proportion Def. 11. Proportion).

Cor. 2. The radius is to the gide of the decagon; as to $\sqrt{5}-\mathrm{I}$.

For $A B^{2}+A B \times A D=A D^{2}$ (12. Proportion), dd $\div A D^{2}$, then $A B^{2}+A B \times A D+\frac{1}{4} A D^{2}=$ $A D^{*}(A x \cdot 3)_{2}$ and $A B+\frac{1}{2} A D=\frac{A D}{2} \sqrt{5}$, and $B=\frac{A D}{2} \sqrt{5}-\frac{A D}{2}$, and $2 A B=A D x$ 5: — I.

Cor. 3. The Square of the perpendicular upon the de of a decagon, is $\frac{5+\sqrt{ } 5}{8} \times$ the Square of the adieus.
For $\frac{7}{2} \mathrm{AB}=\mathrm{rad} . \times \frac{\sqrt{5}-1}{{ }^{4}-1}$, and its square $=$

FIG. $A D=\frac{3-\sqrt{5}}{8}$, and the fquare of the perpend. 133.

$$
=A D^{2}-A D^{2} \times \frac{3-\sqrt{ } 5}{8}=A D^{2} \times \frac{5+\sqrt{ } 5}{8}
$$

PROP. XLVIII.

134.

The Square of the gide of a regular pentagon inscribed in a circle, is equal to the fum of the Squares of the radius, and of the file of a regular decagon, inscribed in the fame circle; $A B^{2}=\mathrm{FA}^{2}+\mathrm{AO}^{2}$.

Draw OG perpendicular to the cord FA, to cut it in G , and draw FH . The triangles ABO , HBO are fimilar; for $\angle \mathrm{AOB}=\frac{1}{5}$ of 4 right angles, or $\frac{2}{5}$. of 2 right angles (I. I), alfo BAO and ABO are together $=\frac{3}{5}$ of 2 right angles (2. IL), and therefore BAO $=\frac{3}{10}$ of 2 right angles, but BOG $\left(=\frac{3}{4} \mathrm{AOB}\right)=\frac{3}{7} \times \frac{2}{5}$ of 2 right angles $=T^{\frac{3}{0}}$ of 2 right angles, therefore $\mathrm{BAO}=\mathrm{BOG}$, and B is common; whence $\mathrm{AB}: \mathrm{BO}:: \mathrm{EO}: \mathrm{BH}$ $=\frac{B O^{2}}{A B}$.

Again, the triangles AFH and ABF are fimilar, for $\angle A=A F H$ (3 .II), and $\angle A=B(C o r .2 .12)$, therefore $\mathrm{BA}: \mathrm{AF}:: \mathrm{AF}: \mathrm{AH}=\frac{\mathrm{AF}^{2}}{\mathrm{AB}}$; therefore $A B=A H+B H=\frac{A F^{2}+B O^{2}}{A B}$, or $A B^{2}=B O^{2}$ $+\mathrm{AF}^{2}$.

Cor. The perpendicular OI upon the side of the pentagon, is equal to half the fum of the radius and side of the decagon; $\mathrm{OI}=\frac{\mathrm{AO}+\mathrm{AF}}{2}$.

$$
\text { For } \mathrm{OI}=\mathrm{OF}-\mathrm{FI}=\frac{2 \mathrm{OF}^{2}-2 \mathrm{OF} \times \mathrm{FI}}{2 \mathrm{OF}}=
$$

$$
\frac{A O F^{2}-F A^{2}}{2 U F}(\operatorname{Cor} .17) . \text { And fince } A O^{2}=\mathrm{FA}^{2}+
$$

Book IV. of GEOMETRY.
$\mathrm{AO} \times \mathrm{AF}(47)$, therefore $\mathrm{AO}^{2}-\mathrm{FA}^{2}=\mathrm{AO} \times \mathrm{FIG}$. AF , and ${ }_{2} \mathrm{FO}^{2}-\mathrm{FA}^{2}=\mathrm{FO}^{2}+\mathrm{AF} \times \mathrm{FO}$, and 134. $\frac{\mathrm{AF}+\mathrm{FO}}{2}=\frac{2 \mathrm{OF}-\mathrm{FA}^{2}}{2 \mathrm{OF}}=\mathrm{OI}$.

PR O P. XLIX.

The fide of a regular dodecagon infrribed in a circle, 135 is a mean proportional between the radius, and the excefs of the diameter above the fide of the infcribed equilateral triengle.

Let $A B$ be a fide of the dodecagon, and draw CB, CF, and DF the fide of the triangle, and $F R$ perpendicular to $A C$. Then $A C E=\frac{1}{3}$ of 2 right angles $=\mathrm{CAF}=\mathrm{CFA}(2 . \mathrm{II})$, therefore ACF is an equilateral triangle, and $\mathrm{AO}=\frac{1}{2} \mathrm{AC}$, and $\mathrm{CO}=\sqrt{\frac{3}{4} \mathrm{AC}^{2}}$ (Cor. 39. II), and $\mathrm{BO}=$ $\mathrm{CA}-\mathrm{CO}=\mathrm{CA}-\sqrt{\frac{3}{4} \mathrm{CA}^{2}}$, and $\mathrm{BO}^{2}=\mathrm{CA}^{2}$ $+\frac{3}{4} \mathrm{CA}^{2}-2 \mathrm{CA} \times \sqrt{\frac{3}{4}} \mathrm{CA}^{2}={ }^{2} \frac{3}{4} \mathrm{CA}^{2}-\mathrm{CA}^{2} \sqrt{ } 3$ (1I. I), and $\mathrm{AB}^{2}=\mathrm{AO}^{2}+\mathrm{OB}^{2}$ (2I. III) $=$ ${ }_{4}^{1} \mathrm{AC}^{2}+1_{4}^{\frac{3}{4}} \mathrm{AC}^{2}-\mathrm{CA}^{2} \sqrt{3}=2 \mathrm{AC}^{2}-\mathrm{CA}^{2} \sqrt{3}$. Therefore $\mathrm{CA}: \mathrm{AB}:: \mathrm{AB}:{ }_{2} \mathrm{CA}-\overline{\mathrm{C} \hat{A} \sqrt{3}}$. But ${ }_{2} C A$ is the diameter, and $C A \times \sqrt{ } 3=$ fide DF of the equilateral triangle (4I).

Cor. The Jide of the dodecagon, $\mathrm{AB}=\mathrm{CA} \times$ $\sqrt{2-\sqrt{3}}$.

PROP.L.

If ABH be an equilateral triangle, and APDFG an equilateral pentagon, infcribed in a circle, botb placed with their arigles at A ; then the cord BD roill be the fide of an equilateral quindecagon; and BI will be half the difference of the fides of the triangle and pentagon, and DI (perp. to BH$)$ is the difference of the perpendiculars in the tweo figures; and $\mathrm{BD}^{2}=\mathrm{BI}^{2}+\mathrm{Di}^{2}$.

FIG. For arch $A P=\frac{1}{5}=\frac{3}{15}$ the circumference, and 136. $\mathrm{APD}=\frac{6}{15}$ of it; also $\mathrm{APB}=\frac{1}{3}=\frac{5}{5}$ the circonference; therefore $\mathrm{APD}-\mathrm{APB}=\mathrm{r}^{\frac{1}{5}}$ the circumference; and the cord $B D$, the fide of the quindecagon; moreover $D I=C O-C E$, is known from Cor. Prop. XLIV. and Cor. 2. Prop. XLI. Alfo $\mathrm{BI}=\frac{\mathrm{BH}-\mathrm{DF}}{2}$, which will be known by Prop. XLI, and Prop. XLIV; and thence BD ${ }^{\text {* }}$ $=\mathrm{BI}^{2}+\mathrm{DI}^{2}$, will be known.

B O O K V.

Of Planes, and folid Angles.

DEFINITIONS.

'APlane is a furface which lies even between FIG. the extremes; or in which all right lines coincide.
2. A curve furface, is that whofe parts lie not even between the extremes; but gradually, rife or fall.
3. A convex furface, is that which fwells or rifes up towards the middle.
4. A concave furface ${ }_{2}$ is that whofe middle parts are hollow, or fall lower than the extremes.
5. A rigbt line, is faid to be perpendicular to a 140. plane, when it is perpendicular to aill lines, drawn to the foot of it, as AB.
6. The common ferion of two planes, is the line made by two planes cuting each other, as EF.
7. One plane is faid to be perpendicular to another, when it paffes through a right line which is perpendicular to the other, as CD.
8. The inclination of a line to a plane, or the angle it makes with it, is the angle that line makes with a line drawn from the foot of it to the point where a perpendicular, let fall from the top, cuts the plane, as FCI.
9. The inclination of two planes, is the angle made by two right lines; both drawn perpendicular to the common fection, from any point there-

$$
\text { G } 3 \text { in; }
$$

142.

FIG. in; as $\angle B F D$ is the inclination of the planes, 149. AB, CD.

This is the angle which the planes make with one another.
145. 10. Parallel planes are thofe which are every where at the fame diftance from each other, as AC, EG.
350. II. A folid angle is a fpace bounded by feveral plane angles, meeting in one point, called the angular point or vertex, as A.

> PROP. I.
37. If a rigbt line in a plane be produced, it will ftill be in that plane.

For produce $B C$ in the plane $A D$, directly to E ; and if BCF be alfo a right line, then BCE and BCF are both right lines; and you have two right lines $\operatorname{BCF}, \mathrm{BCE}$, with the part $B C$ the fame in both; contrary to the nature of a right line (Def. 5. I).

Cor. 2. If two diftant points of a rigbt line be in a plane, all the line is fo.

> P R O P. II.
133. If two rigbt lines GH, IK, interfect one anotber; they arc in the fame plane.

For imagine A, and B, to be in one plane with C; then the line IACK, as alfo HBCG, and all the points betwcen A and B, are in one plane (Prop. I. and Cor.). And the like for all other lines as $A B$, drawn between GCH, and ICK.

Cor. Every part of a triangle is in the fame plane:
PR O P. III. FIG.

If two planes AB, CD, cut one another; their common fection EF is a rigbt line.

For draw the line $E F$ in the plane $A B$, then any point G of that right line, is in the plane $A B(1)$; but becaufe the line EF (drawn between the two points E, F, in the plane CD) is alfo in the plane CD ; any point G of that line will be in the plane CD. Therefore G being in both planes, will be in their common fection; and their common fection EGF is confequently a right line.

PROP. IV.

If a right line AB be perpendicular to two lines IK , GH , at the point of interfection B ; then is the line AB perpendicular to the plane FD pafing through them.

Let $\mathrm{BI}=\mathrm{BG}=\mathrm{BK}=\mathrm{BH}$, and draw GI, HK, LM, AI, AL, AG, AH, AM, AR. The triangles $\mathrm{ABI}, \mathrm{ABG}, \mathrm{ABH}, \mathrm{ABK}$, are all equal (6. II), and $A I=A G=A H=A K$. Alfo the triangles GBI, HBK are equal (6. II), and GI $=\mathrm{KH}, \angle \mathrm{G}=\angle \mathrm{H}$. Alfo the triangles LBG, MBH are equal ($7 . \mathrm{II}$), and $\mathrm{BL}=\mathrm{BM}$, and GI . $=\mathrm{HM}$. And the triangles AGI, AKH are equal (8. II); and confequently $\angle A G I=$ $\angle A H M$; whence the triangles $A G L, A H M$ are cqual (6. II), and $A L=A M$. Alfo the triangles $\mathrm{ABL}, \mathrm{ABM}$ are equal (8. II), and $\angle \mathrm{ABL}$ $=A B M=$ a right angle. And therefore $A B$ is perp. to LM.

Cor. If a right line AB be perpendicular to feveral lines meeting in B , as $\mathrm{IB}, \mathrm{LB}, \mathrm{GB}$; the fe lines are all in one plane.

FIG. For if any of them was out of the plane, $A B$ 140. would maike an angle with it, greater or leffer than a right angle.

PROP. V.
141. Two rigbt lines, $A B, C D$, perpendicular to a plane, are parallel.

Make BDI a right angle, and $\mathrm{DI}=\mathrm{AR}$, and draw BI, $A I, A D ; A B$ is + to $B D$ (Def. 5); and $\angle A B D=B D I$; therefore the triangles $A B D$, DBi are equal (6.1 I), and $\mathrm{AD}=\mathrm{BI}$. Then the triangles ADI and ABI are equal (8. II); and $\mathrm{ABI}=\mathrm{ADI}=$ a right angle. Therefore ID is \perp to $D C, D A, D B$; and therefore all three are in one plane (Cor. 4). Therefore AB, CD are in the fame plane (Cor. Prop. II), and are likewife parallel (Cor. 3. 4. I).

Cor. I. Two parallel lines AB, CD, are in the same plane.

Cor. 2. A lime drawn from one parallel to anotber, is in the fame plane with them.

By Cor. 1. and Cor. to Prop. I.
Cor. 3. Through one point, there can be drawn but one line perpendicular to a plane.

> PROP. VI.
141. If one AB , of two parallels, be perpendiculer to a plane; the other will alfo be perpendicular to it.

Suppofe as in the laft Prop. then the angles IDA, IDB, are right. Therefore DI is \mathcal{I} to the plane $A D B$, in which $A B, C D$ are (Cor. 1. 5); there-

Book V. of GEOMETRY.
therefore ID is \perp to CD ; but $\mathrm{CDB}=$ a right angle. FIG. Therefore CD is \perp to the plane EG.

P R O P. VII.

If FI be perpendicular to the plane DE, and FC 142. perpendicular to a line AB , drawen in that plane; then the line CI joining their fections, is alfo perpendicular to the line AB .

For firft, fuppofe $\mathrm{CB} \perp$ to CI , draw IG parallel to CB , then IG being \perp to CI and FI , is \perp to the plane CFI (4); and ACB is alfo \perp to the plane $\mathrm{FCI}(6)$; therefore BC is \perp to CI and to CF. And on the contrary being \perp to CF , it is alfo \perp to CI ; otherwife it could not be \perp to the plane FCI; nor its parallel GI.

P R O P. VIII.

Rigbt lines AH, CI, parallel to the fame rigbt 143: line EG, though not in the fame plane, are parallel to one anotber.

In the plane of the parallels AH, EG, let HG be \perp to EG. Alfo in the plane of the parallels EG, CI, draw $\mathrm{GI} \perp$ to EG . Therefore EG is \perp to the plane HGI ; therefore AH, CI are alfo \pm to the fame plane HGI (6), whence AH and CI are parallels (5).

PROP. IX.

If two planes AB, CD be perpendicular to one anPN, be let fall to the other; it Jball fall upon the common fection PI.

For the line $\mathrm{PN} \perp$ to the common feftion, is \perp to the plane 1 (Def. 7), and if another perp. could be dawn which falls not upun the com

FIG. fection ; then two perpendiculars might be let fall
144. from one point, which is abfurd (Cor. 3. 5).

Cor. A line NP in one plane, perpendicular to the common fection of two perp. planes, will be perp. to the otber plane.

> PROP. X.
45. Thbofe planes AC, EG, are parallel, when the Same right line IK , is perpendicular to botb.

Draw DL paraliel to IK, and draw ID, KL; then fince the angles $\mathrm{LKI}=\mathrm{KID}$ (hyp.) $=\mathrm{IDL}$ $(6)=$ a right angle, therefore KLD is a right angle (16. III) ; therefore ID is parallel to KL (Cor. 3. 4. I) ; whence IKLD is a parallelogram, and $\mathrm{IK}=\mathrm{DL}$, therefore AC is parallel to EG (Def. io).

Cor. If a right line is perpendicular to one of two parallel pianes, it is perpendicular to the other.

PR O P. XI.
545. If two parallel planes AC, EG, be cut by a third IL; tbeir common jeccions are parallel; ID, and KL.

For it was proved in the laft prop. that IDLK is a parallelogram, and that ID and KL are parallel.

Or thus.
Let the plane IBED cut the parallel planes AC, EG, in the fections ID, BE. Now if ID, BE be not parallel, or equidiftant, they will meet fome way; and confequently the planes wherein they are placed, muft meet, which is abfurd.

Cor. If a line ID be parallel to the plane EG; all planes drawn through this line ID, fball interfeat the plane EG in lines parallel to ID, and to one another.

Book V. of GE O M ETRY.
For KL is parallel to ID, and BE is parallel to ID, FI G. and therefore KL, BE are parallel to one ano- 145 . ther (8).

> P R O P. XII.

Rigbt lines AQ, BR, cut by parallel planes, G, H, I, 146. are cut proportionally; $\mathrm{AC}: \mathrm{CE}:: \mathrm{BD}: \mathrm{DF}$.

Draw AB, EF; and BE to cut the plane H in P . Then in the planes, $\mathrm{BEF}, \mathrm{EAB}$, the fections PD , EF , as alfo CP, AB, will be parallel (iI); therefore in the triangles $B E F, E A B ; A C: C E:: B P$: PE : : BD : DF (12. II).

Cor. The fegments of parallel lines, cut off ly paralbel planes, are equal.

P R O P. XIII.

If two lines AB, AC, cuting one another, be paralle? to two other rigbt lines, ED, DF, cuting one anotber, though not in the fame plane; theef lines will make equal angles; $\mathrm{BAC}=\mathrm{EAD}$.

Let $\mathrm{AB}=\mathrm{DE}, \mathrm{AC}=\mathrm{DF}$, and draw BE, AD, $C F$, and alfo $B C, E F$. Since $A B, D E$ are parallel and equal, therefore BE, AD are equal and parallel (Cor. 3. 5. I). For the fame reafon CF, AD, are equal and parallel. Therefore BE, FC are parallel and equal (Prop. VIII. and Ax. I). Therefore BC is equal and parallel to EF (Cor. 3.5.I). The triangles $\mathrm{BAC}, \mathrm{EDF}$, have all their fides equal, therefore $\angle \mathrm{BAC}=\mathrm{EDF}$ (8. II).

PROP. XIV.

If two lines AB, AC, which meet one anotber, be parallel to two other lines DE, DF, that alfo meet one another, though not in the Same plane; the plones BC, EF, drawn tbrough them, will be parallel.

Let AG be perpendicular to the plane EF, and 48. GH, GI parallel to DE, DF; then GH, GI will be parallel to $A B, A C$. And fince IGA, HGA are right angles, CAG, BAG, will be right angles (4. I) ; therefore GA is \perp to the plane BC, and Since it is \perp to the plane EF (conftruct.), therefore the planes BC, EF are parallel (io).

PROP. XV.

149. If two planes AB, CD, which cut one another, be both of them perpendicular to a third plane GH; their common Section EF, Shall alpo be perpendicular to the third plane, GH.

For a perpendicular to the plane GH , at the point F (in the common lection of the planes AB, GH), mut be fomewhere in the plane $A B$ (Def. 7). Alfo a perpendicular at F (in the common lection of the planes CD, GH), mut be fomewhere in the plane $C D$ (ibid.) ; therefore it mut be in their common fection; that is, the common lection EF is \perp to the plane GH.

Cor. The common Section EF will be perpendicular to FD , or FB , the Section of either plane with the third.
PROP. XVI.
150. In a Solid angle A, contained under three plane ones, $\mathrm{BAD}, \mathrm{DAC}, \mathrm{BAC}$; any two of them is greater than the third.

Let BAC be the greateft, and let $\angle \mathrm{BAE}=$ BAD , and $\mathrm{AD}=\mathrm{AE}$. And draw BEC, BD, DC . The triangle $\mathrm{BAE}=\mathrm{BAD}$, for BA, AE. are equal to BA, AD, and $\angle \mathrm{BAE}=\mathrm{BAD}$, therefore $\mathrm{BE}=\mathrm{BD}$, and $\mathrm{AE}=\mathrm{AD}$ (6. II). But $B D+D C$ is greater than $B C(5 . I I)$, and $D C$ greater than $E C$. And fine $A D=A L$, and $A C$ common,

Book V. of GEOMETRY.
common, $\angle \mathrm{CAD}$ is greater than CAE (Cor. 6. II). F I G. Therefore $\mathrm{BAD}+\mathrm{CAD}$ is greater than BAC.

PR O P. XVII.

Every folid angle is contained under lefs plane angles i51. than four right angles.

Suppofe a plane to cut the fides of the angle, and to make a polygon BCDE , to confift of as many triangles, as there are to make up the folid angle A.

Let $X=$ fum of all the external angles of the polygon $B, C, D, \Xi^{3} c$. $Y=$ fum of all the angles at the bafes of the triangles compofing the folid angle, EBA, $\mathrm{ABC}, \xi^{\circ} \mathrm{c}$. Then will $\mathrm{X}+4$ right angles $=\mathrm{Y}+\mathrm{A}(2 . \mathrm{II})$. But fince $\mathrm{EBA}+\mathrm{ABC}$ is greater than $B(16), \xi^{2} c$. therefore Y is greater than X, and confequently A is lefs than 4 right angles.

P R O P. XVIII.

Thefe folid angles are equal A, G; which are contained under the fame number of plane angles, alike
I. 51. I52. - fituated, and baving the fame inclinations, refpectively.

For fince $\angle \mathrm{BAC}=\mathrm{HGI} ; \mathrm{CAD}=\mathrm{IGK}, \mathcal{E}^{\circ} c$. therefore if HGI be laid upon BAC, they will coincide, and GI will fall upon AC. Alfo if IGK be laid upon CAD, they will likewife coincide. And moreover, fince the inclination of the planes HGI and KGI is the fame as BAC and DAC ; therefore the folid under HGIK will exactly coincide with that under BACD. For the fame reafon the folid, under the planes IGKL and CADE, will likewife concide ; and alfo the folid under KGLH and DAEB will coincide; and thofe under LGHI, and EABC, will coincide ; and fo the whole folid angle G will coincide with the whole folid angle A, and confequently they are equal (Ax. 8).

PR OP. XIX.

F I G. If two solid angles A, B, be contained under three 153. plane angles respectively equal, and alike fituated; the 154. like planes bare the fame inclination to one another.

Let $\angle \mathrm{KAD}=\mathrm{MBG}, \mathrm{KAE}=\mathrm{MBH}$, and $\mathrm{EAD}=H \mathrm{BG}$; the \angle made by KAD and KAL, will be equal to that made by MBG and MBN. For make $\mathrm{BM}=\mathrm{AK}$, and let KD, KL be \perp to $A K$, and $M G, M N \perp$ to $B M$. Draw LD, NG; in the triangles $\mathrm{KAD}, \mathrm{MBG}, \angle \mathrm{KAD}=\mathrm{MBG}$, and K, M right, and $\mathrm{AK}=\mathrm{BM}$; therefore $\mathrm{KD}=\mathrm{MG}$, and $\mathrm{AD}=\mathrm{BG}$ (7.11). For the fame reafon, in the triangles KAL, MBN; KL $=\mathrm{MN}$, and $A L=B N$. And in the triangles $L A D, N B G$; $L A, A D$ are equal to $N B, B G$, and $\angle A=B$, therefore $L D=N G(6.11)$. In the triangles KLD, MNG; the three fides are equal ; therefore $\angle D K L=\angle G M N$, which are the inclination of the planes. And the fame way it is demonftrated for the other planes.

Cor. These solid angles are equal, which are contained under three plane angles, respectively equal.

For the planes of there angles will have the fame inclination to one another refpectively (19); and confequently the folid angles, contained thereby, will be equal (18).

Scholium.

It is evident from hence, that a folio angle, confitting of 3 planes, is determined from the quantity of the 3 plane angles it confifts of. For (fig. 153), the triangle KLD, which is its bare, is determined from the three fides, KL, LD, KD, being given. And if the point A be alpo given; the planes AKL, ALD, AKD, are capable of no alteration in their pofition ;

Book V. of GEOMETRY.
pofition; and fo the folid angle A is determined. FIG.
But although a folid angle of - 3 plane angles is determined from the quantity of the angles alone; yet when 4 or more planes are concerned, the quantity of their angles is not fufficient. This will be plain by infpecting fig. 155. Where the bafe of the folid angle A, is the trapezium BCDI. For the 4 fides of the trapezium alone are not fufficient to determine its figure; and by alering its figure, the pofition of the planes is altered (though the feveral angles are not), and confequently the quantity of the folid angle A , is altered. So that the folid angle can no more be determined, from the plane angles given; than a trapezium can, by having all its fides given; and much lefs can it , be fo in polygonal angles and bafes.

