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ABSTRACT 

 This research examines the use of machine-learning techniques to identify 

malicious traffic in an emulated tactical computer network. The intent is to identify 

low-cost solutions based on open-source software capable of employment on computer 

hardware of currently fielded tactical data networks. These machine-learning techniques 

are investigated for application where it is prohibitive to employ bulky alternate network 

security measures such as security information and event management products. These 

methods are evaluated as a complementary solution to existing security measures, rather 

than as a replacement. 

 A test network is established with sixteen hosts emulating generation of normal 

baseline traffic for periods of 48 hours. One machine is infected with a botnet simulator 

and sends malicious traffic at four levels of intensity. The traffic flows are captured, 

labeled, and used as training and testing sets for four commonly used machine-learning 

algorithms to generate models for identifying the botnet traffic. The trained models are 

then tested against other flow datasets to evaluate their ability to classify malicious traffic 

without prior signatures.  We identify the J48 Decision Tree as the strongest single 

algorithm across six of our seven metrics. Our work also produces a report for network 

administrators that is clear, easy to understand, and most importantly, provides actionable 

information that can drive decisions to best defend the network. 

v 



THIS PAGE INTENTIONALLY LEFT BLANK 

vi 



 vii 

TABLE OF CONTENTS  

I. INTRODUCTION..................................................................................................1 
A. OVERVIEW ...............................................................................................1 
B. MOTIVATION ..........................................................................................1 
C. SCOPE ........................................................................................................1 
D. OBJECTIVES ............................................................................................2 
E. ASSUMPTIONS .........................................................................................3 
F. APPROACH ...............................................................................................3 
G. BENEFITS OF RESEARCH ....................................................................3 
H. ORGANIZATION .....................................................................................3 

II. BACKGROUND ....................................................................................................5 
A. OVERVIEW OF USMC TACTICAL NETWORKS .............................5 

1. Standard Equipment and Architecture .......................................5 
2. Current Network Security Measures and Limitations ...............6 

B. OVERVIEW OF BOTNETS ....................................................................7 
1. Defense and Security Considerations ...........................................8 
2. Common Command and Control Methods .................................9 

C. OVERVIEW OF MACHINE-LEARNING .............................................9 
1. Algorithms ....................................................................................11 
2. Measures of Effectiveness ............................................................14 
3. Weka..............................................................................................16 

III. EXPERIMENTAL DESIGN...............................................................................21 
A. PHASE 0: PRELIMINARY ANALYSIS...............................................21 

1. Analysis of USMC Test Network Traffic ...................................21 
2. Machine-Learning on Pre-labeled NetFlow Dataset ................22 

B. PHASE 1: MACHINE-LEARNING MODEL GENERATION ..........25 
1. Test Network Design ....................................................................27 
2. Host Configuration ......................................................................28 
3. Normal Traffic Generation .........................................................29 
4. Botnet Traffic Injection ...............................................................30 
5. Machine-Learning........................................................................31 

C. PHASE 2: MODEL VALIDATION .......................................................32 

IV. RESULTS .............................................................................................................35 
A. TRAFFIC INTENSITY ...........................................................................35 
B. TIME CONSIDERATIONS ...................................................................36 



 viii 

C. FEATURE SET COMPARISON ...........................................................36 
D. GENERAL OBSERVATIONS ...............................................................39 
E. INDIVIDUAL ALGORITHMS ..............................................................39 

1. Naïve Bayes ...................................................................................42 
2. Logistic Regression ......................................................................43 
3. AdaBoost .......................................................................................43 
4. J48 Decision Tree .........................................................................47 

F. VOTING METHODS ..............................................................................50 
1. All or None ....................................................................................50 
2. One Vote Minimum .....................................................................50 
3. Majority ........................................................................................51 

G. DISPARITY OF TRAINING AND TESTING DATASETS ...............51 
H. NETWORK ADMINISTRATOR REPORT GENERATION ............52 

V. CONCLUSION AND FUTURE WORK ...........................................................55 
A. CONCLUSION ........................................................................................55 
B. FUTURE WORK .....................................................................................56 

1. Analyze Additional Botnet Traffic Types ..................................56 
2. Increase Scale ...............................................................................56 
3. Assess Usability with USMC Network Administrators ............57 
4. Compare Results to Firewall Protected Network .....................57 

LIST OF REFERENCES ................................................................................................59 

INITIAL DISTRIBUTION LIST ...................................................................................63 

 

 

 

 



 ix 

LIST OF FIGURES  

Figure 1. Example ARFF File with Notations. Source: [11]. ........................................17 

Figure 2. Weka’s GUI for Pre-processing Data .............................................................18 

Figure 3. Example of Model Summary Output in Weka’s Explorer .............................19 

Figure 4. Phase 1 Process Flow: Using an Emulated Network to Generate an ML 
Model ..............................................................................................................25 

Figure 5. Representation of k-folds Cross-Validation with k=4. Source: [13]. .............26 

Figure 6. Test Network Diagram ...................................................................................28 

Figure 7. Phase 2 Process Flow: Validation of ML Models ..........................................32 

Figure 8. False Positive Comparison of Models Trained on Low Intensity 
Datasets ..........................................................................................................43 

Figure 9. J48 Decision Tree with Maximum Features Trained and Tested on Low 
Intensity Dataset .............................................................................................48 

Figure 10. J48 Decision Tree with Optimized Features Trained and Tested on Low 
Intensity Dataset .............................................................................................49 

Figure 11. Results Report for J48 Model Trained on Moderate Intensity Dataset 
and Applied to Low Intensity Dataset ............................................................53 

 

  



 x 

THIS PAGE INTENTIONALLY LEFT BLANK 

 

  



 xi 

LIST OF TABLES  

Table 1. Binary Confusion Matrix Example ................................................................14 

Table 2. Comparison of Feature Selection with Naïve Bayes Algorithm Applied 
to the CTU-43 (Scenario 2) Dataset ...............................................................24 

Table 3. Botnet Traffic Intensity of Each Experiment .................................................35 

Table 4. Time Comparison for Building of ML Models ..............................................36 

Table 5. Time Improvements for Feature Set Optimization of Low Botnet 
Traffic Intensity Models .................................................................................37 

Table 6. Improvements to Classification Accuracy by Optimizing Feature Set ..........38 

Table 7. Improvements to Root Mean Squared Error by Optimizing Feature Set .......38 

Table 8. Model Generation Time Improvement by Optimizing Feature Set ...............38 

Table 9. Comparison of Algorithms and Voting Methods Averaged Across All 
Tests ................................................................................................................41 

Table 10. Results for AdaBoost Algorithm (1 of 2) .......................................................45 

Table 11. Results for AdaBoost Algorithm (2 of 2) .......................................................46 

  



 xii 

THIS PAGE INTENTIONALLY LEFT BLANK 

 



 xiii 

LIST OF ACRONYMS AND ABBREVIATIONS 

ACL Access Control List 

AI Artificial Intelligence 

ANW2 Advanced Network Wideband Waveform 

ARFF Attribute-Relation File Format 

AS Autonomous System 

ATC  Authorization to Connect 
ATO  Authorization to Operate 

BoNeSi Botnet Simulator 

Bps Bytes per Second 

C2 Command and Control 

COTS Commercial-off-the-Shelf 

CTU Czech Technical University 

DARPA Defense Advanced Research Projects Agency 

DoD Department of Defense (United States) 

DoDIN Department of Defense Information Network 

DDOS Distributed Denial of Service 

DDS-M Data Distribution System-Modular 

DNS Domain Naming Service 

EO Executive Order 

ESP  Encapsulated Security Payload 

FN False Negative 

FP False Positive 

GIG Global Information Grid 

GNU GNU’s Not Unix 

GPL GNU Public License 

HACCS Harnessing Autonomy for Countering Cyberadversary Systems 

HBSS Host Based Security System 
HMSAS  Hatch Mounted Satellite Access System  

HTTP Hypertext Transfer Protocol 

HTTPS Hypertext Transfer Protocol-Secure 



 xiv 

IA Information Assurance 

IAM Information Assurance Module 

IEEE Institute of Electrical and Electronics Engineers 

IP Internet Protocol 

IRC Internet Relay Chat 

MAE Mean Absolute Error 

ML Machine-Learning 

NAT Network Address Translation 

TCP/IP Transport Control Protocol / Internet Protocol 

TN True Negative 

TP True Positive 

OSPF Open Shortest Path First 

PCAP Packet Capture 

PII Personally Identifiable Information 

POLP Principle of Least Privilege 

pps Packets per Second 

RFC Request for Comment 

UDP User Datagram Protocol 

UPS Uninterruptable Power Supply 

URL Uniform Resource Locator 

USMC United States Marine Corps 

WSUS  Windows Security Update System 

 



 xv 

ACKNOWLEDGMENTS 

First and foremost, I cannot say thank you enough to my beautiful wife, Ashley. 

You are incredible and have been a great support and my biggest fan. Your belief in me is 

truly humbling, and I hope to live up to that every day.  

I am also extremely grateful for my parents, Javier and Carolyn, for all their hard 

work and sacrifice to get me to where I am today. To my siblings, Bryan and Michelle, a 

constant source of encouragement, spirit lifting, and unique perspective on life. To my in-

laws, Tom and Carol, whose advice and encouragement is a true blessing. 

To the multitude of professors who poured time and energy into helping this Marine 

begin to understand the complex and wonderful world of computer science, I am also very 

grateful. In particular, Dr. Xie could not have been a more encouraging, insightful, and 

optimistic advisor despite all the roadblocks and complications along the way of this thesis. 

Much credit must also be given to Professor Fulp for inspiring me to pursue network 

security despite its unavoidable uphill battle and difficulty.  

  



 xvi 

THIS PAGE INTENTIONALLY LEFT BLANK 

 



 1 

I. INTRODUCTION 

A. OVERVIEW 

This research focuses on finding ways to improve network security in the 

Department of Defense (DoD) through open-source software compatible with currently 

fielded hardware. We establish an emulated test network to provide a baseline of normal 

user traffic. We then introduce a simulated botnet infection to launch a Distributed Denial 

of Service (DDoS) attack on another controlled network. Subsequently, we compare the 

efficacy and suitability of various machine-learning (ML) algorithms to see which yields 

the best results at identifying the malicious behavior from normal baseline traffic.  

B. MOTIVATION 

Network security is a fundamental necessity for successful military operations in 

the 21st century. Virtually all pertinent information for the operational and strategic levels 

of warfighting will transit computer networks. More and more, computer networks are 

being pushed to the “tactical edge” as well. With the proliferation of systems like the 

AN/PRC-117G radio and Hatch Mounted Satellite Access System (HMSAS) and 

technologies like Advanced Network Wideband Waveform (ANW2), leveraging the 

strengths of computer networks at the tactical level is becoming part of our overall plan to 

stay ahead of our adversaries. But for all the advantages of tactical level computer 

networks, they also present many vectors for attack. This research is motivated by a desire 

to find low cost solutions to enhance network security that can be implemented 

immediately.  

