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The effective reproduction number, RðtÞ, plays a key role in the
study of infectious diseases, indicating the current average
number of new infections caused by an infected individual in
an epidemic process. Estimation methods for the time
evolution of RðtÞ, using incidence data, rely on the
generation interval distribution, g(τ), which is usually
obtained from empirical data or theoretical studies using
simple epidemic models. However, for systems that present
heterogeneity, either on the host population or in the
expression of the disease, there is a lack of data and of a
suitable general methodology to obtain g(τ). In this work, we
use mathematical models to bridge this gap. We present a
general methodology for obtaining explicit expressions of the
reproduction numbers and the generation interval
distributions, within and between model sub-compartments
provided by an arbitrary compartmental model. Additionally,
we present the appropriate expressions to evaluate those
reproduction numbers using incidence data. To highlight the
relevance of such methodology, we apply it to the spread of
COVID-19 in municipalities of the state of Rio de Janeiro,
Brazil. Using two meta-population models, we estimate the
reproduction numbers and the contributions of each
municipality in the generation of cases in all others.
1. Introduction
The human population gets along with different microorganisms.
Some of them lead to transmitted diseases that result in
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epidemics, even pandemics such as SARS-CoV-2. It is very important to define reliable measures to

characterize the spread of those pathogens, both at the beginning and in the course of epidemics.
The reproduction numberRðtÞ indicates the average number of new infections resulting from a single

infected individual at any time t. When it is greater than 1, each infected individual tends to generate
more than one infected individual, leading to an epidemic outbreak. At the start of the epidemic,
when t = 0 and it is assumed when all of the population is susceptible, RðtÞ is referred to as the basic
reproduction number R0. Due to the recovery of infected individuals, a fraction of the population
becomes immune to the disease, acting as a barrier to the transmission of the disease and creating
conditions for the emergence of herd immunity. Therefore, RðtÞ takes into account the evolution of
the number of susceptible individuals in the population and is usually referred to as the effective
reproduction number. Actually, it is a much relevant metric to characterize the current level of the
disease propagation.

To study reproduction number, the renewal equation is often used alongside incidence data, within
an approach based on the generation interval distribution popularized in [1]. Several works indicate how
to obtain this distribution using empirical data by tracking the case-to-case transmission process taking
into account statistical methods [2–6]. However, estimating such distribution relies on epidemiological
and empirical studies that, for several systems, are very difficult to analyse or even do not have the
required data for the envisaged evaluation. An alternative is to obtain an analytical form of this
distribution using models or assumptions on the epidemic process [1,7–11]. Yet, these methods
usually rely on very simple assumptions or models, such as the SIR and SEIR, which assume that
there is only one type of infectious infected individuals. Thus, systems that present heterogeneity,
either in the host population or in the expression of the disease, usually do not satisfy all conditions
required for the analytical approach for the generation interval distribution. In this work, we focus on
establishing a method to obtain an analytical form for the generation interval distribution and
reproduction number for an arbitrary heterogeneous compartment model. The multiplicity of infected
compartments naturally allows the reproduction number and generation interval distribution to be
expressed in terms of contributions related to each infected compartment. In fact, our method leads to
a matrix of reproduction numbers that establishes how each infected compartment is able to generate
new infections on the other ones. For some models, such as the SEIR, this matrix can be reduced to
one reproduction number, and consequently, one generation interval distribution. To illustrate the
methodology, we apply the method to a meta-population model to analyse the role of spatial
heterogeneity in the spreading of COVID-19 in the Southeast of Brazil.

Our work is organized as follow: in §2, we introduce a very general heterogeneous compartmental
model that can be reduced to most models in the literature, and use it to develop our general
methodology, including expressions for the reproduction numbers that also allow to express it in
terms of actual data. Then, in §3, we apply the method to a simple meta-population model with the
commuter flow of individuals. In §4, we use actual data of the emerging SARS-CoV-2 coronavirus
pandemic in the municipalities belonging to the metropolitan region around Rio de Janeiro, Brazil, to
estimate the reproduction numbers that emerge from the system. Additionally, we reconstruct the time
series of cases from the contributions of each municipality in the propagation of the disease.
2. Reproduction number in a heterogeneous population
2.1. A general infection-age model
In a heterogeneous population, individuals can be discernible by different traits such as age, spatial
locations, behaviour, different susceptibility to diseases or any other factor that may distinguish them
from each other. In this section, we consider those different traits of the population using a
heterogeneous compartmental model. This modelling approach separates the individuals in m
homogeneous compartments that represent the different traits of the population. For the purpose of
evaluating the reproduction number, it is necessary to consider only the subset of variables
encompassing the infected compartments, i.e. those compartments containing individuals that are able
to transmit the etiologic agent to uninfected individuals. This way, we look at the infected individuals
of the population and gather them in the compartments that correspond to their traits. We also let
m = n +m0, where n and m0 indicate the number of infected and non-infected compartments, and
consider only the first n compartments.
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In order to access information regarding these compartments, we define the vector