PROP. XX.

If there be two folid angles A, G, and the fides of one,
151.
152. GH, GI, GK, GL, of the other; thefe folid angles will be equal.

For fince AB, AC, are parallel to GH, GI; $\angle \mathrm{BAC}=\mathrm{HGI}(13)$; for the fame reafon $\angle \mathrm{CAD}$ $=\mathrm{IGK}, \mathrm{DAE}=\mathrm{KGL}, \mathrm{EAB}=\mathrm{LGH}$. Moreover, as AB, AD are parallel to GH, GK; $\angle B A D=H G K$, therefore the folid angle made by the three planes $\mathrm{BAC}, \mathrm{CAD}, \mathrm{BAD}$, is equal to that made by the three planes HGI, IGK and HGK (Cor. 19). For the fame reafon the folid angle made by the three planes CAD, DAE, CAE is equal to that made by IGK, KGL, IGL. And for the fame reafon the folid angle A made by DAE , $\mathrm{EAB}=$ folid angle G made by KGL, LGH. And folid angle made by $\mathrm{EAB}, \mathrm{BAC}=$ folid angle made by LGH, HGI. Whence all the parts of the folid angles A, G, being mutually equal, and having a

The ELEMENTS

FIG. like fituation ; the whole angle A, muff be equal to 151. the whole angle B.

Cor. In two solid angles 'A, G, whole planes BAC, CAD, Etc. are respectively parallel to the planes HGI , IGK, Ec. the fe olid angles will be equal.

For it comes to the fame thing, whether the lines AB, GH, be parallel, or the planes BAC , HGI, Ec. (14).

BO OK

BOOK VI. Of Solids.

DEFINITIONS.

1: A Pyramid, is a folid ABD, made by the mo- FIG. tion of a line as $A B$, along the circum- 155° ference BCDIB of the plane figure BD , the other end at A, remaining fixt. The figure BCDA is called the baje of the pyramid. The fixt point A is the vertex. If the bafe be a triangle, it is a triangular pyramid; if a polygon, a multangular pyramid.
2. A cone is a folid generated by a line $A B$ moving about the circle BCD , the end A remaining fixt. The vertex is the fixt point A. The axis is the line $A O$ drawn from the vertex to the center U of the circle. The bafe is the circle BCD. The fide is $A B$ or $A D$. It is called a right cone, if the axis is perpendicular to the bafe; otherwife an oblique or fcalene cone. An equilateral cone, is a right cone whofe fide is equal to the diameter of the bale.
3. A cylinder is a folid, formed by a line $E B$ moving about two equal and parallel circles, fo as that the moving line always keep parallel to the line PU joining their centers. The circle FG or $B D$ is called the bafe. The line PO, drawn between the centers of the circles, is the axis. If the axis is perpendicular to the bafe, it is a right cylinder; if nor, an oblique one. FB or GD is the fide. If the fide of a right cylinder be equal to the diameter of the baie, it is called an equilateral cylinder.
$E I G$.
139
4. A prijm is a folid, as ACEH, whofe ends are two fimilar equal plane figures, and parallel to one another; and the fides, are parallelograms. The baje is the plane figure at either end $A B C D$ or HGEF. If all the fides are perpendicular to the bafe, it is a right prifm; otherwife an oblique one.
558. If the bafe is a triangle, it is a triangular prijm; if a polygon, a multangular primm.

Cor. A cylinder is a prijm of an infnite number of fides.
160. 5. A parallelopipedon is a prifm contained under fix plane figures, whofe bafes, and oppofite fides are parallel, as ABD. If the fides are all perpendicular to the bafes, it is an uprigbt parallelopipedon; if not, an oblique one.
161. 6. A cube is a folid contained under fix equal fquares, fet perpendicular to one another, as AB.
7. A polyedron, is a folid contained under feveral rectilineal figures.
8. A regular folid or body, is a folid contained under fome number of equal and regular plane figures of the fame fort ; otherwife, they are irregular bodies.
160. 9. Higbt, of a folid, is the perpendicular failing from the vertex or top, upon the bafe, as BP.
10. Frutum, of a folid, is the lower part, cut off by a plane parallel to the bafe.
11. Similar pyramids, are thofe contained under fimilar plane figures, equal in number, and alike placed.
12. Similur folids are thofe which are made up of an equal number of fimilar pyramids, alike placed: or which may be refolved into fuch.
13. Area, is the quantity of the fuperficies of any plane figure.
14. Bodies are faid to touch one another, when they meet, but do not cut or enter into one another.

PROP. 1.
FIG.
In axy parallelopipedon EH , the oppofite planes AE, 162. HB, are fimilar and equal parallelograms.

The plane AC, cuting the parallel planes AG, DB, make the fections AH, DC parallel (iI. V). And the fame plane AC, cuting the parallel planes AE, HB, make the fections AD, HC parallels (ibid.); therefore ADCH is a parallelogram. By the fame reafoning, all the other planes are parallelograms. Therefore $\mathrm{BG}=\mathrm{CH}=\mathrm{DA}=\mathrm{EF}$ (I. III). And fince DA, AF are parallel to CH, HG; therefore $\angle \mathrm{DAF}=\mathrm{CHG}(13 . \mathrm{V})$; therefore the parallelogram $\mathrm{AE}=\mathrm{HB}(\mathrm{Ax} .8$), having equal fides and angles. And the fame way it is fhewn of the other oppofite planes.

P R O P. II.

If a prijm HC , be cut by a plane parallel to the bafe 16.3 . AC; the Section EG, will be fimilar and equal to the baje.

Since $\mathrm{AE}, \mathrm{BF}, \mathrm{CG}$, DI are parallel (Def. 4), and the plane ABFE is cut by the parailel planes AC, EG, the fections AB, EF will be parallel, therefore ABFE is a parallelogram, and $\mathrm{EF}=\mathrm{AB}$ (1. III). For the fame reafon $\mathrm{FG}=\mathrm{BC}$; $\mathrm{GI}=\mathrm{CD}$, and $\mathrm{EI}=\mathrm{AD}$. And fince AB, EC are parallel to $\mathrm{EF}, \mathrm{FG} ; \angle \mathrm{ABC}=\mathrm{EFG}(13 \cdot 5)$. After the fame manner $\angle \mathrm{C}=\mathrm{G}$, and $\mathrm{I}=\mathrm{D}$, and $\mathrm{E}=\mathrm{A}$. Whence the figure EFGI is fimilar and equal to ABCD (Ax. 8), having the fides and angles all equal.

Cor. If a parallelopipedon be cut by a plane parallel to any fide; the fection will be fimilar end equal to that fide.

FIG. For in that folid, any fide may be taken for the 163. bafe (1).

P R O P. III.

T'be furface of any polyedron, is equal to the fum of the areas of all the figures that incloge it.

For all thefe figures make up the furface, therefore the fum of their areas is equal to the area of the whole (Ax .2).

Cor. 1. The furface of a pyramid is equal to the fum of all the triangles inclofing it, together with the bafe.
159. Cor. 2. The jurface of an upright prifm AE , is equal to the rectangle of its bight, CE , and the circumference of its bafe, GEFH.

For all the fides are rectangles of the fame hight, all which are equal to a rectangle, whofe bafe is the fum of all thefe, and hight the fame (8. III).

Cor. 3. The furface of any regular body is equal to the area of one of the faces, multiplied by the number of them.

> PROP. IV.
164. The curve furface of a right cylinder AD , is equal to the rectangle of its bight, and the circumference of the bafe: $\mathrm{BD} \times \mathrm{CKDC}$.

Suppofe FK, OI to be drawn upon its furface parallel to the axis, and extremely near together. Then the part of the furface OK is equal to the fmall parallelogram OIKF, or OI \times IK (Cor. 2. 6. III). In like manner the whole furface may be divided into fuch parallclograms, the fum of all which, will be $=$ the fum of all the 1 K 's \times OI; that is, the curve furface will be $=$ the circumference $\mathrm{CKDC} \times \mathrm{OI}$.

Cor. I. The curve surface of a right cylinder, is FIG. equal to a circle whole radius is a mean proportional be- 164. tween the side AB , and diameter of the base BD .

For let R, C be the radius and circumference of this circle, A its area. Then $\mathrm{AC}: \mathrm{R}:: \mathrm{R}: \mathrm{CD}$ (hyp.), and AC: $\frac{1}{2} R:: 2 R: C D$ (Cor. 3. 12. Proportion) :: C : circumference CKDC (9 . IV). Therefore $\mathrm{AC} \times \mathrm{CKDC}=\frac{1}{2} \mathrm{RC}$; that is, the furface of the cylinder $=\mathrm{A}(34, \mathrm{IV})$.

Cor. 2. As half the radius of the base : to the Side : : so the base of the cylinder: to its curve surface.

For the bate $=\frac{\text { CD } \times \text { CKDC }}{4}(34 . I Y)$, and $\frac{C D \times C K D C}{4}:$ furface $A C \times C K D C:: \frac{C D}{4}: A C$ (Cor. 1. 5. Proportion).

Cor. 3. The curve surfaces of right cylinders, are in the complicate ratio of the bights, and diameters of the bayes.

For their equal rectangles are in that ratio (Cor. 2. 8. III), and the diameters are as the circumferences (9. IV).
PROP. V.

Tube curve surface of a right cone, is equal to the area of a triangle, whose bight is the five AB , and base the circumference of the cone's base, BKDB.

Take the very foal arch IK, and draw AI, AK. Then the part of the furface AIK coincides with the foal ifofceies triangle AIK, whole bare is IK, and hight AI. In like manner the whole curve furface of the cone, may be fuppofed to confift of fuch triangles, whore common hight is AI, and bales fo many K I's. All which triangles are equal to the triangle whore

$$
\text { H } 3 \text { hight }
$$

FIG. hight is AI; and bare, the fum of all the IK's, or 165. the circumference BKDB (Ax. 2).

Cor. 1. The curve furface of a right cone is equal to balf the rectangle, of the fide AB , and circumference. of the bafe, BKDB.

For half of that rectangle is equal to a triangle of the fame hight and bafe (7. III).

Cor. 2. The curve furface of a rigbt cone is equal to a circle, whofe radius is a mean proportional between the fide AB , and the radius of the bafe BC .

For the conic furface $=\frac{A B \times B K D B}{2}$, and the area of the bafe $\mathrm{BD}=\frac{\mathrm{BC} \times \operatorname{BKDB}}{2}(34, \mathrm{IV})$. Let the radius $R=\sqrt{A B \times B C}$, its area $=A$. Then conic furface : circle $\mathrm{BD}:: \frac{\mathrm{AB} \times \mathrm{BKDB}}{2}$: $\frac{B C \times B K D B}{2} .: A B: B C$ (Cor. 1. 5 Proportion) : $: A B \times B C: B C^{2}$ (5. ibid.).

And circle $B D$: circle $A:: \mathrm{BC}^{2}: \mathrm{R}^{2}$ or $\mathrm{AB} \times \mathrm{BC}$ (Cor. 35. IV). Therefore conic furface : circle A :: $A B \times B C: A B \times B C$ (${ }_{5}$ Proportion). Therefore the conic furface $=$ circle A, whofe radius is $\sqrt{\mathrm{AB} \times \mathrm{BC}}$ (Ax. 7. Proportion).

Cor. 3. In a right cone, as the radius of the bafe $\mathrm{BC}:$ to the fide $\mathrm{AB}:$: so the area of the bafe BD : to the curve furface of the cone ABD .

Cor, 4. The curve furfaces of rigbt cones, are in the complicate ratio of the fides and diameters of the bajes.

Book VI. of GEOMETRY.
For the equal triangles are in that ratio (Cor. I. FIG. 11. 1I), and the diameters are as the circumferences 165 . (9. IV).

Cor. 5. The curve surface of a right cylinder, is to the curve furface of a right cone, on the fame bafe; as the fide of the cylinder, to balf the fide of the cone.

PR O P. VI.

The curve furface of the fruftum of a rigbt cone PD, ${ }_{1} 66$. is equal to balf the reEtangle under the fide PB , and the fum of the circuinferences of the bajes, PE, BD.

Produce BP, DE to A, and compleat the cone; then from A draw OI, FK exceeding near one another, then the fmall part of the curve furface OK, falls in with the fmall trapezoid OFKI, whofe area is $\frac{\overline{O F}+I \mathrm{~K}}{2} \times \mathrm{OI}(23$. III). And as all the furface of the fruftum may be divided into fuch trapezoids, therefore its furface is = fum of all the trapezoids = fum of all the $\frac{\mathrm{OF}+\mathrm{IK}}{2} \times \mathrm{OI}=\frac{\mathrm{BKDB}+\mathrm{POEP}}{2}$ $\times \mathrm{OI}$.

Cor. The curve furface of the fruftum of a right cone, is equal to a circle, wbofe radius is a mean proportional between the fide PB , and the fum of the radii of the bajes, $\mathrm{BC}+\mathrm{PH}$.

For let $R=$ radius, $C=\frac{1}{2}$ circumference, of the circle equal to the furface of the cone $A B D$. And $r=$ radius, $c=\frac{1}{2}$ circumference of the circle equal to the furface of the cone APE. And fince $\mathrm{R}: \mathrm{C}$ $:: r: c$ (9.IV), let $\frac{C}{R}=\frac{c}{r}=n$, or ${ }^{\prime} \mathrm{C}=\mathrm{R} n$, and $c=r$. The triangles APH, ABC are fimilar, and $\mathrm{BC}: \mathrm{PH}:: \mathrm{BA}: \mathrm{PA}(13 . \mathrm{II})$, and $\mathrm{BC}-\mathrm{PH}$
 but furface of the cone $\mathrm{ABD}=\mathrm{RC}=n \mathrm{RR}=n$ $\times A B \times B C($ Cor. 2. 5) $=n \times \overline{A Y}+P B \times B C$ $=n \times \frac{\mathrm{PH} \times \mathrm{PB}}{\mathrm{BC}-\mathrm{PH}}+\mathrm{PB}: \times \mathrm{BC}=n \times$ $\frac{\mathrm{PH} \times \mathrm{PB}+\mathrm{BC} \times \mathrm{PB}-\mathrm{PH} \times \mathrm{PB}}{\mathrm{BC}-\mathrm{PH}} \times \mathrm{BC}=n \times$ $\frac{B C \times P B}{B C}-P H C$.

Alfo furface of the cone $\mathrm{APE}=r c=n r r=n$ $\times \mathrm{AP} \times \mathrm{PH}(\operatorname{Cor} 2.5)=n \times \frac{\mathrm{PH} \times \mathrm{PB} \times \mathrm{PH}}{\mathrm{BC}-\mathrm{PH}}$. Therefore their difference, or the furface of the fruftum is $n \times \frac{\mathrm{BC}^{2}}{\mathrm{BC}-\mathrm{PH}}-n \times \frac{\mathrm{PH}^{2}}{\mathrm{BC}-\frac{\mathrm{PB}}{\mathrm{PH}}=n \times x}$ $\mathrm{PB} \times \frac{\mathrm{BC}^{2}-\mathrm{PH}^{2}}{\mathrm{BC}-\mathrm{PH}}=n \times \mathrm{PB} \times \overline{\mathrm{BCTPH}}(\mathrm{I} 2.1)$ $=$ the circle whofe radius is $\sqrt{\mathrm{PB}} \times \overline{\mathrm{BC}+\mathrm{PH}}$, and circumference $n \times \sqrt{\bar{B} \times \overline{B C}+\overline{P H}}$.

PR O P. VII.

167. The Jurfaces of Jimilar folids AD, PS, are as the squares of their bomologous fides, AB^{2} and PQ^{2}.

Draw the diagonals AC, PR. Then fince the bodies are refolvable into fimilar pyramids (Def. 12), which are contained under fimilàr plane figures (Lef. II). Let the planes inclofing them, be $A B C$, $P Q R$, and $A G C, P I R, \mathcal{E}^{\circ}$. which being fimilar, it is $A B: P Q:: A C: P R:: A G: Y I:: G E: I T$, छcc. (I3. II); and fince $A B^{2}: \mathrm{PQ}^{2}::$ triangle $A B C: P Q R$ (88.11), and $A C^{2}: \mathrm{PR}^{2}:: A C G$: PRI; and $A G^{2}: P I^{2}::$ trapezium $A E: P T$ (20. III); and GE : IT ${ }^{2}:$: GD : IS, E'c. therefore $\mathrm{AB}^{2}: \mathrm{PQ}^{2}:: \mathrm{ABC}: \mathrm{PQR}:: A \mathrm{CG}: \mathrm{PRI}:: \mathrm{AE}:$ PT: : GD : IS Esc. whence $A B^{2}: \mathrm{PQ}^{2}:: \mathrm{BG}+$ $\mathrm{AE}+\mathrm{GD} \mathrm{E}_{\mathrm{c}}$. : $\mathrm{QI}+\mathrm{PI}+\mathrm{IS} \xi_{c}$. (ro. Proportionj: : furface of $A D$: furface of PS.

Cor. Similar parts of the furfaces of fimilar folids, F I G: are as the fquares of the bomologous fides.

PROP. VIII.

A right triangular primm ABCFIHE is equal to an oblique one APivill, of the Same length AH , contained within the fame tbree parallel lines El, HA, FI, or the plunes pafing througb them.

For $\mathrm{AH}=\mathrm{PD}=\mathrm{BE}=\mathrm{IG}=\mathrm{CF}$ (I. III), whence $P B=\mathrm{DE}, \mathrm{IC}=\mathrm{GF}$, and $\mathrm{AP}, \mathrm{AB}, \mathrm{AC}$, Al being parall 1 to HD, HE, HF, HG (Cor. 3 . 5. I), the folid angle $\mathrm{A}=$ folid angle $\mathrm{H}(20 . \mathrm{V})$. For the fame reafon the folid angles at $\mathrm{P}, \mathrm{B}, \mathrm{C}, \mathrm{I}$, are refpectively equal to thofe at D, E, F, G. And fince the fides are all equal, each to each, therefore the two folids APBCI and HDEFG will exactly coincide, and be equal the one to the other (Ax.8); and therefore the rectangled prifm HEFCAB $=$ the oblique one HDGIAP.

Cor. I. If a parallclopipedon AB , be cut by a plane pafing through the diagonals of the oppofite planes; it Sball be cut into two equal parts.

For the triangle $C G F=C B F$, and $D A E=D H E$ (I, III) ; and the length $\mathrm{AG}=$ length BH ; therefore if the two prifms CFA, and CFH be laid fo, that H may coincide with A , and EHB with DAG, their planes will concide, and each of them being oblique, is equal to a right one of the fame length (8).

Cor. 2. Hence any primmatic Solid cut obliquely by parallel planes, is equal to the fame cut off at rigbt angles, and of the fame length.

For any fuch folid may be divided into triangular prifms, by planes paffing through both ends of the folid.

qbe ELEMENTS

FIG. folid. And each triangular prifin cut obliquely, 169. is equal to one of the fame length, cut at right -angles (8).

PR O P. IX.

170. If a parallelopipedon AS, be cut by a plane, pafining through O the middle of the diameter CQ ; the plenge bijeEts sit.

Let the diagonals AD, BC cut each other in F ; and RQ, PS, in I. Draw the axis FI, which cuts CQ in O , becaufe BCRQ is a parallelogram (2. and Cor. 3. III); and $\mathrm{FO}=\mathrm{OI}$. Let the plane EHOVX be parallel to ABDC. Then the parallelopip. AX $=$ half AS. Let any plane GTOLN pafs through O. And let the folid be cut by the two planes ADSP, and CBQR, into four triangular priíms.

The two oppofite folids OTGEH and OLNXV, are equal; for the fides are parallel (11.V), and equal (Cor. 3. III). And therefore the folid angles, at the correfpondent points, are equal ($2 \mathrm{o} . \mathrm{V}$); therefore the folid EOG $=$ XON. Therefore in the oppofite prifms ACI , and BDI , the folids contained between the planes EVXH and GTLN, are equal. And it is proved the fame way, that the folids, in the oppofite prifms ABI, and DCI, contained between the planes EVXH and GLNT, are equal. And therefore fince AX is half the parallelop. the plane GTNL cuts off half the parallelop, or divides it into two equal parts.

Cor. The axis FI, and diagonal CQ , biject cacto other.

For they are both in the parallelogram BCRQ (Cor. 3. HII).

PROP:

Parallelopipedons upon the fame bafe CDFI, and 171. between the fame parallel planes, CIFD and BHVOLA, are equal.

The triangles LAI and KEF are equal and fimilar (6. II) ; and the prifm KEFDQH = LAICBG; fubtract the common folid $\operatorname{ErLQ} G$, and the folid AIrEBCs $\mathrm{Q}=\mathrm{L} r \mathrm{FKGs} \mathrm{DH}$; add the prifm $\mathrm{I} r \mathrm{FC} s \mathrm{D}$, and the folid paral. CDFIQEAB $=$ CDFIHKLG upon the fame bafe ID.

Again, the triangles FVK and DMH are fimilar and equal (6. II), and the prifm FVKIOL $=$ DMHCLG; fubtract the common prifm M $t \mathrm{KP} n \mathrm{~L}$, and the folid $\mathrm{FVM} t \mathrm{IOP} n=\mathrm{D} t \mathrm{KHC} n \mathrm{LG}$; add the prifm DFtCIn, and the folid par. FVMDIOPC $=$ $\mathrm{DFRHCILG}=\mathrm{CDFIQEAB}$.

P R O P. XI.

Parallelopipedons of equal bafes and bights are 172. equal.

Let the parallelogram AGIC be the bafe of the parallelopiped. Draw BH, DF parallel to AG, AC. The folid pip. upon the bafe AGI = that on the bafe ACI (Cor. 1. 8); and folids on ABE and EFI, are $=$ thofe on ADE, and EHI (ibid.). Take the two laft from the firft, and there remains the folid on $\mathrm{DH}=$ folid on BF . But parallelogram $\mathrm{DH}=\mathrm{BF}$ (4. III). Therefore folid pips. on equal bafes and hights are equal, when the angle at E is the fame. Moreover, the pip. on the bafe BCEF is equal to that on the bafe EOPF, and the fame hight (Cor. 2. 8) ; reckoning OP or EF the length of the folid. Whence the parallelopip. on the bafe DH , is equal to the pip. on the bafe EP, and hight the fame.

PROP. XII.

173.

Parallelopipedons of the fanne loight are in proportion as their bajes.

Let BN be the bafe of a parlopip. divide the bafe into any number of equal parts at D, E, F, $\mathrm{G}, \mathrm{E}^{\circ} c$, and draw planes $\|$ to ABC ; then the parlopips. ftanding upon $C D, D E, E F, E^{\circ} c$. will be all equal (II); whence the pip. AK is as multipie of AD , as the bafe BK is of the bare BD , alfo the pip. LN is as multiple of AD, as the bare ON is of BD. Whence it will be as pip. AK : pip. LN :: bafe BK : bafe ON (Def. 4. Proportion). Moreover, let the bafe PQ be $=\mathrm{ON}$, and hight $\mathrm{QR}=\mathrm{AB}$, then the pip. $\mathrm{PR}=\mathrm{LN}(\mathrm{II})$, whence pip. AK : pip. PR : : bafe BK : bafe PQ.

Cor. 1. Paralleiopipedons of equal bajes are as their biglts.

For in rectangled ones, any fide or face may be taken for the bafe; and rightangled ones are equal to oblique ones, between the fame parallel planes (10).

Cor. 2. Paralielopipedons are to one anotber, in the complicate ratio of their bafes and bights.
PR O P. XIII.
175.

If two parallelopipedons, AD, FI, be equal; their bajes and bights are reciprocally proportional; AC: FH: : HI : CD.

Suppofe the fides CD, HI perpendicular to the bafes, and make $H M=C D$. Then bafe AC : bafe FH : : folid AD or FI : folid FM (12) : : HI : HM or CD (Cor. I, 12). And if the pips. be oblique, inftead of fuppofing CD, HI to be the fides, let

Book VI. of GEOMETRY.
let them be the hights, and then oblique pips. FIG. being equal to upright ones (10) ; the proportion 175. continues the fame.

Cor. If the bafes and bights of two parallelopipedons be reciprocally proportional, they are equal.