C. SCOPE 

Tactical computer networks are characterized by their small size, short duration of 

operation, and expeditionary locations. Generally, a tactical network will support as few as 

one user to as many as two hundred. They are designed to be maintained anywhere from a 

few hours to a few months. Typically, they are established in “field conditions” with 

temporary structures, a temporary power grid, and temporary access to the global 
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information grid (GIG). These characteristics contrast sharply with those of garrison 

networks, which are established in permanent structures with reliable power and can 

support thousands of users for an indefinite time period. Another significant distinguisher 

between tactical and garrison networks is their resources. Because a garrison network is 

larger, it has a more well-funded defense in depth approach to network security. This 

includes both trained professionals and sophisticated equipment such as security incident 

and event managers (SIEM). Meanwhile, because of the quantity of tactical networks, it is 

cost-prohibitive to deploy expensive sophisticated security solutions to each one. Also, any 

hardware solutions are further complicated by the need to ruggedize equipment for 

transport my military vessel (land, sea, or air) and deployment in austere conditions (heat, 

sand, moisture). Because of these factors, tactical networks do not have nearly the 

robustness for network security that their garrison counterparts do. This particular research 

will focus on network security for these smaller, more expeditionary tactical networks. 

Even though the networks may be smaller at the tactical level, they are susceptible 

to all the same vulnerabilities of a larger network. They can be interrupted by a DDoS 

attack or infiltrated via spam, spear phishing, or other social engineering tactics. The 

malicious activity at the center of this research is botnets. A more detailed explanation of 

botnets can be found in Chapter II.  

The scope of this research is on identifying computers in a tactical network that 

have been compromised as part of a botnet. Methods for identifying these compromised 

machines are restricted to only use commodity hardware and open source software. The 

intent of this work is to find solutions that can be implemented under current fiscal 

restrictions and that do not require the purchase of expensive hardware for each tactical 

network. 

D. OBJECTIVES 

The primary objective of this research is to find a low-cost solution to identify 

compromised machines on a tactical network by analyzing network traffic with machine-

learning algorithms. The term “low-cost,” as used here, means no additional hardware or 

software purchases are necessary to implement the solution on current tactical networks.  
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E. ASSUMPTIONS 

Although the term “tactical network” is rather broad, for the purposes of this 

research, it is assumed that such a network has modest firewall capability in the form of 

access control lists (ACLs) and possibly a pre-programmed commercial firewall. It is also 

assumed that there are modest computing resources available for conducting network 

traffic analysis in search of compromised machines.  

F. APPROACH 

The overall approach is to conduct tests of various machine-learning algorithms on 

simulated network traffic. First, a test network based on a small USMC tactical network is 

established. This test network generates benign normal traffic as our emulated users 

perform normal tasks over time. After this, a botnet malware simulator is deployed on the 

test network from a single machine, and the traffic of this “infected” machine is labeled as 

such. With this labeled traffic, a number of machine-learning algorithms and voting 

methods are tested to find which ones are best suited to identify botnet traffic over a range 

of metrics.  

G. BENEFITS OF RESEARCH 

A low-cost method to identify compromised machines would enhance overall DoD 

network security without taking resources from other priorities. While it is not possible to 

address every possible threat with any single solution, adding a machine-learning based 

approach could tighten our network security posture and ultimately benefit any DoD 

network that employs this method.  

H. ORGANIZATION 

Chapter II provides background on USMC tactical network architecture, botnet 

traffic, and machine-learning algorithms. In Chapter III, the design of the experiments is 

laid out. Chapter IV covers the results of these experiments. Finally, Chapter V provides 

our conclusion and suggests possible avenues for future research to build off the 

methodology, data, and lessons learned from this research.  
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II. BACKGROUND 

This research starts by establishing a knowledge baseline of current USMC tactical 

computer networks. This includes current system equipment and the security features in 

place to protect these smaller, short-term networks. Then a discussion on botnets looks at 

what they are, why they are so prevalent, and dives a little deeper into common command 

and control (C2) configurations. Finally, the topic of machine-learning is explored. We 

look at the fundamentals of what makes machine-learning software as well as recent 

advancements that have brought this technology into the mainstream.  

A. OVERVIEW OF USMC TACTICAL NETWORKS 

Since this research is focused on improving network security of USMC tactical 

networks, it is important to note the current equipment and procedures in place.  

1. Standard Equipment and Architecture 

It is important to understand the quantity and capability of the equipment currently 

fielded by the USMC in its tactical networks because this research is focused on providing 

solutions that can be implemented with this pre-existing infrastructure. There are dozens 

of commercial grade solutions on the market, but they require the procurement of 

specialized hardware. For the DoD, any equipment that will connect to the Department of 

Defense Information Network (DoDIN) must go through additional security screening and 

scrutiny before receiving an authorization to connect and authorization to operate 

(ATC/ATO). So, in the interest of finding solutions that can be implemented with minimal 

delay, it is preferable to work within the currently approved hardware.  

USMC tactical networks are based around the Data Distribution System-Modular 

(DDS-M). The DDS-M is a set of modules, each with different capabilities, that can be 

used in a variety of combinations to create a network tailored to the unit’s needs on a given 

mission. Each of these modules is centered on a commercial-off-the-shelf (COTS) 

hardware component combined with an uninterruptable power supply (UPS) and mounted 

in a ruggedized case for use in field environments. For user computers, the USMC fields a 
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number of approved COTS laptops. Brands include Panasonic, Lenovo, and Dell, and the 

technical specifications are commensurate with mid-level commodity laptops available to 

the general public. Based on these current operating conditions, this research is conducted 

on similarly capable hardware. Details of this hardware and how it is used for these 

experiments can be found in Chapter III.  

2. Current Network Security Measures and Limitations 

For tactical networks, the USMC employs several defensive measures. In order to 

connect a tactical network to live internet services, the network must utilize a firewall. The 

Information Assurance Module (IAM) is a ruggedized Fortinet firewall. Also, the network 

must use Host Based Security System (HBSS), the McAfee designed enterprise software 

to protect end devices. Additionally, network administrators use the Windows Security 

Update Services (WSUS) to patch machines on the network.  

Beyond technology and equipment, there is a significant burden of labor for 

network administrators. These service members require current entry-level network 

security certification, such as CompTIA’s Network+ and Security+ courses. Once trained, 

they are responsible for maintaining the defensive posture of the network. This includes 

port restrictions, enforcing password policy requirements, and maintaining best practices 

for Microsoft’s Active Directory, such as configuring settings in accordance with the 

principle of least privilege (POLP). However, while these individuals are trained and 

execute adherence to security policy, they do not actively look for threats to the network. 

In larger USMC tactical networks, an Information Assurance (IA) Marine can be attached 

to supplement the unit’s cyber security. These IA Marines have increased training and are 

responsible for monitoring the network through a collection of tools. The most prominent 

of these tools are the firewalls and the network vulnerability scanners.  

A major problem in both the technologies and procedures that we currently employ 

is their reliance on signature-based threat detection. If a known virus is attached to an email, 

the firewall will flag it when it compares the hash to its database of known malware. This 

alerts an IA Marine to investigate and take the necessary corrective actions. If a user’s 

machine is infected with a known virus, HBSS will notice and send a message in a similar 
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manner. The problem is that with today’s rate of new malware creation, a signature-based 

solution is not enough. According to Symantec, there were 357,019,453 new malware 

variants in 2016 and 669,947,865 in 2017 [1]. Not only do signature-based solutions fail to 

address the volume and velocity of new malware, but malicious actors are always 

developing new ways to disguise their malware and evade these tools.  

One current gap in our network defense is when new malware (signature not yet 

catalogued) or self-hiding malware (signature changes or location of code hidden from AV 

tools) infects a user’s machine and executes without the user noticing (i.e. not ransomware 

that alerts a user their data has been encrypted). One common “family” of malware that 

can fall into this category are botnets. This research focuses on this particular type of 

malware due to its growing use and the threat it poses to DoD networks. An overview of 

botnets follows in Section 2.B.  

In the cases described above with botnets or other malware, a behavior-based 

detection method is needed. Extensive research has been done and is currently being 

conducted on behavior-based methods, and some significant progress has been made. One 

area in particular has been machine-learning. A number of research initiatives have 

explored how to apply machine-learning to the detection of anomalous network traffic [2]. 

This research focuses on using open source machine-learning software to identify 

malicious behavior on a tactical network. An overview of machine-learning follows in 

Section 2.C.  

B. OVERVIEW OF BOTNETS 

Most simply stated, a botnet is a group of computers controlled by one person. Each 

computer in a botnet is called a “bot” because it is running software that automates its 

functionality (i.e., does not need human interaction to execute). It is called a botnet because 

of the coordination between all the distributed bots making it a network. While technically 

this could describe many legitimate—non-malicious—networks managed by network 

administrators (running WSUS involves one human controlling a network of machines 

running automated updating scripts), the term botnet has come to be understood as a 
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malicious construct. In fact, some go so far as to say botnets “are responsible for a vast 

majority of the spam on the Internet today” [3]. 

1. Defense and Security Considerations 

The DoD is not immune from this threat. Indeed, as more and more DoD systems 

rely on the Internet, our systems are at greater risk than ever. While over a decade ago, in 

2005 a botnet was discovered operating on DoD computers [4] and resulted in a stand-

down to wipe the infected machines.  More recently, in January 2018 a joint report to the 

President by the US Secretaries of Commerce and Homeland Security was released titled 

“A Report to the President on Enhancing the Resilience of the Internet and 

Communications Ecosystem against Botnets and Other Automated, Distributed Threats.” 

[5]. This report was a product of the president’s issuing of Executive Order (EO) 13800 

“Strengthening the Cybersecurity of Federal Networks and Critical Infrastructure” [6]. 

This EO and report both indicate how seriously the botnet threat is to national security, as 

well as our economy as a whole. In 2017, the Defense Advanced Research Projects Agency 

(DARPA) began soliciting for solutions to the botnet threat (among others) in its initiative 

“Harnessing Autonomy for Countering Cyberadversary Systems (HACCS)” [7]. The 

project hopes to leverage current advances in ML and artificial intelligence (AI) to 

automate the process of defending networks against botnets and other threats.  

One of the reasons that botnets have garnered such a high threat level is that they 

are extremely flexible. In fact, it may be more appropriate to refer to botnets as a theory or 

principle rather than a technology. This is based on the fact that botnets can be created in 

a variety of ways, controlled in a variety of ways, and deliver a variety of adverse effects 

in a variety of ways. No single technology or algorithm defines botnets. They have 

achieved their current level of proliferation thanks to the abundance of network resources 

(bandwidth, end devices, et al.) that has been on the rise for decades. Because the DoD has 

been increasingly reliant on this same increase in network resources, the threat of botnets 

does not appear to be dwindling any time soon. 
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2. Common Command and Control Methods 

If there is one defining feature of botnets, it is their command and control. Indeed, 

it may be the only thing separating a botnet from just viruses and worms doing damage on 

the Internet. The ability to control a multitude of compromised machines in a matter of 

seconds is what gives botnets their teeth. The controller of a botnet is often referred to as a 

“bot herder.” In order to issue commands and receive information from their bots, a 

communication channel, or C2 channel, must be used. Early botnets trended toward use of 

the Internet Relay Chat (IRC) protocol as their C2 channel. Fortunately for network 

security professionals, many current networks do not use IRC so it is a simple matter to 

disable this port at their firewall. But to no one’s surprise, the C2 methods of bot herders 

have only been limited by their imaginations. Because nearly all Internet connected device 

rely on Domain Naming Service (DNS), Hypertext Transfer Protocol (HTTP) and 

Hypertext Transfer Protocol-Secure (HTTPS), these have been favorites of bot herders to 

hide their C2 traffic. This is done by pointing their bots to the Uniform Resource Locator 

(URL) of a website they either control or are injecting with their malicious commands. In 

fact, Symantec reports that in 2017 approximately 1 in every 88 (~1.1%) of all URLs on 

the Internet were for botnet activity, primarily C2 [1].  

