
Calhoun: The NPS Institutional Archive

DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2018-06

LEVERAGING MACHINE-LEARNING TO

ENHANCE NETWORK SECURITY

Salazar, Daniel

Monterey, CA; Naval Postgraduate School

http://hdl.handle.net/10945/59578

Downloaded from NPS Archive: Calhoun

NAVAL

POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

LEVERAGING MACHINE-LEARNING TO ENHANCE

NETWORK SECURITY

by

Daniel Salazar

June 2018

Thesis Advisor: Geoffrey G. Xie
Second Reader: John D. Fulp

Approved for public release. Distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE Form Approved OMB

No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of

information. Send comments regarding this burden estimate or any other aspect of this collection of information, including

suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction

Project (0704-0188) Washington, DC 20503.

1. AGENCY USE ONLY

(Leave blank)

2. REPORT DATE

June 2018

3. REPORT TYPE AND DATES COVERED

Master's thesis

4. TITLE AND SUBTITLE

LEVERAGING MACHINE-LEARNING TO ENHANCE NETWORK

SECURITY

5. FUNDING NUMBERS

6. AUTHOR(S) Daniel Salazar

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School

Monterey, CA 93943-5000

8. PERFORMING

ORGANIZATION REPORT

NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND

ADDRESS(ES)

N/A

10. SPONSORING /

MONITORING AGENCY

REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the

official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release. Distribution is unlimited.

12b. DISTRIBUTION CODE

A

13. ABSTRACT (maximum 200 words)

This research examines the use of machine-learning techniques to identify malicious traffic in an

emulated tactical computer network. The intent is to identify low-cost solutions based on open-source

software capable of employment on computer hardware of currently fielded tactical data networks. These

machine-learning techniques are investigated for application where it is prohibitive to employ bulky

alternate network security measures such as security information and event management products. These

methods are evaluated as a complementary solution to existing security measures, rather than as a

replacement.

A test network is established with sixteen hosts emulating generation of normal baseline traffic for

periods of 48 hours. One machine is infected with a botnet simulator and sends malicious traffic at four

levels of intensity. The traffic flows are captured, labeled, and used as training and testing sets for four

commonly used machine-learning algorithms to generate models for identifying the botnet traffic. The

trained models are then tested against other flow datasets to evaluate their ability to classify malicious traffic

without prior signatures. We identify the J48 Decision Tree as the strongest single algorithm across six of

our seven metrics. Our work also produces a report for network administrators that is clear, easy to

understand, and most importantly, provides actionable information that can drive decisions to best defend

the network.

14. SUBJECT TERMS

machine-learning, botnets, network security

15. NUMBER OF

PAGES

81
16. PRICE CODE

17. SECURITY

CLASSIFICATION OF

REPORT

Unclassified

18. SECURITY

CLASSIFICATION OF THIS

PAGE

Unclassified

19. SECURITY

CLASSIFICATION OF

ABSTRACT

Unclassified

20. LIMITATION OF

ABSTRACT

UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release. Distribution is unlimited.

LEVERAGING MACHINE-LEARNING TO ENHANCE NETWORK SECURITY

Daniel Salazar
Captain, United States Marine Corps

BE, State University of New York Maritime College, 2012

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL

June 2018

Approved by: Geoffrey G. Xie

 Advisor

 John D. Fulp

 Second Reader

 Peter J. Denning

 Chair, Department of Computer Science

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

 This research examines the use of machine-learning techniques to identify

malicious traffic in an emulated tactical computer network. The intent is to identify

low-cost solutions based on open-source software capable of employment on computer

hardware of currently fielded tactical data networks. These machine-learning techniques

are investigated for application where it is prohibitive to employ bulky alternate network

security measures such as security information and event management products. These

methods are evaluated as a complementary solution to existing security measures, rather

than as a replacement.

 A test network is established with sixteen hosts emulating generation of normal

baseline traffic for periods of 48 hours. One machine is infected with a botnet simulator

and sends malicious traffic at four levels of intensity. The traffic flows are captured,

labeled, and used as training and testing sets for four commonly used machine-learning

algorithms to generate models for identifying the botnet traffic. The trained models are

then tested against other flow datasets to evaluate their ability to classify malicious traffic

without prior signatures. We identify the J48 Decision Tree as the strongest single

algorithm across six of our seven metrics. Our work also produces a report for network

administrators that is clear, easy to understand, and most importantly, provides actionable

information that can drive decisions to best defend the network.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. OVERVIEW ...1
B. MOTIVATION ..1
C. SCOPE ..1
D. OBJECTIVES ..2
E. ASSUMPTIONS ...3
F. APPROACH ...3
G. BENEFITS OF RESEARCH ..3
H. ORGANIZATION ...3

II. BACKGROUND ..5
A. OVERVIEW OF USMC TACTICAL NETWORKS5

1. Standard Equipment and Architecture5
2. Current Network Security Measures and Limitations6

B. OVERVIEW OF BOTNETS ..7
1. Defense and Security Considerations ...8
2. Common Command and Control Methods9

C. OVERVIEW OF MACHINE-LEARNING ...9
1. Algorithms ..11
2. Measures of Effectiveness ..14
3. Weka..16

III. EXPERIMENTAL DESIGN...21
A. PHASE 0: PRELIMINARY ANALYSIS...21

1. Analysis of USMC Test Network Traffic21
2. Machine-Learning on Pre-labeled NetFlow Dataset22

B. PHASE 1: MACHINE-LEARNING MODEL GENERATION25
1. Test Network Design ..27
2. Host Configuration ..28
3. Normal Traffic Generation ...29
4. Botnet Traffic Injection ...30
5. Machine-Learning..31

C. PHASE 2: MODEL VALIDATION ...32

IV. RESULTS ...35
A. TRAFFIC INTENSITY ...35
B. TIME CONSIDERATIONS ...36

 viii

C. FEATURE SET COMPARISON ...36
D. GENERAL OBSERVATIONS ...39
E. INDIVIDUAL ALGORITHMS ..39

1. Naïve Bayes ...42
2. Logistic Regression ..43
3. AdaBoost ...43
4. J48 Decision Tree ...47

F. VOTING METHODS ..50
1. All or None ..50
2. One Vote Minimum ...50
3. Majority ..51

G. DISPARITY OF TRAINING AND TESTING DATASETS51
H. NETWORK ADMINISTRATOR REPORT GENERATION52

V. CONCLUSION AND FUTURE WORK ...55
A. CONCLUSION ..55
B. FUTURE WORK ...56

1. Analyze Additional Botnet Traffic Types56
2. Increase Scale ...56
3. Assess Usability with USMC Network Administrators57
4. Compare Results to Firewall Protected Network57

LIST OF REFERENCES ..59

INITIAL DISTRIBUTION LIST ...63

 ix

LIST OF FIGURES

Figure 1. Example ARFF File with Notations. Source: [11]. ..17

Figure 2. Weka’s GUI for Pre-processing Data ...18

Figure 3. Example of Model Summary Output in Weka’s Explorer19

Figure 4. Phase 1 Process Flow: Using an Emulated Network to Generate an ML
Model ..25

Figure 5. Representation of k-folds Cross-Validation with k=4. Source: [13].26

Figure 6. Test Network Diagram ...28

Figure 7. Phase 2 Process Flow: Validation of ML Models ..32

Figure 8. False Positive Comparison of Models Trained on Low Intensity
Datasets ..43

Figure 9. J48 Decision Tree with Maximum Features Trained and Tested on Low
Intensity Dataset ...48

Figure 10. J48 Decision Tree with Optimized Features Trained and Tested on Low
Intensity Dataset ...49

Figure 11. Results Report for J48 Model Trained on Moderate Intensity Dataset
and Applied to Low Intensity Dataset ..53

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF TABLES

Table 1. Binary Confusion Matrix Example ..14

Table 2. Comparison of Feature Selection with Naïve Bayes Algorithm Applied
to the CTU-43 (Scenario 2) Dataset ...24

Table 3. Botnet Traffic Intensity of Each Experiment ...35

Table 4. Time Comparison for Building of ML Models ..36

Table 5. Time Improvements for Feature Set Optimization of Low Botnet
Traffic Intensity Models ...37

Table 6. Improvements to Classification Accuracy by Optimizing Feature Set38

Table 7. Improvements to Root Mean Squared Error by Optimizing Feature Set38

Table 8. Model Generation Time Improvement by Optimizing Feature Set38

Table 9. Comparison of Algorithms and Voting Methods Averaged Across All
Tests ..41

Table 10. Results for AdaBoost Algorithm (1 of 2) ...45

Table 11. Results for AdaBoost Algorithm (2 of 2) ...46

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF ACRONYMS AND ABBREVIATIONS

ACL Access Control List

AI Artificial Intelligence

ANW2 Advanced Network Wideband Waveform

ARFF Attribute-Relation File Format

AS Autonomous System

ATC Authorization to Connect
ATO Authorization to Operate

BoNeSi Botnet Simulator

Bps Bytes per Second

C2 Command and Control

COTS Commercial-off-the-Shelf

CTU Czech Technical University

DARPA Defense Advanced Research Projects Agency

DoD Department of Defense (United States)

DoDIN Department of Defense Information Network

DDOS Distributed Denial of Service

DDS-M Data Distribution System-Modular

DNS Domain Naming Service

EO Executive Order

ESP Encapsulated Security Payload

FN False Negative

FP False Positive

GIG Global Information Grid

GNU GNU’s Not Unix

GPL GNU Public License

HACCS Harnessing Autonomy for Countering Cyberadversary Systems

HBSS Host Based Security System
HMSAS Hatch Mounted Satellite Access System

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol-Secure

 xiv

IA Information Assurance

IAM Information Assurance Module

IEEE Institute of Electrical and Electronics Engineers

IP Internet Protocol

IRC Internet Relay Chat

MAE Mean Absolute Error

ML Machine-Learning

NAT Network Address Translation

TCP/IP Transport Control Protocol / Internet Protocol

TN True Negative

TP True Positive

OSPF Open Shortest Path First

PCAP Packet Capture

PII Personally Identifiable Information

POLP Principle of Least Privilege

pps Packets per Second

RFC Request for Comment

UDP User Datagram Protocol

UPS Uninterruptable Power Supply

URL Uniform Resource Locator

USMC United States Marine Corps

WSUS Windows Security Update System

 xv

ACKNOWLEDGMENTS

First and foremost, I cannot say thank you enough to my beautiful wife, Ashley.

You are incredible and have been a great support and my biggest fan. Your belief in me is

truly humbling, and I hope to live up to that every day.

I am also extremely grateful for my parents, Javier and Carolyn, for all their hard

work and sacrifice to get me to where I am today. To my siblings, Bryan and Michelle, a

constant source of encouragement, spirit lifting, and unique perspective on life. To my in-

laws, Tom and Carol, whose advice and encouragement is a true blessing.

To the multitude of professors who poured time and energy into helping this Marine

begin to understand the complex and wonderful world of computer science, I am also very

grateful. In particular, Dr. Xie could not have been a more encouraging, insightful, and

optimistic advisor despite all the roadblocks and complications along the way of this thesis.

Much credit must also be given to Professor Fulp for inspiring me to pursue network

security despite its unavoidable uphill battle and difficulty.

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. OVERVIEW

This research focuses on finding ways to improve network security in the

Department of Defense (DoD) through open-source software compatible with currently

fielded hardware. We establish an emulated test network to provide a baseline of normal

user traffic. We then introduce a simulated botnet infection to launch a Distributed Denial

of Service (DDoS) attack on another controlled network. Subsequently, we compare the

efficacy and suitability of various machine-learning (ML) algorithms to see which yields

the best results at identifying the malicious behavior from normal baseline traffic.

B. MOTIVATION

Network security is a fundamental necessity for successful military operations in

the 21st century. Virtually all pertinent information for the operational and strategic levels

of warfighting will transit computer networks. More and more, computer networks are

being pushed to the “tactical edge” as well. With the proliferation of systems like the

AN/PRC-117G radio and Hatch Mounted Satellite Access System (HMSAS) and

technologies like Advanced Network Wideband Waveform (ANW2), leveraging the

strengths of computer networks at the tactical level is becoming part of our overall plan to

stay ahead of our adversaries. But for all the advantages of tactical level computer

networks, they also present many vectors for attack. This research is motivated by a desire

to find low cost solutions to enhance network security that can be implemented

immediately.

