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A long-standing problem at the frontier of biomechanical
studies is to develop fast methods capable of estimating
material properties from clinical data. In this paper, we
have studied three surrogate models based on machine
learning (ML) methods for fast parameter estimation of left
ventricular (LV) myocardium. We use three ML methods
named K-nearest neighbour (KNN), XGBoost and multi-
layer perceptron (MLP) to emulate the relationships between
pressure and volume strains during the diastolic filling.
Firstly, to train the surrogate models, a forward finite-element
simulator of LV diastolic filling is used. Then the training
data are projected in a low-dimensional parametrized space.
Next, three ML models are trained to learn the relationships
of pressure–volume and pressure–strain. Finally, an inverse
parameter estimation problem is formulated by using those
trained surrogate models. Our results show that the three
ML models can learn the relationships of pressure–volume
and pressure–strain very well, and the parameter inference
using the surrogate models can be carried out in minutes.
Estimated parameters from both the XGBoost and MLP
models have much less uncertainties compared with the
KNN model. Our results further suggest that the XGBoost
model is better for predicting the LV diastolic dynamics and
estimating passive parameters than other two surrogate
models. Further studies are warranted to investigate how
XGBoost can be used for emulating cardiac pump function in
a multi-physics and multi-scale framework.
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1. Introduction

Heart disease, such as myocardial infarction, has been seriously affecting the quality of life of human
beings [1]. Early diagnosis and treatment can effectively reduce the incidence and the mortality of
heart disease [2]. In recent years, with the development of medical image technology, such as
magnetic resonance imaging (MRI), it has provided paramount data for describing the structure and
function of human heart non-invasively [3]. While imaging data alone does not tell the whole story of
heart function, e.g. the stress and myocardial stiffness, etc., mathematical modelling and numerical
simulation of cardiac function, broadly termed as in silico medicine, have been considered as the next
generation of medicine for deciphering the mechanism of heart function physiologically and
pathologically [4,5].

Finite-element method (FEM) has been successfully applied to cardiac modelling in the past several
decades [6–10]. Myocardial material is generally considered to be a hyper-elastic material with a strong
nonlinear anisotropic stress response [11]. Many constitutive laws have been used to describe myocardial
material behaviours, including isotropic models, transversely isotropic models and, more recently,
orthotropic models [12]. In particular, the Holzapfel–Ogden law is a structure-based orthotropic
constitutive law that not only accurately describes the mechanical behaviour of the myocardium well
from various experimental data [13], but also has been successfully applied to subject-specific cardiac
models purely based on in vivo routine imaging data [14].

In general, material parameter estimation of a FEM heart model is formulated as an inverse
problem [14–18]; for example, it requires solving a constrained optimization problem [19,20] by
minimizing the mismatch between limited measured data and the FEM model predictions through
finding potential material parameters. This constrained optimization problem can be solved by some
gradient-based methods [21], such as the Newton method, the conjugate gradient method, and
intelligent methods (also known as nature-inspired methods) [22,23], e.g. the genetic algorithms [24]
and the particle swarm method [25]. The gradient-based optimization methods are generally easy to
implement and may converge quickly, but cannot guarantee a global optimization. On the other
hand, although the evolutionary methods converge slowly, especially for higher-dimensional
problems, they can theoretically guarantee a global optimization. When the actual forward problem
(high-fidelity model) is computationally intensive and difficult to solve, it further leads to significant
computational demand for inferring unknown parameters. To reduce the computational expenses in
a constrained optimization problem, surrogate models, which are statistical approximations of the
forward problems have been developed for fast parameter inference in biomechanical cardiac
models (examples can be found in [26,27]). By using surrogate models, rapid solutions can be
quickly computed instead of simulating the computationally expensive FEM model which will
speed up the optimization process dramatically, potentially in real time. Surrogate models have also
been widely used in certain engineering problems, like aerospace systems among other disciplines
[28,29].

Recent studies have shown that myocardial property could be a potential biomarker of predicting
ventricular pump function recovery post-myocardial infarction [14]. Estimation of myocardial material
parameters from image-based models has attracted intensive interest by formulating a gradient-based
inverse problem [15] or using machine learning (ML)-based surrogate approaches for fast parameter
inferences [11,27]. By using ML models, the behaviours of the left ventricular (LV) in response to
changes in material properties, loads and boundary conditions etc. can be predicted in real time, and
can be further applied to the design of medical instruments and monitoring heart condition [30]. For
instance, Liang et al. [31] have been the first put forward the deep learning technique, a multilayer
neural network, as a surrogate of FEM for stress analysis, and the trained model was capable of
predicting the stress distributions of aorta by replacing the complex structural finite-element analysis
with an average error of less than 1% for ML-predicted stress distribution. Dabiri et al. [30] adopted
eXtreme Gradient Boosting (XGBoost) and Cubist to predict the LV pressures, volumes and stresses
by training them with hundreds of forward FEM simulations of a biomechanical LV model, and their
results showed that the surrogate ML models can predict LV mechanics very accurately and are much
faster than the FEM models. However model calibration using the ML-based surrogate model has not
been carried out in these two studies [30,31]. Di Achille et al. [32] inferred the unloading LV
geometry used Gaussian process and further statistically learned the infarct shape and size on LV
performance in patients extracted from a public database [33]. More recently, Longobardi et al. [34]
predicted left ventricular contractile function via Gaussian process emulation in aortic-banded rats,
the Bayesian history matching was applied to constrain the initial parameter sets in order to exclude