xðt, tÞ ¼ ðx1ðt, tÞ, . . . , xnðt, tÞÞ, where t and τ indicate, respectively, the calendar time and the
infection-age, i.e. the time elapsed since an individual got the infection. The elements of x can be
interpreted as the infection-age distributions such that, for each calendar time t, xi(t, τ) dτ gives the
number of individuals in compartment i with infection-age τ. Of course the condition xðt, tÞ ¼ 0 for
τ < 0 must be satisfied. The total number of individuals in each compartment, denoted by XðtÞ, can be
obtained by integrating xðt, tÞ with respect to τ from zero to infinity

XðtÞ ¼
ð1
0
xðt, tÞdt,

where XðtÞ ¼ ðX1ðtÞ, . . . , XnðtÞÞ. For the sake of simplicity, we use vector and matrix notation in the
equations, whereby they are identified by bold font and their elements are indicated by subscripts
Mðt, tÞ ¼ ½Mijðt, tÞ�. As usual, integrals and derivatives with respect of scalar variables operate
component wise.

Drawing a parallel with van den Driessche’s next generation method [12], we re-write the n
compartment equations using two vectors. So we define F ðtÞ ¼ ðFðtÞ, . . . , FnðtÞÞ as the rate of
appearance of new infections at each calendar time, and Vðt, tÞ ¼ ðV1ðt, tÞ, . . . , Vnðt, tÞÞ as the rate of
transfer between compartments for a given τ. Therefore, F ðtÞ describes the flow from non-infected
compartments into infected ones and depends on XðtÞ. On the other hand, Vðt, tÞ is related to the
flow between infected compartments, such as going from one stage of the disease to another, or from
infected to non-infected ones, such as recovery. Vðt, tÞ must depend on xðt, tÞ. Thus, a usual
infection-age model can be written as

� @

@t
þ @

@t

�
xðt, tÞ ¼ �Vðt, tÞ ð2:1Þ

and

xðt, t ¼ 0Þ ¼ F ðtÞ: ð2:2Þ

An infection-age model is a set of partial differential equations (PDE). Most infectious disease models
are usually expressed in the ordinary differential equation form (ODE). However, they can also be written
as a infection-age PDE system. In fact, the Kermack–McKendrick SIR and SEIR models [13] are the
special cases of their infection-age counterparts. Thus, if we integrate (2.1) from zero to infinity with
respect to τ, the PDE model in xðt, tÞ is converted into a XðtÞ ODE model

d
dt

XðtÞ ¼ F ðtÞ �
ð1
0
Vðt, tÞdt: ð2:3Þ

Though a general infection-age model is the starting point of our methodology, it can be extended to
ODE systems by simply identifying the F and V terms in the model equations. We demonstrate this
for usual ODE models in electronic supplementary material, S1.

Moving forward, we solve equation (2.1) by integrating along the characteristic lines which, as one
concludes from the l.h.s. of (2.1), are lines of slope 1, i.e. t = τ + c, where c is an arbitrary constant.
Fixing a point (t0,τ0) and introducing a new variable ω, we find that ui(ω) = xi(t0 + ω, τ0 + ω) are
functions that provide the values of the compartments along the characteristic lines. After
straightforward calculations [14], we obtain

d
dv

uðvÞ ¼ �VðvÞ, ð2:4Þ

where ViðvÞ ¼ Viðt0 þ v, t0 þ vÞ. In epidemic models, ViðvÞ are usually linear equations, so that the
resulting system becomes

d
dv

u ¼ � @V
@u

u, ð2:5Þ

where � @V
@u ¼ ½� @

@uj
ViðvÞ� is the matrix that defines the linear system. Assuming that there are no infected

individuals prior to t = 0, we only need to take into account its solution for t > τ, leading to ω = τ, t = τ + t0
and τ0 = 0. The solution for a linear system can be written as

uðvÞ ¼ GðvÞ uð0Þ, ð2:6Þ
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where GðvÞ ¼ Gðt, tÞ, is the fundamental matrix obtained by solving (2.4). Therefore, identifying

F ðt0Þ ¼ uð0Þ in (2.2),

xðt, tÞ ¼ Gðt, tÞ F ðt� tÞ: ð2:7Þ

For linear Vðt, tÞ’s, which is the case of all models considered henceforth, the GðtÞ components are
exponential functions. Nevertheless, equation (2.7) can also be used to express the solution of a
general nonlinear Vðt, tÞ.