C. SCOPE

Tactical computer networks are characterized by their small size, short duration of

operation, and expeditionary locations. Generally, a tactical network will support as few as

one user to as many as two hundred. They are designed to be maintained anywhere from a

few hours to a few months. Typically, they are established in “field conditions” with

temporary structures, a temporary power grid, and temporary access to the global

 2

information grid (GIG). These characteristics contrast sharply with those of garrison

networks, which are established in permanent structures with reliable power and can

support thousands of users for an indefinite time period. Another significant distinguisher

between tactical and garrison networks is their resources. Because a garrison network is

larger, it has a more well-funded defense in depth approach to network security. This

includes both trained professionals and sophisticated equipment such as security incident

and event managers (SIEM). Meanwhile, because of the quantity of tactical networks, it is

cost-prohibitive to deploy expensive sophisticated security solutions to each one. Also, any

hardware solutions are further complicated by the need to ruggedize equipment for

transport my military vessel (land, sea, or air) and deployment in austere conditions (heat,

sand, moisture). Because of these factors, tactical networks do not have nearly the

robustness for network security that their garrison counterparts do. This particular research

will focus on network security for these smaller, more expeditionary tactical networks.

Even though the networks may be smaller at the tactical level, they are susceptible

to all the same vulnerabilities of a larger network. They can be interrupted by a DDoS

attack or infiltrated via spam, spear phishing, or other social engineering tactics. The

malicious activity at the center of this research is botnets. A more detailed explanation of

botnets can be found in Chapter II.

The scope of this research is on identifying computers in a tactical network that

have been compromised as part of a botnet. Methods for identifying these compromised

machines are restricted to only use commodity hardware and open source software. The

intent of this work is to find solutions that can be implemented under current fiscal

restrictions and that do not require the purchase of expensive hardware for each tactical

network.

D. OBJECTIVES

The primary objective of this research is to find a low-cost solution to identify

compromised machines on a tactical network by analyzing network traffic with machine-

learning algorithms. The term “low-cost,” as used here, means no additional hardware or

software purchases are necessary to implement the solution on current tactical networks.

 3

E. ASSUMPTIONS

Although the term “tactical network” is rather broad, for the purposes of this

research, it is assumed that such a network has modest firewall capability in the form of

access control lists (ACLs) and possibly a pre-programmed commercial firewall. It is also

assumed that there are modest computing resources available for conducting network

traffic analysis in search of compromised machines.

F. APPROACH

The overall approach is to conduct tests of various machine-learning algorithms on

simulated network traffic. First, a test network based on a small USMC tactical network is

established. This test network generates benign normal traffic as our emulated users

perform normal tasks over time. After this, a botnet malware simulator is deployed on the

test network from a single machine, and the traffic of this “infected” machine is labeled as

such. With this labeled traffic, a number of machine-learning algorithms and voting

methods are tested to find which ones are best suited to identify botnet traffic over a range

of metrics.

G. BENEFITS OF RESEARCH

A low-cost method to identify compromised machines would enhance overall DoD

network security without taking resources from other priorities. While it is not possible to

address every possible threat with any single solution, adding a machine-learning based

approach could tighten our network security posture and ultimately benefit any DoD

network that employs this method.

H. ORGANIZATION

Chapter II provides background on USMC tactical network architecture, botnet

traffic, and machine-learning algorithms. In Chapter III, the design of the experiments is

laid out. Chapter IV covers the results of these experiments. Finally, Chapter V provides

our conclusion and suggests possible avenues for future research to build off the

methodology, data, and lessons learned from this research.

 4

THIS PAGE INTENTIONALLY LEFT BLANK

 5

II. BACKGROUND

This research starts by establishing a knowledge baseline of current USMC tactical

computer networks. This includes current system equipment and the security features in

place to protect these smaller, short-term networks. Then a discussion on botnets looks at

what they are, why they are so prevalent, and dives a little deeper into common command

and control (C2) configurations. Finally, the topic of machine-learning is explored. We

look at the fundamentals of what makes machine-learning software as well as recent

advancements that have brought this technology into the mainstream.

A. OVERVIEW OF USMC TACTICAL NETWORKS

Since this research is focused on improving network security of USMC tactical

networks, it is important to note the current equipment and procedures in place.

1. Standard Equipment and Architecture

It is important to understand the quantity and capability of the equipment currently

fielded by the USMC in its tactical networks because this research is focused on providing

solutions that can be implemented with this pre-existing infrastructure. There are dozens

of commercial grade solutions on the market, but they require the procurement of

specialized hardware. For the DoD, any equipment that will connect to the Department of

Defense Information Network (DoDIN) must go through additional security screening and

scrutiny before receiving an authorization to connect and authorization to operate

(ATC/ATO). So, in the interest of finding solutions that can be implemented with minimal

delay, it is preferable to work within the currently approved hardware.

USMC tactical networks are based around the Data Distribution System-Modular

(DDS-M). The DDS-M is a set of modules, each with different capabilities, that can be

used in a variety of combinations to create a network tailored to the unit’s needs on a given

mission. Each of these modules is centered on a commercial-off-the-shelf (COTS)

hardware component combined with an uninterruptable power supply (UPS) and mounted

in a ruggedized case for use in field environments. For user computers, the USMC fields a

 6

number of approved COTS laptops. Brands include Panasonic, Lenovo, and Dell, and the

technical specifications are commensurate with mid-level commodity laptops available to

the general public. Based on these current operating conditions, this research is conducted

on similarly capable hardware. Details of this hardware and how it is used for these

experiments can be found in Chapter III.

2. Current Network Security Measures and Limitations

For tactical networks, the USMC employs several defensive measures. In order to

connect a tactical network to live internet services, the network must utilize a firewall. The

Information Assurance Module (IAM) is a ruggedized Fortinet firewall. Also, the network

must use Host Based Security System (HBSS), the McAfee designed enterprise software

to protect end devices. Additionally, network administrators use the Windows Security

Update Services (WSUS) to patch machines on the network.

Beyond technology and equipment, there is a significant burden of labor for

network administrators. These service members require current entry-level network

security certification, such as CompTIA’s Network+ and Security+ courses. Once trained,

they are responsible for maintaining the defensive posture of the network. This includes

port restrictions, enforcing password policy requirements, and maintaining best practices

for Microsoft’s Active Directory, such as configuring settings in accordance with the

principle of least privilege (POLP). However, while these individuals are trained and

execute adherence to security policy, they do not actively look for threats to the network.

In larger USMC tactical networks, an Information Assurance (IA) Marine can be attached

to supplement the unit’s cyber security. These IA Marines have increased training and are

responsible for monitoring the network through a collection of tools. The most prominent

of these tools are the firewalls and the network vulnerability scanners.

A major problem in both the technologies and procedures that we currently employ

is their reliance on signature-based threat detection. If a known virus is attached to an email,

the firewall will flag it when it compares the hash to its database of known malware. This

alerts an IA Marine to investigate and take the necessary corrective actions. If a user’s

machine is infected with a known virus, HBSS will notice and send a message in a similar

 7

manner. The problem is that with today’s rate of new malware creation, a signature-based

solution is not enough. According to Symantec, there were 357,019,453 new malware

variants in 2016 and 669,947,865 in 2017 [1]. Not only do signature-based solutions fail to

address the volume and velocity of new malware, but malicious actors are always

developing new ways to disguise their malware and evade these tools.

One current gap in our network defense is when new malware (signature not yet

catalogued) or self-hiding malware (signature changes or location of code hidden from AV

tools) infects a user’s machine and executes without the user noticing (i.e. not ransomware

that alerts a user their data has been encrypted). One common “family” of malware that

can fall into this category are botnets. This research focuses on this particular type of

malware due to its growing use and the threat it poses to DoD networks. An overview of

botnets follows in Section 2.B.

In the cases described above with botnets or other malware, a behavior-based

detection method is needed. Extensive research has been done and is currently being

conducted on behavior-based methods, and some significant progress has been made. One

area in particular has been machine-learning. A number of research initiatives have

explored how to apply machine-learning to the detection of anomalous network traffic [2].

This research focuses on using open source machine-learning software to identify

malicious behavior on a tactical network. An overview of machine-learning follows in

Section 2.C.

B. OVERVIEW OF BOTNETS

Most simply stated, a botnet is a group of computers controlled by one person. Each

computer in a botnet is called a “bot” because it is running software that automates its

functionality (i.e., does not need human interaction to execute). It is called a botnet because

of the coordination between all the distributed bots making it a network. While technically

this could describe many legitimate—non-malicious—networks managed by network

administrators (running WSUS involves one human controlling a network of machines

running automated updating scripts), the term botnet has come to be understood as a

 8

malicious construct. In fact, some go so far as to say botnets “are responsible for a vast

majority of the spam on the Internet today” [3].

1. Defense and Security Considerations

The DoD is not immune from this threat. Indeed, as more and more DoD systems

rely on the Internet, our systems are at greater risk than ever. While over a decade ago, in

2005 a botnet was discovered operating on DoD computers [4] and resulted in a stand-

down to wipe the infected machines. More recently, in January 2018 a joint report to the

President by the US Secretaries of Commerce and Homeland Security was released titled

“A Report to the President on Enhancing the Resilience of the Internet and

Communications Ecosystem against Botnets and Other Automated, Distributed Threats.”

[5]. This report was a product of the president’s issuing of Executive Order (EO) 13800

“Strengthening the Cybersecurity of Federal Networks and Critical Infrastructure” [6].

This EO and report both indicate how seriously the botnet threat is to national security, as

well as our economy as a whole. In 2017, the Defense Advanced Research Projects Agency

(DARPA) began soliciting for solutions to the botnet threat (among others) in its initiative

“Harnessing Autonomy for Countering Cyberadversary Systems (HACCS)” [7]. The

project hopes to leverage current advances in ML and artificial intelligence (AI) to

automate the process of defending networks against botnets and other threats.

One of the reasons that botnets have garnered such a high threat level is that they

are extremely flexible. In fact, it may be more appropriate to refer to botnets as a theory or

principle rather than a technology. This is based on the fact that botnets can be created in

a variety of ways, controlled in a variety of ways, and deliver a variety of adverse effects

in a variety of ways. No single technology or algorithm defines botnets. They have

achieved their current level of proliferation thanks to the abundance of network resources

(bandwidth, end devices, et al.) that has been on the rise for decades. Because the DoD has

been increasingly reliant on this same increase in network resources, the threat of botnets

does not appear to be dwindling any time soon.

 9

2. Common Command and Control Methods

If there is one defining feature of botnets, it is their command and control. Indeed,

it may be the only thing separating a botnet from just viruses and worms doing damage on

the Internet. The ability to control a multitude of compromised machines in a matter of

seconds is what gives botnets their teeth. The controller of a botnet is often referred to as a

“bot herder.” In order to issue commands and receive information from their bots, a

communication channel, or C2 channel, must be used. Early botnets trended toward use of

the Internet Relay Chat (IRC) protocol as their C2 channel. Fortunately for network

security professionals, many current networks do not use IRC so it is a simple matter to

disable this port at their firewall. But to no one’s surprise, the C2 methods of bot herders

have only been limited by their imaginations. Because nearly all Internet connected device

rely on Domain Naming Service (DNS), Hypertext Transfer Protocol (HTTP) and

Hypertext Transfer Protocol-Secure (HTTPS), these have been favorites of bot herders to

hide their C2 traffic. This is done by pointing their bots to the Uniform Resource Locator

(URL) of a website they either control or are injecting with their malicious commands. In

fact, Symantec reports that in 2017 approximately 1 in every 88 (~1.1%) of all URLs on

the Internet were for botnet activity, primarily C2 [1].

C. OVERVIEW OF MACHINE-LEARNING

While sometimes used synonymously with artificial intelligence, machine-learning

is not exactly the same. Both terms are prolific in the realm of “big data” analytics and

have received a great deal of attention due to recent advances. Artificial intelligence is the

broader term covering all aspects of simulating intelligence, that is decision making,

learning, self-correcting, through the use of computer systems. Machine-learning is one

critical component of artificial intelligence wherein a computer system can adapt and

improve on its own without human correction. The rise of machine-learning is perhaps

most significantly a paradigm shift in fundamental programming philosophy. Before this

area began to gain traction, it was always assumed that the human would have to apply

critical thinking to problems that had never been seen before and then adjust code on a

computer as necessary to handle the new scenario. In short, the human would write a

 10

program telling the computer not just what to do, but how to do it. No matter how

complicated, theoretically any action that the computer took could be seen as originally

coming from the human programmer. For a computer to play checkers, a programmer could

go through each possible state of the playing board and decide for the computer what move

it should make in that exact scenario, and then write each of these “if-then” rules into the

code.

