# MASS, SALT, AND HEAT TRANSPORT 

IN THE SOUTH PACIFIC

Louls Sherfesee III
ma

# NAVAL POSTGRADUATE SCHOOL Monterey, California 



## THESIS

```
MASS, SALT, AND HEAT TRANSPORT
    IN THE SOUTH PACIFIC
```

by
Louis Sherfesee III

```
Septemoer 1978
```

Thesis Advisor:

G. H. Jung

Approved for public release; distribution unlimited.

> T185046

| REPORT DOCUMENTATION PAGE | READ INSTRUCTIONS BEFORE COMPLETING FORM |
| :---: | :---: |
| T. REPORT NUMEER [- ${ }^{\text {2. GOVT ACCESSION }}$ NO. | 3. recipient's catalog number |
| 4. TITLE (end Subtille) <br> Mass, Salt, and Heat Transport in the South Pacific | 5. TYPE OF REPORT A PERIOD COVERED Master's Thesis; September 1978 |
|  | 6. PERFORMING ORG. REPORT MUMBER |
| Louis Sherfesee III | B. Contract ob gant number(a) |
| 9. Performing organization name and adoness Naval Postgraduate School Monterey, California 93940 | 10. PROGRAM ELEMENT PROJECT, TASK |
| 11. CONTROLLING OFFICE NAME AND AODRESS <br> Naval Postgraduate School <br> Monterey, California 93940 |  |
| 14. MÓNITORING AGENCY NAMÉ a ADDRESS(II allforont trom Conitolline Oflice) <br> Naval Postgraduate School <br> Monterey, California 93940 | 15. SECURITY CLASS. (al inio rapori) <br> Unclassified |

16. DISTRIBUTION STATEMENT (OA thle Report)

Approved for public release; distribution unlimited.
17. DISTAIBUTION STATEMENT (al the ebetreci mitered in Bfock 20, If allferent from Report)
18. SUPPLEMENTARY NOTES
19. KEY wOMOS (Continue on reverse alde if nececeary end ldentlty by block number)

South Pacific Ocean, general circulation, heat transport, mass transport, salt transport, geostrophic ocean currents, level of no motion.
20. AnsThACT (Contimue on reveree ilde If neceeeery and Identity by block muber)

Utilizing data from a four month period (SCORPIO Expedition, 1967), an analysis was made of the various characteristics of the South Pacific Ocean.

This investigation was based on the primary assumption that the geostrophic approximation was valid. A level of no motion was established at 762 m and 1203 m for the latitudinal sections of $28^{\circ}$ and $43^{\circ}$ respectively, which satisfied mass and salt
(
continuity requirements. Comprehensive temperature and salinity data extended from the western boundary to the eastern boundary of the South Pacific Ocean, and from the sea surface to the sea floor.

Net meridional mass, salt and heat transport values were calculated dependent on a selected level of no motion for each of the latitudinal sections. These transport values were then attributed to specific water masses. "The current circulation for the Upper Layer was determined to be anticyclonic while the Bottom Layer was cyclonic. The Upper Layer had a net northern transport at both latitudes, while the Intermediate Layer had a net southern transport at $28^{\circ} \mathrm{S}$ and a northern transport at $43^{\circ} \mathrm{S}$. The Deep Layer had a net southern transport along both latitudes with the Bottom Layer having a net northward transport.

Along both latitude lines, there was determined a net northward heat flow of 33 and 77 x $10^{12}$ cal/sec for the $28 \circ \mathrm{~S}$ and $43^{\circ} \mathrm{S}$ latitudinal sections. Given the initial assumptions made, this slight northward heat transport is probably within the range of error for this study.

Approved for public release; distribution unlimited.

> Mass, Salt, and Heat Transport in the South Pacific

> by

Louis Sherfesee III
Lieutenant, "United States Navy
B.S. (Oceanography), Univ. of Washington; B.S. (Geology), Univ. of Washington, 1969

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN METEOROLOGY AND OCEANOGRAPHY
from the
NAVAL POSTGRADUATE SCHOOL
September 1978

Thatis,
S d Uここ
$\therefore 1$

Utilizing data from a four month period (SCORPIO Expedition, 1967) an analysis was made of the various characteristics of the South Pacific Ocean.

This investigation was based on the primary assumption that the geostrophic approximation was valid. A level of no motion was established at 762 m and 1203 m for the latitudinal sections of $28^{\circ} \mathrm{S}$ and $43^{\circ} \mathrm{S}$ respectively, which satisfied mass and salt continuity requirements. Comprehensive temperature and salinity data extended from the western boundary to the eastern boundary of the South Pacific Ocean, and from the sea surface to the sea floor.

Net meridional mass, salt and heat transport values were calculated dependent on a selected level of no motion for each of the latitudinal sections. These transport values were then attributed to specific water masses. The current circulation for the Upper Layer was determined to be anticyclonic while the Bottom Layer was cyclonic. The Upper Layer had a net northern transport at both latitudes, while the Intermediate Layer had a net southern transport at $28^{\circ} \mathrm{S}$ and a northern transport at $43^{\circ} \mathrm{S}$. The Deep Layer had a net southern transport along both latitudes with the Bottom Layer having a net northward transport.

Along both latitude lines, there was determined a net northward heat flow of 33 and $77 \times 10^{12} \mathrm{cal} / \mathrm{sec}$ for the $28^{\circ}$ S and $43^{\circ}$ S latitudinal sections. Given the initial assumptions made, this slight northward heat transport is probably within the range of error for this study.
电

## TABLE OF CONTENTS

I. INTRODUCTION ..... 10
II. BACKGROUND ..... 13
A. ENERGY TRANSPORT ..... 13
B. THE LEVEL OF NO MOTION ..... 14
III. STATEMENT OF THE PROBLEM ..... 19
IV. PROCEDURE ..... 22
A. DATA SOURCES ..... 22
B. COMPUTATION OF VELOCITIES, TRANSPORT OF MASS, SALT CONTENT AND HEAT ..... 25
C. IDENTIFICATION OF WATER MASSES ..... 29
D. THE CIRCULATION OF THE SOUTH PACIFIC ..... 38
E. DETERMINATION OF UPPER, INTERMEDIATE AND DEEP/BOTTOM WATER CIRCULATION ..... 44
V. DISCUSSION OF RESULTS ..... 47
A. THE LEVEL OF NO MOTION ..... 47
B. MASS AND SALT TRANSPORT ..... 47
C. HEAT TRANSPORT ..... 52
D. OCEANIC EDDY CIRCULATION ..... 59
E. CALCULATED CIRCULATION PATTERN ..... 61

1. Upper Circulation ..... 61
2. Intermediate Circulation ..... 67
3. Deep Circulation ..... 67
4. Bottom Circulation ..... 70
VI. CONCLUSIONS ..... 73

APPENDIX A: Oceanographic Stations - - - - - - - 75
APPENDIX B: Geostrophic Data - - - - - - - - - - 79
APPENDIX C: Geostrophic Point Depth
Current Velocities - - - - - - - - - 116
APPENDIX D: End Point Data - - - - - - - - - - - 127
BIBLIOGRAPHY - - - - - - - - - - - - - - - - - - - - 130
INITIAL DISTRIBUTION LIST - - - - - - - - - - - - 134

## LIST OF TABLES

I. Muromtsev Water Mass Parameters - - - - - - 34
II. Level of No Motion $28^{\circ} \mathrm{S} \ldots \ldots, \ldots, \ldots, \ldots, \ldots, \ldots$
III. Level of No Motion $43^{\circ} \mathrm{S}$ _ $-\ldots \ldots+\ldots$
IV. Level of No Motion Use \% $28^{\circ} \mathrm{S} \ldots \ldots \ldots 50$
V. Level of No Motion Use $\% 43^{\circ} \mathrm{S}$ - - - - - - - 51

VII. Total Net Transport $43^{\circ} \mathrm{S}$ - - - - - - - - 54
VIII. Net Heat Transport $28^{\circ} \mathrm{S}$ and $43^{\circ} \mathrm{S}$ - - - - - 56
IX. Layer Heat Transports - - - - - - - - - - 58

1. SCORPIO Transits along $28^{\circ} \mathrm{S}$ and $43^{\circ} \mathrm{S}$ ..... 23
2. USNS ELTANIN ..... 24
3. Muromtsev's Surface Water Mass Location ..... 31
4. Muromtsev's Subsurface Water Mass Location ..... 32
5. Muromtsev's Intermediate/Deep Water Mass Location ..... 33
6. Temperature/Salinity Diagram for Muromtsev Water Mass Classification ..... 35
7. Temperature/Salinity Diagram for Modified Muromtsev Water Mass Classification ..... 36
8. Cross Sectional Area along $28^{\circ} \mathrm{S}$ ..... 39
9. Cross Sectional Area along $43^{\circ} \mathrm{S}$ ..... 40
10. Bottom Water Circulation Theory ..... 43
11. New Zealand Surface Circulation with Eddy ..... 50
12. Mass Transport $28^{\circ} \mathrm{S}$ (West Section) ..... 62
13. Mass Transport $28^{\circ} \mathrm{S}$ (East Section) ..... 63
14. Mass Transport $43^{\circ} \mathrm{S}$ (West Section) ..... 64
15. Mass Transport $43^{\circ} \mathrm{S}$ (East Section) ..... 65
16. Upper Layer Mass Transport ..... 66
17. Intermediate Layer Mass Transport ..... 68
18. Deep Layer Mass Transport ..... 59
19. Bottom Layer Mass Transport ..... 71

## ACKNOWLEDGEMENTS

The author wishes to thank Dr. Glenn $H$. Jung for his acceptance, patience and guidance in the preparation of this thesis and Dr. Joseph J. Von Schwind for his constructive review of the text.

The author also wishes to thank Lt. James R. Mason, USN for his time, assistance and objective appraisals and also Capt. Earle McCormick, USAF for his computer expertise.

Finally, the author wishes to thank his wife, Carol E. Sherfesee, without whose assistance, understanding, patience and faith this thesis project could not have been accomplished.


## I. INTRODUCTION

The heat budget of the earth is the result of a net surplus of solar radiation received in the tropics, together with a net loss of heat in the polar regions. Since the temperatures of the tropics and the polar regions do not progressively get warmer and colder respectively, it was assumed that there was a poleward transport of heat from the equatorial area (Newmann and Pierson, 1966). This heat transport was a method of energy transfer. It was assumed that the bedrock structure of the earth accounted for negligible heat transfer through conduction (Sverdrup et al., 1942). The earth's atmosphere and world ocean were then assumed to be the primary energy transfer agents.

Coker (1947) wrote that the chief sources of heat for the sea were heat from the atmosphere by contact, absorption of radiation and condensation of water vapor. He also mentioned conduction through the ocean bottom, heat due to frictional currents and heat released through chemical and biological processes as negligible sources.

Neumann and Pierson (1966) in quoting Maury (1856)
wrote: "The aqueous portion of our planet preserves its beautiful system of circulation. By it heat and warmth are dispersed to the extratropical regions; clouds and rains are sent to refresh the dry land; and by it cooling streams are brought from polar seas to temper the heat of the
torrid zone. To distribute moisture over the surface of the earth, and to temper the climate of different latitudes, it would seem, are the two great offices assigned by their Creator to the ocean and the air."

Dietrich (1963) stated that the external processes of heat transfer between ocean and atmosphere, as well as the internal processes of heat conduction in the ocean, are known only in rough outline.

At one time, the ocean had been thought of as the primary method of transfer. For over a century, there has been controversy over which system, air or sea, is the predominant mechanism for energy transport.

Maury (1856) and Ferrel (1890) emphasized the sea as the primary agent. Angstrom (1925) roughly equated the oceanic and atmospheric heat transport. Bjerknes et al. (1933) and Sverdrup et al. (1942) considered oceanic transport negligible as compared to that of the atmosphere. Jung (1952) questioned this and then stressed (Jung, 1955) that while oceanic transport of sensible heat is less than the atmospheric sensible and latent heat, it should not be considered as negligible.

It was proposed by Jung (1952) that the oceans with their accompanying current systems might be of more importance in the transfer of heat energy than thought at the time. He suggested that earlier studies such as Sverdrup et al. (1942) had considered only the standing horizontal eddy, that is the Gulf Stream system with its associated
return currents, in their calculations. Jung proposed that closed vertical circulations in meridional planes could conceivably transport large quantities of energy, even when the velocities involved were minor. Jung followed this in 1955 with a detailed study in the North Atlantic Ocean which determined the heat transported by geostrophic ocean currents. Several studies (Budyko, 1956; Sverdrup, 1957; Bryan, 1962; Sellers, 1965 ; Vander Haar and Oort, 1973; Baker, 1978) with oceanic contribution to meridional transfer have followed, but with the exception of Baker, these studies have not utilized synoptic or nearly synoptic data for an entire ocean.

This study utilized a computer program developed by Greeson in his 1974 master's thesis. Two coast to coast South Pacific Ocean latitude sections obtained by the SCORPIO Expedition (1967) were used to determine a general geostrophic circulation and net heat flux measurements.

The geostrophic method provided a means for computing the field of relative (geostrophic) motion in a fluid from a knowledge of the internal distribution of pressure (Von Arx, 1962).

## II. BACKGROUND

## A. ENERGY TRANSPORT

The discussion of energy transport within either an atmospheric or oceanic medium starts with a general equation applicable to all fluid motion,
(a) (b) (c) (d)

$$
\begin{equation*}
T^{*}=\int_{S}\left(\rho U+\rho C^{2} / 2+\rho \phi+P\right) V_{n} d S \tag{1}
\end{equation*}
$$

where $T^{*}$ represents the total meridional energy transferred normal to a vertical wall encircling the earth at a particular latitude, $\rho$ is density, $U$ is the internal energy per unit mass, $C$ is the magnitude of the fluid velocity, $\phi$ is the potential energy per unit mass, $P$ is the pressure, $V_{n}$ is the component of the fluid velocity normal to the latitude wall at a given level in either air or ocean and $d S$ is the differential area of the wall.

The total amount of energy transported across a complete latitudinal circle is composed of the transport due to (a) the advection of thermal energy, (b) the transport of kinetic energy, (c) the transport of potential energy and (d) the rate of work done by pressure forces.

As compared to the other terms, the transport of kinetic energy (b) is negligible (Jung, 1952).


The transfer of energy in the ocean is carried out by the water currents. Geostrophic equilibrium is assumed as one method to determine the magnitude of these currents. In addition the assumption of hydrostatic equilibrium in the vertical eliminates term (c) and (d) from equation (l). This then reduces equation (1) to the following form:

$$
\begin{equation*}
T_{0}^{*}=\int_{0} \rho_{s} U_{s} V_{n s} d o \tag{2}
\end{equation*}
$$

The subscript "s" stands for seawater, and "O" is that part of our latitude wall, "S", slicing through the ocean. Now neglecting compressibility effects in water, $U_{s}=C_{p s} T_{s}$ where $C_{p s}$ is the specific heat at constant pressure of sea water, and $T_{s}$ is the temperature of sea water. Equation (2) may now be written as

$$
\begin{equation*}
T_{o}^{*}=\int_{0} \rho_{s} C_{p s} T_{s} V_{n s} d o \tag{3}
\end{equation*}
$$

B. THE LEVEL OF NO MOTION

The dynamic method of utilizing oceanographic data includes the problem of locating a reference level of no motion. This reference level is necessary in order to determine absolute current velocities. Defant (1961), in discussing the difficulty of the problem, reported that the required data necessary to determine a zero level was largely lacking.

There have been several attempts to determine this level of no motion as listed in Defant (1961) and Baker (1978).

One early method was to assume this level was at a great depth in the ocean. The logic for this approach was the assumption that deep ocean waters were uniform with nearly horizontal isopycnal (equal density) and isobaric (equal pressure) surfaces. Absolute current velocities could be determined if the level was placed at a constant great depth.

Another method, offered by Jacobsen (1916), utilized the location of an oxygen minimum in the ocean as an identifier of the level of minimum horizontal motion. The reasoning behind this method was that the use of oxygen due to oxidation of organic matter takes place at all levels; therefore a minimum oxygen content would represent an area of minimum horizontal current replenishment. This method has some peculiar results which were brought out by various investigators (Rossby, 1936 ; Iselin, 1936; and Dietrich, 1936). In addition to unrealistic results, the assumptions of uniform distribution of organic matter and oxygen consumption were incorrect. This method of minimum oxygen levels necessarily coinciding with a level of no motion can be disregarded.

Parr (1938) considered thickness variation of isopycnal surfaces as a deterministic factor of a level of no motion. He equated minimal thickness distortion to minimal water motion within the layer.

Fomin (1964) took exception to Parr's method stating that the variation of current velocity in the vertical was a
function not only of isopycnal surface slope, but it also depended upon the vertical density gradient. Since Parr's method ignored the vertical density gradient, it would be possible to choose as a layer of no motion an undistorted thickness layer which was in reality a region of strong current velocity.

Hidaka (1940) proposed two different methods for determining the level of no motion. His first method was based on the salinity distribution. Fomin (1964) disagreed with this method saying that coefficients of turbulent diffusion in a layer of no motion did not remain finite as Hidaka had assumed and therefore Hidaka's resultant salinity characteristics bore no definite relation to the current velocity field.

Hidaka's second method depended on the continuity of volume and salt transport and the calculation of the vertical distribution of current velocity by the dynamic method. Fomin (1964) again took exception with Hidaka in that Hidaka's simplification of the continuity equation was not theoretically correct and also because this method led to a set of equations that could not be solved with the current accuracy of at sea measurements.

Defant (1941) determined the zero level based on the differences in dynamic depths of isobaric surfaces. Examination of dynamic height differences of isobaric surfaces of Atlantic station pairs resulted in Defant recognizing a relatively thick layer with horizontal uniform depth variation and small isobaric surface dynamic depth differences (Fomin, 1964).

Defant related this dynamic depth difference constancy to a constant vertical gradient component of current velocity within the layer. This layer was assumed to be nearly motionless and considered to directly adjoin the zero motion surface (Fomin, 1964). Baker (1978) evaluated the Defant, method as one of the most reasonable, but stated that resultant current velocities had a low accuracy due to the accumulation of errors associated with the dynamic method.

Sverdrup et al. (1942) developed a method based upon the continuity equation; the level of no motion was determined by comparison of water mass transport above and below a horizontal reference surface. When the mass transport in the latitudinal area of study above the reference surface was equal and opposite in direction to the net mass transport below this surface, the reference surface was then a level of no motion. One difficulty with this approach was the requirement for data across the ocean from coast to coast necessary for dynamic calculations.

Stommel (1956) produced a method for determining the level of no motion using Ekman's concept of the oceans consisting of a wind driven surface layer of frictional influence and a deeper frictionless geostrophic layer. Surface wind stress produced divergence or convergence causing entry or exit of water from the subsurface geostrophic frictionless layer. This geostrophic layer will then suffer thickness changes. Water parcels within this layer will shrink or expand as they move poleward, producing a vertical component
equal to the vertical component at the bottom of the frictional layer produced by wind stress. This matching will occur at a level of no motion.

The final method of this summary is one introduced by Stommel and Schott (1977) based on the beta-spiral and a determination of the absolute velocity field from density data. Their theory was that because the horizontal component of velocity rotates with depth, absolute velocities could be found from observations of the density field alone.

This particular study of the Pacific Ocean uses the mass and salt continuity method proposed by Sverdrup et al. (1942) to determine the level of no motion along two latitudinal tracks $\left(28^{\circ} \mathrm{S}\right.$ and $\left.43^{\circ} \mathrm{S}\right)$ across the South Pacific.

## III. STATEMENT OF THE PROBLEM

The problem was to determine the heat energy transported by the South Pacific Ocean. To accomplish this objective necessitated the obtaining of thermal and salinity data in coast-to-coast latitudinal tracks from the surface to as near the ocean bottom as possible. It was also necessary to have a sufficient comprehension of the circulation pattern of the area.

Energy transfer is accomplished by several processes: large-scale advection, smaller scale eddy diffusion, and molecular diffusion. The primary mode of transfer is largescale advection with eddy diffusion and molecular diffusion contributions being several orders of magnitude smaller. This investigation will neglect eddy and molecular diffusion.

The energy flux across any latitude line in the ocean is expressed by equation (3),

$$
\begin{equation*}
T_{o}^{*}=\int_{0} \rho_{s} C_{p s} T_{s} V_{n s} d o \tag{3}
\end{equation*}
$$

where the heat transport term determines the total energy flux across a vertical cross section of area do within the ocean. The specific heat at constant pressure of sea water, $C_{p s}$, for this study has been assumed to have the value of unity.

Velocities were calculated with the formula derived by the Helland-Hansen and Sandstrom (1903) equation, and with the procedure from Sverdrup et al. (1942). The procedure utilizes the assumption of geostrophic equilibrium within the ocean. Jung (1955) pointed out that the geostrophic balance assumption appears valid for large-scale motion outside the equatorial region. It is therefore applicable for the area of this study.

In order to calculate geostrophic velocity differences between consecutive depths and between adjacent pairs of stations, dynamic heights were first computed. The equation

$$
V_{1}-V_{2}=\frac{10 C}{L}\left(D_{A}-A_{B}\right)
$$

was used, where $C=(2 \Omega \sin \phi)^{-1}, \Omega$ is the earth's angular speed, $\theta$ is the latitude, $L$ is the horizontal distance between stations $A$ and $B$, and $D_{A}$ and $D_{B}$ are the dynamic heights (or depths) of the two stations (Greeson, 1974).

The reference level or level of no motion must be established prior to using this method. To determine this depth level, there must be a zero net transport of both water mass and salt across the entire latitudinal slice of ocean, $\int_{0} d O$ :

$$
\begin{aligned}
& \int_{0} \rho_{s} V_{n s} d o=0 \\
& \int_{0} \rho_{s} S V_{n s} d o=0
\end{aligned}
$$

where $S$ here is salinity in parts per thousand.


The mass balance was the primary tool for determining the level of no motion. As will be seen later, however, there was little depth difference between levels balancing the mass and salt transports. After a level of no motion was determined, the heat flux across the associated latitude section was calculated.


## IV. PROCEDURE

## A. DATA SOURCES

This study dealt with the area of the South Pacific'Ocean shown in Figure l. Two latitudinal oceanographic sections were supplied by the SCORPIO Expedition, USNS Eltanin Cruises 28 and 29, 12 March - 31 July 1967 (WHOI Reference 69-56). The two latitude sections were at approximately $28^{\circ} 15^{\prime} \mathrm{S}$ and $43^{\circ}$ 15'S. Figure 2 is a photograph of the USNS ELTANIN which collected the oceanographic data. In planning the SCORPIO Expedition, the two east-west tracks had been selected for the following reasons: "observations of good quality in the central area were scarce and in order to have a general knowledge of the world ocean some attention had to be given to this immense area; this area also includes some of the deepest of the ocean trenches; and ... the study of deep circulation in the world ocean could not proceed without a systematic survey of the deep-water characteristics in the South Pacific, which is the largest of the world's oceans" (WHOI Reference 69-56).