base

apex

Figure 1. Visualization of the LV geometry. (f, s, n) are the fibre, sheet and sheet-normal axes, as described in the text, and (Wc,
Wl, Wr) are coordinate axes that indicate the local circumferential, longitudinal and radial axes. The helix angle α is defined to be
the angle between f and Wc in the plane spanned by Wc and Wl, and the sheet angle β is defined to be the angle between s and
Wr in the plane spanned by Wl and Wr. The grey colour represents the epicardium and the green colour represents the endocardium.
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those points which generate non-physiological biomechanical models. They further performed a Sobol
sensitivity analysis using the trained emulator. Most of the studies mentioned above have been
focused on demonstrating the feasibility, reliability and accuracy of emulating the cardiac models
with various ML approaches, and only a few studies have investigated how the inference problem of
unknown parameters can be accelerated using ML surrogate models. For example, Noe et al. [26] and
Davies et al. [27] both have presented a statistical emulation framework for emulating LV mechanics
using Gaussian process aiming for accelerating the parameter estimation of myocardium from in vivo
data. Tens of thousands of simulations of a LV biomechanical model have been performed to train
their statistical emulation framework. In both studies, LV cavity volume and 24 circumferential
strains at end-diastole were used for training the emulator, but not the dynamics in diastole.
They also have demonstrated that the computational costs can be reduced by about three orders
of magnitude.

In this paper, we develop three ML-based surrogate models for LV passive mechanics in diastole for
model calibration. Firstly, the original high-dimensional material parameter space is projected to a low-
dimensional space following the previous studies [27], and the training data are obtained by running
forward simulations with sampled parameters from this low-dimensional space. Then ML methods
are tuned to learn the relationships between pressure–volume and pressure–strain, respectively. This is
different from the studies of [26,27] in which only the end-diastolic state was learned. Finally, the
trained surrogate models are applied to formulate an inverse problem for estimating passive
parameters of myocardium.
2. Methods
2.1. Biomechanical model of LV passive dynamics
In this section, we will introduce LV passive dynamics in diastole. A human LV model from our previous
studies are used here as shown in figure 1 with 53 548 nodes and 48 050 hexagonal elements. A rule-
based approach is used to generate the layered myofibre structures within the myocardium, they are
the fibre direction (f ), the sheet direction (s) and the sheet-normal (n). In this work, the fibre angle α
linearly rotates from −60° to 60° from endocardium to epicardium, and the sheet angle β linearly
rotates from −45° to 45° in a similar way, and n = f × s. Details of the LV model reconstruction can be
found in [7,8].
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Figure 2. A simple example of end-diastolic pressure–normalized volume and pressure–mean principal strain relationships. The
discrete points are the original data from the forward simulation, the solid line is the curve fitting to the original data using
the expressions in equation (2.4). (a) represents the curve fitting to the pressure and the normalized volume. (b) and (c)
represent the curve fitting between the pressure and the mean maximum, minimum principal strains, respectively.
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The myocardium is described by a nearly incompressible orthotropic hyper-elastic material strain
energy function (Ψ) developed in [12], namely the H-O law,

C ¼ a
2b

{ exp [b(I1 � 3)]� 1}þ
X
i¼f,s

ai
2bi

{ exp [bi(I4i � 1)2]� 1}

þ afs
2bfs

[ exp (bfsI28fs)� 1]þ 1
2
K(J � 1)2,

(2:1)

where a, b, af, bf, as, bs, afs, bfs are material parameters, the term (1/2)K (J− 1)2 accounts for the
incompressibility of myocardium, and K is a constant bulk modulus (106 Pa). I1, I4i, I8fs (i = f, s) are the
invariants along myofibre, sheet and sheet-normal directions, respectively,

I1 ¼ tr(C),
I4f ¼ f0 � (Cf0),
I4s ¼ s0 � (Cs0)

and I8fs ¼ f0 � (Cs0),

9>>>=
>>>;

(2:2)

in which C = FTF is the right Cauchy–Green deformation tensor and F is the deformation gradient. f0, s0
and n0 are the layered fibre structure in the reference configuration. In the current configuration, the fibre
structure is defined as

f ¼ F f0, s ¼ F s0, n ¼ Fn0: (2:3)

The passive response of the LV dynamics in diastole is implemented and solved using the finite-
element (FE) method in a general-purpose FE package ABAQUS (Simulia, Providence, RI, USA). The
LV basal surface is fixed in the long-axial direction (Wl-axis) and the circumferential direction
(Wc-axis), but allowing radial expansion, see figure 1. A linearly ramped pressure from 0 to 8mmHg
is applied to the endocardial surface with 25 equal loading steps, and results are saved at each step.
The LV cavity volume and principal strains at certain locations are chosen from the forward FE
simulations, they are the maximum principal strain (ɛmax), which is related to myofibre stretch, and
the minimum principal strain (ɛmin), which is related to wall thinning in diastole. In detail, to extract
principal strains, 20 locations within the LV wall are randomly chosen using random function in
Matlab [35], and then the maximum and minimum principal strains are spatially averaged at each
loading step. Note that we only select 20 random positions once, and the same 20 positions are used
for different simulations to extract strain data. The ventricular cavity volume is the volume enclosed
by the endocardial surface. The scatter point in figure 2 shows the relationships between the pressure
and the cavity volume, the mean maximum and minimum principal strains from one simulation in
diastole. Published studies have found that exponential functions can characterize the nonlinear
relationship between the pressure and the LV cavity volume very well [36]. For example, based on ex
vivo human heart experiments, Klotz et al. [36] found that the relationship between the normalized
volume (vn) and the loaded pressure (p) can be approximated with p ¼ AnvBn

n , in which An and Bn are
coefficients, and both are almost invariant among subjects and species. Thus, in this study, we assume
the relationships between the pressure and the LV cavity volume, the mean maximum and minimum
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Figure 3. The main idea of surrogate model. First, the real-world system, that is the diastolic filling of the left ventricle, can be
simulated using the forward FE model m(q). Then a sampling process is used to collect the datasets D for training the surrogate
model m̂(q). Finally, the well-trained surrogate model is used to emulate the FE model for approximating the real-world system
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principal strains also comply with the exponential function, as suggested by Klotz et al. [36], specifically

p ¼ a0 vnb0 , p ¼ a1 (�1max)
b1 , p ¼ a2 j�1minjb2 , (2:4)

in which vn = (v− v0)/v0 is the normalized volume with respect to the initial value v0, �1max and �1min are
the mean maximum and minimum principal strains at chosen 20 positions. α0 and β0 can be least-square
fitted to the p–vn curve. α1 and β1 are derived from the p–�1max curve, and α2 and β2 are derived from the
p–�1min curve. Because the minimum principal strain is negative, we take its absolute value in equation
(2.4). Figure 2 shows the results from one simulation, the p–vn, p–�1max and p–�1min are all fitted well
with equation (2.4). Therefore, the output features from a forward ABAQUS simulation are reduced to
three pairs of data for describing LV dynamics in diastole, rather than three different curves
discretized with 75 data points.