For fince bafe AC : bafe FH : : HI : CD (hyp.), therefore $\mathrm{AC} \times \mathrm{CD}=\mathrm{HH} \times \mathrm{HI}$ (12. Proportion), and folid BE : folid FI : : AC $\times \mathrm{CD}$) $: \mathrm{FH} \times \mathrm{HI}$ (Cor. 2. 12). Therefore folid $\mathrm{BE}=$ folid Fl (Ax. 7. Proportion).

PR O P. XIV.

All prifns whatfoever, ABD, PSR, of equalbajes 174. and bights, are equal.

For any polygonal bafe BD may be divided into triangles, by diagonal lines; and the polygonal prifm may likewife be divided into triangular prifms, by planes paffing through thefe diagonals; each of which triangular prifms is equal to half a parallelopipedon ftanding on double the bafe (9); and as all thefe triangular prifms make up the polygonal prifm, this prifm muft be equal to a parallelopip. of the fame bafe and hight; and that equal to the prifm PRS of an equal bafe and hight (Cor. I. 12).

Cor. 1. Prifms of equal bafes are as their bights; and of equal bigbts, are as their bafes.

For they may be divided into triangular prifins, which are half of parlopips. on double the bate, and thefe pips. are as their hights, when the bafe: is the fame; or as the bafes, when the hight is the: fame. (Cor. 2. 12).

Cor. 2. All prijms are to one awotiber in the compli. cote ratio of their bafes and bighis.

FIG. Cor. 3. Bodies of equal furfaces may be very dif374. ferent in folidity. And equal folids may bave furfaces vaftly different.

Cor. 4. In equal prijms, the bafes and bigbts, are reciprocally proportional; and the contrary.

PROP. XV.

Thbe folidity of any prifm is equal to the product of the bafe and bigbt.

For a prifm is equal to a right-angled parallelopip. of the fame bafe and hight; and that is equal to the product of its bafe and hight; or (which is the fame) it is equal to the folid fpace contained under the planes of the upright parallelopipedon (Def. 5).

PROP. XVI.
176. Equiangular parallelopipedons AB, CD, are in the complicate ratio of their bomologous fides, FG, GI, GB , and $\mathrm{OE}, \mathrm{EH}, \mathrm{ED}$.

Let FP , OK be \perp upon the bafes IB, HD. Then by reaion of the equal angles at G and E , the triangles GFP, EOK will be fimilar ; and FP: $\mathrm{OK}:: \mathrm{FG}: \mathrm{OE}$ (13. II). The parallelograms 1 B and HD being equiangular at G and E , are to one another as $\mathrm{IG} \times \mathrm{GB}$, to $\mathrm{HE} \times \mathrm{ED}$ (ro. III). The parlepip. $\mathrm{AB}: \mathrm{CD}::$ bafe $\mathrm{IB} \times \mathrm{FP}$: bafe $\mathrm{HD} \times \mathrm{OK}($ Cor. 2. 12) $:: \mathrm{IG} \times \mathrm{GB} \times \mathrm{FP}: \mathrm{HE}$ $\times \mathrm{ED} \times \mathrm{OK}:: \mathrm{GI} \times \mathrm{GB} \times \mathrm{GF}: \mathrm{HE} \times \mathrm{ED} \times$ EO (7. Proportion).

PROP. XVII.

177. Pyramids upon the fame bafe, and of equal attitudes, are equal: $\mathrm{ACF}=\mathrm{HCF}$.

Book VI. of G E O M ETRY.
Draw the plane AH, through the tops of the FIG. pyramids, which will be parallel to CF. Alfo, $177 \cdot$ through any points of the pyramids, draw the plane BE , allo parallel to CF ; then by fimilar triangles, $\mathrm{CF}: \mathrm{BD}:: \mathrm{AC}: \mathrm{AB}(13 . \mathrm{II}):: \mathrm{HC}:$ HL (12. II) : : CF:LE (I3. II); therefore BD $=\mathrm{LE}$. And by the fame reafoning, $\mathrm{BO}=\mathrm{LI}_{\text {, }}$ and $\mathrm{DO}=\mathrm{EI}$. Whence the fection $\mathrm{BOD}=\mathrm{LIE}$. (8. II). Therefore if another plane NP be drawn very near, and parallel to $B E$, the fegments of the pyramids, ND, PL, comprehended between thefe planes, will be equal (14). And therefore if never fo many fuch planes be drawn, the parts intercepted will always be equal. Therefore the fum of all the parts of one pyramid, will be enual to the fum of all the parts of the other; or the pyramid $A C G F=$ pyramid HCGF (Ax. 2).

Cor. I. If a pyramid is cut by a plane parallel to the bafe, the fection will be fimilar to the bafe.

For by fimilar triangles, it is $\mathrm{AC}: \mathrm{AB}:: \mathrm{CG}$: BO : : GF : OD : : CF : BD.

Cor. 2. If a cone be cut by a plane parallel to the baje; the fection will be a circle.

For a cone may be confidered as a pyramid of an infinite number of fides.

PROP. XVIII.

Every prifm is three fimes the pyramid of the fame $1-\%$. baje and bigbt.

Let $A F C$ be a triangular prifm, draw $A C, C F$, FD, the diagonals of the three parallelograms. The triangle $A C B=A C D$ (1.111); therefore pyramid $\cdot \mathrm{ACBF}=\mathrm{ACDF}$, their vertexes being in F (17); likewife triangle $\mathrm{DFA}=\mathrm{DFE}(1 . \mathrm{III})$, and pyramid DFAC $=$ DFEC, their vertexes be-

FIG. ing in C (17). But ACDF and DFAC are one and
178. the fame pyramid. Therefore the three pyramids, that make up the prifm, are equal to one another, $\mathrm{ACBF}=\mathrm{ACDF}=\mathrm{DFEC}$; and each of them is $\frac{3}{3}$ the prifm.

And fince any polygonal prifm may be refolved into triangular ones; and the pyramid, upon the fame bafe, into triangular pyramids. Then all the triangular prifms will be triple to all the triangular pyramids; and confequently the whole prim triple to the whole pyramid.

Cor. I. Pyramids of the fame bigbt, are to one anotber as their bafes.

For prifms, which are triple of them, are in that ratio (Cor. I. 14). Whence,

Cor. 2. Pyramids of the fame or equal bafes are as the bights.

Cor.3. Pyramids are to one another in the complicate ratio of their bajes and bigbis.

Cor. 4. Pyranids of equal bajes and bigbts are equal.

Cor. 5. In equal pyramids the bafes and bights arereciprocally proportional; and the contrary.

For prifms are in that ratio (14. and Cor.).

PROP. XIX.

Cylinders of equal bajes, and bighbts are cqual.
For cylinders are nothing but prifms, whofe bafes are polygons of an infinite number of fides. And thefe prifms are equal ((4).

Cor. I. Cylinders of equal bafes are as the bights.
Cor. 2. Cylinders of equal bigbts are as the bafes.

Book VI. of GEOMETRY.
Cor. 3. Cylinders are to one another in the compli- FIG. cate ratio of their bafes and bights.

Cor. 4. In equal cylinders, the bafes and bights are reciprocally proportional: and the contrary.

All this follows from Prop. 13, 14 , and Corol.

PR O P. XX.

Every cone is the third part of a cylinder of the Same baje and bight.

For cones and cylinders may be confidered as pyramids, and prifms, whofe bafes are regular polygons of an infinite number of fides. And confequently the cone $=\frac{1}{3}$ the cylinder (18).

Cor. 1. Cones of equal bajes, are' as their bights.
Cor.2. Cones of equal altitudes, are as the bafes.
Cor. 3. Cones are to one another in the complicate ratio of the bafes and bigbts.

Cor. 4. In equal cones, the bafes and bights are reciprocally proportional.

All thefe things appear by Prop. 13 and 14 , and 19. For the cylinders are in that ratio, and the cone is $\frac{2}{3}$ the cylinder.

> PROP. XXI.

The fruftum of a pyramid or cone BG, is equal to the third part of a parallelopipedon, of the fame. bigbt, and its bafe equal to the fum of the bajes of the fruftum BOD + EFG, together with a mean proportional between thefe bafes.

Draw EB, GD to meet in A, the top of the whole folid, and let ACP be \perp to the bafe. Draw the diameters BD, EG; then the two bafes BOD ,

FIG. EFG will be fimilar (Cor. 1,2 . 17). Whence, 17.9. bafe BOD : bafe EFG:: $\mathrm{BD}^{2}: \mathrm{EG}^{2}$ (20. III). Therefore fuppofe $\frac{\text { bafe BOD }}{B D^{2}}=\frac{\text { bafe EFG }}{E G^{2}}=n$, or bafe $\mathrm{BOD}=n \times \mathrm{BD}^{2}$, and bafe $\mathrm{EFG}=n \times \mathrm{EG}^{2}$. By fimilar triangles, $\mathrm{EG}: \mathrm{BD}::(\mathrm{AE}: \mathrm{AB}::$) $\mathrm{AP}: \mathrm{AC}(13 . \mathrm{II})$, and $\mathrm{EG}-\mathrm{BD}: \mathrm{BD}:: \mathrm{CP}$: $A C=\frac{B D \times C P}{E G-B D}$. Then the whole pyramid or cone $=$ bafe EFG $\times \frac{\div}{3} \mathrm{AP}(18,20)=\frac{n \times \mathrm{EG}^{2}}{3} \times$ $\overline{\mathrm{CP}+\mathrm{AC}}=\frac{n \times \mathrm{EG}^{2}}{3} \times \mathrm{CP}+\frac{n \times \mathrm{EG}^{2}}{3} \times \frac{\mathrm{BD} \times \mathrm{CP}}{\mathrm{EG}-\mathrm{BD}}$ $=\frac{n \times \mathrm{EG}^{3} \times \mathrm{CP}_{-n} \times \mathrm{EG}^{2} \times \mathrm{BD} \times \mathrm{CP}+n \times \mathrm{EG}^{2} \times \mathrm{BD} \times \mathrm{CP}}{3 \times \mathrm{EG}-\mathrm{BD}}$ $=\frac{n \times \mathrm{EG}^{3} \times \mathrm{CP}}{3 \times E G-\mathrm{BD}}$. And the top part $\mathrm{ABD}=$ bare BOD 3 taken from the whole, leaves $\frac{n \times \mathrm{CP}}{3} \times \frac{\mathrm{EG}^{3}-\mathrm{BD}^{3}}{\mathrm{EG}-\mathrm{BD}}$ for the fruftum $=\frac{\mathrm{CP}}{3} \times \overline{n \times \mathrm{EG}^{2}+n} \overline{\times \mathrm{EG} \times \mathrm{BD}}$ $\overline{\mp n \times \overline{B D^{2}}}$, becaufe $\overline{\mathrm{EG}^{2}+\mathrm{EG} \times \mathrm{BD}+\mathrm{BD}^{2}} \times$
 $\mathrm{EG}^{2}=$ bafe EFG, $n \times \mathrm{BD}^{2}=$ bafe BOD, and $n \times \mathrm{EG} \times \mathrm{BD}$ is a mean between them (Cor. 2 . 12. Proportion).

Cor. If $n=\frac{\text { bafe } \mathrm{EFG}}{E \mathrm{G}^{2}}$, the fruftum $=\frac{n \times \mathrm{CP}}{3} \times$ $\mathrm{EG}^{3}-\mathrm{BD}^{3}$ $\overline{\mathrm{EG}}-\mathrm{BD}$.

> P R O P. XXII.
180. In similar folids, AD, PS, the homologous sides are 181. proportional; $\mathrm{AB}: \mathrm{AF}:: \mathrm{PQ}: \mathrm{PV}$.

Book VI. of GEOMETRY.
Through the diagonals $A C, F G, G D$, and $P R$, FIG. VI, IS, let planes be drawn to divide the folids 180. into pyramids. Then fince thefe pyramids are fi- 181 . milar (Def. 12), and their planes fimilar figures (Def. II); therefore if $A B C, P Q R$, and $A C G$, PRI, and AGF, PIV, \mathcal{E}^{c} c. be fimilar planes belonging to the fimilar pyramids; it will be AB : $\mathrm{PQ}(:: \mathrm{AC}: \mathrm{PR}:: \mathrm{AG}: \mathrm{PI}):: \mathrm{AF}: \mathrm{PV}$. Alfo $\mathrm{AF}: \mathrm{PV}::(\mathrm{FG}: \mathrm{VI}::) \mathrm{FE}: \mathrm{VT}, \mathcal{B} c$.

Cor. The like planes or furfaces, which inclofe fimilar Jolids, are proportional.

For fince $\mathrm{AB}: \mathrm{PQ}:: \mathrm{AF}: \mathrm{PV} ; \mathrm{AB}^{2}: \mathrm{PQ}^{2}::$ $\mathrm{AF}^{2}: \mathrm{PV}^{2}$ (Cor. 3. 18. Proportion); that is, ABCG : PQRI : : AGEF : PITV (20. III).

P R O P. XXIII.

Similar triangular pyramids $\mathrm{ABCD}, \mathrm{PQRS}$ are as 182. the cubes of their bomologous fides, AB^{3} and $\mathrm{PQ}^{3} \quad 183$.

Suppofe CE, BF drawn parallel to AD, and $\mathrm{RT}, \mathrm{QV}, \|$ to PS; and the planes DFE, SVT, \| to $A B C$, and $P Q R$; and fo the prifms $A F$, and PV, compleated.

Then fince the pyramid $\mathrm{ABCD}=\frac{1}{3}$ prifm, AF ; and pyramid $\mathrm{PQRS}=\frac{1}{3}$ prifm PV; therefore pyramid ABCD : pyramid $\mathrm{PQRS}:$: prifm AF : prifm $\mathrm{PV}(5$. Proportion) $:: \mathrm{AB} \times \mathrm{AC} \times \mathrm{AD}:$ $P Q \times P R \times P S(16)$.

But $\quad A B: P Q:: A B: P Q$,

$A B: P Q:: A C: P R(22)$,
$A B: P Q:: A D: P S(22)$.
Therefore $A B^{3}: P Q:: A B \times A C \times A D: P Q \times$ PR \times PS (18. Proportion) : : pyramid $A B C D$: pyramid PQRS.

Cor. Any fimilar pyramids are as the cubes of the bomologous fides.

FIG. For they may be divided into fimilar triangular 182. pyramids, all which are in that proportion, and 183. their fums in the fame proportion (10. Proportion).

PROP. XXIV.

180. All fimilar folids, AD, PS, are to one anotber, 181. as the cubes of their bomologous fides, AB , and PQ .

Let the planes AC, PQ, and FG, VI, and GD, IS, \mho_{6}. divide the bodies into fimilar pyramids. Then fince $\mathrm{AB}: 1 \mathrm{Q}:: \mathrm{AG}: \mathrm{PI}:$: EG:TI, E c. (22). Therefore
$\mathrm{AB}^{3}: \mathrm{PQ}^{3}::$ pyr. $\mathrm{ABC}:$ pyr. $\mathrm{PQR}(23)$, and $\mathrm{AB}^{3}: \mathrm{PQ}^{3}:: \mathrm{AG}^{3}: \mathrm{PI}^{3}::$ pyr. AGC : pyr. PIR : : pyr. AGF : pyr. PIV. and $\mathrm{AB}^{3}: \mathrm{PQ}^{3}:: \mathrm{EG}^{3}: \mathrm{TI}^{3}::$ pyr. FGE : pyr. VIT : : pyr. EGD : pyr. TIS, छ ${ }^{\circ} \mathrm{C}$. Therefore
$\mathrm{AB}^{3}: \mathrm{PQ}^{3}::$ pyr. $\mathrm{ABC}+\mathrm{AGC}+\mathrm{AGF}+$ FGE + EGD, छ ${ }^{3} c .:$ pyr. PQR + PIR + PIV + VIT + TIS, $\mathcal{E}^{2} c$. : : folid AD : folid PS.

Cor. If. four lines A, B, C, D be in continual proportion; then as the firft A to the fourth D ; fo any folid defcribed on the firft A , to a fimilar one, on the fecond B .

For $A: D:: A^{3}: B^{3}(23$. Proportion) $::$ folid upon A : folid upon B (24).

PROP. XXV.

184. If four lines be proportional, $\mathrm{AB}: \mathrm{CD}:: \mathrm{GH}$: LMi; fimilar folids, alike deforibed, upon two and two, fsall alfo be proportional: ABE: CDF :: GHK : LMN.

And if four figures ie proportional, and two and two fimilar; their bomologous fides foell be proportional.

P1.VIII.Pa.116.

Book VI. of GEOMETRY.
For fince $A B: C D:: G H: L M$ (hypi), FIG. therefore $\mathrm{AB}^{3}: \mathrm{CD}^{3}:: \mathrm{GH}^{3}: \mathrm{LM}^{3}$ (Cor. 3. 18. 184. Proportion),
whence ABE:CDF::GHK:LMN (24).
Again, if the folids be fimilar,
and $A B E: C D F:: G H K: L M N$ (hyp.) then $\quad A B^{3}: \mathrm{CD}^{3}:: \mathrm{GH}^{3}: \mathrm{LM}^{3}(24)$, whence $A B: C D:: G H: L M(C o r .3 .18$. Proportion).

P R O P. XXVI.

None other but three forts of regular plane figures, joined togetber, can make a folid angle; and theje are, 3,4 , or 5 triangles, 3 fquares, and 3 pentagons:
And therefore there can only be five regular bodies, the pyramid, cube, octaedron, dodecaedron, and icofaedron.

Three plane angles at leaft, are required to make a folid angle. One angle of the triangle $=\frac{2}{3}$ of a right angle (2. II), therefore 3 of them put together make two right angles. Alfo 4 of them make $2^{\frac{2}{3}}$ right angles. And 5 make $3 \frac{1}{3}$ right angles; all which are lefs than 4 right angles. But 6 of them make 4 right angles, and therefore cannot make a folid angle ($\mathrm{I} 7 . \mathrm{V}$).

Again, one angle of the fquare is a right angle, and 3 of them make 3 right angles. But 4 make A right angles, and therefore can make no folid angle ($17 . \mathrm{V}$).

Alfo one angle of the pentagon is $\frac{1}{5}$ right angle (17. III): And 3 angles make $3 \frac{3}{5}$. But 4 of them make $4 \frac{4}{5}$, which exceeds 4 right angles.

Laftly, one angle of the hexagon is $\frac{4}{3}$ of a right angle, therefore 3 angles make 4 right angles; but no folid angle. And the angle of a heptagon, octagon, $\xi_{c} c$. being greater; 3 of them will exceed 4 right angles; and confequently, there can be no more

FIG. more than 3 triangles, I fquare, and 1 pentagon, 184. to constitute a folid angle.

Hence there can only be 5 regular bodies, to anfwer the 5 combinations of triangles, fquares, and pentagons. Three faces of the triangle make the pyramid; 4 make the oetaedron; and 5 make the icofibedron; alfo 6 faces of the fquare make the cube; and 12 faces of the pentagon, make the dodecaedron.

Scholium.

In order to get a clear idea of the five regular bodies, you may cut out all their faces in pateboard, as reprefented in the figures, and fold them up, fo that the creafes may be in the black lines; and their edges being put clofe together, you'll have the figure of thefe bodies. Fig. 185 is the pyramid, 186 the cube, 187 the octaedron, 188 the dodecaedron, and 189 the icofihedron.

PR OP. XXVII.

No other but only one fort, of the five regular bodies, joined at their angles, can compleatly fill a Solid space; and that is eight cubes.

To demonftrate this, we muff observe that among other properties, this is abfolutely neceffary, that the inclination of two adjoining planes in the body, be fuchs; that being taken a certain number of times, they will compleatly make up four right angles. For when the bodies are put together, the faces of every two adjoining bodies mutt coincide ; and one edge or fide of all the bodies mut coincide with the fide of the firft; which will be as an axis, round which there bodies are placed; and therefore they mut compleatly fill up the face quite round, which is four right angles. And

Book VI. of GEOMETRY.
the angle of each (that is, the inclination of two FIG. adjoining planes), muft be a certain part of 4 right angles. Therefore what we have to do, is to compute the inclination of their planes, and alfo to enquire what inclination is requifite in the feveral bodies, to have this effect.

1. To begin with pyramids. It is plain, the bafe of the folid, being an equilateral triangle, the angle at any point is $\frac{2}{3}$ of a right angle; but the inclination of the planes is greater; for it is contained by two perpendiculars let fall on the common fection of two planes, which perpendiculars are lefs than the fides of the triangle (Cor. 4. 21. II); and ftanding on the fame bafe, muft contain a greater angle (Cor. 2. 5. Ii). To find the inclination of the planes; let $\mathrm{CPH}, \mathrm{CPA}$, and CDH be three of the equilateral triangles conftituting a pyramid. Draw AG, DI-1 to CP , CH . Let the plane CHP be fixt, whilft the planes CAP, CDH, are raifed up, (moving about the fixt lines CP, CH, till the points A and D meet fomewhere. It is plain a perpendicular dropt from A (elevated on high), upon the plane CPH, will always be fomewhere in the line AG. And a like perpendicular from D will be fomewhere in the line DI. Therefore when A and D meet, the perp. will be at the interfection O , in the middle of the triangle ; and $\mathrm{GO}=\frac{1}{3} \mathrm{GH}$ (Cor. 3 I . II) $=\frac{1}{3} \mathrm{GA}$. Therefore, if you make the feparate right-angled triangle GAO, fo that the hyp. GA may be treble the bafe GO, the $\angle A G O$ is the angle of the pyramid, (that is, of its planes CAP, CHP), which was required. Now if EG be \perp to GK, alio if GBK be an equilateral triangle, then the bafe GF, will be half the hypothenufe GB (Cor. 3.3. II), and $\angle B G K=\frac{2}{3}$ a right angle (2. II). Then its plain, 4 times $\angle A G K$ will be lefs than 4 right angles, becaufe 4 times EGK make but 4 right an-

FIG. gles; therefore more than 4 times AGK is required 1go. to compleat 4 right angles. Likewife, fince 6 times BGK make 4 right angles, 6 times $A G K$ will be too much; and of confequence we muft either have 5 times AGK, to make 4 right angles, or 134. nothing. Then to find whether that will anfwer exactly or not; draw the diagonal EC of the pen: tagon, and OLD \perp to it ; then 5 times the angle $\mathrm{EOL}=4$ right angles. But $\mathrm{DL}=\frac{5-\sqrt{5}}{4} \mathrm{R}$ (Cor. 3.44. IV), and OL $=\mathrm{R}-\mathrm{R} \times \frac{5-\sqrt{ } 5}{4}=$
190. $\frac{\sqrt{ } 5-1}{4} \times R$. But $G O$ (fig. 190) $=\frac{1}{3}$ the hypo. thenufe $A G$ or R, and $\frac{1}{3}$ is greater than $\frac{\sqrt{5}-1}{4}$, that is, GO is greater than OL, and confequently the angle AGO is leffer than EOL, which it fhould be equal to ; therefore 5 times AGO falls fhort of 4 right angles; whence it is clear, that no combination of regular pyramids can compleatly fill all fpace.
2. And it is as clear that 4 cubes fet together will make up 4 right angles, each cube containing one. And therefore 8 cubes, joined at their angular points, will quite fill all face on all fides.
1.91.
3. Next for the actaedron. As half the octaedron ABE ftands on a fquare bafe BCED, the angles at the bafe, as BCE, are right, and then 4 of there would be 4 right ones; but the inclination of the planes $\mathrm{ACB}, \mathrm{ACE}$, are greater than right angles (for the fame reafon as in the pyramid), being made by a plane \perp to their common fection AC ; therefore 4 of thefe angles will be too much, and confequently 3 or none of thefe angles of inclination muft be equal to 4 right angles; or, which is the fame thing, 6 halfs of the \angle of inclination muft $b e=4$ right angles. Now to try this, draw $A G \perp$ to

Book VI. of GEOMETRY.
$B C$, and $A O \perp$ to the bafe $B E$, alfo draw $G O$. Then FIG. hyp. $A G=\frac{A B}{2} \sqrt{3}$ (Cor. 39. II), and bafe GO $={ }^{1} 9^{2}$.
$\frac{1}{2} B D=\frac{1}{2} A B$. Therefore $A G: G O:: \frac{A B}{2} \sqrt{3}:$ $\frac{A B}{2}:: \sqrt{ } 3: 1:: 3: \sqrt{ } 3:: 1: \frac{\sqrt{ } 3}{3}:: A G: \frac{A G}{3} \sqrt{ } 3$; then $G O=\frac{A G}{3} \sqrt{ } 3$. And as $\angle A G O=$ half the angle of inclination, 6 of thefe muft make up 4 right angles. And therefore $\angle A G O$ muft be $=$ $\angle B D E$ (fig. 131), if this fucceed. For 6 of thefe make up 4 right angles. But in this cafe, $D F=$ $\frac{1}{2} \mathrm{DB}$, whence if DB (fig. 131) $=\mathrm{AG}$ (fig. 191), then $\mathrm{GO}=\frac{\mathrm{DB}}{3} \sqrt{ } 3$. But $\frac{1}{3} \sqrt{ } 3$ is greater than $\frac{1}{2}$ (as is eafily known by fquaring them) ; that is, GO is greater than DF, and confequently $\angle A G O$ is lefs than BDF. Therefore 6 of thefe, or 3 whole angles of inclination, fall fhort of 4 right angles. So thefe bodies cannot entirely fill all ipace.
4. Next comes the dodecaedron. As the angle of inclination of the planes of this body exceeds a right angle; therefore 4 fuch angles will exceed 4 right angles; therefore only three of thefe bodies can be laid together; in which cafe the angle of inclination muft be juft $1 \frac{1}{3}$ right angle For $3 \times 1 \frac{1}{3}$ $=4$. If the \angle be lefs, the third body will leave a vacuity; if greater, it cannot come in. Let BPC, PCH, DGH, be 3 pentagons joining upon one another. Draw AG, DI \perp to PC, HC, continued. Then let the plane PCH, be fixt, whillt ABP, DEH, are raifed up, and moved round the lines PC, HC, till the points A, D, meet. It is evident a perpend. dropt from A upon the plane PCH , will always fall on the line AG. And a like perpend. from D, will fall upon DI. And when A and D meet, it will fall on the interfection O .