Cruise 28 had an easterly track starting off the east coast of Tasmania. Station 1 , Cruise 28 , was occupied on March 12, 1967 and the last station of the track, Station 78, on May 8, 1967. Cruise 29 had a westerly track, originating off the west coast of Chile, with its first station, number



Figure 2. USNS ELTANIN

86, occupied on June 4, 1967 and its last station, number 185, on July 31, 1967. Since the data were collected in less than a five month period, it has been assumed they are simultaneous.

There are small voids in the cross-sectional latitudinal area where data were not taken. These voids existed primarily along the ocean bottom where the soundings did not reach, and also at the end points of the tracks between the end stations and the beach. The deepest sounding data were extended all the way to the sea floor directly under that station. The method used for extrapolating deep current velocities into these ocean bottom regions is described in detail later in this thesis, in Section IV B. Regarding the end points, the data of the end stations were extended horizontally until the beach slope terminated the extension. Appendix D contains the end point data. It is shown that these ends of the sections contribute negligible amounts to the mass, salt and heat transport totals.
B. COMPUTATION OF VELOCITIES, TRANSPORT OF MASS, SALT CONTENT AND HEAT

There have been limited synoptic velocity measurements made in the South Pacific. With the geostrophic equilibrium assumption, together with the procedure of Sverdrup et al. (1942), temperature and salinity data such as that of the SCORPIO Expedition may be utilized to determine dynamic height and synoptic velocity values for areas of interest. The majority of the calculations for this study were performed on
an IBM-360/67 computer utilizing a basic program developed by Greeson (1974). The Greeson program was modified by Mason (1978) to evaluate data voids along the sea floor as well as to attribute net mass, salt and heat transport between individual station pairs and/or along an entire track to particular identifiable water masses.

Greenson's program initially took temperature and salinity data at various depths and interpolated them to standard depths. Next sigma-t, the specific volume anomaly and specific volume were calculated for each standard depth. Then the equation

$$
\bar{\delta}=\frac{\delta_{Z}+\delta^{\prime}(Z+\Delta Z)}{2}
$$

was used to compute an average specific volume anomaly for each pair of standard depths for each station. Note that $\bar{\delta}$ was the average specific volume anomaly, and $\delta_{Z}$ and ${ }^{\delta}(Z+\Delta Z)$ were the specific volume anomalies at the standard depths of $Z$ and $Z+\Delta Z$.

Following this, dynamic heights, $D$, were computed for each station. To do this, the dynamic height difference, $\Delta D$, between the standard depths was calculated by

$$
\Delta D=\bar{\delta}[Z-(Z+\Delta Z)]
$$

The dynamic height of each station was produced by a summation of the dynamic height differences

$$
\Sigma_{0} \Delta D=D
$$

Next, the program calculated the distance, $L$, between stations. This distance varied with latitude and longitude. With the calculated station separation, the relative velocity between station pairs for each standard depth was computed using the Helland-Hansen formula. Given relative, velocities, absolute geostrophic velocities were derived by identifying a level of no motion. This level of no motion was defined by absolute geostrophic velocities of zero. Density was calculated using the formula:

$$
\rho_{S T P}=\frac{1}{\alpha_{S T P}}
$$

where $\alpha_{\text {STP }}$ is the specific volume for a particular salinity, temperature and pressure.

This process has produced what was described by Greeson (1974) as four corners of a rectangle limited by two oceanographic stations and two standard depths with four measurements of temperature, salinity, velocity and density. These four sets of measurements were distributed one to each corner of the rectangle and then the sets were averaged giving a composite value for the bounded area. This area was defined by the station separation and the standard depth internal. The mass transport for the subject vertical area was computed given the area density, velocity and area size. Next the calculated mass transport was multiplied by the average salinity and average absolute temperature. This resulted in an area salt flux and heat flux. Summing over the water column

produced the net mass, salt and heat flux for that pair of stations. The program then determined the net transport between each pair of standard depths, coast to coast, by summing the area values horizontally. A vertical summation process gave the total net mass, salt and heat transport for the entire latitudinal section.

The area extending from the deepest standard common depth to the bottom was handled in a slightly different manner. The vertical area between the sea floor and the deepest common depth between adjacent stations was first determined. Next it was assumed that the velocity of the sea floor was zero; therefore, the average of the deepest common level absolute geostrophic velocity and the zero sea floor velocity was applied as representative of this bottom area. Mass transport in this bottom area was calculated by multiplying this average velocity by the vertical area and deepest calculated density.

To arrive at salt and heat transport, the area mass transports were multiplied by the deepest recorded salinity and temperature which was assumed to extend on down to the sea floor.

An error may have been introduced in that, between a pair of stations, the bottom area water mass was attributed to the deepest type parcel of water actually sampled. In other words, if the deepest water sampled was an intermediate type of water, the void from the sample depth to the sea floor would be treated as intermediate water with all associated characteristics (i.e., density, current velocity, etc.).

The level of no motion was determined by setting a constant depth across the ocean unless interrupted by shoaling bathymetry, in which case the closest standard depth to the bottom was utilized for that station pair. This constant depth across the ocean was then moved vertically to locate a level of minimum net mass transport. Once this was established, the level was again moved up and down to determine a level of minimum net salt transport. At each of these two minimum levels, the heat transport was calculated. Zero mass and salt transport values were the desired objective, but these were only approximately obtained since the possible level of no motion values were taken no closer than at lmeter intervals.
C. IDENTIFICATION OF WATER MASSES

One objective of this investigation was for it to be somewhat compatible with the studies of Jung (1955), Greeson (1974), Baker (1978) and Mason (1978). These studies use a general stratification pattern of Upper, Intermediate, and Deep/Bottom waters. An appropriate water mass classification scheme had to be located and adopted, either verbatim or in a modified form. The water mass schemes of Sverdrup et al. (1942), Deacon (1963) and Wyrtki (1966), as reported by Knox (1970), Defant (1961), Radzikjovskaya (1965), Stepanov (1965) and Muromtsev (1963) were examined and the scheme of Muromtsev was selected as being the most comprehensive for the Pacific, especially for the South Pacific. The Muromtsev scheme
allowed for 14 different South Pacific water masses to be defined with temperature, salinity and oxygen range limitation, although oxygen composition was not used by this author. Depth criteria for the different masses was also included. Figures 3,4 and 5 illustrate Muromtsev's water mass areas. Table I illustrates the various water masses selected from the Muromtsev scheme. After comparing the oceanographic station data to the water mass scheme, certain parcels of water between identified masses were still unclassified. The temperature and salinity ranges of Muromtsev were then expanded as necessary to classify these transition zones. Table $I$ shows this tabulation which is also illustrated in Figures 6 and 7 .

The surface water masses of the South Pacific were found between the surface and about 200 meters. They were formed by direct interaction with the atmosphere and were subject to seasonal variations in characteristics. Of the water masses they had the least uniformity and were also subject to continental runoff and precipitation. The surface water of the South Pacific was composed of six distinct water masses: Equatorial Surface Water, Southern Tropic Surface Water, Peru Surface Water, South-Central Subtropic Surface Water, Surface Water of South Temperate Latitude and Antarctic Surface Water.

The subsurface waters were found between about $150 / 200 \mathrm{~m}$ and down to 600 m in depth. They were formed in the zone of subtropical convergence and sinking of surface waters. Also


Figure 3. Muromtsev's Surface Water Mass Location


Figure 4. Muromtsev's Subsurface Water Mass Location


Figure 5. Muromtsev's Intermediate/Deep Water Mass Location

$>200 \mathrm{~m}$
$<2000 \mathrm{~m}$
$>150 \mathrm{~m}$
$<1000 \mathrm{~m}$
$\underline{\mathrm{Ss} \%}$
$34.40-35.50$ $0 \mathrm{P} \cdot 9 \varepsilon-0 \mathrm{O} \cdot \mathrm{s} \varepsilon$ $H$
$\stackrel{H}{0}$

$\stackrel{m}{m}$
$\underset{m}{m}$

 $34.58-34.76$
$34.63-34.75$
 TABLE I．Muromtsev water mass parameters with modifications
Water Mass
34．00－34．50
35．00－35．50
sns
34．50－35．50
35．50－36．45
34．00－34．50
$33.50-34.00$
$34.80-36.30$
34．00－34．60
$34.10-34.50$
$34.55-34.65$
$34.55-34.65$
$34.61-34.66$
$34.61-34.66$
$34.63-34.73$
$34.70-34.72$
$\tau L \cdot \hbar \varepsilon-\hbar 9^{\circ} \hbar \varepsilon$
乙

$T s^{\circ}$
292．4－298．0
$271.2-275.0$
$281.5-293.1$
275．6－281．5
275．0－276．0
274．6－275．0

Tm ${ }^{\circ}$
0•20と－0•66て
298．0－302．0
287．0－296．0
0．86て－0•86て
278．0－288．0
271．0－275．0
283．0－293．0
271．1－272．5 $271.1-272.5$
$276.0-279.0$ $276.0-279.0$
$277.5-279.5$
G•SLZ－0•SLZ 274．7－275．0 273．2－273．8
274．0－274．6
Equatorial Surface Water
Southem Tropic Surface Water

## Peru Surface Water

South－Central Subtropic Surface Water of South Surface Water of South Temperate Latitudes
Antarctic Surface Water South Subtropical Subsurface Water
Antarctic Subsurface Water
South Pacific Inter－ mediate Water
Equatorial Inter－ mediate Water South Pacific Upper Deep Water
Underlying Deep Water
Antarctic Bottom Water
Pacific Bottom Water
（m）Muromtsev



Figure 6. Temperature/Salinity Diagram for Muromtsev Water Mass Classification


Figure 7. Temperature/Salinity Diagram for Modified Muromtsev Water Mass Classification
the influence of winter convection assisted in their formation. The subsurface waters had a higher degree of uniformity than the surface water. Muromtsev (1963) made the distinction between primary waters and secondary waters. Primary waters sank. directly from the surface and were characterized by semiannual temperature and salinity fluctuations. Secondary waters were formed by the mixing of two or more types of surface water with no annual changes. Both the two subsurface water masses, South Subtropical Subsurface Water and Antarctic Subsurface Water, were considered primary waters.

The intermediate waters were located between about 400 and l500m in depth and were formed in the zone of convergence and sinking of surface waters. They can also be formed by the mixing of two or more water types. Again this category could have both primary (slight annual variations) and secondary (no annual fluctuations) characteristics. The two intermediate water masses in the South Pacific were termed South Pacific Intermediate Water (primary) and Equatorial Intermediate Water (secondary).

Deep water was situated between roughly 1500 m and 4500 m in depth and was formed by the mixing of three or more water types. They were then secondary waters and had a high degree of uniformity. Two such water masses were classified for the South Pacific, the South Pacific Upper Deep Water and the Underlying Deep Water.

The last major type was the Bottom waters which were formed in the high southern latitudes. Two masses were

classified, the Antarctic Bottom Water and the Pacific Bottom Water. Muromtsev (1963) referred to both of these as secondary water masses.

The salinity, temperature and approximate depth characteristics of these 14 waters were compared with each block of water bounded by a pair of stations and adjacent standard depths. This classified over $99.5 \%$ of the parcels. Water with the defined temperature and salinity characteristics of Peru Surface Water was found on the surface in and around New Zealand. The author believes that this water is not the same water found off the coast of Peru, but is, in fact, formed in the Tasman Sea in a similar manner as in the formation of Peru Surface Water. This Pseudo Peru Surface Water has been for numerical calculations classified under Pseudo Peru Surface Water.

Figures 8 and 9 illustrate the water masses found along the two latitudinal cross sections.
D. THE CIRCULATION OF THE SOUTH PACIFIC

The surface circulation of the South Pacific Ocean consists of two large anticyclonic gyres. One is centered in the eastern South Pacific in the neighborhood of $30^{\circ} \mathrm{S}$; the second gyre of smaller diameter is in the Tasman Sea between New Zealand and Australia. Cold low salinity water at the higher latitudes flows to the east as the Antarctic Circumpolar Current, and driven by strong northwesterly winds, moves to the eastern Pacific. There it is deflected to the north as the Peru Current, and also to the South Atlantic via



[^0]the Drake passage. The Peru Current flows along the west coast of South America picking up subsurface water through upweliing as the Coriolis force deflects water to the left. The Peru Current, upon entering the tropics., turns west becoming the South Equatorial Current, where there is exchange with intertropical water. Eventually, the waters turn poleward along the east coast of New Zealand, and along the east coast of Australia as the East Australia Current. There is evidence that this anticyclonic gyre may extend to depths of 2000 meters (Reid, 1973).

In the Tasman Sea, water cycles in a counterclockwise (anticyclonic) path. It travels north along the west coast of New Zealand, then west to join the East Australia Current for its trip south where it links up with the Antarctic Circumpolar Current for an eastward journey.

Intermediate waters originate in the higher latitudes, between $45^{\circ} \mathrm{S}$ and $55^{\circ} \mathrm{S}$, (Newmann and Pierson, 1966) which flow north in an anticyclonic cycle. Muromtsev (1963) wrote concerning the South Pacific intermediate water that its anticyclonic gyre is larger than that of the surface water as it starts at $50^{\circ} \mathrm{S}$ and crosses the Equator where it involves North Pacific intermediate water. The combined intermediate waters spread out through the entire ocean.

Below the intermediate water is the deep water, composed of Pacific Ocean water and deep Indian Ocean water of high salinity entering south of Australia.

This wide deep current moves north with some water ascending at the equator and returning south, while the remainder may move all the way north to the Aleutians before ascending and returning south. This southward spreading of Deep Water in the South Pacific was supported by Deacon (1927), while Neumann and Pierson (1966) attributed to Sverdrup et al. (1942) the statement of a Pacific deep water exchange between the two hemispheres, with a northern current to the west and southern current to the east.

The deepest water is the bottom water which forms in the high southern latitudes by sinking cold surface and subsurface waters along the continental slope of Antarctica. Perry and Walker (1977) state that the Weddell Sea is the primary production area of Antarctic Bottom Water which is the lowermost mass of water in the Indian, Atlantic and Pacific Oceans, extending well north of the equator.

The circulation between the surface and about 2000 meters in the South Pacific is anticyclonic. There is some evidence (Warren, 1973) and at least one theory (Stommel, 1958) that the circulation below 2000 meters and extending to the sea floor is cyclonic (Figure 10).

To paraphrase Muromtsev (1963), the overall plan of circulation of Pacific water shows that the principal source from which the waters of this ocean are derived is located in the high southern latitudes. From here the water spreads at all depths through the southern part of the ocean and enters the northern part by deep and bottom currents. Here the

Figure 10. Bottom Water Circulation Theory
deep water, along with the overlying intermediate and subsurface waters, wells up and forms the top water, while surface water sinks into deep southward flowing upper/deep currents. Eventually this water exits the Pacific via the Drake Passage to the South Atlantic.
E. DETERMINATION OF UPPER, INTERMEDIATE AND DEEP/BOTTOM WATER CIRCULATION

As discussed in the previous section, the 14 South Pacific Ocean water masses described by Muromtsev (1963) were compared against the station measurements. This resulted in ten water masses being identified. Next the mass, salt and heat transports were determined within each station pair for each water parcel. Then the transports were attributed to each of the ten water masses plus an unknown mass. That unknown water mass, different from the Pseudo Peru Surface Water, was usually a coastal surface sample with slightly lower salinity than defined, and in any event, it was a negligible quantity.

The ten water masses identified were:
Peru Surface Water
Pseudo Peru Surface Water
South Central Subtropic Surface Water
Surface Water of South Temperate Latitudes
South Subtropical Subsurface Water
South Pacific Intermediate Water
South Pacific Upper Deep Water
Underlying Deep Water
Antarctic Bottom Water
Pacific Bottom Water
In determining a net transport, a negative sign indicates southward transport, while a positive sign indicates northward transport. Once the net transport for each water mass of each station pair was calculated, these values were summed, resulting

in an overall coast-to-coast net transport of mass, salt and heat by water mass type.

In order to be compatible with Jung (1955), Baker (1978) and Mason (1978), the ten water masses were grouped into Upper, Intermediate and Deep/Bottom categories. As will be seen later, for the South Pacific Ocean, this may not be the most appropriate scheme.

The Upper category was composed of Peru Surface Water, South Central Subtropic Surface Water, Surface Water of South Temperate Latitudes, South Subtropical Subsurface Water, the Pseudo Peru Surface Water and Unknown Water.

The intermediate layer was composed solely of South Pacific Intermediate Water; and the Deep/Bottom level was made up of South Pacific Upper Deep Water, Underlying Deep Water, Antarctic Bottom Water and Pacific Bottom Water.

An attempt was then made to examine general circulation information available based on only two zonal tracks separated by approximately $15^{\circ}$ of latitude. One procedure here, which was unsuccessful, was to plot the absolute velocity both in a vertical cross section and on a horizontal plan view.

Current velocities at certain selected levels ( 0,100 , $250,500,1000,2000,2500,3000,3500,4000$ and 5000 meters) were calculated. These were geostrophic velocities between station pairs calculated at the selected depths. These depths were chosen as they essentially covered the depth of the water column and represented portions of each identified water mass. The tabulated data will De found in Appendix C.

Another attempt to determine the general circulation pattern was based on the net mass transport values between stations in each of the three (Upper, Intermediate, and Deep/ Bottom) layers. Appendix $B$ has the tabulated net mass transport data for each layer, with subdivisions by water mass.

The circulation pattern composed of station pairs along each track consisted. of a series of opposing north/south flows of various magnitudes. The eddy circulation was apparent in the pattern made up of selected geostrophic velocities as well as in net mass transports. Even.with station pairs approximately two degrees of longitudinal distance apart, opposing flows [as were found also by Warren (1973)] from one pair to the next occurred. These opposing flows are probably associated with mesoscale eddies.

## v. DISCUSSION OF RESULTS

A. THE LEVEL OF NO MOTION

The objective of this study was to determine a constant depth motionless level across the entire Pacific. This objective differed from the level of no motion determination method of Baker (1978) in which each level between station pairs was selected individually in an attempt to achieve a net mass and salt balance. Near the ends of each latitude section the motionless layer was selected at the ocean floor. Tables II and III illustrate the net transports at various levels. The trans-oceanic levels for $28^{\circ} \mathrm{S}$ and $43^{\circ} \mathrm{S}$ are illustrated in Figures 8 and 9 respectively. The chosen levels of no motion were approximately $762 \mathrm{~m}\left(28^{\circ} \mathrm{S}\right)$ and $1203 \mathrm{~m}\left(43^{\circ} \mathrm{S}\right.$ ) and were the dominant levels used, Tables IV and $V$.
B. MASS AND SALT TRANSPORT

As was stated earlier, the criterion of approximately zero mass transport was considered to be the primary factor for continuity. Zero net salt transport was of secondary importance. As shown in Tables II and III, very small values of mass and salt were obtained at different depths very close to each other. The level which gave the smallest net mass transport across $28^{\circ} \mathrm{S}$ was 762 meters, which was selected as the level of no motion for the section. Across $43^{\circ}$, the


## TABLE II

LEVEL OF NO MOTION $28^{\circ}$ S

| DEPTH OF | NET MASS | NET SALT | NET HEAT |
| :---: | :---: | :---: | :---: |
| LEVEL OF | TRANSPORT | TRANSPORT | TRANSPORT |
| NO MOTION | (1012 gm/sec) | $\left(10^{12} \% / 00 / \mathrm{sec}\right)$ | $\left(10^{12} \mathrm{cal} / \mathrm{sec}\right)$ |
| 700 | -3.8738 | -131.708 | -1034.07 |
| 750 | -0.7893 | - 24.9648 | - 181.296 |
| 760 | -0.1488 | - 2.8013 | 4.2565 |
| 761 | -0.0831 | - $0.5269 \%$ | 13.8967 |
| 762 | -0.0166* | 1.7732 | 32.5682 |
| 753 | 0.0447 | 3.8953 | 49.2305 |
| 764 | 0.1090 | 6.1189 | 66.9985 |
| 770 | 0.5032 | 19.7583 | 175.920 |
| 780 | 1.1329 | 41.5422 | 350.021 |
| 790 | 1.7586 | 63.1833 | 523.032 |



## TABLE III

LEVEL OF NO MOTION $43^{\circ} \mathrm{S}$

| DEPTH OF | NET MASS | NET SALT | NET HEAT |
| :---: | :---: | :---: | :---: |
| LEVEL OF | TRANSPORT | TRANSPORT | TRANSPORT - |
| NO <br> MOTION | $\left(10^{12} \mathrm{gm} / \mathrm{sec}\right)$ | $\left(10^{12} 0 / 00 / \mathrm{sec}\right)$ | $\left(10^{12} \mathrm{cal} / \mathrm{sec}\right)$ |
| 1050 | -12.7767 | -444.146 | -3478.68 |
| 1150 | - 4.0488 | -142.408 | -1069.35 |
| 1180 | - 1.7864 | - 64.2029 | - 443.930 |
| 1200 | - 0.1418 | - 7.3359 | 12.0479 |
| 1202 | - 0.0004* | - 2.4490 | 51.0940 |
| 1203 | 0.0800 | - 0.0301* | 70.3159 |
| 1204 | 0.1408 | 2.4334 | 90.1206 |
| 1206 | 0.2812 | 7.2849 | 128.897 |
| 1208 | 0.4214 | 12.1323 | 167.628 |
| 1210 | 0.5613 | 16.9695 | 206.275 |
| 1212 | 0.7003 | 21.7734 | 244.668 |
| 1220 | 1.2492 | 40.7502 | 396.283 |
| 1250 | 4.809 | 164.078 | 1390.62 |
| 1280 | 6.6521 | 227.805 | 1899.19 |
| 1301 | 7.8318 | 268.624 | 2224.56 |

> TABLE IV
> LEVELS OF NO MOTION USE \%
> $28^{\circ}$ South Pacific ( 99 pairs of stations)

Level of No Motion

100
762

No. of Times Used/Section 2 97 99
\% Total Station Pairs
$2.0 \%$
98.0\%
$100 \%$

## TABLE V

## LEVELS OF NO MOTION USE \%

$$
43^{\circ} \text { South Pacific (77 pairs of stations) }
$$

| Level of <br> No Motion | No. of Times Used/Section |
| :---: | :---: | :---: |$\quad$| $\%$ Total <br> Station Pairs |  |  |
| :---: | :---: | :---: |
|  | 2 | $2.6 \%$ |
| 300 | 1 | $1.3 \%$ |
| 350 | 3 | $3.9 \%$ |
| 400 | 3 | $3.9 \%$ |
| 450 | 2 | $2.6 \%$ |
| 650 | 1 | $1.3 \%$ |
| 1100 | 1 | $1.3 \%$ |
| 1203 | 64 | $83.1 \%$ |
|  | 77 | $100 \%$ |

effects of net salt transport entered into choice of the level of no motion at 1203 meters, selected as the level best for minimizing both mass and salt transport. This author doubts that stating the levels to be 762 and 1203 meters is without some error. As can be seen by the tabulated results of Tables II and III, the calculated balance is very sensitive to changes in levels of no motion. It is doubtful that even the accuracy of the initial depth, salinity and temperature measurements, although very acceptable in their own right, justify the precise levels offered. The level of no motion should in reality be considered in the neighborhood of these depths.