It has been shown that there is a strong correlation among the eight parameters in equation (2.1) [35],
thus, it can be very challenging to uniquely determine all eight parameters by using only end-diastolic
strains and volume. Following two recent studies from Noe et al. [26] and Davies et al. [27], the
eight-dimensional parameter space is projected into a four-dimensional space,

a ¼ q1 a0, b ¼ q1 b0,
af ¼ q2 af0, as ¼ q2 as0,
bf ¼ q3 bf0, bs ¼ q3 bs0,
afs ¼ q4 afs0, bfs ¼ q4 bfs0,

9>>=
>>;

(2:5)

where q = (q1, q2, q3, q4)∈ [0.1, 5]4 are the reduced parameters, a0 = 0.22 kPa, b0 = 1.62, af0 = 2.43 kPa,
bf0 = 1.83, as0 = 0.39 kPa, bs0 = 0.77, afs0 = 0.39 kPa, bfs0 = 1.70 are the empirical reference values for a
healthy LV model [37]. The range of q is adopted from [26,27] which was derived from the
population average values reported in [37].
2.2. Surrogate model
One of the major obstacles of finite-element modelling in cardiac mechanics is the long computational
time and tremendous computational resources, in particular if an inverse problem is formulated using
finite-element cardiac models. One way of alleviating this burden is to use ML surrogate models
[28,38,39]. The basic idea of surrogate model is to construct a measurable functional m̂(q) to
statistically approximate the underlying dynamical model m(q), the FE LV model in this study, based
on costly sampling to construct the dataset D. Whenever a new forward simulation is needed later,
the costly function evaluation of m(q) can be replaced by a fast prediction from the surrogate model
m̂(q). Figure 3 shows the concept of surrogate models in relation to the forward simulator.
2.2.1. Design of sampling

In order to fit the surrogate model to the simulator, the ABAQUS FE LV model, we first need to generate
the dataset D. For each forward simulation, we consider the input features are the reduced four
parameters defined in equation (2.5), and the output features are three pairs of positive values (α0, β0),
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(α1, β1) and (α2, β2) as defined in equation (2.4). Then the datasets can be described as

D ¼ {(qi, yi)j qi [ [0:1, 5]4, yi [ (0, þ1)6, i ¼ 1, 2, . . . , n}, (2:6)

where n is the total number of samples. The input features qij represents the j-th feature from i-th sample,
and the output features are ordered as yi ¼ (yi1, . . . , y

i
6) ¼ (ai

0, bi
0, ai

1, bi
1, ai

2, bi
2).

Commonly used sampling methods are the grid sampling, the uniform sampling, and the Latin
hypercube sampling, etc. [28]. The most straightforward way of sampling is using a rectangular grid of
points or from a uniform distribution. However, this can easily lead to points being clustered together,
and causing an ineffective coverage of the parameter space. The Latin hypercube sampling [38] is a
statistical method for generating a near-random sample of parameter values from a multidimensional
distribution. In brief, when sampling a function of N variables, the range of each variable is divided
into M equally probable intervals, M sample points are then placed to satisfy the Latin hypercube
requirements. This will ensure from each placed hypercube we could travel the function space along
any direction parallel with any of the axes without encountering any other placed hypercube. This is
one of the main advantages of this sampling scheme. In this study, we generate 10 000 samples using
the Latin hypercube sampling, of which 90% are used for training and the remainder are for testing.
2.2.2. Strategy for learning output features

Figure 4a,b shows the distributions of each feature from all 10 000 samples with violin plots. Because the
FE LV model is nonlinear, the output features are skewed except for α0. Overall, mean square errors
(MSEs) of fitting to the volume, the mean maximum and minimal principal strains are less than 10−4,
indicating LV diastolic dynamics from the ABAQUS simulator can be well characterized by the
three pairs of features α0, β0, α1, β1, α2 and β2. This is a massive dimension reduction for describing
LV dynamics in diastole. We find that the range of these six output features can be very different,
specifically the ranges of α0, α1 and α2 are in hundreds and the ranges of β0, β1 and β2 are
from 1 to 3. To balance the output features, the general methods include feature scaling and
normalization [40]. We then normalize the output features by expressing them as (y� �y)=(s.d.(y)), in



â 
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which �y and s.d.(y) represent the mean and standard deviation of y, the normalized features are shown in
figure 4c,d. Finally a ML model is trained for each output feature. Figure 5 illustrates this multiple ML
framework; in total six sub-models are trained separately. Note that each sub-model can have
different hyper-parameters.

In this study, we will use three ML models, namely the K-nearest neighbour (KNN) [41], XGBoost
[30,42], and multilayer perceptron (MLP) [43]. The three ML models can be considered to be
supervised learning regression problem [44]. The reasons of choosing these three ML methods are
(i) the samples in this work are limited with a few input and output features; (ii) the functional form
shown in figure 2 is relatively simple, which may suggest that simple ML models can be applicable;
and finally (iii) these selected ML models are easy to implement and readily available in various
open-source packages, but they have not been applied in LV model calibration.

