Atlas and Text=Book

Human Anatomy

Sobotta $=$ Mo Murrich

611.02

S677

$$
\begin{aligned}
& 1914 \\
& 01
\end{aligned}
$$

Fibrary
of the
Aratamy of flrotrime
Torranta
48665°
Wresenter by

1) Voipé, 1968

Digitized by the Internet Archive in 2008 with funding from
 Microsoft Corporation

ATLAS AND TEXT-BOOK
 11
 HUMAN
 A N A TOMY

1,5
DR. JOHANNES SOBOTTA

FIIIEL, WIIH ADHIIIUN H
J. PLAYFAIR McMURRICH, A. M., Ph. D.

ANATCMY JN THE (NIN+R-STY UF H1 HIGAN

VOLUME I
BONES, LIGAMENTS, JOINTS, AND MUSCLES

With 320 Illustrations, Mostly in Colors

Copyright, 1906, by IV. B. Saunders Company

Reprinted January, 1909, and November, 1911
Reprinted July, 1914

PRINTEO IN AMERICA

EDITORS PREFACE.

 his application of Anatomy to diagnosis aral treatment.

 recourse to the pernicious "quiz compula," which is hot in Tanesors cop. to the what in

 to them.

 venient size. The translation of the (iceman h lt bal met dote by D). W. Heres Whom...

 speaking students of anatomy, and when the are wed the more familiar form ha- hat addled in parentheses. The adegetion of a uniform wok of nomembatere is ai wade ares impportance that the slight inconvenience which the freebee generation may expertise ir the
 by the advantages which a miversal terminology! will wontuall! dine

This Editor.

In order to insure the accuracy of the illustrations, all of the preparations were photographed and the photograph was made exactly the same size as the intended illustration, lenses of the longest possible focal length being employed to avoid perspective distortion.* In the great majority of the illustrations photographs were employed as the basis of the drawings; Figs. 167 to 171 are direct reproductions of photographs, and Figs. 178 and 181 were made from photographs which had been touched up. Only a few illustrations are diagrammatic, and in such instances it has been so stated in the titles.

The illustrations produced by the half-tone method have been made much clearer by the use of a number of colors. A buff color has been employed for the bones in the pictures of the joints and of the muscles, and various colors have been used for the different bones of the skull and in the topographic views of the cranium. \dagger No illustration has been omitted which would make the relations of the parts more readily understood. Microscopic and topographic anatomy have been disregarded to a certain extent, although enough has been given to serve as an outline for the subsequent volumes, which will be more topographic than descriptive in character. The parts have been designated according to the Basel nomenclature.

The original drawings for this Atlas were executed by Messrs. K. Hajek and A. Schmitson. \ddagger The former gentleman, who will also furnish the illustrations for the subsequent volumes, has performed his difficult task with such special aptitude and cleverness that the remaining volumes promise to be even better and to exhibit still greater uniformity in the method of production.

A number of the specimens from which the illustrations were made are in the collection of the Anatomical Institute (Würzburg), and I take this occasion to express my special thanks to Professor Stöhr for his permission to employ them in this work. The majority of the joint preparations, all of the muscle dissections and some of the bones, I have myself prepared for the Atlas. In addition to the photographed specimens, other dissections have been made and compared, so that every illustration in the book has an individual character, with the exception that marked anomalies have been corrected. The muscles have been given a bright red color such as they exhibit in a fresh body after they have been exposed for a short time, although less intense tones have been selected than those of the natural muscular and fatty tissues.

The publishers have spared nothing to make the illustrations excel those of all other works in character and to equal if not exceed those of the majority in number. In spite of this, however, the price of the work is much lower than that of most other atlases.

The Author.

tions were necessary they have been distributed over several figures. In some instances explanatory outline etchings have been appended with the designations inscribed thereon. In the lithographic plates the inscriptions have been made by a second impression.

* In a few cases in which perspective distortion was feared even when lenses of the longest focal lengths were employed, the subject was photographed to one-half the size of the desired illustration and the photograph was subsequently enlarged.
\dagger In carrying out this idea the same bone has always been represented by the same color; for example, the palate bone in blue, the ethmoid in orange.
\ddagger About ten of the illustrations in the Atlas were sketched by W. Freytag, drawing master in the University, and subsequently completed by Mr. Hajek.

COMTENTS

Introduction 710
Osteology TV
General Ostionlogy IV
Special Usteulor, צ. -
The Skferton of Th! 'Trexk - -1
The Vertebral cohumn
The True VertebritThe Cervical Viertedrat-4The 'Thoran ic Verteloric
The Lumbar liertebre
The False Vertebret
The SacrumThe Cucce:E
The Vertebral Columen ate a 10 hale I!
The Development of the Vertetral () umil. t
The Ribs:
The Sternum if
The Thorax :-
The Development of the Riles and of the Sternum ヶ
Variations in the Skeleton of the Trush. 5
The Skelfton of the Hfad 50
The Anterior Aipect of the Skull
The Lateral Asject of the skull i
The External Surface of the Bace of the Skull ,
The Internal Surface of the Ba- of the Skull. 11
The Superior Aspect of the shull. H
The Inner Aspect of the Cramial \ioult wr Calvaria H
The Bones of the Skull 4
The Cranial Bones. 45
The Oecipital Bone 4
The Sphemod Bone 4
The Temporal Bone $=1$
The Parietal Bone -
The Frontal Bone (1)
The Ethmoid Bone () 2
The Inferior Turbinated Bone. 0
The Lachrymal bone 04
101 1 1 500
$8-i$
30
1.1 1.aco \rightarrow
1II"Duc 1-hat batac.

 32
lis Hematimat1be urmalHac 入uil (aves...10Itho...\Rightarrow
 3
ILae lofrabumerelt F
flic - atur be tic sheal38
 -1
 -
 \cdot
Ilicertanduer corille. 18
Tl:- -armis Th
Tlo Clorist 45
Ifor II wrow-io. 85
11.11 mom 5
T1-R R (th. *
Tlan lsoured dia II min. "
Tle (trith home
1, U-1
1, U-1 or
He Velusime Itome. 5
The -rsmmil IVGen et the 11 and ข2
 92
 e)
Tla Proik cocho $0:$
 4
17. 1 amolo Ii

1) I' tetts. (t)
Ife Tries.
: 10:
Tle Drima ci
The Biter nithe Fot 191
The laral binco. 10:
The Thas $10=$
The Chase: $10 ;$
The Nivialar Bma 103
The Culwil Bonc. 104
The Skeleton of the Lower Extremity
The Cuneiform Bones
PAGE
The Cuneiform Bones. 104
The Five Metatarsal Bones. 105
The Bones of the Toes 105
The Sesamoid Bones of the Foot 106
The Skeleton of the Foot as a Whole 106
Syndesmology 107
General Syndesmology 107
Sinarthroses. 107
Diarthroses. 108
Spectal Syindesmology. IIO
Joints and Ligaments of the Vertebral Column. IIO
The Connections of the Vertebral Bodies IIO
The Intervertebral Articulations III
The Ligaments of the Vertebral Column. III
The Articulations of Sacrum and Coccix. . i is
The Articulation of the Upper Two Cer-vical Vertebre with Each Other andwith the OcciputII 3
The Articulations of the Ribs with the Ver- tebral Column and with the Sternum. II 6
The Articulations and Ligaments of the Head II7
The Temporomandibular Articulation IIS
The Independent Ligaments of the Head. II8
The Ligaments of the Hyoid Bone II9
The Joints and Ligaments of the Upper Extremity II9
The Sternoclavicular Articulation II9
The Acromioclavicular Articulation 120
The Ligaments of the Scapula I 20
The Shoulder-joint I2I
The Elbow-joint 122
The Distal Radio-ulnar Joint and the In- terosseous Membrane 123
The Joints and Ligaments of the Hand. 124
The Joints of the Carpus 124
The Carpal Ligaments 126
The Finger-joints 127
The Jonts and Ligaments of the Pelitc Girdie. 128
The Pelvic Ligaments, Synarthroses and Diarthroses. 128
The Independent Ligaments of the Pelvis 129 The Pelvis as a Whole. 130
The Hip-joint 131
The Knce-joint 133

The Joints and Ligaments of the Foot The Joints of the Foot The Ligaments of the Tarsus

Myology

General Myology

Special Myology

The Muscles of the Trunk
The Muscles of the Back.
The Short Muscles of the Neck
The Fascix of the Back
The Abdominal Muscles
The Abdominal Fasciæ.
The Diaphragm.
The Thoracic Muscles.
The Pectoral Fascix.
The Muscles of the Neck
The Prevertebral Cervical Muscles
The Fascix of the Neck
The Muscles of the Head
The Muscles of the Face and of the Scalp The Fascix of the Head.

The Muscles of the Upper Extremity
The Muscles of the Shoulder
The Muscles of the Upper Arm
The Muscles of the Forearm
The Muscles of the Hand
The Muscles of the Thenar Eminence
The Muscles of the Hypothenar Eminence
The Interossei and Lumbricales
The Relations of the Extensor Tendons and their Sheaths beneath the Dorsal Carpal Ligaments
The Extensor Tendons of the Fingers
The Tendons and Synovial Sheaths of the Flexor Tendons in the Palm.
The Fascix of the Upper Extremity
The Most Important Bursx of the Upper Extremity

The Muscles of the Lower Extremity
The Muscles of the Hip
The Muscles of the Thigh
The Muscles of the Leg
The Muscles of the Foot
The Synorial Sheaths of the Foot.
The Fascia of the Lower Extremity
The Most Important Bursæ of the Lower Extremity
Index

ATLAS AND TEXT-BOOK

o.

HUMAN ANATOMY.

INTRODLCION.

Human anatomy treats of the structuse of the loman boks, on contrat io phastaben, which treats of function, and it is usuatly sulxifilel into percr. l an womp and paral invame.
 component parts of the body.

 of the joints and ligaments; Myolog!, ireating of ihe meales; splanclirodoes, coatume of thom
 the description of the organs of sjectial sence and of the -tien.

 do with the development of the berty jescrigmatel Emberfolose

 it is always to be assumed that the berly is in tom creat promere. The molian phoncyiblles the

 opposite direction as outarard.

 2
or to the inner or outer surface of a portion of the body; in this connection it is frequently better to substitute the word superficial for external, and deep for internal. Above and below, like all other designations, refer to the erect position of the body, and this direction may be frequently better indicated by the terms cranial and caudal. In front and behind refer to the anterior and posterior surface of the body, but this relation may be more accurately expressed by ventral and dorsal.

Special additional designations are to a certain extent necessary for the extremities. In this connection, proximal means nearer to the trunk and distal more remote. In the forearm it is preferable to use the words radial and ulnar instead of outer and inner, since during pronation (see page 123) the inner side is directed outward and vice versa; and since the palm of the hand and the sole of the foot are designated respectively as the volar and plantar surfaces, the words volar and plantar are used to indicate the position of parts situated upon the corresponding surfaces.

OSTFOL.OGY.

GENERAL OSTEOLOMY.

 are either paired or single, the latuer being in the minorns.

 matic bones.

 consists of a fine network and forms the greater portion of the whempion of the tence wath the exception of a very thin outer compact layer of curt eal uhdable.

The long bones of the human bexly are foumd only in the dhe temo diter avromitios. Thes are as follows: the clavicle, the humerus, the ralius, the what, the fie metharnal tane the
 ribs are classified with the flat bemes.

 however, by a more or less thick layer of compat cortical subsumbe In mads intanmel the?

 tables. The flat bones of the human lexh ath: the surnum, the sapmata, the immumate in nes. the ribs, and many of the cranial bxones.

 as extremitics usually contain portions of the diaf hysis an wel.
most important short bones of the human body are: the true vertebræ, the carpal bones, the tarsal bones, the patella, and the sesamoid bones.

In addition to the long, flat, and short bones there are a number which cannot be classified in any of the three categories. These are designated as irregular bones; as a rule, they represent transition forms between the broad and flat bones, as in the cases of the sacrum and of many of the cranial bones. Among the latter there are also some-for example, the temporal bone and the occipital bone-which in a portion of their extent are typical flat bones, while in their remaining portions they would be regarded as belonging to the group of the short or irregular bones.

All the rarietics of bones may possess prominences which take the form of projections, ridges, and processes of the most varied shapes. According to their size and form, they are designated as tubercles, tuberosities (rough, more or less pronounced projections), spines, crests (rough lines or projecting ridges), processes, condyles (also termed condyloid or articular processes), epicondyles (i.e., projections situated above the condyles), and outgrowths (apophyses). In a similar manner many bones possess excavations (fovece or foss \neq), impressions, grooves, furrows (sulci), notches (incisura), perforations (foramina), slits (hiatus), and canals. The enlarged rounded ends, particularly of the long bones, are frequently called heads, while the constriction situated beneath them is known as the neck. All bones possess larger or smaller foramina for the entrance of the nourishing blood-vessels; these are known as the nutrient foramina, and are particularly large in the shafts of the larger long bones, where they lead into a nutrient canal, which extends into the medullary cavity.

The bones of the human body are usually studied in the macerated condition, i. e., after their soft parts have been removed by putrefaction. The bones of the living body and of the dead subject, however, consist not only of bony substance, but also of a series of soft tissues, some of which partly resist putrefaction, so that the "entire bone" is composed of the following constituents: (1) The actual bony tissue; (2) the periosteum; (3) the articular cartilage; (4) the bone-marrow; and (5) the nutrient vessels and nerves.

[^0]The actual bony tissue appears in two modifications, which pass into each other, however, without demarcation, the compact substance and the spongy substance. The former has a dense and apparently quite uniform structure, while the spongy substance consists of a fine network of bony trabecula, which at first sight seem to be without definite arrangement.

In reality, however, the architecture of the spongy substance is by no means irregular. Its parts are arranged in such a manner as to produce a firm and resistent structure with the greatest possible saving in weight, and a careful examination of its trabeculæ and plates will

 right angles (Figs. 107 to 171 .

 nor vessels.

 enveloped by a connective-risule conerints, the perib hanlroum

 Atlases.")
 slowly and lasts sery lon', u-ualy nit hi

 ter for the diaphysis by a layer of cartiare. The is : disappears and the bone becomes usibled thruagtouc:

SPECIAL OSTEOLOGY.

The human skeleton may be separated into three chief divisions: (A) The skeleton of the trunk; (B) the skeleton of the head; (C) the skeleton of the extremities.

Abstract

From the standpoint of embryology and evolution the skeleton should be divided into: (r) The axial skeleton, i.e., the vertebral column with its adnexa and the greater part of the base of the skull; (2) the appendicular skeleton, i.e., the skeleton of the extremities; and (3) the membrane and visceral bones, i. e., the flat bones of the cranial vault and the facial bones, and those portions of the skeleton which represent the visceral or branchial skeleton of the lower vertebrates.

The skeleton of the trunk is formed by the vertebral column and its appendages (the ribs and the sternum), the skeleton of the head is represented by the skull, and the skeleton of the extremities is further subdivided into the skeleton of the upper and that of the lower extremity.

The Skeleton of the Trunk.

The principal portion of the skeleton of the trunk is the vertebral column, which is composed of a serics of parts, the vertebra. A typical vertebra consists of a body and of arches, these latter being subdivided into a posterior or dorsal and an anterior or ventral arch. The posterior or dorsal arches surround the spinal cord, while the anterior or ventral arches, in the form of the ribs, are well developed only in the thoracic portion of the vertebral column and are rudimentary in the remaining vertebra; they surround the vegetative cylinder of the body, the intestine. While the dorsal arches are firmly united with the bodies of the vertebræ, the ribs are paired bony arches articulating with the thoracic vertebre behind and anteriorly with a special bone, the breast-bone or stermum.

The entire series of the vertebre form the spine or vertebral column, and the thoracic vertebre with the ribs and the sternum form the thorax. The skeleton of the trunk consequently consists of the vertebral column together with the thorax.

THE VERTEBRAL COLUMN.

The True Vertebre.

In the vertebral column two main subdivisions may be recognized. One subdivision is formed by the true vertebre, the other by the false vertebre, the former being separate bones connected by ligaments and joints, while the latter are united by bony tissue to form larger bones. The entire human spinal column consists of thirty-two to thirty-five vertebræ; of these, twenty-four are true vertebre and eight to eleven are false vertcbræ. The true vertebræ may be separated into three subdivisions: (1) The cervical vertebre; (2) the thoracic or dorsal vertebre; and (3) the lumbar vertebre. There are seven cervical, twelve thoracic, and five lumbar vertebre.

A typical vertebra is composed of: (1) The body; (2) the rertebral arch; and (3) a number of processes.

 inferior one the deeper.

 the transverse processes's are paired.

THE CERVICAL VERTEBRA

Fig. 4.-The cervical vertebræ seen from behind and partly from the side (3) $\frac{3}{4}$.
Fig. 5.-The fifth cervical vertebra seen from above ($\left(\frac{1}{1}\right)$.
Fig. 6.-The seventh cervical vertebra seen from above ($\left(\frac{1}{1}\right)$.
Fig. 7.-The atlas seen from above ($\frac{1}{1}$).
Fig. 8.-The axis seen from above ($\frac{1}{1}$).
bodies are relatively small, low, oblong (or quadrilateral with rounded corners), and they increase in size from above downward. The bodies are smaller than in any other region of the spine, and their upper surfaces are concave from side to side and slightly convex from before backward, while the lower surfaces are concave from before backward and slightly convex from side to side. As a consequence of this, the upper surface of every vertebra projects laterally beyond the body of the vertebra next above

Fig. 3.-Cervical vertebra seen from in front. (Figs. 3 and 4).

The arches of the cervical vertebræ (Fig. 5) are of medium height and arise by a pedicle which is directed outward and backward. Together with the body, the arch surrounds a spinal foramen which is very wide, especially in its transverse diameter. The articular processes (with the exception of those of the upper two vertebre) are placed obliquely, so that the plane of the articulation passes from above downward and from before backward, and the articular surfaces are consequently in a middle position between a horizontal and a frontal plane, those nearer the skull approaching the horizontal position, and those nearer the thoracic vertebre the frontal plane.

The transverse processes (Figs. 5 and 6) of all the cervical rertebre are perforated by a large round foramen (joramen transversarium), a peculiarity which distinguishes the cervical from all other vertebræ. Furthermore, the ends of the transverse processes are prolonged into two tubercles separated by a groove (sulcus nervi spinalis) (Fig. 5), situated upon the surface of the transverse process.

[^1]The spinous processes (Figs. 4 and 5) are for the most part small, somewhat downwardly inclined, and distinctly bifid at their apices.

From the third to the sixth the cervical vertebre are typical. The seventh (Fig. 6) is distinguished by possessing a long spinous process which is not bifid and is directed downward,

 the other cervical vertetrece.

 vertebral notches are absent.

 or dens of the axis the second cervical werteles.

 surfaces.

 sarium, but the sulcus nervi ppinalis and the tubermeta aro aloma

Fig. 9.-The tenth to the twelfth thoracic and the first and second lumbar vertebræ seen from the side and slightly from behind ($\frac{3}{4}$).
Fig. 10.-The tenth thoracic vertebra from above ($\left(\frac{1}{1}\right)$.
Fig. if.-The sixth thoracic vertebra from the side $\left(\frac{1}{1}\right)$.
Fig. 12.-The third lumbar vertebra seen from above ($\frac{1}{1}$).
epistrophei) and projects into the anterior compartment of the spinal foramen of the atlas. This odontoid process is cone-shaped with a rounded apex, and presents an anterior facet for articulation with the anterior arch of the atlas and a posterior articular facet which is not always distinct. Instead of articular processes the upper part of the body presents corresponding articular surfaces for connection with the atlas; these surfaces are slightly convex and but a trifle inclined from the horizontal.

The spinous process (Fig. 4) is fairly well developed and always distinctly bifid; the transverse processes, on the contrary, are smaller than those of the atlas and their tubercles and sulci nervi spinalis are likewise absent, although there is usually a shallow groove for the second spinal nerve on each side behind the superior articular facet. The inferior articular processes are more inclined than the superior ones, and already show the characteristics of those of the flexion vertebra.

The foramina transversaria of the articulated cervical vertebre form a canal for the passage of the vertebral artery and vein (the former runs through the upper six only). The markedly developed anterior tubercle of the transverse process of the sixth cervical vertebra is known as the carotid tubercle or tubercle of Chassaignac (tuberculum caroticum).

THE THORACIC VERTEBRI.

On account of the independent development of the ribs in the thoracic region, we find no fused costal rudiments in the thoracic vertebre such as occur throughout the remainder of the true vertebre, and the thoracic vertebræ are consequently of the purest type.

Their bodies (Figs. 9, 10, II, and 21) increase in size and height from above downward. In the upper thoracic vertebræ their surfaces are elliptical, like those of the cervical region, but as we pass downward they become rounder, then cordiform, and finally reniform in the lower members of the series, which approximate the form of the lumbar vertebræ. And not only do the bodies become larger, but their lateral diameter especially is increased as they gradually approach the form of the lumbar vertebre. Their contiguous surfaces are almost perfectly flat. The spinal foramen (Fig. 10) is not only absolutely, but even relatively smaller than that of the cervical vertebre, and in the upper members of the series it is rounded, while in the lower ones it is rather triangular. The upper and lower margins of the bodies each present, immediately in front of the pedicles, a demifacet for the head of a rib (Fig. II). The first and the two (or three) lowest vertebre, however, show deviations from this arrangement, the former having an entire facet upon the upper margin, and each of the latter (Fig. 9) presenting an entire facet toward the middle of the body of the rertebra.

[^2]
 no inferior facel.

 the inferior ones project but slights.

 development, freguently consisting of seberal irozelat whatiol

 vertebra (Fig. 9) resemble's thosic of the lun haf weralare.

 vertebre in general

THE LUMBAR VIERTEBR天.

 teriorly (Fig. 23).

 the spinous process), and the inferior procese of (wh) scoubra ao cononumbly averlemes

Fig. i3.-The sacrum seen from behind (dorsal surface) ($\frac{3}{4}$).
Fig. i4.-The sacrum seen from in front (pelvic surface) ($\frac{3}{4}$).
Fig. I5.-The sacrum seen from above (base) (3) $\frac{3}{4}$).
Fig. I6.-Horizontal section of the sacrum at the level of the second sacral foramina ($\frac{3}{4}$).
Fig. 17.-Median longitudinal section through a sacrum, showing the synchondroses between the individual vertebre ($\left(\frac{3}{4}\right)$.
Fig. I8.-The sacrum and coccyx seen from the side ($\frac{3}{4}$).
Fig. ig.--The coccyx seen from in front $\left(\frac{1}{1}\right)$.
Fig. 20.-The coccyx seen from behind ($\frac{1}{1}$).

The transverse processes of the lumbar vertebræ (Fig. 12) are long, directed almost at a right angle from the spinal column, and distinctly compressed from before backward. They represent rudimentary lumbar ribs and are therefore really the costal processes,* while a small projection situated at the base of the "transverse process," the accessory process (Figs. 9 and 12), corresponds to the transverse process of the thoracic vertebræ. This accessory process is characteristic for the lumbar vertebre, and although sometimes poorly marked, it usually appears even in the twelfth thoracic vertebra. The superior articular processes of the lumbar vertebre also exhibit another round roughened protuberance, the mammillary process (Figs. 9 and I2).

The spinous processes (Figs. 9 and 12) are very strong and high and are distinctly compressed from side to side. They extend directly backward and show a slight thickening at their apices.

The False Vertebre.

The false vertebre, which are variable in number, form two bones, the sacrum and the coccyx.

THE SACRUM.

The sacrum is that portion of the vertebral column which is connected with the pelvic girdle and completes the latter posteriorly; it consequently forms a portion of the pelvis itself.

It is a broad, curved, moderately flat, shovel-shaped bone (Figs. I3 and I4), which is broad and thick above, and narrow and thin below (Fig. 18). In it there may be distinguished an anterior relatively smooth surface, concave in both the sagittal and transverse directions, and known as pelvic surface, because it looks toward the pelvic cavity, and a posterior extremely rough dorsal surface. The broad upper surface of the sacrum is called the base and the lower angle the apex.

The pelvic surface presents a number of transverse ridges, usually four, which connect four pairs of irregular rounded foramina known as the anterior sacral foramina. The ridges correspond to the junctions of the five originally separate sacral vertebre of which the bone is composed, while the sacral foramina indicate the junctions of the bodies with the lateral processes (costal and transwerse processes). The anterior sacral foramina communicate pos-

[^3]

Pesterior sacral

 upon the third sateral sertulat fore that Valamity -

 terminalis), which separates the tuce tom tor batepor

 articular proces.

 and forms a rough ridere which i- ouc.aiolathy innermand.

 the interiertebre! foramina Fig. 10).

Fig. 2 I.-The vertebral column seen from in front ($\frac{1}{3}$).
Fig. 22.-The vertebral column seen from behind ($\frac{1}{3}$).
Fig. 23.-The vertebral column seen from the left side $\left(\frac{1}{3}\right)$.
of the sacral vertebre. The intervertebral foramina correspond to the similar structures in the true vertebre; but in the latter there are no openings comparable to the sacral foramina, at least not in the bony spinal column. This is due to the fact that the spinal nerves divide into an anterior and a posterior branch within the sacral canal instead of outside of the spinal canal as in the true vertebre, or, to go back a step further, it is due to the fact that whereas throughout the series of true vertebræ the ribs or costal processes remain distinct from one another, in the sacrum the costal processes, which are represented in the lateral masses, fuse together and also unite with the transverse processes, so that the intervertebral canals are closed at their outer ends.

The apex of the sacrum presents an elliptical surface for articulation with the coccyx, and at its sides there is a shallow notch which is converted into a foramen by the transverse process of the first coccygeal vertebra and the connecting ligaments (see page II3).

THE COCCYX.

The coccyx (Figs. 18, 19, and 20) is a small bone of variable length formed by the fusion of four or five (rarely three or six) quite rudimentary vertebræ (vertebre caudales). The first vertebra alone shows some vertebral characteristics, since there can be recognized in it indications of transverse processes as well as of the upper articular processes which are transformed into the coccygeal cormu. The transverse processes also frequently appear in the second vertebra in the shape of feeble indistinct projections, but the remaining coccygeal vertebræ are irregular, rounded pieces of bone. None of the coccygeal vertebræ possesses a trace of vertebral arches or of a spinous process, and the individual vertebre are united either by synchondroses or (more rarely) by bony tissue.

The sacrum shows typical sexual differences, since it is broader, shorter, and less curved in the female than in the male. Not infrequently the first sacral vertebra remains partly or even entirely independent (the lumbosacral vertebra), and the first coccygeal vertebra frequently fuses with the sacrum, in which case the sacral and coccergeal cornua are also united by bony tissue.

THE VERTEBRAL COLUMN AS A WHOLE.

The vertebral column is completed by its ligamentous connections and particularly by the intervertebral discs situated between the bodies of the vertebre (see page iro). If the bony vertebral column be observed from the side (Fig. 23), its marked curvature at once becomes apparent. This curvature is manifold, the cervical portion of the column being convex anteriorly, the thoracic portion markedly concave anteriorly, the lumbar portion decidedly convex anteriorly, and the sacrum concave anteriorly. At the junction of the lumbar portion with the sacrum, where the convexity of the former passes into the concavity of the latter there is a marked angulation called the promontory. The curvatures of the vertebral column are subject to individual variation.

 is by far the broale-t pat ill elow yat fowly y

 is cextromely low.

 however, is almost completely clowd ly then whe

 and lumbar regions they are in fromt of the a ife. I 3.

THE DEVELOPMENT OF THE VENTEERA! COLT":

 pleted.

 terior arch remain separated until the thit war
 in the third year.

 of the fifth sacral vertelira unite first locetrd yod wil unh

Fig. 24.-The first rib of the right side seen from above and from the side ($\left(\frac{3}{4}\right)$.
Fig. 25.-The second rib of the right side seen from above and from the side ($\left(\frac{3}{4}\right)$.
Fig. 26.-The posterior extremity of the seventh rib of the right side seen from behind and partly from below ($\frac{2}{3}$).
Fig. 27.-The seventh rib of the left side seen from behind ($\left.\begin{array}{l}2 \\ 3\end{array}\right)$.
Fig. 28.-The seventh rib of the left side seen from within ($\frac{2}{3}$).

THE RIBS.

The ribs (costce) belong to that limited group of skeletal segments which remain partly cartilaginous throughout life. Attention may first be directed to the bony ribs, of which there are twelve pairs (Figs. 24 and 30), corresponding to the number of the thoracic vertebre.

The ribs are not tubular bones, but flat bony strips of considerable length. Those in the middle of the series are quite uniform in shape, only the upper and lower ones showing certain deviations.

In a typical rib the following parts may be recognized:
I. The head, the posterior (vertebral) slightly thickened end. It presents an articular surface (Fig. 27), which is opposed to the bodies of the vertebre, and is marked by a median ridge, the crest, which divides it into an upper and a lower articular surface for the two vertebral bodies with which it articulates.
2. The neck, a constriction situated external to the head (Fig. 28). Its upper margin is formed by a ridge, crest of the neck, which is separated from the body of the rib by a rough eminence, the tubercle, presenting a facet for articulation with the transwerse process of a thoracic vertebra.
3. The body, the longest part of the rib. This is placed vertically and is distinctly flattened from without inward, so that an external and an internal surface may be recognized; near the tubercle it presents a rough surface, the angle of the rib (Fig. 28). The rib is at first directed outward, backward, and downward, but at the costal angle it turns upon itself and passes forward. On the inner surface of the lower margin of the body there is a groove, the costal groove (Fig. 28), which gradually becomes shallower as it approaches the anterior costal extremity, and causes the lower margin of the rib to be sharp while the upper one is more rounded. At its anterior extremity, the body of the rib presents a roughened, somewhat shallow surface for the reception of the costal cartilage.

The typical ribs are the third to the tenth, the first two and the last two exhibiting certain peculiaritics. The first rib (Fig. 24) is short and broad; it is not placed rertically but almost horizontally, so that an upper and a lower surface may be recognized in its posterior portion, and an upper or outer and a lower or inner surface in its anterior portion. Its head has no crest, since the first rib usually articulates with the body of the first thoracic vertebra only and not with two adjacent vertebrx, and its angle coincides with the tubercle. Near the anterior extremity of its body there is a low rough protuberance, known as the scalene tubercle or tubercle of Lisfranc, for the insertion of the scalenus anticus muscle, and behind this tubercle

 curved. 'The (TR

 (tyical) rite in the theror form-il

 horder for the thorad, the wat:? ar

Fig. 29.-The eleventh rib of the right side seen from behind ($\frac{3}{4}$).
F1G. 30.-The twelfth rib of the right side seen from behind ($\left(\frac{3}{4}\right)$.
Fig. 3 r. - The sternum seen from in front ($\frac{1}{2}$).
Fig. 32.-The sternum seen from the left side ($\frac{1}{2}$).

THE STERNUM.

The breast-bone, or sternum, is a single, flat, oblong bone. It lies approximately in the frontal plane and forms the middle portion of the anterior wall of the thorax, and by its articulation with the clavicles, it completes the shoulder girdle anteriorly. It is composed (Fig. 3I) of three distinctly separated portions placed one above the other, an upper broad handle, the manubrium, a middle piece, the body or gladiolus, and a lower piece, the xiphoid process. The three portions are either separated by cartilage or are united by bone; the former condition prevails between the manubrium and the body (synchondrosis sternalis), while the latter obtains between the body and the xiphoid process. At the synchondrosis between the manubrium and the body there is usually quite an obtuse angle, open posteriorly, the angulus sterni (angle of Louis). The sternum is not exactly in the frontal plane, but is placed somewhat obliquely, so that the upper end is considerably nearer to the vertebral column than the lower one, a relation which is also partly due to the curvature of the vertebral column (see page 14).

The manubrium is considerably broader than the body of the bone, and is broadest above and narrowest below; its anterior surface is slightly convex, and the posterior surface slightly concave. The upper margin presents three rounded notches, a median shallow interclavicular or jugular notch, and two lateral deeper clavicular notches, which are covered with cartilage and accommodate the sternal ends of the clavicles. Immediately below each clavicular notch there is a notch (Fig. 32) upon the lateral margin of the sternum for the reception of the broad costal cartilage of the first rib, which is joined to the sternum in this situation by a synchondrosis, and each side of the lower end of the manubrium presents a demifacet, for articulation with the cartilage of the second rib.

The body is usually narrowest above, gradually widening as it descends, until it attains its greatest breadth in its lower third, and then rapidly narrowing again as it approaches the xiphoid process; it is occasionally, however, of uniform width throughout. Its nearly flat anterior (ventral) surface is called the planum sternale, and sometimes presents transrerse lines (Fig. 34) which indicate the original fusion of several parts situated one above the other.

At the margins of the body (Fig. 32) are found notches for the cartilages of the six lower true ribs, that for the second rib being situated at the junction of the manubrium and the body, that for the sixth rib on the lower margin of the body, and that for the seventh in the angle between the body and the xiphoid process. The notches for the fifth, sixth, and seventh ribs lie close together, and the fourth notch is situated below the middle of the entire bone.

The riphoid process varies greatly in shape and size. It is always markedly narrower than the body, often partly or even wholly cartilaginous, and it is sometimes perforated. The female sternum is usually shorter and broader than that of the male.

1is. 20.

Fig. 30.

THE THORAX.

 and with the apes dite la! aym ont

 vertebral one.

THE DEVELOPMENT OF THE RIPS AND OF THE STERNUR.

The manu, rilat in $1=$ -

VARIATIONS $1:$ THE SKELETO: OF THE TRUNK.

Fig. 33.-The thorax together with the left shoulder girdle, seen from behind ($\frac{1}{3}$).
Fig. 34.-The thorax together with the left shoulder girdle, seen from in front ($\frac{1}{3}$).
Fig. 35.-The skeleton of the trunk, divided by a medium longitudinal section, together with the shoulder and pelvic girdles, seen from the left side $\left(\frac{1}{4}\right)$.
Fig. 36.-The skeleton of the trunk, divided by a median longitudinal section, together with the shoulder and pelvic girdles, seen from the median line $\left(\frac{1}{4}\right)$.
develops a broad mass which unites with the sacrum and is to be regarded as a sacral rib (lumbosacral vertebra, see page 30), and the posterior arch of the atlas and the portions representing the arches of the sacral vertebre sometimes fail to ossify, so that the spinal canal remains open posteriorly (rhachischisis).

The ribs frequently fork near the costochondral articulations, the two portions so formed usually uniting again, so that a fenestration of the rib is produced.

Foramina are not rare in the sternum and one is frequently found in the xiphoid process. At the upper end of the manubrium, at the sides of the interclavicular notch, two small bones which are termed episternal bones occasionally occur.

THE SKELETON OF THE HEAD.

The sum total of the bones of the head is designated as the skull or cranium, and this portion of the skeleton differs from the others in that all of its constituents, with the exception of the lower jaw, are firmly united even in the macerated condition (the exact nature of the union is described under "Syndesmology," page 107), so that special means are required to separate the individual bones from each other, and such a separation is not usually successful if the individual is too old. A skull the bones of which have been isolated, is known as a disarticulated skull.

The completely formed adult skull is an extremely complicated structure, some of the individual parts being united in such a manner that it is quite difficult to recognize them. Some bones, indeed, are scarcely visible in the perfect skull, owing to the fact that they are to a great extent covered or overlapped by the other cranial bones. Before describing the individual cranial bones it will be advantageous to consider briefly the skull as a whole, in order to obtain an idea of the topography of the individual cranial bones and of their chief component parts. The skull will therefore be studied first from in front, then from the side, from below (without the inferior maxilla), and from above, looking downward upon the great cranial cavity which encloses the brain, and finally the outer and inner aspects of the cranial vault will be considered.

THE ANTERIOR ASPECT OF THE SKULL.

If the anterior aspect of the skull (Figs. 37 and 38) be examined, it will be seen that the bony forchead (frons) is formed by the vertical portion of the frontal bone, and that toward the vertex a slightly scrrated suture, the coronal suture, separates the vertical plate of the frontal from the two parictal bones. The frontal bone also forms the upper margin of the orbit, and at the outer margin of the orbit it is separated from the contiguous zygomatic or malar bone by a suture, the zygomatico-frontal suture. The process of the frontal bone articulating with the zygomatic bone in this situation is known as the external angular or zygomatic process. To either side of the frontal bone will be observed the anterior inferior or sphenoidal angle of the

 shortemed ir ilc fizu a flow remes.

THE LATERAL ASJHCT OF THE SKOLL

of the zygomatic bone, and the temporal ridge commences at the zygomatic process of the frontal bone and passes backward in a curved manner over the frontal and parietal bones.

Behind the frontal bone is seen almost the entire parietal bone. It is limited anteriorly by the coronal suture and is separated fron the occipital bone posteriorly by the lambdoid suture. Its lower border articulates with the greater wing of the sphenoid by the sphenopariefal suture, with the squamous portion of the temporal bone by the squamosal suture, and with the mastoid portion of the temporal bone by the parietomastoid suture.

The only portion of the occipital bone visible in the lateral view of the skull is its squamous portion, which is separated from the mastoid process of the temporal bone by the occipitomastoid suture.

Below the frontal and parietal bones, the temporal surface of the greater wing of the sphenoid is visible. It is separated from the zygomatic bone anteriorly by the sphenosygomatic sufure, and from the squamous portion of the temporal bone posteriorly by the sphenosquamosal suture.

The first portion of the temporal bone to attract attention in the lateral aspect of the skull is the squamous portion, from which a long process, the zygomatic process, passes almost horizontally forward to articulate with the short temporal process of the zy'gomatic bone by the zygomatico-temporal suture; the two processes together forming the zygoma or sygomatic arch. The origin of the zygonatic process of the temporal bone marks the termination of the inferior temporal line as it passes from the parietal to the temporal bone.

Below the inferior temporal line there is upon the lateral surface of the skull a slightly depressed area, the planum temporale, formed by the temporal and parietal bones, the greater wing of the sphenoid, and a small portion of the frontal bone. In the zrgomatic region the planum temporale deepens into the temporal fossa.

The portion of the temporal line situated upon the temporal bone forms approximately the anterior boundary of a second portion of the temporal bone visible in the lateral view of the skull, the mastoid portion, which derives its name from a strong conical protuberance, the mastoid process.

A third portion of the temporal bone to be seen in the lateral cranial region is the tympanic portion, and is situated immediately below the root of the zygoma, forming the outer and lower circumference of the large opening of the bony external auditory meatus (meatus acusticus externus).

In looking at the skull from the side, the malar surface of the zygomatic bone is directed toward the observer. In the lateral aspect of the maxilla there may be observed (as in the anterior view) the anterior nasal spine, the frontal process, the nasomaxillary suture by which it articulates with the nasal bones, and the alveolar process, which is directed toward the similarly named portion of the mandible.

In the lower jaw we see the body with the mental foramen, and almost at right angles with the body, the ramus, the upper portion of which is divided by a deep notch, the sigmoid notch. into two processes, the coronoid and the condyloid processes. The articular surface of the condyloid process rests in a fossa of the temporal bone situated below the root of the zugoma, the mandibular or glenoid jossa.

Fig. 37.

Figs. 37 and is. The shull seen from aty trans i'th

 blue streaked and the tasals and templata whiec

Figs. 39 and 40. The skull seen from the left side ($4 / 5$).
In fig. 39 the various bones are colored as in fig. 38 and in addition the occipital in blue

THE EXTERNAL SURFACE OF THE BASE OF THE SKLLLL

The inferior abpect of the human =hull, eypered by the renowal of the bave in areats

 floor of the ctanial casty.
 Which is bounded externally by the aheoblar proces of the mavilla and the bpper rem of weth.
 upon either side, the patatime procos of the mavilla, formine its anterine thoutheds to dires quarters, while the poskrion third or fourth is fursiohed by the heriental forton of the pabile bone. It is traverad in the mealian line by the median pelatime suture the atherior wiremith of which comtans the ineisize jeremen, a pit like depresom, which lead- th a canal oi the sume name. The palate bones are separated from the palation proceno of the mavilat be the fret
 terminate in a spine, the posterier mosal spine. 'The ferterior irce mareits of the leorimetal plates of the palate bones form the lower loundary of the pouterior pare wr wame the pros terior outlets of the beny nasal fossit.

To the outer site of the hard palate is seen the short, hroad Elgomati prow wi the masilld. which articulates with the malar bone by means oi the Eygemoticemaxither buture. I here is ako to be seen the anterior extremity of the injerior orhital or sphenomavillary timute lntwae the upper jaw and the greater wing oi the sphenow leme. 'The zegomatic areh, formed by the junction of the zygomatic proctss of the temporal beone with the kempera proces of the zego matic bence is distinctly visible.

A large pertion of the esternal surface of the base of the stull is formed by the the bet?
 the sphenesquamesal suture, their foreshortened temperal surfaces, alredy noticul in the lateral view of the skull, being seen to unite with the infratemperal suriace, which are actually situated in the basce oi the skull, at a distinct angle marked by a rough rilege, the infratemporat crote

The posterior margin of this infratemporal suriace is separated irom the contiguous petrongortion of the temporal bone by the sphenopetrosel fissure, whith is contimusus internally with an irregular foramen, the foramen lacerm. The evtreme gesterene wonal angle of the grater
 opening, the foramen spinestam, whith leards inte the eranial cowity and transmit the midele meningeal artery. In front of this is a larger wal aperture, the jaramsen witale. through which the mandibular division of the trigeminal nerve emerge from the cranial catit!

In the middle of the base of the stull a pate of the lxals of the sphenoid bene is wistle between the two greater wings, but itsanterior portion is partly concealed. It will lx obecreed that the posterior margin of the bomy nas. septum, whith in the preparation reprectut the septum choanarum, is formed by the iomer, which articulates with the bexty of the sphenoid by means of a broad base, known as the ahe tomeris.

A strong process, the plerggoled process, which is divided lenghther inte two plater. projecte
downward from the body of the sphenoid. The broader, larger, external plate is termed the external pterygoid plate, and the narrower internal one, the internal pterygoid plate, terminates below in a small hook-like process, the hamular process (hamulus pterygoideus). The pterygoid process of the sphenoid bone articulates in this situation with the horizontal plate of the palate bone and also with a process of this bone, its tuberosity (processus pyramidalis), which is directed backward and outward and fills the gap between the external and internal pterygoid plates, consequently aiding in the formation of the pterygoid jossa, which occupies the interval between the two plates.

In the palate bone, at its junction with the pterygoid process of the sphenoid, there is a larger anterior foramen, the greater palatine foramen, and usually several smaller posterior openings, the lesser palatine foramina.

The posterior half of the external surface of the base of the skull is formed by the two temporal bones and by the occipital bone. All the four portions of which the temporal bone is composed are risible, namely, the inferior surfaces of the petrous portion, of the mastoid portion, and of the tympanic portion, and a part of the squamous portion. The apex of the petrous portion lies in an irregularly shaped opening, the foramen lacerum; it is separated from the sphenoid bone anteriorly by the sphenopetrosal fissure and from the occipital bone posteriorly by the petro-occipital fissure. The mastoid portion articulates with the occipital bone by means of the occipitomastoid suture.

Of the squamous portion, one sees mainly the zygomatic process (forming a portion of the zygomatic arch) and the mandibular fossa, which accommodates the condyloid process of the mandible and presents anteriorly the articular eminence. Of the mastoid portion, there is to be seen the mastoid process (processus mastoideus), which has a deep groove, the digastric fossa (incisura mastoidea), upon its inner surface, and, at the side of the occipitomastoid suture, an opening, the mastoid foramen. The tympanic portion, with the meatus auditorius externus, is placed between the mastoid process and the mandibular fossa, and in front of it there is a fissure, the Glaserian fissure (fissura petrotympanica).

There are many foramina and fossæ upon the very rough and irregular lower surface of the petrous portion of the temporal bone. Slightly to the inner side and in front of the mastoid process is the pointed styloid process; between the mastoid and styloid processes there is an opening, the stylomastoid foramen; to the inner side of the styloid process there is a rather deep depression, the jugular jossa, leading into the cranial cavity through an irregular opening, the jugular foramen; and to the inner side and in front of the jugular fossa there is a round opening, the external orifice of the carotid canal.

The occipital bone forms the large remaining portion of the external surface of the base of the skull. In the arlult skull it is united with the sphenoid so that its basilar portion is continuous anteriorly with the body of the sphenoid bone without demarcation. Posteriorly the basilar portion forms the anterior margin of the foramen magnum, while the portions of bone external to this foramen, known as the lateral portions, present the two large occipital condyles, by means of which the skull articulates with the first cervical vertebra or atlas. The base of each condyle is perforated by a short canal, the hypoglossal or anterior condyloid canal, while the termination of a similar canal, the condyloid or posterior condyloid, is risible behind the condyle.

Fig. 41.

/11. \&

 aith red atal the patarioes re late

Fig. 43.
Figs. 43 and 44. The inner surface of the base of the skull $(4 / 5)$. In fig. 43 the various bones are colored as in fig. 38.

Firs. 4.

 the infiriar ruw oul hor

THE INTEREAL SUPFACE OF THE IAASE OF IHE SEXIL

 abenvid lex (low tho minoder vaar.

 -lonues frucol.

To the outer side of the sella turcica we see the cerebral surface of the greater wing of the sphenoid bone, which is separated from the overlying lesser wing of the sphenoid by the superior orbital or sphenoidal fissure. The remaining boundaries of this surface are the same as those seen on the external surface of the base of the skull, namely, the sphenoparietal and sphenosquamosal sutures, the foramen lacerum or sphenopetrosal fissure. Near its origin from the body, the greater wing of the sphenoid bone contains three orifices; the foramen rotundum,

Fig. 45.-The inner surface of the base of the skull; the anterior fossa is colored blue, the middle fossa white, and the posterior fossa pink.
directed obliquely anteriorly and leading into a short canal, the foramen ovale, and the foramen spinosum.

In addition to the greater wing of the sphenoid bone, the floor of the middle cranial fossa is formed by the cerebral surface of the squamous portion of the temporal bone and by the anterior surface of the petrous portion, the posterior surface of the petrous portion and the mastoid portion helping to form the floor of the posterior cranial fossa. The boundaries of the temporal

 thete Tute a shallew growle. (ba nop-river pirion rouser

 extromity of the comely loid camal.

Fig. 46.-The skull seen from above ($\frac{4}{5}$).
$X=$ foramen parictale.
Fig. 47.-The inner surface of the roof of the skull (calvarium) ($\frac{4}{5}$).

The posterior margin of the round foramen magnum, situated in the middle of the posterior fossa, is formed by the squamous portion of the occipital, which exhibits, below the transverse groove, two concave depressions, the inferior occipital fosse, which are separated by a median ridge, the internal occipital crest.

THE SUPERIOR ASPECT OF THE SKULL.

The superior aspect of the skull (Fig. 46) is much less complicated. It shows only four bones, the vertical portion of the frontal, the large surfaces of the two parietals, and the aper of the squamous portion of the occipital. The risible sutures are the coronal suture, the sagittal suture, separating the parietal bones throughout their entire length, and the lambdoid suture, which forms an obtuse angle with the sagittal suture. In the parietal bone, on either side of the sagittal suture and at about the junction of the third and fourth quarters, there is an orifice, the parietal foramen, and the foreshortened temporal line can also be seen.

THE INNER ASPECT OF THE CRANIAL VAULT OR CALVARIA.

The inner surface of the cranial vault (Fig. 47) corresponds to the outer surface with slight differences. It presents the same bones, frontal, parietal, and occipital, and the same sutures, the coronal, sagittal, and lambdoid. Upon the inner surface of the sagittal suture we find a shallow groove, the sagittal groove, which commences at the crest of the frontal bone and passes backward over the parietal to the occipital bone. The cerebral surfaces of all the bones of the cranial vault show rascular grooves, the sulci arteriosi; they are found in greatest numbers upon the parictal bone and, next in frequency, upon the frontal bone. Small inconstant depressions, often of inconsiderable depth and situated particularly along the sagittal suture, are designated as the foveola granulares or Pacchionian depressions.

THE BONES OF THE SKULL.

After this consideration of the skull as a whole we turn to the description of the individual bones of the skull. These may be divided into two groups: (I) the bones of the cranium (cranium cerebrale), and (2) the bones of the face (cranium viscerale). The cranial bones are the occipital bone, the sphenoid bone, the two temporal bones, the two parietal bones, the frontal bone, and the ethmoid bone. The facial bones are the nasal bones, the lachrymal bones, the vomer, the inferior turbinated bones (concha nasales inferiores), the maxilla, the palate bones, the zygomatic bones, the mandible, and the hyoid bone.

[^4]$$
8
$$


```
iame 0% N= IN 4i!
```


THECRA‥1A EORES

THE G2゙! ! 1 ! M•!

 ibienus gusned füs of the dam obars

 lates the -hull.

Fig. 48.-The occipital bone seen from behind ($\frac{4}{5}$).
Fig. 49.-The occipital bone seen from in front ($\frac{4}{5}$).
Fig. 50.-The occipital bone seen from below ($\frac{4}{5}$).
Fig. 51.-The occipital and sphenoid bones seen from above ($\frac{4}{5}$). The right anterior clinoid process is fused with the middle one.

Upon the outer margins of the lateral portions of the bone, projecting toward the temporal bone, there is a prominence, the jugular process (Figs. 48, 49, 50, and 5I), in front of which is situated a notch, the jugular notch, which is subdivided by a small intrajugular process (Figs. 50 and 5I), into a small anterior and a larger posterior compartment. By apposition of the notches to corresponding notches of the temporal bone there is formed the jugular foramen (Figs. +3 and +4), which is divided into two compartments by a ligament extending between the corresponding intrajugular processes (see page 55).

The inner or cerebral surface of the lateral portion of the occipital exhibits a blunt protuberance, the jugular tubercle (Fig. 51), above and to the outer side of the internal orifice of the hypoglossal canal, which consequently passes through the lateral portion of the bone, below the jugular tubercle and above the condyle. Beside the jugular process and beginning in the jugular notch is seen the commencement of the sigmoid groove (see page 43), which curves over the cerebral surface of the jugular process.

The largest portion of the occipital bone is formed by the squamous portion, which is flat and moderately curved, and in which an internal and an external surface can be recognized. It is bounded by the occipitomastoid suture, forming the mastoid border, and by the lambdoid suture, forming the lambdoid border, and its apex is situated at the posterior extremity of the sagittal suture.

The most striking formation upon the rather markedly concave internal or cerebral surface (Fig. 49) is the crucial eminence, the ridges of which form four shallow fossx, two superior occipital fossa and two inferior occipital fossce. The middle of the cross is formed by the internal occipital protuberance, while the inferior median limb, the internal occipital crest, passes to the posterior margin of the foramen magnum. The remaining three limbs are grooves produced by the renous sinuses of the dura mater; the two lateral ones are called the transverse grooves and the superior one is the posterior extremity of the sagillal grooze (see page 44).

The external surface of the squamous portion (Fig. 48) is markedly convex in both the sagittal and transverse directions, and is divided into two surfaces, an inferior nuchal surface (planum muchale), roughened for the insertion of numerous muscles, and a superior smoother triangular occipital surface (planum occipitale). These two surfaces are separated by the superior nuchal line, a roughened ridge for muscular attachment, which passes in a curved direction from the external occipital protuberance to the occipito-mastoid suture, and a short distance above the linea superior we observe the somewhat more sharply curved linea suprema.

The entire planum nuchale, from the external occipital protuberance to the foramen magnum, is traversed by the external occipilal crest. From about the middle of this crest, and parallel to the linea suprema, there passes outward the inferior nuchal line, upon which there are fre-

Basilar portion

Fig. 50

Frontal border

Posterior clinoid process
Intrajugular process
Jugular notch

Sigmoid groove

Fig 51.

20
$\therefore=0$
?

Transverse grout
 major mucter and that lor the mates tmonof
 biously described on paras is and os

THE SPHE: OID BO::E

Fig. 53.-The sphenoid bone seen from in front ($\frac{1}{1}$).
Fig. 54.-The sphenoid bone seen from behind ($\frac{1}{1}$).
which is completely divided into two portions by a sagittal septum which is rarely situated exactly in the median line. The two sinuses communicate with the posterior superior portion of the nasal fosse by means of irregular openings in the anterior surface of the body of the sphenoid bone (Fig. 53). The greater portion of the almost rectangular anterior surface of the body (Figs. 52 and 53) is formed by two thin, approximately triangular bony platelets, the sphenoidal turbinated bones (conchee sphenoidales), which, although usually united with the sphenoid, are to be regarded as portions of the ethmoid; they are frequently continuous with the ethmoid and may be represented by a number of small independent bones (ossa Bertini). They form the inferior margins of the apertures of the sphenoidal sinuses, and in the neighborhood of the apertures some small fossæ which close in the posterior ethmoidal cells are frequently visible.

The anterior extremity of the septum of the sinuses appears upon the anterior surface of the body of the sphenoid in the shape of a low ridge, the sphenoidal crest (Fig. 53). It is continued upon the lower surface of the body of the sphenoid, where it becomes more pronounced and forms the sphenoidal rostrum, to which is attached the ala vomeris.

The upper surface of the body (Figs. 43, 44, and 5I) is the most strongly marked surface of the bone. Its most striking structure is the so-called sella turcica (sce also page 41), which is that portion of the upper surface of the body which belongs to the middle cranial fossa, smaller portions of the body helping in the formation of the floors of the anterior and of the posterior fossæ. The portion in the anterior fossa is a plane surface in front of the sella turcica, connecting the two lesser wings, and is called the jugum sphenoidale; toward the adjacent lamina cribrosa of the ethmoid bone it presents a process, the cthmoidal spine (Fig. 5I), the shape of which varies greatly in different individuals.

Behind the jugum sphenoidale at the anterior margin of the sella turcica there is a shallow groove, the optic groove (sulcus chiasmatis), so called because it contains the decussation or chiasma of the optic nerves (Fig. 51). It is continued on cither side into the optic foramen, which leads into the orbital cavity.

Behind the optic groove the body of the sphenoid presents a flat elevation, the olivary cminence (tuberculum sella), the margins of which sometimes give origin to the inconstant middle clinoid processes, and between the eminence and the high back of the saddle, the dorsum selle, there is situated a rather deep, slightly elliptical depression, the hypophyscal fossa, which lodges the pituitary body or hypophysis. On each side of this fossa there is upon the root of the greater wing of the sphenoid a shallow but rather broad groove, situated at the junction of the upper and lateral surfaces of the body of the sphenoid bone and limited externally toward the greater wing of the sphenoid by a fine bony platelet, the lingula (Fig. 51). This groove is called the carotid groove (Fig. 54), since it lodges the internal carotid artery.

The dorsum sellae bears upon either side slightly pointed sharp corners, the posterior clinoid processes. Behind the dorsum sellee a portion of the clivus also belongs to the body of the sphenoid

Fis. 5\%
 fossa (Fig. +5).

 rough and irregular.
 forms a boundary of the nasal fowse and bears the wheneital row rum. In thil surtue thene are abo two small sagital groence or camale, the ingor of a hich i- the bu ipharencot and
 Fig. 54), is the pharymgeal canal frig. 53 hac ata, pate 51 .

The lateral surfaces of the benly of the sphenvid lane give wrigin to the twe greater wigen of the sphenoid, while the perygoid prencencesarice irom the larer surine ai the landy of the bone.

The lesser or orbital wings are narmen, alment horizental, lemy thate ariving from the
 upper surfaces form the posterior pertion of the phore of the anterior cranial fion wes page +1 and Fig. +5 and their posterior margins separate the anterior irom the milde itous. The posterior margin of cach wing terminates internally in a rather that, pewint, the phleriar frimui: process, which partly werhang the sella turcica, and the inferior surfate forms the ronit of the sphencidal fsuperior orbitall fissure and athen ads in the formatim of the arbit. The lewes wings articulate anteriorly with the orbital phate of the fromtal Inome uphensireatal sutare ate

 and 54 . It leads into the orlit and its greater purtion is doney by a membrane; it gise
 to the first or ophthatmic divison of the rrigeminur, and to the -uperior ophthalmio vin.

The greater or temporal wings of the sphemoil arioc from the lateral suriace of the
 the joramen orede, and the joramen spinosum Fize 51 . The beramen roumdem leats whliquels
 mite the mavillary nerve the second division of the erieminus. The foramen orake eraveres the leme in a vertieal direction and matere ite wit upon the external wriace of the hate at the skull (oee page 30 , and Figs. +1 and +2); it tran-mits the manditular mere the third division of the trigeminus). The foramen spinoump pursuce the same diretion and wive pange :o the middte meningeal attery.*
 separated surfaces, the cerctral, the orbital, and the temporal, and the re mat alon be recogniacel a fromtal berder (Fige st), the very rough margin dircted tward the fromtal twone a =igomatic

 between the foramen rotundum and the sphemoidal fiswe, and a sers ramen pasterier unc, betwed the foranten otaie and spinosum. The later, however, can swarcely be regarde i as a shat
border, in contact with the zygomatic bone, and a squamosal border,* directed toward the temporal bone. The most external portion of the greater wing, which is in contact with the parietal bone in the sphenoparictal suture, is known as the parictal angle, and its most posterior, pointed portion, which is directed toward the petrous portion of the temporal bone, is called the spine (Figs. 53 and 54). The cerebral surface is distinctly concave and exhibits the internal orifices of the foramen rotundum, ovale, and spinostim (Fig. 51), the last receiving its name on account of its location in the spine. \dagger It also occasionally shows digitate impressions and cerebral juga (see pages f_{I} and $\mathrm{6I}_{\mathrm{I}}$), and a sulcus arteriosus which is continued from the temporal bone.

The almost plane, slightly concave, quadrangular orbital surface (Figs. 38 and 53) is the smallest of the three surfaces. It forms a portion of the outer wall of the orbit, and in this situation its zygomatic border articulates with the zygomatic bone by means of the sphenozygomatic suture. The sphenomaxillary or inferior orbital fissure separates the greater wing from the maxilla, and at the margin of this fissure, the orbital surface possesses a sharp edge, the orbital crest, which separates it from the sphenomaxillary surface (Fig. 53), a lower portion of the temporal surface. In the vicinity of the superior orbital fissure the orbital surface exhibits a bony spine of variable development which is called the spina recti lateralis and is the point of origin for the muscle of the same name.

The temporal surjace (Figs. 39, 40, and 53) is by far the largest of the three surfaces of the greater wing of the sphenoid and is distinctly angulated at the level of the infratemporal crest (see page 39). The almost vertical portion of the temporal surface, situated above this crest, forms a portion of the planum temporale (see page 38), while the portion situated below the crest is divided into the more horizontal infratemporal surface and the triangular sphenomaxillary surface by a rather low ridge which is called the sphenomaxillary ridge. The sphenomaxillary surface (Fig. 53) looks rather anteriorly and overlaps the root of the pterygoid process, while the infratemporal surface is directed more to the side, and presents the external orifices of the foramen ovale and the foramen spinosum. It forms the posterior wall of the pterygopalatine (sphenomaxillary) fossa (see page 78), and contains the anterior or external orifice of the foramen rotundum. It is sharply separated from the orbital surface by the orbital crest (Fig. 53).

While the greater and lesser wings of the sphenoid are practically horizontal, the third pair of processes, the pterygoid processes (Figs. 53 and 54), pass almost vertically downward and are apposed (Figs. 41 and 42) to the posterior surface of the maxilla (see page 67) and to the hard palate (see page 79), forming the lateral boundaries of the posterior nares. Each pterygoid process arises from the lower surface of the body of the sphenoid by two roots, between which is the pterygoid (Vidian) canal (Fig. 53), which runs almost horizontally, its anterior extremity being in the pterygopalatine fossa, and its posterior one in the foramen lacerum. Below the pterygoid canal the pterygoid process divides into two lamellæ, the internal and the external pterygoid plate. The internal plate is narrower and almost vertically placed, while

[^5]

 $5+$), to the outer side of which, whard the spine, there is a hatlen gromes. is whill in mastol the cartilaginous pertion of the Eustachian tube which conncets the mid the wer wits the baw

 grooer and forming a pulley for the tendon of the temour wh phatuti.

 process of the palate bones it aids in the iormation of the pharynged whal tate jage the

Upon the anterior surface of the herggod prexeos, rumning downward irom the wheriar extremity of the pterygoid canal, there is a hallow ercouse, the pleryge poldetine grose, IFis. 54), which, with similarly named groowe upon the palate and maillary tane forms the forsat palatine canal, whose external orfice are the palatine foramina wi the hard falate tat patee 40 and 78).

Since the sphenoid bone is almost exactly in the center of the shull and hat relations what both the cranial and the facial bones, it articulates with a large number of the freme ef the stall isee page 3 ; et seq.). These are the occipitals, the te mporal, the parietal, the fromal, the cthmoil. the maxilla, the zegomatic, the palate, and the womer. It alow forns a pertitn ef the ameriter, middle, and posterior cranial fosse, of the orthit, wi the natsil forsit, if the tomaral foose, di the infratemporal fosse, and of the sphenomaxillary fonst.

 aliso forming the outer phates of the pherygoid prexcescs. The lowe whes urnte with th athertar forter of ithe toall

 that an intersphenomal synchondrosis existe for a long time.

 The sphenoidal sinus arises during childhexal, but increaso con-iderabls in evern durl bू later ohe

 page 119) there is not infrequently formed a pleri gospinemes proces arocessar ($\%$ mam

THE TEMPORAL BONE.

The temporal bone (Figs. $5 s^{\text {to }}$ os is situated in the lateral furt of the bane of the skull, and forms portions of the middle and posterior cranial fossit. Cepon cither side one of the temporal bones fills in the large gap in the os besilure sece pages 40 and 47 .

Fig. 55.-The right temporal bone seen from the outer (lateral) surface ($\frac{1}{1}$).
Fig. 56.-The right temporal bone seen from the cerebral surface ($\frac{1}{1}$).

Each temporal bone consists of four portions: (1) A squamous portion; (2) a petrous portion; (3) a mastoid portion; (4) a tympanic portion. The petrous portion is also termed the pyramid.

The squamous and mastoid portions are placed almost vertically, while the pyramid is practically horizontal. At the external auditory meatus, the individual portions of the temporal bone are grouped in such a manner that the smallest portion, the tympanic portion, is situated in front of and below the auditory canal, the mastoid portion is behind, the squamous portion above, and the petrous portion internally and anteriorly.

THE SQUAMOUS PORTION.

The squamous portion of the temporal bone (Figs. 55, 56, and 57) consists of an approximately semicircular vertical bony plate which is concave internally and convex externally. Anteriorly it articulates (Figs. 39 and 40) with the temporal surface of the greater wing of the sphenoid by the sphenosquamosal suture (sphenoidal border), and superiorly with the parietal bone by means of the squamosal suture (parietal border, see page 38). A dcep notch, the parietal notch, accommodates the sphenoidal angle of the parictal bone and separates the squamous portion from the mastoid portion, which is situated inferiorly and posteriorly.

The zygomatic process (Fig. 55) springs from the external surface of the squamous portion of the temporal bone and aids in the formation of the zygomatic arch, by articulating with the temporal process of the zygomatic bone by means of the zygomaticotemporal suture. It is almost horizontal at its origin, but later it rotates through about 90 degrees, so that it assumes a vertical position and forms a bony process flattened from side to side. Its posterior prolongation above the external auditory meatus forms a supramastoid ridge, which posteriorly becomes continuous with the terminal portion of the inferior temporal line (see Fig. 39).

The part of the squamous portion which lies below the zygoma forms part of the external surface of the base of the skull and is consequently almost horizontally placed (Fig. 58), and borders upon the infratemporal surface of the greater wing of the sphenoid bone. It is therefore advantageous to subdivide the squamous portion of the temporal bone into a larger vertical portion and a smaller horizontal portion.

In the vertical portion there may be recognized an external temporal surface and an internal cerebral surface (the latter is absent in the horizontal portion). The temporal surface forms a part of the planum temporale and of the fossa temporalis (see Fig. 39), and is usually smooth, though its lower portion may sometimes be roughened by the origin of the temporal muscle. It presents a shallow groove for the middle temporal artery, beginning above the external auditory meatus and running upward.

At the junction of the horizontal and vertical parts is situated the roof of the external auditory meatus, the remaining walls of the auditory canal being formed by the tympanic portion, and just above the external auditory meatus, at the transition into the mastoid portion, there is frequently found a small bony spine, the su prameatal spine (Fig. 55).

Groove for midlle temporal artery

Temporal line
I'srintal notch

Fig. 55.

Sulcus arteriosus Sphenoidal border

Petrous portion (apex)

Subarcuate fossa
Interna! auditory miatus inferior petrosal groove

Sijloid process

Orifice of aquacducus westibuti
Jumtar resch
Fig. 50.

 werlap the - eframous pertion of the temporal.

THE MASTOLD PORTIO:

 toid process, the mont important -tructure oi thi protion ai the kmparal Larm. If the parval

 -urface, which lears the masodid procos. anl an internal ouncone waliral surlace.

 arente for the occipital artery.

 shture.

 the pyramid.

The mastoid process contain= mumerous air shate knewn at the mataid cell Firs on

Fig. 57.-The right temporal bone seen from the cerebral surface and from the apex of the petrous portion ($\frac{1}{1}$).
Fig. 58.-The right temporal bone seen from below $\left(\frac{1}{1}\right)$.
Fig. 59.-The right temporal bone of a new-born child ($\frac{3}{2}$).
Fig. 60.-The left temporal bone of a four-year-old child ($\frac{3}{2}$).
In Figs. 59 and 60 the squamous portion is green, the petrous and mastoid portions yellow, and the tympanic portion white.
and 63), and these may become so large, particularly in later life, that ther markedly attenuate the bony tissue and even expand it. They are connected with the cavity of the middle ear, the tympanic antrum.