FIG. Let R ftand for a right angle. Then fince CE is 192. || to HN (Cor. 2. 43. IV), $\angle E C H+\mathrm{CHN}=$ ${ }_{2} \mathrm{R}($ Cor. 2. 4. I$)=\mathrm{ECH}+\mathrm{PCH}$, therefore PCE^{\prime} is a right line (I. I). For the fame reafon BCH is a right line. Since $\angle \mathrm{DCH}={ }_{5}^{6} \mathrm{R}$ (I7. III), DCE $={ }_{5}^{2} \mathrm{R}, \mathrm{DCP}={ }_{5}^{8} \mathrm{R}$, take away $\mathrm{ACP}={ }_{5}^{\frac{6}{5} \mathrm{R}}$, then $\mathrm{ACD}=\frac{2}{5} \mathrm{R}$. In the ifofceles triangle $\mathrm{ACD}, \mathrm{COF}$ bifects the $\angle \mathrm{C}$ and bafe AD (Cor. 3.3. II), and $\angle A C F=\frac{1}{5} R=D C F$, and $C D A={ }_{3}^{4} R$; and fince $C D E=\frac{6}{5} R$, therefore $C D A+C D E=2 R$, and EDA is a ftraight line (I. I). In the rightangled triangle $\mathrm{ACF}, \angle \mathrm{ACF}$ or $\mathrm{ACO}=\frac{1}{5} \mathrm{R}$; and in the right-angled triangle $A C G$, fince $A C E$ $=\mathrm{ACD}+\mathrm{DCE}=\mathrm{ACG}={ }_{5}^{4} \mathrm{R}, \mathrm{CAG}={ }_{5} \mathrm{~A} \mathrm{R}=$ ACO , or $\mathrm{CAO}=A C O$, and $\mathrm{AO}=\mathrm{OC}$ (Cor. . . 3. II). Therefore OG is lefs than OC or OA (5. iI), and OG is lefs than half of AG. Make a right angle triangle feparately, as AGO, where the hypothenure is AG, and bafe OG, of a due length, and AGR is one of the angles of the dodecaedron. Where the $\angle A G Z$ or $G A O$ ought to be $\frac{1}{3} R$, that 3 dodecaedrons laid together may fill up 4 right angles. Now to fee how this agrees, we find (in fig. 128), that $\mathrm{EF}=\frac{1}{2} \mathrm{DE}$, or $\mathrm{DF}=\frac{1}{2} \mathrm{DB}$ (Cor. 3. 4 I . IV), and $\angle A B F$ or $B A C=\frac{2}{3} R=$ BDF (Cor. 1. 12. IV), and confequently DBF $=$ $\frac{\pi}{3} \mathrm{R}$ (Cor. 2. 2. II). Therefore if you make the bale $\mathrm{GQ}=\frac{1}{2}$ the hypothenufe GM, then the $\angle G M Q$ or MGZ is $=\frac{1}{3} \mathrm{R}$. Therefore, fince GO is lefs than $\frac{1}{2} G A$, the $\angle A G Z$ is lefs than $\frac{1}{3} R$, and MGR lefs than $1 \frac{1}{3} R$, to which it fhould have been equal; and confequently 3 times MGR falls fhort of 4 right angles : therefore the dodecaedrons cannot fill a folid fpace.

This might be otherwife folved, by fuppofing one of its folid angles to ftand upon an equilateral triangle, whofe fide is the diagonal of the pentagon.
5. Laftly,

Book VI. of GEOMETRY.
5. Laftly, the icofaedron has 5 triangles ftand- FIG. ing upon a pentagonal bafe ABCDE. Draw the 193. diagonal AC of the pentagon, and BQ the diameter of the circumfcribing circle. And let the plane AFC be drawn at right angles to BO , the common fection of the two faces of the folid ABO , CBO. Draw FP, which will be \perp to AC. Then we are to find the quantity of the $\angle A F C$, the inclination of the planes, or rather, of its half AFP. Call $\frac{1}{2} \mathrm{BQ}$, the radius of the circle, R ; then AP^{2} (Cor: 2. 44. $I V)=\frac{5+\sqrt{ } 5}{8} R R$. Alfo $A B^{2}=R R \times \frac{5-\sqrt{ } 5}{2}$ (44. IV), and $A F^{2}=\frac{3}{4} A B^{2}$. (Cor. 39. II) $=$ ${ }_{4}^{3} R R \times \frac{5-\sqrt{ } 5}{2}$. Therefore $A F^{2}: A P^{2}:: \frac{3}{4} R R \times$ $\frac{5-\sqrt{ } 5}{2}: \frac{5+\sqrt{ } 5}{8} R R:: 15-3 \sqrt{5}: 5+\sqrt{ } 5$ And $\mathrm{AF}^{2}: \mathrm{AF}^{2}-\mathrm{AP}^{2}$ or $\mathrm{FP}^{2}:: 3 \times 5-\sqrt{5}$ $: 10-4 \sqrt{ } 5:: 3: \frac{10-4 \sqrt{ } 5}{5-\sqrt{5}}:: 3: \frac{\overline{10-4 \sqrt{ } 5} \times 5+\sqrt{5}}{5-5 \sqrt{5} \times 5+\sqrt{5}}$
$\therefore: 3: \frac{50+10 \sqrt{ } 5-20 \sqrt{ } 5-20}{25-5=20}($ Cor. 1. 8. I) $:=$
$3: \frac{30-10 \sqrt{ } 5}{20}:: 3: \frac{2-\sqrt{ } 5}{2}:: 1: \frac{3-\sqrt{5}}{6}::$
$1: .12732$: : $\mathrm{AF}^{2}: .1273^{2} \mathrm{AF}^{2}$. And by extracting the root, it is AF : FP : : AF $: .3568$ $\times \mathrm{AF}=\mathrm{FP}$. Now if three icofaedrons laid together can fill up the whole fpace, then three times the angle AFC, or fix times the $\angle A F P$, muft make four right angles; and in that cafe AFP muft be $\frac{2}{3}$ of a right angle. But (fig. 128) the fide DF muft be half the hypothenufe DB , when the \angle between them BDF is $\frac{2}{3}$ of a right angle (Cor. 3. 4I. IV): for $\angle B D F=B A C$ in the equilateral triangle BAC (Cor. I. 12. IV) $=\frac{2}{3}$ of a right angle (2. II). But here the fide FP is lefs than half AF or $.5 \times \mathrm{AF}$; therefore the $\angle \mathrm{FAP}$ will be lefs, and AFP greater, than it thould be; that fore 3 icofihedrons cannot find room.

Thus I have demonftrated from pure geometrical principles, that no combination of regular bodies of the fame fort (except cubes), can adequately fill up all the fpace round about. The calculations of all thefe cafes are extremely eafy, by working with the rules of trigonometry; but that was not my bufinefs here.

$$
\mathrm{BOOK}
$$

BOOK VII.

Of the Sphere, and its inscribed and circumfcribed bodies.

DEFINITIONS.

1. A Sphere or globe, is a folid made by a fermi- FIG. circle $A B D$, moving round about its da194. meter AD , which remains fixt; and is called the axis of the fphere ; and the point A, the vertex.
2. The center of the Sphere is the center C of the femicircle ABD.
3. The radius of the fphere, is a line drawn from the center to the furface of the fphere.

Cor. All the radius of a sphere are equal to one another.
4. The diameter of a fphere, is a right line drawn from one file to the other, through the center.
5. A sector of a sphere, CFDG, is a part of the Sphere made by the circular fetor FCD, moving round the radius CD.
6. Segment of a Sphere, is a part of a fphere, as FIGD, cut off by a plane FIG. If the plane pals through the center, that fegment is a bemijphere.
7. A zone, is a part of a sphere intercepted between two parallel planes.
8. The middle zone, is the part between two parallel planes which are equally diftant from the center.
9. A

FIG. 9. A foild is faid to be infcribed in a fphere, or a 193. Sphere circumfcribed about a folid; when all the angles of the folid touch the furface of the fphere.
10. A fphere is faid to be infcribed in a folid, or a folid circumfcribed about a fphere; when the fphere touches all the planes of the folid.
PROP. I.
194. If a Sphere be cut by a plane FOG; the Section will be a circle.

Let the two planes CFDG and COD be \perp to the cuting plane FOG; then the common fection CI is \perp to the plane FOG ($15, \mathrm{~V}$). Draw the line FIG. Then in the triangles CFI, COI, CGI, the fides CF, CO, CG are equal (Cor. Def. 3), and CI common, and the angles at I right ; therefore $\mathrm{IF}=\mathrm{IO}=\mathrm{IG}(9 . \mathrm{II})$. Therefore FDG is a circle whofe center is I (Cor. Def. 3. IV).

PROP. II.

195. If a Sphere ABDI toucb a plane HGL; a rigbt line CD, drawon from the center to the point of contail D , is perpendicular to the faid plane.

Let the planes $\mathrm{ADB}, \mathrm{ADF}$, cut the touching plane in the lines DH, DG. Then fince HD, GD, touch the circles BD, FD, (whofe center is C, in D , therefore CD is \perp to HD, GD (Cor. 2,10 . IV); and therefore CD is \perp to the plane HGL (4. V).

PROP. III.
196. T'be furface of a pphere is equal to the curve furface of its circumfcribing cylinder.

Let BAP be a hemifphere, and BHOP a cylinder on the fame bafe, BTP, and of the fame altitude.

Book VII. of GEOMETRY.
tude. Take IL; an extremely frnall part of the FIG. quadrant BLA, and through L and I, fuppofe two $1 g 6$. planes MLEVO_{2} and NIFSR to be drawn $~+~$ to $A C$. Through L and I draw the line ILD, and through S and V the line SVG. Then becaufe IL. and VS are extremely fmall; the right lines and arches LI, VS nearly concide. And if the figure DISG be turned about the radius AC, it will generate the fruftum of a cone; and the frnall parts of its furface ILVS will concide with the portion of the fpherical furface, and be equal thereto (Ax. 8). But the furface of the fruftum ILVS is $=$ IL \times half the fum of the circumferences whofe diameters are LV and IS (6. VI), that is = IL \times circumference of LV or IS, they being nearly equal. Let $\mathrm{C}=$ circumference whofe radius is BC , and $c=$ circumference whofe radius is LE or IF , then the furface lLVS $=c \times \mathrm{IL}$, and the cylindric furface NMQR $=\mathrm{C} \times \mathrm{MN}(4 . \mathrm{VI})$. But the triangles ILK, and LCE are fimilar; for $\angle I L C$ (Cor. 2. io. IV) $=$ KLE = a right angle ; take away KLC, then $\angle I L K=C L E$; alfo $\angle I K L$. $=\mathrm{LEC}=\mathrm{a}$ right angle. Therefore LC or $\overline{B C}: L E::$ LI : LK (13. II). But C $: c::$ BC or ME: LE (Cor. g. IV) :: LI : LK or MN. Whence $\mathrm{C} \times \mathrm{MN}=c \times \mathrm{IL}$ (12. Proportion); that is, the cylindric furface $N M Q R=$ fpherical furface ILVS. Therefore if more parallel planes, as MLVQ, be drawn, exceeding near to one another, the Imall parts of the cylindric furface will be equal to the correfpondent parts of the fpherical furface, and therefore the fum of all the parts of the cylindric furface, equal to the fum of all the parts of the fpherical fuface (Ax. 2); that is, the furface of the hemilphere is equal to the furface of the cylinder BO , and the furface of the whole fphere $=$ furface of its circumfrribing cylinder.

FIG. Cor. I. If the jphere and its circumfcribing cylin196. der be cilt by two planes parallel to the bafe, the intercepted parts of the furfaces of the Jphere and cylinder, will be equal.

For furface $M R=$ furface $L S$, and all the $M R$ $=$ all the LS.

Cor. 2. The furface of the bemijphere BAP, is double the bafe BTP.

For the furface of the cylinder $=\mathrm{C} \times \mathrm{AC}$ (4. VI); and the area of the bafe $=\frac{\mathrm{C} \times \mathrm{BC}}{2}$, or $\frac{\mathrm{C} \times \mathrm{AC}}{2}(34 . \mathrm{IV})$.

Cor. 3. The furface of the whole Sphere is equal to four great circles of the fame $\int p$ pere; or to the rectangle of the circumference and diameter.

Cor. 4. The areas of spherical furfaces cut off by parallel planes, are as the Segments of the diameter, perpendicular thereto.

For thefe areas are equal to the correfponding cylindrical furfaces, which are as the hights (Cor. 3.4. VI).

Cor. 5. The furface of any fegment of the fame Sphere, is as the bight of the fegment.

Cor. 6. The furface of the Sphere is $\frac{2}{3}$ the whole jurface of the circumfcribing cylinder.

For the two bafes of the cylinder is half its curve furface (Cor. 3).

> PROP. IV.
397. The furface of the fegment BAD, of a Sphere; is 198. squal to the area of a circle, whofe radius is the cord $A B$, drawn from the vertex to the bafe.

Let $C=$ circumference of the radius $A B$, and $F I G$. $\mathrm{ABED}=$ circumference of the fphere. Then 200. fince the circumferences are as the radii (Cor. 9. IV), let $\frac{A B E D}{A C}=\frac{C}{A B}=n$, or $\mathrm{ABED}=n \times$ $A C$, and $C=n \times A B$. Then the furface $B A D$ $=\mathrm{AF} \times \mathrm{ABED}($ Cor. I . III $)=\mathrm{AF} \times n \times \mathrm{AC}$ $=\frac{n \times \mathrm{AF} \times \mathrm{AE}}{2}=\frac{n \times \mathrm{AB}^{2}}{2}($ Cor. 17. IV $)=$ $\frac{A B \times C}{2}=$ area of a circle whofe radius is $A B$ (34. IV).

Cor. The furface of the wobote Sphere, is equal to the area of a circle, wboje radius is the dianseter $A E$.

PROP. V.

T'be furface of a sphere is double the curve furface 201: of the infcribed Square (or equilateral) cylinder EB .

Draw the diameter ECB , then $\mathrm{ED}=\mathrm{DB}$. And fince $\mathrm{EB}^{2}=\mathrm{ED}^{2}+\mathrm{DB}^{3}(2 \mathrm{I} . \mathrm{II})=2 \mathrm{ED}^{3}$; therefore circle $\mathrm{EB}=2$ circles ED (22. III). But furface of the fphere $=4$ circles E (Cor. 3 . III $)=8$ circles ED. And $\ddagger E D: A E$ or $E D:$: circle ED : curve furface $\mathrm{AD}($ Cor. 2.4.VI $)=4$ circles ED. But 8 circles $E D=t$ wice 4 circles $E D$, or the furface of the fphere $=$ twice the curve furface of the cylinder.

Cor. I. The whole furface of the infcribed cylinder is $\frac{3}{4}$ the furface of the sphere.

For the two bafes AB, ED $=2$ circles ED, and the whole furface $A D=6$ circles ED.

Cor. 2. The curve furface of a cylinder, circumfcribing the Spbere, is double the curve furface of the infrribed equilateral one. And the wobole furface, is double to the whole furface.

FIG. For the furface of the fphere $=$ furface of 201. the circumfcribing cylinder (3). And the furface of the fphere $=$ twice the furface of the inferibed one (5).

Again, the furface of the fphere $=\frac{2}{3}$ the whole furface of the circumfcribing cylinder (Cor. 6. 3). And the furface of the fphere is $=\frac{4}{3}$ the whole furface of the infcribed cylinder (Cor. I).

> PROP. VI.
202. The furface of any Jegment of a sphere ABDC : is to the curve furface of its infcribed cone $\mathrm{ABC}::$ as the fide of the cone AB : to the radius of the baje AO.

For if $n \times A B=$ circumference of the radius $A B$, and $n \times A O=$ circumference of the radius AO (Cor. 9. IV); then the circle $A B=\frac{A B^{2} \times n}{2}$ (34. IV), and conic furface $A B C=\frac{A B \times n \times A O}{2}$ (Cor. I. 5. VI). And the furface of the fegment $A B D C=$ circle $A B(4)$; therefore furface of the fegment $A B D C$: conic furface $A B C:: \frac{\mathrm{AB}^{2} \times n}{2}:$ $\frac{A B \times n \times A O}{2}:: A B: A O$ (5. Proportion).

Cor. 1. T'be furface of a bemijphere, is to the curve furface of its inforibed cone; as the diagonal of a Squere, to the fide.

For then AO, BO become radii of the fphere, and $A P$, the diagonal.

Cor. 2. If ABC be an equilateral cone, then the furface of the fegment ABDC is tweice the curve furface of the cone ABC.

$$
\text { For then } A B=A C=2 A O \text {. }
$$

P R O P. VII.

FIG.

Let the cone DAE be rigbt-angled at A. Then 203, the furface of the bemippbere BGE , is to the curve furface of the right-angled circumfcribing cone DAE; as the fide of a Square AD , is to the diagonal DE .

Draw AC from the vertex of the cone A, to the center C ; and $\mathrm{CF} \|$ to AE , or \perp to AD . Thert $\mathrm{AF}=\mathrm{FD}=\mathrm{FC}=\mathrm{BC}$, and $\mathrm{CD}^{2}=\mathrm{CF}+\mathrm{FD}^{2}$ $=2 \mathrm{BC}^{2}$ (21. II). And the circie whofe radius is $\mathrm{CD}=\mathrm{twice}$ the circle whole radius is CB (Cor. 2. 35. IV) $=$ furface of the hemifphere BGE (Cor. 2. 3). Therefore the furface of the hemifphere, or the circle whofe radius is CD : furface of the cone DAE : : CD : AD (Cor. 3. 5. VI) :: AD : DE (20. II).

Cor. The furface of a right-angled come circums frribing a bemijphere, is double the furface of one infcribed; taking eitber the curve furfaces, or the whole furfaces.

For $\sqrt{ } 2 \times$ furface of the infcribed cone $=$ furface of the hemifphere (Cor. I. 6) $=\frac{1}{\sqrt{2}} \times$ furface of the circumfcribing cone (7). Therefore the latter is = twice the former. And the bafe of the latter is likewife $=$ twice the bafe of the former (by the demonitration of this Prop.), therefore the whole is double to the whole.

PROP. VIII.

The furfface of the Sphere, is to the curve furface 20.4 . of an cquilateral infcribed cone BAD ; as 8 , to 3 .

For fince $\mathrm{EF}={ }_{4} \mathrm{AF}$ (Cor. 3.4I.IV), therefore furface $\mathrm{BFD}=\frac{1}{4}$, and furface $\mathrm{BAGD}=\frac{3}{4}$, the furface of the fphere (Cor. 4. 3) ; $=2$ curve K 2 furfaces

The ELEMENTS

FIG. furfaces of the cone BAD (Cor. 2. 6); or the 204. furface of the cone $=\frac{3}{5}$ the furface of the fphere.

Cor. The whole furface of an equilateral cone BAD , inforibed in a Sphere, is $\frac{9}{\mathrm{~T}}$ of the Sphere's furface.

For $3 \mathrm{BC}^{2}=\mathrm{BD}^{2}(4 \mathrm{I} \cdot \mathrm{IV})=4 \mathrm{BE}^{2}$, and BE^{2} $=\frac{3}{4} \mathrm{BC}^{2}$, whence circle $\mathrm{BD}=\frac{3}{4}$ circle BDG (35. IV) $=\frac{\pi}{3}^{\frac{3}{6}}$ the furface of the fphere (Cor. 3.3); add this to the curve furface of the cone; then the whole furface of the cone $=\frac{3}{8}+\frac{3}{6}$ the fphere's furface $=\frac{9}{\tau}$ the furface of the fphere.

P R O P. IX.

205. The curve furface of an equilateral cone ABD , is to the furface of its infcribed sphere; as 3 to 2.

Draw $\mathrm{AE}, \mathrm{CF} \perp$ to BD, BA; then by fimilar triangles $\mathrm{AEB}, \mathrm{AFC} ; \mathrm{AE}^{2}: \mathrm{EB}^{2}:: \mathrm{AF}^{2}: \mathrm{FC}^{2}$. But $\mathrm{AE}^{2}=\frac{3}{4} \mathrm{AB}^{2}$ (39. II) $=3 \mathrm{AF}^{2}$. Therefore $3 \mathrm{AF}^{2}\left(\mathrm{AE}^{2}\right): \mathrm{AF}^{2}:: \mathrm{EB}^{2}: \mathrm{FC}^{2}$ (4. Proportion) :: circle BD : circle FEG. But BE :: BA or $2 \mathrm{BE}:$: circle BD : curve furface of the cone BAD (Cor. 3. 5. VI) $=2$ circles BD; and circle FEG $=\frac{1}{4}$ furface of the fphere (Cor. 3.3). Whence $3: I:=3 \mathrm{AF}^{2}: A F^{2}:: \frac{1}{2}$ furface of the cone: furface of the fphere. Therefore the furface of the fphere $=\frac{2}{3}$ the curve furface of the cone.
Cor. s . The furface of the Sphere is $\frac{4}{9}$ the wobole furface of the circumscribing equilatcral cone.

For the baie $B D=\frac{1}{2}$ curve furface of the cone $=\frac{3}{4}$ furface of the fphere. Add this to the curve furface, which is $=\frac{3}{2}$ furface of the fphere; then the whole furface of the cone $=\frac{3}{2}+\frac{3}{4}$ the furface of the fphere $=?$ the furface of the fphere, or $\frac{4}{3}$ the whole furface of the cone $=$ the furface of the iphere.

Cor. 2. The curve furface of an equilateral cone FIG. infcribed in a Sphere is $=\frac{1}{4}$ the curve furface of the 205. circumfcribing equilateral one. And the wobole furface of one $=\frac{1}{4}$ the whole furface of the other.

For $\frac{8}{3}$ the furface of the infcribed cone $=$ furface of the fphere (8) $=\frac{2}{3}$ furface of the circumfcribed cone (9). Therefore the furface of the infcribed $=$ $\frac{1}{4}$ the furface of the circumfcribed one.

Alfo $\frac{4}{5}$ the whole furface of the circumfrribing one $=$ furface of the fphere (Cor. I. 9) $=\frac{1.6}{9}$ the whole furface of the infcribed cone (Cor. 8). Therefore the furface of the infcribed cone $=\frac{1}{4}$ the furface of the circumfrribed cone.

Cor. 3. Thbe Jurfaces of a cylinder and equilateral cone, botb circumfcribed about a Spbere, are as 2 to 3 ; botb their curve furfaces and whole furfaces.

