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PREFACE.

Setting aside Astronomy and Natural Philosophy the following treatise

is the sixth volume of a course of mathematics by the same author on the

same general plan of familiar inductive instruction. All mathematical

science is positive, sure, and simple, and it is capable of being set forth in

a natural, clear, and comprehensive light ; and to attain this end all our

labors have been directed. Hence, we have aimed at a familiar, rather than

a cold, scientific style, and have embraced every opportunity to give princi-

ples a practical application, and have in every way made exertions to reach

the minds of those we hope to instruct.

We know, however, that our views will not be generally received,— we

cannot at once convince people that science is truly simple,— they feel that

whatever is not at once comprehended by them is necessarily vast and com-

plex, and this is the greatest obstruction to mental progress the mind has to

encounter. Those who can look at simple nature as she is, will learn with

great rapidity; others will always be beclouded, and if at times they should

here and there catch a momentary view of the simplicity of science, that

very simplicity will only serve to perplex and confound them.

The impression is abroad that Analytical Geometry and the Differential

and Integral Calculus are very abstruse and incomprehensible subjects, and

so they are without other light than that which is furnished by many of the

text books. Scarcely one of them explains to its readers the objects and the

aims of its investigations,— they merely direct the learner to do thus and

so, and he will find this and that result. Not a word of philosophical expla-

nation— not a word in respect to the object of the pursuit, which would

enable one to go forward, relying on his own knowledge and strength.

In this respect we hope to be unlike most others,— we have essayed to

give to the learner the true object of the investigation before him, and have

taken every occasion to enlighten his comprehension, requiring him to read

an equation just as it is, and to give to it the most simple interpretation, and

not wander away to the ends of the earth in search of intricasies which do

not exist.

iii>



iv. PREFACE.

Tlaose who have studied our elementary geometry will have less difficulty

than others in analytical geometry, for that work is half analytical ; trigo-

nometry in that work is almost purely analytical ; but the absolute analytical

geometry is in the work before us. Algebra applied to geometry is not ana-

lytical geometry as at first view some might suppose, for that is only solving

problems on principles already established ; it is not investigating general

principles, but applying those already known.

Analytical geometry is strictly what the term implies; it is a minute and

careful investigation of a few obvious and well known truths in geometry

which we combine and compare to discover what other geometrical truths

inevitably flow from them, the language used being algebraic, with all its

signs, symbols, and powers of combination.

Those who are natural algebraists will find very little difficulty in ana-

lytical geometry; but others, for a time are seriously troubled to interpret

and comprehend the full import of algebraic equations geometrically applied.

When the first chapter becomes well understood, there will be no serious

difficulty in any subsequent part of the subject. When once the equation

of a straight line in a plane is well understood, the whole theory of analyti-

cal geometry is before the mind, and the equations of all other lines, whether

straight or curved, cannot be misunderstood. A person who really under-

stands the equation of a straipTit line, can readily construct the line from

the equation, and hence, every teacher should insist on such construc-

tion as long as he can find the least hesitation in the student to construct

any equation that maybe offered. According to this idea, we have given

several practical examples, under various conditions— but as the teacher

and the pupil can easily propose examples without number, we thought it

not best to take up space in the book with many mere practical examples.

Analytical geometry is comparatively a modern science, and a few years

ago it was not a subject of study even in our colleges,— hence it is that

many teachers, and others of the old Euclidian school of geometry, do not

well appreciate, and are in fact prejudiced against it. Let not this discourage

the young and ambitious student; the modern analysis must now be learned

by all who have any valid claims to science, nor does it impose on them any

additional burdens.

The common simple truths of common geometry, will always be learned

in the common way, until materials enough are gathered together to use the

analysis— and then analysis should be used, because it affords the widest
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field for the exercise of judgment ; it calls into exercise the inventive powers,

and taxes the memory very little with unimportant particulars.

" It is in fact the only method by which the student can advance beyond

the bare rudiments of science without an expense of time and labor wholly

disproportioned to the ends attained, the only method which gives at once

a progressive and a self-sustaining power." For these reasons we approxi-

mated to it as much as possible in our work on common geometry.

In this we have been as clear and elementary as possible, without diluting

the subject in the least. In forms we have been as high toned as any other

author, and in the extent and application of this science we surpass many

others. We have illustrated every variety of curves, and have taken every

opportunity to compare algebraic forms to geometrical lines. This will be

seen in our geometrical solutions of geometrical equations, and in our de-

lineations of the higher curves.

The calculus is a branch of analytical geometry, although that term might

be applied to any thing admitting computation. The differential calculus

takes into consideration small differences. The differential of a quantity is

the difference between two quantities of the like kind, when one is very

nearly equal to the other, and from this definition alone, the ingenious stu-

dent might find the differential for himself.

In geometry, we can conceive a line to be formed by the motion of a point,

a surface to be formed by the motion of a line, and a solid to be formed bj

the motion of a plane, either moving parallel with itself or by revolving

about an axis.

Thus, when a point moved and formed a line, the point was said toJloie,

and a small amount of such motion was called by the English mathemati-

cian the fluxion of the line,— a very small surface formed by the flowing

of a line which bounded any side of a surface, was called i\i&fluxion of that

surface, and so on. The fluxions of the English mathematicians is the same

thing as the differential of the French— and of late all have adopted the

differential technicalities of the Fiench.

The differential calculus is generally regarded as a very abstruse and dif-

ficult science, but this is the fault of the text books used ; when that science

is really comprehended, it is found to be no more abstruse than any other of

the mathematical sciences ; indeed, it is but an extension of algebra and

geometry, using no new and no other system of computation.

Any branch of science, however simple, would be perfectly dark and ab-
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struse to us, provided we have no prior and proper apprehension of the object

of pursuit, and this our text books have never given in respect to the diifer-

ential and integral calculus. Authors on this subject have contented them-

selves \7ith saying that in the investigations will be found two kinds of

quantities, variables and constants ; they then define what symbols denote

the variables and what denote the constants, and then direct the student

what to do.

"We have taken great pains to remedy this deficiency, and we shall feel

much disappointment if our efforts are pronounced abortive on these points.

Notwithstanding the great importance we attach to the illustrations of

what the differential calculus is, they occupy but very little space, but two

or three pages at the most, and they are chiefly to be found in the intro-

duction.

The differential calculus may be applied to any thing susceptible of

change. For instance, every one knows that the variation of the length of

the shadow of any object on any fixed plane must correspond to the varia-

tion of the sun's altitude, and the variation of altitude depends on the latitude

of tlie plane, the declination of the sun, and the time of day. In short, the

differential or small change in the shadow of an object compared with the

object itself, must have a corresponding variation in the time of day,* and

any scientific computation between two such small corresponding differences

is one application of the differential calculus. Thus, the differential calculus

is the ratio of small corresponding differences.

The integral calculus is the converse of the differential, somewhat as the

cube root is the converse operation of cubing the root. It is more difficult to

find the cube root of a number than it is to cube the root, but still the one

operation is the converse of the other, and the one is not directly obvious

from the other.

In many cases the integral calculus is more difficult than its correspond-

ing differential, but it is not so in every case. In shorty if the student will

look at nature in its true and simple light, all difficulties will quickly

vanish, and his progress in science become pleasant and invaluable.

* See 43d miscellaneous Example, near the end of the volume.
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ANALYTICAL GEOMETRY.

Introductory Remarks.

Geometry, purely analytical, is the investigation of general

geometrical truths by the aid of algebraic equations.

Many of the demonstrations in our elementary geometry,

trigonometry, and conic sections, where algebra is used, are

partially analytical, not purely so.

Algebra applied to geometry must not be mistaken for ana-

lytical geometry, because the operator in either case uses the

same mathematical motive power, the science of algebra.

Algebra applied to geometry only contemplates the use of

algebra in solving problems— and all the geometrical truths are

supposed to be previously known.

Analytical geometry draws out algebraically, all the necessary

results from given data.

To pursue this branch of science successfully, the student

must perfectly comprehend the nature and import of algebraic

expressions— must understand general proportion, and the com-

mon rules of plane trigonometry.

We shall adopt the same general notation as other writers on

this subject.

With this brief introduction, we commence

CHAPTER I.

PROPOSITION I.—PROBLEM.

To find the equation of a straight line.

We now propose to show the equation which can be made to

represent any straight line that can be drawn in a plane, and

.9
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without a perfect comprehension of this, in both letter and spirit,

it will be useless for the pupil to advance.

Draw a vertical and a horizontal line. On these two lines all

measurements are to be made. The point of intersection of

these two lines we shall call the zero point. Horizontal measures

to the right from this point we shall call pluSy to the left minus.

Vertical measures from the zero point upwards we call plus,

downwards minus.

It ha& become the custom of all writers to denote unknown

and indefinite distance&along the horizontal by x^ and along the

vertical by y.

Hence the horizontal line of measure itself is called the axis

of X, and the vcBtical line the axis of y, and they are marked

as in the figure.

The point A in the adjoining fig-

ure is the zero point. Draw any line

as L'L through this point, and de-

signate the natural tangent of the

angle LAX by a, (the radius being

unity.)

Then take any distance on AX as

AF, and represent it by x, and the

perpendicular distance PJSf put equal

to yr.

Then by trigonometry we have

Rad. : tan. MAP i :; AF : PM
\\.a'.\.x\y ox y.7=.ax (1)

Now this- equation is general ; that is, it applies to any point

M on the line AL, because we can make aj greater or less, and

PJf will be greater or less in like proportion, and J!f will move
along on the line AL as we move P on the line AX. Because

the point JSfwill continue on the line -4Athrough all changes of a?

and y, we say that y=ax, is the equation of the line AL.
Now let us diminish x to 0, and the equation reduces to y=0

in the same time, which brings MonAo the point A.

Let x pass the line YY\ it then, becomes —x. AP' and the



STRAIGHT LINES. U

con esponding value of y will be P'M\ and being below the line

X'X will therefore be minus.

Therefore ±y=±aiP

is the general equation of the line LL', extending indefinitely in

either direction. .

If the tangent a becomes less, the line will incline more to-

wards the line X'X. When a=0 the line will coincide with

X'Xf when infinite, it will coincide with YV
Now let AF"' be +x, and a become —a, then P"'M'" will

correspond to y, and becomes mimis y, because it is below the

axis XX'. Or, algebraically y=

—

ax, indicating some point M'"

below the horizontal axis.

Now we think it has been shown that y=ax may represent any

line asZZ' passing through A from the \st into the Zd quadrant,

and y=

—

ax may be made to represent any line as UL" passing

through A from the 2d into the 4th quadrant.

Therefore y=do.ax

may he vnade to represent any straight line passing through the zero

point.

In case we have —a and —x, that is, both a and x minus at

the same time, their product will be -\-ax, showing that y must

be plus by the rules of algebra.

We now request the learner to examine these geometrical lines

and see whether they correspond.

When we have —a we must draw the line from A to the right

and below AX; then XAL" is the angle whose natural tangent is

—a. But the opposite angle X'AL" is the same in value.

When we have —x we must take the distance as AP" to the

left of the axis YY', and the corresponding line F'M" is above

XX', and therefore ^Zw5, as it ought to be.

But the equation of a straight line passing through the zero

point is not sufficiently general for practical application; we will

therefore suppose a line to pass in any direction across the axis

YY', cutting it at the distance AB or AB (dbJ) or h distance
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I

above or below the zero point A,

andfind its equation.

Through the zero point A draw a

line ^A" parallel to ML.
Take any point on the line AX

and through P draw PM parallel to

-41^ then ABMN ^Y\\\ be a parallelo-

gram.

Put AP=x. PM=y. The tan-

gent of the angle N'AP=a. Then

will KP=ax.

To each of these equals add NM=^b, then we shall hare

y=:zax-\-b

for the algebraic expression corresponding to the point M, and

as J!f is any variable point on the line ML corresponding to the

variations of x, this equation is said to be the equation of the

line ML.

When b is minus the line is then QL', and cuts the axis YF'
in D, a point as far beloAv ^ as ^ is above A.

Hence we perceive that the equation

may represent the equation of any line in the plane TAX.

If we give to «, x, and b, their proper signs, in each case of

application we may write

. y=:a:c-\-b

for the equation of any straight line i7i a plane.

To fix in the minds of learners a complete comprehension of

the equation of a straight line, we give the following practical

EXAMPLES.

1. Draw the line whose equation is y=2x-\-S. (1)

Then draw the line represented by y=—rr-|-2 (2)

and determine where these two lines intersect.
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Draw YY" and XX' at right

angles, and take any conveni-

ent space for the unit of mea-

sure, as 1, 2, 3, (fee.

Equation (1) is true for all

v^alues of x and y. It is true

then when a:=0. But when

a;=0 the point on the line must

be on the axis YY'

,

When ir=0. y=3.

This shows that the line sought for must cut YY' at the point

+3.
The equation is equally true when y=0. But when y=0,

the corresponding point on the line sought must be on the

axis XX'y and on the same supposition the equation becomes

0=237+3, Or x=—\\.

That is, midway between — 1 and —2 is another point in the

line which is represented by y=2ar-(-3, but two points in any

right line must define the line : therefore ML is the line sought.

Taking equation (2) and making a;=0 will give 2/=2, and

making 2/=0 will give a;=2 : therefore MQ must be the line

whose equation is y=—a:-|-2, and these two lines with the axis

XX''form the triangleLMQ, whose base is 3-| and altitude about 2-^.

But let the equations decide, (not about,) but exactly the posi-

tion of the point M oi intersection.

This point being in both lines, the co-ordinates x and y cor-

responding to this point are the same, therefore we may subtract

one equation from the other, and the result will be a true equa-

tion, giving

3:r+l=0. Or x=—^.
Eliminating x from the two equations we find 2/=2j-.

2. For another example we require the projection of the line

represented by the equation

y= -—2.
420

Making x=0, then y=—2. Making y=0, then ir=—840.

2
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Using the last figure, we perceive that the line sought for must

pass through S two units below the zero point, and it must take

such a direction SVsiS to meet the axis XX' at the distance of

840 units to the left of zero. Hence its absolute projection is

practically impossible.

3. Construct the line whose equation is y=z9.x-\-5.

4. Construct the line whose equation is y=

—

3x—3.

PHOPOSITION II.—PROBLEM.

To find the distance between two given points in the plane of

the co-ordinate axes. Also, to find the angle made by the line

joining the two given points, and the axis of X.

Definition.—A point is said to be given when its co-ordinates

are known. Known co-ordinates are designated by x\ y', — x"

y"— x"'y y'"
; which are read x prime, x" second, &c.

When the point designated by the co-ordinates i^ no particular

one, we write simply x and y, to represent its co-ordinates.

Let the two given points be P
and Q, and because the point P
is said to be given, we know the

two distances -4i\^and NP.

AN=x\ NP=y\
And because the point Q is

given we know the two distances

AM=x" and MQ=:y'\

AM—AN'=:NM=:PR=x"—x\

MQ—ME= QE=y"—y\

In the right angled triangle PJRQ we have

{PPy+(PQy=(PQ)». Put J)=PQ.

That is, D''=(x"—x'y+(y"—y'y,

Or D=^(x"—xy+(y"-y)K
Thus we discover that the distance between any two given

points is equal to the square root of the sum of the squares of th$

difference of their abscisses and ordinaies.
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If one of these points be the origin or zero point, then «'=0

or y'=0, and we have

a result obviously true.

To find the angle between PQ and AX.

PR is drawn parallel to AX, therefore the angle sought is the

same in value as the angle QPR.
Designate the tangent of this angle by a, then by trigonometry

we have
PR \ RQ \\ radius : tan. QPR.

That is, x"—x : y"—y' ::!:«.

Whence a= ^ -.
x"—x'

In case y"=^y', PQ will coincide with PR, and be parallel to

AX, and the tangent of the angle will then be 0, and this is

shown by the equation, for then

«=_JL_=o.
x" x'

Incase x"=.x', then PQ will coincide with RQ and be paral-

lel to A Y, and tangent a will be infinite, and this too the equa-

tion shows, for if we make x"=^x' or x"—.t''=0, the equation will

become

PROPOSITION III.

To find the equation of a line drawn through a given point.

Let P be the given point : The equation must be in the form

y—ax-{-b. ( 1

)

Because the line must pass through the given point whose

co-ordinates are x' and y\ we must have

y'=ax'+b. (2)

Subtracting (2) from (1) we have

y—y'=a{x—x') (3)

for the equation sought.

In this equation a is indefinite, as it ought to be, because an
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infinite number of straight lines can be drawn througb the

point P.

We may give to y' and x' their numerical values, and give any

value whatever to a, then we can construct a particular line that

will run through the given point P.

Suppose a;'=2, ?/'==3, and make a=4.

Then the equation will become

y—3=4(ar—2).
Or 3/= 4a?—5.

This equation is obviously that of a straight line, hence (3)

IS of the required form.

PROPOSITION lY.

To find the equation of a line which passes through two given

points.

More definitely, we say find the

equation of the line which passes

through the two given points P
and Q.

As the equation is to be that

of a line, it must correspond to

y=ax-\-h. (1)

As it must pass through the

given point P, whose co-ordinates

are x and y, we must have

y^=ax'-\-h. (2)

Subtracting (2) from (1) we have

y—y'=.a{x—x'). (3)

Because the line must also pass through the other point Q, we

must have (Prop. II.)

a=^—^^.
x" X

'

Substituting this value of a in (3) we have

\x X /

the equation sought.
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PROPOSITION V.

To find the equation of a straight line which shall pass through

a given point and make a given angle with a given line.

The equation of the given line must be in the form

y^ax-\-h. (1)

Because the other line must pass through a given point its

equation must be (Prop. III.)

y—y'^a'{x—x). (2)

We have now to determine the value of a.

When a and a are equal, the two lines must be parallel, and

the inclination of the two lines will be greater or less according

to the relative values of a and a.

Let PQhQ the given line (the

tangent of its angle with the axis

ofX equal a) and PR the other

line which shall pass through

the given point P and make a

given angle QPR. The tangent

of the angle PRX=:a'.

Because PRX=PQR-{-QPR.
QPR=^PRX—PQR.

Tan. QPR=tan.(PRX—PQR.)

As the angle QPR is supposed to be known or given, we may
put m to designate its tangent, and m is a known quantity.

Now by trigonometry we have

a'—am=t&n.(PRX—PQR)=
}-\-aa'

(3)

Whence a = L

—

This value of a' put in (2) gives

g—g=(lL^\(x—x')
\ 1

—

7na /

for the equation sought.

(4)
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Corollary 1 . When the given inclination is 90°, m its tangent

is infinite, and then «'==—-. We decide this in the following

manner :

An infinite quantity cannot be increased, therefore on that

a-^m -L m
supposition becomes — or

-ma —ma

Application^.—To make sure that we comprehend this propo-

sition and its resulting equation, we give the following example :

The equation of a given line is y=2:c-4-6.

Draw another line that will in-

tersect this at an angle of 45° and

pass through a given point P,

whose co-ordinates are

x=^, 2/'= 2.

Draw the line J/IVcorresponding

to the equation y=^x-\-6. Locate

the point jP from its given co-or-

dinates.

Because the angle of intersection

is to be 45°, m=l, a=2.

Substituting these values in (4) we have

y~2=~3(x—3^).

Or 7/=—3x-{-12i.

Constructing the line MB correSj.onding with this equation,

we perceive it must pass through F and make the angle iOfi?
45°, as was required.

The teacher can propose any number of like examples.

Corollary 2. Equation (3) shows the tangent of the angle

of the inclination of any two lines whose tangents are a and a.

That is, we have in o-eneral terms

\-\-aa

In case the two lines are parallel m=0. Whence «'=«, an

obvious result.
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In case the two lines are perpendicular to each other, m must

be infinite, and therefore we must put

l-f-aa'=0

to correspond with this hypothesis, and this gives

a

a result found in Cor. 1

.

To show the practical value of this equation we require the

angle of inclination of the two lines represented by the equations

yr=^x—6, and y=

—

x-{-9,.

Here a=3 and a'=— 1. Whence

4

1—3

This is the natural tangent of the angle sought, and if we

have not a table of natural tangents at hand, we will take the

log. of the number and add 10 to the index, then we shall have

in the present example 10.301030 for the log. tangent which

corresponds to 63° 26' 6" nearly.

The minm sign merely indicates the position of the angle, it

is hdow the angular point.

PROPOSITIOJ^ VI.

To find the co-ordinates which will locate the point of intersec-

tion of two straight lines given by their equations.

We have already done this in a particular example in Prop. 1,

and now we propose to show general expressions for the same

thing.

Let yz=ax-{-b be the first line.

And y=ax-\-h' be the second line.

At their point of intersection y and x in both equations will

represent the same point.

Therefore we may subtract one equation from the other, and

the result will be a true equation.

For the sake of perspicuty, let x^ and y^ represent the co-
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ordinates of the point of intersection in each line, then by sub-

traction (a—a)x^-\-(b—6'}=0

Whence x^=—S / and y,=

—

~—

.

(a

—

a) a—a

EXAMPLE.

At what point will the two following lines intersect

:

3/=—2^+1.
And y=5x-\-10.

Here a=—2, a'=5, h=zl, 5'=10. Whence ar=—f , y=—2}.

If we take another line not parallel to either of these, the

three will form a triangle.

Then if we locate the three points of intersection and join them,

we shall have the triangle.

PROPOSITIOI^- VII.

To draw a perpendicular from a given point to a given straight

line and to find its length.

Let y=ax-\-h be the equation of the given straight line, and

x'j y', the co-ordinates of the given point.

The equation of the line which passes through the given point

must take the form

y—y'=a'[x—x). (Prop. III.)

And as this must be perpendicular to the given line, we must

have a'=—-. Therefore the equations for the two lines must be
a

y=ax-\-h for the given line. (1)

And y—y'=

—

-[x—x') for the perpendicular line.

Or y=—_ x-\- i--\-y' \ for the perpendicular. (2)

Let x^ and y^ represent the co-ordinates of the point of inter-

section of these two lines. Then by Prop. VI,

—a \a /

• 1 X fh——y
a andy^;

a+\ ) 1+a
a a
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^ / ah—x'—mj \ •, h-\-ax-{-a^y'
Or ^i=— ( :rTT-^)'

and 2/,= -3L_T:_:^

Or we may conceive x and y to represent the co-ordinates of

the point of intersection, and eliminating y from (1) and (2) we

shall find x as above, and afterwards we can eliminate y.

Now the length of the perpendicular is represented by

Whence ^[{^E^t^tz^^y+^ = the

perpendicular.

If we put u=^h-\-ax'—y', the quantities under the radical, will

become

Whence the perpendicular ==b—

I

E ' ^ .

EXAMPLES.

1. The equation of a given line is y=3x— 10, and the co-

ordinates of a given point are .t'=4 and y'=5.

What is the length of the perpendicular from this given point

to the given straight line? ^^5^ _t_. 789^

2. The equation of a line is y=—5x—15, and the co-ordinates

of a given point are x'=:4 and y'=5.

What is the length of the perpendicular from the given point

to the straight line? Ans. 7.84-j-.

PROPOSITION^' YIII.

To find the equation of a straight line which will Used the

angle contained hy the inclination of two other straight lines.

Let yz=^ax-\-h ( 1

)

And y=^ax-\'h' (2)

be the equations of two straight lines which intersect, and the

co-ordinates of the point of intersection are

.,=-(^) y.=«-:^ (Prop. VI.)
\a—a / a—a
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We now require a third line which shall pass through the

same point of intersection and form an angle with the axis of

X (the tangent of which may be represented by m) which will

bisect the angle made by the inclination of the other two lines.

Whence by (Prop. V.) the equation of the line sought must be

y—y i{x-^x^) (3)

in case we can find the value of m.

Let PN represent the line

corresponding to equation (1)»

PM the line whose equation is

(2), and PR the line required.

Now the position or inclina-

tion of PN to AX depends en-

tirely on the value of a, and the

inclination of Pilf depends on a\

and all are entirely independent

of the position of the point P,

Now RPN=RPX'—NPX and MPR=MPX^RPX'.
Whence by the application of a well known equation in plane

trigonometry, (Equation (29), p. 143, in Robinson's Geometry,)

we have
m—a

tan. RPX=tan.{RPX'^XPX):
1-^am

And tan. MPR=tan.{MPX—RPX')=-
l-\-am

But by hypothesis these two angles i^PA^and MPR are to be

equal to each other. Therefore

m—a a!—m

Whence

1 -}-awi 1 -\-am

2 , 2fl—aa')
,

a-\-a
(4)

This equation will give two values of m ; one will correspond

to the line PR, the other will be its supplement.

If the proper value of m be taken from this equation and put

in (3); then (3) will be the equation required.

MiHiiHIMMiiMiMMMIHii
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Practically we had better let the equations stand as they are,

and substitute the values of a, a! x, and y, corresponding to any
particular case.

To illustrate the foregoing proposition we propose the following

EXAMPLES.

Two lines intersect each other

:

y=—2x-\-5 is the equation of one line. (1)

And i/=4z-]-6 is that of the other line. (2)

Find the equation of the line which bisects the angle con-

tained by these two lines :

Here a=—2, a'=4, b=z5, 5'=6.

Whence x^=—}, and y, = L6.

Thus far (3) becomes

And (4) becomes

7n^ -|-9m= 1

.

Whence m=0.1093 or wz=—9.1095.

y-V=0.i095(^+-J). (3)

Or y_y^_9 1095(a:+i). (4)

Equation (4) is the line required; (3) is the line at right

angles to the line required. All will be obvious if we construct

lines (1), (2), (3), and (4).

For another example, find the equation of a line which bisects

the angle contained by the two lines whose equations are

y=x-}-12, y=—20x-\-2.

Observatiox.—Two straight lines whose equations are

y=ax-]-b and y=zax-\~b'

will always intersect at a point (unless a=a) and with the axis

of Fform a triangle. The area of such a triangle is expressed

'' -(S)xC^^).
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Transformation of Co-ordinates.

Let A be the zero point of the primitive system, and A' the

zero point of this new system.

Let AD^=x and DM=y. Also,

let A'B=x and BM=y, we are to

find the equation connecting a; to a:

and y to y. The change ofposition

from A to A' must be given in all

cases.

Make AP=a and PA'^h, It

is now visible that x=a-\-x' and

y=h+y'.

We may transform the origin

from Aio A2 ox to A^ or to ^4, as well as to A', by giving to

a and b their proper corresponding values and signs.

PROPOSITION IX.

To find formulas for passing from a system of rectangular to

a system of ohliqm co-ordinates from a different origin.

Let AB=^a, BA'=b, AP—x,
PM^y, A'P'=x, P'M^y the

angle X'AX"=^rR, and the angle

Y'AX"=-n. Xow by trigonome-

try we have

^'^=a;'cos.m KP'=^LH=^x' sm.m

P'H=^KL^y' cos. n

And MH^^^y' sin. 71.

Whence x=a-\-x' coq, w-j-y'cos. n, y=ih-\-x &m. m-f-y'sin. n

the formulas required.

Scholium. In case the two systems have the same origin, we
merely suppress a and h, and then the formulas required are

x=x' Go?>. m-\-y' Gos. n y=x's,m. 7w-|-y'sin. n.
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PROPOSITION^ X.

To find the formulas for passing from a system of oblique co-

ordinates to a system of rectangular co-ordinates, the origin being

the same.

Take the formulas of the last problem

x=x coB.m-{-y' Qos.n, y—x' sm.m-\-y ^m,n.

We now regard the oblique as the primitive axes, and require

the corresponding values on the rectangular axes. That is, we

require the values of x and y'. If we multiply the first by

sin. %, and the second by cos. w, and subtract their products, y'

will be eliminated, and if x' be eliminated in a similar manner,

we shall obtain

, xsm.n—ycos.w , ycos.m—a;sin. m
X = ; y =- ; .

sin.(?i

—

m) sin. (92—m)

Scholium. If the zero point be changed at the same time in

reference to the oblique system, we shall have

xsin.n—ycos.n , ^ ,
yco^.m—x^m.m

X =za-\-——-j~—r— y =H
sin.(w

—

m) sin. (
72—m)

We close this subject by the following

EXAMPLE.

The equation of a line referred to rectangular co-ordinates is

y=:axA-y

.

Change it to a system of oblique co-ordinates having the sam®

zero point.

Substituting for x and y their values as above, we have

a;' sin. m-\-y' sin. n=^a{x' cos. w^-|-y'cos. n)-\-b\

Reducing

, (a'cos.m—sin.m)a;'

,

b'

sm. n—a cos. m sm. n—a cos.m
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Polar, €o-ordioates.

When a ]ine is conceived to revolve round a point, that point

is called a fole, and any other point in such a line referred to

co-ordinates, is denominated the system of polar co-ordinates.

Conceive the line AB to revolve

round the point A a-B a pole. Let

AB=r. It may be a variable dis-

tance, and it is then called the raditis

vector.

Put the variable angle BAD^v,
AD=x, DB=y, then by trigo-

nometry

x=r COS. V, and y=r sin. v.

Now from the first of these we have
cos.v

(v may re-

volve all the way round the pole), and as x and cos.v are both

positive and both negative at the same time, that is, both posi-

tive in the first and fourth quadrants, and both negative in the

second and third quadrants, therefore r will always be positive.

Consequently, should a negative radius appear in any equation,

we mtist infer that some incompatible conditions have been ad-

mitted into the equation.

Scholium 1. If we change the origin now from A to A',

writing x' and y' for the corresponding co-ordinates, we shall

have

x'=a-\-r COS. V

y'=b-^r sin. V.

Scholium 2. If in place of estimating the variable angle

from the line AD the axis, we estimate it from the line Alf
which makes with the axis the given angle £[AI)=^m, we shall

have

x'=a-{-rG08.(v-\-m).

y'=b-\-r sin. (v-\~m).
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CHAPTER II.

liines of the second order.

Straight lines can be represented by equations of the first

degree, and they are therefore called lines of the first order.

The circumference of a circle, and all the conic sections, are

lines of the second order, because any point in them referred to

co-ordinates requires equations of the second degree.

PROPOSITION I.

7h find the equation of the circle.

Let the origin be the center of

the circle. Draw AM\.o any point

in the circumference, and let fall

MP perpendicular to the axis of X.

Put AP=x, PM=:y and AM=P.
Then the right angled triangle

^PJf gives

x^+y'=P^ (1)

and this is the equation of the circle

when the zero point is the center.

When y=:0, x^= R^, or ±:x=P, that is, Pis at X or A\
Whenar=0, y''=R'^, or ±y=R, showing that if on the cir-

cumference is then at Yov Y'\

When X is positive, then P is on the right of the axis of Y,

and when negative, P is on the left of that axis, or between A
and A\

When we make radius unity, as we often do in trigonometry,

then x'^-\-y^= \, and then giving to x oy y any value plus or

minus within the limit of unity, the equation will give us the

corresponding value of the other letter.

In trigonometry y is called the sine of the arc XM, and x its

cosine.

Hence in trigonometry we have sin.2-|-cos.^= 3.
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Now if we remove the origin to A' and call the distance

A'F=x, then AF=x—E, and the triangle AFH gives

Whence y^=2JRx—x^. (2)

This is the equation of the circle, when the origin is on the

circumference.

When x=0 y=0 at the same time. When x is greater than

2M, y becomes imaginary, showing that such an hypothesis is in-

consistent with the existence of the circle.

There is still a more general equation of the circle when the

zero point is neither at the center nor in the circumference.

The figure in the margin will fully illustrate.

Let AB=c,^ BC==b. Put

AP=x, or AP'=z'j:, and FMov
F'M"'==y, CM, CM', &c. each

In the circle we observe four

equal right angled triangles.

The numerical expression is the

same for each. Signs only indi-

cate positions.

Now in case CDM is the tri-

angle wefx upon,

We put AP=x, then BF=CD={x—c),
FM=y, MI)=y—CB=(y—h].

Whence (x-cy+(y-iy=ji-- (1)

In case CDM' is the triangle, we put AF—x and FM'=y.
Then (x~cy+{b-yy=F'^ (2)

In case CDM'" is the triangle, we put AF'=x, FM"'=y.

Then (c—xy-{-(y—by=E^ (3)

If CD'M" is the triangle, we put F'M"^y.

Then (^c—xY-^{b—yY^R'- (4)

Equations (1), (2), (3), and (4), are in all respects numeri-

* We do not take a, because a, in this science is generally understood to

represent the tangent of an angle.
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cally the same in value, for (c—x)^=(x—c)^, and {b—y)^=
^y
—hy. Hence we may take equation (IJ to represent the

general equation of the circle referred to rectangular co-

ordinates.

The equation {x—cY-\-{y—h)'^=zR^ (1)

includes all the others by attributing proper values and signs to

c and b.

If we suppose both c and h equal 0, it transfers the zero point

to the center of the circle, and the equation becomes

To find where the circle cuts the axis of X we must make

y=0. This reduces the general equation (1) to

Or (^x—cY=:R'^—hK

Now if h is numerically greater than B, the first member being

a square, (and therefore positive,) must be equal to a negative

quantity, which is impossible,— showing that in that case the

circle does not meet or cut the axis of X, and this is obvious in

the figure.

In case 5=i2 then {x—c)^=0, or a?=c, showing that the

circle would then touch the axis of Xat the point J5.

To show where the circle cuts the axis of Y, make a;=0 : then

(1) becomes

Or (2,_5)2=i22__c2

This equation shows that if c is greater than iJ, the circle

does not cut the axis of Y, and this is also obvious from the

figure.

If c be less than jB, the second member is positive in value,

and y=^h±JR^-^c\

showing that if it cut the axis at all, it must be in two points,

as at M\ M'".

3
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PROPOSITION II.

The supplementary chords in the circle are perpendicular to each

'dher.

Definition.—Two lines drawn through the two extremities of

any diameter of a curve, and which intersect the curve in the

same point, are called supplementary chords.

That is, the chord of an arc, and the chord of its supplement.

In common geometry this proposition is enunciated thus :

All angles in a semicircle are right angles.

The equation of a straight

line which will pass through the

given point J?, must be of the

form (Prop. III. Chap. I.)

y—y'=a{x—x). (1)

The equation of a straight

line which will pass through the

given point X, must be of the

form y—y'=a\x—x'). (2)

At the point By y'=0, and a:'=

—

R, or —x=E. There-

fore (1) becomes

y=a(x+F.). (3)

And for like reason (2) becomes

y=a\x-E). (4)

When these two lines intersect, y in (3) is the same as y in

(4), and x in (3) is the same as x in (4), therefore these equa-

tions/or the point of intersection may be regarded as two numeri-

cal equalities ; hence we may multiply them together and obtain

a true numerical equation, that is,

y^=aa(x^—Il^). (5)

But as the point of intersection must be on the curve, by hy-

pothesis, therefore, x and y must conform to the following equa-

tion :

y^+x'^^E^ Or y^ =—l(x^—E^). (6)

Whence aa'=— 1, or aa'-}-l=0.
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This last equation shows that the two lines are perpendicular

to each other, as proved by (Cor. 2, Prop. V, Chap. I.)*

Because a and a are indefinite, we conclude that an infinite

number of supplemental chords may be drawn in the semicircle,

which is obviously true.

Scholium. As BDX is a right angled triangle, and BX its

hypotenuse, it follows that the diameter is greater than any chord.

As one chord increases, its supplementary chord decreases.

From the center A let fall the perpendiculars AH, AF. Then

the two triangles XAH and XBD are equiangular and similar
;

therefore, as A is the middle point of XB, His the middle point

of XD, and F is the middle point of BD. AH=^(BD), and

AF=^[XD). That is, the distance of any chord frmn the center

is equal to half its supplementary chord.

PROPOSITION III.

To find the equation of a straight line which shall be tangent

to the circumference of a circle.

Draw a line cutting the curve in

any two points, as P and Q. De-

signate the co-ordinates of the point

P by x\ y\ and of the point Q by

x", y", and of any other point in the

line as H by x, y.

Now the equation of any line

passing through point H may be

expressed by
y=ax-\-h. (

I

)

* This condition of the perpendicularity of the two
lines may be more satisfactory to some when they read

the more direct demonstration.

Let AB be one line, and AT) another line at right

angles to it. Join BD, and from A draw AX perpen-

dicular to BD, and conceive ^A'the axis. The tangent

of the angle BAX=a, and XAD=^—a\ AX=l, and
it is the mean proportion between a and -—a'. There-

fore

a : 1 : : 1 : —a'.

Whence —aa'=l or O(i'-fl=0. Q. B, D
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If the same line passes througli the point F, the equation for

that point must be

y'=:ax'-{-b. (2)

And the same line passing through Q, the equation for that

point must be

y"=ax"-}-h. (3)

Subtracting (3) from (2) and we find

y'—y"=a(x—x") (4)

for the equation which passes through the two points P and Q*

Subtracting (2) from (1) and we have

y-^y'z=a(x-^x') (5)

for the equation of the line which passes through the two points

P and If.

The line which passes through the three points Q, P, and ff^

is expressed in the two equations (4) and (5).

Conceive the line QPJI to revolve on the point P, so as to

make Q coincide with P, then the line will be a tangent at P.

We have now to determine the value of a, when the line becomes

a tangent at P.

Because the two points P and Q are in the circumference, we

have

Subtracting and factoring the remainder, gives us

(a:'+^")(a;'-:.")+(/+3/")(/-/')=0. (6)

The value of (y'—y") taken from (4) and substituted in (6),

and then divided by (x'—x") will reduce (6) to

x'+x"+a(y'+y")=0.

Whence o=—("^HflV (7)

This equation is true, however far or near P and Q may bo

from each other, provided they be on the curve ; and when QPJI
becomes a tangent at P, x'=x" and y'=y", then (7) reduces to

i a=-^. (8)
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This value of a substituted in (5) gives

y-y=-<(^-^'). (9)
y

This is the general equation of a tangent line ; x\ y\ are

the co-ordinates of the tangent point, and x, y, the co-ordinates

of any other point in the line.

Scholium. For the point in which

the tangent line cuts the axis of X, we

make y'=0, then

x=:^=:AT.
x

For the point in which it meets the

axis of Y, we make x'=0, and

y=~^=AQ.
y

Definitions.—A line is said to be normal to a curve when it

is perpendicular to the tangent line at the point of contact.

Join APy and if APT is a right angle, then AP is a normal,

and AB, a portion of the axis of X under it, is called the sub-

normal. The line BT under the tangent is called the suhtangerU.

Let us now discover whether APT\^ or is not a right angle.

Equation (8) shows us the tangent value of the inclination

of the line PT with the axis of X.

Put a'= the tangent of the angle PAT, then by trigonometry

«'=^.
x'

But
x'

Eq. (8)

Whence aa=L— 1. Or a'=—i,

Therefore AP is at right angles to PT, (Prop. V. Chap. I.)
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PROPOSITION IV.

To find the equation of a line which shall pass through a given

point without the circle.

Let H be the given point, and x' and y' its given co-ordinates,

and X and y the co-ordinates of the tangent point P.

The equation of the line passing through the two points H
and P, must be of the form

y—y'=a{x—x'). (1)

And if PH is tangent at the point P, and x and y the co-

ordinates of the point P, equation (8) of the last proposition

gives us

x— -•

This value of a put in
(

1 ) and we have

y—y=—- {x—x

)

y
for the equation sought.

This equation combined with that of the circle

x^+y'^^R^

will determine the values of x and y, and as there will be two

values to each, numerically equal, it shows that two equal tan-

gents can be drawn from H, or from any point without the circle,

which is obviously true.

Scholium. We can find the value of the tangent FT by

means of the similar triangles ABP, PBT, which give

X \ R \ \ y \ FT.

ft=rI.
X

More general and elegant formulas will be found in the cal-

culus for the normals, subnormals^ tangents, and suhtangents

applicable to all the conic sections.

Note to Propositions III and IV of this Chapter.—In the investiga-

tion of these propositions we followed in the footsteps of others, only hoping

to be more definite and clear. But were we only in pursuit of results, we
would have been more brief and practical.
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In these propositions it is not assumed that the radius of the circle is at

right angles to its tangent when drawn from the center to the point of con-

tact, but we see no propriety in excluding this geometrical truth so well

known in elementary geometry, especially when we consider that we have

all along used the symbol a to represent the tangent of angles on the admis-

sion that the tangent of an angle was a line drawn at right angles to ihr

radius from the extremity of the radius.

Using this truth we would not draw a line

cutting the curve in two points, but would

draw the tangent line PT at once, and adinit

that the angle APT was a right angle. Then

it is clear that the angle APB= the angle

PTB.
Now to find the equation of the line, we let

x' and y' represent the co-ordinates of the point

P, and X and y the general co-ordinates of the

line, and a the tangent of its angle with the axis of X, then by (Prop. Ill,

Chap. I,) we have
y'—y=a(x'—x).

Now the triangle APB gives us the following expression for the tangent

of the angle APB, or its equal PTB,

a=-^2
y

This value of a put in the preceding equation, will give us

y'—y—~~~(x'—x).
y

Or 2/' 2

—

yy'=—x'^-^xx'.

Whence yy'-\-xx'=R^ the same as before.

Of the Polar Equation of the Circle.

The polar equation of a curve is the equation for any point in

the curve estimated from any fixed point called a pole. The

variable distance from the pole to any point in the curve is

called the radius vector, and the angle which the radius vector

makes with a given straight line is called the variable angle.

PROPOSITION V.

To find the polar equation of the circle.

When the center is the pole or the fixed point, the equation is

x-'+y^=^B^ (1)

and the radius vector R is then constant.
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Now let P be the pole, and the

co-ordinates of that point a and b.

PM=r, and MPX'=v the variable

angle. ANz=x and NM=y. Then
it is obvious that

x-=a-\-r COS. v, and y±=J-(~**sin. v.

These values of x and y substi-

tuted in (1), (observing that cos.^v

-j-sin. ^a;=l,) will give

which is the polar equation sought.

Scholium 1. P may be at any

point on the plane. Suppose it at^'.

Then a——R and ^=0. Substitu-

ting these values in the equation,

and it reduces to

r^—9.R cos. vr=^0.

As there is no absolute term, r=0
will satisfy one point in the curve,

and this is true, as P is supposed to be in the curve. Dividing

by r, and
r=2i2cos. v.

This value of r will be positive while cos. v is positive, and

negative when cos.^ is negative ; but r being a radius vector can

never be negative, and the figure shows this, as r never passes

to the left of B, but runs into zero at that point.

When 2;== 0, 008.^=1, then r=^^'. When z^=90, cos,'y=0,

and r becomes at B^ and the variations of v.from to 90, de-

termine all the points in the semicircle BDB'

.

Scholium 2. If the pole be placed at B , then «=-)-i? and

5=0, which reduces the general equation to

r=—Si^cos. V.

Here it is necessary that cos.?; should be negative to make r

positive, therefore v must commence at 90° and vary to 270°
;

that is, be on the left of the axis of Indrawn through B\ and

this corresponds with the figure.
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Application.—The polar equation of the circle in its most

general form is

r^-\-2{acos.v-{'bsm.v)r+a^+b^=E^. (1)

If we make 5=0, it puts the polar point somewhere on the

axis of X, and reduces the equation to

r^+ga cos. v.r+a2=i23. (2)

Now if we make v=0, then

will cos. v=l, and the lines

represented by ±r would refer to

the points X, X', in the circle.

This hypothesis reduces the last

equation to

r^+2ar=(E^—a=') (3)

and this equation is the same in

form as the common quadratic in

algebra, or in the same form as

x'^±px=q.

Whence x—r, ^a=d=:p, and jf^^

—

a^=q.

These results show us that if we describe a circle with the

radius Jq-^-lp'^ , and place F on the axis of X at a distance

from the center equal to ^p, then PX represents one value of

X, and FX' the other. That is,

^=-lP+j9+lP'=J'^'

Or x^=^\p—Jx-\-ip^^=:FX\

and this is the common solution.

When p is negative, the polar point is laid off to the left from

the center at F\
The operation refers to the right angled triangle AFM,

JF=±p, FM=^q, and AM=Jq-{-\pK

Let the form of the quadratic be

X^zhpX:
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Then comparing this with the polar equation of the circle, we

have

Take AX=R and describe a

semicircle. Take AP=\p and

AP'=—\p. From P and P'

draw the lines PM, and P'M' to

touch the circle. Join AM, AM'.

Here AP is the hypotenuse of

a right angled triangle. In the

first case AP was a side.

In this figure as in the other, PM=Jq ; but here it is inclined

to the axis of X; in the first figure it was perpendicular to it.

The figure thus drawn, we have PX for one value of x, and

PX' is the other, which may be determined geometrically.

If x^-\-px=—q

x=—^p+J\p^—q^PX, or x=—^p--J\p'—q=PX\

Observe that the first part of the value of ic, is minus, corres-

ponding to left positionfrom P.

If ic^

—

px=—q,

we take P' for one extremity of the line x.

x=^p+Jlp^—q=P'X, or x=lp-^J\p—q=PX\
Here the first part of the value of x, (^p), is plus, because to

the right of the point P'

.

Because R=J\p^—q, R or -<4il/' becomes less and less as

the numerical value of q approaches the value of \p^ . When
these two are equal, i?=0, and the circle becomes a point.

When q is greater than \p^ , the circle has more than vanished,

giving no real existence to any of these lines, and the values of

x are said to be imaginary.

We have found another method of geomefrising quadratic equa-

tions, which we consider well worthy of notice, although it is

of no practical utility.
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It will be remembered that the equation of a straight line

passing through the origin of co-ordinates is

y=ax, (1)

and that the general equation of the circle is

{xd^cY+{y±:hY=RK (2)

If we make 6=0, the center of the circle must be somewhere

on the axis of X.

Let AM represent a line, the

equation of which is y=^ax, and

if we take a=l, AM vfiW incline

46° from either axis, as repre-

sented in the figure. Hence

y=x, and making 5=0, these

two values substituted in (2),

and that equation reduced, we
shall find

This equation has the common quadratic foryn.

Equation (1) responds to any point in the straight line M'M.
Equation (2) responds to any point in the circumference BMM\

Equations (1) and (2) combined must respond equally to the

straight line and to the circle. Therefore equation (3) must

respond to the points M and M', the points in which the circle

cuts the line.

That is, PM and PM' are the two roots of equation (3), and

when one is above the axis of X, as in this figure, it is the posi-

tive root, and P'M' being below the axis of X, it is the negative

root.

When both roots of equation (3) are positive, the circle will

cut the line in two points above the axis of X. When the two

roots are mintis, the circle will cut the line in two points below

the axis of X.

When the two roots of any equation in the form of (3) are

equal and positive, the circle will touch the line above the axis

of X If the roots are equal and negative, the circle will touch

the line below the axis of X. In case the roots of (3) are im-

aginary, the circle will not meet the line.
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We give the following examples for illustration :

To determine the values of y by a geometrical construction of

this kind, we must make

c=

—

2, and =5.
2

Whence i?=3.74, the radius of the circle. Take any distance

on the axes for the unit of measure, and set off the distance c on

the axis of X from the origin, for the center of the circle ;
—

to the right, if c is negative, and to the left, if c is positive.

Then from the center, with a radius equal to R=j2p-\-c^f
describe a circle cutting the line drawn midway between the two

axes, as in the fignire.

In this example the center of the circle is at C, the distance of

two units from the origin A, to the right. Then, with the radius

3.74 we described the circle, cutting the line in M and M\ and

we find by measure (when the construction is accurate) that

jl/P=3.44, the positive root, and M'P'=^— 1.44, the negative

root.

For another example we require the roots of the follovjing equa-

tion hy construction:

y2+6y=27.

N. B. When the numerals are too large in any equation for

convenience, we can always reduce them in the following manner:

Put y=nz, then the equation becomes

^i522_|_g^2=27.

n, 2 I
6 27

Or z^-\--z—
n n

Now let w= any number what-

ever. If n=S, then

z^-\'2z=3,

Herec=2. tl ^=3.
2

Whence E=JlO=3A6,
At the distance of two units
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to tlie left of the origin, is the center of the circle. We see by

the figure that 1 is the positive root, and —3 the negative root.

But y=w5?, n=3, 2=1, y=3 or —9.

We give one more example.

Construct the equation

Here c=4, and -'^""^''=—6. Whence i2=2.
2

Using the same figure as before, the center of the circle to

this example is at D, and as the radius is only 2, the circum-

ference does not cut the line M'M, showing that the equation

has no real roots.

We have said that this method of finding the roots of a quad-

ratic vras of little practical value. The reason of this conclu*

sion is based on the fact that it requires more labor to obtain

the value of the radius of the circle than it does to find the

roots themselves.

Nevertheless this method is interesting and instructive as an

algebraic geometrical problem.

When we find the polar equation of the parabola, we shall then

have another method of constructing the roots of quadratics which

vnll not require the extraction of the square root.

CHAPTER IIL

Conic Sections.

If we cut a cone by a plane through its vertex, the section

will be a triangle. If we cut it by a plane at right angles with

the axis of the cone, the section thus cut will be a circle. If

we cut it on one side by a plane parallel to the other side, the

section will be a parabola. If we cut it by a plane less inclined

to the base than the sides of the cone, the section will be an

ellipse. If by a plane more inclined to the base than to the sides

of the cone, the section will be an hyperbola.
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Hence, the triangle and the circle might be included in conic

sections, — but custom has limited the term to the three curves,

the Ellipse, the Parabola, and the Hyperbola.

We can and do examine the properties of a triangle and a

circle without the least regard to a cone whatever. So also, can

the cone be entirely dispensed with in discussing the properties

of the ellipse, the parabola, and the hyperbola, and we shall dis-

pense with it, commencing with

The Ellipse.

Definition 1.—An ellipse is a plane curve, confined by two

fixed points, and the sum of the distances from any point in the

curve to the fixed points, is constant.

2.—The two fixed points are called the foci.

3.—The center is midway in a straight line between the two

foci.

4.—A diameter is a straight line passing through the center.

6.—The major axis is a diameter passing through the foci.

8.—The minor axis is at right angles to the major axis, passing

through the center.

9.—The distance between the center and either /ocms, is called

the eccentricity when the semimajor axis is unity.

10.—The parameter of an ellipse is the double ordinate passing

through one of the foci.

PROPOSITIOIf I.

To find the equation of the curve, the origin of the co-<yrdinaies

beinff in the center, the major axis being given, also the distance

of the foci from the center.

The curve in the margin repre-

sents an ellipse.

Put CF=c, CA=:A.

Take any point, as F, and let fall the

perpendicular Ft.

By our conventional notation, put

Ci=x, tF=y.
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As F'P-\-PF=<2,A, we may put F'P=A+z, and PF=A—z.
Then the two right angled triangles F'Pt, FPt, give us

{c+xY+y^^={A^zY (1)

{c—xY+y^-={A—zy (2)

For the points in the curve which cause t to fall between c and

F, we would have

{x-cY+y-=.{A-zY (3)

But when expanded, there is no difference between (2) and

(3), and by giving proper values and signs to x and y, equations

(1) and (2) will respond to any point in the curve as well as to

the point P.

Substracting (2) from (1), and dividing by 4, we find

cx=Azy or 2= (4)A
This last equation shows that F'P, the radius vector, varies

as the abscissa x.

Add (1) and (2), and divide the sum by 2, and we have

Substituting the value of z"^ from (4), and clearing of frac-

tions, we have

c^A^+A-x^-^A^y'^z^A^+c^xK

Or A''y^-\-{A^—c^)x^=A-'(A^—c^). (5)

Now conceive the point P to move along describing the curve,

and when it comes to the point B, so that D C makes a right angle

with the axis of Z", the two triangles DCF SLJid. DCF' are right

angled and equal. DF and DF' each is equal to A, and as

CF, CF\ each is equal to c, we have

DC^^A^—c'.
It is customary to denote Z> C half the minor axis of the ellipse

by B, as well as half the major axis by -4, and adhering to this

notation

^2^^2_c2^ (6)

Substituting this in (5) we have for the equation of the ellipse

^2y2^^2^2^^2^2^

referred to its center for the origin of co-ordinates.
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If we wish to transfer the origin of co-ordinates from the cen-

ter of the ellipse to the extremity A' of its major axis, we must

put
x=—A-\-x\ and y=y'.

Substituting these values of x and y in the last equation, and

reducing, we have

y'^=?^j2Ax'—x'^).

Or without the primes, we have

for the equation of the ellipse when the origin is at the extremity

of the major axis.

Corollary 1 . If it were possible for J5 to equal A, then c

must equal 0, as shown by (6). Or, while c has a value, it is

impossible for JB to equal A.

If B=A, then c=0, and the equation becomes

A^y''+A^x''=A^AK

Or y^-{-x^=:A\

the equation of the circle. Therefore the circle may be called

an ellipse, whose eccentricity is zero, or whose eccentricity is ««/?-

nitely small.

Corollary 2. To find where the curve cuts the axis of X,

make y=0 in the equation, then

x=±A,
showing that it extends to equal distances from the center.

To find where the curve cuts the axis of Y, make x=0, and

then

Plus B refers to the point D, —B indicates the point directly

opposite to £>, on the lower side of the axis of X.

Finally, let x equal any value whatever less than A, then

y=.dt^(A^^x^)i.
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An equation showing two values of y, numerically equal, indi-

cating that the curve is symmetrical in respect to the axis of X.

If we give to y any value less than B, the general equation

gives

Showing that the curve is symmetrical in respect to the axis

of T,

Scholium. The ordinate which passes through one of the foci,

corresponds to a;=c. But ^^

—

B^=c^. Hence -4^—c^ or

A*—x^=£^. Or (A^—x^)'^=B, and this value substituted

B^ 2^2
in the last equation, gives y=dz Whence is the

A A
measure of the parameter of any ellipse, by Def. 10.

PROPOSITION II.

Every diameter is bisected in the center.

Let X, and y, be the co-ordinates of the point D, and x\ y\
the co-ordinates of the point D'.

Then by the equation of the curve

And ^2y'2+^2^'2=^2^3.

The equation of a line passing

through the center, must be of the

form y=ax.

This equation combined with the equations of the curve,

gives

AB aAB
5^=

Ja^A^+B^ Ja'^A^+B-

AB , aAB

Ja^A'-+B^ Ja^A^+B^

These equations show that the co-ordinates of the point Dy

are the same as those of the point D\ except opposite in signs.

Hence UB' is bisected at the center.

4
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PROPOSITION III.

The squares of the ordinates are to one another as the rectangles

of their corresjmnding abscissas.

Let y be any ordinate, and x its corres-

ponding abscissa. Then, by the first

proposition, we shall have

Let y' be any other ordinate, and x' its

corresponding abscissa, and by the same proposition we must

have

y'^=:^"{^A^x')x\

Dividing one of these equations by the other, omitting com-

mon factors in the numerator and denominator of the second

member of the new equation, we shall have

2/2 _{^A—x)x

Y^ {^A~x)x''

Hence y^ : y'^=(2A—x)x : {9.A—x')x'.

By simply inspecting the figure, we cannot fail to perceive

that (9,A—x)y and x, are the abscissas corresponding to the or-

dinate y^ and (9.

A

—x'), and x', are the two corresponding to y\

Therefore, the squares of the ordinates, &c. Q. E. D.

Scholium. Suppose one of these ordinates, as y, to represent

half the minor axis, that is, y'=B. Then the corresponding value

of «' will be A, and (2A—x') will be A, also. Whence the last

proportion will become

y^ : B^=(2A—x)x : AK
In respect to the third term we perceive that if A'H is repre-

sented by X, -4^ will be {2

A

—x), and if 6"^ is a point in the

circle, whose diameter is AA, and GHi\iQ ordinate, then

and the proportion becomes

r : B'^^'QH.'^ : A^.

