MASS, SALT, AND HEAT TRANSPORT IN THE SOUTH PACIFIC

Louis Sherfesee III

NAVAL POSTGRADUATE SCHOOL Monterey, California

THESIS

MASS, SALT, AND HEAT TRANSPORT IN THE SOUTH PACIFIC

Ъу

Louis Sherfesee III

September 1978

Thesis Advisor:

G. H. Jung

Approved for public release; distribution unlimited.

T185046

SECURITY CLASSIFICATION OF THIS PAGE (When Dete	Entered)							
REPORT DOCUMENTATION	PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM						
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER						
and the second sec								
A. TITLE (and Sublitio) Mass, Salt, and Heat Transport in the South Pacific		5. TYPE OF REPORT & PERIOD COVERED						
		Master's Thesis;						
		September 1978						
		6. PERFORMING ORG. REPORT NUMBER						
7. AUTHOR(+)		S. CONTRACT OR GRANT NUMBER(4)						
Louis Sherfesee III		1						
		10. BROGRAM ELEMENT BROJECT TAKE						
FERFORMING ONGANIZATION NAME AND ADDRESS		AREA & WORK UNIT NUMBERS						
Naval Postgraduate School	· ·							
Monterey, California 9394	U							
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE						
Naval Postgraduate School		September 1978						
Monterey, California 9394	0	13. NUMBER OF PAGES						
14. MONITORING AGENCY NAME & ADDRESS/II dillara	nt from Controlling Office)	15. SECURITY CLASS. (pl (bie rebort)						
Naval Postgraduate School	0	Unclassified						
Monterey, Carronnia 5354	0	15. DECLASSIFICATION/DOWNGRADING SCHEDULE						
16 DISTRIBUTION STATEMENT (of this Report)		<u> </u>						
Approved for public releas	e; distributic	on unlimited.						
		*						
17. DISTRIBUTION STATEMENT (of the obstract entered	In Block 20, if different fro	n Report)						
18. SUPPLEMENTARY NOTES								
		· · · · · · · · · · · · · · · · · · ·						
19. KEY WORDS (Continue on reverse side if necessary a	nd identify by block number)							
South Pacific Ocean, gener	al circulation	, heat transport,						
mass transport, salt trans	port, geostrop	hic ocean currents,						
level of no motion.								
20. ABSTRACT (Continue on reverse side il necessary an	d identify by block number)							
Utilizing data from a	four month per	iod (SCORPIO Expedition.						
1967), an analysis was mad	e of the vario	ous characteristics of						
the South Pacific Ocean.								
This investigation was	based on the	primary assumption that						
the geostrophic approximat	ion was valid.	A level of no motion						
was established at 762m and 1203m for the latitudinal sections								
of 28° and 43° respectivel	y, which satis	fied mass and salt						
DD FORM 1472		······						
S/N 0102-014-6601	LETE							

.

continuity requirements. Comprehensive temperature and salinity data extended from the western boundary to the eastern boundary of the South Pacific Ocean, and from the sea surface to the sea floor.

Net meridional mass, salt and heat transport values were calculated dependent on a selected level of no motion for each of the latitudinal sections. These transport values were then attributed to specific water masses. The current circulation for the Upper Layer was determined to be anticyclonic while the Bottom Layer was cyclonic. The Upper Layer had a net northern transport at both latitudes, while the Intermediate Layer had a net southern transport at 28°S and a northern transport at 43°S. The Deep Layer had a net southern transport along both latitudes with the Bottom Layer having a net northward transport.

the Bottom Layer having a net northward transport. Along both latitude lines, there was determined a net northward heat flow of 33 and 77 x 10¹² cal/sec for the 28°S and 43°S latitudinal sections. Given the initial assumptions made, this slight northward heat transport is probably within the range of error for this study.

Approved for public release; distribution unlimited.

Mass, Salt, and Heat Transport

in the South Pacific

by

Louis Sherfesee III Lieutenant, "United States Navy B.S. (Oceanography), Univ. of Washington; B.S. (Geology), Univ. of Washington, 1969

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN METEOROLOGY AND OCEANOGRAPHY

from the NAVAL POSTGRADUATE SCHOOL September 1978

ABSTRACT

Utilizing data from a four month period (SCORPIO Expedition, 1967) an analysis was made of the various characteristics of the South Pacific Ocean.