The mastoid process is one of the chief points for muscular attachment which the skull possesses, and it receives the insertions of the sternocleidomastoid and of portions of the splenius capitis and of the longissimus capitis muscles. The mastoid notch gives origin to the posterior belly of the digastric muscle. Several openings may be present in the vicinity of the mastoid foramen. The depression beside the suprameatal spine and above the mastoid process is also called the mastoid fossa.

THE PETROUS PORTION.

The petrous portion or pyramid of the temporal bone (Figs. 56 to 58) forms a portion of both the external and internal surfaces of the base of the skull (sec Figs. 42 and 43). It has the shape of a three-sided horizontal pyramid, two of the surfaces being directed toward the cranial cavity and one externally, and the axis of the pyramid passing obliquely from behind forward and from without inward. There may consequently be distinguished internally an anterior surface and a posterior surface, and externally an inferior surface, and there is a superior, an anterior, and a posterior border. The superior border separates the two cerebral surfaces; the two remaining borders separate the cerebral surfaces from the external one.

The petrous portion in the adult is directly continuous externally with the tympanic portion, and its internal anterior surface borders upon the squamous portion (petrosquamosal fissure, sce page 53) and upon the sphenoid bone (sphenopetrosal fissure). The base and a part of the postcrior margin is continuous with the mastoid portion even during early fetal life, and the anterior portion of the posterior margin articulates with the lateral portion of the occipital bone (petro-occipital fissure). The apex of the petrous portion projects into the foramen lacerum (see Fig. 42), in the space between the sphenoid and the occipital bones.

The antcrior cerebral surface forms a portion of the floor of the middle cercbral fossa, and presents a flattened projection lying at right angles to the axis of the pyramid and known as the arcuate eminence (Fig. 56), because it overlies the semicircular canal of the internal ear which is embedded in the petrous portion of the bonc. Upon this anterior surface there is also a small slit-like orifice, the hiatus Fallopii (hiatus canalis facialis) (Fig. 57), from which the great superficial petrosal nerve passes toward the apex of the pyramid and to the foramen lacerum in a groove (Fig. 57).

External and anterior to the hiatus canalis facialis there is a second smaller opening, the superior aperture of the tympanic canaliculus (Fig. 57), the place of exit of the lesser superficial petrosal nerve, which also passes forward to the region of the foramen lacerum in a groove.

Symamous portion lcereind whie

$$
\text { H11 1H, }=810 \text {, } 16=k+2 x
$$

 legmentympani.

 it contains a sinus of the llata th ithe

 the facial and auditory nerre.

 of the dura mater aee alow fith fo

 ally an intrajugular process -co pate the

Fig. 6I.-The left temporal bone divided through the axis of the petrous portion ($\frac{5}{4}$).
Fig. 62.-The right temporal bone divided in a plane passing through the external auditory meatus and nearly parallel to the axis of the petrous portion $\left(\frac{5}{4}\right)$.
Fig. 63.-The right temporal bone divided in the upper half through the axis of the petrous portion and below horizontally, the wall of the canalis musculo-tubarius being partly chiseled away to show the septum ($\left(\frac{5}{4}\right)$.

In this situation the spine of the sphenoid insinuates itself into the angle between the anterior border of the py ramid and the cerebral surface of the squamosal portion, so that the groove for the Eustachian tube (see page 5^{1}), running upon the inferior surface of the sphenoid bone, leads into the orifice of the musculotubar canal.

The external surface of the petrous portion forms part of the external surface of the base of the skull. It presents quite a number of noteworthy structures and is the roughest and most uneven surface of the bone. At its junction with the mastoid portion there is a rounded opening, the stylomastoid foramen (Fig. 58), the external orifice of the facial canal, which traverses the temporal bone in a curve and lodges principally the facial nerve.

In front of the stylomastoid foramen is situated the styloid process (Figs. 55 and 58), the remains of one of the branchial arches. Sometimes it is short and thick and sometimes it is very long,* and it is usually placed in a sort of bony sheath, the vaginal process (Fig. 55), which is mainly in contact with the process anteriorly and belongs to the tympanic portion. The styloid process gives origin to three muscles (stylohyoideus, styloglossus, and stylopharyngeus).

To the inner side of the styloid process, toward the posterior border of the pyramid, there is a rounded or an oval depression, the jugular fossa (Fig. 58), which borders upon the jugular notch. It lodges the upper extremity of the internal jugular vein (bulbus vena jugularis superior), and at the bottom of it a small canal, the mastoid canaliculus (see page 58), begins as a groove. Near the jugular fossa, toward the apex of the pyramid and close to its posterior border, is situated the small funnel-like orifice of the aquaductus (canaliculus) cochlece (Fig. 58).

Behind the jugular fossa and internal to the stylomastoid foramen, the posterior border of the pyramid presents a somewhat roughened surface for articulation with the occipital bone.

In front of the jugular fossa and separated from it by a narrow ridge, there is a large, almost circular foramen, the external carotid foramen (Fig. 58), which leads into the carotid canal, the posterior wall of which presents a number of small foramina, the external orifices of the caroticotympanic canaliculi, for the nerves of the same name.

Between the external carotid foramen, the jugular fossa, and the external orifice of the aquæductus cochlex, there is a small and sometimes poorly marked depression, the petrosal fossa (Fig. 58), which contains the inferior aperture of the tympanic canaliculus, which transmits the tympanic nerve. Internal and anterior to the external carotid foramen, and toward the foramen lacerum there is a roughened surface for the origin of the levator veli palatini muscle.

[^6]

THE TY:PPA:HC PORTIO:

 wall of the wmpanie (asit,*

THE MOST IMPORTANT CANALS OF THE TEMPORAL PUSE

 horizontal, the last one is vertical.

 which passes obliquely upward and forward to conter the iytyountay. It traturis a batath of the facial nerve known as the chorda tympani, which tracere ite iyerpontary and heace this cavity through the petrotympanic fisure.

 rate foramina.

Fig. 64.-The outer surface of the right parietal bone ($\frac{4}{5}$). Fig. 65.-The inner surface of the right parietal bone ($\frac{4}{5}$).

While the facial canal is the longest of the canals of the petrous portion, the carotid canal (Figs. 6I to 6_{3}) is the widest. It is also bent at a right angle. It commences at the external carotid foramen upon the external surface of the petrous portion of the temporal and passes at first almost vertically upward, in contact with the anterior wall of the tympanum; in the immediate vicinity of the cochlea it bends at a right angle and then runs almost horizontally in the axis of the pyramid to reach its irregular and frequently incomplete superior orifice at the apex of the petrous portion. Fine canals, the caroticotympanic canaliculi, lead from the carotid canal into the tympanic cavity.

The musculotubar canal (Fig. 63) runs parallel to the carotid canal and in such immediate proximity to it that portions of both canals have a common wall. It begins at the inner side of the apex of the petrous portion of the temporal bone upon the anterior border of the pyramid, between the petrous portion and the horizontal part of the squamous portion, and runs approximately in the axis of the pyramid. An incomplete horizontal septum which proceeds from the inner and posterior wall (bordering upon the carotid canal) separates an upper smaller compartment, the semicanal for the tensor tympani, from a larger inferior one, the semicanal for the Eustachian tube; both compartments have their exits in the anterior wall of the tympanum. The canal contains the tensor tympani muscle and the Eustachian tube.

The tympanic canaliculus, for the nerve of the same name, proceeds from the petrosal fossa, and at first passes vertically upward into the inferior wall of the tympanum to be continued as a groove, the groove of the promontory, upon the inner wall of the tympanic cavity. It then leaves the tympanum as a canal passing from its upper wall to the superior aperture of the tympanic canaliculus on the anterior surface of the petrous portion, where it communicates with the cranial carity.

The mastoid canaliculus begins in the jugular fossa as a groove, crosses the lower portion of the facial canal at a right angle, and terminates in the tympanomastoid fissure. It transmits the auricular branch of the pneumogastric nerve.

In addition to the air-cells of the mastoid process, the temporal bone also contains a larger cavity, the tympanic antrum (Fig. 63). (For a detailed description see the special sense organs.) This is in connection with the mastoid cells behind and with the musculotubar canal in front. It is not separated from the external auditory meatus by osseous tissue but only by membrane.

In the development of the temporal bone, the petrous portion and the mastoid process are developed in common from the cartilaginous auditory vesicle, and the squamous and tympanic portions are added later as supplementary boncs. The styloid process has no connection whatever with the remaining portions of the temporal bone and arises from a portion of the branchial skelcton.

Commencing at the third fetal month, several centers appear in the cartilaginous auditory vesicle and subsequently unite to form a common origin for the petrous and mastoid portions. The latter is not distinctly developed even at birth; a mastoid process gradually forms, but it is not distinct until late in childhood. The first center of ossification for the squamous portion appears toward the end of the second fetal month, and the tympanic portion ossifies at about the same time as the pyramid.

In the temporal bone of the new-born (Fig. 59) the tympanic portion has the shape of a ring open above, and is known as the annulus tympanicus; it is at first merely attached to the remaining bones. A very distinct suture, the

 undercel witb the temprat lee

THE PARIETAL PONE.

 an internal concase corteral auritar.

 fol. The anterior, supelior, and posterior martins ar madedly strati, forrabouling of

In the vicinity of the sigittal suture and nor it - fonteriet promily is zurusad the parath
 orifice is wanting; the fomer leads inte the werthal go w we

 are accurate moulds of these vescels.* The curtral surime alew whitio two wher mowor.

 not infrequently converted into a short canal by a bridze vinaum....... |~F Fis bal.

Fig. 66.-The frontal bone seen from in front ($\frac{4}{5}$).
Fig. 67.-The frontal bone seen from behind ($\frac{4}{5}$).
presents one-half of the sagittal groor'e, while the mastoid angle contains a small portion of the sigmoid groove (see also Figs. 43 and 44). Digitate impressions and cerebral juga likewise occur and granular foveola granulares (Pacchionian depressions) are still more common.

[^7]
THE FRONTAL BONE.

The frontal bone (Figs. 66 to 69) consists of a rertical arched portion and of a horizontal portion. The vertical portion is known as the frontal portion and the horizontal portion is composed of two orbital plates, and a small median nasal portion. At the orbital margins the horizontal and rertical portions become continuous.

The frontal portion, the main portion of the entire bone, articulates in the coronal suture with both parictal bones by its parietal border (Figs. 39 and 40) and in the sphenofrontal suture with the greater wing of the sphenoid bone. It forms the entire frontal portion of the cranial vertex and presents two surfaces for examination, an external frontal surface and an internal cerebral surface.

The frontal surface (Fig. 66) is markedly convex in both the sagittal and the transverse direction and presents some distance above the orbital cavities two feebly projecting flattened clevations, the frontal eminences. Immediately above the orbital margins and parallel to them are two slightly projecting ridges, the superciliary arches, the development of which varies considerably in different individuals; the flat area between these two ridges is called the glabella. The remainder of the external surface is smooth, although there may be a slight roughening in the median line which represents the remains of the original frontal or metopic suture.

The supraorbital border is situated at the junction of the rertical with the orbital plate. A portion of it is furnished by the zygomatic process of the frontal bone, which also forms part of the external orbital margin and, in the latter situation, articulates with the frontosphenoidal process of the zygomatic bone in the zygomaticofrontal suture (Figs. 37 and 38). The temporal line commences at the zygomatic process and separates the frontal surface of the frontal portion of the bone from the small temporal surface, the latter surface, almost in the sagittal plane, forming a portion of the planum temporale and being that part of the frontal bone which borders upon the temporal surface of the greater wing of the sphenoid bone.

Immediately above the supraorbital border there are foramina, which may be represented by notches of varying depth in the border itself. The inner one is designated as the frontal notch or foramen (Fig. 65), while the outer one is known as the supraorbital notch or foramen* (Figs. 66, 68, and 69).

The inner or cerebral surface of the frontal portion (Fig. 67) presents a median ridge upon

[^8]

 sulci arteriosi of the anterior and midille nenengeal arlerives.

 give passuge to the reach and nerses of the sume rame.

 lachrymal gland.

 form the skeleton of the nose.

 nasal carity, the communication in this instance bent dicetel by the twd eponin=s Fix. ©

Fig. 68.-The frontal bone seen from below ($\frac{4}{5}$).
Fig. 69.-The frontal bone, the greater part of the ethmoid, and the nasal bones in place, seen from below $\left(\frac{4}{5}\right)$. The frontal bone is white, the ethmoid yellow, and the nasal pink.
Fig. 70.-The ethmoid bone seen from above ($\frac{1}{1}$).
Fig. 71.-The ethmoid bone seen from the side ($\frac{1}{1}$).
Fig. 72.-The ethmoid bone together with the conchæ sphenoidales, which are united with it, seen from above and partly from behind $\left(\frac{1}{1}\right)$.
situated between the frontal spine and the ethmoidal notch. The development of the frontal sinuses is subject to great individual variation; they are generally larger in advanced life than during youth, and they are always situated at the base of the frontal portion, especially behind the superciliary ridges, the prominence of which is actually dependent upon the size of the sinuses. They frequently also extend into the orbital plates for a varying distance, and are sometimes enormously developed and markedly distend the frontal bone in the region of the superciliary ridges.

The frontal bone is developed entirely in membrane from two completely separated portions, which grow from two centers of ossification in the frontal eminences; these centers, like those of the parietal bone, appear toward the end of the second month. Even in the new-born the two halves of the frontal bone are completely separated by the frontal suture (Fig. 105), which does not disappear until the second year of life and may sometimes be present in the adult, and is then also termed the metopic suture. At about the time it disappears the frontal sinuses begin to develop and they enlarge quite gradually until the time of puberty, when they increase more rapidly.

THE ETHMOID BONE.

The ethmoid bone (Figs. 70 to 73) forms the median portion of the nasal skeleton; and its cribriform plate aids in the formation of the floor of the anterior cerebral fossa. In the articulated skull the largest portion of the ethmoid is concealed by other bones; it is quite centrally placed and articulates with several of the cranial bones and with the majority of the facial bones.

It has, as a whole, an irregularly cubical form, and presents a median and two lateral portions. The former consists of a small horizontal plate, the cribriform plate, and of a larger vertical plate, which consists of a small thickened portion situated above the cribriform plate, the crista galli (Fig. 71), and of a larger portion, the perpendicular plate, situated below the cribriform plate, which aids in the formation of the bony nasal septum (Fig. 73).

If the median portion of the ethmoid bone be observed from in front or from behind, or, still better, in cross-section (Fig. 98), it will be scen to be shaped like a dagger, the handle of which is formed by the crista galli, the guard by the cribriform plate, and the blade by the perpendicular plate.

Attached to the lateral margins of the lamina cribrosa are the two lateral masses, also termed the ethmoidal labyrinths, which are air-containing structures with thin bony walls, and form a part of the outer walls of the nasal fosse and a part of the inner wall of the orbit.

The crista galli (Figs. 70,71 , and 73) is a pointed bony ridge situated in the sagittal plane; it is high in front and low behind, and gives attachment to the falx cerebri. The cribriform plate (Figs. 69, 70, and 72) is an approximately rectangular plate situated between the cranial

I rontal spane (s...nc.l.
lrochlear yithe
Superciliury urch
Supraorbitul murgin

Soremoidal
bincird borss

Fig. 12.

 approximately pentagenal in shape. He anterior sugetier Ixiseder articulate widh the freatat spine by the frontocthmoidal suture; it anterior inferior Laroter is cumbunts कubl ther cartilaginous nasal septum*: it inferior lxerder artikulute with the -uperime fander at de

 superior border is recived between two ridges upen the inferins -urine of the oflatiman flate.

The ethmoidal labyrinths or lateral masses are paired -trustures. Iheis avition we orme or less completely sulxlivided by numerous time Lxony platele intu the ethomeld Eilla, whicle she
 bones, particularly by the frental.

[^9]The external surface of the laly rinth forms a protion ai the inner wall withe trlat fies.

 closing in the cthmondal all.
 of the outer masal wall. and from it imothin roush lant plate whe fre margin- are viahtly
 turbinated bone (comehte mades superier at medite. The anterior evomit! of the midelle turbinated bone articulate: with the cethmeidal crest of the irontal prexe- of the mavilla, while

[^10]its posterior extremity is attached to the similarly named crest of the palate bone. Between the superior and middle turbinated bones is situated the superior meatus of the nose, which is short and developed only in the posterior portion of the nasal fossæ. Between the middle and inferior turbinated bones (the latter structure being an independent bone) is the middle meatus, in which, covered by the middle turbinated bone, there is a bulging of the ethmoidal wall, the ethmoidal bulla, a rudimentary turbinated bone, and another rudimentary turbinal (the os nasoturbinale of the mammalia) is the sickle-shaped uncinate process (Figs. 81 and 102), which is also covered by the middle turbinated bone. It articulates with a process of the inferior turbinated bone (see below) and helps to close the orifice of the maxillary sinus. Between the uncinate process and the ethmoidal bulla is a wide fissure, the infundibulum, which leads both into the orifice of the frontal sinus and into the ethmoidal cells; its orifice in the nasal fossa is known as the hiatus semilunaris (Fig. 101).

The ethmoidal cells communicate partly with one another, partly with the air-cells of the adjacent bones, and in all cases, either directly or indirectly, with the nasal fosse.

[^11]
THE INFERIOR TURBINATED BONE.

While the two upper turbinated bodies are portions of the ethmoid bone, the inferior one (concha nasalis inferior) (Figs. 79, 81, 82, and 98) is an independent structure and it is also the largest of the three. It is a thin roughened bony plate, the free margin of which is turned upon itself and slightly rolled up. It consists of a body and of three processes.

The narrow, leaf-shaped body is placed in the sagittal plane. It is convex toward the nasal septum, concave toward the lateral nasal wall, broader in front than behind, and is provided with many depressions and small foramina. The anterior portion of the lateral border articulates with the conchal crest of the maxilla (Figs. 81, 101, and 102), and the posterior portion of this border is attached to the similarly named crest of the palate bone.

The largest of the three processes is the maxillary process (Fig. 82), which is directed downward and outward, and closes a considerable portion of the orifice of the maxillary sinus (see Fig. 101). The lachrymal process (Figs. 6i and 82), passing forward and upward, articulates with the lower border of the lachrymal bone by the lachrymoconchal suture, and forms a portion of the wall of the nasal duct (nasolachrymal canal) (Fig. 79). The ethmoidal process (Figs. 81, 82, and 102) is directed upward and backward and articulates with the uncinate process of the ethmoid bone in the region of the orifice of the maxillary sinus.

The inferior turbinated bone ossifies in immediate connection with the ethmoid bone in the fifth month of embryonic life.

THE LACHRYMAL BONE.

The lachrymal bone (Fig. 78) is an approximately rectangular bony plate, very thin and frequently even perforated, situated in the inner wall of the orbit between the frontal process of

 small portion of it aids in the formation of the other has rall in the rodidle masem at it
 suture (Fig. 101).

 78). This is situated in the lachrymal now ha between the freful poxeriof the madill ant the
 surface, situated behind the hethromal (rest, is amenth.

THE NASAL BONE.

 ably longer, articulates with the fremal proxon of the mathe by the nawomailan sume.

 skeleton.

THE VOMER.

The aomer (Figs. is to 7) of the adult shull i- a that single bate aptracimatu trapeail
 Its upper end is thickened and spread out int twn flates the wha fite. i.f. Whith articulate with the inferior surface of the body of the spheveil trone in onch a manner that the sphenoidal rostrum is received between them, while the maginal proceses of the fungeid jroceso and

Fig. 73. -The osseous nasal septum seen from the left side. The frontal, sphenoid, maxilia, and palate bones, and also the lamina cribrosa of the ethmoid and the ala vomeris, have been sawed through close to the median line. The ethmoid is yellow, the vomer (except the cut surface of the ala) pink.
Fig. 74.-The vomer seen from behind ($\frac{1}{1}$).
Fig. 75.-The vomer seen from the side $\left(\frac{1}{1}\right)$.
Fig. 76.-The right maxilla seen from the inner surface ($\left(\frac{1}{1}\right)$.
Fig. 77.-The right maxilla seen from the outer surface $\left(\frac{1}{1}\right)$.
the sphenoidal process of the palate bone (see page 70) are applied to their margins. The posterior border of the vomer forms the septum choanarum; the narrow anterior border articulates with the cartilaginous septum of the nose and the anterior portion of the nasal crest of the maxilla; the superior border is attached to the perpendicular plate of the ethmoid; and the inferior one is firmly fixed to the nasal crests of the maxilla and palate bone (Fig. 73).

[^12]
THE MAXILLA.

The maxilla (Figs. 76, 77, and 79) is a paired bone which forms the center of the facial skeleton, all portions of which are more or less intimately connected with it. It assists in the formation of the orbit and forms a considerable portion of the nasal fossæ and of the roof of the mouth.

It consists of a body and of four processes, the frontal or nasal process, the zygomatic process, the palatine process, and the alveolar process. Of these, the alveolar process is directed downward and the frontal process upward, while the zygomatic and palate processes extend in the horizontal plane, the former externally, the latter internally.

The body of the maxilla is irregularly cubical, and contains a large cavity, the maxillary simus (Figs. 76, 79, 97, and 98), also known as the antrum of Highmore. In the body there may be recognized four surfaces: the anterior, the nasal, the orbital, and the infratemporal.

The actual facial surface of the bone, the anterior surface (Fig. 77), is convex, and its superior border forms a portion of the infraorbital margin. . Below this margin is an irregular rounded opening, the infraorbital foramen (Figs. 37, 38, and 77), which gives exit to the vessels and nerves of the same name and is the termination of the infraorbital canal. Below the infraorbital foramen there is a depression, the canine fossa, which gives origin to the musculus caninus (levator anguli oris). The anterior border of the facial surface forms a portion of the lateral boundary of the apertura piriformis (anterior nares), and at the infraorbital margin the surface becomes continuous with the triangular orbital surface, which articulates with the lachrymal, zygomatic, and ethmoid bones, but is separated from the greater wing of the sphenoid by the inferior orbital (sphenomaxillary) fissure (Figs. 95, 96, and 97). This is a smooth surface; it assists in forming the floor of the orbit, and exhibits a gradually deepening groove, the infraorbital groove (Fig. 96), along which there is frequently to be observed an infraorbital suture.

 inferiorf (ive alas jage Cat.

 اx"In

 the laserat twoundan of the aperimo binturats.

 lary sinus chends into the have bif the proeses.

Fig. 78.-The left lachrymal bone seen from its median surface $\left(\frac{1}{2}\right)$.
Fig. 79.-The lower half of the facial portion of the skull which has been divided horizontally, seen from above ($\frac{1}{1}$).
Fig. 80.-The right maxilla and palate bone, seen from the inner surface ($\frac{1}{1}$).
Fig. 81.-The right maxilla, palate bone, inferior turbinated bone and part of the ethmoid, seen from the inner surface ($\frac{1}{1}$).
Fig. 82. -The inferior turbinated bone seen from its lateral surface $\left(\frac{1}{1}\right)$.
In Figs. 79 and 8 I the maxilla is colored yellow, the sphenoid green, the palate bone blue, and the ethmoid orange.

Abstract

The zygomatic process forms the lower portion of the outer margin of the inferior orbital (sphenomaxillary) fissure, and is continued as a flat process, the orbital plate, upon the orbital surface of the body of the bone in such a manner that it forms the floor of the original infraorbital groove. In young subjects this orbital plate is always separated from the other bones by the infraorbital suture, which is also frequently observable in the adult skull.

The alveolar process is convex externally, concave internally, and contains eight of the sixteen upper teeth. It is directly continuous with the lower surface of the body of the bone, is separated from the frontal process by the nasal notch (Fig. 77), and forms the inferior and a portion of the lateral boundary of the apertura piriformis. Both alveolar processes are in contact in the median line in the intermaxillary suture, and their superior margins form the anterior extremity of the nasal crest and the anterior nasal spine. The free inferior margin of the process, the limbus alveolaris, contains the sockets (alveoli) for the roots of the teeth, and these are separated from each other by the interalveolar septa. The roots of the front tecth particularly cause the walls of the alveoli to project externally and in this manner produce the juga alveolaria (Fig. 77).

The apices of the posterior alveoli are situated immediately beneath the maxillary sinus and are separated from it only by thin layers of bone (Fig. 98), and at the summit.of every alveolus is the orifice of an alveolar canal (see page 67). Posteriorly the alveolar process is directly continuous with the tuberosity, anteriorly with the palatine process.

The palatine processes (Figs. 79 and 1∞) of the two maxillæ articulate in the median line in the anterior portion of the middle palatine suture (Figs. 41 and 42) and form the largest portion of the hard palate. Each presents a slightly concave, relatively smooth nasal surface, which forms the floor of the nasal fossa, and a markedly concave, extremely rough palatine surface, which is directly continuous externally with the alveolar process. In the median line immediately behind the junction of the two alveolar processes each palatine process exhibits upon its palatine surface an incisive notch, and the corresponding notches of the two bones form the inferior opening of the incisive foramen (Fig. IOO), which has two orifices into the nasal fossæ, one on cither side of the bony nasal septum (Fig. 78). The palatine surface (Fig. 100) also possesses rough longitudinal ridges and grooves, the palatine spines and grooves, the latter accommodating the ressels and nerres of the hard palate.

Upon the nasal surface of the palatine processes the thickened and rolled up margins of the two bones unite in the median suture to form the nasal crest (Fig. 79), into which is inserted the inferior margin of the romer. To either side of the anterior extremity of this crest is situated one of the nasal orifices of the incisive canal.
$1 \cdot \mathrm{Pan}^{2}$

16. v1

Fibunibl proas $1-151-1$ y 0 in

Fic, Al

$$
a
$$

THE PALATE BOZE

 three prexer.

 its vicinity are also the crificts of serval smaller lateral sumbicumes, the potevine conals, mosi

Fig. 83.-The right palate bone seen from behind ($\frac{1}{1}$).
Fig. 84.-The right palate bone seen from the outer surface ($\frac{1}{1}$).
Fig. 85.-The right palate bone seen from the inner surface ($\frac{1}{1}$). * = surface which completes the pterygoid fossa.

Fig. 86.-The left nasal bone seen from the outer surface $\left(\frac{1}{1}\right)$.
Fig. 87.-The left nasal bone seen from its inner surface ($\left(\frac{1}{1}\right)$.
Fig. 88.-The right malar bone seen from the outer surface ($\frac{1}{1}$).
Fig. 89.-The right malar bone seen from the temporal surface $\left(\frac{1}{1}\right)$.
of which perforate the pyramidal process and end on the hard palate as the lesser palatine joramina.

Of the three processes of the palate bone, the pyramidal process or tuberosity passes backward from the junction of the two plates of the bone, filling in the pterygoid notch of the pterygoid processes of the sphenoid bone and completing the pterygod fossa.

The other two processes, the orbital and the sphenoidal processes, are given off from the upper portion of the perpendicular plate above the ethmoidal crest, and are separated from one another by a deep notch, the sphenopalatine notch (Figs. 84 and 85). The inferior surface of the body of the sphenoid bone converts this notch into the sphenopalatine foramen (Fig. 102), an important communication between the pterygopalatine (sphenomaxillary) fossa and the nasal cavity, which gives passage to vessels and nerves (see page 78).

The orbital process (Figs. 83, 85, and 96) is the anterior and larger of the two processes, and is directed outward. Its upper surface forms the most posterior portion of the floor of the orbit, articulating with the lamina papyracea by the palatocthmoidal suture and with the orbital portion of the maxilla by the palatomaxillary suture. Its anterior surface is closely applied to the maxilla, while the internal one has an irregular boundary and articulates with the ethmoid labyrinth, where it assists in closing in some of the ethmoidal cells, the palatine cells. The orbital process is also in contact with the external surface of the body of the sphenoid bone by the sphenoorbital suture, and forms the posterior portion of the inner margin of the inferior orbital (sphenomaxillary) fissure.

The thin posterior sphenoidal process (Figs. 83, 85, and IOI), directed internally, is applied to the ala vomeris, to the inferior surface of the body of the sphenoid bone, and to the sphenoidal conchx (sphenoidal turbinated bones), and also partly closes the orifice of the sphenoidal sinus.

[^13]
THE ZYGOMATIC BONE.

The zygomatic or malar bones (Figs. 88 and 89) are three-sided, flat, strong bones which form the prominence of the cheek. They articulate with the frontal, sphenoid, and maxillary bones (Figs. 37 and 38), and also with the temporal bone by means of the zygoma which bridges over the temporal fossa (Figs. 39 and 40) (the sutures are described upon pages 37 and 80). The small orbital plate, placed at right angles to the malar surface, assists in the formation of

the orbit. The malar bone presents three surfaces, the foceat or matar ar, afe the fueperer

 margin (Fig. 95). It articulates with the orbital surface of the greater watg of the phemp bone, is usually separated from the orbital surface of the masilla ly the mierour ortatal dghery maxillary) fissure, and forms at portom of the flewe and of the onter wall 11 the whiti

 freguently these wo camals are entirely independent of each other, in which case these are an zygomaticoorbital foramina (Fï. S8).

The equadrilateral malar plate pessessecs a comex matar surface and at stighty rammen temporal surface. It articulates by means of its anterier rough margin with the ayturnatio

 between the asematic and the adjacent bones hate been previowh noted yatec a-t, amb will
 (Figs. So); the temporal surface, the zyemoticolemporal aramen llis. At)

[^14]
THE MANDIBLE.

 margin is the alacolur porton, and comtains, in the atult, sivan dontal alvedi for the lover teeth, which are soparated from eath other bo the imeralselare opa. the free maresin of the alveolar process is called the alewher horder. and the rewe of the woth, particalarly thoue of the front ones, expand the thin lxony man of the proces and prextioce langitudinal ridges upon the surface of the bone, the altedar jug (Fig. (y) .

The midelle of the extemal surtace of the boxty of the man lible whilits a rough projection, the mental protuberunce (Fig. no), which marks the union of the crginally separate halves of the bone (Fig. So), and to either side of this projection and toward the base of the mandible

Fig. 90.-The mandible seen from in front ($\left(\frac{1}{1}\right)$.
Fig. 9r.-The mandible seen from the outer surface ($\frac{1}{1}$).
Fig. 92.-The mandible seen from below ($\left(\frac{1}{1}\right)$.
Fig. 93.-One-half of the mandible seen from the inner surface $\left(\frac{1}{1}\right)$.
Fig. 94.-The hyoid bone seen from in front and above ($\frac{1}{1}$).
is the mental tubercle. Above and to the outer side of the mental tubercle is situated the mental foramen, giving exit to the vessels and nerve of the same name and forming the inferior opening of the mandibular (inferior dental) canal, which traverses the greater portion of the body of the mandible. There is also to be observed upon the outer surface of the body a smooth ridge, the oblique line, which passes downward from the root of the coronoid process, gradually fades away, and finally entircly disappears somewhat to the outer side of the mental foramen (Figs. 90 and 91).

The internal surface of the body of the mandible (Figs. 92 and 93) exhibits, to either side of the median line, a shallow depression which is known as the digastric fossa, since it received the insertion of the anterior belly of the digastric muscle, and above this there is a short, rough, irregular prominence, the mental spine, which is usually a paired structure and sometimes also shows a further transverse subdivision; it gives origin to the geniohyoid and geniohyoglossus muscles. To the outer side of the mental spine there is a larger shallow depression which lodges the sublingual salivary gland, and between the sublingual and digastric fossæ is the termination of the rough mylohyoid line, which passes from behind forward and from above downward upon the inner surface of the body of the mandible and gives origin to the mylohyoid muscle.

A certain distance below the mylohyoid line there is a groove which commences at the mandibular foramen (Figs. 92 and 93) situated upon the inner surface of the ramus, and gradually disappears as it passes forward; this is the mylohyoid groove and contains the vessels and nerve of the same name. Below the mylohyoid line, to the outer side of the depression for the sublingual gland, and frequently difficult of recognition, there is a much shallower depression for the submaxillary gland.

Each ramus forms almost a right angle with the body of the bone, and is both broader and thinner than the body. It passes upward, broadens, and divides into two processes, an anterior coronoid and a posterior condyloid process, which are separated by the notch of the mandible (the sigmoid notch).

The ramus, like the body of the bone, possesses an external surface and an internal surface; a portion of the latter being directed toward the oral cavity. The external surface (Fig. 96) is roughened at the angle, forming the masseteric tuberosity for the insertion of the masseter muscle. There is a corresponding rough area upon the inner surface, the pterygoid tuberosity, for the inscrtion of the internal pterygoid muscle.

At about the middle of the ramus there is an opening, the mandibular (inferior dental) foramen (Fig. 93), the superior opening of the mandibular (inferior dental) canal,* which passes

[^15]
$$
\bullet
$$

 the furamen.

The coronvid process is blatened from sile to side anl terminate in an mise in las thap

 from the base of the process by a chatrivion known as the mede Fig-pz). The amisalir artace itself is cllipsoilal and its longitutinal ands is placel alamas tranoctect, akihneh diroces

[^16]
THE HYOID BONE.

 tongue: it dex - ant articulate with the skell bug in coticcedt with it in the -velobyent lie anas:

 sariation.

 ligament fee fage min), ju: an thran-

THE ORBITAL CAIITIES.

Each orbit (Figs. 05 to pol is a huadrilateral prismatic whace hating the shage of a tall horizontal promid, the apex of which is situatel pusicrierly in the region of the optic

Fig. 95.-The left orbit seen from in front ($\frac{1}{1}$).
Fig. 96.-The median wall of the left orbit, the outer wall having been removed ($\frac{1}{1}$).
Fig. 97.-The outer wall of the right orbit, the median one having been removed ($\frac{1}{1}$).
In all these figures the frontal bone is violet; the ethmoid orange; the lachrymal pink; the sphenoid green; the nasal, parietal, and zygomatic bones white; and the palate bone blue.
foramen. Its base is a quadrangle with rounded corners, and forms the entrance to the cavity (aditus orbite).

The four walls of the orbit are designated the superior, the internal, the external, and the inferior. Since there is no sharp dividing-line between the superior and internal and between the internal and inferior walls, and also since such a dividing-line is partly absent between the external and superior wall, the pyramidal orbital space possesses for the most part no sharp angles; indeed, posteriorly the pyramid has practically but three sides.

Each orbit is formed by seven bones: the frontal, the sphenoid, the ethmoid, the lachrymal, the maxilla, the zygomatic, and the palatinc. The sutures between these bones are described on pages 79 and 80 . The upper wall or the roof of the orbit (Fig. 95) is formed by the orbital portion of the frontal bone, and in the posterior portion also by the lesser wing of the sphenoid bonc. It is horizontal, smooth, and slightly concave.

The inner wall (Fig. 97) is formed anteriorly by the lachrymal bone and posteriorly by the lamina papyracea of the ethmoid bone and by a small portion of the ala parva of the sphenoid (near the junction of the inner wall with the roof). Below the lamina papyracea, the orbital surface of the maxilla extends upward from the floor upon the inner wall, and its frontal process also forms a narrow portion of the inner wall, internal to the lachrymal bone and immediately adjacent to the internal orbital margin. The inner wall of the orbit is approximately vertical and its anterior portion cxhibits the fossa for the lachrymal sac.

The floor of the orbit (Fig. 99) passes quite gradually into the inner wall, and its posterior portion is separated from the largest (posterior) portion of the outer wall by the inferior orbital (sphenomaxillary) fissure. Its greatest portion is formed by the orbital surface of the maxilla, only a small postcrior portion being formed by the orbital process of the palate bone. In the anterior portion of the orbit the zygomatic bone also forms a narrow strip of the floor, but the extent to which it takes part is subject to considerable variation (see puge 7r). The inferior orbital wall is quite smooth and is almost exactly horizontal (slightly inclined outward, forward, and downward).

The outer wall of the orbit (Fig. 97) is the most isolated of all, since the two orbital fissures separate from it the remaining walls in the posterior portion of the orbit. The inferior orbital (sphenomaxillary) fissure separates more than half of the length of the outer wall from the floor, and one-third of its extent is separated from the roof by the superior orbital (sphenoidal) fissure. It is practically formed by two bones, the orbital surface of the greater wing of the sphenoid bone contributing the posterior portion, and the orbital surface of the zygomatic bone the anterior portion. The latter portion, however, also contains a part of the orbital portion of the frontal bone, which extends downward more or less from the roof. The outer wall of the orbit is slightly
concave and is not exactly vertical, but direted somewhat from aloon nownand and 1 mm without inward.

The margins of the orbit are known as the supromethitat and the in fraserfotal. Ihey are, of course, connected at their extermition by the lateral walls of the orbit.

The supraorbital margin (Fig. 10) is usuatly sharper than the inferior cate; it is formal
 notch or two deeper once, the supraorbital and frontal nothes or firmmial lif. 67 , which tratm mit the frontal and supraorbital vesorls and nerves. 'The inontal lxme cutends lower down internally than it does externally: The infraortital markin Fig. sel) is formet interally by
 externally as far as the frontal beme. A portion of the internal rawain Fase as is ilmathat by the anterior lachrymal crest of the fromtal proces of the mavilh, arol ics aromathent partion
 particularly bye it frontosphemenidal proces.

The following foramina and fisures leat cither ineo or from th ortit:
 leads from the cranial cavit! to the afex of the orbit an I tromemits the uptic ierse ant the ophthalmic artery.
 of the sphenoid, abo leads from the cranial into the orthital cate and tratsuris the quletalavi.
 separates the outer from the upper wall of the orthit. Its internal pertion is wide; is aternaf portion is narrow and closed by a membrame.
 orbital process of the palate beme on one side and the grater wilk ai the sthtabid betre or the greater wing and the zrgmatic bone on the other, leats irom the perypopalatio faphewnas
 the outer wall from the fleor of the onthit and is harser anterotevermalls thate it is peremeinternally. The external boundary of the fisure is furnished by the eisio embedi- if the greater wing of the sphenoid lrone.

 lachrymal (natal) duct.
 cavity and tramsmitting the anterior cthmedal weat and nawl merm.
6. The poserior chmowdal foramen tlige as and oot. leading inte the mat cavity and transmitting the presterior ethmodal beack. Both this and the preadige foramen are situaterd in or to one side of the frontecthmodal sumere in the inner wall of the ertit.
i. The Eygomalicoerbital joramen or foremina 1Fis. 97. in the outer wall of the erbit, paso through the malar bone to the temperal foran and th the face and tran-mit the nerves and vesecto of the same name or their branches.
S. The entrance of the infroorbital canal ior the vesals and nerve of the same name),

Fig. 98.-A frontal section through the anterior part of the skull, showing the orbits, the nasal fossæ, and the maxillary sinuses ($\frac{4}{5}$).
Fig. 99.-The floor of the left orbit seen from above, the roof having been removed $\left(\frac{1}{1}\right)$.
Fig. 100.-The maxilla, palate bone, and lower ends of the pterygoid process of the sphenoid, seen from the oral surface (the hard palate) ($\frac{1}{1}$).
leading to the infraorbital foramen, is situated in the floor of the orbit. It commences at the inner end of the inferior orbital fissure as the infraorbital groove (Fig. 99).
9. The frontal and supraorbital foramina, situated in the supraorbital margin.

The orbit contains the following depressions or fossæ:

1. The fossa for the lachrymal gland (Fig. 69), on the frontal bone beneath the outer portion of the supraorbital margin.
2. The trochlear depression (Fig. 68), also on the frontal bone, where it passes into the inner wall of the orbit, for the attachment of the pulley of the superior oblique muscle.
3. The fossa for the lachrymal sac (Fig. 99), situated in the inner wall of the orbit between the anterior lachrymal crest of the frontal process of the maxilla and the posterior lachrymal crest of the lachrymal bone.

The only groove in the orbit is the infraorbital groove (Fig. 98), upon the orbital surface of the body of the maxilla.

There are several projections into the orbital cavity. These are the anterior and posterior lachrymal crests which form the fossa for the lachrymal sac, and a bony spine upon the greater wing of the sphenoid bone near the outer margin of the superior orbital fissure, the spine for the external rectus muscle (Fig. 99). The frontal bone occasionally presents a trochlear spine alongside of the trochlear depression.

The orbital walls vary greatly in their thickness. The thinnest wall is the inner one, both in the region of the lamina papyracea of the ethmoid bone and also in that of the lachrymal bone, the latter bone even being sometimes defective. The roof of the orbit not infrequently contains a portion of the frontal sinus, in which case it is hollow. The outer wall is usually the thickest.

THE NASAL CAVITY.

The bony nasal cavity (Figs. 99, IOI, and 102) is subdivided into two symmetrical nasal fossæ by the nasal septum, which is frequently oblique and not exactly in the median sagittal plane. The cavity is highest just behind the anterior nares and gradually becomes lower toward the posterior nares, and nine of the bones of the skull-the nasal, frontal, ethmoid, sphenoid, maxilla, palate, inferior turbinated, lachrymal, and vomer-take part in its formation. In each nasal fossa there may be recognized a roof, a floor, an internal wall, and an external wall. The anterior opening of the two bony nasal fosse is known as the apertura piriformis (anterior nares), while the posterior opening of each is the choana. The former (Figs. 37 and 38) is bounded by the nasal bones and by the frontal processes and bodies of the maxilla, while each choana (posterior naris) (Figs. 41 and 42) is bounded by the palate bone, the internal plate of the pterygoid process, and the body of the sphenoid bone. The roof of the nasal cavity is formed anteriorly by the two nasal bones and by the nasal portions of the frontal bones, in the middle by the

'The internal or median wall is month and of cimple compention, the aflerior forsm being incomplete in the bony sheleton. 'The cxternall wall i extencly complater. 'It
 perpendicular plate of the erhanoid lonee, the pentero inferior pertion by the tworer. If it
 and behind and above to the ephenowidal ereat abd rostram.
 the frece margins of which are relled ul upen themsches; thes are the turtetabed bint or concher hasules.

The inferior of these is an intepentent lxane. the comeha mat injerier. I is the lates and longest of the turbinated lxones, while the superior is the smatlest and horte-t. The euperior

 in the superior meatus is situated a cheft-likie reces homen as the sh he methmailad rocest.

The pertion of the mathe fossit situated between the inner mareins of the turl inatal fante and the masal septum is lermed the common meatus of the mowe: the prestrimp portion -itaster]
 pharyngeal meatus.

 and the nasal surface of the bexly of the bone dinferior atherior premonf the woftat plate of

 of the middle me:atus).

In addition to the main nasal catity there is a surie of museore eastios ; these are the air-containing cavities of the majority of the cramial bemes. partienharly of the matha. frontal, sphenoid, and dhmod.

There is a large mumber of openings leatine inte the masal cosity.
(a) The foramina of the eribriform plate of the e thmend bone in the reof of the nasal cavity, tramsmitting the olfactory nerves and the anterior cthmoilal wesk and nerves.
(b) 'The superion uritice of the incisibe canal Frig. io, on cither site of the masal crest in the fleor of the nasal covity, which transmits the terminations of the anieri er palatine vesels and nerve.
(c) The inferior orifice of the nasolachrymal canal in the inferior meatus, which contains the nasolachrymal duct.

Fig. iol.-View of the lateral wall of the right nasal fossa, the nasal septum having been removed ($\frac{4}{5}$).
Fig. 102.-View of the lateral wall of the right nasal fossa, the middle turbinated bone having been removed ($\frac{4}{5}$).
In these figures the frontal bone is violet, the lachrymal pink, the ethmoid orange, the maxilla yellow, the palatine blue, the sphenoid green, and the other bones white.
Fig. 103.-The left pterygopalatine fossa seen from the side, after the removal of the zygomatic bone ($\frac{4}{5}$). The maxilla is ycllow, the palate bone blue, the sphenoid green, and the zygomatic and temporal bones white.
(d) The hiatus semilunaris (Fig. IOI), in the middle meatus in the region of the infundibulum, which leads to the orifice of the frontal sinus (Fig. IO2) and to the openings of the anterior ethmoidal cells; the middle meatus also contains the orifice of the maxillary sinus.
(e) The openings of the middle and posterior ethmoidal cells in the superior meatus.
(f) The upper and posterior portion of the nasal cavity contains the sphenoethmoidal recess, the orifice of the sphenoidal sinus (Fig. IO2), the small posterior ethmoidal foramen (leading into the orbital cavity and transmitting the vessels of the same name), and the sphenopalatine foramen (Fig. IO2), which accommodates the ganglion and vessels of the same name and communicates with the pterygopalatine (sphenomaxillary) fossa.

THE ROOF OF THE ORAL CAVITY, THE HARD PALATE.

The roof of the oral cavity (Fig. 100) is formed by the hard palate. It is a markedly concave elliptical bony plate, composed of the palatine processes of the maxillæ and of the horizontal portions and of part of the pyramidal processes or tuberosities of the palate bones. It presents in the median line the median palatine suture, upon which a bony swelling, the torus palatinus, is occasionally observed; it also contains the transverse palatine suture and sometimes the remains of the incisive suture. At the anterior extremity of the median suture is situated the single incisive foramen, by which the bony oral cavity communicates with both bony nasal fossæ; posteriorly in the horizontal plate of each palate bone is the greater palatine foramen, and the pyramidal process contains the lesser palatine foramina (inconstant). All these foramina are the orifices of the pterygopalatine canal.

THE PTERYGOPALATINE FOSSA.

The pterygopalatine or sphenomaxillary fossa (Fig. IO3) lies between the anterior surface of the pterygoid process of the sphenoid bone, the perpendicular portion of the palate bone, and the posterior extremity of the maxilla. It is funnel-shaped and is continued directly downward into the pterygopalatine canal, which is bounded by the same three bones. It opens out superiorly into the inferior orbital (sphenomaxillary) fissure which communicates with the orbit and externally the pterygomaxillary fissure connects the pterygopalatine with the infratemporal fossa.

Opening into the pterygopalatine fossa are the foramen rotundum, by which it communicates with the cranial cavity, the pterygoid canal, which passes horizontally backward in the root of the pterygoid process, and the sphenopalatine foramen, leading into the nasal cavity. The fossa contains the sphenopalatine ganglion of the maxillary nerve as well as arteries and veins.

 number of canals whith torminate in the palatate tramest

THE INFRATEMPORAL FOSSA.

 of the shlenoid bent:

The Sutures of the Skull.

 cthmonital =uture.
 and the fronat margin of the parictal twas.
 parietal bones.

 parictal lone and the parichat margin of the - patano fertion of the hamporal.

 acipual. It ireguently whtain the mataid toramety.

 bente.
 parictal bone and the parictal angle of the - phe mewal leme.
 greater and lesser wings of the ythenod leme and the ort ital pertion of the fromad twone:

The sphemorbital suture is situated between the amerior mation of the evernal surface of the body of the sphenoid bone and the orbital proces of the palate trene.

The sphenothmoidel suturi is situated between the crest of the sphenoid bone and the po.terior margin of the perpendicular plate of the chmoid.

The sphenosquamosal suture (Figs. 39 and 40) is situated between the squamous margin of the greater wing of the sphenoid bone and the sphenoidal margin of the temporal bone.

The frontocthmoidal suture (Figs. 37, 38, 43, and 44) is situated between the inner margin of the orbital portion of the frontal bone (the outer margin of the ethmoidal notch) and the outer margin of the cribriform plate of the ethmoid, between the posterior margin of the nasal portion of the frontal bone and the anterior margin of the cribriform plate (foramen ccecum), and also between the upper margin of the lamina papyracea of the ethmoid and the inner margin of the orbital portion of the frontal bone. The latter portion of the suture is in the inner wall of the orbit and frequently contains the ethmoidal foramina (Fig. 96).

The nasofrontal suture (Figs. 37 and 38) is situated between the nasal portion of the frontal bone and the upper margin of the nasal bone.

The internasal suture (Figs. 37 and 38) is situated between the inner margins of the two nasal bones.

The frontomaxillary suture (Figs. 37,38 , and 95) is situated between the nasal portion of the frontal bone and the frontal process of the maxilla.

The frontolachrymal suture (Figs. 37 and 38) is situated between the orbital portion of the frontal bone and the upper margin of the lachrymal bone.

The zygomaticofrontal suture (Figs. 37 to 40) is situated between the frontosphenoidal process of the zygomatic bone and the zygomatic (external angular) process of the frontal.

The sphenozygomatic suture (Figs. 39 and 40) is situated between the zygomatic margin of the greater wing of the sphenoid and the zygomatic bone.

The zygomaticotemporal suture (Figs. 39 to 42) is situated between the temporal process of the zygomatic bone and the zygomatic process of the temporal bone.

The zygomaticomaxillary suture (Figs. 37 and 38) is situated between the zygomatic bone and the zygomatic process of the maxilla.

The nasomaxillary suture (Figs. 37 and 38) is situated between the frontal process of the maxilla and the outer margin of the nasal bone.

The ethmoideomaxillary suture is situated at the junction of the inner wall with the floor of the orbit and separates the lower margins of the lamina papyracea of the ethmoid bone from the orbital surface of the body of the maxilla.

The lachrymoconchal suture is situated between the lachrymal process of the inferior turbinated bone (concha nasalis inferior) and the lachrymal bone.

The lachrymomaxillary suture (Figs. 39 and 40) is situated in the inner wall of the orbit between the lachrymal margin of the maxilla and the anterior (and inferior) margin of the lachrymal bone.

The lachrymoethmoidal suture is situated in the inner wall of the orbit between the lachrymal bone and the lamina papyracea of the ethmoid.

The intermaxillary suture (Figs. 37 and 38) is situated between the alveolar processes of the two maxillæ.

The palatomaxillary suture, in the floor of the orbit, is situated between the posterior margin of the orbital surface of the maxilla and the orbital process of the palate bone.

The palatoethmoidal suture is situated immediately alongside of the preceding suture
 cess of the palate beme.
 linc.
 esses of the maxille and the homizontal portions ait the patate beno

 and sphenemetrosel synchumlrose ${ }^{\text {a }}$).

The Skull of the New born.

 vertical portion of the occipital lame.

[^17]Fig. ro4.-Skull of a new-born child from the side ($\frac{3}{4}$).
Fig. 105.-Skull of a new-born child from above ($\frac{3}{4}$).
Fig. 106.-Skull of a new-born child from behind and below ($\frac{3}{4}$).
3. The two sphenoidal fontanelles (Fig. 104) are of medium size, irregular in form, poorly defined, and situated between the parietal angles of the greater wings of the sphenoid bones and the sphenoidal angles of the parietal bones, in the location of the later-developed sphenoparietal sutures and the contiguous bony margins.
4. The two mastoid fontanelles (Fig. 106) are situated between the mastoid angles of the parietal bones and the parietal notches of the temporal bones, extending outward to the neighboring bony margins. They resemble the antero-lateral fontanelles in respect to their size, shape, and boundaries.

By the progressive ossification of the flat bones of the cranial vault, the fontanelles become closed in the first year of life, rarely later, the frontal fontanelle closing last (at the end of the first or the beginning of the second year). At the same time the coronal, sagittal, and lambdoid sutures develop, whereby small bony areas frequently remain as independent structures within the sutures, and are known as supernumerary bones, Wormian bones, or assa suturarum. They are particularly common in the sagittal and lambdoid sutures, where they are sometimes present in large numbers and are occasionally of considerable size.

The Skeleton of the Extremities.

The skeletons of the upper and lower extremities are more or less similar. They are composed of: (1) The girdle of the extremity, and (2) the free extremity. The shoulder girdle is composed of the scapula and the clavicle; the pelvic girdle of the two pelvic bones. The skeleton of each free extremity consists of a proximal, a middle, and a distal segment, these being represented in the upper extremity by the bone of the arm, the bones of the forearm, and the bones of the hand, and in the lower extremity by the thigh-bone, the bones of the leg, and the bones of the foot. The skeleton of the proximal segment of each extremity consists of a single bone: in the upper extremity, the humerus; in the lower one, the femur. The middle segment is formed by two bones: the radius and ulna in the forearm; the tibia and fibula in the leg. The distal segments, the hand and the foot, contain a number of bones, those of the hand being subdivided into the carpal bones, the metacarpal bones, and the phalanges of the fingers, and those of the foot into the tarsal bones, the metatarsal bones, and the phalanges of the toes.

The extremities also contain a number of sesamoid bones; they occur in the upper extremity only in the hand; in the lower extremity they are to be found both in the foot and also in the region of the knee (the knee-cap or patella).

Fig. 10\%.

Occipital fontanclle

Fig. 106.

Squamous powion of occipital
Sccipital fontanclle
Fig. 105.

THE SKELBION OF THE ADEEY EXTREMTT:
 Des Subinlies Govel

 late with the wables

ITSL SCAMILA

 te rmal and inferior anoles , Die oaporor liselsen, it

 -mewhat concave, ther shallas deper bim bane tored

 cive origin.

 thickenerl; the middle portion i- thim.

Fig. 108.-The dorsal surface of the left scapula ($\frac{1}{2}$).
Fig. ro9.-The costal surface of the left scapula ($\frac{1}{2}$).
Fig. iro.-The left scapula seen from the outer angle and axillary border ($\frac{1}{2}$).
Fig. iri.-The left clavicle seen from below ($\frac{2}{3}$).
Fig. ir2.-The left clavicle seen from above ($\frac{2}{3}$).

Abstract

This border receives the insertion of the serratus magnus muscle, which also extends outward upon the costal surface in the vicinity of the superior and inferior angles, so that the costal surface presents two shallow triangular areas for the attachment of muscles, in addition to the subscapular fossa.

The superior border presents a notch, the scapular notch (Figs. 108 and I09), which may be either deep or shallow, and to the outer side of this there projects from the superior margin a strong, curved, hook-like process, the coracoid process (Fig. 1o9). This arises by a broad base between the scapular notch and the outer angle, and is at first directed upward and somewhat forward; it then becomes narrower, makes a distinct turn, and passes forward and outward to end in a roughened apex.

The axillary border (Fig. rio), so called because it is directed toward the axilla, is slightly thickened and roughened, particularly toward the external angle. A furrow separates this clevated border from the anterior surface of the bone.

The internal angle is either a right or an obtuse angle; the inferior one is acute with a markedly rounded apex. At the external angle is situated the so-called head of the scapula, which presents the articular surface for the head of the humerus, the glenoid cavity (Fig. I10), which is smooth, slightly concave, and shaped like a pear with the apex upward.

Above the glenoid cavity is a small surface, the supraglenoidal tuberosily (Fig. r10), which gives origin to the narrow cord-like tendon of the long head of the biceps, and below the cavity there is a larger, markedly roughened surface, the infraglenoidal tuberosity, which gives origin to the broad strong tendon of the triceps. The head of the scapula is separated from the remainder of the bone by a slight constriction called the neck.

The spine of the scapula (Fig. 108) arises by a broad base from the dorsal surface between the supraspinatous and infraspinatous fossæ, and gradually becomes higher as it passes from the vertebral border to the neck of the bone. It passes over the neek, overhangs the glenoid cavity from above and bchind, and terminates in a strong, broad, flattened process, the acromion. Internal to its apex, the acromion presents an elongated, flat, articular surface for the attachment of the acromial end of the clavicle.

[^18][^19]Coracoid process Supericr border

Fig. 10S.
Inficior angie

Fis. 112
 fifth erir

THECLAVICIE

 the obler whe the brambal arem mite

The Skeleton of the Free Upper Extrérity:

THE HUMERUS.

 groote.

 he shath dr in m

Fig. ili3.-The left humerus seen from behind ($\frac{1}{2}$).
Fig. iI4.-The left humerus seen from in front $\left(\frac{1}{2}\right)$.
Fig. II5.-The head of the left humerus seen from above ($\frac{4}{5}$).
Fig. ir6.-The lower end of the left humerus seen from below ($\frac{4}{5}$).
diminution in the thickness of the bone, forming what is called the surgical neck, because the humerus is easily broken in this situation.

The upper portion of the shaft of the humerus is almost cylindrical, while the lower portion is prismatic and flattened.

Passing downward from either tuberosity upon the upper portion of the shaft there is a rough ridge; one is the greater tubercular (bicipital) ridge, which gives insertion to the pectoralis major muscle, and the other the lesser tubercular (bicipital) ridge, into which the latissimus dorsi and teres major muscles are inserted. The intertubercular (bicipital) groove is continued downward between these ridges for a short distance and they form its lips (Fig. II4).

Below the greater tubercular ridge upon the outer and posterior portion of the shaft there is a large, flat, roughened surface, the deltoid tuberosity (Fig. II4), for the insertion of the deltoid muscle, and at about the middle of the shaft and upon its inner aspect there is a roughening, which is rarely distinct, for the insertion of the coracobrachialis muscle. Near this rough surface there is a large nutrient foramen (Fig. II_) which leads downward into the bone as the nutrient canal.

In the lower half of the shaft three surfaces, an antero-internal, an antero-external, and a posterior, can be recognized. The two anterior surfaces are separated from each other by a flat elevation and from the posterior one by the sharp external and internal borders of the bone (Fig. 114). The external border commences below the deltoid tuberosity and is separated from it by a shallow groove for the radial (musculospiral) nerve (Fig. II4). It is sometimes termed the musculospiral groove, and gives attachment by its margins to the outer and inner heads of the triceps muscle. It pursues a spiral course about the middle of the humerus, passing from above downward and from within outward and gradually disappearing below.

The lower portion of the shaft becomes flatter and broader, and its lateral borders run downward to terminate in two rough projections which are known as epicondyles (Fig. 116), the sharp outer border passing to the small external epicondyle and the inner one to the more prominent internal epicondyle. The posterior surface of the internal epicondyle presents a shallow groove for the ulnar nerve.

Below the epicondyles is situated the lower articular surface of the humerus (Fig. I16) which articulates with the bones of the forearm. This articular surface presents a separate area for each bone, a large trochlea with a median groove being situated internally for the ulna and a smaller hemispherical capitulum externally for the radius. Above the trochlea and upon the antero-internal surface at the level of the epicondyle there is a moderately deep depression, which is known as the coronoid fossa (Fig. II4) because it accommodates the coronoid process of the ulna when the arm is flexed, and above the capitulum, upon the lower portion of the antero-

Fig. 113.

Lower extre. mity Ertirnal epicondyle

Postcrior surface
Internal bordir
Antero-internal surjuce
Coronoil jossa
Olecramon jossiz
Intermal iptiondyle

Groolco for
ulnar mine

Prochles

3

Fig. 115.

Fig. 116.

 a broad decp depression, the olecranon fussa Fig. 1!3), which acommonate the wermon when the arm is extended.

 the twemty-xenoml year.

 is scarcely visible from lxhind.

THE ULNA.

The ulna (Figs. 117 to 119) is a three-sided prismatic long bone which is thick abous and quite small behow. It is composed of a shaft and of a superior and an inferior cotremity. The strong upper evtromity presents a scmilunar or grater sigmoid notch Figs. 117, 110, and 124. which articulates with the trechleat of the humerus and is constricied in its midde. Its anterior portion rests upon the upper surface of the coronoid process (Fïs. 110), a broad latak-like projection directed anteriorly, and its posterior portion rest upen the anterior surface of a very strong bony proces, the olecranon, which forms the tip of the dbow and projects quite a divatace above the coronoid process. The external or radial site of the proximal womity of the ulata presents a noth, the radial or lesser sigmoid motel lige. 180 , for the heal withe radius and passing downward from this carity there is a rough longitudinal redge, the suphetor ridge Fig. 117). Immediatly below the coronoid proces is situated a broad ronehened area which is directed anteriorly, and is termed the tuberosity (Fig. ito).

The shaft of the bone becomes much thinner and more rounded toward its lower extremity, so that while the bone resembles at theesesided prism in its upper portion, it becomes eylindrical in its lower fourth. In the shaft maty be recogniad an anterior tolar, a posterior or dorsal, and an internal or whar surjace. The internal surface is separated from the peteterior one lye the dorsal border, and from the anterior one by the zoldar border. 'The wird border is shary and is directed toward the radius; it separates the anterior from the posterior surface and is called the interosseous ridge (Fig. 110). 'The zolar surface contains the mutrient foramen, from which a mutrient canal passes toward the elbow within the bone, but otherwise the surface exhibits no peculiarities.

Fig. ir 7.-The left ulna seen from the outer surface ($\left(\frac{2}{3}\right)$.
Fig. ir8.-The left ulna seen from behind ($\frac{2}{3}$).
Fig. ing.-The left ulna seen from in front ($\frac{2}{3}$).
Fig. 121.-The left radius seen from in front $\left(\frac{2}{3}\right)$.
Fig. 122.-The left radius seen from the inner side $\left(\frac{2}{3}\right)$.
Fig. 123.-The left radius seen from behind $\left(\frac{2}{3}\right)$.
Fig. 124.-The upper extremities of the radius and ulna seen from above and somewhat in front ($\frac{1}{1}$). Fig. 125.-The lower extremities of the radius and ulna seen from below ($\left(\frac{1}{1}\right)$.

The inferior extremity of the bone is rounded and is also called the capitulum. Its radial side presents an articular surface for the radius, the articular circumference (Fig. IIg), and a pointed process projecting beyond the capitulum, the styloid process (Figs. II7 to IIg). The distal surface of the capitulum and the articular circumference are both covered by cartilage.

The center for the diaphysis of the ulna appears in the third fetal month; the centers for the epiphyses appear after birth, that for the lower epiphysis not being present until the sixth year. The upper epiphysis has two centers for the olecranon (only the apex of which is formed by the epiphysis) and one for the coronoid process. There is also a special center for the styloid process.

THE RADIUS.

The radius (Figs. I2I to 125) is the outer of the two bones of the forearm, and in contrast to the ulna, it is narrow and thin above and broad and thick below.

Its superior extremity (Fig. 124) is formed by the disc-like lead of the bone, a distinct constriction below the head being designated as the neck, which portion of the bone is cylindrical.

FIg. I20.-Transverse section through the bones of the forearm, taken at about the middle of their length (schematized).
The upper surface of the head exhibits a depressed articular surface for the capitulum of the humerus, and the upper circumference of the margin of the head is termed the articular circumference (Fig. 12ł).

Below the neck the upper portion of the volar surface presents a strong, rough, marked projection, the tuberosity (Figs. 12 I, 122, and 124), for the insertion of the biceps muscle.

The shaft of the radius, like that of the ulna, is shaped like a three-sided prism, and the three surfaces are arranged in a similar manner, so that volar, dorsal, and lateral surfaces, and volar and dorsal borders, and an interosseous ridge may be recognized (Fig. 120). The interosseous

Fig. 117.
Fis. $11 s$.
Fig. 119.

Styloit process

Sincom prowess

Ulna
Radius
 possesserl by the radius, the two remainine marein hatiner marthely romatal whas.
 volar surface contains the nutrient foramen, the matriont canal, lit o that os the atas, pasane in

The volar surface of the inferior catrmit! If. 121 is smouth and lighe! conove; dom

 tendon of the extensor pollicia longus muale.

 with the scaphoid and semilunar bones.

 also exhibits a slight trsion.

 fication is hot complete until the twentieth year.

The Bones of the Havd. the carpal bones.

The eight bones of the corpus (Fige. 120 th 1,31) are arrouged in a proximal an a di-tal row. Passing from the radial to the ulnar side the proximal rom comtain the maticulder or scaphoid bone, the lunate or semilunar bune, the triquetral or cuneijorm bonce and the pisijorm bone. Passing in the same dircetion, the distal row is comprosed of the greaker madtangular bone or trapcium, lisser maltangular bonc or the tropezoid, the os capitatum or as magnam, and the hamate or unciform bone.

The bones of the proximal row (really the first three only are not situated in a siraight line, but are curved so as to form an arch which is slighty convex proximally and markedly concave distally (Figs. I2S and i2g). In the distal row the capitatum projects markedly ioward the proximal row and is accommodated be its concavity.

Fig. i26.-The lower ends of the bones of the forearm, and the carpal and metacarpal bones in their natural positions, seen from the dorsal surface ($\frac{4}{5}$).
The preparation was made from a frozen hand, whereby the relative position of the bones could be perfectly determined.
Fig. 127. -The same preparation seen from the volar surface ($\frac{4}{5}$).
Fig. I28.-The bones of the left hand seen from the dorsal surface ($\frac{3}{5}$).
Fig. 129.-The same preparation seen from the volar surface ($\frac{3}{5}$).
Fig. 130.-Frozen preparation of the bones of the left hand, together with the lower ends of the radius and ulna, seen from the dorsal surface ($\frac{3}{5}$).
Fig. i3I.-The same preparation seen from the volar surface ($\frac{3}{5}$).

All the bones are irregularly shaped and are difficult of description. The navicular (scaphoid) bone is ellipsoidal; its distal surface is excavated, and the radial border of its palmar surface is provided with a rough tubercle (Fig. 127). The lunate (semilunar) bone is shaped like a half-moon, the triquetrum (cuneiform) resembles a short three-sided pyramid, and the pisiform bone is irregularly spherical. The greater (trapezium) and lesser multangular (trapezoid) bones are irregularly cubical and the palmar surface of the former exhibits an elongated flattened elevation, the tubercle (Fig. 127). The capitatum or os magnum is the largest bone of the set, and its length is much greater than its breadth; its proximal end is large and forms the head of the bone, which is covered with cartilage. The hamatum (unciform) is also large and irregularly wedge-shaped, and its palmar surface is provided with a flat, slightly curved process, the hamulus or unciform process (Fig. 129).

The carpal bones do not lie in a single plane, but form an arch which is convex posteriorly and concave anteriorly. The concavity is increased by the two bony prominences which are situated upon both the radial and the ulnar sides of the palmar surface of the carpus and form the carpal groove. The radial carpal eminence (Figs. 127 and I3I) is formed by the tubercles of the navicular and greater multangular bones; the ulnar eminence, by the pisiform bone and the hamulus of the hamatum.

The small, almost spherical pisiform bone is situated only in the palmar surface of the carpus; all of the remaining carpal bones possess a roughened dorsal and palmar surface. Both surfaces of the four bones situated at the radial and ulnar margins of the carpus, the navicular (scaphoid) greater multangular (trapezium), triquetrum (cuneiform), and hamatum (unciform)-are connected by lateral, radial and ulnar surfaces, but the numerous remaining surfaces (numerous on account of the irregular shapes of the bones) are smooth articular facets covered with cartilage for articulation with each other, with the radius, or with the metacarpal bones.