2.2.3. K-nearest neighbour

Nearest neighbour methods are based on a simple idea by treating the training set as the model, and
making prediction of new points based on how close they are to those in the training set. One natural
way is to make prediction using the closest training data points, while most datasets contain some
degree of noise, a more common method would be to take a weighted average of a set of K nearest
neighbours [41,45]. KNN method is a basic classification and regression method, the choice of K
value, distance metric and decision rule are three basic hyper-parameters [46]. For the training data
q1, q2, . . . , qn, and the corresponding target values y1, y2,…, yn (yi is denoted as any feature in y i),
the prediction in a new point qp can be realized by firstly searching a set of K nearest neighbours in
the training set, and then ŷ p is given by a weighted averaged of those K nearest neighbours, that is

ŷ p ¼
XK
i¼1

viyi, (2:7)

in which ωi is the weight for the i-th nearest neighbour. Note the closer the point to the predicted point,
the greater weight this point takes, and ωi is defined as

vi ¼ 1=L(qi, q j)PK
j¼1 1=L(q j, q p)

, (2:8)

in which L is a distance function, which can be either as L1 or L2

L1(qi, q j) ¼
X4
k¼1

jqik � q j
kj or L2(qi, q j) ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX4
k¼1

(qik � q j
k)
2

vuut : (2:9)
2.2.4. eXtreme Gradient Boosting

Tree boosting is a highly effective and widely used machine learning method, in particular XGBoost
(eXtreme Gradient Boosting), a boosting tree model developed by Chen & Guestrin [42], an
implementation based on gradient boost decision tree [47], which boosts many tree models to form a
strong regression model. In XGBoost, the additive strategy is used to predict output variables [48],
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learning one classification and regression tree (CART) [49] per iteration to fit the residual of the predicted
results of the previous trees to the true values of the training samples. Note the prediction value in qp at
step t as ŷ p(t). Then we can write each sub-model in the form

ŷ p(t) ¼
Xt

j¼1

g j (q
p), g j [ G, (2:10)

where t is the number of CARTs, gj is a function in the functional space G, the set of all possible regression
trees. The loss function to be optimized is given for each feature, which is defined as

L(t)
XGB ¼

Xn
i¼1

l(yi, ŷi(t))þ
Xt

j¼1

V(g j) ¼
Xn
i¼1

l(yi, ŷi(t�1) þ gt(qi))þV(gt)þ constant, (2:11)

where l is a distance function that measures the distance between the prediction yi(t) and the target ŷi. The
term Ω penalizes the complexity of the model. We take the Taylor expansion of the loss function up to the
second order, that is

L(t)
XGB ¼

Xn
i¼1

l(yi, ŷi(t�1))þ pigt(qi)þ 1
2
hig2t (q

i)
� �

þV(gt)þ constant, (2:12)

where pi and hi are the first and second order derivatives of l(yi, ŷi(t�1)). After we remove all the constants,
the specific objective at step t becomes

L(t)
XGB ¼

Xn
i¼1

pigt(qi)þ 1
2
hig2t (q

i)
� �

þV(gt): (2:13)

For more details, please refer to references [42,47].
2.2.5. Multilayer perceptron

MLP is a class of feed-forward artificial neural network [43], consisting of at least three layers of nodes: an
input layer, a hidden layer and an output layer. Fully connected multiple hidden layers can be added to
the hidden layer. Except for input nodes, each node in MLP is a neuron with a nonlinear activation
function. A feed-forward neural network should have a linear output layer, and at least one hidden
layer of an activation function. Universal approximation theorem [50] indicates that if we give the
network a sufficient number of hidden layers, it can approximate the Borel measurable function of
any finite dimensional space to another finite dimensional space. In this sense, multilayer feed-
forward networks are a class of universal approximators. In this work, we adopt a MLP model with
only one hidden layer [51] shown in figure 6. The input layer has four nodes which will take q1, q2,
q3, q4 in the reduced space, and the output layer is combined to output one select feature.

The rectified linear unit (ReLU) is used for the activation function at each node of the hidden layer
[52], which can be described as

s(q) ¼ max (0, vT
h � qþ bh), (2:14)
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in which ω h and b h represent weights and bias between the input layer and the output layer. Because the

MLP model only contains one hidden layer, the prediction for each feature yp can be represented as

ŷ p ¼ vT
o � s(q p)þ bo

¼ vT
o �max (0, vT

h � q p þ bh)þ bo,
(2:15)

where ωo and bo are the weights and biases between the hidden layer and the output layer. The loss
function for the MLP model is defined using the mean square error (MSE) with L2 penalty
(regularization term) to prevent over-fitting,

LMLP ¼
Pn

i¼1 (y
i � ŷi)2

n
þ l(kvok2 þ kvhk2), (2:16)

where y = {yi, i = 1,…, n} are the true values, ŷ ¼ {ŷi, i ¼ 1, . . . , n} are the predictions from the MLP
model, λ is a penalty parameter and we fix it as 1 × 10−4, and ‖ · ‖ denotes the L2 norm in Euclidean space.
 R.Soc.Open

Sci.8:201121
2.3. Training machine learning-based surrogate models
The KNN and MLP models are implemented using Scikit-learn library1 [53]. Specifically, the KNN model
uses a KDTree algorithm [54] (a fast algorithm to generalize N-point problems) to compute the nearest
neighbours. The MLP model uses an Adam solver [55] (a stochastic gradient-based optimizer) to
optimize the MSE with L2 penalty (see equation (2.16)). Early stopping is adopted to terminate
training when validation score is not improved after 10 epochs. The maximum number of iterations is
set to 200. The XGBoost model is implemented using the XGBoost Python library.2 The tolerance for
the optimization is 1 × 10−4.

A competent ML model not only fits the training data well, but also should have a good predictability
for the test data, the unseen situations. The choice of hyper-parameters can significantly affect the
performance of ML models, while determining most optimal hyper-parameters can be very complex
[56]. In this paper, a grid search method with a fivefold cross-validation is adopted [57] for its easy
implementation. The coefficient of determination R2 is used to evaluate the predictability of a ML
model for choosing the optimal set of hyper-parameters similar to in [30],

R2(y, ŷ) ¼ 1�
Pn

i¼1 (y
i � ŷi)2Pn

i¼1 (yi � �y)2
, and �y ¼ 1

n

Xn
i¼1

yi: (2:17)

R2 represents the proportion of variance that has been explained by input parameters in a model.
A score of 1.0 indicates a perfect prediction, and it may be negative because a model can be
arbitrarily worse, see Scikit-learn documentation [53].