This investigation was based on the primary assumption that the geostrophic approximation was valid. A level of no motion was established at 762m and 1203m for the latitudinal sections of 28°S and 43°S respectively, which satisfied mass and salt continuity requirements. Comprehensive temperature and salinity data extended from the western boundary to the eastern boundary of the South Pacific Ocean, and from the sea surface to the sea floor.

Net meridional mass, salt and heat transport values were calculated dependent on a selected level of no motion for each of the latitudinal sections. These transport values were then attributed to specific water masses. The current circulation for the Upper Layer was determined to be anticyclonic while the Bottom Layer was cyclonic. The Upper Layer had a net northern transport at both latitudes, while the Intermediate Layer had a net southern transport at 28°S and a northern transport at 43°S. The Deep Layer had a net southern transport at 43°S. The Deep Layer had a net southern transport along both latitudes with the Bottom Layer having a net northward transport.

Along both latitude lines, there was determined a net northward heat flow of 33 and 77 x 10^{12} cal/sec for the 28° S and 43° S latitudinal sections. Given the initial assumptions made, this slight northward heat transport is probably within the range of error for this study.

TABLE OF CONTENTS

I.	INTF	RODUCTION 10
II.	BACK	(GROUND 13
	Α.	ENERGY TRANSPORT 13
	в.	THE LEVEL OF NO MOTION 14
III.	STAT	rement of the problem 19
IV.	PROC	CEDURE 22
	Α.	DATA SOURCES 22
	в.	COMPUTATION OF VELOCITIES, TRANSPORT OF MASS, SALT CONTENT AND HEAT 25
	с.	IDENTIFICATION OF WATER MASSES 29
	Ð.	THE CIRCULATION OF THE SOUTH PACIFIC 38
	E.	DETERMINATION OF UPPER, INTERMEDIATE AND DEEP/BOTTOM WATER CIRCULATION 44
ν.	DISC	CUSSION OF RESULTS 47
	Α.	THE LEVEL OF NO MOTION 47
	В.	MASS AND SALT TRANSPORT 47
	с.	HEAT TRANSPORT 52
	D.	OCEANIC EDDY CIRCULATION 59
	Ę.	CALCULATED CIRCULATION PATTERN 61
		1. Upper Circulation 61
		2. Intermediate Circulation 67
		3. Deep Circulation 67
		4. Bottom Circulation 70
VI.	CONC	CLUSIONS 73

APPENDIX A:	Oceanographic Stations	-	-	-	-	-	-	-	-	-	75
APPENDIX B:	Geostrophic Data	-	-	-	-	-	-		-	-	79
APPENDIX C:	Geostrophic Point Depth Current Velocities	-	-	-	-	-	-	-	-	-	116
APPENDIX D:	End Point Data	-	-	-	-	-	-	-	-	-	127
BIBLIOGRAPHY		-	-	-	-	-	-	-	-	-	130
INITIAL DISTR	RIBUTION LIST	-	-	-	-	-	-	-	-	-	134

LIST OF TABLES

I.	Muromtsev Water Mass Parameters 34
II.	Level of No Motion 28 ^o S 48
III.	Level of No Motion 43 [°] S 49
IV.	Level of No Motion Use $% 28^{\circ}S$ 50
ν.	Level of No Motion Use % 43 ⁰ S 51
VI.	Total Net Transport 28 ^o S 53
VII.	Total Net Transport 43 ⁰ S 54
VIII.	Net Heat Transport $28^{\circ}S$ and $43^{\circ}S$ 56
IX.	Layer Heat Transports 58