Or y : GE=zB : A.

Or .4 : B^QH I y^BR
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PROPOSITION IV.

The area of an ellipse is the mean proportional between the

areas of two circles, ike diameter of one being the major axis, and

the diameter of the other, the minor axis.

Conceive GIT to be a practical as well

as a mathematical line; or rather, conceive

it be a ver^ narrow parallelogrom.

Conceive also other lines Q-'H\ Q"H",

<fec, drawn so as to fill the whole space

occupied by the semicircle and semi-

ellipse.*

Then by scholium to Prop. Ill, we have

A : B=:Gff : DH,
z=G'H' : D'lr.

= G"H" : D"H\
&G. &G.

But as the sums of proportionals have the same ratio as thel?

like parts, (see proportion in algebra,) therefore

A : B :: (Gff+G'JI'+&c.) : {DH-\-D'H'+&,q,)

But the sum of all the narrow parallelograms represented by

(^^-|-6'^'^'-j-&c.) is the area of the semicircle on ^'^
: and the

sum of all the parallelograms represented by {DH-\'D'II'-\-&,g,^

is the area of the semi-ellipse.

But wholes are in the same proportion as their halves, whence

A : jB=area circle : area ellipse.

But the area of the circle on the major axis, is rtA^

.

Substituting this, and the proportion becomes

A : B=irtA^ : area ellipse.

Or area ellipse=rt^^,

which is the mean proportional between {jtA^) and (ttB^ ,) the

expressions for the areas of the circles, one on the major axis,

the other on the minor axis. Q. E. D.

* These narrow parallelograms are called differentials, in the differentia]

calculus—and the sum of them is called the integral, in the integral cal

cidus.
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ScHDUUM. Hence the common rule in mensuration to find

the area of an ellipse.

Rule—Multiply the semi-major and semi-minor axes togethert arid

multiply that product iy 3. 1 4 1 6.

PROPOSITIOlf V.

To find the product of the tangents of two supplementary chords

with the axis of X.

Let X, y, be the co-ordinates of

any point, as P, and x', y', the co-

ordinates of the point A'.

Then the equation of a line

which passes through the two

points A' and P, ( Prop. Ill, Chap.

I,) will be

y—y'—a{x^x). (1)

Th^ equation of the line which passes through the points A
and Pf will be of the form

y-y"=a\x—x"). (2)

For the given point A\ we have y'=0, and x'=—A,

Whence (1) becomes

y=a{xJrA). (3)

For the given point A we have y"=0, and x"=Ay which

values substituted in (2) give

y=a{x—A), (4)

As y and x are the co-ordinates of the same point P in both

lines, we may combine (3) and (4) in any manner we please.

Multiplying them, we have

y^ =aa'{x^—A^ ). (5)

Because P is a point in the ellipse, the equation of the curve

gives

(A'- J^—i^^-A^h (6)

Comparing (5) and (6) we find

aa'=—-~ for the equation sought.
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Scholium 1. In case the ellipse becomes a circle, that is,

in case A=B, aa'-|-l=0, showing that the angle A'FA would

then be a right angle, as it ought to be, by (Prop. II, Chap. II,)

D2
Because is less than unii^, or aa less than 1,* or radius;

A^
the two angles FA'A and FAA' are together less than 90°

;

therefore the angle at F is obtuse, or greater than 90°.

Scholium 2. Since aa has a constant value, the sum of the

two, a, a , will be least when a=a'.

Hence the angle at F will be greatest when F is at the vertex

of the minor axis, and the supplementary chords equal ; and the

angle at F will become nearer a right angle as F approaches A
or A'

.

PROPOSITION VX.

To find the equation of a straight line which shall be tangerU

to an ellipse.

Let X, y, be the co-ordinates of

any indefinite point R, in a line

cutting an ellipse ; x, y, the co-

ordinates of the point F, and x",

y", the co-ordinates of the point

Q. Also, let a be the tangent of the angle of inclination of the

line FR with the axis of X. The object is to find the value of

a when FR is tangent to the ellipse.

The equation of a line which passes through two points, as

R and F, must be of the form

y—y'=a{x—x). (1) (Prop. Ill, Chap. I.)

The equation for the same line passing through the two points

R and Q, must be •

y—y"=a{x~x"). (2)

And the equation for the same line passing through the two

points F and Q, must be

y'—y"=a{x'—x"Y (3)

*In trigonometry we learn that tan. z cot. j:=i22=l. That is, the pro-

duct of two tangents the sura of whose arc is 90°, equals 1. When the

Bum is less than 90°, the product will be a fraction.
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Because the points P and Q are in the curve, the co-ordinates

of those points must correspond to the following equations :

By subtraction A^7/'^—f^)-{'B^{x'^—x"^)=0.

Or A^y'+f)(y'-f)=--£' (x'+x")ix'^x"). (4)

Dividing (4) by (3) we have

AHy'+f)=---(x+x"), (5)

IS'ow conceive the line to revolve on the point F until Q co-

inoides with F, then FF will be tangent to the curve. But

when Q coincides with F, we shall have

y'=y" and x=x".

Whence (5) becomes

2A''y'=-^—x\
a

Or
B^x'

A^y'

This value of a put in ( 1 ) gives

B^x'
y—y {x—x').

A^y'

Reducing A''yy'-\-B^xx'=^A''y'^-\-B''x'^

.

Or A^yy'+B^xx'=A^BK

This is the equation sought, x and y being the general co-

ordinates of the line.

Scholium 1. To find where the tangent meets the axis ofX
we must make y=0.

This gives x=:^'^-=CT.
X

In case the ellipse becomes a cir-

cle, £—A, and then the equation

will become

yy'-\-xx'=A^,

the equation for a tangent line to a
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circle; and to find where this tangent meets the axis of X, we

make ^=0, and

a?= = CT, as before.
x'

In short, as these results are all independent of B, the minor

axis, it follows that the circle and all ellipses on the major axis

AB can have tangents terminating at the same point T on the

axis of X, if drawn from the same ordinate, as shown in the

figure.

Scholium 2. To find the point in which the tangent to an

ellipse meets the axis of Y, we make x=0, then the equation

for the tangent becomes

B^

y

As this equation is independent of A, it shows that all ellipses

having the same minor axis, can have tangents terminating in

the same point on the axis of Y, if drawn from the same abscissa.

Scholium 3. If from CT we subtract CE, we shall have HT.
a common suUangerd to a circle, and all ellipses which have 2J
for a major diameter. That is

BT=:±^~x'=^ ~^-

.

x' x'

We can also find RT by the triangle PRT, as we have the

(B^x'\—
I
to the radius 1.

A^y /

Whence we have the following proportion :

1 : —^1^=ET : /
A^y

RT= A'y'^

B^x'

The minus sign indicates that the measure from T is towards

the left.
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PROPOSITION VII.

To firid the equation of a normal line to the ellipse.

Since the normal passes through the point of tangency, its

equation will be in the form

y—i/'=a\x—x'). (1)

Because PJV is at right angles to

the tangent,

aa'+l=0.

But by the last proposition

a=— ,

Whence a'=—^, and this value of a! put in (1) give^
B'^x

y—y =—— (x—^ }>

for the equation sought.

Scholium 1 . To find where the normal cuts the axis of X,

we must make y=0, then we shall have

-i^-i^y-'"-
Application.—Meridians on the earth are ellipses ; the semi-

major axis through the equator is ^=3963. miles, and the semi-

minor axis from the center to the pole is J5=3949.5.

A plumb line is everywhere at right angles to the surface, and

of course its prolongation would be a normal line like PuV. In

latitude 42°, what is the deviation of a plumb line from the center

of the earth? Or, how far from the center of the earth would a

plumb line meet the plane of the equator? Or, what would be

the value of CiY?

As this ellipse is very near a circle, we may take CH for the

cosine of 42°, which must be represented by x'. This being

assumed, we have

a;'=2940. (^!^!-) 2940.=23,+ miles CJ}f. Am,
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Scholium 2. To find NR, the subnormal^ we simply subtract

CiVfrom CR, whence

NR=x'^(^!:^l\x^=^.
\ A^ / A^

We can also find the subnormal from the proportional triangles

FRT, PNR, thus

:

TR : RP :: RP : RN.

~:^LI._ : y' :: y' : —NR. Whence iV72=_^.

PROPOSITIOl^ VIIL

Z^'w^s drawn from the foci to any point in the ellipse make

equal angles with the tangent line drawn through the same point.

Let C be the center of the ellipse,

PT the tangent line, and PF, PF',

the two lines drawn to the foci.

Denote the distance

CF=JA^—B^ by c, CF' by ~c, the angle FPT by F, and

the tangents of the angles PTX, PFT, by a and a.

Now FPT'=zPTX-—PFT.

By trigonometry, (Eq. 28, p. 143, Robinson's Geometry), we
have

Tan. FPT=tsLn.(PTX—PFT). That is, tan. V=-II^. (1)
l-\-aa'

Prop. VI, gives us a—— x\ y\ being the co-ordi-
A^y

nates of the point P.

Let X, y, be the co-ordinates of the point F, then from Prop.
IV, Chap. I, we have

X—X

But at the point F, y=0 and x=zc.

Whence a=^ ^
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These values of a and a substituted in ( 1 )
give

Tan. V^-----^^^7-^ A^y\x^c)--B^xy'

A\x'-^)

Tan F=—?!^'r:^' =.^1(^—A"J=^,
(A^—B'')xy'—A''cy' cy'(cx—A'') cy''

Observing that A''y'^+B''x"'=A''B\ and A^—B^=c^.
The equation of the line PF will become the equation of the line

PF' by simply changing -|-c to —c, for then we shall have the

co-ordinates of the other focus.

We now have

tm.FPT=-^-,
cy'

But if c is made—c, then

tan.i^'P^-—-^,
cy

As these two tangents are numerically the same, differing only

in signs, they must be equally inclined to the straight line from

which they are measured, or be supplements of each other.

Whence FPT+F'PT=1S0,

But F'PJI+F'PT= 1 80.

Therefore FPT==F'Pir. Q. E. D.

Corollary. The normal being perpendicular to the tangent,

it must bisect the angle made by the two lines drawn from the

tangent point to the foci.

Scholium. Any point in the curve may be considered as a

point in a tangent to the curve at that point.

It is found by experiment that light, heat, and sound, after

they approach to, are reflected off", from any reflecting surface at

equal angles ; that is, any and every single ray makes the angle

of reflection equal to the angle of incidence.

Therefore, if a light be placed at one focus of an ellipse, and

the sides a reflecting surface, the reflections will concentrate at

the other focus. If the sides of a room be elliptical, and a stove

is placed at one focus, it will concentrate heat at the other.
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Whispering galleries are made on this principle, and all thea-

ters and large assembly rooms should more or less approximate

to this figure. The concentration of the rays of heat from one

of these points to the other, is the reason why they are called

the foci, or burning points.

OF THE ELLIPSE REFERRED TO ITS CONJUGATE DIAMETERS.

Two diameters drawn through the center of an ellipse so as

to bisect two supplementary chords on the major axis, are said

to be conjugate.

Hence, two conjugate diameters intersect one another by an

angle equal to that of the two supplemental chords, which they

are supposed to bisect, but by Prop. V, two supplemental chords

intersect each other by an angle which must conform to the

equation

aa =— ,

A'' .

in which a is the tangent of the angle which one of the supple-

mental chords makes with the axis of X, and a' is the tangent of

the angle made by the other chord.

Now let m be the angle whose tangent is a, and n be the angle

whose tangent is a, then

sin. wi J , sin.%a= — , and
cos. m cos. n

Substituting these values in the last equation, and reducing,

we obtain

A^ sin. m sin. n-\-B^ cos. m cos. w=0,

which expresses the relation which must exist between A, B, m,

and n, to fix the position of any two conjugate diameters in re-

spect to the major axis, and this equation is called the equation

of coTidition for conjugate diameters.

In this equation of condition, m and n are undetermined, show-

ing that an infinite number of conjugate diameters might be

drawn, but whenever any value is assigned to one of these angles,

that value must be put in the equation, and then a deduction

made for the value of the other angle.
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PROPOSITION IX.

To find the equation of the ellipse referred to its center and con-

jugate diameters.

The equation of the ellipse referred to its major and minor

axes, is

The formulas for changing rectangular co-ordinates into ob-

lique, the origin being the same, are (Prop. IX, Chap. I,)

x-=^x' COS. m-\-y' COS. n. y=ix' sm. m-\-y' cos, n.

Squaring these, and substituting the values of x^ and y^ in

the equation of the ellipse above, we have

{A^sm^ri,-\'B^cos^ri)y'^-\-{A^s\n^m-\-B^cos^m)x^ ) _^2^j
9.(A^ sin. m sin. n-\'B^ cos.m cos. n)y'x'

)

But if we now assume the condition that the new axes shall

be conjugate diameters, then

A^ sin. m sin. n-\'B^ cos. m cos. w=0,

which reduces the preceding equation to [(^)

{A^sm.^n-\-B^'Cos.^n)y'^-\-{AHm.''m-{-B^ cos.^m)x'^=zA^B^

,

which is the equation required. But it can be simplified as fol-

lows !

The equation refers to the two di-

ameters B"B' and D"D' as axes. For

the point B' we must make y'=0,

then

^-= ^!^ =
A'^im.^m-\-B^GOS.^m

(CB'y=A"-. (P)

Designating CB' hy A', and CD' by B'.

For the point D' we must make x'=0. Then

y'2=
-^'^^

=(CI)'y=:B'K (Q)
A^sin.^n+B^cos.^n ^ ^

From (P) we have {A^sm.^m+B^cos.^m)=:^^L

From (Q) (A''sm.''n+B^cos.^n)=:^l.
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These values put in (F) give

x'^=:A^Br
B'^ ' A'^

Whence A'^y''+B'''x'^=A'^B'^.

We may omit the accents to x' and y\ as they are general

variables, and then we have

for the equation of the ellipse referred to its center and conju-

gate diameters.

Scholium. In this equation if we assign any value to x less

than A', there will result two values of y, numerically equal, and

to every assumed value of y less than B\ there will result two

corresponding values of Xj numerically equal, differing only in

signs, showing that the curve is symmetrical in respect to its

conjugate axes, and that each axis bisects all chords which are par-

allel to the other axis.

Observation.—As this equation is of the same form as that

of the general equation referred to rectangular co-ordinates on

the major and minor axis, we may infer at once thr.t we can find

equations for ordinates, tangent lines, &c. referred to conjugate

axes, which will be in the same form as those already found,

which refer to the rectangular axes. But as a general thing it

will not do to draw summary conclusions.

PROPOSITION X.

As the square of any diameter is to the square of its conjugaiet

so is the rectangle of any two segments of the diameter to the square

of the corresponding ordinate; that, is, the ordinate drawn through

the point of bisection.

Let CD be represented by A\ and

CH by B„ CH by x, and GH by y,

then by the last proposition we have

A'^y''+B'H''.=A'^B'^.

Which may be put under the form

A''y^=B'^{A"'-^x^).
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Whence A'^ : B'^ : : (A'^'—x^) : y*.

Or (2Ay : (2By : : (A'+x)(A'—x) : y\

Now 2^' and 2-5' represent tlie conjugate diameters D'J), E'E^

and since CH represents x, A'-\-x=D'ir, and A'—x=BJ),
Also y= 6^-5^ Hence the above proportions correspond to

{D'Dy : (EUy : : D'Ey^HD : (6^^)2. Q. E. D.

Scholium. As x is no particular distance from C, CF-mAj
represent x, tlien LF will represent y, and the proportion then

becomes

{D'DY : (^'^32 : : D'Fy^FD : (Zi^)2.

Comparing the two proportions, we perceive that

D'B'HB : D'F'FD : :

"^'
: If".

That is, The rectangle of the abscissas are to one another as tht

squares of the corresponding ordinates.

The same property as was demonstrated in respect to rectan-

gular ordinates in Prop. III.

In the same manner we may prove that

Eh'hE' : Ef'fE' : : (hg)^ : (fiy

PROPOSITION XL

To find the equation of a tangent line to an ellipse referred to

its conjugate diameters.

Conceive a line to cut the curve in two points, whose co-

ordinates are x', y\ and x'\ y", and ar, y, the co-ordinates of any

point on the line.

The equation of a line passing through two points, is of the

form

y^y'=a{x-^x'), (1)

an equation in which a is to be determined when the line

touches the curve.

From the equation of the conjugate axes, we have

A^y'^+B'^x'^::=A'^B'^.

A'^y^^+B'^x^^^A'^B'^,



THE ELLIPSE. 69

Subtracting one of these equations from the other, and ope-

rating as in Prop. VI, we shall find

a=—

This value of a put in (1) will give

B'^x' ,vy—y=^,{x—xy
A^y

Reducing, and A'^y'y-\-B'''x'x=A'^B'^,

which is the equation sought, and it is in the same form as that

in Prop. VI, agreeably to the observation made at the close of

Prop. IX.

PROPosiTioiT xn.

To transform the equation of the ellipse in reference to conjugate

diameters to an equivalent equation in reference to its rectangular

The equation of the ellipse in reference to its conjugate diam-

eter is

^'2y3+^'V2= ^'2^'2. (1)

And the formulas for passing from oblique to rectangular axes

are (Prop, X, Chap. I.)

, xsm.n—yeos.n , ycos.m

—

xsm.m
x =

, y =-
sin.(w

—

m) sm.(n—m)

These values of x' and y' substituted in ( 1 ) give

(A'^ COS. ^m+^'2 COS. ^n)y^+(A'^ sin. ^m-\-B'^ sin.^njx'

—2(A'^ sin. wi COS. m-\^B'^ sin. n cos. n)xy

A"" B"" sin.' (nr^m).

This equation must be true for any point in the curve, x being

measured on the major axis, and y the corresponding ordinate at

right angles.

This being the case, such values of A', B', m, and n, must be

taken as will reduce the preceding equation to the well known
form

A'y'+B^x'=A^B'.
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Therefore we must assume

A'^ cos.^m-\-B''' cos.'n=A^, (1)

A''' sin. ^m+B'^ sin. ^n=B\ (2)

A'^ sin.m cos. m-^B'^ sin. n cos. w=0. (3)

A'^B'^sin.^7i—m)=A^BK (4)

The values of m and w must be taken so as to respond to the

following equation, because the rectangular axes are in fact

conjuffate diameters.

u4^ sin.msin.w-|-52 cos.mcos. «=0. (5)

These equations unfold two very interesting properties.

Scholium 1. By adding (1) and (2)

Or 4A'''-\-4B'^=4A^-\-4BK

Thai is, the sum of the squares of any two conjugate diameters is

equal to the sum of the squares of the axes.

Scholium 2. Equation (3) or (5) will give us m when n is

given ; or give us n when m is given.

Scholium 3. The square root of (4) gives

^'^'sin. (n—m)=ABy

which shows the equality of two surfaces, one of which is ob-

viously the rectangle of the two axes.

Let us examine the other.

Let n represent the angle

^''CB, and m the angle FCB.
Then the angle NCF will be

represented by (n—m).

Since the angle J/lY^is the

supplement of NCP, the two

angles have the same sine

NM=^A'.

In the right angled triangle NKM, we have

\ \ A' \\ sm.(n—m) : MK.
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MK=zA' sin.(7j—7»),

But NC=B'.

Whence MK-NC=^A'B' ^r[s.,{n—m)= the parallelogram

NQPM. Four times this parallelogram is the parallelogram

ML, and four times the parallelogram -D (7^^ which is measured

by AB, is equal to the parallelogram HF. Hence equation (4)

reveals this general truth:

The rectangle which is formed hy drawing tangent lines through

the vertices of the axes is equivalent to any parallelogram which

can he found hy drawing tangents through the vertices of conju-

gate diameters.

Note.—The student had better test his knowledge in respect to the truths

embraced in scholiums 1 and 3, by an example

:

Suppose the semi-major axis of an ellipse is 10, and the semi-minor axis 6,

and the inclination of one of the conjugate diameters to the axis of X is taken

at 30*^ and designated by m.

We are required to find il'^ and B'^ , which together should equal

A^-^B^ , or 136, and the area NCPM, which should equal AB, or 60, if the

foregoing theory is true.

Equation (5) will give us the value of n as follows :

100'|tan.w+36|-^3=0.

Or tan.w:
36^3
100

Log. 36-f-|-log. 3-.log. 100. Plus 10 added to the index to correspond

with the tables, gives 9.794863 for the log. tangent of the angle n, which

gives 31° 56' 42", and the sign being negative, shows that 31° 56' 42" must

be taken below the axis of X, or we must take the supplement of it, NCB.
for 7T, whence n=148° 3' 18", and (n—m)=118o 3' 18".

To find A'^ and B*^, we take the formulas from Proposition IX.

.,2__ A^B"" __ 100-36 _3600.
•30-1-52 gos.30 ioo-t+36-f 52

:69.23.

^/2_ A^B^ 3600

-4^8in.^31°66'42"+53cos.a(31°66'42")~27-99+26^"

66-77

136.00'
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This agrees with scholium 1,

As radius

Is to ^'^(log.69.23)

So is sine {n—m) 61° 56' 42"

log. MK— 0.865860

Log. B'=^ log. (66.77) 0.912290

^^=60.

10.000000

0.920147

9.945713

log. 60= 1.778150

PROPOSITION XIII.

To find the general polar equation of an ellipse.

If we designate the co-ordinates of

the pole P, by a and b, and estimate

the angles v from the line PX' par-

allel to the transverse axis, we shall

have the following formulas :

x=a-\-r cos.i;. y=5-f-r sin. v.

These values of x and y substituted in the general equation

will produce

^2 sin.^?; T^^^A^bBm.v 1 r+A''h^-\-B^a''=zA^B\

JS^cos.^v -^-^B^aco^.v]

for the general polar equation of the ellipse.

Scholium 1. When P is at the center, a=0, and 5=0, and

then the general polar equation reduces to

^2^ A^B^

A^&m.^'v+B^QO^.^v'

a result corresponding to equations (P) and ( Q) in Prop. IX.

Scholium 2. When P is on the curve A^h^+B'^a^zzzA^B^

,

therefore

A^^m.^v

B^cos.^v

' r=:0.

-^^B^acos.v]

This equation will give two values of r, one of them is 0, as

it should be. The other value will correspond to a chord,
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according to the values assigned to «, h, and v,

last equation by the equation r=0, and we have

<5d

Dividing the

^^sin.^i

^^cos.S
=0.

-|-2-S-acos.v

The value of r in this equation is the value of a chord.

When the chord becomes 0, the value of r in the last equation

becomes also, and then

A^ h sin.i;+-B* a cos.v=0.

Or tan.z'=——- ,

A-'b

a result corresponding to Prop. VI, as it ought to do, because

the raditis vector then becomes tangent to the curve.

Scholium 3. When P is placed at the extremity of the major

axis on the right, then siu.t'=0, cos.v=l, a=A, and h:=Q.

These values substituted in the general equation will reduce it

to B^r^'+^B^Ar^O,

which gives r=0, and r^— '2,A, obviously true results.

When F is placed at either foci, then a=JA^—B^=Cy and

5=0. These values substituted, and we shall have

It is difficult to deduce the values of r from this equation.

Therefore we adopt a more simple method.

Let F be the focus, and FP any

radius, and put the angle PFD=:^v.

By Prop. I, of the ellipse, we learn

that

FP-. (1)

an equation in which c=:^JA^—B^

,

and X any variable distance CD.

Take the triangle PDF, and by trigonometry we have

1 \ r \ \ cos.v : c-\'X.

Whence a?=rcos.w

—

c.

This value of x placed in (1), will give

A
I
cr COS. t;

—

c^
r—ji-f-
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Whence

Or

(A—c eo8.v)r=A^—c^

r=.
A—c cos.v

This equation will correspond to all points in the curve by
giving to cos.t; all possible values from 1 to — 1. Hence, the

greatest value of r is (A-\-c), and the least value (A—c), ob-

vious results when the polar point is at F.

The above equation may be simplified a little by introducing

the eccentricity. The eccentricity of an ellipse is the distance

from the center to either focus, when the semi-major axis is

taken as unity. Designate the eccentricity by e, then

1 : e=A : c.

Whence c=eA.

Substituting this value ofc in the preceding equation, we have

A—eAcos.v 1

—

e cos.-y

This equation is much used in astronomy.

CHAPTER IV.

The Parabola.

Definition.— 1 . A parabola is a plane curve, every point of

which is equally distant from a fixed point and a given straight

line.

2. The given point is called the focm, and the given line is

called the directrix.

To describe a parabola.

Let CD be the given line, and F a gi-

ven point. Take a square, as DBG, and

to one side of it, GjB, attach a thread,

and let the thread be of the same length

as the side GB of the square. Fasten one

end of the thread at the point G, the

other end at F.
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Put the other side of the square against the given line, CDy

and with a pencil, P, in the thread, bring the thread up to the

side of the square. Slide one side of the square along the line

CDy and at the same time keep the thread close against the

other side, permitting the thread to slide round the pencil P.

As the side of the square, BDy is moved along the line CD, the

pencil will describe the curve represented as passing through

the points Fand P,

GP+PF= the thread.

OP+PB=z the thread.

By subtraction PF—PB=0, or PF=PJB.

This result is true at any and every position of the point P ;

that is, it is true for every point on the curve corresponding to

definition 1. Hence, FV=VH.
If the square be turned over and moved in the opposite di-

rection, the other part of the parabola, the other side of the line

FIImsLy be described.

3. A diameter to a parabola is a straight line drawn through

any point of the curve perpendicular to the directrix. Thus, the

line HF\s a diameter ; also, ^6^^ is a diameter ; and all diame-

ters are parallel to one another.

4. The point in which the diameter cuts the curve, is called

the vertex.

5. The axis of the parabola is the diameter which passes

through the focus.

6. The parameter to any diameter is the double ordinate which

passes through the focus.

7. The parameter to the principal diameter is sometimes called

the latus-rectum.

PROPOSITION I.

To find the equation of the curve.

The vertex of the parabola is the zero

point, or the origin of the co-ordinates.

The distance of the focus F, in the direc-

tion perpedicular to BH, is called ^, a

constant quantity, and when this constant
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is large, we have a parabola on a large scale, and when small, we
have a parabola on a small scale.

By the definition of the curve, V is midway between F and

the line BH, and PF=PB,
Put VD=x and PD=y, and operate on the right angled

triangle PDF.
FD=x—\'p, PB=x-\-\p—PF.

(FDy-\-(PDy=^{PFy.

That is, {x—^pY+y''={x-\-lpY.

Whence ^*=2pa;, the equation sought.

Corollary 1. If we make x=0, we have y=0 at the same

time, showing that the curve passes through the point F", cor-

responding to the definition of the curve.

As y=rh^2pa;, it follows that for every value of x there are

two values of y, numencally equal, one -|-, the other—, which

shows that the curve is symmetrical in respect to the axis of X.

Corollary 2. If we convert the equation (y^=2px) into a

proportion, we shall have

X : y : : y : 22>,

a proportion showing that the parameter of the axis is a third pro-

portional to any abscissa and its corresponding ordinate.

PROPOSITION" n.

The squares of ordinates to the axis are to one another as their

corresponding abscissas.

Let X, y, be the co-ordinates of any point P, and x', y\ the

co-ordinates of any other point in the curve.

Then by the equation of the curve we must have

y^ z=i%px, (1)

y'^=%px\ (2)

x\ Q. E. D.

By division
X

Wtlence y' • y'"^
;

:

X :
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PROPOSITIOJf III.

The lotus-rectum is four times the distance from the focus to

the vertex.

Let F VH be a parabola, F the focus, and V
the principal vertex. FH, at right angles to DF,
through the point F, is the latus-rectum.

We are to prove that FB=^4FV.
In the equation of the curve, (y^=2px) for the

point F, we must necessarily make x=^p, then

the equation becomes y=p. That is,

FF=FI>=2 VF, or FB=4: VF. Q. E. D.

Corollary. It will be observed that CF and DBsire squares,

and the line DF or its equal FF is the quantity represented by

J). It is the same for the same parabola, but different in differ-

ent parabolas.

PROPOSITION W.

To find the equation of a tangent line to the parabola.

Let the line SPQ cut the parabola

in two points P and Q.

Let ir, y, be the general co-ordi-

nates of any point in the line as S ;

x\ y' the co-ordinates of the point F;

and x", y", the co-ordinates of the

point Q.

The equation of a straight line which passes through the two

points, S and P, must be of the form

y—y'^a{x—x'), (1)

We require the value of a when SP is tangent to the curve.

If the same line passes through the two points S and Q, we

must have

y—y"=a(x—x"). (2)

And the same line passing through the two points P and Q will

require the equation

y'—y"—a{x—x"). (3)
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The two points P and Q being in the curve, also require

y'^~9,px\ (4)

And y"^=2px\ (5)

By subtraction y'^—y"^=^9,p(x'—x").

Or {y'—y")(y'+y")^^p{x'—x") (6)

Dividing (6) by (3) will give

2/'+y"= ^p (7)

Now conceive the line >S'^ to turn on the point P as a center

until Qflows* into P, then we shall have

Put this value oiy" in (7), and we find

y
(8)

This value of a put in (1) will reduce that equation to

yy'—y'^=px--px\

But y'^=2px'

By addition yy'=p>{x-\'X')

and this is the equation sought, x, y, are the co-ordinates of any

point in the line, and x\ y\ the co-ordinates of the tangent point

in the curve.

Corollary. To find the point in

which the tangent meets the axis of

X, we must make 2/=0, this makes

p{X'\-x')=^0.

Or x'=—X.

That is, VD=^ VT, or the sub-tangent is bisected by the vertex.

Hence, to draw a tangent line from any given point, as P, we

draw the ordinate FD, then make TV= VD, and from the point

T draw the line TF, and it will be tangent at P, as required.

*Flows. These conceptions of motion, to make two quantities equal—
<:!• one to flow out a little in excess of the other, caused Wewton to adopt the

came of Fluxions.
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PROPOSITION V.

To find the eqitation of a normal line to the paraldla.

The equation of a straight line passing through the point P is

y^y'^a{x—x'). (1) (Prop. IV, Eq.(l).)

Let x^, 2/j, be the general co-ordinates of another line passing

through the same point, and a' the tangent of its angle, its

equation will then be

yy—y'=a:(x^-^x). (2)

But if these two lines are perpendicular to each other, we

must have

aa'=—\. (3)

The first line being a tangent, makes

y

This value substituted in (3) gives

/
y'

And this value put in (2j will give

3/1—/=—-(^1—«')
for the equation required.

Corollary 1 . To find the point in

which the normal meets the axis of

X, we must make yi=0. Then by
a little reduction we shall have

2r—x^—x'.

But VC=x^, and VD=x\ Therefore J)C=p, that is.

The sub-normal is a constant quantity, double the distance between

the vertex andfocus.

Corollary 2. As TV=VD, and VF^^DC. TF=FC,
Therefore, if the point F be the center of a circle and radius

FC, that circle will pass through the point P, because TFC is

a right angle. Hence the triangle FFTis isosceles.

Now as V bisects TD, and V£ is parallel to PD, the point B
bisects TP. Join FB, and that line bisects the base of an
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isosceles triangle, it is therefore perpendicular to that base.

Hence, we have this general truth.

Iffrom the focus of a parabola a perpendicular he drawn to any

tangeni, it will meet the tangent on the axis of Y.

Also, from the two similar right angled triangles, we have

TF \ FB '.'. FB \ FV. 'Bf^TF-FV.
But FV is constanty therefore (BF)^ varies as TF, or as its equal PF.

Scholium. Conceive a line drawn

parallel to the axis to meet the curve

at P\ that line will make an angle

with the tangent equal to the angle

FTP, but the angle FTP is equal to

the angle TPF. Therefore, con-

ceiving this line to be a line of light,

its reflection from the point P will take the direction PF, and

this will be true for every other point in the curve ; hence, if a

reflecting mirror have a parabolic surface, all the rays of light

that meet it parallel with the axis, will be reflected to the focus
;

and for this reason many attempts have been made to form per-

fect parabolic mirrors for reflecting telescopes

If a light be placed at the focus of such a mirror, it will re-

flect all its rays in one direction ; hence, in certain situations,

parabolic mirrors have been made for lighthouses, for the pur-

pose of throwing all the light seaward.

PROPOSITION" VI.

To find the equation of the parahola referred to a tangent line,

and the diameter passing through the point of contact, the origin

being the tangent point.

Let V be the vertex of the parabola,

VX the axis, and P the origin of the co-

ordinates.

Let VS=x, SM=y. Then

y^='2,px. (1)

Put VQ^c, QP=h, PE^x', RM=y\
and the angle MRS=m.
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According to this notation we have

VS=x=c-\-x'-\-y' cos.m.

SM=sy=b-\--y' sin.m.

These values of x and y substituted in (1) will give

b^ -\-2bi/' sin.m-\-y'^ sin.^m=2pc-|-2p:c'-{-2py'cos.7W. (2)

Because P is on the curve, b^ =2pc, and because BMis paral-

lel to the tangent FY, we must have (Prop. IV, Eq. (8). )

sin.w p
cos.m b

Whence 2by' Bm.m=2py' cos.m.

This equation subtracted from (2) and b'^=2pc; also sub-

tracted from (2) will reduce (2) to

y'^ sin.^?w=2^a:'.

Or y'2=_J^_^'.
sin.^m

If we put —?-——2p', we shall have for the equation of
sm.^m

the curve referred to the origin P, and the oblique axes FX, FY,

y'2 =z2pV,

an equation of the same form as that referred to the vertex and

rectangular axes.

Corollary 1. As the equation gives y'=-^j2p'x\ that is,

for every value of y' two values of x, numerically equal, it fol-

lows that the axis PX bisects all diameters parallel Xo FY.
Observe that 2p' may be called the parameter of the axis FX.

Corollary 2. The squares of the ordinates of any diameter are

to each other as their corresponding abscissas.

Let Xf y, and x\ y\ be the co-ordinates of any two points oa

the curve, then

y^=z9,p'x,

y'^:=2p'x\

Whence l^=f , or y^ :
y'« : : x : x'. Q. E. D.

y'3 x'
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Scholium. Projectiles, if not disturbed hy the resistance of the

atmosphere, would describe parabolas.

Let Q be the origin of a projectile thrown

in any direction as OP. Undisturbed by

the atmosphere and by gravity it would con-

tinue in that line, describing equal spaces in

equal times. But gravity causes bodies to

fall in proportion to the squares of the times.

Hence draw IE, TA, ON, proportional to

the squares of 01, OT, 00, or in proportion to the squares of

their equals QE, EA, &c.

Let OQ=IEz=x. OE=TA=zx\ QE~y. EA=y\
Then by the construction

X : ^'=y2 :
y''^.

But this is the property of the parabola, therefore the curve

made by a projectile is a parabola.

PROPOSITION VII.

The parameter of any diameter is four times the distance from

the vertex of that diameter to the focus.

We are to prove that 2p'=4FE.

Let the angle YPE=m as before.

Then by (Prop. IV,)

sin.m p
C0S.7W b

(0

From(l)

Or

The co-ordinates of the point F being

c, b, as in the last proposition, whence

b^=2pc. (2)

b'^sm,''m=p^cos.^m.

:=:p^(l—sm.^m)=p'^—p^8in.-m.

sm.'m= —±- =

—

=

—

—,—

But in the last proposition —^^i_=2p'. Whence sin.^m
sm.2

Therefore

Or

—I
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But {€-{-^J=PF. (Prop. I.) Hence 2p\ the parameter

of the diameter PH, is four times the distance of the origin from
the focus.

Scholium. Through the focus F draw a line parallel to the

tangent FY. Designate FF by x, and FQ by y, then by
(Prop. VI,)

But FF^FT. (Prop. V, Cor. 2.) And FR==TF, because

TFRF is a parallelogram. Whence FR=zFF. But FR^x,

and Pi^=c-f^.

Therefore 4a;=4( c+^Ws/, or 0;=::?-.

2

This value of a; put in the equation of the curve gives

y=y, or 2y=2y.

That is, the quantity 2j?', which has been called the parameter

of the diameter FRy is equal to the double ordinate passing

through the focus, corresponding to Def. 6.

PROPOSITION VIII.

The area of any segment of a parabola made hy co-ordinates,

(whether right angled or oblique,) is equal to two-thirds of the

parallelogramformed by the co-ordinates and their parallels.

Let FX be any diameter, FT a

tangent, and QR an ordinate paral-

lel to it.

Let the angle TFX, or its equal

QRX=m.
Put FR—x, and RQ—y. Then,

by the equation of the curve we have

y^=2p'x. (1)

Now let PS=X'\-hj X is increased by RS a space which we
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designate by h. In consequence of the increase of a:, y must be

increased by Tty which we will designate by h. Then iSg'=y-f./t.

Now the equation of the curve at Q,' is

{y+^)^=2y(^+^). (2)

Expanding (2) and subtracting (1), and we hare

2^2/+F=2j9'^. (3)

Divide by h, then

2y+A=2p'g).

This equation is true whatever may be the values of h and ^,

and we can take h as smaU as we please. If we take it extremely

small, we may omit Ic in the first member without any appre-

ciable error ; then

Dividing this equation by ( 1 ) and

y^ kx

Whence 2lcx=hy.

Multiply each member by sin.m, then we shall have

9.x ' ksin.m=A • y sin.m.

Now observe that k sin.m represents the perpendicular distance

between the lines T^ and tQf, and that y sin.m represents the

perpendicular altitude of the parallelogram RSQQ', and as h is

the base, A'y sin.m is the area of that parallelogram, and it is

equal to two parallelograms whose base is x, and perpendicular

* sin.m.

Now the curve space TQR may be considered as made up of

a great number of parallelograms on the ordinate y, each equal

to two corresponding parallelograms on the base x. Or any

parallelogram external to the curve is half of a corresponding

parallelogram in the curve, therefore the area of the curve is

double the corresponding external space, or, the area of the seg-

ment of the curve is two-thirds of the parallelogram formed by

the co-ordinates of the curve.
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The expression for the area of the segment is

firysin.w.

Corollary. When the diameter is the

axis of the parabola, then m=90°, and

sin.7w=l, and the expression for the area

becomes fa:y. That is, every segment of a

parabola at right angles with the axis is two-

thirds its circumscribing rectangle.

PROPOSITION IX.

To find the general polar equation of the parabola.

Let P be the polar point whose co-

ordinates are c and b. Put VD=x,
and I)M=y, then by the equation of

the curve we have

2px. (1)

m.Put PM=R, the angle JlfPZ=

then we shall have

Fi)=a:=c+i2 cos.m.

DM=y^=^h-\-R sin.w.

These values of x and y substituted in ( 1
) will give

(6+i2sin.»i)2=2i?(c+i2cos.m). (2)

Expanding and reducing, {R being the unknown and variable

quantity), will give us

R^ Bm.^m-\-2R{be>m.m—p cos.w)=2^c

—

h^

for the general polar equation of the parabola required.

CoROLLARr 1. When Pis on the curve, then 5^=2jt?c, and

the general equation becomes

R^ sin.^w+2P(5 sin.w—̂ cos.m)=0.

Here one value of R is 0, as it should be, and the other value

P 2(^cos.m

—

b&m.m)
IS

sm.-'w
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When m=90f cos.?w=0, and sin.wi=l. Then this last equa-

tion becomes

B=—2bf a result obviously true.

Corollary 2. When the pole is at the focus F, then b=0,

and c= -, and these values reduce the general equation to

jR2 sin.^w

—

2Bpcos.m=p^,

But sin.^m=l—cos.^wi.

Whence B^—E^ cos.^m—2Epcos.m=p^.

Or B^ —f' -^^Bp cos.m+i2^ cos. ^m.

Or B=p-{'B cos.m.

Whence B= 1 ,

1—cos.m

and this is the polar equation when the focus is the pole.

When m=Of cos.m=l, and then the equation becomes

B=-^—y or B=?.= infinite,
1—1

showing that there is no termination of the curve at the right of

the focus on the axis.

When m=90°, cos.wi=0, then B=p, as it ought to be, be-

cause p is the ordinate passing through the focus.

When m=180°, cos.w=0, then B=lp, that is, the distance

from the focus to the vertex is ^p.

As m can be taken both above and below the axis and the

cos.m is the same to the same arc above and below, it follows

that the curve must be symmetrical above and below the axis.

Scholium. If we take p for the unit of measure, that is, as-

sume ^=1, then the general polar equation will become

jB^sin.^m-|-2i2(5sin.m—cos.m)=2c

—

b^

.

Now if we suppose m=90°, then sin.m=l, cos.m=:0, and B
would be represented by the line PM\ and the equation would

become

B^+2bB=(2c^b^),

and this equation is in the common form of a quadratic.
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Hence, a parabola in which p=l will solve any quadratic

equation by making c= VJB, JBF=b, then PM' will give one

value of the unknown quantity.

To apply this to the solution of equations, we construct a

parabola as here represented.

Now suppose we require the value

of y> by construction, in the following

equation

Here 26=2, and 2c—6^=8.

Whence 6=1, andc=4.6.

Lay off c on the axis, and from the

extremity lay off b at right angles

above the axis if b is plus, and below

if minics.

This being done, we find P is the polar point corresponding to

this example, and PM'=2 is the plus value of y, and PM=—

4

is the minus value.

Had the equation been

2/2__2y=8,

then P' would have been the polar point, and P'M'=4 the plus

value, and P'M=—2 the minus value.

For another example let us construct the roots of the follow-

ing equation:

y^—6y=-~7.

Here 5=—3, and 2c

—

b^=—7. Whence c=l.

From 1 on the axis take 3 downward, to find the polar point

P". Now the roots are P"m and P"m\ hoth plus. P"m=1.58,

and P"m'=4.414.

Equations having two minus roots will have their polar points

above the curve.

When c comes out negative, the ordinates cannot meet the

curve, showing that the roots would not be real, but imaginary.

The roots of equations having large numerals cannot be con-

structed unless the numerals are first reduced.

6
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To reduce the numeral in any equation, as

y3+72y=146,
we proceed as follows

:

Put y=nz, then

2 I
72 146

n n^

Now we can assign any value to n that we please. Suppose

^=10, then the equation becomes

g2+7-22=:1.46.

The roots of this equation can be constructed, and the values

of 7/ are ten times those of z.

When the square is completed to a quadratic equation, that

square may be considered the square of an ordinate to a parabola.

CHAPTER V.

The Hyperbola.

Definitions.— 1. The hyperbola is a plane curve, confined by

two fixed points called the foci, and the difi*erence of the dis-

tances of each and every point in the curve from the two fixed

points, is constantly equal to a ffiven line.

Remark.—The distance between the foci, is also supposed to

be known ; and the given line must be less than the distance be-

tween the foci.

2. The line joining the foci, and produced, if necessary, is

called the axis of the hyperbola.

3. The middle point of the straight line which joins the foci,

is called the center of the hyperbola.

4. The eccentricity, is the distance from the center to either

focus, divided by half the given line.

5. A diameter is any straight line passing through the center

and terminated by two opposite hyperbolas.

6. The extremities of a diameter are called its vertices.
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According to these definitions F', F, are

the foci, C the center of the hyperbola, A'^

A, the given line, and D'D a diameter.

The parameter is a double ordinate, pass-

ing through the focus. The principal par-

ameter passes through the focus at right

angles to the axis.

The definition of this curve suggests the following method of

describing it mechanically

:

Take a ruler F'H, and fasten

one end at the point F', on which

the ruler may turn as a hinge.

At the other end of the ruler at-

tach a thread, and let it be less

than the ruler by the given line

A'A. Fasten the other end of the thread at F.

With a pencil, P, press the thread against the ruler and keep

it at equal tension between the points H and F. Let the ruler

turn on the point F', keeping the pencil close to the ruler and

letting the thread slide round the pencil ; the pencil will thus

describe a curve on the paper.

If the ruler be changed and made to revolve about the other

focus as a fixed point, the opposite branch of the curve can be

described.

In all positions of P, except when at A or A', PF' and PF
will be two sides of a triangle, and the diflference of these two

sides is constantly equal to the difference between the ruler and

the thread ; but that difference was made equal to the given line

A'A ; hence, by Def. 1, the curve thus described must be an

hyperbola.

PROPOSITION I.

Tofind the equation of the curve in relation to the center and axis.

Let C be the zero point. Put

CA=A. QF^c. CH=x, and

PIIz=y. (P being any point in the

curve). Join PP and Pi?" . Put

FF=r, and PF'=r'.
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Now we have two right angled triangles, PHF and PHF\
By the definition of the curve we have

/~-r=:2^. (1)

The right angled A PSF gives

r2=(ar—c)2+y^ (2)

The right angled A PHF' gives

/2^(^_|.,)2^2/^ (3)

Subtracting (2) from (3) produces

Dividing (4) by (1), and we have

/+r=?^. (5)

Combining (1) and (5), we find

r'=^+^, and r=—^+^.A A
This value of t substituted in (2) gives

Reducing, we find

A^^^+(A^-^c^)x'=A^(A^^c^),
for the equation sought.

Scholium. As c is greater than A, it follows that (A^—c*)

must be negativ^, therefore we may assume this value equal to

—B^. Then the equation becomes

This form is preferred to the former one on account of its

similarity to the equation of the ellipse,— the difi'erence is only in

the negative value of B^. Because A^—c^ =—B^, A^+B^ —c^.

Now to show the geometrical

magnitude af B, take (7 as a cen-

ter, and CF radius, and describe

the circle FHF'. From A draw

Aff&t right angles to CF, Now
GH—c, OA=A, and if we put

AII=B, we shall have A'^+B^

3SC*, as above. Whence ^iJmust equal B,
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PROPOSITIO^N^ n.

To determine thefigure of the hyperbola from its equation.

Resuming the equation

81

From which we find

y-

If we make x=0, or assign to it any value less than A, the

corresponding value of y will be imaginary, showing that the

curve does not exist above or below the line A'A.

If we make x=zA, then 2/=±0,
showing two points in the curve, one

at A, the other at A'.

If we give to x any value greater

than Ay we shall have two values of y,

numerically equal, showing that the

curve is symmetrical above and below

the axis A'A produced

If we now assign the same value to x taken negatively, that is,

make x^ (

—

x), we shall have two other values of y, the same as

before, corresponding to the left branch of the curve. Therefore,

the hvo branches of the curve are equal in magnitude, and are in all

respects symmetrical, except opposite in position.

Hence, every diameter as DD' is bisected in the center, for any

other hypothesis woidd be absurd.

Scholium 1 . If through the center

C, we draw CD, CD', at right angles

to A'A, and each equal to B, we can

have two opposite hyperbolas passing

through D and D' above and below C,

as the two others which pass through

the points A' and A, at the right and
left of C

The hyperbolas which pass through 2> and D', are said to be

conjugate to those which pass through A and A', or the two pair

are conjugate to each other.
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DD' is the conjugate diameter to A'A, and DB' may be less»

equal, or greaier than A'A, according to the relative values of c

and A, in Proposition I.

When B is numerically equal to Ay the equation of the curve

becomes

and DD'=zAA. In this case the hyperbola is said to be equi-

lateral.

Scholium 2. To find the value of the 'parameter, that is, the

double ordinate which passes through the focus, we must take

the equation of the curve

and make x=.c, then

A^y^=B^{c''-'A^).

But we have shown that A'^-^-B^^d', or ^^=c^—^*.

Whence A''y''=B\

Or Ay=B^ , or 2?/=-
A

That is, ^A : 2B : : 2B : 2y,

Showing that the parameter is a third proportional to the transverse

and conjugate axes.

Scholium 3. To find the equation for the conjugate hyper-

bolas which pass through the points D, D', we take the general

equation

A^f~'B^x^=—A^B\
and change A into B, and x into y, the equation then becomes

which is the equation for conjugate hyperbolas.

PROPOSITION" III.

To jiiid the equation of the hyperbola when the origin is at the

vertex of the transverse axis.

When the origin is at the center, the equation is

A^y'^—B^x^^-^A'B^.



THE HYPERBOLA. 83

And now if we move the origin to the vertex at the right, we

must put
x=A-\-x'.

Substituting this value of x in the equation of the center, we

have
A''y^—B^x'^—2JB^Ax'=0.

We may now omit the accents, and put the equation under the

following form,

y^=^(x'-\-2Ax),

which is the equation of the hyperbola when the origin is the

vertex and the co-ordinates rectangular.

PROPOSITION IV.

To find the equation of a tangent line to the hyperbola, the origin

being the center.

In the first place conceive a line

cutting the curve in two points, P
and Q. Let x and y be co-ordinates

of any point on the line, as S, x' and

y co-ordinates of the point P on the

curve, and x" and y" the co-ordinates

of the point Q on the curve.

The student can now work through the proposition in precisely

the same manner as Proposition VI, of the ellipse was worked,

except using the equation for the hyperbola in place of that of the

ellipse, and in conclusion we shall find

A^yy'—B''xx'^—A''B'^,

for the equation sought.

Corollary. To find the point in

which a tangent line cuts the axis of

X, we must make y=0, in the equation

for the tangent; then

x=-^=(]T.
x'

If we subtract this from C/>, (a;') we

shall have TD=^x'-
x'^—A'
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PROPOSITIO]!^ V.

To find the equation of a normal to ike hyperbola.

Let a be the trigonometrical tangent of tlie line TP, (see last

figure, ) and a' the trigonometrical tangent to the line PN. Then

if PNis a normal, it must be at right angles to PT, and hence

we must have

aa'+l=0. (1)

Let x' and y' be the co-ordinates of the point P on the curve,

jind X, y, the general co-ordinates of any point on the line PN,
then we must have

y—y'=za'{x—x'). (2)

In working the last proposition, for the tangent line PT we

should have found

A^y'

This value of a put in (1) will show us that

a =——^.

And this value of a' put in (2) will give us

for the equation of the normal required.

Corollary. To find the point in which the normal cuts the

axis of X, we must make y=0.
This reduces the equation to

Whence x= ^d!±:?!^a;'= CK

If we subtract CD, («'), from CiV, we shall have DN, the

stib-normal.

That is,
/A^-{-B^\ ._^.^^' t^e sub-n&rmal
\ A^ / A'
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PROPOSITION VI.

85

A tangent to the hyperbola bisects the angle contained hy lines

dravmfrom the point of coniact to the foci.

If we can prove that

F'P : FF : : F'T : TF, (1)

it will tlien follow (Theorem 25,

Book II, Geometry,) that the angle

F'PT=:^ the angle TPF.

In Prop. I, of the hyperbola, we

find that

ir'P=/=^+^, and FP^T=—A^

A^

ex

A'
_A^

X

(2)

F'T==F'C-\-CT=c+--, and TF=c-
X

We will now assume the proportion

Multiply the first couplet by A, and the last couplet by x,

then we shall have

{A''-\-cx') : {—A''-\-cx) : : {cx-^-A") : xz.

Observing that the first and third terms are equal, therefore

xz-=^cx—A"^

.

A'
Or ;—__=ri^.

Now the first three terms of proportion (2) were taken equal

to the first three terms of proportion (1), and we have proved

that the fourth term of (2) must be equal to the fourth term of

(1), therefore proportion (1) is true, and consequently

F'PT=TFF.

Corollary 1. As TT' is a tangent, and P^Y its normal, it

follows that the angle TFjS^= the angle T'PN, for each is a

right angle. From these equals take away the equals TPF,
T'FQ, and the remainder i^PiVmust equal the remainder QPI^-

That is, the normal line bisects the exterior angleformed by two lines

drawn from the foci to any point in the curve.
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Corollary 2. The value of GT we have found to be

and the value of CD is x, and it is obvious that

\ A \ \ A \ X,

A^

is a true proportion. Therefore (A) is a mean proportional be-

tween CT and CD.

A tangent line can never meet the axis in the center, because

the above proportion must always exist, and to make the first

term zero in value, we must suppose x to be infinite. Therefore a

tangent line passing through the center cannot meet the hyperbola

short of an infinite distance therefrom.

Such a line is called an asymptote.

On Conjugate Diameters.

Definition.—" Two diameters of an hyperbola are said to be

conjugate to one another when each is parallel to a tangent line drawn

through the vertex of the other.'"

According to this definition, OG' and HE' in the adjoining

figure are conjugate diameters.

Explanation 1 .—The tangent line

which passes through the point jfiTis

parallel to CG. Hence CG makes

the same angle with the axis as that

tangent line does.

If we designate the co-ordinates

of the point H, in reference to the

center and axis by x and y' , and a

the tangent of the angle made by

the inclination oi CG with the axis,

then in the investigation (Proposi-

tion IV,) we find

a=. 0)



THE HYPEKBOLA. 87

Now if we designate the tangent of the angle which CH
makes with the axis by a, the equation of CH must be of the

form

because the line passes through the center.

Whence a'=Z_. (2)

Multiplying ( 1
) and ( 2) together, and we find

aa = ,

A'

to which equation all conjugate diameters must correspond.

ExPLANATiox 2.—If we designate the angle GOB by n, and

HCB by m, we shall have

sin.m , sin.w

cos. r)i COS. n

And tan. ?w.tan. w=—-.

A^

PROPOSITION' VII.

To find the equation of the hyperbola referred to its center and

conjugate diameters.

The equation for the center and axis is

A^y^—B^x^z=—A^B^.

Now to change rectangular co-ordinates into oblique, the ori-

gin being the same, we must put

x=x cos.w-f-y' cos.w.

And y=a:'sin.??z-|-y'

These values of x and y substituted in the above general

equation, will produce

(sm.''nA^—(iOE.'^nB'')y^-\-{&m,'^7nA^-^GO^.^mB^)x^) _ (1)

2(sin.msin.n^2

—

cos.7n cos.nB^)x'y' ) —A^B^

Because the diameters are conjugate, we must have

sm.7n sin.w B^

cos.m cos.w A'^

'' G0S.71.)

[ Chap. I, Prop. X.
f sm.w. )
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Whence (sm.msm.nA^—cos.mcos.?i^*)=0. (k)

This last equation reduces (1) to [ (2)

(sin.2%^2__(j(5s2^jy'2_|_(gin.2^^2__cos.2m52)a;'2=—^2j52^

which is the equation of the hyper-

bola referred to the center and con-

jugate diameters.

If we make y'=0, we shall have

-A^B'
? 2 \ \ J(sin.^m^^—cos.^mjS^)

If we make i»'=0, we shall have

y"=
(sin.2^^J.2_cos.27^JB2)

If we put A'^ to represent CH , and regard it as positive, the

denominator of (3) must be negative, the numerator being nega-

tive. That is, sm.^7nA^ must be less than cos.^wij?^.

That is.

Or

But

sin.2m^2^ cos.2«»^2^

B
tan.m<^

tan.mtan.?i=-
B^

Whence tan. ??.>-— , or sin.-w^^^^^cos.^w.

Therefore the denominator in (4) is positive, but the numera-

tor being negative, therefore Cff" must be negative. Put it

equal to —^'^

Now equations (3) and (4) become

—A^B^ ^,. ^A^B^
A'^== —B"'

(sin.^m^^

—

COS. ^mB^)

Or (am,^mA^--cos.^mB^)z

(Bm.^nA^-^GOS.^nB^):

( sin .
-nA^—cos .

^nB^ )

'

-A^B^

A'^

A^B^
B'^
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Comparing these equations with equation (2) we perceive that

equation (2) may be written thus :

Whence A'^y'^—B'^x''=—A'^ B'^ .

Omitting the accents of x' and y'y since they are general va-

riables, we have

A'^y^—B'^'x^^-^A'^B'^y

for the equation of the hyperbola referred to its center and con-

jugate diameters.