Our next assumption is to consider the following ansatz for F ðtÞ:

F iðtÞ ¼
Xn
j

ð1
0
Vijðt, tÞ xjðt, tÞdt, ð2:8Þ

whereby Vðt, tÞ is a matrix whose elements are related to the generation of infected individuals in
compartment i by those in j. The Vðt, tÞ matrix usually encompasses the susceptible compartments
and parameters of the disease transmission. For the case in which V does not depend on τ, as in ODE
models, F iðtÞ ¼

P
j VijðtÞ XjðtÞ, so that

VijðtÞ ¼ @

@Xj
F iðtÞ: ð2:9Þ
220005
2.2. Obtaining the reproduction numbers
In order to estimate the reproduction number using the available incidence data, we need to link the
equations of the model with the database. First, let us imagine that we are able to access a perfect
dataset with the exact number of new infected at each calendar time, i.e. F ðtÞ. Of course, such perfect
sets are hardly available from the health systems, but later in this section (§2.4), we will draw parallels
between F ðtÞ and the actually available data.

Since we established the F ðtÞ form in (2.8), we want to play with it in order to get rid of the
dependence on the compartments xðt, tÞ. Luckily, this can be easily done by substituting (2.7) in (2.8)

F ðtÞ ¼
ð1
0
Aðt, tÞF ðt� tÞdt, ð2:10Þ

whereby Aðt, tÞ is expressed by the matrix product

Aðt, tÞ ¼ Vðt, tÞGðt, tÞ: ð2:11Þ

Analogously to [7], the functions Aij(t, τ) represent the rate of new infections in i due to previously
infected j individuals with an infection-age τ, whereby Aij(t, τ > t)≡ 0. Thus, we can account for the
new cases in i caused by cases that occurred previously in the other compartments. In fact, (2.10) is a
general form for the widely known renewal equation [1,7], and can be interpreted as a sum of
renewal equations. In order to separate each term of this sum, we define J ijðtÞ, i.e. the rate of new
infections in the i compartment due to previously infected j individuals as

J ijðtÞ ¼
ð1
0
Aijðt, tÞF jðt� tÞdt, ð2:12Þ

and emphasize that F iðtÞ ¼
Pn

j J ijðtÞ. With these definitions, we can proceed to obtain the reproduction
number. However, let us note that, when considering systems with multiple compartments as we do, the
former reproduction number is replaced by the n × n next generation matrix R [15]. In this matrix, each
element Rij represents the expected number of new infections in i generated by a newly infected
individual at j. From (2.12), it becomes clear that we can get Rij by integrating Aij(t, τ) from zero to
infinity with respect to τ, as similarly done in [7], i.e.

RijðtÞ ¼
ð1
0
Aijðt, tÞdt: ð2:13Þ

The basic reproduction number of the system is usually calculated from the spectral radius of this
matrix at the disease-free fixed point. Actually, in terms of the basic reproduction number, our method
is equivalent to the widely known van den Driessche next-generation method, [12]. Naturally, from
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(2.13), we can also define

gijðt, tÞ ¼
Aijðt, tÞÐ1

0 Aijðt, tÞdt
, ð2:14Þ

such that Aijðt, tÞ ¼ RijðtÞ gijðt, tÞ. The normalized elements gij(t, τ) are known as the generation interval
distribution [1,7]. They are related to the flow of individuals between infected compartments and their
recover process. We assume a generation interval distribution that might depend on t and τ, which is
general enough to be applied to models with time-dependent parameters [16]. Therefore, using (2.13)
and (2.14) in (2.12), we obtain

J ijðtÞ ¼ RijðtÞ
ð1
0
gijðt, tÞ F jðt� tÞdt: ð2:15Þ

It is important to highlight that RijðtÞ is not necessarily the reproduction number that j generates in i.
Instead, the meaning of RijðtÞ is linked to the generation of new infected ones in i, F iðtÞ, due to infected
individuals previously generated in j, F jðt� tÞ, regardless of the disease stage these j individuals are at t.
Next, to obtain the reproduction number a newly infected in j is expected to generate in all other
compartments, we just have to sum Rij over i, which leads to

RjðtÞ ¼
Xn
i

RijðtÞ: ð2:16Þ

From this point on, we adopt the notation in (2.16), where an over-line represents the collapse over the
first index of matrix elements, in this case in the form of a sum over i. This leads us to analogously define
Aj ¼

Pn
i Aij, whereby its integral from zero to infinity with respect to τ corresponds to Rj, i.e.