The pisiform bone has but a single articular facet for connection with the triquetrum (cuneiform), but all of the remaining carpal bones have several articular surfaces. The most important of these are the following: the navicular (scaphoid) and lunate (semilunar) bones each possess a convex articular surface which articulates with the distal end of the radius; the triquetrum is not connected with the ulna, however, but with an intervening dise of cartilage. Of the joints between the proximal and the distal row of the carpal bones, the most important is that between the convex surface of the head of the capitatum and the concave surfaces of the lunate and navicular bones.

 shaped surface；the lesuer multangular（rapezoid）articulates with the wornd．the catatatum （os magnum）with the third，and the hamatum（unciform）with the the remaining flotartal bones（Figs． 120 and 127）．

 trum，and lunate trac

 in the pisiform sut untal the twelfth year or evern later．

THE METACARPAL BONES

The live melacarpal bones（Fig． 120 to 131 ）are typical loner bonce in whi h may be rewer nized a proximal extremity or base，a shajt，and a diatal extremity or had．＇The basearticulade with the distal row of carpal bones，the heads with the prosimal row if the phatunges．The metacarpal bone of the thumb in the shortest，that of the index－finger the longese wat they erats ually decrease in length toward the litule finger．

The base of the metacarpal bones are ireegularly cubical and thition that the shaft：that of the metacarpal bone of the thumb bears a sadelle－haped surite fior artictibtion with the traperium，and the remating ones present，in addition to the aricular facte for the carpal bones，lateral surface for articulation with cath other．The Dase of the thirl metacargal beme presents a stolud proces（Figg． 128 ）which is directed toward the radial side．

 forearm

The shaft of each metacarpal bone，with the exception of that of the thumb，is approxi－ mately three－sided，and poseseses a palmar and a dorsal border．The palmar border becomes flat as it passes toward the base，while the dorsal border widens out into a surface as it approaches the head．

The heads of the bones are provided with spherical articular surfaces, and their sides present depressions which serve for the attachment of ligaments. Their bases (with the exception of that of the freely movable bone of the thumb) are closely approximated, but both the shafts and the heads are separated by large interspaces which are known as the interosseous spaces (Figs. 126 and 127). Between the heads these spaces are filled by ligamentous masses, between the shafts by muscles.

According to the statements of most authors, the metacarpal bones develop from a diaphyseal center in the middle of the bone and from an epiphyseal center in the head; only the metacarpal bone of the thumb differing in that its epiphyseal center is in the base. Occasionally the third metacarpal has a separate center for its styloid process. The epiphyseal centers do not appear until after birth, while the diaphyseal center appears very early (in the ninth week) before the centers in the radius and in the ulna.

THE BONES OF THE FINGERS.

Each finger has three bones or phalanges, but the thumb has but two (Figs. 128 to 131). These are designated as the proximal or first phalanx, the middle or second phalanx, and the distal, terminal, ungual or third phalanx. The thumb has no middle phalanx. The phalanges diminish in length as we pass toward the finger-tips, so that the terminal phalanges are the shortest, and the longest phalanx is the proximal one of the middle finger.

The phalanges are long bones composed of a proximal extremity or base, of a shaft, and of a distal extremity or trochlea. The bases of the proximal phalanges have concave hemispherical sockets for the heads of the metacarpal bones; the articular surfaces or bases of the remaining phalanges present a double concavity separated by a median elevation.

The shafts of the phalanges have sharp lateral borders, and their dorsal surfaces are convex, their palmar ones plane or slightly concave. The short bodies of the ungual phalanges terminate in a rough horseshoe-shaped expansion, the ungual tuberosity (Fig. 130). The distal extremities of the proximal and middle phalanges exhibit small fossæ, similar to those upon the heads of the metacarpal bones, for the attachment of ligaments, and the nutrient canals run toward the finger-tips, in an opposite direction to those of the other bones of the extremity.

The phalanges are developed like the metacarpal bone of the thumb, each phalanx being ossified from a center in the shaft and from an epiphyseal center in the proximal extremity; there are no centers for the distal ends. The proximal phalanx ossifies first (third month) and then follow the middle and the terminal phalanges.

THE SESAMOID BONES.

In addition to the bones previously described, the hand also contains a varying number of sesamoid bones. Two of these are constantly found at the metacarpophalangeal joint of the thumb, and occasionally others occur at the similar joints of the index and little fingers, but in the latter situation they may be replaced by fibro-cartilage. In the thumb they are usually covered with cartilage upon one side and are connected with the articulation. There is also usually a sesamoid bone at the interphalangeal joint of the thumb.

THE SKELETON OF THE HAND AS A WHOLE.

The metacarpal and phalangeal bones do not lic in one plane, but form a curved surface, convex upon the dorsum and concave in the palm; in the metacarpal region this curve may

THE SKELETO: OF THE LOWER EXTKEMTI.

THE MGMTE GTRMEE

 bonces form the lomer fown

 portion or aha.

 men, the inferior remse , the antrotand

Fig. I32.-The right innominate bone seen from the outer surface ($\frac{1}{2}$).
Fig. I33.-The right innominate bone seen from the inner surface $\left(\frac{1}{2}\right)$.
foramen. It is composed of a body (Fig. 134) and of two rami, a superior and an inferior ramus, which, like those of the pubic bone, form boundaries of the obturator foramen.

In the adult innominate bone the thickened and somewhat constricted portion of the bone, upon whose outer surface is the acetabulum, gives off a bony plate, the ala of the ilium (Fig. 134), which passes upward and presents an external convex and an internal concave surface. Below and in front of the acctabulum, the middle portion of the bone sends out a second plate, which is perforated by the obturator foramen (rami of the pubis and ischium).

The ala of the ilium (Fig. I37) is shaped like the horns of a buck, without the tips. In the middle it is frequently as thin as paper. Its superior margin is markedly thickened and rough and is known as the crest of the ilium, and upon this crest are three rough lines, produced by the attachment of the abdominal muscles. They are most distinct in the middle of the iliac crest, where it is thickest and reaches its greatest height, and are termed the external, the internal, and the middle lips of the crest (Figs. I 32 and I34).

Anteriorly the crest of the ilium ends in a spine, the anterior superior spine (Figs. 132 to 134), and at the posterior extremity of the crest there is another less pronounced spine, the posterior superior spine (Fig. 13I). Below the posterior superior spine, and separated from it by a shallow notch, is the posterior inferior spine, and below this the posterior margin of the innominate bone presents a deep paraboloid notch, the great sciatic notch (Fig. I32), whose upper boundary is formed by the posterior margin of the ala, and its antero-inferior one by the bodies of the ilium and ischium.

Below the anterior superior spine at the anterior border of the body of the ilium is situated the anterior inferior spine (Figs. I 32 to 134). It is placed at a greater distance from the anterior superior spine than is the posterior inferior from the posterior superior one, and is situated immediately above the upper and anterior margin of the acetabulum.

The external surface of the ala of the ilium (Fig. I32) is rough and convex, and presents three rough lines which indicate the areas of origin of the gluteal muscles. These lines are designated as the posterior or superior, the anterior or middle, and the inferior gluteal lines. The posterior gluteal line is almost vertical and runs across the posterior portion of the ala of the ilium to the upper boundary of the great sciatic notch, and the small area of the ilium which it bounds gives origin to a portion of the glutæus maximus muscle and contains both posterior spines.

The long anterior line passes backward in an arched manner from the anterior superior spine; it is at first almost horizontal, then nearly vertical, and ends near the superior line at the upper margin of the great sciatic foramen. The surface of the ala included between it and the superior line gives origin to the glutæus medius muscle.

The inferior line is considerably shorter than the anterior one. It commences between the anterior superior and anterior inferior spines and passes backward almost horizontally above the acetabulum to the middle of the great sciatic foramen. It is but slightly curved and is apt

to be the least distinct of the three lines. The -uriace incluted hetwore it and are untrior gluteal line give origin to the glutev- minimu-

 surface of the sitcrum. It the border of the auricular suriace there is a di-tiget erentice byomen as the paraglenoidal srouer Hig. 13.3/.

The iliac josse, the midelle of which is frequently a thin an pajer,* is - parated from the remaining portions of the imominate lene the bexly of the itium, the pubis, and the iethinm by a line which is continued upon the pubis and is known as the arcuble line fig. Izs. Thi line forms a portion of the dividing line between the true and ahe fal-e pelvi-, the le rminal titiopectineal) line, and i concequently aloo known as the iliac pertion of the terminal line.

The body of the ilium forms the upper portion of the actabulum see pase ebo and a peortion of the boundary of the great sciatie notch. It is directly continuous, particularly upon its inner surface, with the ala of the ilium above, and in the adult with the berlies of the pubs and ischium below.

The pubic bone is intimately connected by its body with the ilium and with the i-chium, and forms a portion of the acetabulum (see page 96). At the junction of the borlios wi the pubis and ilium there is a low rounded elevation, the iliopectincal emineme (Fige 155 , which betonge to both loneses in the adult after the ossification of the synchondrox-

Passing downward and forward from the body of the pubic bone is the approximately three-sided superior ramus Fig. 135). Which is practically horiantal, and form the upper boundary of the obturator foramen. Its anterior extremity, whith alow give origin to the inferior ramus, presents an whlong surface, the symphysis fig. is3, for articulation with the bone of the opposite side, and the anterior surface is directed forward and motward, the inforior one inward and forward, and the posterior one toward the interior of the felsis. The upers border presents a sharpe edge, the crest of the pubis Fig. 13.3, which repree ni- the continuation of the arcuate line of the ilium and is the puthe pertion of the iliopectine al hiac. The ereat terminates anteriorly in a smatl projection situated alout a tingerberadth irom the symphes and known as the tuberebe or spime of the pubis lFigs. I iz and I itt.

At the junction of the superior ramus with the lexty of the pubi the perierior or peltic
 ally fades away as it pase inward upon the inferior surface toward the whturator foramen. The sharp ridge which foms the inner boundary of the grexome is hown as the wharator ridge (Fig. I31).

The obturator groone is usually bounded in from and below by a proces directed toward
 times furnished by a posterior obturutor taberde, which arise from the ischium and is also directed

[^20]Fig. 134.-The right innominate bone seen from in front $\left(\frac{1}{2}\right)$.
Fig. I35.-The right innominate bone of a five- or six-year-old child seen from the inner surface ($\frac{1}{1}$). In Figs. I34 and 135 the ilium is yellow, the ischium green, and the pubis blue. Parts that are still cartilaginous are white. Fig. 136 .-The same seen from the outer surface $\left(\frac{1}{1}\right)$.
toward the obturator foramen. Between these two tubercles is stretched the upper margin of the obturator membrane (see page 129).

The inferior ramus of the pubis is flatter and possesses but two surfaces, an anterior and a posterior or pelvic surface. It passes obliquely downward and outward from the symphysis and is connected with the inferior ramus of the ischium at the site of a slight constriction.

The ischium is shaped very much like the pubis, and in the adult its body is intimately connected with those of the ilium and pubis. It forms the antero-inferior boundary of the great sciatic notch, and in this situation presents a sharp triangular projection, the spine (Fig. ${ }^{1} 3^{2}$). Below the spine is situated the lesser sciatic notch, which is not so deep as the greater one and is formed entirely by the ischium, its inferior boundary being furnished by the large rough tuberosity of the ischium (Fig. I 3^{2}), which forms the main portion of the outer surface of the superior ramus. From the tuberosity, the thin flat inferior ramus passes forward and upward (Fig. I34), forming almost a right angle with the superior ramus of the ischium. Together with the inferior ramus of the pubis, it forms the lower boundary of the obturator foramen.

The acetabulum (Fig. I_{32}) is formed by the bodies of the ilium, pubis, and ischium, but dividing-lines between its component portions are visible in youthful individuals only. It is a hemispherical cavity with clevated margins looking directly outward, and only the anterior inferior portion of the margin toward the obturator foramen is incomplete; this gap is known as the acetabular or cotyloid notch.

The floor of the acetabulum is composed of two differently shaped portions. The larger portion, the semilunar surface (Fig. I_{2}), is smooth and covered with cartilage; it forms the upper and lateral portions of the cavity and extends downward to the borders of the cotyloid notch. The remaining quadrate area commences at the borders of the acetabular notch; it is rough and uneven and is known as the acetabular jossa.

The obturator foramen (Fig. I34) is a large opening, the shape of which is subject to considerable individual variation; it may be cither oval or triangular, its longest diameter being transverse in some cases and vertical in others. Its borders are formed by the rami of the ischium and of the pubis, and are for the most part sharp, being flat only where the obturator groove runs into the foramen.

[^21]

 to the twenty-lifth year.

The pelvis as a whole is considered upon page 130 .

The Skeleton of the free Lower Extrewity. THE FEMUR.

The femur (Fige 1 sit 10 1.f1) is the bargeet lones bone of the human bexts, and cuscisi of a superior cotremity, a shojt, and an injerior atromity.

The superior evtremity presents a mek Fies. Jpi, which isplaced at an obttoe* anghe to the axis of the loone and is surmounted bey the hed. 'I his forms more then a lemiza here

 ligament of the hip-joint, the ligamentum tere-

That portion of the bence which forms a comariction immediatuly belons the had are whith

 one. 'The ufter extremity of the bone, at the marein of the nech, prestio tre berze wrenz

 the entire outer furtion of the superior extremity of the femur. It - liehtly arredaper proug

 terie ridge. 'The intertrechanterie line and rifge form the powe rine langatary of the neck if

 it beonmes broader and asoumes the shape of at theeseded prion with ronneded nearein-. It
 line, the linca aspera, which is compencel of two ditime lipe. an inher and an oufer lip (Fig. 1,37). In the midelle of the femur they are clocely aprovimatel, but diverge towarel both

* In the female the angle approaches a right angle.
\dagger The intertrochanteric line does not atually run to the leesir trix hanter, the pasems be neath it th the inner lip of the linea aspera.

Fig. 137.-The right femur seen from behind ($\frac{2}{5}$).
Fig. $1_{3} 8$.-The right femur seen from the inner surface $\left(\frac{2}{5}\right)$.
Fig. 139.-The right femur seen from in front ($\frac{2}{5}$).
Fig. 140.-The upper end of the right femur seen from behind ($\frac{1}{2}$).
Fig. i4I.-The lower end of the right femur seen from below ($\frac{1}{2}$).
Fig. 142.-The patella seen from in front ($\left.\begin{array}{l}1 \\ 1\end{array}\right)$.
Fig. I43.-The patella seen from behind ($\frac{1}{1}$).
the upper and the lower extremity of the bone, passing toward the trochanters above and to the epicondyles below.

The outer lip of the linea aspera passes upward to a long broad elevation, the gluteal tuberosity* (Fig. 140), which is usually flat but markedly roughened, and receives the greater portion of the insertion of the glutæus maximus muscle. The internal lip becomes less distinct as it passes upward and is continuous with the intertrochanteric line. Parallel to the upper part of the inner lip and somewhat to the outer side of it is situated a second rough line, the pectineal line (Fig. I40), for the insertion of the pectineus muscle.

Toward the lower extremity of the femur the two lips of the linea aspera gradually diverge and form the boundaries of an almost plane triangular area upon the posterior surface of the bone, the popliteal surface (Fig. 137). Upon the line, above its middle, there are usually one or more nutrient foramina which lead into canals pursuing a distinct upward (proximal) direction.

The shaft of the femur exhibits a distinct curvature, which is convex anteriorly (Fig. I39), and upon its anterior broad portion there may be distinguished an antero-internal, an anteroexternal, and a posterior surface. The linea aspera furnishes either the origin or the insertion for a large number of muscles.

The inferior extremity of the femur is very broad, and presents two convex condyles (Fig. 137), a larger internal condyle and a smaller external condyle, which are directed posteriorly and are separated from each other by the intercondyloid fossa, an intercondyloid line separating this fossa from the popliteal surface. Anteriorly (Fig. I4I) the cartilaginous surfaces of both condyles are continuous with an articular surface, the patellar surface, which is concave from side to side and convex from above downward, so that the entire articular surface of the lower end of the femur is shaped somewhat like a horseshoe. Above the condyles upon the lateral surfaces of the lower end of the bone are situated two rough and slightly prominent processes, the epicondyles (Figs. I37, I38, and I41), which are termed the internal epicondyle and the external epicondyle. The lower portions of the lips of the linea aspera run downward to the epicondyles, which give origin to the gastrocnemius muscle.

Like most of the long bones, the femur is developed from a diaphyscal and two primary epiphyseal centers. The diaphyseal center appears as early as the seventh week of embryonic life, and while the lower epiphyseal center is usually visible at birth, the center for the head of the femur does not appear until after birth (at the end of the first year). At a later period special epiphyseal centers appear in the greater trochanter (fourth year) and in the lesser trochanter (thirteenth to fourteenth year).

Although the center for the lesser trochanter appears later than any of the other epiphyseal centers, it is the

[^22]

Fig. 137.

Fig. 141.

Base
Arsizaiar surjizel

Apex

Fig. 143

 atith iflc lone

THE PATELLA.

 with cartilage adal is rough like the anterior surface.

THE TIBIA.

 intercondyded tuherdes, and in iront of and la hind the emine ate ore enall hallow deproions

The articular surfaces are bounded by the almost vertical bony margin of the upper end

Fig. r44.-The right tibia seen from in front $\left(\frac{2}{5}\right)$.
Fig. i45.-The right tibia seen from behind ($\frac{2}{5}$).
Fig. I46:-The right tibia seen from the outer surface ($\frac{2}{5}$).
Fig. i48.-The right fibula seen from the inner surface ($\frac{2}{5}$).
Fig. 149.-The right fibula seen from the outer surface ($\frac{2}{5}$).
Fig. i50.-The tibia and fibula seen from behind ($\frac{2}{5}$).
Fig. 15I.-The upper ends of the tibia and fibula seen from above ($\frac{1}{2}$).
Fig. 152.-The lower ends of the tibia and fibula seen from below ($\frac{1}{2}$).
of the tibia, the infraglenoidal margin (Fig. I44), and at the lower portion of the external surface of this margin is an almost flat, elliptical, articular surface for the head of the fibula (Fig. I45), while below it, the anterior surface of the bone presents a large roughened elevation, the tuberosity (Fig. I44). The entire upper end of the tibia is bent slightly backward toward the shaft of the bone (Fig. 146).

The shaft of the tibia is of a distinctly triangular prismatic form. It is thick at its junction with the upper extremity, and as it passes downward becomes more slender, at first gradually and then rapidly (Figs. I44 to 146). It presents for examination three borders and three surfaces. The sharp anterior crest (Fig. I44), somewhat S-shaped and beginning at the lower margin of the tuberosity, separates the internal and external surfaces, while the equally sharp interosseous ridge (Figs. 145 and 146), clirected toward the fibula (Fig. I47), is situated between the external and posterior surfaces. The third border of the tibia is rounded; it separates the inner and posterior surfaces and is known as the internal border.

The upper portion of the posterior surface of the shaft exhibits a rough line, the popliteal or oblique line (Fig. I45), which passes from above downward and from without inward from the articular surface for the fibula to the internal border. Below it is situated the mutrient foramen, which is usually very large and distinct, and leads into a canal which passes obliquely downward. The nutrient canal of the tibia consequently runs in an opposite direction to that of the femur.

The inner surface of the tibia, like its anterior border, is situated immediately beneath the skin and may be easily felt. The outer surjace presents no special characteristics. Toward the lower end of the bone the borders (with the exception of the interosseous ridge) become rounded off, so that in this portion the bone is almost cylindrical.

The inferior extremity of the tibia is considerably smaller than the upper one, but it is distinctly thicker than the lower portion of the shaft. Its inferior surface (Fig. 152) presents a slightly concave articular surface for the astragalus, and upon its inner side there is a process which projects below the remainder of the bone and is known as the internal malleolus (Fig. I44). The external surface of this process forms an articular surface for the astragalus, and is directly continuous with the inferior articular surface of the bone. Upon the posterior surface of the internal malleolus is a broad groove (Fig. 144) for the tendon of the tibialis posticus muscle, and the outer surface of the lower end of the bone presents a notch, the fibular notch, for the reception of the fibula (Fig. I46), this notch not being, however, an articular surface and therefore not being covered with cartilage

Artucular surface of mothotus Infirior aricuidr surface
Fig. 145.

$$
\bullet
$$

Fig. 151.

Fig. 152.

 in the twerll a in by.t.

THE FIBULA.

 with the til)

 directed downumal

 of both occurs later than inf ith int a

The Bones of the foot.

The skeleton of the foot (Firs. $15: 10$ 155, Whe then of the hand, consize wi three divizinas. the tarsus, the metatarsus, and the pisatomess.

Fig. 153.-A frozen preparation of the bones of the foot seen from the plantar surface $\left(\frac{2}{3}\right)$.
Fig. 154 .-The same preparation scen from the dorsal surface $\left(\frac{2}{3}\right)$.
Frg. 155.-The same preparation seen from the outer side ($\frac{2}{3}$).
Fig. I56.-The right talus (astragalus) seen from below ($\frac{4}{5}$).
Fig. 157.-The right talus (astragalus) seen from above ($\frac{4}{5}$).

THE TARSAL BONES.

The tarsus (Figs. 153 to 155) consists of seven bones. (I) The talus or astragalus; (2) the calcaneus; (3) the navicular or scaphoid bone; (4) the cuboid bone; and (5 to 7) the external, middle, and internal cuneiform bones. Only in the distal portion of the tarsus, where the cuboid articulates with the three cunciform bones, is there an indication of an arrangement in rows as in the carpus, and in further contrast to the hand, a single tarsal bone articulates with both bones of the leg, while the carpus articulates with the radius only.

THE TALUS.

The talus or astragalus (Figs. 156,157) is a short bone, irregularly cuboid in shape, and is composed of a body and of a head, the constriction between the two being termed the neck.

The body is the thickest and most posterior portion of the bone. Its upper surface presents a cartilaginous trochlear surface, the trochlea (Fig. I57), with which the tibia and fibula articulate, and it possesses three surfaces, a large superior one and two smaller lateral ones. The superior surface is convex in the longitudinal (sagittal) axis of the bone and concave from side to side; it is broad anteriorly and narrow posteriorly. The lateral surfaces are almost flat and approximately triangular, the external one being much larger than the internal. The external surface is known as the external mallcolar surface; it forms the outer side of the astragalus and is continued upon a strong process of the bone, the external process (Figs. I54 and 156), which is directed outward. The internal surface forms a part of the inner side of the astragalus, the remainder of which is rough, and is termed the internal malleolar surjace. Behind the trochlea and directed backward is the posterior process (Fig. 157), which is notched by a broad groove for the tencton of the flexor hallucis longus.* The lower surface of the bone (Fig. I56) presents a distinctly concave, almost transverse, ovoid articular facet, the posterior articular facet, for the calcaneus, whose outer portion lies upon the lower surface of the external process, while its inner and posterior portion is upon the corresponding surface of the posterior process.

In front of this articular facet is situated a broad groove, the sulcus tali (Fig. I55), which is wider externally than internally and the floor of which is roughened. Together with the similar groove of the calcancus it forms the simus of the tarsus, which is filled by ligaments.

In the region of the neck the lower surface of the astragalus in front of the sulcus tali presents an oblong, slightly convex, articular facet, parallel to the posterior one, and known as the middle articular facet for the calcaneus, and bordering upon this, and forming a portion of the head of the talus, is a small, slightly convex elliptical anterior articular facet for the calcaneus (Fig. 156).

[^23]

N'usicalar bone

Calcaneus

Body, hallun hatas

Hcad

11913

 and inner aypee it is not sharpl defined from cither the heat or the fork of the fone
 cllipsoidal articular surface for articulation with the naticalar bone.
 what is usual! an madegendent has in the lower vervelisat:

the calcaneus.

 slightly from within outward.

E"pon the upper a-peet of the calcameus Prig. dot may he deersed the dure iane ior

 tion known at the trechlear peroneal) process.
 the cuboid bone.

THE NAVICULAR BONE.

 markedly concave poteriorty, and distinctly conct upen it deral tarion. Niar he inner border of the plantars surface it present a strone rounded fabermits.

The concave posterior surface of the lane \{Fic. 103 formz the anctior the heal af the talus (astragalus); the slightly consex anterior suriace Fir. Ite chitat thre lacet for the three cunciform bones; and the external surface present- a small that incomeant facet for the cuboid bone.

Fig. 158.-The right calcaneus seen from the inner surface ($\frac{4}{5}$).
Fig. i59.-The right calcaneus seen from the outer surface ($\frac{4}{5}$).
Fig. 160.-The right calcaneus seen from above ($\frac{4}{5}$).
Fig. r6r.-The right navicular bone seen from behind ($\frac{1}{1}$).
Fig. 162.-The right navicular bone seen from in front ($\frac{1}{1}$).
Fig. 163 .-The right cuboid bone from the inner surface ($\left(\frac{1}{1}\right)$.
Fig. 164.-The right internal cuneiform bone seen from in front $\left(\frac{1}{1}\right)$. Fig. 165.-The right middle cuneiform bone seen from behind ($\frac{1}{1}$).
Fig. I66.-The right external cuneiform bone seen from behind ($\left(\frac{1}{1}\right)$.

THE CUBOID BONE.

The cuboid bone (Fig. 163) is situated on the outer side of the foot, in front of the anterior extremity of the calcaneus and behind the bases of the fourth and fifth metatarsal bones (Figs. I53 and I54). It is irregularly cuboid in form and its inner border is longer than the outer one. Its dorsal surface is convex, its anterior surface presents two articular facets for the bases of the fourth and fifth metatarsal bones, and its posterior surface is saddle-shaped and articulates with the calcaneus. The internal surface (Fig. I63) presents a flat articular facet for connection with the external cuneiform bone, and a small inconstant one for the navicular, and the external surface is narrow and forms a part of the outer border of the foot. The plantar surface presents a flattened tuberosity (Fig. I53), in front of which is situated a broad groove, the peroneal groove, which is lined with cartilage and accommodates the tendon of the peroneus longus muscle.

THE CUNEIFORM BONES.

The three cuneiform bones (Figs. 164 to 166) are situated between the navicular and the bases of the first three metatarsal bones, and, as their name indicates, are more or less wedgeshaped.

The internal or first cuneiform bone (Fig. 164) is by far the largest and also the longest of the three, and it has the narrow edge of its wedge directed dorsally, so that its plantar surface is much broader than the dorsal surface. Its internal surface is directly continuous with the narrow dorsal one; the anterior semilunar surface articulates with the base of the metatarsal bone of the great toe; the posterior triangular surface articulates with the navicular bone; and the external surface is in contact with the middle cuneiform and with the base of the second metatarsal bone, and exhibits articular facets for both.

The middle or second cuneiform bone (Fig. 165) is the smallest and the shortest of the three. The thin edge of its wedge is directed downward and is almost concealed between the external and the internal cuneiform bones; its base forms part of the dorsal surface of the foot, and its posterior surface presents a triangular articular facet for the navicular bone. The middle cunciform also articulates with the second metatarsal, and with the external and internal cuneiform bones.

The external or third cuneiform bone (Fig. 166) is somewhat larger (especially in length) than the middle one. Its thin cdge is likewise directed downward and its broadest surface looks

Widdle' articular jacet Anterior articular fucrt

Articular facit for inboud
Anserierart:-..'tr
fact: Whilie mroah:r JIGt
Fig. 158.
Greave for temdon oj flaw
hullutis hongrm

Inmer fol oved suluere to

Onter procises of tuberosity

Trochliar process Fig. 150 .

Pirizeal srovve

(1il|till bah

Ari......r 9...e:
|fla!! ! (....|

Articular ficet (midid. cumeiform borke)
Artioular fivit (tht. cunciform burse
Fïr 102.

Articulur fucit (ext. cunciform berte)

1r:ociour face:
(mataliarvis If and!

A-in...... firc: (cb: antiolime bore,

Fis. 103

ditceler baset

(tula.al bonr)
Fig. 100

toward the dorsum of the font. It articulates with the navicular, cutail, and midnle cur tivern, and with the second, third, and fourth melotarad bomes.

THE FIVE METATARSAL BONES.

 second to the fith metataral bemes abos articulte with cuthother.

 metutursal, which catend- -ome distance beyond the wuter berder oi :he ist.

 form.

 dirction, which wteml far upen the phentar -uriace of the hewt ont owne for artionlaion leis

 of the great toe.

THE BONES OF THE TOES. PHALANGES.

The four leseer toes ath hase three plataneres. but the great toee, like the phamb, hat bat
 remaining four toce, and atos thicker than those wi the thamb. while the thatomege of the foler lesser texe are considerably shorter and moresknder than these of the bingers.

In other respecte the phalanges of the tow are alontet elately like thoe nit the fingers, with the exception of irregularities of development which are mos noticeable in the diatal phalanges of the ewo outer toes and are largely (o) be attributed w the dïcte of diane The middle phalanges of these two toes are strikingly short, watly even shorter than the terminal phalanges; and in all the toes it is only the proximal phalanges that can tre aid to be well developed.

As in the hand, each phalanx presents a base and a trochated, and the distal ends of the third phalanges terminate in an ungual tuberosity.

THE SESAMOID BONES OF THE FOOT.

Two sesamoid bones, remarkable on account of their size, are constantly found at the metatarsophalangeal joint of the great toe (Fig. 153). Inconstant sesamoids are also found in the tendon of the peroneus longus muscle, at the interphalangeal joint of the great toe, and less frequently in the tendon of the tibialis posterior muscle.

THE SKELETON OF THE FOOT AS A WHOLE.

The skeleton of the foot (Figs. 153 and 155) differs from that of the hand not only in the number and form of the component elements of the tarsus, but also in certain peculiarities, chiefly due to the functional adaptation of the foot as a support for the erect body. While the axis of the hand is situated in the direct continuation of that of the arm and forearm, the axis of the foot is placed at almost a right angle to that of the lower extremity, and while in the hand the phalanges take up about one-half of the length of the skeleton, in the foot the tarsus alone occupies the proximal half and the metatarsus and phalanges together form the anterior half. The phalanges make up only a fifth of the entire length of the foot.

The foot shows a much more pronounced curvature than do the relatively flat and closely approximated bones of the hand, and this curvature is practically a constant one. The convexity is directed toward the dorsal, the concavity toward the plantar surface, and the deepest point of the concavity is situated at the aper of the middle cunciform bone, the dorsal surface of the same bone likewise forming the highest point of the middle portion of the arch.

The arch of the foot is supported posteriorly by the tuberosity of the calcaneus and anteriorly by the heads of the metatarsal bones. The tarsal arch is formed exclusively by the tarsus and metatarsus and is open internally, since the inner border of the foot is much higher than the outer one, which is in contact with the ground throughout its entire length. The sinus of the tarsus (see page 102) is a striking formation which gradually becomes narrower as it passes inward and backward from the outer side of the dorsal surface. The tarsus is much narrower posteriorly than anteriorly.

The phalanges of the second to the fifth toe do not lie in one plane even during extension, but are strongly curved with the convexity upward and seem to be bent upon the heads of the metatarsal bones like claws, so that only their tips touch the ground.

The second toe is the longest and marks the longitudinal axis of the foot.

Usually the only tarsal bones possessing centers at birth are the calcaneus (sixth month) and the talus (astragalus) (seventh month); the center for the cuboid appears at about the time of birth. The external cuneiform is the first of the three cunciform bones to ossify (first year), the internal is the next (third year), and the middle one is the last, its ossification and that of the navicular bone occurring respectively in the fourth and the fourth to the fifth year. The calcaneus alone has a dise-like epiphyscal center upon its posterior surface, corresponding to the tuberosity; this appears in the tenth year and fuses with the rest of the bone at from the fifteenth to the sixteenth year.

The metatarsal bones ossify much earlier than do the tarsal bones and ossification proceeds in a manner quite similar to that of the metacarpal bones. The diaphyseal nuclei appear in the eighth to the ninth fetal week and the epiphyseal centers also are like those of the metacarpal bones, appearing in the third to the fourth year and not uniting with the diaphyseal center until after puberty.

The ossification of the phalanges of the foot also corresponds exactly to that of the phalanges of the hand. The diaphyseal centers appear in the third fetal month, the epiphyseal centers in the third to the fourth year, and the union of the epiphyses with the diaphyses, as in the metatarsal bones, occurs after puberty.

 Stän: withe ditaretus.

Fig. 105

Iongitudinal, frombl! section of the upper extromity of humerns.

SYNDESHOLOGY.

GENERAL SYNDESHOLOGY.

The bones of the body are comected with cach other in one of two was. 'Iwo meinhborme bones may be combected simply by intervening ligamentous, cartilagous, or any wher form of conncetive tisole, this form of conncetion between two parts of the sketen being called at symarthrosis, or the cartilaginous articular surfaces of two meishboring bones may be an approximated that the two opposed surfaces conform we eath other and are separated by a space. Such a mode of connection is a diarthrosis or a goint, and is by far the mare ferfect mode of connection, atlowing of a much more extensite range of motion between the bone-

SYNARTHROSES.

The synarthroses are classifed, acoording to the character of the tiwue connectine the ents of the bones, into symesmeses, syonchoulroses, and symphyses mived symathone for the
 tissue, see the Solobta-Huber Athas and Epitome of llisologey in the -smehondrone it is

Synchondroses are rase in the adult bexly, but are found in these -ituations in the tenteri loped

 rib to the manubrimm of the sternum.

 actualty connect the lones with eath wher, and, lite the joints, they are irepuently strengithencel by aceessory ligaments. The lower end of the fibulat is firmhe comnected with the tibit by ach
 nect the bones, which are united by the suture themedses hut rather eparates them. A
 of serrated projections in the serrate sutures, but if one brony matein orerlaps the other. like two shingles on a roof, it is spoken of at at squmones suture. Another sublitision oi the suture is the relatively infeguent harmonic suture, which is the simple firm apposition af two contiguous bones, and the fixation of the weth in the alvesti of the faw may abo be designated a variety of sydesmosis, the somphosis, the syndesmetic matis in this instance being furnished by a thin layer of periosteum (see page 08).

In the mixed synarthroses or symphyses the tissue connecting the ends of the bonce is fibrocartilage. Typical examples are furnished by the connections of the bodies of the vertebre
by the intervertebral fibrocartilages, and by the connection of the two pubic bones by the interpubic fibrocartilage.

We occasionally find a combination of a synarthrosis (particularly the syndesmosis) with a joint, as in the connection of the sacrum with the innominate bone, or articular spaces may appear within the symphyses, and such arrangements are termed half-joints (amphiarthroses).

DIARTHROSES.

The diarthroses or true joints are characterized by congruent cartilaginous surfaces which are separated from each other by a capillary space, and are provided with a number of structures, the majority of which are absent in the synarthroses. These are the articular capsules, the accessory ligaments, and the articular cartilages. They may also be provided with special structures, such as the interarticular cartilages or menisci, diverticula of the synovial membrane forming synovial bursa, glenoidal lips, joint cushions (designated by different names in the different joints), and bony locking mechanisms.

The articular capsule usually surrounds the cartilaginous articular surfaces of the contiguous bones so-as to form a completely closed articular cavity. It consists of an cxternal firm fibrous layer, the fibrous layer, and of an internal softer vascular layer, the synovial layer or membrane. The latter gives off microscopic thread-like vascular processes of irregular shape, the synovial villi, and occasionally it forms large structures visible to the naked eye, the synovial folds.

The articular cavity, usually a capillary space, is filled with a viscid fluid, the synovia.
The articular capsule varics in thickness; it is sometimes strengthened by aecessory ligaments and sometimes interrupted, so that diverticula of the synovial membrane protrude through its openings and form synovial bursæ (see also page 143), whose cavities are consequently directly continuous with that of the articulation (communicating synovial burse).

Accessory ligaments form important components of the articulations, and according to function the ligaments of the body can be subdivided into the following classes: (i) Ligaments of fixation; i.e., those ligaments which firmly unite two bones, as in the syndesmoses. (2) Reinforcing ligaments of the joint capsule; these are more or less adherent to the capsule itself, but sometimes appear as independent structures. (3) Check ligaments, i. e., ligaments which are capable of limiting certain movements of the joint. (4) Ligaments of conduction, i. e., ligaments whose function is to conduct vessels and nerves to a part of a bone. (5) Ligaments which take the place of bone. These last are found in those situations where neither fixation, nor inhibition, nor any other of the usual functions of a ligament is required; they extend between portions of the same bone or convert a notch into a foramen.

The interarticular cartilages or articular discs (termed menisci when of a purely fibrous character) serve to adapt mutually articular surfaces which are not completely congruent. They are attached to the inner surface of the joint capsule and extend for a varying distance between the cartilaginous ends of the bones. In the most extreme cases they divide the articular cavity into two portions, so that the articular extremity of one bone is in relation to one side of the articular disc and that of the other bone to the other side. In such a joint the articular extremities of the two bones are not in immediate contact with each other, and it is consequently possible to distinguish unilocular and bilocular joints.

In other cases the discs or menisci are perforated in the misulle or the are andeat alar in shafe, so that the cartiaginems extremities of the bone are in contan ouls in the mizalle of
 or they maty at ats joint cushions.
'The articular margins or glenoiddl lips are w-ually (arcutar conneetio tion ore forbeartilaginous structures which are situated upon the margans of the bony ucket hior the furpore of increasing its siљ.

The joint cushons, usually consisting of fatty tisue, fill out the space in man! withe joints, and are for the purpose of breaking the jar of the movement of the ends of the bone.

Bony loching mechanisms limit the movement of a portorn of the sheleton, the mentable part striking against a bony projection.

A joint is usuatly composed of only two bence, in which cate it is termet a simple ivint. Sometimes, however, three or more benes enter inte the formation of a joint or portions of the socket are formed of connective-tisule components ligamente, ete., in which cate the forit is termed a componand iwint.

The joints of the human body ate classifed aceording to the shape wi their articular sar-
 joints.

The uniavial joints are composed of two varicties thene with at tran-sere avis and thone with a longitudinal axis; i. i., the axis of motion in the firet wericty is at right angle to the avis of the moving bone and in the second variety the two axe are coincilent.

1. UNIAXIAL JOINTS.

(a) With a Transverse Axis. The hinge goint or gin slymus beloner in this class. Thes joints are browd and the articular surfaces are usually not quite el lindrical. fle contos surface exhibiting a merlian watation and the concate socket a corre-pending deration. This conformation terether with stong lateral ligamente prewent the lateral dioptarenert of the bents,

 complete extembion the bence form an angle of 1 So degres. Typs. of the gingmus or hinge joint are furnshed by the interphalangeal jeints of the fingers and tere.

The spirel or cothear joint forms a subsaricte of the hine joint. Tle exatation in the
 mation, thexion is acounpanied bey a certain amount of hatal deviation. Evalngle are furnished by the ankle-joint and by a portion of the dhow joint.
(b) With a Longitudinal Axis. - The only joint of this charater is the pia of or tre-hoi? joint, also termed a lateral ginglymus. The articulating suriace are horiontal -cetions of a cylineter or cone and the solid cylinder rotate upon it asis in a hollow er lindrital socket. The superior radio-ulnar articulation and the median articulation of the athe and axis are typical examples of this form of joint.

2. BIAXIAL JOINTS.

This class of joints includes the ellipsoidal or condyloid joint and the saddle joint.
In the ellipsoidal joint the convex surface of an ellipsoid of rotation articulates with a corresponding concavity, and the two axes of motion, the lesser and the greater axis, are placed at right angles to one another, but both pass through the same bone. An example is found in the atlanto-occipital articulation.

The saddle joint is formed by the approximation of two saddle-shaped surfaces, i. e., surfaces which are concave in one direction and convex in the other. Each surface alternately forms a head and a socket, and the two axes are at right angles to one another but are situated in different bones. The most typical saddle joint of the human body is the carpometacarpal articulation of the thumb.

In reality the motions in the ellipsoidal and saddle joints are not strictly biaxial, but may occur in any intervening axis between the two, and one of the two motions is frequently so limited that the joint practically becomes a ginglymus.

3. POLYAXIAL JOINTS.

The only polyaxial joints are those with spherical surfaces, the spheroid joints. These are subdivided into two varieties, the gliding joints or arthrodia and the ball-and-socket joint or enarthrosis.

In the arthrodia a spherical head moves in a spherical socket, but the articulating surfaces are segments of very large spheres, and may seem in some cases to be almost planes. Comparatively little motion can take place between the surfaces, and what does occur is more or less of a gliding character. Good examples of arthrodia are to be seen between the articulating processes of the vertebre.

In the enarthroses the articulating surfaces are more extensive segments of smaller spheres and the capsular ligaments are roomy and relaxed, so that a considerable range of motion is possible between the two bones. Typical examples of these ball-and-socket joints are to be found in the shoulder-joint and hip-joint.

SPECIAL SYNDESMOLOGY.

JOINTS AND LIGAMENTS OF THE VERTEBRAL COLUMN.

THE CONNECTIONS OF THE VERTEBRAL BODIES.

The bodies of the true vertebre are connected by intervertebral fibrocartilages (Figs. 172 to 175), each of which (Fig. 174) consists of an external firm fibrous ring composed of concentric and interwoven bundles of connective tissue, and of a central gelatinous or pulpy mucleus, the latter being firmly compressed within the fibrous ring and between the adjacent vertebral surfaces so that it rises above the level of a horizontal section of the disc. Among other substances it contains true cartilage and the remains of the chorda dorsalis, an embryonic structure which indicates the future position of the vertebral column and is composed of a substance resembling
cartilage. The interverteloral filbocartilages are attached in the upter ant trwer surfan ai the contiguous verterate, which are corered with at thin latere of cartilate.

The area of the intervertel)ral fibrocartilages is nomew hat greater than the of the veretural surfaces between which they are situated, and they are thit ket in the rifithe, where ties rest against the slightly coneave surfates of the vertubre. There in the fibrocartilase Letwets the allas and the axis; the first one is situated between the secon! and third cervial seritere and the last one between the lifth lumbar sertebra and the sacrum. There are con-aquently wentythree intervertebral fibrocartilates. Like the bodies of the vertebrat, the inoreat bath in ir cumference and in height from abowe downward; the smalle=t and thintiet are -ituated betacen the cervical vertebra, the largest and thickest between the lumbar wertebrit. 'The hewermese dises are much thicher about one-third in from than behind, a condition which is garticularly noticeable in the las one, which is stuated at the promontory.

THE INTERVERTEBRAL ARTICULATIONS.

In addition to the mixed synarthrotic connection between the vertebral bexites, the true wornbrat also articulate with cach other by means of the interectebral articulations. The wo superier articular processes of a vertebra articulate with the two inferior articular prece-co of the ore lying bone (sec page 23), and the cartilaginous surfaces of each juint are enclued by an articular capsule, which is related in the cervical and tense in the lower vertebral region. There are no accessory ligaments. The joints are really arthrodia, and the synarthrotic connection of the bodies and the ligamente of the arches limit their range of motion to a considerable extent.

THE LIGAMENTS OF THE VERTEBRAL COLUMN.

The ligaments of the wertebral column are compeed of twe groups: those which run thrugh out the entire length of the vertubral column; and those which resularly recur between the cuntiguous vertebrie. The first group consists of the lonsitudinal ligaments, of which there is an anterior and a pomerior one. The anterior lonsitudnal ligament is attached to the whterior surfaces of the vertebrat isodies and of the interverthbral fibrocartilage: the posterier une (parthy invests their porterior surfaces.

The anterior lousitudinal ligament Fige. 172. 180, and 185) commence at the pharengeal tubercle upon the base of the skull as a narrow hand which becomes much wider as it deseend. and it leminates upon the enterior surface of the sacrum. It is intimately united to the intervertebral fibrocartilages, but is only hemely comeneted with the middece concave portions oi the vertebral bodies. The ligamemt gradually disappear laterally by becoming continuous with the periosteum of the bodie of the vertebrat, and is compered of long supericial fibers and of short deep ones which pasis from one werturat to anether.
 of the vertebral bodies as the anterior ligament doce atone the ir anterior surfaces, but it is considerably narrower than the anterior ligament. It begin as an independent ligament at the second cervical vertebra, but it is continued upward to the cranial cavity as the tectorial membrane (sce page ins). It becomes narrower as it deseends and terminates in the sacral canal. It is likewise composed of a superficial and of a deep layer.

Fig. I72.-The anterior longitudinal ligament in the lower thoracic portion of the vertebral column, together with the costo-vertebral ligaments seen from in front ($\frac{3}{4}$).
Fig. 173.-The posterior longitudinal ligament in the lower thoracic and upper lumbar portions of the vertebral column. The vertebral arches have been removed ($\left(\frac{3}{4}\right)$.
Fig. 174.-Horizontal section through an intervertebral fibrocartilage (somewhat enlarged).
Fig. I75.-Two thoracic vertebræ divided longitudinally in the median line and showing the ligamenta flara.
Fig. r76.-The ligamenta flava of the thoracic vertebral arches seen from in front, the arches having been separated from the bodies. The left ribs have been disarticulated and removed; the right ones are retained in their natural position ($\frac{3}{4}$).
Fig. 177.-The posterior longitudinal ligament and intervertebral fibrocartilages of the lumbar vertebræ, the vertebral arches having been removed ($\frac{3}{4}$).
Fig. r78.-A longitudinal section taken at about 45 degrees to the median plane through four thoracic vertebre to show the costo-vertebral articulations ($\frac{3}{4}$).
Fig. r 79 .-The ligaments of the middle and lower thoracic vertebre and their ribs, seen from behind (3) $\frac{3}{4}$). Fig. 180.-The ligaments of the middle and lower thoracic vertebræ and their ribs seen from the left side. The uppermost rib has been disarticulated and removed ($\left(\frac{3}{4}\right)$.

It widens opposite each intervertebral fibrocartilage, to which it is firmly united, but it is but loosely connected to the bodies of the vertebræ, being separated from them by venous plexuses.

In addition to the longitudinal ligaments, this group also contains a portion of the supraspinous ligament. It will be described subsequently, however, together with the interspinous ligaments with which it is intimately connected.

The short ligaments of the vertebral column, connecting contiguous vertebræ, are subdivided into those connecting the arches and those connecting the processes.

The ligaments between the vertebral arches, the ligamenta flava (Figs. 175 and 176), are strong and are composed almost entirely of elastic tissue, to which they owe their pronounced yellow color and hence their name. They extend anteriorly as far as the posterior margins of the articular capsules of the intervertebral articulations and consequently close the vertebral canal cxcept at the situation of the intervertebral foramina. With the exception of a distinct groove in the median line, their internal surface is absolutely smooth and is directly continuous with the inner surfaces of the rertebral arches. By their elasticity they keep the posterior wall of the vertebral canal smooth during flexion of the vertebral column and they also support the backward movement of the vertebral column during extension. They commence between the second and third cervical vertebræ (sometimes between the first and second) and extend to the last lumbar vertebra, and are strongest below and weakest above.

The intertraneerse ligaments (Figs. I79 and I80) are unimportant and inconstant ligaments connecting the transverse processes of the vertebræ; they are particularly developed in the thoracic and lumbar regions.

The interspinous ligaments (Fig. 175) connect the spinous processes of contiguous vertebræ and attain their greatest development in the lumbar region. They are continuous anteriorly with the ligamenta flava and posteriorly with the supraspinous ligament (Fig. I79) which connects the apices of the spinous processes and forms an independent ligament. The interspinous

Vertebral body
Interarticular ligament

Pesterior $\cos t 0$. frartsuersc ligurnita!
\% , or

Intervertebral fibrocartilage
lliad of rib
7abercle aj rib

Fig. 173.

 [w.1"mbitl] smou!dsun/us
Orripital bone Posterior atlanto-occipital
Fig 1S2.

 process and a larger posterior wite fir the spinal conl. Flo whe. is (usuatly) at articulation in thi - ditution. from the midille wi the

 The jeint peraceare trew at ber

 the athso by a plexun of beins. 1 further ..

Fig. I85.-The tectorial membrane seen from behind. The posterior portion of the occipital bone and the arches of the three upper cervical vertebræ have been removed, as well as the capsular ligaments of the right side $\left(\frac{9}{10}\right)$.
Fig. I86.-The atlanto-odontoid articulation. The odontoid process (dens epistrophei) and the anterior arch of the atlas have been cut $\left(\frac{9}{10}\right)$.
Fig. 187.-The cruciate ligament after removal of the tectorial membrane. The articular capsules have also been removed on the right side $\left(\frac{9}{10}\right)$.
Fig. 188. - The alar ligaments after removal of the cruciate ligament. The articular capsules as in the preceding figure $\left(\frac{9}{10}\right)$.

THE ARTICULATIONS OF THE RIBS WITH THE VERTEBRAL COLUMN AND WITH THE STERNUM.

The posterior extremities of the ribs are connected with the thoracic vertebre by arthrodial joints (Figs. 172,176 , and 178 to 180); their anterior extremities (Fig. 18 I) articulate with the sternum or with each other by means of either arthrodial joints or synchondroses. The anterior extremities of the two lowermost ribs are not attached to any portion of the skeleton.

The ribs are connected to the vertebræ by a double articulation. The head of each rib articulates with the bodies of two adjacent vertebræ (the exceptions are given upon page 26) and the tubercles of the ribs, with the exception of the last two (see page 27), articulate with the transverse processes.

The articulations of the heads of the ribs, with the exception of the uppermost and the two lowermost, are characterized by the fact that the intervertebral fibrocartilage between the two vertebre forming the articular cavities is continued, as the interarticular ligament (Fig. i78), as far as the crest upon the head of the rib, and divides the articulation into two compartments. The weak articular capsules are reinforced by the radiate (stellate) ligaments (Figs. 172 and I80), which arise from the head of the rib and radiate to the lateral surfaces of the bodies of the vertebræ forming the articulation.

The costo-transverse articulations have capacious capsules and are characterized by possessing quite a number of reinforcing or check ligaments. The posterior surface of the capsule is reinforced by a short tense ligament, the ligament of the costal tubercle (posterior costo-transverse ligament) (Fig. I 79), which is approximately quadrangular and composed of parallel fibers, and extends outward and slightly upward from the tip of the transverse process to the posterior surface of the neck of the articulating rib.

The ligament of the neck (middle costo-transverse or interosseous ligament) (Fig. I78) almost completely fills the space between the neck of the rib and the transverse process of the thoracic vertebra. It is horizontal and passes from the anterior surface of the transverse process of the vertebra to the posterior surface of the neck of the rib. The costo-transverse (superior costotransverse) ligaments run between the posterior extremities of the ribs and the transverse processes, and each may be regarded as consisting of an anterior and a posterior costo-transverse ligament, both of which pursue a similar course from the neck of the rib to the transverse process of the overlying vertebra. The anterior ligament (Figs. I79 and 180) is tolerably strong and approximately rhomboid in shape; it passes from the lower margin of the transverse process

Transverse ligament of atlas

rig. 185.
Acmbrama tectoria
$5-1+2$ Articular

Alur Cruciate lirane: ligramelt, (superier lum:!)

 ncrve。

 thi- situattions.

 a focm tatomit .

THE ARTICULATIONS AND LIGAMENTS OF THE HEAD.

The only movable juint betwee:s the beme of the heal is the it onper, mathary articulation. The remaining bonce are united bs sutures, the teropinolog wi which ha- atready been diecused

Fig. iS9.- The right temporo-mandibular articulation seen from the outer side ($\frac{1}{1}$).
Fig. 190.-The right temporo-mandibular articulation seen from the inner side ($\frac{1}{1}$).
Fig. IgI.-The right temporo-mandibular articulation opened by a sagittal section. The zygomatic arch has been removed $\left(\frac{1}{1}\right)$.
in the section upon osteology. Considerable quantities of connective tissue are found only in the sphenopetrosal fissure, in the foramen lacerum, and in the petro-occipital fissure (sphenopetrosal and petro-occipital synchondroses).

THE TEMPOROMANDIBULAR ARTICULATION.

The temporomandibular articulation (Figs. I89 to I9I) is the joint between the condyloid process of the mandible and the mandibular fossa of the temporal bone. It is completely subdivided into an upper and a lower portion by an oblong, biconcave articular disc (Fig. I91), which is adherent to the capsular ligament by its circumference. The two joints which are thus formed, namely, that between the mandible and the disc and that between the disc and the mandibular fossa, act separately.

The articular capsule of the joint (Fig. 19I) is rather thin and relaxed. It embraces the mandibular fossa as far as its posterior non-cartilaginous surface, the articular eminence, and the head of the condyloid process, and is inserted into the neck of the mandible. Its external surface is reinforced by a ligament passing from the zygoma to the neck of the condyloid process, the temporomandibular (external lateral) ligament (Fig. I89), and its fibers pass from above downward and from before backward.

[^24]
INDEPENDENT LIGAMENTS IN THE HEAD.

In the vicinity of the temporomaxillary articulation, but without any direct connection with the joint, are situated two ligaments, the sphenomandibular ligament (Fig. 190) and the stylomandibular ligament (Figs. I9I and 192). The sphenomandibular ligament arises from the under surface of the greater wing of the sphenoid bone near its spine and is inserted into the lingula of the mandible. The stylomandibular ligament takes origin from the styloid process, which is frequently embedded in the ligament for some distance, and passes to the inner surface of the angle of the jaw. Both ligaments are weak and resemble fasciæ, and this is particularly true of the stylomandibular ligament, which radiates directly into the fascia of the internal pterygoid muscle (buccopharyngeal fascia, see page 184).

THE IIGAMENTS OF THE HYOID BO:TE

 ligamem.

THE JOINTS AND LIGAMENTS OF THE UPPER EXTREMITY:

THE STERNOCLAVICLLAR ARTICUIATION.

 the sternal articulto sirlace of the dai

 thickened.

 thorax.

 as a lever for the hater iten-

Fig. 192.-The two sternoclavicular joints, together with ihe costosternal articulations of the two upper ribs, seen from in front. The right sternoclavicular joint has been opened by a sagittal section ($\frac{4}{5}$).
Fig. 193.-The left shoulder and acromioclavicular joints seen from above and from the inner surface ($\frac{3}{4}$).
Fig. 194.-The left shoulder-joint seen from behind, the long head of the triceps being cut and the terminal portions of the supraspinatus, infraspinatus, and teres minor muscles cut and turned outward ($\left(\frac{3}{4}\right)$.
Fig. 195.-The left shoulder-joint seen from behind and above. The acromion process has been removed, and the neighboring muscles treated as in the preceding figure ($\frac{3}{4}$).
Fig. I96.-The socket of the left shoulder-joint after removal of the articular capsule and the tendon of the biceps muscle ($\frac{3}{4}$).
Fig. 197.-A frontal longitudinal section of the shoulder-joint, parallel to the tendon of the long head of the biceps ($\frac{1}{1}$).

THE ACROMIOCLAVICULAR ARTICULATION.

The acromioclavicular articulation (Figs. 193, 194, and 196) is the joint between the acromial articular surface of the clavicle and the acromial articular surface of the scapula, and it consequently forms the connection between the two components of the shoulder girdle. The articulation may contain an articular disc, but it is small and varies greatly in the degree of its development; it is frequently incomplete and often entirely absent. The upper portion of the articular capsule is the strongest, and is still further reinforced by the acromioclavicular ligament (Figs. 194 and 196), which connects the bones forming the articulation.

A strong ligamentous connection between the acromial end of the clavicle and the scapula is effected by the coracoclavicular ligament (Figs. 193 and 196), which passes from the upper surface of the base of the coracoid process to the coracoid tuberosity of the clavicle. The ligament is composed of two parts, an anterior flat quadrangular portion, known as the trapezoid ligament, and a posterior triangular one, broad above and narrow below, the conoid ligament. Between the two the subclavius muscle is inserted.

[^25]
THE LIGAMENTS OF THE SCAPULA.

There are three ligaments attached to the scapula (Figs. 193, 195, and 196) which do not belong to any of the neighboring joints. These are the coracoacromial ligament, the superior transverse ligament, and the inferior transverse ligament.

The coracoacromial ligament (Figs. 193, 194, and 196) is a flat, tense, strong ligament which connects the anterior margin of the acromion with the posterior surface of the anterior extremity of the coracoid process. It is situated immediately above the shoulder-joint.

The superior transverse ligament (Figs. 193 and 195) is a short, tense ligament which bridges

Fig. 19.4.

Supcrior transwersi ligament Spine of scapuia Corucoid process

Figr 105.

Coracoclavicular hisament (Combed porto.)

Coracoud procios
Coracu-ucromatal lisament
Tendon of lang head of het.

 artery of the scaputa (suprasapular artery) fal-w on or is

 ments which take the place of bente structares.

THE SHOULDER-JOINT.

 concale, but it is conselerabl! entarged and deepened by a marhedl! thensartiodar life the glenoidal lip, ghenoid ligament 〈Fig. Lext, which surroumd the margin of the brow onter.
 head of the humerus, and comsepuently docs not interiere with the irec mosement hi the later bone.

 spinatus, infraspinatus, leres minor, subseapularis and to a reinforeing licament, the darae

 inner portion of the capruke.

 accompanied for a certain distance outside oi the joint lo a cubular proboncatinn withe a movin!

 sapularis muscle in the shape of a burea which commanicate with the areicular wate lige
 surface of the coracoid proces. betheen the contwhmeral lisament and tine reinforcine dibere of the internat portion of the capsule.

Fig. I98.-The left elbow-joint seen from in front ($\frac{2}{3}$).
Fig. 199.-The left elbow-joint seen from behind and from the radial side $\left(\frac{2}{3}\right)$.
Fig. 200.-The bones of the left forearm with the interosseous membrane; the annular ligament has been divided (${ }^{\frac{2}{3}}$).
riorly than posteriorly; raising and lowering of the arm in a coronal plane (abduction and adduction, the former motion not being possible beyond a horizontal plane); and rotation of the arm about its longitudinal axis. During the movements of the arm the capsular ligament is thrown into folds upon one side and made tense upon the other and in certain extreme positions it may act as a check ligament.

THE ELBOW-JOINT.

The elbow-joint is a typical compound joint, being formed by the association of the lower end of the humerus with the upper ends of the radius and ulna, and so consisting of three articulations. The trochlea of the humerus articulates with the semilunar (greater sigmoid) notch of the ulna (the humero-ulnar articulation), the capitulum of the humerus with the depressed surface on the head of the radius (the humero-radial articulation), and the radial (lesser sigmoid) notch of the ulna with the articular circumference of the radius (the proximal radioulnar articulation).

The three articulations are surrounded by a common articular capsule (Figs. I98 and i99), which is roomy and relaxed, particularly in front and behind. It encloses the three fossæ at the lower end of the humerus (the olecranal, coronoid, and radial fosse), is attached to the ulna just below the tip of the olecranon, at the margin of the semilunar (greater sigmoid) notch, and at the tip of the coronoid process, and the entire head and the greater portion of the neck of the radius are situated within it. The only portions of it which are firm and tense are the lateral ligaments and the annular ligament which surrounds the upper end of the radius.

There may be recognized a radial or external lateral ligament and an ulnar or internal lateral ligament. The radial lateral ligament (Figs. 198 and 199) arises from the external epicondyle and passes as two fasciculi to the annular ligament, with which a portion of its fibers are continuous. The ulnar lateral ligament (Fig. I98) arises from the internal epicondyle of the humcrus and passes in a radiating manner to the ulnar margin of the semilunar notch.

The anmular ligament (Fig. 199) is a firm tense ligament which surrounds the head of the radius like a sling and forms three-fourths of the circumference of the socket for the pivot joint of the proximal radio-ulnar articulation, the remaining fourth being formed by the radial (lesser sigmoid) notch of the ulna. The ligament arises from the anterior margin of the semilunar (greater sigmoid) notch and is inserted into the posterior margin of the radial notch. Below it the eapsule is thin, and at the neck of the radius forms a small protrusion which is known as the saccular recess.

The brachialis anticus muscle passes over the anterior surface of the capsular ligament of the elbow-joint (Fig. 20I) and some of its fibers are inserted directly into this structure. The triceps muscle, particularly its middle head, holds a similar relation to the posterior surface of the capsule, from which the tendon of the muscle is separated by fatty tissue.

Fig. 199.

 articulation.

Abstract

THE DISTAL RADIO-ULNAR JOINT AND THE LNTEROSSEOUS NEMBRANE.

The radius and ulna are comnected by a thin interoneour mentrame Iie. .os which almont completely fill the yate intervening between the tow bence of the ioteurm. Ir is attacted to

 like these structures, it give origin to varimu-mucle.

In addition to the connetion by the interowerele memberane the rallias and what are hell
 proces of the ulnat the lower margin of the tuleronity of the rudins, and is direct in contact with the upper portion of the interossenas membrane.

The distal radio-ulnar juint Fige 202 th 201 is the juint lutween the arrictlar cirestm ference of the cappitulum of the what and the whar wibmeidl weth of the rataise and ales between the capitulum of the ulnaand the articular diee which effarate the heal of the ulna from the triquetral cunciform Lone. Anatomieally it i- an independent foint, het it functions in association with the provimal ralio uhnar articulation.
 radius as well as by the articular dise: the fertion of the anche iormed hy he radias is atmone rertical, and that formed by the dise is practioall? horizontal, and a portion oi the Lat ral -urface as well ats the inferior surface of the caphitulum of the ulna monectuenty rete in the aneket of the jeint. The articular cap-ule is sumewhat roomy and related, and a prolangation of it. known as the succular recess, wends upwad between the bene of the furearm abowe the level of the articulation.

The articular dise is attached upon one side io the ulnar margin oi the middle portion of the radius, where it insensibly merges into the cartilayinous colering of this ; ortion of the bone;

Fig. 201.-Sagittal section of frozen preparation of the left elbow-joint ($\frac{4}{5}$).
Fig. 202.-A frozen section through the radiocarpal articulation parallel with the dorsal surface of the hand ($\frac{4}{5}$).
upon the other side it is attached to the styloid process of the ulna. In rare instances it is perforated.

[^26]
THE JOINTS AND LIGAMENTS OF THE HAND.

The joints of the hand may be divided into those of the carpus and those of the fingers. Those of the carpus are: (1) The radiocarpal or wrist-joint; (2) the intercarpal joint; (3) the joint of the pisiform bone; (4) the common carpo-metacarpal joint; (5) the carpo-metacarpal joint of the thumb.

The joints of the fingers include the metacar po-phalangeal articulations and digital or interphalangeal articulations.

THE JOINTS OF THE CARPUS.

The radiocarpal articulation, the articulation of the pisiform bone, and the carpo-metacarpal articulation of the thumb are usually independent joints, while the common carpo-metacarpal articulation is, as a rule, connected with the intercarpal joint.

The radiocarpal artictlation is the joint between the carpal articulating surface of the radius and the triangular articular disc interposed between the ulna and the triquetral (cuneiform) bone upon one side, and the proximal articular facets of the first row of carpal bones navicular (scaphoid), lunatum (semilunar), and triquetrum (cuneiform)-upon the other, the navicular and lunate bones articulating with the radius and the triquetrum (cuneiform) bone with the triangular articular disc in such a manner that the radius and the dise together form a socket, while the corresponding articular facets of the three carpal bones form a condyle.

The articulation is completely separated from the intercarpal joint, but in rare instances it communicates with the articulation of the pisiform bone. It is separated from the intercarpal articulation by the short ligaments connecting the navicular, the lunate, and the triquetral (cuneiform) bones.

The articular capsule of the joint is thin, capacious, and relaxed, and embraces the cartilaginous extremities of the bones entering into the articulation.

From the shape of its articulating surfaces the radiocarpal articulation is an ellipsoidal joint. The curvature of the surfaces is greater in the sagittal than in the coronal diameter.

The iutercarpal articulation is the joint between the two rows of carpal bones and is formed by the distal articular facets of the navicular, lunate, and triquetral (cuneiform) bones upon

Fig. 201.

 curve, but has an irrecular の =haje Fig. -02).

 connect the boncs of the sechet rese ant suparate the intertarpal from the corponctacsaral articulation. The latter separation is incomplete. howe er, and thee pwe artionlation- watly communicate between the capitatum os magnam and the leseor maltanender eroyezoill farte. since interossous ligaments are whally wanting in the -it wism. The thin articular eapoule exhibit- no speeinl peculiartics and recomble- that of the radienary al arsiolation.
 suriaces of the pisitorm and triquetral cunciform bones, and is proally an independent artice.
 is analogous to thone situated between the ecamoid bene of the great the and the heav oi the first metatarabl bone. The ligament arising from the pisiform buec are -imilarly to te regartol as continuations ui the unden of the flexor carpi wlnari-: they are the prow hasman hasment

 tions to the neighbering metacarnal bones.

 and hamate unciourm trones. The articular carity, which is ahtally singh. commanicato. as a rule, with the intercargat juin: in the manner free ieu-ly de-crilel. I: i- ameme com

The bone forminer the carpometacargal articulation are wapalle of only tight motemeniand the articular capsule i- correpondingly tena and iorm. In afdion to the proviouly men tioned -urface, it aloo embrace the lateral articular face betwern the ha-e of the in divitual metacarpal bone - ree page on) ant the ariculation consequent! include the concoaled inter metacarpalarticulations. The articulation is an arthrexlium.

The carpo metucarpat point of the thanth is the juint betwee: the seblele-haped articular facet at the distal extremity of the ercater mulaneular tone drapusiam and the base of the metacarpal of the thumb. Ii i- alwats an independent articulation communicating with none of the other carpo-metacarpal juint nor with ant wi the carpal juinte. From the shape of the articulating surface the articulation is a sudde joint, and although the suriace are noi completely congruent. it is the nost pronounced saddle joint in the human body.

Fig. 203.-Articulations and ligaments of the hand seen from the dorsal surface ($\frac{3}{4}$).
Fig. 204.-Articulations and ligaments of the hand seen from the volar surface, the transverse carpal ligament having been removed ($\frac{3}{4}$).
Fig. 205.-Articulations of the middle finger seen from the side ($\left.{ }^{\frac{3}{4}}\right)$.