۰,

LIST OF FIGURES

1.	SCORPIO Transits along $28^{\circ}S$ and $43^{\circ}S$	-	-	-	23
2.	USNS ELTANIN	-	-	-	24
3.	Muromtsev's Surface Water Mass Location	-	-	-	31
4.	Muromtsev's Subsurface Water Mass Location	-	-	-	32
5.	Muromtsev's Intermediate/Deep Water Mass Location	-	-	-	33
6.	Temperature/Salinity Diagram for Muromtsev Water Mass Classification	-	-	-	35
7.	Temperature/Salinity Diagram for Modified Muromtsev Water Mass Classification	-	-	-	36
8.	Cross Sectional Area along 28 ⁰ S	-	-	-	39
9.	Cross Sectional Area along 43 ⁰ S	-	-	-	40
10.	Bottom Water Circulation Theory	-	-	-	43
11.	New Zealand Surface Circulation with Eddy -	-	-	-	60
12.	Mass Transport 28 ⁰ S (West Section)	-	-	-	62
13.	Mass Transport 28 ⁰ S (East Section)	-	-	-	63
14.	Mass Transport 43 ⁰ S (West Section)	-	-	-	64
15.	Mass Transport 43 ⁰ S (East Section)	-	-	-	65
16.	Upper Layer Mass Transport	-	-	-	66
17.	Intermediate Layer Mass Transport	-	-	-	68
18.	Deep Layer Mass Transport	-	-	-	69
19.	Bottom Layer Mass Transport	-	-	-	71

ACKNOWLEDGEMENTS

The author wishes to thank Dr. Glenn H. Jung for his acceptance, patience and guidance in the preparation of this thesis and Dr. Joseph J. Von Schwind for his constructive review of the text.

The author also wishes to thank Lt. James R. Mason, USN for his time, assistance and objective appraisals and also Capt. Earle McCormick, USAF for his computer expertise.

Finally, the author wishes to thank his wife, Carol E. Sherfesee, without whose assistance, understanding, patience and faith this thesis project could not have been accomplished.

I. INTRODUCTION

The heat budget of the earth is the result of a net surplus of solar radiation received in the tropics, togetHer with a net loss of heat in the polar regions. Since the temperatures of the tropics and the polar regions do not progressively get warmer and colder respectively, it was assumed that there was a poleward transport of heat from the equatorial area (Newmann and Pierson, 1966). This heat transport was a method of energy transfer. It was assumed that the bedrock structure of the earth accounted for negligible heat transfer through conduction (Sverdrup <u>et al</u>., 1942). The earth's atmosphere and world ocean were then assumed to be the primary energy transfer agents.

Coker (1947) wrote that the chief sources of heat for the sea were heat from the atmosphere by contact, absorption of radiation and condensation of water vapor. He also mentioned conduction through the ocean bottom, heat due to frictional currents and heat released through chemical and biological processes as negligible sources.

Neumann and Pierson (1966) in quoting Maury (1856) wrote: "The aqueous portion of our planet preserves its beautiful system of circulation. By it heat and warmth are dispersed to the extratropical regions; clouds and rains are sent to refresh the dry land; and by it cooling streams are brought from polar seas to temper the heat of the

torrid zone. To distribute moisture over the surface of the earth, and to temper the climate of different latitudes, it would seem, are the two great offices assigned by their Creator to the ocean and the air."

Dietrich (1963) stated that the external processes of heat transfer between ocean and atmosphere, as well as the internal processes of heat conduction in the ocean, are known only in rough outline.

At one time, the ocean had been thought of as the primary method of transfer. For over a century, there has been controversy over which system, air or sea, is the predominant mechanism for energy transport.

Maury (1856) and Ferrel (1890) emphasized the sea as the primary agent. Angstrom (1925) roughly equated the oceanic and atmospheric heat transport. Bjerknes <u>et al</u>. (1933) and Sverdrup <u>et al</u>. (1942) considered oceanic transport negligible as compared to that of the atmosphere. Jung (1952) questioned this and then stressed (Jung, 1955) that while oceanic transport of sensible heat is less than the atmospheric sensible and latent heat, it should not be considered as negligible.

It was proposed by Jung (1952) that the oceans with their accompanying current systems might be of more importance in the transfer of heat energy than thought at the time. He suggested that earlier studies such as Sverdrup <u>et al</u>. (1942) had considered only the standing horizontal eddy, that is the Gulf Stream system with its associated

return currents, in their calculations. Jung proposed that closed vertical circulations in meridional planes could conceivably transport large quantities of energy, even when the velocities involved were minor. Jung followed this in 1955 with a detailed study in the North Atlantic Ocean which determined the heat transported by geostrophic ocean currents. Several studies (Budyko, 1956; Sverdrup, 1957; Bryan, 1962; Sellers, 1965; Vander Haar and Oort, 1973; Baker, 1978) with oceanic contribution to meridional transfer have followed, but with the exception of Baker, these studies have not utilized synoptic or nearly synoptic data for an entire ocean.