Machine-learning is a fundamental change to this paradigm that was sparked by the

desire for computers to solve problems and handle situations that were far too large

computationally for this method. A classic example is the game of chess, which has far

more possible board states and moves than checkers. To program a computer to

successfully play chess, no programmer in the world could possibly include actions to take

in every state of chess, estimated to be 1045. So, in order to handle these increasingly

complex problems, the idea of machines learning came about. The idea was that humans

solve problems, like a chess game, not by knowing every single possible scenario, but by

understanding the rules and objectives and figuring out strategies based on these

parameters. So, the fundamental idea of machine-learning is to mimic this in software.

Instead of coding scenarios, the programmer defines the rules of the game and provides the

computer with quantitatively defined incentives. In chess for example, the taking of an

opponent’s pawn might have an incentive value of 2, while the taking of an opponent’s

queen might have an incentive value of 20. However, there may also be a negative incentive

for exposing the computer’s own queen of say -30. So, when the computer is calculating

its move, it weighs all incentives for a particular state and chooses the path with the highest

incentive reward.

In ML applications, each data point is referred to as an instance or case; for purposes

of this research we will use the term instance. Each instance has a set of values associated

with it, known as features. For example, in a ML application trying to predict the weather,

it might be “fed” millions of instances of past meteorological data. Each instance would

likely be the data from a specific hour at a specific location, and its features could be

anything from temperature to humidity to barometric pressure.

 11

A key aspect to machine-learning methods is the idea of a training set and a testing

set. The training set is a collection of data in which the answer is provided. Continuing the

example of weather prediction, the training set would be a set of instances with all the

features of a location at a certain time, with a label for what weather condition occurred

next. In the case of a machine vision algorithm, where a computer determines what an

image represents, it is a collection of images labeled with the correct interpretation. The

computer is fed this training set and told that it is the ground truth, that these answers are

in fact correct. From this training set, the algorithm can adjust its parameters to best fit with

that training set. For example, in a computer vision application if 99% of the pictures in

the training set with the label “lake” had over 75% of the pixels in the blue spectrum, it

could set a parameter that told it to be 99% confident that an image with over 75% blue

pixels was a lake. From there, the testing set is very similar in the fact that it is a collection

of data with correct labels. However, when the testing set is provided to the computer, the

labels are removed. After it decides its answers for each case, it then goes back and

compares its answers to the actual answers. By doing this, it can determine how effective

it was at learning based on the training set. This is also a chance for programmers to

evaluate how well suited a particular algorithm is for a particular use case.

1. Algorithms

The various ways to incentivize a program and to search for the best path in each

state has led to the invention of a number of varied solutions. Since machine-learning is a

field of computer programming, not a program itself, there is a plethora of algorithms that

attempt to best handle these challenges. What is interesting is that certain algorithms have

achieved impressive results in certain specific domains. There is no one machine-learning

algorithm that is best suited for all applications. The Institute of Electrical and Electronics

Engineers (IEEE) held the International Conference on Data Mining in December 2006.

At this conference, the top ten algorithms used in data mining were identified and published

in a survey paper [8]. Contributors to the conference came from universities and businesses

across the globe. Three of the four algorithms investigated in this research are in this paper:

Naïve Bayes, J48 Decision Tree, and AdaBoost. The fourth algorithm we look into is

Logistic Regression. Logistic Regression is a well-established ML algorithm but does not

 12

appear in many efforts to classify network traffic data [9]. It is included as a reference point

for comparison.

a. J48 Decision Tree

 One such family of machine-learning algorithms is called decision trees. These end

up resembling something akin to flowcharts in the business world whereby each decision

leads to another branch in which new factors are weighed and another decision is reached.

These tend to be best suited for application in which there are a small number of attributes

for the data. Too many attributes lead to an unmanageable number of branches and the

searching becomes too computationally exhaustive to be effective.

Ross Quinlan developed the C4.5 algorithm as a decision tree that improved upon

his previous ID3 algorithm. It has since been quite popular as a supervised classifier, even

being called "a landmark decision tree program that is probably the machine-learning

workhorse most widely used in practice to date" [10]. The Weka software used by this

research and described later in this section features an open-source Java implementation of

the C4.5 algorithm called a J48 decision tree.

b. Naïve Bayes

Another approach to machine-learning was developed by applying Bayesian

probabilities. In Bayesian machine-learning, we apply our knowledge of prior probabilities

to give weight to certain features. This allows us to apply some of what humans have

already learned into the algorithm, so it is not starting blind. For instance, in the case of a

machine-learning program to assist a doctor in diagnosing lung cancer it can be encoded

that the prior probability of a patient who smokes to have lung cancer is 10%, while the

prior probability of a patient who is 10 years old to have lung cancer is 0.1%. Now, when

the computer is looking at all the patient’s data, it can be more confident in a diagnosis of

lung cancer if the patient smoked than in the patient was 10 years old. While many times

these weights can be programmed in directly, it is very common to provide a Bayesian

model with a training set and let it determine what the prior probabilities are based on that

data. For this research, we evaluate the Naïve Bayes algorithm because it assumes strong

 13

independence of the features and has been studied extensively in other machine-learning

efforts to classify network traffic [9].

c. Logistic Regression

Within the family of regression statistics, the Logistic Regression model has been

adapted for use in ML classifiers. Typically, Logistic Regression yields probabilities of a

certain instance being a certain value. For adaptation as a binary ML classifier, cutoff

values are assigned to the probabilities and if the value is greater than the cutoff, it is

classified as a positive. Since Logistic Regression is a common and well-established

method, it is used as one of our algorithms for comparison. While it is not commonly

studied for use in network data classification, it is included as a reference point.

d. AdaBoost—An Ensemble Learning Technique

Ensemble learning is the practice of combining several ML algorithms to achieve

better performance. One subset of ensemble learning is known as boosting. Boosting is the

process of creating a model using an algorithm, and then building a subsequent model that

attempts to correct the errors of the first. Typically, this is most effective when used with

weak classifiers. The AdaBoost method is one such technique that uses one level decision

trees, also known as decision stumps, as the weak classifier. It is best suited for binary

classification and has been used extensively in ML, which is why it was selected for

inclusion in this research.

e. Ensemble Learning via Voting

Another technique for ensemble learning is voting. The premise is to take the results

of several algorithms and then take a vote to determine the final classification. In this way,

the strengths of one algorithm may be helpful to cover the weaknesses of another. This

research uses three different voting schemes to evaluate possible result improvement. The

first is the one vote minimum scheme which simply states that if any of the algorithms

classifies an instance as a positive, then the result is to classify it as a positive. On the

opposite end of the spectrum, we also evaluate the all or none voting scheme. In this

method, the final result is only classified as positive if all the algorithms classified it as

 14

positive. The middle ground is using the simple majority voting method. As the name

implies, if the majority of voting algorithms classify an instance as a positive, then the final

result is classified as a positive.

2. Measures of Effectiveness

There are two dominant metrics used to measure the accuracy of machine-learning

algorithms: precision and recall. Each of these use counts of true positives, false positives, true

negatives, and false negatives. These can best be understood in a simple case of a classifier

determining whether an image is of a dog (in class D) or not of a dog (not in class D).

• True positive (TP): a case that has been correctly classified as belonging to
class D. I.e. ML algorithm called it a dog and it was actually a dog, so it
was right.

• A true negative (TN): a case that has been correctly classified as not
belonging to class D. I.e. ML algorithm said it was not a dog and it was
actually a cat, so it was right.

• A false positive (FP): a case that has been incorrectly classified as belonging
to class X. I.e. ML algorithm said it was a dog and it was actually a cat, so
it was wrong.

• False negative (FN): a case that has been incorrectly classified as not
belonging to class X. I.e. ML algorithm said it was not a dog and it was
actually a dog, so it was wrong.

These four values are often reported in a binary confusion matrix. The matrix

provides a quick glance at the results of the algorithm and can provide insight into its

suitability for a particular use case.

Table 1. Binary Confusion Matrix Example

Classified as: Class D Not Class D

Class D TP FP

Not class D FN TN

 15

Calculating all the cases as one of these four results allows the calculation of

precision (P) and recall (R) as follows.

 𝑃𝑃 = 𝑇𝑇𝑇𝑇
(𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇)

 (1)

 𝑅𝑅 = 𝑇𝑇𝑇𝑇

(𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹)
 (2)

Precision can be thought of as the usefulness of the results, while recall can be

thought of as the completeness of the results. That is to say precision tells us how many of

the positive results yielded are actually positive, while recall tells how many positive

results we found out of all the actual positive results.

It is common to plot the recall versus precision results of a classification ML

algorithm to view its performance characteristics while altering the threshold. This helps

decision makers decide where the appropriate threshold should be set for their specific

application of these algorithms. A more risk-averse scenario would prefer a lower

threshold. This favors more false positives but catches more true positives. On the contrary,

a use case that can afford to take more risk may increase the threshold in order to maximize

availability of its system. To capture both precision and recall in a single value, the F-

measure is another common metric used:

 𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑟𝑟𝑚𝑚 = 2 × (𝑇𝑇×𝑅𝑅)
(𝑇𝑇+𝑅𝑅)

 (3)

Additionally, we will use both the mean absolute error (MAE) and the root mean

squared (RMS) error to gain insight to the performance of our algorithms. The following

formulas are used where n is the total number of instances being evaluated. For our

purposes with binary classification, each instance will have a value of either 1 or 2 for the

respective class. This means an accurate prediction would have an error of 0 for that

instance, and an inaccurate prediction means an error of 1 for that instance.

 𝑀𝑀𝑀𝑀𝑀𝑀 = ∑|𝑝𝑝𝑟𝑟𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝−𝑚𝑚𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑎𝑎|
𝑛𝑛

 (4)

 𝑅𝑅𝑀𝑀𝑅𝑅 = ∑�(𝑝𝑝𝑟𝑟𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝−𝑚𝑚𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑎𝑎)2

𝑛𝑛
 (5)

For this research, we consider an instance to be positive if it is a botnet flow. That

is to say that unless a classifier determines an instance to be suspected of being botnet

 16

traffic, it will classify the instance as a negative result. In this manner, a true positive is a

successfully identified botnet flow while a true negative is a correctly classified normal

flow. The truly interesting cases are the false positives and false negatives. When a normal

flow is incorrectly classified as a botnet flow, this is a false positive. Depending on the use

case, a network administrator may prefer an algorithm that provides more false positives

just to be sure they are catching everything. However, it could also be possible to have an

algorithm that provides so many false positives that it is impossible to investigate each.

Other algorithms will favor false negatives, whereby a botnet flow gets incorrectly

identified as normal. This may or may not be acceptable, depending on the network being

evaluated. By looking at all these measurements of effectiveness, we seek to find the best

algorithms for application in different networks.

3. Weka

The Machine-Learning Group at the University of Waikato in New Zealand has

developed and maintained the Weka project. According to their site [11], “Weka is a

collection of machine-learning algorithms for data mining tasks.” This software is open-

source and issued under the GNU General Public License. The hallmark of the Weka

software is the ability to provide users a vast number of machine-learning algorithms to

use on their own datasets. The convenience of being able to perform these operations from

a single platform has made Weka a favorite among researchers for being able to quickly

compare the accuracy of various algorithms. In addition to the software itself, a burgeoning

wealth of supporting documentation is growing each day as more people adapt the software

for their needs. As of the time of this writing, the latest stable release is 3.8.0.

While Weka does support many complex algorithms, it does require a very specific

input file format that was developed by the same group at the University of Waikato. It is

a text-based file named Attribute-Relation File Format (ARFF) with the appropriate file

extension “arff” to designate as such. For most users, the burden of using Weka is getting

data into the ARFF format for processing by the software. There are two main sections to

an ARFF file, the header, which defines all the data relationships and data types, and the

data itself. Figure 1 is an example ARFF file from the developers’ site.

 17

Figure 1. Example ARFF File with Notations. Source: [11].

The Weka software starts with pre-processing the data provided. In this part, Weka

loads an ARFF file and does error checking as well as initial summary statistics. Figure 2

shows the graphical user interface (GUI) in this stage. From here, a user can filter out

certain data attributes, see both numeric and graphical summaries of each attribute, and

even invert attributes. While Weka does support a number of data types for attributes, not

every algorithm supports every data type. For example, many algorithms including Naïve

Bayes and Logistic Regression do not allow for the ‘date time’ data type. In addition, Naïve

Bayes does not allow for strings either. This makes the preprocessing step very important

for tailoring a dataset to be used by a specific algorithm.

 18

Figure 2. Weka’s GUI for Pre-processing Data

After preprocessing, Weka can move into several modes for analysis. These

includes classifying, clustering, and associating. For purposes of this research, we will

focus on classifying. Once in the classify tab, the user can select from the many algorithms

available. Only the algorithms that allow the data types in the currently loaded dataset will

be available for selection. Once a selection has been made, the user can select how to handle

the separation of training data with testing data. Weka allows for the use of a training set,

a testing set, a cross-validation method, and a percentage split. For cross validation, the

user can select how many folds they would like. For percentage split, the user can decide

the exact value as well. After running the classifying algorithm, the Weka GUI provides

very valuable information regarding the results, as seen in Figure 3. This includes mean

absolute error, precision and recall of each class, as well as a confusion matrix. Each of

these provides valuable insight regarding the level of success with the chosen algorithm on

the user’s data.