For $\frac{2}{3}$ the curve furface of the cone $=$ furface of the fphere $(9)=$ furface of the cylinder (3). Surface of the cylinder : furface of the cone : : $2: 3$.

Alfo $\frac{4}{9}$ the whole furface of the cone $=$ furface of the fphere (Cor. 1. 9) $=\frac{2}{3}$ the whole furface of the cylinder (Cor. 6. 3). Therefore, whole furface of the cylinder : whole furface of the cone $:: \frac{4}{3}: \frac{2}{3}$ or $\frac{6}{3}:: 2: 3$.

Scholium.

From the foregoing propofitions are deduced, the proportion of the fphere's furface, to the furfaces of the infcribed and circumfrribed equilateral cylinder and cone, as follows :

Inscribed cylinder's curve furface
 8

Circümfcribed cylinder's curve furface 16

- whole furface - 24

Inscribed cone's curve furface - 6

- whole furface - 9

Circumscribing cone's curve furface - 24
— whole furface - 36 ,

PROP. X.

806.

A-Sphere is equal to a cone wobble bight is the radius AC , and base the furface of the sphere AEF.

Take three points in the furface of the sphere, as $\mathrm{A}, \mathrm{B}, \mathrm{D}$, extremely near together, forming the fall triangle $A B D$, on the furface of the sphere. Let a plane pals through there three points A, B, D; the fall portion of which $A B D$ will coincide with a portion of the fipherical furface $A B D$, extremely near. And the radius $C A$ will be \perp thereto (2). Therefore the portion of the Sphere CABD is nothing but the pyramid whole bate is $A B D$, a fall part of the fphere's furface, and hight the radius $C A$, In like manner the whole Sphere may be divided into fall pyramids, foch as $C A B 1$), whole bale is a fall portion of the spherical furface; and common altitude, the radius CA. Therefore the fum of all thee pyaids CABD, make up the fphere; and the fum of all the bates ABD, make up the fpherical furface. That is, the fphere is equal to the fum of all the fe pyramids, whole bales are all the parts of the furtace, of the sphere, and common altitude the radius $C A$; and that is equal to one pyramid or cone, who te bate is the firface of the Sphere, and hight the radius (Ax, 2).

Cor

Cor. I. A Sphere is equal to a cone, whofe bigbt is FIG. the radius, and bafe equal to four great circles of the 206 . sphere.

For the furface of the fphere is equal to four great circles (Cor. 3. 3).

Cor. 2. A spbere is equal to a cone whofe bight is twice the diameter, and bafe, a great circle of the sphere.

By Cor. 4. 20. VI.
Cor. 3. A bemijpbere is double its infcribed cone.
For a hemifphere $=$ a cone whofe bafe is a great circle, and hight equal to the diameter (Cor. 2); and that is double to a cone of the fame bafe, and half the hight (Cor. I. 20. VI).

PROP. XI.

Any fphere BANR, is $\frac{2}{3}$ its circumscribing cylinder, 207: DM.

Let $A C$ be the axis of the hemifphere BAN. From the center C , draw the diagonal CD ; and draw $\mathrm{PL} \perp$ to AC , and OH parallel to it, and exceeding near it. Then if the figure ADBC revolve round the axis $A C$; then $A D B C$ will generate the cylinder BDGN ; the quadrant BVA , the hemifphere BAN; and ADC, the cone ADCG. Then $\mathrm{VC}^{2}=\mathrm{VL}^{2}+\mathrm{LC}^{2}(2 \mathrm{I} . \mathrm{II})$; that is, $\mathrm{PL}^{2}=\mathrm{VL}^{2}$ $\pm \mathrm{KL}^{2}$ (for $\mathrm{DA}=\mathrm{AC}$, and $\mathrm{KL}=\mathrm{LC}$ (13. II). Therefore the circle defcribed by $\mathrm{LP}=$ the two circles defrribed by LV and LK (Cor. 2. 35. IV). Take away the circle defcribed by LV, from both, and there remains the annulus or ring defcribed by VP $=$ circle defrribed by LK. For the fame reafon the annulus defcribed by $\mathrm{OI}=$ circle defcribed by FH. Therefore the fmall prifmatic folid contained between PN and OI , quite round the figure $=$ cone fruftum contained between KL and FH , round the

$$
\mathrm{K}_{4} \quad \text { figure }
$$

FIG. figure (12. Vi). In like manner every part of the 207. figure BDAVB $=$ correfpondent part of DACG: Therefore the total fum of the firft = total fum of the laft, that is, the folid BDAGNAVB = cone DCG (Ax. 2) $=\frac{1}{3}$ the cylinder DBNG (20. VI). Therefore the remaining part, or the hemifphere $\mathrm{BAN}=$ the remaining $\frac{2}{3}$ of the cylinder BDGN. Whence the double thereof, or the whole fphere $A B R N=\frac{2}{3}$ of the whole cylinder $E G$.

Otberwije.

The cone whofe bafe is BN , and hight CA, or the cone $\mathrm{DCG}=$, half the hemifphere BAN (Cor. 3. 10). And the fame cone DCG $=\frac{1}{3}$ the cylinder BDGN. (20. VI). Therefore $\frac{x}{2}$ hemifphere $=\frac{1}{3}$ cylinder, and the hemifphere $=\frac{2}{3}$ cylinder BG. Whence the whole fphere $=\frac{2}{3}$ the cylinder EG.

Cor. I. The concave folid BFADBER $\xi^{2} c .=\frac{x}{2}$ the Spbere BANR.
208.

Cor. 2. A rigbt cone, spbere, and cylinder, all of the fame dianieter and bight, are as $1,2,3$ rejpectively; or $\mathrm{ABD}: A H G I: E B D F:: 1: 2: 3$.

P R O P. XII.

206. The jector of a Sphere CGAH, is equal to a cone wobole bight is the radius; and bafe, the jurface of the fector GAH.

This is demonftrated as Prop. X. For if the fector be divided into a multitude of extremely fmall fectors CABD, the bafe of each will be a fmall portion of the fpherical furface $A B D$. And as all the pyramids make up the fector, and are the elements thereof; fo all the bafes are the elements of the furface GAH, and make it up. And as the hights of all the pyramids is the fame, they are all equal to one

Book VII. of GE OMETRY.
pyramid of the fame hight, and bafe the fum of all FIG. the bafes (Cor. 1. 18. VI). That is, the fector 206. $\mathrm{CGAH}=$ a pyramid or cone whofe hight is the radius, and bafe the furface GAH.

Cor. I. Thbe fector of a sphere, $\mathrm{CGAH}=a$ cone, whole bight is the radius AC ; and baje a circle whore radius is AG . And the fector $\mathrm{CGBH}=a$ cone whofe radius is CB , and bafe a circle whofe radius is BG.

For the furface GAH = a circle whofe radius is $\mathrm{AG}(4)$; and the furface $\mathrm{GBH}=$ a circle whofe radius is $B G$ (ibid.):

Cor. 2. Sectors of Spheres, are to one anotber, in the complicate ratio of their Jurfaces and radii.

For the cones, equal thereto, are as the bafes and hights (Cor. 3. 20. VI).

P R O P. XIII.

If it be made, as $\mathrm{BD}: \mathrm{BA}::$ radius $\mathrm{CA}: \mathrm{CF}$; 210. then the cone GFH is equal to the fegment of the sphere, GAH.

Draw CG, BG and FCB ; then CA : CF : : BD : BA (hyp.) : : $\mathrm{BD}^{2}: \mathrm{BG}^{2}$ (Ccr. 1. 20. II) : : GD^{2} : GA^{2} (20. 1I) : : circle GD (or circle whofe radius is GD) : circle GA (35.IV). Therefore the cone whofe hight is CF , and bafe the circle $\mathrm{GD}=$ cone whofe hight is CA, and bafe the circle GA (Cor. 4. 20. VI) $=$ fector CGAH (Cor. 1. XII). Subtract, or add the cone GCH, on the fame bafe GH, and then the cone GFH $=$ fegment GAH.
Cor. I. If $\mathrm{BD}: \mathrm{DA}:$: radius $\mathrm{CA}: \mathrm{AF}$. Then the cone $\mathrm{GFH}=$ segment GAH .

For fince $\mathrm{BD}: \mathrm{BA}:: \mathrm{CA}: \mathrm{CF}$, therefore BD : BA - BD : : CA : CF - CA (iz. Proportion); that is, $\mathrm{BD}: \mathrm{DA}:=\mathrm{CA}: \mathrm{AF}$.

Cor. 2. The ferment GAH , is to the infrribed cone GAH ; as FD to AD . Cor.

Fig. 2ic. $\overline{\mathrm{GC}+\mathrm{DB}} \times \mathrm{AD}^{2}: \overline{\mathrm{GC}+\mathrm{AD}} \times \mathrm{DB}^{2}$.

For the hight of the cone, equal to the fegment GAH , that is, $\mathrm{DE}=\frac{\mathrm{GC}}{\mathrm{DB}} \times \mathrm{DA}+\mathrm{DA}$ (Cor. 1) $=\frac{G C+D B}{D B} \times D A$. And in like manner, the hight of the cone equal to the fegment GBH, is $\frac{\mathrm{GC}+\mathrm{DA}}{\mathrm{DA}} \times \mathrm{DB}$. And thefe cones are as the altitudes (Cor. I. 20. VI); that is, as $\frac{\mathrm{GC}+\mathrm{DB}}{\mathrm{DB}} x$ $D A$, and $\frac{G C+D A}{D A} \times D B$, or as $\overline{G C+D B} \times$ $D A^{2}: \overline{G C+D A} \times \mathrm{DB}^{2}$.

PROP. XIV.
210. The fegment of a Spbere GAH, is equal to a cone, zubofe bight is AD, the bigbt of the Segment; and bafe, $\frac{3}{2}$ the bafe of the fegment GH , together with $\frac{1}{2}$ a circle whofe radius is the bight of the fegment AD.

Let $\Theta A G$ denote the circle whofe radius is $A G$, and fo of the reft. Then fegment GAH $=$ fector CGAH \mp cone GCHI (fig. 1,2) $=\frac{1}{3} \mathrm{AC} \times \odot A G \mp$ $\frac{1}{3} \mathrm{CD} \times \oplus \mathrm{GD}$ (Cor. 1. 12); and 3 fegments $\mathrm{GAH}=$ $A C \times \Theta A G+\overline{A D+A C} \times \Theta G D=A C \times$ $\widehat{\Theta A G-\Theta G D}+A D \times \Theta G D=A C \times \Theta A D+$ $\mathrm{AD} \times \Theta \mathrm{GD}$ (Cor. 2. 35. IV).

But AD : AB :: AD ${ }^{2}$: AG^{2} (Cor. I. 20. II) $:: \mathrm{AD}^{2}: \mathrm{AD}^{2}+\mathrm{DG}^{2}:: \Theta \mathrm{AD}: \Theta \mathrm{AD}+\Theta \mathrm{DG}$ (Cor. 2. 35. IV), therefore $\mathrm{AD} \times \overline{\Theta A D}+\Theta \overline{\mathrm{D}}$ $=A B \times \Theta A D=2 A C \times \Theta A D$, and $A D \times$ $\overline{3 \Theta D G+\Theta A D}=2 A C \times \Theta A D+2 A D \times \Theta G D:$ And $\mathrm{AD} \times \overline{\mathrm{I}_{2}^{\prime} \Theta \mathrm{GD}+\frac{1}{2} \Theta A D}=\mathrm{AC} \times \Theta \mathrm{AD}+$ $\mathrm{AD} \times \Theta \mathrm{GD}=3$ fegments GAH.

Corol-

Book VII. of GEOMETRY.
Corollary. The fegment GAH $=\div \mathrm{AD} \times$ FIG. $\overline{3 \Theta G D}+\Theta A D$.

```
P.R O P. XV.
```

The frufurn or middle zone of a sphere ZGHF, is 2110 equal to a cone whofe bight is the bight of the zone CD; and bafe, two great circles ZF, together woith the leffer bafe GH.

For the zone $\mathrm{ZH}=$ hemifphere ZAF - the fector CGAH + the cone GCH $=\mathrm{AC} \times \frac{2}{3} \Theta \mathrm{ZC}$, (11) - $\mathrm{AC} \times \frac{1}{3} \oplus \mathrm{AG}$ (Cor, I. 12) $+\mathrm{CD} \times \frac{1}{3} \oplus \mathrm{GD}$ (20. VI) $=\mathrm{AD} \times \frac{2}{3} \Theta \mathrm{ZC}+\mathrm{DC} \times \frac{2}{3} \Theta \mathrm{ZC}-\mathrm{AC}$ $\times \frac{1}{3} \Theta A G+C D \times \frac{1}{3} \Theta G D$. But $A D: A C:: A G^{2}$ $: A Z^{2}$ (18.IV) $::{A G^{2}}^{2}: 2 \mathrm{AC}^{2}$ (2I. II) $:: \Theta A G:$ $2 \Theta Z C$ (35. IV). Therefore AD $\times 2 \Theta Z C=A C$ $x \Theta A G$. And $A D \times{ }_{\frac{2}{3}} \oplus Z C=A C \times \frac{1}{3} \Theta A G$. Therefore the zone $Z H=D C \times \frac{2}{3} \Theta Z C+D C$ $\times{ }_{3}^{3} \Theta \mathrm{GD}=\frac{1}{3} \mathrm{DC} \times \overline{2 \Theta \mathrm{ZC}}+\Theta \mathrm{GDD}$,

Cor. The zone ZH is equal to $\frac{1}{3} \mathrm{DC} \times$ twice the circle $\mathrm{ZF}+$ the circle GH .

P R O P. XVI.

An orb or bollows spbere is equal to the fruftum of a cone, whofe greater bafe is the furface of the greater Sphere; and leffer bafe, the furface of the lefer: and bight, the difference of the radii.

For the orb is equal to the difference of the two Spheres; that is, to the difference of two cones whofe hights are the radii of the fpheres, and bafes the furfaces (10).

PROP:

FIG.
212.

Thbe furfaces of Spheres GH, IK, are as the Squares 213. of the diameters, AB, DF.

For the furface of the fphere $\mathrm{GH}=4$ circles AGBH, and the furface of the fphere $\mathrm{IK}=4$ circles IDKF (Cor. 3. III). But 4 circles AGBH : 4 circles DIFK :: circle AGBH : circle DIFK (Cor. I. 5. Proportion) :: $\mathrm{AB}^{2}: \mathrm{DF}^{2}(35 \cdot \mathrm{IV})$.

PROP. XVIII.

Spheres GH, IK, are to one anotber, as the cubes of their diameiers, AB, DF.

For the fphere GH = $\frac{2}{3}$ the cylinder, whofe bafe is AGBH , and hight AB . And the fphere $\mathrm{IK}=\frac{2}{3}$ the cylinder, whofe bafe is DIFK, and hight DF (ii). Therefore fphere GH: fphere IK : : $\frac{2}{3} \mathrm{AGBH} \times \mathrm{AB}$ $: \frac{2}{3}$ DIFK \times DF (Cor. 3. 19. VI) : : AGBH $\times \mathrm{AB}$ $:$ DIFK \times DF (5. Proportion) $:: \mathrm{AB}^{2} \times \mathrm{AB}: \mathrm{DF}^{2}$ $\bar{\chi} \mathrm{DF}$ (35.IV. and 7. Proportion) $:: \mathrm{AB}^{3}: \mathrm{DF}^{3}$.

> P R O P. XIX.
214. Similar folids infcribed in \int pberes GH, IK, are as the

PR O P. XVII.

Book VII. of GEOMETRY.
Cor. 2. The furfaces of fimilar folids inforibed in FIG. fpheres, are as the fquares of the diameters of the 214. spheres.

For furface of AE : furface of $\mathrm{DL::} \mathrm{AG}^{2}: \mathrm{DI}^{2}$ (7. VI) : : $\mathrm{AB}^{2}: \mathrm{DF}^{2}$.

Cor. 3. The furfaces of fimilar folids injoribed in Spberes, are as the furfaces of the Spheres.

For they are both as the fquares of the diameters (17).

PROP. XX.

AJphere, is to any circumforibing folid BF , (all wbofe 216 . planes touch the Sphere); as the Jurface of the Spbere, to the furface of the folid.

Since all the planes touch the fphere, the radius drawn to all the points of contact, will be \perp to each plane (2). Therefore if planes be drawn through the center C of the fphere, and through all the fides of the body; then the body will be divided into pyramids, BCAE, BCAD, ξ°. whofe bafes are the planes $\mathrm{BAE}, \mathrm{BAD}, \mathcal{E}_{6}$.; and their common altitude CP , the radius of the fphere. And the fum of all thefe pyramids, or the whole folid, is equal to a pyramid or cone, whofe bafe is the fum of all the plane figures, and hight the radius CP (Cor. I. 18. and Cor. 2, 20. VI). But the fphere is alfo equal to a cone or pyramid whofe bafe is the furface of the fphere, and hight the fame radius CP (IO). And this laft cone : former cone : : bafe of the latter: bafe of the former (Cor. 2. 20. VI.) ; that is, the fphere : circumfcribing folid : : furface of the fphere : furface of the folid.

Cor. I. All circumscribing cylinders, cones, \&c. are to the sphere, as their furfaces are.

FIG. For any cylinder, or cone, may be conceived to be 216. made up of an infinite number of finall planes, all of which touch the fphere.

Cor. 2. All bodies circumfcribing the fame Sphere, are to one another as their furfaces.

Cor. 3. The spbere is the greateft or moft capacious of all bodies of equal Jurface.

For if the planes be fuppofed to touch the fphere, their areas will be greater than the furface of the fphere, which is contrary to the hypotheiis ; therefore the planes muft fall within the fphere; and then the perpendicular upon them will be fhorter than the radius, and therefore the body will be lefs than the fphere, as having the fame bafe, and a lefs hight.
PROP. XXI.
210. Any fegment of a sphere GAH, is to its inforibed cone; as $\mathrm{BC}+\mathrm{BD}$, to BD .

For if $A F=\frac{A D}{D B} \times A C$, then the fegment $G A H$ $=$ cone GFH (Cor. 1. 13). Therefore $\mathrm{FD}=$ $\frac{\mathrm{AD}}{\mathrm{DB}} \times \mathrm{AC}+\mathrm{AD}$. And this cone GFH : cone $\mathrm{GAH}:: \mathrm{DF}: \mathrm{DA}$ (Cor. I. 20. VI) $:: \frac{\mathrm{AC}}{\mathrm{BD}}$ $\times A D+A D: A D:: \frac{A C+B D}{B D} \times A D: A D::$ $\mathrm{AC}+\mathrm{BD}: \mathrm{BD}$ (5. Proportion).

Cor. I. A bemijphere is double the inscribed cone.
For then $\mathrm{BD}=\mathrm{AC}$ or BC .
Cor. 2. The fegment containing an equilateral cone, is equal to 3 times the cone.

For then $B D=\frac{r}{2} B C$ (Cor. 3.4 I , IV).

P R O P. XXII.

If the cone DAE circumfcribing a bemijphere be 203. rigbt-angled at A ; that cone DAE is to the inforibed bemisphere; as $\sqrt{2}$ to 1 .

For let Θ ftand for circle, then fuppofing the fame conftruction as in Prop. VII, then we have $\mathrm{CD}^{2}={ }_{2} \mathrm{BC}^{2}$, and $\mathrm{CD}=\mathrm{BC} \sqrt{2}=\mathrm{DF} \sqrt{ } 2$, and $\mathrm{CD}: \mathrm{DF}:: \sqrt{ } 2: 1$ (Cor. I. 12. Proportion); alfo $\Theta C D=2 \Theta C B$, and $A C=C D$. The cone DAE $=\Theta C D \times \frac{1}{3} \mathrm{AC}(20 . \mathrm{VI})=2 \Theta \mathrm{CB} \times \frac{1}{3} \mathrm{CD}$. Alfo the hemifphere $=\frac{2}{3} \Theta \mathrm{CB} \times \mathrm{GC}(\mathrm{II})=2 \Theta \mathrm{CB} \times$ $\frac{B C}{3}$. Therefore the cone : hemifphere :: $2 \Theta C B \times$ $\frac{1}{3} \mathrm{CD}: 2 \Theta \mathrm{CB} \times \frac{1}{3} \mathrm{BC}:: \mathrm{CD}: \mathrm{CB}$ or $\mathrm{DF}::$ $\sqrt{2}:$ I.

Cor. A rigbt-angled cone, circumscribing a bemisphere, is to the infcribed cone; as $2 \sqrt{ } 2$ to I .

For the circumfrribed cone : hemifphere :: $\sqrt{2}:$ 1:: $2 \sqrt{ } 2: 2$ (22).

And hemifphere : infcribed cone : : $2: 1$ (Cor. I 2 I).

Therefore circumf. cone : inf. cone : : $2 \sqrt{2}: 1$ (5 . Proportion).

PROP. XXIII.

A sphere is to its infcribed equilateral cylinder $\mathrm{AD}, 201$. as $4 \sqrt{2}$ to 3 .

Draw the diameter BE , then $\mathrm{BE}^{2}=\mathrm{DE}^{2}+\mathrm{DB}^{2}$ (21. II) $=2 \mathrm{DE}^{2}$, and circle $\mathrm{AEDB}=2$ circles BD (35. IV) ; alfo $\mathrm{BE}=\mathrm{DE}_{\sqrt{ }}=\mathrm{BD} \sqrt{2}$. Now The fphere $=\frac{2}{3} \mathrm{AEDB} \times \mathrm{BE}(\mathrm{II})=\frac{2}{3} \mathrm{AEDB} \times \mathrm{BD}_{\sqrt{\prime}} 2$, the cylind, $=$ circle $\mathrm{ED} \times \mathrm{BD}=\frac{1}{2} \mathrm{AEDB} \times \mathrm{BD}$.
Then fphere : cylinder : $: \frac{2}{3} \mathrm{AEDB} \times \mathrm{BD}_{\sqrt{ } 2: \frac{1}{2} \mathrm{AEDB}}$ $\times \mathrm{BD}:: \frac{1}{7} \sqrt{2}: \frac{1}{2}:: 4 \sqrt{ } 2: 3$:

FIG. Cor. The circumscribed equilateral cylinder, is to the 201. inscribed equilateral cylinder; as $2 \sqrt{ } 2$ to 1 .

For $\frac{2}{3}$ the circumfcr. cylinder $=$ sphere (II) $=$ $\frac{4 \sqrt{ } 2}{3} \times$ the infer. cylinder. Therefore the circumf. cylinder $=2 \sqrt{ } 2 \times$ infer. cylinder.

PR O P. XXIV.

204.

Thee Sphere is to the inscribed equilateral cone BAD, as 32 to 9 .

Let $\Theta \mathrm{BE}$ denote the circle whole radius is $\mathrm{BE}, \mathcal{E}^{\mathrm{c}} \mathrm{c}$. then BD^{2} or $4 \mathrm{BE}^{2}={ }_{3} \mathrm{BC}^{2}(4 \mathrm{I} . \mathrm{IV})$, and $\mathrm{BE}^{2}=$ $\frac{3}{4} \mathrm{BC}^{2}$, and $\Theta \mathrm{BE}=\frac{3}{4} \Theta \mathrm{BC}$ (Cor. I. 35. IV). Alio $\mathrm{AE}=\frac{3}{2} \mathrm{AC}($ Cor. $3.4 \mathrm{I} . \mathrm{IV}) . \quad$ Then the sphere $=$ ${ }_{3}^{2} \Theta \mathrm{BC} \times 2 \mathrm{AC}(\mathrm{II})$. And cone $=\Theta \mathrm{BE} \times \frac{1}{3} \mathrm{AE}$ (20. VI) $=\frac{3}{4} \Theta B C \times \frac{1}{3} \times \frac{3}{2} \mathrm{AC}$. Therefore; Spliere : cone : : $\frac{2}{3} \Theta \mathrm{BC} \times 2 \mathrm{AC}: \frac{3}{4} \Theta \mathrm{BC} \times \frac{1}{2} \mathrm{AC}:: \frac{4}{3}: \frac{3}{5}::$ $32: 9$.

PROP. XXV.