In the movements of the hand the radiocarpal and intercarpal articulations act together as hinge joints. The four chief movements of the hand are flexion, extension, radial flexion (or, better, radial abduction), and ulnar flexion (or, better, ulnar abduction). By a combination of these movements it is possible to effect an almost complete circumduction of the hand.

The chief movements of the joints are flexion and extension. The axes of rotation of the two hinge joints are not placed at right angles to the axis of the forearm, but obliquely and intersecting each other.* During flexion of the radiocarpal articulation, the hand deviates to the radial side; during the similar movement in the intercarpal articulation the hand deviates to the ulnar side and vice versâ. If one joint is flexed and the other extended, the movements in the axis of the extremity neutralize each other, while the lateral movements (radial or ulnar abduction, as the case may be) are more pronounced. If both joints are flexed or extended together, the lateral movements neutralize each other and the movements in the axis of the extremity (flexion or extension) are more pronounced.

The carpo-metacarpal articulations are arthrodia and are but slightly movable; this is particularly true of the carpo-metacarpal joints of the second and third fingers. They move slightly when the concavity of the hand is increased or diminished, that is to say, during hollowing or flattening of the palm, and during opposition of the little finger.

The range of motion of the carpo-metacarpal joint of the thumb is much more extensive. Like all saddle joints it is biaxial, but owing to the incongruity of the articulating surfaces, the curvatures of one of the surfaces being always more pronounced than those of the other, the movements about the two axes may be so combined that actual circumduction is possible. The chief movements of this joint are abduction (away from the index-finger), adduction (toward the index-finger), and opposition (bringing the thumb opposite to the little finger). During the latter motion the concavity of the palm is markedly increased.

THE CARPAL LIGAMENTS.

The carpal ligaments (Figs. 203 and 204) are composed of the ligaments between the bones of the forearm and the carpal bones and of those which connect the carpal bones with each other and with the bases of the metacarpal bones.

Of the first group, the ligaments which connect the ulna with the carpus are weak, while the radius is connected to the carpus by strong ligaments. It will be remembered that the carpal bones articulate with the radius only.

The only ligament arising from the ulna is the ulnar lateral ligament (Figs. 203 and 204), which passes from the styloid process of the ulna to the triquetral (cuneiform) bone. The corresponding ligament upon the radial side is the radial lateral ligament (Figs. 202 and 204) which passes from the styloid process of the radius to the navicular bone. The radius is connected to the carpus also by two strong ligaments which reinforce the dorsal and palmar surfaces of the capsule.

The dorsal radiocarpal ligament (Fig. 203) passes obliquely from the lower end of the radius to the dorsal surface of the first row of carpal bones and is attached particularly to the triquetral (cuneiform) bone. The corresponding anterior ligament, the volar radiocarpal ligament (Fig. 204), is longer than the dorsal one; it arises from the margin of the articular surface of the carpus and is inserted not only into the bones of the first row, but also into the capitatum (os magnum).

[^27]

 an accessory ligament of the carpus. It connete the tho carpal emineme: ben i-ata ate hat to the radius, and converts the carpal groene intw a canal.

 the radiate carpal ligament.

The remaining carpal ligaments which unite the carpal bemes or centrect flam with the bases of the metacarpal homes are designated according to their pesition ts the eotur and tar at
 number) and dorsal four in number) besal ligaments Fises -cs and 204 . The intron emus basal ligaments are situatell in the interamers between the haw of the metacarpal banes.

THE FINGER-JOLNTS.

 of the metacarpal bones and the bath of the proximal phatanges. Atheogh the articulatise surfaces are irrequarle spherial, the movemente of the joints are retricted be lizansent. 'I her articular surface of the heals of the metacarpal benc- become somewhat celindrical upor the palmar aspect of the bunces, so that the surfaces in contact during cuten-ion are spherical, while during flexion they are cylindrical. The joint are comerpuently a mivenre of the kinelomatis and arthrodial types (ginglyme arthrodia). The metacarpo-phalangeal fint wit the themb ian exception; it reemble the interphalangeal articulations and is at tre qeinelymbill joint.

The articular capsutes (Fixse 20.3 and 205) are thin and sumewhat relaxal, lan they an reinforecd in suctral situations. Strone lateral ligaments are exeentritally. itsertel into the heads of the metacarpal benes, on that the become une during thesion of the phatange: the arise from small depresions upen the siden of the heads of the metwaryal bome tate pace q2I. The anterior surfaces of the capsules are reinfored by the decessery a dar fagments Fize act. which are connected with the sheath. of the flexor tendons (eee page 205), and by the tramtaryer cupitular liguments Fig. 20t), which are flat strong ligaments connecting the heads of the secoms to the lifith metacarpal bones. The dorsal surface of the capsules are proteted by the doreal aponcurose of the fingers bee page 205), which are intimatels exnected with them.
 and an ulnar) (Fig. 204), which are embedded in the articular capsule: the surfuce directed toward the articulation are covered by cartilase. Sesamoid bemes oceasimally uecur in the metacarpo-phalangeal joints of the other fingers oece abo pate ozt.

[^28]Fig. 206. - The female pelvis with its ligaments, seen from behind $\left(\frac{2}{5}\right)$.
Fig. 207.-The female pelvis with its ligaments, seen from below $\left(\frac{2}{5}\right)$.
Fig. 208.-The male pelvis with its ligaments, seen from in front $\left(\frac{2}{5}\right)$.
Fig. 209.-The female pelvis with its ligaments, seen from in front $\left(\frac{2}{5}\right)$.
Fig. 210.-The male pelvis with its ligaments, seen from above ($\frac{2}{5}$).
Fig. 21I.-The female pelvis with its ligaments, seen from above $\left(\frac{2}{5}\right)$.
while extensive rotation is impossible, the phalanges and consequently the fingers can be abducted and adducted. The metacarpo-phalangeal articulation of the thumb is a pure hinge joint.

The digital or interphalangeal articulations (Fig. 205) are the joints between the individual phalanges of the fingers, the bases forming the articular sockets and the trochlear surfaces constituting the articular heads. The articulations are pure hinge joints. Lateral ligaments (Fig. 205) at the sides of the capsules prevent any lateral motion, and the articular capsules are roomy. Volar flexion is the only movement of which these joints are capable.

THE JOINTS AND LIGAMENTS OF THE PELVIC GIRDLE.

THE PELVIC LIGAMENTS, SYNARTHROSES AND DIARTHROSES.

The pelvic girdle and its ligaments form the pelvis (Figs. 206 to 211 and 215), which, unlike the shoulder girdle, is complete both anteriorly and posteriorly, the pubic bones being connected anteriorly by a symphysis and the pelvic girdle completed posteriorly by the sacrum, which articulates with the two iliac bones either by joints or half joints.

The symphysis pubis (Figs. 208 and 209) is a mixed synarthrosis connecting the symphysial surfaces of the two pubic bones. These surfaces are covered with cartilage and the space between them is filled by a mass, consisting largely of dense connective tissue and partly of fibrocartilage, which is termed the interpubic fibrocartilage. This interpubic tissue is broader in front than behind and its posterior portion frequently contains a space resembling an articular cavity, so that the symphysis is converted into a half joint (amphiarthrosis).

The symphysis is reinforced by fibers which pass across its upper margin from the pubic spine of one side to that of the other; these fibers are intimately connected with the interpubic fibrocartilage and form the superior pubic ligament (Fig. 210). The lower margin of the symphysis is reinforced by a more independent structure, the arcuate (inferior pubic) ligament (Figs. 206 and 208), which is approximately triangular and rounds off the pubic angle.

The posterior connection of the pelvic girclle is a paired articulation which is termed the sacroiliac articulation. It occurs between the auricular surface of the sacrum and the similarly named surface of the ilium, and is an almost immovable joint, a true amphiarthrosis. The rough irregular surfaces of the two bones are scarcely adapted for reciprocal movements, and the strong ligaments surrounding the articulation further insure its immobility.

In addition to being connected by the auricular surfaces, the innominate bone and the sacrum are also held together by a strong ligament passing between the tuberosities of the two

Lumbar vertebra IV^{\prime}
Anterior sacro-iliac lig.

Anterior superior spinte of ilium

Great trochanter

Inguinal lus.

Aricualar capsuie of liij) Mat liofinlural ls.

 the physulogical tamdunim, the symermonis is the mont important part of the artiondation, sinee it firmly unite the pehic bone to the aterum which beate the we ieth withe entite trexh.

 long and at short ligament. 'The short powterior veroilia lipament whish of a momber of

 longitudinal basticuli which run from the perterions euperior spine with fixm the the lateral portion of the doral surface of the satum and intermingle ir thi - bthation wish the arigit of
 posterionl

 of the anterior sateroilat ligament. Threugh it the hat humbar retebora ant aton the last inter vertehral fibrocartilage are included in the jehis, and are conneted ne: whl? with the ilfom but aloo with the saterum.

THE INDEPENDENT LIGAMENTS OF THE PELVIS.

In addition to the ligaments which direaly coment the indivilual parterif the pelvic girdle.

 whuratur foramen with the coreption of the upper portion, in which is -ituated the frolongtion
 passage to the oblurater veerts.
 origin from the lateral portion of the entire peaterion turface of the sactum. from the pozerior
 connected with the pesterior sacroilise liguments, and from the poterior urface of the coccex. It becomes narrower as it pawes downward, but again broatens out near its insertion into the tuberesity of the ischium. It covers the sacrofinous liyamemt poeteriorly, and the two ligaments are adherent at their intersection. The ialcijorm process (Figs. 206 and 20;) is a narrow oblique continuation of the sacrotuberous ligament, which passes along the lower margin of the ischium and pubis and gradually disappears anteriorly.

The sacrospinous (lesser sacrosciatic) ligament (Figs. 206, 207, 210, and 211) is more deeply situated than the sacrotuberous ligament, and arises from the lateral margins of the lower portion of the sacrum and of the upper portion of the coccyx. It rapidly becomes narrower and passes almost horizontally forward and outward, crossing the sacrotuberous ligament shortly before reaching its insertion at the tip of the spine of the ischium. Its pelvic surface covers and is adherent to the coccygeus muscle (sce Splanchnology).

The sacrospinous ligament converts the greater sciatic notch into an elliptical foramen which is termed the great sciatic (sacrosciatic) foramen, and the two ligaments, the sacrospinous and the sacrotuberous, convert the lesser sciatic notch into a foramen, the lesser sciatic (sacrosciatic) foramen. This latter foramen is triangular with rounded angles and is separated from the great sciatic foramen by the sacrospinous ligament. The sacrotuberous ligament forms a portion of the outlet of the pelvis.

THE PELVIS AS A WHOLE.

The following bones enter into the formation of the pelvis: the two innominate bones, the sacrum, the coccyx, and the fifth lumbar vertebra; and its boundaries are also partly formed by the interpubic fibrocartilage, the obturator membrane, and the sacrotuberous and sacrospinous ligaments. The iliolumbar ligament forms a portion of the pelvic wall.

In the pelvis may be recognized the false or greater pelvis, and the true or lesser pelvis. The former forms the floor of the abdominal cavity, and is wide open above and in front and is bounded only partly by bone. Its cavity is considerably larger than that of the true pelvis, from which it is separated by the terminal (iliopectineal) line (Fig. 210). It is bounded by the alæ of the ilium, by the fifth lumbar vertebra together with the promontory, and by the two iliolumbar ligaments.

The true or lesser pelvis is a short canal, the greater portion of whose boundaries are bony. The anterior wall is short while the posterior one is considerably longer, and it is open above and below. The upper opening is termed the superior aperture of the pelvis or the pelvic inlet (Figs. 210 and 2II), whose boundary is formed by the terminal line, by the promontory, and by the upper margin of the interpubic fibrocartilage. The terminal line is composed of a sacral, an iliac (the arcuate line), and a pubic (crest of the pubis) portion.

The actual cavity of the pelvis is bounded posteriorly by the concave pelvic surface of the sacrum and by the anterior surface of the coccy: laterally by the pelvic surfaces of the bodies of the ilium, pubis, and ischium (the floor of the acetabulum), by the sacrotuberous and sacrospinous ligaments, by the rami of the pubis and ischium, and by the obturator membranes; and anteriorly by the symphysis pubis with its ligaments and by the anterior extremities of the two pubic bones.

The anterior wall of the pelvic cavity is by far the shortest, while the posterior wall is the longest. The posterior portions of the lateral walls exhibit two openings, the upper elliptical greater sciatic foramen and the lower triangular lesser sciatic foramen; the anterior portions contain the openings in the obturator membranes which form the obturator canals (see page 129). The upper more capacious portion of the pelvic cavity is designated as the plane of pelvic expansion, while the inferior contracted portion is known as the plane of pelvic contraction.

 which preject downward, whike the bemodary curve- marhedly upeard is the rewing an dom ox ro tuberous ligament and partieularly at the loner matgin of the ymphes.

 passes obliquely irom abote downward and from lehind.

 exhibiks smilar tharateristics, and it cavity in particular is mone caparious. In the mate the pelvic inlet is heart haped from the marked projeetion withe promontory while ion the femate
 of the convergence of the tuberontien of the i-chis. The pulbe ansle in the male phlsi-form- at
 degrees).

For a more detaikel account oi the pelvie diameter and of the plvi- in in relation to

 arises from the interior -uperior spine of the ilium and is incerted inte the apite of the publin.

THE HIP-JOINT.

The hip extint or cowal geim is the articulation between the actathulum of the inneminate bone and the head of the femur. The atcobular cavit! is con-iderabl! derpened bye atrener
 that the socher embrace more than half of the spherical head wi the fomur, and the joint consequently belons- to that group oi the sphorodide artioulations whith is known as an cmartherosis.
 the noteh of the actabulum, converting it into a chef like foramen. This portion of the glenoidal lip is known at the transáeroe ligament (Fige 21t.

The acetabular hese Fig. 214 does not come inte direct contact with the cartilaginous surface of the head of the femur and is not conered with cartilage, but by a cu-hion of fat and by syovial villi. From this fatty cushion, and particularly from the acetabular notch, there arises

Fig. 212 .- The right hip-joint seen from in front $\left(\frac{2}{3}\right)$.
Fig. 213 .-The right hip-joint seen from behind (${ }_{3}^{2}$).
Fig. 214 .-Socket of the right hip-joint after cutting through the articular capsule and the round ligament. The head of the femur has been removed ($\frac{3}{4}$).
Fig. 215 .-Section through the pelvis and the two hip-joints taken in a plane almost at right angles to the axis of the pelvis ($\frac{2}{3}$).
Fig. 216.-The right hip-joint opened through the anterior wall of the articular capsule so as to show the round ligament. The head of the femur has been drawn out of the socket and rotated outward and backward ($\frac{3}{4}$).
a broad characteristic ligament of the hip-joint, the round ligament (ligamentum teres) (Figs. 214 and 216), which becomes slightly narrower and is inserted into the depression on the head of the femur. This ligament is flat, and only its external portion is formed of firm connective-tissue fasciculi; in its interior nutrient vessels pass to the head of the femur. It lies in folds upon the cushion of fat in the acetabular fossa, and on account of its length and soft structure plays little part in checking the movements of the joint.

The strong articular capsule of the hip-joint (Figs. 212, 213, and 215) is markedly reinforced by accessory ligaments. It arises from the outer circumference of the glenoidal lip and embraces not only the head of the femur but also the greater portion of its neck. Anteriorly it is inserted into the intertrochanteric line; posteriorly it does not extend so far, and surrounds only somewhat more than the half of this portion of the neck of the femur.

The reinforcing ligaments are firmly adherent to the capsule of the hip-joint and are composed of longitudinal and of circular fibers. The latter are known as the orbicular ligament (zona orbicularis) (Fig. 215) and embrace the narrowest portion of the femoral neck; they pursue a circular course within the innermost fibrous layers of the capsular ligament and are rather intimately connected with the longitudinal ligaments. The longitudinal fasciculi receive different names according to their places of origin, and ssince each of the three parts of the innominate bone gives origin to one of the fasciculi, they are consequently known as the iliofemoral, pubocapsular, and ischiocapsular ligaments.

The iliofemoral ligament (Figs. 212 and 216) is the strongest of the three ligaments and is one of the thickest ligaments in the body. It arises in the region of the anterior inferior spine of the ilium, passes obliquely across the anterior surface of the articular capsule, broadening as it goes, and is inserted into the entire length of the intertrochanteric line. The pubocapsular ligament (Figs. 212 and 216) arises from the horizontal ramus of the pubis and passes across the inner and posterior portion of the articular capsule toward the lesser trochanter. The ischiocapsularligament (Figs. 215 and 2I8) arises from the body of the ischium and runs in the posterior portion of the capsular ligament; the majority of its fibers pass into the zona orbicularis, but some of them converge upward to the great trochanter.

The thinnest places in the capsule of the hip-joint are situated in its lower portion between the pubocapsuker and the ischiocapsular ligaments, and above the zona orbicularis between the ischiocapsular and iliofemoral ligaments. There is also a thin place in the antero-internal wall of the capsule between the iliofemoral and pubocapsular ligaments, and a communication occasion-

Fig. 215.

Rectus femoris

Interpubic fibrocurtiluge' Roand lag.
Obturator membrane
Arcuate lig of prabis

 6-dila

THE KNEE-JOINT

 tibula is comple

 shaped.

 that of the c'vernal meniscus. The chernal mentw: the wernal ematunar cartilage is almost completely circular and is open onls at it point oi trachment in the interond loid uminence.

Fig. 217 .-The right knee-joint in extension seen from in front ($\left(\frac{2}{3}\right)$.
Fig. 218.-The right knee-joint in extension seen from behind ($\frac{2}{3}$).
FIg. 219. - The right knee-joint in extension opened by two lateral incisions. The quadriceps muscle, logether with the patella, has been reflected downward $\left(\frac{8}{3}\right)$.
FIG. 220.-The right knee-joint in flexion after removal of the articular capsule and the lateral ligaments $\binom{\frac{3}{3}}{3}$.

It is broader than the internal meniscus, and, as its radius is smaller, it covers the condyle of the tibia except in the situation of its relatively small median hiatus. It arises in the anterior intercondyloid fossa of the tibia and runs to the external intercondyloid tubercle, while the internal meniscus passes from the anterior margin of the articular surface of the internal condyle to the posterior intercondyloid fossa. The anterior portions of both menisci are connected by fasciculi which vary greatly in their development and are known as the transzerse ligament, and their thick external margins are adherent to the articular capsule, the external meniscus being less intimately adherent, and hence more movable than the internal one.

In addition to the menisci, the articular cavity also contains two important accessory ligaments, the crucial ligaments (Figs. 220 and 221), of which there are two, an anterior and a posterior. Their anterior surfaces are provided with a synovial covering which passes as a septum through the posterior portion of the articulation, and they are strong ligaments firmly connecting the tibia with the femur. They both arise from the intercondyloid fossa of the femur and pass to the tubercles and intercondyloid fossie of the tibia. The anterior ligament has a broad origin on the inner surface of the external condyle of the femur, and, becoming narrower, it passes to the anterior intercondyloid fossa and to the anterior intercondyloid tubercle of the tibia. The posterior ligament passes from the outer surface of the internal condyle of the femur to the posterior intercondyloid fossia and to the corresponding tubercle of the tibia; it is flat at its origin but rounded at its insertion, and is usually stronger than the anterior ligament. During rest (semiflexion), the two ligaments cross in such a way that the anterior one is in front of the posterior. The latter is usually connected with the external meniscus.

With the exception of certain diverticula of the synovial membrane, which will subsequently be described, the articular capsule is attached to the margins of the cartilaginous articular surfaces. Its line of attachment upon the posterior surface of the femur is indicated by the intercondyloid line, so that the entire intercondyloid fossa is situated within the articular cavity.

The knee-joint posesesses a number of peculiarities: its synovial folds are more pronounced than those of any other joint in the body; its synovial membrane gives off diverticula, some of which are of large size and pass beneath the neighboring muscles; it is much strengthened by the majority of the overlying tendons; and the patella is embedded in the anterior portion of the articular capsule and forms the immediate anterior boundary of the articular cavity.

The majority of the reinforcing ligaments of the knee-joint are adherent to the capsule throughout the greater portion of their extent. There are two lateral ligaments, the fibular and the libial lateral ligament. The tibial (internal) lateral ligament (Figs. 217 and 218) arises from the internal epicondyle and is intimately adherent to the capsular ligament; its superficial fibers run to the

Fig. 217.

-

 margin of the internal condsle

 cajsulc.

 the retinaculum of the arcuate lisan: n.

 interondyloid fossa of the femme.

 aperture, and receives the insertion of these hitere of the yuadrice s which are icrmed the articulat

Fig. 22I.-The condyles of the tibia with the two menisci and the origins of the crucial ligaments ($\frac{3}{4}$). Fig. 222.-Sagittal section of the right knee-joint in extension. The section passes through the external condyle of the tibia (3)
Fig. 223.-The right tibia and fibula with their ligaments $\left(\frac{1}{3}\right)$.
muscle of the knee (subcrureus) (see page 215). The suprapatellar bursa does not lie directly: upon the anterior surface of the femur, but is separated from it by a cushion of fat.

There are two or three other considerably smaller diverticula of the synovial membrane at the posterior portion of the articulation. These are the popliteal bursa, beneath the tendon of the popliteus, the semimembranous bursa, beneath the tendon of the semimembranosus, and the internal gastrocnemial bursa (Fig. 304), beneath the tendon of the inner head of the gastrocnemius. The last two burse may communicate.

Abstract

There are other bursæ in the neighborhood of the knee-joint which have no direct relation to the articulation. In addition to the previously mentioned deep infrapatellar bursa, these are: the subcutaneous prepatellar bursa (Fig. 222), a subcutaneous bursa which is constantly found in front of the patella; the subfascial prepatellar bursa, between the fascia and the tendon of the quadriceps; the subtendinous prepatellar bursa, between the quadriceps tendon and the periosteum of the patella; and the subcutaneous infrapatellar bursa, which is situated in front of the patellar ligament (see also page 234).

As might be supposed from the shape of the articulating surfaces, there are two kinds of motion possible in the kneejoint, a hinge motion (flexion of the leg and the return to the extended position) and a movement of rotation which is possible only when the knee is flexed. Rotation is impossible when the knee is extended, not only from the shape of the articulating surfaces (see page I33), but especially on account of the tension of the lateral ligaments, which are relaxed only during flexion of the joint. The lateral ligaments also prevent a lateral displacement of the bones during flexion of the articulation. The crucial ligaments serve mainly to hold the femur and tibia together; they are so situated that one of them is always tense in any position of the joint, the posterior ligament being tense during part of the morement of flexion and part of the movement of extension, and the anterior one during the whole of flexion. The crucial ligaments also check the movement of rotation.

The patella glides upon the surface of the femur, and has no influence upon the mechanism of the articulation. During extension of the joint it is pulled upward by muscular action and during flexion it descends toward the tibia.

The function of the menisci is rather to form an articular cushion than to supplement and deepen the articular socket. In some positions of the joint they act both as cushions and as portions of the articular socket, in other positions they act only as cushions, and in still others they exert no influence whatever upon the mechanism of the joint. During some of the movements of the articulation they are markedly displaced or strongly compressed.

THE ARTICULATIONS OF THE TIBIA AND FIBULA.

The tibia and fibula are connected with each other in three ways: their upper extremities articulate by means of a small joint, the tibiofibular articulation; the bodies of the bones are connected by the interosseous membrane; and the lower extremities are united by tense ligaments, forming the tibiofibular syndesmosis.

The tibiofibular articulation (Figs. 217, 218, 220, and 223) is the joint between the fibular articular surface of the tibia and the capitular articular surface of the fibula. It is an arthrodium with almost plane articular surfaces and possesses strong accessory ligaments, which reinforce the capsule anderiorly and posteriorly and are known as the anterior and posterior capitular ligaments (Figs. 218, 220, and 223). The tense capsular ligament snugly embraces the cartilaginous surfaces. This articulation may occasionally communicate with the knee-joint (through the popliteal bursa).

Iransverse ligament

Fig. 221.

Fig. 22?.
Fig. 223.
-

 the parsiage of bleot-vewed.

 this is, hewerer, practically the only monement between the tibia and fibulat.

THE JOINTS AND LIGAMENTS OF THE FOOT.

'The joint and lisamento of the foot will be con-idered -eparately, since many of the lifame:n of the forn lateng to serveral joint.

THE JOLNTS OF THE FOOT.

The joint- hetween the talus (astragatus and the lome of the herand the be beon the be lividual bones of the foxe mat be divided into the followine groups:

 calcancone ulwid artio whation.
2. The Tiarsal . Irlhrodia.
(a) The intertarsal articulations the cuncomaticular artioulations.

 (ions.).
 lus and the two bones of the leg. The articulating surface are the troh hea wi the bhe upor the one hand, and the inferior articular surface of the tithe and the artioular sariace of the internal and external malleoli upen the other.
'The articular capsule, which surroumds the camilarinomesurfaces and is ins reded ward the neck of the astragalus, is thin; its amterior and equeciall! it-lateral gorions are rather tonec. while the posterior portion is roomy and relaned.

From its function and in accordance with the form it arti wiar stria es. the ishocrurai arti-ulation is a hing.

Fig. 224.-The ankle-joint seen from behind ($\frac{3}{4}$).
Fig. 225.-Horizontal frozen section through the tarsal articulations ($\frac{3}{4}$).
Fig. 226.-Frontal frozen section through the ankle and posterior talocalcaneal joints ($\frac{3}{4}$).
slight separation of the bones of the leg; and when the foot is depressed, the narrow posterior portion of the trochlea has so much room in the articular socket that slight lateral movements are possible in the axis of the fibula. The anklejoint is consequently not a pure hinge joint, although it acts mainly as such; its movements are those of plantar and dorsal flexion.

The talocalcaneal articulation (Figs. 225 and 226) is the joint between the convex posterior articular surface of the calcaneus and the concave posterior calcaneal articular surface of the talus (astragalus). The articulating facets are portions of the surface of a cone, the axis of which is almost sagittal, but directed somewhat obliquely upward and forward. The articular capsule is roomy and relaxed. This articulation occasionally communicates with the ankle-joint.

The talocalcaneo-navicular articulation (Figs. 225 and 230) is the joint formed by the head of the (talus) astragalus, the anterior and middle articular facets of the calcaneus, the posterior articular facet of the navicular, and the navicular fibrocartilage of the plantar calcaneonavicular ligament (see page 14I). The joint is a pronouncedly compound articulation, and includes an anterior talocalcaneal and a talonavicular articulation. The socket for the head of the talus (astragalus) is formed by four different cartilage-covered surfaces. The articulation is separated from the posterior calcaneo-astragaloid joint by the sinus of the tarsus and its articular capsule exhibits no special peculiarities.

The calcaneocuboid articulation (Fig. 225) is the joint between the cuboid articular surface of the calcaneus and the posterior articular surface of the cuboid bone. The surfaces are approximately saddle-shaped. Together with the talonavicular joint, it forms the transverse articulation of the tarsus (Chopart's joint).

From a functional standpoint the talocalcaneo-navicular joint is composed of two porions. The first of these is the joint between the talus (astragalus) and the navicular bone, which acts together with the calcaneo-cuboid articulation. It is an ellipsoidal joint, while the talonavicular articulation is a saddle-joint. Although these joints are biaxial, they check each other reciprocally, so that during motion each joint loses one of its axes of movement and a common uniaxial hinge joint results, the transverse tarsal joint. The remaining portion of the talocalcanco-navicular joint acts together with the talocalcaneal joint, whose axis coincides with that of the transverse tarsal joint. Both joints, or rather both combinations of joints, always work together; during adduction there is also an elevation of the inner margin of the sole of the foot (supination), and during abduction there is a simultaneous elevation of the outer margin of the sole of the foot (pronation). The anatomical and physiological associations of the joints are altogether different, as is also the case at the clbow and at the inferior radio-ulnar articulation (see pages 122 and 123).

The arthrodia of the tarsus consist of a variable number of single or combined articulations, since neighboring articular cavities frequently intercommunicate, and while the number of articular facets is relatively large, the number of joints is comparatively small because the small lateral articular facets do not all form independent articulations.

The cuneonavicular articulation (Fig. 225) is the joint between the articular surface of the navicular bone and the posterior articular facets of the three cuneiform bones; it also extends between the opposed articular facets of the cuneiform bones and between the internal articular

 -ituation. From thi peint the joint line pur-u- a marte edly distal directime ded then make a distinct curse foward the presimat pertion of the jow.

 joints of the hatat with -light tariation-. The metataren phatangeal joint wifle ereat ox in

 hinge joint. I fursher peewharity is the marhed forsal evten-ion ai the artiedar artatere par ticularly thoe of the second to the fifth metataral bone- which permit of a byjereven-ion wiorwil

 Ferse capitalur Fier. 22S and 220), wecesory plantar, and lateral lisummet

THE LIGANIENTS OF THE TARSUS.

 ligaments.

 2こ-) arise from the internal malleolus and ratiate to the whas datragalush, the watancus, and
 -cparate ligaments: the anterior tate titiat, the posterior talo-titial, the colome tibial, and the dibio-naてicular ligaments.
 talus (astragalus) and in almo-t completely conered by the calcaneo-tibial ligamem (Fig. 227) which runs to the margin of the sustentaculum tali. The posterior talo-tibial ligament Figs. 224

Fig. 227.-The ligaments of the tarsus seen from the inner side $\left(\frac{3}{8}\right)$.
Fig. 228.-The ligaments of the foot seen from above and from the outer side ($\frac{(3)}{\left(\frac{3}{4}\right)}$.
Fig. 229.-The ligaments of the foot seen from the plantar surface $\left(\frac{3}{\left(\frac{3}{2}\right)}\right.$).
Fig. 230.-The ligaments of the foot seen from the dorsal surface. The talus has been remored so as to show the participation of the navicular ligament in forming the socket of the talocalcaneo-navicular joint ($\left.\begin{array}{l}\frac{3}{4} \\ 4\end{array}\right)$.
and 227) goes to the posterior process of the talus, and the tibio-navicular (Fig. 227) has its insertion upon the dorsal surface of the navicular bone.

Ligaments pass in a similar manner from the external malleolus to the talus (astragalus) and to the calcaneus. These are known as the anterior talo-fibular, the posterior talofibular, and the calcaneo-fibular ligaments. The anterior talo-fibular ligament (Fig. 228) passes almost horizontally from the anterior surface of the external malleolus to the anterior margin of the trochlea of the talus; the posterior lalo-fibukar (Fig. 224) pursues a corresponding course and connects the posterior border of the external malleolus with the outer tubercle of the posterior process of the talus; and the calcaneo-fibular ligament (Figs. 226 and 230) passes somewhat obliquely downward and backward from the tip of the external malleolus to the outer surface of the calcaneus. Upon this ligament run the tendons of the two peroneal muscles (see page 222).

The ligamentous connections between the astragalus and the calcaneus consist of the reinforcing ligaments of the talo-calcaneal articulation and of the ligamentous mass which occupies the sinus of the tarsus, the interosscous talo-calcaneal ligament. The latter (Figs. 225 and 230) consists of a number of firm fibrous layers and forms a species of syndesmosis between the two bones.

The reinforcing ligaments of the posterior articulation of the two bones are known as the internal, external, posterior, and anterior talo-calcaneal ligaments. The cxternal and particularly. the anterior ligaments, which bridge over the sinus of the tarsus, are connected with the interosseous ligament. The external ligament (Fig. 228) passes from the outer and lower surface of the neck of the talus (astragalus) to the upper surface of the calcaneus; the anterior ligament connects the lower surface of the talus (astragalus) with the upper surface of the calcaneus; the posterior ligament connects the outer tubercle of the posterior process of the talus with the upper surface of the calcancus; and the very narrow internal ligament passes from the inner tubercle of the posterior process of the talus to the sustentaculum tali.

The dorsal and plantar ligaments of the foot are practically horizontal, and are composed partly of transverse and partly of longitudinal fasciculi which connect neighboring bones and consequently reinforce the articular capsules. The plantar ligaments are considerably the stronger, and some of them connect distant portions of the tarsus, passing over one or even more bones.

The dorsal tarsal ligaments are those which connect the talus (astragalus) and the calcaneus with the navicular and the cuboid bones. They are the dorsal talo-navicular ligament, the dorsal calcanco-navicular ligament, and the bifurcate ligament. The bifurcate ligament (Fig. 228) connects the antero-internal angle of the calcaneus with the dorsal surfaces of the navicular and

cuboid bones: it necewarily divide imon two portions, ane for each bone wows a the culcunco

The plantar tarsal ligaments maintain the pormal areh oi the fowe 13 far the larma

 war bone: The doral-urface of the ligament i- concrel with cartilace atod contaia- the nation

 tibion naticular licament

 similar course to the corresenndine dor-al ligament.

 ments, the interossebus cutco metetarsal ligan: hat fartioularly leetween the internal cumeiform and the base of the scond metatarsal lwone. where an intero-telu bas. metataral is wantinge. and the interossens hasal metaturad lisamens. The upter and lewer-uriace of ame of these ligaments are in direet contact with the corresponding dored and flantar ligaments.

MYOLOGY.

GENERAL MYOLOGY.

Myology is the study of the muscles and of their accessory structures, such as tendons, aponcuroses, fascix, intermuscular septa, tendinous arches, pulleys, mucous burse, tendonshcaths (vagince mucosa), tendon retinacula, and sesamoid bones.

The musculature of the human body occurs in two forms which present both histological and physiological differences (see "Atlas and Epitome of Normal Histology"," Sobotta-Huber). The actual skeletal muscles are composed only of striated muscular tissuc.

The muscles form the fleshy portion of the body, and are contractile structures which vary considerably in size and shape. A typical muscle is composed of a muscular belly, which forms the greater portion of it, and of two ends, one of which is known as the origin, or head, and the other as the insertion, the origin being that end which is attached to the usually more fixed portion of the skeleton and the insertion that attached to the more frecly movable portion, but the physiological relation of origin and insertion may be reversed. As a rulc, both the origin and the insertion possess a tendon of varying length, which is usually considerably thinner than the muscle.

Muscles are distinguished according to their shapes. A great many, particularly those forming the mass of the extremities, are fusiform or spindle-shaped, while others are broad, thin, and flat; muscles whose length but slightly exceeds their breadth are designated short muscles. Some muscles surround orifices of the body or canals, and their fibers are circularly arranged; they are known as orbicular muscles, or, if they serve to close orifices, such as the mouth, for example, as sphincters. Those muscles in which the fasciculi pass to a tendon developed at the side of the muscle are known as pinnate or penniform muscles, and if the tendon be situated in the middle and receives muscular fasciculi from cither side, the muscle is said to be bipinnate or bipenniform.

The majority of the muscles have a single head, but occasionally two, three, or four heads unite to form a muscular belly, producing a biceps, triceps, or quadriceps muscle. A muscle composed of two bellies with an intervening tendon is termed a biventer or digastric muscle.

If muscles pass only over one joint of the body (particularly in the extremities), they are known as monarticular muscles; if they extend over two main joints in their course, they are called biarticular.

Tendons occur in connection with nearly all the muscles, and are completely absent in the sphincters only, though partly wanting in the orbicular muscles. Every muscle, however, has not a tendon at both ends, it frequently happening that only the tendon of insertion is developed, while the origin is purely muscular. The fibers of the tendons of origin or insertion are very
frefuently mised with muscular fibers, so that neither a furely muscular nor a purels tendinons origin or insertion exists.

 occasonally form aponseurone in the vicinity of their in-crtions.

Broad temdinous plates ate sometimes foumd upen one of the -uriace of atas ole in the
 more or las regular distance from cath other; these are termed hendinoms incriptom.
 muscles. 'They are ireguent! atherem to their musch and form their agenournse ant are epecially well developed in the everemitios, where bey form at common superlicial shath ior
 the shin, such as the plat! =mat and the majertey of the datial mu-rla.

 muscke.

 furnish a sujp ert for mustular origin.
 from that of the lodly. The tenden retinaculu uperate in a - imilar manere and are fond chichly

 which mantain the wombon theath-frec lxtum in pustion.

The muens burse are thin watled artion blle with at thit similar to that of the -rmoniat

 page 10S).
 of the muscles of the extremition (farticularly in the hand and font fora artain di-ane and pros. teat the tendons from frition during ation. 'They are part! protected be remacula and partly be चimemb.
 'They are nut necesonily bony but ate witen only fibocartilathou- and stre the purpose of increasing the working angle of the wombe and of mater it powible for the tendon- to glide

[^29]Fig. 236. -The superficial layer of the flat muscles of the back together with the neighboring muscles of the head, neck, abdomen, and buttock.
Upon the right side the rhomboideus major and the teres major are represented covered by fascia.
origin, can usually be distinctly recognized in the deeper layers of the muscles of the back and neck. The muscles of the aldomen and of the extremities arise secondarily from the myotomes. In man the musculature of the extremities is very strongly developed and covers the entire dorsal and part of the ventral musculature of the trunk.
[In the following pages the classification adopted for the muscles is a topographical one, an arrangement which best accords with an atlas designed as an aid for the laboratory. Such a classification, however, is in many cases faulty in that it fails to present the true morphological relations of the muscles, sometimes grouping together muscles which have entirely different morphological values, and sometimes separating in different groups muscles which in reality are closely related. At the close of each section where it seems necessary there will be found a brief morphological classification of the muscles of which it treats.-ED.]

SPECIAL MYOLOGY. THE MUSCLES OF THE TRUNK. THE MUSCLES OF THE BACK.

The muscles of the back are arranged in layers and extend throughout the neck, the back, and the lumbar region. The muscles of the individual layers may be advantageously grouped,

Fig. 237.-Transterse section of the posterior wall of the abdomen in the lumbar region (schematic).
according to their shape, in three subdivisions-the flat or surface muscles, the long muscles, and the short muscles. The flat muscles are still further subdivisible into several layers, some of
IHE MCSCLFS OF IHE B.JCK.
 catremity atmel conscuplent! are really mushe of the estremits. The boner amd -hort mustes are fertions of the actual mustuhature wi the trunh, and are stuated in the roxse tretwecth the

Whe dlat musters are alsu designaterl as supericial, the long and short as deep max hes uf the lack

THE FLAT MUSCLES OF THE BACK.

 -kileton ui the trunk.

The First Layer.

 situated at the ieftebral columen. It is that and smenth; below, and particularl! alonec, it is ber thin, and it is stuaten! in the nuchat, median toral, supratapular. capular, and inframapular regions. It tahesorigin frem the followings stuations: from the inner hati withe eaperior muthal
 ance, from the nue hal ligement by a muscular origin, sometimes by a there tenton in the uper
 more or kes tenelinons).

It is inserted into the upper surface of the deromial third of the datick. inte the intar margin of the acromion, and into the entie leneth of it upler berefe and partl! alet into the inner pertion of the lener trorter of the -pinc of the stapulat

The supherer fibers of the trapezius pate from within outward and fom above abrupthe
 almost horizontally outward; while the inferior fiters run from within outward and from betow abruptly upuatel. Temelineus areas are constantly fount at the origin of the tral cius from the occiput, in the region of the seventh cervical sertebra and wi the -pine- wi the upper thoracie vertebrex, and at its incertion inte the innerend of the -pine of the soupula; the fiterscoming from the spines of the lower thoracie vertebre are abo temdinous for a certain distance, and in the region of the spines of the upper thoracic vertebre the muske of the two sides form a broad, well-developed, traperodid aponeuresis.

At the occiput the trapezius joins the tendinous insertion of the sternocleidomastoid. Between the wo muscles, the splenius capitis and the levator scapula are always party visible, and if the upper part of the trapezius is narrow, a portion of the semispinalis capitis also appears
between it and the splenius capitis. The deltoid has its origin immediately adjacent to the insertion of the trapezius, and a small transrerse muscle occasionally passes between the insertions of the trapezius and the sternocleidomastoid; it is known as the transversus nucha (Fig. 244), and usually has a tendinous origin from the tendon of one muscle and passes to the tendon of the other.

The trapezius is supplied by the accessory nerve and by the cervical plexus.
On account of the different directions taken by the fibers in different portions of the trapezius the function of the muscle is complicated, and differs according to whether all portions of the muscle contract simultancously or individual portions contract separately. Its action also depends upon whether the scapula is fixed or movable. The upper portion of the trapezius elevates the entire shoulder girdle, the lower portion pulls the scapula downard, and the middle portion draws the scapula backward toward the vertebral column. The scapula is also drawn backward by the action of the entire muscle, since the upper and lower fasciculi neutralize each other to a certain extent and aid the middle portion of the muscle. If the shoulder-blade is fixed, the muscle turns the head; when both scapula are fixed and the two muscles act together, the head is extended. The muscle may also fix the scapula. It usually acts together with the levator scapuli, the rhomboidei, the splenii, and the other muscles of the back.

The latissimus dorsi (Figs. 236, 238, 269, and 272) is a broad, thin, triangular muscle which becomes somewhat thicker toward its insertion. The upper portion of its origin is partly concealed by the trapezius, and it is situated in the median dorsal, the sacral, the lumbar, the infrascapular, and the scapular regions. Its origin is tendinous throughout, with the exception of threc or four accessory digitations which arise from the three or four lower ribs. The tendon of origin is furnished by the posterior surface of the posterior layer of the lumbodorsal fascia (see page ${ }^{5} 56$), by means of which the muscle arises from the spinous processes of the lower five or six thoracic vertebre, from the spinous processes of the lumbar vertebre, and from the median ridge of the sacrum and the neighboring portion of the outer lip of the crest of the ilium. The superior fibers run almost horizontally; the inferior fibers ascend abruptly from within outward and from below upward, and toward the insertion the fibers converge, and terminate in a flat tendon which is adherent to that of the teres major and is inserted with it into the lesser tubercular ridge (the posterior lip of the bicipital groove) of the humerus. An almost constant bursa, the latissimus bursa, separates the non-adherent portions of the tendons of the latissimus dorsi and teres major.

The tendinous surface of the posterior layer of the lumbodorsal fascia (Figs. 238 and 240) is widest in the region of the middle and lower lumbar vertebre, and it becomes markedly narrower as it extends upward, and to a lesser degree as it passes downward. Between the upper border of the latissimus, the lower border of the trapezius, and the vertebral border of the scapula, there is a triangular space, which is larger or smaller according to the position of the scapula and in which are visible a portion of the rhomboideus major, small portions of one or more of the middle ribs with their intercostal muscles, and a segment of the iliocostalis dorsi. Upon the neighboring dorsal surface of the scapula, the dense infraspinatus fascia covers the infraspinatus muscle, and a portion of the deltoid muscle, covered by its fascia, is also visible in this situation.

The costal serrations of the latissimus dorsi interdigitate with the inferior serrations of the obliquus abdominis externus (Fig. 247). Between the outer border of the latissimus, the posterior border of the external oblique, and the crest of the ilium there is usually a small triangle,

Fig. 232. Regions of the human body.

jugular fossa
Fig. 233. Regions of the head and neck.

 scapula the scapular digitution).

[^30]
The Second Layer.

 the lationmus. which directh oserlie- the third hater.

 scapula below the rext of the -pine. The maxle i- irequenty rather imimathe coancrod wioll
 or rhomberidal in hape

 and inserts into the wertebral marein of the ecapuld atowe the root of the - witm. The pwo phome
 distinctly mendinous |ajonewrotic
 thward the vertebral culumn and womewhent up, ant.

 to the posterior margin of the salenus puterim. I: urigin i- parily coneret by the perierins portion of the sternocledumastuid.

Fig. 238.-The deeper layers of the flat muscles of the back.
On the left side the trapezius and latissimus have been cut away; on the right side the rhomboidei have also been cut and reflected and the lumbodorsal fascia has been retained only where it is in relation with the origin of the serratus posterior inferior and below.

The Third Layer.

The muscles of this layer (Figs. 238 and 239) are situated partly beneath the rhomboidei and partly directly bencath the latissimus and the trapezius. The two splenii are also covered at their origins by a muscle of the same layer, the serratus posterior superior.

The serratus posterior superior (Fig. 238) is a flat muscle, rhomboidal in shape, which is tendinous for almost half its breadth and is wholly or almost wholly covered by the rhomboidei. It arises by an aponeurosis from the spinous processes of the two lowermost cervical and of the two uppermost thoracic vertebræ, passes outward and downward, and is inserted by four flat muscular digitations into the outer side of the angles of the second to the fifth ribs.

It is supplied by the upper (first to fourth) intercostal nerves. It draws the upper ribs upward and backward and acts as a muscle of inspiration by enlarging the thorax.

The serratus posterior inferior (Fig. 238) resembles the serratus posterior superior in many respects, but it is flatter and its fibers run from within outward and from below upward. It arises from the anterior surface of the posterior layer of the lumbodorsal fascia in common with the latissimus dorsi, at the level of the two lowermost thoracic and the two uppermost lumbar vertebre; it is at first a thin and independent aponeurosis, but subsequently becomes entirely muscular, and is inserted into the lower borders of the lower four ribs by digitations which frequently vary in their development or may be wanting.

[^31]The splenius capitis (Figs. 238 and 239) is a strong, elongated, strap-shaped muscle, which arises by means of the nuchal ligament from the spinous processes of the lower four or five cervical and from the upper two or three thoracic vertebræ. It passes from within outward and from below upward, partly covered by the trapezius, the rhomboidei, and the serratus posterior superior, and its insertion is into the outer half of the uppermost nuchal line of the occipital bone extending as far as the mastoid process. The insertion is covered by the sternocleidomastoid.

The splenius cervicis (Fig. 239) is situated immediately to the outer side of the splenius capitis. It arises in immediate succession to the latter muscle from the spinous processes of the third or fourth to the fifth or sixth thoracic vertebre, and passes obliquely outward and upward as a flat but rather slender muscle, to be inserted into the posterior tubercles of the transverse processes of the upper two or three cervical vertebræ. Its insertion is intimately connected with the origin of the levator scapulx.

The two splenii are supplied from the posterior divisions of the second to the eighth cervical nerves. When the muscles of both sides act in common, they pull the head (or the neck) backward, and when the muscles of one side act alone, they turn the head (or the neck) toward the side of the contracting muscle.

THE LONG MUSCLES OF THE BACK.

 ing to the upper later, is the only muscle pating from spinots procco we spinomin froco.

The First Layer. The Spinotransversalis and Spinalis.

The musces of thin layer Fig. 230) fill the wertebral greose between the y inoth proca-ent the wertebre and the angles of the ribs, and extend were a large area of the vertetral whens. usually the entire length of the back. With the exception of a small portion which maty le dircedy
 pletely covered either by the that macke of the back or by the poterier later of the lumbar fathe

 forms a single math only in it hower portion, dividing a it pace uphard into ibo statath muscles, the evternal and weaker ilocostalis and the internal and stroner lonsi ineas dersi. Internal to the latere muste and adtherent to it is situated the spinali, ot that ihe ouprolimel laver of the bone muales of the back is arranged in three longitudinal serit- upen wher sith of the vertebral column, a strong median one, the longissimus, an wiornal une: the fllowedta, and
 mase, whose surface is strongly aponcurotic and whith arias from the torsal surface of the sacrum, from the spinous processes of the lumbar vertebrat and from the wes of the ilium and in
 and the longisimus dors pass upard directly from this mats.
 of threce sublelivisun-the ilionostalis lumbormm, dorvi, and uritio.

 long temtons, while the lower insertions are in the shape of the whe eration-, the bowermose of which is the stronges and pases to the lower boreder of the twe lith rik.

 of the angles of the twelfits to the seventh ribs, and is inserted by thin tenclone whith fase to the angles of the sixth to the first ribe and to the transuree proces of the les corvical vertebra.

The iliocostalis servis (Figs. 230, 2.40, and 2.11), aloo termed the cer. icalis ascendens, is a slender muscle the origin of which in intimately connected with the iliocostalis dorei. It comes from the upper and middle ribs in a variable manner and is inserted by narrow tendons into the transwerse processes of the middle cervical vertebre immediately alongeide of the scalenus posterior (see page 175), with the origin of which it may be adherent.

Fig. 239.-The superficial layer of the long muscles of the back.
All the flat muscles, the splenii and the iliocostalis of the left side have been removed.

The longissimus, the inner portion of the sacrospinalis, is composed of three subdivisions -the longissimus dorsi, cervicis, and capitis.

FIg. 240.-Diagram of the arrangement of the various portions of the transverso-spinalis (semispinalis, multifidus, rotatores).

The longissimus dorsi (Figs. 239 and 24I), in addition to its common origin with the iliocostalis lumborum, receives accessory origins from the transverse processes of the lower thoracic vertebræ. Its insertions are arranged in an internal and in an external series, and are partly

Fig. 239.
fleshy, gartly tendinous, and their digitation- are freguently wartatle. These th the istertal

 homologutas parts.

The longivimus uribis Fige. 230, 241, and 242', alod hown as ihe tranter ati cervirit. is the diree continuation of the longi-amus dorsi. It ari-e from the transuctel procestait the
 by tendinou- - lije inte the transerere proceses of the upper and middle corical urtubre.
 which extend- up to the head. It is stuated internal to the longi-simus cervicis, with the erigin of which it is frequently united, and ariec: by eqparate thort tendindus slipe of bariable cstens from the transerece and articular prexceses of the middle and lower cerical wertebre and frim
 in-cription, i incred by a short tendon into the po-terior margin of the maste id fraces, and is completely conceated be the splenius capitis. The iliocostalis and lonesiosme orricis and the longio-simus capiti-are -ituated bencath in front of the two -plenii.
 which the epinalis dersi alone is an independent and constant muste, the spinalis weriri= le ing inconstant and the spinalis caputis a part of the semispinalis capitis.

The spinelis dorsi Figs. 230 and $2+1$ is intinately connuted with the undindus ariginof the longisimus dorsi whith come from the syinour procese oi the lumbar wertire ant tateits origin partly from these lemy peints. It is situated alongeide of ihe $=$ ince if the the ratio octebrat and contains momerous tendinous fasciculi. It takes its origin irom the Eninoms pre eses of the upper lambar and of the lewer thoracie vertebrece and fase to the fepine of the
 the ninth or the ninth and tenth.

The spinali ureitis Fig. 241 is inconstant and, when preent, is irequently guite ruai
 swenth cervical urtebre and inserts into the spinous prectses of the cpistergheus/asist and ui the third cervical sertebrit.

 stee page 152!

The Second Layer. The Transversospinalis.

The fibers of this layer Figs. $2: 30$ to 242 , pas-ing from the transterse to the spinous proceses, represent in their arrangement a portion of the original trunk musculature which has

* This muscle has also becn lermed the iransuersciis copisis, the cemplexus mine and the irecinciomastoid.

Fig. 24 I. - The deeper layers of the long muscles of the back.
On the left side the sacrospinalis has been partly removed and the semispinalis has been cut and reflected.
Fig. 242. - The cervical portion of the deeper layers of the muscles of the back, seen from the side.
The trapezius and splenii have been removed.
undergone but slight changes. They are arranged in three layers, each of which is described as a special muscle, although they are not separated by fascir, but are distinguishable from each other chiefly br the length of their fasciculi. The semispinalis, the most superficial layer, has the longest and consequently the most slanting fibers, which bridge over from four to six spinous processes; the mullifidus, the middle layer, has fasciculi which pass over two or three vertebral spines; and the rotatorcs, forming the deepest layer, either extend over only one spinous process (rolatores longi) or pass to the next succeeding vertebra (rolatores brevi). With the exception of the semispinalis capitis, all of the fibers of the transversospinalis end at the spinous process of the axis. The semispinalis is absent in the lumbar region, and the rotatores are situated chiefly in the thoracic region.

The semispinalis (Fiys. 239, 241, and 242) consists of the semispinalis dorsi, semispinalis cervicis, and semispinalis capitis.
\rightarrow The semispinalis dors (Figs. 239 and 241) and cervicis (Fig. 241) are directly continuous without demarcation, the lowermost fibers arising from the transverse processes of the lower thoracic vertebree, and the uppernost fasciculi terminating at the spinous process of the axis. The muscle is stronger and more fleshy in the neck than it is in the back. The fibers of the semispinalis dorsi are intermingled with numerous tendinous fasciculi and are also partly connected with the spinalis dorsi. The muscle is completely covered by the longissimus dorsi and the semispinalis capitis.

The semispinalis capitis (Figs. 239, 241, and 242) is a flat but rather thick muscle and is the strongest muscle of the neck. As a rule, it consists of two portions which are separated below but adherent above at their insertion - a stronger external or semispinal portion and a weaker internal or spinal portion. The semispinal segment, sometimes termed the complexus, arises by numerous short tendinous slips from the transverse processes of the third cervical to the fifth or sixth thoracic vertebre, while the spinal segment arises from the spinous processes of the lower cervical and of the upper thoracic vertebre (the spinalis capilis). This latter portion is characterized by a tendinous inscription, and hence is sometimes termed the biventer cervicis, and sometimes, when the spinalis capilis is absent, its origin extends to the transverse processes of the second to the sixth cervical vertebre. The external portion of the muscle also usually possesses a broad tendinous inscription which is situated above the middle tendon of the biventer. Both portions of the muscle unite and pass to the nuchal surface of the occipital bone, where they insert between the superior and inferior nuchal lines.

The multifidus (Figs. 241 and 24^{2}) consists of the mullifidus lumborum, dorsi, and cervicis, but these segments cannot be clearly demarcated from each other. It commences belory at the posterior surface of the sacrum and terminates above at the spinous process of the epistropheus (axis). It is strongest in the lumbar region, where it lies directly beneath the longissimus; it is weakest in the thoracic region, where it is covered by the semispinalis dorsi; and in the cervical

 sory and mammillary procesers, in the thoratic rexion from the transterec proceas, ath it tha cervical region from the artioular procoach of the four lower arvial rertefore. The batimuli are intermixed with tendinous fibers amel generally extend over two or threc icrtebre, conderme

to form a single uninterrupted muncular layer, the deeper portion of which is distinguishable only with difticuly from the rotatore, part of whos fibere pare in the same direction (Fis. 240).

The rotatores are composed of the rotatores lonsi and brees. They are small, flat, and partly tendinous musches which lie immediately upon the vertebral arches throughout the entire spinal column, but are chielly developed in the thoracic region. The rotutoresbreces (Fig. 240) are almost horizontal and pass from the transterse process of one vertebra to the root of the spinous process of the vertebrat next abowe; the rotatores longi (Fig. 240) extend over one or sometimes
two vertebre before inserting into the roots of the spinous processes, their fibers having a course parallel to that of the multifidus.

All of the long muscles of the back are supplied by the posterior divisions of the spinal nerves (cervical, thoracic, lumbar, and sacral).

The majority of the long muscles of the back have the same functions. If the muscles of the two sides act together, they hold the trunk upright, extend the vertebral column and the head, and bend the head and vertebral column backward. During unilateral action they bend or rotate the vertebral column toward the contracting side. The strongest action upon the head is exerted by the two semispinales capitis; when they act together, they pull the head backward, but when they act singly they rotate the head so that the face is drawn toward the opposite side, and consequently in the opposite direction to that in which it is turned by the splenius capitis.

THE SHORT MUSCLES OF THE BACK.

The short muscles of the back are divided into two groups: those which are found throughout the entire flexible vertebral column and those which are situated between the axis and the

Fig. 244.-Diagram of the lumbar interspinales and intertransversarii.
atlas. The first group is composed of two further subdivisions: the interspinales, between the spinous processes of the vertebre; and the interiransversarii, between the transverse processes. The second group is also designated as the short muscles of the neck.

The interspinales (Figs. 241, 243, and 244) are small muscles which are well developed only in the cervical region and may be entirely wanting throughout the thoracic vertebral column. They are connected with the interspinous ligaments and pass from the spinous process of one
 they form paired structures. Like the majority of the masle of the bach, the: do set wits beyond the spinous proces of the epistrophe batio.

 developed both in the corvial and in the lumbar rerteloral whmen. They may be entirely abeat from the thoracic column.

In the cervical region intereramsersurii anteriores and poleriore Fis. 243 . wis hath
 Both muscles are alxut equally developed; the anterior ones are situated in the atherier cervical rather than in the nuchal region.

The intertran-serearii of the lumbar region are compoeed of the wider and semoner inder transiterserii laterales, running between the transweree proceses, and the narromer and weaker intertansersarii medieles, which extend between the accesoory and mammillary proceas Fig. 24.

A rebards their fustion and inneration, the interymake and the intertanuversarii resentle the lone mand of the bank.

THE SHORT MUSCLES OF THE NECK.

The short muale of the neek Figes. $2+1$ and 250 are the rectus capitis posterior madar. the rectus cepitis poverior minur, the rectus capitis lateralis, the chiqua capitis superior, wh the whiquas capilis injerior.

The rectus capitis posterior major Fis. 2ft) arive by a hort tendon irom the spinots process of the anis, run- upward and outward, becoming much broader, and insert- into the midalle pertion of the inferior nuchal line of the wecipital bone.

The rectus capitis posterior minor Fig. 2.11 is con-illerably waker than the majer. It is a small trimendar munde which arice by a short tendon irom the peoterior tubercle of the athe to the inner vide wi and partly beneath the rectu- major. It runs w the inner third of the inferior nue hal line of the oxcipital bence.

 versarius.

The obliquus capitis superior ligy. 241 aloo arise from the wansure preces of the
 ous insertion partly cowers the rectus capitis pusterior major.

The obliquus capitis inferior 1 Fig. $2 \not 11$ is a rather serone and theny musle which runs from the spineus proces of the epistrophere favist to the tran-rerec proces of the atlas. It is thick in the midde and become: narrower wward its origin and insertion.

The short muscles of the neek are suppliat he the pesteriar disision of the first cervical nerve subercipital nerve).
The function of the short muscle of the neck fracti ally wn-inte if a putation or ce:cnaion of the head. dependent upon whether they act upon one or toth sides. The rectus rinur an onfe vtend the head nodding movemert; the rectus lateralis inclines the head to one site: the obliquus inierins and the rectus majer t tuic the head in the same direction and are opposed by the ubliguus superier.

Fig. 245.-Superficial and second layers of the abdominal and pectoral muscles seen from in front. On the right side the pectoralis major and the obliquus abdominis externus have been removed.

Between the rectus capitis posterior major and the obliquus capitis superior and inferior is situated a small triangle (the suboccipital triangle) in which is exposed the posterior arch of the atlas, crossed by the vertebral artery.

THE FASCI压 OF THE BACK.

In the dorsal region there are but two fasciæ worthy of note, the lumbodorsal fascia and the muchal fascia. The upper layer of the flat muscles of the back is covered only by the general superficial fascia.

The lumbodorsal fascia (Figs. 236 to 238) is composed of two layers, the strong posterior layer, which is superficially situated in the back and forms the aponeurosis of the latissimus and the serratus posterior inferior, and the anterior or deep layer, which is developed only in the lumbar region, where the long muscles of the back are included between the two layers.

The posterior layer (Figs. 236 and 238) covers the sacrospinalis from behind and extends above the uppermost portion of the latissimus to the inferior margin of the aponeurosis of the serratus posterior superior. Although the fascia becomes considerably thinner after it ceases to be the aponeurosis of the latissimus, it usually still contains distinct tendinous slips. In the thoracic region the posterior layer is attached laterally to the angles of the ribs, and is covered by the trapezius and by the rhomboidei.

The anterior layer (Fig. 237) runs from the inner lip of the crest of the ilium to the twelfth rib, and is attached internally to the transverse processes of the lumbar vertebræ. Its upper margin forms a firmer tendinous band which passes from the transverse process of the first lumbar vertebra to the twelfth rib and is known as the lumbocostal (external arcuate) ligament (Fig. 25I). The anterior layer is situated between the sacrospinalis and the quadratus lumborum, and at the outer margin of the sacrospinalis the two layers unite and give origin to several of the abdominal muscles.

The thin nuchal fascia is situated beneath the trapezius and also partly beneath the rhomboidei. It is continuous below with the upper portion of the lumbodorsal fascia and externally with the fascia of the neck, and the fasciæ of the two sides are connected in the median line with the nuchal ligament.
[The trunk musculature is derived from the trunk myotomes of the embryo and is clearly divisible into two portions: (1) the dorsal trunk musculature, derived from the dorsal portions of the myotomes and supplied by the dorsal (posterior) branches of the spinal nerves; and (2) the ventral trunk musculature, developed from the ventral portions of the trunk myotomes and supplied by the ventral branches of the spinal nerves.

When considered from this standpoint, the muscles of the back as arranged above clearly form a somewhat heterogeneous group. The flat muscles are for the most part supplied by ventral branches of the spinal nerves or, in the case of the trapezius, by a cranial nerve, a fact which at once distinguishes them from the long and short muscles together with the splenii, which form the true dorsal musculature. The majority of the flat muscles are in reality muscles of the upper limb and the trapezius is primarily part of the cranial musculature; they will be considered later in connection with the other muscles of their groups.

So far as the true dorsal musculature is concerned, comparative anatomy has shown that it is composed of two parallel groups of muscles, a lateral one, which consists of muscles primarily passing from the transverse processes to the ribs, and hence is termed the transiersocostal group, and a more median one, whose muscles pass from the transverse to the

Fig. 245.
 follow:

 and whinula catita interar-1.]

THE ABDOMINAL MUSCLES.

The abdominal muscles Fine. 2f the 2Fof form the anterior, the hateral, afd a parion of
 of the phis. The? are -ubdivided into the anterior ableminal, of which thre are that mocke and one a strabgt musle, and the peoterion abdominal, the quadratus lumborum.

THE ANTERIOR ABDONINAL MUSCLES.

THE FLAT ABIOMINAL MUSCLES.

 whdeminis internus, and the transtersus ubdeminis: they are arranged in three hatere and form the lateral and a pertion of the anterior abakminal wall. . According the the dion of
 costales, the obligun inturnus, in particular, being direty continuons with the lower interental museles.

The obliquus abdominis externus Figs. 24510 2-f 1 is a browl that musche which is dponew rotic anteriorly and markedly so in its amterior incerior fertion. It is cisoated in the hatent pectoral, the heper hondriac, the ephetstric, the mesogatric lateral atotominal and umbilial. and the heprestric inguinal and pubic) regions.
 -serations intereligitating with the lower ones of the serratus anterior, the lewer three with the-e of the latisumes dorsi. The majority of the fibere of the musce, like thone of the interestak
 somewhat horizontally, whike the inderior ones appoteh a werical diretions.
 lip of the crest of the ilium, wtending anteriorly the anterior apperior -pine and poricriorly almost to the outer margin of the latisimus dor-i. Fhe remander of the insertion is apencurotic and pases to the inguinal Pouparts ligament. The greater portion wi which is formed by the
 rectus. by means of which it is continued w the linea alba. Anow the entire anterior alstominal
 commence quite at the -ite.

The obliguts abdominis externus is in relation -uperiorly with the abstominal portion of the pectoralis major, externally with the serratus anterior, pertero evternally with the latissimus dorsi, with which it forms the humber Petit's) triangle sce page Iti) and infuriorly with the

Fig. 247.-The superficial layer of the abdominal muscles and the serratus anterior seen from the left side.
The pectoralis major and minor and the inner portion of the clavicle have been removed and the arm has been drawn backward.
iliac crest opposite to the glutæus medius. In the region of the symphysis pubis the tendinous fibers of the aponeurosis form an opening by bridging over the space between the pubic spine (the insertion of the inguinal ligament) and the upper margin of the symphysis. In this manner

Fig. $2 \not+6$.-Diagram of the subcutaneous inguinal ring. On the right only a portion of the aponeurosis of the obliquus abdominis is represented.
there is formed a triangle, the outer angle of which is directed upward and outward, and which constitutes the subcutancous inguinal (external abdominal) ring (Figs. 245 and 246). The margins of the ring are formed by the aponeurosis of the obliquus abdominis externus, and are known as the superior crus or pillar and the inferior crus or pillar of the ring.

The upper and outer angle of this triangular slit in the aponeurosis of the external oblique muscle is rounded off by fibers which arise from the region of the inguinal ligament and are

Fig. 247.

 |sf: r.ar|tar
 mati

 $\mathrm{ha} . \quad \mathrm{t}=\mathrm{mmon}$

 uterus in the fomale.

Fig. 250. - The deeper layers of the abdominal muscles.
On the left side the anterior layer of the sheath of the rectus abdominis and the obliquus abdominis externus have been removed; on the right side, in addition, the rectus abdominis, the pyramidalis, and the obliquus abdominis internus. The external intercostal ligaments have been removed on the left side.

The obliquus abdominis internus (Figs. 245,248 to 250), like the externus, is a decidedly flat muscle. With the exception of the small area in the lumbar triangle it is completely covered by the obliquus externus. It arises from almost the entire length of the middle lip of the crest of the ilium, extending anteriorly as far as the anterior superior spine, from the junction of the two layers of the lumbodorsal fascia (see page 156), and from the outer two-thirds of the inguinal ligament. The direction of the fibers of the upper portion of the muscle is similar to that of the intercostales interni (from without inward and from below upward); the middle fibers are less oblique, and the lower ones are horizontal, those of the lower third even passing slightly from without inward and from above downward, like those of the obliquus externus.

The posterior fibers coming from the lumbar fascia have fleshy insertions into the lower borders of the three lower ribs. The long fibers coming from the iliac crest, as well as the horizontal and descending fasciculi from the inguinal ligament, pass into the sheath of the rectus, the two layers of which are formed by the aponeurosis of the obliquus internus (Fig. 248).

The muscular portion of the obliquus internus is broader than that of the externus and consequently approaches much more closely to the sheath of the rectus in the anterior abdominal wall, especially in its lower portion (Fig. 249). A variable number of the inferior fibers of the obliquus internus accompany the spermatic cord, as the cremaster (Figs. 245 and 250), as far as the testicle, and consequently pass through the external abdominal ring as flat isolated fasciculi, and in the female a few fibers of the muscle are similarly continued upon the round ligament of the uterus.