The net mass transport across the $28^{\circ} \mathrm{S}$ and $43^{\circ} \mathrm{S}$ latitudinal sections associated with the selected levels of no motion was -0.02 and 0.08 times $10^{12} \mathrm{gm} / \mathrm{sec}$ with the net salt transport of 1.8 and -0.03 times $10^{12} 0 / 00 / \mathrm{sec}$ as shown in Tables VI and VII.
C. HEAT TRANSPORT

Latitudinal net meridional transport of heat may be ex-
pressed as

$$
C_{p s}\left(T_{n}-T_{s}\right) \rho_{s} V_{n s}
$$

If the specific heat at constant pressure of sea water, $C_{p s}$, is assumed to be one $\left(c a l / g^{\circ} \mathrm{C}\right)$, the above expression reduces to

$$
\left(T_{n}-T_{s}\right) \rho_{s} V_{n s}
$$



## TABLE VI <br> TOTAL NET TRANSPORT

| $28^{\circ}$ S Pacific Ocean <br> Water Mass | Mass <br> Transport | Salt | Heat |
| :---: | :---: | :---: | :---: |
| Peru Surface Water | 2.16 | 75.17 | 628.53 |
| Pseudo Peru Surface Water | -0.14 | -5.06 | -41.83 |
| South Central Subtropic Surface Water | -1.10 | -38.72 | -328.21 |
| Surface Water of South Temperate Latitudes | 0.18 | 5.46 | 52.39 |
| South Subtropical Subsurface Water | 2.87 | 100.73 | 826.45 |
| Unknown | 0.62 | 21.19 | 178.74 |
| South Pacific Intermediate Water | -3.45 | -118.88 | -945.01 |
| South Pacific Upper Deep Water | -17.44 | -604.15 | -4800.14 |
| Underlying Deep Water | -5.42 | -187.73 | -1489.94 |
| Pacific Bottom Water | 10.51 | 388.62 | 3068.35 |
| Antarctic Bottom Water | 11.19 | 365.17 | 2883.24 |
| Net | -0.02 | 1.8 | 32.57 |
| $\left(10^{12} \mathrm{gm} / \mathrm{sec}\right)\left(10^{12} \mathrm{o} / 00 / \mathrm{sec}\right)\left(10^{12} \mathrm{cal} / \mathrm{sec}\right)$ |  |  |  |

## TABLE VII <br> TOTAL NET TRANSPORT

| Water Mass | Mass <br> Transport | Salt | Heat |
| :---: | :---: | :---: | :---: |
| Peru Surface Water | 0.0 | 0.0 | 0.0 |
| Pseudo Peru Surface Water | 0.37 | 13.00 | 105.52 |
| South Central Subtropic Surface Water | 0.0 | 0.0 | 0.0 |
| Surface Water of South Temperate Latitudes | 2.20 | 75.10 | 619.15 |
| South Subtropical Subsurface Water | 0.59 | 21.15 | 170.20 |
| Unknown | -0.02 | -0.79 | -6. 75 |
| South Pacific Intermediate Water | 7.78 | 267.01 | 2166.92 |
| South Pacific Upper Deep Water | -6.83 | -236.74 | -1880.73 |
| Underlying Deep Water | -9.13 | -316.75 | -2509.00 |
| Pacific Bottom Water | 2.65 | 92.11 | 727.47 |
| Antarctic Bottom Water | 2.47 | 85.88 | 677.54 |
| Net | 0.08 | -0.03 | 70.32 |

$\left(10^{12} \mathrm{gm} / \mathrm{sec}\right)\left(10^{12} 0 / 00 / \mathrm{sec}\right)\left(10^{12} \mathrm{cal} / \mathrm{sec}\right)$

The meridional mass transport is $\rho_{S} V_{n s}$ and $T_{n}$ is the northward moving water temperature, $\mathrm{T}_{\mathrm{S}}\left({ }^{\circ} \mathrm{C}\right)$ the southward moving water temperature. Mass continuity requires the mass transport $\rho_{s} V_{n s}$ (north) and $\rho_{s} V_{n s}$ (south) to cancel each other for a mass balance to be present across the section. This is not necessarily the case for heat transport as was evident by the results. The temperatures of the water being transported across the section differ, thereby producing the net meridional transport. Measurement of that heat flux was a prime objective of this study. Of the two latitudinal sections, the more poleward section, at $43^{\circ} \mathrm{S}$, will be discussed first. Ten separate water masses were identified and their respective net heat transports calculated (Table VIII).

Peru Surface Water accounted for a net northward transport of heat. Pseudo Peru Surface Water in the western Pacific had a net southern heat flow. Surface Water of the South Temperate Latitudes had a net northward flow of heat. There was also a net northward heat transport attributed to the South Subtropical Surface Water. The unknown surface water quantity had a small net heat transport to the south. Summarizing these separate surface or near surface water masses resulted in a net northward flow in the Upper level of approximately $888 \times 10^{12}$ cal/sec.

The Intermediate level consisted solely of South Pacific Intermediate water which had a net northward transport of $2166 \times 10^{12} \mathrm{cal} / \mathrm{sec}$.

There were two deep water masses identified: South

## TABLE VIII

## NET HEAT TRANSPORT

| Water Mass | $28^{\circ} \mathrm{S}$ | $43^{\circ} \mathrm{S}$ |
| :--- | ---: | ---: |
| Peru Surface Water | 628.5 | 0.0 |
| Pseudo Peru Surface Water | -41.8 | 105.5 |
| South Central Subtropic <br> Surface Water | -328.2 | 0.0 |
| Surface Water of the South <br> Temperate Latitudes | 52.5 | 619.2 |
| South Subtropic Subsurface <br> Water | 826.6 | 170.1 |
| Unknown | 178.7 | -6.8 |
| South Pacific Intermediate <br> Water | -945.0 | 2166.9 |
| South Pacific Upper Deep <br> Water | -4800.0 | -1880.7 |
| Underlying Deep Water | 3068.4 | 727.4 |
| Pacific Bottom Water | 2883.2 | 677.4 |
| Antarctic Bottom Water | 33.0 | 70.0 |

$$
\text { Units are } 10^{12} \mathrm{cal} / \mathrm{sec}
$$

侸

Pacific Upper Deep Water and Underlying Deep Water. These two deep water masses had a combined southward net transport of approximately $4390 \times 10^{12} \mathrm{cal} / \mathrm{sec}$. The bottom waters, Antarctic Bottom Water and Pacific Bottom Water transported heat to the north with a combined net transport of $1405 \times 10^{12} \mathrm{cal} / \mathrm{sec}$. When the deep and bottom net heat transports were combined, the resultant net was a southward flow of $2985 \times 10^{12}$ cal/sec. Along the more equatorward section of $28^{\circ}$ S there were some general consistencies with the results of $43^{\circ}$ S section and also some differences. Again the Peru Surface Water had a net northward transport while the Pseudo Peru Surface Water had a southward transport. A new water mass, the South Central Subtropic Surface Water, was identified and found to have a net southward transport. Surface Water of South Temperate Latitudes again had a northward transport, along with the South Subtropical Surface Water and the minor amount of unknown surface water. The combined total was calculated to be a net northward flow of $1316 \times 10^{12} \mathrm{cal} / \mathrm{sec}$.

As with the poleward section, the sole water mass found in the Intermediate level was South Pacific Intermediate Water. At this latitude it had a net southward transport of 945 x $10^{12}$ cal/sec rather than a northward transport as was the case at $43^{\circ} \mathrm{S}$.

The Deep and Bottom waters (South Pacific Upper Deep Water, Underlying Deep Water, Pacific Bottom Water and Antarctic Bottom Water) had a much larger amount of net heat transported per water mass or even totaled as Deep Water (net southward
flow of $6290 \times 10^{12} \mathrm{cal} / \mathrm{sec}$ ) and Bottom Water (net northward transport of $\left.5952 \times 10^{12} \mathrm{cal} / \mathrm{sec}\right)$. However when combined into the Deep and Bottom level, the net transport was 338 x $10^{12}$ cal/sec to the south.

A comparison of the Upper, Intermediate and Deep/Bottom net transports of the two latitudes is as shown in Table IX.

TABLE IX

## LAYER HEAT TRANSPORTS

## LEVEL

Upper
Middle
Deep/Bottom

| $\frac{28^{\circ} \mathrm{S}}{1316}$ | $\frac{43^{\circ} \mathrm{S}}{888}$ |
| :--- | ---: |
| -945 | 2167 |
| -338 |  |
| 33 x | $\frac{-2985}{70} \mathrm{x}$ |
| $10^{12} \mathrm{cal} / \mathrm{sec}$ | $10^{12} \mathrm{cal} / \mathrm{sec}$ |

There is larger net northward flow ( $70 \times 10^{12} \mathrm{cal} / \mathrm{sec}$ ) along $43^{\circ} \mathrm{S}$ than along $28^{\circ} \mathrm{S}\left(32 \mathrm{x} 10^{12} \mathrm{cal} / \mathrm{sec}\right)$. However the attempt to combine the effects of various water masses causes their respective effects to be smoothed over. Table VIII which shows the net heat transport of each individual water mass is much more informative.

It is evident from Table VIII that the net water mass transport directions appear reasonable when associated with their respective water masses (i.e. Peru Surface Water and Pacific Bottom Water, north; Underlying Deep Water, south). The net northward transport of heat is the surprising factor.

A change of only $l$ or $2 \%$ of the heat attributed to deep and bottom transport could easily have negated this northward transport. When one considers the initial assumptions upon which this study is based, this slight northward transport value is probably within the range of error for this study. D. OCEANIC EDDY CIRCULATION

The calculated transport components suggest the presence of oceanic eddies. Appendix $C$ illustrates the reverse pattern of point depth geostrophic velocities both vertically within a station pair and horizontally from one station pair to another.

Along the east coast of Australia, Harmon (1970) wrote that surface currents are complex, variable and strong. Water is transported south by large anticyclonic eddies, some of which may be 250 km in diameter. These eddies may be formed when the main East Australia current bulges to the south and becomes unstable, causing the bulge to separate as an eddy. Along both transits near the coast of Australia eddies were apparent.

One example is offered here. Figure 11 illustrates the surface circulation around New Zealand. Attention is directed to the anticyclonic eddy off the eastern coast which was studied by Burns (1972). The coastal currents are derived from Stanton (1972). The geostrophic current directions are in approximate agreement with those of Burns and Stanton.



Figure 11. $\begin{aligned} & \text { New Zealand Surface Circulation with } \\ & \text { Eddy }\end{aligned}$

## E. CALCULATED CIRCULATION PATTERN

The calculated circulation pattern is derived from mass transports and geostrophic current velocities. Fine scale interpretation was made using individual station-pair rates of mass transport along with geostrophic current velocities. Because of numerous direction and magnitude fluctuatiońs between station pairs, the station pairs were first combined in $20^{\circ}$ longitude segments. This proved to be too large a grouping scale as too many details were averaged out. Therefore $5^{\circ}$ longitude segments were tried and found to be more ideal as pictured in Figures $12,13,14$ and 15 . The net flow of the deep waters (South Pacific Upper Deep Water and Pacific Bottom Water) was found to be southward while the Bottom Waters (Pacific Bottom Water and Antarctic Bottom Water) were found to have a net flow to the north. For this reason of opposing flow, the Deep/Bottom layer utilized by Jung (1955) and Baker (1978) has been subdivided into Deep layer and Bottom layer. The circulation layers are therefore termed Upper Layer, Intermediate Layer, Deep Layer and Bottom Layer.

1. Upper Circulation

The Upper Layer transport (Figure 16) was found to be anticyclonic with a large anticyclonic gyre between the coast of South America and about the International Date Line. A smaller anticyclonic gyre was also apparent to the west in the Tasman/Coral Sea area. Along the South American Coast, a southward flowing current was detected. The sampling was done in late May and early June in this area; it is proposed

Figure 12. Mass Transport $28^{\circ}$ S (West Section)



Figure 14. Mass Transport $43^{\circ} \mathrm{S}$ (West Section)

Figure 15. Mass Transport $43^{\circ} S$ (East Section)

Figure 16. Upper Layer Mass Transport
that this southward flowing current is the subsurface counter current (Gunther, 1936) which has surfaced immediately adjacent to the coast. On the other side of the South Pacific, the south flowing East Australia current is picked up with velocities in general agreement with Scully-Powers (1972). The Upper level was calculated to have a net northward transport of mass, salt and heat at both $28^{\circ} \mathrm{S}$ and $43^{\circ} \mathrm{S}$ with the current directions in agreement with traditional theory (Sverdrup et al., 1942).
2. Intermediate Circulation

The Intermediate Layer was roughly between 500 m and 1800 m in both latitudinal tracks. Whether or not the circulation was cyclonic or anticyclonic was undetermined (Figure 17). Along the $28^{\circ} \mathrm{S}$ transit there was a net southward transport of mass, salt and heat. This is contrasted with the $43^{\circ} \mathrm{S}$ transit which has a net northward transport of mass, salt and heat. In the Tasman/Coral Sea area there were net northward transports in both transits.
3. Deep Circulation

As was mentioned previously in Section IV. p. 42, there is the possibility of cyclonic deep and bottom circulation in the South Pacific. Included in this circulation pattern are strong western boundary currents with weaker broader southern currents to the east. The data as illustrated in Figure 18 could be interpreted to have a cyclonic pattern. The Deep Water along both transits had a net southward transport. The western boundaries seemed to have a stronger net

Figure 17. Intermediate Layer Mass Transport
northward flow. The Tasman/Coral Sea did appear cyclonic in circulation; however the pattern in the general South Pacific east of that area was not as clear.
4. Bottom Circulation

The Bottom Layer as previously discussed is thought to have a cyclonic circulation with strong western boundary currents (Figure 19). In the bottom water detected along the $28^{\circ}$ S track, this cyclonic circulation indeed was the case. Also along the $43^{\circ}$ S track, east of the New Zealand Plateau, there was strong geostrophic evidence of this. In the Tasman Sea along $43^{\circ}$ S the circulation was not cyclonic, but anticyclonic with a net southward transport. For the total transit along both latitude sections the net mass, salt and heat transport was to the north.

Interest is drawn to the Tonga-Kermadec Trench located along $28^{\circ} \mathrm{S}$ at approximately $176^{\circ} \mathrm{W}$ and extending to a depth in the neighborhood of 8700 m . Gilmour (1972) reported a northward current against the western boundary of the ridge with a southerly counter current over the central trench with a broad northerly current on the eastern side. This was at a depth of 4000 m . Reid et al. (1968) wrote, based on the SCORPIO data, of a narrow ( 70 km wide) northern boundary current flowing between 2500 and 4000 m east of the Tonga-Kermadec Ridge (in the trench). Reid (1970) reported a southerly flow at 1000 m and a northerly flow at 3000 m . The results of this study are in agreement with Reid in that over the trench (station pair 150-149) a southward current was found between

ll00m and 3200 m with a northward flow below. These results, especially concerning bottom circulation, agree with others which have been mentioned.

## VI. CONCLUSIONS

Reid (1951) once wrote that in areas where data is lacking, geostrophic currents can be accepted with some confidence. Using the procedures set forth by Jung (1955), this study attempted to determine: (1) a level of no motion in the South Pacific dependent upon the principles of mass and salt conservation; (2) the direction of heat transport in the South Pacific; and (3) a four-vertically-layered circulation pattern computed by mass transport values under the geostrophic assumption and mass continuity.

Levels of no motion were calculated according to the procedure of Sverdrup et al. (1942) to be about $762 \mathrm{~m}\left(28^{\circ} \mathrm{S}\right)$ and $1203 \mathrm{~m}\left(43^{\circ} \mathrm{S}\right)$.

The current circulation for the Upper Layer was determined to be anticyclonic while the Bottom Layer was cyclonic. The Intermediate and Deep Layer patterns could not be determined with good confidence. The Upper Layer had a net northern transport at both latitudes, while the Intermediate Layer had southern transport at $28^{\circ} \mathrm{S}$ and a northern transport at $43^{\circ} \mathrm{S}$. The Deep Layer had a southern transport along both latitudes. The Bottom Layer had, as expected, a net northern transport. Known eddies off the east coast of Australia and New Zealand were located and deép trench circulation patterns were found.


Along both latitude lines, there was determined a net northward heat flow of 33 and $70 \times 10^{12} \mathrm{cal} / \mathrm{sec}$. A change of only 1 or $2 \%$ of the heat attributed to deep and bottom transport could easily have negated this northward transport. Given the initial assumptions made, this slight northward transport value is probably within the range of error for this study.

## OCEANOGRAPHIC STATIONS

The stations are listed West to East along both latitudes.

Station Number
185
184
183
182
181
180
179
178
177
176
175
174
173
172
171
170
169
168
167
166
165
164
163
162
161
160
159
158
157
156
155
154
153
152
151
150
149
148
147
146
145
144
143
142

## Latitude

$28^{\circ} 11.4^{\prime} \mathrm{S}$
$28^{\circ} 20.0^{\prime} \mathrm{S}$
$28^{\circ} 22.0^{\prime} \mathrm{S}$
$28^{\circ} 14.6^{\prime} \mathrm{S}$
$28^{\circ} 14.3^{\prime} \mathrm{S}$
$28^{\circ} 14.2^{\prime} \mathrm{S}$
$28^{\circ} 10.3^{\prime} \mathrm{S}$
$28^{\circ} 09.4^{\prime} \mathrm{S}$
$28^{\circ} 14.9^{\prime} \mathrm{S}$
$28^{\circ} 14.7^{\prime} \mathrm{s}$
$28^{\circ} 15.21 \mathrm{~S}$
$28^{\circ} 18.9^{\prime} \mathrm{S}$
$28^{\circ} 15.3^{\prime} \mathrm{S}$
$28^{\circ} 12.1^{\prime} \mathrm{S}$
$28^{\circ} 13.5^{\prime} \mathrm{S}$
$28^{\circ} 12.1^{\prime} \mathrm{S}$
$28^{\circ} 09.7^{\prime} \mathrm{S}$
$28^{\circ} 11.5^{\prime} \mathrm{S}$
$28^{\circ} 14.8^{\prime} \mathrm{S}$
$28^{\circ} 15.2^{\prime} \mathrm{S}$
$28^{\circ} 19.0^{\prime} \mathrm{S}$
$28^{\circ} 11.6^{\prime} \mathrm{S}$
$28^{\circ} 09.1^{\prime} \mathrm{S}$
$28^{\circ} 16.5^{\prime} \mathrm{S}$
$28^{\circ} 11.7^{\prime} \mathrm{S}$
$28^{\circ} 10.1^{\prime} \mathrm{S}$
$28^{\circ} 15.8^{\prime} \mathrm{S}$
$28^{\circ} 12.2^{\prime} \mathrm{S}$
$28^{\circ} 13.2$ S
$28^{\circ} 10.6^{\prime} \mathrm{S}$
$28^{\circ} 11.3^{\prime} \mathrm{S}$
$28^{\circ} 15.4^{\prime} \mathrm{S}$
$28^{\circ} 16.2^{\prime} \mathrm{S}$
$28^{\circ} 17.0^{\prime} \mathrm{S}$
$28^{\circ} 18.3^{\prime} \mathrm{S}$
$28^{\circ} 15.7^{\prime} \mathrm{S}$
$28^{\circ} 15.5^{\prime} \mathrm{S}$
$28^{\circ} 10.0^{\prime} \mathrm{s}$
$28^{\circ} 07.2^{\prime} \mathrm{S}$
$28^{\circ} 11.6^{\prime} \mathrm{S}$
$28^{\circ} 19.4^{\prime} \mathrm{S}$
$28^{\circ} 15.7^{\prime} \mathrm{S}$
$28^{\circ} 16.5^{\prime} \mathrm{s}$
$28^{\circ} 18.0^{\prime} \mathrm{S}$