205. A ADhere is to its circumscribed equilateral cone ABD , as 4 to 9 .

The construction of Prop. IX. remaining; let Θ EC denote the circle whole radius is $\mathrm{FC}, \mathrm{E}_{\mathrm{c}} \mathrm{c}$. Then $E B^{2}=3 \mathrm{FC}^{2}$, and $\Theta \mathrm{BE}=3 \Theta \mathrm{FC}(35 . \mathrm{IV})$, and CF or $\mathrm{CE}=\frac{1}{2} \mathrm{CA}($ Cor. 3 r. II $)$, and $A E=3 \mathrm{CF}$.

The fphere $=\frac{2}{3} \Theta \mathrm{CF} \times 2 \mathrm{CF}$ (ir).
The cone $=\Theta \mathrm{BE} \times \frac{1}{3} \mathrm{AE}(20 . \mathrm{VI})=3 \Theta \mathrm{FC} \times$ FD.

Therefore fphere : cone : : ${ }_{5}^{2} \Theta \mathrm{CF} \times{ }_{2} \mathrm{CF}: 3 \Theta \mathrm{CF}$ \times CF :: $\frac{4}{3}: 3:: 4: 9$.

Cor. 1. The circumfrribed equilateral cone is eight times the inscribed equilateral cone.

For the circumfcr. cone : Sphere : : $9: 4$.
And sphere : infer. cone : :
Therefore circumfcr. cone : infer, cone :: $32: 4$ (15. Proportion) : : $8:$. .

,

Book ViI. of GEOMETRY゙.

Cor. 2. The circumfrribed cylinder is $\frac{2}{3}$ the circium- FIG. foribed equilateral coine.

For $\frac{2}{3}$ the cylinder $=$ Phere $\left(i_{1}\right)=\frac{4}{3}$ the cone ; and the cylinder $=\frac{2}{3}$ the cone.

Cor. 3. The Sphere EF is to the circumfrribing right 21%. cylinder BC, and this cylinder to the circumscribing equilateral cone ADG, as 2 to 3 ; botb in refpeei of their whole furfaces and jolidities.

This appears from Cor. 6. 3. and Cor. 3. 9. and Prop. II. and Cor. 2, 25.

Cor. 4. The circumscribing right cylinder, and equilateral cone, are to one another as 2 to 3 ; botb in regard to their curve furfaces, their. wobole furfaces, folidities, bafes, and bights.

As to the furfaces it appearis by Cor. 3.9 ; and the folidities, by Cor. 3. of this. As to the bafes, fince $\Theta \mathrm{BE}=3 \Theta \mathrm{FC}\left(\mathrm{fig} .205\right.$), or $\Theta \mathrm{FC}=\frac{1}{3} \Theta \mathrm{BE}$, therefore $2 \oplus \mathrm{FC}=\frac{2}{3} \Theta \mathrm{BE}$, or the two bafes of the cylinder $=\frac{2}{3}$ the bafe of the cone.

And for the hight, $\mathrm{AE}={ }_{3} \mathrm{CF}$, or ${ }_{2} \mathrm{CF}={ }_{5}^{2} \mathrm{AE}$; that is, the hight of the cylinder $=\frac{2}{3}$ the hight of the cone.

Scholium.

From the foregoing propofitions, is eafily deduced the proportion which the fphere has to the infcribed and circumfcribed equilateral cylinders and cones, as follows :

Solidity of the fphere 3^{2}

L. PROP.

FIG.
218.

PROP. XXVI.

 foribed in a fphere, is $\frac{2}{3}$ the Square of the diameter: $\mathrm{AE}^{2}={ }_{3}^{2} \mathrm{EF}^{2}$ 。For drawing ECF \perp to the bafe $\mathrm{ABD}, 3 \mathrm{AC}^{2}=$ $\mathrm{AB}^{2}(4 \mathrm{I} . \mathrm{IV})=\mathrm{AE}^{2}=\mathrm{AC}^{2}+\mathrm{CE}^{2}$ (2I.II); and $2 \mathrm{AC}^{2}=\mathrm{CE}^{2}$, or $\frac{1}{2} \mathrm{CE}^{2}=\mathrm{AC}^{2}=\mathrm{EC} \times \mathrm{CF}$ (1%. IV), therefore $\mathrm{CF}=\frac{1}{2} \mathrm{CE}$, and $\mathrm{EF}=\frac{3}{2} \mathrm{CE}_{2}$ or $\mathrm{CE}=\frac{2}{3} \mathrm{EF}$, and $\mathrm{AC}^{2}=\frac{1}{2} \mathrm{CE}^{2}=\frac{2}{3} \mathrm{EF}^{2}$. Therefore $\mathrm{AE}^{2}=\mathrm{AC}^{2}+\mathrm{CE}^{2}(2 \mathrm{I} . \mathrm{II})=\frac{2}{9} E F^{2}+\frac{4}{9} E F^{2}$ $=\frac{6}{9} \mathrm{EF}^{2}=\frac{2}{3} \mathrm{EF}^{2}$.

Cor. I. The bight of the pyramid is $\frac{2}{3}$ the diameter of the fphere, $\mathrm{EC}=\frac{2}{3} \mathrm{EF}$.

Cor. 2. The diameter of the fpbere: diameter of the circle comprebending the bafe of pyramid :: as $3: \sqrt{ } 8$.

For $\mathrm{AC}^{2}=\frac{2}{9} \mathrm{EF}^{2}$, and $4 \mathrm{AC}^{2}=\frac{8}{8} \mathrm{EF}^{2}$.
Cor. 3. The area of the bafe $\mathrm{ADB}=\mathrm{EF}^{2} \times \frac{\sqrt{ } 3}{6}$.
For the area $\mathrm{ADB}=\frac{\mathrm{AB}^{2}}{4} \sqrt{3}$ (39. II). And AB^{2} or $\mathrm{AE}^{2}=\frac{2}{3} E F^{2}$. Therefore $\mathrm{ADB}=\frac{1}{6} E F^{2} \sqrt{3}$.

Cor. 4. The radius of the infcribed $\int p$ bere $=\frac{1}{6} \mathrm{EF}$.
For it is $=\mathrm{EC}-\frac{1}{2} \mathrm{EF}=\frac{1}{6} \mathrm{EF}$.

PROP. XXVII.

218. The folidity of a regular pyramid inforibed in afphere, is $\frac{1}{27} \mathrm{EF}^{3} \sqrt{3}$.

For the folidity $=\frac{5}{3} \mathrm{EC} \times$ bafe $\mathrm{ABD}(18 . \mathrm{VI})=$ $\frac{2}{3} \mathrm{EF} \times \mathrm{ABD}($ Cor. 1.26$)=\frac{2}{9} \mathrm{EF} \times \frac{1}{6} \mathrm{EF}^{2} \sqrt{3}$ $\left(\right.$ Cor. 3. 26) $=\frac{\sqrt{ } 3}{27} \times \mathrm{EF}^{3}$.

PROP.

P R O P. XXVIII.

FIG.
The Square of the diameter of a Sphere, is thrice the 2 i g. Square of the fide of its infcribed cube: $\mathrm{FA}^{2}=3 \mathrm{FD}^{2}$.

Through the oppofite fides AG, DF, fuppofe the plane FDAG to be drawn ; and through two oppofite angles A, F, draw the diameter of the fphere AF. Then $\mathrm{DA}^{2}=\mathrm{DB}^{2}+\mathrm{BA}^{2}=2 \mathrm{DB}^{2}=2 \mathrm{DF}^{2}$ (21. II). Alfo $F A^{2}=\mathrm{FD}^{2}+\mathrm{DA}^{2}=\mathrm{FD}^{2}+2 \mathrm{FD}^{2}$ $=3 \mathrm{FD}^{2}$ (ibid.).

Cor. $\mathbf{1}$. Thbe fide of the rube $\mathrm{DF}=\frac{1}{3} \mathrm{FA} \sqrt{3}$.
Cor. 2. The diameter of the Sphere AF, is to the diameter DA of the circle comprebending one face of the cube; as 1 to $\frac{1}{3} \sqrt{ } 6$.

For $\mathrm{FA}=\mathrm{FD} \times \sqrt{3}$, and $\mathrm{DA}=\mathrm{FD} \sqrt{2}$; and $\mathrm{FD}_{\sqrt{ } 3}: \mathrm{FD}_{\sqrt{2}}:: 1: \sqrt{\frac{2}{3}}$, or $\mathrm{I}: \frac{1}{3} \sqrt{ } \sqrt{6}$.

Cor. 3. The arrea of one face of the cube DBAI is equal to $\frac{1}{5} \mathrm{FA}^{2}$.

Cor. 4. The Sum of the fquares of the fides of the infcribed pyramid and cube, is equal to the Square of the diameter.

For the former is $\frac{4}{3}$, and the latter $\frac{t}{3}$, of the fquare of the diameter (26 and 28).

Cor. 5. The diameter of the circle containing one face of the cube DA, is equal to the fide of the pyramid.

For $\mathrm{DA}^{2}=2 \mathrm{DF}^{2}=\frac{2}{3} \mathrm{FA}^{2}(28)=$ qquare of the fide of the pyramid (26).

Cor. 6. The radius of the infcribed Spleve is $\frac{i}{2}$ the Fide FD.

L2 PROR.

The Solidity of a cube inscribed in a Sphere, is $\frac{\sqrt{3}}{9}$ multiplied into the cube of the diameter of the Sphere: $\frac{\sqrt{ } 3}{9}$ $\times \mathrm{AF}^{3}$.

For $\mathrm{DF}=\mathrm{FA} \sqrt{\frac{1}{3}}$, and $\mathrm{DF}^{3}=\mathrm{FA}^{3} \times \frac{1}{3} \sqrt{\frac{1}{3}}=$ $\mathrm{FA}^{3} \times \frac{1}{9} \sqrt{3}$ (28).

Cor. The inscribed cube is brice the inscribed pyramid.
PROP. XXX.
220. The square of the diameter of a sphere is double to the Square of the file of an infiribed regular oEtaedron ABFDEG: $\mathrm{AG}^{2}=2 \mathrm{AB}^{2}$.

Through two oppofite angles A, G, draw the diameter AG; then the angle $A B G$ is right (14.4); therefore $\mathrm{AG}^{2}=\mathrm{AB}^{2}+\mathrm{BG}^{2}=2 \mathrm{AB}^{2}$ (21. II).

Cor. 1. The square of the diameter of a circle conspretending a triangle of the oEtaedron, is $\frac{2}{3}$ the Square of the diameter of the fobere.

For $\mathrm{AB}^{2}=$ thrice the fquare of the radius $(4 \mathrm{I} . \mathrm{IV})=\frac{3}{4}$ the fquare of the diameter, and $A B^{2}=\frac{1}{2} \mathrm{AG}^{2}(30)$; therefore the diameter fquare $=\frac{2}{3} \mathrm{AG}^{2}$.

Cor. 2. The diameter of a circle containing the triangle of the oitaedron, is equal to the fade of the pyramid.

Cor. 3. The fame circle comprehends both the Square of the cube, and the triangle of an octaedron, inscribed in the fame Sphere.

For the former diameter is $\frac{1}{3} \sqrt{ } \sqrt{ }$, and the latter FIG. $\sqrt{\frac{2}{3}}=\frac{1}{3} \sqrt{ } 6$.

Cor. 4. The area of one of the faces of the octaedron, as ABE , is $\frac{\sqrt{ } 3}{8}$ multiplied into the fquare of the diameter of the $\int p$ bere $;=\frac{\sqrt{ } 3}{8} \times \mathrm{AG}^{2}$.

For the triangle $A B E=\frac{A B^{2}}{4} \sqrt{3} \quad$ (39. II) $=\frac{A G}{8} \sqrt{ } 3$.

Cor. 5. The radius of the infcribed circle is $\frac{1}{3} \mathrm{AB} \sqrt{6}$.
For it is the perpen. from C upon $A B E$, fuppofe it $=P, D=$ diameter of the circle encompaffing ABE . Then $\mathrm{PP}=\frac{1}{4} \mathrm{AG}^{2}-{ }_{4}^{1} \mathrm{DD}$; and ${ }_{4} \mathrm{PP}=\mathrm{AG}^{2}-\mathrm{D}^{2}=\mathrm{AG}^{2}-\frac{2}{3} \mathrm{AG}^{2}$ (Cor. I. 30) $={ }_{3}^{\frac{1}{3}} \mathrm{AG}^{2}=\frac{2}{3} \mathrm{AB}^{2}$, and $2 \mathrm{P}=A B \sqrt{\frac{2}{3}}=\frac{1}{3} A B \sqrt{ } 6$. and $P=\frac{1}{\circ} A B \vee 6$.

P R O P. XXXI.

The folidity of an oetaedron BD , inforibed in a Sphere, is $\frac{\pi}{6}$ the cube of the diameter of the Sphere AG.

For the body conifits of two pyramids BEDFA and BEDFG, ftanding on the fquare bafe BEDF, Therefore the folidity $=\mathrm{DE}^{2} \times \frac{{ }_{3}^{3}}{} \mathrm{AC}+\frac{2}{3} \mathrm{CG}=$ $\frac{4}{2} \mathrm{BD}^{2} \times \frac{\mathrm{AG}}{3}=\frac{1}{6} \mathrm{AG}^{3}$.

Cor. A Sphere, is to the infcribed octaedrons; as the circumference of the sphere, to its diameter.

For the fphere is $=\frac{2}{3}$ the circle $\mathrm{ABGD} \times \mathrm{AG}$ (II) $=\frac{2}{3} \mathrm{AG} \times$ circumference $\mathrm{ABGD} \times \div \mathrm{AG}$ (34. IV). Therefore fphere : octaedron : : ABGD $\times \frac{1}{6} \mathrm{AG}^{3}: \frac{1}{6} \mathrm{AG}^{3}:: A B G D: A G$.

$$
\mathrm{L}_{3} \quad \mathrm{PROP}_{1}
$$

FIG.
PROP. XXXII.
22 I.
The Square of the diameter of a sphere, is to the square of the gide of its inforibed regular dodecaedron DA; as 6 to $3-\sqrt{ } 5$; or as $9+3 \sqrt{ } 5$, to 2 .

Let A be a folid angle of the dodecaedron; $A G, A I, A L$, three pentagons forming the $\angle A$, Draw the diagonals, $\mathrm{BD}, \mathrm{BF}, \mathrm{DF}$. And on the plane $B D F$ let fall the pert. $A C$, and draw $D C$, Then $D F^{2}={ }_{3} \mathrm{DC}^{2}(4 \mathrm{I} . \mathrm{IV})$, and $\mathrm{DC}^{2}=\frac{{ }_{3}^{3}}{3} \mathrm{DF}^{2}$, and $C A^{*}=D A^{2}-D C^{2}($ Cor. 1, 21. II $)=\mathrm{DA}^{2}$ $-\frac{1}{3} \mathrm{DF}^{2}=\mathrm{DA}^{2}-\frac{1}{3} \mathrm{DA}^{2} \times \frac{3+\sqrt{5}}{2}$ (Cor. 3.43, IV) $=\frac{3-\sqrt{ } 5}{6} D A^{2}$, therefore $C A=\frac{\sqrt{3-\sqrt{ } 5}}{\sqrt{6}} D A$; But $\frac{D A^{2}}{C A}=$ diameter of the sphere (Cor. 17. IV), or the diameter $=\frac{D A^{2} \times \sqrt{ } 6}{D A \times \sqrt{3-\sqrt{5}}}=$ $\frac{\sqrt{ } 5}{\sqrt{3-\sqrt{5}}} \times D A=S$; and diameter fquare, $S S=$ $\frac{6 \mathrm{DA}^{2}}{3-\sqrt{5}} ;$ and $D A^{2}=\frac{3-\sqrt{ } 5}{6} S S=\frac{2 S S}{9+3 \sqrt{5}}$.

Car. 1. The faure of the diameter of the Sphere, is to the Square of the -diameter of the circle contraining one face of the dodecredron AL ; as 15 to $10-2 \sqrt{ } 5$.

Let $S=$ diameter of the fphere, $R=$ radius of the circle circumfribing the pentagon, then AD^{2} $=\frac{3-\sqrt{ } 5}{6} \operatorname{SS}\left(3^{2}\right) ;$ and $R R=\frac{2 A D^{2}}{5-\sqrt{ } 5}$ (44 .IV) $=\frac{2}{5-\sqrt{5}} \times \frac{3-\sqrt{ } 5}{6} S S=\frac{1}{3} S S \times \frac{3-\sqrt{ } 5}{5-\sqrt{5}}$ $\equiv \frac{1}{3} \mathrm{SS} \times \frac{3-\sqrt{5}}{5-\sqrt{5}} \times \frac{5+\sqrt{ } 5}{5+\sqrt{5}}=\frac{1}{3} \mathrm{SS} x$

Book VII. of GEOMETRY.
$\frac{15+3 \sqrt{ } 5-5 \sqrt{5}-5}{25-5}=\frac{1}{3}$ SS $\times \frac{10-2 \sqrt{5}}{20}=\begin{gathered}\text { FIG. } \\ 221 .\end{gathered}$
$\frac{5-\sqrt{ } 5}{30} \mathrm{SS}$, and the fquare of the diameter of that circle or $4 R R=\frac{10-2 \sqrt{5}}{15} \mathrm{SS}$.

Cor. 2. The area of one pentagon of the dodecnedrone, is equal to $\frac{5}{12} \sqrt{ } \frac{5-\sqrt{ } 5}{10}$ multiplied by the Square of the diameter of the sphere.

For let O be the center of the circle circumfcribing the pentagon AI ; and $\mathrm{OP} \perp$ to FI. Then $\mathrm{OP}^{2}=\frac{3+\sqrt{ } 5}{8} \times \mathrm{RR}$ (Cor, 1. 44. IV) $=$ $\frac{3+\sqrt{5}}{8} \times \frac{5-\sqrt{ } 5}{30} \mathrm{SS}$; and the area $\mathrm{FOI}=$ $\frac{1}{2} \mathrm{OP} \times \mathrm{FI}=\frac{\mathrm{SS}}{2} \sqrt{ } \frac{3+\sqrt{ } 5}{8} \times \frac{5-\sqrt{ } 5}{30} \times \frac{3-\sqrt{ } 5}{6}$ $=\frac{\operatorname{SS}}{2} \sqrt{ } \frac{4}{48} \times \frac{5-\sqrt{ } 5}{30}$; and fince there are 5 fuch triangles in the pentagon, the pentagon $=\frac{5}{2} S S \sqrt{ } \frac{1}{12}$ $\times \frac{5-\sqrt{ } 5}{30}=\frac{5 S S}{12} \sqrt{5-\sqrt{ } 5} 10$.

Cor. 3. The file of the cube is equal to the diagonal. DF, of the pentagon of a dodecaedron inscribed in the Same Sphere.

For $\mathrm{DA}^{2}=\frac{3-\sqrt{ } 5}{6} \mathrm{SS}(32)$, and $D F=\frac{1+\sqrt{ } 5}{2} D A$
(Cor. 3. 43. IV); and $\mathrm{DF}^{2}=\frac{6+2 \sqrt{5}}{4} \mathrm{DA}^{2}$
$=\frac{3+\sqrt{ } 5}{2} \mathrm{DA}^{2}=\frac{3+\sqrt{ } 5}{2} \times \frac{3-\sqrt{ } 5}{6} \mathrm{SS}=$
$\frac{9-5}{2 \times 6} S S=\frac{4}{2 \times 6} S S=\frac{1}{5} S S$. But the fquare of the fine of the infrribed cube is alfo $=\frac{1}{3}$ SS (28). L 4 Therefore

The ELEMENTS

FIG. Therefore the diagonal in the pentagon $=$ fide $22 \ldots$. of the çube,

PROP, XXXIII.

The cube of the diameter of a fphere, is to the folidity of the infcribed regular dodecaedron; as 1 , to $\frac{5}{6} \sqrt{ } \frac{3+\sqrt{ } 5}{30}$.

Let $S=$ diameter of the fphere, $R=$ radius of the circle encompaffing the pentagon, $\mathrm{P}=$ perpendicular from the center of the fphere upon the pentagon, then $R R=\frac{5-\sqrt{5}}{30} S S$ (Cor. 1. 3^{2}). Then $\mathrm{PP}={ }_{\frac{1}{4}} \mathrm{SS}-\mathrm{RR}$ (Cor. 1. 21. II) $=$ $\frac{35-10+2 \sqrt{ } 5}{60} S S=\frac{5+\sqrt{ } 5}{60} S S$, and $P=$ $S \sqrt{5} \frac{+2 \sqrt{5}}{60}$, and the area of the pentagon $=$ $r^{5} \mathrm{SS} \sqrt{\frac{5-\sqrt{5}}{10}}($ Cor. 2. 32). Therefore the pyramid whofe bafe is the pentagon, and vertex at the center of the fphere, is $=\frac{1}{3} S^{3} \times \frac{5}{1} \frac{5}{} \frac{5+2 \sqrt{5}}{60}$ $\times \frac{5-\sqrt{5}}{10}(18 . V I)=5_{5}^{5} S^{3} \sqrt{25+10 \sqrt{5}-5 \sqrt{5}-10} 6$. $=\frac{5}{36} S^{3} \sqrt{15}+5 \sqrt{2} 5=\frac{5}{60} \sqrt{3} \sqrt{\frac{3}{} \frac{\sqrt{5}}{120}}$; but as there are 12 fuch pyramids in the body, therefore the dodecaedron $=\frac{5}{5} S^{2} \sqrt{ } \frac{3+\sqrt{5}}{120}={ }_{6}^{5} S^{3} \sqrt{ } \frac{3+\sqrt{15}}{30^{\circ}}$.

Cor: The radius of the phere inforibed in the dodecaedron, is DAV $\frac{25+11 \sqrt{5} 5}{40}$; DA being the Gide of the dodecaedicon.

Book VII. of GEOMETRY.
For that radius is $=P=S \sqrt{\frac{5}{}+2 \sqrt{5}} \frac{\text { FIG. }}{60}=$ $D A \sqrt{ } \frac{5+2 \sqrt{ } 5}{60} \times \frac{9+3 \sqrt{5}}{2}(32)=D_{A} \sqrt{75+33 \sqrt{5}} \frac{120}{}$ $=D A \sqrt{ } \frac{25+11 \sqrt{ } 5}{40}$.

PROP, XXXIV.
The Square of the diameter of a Sphere, is to the 222: Square of the fide of its infcribed regular icofibedron; as 10 to $5-\sqrt{ } 5$; or as $5+\sqrt{ } 5$ to 2 .

Let BDEFG be the pentagonal bafer of the folid angle A, made by 5 triangles of the icofiedron; let AC be perp. to it, and draw DC . Then DC^{z}. $=\frac{2}{5-\sqrt{5}} \mathrm{DE}^{2}(44 . \mathrm{IV})=\frac{2}{5-\sqrt{5}} \mathrm{AD}^{2}=\mathrm{AD}^{2} x$ $\frac{2}{5-\sqrt{5}} \times \frac{5+\sqrt{ } 5}{5+\sqrt{5}}=\frac{10+2 \sqrt{5}}{25-5} \mathrm{AD}^{2}=\frac{5+\sqrt{5}}{10} \mathrm{AD}^{2}$: And $A C^{2}=A D^{2}-D^{2}$ (Cor. 1. 21. II) $=A D^{2}$ $-\frac{5+\sqrt{ } 5}{10} \mathrm{AD}^{2}=\frac{5-\sqrt{ } 5}{10} \mathrm{AD}^{2}$, and $\mathrm{AC}=$ $A D \sqrt{ } \frac{5-\sqrt{5}}{10}$. But the diameter of the fphere $=\frac{A D^{2}}{A C}=\frac{A D^{3}}{A D \sqrt{ } \frac{5-\sqrt{5}}{10}}=A D \sqrt{\frac{10}{5-\sqrt{5}}}$, and the fquare of the diameter $=\mathrm{AD}^{2} \times \frac{10}{5-\sqrt{5}}=\mathrm{SS}$; and $A D^{2}=\frac{5-\sqrt{5}}{10} S S=\frac{2 S S}{5+\sqrt{5}}$.

Cor. I. The diameter of the Sphere, is to the dia:meter of the circle comprebending five fides of the icofiedron; as $\sqrt{5}$ to 2.