The transversus abdominis (Figs. 248 to 250) is a flat, rather thin, and largely aponeurotic muscle which is completely covered by the obliquus internus. It arises by flat muscular serrations from the inner surface of the six lower ribs and from the cartilages of the seventh to the tenth, interdigitating with the serrations of origin of the diaphragm (see page 164). It also arises by an aponeurosis from the entire length of the junction of the two layers of the lumbodorsal fascia, from the internal lip of the crest of the ilium, and from the outer third of the inguinal ligament. The fibers pass almost transversely and are attached to the aponeurotic insertion in a curved line, the semilunar line (line of Spigelius) (Fig. 250), in such a manner that the uppermost fibers coming from the ribs almost approach each other in the median line, the middle ones become aponeurotic at quite a distance from this location, and the inferior fasciculi remain muscular for a somewhat greater distance. The upper two-thirds of the aponcurosis of the transversus, together with that of the internus, form the posterior layer of the sheath of the rectus (Fig. 2 48); the lower third together with the aponeuroses of the obliquus internus and externus, forms the anterior layer of the sheath (Fig. 249).

Foternal interiosial legt

Fig 250.

THE STRAIGHT ALDOMI:SAL MUSCLE, RECTUS AEIOMH:U

 front of the pubse whentis.

 thickness. 'The number baries between three and four. The uppermat ofe lie inmodiady
 the inner half of the musle: the third is -ituated at the lewe of the umbiliede or whenthat alote it; and the seond is abrut midwaly between the firet and the thiral. I foutra interetrion in

 layer of it -heath.

 250, and below this line. the muscle is in immediate relation jon-iciorly with the traboberalifarcial ree page (いる).

The lever of the the wh are formed from the that alxtominal muche Fig. 24- ard 240 in
 thirds of the theath, one wi which form- the anterior leser and the wher the poweror: in the lower

 laver.

It the inner margin of the recta the thon laver of the theash ptite with eath ather and with

 midalis Fig. 250). This is a triamgular mumb ariving breadly irm the undon of insertion of the rectus abdominis and pasing obliquely imard to tre inserted inso the lower portion of the linea_alba.

The rectus and pyramidalis, like the other muscles of the anterior abdominal wall, are innervated by branches of the lower intercostal nerves; the flat abdominal muscles also reccive branches from the iliohypogastric and the ilioinguinal nerves from the lumbar plexus. The cremaster muscle is supplied by the external spermatic nerve (the genital branch of the genitocrural nerve).

When all the anterior abdominal muscles act together their function is to diminish the size of the abdominal cavity and to compress the abdominal contents, the increased intra-abdominal tension aiding in the evacuation of the contents of the intestines, of the uterus, and possibly also of the urinary bladder. With the exception of the transversus abdominis, these muscles also draw the thorax downward, the rectus directly downward, and the obliqui, when acting separately, toward the side of the contracting muscle. When the thorax is fixed, the anterior abdominal muscles and particularly the rectus, raise the pelvis.

THE POSTERIOR ABDOMINAL MUSCLE.

The quadratus lumborum (Figs. 25I and 254) is a flattened, rather thick, and approximately quadrilateral muscle which forms a portion of the posterior abdominal wall. It extends

FIG. 25 I. - The quadratus lumborum seen from the side and somewhat from behind (diagrammatic).
between the crest of the ilium and the twelfth rib, and consists of two incompletely separated layers, a posterior and an anterior. The posterior portion (Fig. 25I) arises by aponeurotic fibers from

 the inner hati wi the last rib).

THE ABDOMINAL FASCIE.

 ligament and is hown ato dhe minita'um line ahat
 roses and fasciee of the abdomen. If evemels as a stome tendinots band from the anterior superior spine of the ilium to the spine of the pubs. some of it tilers radiatine at its insertion to the inner extremity of the crest of the pubie and forming an almost horizontal triangular

Fig. 252. - The diaphragm and the muscles of the posterior abdominal wall.
The anterior abdominal wall and the abdominal visccra have been removed; the thorax has been bent backward so that the lumbar vertebræ are strongly convex forward.
ligament, the lacunar ligament (Gimbernat's ligament) (Figs. 212 and 213), which is also connected with radiating fibers of the fascia of the thigh (see page 231). The reflected inguinal ligament (triangular ligament) (Fig. 245) is also formed by radiating fibers from the inguinal ligament, which pass to the posterior surface of the anterior layer of the sheath of the rectus (see page ${ }^{\text {5 }} 59$). The inguinal ligament gives origin not only to the flat abdominal muscles, but it also furnishes attachment to the fasciæ of the abdomen and thigh (see page 231), and the deeper layers of the integument are also adherent to it.
[The ventral portions of the trunk myotomes during their development undergo a considerable amount of differentiation, forming a number of muscle groups. From each myotome a portion is cut off which comes to lie ventral to the vertebræ or ribs, forming what is termed the hyposkeletal group of muscles. Similarly the ventral edges of the myotomes are scparated to form band-like muscles, whose fibers are directed longitudinally and which are situated immediately adjacent to the mid-ventral line. These constitute what is termed the rectus group. And, finally, the intervening portions of the myotomes divide tangentially into three layers, whose fibers assume an oblique or transverse direction and which constitute what is known as the oblique group of muscles.

The abdominal muscles are referable to these groups as follows:
Hyposkeletal: Psoas major and psoas minor (see p. 210).
Rectus: Rectus abdominis and pyramidalis.
Oblique: Obliquus abdominis externus, obliquus abdominis internus, transversus abdominis, and quadralus lumborum.

It is also probable that the intertransversarii laterales of the lumbar region are properly referable to the oblique group.-Ed.]

THE DIAPHRAGM.

The diaphragm (Fig. 252) is a single independent muscle, which, from a topographical standpoint, is best considered with the abdominal muscles. Its shape differs from that of all the other skeletal muscles, in that it is a thin and markedly dome-shaped muscle, which is stretched across the inferior aperture of the thorax in such a way that it is convex toward the thorax and concare toward the abdomen. It consists of a central tendinous portion, the central tendon, and of a peripherial muscular portion.

The muscular fasciculi of the diaphragm are subdivided according to their origin into three parts, which are designated the sternal portion, the costal portion, and the lumbar portion, and of these the lumbar portion is the strongest and the sternal portion by far the weakest. The fibers of all three portions are inserted into the margins of the central tendon.

The sternal portion (Figs. 252 and 253) arises from the posterior surface of the xiphoid process and consists of but a few slender fasciculi.

The costal portion (Figs. 252 and 253) arises by broad fleshy serrations from the inner surface of the six lower costal cartilages and from the eleventh and twelfth ribs, being also attached to the lumbocostal ligament in this situation, interdigitating with the transversus abdominis and with the transversus thoracis, following the curvature of the dome of the diaphragm and passing to the central tendon. The fibers of this portion, although weaker than those of the lumbar portion,

Fig. 252.
cover a much larger area and form the main portion of the dome of the dateraram. Be... ats
 tissue.

 remain tendinous. 'They may arioe at difierent levels on the thon sites, at when the is whe
 at the level of the welth thorace vertebrat or at that of the deverath interverte bral fhemartitaed

 to the aorta and is consexpenty de- ignated the dertie opening lFis. 252.
'The fibers of the entire lumbar pertion, and eape jally thowe of the inner ertrat. fhe at irve almost vertically upward in front of the lumbar column, but juet beine the ir in-crtion ita the central tendon they follow the cursature of the diaphragm, and in this eftation they end bee a second opening in the diaphragm, which is chliptial, the long axi, being werically phete. The margins of the foramen are purely muscular and, at it gite pasage to the copphay known as the esophageal opening. In its bormation there usually vecurs a dechadtion of the fibers of the two inner crura.

The middle crure are considerably weaker and mene sender than the inner ofle. The arise by short tendens from the lateral surfaces wi the bexty of the eeomel hambar werthatand are at first separated fom the inner crura he narrow site, but before the ir incerion into the ecniral

 the same bonce, crusing over the patas major, while the akerwal lumbeastat arth (estermal arcuati ligament extend from the transeree proce of the tire lumbar we brato the the lith rib and bridge over the gatelratus lumberum. 'The - tenter fiber of the late rat lumbar peraion
 process and lateral margin of the body of the lirst lumbar werthra. (anly a fell fers ariae from
 between the lumbar and the costal prortions of the diaphragm. The fasticuli of the outer crura are conselerably shorter than thone of the imer and middle ones.

The contral tendon (Fig. 252) is a hbrous layer which may le either reniform or shaped like a clover-leaf *and is faciouli undergomanifold decus-ations. The convex surface of the central tendon is situated anteriorly; the mere marked conenty is placed prostriorly. In it there may be recognized a middle almost plane or but slighty curned portion. which is situated between the

[^32]two domes of the diaphragm, and two leaflets which are directed posteriorly. The left leaflet is the smaller and forms the left dome of the diaphragm; the right is larger and forms the right dome. At the base of the right leaflet near its posterior margin is situated a large irregular rounded opening, completely within the central tendon, which gives passage to the inferior vena cava and is designated the opening for the vena cava (quadrilateral foramen).

The curvature of the diaphragm is not uniform, but there is a middle lower portion and two lateral domes which project markedly toward the thoracic cavity. The right dome is more capacious and extends to a higher level than the left; its highest point corresponds to the fourth, that of the left to the fifth intercostal space. Posteriorly the diaphragm (the lumbar portion) extends much lower than it does anteriorly. Its transverse is considerably larger than its sagittal diameter.

The diaphragm possesses a series of foramina and spaces which give passage to vessels or nerves. These are: (I) The aortic opening, which is only partly formed by the diaphragm; (2) the esophageal opening, purely muscular and formed entirely by the diaphragm; (3) the opening for the vena cava, situated entircly within the tendinous portion of the muscle; and (4) the slit-like spaces between the inner and middle crura and between the middle and external crura. The latter spaces give passage to the vena azygos, to the vena hemiazygos, and to the sympathetic and the splanchnic nerves, which are arranged in a variable manner. In addition to the aorta, the aortic opening also transmits the thoracic duct.

The motor nerve of the diaphragm is the phrenic nerve from the cervical plexus.
The diaphragm is the chief muscle of respiration. By the contraction of its fibers the domes of the diaphragm are drawn downward and the costal portions are drawn away from contact with the thoracic wall, so that the thoracic cavity is increased in size and the abdominal cavity is diminished.
[The diaphragm, from the developmental standpoint, belongs to the cervical musculature, the muscular tissue which it contains being derived from the fourth (and to a certain extent from the third and fifth) cervical myotomes; the entire structure lying at one period of the development in the cervical region and later migrating downward to its final position between the thorax and abdomen. Hence it is that it is supplied by the phrenic nerve, which arises from the fourth (third to fifth) cervical nerve, and elongates in proportion as the diaphragm recedes toward its final position.-ED.]

THE THORACIC MUSCLES.

The muscles of the thorax (Figs. 245, 247, 253, and 254) are composed of two main groups: (1) Those which arise from the thoracic skeleton and insert into the skeleton of the upper extremity; these are, consequently, really muscles of the extremity; and (2) the actual muscles of the thoracic wall, which are known as the intercostales.

The first group is arranged in three layers which are not exactly superimposed. The first layer is formed by the pectoralis major, the second by the pectoralis minor and the subclavius, and the third by the serratus anterior.

THE THORACIC MUSCLES OF THE UPPER EXTREMITY.

The First Layer. The Pectoralis Major.

The pectoralis major (Fig. 245) is a large, flat, thick muscle which is situated in the sternal, infraclavicular, mammary, axillary, and inframammary regions, its outer border forming the
 is bery extensive and it insertion anie limitel.

 aponeurosis irem the wherior layer of the theath wi the rectus atolumisis.

 portion pursue their original cotare, the greater number ai the ither- of the -xarnobuat and

 outer fertion of the muxle.

 muale uber- the maybe of I ans:r .

 the upper contex margin di the pectorali major, a con-aberable - we frevent the muale.

 margin the pectoralis major is continous- with the aponcuras of the abdeminal muche the

 delteid ugon one side and the short head of the bitps and the wrachl fallialle won the other: in this situation it is separated from the howimu- by the intertubereblar bitipitall grex)

 of the latter muscle.

The Second Layer. The Pectoralis Minor and the Subclavius.

The pectoralis minor (Fig. 245) is a flat triangular muscle which is completely concealed by the pectoralis major and, at its insertion, also by the deltoid. It arises by thin tendinous slips, frequently indistinctly separated, from the costochondral articulations of the second or third to the fifth ribs; it passes upward and outward and becomes markedly narrower toward its short tendinous insertion into the tip of the coracoid process.

It covers the upper portion of the serratus anterior and bridges over the axillary vessels and the brachial plexus.

[^33]The subclavius (Figs. 245 and 269) is a small, elongated, somewhat flattened muscle which arises by a tendon from the first costal cartilage alongside of the costoclavicular ligament, and is inserted into the under surface of the acromial end of the clavicle between the two portions of the coracoclavicular ligament (see page 120). In this situation there is usually a shallow groove in the bone.

The nerve supplying the muscle is the subclavian from the brachial plexus.
The muscle, by its contraction, fixes the clavicle in the sternoclavicular joint, and when the shoulder girdle is fixed the muscle elevates the first rib.

The Third Layer. The Serratus Anterior.

The serratus anterior (serratus magnus) (Figs. 247, 250) is covered in its upper portion by both pectoral muscles; its lower portion is situated in the lateral pectoral region and, immediately below the pectoralis major, is covered only by the integument and fascia, the most inferior portion of the muscle, however, being placed beneath the anterior margin of the latissimus.

The muscle is flat throughout, irregularly quadrilateral in shape, and its middle portion is very thin; it forms a muscular plate which is adapted to the curved surface of the thorax. It arises from the first to the ninth ribs by means of individual serrations, the lower five of which are distinctly separated and interdigitate with the serrations of the origin of the obliquus externus abdominis. In the broad muscle sheet formed by the union of the serrations, three portions, distinctly differentiated by the direction of their fibers, may be recognized. The fibers of the upper and lower portions converge toward the insertion of the muscle, while those of the middle segment pass in the same direction but in a diverging manner. The upper converging portion (Fig. 258) arises as a rather strong muscular mass from the first and second ribs and from an intervening tendinous arch; it inserts into the superior angle of the scapula; the middle diverging portion is by far the thinnest and weakest part of the muscle and it arises from the second* and third ribs and diverges markedly to be inserted into the entire length of the vertebral border of the scapula; and the lower converging portion, which is the strongest part of the entire muscle, arises from the fifth to the ninth ribs and passes to the inferior angle of the scapula. The fibers of the lower portion are the longest and those of the upper portion are the shortest. The

[^34] sumetimes aponeuretic.

 lowe connective tisule. 'Thenghout its couree it forms the inmer wall uf the asille.

THE MUSCLES OF THE THORACIC WALLS.

The muscle of the thorac ic walls are the intercostoles, the lewtures ontarme the satem bates. and the transecrans thoracis.

The intercostales IFigs. 2.fi, 250, 253, and 25. occupy the cheven interen-tal =phecs ar 1 are (omponed of two layers, an external, the intercostates coterni, and an internal. the imternatedel interni. The intereostales externi lior. 2\&1, 27, 250, and 25.4 phe from above dow:lwarl and from witheut inward between the border of adjacent ribs; they are hort the mashe which fre quently contain numeroustendinou- fiber. They commence peosteriorty in the resion dithe on-al tubercles and cateml anteriorly as far as the co-tochondral artioulations. laviote the spate between the cotal cartilages free. In thee space are found endin as ship which rutn in the same direction as the filsers of the interco-tale e ceterni and (stend th the maresin of the stermum: they are called the avermal interosbal ligaments ligamenta cornsantial.
 Wart between the leoreters of adjacent rib, and they ariae from the bwer Lereter oi the uiper rib) of cath intereontal space in such a mamer that the costal gropse is sthated between the two muscular layers. They cross the intereostales caterni at right aneles athe are covered by them cecept in the space between the contal cartilages. They eatend anteriorly the sermum ar to the anterior extremitics of the cartilages wi the false ribs and end perterierly at the eostal angles. In the region of the costal cartilages they lie behind the evernal interobetal ligaments and those portions of them occurring in these situations are aloo termed the interartikasint. Between the posterior extremities of the ribs they are replued b! wedineas structures whirh are called the internal interostal ligaments.

The inferostukes externi are concred almest throughous the ir ensire estent by the thoracic, abdominal, and dorsal musetes pectoralis major and minor. ecrank antrior, obliquus abxomini= externus, hatissimus, serati posteriores, rhombobled, with the weeption of a small area between the traperius and the latissmus (Fig. 23).

The levatores costarum Fig. zti, from the cours of their filers, belong to the external intercostal muscles. They are situated in the dorsal thoracio region immediaty beride the deeper layers of the long muscles of the back, are covered by the sacrospinalis particularly by the

Fig. 253.-The sternum, sternal ends of the clavicles and the ribs, with the intercostales, and the transversus thoracis, seen from behind.
F1G. 254.-The fifth to the twelfth thoracic vertebre and the vertebral extremities of the corresponding ribs, with the intercostales and subcostales, seen from in front.
On the left side the intercostal ligaments have been removed.
iliocostalis), and are divided into the levatores costarum breves and longi. The levatores costarum breies (Fig. 243) arise from the transverse processes of the seventh cervical to the eleventh thoracic vertebre and insert into the rib next below between the tubercle and the angle. The levatores costarum longi (Fig. 243) are found chiefly on the lower ribs and are distinguished from the breves in that they pass over one rib and insert into the second below near its costal angle. The levatores costarum become markedly broader toward their insertion and usually possess aponeuroses.

The subcostales (Fig. 254) are flat muscles which are not always present and vary greatly in their development. From the direction of their fibers they are to be grouped with the internal intercostal muscles, with the posterior portion of which they are continuous. They are found chiefly in the lower thoracic region and bridge over one or two ribs. They are usually partly tendinous both at their origin and at their insertion.

The transversus thoracis (triangularis sterni) (Fig. 253) is a very thin flat muscle, the greater portion of which is tendinous, which arises by a broad aponeurosis from the posterior surfaces of the body and xiphoid process of the sternum and inserts by short broad tendinous slips into the inner surfaces of the cartilages of the second or third to the sixth ribs. The muscle is constant but very variable in its development.

All the muscles of the intercostal series are supplied by the intercostal nerves which pass, together with the rasa intercostalia, between the internal and the external intercostal muscles.

The intercostal muscles are important muscles of respiration. The great majority of them are muscles of inspiration, but the transversus thoracis and the subcostales probably play some part in expiration.

THE PECTORAL FASCIA.

The pectoral fascia lies upon the pectoralis major and the lower portion of the serratus anterior. The coracoclavicular fascia (costocoracoid membrane) is a much more pronounced layer which is situated beneath the pectoralis major and upon the pectoralis minor, covering the subclavius and the axillary ressels. It is particularly firm where it lies upon the subclavius and inserts into the lower surface of the clavicle. Internally it is inserted into the upper costal cartilages; externally it is continuous with the axillary fascia.
[As was the case in the dorsal region, all the muscles referred to the thoracic region in the above description do not strictly belong to the thoracic musculature, but belong in part to the musculature of the upper extremity. This is true with regard to the muscles of the first three layers, only those described as the muscles of the thoracic walls being trunk muscles.

These may be classified similarly to the abdominal muscles, but owing to the presence of a sternum in the thoracic region and to the lessened mobility of the thoracic portion of the spinal column due to the presence of fully developed ribs, no representatives of either the rectus or hyposkeletal groups occur in this region. The classification is consequently as follows:
Radiate ligament, Anterive ismoludimal limancht

H: helent: wamitr;

THE MUSCLES OF THE NECK.

 group, the scaleni, and of an inner ereup, the prevertebral much -

 region- and toward the chin the margin of the two mueleconverec and met each other in the mental region, irepuent! interlating.

Some withe filare of the phatwan are attached to the lower bereler wi the manditde. while the reat pass oner the mandible and apmear upen the f.ace, gradually diapmaring partly umon the parotideromateteric facia, and partle intermineline with the riwrime and eriangulario by which they reath the angle of the mouth.

[^35]The sternocleidomastoideus Figs. $235,255,250$, 260 , and 202 is a -irong. hroad. and
 strong, thick, tendinous, ternal head from the anterior surfoe wi the manabrium, and a short. undinous, elaicular head irom the sternal and wi the daricke.

The sternal head pason wer the sternoclasitular articulation and form- a mu-ctalar inter

 partly conceals the clas iewher portion.

The sternocledemastoid is inserted into the outer -urface of the masiokd proces of the temporal bone and inte the outer half of the superior nuchal line, the anterier pertion of the insertion being effected by a short. the posterior pertion ly a lone tenden.

The musde passes obliquely through the neck from below upward and irom within outward. At its insertion it borders upon the erapezius (see page ras), with the anterior margin of which

Fig. 255.-Superficial layer of the muscles of the neck, seen from in front.
On the right side the sternohyoid, anterior belly of the digastric, and the submaxillary gland have been removed.
Fig. 256.-Superficial layer of the muscles of the neck, seen from the left side.

* = External carotid artery.
it forms a triangle in which are situated the splenius capitis, the levator scapulæ, the scaleni, and the inferior belly of the omohyoid. The anterior margin of the muscle borders upon the infrahyoid muscles, bounds the carotid fossa (a dcep muscular interspace containing the large vessels of the neck, $i . e$., the common carotid artery and the internal jugular vein, and the vagus nerve), and crosses over and conceals the posterior belly of the digastric and stylohyoid. The upper part of its anterior margin is also in relation with the parotid gland.

The sternocleidomastoid together with the trapezius is supplied by the accessory nerve.
When both sternocleidomastoids act together, they draw the head downward and forward; when one muscle acts alone, it turns the head obliquely so that the face looks upward and toward the opposite side.

THE HYOID MUSCLES.

The Infrahyoid Muscles.

The infrahyoid muscles (Figs. 255, 256, and 258) are situated between the hyoid bone and the upper margin of the thorax, chiefly in the anterior cervical region, and represent a continuation of the rectus abdominis into the neck, being the remains of an originally single muscular layer which is interrupted in the thoracic region. Some of these muscles, like the rectus, have retained indications of their original segmental tendinous intersections. The group includes the sternohyoideus, the sternothyreoideus, the thyreohyoideus, and the omohyoideus.

The sternohyoideus (Figs. 253, 255, 256, and 258) is a flat, long, and rather narrow muscle which is situated in the suprasternal, thyroid, laryngeal, subhyoid, and hyoid regions. It arises (Fig. 254) from the internal surface of the first costal cartilage and from the posterior surface of the manubrium and the capsule of the sternoclavicular articulation, and is covered at its origin by the sternal end of the clavicle and the sternal origin of the sternocleidomastoid. It passes upward at a slight distance from the median line, becoming somewhat narrower, and is inserted into the body of the hyoid bone. It not infrequently exhibits a feebly developed tendinous inscription.

The sternothyreoideus (Figs. 253, 255, 256, and 258) is broader than the sternohyoid. Its origin is similar but more deeply placed (Fig. 254), sometimes extending downward as far as the second costal cartilage. The lower portion of the muscle is covered not only by the manubrium and the sternocleidomastoid, but also by the sternohyoid, although its outer and inner margins project beyond the latter muscle, and its middle and particularly its upper portion are also situated beneath the upper belly of the omohyoideus. It forms a broad flat muscle which covers the thyreoid gland, passes directly upward, so that only a narrow space is left in the median line between the two muscles of opposite sides, and is inserted into the oblique line of the thyreoid cartilage. (For additional details see "Splanchnology.") In the space between the two muscles is situated a portion of the larynx, the thyreoid gland, and the trachea.

 posed of two distinctly separated bedlies. The inforier lully arion from t? e upper berder of the

scapula between the inner angle and the noteh, sometime beine alow att e hed th the trancterse ligament. It is at firs conced be the traperius and the clavele atid then beremes supericial in
 Beneath the latter it forms at that intermuliate lendon whith is wherent othe corical iatcia and to the sheath of the great wol- of the netk. 'The superir belly commence at the intermediate tendon, appears at the anterior margin of the - dernocledwha-twid, partly conceated by the sternothyreoid and thyrohyobl, and in incerted immedine ly ahoside of the ternohyoid into the lower border of the lateral portion of the hyend beve in irent of the the reohyeit.
 thyreohyoid receives a special hranch from the same nerics, wh haue ritantes the hy!eglossa!.

Fic. 25S. - Deep layer of the muscles of the neck, seen from the left side.
The anterior belly of the digastric, the mylohyoid, the sternocleidomastoid, and the sternal end of the clavicle have leen removed.

Fig. 259.-The deep muscles of the neck, seen from in front.
On the right side the longus capitis has been drawn outward.

The infrahyoid muscles depress the hyoid bone, the sternothyreoid draws down the larynx, and the thyreohyoid approximates the hyoid bune to the laryn. They also act as accessory muscles of deglutition, and, by its attachment to the sheath of the great vessels, the omohyoid facilitates the return of blood through the internal jugular vein.

The Suprahyoid Muscles.

The suprahyoid muscles (Figs. 255 to 25 S) lie between the hyoid bone and the mandible. They are the digastricus, the stylohyoideus, the mylohyoideus, and the geniohyoideus.

The digastricus (bizenter mandibula) (Figs. 255, 256, and 25S) is a trpical two-bellied muscle with a distinct cylindrical intermediate tendon which is attached to the hyoid bone. The two bellies form an obtuse angle, open above, in which is situated the submaxillary salivary gland. The anterior belly is a fairly thick muscle which passes from the intermediate tendon, frequently. receiving a few tendinous fibers directly from the hyoid bone, to the digastric fossa of the mandible, where it is inserted by a short tendon. The posterior belly is longer but somewhat weaker than the anterior one. It arises from the mastoid notch of the temporal bone and passes with the stylohyoideus to the hyoid region, where it becomes continuous with the intermediate tendon.

The anterior belly of the digastric lies in the submental and mental regions, between the skin and the mytohyoid; the posterior belly is completely concealed at its origin by the sternocleidomastoid, and further anteriorly it separates the submaxillary region from the carotid fossa.

Abstract

When the hyoid bone is fixed, the anterior belly depresses the lower jaw and opens the mouth; the posterior belly draws tne hyoid bone backward and upward and, logether with the stylohyoid and the infrahyoid muscles, fixes the hyoid bone. The posterior belly is supplied by the facial nerve, the anterior belly by the mylohoid nerve from the third division of the trigeminus.

The stylohyoideus (Figs. 255, 256, and 258) arises by a tendon from the styloid process of the temporal bone and runs to the hyoid bone as a flat rounded muscle above and almost parallel (t) the posterior belly of the digastric. Before its insertion into the bone it almost always divide: into two slips, between which the intermediate tendon of the digastric passes. These slips have muscular attachments to the base of the greater cornu and to the posterior extremity of the body of the hyoid bone.

The action of the muscle is similar to that of the posterior belly of the digastric and it is also supplied by the facial nerve.

Between the infrahyoid muscles and the anterior border of the sternocleidomastoid there remains a deep space bounded above by the posterior belly of the digastricus; this is the carotid fossa, and it contains the great vessels and nerve of the neek (the common carotid artery, the internal jugular vein, and the vagus nerve). The lateral wall of the pharynx forms its floor.

The mylohyoideus (Figs. 256 to 258 and 265) is a peculiar broad, flat muscle which is situated in the submental and submaxillary regions and is partly covered by the anterior belly of

 constitutes the thon of the mouth.

 (t) the upper border of the boely of the hewid leote.

 hyoid bone.

[^36]
THE DEEP MUSCLES OF THE NECK.

The Group of the Scaleni.

 the shin in the lateral uraial revion.

 insertion in pronileal with ath apmeturas.

Between the insertions of the satenus anterior and medius inte the first rib there is a space which gives passuge the subdatimartery and th the erreater part of the brachial plextio.

The scalenus posterior (Figs 24 and 250 is the smatlest of the scaleni, and is frequently adtherent to the medius. from which it is distinguithable only by it-sparate insertion. It arisefrom the transterse processe of the fith to the eventh corvical wortebre, is stuated between the
scalenus medius and the levator scapulx, and is inserted by a short tendon into the upper border of the second rib. Its insertion is covered by the upper digitations of the serratus anterior.

There is occasionally present a small independent muscular fasciculus situated between the scalenus anterior and medius. It is known as the scalenus minimus, and is inserted into the first rib and also into the dome of the pleura.

[^37]
THE PREVERTEBRAL CERVICAL MUSCLES.

The muscles of the prevertebral group (Figs. 258 and 259) are situated to the inner side and above the scaleni, from which they are separated by the transverse processes of the cervical vertebræ. They are the longus colli, the longus capitis, and the rectus capitis anterior.

The longus colli (Fig. 259) is a rather thin flat muscle which is situated between the cervical viscera and the bodies of the upper thoracic and of all of the cervical vertebre. Its upper and outer portion is covered by the longus capitis, and between the two muscles and to either side of the median line there is a space, the width of the little finger, in which may be seen the anterior longitudinal ligament of the vertebral column. The muscle has the form of a very obtuse-angled triangle, the obtuse angle being placed at the transverse process of the sixth cervical vertebra.

It is composed of three portions, each of which constitutes a side of the triangle. The inner portion is the longest, and extends from the body of the third thoracic vertebra to the axis. It arises by tendinous slips from the bodies of the upper thoracic and the lower cervical vertebre, and inserts, partly by muscular and partly by tendinous tissue, into the bodies of the upper cervical vertebre. The upper and outer portion arises by flat tendinous digitations from the anterior tubercles of the transverse processes of the upper cervical vertebre and is inserted into the anterior tubercle of the atlas, this portion being sometimes termed the longus atlantis, and also into the bodies of the underlying cervical vertebre in common with the inner segment of the muscle. The lower and outer portion arises from the lateral surfaces of the bodies of the upper thoracic vertebre and is inserted by the tendinous slips into the transverse processes of the lower cervical vertebre.

The longus capitis (rectus capitis anterior major) (Figs. 258 and 259) is a rather broad flat muscle the upper portion of which is somewhat thickened. It lies to the outer side of the longus colli and covers its upper and outer segment, and arises by distinctly separated tendinous digitations from the anterior tubercles of the transverse processes of the third to the sixth cervical vertebre. From these origins it passes upward and slightly inward, and is inserted into the lower surface of the basilar portion of the occipital bone. There is a distinct aponeurosis upon the anterior surface of the muscle somewhat above its middle.

The longus colli and the longus capitis are supplied by special branches of the cervical plexus. They bend the cervical vertebral column anteriorly, and, when they act unilaterally, turn the head toward the side of the contracting muscle. In the turning movement, the longus capitis and the upper and outer segment of the longus colli act together.

 merted into the under surface of the basilar proces of the vecipieal bone.

THE FASCIE OF THE NECK.

 mastoid and the anteriur bereler en the tmeteils.

 mehnt ivaci.

15 how atrole iote ए"

THE MUSCLES OF THE HEAD.

 The cutancous muscle of the heat. i. cephatic skeleton but which are insered ines the skin of the fote dr stalp er are situated in the skin of the face: and (2) the muscle of mastication, which are typical ske letal muscles in every respect.

Fig. 260.-The superficial layer of the facial muscles and the neighboring muscles of the neck seen from the side and slightly from in front.
Fig. 261.-The orbicularis oculi seen from behind.
The muscle together with the integument has been removed; the lachrymal portion is represented in connection with the inner margin of the orbit.

THE MUSCLES OF THE FACE AND OF THE SCALP.

The cutaneous muscles of the face exhibit manifold peculiarities by which they are more or less differentiated from the ordinary skeletal muscles. They possess no fasciæ, they exhibit but a slight degree of independence, and many of them are so combined and their fibers interlace to such an extent that it is often purely a matter of choice whether individual fasciculi are regarded as special muscles or as the heads of a larger muscle. The arrangement of the facial muscles into sphincters or muscles of closure is also characteristic. The group includes the epicranius as well as the muscles of the face proper.

THE EPICRANIUS.

The epicranius (Figs. 260, 262, and 264) consists of a middle aponeurosis which envelops the cranium, the galea aponeurotica, and of muscles which arise in the frontal and occipital regions and are inscrted into the galea. This is thickest in the occipital region, becomes thinner toward the forchead and particularly toward the temples, and gradually loses its aponeurotic character (especially in the temporal region). It is connected to the skin by fibrous connective-tissue fasciculi and separated from the cranial periosteum by loose areolar tissue.

The frontalis is a very thin, broad, and flat muscle which is intimately adherent to the skin of the eycbrows. It has a broad origin above the supraorbital margin, extends over the vertical portion of the frontal bone, and is inserted into the galea aponeurotica in the upper portion of the forchead. It has also a slender origin, which varies in size, from the bony bridge of the nose; when strongly developed, it is known as the procerus (pyramidalis) nasi, but it is always immediately connected with the frontalis. The two frontales are separated in the median line by a narrow area containing no muscular tissue.

The occipitalis is also a flat, broad, and an approximately quadrilateral muscle which arises on each side by short tendinous fibers from the highest nuchal line; it passes upward, and after a comparatively short course is inserted into the galea aponeurotica in the occipital region. The width of the muscle is much greater than its height, in contrast to the opposite condition in the frontalis.

> Like all the facial muscles, the frontalis and the occipitalis are supplied by the facial nerve.
> Both muscles are tensors of the galea aponeurotica. They pull the scalp forward or backward, and the frontalis wrinkles the skin of the forehead.

A portion of the auricularis is also related to the galea aponcurotica. This muscle presents three portions, an auricularis anterior, superior, and posterior, and like almost all the facial muscles they are subject to great individual variations in the degree of their development.

1tg. palpebrale medtale
()hat-
dratus labiii super.

 the rom of the antick．

THE PROPER MUSCLES OF THE FACE．

 and the mate matere，thios stuated upen the nowe．

THE PALPEERAL MUSCIES．

 palpebtal portions are dirotly constinumb with colh other．

 आиテに．

 of the muscle，which is comeneted with the palpe bral jertion．It arise from the posierior lachry－

Fig. 262.-The deeper layer of the facial muscles.
The quadratus labii superioris, zygomaticus, triangularis, quadratus labii inferioris, the parotideo-masseteric fascia, the parotid gland, and a portion of the superficial layer of the temporal fascia have been removed.

Fig. 263.-The oral musculature seen from behind.
The muscles, together with the integument, have been separated from the bones, and the mucous membrane covering the muscles has been removed.
mal ridge of the lachrymal bone and the fibers pass horizontally across the lachrymal sac to the margins of the lids, where they decussate and disappear in the fibers of the palpebral portion. (A more detailed description will be found in the section upon "The Eye.")

The orbicularis oculi, like all of the facial muscles, is supplied by the seventh cranial or facial nerve.
Its function is to close the palpebral fissure. The fibers of the lachrymal portion facilitate the entrance of the lachrymal secretion into the lachrymal canaliculi and also assist it onward, and those fibers which pass to the eyebrow and the forehead, wrinkle the skin in these regions.

THE ORAL MUSCLES.

The muscles of the oral region consist of the buccinator, of the circular fibers situated about the mouth which form the orbicularis oris, of the muscles of the upper lip, of the muscles of the lower lip, of muscles which are situated upon the skin, and of muscles which radiate into the angles of the mouth. The great majority of these muscles are intimately connected with each other.

The quadratus labii superioris (Figs. 260 and 262) is situated in the upper lip in the nasal, infraorbital, malar, buccal, and superior labial regions.

It has in general a triangular shape and arises by three heads: the angular head from the bony bridge of the nose in connection with the frontalis and the orbicularis oculi; the infraorbital head, arising broadly from the infraorbital margin and covered by the orbital portion of the orbicularis oculi; and the zygomatic head, a slender fasciculus from the malar surface of the zygomatic bone, which is usually adherent to the lateral radiations of the orbicularis oculi.

The angular head (levator labii superioris alaque nasi) is composed of two portions, an inner one passing to the ala of the nose (levator ale nasi), and a stronger outer one which unites with the two other heads of the quadratus and passes to the musculature of the upper lip near the inner side of the angle of the mouth. The infraorbital head (levator labii superioris) is the broadest, and the somewhat inconstant zygomatic head (zygomaticus minor) the longest head of the muscle. At the insertion of the quadratus labii superioris into the upper lip its muscular fibers interlace with those of the orbicularis oris.

The zygomaticus (zygomaticus major) (Fig. 260) is an elongated, rather strong, and easily isolated muscle which is situated in the malar, buccal, and oral regions. It has an independent origin from the malar surface of the malar bone, close beside the zygomatic head of the quadratus labii superioris, and runs to the angle of the mouth, where it fuses with the orbicularis oris and the neighboring muscles.

The risorius or "smiling" muscle (Figs. 260 and 267) is a thin, approximately triangular muscle of variable development which is situated chiefly in the parotideo-masseteric and buccal regions. It arises from the parotideo-masseteric fascia (see page 184), sometimes extending

() uadrutu: labit infer.

Fig. 203.

 maticus major.

 (a) $1 x$ devaibeal.

 the lonse life.

 musculatarenife whialaris mis.

 but the ervetter mumber are incered inte the interument of the win. The origin of both mentakes is cotered be the quadratu- labie inferioris.

The buccinator Figs. 202, 204. amd zon) is athat make whating leeween the upper and the lower jaw, and situated immediately beneath the buctal mucous membrane. Only the

Fig. 264.-The deepest layer of the facial muscles and the temporalis.
The caninus, the zygomatic arch, a portion of the zygomatic bone with the origin of the masseter and the temporal fascix have been removed.

Fig. 265.-The two pterygoidei seen from the inner surface.
The anterior portion of the skull has been divided in the sagittal plane, and the temporal bone in an oblique plane; the tongue and soft palate have been removed.
anterior border of the muscle is superficial, passing into the orbicularis oris and the other muscles of the mouth. It is the strongest muscle in the oral region.

It arises from the buccinator ridge of the mandible, fro the posterior extremity of the alveolar process of the maxilla, and from the pterygomandibúlar raphe. The pterygomandibular raphe (pterygomaxillary ligament) is embedded in the buccopharyngeal fascia (see page 184) and extends from the hamulus of the internal pterygoid plate to the posterior border of the alveolar portion of the mandible. It separates the buc inator from the constrictor pharyngis superior (see "Splanchnology"). At the angles of the mouth the fibers of the buccinator muscles are directly continuous with those of the orbicularis oris, while the posterior surfaces border immediately upon the oral mucous membrane. The anterior portion of each muscle is covered by the risorius, the triangularis, the zygomaticus, and the caninus, while the posterior portion is situated beneath the masseter (see page 183), from which it is separated by a mass of fat, the buccal fat mass (Bichat's fat mass).

The buccinator is perforated by the parotid duct, and the small buccal glands rest directly upon the muscle.

THE NASAL MUSCLES.

The muscles of the nose are much less important than those of the mouth. The feebly developed nasalis (Figs. 262, 264, and 266) is composed of a transverse portion and an alar portion. The transverse portion is a flat and very thin muscle which arises from the upper jaw and is adherent to the angular head of the quadratus labii superioris upon the bridge of the nose; it is united with its fellow of the opposite side by means of a thin aponeurosis termed the compressor narium. The alar portion comes from the alveolar jugum of the upper canine tooth and goes to the cartilage of the ala of the nose; its greater portion is covered by the quadratus labii superioris, although a small portion is also concealed by the orbicularis oris. The ala of the nose also receives constantly the insertion of a portion of the angular head of the quadratus labii superioris.

All of the muscles of the face proper are supplied by the facial nerve. Their function is to produce the movements of expression, closure of the mouth, movements of the lips, and compression of the contents of the mouth (as, in blowing, the buccinator).

THE MUSCLES OF MASTICATION.

The muscles of mastication are composed of four strong separate muscles which are divided into two groups: the first group is formed by the masseter and the temporalis; the second by the two pterygoidei.

The masseter (Fig. 262) is a thick, strong, and approximately quadrilateral muscle which

 its interior in the hate of indivilual areation-

 1hace 1s:。

 the inferior temporal life partly from the anterior furtion it the fomporal illate and atos

 surface womd downaral as faras the bate.

 temporomatillary articulation.
 ceats its origin, and its faciouli crose thone of the lathermack. It rakes a partly bendinous origin from the perygod fosed of the sphemed bone and pasees to the inner suriace of the angle

Fig. 266.-The deep layers of the facial muscles, the buccinator, and the pterygoids, seen from the side.
The lower portion of the temporalis together with the coronoid process of the mandible has been removed; the whole of the masseter is also removed and the parotid duct has been severed near its entrance into the buccinator.
Fig. 267.-The left platysma, seen from the side.
of the jaw, where it is inserted exactly opposite to the masseter. The outer surface of the muscle is usually aponeurotic.
[The pferygoideus internus is an elevator of the mandible, assisting the temporalis and masseter. The pterygoideus externus draws the condyle of the mandible and the articular disc forward upon the articular eminence; when the muscle of one side acts alone, it draws forward the mandibular condyle to which it is attached, the other one piroting in the mandibular fossa, and the result being an apparently lateral movement of the mandible.-ED.]

The muscles are supplied by the external and internal pterygoid nerves from the third division of the trigeminus.

THE FASCIE OF THE HEAD.

The parotideo-masseteric fascia (Fig. 260) is the layer of fascia which passes over the parotid gland and the masseter muscle. At the zygoma it is connected with the temporal fascia, at the anterior margin of the masseter with the buccopharyngeal fascia, and at the angle of the jaw with the cervical fascia.

The temporal fascia (Figs. 260 and 262) is the strongest fascia in the head and in its lower portion divides into two layers, the superficial and the deep, which are separated by fatty tissue. The interspace between the two layers becomes larger as they descend, the superficial layer inserting into the anterior, the deep into the posterior border of the zygoma. The upper circumference of the temporal fascia is connected with the galea aponeurotica.

The anterior portion of the buccopharyngeal jascia lies upon the buccinator and is connected with the parotideo-masseteric fascia; the posterior portion is stronger, more tendinous, and covers the inner surface of the pterygoideus internus. In this posterior portion are embedded the pterygomandibular raphe (pterygomaxillary ligament) and the stylomandibular (stylomaxillary) ligament (see page i18). In this situation the fascia forms the postero-lateral wall of the oral cavity and the lateral wall of the pharyns.
[The cranial musculature, considered from the developmental standpoint, includes several muscles in addition to those which are assign to the head in the above description, since it is properly to be regarded as consisting of all the muscles supplied by the cranial nerves. Among these nerves there exist motor fibers of two different qualities: (I) lateral motor roots whose nuclei of origin may be regarded as occupying a position intermediate between the sensory nuclei and (2) the median motor roots, which correspond in all their essentials to the anterior roots of the spinal cord. The lateral motor roots, which occur in connection with the fifth, seventh, ninth, tenth, and eleventh nerves, are distributed to the muscles associated with the embryonic branchial arches, while the median motor roots are represented by the third, fourth, sixth, and twelfth nerves, and supply the muscles associated with the eyeball and tongue.

In accordance with this difference of innervation, which is of great inorphological importance, the cranial musculature may be divided into two groups: (1) The myomeric muscles, supplied by median motor roots, and (2) the branchiomeric muscles, supplied by lateral motor roots. The muscles belonging to the former group as well as certain of those belonging to the branchiomeric group, such as the muscles of the tympanum, palate, pharynx, and larynx, will be described and figured in connection with the regions to which they belong, but for the sake of completeness they will be included in the classification that follows. In the classification of the muscles of each group the individual nervesupply may form the basis.

1. MiUM211C M1 (1
 injeri ir.

THE MUSCLES OF THE UPPER EXTREMITY.

The musches of the upper atremity are compored of four chici groug-:
I. 'lhe muscles of the shoulder, i. .., musches which arise from the stowlteretirulle, pass through the region of the shoukder, and are inserted into the shek won ei the free uper
 spinatus, the injrasinum, the beres minur, the sube topuris, and the ter mifor.
11. The muscles of the upper arm, i. .., muche the Lreater jortion of whin are silaated in the ujper arm. 'I his group is sulativided into: if The musthe of the deave surface; (2) the musclen of the whent andiate.
 group 11, 2 , is formal lye the tritips bruhit (and the anam: ul.
111. The muscles of the forearm, $i . c$, thene of which the ereater gortions are situated?

 musche of the wheneor surfice.

The munctes of the the ore surface are arraneut in wo layers. The supcricial hate is
 sublimis, and the fexir corpi wharis. The deepleser is composel of the jexer dintaram profundus, the flewor pollicis lonsus, and the fromater quatrotus.
 the avensor weffi radialis ire.is.

In the musckes of the atenoor greup the supinator holds a succial position. The remaining mancles are compered of three sulalivinoms: (a) I supericial layer, formed by the catensor digitorum communis, the extensor disiti 1° proprius, and the cotensor carpi ulnaris; (b) a deep obligue layer, formed by the abdutor pollicis lomeus and the wemsor pollicis brecis; (c) a deep straght layer, composed of the wenser pollicis longus and the extenser indicis proprius.
IV. The muscles of the hand, \therefore. c., these which extend between parts of the skeleton of the band. 'Ihese muscles are subdivided into three groups: (I) The muscles of the thenar

Fig. 268. - The muscles of the posterior suriace of the left scapula and the neighboring portion of the extensor surface of the upper arm.
The deltoid has been removed with the exception of its origin and insertion; portions of the dorsal muscles inserting into the vertebral border of the scapula and also of the latissimus dorsi and pectoralis major have been retained.
Fig. 269.-The muscles of the anterior surface of the left scapula and the neighboring portion of the flexor surface of the upper arm.
Portions of the thoracic, cervical, and dorsal muscles which insert into the scapula or humerus have been retained.
eminence; (2) the muscles of the hypothenar eminence; and (3) the lumbricales (four) and the interossei (seven). The palmaris brevis is also situated in the hand. The muscles of the thenar group are the abductor pollicis brevis, the flexor pollicis brevis, the opponens pollicis, and the adductor pollicis; those of the hypothenar group are the abductor digiti V brevis, the flexor digiti V brevis, and the opponens digiti V. The interossci are composed of the interossei dorsales (four) and the interossei volares (three).

THE MUSCLES OF THE SHOULDER.

The deltoideus (Figs. 268 and 270) is a thick, triangular, markedly curved muscle which is situated in the deltoid region. It arises, opposite to the insertion of the trapezius, by short tendons from the acromial third of the clavicle and from the border of the acromion, by a wide aponeurosis from the entire length of the spine of the scapula, and partly from the infraspinatus fascia (see page 207). Its fibers, which are grouped into coarse fasciculi separated by deep interspaces, converge toward intramuscular septa, so that the muscle rapidly diminishes in size as it passes toward its insertion, which is into the deltoid tuberosity of the humerus. The upper surface of the insertion is muscular; the lower is tendinous and is separated from the greater tubercle of the humerus by a large bursa, the subdeltoid bursa (Fig. 268).

The anterior border of the deltoid is practically in contact with the clavicular portion of the pectoralis major, although between the two muscles there is usually a quite narrow space, the deltoideo-pectoral triangle, which becomes broader as it approaches the clavicle and in which runs the cephalic vein. The posterior border of the muscle is in relation with the infraspinatus, the fascia of which partly covers its under surface, and the entire upper border is in contact with the trapezius. Its insertion is embraced by the origin of the brachialis.

The deltoid is supplied by the axillary (circumflex) nerve. It elevates the arm to the horizontal plane.
The supraspinatus (Fig. 268) is a triangular, moderately strong muscle which fills the supraspinatus fossa and is completely concealed by the insertion of the trapezius. It arises from the entire extent of the supraspinatus fossa and from the enveloping supraspinatus fascia. The markedly narrowed tendon of insertion passes beneath the acromion and the coracoacromial ligament, immediately above the articular capsule of the shoulder-joint (to which it is adherent), and is attached to the uppermost facet of the greater tubercle of the humerus.

The infraspinatus (Fig. 268) is also triangular, but it is stronger and broader than the supraspinatus. The outer half of the muscle is covered by the deltoid, while the inner half is

 is inserted inte the midelle fate of the greater thene oh of the homerts.
 (b.achword).

 It arion trom the lower fart of the infraphinatus fows atal from the midale portion of the

 abo atherent wo the artioular capsole of the shoukder joint.

 from the dural surface of the lomer thire wi the atsillar! borker of the wag whe wemelige duws-

Between the ure major and minore there is at tranglar aperture wheh in - lutived bs

It arise from the subseapular foes and irem the muatular hire thereon. lis fasciculi
 over the anterior surface of the articular aymule of the shoukter gaint, which it is firmly adherent, and is attached th the lesere tubercte of the hamerns and io the neighboring portion of the lesser tubercular ridge.

Fig. 270.-The deltoid and muscles of the upper arm seen from the side.
Fig. 27I.-The muscles of the upper arm seen from the side and from behind.
The part of the antibrachial fascia which covers the anconeus has been removed and the outer head of the triceps has been severed and turned aside in either direction.

Fig. 272.-The muscles of the flexor surface of the upper arm, superficial layer. The deltoid has been removed.

Fig. 273.-The muscles of the flexor surface of the upper arm, deep layer. The deltoid and biceps have been removed.

Immediately below the coracoid process, and on the under surface of the subscapularis near its insertion, there is a constant bursa which is a diverticulum of the synovial membrane of the shoulder-joint and is known as the subscapular bursa (see page 121).

The subscapularis is supplied by the subscapular nerves from the brachial plexus. It is an internal rotator of the arm.

THE MUSCLES OF THE UPPER ARM.

THE MUSCLES OF THE FLEXOR SURFACE.

Upon either side of the lower portion of the arm there is a distinct intermuscular septum (Figs. 270 to 273) between the muscles of the flexor and those of the extensor surface. The internal intermuscular septum is the stronger of the two and ends at the internal epicondyle, the external intermuscular septum is weaker and extends downward as far as the external epicondyle. These septa give origin to muscles of both groups, the external septum furnishing attachment also for the radial group.

The biceps (Figs. 272 and 273) is a long, large, spindle-shaped muscle which is situated immediately beneath the brachial fascia in the anterior brachial and cubital regions, and arises by two distinct heads, the long head and the short head. The long head arises from the supraglenoidal tuberosity of the scapula by means of a long cylindrical tendon, which passes through the cavity of the shoulder-joint (see page 121) and through the intertubercular groove, being enveloped in the latter situation by the intertubercular mucous sheath (Fig. 273). The tendon of the short head is short, flat, and adherent to that of the coracobrachialis; it comes from the coracoid process of the scapula.

Each head of the biceps forms a cylindrical muscular belly (the short head almost immediately after its origin) and the two bellics may remain separated for quite a distance, though in immediate contact with one another, but always unite above the elbow-joint (never before reaching the middle of the arm) to form a single muscle. The widest part of this muscle is at the middle of the arm; and to either side of it a distinct groove may be recognized, the internal and external bicipital grooves. As it passes downward, the muscle becomes narrower, and in the region of the elbow-joint it passes into a tendon of insertion which consists of two portions, a deep, flat, strong tendon and a thin superficial portion known as the lacertus fibrosus (Figs. $272,273,274$, and 291). The latter is composed of superficial radiating fibers from the tendon

Fig. 270.

Fig. 272.
of the biceps, which pass obliquely across the antecubital fosca toward the wirnar sich and fade away in the antibrachial fasciat covering the superticial fle eors of the forearth.

The actual undon of the biceps muste passes decp) down between the fle wor ated the ratial grougs of muscles and inserts inte the tuberonity of the radiun FFigs. 273 and 275 . BLt acell the tendon of insertion and the radius there is placed a burat, the bicipitoradial bur as Fis. 273).

'The coracobrachialis [Fig. 27.3 in a long and rather flat musche, which is placerd alonesile of the short heat of the hiecers and is almont contirely onnctaled beg this structure. It shart tendon of origin, ari-ing from the tip of the wracoid proces, is atherent whe thert load of
 tore major shortly before their insertion. It is ineerted into the anterior and interal surfaces of the humerus at about its midele, below the keocr tubereubar ridece, and inse the internal intermumbur septum. The muscle prosemes a long slit which give pasate to the musculventancous nerve.

The brachialis Fires. 27 T: 10 27= is a strong, broad, rather flat, clongated muscle, almoot antirely conceded hy the bicer, whith is wituated in the lower wo third of the the we striace of the arm. It arisa from the antero internal surface of the humerus, sumethat atowe the
 internal and antern oternal surface of the lower furtion of the shaft of the humeru- ..nd from
 catedike downward atmose to the internal condyle. The anterios surface of the matele is distinety hollowed to acommodate the overbing biceps, and in the bower portion of the arm it appears to cither sile of that mucke. On the outerside it is in relation with the outer head of
 with the inter head of the triceps. It is inserted inte the tuborosity of the ulna by means of a strong tembon which is spex ially well developed upon the anterion surface of the mate ge insertion is conceated by the temeton of the biceps and abo by the superticial thexore of the forearm arising from the internal condyle.
 forearm.

THE MUSCLE OF THE EXTENSOR SURFACE.

The triceps (Figs. 268 and 270 to 27,3) is a large choneated musche which posecsees threce heads. The long hod (anconeus longus) (Figs. 26 s and 27110273 is a somewhat rounded musche which arises by a short tendon from the infraghenoidal tuberosity of the scapula. It passes between the teresmajor and minor, that is to say, in front of the teres minor and behind the
teres major (see page 187), and becomes aponeurotic upon its inner surface. It is frequently connected with the latissimus dorsi by a tendinous slip.

The outer head (anconeus lateralis) (Figs. 270 and 271) arises from the postero-external surface of the humerus, commencing immediately below the greater tubercle, and from the upper half or the upper two-thirds of the external intermuscular septum. The origin of this outer head is fibrous above but fleshy below; its fibers run downward and inward to the common tendon of the triceps.

The inner head (anconeus medialis) (Figs. 27I to 273) arises more deeply than the outer one, and its fibers are shorter and extend further downward; as a rule, however, it is not as strong as the outer head. It arises from the entire length of the internal intermuscular septum, opposite to the brachialis and partly covered by the biceps, from the posterior surface of the humerus below the groove for the radial nerve, and from the external intermuscular septum as low down as the external epicondyle. The portion of it which comes from the internal intermuscular septum and which is not concealed by the biceps, lies immediately beneath the brachial fascia, as does also that portion arising from the external intermuscular septum, which is not covered by the outer head. A large part of the inner head is concealed by the outer one, and between the origins of the inner and outer heads the radial nerve runs in its groove.

The fibers of the inner and outer heads unite with those of the long head and pass into the common extensor tendon, which commences upon the posterior surface of the muscle at about the middle of the arm and is inserted chiefly into the olecranon process of the ulna. The insertion not only completely surrounds the olecranon, but also radiates to the ulna and the antibrachial fascia.

The triceps occupies the entire extensor surface of the arm between the intermuscular septa, and is consequently situated in the postero-external and postero-internal brachial regions. The relations of the long head have already been described (see page 187). The inner head is in relation with the brachialis at the internal intermuscular septum, and at the internal epicondyle its fibers are continued directly into the anconeus; the outer head, at the external intermuscular septum, is in relation successively with the brachialis, the brachioradialis, and sometimes also with the extensor carpi radialis longus.

The triceps is supplied by the radial nerve. It extends the forearm.
From a functional and topographic standpoint the triceps is associated with the anconeus (anconeus quartus) (Figs. $27 \mathrm{I}, 278$, and 280), which is situated in the upper part of the forearm, and is a flat triangular muscle lying bencath but not adherent to the antibrachial fascia. The lower angle of the muscle is placed between the flexor carpi ulnaris and the superficial group of extensors. It arises by a short tendon from the external epicondyle, passes over the articular capsule of the elbow-joint, to which it is adherent, and is inserted into the upper portion of the posterior surface of the ulna immediately below the olecranon. The upper fibers of the muscle are usually directly continuous with the lower portion of the inner head of the triceps.

[^38]
THE MUSCLES OF THE FOREARM.
 the muscles of the flexor surface.
 THE SUPERFICIAL LAYEF.

 distance above this articulation, ant they verme the fitate vile of the volar surfure it the forcarm. In the upper purtion of the borearm the are atl wherem m the anth rowhit iasciat, with the ascoption of the hever digitorum stblinia, and conceal it fitartin: of

 pronator teres, consequently pano oter two articulations.
 rangular mustle which ariech he two head. 'The hume ral heded is the stronger an t comes irom the common tendon of wrigin; the weater uluar heat in more decply flaced. coming irens the coronoid prexess of the ulna, and is frequently adherent we the tendon of the brachialis. The space fretween the wo hath gives pasatge te the median berte.

The belly wi the pronatur ceres coners the insertions of the bicepts and -upinater and pase befow the latter muste to the midthe of the outer surface of the ration, where it in atad hat io the bone by a shurt temtun (Fïs. 280).

The flexor carpi radialis rulialis inuermus life $27+$ is a long gindle-shapal murele. the distal hati of whith is endinome. It is the seond manle of the groupl fatine frem the radial th the whar side, and arise like its fellons from the common wondon ath from the antibrathial fantia. In the midelle of the forearm it forms a round hendon which pase through
 multangulum majus to the base of the corond, and sometime - aten wi the thirit metatarpat benc.

The palmaris longus Fithe 27, is the -mallest ant the men- -uglericial musche of the entire
 origin is atherent to those of it methore and is irem the it ternal cpieondyle and the amibrachial fascia. The long temton becomes marhedly thattenol in the lower third oi the forearm and is situated immediately bencath the fare iat it phase uter the tran-werse carpal ligament, to which it is partly adherent, and radiates into the palmar af oneurusis (sce page 198).

This muscle acts chichly as a kensorn if the palmar ant ef the amiharhial fasix; it can also assist in flexing the forearm. It is surglied by the median merve.

Fig. 274.-The superficial layer of the muscles of the flexor surface of the forearm together with the brachioradialis, seen from in front.
Fig. 275.-The superficial layer of the muscles of the flexor surface of the forearm after removal of the palmaris longus and the flexor carpi radialis, seen from in front and slightly from the radial side.
The brachioradialis is drawn outward to show the supinator and the insertion of the tendon of the biceps.

The flexor digitorum sublimis (Figs. 274 to 276) is concealed at its origin by the palmaris longus and the flexor carpi radialis, and the greater portion of its ulnar border is covered by the flexor carpi ulnaris. The main origin of the muscle, the humeral head, forms the deepest portion of the common tendon arising from the internal epicondyle, while the second head, the radial head, arises by a flat tendon from the volar surface and border of the radius below the insertion of the supinator. The two heads are connected by a tendinous arch beneath which passes the median nerve, and unite to form a broad and strong muscular belly which is usually composed of two distinct portions, a superficial and a deep. The deep portion receives the oblique fibers from the radius and soon gives off the tendons for the index and little fingers, while the tendons for the middle and ring fingers proceed from the superficial portion. The four tendons, which frequently do not become independent until near the wrist-joint, run through a synovial sheath together with the tendons of the deep flexor and pass bencath the transverse carpal ligament to the middle phalanges of the second to the fifth fingers (see page 205).

The flexor digitorum sublimis is exclusively supplied by the median nerve. It flexes the middle phalanges of the four fingers.

The flexor carpi ulnaris (ulnaris internus) (Figs. 274 and 276) is the innermost and the most posterior muscle of the group. Its posterior border is in relation with the anconeus and the superficial extensors, being separated from the latter by the dorsal border of the ulna. In addition to a humeral head the muscle also possesses an ulnar head from the anterior surface of the olecranon, the ulnar nerve passing between the two heads. An additionai origin is furnished by the antibrachial fascia, which is adherent to the upper two-thirds of the ulnar border of the muscle and by means of which the muscle arises from the volar border of the ulna. The muscle is distinctly semipenniform in structure, since a tendon is formed in its inner border at the middle of the forearm, into which muscular fibers radiate almost as far down as the wrist-joint. This tendon is inserted into the pisiform bone and the insertion is thence prolonged to the metacarpus by the ligaments of the pisiform bone (see page 125).

[^39]
THE DEEP LAYER.

The deep layer of the muscles of the flexor surface consists of the two deep flexors of the digits and of the pronator quadratus. -It is almost entirely concealed by the superficial layer.

The flexor digitorum profundus (Figs. 275 and 277) is a broad, strong, thick muscle which arises from the volar surface of the ulna from the coronoid process to the junction of the

Fig. 277.-The deep layer of the muscles of the flexor surface of the forearm after removal of the superficial layer, seen from in front.
Fig. 278. -The muscles of the forearm seen from the radial side.
middle and lower thirds of the bone, and from the adjacent portion of the interosseous membrane. Four parallel tendons are soon given off, the one situated nearest to the radial side coming from a separate musctilar belly composed of the fibers proceeding from the interosseous membrane. These tendons run in the same synovial sheath as do those of the Hexor sublimis and pass beneath the transverse carpal ligament (the anterior annular ligament) to terminate upon the ungual phalanges of the second to the fifth fingers (see page 205).

The ulnar half of the muscle is supplied by the ulnar nerve, the radial half by the median nerve. It flexes the terminal phalanges of the four fingers.

The flexor pollicis longus (Figs. 275 to 277) is a spindle-shaped muscle placed immediately alongside of the flexor digitorum profundis; it is penniform above and semipenniform bclow. It arises from the volar surface of the radius between the insertion of the supinator and the upper border of the pronator quadratus. It also usually receives a slender fasciculus, frequently aponeurotic, from the coronoid process and from the internal condyle; this origin, however, which is known as the humeral head, does not come directly from the bone but from the muscular mass of the superficial flexors. The muscle becomes tendinous almost immediately below its origin, the upper portion receiving the muscular fibers from either side, the lower portion from the radial side only, and the tendon runs in its own tendon-sheath beneath the transverse carpal ligament and passes between the two heads of the flexor pollicis brevis to the ungual phalenx of the thumb.

The muscle is supplied by the median nerve. It flexes the terminal phalanx of the thumb.

\therefore - onator quadratus (Figs. 277 and 284) is a flat quadrilateral muscle which is concealed by all the tendons of the flexor muscles and lies upon the volar surfaces of both bones of the forea m toward their distal extremities. It arises from the volar border of the ulna and is inserted into the rolar surface and border of the radius, both its origin and insertion being usually by short aponeuroses.

The muscle is supplied by the median nerve (volar interosseous nerve) and pronates the forearm.

THE RADIAL GROUP OF THE MUSCLES OF THE FOREARM.

The three muscles of the radial group are placed at the radial side of the forearm and of the lower portion of the arm in the so-called radial region, between the flexors and the extensors. The brachioradialis belongs more to the flexor surface, but the other two muscles are upon the extensor side of the forearm, and while the superficial layers of both flexor and extensor muscles are adherent to the fascia of the forearm, the extensor carpi radialis brevis is the only muscle of the radial group in which a similar relation obtains.

The brachioradialis (supinator longus) (Figs. 270, 271, and 274 to 279) is a very long flat

与urface ace pate 101|.

 metwarpal) neme (ar alou phay 20: .

 tapal lisamemt, and is incered itto the hase of the thital metacarpal beme.

 - ©ensor pollicis longul.

the muscles of the extensor surface.

 radial group.
 about the upper extremity of the rathe and is in athation with mane of the muathe of the iote-
 and its anterior volar prortion by the radial eroup and the pronator tere. The insertion of the

Fig. 279.-The superficial layer of muscles of the extensor surface of the forearm.
Fig. 280.-The deep layer of muscles of the extensor surface of the forearm.
The superficial layer of the extensors has been removed, the cavities of the dorsal carpal ligament have been opened and the tendons of the superficial muscles removed.
muscle is in immediate relation with the insertion of the tendon of the biceps and with the bicipitoradial bursa.

It arises from the external epicondyle of the humerus, from the radial lateral and annular ligaments of the elbow-joint, and from the supinator ridge of the ulna. It is tendinous at its origin and usually exhibits a superficial aponeurosis in the middle of its course. Some of the fibers run almost horizontally and some of them obliquely forward and downward, passing to the upper, outer, and lower portion of the tuberosity of the radius and to the volar surface and border, the outer surface, the dorsal surface and border of the same bone. The fibers passing to the volar border terminate immediately above the insertion of the pronator (radii) teres.

The muscle usually consists of a superficial and of a deep portion which are not sharply differentiated, and between the two portions the deep (posterior interosseous) branch of the radial nerve passes.

The supinator is supplied by the radial nerve. As its name indicates, it supinates the forearm.

THE SUPERFICIAL LAYER OF THE EXTENSORS.

This layer consists of three muscles, adherent to each other at their origins, which are partly in common with the extensor carpi radialis brevis from the external epicondyle of the humerus and the antibrachial fascia, and they terminate in tendons which are distinctly directed toward the ulnar side and pass beneath the dorsal carpal ligament to the back of the hand. They are situated in the dorsal region of the forearm, chiefly upon the dorsal surface of the ulna (and upon the supinator above), and are in relation externally with the extensor carpi radialis brevis, internally with the anconcus and below with the flexor carpi ulnaris.

The extensor digitorum communis (Figs. 278, 279, and 289) is a broad, flat, strong muscle which arises from the external epicondyle of the humerus and the antibrachial fascia; it is intimately adherent to the extensor digiti V and partly to the extensor carpi radialis brevis. Somewhat below the middle of the forearm it divides into three (or four) bellies (Fig. 279) which terminate in round tendons; the ulnar one gives off tendons for both the ring and little fingers when only three bellies are present. The tendons pass beneath the dorsal carpal ligament to the back of the hand (Fig. 289), where those for the ulnar fingers are connected by slender transverse or oblique tendinous fasciculi, the juncture tendimum. In the fingers, these tendons form the main portion of the dorsal aponeurosis.

The extensor digiti V proprius (Figs. 279 and 289) is a thin slender muscle which is so closely connected with the extensor digitorum communis that it seems to be a part of it. Its slender tendon passes through a separate compartment in the dorsal carpal ligament to the dorsal aponcurosis of the little finger (Fig. 281) and is sometimes double, taking the place of the tendon of the extensor communis to the little finger, which may be poorly developed or even absent (Fig. 289).