This study utilized a computer program developed by Greeson in his 1974 master's thesis. Two coast to coast South Pacific Ocean latitude sections obtained by the SCORPIO Expedition (1967) were used to determine a general geostrophic circulation and net heat flux measurements.

The geostrophic method provided a means for computing the field of relative (geostrophic) motion in a fluid from a knowledge of the internal distribution of pressure (Von Arx, 1962).

II. BACKGROUND

A. ENERGY TRANSPORT

The discussion of energy transport within either an atmospheric or oceanic medium starts with a general equation applicable to all fluid motion,

(a) (b) (c) (d)

$$T^{*} = \int_{S} (\rho U + \rho C^{2}/2 + \rho \phi + P) V_{n} dS, \qquad (1)$$

where T represents the total meridional energy transferred normal to a vertical wall encircling the earth at a particular latitude, ρ is density, U is the internal energy per unit mass, C is the magnitude of the fluid velocity, ϕ is the potential energy per unit mass, P is the pressure, V_n is the component of the fluid velocity normal to the latitude wall at a given level in either air or ocean and dS is the differential area of the wall.

The total amount of energy transported across a complete latitudinal circle is composed of the transport due to (a) the advection of thermal energy, (b) the transport of kinetic energy, (c) the transport of potential energy and (d) the rate of work done by pressure forces.

As compared to the other terms, the transport of kinetic energy (b) is negligible (Jung, 1952).

The transfer of energy in the ocean is carried out by the water currents. Geostrophic equilibrium is assumed as one method to determine the magnitude of these currents. In addition the assumption of hydrostatic equilibrium in the vertical eliminates term (c) and (d) from equation (1). This then reduces equation (1) to the following form:

$$T_{o}^{*} = \int_{O} \rho_{s} U_{s} V_{ns} dO . \qquad (2)$$

The subscript "s" stands for seawater, and "o" is that part of our latitude wall, "S", slicing through the ocean. Now neglecting compressibility effects in water, $U_s = C_{ps}T_s$ where C_{ps} is the specific heat at constant pressure of sea water, and T_s is the temperature of sea water. Equation (2) may now be written as

$$T_{o}^{*} = \int_{O} \rho_{s} C_{ps} T_{s} V_{ns} d0 .$$
 (3)

B. THE LEVEL OF NO MOTION

The dynamic method of utilizing oceanographic data includes the problem of locating a reference level of no motion. This reference level is necessary in order to determine absolute current velocities. Defant (1961), in discussing the difficulty of the problem, reported that the required data necessary to determine a zero level was largely lacking.

- -

There have been several attempts to determine this level of no motion as listed in Defant (1961) and Baker (1978).

One early method was to assume this level was at a great depth in the ocean. The logic for this approach was the assumption that deep ocean waters were uniform with nearly horizontal isopycnal (equal density) and isobaric (equal pressure) surfaces. Absolute current velocities could be determined if the level was placed at a constant great depth.

Another method, offered by Jacobsen (1916), utilized the location of an oxygen minimum in the ocean as an identifier of the level of minimum horizontal motion. The reasoning behind this method was that the use of oxygen due to oxidation of organic matter takes place at all levels; therefore a minimum oxygen content would represent an area of minimum horizontal current replenishment. This method has some peculiar results which were brought out by various investigators (Rossby, 1936; Iselin, 1936; and Dietrich, 1936). In addition to unrealistic results, the assumptions of uniform distribution of organic matter and oxygen consumption were incorrect. This method of minimum oxygen levels necessarily coinciding with a level of no motion can be disregarded.

Parr (1938) considered thickness variation of isopycnal surfaces as a deterministic factor of a level of no motion. He equated minimal thickness distortion to minimal water motion within the layer.

Fomin (1964) took exception to Parr's method stating that the variation of current velocity in the vertical was a

function not only of isopycnal surface slope, but it also depended upon the vertical density gradient. Since Parr's method ignored the vertical density gradient, it would be possible to choose as a layer of no motion an undistorted thickness layer which was in reality a region of strong current velocity.

