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ADVERTISEMENT.

TrHE substance of the present volume was originally pre-
pared as part of a course of lectures for the students of mathe-
matics in Harvard College. But at the request of some of my
pupils, and especially of my friend Mr. J. D. Runkig, I have been
induced to undertake its publication. The liberality of my
publishers, the well-kknown firm of LrrrLe, Brow~y & Co., who gen-
erously gave directions to the printers, that no expense should be
spared in its typographical execution, seemed to impose upon me
an increased obligation to perform my portion of the task to
the best of my ability. I have consequently reéxamined the
memoirs of the great geometers, and have striven to consoli-
date their latest researches and their most exalted forms of
thought into a consistent and uniform treatise. If I have,
hereby, succeeded in opening to the students of my country a
readier access to these choice jewels of intellect, if their bril-
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liancy is not impaired in this attempt to reset them, if in
their new constellation they illustrate each other and concen-
trate a stronger light upon the names of their discoverers, and
still more, if any gem which I may have presumed to add, is
not wholly lustreless in the collection, I shall feel that my
work has not been in vain. The treatise is not, however,
designed to be a mere compilation. The attempt has been
made to carry back the fundamental principles of the science
to a more profound and central origin ; and thence to shorten
the path to the most fruitful forms of research. It has,
moreover, been my chief object to develop the special forms
of analysis, which are usually neglected, because they are only
applicable to particular problems, and to restore them to their
true place in the front ranks of scientific progress. The
methods which, on account of their apparent generality, have
usually attracted the almost exclusive attention of the student,
are, on the contrary, reéstablished in their true position as

higher forms of speciality.

BENJAMIN PEIRCE.
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