Tendon of extensoris carpi radial. brevis Tendon of extensoris carpi radial. longi

Fig. 280. 1,hatith

THE DEEP OBLIQUE GROUP OF EXTENSORS.

 atongside of the abluctor, and arizes from the interesicele membrane and irom the dural surfaed of the radius. It croser the tendons of the extensore carpi radiale - ard it skender temdont pataces through the stme compartment an the abducter flig. 2Sot and is inecriced iote the dorat apencurosis of the first phatanx of the thamb.

THE DEEP STRAIGHT GROUP OF EXTENSORS.

The musckes of this group lie immediately to the uthar -iete of the precedines. but they are deeply placed in the forearm and are completety concealed by the euperticial extemsors.

The extensor pollicis longus Figs. 270,280 , and 28_{0}) is wronger than the brevis. It arises from the dorsal surface of the ulna and from the interosecous membrane and forms a

Fig. 28 i.-Tendons and muscles (interossei dorsales) of the dorsum of the hand.
The dorsal carpal ligament is retained, the rest of the dorsal fascia being removed.
Fig. 282.-The palmar aponeurosis and the palmaris brevis.
The thenar and hypothenar muscles are shown covered by the fascia.
long, slender, muscular belly which passes downward to the wrist-joint beside the extensor digitorum communis. Just before reaching the wrist it terminates in a tendon which passes through a special compartment in the dorsal carpal ligament (Fig. 289), crosses* the tendons of the extensores carpi radiales immediately before their insertion, and is attached to the ungual phalanx of the thumb, being partly adherent to the tendon of the extensor pollicis brevis.

[^40]The extensor indicis proprius (the indicator) (Figs. 279, 280, and 289) is a long slender muscle situated to the ulnar side of the extensor pollicis longus. It arises chiefly from the dorsal surface of the ulna, receiving additional fibers from the interosseous membrane, is completely concealed by the extensor digitorum communis, and passes through the dorsal carpal ligament in the same compartment with the latter muscle (Fig. 289). Just above the wrist-joint it terminates in a tendon which runs on the dorsum of the hand alongside of the tendon of the communis for the index-finger and forms with this tendon the dorsal aponeurosis of that finger.

It is supplied from the radial nerve. It aids in the extension of the index-finger.

THE MUSCLES OF THE HAND.

The thenar and hypothenar eminences occupy respectively the radial and ulnar borders of the hand, but the flexor tendons and lumbricales, running in the middle of the palm, are covered by a strong aponeurosis which is usually a direct radiation of the tendon of the palmaris longus (see page 193) and is known as the palmar a poneurosis (Fig. 284) (the palmar fascia). This aponeurosis is always connected with the transverse carpal ligament and gradually fades away upon either side into the fascia of the thenar and hypothenar eminences. It is narrow at the transverse carpal ligament and becomes broader as it passes downward toward the fingers, and its longitudinal fasciculi, which gradually disappear in the integument over the bases of the proximal phalanges of the second to the fifth fingers, are united in the distal portion of the palm by transverse fasciculi, which close in the interspaces lying between the longitudinal fasciculi passing to the individual fingers. These spaces give passage to the vessels and nerves for the margins of the fingers, and beneath them are situated the lumbricales.

The ulnar margin of the denser central portion of the palmar aponeurosis and the transverse carpal ligament give origin to a muscle which passes over the muscles of the hypothenar eminence and the ulnar vessels to the integument at the ulnar border of the hand. This muscle is situated entirely within the superficial fascia of the palm, varies in its development in different individuals, and is termed the palmaris brevis (Fig. 282).

[^41]
 of the hand

THE BlUSCIES OF THE THEZAAR E：II：OF：VCE．

 longus（sect page はッフ）．

 carpal bone of the thumb．

 longus．

 hand by the difterent nerseatiply of the ter＇ha bobl

 bricales，and rests upon the imteresecus wheni＝1 and derali－ 1 ．Gome of its filers，which have an oblique direction and are immately commected with the decplead of the thenor brevis，ariee at

Fig. 283.-The palmar muscles after removal of the palmar aponeurosis.
The tendon-sheath of the middle finger has been split lengthwise.
Fig. 284.-The deep layer of the palmar muscles.
The transverse carpal ligament and the abductores digiti \bigvee^{\prime} and pollicis brevis have been removed. The tendons of the long flexors have been removed from the carpal canal and, after splitting the tendon-sheaths of the fingers, have been partly removed and partly drawn aside.
the bottom of the carpal canal from the palmar surfaces of the lesser multangular (trapezoid) and capitate (os magnum) bones, but the greater number arise from the palmar surface of the shaft of the third metacarpal bone, and pass almost horizontally toward the narrow tendon of insertion which is attached to the basal phalanx of the thumb by means of the ulnar sesamoid bone.

The muscle is supplied by the ulnar nerve. It adducts the thumb, i. e., approximates the thumb and index-finger.

THE MUSCLES OF THE HYPOTHENAR EMINENCE.

The abductor digiti quinti (Figs. 285 and 290) is the strongest and innermost muscle of the group. It arises from the pisiform bone, sometimes also from the transverse carpal ligament, and is inserted into the ulnar border of the dorsal aponeurosis of the little finger.

It is supplied by the ulnar nerve, and abducts the little finger, $i . c$., separates the little from the ring finger.
The flexor digiti quinti brevis (Figs. 285 and 286) arises from the transverse carpal ligament and from the hamulus of the hamate (unciform) bone. It is a small slender muscle situated to the radial side of the abductor and may be entirely absent, or fused with the opponens. Its short tendon of insertion is attached beside that of the abductor into the basal phalanx of the little finger.

It is supplied by the ulnar nerve. It flexes the first phalanx of the little finger.
The opponens digiti quinti (Figs. 283, 284, and 290) arises together with the preceding muscle and runs to the ulnar border of the metacarpal bone of the little finger.

It also is supplied by the ulnar nerve and opposes the little finger.

THE INTEROSSEI AND THE LUMBRICALES.

The interossei completely fill the interspaces between the metacarpal bones. Those muscles situated nearer to the dorsal surface are known as the interossei dorsales, those nearer the palmar surface as the interossei volares.

The four interossei dorsales (Figs. 28r, 285, and 289) are located in the dorsal portions of the four interosseous spaces, the largest being the interosseus dorsalis primus, which is situated between the metacarpal bones of the thumb and index-finger. They arise by two heads from the opposite surfaces of the contiguous metacarpal bones and are the only muscles which are partly visible beneath the fascia upon the back of the hand. Near the heads of the metacarpal bones

they terminate in short tendons which radiate into the dorsal aponeuroaes of elo bowl phathen. (see page 205) Fig. 2So), the middle finger receiving the tendon- of phe srand at 1 thin muscles, while the undon of the first passes to the radial -ile oi the iskes in for, arol that of the last to the uhnar side of the riner-finger.

The interossei volares (Figs. $28+$ and 287) are three in number and are decply placed in

Fhe. $28_{5}-$ Dingram of the dorsal aponcurosis of the fingers and of the neterose Arestes.
the palm, the two ulnar muscles (the second and third) being situated beside the abductor pollicis and the first or radial one beneath the latter muscle. They arise by a single head, the firet one coming from the ulnar berder of the metacarpal bone of the inder-finger and the second and third from the radial sides of the fourth and fifth metacarpal bones. Each muscle is inserted into the cxtensor tendon of the finger from the metacarpal bone of which it takes its origin. The index-finger consequently receives the tendon of an interosseus dorsalis upon its radial side and

Fig. 2S6.-Diagram showing the relation of the tendons of the interossei and lumbricales to the dorsal aponeurosis of the fingers and the arrangement of the long flexor tendon of the fingers.

Fig. 2S7.-Diagram of the interossei volares.

Fig. 288.-Diagram of the lumbricales.

 in the regim of the ir in-ertions.

 hich arixe deep in the palm irom the four tenfons of the tle aor digitorumpreftedis. The tern radial musles ariec be a single head from the ratial borders of the two radial tendme, withe
 tendons. Near the hasal thalanes of the tinere they terminate in lers - lendertendots whith we incerted, from the radial side. into the dorsal apone uroses of the fineors in cemmon with the interosei.

THE RELATIONS OF THE EXTENSOR TENDONS AND THEIR SHEATHS BENEATH THE DORSAL CARPAL LIGAMENTS.

As the tendens of the evenours uf the hand and of the dingers paw owe the wriat jeint Fig
 doral surface of the radius and ulna he a the hened pertion oi the antibrachial face ia the dersal arpal paserier ambular ligament. The individual syovial sheaths are sinteat in ainieresit compartment of the ligament, since this seructure is attathed th the lengitidinal rideres upan the inones and copecially thene of the radias.

These compartment will he destibed in the dreler in whi h they are onewnered in passing from the radial to the ulnar sede of the writ (Fies 2so and 2si). The tende as ef the extensor pollicis brew is and alxductor pollicis longus fas through a commen compartment and wa certain wate are invested by a commonsmon ial sheath. The sound ompartment gives passage to the tendons of the catensor carpi rutialis longus and bresis, which wally powes individual synowial sheaths. The third compartment is suferficially flaced and is not longitudinal but obligue; it croses the tendons and synorial shethe of the more deeply situated eecond compartment at an acute angle and contains the tendon and synovial sheath of the extensor pollicis longus. Next follows the larget of all the compartmente; it contains in a common sheath the
four tendons of the extensor digitorum communis and that of the extensor indicis proprius. The fifth compartment contains the slender tendon of the extensor digiti V proprius and is superficially situated. The sixth and last compartment gives passage to the tendon of the extensor carpi ulnaris.

The synovial sheaths are considerably longer than the width of the dorsal carpal ligament; those of the extensores communis, indicis, and digiti V may extend to the middle of the metacarpus.

Fig. 2S9.-The arrangement of the tendons of the extensor muscles and their tendon-sheaths beneath the dorsal carpal ligament and in the hand (somewhat diagrammatic).

THE EXTENSOR TENDONS OF THE FINGERS.

The extensor tendons or dorsal aponeuroses of the fingers (Figs. 28i, 286, and 289) are chiefly composed of the tendons of the extensores digitorum, but also receive fibers from the tendons of the interossei and lumbricales.

 tu.at Thalane.

THE TENDONS AND SYNOVIAL SHEATHS OF THE FLEXOR TENDONS IN THE PALM.

 ligament-may be distimediahed.

 forming slits which give pa-ane to the iendens of the profundes. In shts situation the latter
 eventually attached to the bace of the unewal thatanes. The tro =lipe of each sublimis

[^42]

Fig. 290.-The arrangement of the tendon-sheaths, of the long flexors and of the flexor carpi radialis (somewhat diagrammatic).
tendon pass beneath that of the proiundus and are attached to the laterel moryins at the xomel

 inte the cerminal phatanere. The flexor undonta are indirecty comectel with the beal

 fundus to the midetle phatameres.

THE FASCIE OF THE UPPER EXTREMITY.

 (1) the pectoritio.

 epicondyle ant the thermal one to the chermal yhendele.

 iascia. It is partictarly dene le low the region of the chem, forming wn aponeurusto which in

 the cubital fossa and orer the brachioradialis and crobsor arri radiatis keges, with which it is not adherent.

In the lower portion of the forearm the antibrathial fascia gives off decfer layers which enclose the individual muscles and iendons. Tuward the wrist-joint the volar and dursal

Fig. 29I.-The fascia of the left arm seen from the volar surface. Fig. 292.-The fascia of the left arm seen from the dorsal surface.
surfaces are reinforced by strong circular fibers, forming the volar carpal ligament (Fig. 291), which is situated above the wrist-joint and over the flexor tendons and is continuous by its distal margin with the transverse carpal ligament (see page ${ }^{12} \overline{7}$).

The dorsal car pal (postcrior annular) ligament (Fig. 28r) is a very strong, broad, oblique fasciculus which passes from without inward and from above slightly downward. It is connected with the dorsal surface of the radius, the styloid process of the ulna, and the triquetral (cuneiform) bone, and forms the previously described compartments for the extensor tendons (see page 203).

The dorsal fascia of the hand commences at the distal margin of the dorsal carpal ligament. As it is very thin, the line of demarcation is much more noticeable than is the one between the ligament and the antibrachial fascia. The palmar aponetrosis (see page 198) is well developed and is by far the strongest of the fascix of the upper extremity.

THE MOST IMPORTANT BURSE OF THE UPPER EXTREMITY.

r. The subacromial bursa is situated beneath the acromion and above the insertion of the tendon of the supraspinatus.
2. The subdelloid bursa (see page 186) (Fig. 268).
3. The coracobrachial bursa is situated at the tip of the coracoid process, where it gives origin to the coracobrachialis and to the short head of the biceps.
4. The infraspinatus bursa, at the insertion of the infraspinatus into the greater tubercle of the humerus.
5. The subscapular bursa (see pages I2I and 188).
6. The bursa of the teres major, at the insertion of the tendon of the teres major into the greater tubercular ridge.
7. The bursa of the latissimus dorsi (see page 146).
8. The subculaneous olecranal bursa (Fig. 292) between the olecranon and the skin.
9. The subcutancous epicondylar burse (internal and external), over the epicondyles of the humerus.
10. The intratendinous and subtendinous olecranal bursa situated respectively within and upon the insertion of the tendon of the triceps (inconstant).
11. The bicipitoradial bursa (see page 189) (Figs. 273 and 275).
12. The cubital inlerosscous bursa, between the upper extremities of the radius and ulna.
13. The bursa of the extensor carpi radialis brevis, at the base of the third metacarpal bone.

It. The dorsal subcutancous metacarpophalangeal burse, inconstant subcutaneous burse upon the dorsal aspect of the joints of the same name.
15. The dorsal subcutaneous digital bursa, subcutaneous burse upon the dorsal side of the proximal interphalangeal joints.
16. The bursa of the flexor carpi ulnaris, at the attachment of the flexor carpi ulnaris to the pisiform bone.

Fig. 291.
17. The bursa ap the fleaur corpi radiali, at the tuberele of the naviculat then
 posterior to the capitular ligaments.

 i. e., the it ier itiml mater iorth.

 durssiks. - [n]

THE MUSCLES OF THE LOWER EXTREMITY.

The muscles of the fower extremity are diveted inte the mushe of the his, the mache of the thieh, the mustes of the key, and the muske of the fext. The muske wi the hip are weain

 obturator intornus with the semelli, the quadratus jemoris, and the demer heriz hate.
 side, and those of the peoterior surface. 'The first two ereupls are segrated ly the sartorias: the muste of the anterior surface is :he quadrio ps jemeris: thowe of the inmer side are the pee-
 minimus, and the oburator cexternus: and those of the posterior surfice are the biceps jomoris, the semilendimesus, and the semimembranesus.

In the leg there may be distinguished the muscles of the foreterior suriace the muscles of the calf), the muscles of the anterior surface, and the muste of the wuter side. The muscles
of the posterior surface are arranged in two layers, the superficial one being formed by the triceps sure and the deep one consisting of the popliteus, the tibialis posterior, the flexor digitorum longus, and the flexor hallucis longus. The anterior group is composed of the tibialis anterior, the extensor digitorum longus, the peronœus tertius, and the extensor hallucis longus. The external group is formed by the peroneus longus and brevis.

The muscles of the foot may be divided into the muscles of the dorsum and the muscles of the sole (plantar muscles). The muscles of the dorsum are the extensor digitorum brevis and the extensor hallucis brevis. The muscles of the sole are composed of a median group, the flexor digitorum brevis and the quadratus planta; of a group passing to the great toe, the abductor hallucis, the flexor hallucis brevis, and the adductor hallucis; and of a group passing to the little toe, the abductor digiti V, the flexor brevis digiti V, and the opponens digiti V. The lumbricales and the interossei are also situated in the sole of the foot.

THE MUSCLES OF THE HIP.

THE INTERNAL MUSCLES OF THE HIP, THE ILIOPSOAS.

The iliopsoas (Figs. 252, 296, 297, 299, and 300) is composed of the psoas major and the iliacus, which are completely separated in the upper portion of their course but united at their insertion. This muscle frequently also includes a psoas minor.

The psoas major is a long, strong muscle, the greater portion of which is situated in the posterior abdominal wall. It arises from the upper and lower margins of the bodies of the twelfth thoracic to the fourth lumbar vertebre, from the intervertebral fibrocartilages, and from the tendinous arches which pass over the concavities of the middle of the bodies of the lumbar vertebree and the lumbar vessels. A second series of origins comes from the transverse processes of all of the lumbar vertebræ, but is concealed by the fibers proceeding from the vertebral bodies, and the nerves forming the lumbar plexus pass between the two origins of the muscle.

The muscle is flat above but becomes narrower and thicker as it passes downward and outward over the terminal line of the pelvis and beneath the inguinal ligament to unite with the iliacus.

It lies upon the lateral surfaces of the upper and middle portions of the lumbar vertebral column and its upper portion is bridged over by the internal lumbocostal arch of the diaphragm. The outer margin of the muscle is in relation above with the quadratus lumborum, which it partly conceals, and below with the inner margin of the iliacus. The inner margins of the two psoas major muscles form the lateral boundaries of the pelvic inlet.

The iliacus is a flat, thick, strong muscle which fills the entire iliac fossa. It arises from the iliac fossa, extending upward to the crest of the ilium and forward to the anterior superior and inferior spines, and passes downward and forward behind the inguinal ligament and fuses with the psoas major.

The combined iliopsoas passes beneath Poupart's ligament through the muscular lacuna (see page 231) into the thigh, where it is placed between the rectus femoris and the pectineus and forms a deep fossa with the latter muscle, the iliopectineal fossa. It runs directly over the capsular ligament of the hip-joint, passes slightly backward, and is inserted by a short tendon into the lesser trochanter. Where the muscle runs over the iliofemoral ligament of the hip-
 lineal buras lig. 20sis.

 2in) and is inacreal with thin fanciat in the region of the ilineretineal minenes.

the gluteal muscles.

The glutaus maximus /Fifs. 2uミ athl 204 is a large strong mancle, particularty thich* in its lower portion, and is situated in the ghlutad region immediately lne neath the win. It is conered by a thin
 Which is wery well develoged in thi- situation.

The mushe arisa irom the evternal surface of the ilium (tig 20) between the perterion glutat line and the perarere pertion withe iliac erest, from the pesterior surface of the satcrum and concor and from the posterior soteroiliac ligament in thin situe tion), and from the sacto tuberous ligament. H5 fibere pass from alxace townward and from within outward. 'The fas ituli are umusually thatk and distinctly separated from eathother bene prating septa of fascia and fitt; the lower einner) fasticuli are the longest, and this pertion of the muncte is wise as thick as the upper fonter) segment.

 dertum of the i-iams.

The superticiat fibers of the musche, espectially those of the upper weater half, pass wer the erreater trechanter te the ilionthal hand of ehe fascia lata ree page z.2) ; the deeper filers, particularly the longer inierior ones, are inated into the glateal tuberosity.

The imere and upper margin of the glutans maximus is in retation with the posterior layer of the lumbedersal fase ia, where this structure sives origin to the tatis-imus: the antero-external fortion is in relation with the gluteus medius and the glutal fascia, which envelops the latter muscle. It rums over the tuberosity of the ischium and the origins of the pheor group of musces (see page 21S), these latter making their appearance benceth the fascia below the inner and lower

[^43]Fig. 294.-Superficial layer of the posterior muscles of the hip.
The portion of the superficial layer of the fascia lata which covers the tensor fasciæ latæ has been removed. * = position of greater trochanter.

Fig. 295.-Middle layer of the posterior muscles of the thigh.
The glutaus maximus has been divided and reflected.
margin of the glutæus maximus. The insertion conceals the tendinous origin of the vastus lateralis from the trochanter major. The tendon of insertion is separated from the great trochanter by a large bursa, the trochanteric bursa (Fig. 295), beneath which there is usually one or two additional bursæ, the gluteofemoral bursa or bursa (Fig. 295). About half of the glutæus medius, the piriformis, the obturator internus and gemelli, the quadratus femoris, and the adductor minimus are covered by the glutæus maximus.

The glutæus maximus is supplied by the inferior gluteal nerve. It extends the thigh and is the antagonist of the iliopsoas.

The glutæus medius (Figs. 293, 295) is also a strong, flat, thick muscle, part of which is concealed by the glutæus maximus, the remainder of it (Fig. 294) being situated in the upper gluteal region directly beneath the gluteal fascia, to which it is adherent. It arises from the outer surface of the ilium (Fig. 293), in the area between the anterior gluteal line, the iliac crest, and the posterior gluteal line, and from the gluteal fascia. The fibers of the muscle converge toward the greater trochanter, the posterior fasciculi being more or less independent and passing obliquely downward and outward, the middle fibers running directly downward and the anterior ones downward and inward. The short and broad tendon of insertion is attached to the outer portion of the greater trochanter (Fig. 295), extending upward as far as the tip of this process.

While the greater portion of the glutæus medius is covered by the glutæus maximus, it in turn completely conceals the glutæus minimus, and its posterior margin is usually in immediate relation with the upper margin of the piriformis. Beneath its insertion there is usually situated a bursa, the posterior bursa of the glutaus medius (Fig. 301).

[^44]The glutæus minimus (Figs. 293, 301, and 302) is a flat, broad, fan-like muscle which lies upon the outer surface of the ala of the ilium and the postero-superior aspect of the articular capsule of the hip-joint. It arises from the posterior surface of the ilium between the anterior and inferior gluteal lines (Fig. 293), and the fibers converge from all sides toward the greater trochanter. In the middle of its course the muscle develops a broad aponeurosis which passes directly into a short broad tendon. The insertion is into the tip and inner border of the great trochanter.

The glutæus minimus, like the medius, is supplied by the superior gluteal nerve. It also has a similar function (abduction).

The piriformis (Figs. 295, 298, and 300 to 302) is a decidedly conical muscle which is usually in immediate relation with the posterior border of the glutæus medius. Its insertion is

 bencath the gluteds maximus, and the origin is situated within the pelvic atsit!. It aria- frem the
 from between the foramina or cone cating them), and from the margin of the greater wiatie sethe After leaving its flat and bread origin, the muscle becomes somewhat narrower, pate- Al roblgh the middle of the greater se iatic foramen, leneath the glutatus mamus becomes fedinous rather abruptly, and is inserted loy a bender rounded tendon into the tip of the greater trochanter.

The piriformin dexe not fill the greater se batic foramen but divicke it inte two (omprartments which transmit both vesols and nerves, the seiatic nerse being one of ecveral structure which leave the pelvic cavity through the lower compartment.

[^45]The obturator internus (Fige. 295 and 300 to .302), like the piriformis, arines in the true pelvis, but it patsee to the gluteal region through the lesur wituic foramen. The muse le arias from the obturator membrane and the adjacent surface of the pubsin and ise hium athe wa ar tain extent, from the obturator faseia. It in sery broad at it wrgin, but beecome marhedly nar rower as its fibers converge toward the lesere siatic foramen, in pasing through whi hathe math bends at almost at right angle around the margin of the lewer at ronciatic noth the surface directed
 slightly flattened tenden which gasaes directly to the tre hanteric foss, where is is interted.

After pasoing through the losor stiatie foramen and reathing the fowering surface of the
 superior arises from the syine of the ishium, the fe mellus inferior from the fechial :abereits They are inserted into the wendon of the obturator internus almos throughout the ir entire hergith. so that they together with the tendon form a hind of genniform math. Where the wharatirs internus bends about the margin of the leseer stiatie moth the te is confamtly -itquted a bursa, the burse of the obturator internus, and upon the muscle lice the thick ecintic nerse.
 Like the piriformi, it i an whest rothtor of the thigh.

The quadratus femoris (Figes. 205 and 301 is a that. thick, rectangular musterstuated in
 and inserts by a short tenten inte the intertex hanteric ridere. The upper matein of the muste is in immediate relation with the gemellus inferior, and the hower margin with the adductor minimus. Usually bencath the guadratus, or in the groose between it and the gemellus inferior, runs the obturator externus, upon which lies the sciatic nerve.

The quadratus femoris is supplied liy the sciatic nerve. It in an evternat rotator of the thigh.
The tensor fasciæ latæ (Figs. 294 and 200) is a flat clongated muscle, narrow above and broad below, which is situated between the two lavers of the fascia lata (see page 232) in the upper gluteal, trochanteric, and external femoral regions. It arises by a short and flat tendon from

Fig. 296.-The superficial layer of muscles of the anterior surface of the thigh.
Fig. 297.-The muscles of the anterior surface of the thigh after removal of the sartorius. The inguinal ligament has also been removed.
the anterior superior iliac spine, and at the junction of the upper and middle thirds of the thigh becomes distinctly broader and is continuous with the iliotibial band (tract of Maissiat) of the outer side of the fascia lata. Anteriorly the muscle is in immediate relation with the sartorius, postcriorly with the glutæus medius, and it partly covers the vastus lateralis.

The muscle is supplied by the superior gluteal nerve and serves to increase the tension of the fascia lata.

THE MUSCLES OF THE THIGH.

THE SARTORIUS.

The sartorius (Fig. 296) is a very long, flat, narrow muscle running diagonally across the anterior surface of the thigh, and is the longest muscle of the body.* It arises from the anterior superior spine of the ilium in common with the tensor fasciæ latæ but in front of the latter muscle, becomes considerably broader for a short distance after its origin, passes inward and downward below the iliopsoas and upon the upper portion of the rectus femoris, covers the groove between the vastus medialis and the adductors in the middle third of the thigh (see page 217), and reaches the lower portion of the internal femoral region. In this situation it gradually becomes narrower and is twisted so that the surface which was anterior in the upper portion of the thigh now becomes internal. It then takes up a position beside the outer (anterior) margin of the gracilis and becomes tendinous as it passes over the inner aspect of the articular capsule of the kneejoint, and its flattened tendon runs above that of the gracilis to be inserted into the inner border of the tuberosity of the tibia, being separated from the bone by the sartorial bursa. The tendon of insertion forms the uppermost of the group of tendons known as the pes anserinus (see page 219).

The sartorius is supplied by the femoral nerve. It aids in the flexion of the thigh and the extension of the lower leg and acts as an internal rotator when the knee-joint is flexed.

THE MUSCLES OF THE ANTERIOR SURFACE.

The quadriceps femoris (Figs. 296 to 298, 30I, and 302) consists of four different heads, the most independent of which, the reclus femoris, unites with the remainder only in the lower portion of its course. This head passes over two articulations, while the remaining three are intimately adherent with each other and extend over the knee-joint only.

The rectus femoris (Figs. 296 to 298) is a long, thick, decidedly spindle-shaped muscle, which is situated in the anterior femeral region, lying for the most part immediately beneath the deep fascia. It arises by a short, strong, bifurcated tendon (Fig. 298), one part of which comes from the anterior inferior spine of the ilium and pursues the same direction as that of the muscle

[^46]

Fig. 200.
itself, while the nther oroceeds from the upler marein wi the ace aboulum and juin the erizis ire
 as an aponeurosis upen the anterior surface of the musele. The tibers wh the meta le do tut or longitudinally, but diverge downward and hackward toward the insertion from atombison- -ir

 patse (t) the uper marsin of thi lonte.
 the anterior atol internal femoral regions. It- wrigin i- irom the inner lipu withe listat a-perat the femur where it is atherent whe insorion- withe addueture. It fibers rion domanard at forward, some of them le ing inserted inte the upper margin of the patellat with the comblout ic

 vastus inturmerlius.

 the direction of the uprer ise in uli approathine the serical.

 indepentent of all the hats of the qualriceps, since it lateral mareins are inseparably cometic with the wher two bati. It arise from almos ihe entire length wi the anterior stratite ait shaft of the fomme, and it liber foss from behind downward abel forward into the anteriar te dinous suriate oi the mante and -ubseyuently into the eommon tendon withe qualricts. I
 g'mu wubcruriw).

The tommon tendon of insertion of the four hearls wi the quatrices arixe immediately almo the patellat be the union wi the temben wi the retu-with those of the bosi. It embrate the enti
 for the temen which is continued to the tuberosity withe tibia a the fatellar ligament Fee fat 155. The actual point wi insertion of the yuadricup is consequenty this rolaghened process the tibia.

The guadricep is suppley by the femerat nerve. In wiending the legh weste the patha.

Fig. 298. - The deep layer of muscles of the anterior surface of the thigh.
The iliopsoas, sartorius, rectus femoris, pectineus, adductor longus, and gracilis have been removed.
Fig. 299.-The insertion of the iliopsoas and the origin of the obturator externus.
The adductors have been divided and reflected; the femur has been sawed through below the trochanters, and is slightly flexed and rotated outward.

Fig. 300.-The origins of the piriformis and the obturator internus.
The pelvis has been divided in the median line.

THE INTERNAL OR ADDUCTOR GROUP.

The muscles of this group arise from the pubis and ischium in such a way that they form a series of rings about the obturator foramen. The outermost ring is formed by the obturator externus, the middle by the adductor brevis and minimus, and the inner by the pectineus, the adductor longus, the gracilis, and the adductor magnus.

The pectineus (Figs. 296 and 297) is a flat, strong, quadrangular muscle situated between the iliopsoas and the adductor longus in the subinguinal and anterior femoral regions, and forming, together with the iliopsoas, the iliopectineal fossa. It arises from the crest of the pubis as far forward as the pubic tubercle, passes obliquely from above downward and from within outward, and is inserted by a short tendon into the pectineal line of the femur. The insertion is partly concealed by the iliopsoas, covers the obturator externus and the upper part of the adductor brevis, and passes over the inner surface of the articular capsule of the hip-joint.

The pectineus adducts the thigh and also assists flexion. It is supplied by the obturator and femoral nerves.
The adductor longus (Figs. 296 and 297) is a thick, flat, almost triangular muscle, situated between the pectineus and the gracilis. It arises by a rather narrow but short and strong tendon from the superior pubic ramus, between the origins of the pectineus and gracilis, becomes decidedly broader as it passes downward, and is inserted by a short tendon into the middle third of the inner lip of the linea aspera. The fibers of the muscle pursue a direction similar to those of the pectineus, although they run more directly downward. If the muscle is well developed its upper margin is immediately continuous with the lower margin of the pectineus, and while it is situated between the pectineus and the gracilis above, its lower portion lies upon the adductor magnus, which is exposed between the adductor longus and the gracilis. The upper portion of the adductor longus covers the adductor brevis, the lower the adductor magnus, its tendon of insertion is concealed by the sartorius and is adherent to the origins of the vastus medialis (see page 215), and, together with the sartorius and the inguinal ligament, the muscle forms a triangle, the femoral triangle (triangle of Scarpa).

The adductor longus is supplied by the obturator nerve; it adducts the thigh.
The gracilis (Fig. 297) is a long, thin, slender muscle, situated upon the inner aspect of the thigh. It arises by a flat tendon from the superior and inferior rami of the pubis near the symphysis, becomes somewhat broader at first, but soon narrows and, just above the knee-joint, passes into a long, round, slender tendon which runs to the inner border of the tubercle of the tibia and radiates into the pes anserinus as the second tendon of that structure.

 Alexion of the knee-joint, and, when the knee is flexed, rutate, the leg inward

The adductor brevis (Fig. 2nS) is a long, broad, rather thick muscle which is cinated in the middle layer of the adductors (bechind the pectinets atrd adductor longus, but in front of the adductor magnus). It is longer than the pectinews, shorter than the adductor longus, and is usually completely concealed by thece two muscles. It arises from the superior ramme of the pubis, nearer the obturator foramen than the adductor longus, and its libers pursue a course simitar to thene of the latter musele, but not so oblique, to the upper third of the inner lip of the linca asperat of the femur.

The adductor magnus (Figs. 20610205 , 30 r , and 302 is the strongest of the adductors. It forms the deepest layer and is situated most pesterierly, arising from the inferior pubse ramus and from the lower borker of the tuberosity of the iachium. If upper fiters pas but slighty downward, the middle are mere oblique, and the lower and imermost fibers pursue an almost vertical direction: the unper and middle libers pase behind the adductur longue and brevis to a muscular or thert tendinou- insertion inte the upper we-shirds of the inner lip of the line atserat the lower, dmont wrical fibers, howerer, pass inte a round =lender tenden which rums to the lowest portion of the linea aspera amel to the internal ep icomblye of the femur. At abeut he lewer third of the thigh this inertion cobtainn wh chongated oritice, known as the tenlineas ablacar

Between the undinens origin of the vatus medialis and the shore endinots irecrtions e if
 the addutor Hunter') camd, by the sartorius. It contains the femoral reats, and the endinous fibers of beth group of muche are interworen in this -ituation io form a fibsous baccular sheath.

While the ereater pertion of the anterior surface of the adductor magnas is concred by the

The adductor minimus ligh. 205,301, 302 is a small, flat, apyrusimately yadrangular musce, which fretquently apeare to lxe simply the upper pertion of the aductor matnua, with Which it is alwa! directy continuous. It ariac from the inferior pubic ramu or irom the junction of the inferiner rami of the pubi- and inchum, it upper filere le ing alment horizontal, and
 the adductor magnus from behind to be inserted inte the upper end of the femur be bw the great trochanter and bevide the gluteal tuberosity. It- lower tibers run obligucty downward and are inserted, logether with these of the adductor magnus, into the upper extremity of the inner lip of the linea asperat. The sciatic nerve lies aloo upon the adductor minimas (ece page 213).

The adductor magnus and minimun are chitly supplied by the obturator nerve and partly alw by the sciatic neree. Their action is similar to that of the of her adfuctors.

The obturator externus (Figs. 295 and 299) belongs to the adductor group only on account

Fig. 301.-The deep layer of the posterior hip muscles and the superficial layer of the flexors of the thigh region.
The glutæus maximus and medius and the obturator internus have been removed.
Fig. 302.-The deep layer of the posterior hip muscles and the deep layer of the flexors of the thigh region.
The glutæus maximus and medius, the quadratus femoris, the long head of the biceps, and the semitendinosus have been removed.
of its position and innervation. It is situated upon the outer and lower surface of the pubis and ischium and is completely covered by the pectincus, the adductor longus, and the adductor brevis. Like the obturator internus within the pelvis, it arises from the pubis, from the ischium, and from the obturator membrane. It becomes narrower and thicker, runs over the lesser trochanter, and passes over and behind the insertion of the iliopsoas, along the neck of the femur between the gemellus inferior and quadratus femoris, largely covered by the latter muscle, to the trochanteric fossa, where it is inserted beside the obturator internus. The muscle becomes tendinous a short distance before its insertion.

The obturator externus is supplied by the obturator nerve. It acts as an external rotator.

THE POSTERIOR GROUP, THE FLEXORS.

This group consists of but three muscles, the biceps femoris, the semitendinosus, and the semimembranosus, which have a more or less common origin from the ischial tuberosity; as they pass toward the knee they are grouped in such a way that the biceps is external and the semitendinosus and semimembranosus internal. The three muscles lie in the posterior femoral region and their origins are concealed by the glutrus maximus.

The biceps femoris (Figs. 301, 302) is a large, strong muscle which is composed of a long biarticular and of a short monarticular head and belly. The long head (Fig. 301) is a rather strong tendon which arises in intimate connection with the semitendinosus from the lower aspect of the tuberosity of the ischium. It passes downward and becomes continuous with a broad muscular belly, which at first lies behind the adductor magnus and then passes markedly outward to take up a position behind the vastus lateralis. At the lower third of the thigh it receives the second head or short head (Fig. 302), which is short and rhomboid, and arises from the lower half of the outer lip of the linea aspera.

At the junction of the two heads, or somewhat above it, the posterior surface of the long head possesses a distinct aponeurosis which is directly continuous with the tendon of insertion. The short head is muscular throughout its entire course.

The two heads unite just above the knee-joint and the muscle is inserted by a tendon into the capitulum of the fibula. The inner margin of the biceps forms one of the boundaries of the popliteal fossa (sce page 220).

The long head of the biceps is supplied by the tibial nerve, and the short head by the peroneal nerve.
The semitendinosus (Fig. 301) is muscular in its upper two-thirds and tendinous in its lower third. At its origin from the tuberosity of the ischium it is completely adherent to the long

Sucrotuberous lig.
Sacrospinous lig.
Obturat ir interruss
Buran of offurutor int

Tendon of sem.tendthosuc
leradon of semlime'mbramesas
head of the biceps, although its tendon is somewhat horter, and its masa le fortion frembertly exhibits a tendinesus intersection. In the lower fourth of the thigh it pasee intu af glindriat eca don which is insertel inter the inner surfate of the tuberele of the whia and lerm- the lowernase tendon of the per ancrinu- Fïg. 20,s).

 situated thin membrance. The broatl endinous surfoce of the per atherimer is aparated from the bone bos the anserine bursa (Fik. 20, anserinus is ahe intimately connectut with the crural fascia.

 riorly the intar margin of the thbie. Bencath the tendon rit the amimembeanuan o there is
 page 1300
 and the lone head of the biecto, in the lower thirel of the thigh, the mavele lio fitiortalat the

THE MUSCLES OF THE LEG.

THE MUSCLES OF THE POSTERIOR SURFACE. THE CAIF MUSCIES.

 a superticial laser formed by the triteps sura, and a deeper layer. ensisting oi the pepliters above

THE SUPERFICIAL LAYER, THE TRICEPS SURAE.
The triceps suræ consists of a superficial biarticular and bicipital portion, the gastrocnemius, and of a deeper monarticular portion, the solews.

The gastrocnemius (Fig. 30,3 is a that, clongated. distinctly bicipital and very strong muscle,

Fig. 303.-The superficial muscles of the calf of the leg.
Fig. 304.-The second layer of the calf muscles. The gastrocnemius has been removed.
Fig. 305.-The deep musculature of the calf, seen from behind and from the inner side. The triceps suræ has been removed.
which is situated upon the posterior aspect of the knee and leg; its muscular belly is situated chiefly in the sural region, while its tendinous portion is located in the posterior crural region. The two heads, the inner head (gastrocnemius medialis) and the outer head (gastrocnemius lateralis), arise by tendons from the upper extremities of the epicondyles of the femur and exhibit aponeuroses upon their internal and external surfaces, extending downward almost to the middle of the muscle. Beneath the somewhat stronger inner head is situated a bursa which communicates with the interior of the knee-joint, the inner gastrocnemial bursa (Fig. 304) (see also page 136). Both heads of the muscle pass immediately over the posterior surface of the knee-joint forming the inferior boundary of the popliteal fossa, and below the articulation they become broader and are united in such a manner that their line of union is indicated by a median groove which extends almost to their insertion into the common tendon. Somewhat below the middle of the leg, the muscular tissue terminates rather suddenly in a broad tendon which becomes narrower and fuses with that of the soleus.

The soleus (Fig. 304) is a flat, very broad, and rather thick muscle, the upper portion of which is covered by the gastrocnemius, the lower portion being situated immediately beneath the deep fascia to either side of the gastrocnemius tendon. The muscle arises from the capitulum, posterior surface, and outer border of the fibula, from the popliteal line and the surface immediately below it upon the posterior surface of the tibia, and from a tendinous arch passing over the popliteal vessels between the tibia and fibula, the tendinous arch of the solcus. Shortly after its origin the muscle becomes broader, and exhibits upon its posterior aspect an aponeurosis which is continuous with a tendon which fuses with that of the gastrocnemius and also receives the insertions of lower lying lateral muscular fasciculi. This tendon of the triceps sure, broad at first and becoming narrower and thicker as it passes downward, is known as the calcaneal tendon (tendo Achillis). It is the strongest tendon in the entire body and is inserted into the upper margin of the tuberosity of the calcaneus.

The triceps suræ also includes the plantaris (Fig. 304), a small muscle with a very short but rather strong belly and a very long slender tendon. It arises from the external epicondyle of the femur, to the inner side of and somewhat above the outer head of the gastrocnemius, which partly covers it, and the short muscular belly is directed obliquely outward and downward between the gastrocnemius and soleus. The slender tendon lies upon the inner side of the soleus, runs downward along the inner margin of the tendo Achillis, and fades away partly into this structure and partly into the deep fascia of the leg.

The triceps suræ is supplied by the tibial nerve. It produces plantar flexion of the foot. The plantaris acts as a tensor of the tendo Achillis.

THE POPLITEUS.

The popliteus (Figs. 304 and 305) is a flat triangular muscle which is in a class by itself. It is situated in the same layer as the soleus, with which it is directly related by its lower and outer

 jount.

THE DERP LAYER.

 tibialis peosterion is pulat awdy irmm the tibise and situated in the midalle, while the the wor diere

 the sole tit the lowt.

 of the pancrion -urface of the tibis, from the interosectu- membrance and from the inmer auriace of the tht whe le-ile the the wor digitorum, which frequenty partly conors it. Intmeliately bew

 to the internal rame ifom and where radiating alow the remaining cunciomem betes and evemet ing at tir th the cubreit.

[^47]The flexor digitorum longus Figes 305 and sif) rewemble the tibialis po-terior in its
 and, in the tower fourth of the leg, leetween the thbialin po-t rior and the fle eor hatlue is, the former muste being consed by it at a slighty higher lewd. The muste arize from the posterior surface and interesoun eres of the thbia and it enendon, like that of the tibialis posterior, is developed upen the imner looder of the muscle. This tendon is situated to the outer side of that of the tibialis posterior and rums beneath the laciniate ligament to the enle of the foot Fig. 315 where it divides into four tendons for the outer four toes. These perforate the tendon- of the flexor

Fig. 306.-The muscles of the anterior surface of the lower leg and of the dorsum of the foot. The transverse crural ligament has been removed.
Fig. 307.-The muscles of the lower leg and of the dorsum of the foot, seen from the side.
digitorum brevis and pass to the ungual phalanges. (Further details as to the relations of the tendons are given on page 231.)

The muscle is supplied by the tibial nerve and flexes the second to the fifth toes (especially the ungual phalanges).
The flexor hallucis longus (Figs. 305 and 3II) resembles the other two muscles in this group, but it is somewhat shorter and stronger and, at the same time, distinctly penniform. It is the most external muscle of the group and preserves this relation throughout the leg. It arises by a short tendon from the posterior surface and outer border of the fibula, below the origin of the solcus, i. e., from the lower two-thirds of the bone, extending downward to just above the malleolus. A thick tendon which is situated in the center of the broad muscle, commences in the middle of the leg and passes through the outer compartment of the laciniate ligament to the sole of the foot (Fig. 3II), where it crosses the tendon of the flexor digitorum and runs to the ungual phalanx of the great toe and indirectly also to the other toes.

The muscle is supplied from the tibial nerve. It flexes the great toe and indirectly also the four lesser toes.

THE MUSCLES OF THE OUTER SIDE OF THE LEG, THE PERONAEI.

The posterior borders of both of these muscles are in relation with the soleus and with the deep flexor group, while their anterior margins are in relation with the muscles of the extensor group, from which they are separated in the lower third of the leg by the lower portion of the shaft of the fibula and the external malleolus. They are situated in the external crural region.

The peronæus longus (Figs. 306 and 307) is a very long, distinctly semipenniform muscle, which arises by indistinctly separated anterior and posterior heads. The anterior head is a short tendon from the head of the fibula, the contiguous portion of the external condyle of the tibia and the crural fascia; the posterior springs from the upper two-thirds of the outer surface and outer border of the fibula. At the junction of the middle and upper thirds of the leg, both heads pass into a slightly flattened tendon upon the anterior surface of the muscle, which broadens as it descends and passes beneath the retinacula peroncorum (Fig. 307) (see page 230) in the groove behind the external malleolus, to the outer side of the sole of the foot. Deep down in the sole the tendon lies in the groove of the cuboid (Figs. 311 and 312), is provided with a thick sesamoid cartilage or sesamoid bone, and passes to the tuberosity of the metatarsal bone of the great toe, some fibers being prolonged to the internal cunciform and to the base of the second metatarsal bone.

The peronæus longus almost entirely conceals the origin of the peronæus brevis; in the lower part of the leg the latter may be seen both in front of and behind the margins of the peronæus longus or its tendon.

The peronæus longus is supplied from the peroneal nerve. It abducts the foot, assists in producing plantar flexion, and elevates the outer margin of the sole (pronation).

Fig. 307.

 loneal inter the dersal apoleturn-is of the lathe tex.
 ! mal blenan! -ay

THE ANTERIOR GROUP. THE EXTENSORS.

 grolp, ate chatul in the ath pior erural rexime

 is formed which is ditudted in the anterior and inner pertion of the muche: it rective mazedar
 beneath the eraciate ligament to the doral surface of the great toe

The extensor digitorum communis longus Firs. So and 315 in the outermon muscle of the group, and is seronger than the extensor hallue is. which it otherwiee resembles. The upper portion of this muste is narrow and arise: from the upper ond of the tibula between the peronatus longus and the tibialis anterior, but its greater portion ariee from the anterior border of the fibula, extending downward to just above the malleolus, and from the interoseous mem-

Fig. 308.-The muscles of the dorsum of the foot.
The compartments of the cruciate ligament have been opened and the tendons of the long extensors cut off shortly before their insertions.

Fig. 309.-The plantar aponeurosis.
Fig. 310.-The superficial layer of the plantar muscles.
The plantar fascia has been largely removed from the surface of the flexor digitorum brevis.
brane. The upper portion of the muscle is adherent to the origin of the tibialis anterior and to the deep fascia of the leg. The tendon is situated in the anterior margin of the muscle and receives the middle and inferior fibers, which pursue a course similar to those of the extensor hallucis. During its passage through the cruciate ligament or just above it, the tendon subdivides into four flat, rather weak tendons, which run to the dorsal aponeuroses of the second to the fifth toes.

The peronæus tertius (Figs. 306 and 315) seems to be a part of the extensor digitorum. It arises from those fibers of the latter muscle which come from the lower portion of the fibula; its flat tendon runs beneath the cruciate ligament with those of the extensor digitorum and is inserted by means of a flat tendinous expansion into the dorsal surface of the fifth metatarsal bone.

[^48]
THE MUSCLES OF THE FOOT.
 THE MUSCLES OF THE DORSUM.

Unlike the back of the hand, the dorsal aspect of the foot is provided with two short extensor muscles.

The extensor hallucis brevis (Figs. 306, 308, and 315) is a small, flat, triangular muscle which is situated upon the dorsal surface of the bones, joints, and ligaments of the tarsus. It arises in common with the extensor digitorum brevis, with which it is adherent, from the dorsal surface of the calcaneus, passes forward and inward, and in the region of the base of the first metatarsal bone becomes continuous with a flat narrow tendon which runs over the metatarsal bone beneath the tendon of the extensor longus, the two tendons together forming the dorsal aponeurosis.

The extensor digitorum brevis (Figs. 306, 308, and 315) arises together with the preceding muscle from the dorsal surface and the adjacent portion of the lateral surface of the calcaneus, and subdivides into three (rarely four) muscular bellies which terminate in very slender tendons passing to the second, third, and fourth toes, and fusing with the tendons of the extensor digitorum longus to form dorsal aponcuroses.

[^49]

THE MUSCLES OF THE SOLE OF THE FOOT.

 atherent.

THE MUSCI ES OF THE MIDDLE OF THE SOLE OF THE FOOT.

 inserterl chictl! inte the wound phatanser.

The perterim pertion of the the der diterum bre is is it: immendiate relation with the two

 (on either side with the shert munk of the great and little tow

 t.ahes origin hy mean- of two heals, of whith the inmer is weally the eronger. irom the plantar surfate of the catcome and from the long phatare ligament, and the that and aponimately

 While the tenten of the the wor hathe is runs in the lenge asi of the the and conceptently in the axis of traction, thone of the hevor digiturum pursue an eblifuce onure as aboue deseribed and deviate from the avi- of taterion he about so deneres.

Fig. 3ir.- The middle layer of plantar muscles.
The flexor digitorum brevis, the abductor hallucis, and the abductor digiti quinti have been removed; the tendon sheaths of the digits and of the peronæus longus have been opened.

Fig. 312.-The deep layer of plantar muscles.
The tendons of the flexor digitorum longus, the flexor hallucis longus, and the quadratus plantæ have been removed.

THE MUSCLES OF THE BALL OF THE GREAT TOE.

The muscles of the ball of the great toc differ from those of the thenar eminence not only in their number but also in the fact that one of them arises from the posterior extremity of the calcancus and the other two from the anterior portion of the tarsus. The ball of the great toe consequently contains one long and two short muscles, while all four muscles of the thenar eminence are practically of the same length, on account of the shortness of the carpus.

The abductor hallucis (Fig. 310) is a long, triangular, penniform muscle which occupies the entire inner margin of the foot and whose origin is situated immediately alongside of that of the flexor digitorum. It forms the internal plantar eminence (Fig. 309) and arises from the inner tubercle of the calcancus from the adjacent portion of the inner surface of that bone, from the laciniate ligament, and also from the plantar aponeurosis, which covers the muscle completely by the radiations of its middle portion. Soon after its origin, a flat strong tendon develops in the middle of the muscle, which is inserted by means of the internal sesamoid bone into the first phalanx of the great toe and into its dorsal aponcurosis. The flexor hallucis brevis is situated between the tendons of the abductor hallucis and flexor hallucis longus.

The muscle is supplied by the internal plantar nerve. Its chief function is the abduction of the great toe.*
The flexor hallucis brevis (Figs. 311 and 312) is much shorter than the abductor. It arises partly from the plantar surfaces of the middle and external cunciform bones and partly from the tendinous prolongations of the long plantar ligament which form the sheath of the peronæus longus. Like the flexor pollicis brevis, the insertion of the muscle divides into two slips, between which passes the tendon of the flexor hallucis longus. The inner slip, together with the adductor hallucis, passes into the tendon of the internal sesamoid bone; the outer slip, together with the adductor hallucis, passes to the external sesamoid bone. The outer margin of the musele is in relation with the abductor, the inner with the adductor hallucis.

The muscle flexes the great toe and is supplied partly by the internal plantar nerve and partly by the external plantar nerve.

The adductor hallucis (Fig. 312) is a distinetly bicipital muscle and the two heads do not unite until they almost reach the insertion. The oblique head is a round, strong, elongated muscle arising from the plantar surface of the external cunciform bone, in common with and partly adherent to the flexor hallucis, from the bases of the second and third metatarsal bones,

[^50]

 containing the external sesamoid bone.

THE MUSCLES OF THE BALL OF THE LITTLE TOE

 and in function, but the abductor is much lemerer than the other two musele .

 of the calcancus beside the flexor digitorum brevis, and alow quite witestely from the plansar aponeuresis, which covers the greater portion of the musele. The insertion i partly inte the tuberosity of the fifth metatareal bone and partly inte the outer bereke of the itre thatand ai the litte toe. The imner margin of the abductor digiti I is in relation with the fle vor dicitarum brevis behind and with the flexor digiti \backslash brevis in front.

The flexor digiti quinti brevis Fig- S10 and sil in a -mall dengated mache which arise chiefly from the anterior portion of the Jong flamar ligument foce fact $1 \neq 1$ and is
 with the third plantar interowerens. muste.
 brevis, the two muselea hatsing at commens urigin. It inserts inter the outer twonder wi the anterior
 is almost entirely concered by doe abductor digiti 1 .
 thrir names.

THE INTEROSSEI PEDIS.

 the former arise by twe heads, the later by one. The diterence between the hand and the foot consists in the fact that not the midelle but the second toe reatue the tendome witwo dorsal interosset (the lirst and the seconds, white the thired and the jourth pase frem the outer cide into the extensor tendons of the third and feurth toes Fige is1,3). The imner head wi the firsi doreal interosseous is poorly develoged: it arises only from the hase of the fir-t metatarsal bone and from the ligaments of the tarsometatarsal joint, not from the shafi of the bone.

The plantar interossei (Fig. 314) are stronger than the dorsal. They arise from the outer borders of the three outer metatarsal bones and pass to the same borders of the corresponding tocs.

The interossei pedis are supplied by the external plantar nerve. Their functions are the same as those of the palmar interossei, with certain modifications dependent upon the difference in their position (see page 203).

THE LUMBRICALES.

The lumbricales (Fig. 3II) of the foot arise from the tendons of the flexor digitorum longus; the first lumbricalis has a single origin from the inner margin of the first tendon and the other

Fig. 3I3.-Diagram of dorsal interossei of the foot.

Fig. 3I4.-Diagram of the plantar interossei of the foot.
three have a bicipital origin. In the ricinity of the metatarsophalangeal joints, they pass from the inner side into the dorsal aponeuroses of the toes. At their insertions are usually situated small burse, the lumbrical bursce.

These muscles are supplied in a variable manner partly by the external plantar nerve and partly by the internal plantar nerve. Their functions are similar to the corresponding muscles in the hand (see page 203).

THE SYNOVIAL SHEATHS OF THE FOOT

 a variable distance unon the dorsum of she fox t. 'Yheir rethaculum is chicily formad by a rein-
 from the outer surfice of the calconeus, where it is wherent whe interesous talocalcaneal ligament, and divides inte a dital amel a proximal band which furm almost a right angle with each other (Fig. Soo). The proximal band runs to the internal malleolus, the disial to the dorsal surfaces of the naticular and internal cumeiform bones, and when the latier band is prolonged
to the external malleolus, as sometimes occurs, the ligament presents a cruciform appearance. The outer undivided half of the ligament is connected at its origin with the inferior peroneal retinaculum and the ligament contains three compartments separated by fibrous partitions, for the three synorial sheaths.

At the outer side of the ankle-joint the two peroneal muscles (longus and brevis) have a common synovial sheath (Fig. $3{ }^{15}$), the upper and lower portions of which are usually subdivided for a short distance. This sheath is held in place by two retinacula which are frequently indistinctly separated. The superior peroneal retinaculum (Figs. 307 and 315) passes from

Fig. 3i6.-The tendon-sheaths and retinacula of the internal border of the foot (somewhat diagrammatic).
the posterior border of the internal malleolus to the upper extremity of the tuberosity of the calcaneus, and is also connected with the deep fascia of the leg. The inferior peroneal retinaculum (Figs. 307 and 315) extends from the outer extremity of the cruciate ligament to the outer surface of the calcaneus and its trochlear process.

At the inner side of the ankle-joint (Fig. 316) there are three synovial sheaths for the tibialis posterior, the flexor digitorum longus, and the flexor hallucis longus. The sheath for the tibialis posterior is the shortest and extends only to the inner border of the foot. The two remaining sheaths are continued into the sole of the foot and extend as far as the decussation of the tendons.

 synurial sheathe.

THE FASCIE OF THE LOWER EXTREMITY.

THE ILIAC FASCIA.

 outer margin it pasco inte the thigh with the ilioposs and joins the petimed fare fat form
 athathed to the anterior superior spine of the ilium, whe ineruinal ligament, ath the the ilioge
 into two compartments, an outer compartment for the iliopseas and the femorat merse the lee and

 oft and bounted internatly by the lacunar (bimbernats) ligament sece pare sot, and forms the internal femoral ring (sece page 2.3.3).

THE FASCIA OF THE THIGH, FASCIA LATA.

The fosciol lata Fighe is and ste) consists of two laters which are separated only in certain situations, and its different portions vary greaty in thicknes. It is composed of longitudinal

[^51]Fig. 317.-The fascia of the thigh seen from in front.
Fig. 318.-The fascia of the thigh seen from behind.
Fig. 319.-The fascia of the lower leg seen from behind.
Fig. 320.-The fascia of the lower leg, seen from in front, and the dorsal fascia of the foot.
and transverse fasciculi which are so arranged that sometimes one set and sometimes the other preponderates, or both may occur together. In a general way the posterior portion of the fascia lata is stronger than the anterior and the external portion is decidedly thicker than the internal.

Upon the posterior surface of the thigh the very thin superficial layer of the fascia lata covers the glutæus maximus, while the deep layer passes beneath the muscle, and over that portion of the glutæus medius which is not covered by the maximus, the fascia assumes a markedly tendinous or aponeurotic character and is termed the gluteal jascia (Figs. 238, 240, and 241). In the gluteal sulcus (Fig. 318), over the lower portion of the glutæus maximus, the fascia contains numerous strong transverse fasciculi, and over the flexor muscles it is of average thickness and is composed chiefly of transierse fasciculi which are especially well marked in the popliteal region, where the superficial layer of the fascia lata covers in the popliteal space and its contents, the deep layer enveloping its muscular margins.

The strongest portion of the fascia lata is situated upon the outer side of the thigh and is known as the iliotibial (or Maissiat's) band (Figs. 296 and 318). This band is composed chiefly of strong tendinous longitudinal fasciculi and receives the insertion of the tensor fasciæ late* and of a portion of the glutæus maximus (see page 211). Its lower extremity is attached to the external tuberosity of the tibia, and beneath it is situated the vastus lateralis with its large aponeurosis. In the lower portion of the thigh the fascia lata gires off a septum upon either side, and these pass between the femoral muscles to the lips of the linea aspera, forming the internal and external intermuscular septa. Just below the inguinal ligament the fascia lata is composed of two layers. The superficial layer passes over the anterior surface of the sartorius and the great femoral vessels; the posterior goes behind the sartorius and covers in the iliopectineal fossa (see page 210) and the groove between the vastus medialis and the adductors. Over the adductor muscle the fascia is very thin and transparent. The portion of it covering the pectineus is also called the pectineal fascia; it unites with the lower extremity of the iliac fascia to form the iliopectineal fascia covering the floor of the iliopectineal fossa.

Immediately below the inguinal ligament the superficial layer of the fascia lata exhibits a free internal margin, the falciform margin (Fig. 317), which, together with the pectineal fascia, bounds a round or oval depression in the fascia lata, the oval fossa (saphenous opening). The inferior portion of the falciform margin, which passes almost imperceptibly into the pectineal fascia, is called the inferior cormu, while the superior portion, extending upward to the lacunar ligament, is termed the superior cornu. The opening of the oval fossa is covered by a portion of the superficial layer, the cribriform fascia, which contains a considerable quantity of fat and quite a number of foramina, the largest of which gives passage to the great saphenous vein (the internal saphenous vein). This vein comes from the foot and leg, runs upon the fascia lata, and

[^52]

Fig. 317.

 atases of topographic anatomy:

THE FASCIA OF THE LEG, FASCIA CRURIS.

 peronat to the anterior boreler of the fibula, ant the posterier intrmumember bofon:

 posterior aspect of the leys it divieles intes as superficial and a decplayer. Whe former wader
 tendo Achillis, are consequently completely inscetell be this fascial. In addlition te the grovinday

 the ankle. It is situated to the proximal sike of the crubiate ligament, with which it arablealts: becomes continuous.

THE FASCIE OF THE FOOT.

 of the foot which take their origins from the same bony fenint-; it is con-iterably dicker itan the broader distal portion. The aponeurosi tugether with the lener muete- firm- the then
 much weaker than the contral portion, and the thicke-t part wif the lateral portion is stuated on er the origin of the abluctor digiti V°. Numerous slember fasciculi pase irem the entire marein of

 Upon the toes the aponeurosis gradually disappears in the conne tive-tiout layor- of the thin.
 to ressels and nerves.

THE MOST IMPORTANT BURSE OF THE LOWER EXTREMITY.

1. The subcutancous trochanteric bursu, the chici burat upon the great tre hanter.
2. The trochanteric bursa of the gluteus maximus -ce pase 212, Fig. 20s.
3. The glutcofemoral bursa (see pase 212, Fig. 205. inconstant.
4. The sciatic bursa of the gluteus maximus, between the tuberosity of the ischium and the glutæus maximus.
5. The anterior (trochanteric) bursa of the glutaus medius, between the tendons of the glutæus medius and maximus.
6. The posterior (trochanteric) bursa of the glutaus medius, between the tendons of the glutæus medius and the piriformis (see page 212).
7. The trochanteric bursa of the glutaus minimus, at the insertion of the muscle of the same name into the great trochanter.
8. The piriform bursa, at the insertion of the muscle of the same name into the great trochanter.
9. The bursa of the obturatorius intermus (see page 213, Fig. 301).
10. The bursa of the rectus femoris, at the origin of the muscle of the same name from the margin of the acetabulum.
11. The iliopectineal bursa (see page 211, Fig. 298) occasionally communicates with the hip-joint.
12. The subtendinous iliac bursa, at the insertion of the iliopsoas into the lesser trochanter.
${ }^{1} 3$. The pectineal bursa, at the insertion of the muscle of the same name.
13. The superior bicipital bursa, at the origin of the long head of the biceps.
14. The inferior bicipital bursa, between the tendon of insertion of the biceps and the long external lateral ligament of the knee-joint.
15. The subcutaneous prepatellar bursa (see page 136, Figs. 317 and 320).
${ }_{17}$. The subjascial prepatellar bursa (see page $\mathrm{I}_{3} 6$).
16. The subtendinous prepatellar bursa (see page 136).
17. The suprapatellar bursa (see page 135) communicates almost always with the kneejoint.
18. The subcutaneous infrapatellar bursa, in front of the upper extremity of the ligamentum patellæ (see page 136, Figs. 317 and 320).
19. The deep infrapatellar bursa (see page 135).
20. The subcutaneous bursa of the tuberosity of the tibia, a subcutaneous bursa over the tubercle of the tibia.
21. The sartorial bursa (see page 2I4, Fig. 298).
22. The anserine bursa (see page 219 , Fig. 298).
23. The popliteal bursa (see pages 136 and 221) communicates with the knee-joint.
24. The internal gastrocnemial bursa (see pages 136 and 220, Fig. 303) also communicates with the knee-joint.
25. The semimembranous bursa (see pages 136 and 219) may communicate with the kneejoint.
26. The subcutaneous external malleolar bursa, subcutaneous bursa over the external malleolus.
27. The subcutaneous internal malleolar bursa, subcutaneous bursa over the internal malleolus.
28. The bursa of the sinus tarsi, in the interosseous ligament in the sinus tarsi between the
 talocalcanconavicular artionlation.
 anterior.
 tibialis positerion.

 bursic.

 peronceas longus, and peromaus biresis.
 hullucis longus, and quadratus phan: \dagger

II. T in Mtacta in ane fiver.

 and its short head belongs primarity th the ghteal wat methe -

INDEX

Andonivar facie， 1 ；

mucle，157
athertur，157
developtriett，：
devdinmet，ifa
1l．1t， 157
dovelafitront，1
LEIET，1C
devilajinerly， 1 h ．
tratitio，$t=1$

pirtion ofi ingordl．ath ir a ir 10 ．
ill．12n
riog．Cuetil．1／5
 2：7
forin：in 1 zan $\quad 2$

1 llumis munce，210，2．
fall tivit f，．．．6．
fors buylive t．2m

faxtion पf， $1=$ ）

flubctutent． 1 ing
I ractil｜ 1 ，I， 1 ；
A，ars yomelif，Ios of $(-1,1 \geqslant 0$
｜Luts lifusint 1ヶ） $\mu \mathrm{H}=\mathrm{m}=. .5$ vibar li，wornic in
1 ul is l a ω moth，vo
1 Tabiluan，0），तथ develipair 5，lio
lere isl evrimily of chation ？
 ligam nt，tal
toromín jrixtos，st
Bluctor liresi or Ir and－a－ function ef． 21 ．
nerve－！1！ 1 ．717
canal．217
hallue is mund）， 120 2en
function of，$\because=$ ？
nerve supply いt．：2，
longus musele，200，210 function of， $2: 0$ nerve＜upply of，zt
magmus muvile，2o），215，21 function of，こ！？ nerve supply ai，217
minimus muscle＂，200，210，217

Ahu：or ：ininue ：wher，funcion 1． 24

$\mathrm{f} \boldsymbol{\mathrm { HIT }}+\cdots \mathrm{O}$
1 ribell 1 i， 209
bli．en it
v：inlan．ilsal｜O．t
11 1：

＊illime in：：

I ：：mallaw bunk ！

$\ln =-3=7$
 2005．00
Trimba ©
ise ？
150． ins ：7

vivel ！treily（ ：

di－nget ，dimimien，i：
foom rill， 1 ，soc．：
4）io．Irami＿1－

lmbir landu min｜r 110
Fong tionán，心
miti jt timin o TH
mum winn ify
lüजी uf．心品

74alra mint：to
lurnimi litag

in 45.1 le 5mel is

m1 tiel．I：
（1）L－1以

thutiv！＝
（－tinit．sl．こ）
suheroila．S
of rils．：：
of scambil evternal．S；


```
        lal mov:
        41-2-11-
```



```
    curimal/f is
    &im.11:
    (40)4.0.!14
    **=.1.7)
```


i. ! tneun i.inis
1r. $11-11 \cdot-2 \cdot 3: 3$
infor 1.7 ...
Inillmel, $=11$
| Trum.. 5
(ज)

4evlly=1tes, 10 .

I mitror. :

Tinct 15 - ! 15.1

mantime betam:
- !a゙al i= : !
or : of bsis, rer
scaill lo. - 01. 1 !