Tuning hyper-parameters using the grid search method in a multidimensional space can still be time-
consuming (from several hours to a few days). To determine hyper-parameters efficiently [58], we use a
step-wise approach by optimizing one hyper-parameter at each time step while fixing others. Taking the
MLP model as an example. We first fix initial learning rate (learning rate init) to be 0.01, then search the
number of neurons (hidden layer sizes) in a predefined grid range to determine its optimal value. We now
fix hidden layer sizes using the best value from the previous step and search the optimal value for
learning_rate_init. Grid search for other two ML models are the same as the MLP model. All pre-
defined grid values for each hyper-parameter are shown in table 1, and the name of hyper-parameter
follows the conventions in sklearn and XGBoost libraries.
2.4. Parameter inference
Estimating myocardial property from measured volume and strain is challenging because of sparse data
and correlation between different parameters, which has been discussed in [35]. In general, an inverse
problem is formulated by solving a constrained optimization problem with thousands of forward
simulations which may take days and weeks [35,59]. The objective function is usually formulated as
the differences between the model predictions and experimental measurements (e.g. volume and
1https://scikit-learn.org/stable/.
2https://github.com/dmlc/xgboost.

https://scikit-learn.org/stable/
https://scikit-learn.org/stable/
https://github.com/dmlc/xgboost
https://github.com/dmlc/xgboost


Table 1. The grid values of hyper-parameters for three ML models.

ML methods hyper-parameters description grid search values

KNN n neighbours number of neighbours 1, 2, 4, 6, 8, 10

p power parameter 1, 2

XGBoost max depth maximum tree depth 4, 6, 8, 16

learning rate boosting learning rate 0.05, 0.1, 0.075

n estimators number of boosting trees 500, 1000, 2000

MLP hidden layer sizes number of neurons 256, 512, 1024

learning rate init initial learning rate 5 × 10−3, 1 × 10−3, 5 × 10−2, 1 × 10−2
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strain for the LV model), and constitutive parameters are iteratively updated until the objective function
is minimized [19,35].

We further apply the three ML models for myocardial parameter estimation using a set of synthetic
data (v�, ɛ�) by simulating the FE LV model with known parameters, this will allow us to compare the
suitability of the three ML models for parameter inferences. The surrogate models do not directly
predict volume and principal strains but six output features (y), thus we define the objective function
[35] as

f(q) ¼ 1
6

X6
j¼1

(y j � y�j)
2, (2:18)

where yj represents j-th output feature, y�j are the corresponding output feature obtained from the
synthetic data (v�, ε�) according to equation (2.4). Note that the output features can be readily
converted into the actual cavity volume and principal strains as suggested in equation (2.4). A
differential evolution algorithm [60] is employed for inferring q using ML-based surrogate models.
Differential evolution is a stochastic population-based method which has been applied for global
optimization problems. The optimization procedure is implemented using the Python library
scipy.optimize.3 We choose that the total population size is 50, the relative tolerance for convergence is
1 × 10−6, the maximum number of iterations is 500, the mutation constant is in (0.5, 1), the
recombination constant is 0.7, and the initial values are randomly selected from the range [0.1, 5]4.

We further infer q by formulating an inverse problem using the forward ABAQUS FE LV model as
shown in figure 7. Specifically,

(i) randomly initializing constitutive parameters from the predefined range,
(ii) running the FE LV model with ramped blood pressure till end-diastole,
(iii) fitting the pressure–volume and pressure–strain according to equation (2.4),
(iv) computing the objective function shown in equation (2.18) to determine whether the algorithm

has converged (i.e. exceeding maximum iteration number, or less than the predefined error, etc.),
(v) if the algorithm converges, then the last updated parameters are considered to be the optimal

parameters, otherwise going to step (ii) by updating constitutive parameters.

This inverse problem is implemented using lsqnonlin in Matlab, which is based on a trust-region-
reflective algorithm [61]. Trust-region-reflective is a gradient-based algorithm with fast convergence
but it may not guarantee a global optimum. We set the maximum number of iterations 500, the
relative tolerance on the target value 1 × 10−6, and the initial values are also randomly selected from
the range [0.1, 5]4. We are aware that there are other gradient-free algorithms like the differential
evolution used for the ML models. In a study of estimating myocardial parameters, Nair et al. [62]
reported it took 25–40 days for the inference procedure in a desktop computer using a genetic
algorithm. Because of the high computational costs associated with gradient-free algorithms, we
decide not to use those algorithms for the inverse problem using the FE LV model.
3https://docs.scipy.org/doc/scipy-1.0.0/reference/tutorial/optimize.html.

https://docs.scipy.org/doc/scipy-1.0.0/reference/tutorial/optimize.html
https://docs.scipy.org/doc/scipy-1.0.0/reference/tutorial/optimize.html
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Figure 7. The iterative schematic of the inverse problem based on ABAQUS simulation.

Table 2. Tuning results of hyper-parameters for six sub-models.