J jðtÞ ¼ RjðtÞ
ð1
0
g jðt, tÞ F jðt� tÞdt, ð2:17Þ

where J jðtÞ ¼
Pn

i J ijðtÞ and

g jðt, tÞ ¼
Ajðt, tÞÐ1

0 Ajðt, tÞdt
¼

Pn
i RijðtÞgijðt, tÞPn

i RijðtÞ : ð2:18Þ

Therefore, J jðtÞ represents the rate of new infections generated by previous infections in j. Note that
the generation interval distribution gjðt, tÞ takes the form of an weighted average over the reproduction
numbers, with weights given by gij(t, τ).

Summarizing, the general implementation of the proposed method consists of the following steps:
identifying the terms F and V from a model; using them to find V and G; obtaining A and
integrating it to get R and g. Further in this work, we present applications of the method and
estimations using actual data. Examples of the method applied to different types of models can be
found on electronic supplementary material, S1.
2.3. The total reproduction number
Based on the pairwise reproduction numbers, we now define the total reproduction numberRTðtÞ for the
whole system. The rate of new infections from a compartment, F iðtÞ, can be described as a fraction of the
total rate from all compartments, FTðtÞ ¼ Pn

i F iðtÞ such that

F iðtÞ ¼ aiðtÞFTðtÞ: ð2:19Þ
αi(t) is the proportion of the total rate of new infections that F iðtÞ represents, with the conditionP

i aiðtÞ ¼ 1. Thus, combining (2.10) with (2.19), we obtain

FTðtÞ ¼ RTðtÞ
ð1
0
gTðt, tÞFTðt� tÞdt ð2:20Þ

where

gTðt, tÞ ¼
P

i aiðtÞRiðtÞ giðtÞP
i aiðtÞRiðtÞ

: ð2:21Þ
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Note that the total reproduction number of the system can be written as the scalar product between a

and R, i.e. RTðtÞ ¼ a �R. Thus, we can interpret it as a linear combination of the R, with the fractions a
acting as weights. Interestingly enough, it reveals how the system’s behaviour is averaged over its
heterogeneities. However, we point out that, as the given definition of RT is very general, and it may
not always have a meaningful interpretation. For instance, if we consider a system with two
completely independent dynamics such that (Rij ¼ 0 for i = j), it is still possible to evaluate RT , even
if it has no meaning at all. Therefore, the αi(t) functions play a key role in analysing whether the total
reproduction number has a dynamical meaning.

We now focus our attention on a case where the elements αi(t) appear quite naturally, by assuming
that any Vijðt, tÞ is given by a product of two functions, where one of them depends only on i and the
other only on j. This assumption occurs very often in disease transmission models, as is the case of both
SIR and SEIR models. This general property can be expressed as

V ¼ a�V ¼
h
aiðtÞVjðt, tÞ

i
, ð2:22Þ

where ⊗ represents a tensor product and Vj ¼
P

i Vij. We note that Aj ¼
P

k VkGkj, so that A ¼ a� A. In
fact, the above equation also impacts equations (2.16), (2.17) and (2.18). The first and second ones can also
be respectively, factorized as R ¼ a�R and J ¼ a�J , while the result for the last one can be
simplified to gijðt, tÞ ¼ gjðt, tÞ. Furthermore, because the next generation matrix is obtained from a
tensor product of vectors, the spectral radius of R corresponds to the scalar product of R and a, that
is RT [12]. Thus, in these systems the total reproduction number evaluated at the disease-free
equilibrium point, t = 0, corresponds to the basic reproduction number, RTð0Þ ¼ R0.
2.4. Estimations with real data
So far, we have developed a general framework to estimate the reproduction numbers from the rate of
new infections F . Now, let us establish a connection between F and the available data, starting by
defining the elements of the vector B as