 19

Figure 3. Example of Model Summary Output in Weka’s Explorer

 20

THIS PAGE INTENTIONALLY LEFT BLANK

 21

III. EXPERIMENTAL DESIGN

This chapter explains the overall design of the experimentation conducted. The

design process consists of three phases. In phase 0 we conduct preparations that include

analyzing traffic obtained from a USMC test network and traffic generated by another

university to study botnet behavior. These results help shape the following phases. In phase

1 we create a test network to generate both benign and malicious traffic. This traffic is used

to build ML models that can be used to classify botnet traffic from normal traffic. In phase

2 we analyze these ML models’ abilities to classify botnet traffic on additional datasets.

This includes a look at the metrics that will be our measures of effectiveness to objectively

determine the effectiveness of each ML model being explored.

A. PHASE 0: PRELIMINARY ANALYSIS

We start with a phase 0 that informs and shapes the design of other elements of our

experiments. In this phase we analyze traffic obtained from a test network at the Marine

Corps Tactical Systems Support Agency (MCTSSA). Additionally, we use Weka to

analyze pre-labeled NetFlow data with botnet traffic generated by another research group

from the Czech Technical University (CTU). This analysis helps inform our selection of

an optimized feature set for our experiments.

1. Analysis of USMC Test Network Traffic

Packet capture (PCAP) data was provided by the Marine Corps Tactical Systems

Support Activity (MCTSSA) in support of this research. The PCAP files are from an

evaluation conducted in 2017. It must be noted that this data provided was not from a ‘live’

operational unit. It was from an evaluation environment, where traffic was simulated. This

also means no Personally Identifiable Information (PII) was contained in this data.

This data was first converted to NetFlow format with a Python script and then

analyzed for characteristics. The NetFlow format was chosen because it is widely adopted

and extensively researched, with a variety of tools available for parsing and analyzing.

Also, due to the limitations of tactical networks, the NetFlow format is preferable because

 22

of the drastic reduction in size for traffic. This size reduction is important because it reduces

the resources needed to collect, store, and analyze this data. In addition, because this

research focuses on network-behavior-based detection methods, the NetFlow format

captures the characteristics most associated with the behavior of traffic while omitting the

fields that are the focus of signature-based methods, namely the packet data itself [17].

The intent of analyzing the USMC test network traffic was to better design our own

test network. However, a few obstacles proved this effort untenable. First, of the 18 PCAP

files given, there was great disparity among the protocols and size distribution of packets

observed. Second, despite multiple attempts, the contacts who provided the data were not

able to identify from where on the network each PCAP file was taken. Because of this, we

were not able to do an equivalent comparison to the characteristics associated with the

location of our network tap.

2. Machine-Learning on Pre-labeled NetFlow Dataset

In 2014, researchers at CTU created a large dataset of network traffic for use in

research comparing botnet detection methods [12]. Their data is publicly available and

divided into 13 separate scenarios, each with its own botnet activity mixed in. These are

collectively referenced as CTU-13. Each scenario is assigned a number from 42 to 55, so

the first scenario is labeled CTU-42, the second scenario is CTU-43, and so on. In each

scenario’s flow level data, they labeled each flow as either “Background,” “Legitimate,”

or “Botnet.” Using this flow data, we were able to run some preliminary analysis of

algorithms in Weka to determine which features were the most useful. Table 2 shows the

results of this analysis using the second scenario dataset with the Naïve Bayes algorithm.

Of note, the date-time data type is not supported by Weka’s implementation of the Naïve

Bayes Algorithm. Also, of note, the IP addresses were converted to numeric values. Source

and destination IP addresses are grouped into one feature category because they are either

included or excluded together. The same is true of source and destination ports.

The first run of the algorithm included all possible features, resulting in only a

10.6379% success rate. The algorithm was run several more times with each run having a

different feature excluded. At the end of these runs, it was found that only three features—

 23

the source and destination IP address, number of packets, and number of bytes—resulted

in better performance when they were excluded (highlighted in green in the table). The

next runs involved excluding two out of three of these features in each combination

possible, and then finally excluding all three. This final run of removing all three

troublesome features resulted in the best performance: 89.6373%.

The results here told us that using the IP addresses as numeric values was very

detrimental to the results. This is because the numeric relationship between IP addresses is

not significant, and actually misleading. In these algorithms, numeric values are compared

as relative to one another. This means an IP address of 1.2.3.4 is seen as closer to 2.3.4.5

by several orders of magnitude compared to 192.168.0.1. However, because IP addresses

do not share commonality by proximity in numeric value, but rather by subnet relationship

and neighbor relationships, this is a flawed way to approach the problem. Fortunately, our

research seeks to find discoveries of malicious flows that can be implemented in multiple

networks, so the models must be time and IP address agnostic. For our experiments, we

never use the datetime value or IP addresses as features.

With this revelation handled, we looked to the other detrimental features. The

number of packets and the number of bytes were features that reduced our percentage of

correct results. Because of this, we design our later experiments to run each algorithm with

two sets of features: maximum and optimized. The maximum feature set includes all

NetFlow values except datetime and IP addresses while the optimized feature set further

remove the packets and bytes features.

 24

Table 2. Comparison of Feature Selection with Naïve Bayes Algorithm Applied to the CTU-43 (Scenario 2) Dataset

 25

B. PHASE 1: MACHINE-LEARNING MODEL GENERATION

Once the preliminary analysis of phase 0 was complete, the main experiments of

this research could commence. Figure 4 shows the flow of the experiments in phase 1 from

the generation of traffic by our emulation network, through the ML model creation.

Emulated
Network Flow Labeler Flow to ARFF

Feature
Selection

10x Cross
Validation Model

Unlabeled
Netflow v9

Labeled
Netflow v9

Labeled
ARFF

Weka

Algorithm
Selection

Figure 4. Phase 1 Process Flow: Using an Emulated Network to Generate
an ML Model

To start, the emulated network generates normal baseline traffic. Details of the test

network design are in Section C of this chapter. We then inject simulated botnet traffic

from one of the computers in this network to mix in with the normal traffic. All the traffic

is captured in NetFlow v9 and saved. This NetFlow data is then passed through our flow

labeler. The accuracy of this step is key to producing an accurate model. We use attributes

of the simulated botnet traffic that we control (timestamps, IP addresses) in each

experiment to tailor this labeler. Once labeled, the flows are converted into the ARFF file

format to be handled by Weka. In Weka, we adjust which features are included in the

analysis in an effort to select the ones that provide the most useful data. As mentioned

earlier, this feature selection is heavily influenced by our study of the CTU-13 dataset.

Once the features are selected, we try a number of ML algorithms available in Weka.

 26

For each of these algorithms, we run the labeled flow data through with 10x cross-

validation for the training and testing phases. The cross-validation method is chosen

because of its widely accepted status in statistical analysis. In cross-validation, the entire

dataset is divided into the training set and the testing set. The algorithm is then run and

statistics of performance are maintained. The entire dataset is then split once again into

training and testing data, and the algorithm run again for k iterations, also called folds. This

happens for any given number of folds (in our case 10), and the division is conducted in

such a way that each instance serves as testing data exactly one time. This helps reduce the

common problem in ML of “overfitting.” Overfitting is when the algorithm tailors itself so

closely to the training and testing data provide that it is not useful for any other data. Since

this would defeat the purpose of building a model, we use 10x cross-validation to get the

best model possible. Figure 5 provides a visual depiction of this process. The model created

from this step will be used for the next phase of the experiment.

Figure 5. Representation of k-folds Cross-Validation with k=4. Source: [13].

 27

1. Test Network Design

The test network was designed and configured with commodity hardware and open

source software. Any computational limitations by using this method are intentional due to

the desired application of these methods to current USMC tactical networks where

commodity hardware is prevalent.

a. Network Configuration

The test network is designed based on the basic construct of a USMC tactical

network from the researchers’ experience. The network features a point of presence (POP)

and screening (SCR) router configuration. A public facing web server is located in the

demilitarized zone (DMZ) off of the POP router which provides DNS caching and

forwarding. A private server is hosted on a subnet off of the SCR router. Three client

subnets are also connected to the SCR router, each with four client machines. All

addressing uses private IP space per request for comment (RFC) 1918, and the overloaded

network address translation (NAT) is handled by the POP router. The network employs

Open Shortest Path First (OSPF) for routing within the Autonomous System (AS). Figure 6

is a diagram for this test network.

 28

POP_RTR_C

SCR_RTR_C

Pub_Svr
DNS Cache &

Forward
.113/28

Pvt_Svr
Ubuntu
.97/28

User | OS | IP .
C1 | Ubuntu 16.04 | .1/27
C2 | Ubuntu 16.04 | .11/27
A1 | Ubuntu 16.04 | .21/27
A2 | Ubuntu 16.04 | .22/27
B1 | Ubuntu 16.04 | .25/27
B2 | Ubuntu 16.04 | .26/27

Fa0/2/2
vlan3

.62/27

DMZ

Fa0/2/3
Vlan2 .30/27

Fa0/2/1
Vlan4 .94/27

Fa0/0/0
.242/30

Fa0/0
.241/30Fa0/2/0

vlan5 .110/28

Fa0/0/3
.126/28

Fa0/1
10.10.50.29/24

To university
edge router
and internet

4x

User | OS | IP .
 C3 | Windows 10 | .33/27
C4 | Windows 10 | .41/27
A3 | Windows 10 | .51/27
A4 | Windows 10 | .52/27
B3 | Ubuntu 16.04 | .60/27

4x

User | OS | IP .
 C5 | Ubuntu 16.04 | .65/27
C6 | Windows 10 | .71/27
AS1 | Ubuntu 16.04 | .81/27
AS2 | Ubuntu 16.04 | .82/27
 B4 | Ubuntu 16.04 | .90/27

4x

Sniffer
Ubuntu 16.04

Hub

Netgear
GS105 Hub

Cisco 2811
Switch

Cisco 3690
Router

Dell Inspiron
Desktop

Legend

Note: Unless otherwise
annotated, Network Prefix

is 10.0.0.X

NetFlow capture
interface

Figure 6. Test Network Diagram

2. Host Configuration

Each client machine had a freshly installed operating system (OS). Nearly half of

the client machines were running Ubuntu 16.04, while the remaining machines ran

Windows 10. In order to emulate user traffic, each client machine ran its own Python script

that automated tasks a normal user would likely have done. These tasks include reading

and sending email, as well as searching the web and downloading files. Since this research

focuses on network traffic, the automation scripts did not include other common user tasks

like reading and writing to files on the local machine. Each user had a profile that dictated

the percentage of their network activity that was email based versus browser based. This

was meant to correlate to role disparity usually found in operational units. For instance, it

is common for management roles to be more email intensive in their network traffic and

 29

for other users to be more focused on browsing for information. Each user also had a

business factor variable that determined how many tasks they would complete on any given

shift. Pseudo-random numbers were used to simulate realistic discrepancies in time to

complete tasks and time between tasks in a human user’s activity. The scripts were also

tailored to simulate a typical user’s diurnal patterns of life, working a set amount of time

per day and taking breaks.

a. Monitoring

A network tap is set up on the link between the SCR and POP routers. This consists

of a hub (Netgear GS105) with another user machine connected as a sniffer. This sniffer

machine used tcpdump to capture PCAP of all traffic going into and out of the network. To

record the flow level data, the SCR router was configured to export Cisco NetFlow version

9 flow records for both the ingress and egress direction on its internal interface (fa0/0). The

internal interface was chosen because of the overloaded NAT being utilized. Flow records

from the external interface would all show the single public IP address with port numbers

assigned. There would be no efficient way to reconcile these addresses to their source

addresses because the router maintains its own reference tables to handle these mappings,

which change constantly. By exporting flows from the internal interface, we maintain the

integrity of each flow mapping to the actual IP address of the host responsible.

3. Normal Traffic Generation

For the majority of each test, the user machines were busy emulating normal tasks

to generate normal traffic. Each user had one of three assigned workday shifts starting at

either 0800, 1600, or 0000 and lasting for eight hours. Tasks were spread throughout each

user’s workday, with some user’s being busier than others and therefore having more tasks

to complete. Some users were designed to be more email intensive while others were more

browser intensive, again representing different roles for individuals in a tactical network.