## Longitude

| $153^{\circ}$ | $50.0^{\prime \prime} \mathrm{E}$ |
| :---: | :---: |
| $154^{\circ}$ | $03.4^{\prime} \mathrm{E}$ |
| $154{ }^{\circ}$ | $20.5^{\prime} \mathrm{E}$ |
| 154 | $45.6^{\prime} \mathrm{E}$ |
| $155^{\circ}$ | $15.2^{\prime} \mathrm{E}$ |
| $155^{\circ}$ | $50.7{ }^{\prime} \mathrm{E}$ |
| 156 | $33.7{ }^{\prime} \mathrm{E}$ |
| $157{ }^{\circ}$ | 11.21E |
| $158{ }^{\circ}$ | 07.0'E |
| 159 | 02.5 ${ }^{\text { }}$ E |
| $160^{\circ}$ | $05.5^{\prime} \mathrm{E}$ |
| $160^{\circ}$ | $56.8^{\prime} \mathrm{E}$ |
| 1610 | $55.4^{\prime} \mathrm{E}$ |
| $162{ }^{\circ}$ | $51.4^{\prime} \mathrm{E}$ |
| $163^{\circ}$ | $50.0^{\prime} \mathrm{E}$ |
| $164^{\circ}$ | $43.6{ }^{\prime} \mathrm{E}$ |
| $165^{\circ}$ | 44.8'E |
| $166^{\circ}$ | $45.4^{\prime} \mathrm{E}$ |
| 1670 | 36.31 E |
| $168^{\circ}$ | $38.5^{\prime} \mathrm{E}$ |
| $169^{\circ}$ | 28.7 ${ }^{\prime} \mathrm{E}$ |
| $171{ }^{\circ}$ | 06.0'E |
| $172{ }^{\circ}$ | $56.2^{\prime} \mathrm{E}$ |
| $174{ }^{\circ}$ | 47.4'E |
| $175^{\circ}$ | 46.0'E |
| $176^{\circ}$ | $37.6^{\prime} \mathrm{E}$ |
| $177^{\circ}$ | 33.51 E |
| $178^{\circ}$ | 26.9'E |
| $179^{\circ}$ | $21.0^{\prime} \mathrm{E}$ |
| $179^{\circ}$ | $32.0^{\prime} \mathrm{W}$ |
| $178^{\circ}$ | $38.9^{1} \mathrm{~W}$ |
| $177^{\circ}$ | $44.0^{\prime} \mathrm{W}$ |
| $177^{\circ}$ | $26.7^{\prime} \mathrm{W}$ |
| $177{ }^{\circ}$ | $04.7{ }^{\text {1 W }}$ |
| $176^{\circ}$ | 27.6 ${ }^{\text {'W }}$ |
| $176^{\circ}$ | 10.0'W |
| $175^{\circ}$ | 49.5'W |
| $174{ }^{\circ}$ | $50.7{ }^{1} \mathrm{~W}$ |
| $173^{\circ}$ | $58.0^{\prime} \mathrm{W}$ |
| $173{ }^{\circ}$ | 07.31 W |
| $171{ }^{\circ}$ | $36.0^{\prime} \mathrm{W}$ |
| $170^{\circ}$ | $14.8{ }^{\prime} \mathrm{W}$ |
| $168^{\circ}$ | $49.5^{\prime} \mathrm{W}$ |
| $167^{\circ}$ | $27.0^{\prime} \mathrm{W}$ |





| $148^{\circ}$ | 12.8'E |
| :---: | :---: |
| $148^{\circ}$ | 23.31 E |
| $148^{\circ}$ | $39.5^{\prime} \mathrm{E}$ |
| $149^{\circ}$ | 20.0'E |
| $150^{\circ}$ | 28.0'E |
| $152^{\circ}$ | 07.5'E |
| $154{ }^{\circ}$ | 24.0'E |
| $156^{\circ}$ | $37.3^{\prime} \mathrm{E}$ |
| $158^{\circ}$ | 48.8'E |
| $161{ }^{\circ}$ | 04.01E |
| $163^{\circ}$ | 18.71E |
| $165^{\circ}$ | $38.0^{\prime} \mathrm{E}$ |
| $166^{\circ}$ | 43.5'E |
| $167^{\circ}$ | $22.5^{1} \mathrm{E}$ |
| $168^{\circ}$ | 12.8'E |
| $169^{\circ}$ | 38.0'E |
| $173^{\circ}$ | 51.3'E |
| 1740 | $36.0^{\prime} \mathrm{E}$ |
| $175^{\circ}$ | 45.7'E |
| $177^{\circ}$ | $36.1^{\prime} \mathrm{E}$ |
| $179^{\circ}$ | $15.8^{\prime} \mathrm{E}$ |
| $179^{\circ}$ | 00.0'W |
| $177^{\circ}$ | 22.3'W |
| $175^{\circ}$ | 28.0'W |
| $173^{\circ}$ | $50.4^{\prime} \mathrm{W}$ |
| $172^{\circ}$ | 42.01 W |
| $171{ }^{\circ}$ | 42.2 ${ }^{\prime} \mathrm{W}$ |
| $170^{\circ}$ | 41.9'W |
| 1690 | 50.0'W |
| $169^{\circ}$ | 04.5 ${ }^{\prime} \mathrm{W}$ |
| $168^{\circ}$ | $30.6^{\prime} \mathrm{W}$ |
| 1670 | $53.5^{\prime} \mathrm{W}$ |
| 1660 | 47.01W |
| 1640 | $31.6^{\prime} \mathrm{W}$ |
| $162^{\circ}$ | 09.0'W |
| 1590 | 50.0'W |
| 1570 | $30.0^{\prime \prime} \mathrm{W}$ |
| 1550 | 11.5'W |
| 1520 | $53.0^{\prime} \mathrm{W}$ |
| 1500 | $35.0^{\prime} \mathrm{W}$ |
| 1480 | 18.8'W |
| 1460 | $03.3^{\prime} \mathrm{W}$ |
| 1430 | 43.0'W |
| 1410 | $26.0^{\prime \prime} \mathrm{W}$ |
| 1390 | 11.8'W |
| 1360 | 47.0'W |
| 1340 | 27.2'W |


| $43^{\circ} 1$ | 12.7's |
| :---: | :---: |
| $3^{\circ} 1$ | $15.8{ }^{\prime} \mathrm{S}$ |
| $3^{\circ} 1$ | $15.2{ }^{\prime} \mathrm{s}$ |
| $43^{\circ} 1$ | 15.315 |
| $43^{\circ}$ 1 | 16.3's |
| $43^{\circ} 1$ | 15.01 S |
| $43^{\circ} 1$ | 17.91 S |
| 1 | 18.41 S |
| $3^{\circ} 1$ | 16.1'S |
| $3 \bigcirc 1$ | 15.81 S |
| $43^{\circ} 1$ | 14.8 'S |
| 1 | 15.5's |
| $3^{\circ} 1$ | 15.1'S |
| $3^{\circ} 1$ | 15.0 ' |
| ${ }^{\circ} 1$ | 15.4 'S |
| 1 | 13.8 's |
| 1 | 18.6 'S |
| $3^{\circ} 1$ | 14.2 'S |
| 1 | 16.51 S |
| $3^{\circ} 1$ | 15.01 s |
| 1 | 14.01 s |
| $3^{\circ} 1$ | 15.01 S |
| 1 | 15.01 s |
| $3 \bigcirc$ | 14.715 |
| $43^{\circ} 1$ | 19.0 's |
| $3^{\circ} 1$ | 15.6 ' |
| $43^{\circ} 1$ | 16.6 's |
| $3^{\circ} 1$ | 12.81 s |
| $43^{\circ} 1$ | 15.01 S |
| $3^{\circ} 1$ | 17.01 S |
| $3^{\circ}$ | 15.6 |


| $132{ }^{\circ}$ | 14.6 |
| :---: | :---: |
| $129^{\circ}$ | 53 |
| $127^{\circ}$ | 36 |
| $125^{\circ}$ | 19. |
| $123^{\circ}$ | 02 |
| $120^{\circ}$ | 40 |
| $118^{\circ}$ |  |
| $116^{\circ}$ |  |
| $113^{\circ}$ |  |
| 112 | 27 |
| 109 | 12.1 |
| $106^{\circ}$ | 54 |
| $104^{\circ}$ | 34 |
| $102{ }^{\circ}$ | 19 |
| $99^{\circ}$ | 59.0 |
| $97^{\circ}$ | 38 |
| $95^{\circ}$ | 34.1 |
| $93^{\circ}$ | 24.3 |
| $90^{\circ}$ | 49 |
| $88^{\circ}$ | 31. |
| $86^{\circ}$ | 11 |
| $83^{\circ}$ | 52.6 |
| 81 | 40 |
| $80^{\circ}$ | $02.0{ }^{\prime \prime}$ |
| $79^{\circ}$ | 01.5 |
| $78^{\circ}$ | 01.2 |
| $77^{\circ}$ | 01.3 |
| $76^{\circ}$ | 04.2 |
| $75^{\circ}$ | 30.0 |
| $75^{\circ}$ | 24 |
| $75^{\circ}$ | 07.2 |

The following pages contain the net mass, salt and heat transports for each of the Upper, Intermediate, and Deep, and Bottom Layers (combinations of water masses) between each pair of stations observed along the two latitudes of this study. Each water layer is further subdivided by water mass. All mass transport values are expressed in terms of $10^{12} \mathrm{gm} / \mathrm{sec}$. The salt transport units are $10^{12} 0 / 00 / \mathrm{sec}$ and the heat transport units are $10^{12}$ cal/sec.

The following number system is used in this appendix:

1. = Peru Surface Water
2. = South-Central Subtropic Surface Water
3. = Surface Water of South Temperate Latitude
4. = South Subtropical Surface Water
5. = South Pacific Intermediate Water
6. = South Pacific Upper Deep
7. = Underlying Deep Water
8. = Antarctic Bottom Water
9. = Pacific Bottom Water

Unknown = Unclassified Water Mass

- Indicates southward flow

| Station Pain | Upper <br> Total | 1 | 2 | 3 | 4 | Unknown |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 185-184 | -0.204 |  |  |  | -0.06I | -0.143 |
| 184-183 | -6.019 |  | -3.175 |  | -2.844 |  |
| 183-182 | -2.706 |  | -1.319 |  | -1.387 |  |
| 182-181 | 5.269 |  | 3.213 |  | 2.056 | ' |
| 181-180 | -2.626 |  | -1.029 |  | -1.597 |  |
| 180-179 | -1.174 |  | -0.496 |  | -0.678 |  |
| 179-178 | -3.554 |  | -1.586 |  | -1.968 |  |
| 178-177 | 1.563 |  | 0.715 |  | 0.848 |  |
| 177-176 | -0.106 |  | -0.048 |  | -0.058 |  |
| 176-175 | 1.638 |  | 0.831 |  | 0.807 |  |
| 175-174 | 1.296 |  | 0.487 |  | 0.809 |  |
| 174-173 | 1.988 |  | 0.883 |  | 1.106 |  |
| 173-172 | 0.883 |  | -0.052 |  | 0.934 |  |
| 172-171 | -2.108 |  | -0.407 |  | -1.701 |  |
| 171-170 | -2.396 |  | -0.448 |  | -1.948 |  |
| 170-169 | 1.410 |  | 0.284 |  | 1.127 |  |
| 169-168 | 1.767 |  | 0.696 |  | 1.071 |  |
| 168-167 | 3.911 |  | 1.374 |  | 2.537 |  |
| 167-166 | -0.301 |  |  |  | -0.301 |  |
| 166-165 | -2.009 |  | -0.760 |  | -1.250 |  |
| 165-164 | -4.492 |  | -1.520 |  | -2.972 |  |
| 164-163 | 7.649 |  | 2.139 |  | 5.510 |  |
| 163-162 | -3.644 |  | -0.545 |  | -3.100 |  |
| 162-161 | -2.954 |  | -0.842 |  | -2.112 |  |
| 161-150 | 1.181 |  | 0.228 |  | 0.953 |  |
| 160-159 | 0.561 |  | 0.281 |  | 0.280 |  |
| 159-158 | 3.025 |  | 0.525 |  | 2.500 |  |
| 158-157 | 0.013 |  | -0.093 |  | 0.106 |  |
| 157-156 | -4.390 |  | -1. 524 |  | -2.866 |  |
| 156-155 | 3.070 |  | 1.217 |  | 1.853 |  |
| 155-154 | 3.230 |  |  |  | 3.230 |  |
| 154-153 | 0.172 |  |  |  | 0.172 |  |
| 153-152 | -0.368 |  | -0.074 |  | -0.294 |  |
| 152-151 | -0.032 |  | -0.018 |  | -0.014 |  |
| 151-150 | -0.383 |  | -0.155 |  | -0.227 |  |
| 150-149 | -0.954 |  | -0.127 |  | -0.827 |  |
| 149-148 | -3.162 |  | -1.065 |  | -2.096 |  |
| 148-147 | 3.775 |  | 1.545 |  | 2.230 |  |
| 147-146 | 0.673 |  |  |  | 0.673 |  |
| 146-145 | 0.318 |  |  |  | 0.318 |  |
| 145-144 | -2.820 |  | -0.517 |  | -2.303 |  |
| 144-143 | 2.117 |  | 0.360 |  | 1.757 |  |
| 143-142 | -0.446 |  | -0.062 |  | -0.384 |  |
| 142-141 | -3.298 |  | -1.304 |  | -1.995 |  |
| 141-140 | 1.598 |  | 0.715 |  | 0.883 |  |
| 140-139 | 4.056 |  | 1.451 |  | 2.606 |  |
| 139-138 | -0.330 |  | -0.194 |  | -0.135 |  |
| 138-137 | -0.118 |  | 0.051 |  | -0.169 |  |

Station Pair

137-136
136-135
135-134
134-133
133-132 132-131 131-130 130-129 129-128 128-127 127-126 126-125 125-124 124-123 123-122 122-121 121-120 120-119 119-118 118-117 117-116 116-115 115-114 114-113 113-112 112-111 111-110 110-109 109-108 108-107 107-106 106-105 105-104 104-103 103-102 102-101 101-100 100-099 099-098 098-097 097-096 096-095 095-094 094-093 093-092 092-091 091-090 090-089 089-088 088-087 087-086

Upper Total
1.195
2.589
0.883
-0.054
-0.950
0.167
$-0.690$
$-2.963$
$-0.782$
4.096 0.117
-2.296
$-1.100$
1.408
-3.160
-1.545 3.445
-3.521
2.507
-2.910
4.202
-1.788 3.793 0.149
-1. 501 0.813 0.737
-2. 410 1.338 0.561 $-0.179$ 0.727 0.823
-0. 319
0.604
0.061
$-0.274$
0.071

| -0.018 | 0.018 |
| ---: | ---: |
| 0.189 | 0.097 |

$$
-0.212 \quad-0.172
$$

2
0.003
$-0.590$
$-1.270$
-0. 427 2.101
$-0.108$
$-0.395$
-0.224
0.264
-0.315
0.573
0.148
-0.169
-0.172
-0.315
0.573
0.148
-0.169
-0.172

-0.904
-0.523
0.498
-1.605
-0.822
1.754
-1.867
1.284
-1.256
1.958
-0.642
1.353
0.023
-0.583
0.402
0.229
-1.123
0.619
-0.904
-0.523
0.498
-1.605
-0.822
1.754
-1.867
1.284
-1.256
1.958
-0.642
1.353
0.023
-0.583
0.402
0.229
-1.123
0.619
0.296
0.018
0.097

Unknown

| 3 | 4 | Unknown |
| :---: | :---: | :---: |
|  | -0.880 |  |
|  | 2.017 |  |
|  | 0.735 |  |
|  | 0.115 |  |
|  | -0.567 |  |
|  | 0.163 |  |
|  | -0.100 | ' |
|  | -1.692 |  |
|  | -0.355 |  |
|  | 1.995 |  |
|  | 0.225 |  |
|  | -0.997 |  |
|  | -0.354 |  |
|  | 0.645 |  |
|  | -1.555 |  |
|  | -0.723 |  |
|  | 1.691 |  |
|  | -1.655 |  |
|  | 1.223 |  |
|  | -1.654 |  |
|  | 2.244 |  |
|  | -0.827 |  |
|  | 1.836 |  |
|  | 0.065 |  |
|  | -0.643 |  |
|  | 0.411 |  |
|  | 0.438 |  |
|  | -1.288 |  |
|  | 0.719 |  |
|  | 0.265 |  |
|  | -0.179 |  |
|  | 0.440 |  |
|  | 0.466 |  |
| 0.107 | 0.259 |  |
| -0.221 | -0.645 |  |
| 0.091 | -0.374 |  |
| 0.401 | 1.365 |  |
| 0.045 | 0.091 |  |
| 0.214 | -0.024 |  |
| -0.053 | -0.100 |  |
| 0.936 | 0.471 |  |
| -0.015 | 0.029 |  |
| 0.402 | 0.106 |  |
| -1.293 | -1.601 |  |
| 2.264 | 2.159 |  |
| 1.197 | 0.281 | 0.619 |
| -0.274 | -0.049 |  |
| -0.724 | -0.513 |  |
| -1.131 | -0.418 |  |
| -1.771 | -1.465 |  |
| 0.002 |  |  |

4
-0. 275
-0.099

| Station | Upper |
| :---: | ---: |
| Pair | Total |
| 185-184 | -7.242 |
| $184-183$ | -213.278 |
| $183-182$ | -96.104 |
| $182-181$ | 187.109 |
| $181-180$ | -93.212 |
| $180-179$ | -41.652 |
| $179-178$ | -126.326 |
| $178-177$ | 55.521 |
| $177-176$ | -3.735 |
| $176-175$ | 58.321 |
| $175-174$ | 46.024 |
| $174-173$ | 70.577 |
| $173-172$ | 30.888 |
| $172-171$ | -74.438 |
| $171-170$ | -84.893 |
| $170-169$ | 50.068 |
| $169-168$ | 62.689 |
| $168-167$ | 138.958 |
| $167-166$ | -10.733 |
| $166-165$ | -71.387 |
| $165-164$ | -159.235 |
| $164-163$ | 271.225 |
| $163-162$ | -129.093 |
| $162-161$ | -104.818 |
| $161-160$ | 41.832 |
| $160-159$ | 19.987 |
| $159-158$ | 107.328 |
| $158-157$ | 0.300 |
| $157-156$ | -155.633 |
| $156-155$ | 109.056 |
| $155-154$ | 114.584 |
| $154-153$ | 6.066 |
| $153-152$ | -13.063 |
| $152-151$ | -1.154 |
| $151-150$ | -13.736 |
| $150-149$ | -33.739 |
| $149-148$ | -112.143 |
| $148-147$ | 134.115 |
| $147-146$ | 23.805 |
| $146-145$ | 11.147 |
| $145-144$ | -100.147 |
| $144-143$ | 75.156 |
| $143-142$ | -15.805 |
| $142-141$ | -117.280 |
| $141-140$ | 56.706 |
| $140-139$ | 143.948 |
| $139-138$ | -11.888 |
| $138-137$ | -4.104 |
| $137-136$ | -42.399 |



Station Pair

136-135 135-134 134-133 133-132 132-131 131-130 130-129 129-128 128-127 127-126 126-125 125-124 124-123 123-122 122-121 121-120 120-119 119-118 118-117 117-116 116-115 115-114 114-113 113-112 112-111 111-110 110-109 109-108 108-107 107-106 105-105 105-104 104-103 103-102 102-101 101-100 100-099 099-098 098-097 097-096 096-095 095-094 094-093 093-092 092-091 091-090 090-089 089-088 088-087 087-086

Upper Total
91.789
31.160
-2.059
$-33.600$
5.826
-24.401
$-104.594$
-27.592
144.527
4.081
$-81.199$
$-38.960$
49.756
-111.714
$-54.726$
121.814
$-124.689$
88.794
-102.882
148.441
$-63.250$
133.894 5.229
-53.016 28.741 25.885
-85.015 47.230 19.768 -6. 213 25.449 28.772 29.377
-58.937 19.644 76.602 5.406 27.145 -3.968 78.345 -5.863 33.038
-99.996
152.745 72.033
-11. 141
$-42.548$
-62.947
$-115.659$
-9. 473
$-3.414$
0.122
-20.871
$-45.043$
$-15.140$
74.448
$-3.830$
-11. 334
21.409 2.144 -9.711
2.512
20.370
5.273
-6.008
$-6.096$
-14.017 -32.138
$-18.589$

$$
17.719
$$

-57.150
-29.308
62.528
-66.620
45.839
$-44.886$

$$
69.834
$$

-22.953
48.305
0.806
$-20.784$ 14.351

$$
8.164
$$

-40.079 22.122 10.526

$$
\begin{array}{rr}
-0.627 & 0.631 \\
6.704 & 3.452
\end{array}
$$

3.702
$-7.635$
3.152
13.807
1.532
7.393
-1. 804
32.059
-0. 520
13.769
$-44.564$
78.104
41.145
$-9.436$
-24.896
-39.019
-61. 403

4
Unknown

$$
\begin{array}{r}
71.419 \\
25.887 \\
3.949 \\
-19.992 \\
5.704 \\
-3.530 \\
-59.551 \\
-12.452 \\
70.079 \\
7.911 \\
-35.044 \\
-12.443 \\
22.665 \\
-54.564 \\
-25.418 \\
59.286 \\
-58.069 \\
42.955 \\
-57.996 \\
78.607 \\
-28.964 \\
64.180 \\
2.279 \\
-22.521 \\
14.390 \\
15.209 \\
-44.936 \\
25.108 \\
9.242 \\
-6.218 \\
15.292 \\
16.174 \\
8.967 \\
-22.297 \\
-12.894 \\
47.062 \\
3.126 \\
-0.832 \\
-3.434 \\
16.219 \\
0.995 \\
3.658 \\
-55.432 \\
74.641 \\
9.695 \\
-1.706 \\
-17.652 \\
-14.454 \\
-50.842 \\
\hline 19.194 \\
\hline 109
\end{array}
$$

| Station | Upper |
| :--- | ---: |
| Pair | Total |
| 185-184 | -59.782 |
| $184-183$ | -1751.812 |
| $183-182$ | -790.568 |
| $182-181$ | 1538.372 |
| $181-180$ | -764.410 |
| $180-179$ | -341.202 |
| $179-178$ | -1035.459 |
| $178-177$ | 455.043 |
| $177-176$ | -30.514 |
| $176-175$ | 477.918 |
| $175-174$ | 376.586 |
| $174-173$ | 577.762 |
| $173-172$ | 251.512 |
| $172-171$ | -608.130 |
| $171-170$ | -694.034 |
| $170-169$ | 409.466 |
| $169-168$ | 512.715 |
| $168-167$ | 1136.044 |
| $167-166$ | -87.722 |
| $166-165$ | -583.327 |
| $165-164$ | -1301.005 |
| $164-163$ | 2214.865 |
| $163-162$ | -1053.420 |
| $162-161$ | -856.662 |
| $161-160$ | 341.668 |
| $160-159$ | 163.728 |
| $159-158$ | 876.738 |
| $158-157$ | 2.084 |
| $157-156$ | -1273.071 |
| $156-155$ | 892.386 |
| $155-154$ | 935.169 |
| $154-153$ | 49.331 |
| $153-152$ | -106.607 |
| $152-151$ | -9.437 |
| $151-150$ | -112.526 |
| $150-149$ | -275.408 |
| $149-148$ | -917.000 |
| $148-147$ | 1096.400 |
| $147-146$ | 194.052 |
| $146-145$ | 90.724 |
| $145-144$ | -817.891 |
| $144-143$ | 613.629 |
| $143-142$ | -128.940 |
| $142-141$ | -958.906 |
| $141-140$ | 463.771 |
| $140-139$ | 1176.566 |
| $139-138$ | -97.614 |
| $138-137$ | -33.394 |


| 1 | 2 | 3 | 4 | Unknown |
| :---: | :---: | :---: | ---: | :---: |
|  |  |  | -17.953 | -41.829 |
| -932.054 | -932.054 |  | -819.758 | -41.829 |

-222. 306
-445.207
625.692
-159.435
-246. 607
66.864
82.293
153.590
$-27.232$
$-446.980$
356.762
$-21.639$
-5.213
-45.541
-37.301