1:

, - . - il . y^{\prime}

i \therefore rysall जrariui mis 1c, $1: 5$

- ymill errar.

lizmo i f everat ynalcolus, i:-
'ergixulinal liguten: of verichest
culuman, IJI
mu-cles if lea. 22;
nares, $66,-6$

Anterior nasal spine, 37,68
obturator membrane, 115 tubercle, 95
pelvic surface, 96
pillar of subcutaneous inguinal ring, 159
portion of quadratus lumborum muscle, 163
sacral foramina, 2 S
sacrococcygeal ligament, II3
sacroiliac ligament, 129
superior spine of ilium, 94
surface of superior maxillary, 66 of thigh, muscles of, 214 of ulna, S_{7}
talocalcaneal articulation, 138 ligament, 140
talofibular ligament, 140
talotibial ligament, 139
trochanteric bursa of gluteus medius, 234
Anteroexternal surface of humerus, S6
Anterointernal surface of humerus, S6
Antibrachial fascia, 207
Antrum of Highmore, 66
tympanic, $5+, 5^{8}$
Aortic opening of diaphragm, 165 , 166
Apertura piriformis, $37,65,66,76$
Aperture of aquæductus vestibuli, external, 55
of pelvis, inferior, 13 I
superior, 130
of tympanic canaliculus, superior, 54
Apex of fibula, ror
of patella, 99
of pyramid of temporal bone, 55
Apical odontoid ligament, II5
Aponeurosis, 143
palmar, 198, 207, 208
Apophyses, 20
Appendicular skeleton, 22
Aquæductus cochleæ, orifice of, 56
vestibuli, a perture of, external, 55
Arch, costal, 33
lumbocostal, external, 165
internal, 165
of Haller, 165
of soleus, 220
of vertebra, 22, 23
ligaments between, II 2
pubic, 13 I
superciliary, 60
tendinous, 143
zygomatic, $38,39,40$
Arcuate eminence, 54
ligament, 128
external, 156,165
internal, 165
line, 95
popliteal ligament, 135
Arm, bones of, S_{5}
upper, extensor surface of, muscles of, 1 So
flexor surface of, muscles of, 188

Arm, upper, muscles of, 185, 188 classification, 200
Artery, vertebral, 25
canal for, 26
Arthrodia, 110
Articular capsules, 108
of hip-joint, 132
of phalanges of foot, 137 of hand, 127
cartilages, 21 , 108
circumference of radius, $S 8$
of ulna, 88
crest of sacrum, 29
discs, roS, IIS of elbows, 123
eminence, of occipital bone, 40 of temporal bone, 53
margins, 108, 109
processes, 20
of sacrum, superior, 29
of vertebres, 23
surfaces of calcaneus, 103
of patella, 99
of radius, carpal, 89
of tibia, inferior, 100 superior, 99
Articularis genu muscle, 215
subcrureus muscle, 215
Articulations, 107, 108
acromioclavicular, 120
ankle, 137
atlantoaxial, 1×3, II5
atlantoepistrophic, 113
atlantooccipital, II3, 115
ball-and-socket, ino
biaxial, 110
bilocular, 10 S
calcaneocuboid, 137,138
carpometacarpal, common, I24, 125
of thumb, 124, 125
Chopart's, i3 ${ }^{S}$
cochlear, 109
compound, Io9
condyloid, I 10
costotransverse, in 6
coxal, 131
cuneonavicular, 137, I 38
digital, 128, 137, 139
ellipsoidal, i 10
gliding, 110
hinge, 109
hip, 131
humeroradial, 122
humeroulnar, 122
intercarpal, 124
interchondral, 117
intermetatarsal, 137,139
interphalangeal, $128,137,139$
intertarsal, 137
intervertebral, III
Lisfranc's, 139
metacarpophalangeal, 127
of thumb, 127
metatarsophalangeal, 137, I 39
of astragalus, 137
of atlas, 113
of axis, 113

Articulations of carpus, 124
of costal rartilages, 117
of elbow, 122
of fibula, 136
of fingers, 127
of first and second cervical verte-
bræ, 113
of foot, 137
of hand, 124
of head, 117
of knee, 133
of pelvic girdle, 128
of phalanges of foot, 53 of hand, 127
of pisiform bone, 124,125
of ribs with sternum, 116, 117
with vertebral column, 26, II6, II 7
of sacrum, 113
of shoulder, 121
of sternum with ribs, II6, II7
of talus, 137
of tibia, 136
of toes, 137
of upper extremity, II9
of vertebral column, 110
with ribs, 26, 116, 117
of wrist, 124
pelvic, 128
pivot, 109
polyaxial, 1 Io
radiocarpal, 124
radioulnar, distal, 123
proximal, 122
sacroiliac, 128
saddle, I Io
simple, 109
spheroid, 1 Io
spiral, IO9
sternoclavicular, II9
sternocostal, 117
talocalcaneal, I 37, 138
talocalcaneonavicular, 137,138
talocrural, 137
talonavicular, 138
tarsal, 137,138
tarsometatarsal, 137, I 39
temporomandibular, is
tibiofibular, 136
transverse, of tarsus, 138
trochoid, 109
true, ios
uniaxial, 109
with longitudinal axis, 109
with transverse axis, IO9
unilocular, 108
Astragalus, 102. See also Talus.
Atlantoaxial articulations, 113, II5
Atlantoepistrophic articulations, II 3
Atlantooccipital articulation, II3, II5
membrane, I15
anterior, II 5
posterior, II5
Atlas, 23, 25
articulations of, II3
development of, 3 I
lateral masses of, 25
transverse ligament of, 114

Attollens ature ulat muxte 1 テи
Atrahens amricule muscle， 150
Auditory canal，mermal 55
foramen，internal， 55
meatus，external， 3 ヶ， internal， 43
Aurioular surface of hlium， 5 of sid rum， 20
Auricularis anterior mu ale，1－k．© ； musle， 178 funtions of，1デ）

A vial skeleton， $2=$
Avillary loreder of stopetha， 4
fasclia， 207
Sussi， 117
markin of sc．1pmus，\rightarrow_{3}
1，is，23． 25
artionlations of， 11 ：
dent uf， 25
development of，：s
ixlontond pirixe．．．of， 25

130＂K，favite of． 150
小evelopment of，F50
Hh．at，I 15
Covelyphent， 150
long． 110
Wexeleqment． 150
shert， $15+$ devedopment， 150

oi little tox．mus len of．－27
Bath－and－uchet joint． $11=$
Bas．1 ligaments，durad，12\％， 1 ；
interescous， 127
met．atarsal，ift
－lantar，i．
whatr， 127
Bace of mamelible， 71
of met．u．arpal lentes，
oif metatarsa！lomt－， $1=$
of patilla．or
of phalanger of finger．リン If thes， 10 ？
of se．ppuli，s：
Thatare protion of axcipital trate I－ に
lasipharyngeal（．anal．\＆）
basis cramii ovterna，iu）
Belly of muste，1：2
Biarticular mushes，\％ℓ^{2}
Biavial joints． 110
Biceps brachii mus le， $145,14$.
function of．1sis）
nerve supply of．Iक，
temden of ling beal of， 121
femoris muscle，200，21s
function of． 2 sis
nerve supply of，2t
Bichat＇s fat mass，182， 1 s
Bicipital bursa，inforior，zif superior， 2.34
groove，external， 158 ， 20%

i hatheru，is
（ilper，he

Braradeleamem，1
1：Hox ular mate， 10 an

B matate＂Malota 3 に

－uthblate mutro，17
（5）1．1 12

1s 1－，1，

（1424）．1）
－atomel．an

F．1t 11
If all．i． 24

irreyular．－

mactatul，on

buk wi，－－
（urne ，i．－
Ahtrict 1 c．that，is：

；bematle，is
lart． 1 ，
11－ur wi，：－
：3hutar．2＂
いinctat．－
 いいいに，いる
tiout＝
Browhial farci．s．2：7

Herve－Hylv，i．心
 fam：inn of．10F

 $1: 4$
Bromitromes．19

phucle，1son．15：
RHophorsmeral fasi．．．IS

Buray，atherime，210．23i
bikimenl．inferior．$=$ ： 1
－uperiors ：：！
Hiphitallal．som

（wracobrachial，zon
whital interossounc．こES
digital，doral－ubcutanerus．2a，

glateofemoral．212，2s：
iliopmetincal，1ァ：2：3
inituphathar．Acep． 135
subcutaneous，1．3n．2．3．

1，if erfan soce as

 Mrivent yluramin
$4 \mathrm{t}=1-2 \cdot 0$
$14-10-1,=3$

101 roming is
 पनिए
（2－405， 1
nt vilainal Imolnan 127

－：．ri－

IE－arlan． 1 ．
frimair．，ras．an－mat

vi uhorame ithemue of
ni，hurnt mis ifteme－：．． nire：I Memorto．20．

uiteremalom

（f）Af＝：
$\because 1$

－kertal．： 5
peainest． 231
｜irifier．．－it

poltemi．．：＊

，ineranal．． 0
－ilmelind，ive ．a

क्रातोगी
（brancll．An
suprapate lar．1：5，234
－ne vil． 1 －

trothonveric．zo．
ant rior．if gatas Rerlius．2：s
－i gllora nivimas．こ ：

photer，of ef utaze me hus． 212 ． $\therefore 1$
sulx m1ame

CALCNFML bursa，sul cutancous． $2: 5$ undun－2：0 ！ur－a if $=: 5$

Calcaneocuboid articulation, 137,138 . ligament, I4I plantar, I4I
Calcaneofibular ligament, i $\quad{ }^{\circ}$
Calcaneonavicular ligament, I +1 dorsal, 140 plantar, 141
Calcaneotibial ligament, I 39
Calcaneus, 102,103
articular surfaces of, 103
body of, 103
developmient, 106
facets of, 103
groove of, 103
surfaces of, 103
Calf muscles, 219
Calvaria, inner aspect of, $4+$
Canal, adductor, 217
alveolar, 67
auditory, internal, 55
basipharyngcal, 49
carotid, 55, 58
external orifice of, 40
condyloid, 40, 45
anterior, 40, 45
posterior, 40
dental, inferior, 7^{2}
facial, 56,57
geniculum of, 57
for vertebral artery, 26
vein, 26
Hunter's, 217
hypoglossal, 40, 45
infraorbital, 67
entrance of, 75
inguinal, 159
mandibular, 72
musculotubar, 55, 5^{8}
nasal, 75
nasolachrymal, 64, 67, 75
nutrient, of arm, S_{7} of bones, 20
of radius, S 9
of temporal bone, 57
palatine, 69
pharyngeal, 49, 5 I
pterygoid, 50,78
pterygopalatine, 51,69
sacral, 29
spinal, 3 I
vertebral, 3 I
vidian, 5°
Canaliculi, caroticotympanic, 5^{3}
Canaliculus chordx tympani, 57
cochleæ, orifice of, 56
mastoid, 5^{8}
tympanic, 58
Canalis vertebralis, 31
Canine fossa, 66
Caninus muscle, 18 I
Capitular ligament, anterior, 136 posterior, $\mathrm{I}_{3} 6$ transverse, of foot, 139 of hand, 127
Capitulum of humerus, 86
of ulna, 88
Capsules, articular, 108
of hip-joint, 132

Capsules, articular, of phalanges of foot, 137
of hand, 127
Caro quadrata Sylvii muscle, 225
Caroticotympanic canaliculi, 56, 5^{8}
Carotid canal, 55,58
external orifice of, 40
foramen, external, 56 internal, 55
fossa, 172,174
groove, 41, 48
tubercle, 26
Carpal articular surface of radius, S_{9}
bones, $82, S_{9}$
articulations of, 124
central, 9 r
development, 91
supernumerary, 9i
surfaces of, 90,91
eminence, radial, 90
ulnar, 90
groove, 90
ligaments, 126
dorsal, 203, 208
extensor tendon sheaths beneath, 203
radiate, 127
transverse, 127, 205
volar, 208
Carpometacarpal articulation, common, 124, 125
of thumb, 124, 125
ligament, dorsal, 127 volar 127
Carpus, 89
articulations of, 124
ligaments of, 126
Cartilages, 21
articular, 2 I, 108
bone, 20
costal, 33
articulations of, 117
interarticular, ioS
semilunar, 133
functions of, 1,36
Cavities, glenoid, 8_{4}, I2I
nasal, 76
oral, roof of, 7 S
orbital, 73
pelvic, 130
Cells, ethmoidal, 63,64
frontal, 63
lachrymal, 63, 65
mastoid, 53
maxillary, 63,67
palatine, 63,70
sphenoidal, 63
Centers of ossification, 2 I
Central carpal bone, 91
tendon of diaphragm, 164, 165
Cerebral juga, 4 I of sphenoid bone, 50
surfaces of frontal bone, 41, 60
of orbital plates, 6 r
of parictal bone, 59
of sphenoid bone, 42,49
of temporal bone, 52
Cervical fascia, 177

Cervical muscles, prevertebral, 176 ribs, 35
vertebræ, 23. See also Vertebre, cervical.
Cervicalis ascendens muscle, 149
Chassaignac's tubercle, 26
Check ligaments, ros
Chiasma of tendons, 207
Choanæ, $39 \quad 76$
Chopart's joint, I3 8
Chorda dorsalis, 110,115
tympani, 57
Clavicle, 83,85
body of, S_{5}
developinent, 8_{5}
extremities of, 8_{5}
Clavicular notches, 34
portion of pectoralis major muscle, 167
Clinoid process, anterior, $4 \mathrm{I}, 49$
middle, 48
posterior, 48
Clivus, $43,45,48$
Coccygeal cornua, 30
Coccy: 30
development of, 3 I
joints of, 113
movements of, II3
Cochlear joint, 109
Collar bone, 85 . See also Clavicle.
Colles' ligament, I59
Common carpometacarpal joint, 124, 125
meatus of nose, 77
Communicating synovial bursæ, 108
Complexus minor muscle, 151
muscle, $15{ }^{2}$.
Compound joints, 109
Compressor narium, IS_{2}
Concha nasalis inferior, $64,67,77$
Conchæ nasales, 77
media, 63
superior, 63
sphenoidales, 48
Conchal crest, 67,69
Conduction ligaments, 108
Condyles, 20
fenioral, 98, 133
of occipital bone, 45
of tibia, external, 99 internal, 90
Condyloid canal, 40, 45
anterior, 40,45
posterior, 40
fossa, 45
joint, I 10
portions of occipital bone, 45
processes, 200
of mandible, 71, 73
posterior, 72
of skull, 3^{S}
Conoid ligament, 120
Coracoacromial ligament, 120
Coracobrachial bursa, 208
Coracobrachialis muscle, $1 \mathrm{IS}_{5}, \mathrm{IS} 9$ function of, 180
nerve supply of, IS9
Coracoclavicular fascia, 170

Coracoclavicular hgament，$: 20$
Corscohumeral ligament， 121
Coratoid process of scapula， 8 ； luberosit！． HF_{5}
Cornuad of i．a＝cial lath， 232 of hyoid lxone，greater， 73 lester， 73
Coronal suture， $30,37,7)$
Coronuid fow a，se
proxess of crantum， in，in 2 of mandible，il，is of ulna， 87
Corrugator aperatilii nlatich 17 ）
Cintar，32．See alo kisll
Costal arkh．：3 cartilage ：：3 articulatoms of， 117 groxice， \boldsymbol{q}^{2}
proter，if liaptramt ist
protos， $2!$
－uríace it intales s；
tularte，ligatem in ise
tuberi is al a who：
Cintor－aricubar lapment．inta
Colexuratil momithe：17
 intare（1），117
lgatich ation－r，is
midelle，1de $p=l$ rive， 10 m （a）crion，it
 ritch，，o
Cod latuc．as
 inint， 131
Cranill lerts，13． 15
 intertor，it th lille 11

centrale．1s．is
$1 \mathrm{i}+\mathrm{rat}^{2}$ ，it
（Crmase mbal Ith ftration ll 15

Crematheric fo 1．1．1，1＂；
（rrat， 26
burcinatur，iz
cionehal，（17．（n）
＂hmomidal， $17,(x)$
for rettus cajtis fortions numer mustle，si
fromtal，＋1，O）
infritempural，：，：
lachrymal，amterur． 07 ponsterine． 05
nasal，（6），（ x ）
eccipital，ceternal，fo
internal， 41,40
of fibuh，sos
of head of ribs， 32
of ilium， 04 lips of，ot
of neck of ribs， $3=$
of pubis， 05

Cret of wcrurn，2）
of ulbis， 150
ithital，if rpheri 4al man－ phenemidal，is
（rilitions foma，2－2

（＂rastalt．＋1，t？
Crachal cometoce $+3,40$
1g toe 1，1：
anteriar， 13.1
of 7.1 ， 05
penterter，1：
（rumate ligut ctit．115．22）

（rat，bloct，id difagomis
if
listate of deanteriome ion
me，tie af dophatage，its

$$
\begin{aligned}
& \text { 15-: : : } \\
& \text { isferer, 15 }
\end{aligned}
$$ j＝emerr， 150

 109 चt $1>1$
 1；1
H1－：r．13
Curilin mu＊V：1：＝
1u then ei，it n

toll．KO
intill：A．1＝1
foblle．1－！

IIrme $\quad 11$ 1 06

evoni，tic：
lapet 4－：
L．

Norverin． 1 ！
1日：•••7！

$n-m, 111$

 musis，\％
i．fr．．．．．． 1 ．．．．．．
laver of iff momeln，בミ1
ef cerisel famb，i：－
of eltomatr wifireir，wh． $1 i$
str．in？
of ther mithe of fire．ren．1：

pabterior corroviveral ligament， ！？

Delteid！leatons．1 ；）
tuberosity，so

 ：：7＋
1）al coll hofor ： frltosul \therefore in
1）ir it ingule＇ry＝in ：．

1月－2nch

1）i．Kramena il：
c：ant will＂t．
C－infan．Ich
fry＝！＝： $1=$ functioner：ind

 $-15=1$

（2）$-1=1=$ xar．it $:=$ inmin

 － i＝1－

 ifriala \cdot ．
：$\because \omega$ ．

Nouar ：Prilin ameta k neokior；

x inflemxty

－tener h $\mu=\ln =.97$

 －hanalyilevzal toria．2．

 ＂fucs s－

anvingusiandiligresis，1：1

stm．：1．；！

1）urtus coblymphatiriv， 53

Elbow, articular disc of, 123
articulations of, 122
Elbow-joint, 122
movements of, 123
Ellipsoidal joint, ito
Embryology, definition, 17
Eminence, arcuate, 54
articular, of temporal bone, 40, 53
carpal, radial, 90 ulnar, 90
crucial, 43,46
frontal, 60
hypothenar, 198
muscles of, 200
iliopectineal, 95
intercondyloid, of tibia, 99
olivary, 4I, 48
parietal, 59
plantar, external, 33
internal, 233
middle, 225, 233
pyramidal, 57
thenar, 198 muscles of, 199
Enarthrosis, 110, ${ }^{131}$
Epicondyles, 20
of femur, external, 98
internal, 98
of humerus, 86
Epicranius muscle, 178
Epiphyses, 19
Epiphysial centers of ossification, 2 I line, 2 I
Episternal bones, 36
Epistropheus, 23, 25
Epitrochleoanconeus muscle, 190
Erector spinæ muscle, 149
Esophageal opening of diaphragm, 165, 166
Ethmoid bone, 62 alæ of, 63
cribriform plate of, $41,61,62$
development of, 64
in newborn, 64, 8 I
lateral masses of, 62, 63 perpendicular plate of, 62,63
Ethnooidal bulla, 64
cells, 63,64
crest, 67,69
depressions, 61
foramen, 63
anterior, 61,75
posterior, 61, 75
groove, 65
labyrinths, 62, 63
notch, 61
process of inferior turbinated bonc, 64
spine, 41,48
surface of lachrymal bone, 65
Ethmoideomaxillary suture, 80
Eustachian tube, cartilaginous portion of, 5^{1}
semicanal for, 5^{8}
Extensor carpi radialis brevis muscle, 185, 195
longus muscle, 185, 195
ulnaris muscle, 185,197

Extensor carpi ulnaris muscle, function of, 197 nerve supply of, 197
digiti V proprius muscle, 185 , 196 function of, 197 nerve supply of, 197
digitorum brevis muscle, 210,224
communis muscle, 185,196 function of, 197 nerve supply of, 197
longus muscle, 210, 223
function of, 224
nerve supply of, 224
hallucis brevis muscle, 210,224
function of, 22.4 nerve supply of, 224
longus muscle, 2 10, 223 function of, 223 nerve supply of, 223
indicis proprius muscle, 185,198 function of, igS nerve supply of, 198
of leg, 223
ossis metacarpi pollicis muscle, 197
pollicis brevis muscle, 185,197
function of, 197 nerve supply of, 197
longus muscle, 185,197 function of, i 98 nerve supply of, 198
surface of forearm, muscles of, 195
of upper arm, muscle of, 189
tendons of fingers, 204
of hand, 203
sheaths of, 203
External abdominal ring, 158
angle of scapula, $S_{3}, 8_{4}$
angular process of frontal bone, 36
aperture of aquæductus vestibuli, 55
arcuate ligament, 156,165
auditory meatus, 38,40
bicipital groove, 188, 207
border of humerus, 86
carotid foramen, 56
condyle of femur, 98
of tibia, 99
crest of fibula, ror
cuneiform bones of foot, 102, 104
epicondyles of femur, 98
of humerus, 86
intercondyloid tubercle of tibia, 99
intercostal ligaments, 169
intercostales muscles, 169
intermuscular septa of arm, 207 of thigh, 232
lateral ligament of arm, 122 of head, ins of knee, I 35
lumbocostal arch, 165
mallcolar bursa, subcutancous, 234 surface of talus, 102
mallcolus, 101
ligaments of, anterior, 137 posterior, 137
margin of scapula, s_{3}
meniscus of knce-joint, 133
occipital crest, 46
protuberance, 4 r, 46

External palpebral raphe, 179
patellar retinaculum, 135
plantar eminence, 233
process of calcaneus, 103 of talus, 102
pterygoid plate, 40 , 50
rectus muscle, spine for, 76
semilunar cartilage, 133
subcutaneous epicondylar bursa, 208
superior articular surface of tibia, 99
surface of shaft of tibia, 100
talocalcaneal ligament, I40
tubercle of talus, 102
Extremities, lower, bursæ of, 233 fascix of, 23 I
free, skeleton of, 97
muscles of, 209
classification, 235
skeleton of, 82, 93
of long bones, 19
skeleton of, 22, 82,83
upper, articulations of, II9
bursæ of, 208
fasciæ of, 207
free, skeleton of, 8_{5}
ligaments of, 1 I9
muscles of, 185
development, 209
skeleton of, 82, 83
thoracic muscles of, 166

Face, bones of, 44
muscles of, 178
functions of, 182
nerve supply of, 182
proper, 179
Facial canal, 56, 57
geniculum of, 57
surface of malar bone, 71
Falciform margin of fascia lata, 232
process, 129
False pelvis, 130
ribs, 33
vertebræ, 22, 28
Fascix, 143
abdominal, 163
antibrachial, 207
axillary, 207
brachial, 207
buccopharyngeal, 184
cervical, 177
coracoclavicular, 170
cremasteric, 163
cruris, 233
gluteal, 232
iliac, 231, 232
iliopectineal, 231, 232
infraspinatus, 207
lata, 231
lumbodorsal, 146, 156
nuchal, 156
of back, $\mathrm{I}_{5} 6$
of foot, 233
of hand, dorsal, 207, 208
of head, 184
of leg, 233

Faciat of lower extremity， 231
of nock，：77
of thigh， 233
of unper extromity， 27
parotideromas eterit，its
1世ttincal，$=32$
｜cetoral，170
provertebral， 177
Starpa＇ 10 ；
4ublabular，2＂7
－uperticial，kenceral， 103
－upravinatus，2＂7
tempural， 15 t
tramberalis， 103

Fat mas，MiChat，1m2，1s． hactal，is． 1 is
lemale pelvis， 1 ；t
Femural and！lea， 133
triangle，zit
Femur， $3 \geq, 47$
condyle of，が
devedopmemt，us
＂picombles of，os

beat off． 97
neek of． 17
Shaft（f，いた。 が －いrime wi．リズ，us
कurf．uल की，15
irmenhaters of，u7
Fencersa wath， 57
vertibuli， 57
Fionestrati on uif ril ac
libers of subrutarbous inguinal ring 159）
Fhifxartulage，intertul $11,125,1=4$

n．a।ular． $1 / 1$
 rimg of atemettelion themart ase 1t＂
Phuls．52， 1

athealitome ol， $1 ; 6$
puritert if is
cretl of． $1=1$
deshejt तft．E1
curmitte 11 ， 17
heat wf，to
 Ahaft wi，ir
－urfate of，ict
1－ibular latera！hasamem，122，155 noth． 100
1 inger joints， 127
Fingers，lxame of，u：
extencor temtons ai，zat
mosements of． 127
symosial sheathe of．205
First tunciform thene of foxt． 104
Fissura petrotympanio．． $5.8=$ ：
fiswure，（ilaserian，40，5． 57
inferior orhital， 3 ， 30, ex， 71 ，it 75
infundibutar．of
petronceipit．1），to， 4.5 ， 54
petrosquamos．11． 5.54

quencod．d if i－＋1 $1+$ is

phescometil tat に

kı

t1 patiment al 17

H．st alxbomatral in ti it io 157

｜xine，（1）
 devingte（my 150
Hexion wertelre．－S

Lrevis dgati 1 mathe al

 berve u this if． 1 ：
 function（is．11／2 ＂orve watmy of t ＋2

famikno f－©0．－2：

dightorum break Whate etre： $2=$ Herve vity
longu－muxte．21．A1－2． iu：

 funtion m，my nern romber ins
ablin is mu M ハース 112 functur ，d，m）

 THATim 6．2m Herle＊apyle ab，22
 Marymy di，

of hiowt．an

 lenctu in aty

．1 17

Attrrum．－
fromtal．A1
m3－wit s
（x）（i）ital）－
funtor）$=1$
thenmial．
Pimtich．S：
Fixt，artictations of，137
trance if． 1001
calcanele if．102， 103

$\stackrel{+\infty}{+\cdots+11}$
themome 마 317 monemer in

incerall 14. 4 6．．

－Nimbon－

1．lon A．y－
©mil leom．

10．1510．0． 70
－1． 10 － h －

 104－114：$=$

dottal isimia ：－
 suomer is i．

inallat in－－－
omiour gu 心
infruitlin -6 es

a．pose be it 49

menctoled． 3 ．

1＋14－7！，：－－
meal es
abtruter ．． of kan，ec पी तो तो

$14 \cdot \cdots=0$
+1 welt ane
411 if：4．-5

pliome ivtrior po ©
forin．il it 7

\therefore TIL－-1 itlirouretel rode＝

 ｜oser．1：
the ne falatine．$-\infty,-2$
stivel．2：

Foramina, supraorbital, 60, 75, 76
transversarium, 24
vertebrale, 23
zygomaticofacial, 7 I
zygomaticoorbital, 7 1, 75
zygomaticotemporal, 7 I
Forearm, extensor surface of, muscles of, 195
flexor surface of, muscles of, r9r
muscles of, 185, i91
classification, 209
radial muscles of, 194
Forehead, bony, 36
Fossæ, 20
acetabular, 96
anterior cranial, 41
axillary, 147
canine, 66
carotid, ${ }^{172}$ 2, 74
condyloid, 45
coronoid, 86
cranial, 4 ${ }^{1-43}$
anterior, 4 I
middle, 41
posterior, 4I, 43
cribriform, 232
digastric, 40,72
digital, 97
for lachrymal gland, 76
sac, 76
glenoid, 38, 53
hypoglossal, 48
hypophyseal, 4 I
iliac, 95
iliopectineal, 2 10
infraspinatous, of scapula, 8_{3}
infratemporal, 79
intercondyloid, 98
anterior, 99
posterior, 99
jugular, 40, 46, 56
mandibular, $38,40,53$, II 8
mastoid, 54
middle cranial, 4 I
occipital, inferior, 44,46
superior, ${ }_{4} 6$
olecranon, 87
oval, 232
petrosal, 56
posterior cranial, 4I, 43
pterygoid, 40, 5 I
pterygopalatine, 49,50, 78
radial, 87
scaphoid, 5 I
sphenomaxillary, 49,50,78
subarcuate, 55
subscapular, 83
supraclavicular, lesser, 171
supraspinatous, of scapula, 83
temporal, 38,52
trochanteric, 97
zygomatic, 79
Fovea, 20
articularis dentis, 25
Foveolæ granulares, 44, 60
Free lower extremity, skeleton of, 97 upper extremity, skeleton of, 85
Frons, 36

Frontal angle of parietal bone, 59
bone, 36,60
borders of, 60
cerebral surfaces of, 4 r
development of, 62
frontal portion of, 60
in newborn, $62,8 \mathrm{r}$
nasal portion of, $60,6 \mathrm{r}$
orbital plates of, 61
surfaces of, 6 I
sulci arteriosi of, 6 r surfaces of, 60 zygomatic process of, 60
border of parietal bone, 59 of sphenoid bone, 49
cells, 63
crest, 4 r, 6 I
eminences, 60
fontanelle, 8 i
foramen, $60,75,76$
notch, 60, 75
plane, 17
portion of frontal bone, 60
process of maxilla, 37 of superior maxillary, 66, 67
sinus, 61 development, 62
spine, 6 I
surface of frontal bone, 60
suture, 60,8 I
Frontalis muscle, 178 functions of, 178 nerve supply of, 178
Frontoethmoidal suture, $4 \mathrm{I}, 6 \mathrm{I}, 80$
Frontolachrymal suture, 37, 8o
Frontomaxillary suture, 37 , 8o
Frontosphenoidal process, 37, 7 I
Fusiform muscle, 142

Galea aponeurotica, 178
Gastrocnemial bursa, inner, 220 internal, 136, 220, 234
Gastrocnemius lateralis muscle, 220 medialis muscle, 220 muscle, 219
Gemelli muscles, 209, $2 \mathrm{r}_{3}$
Gemellus inferior muscle, 213 superior muscle, 213
General anatomy, definition, 17 superficial fascia, 163
Geniculum of facial canal, 57
Geniohyoideus muscle, 174, 175 functions of, I 75
nerve supply of, 175
Gimbernat's ligament, $131,163,164$, 231
Ginglymoarthrodia, 127, I39
Ginglymus, 109
lateral, 109
Girdle, pelvic, 93
articulations of, 128
ligaments of, 128
shoulder, 83
Glabella, 60
Gladiolus of sternum, $3+$
Gland, lachrymal, fossa for, 76
Glaserian fissure, 40, 53, 57

Glenoid cavity, 84 , 12 I
fossa, 38,53
ligament, 121
Glenoidal lip, 108 , ro9, 121 of hip, 3 r
Gliding joints, I Io
Glutæus maximus muscle, 209, 2 Ir
function of, 212
nerve supply of, 212
medius muscle, 209, 212
function of, 212
nerve supply of, 212
minimus muscle, 209, 212
function of, 212
nerve supply of, 212
Gluteal fascia, 232
line, anterior, 94
inferior, 94
middle, 94
posterior, $9+$
superior, 94
muscles, 21 I
sulcus, 232
tuberosity, 98
Gluteofemoral bursæ, 212, 233
Gomphosis, 107
Gracilis muscle, 209, 216
function of, 217
nerve supply of, 217
Great sacrosciatic ligament, 129
saphenous vein, 232
sciatic foramen, I 30
notch, 94, 96
toe, ball of, muscles of, 226
Greater cornua of hyoid bone, 73
multangular bone, 89,90
palatine foramen, 40,69
pelvis, 130
sigmoid notch of ulna, 87
trochanter, 97
tubercle of humerus, 85
tubercular ridge, 86
wings of sphenoid bone, 47,49
Groove, bicipital, external, I88, 207
internal, 188, 207
of humerus, 8_{5}
carotid, 4 I, 48
carpal, 90
costal, 3^{2}
ethmoidal, 65
for flexor hallucis longus, 103
for musculospiral nerve, 86
for radial nerve, 86
hamular, 5 I
infraorbital, 66, 76
intertubercular, of humerus, 85
lachrymal, 67
musculospiral, 86
mylohyoid, 72
obturator, 95
of calcaneus, 103
of promontory, 58
of talus, 102
optic, 4I, 48
palatine, 68
paraglenoidal, 95
peroneal, 103,104
petrosal, inferior, 43, 45, 55

Cirmave，petrosal，superior，$\$ 2,55$
perygopatatine， $51,67,(x)$
pulmonaty， 35
sagital， $4.4,40,80,01$
sigmoid，43，40，53， 60
sululavian， 33
transverse， 43 to
tympanic． 57

HaLIER＇S archer，blis
Hamate bone，Sy，yo
Whmatometatarpal ligament， 127
Hamular gremse， 51
procoss，40，51
Hamulus la rimali－， 05
procese， 90
pterygoideus，40，51
Hand，articulations oi， 124
bones of，ix）
arpat bonce of，ent
－－Wensor tenduns of， 203 sheaths of， 203
liguments of， 12.
metacarpal bones of，os
movements of， 120
muades of，is 5,1088 （lasiff ation，20）
palme of，tendens of， 205
 linge＇s of hand．
 Serimaid hemes of hand．
sketeron of，es
Hard palur．37． 05.58 in mewhern，（m） tuberestr of．45
Harmonic surure ity
Head，articnation of， $1: 7$
fasciee of，is：
higatments of． 117 in lepradent，is murle of．1：7
of lxnes，of
of femur，of
－f औlいula，ta
of humerus．s5
of inctacarpal lanes，の1， 2
of metataral landes， $5=5$
of muscle， 112
of radius， B ：
of riks， 32
of stapula，st
of talus，102，103
skileton of， $22,3^{0}$
！iatus，zo
canalis facialis， $43,5 t$
Fallopii，4，： 51
semilumaris，04． $7^{\text {s }}$
Hinge joint，fos
Hip，muscles of 2：10 clasification， 2.35 internal， 210
Hip－joint，Izt
articular capsule of，s：3
glenoidal lip of， 1.31
movements of， $1: 3$
Horizontal plane，if

parthes if haral fable ion
 1xose 5？
Hormer mu＝ile， $\begin{array}{r}\text { の }\end{array}$
Humeral beat of ith ver we almater nitiole，102

af promator tere than． 1 I
Humerternh it artiontate：－ 1.2
Humerouhner artimbitmo， $2=$
Humerus azes
an atomial alath of $5=$
burder uf，ses
development，si
exiremitio of me
head of，：5
mexk of，，trattomtal，－5
surgit．l．，so
shati it $\mathrm{A}=$
－urfatio of，se
－urgital rack wi，he
mbercke 1 ， $\mathrm{A}=$
Hunter＇s canal 217
H！will lume is lumly © f ；；
dedepplent．：
lgament－wf．11）
mestlea，1：2
Hypughorad edral，10． 45
imas．－4
Hjuphyse．al for ．t．：

 nun－ita i．．．os

fitmat，is
lintus muste．：17

tenimale，19

आいました，1．4
font tionc uf．：5t
nerv－uph uf，に」
1themental ikatume．：$\%$
Itsulumbar ligament，1シs

f．जxit，231， 232
fincol． 210
ligament，：3：
147c． 155
llioplan murate，zon． 210
function of．zot merse supply of． 211
Ihonhial thame，：3：
1Fium， $3: 1.48$
ala of，0）： 9.4
surfacte of， 24.95
lexuly of， 05
crest of， 0.8
lips of．of
development， 06

1 － 14
couer＝in of ic

mLi．in－

… -6, ，（s）

16．mes．．

1）

 ｜rim：
 Home31 leary 801 1．004 5 ！．．anal．．1．
 1．－
小ertali．．-
fintorla ：－
－veramer of lema． 7 ．

Gilraley lat
－if tivery－ 5
n！ $\begin{aligned}=16 \\ \text { on }\end{aligned}$
 ，intr．x．－－．
platralline，＂：

nurhal fime of ：？

Frimesf Tit．
1－athal grtome an is 5
 15

ramis at ichm．＂0： －imbli as．ec

therst ic aforturt．is
tratowe leomena，1：

sumeliral itsedus．：
 tulerrmis，ss
Infrihyen mente，： $7=$ fustrese 1．1＝： nerie vity 1 ul．1；3
Infratilita cateal． 1 ；

crieve．of，－6
Haskin．：
－Hture．© \＆
1：drapatelar luma，decp， 1.35 suts btanc ua，130． 234
Iníaspinatis buna， 206
fascia， 20 ；
fossa of scap ula．ε_{3}
muscle， 185, 146
function of，is：
nerve supply of，：S；

Infrasternal angle, 35
Infratemporal crest, 39, 50 fossa, 79
surface of sphenoid bone, 50
of superior maxillary, 66
Infundibular fissure, 64
Inguinal canal, 159
ligament, 131,163
reflected, I_{59}, 164
ring, subcutaneous, 158
Inner crura of diaphragm, 165
gastrocnemial bursa, 220
head of gastrocnemius muscle, 220 of triceps muscle, 190
lip of linea aspera, 97
portion of longus colli muscle, 176
vitreous table of flat bones, i9
Innominate bone, 93 development, 96
Inscriptions, tendinous, 143 of rectus abdominis, 161
Insertion of muscle, I42
Interalveolar septa, 68
Interarticular cartilages, ios ligament, II6, 117
Intercarpal articulations, 124 ligament, dorsal, 127 volar, 127
Intercartilaginei ligaments, 169
Interchondral joints, 117
Interclavicular ligament, II9
notch of manubrium, 34
Intercolumnar fibers of subcutancous inguinal ring, 159
Intercondyloid eminence of tibia, 99 fossa, 98
anterior, 99
posterior, 99
line, 98
tubercle, external, 99 internal, 99
Intercostal ligaments, I 7 external, 169 internal, 169
spaces, 35
Intercostales externi muscles, 169
interni muscles, 169
muscles, 166,169 functions of, 170 nerve supply of, 170
Intercrural fibers of subcutaneous inguinal ring, 159
Intercuneiform ligament, dorsal, I4I interosseous, 141 plantar, 41
Intermaxillary bone, 69
suture, 37, So
Intermedial crus of diaphragm, 165
Intermetacarpophalangeal burse, 200
Intermetatarsal articulations, 137, I39
Intermetatarsophalangeal bursa, 235
Intermuscular septa, i43
anterior, of leg, 233
external, of arm, 207
of thigh, 232
internal, of arm, 188, 207
of thigh, 232
of arms, 188,207

Intermuscular septa, posterior, of leg, 233
Internal angle of scapula, $8_{3}, 8_{4}$
annular ligament, 231
arcuate ligament, 165
auditory canal, 55
foramen, 55
meatus, 43
bicipital groove, I88, 207
border of humerus, 86
of tibia, 100
carotid foramen, 55
cerebral surface of frontal bone, 60
condyle of femur, 98
of tibia, 99
crest of fibula, 101
cuneiform bones of foot, 102,104
epicondyle of femur, 98
of humerus, 86
gastrocnemial bursa, 136, 220, 234
intercondyloid tubercle of tibia, 99
intercostal ligaments, 169
intercostales muscles, 169
intermuscular septum of arm, i 88 207
of thigh, 232
lateral ligament of knee, I3t
of radius, 122
lumbocostal arch, 165
malleolar bursa, subcutaneous, 234
surface of talus, 102
malleolus, 100
margin of scapula, 8_{3}
meniscus of knee-joint, I33
muscles of hip, 210
of thigh, 216
occipital crest, $4+, 4^{6}$
protuberance, 43,46
palpebral ligament, I79
patellar retinaculum, 135
plantar eminence, 233
process of calcaneus, 103
pterygoid plate, 40, 50
semilunar cartilage, 133
subcutaneous epicondylar bursa, 208
superior articular surface of tibia, 99
surface of shaft of tibia, Ioo of talus, 102
of ulna, 87
talocalcancal ligament, I40
tubercle of talus, 102
Internasal suture, 37,65 , 8o
Interoccipital synchondroses, 47
Interossei dorsales muscles, 186, 200
functions of, 203
nerve supply of, 203
muscles of foot, 210,227
of hand, 186, 200
pedis muscles, 227
dorsal, 227
functions of, 228
nerve supply of, 228
plantar, 227, 228
volares muscles, $186,200,201$
function of, 203
nerve supply of, 203

Interosseous basal ligaments, 127 metatarsal ligaments, $1+1$
bursa, cubital, 208
cuneocuboid ligament, I4I
cuneometatarsal ligaments, ItI
intercuneiform ligament, I4I
ligaments of foot, $1+1$ of neck, 116
membrane of radius and ulna, 123 of tibia and fibula, 136, 137
ridges of fibula, ror of radius, 88 of tibia, 100 of ulna, 87
sacroiliac ligament, 129
spaces of metacarpal bones, 92
talocalcaneal ligament, i40
Interphalangeal articulations of foot, 137, I 39 of hand, 128
Interpubic fibrocartilage, 108 , 128
Intersphenoidal synchondrosis, 5 I, 8 r
Interspinales muscles, $15+$
functions of, 155
nerve supply of, 155
Interspinous ligaments, 112
Intertarsal articulations, I37
Intertransversarii anterior muscles, 155
laterales muscles, 155
mediales muscles, 155
muscles, ${ }^{1} 54,{ }_{5} 5$
functions of, I 55
nerve supply of, 155
posteriores muscles, ${ }^{1} 55$
Intertransverse ligaments of vertebral
column, II2
Intertrochanteric line, 97
ridge, 97
Intertubercular groove of humerus, 85
mucous sheath of biceps, 121, I 88
Intervertebral discs, 30
fibrocartilages, 108, I Io
foramen, 23, 31
of sacrum, 29
joints, III
Intrajugular process, 46, 55
Intraoccipital synchondrosis, anterior, 8i posterior, 8 I
Intratendinous olecranal bursa, 208
Irregular bones, 20
Ischiocapsular ligament, I32
Ischium, 93, 96
development, 96
Jaws. See Mandible and Maxilla.
Joint. See Articulations.
cushions, 108, 109
Juga alveolaria, 68
Jugular foramen, 40, 41,43
fossa, $40,46,56$
notch of manubrium, 34 of temporal bone, 55
process, 43, 46
tubercles, 43,46
Jugum sphenoidale, 4I, 48
Juncturæ tendinum, 196

Knce－joint，1引；
menise i of， 133 functions of， $1 ; 1$
movemerits， 1 ；
semilunar cortiluge of it ．t．
transverse ligament ont．I

Lacertces litoronus，Mhs，：
Lathrymal beone，37， 14
development， 05
surfaces of，05
cells， 03,65
crest，anterior，wi pesterior，is
gland，fossa for， 7 （
growe， 07
notch， 0_{7}
portion of orbiculari－ox wir in ubll 17，
process of inferior turhinated， K_{3} satc，fossa for， 70
Lachrymoconchal suture：－－
Lathrymocthmoidal suture－
Lachrymomaxillary suture，oo
Laciniate ligament，221，23d
Lacunamusculorum， 235 vasorum， 231
Lacunar ligament，131，103，10九，－ 1
Lambeloil horder of occipital bome．．＂
suture， 3 s， 79
Lamina pappracta， 63
Langer＇s musde， 107
Lateral crest of saterum， 2,
crus of diaphragm，IoF
ginglymus， 100
intertranswersarius muale． $15=$
ligament，external，of arm， 17
of head，ins
of knece． 135
fibular，134． 1.35
internal，of arm， 122
of knce， 13.4
of fingers， 127
of foot， 130
radial， 120
tibial， $13+$
ulnar， 120
masses of atlats， 25 of cthmoid，（12，0； of sacrum，20
portions of oceipital lame，f ． 5
sacrococoged ligament－， 111
surface of radius，心s，心）
Latissimus hursa，igt dorsi muscle， $1+0$ functions of， $1: 7$ nerve supply ul， 117
Leg，anterior muscios of，22；
extensors of，223
fasciae of， 23,3
muscles of， 210
classification， 235
outer muscles of，222
posterior muscles of，23u
Lesser cornua of hyoil luone，iz
multangular bone，（s）．10

ही： 1 ，

－as：thermimi． nitu $=10$
amellatrac tar

10ter Ait ther MV
nine of｜hemet lown 17，；1
1 c｜ग at cote virk many for

 teavis ins

creile ion＝015
catomion m ：
mormilley ay 1：7
 18
 nosen कity

th 17.1 －

4．toseme（ey
arrmenion．ir ：－
Clut， $\mathrm{H}^{-1}=$
13．．alar． 1.1

internal，？2
（1） 11 － $27=$

41．7 Anntive 115
wirle，1．5
：Wer：－4．5：150 ：15
interat．10に
pollitea．：：

interitace－：－7
thet．tt rat hiter mus， $1 \neq 1$
phttore 1 bs
i f．ar．1z7
hite ate is

patcar， $1: 1$
（af．anconlualar：$:=$
at amenthey it ir 1：3
tlor～1， 1
Fhate．t！1：
Ghatere in ．1；

phatiorser， 1 ； 0
tramber－ifi＝：1；
Carpha， $1=0$
dirs．1t，2u：205
axtencor widon shath is neth，27：
raliate：1：\％
tran－venc 127 205
wolar，zed
carpometac．arpal，tursa＇，127
blar．12：
check． 10 n
Collis： 150

$1=10-1=$
tonetrontion
nescrecumerak +11
n＝tar $-1 f$
trent
－itt itt letorory －verat Im
．avel．in

400－0．1．1．
ry：plon－at
$1+1+1$
$1+\cdots+5 \cdots$
nomil tronven－ 2
 thertio．

 then 1.1

ivo iflesti．

cin mill

－N－10van 27
then of the

is sumalio oter choy il：
 （1）+7

twry nimet．101
Eviction Of ！！ तथtrlt th intior lea
 mitrer＝－ 11. 10．．A：． 3.1
$\mathrm{f}: \mathrm{C}$ lown th
onetane 1.1
 THIT－．．．7T4 ： 151．matomillo 1，4 If lwe． 141 sumation 172 hiticer into．

 12

lan wal．－21．．T1

latro．（vil：at，ai ara，1．2
तh－1．
（1）homm $1: 5$
－5ort． $1<=$
iiluler． 1 ：： $1: 5$
imttmat．if hrad， 122
of hon 1 is
aifinger． 127
oi fort， 130
radial， 122,120

Ligaments, lateral, tibial, 134 ulnar, 122, 126
lumbocostal, 156
navicular cuneiform, dorsal, 141
plantar, 14 I
oblique, 123
popliteal, ${ }^{1} 35$
odontoid apical, 115
of ankle-joint, I 39
of conduction, 108
of costal tubercle, 116
of external malleolus, anterior, 137 posterior, 137
of fixation, 108
of foot, 137
accessory, 139
of hand, 124
of head, 117
independent, 118
of hyoid bone, 119
of lower extremities, 128
of neck, 116
of pelvic girdle, 128
of scapula, 120
of upper extremities, II9
of vertebral column, II I
orbicular, ${ }^{2} 3^{2}$
palpebral, internal, 179
patellar, 135
pelvic, 128
independent, 129
pisohamate, 125
pisometacarpal, 125
plantar accessory, I 39
long, 141
of foot, 140
tarsal, $1+1$
popliteal, arcuate, 135 oblique, 135
Poupart's, I31, 163
pterygomaxillary, 184
pterygospinous, 119
pubic, inferior, 128
superior, i 28
pubocapsular, $\mathrm{I}^{2} 2$
radial lateral, I22, I26
radiate, 1 I6, 117
radiocarpal, dorsal, 126 volar, 126
reinforcing, 108
rhomboid, 119
round, 132, I33
sacrococcygeal, anterior, 113
lateral, 113
posterior, ${ }^{11} 3$
sacroiliac, anterior, 129
interosseous, 129
posterior, 129
sacrosciatic, great, 129
lesser, 129, 130
sacrospinous, 129,130
sacrotuberous, 129
sphenomandibular, in8
stellate, II6, II7
sternoclavicular, 119
stylohyoid, 119
stylomandibular, 118, 184
stylomaxillary, 184

Ligaments, supraspinous, II 2
talocalcaneal, anterior, 140 external, I40
internal, 140
interosseous, 140
posterior, 140
talofibular, anterior, 140 posterior, ito.
talotibial, anterior, 139 posterior, 139
tarsal, 139 dorsal, 140
tarsometatarsal, dorsal, 141 plantar, I4I
temporomandibular, II8
tibionavicular, I 39, i 40
transverse, capitular, 127
inferior, 12 I
of atlas, II_{4}
of hip, 131
of knee, 134
superior, 120
trapezoid, 120
triangular, 159, 164
ulnar, lateral, 122, 126
vaginal, 143
of foot, 23 I
volar, accessory, 127
Ligamentum nuchæ, II3
teres, 132
Limbus alveolaris, 68
Linea alba, 161, 163
aspera, 97, 98
muscularis, 83
suprema, 46
terminalis, 29
Lingula, 48, 73
Lips, glenoidal, ro8, 109, 12 I of hip, 13 I
of crest of ilium, 94
Lisfranc's joint, 139
tubercle, 32
Little toe, bail of, muscles of, 227
Locking mechanisms, bony, 108, 109
Long bones, 19
diaphyses of, 19
epiphyses of, 19
extremities of, 19
neck of, 20
shaft of, 19
head of triceps muscle, 189
muscles of back, 149
development, ${ }^{5} 6$
plantar ligament, $1+1$
posterior sacroiliac ligament, 129
Longissimus capitis muscle, 150 , 15 I
cervicis muscle, 150,151
dorsi muscle, 149,150
muscle, 149,150
functions of, 154
nerve supply of, I 54
Longitudinal ligaments of vertebral column, II I
Longus atlantis muscle, 176
capitis muscle, 176
functions of, 176
nerve supply of, 176
colli muscle, 176

Longus colli muscle, functions of, ${ }^{176}$
nerve supply of, 176
Louis' angle, 34
Lower extremity, bursæ of, 233
fasciæ of, 231
free, skeleton of, 97
muscles of, 209
classification, 235
skeleton of, 82, 93
jaw, 37. See also Mandible.
portion of longus colli muscle, 176
Lumbar portion of diaphragm, 164 , 165
ribs, 28,35
triangle, 147
vertebræ, 27
Lumbocostal arch, external, 165 internal, 165
ligament, is6
Lumbodorsal fascia, 146,156
Lumbosacral vertebra, 30,36
Lumbricales bursæ, 228
muscles of foot, 210,228 of hand, 200,203 functions of, 203 nerve supply of, 203
Lunate bone, 89,90

Maissiat's band, 232
Malar bone, 36, 70. See also Zygomatic bone.
portion of orbicularis oculi muscle, 179
surface of malar bone, 7 I
Male pelvis, 131
Malleolar bursa, subcutaneous external, 234
internal, 234
surfaces of talus, 102
Malleolus, external, ror
ligaments of, anterior, 137
posterior, 137
internal, 100
Mammillary process, 28
Mandible, 37, 7 I
body of, 71
borders of, 71
development, 73
in new-born, 73, 8r
notch of, 71
processes of, 7 I
ramus of, $37,71,72$
Mandibular canal, 72
foramen, 7^{2}
fossa, $38,40,53$, II 8
Manubrium of sternum, 34
Marrow, bone, 2 I
Masseter muscle, 182 functions of, 183 nerve supply of, 183
Masseteric tuberosity, 72
Mastoid angle, 43, 59
border of occipital bone, 46
canaliculus, 56, 58
cells, 53
fontanelles, 82

Mastoid foramen， $4,4 i, 5 i, 5$
fossa， 54
notch，53，54
 53
process，38，40，53，51
Maxillee，37，06
buxly of， 60
development，（ x ）
frontal processess off， 37
in newhurn， 60 ，si
nasal processes of， 37
processes of，37，00
surfaces of， 60
Maxillary cedls，03． 07
process of inferior turbinated， 64
sinus， 66
oritice of， 07
surface of palate bone．（x）
Meatus acusticus coxternus， 38
auditorius externus，to
nasopharyngeal，it
of nose， 77 common， 77 inferior， 77 middle，64， 77 superior，64， 77
Medial crus of diaphragm， 165
intertranswersarius muscle， 155
Median palatine suture， 30,81
plane， 17
Medullary cavity， 19
Nembrane，atlantooccipital， 115 posterior， 115
costocoracoid， 170
interosseous，of radius and ulna， 123 of tibia and fibula，1．36， 137
obturator， 115,120
anterior， 115
posterior， 115
sternal， 117
synovial， 10 s
tectorial，181， 215
Membranous bones，21， 22
Meniscus， 108
of knee－juint， 133 function of， 1.30
Mental foramen，3\％，72
protuberance， 71
spine， 72
tubercle， 72
Mentalis muscle， 181
Metacarpal bones，S2，9：
base of， 9 ：
borders of，os development， 92
head of，08，92
shaft of，or
surfaces of，or
Metacarpophalangeal articulations， 127
of thumb， 127
burse，dorsal subcutancous， 208

Metacarpus，of

Metatarsal bones，S2， 105
base of， 105
development， 106
head of， 105

 157，13，
Metatarty， $1=$

Millle articutar t．a il it eat atmand $1 / 9$
laliar， 172
－lumbl fration，is

cratial fome fo
＇rura of dhap hragn，if：

athen！time of
1 ratus of neme b：if

tarbmated bate，sti；
Wonarticular munt to．， $1: \frac{1}{2}$
Huew burece 1 ： 3
－heath，iturtuberular，121，1as
Natangular tame greater，Mo．ve

$$
\text { leser, } \therefore \text { o, in }
$$

Mubitidus corvolis nu－de， 152
chorimurle， 152
lumbirum nurle． 152
murle，152
function－if．：$=4$
nerve－uplly if． 5 －
Murlen，is？
alxkminal， 157
antagonistic，143
belly of $1: \mathrm{P}_{2}$
biarticular．1ヵ2
bic（p）
bipenniform，142
bipinnate， 142
biventer， I^{2}
cervical，preverteltal， $1=0$
development， 143
digastric，142
fusiform，it
gluteal， 211
head of，142
hyoid． 172
infrahyoid． $1: 2$
insertion of，142
monarticular， $14=$

of anterior surface of thigh， 214
of back， $1+4$
Alat， 145
long． 1 if
shon， 154
of extenow surface of forearm， 115 of upler arm，iso
of face， $1 ; 8$
of thexor surfate of forearm，101 of upper arm， 15 s
of forot，224
of forearm， 185,101
of hand， 155,108
of head． 17%
of hip， 210
of hypothenar eminence， 200
of leg． 250
of lower extremity， 200
of mastication，isz

！un｜1－

a）＇lisear rimb no ko

1t0．0 13.

＋－7！！ 1 г：
Romen 142

12n：．00， 43 ：
freserimber Imen．If in
Thatrint 1.2
＊1．7．（4：
plaintar ग．

\because vergint 1%
tiorat－ $\mathrm{u}=$
tri C 1

Musiu mprat gry ios an nerve，ernatr ：－＂

M！letmal grem：；－
iine．：－
rathe，ェー＝
Mynlamber mavie．i～；
16nction－ $17=$
betre wifll •1，1；5
Mytager，1\％－
deforituer，1：
sefleral，142
－peci．1． $1+4$

Metcrios，is）
 devoprater in new－le
In aterti formal thenc．Cl

avit！；
furarinali，：7
wishot－ 3 ：

foramina，es

neteh．©
proith if frettal hone．oc． 61
procos eif maxilis．：\％，cio，c_{7}
－bitum，：，－n，7
sine antctior ：：on
fenteriar，za，（x）
－urface of patate trine (x) of ：upcrior maxillary，06．67
Nasli－munde，IB2
Nasefrintal suiture，37， $05,>$
Nasolachrmal canal， $04,07,75$
Nasomaxillaty suture，si，65，So
Nasopharyngeal meatus，it
Ňasophaṛñ， 7

Navicular bone of foot, 102, 103 development, 106
of hand, 89,90
fibrocartilage, 141
Naviculari-cuneiform ligaments, dorsal, 141
plantar, 141
Neck, fasciæ of, 177
ligaments of, II6
muscles of, 171
deep, 175
short, 155
development, 156
of femur, 97
of humerus, anatomical, 85
surgical, 86
of long bones, 20
of radius, 88
of ribs, 32
of scapula, 84
of talus, 102, 103
Nerves of bones, $2 I$
Neurology, definition, 17
Nose, meatus of, 77
common, 77
inferior, 77
middle, 64, 77
superior, 64,77
Nuchal fascia, I56
line, inferior, 4I, 46
superior, 41,46
surface of occipital bone, 46
Nutrient canal of arm, 87, 89
of bones, 20
of radius, 87,89
foramen, 20
of tibia, 100
of ulna, 87

Oblique head of adductor hallucis muscle, 226
ligament, 123
line of mandible, 72 of tibia, 100
muscles, 164
popliteal ligaments, 135
Obliquus abdominis externus muscle, 157
functions of, 162
nerve supply of, 162
internus muscle, 157,160
functions of, I_{2} nerve supply of, I_{2}
capitis inferior muscle, 155 functions of, 155 nerve supply of, 155
superior muscle, 155 functions of, i55 nerve supply of, 155
Obturator externus muscle, 209, 216, 217
functions of, 218
nerve supply of, 218
foramen, 93,96
groove, 95
internus muscle, 209, 213
functions of, 213

Obturator internus muscle, nerve supply of, 213
membrane, II5, I29
anterior, 115
posterior, II5
ridge, 95
tubercle, anterior, 95 posterior, 95
Occipital angle of parictal bone, 59
bone, $38,40,45$
basilar portion of, 40, 45
borders of, 46
condyles of, 45
condyloid portions of, 45
development of, 47
in new-born, 47,81
lambdoid border of, 46
lateral portions of, 40, 45
mastoid border of, 46
nuchal surface of, 41,46
relations of, 38,40
squamous portion of, $38,45,46$
border of parietal bone, 59
condyles, 40
crest, external, 46
internal, 44, 46
fontanelle, 8 r
fossa, inferior, 44, 46 superior, 26
protuberance, external, 41, 46 internal, 43,46
Occipitalis muscle, 178 functions of, 178 nerve supply of, 178
Occipitomastoid suture, $38,40,43,53$, 79
Occiput, articulation of first and second vertebræ with, 113
Odontoid ligament, apical, I I5
process, 25, 26
Olecranal bursæ, 208
Olecranon, 87
fossa, 87
Olivary eminence, 41,48
Omohyoideus muscle, 172, 73
Opponens digiti quinti muscle, 200, 227
function of, 200, 227
nerve supply of, 200, 227
V muscle of foot, 186,2 Io
pollicis muscle, IS6, 199
function of, 199
nerve supply of, 199
Optic foramen, 41, 48, 75 groove, 4 I, 48
Oral cavity, roof of, 78
muscles, 179 , 180
Orbicular ligament, I 32
muscles, 142
Orbicularis oculi muscle, 179
functions of, iso
nerve supply of, 180
oris muscle, 180, 181
Orbit, margins of, 75
walls of, 73, 74
development, 7^{6}
Orbital cavities, 37,73
crest of sphenoidal bone, 50

Orbital fissure, inferior, $37,39,66$, 71, 74, 75
superior, $37,42,49,74,75$
plates, 61
surfaces of, 6 I
portion of orbicularis oculi muscle, 179
process of palate bone, 70
surface of lachrymal bone, 65
of malar bone, 7 I
of orbital plates, 6 I
of sphenoid bone, 49,50
of superior maxillary, 66
wings of sphenoid bone, 47,49
Orifice of aquæductus cochleæ, 56
of canaliculus cochleæ, 56
of maxillary sinus, 67
Origin of muscle, $\mathrm{I}_{4} 2$
Os basilare, 47, 51
capitatum, 89, 90
incæ, 47
incisivum, 69
interparietale, 47
magnum, 89, 90
nasoturbinale, 64
planum, 63
trigonum, 103
Ossa Bertini, 48
suturarum, 8_{2}
Ossification, 21
centers, 21
Osteology, i9
definition, 17
general, 19
special, 22
Outer crura of diaphragm, 165
head of gastrocnemius muscle, 220 of triceps muscle, 190
leg muscles, 222
lip of linea aspera, 97,98
portion of longus colli muscle, 176
vitreous table of flat bones, ig
Outgrowths, 20
Oval fossa, 232

Pacchionian depressions, 44, 60
Palate bone, 69
development, 70
horizontal plates of, 69
in newborn, 70
perpendicular plate of, 69
processes of, 70
surfaces of, 69
hard, $39,68,78$
in newborn, 68
tuberosity of, 40
Palatine canals, 69
cells, 63,70
foramen, greater, 40, 69
lesser, 40, 70
grooves, 68
process, 39, 66, 68
spines, 68
suture, median, 39, 81
transverse, 39, 8 I
Palatoethmoidal suture, 80
Palatomaxillary suture, 80

Palm，tundon wi，2ur
flexor，zo弓

P＇alnaris loretio masale，けと，1， function of， $1(\mu)$ nerve supply of，ぃぁ

longus murile，is 5,10 ， function（ii， | （） |
| :--- | nerve－upple（i，แை

I＇alpeloral ligament，internal， 270 musctes，170
portion of orliculatis wali mus． 17）
rather，external， 170
Paraglenovidal growいい， 15
L＇arictal amghe， 5
bume，3（t），5u
angles of， 50
｜rirderi（nf， 5 ）
developement of 50,00
in new－turn，ω_{0}
sulci of， 5 ！
surfaces of 5 c
berefer of frontal brome： 60 of temporal bone， 52
eminence， 5 ）
foramen，4． 5 ， 1 ）
moteh， 52
surface of parictal bonce， 5 （）
Parietomastoil！suture，3－5，53．70
P＇arotideomasseteric fascia，ist
l＇atclla，on
apeex of， 0 e
base of，（y）
development，（x）
surfaces of，（o）
Patellar ligament， 1,35
retinaculum，external， 1.35
internal， 135
surface of femur，os
synovial fold， 1.35
Pectineal bursa，2．3．4
fascia， 232
line，os
l＇etine us muscle，20n， 216
function of， 210
nerve supply of，zre
Pettoral fascia，i\％o
Pertoralis major muscle， 106 functions of， 107 nerve supply of， 107
minor muscle， 100 ，jos functions of 10 s． nerve supply of， 10 s
Pedicles of vertebrat， 23
Pelvic contraction，plance of， 130 diarthroses， 128
expansion，planc of， 1 ， 0
girdle，0，3
articulations of， 128
ligaments of， 12 S
inlet， 1,30
ligaments．izS
independent， $1=0$
outlet， 131
synarthroses， 128
Pelvis， $128,1,0$
aperture of，inferior，ISI

J！｜e1 a｜
10．es， 1
118\％． $1=1$

fifer 10
tran 111

1．1．12
H2：t1－m1－al $\mathrm{t-n}$
thale 111
15： 1 ？
Petrailario mona is－
I＇eri hordam al
P＇rimeteut， 11
 fuhthom il 58 मएन，ख्ञात y
longut mam k，277 31 fan low－1 ．．． merse whty ah itz scoth ．1．． 21
 fufullta at．87

l＇aroneat gramse torize
promers．16：
retinatulum，infori $=1$－

 02．1：
of palate tre c．if

I＇ctit＇＝triang e．11：

sumblemleいい，b1，11
Perronal luraler if $=1$ lemenid：bet 5
f（パ． 50

superior． 4 ：$==$

－uture，si
Petrotsmpatic tionst $=$＝$=$
 5－こ ！

Ithalanges oif $n+$ ．$=$ devctopment， 1^{-6}
of 1 mad．$A 2, ~ リ=$
artic ular（．1］：－．．i．I27
articulatincol．12\％
leridera it．1E
development．EI
mowement－11．127
shaift oi，（1）
surface of．（）
trexhleat it，as
ungual．62
Pharymeal camblation
tulerte．+5
lillar of sulcutamenus incuinal rins

$$
\text { .mteror. } 15 \text {) }
$$

infertur， $1=-$
pmotcior，15）
superior，15－
linnate mustes．142
l＇iriform buria， $2: 3$
Piriformis muscle，2en）． 212


```
        -*!- nu-v=e_1-
lowomomitomeg it?
```



```
I mbry|-iv-8
```



```
        T\0%!#
```



```
    *,-t=men- + +0. i- m- of 
```



```
        Tatera= =al
        *Wbhb, ire +**
```



```
    M-TMOM
        M&M-2-2
        Mo. 1.1
        a) tion is
```



```
    *oreoply)
```



```
    Narim|.asmulim.-mi.
```



```
    ner: I .h :
    tona-4
    ingmotmo ishk60.
```



```
        #%T=4 sme:% 年, -1
ItTum! tart+
1' Iracullu'ba, %)=
```



```
        TH04. !+
    0-7%
    *-0,0
```



```
        - rit me \t.al 2-1
```



```
        2.5
```



```
            8. A07 m= 1% f.
```



```
        4...ा", **
```



```
    Tarm n! 0.,.N
```



```
    , fineat promon\mp@code{4}
    colling molel:=
        1rnetre it mandifid. ;2
    (T):utramerece lig+Ment. IIo
    (T-m)-1.mar. :! : :
    iru jal ligament. I&&
    cru-vi culrutaneris inguinal ring,
        150
```

Posterior ethmoidal foramen, $6 \mathrm{r}, 75$
fontanelle, 81
gluteal line, 94
inferior spine of ilium, 94
intercondyloid fossa, 99
intermuscular septum, 233
interoccipital synchondrosis, 47
intertransversarius muscle, 155
intraoccipital synchondrosis, 8 I
lachrymal crest, 65
layer of lumbodorsal fascia, 156
ligament of external malleolus, 137
longitudinal ligament of vertebral
column, 111
muscles of thigh, 2 I8
nares, 39
nasal spine, 39, 69
obturator membrane, II 5 tubercle, 95
pelvic surface, 96
pillar of subcutaneous inguinal ring, 159
portion of quadratus lumborum muscle, 162
process of talus, 102
sacral foramina, 29
sacrococcygeal ligaments, II3
sacroiliac ligament, I 29
surface of fibula, 101
of humerus, 86
of legs, muscles of, 219
of tibia, 100
of ulna, 87
of zygomatic bone, 71
talocalcaneal ligament, 140
talofibular ligament, 140
talotibial ligament, I39
trochanteric bursa of glutæus medius, 212, 234
Poupart's ligament, I31, 163
Preaxial muscles of lower extremity, 235
of upper extremity, 209
Prepatellar bursa, subcutaneous, 136 , 234
subfascial, 136
subtendinous, 136
Prevertebral cervical muscles, 176 fascia, 177.
Procerus nasi muscle, 178
Processes, 20
accessory, 28
acromion, $8+$
alar, 63
alveolar, 37, 66, 68
articular, 20 of vertebræ, 23
clinoid, anterior, 41, 49
middle, 48
posterior, 48
condyloid, $20,38,71,72,73$
coracoid, 84
coronoid, of mandible, $38,7 \mathrm{I}, 73$ anterior, 72
of ulna, 87
costal, 24
ethmoidal, of inferior turbinated, 64