BiðtÞ ¼
ðtþDt

t
F iðt0Þdt0: ð2:23Þ

BiðtÞ represents the number of new infections in i between t and t + Δt. The interval Δt should reflect the
notification frequency of the data, i.e. days, weeks and so on. We defined the BiðtÞ function because the
real-world incidence data is usually a time series with the collection of all reported cases in a Δt period of
time. However, there are important differences between a reported case and a new infection BiðtÞ. For a
new infection to become a reported case, the individual needs to test positively for the disease, in a
process subject to errors and delays. First, the individual needs to present enough clinical symptoms,
which usually take some time to develop. Next, the result of the tested individual is not always
immediately registered into the database, leaving a time gap between the test and the registration of
the case. To deal with such deficiencies, especially in conditions where such delays are not negligible,
specific correcting techniques directly applied to the reported data have been developed, like
nowcasting [17] and back projection [18,19], which provide better estimates of BiðtÞ. Nevertheless, we
emphasize that difficulties in accessing good quality data are not directly related to the method
introduced herein.

Thus, after wishfully improving the quality of the estimates Bi, we proceed by considering the
discrete form of (2.15) [20]

T ijðtÞ ¼ RijðtÞ
Xt

t¼0

gijðt, tÞBjðt� tÞDt, ð2:24Þ

whereby

T ijðtÞ ¼
ðtþDt

t
J ijðt0Þdt0: ð2:25Þ

Of course, BiðtÞ ¼
Pn

j T ij. Equation (2.24) is a generalization of the discrete version of the renewal
equation. In fact, by using (2.20), we are able to recover the form of a well-known result in the
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RTðtÞ ¼ BTðtÞPt
t¼0 gTðt, tÞBTðt� tÞDt , ð2:26Þ

where BTðtÞ ¼ Pn
i BiðtÞ.
ublishing.org/journal/rsos
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3. Explicit expression of RðtÞ for two meta-population models
In this section, we apply the methodology developed in this study to obtain the reproduction numbers
and correspondent generation interval distributions for two meta-population models. Details of the
necessary calculations and of the used models are available in electronic supplementary material, S1
and S2.

3.1. SIR-type meta-population model
In this subsection, we consider a meta-population model that takes into account groups of spatially
separated ‘island’ populations with interactions. Such models are widely used in the context of
spatiotemporal disease spread [21–27]. A system like this can be treated as a network in which the
nodes represent the meta-populations while the weighted edges between them represent the intensity
of their interaction. Here, the meta-populations’ interactions result from the commuter movement of
individuals between their residence, work and study places. This type of movement is obligatory
cyclical, predictable and recurring regularly, most of the time on a daily basis. Thus, the population of
each node does not change with time, since the individuals always comes back to their original
residence place.

In this model, we assumed that each meta-population i, with Ni individuals, has its own transmission
rate βi(t). The movement of individuals between meta-populations is described by the density of flow
from i’s population to j, FijðtÞ, i.e. the number of i resident individuals commuting from i to j divided
by Ni. All meta-populations are assumed to have the same recovery dynamics, i.e. the same recovery
rate γ. In electronic supplementary material, S2, we present details of this model inspired by [28].
However, it is important to call attention to a significant aspect of the current approach, the main goal
of which is the daily evaluation of R(t), not predicting the evolution of the epidemic. To this purpose,
it is necessary to account for the daily fluctuations observed in the used data as they interfere in the
actual value of R(t). Therefore, we let the parameters βi(t) and ϕij(t) be time dependent, the daily
values of which being evaluated based on the application of the methodology. The same argument is
valid for the model SEIIR we discuss in the next subsection.

The reproduction numbers Rij(t) and generation interval distributions gij(t) for this model are
expressed by

RijðtÞ ¼ SiðtÞ
lijðtÞ
g

, gijðtÞ ¼ gðtÞ ¼ g e�g t: ð3:1Þ

The details of the derivations of these expressions are presented in electronic supplementary material, S1.
Here, λij is related to the transmission of the disease from a meta-population j to another meta-population
i and is derived based on simple assumptions about the commuter movement of individuals in the
network (see electronic supplementary material, S2). The gij(τ) = g(τ) relation appears naturally from
the assumption that all meta-populations have the same recovery dynamics. Noteworthy, if we isolate
the meta-populations in the network, FijðtÞ ¼ 0, 8 i and j, all reproduction numbers and the
generation interval distributions become identical to that of the classical SIR model [7].