Efforts were taken to ensure a realistic spread of internet traffic generated. This included

searching for current news to ensure that users were not always accessing cached sites and

including attachments of varying sizes in emails to create far less predictable characteristics

for the normal baseline traffic. All of these parameters were designed and based on the

 30

researchers’ experience with tactical networks and the tasks USMC users performed on

these networks.

4. Botnet Traffic Injection

In order to test the ML methods in this research, much consideration went into how

best to generate botnet traffic. It was deemed outside the scope of this research to test “live”

malware that could propagate without our knowledge. So the decision was made to explore

simulators already developed. There are many commercially available tools for the

penetration testing market. Many of these are robust and have more functionality than we

needed, as well as being expensive.

For this research, the software chosen is the aptly named Botnet Simulator, also

known as BoNeSi. It is an open-source project under the Gnu Public License (GPL) and

according to its readme file, BoNeSi “is a Tool to simulate Botnet Traffic in a testbed

environment on the wire. It is designed to study the effect of DDoS attacks.” The tool is

developed and maintained by Markus-Go on GitHub [14]. BoNeSi was chosen because it

is an easy to use command line utility which provides the proper options to tailor the tool

to our research. It is designed for simulating DDoS attacks and has parameters to define

the target and rate of packets transmitted. It is also the only current simulator that includes

functionality for TCP traffic in addition to UDP traffic. This allows us to be more confident

in our results because we can control the botnet traffic generated to see how the ML

methods handle both protocols. Other possible botnet activity such as sending spam or

executing click fraud are not examined in the scope of this research.

From the test network, we loaded the BoNeSi software on one of the user machines

(User_5). At specified times and within specified parameters we used BoNeSi to DDoS an

address in a second test network. Normally the strength of BoNeSi is its ability to simulate

large numbers of random IP addresses on the target machine. However, for our purposes

we limit it to a single IP address, the actual host’s IP address, and throttle back the rate of

packets being sent. The idea is that a very noisy bot sending massive amounts of traffic in

a burst to a target would be easily identifiable by existing network security measures. The

 31

much harder case to find is a single bot sending a low rate of packets as part of a much

larger botnet’s DDoS campaign. This is why we constrained BoNeSi in this fashion.

We conducted four experiments, each utilizing a different intensity of simulated

botnet traffic. With BoNeSi this is accomplished by altering the throughput parameter to

adjust the number of packets sent per second. We also send half of the malicious traffic

over TCP and half over UDP. At the end of this step, we have four collections of NetFlow

data, each containing varying intensity levels of simulated botnet traffic to be used for our

machine-learning efforts.

5. Machine-Learning

In the machine-learning step, we use optimizations discovered in our phase 0

analysis of the CTU-13 dataset. First, we must pre-process the data generated by our

emulation network, and then we can generate models in Weka for each combination of

botnet traffic intensity and feature set.

a. Pre-processing

At this point, we had both user (packet) and session (flow) level data of both benign

and malicious traffic. In order to use this data for our ML applications, we had to reliably

label the data for training and testing the various algorithms. This labeling was the first

step to pre-processing the data for Weka. The second part of the pre-processing involved

the conversion of the flow data into the ARFF format needed by Weka. This was

accomplished with a script to identify all flows to and from the target machine. In our

research environment, we could ensure all botnet flows were accurately labeled because

we controlled all the variables. In an actual implementation, this labeling for training would

need to be done in a similar way to ensure the models are trained on accurate training sets.

b. Training and Testing

Once we have a labeled training set, we maintain continuity across experiments by

always utilizing the 10-fold cross-validation method to train our models. This efficiently

uses our entire dataset to train and test the model ten times. At this step, Weka also reports

the time taken to build each fold of the model which we use as a secondary metric by which

 32

to evaluate these algorithms. At the end of this step, we have a model for each algorithm

with which we can test against other datasets in phase 2.

C. PHASE 2: MODEL VALIDATION

For this phase, we utilize the NetFlow data from several of our iterations before the

labeling step. We provide the unlabeled version of the data to Weka and load the various

models built in phase 1. For each model, we run the respective algorithm and receive an

output that classifies each instance with a confidence level. From this output, we run it

through a program to correlate the instance number with the IP addresses. This step is key

because actual network administrators do not need to know which flows are suspected as

malicious, but rather which machine on their network is causing these malicious flows. The

output of this correlator is a final report that indicates to the network administrator the

percentage to which it believes each machine on the network is behaving normally or

abnormally. Figure 7 shows the flow for this phase of research.

Emulated
Network Flow to ARFF

Unlabeled
Netflow v9

Unlabeled
ARFF

Weka

ML Algorithm

Model

Instance
Report Final ReportInstance to IP

correlator

Figure 7. Phase 2 Process Flow: Validation of ML Models

 33

The correlator is a key step in making this process useful to human operators. By

aggregating the instance by IP address, the program then gives a final ranking of its

confidence that each machine is behaving normally or is suspect of malware. For instance,

if 100 flows for a particular source IP address are all in the range of 10-30% likely to be

malicious, this may not warrant further investigation. On the other hand, if a particular

source IP address has 90 flows that are <15% likely to be malicious, but 10 flows that are

80% likely to be malicious this is a much stronger indicator that the machine is

compromised. This step is key in making the entire application of ML to network security

usable for integration by a network administrator.

 34

THIS PAGE INTENTIONALLY LEFT BLANK

 35

IV. RESULTS

This chapter starts with an overview of the testing parameters and general

observations. Then it explores each of the four algorithms individually and the six

configurations for voting between those four models.

A. TRAFFIC INTENSITY

For each iteration, the 16 user computers of the test network ran for 48 hours. At

the 46th hour, the computer designated as the infected bot began sending its DDoS traffic

with the BoNeSi software. The bot was allowed to send traffic for approximately 90

minutes. The four iterations conducted are hereby labeled by the relative intensity of this

simulated botnet traffic. The lowest of these intensities involved the sending of only 1 TCP

packet and 1 UDP packet per second to the target victim IP address. Because each of these

packets is set to 32 bytes, the result was approximately 64 bytes per second (Bps) of botnet

traffic. In each case, the botnet traffic was composed of 50% TCP traffic and 50% UDP

traffic. Each of the parameters is outlined in Table 3.

Table 3. Botnet Traffic Intensity of Each Experiment

Botnet
Traffic
Intensity

Packets
per
Second
(pps)

Packet
Size
(Bytes)

Bytes per
Second
(Bps)

Total
Number of
Flows

Number
of Botnet
Flows

Percent of
Flows
Designated
Botnet

Low 2 32 64

1,670,906

8,374 0.50%

Moderate 10 32 320

2,420,624

61,190 2.53%

High 100 32 3200

2,139,085

779,676 36.45%

Ultra-High 1000 32 32000

10,415,109

8,945,746 85.89%

 36

B. TIME CONSIDERATIONS

As explained in Chapter III, the models were built using 10-fold cross validation.

Weka reports the time taken to build the model for the first fold of this process. With this

as a metric, it can be seen that there was a significant range of time taken to build each

model based on the algorithm selected. Table 4 shows a comparison of these times. The

Naïve Bayes algorithm comes out as the clear winner, taking only an average of 8.25

seconds to build a model for each fold. After ten folds, this results in 1.38 minutes. This is

substantial because the second fastest algorithm, the J48 Decision Tree, is still an order of

magnitude slower at 87.73 seconds per fold, or 14.6 minutes (for ten folds). The slowest

algorithm was Logistic Regression, coming in at 514.56 seconds per fold and totaling 85.8

minutes (for ten folds).

Table 4. Time Comparison for Building of ML Models

Botnet Traffic Intensity Low Moderate High
Average Feature Set Max Opt Max Opt Max Opt

Algorithm Time per Fold to Build Model (sec)
Logistic Regression 515.61 101.46 913.14 540.14 759.63 257.37 514.56
J48 Decision Tree 82.88 42.85 92.61 63.59 124.36 120.06 87.73
Naïve Bayes 10.7 6.16 7.87 7.53 11.34 5.9 8.25
AdaBoost 184.86 156.89 379.85 346.28 243.77 162.53 245.70

C. FEATURE SET COMPARISON

For every ML application, the choice of features to include in the dataset is key

[15]. In Chapter III Section 2.A. it was discovered that for the CTU-13 dataset, the removal

of the IP addresses, number of packets, and number of bytes helped improve the accuracy

of the results. Since this research seeks applications for ML models that are network and

time agnostic, the timestamp and IP addresses are not included in any of the data sets used

to build the ML models. However, we did seek to discover whether the removal of the

number of packets and number of bytes would help in our data as it did with the CTU-13

dataset. We refer to the set of all features as the “Maximum” feature set, and the set of

features with packets and bytes removed as the “Optimized” feature set.

 37

By optimizing the feature set, we observed some interesting results. As to be

expected, reducing the feature set sped up the model generation time for all algorithms.

Table 5 shows an example of the speed improvements for the low botnet traffic intensity

dataset.

Table 5. Time Improvements for Feature Set Optimization of Low Botnet
Traffic Intensity Models

Time to Build Each Fold (sec)

Maximum
Features

Optimized
Features

Time
Reduction % Speed-up

Logistic Regression 515.61 101.46 414.15 408.19%
J48 Decision Tree 82.88 42.85 40.03 93.42%
Naïve Bayes 10.7 6.16 4.54 73.70%
AdaBoost 184.86 156.89 27.97 17.83%

More surprising was how optimizing the feature set had no significant impact on

the results. For Naïve Bayes, this optimization did improve the percent of correctly

classified instances by 4.49% in the low botnet traffic intensity dataset. Averaging across

the low, moderate, and high botnet traffic intensity datasets, the improvement was 3.32%,

as seen in Table 6. This goes hand in hand with an improvement of the root mean square

error of 7.97% averaged across the iterations, as seen in Table 7. However, it appears that

this optimization was not a positive factor for all algorithms. The J48 decision tree was

only marginally improved by 0.0002% for correct classification, and 1.46% for root mean

squared error. On the other hand, both Logistic Regression and AdaBoost actually saw

drastic reductions in their accuracy. AdaBoost suffered the most, with a -0.9255% change

in accuracy and -43.54% change in root mean squared error.

 38

Table 6. Improvements to Classification Accuracy by Optimizing
Feature Set

Improvement for Correctly Classified Instances (%)

Botnet Traffic Intensity Low Moderate High Average

Logistic Regression -0.0120% -0.0012% -0.6219% -0.2117%

J48 Decision Tree 0.0005% 0.0002% -0.0001% 0.0002%

Naïve Bayes 4.4870% 2.4137% 3.2160% 3.3722%
AdaBoost -0.3868% -1.8702% -0.5194% -0.9255%

Table 7. Improvements to Root Mean Squared Error by Optimizing
Feature Set

Improvement for Root Mean Squared Error
Botnet Traffic Intensity Low Moderate High Average

Logistic Regression -10.12% -0.46% -60.61% -23.73%
J48 Decision Tree 5.97% 1.85% -3.45% 1.46%
Naïve Bayes 9.37% 4.85% 9.67% 7.97%
AdaBoost -52.26% -62.29% -16.08% -43.54%

These changes to performance must be weighed against the respective change in

time required to build the model. Table 8 shows the average improvement for build time

of each fold across the low, moderate, and high botnet traffic intensity datasets.

Table 8. Model Generation Time Improvement by Optimizing Feature Set

Improvement for Time to Build Each Fold (sec)
Botnet Traffic Intensity Low Moderate High Average
Logistic Regression 408.19% 69.06% 195.15% 224.13%
J48 Decision Tree 93.42% 45.64% 3.58% 47.55%
Naïve Bayes 73.70% 4.52% 92.20% 56.81%
AdaBoost 17.83% 9.69% 49.98% 25.84%

 39

D. GENERAL OBSERVATIONS

One of the most useful abilities of ML models is their ability to be trained on a

particular dataset and then applied to others. For this research, we took each model

generated on its particular botnet traffic intensity level and applied it to each other botnet

traffic intensity level. The resulting tables can be found in full in Appendix A.

It must be noted that while an ultra-high botnet traffic intensity dataset was

collected and analyzed, the results were severely limited due to the computing capability

available. For model generation, only the Naïve Bayes and Ada Boost algorithms could be

used due to memory constraints. Even this was only achieved by allocating a 128GB heap

size to Weka. The computation took several hours due to the intensive memory swapping

that occurred from using so much storage space not typically available in memory for a

heap. Also interesting was the fact that optimizing the feature set for AdaBoost actually

resulted in the inability of Weka to complete the model generation. This could have been

due to the particular garbage collection routine of the machine being used, or perhaps even

to the fact that Weka saves the removed features somewhere in memory to allow an “undo”

functionality. Furthermore, when models were tested against the ultra-high intensity

dataset, the resulting files were considerably larger due to the sheer number of flows (over

10.4 million). This led to an inability to load multiple results files in memory to evaluate

the voting methods on this dataset. Because this research is focused on solutions that can

be implemented on commodity hardware, further calculations by more capable computing

resources were not attempted.