Scholium 1. As this equation is precisely similar to the

general equation referred to the center and rectangular co-

ordinates, it follows that all results hitherto determined in

respect to the center and rectangular co-ordinates will apply to

conjugate diameters by changing A to A', and B to B'.

For instance, the equation for a tangent line in respect to the

center and axes has been found to be

A^yy'-^B^xx'==^A^B^

.

Therefore in respect to conjugate diameters it must be

A'^yy'—B'^xx'=^—A'^B'\

and so on, for normals, sub-normals, tangents, and sub-tangents.

Scholium 2. If we take the equation

A'^y^—B'^x^=:^A^B'\

and resolve it in relation to y, we shall

find that for every value of x greater

than A\ we shall find two values of y
numerically equal, which shows that

OiY bisectsMM and every line drawn

parallel to MM, or parallel to a tan-

gent drawn through L, the vertex of

the diameter A'.

Observation.—Let the student observe that these several

geometrical truths were discovered by changing rectangular to



90 ANALYTICAL GEOMETRY.

oblique co-ordinates. We will now take the reverse operation,

in the hope of discovering other geometrical truths.

Hence the following :

PROPOSITION VIII.

To change the equation of the hyperbola in reference to oblig-ue

co-ordinates, to an equivalent equation in reference to rectangular

co-ordinates.

The equation for the hyperbola in respect to oblique co-ordi-

nates is

To change oblique to rectangular co-ordinates, the formulas

are (Chap. I, Prop. X.)

, xs'm.n—vGos.n , ycos.m—a;sin.m

sin.(w

—

m) sin.(w

—

m)

Substituting these values of x' and y' in the equation, we shal\

have

A"-^ (y cos.m

—

x sin.m) ^ B'^ (x sin.n—y cos.w)^ J'2;»'2

Bm.^(n—in) sm.^(n—m)

By expanding and reducing, we shall have

(A"'Gos.^mr-B'^cos,^n)y''-\-{A'^sm.^m-'B'H'm.^n)x^'

2(

—

A'^ sin.m cos.m-f-5'^ sin.n Gos.n)xy

=~A'^B'^ 8in.2 (n—rn),

which must be a true equation of the hyperbola corresponding

to the center and rectangular axes. Therefore it must take the

well known form

Or in other words, these tivo equations must be, infact, iden-

tical, and we must have

^'2 C0S.2m—^'2 C0S.2 7^=^2 ^ | j

A"" sm.-m—B'^ sm.^n=-^B^

.

(2)

—A'^ am.m COS.ra-\-B'^ sin.n co8.n=0. (3)

—^'2^'*sin.2(«^-w)=—^^J52. (4)
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By adding (1) and (2), observing that (cos.^m-\-sm.^m)=\,

we shall have

Or 4A'^—4B'^=4A^—4B^,

which equation shows this general geometrical truth:

That the difference of the squares of any two conjugate diameters

is equal to the difference of the squares of the axes.

Hence, there can be no equal conjugate diameters unless

A=^B, and then every diameter will he equal to its conjugate : that

is A'=B'.
J>'2

Equation (3) corresponds to tan.mtan.»=—-, the equation
A

of condition for conjugate axes.

Equation (4) reduces to

A'B'sm.{n—m)=AB.
The first member is the trigonom-

etrical measure of the parallelogram

GCHT, and it being equal to ABi
shows this geometrical truth :

That the parallelogram formed hy

drawing tangent lines through the ver-

tices of conjugate diameters^ is equiva-

lent to the rectangleformed hy drawing

tangent lines through the vertices of the axes.

Remark.—The reader should observe that this proposition is

similar to (Prop. XI,) of the ellipse, and the general equation

here found, and the incidental equations (1), (2), (3), and (4),

might have been directly deduced from the ellipse by changing

B into BJ— 1, and B' into B'J— 1. But learners would gene-

rally demur at results so summarily obtained.
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On the Asymptotes of the Hyperbola.

Definition.—If tangents to four conjugate hyperbolas be

drawn through the vertices of the axes, the diagonals of the

rectangle so formed and produced indefinitely, are called asymp-

totes of the hyperbola.

Let AA', BB\ be the axes of

four conjugate hyperbolas, and

through the vertices A, A', B, B\
let tangents to the curves be drawn

forming the rectangle, as seen in

the figure. The diagonals of this

rectangle produced, that is, DD'
and EIJ', are the asymptotes to the

curve corresponding to the definition.

If we represent the angle BOX by m, E'CX^iSSS. be m also,

for these two angles are equal because CB= CB'.

It is obvious that

B
tan.TW:

A
sin.^m B'^

Whence
cos.^m A^

But cos.*m=l—sin.-7». Therefore

sin.^m ^2

1

—

Bin.m A
J03 A2

Consequently sm.^m= _, and cos.^m:
A^+B^ A^+B^

which equations furnish the value of the angle which the asymp-

totes form with the transverse axis.

PROPOSITION IX.

To find the general equation of the hyperbola^ referred to il%

centei' and asymptotes.

Let GM=x, and PM=^y, Then the equation of the curve

referred to its center and axes is
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From P draw /'^parallel to CE,

and P^ parallel to CM. Let CH==x\

and HP=y'.
Now the object of this proposi-

tion is to find the values of x and y
in terms of x' and y' , to substitute

in (1), and then the equation re-

duced to its most simple form will

be the equation sought.

The angle ITCM is designated by m, and because EP is paral-

lel to CB, and PQ parallel to CM, the angle BPQ=m also.

Now in the right angled triangle Cllk we have ^A=a;'sin.w,

and Ch=xcos.m.

In the right angled triangle PQJIwe have HQ=y'sm.m, and

PQ:=y'QOS.m.

Whence Hh—IfQ= Qh=PM=y=x'sm.m—y'sin.m.

Or y=(x'—^y')sin.w. (2)

Ck-\-QP= CM=x=x'cos.in-^-y'co8.m.

Or x=(x'-\-y')cos.m. (3)

These values of y and x found in (2) and (3) substituted in

(1) will give

A''(x'-^y'yBm.^m--B^x'+y'ycoB.''m=--A^£^.

Taking the values of sin.^m and cos.^w, previously deter-

mined, we have

^ ^ (x'—yy—J%^-(x'+y'Y =-'A^jB^ .

Dividing by A^B'^, and multiplying by (A^-^B^), will give

(x'-^yr-(x'+y'r=-(A^+B' ).

Or ^4xy=::-.(A^^B^).

Or a;y=

—

^^—

,

4

which is the equation of the hyperbola referred to its center and

asymptotes.

Corollary. As x' and y' are general variables, we may omit

7



m ANALYTICAL GEOMETRY.

the accents, and as the second member is a constant quantity,

we may represent it by M^ . Then

2/

'xy=M^ , or x=-

This last equation shows that x increases as y decreases ; that

is, tlte same curve a])^roaches nearer and nearer the asymptote as the

distancefrom the center becomes greater and greater.

But X can never become infinite until y becomes ; that is,

the asymptote meets the curve at an infinite distance, corresponding

to Cor. 2, Prop. VI.

PROPOSITION X.

All parallelograms between the asymptotes and the curve are equals

and each eqwd to |AB.

Let X and y be the co-ordinates

corresponding to any point in the

curve, as P. Then by the equa-

tion of the curve in relation to the

center and asymptotes, we have

xy=M\ (1)

Also let x' represent Gq, and y' qQ,

that is, x\ y\ co-ordinates of the

point Q. Then

x'y'=M\ (2)

The angle ^(7i) between the asymptotes we will represent by

2w. Now multiply equations (1) and (2) by sin.27?z.

Then we shall have

rr2/sin.2m=if2 sin.Sm. (3)

a;y 6in.2m=Jf2 sin.2m. (4)

The first member of (3) represents the parallelogram CP, and

the first member of (4) represents the parallelogram CQ ; and

as each of these parallelograms is equal to the same constant

quantity, they are equal to each other.

Now A is another point in the curve, and therefore the paral-

lelogram AHCD is equal to (M^ sin.2w), and therefore equal to
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CQ, or CP. Hence all parallelograms bounded by the asymp-

totes and terminating in a point in the curve, are equal to one

another, and each equal to the parallelogram AHCD, which has

for one of its diagonals half of the transverse axis of A.

We have now to show the analytical expression for this paral-

lelogram.

The angle HCA^m, ACI)=m, and because Aff is parallel

to CD, CAH=m. Hence, the triangle CAFI is isosceles, and

CH=^HA. The angle AHq-=9,m. ISTow by trigonometry

sin.2m : A : : sin.m : CJI.

But sin.2m=2 sin.m cos.m. Whence

2sin.mcos.m : A : : sin.m : 6W.

A
CJI=

:cos.m

Multiply each member of this equation by CA=A and sin.m,

then

4 / /^Tr\ • -^ Sm. ?i .XX. ,A.(CJI)sm.m= = tan.m.
2 cos.m 2

The first member of this equation represents the area of the

p
parallelogram CHAD, and the tan.m=— Hence the parallel-

A"" B_
ogram is equal ~^*~^j

—

\^B, which is the value also of all the

other parallelograms, as CQ, CP, &c.

Scholium. When the asymptotes and any point in the curve

are given, other points may be determined by the equation.

For instance, let the asymptotes be given in position, and Q a

given point in the curve whose co-ordinates are x' and y' , then

xy'=zM^

.

Let Cp, any assumed distance, be represented by h, and pP
by y, then

hy=M^=x'y\

Or y=f>_'.
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That is, let the numerical value of pP be equal to —-, then
b

P will be a point in the curve— and thus any other point may
be found when the distance along the asymptote is given.

PROPOSITION XI.

To find the equation of a tangent line to the hyperhola referred

10 its center and asymptotes.

Let X, y, be the general co-ordi-

nates of a straight line passing

through the two points P and Q.

Then the equation of the line must

be of the form

y=ax-\-l. (1)

The same line passing through the

point P, whose co-ordinates are x\

y\ must be

y'=zax'-\-b. (2)

And the same line passing through the point Q, whose co-

ordinates are x", y", must be

y"=ax"+b. (3)

Subtracting (2) from (1), and

y-~2/'=a(ar—«'). (4)

Subtracting (3) from (2), and

y'—f=.a{x'-^x"), (5)

Now the object is to find the value of a when the line becomes

a tangent at P.

From (5) we have

x'^x"

Which value of a substituted in (4) gives

y-y'=.i;::f.Xx-x'y (6)
X X

But because P and Q are points in the curve, we have
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From each member of this last equation subtract x'y"^ then

xy'—x'y"=^x''y''—x'y".

Or x\y'—y")=-y"{x'^x").

Whence V^'i^—^.
X—X

This value of the tangent angle put in (6) gives

y—y _ yj(x—x'). (7)

Now if we suppose the line to revolve on the point P as a

center until Q coincides with P, then the line will be a tangent,

and x'=^x'\ and y'^y", and (7), will become

y—y ——— {^—-x ),
X

which is the equation sought.

Corollary. To find the point in which

the tangent line meets the axis of X, we
must make y=0 ; then

That is, Ct is double CR, and as RP
and Cr are parallel, tP^PT.
A tangent line included between the asymp-

totes is bisected by the point of tangency.

Scholium. From any point, as D, draw DG parallel to Tt,

and from C draw CP, and produce it to S.

By Scholium 2, to Prop. VII, we learn that CP produced will

bisect all lines parallel to tT and within the curve ; hence gd is

bisected in S.

But as CP bisects tT, it bisects all lines parallel to tT within

the asymptotes, and i>6^ is also bisected in S ; hence dD= Gg.

In the same manner we might prove dh=lcVy because hk is

parallel to some tangent which might be drawn to the curve, the

same as i> 6^ is parallel to the particular tangent tT.

Hence, If any line he drawn cutting the hyperbola, the parts be-

tween the asymptotes and the curve are equal.



9:8 ANALYTICAL GEOMETRY.

This property enables us to describe the hyperbola by points,

when the asymptotes and one point in the curve are given.

Through the given point d, draw any line, as DG, and from

G set off Dg=dD, and then g will be a point in the curve.

Draw any other line, as hJc, and set off lcv=zdh, then v is another

point in the curve. And thus we might find other points be-

tween V and g, or on either side of v and g.

PROPOSITION XII.

To find the polar equation of the hyperbola^ the pole heing at

either focus.

Take any point P in the hyper-

bola, and let its distance from the

nearest focus be represented by f,

and its distance from the other

focus be represented by r'.

Put CH=x, CF=c, and 04=^.
Then by Prop. I, we have

A I ex
(1) r'=A-\-.

ex
(2)

Now the problem requires us to remove the symbol x, and

replace its value by some quantity expressing the value of the

sine or cosine which r and ?'' make with the transverse axis.

1st. In the right angled triangle PFH, if we designate the

angle PFHhj v, we shall have

1 : r : : cos.?; : PH'=r cos.v.

CH= QF-\-FH. That is, x=zc-\-r cos.v.

The value of x put in (1), gives

^ A
e—A^Whence

ccos.-y
(3)

2d. In the right angled triangle F'PH^ if we designate the

angle PP'Rhj v\ we shall have

1 : / : : cos.?;' : F'R=r' cos.v'.
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But F'H=F'C-\'CH. That is, rQOB.v'=c-\-x.

Or x=^rcos„v'—c, and this value of .r put in (2) gives

/_^ I
cr^cos.v'—-c2

- "^ A
A 2 f.2

Whence r'=_± . (4)A—CC0S.2;'

Equations (3) and (4) are the polar equations required.

Let us examine (3). Suppose v=0, then cos.i;=l, and

r=tzZ:^=—A—c
A—

c

But a radius vector can never be a minus quantity, therefore

there is no portion of the curve in the direction of the axis to

the right of F.

To find the length of r, when it first strikes the curve, we

find the value of the denominator when its value first becomes

positive, which must be when A becomes equal or greater than

ccos.v ; that is, when the denominator is 0, the value of r will

be real and infinite.

If A—ccos.'y=0,

Then gos.v=—
c

This equation shows that when r first meets the curve, it is

parallel to the asymptote, and infinite.

When ?;=90°, cos.v=0, and then r is perpendicular at the

point F, and equal to , or , half the parameter of the
A A

curve, as it ought to be.

When r=180°, then cos.'y=— 1, and —c cos.i;=c ; then

f.2 J^2r= =c

—

A^=FAy a result obviously true.
c+A ^

Now let us examine equation (4). If we make v=0, then

, A^—c^
-A-\-c=F'A, as it ought to be.
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To find when /will have the greatest possible value, we must

put

A—ccos.v'=0.

A
Whence cos.v'=

—

c

Showing, that v' is then of such a value as to make r' parallel

to the asymptoteJ and infinite in length. If we increase the value

of v' from this point, the denominator will become positive,

while the numerator is negative, which shows that then / will

become negative, indicating that it will not meet the curve.

General Remarks.

When the origin of co-ordinates is at the circumference of a

circle, its equation is

When the origin of a parabola is at its vertex, its equation is

y^=^^px.

When the origin of co-ordinates of the ellipse is at the vertex

of the major axes, the equation of the curve is

y^=z?l^{9.Ax—'X^),

When the origin of co-ordinates is on the vertex of the hy-

perbola, the equation for that curve is

But all of these are comprised in the general equation

y^=i^px-\-qx^

,

In the circle and the ellipse q is negative ; in the hyperbola

it is positive, and in the parabola it is 0.
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JSECTION II.

CHAPTER I.

On tbe geometrical representation of Equations of

tbe second degree between two variables*

It has been shown in Chap. I, Sec. 1, that every equation of

the first degree between two variables may be represented by a

straight line.

It has also been shown that the equation of the circle, the

equation of the ellipse, the equation of the parabola, and the

equation of the hyperbola, each and all correspond to equations

of the second degree between two variables ; and hence, we

might naturally infer that a general equation of the second

degree must represent one or the other of these curves.

Within the limits designed for this work, there is not space to

demonstrate this truth rigorously, but we will illustrate it and

bring it to the comprehension of the learner, partly by general

theory, and partly by examples.

An equation of the second degree, in its most comprehensive

form, is represented as follows

:

Observe that this equation contains the first and second

powers of each of the variables, their product, and an absolute

term, F.

The co-efiicients A, B, C, &c. may be plus, minus, or zero,

although they are represented above as plus.

Resolving this equation in relation to y, we obtain [ (

Now whatever value may be assigned to x, the equation wil)

give the corresponding value of y, and if we assume x to be of
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such a value as to make the quantity under the radical equal to

0, we shall have

—4AC
,+2BJ)
—^AE

+D'-
AAF =0. (2)

And
^ 2A 2A

(sy

Equation (3) is the equation of a straight line which can

easily be constructed, and this line will be the same, whatever

value may be assigned to x.

Equation (2) is an equation of the second degree, and there-

fore it may represent a curve; hence equation (1), which is the

sum of (3) and (2), will represent a curve branching out of a straight

line.

We will illustrate this general equation by the following par-

ticular example :

Find or construct the curve represented ly the equation

y'^—2xy-\-2x^—3a;+2=0.

Here A=\, 5=—2, (7=2, i)=0, ^=—3, F=2.

These values substituted in (1) give

'y=x^\^_4a;2+ 1 2a;—8.

Or y=x±Lj—x^-\-'3x—2, (1)

If we put the part under the

radical equal to zero we shall

have

y=x

And —ip2-j_3a;—2=0.

The first of these represents the

straight line AE, passing through

the origin A at an angle of 45°

with the axis of X.

* When A and B in the original equation, have the same sign, the tangent

of the angle which the line makes with the axis of X, is minus ; when they

have unlike signs, that tangent is "plus.
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The second part resolved, gives a:=l, or x=2. Tailing x=l,

equation (1) becomes

y=l±VO.
And taking x=2, the same equation becomes

The first result corresponds to the point JD, the second to the

point U, and DU is the diameter of the curve.

To find its conjugate diameter JVJV', we must make x corres-

pond to the point /, the middle point between AG= 1 and AH=-2.

Hence we must make x=\^, and substituting this value in equa-

tion ( 1
) we have

2/=li±V—1+1—2.
Whence 3/=l|-±i==2 or 1.

The first result is Zzy=2, the second is IN'=\, and therefore

N'X^zl, the conjugate diameter sought.

It is obvious from the figure and the values of lines already

discovered, that DE=J2.
If we assign to a; a value greater than 0, and less than 1, the

value of the expression under the radical (

—

x^-\-3x—2) will be

negative, and hence its square root is impossible, or imaginary,

and the corresponding value of y imaginary, showing that the

ordinate would not in that case meet the curve. Again, if we

take X greater than 2, we shall find a like result. Hence the

curve must be between the parallels GG' and IfII\

The curve must also be within the parallels LM and L'M'.

Hence it is an ellipse within the parallelogram LL'M'M, and

BE 2iVL^ iV^'iVare its conjugate diameters, and their angle of in-

clination as shown in this example is 45°.

Now by the well known properties of the ellipse we can find

the rectangular axes and their inclination from these conjugate

axes.

If we simply wish to determine whether the curve or line cuts

either co-ordinate, we take the equation

3/2

—

2xi/^2x^—3X'{-2=0,

and make x=0, then y^=—2, which makes y imaginary, show

ing that the curve does not cut the axis of Y.
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Now if we make y=0 in the equation, we have

Whence x is imaginary, showing also that the curve does not cut

the axis of X.

It appears from the preceding example that the equation

y=^-iAi-Bx+D)±iA^±^^^ ^ —4AI! x+^"^—4AF
represents a curve on a straight line.

We now attempt to show the natural and possible variations of
the curve.

The part under the radical may be represented as follows

:

JMx^-\-Nx^P. (1)

The equation of the circle when the origin is at the circum-

ference, is

yz=j\Rx-^xK

Now as ar is a variable quantity it is certainly possible that

This gives (if+l )a;2-J-(iV—2i2)a;+P=0,

a quadratic in which there is nothing impossible or absurd.

Hence, it is possible that the curve indicated by the quantity tinder

the radical may be a circle.

When the origin of the co-ordinates is at the vertex of the

major axis of an ellipse, the equation for that curve is

^ ^ A A'
Now it is possible that

Mx^+]Srx4-P=^^x —:?-zK^ ^ A A'-

Hence, it is possible that the curve under consideration may be

an ellipse.

The equation of the hyperbola, when the origin is at the

vertex of the curve, is

^ /2^2 j^u
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But it is possible that

^ ^ A ' ^2

That is, a is possible that ike curve may be an hyperbola.

The equation for the parabola is

y=±ij2px.

And it is possible that

Mx''+J^x+F=2px,

and therefore, it is possible that the curve maybe a parabola.

It is possible that

Mx^+Nx+P=:Q.

Then the curve may still be a circle, provided

2Rx—x^=zO, also.

The same consideration may be applied to the ellipse, the

hyperbola, and the parabola.

Lastly, in the equation

Mx^-\-]Srx-\-P=0,

The values of x may be imaginary, and in that case no lines

can represent it, and the curve itself will be imaginary.

In short, the equation

y=-\A{Bx+D)±\AjMx'+Nx+P,
represents a curve on the straight line, and that curve may be a

circle, an ellipse, an hyperbola, or a parabola, or the curve may
be reduced to a point, and then the equation will represent a

straight line only, or two parallel lines.

When Mx^ is affirmative, the curve is an hyperbola; when Mz^
is negative, the curve is an ellipse, or a circle; and when that term

is absent, or zero, the curve is a parabola.

From the preceding summary we learn that the equation

y—2x—\d[zJ—x''-\-^X,

must represent a circle on the straight line, whose equation is
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1st. Construct that straight line BC.

2d. Put ±V—^^+4a;=0.

Whence x=0, or 4.

That is, the curve extends from the

axis of Fto the distance of plus 4, on the

axis of X.

Now take P, the middle point between

A and 4, and make AP=x, then we shall

have a;=2, which substituted in the equa-

tion, gives

2/=4—1±2=5 or 1.

That is, Pm'—b, and Fm=l, showing that mm'=4. But

nn'=4, therefore the curve is a circle.

OTHER EXAMPLES.

1 . Find or construct the curve repres<ented hy the equation

3/2 _j.2^^_|_3^2_4^_-0.

Whence ?/=

—

xztij—'^x{x—2).

If we make x=^0, we shall find y=0 at the same time, there-

fore the curve passes through the origin A.

In the original equation, if we make y=0 we shall have

Whence x=^Qy or x=^\^.

Hence, the point E in the curve is

11 units distance from A.

If we put

^—2a;(ar—2)=0,

We shall have a;=0, and a;=2.

Take ^6^=2, and through 6^ draw

GIM' parallel to the axis of Y, the

point / is in the curve at its extreme

distance in the direction of the axis of

AI is one diameter of the curve.
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As AG-=^, take AR=^\, for the value of x, and substitute

that value in the equation, and we shall have

y=—ld=V2=+0-41 or —2.41.

From R draw i?iV=0.41 and RN'——2.41, and through the

two points N and N' , draw lines parallel to the diameter AI.

The curve then must be an ellipse described in the parallelogram

LL'M'M, and NN', —AI, are its conjugate diameters.

2. Determine what curve corresponds to the equation

Resolving in relation to y, we find

This last equation shows that the curve is a parahola, because

the quantity under the radical does not contain x^

.

By making x=zO, we find y=3, showing that the curve meets

the axis of Y three units above the origin.

Because the sign under the radical is minus, we must take x

negative, to render the product positive, and hence we decide

that the parabola must extend in the direction of x negative,

3. Determine what curve is represented hy the equation

y^-{-2xy—2x^—4y~x-\-l0=0. ' (1)

From whence we deduce

y=—x+2zhjSx^—3x—6. (2)

Put the quantity under the radical equal to 0, and the corres-

ponding values of x are — 1, and -\-2,

Construct the line BD corres-

ponding to the equation

y'=—x+2.

This line is the diameter of the

curve.

Make x=0 in (1), and we shall

have

?/2—4y+10=0.
In this equation y is imaginary,

showing that no point of the curve is in the axis of Y.
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Because x=—1 or -\-2, under the radical, if we take AB=:2
and A£J=— 1, and through B and jE'draw the dotted lines pa-

rallel to the axis of Y, we shall have the limits of the curve,

and as BJ) is a diameter of the curve, one point in the curve

must be at B, and the other at D. Hence the curve has two

h-anches, and it is an hyperbola.

We might have determined this before, because the co-efficient

of the second power of x under the cardinal, is positive. Hence

we can have two positive values for the quantity under the radi-

cal, one corresponding to x taken as positive, and another corres-

ponding to X taken as negative.

The positive value corresponds to the right branch of the

curve ; the negative value corresponds to the left branch of the

curve, and BD is one of its conjugate diameters.

If we make y=0 in either (1) or (2), the corresponding values

of X will be -\-2 and —2^, showing that one branch of the curve

passes through B, and the other through Gr.

If we make y=l, the corresponding values of ar will be -[-2.14

*or —1.64, defining the points n and n\ and thus other points

may be defined.

4. Determine the curve represented by the equation

y 2 -|-6.ry-{-9a;2—2y—6*—15=0.

Resolving the equation in relation to y, we find

Whence y+^x—5=0, or y+3a;+3=0.

Showing no curve, but two parallel lines at the distance of 8 units

from each other, measured on the axis of Y.

5. Determine the curve represented by the equation

y2__4^y_[_5^2—2y+5=0.

On resolving this equation in relation to y, we shall find that

(3,—2a;_-l )2 _|_(a;—2) 2 =02

.

This last equation will be recognized as the equation of a

circle whose radius is zero; that is, the curve is diminished down
to a point.
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6. Determine the curve represented by the equation

Resolving, we find

This is the equation of a circle whose radius is J—3, but

that is impossible. Such a radius is imaginary, and the curve

imaginary.

7. What kind of a curve corresponds to the equation

Ans. It is a parabola passing through the origin and extending

in the direction of minus x and minus y.

8. What kind of a curve corresponds to the equation

y2_^2xy-{^^—2y—l=^0 ?

Ans. It is a parabola, cutting the axis ofX at the distance of

— 1 and -|-1, from the origin, and extending in the direction of

plus X and plus y.

9. What kind of a curve corresponds to the equation

Ans. It is a straight line passing through the origin, making

an angle of 30° with the axis of Y.

10. What kind of a curve corresponds with the equation

y^—'2xy+2x^—2y-\-2x=0 ?

Ans. It is an ellipse limited by parallels to the axis of Indrawn

through the points — 1, and +1, on the axis of X.

1 1

.

What kind of a curve corresponds with the equation

y2__2xy+x^-\-2y—2z--\-lr=0 ?

Ans. It is a straight line cutting the axis of Xal an angle of

45°, at the point +1 from the origin.

8
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12. What kind of a curve corresponds to the equation

Ans. It is an hyperbola. The axis of Y is midway between

the two branches. One branch of the curve cuts the axis of X
at the point — 1 ; the other branch cuts the same axis at the

point -\-3.

CHAPTER II.

On Curves and I^ines corresponding to Equations.

We have seen that the equation of a straight line is

y=tx-\-c,

And that the general equation of a circle is

The first is a simple, the second a quadratic equation, and if

we eliminate x in the first equation, and substitute its value fox

X in the second, we shall have a resulting equation of the second

degree, which cannot correspond to every point in the straight

line, nor to every point in the circle, but it will correspond to the

two points in which the straight line cuts the circle, and to those

points only.

And if the straight line should not cut the circle, the values

of y in the resulting equation must necessarily become imaginary.

All this has been shown in the application of the polar equation

of the circle, in Chap. II, Sec. I.

We are now about to extend this principle another step. The

equation of the parabola is

y^=2px,

an equation of the second degree, and the equation of a circle is

(xzha)^+(y±:by=:E\

also an equation of the second degree. But when two equations

of the second degree are combined, they will produce an equa-

tion of the fourth degree.

m
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But this resulting equation of the fourth degree cannot cor-

respond to all points in the parabola, nor to all points in the

circle, but it must correspond equally to both ; hence, it will

correspond to the points of intersection, and if the two curves

do not intersect, the combination of their equations will produce

an equation whose roots are imaginary.

Let us take the equation y^=9,px, and take p for the unit of

measure, (that is, the distance from the divertrix to the focus is

unity,) then x=^—y and this value of x substituted in the
2

equation of the circle, will give

Let the vertex of the parabola

be the origin of rectangular co-

ordinates.

Take AP=x, and let it refer

to either the parabola or the cir-

cle, and let PM=y, AF=l,
AH^a, HC^l, and CM=^R.
Now in the right angled tri-

angle CMD, we have

HP==Cn=x—a, MD=y—h,
and corresponding to this particular figure, we shall have in lieu

of the equation above

Whence y*-]-(4—4a)y''—Shy=4{B''—a''—b''). (F)

This equation is of the fourth degree, hence it must hnyefour

roots, and this corresponds with the figure, for the circle cuts

the parabola in fozir points, M, M', M", and M'".

The second term of the equation is wanting, that is, the co-

efficient to 2/3 is 0, and hence it follows from the theory of equa-

tions, that the sum of the four roots must be zero.

The sum of two of them, which are above the axis of AX,
(the two plus roots,) must be equal to the sum of the two minus

roots corresponding to the points M" and M'".
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The values of a and b and M may be such as to place the cen-

ter C in such a position that the circle can cut the parabola in

only two points, and then the resulting equation will be such as

to give two real and two imaginary roots.

Indeed, a circle referring to the same unit of measure and to

the same co-ordinates, might not cut the parabola at all, and in

that case the resulting equation would have only imaginary roots.

In case the circle touches the paraholaj the equation will have two

equal roots.

Now it is plain that if we can construct a figure that will truly

represent any equation in this form, that figure will he a solution to

the equation. For instance, a figure correctly drawn will show

the magnitude of PM, one of the roots of the equation.

We will illustrate by the few following

EXAMPLES.

1 . Find the roots of the equation

2/4—ii.i4y2_6.74y+9.9225=0.

This equation is the same in form as our theoretical equation

(F), and therefore we can solve \i geometrically, as follows:

Draw rectangular co-ordinates, as in the figure, and take

AFz=\, and construct %h.Q parabola.

To find the center of the circle, and the radius, we put

4—4a=— 11.14, (1) —85=—6.74, (2)

And 4(i22—a2—52)=—9.9225. (3)

From(l) a=3.78. From (2) 5=0.88.

And these values of a and b substituted in (3) give

jB=3.34, nearly.

Take from the scale which cor-

responds to AF=\, AH=a=
3.78, ^(7=0.88, and from C as

a center, with a radius equal to

3.34, describe the circle cutting

the parabola in the four points

M, M\ M", and M"\ The dis-

tance of M from the axis of X is

+3.5, of M' it is -f0.7, of M"
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it is — 1.5, and of M'" it is —2.7, and these are the four roots of

the equation.

Their sum is 0, as it ought to be, because the equation con-

tains no third power of ?/.

2. Find the roots of the equation

?^4 _^3^3 _j_62/2_|_12y—72=0.

This equation contains the third power of y, therefore this

geometrical solution will not apply until that term is removed.

But we can remove that term by putting

y=z—\.
(See theory of transforming equations in algebra.)

This value of y substituted in the equation, it becomes

and this equation is in the proper form.

Nowput 4—4a=5f, —85=9|, and 4(i2^—a2_52)=74if|.

Whence «=—H^ ^=—fi and ^=4.485.

These values of a and b designate the point C for the center of

the circle. From this center, with a radius =4.485, we strike

the circle cutting the parabola in the two points m and m'. The

point tn is 2^ units above the axis AX, and the point m' is —2f

units from the same line, and these are the two roots of the

equation. The other two roots are iraaginary, shown by the fact

that this circle can cut the parabola in two points only.

If we conceive a circle to pass through the vertex of the pa-

rabola A, then will

and this supposition reduces the general equation (F) to

y*+(4—4a)3/2—85y=0.

Here y—ds=.0 will satisfy the equation, and this is as it should

be, for the circle actually cuts the parabola on the axis of X.

Now divide this last equation by this value of y, and we have

y'+(4—4a)3/=8^. (G)
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Here is an equation of the third degree, referring to a parabola

and a circle ; the circle cutting the parabola at its vertex for one

point, and if it cuts the parabola in any other point, that other

point will designate another root in equation (G).

It is possible for a circle to touch one side of the parabola

within, and cut at the vertex A, and at some other point. There-

fore, it is possible for an equation in the form of (G) to have

three real roots, and two of them equal.

Most circles, however, can cut the parabola in A, and in one

other point, showing one real root and two imaginary roots.

The theoretical equation (G) can be used to effect a mechani-

cal solution of all numerical equations of the third degree, in

that form.*

We will illustrate this by one or two

EXAMPLES.

1. Given y3-|-4y=39, to find the value of y hy construction.

Put 4—4a=4, and 85=39. Whence a=0, and b=^,
These values of a and b designate the point C on the axis of

i^for the center of the circle, C^=4|, the radius.

The circle again cuts the parabola in P, and PQ measures

three units, the only real root of the equation.

2. Given y^—75y=250, tofind the values of j by construction.

When the co -efficients are large, a

large figure is required ; but to avoid

this inconvenience, we reduce the co-

efficients, as shown in Chap. II, Sec. I.

Thus put y=nz.

Then the equation becomes

n^z^-~15nz=9.b0.

» 75 250
z^—~z=

* Observe that the second term or y^ in a regular cubic is wanting. Hence

if any example contains that term it must be removed before a geometrical

solution can be given.
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Now take n—5, then we have

In this last equation the co-efficients are sufficiently small to

apply to a construction.

Put 4__4a=—3, and 85=2.

Whence a=lf and b=\.

These values of a and b designate the point D for the center

of the circle. DA is the radius.

The circle cuts the parabola in t, and touches it in T, showing

that one root of the equation is -|-2, and two others each equal

to— 1.

But y=nz. That is, y—b'% or —5, —5.

Or the roots of the original equation are -f-10,
—5, —5.

When an equation contains the second power of the unknown

quantity, it must be removed by transformation before this

method of solution can be applied.

3. Given y^—48y=128 to find the values ofjby construction.

Ans. +8, —4, —4.

4. Given y^—13y=— 12, tofind the values ofjby construction.

Ans. +1, -|-3, and —4.

Conversely we can describe a parabola, and take any point as

IT, at haphazard, and with HA as radius, describe a circle and

find the equation to which it belongs.

This circle cuts the parabola in the points m, n, and o, indi-

cating an equation whose roots are -{-1, -{-2.4, and —3.4.

We may also find the particular equation from the general

equation

y^-\'(4—4a)a=:Qb,

observing the locality of ^, which corresponds to a=3-3 and
5=— 1, and taking these values of a and b, we have

y3—9.2y=—8,

for the equation sought.
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Remarks and Observations on the general inter-

pretation of Eatta'tions.

In every science, it is important to take an occasional retro-

spective view of first principles, and none demand this more

imperatively than geometry, and this conviction will excuse ns

for reconsidering the following truths so often in substance, (if

not in words,) called to mind before.

An equation, geoTYietrically considered, whatever may he its degree,

is bzU the equation of a point, and can only designate a point.

Thus, the equation y==:ax-\-b designates a point, which point

is found by measuring any assumed value which may be given

to X from the origin of co-ordinates on the axis of X, and from

that extremity measuring a distance represented by (aX'\-h) on

a line parallel to the axis of Y.

The extremity of the last measure is the point designated by the

equation. If we assume another value for x, and measure again

in the same way, we shall find the point which now corresponds

to the value of x. Again, assume another value for x, and find

the designated point.

Lastly, if we connect these several points, we shall find them

all in the same right line, and in this sense the equation of the

first degree yz=zax-{-b,

is the general equation of a right line, but the right line is found

by finding points in the line and connecting them.

In like manner the equation of the second degree

y=z^J^Rx—x\
only designates a point when we assume any value for x, (not

inconsistent with the existence of the equation,) and take the

plus sign. It will also designate another point when we take

the minus sign. Taking another value of x, and thus finding

two other points, we shall have four points, — still another value

of x and we can find two other points, and so on we might find

any number of points. Lastly, on comparing these points we
shall find that they are all in the circumference of the same circle,

and hence we say that the preceding equation is the equation of

a circle. Yet it can designate only one, or at most two points at

a time.
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If we assume diflferent values for y, and find the corresponding

values of x, the result will be the same circle, because the x and

y mutually depend upon each other.

Now let us take the last practical example

y3_i3y=:— 12,

and for the sake of perspicuity change y into a?, then we shall have

Now we can suppose y=0 to be another equation; then will

y=a;3—13a:+12, (A)

be an independent equation between two variables, and of the

third degree.

The particular hypothesis that y=0 gives three values to a?,

(-|-1, -[-3, and —4,) that is, three points are designated, the first

Mt the distance of one unit to the right of the axis of Y; the

second at the distance of three units on the same side of the

axis of Y', and the third point four units on the opposite side

of the same axis, and this is all the equation can show until we

make another hypothesis.

Again, let us assume y=5, then equation (A) becomes

5=x^—'\^x-\-\2, or ir3__i3.^_|_7==o,

and this is in efifect changing the origin five units on the axis of

Y. A solution of this last equation designates three other

points from the axis of Y.

Again, let us assume 2/=10, then equation (A) becomes

a:3—13ar+2=^0,

and a solution of this equation gives three other points.

And thus we may proceed, assigning different values to y, and

deducing the corresponding values of x, as appears in the fol-

lowing table, commencing at the origin of the co-ordinates,

where y=0, and varying each way.

y=30.0388 .1?=—2.0814

2^=25. x=— 1.1

y=20. x=—OAO
y=15. x=—0.20

j^=10. x=-{-0A4

y=5. x=+0.55

+4.1628 —2.0814

+4.03 —2.91

+3.80 —3.41

+3.70 —3.50

+3.52 —3.66

+3.3 —3.85
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Wheny=0. then will x—-{-l. +3. —4.
y=—5 a;=+1.66 +2.477 —4.14
2/=—6.0388 a;=+2.0814 +2-0814 —4.1628

Taking z/=0, a solution of the

equation 2/=a;3—13a;+12, gives the

three points a, a, a, on the axis of X.

Then taking 2/= 5, and a solution

gives three points b, h, h, on a line

parallel to the axis of X, and at the

distance of 5 units above said axis.

Again, taking 3/= 10, and another

solution gives the three points c, c, c.

Now joining the three points ah c, ah c, and a 5 c?, we shall

have apparently three curves corresponding to the equation of

the third degree, and thus, if we were hasty in drawing conclu-

sions, we might assume that every equation of the third degree

might give three curves, and every equation of the fourth degree

four curves, &c. &c. hut this is not true.

If we continue finding points as before, we shall find that the

three curves {a, h, c,) (a, h, c,) and (a, h, c,) are but diflPerent

portions of the same curve, and we can now venture to draw this

general conclusion :

That an equation involving y, the mdinate to the first "power, and

the abscissa x to the third power, the axis of X, or lines parallel to

that axis, may cut the curve in three points.

From analogy, we also infer that an equation involving x to

the fourth power, the axis of X, or its parallels, will cut the

curve in four points ; and an equation involving x to the fifth

power, that axis or its parallels will cut the curve in five points,

and so on.

In the equation under consideration, {y=x^—13ar+12), if we

assume y greater than 30.0388, or less than —6.0388, we shall

find that two values of x in each case will become imaginary,

and on each side of these limits the parallels to X will cut the

curve only in one point.

Two points vanish at a time, and this corresponds with the truth

demonstrated in algebra, *' that imaginary roots enter equations

in pairs."
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The points m, m, the turning points in the curve, are called

maximum points, and can be found only by approximation, using

the ordinary processes of computation, but the peculiar operation

of the calculus gives these points at once, and we mention the

fact here, to show the student the practical importance of that

higher branch of analytical geometry.

To find the points in the curve we might have assumed differ-

ent values of x in succession, and deduced the corresponding

values of y, but this would have given but one point for each

assumption; and to define the curve with sufficient accuracy,

many assumptions must be made with very small variations to x.

We solved the equations approximately and with great rapidity

by means of the circle and parabola as previously shown.

We conclude this subject by the following example

:

Let the equation of a curve be

from which we are required to give a geometrical delineation of

the curve. From the equation we have

X

The following figure represents the curve which will be recog-

nized as corresponding to the equation, after a little explanation.

If x=0, then y becomes infinite,

and therefore the ordinate at A is an

asyrnptote to the curve. If AB=b,
and P be taken between A and JB,

then PM and Pm will be equal, and

lie on different sides of the abscissa

AP, If x=b, then the two values of

y vanish, because x—6=0 ; and conse-

quently, the curve passes through B,

and has there a duplex point. If AP
be taken greater than AB, then there will be two values of y, as

before, having contrary signs, that value which was positive

before, now becomes negative, and the negative value becomes

positive. But if AD be taken =a, and P comes to D, then the

two values of y vanish, because Ja^—a:^=0. And if^P is
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taken greater than AD, then a^—x^ becomes negative, and the

value of y impossible; and therefore, the curve does not extend

beyond D.

If X now be supposed negative, we shall find

y=±Ja^—x^ Xh-^-x^x.

If X vanish, both these values of y become infinite, and conse-

quently, the curve has two infinite arcs on each side of the

asymptote AK. If x increase, it is plain y diminishes, and if x

becomes =a, y vanishes, and consequently the curve passes

through E, if AE be taken =^AD, on the opposite side. If a; be

supposed greater than a, then y becomes impossible; and no part

of the curve can be found beyond E, This curve is the conchoid

of the ancients.

CHAPTER II.

Straight I^ines in Space.

Straight lines in one and the same plane are referred to tvx)

co-ordinates in that plane,— but straight lines in space require

three co-ordinates, made by the intersection of three planes.

To take the most simple and practical view of the subject,

conceive a horizontal plane cut by a meridian plane, and by a per-

pendicular east and west plane.

The common point of intersection we shall call the zero point,

and we might conceive this point to be the center of a sphere,

and from it will be eight quadrangular spaces corresponding to

the eight quadrants of a sphere, which extended, would comprise

all space.

Horizontally, east and west, we shall call the axis of X. Hori-

zontally in the direction of the meridian, the axis of Y; and

perpendicularly in the plane of the meridian, the axis of Z.

From the zero point horizontally to the right we shall designate

as plus, to the left minus.

Along the axis of Y and parallel thereto towards us from the

zero point, we shall call plus ; from the opposite direction will

therefore be minus. Perpendicularly from the horizontal plane

upwards is taken as plus, downward minus.
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The horizontal plane is called the plane of xy, the meridian

plane is designated as the plane of yz, and the perpendicular

east and west plane the plane of xz.

Now let it be observed that x will be "plus or minus, according

to its direction from the plane of yz, y will be plus or minus,

according to its direction from the plane xz, and z will be plus or

minus, according as it is above or below the horizontal xy.

PROPOSITION I.

To find the equations of a straight line in space.

Conceive a straight line passing in any direction through

space, and conceive a plane coinciding with it, and perpendic-

ular to the plane xz. The intersection of this plane with the

plane xz, will form a line on the plane xz, and this is said to be

the projection of the line on the plane xz, and the equation of

this projected line will be in the form

x=az-^a. (Chap. I, Prop. 1.)

Conceive another plane coinciding with the proposed line, and

perpendicular to the plane yz, its intersection with the plane yz

is said to be the projection of the line on the plane yz, and the

equation of this projected line is in the form

y=hz-]-p.

These two equations taken together are said to be equations

of the line, because the first equation is a general equation for

all lines that can be drawn in the first projecting plane, and the

second equation is a general equation for all lines that can be

drawn in the second projecting plane ; therefore taken together,

they express the intersection of the two planes, which is the line

itself.

For illustration, we give the following examxple: Construct the line

whose equations are

y=3s—2)
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Make z=0, then x=l, and y=—2.

Now take AF=1, and draw Fm
parallel to the axis of Y, making

Fm=—2 ; then 7n is the point in

the plane xy, through which the

line must pass.

Now take z equal to any number

at pleasure, say 1, then we shall

have x=3 and2/=l.

Take AF'=3, F'm'=-\~1, and from the point m' in the plane

xy erect m'n perpendicular to the plane xy, and make it equal to

1, because we took z=l, then n is anoiheripomt in the line.

Join nm and produce it, and it will be the line designated by the

equations.

PROPOSITION II.

Tofind the equations of a straight line which shall pass through a

given point.

Let the co-ordinates of the given point be represented by
x\ y\ z.

The equations sought must satisfy the general equations

x=az-\-a^
^j^

The equations corresponding to the given point are

x'^=az'-\-a. 2/'=5s'+/?.

Subtracting (1) from these, we have

X—x=^a{z'—z)y and y'—y=^h(z'—z),

the equations required.

PROPOSITION III.

To find the equations of a straight line which shall pass through

two given points.

Let the co-ordinates of the second point be x", y", z'\ Now
by the second proposition, the equation of the line which passes

through the two points, will be

x"—x'=a(s"—z' )

.

i
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x"—x'
Whence a=-

And y"—y'=h{^'—z'), h=K—r
z —z

Substituting the values of a and I in the resulting equations

of Prop. II, we have

.'_.= (^i;) (.'-.). y'-y=U=^ )(.'-.),
\ z!—z / \ z —z J

for the equations required.

PROPOSITION IV.

To find the condition under which two straight lines intersect in

space, and the co-ordinates of the point of intersection.

Let the equation of the lines be

x=az-\-a, y=zhz-\-^.

x=a'z+a. y=h'z-\-^'.

If the two lines intersect, (as they do by hypothesis,) then x

and y may represent the co-ordinate of the point of intersection;

therefore by subtraction, we have

{a—a')z-\-a—a'=0, (^h^h')z-\^^—^'=0.

Whence, by eliminating 2, we find

a—a' _ ^—^'

a—a' h—6'

which is the condition under which two lines intersect.

Now 2=—!ZI1_, and this value of z beins^ substituted in the
a—a

first equations, we obtain

x= — and y=JL 1,
a—a a—a

for the value of the co-ordinates of the point of intersection.

Corollary. If a=a\ the denominators in the second mem-

ber will become 0, making x and y infinite ; that is, the point

of intersection is at an infinite distance from the origin, and the

lines are therefore parallel.
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PROPOSITION v.—PROBLEM.

To express analytically the distance of a given point from the

origin.

LetP be the given point in space;

it is perpendicular over the point

Nf which is in the plane xy.

The angle ^ifJV=90°. Also,

the angle ANP==^0°.

Let AM=x, MN=y, NP—z.

ThenZF^=a;2-|-3/2.

But AP'' ^AN""+NF =x''-\

Now if we designate AP by r, we shall have

r^—x'^-^y^+z^,

for the expression required.

PROPOSITION \a.—PROBLEM.

To express analytically the length of a line in space,

N. B.—The only difficulty a learner can experience will arise

from a want of the proper perception of the figure projected on

a plane. Hence, teachers should construct the ^yo^qv pasteboard

figures, which will give the real and simple representation.

Let PP'=D be the line in question.

Let the co-ordinates of the point P
be X, y, z, and of the point P' be x\

y', z\

Now MM'=:x'—x=JSfQ,

QN'=y'-y.

'NN'^={x'—xY+{y'^yY=PR''

P'R=z'—z.

In the triangle PRP' we have

Or D^=^{x-xY^{y'-yy-\r{z'—z)\ (1)

which is the expression required.
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Scholium. If through one extremity of the line, as /*, we
draw PA to the origin, and from the other extremity P', we
draw P'S parallel and equal to PA, and join AS, it will be

parallel to PP', and equal to it, and this virtually reduces this

proposition to the previous one. This also may be drawn from

the equation, for if A is one extremity of the line, its co-ordi-

nates X, y, and z, are each equal to zero, and

PROPOSITION" VII.—PROBLEM.

Tofind the inclination of any lim in space to the three axes. I

From the origin draw a line par-

allel to the given line, and the

inclination of this line to the axes

will be the same as that of the given

line.

The equations for the line pass-

ing fi'om the origin are

x=^az, and y==hz, (1)

Let X represent the inclination

of this line with the axis of x, Kits inclination with the axis

of y, and Z the inclination with the axis of z.

The three points P, JSf, M, are in a plane which is parallel to

the plane zy, and ^if is a perpendicular between the two planes.

AMP is a right angled triangle, the right angle at M.
Let AP=r and AM=^x, Then, by trigonometry, we have

As r : sin. 90° : : x : cos.X Whence x=rcos.X.

Also, as r : sin. 90° : : y : cos. Y. "Whence y=rcos. K
Also, as r : sin. 90° : : z : cob.Z. Whence z=r cos. Z.

From Prop. Y, we have

r^^x'^+y^+zK (2)

Substituting the values of x, y, and 0, as above, we hav«

r^=r^coa.^X+r'^coa.'^ F+r^cos.^Z.

Dividing by r^ will give

co«.2X+cos.2F-}-co8.2Z=l, (3)

9
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an equation which is easily called to mind, and one that is useful

in the higher mathematics.

If in (2) we substitute the values of a;^ and y^ taken from (1),

we shall have

r*=a^22_|^2^3^s^ (4)

But we have three other values of r^, as follows :

4.2

r2= . and
cos.^X cos.^J^ cos.'^Z

Whence —I =±^Vl+a2+6^ (6)
cos.JT

y —
cos.F

=±:zjl+a^+b^. (6)

And _i--=rb7l+a2+62. (7)
cos.Z

In (5) put the value of x drawn from (1), and in (6) the

value of y from (1), and reduce, and we shall obtain

cos.X=-

b
"

COS. Y=—:

—

COS.Z :

The analytical expressions

for the inclination of a line

in space to the three co-

ordinates.

The double sign shows two angles supplemental to each other,

the plus sign corresponds to the acute angle, the minus sign to

the obtuse angle.

PROPOSITION VIII.

To find the inclination of two lines in terms of their separate

inclinations to the axes.

Through the origin draw two lines respectively parallel to the

given lines. An expression for the angle between these two

lines is the quantity sought.

Let AP be parallel to one of the given lines, and^§ parallel

to the other. The angle PAQ is the angle sought.
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Let the equations of one of these lines be

And for the other

x'=^a'z', y'zzzb'z.

Let AP=zr, AQ=r\ PQ=I), and the angle P^$= K
Now in plane trigonometry (Prop. 8, page 150 Geometry,) we

have

COS. F=
2rr'

(1)

From Prop. VI, we have

Expanding, and

D^==(x'^+y'^+z'^)-^ix^+y^+z'')^

2x'x—2yy

—

2z'z.

But from Prop. Y, we learn that

And x'^+y'^+z'^=r'K

Whence 2x'X'\-2y'y-\-2z'z=r^'^r'^—1>^

.

This equation applied to ( 1
) reduces it to

rr x'x-\-yy-\-zz
COS. V—— ' ^^X

—

rr'

But r and r' may be any values taken at pleasure, their lengths

will have no effect on the angle F, therefore for convenience, we
take each of them equal to unity.

Whence coB.V=x'x-\'y'y-\-z'z. (2)

But Prop. VII, shows that a:=rcos.J;^ 2/=rcos. 1^ &g. and

that a?'=/cos.X', y'=/cos. Y\ &c.

But we have taken »'=1, and/=l, therefore a:=co8.A'i <fec.

and ic'=cos.X', &c. Therefore

cos. F=cos.Xcos.X'4-cos.Fcos.y-|-<^os.Zcos.Z'. (3)

But by Prop. VII, we have

a a'
COB,X=

±<yi+a=*+6^
and cos.X'-

±:Jl+a''+b'
:,&C.



Its ANALYTICAL GEOMETRY.

Substituting these values in (3) we have

COS. V=
±(Vi+«=-H''')(Vi+«"+*'^)

for the expression required.

The cos. V will be plus or minus, according as we take the

signs of the radicals in the denominator alike or unlike. The

plus sign corresponds to an acute angle, the minus sign to its

supplement.

Corollary 1. If we make F=90°, then cos. F=0, and the

equation becomes

which is the equation of condition to make two lines at right

angles in space.

Corollary 2. If we make V=0, the two straight lines will

become parallel, and the equation will become

Squaring, clearing of fractions, and reducing, we shall find

Each term being a square, will be positive, and therefore the

equation can only be satisfied by making each term separately

equal to 0.

Whence a'=a, h'=b, and ab'=a'b.

The third condition is in consequence of the first two.

CHAPTER IV.

On the Equation of a Plane.

An equation which can represent any point in a line is said to

be the equation of the line.

Similarly, an equation which can represent or indicate any

point in a plane, is, in the language of analytical geometry, the

e(j^uation of the plane.
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The co-ordinates AZ, and AX, designate a plane which we
call the plane of xz. The equation for any line in this plane, as

My is in the form z=ax-\-b.

This equation represents points in

the line M, but if we assign to h any-

other value, as h\ we shall have points

in another line parallel to the line M.
In short, if in place of the constant

h we write a numerical variable w, we
shall have

z=ax'\-w, ( 1

)

an equation which will not only rep-

resent points in the line M, but points

also in all lines whicb can be drawn parallel to M in the plane

xz : that is, it is an equation which can represent any point in

the plane xz; therefore, it is the equation of that plane.

Like considerations will give us

z=hy-\-w
, (2)

for the equation of the plane yz, and

x=b'y+w\ (3)

for the equation of the plane xy.

On inspecting either one of the equations (1), (2), or (3), we
shall perceive that the equation of a plane must he an equation of

thefirst degree between three variables, and if either one of the

variables becomes constant, or is suppressed, the equation tdll

become that of a straight line.

Now if the plane in question, is the plane of xz, or parallel

thereto, the equation of the plane must contain the two variables

X, z, and one other ; and similarly for each of the other planes.

But if we have a plane which neither coincides nor is parallel to

either plane xz, yz, or xy, but intersects all of them, its equa-

tion must contain the three variables, x, y, and z, and be of the

first degree. Therefore it must be of the form

Ax-\-By+Cz-\-D=^0,

which is recognized at once by all mathematicians as the most

general and symmetrical equation of a plane.



130 ANALYTICAL GEOMETRY.

Scholium. This notation being adopted, we can at once draw

from it the following general truths

:

1st. If we suppose a plane to pass through the origin of the

co-ordinates, the equation for that point requires that x=0,

y=0, and z=0, and these values substituted in the equation of

the plane, will give D=0 also. Therefore, when a plane passes

through the origin of co-ordinates, the general equation for the

plane reduces to

2d. To find the points in which the

plane cuts the axes, we reason thus :

The equation of the plane must re-

spond to each and every point in the

plane ; the point F, therefore, in which

the plane cuts the axis of X, must cor-

respond to 3/=0 and z=0, and these

values substituted in the equation, re-

duce it to Ax-\-D=0.

Or :-^=0P,

For the point Q we must take x=0 and g=0.

And y- -i-""-
„-£,.0R.For the point JR,

3d. If we suppose the plane to be perpendicular to the plane

XT, PR' a trace in it may be drawn parallel to OZ, and the

plane will meet the axis of Z at the distance infinity. That is,

OR, or its equal ( —_ ) must be infinite, which requires that

C=0, which reduces the general equation of the plane to

Ax-\-By-{-D=0,

which is the equation of the trace or line P Q on the plane XY.

If the plane were perpendicular to the plane ZX, the plane Q,

or its equal ( —— j, must be infinite, which requires that B=0,

and this reduces the general equation to
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Ax+Cz-^D=0,

which is the equation for the trace P-5, and hence we may con-

clude in general terms,

Thai when a plane is perpendicular to any one of the co-ordinaie

planes, its equation is that of its trace on the same plane.

PROPOSITION IX.—PROBLEM.

To find the length of a perpendicular drawn from the origin to

a plane, and to find its inclination with the three rectangular co-

ordinates.

Let HFQ be the plane, and from the

origin draw Op perpendicular to the

plane ; this line will be at right angles to

every line drawn in the plane from the

point p.

Whence Oi? §=90°, OpB=90°,
Ojt?P=90°. Let Op=p.
Designate the angle p OP by X, pOQ

by Y,andpOEhj Z.