C. OVERVIEW OF MACHINE-LEARNING 

While sometimes used synonymously with artificial intelligence, machine-learning 

is not exactly the same. Both terms are prolific in the realm of “big data” analytics and 

have received a great deal of attention due to recent advances. Artificial intelligence is the 

broader term covering all aspects of simulating intelligence, that is decision making, 

learning, self-correcting, through the use of computer systems. Machine-learning is one 

critical component of artificial intelligence wherein a computer system can adapt and 

improve on its own without human correction. The rise of machine-learning is perhaps 

most significantly a paradigm shift in fundamental programming philosophy. Before this 

area began to gain traction, it was always assumed that the human would have to apply 

critical thinking to problems that had never been seen before and then adjust code on a 

computer as necessary to handle the new scenario. In short, the human would write a 
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program telling the computer not just what to do, but how to do it. No matter how 

complicated, theoretically any action that the computer took could be seen as originally 

coming from the human programmer. For a computer to play checkers, a programmer could 

go through each possible state of the playing board and decide for the computer what move 

it should make in that exact scenario, and then write each of these “if-then” rules into the 

code.  

Machine-learning is a fundamental change to this paradigm that was sparked by the 

desire for computers to solve problems and handle situations that were far too large 

computationally for this method. A classic example is the game of chess, which has far 

more possible board states and moves than checkers. To program a computer to 

successfully play chess, no programmer in the world could possibly include actions to take 

in every state of chess, estimated to be 1045. So, in order to handle these increasingly 

complex problems, the idea of machines learning came about. The idea was that humans 

solve problems, like a chess game, not by knowing every single possible scenario, but by 

understanding the rules and objectives and figuring out strategies based on these 

parameters. So, the fundamental idea of machine-learning is to mimic this in software. 

Instead of coding scenarios, the programmer defines the rules of the game and provides the 

computer with quantitatively defined incentives. In chess for example, the taking of an 

opponent’s pawn might have an incentive value of 2, while the taking of an opponent’s 

queen might have an incentive value of 20. However, there may also be a negative incentive 

for exposing the computer’s own queen of say -30. So, when the computer is calculating 

its move, it weighs all incentives for a particular state and chooses the path with the highest 

incentive reward.  

In ML applications, each data point is referred to as an instance or case; for purposes 

of this research we will use the term instance. Each instance has a set of values associated 

with it, known as features. For example, in a ML application trying to predict the weather, 

it might be “fed” millions of instances of past meteorological data. Each instance would 

likely be the data from a specific hour at a specific location, and its features could be 

anything from temperature to humidity to barometric pressure.  
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A key aspect to machine-learning methods is the idea of a training set and a testing 

set. The training set is a collection of data in which the answer is provided. Continuing the 

example of weather prediction, the training set would be a set of instances with all the 

features of a location at a certain time, with a label for what weather condition occurred 

next. In the case of a machine vision algorithm, where a computer determines what an 

image represents, it is a collection of images labeled with the correct interpretation. The 

computer is fed this training set and told that it is the ground truth, that these answers are 

in fact correct. From this training set, the algorithm can adjust its parameters to best fit with 

that training set. For example, in a computer vision application if 99% of the pictures in 

the training set with the label “lake” had over 75% of the pixels in the blue spectrum, it 

could set a parameter that told it to be 99% confident that an image with over 75% blue 

pixels was a lake. From there, the testing set is very similar in the fact that it is a collection 

of data with correct labels. However, when the testing set is provided to the computer, the 

labels are removed. After it decides its answers for each case, it then goes back and 

compares its answers to the actual answers. By doing this, it can determine how effective 

it was at learning based on the training set. This is also a chance for programmers to 

evaluate how well suited a particular algorithm is for a particular use case. 

1. Algorithms 

The various ways to incentivize a program and to search for the best path in each 

state has led to the invention of a number of varied solutions. Since machine-learning is a 

field of computer programming, not a program itself, there is a plethora of algorithms that 

attempt to best handle these challenges. What is interesting is that certain algorithms have 

achieved impressive results in certain specific domains. There is no one machine-learning 

algorithm that is best suited for all applications. The Institute of Electrical and Electronics 

Engineers (IEEE) held the International Conference on Data Mining in December 2006. 

At this conference, the top ten algorithms used in data mining were identified and published 

in a survey paper [8]. Contributors to the conference came from universities and businesses 

across the globe. Three of the four algorithms investigated in this research are in this paper: 

Naïve Bayes, J48 Decision Tree, and AdaBoost. The fourth algorithm we look into is 

Logistic Regression. Logistic Regression is a well-established ML algorithm but does not 



 12 

appear in many efforts to classify network traffic data [9]. It is included as a reference point 

for comparison.  

a. J48 Decision Tree 

 One such family of machine-learning algorithms is called decision trees. These end 

up resembling something akin to flowcharts in the business world whereby each decision 

leads to another branch in which new factors are weighed and another decision is reached. 

These tend to be best suited for application in which there are a small number of attributes 

for the data. Too many attributes lead to an unmanageable number of branches and the 

searching becomes too computationally exhaustive to be effective.  

Ross Quinlan developed the C4.5 algorithm as a decision tree that improved upon 

his previous ID3 algorithm. It has since been quite popular as a supervised classifier, even 

being called "a landmark decision tree program that is probably the machine-learning 

workhorse most widely used in practice to date" [10]. The Weka software used by this 

research and described later in this section features an open-source Java implementation of 

the C4.5 algorithm called a J48 decision tree.  

b. Naïve Bayes 

Another approach to machine-learning was developed by applying Bayesian 

probabilities. In Bayesian machine-learning, we apply our knowledge of prior probabilities 

to give weight to certain features. This allows us to apply some of what humans have 

already learned into the algorithm, so it is not starting blind. For instance, in the case of a 

machine-learning program to assist a doctor in diagnosing lung cancer it can be encoded 

that the prior probability of a patient who smokes to have lung cancer is 10%, while the 

prior probability of a patient who is 10 years old to have lung cancer is 0.1%. Now, when 

the computer is looking at all the patient’s data, it can be more confident in a diagnosis of 

lung cancer if the patient smoked than in the patient was 10 years old. While many times 

these weights can be programmed in directly, it is very common to provide a Bayesian 

model with a training set and let it determine what the prior probabilities are based on that 

data. For this research, we evaluate the Naïve Bayes algorithm because it assumes strong 
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independence of the features and has been studied extensively in other machine-learning 

efforts to classify network traffic [9]. 

c. Logistic Regression 

Within the family of regression statistics, the Logistic Regression model has been 

adapted for use in ML classifiers. Typically, Logistic Regression yields probabilities of a 

certain instance being a certain value. For adaptation as a binary ML classifier, cutoff 

values are assigned to the probabilities and if the value is greater than the cutoff, it is 

classified as a positive. Since Logistic Regression is a common and well-established 

method, it is used as one of our algorithms for comparison. While it is not commonly 

studied for use in network data classification, it is included as a reference point.  

d. AdaBoost—An Ensemble Learning Technique 

Ensemble learning is the practice of combining several ML algorithms to achieve 

better performance. One subset of ensemble learning is known as boosting. Boosting is the 

process of creating a model using an algorithm, and then building a subsequent model that 

attempts to correct the errors of the first. Typically, this is most effective when used with 

weak classifiers. The AdaBoost method is one such technique that uses one level decision 

trees, also known as decision stumps, as the weak classifier. It is best suited for binary 

classification and has been used extensively in ML, which is why it was selected for 

inclusion in this research. 

e. Ensemble Learning via Voting 

Another technique for ensemble learning is voting. The premise is to take the results 

of several algorithms and then take a vote to determine the final classification. In this way, 

the strengths of one algorithm may be helpful to cover the weaknesses of another. This 

research uses three different voting schemes to evaluate possible result improvement. The 

first is the one vote minimum scheme which simply states that if any of the algorithms 

classifies an instance as a positive, then the result is to classify it as a positive. On the 

opposite end of the spectrum, we also evaluate the all or none voting scheme. In this 

method, the final result is only classified as positive if all the algorithms classified it as 
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positive. The middle ground is using the simple majority voting method. As the name 

implies, if the majority of voting algorithms classify an instance as a positive, then the final 

result is classified as a positive.  

2. Measures of Effectiveness 

There are two dominant metrics used to measure the accuracy of machine-learning 

algorithms: precision and recall. Each of these use counts of true positives, false positives, true 

negatives, and false negatives. These can best be understood in a simple case of a classifier 

determining whether an image is of a dog (in class D) or not of a dog (not in class D).  

• True positive (TP): a case that has been correctly classified as belonging to 
class D. I.e. ML algorithm called it a dog and it was actually a dog, so it 
was right. 

• A true negative (TN): a case that has been correctly classified as not 
belonging to class D. I.e. ML algorithm said it was not a dog and it was 
actually a cat, so it was right. 

• A false positive (FP): a case that has been incorrectly classified as belonging 
to class X. I.e. ML algorithm said it was a dog and it was actually a cat, so 
it was wrong. 

• False negative (FN):  a case that has been incorrectly classified as not 
belonging to class X. I.e. ML algorithm said it was not a dog and it was 
actually a dog, so it was wrong. 

These four values are often reported in a binary confusion matrix. The matrix 

provides a quick glance at the results of the algorithm and can provide insight into its 

suitability for a particular use case.  

Table 1.   Binary Confusion Matrix Example 

Classified as: Class D Not Class D 

Class D TP FP 

Not class D FN TN 
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Calculating all the cases as one of these four results allows the calculation of 

precision (P) and recall (R) as follows. 

 𝑃𝑃 = 𝑇𝑇𝑇𝑇
(𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹)

 (1) 
 
 𝑅𝑅 =  𝑇𝑇𝑇𝑇

(𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹)
 (2) 

 

Precision can be thought of as the usefulness of the results, while recall can be 

thought of as the completeness of the results. That is to say precision tells us how many of 

the positive results yielded are actually positive, while recall tells how many positive 

results we found out of all the actual positive results.  