Hidaka (1940) proposed two different methods for determining the level of no motion. His first method was based on the salinity distribution. Fomin (1964) disagreed with this method saying that coefficients of turbulent diffusion in a layer of no motion did not remain finite as Hidaka had assumed and therefore Hidaka's resultant salinity characteristics bore no definite relation to the current velocity field.

Hidaka's second method depended on the continuity of volume and salt transport and the calculation of the vertical distribution of current velocity by the dynamic method. Fomin (1964) again took exception with Hidaka in that Hidaka's simplification of the continuity equation was not theoretically correct and also because this method led to a set of equations that could not be solved with the current accuracy of at sea measurements.

Defant (1941) determined the zero level based on the differences in dynamic depths of isobaric surfaces. Examination of dynamic height differences of isobaric surfaces of Atlantic station pairs resulted in Defant recognizing a relatively thick layer with horizontal uniform depth variation and small isobaric surface dynamic depth differences (Pomin, 1964).
Defant related this dynamic depth difference constancy to a constant vertical gradient component of current velocity within the layer. This layer was assumed to be nearly motionless and considered to directly adjoin the zero motion surface (Fomin, 1964). Baker (1978) evaluated the Defant method as one of the most reasonable, but stated that resultant current velocities had a low accuracy due to the accumulation of errors associated with the dynamic method.

Sverdrup <u>et al</u>. (1942) developed a method based upon the continuity equation; the level of no motion was determined by comparison of water mass transport above and below a horizontal reference surface. When the mass transport in the latitudinal area of study above the reference surface was equal and opposite in direction to the net mass transport below this surface, the reference surface was then a level of no motion. One difficulty with this approach was the requirement for data across the ocean from coast to coast necessary for dynamic calculations.

Stommel (1956) produced a method for determining the level of no motion using Ekman's concept of the oceans consisting of a wind driven surface layer of frictional influence and a deeper frictionless geostrophic layer. Surface wind stress produced divergence or convergence causing entry or exit of water from the subsurface geostrophic frictionless layer. This geostrophic layer will then suffer thickness changes. Water parcels within this layer will shrink or expand as they move poleward, producing a vertical component

equal to the vertical component at the bottom of the frictional layer produced by wind stress. This matching will occur at a level of no motion.

The final method of this summary is one introduced by Stommel and Schott (1977) based on the beta-spiral and a determination of the absolute velocity field from density data. Their theory was that because the horizontal component of velocity rotates with depth, absolute velocities could be found from observations of the density field alone.

This particular study of the Pacific Ocean uses the mass and salt continuity method proposed by Sverdrup <u>et al</u>. (1942) to determine the level of no motion along two latitudinal tracks (28[°]S and 43[°]S) across the South Pacific.

III. STATEMENT OF THE PROBLEM

The problem was to determine the heat energy transported by the South Pacific Ocean. To accomplish this objective necessitated the obtaining of thermal and salinity data in coast-to-coast latitudinal tracks from the surface to as near the ocean bottom as possible. It was also necessary to have a sufficient comprehension of the circulation pattern of the area.

Energy transfer is accomplished by several processes: large-scale advection, smaller scale eddy diffusion, and molecular diffusion. The primary mode of transfer is largescale advection with eddy diffusion and molecular diffusion contributions being several orders of magnitude smaller. This investigation will neglect eddy and molecular diffusion.

The energy flux across any latitude line in the ocean is expressed by equation (3),

$$T_{o}^{*} = \int_{O} \rho_{s} C_{ps} T_{s} V_{ns} d0 , \qquad (3)$$

where the heat transport term determines the total energy flux across a vertical cross section of area d0 within the ocean. The specific heat at constant pressure of sea water, C_{ps}, for this study has been assumed to have the value of unity.

Velocities were calculated with the formula derived by the Helland-Hansen and Sandstrom (1903) equation, and with the procedure from Sverdrup <u>et al</u>. (1942). The procedure utilizes the assumption of geostrophic equilibrium within the ocean. Jung (1955) pointed out that the geostrophic balance assumption appears valid for large-scale motion outside the equatorial region. It is therefore applicable for the area of this study.

In order to calculate geostrophic velocity differences between consecutive depths and between adjacent pairs of stations, dynamic heights were first computed. The equation

$$V_1 - V_2 = \frac{10C}{L} (D_A - A_B)$$

was used, where $C = (2\Omega \sin \phi)^{-1}$, Ω is the earth's angular speed, θ is the latitude, L is the horizontal distance between stations A and B, and D_A and D_B are the dynamic heights (or depths) of the two stations (Greeson, 1974).

