Mathematik für Anwender II

Arbeitsblatt 34

Übungsaufgaben

Aufgabe 34.1. Zeige, dass das Standardskalarprodukt auf dem \mathbb{R}^n in der Tat ein Skalarprodukt ist.

AUFGABE 34.2. Sei V ein reeller Vektorraum mit einem Skalarprodukt $\langle -, - \rangle$ und sei $U \subseteq V$ ein Untervektorraum. Zeige, dass die Einschränkung des Skalarproduktes auf U ebenfalls ein Skalarprodukt ist.

AUFGABE 34.3.*

Sei V ein Vektorraum über \mathbb{R} mit einem Skalarprodukt $\langle -, - \rangle$ und der zugehörigen Norm $\|-\|$. Zeige, dass die Beziehung

$$\langle v, w \rangle = \frac{1}{2} (\|v + w\|^2 - \|v\|^2 - \|w\|^2)$$

gilt.

Aufgabe 34.4.*

Was bedeutet die Polarisationsformel für ein reelles Skalarprodukt für die Multiplikation von reellen Zahlen?

Aufgabe 34.5. Sei V ein reeller Vektorraum mit einem Skalarprodukt $\langle -, - \rangle$. Bestätige

$$||x + y||^2 - ||x - y||^2 = 4 \langle x, y \rangle.$$

AUFGABE 34.6. Sei V ein Vektorraum über \mathbb{R} mit einem Skalarprodukt $\langle -, - \rangle$ und der zugehörigen Norm $\|-\|$. Zeige, dass die sogenannte Parallelogrammaleichung

$$||v + w||^2 + ||v - w||^2 = 2||v||^2 + 2||w||^2$$

gilt.

AUFGABE 34.7. Sei V ein Vektorraum über \mathbb{R} mit einem Skalarprodukt $\langle -, - \rangle$. Zeige, dass der zugehörige Abstand die folgenden Eigenschaften besitzt (dabei sind $u, v, w \in V$).

- (1) Es ist $d(v, w) \ge 0$.
- (2) Es ist d(v, w) = 0 genau dann, wenn v = w.
- (3) Es ist d(v, w) = d(w, v).

(4) Es ist

$$d(u, w) \le d(u, v) + d(v, w).$$

AUFGABE 34.8. Sei $n \geq 2$. Zeige, dass für die Norm $||x|| := \max\{|x_i| : 1 \leq i \leq n\}$ auf dem \mathbb{R}^n kein Skalarprodukt $\langle -, - \rangle$ existiert mit der Eigenschaft $||x|| = \sqrt{\langle x, x \rangle}$.

AUFGABE 34.9. Bestimme, welche der folgenden Vektoren im \mathbb{R}^3 zueinander orthogonal bezüglich des Standardskalarproduktes sind.

$$\begin{pmatrix} 6 \\ 1 \\ 5 \end{pmatrix}, \begin{pmatrix} 3 \\ -8 \\ -2 \end{pmatrix}, \begin{pmatrix} 0 \\ -1 \\ 4 \end{pmatrix}, \begin{pmatrix} -5 \\ 4 \\ -1 \end{pmatrix}.$$

AUFGABE 34.10. Sei V ein reeller Vektorraum mit einem Skalarprodukt $\langle -, - \rangle$ und sei $U \subseteq V$ ein Untervektorraum. Zeige, dass das orthogonale Komplement ebenfalls ein Untervektorraum von V ist.

AUFGABE 34.11. Bestimme das orthogonale Komplement zu dem von $\begin{pmatrix} 8 \\ 3 \\ -6 \\ -4 \end{pmatrix}$

und
$$\begin{pmatrix} 4 \\ -2 \\ 7 \\ 5 \end{pmatrix}$$
 erzeugten Untervektorraum im \mathbb{R}^4 .

Aufgabe 34.12.*

Wende das Schmidtsche Orthonormalisierungsverfahren auf die Basis

$$\begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$

des \mathbb{R}^3 an.

AUFGABE 34.13.*

Bestimme das orthogonale Komplement zu dem von $\begin{pmatrix} -2\\8\\9 \end{pmatrix}$ erzeugten Untervektorraum im \mathbb{R}^3 .

AUFGABE 34.14. Der \mathbb{R}^3 sei mit dem Standardskalarprodukt versehen. Es sei $U\subseteq\mathbb{R}^3$ der Kern der linearen Abbildung

$$\mathbb{R}^3 \longrightarrow \mathbb{R}, (x, y, z) \longmapsto 3x + y + 7z,$$

versehen mit dem eingeschränkten Skalarprodukt. Man bestimme eine Orthonormalbasis für U.

Es seien V, W Vektorräume über \mathbb{K} mit Skalarprodukten und

$$\varphi \colon V \longrightarrow W$$

eine lineare Abbildung. Dann heißt φ eine Isometrie, wenn für alle $v,w\in V$ gilt:

$$\langle \varphi(v), \varphi(w) \rangle = \langle v, w \rangle.$$

Aufgabe 34.15.*

Sei V ein euklidischer Vektorraum der Dimension n. Zeige, dass eine Vektorfamilie $u_1, \ldots, u_n \in V$ genau dann eine Orthonormalbasis von V ist, wenn die zugehörige lineare Abbildung

$$\mathbb{R}^n \longrightarrow V, e_i \longmapsto u_i,$$

eine Isometrie zwischen \mathbb{R}^n und V ist.