ML methods hyper-parameters

best hyper-parameters

α0 β0 α1 β1 α2 β2

KNN n neighbours 10 8 8 6 8 6

p 2 1 1 1 1 1

XGBoost max depth 6 6 6 6 4 4

learning rate 0.05 0.05 0.1 0.05 0.05 0.1

n estimators 1000 1000 1000 1000 1000 1000

MLP hidden layer sizes 1024 1024 1024 512 1024 1024

learning rate init 1 × 10−3 1 × 10−3 1 × 10−3 1 × 10−3 1 × 10−3 1 × 10−3
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All the computations are carried out in a 64-bit Windows 7 workstation with 1.7 GHz Intel Core E5-
2609 CPU and 32 GB RAM. ABAQUS simulation and training ML models are performed on 16
threadings for parallelism. No parallelization is used when inferring material parameters within
lsqnonlin and differential evolution solvers.
3. Results
3.1. Machine learning methods and hyper-parameters tuning
Firstly, we adopt fivefold cross-validation to train the ML models on training data based on the MSE loss
function. Then, we test every model on test data and select the optimal hyper-parameters from the grid
values with the highest R2 score. Note that the higher the R2, the better the model predictability. For each
surrogate model, six identical ML sub-models are constructed, and each sub-model has different optimal
hyper-parameters as summarized in table 2.
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Figure 8. Prediction results of six output features from three ML models on test samples. (a–f ), (g–l ) and (n–r) are the test results
of KNN, XGBoost and MLP, respectively. The output features here are normalized as (y � �y)=(s.d.(y)).
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Figure 8 shows the predictions of six output features from the three MLmodels on test samples. The red
line suggests the exact predictions of the true values and blue points are the predictions. The closer the blue
points to the red line, the better predictability for ML models. It can be found that the XGBoost and MLP
models can predict all output features very well in general, very close to the red line. While the predictions
from the KNN model are much poorer compared with the XGBoost and MLP models, in particular for
large true values. Moreover, the MSEs of the KNN model are nearly 10 orders higher than the other
two ML surrogate models, and R2 scores of the XGBoost and MLP models are around 0.999, much
higher than the R2 score of the KNN model. Thus the XGBoost and MLP models seem more suitable
for learning our FE LV model in diastole compared to the KNN model. For each prediction, the KNN



Table 3. Computation summary of the optimization procedure.

methods f (q) total cost time time for one run evaluation numbers

ABAQUS 5.8537 × 10−8 63 h 6 min 378

KNN 3.1227 × 10−5 5930 s 0.08 s 71 505

XGBoost 1.6431 × 10−5 587 s 0.02 s 28 805

MLP 1.7441 × 10−5 69 s 0.005 s 12 805
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Figure 9. The objective function using ABAQUS simulation (a) and three ML-based surrogate models (b).

Table 4. The estimated parameters using ABAQUS and ML models.

methods q1 q2 q3 q4

reference values [35] 1 1 1 1

ABAQUS 1.0000 0.9999 1.0001 1.0002

KNN 0.9634 0.9896 1.1625 1.8253

XGBoost 1.0228 1.0040 1.06299 0.9689

MLP 1.0066 0.9788 1.0869 1.2164
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model takes 0.08 s, and 0.02 s for the XGBoost, and 0.005 s for the MLP model, all are significantly less than
the forward ABAQUS simulation, which takes around 6 min for one run. The computational time using the
ML models is almost reduced by 3 to 4 orders, and summarized in table 3.
3.2. Parameter estimation
To inversely infer unknown parameters using the forward FE LV model as in [35], 378 forward ABAQUS
simulations are carried out, which takes about 63 h (almost 3 days). The corresponding objective function
with respect to the iterations is shown in figure 9a. When using the ML models for inferring unknown
parameters, it only take several minutes, especially for the MLP model, which takes only 69 seconds
(around 1 min); see table 3. Figure 9b shows the objective function with respect to the iterations for
the three ML models. The objective function is the smallest when using the XGBoost model, followed
by the MLP model and poorest in the KNN model.

Table 4 summarizes the estimated parameters from the four inverse problems. In general, estimated
parameters by running ABAQUS simulations are very close to the ground truth values with nearly
negligible objective function, but the computational cost is the highest, almost 3 days. The XGBoost
seems to have a better performance for inferring parameters compared with the KNN model and the
MLP model, with poorest for the KNN model, in particular for q3 and q4. The poorest performance in
the KNN model may be partially explained by its poor predictability as shown in figure 8. Compared
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with q1 and q2, q3 and q4 have a larger discrepancy with respect to the true values when using the three
ML models, and also slightly larger when using ABAQUS simulations. This may suggest that the inverse
parameter estimation problem by using measurements of LV dynamics in whole diastole may still
experience unidentifiable issues as suggested in [15,63], in which only end-diastolic volume and
strains were used for inferring unknown parameters. We further plot the objective function by
varying q3 and q4 with fixed q1 = 1 and q2 = 1 as shown in figure 10. It can be found that the surface
plots of using the XGBoost, MLP and ABAQUS simulation are similar, the minimum from the
ABAQUS simulation is clearly identifiable, but a narrow valley parallel to q4 with multiple local
minima for the XGBoost, and that valley becomes a flat region for the MLP model. Thus, q4 seems
unidentifiable when using the XGBoost and MLP models even with fixed q1 = 1 and q2 = 1. The
surface plot of the objective function for the KNN model is very different from the others, which
again indicates its poor performance of learning the FE LV model.

Figure 11a,b shows the myofibre stress–stretch relationship under uni-axial stretching mode derived
from the H-O law (equation (2.1)) with the parameters in table 4. For the stretch along fibre direction, the
inferred stress–stretch data from the three ML models and ABAQUS simulation are very close to the
ground truth data. But larger discrepancies can be found for the Cauchy stress along the sheet
direction when inferred from the three ML models. Figure 11c,d shows corresponding stress residuals,
which are calculated by subtracting the inferred Cauchy stress from the ground truth data. It is not
surprising that the inference using ABAQUS simulations achieves the best accuracy because the
synthetic data are generated using the ABAQUS simulation. The XGBoost comes the second closest to
the ground truth data with smaller residuals compared with the KNN and MLP models.