It is common to plot the recall versus precision results of a classification ML 

algorithm to view its performance characteristics while altering the threshold. This helps 

decision makers decide where the appropriate threshold should be set for their specific 

application of these algorithms. A more risk-averse scenario would prefer a lower 

threshold. This favors more false positives but catches more true positives. On the contrary, 

a use case that can afford to take more risk may increase the threshold in order to maximize 

availability of its system. To capture both precision and recall in a single value, the F-

measure is another common metric used: 

 𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟 =  2 ×  (𝑃𝑃×𝑅𝑅)
(𝑃𝑃+𝑅𝑅)

 (3) 

Additionally, we will use both the mean absolute error (MAE) and the root mean 

squared (RMS) error to gain insight to the performance of our algorithms. The following 

formulas are used where n is the total number of instances being evaluated. For our 

purposes with binary classification, each instance will have a value of either 1 or 2 for the 

respective class. This means an accurate prediction would have an error of 0 for that 

instance, and an inaccurate prediction means an error of 1 for that instance. 

 𝑀𝑀𝑀𝑀𝑀𝑀 =  ∑|𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎|
𝑛𝑛

 (4) 
 

 𝑅𝑅𝑅𝑅𝑅𝑅 =  ∑ �(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎)2

𝑛𝑛
  (5) 

For this research, we consider an instance to be positive if it is a botnet flow. That 

is to say that unless a classifier determines an instance to be suspected of being botnet 
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traffic, it will classify the instance as a negative result. In this manner, a true positive is a 

successfully identified botnet flow while a true negative is a correctly classified normal 

flow. The truly interesting cases are the false positives and false negatives. When a normal 

flow is incorrectly classified as a botnet flow, this is a false positive. Depending on the use 

case, a network administrator may prefer an algorithm that provides more false positives 

just to be sure they are catching everything. However, it could also be possible to have an 

algorithm that provides so many false positives that it is impossible to investigate each. 

Other algorithms will favor false negatives, whereby a botnet flow gets incorrectly 

identified as normal. This may or may not be acceptable, depending on the network being 

evaluated. By looking at all these measurements of effectiveness, we seek to find the best 

algorithms for application in different networks.  

3. Weka  

The Machine-Learning Group at the University of Waikato in New Zealand has 

developed and maintained the Weka project. According to their site [11], “Weka is a 

collection of machine-learning algorithms for data mining tasks.” This software is open-

source and issued under the GNU General Public License. The hallmark of the Weka 

software is the ability to provide users a vast number of machine-learning algorithms to 

use on their own datasets. The convenience of being able to perform these operations from 

a single platform has made Weka a favorite among researchers for being able to quickly 

compare the accuracy of various algorithms. In addition to the software itself, a burgeoning 

wealth of supporting documentation is growing each day as more people adapt the software 

for their needs. As of the time of this writing, the latest stable release is 3.8.0.  

While Weka does support many complex algorithms, it does require a very specific 

input file format that was developed by the same group at the University of Waikato. It is 

a text-based file named Attribute-Relation File Format (ARFF) with the appropriate file 

extension “arff” to designate as such.  For most users, the burden of using Weka is getting 

data into the ARFF format for processing by the software. There are two main sections to 

an ARFF file, the header, which defines all the data relationships and data types, and the 

data itself. Figure 1 is an example ARFF file from the developers’ site.  
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Figure 1.  Example ARFF File with Notations. Source: [11]. 

The Weka software starts with pre-processing the data provided. In this part, Weka 

loads an ARFF file and does error checking as well as initial summary statistics. Figure 2 

shows the graphical user interface (GUI) in this stage. From here, a user can filter out 

certain data attributes, see both numeric and graphical summaries of each attribute, and 

even invert attributes. While Weka does support a number of data types for attributes, not 

every algorithm supports every data type. For example, many algorithms including Naïve 

Bayes and Logistic Regression do not allow for the ‘date time’ data type. In addition, Naïve 

Bayes does not allow for strings either. This makes the preprocessing step very important 

for tailoring a dataset to be used by a specific algorithm.  
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Figure 2.  Weka’s GUI for Pre-processing Data 

After preprocessing, Weka can move into several modes for analysis. These 

includes classifying, clustering, and associating. For purposes of this research, we will 

focus on classifying. Once in the classify tab, the user can select from the many algorithms 

available. Only the algorithms that allow the data types in the currently loaded dataset will 

be available for selection. Once a selection has been made, the user can select how to handle 

the separation of training data with testing data. Weka allows for the use of a training set, 

a testing set, a cross-validation method, and a percentage split. For cross validation, the 

user can select how many folds they would like. For percentage split, the user can decide 

the exact value as well. After running the classifying algorithm, the Weka GUI provides 

very valuable information regarding the results, as seen in Figure 3. This includes mean 

absolute error, precision and recall of each class, as well as a confusion matrix. Each of 

these provides valuable insight regarding the level of success with the chosen algorithm on 

the user’s data.  
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Figure 3.  Example of Model Summary Output in Weka’s Explorer 
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III. EXPERIMENTAL DESIGN 

This chapter explains the overall design of the experimentation conducted. The 

design process consists of three phases. In phase 0 we conduct preparations that include 

analyzing traffic obtained from a USMC test network and traffic generated by another 

university to study botnet behavior. These results help shape the following phases. In phase 

1 we create a test network to generate both benign and malicious traffic. This traffic is used 

to build ML models that can be used to classify botnet traffic from normal traffic. In phase 

2 we analyze these ML models’ abilities to classify botnet traffic on additional datasets. 

This includes a look at the metrics that will be our measures of effectiveness to objectively 

determine the effectiveness of each ML model being explored. 

A. PHASE 0: PRELIMINARY ANALYSIS 

We start with a phase 0 that informs and shapes the design of other elements of our 

experiments. In this phase we analyze traffic obtained from a test network at the Marine 

Corps Tactical Systems Support Agency (MCTSSA). Additionally, we use Weka to 

analyze pre-labeled NetFlow data with botnet traffic generated by another research group 

from the Czech Technical University (CTU). This analysis helps inform our selection of 

an optimized feature set for our experiments.  

1. Analysis of USMC Test Network Traffic  

Packet capture (PCAP) data was provided by the Marine Corps Tactical Systems 

Support Activity (MCTSSA) in support of this research. The PCAP files are from an 

evaluation conducted in 2017. It must be noted that this data provided was not from a ‘live’ 

operational unit. It was from an evaluation environment, where traffic was simulated. This 

also means no Personally Identifiable Information (PII) was contained in this data.  

This data was first converted to NetFlow format with a Python script and then 

analyzed for characteristics. The NetFlow format was chosen because it is widely adopted 

and extensively researched, with a variety of tools available for parsing and analyzing. 

Also, due to the limitations of tactical networks, the NetFlow format is preferable because 
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of the drastic reduction in size for traffic. This size reduction is important because it reduces 

the resources needed to collect, store, and analyze this data. In addition, because this 

research focuses on network-behavior-based detection methods, the NetFlow format 

captures the characteristics most associated with the behavior of traffic while omitting the 

fields that are the focus of signature-based methods, namely the packet data itself [17]. 

The intent of analyzing the USMC test network traffic was to better design our own 

test network. However, a few obstacles proved this effort untenable. First, of the 18 PCAP 

files given, there was great disparity among the protocols and size distribution of packets 

observed. Second, despite multiple attempts, the contacts who provided the data were not 

able to identify from where on the network each PCAP file was taken. Because of this, we 

were not able to do an equivalent comparison to the characteristics associated with the 

location of our network tap.  

2. Machine-Learning on Pre-labeled NetFlow Dataset 

In 2014, researchers at CTU created a large dataset of network traffic for use in 

research comparing botnet detection methods [12]. Their data is publicly available and 

divided into 13 separate scenarios, each with its own botnet activity mixed in. These are 

collectively referenced as CTU-13. Each scenario is assigned a number from 42 to 55, so 

the first scenario is labeled CTU-42, the second scenario is CTU-43, and so on. In each 

scenario’s flow level data, they labeled each flow as either “Background,” “Legitimate,” 

or “Botnet.” Using this flow data, we were able to run some preliminary analysis of 

algorithms in Weka to determine which features were the most useful. Table 2 shows the 

results of this analysis using the second scenario dataset with the Naïve Bayes algorithm. 

Of note, the date-time data type is not supported by Weka’s implementation of the Naïve 

Bayes Algorithm. Also, of note, the IP addresses were converted to numeric values. Source 

and destination IP addresses are grouped into one feature category because they are either 

included or excluded together. The same is true of source and destination ports.  

The first run of the algorithm included all possible features, resulting in only a 

10.6379% success rate. The algorithm was run several more times with each run having a 

different feature excluded. At the end of these runs, it was found that only three features—
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the source and destination IP address, number of packets, and number of bytes—resulted 

in better performance when they were excluded (highlighted in green in the table). The 

next runs involved excluding two out of three of these features in each combination 

possible, and then finally excluding all three. This final run of removing all three 

troublesome features resulted in the best performance: 89.6373%. 

The results here told us that using the IP addresses as numeric values was very 

detrimental to the results. This is because the numeric relationship between IP addresses is 

not significant, and actually misleading. In these algorithms, numeric values are compared 

as relative to one another. This means an IP address of 1.2.3.4 is seen as closer to 2.3.4.5 

by several orders of magnitude compared to 192.168.0.1. However, because IP addresses 

do not share commonality by proximity in numeric value, but rather by subnet relationship 

and neighbor relationships, this is a flawed way to approach the problem. Fortunately, our 

research seeks to find discoveries of malicious flows that can be implemented in multiple 

networks, so the models must be time and IP address agnostic. For our experiments, we 

never use the datetime value or IP addresses as features.  

With this revelation handled, we looked to the other detrimental features. The 

number of packets and the number of bytes were features that reduced our percentage of 

correct results. Because of this, we design our later experiments to run each algorithm with 

two sets of features: maximum and optimized. The maximum feature set includes all 

NetFlow values except datetime and IP addresses while the optimized feature set further 

remove the packets and bytes features.  
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Table 2.   Comparison of Feature Selection with Naïve Bayes Algorithm Applied to the CTU-43 (Scenario 2) Dataset 
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B. PHASE 1: MACHINE-LEARNING MODEL GENERATION 

Once the preliminary analysis of phase 0 was complete, the main experiments of 

this research could commence. Figure 4 shows the flow of the experiments in phase 1 from 

the generation of traffic by our emulation network, through the ML model creation.  

Emulated 
Network Flow Labeler Flow to ARFF

Feature 
Selection

10x Cross 
Validation Model

Unlabeled 
Netflow v9

Labeled 
Netflow v9

Labeled 
ARFF

Weka

Algorithm 
Selection

 

Figure 4.  Phase 1 Process Flow: Using an Emulated Network to Generate 
an ML Model 

To start, the emulated network generates normal baseline traffic. Details of the test 

network design are in Section C of this chapter. We then inject simulated botnet traffic 

from one of the computers in this network to mix in with the normal traffic. All the traffic 

is captured in NetFlow v9 and saved. This NetFlow data is then passed through our flow 

labeler. The accuracy of this step is key to producing an accurate model. We use attributes 

of the simulated botnet traffic that we control (timestamps, IP addresses) in each 

experiment to tailor this labeler. Once labeled, the flows are converted into the ARFF file 

format to be handled by Weka. In Weka, we adjust which features are included in the 

analysis in an effort to select the ones that provide the most useful data. As mentioned 

earlier, this feature selection is heavily influenced by our study of the CTU-13 dataset. 