By the preceding scholium we learn that

0P=--. 0Q=-^, and 0B=-:^,
A B C

Af B, C, and D, being the constants in the equation of a plane.

Now in the right angled triangle OpP, we have

OP \ \ : : Op \ cos.Jf:

That is, ^— \ \ w p : cos.Zi (1)
XX

The right angled triangle OpQ, gives

-^ : 1 ::;> : cos.F. (2)

The right angled triangle OpR gives

•^ : I ::p : cos.Z, (3)
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Proportion (1) gives us

i>2

(2) gives COS.* Y=^^B^,

and (3) gives cos.*Z=^ (7*

.

(4)

(5)

(6)

Adding these three equations, and observing that the sum of

the first members is unity, (Prop. VII, Chap. I, Sec. II,J and
we have

Whence

i>*

J>

(7)

This value of |> placed in (4), (5), and (6), and reduced, will

give
A

cos.X=

cos. Y-

JA^+B^+C^
B

C0S.Z=rb-

JA^+B^+C
C

(8)

(9)

V^*+J5*+C*
^^^^

Expressions (7), (8), (9), and (10), are those sought.

PROPOSITION X.—PROBLEM.

Tofind the analytical expressions for the inclination of a plane

to the three co-ordinate planes respectively.

Let Ax-^By-^-Cz-^-D^O be the equa-

tion of the plane, and let PQ represent

its trace or line of intersection with the

co-ordinate plane {xy).

From the origin draw OS perpen-

dicular to the trace PQ. ^om pS. OpS
is a right angled triangle, right angled at

p, and the angle OSp measures the ir)ol\.
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nation of the plane with the horizontal plane (a;y). Our object

is to find the angle OSp.

In the right angled triangle FOQ we have found

A B

Whence PQ=:^JA^-\-B^.

Now PS, a segment of the hypotenuse made by the perpen-

dicular OSy is a third proportional to QP and P 0. Therefore

^JA'-^B^ : —— : : —— : PS.
AB^ ^ A A

D BD

The other segment QS is a third proportional to PQ and OQ,
Therefore

— JA'+B' : —— : : —— : QS.
AB^ ^ B B ^

Or JA^+B^:^A::-^: C^^^^._^^.

But the perpendicular OS is a mean proportional between these

two segments. Therefore we have

JA^+B''

Now by simple permutation we may conclude that the perpen-

dicular from the origin to the trace PB, is

B

and that to the trace QP is

B
JB^+ C^

IVe shall designate the angle which the plane makes with the

plane of (xy) by (a;y), and the angle it makes with (xz) by (xz),

and that with (yz) by (ys).



134 ANALYTICAL GEOMETRY.

Now the triangle Op S gives

OS : siii.90° :: Op : sin. OSp.

That IS —-
: 1 : :

—
: sin. OSp

Whence sin.^ OSp=sm.^(xy)=:
•^^+^^

Similarly, sin.^xz)^
A^+C^

A^+B^+C^

And sin.2(yg)r-
B^+C^

But by trigonometry we know that cos.2= l—sin.^.

Whence cos.2('w)=l— i == &c.
^ ^^ ^2_j_^2_|_(72 ^2_|.^2_|_(72'

Whence cos.(^)=---p^^

coQ,{xzy
JA^+B^-^G^

cos.(y^)=-y==r^===

> Expressions sought

JA^^B^+C^ J

Squaring, and adding the last three equations, we find

cos.^ (a:2/)-|-cos. 2 (ar2)+cos.^ (y2)= 1

.

That is, the sum of the squares of the cosines of the three angles

which a plane forms with the three co-ordinate planes, is equal to

radius square, or unity.

PROPOSITION^ XI.—PROBLEM. .

To find the equation of the intersection of two planes.

Let Ax+By-\-Cz+D=0, (1)

A'x+B'y+C'z+D'=0, (2)

be the equations of the two planes.

If the two planes intersect, the values of x, y, and z, will be

the same for any point in the line of intersection. Hence, we
may combine the equations for that line.
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Multiply (1) by C\ and (2) by (7, and subtract the products

and we shall have

{AC'—A'C)x-\'(BC'—B'C)y+{DC'--D'C)=^0,

for the equation of the line of intersection on the plane {xy).

If we eliminate y in a similar manner, we shall have the equa-

tion of the line of intersection on the plane (xz)', and eliminating

X will give us the equation of the line of intersection on the

plane (yz-)

PROPOSITION XII.—PROBLEM.

To find the equation to a perpendicular let fallfrom a given point

x\ y', z') upon a given line.

As the perpendicular is to pass through a given point, its

equations must be of the form

x—x'=a{z-^z'), (1)

y—y=K^—z')* (2)

in which a and h are to be determined.

The equation of the plane is

Ax+By-^-Cz+D=0.

The line and the plane being perpendicular to each other, by
hypothesis, their projections on any one of the co-ordinate planes

will be perpendicular to each other.

The given plane then projected on the planes [xz) and {yz),

will give Az-\-Cz-\-'D=^0 for the equation of the trace on {yz).

C DFrom the former x=.—

—

z—-^. (3)A A ^ ^

From the latter yz^—^z——. (4)B B
Now equations (1) and (3) represent lines which are at right

angles with each other.

Also (2) and (4) represent lines at right angles with each

other.

But when two lines are at right angles, (Prop. V, Sec. I,

Chap. I, ) and a and a\ their trigonometrical tangents, we must

have (aa'+1=0),
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C A
That is, —a—-|-1=0, or «=-^-

Like reasoning gives us ^=-pj> and these values put in (1)

and (2) give

G • for the equations

, B , ,x r sought.

PROPOSITION XIIL—PEOBLEM.

To find the angle included hy two planes given by their eqtiations.

Lei Ax+£y-{-Bz-\-J)=0, (1)

And A'x+B'y+Cz+D'=0, (2)

be the equations of the planes.

Conceive lines drawn from the origin perpendicular to each

of the planes. Then it is obvious that the angle contained be-

tween these two lines is the supplement of the inclination of the

planes. But an angle and its supplement have numerically the

same trigonometrical expression.

Designate the angle between the two planes by V, then Pro-

position VIII, in the last chapter gives

^^^- - ±jlJ^a'+b' Jl+a'^+b'^' ^ ^

The equations of the two perpendicular lines from the origin

must be in the form

x=aZj y=^bz,

x=az y=^b'z.

But because the first line is perpendicular to the first plane,

we must have

o=—

,

and b=— , (Prop. XII.)
C C

And the second line perpendicular to the second plane requires

that

a'=±, and 5'=:^.
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These values of a, b, and a', b\ substituted in (3) and reduced,

will give

COS. F=-h TI-— "^

,

JA^+B'^+ C^ ^A'^+B'^+ a^

for the equation required.

Corollary. When two planes are at right angles, cos. ^=0,
which will make

AA'+BB'+CO'=0

PROPOSITION XIV.—PROBLEM.

To find the inclination of a line to a plane.

Let MN' be the plane given by its

equation

Ax+B7/-\- Cz+D—O,

and letP§ be the line given by its equations

x-=az-\-a.

y=zbz+^.

Take any point F in the given line, and

let fall FB, the perpendicular, upon the plane ; i?§ is its pro-

jection on the plane, and FQF is obviously the least angle made

between the line and the plane, and it is the angle sought.

Let xz=a'z-\~a\ and y=6'2-J-/5',

be the equation of the perpendicular FRy and because it is per-

pendicular to the plane, we must have (by the last proposition)

Because PQ and FR are two lines in space, if we designate

the angle included by F, we shall have

\J^aa'+hb'
COS. F=: (Prop. VIII.)

But the COS. V is the same as the sin.P§JS, or sin. V, as the

two angles are complements to each other.
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Making this change, and substituting the values of a and b',

we have

for the required result.

CoRROLLARY. When F=0, sin.F=0, and this hypothesis

gives

Aa+Bb-{-C=0,

for the equation of a line when it is parallel to the plane.

We now conclude this branch of our subject with a few prac-

tical examples, by which a student can test his knowledge of the

two preceding chapters.

EXAMPLES.

1

.

What is the distance between two points in space of which the

co-ordinates are

x=3, y=5, z=—-2, «'=—2, y'=—1, z'=6.

Ans. 11.180+.

2. 0/ which the co-ordinates are

x—l, y=—5, z=—3, x'==4, y'=—4, z'—l.

Ans. 5y\) nearly.

3. The equations of the projections of a straight line on the co-

ordinate planes (xz), (yz), are

a;=2s+l, y=Xz^2,

required the equation of projection on the plane (xy).

Ans. y=lx—2|.

4. The equations of projections of a line on the co-ordinate

planes (xy) and (yz) are

9.y=x—5, and 2y=^—4,

required the projection on the plane (xz.)

Ans. a:=z+l.
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5. Required the equations of the three projections of a straight

line which passes through two points whose co-ordinates are

x'=% y'=l, 2'=0, and x"=—3, y"=0, 2"=— 1.

What are the projections on the planes {xz) and (y^)?

Ans. x=52-\-2, y=zg^l.

And from these equations we find the projection on the plane

(xy), that is, 5y=«+3.
(See Prop. Ill, Sec. II, Chap. II.)

6. Required the angle included between two lines whose equations are

^Z^lfe} of the 1st, and ;Z!+5.i( of the 2d.

Ans. F=72° 1' 29".

(See Eq. (3), Prop. XIII.

7. Find the angles made by the lines designated hi the preceding

example, toith the co-ordinate axes. (See Prop. VII.)

(36° 42' withX, (54° 44' with X,
a4?w. The 1st line J57° 41' 20" J", 2d line J 125° 16' Y,

(74° 29' 5" Z, (54° 44' Z.

8. Having given the equation of two straight lines in space, as

^"^l^fll of the first, and ^=^+^ I of the second,
y=22+6[ ' y=z^z-\-fi^

tofind the value of /3', so that the lines shall actually intersect, and

to find the co-ordinates of the point of intersection.

Ans. p^-^^ z=—l.
(See Prop. IV. Sec. II, Chap. I.)

9. Given the equation of a plane

8a;—3y+2—4=0,
to find its intersection with the three axes, and theperpendicular dis-

tance of the origin to the plane. (Prop. IX.)

Ans. It cuts the axis of Xat the distance of ^ from the origin;

the axis of P" at —1^; and the axis of Z at -]-4.

The origin is |^ of unity below the plane.

10. Find the equations for the intersections of the two planes

(Prop. XI.) 3x—4y+2z—l=:0,
7x—3y—z-{-5=0.

-4««. On the plane (ary) 17a;—10y+9=0.
On the plane (xz) 12a;—102+23=0.
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1 1

.

Find the inclination of these two planes. ( Prop. XIII.

)

Ans, 41^ 27' 30".

12. The equations of a line in space are

a;=—22+l> and y=3z-\'2.

Mnd the inclination of this line to the plains represented hy the

equation (Prop. XIV.)

8a;—3y+2—4=0.
Am. 48^ 13'.

13. Find tlie angles made hy the plane whose eqzcation is

8ic—3y+0—4=0,
with the co-ordinate planes. (Prop. X.)

(
84° 9' 40" with (xy).

Ans. 4 110° 24' 40" with (xs).

( 21° 34' with (yg).

14. Find the equation of a plane heing

Ax-\-By+Cz+D=0,

Required the equation of a parallel plane whose perpendicular

distance is (a) from the given plane.

Ans. Because the planes are to be parallel, they must have

the same co-efficients. A, B, and (7.

In Prop. IX, we learn that the perpendicular distance of the

origin from the given plane may be represented by

_ D
^""^JA^+B^+G^

Now, as the planes are to be a distances asunder, the distance

of the origin from the required plane must be

D I>+aJA^+B^+C'

Whence the equation required is



THE DIFFERENTIAL CALCULUS.

SECTION I.

CHAPTER I.

Definitions and Illustrations.

The differential calculus may be considered a branch of ana-

lytical geometry ; more literally, it is a science for computing

the ratio of small differences.

Newton and his followers called this qqiqucq fluxions, because

magnitudes were conceived to flow, thus making an increase or

decrease, and the amount of increase or decrease was the fluxion

of the particular magnitude or algebraic quantity. But the

French, and the moderns who have adopted the French phra-

seology, call this quantity the differential of the given magnitude.

In some instances the old English method of illustrating this

science is most simple, and we shall not entirely disregard it.

They conceived a line to be extended by the motion of a point at

its extremity, — a surface to be extended by the motion of a line,

and a solid to be extended by the motion of a surface.

To illustrate and explain the object of the calculus, we adduce

the following questions

:

If a side of a square be increased by a very small quantity,

what effect will that have on the square itself ?

If a side of a cube be increased by a very small quantity, how
much will the cube itself be increased ?

If the arc of a circle be increased by a very small quantity

10 141
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what effect will this have on the sine and cosine of that arc ?

What on its tangent and co-tangent?

If the base of a known right angled triangle be increased by

a very small quantity, what effect will that have on the hypote-

nuse and the acute angles ?

The sun's motion in longitude along the elliptic has a corres-

ponding motion in declination ; the ratio of these two motions

at each and every point is a problem in the differential calculus.

The calls of astronomy gave birth to this science.

It is not necessary that every part of a magnitude should

increase or decrease, and therefore we must have variables and

constants. For instance, one side of a right angled triangle may
increase while the other side remains constant, and the hypote-

nuse increase in consequence of the increase of one side. Or

the two sides may vary at the same time, the one increase, the

other decrease, and the hypotenuse remain constant.

Constant quantities are generally represented by the first let-

ters of the alphabet, a, b, c, &c. and the variable quantities by

the final letters as u, v, x, y, kc.

In any equation, as y=.aXy if an increment is given to ar, y
will have a corresponding increase, and in that case x is said to

be the independent variable, and y the dependent variable. That

is, the variation of y certainly depends on the variation of x.

Thus far we have merely been giving an idea of what the dif-

ferential calculus is.

(Art. 1.) When two or more variables enter into an equation

one is said to be b, function of the other.

Thus y=a-\-^Xy y=:3a^x-\'X^, y=ij^—«^» are three dif-

ferent equations, and here are three different functions of x. That

is, y expresses three different functions of x, and might express

ten thousand other functions as well as these.

If the foregoing equations be resolved in relation to x, so that

X stands alone as one member, then we might say that x is a

function of y, hence x and y are functions of each other.
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When we wish to express functions in a brief and comprehen-

sive manner without designating any particvlar equation, we
write y=/(a;), which means that y equals some algebraic expres-

sion in which x, as a variable, is contained, and it is read y
equals a function of x. The letters /, /, , F, F^, stand in the

place of the word function. Each indicates a different function

from the other.

Thus, f(x.y)=0. F(u.x.y)=:0, &c.

The first of these is a symbol for an equation containing x

and y as variables, and every quantity in the first member of

the equation. The second is also a general symbol for some

equation containing «, x, and y, as variables, and all in the first

member of the equation.

If we had an equation in which u was the first member, and

equal to some algebraic expression containing x, y, and z, as

variables, and if it were not necessary to write out the explicit

functions of x, y, and z, we would indicate it generally.

Thus u=f(x.y.z).

Or we may write f(u.x.i/.z)=0.

If we wished to indicate another equation containing these

same letters, which might exist in the same time, we would

write

F(u.x.y.z)=0»

If still another, we would write

Fi(u.x.i/.z)=0,

Functions are either algebraicy circular, or exponential.

(Art. 2.) We now commence to form rules to differentiate vXl

classes of algebraic quantities.

For- example, we have the equation

y=zax-\-h.

What will be the eflfect on y, provided x becomes (or-f-^)?

Let y' represent what y then becomes, and the equation will

become
y'=zax-\-ah-{-b

But y =aa;+6

Therefore y'—y=ak
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The first member of this equation is obviously the increment

of y, whatever be the value of h, and when it is extremely/ small

in relation to x, (we will not say infinitely small, as that word

puzzles, and it is unnecessary) then {y'—y) is extremely small in

relation to y, and in that case wo write dy in place of (y'-^y),

and dx in the place of h.

The learner must be particular not to regard d in dy or dx as

a numeral or a co -efficient. It is a symbol, and is read the dif-

ferential of y, the differential of ar, &c., as the case may be.

Thus, in general dy means an extremely small increment or

decrement of y, and dF would denote that P was a variable and

dP the amount of the variation.

In the old English fluxions dx, dy, <fec. are represented by x,

y, &c. the variable with a point over it. The iQiva^fliixion, differ'

ential, and derivative, all mean the same thing. There are cases,

as in derived polynomials in algebra, that it would not do to call

the derivative a differential, as the increment might be too large.

For another example. If

u=a-\-^x-{'Cy'^z,

and if we suppose x becomes (x-\-h), y becomes (y+^), and z

becomes (2-\-l), what effect will this have on the value of w?

In consequence of these increments to the variables x, y, and z,

the dependent variable u becomes u\ and the equation becomes

u'=a'{-hx-^hh-\-cy-\-cJk-\-Z']-L

From this, if we subtract the primitive equation, we shall have

u'—2*=57i-f-c^+?.

If we now suppose h, k, and I, to be extremely minute quan-

tities, dx must be written for k, dy for k, dz for 7, and du for

(u'—u,)

Then du=hdX'\'Cdy-\-dz,

and this is the differential of the primitive equation.

Comparing this result with the given equation, we draw the

following rule for differentiating an equation, or any quantity

involving only the first power of the variables :

Rule 1. Change each variable into its differential by simply

writing dx in place of x, dy in place of j, and so on for any other
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variable, preserving the same constant co-efficients that belong to the

variable, and drop all constants which stand alone, or such as hav*

no variable factor.

We give the following examples under this rule :

1. Differentiate u=a^-\-3a^x-\-h^^-[-4z.

Ans. du=Sa^dx-\-b'^dt/+4dM.

2. Differentiate «f=f+-Z-|-l,
a 36

Ans. du=^+^.
a^3b

3. Differentiate 3u=Jax-}-4a^y-\'-,
c

Ans. Mu=z Ja.dx-\-4a^ dy.

(Art. 3. ) Let us now investigate and draw out a rule to de-

termine the differential of the product of two variables.

Let u=-xy, and now suppose that x becomes (x-\-h), and y
becomes (y-|-^), and in consequence of these increments, u

becomes u\ and the equation becomes

v!z=i (x-\-h
)
{y-\-lc) =zxy-\-yh •\'x7c-\-hJc.

Subtracting the original equation, and we have

u'—u= •yh-\-'Xh-\-hk.

If now we suppose h and k to be extremely minute quantities,

their product hic will be still less, and therefore may be omitted

when h takes the form dx and k becomes dy. This supposition

reduces the last equation to

du=ydx^xdy.

Comparing this equation with the original one (u=xy)f will

show the truth of the following rule to differentiate a product

:

Rule 2. Multiply each variable by the differencial of the other

variable, and add their products.

We may extend this rule to apply to any number of variables.

For instance, let

P=zxyz.
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Also, let u=-xyy as in the former equation, then

Taking the diflferential of this last equation by the rule just

formed, and we have

dP=:^udZ'\-zdu.

In this equation, for Uy write its value (a?y), and for du write

its value (ydx-^xdy). Then

dP=ysdx-\-xzdy~\'Xyd2.

This equation furnishes a rule for the differential of the pro-

duct of three variables, which principle being extended, gives

the following general rule, which will apply to the product of

any number of variables

:

- Rule 3. Take the differential of each variable and multiply U
into the product of all the other variables, and add the several pro-

ducts together.

Differentiate the following examples under this rule :

1

.

u=xy-\-xyz.

Ans. du=ydx-{'Xdy-\-yzdx-{-xzdy-\'Xydz.

2. u=ty—Sxy-^tx.

Ans. du=ydt'\-tdy—Sydx—Sxdy-\-tdX'{'Xdt.

3. u=:vxyz.

Ans. du==xyzdv-\'Vyzdx-\-vxzdy^vxydz.

(Art. 4.) If in this last equation we suppose v, y, z, each

equal to a-, then will w=a;*, and dv, dy, dz, must e^ch equal dx,

and each one of the four products in the answer will be x^dx.

Consequently du=4x^dXy and the differential of «* must

be ^x^dx.

Let us now test this by another course of operation.

Let u=x*.

Now suppose that x becomes (x-\'h)f and in consequence of

this u becomes u', then

«'=(x+h) " z=:x*+4x^h+6x^h''+4xh^+h*.
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Subtracting the original equation and dividing by A, will give

Now in case k is taken for an extremely small quantity in rela-

tion to X, all the terms that contain k in the second member
are comparatively valueless in respect to (4x^) the first term.

But in case of an extreme small quantity for h we write {dx)

for ky and du for (w'

—

u), therefore

^=4a;». (1)
dx

The same result as before deduced from the consideration of

products.

In case h is absolutely zero, dx becomes 0, and du also be-

comes 0, and equation ( 1
) becomes

But there is nothing absurd in this, as we learn by algebra

that divided by can be any quantity whatever.

Now (u'—u) represents the increment of the function w; and h

that of the variable x, and therefore —ZH is the ratio, and this
h

ratio diminishes as h diminishes, and comes to a limit when h

equals 0.

Therefore _ is the limiting ratio between a function and its

variable. In this example 4x^ is that ratio, it is also called the

differential co-effcient.

For —z=4x^ , or du=4x^dx.
dx

Here it is obvious that 4x^ is a co-efficient to dx, the differ-

ential of the variable.

For another example, let

Now as before let x become (x-^-dx), then u becomes «+c?«,

and the equation becomes

u+du=(x+dx)''=x'^-{^mx'^^dx+m^!^ x'^^dxy^&c.
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Subtracting the original equation, and dividing by (dx), wo
have

^=WM;«-»+m'!!^a;»-Va:+ &c.
dx ^2 ^

Now let us suppose dx=0, that is, pass to the limit, and

du m„,

dx

From this equation we can draw the following general rule to

find the differential co-efficient of any quantity in the form a;", that

is, any power of the variable :

Rule 4. Multiply hy the exponent, and diminish the exponent by

unity.

By the first example in this article the learner will perceive

the truth of this rule when the exponent m is a whole positive

number, such as x^, x^, &c. &c., and yet not convinced of its

application when m is fractional or negative.

But we learn in algebra that (x-^-dx)"^ expands in the same

form, whatever be the value of m, whole or fractional, positive

or negative, therefore the rule must be generally applicable, what-

ever be the value of m.

For example, what is the differential co-efficient in the following

equation, in which m is taken both negative and fractional

:

u=x-v^

By the rule we have at once

dx t

Or the differential of the function u is

^Ix^'dx.
t

Suppose now that we distrust the rule, and require the result

by a more elementary and obvious process, and if we arrive at

the same conclusion it would be very unphilosophical to distrust

it in any future case.
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Resuming M=a: *
. This is tlie same as

w=-
1

or ux^=\.
X t

Raising each member to the power t, then

U^X^=z\ (1)

PutP=w» and Q=x\ then PQ=\.
Now we can differentiate this equation by (Rule 2,) which

gives

PdQ^QdP=Q. (2)

As t and s are whole positive numbers,

t—

1

s—

1

dP=^tu duy and dQ=sx dx.

Substituting these quantities in (2), and retaining the original

values of P and Q, equation (2) becomes

su t a;»-ic?a?+te ^ u^-^du=0. (3)

Multiply (3) by ux, which gives

su^x^udx-\-tx'u*xdu=0. (4)

But equation ( 1 ) gives «* * a; *= 1 . Therefore (4) reduces to

sudx-\-ixdu=0. (6)

Or
du su

dx tx

Substituting the value of u in the second member taken from

the original equation, and we have

du_ ij'f^
dx t

The same value as given by the rule, and thus the rule could be

verified in every possible case.

Rule 4, can be made of very extensive application in the cal-

culus, as the following examples will show

:

u. =(1+^)*-
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Put (l'^x)=z, then u=z^, an equation to which the rule

will apply, giving

dz ^ 2jz

Because l-\~x=z, dx=:dz. Therefore

1

Or
dx

2(l+x)^'

For another example, take

u=Jl-\-x—x^.

As before, put l-\-x—x^=z. Then dx—2xdx=dz, and u=z^,

B7 the rule, ~=lz ^=^

Or du

dz 2jz

_ dz _ (l--2x)dx

From these examples we may draw the following rule to dif-

ferentiate the square root of any quantity :

Rule 5. Differentiate the quantity under the radical, and divide

it hy twice the radical.

The last equation may be differentiated without substitution,

thus

Uz=J\-\-X—x^.

Square both members, and

u^= \-\-x—x^ .

Now apply the rule to each member, and

2udu=dx—2xdx.

(1

—

2x)dx
Whence du-.

^Jl+x—x^
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The preceding rule maj be made general, as will appear by

the following example :

Take the nth. power of each member, then

Taking the differential of each member, gives us

%%""^du=(h—2cx)dx.

Multiply this by the given equation, and we have

I

nMu={h—2cx)dx(a-\-hx—cx^) ^

Whence dn~ (i-2cx)dx(a+hx-cx')7
n[a-\-bx—cx"^)

From this equation we draw the following general rule to

differentiate any radical quantity

:

Rule 6. Take the differential of the quantity under the radical

^

multiply it hy the radical, and divide the product by n times the

quantity under the radical, n being the index of the root.

For an example under this rule we give the following equation:

By the rule c?^.= (izi^^l^CA+^^Zf!)!.^ 6(l+2a;—rc2)

Results under this rule are always reducible^ as we have the

same quantity in the numerator and denominator of the second

member, with different exponents. By subtracting one expo-

nent from the other, and dividing numerator and denominator

by 2, we get the following reduced result

:

{\—x)dx
du^=. L.

3(l-|-2a;—a:3)6

(Art. 5.) Sometimes we have u=f[y), and y:=F(x), and

require the differential co-efficient between the function u and

the variable x.
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For that purpose we first find ~ from one equation, and then

J!, from the other, and multiply them together, and we have~
dx dx

as required.

For example, suppose «=l+2y+y*, and y=a+a;3, and we

require the ratio ~y we obtain it thus :

dx

From the first ^=2+2y.
dy

From the second _J^=3a;*

.

dx

Multiplying these together and we obtain the final result

We might have taken the value of y, {a-\-x'^ ) in the second

equation and substituted it in the first, and then have taken the

difi*erential, but this would have been more troublesome.

(Art. 6.) We have but one more rule to advance to enable

the learner to difi'erentiate all kinds of algebraic guantiiies. That

is, a rule to differentiate a fraction.

Let it be required to differentiate the fraction -. Put u=-,
y y

Then the value of du will be the differential of the fraction.

Clear of fractions and uy=x.

The first member is a product of two variables, therefore dif-

ferentiate it by Rule 2.

Whence udy-{-ydu=idx

Restoring the value of u, this last equation becomes

—K-l-ydu=dx,

y

Or xdy-^-y^du^ydx.

Whence du=y^J^,
y^
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From this equation we can draw the following rule to diflfer-

entiate a fraction

:

Rule 7. From the differerdial of the numerator multiplied by

the denominator, subtract the differential of the denominator multiplied

into the numerator, and divide the difference hy the square of the

denominator.

We can obtain the same result, independent of a product, as

follows :—The fraction to be differentiated is -. Let x become
y

z-\-dx and y become y-\-dy.

Then the fraction becomes .^i-*, and from this subtract the

original fraction, and we shall have the difference, which is the

differential in case both dx and dy are extremely small.

x-\-dx X xy-\'ydx—xy—xdy

y+dj/ y y^+ydy

The difference is ^ ^ ^ ^
, whatever he the values of dx and dy;

y +ydy
but when dy is extremely small, (not to say infinitely small), then

y* is not sensibly augmented by the addition of ydy, and there-

fore the differential of the fraction is ti—ZI—fL, as before found.
y""

The preceding rules and combinations of them will serve to

differentiate any algebraical expression that can be given. Yet

there are cases that might appear inapplicable to the rules, at

first view, and in these operations there is room to exercise

algebraical tact and skill.

We give the following examples :

1, Differentiate the equation

-As explained in (Art. 5,) put y^ia-^-hx^t then w=y°'. Now
from this last equation

^^mf^K (Rule 4.)
dy^
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Also ^=35a;^ (Rule 4.)

By multiplication _=36??ia;2y"-^».

Substituting the value of y^~^, and multiplying by dx, and

du=Sbmx^ (a-\-bx^ )"'"* dx.

2. Differentiate the equation

u=x(a^+x^)Ja^^^^. (1)

This requires the application of Rules 3 and 5, but to show

independence and tact, put

y=Ja^—x^. (2)

Multiply (1) and (2), and we obtain

uy=a^x—x^.

Taking the differential of each member,

udy-\-ydu=a*dx—5x*dz, (3)

From (2) we find

The product of (4) and (1) is

udy='-{a^x^+x* )dx, (&)

Subtracting (6) from (3), and we have

ydu=(a^-\'a^x^—4x^ )dx.

Finally, <,„=Li^_=_^^.

Some expressions may be reduced or changed in form to ad-

vantage before attempting to take the differential. The following

is an example of the kind

:

J\-\-x-X-J\—X
3. Given u= — ==. to find ike differential of u.

^l+a;—^1

—

X

Reduce the second member by multiplying numerator and

denominator of the fraction by the numerator, then
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-x^dx

Whence
du=.^-==^-dx{X+.J^-x^) ^^^^^ ^^

Dividing by rfar, and changing signs, we have

dx JU^'^ x^

J{.J\—x^Ji^\^x^_ \+J\—x^

Whence du=-— • _ 1 dx.

x^J\—x'

We add the following unwrought examples to exercise the

powers of the learner

:

4. «= aM= .

x^ x^

5. tt=-^ du=^:z^.

{xf ^x^

6. u=^x^y^ du=:2x'ydy-{-2y^xdx.

7. u=j2ax+x^,.JRu\e 6, reduced. )..^m= (^jl^^ .

8. M=. dx

9. u= ^ du=.
"^^"^

sJl-'X' (1—a;2)t

10. tt= ^ du=.
^"^

1+a:* , __ 4xdx
11. «=__L__ c?t<=

i—x^ (i—x^y

12. w=_^ du^J''^^.
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13. ^={\+x)^\'-^x du=^^^^.
271—» •

14. u=.(JT=:x)u-T+^) du=-<^_^'+^^ .

16. u:=. J_^..,,. du=^{ydy-xdx)^

16. u=2xja''4-x^ du=^— ' ^ .

17. «=(a+j5—i) c?w= .

^'
'. x^

18. yz={a+JxY dv= Ha+J^Ydx
^Jx

^o 1 jt —Sdx
19. jr== ,=:^ cfy= —^:, =—

(a+Jxy 2jxia+Jxy

20. P=2xy' dF=2y^dx+4xydt/.

21. P=_JL_ r^P=—( 2y^ dx-}-4xydy)

2xy^' 4ar2y*

22. g=(J^q:^)(76M=^),^

23. Find the differential co-efficient of {a+x^){b-]-3x' ).

-4w5. 15x*-\-3x^b+6ax,

K. B. Put «=(a+a;3)(5+3a;2), and find the value of —

.

dx

23. Find the differential coefficient of a cube whose side is x.

The function is then u=x^, and du=(3x'^)dx, and Sa;^ is the

coefficient required, showing that the differential of the side must

be multiplied by the coefficient Sx^, to obtain the differential of

the volume, and this will explain the general application of differ-

ential coeffieients.



CIRCULAR FUNCTIONS. 157

CHAPTER II.

The Difierential of Circular Functions.

(Art. 7.) Let AB be a circular arc

designated by x, and let it receive an in-

crement k, as represented by Bp, and

from this we are to determine the value of

(op), (oB), and TH.

When Bp is so small that the chord and

the arc may each be considered a right

line, then h becomes (dx), the differential

of the arc {op) is the differential of the

sine X, (oB) is the differential of the co-

sine Xf and Tffis the differential of the tangent x.

The two triangles poB and CDB are equiangular and similar.

Each has a right angle, one at 2), the other at 0.

The angle pBC is a right angle, so is oBD ; from each to take

the common angle oB 0, and we shall perceive that the angle

pBo is equal the angle CBD. Whence the angle 02:)B is equal

the angle BCI), and the two triangles give the following pro-

portions :

pB : Bo :: CB : BD, (1)

pB : po : : OB : CD, (2)

If the radius CB is taken equal to uniii/, and pB suflficiently

small to call it dx, then proportion ( 1
) becomes

dx : —d.cos.x : : 1 : sin.a:. (3)

and (2) becomes dx : dsin.x : : 1 : cos.a:. (4)

Whence d.
(A)

And

'.cos.a;=

—

sm.x,dx.)

dsm.x=cos.xdx, i

It now remains to find the value of TJI, the differential of

tan.a;. For this purpose we will resolve the triangle CTHirig-

onometrically, thus

:

sin. CffT : CT : : sm.IICT : RT.

Now let it be observed that the sine of the angle CHT is very

11
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nearly the same as the sine of the angle CTA, which is equal to

the cosine of the angle TOA or cos. a;.

Also, as the angle JICT is an extremely small angle, (by hy-

pothesis, ) and as the sine of a very small arc is the same as the

arc itself, therefore s'm.IfCT=pB=dx.

Whence the preceding proportion becomes

cos.a; : CT : : dx : c?tan.ar.

Now, in the similar triangles CDB, CAT, we have

CJ) : CB : : CA : CT.

That is, cos.a: : 1 : : 1 : CT= ^

cos.a;

Therefore, cos.a; : : : dx : dt2i.n.x,

cos.a;

Or c?tan.a;=——

_

(Art. 8.) All this can be drawn more readily from the trig-

onometrical formula, but we gave the preceding article because

we deemed it essential for a learner to have a geometrical view

of the subject.

Now we will show the same as follows

:

Let x= the arc AB, and k= the arc Bp, then by trigonometry

sin.(a;-{-^)=sin.iCCos./i+cos.a;sin.A. (1)

cos.(x-\-h)^=cos.x COS.A—sin.a; sin.h. (2)

Now if we suppose h represents an extremely small arc, then

008.^=1, and sm.h=h, and (1) becomes

sin.(a;-|-A)

—

sm.x=co8.xh.

But under this supposition the first member of this last equa-

tion becomes c?.sin.a;, and k=dx, and the equation itself

becomes

d. sin.a;=cos.a; dx. (3)

By parity of reasoning, equation (2) becomes

cfcos.a:=

—

sin.xdx. (4)

We perceive that (3) and (4) are the same as (A) in Art. 7,

as they ought to be.
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To obtain the diflferential of a tangent we observe that

, ^ sin.o;
tan.a;=

COS. a;

The differential of the first member of this equation is simply

(dta.Ji.x), and the second member must be differentiated by the

rule applicable to fractions.

Thus ^f.. ^- c^siD.^cos.a;—c^cos.a;sin.a;

cos.^a;

Substituting the values of c?sin.a;, and of d cos.a;, taken from (3)
and (4), we have

^^^^^_(<'os.'^+8m.^x)dx_ dx

COS.^iC COS.^iC

By trigonometry, secant.a;= (Radius unity.)

Whence d*aeG.x=-

Also, cot.ic

Whence d.cot,x=

cos.a;

mn.xdx tan. a; dx

cos.^ic cos.a;

1

tan.ic

tan.a; —dx

tan.^o; cos.^artan.^a:

But tan.a;cos.a;=sin.ar.

Therefore dcot.x=— .

sm.^ic

By trigonometry cosec.a:= ——

.

sm.a;

fin. i. J —cos.xdx
Therefore a;.cosec.a?=.

sm.^a?

But £??f=_l_. Whence c?cosec.aJ=.
""^

sin.ic tan.rc tan.a^sm.a;

It is obvious that the differential of the versed sine of an arc

is the same as the differential of the cosine, differing only in

their signs.

For the sake of reference we collect the preceding results,

showing the differential expressions for all trigonometrical lines.
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dsm.x=cos.xdx. (a) dcot.x=— ^
. (e)

dcos.x=-'Sm.xdx. (b) daeo.x=J^:Rf^. (/)

d ver. siii.a;=sin.« dx, (c) c? cosec.a;= (a)
tan.a; sin .a;

<?tan.a;=_-^-. (cf)

To diflferentiate any power of a sine or cosine, we proceed as

follows

:

Let t<=sin,"iP. (1) Put y=Qin.x. (2)

Then u—^. And du—u'if^^dy. (3)

But from (2) we find dy-^o.o^.xdx. Now substituting the value

of y, and dy, in (3), we have

du=^n%\VL^~'^xQ,o^.xdx.

From this we perceive that the difiFerential of ««=sin.*a: must

be <?M=4sin.3a;cos.a:cfe.

If we have w=cos."a;, a similar process will give

<;%=

—

n COS."" 'ar sin.a; dx.

The practical uses of these equations will be shown in ftiture

portions of this work.

(Art. 9.) Hitherto we have shown the differential of sines,

cosines, tangents, &c. considered as the function of an arc; we

now propose to show the differential of an arc regarded as a

function of its sine, cosine, tangent, &c.

-When we represent a sine by ar, the arc to which it corres-

ponds is designated thus

arc(sin.=a;).

If we represent a cosine by a?, its corresponding arc would be

designated thus

arc(cos.=ar;,

1?^ich is read, an arc whose cosine equals x.
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This notation not being satisfactory nor convenient, modern

mathematicians have adopted the following

:

sin.'^ar, cos."^a?, tan.'*a;, &c. &c.

Thus M=sin.'*a;, indicates that x is the numerical value of

a sine, and u is the numerical value of the corresponding arc,

therefore the equation may be written sin.M=ar.

Similarly cos.'*a;=z^, is the same as cob.u=x.

If a; represents the sine of an arc, ^1

—

x^ must represent its

cosine, and _______ must represent the tangent of the same arc.

J\—x^
Take sin.w=a:.

We differentiate the iBrst member as a sine, and the second

member as an algebraical quantity ; therefore

COBMdu=dx,

dx
Whence du=— ( 1

)

J\—x^

Let ^ be a tangent, and u its correspondmg arc to radius unity,

then we may write

w=tan.'*^.

Or tan.w=^.

Now by equation (c?) of (Art. 8,) we have

COS.^M

du=zdt(GOB.^u)=dt =

—

^—, (2), because ~,

is the cosine of an arc when radius is unity, and t the tangent.

Again, let cos.M=y.

Then —sin.w du=dy.

Or du:=^
—^y,

. (3)

Equations (1), (2), and (3), of this article will be frequently

referred to and applied in the integral calculus.
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We give tlie following examples to discipline the learner :

1. Qiven ^m.{mx)=Ui tofind du.

QOB,{mx)d{mx)=idu.

Or mdxcos.mx=du,

2. Gfiven u=8mr^ ( ^ Y or sin.w=-—?-, tofind du.

..,.,^.,^-^^dx{l+x-^-^xdx{\-x-)

But if the sine of an arc is , the cosine of the same arc
l+x^

Zx
is , because sin.2+cos.^= l. Therefore

2x , _'-2xdx( 1 4-a;^ )—2xdx(1—x^ )

1+^
^

(l+x^y

2dx
Whence by reduction du=— —

—

^ 1+x^

3. Given u=8mr^J{l—-\ oy sm.u=Jf -\tofind6xL.

—dx
Ans, du:

2^1—^^^

4. 6Hven go8.u=4x^j tofind the value of du.

—X^x^dx
Ans. du-

^1— 16a;*

5. Given sin.M=- to find du.

Ans. au-^^^^.

S. Given 8m,z=2ujl—u^ tofind dz.

Ans. dz=: —.

Vl—w'
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CHAPTER III.

On the Differential of Exponential Quantities and

liOgarithms.

(Art. 10.) Hitherto the variable quantities have either been

algebraic or circular, but we may have an equation in the form

y=a-. (1)

In this equation the exponent x is variable, and if it becomes

(x-\-K) we are to show what effect that will have on the value

of y.

As in our previous notation, if a; becomes (x-^-h), let y become

y\ then

y'=a»+h=a'^ a*>

.

(2)

Subtracting the original equation, we have

y'—yT=za^a^—a^ . (3)

That is, yjll=a^^l. (4)

Or ^^+l=ah. (6)
y

If W3 put a=l-|-5, we can expand the second member of (5)

by the binomial theorem thus :

2 3
'

This substituted in (5) and one dropped for each member, and

dividing by h, we shall have

This last equation is true for all values of A ; it is true then

when h has a value inconceivably small, but in that case y'—y
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becomes dy, and h becomes dx. On tliis supposition the pre-

ceding equation becomes

ydx 2^3 4^6 6 ^ ^

The second member of (6) is a series of constant terms, and
is always the same, while a in equation ( 1

) remains the same.

Let the sum of this series be represented by Ay then (6) be-

comes

^^Adx, (7)
y

If we take A=^— Then (7) becomes

dx=m^. (8)
y

If we observe equation (1) y=a^, we must recognize a log-

arithmetic equation, x is the logarithm of the number y, and the

base of the system is a.

Equation (8) gives us a general rule to diflferentiate a loga-

rithm :

Rule. The differential of a logarithm is equal to the differential

of the number divided by the number, multiplied by the modulus of

the system.

When the base is so taken as to make -4=1, then will ?w=l,

and we shall have the hyperbolic or Naperian system. For con-

venience merely. Lord Naper the first investigator of logarithms,

assumed A=\. This system is still used in mathematical ope-

rations, and the results changed into the common system, if

need be, by applying the factor m. When m=i equation (8)
gives the following rule to differentiate a logarithm

:

Rule. Take the differential of the quantity and divide it by the

quantity.

Practical application is made of equation (8) in the author's

treatise on Surveying and Navigation, and we will give a few

examples here by way of illustration.
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1

.

The logarithm of 10452 is 4.01 919941, what is the logarithm

of 10452.12, the modulus of the system being 0.43429448?*

Here y= 10462, c?y=0.12.

Therefore dx=:'^'-^L
10452

To 4.01919941

Add <?ar=0.00000498

Log. 10452.12 =4.01920439

2. The logarithm of 104521 .2 is 6.01920439, ivhat is the loga-

rithm of 104520. l'^

Here y= 10452 1.2. dg=-^0.7,

^ .43429448(—0.7)
10452^2

To 5.01920439

Subtract . . . c?ir=—0.00000028

Log. 104620.7 =5.01920411

Thus we might give examples without end.

(Art. 11.) Logarithms are exponents, therefore the addition

of two logarithms corresponds to the logarithm of the product

of the two members.

Thus log. 2^=log.oa=log.a4-log.a=2log.a.

The log. of a is half as much as the log. of a^ .

In the common system the log. of 100 is 2, the square root of

100 is 10, and its log. 1. The square root of 10 is 3.16227766,

therefore the log. of this number is 0.50000. Thus we may go

on extracting square root for succeeding numbers, and halving

the log. for the corresponding log.

* We will soon show how this number may be found.
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The following table shows some of these results

:

Numbers. Logaritlims.

10.00000 1.00000

3.1622776630 0.60000

1.7782793430 0.25000

1.3335214070 0.12600

1.1547819700 0.06260

1.0746077770 0.03125

1.0366328673 0.015625

1.0181521828 0.0078126

1.0090352733 0.00390625

1.0045074297 0.001953125

1 .002251 1 809 0.0009765625

1.0011249572 0.00048828125

1.0005623151 0.000244140625

1.0002811174 0.0001220703125

1.0001405488 0.00006103515625

1.0000702719 0.000030517578125

1.0000351353 0.0000152587890625

1.00001756752. 0.00000762939453125

Thus we might go on, but we hare gone far enough to illus-

trate the possibility of finding the value of m independently of the

Naperian system.

The log. of 1 is in every system. Our last log. just found

corresponds to a number a little greater than 1, but the decimal

is so small in relation to 1, that it may be taken for the differ-

ential of 1

.

Equation (8) gives us dx=m^. Whence m=i- .

y dy

Butif?/=1, cfy=0.00001 756752, and c?a;= the last log.

rrs. 0.00000762939453125 ^ .^^nn^ iThen m= = 0.434294-4-.
0.00001756762

~

To fix these principles in mind we give the following exam-

ples to differentiate. The word logarithm is indicated by log.,

and indicates the hyperbolic or Naperian log. unless otherwise

expressed.
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I. Oiven u=\og.( ^ ~\ tojind dvL.
X

We first take tlie diflferential of the second member as an al-

gebraic quantity, thus :

a^+x

a^dx
Whence c?w= X Ja^-\-x^ =, d^'dx

, ^^,

(a^+x^)Ja^^x^ x x{w'+x^)

2. Oiven u=\og.{x-{-Ji-\-x^) to find 6m,

dx
Ans. du=^-^==r-'

J\+x-

3. Given u=-.-^:^\og.(xJ— \-\-JI—-x^), to find du.

V-1
N. B. Put a=J— 1 for the sake of perspicuity.

dx
Ans, du=.

4. Given n=log.(^l—x^) to find du.

Ans. du=
(l-x-)

5. Given u=\og,{Sx^ -^-x) to find du.

Ans. du=( ?^i:L\dx.
\ 3x--^-x/

N. B. We can if we please use logarithms to differentiate

common algebraic quantities. To show this, we take example

11 from (Art. 6,) of this volume.

6. Given u=—L—, to find du.
1

—

x'^

Take the log. of each member, then

log.M=log.(l+a;2)—log.(l—aj2).
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Now differentiate each member by the logaritbmetic rule, and

we find

du ^xdx . Sixdx 4xdx

Tt 1 _L_/..2~ '
'

n J 4xdx . . l-\-x^ 4xdx j.

7. ^ve« u= to find ^u. (From Art. 6.

)

\og.u=n log.ar—w log. ( 1+a;) .•

du ndx ndx ndx

X (1+^) x(l-\-x)

rdx / a;" \ na^'^dx ,

I \(\A.xY )
~7--~--^-

aj(l+a;)\(l+ar)»/ (1+a;)"**

8. Oiven u^^xja^-^x^ to firtd diu, making use of logarithms.

An.. du=(Ji±^£J±^,
Ja^+x^

9. Cfiven u=\og.(2xJa^-\-x'^) to find du.

The differential of the quantity under the log. was found in

the last example, hence the answer to this is found simply by

dividing that answer by 2xja^-^x^.

. , (a^+2xndx
Ans, du= \ \ \ ..

x[a^-\-x^)

The following examples come nearer the practical uses of these

principles

:

(Art. 12.)

10. Given w=log. sin.a; to find du ; that is, given the log. sine

of any arc tofind its differential, or its rate of increase or decrease

at that point.

y cos.xdx . Jau=— =cot..'r dx,
sin. a;

This result corresponds to the modulus of unity : for the modu-

lus of our common system we must multiply by 0.43429448=?w.
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For example, if we assume a;=25°, and also assume dx=\',

the diflferential, or the diflference between the log. sine of 26°

and the log. sine of 26° T is expressed by wcot.26°Xl'.

Log.m —1.637784
cot. 25° 0.331327

Log. sine 1', less 10 —4.463726

.0002709 —4.432837

To the log. sine of 26° 9.625948

Add the differential. 000271

Log. sine of 26° 1'= ..9.626219

We might assume dx==2' as well as 1', without error as far as

six places of decimals ; but it would not do to assume dx= any

large number of minutes ; hence the differential calculus must

be applied with judgment.

1 1

.

CHvm n=\og. cos.ic to find du.

Ans, du=—tan.xdx.

To apply this, we demand the variation of the log. cosine of

34°, corresponding to T increase of arc.

Log. m —1.637784

tan. 34°, (less 10) —1.828987

Log. sine 1', (less 10) —4.463726

c?w=0.00008521 —5.930497

To log. COS. 34° 9.918574

Subtract du 0.000085

Log. COS. 34° r .9.918489

12. CHven u=log. i2Lii.x to find du.

, dx dx 2dx
du= = =-;

cos.^ajtan.ic cos.irsm.ic sm.2a;

What is the variation corresponding to T to the logarithmic

tangent of 40°?
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Log. m —1.637784

Log. sin. r+log.2 —4.764756

Sin.2a;=sin.80° complement 006649

</m=0.00025653. —4.409189

To log. tan. 40° 9.923813

Add du 267

Log. tan. 40° r .9.924070

13. Oiven w=log.(cot.a:) to find du.

^
—dx —dx —9.dx

sin.2a;cot.a; cos.ajsin.ir sin.2a?

This last result shows that the log. tangent and log. cotangent

vary alike in amount, the first positive, the last negative.

(Art. 13.) The use of logarithms is very essential in differ-

entiating examples like the following :

It is customary to represent the base of the Naperian system

by e, and the log. of the base of any system is 1 ; hence, if we
have any equation in the form u=e^ and take the log. of each

member, we shall have \og.u=x simply, and if u=e^i/f log.tt=

2?+log.y, &c. (fee.

14. 6Hven u=e^(x—1) to find the value of du.

Log.«^=ia;-j-log.(a;—1).

du J . dx xdx—z=2dx-\- = .

u x—1 X—

1

du=^^=.e-xdx,
x—l

16. Given u=e''{x^—^x^-\Sx—6) to find d.VL,

Log.w=a:4.1og. (a;^—3a; 2+6a?—6)

.

df^^^^ . (3a;^—6a;+6) dx_ x^dx

u ^"''aj^—Sa;^ J^Qx—Q~ x^—3x^ +6ar—
6*

—= ^- =e^x^. Or du=e^x^dz,
dx a;3—3«2+6a;—

6



LOGARITHMS.

16. Given u= to find dn.
1

—

X

17. Given u=e^\og.x to Jind du.

Ans. du=(—pI ' je^dx.

18. Given u= to find du.

Am,du=J!^-,
(e-+in

19. Given u^x'^ilog.xy to Jlnd —.
dx

Put z=:log.x, then u^=x^^.

Ans. _=(mlog.a;+w)a;"-»(log.a;)*-».

20. Given t.=l*il2i:^~^^M+^ ^o/;^^ du.
4 8 ^32

21. (Tjww «=a?y to find the value of du.

Log.«<=ylog.ar.

^=log.^.iy+3,^.

du=xy \og.xdi/-\-yxy~^dx.

22. G'iwTi «=log.(cos.a?+^—Isin.a;) to find du.

Ans. du=J—Idx.

23. CHven «=!2i£ tofind du.

^n.. cfe.= (lzi^-^)rf:r.
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CHAPTER IV.

Successive Differentials.

TAYLOR'S THEOREM.

(Art. 13.) When we Iiave an equation u=^f(x)^ its differen-

tial coefficient is generally another function of Xy symbolically

represented thus :

dU J. r >.

This new function of x can again be differentiated and divided

by dx, giving still another function of x, then we shall have

until the last differential becomes constant or valueless, as the

case may be.

For example, let u^ssx^.

The 1st diff. coefficient is ^=30:^
dx

The 2d is
dx^

The 3d is
d^U^Q
dx^

Here the operation must stop, as the second member is con-

stant. By this we perceive that if u=x'^ after n differentiations,

the second member will become constant and terminate the ope-

ration.

We sometimes write

du dp <^9 A.

dx dx dx

Then will —=i>, =g, =?*, &c.
dx dx^ dx^

du is the differential of u ;

d^u is the second differential

;

d^u is the third differential ; &c.
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It should be remembered, that the exponent which accompa-

nies the characteristic d^ indicates the repetition of an operation,

and not a power of the letter c?, which is never considered as a

quantity, but merely as a sign.

The expression dx^ signifies the square of dx, or (dxY , and

not the differential of a;^, which is usually denoted by d,x^ or

d{^x^)\ again, dx^ signifies the cube of dx or {dxY y and so on.

(Art. 14.) If we have a function of the sum or differeme of

two variables, the differential coefficient will he the saine whichever be

supposed to vary, the other being constant.

For example, let u^=^(x-±iy)^

.

Take the difierential coefficient on the supposition that x is

variable and y constant, then

^=i(x±y)K (1)

Now on the supposition that y is variable and x constant, and

dy

Comparing equations (1) and (2), we perceive that

du du

dx dy

Taking the differential coefficient of (1) in relation to ar, and

d^u

dx'

And the differential coefficient of (2) in relation to y, is

g=12(.±y)'. (4)

Comparing (3) and (4), we perceive that

d^^d'^u
Tx^ If

Thus we might show that

d^u__d^u and d^u __d^u

-^-12(a:±y)^ (3)
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(Art. 15.) If we have u=^fx and suppose that a: becomes

(a;+A), and in consequence of this u becomes %', then

u'=:^u-\-Ah\Bh-'-\^Ch^^Bh^, &c. (1)

To give the learner a clear comprehension of this, we will

illustrate it by one or two particular examples.

Let w=aa;*.

Now suppose X becomes x-^-h, and u becomes u\ then

u'=a(x+h)^=ax^+4ax^h-\-6ax^h''-\-4axh''+ah^, (2)

Now it is visible that the first term of the second member is

Uf and if we -pvit4ax^=A, Qax^=Bf &c. we have

u=::u-\-Ah-{-Bh^-\-Ch^-\-Dh'^f &c. which we proposed to show.

Again, let u=.a-\-bx-\-cx^ ^ and suppose x becomes x-\-hf &c.

Then u'=a-\-b{x-\-h)+c{x-\-hY

.

Or u'z={a-\-hx-\-cx^)^(b-\-2cx-\'Ch)h.

Here again we have

u'=:^u+Ah+Bh^-\-Ch^+ &c.

according to the degree of the variable x in the original function

-

Resume the equation u=ax'^, and take its successive differ-

ential coelficients thus

:

du

dx

d^u

dx

d^u

=4ax^=A

= 12ax^=2B.

=24aar=2.3.(7.
dx'

=24a:
dx^

:2.3.4i>.

Comparing these results

with equation (2).

Substituting these values of A, B, C, &c. inequation (1), we
have

^dx ^dx^ 2

d^u h^.d'^u A*

'dx^ 273 dx^ 2.3.4'
&c.

a general expression for the development f(x-\-h)=u\ and this

is Taylor's Theorem, from Dr. Brook Taylor, an English mathe-

matician who discovered it about the year 1715.
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(Art. 16.) In the preceding article we drew out Taylor's

theorem by inspection. Let that be well understood, and the

learner is prepared to appreciate the following general demon-

stration :

Let u=f{x).

Now suppose X to take an increase y, and in consequence of

this, u becomes w', then

u'=^f{x+y)=^u+Ay+By^+Gy^+Dy\ &c. (1)

In the second member, u, A, B, <fec. contain functions of x,

and the constants that enter into x.

Take the differential of each member in relation to a; as a

variable, and divide each term by dx, then we shall have

du' du.dA ydB ^ l
^^ 31^-^ 4_l_ r?r (9\

dx dx dx dx dx dx

Take the differential coefficient of (1) again, regarding a; as

constant and y variable, and we shall have

^'^'=^-f2%+3(7y'+4Z>3/3+ &c. (3)
dy

Now the first members of (2) and (3) are equal by (Art. 14),

therefore the second members are equal, and the terms contain-

ing like powers of y are equal. (Algebra Art. 128.)

Therefore ^=^, ^^=25, 4^=3(7, 4--=4A &c.
dx dx dx dx

T> du . d^u dA ^r) d^u dB ^^ «

Because —=A, =_=2^, =— =3(7, <bc.
dx dx^ dx 2dx^ dx

Whence ^=^, ^=^, C=_i!-^_, i)= ^'^ ^

dx dx^2 dx^ 2.3 dx^ 2.3.4'

Substituting these values of A, B, C, &c. in (1), we have

, . du . d^u y^ . d^u y^
, d'^u y^ . .

^dx^dx'' 2^dx^ 2.3 ' dx* 2.3.4
'

NT> rm, • du d^U d^U « ,r
. JtJ. The expressions u, — ,

, , (fee. are the same
dx dx"^ dx^

as X, X\ X", X"\ (fee. in Robinson's Algebra, (Art. 171,)

page 273, and are there called derived polynomials.
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MACLAURIN'S THEOREM.