3.2. A meta-population model for COVID-19 (SEIIR)
Here, we focus on a meta-population model for a specific disease, the SARS-CoV-2 coronavirus. In this
case, the transmission can be facilitated by the existence of individuals whose symptoms are very weak or
even non-existent [28]. In order to have a consistent description of this aspect, the model considers the
existence of two classes of infected individuals, the symptomatic and the asymptomatic/undetected
ones, as considered in a more general model for the same disease [29]. Therefore, it also accounts for
infected individuals not needing to be hospitalized. Usually, they are not included in any officially
registered data, thus becoming undetectable. For the sake of simplicity, we will refer to such
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individuals only as asymptomatic. In electronic supplementary material, S2, we indicate how to derive

this model based on the meta-population SIR-type approach described in the previous section. In
electronic supplementary material, S1, the expressions for the reproduction number and generation
interval distribution are derived in detail. There it is shown that we only need the elements of R with
i, j≤ n to describe the dynamics. Thus, in this main framework, whenever we refer to R or g we are
alluding to their i, j≤ n elements, which read

RijðtÞ ¼ SiðtÞlijðtÞ
h p
gs

þ dð1� pÞ
ga

i
and gijðtÞ ¼ gðtÞ ¼ ð p=gsÞgsðtÞ þ ðdð1� pÞ=gaÞgaðtÞ

ð p=gsÞ þ dð1� pÞ=ga
: ð3:2Þ

Note that the expressions for λij are the same obtained for the SIR-type model. Other model parameters
have the following meanings: δ—a factor that reduces or enhances the asymptomatic infectivity; p—the
proportion of individuals that becomes symptomatic when infected; γa and γs—the recovery rates of the
asymptomatic and symptomatic individuals, respectively. ga(τ) and gs(τ) are expressed in terms of
exponential functions as

gaðtÞ ¼ kga
ga � k

ðe�kt � e�gatÞ and gsðtÞ ¼ kgs
gs � k

ðe�kt � e�gstÞ: ð3:3Þ

Similarly to what was observed before, the reproduction numbers and generation interval
distributions collapse to the corresponding expressions obtained [29] when all meta-populations in the
network are isolated by setting FijðtÞ ¼ 0, 8 i and j.
0005
4. Applications for the meta-population models using actual data
In this section, we present numerical results for the two models discussed in §3 using actual data on the
first six months of the COVID-19 pandemic in a set of Brazilian cities forming the metropolitan area of
Rio de Janeiro. The dataset comprises the following records: reported cases in each municipality, daily
commuter movement due to work between municipalities, and daily mobility tends towards
workplaces. In electronic supplementary material, S3, we derive the expressions and parameters
needed to estimate a daily time series of the reproduction numbers for each model.

4.1. Database
We used daily notifications of new cases due to COVID-19 in Brazil obtained from two public websites:
https://covid.saude.gov.br/ and https://brasil.io/datasets/. The original data were provided by the
Brazil Health Ministry. Data for the inter-municipality commuter movement of workers and students
were obtained from a study on population arrangements and urban concentrations in Brazil
conducted by IBGE (Brasilian Institute of Geography and Statistics) in 2015, which can be found in
[30]. In addition, we obtained daily mobility data for each Brazilian state from a public report by
Google, accessed at https://google.com/covid19/mobility/.

In order to estimate the number of new infections out of the reported data, we use a back-projection
method, introduced in [19]. The method is executed using a diagnosis distribution, which gives the
probability of a given delay between infection and testing [31]. This distribution is the convolution of
two other known ones: the incubation distribution, which gives the probability for a delay between
infection and symptoms; testing distribution, which gives the probability for a delay between
symptoms and testing. The incubation distribution for the SARS-CoV-2 has been estimated in [32],
and the testing distribution is assumed to be log-normal, as in [31], with mean and standard
deviation of that time delay being 10:1+ 17:1 days, estimated for the southeast region of Brazil where
the state of Rio de Janeiro is located, during the first six months of COVID-19 pandemics as it was
shown in [33]. The implementation of the back-projection method is done using the programming
language R with the function backprojNP of the package Surveillance, available at https://rdrr.io/
github/jimhester/surveillance/. The maximum delay assumed for the distribution was of 30 days and
we performed a 10-day moving average in order to attenuate noise and better express the data trend.