Once the features are selected, we try a number of ML algorithms available in Weka.  
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For each of these algorithms, we run the labeled flow data through with 10x cross-

validation for the training and testing phases. The cross-validation method is chosen 

because of its widely accepted status in statistical analysis. In cross-validation, the entire 

dataset is divided into the training set and the testing set. The algorithm is then run and 

statistics of performance are maintained. The entire dataset is then split once again into 

training and testing data, and the algorithm run again for k iterations, also called folds. This 

happens for any given number of folds (in our case 10), and the division is conducted in 

such a way that each instance serves as testing data exactly one time. This helps reduce the 

common problem in ML of “overfitting.” Overfitting is when the algorithm tailors itself so 

closely to the training and testing data provide that it is not useful for any other data. Since 

this would defeat the purpose of building a model, we use 10x cross-validation to get the 

best model possible. Figure 5 provides a visual depiction of this process. The model created 

from this step will be used for the next phase of the experiment.  

 

Figure 5.  Representation of k-folds Cross-Validation with k=4. Source: [13]. 
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1. Test Network Design 

The test network was designed and configured with commodity hardware and open 

source software. Any computational limitations by using this method are intentional due to 

the desired application of these methods to current USMC tactical networks where 

commodity hardware is prevalent.  

a. Network Configuration 

The test network is designed based on the basic construct of a USMC tactical 

network from the researchers’ experience. The network features a point of presence (POP) 

and screening (SCR) router configuration. A public facing web server is located in the 

demilitarized zone (DMZ) off of the POP router which provides DNS caching and 

forwarding. A private server is hosted on a subnet off of the SCR router. Three client 

subnets are also connected to the SCR router, each with four client machines. All 

addressing uses private IP space per request for comment (RFC) 1918, and the overloaded 

network address translation (NAT) is handled by the POP router. The network employs 

Open Shortest Path First (OSPF) for routing within the Autonomous System (AS). Figure 6 

is a diagram for this test network.  
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Figure 6.   Test Network Diagram 

2. Host Configuration 

Each client machine had a freshly installed operating system (OS). Nearly half of 

the client machines were running Ubuntu 16.04, while the remaining machines ran 

Windows 10. In order to emulate user traffic, each client machine ran its own Python script 

that automated tasks a normal user would likely have done. These tasks include reading 

and sending email, as well as searching the web and downloading files. Since this research 

focuses on network traffic, the automation scripts did not include other common user tasks 

like reading and writing to files on the local machine. Each user had a profile that dictated 

the percentage of their network activity that was email based versus browser based. This 

was meant to correlate to role disparity usually found in operational units. For instance, it 

is common for management roles to be more email intensive in their network traffic and 
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for other users to be more focused on browsing for information. Each user also had a 

business factor variable that determined how many tasks they would complete on any given 

shift. Pseudo-random numbers were used to simulate realistic discrepancies in time to 

complete tasks and time between tasks in a human user’s activity. The scripts were also 

tailored to simulate a typical user’s diurnal patterns of life, working a set amount of time 

per day and taking breaks. 

a. Monitoring 

A network tap is set up on the link between the SCR and POP routers. This consists 

of a hub (Netgear GS105) with another user machine connected as a sniffer. This sniffer 

machine used tcpdump to capture PCAP of all traffic going into and out of the network. To 

record the flow level data, the SCR router was configured to export Cisco NetFlow version 

9 flow records for both the ingress and egress direction on its internal interface (fa0/0). The 

internal interface was chosen because of the overloaded NAT being utilized. Flow records 

from the external interface would all show the single public IP address with port numbers 

assigned. There would be no efficient way to reconcile these addresses to their source 

addresses because the router maintains its own reference tables to handle these mappings, 

which change constantly. By exporting flows from the internal interface, we maintain the 

integrity of each flow mapping to the actual IP address of the host responsible.  

3. Normal Traffic Generation 

For the majority of each test, the user machines were busy emulating normal tasks 

to generate normal traffic. Each user had one of three assigned workday shifts starting at 

either 0800, 1600, or 0000 and lasting for eight hours. Tasks were spread throughout each 

user’s workday, with some user’s being busier than others and therefore having more tasks 

to complete. Some users were designed to be more email intensive while others were more 

browser intensive, again representing different roles for individuals in a tactical network. 

Efforts were taken to ensure a realistic spread of internet traffic generated. This included 

searching for current news to ensure that users were not always accessing cached sites and 

including attachments of varying sizes in emails to create far less predictable characteristics 

for the normal baseline traffic. All of these parameters were designed and based on the 
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researchers’ experience with tactical networks and the tasks USMC users performed on 

these networks.  

4. Botnet Traffic Injection 

In order to test the ML methods in this research, much consideration went into how 

best to generate botnet traffic. It was deemed outside the scope of this research to test “live” 

malware that could propagate without our knowledge. So the decision was made to explore 

simulators already developed. There are many commercially available tools for the 

penetration testing market. Many of these are robust and have more functionality than we 

needed, as well as being expensive.  

For this research, the software chosen is the aptly named Botnet Simulator, also 

known as BoNeSi. It is an open-source project under the Gnu Public License (GPL) and 

according to its readme file, BoNeSi “is a Tool to simulate Botnet Traffic in a testbed 

environment on the wire. It is designed to study the effect of DDoS attacks.”  The tool is 

developed and maintained by Markus-Go on GitHub [14]. BoNeSi was chosen because it 

is an easy to use command line utility which provides the proper options to tailor the tool 

to our research. It is designed for simulating DDoS attacks and has parameters to define 

the target and rate of packets transmitted. It is also the only current simulator that includes 

functionality for TCP traffic in addition to UDP traffic. This allows us to be more confident 

in our results because we can control the botnet traffic generated to see how the ML 

methods handle both protocols. Other possible botnet activity such as sending spam or 

executing click fraud are not examined in the scope of this research.  

From the test network, we loaded the BoNeSi software on one of the user machines 

(User_5). At specified times and within specified parameters we used BoNeSi to DDoS an 

address in a second test network. Normally the strength of BoNeSi is its ability to simulate 

large numbers of random IP addresses on the target machine. However, for our purposes 

we limit it to a single IP address, the actual host’s IP address, and throttle back the rate of 

packets being sent. The idea is that a very noisy bot sending massive amounts of traffic in 

a burst to a target would be easily identifiable by existing network security measures. The 
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much harder case to find is a single bot sending a low rate of packets as part of a much 

larger botnet’s DDoS campaign. This is why we constrained BoNeSi in this fashion.  

We conducted four experiments, each utilizing a different intensity of simulated 

botnet traffic. With BoNeSi this is accomplished by altering the throughput parameter to 

adjust the number of packets sent per second. We also send half of the malicious traffic 

over TCP and half over UDP. At the end of this step, we have four collections of NetFlow 

data, each containing varying intensity levels of simulated botnet traffic to be used for our 

machine-learning efforts.  

5. Machine-Learning 

In the machine-learning step, we use optimizations discovered in our phase 0 

analysis of the CTU-13 dataset. First, we must pre-process the data generated by our 

emulation network, and then we can generate models in Weka for each combination of 

botnet traffic intensity and feature set.  

a. Pre-processing 

At this point, we had both user (packet) and session (flow) level data of both benign 

and malicious traffic. In order to use this data for our ML applications, we had to reliably 

label the data for training and testing the various algorithms. This labeling was the first 

step to pre-processing the data for Weka. The second part of the pre-processing involved 

the conversion of the flow data into the ARFF format needed by Weka. This was 

accomplished with a script to identify all flows to and from the target machine. In our 

research environment, we could ensure all botnet flows were accurately labeled because 

we controlled all the variables. In an actual implementation, this labeling for training would 

need to be done in a similar way to ensure the models are trained on accurate training sets.  

b. Training and Testing 

Once we have a labeled training set, we maintain continuity across experiments by 

always utilizing the 10-fold cross-validation method to train our models. This efficiently 

uses our entire dataset to train and test the model ten times. At this step, Weka also reports 

the time taken to build each fold of the model which we use as a secondary metric by which 
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to evaluate these algorithms. At the end of this step, we have a model for each algorithm 

with which we can test against other datasets in phase 2. 

C. PHASE 2: MODEL VALIDATION 

For this phase, we utilize the NetFlow data from several of our iterations before the 

labeling step. We provide the unlabeled version of the data to Weka and load the various 

models built in phase 1. For each model, we run the respective algorithm and receive an 

output that classifies each instance with a confidence level. From this output, we run it 

through a program to correlate the instance number with the IP addresses. This step is key 

because actual network administrators do not need to know which flows are suspected as 

malicious, but rather which machine on their network is causing these malicious flows. The 

output of this correlator is a final report that indicates to the network administrator the 

percentage to which it believes each machine on the network is behaving normally or 

abnormally. Figure 7 shows the flow for this phase of research. 

Emulated 
Network Flow to ARFF

Unlabeled 
Netflow v9

Unlabeled 
ARFF

Weka

ML Algorithm

Model

Instance 
Report Final ReportInstance to IP 

correlator

 

Figure 7.   Phase 2 Process Flow: Validation of ML Models 
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The correlator is a key step in making this process useful to human operators. By 

aggregating the instance by IP address, the program then gives a final ranking of its 

confidence that each machine is behaving normally or is suspect of malware. For instance, 

if 100 flows for a particular source IP address are all in the range of 10-30% likely to be 

malicious, this may not warrant further investigation. On the other hand, if a particular 

source IP address has 90 flows that are <15% likely to be malicious, but 10 flows that are 

80% likely to be malicious this is a much stronger indicator that the machine is 

compromised. This step is key in making the entire application of ML to network security 

usable for integration by a network administrator.  
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IV. RESULTS 

This chapter starts with an overview of the testing parameters and general 

observations. Then it explores each of the four algorithms individually and the six 

configurations for voting between those four models.  

A. TRAFFIC INTENSITY 

For each iteration, the 16 user computers of the test network ran for 48 hours. At 

the 46th hour, the computer designated as the infected bot began sending its DDoS traffic 

with the BoNeSi software. The bot was allowed to send traffic for approximately 90 

minutes. The four iterations conducted are hereby labeled by the relative intensity of this 

simulated botnet traffic. The lowest of these intensities involved the sending of only 1 TCP 

packet and 1 UDP packet per second to the target victim IP address. Because each of these 

packets is set to 32 bytes, the result was approximately 64 bytes per second (Bps) of botnet 

traffic. In each case, the botnet traffic was composed of 50% TCP traffic and 50% UDP 

traffic. Each of the parameters is outlined in Table 3.  