- 312.328
452.155
-151.396
105.292
-18.198
$-381.726$
209.391
424.568
-56.831
14.860
$-41.829$

| Station Pair | Upper <br> Total | 1 | 2 | 3 | 4 | Unknown |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 137-136 | -347.357 |  | -92.075 |  | -255.282 |  |
| 136-135 | 751.986 |  | 167.692 |  | 584.294 |  |
| 135-134 | 254.675 |  | 43.340 |  | 211.335 |  |
| 134-133 | -17.505 |  | -49.479 |  | 31.974 |  |
| 133-132 | -275.610 | -62.079 | -50.229 |  | -163.301 |  |
| 132-131 | 47.487 | 0.918 |  |  | 46.569 |  |
| 131-130 | -201.601 | -172.752 |  |  | -28.84,9 |  |
| 130-129 | -859.335 | -372.501 |  |  | -486.834 |  |
| 129-128 | -227.261 | -125.401 |  |  | -101.860 |  |
| 128-127 | 1189.058 | 615.827 |  |  | 573.242 |  |
| 127-126 | 32.850 | -31.853 |  |  | 64.703 |  |
| 126-125 | -668.687 | -115.284 | -266.296 |  | -287.106 |  |
| 125-124 | -321.643 | -65.382 | -154.028 |  | -102.232 |  |
| 124-123 | 410.355 | 77.380 | 146.825 |  | 186.150 |  |
| 123-122 | -920.672 |  | -472.545 |  | -448.127 |  |
| 122-121 | -451.207 |  | -242.161 |  | -209.045 |  |
| 121-120 | 1003.824 |  | 516.353 |  | 487.470 |  |
| 120-119 | -1027.494 |  | -549.478 |  | -478.016 |  |
| 119-118 | 731.727 |  | 378.167 |  | 353.560 |  |
| 118-117 | -847.038 |  | -369.998 |  | -477.039 |  |
| 117-116 | 1222.520 |  | 575.896 |  | 646.625 |  |
| 116-115 | -521.255 | -93.599 | -189.117 |  | -238.540 |  |
| 115-114 | 1103.503 | 176.766 | 398.088 |  | 528.650 |  |
| 114-113 | 43.142 | 17.733 | 6.665 |  | 18.744 |  |
| 113-112 | -436.984 | -80.173 | -171.458 |  | -185.353 |  |
| 112-111 | 236.777 |  | 118.241 |  | 118.536 |  |
| 111-110 | 213.247 | 20.732 | 67.276 |  | 125.238 |  |
| 110-109 | -700.104 |  | -329.812 |  | -370.292 |  |
| 109-108 | 388.644 |  | 181.832 |  | 206.812 |  |
| 108-107 | 162.938 |  | 86.700 |  | 76.238 |  |
| 107-106 | -51.303 | -5.177 | 5.204 |  | -51.330 |  |
| 106-105 | 210.170 | 55.371 | 28.476 |  | 126.323 |  |
| 105-104 | 237.952 | 104.196 |  |  | 133.757 |  |
| 104-103 | 243.424 | 138.396 |  | 30.736 | 74.292 |  |
| 103-102 | -488.411 | -240.418 |  | -63.446 | -184.547 |  |
| 102-101 | 165.265 | 244.008 |  | 26.150 | -104.893 |  |
| 101-100 | 631.627 | 130.943 |  | 114.811 | 385.872 |  |
| 100-099 | 44.894 | 6.224 |  | 12.749 | 25.922 |  |
| 099-098 | 226.181 | 171.401 |  | 61.545 | -6.766 |  |
| 098-097 | -32.556 | 10.616 |  | -15.004 | -28.169 |  |
| 097-096 | 653.104 | 252.598 |  | 267.535 | 132.972 |  |
| 096-095 | -49.483 | -53.238 |  | -4.408 | 8.163 |  |
| 095-094 | 276.185 | 131.361 |  | 114.861 | 29.963 |  |
| 094-093 | -821.394 |  |  | -368.426 | -452.923 |  |
| 093-092 | 1259.124 |  |  | 645.471 | 613.652 |  |
| 092-091 | 599.012 |  |  | 341.112 | 79.160 | 178.740 |
| 091-090 | -91.736 |  |  | -77.805 | -13.931 |  |
| 090-089 | -353.827 |  |  | -206.171 | -147.656 |  |
| 089-088 | -520.306 | -79.558 |  | -322.667 | -118.082 |  |
| 088-087 | -949.172 | -28.527 |  | -505.227 | -415.418 |  |
| 087-086 | 0.578 |  |  | -0.578 |  |  |

[^1]| Station Pair | Intermediate Total | 5 |
| :---: | :---: | :---: |
| 185-184 |  |  |
| 184-183 | 0.950 | 0.950 |
| 183-182 | 2.735 | 2.735 |
| 182-181 | 0.953 | 0.953 |
| 181-180 | -0.061 | -0.061 |
| 180-179 | -0.378 | -0.378 |
| 179-178 | 2.603 | 2.603 |
| 178-177 | -2.708 | -2.708 |
| 177-176 | 1.258 | 1.258 |
| 176-175 | -0.679 | -0.679 |
| 175-174 | -0.603 | -0.603 |
| 174-173 | -0.428 | -0.428 |
| 173-172 | -0.809 | -0.809 |
| 172-171 | 0.705 | 0.705 |
| 171-170 | 6.475 | 6.475 |
| 170-169 | -2.651 | -2.651 |
| 169-168 | -1.625 | -1.625 |
| 168-167 | 0.103 | 0.103 |
| 167-166 | -0.332 | -0.332 |
| 166-165 | 1.738 | 1.738 |
| 165-164 | 5.066 | 5.066 |
| 164-163 | -9.265 | -9.265 |
| 163-162 | 5.381 | 5.381 |
| 162-161 | 1.111 | 1.111 |
| 161-160 | -1.833 | -1.833 |
| 160-159 | 0.672 | 0.672 |
| 159-158 | -2.522 | -2.522 |
| 158-157 | -2.341 | -2.341 |
| 157-156 | 2.473 | 2.473 |
| 156-155 | -0.001 | -0.001 |
| 155-154 | -0.193 | -0.193 |
| 154-153 | 0.048 | 0.048 |
| 153-152 | -3.154 | -3.154 |
| 152-151 | 0.753 | 0.753 |
| 151-150 | 0.525 | 0.525 |
| 150-149 | -0.334 | -0.334 |
| 149-148 | 2.873 | 2.873 |
| 148-147 | -2.962 | -2.962 |
| 147-146 | -0.370 | -0.370 |
| 146-145 | -0.195 | -0.195 |
| 145-144 | 1.576 | 1.576 |
| 144-143 | -0.815 | -0.815 |
| 143-142 | -0.545 | -0.545 |
| 142-141 | 1.461 | 1.461 |
| 141-140 | -1.432 | -1.432 |
| 140-139 | -1.875 | -1.875 |
| 139-138 | -0.415 | -0.415 |
| 138-137 | 0.336 | 0.336 |


| Station Pair | Intermediate Total | 5 |
| :---: | :---: | :---: |
| 137-136 | -0.001 | -0.001 |
| 136-135 | -0.211 | -0.211 |
| 135-134 | -0.320 | -0.320 |
| 134-133 | -0.428 | -0.428 |
| 133-132 | -0.273 | -0.273 |
| 132-131 | -1.339 | -1.339 |
| 131-130 | 0.786 | 0.786 |
| 130-129 | 0.540 | 0.540 |
| 129-128 | -0.792 | -0.792 |
| 128-127 | 0.361 | 0.361 |
| 127-126 | -0.898 | -0.898 |
| 126-125 | 1.596 | 1.596 |
| 125-124 | -1. 107 | -1.107 |
| 124-123 | 0.222 | 0.222 |
| 123-122 | 0.059 | 0.059 |
| 122-121 | 0.062 | 0.062 |
| 121-120 | -0.679 | -0.679 |
| 120-119 | 0.107 | 0.107 |
| 119-118 | 1.112 | 1.112 |
| 118-117 | -0.697 | -0.697 |
| 117-116 | -1.020 | -1.020 |
| 116-115 | 0.873 | 0.873 |
| 115-114 | -0.991 | -0.991 |
| 114-113 | -0.177 | -0.177 |
| 113-112 | 0.167 | 0.167 |
| 112-111 | 0.181 | 0.181 |
| 111-110 | -1.688 | -1.688 |
| 110-109 | 0.514 | 0.514 |
| 109-108 | -0.038 | -0.038 |
| 108-107 | -0.179 | -0.179 |
| 107-106 | 0.116 | 0.116 |
| 106-105 | -0.144 | -0.144 |
| 105-104 | -0.256 | -0.256 |
| 104-103 | -0.806 | -0.806 |
| 103-102 | 0.289 | 0.289 |
| 102-101 | -0.125 | -0.125 |
| 101-100 | -0.605 | -0.605 |
| 100-099 | -0.572 | -0. 572 |
| 099-098 | 0.034 | 0.034 |
| 098-097 | -0.877 | -0.877 |
| 097-096 | -0.307 | -0.307 |
| 096-095 | 0.165 | 0.165 |
| 095-094 | -0. 565 | -0.665 |
| 094-093 | 2.386 | 2.386 |
| $093-092$ | -1.747 | -1.747 |
| 092-091 | -1.869 | -1.869 |
| 091-090 | 1.787 | 1.787 |
| 090-089 | 0.907 | 0.907 |
| 089-088 | 2.208 | 2.208 |
| 088-087 | -0.376 | -0.376 |
| 087-086 |  |  |

Total -3.44

| Station | Intermediate Total | 5 |
| :---: | :---: | :---: |
| 185-184 |  |  |
| 184-183 | 32.766 | 32.766 |
| 183-182 | 94.625 | 94.625 |
| 182-181 | 32.991 | 32.991 |
| 181-180 | -2.092 | -2.092 |
| 180-179 | -13.072 | -13.072 |
| 179-178 | 89.943 | 89.943 |
| 178-177 | -93.616 | -93.616 |
| 177-176 | 43.492 | 43.492 |
| 176-175 | -23.465 | -23.465 |
| 175-174 | -20.851 | -20.851 |
| 174-173 | -14.774 | -14.774 |
| 173-172 | -27.849 | -27.849 |
| 172-171 | 24.288 | 24.288 |
| 171-170 | 223.906 | 223.906 |
| 170-169 | -91.698 | -91.698 |
| 169-168 | -56.198 | -56.198 |
| 168-167 | 3.567 | 3.567 |
| 167-166 | -11.457 | -11.457 |
| 166-165 | 60.039 | 60.039 |
| 165-164 | 175.054 | 175.054 |
| 164-163 | -320.065 | -320.065 |
| 163-162 | 185.808 | 185.808 |
| 162-161 | 38.349 | 38.349 |
| 161-160 | -63.321 | -63.321 |
| 160-159 | 23.186 | 23.186 |
| 159-158 | -87.084 | -87.084 |
| 158-157 | -80.845 | -80.845 |
| 157-156 | 85.120 | 85.120 |
| 156-155 | -0.041 | -0.041 |
| 155-154 | -6.636 | -6.636 |
| 154-153 | 1.648 | 1.648 |
| 153-152 | -109.077 | -109.077 |
| 152-151 | 26.035 | 26.035 |
| 151-150 | 18.107 | 18.107 |
| 150-149 | -11.552 | -11.552 |
| 149-148 | 99.185 | 99.185 |
| 148-147 | -102.355 | -102.355 |
| 147-146 | -12.740 | -12.740 |
| 146-145 | -6.699 | -6.699 |
| 145-144 | 54.367 | 54.367 |
| 144-143 | -28.144 | -28.144 |
| 143-142 | -18.801 | -18.801 |
| 142-141 | 50.430 | 50.430 |
| 141-140 | -49.405 | -49.405 |
| 140-139 | -64.661 | -64.661 |
| 139-138 | -14.301 | -14.301 |
| 138-137 | 11.581 | 11.581 |

Station Pair

137-136 136-135 135-134 134-133 133-132 132-131 131-130 130-129 129-128 128-127 127-126 126-125 125-124 124-123 123-122 122-121 121-120 120-119 119-118 118-117 117-116 116-115 115-114 114-113 113-112 112-111 111-110 110-109 109-108 108-107 107-106 106-105 105-104 104-103 103-102 102-101 101-100 100-099 099-098 098-097 097-096 096-095 095-094 094-093 093-092 092-091 091-090 090-089 089-088 088-087 087-086

Intermediate Total
$-0.033$
-7. 269
$-11.029$
-14.781
$-9.406$
-46.181
27.096
18.628
-27.321
12.455

- 30.972
55.077
-38.178
7.627
2.035
2.153
-23.441
3.748
38.332
-24.050
-35.176
30.098
-34.184
$-6.098$
5.750
6.247
-58.287
17.753
$-1.345$
$-6.168$
4.012
$-4.962$
-8.861
$-27.839$
9.986
-4.271
$-20.962$
-19. 735
1.173
-30.297
$-10.654$ 5.687
-23.030
82.544
$-60.443$
$-64.654$ 61.826 31.419 76.380
-12.956

Station Pair

185-184 184-183 183-182 182-181 181-180 180-179 179-178 178-177 177-176 176-175 175-174 174-173 173-172 172-171 171-170 170-169 169-168 168-167 167-166 166-165 165-164 164-163 163-162 162-161 161-160 160-159 159-158 158-157 157-156 156-155 155-154 154-153 153-152 152-151 151-150 150-149 149-1.48 148-147 147-146 146-145 145-144 144-143 143-142 142-141 141-140 140-139 139-138 138-137

Intermediate Total

## 5

263.562
755.656
263.393
-16.916
-104.651
720.120
$-748.827$
348.113
$-187.809$
-166.640
-118.945
-224.707 195.964
1789.362
-732.697
-449.296
28.970
-93.008
480.973
1400.453
2562.264
1488.644 307.375

- 506.477 185.725
$-697.062$
$-647.250$ 689.142 $-0.305$
-53.862 13.364
$-870.377$
207.858
145.120
-92.245
793.647
-817.954
-102.711
-53.799
435.331
-225.018
-150.496
403.450
$-395.384$
-517.744
-114.376
92.485


Total -945.001

## Mass Transport $28^{\circ} 15 .^{\prime} \mathrm{S}$

| Station Pair | Deep/ Bottom Total | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 185-184 |  |  |  |  |  |
| 184-183 |  |  |  |  |  |
| 183-182 | 6.887 | 6.887 |  |  |  |
| 182-181 | 9.163 | 1.815 | 2.025 |  | 5.323 |
| 181-180 | 3.963 | 1.038 | 1.552 |  | 1.373 |
| 180-179 | -3.671 | -0.366 | -0.834 |  | -2.471 |
| 179-178 | 6.198 | 1.956 | 1.850 |  | 2.392 |
| 178-177 | -1.990 | -1.990 |  | , |  |
| 177-176 | 0.724 | 0.724 |  |  |  |
| 176-175 | -0.772 | -0.772 |  |  |  |
| 175-174 |  |  |  |  |  |
| 174-173 |  |  |  |  |  |
| 173-172 |  |  |  |  |  |
| 172-171 |  |  |  |  |  |
| 171-170 |  |  |  |  |  |
| 170-169 | -6.917 | -6.917 |  |  |  |
| 169-168 | -4.109 | -4.109 |  |  |  |
| 168-167 |  |  |  |  |  |
| 167-166 |  |  |  |  |  |
| 166-165 | 2.169 | 2.169 |  |  |  |
| 165-164 | 5.057 | 5.057 |  |  |  |
| 164-163 | -5.374 | -5.374 |  |  |  |
| 163-162 | 5.019 | 5.019 |  |  |  |
| 162-161 | 3.168 | 3.168 |  |  |  |
| 161-160 | -7.460 | -7.460 |  |  |  |
| 160-159 | 2.130 | 2.130 |  |  |  |
| 159-158 | -7.425 | -5.440 | -1.984 |  |  |
| 158-157 | -4.330 | -4.330 |  |  |  |
| 157-156 |  |  |  |  |  |
| 156-155 |  |  |  |  |  |
| 155-154 |  |  |  |  |  |
| 154-153 |  |  |  |  |  |
| 153-152 |  |  |  |  |  |
| 152-151 | 3.551 | 2.067 | 1.484 |  |  |
| 151-150 | 9.468 | 1.076 | 2.584 |  | 5.808 |
| 150-149 | 5.568 | -0.805 | -0.196 | 5.785 | 0.784 |
| 149-148 | 23.584 | 6.565 | 3.274 | 10.740 | 3.005 |
| 148-147 | -20.513 | -6.073 | -6.574 |  | -7.866 |
| 147-146 | -0.245 | 0.131 | -0.288 |  | -0.088 |
| 146-145 | -0.787 | -0.859 | -0.083 | -0.347 | 0.502 |
| 145-144 | 13.389 | 3.007 | 3.452 | 4.433 | 2.497 |
| 144-143 | -7.424 | -2.439 | -2.862 | -1.126 | -0.996 |
| 143-142 | 0.537 | -0.618 | -0.093 | 0.912 | 0.336 |
| 142-141 | 11.170 | 2.832 | 2.972 | 3.845 | 1.522 |
| 141-140 | -6.072 | -2.832 | -3.352 | 0.191 | -0.078 |
| 140-139 | -24.599 | -4.890 | -8.259 | -11.450 |  |
| 139-138 | -2.767 | -1.065 | -1.040 | -0.662 |  |
| 138-137 | 1.171 | 0.511 | 0.392 | 0.268 |  |


| Station | Deep/ Bottom |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Pair | Total | 6 | 7 | 8 | 9 |
| 137-136 | 5.609 | 0.999 | 1.419 | 3.192 |  |
| 136-135 | -6.598 | -1.215 | -2.135 | -3.248 |  |
| 135-134 | -3.520 | -0.391 | -2.174 | -0.524 | -0.431 |
| 134-133 | -5.782 | -1.707 | -2.111 |  | -1.963 |
| 133-132 | 4.839 | 0.990 | 2.403 |  | 1.446 |
| 132-131 | -13.116 | -3.892 | -6.628 | -1.497 | -1.100 |
| 131-130 | 5.262 | 1.677 | 2.386 | 0.683 | 0.516 |
| 130-129 | 2.332 | 1.385 | 0.947 |  |  |
| 129-128 | -1.549 | -1.010 | -0.539 |  |  |
| 128-127 | -0.754 | 0.127 | -0.882 |  |  |
| 127-126 | -2.283 | -1.924 | -0.359 |  |  |
| 126-125 | 8.191 | 2.713 | 5.478 |  |  |
| 125-124 | -7.174 | -2.039 | -5.135 |  |  |
| 124-123 | 0.576 | 0.123 | 0.454 |  |  |
| 123-122 | 1.435 | 0.487 | 0.948 |  |  |
| 122-121 | 1.878 | 0.583 | 1.295 |  |  |
| 121-120 | -5.650 | -1.979 | -3.671 |  |  |
| 120-119 | 3.584 | 1.237 | 2.347 |  |  |
| 119-118 | 2.925 | 1.266 | 1.658 |  |  |
| 118-117 | -2.039 | -0.918 | -1.121 |  |  |
| 117-116 | -4.513 | -2.509 | -2.003 |  |  |
| 116-115 | 2.490 | 1.096 | 1.395 |  |  |
| 115-114 | -3.935 | -2.202 | -1.733 |  |  |
| 114-113 | -1.028 | -1.028 |  |  |  |
| 113-112 | 0.140 | 0.140 |  |  |  |
| 112-111 | 1.978 | 1.343 | 0.636 |  |  |
| $111-110$ | -5.244 | -5.244 |  |  |  |
| 110-109 | 1.932 | 1.932 |  |  |  |
| 109-108 | -1.712 | -1.712 |  |  |  |
| 108-107 | -0.405 | -0.030 | -0.375 |  |  |
| 107-106 | 3.145 | 1.185 | 1.961 |  |  |
| 106-105 | -0.628 | -0.114 | -0.514 |  |  |
| 105-104 | -0.670 | -0.208 | -0.462 |  |  |
| 104-103 | -1.364 | -0.677 | -0.687 |  |  |
| 103-102 | 1.729 | 0.802 | 0.928 |  |  |
| 102-101 | 0.371 | 0.267 | 0.104 |  |  |
| 101-100 | -3.310 | -1. 802 | -1.508 |  |  |
| 100-099 | 1.277 | 0.592 | 0.685 |  |  |
| 099-098 | 0.789 | 0.051 | 0.738 |  |  |
| 098-097 | -0.827 | -0.615 | -0.212 |  |  |
| 097-096 | -3.672 | -0.883 | -2.789 |  |  |
| 096-095 | -0.101 | -0.199 | 0.099 |  |  |
| 095-094 | -2.896 | -1.208 | -1.688 |  |  |
| 094-093 | 11.643 | 4.878 | 6.765 |  |  |
| 093-092 | -6.670 | -2.972 | -3.698 |  |  |
| 092-091 | -12.418 | -4.357 | -8.061 |  |  |
| 091-090 | 12.196 | 4.568 | 7.628 |  |  |
| 090-089 | 6.111 | 1.504 | 4.607 |  |  |
| 089-088 | 7.804 | 3.638 | 4.166 |  |  |
| 088-087 |  |  |  |  |  |
| 087-086 |  |  |  |  |  |