The reference level or level of no motion must be established prior to using this method. To determine this depth level, there must be a zero net transport of both water mass and salt across the entire latitudinal slice of ocean, $\int_{0} d0$:

$$\int_{O} \rho_{s} V_{ns} d0 = 0 ,$$
$$\int_{O} \rho_{s} S V_{ns} d0 = 0 ,$$

where S here is salinity in parts per thousand.

The mass balance was the primary tool for determining the level of no motion. As will be seen later, however, there was little depth difference between levels balancing the mass and salt transports. After a level of no motion was determined, the heat flux across the associated latitude section was calculated.

IV. PROCEDURE

A. DATA SOURCES

This study dealt with the area of the South Pacific Ocean shown in Figure 1. Two latitudinal oceanographic sections were supplied by the SCORPIO Expedition, USNS Eltanin Cruises 28 and 29, 12 March - 31 July 1967 (WHOI Reference 69-56). The two latitude sections were at approximately 28°15'S and 43⁰15'S. Figure 2 is a photograph of the USNS ELTANIN which collected the oceanographic data. In planning the SCORPIO Expedition, the two east-west tracks had been selected for the following reasons: "observations of good quality in the central area were scarce and in order to have a general knowledge of the world ocean some attention had to be given to this immense area; this area also includes some of the deepest of the ocean trenches; and ... the study of deep circulation in the world ocean could not proceed without a systematic survey of the deep-water characteristics in the South Pacific, which is the largest of the world's oceans" (WHOI Reference 69 - 56).

Cruise 28 had an easterly track starting off the east coast of Tasmania. Station 1, Cruise 28, was occupied on March 12, 1967 and the last station of the track, Station 78, on May 8, 1967. Cruise 29 had a westerly track, originating off the west coast of Chile, with its first station, number

Figure 1. SCORPIO Transits along 28°S and 43°S

Figure 2. USNS ELTANIN

86, occupied on June 4, 1967 and its last station, number 185, on July 31, 1967. Since the data were collected in less than a five month period, it has been assumed they are simultaneous.

There are small voids in the cross-sectional latitudinal area where data were not taken. These voids existed primarily along the ocean bottom where the soundings did not reach, and also at the end points of the tracks between the end stations and the beach. The deepest sounding data were extended all the way to the sea floor directly under that station. The method used for extrapolating deep current velocities into these ocean bottom regions is described in detail later in this thesis, in Section IV B. Regarding the end points, the data of the end stations were extended horizontally until the beach slope terminated the extension. Appendix D contains the end point data. It is shown that these ends of the sections contribute negligible amounts to the mass, salt and heat transport totals.

B. COMPUTATION OF VELOCITIES, TRANSPORT OF MASS, SALT CONTENT AND HEAT

There have been limited synoptic velocity measurements made in the South Pacific. With the geostrophic equilibrium assumption, together with the procedure of Sverdrup <u>et al</u>. (1942), temperature and salinity data such as that of the SCORPIO Expedition may be utilized to determine dynamic height and synoptic velocity values for areas of interest. The majority of the calculations for this study were performed on

an IBM-360/67 computer utilizing a basic program developed by Greeson (1974). The Greeson program was modified by Mason (1978) to evaluate data voids along the sea floor as well as to attribute net mass, salt and heat transport between individual station pairs and/or along an entire track to particular identifiable water masses.

Greenson's program initially took temperature and salinity data at various depths and interpolated them to standard depths. Next sigma-t, the specific volume anomaly and specific volume were calculated for each standard depth. Then the equation

$$\overline{\delta} = \frac{\delta_{Z} + \delta(Z + \Delta Z)}{2}$$

was used to compute an average specific volume anomaly for each pair of standard depths for each station. Note that $\overline{\delta}$ was the average specific volume anomaly, and δ_{Z} and $\delta_{(Z+\Delta Z)}$ were the specific volume anomalies at the standard depths of Z and Z+ ΔZ .

Following this, dynamic heights, D , were computed for each station. To do this, the dynamic height difference, AD , between the standard depths was calculated by

$$\Delta D = \overline{\delta} [Z - (Z + \Delta Z)] .$$

The dynamic height of each station was produced by a summation of the dynamic height differences

$$\Sigma \Delta D = D$$
.