Table 3.   Botnet Traffic Intensity of Each Experiment 

Botnet 
Traffic 
Intensity 

Packets 
per 
Second 
(pps) 

Packet 
Size 
(Bytes) 

Bytes per 
Second 
(Bps) 

Total 
Number of 
Flows 

Number 
of Botnet 
Flows 

Percent of 
Flows 
Designated 
Botnet 

Low 2 32 64 
         

1,670,906  
             

8,374  0.50% 

Moderate 10 32 320 
         

2,420,624  
           

61,190  2.53% 

High 100 32 3200 
         

2,139,085  
         

779,676  36.45% 

Ultra-High 1000 32 32000 
       

10,415,109  
      

8,945,746  85.89% 
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B. TIME CONSIDERATIONS 

As explained in Chapter III, the models were built using 10-fold cross validation. 

Weka reports the time taken to build the model for the first fold of this process. With this 

as a metric, it can be seen that there was a significant range of time taken to build each 

model based on the algorithm selected. Table 4 shows a comparison of these times. The 

Naïve Bayes algorithm comes out as the clear winner, taking only an average of 8.25 

seconds to build a model for each fold. After ten folds, this results in 1.38 minutes. This is 

substantial because the second fastest algorithm, the J48 Decision Tree, is still an order of 

magnitude slower at 87.73 seconds per fold, or 14.6 minutes (for ten folds). The slowest 

algorithm was Logistic Regression, coming in at 514.56 seconds per fold and totaling 85.8 

minutes (for ten folds).  

Table 4.   Time Comparison for Building of ML Models 

Botnet Traffic Intensity  Low Moderate High 
Average Feature Set Max Opt Max Opt Max Opt 

Algorithm Time per Fold to Build Model (sec) 
Logistic Regression 515.61 101.46 913.14 540.14 759.63 257.37 514.56 
J48 Decision Tree 82.88 42.85 92.61 63.59 124.36 120.06 87.73 
Naïve Bayes 10.7 6.16 7.87 7.53 11.34 5.9 8.25 
AdaBoost 184.86 156.89 379.85 346.28 243.77 162.53 245.70 

 

C. FEATURE SET COMPARISON 

For every ML application, the choice of features to include in the dataset is key 

[15].  In Chapter III Section 2.A. it was discovered that for the CTU-13 dataset, the removal 

of the IP addresses, number of packets, and number of bytes helped improve the accuracy 

of the results. Since this research seeks applications for ML models that are network and 

time agnostic, the timestamp and IP addresses are not included in any of the data sets used 

to build the ML models. However, we did seek to discover whether the removal of the 

number of packets and number of bytes would help in our data as it did with the CTU-13 

dataset. We refer to the set of all features as the “Maximum” feature set, and the set of 

features with packets and bytes removed as the “Optimized” feature set.  
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By optimizing the feature set, we observed some interesting results. As to be 

expected, reducing the feature set sped up the model generation time for all algorithms. 

Table 5 shows an example of the speed improvements for the low botnet traffic intensity 

dataset.  

Table 5.   Time Improvements for Feature Set Optimization of Low Botnet 
Traffic Intensity Models 

Time to Build Each Fold (sec) 

  
Maximum 
Features 

Optimized 
Features 

Time 
Reduction % Speed-up 

Logistic Regression 515.61 101.46 414.15 408.19% 
J48 Decision Tree 82.88 42.85 40.03 93.42% 
Naïve Bayes 10.7 6.16 4.54 73.70% 
AdaBoost 184.86 156.89 27.97 17.83% 

 

More surprising was how optimizing the feature set had no significant impact on 

the results. For Naïve Bayes, this optimization did improve the percent of correctly 

classified instances by 4.49% in the low botnet traffic intensity dataset. Averaging across 

the low, moderate, and high botnet traffic intensity datasets, the improvement was 3.32%, 

as seen in Table 6. This goes hand in hand with an improvement of the root mean square 

error of 7.97% averaged across the iterations, as seen in Table 7. However, it appears that 

this optimization was not a positive factor for all algorithms. The J48 decision tree was 

only marginally improved by 0.0002% for correct classification, and 1.46% for root mean 

squared error. On the other hand, both Logistic Regression and AdaBoost actually saw 

drastic reductions in their accuracy. AdaBoost suffered the most, with a -0.9255% change 

in accuracy and -43.54% change in root mean squared error.  
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Table 6.   Improvements to Classification Accuracy by Optimizing 
Feature Set 

Improvement for Correctly Classified Instances (%) 

Botnet Traffic Intensity Low Moderate High Average 

Logistic Regression -0.0120% -0.0012% -0.6219% -0.2117% 

J48 Decision Tree 0.0005% 0.0002% -0.0001% 0.0002% 

Naïve Bayes 4.4870% 2.4137% 3.2160% 3.3722% 
AdaBoost -0.3868% -1.8702% -0.5194% -0.9255% 

Table 7.   Improvements to Root Mean Squared Error by Optimizing 
Feature Set 

Improvement for Root Mean Squared Error  
Botnet Traffic Intensity Low Moderate High Average 

Logistic Regression -10.12% -0.46% -60.61% -23.73% 
J48 Decision Tree 5.97% 1.85% -3.45% 1.46% 
Naïve Bayes 9.37% 4.85% 9.67% 7.97% 
AdaBoost -52.26% -62.29% -16.08% -43.54% 

 

These changes to performance must be weighed against the respective change in 

time required to build the model. Table 8 shows the average improvement for build time 

of each fold across the low, moderate, and high botnet traffic intensity datasets.  

Table 8.   Model Generation Time Improvement by Optimizing Feature Set 

Improvement for Time to Build Each Fold (sec) 
Botnet Traffic Intensity Low Moderate High Average 
Logistic Regression 408.19% 69.06% 195.15% 224.13% 
J48 Decision Tree 93.42% 45.64% 3.58% 47.55% 
Naïve Bayes 73.70% 4.52% 92.20% 56.81% 
AdaBoost 17.83% 9.69% 49.98% 25.84% 
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D. GENERAL OBSERVATIONS 

One of the most useful abilities of ML models is their ability to be trained on a 

particular dataset and then applied to others. For this research, we took each model 

generated on its particular botnet traffic intensity level and applied it to each other botnet 

traffic intensity level. The resulting tables can be found in full in Appendix A.  

It must be noted that while an ultra-high botnet traffic intensity dataset was 

collected and analyzed, the results were severely limited due to the computing capability 

available. For model generation, only the Naïve Bayes and Ada Boost algorithms could be 

used due to memory constraints. Even this was only achieved by allocating a 128GB heap 

size to Weka. The computation took several hours due to the intensive memory swapping 

that occurred from using so much storage space not typically available in memory for a 

heap. Also interesting was the fact that optimizing the feature set for AdaBoost actually 

resulted in the inability of Weka to complete the model generation. This could have been 

due to the particular garbage collection routine of the machine being used, or perhaps even 

to the fact that Weka saves the removed features somewhere in memory to allow an “undo” 

functionality. Furthermore, when models were tested against the ultra-high intensity 

dataset, the resulting files were considerably larger due to the sheer number of flows (over 

10.4 million). This led to an inability to load multiple results files in memory to evaluate 

the voting methods on this dataset. Because this research is focused on solutions that can 

be implemented on commodity hardware, further calculations by more capable computing 

resources were not attempted.  

E. INDIVIDUAL ALGORITHMS 

Each of the four algorithms tested had varying levels of performance. We compared 

the seven metrics that could be averaged for all test set sizes, training set sizes, and feature 

sets for all ten algorithms/voting methods. The results can be seen in Table 9. For each 

metric (category) we highlight the top three and bottom three performers.  

From this overall comparison, it is evident that J48 was consistently the most 

successful across almost all metrics. Even the second and third best performing methods 

were majority voting that included J48 as one of the members.   On the other hand, the one 
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vote minimum method performed the worst in six of the seven metrics. Interestingly, it 

performed the best in the seventh metric: recall. This is due to the fact that recall is a 

measure of how many of the total positives did we actually identify. Because the one vote 

minimum takes all positive predictions from all the algorithms, it makes sense then that   it 

would identify the most positives and therefore have the best recall.  
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Table 9.   Comparison of Algorithms and Voting Methods Averaged Across All Tests 

 
 

Voting Method
One Vote 

Min
All Or 
None

ML Algorithm(s) Log J48 NB Ada All All
Log & J48 

& NB
Log & J48 

& Ada
Log & NB 

& Ada
J48 & NB 

& Ada
Correctly Classified 
Instances (%) 0.9830239 0.9984798 0.8184657 0.8960573 0.774457 0.956249 0.9969721 0.9933512 0.9898472 0.9953267
Incorrectly Classified 
Instances (%) 0.0169761 0.0015202 0.1815343 0.1039427 0.225543 0.043751 0.0030279 0.0066488 0.0101528 0.0046733
Mean absolute error 0.0169792 0.0015167 0.1815333 0.1039458 0.2255444 0.04375 0.0030222 0.00665 0.0101556 0.0046667
Root mean squared 
error 0.1039417 0.0214458 0.4087292 0.2219042 0.4721556 0.1314833 0.0466556 0.0631722 0.0888889 0.0618333
Precision 0.9185292 0.9940125 0.43855 0.6912583 0.2663722 0.8245889 0.8928833 0.9243611 0.8248667 0.8483222
Recall 0.9520292 0.9970208 0.9936792 0.6801625 0.9996722 0.6714278 0.9966778 0.9603278 0.9582722 0.9946167
F-Measure 0.9241208 0.9954708 0.4966208 0.6513875 0.3395667 0.7147056 0.9309111 0.9334611 0.8627056 0.8987611

Legend
Best Result in Category

Worst Result in Category

2nd Best in Category
3rd Best in Category

2nd Worst in Category
3rd Worst in Category

Average Scores Across All Testing, Training, and Feature Sets

None Majority
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1. Naïve Bayes 

The Naïve Bayes algorithm performed the worst of all the individual algorithms, 

and the second worst among all methods in six of the seven metrics as seen in Figure 8. It 

consistently achieved correct classification rates in the 70–80% range when the other 

algorithms achieved >98% when tested on the low intensity dataset. In fact, it never 

achieved greater than 85% for correct classification in any permutation of variables studied. 

For comparison, the other three algorithms never achieved less than 90% correct 

classification rate. These poor results have to be counted along the one area it surpassed 

the other three algorithms in: time to build the model. If time is truly important, the Naïve 

Bayes model was built an order of magnitude faster than the other models as mentioned 

earlier. Unfortunately, for a ten-fold increase in speed, it provides a 72.7% accuracy 

compared to J48’s 99.9% as seen in the low intensity trained models with maximum 

features tested on the same low intensity dataset. If time is truly important, such as in large 

scale and high bandwidth applications, perhaps this is an acceptable trade off.  

A look at the confusion matrices shows that Naïve Bayes suffers from an abundance 

of false positive predictions. This problem carries over into the one vote minimum voting 

method. Because Naïve Bayes classifies so many flows as botnets, the one vote minimum 

also incorrectly classifies all those flows. Figure 8 shows the effect of this massive disparity 

by comparing the false negatives on a logarithmic scale.  
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Figure 8.  False Positive Comparison of Models Trained on Low Intensity 
Datasets 

2. Logistic Regression 

The Logistic Regression algorithm performed well, but never led any of the tests as 

the highest performing algorithm. It also never trailed as the poorest performing. Among 

the individual algorithms it scored the second best in all metrics except recall, where it was 

the second worst.  