Salt Transport $28^{\circ} 15.0^{\prime} \mathrm{S}$

| Station Pair | Deep/ Bottom Total | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 185-184 |  |  |  |  |  |
| 184-183 |  |  |  |  |  |
| 183-182 | 239.030 | 239.030 |  |  |  |
| 182-181 | 318.244 | 62.999 | 70.360 |  | 184.885 |
| 181-180 | 137.609 | 36.023 | 53.895 |  | 47.691 |
| 180-179 | -127.491 | -12.711 | -28.955 |  | -85.825 |
| 179-178 | 215.173 | 67.849 | 64.242 |  | 83.081 |
| 178-177 | -68.977 | -68.977 |  |  |  |
| 177-176 | 25.101 | 25.101 |  |  |  |
| 176-175 | -26.785 | -26.785 |  |  |  |
| 175-174 |  |  |  |  |  |
| 174-173 |  |  |  |  |  |
| 173-172 |  |  |  |  |  |
| 172-171 |  |  |  |  |  |
| 171-170 |  |  |  |  |  |
| 170-169 | -239.842 | -239.842 |  |  |  |
| 169-168 | -142.484 | -142.484 |  |  |  |
| 168-167 |  |  |  |  |  |
| 167-166 |  |  |  |  |  |
| 166-165 | 75.159 | 75.159 |  |  |  |
| 165-164 | 175.249 | 175.249 |  |  |  |
| 164-163 | -186.190 | -186.190 |  |  |  |
| 163-162 | 173.856 | 173.856 |  |  |  |
| 162-161 | 109.826 | 109.826 |  |  |  |
| 161-160 | -258.680 | -258.680 |  |  |  |
| 160-159 | 73.860 | 73.860 |  |  |  |
| 159-158 | -257.401 | -188.577 | -68.825 |  |  |
| 158-157 | -150.082 | -150.082 |  |  |  |
| 157-156 |  |  |  |  |  |
| 156-155 |  |  |  |  |  |
| 155-154 |  |  |  |  |  |
| 154-153 |  |  |  |  |  |
| 153-152 |  |  |  |  |  |
| 152-151 | 123.159 | 71.650 | 51.509 |  |  |
| 151-150 | 328.723 | 37.279 | 89.721 |  | 201.723 |
| 150-149 | 193.382 | -27.871 | -6.814 | 200.848 | 27.221 |
| 149-148 | 818.291 | 227.476 | 113.631 | 372.827 | 104.357 |
| 148-147 | -711.262 | -210.385 | -228.097 |  | -273.145 |
| 147-146 | -8.530 | 4.526 | -9.992 |  | -3.064 |
| 146-145 | -27.255 | -29.771 | -2.883 | -12.052 | 17.450 |
| 145-144 | 464.597 | 104.193 | 119.776 | 153.882 | 86.746 |
| 144-143 | -257.494 | -84.515 | -99.312 | -39.093 | -34.574 |
| 143-142 | 18.696 | -21.398 | -3.235 | 31.669 | 11.651 |
| 142-141 | 387.501 | 98.100 | 103.100 | 133.472 | 52.830 |
| 141-140 | -210.515 | -98.122 | -116.296 | 6.618 | -2.715 |
| 140-139 | -853.450 | -169.417 | -286.561 | -397.472 |  |
| 139-138 | -95.953 | -36.893 | -36.089 | -22.971 |  |
| 138-137 | 40.595 | 17.689 | 13.601 | 9.305 |  |

Deep/

| Station | Deep/ Bottom Total | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 194.610 | 34.599 | 211 | 110.800 |  |
|  |  |  |  |  |  |
| 136-135 | -228.902 | -42.094 | -74.055 | -112.754 |  |
| 135-134 | -122.107 | -13.542 | -75.409 | -18.198 | -14.958 |
| 134-133 | -200.495 | -59.156 | -73.225 |  | -68.114 |
| 133-132 | 167.813 | 34.304 | 83.345 |  | 50.163 |
| 132-131 | -454.757 | -134.788 | -229.866 | -51.949 | -38.155 |
| 131-130 | 182.421 | 58.072 | 82.736 | 23.697 | 17.916 |
| 130-129 | 80.810 | 47.976 | 32.834 |  |  |
| 129-128 | -53.662 | -34.958 | -18.703 |  |  |
| 128-127 | -26.177 | 4.411 | -30.588 |  |  |
| 127-126 | -79.082 | -66.632 | -12.450 |  |  |
| 126-125 | 283.958 | 93.972 | 189.987 |  |  |
| 125-124 | -248.739 | -70.645 | -178.094 |  |  |
| 124-123 | 19.987 | 4.249 | 15.739 |  |  |
| 123-122 | 49.745 | 16.879 | 32.866 |  |  |
| 122-121 | 65.108 | 20.189 | 44.919 |  |  |
| 121-120 | -195.876 | -68.557 | -127.319 |  |  |
| 120-119 | 124.229 | 42.855 | 81.374 |  |  |
| 119-118 | 101.363 | 43.863 | 57.500 |  |  |
| 118-117 | -70.684 | -31.805 | -38.879 |  |  |
| 117-116 | -156.379 | -86.912 | -69.467 |  |  |
| 116-115 | 86.306 | 37.947 | 48.359 |  |  |
| 115-114 | -136.342 | -76.270 | -60.073 |  |  |
| 114-113 | -35.617 | -35.617 |  |  |  |
| 113-112 | 4.832 | 4.832 |  |  |  |
| 112-111 | 68.560 | 46.521 | 22.039 |  |  |
| 111-110 | -181.709 | -181.709 |  |  |  |
| 110-109 | 66.937 | 66.937 |  |  |  |
| 109-108 | -59.356 | -59.356 |  |  |  |
| 108-107 | -14.051 | -1.046 | -13.005 |  |  |
| 107-106 | 109.032 | 41.046 | 67.986 |  |  |
| 106-105 | -21.779 | -3.952 | -17.827 |  |  |
| 105-104 | -23.236 | -7.209 | -16.027 |  |  |
| 104-103 | -47.278 | -23.463 | -23.815 |  |  |
| 103-102 | 59.943 | 27.769 | 32.174 |  |  |
| 102-101 | 12.841 | 9.234 | 3.608 |  |  |
| 101-100 | -114.719 | -62.417 | -52.301 |  |  |
| 100-099 | 44.264 | 20.497 | 23.767 |  |  |
| 099-098 | 27.369 | 1.757 | 25.612 |  |  |
| 098-097 | -28.640 | -21.304 | -7.336 |  |  |
| 097-096 | -127.325 | -30.591 | -96.735 |  |  |
| 096-095 | -3.479 | -6.905 | 3.426 |  |  |
| 095-094 | -10.421 | -41.860 | -58.561 |  |  |
| 094-093 | 403.729 | 169.027 | 234.703 |  |  |
| 09 3-092 | -231.256 | 6-102.974 | -128.282 |  |  |
| 092-091 | -430.559 | -150.965 | -279.594 |  |  |
| 091-090 | 422.898 | 158.290 | 264.608 |  |  |
| 090-089 | 211.917 | 52.100 | 159.816 |  |  |
| 089-088 | 270.538 | 126.065 | 144.473 |  |  |
| 088-087 |  |  |  |  |  |
| 087-086 |  |  |  |  |  |

Total -38.10

Station Pair

185-184
184-183
183-182
182-181
181-180
180-179
179-178
178-177
177-176
176-175
175-174
174-173
173-172
172-171
171-170
170-169
169-168 168-167 167-166
165-165 165-164 164-163 163-162 162-161 161-160 160-159 159-158 158-157 157-156 156-155 155-154 154-153 153-152 152-151 151-150 150-149 149-148 148-147 147-146 146-145 145-144 144-143 143-142 142-141 141-140 140-139 139-138 138-137

Deep/
Bottom Total 6
1896.18.5 1896.185
$2516.485 \quad 499.619$
1089.193 285.808
$-1008.104 \quad-100.834$
$1703.581 \quad 538.513$
-548.469 -548.469
$199.612 \quad 199.612$
$-212.584 \quad-212.584$
-1903.480 -1903.480
$-1130.584 \quad-1130.584$
$596.999 \quad 596.999$
1391.9131391 .913
$-1480.598-1480.598$
$1382.610 \quad 1382.610$
871.637
-2052.181 -2052.181
586.085
$-1497.168$
-1191.515
$-545.709$
556.537
426.439
$-229.124$
8
9
1460.329
376.945
$-678.146$
656.729

$$
-1670.021
$$

$$
-6755.918
$$

$$
\begin{array}{rrr}
407.998 & & \\
710.059 & & 1593.627 \\
-54.031 & 1586.402 & 215.080 \\
899.727 & 2945.276 & 824.917 \\
-1806.719 & & -2159.408 \\
-79.124 & & -24.220 \\
-22.898 & -95.188 & 137.876 \\
948.551 & 1215.387 & 684.980 \\
-786.677 & -308.776 & -273.244 \\
-25.685 & 250.156 & 92.167 \\
816.825 & 1054.373 & 417.626 \\
-921.308 & 52.283 & -21.462 \\
-7269.470 & -3740.589 &
\end{array}
$$

$$
-760.498
$$

$$
321.826
$$

568.955
296.123
-221.479
1806.919
$-1671.904$
36.019
-2 36.526
827.863
$-671.386$
-170.045
779.411
$-779.534$
-1345.923
-293.030 140.527

Deep/
Station Pair

137-136
136-135 135-134 134-133 133-132 132-131 131-130 130-129 129-128 128-127 127-126 126-125 125-124 124-123 123-122 122-121 121-120 120-119 119-118 118-117 117-116 116-115 115-114 114-113 113-112 112-111 111-110 110-109 109-108 108-107 107-106 106-105 105-104 104-10 3 103-102 102-101 101-100 100-099 099-098 098-097 097-096 096-095 095-094 094-093 093-092 092-091 091-090 090-089 089-088 088-087
389.809
-586.627
-597.405
-580.233 660.457
-1821.249 655.524 260.284
-148.262
-242.299
-98.825
1505.181
$-1410.843$
124.635
260.397
355.887
-1008.928
644.855
455.747
-308.172
-550.693
383.373
$-476.337$
174.815
$-103.133$
539.172
-141.377
-127.086
-188.845
255.117
28.606
-414.679
188.443
203.012
-58.213
$-766.685$
27.128
-464.042
1859.616
$-1016.464$
-2216. 020
2096.922
1266.401
1144.047

8
9

| 875.673 |  |
| ---: | ---: |
| -891.247 |  |
| -143.899 | -118.339 |
|  | -539.074 |
|  | 396.950 |
| -410.902 | -301.875 |
| 187.488 | 141.784 |


| Station Pair | Upper Total | 1 | 2 | 3 | 4 | Unknown |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 001-002 | 0.248 |  |  |  | 0.014 | 0.234 |
| 002-003 | -3.281 |  |  | -0.331 | -2.522 | -0.428 |
| 003-004 | -3.813 |  |  |  | -2.983 | -0.830 |
| 004-005 | 8.227 |  |  |  | 6.661 | 1.567 |
| 005-006 | -1.921 |  |  | -0.696 | -1.225 |  |
| 006-007 | 0.336 |  |  | 0.105 | 0.231 |  |
| 007-008 | 1.093 |  |  | 0.670 | 0.423 |  |
| 008-009 | -0.659 |  |  | -0.345 | -0.314 |  |
| 009-010 | -0.557 |  |  | -0.464 | -0.093 |  |
| 010-011 | -3.413 |  |  | -1.432 | -1.640 | -0.341 |
| 011-012 | 3.870 |  |  | 1.130 | 2.405 | 0.334 |
| 012-013 | -0.446 |  |  | -0.177 | -0.259 | -0.010 |
| 013-014 | 0.458 |  |  | 0.194 | 0.203 | 0.061 |
| 014-015 | -0.048 |  |  | -0.063 | 0.015 |  |
| 015-016 | -0.533 |  |  | -0.045 | -0.298 | -0.189 |
| 016-017 | 0.488 |  |  | 0.337 | 0.019 | 0.133 |
| 017-018 | -0.549 |  |  | -0.356 | -0.042 | -0.151 |
| 018-019 | 0.584 |  |  | 0.547 | 0.037 |  |
| 019-020 | 0.036 |  |  | 0.036 |  |  |
| 020-021 | 0.116 |  |  | 0.069 |  | 0.042 |
| 021-022 | -0.657 |  |  | -0.413 | -0.030 | -0.214 |
| 022-023 | -0.042 |  |  | -0.104 | -0.032 | 0.084 |
| 023-024 | 0.132 |  |  | 0.131 | 0.025 | -0.024 |
| 024-025 | -0.194 |  |  | -0.121 | -0.074 | 0.001 |
| 025-026 | -1.012 |  |  | -0.451 | -0.424 | -0.136 |
| 026-027 | 1.428 |  |  | 0.822 | 0.346 | 0.260 |
| 027-028 | 0.553 |  |  | 0.279 | 0.231 | 0.043 |
| 028-029 | -0.134 |  |  | -0.067 | -0.067 |  |
| 029-030 | 0.730 |  |  | 0.473 | 0.257 |  |
| 030-031 | -0.488 |  |  | -0.263 | -0.146 | -0.079 |
| 031-032 | -0.275 |  |  | -0.154 | -0.121 |  |
| 032-033 | -0.789 |  |  | -0.605 | -0.185 |  |
| 033-034 | 0.811 |  |  | 0.633 | 0.178 |  |
| 034-035 | 0.232 |  |  | 0.232 |  |  |
| 035-036 | 0.151 |  |  | 0.151 |  |  |
| 036-037 | 0.069 |  |  | 0.069 |  |  |
| 037-038 | 0.121 |  |  | 0.121 |  |  |
| 038-039 | 0.440 |  |  | 0.440 |  |  |
| 039-040 | -0.394 |  |  | -0.394 |  |  |
| 040-041 | 0.430 |  |  | 0.430 |  |  |
| 041-042 | -0.161 |  |  | -0.161 |  |  |
| 042-043 | 0.101 |  |  | 0.101 |  |  |
| 043-044 | 0.331 |  |  | 0.331 |  |  |
| 044-045 | -0.069 |  |  | -0.069 |  |  |
| 045-046 | 0.432 |  |  | 0.432 |  |  |
| 046-047 | -0.598 |  |  | -0.598 |  |  |
| 047-048 | -0.073 |  |  | -0.073 |  |  |
| 048-049 | 0.372 |  |  | 0.372 |  |  |


| Station <br> Pair | Upper <br> Total |
| :---: | ---: |
| 049-050 | 0.149 |
| $050-051$ | 0.193 |
| $051-052$ | -0.249 |
| $052-053$ | 0.671 |
| $053-054$ | 0.462 |
| $054-055$ | -0.841 |
| $055-056$ | 0.775 |
| $056-057$ | -0.138 |
| $057-058$ | -0.314 |
| $058-059$ | -0.208 |
| $059-060$ | 0.272 |
| $060-061$ | 0.430 |
| $061-062$ | -0.069 |
| $062-063$ | 0.453 |
| $063-064$ | 0.287 |
| $064-065$ | 0.290 |
| $065-066$ | 0.035 |
| $066-067$ | -0.132 |
| $067-068$ | -0.019 |
| $068-069$ | 0.510 |
| $069-070$ | -0.316 |
| $070-071$ | -0.614 |
| $071-072$ | -0.039 |
| $072-073$ | 0.562 |
| $073-074$ | -0.452 |
| $074-075$ | -0.235 |
| $075-076$ | 0.025 |
| $076-077$ | -0.058 |
| $077-078$ | 0.021 |

1
2
3
4
Unknown

$$
\left.\begin{array}{r}
0.149 \\
0.193 \\
-0.249 \\
0.671 \\
0.462 \\
-0.841 \\
0.775 \\
-0.138 \\
-0.314 \\
-0.208 \\
0.272 \\
0.430 \\
-0.069 \\
0.453 \\
0.287 \\
0.290 \\
0.035 \\
-0.132 \\
-0.019 \\
0.510 \\
-0.316 \\
-0.614 \\
-0.039 \\
0.562
\end{array}\right]
$$

| Station Pair | Upper <br> Total | 1 | 2 | 3 | 4 | Unknown |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 001-002 | 8.772 |  |  |  | 0.490 | 8.282 |
| 002-003 | -114.684 |  |  | -11.587 | -87.945 | -15.151 |
| 003-004 | -133.689 |  |  |  | -104.316 | -29.383 |
| 004-005 | 288.554 |  |  |  | 233.15 .2 | 55.402 |
| 005-006 | -66.955 |  |  | -24.396 | -42.559 |  |
| 006-007 | 11.676 |  |  | 3.679 | 7.998 |  |
| 007-008 | 38.083 |  |  | 23.415 | 14.669 |  |
| 008-009 | -22.939 |  |  | -12.040 | -10.899 |  |
| 009-010 | -19.446 |  |  | -16.210 | -3.236 |  |
| 010-011 | -119.026 |  |  | -50.108 | -57.008 | -11.910 |
| 011-012 | 135.073 | - |  | 39.615 | 83.767 | 11.691 |
| 012-013 | -15.548 |  |  | -6. 203 | -8.997 | -0.348 |
| 013-014 | 15.936 |  |  | -6.781 | 7.032 | 2.123 |
| 014-015 | -1.685 |  |  | -2. 202 | 0.517 |  |
| 015-016 | -18.646 |  |  | -1.571 | -10.483 | -6.592 |
| 016-017 | 17.055 |  |  | 11.793 | 0.648 | 4.615 |
| 017-018 | -19.154 |  |  | -12.444 | -1.468 | -5.242 |
| 018-019 | 20.344 |  |  | 19.078 | 1.266 |  |
| 019-020 | 1.260 |  |  | 1.260 |  |  |
| 020-021 | 3.860 |  |  | 2.399 |  | 1.461 |
| 021-022 | -22.845 |  |  | -14.364 | -1.026 | -7.456 |
| 022-023 | -1.444 |  |  | -3.609 | -1.129 | 3.293 |
| 023-024 | 4.602 |  |  | 4.566 | -0.877 | -0.842 |
| 024-025 | -6.750 |  |  | -4.212 | -2.569 | 0.032 |
| 025-026 | -35.287 |  |  | -15.792 | -14.725 | -4.770 |
| 026-027 | 49.750 |  |  | 28.664 | 12.014 | 9.071 |
| 027-028 | 19.187 |  |  | 9.697 | 8.002 | 1.487 |
| 028-029 | -4.652 |  |  | -2.325 | -2.326 |  |
| 029-030 | 25.334 |  |  | 16.449 | 8.885 |  |
| 030-031 | -16.937 |  |  | -9.138 | -5.037 | -2.763 |
| 031-032 | -9.529 |  |  | -5.331 | -4.198 |  |
| 032-033 | -27.381 |  |  | -20.986 | -6.396 |  |
| 033-034 | 28.094 |  |  | 21.946 | 6.148 |  |
| 034-035 | 8.024 |  |  | 8.024 |  |  |
| 035-036 | 5.209 |  |  | 5.209 |  |  |
| 036-037 | 2.391 |  |  | 2.391 |  |  |
| 037-038 | 4.181 |  |  | 4.181 |  |  |
| 038-039 | 15.159 |  |  | 15.159 |  |  |
| 039-040 | -13.572 |  |  | -13.572 |  |  |
| 040-041 | 14.819 |  |  | 14.819 |  |  |
| 041-042 | -5.547 |  |  | -5.547 |  |  |
| 042-043 | 3.486 |  |  | 3.486 |  |  |
| 043-044 | 11.402 |  |  | 11.402 |  |  |
| 044-045 | -2.384 |  |  | -2.384 |  |  |
| 045-048 | 14.850 |  |  | 14.850 |  |  |
| 046-047 | -20.552 |  |  | -20.552 |  |  |
| 047-048 | -2.494 |  |  | -2.494 |  |  |
| 048-049 | 12 |  |  | 12.7 |  |  |


| Station Pair | Upper Total | 1 | 2 | 3 | 4 |  | Unknown |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 049-050 | 5.112 |  |  | 5.112 |  |  |  |
| 050-051 | 6.630 |  |  | 6.630 |  |  |  |
| 051-052 | -8.538 |  |  | -8.538 |  |  |  |
| 052-053 | 22.980 |  |  | 22.980 |  |  |  |
| 053-054 | 15.835 |  |  | 15.835 |  |  |  |
| 054-055 | -28.801 |  |  | -28.801 |  |  |  |
| 055-056 | 26.508 |  |  | 26.508 |  | - |  |
| 056-057 | -4.713 |  |  | -4.713 |  |  |  |
| 057-058 | -10.744 |  |  | -10.744 |  |  |  |
| 058-059 | -7.091 |  |  | -7.091 |  |  |  |
| 059-060 | 9.288 |  |  | 9.288 |  |  |  |
| 060-061 | 14.654 |  |  | 14.654 |  |  |  |
| 061-062 | -2.336 |  |  | -2.336 |  |  |  |
| 062-063 | 15.438 |  |  | 15.438 |  |  |  |
| 063-064 | 9.809 |  |  | 9.809 |  |  |  |
| 064-065 | 9.893 |  |  | 9.893 |  |  |  |
| 065-066 | 1.220 |  |  | 1.220 |  |  |  |
| 066-067 | -4.509 |  |  | 4.509 |  |  |  |
| 067-068 | -0.625 |  |  | 0.625 |  |  |  |
| 068-069 | 17.339 |  |  | 17.339 |  |  |  |
| 069-070 | -10.740 |  |  | -10.740 |  |  |  |
| 070-071 | -20.881 |  |  | -20.881 |  |  |  |
| 071-072 | -1.316 |  |  | -1.316 |  |  |  |
| 072-073 | 19.101 |  |  | 19.101 |  |  |  |
| 073-074 | -15.340 |  |  | -15.340 |  |  |  |
| 074-075 | -7.967 |  |  | -6.510 |  |  | 1.457 |
| 075-076 | 0.798 |  |  | -0.926 |  |  | 1.724 |
| 076-077 | -1.945 |  |  | 0.030 |  |  | -1.975 |
| 077-078 | 0.687 |  |  | -0.227 |  |  | 0.914 |