To take into account the social distancing restrictions, we considered only the commuter movement
data related to work. Indeed, due to adopting mitigation measures to control the spread of COVID-19,
the inter-municipality flows for education purposes were significantly reduced. In addition, the
movement of workers towards their working places was estimated by using the mobility data
obtained from the community mobility report provided by Google. This database compares, for each

https://covid.saude.gov.br/
https://brasil.io/datasets/
https://google.com/covid19/mobility/
https://rdrr.io/github/jimhester/surveillance/
https://rdrr.io/github/jimhester/surveillance/
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Brazilian state, the daily mobility to workplaces with the past trends. In this way we obtained the
reduction in work commuting. A moving average was performed in the mobility time series, and the
inter-municipality workflow was reduced according to the percentage indicated on the data. All these
factors were included in the evaluation of FijðtÞ. The parameters used to feed the model were
obtained in [34], and can be found in electronic supplementary material, S3.

The used model gathers data for 11 cities, starting with Rio de Janeiro (RJ), Brazil and, in addition, the
following 10 smaller cities of its metropolitan area with the largest commuter flow with it: Duque de
Caxias (DdC), Nova Iguaçu (NI), São João de Meriti (SJdM), Niterói (Nt), São Gonçalo (SG), Belford
Roxo (BR), Nilópolis (Ns), Mesquita (Mq), Queimados (Q), Magé (Ma). Additional information about
the municipalities is presented in electronic supplementary material, S4.
4.2. Analyses of the results
In our first results, shown in figure 1, we present a comparison between the SIR and SEIIR outputs. Using
the daily time series of the reproduction numbers (see electronic supplementary material, S3), we obtain
the series of RðtÞ and T ijðtÞ whose elements are given by equations (2.16) and (2.24), respectively. We
observe that values of elements of R using the SEIIR model are, on the average, 33% higher then
their counterparts for the SIR model. On the other hand, the estimations for the total numbers of
exported infections generated by a city j,

P
t
Pn

i T ijðtÞ for i≠ j, are very similar for both SIR and SEIIR
models. Also, it seems that the total commuter movement, which is the sum of all the inflows and
outflows occurring in a municipality, is not the only main factor that determines the number of
exported infections of a municipality. This nonlinear effect can be observed when comparing SJdM
and Nt or DdC and NI (figure 1b). Those municipalities have a similar amount of total flow but very
different results for the exported infections. Interestingly, even not having the highest Rj, the biggest
city, RJ, presents the largest amount of exported infections, which also highlights the nonlinear
dynamics of the phenomenon.

From now on, we report only results for the SEIIR model since it provides a more realistic description
of the dynamics of COVID-19. Using T ijðtÞ, we can access the contribution of each municipality to the
outbreaks happening in the state. Thus, by dividing T ijðtÞ by BiðtÞ in every time step, we obtain a
time series for the fraction of the total infections in i generated by j. This way we evaluate the time
evolution of the mean value of T ij=Bi, as displayed in figure 2, where the numerator and denominator
are, respectively, given by (2.23) and (2.25). It is observed a high autochthonous behaviour on the
disease transmission, indicating that the highest influence on disease transmission of a city is on itself,
i.e. most of the infections generated in a municipality are caused by its own individuals. However, we
also identify cities where the infections generated by other municipalities on it are very important.
The RðtÞ matrix also corroborates the presence of an important autochthonous behaviour, as its
diagonal elements correspond to the highest values of the reproduction numbers. We also observe a
large number of very small off-diagonal elements in the matrix.

In figure 3, we display again the most relevant findings in figure 2, by selecting only non-
autochthonous influences above 5%. Main features include RJ as the most important agent causing
disease transmission to other municipalities in the network. However, cities like NI also present
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themselves as a relevant spreader of the pathogen. As shown in figure 1, NI is the city with largest
contribution in infection exportation after RJ. In figure 3, we identify that cities like SJdM, BR, Ns, Mq
and Q are the main receptors of these infections. Nt, even having a NI-like number of exported
infections, did not present a large influence on many cities. On the other hand, Nt generates a
significant amount of infections in SG, highlighting the importance of the connection between these
two municipalities.

In figure 4, we illustrate the time series reconstruction resulting from the SEIIR model, focusing on
two different municipalities. In the first one, we focus on the infections in SG and compare the total
amount, BiðtÞ, with the model prediction of the number of daily infections in SG generated by RJ and
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Nt. We observe that Nt exerts a larger influence over SG than RJ, contributing with a higher number of
generated infections at all times. In addition, we present the sum of all the reproduction numbers related
to new infection on the municipality, i.e.