E. INDIVIDUAL ALGORITHMS

Each of the four algorithms tested had varying levels of performance. We compared

the seven metrics that could be averaged for all test set sizes, training set sizes, and feature

sets for all ten algorithms/voting methods. The results can be seen in Table 9. For each

metric (category) we highlight the top three and bottom three performers.

From this overall comparison, it is evident that J48 was consistently the most

successful across almost all metrics. Even the second and third best performing methods

were majority voting that included J48 as one of the members. On the other hand, the one

 40

vote minimum method performed the worst in six of the seven metrics. Interestingly, it

performed the best in the seventh metric: recall. This is due to the fact that recall is a

measure of how many of the total positives did we actually identify. Because the one vote

minimum takes all positive predictions from all the algorithms, it makes sense then that it

would identify the most positives and therefore have the best recall.

 41

Table 9. Comparison of Algorithms and Voting Methods Averaged Across All Tests

Voting Method
One Vote

Min
All Or
None

ML Algorithm(s) Log J48 NB Ada All All
Log & J48

& NB
Log & J48

& Ada
Log & NB

& Ada
J48 & NB

& Ada
Correctly Classified
Instances (%) 0.9830239 0.9984798 0.8184657 0.8960573 0.774457 0.956249 0.9969721 0.9933512 0.9898472 0.9953267
Incorrectly Classified
Instances (%) 0.0169761 0.0015202 0.1815343 0.1039427 0.225543 0.043751 0.0030279 0.0066488 0.0101528 0.0046733
Mean absolute error 0.0169792 0.0015167 0.1815333 0.1039458 0.2255444 0.04375 0.0030222 0.00665 0.0101556 0.0046667
Root mean squared
error 0.1039417 0.0214458 0.4087292 0.2219042 0.4721556 0.1314833 0.0466556 0.0631722 0.0888889 0.0618333
Precision 0.9185292 0.9940125 0.43855 0.6912583 0.2663722 0.8245889 0.8928833 0.9243611 0.8248667 0.8483222
Recall 0.9520292 0.9970208 0.9936792 0.6801625 0.9996722 0.6714278 0.9966778 0.9603278 0.9582722 0.9946167
F-Measure 0.9241208 0.9954708 0.4966208 0.6513875 0.3395667 0.7147056 0.9309111 0.9334611 0.8627056 0.8987611

Legend
Best Result in Category

Worst Result in Category

2nd Best in Category
3rd Best in Category

2nd Worst in Category
3rd Worst in Category

Average Scores Across All Testing, Training, and Feature Sets

None Majority

 42

1. Naïve Bayes

The Naïve Bayes algorithm performed the worst of all the individual algorithms,

and the second worst among all methods in six of the seven metrics as seen in Figure 8. It

consistently achieved correct classification rates in the 70–80% range when the other

algorithms achieved >98% when tested on the low intensity dataset. In fact, it never

achieved greater than 85% for correct classification in any permutation of variables studied.

For comparison, the other three algorithms never achieved less than 90% correct

classification rate. These poor results have to be counted along the one area it surpassed

the other three algorithms in: time to build the model. If time is truly important, the Naïve

Bayes model was built an order of magnitude faster than the other models as mentioned

earlier. Unfortunately, for a ten-fold increase in speed, it provides a 72.7% accuracy

compared to J48’s 99.9% as seen in the low intensity trained models with maximum

features tested on the same low intensity dataset. If time is truly important, such as in large

scale and high bandwidth applications, perhaps this is an acceptable trade off.

A look at the confusion matrices shows that Naïve Bayes suffers from an abundance

of false positive predictions. This problem carries over into the one vote minimum voting

method. Because Naïve Bayes classifies so many flows as botnets, the one vote minimum

also incorrectly classifies all those flows. Figure 8 shows the effect of this massive disparity

by comparing the false negatives on a logarithmic scale.

 43

Figure 8. False Positive Comparison of Models Trained on Low Intensity
Datasets

2. Logistic Regression

The Logistic Regression algorithm performed well, but never led any of the tests as

the highest performing algorithm. It also never trailed as the poorest performing. Among

the individual algorithms it scored the second best in all metrics except recall, where it was

the second worst.

3. AdaBoost

The AdaBoost model performed well, but interestingly it did not out-perform the

J48. As a boosting algorithm, intuitively it should be better than any of these other

algorithms. One interesting anomaly of the AdaBoost algorithm was that the model trained

on the low intensity dataset with optimized features never classifies any flow as botnet

across any of the sets it is tested against. This is an example of an algorithm not having

enough examples of a class to make a conclusion. Since only 0.5% of the training data was

classified as botnet, the AdaBoost algorithm did not have enough to go on. Interestingly

though, this only happened with the optimized feature set as seen in Table 10 and Table 11.

Because using the maximum feature set increases the amount of data the algorithm has to

1

10

100

1000

10000

100000

1000000
Fa

lse
 P

os
iti

ve
s

Axis Title

Comparion of False Positives

Low Intensity on Low
Intensity with Max Features

Low Intensity on Low
Intensity with Opt Features

Low Intensity on Moderate
Intensity with Max Feures

Low Intensity on Moderate
Intensity with Opt Features

Low Intensity on High
Intensity with Max Features

Low Intensity on High
Intensity with Opt Features

 44

work with, this was enough for it to make some conclusions of botnet traffic when trained

under these conditions.

 45

Table 10. Results for AdaBoost Algorithm (1 of 2)

Testing Set
Training Set
Feature Set Max Opt Max Opt Max Opt Max Opt Max Opt Max Opt
ML Algorithm(s)
Correctly Classified
Instances (Qty) 1668995 1662532 1668148 1657249 1654428 1655110 2413155 2359434 2413115 2367845 2403988 2395822
Correctly Classified
Instances (%) 0.998856 0.994988 0.998349 0.991827 0.990138 0.990546 0.996914 0.974721 0.996898 0.978196 0.993127 0.989754
Incorrectly Classified
Instances (Qty) 1911 8374 2758 13657 16478 15796 7469 61190 7509 52779 16636 24802
Incorrectly Classified
Instances (%) 0.001144 0.005012 0.001651 0.008173 0.009862 0.009454 0.003086 0.025279 0.003102 0.021804 0.006873 0.010246

Mean absolute error 0.0011 0.005 0.0017 0.0082 0.0099 0.0095 0.0031 0.0253 0.0031 0.0218 0.0069 0.0102
Root mean squared
error 0.0338 0.0708 0.0406 0.0904 0.0993 0.0972 0.0555 0.159 0.0557 0.1477 0.0829 0.1012
Precision 0.8801 0 0.768 0.2417 0.3369 0.3422 0.9867 0 0.9174 0.676 0.7871 0.7224
Recall 0.8935 0 0.9608 0.2952 0.9996 0.9613 0.8899 0 0.9641 0.2639 0.9981 0.9659
F-Measure 0.8868 0 0.8537 0.2658 0.504 0.5048 0.9358 0 0.9402 0.3796 0.8801 0.8266
True Positives (TP) 7482 0 8046 2472 8371 8050 54455 0 58995 16150 61076 59101
True Negatives (TN) 1661513 1662532 1660102 1654777 1646057 1647060 2358700 2359434 2354120 2351695 2342912 2336721
False Positives (FP) 1019 0 2430 7755 16475 15472 734 0 5314 7739 16522 22713
False Negatives (FN) 892 8374 328 5902 3 324 6735 61190 2195 45040 114 2089

High Intensity

Ada

Moderate Intensity
Low Intensity Moderate Intensity High Intensity

Low Intensity
Low Intensity Moderate Intensity

 46

Table 11. Results for AdaBoost Algorithm (2 of 2)

Testing Set
Training Set
Feature Set Max Opt Max Opt Max Opt Max Opt Max Opt Max Opt
ML Algorithm(s)
Correctly Classified
Instances (Qty) 2045947 1359409 2096579 1582860 2112616 2101506 9300283 1469353 9880588 4181685 10191396 10062982
Correctly Classified
Instances (%) 0.956459 0.63551 0.980129 0.739971 0.987626 0.982432 0.892962 0.141079 0.948679 0.401502 0.978521 0.966192
Incorrectly Classified
Instances (Qty) 93138 779676 42506 556225 26469 37579 1114816 8945746 534511 6233414 223703 352117
Incorrectly Classified
Instances (%) 0.043541 0.36449 0.019871 0.260029 0.012374 0.017568 0.107038 0.858921 0.051321 0.598498 0.021479 0.033808

Mean absolute error 0.0435 0.3645 0.0199 0.26 0.0124 0.0176 0.107 0.8589 0.0513 0.5985 0.0215 0.0338
Root mean squared
error 0.2087 0.6037 0.141 0.5099 0.1112 0.1325 0.3272 0.9268 0.2265 0.7736 0.1466 0.1839
Precision 0.9988 0 0.9979 0.9724 0.9831 0.9878 0.9998 0 0.9995 0.9976 0.9965 0.9983
Recall 0.8816 0 0.9474 0.295 0.983 0.9637 0.8756 0 0.9407 0.3039 0.9784 0.9623
F-Measure 0.9366 0 0.972 0.4526 0.983 0.9756 0.9336 0 0.9692 0.4659 0.9874 0.98
True Positives (TP) 687381 0 738691 229982 766404 751377 7832541 0 8415494 2718924 8752373 8608534
True Negatives (TN) 1358566 1359409 1357888 1352878 1346212 1350129 1467742 1469353 1465094 1462761 1439023 1454448
False Positives (FP) 843 0 1521 6531 13197 9280 1611 0 4259 6592 30330 14905
False Negatives (FN) 92295 779676 40985 549694 13272 28299 1113205 8945746 530252 6226822 193373 337212

Ada

Ultra-High Intensity
Low Intensity Moderate Intensity High Intensity

High Intensity
Low Intensity Moderate Intensity High Intensity

 47

4. J48 Decision Tree

The J48 decision tree was the best performing algorithm among all ten

combinations of voting methods in six of the seven metrics as seen in Figure 8. The only

exception was recall, in which it scored the second best overall just behind the one vote

minimum method.

For tests on the low intensity dataset, the J48 model trained on the low intensity

dataset with maximum features performed the best for correctly classified instances, mean

absolute error, root mean squared error, and F-measure. It also contributed to the best

precision when used in majority voting with Logistic Regression and Naïve Bayes (with

optimized features trained on low intensity). When testing on the moderate intensity

dataset, the J48 model trained on the moderate intensity dataset with optimized features

performed the best on all of the above metrics in addition to recall. The same holds true for

testing on the high intensity dataset with the J48 model trained on the high intensity dataset

with maximum features taking first place in these metrics.

Figure 9 shows a graphic visualization of the tree trained and tested on the moderate

intensity dataset with maximum features. Color coding marks how many predictions are

made at a particular leaf, with intervals increasing by an order of magnitude with each

progressive shade. The errors in the algorithm are all confined to just three of the 30 leaves,

annotated with slashed backgrounds instead of solid fills.

For comparison, Figure 10 shows the same J48 tree tested and trained on the same

dataset but with the optimized feature set. This visual representation is valuable because it

reveals aspects of the model not clearly seen otherwise. Since it can no longer use packets

or bytes, it instead turns to the “A” flag (TCP Acknowledgement) as the root of the tree.

With both models, the source and destination port numbers were highly valuable as

decision points, used throughout both trees. Also interesting was that the optimized feature

set results in a larger tree, growing from 39 to 43 nodes, 20 to 22 leaves, and a depth of 10

to 11 levels.