For if $S=$ diameter of the fphere, then $S S=$ $A D^{2} \times \frac{10}{5-\sqrt{5}}$, and $D C^{2}=A D^{2} \times \frac{2}{5-\sqrt{5}}$, and 4 DC

FIG. ${ }_{4} D^{2}=A^{2} \times \frac{8}{5-\sqrt{ } 5}$; therefore SS: ${ }_{4} D D^{2}::$ 10: $8:: 5: 4$. And $S: 2 D C:: \sqrt{5}: 2$.

Cor. 2. The fquare of the diameter of the Sphere, is to the Square of the diameter of the circle containing one triangle of the icufiedron; as 15 , to $10-2 \sqrt{ } 5$.

For let $\mathrm{R}=$ radius of the circle circumicribing the triangle $A D B$; then $A D^{2}={ }_{3} R R(41$. IV), and $A D^{2}=\frac{5-\sqrt{ } 5}{10} S S(34)$; therefore $\frac{5-\sqrt{ } 5}{10} S S$
$=3 R R$, and $\frac{\overline{5-\sqrt{ } 5}}{30} \times S S=R R$, and $\frac{10-2 \sqrt{5}}{15} S S$ $=4 \mathrm{RR}$.

Cor. 3. The fame circle comprebends both the pentagon of a dodecaedron, and the triangle of an icofiedron, infcribed in the fame Sphere.

Cor. 4. The area of a triangle ADB of the icofiedron, is equal to $\frac{5 \sqrt{3}-\sqrt{15}}{40} \times$ Square of the diameter of the Sphere.

For the area $=\frac{D A A^{2}}{4} \sqrt{3}(39 . I I)=\frac{S S}{4} \times \frac{5-\sqrt{5}}{10} \sqrt{3}$ (34) $=\operatorname{SS} \times \frac{5-\sqrt{5}}{40} \sqrt{3}=S S \times \frac{5 \sqrt{3}-\sqrt{15}}{40}$.

PR O P. XXXV.

222. The cube of the dicmeter of a Sphere, is to the folidity of the infcribed regular icofibedron; as 6 to $\sqrt{\frac{5+\sqrt{ } 5}{2}}$:

Let $\mathrm{P}=$ the perpendicular from the center of the fphere, upon the triangle ADB of the icofiedron. $R=$ radius of the circle encompaffing the triangle. Then $R R=\frac{5-\sqrt{5}}{30} S S$ (Cor. 1. 34).

Then

Book VII. of GEOMETRY.
Then $\mathrm{PP}=\frac{1}{4} \mathrm{SS}-\mathrm{RR}={ }_{\frac{1}{4}} \mathrm{SS}-\frac{5-\sqrt{5}}{30} \mathrm{SS}=\mathrm{FIG}$.
$\frac{5+2 \sqrt{ } 5}{60} \times S S$, and $P=S \sqrt{ } \frac{5+2 \sqrt{ } 5}{60}$. And area of the triangle $A D B=\frac{5-\sqrt{ } 5}{40} \sqrt{ } 3 \times S S$ (Cor. 4. 34). Therefore the pyramid whofe bafe is ADB , and vertex at the center of the fphere is $=\frac{1}{3} \mathrm{P} \times \mathrm{ADB}$ (18. VI) $=\frac{\mathrm{SS} \sqrt{3}}{3} \times \frac{5-\sqrt{ } 5}{40} \times S \sqrt{\frac{5+2 \sqrt{5}}{60}}$ (dividing by $\sqrt{ } 3)=\frac{S^{3}}{3 \times 40} \times \overline{5-\sqrt{ } 5} \times \sqrt{\frac{5+2 \sqrt{5}}{20}}$ (fquaring $5-\sqrt{5}$) $=\frac{S^{3}}{3 \times 40} \times \sqrt{30-10 \sqrt{5}} \times \frac{5+2 \sqrt{5}}{20}$ $=\frac{S^{3}}{3 \times 40} \sqrt{ } \frac{50+10 \sqrt{5}}{20}=\frac{S^{3}}{3 \times 40} \sqrt{ } \frac{5+\sqrt{ } 5}{2}$. And 20 fuch pyramids, or the icofiedron $=\frac{S^{3}}{6} \sqrt{ } \frac{5+\sqrt{5}}{2}$.

Cor. The radius of the Sphere infribed in the icofibedron, is $\mathrm{DA} \sqrt{ } \frac{+3 \sqrt{5}}{24}$, DA being the fide of the icofibedron.

For that radius is $=P=S \sqrt{ } \frac{5+2 \sqrt{5}}{60}=$ $\mathrm{DA} \sqrt{ } \frac{5+2 \sqrt{ } 5}{60} \times \frac{5+\sqrt{5}}{2}(34)=\mathrm{DA} \sqrt{ } \frac{35+15 \sqrt{5}}{120}$ $=D A \sqrt{ } \frac{7+3 \sqrt{5}}{24}$.

Scholium.
A fphere may be infcribed or circumfcribed to any regular body, or to any triangular pyramid.

BO OK VIII.

The conftruction of geometrical problems.

DEFINITION.

FIG. Problem is fid to be constructed geometrically, when it is done by the help only of a ftraight ruler, and a pair of compaffes.
PROB. I.
223. To draw a fraight line from one point A , to another B, upon a plane.

Set one foot of the compaffes in the point A; and apply the edge of one end of the ruler to it; keep it close there, whiff you turn the other end of the ruler about, till the edge of it fall upon the other point B; then draw a line by the edge of the ruler, which will go from one point to the other.
PR OB. II.
224. To produce a line AB , that is too fort.

Lay the edge of one end of the ruler againft the foot of the compaffes, placed at one end of the line A; and turn the other end about it, till the edge fall upon the other end of the line B. Then through B , draw a line by the edge of the ruler, from B to F.

Otberwife.

FIG.
$224{ }^{\circ}$

PROB. III.

From a given point C , to draw a line equal to a 225° given line AB .

Draw the line CD, fufficiently long; then take the extent AB in your compaffes, and feting one foot in C, ftrike the obfcure arch, F. Then CF $=\mathrm{AB}$.

> PROB. IV.

To find the fum and difference of two given lines $A B, B D$.

Draw any line DA fufficiently long, then take the fhorter line $A B$ in your compaffes, and feting one foot in B , defcribe two arches to cut AD in A and F ; then will $\mathrm{DA}=\mathrm{BD}+\mathrm{BA}$, and $\mathrm{DF}=$ $\mathrm{BD}-\mathrm{BA}$.

> PROB. V.

To divide a given angle ACB into two equal parts. 22%
From the angular point C defcribe any arch AB , to cut CA, CB; then with any extent, feting one foot in A and B, defcribe two obfcure arches, to

F IG. cut each other in D; then draw $C D$; and $\angle A C D$ 227. $=\mathrm{DCB}$.

For if $A D, B D$ be fuppofed to be drawn; the $\angle D C A=D C B$ (8. II).
P R O B. VI.
228. To divide a given right line AB into two equal parts.

From the ends A, B, with the fame extent, defcribe two arches, to cut one another in C , and D . Draw CD to cut AB in I. Then AI =IB.

For if $A C, A D, B C, B D$ be fuppofed to be drawn, $A C B D$ will be a rhombus; and $\mathrm{AI}=\mathrm{IB}$ (2. III).

> P R O B. VIl.
229. To make an angle B , equal to a given angle A .

Upon the angular point A as a center defcribe an arch FG. Draw any line BC, and from B with the fame extent as before, defcribe the arch CD. Make the arch $C D=F G$, and draw BD. Then $\angle C B D=\angle F A G$.

PROB. VIII.

230. Tbrough a given point A , to drawe a line AB parallel to anotber CD .

Take the neareft diftance of the point A from CD; and feting one foot in fome point of the line CD , defcribe an occult arch O . Then through A draw a line AB to touch the arch O ; which will be || to CD.

Otberwife.
231. From fome point O in the line $C D$ as a center, with the diftance $O A$, defcribe a femicircle CABD pafling through A; then make the arch

Book VIII. of GEOMETRY.

Or thus.
With any extent, and one foot in A, defcribe 232 . an arch to cut CD in fome point C. And with the fame extent, and one foot in fome point as D, in the line $C D$, defrribe an arch B to cut $A B$. Then with the extent $C D$, and one foot in A, crofs the laft arch in B; then draw $A B$, which is parallel to $C D$ (I. III).

Or thus.

From a point D taken at pleafure in the line DC , defrribe through A, the arch AC; and from A, with the fame extent, the arch DB. Make $\mathrm{DB}=\mathrm{AC}$. And draw AB , which will be $\|$ to DC (Cor. 2. 4. I).

P R O B. IX.

From a given point \mathbf{P} in a rigbt line AB , to raije 234° a perpendicular.

Make PC equal to PB , and from C and B , with a convenient extent, defcribe two arches to cut each other at D ; draw DP , which will be \perp to CB (8. II).

> Or tbus.

With any diftance PF, and one foot in P, de- 235° fcribe the circle FCD, and fet FP from F to C, and from C to D ; from the points C, D, with any extent, defcribe two arches to interfect at O, then draw OH , which is \perp to AB .

For FC is the third part of a femicircle (45.IV), and CD is bifected by OP (Cor. 3.3. II), and alio the arch CD (Cor. 2. 2. IV), and therefore $\angle F P O$ $=\mathrm{OPB}=$ a right angle.

FIG. PROB. X.
236. To raife a perpendicular on the end A , of a line given, AB.

Set one foot in A, and extend the other to any point C out of the line $A B$. From C as a center defcribe the femicircle PAF, to cut AB in F . Through F and C draw FCP, to cut the femicircle in P . Then draw PA , which will be \perp to AB (14. IV).

Otherwife.

237. From the center A , at anly diftance AF , defcribe the arch $F G$; fet $A F$ from F to G. And from G with the fame extent defcribe an arch P . Through F and G, draw the line FGP, to cut the arch in P. Then draw PA , which is perpendicular to AB .

For if AG be drawn, $\angle \mathrm{FAG}=\frac{2}{3}$ of a right angle (Cor. 2. 3. II) $=\mathrm{AGF}=2$ GAP (I . II). Therefore GAP $=\frac{t}{3}$ a right angle; and the whole $\mathrm{FAG}+\mathrm{GAP}=\frac{2}{3}+\frac{1}{3}=1$ whole right angle.

> Or tbus.
238. Take any length in your compaffes, as AC ; and fet it 5 times along the line AB , to $\mathrm{C}, \mathrm{E}, \mathrm{D}$, I, K; take 3 parts AD in your compaffes, and with one foot in A defcribe an arch P; then with extent AK (or 5 parts), and one foot in I, crofs the arch P ; then from the point of interfection P to A draw PA, which is \perp to AB (Cor. 3. 2 I. II).

It will be the fame thing, if you fet AI from A to P, and $A K$ from D to P.

PR O B. XI.

FIG.
From a given point P , to let fall a perpendicular 239. upon a given line AB .

From the center P defcribe an arch to cut $A B$ in E and F. From E and F, with a proper diftance, defcribe two obfcure arches to interfett in I, then through P and I , draw PC ; which is perp. to AB (Cor. 3. 3. II).

Or tbus.

From a point A in the line $A B$, with diftance 240. AP , defcribe the arch PI ; likewife from another point D, in $A B$, with diftance $D P$, defcribe the arch PI to cut the former in I. Draw PCI, and PC is \perp to AB .

For if AP, AI be drawn, then PC=CI, and $\mathrm{AC} \perp \mathrm{PI}$ (Cor. 3. 3. II. and 8. II).

P R O B. XII.

To divide the given line AB into cany number of 24 I . equal parts.

Draw any indefinite line AP, of which fet the equal parts $A L$, LM, MN, NP. Draw 1 B, and through $\mathrm{L}, \mathrm{M}, \mathrm{N}$, druw $\mathrm{LD}, \mathrm{ME}, \mathrm{NF} \|$ to PB . Then $\mathrm{AD}=\mathrm{DE}=\mathrm{EF}=\mathrm{FB}(12 . \mathrm{I})$.

Othervije.

From the ends A, B, of the given line, draw 242. two lines AP, BK as long as you will, parallel to one another. Then fet any equal parts from A towards P , and likewife from B towards K . Then draw lines between the correfpondent points, NG, MH, LI, which will divide $A B$ into the equal parts $\mathrm{AD}, \mathrm{DE}, \mathrm{EF}, \mathrm{FB}$ (12. II).

M

The ELEMENT\$

Or tbus.
243. Let AB be given to be divided; draw $\mathrm{CP} \|$ to $A B$. Set any equal parts, from C to L, L to M, M to N , and from N to P . Draw CA and PB to interfect in G; and draw GL, GM, GN, to cut $A B$ in D, E, F. Then $A D, D E, E F, F B$ are all equal (Cor. I 3 . II).

P R O B. XIII.

244. To divide a given line AB , in proportion as another line AC is divided in D and. E .

Let $A B$ and $A C$ be joined at A, making the angle BAC ; draw CB ; and through D, E, draw $\mathrm{DF}, \mathrm{EG} \|$ to CB . Then will $\mathrm{AF}: \mathrm{AD}:: \mathrm{FG}$: DE : : GB : EC (Cor. 2. 12. II).

PR O B. XIV.

245. To find a third proportional to two given lines, AB, AD.

Join $A B, A D$ at A, fo as to make an angle $B A D$. Produce $A D$, and make $A C=A D$, and draw $\mathrm{CE} \|$ to BD ; then AE is the third proportional. For $\mathrm{AB}: \mathrm{AD}:: \mathrm{AC}$ or $\mathrm{AD}: \mathrm{AE}$ (13. II).

PR O B. XV.

246. Io find a fourth proportional to three given lines, $\mathrm{AB}, \mathrm{AC}, \mathrm{AD}$.

Let $A B, A C$ make any angle at A, apply the third line from A to D. Draw BC, and DE $\|$ to BC ; then AE is the fourth proportional. For $A B: A C:: A D: A E(13.1 I)$.

Book VIIt. of GEOMETRY.

P R O B. XVI.

FIG.
To find a mean proportional between two given lines 247. $A B, B D$.

Let $A D$ be the fum of the two lines $A B, B D$ (4) ; bifect AD in C . With center C , and radius CA or CD, defrribe the femicircle AED. From B erect $\mathrm{BE}+$ to AD , to cut the circle in E ; then BE is the mean proportional fought.

For $A B: B E:: B E: B D(17 . I V)$.

Or tbus.

Let BA be the greater, bifect it in C , and from 244^{3} the center C , with radius CA or CB , defcribe the femicircle BEA. Let BD be the leffer given line. Erect $\mathrm{DE} \perp$ to $\mathrm{BA}(9)$, to cut the circle in E , draw BE , which is a mean between BD and BA (Cor. 17. IV).

P R O B. XVII.

To divide the given line AB in extreme and mean 249: proportion.

Draw EAF \perp to $A B$, and make $A E=\frac{x}{2} A B$, and draw EB , and make $\mathrm{EF}=\mathrm{EB}$, and $\mathrm{AG}=$ $A F$. And G is the point of divifion.
For $\mathrm{AF}=\mathrm{EF}-\mathrm{EA}$ (Conft.), that is, $\mathrm{AG}=$ $\mathrm{EB}-\mathrm{EA}$, and $\mathrm{AG}+\mathrm{AE}=\mathrm{EB}(\mathrm{Ax} 3$.$) , that$ is, $A G+\frac{1}{2} A B=E B$; and $A G^{2}+A G \times A B$ $+\frac{1}{4} \mathrm{AB}^{2}=\mathrm{EB}^{2}(\mathrm{I} . \mathrm{I})$, and $\mathrm{AG}^{2}=E B^{2}-\mathrm{AG}$ $\times \mathrm{AB}-\mathrm{EA}^{2}\left(\right.$ becaufe $\left.\frac{1}{\mp} \mathrm{AB}^{2}=E A^{2}\right)=\mathrm{AB}^{2}$ $-\mathrm{AB} \times \mathrm{AG}($ Cor. 21 I. II $)=A B \times \overline{A B-A G}$ $=A B \times B G$, therefore $A B$ is cut in G, in extreme and mean proportion (Def. 11. Proportion).

FIG. 249.

Cor. $\mathrm{AG}=\mathrm{AB} \times \frac{\sqrt{5}-1}{2}$, and $\mathrm{BG}=\mathrm{AB} \times$ $\frac{3-4}{2}$.

For $E B$ or $E F=\sqrt{\frac{5}{4}} \mathrm{AB}^{2}=\frac{A B}{2} \sqrt{\prime}^{\prime}$, and $A F$ or $A G=E F-\frac{1}{2} A B=A B \times \frac{\sqrt{ } 5-1}{2}$.

Alfo $B G=A B-A G=A B \times \frac{2-\sqrt{5}+1}{2}$ $=A B \times \frac{3-\sqrt{5}}{2}$.

PROB. XVIII.
250. In any triangle ABC , to draw a perpendicular from any angle A to its opposite side CB.

About either of the other fides $A B$, defcribe a femicircle ADB , to cut the fide CB in D. Draw AD , which will be \perp to CB (14. IV).

PR OB. XXX.

251. Upon a given line AB , to make an equilateral triangle.

- Take AB in your compaffes, and with one foot in A and B, defcribe two arches to crops each other at C. Draw $A C, B C$; and $A B C$ is the triangle.

PR OB. XX.

252. To make a triangle of three given lines $\mathrm{A}, \mathrm{B}, \mathrm{C}$; of wobich any two must be greater than the third.

Draw $\mathrm{DE}=$ the line A ; then take B in your companies, and with one foot in E defcribe an occult arch F. Then take C in your compaffes, and with one foot in D , crops the former arch at F ; draw DF, EF; and DEF is the triangle required.

Cor.

Book VIII. of G E O M ETRY.
Cor. After the fame manner, a triangle is made FIG. equal to a given triangle.

P R O B. XXI.
To make an ifofceles triangle A BD, whofe fide is the 253. given line AB ; and angle at the baje B or D , double to that at the top A.

Let $A C$ be the greater part of the line $A B$ divided in extreme and mean ratio (17). From the center A through B, defcribe the circle $B D$; and with extent CA, and one foot in B, crofs the circle in D; and draw $A D$. Then $A B D$ is the triangle fought.

For draw $C D$; then fince $A B: A C:: A C$: $C B$ (Def. ir. Proportion), that is, $A B: B D::$ $B D: B C$; therefore the triangles $A B D, B D C$ are fimilar (14. II), and $B D=D C=C A$. Whence the $\angle \mathrm{B}$ or $\mathrm{BCD}=\angle \mathrm{A}+\mathrm{CDA}(\mathrm{I} . \mathrm{II})=2 \angle \mathrm{~A}$ (3. II).

Cor. The angle A is $\frac{2}{5}$ of a right angle.

P R O B. XXII.

A triangle ABC being given; to reduce it to another of a different bafe, AED.

Let AE be the bafe propofed, being in the fame line $A B$. Draw the line $C E$, from the top of the given triangle, to the point \mathbb{E} propofed. And through $\angle B$ of the given triangle, draw $\mathrm{BD} \|$ to CE ; draw the line DE. Then the triangle ADE $=\mathrm{ACB}$.

For triangle $\mathrm{DBE}=$ triangle DBC (10. II). Add $A D B$, then $A D B+B D E$ or $A D E=A D B+$ $B D C$ or $A B C$.

Cor. Thus a triangle may be reduced to another of - different bight.

The ELEMENTS

FIG.
255. line drawn from an angle A.

Divide the bafe, or oppofite fide BC , in D , in the proportion given (13); to D , draw the line Al ; which divides the triangle ABC , in the fame given ratio (1 f. II).

P R O B. XXIV.

256. To reduce a polygon ABCDE to ferwer fides.

To take away the angle B; produce the next fide EA, then draw the diagonal CA, and from B, draw $\mathrm{BG} \|$ to CA , to cut EA in G ; and draw CG, which takes in the triangle CAG, inftead of its equal CAB (10, II), So the polygon becomes CGED.

Cor. By thus taking awoay one angle after anothor; any polygon may, at laft, be reduced to a triangle.
PROB. XXV. Upon a given line A, to make a Square.
Draw $B C=A$, take A or $B C$ in your compaffes, and with one foot in C, defrribe the arch BED ; and with one foot in B, the arch CEF. Set the fame extent from the interfection E to F; draw CF to cut BE in G ; make ED and $\mathrm{EI}=$ EG ; and draw $\mathrm{BI}, \mathrm{ID}, \mathrm{DC}$, and BIDC is the fquare required.
For if CE, BE, BF be drawn, $\angle \mathrm{BCE}=\frac{2}{3} \mathrm{a}$ right angle (Cor. 2.3. II) $=\mathrm{CBE}=\mathrm{EBF}$, and $\angle E C F=\frac{7}{3}$ a right one (12 . IV), therefore ECD $=\frac{1}{4}$ a right angle, and $\mathrm{BCD}=\mathrm{a}$ right angle .

Or tbus.
FIG.
Make $B C=A$, draw $C D \perp$ and $=C B(9) ; 257$. with extent $B C$, and one foot in B, defcribe an arch I; with the fame extent and one foot in D, crofs the arch at I ; draw BI, ID; then BIDC is the fquare.

P R O B. XXVI.

With two given lines A, B, to make a rectangle. 258:
Make the bafe $\mathrm{CD}=\mathrm{B}$, draw CF perp. to $\mathrm{CD}(\mathrm{g})$, and $=\mathrm{A}$; with the extent B , and one foot in F, defcribe an arch E; and with extent A, and one foot in D , crofs the arch at E ; draw FE , ED; and CFED is the rectangle fought.

P R O B. XXVII.

To make a Square equal to a given rectangle ABCD .
Produce the fides AD, CD, and make $\mathrm{DF}=$ DC ; bifect AF in I, and with radius IA or IF, defrribe the femicircle AEF to cut CE in E. On DE make the fquare DH , which will be equal to the rectangle AC or $\mathrm{AD} \times \mathrm{DF}$ (17 . IV).

P R O B. XXVIII,

To make a parallelogram equal to a triangle given 260 . ABC ; and baving an angle, equal to a given angle D .

Through A draw AG \| to BC, and make the $\angle B C G=D$; bifect $B C$ in E, and draw $E F \|$ to CG ; then the parallelogram $\mathrm{EG}=$ triangle ABC (7. III).

$$
\mathrm{M}_{4} \quad \mathrm{PROB}
$$

FIG. PROB. XXIX.
261. Upon a given right line A , to make a parallelogram equal to a given triangle B; baving an angle, equal to a given one C .

Make a parallelogram $\mathrm{GE}=$ triangle $\mathrm{B}(28)$, whofe angle $G=C$; produce $\mathrm{DG}, \mathrm{EF}, \mathrm{DF}$, GE ; and make FH = A ; through H, draw IL $\|$ to EF , to meet DE in I; draw IFK , to cut DG in K ; through K draw KL \| to GH, meeting EF and 1 H in M and L. Then the parallelogram $\mathrm{MH}=\mathrm{B}$.

For parallelogram $\mathrm{MH}=\mathrm{GE}(4 . \mathrm{III})=\mathrm{B}$ (Contr.).

Or tbus.

262. Let B be the given triangle; produce the bafe, and draw EG, parallel thereto; make the $\angle D C G$ $=\mathrm{C}$, and $\mathrm{CI} \equiv$ bafe of the triangle B . Then triangle CGI $=\mathrm{B}$ (io. II); make $\mathrm{CD}=\mathrm{A}$, and make triangle $\mathrm{CKD}=\mathrm{CGI}$ (22); bifeat CK in H , draw HL, DL $\|$ to CD, CH; then CL is the parallelogram fought.

For $\mathrm{CHLD}=$ triangle CKD $(7 . \mathrm{III})=\mathrm{CGI}$ $($ Conftr. $)=\mathrm{B}$.

PR O B. XXX.

263. Upon a given rigbt line FG , to make a parallelogram equal to a given polyson BACD, baving an angle equal to a given one \mathbf{E}.

Divide the polygon into triangles $\mathrm{CAB}, \mathrm{CBD}$. Make the angle GFK $=\mathrm{E}$; and make the parallelogram $\mathrm{Gl}=$ triangle CAB , and $\mathrm{HIK}=\mathrm{CBD}$ (29). Then parallelogram $E L=C A B D$.

Cor.

Cor. I. Hence a Square may be made equal to any FIG. given polygon; by making a rectangle equal to the poly- 263. gon, and then a Square equal to the rectangle (27).