In order to have an indication of the uncertainty in our inference using the three ML models, we
adopt a bootstrap approach [64] for the inverse uncertainty quantification. We first compute the
prediction value ypred using the estimated parameters in table 4, we then compute the residuals
between the referential values y ref (i.e. the output features which are obtained from the synthetic LV
model), they are e:{ei ¼ yrefi � ypredi , (i ¼ 1, 2, 3, 4, 5, 6)}. By randomly selecting all combinations from ε,
and 0 used from unselected residuals as supplement, we can obtain a set of residuals R ¼ {êJ}1�J�64,
and then generate surrogate data ŷJ ¼ ypred þ êJ , where êJ is the J-th draw from R. We then repeat the
parameter inference on each ŷJ to obtain new estimations. The mean and standard deviation of all
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Table 5. Mean and standard deviation (s.d.) of estimated parameters and objective function values obtained from the bootstrap
approach.

methods q 1 q 2 q 3 q 4 f(q)

KNN mean 0.9906 1.0292 1.1814 1.2188 7.1862 × 10−5

s.d. 0.0086 0.0356 0.5742 0.5373 5.0849 × 10−5

XGBoost mean 1.0127 0.9668 1.0708 1.0485 2.0316 × 10−5

s.d. 0.0073 0.0194 0.1794 0.0239 1.9800 × 10−5

MLP mean 0.9934 1.0351 1.0781 1.0959 2.9699 × 10−5

s.d. 0.0091 0.0273 0.1581 0.1701 2.7242 × 10−5
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estimated parameters and objective function values are listed in table 5. The uncertainties associating
with q1 and q2 are much less than the uncertainties for q3 and q4, again the XGBoost has smaller
uncertainties in q3 and q4 compared with the KNN and the MLP model. The large uncertainties
associated with the KNN model suggests its unsuitability for inferring constitutive parameters by
replacing a FE LV model.
4. Discussion
In this study, we have developed three surrogate models based on three ML methods, namely the KNN,
XGBoost and MLP. These models are used to estimate the material parameters of LV myocardium using
the cavity volume and the maximum and minimum principal strains. The developed ML models are
trained through cross-validation, and the average R2 scores for the testing data are very close to one.
Comparing with the conventional parameter estimation based on numerical evaluations of the
forward model, the ML surrogate models provide a significant improvement in computational time
with an acceleration by hundreds or even thousands of times.
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Gaussian process also has been applied to parameter estimation in myocardium [26,27] using a

synthetic LV model, while their output features were only from the measurements at end-diastolic
phase but not for the whole diastole. In a followed study, Lazarus et al. [63] found that because of
lacking data, only using end-diastolic measurements makes it challenging to infer q3 and q4. Instead,
in this study the parametrized pressure–volume and pressure–strain data in diastole are used for
training the ML models and parameter inferences. Still, we observe large uncertainties associating
with q3 and q4. Thus extra data will be needed for identifying q3 and q4 with high confidence. We also
have trained a Gaussian process model for our data, and the prior covariances of Gaussian process
are computed by using a radial-basis kernel function. We then use the trained Gaussian process
model for inferring q, the inferred q is (1.0053, 1.0027, 1.0812, 1.1504) with f(q) = 1.7424 × 10−5. It is
slightly poorer than the XGBoost model as seen in table 4. While this should still suggest that
Gaussian process is a good surrogate model as XGBoost for learning LV dynamics in diastole.

In a recent study, Liu et al. [65] has used a two hidden-layer neural network for estimating in vivo
constitutive parameters of aortic wall. Considering the LV dynamics in diastole is a passive expansion
process with increased volume and strain magnitude as shown in figure 2, a deep neural network
may over-fit our data easily because of its large number of degrees of freedom. As a test, we
implement a two hidden-layer neural network and train using the same data with a fixing learning
rate of 1 × 10−3, and the grid search is used for selecting optimal neuron numbers at each hidden layer
with the grid values in table 1. Our result shows that the mean R2 score for the testing data is almost
the same as using the one hidden-layer neural network, which may suggest that the one-layer MLP
can learn the LV FE model in diastole well. For a very complex dynamics system, i.e. whole heart
contraction, a deep neural network would be necessary.

There are various methods for hyper-parameter tuning [58], including random search, grid search,
Bayesian optimization, etc. Random search uses a randomized search over parameters in which each
setting is sampled from a distribution over possible parameter values. Grid search generates
candidates from a grid of parameter values. Bayesian optimization [66] is a global optimization
method based on sequential training of a statistical approximation (Gaussian process) of the target
function. We also apply the Bayesian optimization for hyper-parameter tuning using bayesopt [67]
implemented in Python. By comparing with the trained ML models using the grid search approach,
the R2 scores are almost the same, while the Bayesian optimization takes a much longer time for
tuning ML models than the grid search approach.

Uncertainty quantification (UQ) is an essential step in applying mathematical models for decision
making, the LV model included. There are various sources of uncertainty in cardiac models, including
intrinsic variability (i.e. collagen content), parameter uncertainty (i.e. myocyte stiffness), initial/
boundary condition uncertainty (i.e. ventricular cavity pressure, pericardium), geometry uncertainty
(i.e. myocyte architecture), model uncertainty (i.e. continuum approximation of soft tissue), etc.
Interested readers refer to [39,68] for recent reviews of uncertainty and variability in cardiac models. If
a surrogate model is used for prediction, an additional source of uncertainty is the model discrepancy
between the surrogate model and the mathematical model. As evidenced in figure 8, the KNN has the
worst prediction due to this model discrepancy, which may potentially explain the large discrepancy
and high uncertainty in estimated parameters (table 5). Optimal computational design strategy would
be needed for achieve high accuracy for the surrogate model, for example sampling strategies
according to the underlying physics, dense coverage for small parameter values. A further model
discrepancy is the discrepancy between the forward model and the reality. In a recent study, Lei et al.
[69] studied the model discrepancy between the mathematical model and reality in cardiac ionic
models. They modelled the discrepancy using Gaussian processes and autoregressive–moving-average
model for improved prediction of unseen situations, and found that different methods for accounting
model discrepancy are needed for different models in different situations. The similar framework
could also be applied to the FE LV model, which is a numerical approximation of LV dynamics under
various assumptions (i.e. homogeneous material property, rule-based myofibre structure, ignoring
viscous effects).