 48

Bytes

sourcePort

<= 60

A_flag

> 60

destPort

<=35533 >35533

destPort

Predict
Normal
(4071.0)

<=35532

<=53

destPort

>53

sourcePort

<=32775

Predict
Botnet

(52470.0)

<=32775

Protocol

>32775

Predict
Botnet

(2777.0)

=UDP

destPort

=TCP

S_flag

<=123

Predict
Normal
(37.0)

Predict
Botnet

(1804.0/49.0)

<=0 >0

>123

Predict
Normal
(432.0)

A_flag

>32775

Predict
Normal
(424.0)

<=0

R_Flag

>0

Predict
Normal
(278.0)

Predict
Botnet

(2016.0/23.0)

<=0 >0

Predict
Normal

(10386.0)

>35532
Predict
Normal

(72362.0)
Bpp

<=0

sourcePort

<=61

R_flag

<=32617

Predict
Normal
(766.0)

Predict
Botnet
(28.0)

<=0 >0

Predict
Normal

(8901.0/2.0)

>32617

Predict
Botnet

(2088.0)

>61 Bpp

>0

Bpp

<60

Predict
Normal

(226507.0)

<=59

destPort

>59

Predict
Normal

(14238.0)

<=123

Protocol

>123

Predict
Normal
(1587.0)

Predict
Botnet
(77.0)

=UDP

=TCP

Predict
Normal

(2019375.0)

>60

J48 Decision Tree
Moderate Botnet Traffic Intensity
(320Bps, 2.5% of total traffic)
Maximum Features
Number of Leaves: 20
Size of Tree: 39
Depth: 10

Legend

Normal
Prediction

0.005-0.049%

Normal
Prediction
0.05-0.49%

Normal
Prediction
0.5-4.9%

Normal
Prediction

5-49%

Normal
Prediction
<0.005%

Botnet
Prediction

0.005-0.049%

Botnet
Prediction
0.05-0.49%

Botnet
Prediction
0.5-4.9%

Botnet
Prediction

>=5%

Botnet
Prediction
<0.005%

Slash background
indicates errors

present

Normal
Prediction

>=50%

Figure 9. J48 Decision Tree with Maximum Features Trained and Tested on Low Intensity Dataset

 49

J48 Decision Tree
Moderate Botnet Traffic Intensity
(320Bps, 2.5% of total traffic)
Optimized Features
Number of Leaves: 22
Size of Tree: 43
Depth: 12

A_flag<=0 =0

Predict
Botnet

(16262.0)

destPort Bpp

sourcePort

<=123

bps

<=35552

sourcePort

<=152

<=32793

Bpp

>32793

sourcePort

<=58

R_flag

<=33084

Predict
Botnet
(79.0)

Predict
Normal
(10.0)

<=0

>0

Predict
Botnet

(753.0/4.0)

>33084
Predict
Botnet

(1196.0/51.0)

>58

sourcePort

>152

duration

<=32807

Predict
Normal

(3.0)

Predict
Botnet
(3.0)

<=4.324 >4.324

Predict
Normal
(96.0)

>32807

Predict
Normal
(6107.0)

>35552
Predict
Normal

(18240.0)

>123

sourcePort

<=60

destPort

<=35533

destPort

<=35531

Predict
Normal

(19008.0)

<=123

F_flag

>123

S_flag

<=0

P_flag

<=0

destPort

<=0

sourcePort

<=32775

Predict
Botnet

(38349.0)

<=32934

Protocol

>32934

Predict
Botnet

(2610.0)

=UDP

Predict
Normal
(20.0)

=TCP

sourcePort

>32755

Predict
Botnet

(2008.0/15.0)

Predict
Normal
(53.0)

<=123 >123

Predict
Normal
(130.0)

>0
Predict
Normal
(247.0)

>0
Predict
Normal
(2756.0)

>0

Predict
Normal

(44342.0)

>35531
Predict
Normal

(248977.0)

>35533
Predict
Normal

(2019375.0)

>60

Legend

Normal
Prediction

0.005-0.049%

Normal
Prediction
0.05-0.49%

Normal
Prediction
0.5-4.9%

Normal
Prediction

5-49%

Normal
Prediction
<0.005%

Botnet
Prediction

0.005-0.049%

Botnet
Prediction
0.05-0.49%

Botnet
Prediction
0.5-4.9%

Botnet
Prediction

>=5%

Botnet
Prediction
<0.005%

Slash background
indicates errors

present

Normal
Prediction

>=50%

Figure 10. J48 Decision Tree with Optimized Features Trained and Tested on Low Intensity Dataset

 50

F. VOTING METHODS

While the intent of using voting methods is to improve performance, our results

showed that this is not always the case. In addition to the metrics described below, there is

the added overhead of time and computing resources necessary to use these methods. To

take a majority vote between three algorithms, you must build models for all three, run the

test data through all three models, and then conduct the voting from each algorithm’s

predictions. This is a non-trivial addition to the process, especially when you consider

scaling up these methods to handle higher bandwidth networks. This is all to say that even

if a marginal improvement can be found through a voting method, its improvement must

be weighed against the increased cost of implementation.

1. All or None

The all or none voting method performed better than the Naïve Bayes and AdaBoost

models on their own in six of the seven metrics. The only exception was recall, in which it

performed the worst of all ten combinations of algorithms tested. This makes sense because

recall is the measurement of what percent of positive results were found. By requiring

consensus of all voting models to predict a positive instance, this method actually suffers

by being bound to any false negative in any algorithm. Unfortunately for this voting

method, recall is a particularly important metric in this application as we are trying to

identify all the malicious flows we can.

2. One Vote Minimum

The one vote minimum method suffered greatly from the poor performance of the

Naïve Bayes algorithm. Since Naïve Bayes had a substantially larger number of false

positives, this brought down the one vote minimum method. It performed the worst among

all ten algorithm combinations in six of the seven metrics. The exception was recall, in

which it actually achieved the highest performance of all ten combinations. This lines up

with the fundamental definition of the one vote minimum scheme which ensures the

greatest number of positives are identified by counting any individual algorithm’s positive

verdict as enough justification. From our particular application of defending a network,

this high recall alone could make it an excellent contender for real world implementation.

 51

However, the increased cost must be considered as it requires the training and testing of all

four algorithms followed by the voting step itself. Still, if recall is truly the most important

metric to a network administrator, that may be justification enough to warrant use of this

method.

3. Majority

In order to evaluate a manageable set of results, we used the four unique

combinations of three algorithms each to conduct simple majority voting. All four of these

resulted in better performance across all seven metrics than the Naïve Bayes and AdaBoost

models on their own with the sole exception of Naïve Bayes’ recall.

Among these four combinations, Figure 8 shows how majority voting between

Logistic Regression, J48, and Naïve Bayes had the second-best performance out of all ten

algorithm combinations in the categories of percent correctly classified, percent incorrectly

classified, mean absolute error, and root mean squared error. It also ranked three out of ten

in recall and F-measure. These results are somewhat surprising when accounting for the

poor performance of Naïve Bayes on its own. Intuitively, one would assume that because

Naïve Bayes was the worst single algorithm, that the best majority voting method would

be the one to exclude it. Our results showed that this intuition was incorrect. In fact, while

the majority voting among Logistic Regression, J48, and Naïve Bayes did not rank in the

lowest three of any metric, it did score the second-place position for both precision and F-

measure. Also of note was the majority voting among J48, Naïve Bayes, and AdaBoost

ranked third of ten in the metrics of correctly classified, incorrectly classified, mean

absolute error, and root mean square error.

G. DISPARITY OF TRAINING AND TESTING DATASETS

It is a common-sense assumption to believe that the model trained on a particular

intensity dataset should perform best when tested on that same intensity dataset. This holds

true in the results we collected. In almost every case, the best performing metric was seen

in the scenarios with models trained and tested on the same intensity level dataset. For

testing on the low intensity data, all but three of the thirteen metrics had their peak with the

models trained on the same dataset. It was only recall, true positives, and false negatives

 52

that were better when using the models trained on the other datasets. For testing on

moderate intensity datasets, there were also only three of the thirteen metrics that fared

better on models with training on other datasets. This time they were precision, true

negatives, and false positives. The same held true for the testing of high intensity datasets,

with the same three exceptions. It should also be noted that the best F-measure, perhaps

the most comprehensive single metric, always occurred in the models trained with the same

intensity dataset. Even more revealing is that it was always the J48 algorithm with

maximum feature set that achieved this coveted spot.

It is another fairly easy assumption to make that the models trained on datasets with

more examples of botnet traffic should have a better understanding of the classification and

therefore perform better. This appears to hold true for our results as well.

H. NETWORK ADMINISTRATOR REPORT GENERATION

To maximize the usefulness of our results, we implemented a report generation

process at the end of Phase 2. Since the outputs of Weka’s evaluation are a series of

predictions on individual flows, it was important to translate this into usable information

for a network administrator. The resulting report shows the administrator the IP addresses

of the most suspected flows. For each IP address, it reports the number of flows classified

as normal along with the average percentage confidence in those normal predictions. It

then does the same for the number of flows predicted as botnet and the average percentage

confidence of those predictions. The list is sorted by highest number of botnet predictions

and is separated into source and destination IP addresses. This split is to help the

administrator understand whether the suspected malicious flows are going to or coming

from his network. Since the software has no sense of the network topology, this is where

the administrator’s knowledge of their network can be leveraged. Armed with this report,

they can prioritize their efforts and allocate resources accordingly. Figure 11 is one such

report generated for evaluating the low intensity dataset using the J48 model trained on the

moderate intensity dataset with maximum features. Of note, the infected machine in our

emulation was 10.0.0.65 and the target machine was 10.10.50.28. This report shows that

5,598 flows with 10.0.0.65 as the source IP were classified by the model as botnet traffic

 53

and the average confidence in those predictions is 1.0 (rounding effects presents). To the

operator, this is much more valuable information than the Weka output showing millions

of instances with a prediction for each.

Figure 11. Results Report for J48 Model Trained on Moderate Intensity Dataset
and Applied to Low Intensity Dataset

Report for: J48 Model Trained with Maximum Features on Moderate
Intensity Dataset Tested on Low Intensity Dataset

SRCIPs
10.0.0.65 ['Normal', 58315, 1.0] ['Botnet', 5598, 1.0]
10.10.50.28 ['Normal', 1, 1.0] ['Botnet', 2781, 1.0]
10.0.0.90 ['Normal', 119601, 1.0] ['Botnet', 91, 0.97]
10.0.0.22 ['Normal', 18530, 1.0] ['Botnet', 57, 0.97]
10.0.0.113 ['Normal', 391688, 1.0] ['Botnet', 35, 1.0]
10.0.0.60 ['Normal', 86413, 1.0] ['Botnet', 17, 0.97]
10.0.0.25 ['Normal', 75736, 1.0] ['Botnet', 10, 0.98]
10.0.0.82 ['Normal', 52701, 1.0] ['Botnet', 10, 0.97]
10.0.0.26 ['Normal', 73703, 1.0] ['Botnet', 10, 0.97]
10.0.0.81 ['Normal', 15021, 1.0] ['Botnet', 8, 0.97]
10.0.0.21 ['Normal', 62794, 1.0] ['Botnet', 8, 0.97]
10.0.0.1 ['Normal', 26870, 1.0] ['Botnet', 2, 0.97]
10.0.0.11 ['Normal', 16075, 1.0] ['Botnet', 2, 0.97]
195.20.250.172 ['Normal', 630, 1.0] ['Botnet', 2, 0.99]
74.208.191.197 ['Normal', 86, 1.0] ['Botnet', 2, 0.99]
172.217.3.164 ['Normal', 6346, 1.0] ['Botnet', 1, 1.0]
172.217.3.196 ['Normal', 5273, 1.0] ['Botnet', 1, 1.0]
208.91.197.27 ['Normal', 4, 1.0] ['Botnet', 1, 0.99]
23.111.9.30 ['Normal', 171, 1.0] ['Botnet', 0, 0]
72.167.18.239 ['Normal', 9353, 1.0] ['Botnet', 0, 0]

DSTIPs
10.10.50.28 ['Normal', 0, 0] ['Botnet', 5592, 1.0]
10.0.0.65 ['Normal', 57126, 1.0] ['Botnet', 2781, 1.0]
198.189.255.153 ['Normal', 1490, 1.0] ['Botnet', 145, 0.97]
198.189.255.140 ['Normal', 2613, 1.0] ['Botnet', 46, 0.97]
10.0.0.60 ['Normal', 85016, 1.0] ['Botnet', 10, 1.0]
198.189.255.162 ['Normal', 514, 1.0] ['Botnet', 10, 0.97]
10.0.0.90 ['Normal', 118246, 1.0] ['Botnet', 9, 1.0]
10.0.0.25 ['Normal', 74113, 1.0] ['Botnet', 8, 1.0]
10.0.0.26 ['Normal', 72163, 1.0] ['Botnet', 7, 1.0]
173.241.250.220 ['Normal', 6089, 1.0] ['Botnet', 6, 0.98]
172.217.0.46 ['Normal', 11552, 1.0] ['Botnet', 6, 0.97]
10.0.0.82 ['Normal', 51666, 1.0] ['Botnet', 4, 0.99]
35.171.222.21 ['Normal', 20, 1.0] ['Botnet', 4, 0.97]
178.255.83.1 ['Normal', 4125, 1.0] ['Botnet', 3, 0.97]
10.0.0.11 ['Normal', 15663, 1.0] ['Botnet', 2, 0.99]
10.0.0.21 ['Normal', 61752, 1.0] ['Botnet', 2, 0.99]
62.201.164.117 ['Normal', 590, 1.0] ['Botnet', 1, 0.97]
10.0.0.113 ['Normal', 392133, 1.0] ['Botnet', 0, 0]
10.0.0.1 ['Normal', 26417, 1.0] ['Botnet', 0, 0]
23.111.9.30 ['Normal', 171, 1.0] ['Botnet', 0, 0]

 54

THIS PAGE INTENTIONALLY LEFT BLANK

 55

V. CONCLUSION AND FUTURE WORK

A. CONCLUSION

Our research shows that machine-learning can be a valuable tool leveraged to

enhance network security in small USMC tactical networks. In our emulated network, the

J48 decision tree in particular showed impressive results across all pertinent metrics.