Cor. 2. Tbus a parallelogram may be made equal to the fum or difference of two given polygons.

P R O B. XXXI.

To make a Square equal to the fum of two Squares. 2:64.
Make FBD a right angle; make $\mathrm{BA}=$ fide of one given fquare $; B C=$ fide of the other fquare, draw $A C$; then the fquare made on $A C$, is equal to the fum of the fquares made upon $A B$, and BC (2I. II).

Cor. After the fame manner a Square may be found squal to three or more fquares. For draws $\mathrm{OC} \perp$ to AC , and equal to the fide of a tbird Square, and draw AO . Then $\mathrm{AO}^{2}=\mathrm{AC}^{2}+\mathrm{CO}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}$ +CO (21. II); and So on.

P R O B. XXXII.

To make a Square equal to the difference of two 264. Squares.

Make the right angle FBD; fet the fide of the leffer fquare from B to A; take the fide of the greater in your compaffes, and feting one foot in A, with the other crofs the line $B D$, in C. Then CB is the fide of the fquare equal to the difference of the fquares (Cor. 21. II).

P R O B. XXXIII.

To find the proportion of one polygon A to another B. 265.
Find two fquares equal to the two polygons A, B (Cor. I. 30); let CF be the fide of the 2 firft,

FIG. firft, and draw $\mathrm{FE} \perp$ to it , and equal to the fide 265. of the fecond. Draw the hypothenufe CE; from F, let fall the perpendicular FD upon it: then $\mathrm{CD}: \mathrm{DE}:$: polygon A : polygon B .

For CD : DE : : $\mathrm{CF}^{2}: \mathrm{FE}^{2}$ (Cor. 4. 20. II) : : A : B (Conftr.).

P R O B. XXXIV:

266. To make a triungle equal and Smilar to a given triangle ABC .

Draw any line DE , and make $\mathrm{DE}=\mathrm{AB}$; then with extent AC , and one foot in D , defrribe an occult arch F. And with extent BC, and one foot in E, crofs the arch at F ; draw DF, EF; and DEF is the triangle required (8. II).

Or tbus.

Make the $\angle \mathrm{EDF}=\mathrm{BAC}$, and $\mathrm{DE}=\mathrm{AB}$, and $\mathrm{DF}=\mathrm{AC}$, and draw EF. And DEF is the tri? angle fought (6. II).

P R O B. XXXV.
267. To make a plane figure equal and fimilar to another ABCDEF.

In any line $A F$, take two marks or points M , N . Alfo in the line af, take $m n=\mathrm{MN}$. With the diftances from M to $\mathrm{B}, \mathrm{C}, \mathrm{D}, \mathcal{E}^{c}$, and one foot in m, defcribe as many arches; then with the diftances from N to $\mathrm{B}, \mathrm{C}, \mathrm{D}, \mathcal{E}^{c} \mathrm{c}$, and one foot in n, crofs them in $b, c, d, e, \& \& c$, make $m a=$ MA, $n f=\mathrm{NF}$; and draw the lines $a b, b c, c d, d e$, ef, in like manner as the correfpondent lines are drawn in the other figure ; and it is done.

Or thus.

Let the given figure ABCDE be divided into 268. the triangles $\mathrm{BAC}, \mathrm{CAD}, \mathrm{DAE}$. Then make triangle $\mathrm{GFH}=\mathrm{B} A \mathrm{C}, \mathrm{HHI}=\mathrm{CAD}$, and IFK $=\mathrm{DAE}$ (34). And the polygon GK will be equal and fimilar to BE .

PR O B. XXXVI.

To make a polygon fimilar to another ABCDE , 269. and in the given ratio of AF to AB .

Find AG a mean proportional between AF and AB . Draw the diagonals AC, AD. Then from G , draw $\mathrm{GH}, \mathrm{HI}, \mathrm{IK}$ parallel to $\mathrm{BC}, \mathrm{CD}, \mathrm{DE}$. And AGHIK is the polygon.

For the correfpondent triangles in both being fimilar, the polygons are fimilar (Cor. 2. 19. III). Alfo AF : AG :: AG : AB (Conftr.), and AF : $A B: A^{2}: A B^{2}$ (23. Proportion) : : polygon GI : polygon BD (20. III).

Otherwife tbus.

Make $P Q=A G$; alfo make the angles $Q P R$, RPS, SPT, refpectively equal to $\mathrm{BAC}, \mathrm{CAD}, \mathrm{DAE}$.
269.
270. And make the angles $\mathrm{Q}, \mathrm{R}, \mathrm{S}, \mathrm{T}$ fucceffively $=$ $\mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}$. And the polygon PQRST is that fought.

For each of the triangles in one figure is fimilar to each in the other (Def. 10. II) ; and therefore the polygons are fimilar (Cor. I. 19. III).

Cor. And tbus a polygon is made upon a given line AG or PQ , fimilar to another polygon ABCDE .

PROB. XXXVII.

270. To make a polygon TQ equal to a given one F , and 271. fimilar to another ACDEB.
2.72 .

Upon BA make the rectangle $\mathrm{BM}=\mathrm{BACDE}$ (30); and upon BH make the rectangle $\mathrm{BI}=$ A (30). Take PQ a mean proportional between BA and BR (16); and upon PQ , make the polygon PQRST fimilar to BACDE (Cor. 36); and TC is the polygon fought $=F$.

For polygon BD : polygon $\mathrm{PS}:: \mathrm{BA}^{2}$: PQ^{2} (20. III) : : BA : BR (23. Proportion) : : BM or polygon BD : BI or polygon F (8. III). Therefore polygon $\mathrm{PS}=\mathrm{F}$ (Ax. 7. Proportion).

Cor. If the polygon TQ was to be to F , in the given ratio of R to S ; it is done the fame way; only the parallelogram BI nut be made $=\frac{\mathrm{R}}{\mathrm{S}} \times \mathrm{F}$.

PR O B. XXXVIII.

To jind the center of a circle ADF.
273. Draw any line AD, and bifect it in B; through B draw $\mathrm{GBF} \perp$ to AD . Bifect GF in C , for the center (Cor. 1. 2. IV).

Cor. By the fame rule, the arch AGD is bijected (Cor. 1. 2. IV).

P R O B. XXXIX.

274. Through three given points A, B, F, to defcribe a circle.

Draw AB, BF, and bifect them in D, E. Thro' D and E, draw the perpendiculars $D C, E C$, to meet in C. C is the center (Cor. 1. 2. IV).

Cor. If an arch of a circle be given; the center FIG. may be found, by taking three points in that arch. 274. And then the circle may be compleated.

PROB. XL.

To draw a tairgest to a circle from a given point A.
From the point A to the center C, draw the line $A C$, bifect $A C$ in D. With the radius DA or $D C$, defribe a femicircle to cut the circle in B. Draw $A B$, which will touch the circle in B (10 and 14. IV).

P R O B. XLI.

Upon a right line AB , to defcribe the fegment of a 276 . circle, which Sall contain an angle AIB, equal to a given angle C.

Make the angle $B A D=C$. Through A draw $A E \perp$ to $A D$. At the other end B, make the $\angle A B F$ $=\mathrm{BAF}$, to cut AE in F . From the center F , with radius FA or FB, defcribe the fegment of a circle AIEB. Then $\angle A I B=C$.

For $\mathrm{AF}=\mathrm{FB}($ Cor. 1. 3. II) ; and $\angle \mathrm{AIB}=$ BAD (16. IV) $=C$.

Or thus.

Cut out a piece of wood, $\xi^{3} c$. with two ftraight fides, making an angle equal to C . And placing it between the fixt points A, B; move the angular point about, while the fides move clofe by the points A, B; then the angular point will defcribe the arch AIEB.

Cor. In the Same manner a Segment is cut off from a circle, to contain a given angle; by drawing the tangent AD at A , and making the angle $\mathrm{BAD}=\mathrm{C}$. Then AIEB is the ferment.

$$
P R O B .
$$

277. In a circle AEC, to infcribe a triangle fimilar to a triangle given, DFG.

Draw LK to touch the circle at A; make $\angle K A C=F$, and $\angle l . A B=G$. Draw $B C$, and the triangle BAC is fimilar to FDG (16. IV).

PROB. XLIII.

In a given triangle ABC , to infcribe a circle.
Bifect two angles B, C, with the lines $B D, C D$, meeting in D. Let fall DE \perp to BC. With radius $D F$, and center D, defcribe the circle $F L G$, which will touch all the fides of the triangle $A B C$ (Cor. 1. 35. II).

> PROB. XLIV.
259. About a given circle ABC , to defcribe a triangle fimilar to a triangle given, DEF.

Produce the fide EF both ways, to G and H . At the center I, make $\angle A I B=G E D$, and $B I C$ $=\mathrm{DFH}$. Then to the points $\mathrm{B}, \mathrm{A}, \mathrm{C}$, draw three tangents to the circle, to interfect in the points $\mathrm{L}, \mathrm{M}, \mathrm{N}$. Then the triangle LMN , is fimilar to EFD.

For fince the $\angle s$ at A, B, C are right angles; $\angle L+A I B=2$ right angles (Cor. 16. III) $=$ GED + DEF, and taking away the equal angles AIB , and GED; then $\angle L=D E F$. For the fame reafon $\mathrm{M}=\mathrm{DFE}$, confequently $\mathrm{N}=\mathrm{D}$.

FIG.
277. In a circle a triangle give

Draw LK $\angle K A C=F$, the triangle F
278. In a giver.

Bifect two : meeting in I radius $\mathrm{DF}_{\text {, }}$ an which will tou (Cor. 1. 35.]
279. About a gir Similar to a tri

Produce thi At the center $=\mathrm{DFH}$. T three tangent points L, M, fimilar to EFI

For fince tl $\angle L+A I B=$ GED + DEF, AIB , and GE fame reafon M

PROB. XLV.

About a triangle ABC , to defcribe a circle. 280.
Bifect any two fides, AB, BC, in D and E . Raife the perpendiculars DF, EF, to interfect in F. From F as a center defcribe a circle through B, which will pafs through A, C (Cor. 3^{2}. II).

Cor. In an acute-angled triangle, the center is witbin the triangle; in an obtufe one, without (Cor. I. 14. IV).

PR O B. XLVI.

In a given circle FCD , to inforibe an equilateral 28 s : triangle.

Draw the diameter FB. With the radius BA and center B , defcribe two arches C, D, to cut the circle in C and D . Draw the lines CD, DF, FC. And CFD is an equilateral triangle.

For arch CB or $\mathrm{BD}=\frac{1}{6}$ the circumference (45 . IV); therefore $\mathrm{CBD}=\frac{1}{3}=\mathrm{CF}=\mathrm{FD}$.

P R O B. XLVII.

In a given circle ABCD , to infcribe a square, or 282. regular oetagon.

Draw the diameters AC, BD at right angles to one another, cuting the circle in $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$. Draw the lines $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}, \mathrm{DA}$; and ABCD is a fquare (Cor. 2. 6. IV).

If the diameters FG , HI be drawn, bifecting the arches AFB, AHD, DGC, CIB. Then AF, or $\mathrm{FB}, \mathrm{E}_{\mathrm{c}} \mathrm{c}$. will be the fide of the octagon.

Cor. If $\mathrm{AF}, \mathrm{FB}, \mathrm{E}_{\mathrm{c}}$. be bijected, a polygon of 16 fides, will be inforibed; and fo on.

$$
4 \quad \text { PROB. }
$$

The ELEMENTS

FIG.
PR O B، XLVIII.
283. In a given circle ADBG , to inforibe a regular pentagon, or decagon.

Draw the diameter AB ; from the center C draw $C D \perp$ to $A B$; bifect $C B$ in E; and make $E F=\& D$, and draw DF, which will be the fide of the pentagon ; therefore if $\mathrm{DH}, \mathrm{HG}, \mathcal{E} c$. be made $=\mathrm{DF}$, DHGIK will be the pentagon required. Alfo FC is the fide of the decagon; therefore if DL, LK, E c. be made $=C F$; a regular decagon will be infcribed.

For $\mathrm{DF}^{2}=\mathrm{DE}^{2}+\mathrm{EF}^{2}-2 \mathrm{FE} \times \mathrm{EC}$ (23. II) $={ }_{2} \mathrm{DE}^{2}-{ }_{2} \mathrm{DE} \times \mathrm{EC}={ }_{2} \mathrm{DE}^{2}-\mathrm{DE} \times \mathrm{DC}$. But $\mathrm{DE}^{2}=\mathrm{DC}^{2}+\mathrm{CE}^{2}$ (2I. II) $=\frac{5}{4} \mathrm{DC}^{2}$, and $D E=\frac{1}{2} D C \sqrt{ } 5$. Therefore $D F^{2}=\frac{5}{2} D^{2}-$ $\frac{\mathrm{DC}^{2}}{2} \sqrt{5}=\mathrm{DC}^{2} \times \frac{5-\sqrt{ } 5}{2}$. Therefore DF is the fide of a pentagon (44. IV). And FC is the fide of a decagon (48. IV).

P R O B. XLIX.

284. In a given circle ACE, to infcribe a reguilar bexagon.

Make $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}, \mathrm{DE}, \mathrm{EF}$ and FA , all equal to the radius AG : and drawing the lines, the figure ABCDEF is a hexagon (45.1 V).

Cor. If the arch AB be bifected, you will bave the fide of a regular dodecagon.

PROB. L.

About a given circle ABC , to deforibe a regular 285 . polygon.

Either infcribe a polygon of the fame fort, or divide the circle into fo many equal parts AB, BC, $\mathcal{E}^{2} c$. as the polygon has fides. To the points of divifion, draw the radii $\mathrm{GA}, \mathrm{GB}, \mathrm{GC}, \mathcal{E}^{2} c$. To thefe lines at $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathcal{E}_{\mathrm{c}}$. draw tangents to the circle, $\mathrm{KD}, \mathrm{DE}, \mathrm{EF}, \mathcal{E}^{2}$. to interfect in $\mathrm{D}, \mathrm{E}, \mathrm{F}$, \mathcal{E}_{c}. then DEFHIK is the polygon required.

For if GD, GK be fuppofed to be drawn, $A K=A D$, and $\angle K=\angle D$ (7. II). Alfo $\mathrm{DA}=\mathrm{DB}($ Cor. 4. 2II. IV), whence $\mathrm{KD}=\mathrm{DE}=$ $\mathrm{EF}, \mathrm{E}^{\circ} \mathrm{C}$.

PROB. LI.

To infcribe a circle in any reguler polygon; or defcribe a circle about it.

Bifect any two adjoining angles D, K, with the lines DG, KG, and they will meet in the center G. Or bifect any two adjoining fides, DK, DE, with the perpendiculars AG, BG, which will meet in the center G. Take GA the neareft ditance to any fide, and from G defcribe the circle $A B C$, which will touch all the fides of the polygon DH.

Likewife bifect any two angles A; B, with the 284. lines $A G, B G$, which will meet in the center G. Or bifect any two fides CD, DE, with two perpendiculars meeting in G, the center. Then from A with diftance GA defribe a circle ABCE , which will pafs through all the angles of the figure.

Cor. A circle may be infrribed, or circumfcribed, to any regular polygon.

FIG.
PROB. LII.
286.

To defcribe a polygon in one circle ABDE , which
287. Ball be fimilar to a polygon FGI, defcribed in another, GIK ; regular or irregular.

Draw lines from the center P , to all the angles of the polygon, as PF, PK, PI, \mathcal{O}^{c}. Then at the center O , of the other circle, make the angles AOE , EOD, DOC, COB, BOA, refpectively equal to FPK, KPI, IPH, HPG, GPF. Draw lines between the points $A, E, D, E^{\prime} c$. Then $A B C D E$ is fimilar to FGHIK (Cor. 1. 19. III).

Cor. After the fame manner, a polygon may be defcribed about one circle, fimilar to a polygon defcribed about anotber circle.

P R O B. LIII.

288. From a given point A on bigh; to let fall a perpendicular to a plane BC.
In the plane BC draw any line DE . From A draw $\mathrm{AF} \perp$ to DE . Through F , draw $\mathrm{FH} \perp$ alfo to DE. Then let fall AI perp. to FH. Then AI is \perp to the plane BC .

For DE is \perp to the plane AFI (4. V). And if KL be $\|$ to DE , then KL is \perp to the plane AFI (6. V). Therefore AI is \perp to the plane HIL or BC (4. V).

Otherwife tbus.

289. Defcribe a circle BFD, from the point A, upon the plane, with a pair of compaffes or a ftring. Then find the center C of that circle $(37,38$. VIII) ; and $A C$ is \perp to the plane. In practice you need only extend from A, to three points of the plane, B, D, F 。

PROB.

PROB. LIV. FIG.

From a given point A , in a plane BC , to raije a per- 290. pendicular.

From fome point D, above the plane, draw $\mathrm{DE}+$ to the plane (52). Draw AE, and draw $\mathrm{AF} \|$ to ED . Then AF is perp. to the plane BC (6. V).

Both this and the laft Prob. may eafily be done with two fquares: fetting them crofs one another, and both of them clofe to the point A .

> PROB. LV.

To draw one plane parallel to anotber DE , at a given 29 I . difiance.

Take three points A, B, C in the plane DE, but not in a right line. At thefe points erect three perpendiculars $\mathrm{AI}, \mathrm{BK}, \mathrm{CL}$, to the plane DE (53); and of equal lengths, the fame as the given diftance. Through I, K, L, draw the plane FG, and it will be parallel to DE.

> P R O B. LVI.

To draw a plane perpendicular to a rigbt line $\mathrm{AB}, 292$: at B.

Draw two lines $C D$, $E F$ perp. to $A B$ at B. Through C, E, D, draw the plane CEDF, which is \perp to $\mathrm{AB}(4 . \mathrm{V})$.
$\mathrm{N}_{2} \quad \mathrm{PROB}$.

FIG.
293.

Through any two lines AB, CD, inclined to one -another, which do not interject ; to draw two planes perpendicular to one another.

Through any point E of the line $A B$, draw AF $\|$ to CD . Through the lines AEF, let the plane AEBF be drawn. From any point C, in the line $C D$, let fall the perp. CI, upon the plane AFB. Draw JH || to FE , to intersect AB in H . At H let fall $\mathrm{HG} \perp$ to CD . Then the plane CIHG will be perp. to the plane AFH.

For CD is $\|$ to $\mathrm{IH}(8 . \mathrm{V})$. And fince CI is perp. to IH, it is alpo \perp to CG (3.I). Therefore CI, HG are parallels (Cor. 3. 4. I); and $\mathrm{HG} \perp$ to the plane AFB (6. V). Therefore the plane DCIH is perp. to the plane AFB (7. Def. V).

Cor. I: The right line GH is perpendicular to both lines $A B, C D$.

For it is \perp to CD (Contr.), and it is \perp to the plane AHI, and therefore to AHB.

Cor. 2. GH is the nearefl diffance between the two lines AB and CD .

For the point H is nearer G , than any other point in the line AB (Cor. 4. 2I. II). And G is nearer H than any point in CD.

Cor. 3. Hence no two lines can pofibly be drawn; but another line may be drawn, which is perp. to them both.

Cor. 4. And no two lines can be drawn, but two planes may be drazon through them, perpendicular to one another.

Cor.

Cor. 5. The given line CD, is parallel to the plane FI G. AFB , paffing through the other line AB .

For it is parallel to HI.

P R O B. LVIII.

Through any two inclined lines, which cut not one 293: another, AB, CD; to draw two parallel planes through them.

Draw the plane HICD and BIFA perp. to one another, and paffing through the two given lines $A B, C D(56)$. Then through CG at the diftance GH , draw a plane \perp to $\mathrm{GH}(54)$, and it will be parallel to the plane ABF (Def. io. V).

Cor. I: The line GH, (wbich is perpendicular to both the given lines, AB, CD), is the diftance of the treo parallel planes.

Cor. 2. No two lines can be drawn, but there may be two planes drawn through them, parallel to one another.
P R O B. LIX.

To make a folid angle BAD, of tbree given plane 294. angles, whofe fum is lefs than four right angles, and any two greater than the third.

There is no more to do than to join all their fides $A B, A C, A D$, together; fo that the vertices or angular points may all meet together in A; then A is the folid angle required (Cor. 19. V).

PROB.

295. To make a folid angle, equal to any folid angle given, A.

Cut off the given folid angle A, by a plane BCDE; and from the given planes, make the angles QPR, RPS, SPT, and TPQ refpectively equal to BAC, CAD, DAE, and EAB ; alfo make $P Q, P R, P S, P T$ refpectively equal to $A B$, $\mathrm{AC}, \mathrm{AD}, \mathrm{AE}$. Then the plane triangles in one, will be equal to the triangles in the other. Then place the fides PR, PS, ξ_{c}. together as in the other folid angle A, fo that all their angular points may meet in P ; and likewife fo that the angles $\mathrm{Q}, \mathrm{R}, \mathrm{S}, \mathrm{T}$, may be refpectively equal to $\mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}$. And then the folid angle P will be equal to the folid angle A.

For all the 3 angles at Q , being equal to thofe at B; and all the three angles at R, equal to thofe at $\mathrm{C}, \mathcal{E}^{\circ}$. The folid angles at B, C, D, E, will be equal to thofe at $\mathrm{Q}, \mathrm{R}, \mathrm{S}, \mathrm{T}$ (Cor. 19. V). And confequently $\angle P$ muft be equal to A .

P R O B. LXI.

296. Upon a given line AB , to defcribe a parallelopipedon, fimilar to a given parallelopipedon CD.

Make the folid angle A equal to the folid angle $\mathrm{C}(59)$; alfo make as $\mathrm{CF}: \mathrm{CE}:: \mathrm{AB}: \mathrm{AH}$; and $C F: C G:: A B: A I$. Then finifh the parallelopipedon AK , by drawing the planes KI, KH, and KB , parallel

FIG.
295. To
given
C_{1}
BC[
ang]
equa
mak
AC, will
plac
folic
maj
Q,
Ans
ang
at
tho
D, (Cs equ
296.
leh
CI

C
C
pe

Book VIII. of GEOMETRY. parallel to the oppofite ones BH, BI, and IH. Then FIG. $1 B$ is fimilar to GF.

For their folid angles, are equal, and the fides proportional, and therefore they are fimilar (22. VI).

$F I N I S$

ERRATA.

The following BOOKS were written by the late Mr. Thomas Simpson, F.R.S. and printed for J. Nourse.

${ }^{1}$. ESSAYS on several curious and useful Subjects, in speculative and mixed Mathematicks; in which the moft difficult Problems of the firt and fecond Books of Neruton's Principia are explained; in 4 to.
II. Mathematical Dissertations on a variety of Phy. fical and Analytical Subjects, in 4 tu.
III. Miscellaneous Tracts on fome curious and very interefting Subjects in Mechanicks, Phyfical-Aftronomy, and Speculative Mathematicks, in 4 to, 1757.
IV. The Doctrine of Annuities and Reversions, deduced from general and evident Principles; with ufeful Tables, fhewing the Values of fingle and joint Lives, $\mathcal{E}_{c}{ }_{c}$ in 8 vo .
V. A Treatise of Algebra; wherein the fundamental Principles are fully and clearly demonfrated, and applied to the Solution of a great Variety of Problems, and to a Number of other ufeful Enquiries. Second Edition, in 8vo.

V1. The Doctrine and Application of Fluxions; containing (befides what is common on the Subject) a Number of new Improvements in the Theory, and the Solution of a Variety of new and very interefting Problems in different Branches of the Mathematicks. 2 Vols. $3 v o$.
ViI. Trigonometry, Plane and Spherical, with the Conftruction and Application of Logarithms, in 8vo.
VIII. Select Exercises for young Proficients in the Mathematicks; containing, befides a choice Collection of Problems, both algebraical and geometrical, the whole Theory of Gunnery; a very accurate and fuccinct Demonitration of the firf Principles of Fluxions ; and a Set of Tables for the Valuation of Annuities and Reverfions, more comprehenfive than any extant. 8vo.
IX. Elements of Geometry; with their Application to the Menfuration of Superficies and Solids, to the Determination of the Maxima and Minima of Geometrical Quantities, and to the Conflruction of a great Variety of Geometrical Problems. The Second Edition, with large Alterations and Additions.

OL'NN PəIIO ९ pəueəIJ