(Art. 17.) Maclaurin, a Scotch matliematician, has given us

a theorem very similar to that of Taylor, which demonstrates

the binomial theorem, and enables us to develop any function of

a single variable, provided the development is susceptible of con-

taining the ascending powers of the variable.

But the theorem does not apply to other forms of development.

Let u={a+xY={a)-\-Bx+Cx''+Dx''-\-Ex\ &c. (1)

Here we are sure the first term of the development (a) does

not contain a?, and B, (7, i?, &c. are each independent of the

value of X.

Take the successive differential coefficients of (1), and the re-

sults will be as follows

;

^=^B+2Cx+Wx^-\-^Ex^-\' &c. (2)
dx

^=:2C+2.Wx+3.4Ex^+ &c. (3)
dx^

:5?!^==2.3i>+2.3.4^a;+ &c. (4)
cix

Equations (1), (2), (3), &c. are all true for all values of x;

they are therefore true when x=0. Making this supposition,

they become

u=a*=:(a)

C=

dx

dx^2

jD=J^-. &C.
dx^2,3

Substituting these values of B, (7, i), &c. in (1) and we have

^ ^^\dx/ ^Kdx''/ 2^\dx^/2.3^
The first term (a) is whatever u becomes when the variable

is made equal to in the primitive function.
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APPLICATION.

Let us now apply this theorem to this very example ; that is,

develop (a-j-^y by it.

g=«(»-i)(<»+«r'.

^=«(»-l)(»-2)(«+^)-».

^=n(n—lXn^2){n—3)(a+x)'^', &c.
dx*

Making x=0, these equations become

dx dx^ dx^

Hence, by substituting these values in the formula, we obtain

<^)C-i^)"-'^'+
^-

This is the same result as would arise from the direct applica-

tion of the binomial theorem, and this formula can be used to

develop binomials generally— but there would be no advantage

in using it for common cases, for the direct application of the

binomial theorem is less circuitous and more brief.

But this theorem is more powerful than the binomial theorem,

and will apply to other functions as well as to simple algebraic

binomials,— hence its utility.

To show the power of this theorem, and at the same time draw

out useful mathematical truths, we give the following

EXAMPLES.

1 , Develop a^ into a series containing the ascending powers of

X, if possible.

Making a;=0 the function becomes 1, a rational finite quantity
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therefore the development is possible—as the demonstration was.

general under that hj^pothesis,

In equation (7), (Art. 10,) we find -^==^a*. As u4 is a

constant quantity, and e<=a^, a second differentiation will give

A third ^=zA^a^,
dx^

A fourth ^=:^4^x. <fec.

Making ar=0 in these equations, as in the previous example,

and we have

^=A, ^=^», i'Ji^A^. &c. &c.
dx dx^ dx^

Therefore equation {I ) becomes

a^=l+^.+d!^V^^V---+-^i^+ &c.
' 2 ' 2.3 ^2.3.4^2.3.4.5 '

As X is unrestricted in value, we may make x=-

Then a^=l+l+i+J_+_i_+ ^ + &c.=f.
' 2 ' 2.3 ' 2.3.4 ' 2.3.4.5

The value of e taken to seven decimal places, it is 2.7182818.

This is the base of the Naperian system of logarithms, and it

is much used in analysis.

From the last equation we find a=e .

Taking the logarithms we have log.a=-4 log.e.

Or ^=l5Sf.
log.e

Now since a and e are known, A is known. If log.a=I,

A=^ , and if log.c=l, -4=log.a. That is, A is equal to
log.e
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the Naperian logarithm of 10. We shall soon discover that the

value of this logarithm is 2.302585093.

The modulus of the common system of logarithms is the

reciprocal of A designated by m in (Art. 10); therefore ?n=
. 434294482, corresponding to the result approximately obtained

in (Art. 11).

(Art. 18.) To show the distinction between the theorems of

Taylor and Maclaurin, we will now apply the former to the

development of this same function

Let u=a^. (1)

Then u'=a^*^ (2)

And by the theorem

u=U'\-—h-\- -4- + (fee. (3)
^dx ^dx^ 2 ^dx^ 2.3^ ^

'^

Taking the successive differential coefficient of ( 1
) we find

dx dx^ dx^

Substituting these quantities in the formula, and

2 ' 2.3 ' 2.3.4

Divide each side by a ^ , and

' ' 2 ' 2.3 ' 2.3.4
'

As h is arbitrary, we may put h=— , then
Al

\_

a^=l+l+l+_l_+__l_, &c. =e.
2 2.3 ' 2.3.4

Or a=e , as before.

In Maclaurin's theorem the differential coefficients i —V
\dxr

(d^u\-—
- \, &c. correspond to the variable x=0 in the second mem-

ber, and they are put in parenthesis to distinguish this theorem

from that of Taylor.
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2. For a secmd example, let u=sm.x, and w'=sm.(a;-|-^).

du d^u . d^u—= cos.a:, =—sin.o;, -—
dx dx^ dx^

Then(Art. 7,) ^=cos.a:, ^!^=—sin.o;, ^=—cos. ar.

6?*« . d^u B— =sin.a;, ,
—=cos.ar, &c.

dx* \dx^

Substituting these values in Taylor's formula, we find

sm.(rr+A)=sin.a;+cos.a;_—sm.a; —cos.ar -]-sin.a;

1 1.2 2.3 2.3.4*

This is true f6r all values of x\— it is true then when a;=0,

and this supposition gives sin.a;=0, and cos.a;=l, and the re-

sult becomes

sm.A=A— 4- — . + (KC.
2.3 '^2.3.4.5 2.3.4.6.6.7 '

Rbmakk.—This operation compared with that in Geometry, pages 221,

222, 223, for the same object, shows the superior power of the calculus

over common geometry in a very clear light.

3. For a third example, let u-=cos>.x, then u'=Q,0B.(^x-\-h).

Taking u, and the successive differential coefficients of u, and

substituting them in the formula, we shall find

cos.A=l——4- —
-I- &c.

2 ' 2.3.4 2.3.4.5.6

These results may also be deduced from the theorem of Mac

-

laurin.

These formula are used to compute the sines and cosines of

small arcs when the arcs are known.

(Art. 19.) By Taylor's theorem we can easily develop a

logarithmic function into a series.

Let «=log.rr.

u':=\og.{x-\-h\

Taking the successive difi'erential coefficients of u, we find

dM^\ d^u___l d^u_2
dx Ic

^~" ^' ^3""^'

^____3 d^u_S.4
^ x^* dx^ x^'

on the supposition that the modulus is unity.
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These values substituted in the formula give

&^TJ ^ ^a; 2x^^3x^ 4x'^5x^ ^^

If h be made minus, the result of the formula will be

log. (a;

—

h)z=\ocf,x—-——-— — ——— &c. (2)

Subtracting the latter from the former, we have

log.(a:4-^)—log. (a;—A)=_+ + + + <fec.

x 3^3 bx^ Ix^

If we make a;+^=2 and x—A=l, then a;=f, and ^=^.

Also _=-, and (3) becomes
X o

log.2=2(^^+l JL+LJ_+i.JL+)&c,
^ \3 ' 3 27^5 243 ' 7 2187 ' /

This gives the hyperbolic logarithm of 2=0.69, and so on.

As formula (3) is not convenient for all numbers, we will

modify it. It is obvious that the first member is greater than

1, therefore we may assume

This ffives _= , and these values substituted in the
^ X 2^+1

formula, give

^\ z J \(23+l)^ 3(22+1)3^ 5(22+1)5^ /

Or iog.(2:+l)=log.2+2(^_i_+ 1 + ^ +\B\-T J S -r
V 22:+1^3( 2^+1)3^ 6(22+1)5 V

This formula gives the hyperbolic logarithm of {z-\-\) when

the log. of z is known.

When z=\, log.2=0, and the formula gives the hyperbolic

log. of 2. Because 2^=8, three times the log. of 2 will give

the hyperbolic log. of 8.
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Now making z=8, an application of the equation will give

the hyperbolic log. of 9. Then making 2=9, another applica-

tion will give the hyperbolic log. of 10, which is 2.302585093,

and it is represented by A, or log.a in (Art. 17.)

In (Art. 10,) we represented the modulus of the common sys-

tem by m, and m=—
Hence m= ^

=0.43429448.
2.302585093

Therefore the formula for common logarithms is

log(^+l)=log.0+.86858896 (
^ + + \b\-r J 6 -r \ 2^+1^3(20+1)3^5(2^+1)5/

+ &c.

ANOTHER METHOD OF DEVELOPING LOGARITHMIC AND CIRCULAR

FUNCTIONS.

(Art. 20.) We can best illustrate this method by taking the

preceding example, and comparing the results step by step.

Let u'=\og.{x-{-h).

Conceive x to be variable and k constant, then

du'_ 1 _ 1

dx ic+A h-{-x

The second member of this equation can be developed by

division, or by the binomial theorem. When so developed, we

shall have

^=1—^+^-^+^— &c. (1)
dx h h^^h'^ h^ ' h^

This equation shows us that u' expands into ^ series contain-

ing all the ascending powers of x, and possibly there is a term

not containing the variable x.

Therefore we may assume

u'=AJ^Bx-\-Cx^^Dx^+ &c. (2)

From this equation we find

^-^.=B+^Cx-\-^Dx^+^Ex\ &c. (3)
dx
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The first members of (1) and (3) are the same, therefore the

second members are equal, and the terms containing equal pow-

ers of X are equal. Therefore

B=.l, (7=^_i-, i)=_l-, J^=—_J_, &c.
h 2^2 _ 3A3

*

4^4

These values of B, C, Z>, (fee. substituted in (2) give

o V -r / -r^ 2A2^3A3 4A4^6A5 ^ ^

This equation must be true for all values of x. It must be

true then when x=0. Making that supposition, and

Substituting this value of A in (4), and the development is

complete.

\og.(x4-h)=^\og.h-{.-——Jr~~—~^ (fee. (6)

This equation is the same as (1) in (Art. 19,) when we change

X to ht and h to x. This arose from our expanding in place
h-\-x

otJ-.
x-{-h

Putting u'=\og.{x-\-h), and the result of the operation will

give a similar equation to (2) of (Art. 19.)

This principle of operation is best adapted to the development

of circular functions.

EXAMPLES.

Let X represent an arc of a circle whose radius is unity, and y
its sine. Then the cosine must be

1 . It is required to find the value of the arc in ienns of its sine.

sin.a?=y.

Whence cos.xdx=di/.

And
dx__ 1 _ 1

di/ cos.a; Jl—y^
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J\—y^ 2 2.4 2.4.6 2.4.6.8

«?y ~2~2.4~2.4.6~2.4.6.8' ^ ^

Here we perceive that dx develops into a series containing the

even powers of y, therefore x itself must develop into a series

containing the odd powers of y. As each term containing an odd

power of J will have the power of y diminished by unify after dif-

ferentiation, therefore we may assume

x=Ay+By^+Cy^+Dy''+By\ &c. (2)

fir
Whence ~=A-{-SBy^+5Cj/^+7Dy^+9£:y\ &c. (3)

dy

Comparing (1) and (3), we find

2.3 2.4.6 2.4.6.7 2.4.6.8.9

These values of A, B, C, D, &c. substituted in (2), give

^~2. 3^2. 4. 5^2. 4. 6. 7 ' 2.4.6.8.9 ^ ^

the development required. Knowing the sine y of any defi-

nite arc, this equation will give the value of x, the arc itself, to

any required degree of exactness.

When the arc is 30°, the sine is ^, and this value given to y
in the equation, there results

Arc of 30°=
1 , 1 . 3 3^6 , 3.5/7 , .^

2 ""2. 3. 8*^2. 4. 5732 ""2. 4.6.7. 128'^2. 4. 6.8. 9.
512"*"

Taking the sum of seven terms, we find

Arc of 30°=0.523597

And multiplying by 6, 180°=rt=3.14159. . .

.

2. It is required to find the value of an arc of a circle in terms

of its cosine.

Let x=. the arc and z its cosine.

That is, cos.a;=0.
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dx___ 1 ___ 1

dz sin. a; /J ^2

This is the same form as the former example, except the sign.

Hence the development must be the same as (8) of the first ex-

ample, except changing y to 2 and changing signs.

,- In equation (8) the arc and its sine commence at the same

point and increase together from to 90°; hence, when we make
ar=0 in (8), y becomes also, and both sides of the equation

vanish together and the equation is complete.

Not so with the cosine, for when the arc increases the cosine

decreases, and when the arc is 0, the cosine is radius or 1

.

Therefore we cannot develop an arc in terms of its cosine

independent of the corresponding sine.

If z is the cosine of the arc a:, it must be the sine of the arc

(90°

—

x). Now by example 1, equation (8), the

Arc (90°—a:)=2+il-+-^-+-l:^iL+ &c.^ ' '2.3 2.4.5 ' 2.4.6.7
'

Transposing 90°, and changing signs, we have

Arc a;=arc 90°

—

z——— —

—

'- -— <fec.

2.3 2.4.5 2.4.6.7

Here the arc x is developed in terms of the cosine z, as

required, but the result necessarily includes the arc of 90°, and

the value of this depends on the development of the sine.

To find the value of the arc of 90°, we again turn to equation

(8), making y=l; then that equation becomes

Arc 90°= !+-!-+_-? 1- &c.^2.3^ 2.4.5
"^

and this value of the arc of 90° substituted in the preceding

equation, and we shall have the value of x complete, as was

required.

3. Let X he an arc and t its corresponding tangent; required the

value of X in terms of t.

tan .ar=/.

Then .Jl-^dt.
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Or —= cos.^a;.
dt

Now we can develop this by Maclaurin's theorem, or as follows:

In any arc we have the following proportion :

coQ.x : 1 : : 1 : sec.a;, or cos.«= r.

sec .a; ^

Whence cos.2ar=—?—=—?—=Cl4-^2)-i.
sec.^a; \+e ^ ^ ^

Therefore ^={\J{.t^y^=zl—t^J^t^—t^J^t\ &c. (1)

Here we perceive that the second member contains only the

even powers of t, therefore the development of x before differ-

entiation must contain only the odd powers of t. Conse-

quently we will assume

x=zAt-\-Bt^+Ct^+Df+ &c. (2)

^-=A+^Be+bCt^+nDt^-\-^Et\ &c. (3)

Comparing ( 1
) and (3) we find that

A=\, B=-x, (7=i i)=—1, E=:h &c.

These values of A, B, C, &c. substituted in (2), give

3^6 7^9 11 ^ ^

This formula will give the arc x, provided we know t, any

corresponding tangent. We learn in geometry that the tangent

of 45° is equal to the radius =1, and the tangent of 30° is equal

to —-y therefore

arc46''=l—JH-t-l-H—tV. &o.

=(i-J)+(i-4)+(t-,S)+(,V—'T). &c.

a Q Q Q Q=_l_+_:L+_A-+_A_+__±_, &c.
1.3 ' 5.7 ' 9.11 ' 13.15 ' 17.19

But the series is not sufficiently convergent to be satisfactory,

and therefore we will take the value of t corresponding to 30°.
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That is ^=_L, «3=_J^, &c.

arc 30°=-L——l_+-_i—,—_-i-^+
73 3.3^3 5.3V3 7.3y3

9.3V3 11.3V3

/3V 3.3 ' 6.3^ 7.43*9.34 11.3^ 13.36 }

To sum up this series we take the first term in parenthesis, 1,

and divide it by 3, that quotient again by 3, and so on; this will

give us a series of decimals, the second of which divided by 3,

the third by 5, the fourth by 7, &c. and we shall have the series

of terms within the vinculum.

4- Terms. — Terms.

1 .000000000 1 .000000000

3) .333333333( 111111111

6) 111111111( .022222222

7) 37037037( 005291005

9) 12345679( 1371742

11) 4115226( 374111

13) 1371742( 105518

15) 457247( 30483

17) 152416( 8965

19) 50805( 2673

21) 16935( 806

23) 5645( 245

25) 1881( 75

27) 627( 23

29) 209( 7

1.023709235 .116809651

.116809651

.906899584
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arc 30°=I?5^9^=I^^^?^==.5235987.
^3 1.7320308

arc 30°.6=arc 180°=;t=.5235987. 6=3.1415922.

The utility of the calculus will be apparent on comparing this

operation and its result with the like problem in common
geometry. ,

REMARKS ON MACLAURIN*S THEOREM.

The learner must bear in mind that Maclaurin's theorem will

only apply to such functions as expand into a series according to

the ascending powers of the variable. Hence, when we attempt

to apply it to other functions, and it fails to produce the desired

result, the failure should not be called a failure of the theorem.

For example : Suppose we have the function ( a-\-~ j , and

attempt to expand it into a series by Maclaurin's theorem, we

should fail to produce the proper result because this function

does not expand according to the ascending powers of the va-

riable X. It expands in the form A-\-Bx~ '+ Cx'^-^- <fec., which

is a series containing the descending powers of the variable, and

the formula was not framed to meet such cases.

This formula requires that the variable, in the primitive func-

tion and in the second differential equations, be made equal to

0, and produce finite results.

But if we make x=0 in the function ( a-|--
J

we shall have

f a-}-_ j , a result mathematically infinite, and we shall have

the same indefinite and incomprehensible result in each of the

differential equations under the same hypothesis.

We can, however, expand the function («+-) ^J * modi-

fication of Maclaurin's theorem, which is to make x infinite where

thai theorem requires us to make a;=Q.

1 / 1\

"

Make 2/=-, then ( a-}-- ) becomes (a-|-y)"» and this can be
X \ x/
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expanded by Maclaurin's series, making y=0 for the jSrst term,

but y=0 is the same as making x infinite, because y=~.
X

This, and other artifices may apply to other functions, and m
short, these remarks are made to show the learner that he must

rely on his judgment in the application of this theorem.

REMARKS ON TAYLOR'S THEOREM.

Taylor's theorem is designed to apply to the development of

a function, whatever value be assigned to the variable. But

there are some functions which change theirform •when some par-

tictdar value is given to the variable. To such functions the

theorem will not apply when that particular value is taken,

but for all other values of the variable the theorem will apply.

We illustrate this by the following example ;

Let u=Ja-\-x. (1)

Then u=iJa-^x-\-y. (2)

Here x is the variable and y the increment.

, du I d^u v^ , t, . 1 »u —u-\'—-y-\— ±-.-U &c. IS the formula.
dx dx^ 2

1 1
u'=z Ja-\-x+ y— y^ , &c. (3)

2ja+x 8(a+a;)f

Now let x=—a, and this development becomes

Vy=o+

—

^y— ;y^ &c.
2JO 8(0)1

Here the finite quantity Jy is equal to a series consisting of

mathematical infinites, alternately plus and minus, which is

indeterminate, if not absurd. Hence, for this partictdar value of x

the theorem is said to fail, but for all other values of x the

development is rational and true.

Now in (2) make (a-\-x)^=A, then u'=JA-\-y.

The second member expanded by the binomial theorem, gives

2A' SA'
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Now on the supposition that x=—a, A becomes 0, and

2(0)2 8(0)"^

Here we observe that whatever value is given to the variable y,

Taylor's theorem, and the binomial theorem, will give the same

result.

Hence, when one of these theorems /<7i7 the otherfails, but we

never apply the word fail to the binomial theorem, and it is not

clear to us that such an expression should ever be applied to

Taylor's theorem.

The failure is in the hypothesis and not in the theorems.

In the present example the hypothesis that x equals minus a

destroys the binomial form of the function J{0'-\-^)-\-y, and

makes it Jy sl monomial, and Taylor's theorem is not designed

to apply to a monomial.

CHAPTER V.

The general development of functions containing

turo or more variables.

(Art. 21.) We have thus for examined the development of

functions containing only one independent variable ; it is now
proposed to extend the same principles to any number of inde-

pendent variables.

Let u=f(x,y),

and if x and y are entirely independent of each other, y may be

regarded (for a moment) as constant, and then if x becomes

(x-^-h), Taylor's theorem gives

f{x+h.y)=u+ h-{-
, o"t" ^ 3 o Q+ ^^' (^)

dx dx^ 1.2 dx^ 2.3

Now if we suppose y to become (y+^), every term of the

second member of (1) must receive an increment.
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That is, u becomes

^dy ^dy^ 1.2^ dy^ 2.3^ ^ ^

^ becomes —+_1^^+__:^J^{___+ <fec.

c?a; dx dy
-

Or — becomes '^^^lc-\-J^L^-2L-+ &c. (3)
rfa: dx^dxdy ^dxdy^ 1.2^ ^ ^

In the same manner we find that

^becomes ^!f+_^!ii-;fc+_i^-i!-+ &c. (4)
dx"^ dx^^ dx^dy ^ dx^dy^ 1.2^ ^ ^

becomes ——+——r— ^i- <kc. (6)
da:^ dx^ dx^dy

The developments in (2), (3), (4), and (5), substituted in

the second member of ( 1
) will give the following result, which

is the development of the second state of a function containing

two variables

:

j\-r >y-r J -r^y -r^^a 1.2 ^^/^ 3 1.2.3^

+ duj , d^u ,, , d^u hJc^ . „

dx~dxdy ^ dxdy^ 1.2
~

' dx^ 1.2 ' dx^dy 1.2
'

(6)

d^u h^
, s

-|- <fcc.

dx^ 1.2.3
"^

This formula is Taylor's theorem extended, and it is true for

all values of h and k. When h and k are extremely small, the

terms containing h^ , k^, and hk, may be omitted, and then dx

may be written for k, and dy for k. This supposition will reduce

the formula to

Or du=^'idy+'^^dx. (7)
dy dx
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The expression ~dy represents the diflferential of the variable
dy

y in any function u, on the supposition that all else is constant,

and it is called a partial diferenilal.

Also —dx represents the partial differential of the function u
dx

in respect to x.

In using this formula it is important to preserve the forms

—dyt —dx, &c. otherwise we might confound these partial dif-
cfy dx

ferentials with the total differential du in the first member.

Formula (7) is the same as (Rule 1,) (Art. 2,) and from that

rule we infer at once that if m is a function of any number of

variables, Siaf{x.y.s.t), then

du=^d^'~u'^dy+^dz+^dL (8)
dx ^ dy ^ dz dt ^ '

Art. 22.) Formulas (6), (7), and (8), should not be re-

garded as equations of magnitude ; they are simply equivalent

forms or symbols.

Let us now examine formula (6). It can be put in this form,

dxdy ^dy^ H \.^,^\dx^ ^ dx^dy ^ dxdy^

—;[;A &o. &c.
dy^ /

If we conceive h and Jc to be extremely small, as we are at

liberty to do, and then Write dx for A, and dy for Ic, the preceding

formula becomes

\dx ^dy "/^l.r<.dx' ^dxdy ' dy' ' )'

1,2.3 Vda:" ^dx^dy "^dxdy* ' ^dy^ ' /
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Observe that the expression indicates that the function
dxdi/

u is to be differentiated twice, once in respect to x, and once in

respect to y. It is immaterial which differential is taken first, for

d^u J d^u .J .. ,

, and , are identicaL
dxdy dydx

d^*^u
The e:eneral expression , indicates that u must be dif-^ ^

dx'^dy''

forentiated {m-\-n) times, m times in respect to x, and n times

in respect to y.

Observe the last formula. Take the first parenthesis in the

second member,

du-, , du-,
dx-\. dy,

dx dy

DijBferentiate each term twice, once in respect to x, and once in

respect to y, and add the results together, and we shall have the

term in the second parenthesis.

Thus d('^^dx\=£^d=c-+-^l^dzdy.
\dx / dx^ dxdy

j( duj \ d^u J 2 , d'^u , Jd{ dy)=.^dy^-\-^—-dxdy.
\dy / du^ dxdy

By addition -^.(^dx^+^J^dxdy+-^dyA^
\.^\dx'' ^ dxdy ^ dy^ ^ )

Which is the second term of the formula taken as a whole.

The differential of this again will give the next term, and thus

we might go on indefinitely.

Observe that the quantities in parenthesis tak« the form of

an expanded hinomiul, and such in fact they are in a certain

sense.

(Art. 23.) Again let us inspect formula (6), for it is a very

general formula including several rules and theorems. We may
use it to develop the function of any two variables, however

great the increments h and k.
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If we suppose both x and h equal nothing, we have

and this is Taylor's theorem.

If we suppose x, h, and y, each equal nothing, and represent

hy A, A^f Az, A^, &c. what

'

Jiis supposition, we shall have

du d^u d^u

f(k)=A+A,k+A,.

dy dy^ '

dy'-

Ic^

, become under

&c.
1.2 • 1.2.3

•

and this is Maclaurin's theorem.

To illustrate these principles, we now give the following

EXAMPLES.

1. Expand x^y'^ by the differential formula (6) on the sup-

position that X becomes {x-\-h) and y becomes {y-\-k)-

Let u=:x^y'^,

Take the first horizontal column in (6).

The first term is x^y^

—-Jc 4x^y^k
dy

Sx^y^k'^
dy'' 1.2

d^u k^

dy'' 1.2.3

d'u k^

KM

.x^k'^

dy^ 1.2.3.4

Here the first column runs out, the last result x^k^ no longer

contains y to admit of another differential in respect to that

letter.

Now we will run along the next horizontal column, taking the

successive differentials in relation to y.
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du

dx
k 3a;2yU

.^:'j^hk
dxdy

d^u hk^

dxdy^ 1.2

d^u hk^

dxdy"" 1.2.3

d^u hk^

dxdy'' 1.2.3.4

Here the second horizontal column runs out.

.12a:2y3^^

18a:2y2^F

A'^x'^yhk^

.=3a;2M*

(2)

d^u h^

dx'' 1.2

/ d^u h^ \k
\dx^dy 2 /2

VcfarVy^Y/Y

/ d^u ^2\ ^3

Vdz^dy^Y/ 273"

/^^«z^\J^_ ==3xhn^
ydx^'dy^ 2 72.3.4

. . . 3ary*^2

.12a;y3A2^

18a;y^A2p

. nxyh^k^

M3)

Here the third horizontal column runs out.

d^u h^

dx"" 1.2.3
=:y^h^

(
^'^ -ii-V =42/3A3;5;

\rfa;Vy 1.2.3/
j,

r^\

2d term =6y^k^k^

3d term =4yh^k^

4th term =h^k'^

Here the process ends ; it is very easy when one is familiar

with the forms.

We will now do the same by common algebra.
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x^y^-^4x^y^Jc-{-6x^y^k^-{-4x^yk^-{-x^k^ column (1)

3x^y^h+l2x''y^hk-\-lQx''y^kk^-\-12x^ykk^+

Sx^hk*+3xy^k^+ &c. (2)

These several columns are generally indicated by the corres-

ponding columns in formula (6).

We may use formula (7) to differentiate examples like the

following, but the rules in Chap. I, are less formal and conse-

quently more brief.

2. Let «=-.
y

Then ^rf^=^, and ^y=^%
dx y dy y

Whence, by adding these results, we have

y ydx—xdy
u -

3. Let u=. — .

du-f^_ dx ^Vy- ^dy
,

dx Ji^y2 dy (i_y2ji

dx xydy
Whence du=~ 171+"^ X

X X
4. Let w=tan.~*_, or tan.«=_.

y y

duj _/ du \_dx duj _/ du \_ xdy

dx Kcos.^u/ y * dy Vcos.^m/ y^

ydx—xdy

y

When - represents the tangent of an arc, the cosine of the
y

same arc must be ^ Whence du= ^ ^~^JL.
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CHAPTER VI.

Application of the Difiercntial Calculus to discover

some of the properties of Plane Curves.

It is said by some, that the investigation of the properties of

curves led to the consideration of flowing and vanishing quanti-

ties, and from thence came fluxions, now called the differentia)

calculus.

Whether this be true or not, the following general problems

will show the geometrical power of the calculus better than any

thing thus far advanced.

(Art. 24.) The theory we are now about to present to the

reader is general, and therefore we shall refer to no particular

curve until we apply the theory. We now propose to show ana-

lytical expressions for tangents, sub-tangents, normals, and sub-

normals, to curves in general.

A tangent is a line drawn to touch the curve, and it is termi-

nated by the point of contact and the ordinate.

A normal is a line drawn perpendicular to the tangent from its

point of contact, and it may be within or without the curve,

according to the nature of the curve and the position of the

ordinate.

A line drawn from the point where the tangent meets the

curve perpendicular to the ordinate, will divide the ordinate into

two parts ; the part lying under the tangent is called the sub-

tangent, and the part under the normal is called the sub-normal.

According to these definitions, the reader will observe that in

each of the adjoining figures, 1 and 2, MN\s a normal, FN is a

stih-normxd, MT is a tangent, and PT a sub-tangent.

Fig. 1.
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Fig. 3. In every known curve some

relation must be given be-

tween AF and I'M, (fig. 3,)

the co-ordinates of the curve.

If we represent AP by x,

and FMhj y, then y=f(^x).

The similar triangles SPM,
MQM\ give us the following

proportion

:

SF : PM :: MQ : QM'

.

Now as we diminish PP' or h, the point M' becomes nearer

and nearer to M, and the line M'MS revolving on the point Jfwiil

bring aS^ nearer and nearer to T, and when M' comes to M^ then

S will be at T, and the line MS become MT.
But when h becomes extremely small, we call it dx, and then

M'Q becomes dy, and corresponding to this the line MS becomes

extremely near MT, so near that we may call it MT, then the

preceding proportion becomes

FT \ y \ \ dx \ dy

"udx
Whence PT=——=suh-tanaeni.

dy

(Art. 25.) In the triangle TPMwe have

{MTy=(TFy-\-(FMy.

That is, {MTY=t^
dy-

Or MT:=y l^^+\=the tangera.

^' dy'

The two triangles (Fig 1), TMF, MFN, are rectangular and

similar.

Whence TP : FM : : PM : FN

That is, ^"^
'. y ::y : FN.

dy

Or PN=^-]l=z the sub-normal.
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Also, TP \ TM \ \ MP : MN.

That is, yA"". : y /^^l+l : : y : MK
dy \ dy^

J- = (^F+0
'' (^^^'-

Whence MN—^Jdx^ J^-dy^= ike normal,
dx

It is obvious from the triangle MQM\ that the differential of

an arc is Jdx'^-\-dy'^ , and calling the arc 5, we have

ds=Jdx^-\^dy^.

We will now collect these important expressions for future

use, taken in the order of their development.

sub-tan. =y^^.
dy

tangent =y^g-+l.

sub-normal =^J^.
dx

(1)

(2)

(3)

ormal=

—

Jdx"^ -\-dy^
dx

(4)

Differential of an arc =^Jdx^ -\-dy^

,

APPLICATION OF THESE EXPRESSIONS.

(Art. 26.) To apply these expressions to any curve, we
must know the equation of the curve, otherwise we could not

find dx and dy.

1 . Find the sub-tangent, tangent, sub-normal and normal to the

parabola, the equation being y2=2px.

For the sub-tangent we must differentiate the equation, and

reduce to the form ^— , and so on for the other lines.
dy

ydy=pdx.

y dx / X

p dy
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p p dy

Thus we discover that the sub-tangent of any parabola is (2a:),

twice the abscissa, a result corresponding to (Prop. V.) page 252,

Robinson's Geometry.*

For the tangent we square (a), and i_=—- .

p2 dy

«' !^+-£+>' W^+-W£+>-p ^dy^

Whence the tangent =y. /_-}-l.
^ P

Sub-normal ==p. Normal =Jy^-\-p^.

2. 5^Ae equation of ike ellipse, (the oriffin of the axes being the

center,) is A2y2-|_B2x2=A2B2.

What is the value of the sub-tangent?

Ans, —-— ^.
JS2 X

What is the value of the sub-normal?

B'x
Ans.

3. The equation ofthe circle is x ^
-J-y^=R* , find the sub-tangent,

tangent, sub-normal, and the normal.

Ans. Sub -tangent =

—

±— The minus sign indicates that
X

the sub-tansfent decreases as x increases.•&^

Ry
Tangent =-^. Sub-normal =—a?. Normal =i2.

x

We shall apply these formulas to other curves, as occasion

may require.

The student will perceive that these results are here obtained

far more easily than in analytical geometry, but we are indebted

to analytical geometry for the primary equation of the curve.

* It is important that the student should observe that this portion of the

calculus is pure analytical geometry.
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SECTION II.

CHAPTER I.

maxima and minima.

(Art. 27.) The diflPerential calculus embraces mathematical

functions and geometrical magnitudes which admit of variation,

whether increasing or decreasing in value.

A differential of a quantity is an expression for a minute in-

crease or decrease of the quantity.

But when a quantity has increased to its maximum value, a

further increase is impossible, and the expression of such an in-

crease must therefore be zero.

A decreasing quantity can of course have a differential, but

when it has decreased to its smallest possible or minimum value,

a further decrease is impossible, and the expression for it must

therefore be zero.

Hence the differential expressions for any function at its maxi-

mum or minimum points must equal nothing.

To geometrise this principle and make the idea visible, we pre-

sent the following figure.

Let AUD be a curve, and for the sake of

perspicuity we will suppose it to be a circle.

Let AC he one semi-diameter, and CD an-

other, at right angles to it.

Let us commence computation ftom the

point A, and put AJB=x, and BE=^y.

Now the magnitude of y will depend on that of jc, or in other

words, y is a function of x, and it may be written

y=/(*)-

If X is increased by h, y must be increased by 1c, and by

inspecting the figure we perceive that for equal increments of x
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by h, the increments of y become less and less as JE approacbes

D, and when i5jE' becomes CD, the increment A- becomes nothing.

That is, the differential of j is zero when j itself becomes a max-

imum.

(Art. 28.) The diflferential of an increasing quantity is posi-

tive before arriving at the maximum zero, and negative afterwards

as we perceive by merely inspecting the figure, and this is a

general principle.

In like manner the differential of a decreasing quantity is

minus before it attains its minimum point, it is zero at that

point, and positive after passing that point.

Hence, if the second differential of a function is minus, it in-

dicates that the first differential corresponds to a maximum, and

if plus it indicates a minimum.

We will now work the example represented in the figure,

which is this

:

What is the relation between the sine and versed sine of an are

when the sine is a maximum^

Let i? represent the radius of the circle.

Then by trigonometry

y''=(2E—x)x.

Qydy—2Edx—^xdx.

The first member contains dy as a factor ; and because y is to

be a maximum, dy=^0 and makes the first member 0.

Therefore {R—x)dxz=0.

This equation will be verified either by making

dx=0, or R—a;=0.

That is, ar=0, or x=R,

The first corresponds to the point A, where y ia sl minimum,

and the last corresponds to CD where ^^ is a maximum.

If we differentiate the equation (R—x)dx=^0, regarding dx as

constant, we shall have —dx^=:0 for the second differential of

the function, and it being minus, it indicates that the first differ-

ential, or this factor of it, corresponds to a maximum.
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(Art. 29.) The foregoing illustrations are too plain and prac-

tical to meet the entire approbation of some minds ; therefore,

we give the following as more general and abstract.

Let y=f(x)> and if y is a maximum it is greater than its

corresponding value when we make x=x—h, or x=^x^h. Let

y' correspond to {x—h), and y" correspond to [x-\-h).

Then, by Taylor's theorem, we have

^ ^ dx ^dx^ 1.2 dx'' 1.2.3^ ^ '

And y"—7/=^k-l-—^ -\--^ , &c. (2)
^ '^ dx ~dx^ 1.2 ^ dx^ 1.2.3 ^ ^

Divide (1) and (2) by A, and

yW^..^ , ^>J__ &c. (3)
k dx^dx"- 2 ^ ^

fziy^ciy.d^k, ^^^ .^.

h dx^dx^ 2^ ^
'

Now h can be taken so small that ^ _Z j in (3) and (4) will

be greater than all the following terms, and we make this sup-

position.

Then if y is greater than both y' and y" the sign of the first

members of (3) and (4) are both minus. Therefore the sign of

the second members must be loth essentially minus.

But this cannot be unless —=0, and therefore this condition
dx

must exist.

Now suppose that y be less than either y' or y", then the sign

of the first members of (3) and (4) must both be plus, and

hence the sign of the second members must both be plus, but

this cannot be unless -K=0.
dx

Therefore when y, a function of x, is a maximum or a mini-

mum, -^=0, or dy=0,
dx

MISCELLANEOUS PROBLEMS IN MAXIMA AND MINIMA.

From the nature of the question or problem, find a general
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algebraical expression for tlie quantity that is to be a maximum
or minimum, and pronounce it sucb. Then its differential can

be put equal to 0, and a solution of this equation will answer

the question proposed. We must find as many independent

equations as the problem contains variables.

1. Divide a line or any given numerical quantity (a) into two such

parts that their product will be a maximum.

Let x= one part, then a—a;= the other part.

The problem demands that {ax—x^) shall be a maximum, and

this is the same as to demand that its differential shall be =0.

Whence {a—^x)dx=0, or x=^\a, Ans.

2. Divide a given quantity (a) into two suck parts thai the

'square of one part multiplied by the other part shall be a maximum.

Ans, The part to be squared is (Ja).

3. Divide the number 80 into such parts, (x) and (y), that

2x^-|-xy+3y^ may be a maximum or minimum.

Ans. x=.50, 2/=30, for a minimum.

For a maximum 3/= 80, and x=:0.

Here we have two equations

^+y=80, (1)

And 2x^ -\-xy-\-3y'^= maximum or minimum. (2)

The differential of the first equation is zero, because it is con-

stant; the second is zero, because it is a minimum.

4. Mnd the greatest rectangle that can be inscribed in a given

triangle.

JAns. The altitude of the rectangle is one half the

altitude of the triangle.

Let ABC he the triangle.

AB=b, DC=a. Take CI=x.

Then x '. EF \ \ a \ b.

G^ D b: B

EF^—. ID=a~x=^FH.
a

bXf \—{a—a;)=:maximum.
a
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The differential of this expression will contain /_
j as a com-

mon factor. The product made by it and another factor must

equal zero. Therefore the other factor alone must equal zero,

for (-)> known constant values, cannot equal 0.

Hence we may have x(a—a;)=maximum.

That is, constant factors to the whole membery expressing a maxi-

mum or a minimum, may he omitted before differentiation.

5. Find the greatest rectangle that can be inscribed in the

quadrant of a given circle ^

Ans. The rectangle is a square.

Remark.—In these philosophical mathematical problems the operator

Bhould not consider himself restricted to any mere rules ; he is at liberty to

apply general principles in their widest sense ; the following example is an

illustration of this remark,— observe its solution.

6. If two given circles cut each other, find the greatest line that

can be drawn in them passing through either point of intersection*

Ans. The line is parallel to that joining the centers.

Let BD=^x, and

put R to represent

the radius of the cir-

cle.

Let AC=7/, and

put r to represent the

radius of that circle.

Then OD=JE^—x\ and CO=Jr^—y\

Because w (7= CO and OD=J)n,

2jM^'-x^+2jr^—7/^=msLX.

Or 7i23_^2_|_^^2_2^2^jnax.

Let AB, the distance between the two centers be represented

» This is problem 9 page 207, Mathematical Operations.

14
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by a, then CH=ia, and DH=x—y, and the right angled triangle

CDHgi\QS

In every equation the d'fferential of one memher taken as a whole

«^ equal to the differential of the other.

But the first term of this last equation is a maximum, there-

fore its differential is 0, and the differential of the second mem-
ber is 0, because it is invariable. Therefore

d.{x—yY=zO.

Or ^{x—y){dx—dy)=0.

Whence x—y=^0, or {dx—dy)=0.

From either of these x=y, which shows that the line through

must be drawn parallel to AB.

7. From two givenpoints on the same side of a line given in po-

sition, draw two lines to meet in the line given in position, whose sum
shall he less the sum of any other two lines drawn from the same

points to the same line.

iAns. The two lines make equal angles with the

( line given in position.

Let A and B be the two points and ffO the

line given in position.

From A and £ drop the two perpendiculars

B and AIT, and these lines are given because

the position of the two points are given ; and

for the same reason Off is given.

Make OF=x, and JSff=y, B 0=a. AFI=h, and ffO=c.

Then Ja^+x''=BE, and Jb^+y^=AE.

Now the problem requires that

Ja 2 -\-x^+Jb 2 -\-y^ =minimum.

Whence _^_+_,^^=0. (1)

But x-\-y=c. Hence dx-\-dy—0. (2)
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From (2) we have dx=—dy, and this value of dx put in (1),

and that equation reduced, we find

^ -. y

By inspecting the figure we find

OE__EE
EB EA'

That is, EB : OE : : EA : EH,

sho'^ring that the two triangles jB^Oand AEH&re equi-angular,

and the angle BEO= to the angle AEH.
The angle AEIIis equal to the vertical angle OED, and BO

produced will make 0D= OB.

Hence to find the point required, produce B 0, making 0D=^
OB, and join AD cutting OH in E. Join BE, and we have

AE and EB, the two lines required.

Let OH he a plane mirror, B an object, and A the eye of an

observer, the object B would be seen below the mirror at D.

Hence, rays of light reflected . from a surface take the shortest

possible distance in passing to and from the reflecting surface.

This problem shows us the truth of the definition that the cal-

culus is a branch of analytical geometry.

8. Required the greatest possible rectangle that can be inscribed

in a given parabola.

\Ans. The altitude of the rectangle is | the

altitude of the parabola.I

9. Required the same in a given semi-ellij^se.

Let 2/= the altitude of the rectangle, and B half the shorter

7?
axis of the ellipse, then we shall find that y=. _., the result.

10. Required the maximum cone thai can be inscribed in a given

sphere.

j Ans. The altitude of the cone is |- the radius

( of the sphere.
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1 1

.

Required the relation between the diameter and altitude of

a cylindrical cup to hold a given quantity (a) of water, and to con"

tain the least possible surface.

Ans. The radius = the altitude.

1 2. Required the maximum parabola that can be cutfrom a given

right com,

J
Ans. The axis of the parabola is equal to f the

side of the cone.

13. Required the maximum cylinder that can be cutfrom a given

right com,

iAns. The altitude of the cylinder must be ^ the

altitude of the cone.

14. On a horizontal plane stands a tower 60 feet high, and <m

the tower stands a spire 20 feet high; hotofarfrom the foot of the

tower will the spire appear under the greatest possible angle, and

what will that angle be?

Let x= the distance from the foot of the tower.

Put a=60 feet, 5=20.

Then ar=7(a+5)a==4073=69.28 feet, Ans.

This example is a very simple one, but we solve it to explain

one important expedient that may often be resorted to in working

questions in maxima and minima.

Let a;= the distance on the plane from the tower, and put A
to represent the whole angle at that point between the foot of

the tower and the top of the spire.

Put B to represent the angle from the foot of the tower to its

top. Then {A—B) is the angle to be a maximum.

By trigonometry,

1 : tan.^ : : a; : c+J, tan.-4=—i-. (1)
X

1 : tan.J5 ii x x a, tan.i5=-. (2)
X
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b

But taD.M-~^)=
^^"-^-^-^"-g .^ ^

^ 1+tan.^ tan. i^ i i
(«+^)a

Or tan.(^-^)=^,,^^. (3)

The arc (A—B) is to be a maximum, not the tan.(^

—

B).

But if we differentiate the first member of the equation, it

will contain d(A—B) as a factor, and as this factor must be 0,

the product of all the factors will be 0, and therefore the differ-

ential of the second member must be 0.

That is
bdx{x^+{a+b)a)—^bx^dx

(x^+(a+b)ar

Whence x=J(a-\-b)a.

To find the magnitude of the angle (A—B), we substitute

this value of x in equation (3),

Tan (A-B)J^^^^=—J=^=-^-^-^'^^•^ f 2(a+6}a 2V(a+6)a 2.40V3~473
This result corresponds to radius unity; multiply it by i?, the

radius of our tables, (as follows:)

R log 10.000000

4^3 log 0.840620

Tan.(^—^)=8° 12' 47" 9.159380

15. An architect was required to give the relative length, breadth^

and hight of a rectangular building, to contain a given cubical space

(a) to be enclosed, sides, top and bottom, by the leastpossible surface.

Ans. The building must be a cube.

16. Divide a given numher (a) into three parts so that their con-

tinual product may be a maximum.

Ans. The parts must be equal.

17. Find the minimum value of y in the equation y=x*.

Ans. y^^=Y\.
N. B. Take log. of each member, then differentiate and place

dy—0, and we shall find log.a:-|-l=0.
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18. Two roads, one exactly north and south, the other exactly

east and west, intersect each other. One traveler ten 7niles north of
the intersection^ starts and travels south at the rate of four 7niles per

hour. Another traveler six miles west of the intersection, starts ai

the same moment and travels east at the rate of three miles per hour.

Hovj long after starting will they he at the minimum distance from
each other, and what will that distance he^ and what will he the locality

of each?

Ans. The time will be 2//-0 hours. The one traveling south

will be yVo" of a mile north of the intersection ; the one

going east will be yVo- of a mile east of the intersection,

and their distance asunder will be ly\ miles.

19. JVbw suppose two roads to intersect as before, and one trav-

eler to start from a 7niles north of the intersection and travel south

at the rate of m miles per hour, and the other traveler at the same

time to start frcyiih b miles west of the intersection and travel east at

the rate of n miles per hour, what time must elapse hefore they arrive

ai a minimum distance, and what will that distance he?

Ans. Let t=^ the time. Then t^-^A"^
m^'-^-n^

Distance =J{a—mty-\-{b—nt)^.

Any number of numerical examples can be formed from this

one by giving different values to a, h, m, and n.

20. The difference of arc between the sun's right ascension and

Us longitude gives rise to one part of the equation of time. What is

the sun's right ascension when this part of the equation is a maxi-

mum, and what is the maximum value?

*Ans. Sun's Long. 46° 14' 10"

R. A. 43° 45' 60"

Difi*. 2° 28' 20"=9m 54.6 *.

21 . What must be the inclincdion of the roof of a building to make

the water run off in the least possible time?

Am. 45°.

« Examples 20, 21, and 22, are solved in the author's Mathematical Ope-

rations.
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22. Within a triangle is a given point P, the distance to the near-

est angle A is given, and the line AP divides the angle A into two

angles m and n, of which m is greater than n.

It is required to find the line EF dra-ivn through the point P, so

that the triangle AEF shall be the least possible.

Let AF=a, AF=x, AB=y. The

angle FAF=m, FAIJ=7i.

The area of the A AFF=axsm.m.
The area of the A AFE=ay sin.w-

By the conditions,

ax ^vQ..m-\-ay &m.n= minimum.

Also, by the conditions,

rrysin.(?7i-|-?2)= minimum.

\Ans. The line ^i^must be drawn so as to make

( the triangle APE^ to the triangle AFF.

23. What is the altitude of the maximum cylinder which can be

inscribed in a given paraboloid?

Ans. Half the axis of the paraboloid.

24. Conceive an ellipse to revolve on its longer axis, thus forming

an ellipseoid. Find the maximum cylinder which can be cut from

this ellipseoid?

4 Ti
Ans. The diameter of the cylinder is

Its solidity is ![?:iilil£:^.

A represents the major semi-axis of the ellipse, and B the

minor semi-axis.

25. Find the least triangle that can be made to enclose the qua-

drant of a given circle.

Ans. The point of contact is at the middle of the arc.

26. There is a perpendicular chimney; width of cavity h inches,

kight of the jamb above the floor a inches. Mequired the longest in-

flexiblepole that can he put up the cavity.

Ans. Ma'+ ^'^y
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27. It is required to determine the size of a hall which heing let

fall into a conical glass full of water, shall expel the most water pas-

siblefrom the glass; its depth being 6, and its diameter 5 inches.

Let ^j5 (7 represent the conic section of the

glass, and DJIJS the ball, touching the sides in

the points J) and B, the center of the ball being

at some point i^in the axis GC oi the cone.

Let FD=FE=x, the radius of the sphere,

then find an expression for the magnitude of

the segment of the sphere immersed in the

water, and this segment must be a maximum.

Ans. a;=2^^ inches.

An equation may have more than one maximum or minimum,

according to the degree of the equation, as the following exam-

ple will show.

Let x^—^x^-\-9.2x^—24a;-}-12= a maxima or minima.

Then Ax^~Ux''-\-Ux—M=^0.

Or a;3—6a?2+lla;—6=0.

Whence ir=l, or 2, or 3. Substituting 1 in the equation, and

we have 3, a minimum. Substituting 2, and the value of the

equation is 4, a maximum. Again, substituting 3, and the equa-

tion produces 3, a minimum.

28. Required the least triangle that can he drawn ahout a given

parabola.

iAns. The sub -tangent on the axis is two-thirds

of the given axis.

29. Required the same ahout a given semi-ellipse.

N. B. In solving this, we use the sub -tangent taken from

A^v^
(Art. 26,) which is ——^, but we change its sign, for the

signs in geometry refer only to direction, and not to numerical

values.

The zero point being the center of the ellipse, if we commence

ill the left or longer axis produced, and reckon towards the right,
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our distances will be plus all along the base of the triangle, be>

cause that direction is plus along horizontal lines as the upward

direction is plus on perpendicular lines.

If we put z to represent the altitude of the triangle, x and y
being co-ordinates of the tangent point, we shall have

y
' X-x : z= -.

y

In conclusion we shall find 2/=—-, and :c=—_.

If we compare examples 29 and 9, we shall find that the inte-

rior maximum triano-le and the exterior minimum triangle of the

ellipse meet the curve in the same point. The same is true in

respect to the circle and the parabola.

30. It is required to cut the greatest possible ellipse from a given

right cow.

Let AH=^a, the base of the cone, and V,

the vertex of the cone, be h distance above

the base.

Let AB be the greater axis of the ellipse.

Let fall BP, the perpendicular, on the base,

and take G, the middle point between B and

II, and pass a horizontal plane through the

cone parallel to the base of the cone.

This plane will cut the plane of the ellipse at the center C,

and CD will be the minor axis.

As C is the middle point between A and J5, and G the middle

point between B and II, it follows that (7(7 is the half of AH.

Fui HP=x, PB=^y. Imagine a perpendicular from Fto
AH, which is b. Then we have the following proportion

:

X : 2y : : a : b. Or x=- (1)

Also, AP^+PB^=ABK That is, (2a—xy-}-4y^==ABK

The greater axis of the ellipse =V^'"^

—

'iax-\-x^ •\-4j/'-^
. (2)
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We now require the value of GK. The perpendicular from

Fto AH\^ b. From Fto GKis b—y. Therefore we have

b—y : GK :-, b : 9,a. GK=<^a—?f:t^
b

From this take GO (a), and we have KC=a——l.
^ ^

b

But KC, CG= CD'' . That is, ^a^_^^^ cD, minor axis.

But the product of the major and minor axes of an ellipse de-

termines its area. When that product is greater, the area is

proportionally greater, and when less, less.

Therefore (J^cl^—4ax-\-x^ -\~4y^ ) Aa^——^^=max.

Or (4a2__4^^_|_<^2 _|_4y 2
^ / 1_ ^y\ ^j^aximum.

Taking the value of x from (1), and substituting it in the

above, we have

(4a^-^+ii:^+4y^) (*-=5?^)=niaxiinum.

Whence (z:^Uy+^dy+^dy)(t:ll)

Dividing each side by —-, and we have
b

(=4^1+4«!,+4y)(5_2y)=4a^-i^+4^^!+4y'.

~
b ~ "^ b b' b ~ b'

b-

Dividing by —4 produces
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^ V36-^+3aV"^ 3b^-\-^a^

Remarks.*—The shape of a cone depends on the relative

values of a and h, b must be greater than a, or y will be imagi-

nary in the above equation, showing that the oblique elliptic sur-

face will not be greater than the horizontal base of the cone.

And to render a maximum ellipse possible, the relative values

of a and b must be so taken in the last equation that y will have

a positive value.

To be sure of obtaining real values of y, the square of half the

coefficient of j must be numerically greater than the second member^

or at leo^t equal to it.

That is, we must have -i L — i = , at least.
4(3^2 _|_3^2j2 352_|,3^2'

Or I^^^=8a^
362-1-3^2

Or 26a''+10a232+5*=24a252 4-24a^

Or a4_|_54==i4a252_

Add 2a^6^ to each side, to make complete squares.

Then a^+2oJ'h^-\-b^= \Qa''b''.

Square root a^-|-^^=4a5.

If we put b^=ma, this last equation reduces to 1+^^=4^,

and this resolved, gives m=2=b^3=3.732.

This shows that b must be greater than (3.732) times a, other-

wise y will be imaginary in equation (3), and the circular base

will be greater than any ellipse that can be cut from the cone, and

in that case no maximum ellipse luill be possible.

We may therefore take b of any value greater than (3.732),

we will then assume i=4a, and this reduces (3) to

51a2y2_84a3^^_2a2 je^2^

Whence y= 1.048a nearly, or |a nearly.

•These remarks show that this whole subject is one of analytical geometry.
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It may be that if a plane be passed through to the opposite

extremity of the base of the cone from each of these points, the

elliptic surfaces will be the same, and greater than any other

above, below, or between, then and there are two maximums.

31 . It is required tofind thatfraction which exceeds its square by

the greatest possible quantity.

Ans. +I-.

32. It is required tofind that fraction which exceeds its cube by

the greatest possible quantity.

Ans. +-i^.

V3

CHAPTER II.

On the signification of BiflTerential Coefficients as

applicable to Curves.

(Art. 30.) In analytical geometry a curve is traced by con-

necting different points found by an equation— the equation to

the particular curve in question.

The nearer a curve is to a right line, the less will be the value

of the second and third differential coefficients— and when the

curve becomes a right line, the first differential coefficient is

constant, and the second, third, and all the following differential

coefficients are zero.

For example, the equation of a straight line is

yz^ax-^-b.

Whence -^^a, and _'^'^=0, &c. &c.
dx dx^

The first of these differential equations is the differential equa^

tion of a right line, and let the reader observe that it is the trig-

onometrical tangent of the angle which the line makes with the

abscissas.
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But before we proceed with our theoretical investigations we
will draAv out and arrange the following differential equations.

In analytical geometry we found

1. x^-\-y^ =2i^, to be the equation of the circle.

From which we find

dx y

for the differential equation of the circle,

2. From {A'^y'^^-B^x^ —A^B"^), the equation of the ellipse,

we derive

«^___ B^x
dx A^y

tJie differential equation of the ellipse*

3. From {y^==2px), the equation of the parabola, we

derive

dx y

for the differential equation of the parabola,

4. From (A^y''--B'^x'+A^B^=0), the equation of the

hyperbola, we derive

dy__ B^x
dx A^y*

for the differential equation of the hyperbola.

5. From (xy=M), the equation of the hyperbola referred

to its center and asymptotes, we derive

dx x

for the corresponding differential equation of the hyperbola.

Thus, every curve that can be indicated by an equation has

its corresponding differential equation.

dy
When ^ is applied to a right line, it is the trigonometrical
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tangent of the angle included between the line and the axis of

abscissas; therefore we can use its equal for that quantity in ana-

lytical geometry.

Conoeive a right line touching an ellipse in a single point, the

co-ordinates of which are x', y', then as above

~dx' A^y''

But a line passing through a given point is represented by the

equation y—y'^=ia{x—x'),

as is well known by all readers of analytical geometry.

But

Therefore

dy'^ ^_B^x
dx A^y

y—y'-'
B^x

-{x—x').

Reduced A^yy'+B^xx=A^B'',

Which is the same equation for the tangent of the ellipse as

may be found in analytical geometry, x and y being the general

co-ordinates of the line, and x' y\ the co-ordinate of the par-

ticular point touching the ellipse.

Thus we may find the equations for the tangent lines to all

known curves.