3. AdaBoost 

The AdaBoost model performed well, but interestingly it did not out-perform the 

J48. As a boosting algorithm, intuitively it should be better than any of these other 

algorithms. One interesting anomaly of the AdaBoost algorithm was that the model trained 

on the low intensity dataset with optimized features never classifies any flow as botnet 

across any of the sets it is tested against. This is an example of an algorithm not having 

enough examples of a class to make a conclusion. Since only 0.5% of the training data was 

classified as botnet, the AdaBoost algorithm did not have enough to go on. Interestingly 

though, this only happened with the optimized feature set as seen in Table 10 and Table 11. 

Because using the maximum feature set increases the amount of data the algorithm has to 
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work with, this was enough for it to make some conclusions of botnet traffic when trained 

under these conditions.  
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Table 10.   Results for AdaBoost Algorithm (1 of 2) 

 
 
 
  

Testing Set
Training Set
Feature Set Max Opt Max Opt Max Opt Max Opt Max Opt Max Opt
ML Algorithm(s)
Correctly Classified 
Instances (Qty) 1668995 1662532 1668148 1657249 1654428 1655110 2413155 2359434 2413115 2367845 2403988 2395822
Correctly Classified 
Instances (%) 0.998856 0.994988 0.998349 0.991827 0.990138 0.990546 0.996914 0.974721 0.996898 0.978196 0.993127 0.989754
Incorrectly Classified 
Instances (Qty) 1911 8374 2758 13657 16478 15796 7469 61190 7509 52779 16636 24802
Incorrectly Classified 
Instances (%) 0.001144 0.005012 0.001651 0.008173 0.009862 0.009454 0.003086 0.025279 0.003102 0.021804 0.006873 0.010246

Mean absolute error 0.0011 0.005 0.0017 0.0082 0.0099 0.0095 0.0031 0.0253 0.0031 0.0218 0.0069 0.0102
Root mean squared 
error 0.0338 0.0708 0.0406 0.0904 0.0993 0.0972 0.0555 0.159 0.0557 0.1477 0.0829 0.1012
Precision 0.8801 0 0.768 0.2417 0.3369 0.3422 0.9867 0 0.9174 0.676 0.7871 0.7224
Recall 0.8935 0 0.9608 0.2952 0.9996 0.9613 0.8899 0 0.9641 0.2639 0.9981 0.9659
F-Measure 0.8868 0 0.8537 0.2658 0.504 0.5048 0.9358 0 0.9402 0.3796 0.8801 0.8266
True Positives (TP) 7482 0 8046 2472 8371 8050 54455 0 58995 16150 61076 59101
True Negatives (TN) 1661513 1662532 1660102 1654777 1646057 1647060 2358700 2359434 2354120 2351695 2342912 2336721
False Positives (FP) 1019 0 2430 7755 16475 15472 734 0 5314 7739 16522 22713
False Negatives (FN) 892 8374 328 5902 3 324 6735 61190 2195 45040 114 2089

High Intensity

Ada

Moderate Intensity
Low Intensity Moderate Intensity High Intensity

Low Intensity
Low Intensity Moderate Intensity
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Table 11.   Results for AdaBoost Algorithm (2 of 2) 

 
 

Testing Set
Training Set
Feature Set Max Opt Max Opt Max Opt Max Opt Max Opt Max Opt
ML Algorithm(s)
Correctly Classified 
Instances (Qty) 2045947 1359409 2096579 1582860 2112616 2101506 9300283 1469353 9880588 4181685 10191396 10062982
Correctly Classified 
Instances (%) 0.956459 0.63551 0.980129 0.739971 0.987626 0.982432 0.892962 0.141079 0.948679 0.401502 0.978521 0.966192
Incorrectly Classified 
Instances (Qty) 93138 779676 42506 556225 26469 37579 1114816 8945746 534511 6233414 223703 352117
Incorrectly Classified 
Instances (%) 0.043541 0.36449 0.019871 0.260029 0.012374 0.017568 0.107038 0.858921 0.051321 0.598498 0.021479 0.033808

Mean absolute error 0.0435 0.3645 0.0199 0.26 0.0124 0.0176 0.107 0.8589 0.0513 0.5985 0.0215 0.0338
Root mean squared 
error 0.2087 0.6037 0.141 0.5099 0.1112 0.1325 0.3272 0.9268 0.2265 0.7736 0.1466 0.1839
Precision 0.9988 0 0.9979 0.9724 0.9831 0.9878 0.9998 0 0.9995 0.9976 0.9965 0.9983
Recall 0.8816 0 0.9474 0.295 0.983 0.9637 0.8756 0 0.9407 0.3039 0.9784 0.9623
F-Measure 0.9366 0 0.972 0.4526 0.983 0.9756 0.9336 0 0.9692 0.4659 0.9874 0.98
True Positives (TP) 687381 0 738691 229982 766404 751377 7832541 0 8415494 2718924 8752373 8608534
True Negatives (TN) 1358566 1359409 1357888 1352878 1346212 1350129 1467742 1469353 1465094 1462761 1439023 1454448
False Positives (FP) 843 0 1521 6531 13197 9280 1611 0 4259 6592 30330 14905
False Negatives (FN) 92295 779676 40985 549694 13272 28299 1113205 8945746 530252 6226822 193373 337212

Ada

Ultra-High Intensity
Low Intensity Moderate Intensity High Intensity

High Intensity
Low Intensity Moderate Intensity High Intensity
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4. J48 Decision Tree 

The J48 decision tree was the best performing algorithm among all ten 

combinations of voting methods in six of the seven metrics as seen in Figure 8. The only 

exception was recall, in which it scored the second best overall just behind the one vote 

minimum method.  

For tests on the low intensity dataset, the J48 model trained on the low intensity 

dataset with maximum features performed the best for correctly classified instances, mean 

absolute error, root mean squared error, and F-measure. It also contributed to the best 

precision when used in majority voting with Logistic Regression and Naïve Bayes (with 

optimized features trained on low intensity). When testing on the moderate intensity 

dataset, the J48 model trained on the moderate intensity dataset with optimized features 

performed the best on all of the above metrics in addition to recall. The same holds true for 

testing on the high intensity dataset with the J48 model trained on the high intensity dataset 

with maximum features taking first place in these metrics.  

Figure 9 shows a graphic visualization of the tree trained and tested on the moderate 

intensity dataset with maximum features. Color coding marks how many predictions are 

made at a particular leaf, with intervals increasing by an order of magnitude with each 

progressive shade. The errors in the algorithm are all confined to just three of the 30 leaves, 

annotated with slashed backgrounds instead of solid fills.  

For comparison, Figure 10 shows the same J48 tree tested and trained on the same 

dataset but with the optimized feature set. This visual representation is valuable because it 

reveals aspects of the model not clearly seen otherwise. Since it can no longer use packets 

or bytes, it instead turns to the “A” flag (TCP Acknowledgement) as the root of the tree.  

With both models, the source and destination port numbers were highly valuable as 

decision points, used throughout both trees. Also interesting was that the optimized feature 

set results in a larger tree, growing from 39 to 43 nodes, 20 to 22 leaves, and a depth of 10 

to 11 levels.  
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Figure 9.  J48 Decision Tree with Maximum Features Trained and Tested on Low Intensity Dataset 
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Figure 10.  J48 Decision Tree with Optimized Features Trained and Tested on Low Intensity Dataset
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F. VOTING METHODS 

While the intent of using voting methods is to improve performance, our results 

showed that this is not always the case. In addition to the metrics described below, there is 

the added overhead of time and computing resources necessary to use these methods. To 

take a majority vote between three algorithms, you must build models for all three, run the 

test data through all three models, and then conduct the voting from each algorithm’s 

predictions. This is a non-trivial addition to the process, especially when you consider 

scaling up these methods to handle higher bandwidth networks. This is all to say that even 

if a marginal improvement can be found through a voting method, its improvement must 

be weighed against the increased cost of implementation.  

1. All or None 

The all or none voting method performed better than the Naïve Bayes and AdaBoost 

models on their own in six of the seven metrics. The only exception was recall, in which it 

performed the worst of all ten combinations of algorithms tested. This makes sense because 

recall is the measurement of what percent of positive results were found. By requiring 

consensus of all voting models to predict a positive instance, this method actually suffers 

by being bound to any false negative in any algorithm. Unfortunately for this voting 

method, recall is a particularly important metric in this application as we are trying to 

identify all the malicious flows we can.  

2. One Vote Minimum 

The one vote minimum method suffered greatly from the poor performance of the 

Naïve Bayes algorithm. Since Naïve Bayes had a substantially larger number of false 

positives, this brought down the one vote minimum method. It performed the worst among 

all ten algorithm combinations in six of the seven metrics. The exception was recall, in 

which it actually achieved the highest performance of all ten combinations. This lines up 

with the fundamental definition of the one vote minimum scheme which ensures the 

greatest number of positives are identified by counting any individual algorithm’s positive 

verdict as enough justification. From our particular application of defending a network, 

this high recall alone could make it an excellent contender for real world implementation. 
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However, the increased cost must be considered as it requires the training and testing of all 

four algorithms followed by the voting step itself. Still, if recall is truly the most important 

metric to a network administrator, that may be justification enough to warrant use of this 

method.  

3. Majority 

In order to evaluate a manageable set of results, we used the four unique 

combinations of three algorithms each to conduct simple majority voting. All four of these 

resulted in better performance across all seven metrics than the Naïve Bayes and AdaBoost 

models on their own with the sole exception of Naïve Bayes’ recall.  

Among these four combinations, Figure 8 shows how majority voting between 

Logistic Regression, J48, and Naïve Bayes had the second-best performance out of all ten 

algorithm combinations in the categories of percent correctly classified, percent incorrectly 

classified, mean absolute error, and root mean squared error. It also ranked three out of ten 

in recall and F-measure. These results are somewhat surprising when accounting for the 

poor performance of Naïve Bayes on its own. Intuitively, one would assume that because 

Naïve Bayes was the worst single algorithm, that the best majority voting method would 

be the one to exclude it. Our results showed that this intuition was incorrect. In fact, while 

the majority voting among Logistic Regression, J48, and Naïve Bayes did not rank in the 

lowest three of any metric, it did score the second-place position for both precision and F-

measure.  Also of note was the majority voting among J48, Naïve Bayes, and AdaBoost 

ranked third of ten in the metrics of correctly classified, incorrectly classified, mean 

absolute error, and root mean square error.  