Aufgabe 34.16. Man gebe ein Beispiel einer bijektiven linearen Abbildung

$$\varphi \colon \mathbb{R}^3 \longrightarrow \mathbb{R}^3$$

an, die keine Isometrie ist, für die aber für alle $u, v \in V$ die Beziehung

$$\langle u, v \rangle = 0$$
 genau dann, wenn $\langle \varphi(u), \varphi(v) \rangle = 0$

gilt.

AUFGABE 34.17. Betrachte die Linearform

$$L: \mathbb{R}^3 \longrightarrow \mathbb{R}, (x, y, z) \longmapsto x + 3y - 4z.$$

(1) Bestimme den Vektor $u \in \mathbb{R}^3$ mit der Eigenschaft

$$\langle u, v \rangle = L(v)$$
 für alle $v \in \mathbb{R}^3$,

wobei $\langle -, - \rangle$ das Standardskalarprodukt bezeichnet.

(2) Es sei

$$E = \{(x, y, z) \mid 3x - 2y - 5z = 0\} \subset \mathbb{R}^3$$

und es sei $\varphi = L|_E$ die Einschränkung von L auf E. Bestimme den Vektor $w \in E$ mit der Eigenschaft

$$\langle w, v \rangle = \varphi(v)$$
 für alle $v \in E$,

wobei $\langle -, - \rangle$ die Einschränkung des Standardskalarprodukts auf E bezeichnet.

Aufgabe 34.18. Es sei V ein euklidischer Vektorraum und $U\subseteq V$ ein Untervektorraum, der mit dem induzierten Skalarprodukt versehen sei. Es sei

$$f: V \longrightarrow \mathbb{R}$$

eine Linearform und $v \in V$ der zugehörige Gradient im Sinne von Lemma 34.18. Zeige, dass der Gradient $u \in U$ zur Einschränkung $f|_U$ die orthogonale Projektion von v auf U ist.

Aufgaben zum Abgeben

AUFGABE 34.19. Sei V ein reeller Vektorraum mit einem Skalarprodukt $\langle -, - \rangle$. Beweise den Satz des Pythagoras: Für zwei Vektoren $v, w \in V$, die senkrecht aufeinander stehen, gilt die Beziehung

$$||v + w||^2 = ||v||^2 + ||w||^2.$$

Aufgabe 34.20. Bestimme das orthogonale Komplement zu dem von $\begin{pmatrix} 5 \\ 8 \\ -3 \\ 9 \end{pmatrix}$

und
$$\begin{pmatrix} 6\\2\\0\\3 \end{pmatrix}$$
 erzeugten Untervektorraum im \mathbb{R}^4 .

AUFGABE 34.21. Sei V ein euklidischer Vektorraum und sei $u_1, \ldots, u_n \in V$ eine Orthonormalbasis von V. Zeige, dass für jeden Vektor $v \in V$ die Beziehung

$$v = \sum_{i=1}^{n} \langle v, u_i \rangle u_i$$

gilt.

AUFGABE 34.22. Wende das Schmidtsche Orthonormalisierungsverfahren auf die Basis

$$\begin{pmatrix} -1\\2\\3 \end{pmatrix}, \begin{pmatrix} 2\\-4\\5 \end{pmatrix}, \begin{pmatrix} 7\\3\\1 \end{pmatrix}$$

des \mathbb{R}^3 , versehen mit dem Standardskalarprodukt, an.

AUFGABE 34.23. Der \mathbb{R}^4 sei mit dem Standardskalarprodukt versehen. Es sei $U\subseteq\mathbb{R}^4$ der Kern der linearen Abbildung

$$\mathbb{R}^4 \longrightarrow \mathbb{R}, (x, y, z, w) \longmapsto 4x - 3y + 2z - 5w,$$

versehen mit dem eingeschränkten Skalarprodukt. Man bestimme eine Orthonormalbasis für U.

Aufgabe 34.24. (6 Punkte)

Sei V ein euklidischer Vektorraum und sei

$$\varphi \colon V \longrightarrow V$$

eine lineare Abbildung. Zeige, dass die folgenden Aussagen äquivalent sind.

- (1) φ ist eine Isometrie.
- (2) Für jeden Vektor v mit ||v|| = 1 ist auch $||\varphi(v)|| = 1$.

- (3) Für jede Orthonormalbasis $u_i, i = 1, ..., n$, ist auch $\varphi(u_i), i = 1, ..., n$, eine Orthonormalbasis.
- (4) Es gibt eine Orthonormalbasis $u_i, i = 1, ..., n$, derart, dass auch $\varphi(u_i), i = 1, ..., n$, eine Orthonormalbasis ist.

${\bf Abbildungs verzeichnis}$

Erläuterung: Die in diesem Text verwendeten Bilder stammen aus	
Commons (also von http://commons.wikimedia.org) und haben eine	
Lizenz, die die Verwendung hier erlaubt. Die Bilder werden mit ihren	
Dateinamen auf Commons angeführt zusammen mit ihrem Autor	
bzw. Hochlader und der Lizenz.	7
Lizenzerklärung: Diese Seite wurde von Holger Brenner alias	
Bocardodarapti auf der deutschsprachigen Wikiversity erstellt und	
unter die Lizenz CC-by-sa 3.0 gestellt.	7