Examples like this serve to

impress upon the minds of learn-

ers the connection between this

analysis and analytical geometry.

(Art. .31.) We shall now at-

tempt to show the analytical ex-

pressions for the deviation of

curves from a right line in the

vicinity of a given point, and

also what uses can be made of

such expressions.

Let AP^x, and PM—y.

Then 3/=/(^)-
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Put PF^K and FP"=2k.

Then ^'^'=/(-+/0=y+(|>+^^^^^

And P"M"=^f{x+^h)= y+^|^2A+^g)J^+ <fec.

Whence P'M'--y=OM'=(il\h+( '^l1\]!l.+ ^q. (1)
\dx/ \dx^/l,2

And P"M"—y=J}^M"=ffl)2h+f—^Y-^+ &c. (2)
\dx/ \dx^/l.2

Because MN=2M0, NS=20M\

That is, NS=2 OJf'=-^2^+^!^-^+ &c. (3)
c^a; ^dx^ 1.2^ ^ ^

Frona (2) subtract (3) and we shall have

NM"—NS=—lh^+ &c. (4)
dx^

Now if A be taken sufficiently small, the sign of the first term

will be the sign of the sum of all the terras.

The first member of (4) is obviously ijositive, and the curve

being above the axis of X, all the ordinates are positive.

Hence, when a curve is convex towards the axis of abscissas and

the ordinates positive, or the curve above the axis of X, the ordinate

and second differential coefficients vjill have the plus sign.

Let us now examine the curve below the axis of X, which is

also convex towards the axis of abscissas.

Here AP=x, Pm^~y, PP'=zh, PP^^Ih.

Whence P'm'=—/(y+A)=—y—/f^^^V"(^--^V—— &c.
\dx/ \dx^/1.2
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\dxj \dx^J\,2
^

As ns is double nn\ we have

\dxj\ \dx^A'2 ^ ^

' Subtracting (3) from (2), and we obtain

sm"=nm"—ns=—( —±]k^— &c.
\dx^y

It is obvious that sm" is the deviation of the curve from the

right line, and it is minus downward, as the ordinates are.

Hence, when the curve is convex toward the axis of abscissas, and

the ordinates minus, or Hie curve below the axis of X, the ordinates

and the second differential coefficient will have the minus sign.

More generally, let the curve be above or below the axis of

X, and convex towards that axis.

Then the ordinates and the second differential coefficient will have

the same sign.

(Art. 32. ) Now let us determine what the result must be

when the curve is concave towards the axis of the abscissas.

Let AP=x as before, and PM=y, FP'^h, and PP"=2h.

PM=y=f{xy

And P"Jlf"=/(^+2A)=2,+(|)2A+(g)g+ &c.

But 2y5=2iWV"=/^^V+/^-—V-+ <fcc- (2)
\dx/ \dx'^J\.2
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Subtracting (3) from (2), and

we obtain

Now h may be taken so small as

to make the first term in the e 3ond

member numerically greater than

all the terms that followed, and as

we have its square, the sign cannot

be affe<;ted by the essential sign of

h, hence the second member of the

equation is negative— which is also

shown by the figure, the point M"
in the curve is below the line MS.

But in this case the ordinates are

positive, hence the ordinates and the

second differential coefficient have

diflferent signs. On a like exami-

nation of the points of the curve

below the axis of Xwe shall find the same result.

Hence, if a curve is concave towards the axis of abscissas the or-

dinates and second differential coefficient will have contrary signs.

For an example to apply this theory, let it be required to

determine whether the parabola is convex or concave towards

the axis of abscissas.

dx y

c?^_ pdy
^

dx^ y^dx

The last equation gives a clear response, for the quantity—tL.

is obviously negative when y is positive, and positive when y is

negative, therefore the curve is concave towards the axis of ab-

scissas.

Thus we might determine the position of the concavity of any

other curve.

(Art. 33.) A point of infection is a point at which a curve

16
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changes from convex to concave, or from concave to convex,

towards the same line.

When a curve is convex towards the axis of abscissas, the

ordinates and second differential coefficient have the same sign,

and when concave towards the same axis, those two quantities

have different signs. Therefore if a curve changes its position

of convexity, the second differential coefficient must change sign

at the point of inflection.

But when a quantity changes sign it must pass through zero

or infinity; hence,

d^y ^ d^y—^=0, or —^=00
dx"" dx^

will give the abscissas of the point of inflection.

To find a point of inflection we will therefore put the second

differential coefficient equal to or infinity, and determine the

value of X, which value we will increase and diminish by a small

quantity h, and if we find contrary signs for these new values

of X, we must conclude that here is in fact a point of inflection.

The following general equations represent an interesting class

of curves which serve to illustrate this theory.

y=l+{x-ar. (1)

Whence ^=m(a;—a)"°-«. (2)

^=m(m-\){x-a)-K (3)

1st. If we assume that~=0, it follows that a;=a, and this
dx

value put in (1) will give y=5.

But to assume that —=0, is the same as
dx

to assume that the tangent line through the

point M in the curve is parallel to the axis

of X, as represented in the figure.

Ifm represents an entire and even number,

then {m—2) will be even, and all values of Xy except jr=a, will
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give 2/and^—| positive, for suppose x=a±:h, then (x—a)=dzh,

and substituting this in (3) we obtain

g=m(m_l)(±;.)"-^

Here as (m—2) is even, the power of k will be positive,

whichever sign we give to h^ and as m is even, the whole product

will be positive, hence this curve is convex towards the axis

of X. (Art. 31.)

2d. Now let m he an entire and odd number.

Then, as before, when x=.a, —=0, and the second difFeren-
dx

tial will also equal 0.

But since (ni—2) must be odd, every value of x less than a

will make the second differential coefficient negative, and every

value of X greater than a will make it posi-

tive: hence, for all values of x less than a,

which give y positive, the curve is con-

cave towards the axis of X, and for all

values of x greater than a, it is convex, as

in the figure adjoining.

Therefore at the point M, the co-ordinates of which are a;=a,

y=5, the curve changes from being concave, and becomes con-

vex towards the axis of X.

If the last term of equation (1) be negative, that is, if

y=-h—{x-^y,

the reverse position will correspond with the curve, as in the next

figure.

At the point M whose co-ordinates are

x=-a, y=-hy there is a change of conxexity

to concavity towards the axis of X,

Such points are by some called singutar

points,— by others they are denominated

points of inflection.

In both cases the tangent line at the point of inflection is

parallel to the axis of X, and it also cuts the curve.
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3d. Let m he a fraction, the numerator and denominator of which

are odd, as |.

Then

d^y_ 6

dx dx^

And if we now take a;=a, we shall have y=5,

J'= infinity, and —1= infinity, &c.
dx dx""

Now if we suppose x less than a, —^ will be positive, and if

greater than a, negative.

Hence for all values of x less than a, which

give y positive, the curve will be convex, and

for all values of x greater than a, it will be con-

cave towards the axis of X, as shown in this

figure.

But if the binomial term be negative, that

is, if we have
3

y=:zh—{x—ay,

the second diflferential coefficient will be positive, and the re-

verse will be the case as represented in the next figure.

The point M, whose co-ordinates are

ar=a and y=-h, in both cases is a point of

inflection at which the tangent line is per-

pendicular to the axis of X. Whence we

may say, a point of inflection is one at which

as the abscissa increases, a curve changesfrom

concave to convex, or the reverse, towards any

right line not passing through the point.

4th. Let m he a fraction with an even numerator, as |, then
2

dy_ 2 d^y_^ 2

dx
S(a;--a)3

dx'
9(a;—a)3

I
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Tf x=ia, v=h. —̂ = infinity, and—^= infinity.

dx dx^

If X is less than a, — will be negative, and if x is greater than
dy

a, it will be positive. Hence, at the point whose co-ordinates

are x=a and y=^h, ^ must change its sign from minus to plus,

dx

which change indicates a minimum ordinate.

If the sign before {x—a) be negative, the reverse will be the

case, and there will be a change from jplus to minus, indicating

a maximum ordinate.

In the first case the second dijfferential

coefficient is negative for all values of a?,

and the ordinate positive, the curve is there-

fore concave towards the axis of Xy as rep-

resented in the adjoining figure.

In the second case, that is,

2

the second 'differential coefficient is always positive for all

values of x, (except a;=a). Then for all positive values of y,

the curve will be convex, and for all negative

values of y, concave towards the axis of

X, as this last figure illustrates.

The tangent at the point M, in both

cases, is perpendicular to the axis of X.

The point Mis singular and is called a

CUSP of the first order.

It is a point at which apparently two curves unite, but it is

really the same curve, as one equation represents any point

either branch.

iji

5th. Let m he a fraction of an even denominate, as f

,

Since the denominator of the fraction denotes square root, th©

3.

double sign must be placed before {x—aY, and we have

yz=b-\-{x—a) 2.
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dx
==bi(a;—«)2.

d'y.

dx"- Ajx—a

x=ia ffives y=5, — =0, and —^= infinity.
^ ^ dx dx^

^

If x is taken less than a, y will be imaginary, showing that

no ordinate from a point nearer to the origin than a, can meet
finJ d^ IJ

the curve. If x be taken greater than a. ~^ and will be
c?a; dx'

real quantities with the double sign dc, show-

ing two branches of the curve, as the figure

represents.

The point J!f is a cusp^ and the tangent at

the point M is parallel to the axis of X,

(Art. 34.) To draw out a little more light on the theory of

curves, which is considered by mathematicians as one of the

most beautiful features of the calculus, we will take the equation

y=x^±x^. (1)

dx

3.

^Xzti%X^. (2) u (3)

When a:=0, y^=0, hence the curve will pass through the origin.

If X be negative, y will be imaginary ^ because the equations

would then demand the square root of negative quantities which

have no existence, hence no part of the curve is on the negative

side of the axis of Y. We also perceive

that for every positive value of x there are

two real values of y, both of which are

positive as long as x^ is greater than x^\

after which one is positive and the other

negative.

When aj=0, ^=0. Also, the first difi"erential is 0, when
dx

2:»±|a:2=0.
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Whence x=0, or a;=^f, indicating that the axis of X\s tan-

gent to the curve at the origin, and the tangent to the lower

branch must be parallel to that axis at a point whose abscissa

is H-

The first value of -irj belongs to the upper branch of the

curve, and it is always positive. The second value is also posi-

tive as long as 2 is greater than '-^ Jx. Hence, the point that

corresponds to

must be a point of inflection whose abscissa is 2V5-

Hence, the preceding figure represents this curve, and its

origin is a cusjp of the second order.

(Art. 35.) In analytical geometry (page 118) we delineated

the curve corresponding to the equation

y=a;3—18a;+12,

and there gave the maximum and minimum points corresponding

to y. But the determination of those points of course depended

on the calculus, which the reader was not then supposed to un-

derstand, and we now notice the fact to show that the subject

of curves requires the calculus to be complete.

By taking the values of -^, and —^, in connection with their
dx dx^

signs, we can determine the concavity of the curve at any as-

sumed point.

Thus ^2^=3^^—13. (1) ^-!^=6:r. (2)
dx dx"^

If we put 3.'i;2_13=0, we shall find .'r=±2.08 14, showing

two points at which the tangent is parallel to the axis of X. If

in the equation

|^=3a,-^-13, (3)
dx

we assume a:=0 we shall have -^=— 13, showing that a tan-
dx
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gent to the curve at the point where it cuts the axis of Y is

—13, or 94° 24' with the axis of X.

If in (3) we make a;=4, we shall have

^=35,
dx

showing that at that point the natural tangent with the axis of

Xis 35 to radius unity, or 88° 21' 49".

If we make x negative in (2) while y is positive, the curve

will be concave towards the axis of X. (Art. 32.)

If we make x positive in (2) while y is positive, the curve at

the corresponding point will be convex towards the axis of X, as

is already shown by the construction of the figure.

(Art. 36.) Curves are sometimes

accompanied by insulated pointSt as

the following equation will illustrate,

a^if=x^—.hx''. (1)

Or yz=z±?J^—b , (2)
a

In either (1) or (2), if we make

2;=0, we shall have y=:0, therefore

the origin is a 'point in the curve.

But on inspecting (2) it is obvious that y must be imaginary

until x becomes greater than h, after which there will be two

branches of the curve, as shown by the double sign, alike situ-

ated above and below the axis of X. Hence figure (a) will

represent this curve, and the origin A will be an insidated point

of the curve, because it is comprised in the equation as well as

the various points in the two extended branches.

The equation a^y^—x^-\-{h--c)x^-\'hcx=0, (3)

is the same as (1) when we make c=0. From (3) we obtain

V =-i-/
^ (:g~^)(a^+c)\^ dy^^x''--2x(h'—c)—hc

\ ~a ) ' dx ^Jax(x—b)(xJ^)

Now if we make x=0, or x=h, or a;=

—

c, either supposition

will make ?/=0.
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Hence we have three points

in which the ordinate is zero,

in this curve. At A, fig. (b),

when ar=0, at U when x=b,

and at F when a;=

—

c.

Every negative value of x

less than c will give two equal

values of y. Every such value

of X greater than c will make

y imaginary, and every positive value of x less than h will also

make y imaginary,—hence figure (b) represents this curve.

When c=0, vli^ becomes a point, and (c)

the equation is represented by figure (a).

When ^=0, and c retains its value,

figure (c) represents the curve.

When b=0, and c=0 at the same time,

the loop AF must be taken off.

Each of the values x=0, x=b, x-=.—c,

reduces— to infinity, hence at the three

corresponding points, figure (6), at A, at E, and at JP, the tan-

gent is perpendicular to the axis of X.

Solving the equation 2>x^—2a;(6—c)—5c=0, will determine

two real values for ar, and thus define the points at which the

tangent will be parallel to the axis of X.

We close this chapter with the following practical questions.

1. Let the equaticm xy^4~^^

—

^ represent a curve \ has it any

points of inflection?

Ans. The points corresponding to ar=— , and

y=zhj—^a are points of inflection.

2. The equation x'*

—

3>^x^-\'B:^j=0, represents a curve ; has

that curve any points of inflection? If so, designate them.

Ans. It has points of inflection corresponding to each of the

a __j ^T.„_„i. . 5a

76
points determined by making x=d=—-y and therefore l/=~
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3. Has the curve represented by the equation a3y=x'* any points

of inflection?

\Ans. It has a double point of inflection at the origin

( of the co-ordinates*

4. Determine whether the curve whose equation is

y=3x-|-18x2—2x3

has a point of inflection?

{Ans. At a point corresponding to x=3, and conse-

quently 2/= 11 7, is a point of inflection.

5. Determine the point of inflection in the curve whose equation is

'^
ax^

Ans. The point corresponds to y=|c.

CHAPTER III.

Osculating Curves.—Radius of Curvature.—!EvoIutes

of Curves.

CArt. 36.) The curvature of a curve is its deviation from a

tangent ; and of two curves, that which departs most rapidly

from its tangent, is said to have the greatest curvature.

From this definition it is obvious that the greater the radius,

the less the curvature, and our object is now

to find the relation existing between the radius

and the curvature.

Let two circles touch each other internally

at A. Conceive them to have a common

tangent passing through A. Take any very

small indefinite arc, as AB, and draw the

chord AB, and the equal chord AB' to the

other circle. The curvature of the inner
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circle is measured by Am, and of the outer circle by Am', be-

cause these are the relative deviations of these two curves from a

tangent.

Let r be the radius of the inner circle, and B that of the exte-

rior and larger circle. Also, let c represent the chord AB, it

will therefore represent the equal chord AB'.

But the chord of a circle is a mean proportional between the

diameter and the versed sine, therefore

c'^=2r{Am), and c'^—2R{Am'),

Whence r{Am)=R{Am'),

which may be changed to the following form :

Am : Am' : : _ : -

r R
That is, The curvature of two different circles varies inversely as

their radii.

(Art. 37.) A circle has the same degree or amount of cur-

vature in every part ; but other curves, the ellipse for example,

has different degrees of curvature corresponding to different

portions of its circumference, and each small portion of any

ellipse or any other curve may be conceived to coincide with a

small portion of some circle.

If a circle and a curve coincide at any particular point, it is

an axiomatic truth that both the circle and the curve must have

the same abscissa and ordinate corresponding with that point,

and if the two curves coincide to any extent whatever, the first

and second differential coeffdents of the circle will be equal to the

first and second differential coefficients of the curve.

The circle which thus changes its center and its radius to

keep in coincidence with another curve, is called an osculatory

circle.

The equation of a circle is of the second degree, therefore it

can have but two differential coefficients, and if we are able to

express the radius of a circle in terms of the first or second dif-

ferential coefficients of the co-ordinates, or by any combination

of them, that radius will correspond to the circle which will

coincide with the curve having the same variable co-ordinates.
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(Art. 38.) The object of this article is to express the radius

of an osculatory circle in terms of the differentials of the co-

ordinates.

In analytical geometry we found the general equation of the

circle to be

a and h being the co-ordinates of the center of the circle, and R
the radius.

Differentiating and dividing by 2 produces

{x—a)dx+{y—b)dy=0. (1)

Differentiating again, regarding dx as constant, we obtain

dx--\-dy^+{y—h)d''y=Q,

Whence (y-5)=_l^!±^). (2)

This value of (y

—

b) put in (1) transposed, &c. and

^ ^ dx\ d'y J ^ ^

Substituting the values of {x—a) and {y
—h) as found in (2)

and (3), in the equation of the circle, we shall have

j.:,_dyWdx'+dy^ \,/dx^-\-dy^Y
dx\ d'y J ~^\ d^^y J

Or E.-.{dx-+dy')
(dxd^yy

3

2

Whence j;=_('^^-WF,
dxd^y

which is the general expression for the value of the radius of the

osculatory circle.

(Art. 39.) To show the practical utility of the preceding

formula, we will apply it to the general equation of the conic

sections, which is

y^ z=2px-\-qx- . (Last eq. conic sections.)

This equation, as we have before seen, will correspond to, or

represent a circle, an ellipse, a parabola, or an hyperbola, ac-

cording to the values assigned to 2p and q.
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We can new obtain a general value for an osculating radius,

which will apply to any of the conic curves whatever.

By differentiating the last equation, we have

dy^iP+^^^, (1)

Taking the differential again, regarding dx as constant, and

we have

^g^_ qydx^—{p-\-qx)dxdy __ \qy^—{ p-\-q:r.Y \ dx'' .^.

y1 y^
'

\

Whence R^ {dx^-^dy^Y_^\{v-\-<l^Y^tV\
dxd~y gy2_^p_^q^y

By substituting the value of y^ in this last equation, we have

j^_±z\(p+qxy+2px+qx'\'

Or ;?-± \
{p+qxy+%px+qx'\ '^

^
-p^ (3)

The signs should be so taken as to render JR positive.

This last equation expresses the radius of curvature for each

and all of the conic sections, the origin being at the vertex of the

major axis. At that point we have x=0.

Whence R=Py for the radius of curvature at the vertex of the

conic sections. For the parabola it is half the parameter. For

the vertex of the origin of the ellipse, it is

which is half the parameter of the major axis.

The same value is found corresponding to the vertex of the

hyperbola.

For the parabola q=0, and if we assume p=l, what is the

radius of curvature at the point corresponding to x=^l(i?

Ans. QO.yVo-

* If ^e find the expression for the normal of the curve whose equation is

y^'—'ilpx-\-qx'^, and compare it with this equation, we shall perceive that

the radius of curvature is equal to the cube of the normal divided by the

square of half the parameter.
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For another application, we require the radius of curvature

for the ellipse at the vertex of the minor axis.

For this point p= , g'=— , and x=A,
Jx Ji.

These values of ^, q, and Xy substituted in the equation, give

A^R = , wJiicJi is half the parameter of the minor axis.
B

To come more directly to the utility of the theory, we now
require the radius of curvature of the meridians on the equator

at the poles and at the latitude of 42°, taking the diameter of

the earth as given by John F. W. Herschel, and the length of a

degree at each of these latitudes.

The equatorial radius is 3962.82 miles =A.
The polar radius is 3949.68 miles =B.

To find X corresponding to latitude 42°, we will make use of

the mean radius 3966 miles, and subtract the cosine from the

radius, and we obtain ir=1023 miles nearly.

The radius of curvature at the equator is — =3936.26miles.

A^
The radius of curvature at the poles is — =3976.2 miles.

The radius of curvature in lat. 42° is found by the formula to

be 3966.4 miles.*

Hence, the length of a degree on the meridian at the equator

is
(3936.26)(3.1415962) _^„,^,^;„„

180

la lat. 42° it is
(3955.4)(3.1415962) ^gg ^3, ^^^^

180

And in lat. 90° it is
(3976.2)(3.1416962)^3, 3,, ^^^^^

180

* To substitute for particular latitudes requires some care, as 9 is a frac-

tion and negative. In this ellipse q=—0.9933 nearly, J3=3936.26,

(^4-5^:) 2 =16579991 .67, 2;5x=r.8052967.5, 9x2=—1039507.13.

Whence ^^(15540484.55)1^33^^^
(3236.26 2
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(Art. 40.) An osculatory circle is one whose radius and po-

sition of the center are in a continual state of change.

Let M, M\ M'\ M'", &g. be points of a polygram inscribed in

a curve. The perpendicular from to MM' is the first radius of

the osculatory circle, and a perpendicular from the point 0' on

to M'M" is the second radius of the osculatory circle, and so on.

The points 0, 0\ 0", &c. if sufficiently near each other and

properly connected, will form a second curve, which is called

THE EVOLUTE CURVE.

It is obvious from the figure, that the

differences between two consecutive radii is

0', 0' 0", &c. that is, the difference between

the radii of curvature at any two points of the

involute is equal to the space between the points

of the evolute intercepted between them.

In the last article, we have seen that the

osculatory circle must correspond to the

following equations

:

(a?

—

a)dx-\-{y—b)dy=0.

Whence

d'y

dx\ d^-y J
(3)

(4)

(S)And a=x-^(^^l+^
dx\ d^y

The values of a and b correspond to the points 0, 0', 0\ and

thus equations (4) and (5) will determine the evolute in any

particular case.

It is obvious in the last figure that the radius of curvature is

normal to the involute and tangent to the evolute.

As an example, let it be required to find the equation of the

evolute of the common paraboloid; the equation of the involute

is . y2=2par.
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This example requires the values of a and h deduced from

equations (4) and (5), having

dx

nr)2 (7^2
dy^z=z±.—:— , and d^y-

y2

(2)

y y r

Whence ^^l±^^=yJ^, and 6^=^, (1)

And _^(^^-h^V+i^+^^ a=x+P+y-
dx\ d^y J ^^^p

~^~
p

From the equation of the curve we have

^= , and ^==2ar.
P^ P P

These values substituted in (1) and (2), will give

8a;3

~P'
h^: (3) a=Bx+p. (4)

From (4) we obtain x=—^, and x^=S ±J-, which

value put in (3), gives

21p

showing the law of connection between (a) and (b), or it is the

equation of the evolute curve of the common parabola.

Thus we might find the equation of the evolute of any other

curve.

Corollary 1. If we make 5=0, we shall have a=p, showing

that the evolute of the parabola meets the focus.

Corollary 2. If we make a less

thanj9, 5will hQ imaginary, showing

that the focus would then be a point

of infection.

Corollary 3. If we transfer the

origin from A to 1), we shall have

a'=ia—Pi b'=b.

8a»3
Then d'2=:

27p
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Since every value of a' gives two equal values of h with con-

trary signs, the evolute is symmetrical in respect to the axis of

X. The evolute BF corresponds to the involute AMy and the

evolute Df to the involute Am.

The evolute of one-fourth of the ellipse is the diflference be-

tween Jfi^and ADy that is, —-——= the curve DF, along

which the osculatory center moves.

CHAPTER IV.

On tbe differential expressions of Polar Curves.

(Art. 41.J Before discussing spirals, it is necessary to de-

termine general expressions for the arc, the secant, the tangent,

the sub-tangent, &c. of a polar curve.

The suh-tangent inpolar curves is the part of th.Q perpendicular to

the radius vector of the point of contact intercepted between the

pole and the point where the tangent meets this perpendicular.

Thus, Let A be the pole. Draw
AMy Am, two consecutive radii, so

near each other that Mm may be

taken for the differential of the arc.

Let MQ be perpendicular to Am^
then Qm is the differential of the

radius.

Draw AT perpendicular to Amy
or parallel to Qm^ then, according

to our definition, AT is the sub-tangent

and MT the tangent to no particular

arc, but corresponding to the polar

radius AM, and the curve, whatever

curve it may be.

In respect to the differential, it is immaterial whether we con-

16
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sider the angle MAB, or the angle MA G, as the integral angle,

the differential hh is the same for either.

Let AM=r, and the angle MAX^=t. Take Ah—\y and hh=dL
Then QM^=rdty Qm=dr, and if we put ds to represent Mm,
the differential of the arc, the right angled triangle mQM will

ds=Jr''dt''+dr'',

for the differential of an arc in respect to polar co-ordinates.

The differential sector AMm is measured by l(Am,QM).
That is, ^(r-^-drydt. But as dr is comparatively nothing in

respect to r, the limit of this product is

r'^dt

which is the area of an elementary/ sector.

The similar triangles m^if and m^^give the proportion

mQ : QM : : mA : AT.

That is, dr : rdt : : r-^dr : AT.

Passing to the limit, that is, taking r in the place of r-^r,

we have
2 a//

AT——— , the sub-tangent,
dr

The angle MAT being indefinitely less than mAT, we may
regard MATaa a right angle, hence

MT=^-AM'+Af'

Or MT=r I\aJ2^> the tangent.

As MN'is normal to the curve, the angle NMT is a right

angle, and AM^ or r, is a mean proportional between AT and

ANy therefore

: r \ : r ; AN.
dr

Or AN=— , the sub-normal,
dr
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In the right angled triangle ANM, we have

That is, j\fM= I ^^^-Lyg the normal.

CHAPTER V.

On Transcendental Curves.

(Art. 42.) Curves are generally divided into two classes,

algebraic and transcendental, according as their equations con-

tain purely algebraic or transcendental quantities.

The curves hitherto examined, are algebraic; we now propose

to illustrate and show some of the properties of some of the

transcendental curves, beginning with

THE SPIRALS.

A spiral is a curve described by a point which moves along a

right line in accordance with some fixed law, the line at the same

time revolving uniformly about one extremity, its pole.

When the motion of the point commences at the pole and

moves uniformly over the length of the line while the line

makes one revolution, the spiral then described will be the spiral

of Archimedes.

Thus, let AB be the line. A the pole.

Let the point jlf commence at A, and when
AB revolves to the position of A^, the

point will be found at M, it having de-

scribed the spiral curve AM in the same

time.

When AB revolves to the position of

AD, the point will be at F, it having described the curve MP
while the line changed from AN" to AD.
When the point arrives at B, the line is in the same position

as at first, and the s^ivalAMPB has been described.
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Now let the line be indefinitely increased and the motion con-

tinued, and an infinite number of revolutions might be made.

To find the equation for this curve, let AB=a, the arc BN^=^ty

and AM^=^r, the radius vector of the spiral at any point, as M.
Then by the definition

AM : ^iV=arc JB^^ : arc £JVDB.

That is, r : a=t : 2rta.

Whence r==— , ike equation of the curve.

The transcendental quantity in this equation is t, the arc of a

circle; hence, this curve is a transcendental curve.

When t includes the entire circumference, it is equal to 2rta,

and then the equation becomes r=a. When ^=4rta then r=2a,

and so on indefinitely.

THE HYPERBOLIC SPIRAL.

(Art. 43.) While the line AB revolves about the pole, let

the generating point move along the line in such a manner, that

the radius vectors shall be inversely proportional to the corres-

ponding arcs, then the point will describe the kyperlolic spiral.

l.QtAB=a, AM=:l, A]Sr=r.

The arc BN=t.
Now from the definition we have

AN : AM : : circ. BNDQB : arc BN.

That is, r : \ '. '. 2a7t : t.

Whence r= , the equation of the curve.

Let AF=r, then we must designate the arc BD by i, and the

proportion will be the same as before, and so on for any point in

the curve.

When AB has made one revolution, then^=2a7t, and the equa-

tion becomes r=l, corresponding with the construction.

The equation shows thatr cannot become zero until t becomes

infinitely great ; that is, the spiral will meet the pole after an

infinite number of revolutions, and therefore the minor revolu-

tions may be compared to the whirling of a top.
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On the other hand, when t is very small, r will be correspond-

ingly great ; hence, the curve, after passing N, will run off and
become nearly parallel to AB, and in that sense AB is an asymp-

tote to the curve, and hence the name hyperbolic spiral.

The two preceding spirals, and indeed, all spirals that can be

constructed or conceived of, are included in the general equation

r=af,

a representing a constant quantity, and n may be either positive

or negative.

When n is positive, the spirals will pass through the pole, for

if then we make ^=0, we shall have r=0.

In the spiral of Archimedes ?i=], and in the hyperbolic spiral

>?=— 1, as we have just seen.

LOGARITHMIC SPIRAL.

While AB revolves uniformly about the pole, let the gene-

rating point move along the line AB in such a manner that the

logarithms of the radius vectors may be proportional to the

measuring arcs, it will describe the logarithmic spiral.

From this definition we have at once

t=\og.r,

f<yr the equation of the logarithmic spiral, in which r represents

the radius vector, and i the measuring arc.

(Art. 44.) We can now deduce some of the properties of the

spirals by the application of the differential

expressions for the polar curves, as deter-

mined ih the preceding chapter.

Let mMh be a portion of a spiral curve,

the radius vector AM=^t, and the equation

of the curve

rz=af,

it is required to determine AT, MT, MN^
and AN.
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In (Chap. V,) we found

Sub-tangent AT= , and because r=afy we have
dr

Or

dr=naf~*di.

dt_ 1

'dT'naf-^'

r^dt CL^t^^ dt^^
Whence = .= , the sub-tangent, and when

dr nat"^^ n

»=1, as it is in Archimedes* spiral, the value of the sub-tangent

is ai^ . But in that spiral T=^at, and a=

—

Whence at^ z=.—='i7^r^

,

a

If r=l, the sub-tangent will be 2rt, the circumference of the

measuring circle, and after two revolutions, it will hefour times thai

length, and so on, as the squares of the number of revolutions.

This property was discovered by Archimedes.

In the hyperbolic spiral n=^— 1, the corresponding sub-tangent

is then —a, a constant quantity.

The tangent MT=^r li\^^_^=r jT\4^=afJ\J^^.
^ ~ dr^

The normal MjV^= M^"" JUr^== l—Jl-\-n^aU'^'^''.

The sub-normal AIf=—=
dr naf~^

In the spiral of Archimedes the sides of the triangle MA,
AT, and TM, are in the proportion of 1, ^, and tJl-^-t^

.

(Art. 45.) As the angle MAT is a right angle, we have

MA : AT : : radius : tsm.AMT.

That is, r :^yj^ : : 1 : tan.AMT.

Whence tan.^ifr=^^

dr

¥T=:
dr



TRANSCENDENTAL CURVES. 243

Let us apply this to the logarithmic spiral, the equation of

which is

t=\og.r.

Whence dt=m—

,

r

m being the modulus of the system.

Therefore tsiii.AMT=^—=:m.
dr

That is, the angle between the radius vector and the tangent

to the spiral at the point of contact is constant, and its trigonome-

trical tangent is equal to the modulus of the system. If i is the

Naperian log. of r, the angle will be 45*^.

(Art. 46.) A logarithmic curve is not necessarily a spiral, for

it is obvious that if we take rectangular co-ordinates and assume

one ordinate to be a number, and the other a logarithm of that

number, we shall thus have an equation which will produce a

logarithmic curve.

The logarithmic equation is y=^a^, and taking x for the ab-

scissa, and y the corresponding ordinate, the equation will mark

out a curve, and a particular curve when a is given.

As is well known a is the base of the system, and x is the

logarithm of the number y in that system.

We must also recollect that a cannot be 1, for every power of

1 is 1, and in that case the variations of x would produce no

variations in y.

Let M'BMhe the logarithmic

curve whose equation is y=a',

and make x=0, then we shall

have

y:=a°=l=AB,

and this will be the value of AB,
whatever be the value of a, show-

ing that all logarithmic curves will cut the axis of Fat the dis-

tance of unity, whatever be the system.

Let a be greater than 1, and x positive, then y will be positive

and greater than 1, corresponding with the figure AF and FM.
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When X is large, a small variation in x produces a much greater

variation to y.

When X is negative, the equation becomes

showing 2/ to be a fraction, or less than unity, but y cannot be-

come zero until x becomes infinite and negative, showing that

the curve will meet the axis of T^at an infinite distance to the

left of the origin. Hence AP' is an asymptote to the curve, and

the curve itself can therefore be classed with the hyperlolas from

whence comes the term hyperbolic logarithms.

The equation of the curve is y=a^ .

Whence \og.y=zx\og.a.

^=y\og.a. (1)

But — represents the tangent of the angle which the tangent
dx

line forms with the axis of JT, hence that tangent will be parallel

to the axis of X when 2/=0, and perpendicular to it when y is

infinite.

But the most remarkable property of this curve is its sub-

tangent, represented by the symbols fy— V (Art. 24).

dx 1

y—=
dy log.a

That is, the sub-tangent is a constant quantityy and equal to the

modtdus of the system, whichever system that may be.

(Art. 47.) Another important transcendental curve is

THE CYCLOID.

The cycloid is a curve described by the motion of a point in

the circumference of a circle while the circle rolls along a right

line, the point commencing to move from the line, and to make

the curve complete, it must meet the line again, during which

time the circle will make one revolution along the line.

Another revolution, and the point will describe another cy-

cloid, and so on indefinitely.
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Let M be a point in the circle

BMR, and conceive it to roll along

the line RO from R to G. The

circular arc RM falls down upon

and measures RA, and the point

M moves over and describes the

curve MA in the same time, and

this curve MA is a portion of a cycloid.

To find the equation of this curve we must determine the re-

lation between AP and PM.
Conceive A to be the origin of the co-ordinates, and put

AP^x, PM=y=RE.
Let the radius of the generating circle be r, and the arc MR,

the radius unity, be z, then the value of the arc MR will be rz,

which is equal to AR.

Now AP=AR—ME,
That is, x—rz~ME. (1)

But ME=:^JBE,ER= J{2r—y)y.

Whence a;=arc(sin.=^2ry

—

y^)—^2ry

—

y^. (2)

If in this equation y be taken negative, the value of x will

become imaginary, showing that if can never pass below the

line AR. When y=0, x will equal an arc whose sine is 0,

hence x will equal also. When y=z<2,r, x will equal the arc of

1 80° to the radius of r; y cannot be greater than 2r, for then x

would become imaginary, showing the absurdity of any such

hopothesis.

(Art. 48.) But the properties of this curve are most easily

deduced from its differential eqxmiion.

To find the differential equation of this curve we will differ-

entiate (1), which is

x=^rz—sin. {rz).

dx=^rdz—cos.{rz)dz. (3)

But sm.(rz)= j2ry—y-.

Whence eos,(rz)dz=Si:^^. (4)
J2ry—y^
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But COS. (rz) is OH, which is equal to (r—y), therefore

rdz=-jM=.. (5)

Values taken from (4) and (5), and substituted in (3), will

dx_ rdy

Or

_^ , {r—y)dy

*J^ry—y^ J^ry—y^

J%ry—y^
which is the differential equation of the cycloid.

(Art. 49.) Now by
the application of (Art.

24), we can readily

find expressions for the

tangent, sub -tangent,

normal, and sub -nor-

mal of this curve

The tan.^7'=y^|!+l=y^^.
2r

—

y

rSub-tan. TF=l^-^=-. — .

^y J2ry—y^

Normal MN=^l- Jdx'^+dy^ = J~^-
dx

ydy.
Sub-normal PN=il'"A=: J2ry—y^

,

dx

These values being determined,on the greatest ordinate BD,
describe the generating circle. Take any point in the curve, as

My and draw ME parallel to AP. Join BE and ED, PM is

parallel and equal to BE, each equal to y.

Now BD=^^r, and by the property of the circle EE^=^

J^ry—y^.

Now PiVand EE are equal, since each is equal to J2ry—y^,

and the two triangles i/PiY and EEB are equal, whence MN=
HB and MNBE is a parallelogram.
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Because MN is normal to the curve, and TMm a tangent at

the point M, the angle NMrn is a right angle equal to the angle

BHD in the semi-circle, and as A'JUf and BH are parallel, it fol-

lows that Mm, the tangent to the curve at M, is parallel to the

corresponding chord of the generating circle described on the

greatest ordinate.

(Art. 50.) Resuming the differential equation of the curve,

J^ry—y^

Placing it in the form

^_ J9.ry—y'^^ y2r__

dx
y V^

Making y=0, we have —=infinity, and making y=2r, we

have -^=0, showing that at the point A, a tangent to the curve
dx

is perpendicular to the axis of X, and at the point D a tangent

is parallel to the same axis,

(Art. 51.) To find the radius of curvature at any point, as

My we must apply the general equation, (Art. 38),

dxdy^ ^ ^

As the second differential of dx is not required by the formula,

we may regard it as constant, therefore the differential of

dx^-^^I—
J^ry—y^

is 0={yd-y+dy-)JW^y^---^^^k^^^*
J<iry—x/

Reducing, and

0=(2ry—2/2)c?2y-f.r^y2.
rdy^

Whence d'^y-.

i--y^

* The denominator of this differential is omitted for obvions reasons.
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Substituting the values of dx, dy, and d^y, in (1), we have

R-( y'^y' ^^y^y y C^ry-y-)- ^{9.ry-y-)

\%ry—y^ J ydy rdy^

Or i2=_(?!Z.fe

{2ry—2/2 y
3

Or Ii=i?Il}l=2j2^i.
ry

That is, the radius of curvature at any point, as M, is double

of the corresponding normal MJV, The radius of the curvature

at A is therefore zero, and at D it is twice DB, or 4r.

vi^ry-y^Y
,2 rydy^

THE EVOLUTE.

(Art. 51.) In (Art. 40), we find the two following equations

in which the quantities a and b represent the co-ordinates of the

center of the osculatory circle; their relation, or one in terms of

the other, will give the equation of the evolute.

(dx^-\-dy')
f—h-.

d'y

dx\ d^y /
The values of dx, dy, and d^y, substituted in these equations

and reduced, the results will be

Whence

and X—a=

—

2j2ry

y=

—

hf and ;r=a

-y^-

2j2ry—y^.

The first of these equations

show that QM'z=PM. The

last article demonstrated that

MN=NM', therefore the two

triangles PMN and NQ,M' are

equal.

PN, the sub-normal, is equal

to NQ. But this sub-normal

is J'iry—y^ . Hence, PQ equals 2^2ry

—

y"^
, which subtracted

from A Q, (a), gives x corresponding with the second equation.
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If the value of x and y be taken from the last equation and

substituted in the geometrical equation of the cycloid, we shall

have, after a little reduction,

a=arc(sin.=(7—2r6—^2)—^—2r6—62, (1)

the equation of the evolute AM'A'.

To make this equation more clear, we will transpose the origin

from A to A\ BA' being equal to 2r.

Take A'P'=a\ and P'M'=h', then it is obvious that

a=AB-^A'P'=:7ir—a'. And as QM'=^J), andP'§=2r,
we shall have —&=2r

—

h'.

Substituting these values in (1), we have

rtr—a'=arc ( sin .

=

J2rb'—b' ^

)

+J2rb'—b'

Whence a'=z7tr—arc(sin.=^2r5'

—

b^ )
—J^rb'—b'

But 7tr—arc(sin.=^2r6'—6'2)i=arc(sin.=^2rJ'

—

b'^ ).

Hence a'—arc(sm,=j2rb'—b'^)—'j2rb'—b'^.

This equation has the same form and contains the same con-

stant (2r) as the equation of the cycloid, hence the curve A'M'A
is also a cycloid equal to the primitive one,— or the involute and

evolute are equal.

OTHER GEOMETRICAL DIFFERENTIALS.

(Art. 53.) The dififerential of a plane geometrical surface is

obvious, as the adjoining figure will illustrate.

Let A be the origin of co-ordinates,

AF=x, and PM=^y, and they may be

regarded in reference to the rectangle

PBy or to the triangle AMP, or to

the curve NMP.
Let AP or x receive a small incre-

ment dx, then {ydx) is the differential

•parallelogram, which is the differential

of the parallelogram BP^ or of the triangle AMPy or of the

curve surface MNP, according to the given relations between x

and y.
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(Art. 54.) If we conceive the surface ABMP to revolve on

tIP as an axis, it will then describe a cylinder, and the differential

parallelogram (ydx) will describe the differential of this cylinder,

which will be measured by {rty^dx).

The revolution of the triangle AMP will describe a cone, the

differential of which will also be represented or measured by

[jiy^dx). Also, the revolution of the curve surface NMP^ on

the same axis, will describe a segment of a circular solid, the

differential of which is measured by the same expression

{Tty^dx).

Let the reader bear in mind that different, integrals may have the

same differential, as articles 63 and 54 illustrate.

(Art. 55.) Observe that Jdx^-\-dy^ is the differential of a

line which is either a straight line or a curve, according to the

relative values of x and y, and the revolution of this line on the

axis of Xwill describe the differential of a surface, the surface

of a cylinder, or of a cone, or of a curved surface, as the case

may be.



THE INTEGRAL CALCULUS

CHAPTER I

(Art. 56.) The integral calculus is the converse of the dif-

ferential, and all our rules of operation refer back to the same

general principles.

Although the operations are the converse of those in the dif-

ferential calculus, we must not infer that they are equally

obvious, and one as easy as the other.

To cube a number, and to extract the cube root of a number,

are converse operations, and the last can be deduced from the

first, but it requires far more care and attention.

Without farther remark we will proceed with the subject,

commencing with the most simple case.

The differential of a simple quantity, as x, y, z, or any other

single symbol, is expressed by writing the sign d before it, as dz,

dy, &c. Hence, to pass from the differential quantity to its

integral, we simply remove that sign, and for dx write x. To in-

tegrate dx-\-dy—dz, we simply write x-\-y—z, &c. &c.

The differential of x^ is ^x^dx.

The differential of x^ is 5x*dx.

The differential of 2/" is my'^-'^dy.

Now therefore, to integrate an exponential quantity consisting

of a single term, we must frame a rule that will change ^x^dx

torc^, Sx'^dxiox^, and my^~'^dy to ?/"*.

These operations can obviously be performed by the following

Rule {A). Add one to the exponent, divide hy the exponent, so

increased, and take away the differential factor,

251
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EXAMPLES.

1. What is the integral of Ax^dx? Ans. ^x^

.

2. What is the integral of ly^dy? Ans. ^^y^,

3. What is the integral of SOP'^dP? Ans.eOjPl

4. What is the integral of ^x^^dx? Ans. -y-^ x'^^K
3(m-|-l)

5. Integrate the differential _^_f. Ans. ——

.

x^ x^

adx „
6. Integrate the differential ——j. Ans. -___

.

3a;3 V^

(Art. 57.) The diflferential of an equation like

y—ax'\-h, (1;

is dy=adx, and the attached constant h disappears.

Now take the reverse operation, and pass from the differential

to the integral, and we have

y=ax, (2)

and the constant h is lost, and thus it might be in any other

ease— hence an integral obtained from a given differential may
require a correction, which it is customary to denote by the sym-

bol C.

This being the case, the integral completey or equation (2), is

y—ax-^-C. (3)

To determine the value of C we must know the import of

equation (1), or as most writers express it, we must Tcnow the

nature of the problem, or the relation between the variables at

some particular point.

Now from analytical geometry we know that equation (1) is

the general equation of a straight line, and when ar=0, y must

equal b. Making this supposition in (3) we have

This value of C put in (2), and we have (2/=aa;-f-^), equation

( 1
) completely restored.
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Again, let us examine the first example under rule (A), 4x^da

might have been the differential of (|>'c«+a), or of (^^x^-}-m), or

of any other constant attached to the variable part. Hence, it

is very proper to designate fa;« as the partial integral, and

(1^^+ ^) ^^ the complete or the corrected integral.

After we determine the value of C, the result is called a.par-

ticular integral.

We cannot determine the value of C without some given or

known conditipn^ but with a condition it is very easy.

Thus, take the last integral (|a;^-j-(7), and suppose the value

of the whole must be 4, when a?=l, then |-J-(7=4, and (7=3^,

and the particular integral is -
-^'

(Art. 58.) Rule (^4) fails in one particular case, as in the

following example :

Required the integral of a^'^dx.

^^-1 + 1 I
By the rule -'- =_= infinity,^ —1+1 ^

^

But this is incorrect, for x'^dx is — , which is the differential
X

of the logarithm of x, (Art, 10), and therefore the integral is

(log.a;-|-(7), and as the logarithm of a; is not an algebraic quantity,

the rulefailed.

(Art. 59.) When we wish to indicate an integral we use the

symbol T, which is a prolongation of the letter S, the initial of

the word sum, as the integral was conceived to be the sum o/
,

a great multitude of minute differentials.

;

Thus, if we wished to convey to the mind the integral of

mx^dx, we simply write fmx'^dx, and so on for any other

quantity.

Constant factors may be written without the sign. Thus,

fa.x'^dx is the same as afx'^dx.

The more general index for this is afXdx, X being a symbol

indicating any algebraic function of x.

(Art. 60.) In general, the constant is arbitrary, since what-
17
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ever value be assigned to it, it will disappear in taking the dif-

ferential. This arbitrary nature of the constant fortunately

enables us to cause the integral to fulfil any reasonable condition.

For example, we require that the integral of bx'^dx shall be 100,

when x=a.

The integral complete is

/5^'<'^=^-+(?- (1)

Now by the condition, when we write o in the place of x, the

second member of (1) is 100.

That is, ^1+C=l00.

Or C=100—--.
4

^-|-100~r^ Y the

integral required.

If in (1) we make x=a, and then x=by the expressions may

be generally expressed thus :

JXdx=A+C. JXdx=B+a
x=a ar=s6

Whence by subtraction,

JXdx—JXdx=B—A.
a:=6 x=a

This indicates that the integral has been taken between the

limits a and b, and it is usually written

jlXdx=B^A.

the subtractive integral being placed below. -

EXAMPLES.

1. Find the integral of Sx^dx between the limits of x=l and

x=3. Am. 120.

Jl Gx^dx=^3.^^= 1 20.

2. Find the integral of 7x*dx, between the limits of x—— 1 and

x=2, Ans. 21.

J^lx^dx^lx'^^C,
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(Art. 61.) Many binomial differential expressions may be

reduced to monomials by algebraical artifices, and then inte-

grated by Rule (A) as illustrated by the following

EXAMPLES.

1. Let du=(a-\-bx')'^cx''-^dx

be a differential equation, the integral of which is required.

Let the learner strictly observe its form. The exponent of the

variable x within the parenthesis is w, without the parenthesis it

is n— 1, one less.

When this is the case, expressions in the above form are alioays

integrable by the following process :

Place 65+&k"=2.

Then rib^-^dx^dz, x'^'^dx^—,
nb

Substituting these expressions in the equation, and we have

du^=^—-z^dz.
no

Integrating by the rule,

nb{m-[-\y

And replacing the value of z, we finally have

nb[m-\-\)

2. If du^il+Zx^YQxdx, «=il+??!il+(7.

3. If du=:^—{^—^x^)^x^dx, u=i^^^^-l~+C,
8

4. If du={a-\^x^Yxdx, w==iHh^?!ll+a
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xdx _^ 1

7. If t/w=_^'^, w=a- ^

(Art. 62.) Differential equations of the form represented in

the last article, are always integrable when mis a whole number,

whatever may he the relation of the exponents within and without the

parenthesis, or whatever may be the number of terms within the pa-

renthesis.

For example, if we require the integral of the differential

equation

du= (a-\-bx-{-cx^-\-&G) "^exdx,

and if m is a whole number, we can expand the quantity in pa-

renthesis, and then multiply each term by the part without the

parenthesis, and we shall have a series of monomials, each one

of which can be integrated by Rule (A).

This being understood, the integration of the following differ-

entials can readily be obtained.

1. Given du^=(a-\'bx)^xdx tofndvL.

By expanding du=(a^-]-3a^bx-\-Sab^x^-{-b^x^)xdx

—a^xdx-\'3aHx^dx-\^3ab^x^dx-\-b^x*dx.

^, a^x^ , Sa^bx^ , 3ab^x^ , b^x^ . nWhence «= +-^ 4- 4- +C^.

N. B. We add but a single constant, for if we add to each

term of the second member, the sum of them would be a con-

stant quantity, which might be represented by C alone, hence,

a single constant is all that is required.

We may also integrate the last example, and others similar to

it, as follows :

Place a-^x=^z. Then dx^—, and a?=i:Z?.
ft h

Whence xix^'^'-'^l, and du=.^-^-"£^.
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05 az*
By investigation «= — -|-(7.

Replacing the value of s, and

2. Gfiven dzi={l—cuc'ybdx to find m.

. 2rt5a;"*» ,
a^bx^"^^ .rrAm. u=ox— + +0.

nJ^\ ^ 2/1+1

Given du=z( —-\-x\ x^dx to find u.<H'
Ans, uz=\og.x+^+^+^+C.

(Art. 63.) Every equation in the form

c?2^=^ic'"(a+5a;)"c?a;, ( 1

)

can be integrated when either m or n is a whole positive number,

Ist. Let m be a whole positive li.umber, and n fractional or

negative.

Place a+5a?=0, then t?«:=^, ^n.^(g—«)"

b 5°

Whence du=,^{z—a)'^z''dz. (2)

Now as m is a whole number, this last equation can be inte-

grated by (Art. 62.)

2d. Let w be a whole positive number, and m fractional or

negative, and (1) corresponds at once to (Art. 62.)

EXAMPLES.

1. Integrate the differential du=x^(a'\'bx^ydx.

Place a+6a;2=2. Then xdx=^— , a;^=^
26 b

2b^du=z^dz—az^dz.
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^63 16
'

Ans ,,^
(3g-5a) J_(Shx--2a)(a+bx^)^

\5b^ 1662

2. Integrate the differential du=2x(l—Sxy^dx.

3. Integrate the differential du=
X—

1

Ans. w=^+a?—|-flog.(a;—l)+a

4. Integrate the equation dy= ^ '^_ ^—
.
( 1 8th Ex. Art. 6.

)

Ans. y=(a-{-Jxy-^C.

5. Integrate the differential

du^(?^l±^^^. (16th Ex. Art. 6.)

Va2+aj2

This example may be put in the following form :

Ans. u=^2xJa^^\^+C.

6. Integrate the differencial du—^^~^^^ ^̂. (13th Ex. Art. 6.)

2Vl—a;

Ans. w=(l-|-a!)^l

—

x-\'C.

(Art. 64.) We have seen in (Art. 10) of differential calculus

that the differential of the logarithm of a number is the differen-

tial of the number divided by the number, multiplied by the modulus

of the system. When the modulus is one, the system is the
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hyperbolic or Naperian, and the constant disappears, or it is not

written. A unit factor is not visible.

Hence, whenever we observe differentials in the form

^, or -^, or l^.?^f, or
(^+to).fa^

X a-\~x

'

ax-\-x'^ a-\-bx-\-cx^

we know that the integral must be the log. of the denominator,

plus a constant.

Thus the integrals of the above expressions are

wlog.rr+C, \og.(a-\'x)-{-C, \og.{a-{-bx^cx^ )-\-C, &c.

The logarithmic form of equations, or of differential expres-

sions, is not always apparent in consequence of constant factors,

but the form can be made apparent by a little algebraic artifice,

as the following examples will illustrate.

1 . Integrate the differential

EXAMPLES.

5x^dx

I5x'+2l

Put I5x'+21=z. Then 60x^dx=dz, or 5x^dx:=~.
12

Whence f^^-= fl.^^l rl^=llog.( 15^^+21 )+C
-^ 15a;^+21 *^ 12 ^ 12^ ;2 12 ^ ^ J^

2. Integrate the differential equation du=^ ^ ' ^i—

.

2y+2/2

Ans. w=log.(2y4-y2)-)-C.

3. Integrate du—^—^. Ans. u=—flog.(l

—

y^)-{-C.

4. Integrate rfw=l_Z!L_i'z^lL.
^ 3+2y2_3y3

Ans. u=2\og.(3-\-2y^—3i/^)-\-C.

In the application of this branch of the science a sufficient

number of examples will occur to exercise the student in loga-

rithmic functions, and therefore we give no more at present.
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(Art. 65.) We have seen that the differential of a product

as xy is (ccdy-\'ydx)

.

Therefore, the integral of (xdi/-\-ydx) is xy, and this must

aerve as a fundamental rule for integration, and we now propose

to show that this harmonizes with rule (-4).

The differential expression obviously contains two variables,

because we have dx and dy ; hence, the integral will contain x

and y, but how connected, or how related, we are not supposed to

know, at the present moment.

But X must be equal to, or greater, or less than y. Let a be the

difference between them, and that difference is constant.

That is, xz:^y±ia. (1)

Whence ydx=ydy.

But xdy={y-±ia)dy.

du-=xdy-\-ydx=9,ydy±iady.

Now by integration,

u=J^(xdy-{-ydx)=y^ ±:ay= (y±:a)y=^xy, Ans.

Again, we can assume x=ay, in which a is greater, equal to,

or less than one, as the case may demand.

dx=ady, ydx=aydy, xdy=aydy.

rdu=r(xdy-\-ydx)z=r2aydy=ay^ =ay.y=xy, A?is.

Thus we perceive that either operation corresponds to rule (A)

after the transformation is effected.

(Art. 66.) We may take another view of this case. When
we differentiate a product like xy, we conceive one letter, as x,

constant, and the other variable, and thus we obtain xdy, the

partial differential.

Then we conceive x to be variable and y constant, and under

that supposition we obtain the other partial differential (ydx.)

Now if we take either of these partial differentials and integrate

ou the supposition that the letter having the sign d prefixed is

the variable one, and the other constant, and we obtain xy for

the integral, and if we take each partial integral and integrate, we

get xy twice, or 2xy, hit we must take hut one of theinfor the in-

tegral, for obvious reasons.
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The same principle holds good in relation to the three or more

letters. The differential of xyz is

xydz-\-xzdy-\-yzdx.

Now if we integrate each of these expressions on the suppo-

sition xy is constant in the first term, xz constant in the second,

and yz constant in the third, we shall have

xyz-\-xyz-\-xyz.

Here are three ^qual integrals, but we must take but one of

these for the whole integral, because the diflferential was effected

by three distinct suppositions.

This principle liolds good in relation to a quotient, as -, the

diflferential of which is

ydx—xdy^
^j^.^j^ ^^^ ^^ written ——xy-^dy,

y"" y

Integrating each of these expressions on the supposition that

y is constant in the first, and x constant in the second, we have

y y
but we must only take one of these for the integral, for the same

reason as before.

We may also change the form of this differential by substitu-

tion, so as to make rule (^A) applicable to it.

Thus place f?w=:^^=^. (i)

Now put y^=tx, t and x being variable, for if t were not varia-

X 1 X \

ble, the fraction -, or its equal — =-, would represent only a

constant, which could have no differential, and therefore / as

well as X must be variable.

If y=tx, ydx=txdx, and xdy=txdx-\-x'^df.

Whence du=^^J^=-^'^=-t-^ dt.
y^ .

^2^2

Integrating by rule (A)^ and we have

u=-, but _=-
( t y
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EXAMPLES.

1. Integrate (6xy—y^ )dx-\-(3x^—^xy)dy.

Ans. Sx'y—y^x.