Total 108.452

Heat Transport $43^{\circ} 15.0^{\prime} \mathrm{S}$

| Station Pair | Upper Total | 1 | 2 | 3 | 4 | Unknown |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 001-002 | 71.664 |  |  |  | 3.984 | 67.680 |
| 002-003 | -932.820 |  |  |  | -714.964 | -123.775 |
| 003-004. | -1087.272 |  |  |  | -847.584 | -239.688 |
| 004-005 | 2345.615 |  |  |  | 1893.429 | 452.187 |
| 005-006 | -544.725 |  |  | -198.571 | -346.153 |  |
| 006-007 | 94.955 |  |  | 29.851 | 65.104 |  |
| 007-008 | 310.611 |  |  | 191.225 | 119.386 |  |
| 008-009 | -186.937 |  |  | -98.262 | -88.675 |  |
| 009-010 | -158.889 |  |  | -132.563 | -26.325 |  |
| 010-011 | -970.212 | -98.086 |  | -408.330 | -463.797 | -98.086 |
| 011-012 | 1100.436 | -96.342 |  | 322.755 | 681.338 | 96.343 |
| 012-013 | -126.594 | -2.874 |  | -50.507 | -73.213 | -2.874 |
| 013-014 | 130.071 | 17.582 |  | 55.263 | 57.227 | 17.582 |
| 014-015 | -13.650 |  |  | -17.861 | 4.211 |  |
| 015-016 | -152.733 | -54.627 |  | -12.763 | -85.343 | -54.627 |
| 016-017 | 139.771 | 38.303 |  | 96.197 | 5.271 | 38.303 |
| 017-018 | -157.112 | -43.383 |  | -101.750 | -11.969 | -43.393 |
| 018-019 | 166.915 |  |  | 156.589 | 10.326 |  |
| 019-020 | 10.301 |  |  | 10.301 |  |  |
| 020-021 | 31.804 | 12.126 |  | 19.678 |  | 12.126 |
| 021-022 | -187.893 | -61.840 |  | -117.697 | -8.356 | -61.840 |
| 022-023 | -11.388 | 27.209 |  | -29.402 | -9.195 | 27.209 |
| 023-024 | 37.444 | -6.933 |  | 37.234 | 7.144 | -6.933 |
| 024-025 | -55.003 | 0.260 |  | -34.341 | -20.922 | 0.260 |
| 025-026 | -288.061 | -39.289 |  | -128.872 | -119.900 | -39.289 |
| 026-027 | 406.792 | 74.883 |  | 234.072 | 97.838 | 74.883 |
| 027-028 | 156.643 | 12.322 |  | 79.161 | 65.161 | 12.322 |
| 028-029 | -37.798 |  |  | -18.851 | -18.947 |  |
| 029-030 | 206.969 |  |  | 134.613 | 72.356 |  |
| 030-031 | -138.520 |  |  | -74.629 | -41.018 | -22.872 |
| 031-032 | -77.792 |  |  | -43.596 | -34.196 |  |
| 032-033 | -224.162 |  |  | -172.071 | -52.091 |  |
| 033-034 | 230.121 |  |  | 180.041 | 50.080 |  |
| 034-035 | 65.720 |  |  | 65.720 |  |  |
| 035-036 | 43.092 |  |  | 43.092 |  |  |
| 036-037 | 19.297 |  |  | 19.287 |  |  |
| 037-038 | 34.448 |  |  | 34.448 |  |  |
| 038-039 | 124.565 |  |  | 124.565 |  |  |
| 039-040 | -111.860 |  |  | -111.860 |  |  |
| 040-041 | 122.110 |  |  | 122.110 |  |  |
| 041-042 | -45.707 |  |  | -45.707 |  |  |
| 042-043 | 28.929 |  |  | 28.929 |  |  |
| 043-044 | 93.442 |  |  | 93.442 |  |  |
| 044-045 | -19.429 |  |  | -19.429 |  |  |
| 045-046 | 122.009 |  |  | 122.009 |  |  |
| 046-047 | -169.482 |  |  | -169.482 |  |  |
| 047-048 | -20.643 |  |  | -20.643 |  |  |
| 048-049 | 105.489 |  |  | 105.489 |  |  |


|  |
| :---: |


| Station | Upper <br> Total |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1 | 2 | 3 | 4 | Unknown |
| 049-050 | 41.982 |  |  | 41.982 |  |  |
| 050-051 | 54.848 |  |  | 54.848 |  |  |
| 051-052 | -71.170 |  |  | -71.170 |  |  |
| 052-053 | 190.263 |  |  | 190.263 |  |  |
| 053-054 | 130.556 |  |  | 130.556 |  |  |
| 054-055 | -238.046 |  |  | -238.046 |  |  |
| 055-056 | 219.013 |  |  | 219.013 |  |  |
| 056-057 | -38.878 |  |  | -38.878 |  |  |
| 057-058 | -88.853 |  |  | -88.853 |  |  |
| 058-059 | -58.830 |  |  | -58.830 |  |  |
| 059-060 | 76.588 |  |  | 76.588 |  |  |
| 060-061 | 121.595 |  |  | 121.595 |  |  |
| 061-062 | -19.544 |  |  | -19.544 |  |  |
| 062-063 | 128.080 |  |  | 128.080 |  |  |
| 063-064 | 80.911 |  |  | 80.911 |  |  |
| 064-065 | 82.182 |  |  | 82.182 |  |  |
| 065-066 | 9.183 |  |  | 9.183 |  |  |
| 066-067 | -37.292 |  |  | -37.292 |  |  |
| 067-068 | -5.834 |  |  | -5.834 |  |  |
| 068-069 | 144.629 |  |  | 144.629 |  |  |
| 069-070 | -89.659 |  |  | -89.659 |  |  |
| 070-071 | -174.049 |  |  | -174.049 |  |  |
| 071-072 | -11.074 |  |  | -11.074 |  |  |
| 072-073 | 159.270 |  |  | 159.270 |  |  |
| 073-074 | -128.323 |  |  | -128.323 |  |  |
| 074-075 | -66.385 |  |  | -53.957 |  | -12.427 |
| 075-076 | 7.217 |  |  | -7.489 |  | 14.707 |
| 076-077 | -16.803 |  |  | 0.037 |  | -16.840 |
| 077-078 | 6.026 |  |  | -1.781 |  | 7.807 |

Total 888.124

| Station Pair | Intermediate Total | 5 |
| :---: | :---: | :---: |
| 001-002 |  |  |
| 002-003 | 1.442 | 1.442 |
| 003-004 | -0.155 | -0.155 |
| 004-005 | 0.865 | 0.865 |
| 005-006 | -0.864 | -0.864 |
| 006-007 | 0.091 | 0.091 |
| 007-008 | 0.114 | 0.114 |
| 008-009 | -0.104 | -0.104 |
| 009-010 | -0.419 | -0.419 |
| 010-011 | -0.308 | -0.308 |
| 011-012 | 0.582 | 0.582 |
| 012-013 | -0.284 | -0.284 |
| 013-014 | 0.505 | 0.505 |
| 014-015 | 0.073 | 0.073 |
| 015-016 |  |  |
| 016-017 |  |  |
| 017-018 |  |  |
| 018-019 |  |  |
| 019-020 |  |  |
| 020-021 |  |  |
| 021-022 |  |  |
| 022-023 |  |  |
| 023-024 |  |  |
| 024-025 |  |  |
| 025-026 | -0.613 | -0.613 |
| 026-027 | 0.303 | 0.303 |
| 027-028 | 0.717 | 0.717 |
| 028-029 | 0.302 | 0.302 |
| 029-030 | 0.041 | 0.041 |
| 030-031 | -0.258 | -0.258 |
| 031-032 | -0.454 | -0.454 |
| 032-033 | -0.137 | -0.137 |
| 033-034 | -0.095 | -0.095 |
| 034-035 | 0.791 | 0.791 |
| 035-036 | -0.476 | -0.476 |
| 036-037 | 0.394 | 0.394 |
| 037-038 | 0.053 | 0.053 |
| 038-039 | 0.271 | 0.271 |
| 039-040 | 0.158 | 0.158 |
| 040-041 | -0.187 | -0.187 |
| 041-042 | -0.155 | -0.155 |
| 042-043 | -0.038 | -0.038 |
| 043-044 | 0.661 | 0.661 |
| 044-045 | -0.206 | -0.206 |
| 045-046 | 0.485 | 0.485 |
| 046-047 | -0.488 | -0.488 |
| 047-048 | 0.131 | 0.131 |
| .048-049 | 0.288 | 0.288 |
| 049-050 | 0.032 | 0.032 |


| Station Pair | Intermediate Total | 5 |
| :---: | :---: | :---: |
| 050-051 | 0.217 | 0.217 |
| 051-052 | 0.930 | 0.930 |
| 052-053 | -0.028 | -0.028 |
| 053-054 | 0.438 | 0.438 |
| 054-055 | -0.838 | -0.838 |
| 055-056 | 0.968 | 0.968 |
| 056-057 | -0.252 | -0.252 |
| 057-058 | -0.127 | -0.127 |
| 058-059 | -0.321 | -0.321 |
| 059-060 | 0.780 | 0.780 |
| 060-061 | 0.465 | 0.465 |
| 061-062 | -0.154 | -0.154 |
| 062-063 | 0.516 | 0.516 |
| 063-064 | 0.654 | 0.654 |
| 064-065 | -0.232 | -0.232 |
| 065-066 | 0.680 | 0.680 |
| 066-067 | -0.183 | -0.183 |
| 067-068 | 1.901 | 1.901 |
| 068-069 | -1.017 | -1.017 |
| 069-070 | -0.062 | -0.062 |
| 070-071 | -0.387 | -0.376 |
| 071-072 | -0.165 | -0.165 |
| 072-073 | 0.952 | 0.952 |
| 073-074 | -0.011 | -0.011 |
| 074-075 | -0.497 | -0.497 |
| 075-076 | -0.081 | -0.081 |
| 076-077 | 0.363 | 0.363 |
| 077-078 |  |  |
| Total | 7.771 |  |


| Station Pair | Intermediate Total | 5 |
| :---: | :---: | :---: |
| 001-002 |  |  |
| 002-003 | 50.029 | 50.029 |
| 003-004 | -5.302 | -5.302 |
| 004-005 | 29.689 | 29.689 |
| 005-006 | -29.686 | -29.686 |
| 006-007 | 3.092 | 3.092 |
| 007-008 | 3.862 | 3.862 |
| 008-009 | -3.508 | -3.508 |
| 009-010 | -14.480 | -14.480 |
| 010-011 | -10.584 | -10.584 |
| 011-012 | 20.028 | 20.028 |
| 012-013 | -9.782 | -9.782 |
| 013-014 | 17.419 | 17.419 |
| 014-015 | 2.514 | 2.514 |
| 015-016 |  |  |
| 016-017 |  |  |
| 017-018 |  |  |
| 018-019 |  |  |
| 019-020 |  |  |
| 020-021 |  |  |
| 021-022 |  |  |
| 022-023 |  |  |
| 023-024 |  |  |
| 024-025 | 0.004 | 0.004 |
| 025-026 | -21.162 | -21.162 |
| 026-027 | 10.448 | 10.448 |
| 027-028 | 24.719 | 24.719 |
| 028-029 | 10.436 | 10.436 |
| 029-030 | 1.335 | 1.335 |
| 030-031 | -8.894 | -8.894 |
| 031-032 | -15.589 | -15.589 |
| 032-033 | -4.639 | -4.639 |
| 033-034 | -3.352 | -3.352 |
| 034-035 | 27.271 | 27.271 |
| 035-036 | -16.459 | -16.459 |
| 036-037 | 13.555 | 13.555 |
| 037-038 | 1.815 | 1.815 |
| 038-039 | 9.245 | 9.245 |
| 039-040 | 5.530 | 5.530 |
| 040-041 | -6.522 | -6.522 |
| 041-042 | -1.840 | -1. 840 |
| 042-043 | -1.313 | -1.313 |
| 043-044 | 22.680 | 22.680 |
| 044-045 | -7.049 | -7.049 |
| 045-046 | 16.599 | 16.599 |
| 046-047 | -16.718 | -16.718 |
| 047-048 | 4.550 | 4.550 |
| 048-049 | 9.893 | 9.893 |
| 049-050 | 1.016 | 1.016 |

Station
Pair
050-051
051-052
052-053
053-054
054-055
055-056
056-057
057-058
058-059
059-060
060-061
061-062
062-063
063-064
064-065
065-066
068-067
067-068
068-069
069-070
070-071
071-072
072-073
073-074
074-075
075-076
076-077
077-078
Total 267.046

## 5

7.442
32.048
-1.051
15.000
-28.686
33.123
-8.591
$-4.309$
$-11.016$
26.790
15.835
-5.237
17.646
22.400
$-4.623$
23.252
-6. 243
65.189
-35.031
-2.083
-12.879
-5.699
32.613
$-0.382$
-17.043
-2.760
12.481

Station Pair

001-002
002-003
003-004
004-005
005-006
006-007
007-008
008-009
009-010
010-011
011-012
012-013
013-014
014-015 015-016 016-017 017-018 018-019 019-020 020-021 021-022 022-023 023-024 024-025 025-026 028-027 027-028 028-029 029-030 030-031 031-032 032-033 033-034 034-035 035-036 036-037 037-038 038-039 039-040 040-041 041-042 042-043 043-044 044-045 045-046 046-047 047-048 048-049 049-050

Intermediate Total

5
389.663
-47.113
253.564
-247.554
27.281
33.843
-31.617
-116.469
-88.535
165.800
-80.009
141.211
20.415

| 0.036 | 0.036 |
| ---: | ---: |
| -171.659 | -171.659 |
| 84.928 | 84.928 |
| 199.804 | 199.804 |
| 83.462 | 83.462 |
| 14.062 | 14.062 |
| -72.562 | -72.562 |
| -129.096 | -129.096 |
| -41.556 | -41.556 |
| -23.244 | -23.244 |
| 220.943 | 220.943 |
| -131.512 | -131.512 |
| 110.185 | 110.185 |
| 15.136 | 15.136 |
| 78.302 | 78.302 |
| 42.093 | 42.093 |
| -49.786 | -49.786 |
| -16.304 | -16.304 |
| -10.298 | -10.298 |
| 185.570 | 185.570 |
| -58.030 | -58.030 |
| 137.060 | 137.060 |
| -137.110 | -137.110 |
| 36.133 | 36.133 |
| 80.490 | 80.890 |
| 10.510 | 10.510 |

Station Pair

050-051
051-052 052-053 053-054 054-055 055-056 056-057 057-058 058-059 059-060 060-061 061-062 062-063 063-064 064-065 065-066 066-067 067-068 068-069 069-070 070-071 071-072 072-073 073-074 074-075 075-076 076-077 077-078

Total

Intermediate Total5
60.642
257.513
-5.802
122.895
-234.712
271.266
-70.603
-36.036
-89.106
217.004
130.578
-43.352
144.362
182.507
-35.930
189.470
-50.863
527.735
-281.222
-17.673
-104.921
-45.716
264.941
-3.209
-138.545
-22.736
100.882
2166.966

| Station Pair | Deep/ <br> Bottom <br> Total | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 001-002 |  |  |  |  |  |
| 002-003 |  |  |  |  | , |
| 003-004 | 2.918 | 1.972 | 0.946 |  |  |
| 004-005 | -7.541 | -7.541 |  |  |  |
| 005-006 | 7.319 | 7.319. |  |  |  |
| 006-007 | -4.738 | -1.632 | -1.115 | -1.000 | -0.991 |
| 007-008 | -6.659 | -1.685 | -1.340 | -2.881 | -0.752 |
| 008-009 | 5.178 | 1.142 | 1.481 | 2.064 | 0.481 |
| 009-010 | -0.020 | -0.241 | -0.137 | 0.373 | -0.015 |
| 010-011 | 4.918 | 1.019 | 1.039 | 1.872 | 0.989 |
| 011-012 | -3.165 | -0.990 | -0.786 | -0.250 | -1.139 |
| 012-013 | -0.206 | 0.158 | 0.038 | -0.234 | -0.169 |
| 013-014 |  |  |  |  |  |
| 014-015 |  |  |  |  |  |
| 015-016 |  |  |  |  |  |
| 016-017 |  |  |  |  |  |
| 017-018 |  |  |  |  |  |
| 018-019 |  |  |  |  |  |
| 019-020 |  |  |  |  |  |
| 020-021 |  |  |  |  |  |
| 021-022 |  |  |  |  |  |
| 022-023 |  |  |  |  |  |
| 023-024 |  |  |  |  |  |
| 024-025 |  |  |  |  |  |
| 025-026 |  |  |  |  |  |
| 026-027 |  |  |  |  |  |
| 027-028 | 0.171 | 0.171 |  |  |  |
| 028-029 | 0.392 | 0.392 |  |  |  |
| 029-030 | -1.375 | -1.375 |  |  |  |
| 030-031 | 0.711 | 0.711 |  |  |  |
| 031-032 | 5.073 | 0.943 | 0.974 |  | 3.157 |
| 032-033 | 7.862 | 2.065 | 1.217 | 3.178 | 1.403 |
| 033-034 | -5.850 | -1.860 | -0.977 | -1.985 | -1.028 |
| 034-035 | 5.882 | 0.823 | 0.956 | 2.785 | 1.318 |
| 035-036 | 2.332 | -0.349 | 0.324 | 1.755 | 0.603 |
| 036-037 | 0.993 | -0.157 | 0.239 | 0.545 | 0.366 |
| 037-038 | -3.300 | -0.719 | -1.092 | -0.734 | -0.755 |
| 038-039 | -2.991 | -1.259 | -0.777 | -0.506 | -0.449 |
| 039-040 | 0.991 | 0.482 | 0.077 | 0.276 | 0.156 |
| 040-041 | -6.189 | -2.024 | -1.463 | -2.181 | -0.521 |
| 041-042 | 0.762 | 0.361 | 0.121 | 0.279 |  |
| 042-043 | 0.800 | 0.123 | 0.291 | 0.386 |  |
| 043-044 | -2.556 | -0.626 | -0.800 | -1.130 |  |
| 044-045 | -7.312 | 0.001 | -2.908 | -4.405 |  |
| 045-046 | 0.482 | -1.039 | -0.334 | 1.855 |  |
| 046-047 | 6.771 | 1.027 | 1.504 | 4.240 |  |
| 047-048 | -0.847 | 0.121 | -0.486 | -0.482 |  |
| 048-049 | 0.109 | -0.067 | -0.096 | 0.272 |  |

保

Station

001-002
002-003
003-004
004-005
005-006
006-007
007-008
008-009
009-010
010-011
011-012
012-013
013-014
014-015
015-016
016-017
017-018
018-019
019-020
020-021
021-022
022-023
023-024
024-025
025-026
026-027
027-028
028-029
029-030
030-031
031-032
032-033
033-034
034-035
035-036
036-037
037-038
038-039
039-040
040-041
041-042
042-043
043-044
044-045
045-046
046-047
047-048

Deep/
Bottom Total
101.292
-261.756
$254.134 \quad 254.134$
-164.513 -56.641
-231. 203
-58.508

$$
39.648
$$

$$
-8.358
$$

$$
35.346
$$

$-34.334$ 5.490

7
32.850

| -38.745 | -34.700 |
| ---: | ---: |
| -46.551, | -100.029 |
| 51.786 | 71.658 |
| -4.747 | 12.947 |
| 36.078 | 64.987 |
| -27.300 | -8.662 |
| 1.328 | -8.120 |

9
-34.426
-26.116
16.696
-0.531
34.333

- 39.561
-5.869
109.631
48.707
-35.713
45.771
20.931
12.721
- 26.210
-15.581
5.419
-18.095
(

| Station Pair | Deep/ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Bottom |  |  |  |  |
|  | Total | 6 | 7 | 8 | 9 |
| 049-050 | -208.895 | -42.940 | -99.370 | -66.585 |  |
| 050-051 | 15.874 | 1.076 | 6.395 | 8.403 |  |
| 051-052 | 99.768 | 31.382 | 48.211 | 20.176 |  |
| 052-053 | -163.464 | -56.299 | -107.165 |  |  |
| 053-054 | -87.697 | -30.325 | -57.372 |  |  |
| 054-055 | 130.914 | 45.172 | 85.741 |  | , |
| 055-056 | -146.575 | -67.891 | -78.684 |  |  |
| 056-057 | 38.996 | 38.996 |  |  |  |
| 057-058 | 54.256 | 54.256 |  |  |  |
| 058-059 | -1.625 | -1.625 |  |  |  |
| 059-060 | 40.475 | 40.475 |  |  |  |
| 060-061 | -146.113 | -62.438 | -45.065 | -38.610 |  |
| 061-062 | 74.760 | 17.449 | 30.426 | 26.886 |  |
| 062-063 | -18.044 | -12.896 | -2.416 | -2.731 |  |
| 063-064 | -3.525 | -10.665 | 1.282 | 5.858 |  |
| 064-065 | -124.186 | -39.247 | -40.689 | -44.251 |  |
| 065-066 | 66.534 | 5.263 | 26.656 | 34.615 |  |
| 066-067 | -6.268 | -3.544 | -2.724 |  |  |
| 067-068 | 20.236 | -0.119 | 20.354 |  |  |
| 068-069 | -94.239 | -94.239 |  |  |  |
| 069-070 | 27.102 | 27.102 |  |  |  |
| 070-071 | 17.614 | 12.527 | 5.088 |  |  |
| 071-072 | -1.324 | -8.858 | 7.534 |  |  |
| 072-073 | -45.815 | -19.466 | -26.349 |  |  |
| 073-074 | 28.654 | 13.758 | 14.895 |  |  |
| 074-075 | -31.473 | -10.803 | -20.671 |  |  |
| 075-076 | 46.507 | 21.953 | 24.554 |  |  |
| 076-077 | 9.926 | 9.926 |  |  |  |
| 077-078 |  |  |  |  |  |

Total -375.511


| Station Pair | Deep/ Bottom Total | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 001-002 |  |  |  |  |  |
| 002-003 |  |  |  |  |  |
| 003-004 | 802.839 | 542.818 | 260.021 |  | - |
| 004-005 | -2075.417 | -2075.417 |  |  |  |
| 005-006 | 2013.921 | 2013.921 |  |  |  |
| 006-007 | -1301.956 | -449.215 | -306.515 | -274.125 | -272.102 |
| 007-008 | -1828.863 | -463.850 | -368.234 | -790.326 | -206.453 |
| 008-009 | 1422.347 | 314.528 | $409.727^{\prime}$ | 566.115 | 131.977 |
| 009-010 | -5.794 | -66.328 | -37.563 | 102.292 | -4.195 |
| 010-011 | 1351.058 | 280.502 | 285.576 | 513.529 | 271.450 |
| $011-012$ | -869.827 | -272.548 | -216.105 | -68.445 | -312.728 |
| 012-013 | -56.446 | 43.588 | 10.519 | -64.163 | -46.390 |
| 013-014 |  |  |  |  |  |
| 014-015 |  |  |  |  |  |
| 015-016 |  |  |  |  |  |
| 016-017 |  |  |  |  |  |
| 017-018 |  |  |  |  |  |
| 018-019 |  |  |  |  |  |
| 019-020 |  |  |  |  |  |
| 020-021 |  |  |  |  |  |
| 021-022 |  |  |  |  |  |
| 022-023 |  |  |  |  |  |
| 023-024 |  |  |  |  |  |
| 024-025 |  |  |  |  |  |
| 025-026 |  |  |  |  |  |
| 026-027 |  |  |  |  |  |
| 027-028 | 47.246 | 47.246 |  |  |  |
| 028-029 | 108.033 | 108.033 |  |  |  |
| 029-030 | -378.454 | -378.454 |  |  |  |
| 030-031 | 195.516 | 195.516 |  |  |  |
| 031-032 | 1393.207 | 259.483 | 267.594 |  | 866.130 |
| 032-033 | 2158.650 | 568.402 | 334.354 | 871.057 | 384.837 |
| 033-034 | -1606.615 | -512.073 | -268.312 | -544.031 | -282.199 |
| 034-035 | 1614.388 | 266.522 | 262.695 | 763.466 | 361.705 |
| 035-036 | 639.520 | -96.198 | 89.043 | 481.224 | 165.446 |
| 036-037 | 272.486 | -43.145 | 65.570 | 149.525 | 100.537 |
| 037-038 | -906.618 | -198.032 | -300.213 | -201.215 | -207.159 |
| 038-039 | -821.997 | -346.577 | -213.586 | -138.676 | -123.159 |
| 039-040 | 272.388 | 132.753 | 21.136 | 75.662 | 42.837 |
| 040-041 | -1700.459 | -557.143 | -402.063 | -598.194 | -143.059 |
| 041-042 | 209.363 | 99.392 | 33.381 | 76.590 |  |
| 042-043 | 219.851 | 33.792 | 80.091 | 105.968 |  |
| 043-044 | -702.257 | -172.351 | -219.926 | -309.981 |  |
| 044-045 | -2007.232 | 0.363 | -798.991 | -1208.604 |  |
| 045-046 | 131.017 | -286.042 | -91.935 | 508.994 |  |
| 046-047 | 1859.363 | 282.769 | 413.178 | 1163.416 |  |
| 047-048 | -232.583 | 33.314 | -133.573 | -132.323 |  |
| 048-049 | 29.735 | -18.507 | -26.283 | 74.525 |  |