Next, the program calculated the distance, L , between stations. This distance varied with latitude and longitude. With the calculated station separation, the relative velocity between station pairs for each standard depth was computed using the Helland-Hansen formula. Given relative velocities, absolute geostrophic velocities were derived by identifying a level of no motion. This level of no motion was defined by absolute geostrophic velocities of zero.

Density was calculated using the formula:

$$\rho_{\text{STP}} = \frac{1}{\alpha_{\text{STP}}}$$

where α_{STP} is the specific volume for a particular salinity, temperature and pressure.

This process has produced what was described by Greeson (1974) as four corners of a rectangle limited by two oceanographic stations and two standard depths with four measurements of temperature, salinity, velocity and density. These four sets of measurements were distributed one to each corner of the rectangle and then the sets were averaged giving a composite value for the bounded area. This area was defined by the station separation and the standard depth internal. The mass transport for the subject vertical area was computed given the area density, velocity and area size. Next the calculated mass transport was multiplied by the average salinity and average absolute temperature. This resulted in an area salt flux and heat flux. Summing over the water column

produced the net mass, salt and heat flux for that pair of stations. The program then determined the net transport between each pair of standard depths, coast to coast, by summing the area values horizontally. A vertical summation process gave the total net mass, salt and heat transport for the entire latitudinal section.

The area extending from the deepest standard common depth to the bottom was handled in a slightly different manner. The vertical area between the sea floor and the deepest common depth between adjacent stations was first determined. Next it was assumed that the velocity of the sea floor was zero; therefore, the average of the deepest common level absolute geostrophic velocity and the zero sea floor velocity was applied as representative of this bottom area. Mass transport in this bottom area was calculated by multiplying this average velocity by the vertical area and deepest calculated density.

To arrive at salt and heat transport, the area mass transports were multiplied by the deepest recorded salinity and temperature which was assumed to extend on down to the sea floor.

An error may have been introduced in that, between a pair of stations, the bottom area water mass was attributed to the deepest type parcel of water actually sampled. In other words, if the deepest water sampled was an intermediate type of water, the void from the sample depth to the sea floor would be treated as intermediate water with all associated characteristics (i.e., density, current velocity, etc.).

The level of no motion was determined by setting a constant depth across the ocean unless interrupted by shoaling bathymetry, in which case the closest standard depth to the bottom was utilized for that station pair. This constant depth across the ocean was then moved vertically to locate a level of minimum net mass transport. Once this was established, the level was again moved up and down to determine a level of minimum net salt transport. At each of these two minimum levels, the heat transport was calculated. Zero mass and salt transport values were the desired objective, but these were only approximately obtained since the possible level of no motion values were taken no closer than at 1meter intervals.

C. IDENTIFICATION OF WATER MASSES

One objective of this investigation was for it to be somewhat compatible with the studies of Jung (1955), Greeson (1974), Baker (1978) and Mason (1978). These studies use a general stratification pattern of Upper, Intermediate, and Deep/Bottom waters. An appropriate water mass classification scheme had to be located and adopted, either verbatim or in a modified form. The water mass schemes of Sverdrup <u>et al</u>. (1942), Deacon (1963) and Wyrtki (1966), as reported by Knox (1970), Defant (1961), Radzikjovskaya (1965), Stepanov (1965) and Muromtsev (1963) were examined and the scheme of Muromtsev was selected as being the most comprehensive for the Pacific, especially for the South Pacific. The Muromtsev scheme

allowed for 14 different South Pacific water masses to be defined with temperature, salinity and oxygen range limitation, although oxygen composition was not used by this author. Depth criteria for the different masses was also included. Figures 3, 4 and 5 illustrate Muromtsev's water mass areas.

Table I illustrates the various water masses selected from the Muromtsev scheme. After comparing the oceanographic station data to the water mass scheme, certain parcels of water between identified masses were still unclassified. The temperature and salinity ranges of Muromtsev were then expanded as necessary to classify these transition zones. Table I shows this tabulation which is also illustrated in Figures 6 and 7.