Processes, external angular, 36 of calcaneus, 103
of talus, 102
falciform, 129
frontal, of maxilla, $37,66,67$
frontosphenoidal, 37, 71
hamular, 40, 51, 90
inferior, of temporal bone, 5 ?
internal, of calcaneus, 103
intrajugular, 46, 55
jugular, 43, 46
lachrymal, of inferior turbinated, 64
mammillary, 28
mastoid, 38, $40,53,54$
maxillary, of inferior turbinated, 6.4
nasal, of maxilla, $37,66,67$
odontoid, 25, 26
of sacrum, superior articular, 29
of vertebræ, 23
orbital, 70
palatine, $39,66,68$
peroneal, 103
posterior, of talus, 102
pterygoid, 39, 47,50
pterygospinous, 5 I
pyramidal, 40
of palate bone, 70
sphenoidal, of palate bone, 70
spinous, of tibia, 99 of vertebræ, 23
styloid, of metacarpal bone, 91 of radius, 89
of temporal bone, 40, 56 of ulna, 88
supracondyloid, 87
temporal, of ulnar bone, 71
transverse, of vertebræ, 23
trochlear, of calcaneus, 103
unciform, 90
uncinate, 6
vaginal, of pterygoid processes, 49, 51
of temporal bone, 56,57
xiphoid, 34
foramen of, 36
zygomatic, of frontal bone, 60 of maxilla, 66,67
of temporal bone, $36,38,39,52$
Processus civinini, 5 I
costarius, 24
mastoideus, 40
pyramidalis, 40
Promontory, groove of, 58
of vertebral column, 30
Pronation, 124
Pronator quadratus muscle, 185, 194 function of, 194
nerve supply of, 194
teres muscle, 185 , 191 function of, I91 nerve supply of, 19I
Protuberance, mental, 7I
Proximal radioulnar articulation, 122
Psoas major muscle, 210
minor muscle, 2 10, 2 II
Pterygoid canal, 50, 78

Pterygoid depression, 73
fossa, 40,5 I
notch, 5 I
plate, external, 40,50
internal, 40, 5°
process, $39,47,50$
tuberosity, 72
Pterygoidei muscles, 182, 183 functions of, I_{4} nerve supply of, 184
Pterygoideus externus muscle, 183 internus muscle, 183
Pterygomandibular raphe, 182,184
Pterygomaxillary ligament, 184
Pterygopalatine canal, 5 I, 69 fossa, 50,78 groove, 5 I, 67, 69
Pterygospinous ligament, II9 process, 51
Pubic angle, 131
arch, 131
ligaments, inferior, 128 superior, 128
Pubis, 93, 95
development, 96
ramus of, 95,96
Pubocapsular ligament, x^{2}
Pulleys, 143
Pulmonary groove, 35
Pulpy nucleus of intervertebral fibro-
cartilage, IIo
Pyramid of temporal bone, 52, 54 apex of, 55
Pyramidal eminence, 57
process of palate bone, 40, 70
Pyramidalis muscle, 161 functions of, 162 nerve supply of, 162
nasi muscle, 178

Quadratus femoris muscle, 209, 213 function of, 213 nerve supply of, 213
labii inferioris muscle, 18 I
superioris muscle, 180
lumborum muscle, 162
functions of, 163 nerve supply of, 163
plantæ muscle, 2 10, 225
function of, 225
nerve supply of, 225
Quadriceps femoris muscle, 209, 214
function of, 215
nerve supply of, 215
muscle, 142
Quadrilateral foramen, 166

Radial carpal eminence, 90
fossa, 87
head of flexor digitorum sublimis muscle, 192
lateral ligament, 122, 126
muscles of forearm, 194
nerve, groove for, 86
notch of ulna, 87
Radiate carpal ligament, 127

Radiate ligaments， $1: 10,117$
Radiocarpal articulations，12：
ligament，dursal， 12 （ volar， 126
Radiuulnar articulation，distal，123 proximal， 122
Radius，s_{2} ， 8 s
and ulna，relations，sis
articular circumference of sts
borders of， 88
development，Sos
extremities of，ss
heat of， 88
interosstous ridge of，ss
neck of， 88
nutrient canal of， 80
shaft of，ss
surfaces of，sS
tuberosity of， 88
Radix arcus vertebrae， 23
Ramus of ischium， 0 ？ of mandible， $37,71,72$ of pulis， 93,95 ，（10
Rectus abedoninis mustle，ior
development， IO_{4}
functions of， 162
nerve supply of，ioz
capitis anterior major muscle， 170
minor muscle，： 7
functions of，177
nerve supply of， 17
lateralis muscie， 155 functions of， 155 nerve supple of， 155
posterior major muscle， 155
crest for， 47
functions of， 155
nerve supply of， 155
minor muscle． 155
functions of， 155
nerve suplly of， 155
femoris muscle， 214
muscles， 10.4
external，spine for， 76
Red bone－marrow， 21
Reflected inguinal ligament，150， 104
Reinfurcing ligaments， 108
Retinacula perontorum，222， 2.30
Retinaculum of areuate ligament， 1,35 patcllar，external， 135 internal， 1.55
peroncal，inferior， 230 superior， 2.30
tencton， $1+2,1+3$
Retrahens auriculie muscle， $1-9$
Rhachischisis， 36
Rhomboid ligamont， $1: 0$
Rh．omboieleus major muse le，1：7
functions of， $1+7$
nerve supply of， $1+7$
minor muscles，i4i
functions of，14i
nerve supply of， $4 \ddagger$
Ribs，22， 32
abdominal， 28
angle of， 32
articulations of，with sternum， 110 ， 117

Rib，urticulation of，＂the vinila． colutit，20，12 $1,1: 7$
bely of ：
Imony，32， 51
corvi al， 55
－urnathre inf，©
development if， 5
－levetith，is
f．ale，〕：
fencotration wi，o
first， $3=$
Hosting， 33
head of， $3=$
lungh of，；
lumber，is． 35
mosemetit of，117
neek of，i_{2}
sacral， $3^{\prime \prime}$
secund，is
surface curnatare if，， 3
tursion cursature if ； 3
true， $\boldsymbol{i n}^{3}$
twelfti，：3；

Ring，alxlumimal，external．：5
inguinal．subicutame as， $1=5$
Kielge l，inemtat，ne
interomeotas，if fildu t ， t －
of radius，is
of tili，i， 100
of ulnas．is
intertrokhameri ：；
whturator．us
sphenomaxilars：：＝
supinator，s；
temporal，is
tubercular，greater，so lewater．so
Riverime muele， 180
Renf of oral anity，is
Kexot of virtehrac： $2 z^{\prime}$
Kostrum，shomosil．al，ts：
Kotary vertubrat，z3
Rotatures breves muse \＆152， 15 i
longi must es， 152,15 ；
muscles．15：15；
functions．of． $15+$
nervesulphly of， 15 ：
Round ligomett，132． 1 is

Sicctlak rexess，122， $12 ;$
Sacral canal． 27
cornu，21）
foramina，2． 5.20
intervertehrat，z）
hiatus，2u， s 1
rib，3e
tulurosity，z）
 lateral，11： pomecrior，i：
symphysia， 11 ：
Sacroiliac arti，ulation． 12 ，
ligument，anterior， 12 ノ
interosectus．I27
pasterior， 120
Sacrosciatic foramen， 1 jo
 （mec，1－w）

 thisemalymill

Sm！
13＝
1an 71．．．
amal al 0
iresin：
Aloer inmil is it
damarntatal．

marmine A． AK ．

mole

：ulen．\therefore（ y ，$=1$
－+ －

1041－：
－0．tir－

vil．ETE．． 1 ：
－15：risflym－3：


```
        tam:-n):%.
        terteat!gow K, 2%:
```


scablif wount i－． fatt：－ perse aty
Shirme ame－mor in

pintermer micalo
－al．，mine 1 ，

ine．t．＝1

anairine A ：
t．oneor－
beal h $=\cdots$
thalermon．＇．
－Livil ui -

1二口
nin！\because ！
Hictuth ？
－alatir bith $\quad:$
Sorle＇：ins． 10 ：

Laur． $1=0$
Uu Ih．E．At，U4．$V^{\prime \prime}$

silha turcica，$\ddagger 1$, io ：

Semicanal for Eustachian tube, 5^{8}
for tensor tympani, 5^{8}
Semicircular line, I 6 I
Semilunar bone, 89, 90
cartilages, 133
function of, I36
line, 160
notch of ulnar, 87
surface of acetabulum, 96
Semimembranous bursa, 136, 219, 234 muscle, 209, 218, 219
function of, 219
nerve supply of, 2 I9
Semispinalis capitis muscle, 151,152
cervicis muscle, 152
dorsi muscle, 152
muscles, $5^{5} 2$
functions of, 154
nerve supply of, 154
Semitendinosus muscle, 209, 218
function of, 219
nerve supply of, 219
Septum choanarum, 39, 66
intermuscular, 143
anterior, of leg, 233
external, of arm, 207
of thigh, 232
internal, of arm, 188, 207
of thigh, 23^{2}
of arm, 188, 207
of leg, 233
of thigh, 232
posterior, of leg, 233
nasal, $37,76,77$
Serrate suture, 107
Serratus anterior muscle, 166,168
functions of, 169
nerve supply of, 169
magnus muscle, 168
functions of, 169 nerve supply of, 169
posterior inferior muscle, 148,171 functions of, 148 nerve supply of, 148
superior muscle, 148 , 171 functions of, 148 nerve supply of, 148
Sesamoid bones, 143
of foot, 82,106
of hand, 82,92
Sheath, intertubercular mucous, 121 , 188
peronxus longus, 23 I
rectus abdominis, 16 I
synovial, of dorsal carpal ligament, 203
of fingers, 205
of flexor tendons of palm, 205
of foot, 229
Short bones, 19
external lateral ligament of knee, I 35
muscles, 14^{2}
of back, 154 development, 156
of neck, 155
development, 156
posterior sacroiliac ligament, 129
Shoulder, articulations of, 121

Shoulder girdle, 83
muscles of, 185,186 classification, 209
Shoulder-blade, 83. See also Scapula .
Shoulder-joint, 121
movements of, 12 I
Sigmoid groove, 43, 46, 53, 60
notch of mandible, 38,71
of radius, 89
of ulna, greater, 87 lesser, 87
Simple joint, ro9
Sinus, frontal, 61 development, 62
maxillary, 66 orifice of, 67
of tarsus, 102,103
sphenoidal, 47
Skeleton, appendicular, 22
axial, 22
divisions of, 22
of extremities, 22, 82
of foot, 101, 106
of free lower extremity, 97 upper extremity, 85
of hand, 92
of head, 22, 36
of lower extremities, 82,93
of trunk, 22
variations in, 35
of upper extremities, 82,83
Skull, 36
anterior aspect of, 36
base of, external surface of, 39 internal surface of, 41
bones of, 44
developmental classification, 44
disarticulated, 36
external surface of base of, 39
inner aspect of, 44
lateral aspect of, 37
of newborn, 8 I
superior aspect of, 44
sutures of, 79
Smiling muscle, 180
Sockets for teeth, 68
Sole of foot, muscles of, 225
Soleus, arch of, 220
muscle, 2 19, 220
Special anatomy, definition, 17
Sphenoethmoidal recess, 77
suture, 79
Sphenofrontal suture, 37, 41, 49, 79
Sphenoid bone, 37, 39, 47
body of, 47
borders of, 49, 50
cerebral juga of, 50
surface of, 42
development of, 5 I
digitate impressions of, 50
greater wing of, 42
in newborn, $51,8 \mathrm{r}$
lesser wings of, 4 I
orbital crest of, 50
variations in, 5 I
wings of, greater, 47, 49
surfaces of, 49
lesser, 47, 49

Sphenoid bone, wings of, orbital, 47, 49
temporal, 47, 49
spine of, 39
Sphenoidal angle, 36, 59
cells, 63
crest, 48
fissure, $37,42,49,74,75$
fontanelles, 82
process of palate bone, 70
rostrum, 48, 49
sinus, 47
spine, 56
turbinated bones, 48
Sphenomandibular ligament, ir8
Sphenomaxillary fissure, 37, 39, 71, 74, 75
fossa, $49,50,78$
ridge, 50
surface of sphenoidal bone, 50
suture, 8 I
Sphenooccipital fissure, 45
synchondrosis, 4I, 45, 47, 8I
Sphenoorbital suture, 79
Sphenopalatine foramen, 70, 7^{8}
notch, 70
Sphenoparietal suture, $37,38,42,79,82$
Sphenopetrosal fissure, $39,40,42,54$, 55, 81
synchondrosis, 81, in 8
Sphenosquamosal suture, $38,39,42$, $43,5^{2}$, So
Sphenozygomatic suture, $37,38,50,80$
Spheroid joints, 1 1o
Sphincter muscles, 142
oris muscle, 18 I
Spigelius' line, 160
Spina recti lateralis, 50
Spinal canal, 3 I
column, 22. See also Vertebral column.
Spinalis capitis muscle, 151,152
cervicis muscle, 15 I
dorsi muscle, 151
muscles, r49, ${ }^{1}{ }^{1}$ functions of, 154
nerve supply of, 154
Spindle-shaped muscles, 142
Spine, 20
anterior nasal, 37
ethmoidal, $4 \mathrm{I}, 48$
for external rectus muscle, 76
frontal, 61
mental, 72
nasal anterior, 68
posterior, 69
of ilium, anterior inferior, 94 superior, 94
posterior inferior, 94
of ischium, 96
of pubis, 95
of scapula, $8_{3}, 84$
palatine, 68
sphenoidal, 56
suprameatal, 52
trochlear, 6 I
tympanic, greater, 57 lesser, 57

Spinotranbee：alis mu－｜e．if
Spinous procion of tilhat，（2） of vertebrat， 23
Spiral juint，I（1）
Splanchnology，detimituon， 17
Splenius capits mabele．1t functions of，ifs Herve suply of，\＆\＆
cervie is muxtle， $1+\frac{1}{6}$ fumcions of $1+5$ nerve supply of，ifs
Squamesal berder of parietal lxar a of sphenovid bome， 50
suture，ぶ，63．52，7！
Squamosomastoit suture，53．50 A
Squamous pertions of exipital bern 38，$+5.4^{0}$
of temporal bence，35，40，43，52 suture， 107
Stellate ligaments， 1 If 0 ， 117
Sternal extremity of clavicle， 85 membrane， 117 portion of liaphragm，its synchondresi－， 117
Sternalis muscle， 167
Sternoclavicular articulation，110 ligament， 110
Sternocleidomastobideus mustle，1ヶ1 functions of， 172 nerve supply of，172
Sternocostal articulations，is 7 portion of pectoralis major musile． 167
Sternohyouleus muscle，172
Sternothyreoideus musile， $1 ; 2$
Sternum，22， 34 angle of． 34
articulations of ribs with， 110,117 body of， 34 development of， 35 foramen of， 36 gladiolus of，it manubrium of， 34 notches of， 34 siphoid process of，3t
Straight ablominal muste， 108 development， 108
Stylohyoid ligament， 10
Stylohyoideus muscle，1it functions uf．17t nerve supply of， 17
Styloid process of metatarpal bence，ut of radius， 8 or of temporal bonce，fo，50 of ulna， $8 s$
Stylomandibular ligament，iss，and
Stylomastoid foramen，10，50
Styomaxillary ligament，ist
subactomial bursa，zos
Subarcuate fossal， 55
Subclarian groowe． 3.3
Subclavius muscle， 100,108 functions of， 100 nerve supply of， 108
Subcostal angle，is
Subcostales muscles， $1(x)$ ，ito
Subcutaneous bursa of tubresoity of tibia，2．if
 cull ：atuch 17
1 2ाlat time that＝

 ± 4

tronlimetm lar $=11$

f．anti．1．－；
f心．．．

nerve－uflic at．ma
 rime．． $\mathrm{F}=$ panturnor． 255
ilite burat 2 ：
wheeranal thur－a，：－
prephatellar lurad． 150
Sulus．，20
arterimu． 13.4
of fromat hatce es
，if parictal lunte＝
of sphemanl lente 5 ？
if acmpural lence， 5 ；
catrancus，：03

ghutcol，2：2
nervi spinalis， 24
tali， $5=2$

Superilius are x－（or
Superlin i．al f．ari．t．goneral．If：
 1015
layevoir．jimascla．21）
uifurvic．l fari．t． 1 ：／

 11；
temperal i：ind in：

aperture oi phers． $1: \Delta$

Parder ístrmbs：

－ти－i－ 1 l 155
जumbly，if fut our． 9 ：
if fitoth 10 t
1）turners．$=$
if i hlu．．
of tilia，（\％）


```
    #sumalo--y.
```

```
    #sumalo--y.
```



```
    -\Omega- +|**
```

```
    -\Omega- +|**
```



```
    100=3/2"...
```

```
    100=3/2"...
```



```
    arior-3M| 15.
```

 arior-3M| 15.
 lverent imece
    ```
    lverent imece
```



```
    Tetuom )
```

 Tetuom)
 coclirat rumilu- -
 coclirat rumilu- -
 4-ron=.
4-ron=.
*ypmumbnal..
*ypmumbnal..
-rtamem (ros momacr 505
-rtamem (ros momacr 505
1.%-4 wor
1.%-4 wor
munonitis rom
munonitis rom
}uncolo i: :(an

```
        }uncolo i: :(an
```



```
    mig% -
```

```
    mig% -
```



```
-yyrmbomel clar ::
```

```
-yyrmbomel clar ::
```



```
            (*)
```

 (*)
 if raven os F= -0
 if raven os F= -0
 mmargm is
    ```
    mmargm is
```



```
vor.mentor bour vas):
```

```
vor.mentor bour vas):
```



```
        momalen 1.-
```

```
        momalen 1.-
```



```
-ogealoreviticoongin
```

-ogealoreviticoongin
-stmakn_- 1=1
-stmakn_- 1=1
-utge am= :% !
-utge am= :% !
Sipurer vomalorno
Sipurer vomalorno
-warll:
-warll:
*-1d, 20,oy

```
    *-1d, 20,oy
```



```
    1read}\pi
```

 1read}\pi
 Ir.aghm,4, 0r, &1
 Ir.aghm,4, 0r, &1
 #m.mbosm=atini, &%
 #m.mbosm=atini, &%
 #% (1)
 #% (1)
 Mambeniy,y-
 Mambeniy,y-
 con, (N,N
    ```
    con, (N,N
```



```
    lavotat! <- 
```

```
    lavotat! <- 
```



```
                            *
```

```
                            *
```

-

Suture, median palatine, 39, 81
mendosal, 47, 81
metopic, $60,62,81$
nasofrontal, $37,65,80$
nasomaxillary, $37,65,80$
occipitomastoid, $38,40,43,53,79$
of skull, 79
palatine, median, 39, 81
transverse, 39,8 I
palatoethmoidal, 80
palatomaxillary, 8o
parietomastoid, $38,53,79$
petrosquamosal, 8 I
sagittal, 79
serrate, 59,107
sphenoethmoidal, 79
sphenofrontal, 37, 4I, 49, 79
sphenomaxillary, 8 I
sphenoorbital, 79
sphenoparietal, $37,38,42,79,82$
sphenosquamosal, $3^{8,} 39,42,43,5^{2}$, 80
sphenozygomatic, $37,38,50,80$
squamosal, $38,43,52,79,107$
squamosomastoid, $53,59,8$ I
transverse palatine, 39,81
zygomaticofrontal, $36,37,80$
zygomaticomaxillary, $37,39,67,80$
zygomaticotemporal, 3 S, 52, 80
Symphysis, 107
pubis, 95, 128
sacrococcygeal, II_{3}
Synarthrosis, 107
mixed, 107
pelvic, 128
Synchondrosis, 107
epiphyseos, 2 I
interoccipital, anterior, 47
posterior, 47
intersphenoidal, 5 I, 8 I
intraoccipital, anterior, 8 I
posterior, 8I
petrooccipital, Si, IIS
sphenooccipital, $4 \mathrm{I}, 45,47,8$ I
sphenopetrosal, 8i, II8
sternal, 34, II 7
Syndesmology, 107
definition, 17
general, 107
special, iro
Syndesmosis, 107
tibiofibular, 136,137
true, 107
Synergists, 143
Synovia, 108
Synovial bursæ, 108 communicating, 108
folds, 108 patellar, 135
layer of articular capsule, ro8 membrane, 108
sheaths of dorsal carpal ligament, 203
of fingers, 205
of flexor tendons of palm, 205
of foot, 229
of peronæus longus, 231
villi, 108
Systematic anatomy, definition, 17

Talocalcaneal articulation, 137,138 anterior, 138
ligament, anterior, 140
external, 140
internal, 140
interosseous, 140 posterior, I40
Talocalcaneonavicular articulation, 137, 138
Talocrural articulation, 137
Talofibular ligament, anterior, I40 posterior, 140
Talonavicular articulation, r_{3}^{8}
ligament, dorsal, 140
Talotibial ligament, anterior, I39 posterior, 139
Talus, 102
articular facets of, 102
articulations of, I 37
body of, 102
development, 106
groove of, 102
head of, 102, 103
neck of, 102, 103
surfaces of, 102
Tarsal boncs, 82, 102 articulations of, $137, I_{3} 8$
development, 106
ligaments, 139
dorsal, 140
plantar, 14 I
Tarsometatarsal articulations, 137, 139
ligaments, dorsal, 14 I plantar, I4I
Tarsus, 102
articulations of, 137, 138
ligaments of, I39
sinus of, 102, 103
transverse articulation of, I 38
Tectorial membrane, III, II5
Teeth, alveoli for, 68, 7 I
incisor, in fetus, 69
sockets of, 68, 7 I
Tegmen tympani, 55,57
Temporal bone, $37,3 \mathrm{~S}, 5$ I
articular eminence of, 53
canals of 57
development of 58
in newborn, $58,59,8$ I
inferior process of, 57
mastoid portion of, $38,40,52,53$ petrous portion of, $40,5^{2}, 54$ apex of, 55
pyramid of, 52,54
apex of, 55
squamous portion of, $38,40,43$, 52
tympanic portion of, $38,40,52$, 57
fascia, I_{4}
fossa, 38
line. 44,60
inferior, 59
superior, 59°
process of zygomatic bone, 7 I
ridge, 38
surface of zygomatic bone, 7 I

Temporal surface of sphenoid bone, 49, 50
of squamous portion of temporal bone, 52
wings of sphenoid bone, 47,49
Temporalis muscle, 182, 183
functions of, 183
nerve supply of, 183
Temporomandibular articulation, II8 ligament, 1 I 8
Temporomaxillary articulation, 117
Tendinous adductor opening, 217
arches, 143
inscriptions, 143
of rectus abdominis, 161
Tendo Achillis, 220
Tendons, 142
central, of diaphragm, 164, 165
chiasma of, 207
flexor, of palm, 205
of fingers, extensor, 204
of hand, extensor, 203
of long head of biceps, 12 I
of palm, 205
retinacula, 142, 143
vincula, 207
Tendon-sheaths, 143
Tensor fasciæ latæ muscle, 200, 213
function of, 214
nerve supply of, 214
tympani, semicanal for, 5^{8}
Teres major muscle, 185 , 187 function of, 187 nerve supply of, 187
minor muscle, 185 , 187 function of, 187 nerve supply of, 187
Terminal line of ilium, 95
Thenar eminences, 198 muscles of, 199
Thigh, adductor muscles of, 216
anterior surface of, muscles of, 214
fasciæ of, 231
flexors of, 218
internal muscles of, 216
muscles of, 214
classification, 235
posterior muscles of, 218
Third cuneiform bone, 104
trochanter, 98
Thoracic muscles, 166
vertebræ, 26
eleventh, 26, 27
first, 26
walls, nuscles of, 169
Thorax, 22, 35
apertures of, 35
muscles of, 166
walls of, muscles of, 169
Thumb, bones of, 92
carpometacarpal joint of, 124, 125
metacarpophalangeal articulation of, 127
Thyreohyoideus muscle, 172, 173
Tibia, 82, 99
and fibula, relations, 101
articular surfaces of, inferior, 100 superior, 99

Tibia，articulations of， 136
lurders of， 100
condyles of，ou
crest of， 100
development， 1.1
extremities of，（x）
interusseous membrane of， 130137 shaft of，90， 100
surfaces of inferior extremity of，（川） of shaft of， 100
of superior extremity of，as
tulerosity of，subcutaneous bur．a of， 234
Tibial lateral ligament，I3t
Tibialis anterior musele，210， 223 function of， 22.3 nerve supply of， 223
10sterior musele， $210,210,221$ function of， 221 nerve supply of， 221
Tibiofibular articulation， 136
syndesmosis， 136,137
Tibionaricular ligament， 139,140
Tissue，bony， 20
Toes，articulations of， 137
bones of， 105
great，ball of，muscles of， 226
little，ball of，muscles of， 227
Topographic anatomy，definition， 17
Torus palatinus， 78
Trachelomastoid muscle， 15 d
Transversalis capitis muscle， 15 I cervicis muscle， 151
fascia， 163
Transverse articulation of tarsus， 138 capitular ligament of foot， 139 of hand， 127
carpal ligament，127， 205
crural ligament， 233
fasciculi， 233
groove， 43,46
heat of addluctor hallucis muscle， 227
ligament，inferior， 121
of atlas， 114
of hip， 131
of knce， 134
superior， 120
lines of rectus abdominis， 161
palatine suture， $39,8 \mathrm{~s}$
plane， 17
portion of nasalis muscle，182
processes of vertebree， 23
Transversocostal muscles， 156,157
Transversospinalis muscle， 149,151 ， 157
Transversus abdominis muscle， 157 ， 160
functions of，162 nerve supply of， 162
menti muscle，isi
nucher， 146,170
thoracis， 169,170
Trapezium，So， 90
Trapezius muscle， $1+5$
functions of， $1+6$
nerve supply of，± 6
Trapezoid，S9， 90

Traperdd iherant，，－
＇I riaisíle，de tandomer：iola ito tetturat，－1e

1. 1．r， $1+7$
（f P＇th 4 i
ulk｜linl．1．

Trian rulari Ghat if if an iun and
```
th!
```


nurle is．
Herni mualt．17－
Tricepo brachii ：uatr，1\＆：145，im functunn of，1yp

nerve supply if，wa
surte murle 212，213
funtion oi， 220
netve－uphls f，220

Triquetral leone，N／．σ^{-}
Trochanteric bursi，212
of glutiou－mavimus， 233
meedius，anternme，23ł
INMterior, 212, 23t
minimus，23：
subcutancou－， 233
10：sal， 97
Trochanters，$)_{i}$
greater，0）
lesser， 97
thied，os
Trochle：e， $1+3$
of phalanges of $f(x) t, 105$ of hand， n_{2}
of talus， 102
Trochlear area of humerun，so
depression，of， 70
process of calcancus， 103
spine． 61
Trechoid joint，roas
True joints， 108
pelvis， 1.30
ribs， 3.3
syndesmosis， 107
vertebrie， 22
Trunk，muctes of， 1.4
skeleton of， 22
variations in， 35
Tubercle， 20
a arotid， 20
costal，ligament of， 110
intercondylow，external，oo
internal，（x）
jugular，4．3， 46
mental， $7=$
obturator，anterior， 05
posterior， 05
of Chassaignac． 20
of humerus，greater， 8_{5}
lesser， E 5
of Lisframe， $\mathbf{3}^{3}$
of neck of ril）s， 32
of pubis． 95
of talus，external， 102
internal．102
of trapezium， 00
pharyngeal， 45

Tynmot winc．．\＆
antri．E：5
（amat－－－ 2

grav．：
nutch， 51
ix rivitit m！wallunta，35，ic，52， ：－
－iroc．Enciter 5
leater，s：

【はく，こ ：
atel rusan re ．n …
1 mien il：
develupthert：${ }^{\text {a }}$

shift if．- －
surfian if．©
Ulnar catral eminence，∞
hest of tle－harji ulnaris muscle， 122
of ittwatur tere muscle， 10 s
la：e al tgament，122． 126
notch，is
Unciourm bone，se，,∞
process， 00
Uncinate process，of

Ungual phalanges, 92
tuberosity, 92, 105
Uniaxial joints, 109
Unilocular joints, 108
Upper arm, extensor surface of, muscles of, 189
flexor surface of, muscles of, 188
muscles of, 185, 188 classification, 209
extremity, articulations of, II9
bursæ of, 208
fasciæ of, 207
free, skeleton of, 85
ligaments of, II9
muscles of, IS_{5}
development, 209
skeleton of, 82, 83
thoracic muscles of, 166
portion of longus colli muscle, 176

Vaginet mucosæ, 142, 143
Vaginal ligaments, 143 of foot, 23 I
process, 49, 5 I
of temporal bone, 56,57
Vastus externus muscle, 215
intermedius muscle, 215
internus muscle, 215
lateralis muscle, 215
medialis muscle, 215
Vein, saphenous, great, 232 vertebral, canal for, 26
Vena caval opening of diaphragm, 166
Ventral arch of vertebra, 22
Vertebræ, 22
arches of, 22, 23
articular processes of, 23
bodies of, 22, 23
connections of, IIO
caudales, 30
cervical, 23
characters of, 24
first, 23, 25
and second, articulations of, II3
development, 31
second, 23, 25
development, 31

Vertebræ, cervical, seventh, 24 third to sixth, 24
development, 3 I
false, 22, 28
flexion, 23
lumbar, 27
lumbosacral, 30, 36
pedicles of, 23
processes of, 23
prominens, 25
root of, 23
rotatory, 23
spinous processes of, 23
supernumerary, 35
thoracic, 26
first, 26 twelfth, 26, 27
transverse processes of, 23
true, 22
Vertebral arches, ligaments between, 112
artery, 25
canal for, 26
border of scapula, 83
canal, 3 I
columin, 22, 30
articulation of ribs with, II6, 117, 261
curvature of, 30
development, 3 I
intertransverse ligaments of, II 2
joints of, I Io
ligaments of, III
movements of, II 3
promontory of, 30
margin of scapula, 83
notches, 23
vein, canal for, 26
Vertical portion of squamous portion of temporal bone, 52
Vidian canal, 50
Villi, synovial, 108
Vincula, 143
of tendon, 207
Visceral bones, 22
Vitreous tables of flat bones, 19
Volar basal ligaments, 127
border of radius, 88 of ulna, 87

Volar carpal ligament, 208
carpometacarpal ligament, $\mathbf{1 2 7}$
intercarpal ligament, 17
ligaments, accessory, 127
radiocarpal ligament, 126
surface, 18
of radius, 88
of ulna, 87
Vomer, 39, 65
alæ of, 65
development, 66

Walls of thorax, muscles of, 169
Wings of sphenoid bone, 47,49
Wormian bones, 82
Wrist-joint, 124

Xiphoid process, 34
foramen of, 36

Yellow bone-marrow, 21

ZoNA orbicularis, \mathbf{I}_{32}
Zygoma, 70
Zygomatic arch, 38, 39, 40
bone, 36, 70
development, 71
surfaces of, 7 I
border of sphenoid bone, 50
fossa, 79
head of quadratus labii superioris muscle, 180
process of frontal bone, 60 of maxilla, 66, 67 of temporal bone, $36,38,39,5^{2}$
Zygomaticofacial foramen, 7 I
Zygomaticofrontal suture, 36, 37, 80
Zygomaticomaxillary suture, 37, 39, 67, 8o
Zygomaticoorbital foramen, 7r, 75
Zygomaticotemporal foramen, 7 I suture, 38, 52, 80
Zygomaticus major muscle, 180
minor muscle, 180
muscles, ISo

SAUNDERS' BOOKS

\qquad

GYNECOLOGY

and

OBSTETRICS

W. B. SAUNDERS COMPANY WEST WASHINGTON SQUARE
 PHILADELPHIA
 9, HENRIETTA STREET COVENT GARDEN, LONDON

SAUNDERS' ANNOUNCEMENTS

HAVE AN ANNUAL CIRCULATION OF OVER $5,000,000$

THE recent growth of our foreign business necessitated :ome ferler ir mom
 In addition to our tront cover and inside ame in the British Medical Journal and the London Lancet, we have, therefure reaenty arran_el if if it i...er and inside space in the Indian Medical Gazette, the China Medieal Journal, and the Bulletin of the Manila Medical Society - cah a callt: taman in its field.
The extension of our advertising has alway st he hath in land wit the er pansion of our business both at home and abroad. In 10:5 we advented in 10 journals ; in 1906 and 1907, in 11 journals; in 1908 , in 13 juurnals in 1 , mos .
 journals; and in 1913 , in 26 journals. Dur annom ements wat lace an annual circulation of over 5,000,000, or nearly 100,000 evers weeh th the yeas.

A Complete Catalogiue of Our Publications will be Sent Upon Request

DeLee's Obstetrics

Principles and Practice of Obstetrics. By Joseph B. De Lee, M. D., Professor of Obstetrics in the Northwestern University Medical School, Chicago. Large octavo of 1060 pages, with 913 illustrations, 150 in colors. Cloth, $\$ 8.00$ net ; Half Morocco, $\$ 9.50$ net.

THREE PRINTINGS IN TEN MONTHS

The Most Superb Book on Obstetrics Ever Published

You will pronounce this new book by Dr. De Lee the most elaborate, the most superbly illustrated work on Obstetrics you have ever seen. Especially will you value the $9 I 3$ illustrations, practically all original, and the best work of leading medical artists. Some 150 of these illustrations are in colors. Such a magnificent collection of obstetric pictures-and with really practical value-has never before appeared in one book.

You will find the text extremely practical throughout, Dr. De Lee's aim being to produce a book that would meet the needs of the general practitioner in every particular. For this reason diagnosis is featured, and the relations of obstetric conditions and accidents to general medicine, surgery, and the specialties brought into prominence.

Regarding treatment: You get here the very latest advances in this field, and you can rest assured every method of treatment, every step in operative technic, is just right. Dr. De Lee's twenty-one years' experience as a teacher and obstetrician guarantees this.

Worthy of your particular attention are the descriptive legends under the illustrations. These are unusually full, and by studying the pictures serially with their detailed legends, you are better able to follow the operations than by referring to the pictures from a distant text-the usual method.

Dr. M. A. Hanna, University Mediral College, Kinsas City
" I am trank in stating that I prize it more highly than any other volume in my obstetric library, which consists of practically al! the recent books on that subject."
Dr. Clark E. Day, Indianapolis, Ind.
" Dr. DeLee's work is by far the greatest on Obstetrics published to-day for the general practitioner. It will meet what is expected of it in a more concise and comprehensive way than any other book he could buy."
Dr. George L. Brodhead, New York Post-Graduate Medical School
" The name of the author is in itself a sufficient guarantee of the merit of the book, and I congratulate him, as well as you, on the superb work just published."

Norris'

Gonorrhea in Women

 sylvania. Latrge octavo of 520 pages, illustrated. (ivin, ol on she

> A CLASSIC
 publications on this subject. He has dunchas work thomme bly. He lase erarthee.

 The chapter on sermm and vawine therapls and in anmberals is mathetars

 also considers the rave varietics if fonorrhea ocourrme in ment, whenf dmel children. The text is illustrated.

American Text-Book of Gynecology Second Revised Edition

American Text-Book of Gynecology. Edited by I. M. Inamy, M. D. Imperial octavo of 718 parges, with $3+1$ text-illustration and $3 S$ plates. Cloth, $\$ 6.00$ net.

American Text-Book of Obstetrics

Second Revised Edition

The American Text-Book of Obstetrics. In two volumes. Eelited by Richard C. Norkis, M. D.; Art Editor, Robert L. Dichinan, M. D. Two octaros of about 600 pacses each ; nearly goo illustrathoss including 49 colored and half-tone plates. Per volume: Cleth, $\$ 3.50$ net.
"As an authority, as a book of refe rence. is a 'working truh 'f rile puden: ir iracu-

Ashton's

Practice of Gynecolog'y

The Practice of Gynecology. By W. Easterly Ashton, M. D., LL.D., Professor of Gynecology in the Medico-Chirurgical College, Philadelphia. Handsome octavo volume of 1 Ioo pages, containing 1058 original line drawings. Cloth, $\$ 6.50$ net ; Half Morocco, $\$ 8.00$ net.

NEW (5th) EDITION

The continued success of Dr. Ashton's work is not surprising to any one knowing the book. The author takes up each procedure necessary to gynecologic step by step, the student being led from one step to another, just as in studying any non-medical subject, the minutest detail being explained in language that cannot fail to be understood even at first reading. Nothing is left to be taken for granted, the author not only telling his readers in every instance what should be done, but also precisely how to do it. A distinctly original feature of the book is the illustrations, numbering 1058 line drawings made especially under the author's personal supervision from actual apparatus, living models, and dissections on the cadaver.

From its first appearance Dr. Ashton's book set a standard in practical medical books; that he has produced a work of unusual value to the medical practitioner is shown by the demand for new editions. Indeed, the book is a rich store-house of practical information, presented in such a way that the work cannot fail to be of daily service to the practitioner.

Howard A. Kelly, M. D.

Professor of Gynecologic Surgery, Johns Hopkins University.
"It is different from anything that has as yet appeared. The illustrations are particuiarly clear and satisfactory. One specially good feature is the pains with which you describe so many details so often left to the imagination."

Charles B. Penrose, M. D.

Formerly Professor of Gynecology in the University of Pennsylvania
"I know of no book that goes so thoroughly and satisfactorily into all the details of every. thing connected with the subject. In this respect your book differs from the others."

George M. Edebohls, M. D.

Professor of Diseases of Women, New York Post-Graduate Medical School
"A text-book most admirably adapted to teach gynecology to those who must get their knowledge, even to the minutest and most elementary details, from books."

Bandler's
 Medical Gynecolog'y

 trations. Cloth, sj.00 net; Haf Muruccu, sij.ju in i.
\section*{NEW (3d EDITION-60 PAGES ON INTERNAL SECRETIONS}

This new work by l)r. liandler if just the boon that the fis an ettaved in
 for him, written for him, and illustrated it lam. |he e ate hity the thet conditions that do not call for operatise treatment. Jet, lue abe 1 hath 1 iat
 tioner has been unable to treat them intelligently. Ih-werk it theat at a
 recognize those diseases demandin, operathe theatment

American Journal of Obstetrics

 grasped by the general practanmer.

Bandler's Vaginal Celiotomy

Vaginal Celiotomy. By゙ S. Wizlıs Baninlik, M. 1), Xen Vork Post-Graduate Medical School and Ho-pital. ()ctawn of 4501 ntc. whit

SUPERB ILLUSTRATIONS

The vaginal route, berause of its smplutt ease of everun on atsente of shock, more certain results, and the opportunts ier conernatse nca-ia. on.
 Posterior vaginal celiotomy is of great importance in the remmat at amall tulat and ovarian tumors and cysts, and is an important step in the ferthomatue of vaginal myomectomy, hysterectomy, and hysteromyemetum. Internw vayinal celiotomy with thorough separation of the badder is the unly certan methed of correcting cystocele.

The Lancet, London

 tion of all the operations which may be undertaken through the wak na He mane- Fut a strong case for these operations."

Kelly and Noble's Gynecology and Abdominal Surgery

Gynecology and Abdominal Surgery. Edited by Howard A. Kelly, M. D., Professor of Gynecology in Johns Hopkins University ; and Charles P. Noble, M. D., formerly Clinical Professor of Gynecology in the Woman's Medical College, Philadelphia. Two imperial octavo volumes of 950 pages each, containing 880 illustrations, some in colors. Per volume: Cloth, $\$ 8.00$ net ; Half Morocco, $\$ 9.50$ net.

TRANSLATED INTO SPANISH

WITH 880 ILLUSTRATIONS BY HERMANN BECKER AND MAX BRÖDEL

In view of the intimate association of gynecology with abdominal surgery the editors have combined these two important subjects in one work. For this reason the work will be doubly valuable, for not only the gynecologist and general practitioner will find it an exhaustive treatise, but the surgeon also will find here the latest technic of the various abdominal operations. It possesses a number of valuable features not to be found in any other publication covering the same fields. It contains a chapter upon the bacteriology and one upon the pathology of gynecology, dealing fully with the scientific basis of gynecology. In no other work can this information, prepared by specialists, be found as separate chapters. There is a large chapter devoted entirely to medical gynecology written especially for the physician engaged in general practice. Heretofore the general practitioner was compelled to searci through an entire work in order to obtain the information desired. Abdominal surgery proper, as distinct from gynecology, is fully treated, embracing operations upon the stomach, upon the intestines, upon the liver and bile-ducts, upon the pancreas and spleen, upon the kidneys, ureter, bladder, and the peritoneum. The illustrations are truly magnificent, being the work of Mr. Hermann Becker and Mr. Max Brödel.

American Journal of the Medical Sciences

" It is needless to say that the work has been thoroughly done: the names of the authors and editors would guarantee this; but much may be said in praise of the method of presentation, and attention may be called to the inclusion of matter not to be found elsewhere."

Webster's
 Text-Book of Obstetrics

A Text-Book of Obstetrics. Rij J. (1.ak1N 1. W1-1R1, M, 1).
 Medical College, in affiliation with the Lincront of (huam. ()ado volume of 767 pages, illuntitted. Cloth, 55.30 net: 11.1 M M reco. $\$ 6.50$ net.

BEAUT:FULLY ILLUSTRATED

 puerperimm are described mose fully and ladiy wat $11=1$. Wiver text whon

 data of importance in their relation t obstetras

Buffalo Medical Journal

Webster's

Diseases of Women

 trations, three hundred and seventy-two in number ate neatl al mont nal.

Howard A. Kelly M, D.

 are also of the haghest order.

Hirst's
 Text-Book of Obstetrics

The New (7th) Edition

A Text-Book of Obstetrics. By Barton Cooke Hirst, M. D., Professor of Obstetrics in the University of Pennsylvania. Handsome octavo of 1013 pages, with 895 illustrations, 53 of them in colors. Cloth, $\$ 5.00$ net ; Half Morocco, $\$ 6.50$ net.

INCLUDING RELATED GYNECOLOGIC OPERATIONS

Immediately on its publication this work took its place as the leading text-book on the subject. Both in this country and in England it is recognized as the most satisfactorily written and clearly illustrated work on obstetrics in the language. The illustrations form one of the features of the book. They are numerous and the most of them are original. In this edition the book has been thoroughly revised. Recognizing the inseparable relation between obstetrics and certain gynecologic conditions, the author has included all the gynecologic operations for complications and consequences of childbirth, together with a brief account of the diagnosis and treatment of all the pathologic phenomena peculiar to women.

OPINIONS OF THE MEDICAL PRESS

British Medical Journal

" The popularity of American text-books in this country is one of the features of recent years. The popularity is probably chiefly due to the great superiority of their illustrations over those of the English text-books. The illustrations in Dr. Hirst's volume are far more numerous and far better executed, and therefore more instructive, than those commonly found in the works of writers on obstetrics in our own country."

Bulletin of Johns Hopkins Hospital

"The work is an admirable one in every sense of the word, concisely but comprehensively written."

The Medical Record, New York

"The illustrations are numerous and are works of art, many of them appearing for the first time. The author's style, though condensed, is singularly clear, so that it is never necessary to re-read a sentence in order to grasp the meaning. As a true model of what a modern textbook on obstetrics should be, we feel justified in affirming that Dr. Hirst's book is without a rival."

Hirst's
 Diseases of Women

 Cloth, 55.00 net; Half Marucon, sh. 50 t t .
THE NEW 2d। EDITION

WITH 7OI ORIGINAL ILLUSTRATIONS
The new edition of this wark hat the heon of :

 perience rendere : nis work of unusial value.

OPINIONS OF THE MEDICAL PRESS

Medical Record, New York

 many other text-hoks.

Boston Medical and Surgical Journal

 general practumaner. an 1 the -pee tal at.

Medical News, New York

 useful to the non-oprerator is in the -pecial t.

GET
 THE BEST

American
THE NEW STANDARD

Illustrated Dictionary

New (7th) Edition-5000 Sold in Two Months

The American Illustrated Medical Dictionary. A new and complete dictionary of the terms used in Medicine, Surgery, Dentistry, Pharmacy, Chemistry, Veterinary Science, Nursing, and kindred branches; with over 100 new and elaborate tables and many handsome illustrations. By W. A. Newman Dorland, M.D., Editor of "The American Pocket Medical Dictionary." Large octavo, IIO7 pages, bound in full flexible leather. Price, $\$ 4.50$ net; with thumb index, $\$ 5.00$ net.

IT DEFINES ALL THE NEW WORDS-MANY NEW FEATURES

The American Illustrated Medical Dictionary defines hundreds of the newest terms not defined in any other dictionary-bar none. These new terms are live, active words, taken right from modern medical literature.

It gives the capitalization and pronunciation of all words. It makes a feature of the derivation or etymology of the words. In some dictionaries the etymology occupies only a secondary place, in many cases no derivation being given at all. In the "American Illustrated" practically every word is given its derivation.

Every word has a separate paragraph, thus making it easy to find a word quickly.

The tables of arteries, muscles, nerves, veins, etc., are of the greatest help in assembling anatomic facts. In them are classified for quick study all the necessary information about the various structures.

Every word is given its definition-a definition that defines in the fewest possible words. In some dictionaries hundreds of words are not defined at all, referring the reader to some other source for the information he wants at once.

Howard A. Kelly, M. D., Johns Hopkins University, Baltimore

" The American Illustrated Dictionary is admirable. It is so well gotten up and of such convenient size. No errors have been found in my use of it."
J. Collins Warren, M. D., LL.D., F.R.C.S. (Hon.), Harvard Medical School
"I regard it as a valuable aid to my medical literary work. It is very complete and of convenient size to handle comfortably. I use it in preference to any other."

Penrose's
 Diseases of Women

Sixth Revised Edition

Abstract

A Text-Book of Diseases of Women. By Charla- 13. Prihose, M. D., P'u. D., formerly Professor of (iynecolns) in the Laivesaty of Pemsylvania: Surgeon to the Gymectan Hosphal, Phindalphas. Oetavo volume of 550 patges, with 225 fince ons simal ilustritwons. Glah. S3.75 net.

\section*{ILLUSTRATED}

Regularly every year a new edition of this excellent teat beok \& falled for and it appears to be in as great favor with phystans as with statem . Inaced, this book has taken its place as the ideal work for the [et.eral | rad the ifor. Thee
 quated ideas and methods. In every cave the mme mexn ant pryenter technique is adopted and made clear by excellent ill istrations.

Howard A. Kelly, M.D.,

 already recommended it to my class as IHE 1,1 T T book."

Davis' Operative Obstetrics

Operative Obstetrics. By IEmwan l'. 1)ivis. M.D., Prufeesnr of Obstetrics at Jefferson Medical College, Philadelphia. Octavn of \&'s

INCLUDING SURGERY OF NEWBORN

Dr. Davis' new work is a mut practical one, and no expence has been spared to make it the handsomest work on the subject as weil liery stellin every operation is described minutely, and the technic shom 1 | leantiful new illustrations. Dr. Davis' name is sufficient guarantee for somethons, above the medfocre.

Dorland's
 Modern Obstetrics

Modern Obstetrics: General and Operative. By W. A. Newman Dorland, A. M., M. D., Professor of Obstetrics at Loyola University, Chicago, Illinois. Handsome octavo volume of 797 pages, with 201 illustrations. Cloth, $\$ 4.00$ net.

Second Edition, Revised and Greatly Enlarged

In this edition the book has been entirely rewritten and very greatly enlarged. Among the new subjects introduced are the surgical treatment of puerperal sepsis, infant mortality, placental transmission of diseases, serum-therapy of puerperal sepsis, etc. By new illustrations the text has been elucidated, and the subject presented in a most instructive and acceptable form.

Journal of the American Medical Association

" This work deserves commendation, and that it has received what it deserves at the hands of the profession is attested by the fact that a second edition is called for within such a short time. Especially deserving of praise is the chapter on puerperal sepsis."

Davis' Obstetric and Gynecologic Nursing

Obstetric and Gynecologic Nursing. By Edward P. Davis, A. M., M. D., Professor of Obstetrics in the Jefferson Medical College and Philadelphia Polyclinic; Obstetrician and Gynecologist, Philadelphia Hospital. I2mo of 480 pages, illustrated. Buckram, $\$ 1.75$ net.

NEW (4th) EDITION

Obstetric nursing demands some knowledge of natural pregnancy, and gynecologic nursing, really a branch of surgical nursing, requires special instruction and training. This volume presents this information in the most convenient form. This third edition has been very carefully revised throughout, bringing the subject down to date.

The Lancet, London

" Not only nurses, but even newly qualified medical men, would learn a great deal by a perusal of this book. It is written in a clear and pleasant style, and is a work we can recommend.'

Kelly and Cullen's Myomata of the Uterus

 so.00 net.

ILLUSTRATED BY AUGUST HORN AND HERMANN BECKER

 the record of greatest achievement of rew ent mes.

Surgery, Gynecology, and Obstetrics
. It mont lie conskled as the mont compr hensise "t of the kind yet 1 thin 3 . It will always be a mine of wealth to fiature stulents.

Cullen's Adenomyoma of the Uterus

 pages, with oriminal illustration he Hetman liek r and Aug-t 11 ro. Cib $\$ 5.00$ net: Half Murocco. $\$ 0.50 \mathrm{nel}$.
 work, wathy of the high reputation if the author and if the shel trata whinu of emanates."-TMe Lancot, L, nis n.

Cullen's Cancer of the Uterus

 $\$ 7.50$ net ; 11.21 f Moroce,$\$ 5.50 \mathrm{net}$.

Schäffer and Edgar's Labor and Operative Obstetrics

Atlas and Epitome of Labor and Operative Obstetrics. By Dr. O. Schäffer, of Heidelberg. Edited, with additions, by J. Clifton Edgar, M. D., Professor of Obstetrics and Clinical Midwifery, Cornell University Medical School, New York. With i4 lithographic plates in colors, I 39 textcuts, and II i pages of text. Cloth, $\$ 2.00$ net. In Saunders' Hand-Atlases.

Schäffer and Edgar's Obstetric Diagnosis and Treatment

Atlas and Epitome of Obstetric Diagnosis and Treatment. By Dr. O. Schäffer, of Heidelberg. Edited, with additions, by J. Clifton Edgar, M. D., Professor of Obstetrics and Clinical Midwifery, Cornell University Medical School, New York. With 122 colored figures on 56 plates, 38 textcuts, and 315 pages of text. Cloth, $\$ 3.00$ net. Saunders' Hand-Atlases.

Schäffer and Norris' Gynecoloǵy

Atlas and Epitome of Gynecology. By Dr. O. Schäffer, of Heidelberg. Edited, with additions, by Richard C. Norris, A. M., M. D., Gynecologist to Methodist Episcopal and Philadelphia Hospitals. With 207 colored figures on 90 plates, 65 text-cuts, and 308 pages of text. Cloth, $\$ 3.50$ net. In Saunders' Hand-Atlas Series.

Galbraith's Four Epochs of Woman's Life

New (2d) Edition
The Four Epochs of Woman's Life: A Study in Hygiene. By Anna M. Galbraith, M. D., Fellow of the New York Academy of Medicine, etc. With an Introductory Note by John H. Musser, M. D., University of Pennsylvania. 12 mo of 247 pages. Cloth, $\$ 1.50$ net.

Birmingham Medical Review, England

" We do not, as a rule, care for medical books written for the instruction of the public. But we must admit that the advice in Dr. Galbraith's work is, in the main, wise and wholesome."

Garrigues' Diseases of Women

Third Edition
A Text=Book of Diseases of Women. By Henry J. Garrigues, M. D., Gynecologist to St. Mark's Hospital, New York City. Octavo of 756 pages, illustrated. Cloth, $\$ 4.50$ net ; Half Morocco, $\$ 6.00$ net.

Schäffer and Webster's Operative Gynecology

Abstract

Atlas and Epitome of operative (iynecology. By 1) (1. = mat

Wuch patient endeavor has been expeniled ha the wher the hat : .t-1 the lithographer in the preparation of the phate of thls atic low ate wion an
 various surgical situations. Dr. Schatier has mate a pronath if aletom trating by illustrations.

Medical Record. New York

 to be acquired only in the amph theater itself.

De Lee's
 Obstetrics for Nurses

 Obstetrics in the Northwestern Luniversity Medical Shmol. Iecotrer in the Nurses' Traming Schools of Merey, Westey, Prowidet, Cook County, and Chicago Lying-in Hospital. I man bolume of sos pages. fully illustrated.

Clow, s..50 ne:

THE NEW 4th) EDITION

While 1)r. De lee has writen his work espectially fit nurses wathe wher titioner will find it weful and instructive since the dutues of a nurse often werme upon him in the early years of his practice The ill suathens ate nearls all original, and represent photographs taken from actal sone ble bevt whe restlt of the author's man! ?errs experience in lecturms to the norsea the the different training schcols.

J. Clifton Edgar. M. D.,

" It is far and away the best that has enme to my notice and 1 sha' take grea: pieasure in recommending it to my nurses, and students as well:"

American Pocket Dictionary

New (8th) Edition
The American Pocket Medical Dictionary. Edited by W. A. Newman Dorland, A. M., M. D. 677 pages. \$I.OO net; with patent thumb index, $\$ \mathrm{r} .25$ net.
James W. Holland, M. D.,
Professor of Medical Chemistry and Toxicology at the Jefferson Medical College. Philadelphia.
" I am struck at once with admiration at the compact size and attractive exterior. I can recommend it to out students without reserve.'

Cragin's Gynecoloǵy.
New (7th) Edition
Essentials of Gynecology. By Ediwin B. Cragin, M. D., Professor of Obstetrics, College of Physicians and Surgeons, New York. Crown octavo, 232 pages, 59 illustrations. Cloth, \$1.00 net. In Saunders' Question-Compend Series.

The Medical Record, New York

"A handy volume and a distinct improvement ot students' compends in general. No author who was not himself a practical gynecologist could have consulted the student's needs so thoroughily as Dr. Cragin has done.'

Ashton's Obstetrics.

Essentials of Obstetrics. By W. Easterly Ashton, M.D., Professor of Gynecology in the Medico-Chirurgical College, Philadelphia. Revised by John A. McGlinn, M. D., Assistant Professor of Obstetrics in the Medico-Chirurgical College of Philadelphia. 12 mo of 287 pages, rog illustrations. Cloth, \$1.oo net. In Saunders' Question-Compend Series.

Southern Practitioner

"An excellent little volume ccataining correct and practical knowledge. An admirable compend, and the best condensation we have seen."

Barton and Wells' Medical Thesaurus

A Thesaurus of Medical Words and Phrases. By Wilfred M. Barton, M. D., Assistant to Professor of Materia Medica and Therapeutics, Georgetown University, Washington, D. C.; and Walter A. Wells, M. D., Demonstrator of Laryngology, Georgetown University, Washington, D. C. I2mo of 534 pages. Flexible leather, $\$ 2.50$ net ; with thumb index, $\$ 3.00$ net.
Macfarlane's Gynecoloǵy for Nurses Second Edition
A Reference Hand-Book of Gynecology for Nurses. By Catharine Macfarlane, M. D., Gynecologist to the Woman's Hospital of Philadelphia. 32 mo of 150 pages, with 70 illustrations. Flexible leather, $\$ \mathbf{1} .25$ net.

A. M. Seabrook, M. D.,

Woman's Medical College of Philadelphia.
"It is a most admirable little book, covering in a concise but attractive way the subject from the nurse's standpoint."

c
(and

[^0]: The macerated bone represents not only the bone-ash, i. c., the calcium salts of the bone, but also contains other organic constituents. The bone substance consists chemically of almost two-thirds inorganic, and of a little more than one-third organic material; the latter is chiefly gelatin or ossein, and may be demonstrated in the form of the so-called bone-cartilage by extracting the calcium salts with acids. The inorganic constituents of bone are, calcium carbonate (about 85.5 per cent.), calcium phosphate (about 9 per cent.), calcium fluoride (about 3.5 per cent.), and magnesium phosphate (about $x .75$ per cent.), and may be demonstrated by heating the dried bone to incandescence. Both the bone cartilage and the calcined bone retain the original shape of the bone from which they were obtained, the organic and the inorganic constituents being intimately intermingled.

[^1]: The anterior root of the transverse process, which passes directly outward from the body of the vertebra and is separated from the posterior root by the foramen transversarium, the sulcus nerit spinalis, and the constriction between the two tubercles, is known as the costal process (processus costarius), and represents a rudimentary rib adherent to the true transverse process which is represented by the posterior root. This costal process is occasionally independent, especially in the seventh cervical vertebra, and forms then a cervical rib.

[^2]: The articular surfaces for the heads of the ribs are placed on two adjacent thoracic vertebræ in such a manner that each vertebral margin does not receive exactly one-half of the articulation, but toward the lower end of the series more than half and then two-thirds of the entire surface occurs upon the lower vertebra until the eleventh, and occasion-

[^3]: * These processes occasionally form so-called abdominal or lumbar ribs.

[^4]: The bones of the skull may also be classified according to the method of their development (see page 2I), and from this standpoint they are quite heterogencous structures; some of them, such as those of the base of the skull, are developed in the primordial cartilaginous cranium, some are portions of the visceral skeleton, and some are so-called covering

[^5]: * So named where it borders upon the squamous portion of the temporal bone; in the region of the sphenopetrosa! fissure (see page 39) it is called the petrosal border.
 \dagger Occasionally the foramen spinosum is only partially limited by the sphenoid bone, i. e., it is simply a noten in the spine.

[^6]: hyoid ligament (see page 119).

[^7]: The parietal bone develops in membrane in the third fetal month from a center of ossification situated in the parietal eminence. Even in the new-born the bony trabecula show a distinct radiation from this point.

[^8]: * The supraorbital notch is much more frequently present as a foramen than the frontal notch; sometimes both of the notches form a single shallow groove.

[^9]:
 lathrymal, qhemodal, maxillars, and pabatine adia).

[^10]: it is rarely placed exactly in the mertian me hut usuatu deribtes th wer ta le
 \dagger These sutures have been previously nofed and the will ke wondered in detail were page ig.

[^11]: The ethmoid bone is completely preformed in cartilage. Ossification commences late (in the fifth month of embryonic life) and proceeds from the lamina papyracea and the middle turbinated bone. In the new-born, the two labyrinths have already ossified as far as the superior turbinated bone, but they are not connected, since the cribriform and perpendicular plates do not possess ossific centers until the first year of life, when they gradually effect a bony union of the two labyrinths. The remainder of the perpendicular plate does not ossify until the fifth year.

[^12]: The vomer arises during the third month of fetal life as two plates situated one on either side of the upper part of the cartilaginous septum of the nose, which subsequently disappears, so that the two plates become adherent after birth, with the exception of the alx, which remain separated throughout life.

[^13]: The palate bone is formed in membrane in the third fetal month and is already ossified at about the middle of the fetal life, but like the upper jaw it is rather short in the new-born.

 The orbital surface of the orbital process is sometimes unusually large, and the width of the perpendicular plate is subject to great individual variation.

[^14]:

[^15]: * The mandibular canal is continued within the bone beyond the mental foramen almost to the median line and gives off small lateral ramifications which lead to the apices of the alveoli.

[^16]:

[^17]:

[^18]: The scapula is preformed in cartilage during fetal life. The first center of ossification appears in the third month of embryonic life in the region of the neck, but ossification proceeds so slowly that large areas are still cartilaginous in the new-born. During the first year of life an independent center appears in the coracoid process,* from which is formed the greater portion of this projection. At the age of puberty special epiphyseal centers make their appearance, in the apex and the base of the coracoid process, in the acromion (usually several centers), in the base of the scapula, in the inferior angle, in the glenoid fossa (usually somewhat later), sometimes in the margin of the spine of the scapula, and (even earlier, in the tenth year) in the external angle of the scapula in the region of the origin of the biceps tendon.

[^19]: * In reptiles, birds, and the lowest mammalia the coracoid process is an independent bone.

[^20]: * Sometines there is a foramen in this situati"n.

[^21]: The innominate bone is formed from three main centers of ossification, one for the ilium, one for the ischium, and one for the pubis. The center for the ilium appears in the preformed cartilage at the beginning of the third fetal month, that for the ischium in the beginning of the fourth month, and that for the pubis in the fifth month. At birth and even during the first years of life (Figs. 135 and 136) a large portion of the innominate bone is still cartilaginous (the margins of the acetabulum, the crest of the ilium, the tuberosity of the ischium, and the spine of the ischium). In the acetabulum, a Y-shaped cartilage remains until the age of puberty, when the three portions of the bone become united by osseous tissue, the two inferior rami (of the pubis and ischium) becoming united still earlier, in the seventh or eighth year. In addition to the main centers, there appear a somewhat variable number of epiphyseal centers, of which those worthy of special mention are: one along the entire crest of the ilium, one in the tuberosity of the ischium, one in the

[^22]: * Sometimes the gluteal tuberosity develops into a more pronounced projection, the third trochanter.

[^23]: * There may consequently be distinguished upon the posterior process an internal and an external tubercle.

[^24]: In the temporomandibular articulation the socket is formed partly by the mandibular fossa and partly by the articular eminence, and over the latter an approximately congruent surface for the head of the condyle is formed by the articular disc. The two temporomandibular articulations act simultancously.

 When the mouth is opened the head of the condyle with the interarticular disc glides forward upon the articular eminence, and when the mouth is closed it slips back into the mandibular fossa. The opening and closing of the mouth are consequently attended by a sliding of the mandible (a gliding joint).

 In addition to this modified form of hinge movement, the articulation possesses a second kind of motion, the lateral displacement of the mandible in reference to the skull. In this movement one condyloid head remains in the mandibular fossa while the other advances upon the articular eminence, a movement which is impossible when the mouth is opened to its greatest extent. Both the hinge and the lateral movements are combined in the act of mastication.

[^25]: The acromioclavicular articulation has but a slight range of motion. The coracoclavicular ligament acts as a check ligament, just as the costoclavicular ligament does in the sternoclavicular articulation. The relative position of the two bones, can scarcely be changed voluntarily, but passive movements, producing a change in the angle between the two bones, etc., occur. The small, indistinctly bounded, and usually Hat articular surfaces allow of a displacement of the two bones, but the direction of the movement is not determined by the shape of the articular facets.

[^26]: The movement in the distal radio-ulnar joint is a rotation of the radius about the ulna which is simultaneously carried out in the proximal radio-ulnar articulation also. During the movement known as pronation, the radius is applied obliquely to the ulna, so that the two bones cross; the opposite movement, the return to the parallel position of the two bones, is called supination. The axis of movement of both radio-ulnar articulations passes through the heads of both bones and is consequently placed obliquely to the axes of the bones. The angle of rotation of the lower end of the radius about the ulna amounts to about iso degrees.

[^27]: * This description of the movements of the hand has been materially modified by the more recent studies of these articulations. It must not be supposed that the two rows of carpal bones cannot move upon each other; during radial abduction the navicular bone is markedly moved toward the adjacent bones.

[^28]: * In connection with the individual ligaments if :he fisifron lume thete is a watar cappemetacarpal ligament which passes from the hamulus of the hamate funciform bene ot the base a the fisth :atta amal bune; it is the hame: metucarpal ligament.

[^29]: * Musiles hwing opposite ianction are termed antaguniots.

[^30]:

[^31]: The muscle is supplied by the lower (ninth to twelfth) intercostal nerves. It draws the lower ribs backward and downward. Whether it aids inspiration or expiration is uncertain; in either case its influence upon the ribs is very slight. It may increase the tension of the lumbar fascia.

[^32]: * The clover-leai form is present when the central iendon cxitnds oward the sterna! !ortion.

[^33]: The pectoralis minor, like the major, is supplied by the anterior thoracic nerves. It draws down the scapula, or, if the scapula be fixed, elevates the ribs, and it can also aid in fixing the scapula.

[^34]: * The second rib consequently gives origin to two serrations.

[^35]:

[^36]:

[^37]: The scaleni receive their nerve-supply partly from the cervical plexus and partly (the scalenus posterior) from small special branches of the brachial plexus. They elevate the two upper ribs.

[^38]: The anconcus has a function and innervation similar to that of the triceps, and in addition it increases the tension of the articular capsule of the elbow-joint. There is frequently a small muscular fasciculus passing between the internal epicondyle and the olecranon over the ulnar nerve; it is known as the epitrochleo-anconeus.

[^39]: The muscle is supplied by the ulnar nerve. When acting with the flexor carpi radialis it effects volar flexion; together with the extensor carpi ulnaris it produces ulnar flexion.

[^40]: This muscle is also supplied from the radial nerve. It extends the ungual phalanx of the thumb and assists the action of the abductor.

[^41]: * This crossing occurs within the dorsal carpal ligament, so that the tendon-sheaths also cross each other (see the description of the tendon-sheaths of the hand, page 203).

[^42]:

[^43]: *'The glutaus maximus is one of the thickest muscles in the human body.

[^44]: The muscle is supplied by the superior gluteal nerve. It abducts the thigh; the larger anterior portion also acts as an internal rotator, the posterior portion (frequently characterized by a species of intermediate tendon and by a different direction of its fibers) also as an external rotator.

[^45]: times perforated by a pertion of the xetatic ar fue.

[^46]: *The sartorius also possesses the longest muscular fasciculi in the body.

[^47]: mon turge of ita wis Imphatton)

[^48]: The extensor digitorum extends the four outer toes; and the peroneus tertius assists in producing dorsal flexion of the foot. Both muscles are supplied by the deep branch of the peroneal nerve.

[^49]: Both muscles upon the dorsum of the foot are supplied by the deep peroneal nerve. They extend the toes. A tendon for the little toe is rarely present.

[^50]: * The marked development of most of the muscles of the great and little toes, in spite of the limited range of motion of these digits within the usual coverings of the foot, allows of the conclusion that these muscles not only move the toes, but that they play an important rôle in supporting the arch of the foot, especially since the abductor digiti V does not extend to the toe at all, but is inserted into the practically immovable fifth metatarsal bone.

[^51]: * Within this sheath the tendon of the peroneus longus develops a sesamoid bone (or cartilage).

[^52]: * The surface of the tensor fascix latæ is also covered by a very thin layer of the fascia lata.