## APPENDIX C

## GEOSTROPHIC POINT DEPTH CURRENT VELOCITIES Latitude $28^{\circ} 15.0^{\prime} \mathrm{S}$

| Station Pair | 185/184 | 184/183 | 183/182 | 182/181 | 181\%180 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Depth (m) |  | Units | $\mathrm{cm} / \mathrm{sec}$ |  |  |
| 0 | -11.7 | -84.1 | -20.6 | 52.8 | -19.5 |
| 100 | 0.0 | -70.0 | -19.9 | 40.2 | -14.9 |
| 250 |  | -34.3 | -11.3 | 14.3 | -7.4 |
| 500 |  | -8.3 | -1.8 | 2.8 | -2.0 |
| 762 |  | 0.0 | 0.0 | 0.0 | 0.0 |
| 1000 |  | 4.7 | 1.0 | 0.5 | -0.03 |
| 2000 |  |  | 13.0 | 5.0 | 1.9 |
| 2500 |  |  |  | 7.4 | 4.2 |
| 3000 |  |  |  | 8.4 | 6.3 |
| 3500 |  |  |  | 8.3 | 8.0 |
| 4000 |  |  |  | 8.3 | 8.6 |
| 5000 |  |  |  |  |  |
|  | 180/179 | 179/178 | 178/177 | 177/176 |  |
| 0 | -2.3 | -17.4 | 5.5 | -0.2 |  |
| 100 | -5.7 | -16.6 | 4.9 | -0.4 |  |
| 250 | -2.5 | -10.5 | 2.4 | 0.3 |  |
| 500 | -1.0 | -2.6 | 1.2 | -0.4 |  |
| 762 | 0.0 | 0.0 | 0.0 | 0.0 |  |
| 1000 | -0.3 | 2.4 | -1.0 | 0.4 |  |
| 2000 | -0.6 | 5.0 | -4.2 |  |  |
| 2500 | -1.6 | 5.4 |  |  |  |
| 3000 | -2.9 | 6.1 |  |  |  |
| 3500 | -3.0 |  |  |  |  |
| 4000 | -2.1 |  |  |  |  |
| 5000 |  |  |  |  |  |

$176 / 175175 / 174174 / 173173 / 172172 / 171$ 171/170170/169169/168 $168 / 167$ 167/166


～oNrorncoccnm
～THMONMNNNN
$\begin{array}{lllllllll}N & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \sim & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1\end{array}$
～○かのonmorJへN mんmooo w Nmm＿u



 JMonoonoNmJ



Units cm/sec
~MNMOMN NOMN





いかのm○○の土のMJ pipposoosoó








$\begin{array}{lll}0-1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0\end{array}$





น $\because \sigma 00 \pm \sim \pm \pm n$ $\dot{H} \circ \circ 0_{1}^{\circ} 0_{1}^{\circ} 0_{1}^{\circ}$


yまdə』
㤫

[^2]$$
\dot{\sim} \dot{\sim} \dot{\sim}
$$
$$
\text { N~ooóo } \dot{0} 0_{1} 0_{1}
$$

001/002 002/003 003/004 004/005 005/006
Depth (m)
Units cm/sec

| 8.1 | -14.5 | -14.3 | 16.6 | -1.0 |
| ---: | ---: | ---: | ---: | ---: |
| 11.5 | -23.7 | -14.1 | 16.4 | -1.8 |
|  | -29.7 | -10.9 | 14.8 | -3.0 |
|  | -27.3 | -7.8 | 12.9 | -3.9 |
|  | -7.5 | -2.5 | 4.3 | -1.5 |
|  | 0.0 | 0.0 | 0.0 | 0.0 |
|  |  | 3.1 | -7.2 | 2.9 |
|  |  | 4.6 | -8.4 | 3.7 |
|  |  | 4.4 |  |  |

$006 / 007$ 007/008 008/009 009/010 010/011 011/012
0
100
250
500
1000
1203
2000
2000
2500
3000
3500
4000
5000
-

| 1.9 | -0.7 | -1.8 | -3.6 | 3.2 |
| ---: | ---: | ---: | ---: | ---: |
| 1.5 | -0.9 | -0.9 | -3.9 | 4.0 |
| 1.1 | -0.6 | -0.6 | -3.5 | 3.7 |
| 0.8 | -0.9 | -0.2 | -2.1 | 2.7 |
| 0.3 | -0.3 | 0.0 | -0.3 | 0.6 |
| 0.0 | 0.0 | -0.3 | 0.0 | 0.0 |
| -0.9 | 1.0 | -0.2 | 0.8 | -0.9 |
| -1.2 | 1.1 | -0.1 | 1.1 | -0.8 |
| -1.4 | 1.1 | 0.0 | 1.1 | -0.8 |
| -1.7 | 1.0 | 0.2 | 1.0 | -0.8 |
| -1.8 | 1.0 |  | 0.9 | -0.8 |


$012 / 013013 / 014014 / 015015 / 016016 / 017017 / 018018 / 019019 / 020020 / 021$ 021/022
12/013

$\begin{array}{lll}\text { on } & \text { mo } \\ 000 \\ 0 & 0 \\ 0\end{array}$
orncoso


[^3]$032 / 033 \quad 033 / 034 \quad 034 / 035 \quad 035 / 036 \quad 036 / 037 \quad 037 / 038 \quad 038 / 039 \quad 039 / 040 \quad 040 / 041 \quad 041 / 042$





־J J mNo no NNN
-iojerorroron
NMOOHONHNMM
000000000000





NHOOOOOHHNNH
-ióoóo ooo oo

[^4]$072 / 073073 / 074074 / 075075 / 076076 / 077077 / 078$
～oo



のルのルロ○～のに
$\dot{1}_{1}{\underset{1}{1}}_{0}^{0} 0^{\circ} 0_{0}^{\circ}$
 $\dot{m} \sim \dot{\sim} \dot{\sim} 0_{1}^{\circ} \dot{i}_{1}$


## APPENDIX D

## END POINT DATA <br> Mass, Salt and Heat Transports

## $28^{\circ} 15^{\prime} \mathrm{S}$

West End
$\begin{aligned} & \text { Cross Sectional Area } \\ & (\text { Beach to Station } 185)\end{aligned}=1,900,000 \mathrm{~m}^{2}$
$\begin{aligned} & \text { Cross Sectional Area } \\ & \text { (Station 185-184) }\end{aligned}=2,707,000 \mathrm{~m}^{2}$
Mass Transport
(Station 185-184)
$=-0.204 \times 10^{12} \mathrm{gm} / \mathrm{sec}$

Salt Transport (Station 185-184) $=-7.242 \times 10^{12} 0 / 00 / \mathrm{sec}$

Heat Transport
(Station 185-184)
$=-59.782 \times 10^{12} \mathrm{cal} / \mathrm{sec}$

| Mass,Salt,Heat |
| :--- |
| $($ Beach-Sl85 $)$ |$=$| Mass,Salt, Heat |
| :--- |
| $(S 185-S 184)$ |$\quad x \quad \frac{\text { Area (Beach-S185) }}{\text { Area (S185-S184) }}$

$\begin{aligned} & \text { Mass Transport } \\ & (\text { Beach -S185 })\end{aligned} \leq-0.143 \times 10^{12} \mathrm{gm} / \mathrm{sec}$
$\begin{aligned} & \text { Salt Transport } \\ & (\text { Beach -S185) }\end{aligned} \leq-5.083 \times 10^{12} 0 / 00 / \mathrm{sec}$
$\begin{aligned} & \text { Heat Transport } \\ & (\text { Beach }- \text { Sl85 })\end{aligned} \leq-41.960 \times 10^{12} \mathrm{cal} / \mathrm{sec}$
East End
$\begin{aligned} & \text { Cross Sectional Area } \\ & (\text { S86-Beach })\end{aligned}=300,000 \mathrm{~m}^{2}$
Cross Sectional Area $=559,000 \mathrm{~m}^{2}$
$(587-586)$
$\begin{aligned} & \text { Mass Transport } \\ & (\mathrm{S087-5086})\end{aligned}=.002 \times 10^{12} \mathrm{gm} / \mathrm{sec}$
$\begin{aligned} & \text { Salt Transport } \\ & (\text { S087-S086) }\end{aligned} \quad=.069 \times 10^{12} 0 / 00 / \mathrm{sec}$
Heat Transport
(S087-S086)
$=.578 \times 10^{12} \mathrm{cal} / \mathrm{sec}$

```
Mass,Salt,Heat = = Mass,Salt,Heat }=\begin{array}{l}{\mathrm{ Mas87-S86)}}\\{(S86-Beach)}
Mass Transport < .001 < 10 12 gm/sec
Salt Transport \leq .037 < 10 12 %/00/sec
# Heat Transport 
430}15'
West End
Cross Sectional Area }={\begin{array}{l}{\mathrm{ (Beach-S00l)}}
Cross Sectional Area = = 3,610,000 m
Mass Transport
(SOOl-SOO2)
Salt Transport 
Heat Transport
(SOOl-SOO2)
= 71.664 x 10 12 cal/sec
Mass,Salt,Heat 
Mass Transport 
Salt Transport \leq 
Heat Transport 
East End
```



```
Cross Sectional Area }=5,\mp@code{C077-S078)
```

```
Mass Transport 
Salt Transport }=0.687\times1\mp@subsup{0}{}{12 0/00/sec
Meat Transport }=6.026\times1\mp@subsup{0}{}{12}\textrm{cal}/\textrm{sec
Mass,Salt,Heat 
Mass Transport 
Salt Transport < < 0.884 x 10 12 0/00/sec
Heat Transport
(S078-Beach)
```

The end section values are assumed suspect in that the conditions of the closest station pair to the beach are assumed to continue to the shore. The transports are believed to be between $50 \%$ and $90 \%$ of the calculated values due to the unknown decrease in velocity toward the shore line which was not taken into account. These values have not been included in the overall transoceanic calculations.
l. Angstrom, A. K., "Evaporation and precipitation at various latitudes and the horizontal eddy convectivity of the atmosphere," Arkiv for Matematik, Astronomi och Fysik, v. 20, 12 pp., 1925.
2. Baker, T. L., Mass, Salt and Heat Transport Across Seven Latitude Circles in the North Atlantic Ocean: A Description of the General Circulation Based on Geostrophic Calculations from International Geophysical Year and Adjacent Data, Master's Thesis, Naval Postgraduate School, Monterey, 1978.
3. Bjerknes, V. F. K., J. Bjerknes, H. S. Solberg and T. Bergeron, Physicalische Hydrodynamik. Julius Springer, Berlin, $797 \mathrm{PP} \cdot, 1933$.
4. Bryan, K., "Measurements of Meridional Heat Transport by Ocean Currents," J. Geophys. Res., v. 67, no. 9, p. 34033414, 1962.
5. Budyko, M. I., The Heat Balance of the Earth's Surface, translated by N. A. Stepanova, 1958, U. S. Department of Commerce, Washington, D. C., 259 pp., 1956.
6. Burns, D. A., "The latitudinal distribution and significance of calcareous nannofossils in the bottom sediments of the South-West Pacific Ocean (Lat. 15-55오) around New Zealand," Oceanography of the South Pacific 1972 , New Zealand National Commission for UNESCO, Wellington, New Zealand, p. 221-228, 1972.
7. Coker, R. E., This Great and Wide Sea, p. 168, Harper and Brothers, 1962 .
8. Deacon, G. E. R., "The Hydrology of the Southern Ocean," Discovery Report, v. 15, p. l-123, 1937.
9. Deacon, G. E. R., "The Southern Ocean," The Sea: Ideas and Observations on Progress in the Study of the Seas, v. 2, P. 281-296, Wiley-Interscience, 1963.
10. Defant, A., "Die absolute Topographie des physisikalischen Meeresniveaus und der Druckflachen, sowie die Wasserbewegungen im Atlantischen Ozean. Wiss. Ergebn. D. Deutschen Atlantischen Exped. auf d. Forschungs - u. Vermessungsschiff 'Meteor', 1925-1927,"'v. VI (2 Teil., 5 Leif.), Walter De Gruyter and Co., 1941.
11. Defant, A., Physical Oceanography, v. l, Pergamon Press, 1961.
12. Dietrich, G., "Aufbau and Bewegung von Golfstrom und Agulhasstrom," Naturwissenschaften no. 15, 1936.
13. Dietrich, G., General Oceanography, An Introduction, p. 171, Wiley, 1963.
14. Ferrel, W., A Popular Treatise on the Winds, p. 163-164, Wiley, 1890.
15. Fomin, L. M., The Dynamic Method in Oceanography, p. 117148, Elsevier Publishing Co., 1964.,
16. Gilmour, A. E., "Temperature variations in the TongaKermadec Trench," Oceanography of the South Pacific 1972, New Zealand National Commission for UNESCO, Wellington, New Zealand, p. 25-34, 1972.
17. Greeson, T. D., Mass, Salt and Heat Transport across $40^{\circ} \mathrm{N}$ Latitude in the Atlantic Ocean Based on IGY Data and Dynamic Height Calculations, Master's Thesis, Naval Postgraduate School, Monterey, 1974.
18. Gunther, E. R., "A report on oceanographic investigations in the Peru Current," Discovery Report, 14, p. 109-278, 1936.
19. Harmon, B. V., "Western Boundary Currents in the South Pacific," Scientific Exploration of the South Pacific, National Academy of Sciences, Washington, D. C., p. 5059, 1970.
20. Helland-Hansen, B. and Sandström, J. W., "Uber die Berechnung von Meereströmungen," Report on Norwegian Fishing and Marine Investigations, v. 2, no. 4, 1903.
21. Hidaka, K., "Depth of motionless layer as inferred from the distribution of salinity in the ocean," Trans. Am. Geophys. Union, v. 30, no. 3, 1940.
22. Iselin, C. $0^{\prime}$ D., A Study of the Circulation of the Western North Atlantic, Pap. Phys. Ocean. and Meteor., 4, (4), 101 pp .
23. Jacobsen, J. P., "Contribution to the hydrography of the Atlantic," Medd. Komm. Havundersgelser, Ser. Hydrografi, v. 2, 1916 .
24. Jung, G. H., "Note on meridional transport of energy by the oceans," J. Marine Res., v. ll, no. 2, p. 139-146, 1952.
25. Jung, G. H., "Heat transport in the Atlantic Ocean," Ref. 53-34T, Dept. of Oceanography, A. and M. College of Texas, College Station, 1955.
26. Knox, G. A., "Biological Oceanography of the South Pacific," Scientific Exploration of the South Pacific, National Academy of Sciences, Washington, D. C., p. 155182, 1970.
27. Maury, M. F., The Physical Geography of the Sea, 6 th ed., Harper, 1856.
28. Mason, J. R., Master's Thesis in progress, Naval Postgraduate School, Monterey, 1978.
29. Muromtsev, A. M., The Principal Hydrological Features of the Pacific Ocean, Office of Technical Services, U. S. Dept. of Commerce, Washington, D. C., $417 \mathrm{pp} ., 1963$.
30. Neumann, G. and Pierson, W. J., Jr., Principles of Physical Oceanography, Prentice-Hall, p. 244-247, 1966.
31. Parr, A., "Analysis of current profiles by a study of pycnomeric distortion and identifying properties," Journal of Marine Research, v. 4, 1938.
32. Perry, A. H. and Walker, J. M., The Ocean-Atmosphere System, Longman, 160 pp., 1977.
33. Radzikjovskaya, M. A., "Volumes of main water masses in the South Pacific," Oceanology, v. 5, no. 5, p. 29-32, 1965.
34. Reed, R. K., "Geopotential topography of deep levels in the Pacific Ocean," Journal of Oceanographic Society of Japan, v. 26, no. 6, p. 331-339, 1970.
35. Reid, J. L., "On the geostrophic flow at the surface of the Pacific Ocean with respect to the l,000-decibar surface," Tellus, 13, p. 489-502, 1961.
36. Reid, J. L, Stommel, H., Stroup, E. D., and Warren, B. A., "Detection of a deep boundary current in the western South Pacific," Nature, v. 217, p. 937, 1968.
37. Reid, J. L., "Transpacific hydrographic sections at Lats. $43^{\circ}$ S and $28^{\circ} \mathrm{S}$ : the SCORPIO Expedition-III. Upper water and a note on southward flow at mid-depth," Deep-Sea Research, v. 20, no. l, p. 39-50, 1973.
38. Rossby, C. G., "Dynamics of steady ocean currents in the light of experimental fluid dynamics," Papers Physical Oceanography and Meteorology, v. 5, no. 1, 1936.
39. Scully-Power, P. D., "Oceanography of the Coral Sea: the Winter Regime," Oceanography of the South Pacific 1972, New Zealand National Commission for UNESCO, Wellington, New Zealand, p. 129-138, 1972.
40. Sellers, W. D., Physical Climatology, University of Chicago Press, 1965.
41. Stepanov, V. N., "Basic types of water structure in seas and oceans," Oceanology, v. 5, no. 5, p. 2l-28, 1965.
42. Stanton, B. R., "Circulation along the eastern boundary of the Tasman Sea," Oceanography of the South Pacific 1972, New Zealand National Commission for UNESCO, Wellington, New Zealand, p. 141-148, 1972.
43. Stommel, H., "On the determination of the depth of no meridional motion," Deep-Sea Research, v. 3, p. 273-278, 1956.
44. Stommel, H., "The Circulation of the Abyss," Scientific American, July 1958.
45. Stommel, H. and Schott, F., "The Beta spiral and the determination of the absolute velocity field from hydrographic station data," Deep-Sea Research, v. 24, p. 325329, 1977.
46. Sverdrup, H. U., M. W. Johnson and R. H. Fleming, The Oceans, Prentice-Hall, New York, 1087 pp., 1942.
47. Sverdrup, H. U., Oceanography, Handbuch der Physik, Springer Verlag, Berlin, 1957.
48. Vander Haar, T. H. and Oort, A., "New estimates of energy transport by northern hemisphere oceans," Journal of Physical Oceanography, v. 3, no. 2, p. 169-172, 1973.
49. Von Arx, W. S., An Introduction to Physical Oceanography, Addison-Wesley, $\overline{\text { P. 245, 1962. }}$
50. Warren, B. A., "Transpacific hydrographic section at Lats. $43^{\circ} \mathrm{S}$ and $28^{\circ} \mathrm{S}$ : the SCORPIO Expedition-II. Deep water," Deep-Sea Research, v. 20, no. 1, p. 9-38, 1973.
51. Woods Hole Oceanographic Institution, Physical and Chemical Data from the SCORPIO Expedition in the South Pacific Ocean aboard USNS ELTANIN, Cruises 28 and 29, 12 March31 July 1967, WHOI Reference 69-56.
52. Wyrtki, K., "Oceanography of the eastern Equatorial Pacific," Oceanogr. Mar. Biol., v. 4, p. 33-68, 1966.

1. Defense Documentation Center

Cameron Station
Alexandria, Virginia 22314
2. Library, Code 0142

Naval Postgraduate School
Monterey, California 93940
3. Dr. Glenn H. Jung, Code 68Jg

Department of Oceanography
Naval Postgraduate School
Monterey, California 93940
4. Lieutenant L. Sherfesee III, USN

3
1105 South Street Portsmouth, New Hampshire 03801
5. Lieutenant T. L. Baker, USN

12318 Overcup
Houston, Texas 77024
6. Commander

1
Naval Oceanography Command National Space Technology Laboratories Bay St. Louis, Mississippi 39520
7. Dean of Research, Code 012

1
Naval Postgraduate School
Monterey, California 93940
8. Department of Oceanography, Code 68

3
Naval Postgraduate School
Monterey, California 93940
9. Department of Oceanography Library

1 University of Washington Seattle, Washington 98105
10. Department of Oceanography Library

1 Oregon State University Corvallis, Oregon 97331
11. Director of Defense Research and Engineering

1 ATTN: Office, Asst. Director (Research) Office of the Secretary of Defense Washington, D. C. 20301
12. Dr. Kern Kenyon

A-0 30
University of California
Scripps Institution of Oceanography La Jolla, California 92093
13. Lieutenant J. R. Mason, USN 104 Moran Circle
Monterey, California 93940
14. NODC/NOAA

Rockville,
Maryland 20882
15. NORDA I

Bay St. Louis,
Mississippi 39520
16. Officer in Charge l

NWSED, Box 6357
APO San Francisco 96610
17. Dr. Abraham H. Oort

Geophysical Fluid Dynamics Lab/NOAA
Princeton University
P. O. Box 308

Princeton, New Jersey $08540^{\circ}$
18. Prof. J. L. Reid, Jr.

A-0 30
University of California
Scripps Institution of Oceanography La Jolla, California 92093
19. SIO Library

University of California, San Diego P. O. Box 2367

La Jolla, California 92037
20. Dr. Robert E. Stevenson

1
Scientific Liaison Office, ONR
Scripps Institution of Oceanography La Jolla, California 92037
21. Dr. J. J. von Schwind, Code 68 Vs

Department of Oceanography
Naval Postgraduate School
Monterey, California 93940
电


Mass, salt, and heat transport in the So


32768001954142
DUDLEY KNOX LIBRARY


[^0]:    Cross Sectional Area along $43^{\circ} \mathrm{S}$

    Figure 9

[^1]:    Total 1316.051

[^2]:    $\begin{array}{ll}0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 7 & 10\end{array}$

[^3]:    $31 / 032$
    -0.3
    -1.2
    -2.0
    -3.1
    -1.2
    0.0
    2.0
    2.5
    3.7
    5.3
    6.1

    ```
    wom
    ```

    MNOMOOMN:
    
    
    ㄱ․․․․․․
    o 0 Mroo
    
    $\begin{array}{ll}0 m \sim \\ 000 \\ 0 & 0 \\ 0 & 0\end{array}$
    $\pm .0$
    0.0
    os
    -100
    -1
    0
    0

[^4]:    