We integrate the first part on the supposition that y is con-

stant, and the second on the supposition that x is constant, and

we obtain

Sx^y—y ^x-^Sx^y—y^x,

and because we make two distinct suppositions, we divide by 2.

Then test the result by taking the differential.

Again we may integrate the last example as follows :

Place du=(6xy—y^ )dx^{Sx^ —2xy)dy, ( 1

)

and assume x=ay, then dx=ady, and (1) becomes

du—(6a^y^—ay^)dy+(3a^y'''~2ay^)dy=9a'y^dy—3ay^dy.

Whence u=Sa^y^—ay^=Sa^y^.y—ay.y':=3x^y—xy', Ans.

2. Integrate the differential equation

du=(2y''x+3y^ )dx-{-(2x^y+9xy^ -\-8y^ )dy.

Ans. u=x^y^-\-3xy^-\'2y^+C.

3. Integrate du^ i^'^f >dx+{-'+-' )ydy
,

J(b'^+yn(a-i-x-)

Place ^62+y3=P, and Ja^-\-x^= Q.

The several members will then reduce into the diflferential of

a product. (See the author's Sequel, page 342.)

Ans. u=Jb'-+y\Ja^-{-x^+ G.

4. Integrate du= ^-^

Place (a—y+z)^=P. Ans. u=P^+C.

5. Integrate du=6xdy-\-6ydx-\'3bdy-\--2cdx.

Ans. u—6xy-\-Sby-{-2cx-\'C.

Or u=(2x+b){Sy+c).
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6. Integrate examples 1, 2, 3, (Art. 3).

7. Integrate efw=?(2^^^^II^). (This is Ex. 15, Art. 6.)

3
Place x=a'i/. Ans. u=— -{-C.

CHAPTER II.

On the Integ^ration of Circular Differentials.

(Art. 67.) In (Art. 9), we have seen that if u designates

an arc of a circle, and x its sign, we shall have, (radius being

unity),

J dx

Whence f-
^^ ^u+C, (1)

J\—x^
We know however, that when the sine of an arc is 0, the arc

itself is 0, or 180°. Regarding it as 0, equation (1) becomes

0=0+ C, or (7=0.

Hence the whole integral is the arc of a circle whose sine is x,

which is sometimes written

f— -=arc(sin.=a;). (2)
Jl—x^

When we can integrate the first member of this equation in

numerical or algebraic terms, we shall then have the numerical

value of the arc of the circle, to compare with the numerical

value of the sine.

(Art. 68.) When u is an arc and y its cosine, (radius unity,)

we have

(^t^=-> "^^ - . (Art. 9.)
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Whence f— ^JL. =u+a (3)

To determine the constant we must take a particular case.

Estimating the arc from the commencement of the first quotient

the cosine of zero arcis radius, and from thence the cosine dimin-

ishes and becomes 0, when the arc becomes a quadrant. Hence

when 7/ is 0, the first member of equation (3) is ^7t, and u must

also equal ^h; therefore 0=0, and the entire integral is

f—

—

--^—=!t<=arc(cos.=y). (4)

Again, let u be the arc (always less than 90°, and estimated

from the commencement of the first quadrant), and t the tangent

of the same arc, then w and t will commence and vanish to-

gether, and integrals connecting them will require no correction.

Now from (Art. 9), we have at once

/-^-=='M=arc(tan.=0- (5)

When u is an arc estimated as above, and v its versed sine, we
have

r—;__^__>=?^=arc(vers. sin. ==«;). (6)

(Art. 69.) It frequently happens that we have expressions

to integrate in the form

dx

All such expressions indicate a circle, whose radius is a in

place of unity, and x represents the sine of an arc if the expres-

sion is positive, and a cosine if it is negative.

In the above expression, if we suppose x represents the sine

of an arc, and a the radius of the circle, and if we take z to

represent the sine of the same arc in the circle of radius unity,

we shall have

a \ x : \ \ : z.

Whence ^=f, dz=—.
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dx adz dz

And r = r—^—=arc(siD.=g)=aicAiD.=:^\
J Ja^—x^ ^ J\^z^ \ aJ

the arc. still taken in a circle whose radius is unity.

From this we may summarily conclude that the integral of

—

—

—^ is an arc whose cosine is ^.

(Art. 70.) We have just seen that the integral for a tangent

to the circle of radius unity is ^asf? .si;

df
But suppose we have before us tlie expression , to be

integrated, we would examine and see if it were not the differ-

ential of a tangent to a circle whose^ radius is a, and if so,

determine its integral.

Let t be the tangent of an arc, and a the radius, and z be the

tangent of the same arc to radius unity, then

a \ t \ : \ '. z.

i=az, and dt=ad8.

dt adz _\/ dz \

=_arc('tan.=^.

)

Whence

Or f-J^-=- arcAan.=i\

the arc being estimated to the radius unity.

In view of the foregoing, and on inspecting equation (6) of

(Art. 68), we will venture to conclude that

C—— = arc( versed sin.=!!.).
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CHAPTER III.

INTEOR ATION BT SERIES.

Integ^ration of Rational Fractions.

(Art. 71.) Expressions in the form Xdx, in which X is any

algebraic function of x, and which cannot be integrated by any

of the preceding artifices, the quantity Xmay be expanded into

a series of simple terms, and then we can multiply each term

by dx, and integrate. The sum of the integrals so found will

be the approximate integral of Xdx, provided the series is con-

verging, and is carried to a sufficient number of terms.

When the series is not converging, a little algebraic artifice

can transform it into another which will converge.

In the preceding chapter we have integrated in terms of cir-

cular arcs. If we can also integrate the same expressions in

algebraic terms, we shall have the numerical or algebraic mea-

sure of circular arcs. Thus, much useful truth is revealed by
two methods of integrating the same quantity,— and this is one

feature of the utility of the science.

For example, let us take the expression

dx

from equation (2), (Art. 67), whose integral is the arc of a cir-

cle, the radius of which is unity, and sine x, and we shall have

the numerical value of this arc. The above expression may be

expanded as follows

:

L^=(l_a:2)-2^1+^a;»+i.|a;4^i.|.|a.6_j. &c.
Jl'—x'

Multiplying each term by dx, and integrating, we obtain

u=zBm.-^x=x^——\-^-^-^l^^+ &c.
2.3 ' 2.4.5 2.4.6.7

'

This integral requires no correction, for if we make x=0, u

will become at the same time, as it should.
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As X is the sine of an arc, it can never be taken greater than

the radius, (unity,) and if we know the value of x for any par-

ticular arc, that value substituted in the second member will

give the linear measure of the arc.

If we take «=30°, we know that the corresponding value of

X is I, and taking ten terms of the series, we find

Arc of 30°=0.62359877.

Whence Arc of 180°=6(0.52359877)=3.14159262=rt.

N. B. This problem is the same as example 1, (Art. 20), in

the differential calculus. We repeat it here to develop the

method of integration, and to show the harmony and beauty of

science.

For another example. One integration of the expression

is the arc of a circle whose tangent is t, and radius unity.

(See Eq. (5), (Art. 68.)

For another integration we expand ——^ by division, which

produces

I__^2_j_^4_^6^jj8__^l0_|_ (fee.

Multiplying each term by dt, and integrating, we have

t^ t^ t"^ t^ (^ *

Arc(tan.=0=^——+———+———4- &c.
^ ^

3 ^5 7^ 9 11 '

This result is the same as equation (4), (Art. 20), differential

calculus, and therefore we will not again carry out the numerical

result.

For a third example. One integration of — is \og.x. We
X

cannot obtain another integration of this differential, because

we cannot expand it into a series.

• But if we place a:=l+y, then dx=dt/.

And ^=J^. Whence r^= rJ^=log.(l+y).
X 1+7/ ^ X ^ 1+y ^ ^

^^'

For the second integral we can expand into the series

1—y+y'—y'+y'—y*+y'—y'+ &c.
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Multiplying each term by </y, and integrating, we obtain

To determine the value of (7 we make y=0, then log.l=C.

But log. 1=0, in all systems of logarithms ; hence (7=0 in this

case.

Had we made rf=a-}-y, the development of (1) would have

been

Now to determine the value of C we make 2/=0, then log.a= C,

and the entire integral is

log.(«4.y)=log.a+^—i^+ll—X &c.

This result is the same in form as in (Art. 19), hence we omit

carrying out the details, as it would be mere repetition.

For a fourth example,

Integrate — , or

We perceive at once that one integral is log.(l-|-3a;^). That

is, the hyperbolic logarithm of ("l-j-S^^) for the given differen-

tial, is plainly the differential of the quantity divided by the quantity

.

We have got the transcendental mtegral, and now if we would

obtain the algebraic or numerical integral, we must expand

(\-\-ax^)~^, which is

1

—

ax^-^a'^x'^—a^x^'\-a^x^—a^x^\ &g.

Multiplying each term by 2axdx, and integrating, we have

log. (l+«:i;2)=a:,2_____[._______ ^g. +a
which is the same as equation (1), example 3d, if we put y in

place of ax^.

(Art. 72.) All differentials in the form

p

x'^-^^dx(a-{'bx*)q

can be integrated, term by term, aftei* expanding the binomial

and multiplying each term by the part without the parenthesis.
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But the series of integrals thus obtained, may not converge,

for convergency will depend on x being less or greater than

unity, and also on the signs of m and n ; hence the sum of tht'

integrals, or the entire integral sought, may not be sufficiently

near the truth to answer our purpose when obtained by such a

process. Yet, when particular cases are given, algebraic arti-

fices in the hands of a skilful operator, are equal to almost any

emergency, and it is to such artifices we shall call the attention

of the reader iu some future chapter.

CHAPTER IV.

Integ^ration of Rational Fractions.

(Art. 73.) A rational fraction, numerically considered, is

one which is less than unity, algebraically considered. It may

be written in the form

Fx''-\'q'x^^R'x^-\-S'x-{-T'"

the highest power of the variable is greater hy unity in the denom-

inator than in the numerator. If it were not, we would divide

the numerator by the denominator, and thus obtain an integer

term, and from the remainder and divisor, we would then form

our rationalfraction.

Such fractions can be separated into a series oi partial frac-

tions, whose denominators are binomials, provided the denomi-

nator is capable of being separated into binomial factors.

To separate a compound denominator into its simple factors,

place the quantity equal to 0, and find the roots of the equation.

Let a denominator be aj^+Pic^-i+^a;"-^ Gx'\-F; place it

equal to 0, and let the m roots of the equation be represented by

a, h, c, &c., then by the theory of equations, the denominator

will be the product of {x—a), (x—5), (x—c), &c. to m factors.

These factors may be real or imaginary, equal or unegtcal. We
18
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shall commence with the most simple case, in which the factors

of the denominator are real and unequal.

Let the denominator of a rational fraction consist of the three

factors (x-\-a), (x-\-b), {^-{-c); then the fraction will be equal to

the sum of the three partial fractions,

A , B , C
x-\-a x-\-b x-\-c*

the numerators A, B, and (7, are as yet undetermined constants.

EXAMPLES.

1. Suppose it were required to integrate the rational fraction

(2x''—S)dx

a;3 4/j.

The denominator is obviously the product of the factors x,

(x-\-2), (x—2), therefore we may place the fraction equal to the

three partial fractions, as follows :

(2x^—S)dx_ Adx . Bdx . Cdx . .

" x^—4x ^"^^2~*"a:—
2

'

^ ^

The integral required will be equal to the sum of the integrals

of the three partial fractions.

We can integrate the partial fractions after we determine the

values of Ay By and (7, and these values are determined in the

following manner

:

Divide ( 1
) by dx, then we shall have

2x''—S_A, B .

x3—4x T x-\-2 x^'
an algebraic equation, and nothing more.

Reducing the second member to a comnion denominator, and

^x^—S_(x^—4)A+(x^—2x)B+(x''+2x) C
x^—4x x^—4x

Omitting the common denominator, and transposing all to the

first member, we have

(2-^A—B^C)x^+2{B—C)x+{4A—3)=0. (2)

As X represents a variable quantity, we are at liberty to make

it equal zero. Or equation (2) will furnish the three equations

(2—^—J?—C>2=0, 2(5—(7>=0, 4^—3=0.
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In short, by the theory of indeterminate coefficients, we have
u4=f, 5=(7, and 2—^ -«_(7=o. Whence J5=|, and (7=|.
These values put in (1), andinQW<,ting the integration, we have

= 1 log.ar+| [log.(a:+2)+log.(ar—2)]-^ C.

_ \dx.

Ans. ^log.(a;—4)—ilog.(a;—2)+C.

Place x^—6x-\-S=0. Whence x=2, or 4.

Therefore put „ = + , &c. &c.^ x^—6x+8 x—2^x—4

(Art. 74.) The following example presents a case in which

the denominator of the given fraction contains sets of equal

factors. ^

3. Integrate
^^^

(a:—1)2 (a;—2)2

Place - =-^—+^+ -^ -4-— (1)
{x—\y{x—<2Y {x—\y^x—\^{x-~2y^x—9, ^ ^

Clearing of denominators, and equating the coefficients of the

like powers of x^ we have

4^—4^'+^--2^'=0.
—4^+8^'—25+5^'= 1

.

A—5A+B—4B'=Q.

From these equations we obtain A=l, A'=3, ^=2, and

^'=—3. Whence

/xdx r dx
, o r d^

I Q r dx

(a:—1)2 (a;—2)2 ^ {x~^Y ^ ^^"^ ^ (ar—2)^

^/^2=-^l+'^'^-^^'^~^2-'^^^-^"~'^+^-
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We integrate the first and third of these partial fractions by

(Art. 61.)

(Art. 76.) If the denon^''***^^^ ^^ * rational fraction contain

imaginary roots, it T*>««t, contain a factor in the form

ffmce this expression placed equal to zero, will give two ima-

ginary values to Xy and since we know from the theory of algebra

that imaginary roots necessarily exist in pairs, if there be m
pairs of equal imaginary roots, there must be a factor in the

denominator, in the form

(aj^+Sar+a^+J^j".

A rational fraction, as shown in the last article, can be sepa-

rated into several partial fractions, and to the simple factor

a;a+2aa;+a2+6S

there will be a corresponding partial fraction

which we propose to integrate.

Put x-\-a=z, then dx=dz. And put ir—aJf=P. Then

the fraction becomes -^^—dz, which is obviously the sum of

two fractions.

Whence f^^±^dz= r_^+ r_^. (1)

The first term of the second member may be integrated thus

:

f/^=fl<'S-(^'+*^)- (Art. 64.)

The second term is integrated by (Art. 70.)

Whence fJ^^ =i!arcAan. =^\

These values put in (1), give

resuming the value of z in the second member.
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It is proper to observe that an arc whose tangent is
"^

, the

sine of the same arc is — "^ — , and the cosine is

These expressions afford the means of present-

ing the proposed integral under different forms, designating the

arc by its sine and cosine, in place of its tangent.

EXAMPLES.

i. Integrate
3 i~2

1 r

The denominator is the product of the factors (1+a;) and

(l-\-x^), therefore place

x^—x-{-\ ^ A _, Mx-\-P

Clearing of denominators, &c. we find

^=f, M——1, and P=—^. Whence

^(x^—x-\~\)dx ^ 3dx /- xdx r dx

^ {JJ^x)(\+x^)~J 2(1+^ ^ 2{\+x^) ^ 9,{\+x^)'

=1 log.( \+x)—\ log. ( l+a;2)—1 tan.- ' x.

= log.(l4-a;)2—.log.{l4-a;2)*—.i.tan.-»a:.

2. Integrate 1!^+?)^.
X^ X"^'—2x

Arts. I log.(a;--2)+i^ log.(a;+l )—f log.ar.

_- \dx.

Arui, ^+|log.(ar+2)+^log.(a:-2)+a

4. Integrate ^ 1—^-r-.

Ans. •--ilog.a:+ilog.Va;2+a;4-2-l--4-tan.'^ /^?±i^+C7.
2J7 \lJ7/2J7 MV7
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By a review of the integration of rational fractions, we sliall

perceive that the partial fractions to be integrated will fall under

some one or more of the following forms

:

r_^, fx-dx, f—^^l , r-±-.

(Art. 76.) We will now investigate a formula for integrating

dx
differentials in the form . >

In the first place we will assume the equation

/dx J[x
^^ J r- dx

^
^ X

in which K and L are indeterminate coefficients, and (1) will

become a practical formula, provided we can determine K and

L in terms of a and w^.

To test this we must difierentiate equation (1), divide by dx,

and clear the result of fractions, we shall then have

\=K(x-'\oJ')—9.K{m—\)x^'\-L{x^^a'). (2)

This equation must be true for all values of a;, it is true then

when .T=0, and this supposition gives

(^4.Z)a^= l. (3)

Equation (3) tal5;en from (2), and the remainder divided by

x'^ , will produce

3^4-i;—2^w=0. (4)

From (3) and (4) we obtain

rr 1 . T 2m—

3

-, and L:
2(m—l)a2 2(m—l)a2

dx
These values of ^and L placed in (1), give C

{x^^a^Y

2m—3 /> dx

2(m— I)a2(a;2 4-a2)'»-i ' 2(m—l)a^^ (a^^-j-aay

for the formula required.

1. Inieffrate

EXAMPLES.

dx
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Substituting 1 for a, and 3 for m, the first application is as

follows

:

/dx X 13 r dx ,^

,

For a second application of the same formula, we write 1 for

a, and 2 for m, then

r dx __ X ^ r dx /gx

But J.^^=ta.n.-'x. (Art. 68.) (3)

The result of (3) placed in (2), then that result placed in (1),

and we have the final result as follows :

r dx X . ^X ,3 _j , ^

2. Integrate
(^^+6)^

r- dx X
\

5 f ^^

^ dx X .

3 ^ dx

(a:2+6)s 24{x^+6y '
^'^ (x^'+ey

/dx X . ^ y- dx

(a;2-j-6)2
~ 'n(^^+6y'''^J x^-\'6

_^=J-tan.--^.

Whence C—^'^—- "^ -4-.___J^__ ,4-
t^ (:r2_|_6)^ 36(.t2+6)3^24. 36(^:2+6)2

^

. ^? I-

^
tan. -^-+a

36.96(0:2+6)^36.96^6 " ^
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CHAPTER V.

Integration by Parts.

(Art. 77.) In the differential calculus we have found thai

the differential of a product, as (wv), gives the equation

d(uv)=udv-\'Vdu. Whence uv=Cudv-\-Cvdu.

Therefore fudv=uv— fvdu. ( 1

)

From this we perceive that the integral of udv can be found

whenever we are able to integrate vdu. This method of inte-

grating udv is called integration hy parts.

The utility of this method of integration principally consists

in its application to binomial differentials in the form

x"'-'^dx{a-\-hx''y

which are not integrable by direct methods.

Many differentials in this form have already been integrated,

but they were particular cases of this general form.

In the following general investigation we may regard m and

n and^, fractional or negative.

In case p is a whole positive number, the binomial can be

expanded, and each term can be integrated as before shown.

When m and n are fractional, as they may be in particular ex-

amples, as

x^dx(a-\-hx^y

place x=z^, z being a new variable with an exponent equal to

the product of the two denominators.

Whence x^dx{a^hx^)^=Qz'^dz{a-\-hz^Y

Henc£y every binomial differential can he placed under theform

Place x'^-^dx^dv, and (a-|-5a;") P =w.

Then _=v, and du—bpnx''^^dx(a-\-bx'')P-^
m
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These values of u, du, v, and dvy substitued in ( 1 ) give

Jx"

-

.rf^a4-fa-)P =f>±^£l!—^*/^*"- <fc(o-|-&t').-'

(2)

Observe the identical equation

Multiply the second member as indicated, and then we shall

have

Multiply each term by x'^-^dx, and write the sign of integra-

tion, and it will stand thus :

fx'^'^dxia+bx") P t=ajx'^'^dx(a+bx'')^^+

5j'ar'"+"-'(^a;(a+5ar")p-i. (3)

If we multiply (3) by — , and add the product to (2), the
m

last term will be eliminated, and after a little reduction, the

result will be

Formula A.

rx--^dx(X)p=^^i^^+ ^^^ rx-'^dx{xy\ .

m-\-pn m-\-pn '^

in which X represents the binomial {a-\-b^).

If we multiply formula A by (m-^jpn), change signs, trans-

pose the first and last terms, and then divide by pna, we shall

have

F0RMIH.A B.

Again, observing that the first members of (2) and (3) are

identical, therefore the second members are equal. That is,

afx^-'^dx(Xy^-^bJx^*^-^dx(X)P-^=^
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Transposing and reducing, we obtain

Formula C.

Now if we transpose the first and third terms of this formula,

and reduce the first member to unity, we shall have

Formula D.

^ ^ ' am am ^ ^ ^

The formulas (^4), (B), { C), (D), will apply to any possible

binomial difi*erential that can be presented.

When the exponent p is positive, and we wish to diminish it,

we must use Formula A.

When p is negative, and we wish to increase it, that is, dimin-

ish it numerically/, we must use Formula B.

When the exponent (m— 1) is positive, and we wish to dimin-

ish it, we use Formula C.

When that exponent is negative, and we wish to diminish it

numerically, we use Formula D.

The formula in (Art. 76) is substantially the same as for-

mula B.

(Art. 78.) It frequently happens that we are required to

ials inintegrate binomial differentials in the form

Ja^'—x^

and for that purpose we can use formula C, and we now adjust

that formula to this general case.

For this purpose we must write in formula O
a^ for a, —1 for 5, ~i for (i?--l).

I for p, and 2 for n,

then formula C will become

Formula c.

/
" —

ii; Ja^—X- ^ ••" ^

Ja^^x"" m+1 m+\J Ja^—,
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This will apply when (m-f-1) is positive, but when that expo

nent is negative, we require the converse of this formula, which

we find by transposing the first and last terms, changing signs

and dividing by

This will give

Formula d.

x^~^dx x^Ja^ x^ m-\-\ x^^'^dx

We name this, formula d, because it can be drawn from the

formula i>, the same as c was drawn from C.

This formula must be applied when (m— 1) is negative.

A formula corresponding to the particular form

x^-^Mx

Ja^+x^

can be deduced from (7, by substituting in that formula

a^ for a, 1 for h, —^ for {p— 1), \ for^,

2 for n, and we shall have

Formula C
x^-^^dx x^Ja^

I
x^ "^^*

r
^""^^'^

J'^^J^ ^qii ~~m+lJ ^a2 _|_^2

The converse of this is Formula d'.

(Art. 79.) It is desirable to have a formula applicable to the

binomial diflferential, in the form

X^dx q_JL _i

To integrate this by formula (7, we must place

,7i_|_7i_l=g_x, n=\, h——\, ^—1=—i, or jp=|.

Therefore wp=|, and m=5'—|, and for a in the formula

we must write 2a.
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These substitutions will change formula (7, into

r_f!ri^^=

—

^'^~^ ^ ^2a

—

X I
^aq-^a /> x'^~2dx

Observe that ar**~^=-^, and «*i-ia:2=a;q-2, and-f!lJ=a;<J-~l.

Jx Jx

Therefore we can pass x^ under the binomial radical in- each

term, and

^ J^ax—x"^ q
~~

q J^ax—x^

To preserve uniformity of notation as much as possible, we
will now write m in place of q^ and we have

Formula d.

r x'^dx __a;"'- 1 J^ax—x 2~
, g(2?wr— 1 ) /- x'^'^dx

"^
J2^'^^ m ^ J2ax—x^'

This formula is to be used when m is positive. The converse

of this is to be used when m is negative. To find the converse

transpose the first and last terms, &c. and we have

Formula d'.

m r x^dx^ x'«'-^dx ^x^-ij2ax—x^ \
^

f
J%ax—x^ a(2m—1) a(2m—1^ J^ax—x^

Formulas d and d' diminish the numerical values of the expo-

nent without the parenthesis, by unity.

When m is a whole positive number, the final differential in

formula d will be of the form

/ ^- =ver. sin.- > --4-C7. (Art. 70.)

J^ax—x^ ^

As we have before observed, the formulas A, B, C, and i>,

are general, and some one of them will apply to any binomial

differential that can be presented— but in consequence of the

frequency of examples in which the sign of the square root ap-

pears over the binomial factor, it is expedient to adopt special

formulas, as c, c\ d, d\ to meet such cases.
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We now give a few practical examples, which, together with

the formulas, will sufficiently illustrate the whole subject.

EXAMPLES.

1 . Integrate
',^dx

Jl'-X'

(Apply formula c.)

In the first operation m+l=5, and a=l. In the second

m-{-l=3, and so on.

x^dx

r xdx

=-=-k^'Ji-x-'Hj
xdx

^1-

-——Jl—x'.

(1)

(2)

(3)

To obtain the integral demanded, we must now take backward

steps. That is, place the result obtained from (3) in (2), and

then place that result in (1); and lastly add the arbitrary con-

stant C, and we have

the integral sought.

2. Integrate
x*dx

J\—x''

(Formula c.)

x*dx x'dx

^ Vl=^ 4 ^^
Jl-^x'

S
x^dx

dx

=-f^AL=?l+i/-
dx

r ^ =sin.->

2 " J\—x-

X. (Art. 67.)

(»)

(2)

(3)



•282 INTEGRAL CALCULUS.

Now the results obtained from (3) and (2) placed in (1) give

N. B. When (m-\-l) is odd, as it is in the first example, the

final integral will be dependent on the integration of ^ ^ - ,

or on -—a/1—^^•

When (m-\-l) is even, as it is in the second example, the final

integral will be sin.—^a:.

Hence, if (m-\-l) be a whole number, whether odd or even,

the complete integration is possible.

dx
3. Integrate (Formula d.)

In the first operation m—1=—3, m=^—%.

In the second operation m—1=— 1, 77i=0.

r dx ^_ yr=^-{-i r d^
. (1)

^ x^Jl—x^ 9,x^ ^ xj\—x^

r__i^_=VlE?-i f-^- (Formula fails.)

Here we perceive that the formula fails in the second opera-

tion, because m=0. Therefore we must find some other method

of integrating

dx

xj\—x"^

By an example in the differential calculus, (page 167), we
learn that the differential of

dx
^iQg/i+yi-^'')

xj\—X

Whence
,

xj\ X^.-:^=-'°K'±#^) <"

* This example was designed for page 167, but was omitted by mistake.

We shall now place it among the miscellaneous examples.
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And this value placed in (1) produces

)dc(Art. 80.) The method of finding the integral of

dx

xj\—x^

by mere reference to the differential calculus, is not satisfactory

to a learner. It is therefore desirable to obtain the integral

directly, as in other cases.

To this end assume ^1

—

x^=Zy xdx=—zdz.

Whence f—^-= r—^= r^_=^^^^.
^ xj\^^ ^ 1—2' ^ 2'—

1 2—1 2+1'

/• dx
, p dz ,y r dz

=:~il0g.(^-l)+il0g.(g+l).

' ^ 2—1

N. B. The product of two factors is the same when the

signs of both factors are changed. Thus -\-P multiplied into

—Q produces —PQ, Also, —P into -{-Q, is —PQ.

Therefore we may change the signs of each factor in the

second member of the equation above. Then we have

f
'^ -=-;-iog. l±£=-iiog.i+^.i±?.

=-iiog.i±i

=—ilog.i+f_.

=-iog.(±b/i^)
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4. Integrate — (Formulae?.)

Here m=2 in the first operation, and unity in the second ope-

ration.

r a;^ dx __xj^ax-—x^ \?^ r___^___. (1)

j__
xdx _^_^-^^^^z:^^^j dx

^2j
J2ax—x^ ^ Jtax—x^

r ^"^ - =ver.sin.-^l (Art. 70.) (3)
JSLax—x^ «

Whence, by substitution, we have

r
^'^^—=-/^y+gg:^ V2^^=i^+?^ver.sin.-»^+a

6. Integrate ?I_. (Formula i>.)

In which ^=0, m—1=—3, w»=—2, «=1, in the first

operation,

6. Integrate
^

. (Formula C.)

fw+l=2, a=a», 6=1.

r_4!^=^V«+^^—^ r ^^^
(1)

Ja-\-bx 3 ^ Ja'\-bx

J
^dx

_^aJ^j^x_J^'^og'Ja+^^ (Art. 62.) (2)
Ja-\-bx b^

^^

Place a-|-^a:=s, and integrate by an independent process.

Whence by substitution we shall have
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7. Integrate -^!^. (Formula 0.)
a-{-bx

-^ a+bx 36 2b^^ b"* b^ 6 v "i^ /"r

8. Integrate ^^^ -— x. (Formula D.)

One operation gives

^
_c^ 1_ __7ft r_J^_

9. Integrate dxja^'\-x'^s (Formula^.)

Here m—1=0, P='h »==2, a=ia'.

~i . a^ r dx
J dxJa^-\rx^==''_J^^+~J-

2 ^ Ja^+x'

In the diflferential calculus we are taught by an example,

(page 167,) that the differential of log.(a;-|-<ya^+a:*) is

dx

Ja^+x'^

dx
Conversely then f

^"^
=\og,{x+Ja^+x^).

Therefore Jdx^a^+x^

^

xja^+^^4-—log.(a;+^g^ +a;« ).

2 2

10. Integrate dxjx^—a!"

Ans, xjx^—a^ _g_log.(a;4-Va;^—«^ )

(Art. 81.) The last two problems require us to integrate

differentials in the form
^

independently of the for-

Jx^±za^
mulas in (Art. 77), and to infer the integral, as we have just

done is not satisfactory, therefore we operate as follows

:

The square root of x^zta'^ obviously must contain ifca?, and
19
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some other quantity which we can represent by z. Therefore it

is natural to place

(1)Ja^ -\-x^ =.Z-—X.

o2 ==-^2xz+zK

c^-~x)dz=izdx.

dz_ dx _ dx

Ja^+x'

dx
^^""^^ /-^=log.^=log.(a:+V«^+^^).

10. Integrate ^^^^^^ (Formiila J?.)

N. B. This example, as well as several others, will be found

in the differential calculus, in the first part of this volume.

Here, m—1=%— 1, or m:=n, but w in the formula referred

to this example is 1, and a=l, p—1=

—

n— 1, or p=—m.

/^»-w;.(i+;.)-»-i==£li±5):!-i!!=^/-fl:i^.
Tl fir I l—r'Xi

But the last term of this equation is zero, because (n—n) is

zero, whence

==— , the integral sought.
(l+x)^+^ (l+xf ^ ^

1 1 . IrUeffrate _dx(l+Jl—x^ )

x^J\—x^

This can be separated into two parts.

—dx dx
Thus

x^J\—x^ «^

The integral of the first part is J^—

^

^, and of the second

x

it is —, whence the whole integral is ^"Hn/ ^—^^
. which is equal

^^ X

to
V^+^+yi—a;

^ The differential of this last quantity was

^1+^

—

J^—X

demanded in the^ differential calculus.

I
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CHAPTER VI.

Integ:ration of Irrational Fractions.

In the last chapter it was ifound that differentials in the form

cannot be integrated by {)arts, unless we can integrate

Ja+bx'

rential fraction in the form
^a+bx'

the differential fraction in the form - . which may be an

irrational fraction.

(Art. 82.) The object of this chapter is to develop the gen-

eral theory of integrating differentials in the form

^^
and in the form -"^

JA+BX+ Cx^ JA+Bx— Cx^

Our first object is to find equivalent expressions in which x^

shall stand loithout a coefficient, and with the plus sign. In other

words, the coefficient of x^ must be 4-1' ^"^ the first case it is

obvious that

, dx ,dx - dx

JA+Bi+G^"JcJIA+^x+x' ""V^VH-^^T^"^ ^ (1)

If ^=a, J?=5. Orif^=aC, B=bC.

In the second case

dx dx

jA+Bx-^Cx^'~'j^'^J-^+-^x+x^
'^
J~CJa+bx+^^-C ^G

(2^

If ~4=«' -4=^- O^^f ^==-a(7, B==-bC.
G G
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By inspecting ( 1 ) and (2) we perceive that the integral in

each case will depend on the integration of

dx

which integral must be multiplied by —^rr-* ^ov examples in the

JG
first case, and by , for examples in the second case.

J-o
Henee our exclusive attention; will be directed to the integra-

tion of

dx

Ja-\^X'\-x^

the result of which we shall multiply by —-i~ for a general

vdbC7
formula.

Place Ja-\-bx-^x^ =5?

—

x,* ( 1

)

Squaring and reducing in part, we have

Whence (h-\-2z)dx=^{z^x)dz. {%)

Dividing (2) by ( 1 ), and

(5+2.j^^^^ (3)

Therefore

C ^^ = r 2(fe _^ 2 p dz r-»

"^ jlfjl^+b^:^''^ Jc(b+2z) Jo^^H^^'

Again, place 6+2s=^. Then dz=—

*It is more natural to place the radical equal to z-\-x, but as both —x

and -f-ar will give a: 2, we can take either, and the minus sign will give a

more convenient result than the plus sign would do. But in numerical

examples we may take either one.
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But in (
I
) we find z=x-\-Ja-\-bx-\-x^

.

Whence /—^=^\og.{b+2x+2ja+bx+i^. )

Finally,

f
"^"^ = ^ log.(&+2a:+2Va-f^a?4^M-f const.

EXAMPLES.

J'

1. Integrate — . (Formula J*.)

Jl+x-

Here (7=1, ^=0, and ^=1. Therefore a=l, 6=0.

cfo:
Whence /

—

'rt-=\og.{2x+2jl+x^)+c.

But \og.(2x^2jl+x' )=log.(a;+7l+«^ ) +log. 2, and log.

2 may be united to c, and become part of the arbitrary constant.

dx
Therefore J ^-^ =\og.{x+^l+x'' )-fc.

Jl-\-x^

N. B. In some of the following examples the results of the

formulas may be reduced by expunging the factor (log.2) and

conceiving it to be added to, and to become a part of the arbi-

trary constant.

2. /_,£_=log.(ar+V^^T)+c.
Jx^—1

dx

Jx-^-x^

4. / l^-^=log,( 1+2.^4-2Vl+^^j+c.

f.
dx 1

J^log.(a:+V;c»—l)+log.2-f-c.
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N. B. Formulas in other works give

for the integral of the second example ; both are correct ; indeed

they are equal, as one can be reduced to the other as follows :

log/_^+jJ^^_ZZl) is equal to log.(a?+^a?2—l).

If we multiply numerator and denominator by ^—1, we shall

have

iog.M:JEEn= iog/^>/=lt^5El!V
1 \ J— I /

log.(;r^=1+VT:=? )—log.v=T.
Whence

The last expression is applicable to circular arcs, as will soon

appear.

6. / ^^ ^Xlog,(x+h+xn+c.
^ Ja+bx^ Jb ^b

But -Liog.(a.V6+7^q:^^)=.iiog. (+Jl-\-x^)+2jog,b.
4h Jh ^* Jb

and either of these expressions differentiated, will produce the

given differential.

(Art. 83.) In treating of circular arcs in the differential cal-

culus, we have found that when the radius of a circle is unity,

and the sine of the arc is x, the cosine of the same arc must be

Jl—x"^, and the differential of sine is

dx

and this was the quantity to be integrated in example 5. There-

fore another integral of that quantity is the arc of the circle

corresponding to the sine x plusy an arbitrary constant.

Let z be that arc, then a;=sin. z, J\—a;2=cos.2.
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And /_^=.4-C. (1)

But by example 5, we have

dxS-^^==-L=^og.(zJ-l+Jl-x')+c. (2)
Ji-^' V—

1

Whence z+C=—^\og.(xJ^^+JT^)-^c'.

To determine the relation between the constants, we will con-

ceive the arc and its sign to commence at the same point and

increase together, and suppose x=0, then will z=0, and the last

equation will become C=c', that is, the constants will be equal

to each other, and therefore they may be omitted and tjie equa-

tion itself will become

V-1

Substituting the values of x and of ^1

—

x^ in this last equa-

tion, and we have

log,(sin.0^— l-|-cos.0)=^— l.s.

Multiply each member by log.e, observing that e is the base of

the hyperbolic logarithms, and its log. is 1, and 1 as a factor

maj/ be made visible or invisible. We will make it visible in the

second member, then

log.(sin.3^

—

l-\-cos.z)= ^—l,z\og.e.

=log.(ev^—^-2).

We can now omit the sign (log.) in each member, which is in

fact passing to the numbers ; then we shall have

sin.^^—l-|-cos..<2=6v/—i.z. (1)

If we take z negative, we shall have

sin.(

—

z)=—sin.2;, cos.(

—

z)=s(iOS.z.

And the final result will be

-—sin.0^^-|-cos.^.=.e-vA^i-^. (2)
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By adding (1) and (2), and dividing by 2, we have

C08.g=^^^'+g~^^' . (3)
2

Subtracting (2) from (1)> and dividing, we obtain

Bm,Z= -::;:^ . /4)

2V—

1

By substituting n^ for ^ in ( 1 ), we have

Qm.nzJ—\-\'CQ&.nz=^e^—^'^. (5)

Going back to ( 1
) and raising each member to the wth power,

we have

{sin.07^+cos.g)"=ev^-i°^ (6)

The second members of (5) and (6) are identical, therefore

(sm.zj—l-[-cos.g)°=sin.Mg^

—

l-\-cos.nz. (7)

These expressions are purely algebraic symbols, expressing

the relations between the arc and its sine and cosine, which, by

proper artifices can be developed in numerical quantities.

Equation (7) is the same as appears in Robinson^s Geometry,

page 223, and its practical importance and utility is there shown.

(Art. 84.) In (Art. 71) the diflferential is integra-

ted, and the result is a numerical series. But the integral found

is a logarithmic expression. The two integrals deduced from

the same differential must be equal to each other. That is,

This is true for all values of x. Then by supposing x=0, we

find (7= C", the two arbitrary constants equal to each other.

Sx^
Hence, -i- W.(a;+Jar^— 1 )= x+—-+ "^TL^+Ssc.

jZZ\ ^ ^
^^

^ ^2.3^2.4.5^

But this is an impractical equation on account of the presence

of the imaginary factor.

Examples 2, 3, and 4, (Art. 82,) can be expanded into series

and integrated term by term.
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Then we can have the numerical values of \og.(x-\-Jx^— 1)»

and onog.(l-{-2x-{-2jx+x^), and of log.( l J^2x-\-2jl -\-x-\-'x^)

,

but it is not important to obtain them, because we have already

found a simple and general logarithmic series in Chapter III,

(Art. 71.)

(Art. 85.) We can find another integral to the differential

by another method of integration, as follows

:

Ja-{-bx—x^

If we place a-\-hx—x^=0, and resolve the quadratic, we
shall find two real roots. Let them be represented by r and /.

Then x^—Ix—a=(ar

—

r){x—r')

Changing signs

a-\-bx—x^=

—

{x—r){x—r')=(ar^—?•)(/

—

x) .

This being understood, we can assume

Ja'\-bx—x'^= J{x—r){r—x)=(x—r )t. (1)

By squaring, and afterwards dividing by {x—r), we obtain

r'--x={x-^')t^. (2)

Taking the differential, and

—dx=i'^dx+'ltdt{x—r ).

Whence cf^=_?Mf::^). (3)
1+^2 ^

Dividing (3) by (1) will give

dx 2dt

Jc^hx—x^ l+«^''

Whence J
^^ ==(7—2tan. -*(<). (Art. 68.)

Ja'\-bx—x^

= (7—2 tan.- »
1^'—^

'^x-r'

the value of / taken from (2).
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CHAPTER VII.

Integration of HSLponential Differentials.

THE SERIES OF JOHN BERNOULLI.

(Art. 86.) A differential in the form Xa^dx can easily be

integrated, provided Xbe an algebraic function of a;, and in such

a form that successive differentials will terminate in a constant.

To establish a formula to integrate Xa^dx, let us call to mind

the well known equation

jFdQ=FQ-jQdF. (1)

Now let F=X, and dQ=a^dx. (2)

To integrate (2) we will put y==a^ , whence log.y=a?log.a,

And dy=\o2.a.a^dx, or fa^dx=-l—=:
^ ^ ^ log.a log.a

That is, e=T^. (3)
log.a

Again, assume

dF==dX=Xdx, dX'=X"dx, dX"=X"'dx, &c. (4)

Here we perceive that X', X'\ X"\ <fec. are the successive

differential coefficients of X.

The values of F, Q, dF, dQ, taken from (2), (3), and (4),

and substituted in (1), give

fXa-dx^:^—-^ CX'a^dx. (5)
•^ log.a log.a*^ ^ ^

Again fXa^dx=?^^-^ rX'a^dx. (6)^ log.a log.a^ ^ '

And CX"a^dx=-^l^—l— CX"'a^dx. (7)^ log.a log.a^
^

&c. &c. &c.

If we substitute the values found in (7), in equation (6), and

then that result in (5), equation (5) will become

/•Z«>d^=jgl-/'"' + -^"°' - '
CX"a^dx. (8)-' log.a (log.a)» (log.a)3 (log.a)^'^
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If X" is a constant quantity, dX"=:X"'dx==0, and the series

terminates with the third term, and in general the series will

terminate with the term in which the last dififerential coefficient

becomes constant.

If a becomes e, the base of the Naperian system, then log.a

becomes log.e=l, and the formula preceding becomes

JXe^dx=e^{X-^X'+X"—X'"+ &o. &c.) (9)

EXAMPLES.

1. Integrate e^x^dx. Ans. e^(x^—Sx^-{-6x—6).

In this example X=x^. Hence X'=3x^\ X'=6x,
X'"=6, and X""=0.

2. Integrate e^x^dx. Ans. e^{x^—2x-\'2).

3

.

Integrate e^(x^—f)^dx.

Ans. e''(x'^^4x^-\-9x^—18ar-f20i.)

4. Integrate e^(x^-\-Sx^—l)dx. Ans. e'^(a;3— 1).

Remark.—We can extract the cube root of any number which

is a perfect cube, with comparative ease, but when the root is a

surd, we can only approximate to it by a series. So it is with a

differential. When an exact integral exists, we can find it with

comparative ease, but when no exact integral does exist, the ap-

proximate integral can be obtained only by a series.

In the Mathematical Operations, page 321, we required the

differential of , and found it to be (
'

,— )e^dx. Con-

sequently the integral of this last expression is , and it is

probable we can extract it from the differential as a particular

case— but we could not be sure of integrating any other exam-

ple of a similar form.

In this example X=A"t"^^^
, hence X', X", &c. do not

converge toward a constant, and therefore it will be useless to

apply the last formula.
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The solution of sucli examples will depend much on the skill

of the operator, guided by general principles.

dx

-X

e^dx
, r^^^dx

Whence C-l—^^-j-J^ff—?=the required result. (1)

Let P=_^,and dQ=e''dx. Whence §=c^.
1

—

X

Substitute these values in equation (1), (Art. 86,) and we

have

/xe^dx B^ __ ^ e^dx

Transpose the last term, and

/e^dx
,

rxe^dx e^ ,-,*

The first members of (1) and (2) are identical, therefore

The required result =

In the same manner integrate the following differential

:

e^dx(--\-\og.x\ Ans. e^\og,x.

(Art. 87.) When X——^, the successive differential coeffi.
X

cients of Xwill not approach a constant, and consequently for-

mula (9) in such cases will be of no practical value, and we
must return to first principles, and seek the integration of

a^dx

We will apply the principle of integrating by parts according

to the fundamental formula,

JPdQ==PQ^jQdr. (1)

Here P=--, and dQ=a^dx. Whence ^= -^.
X log.a
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Substituting the values of P, Q, dP, and dQ, in (1), we

obtain

/^a'^dx^ a* 1 n ^a^dx
"^

'1^ a;"log.a log.a*^ x"^^'

Transposing the first and third terms, dividing by and

changing signs, we shall have

/a^dx a^
I

log.a ra^dx

Now if we write n for w+1, we must write n— 1 for n, then

the preceding formula will become

a formula which produces a continual diminution of the exponent

n. When n becomes 1, the formula fails, for then the factor

(w—1) in the second member, becomes 0.

Hence the differential ^

—

- must be integrated approximately
x

by a series, no finite integral corresponding to it has been found,

for the very probable reason that none exists.

By Maclaurin's theorem we expanded a^ (Art. 18,) into the

series l-j-f?-4-f 4-_£J^— , &c. Multiplying each term by —^1^ 1.2^1.2.3 ^^ ^ X

and integrating, we shall have a converging series when x and c

are each less than 1, or when the product ex is less than L
When the exponent w is a fraction, it will also be necessary to

complete, or rather approximate to the integral by a series.

The following examples will illustrate and show the method of

integrating exponential and logarithmic functions more clearly

than anything else, for no general formulas can meet every case

and condition.

EXAMPLES.

1 . Integrate —
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Place ^=a^. Then ^a;=—^_, and s"=a'".
zloof.a

Whence ^ a^dx ^ 1 r dz

which is easily expanded into a series, and then we can integrate

term by term.

2. Integrate x"(log.a;)°ffa;.

Place z^=\og.Xy x'^dx^^dPy and P=(log.a:)"5=g'', and

integrating by parts, we have

Cx^(\og,xfdx=
^""^

'(^Qg-^)!-, _^_ Cx^aog^xy-^dx,

Substituting for n successively a;— 1, n—2, &c. we shall find

J'a;"'(log.a;)"£/a;=

This series will terminate whenever ?i is a whole positive

number.

This series fails when m=— 1, for then m+l=0, which woiUd

x^-^'^ x° . /. .

make the factor ^ =— , or infinite.

m-j-l

But when m=— 1 the differential becomes

(\og.xYdx

X

dx .

and this is very easily integrated, for — is the differential of the

log.fl?. Therefore
dx

Place 2=log.a;. Then c?2=— , and the differential becomes
X

^dz. Whence fz^dz=.^=(}S.^-.

This is subject to the exception n=— 1

.

3. Integrate log.xdx, by parts, Ans. ar(log.a;— 1).

4. Integrate -~^—.. Ans. .

xiog.^x \og.x
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5. Integrate ^^ \og.x. Integral ^-^--{-Xo^^Al—x)
(i—xy ^ \—x^ *"

^ ^

dx / 1 \
6. Integrate '.—_ log. ( ).

xjx VI—a;/

Integral Slog.^+V^ -g-w/^-\
l^J^ Jx ^\\-xJ

dx

xJx

Integrating by parts will give us

Place dQ=^-!^, and P=log/_L\

^-Llog._L+2r J^ .

Jx 1—^ " Jx{\—x)

(Art. 88.) The method of integrating by parts produces

THE SERIES OF JOHN BERNOULLI.

This series is remarkable for its similarity to the series of

Taylor, and it applies to the integration of quantities in the form

XdXy in which X is any function of x. The process is as follows :

JXdxz=Xx-^JxdX. (1) (By parts, Art. 86.)

But xdX=- xdx. Integrating this last expression by parts,
dx

conceiving =i', and xdx=dQ, we shall have
dx

^ *^ dx dx 2 *-^ 2 dx
^

Again,

"^ 2' dx ^ ~dx^' 2 2.3 dx^ ^ 2.3 dx^
^

Substituting in succession these values in (1), that equation

will become

fXdx=Xx^^,^-+^.J^-^ &c. +C,^ dx 1.2 ' dx"^ 1.2.3

the sei'ies in question.
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To illustrate this series, let it be used to integrate x^dx, al-

though in practice it never should be applied to such examples,

because the integration is too simple to require it.

Hence X=xK Whence ^=3a;». ^1^=2, S.x, and
dx dx^

^'^
:2.3.

dX^

Therefore by the series

^ 1.2 1.2.3 1.2.3.4^

The sum of this series is j —+(7 Y the true integral by the

common method of integration.

The utility of this formula will be apparent in the following

example, which is new to us, and it shows the beauty of analysis

as clearly as any thing we ever met.

In the differential calculus, (Art. 18,) we find the following

expressions

:

c?.sin.ar=cos.a;f^. (1)

(/.cos.a?=—sin.ic dx. (2)

Whence sm.x= fcos.xdX'\'G.

To apply the series ofJohn Bernoulli, we must make Jr=cos.ir.

Then, by successive differentiation, we have

dX . d^X ^ d^X . d*X .

:
=—sm.rc, ==—cos.rr, =sm.ar, ^=cos.a?, &c.

dx dx^ dx^ dx'^

r* 1 I sm.aj.ic cos.ar.a;*' sm.ar.a?^ ,

sin.a;= / cos.* dx^QOS.x,x-\- -— .<>___ oiu..<^.^^.

_c^£^ __sin£^_ ^^ ^^
1.2.3.4.5 1.2.3.4.5.6

It is not necessary to add the constant (7, for if we make

a?=0, sin .a? will equal 0, and each term of the second member

will equal at the same time, hence (7=0.
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Now divide every term of the last equation by cos.a.', and for

—— write its equal, tan.iP, and we shall have
COS. a;

tan.a;=a?-|-tan.a?. — —tan..i;-

1.2 1.2.3 1.2.3.4 ' 1.2.3.4.5

tan.a;
'- — &c.

1.2.3.4.6.6

Uniting the coefficients of the tan.a?, and we have

/^l—^'—1-_1' — - + &c.Van.a:
V 1.2 1.2.3.4 1.2.3.4.5.6

'

/

V 1.2.3^1.2.3.4.5 1.2.3.4.5.6.7 /

X + + &c.
1.2.3^1.2.3.4.5 1.2.3.4.5.6.7'

Or tan.a^= -^ -^ ~ (A)
1—^-+ - — - -I- &c.

1.2^1.2.3.4 1.2.3.4.5.6

But tan.ar=-^. (B)
cos.a;

Equations {A) and {B) are but different fornis of expression

for the tangent a;, and as the fractions are irreducible, we may
conclude at once that

X^ X^ X*

1.2.3' 1.2.3.4.5 1.2.3.4.5.6.7^

And cos.ar=1— -f-—? — ^ 4- &c.
1.2 ' 1.2.3.4 1.2.3.4.5.6 '

These useful and beautiful formulas were found in our appen-

dix to trigonometry, but the process there is much more complex

than this one. They were also found in the differential calculus,

(Art. 18.)

(Art. 89.) We can use this series to integrate a logarithmic

differential.

For example, the differential of log.(a+a:) is -— . There-
a-^rX

20
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fore log.(a-|-^)= f > but this second member can be inte-

grated by the series of Bernoulli, f —.
^ a-\-x

Here ir=_i-. Whence ^=- ^

a-\-x dx {^a-\-xY

d^X__ 2 (^«Jr___ 2.3 d^X_ 2.3.4

<^a;2 (a+«)^' c?a;3 (a+rc)*"' ~dx^ {a+xy
mdx mx , mx^ , mx^ ,

&c.

log.(«+^)=/

&C.+C7.

This is true for all values of x, it is true then when x=:0, and

making this supposition, we have log.«= C. Whence

log.(a+.)=log.«+»(-^+_^_+

&c.) (..
3(a-\'x)^ ' 4{a+x)

If we assume m=l, this equation will correspond to the A^a-

perian system of logarithms, and if we assume x=\, the equation

will become a very simple and practical formula for computing

logarithms in that system.

It will then be the following :

log.(a+l)=log.a4-/^_i-+ J _+
^ ' ^ ' 1

&c.) (2)3(a+l)3 4(a+l)^ ' 5(a+l) ^

In practice we may apply either (1) or (2), as we please; (1)

has more scope than (2), because x can be any number, whole

or fractional. By (2) we can find the log. of (a+1 j when the

logarithm of a is known.

Either of these formulas can be used for computing common
logarithms when m becomes known.

The value of m is discovered for the common system by com-

paring the log. of 10 in each system. (See Algebra, p. 241.)
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To make a table of logarithms corresponding to any system,

we are compelled to commence with the Naperian system. We
must continue in that system until we obtain the Naperian log.

of 10. Then we can find m, and then we can pass to the com-

mon system.

We have explained this whole subject several times before—
but its great utility and beautiful philosophy is a sufficient excuse

for a repetition in connection with this new formula.

This new series does not converge as rapidly as some others,

but it is more symmetrical, and was obtained by fewer steps than

any other.

To find the Naperian logarithm of 2, we must make «= 1 in

equation (2), then log.a=0, and =i. Hence we may write

the series

l-l—J 4- L_4-_J__4. L_, &c. &c.
2 ' 2(2)^ ' 3(2)3 ' 4(2)4 ' 5(2)5

Now if we take |, or . 6, and divide it by 2 continuously, we

shall have

2^(2)2^(2)3^(2)*

The first term of this series divided by 1, the second by 2,

the third by 3, &c. &c., and the sum of these will be the loga-

rithm sought. The work would stand thus :

1).5 5000000

2).25 1250000

3).125. . . • 0416666

4).0625 0156250

5).03125 0062500

6).015625. 0026041

7).0078125 0011161

8).00390625 0004882

9).001953125 .0002170

10).0009765625 0000976

&c. &c.

'^6930636^
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This operation continued and extended to a greater number of

decimals, would give the true hyperbolic log. of 2. The fore-

going is only designed to show the practical form of making the

computation.

If we multiply the log. of 2 by 3, we shall have the log. of 8

at once. Then make a=8, and again apply the formula, and we

shall find the log, of 9, which divided by 2 will give the log. of

3, &c. &c.

(Art. 90.) If the object were simply to obtain the best prac-

tical formula for computing logarithms, we would integrate the

differential — by two different methods. First, by rational

fractions, (Art. 73); second, by expanding _ into a series
a*

—

x^

by division, and multiplying each term by dx, and integrating.

Then we should have

^
fl2

—

^2 \^^—y.y

f
^^^ =f-f-—4-_fl-^£l.-U&c. 4-C'.

Whence log./^^±?V2/^-+—+—+—+ <fc<^-H (1)

Equating the second members, and making a;=0, there will

result C=C'i and no constant appears in (1).

If we make ^±?=1 4-1, then will ^=-_L-- , and (1) will
a—x ^z a 20+1 ^ ^

become

log/l +l^=log.(^-|-l)- log.0=

2/^-_J—+ ^

I- \ 4- <fec.\ (2)
V^204.1~S(22+l)3^6(20+l)5^ / ^

the most approved formula yet found.

If we make a=2, and ir=l, in formula (1) we shall have the

Naperian log. of 3 at once.
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The operation is as follows :

.5 600000000

3). 125 041666666

5).03125 625

7) 78125 1 1 16071

9) 1953125 217013

1
1
) 0488281 25 44390

13) 1220703125 9390

15) 30517578125 2033

17) 7629394 439

.549306002

1.098612004

We commenced the operation with .6, divided this by 4, pro-

ducing the next line below .125. This we again divided by 4,

thus finding the next line below, and so on. These sums we
again divided by 1, 3, 5, 7, and so on, producing the next col-

umn. The result is true as far as six places of decimals— the

seventh decimal should be 3 in place of 0.

The double of this logarithm will be the hyperbolic log. of 9.

Then we might make z=9, and formula (2) would give the

hyperbolic log. of 10.

CHAPTER VIII.

The Integration of Circular Differentials of

multiple Arcs.

(Art. 91.) The object of this chapter is to investigate and

show the method of integrating dififerentials in the form

sin.'^xdx, siu.^xdx, or in general, sm.''xdx.

For a clear comprehension of this, we must re-examine the

method of taking the dififerentials of functions in the form

sin. 3a;, or sin.nx.
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Let 2=w.r. Then dz=ndXf sin.0=sin.war, d.sin.z=cos,sdz.

That is, d.sin.nx=n COS.nxdx, and d.G08.nx=—nsin.nxdx.

Whence rcos.nxdx=-^-^'^, and fsin.nxdx^—^'^t^JA)

These primitive formulas will serve as our general rules of

integration in this chapter.

As a preliminary step, we require formulas for sin.^a;, sin.^or,

sin/ir, or in short, sin. "a; expressed in a series of the simple

dimensions of the sines or cosines of multiples of that arc.