Furthermore, we showed that different algorithms and voting techniques have varying

levels of performance, and therefore the most efficient methods can be found and

implemented as layers of security for different applications. Furthermore, our results

indicate that machine-learning methods can adapt to a network’s unique traffic and identify

botnet traffic based on discriminating features without requiring prior traffic signatures.

The experimental design decisions support the conclusion that machine-learning

can be applied to currently fielded DoD hardware of tactical networks. More so, the

software utilized is all open-source and well documented in use by many reputable

universities. We consider all the software utilized in this work to be mature and stable.

Because of these conditions, the implementation of machine-learning as a network security

tool would indeed be a low-cost solution.

It is important to note that our research in no way proved or suggested that machine-

learning was a replacement to any network security technique currently employed by the

DoD. However, we did show that these machine-learning techniques can identify malicious

traffic in a completely different way than current firewalls operate, thus providing a more

robust solution if paired together.

Of note, our research showed this approach is not just an academic endeavor, but

that it can provide network administrators with reports on their network that are clear, easy

to understand, and most importantly actionable. We do acknowledge that this research did

not provide a single software solution, but rather a methodology for implementing multiple

components together. Additionally, we acknowledge while machine-learning methods

benefit from not requiring prior signatures, they do require training on labeled datasets.

This collection and labeling of training sets is not trivial and does present a limitation for

 56

application of this methodology at present. The methods researched here would have to be

developed further into a more user-friendly final product to allow operators the ability to

use such tools without needing extensive understanding of the inner mechanisms. We do

not propose fielding any solution that would require extensive additional training and

education of network administrators, and so additional research in this area is needed.

B. FUTURE WORK

While this research set up a unique test network and covered experiments with

many variables, there are some key areas that could provide interesting and useful results

if examined further.

1. Analyze Additional Botnet Traffic Types

This research was limited to a single use case for malicious activity by a botnet:

DDoS. Today’s botnets are used for a whole host of malicious purposes, so further work

with accurate simulators would be useful. The most common and therefore likely most

fruitful would be bots that send spam, exfiltrate data, or commit click fraud. Additionally,

it would be enlightening to see this moved beyond simulators and actually tested on

systems infected with actual malware. This would have to be carefully controlled and

understood to ensure the botnet malware does not replicate and infect other hosts on the

network without specific commands from the researcher.

2. Increase Scale

The decision to use an emulated network with actual hardware on a live network in

real time was a major feature of this research, but it does present issues for scaling. If an

efficient method for increasing the scale of this emulated network could be implemented,

it would be valuable to see if similar results are achieved. Because of the computational

limitations discovered in this work with the ultra-high botnet intensity dataset, any increase

in scale would increase the demand for computational resources. These resources,

however, are limited due to the nature of seeking solutions for tactical networks with their

current hardware. To balance the competing requirement of processing power and scale, it

may be possible to develop a scheme to capture NetFlow data from smaller time periods

 57

so that the resulting number of instances is able to be processed by Weka. This would need

to be explored further for its feasibility and to investigate whether the ML models achieve

a comparable level of success.

3. Assess Usability with USMC Network Administrators

This work included a key step in the end of Phase 2 with the report generation. This

is in keeping with the desired purpose of exploring solutions that could be implemented

with current technology. A critical follow on opportunity would be to package the tools

developed here along with user training material. The resultant package could be provided

to a few actual USMC network administrators and or information assurance Marines. The

Marines could attempt to implement the tools and create models on a test network. the

researcher could then inject botnet traffic in a controlled manner. After applying the trained

algorithm to the live test network, the Marines could attempt to identify any suspected

botnet machines on the network from the report. The researcher could measure how

effective the training material is, how difficult the tools are to learn and implement, and

any other relevant feedback. This would also seek to determine if the processing capacity

available to these administrators in their tactical networks is sufficient for generating the

ML models and using them to classify their traffic.

4. Compare Results to Firewall Protected Network

This research sought to discover the effectiveness of identifying malicious traffic

through non-traditional applications of machine-learning. It would be beneficial to

compare these results with the current traditional methods of perimeter firewalls. This

would seek to discover whether the inclusion of ML based detection methods added unique

or redundant security measures to the DoD’s current network security defense in depth.

 58

THIS PAGE INTENTIONALLY LEFT BLANK

 59

LIST OF REFERENCES

[1] Symantec, "Internet security threat report (Volume 23)," 2018. [Online].
Available: https://www.symantec.com/content/dam/symantec/docs/reports/istr-23-
2018-en.pdf

[2] A. L. Buczak and E. Guven, "A survey of data mining and machine-learning
methods for cyber security intrusion detection," IEEE Communications Surveys &
Tutorials 18.2: 1153-1176., 2016. [Online]. Available:
https://ieeexplore.ieee.org/document/7307098/

[3] W. T. Strayer, D. Lapsely, R. Walsh and C. Livadas, "Botnet detection based on
network behavior," Springer, Boston, MA, 2008. [Online]. Available:
https://link.springer.com/content/pdf/10.1007/978-0-387-68768-1_1.pdf

[4] R. Thormeyer, "Hacker arrested for breaching DoD systems with ‘botnets’,"
Government Computer News, 4 November 2005. [Online]. Available:
https://gcn.com/articles/2005/11/04/hacker-arrested-for-breaching-dod-systems-
with-botnets.aspx.

[5] The Secretary of Commerce and The Secretary of Homeland Security, "A report to
the president on enhancing the resilience of the internet and communications
ecosystem against botnets and other automated, distributed threats," 2018.
[Online]. Available: https://csrc.nist.gov/publications/detail/white-
paper/2018/05/30/enhancing-resilience-against-botnets--report-to-the-
president/final

[6] President of the United States, "Executive Order 13800: Strengthening the
cybersecurity of federal networks and critical infrastructure," 11 5 2017. [Online].
Available: https://www.federalregister.gov/documents/2017/05/16/2017-
10004/strengthening-the-cybersecurity-of-federal-networks-and-critical-
infrastructure.

[7] Defense Advanced Research Projects Agency, "Harnessing autonomy for
countering cyberadversary systems (HACCS)," 3 8 2017. [Online]. Available:
https://www.fbo.gov/index?s=opportunity&mode=form&id=e37dc8983aa4347361
744a3cfbb43ec5&tab=core&_cview=0.

[8] X. Wu, V. Kumar, J. R. Quinlan, J. Ghosh, Q. Yang, M. Hiroshi, G. J. McLachlan,
A. Ng, B. Liu, P. S. Yu, Z.-H. Zhou, M. Steinbach, D. J. Hand and D. Steinberg,
"Top 10 algorithms in data mining," Springer-Verlag London Limited, London,
UK, 2007. [Online]. Available:
http://www.cs.uvm.edu/~icdm/algorithms/10Algorithms-08.pdf

 60

[9] T. T. Nguyen and G. Armitage, "A survey of techniques for internet traffic
classification using machine learning," IEEE Communications Surveys & Tutorials
10.4: 56-76., 2008. [Online]. Available:
https://ieeexplore.ieee.org/document/4738466/

[10] I. H. Witten, E. Frank and M. A. Hall, Data Mining: Practical Machine Learning
Tools and Techniques, 3rd Ed, San Francisco: Morgan Kaufmann, 2011.

[11] Machine-Learning Group at the University of Waikato,
"https://www.cs.waikato.ac.nz/ml/weka/," 2018. [Online].

[12] S. Garcia, M. Grill, J. Stiborek and A. Zunino, "An empirical comparison of botnet
detection methods," Czech Technical University, Prague, Czech Republic, 2014.
[Online]. Available: https://dl.acm.org/citation.cfm?id=2665897

[13] F. Flock, "K-folds cross-validation visualization," 20 September 2016. [Online].
Available: https://commons.wikimedia.org/wiki/File:K-
fold_cross_validation_EN.jpg.

[14] Markus-Go, "BoNeSi - The DDoS Botnet Simulator," 25 1 2016. [Online].
Available: https://github.com/Markus-Go/bonesi.

[15] A. Tarem, B. Oreshkin and M. Coates, "Machine-learning approaches to network
anomaly detection," Proceedings of the 2nd USENIX workshop on Tackling
computer systems problems with machine learning techniques. USENIX
Association, 2007. [Online]. Available:
https://dl.acm.org/citation.cfm?id=1361449

[16] G. Kakavelakis, "Auto-learning of SMTP TCP transport-layer features for spam
and abusive message detection," Naval Postgraduate School, Monterey, CA, 2011.
[Online]. Available: https://calhoun.nps.edu/handle/10945/36368

[17] B. Li, J. Springer, G. Bebis and M. H. Gunes, "A survey of network flow
applications," Journal of Network and Computer Applications 36.2: 567-581.,
2013. [Online]. Available: https://dl.acm.org/citation.cfm?id=2444244

[18] J. Zhang, J. Tang, X. Zhang, W. Ouyang and D. Wang, "A survey of network
traffic generation," Beijing, China, 2015. [Online]. Available:
https://ieeexplore.ieee.org/document/7446954/

[19] R. W. Becker, "A test bed for detection of botnet infections in low data rate tactical
networks," Naval Postgraduate School, Monterey, CA, 2009. [Online]. Available:
https://calhoun.nps.edu/handle/10945/4650

[20] K. Beneduce, "Attributes and machine-learning for fragment identification and
malware analysis," Naval Postgraduate School, Monterey, CA, 2014. [Online].
Available: https://calhoun.nps.edu/handle/10945/48126

 61

[21] M. R. Thakur, D. R. Khilnani, K. Gupta, S. Jain and V. Agarwal, "Detection and
prevention of botnets and malware in an enterprise network," International Journal
of Wireless and Mobile Computing 5.2: 144-153, 2012. [Online]. Available:
https://arxiv.org/abs/1312.1629

[22] J. Wang and I. C. Paschalidis, "Botnet detection based on anomaly and community
detection," IEEE Transactions on Control of Network Systems 4.2: 392-404.,
2017. [Online]. Available: https://ieeexplore.ieee.org/document/7422020/

 62

THIS PAGE INTENTIONALLY LEFT BLANK

 63

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

	I. IntroduCtion
	A. overview
	B. motivation
	C. SCOPE
	D. objectives
	E. Assumptions
	F. Approach
	G. Benefits of Research
	H. Organization

	II. Background
	A. Overview of USMC TACTICAL NETWORKS
	1. Standard Equipment and Architecture
	2. Current Network Security Measures and Limitations

	B. Overview of Botnets
	1. Defense and Security Considerations
	2. Common Command and Control Methods

	C. Overview of Machine-learning
	1. Algorithms
	a. J48 Decision Tree
	b. Naïve Bayes
	c. Logistic Regression
	d. AdaBoost—An Ensemble Learning Technique
	e. Ensemble Learning via Voting

	2. Measures of Effectiveness
	3. Weka

	III. Experimental design
	A. Phase 0: Preliminary analysis
	1. Analysis of USMC Test Network Traffic
	2. Machine-Learning on Pre-labeled NetFlow Dataset

	B. PHASE 1: Machine-learning Model generation
	1. Test Network Design
	a. Network Configuration

	2. Host Configuration
	a. Monitoring

	3. Normal Traffic Generation
	4. Botnet Traffic Injection
	5. Machine-Learning
	a. Pre-processing
	b. Training and Testing

	C. Phase 2: MOdel Validation

	IV. results
	A. Traffic Intensity
	B. Time considerations
	C. Feature set comparison
	D. General observations
	E. Individual algorithms
	1. Naïve Bayes
	2. Logistic Regression
	3. AdaBoost
	4. J48 Decision Tree

	F. voting methods
	1. All or None
	2. One Vote Minimum
	3. Majority

	G. Disparity of training and testing datasets
	H. network administrator report generation

	V. Conclusion and future work
	A. conclusion
	B. Future work
	1. Analyze Additional Botnet Traffic Types
	2. Increase Scale
	3. Assess Usability with USMC Network Administrators
	4. Compare Results to Firewall Protected Network

	LIST OF REFERENCES
	initial distribution list