G. DISPARITY OF TRAINING AND TESTING DATASETS 

It is a common-sense assumption to believe that the model trained on a particular 

intensity dataset should perform best when tested on that same intensity dataset. This holds 

true in the results we collected. In almost every case, the best performing metric was seen 

in the scenarios with models trained and tested on the same intensity level dataset. For 

testing on the low intensity data, all but three of the thirteen metrics had their peak with the 

models trained on the same dataset. It was only recall, true positives, and false negatives 
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that were better when using the models trained on the other datasets. For testing on 

moderate intensity datasets, there were also only three of the thirteen metrics that fared 

better on models with training on other datasets. This time they were precision, true 

negatives, and false positives. The same held true for the testing of high intensity datasets, 

with the same three exceptions. It should also be noted that the best F-measure, perhaps 

the most comprehensive single metric, always occurred in the models trained with the same 

intensity dataset. Even more revealing is that it was always the J48 algorithm with 

maximum feature set that achieved this coveted spot. 

It is another fairly easy assumption to make that the models trained on datasets with 

more examples of botnet traffic should have a better understanding of the classification and 

therefore perform better. This appears to hold true for our results as well. 

H. NETWORK ADMINISTRATOR REPORT GENERATION 

To maximize the usefulness of our results, we implemented a report generation 

process at the end of Phase 2. Since the outputs of Weka’s evaluation are a series of 

predictions on individual flows, it was important to translate this into usable information 

for a network administrator. The resulting report shows the administrator the IP addresses 

of the most suspected flows. For each IP address, it reports the number of flows classified 

as normal along with the average percentage confidence in those normal predictions. It 

then does the same for the number of flows predicted as botnet and the average percentage 

confidence of those predictions. The list is sorted by highest number of botnet predictions 

and is separated into source and destination IP addresses. This split is to help the 

administrator understand whether the suspected malicious flows are going to or coming 

from his network. Since the software has no sense of the network topology, this is where 

the administrator’s knowledge of their network can be leveraged. Armed with this report, 

they can prioritize their efforts and allocate resources accordingly. Figure 11 is one such 

report generated for evaluating the low intensity dataset using the J48 model trained on the 

moderate intensity dataset with maximum features. Of note, the infected machine in our 

emulation was 10.0.0.65 and the target machine was 10.10.50.28.  This report shows that 

5,598 flows with 10.0.0.65 as the source IP were classified by the model as botnet traffic 
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and the average confidence in those predictions is 1.0 (rounding effects presents). To the 

operator, this is much more valuable information than the Weka output showing millions 

of instances with a prediction for each.  

 

Figure 11.  Results Report for J48 Model Trained on Moderate Intensity Dataset 
and Applied to Low Intensity Dataset 

Report for: J48 Model Trained with Maximum Features on Moderate 
Intensity Dataset Tested on Low Intensity Dataset 
 
***SRCIPs*** 
10.0.0.65           ['Normal', 58315, 1.0]     ['Botnet', 5598, 1.0]       
10.10.50.28         ['Normal', 1, 1.0]         ['Botnet', 2781, 1.0]       
10.0.0.90           ['Normal', 119601, 1.0]    ['Botnet', 91, 0.97]        
10.0.0.22           ['Normal', 18530, 1.0]     ['Botnet', 57, 0.97]        
10.0.0.113          ['Normal', 391688, 1.0]    ['Botnet', 35, 1.0]         
10.0.0.60           ['Normal', 86413, 1.0]     ['Botnet', 17, 0.97]        
10.0.0.25           ['Normal', 75736, 1.0]     ['Botnet', 10, 0.98]        
10.0.0.82           ['Normal', 52701, 1.0]     ['Botnet', 10, 0.97]        
10.0.0.26           ['Normal', 73703, 1.0]     ['Botnet', 10, 0.97]        
10.0.0.81           ['Normal', 15021, 1.0]     ['Botnet', 8, 0.97]         
10.0.0.21           ['Normal', 62794, 1.0]     ['Botnet', 8, 0.97]         
10.0.0.1            ['Normal', 26870, 1.0]     ['Botnet', 2, 0.97]         
10.0.0.11           ['Normal', 16075, 1.0]     ['Botnet', 2, 0.97]         
195.20.250.172      ['Normal', 630, 1.0]       ['Botnet', 2, 0.99]         
74.208.191.197      ['Normal', 86, 1.0]        ['Botnet', 2, 0.99]         
172.217.3.164       ['Normal', 6346, 1.0]      ['Botnet', 1, 1.0]          
172.217.3.196       ['Normal', 5273, 1.0]      ['Botnet', 1, 1.0]          
208.91.197.27       ['Normal', 4, 1.0]         ['Botnet', 1, 0.99]         
23.111.9.30         ['Normal', 171, 1.0]       ['Botnet', 0, 0]            
72.167.18.239       ['Normal', 9353, 1.0]      ['Botnet', 0, 0]            
 
***DSTIPs*** 
10.10.50.28         ['Normal', 0, 0]           ['Botnet', 5592, 1.0]       
10.0.0.65           ['Normal', 57126, 1.0]     ['Botnet', 2781, 1.0]       
198.189.255.153     ['Normal', 1490, 1.0]      ['Botnet', 145, 0.97]       
198.189.255.140     ['Normal', 2613, 1.0]      ['Botnet', 46, 0.97]        
10.0.0.60           ['Normal', 85016, 1.0]     ['Botnet', 10, 1.0]         
198.189.255.162     ['Normal', 514, 1.0]       ['Botnet', 10, 0.97]        
10.0.0.90           ['Normal', 118246, 1.0]    ['Botnet', 9, 1.0]          
10.0.0.25           ['Normal', 74113, 1.0]     ['Botnet', 8, 1.0]          
10.0.0.26           ['Normal', 72163, 1.0]     ['Botnet', 7, 1.0]          
173.241.250.220     ['Normal', 6089, 1.0]      ['Botnet', 6, 0.98]         
172.217.0.46        ['Normal', 11552, 1.0]     ['Botnet', 6, 0.97]         
10.0.0.82           ['Normal', 51666, 1.0]     ['Botnet', 4, 0.99]         
35.171.222.21       ['Normal', 20, 1.0]        ['Botnet', 4, 0.97]         
178.255.83.1        ['Normal', 4125, 1.0]      ['Botnet', 3, 0.97]         
10.0.0.11           ['Normal', 15663, 1.0]     ['Botnet', 2, 0.99]         
10.0.0.21           ['Normal', 61752, 1.0]     ['Botnet', 2, 0.99]         
62.201.164.117      ['Normal', 590, 1.0]       ['Botnet', 1, 0.97]         
10.0.0.113          ['Normal', 392133, 1.0]    ['Botnet', 0, 0]            
10.0.0.1            ['Normal', 26417, 1.0]     ['Botnet', 0, 0]            
23.111.9.30         ['Normal', 171, 1.0]       ['Botnet', 0, 0]            
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V. CONCLUSION AND FUTURE WORK 

A. CONCLUSION 

Our research shows that machine-learning can be a valuable tool leveraged to 

enhance network security in small USMC tactical networks. In our emulated network, the 

J48 decision tree in particular showed impressive results across all pertinent metrics. 

Furthermore, we showed that different algorithms and voting techniques have varying 

levels of performance, and therefore the most efficient methods can be found and 

implemented as layers of security for different applications. Furthermore, our results 

indicate that machine-learning methods can adapt to a network’s unique traffic and identify 

botnet traffic based on discriminating features without requiring prior traffic signatures.  

The experimental design decisions support the conclusion that machine-learning 

can be applied to currently fielded DoD hardware of tactical networks. More so, the 

software utilized is all open-source and well documented in use by many reputable 

universities. We consider all the software utilized in this work to be mature and stable. 

Because of these conditions, the implementation of machine-learning as a network security 

tool would indeed be a low-cost solution. 

It is important to note that our research in no way proved or suggested that machine-

learning was a replacement to any network security technique currently employed by the 

DoD. However, we did show that these machine-learning techniques can identify malicious 

traffic in a completely different way than current firewalls operate, thus providing a more 

robust solution if paired together.  

Of note, our research showed this approach is not just an academic endeavor, but 

that it can provide network administrators with reports on their network that are clear, easy 

to understand, and most importantly actionable. We do acknowledge that this research did 

not provide a single software solution, but rather a methodology for implementing multiple 

components together. Additionally, we acknowledge while machine-learning methods 

benefit from not requiring prior signatures, they do require training on labeled datasets. 

This collection and labeling of training sets is not trivial and does present a limitation for 
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application of this methodology at present. The methods researched here would have to be 

developed further into a more user-friendly final product to allow operators the ability to 

use such tools without needing extensive understanding of the inner mechanisms. We do 

not propose fielding any solution that would require extensive additional training and 

education of network administrators, and so additional research in this area is needed.  

B. FUTURE WORK 

While this research set up a unique test network and covered experiments with 

many variables, there are some key areas that could provide interesting and useful results 

if examined further. 

1. Analyze Additional Botnet Traffic Types 

This research was limited to a single use case for malicious activity by a botnet: 

DDoS. Today’s botnets are used for a whole host of malicious purposes, so further work 

with accurate simulators would be useful. The most common and therefore likely most 

fruitful would be bots that send spam, exfiltrate data, or commit click fraud. Additionally, 

it would be enlightening to see this moved beyond simulators and actually tested on 

systems infected with actual malware. This would have to be carefully controlled and 

understood to ensure the botnet malware does not replicate and infect other hosts on the 

network without specific commands from the researcher.  

2. Increase Scale 

The decision to use an emulated network with actual hardware on a live network in 

real time was a major feature of this research, but it does present issues for scaling. If an 

efficient method for increasing the scale of this emulated network could be implemented, 

it would be valuable to see if similar results are achieved. Because of the computational 

limitations discovered in this work with the ultra-high botnet intensity dataset, any increase 

in scale would increase the demand for computational resources. These resources, 

however, are limited due to the nature of seeking solutions for tactical networks with their 

current hardware. To balance the competing requirement of processing power and scale, it 

may be possible to develop a scheme to capture NetFlow data from smaller time periods 



 57 

so that the resulting number of instances is able to be processed by Weka. This would need 

to be explored further for its feasibility and to investigate whether the ML models achieve 

a comparable level of success. 

3. Assess Usability with USMC Network Administrators 

This work included a key step in the end of Phase 2 with the report generation. This 

is in keeping with the desired purpose of exploring solutions that could be implemented 

with current technology. A critical follow on opportunity would be to package the tools 

developed here along with user training material. The resultant package could be provided 

to a few actual USMC network administrators and or information assurance Marines. The 

Marines could attempt to implement the tools and create models on a test network. the 

researcher could then inject botnet traffic in a controlled manner. After applying the trained 

algorithm to the live test network, the Marines could attempt to identify any suspected 

botnet machines on the network from the report. The researcher could measure how 

effective the training material is, how difficult the tools are to learn and implement, and 

any other relevant feedback. This would also seek to determine if the processing capacity 

available to these administrators in their tactical networks is sufficient for generating the 

ML models and using them to classify their traffic. 

4. Compare Results to Firewall Protected Network 

This research sought to discover the effectiveness of identifying malicious traffic 

through non-traditional applications of machine-learning. It would be beneficial to 

compare these results with the current traditional methods of perimeter firewalls. This 

would seek to discover whether the inclusion of ML based detection methods added unique 

or redundant security measures to the DoD’s current network security defense in depth. 
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