Let y and x be any two arcs, then by trigonometry we have

sin.(y-|-a;)= sin.2/cos.a;-j-cos.2/ sin.a;.

sin.(y

—

x)=^sm.y cos.x—cos.ysin.a:.

By adding these two equations and transposing s\n.[y—x) we
obtain

sin.(y-|-a;)=2sin.ycos.a;—^sin.(y

—

x). (1)

Now suppose y=nx. Then (1) becomes

sin.(w-{-l)a;=2sin.wa; cos.aj—sin.(%

—

\)x. (2)

Making n=\, 2, 3, 4, 5, (fee. in succession, we form the fol-

lowing table

:

sin.2«=2sin.a;cos.a;—0. (3)

sin.3aj=3sin.ar—4sin.*a:. (4)

sin.4.i'=(4sin.a;—8sin.2a;)cos.ar. (5)

sin.5:»=6sin.a;—20sin.3ar+16sin.5.r. (6)

(fee. (fee.

Again, if we take the trigonometrical equations

cos.(2/-|-a;)=cos.y cos.a;—sin.?/sin.iP.

cos.(y—^a;)=cos.y cos.ir-|-sin-2/sin..r.

Add them and transpose as before, we shall have

cos.(y+a;)=2cos.2/ cos.a;

—

cos.(y—x). (7)

And as before suppose y=:nx, (7) will become

cos.(7i-|-l )x=^2(ios.nx cos.a;—cos.(w— 1 )x.

Making 7i=l, 2, 3, 4, (fee. in succession, we shall find

cos.2a;=2oos.*a?—1. (8)

1
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cos.3a?=4cos.3a;—Scos.a:. (9)

cos.4a;=8cos.''a;—Scos.^ar+l. (10)

cos.5.r= 1 6cos. ^o:—20cos. 3a:-|-5cos.«. (11)

&c. &c.

By the aid of the well known equation, sin.^a;-|-cos.^.'ri=l, com-

bined with equations (3), (4), <fec. to (11), as circumstances

may require, we obtain

sin.iP=sin.a:. (12)

(8) substituted, sin.^a;=l—cos.2ic=|(l—cos. 2a;.) (13)

(4) transposed, sin.3a;=i(—sin.3.r-j-3sin..'r.) (14)

(13)2, (^0) & (8) sub. sin.^a;=|(cos.4.r—4cos.2a;+3.) (15)

(6) reduced by (4), sin.5a;=yV(sin.5:i;—5sin.3;?;-|-10sin.a;.) (16)

If we multiply equations (12), (13), (14), (16), and (16),

by dx, and integrate, we shall have the following series of equa-

tions :

Csin.x dx=—cos..r. ( 1'^)

fsm.^xdx=—\sm.2x-\-lx. (18)

Jsin.^xdx=\.^^-—lcoa.x. (19)

fs'm.''xdx=},^^-—{sm.2x-\-^x. (20)
*- 4

/r J , cos.SoJ
, 5 cos. 3a; , „ /m \sm.'xdx=—f\ _|-_5-. __i.|cos.a;. (21)

o o

(fee. (fee.

(Art. 92.) If we turn back to equations (8), (9), (10), (fee.

in the last article, we can find a series of equations expressing

the powers of the cosine of x, as follows :

cos.a:=cos.a;. (22)

2cos.2.r=cos.2ar+l. (23)

4cos.3a;=cos.3a;-]-3cos.a;. (24)

8cos.^a:=cos.4a;-|-4cos.2a;-|-3. (25)

(fee. (fee.
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Multiplying by dx and integrating, we have

J*co8.xdx=8m.x. (26)

rcos.^xdx=\sm.2x-{-^x. (27)

rcos.3a;c?a;=yVsin.3a?-f-4sin.a;. (28)

rcos.^xdx=~^2^mAx-]-lsm.2x-\'^x. (29)

(Art. 93.) We may also integrate circular functions in the

tbllowing manner. We give but one example, which is intended

as a general illustration.

Integrate cos.^xdx. Place cos.a;=^.

Then <?;?=~-J^==--_-^. But cos.^aj^^s.
sm.a: Jl—z'

Whence Ccos.^xdx^— f _, and the integral of this

last expression is to be found in the second and third equations

of the first example in (Art. 79), which is

Replacing cos.a; for 2;, and we have

fcos.^x dx=^eos.^xJl—cos.^ic+f ^1—cos.^ar.

The integral of this same quantity is found in (28) of the

last article. Therefore

icos.^o?^!

—

Gos.'^x-^-jJl—cos.2.'c=yVsin.3^4"|si^'^'

but this result reveals nothing new.

In a similar manner we might integrate many of the differen-

tials in the preceding article, and thus find many other equations

between sines and cosines.

(Art. 94.) We may integrate differentials in the form

sin.ajcos.^iccfe by the same general principles.

Assume cos.a:=^. Then, as in (Art. 93),

„ , z^dz
QOB,^xdx=.— ...
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But sin.a;=^l

—

z- ; therefore Bm.xQos.^xd.i:=—z^dz.

And jB\n.x.coB.^xdx=^——-]-(7.

In general terms rsin.a;cos.°c^a;=— =— — -— -\-C.

The same general principle will enable us to integrate a dif-

ferential in the form

dx

sin.3.r

Place 8in.a:=^. Then dx=——, and
cos-.r sm.^a; cos.ir.2^

Whence r_^_=: r_ ^^

sm.**a; ^ ^ J\ z^

This last differential has already been integrated by (Formula

c?), example 3, (Art. 79.)

CHAPTER IX.

Successive Integrations.

(Art. 95.) In the diflferential calculus we perceive that every

equation of the first degree between two variables is susceptible

of being differentiated but once. An equation of the second

degree can be differentiated twice. An equation of the third

degree three times, and so on.

For instance, if y=sa.r ^ -f-5ar^ -\-cx-\-d. ( 1

)

We shall have by successive differention

dx
(2)

Jf=e«.+.. (3)

s=- (4)
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Another differentiation and division by dx, would give

dx''

Hence, if n be the degree of an equation, the (1+%) differ-

ential coeJ3icient will be zero, unless the independent variable is

a reciprocal quantity, as in the following example :

X dx x^ dx^ x^ dx^ x'^

Now by inspecting the preceding examples it is obvious that

the wth differential of y divided by the ?^th power of the differ-

ential dx, must be equal to X, C, or 0, that is, some function of x,

represented by X, or to a constant quantity C, or to 0.

Successive integration is the converse of successive differenticds,

and to illustrate the operation, we will take equation (4) in the

first example, and integrate it.

dx^

Multiplying each side by dx, and we shall have

^ly=zQadx.

Now, regarding all powers of dx greater than the first, as

constant, and integrating, the first integral will be

dx''
^

Multiplying again by dx, and integrating as before, the second

integral will be

"^^^ax^-cx+C.
dx

And again, and the final integral will be

y=ax^-\.—x'' +c'x+ G".

This is the same in form as equation (1), and would be iden-

tical if we could restore the identical constants b, c, and d in

place of c, c, and C".

In ato'ftc^ examples, particular constants cannot be determined.
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If we have ^=0, the first integral will be

That is, some constant; and the final integral will be

y=lCx'J^C'x+C".

If we have zJiz=X, JT being any function of x, the first in-

dx^

tegral will be

fj.==JXdx+C,
UiX

The second, ^=JdxJXdx+Cx+C\

The last, y=JdxJdxJXdx+^Cx^'\^€'x+C". (A)

This last equation may be indicated thus :

y=J^Xdx^+\Cx^'^c'x+c\ (B)

The sign C^ indicates three successive integrals.

(Art. 96.) A differential in the form

d'^v—|.=a+y2, or =2/2^ or =3^^,

Or in general equal Y, J^ being any function of y, can be inte-

grated as follows. Multiply each member by 2dy.

Then '^y-'^'l=.Ydy.
dx . dx

The first member, we perceive, is the differential of _^, on
dx^

the supposition that dx is constant and dy variable, (and dy is

always variable, or we could have no second differential oi y),

therefore, by integration, we have

Or ^- =(fo.
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Whence x= f -"^J^ + C'.

For a particular example, we require the integral of

d^y y Idy d^y ^ydy
^2~ ^' '~dx'~dx a^

dx^ a^^ ' dx V a^'

dy

Jc-yr •

f—
"

r- ady /• dy

' ft

If we make Ca^= l, then C7=—2, and the last integral be-

comes

asin.~*y-|-C". Or a;=a. sin.~»y-(-(7'

For a second example, we give the following

:

d^y__Py
dx"" b

'

This is solved on pages 350, 351, of the author's Operations.

3. Integrate the differential -i 'T " / =:a.
dxd^y

In the differential calculus we put -^=».
^ dx ^

Whence ^^=^.
dx^ dx

These values substituted in the given differential, will reduce

It to

dp
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Whence dx=——^— , and pdx=dj/=—^^—

Integrating the last two expressions, we obtain

and eliminating jo, we find

(ar-C)^+(y-.(7')2=a^

the general equation of the circle, C and C being the co-ordi-

nates of the center.

This result was expected, because the given diflferential cor-

responded to a constant radius of curvature. See (Art. 51.)

CHAPTER X.

Oeometrieal Integrals.

(Art. 97.) In this chapter we propose to show the applica-

tion of the integral calculus to geometry ; an operation of the

greatest utility in finding the measure of surfaces and solids.

In (Articles 53, 54, and 55), we have shown geometrical

differentials, and by the integration of these, we shall have the

corresponding integrals, which will be the measure of surfaces

or solids, as the case may be.

To commence with the most simple

case, we require the area of the space

NPM, one side of which is hounded hy

the curve NM, o% the supposition that

the curve is a portion of a paraholay

and the point N its vertex.

Let iV^be the zero point, N'P^=x,

PM—y, and it is obvious that ydx

is the differential of the area required.

By the equation of the curve we have y3=2/>«.
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Whence ydy=pdx, ydx=:^^—^.

When a;=0, y=0, and therefore (7=0, and the whole integral

That is, the area of any portion of the parabola bounded by

the axis and ordinate is measured ly two-thirds of the rectangle

made by the abscissa and ordinate.

The same was shown in analytical geometry.

(Art. 58.) M>w let the area of the same space he required on

the supposition that the- curve is a circle and the radius unity.

The same notation as before. The equation of the curve is

(l-o;)^ +2/^= 1. (1)

Whence Jydx==:jt^=.J

The part —===: expanded into a series by the binomial,

and afterwards multiplied by y^, produces

y^+r+^l+^yl_+hMyll.-\- &c.^2 2.4^2.4.6 ^ 2.4.6.8 '

Multiply each term by dy, and integration will give

rsrs Sy^
.

3.5y^ , 3.5.7y»^ ^^^ .^.

3 ' 2.5 ' 2.4.7 ' 2.4.6.9 2.4.6.8.11

This integral requires no correction, or rather, the value of

the correction is 0, because x and y vanish together.

Here ^ is the sine of the arc NM, and it may be of any value

from to 1

.

When y— 1 , the space NPM will represent a quadrant, and

its numerical value will be the sum of the series

3 ' 2.5 2.4.7 ' 2.4.6.9 2.4.6.8.11

Four times this series is the value of the whole circle.
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When we make y=l, series (2) does not converge with suffi-

cient rapidity to meet with practical favor, therefore we assume

y=i, knowing that 3/=^ when the arc is 30°.

Substituting y=^ in series (2), we have for the area of the

half segment NFMoi 30°, the following series

3.23^ 2.5.25 « 2.4.7.2'^ 2.4.6.9. 2» 2.4.6.8. 11 .2^

»

The sum of this series carried sufficiently far, will be found

to be .04529302, the double of this, or .09058604, is the area

of a segment containing 60° of arc in a circle whose radius is

unity.

In any other circle whose radius is r, the area of the segment

containing the same number of degrees is (.090586 ?'2.)

(Art. 99.) To find the area of the whole circle by the aid

of this semi-segment .04529302, we will turn back to the figure

and conceive a line drawn from M to the center of the circle.

The hypotenuse of the triangle so formed is 1, and the perpen-

dicular y=^, therefore the base is ^3, and the area of the tri-

angle is .21650637.

Whence to NPM 04529302

Add the triangle \ . 1^3 21650637

Sum is sector of 30° 26179939

Multiply by 12, 12

Area of the whole circle, 3.14159268=^

To find the circumference of this circle we will for the mo-
ment represent it by x, and the radius by r. But the area of

any circle is the product of the circumference into half the

radius, therefore -1-=^, and x==2n on the supposion that r=\.

Hence, when the radius is I, the length or measure of 180°

of the circumference is 3.14159268, the most important number
in mathematical science.

(Art. 100.) Take the same figure as before, and conceive
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NMio be a portion of an ellipse, N" being at one extremity of

the greater axis.

As before, let N be the origin of

co-ordinates, J}fP=x, PM=i/f and

from iTto the center of the circle, or

to the center of the ellipse, we will

designate by A. Then, if the curve

is a circle, y=J^Ax—x^ . If the

curve is an ellipse, ^=-7- ^/ ^Ax—x^>

£ being the semi-minor axis of the ellipse, according to custo-

mary notation.

Now we have just seen that the area of a circular segment is

represented by

Cydx=Cdxj2Ax—x^. {a)

The area of an elliptic segment on the same abscissa x, and

corresponding on the same major axis ^A, must therefore be

represented by

^JdxJkAx—x^ . (b)

These segments are any like portion of the circle, and the

ellipse; when a;=^ the segments will be quadrants. But like

portions of any two magnitudes are to each other as the wholes

are. Therefore
TO

area circle : area ellipse : : fdxj2Ax—x^ : — CdxJStAx—x^

72
Or area circle : area ellipse : : 1 : .

But the area of the circle in question is =/t^2.

Whence nA^ : area of ellipse : : 1 : —
Or Area of ellipse=;<^5.

But TtAB is obviously the area of a circle whose radius is

J AB, a mean proportional between A and B.

N. B. This article is the same as propositions 10, 11, and 12,

of the ellipse in Robinson's Geometry.
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(Art. lOL) In this article we propose to find tlie area eii-

closed by the cycloid.

Let r be the radius of the generating circle, NA the axis ot"

X, and xVthe zero point.

According to custom, place iVP=a;, and PM^=y, The object

is to find the double area NAB.

The differential of the segment

NPM is ydx, hence the integral of

this, is the segment itself: and if we
suppose X to be equal to JVA, the

segment will be the area of JVAB.

The differential equation of the

cycloid is

dx= y^y (Art. 48.) (1)

Whence Jydx=J—£M=:=.-=jSfPM-\-C.
J^ry—y""

This differential has already been integrated in (Art. 80), it

is the fourth example. All we have to do is to change x to y,

and a to r, in that example, and the result is

_A_|_3^\ ^2ry—2/2"+^ vers. sin.-^^+C.

But when we make NPM^^O, y=0, and therefore C=0.

When we take y=9.r, the above result becomes

37*2 . _, 2r 3?rr2— vers. sm. ^—=
2 r 2

The double of this, (S^r^), is three times the <jrea of the gene-

rating circle, the area required.

We can, however, obtain this result by a more simple process,

if we take into consideration the external space DBK.
The rectangle ABDN" \s obviously (NA).(AB), which is

(rtr)(2r), or 27tr^, and now if we can obtain the value of JSfDB,

and subtract it, the remainder will be the area NAB.
The differential of the space NDEM is {EM)dx. But

EM=2r—y.
2.J.
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Hence d.NDEM= (%r—'y)dx.

If in this we substitute the value of dx from (1), we shall

have

d.NDEM= i^''—y)y^ ^dyJ^;^-2 .

Whence, by integration, N'DEM=Cdyj2ry—y^ .

By comparing this with expression (a) in (Art. 100), we per-

ceive that the second member is the area of the segment of a circle

whose radius is-r and abscissa y.

That is, NMEB^ALH.
Hence NBD=^ the semi-circle AHB.

But the area of the semi-circle is ..

2

Ttr^
Whence AN'B=^Tcr^— , and the double of this is S^r,

2

the area sought.

That is, the area of the cydoidical space is three times the area of

the generating ciyxle.

(Art. 102.) While on the cycloid, let us require the value

of any portion of its arc, as BM.
Let s be the length of an arc, whatever be the curve; then we

have seen in (Art. 65), that

ds=Jdx^+dyK (1)

In short, this equation is obvious in a primary point of view.

But dx= ^ ^ , and this value put in (1), produces

sj2ry—y^

ds=J_yl^_+dy^= dy l_^_, . .

N 2ry—y^ ^ 2r

—

y ^ '

By integration, s=—2j2r,j2r—y-\-0. (3)

If we estimate the arc from B, making z=0, then y=2r, and

0=0-f-(7, which shows that there is no constant to add, and

s=—2j^,j2r-^y, (4)

which is the general expression of any arc estimated from B,

1
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If BM=s, the corresponding value of y is AL, and 2r—y=
BL. Hence,

BM=—2JAB.JBL=—2JAB,£L.

But JAB.BL=dzBir. Therefore BM=2BIf.

That is, The arc of a cycloid estimated from the vertex is twice

the corresponding chord of the generating circle : And the arc BMN
is tioice the diameter of the generating circle, and the entire cycloidical

arc isfour times the diameter of the same circle.

It is necessary to have a formula for the circumference of the

ellipse,— we will therefore substitute the values of dx and dy,

drawn from the equation of the ellipse in the general formula for

the arc of a curve, that is, in Jdx^-\-dy'^, and integrate.

Let the center be the origin of co-ordinates, and the equation

of the ellipse is

For convenience Ave shall use the eccentricity of the ellipse,

which is the distance from either focus to the center, when A=l,
A2 J52 »2

or c^= , whatever be the value of ^. Then 1

—

e^=
A^ A^'

Whence y^=(l—e^ )(A^—x^ ).

dx y jA^—x

In short, ds=^Jdx^ -\-dy

_ AdxJ1_^^

JA^—x'

Expanding l\
^^^

into a series, we obtain

ds=—^^^^^t\—^^^^—^^^^ — ^^^^ — (fee ^^~
JA^—x^\ 2^^ 2AA^ 2.4.6^6 /

Multiplying each term of the series by the factor without the

parenthesis, we shall have a series of differentials which can be

integrated separately, one by one, which together, will show the

approximate value of any arc corresponding to any assumed value
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of X less than^. When we make x=A, after integration we

have one-fourth of the circumference, which multiplied by 4,

gives the whole circumference, which is

%nA(l-^ ?fL_ ^^^ &C. ^
\ ^..2' 2;2'.4.4 2.2-.4.4*6.6 /

(Art. 103.) The curvature of the circle is uniform, and as

we have found the value of the whole circumference (2^), to

radius unity, therefore we shall have, by simple division, the

value of any required portion of it. But it is not so with other

curves.

To find the lengths of other curves between any proposed

limits, we must integrate the expression Jdx^'\-dy^ , taking x or

y between the proposed limits, (the equation of the curve given,)

and the relation between x and y in each particular case. It is

not necessary that we should give examples in every curve, we
will therefore select the most interesting, as one of the spirals.

The general equation for the spirals is r=a^", (Art. 43,) in

which r is the varying radius, t the measuring arc, and (X a con-

stant quantity.

The differential equation of an arc in respect to polar co-

ordinates is

d»z=zjr^dt^-fdr^, (Art. 41.)

therefore the integral of this expression is s, or the length of a

spiral curve between proposed limits.

From the equation of the curve, dr'^^^^n^a^t^^'^dt^

.

Whence Jjr^dt^-\^r^ =Jdi(t^+n^)hir-K

When %=1, as is the case in the spiral of Archimedes, the

diflferential becomes

aju\^.dt\

By the ninth example (Art. 80,) we find that the integral of

this is

</14:^+^ log.(^+Vl+^'')+^-

N. B. We shall find an expression of the same form for ao

arc of the common joara6o/a.
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If we take the logarithmic spiral whose equation is t=\og.r,

we shall find

Whence rJ^-\-C, (or simply rjlt, commencing at the origin

of the radius vectors,) expresses the arc of this curve, **and Ave

see that though there is between this origin and any point of the

curve at an infinite distance from it, an infinite number of revo-

lutions, yet they include an arc of finite length, which is equal

to the diagonal of the square described on the radius vector."

AREA OF SPIRALS.

(Art. 104.) In (Art. 41) will be found the differential of a

polar sector, or the difterential area of a polar curve, equal to

in which r= when we apply it to the spiral of Archimedes.

Whence f-—= fr(r^dr= = .

If we assume (=^27t one revolution,

this last expression for the area corres-

ponding will be -, showing that the

space PMA included in the first revo-

lution from the pole is equal to one-

third the area of the circle, whose

i-adius is equal to the radius vector at the end of the first

Involution

.

If we make if=27t, the area described in two revolutions is

*
^ , but this includes the first revolution described the second time^
3

hence the area actually enclosed after two revolutions, will be
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Again, if we take the logarithmic spiral whose equation is

t=\og.r and apply it in (1), we shall have

^r^dC ^rdr '^^ _\ri
J ~2 *^ ~2 4 ""

If we estimate the area from the pole where r=0, which makes

(7=0, and the whole area is — , that is, the area of the Naperian

logarithmic spiral is equal to one-fourth of the square described on

the radius vector.

Again, if we take the hyperbolic spiral, then r=— 1, and the

general equation of the spirals becomes r=—
t

Whence fJ^=- [^1=-"^. But -^=-^'.

This area is infinite when ^=0, but we can find the area in-

cluded between any two radius vectors, b and c, by integrating

between the limits t=^b and /=c, which will give

9,\b c)

CHAPTER XI.

Oeometrical Integ^rals, continued.

THE AREAS OF CURVED SURFACES, OR SURFACES OF REVOLUTION,

DETERMINED BY INTEGRATION.

(Art. 106.) If any curve, as NM,
revolve on an axis, as NP, the axis

ofX, it will describe a curved surface.

If the curve is a circle, the surface

so described will be the surface of a

sphere. If the curve NM be a por-

tion of a parabola, the surface it will

describe will be a parabolic surface, &c. &c.
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If N^Afhe a straight line, the surface described by revolving

on the axis of Xwill be the surface of a cone, or if a portion of

the line only revolve, the surface so described will be the surface

of a conic frustrum.

It is obvious that we must obtain the general differential ex-

pression for these surfaces, and it is obvious that this diflference

is measured by the revolution of a small portion of the arc at

M. Or, by the revolution of the differential of the arc, which is

And this line revolves at the extremity of the radius y.

Therefore ^nyJdx^ -\-dy^ is the differential in question. In

words. The differential of a surface of revolution is equal to the

circumfereTice of a circle "perpendicular to the axis, into the differen-

tial of the arc of the meridian curve.

Our first application of this formula will be to the circle, be-

cause most persons are more familiar with that curve than with

any other ;—therefore

1 . Required the surface of a segment of a sphere corresponding

to the co-ordinates x, y, the origin being at the circumference.

Let i2 be the radius : Then {R—xY-\-y'^=R''. (1)

From which we find Jdx^+dv^= ^^^—
.

JR'-y'

Whence ^7iyJd^^d:^=lll^^^.
JR-^-y^

C%7tyJdx^+dy-z=2,iR. f^l^ =—'^7t RJR^—vM- C
JR'-y'

We perceive by the figure, that commencing at N, the zero

point, making a;=0, 2/=0, and the area in question equals 0.

That is, the equation above becomes

0=—27iRjW-^C.

Or C=2jiR^.

Substituting this value of C and the general integral becomes

—27iRJR^—y^-^-27iR'
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When we take y=M, the surface corresponds with a hemis-

phere, and the factor JH^—y'^, then becomes 0, showing that

the surface of a hemisphere whose radius is B, is 2ftE^ . There-

fore the surface of the whole sphere is 47tB^

.

Again, when we take x==2B, y will again be 0, and the first

term of the expression for the general integral becomes

showing that the area of the surface of revolution is

±2rti22+2rt^2^0, or 4;ti22,

corresponding to y=0, the latter value is the surface of the whole

sphere.

(Art. 106.) Conceive NM to be a straight line, then the

area of the surface of revolution will be the surface of a cone.

And in that cone we shall have

X : y=a : b. Or x=~.^
b

Jdx-+dy^=^^a^.^a^.^^^a^+b'^

.2^ rw.,^ njj-n^-^^y' -
f2xyJdx'-\-dy'=±^Jydy{Ja^+b'^)=^(a'+b'y-+ C.

If we conceive the area to commence at the point JV where

(=0, we shall hare the area equal 0, and y=0, which will give

(7=0, and the whole integral will be

b 2

But Ja^~{-b^=^M', and if we make y=b, the surface will be

an expression which is obviously ike circumference of the base of

a cone midtiplied by the half of its slant hight. The same rule as

was found in geometry.

When the curve NM\^ a parabola, the surface of revolution

is called 2i paraboloid.

In that case we have y^=^2px, ydy=pdx*
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Whence Vrf^M^^-^S^^yI='^ VF+^-

2^ r..^.. /:.^~r;,"2_2rt/.,2

When y=0, the surface of the revolution is 0. Therefore

Or (7=_2-^.
3

Whence the entire integral between the limits y=0 and 3/=^,

may be written thus

:

|((*=-k'=)-.=)).

When the curve is an ellipse, the result comes out in a series

more tedious than interesting.

When the curve NM is a portion of the cycloid, we have

V2ry-

Whence dx^J\-dy^- ^yl^yl_ J^dif = ^Z^^!.
2ry

—

y- 2r

—

y

And '^^yJd^-\^dy''='^7ij¥r(—^^\ ( 1

)

Whence J'ZTtyJdx"" -\-dy^ :='^7iJ2rJ

.

ydy

To integrate this last expression, place ^2r

—

y=^z. (2)

Then y^=^r—2", and ydy=^—'^rzdz-^^z^dz.

Substituting this value in (1), restoring the value of (s) at

the same time, and we shall have

2.^72^/—4/V2>-—3/+f (2r--y)'^^+6'.

To find the value of we must consider that wlien ?/=0, the
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surface sought must be 0. Hence, the following equation must

be true :

0=2^(-Br^+^)+(7.

Whence C= .

3

If we make y=2r, the value of half the surface sought is nu-

merically the same as C, because ^2r can be taken with the

minus sign. Hence, the whole surface equals %^7ir^, which is

sixty-four thirds the area of the generating circle.

The preceding examples are sufficient to illustrate the theory

of finding the area of surfaces by integration.

CHAPTER XII.

Oeometrical Integrals, continued.

THE VOLUME, OR CUBATURE OF SOLIDS OF REVOLUTION.

(Art. 107.) The motion of a line is conceived to form a sur-

face, and the motion of a plane, or the revolution of a plane on

an axis, may be conceived to form a solid or a geometrical

volume.

But it is not necessary to conceive a revolution of a plane

to obtain a solid ; we can take a solid like a parallelopipedon,

a cone, or a pyramid, and conceive it to inc7'ease or deci^ease

by the motion of one of its surfaces, and thus we have its dif-

ferential.

The integral of this differential, corrected if necessary, will

give the volume to that differential. We shall give both
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methods, calling particular attention to the first problem, on

account of its simplicity and its elementary character. It is this :

1st. Find the volume of a pyramid, by integration.

Let G be the vertex of a pyramid, and

assume GF=1, and designate the corres-

ponding base FOHE by h. Let 6^-4=0?,

and AIQM, the corresponding base.

But these bases are in proportion to the

squares of the distances from the vertex.

Therefore 1 : a;^ : : b : bx^=AIQM.

The differential of this pyramid is obviously ha^ dx.

Hence the pyramid itself is Cbx^dx.

Bu Jbx'dxz=^+C.

This is true for all values of x, it is true then when x=0, and

making this supposition, the last equation becomes 0=0-\-C, or

bx^
(7=0. Therefore is the whole integral, or the solidity of

the pyramid.

But =:(bx^)-. That is, the base multiplied by one-third

of the altitude gives the cubical contents of a pyramid.

N. B. When the base is a circle the pyramid becomes a

cone, to which the same rule applies, namely,

T/ie area of the base multiplied by one-third of the altitude.

Scholium. A sphere may be conceived to be composed of a

great multitude of pyramids, the base of each one being a very

small portion of the surface of the sphere, and the altitude of

each one the radius of the sphere. Therefore, the volume of a

sphere is equal to its surface multiplied into one-third of its radius.

Again, we may conceive the triangle GAI to revolve on the

axis GA, thus forming a cone. The radius of the base of that

cone will be AI, which we will designate by y, then Tiy^ will be

the area of the base, and ny^dx will be the differential of the cone.

Hence the cone itself will be Cny^dx.
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We can integrate this, provided we can find the relation be-

tween X and y.

Let GF=1, and FE=a, GA being x.

Then by proportional triangles, 1 : a=x : y. y=zax.

,x=--x. y^
3 *^

Which is fny- .- Y the area of the base multiplied by one-third

of the altitude.

(Art. 108.) Required the volume of any solid of revolution

t

as the segment of a circle, a segment of a paraboloidy the segment of

an ellipsoid, <&c.

Let iV be the origin of co-ordinates,

H the mdius of a circle, NP=x,
PM=y as before.

Now it is obvious that the revolu-

tion of the segment JSfPM, on the

axis NPy will produce a solid, and it

is also obvious that the revolution of

PM, (ydx), on the center P, is ny^dx the differential of the volume.

Hence, the volume of revolution between the limits a;=a and

.r=^, is found by

For the segment of a sphere we have the equation

From which y^=2Rx—x^

.

Whence

jTty'-dx=J{%7iRxdx—7ix^dx)^7tRx^—-l-{. C.

When .^=0, the area is 0, therefore C=0, and the integral

TtRx^— V the solidity 0/

the segment.
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When x=jR, the segment is a hemisphere, and its solidity is

'iitH^, and when x=2li, or when the segment contains the whole

sphere, its volume is ^TtM^ , the same result as was found in ele-

mentary geometry.

This result also corresponds to the scholium in (Art. 107),

for in (Art. 105) we found the surface of a sphere to be 4rtE^

,

which multiplied by — produces , the solidity of the

sphere as before.

(Art. 109.) We may change the origin of co-ordinates from

the surface to the center of volume at pleasure, or we may in

fact change it to any other known point.

For example, we will recompute the last problem, taking the

center of the sphere for the zero point,

III that case x''+y''=B\ or y^^E'^—x''

.

Whence fTty^dx= f (rtRdx—Ttx^dx)=^HR^

x

—
-f"^-

When ir=0, the volume =0, and therefore 6'=0.

When x=Ri the volume corresponds to a hemisphere and the

expression to hR^— =
, the same as before.

3 3

JtX
N. B. In the expression nR^x— , x cannot be taken

greater than R. In case it be so taken, the numerical value of

the whole would be minuSy but magnitudes cannot be essentially

Lei us now require the volume of an ellipsoid, the ellipse revolving

on Us major axis.

The equation for the ellipse is

A^y^+B^x^=:^A^B\

Whence y^-=^B^—
"la"*"'

j7ty^dx=J{rtB^dx—H^^'^dx)= rtB^x—n^^- ^'
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The origin being the center when x=0, the volume corres-

ponding equals 0, and consequently (7=0.

Hence, the A^alue of any segment of an ellipsoid must be

TtB^xf 1

\ 3^V
If we make x=A, the expression will correspond to a semi-

ellipsoid, and it will reduce to

frt^M, or piB'-4A.

That is, two-thirds of the circumscribing cylinder.

If we suppose ^=-S, the ellipse will become a circle, and the

semi-ellipsoid will become an hemisphere, and the expression

above will become f7ti2^, as it ought to do.

(Art. 110.) If an ellipse revolve on its minor axis, it will

describe an ohlate spheroid, and the differential of the volume

will be

Ttx^dy,

Butx^= A^'-'~-y\ Whence rtx''dy=jt^A''—^y''\dy.

J,,^dy=.A^y-!Lf^,

If we make y=B, this solid will be expressed by

tytA^B—'^^\ or iB,7tA\

This is also two-thirds of the circumscribing cylinder.

Comparing the two solids generated by the revolution on each

axis, we find

oblate solid : prolate solid : : BA^ : AB^

:: A : B.

Tofind the volume of a paraboloid, we have the equation of

the parabola y^ =9.px.

This value of y^ placed in the general expression J ny^dx

will give us 9,jtpxdx for the differential of this solid. Hence the

solid itself is :tpx^ , which requires no correction.
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But rt.px^=.—?-- .x^^ny^ . -, and this we perceive is one-half

of the circumscribing cylinder.

Scholium. Let y be the radius of a circle, then its area will

be Tty^ . Let h be the altitude of a cylinder.

Now conceive a cylinder, a cone, a paraboloid, and a sphere,

to equal circumferences, and each the same altitude h. By a

short retrospect we find

The volume of a cylinder =rt3>= .h.

The volume of a cone 2 A

The volume of a paraboloid =..|.

The volume of a sphere =..L^.

Calling the cylinder 1, we have for the cone ^, for the parabo-

loid \, and for the sphere |.

The proportion in whole numbers is, cylinder 6, cone 2, para-

boloid 3, sphere 4.

These proportions were discovered by Archimedes, and it is

said that he requested them to be engraved on his tomb.

For another example, we require the volume generated by the revo-

lution of a cycloid on its base.

The differential of any revoloid is jty^dx.

For the cycloid we have dx=—J^ ^ (Art. 48.)

J2ry—y'^

Whence J^y-dx=J-^£M=.^=^J-^^M==-.
J^ry—y^ J^ry—y''

This is integrated by formula d, (Art. 78,) as follows

:

Jlry—y'' 2 2 Ji^ry—y'



332 INTEGRAL CALCULUS.

/-

2/% _
J9.ry—y''

J2ry—y^

J'^ry

=arc(

'+'-/-T^:
dy

(3)

ver. sm.

J^ry^y^

\ (4) (Art. 79.)

These integrals require no con-

stant, for when we make 2/=0 the

volume will be 0, as it ought to be.

If we make y=2r, the corres-

ponding volume will be half the

volume sought, and (4) will be-

come rt.

fhis value put in (3) will give

Tir.

And this substituted in (2) will give

r y^dy ^ ^nr^

J^iry—y'^ 2

And this placed ii^ (1) and multiplied by n produces

r y^dy _5rt^r^

J2ry—y^ 2

This being half the volume sought, the whole must be

But n(2ry represents the base of the circumscribing cylinder.

And 2rtr represents its altitude. ,

Therefore STt^j-^ is its solidity.

Hence, the solid required is Jive-eighths of (he circumscribing

cylinder.

(Art. 110.) Now conceive the curve to revolve on the axis

of Y, iVthe center of revolution, and iVP the radius. On the

supposition that A^PJfis a portion of a parabola, we require the

volume generated by the revolution of the curve on the axis of

T", the origin being at N'^ or the axis being changed from A
ta K
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To solve this problem we must ob- e^b^^^^^^^^^bhb <

tain a new and corresponding expres- ra^^^^^^^^^^^BB i

sion for the differential of the volume.

It is obvious that ydx is the differ-

ential of the revolving surface. Thi^

revolving at the extremity of the ra-

dius X, will revolve through a space

equal to ^nx. Hence, the differential

of the volume of revolution will be expressed by

9,7ixydx.

This may be applied to any curve (revolving on the axis of Y
and center iV", ) as well as to the parabola. We take the parabola

because the integral comes out in a definite form.

The equation of the parabola is y^=:2px.

Whence x==^. And ^7txydx=!!^^^

But this volume requires no correction, for when ar=0, y=0,
therefore (7=0, and the volume sought is

!*^. But y*=4p^x'.

Whence !^=i!^.^= F, the volume sought.

Let us observe that rtx^ is the base of the circumscribing cyl-

inder, and y being its altitude, nx^y is the volume of the cylinder.

Now by proportion,

cylinder : F ; : Jtx^y ; -•

5

: : I : 1
5

Whence F=f of its drcnmscrihing cylinder.

Scholium. Hence the volume around the axis of Abounded

by a- portion; of a parabola, is one-fifth of its circumscribing

cylinder.

22.
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CHAPTER XIII.

On the Integration of Homogeneous and l,inear

Differentials.

(Art. 111.) An equation is said to be homogeneous when

the sum of the exponents of the variables is the same in every

term.

Differentials of this form can always be integrated. In such

cases we place one of the variables equal to the other multiplied

by an assumed variable factor, but we shall illustrate by

EXAMPLES.

1. Integrate the differential

x^dy=y^dx-\-xydx.

This equation is homogeneous. Therefore place x=zvy. Then

the equation becomes

v^y^dy=iy^ dx-\-vy^ dx,

which is divisible by y^ , and

v^ dy=dx-\-vdx= ( 1 -|-v )dx. (

1

But x=vy. Therefore dx=vdy-\-ydv. (2

The value of (dx) substituted in (1), it becomes

V 2dy=:vdy-\-ydv-\-v^ dy-\-vydv.

Or 0=zvdy-\-ydv-\-vydv. (3)

Dividing each term by (vy), we have

dy , dv
, J ,.

y V

By integrating each term, we obtain

log.y-j-log.'y-(-v= 0.

Or \og.(vy)-\-v=C.

That is, loff.a;4-^=C, the result sought.
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2. Integrate the differential

{x^ -\-xy)dy=(x—y)ydx.

As before, let x=vy, then

( v^ y^ +vy^ )dy—{vy—y)ydx.

And {v^-\-v)dy={v^\)dx. (1)

Because x=vy, dx=zvdy'\-ydv, and this value of dx substituted

in (1), produces

(v^^v)dy=^v^dy-\-vydv—vdy—ydv.

By reducing, ^vdy=.vydv—ydv.

Dividing by vy^ and we obtain

^=.dv-Jl^,
y V

By integrating 2.\og.y=v—log-v^-^'

That is log.y-{-(\og.y'\-\og.v)=v-\-C,

Or log.y+log.a:=-+ (7, the integral sought

3. Integrate the diff^erential

xdy—ydx=dxJx ^
-f-y

^

If we place y=^vx, then

xdy—vxdx=dxJx^ -\-v^x^

.

Dividing by x, dy—vdx=^dxj\ -\-v^

.

( 1

)

Because y=vx, dy=vdx-{-xdv, and dy—vdx=xdv. (2)

Equating (1) and (2), we have

xdv=dxJl-{-v'^.

dv dx

By integrating, we find

log.(t;+^l+v2)=log.a;+log. C=log. Cx, (See Art. 81.)

Passing to numbers, v-\-J\-^v^=:Cx

Restoring the value of v ^-f- /l -f-^ = ^^•
X \ «2
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Multiplying by ar, y+J^~+y^= Cx^,

4. Integrate the differential equation

^^^ydx^y_^
(1)

Let x=^vy. Then dx=.vdy-\-ydv.

The values of x and dx substituted in (1), and reduced, will

give

, __^ dv

By integrating, we find w=—arc(tan.=v.) (Art. 68.)

Restoring the value of v, and w=—^arcf tan.=- j-|-(7.

5. tntegrate the differential'

ax^dy—axydx
du=^ ""

~I~.
(x^+yn^

Place a;=«;y. Then substituting the values^ of x and dx, we

shall find after reduction

avdv

Whence w=—a T"" "T»
*^ (1+V2)2

Integrating the second member by formula B, (Art. 77,) we

find w=

—

— Restoring the value of v, -, we obtain

,— «y
-j- (7, for the result.

Jx^'\-y''

(Art. 112.) Differential equations may sometimes appear in

the form

dy+Pydx=Qdx, (1)

in which P and g are functions of x.

The object of this article is to show the integration of such
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differentials. Equations of this kind being of the first degree,

in respect to y and dy are sometimes called linear equations.

Place y=zX, (2)

X being some function of x, to be determined by circumstances,

as we are about to explain.

The differential of (2) is

dy=zdX-\'Xdz.

This value of di/ substituted in (1), produces

zdX+X(ds+Pzdx)=Qdx. (3)

Now Z*being arbitrary, we can so assume it that

zdX=Qdx. (4)

Then X(dz+Fzdx)=0.

Whence X=0, or dz-\-Pzdx=^0.

From the last —=

—

Pdx,
z

By integration log.0=

—

JPdx. (5)

But l=log.e. (6)

By the multiplication of (5) and (6), we harVe

log.s=— rPdx.\og.e=^log.e~/'^*^^.

Passing to numbers, z=e—f^^^. (7)

From (4) dX=^= Q(eP^^ )dx (8)
z

By integration X=jQ(ef^^'')dx. (9)

The values of z and X, (7), (8), substituted in (2), give

the formula for the integral value of y.

EXAMPLES.

1 . Integrate the differential

xydx adx
dy-

l+a;2 \J^x^'

Here P=—__^_. Q= ^
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Comparing this with (5), log z=\og.J \-\-x'

.

Or z=—^\-\-x'. (1)

From (8) dX=^=-- -?-^ =- "^^
.

By integration X=—-^_-+C. (Formula 5, Art. 77.)

Vl+»
But y=zX^=ax—CJ 1 -[-a;^ , the integral sought.

2. Integrate the differential

, __aydx hdx

1—^a; 1

—

X

Here P=-—A_. Q=.J-, Pdx=.
"^^

1

—

X 1—a; 1

—

X

J^Pdx=a log.( 1

—

x).

Hence \og,z—a\og.{\—a:)=log.(l

—

xy.

Whence 2=(1—»)*. (1)

From (8) we have dX=
^^^ ^^"^

By integration X=—

-

? 4- (7. (2)
o(l

—

xY
The product of (1) and (2) will give y for the first member,

whence

2/=—-+qi—a;)*. C^)
a

N. B. If this is truly the integral sought, its differential will

produce the example. We will thus verify it.

dy—aC(\-^xY-'^dx.

Multiply both members of this equation by (1

—

x)^ and

( \—x)dy=^a C{\--xydx.

(±=p^l^aC(l^xy.
dx
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From (3) we have

ay-{-b=aC(\—x)\

Whence {\—x)dy={ay-\-h)dx.

Or dy—^^'-=^^, the given differential
1

—

X 1

—

X

Thus we might verify the first example.

3. Integrate the differential

_^=_^cos. Q-\-2am.y.
dQ a

A _/^2 3mQ_j_ ^g&m.Q 4^mcos.^
j^ns. y-i.e -f--^-^^-^- T+To^^'

This example is solved in the author's Operations. It is the

last problem in that work.

4. Integrate the differential

dy-\-^axydx=hx^ dx.

Here P=^2ax, and Q=bx\ jFdx=ax\

V/hence 2=e-"^ and dX=9^-=^l=bx'e''^dx.
z e-"

X=bjx'^e^^"dx.

The integral of this last expression depends on a series, and

therefore it can only be found approximately, and as the differ-

ential applies to no particular problem or question in philosophy,

we leave it thus

:

y^be-^""^ Jx^e^''^dx-\- C.
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Miscellaneous Hxaniples.

1. Draw the line indicated by the equation

2. Draw the line indicated by the equation

3. Draw the lines indicated by the equations

—y--\-x=0, and y-\-x=zO.

4. Determine the angle formed by the intersection of the two

lines indicated by the equations

2y+4a;+l =0, y— 10a;-|-3=:0.

Ans. The obtuse angle is 147° 43' 27"6.

The acute angle is 32° 16' 34"4.

5. Determine the angle formed by the intersection of the two

lines whose equations are

and find the co-ordinates of the point of intersection.

Ans. The acute angle is 26° 34' 8", the obtuse angle is there-

fore 153° 33' 62", and if we represent the required co-

ordinates by x', y\ we shall find a;'=0.31, y'=7.9293.

6. Describe the circle whose equation is

That is, find the radius and the co-ordinates of the center.

Ans. Let x\ y', represent the co-ordinates of the center,

and R the radius, we shall find i?=6, a?'=3, y'=—4.

7. Describe the circle whose equation is

ar2_j.y2_4^_4y_3^

8. Describe the curve whose equation is

y=2a;3_5a;2+2.

9. The hypotenuse of a right angled triangle is constant,

but the perpendicular varies : what will be the corresponding va-
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riation of the other side, and what effect will be produced on the

acute angles?

10. What is the differential of n=2x+5x^ -\-b1

Ans. du=(3-\-15x^ )dx.

11. What is the differential of u=(a+Jxy'l

Ans. du='<^±-^S2±.
^Jx

12. What is the differential coefficient of U:
1-^x

Ans.
du__ 3

—

X

13. What is the differential coefficient of u=.aA-—^-.
^^3+x^

Ans, ^=Jllz:^.
^^ (3+x'yx'

14. What is the first derived polynomial of the algebraic

equation

Ans. 3a;2—34i»+54=0,

15. What is the differential of tc:=a^-{-by'!

Ans. du=^\og.adx-{-^\a^~\-by).

16. What is the differential of u=xlog.x2

Ans. du=('[-\-[og.x)dx.

17. Differentiate u=\og.^]+J}z:^L)'

dx
Ans. duz

xj\—X-

18. Find the arc whose logarithmic tangent varies three

times as rapidly as the logarithmic cosine.

Let the arc be represented by x. Then the problem requires

that 3c?.(log. cos.a;)=cf.(log. tan.rc).

A.ns. ;i'=35° 16' 9'^
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19. Find the arc whose log. tangent varies five times as

rapidly as the log, sine of the same arc.

Here 5d.(\og sm,x)=d.(\og. tan.ar).

Am. ar=63° 25' 52".

20. Find the values of x which will render the function

7/=ax^—b^x^-\-C,

a maximum or minimum.

Ans. y is a minimum when x=0, and a maximum
, 2b^

when iP=
3a

21. Divide the number 60 into two such parts that the square

of one part diminished by 3 times the rectangle of the two parts

shall be the greatest possible.

Am. The parts are 22| and 37|.

22. Find the greatest value of y corresponding to the equa-

x^ /

a—X

Am. When y is greatest, x=— , when least, x=0.
At

23. Required the sub-tangent of the curve wTiose equation is

xy^-=ia^{a—x).

Ans. -i(ff=f!_).
a

Qcix—~x ^

24. The sub-tangent to a curve is — , find the equa-
a

tion to that curve.

Am. xy^=a^(a—x.)

N. B. To resolve this, we place the general expression for a

((^x\ 2 (ax x^ )y—) equal to ——^^ Z, and separate the
dy/ a

variables and integrate.

25. What is the length of the longest straight inflexible pole

that can be put up a chimney, when the hight from the floor to

the mantel is =a, and the depth from the front to the back =6?

Am.
«V^+C-)'-^V'+G)*-
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26. Find the equation of the curve whose sub-normal is 4ar^y?

i.

Ans. y=3x^-{-b.

27. The tangent of a certain curve is represented by y. /?jtl,
^ X

what is the equation of that curve, and what is the expression

for its sub-normal?

Am. The equation for the curve is y=2jx-\-b.

The sub-normal is represented by i^.

28. Required the area of a curve whose equation is xy^ :=a.

Ans. The area is =2xy,

29. Find the equation of a curve whose area is expressed by
twice the ordinate.

Ans. x=^\og.y-\-h.

An equation in which x is the abscissa and y the ordinate.

30. The sub-tangent of a curve is expressed by twice the

rectangle of its co-ordinates. Find the equation of that curve.

Ans. y=^\og.x-\-b.

31. The expression for a tangent to a curve is —r . Find the
X

equation to that curve.

Ans. We place y l\^^^ , the general expression for a

Rv
tangent equal to the given expression — ; and by reduction and

x

integration we find the curve to be a circle.

32.. The sub-normal of a curve is |a;^-|-3a;-|-|^, find the equa-

tion of the curve.

Ans. y''=Zx^-\-Sx^+x-{-C.

33. Find the equation of the curve whose area is expressed

by two-thirds of the product of its co-ordinates.

Ans. y'^z=:Cx, but we may assume C=2p, then we have

y^z=z2px, the common parabola.
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34. Find the equation of the curre whose sub -tangent is

equal to the rectangle of its ordinate and sub-normal, x being

the abscissa, and y the ordinate, the curve commencing at the

origin of the co-ordinates.

Ans. y^=^x^, a cubical parabola.

35. In latitude 40° north when the sun's declination is 10®

north, what time in the day will the variation of the sun's alti-

tude be the greatest possible?

Ans. When the sun is due east or west.

N. B, In spherical trigonometry, we learn that

r> sin.^

—

sm.L cos.i>
cos.P= r--—n

—

'

cos.L sm.D
an equation in which A= the sun's altitude, i/= the latitude,

I) the sun's polar distance, and F the angular distance of the

sun from the meridian.

This problem requires us to find when dA shall be the greatest

possible, L and D being constant quantities ; F will vary in con-

sequence of the variation of A.

' njn COS,.AdA /,x—mn.FdF= —-. ( 1

)

cos.Zsm.Z/

But cos.^ : sin.P : : sin.Z> : sin.Z,

Z being the sun's azumuth. Whence cos.^=

—

'—, 1—

.

"^
sin.^

This placed in (1), and reduced, we find

dA=—dP. cos.Z sin.Z. (2)

That is, dA is the variation of altitude for any small interval

of time corresponding to dP, (the variation of the angle P being

uniform,) therefore, as —dFj and cos.L are constant quan-

tities, dA is greatest when (sin.-2) is greatest, or when the center

of the sun is due east or west.

By means of the right angled spherical triangle we find in

Lat. 40° north, when the sun's declination is 10° north, the sun

must be due east 5h. 11m. 28s. before it comes to the meridian,

and the same interval after meridian would bring it due west,

provided the declination did not change during the interval.
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36. In the last example we required the time of day whca
the variation of the sun's altitude is zero.

Atis. This is answered by placing g?^=0 in (2) of last

example. Then the second member of that equa

tion is 0, which makes Z=0 or dF=0. Then the

sun is on the meridian, or it is apparent noon.

37. The area of a curve is represented by x'^y, what is the

sub-tangent to that curve?

Ans.
1—2a;

38. The sub-normal of a curve is ^, what is the equation
X

of the curve?

Ans. y^ =2a2 log.ar.

39. A curve is expressed by fl-l-z=zrdx, what curve is

it, or what is the equation of the curve?

Ans. y= J2rx—x^ , showing that it is the equation of

the circle, the origin being on the curve.

40. The base of a right angled triangle is a, and the perpen-

dicular X, and hypotenuse y ; x and y are variable : what relation

must exist between x, y, and a, when the variation of ic is w times

that of y ?

Ans. y=^nx, and x=—
Jn^—\

41. Taking a triangle as designated in the preceding propo-

sition, a variation of the perpendicular and hypotenuse will

necessarily involve a variation in the acute angles. Determine

that variation.

Ans. The acute angles will vary by a quantity whose

sine or tangent is measured by , in words,

The sine or tangent is equal to the base multiplied by the variation

of the perpendicular, and that product divided by the square of the

hypotenuse:
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Ex.—The base of a right angled triangle is 80, the perpen-

dicular 60, and the hypotenuse 100 feet.

If the perpendicular be increased or diminished jV of a foot,

what will be the corresponding variations of the acute angles?

Ans. The nat. sine or tan. is .?5jJZ_=0008, 2' 45"
10000

log. .0008 —4.903090

Add 10

log. sine 6.903090 (See Robin-

sub, log. of 1" ...4.685575 son's Geom.

log. of 165" 2.217515 page 161.)

42. Integrate the equation -^=B—A cot.a;.

dxdx

Ans. y=- C-\'Bx—'A log. sin.a;.

43. The hypotenuse of a right angled triangle is given. Re-

quired its dimensions when tlie perpendicular added to twice

the base is a maximum.

Ans. If h represent the hypotenuse, hj\ is the

perpendicular, ^hj\ is the base.

3.

44. The area of a curve is represented by |5^^, x and y being

the co-ordinates; the curve commencing at the origin. What is

its sub-normal?

25a;*
Ans. The equation of the curve is y=. , and the

36

25
value of its sub -normal is —xy.

45. What is the sun's longitude when its variation in longi-

tude is 10 times its variation in declination?

N. B. Let D represent the sun's declination, L its longitude,

E the obliquity of the ecliptic. Then the fundamental equation

is sin.D=sin.^sin.Z. (i) (Radius unity.)

By diflferentiation c,OQ.DdD=^B,m.£JQOB.LdL. (2)

The condition requires dL=:lOdD,
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This substituted in (2) and reduced, produces

cos.i>=10sin.^cos.Z. (3)

By squaring (1) and (3), and adding them, observing that

ein.2i>-j-cos.2i)=l, and still further reducing, we shall have

cos.^X= , or cos.//=

—

when n represents the ratio of the variation expressed generally.

And this is the answer in general terms.

Ans. The sun's longitude is 76° 37' 12" from the equinoxes,

that is to say, Ion. 76° 37' 12", 103° 22' 48",

256° 37' 12", and longitude 283° 22' 48".

46. In latitude 42° north, when the sun's declination was 12°

north, the shadow of a perpendicular post, 10 feet high, extend-

ed 22 feet horizontally, it being in the forenoon . What was the

time of day, and what time must elapse for the shadow to con-

tract ,^^ of a foot? The semi-diameter of the sun being 1
5' 54".

Let ^= the altitude of the sun at the time the shadow ex-

tended 22 feet. Then the tangent of the apparent altitude of the

upper limb is found by the following proportion :

R : tsin.A : : 22 : 10 tan.^=log.l 1.000000—log. 1.342423=

log. tan.^=9.657577=24° 26' 39"

When the shadow was 21.7 feet, the alt. was =24° 44' 30"

The difference of these altitudes is 17' 51"=107r',

which we take for the differential of the first altitude.

The altitudes computed from a shadow correspond to the upper

limb of the sun,— therefore to obtain the true altitude of the

sun's center at the same time, we must subtract the sun's semi-

diameter and the refraction.

In this case the sun's semi-diameter=15' 54", and the refrac-

tion 2' 8", both subtractive. Hence, from 24° 26' 39" Ave take

18' 2", and we have 24° 8' 37" for the sun's altitude when the

shadow of 10 feet perpendicular extended 22 feet horizontally.

Let Z= the latitude of the observer, and D= the sun's polar

distance, then with the true altitude of the sun's center, we find

its meridian distance P=68° 12' 40", and the time from appa-

rent noon is 4h 32m 51s, or it is 7h 27m 9s apparent time A. M.

(See Robinson's Geometry, page 211.)
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Solar time is deduced from the spherical equation

p_sin.^

—

sin.L COS.JD (See Robinson's
cos.^

^sX^i^i9 ' (>eom. p. 209.)

in which L and D are constant quantities, and P varies in con-

sequence of the variation of A, therefore by taking the differ-

ential, we shall have

cos.Zsin.i)

Or <^P=—
.

^Q^'^^^
, (radius unity.)

sm.Pcos.Zsm.i>
The minus sign indicates that P decreases while A increases,

which is true whatever be the time of day.

To find the value of dP, we have ^=24° 8' 38", c?^=1071",

Z;=42°, Z)=78°, and P=68° 12' 40".

cos.^ 24° 8' 38" (radius 1) —1.960243

dA 1071" 3.029789

2.990032

sin. 68° 12' 40" —1.967810)
cos. 42° —1.871073>

sin. 78°
, —1.990404)

—^'829287

<;P=1448" 3.160745

Fifteen seconds of arc correspond to one second oi time, there-

fore 1448" corresponds to I minute 36^ seconds, and in this

interval the shadow will contract three-tenths of a foot,

If to 7h 27m 9s we add Im 36s, we shall have 7h 28m 45s

for the mean time when the shadow extended 21.7 feet.

If the second altitude be corrected, and the time correspond-

mg be computed, the result will be 7h 28m 48s, a result within

three seconds of the differential method, but the differential

method is the most accurate for small differences.

47. The logarithmic differential of the sine of an arc is six

times the logarithmic differential of the cosine of the same arc?

What is the arc?

Ans. 22° 12' nearly.

H 258 83
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