As shown in table 4, estimated parameters using those three trained surrogate models do not match
the ground truth values, and are also inferior to the values inferred directly using the forward ABAQUS
LV model. To quantify the associated uncertainty in inferred parameters, we further adopt a bootstrap
approach, results are summarized in table 5. In general q1 and q2 can be inferred with high accuracy,
but not q3 and q4, especially for the KNN. XGBoost achieves the best performance with very little
uncertainties in q1, q2 and q4, but poor in q3; that is partially because q3 is related to nonlinear
response of collagen network and myofibres [12], which are not fully engaged under normal



Table 6. The MSE values of sample test cases using the three trained ML models.

methods

MSE loss function

α0 β0 α1 β1 α2 β2

KNN 0.364341 1.133695 0.185119 2.393936 0.035711 2.12244

XGBoost 0.376170 1.138444 0.166671 2.383279 0.033399 2.117243

MLP 0.3870 1.131395 0.168273 2.368105 0.028425 2.120199
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physiological pressure loadings, like 8mmHg applied in this study. To overcome this issue, a higher
pressure loading may help to reduce the uncertainty of estimating q3. For example, the Klotz curve
can be helpful by providing extra pressure–volume relationship up to 30mmHg based on ex vivo
experiments [36]. Indeed in a recent study, Lazarus et al. [63] have found that by including the Klotz
curve as a prior when inferring the same set of myocardial parameters (q), the uncertainty in q3 is
reduced significantly.

A further challenge in UQ is the computational complexity when using the forward mathematical
model. For example, the computational demand can be extremely high if Monte Carlo techniques are
used for uncertainty propagation. For example, one run of our LV model takes 6min, then 10 000
simulations will need 41 days. Thus, Monte Carlo methods using the LV model would be impractical.
To overcome this, the surrogate model, a fast-running statistical approximation of the mathematical
model allowing rapid prediction, can greatly reduce the computational burden and complexity, like
the KNN, the XGBoost and the MLP studied here. They could potentially be used to make inferences
about uncertainty in a LV biomechanical model. Another closely related task of UQ is sensitivity
analysis for identifying important input parameters. Surrogate models have been used in sensitivity
study of cardiac models [70] for alleviating the computational expense. Till now, most of UQ and
sensitivity studies have been carried out on electrophysiology modelling [39,68,69] but less on
biomechanics modelling of cardiac dynamics [70]. A comprehensive study of UQ in biomechanical
cardiac models is necessary if they are aiming for clinical applications.

One limitation of the current approach is that all the data are generated from one single human LV,
while LV function is different for different subjects, e.g. LV geometry, material property. To test whether
the ML surrogate model is feasible for other subjects, we first extract two cases with different LV
geometries from our previous study [35]. In a similar way, by assuming the parameters are known,
we then simulate the FE LV model for generating the synthetic ground truth data, then the trained
ML models are used to predict the output features using the same parameters. Table 6 is the MSE
between the synthetic ground truth data for the two cases and the predictions from the ML models.
The very large MSEs in table 6 clearly suggest that the LV geometry needs to be included as input
variables. Methods are being developed for treating the geometry as input variables using dimension
reduction techniques, such as principal component analysis (see discussion in [27]).

A further limitation is that the LV geometry was reconstructed from in vivo images, which is not stress
free because of the non-zero blood pressure in the LV cavity; since in this study we do not intend to infer
subject-specific material parameters using in vivo data, instead to compare the three ML models for
learning generic LV dynamics in diastole and their suitability of inferring parameters by replacing
expensive FE LV models. Future work should retrain the ML models with subject-specific LV models
starting from the stress-free state for clinical applications, this will require tremendous efforts for
building such a large number of personalized heart models, currently not available. Still, determining
the fully stress-free state of the LV from in vivo data is very challenging because the heart is always
pressurized. Future studies shall quantify how such a loaded geometry will affect the parameter
estimation using in vivo data.

Last but not least, for each output feature, a sub-ML model is trained separately. It is expected the
output features are correlated since they are generated from one LV model and each pair describes
one set of data. Therefore a multi-output ML model would potentially reduce the prediction error and
even the parameter uncertainty, as found in [26], in which a multivariate output Gaussian process has
much less parameter estimation error compared with separate univariate output Gaussian processes.
In fact, a multiple regression model can be readily developed with multi-output features using our
data. Interestingly, our own preliminary test on the MLP model using three sub-models, each for one
pair of (αi, βi), shows that the mean R2 score is actually marginally higher from the six sub-models
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compared with the three sub-models (0.9994 vs 0.9993). Further work is needed to identify optimal

schemes for learning LV dynamics in diastole, which is out of scope of this study.
oyalsocietypublishing.org/journal/rsos
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5. Conclusion
In real-world optimization problems, the function evaluations usually require a large amount of
computational time. Surrogate-based modelling and optimization play a valuable role in solving the
large-scale computational problem. In this paper, we have developed three surrogate models and
applied these methods to solve the parameter estimation problem of LV myocardium. Three surrogates
based on different ML methods including the KNN, XGBoost and MLP are trained with 10 000 samples
by simulating a computationally expensive finite-element ventricular model in diastole. All samples are
generated using a Latin hypercube sampling method for a full coverage of the input parameter space.
By comparing with a traditional gradient-based optimization method, our results show that the ML
models can learn the relationships of pressure–volume and pressure–strain very well, and the parameter
inference using the surrogate model can be carried out in minutes. In particular the XGBoost and MLP
surrogate models have much less uncertainties in estimated parameters compared with the KNN model.
Our results further suggest that the XGBoost surrogate model is the best one for predicting the LV
diastolic dynamics and estimating parameters than the other two surrogate models. Further studies are
warranted to investigate how the XGBoost surrogate model can be used for fast emulating cardiac
pump function in a multi-physics and multi-scale framework.
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