P
j Rij, and compare it with the contributions related to RJ and

SG. We observe that the reproduction number related to SG is higher than the one related to RJ for all
values of time. The second scenario is related to the total number of infections in SJdM and the model
contributions due to RJ and NI. In this case, RJ contributes with the largest number of infections
generated in that city, besides the city itself. The reproduction number related to the new infections in
SJdM due to RJ is lower than the one of NI. Thus, even with a lower reproduction number, RJ is able
to generate the highest amount of infections in SJdM due to the huge amount of infected individuals
in it.
5. Discussion
This work provides a theoretical tool for the study and investigation of the infectious disease spread
within the scope of heterogeneous compartmental models. By starting from an arbitrary
compartmental model, we show how to construct a very general method for obtaining analytical
expressions for the reproduction numbers and generation interval distributions. The methodology is
very general and has several applications in the scope of both modelling and data analysis. We show
how to combine the theoretical structure with incidence data, establishing the path to estimate the
reproduction numbers. These results can become the basis for several possible data analyses. The
method is robust and reproduces known results in the literature, as shown in electronic
supplementary material, S1 for the SIR, SEIR and SEIIR models. It opens room for analyses of more
sophisticated models, which aim at a better understanding and control of infectious disease processes
mainly by allowing to measure the effective reproduction number between the sub-compartments.
Note that once the method allows the infection rate to vary with time, the results capture the possible
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changes of the transmission rate. In [29,34], it is shown that a less general version of this method is able to

indicate the changes of the transmission rate due to the mitigation policies applied on the early stages of
the SARS-CoV-2 pandemic. Due to this possible variation of the contamination process, assuming that
RðtÞ ¼ R0�SðtÞ in all more complex situations does not lead to correct estimates.

In the second part of the work, we focused on providing an application for the methodology. Using
SIR and SEIIR meta-population models, we obtained explicit expressions for their reproduction numbers
and generation interval distributions. The RðtÞ for both models differ only by multiplying factors, 1/γ
and ( p/γs) + (δ(1− p)/γa), as in [29,34]. Combining the theoretical results with the reported data we
evaluated, through SEIIR meta-population model, the role of each municipality on the COVID-19
spread on 11 cities at the metropolitan region of Rio de Janeiro, Brazil. Cities like Nova Iguaçu,
Niterói and São Gonçalo pop out as important agents on the spread of the pathogen throughout the
region. RJ itself plays the role of the main spreading hub, given its high disease incidence rate and its
central role in the commuting displacement of individuals, as also observed in [27,34,35]. However,
cities like Niterói and São Gonçalo, whose mutual interaction is larger than that they have with RJ,
cannot be neglected. This highlights the importance of flow control between municipalities as an
important strategy in the diffusion of the pathogen, especially in heterogeneous systems as previously
addressed in network models [27].

In this work, we presented an analysis based on officially reported data, taking into account the
diagnosis distribution, based on back-projection method, to estimate the new infections out of the
reported data. Our results are not limited to reporting the reproduction number, emphasizing that its
value is not a dead-end result. Going beyond that, we explicitly demonstrated how our method leads
to deeper analyses, such as the reconstruction of the time series and the evaluation of the number of
exported infections.

Of course, our results for the Rio de Janeiro metropolitan area can be further extended, by including
other features left out in this first approach, in which attesting the reliability of the developed method
was the main focus. For instance, more sophisticated commuter flow models available in the literature
can provide a more precise description of pendular behaviour. Other possibilities consist in including
the influence of international and interstate passenger traffic, and further relevant heterogeneous
features related to age, social heterogeneities and segregation. Note that the latter would also be
included in our general theoretical formalism. Since the frequency of testing changes over the course
of an epidemic, assuming a fixed testing distribution for the back-projection calculations may bring
limitations to our estimate of the infection curve [36]. The basic compartment model used in our
analyses can also be extended to include self-quarantine of the infected symptomatic individuals,
which surely plays an important role in disease propagation. The limitations in the quality of data
certainly affect the outputs produced by any used model, ours included, but such source of problem
can be overcome in future studies by accounting for the uncertainties regarding the data and parameters.

In spite of the limitations of the discussed results, they do provide new features and clarifications for
the analysed system. They also indicate that the robust theoretical framework developed herein may
contribute to further advances in mathematical modelling, given its broad applicability to a large class
of infectious disease spreading models.
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