The surface water masses of the South Pacific were found between the surface and about 200 meters. They were formed by direct interaction with the atmosphere and were subject to seasonal variations in characteristics. Of the water masses they had the least uniformity and were also subject to continental runoff and precipitation. The surface water of the South Pacific was composed of six distinct water masses: Equatorial Surface Water, Southern Tropic Surface Water, Peru Surface Water, South-Central Subtropic Surface Water, Surface Water of South Temperate Latitude and Antarctic Surface Water.

The subsurface waters were found between about 150/200m and down to 600m in depth. They were formed in the zone of subtropical convergence and sinking of surface waters. Also

Figure 4. Muromtsev's Subsurface Water Mass Location

Figure 5. Muromtsev's Intermediate/Deep Water Mass Location

	Maten Mass	0,11	0°ш	Sm%	% U V	Danth
		=	c			indan indan
г.	Equatorial Surface Water	299.0-302.0		34.00-34.50		
2.	Southern Tropic Surface Water	298.0-302.0		35.00-35.50		
з.	Peru Surface Water	287.0-296.0		34.50-35.50	34.40-35.50	< 100m
4.	South-Central Subtropic Surface Water	293.0-298.0	292.4-298.0	35.50-36.45	35.50-36.50	< 150m
5.	Surface Water of South Temperate Latitudes	278.0-288.0		34.00-34.50	33.7-35.1	< 200m
6.	Antarctic Surface Water	271.0-275.0	271.2-275.0	33.50-34.00		
7.	South Subtropical Subsurface Water	283.0-293.0	281.5-293.1	34.80-36.30	34.30-36.30	≼ 650m
æ.	Antarctic Subsurface Water	271.1-272.5		34.00-34.60		
.6	South Pacific Inter- mediate Water	276.0-279.0	275.6-281.5	34.10-34.50	· 34.10–34.68	> 200m ≼ 2000m
10.	Equatorial Inter- mediate Water	277.5-279.5		34.55-34.65		⊳ 150m < 1000m
11.	South Pacific Upper Deep Water	275.0-275.5	275.0-276.0	34.61-34.66	34.58-34.76	
12.	Underlying Deep Water	274.7-275.0	274.6-275.0	34.63-34.73	34.63-34.75	
13.	Antarctic Bottom Water	273.2-273.8	273.2-275.0	34.70-34.72	1	
14.	Pacific Bottom Water	274.0-274.6		34.64-34.71	34.64-34.80	
	ò.my (m)	mtsev (s) S	Jherfesee modific	ations		

Muromtsev water mass parameters with modifications TABLE I.

34

.

Figure 6. Temperature/Salinity Diagram for Muromtsev Water Mass Classification

Figure 7. Temperature/Salinity Diagram for Modified Muromtsev Water Mass Classification

the influence of winter convection assisted in their formation. The subsurface waters had a higher degree of uniformity than the surface water. Muromtsev (1963) made the distinction between primary waters and secondary waters. Primary waters sank directly from the surface and were characterized by semiannual temperature and salinity fluctuations. Secondary waters were formed by the mixing of two or more types of surface water with no annual changes. Both the two subsurface water masses, South Subtropical Subsurface Water and Antarctic Subsurface Water, were considered primary waters.

The intermediate waters were located between about 400 and 1500m in depth and were formed in the zone of convergence and sinking of surface waters. They can also be formed by the mixing of two or more water types. Again this category could have both primary (slight annual variations) and secondary (no annual fluctuations) characteristics. The two intermediate water masses in the South Pacific were termed South Pacific Intermediate Water (primary) and Equatorial Intermediate Water (secondary).

Deep water was situated between roughly 1500m and 4500m in depth and was formed by the mixing of three or more water types. They were then secondary waters and had a high degree of uniformity. Two such water masses were classified for the South Pacific, the South Pacific Upper Deep Water and the Underlying Deep Water.

The last major type was the Bottom waters which were formed in the high southern latitudes. Two masses were

classified, the Antarctic Bottom Water and the Pacific Bottom Water. Muromtsev (1963) referred to both of these as secondary water masses.

The salinity, temperature and approximate depth characteristics of these 14 waters were compared with each block of water bounded by a pair of stations and adjacent standard depths. This classified over 99.5% of the parcels. Water with the defined temperature and salinity characteristics of Peru Surface Water was found on the surface in and around New Zealand. The author believes that this water is not the same water found off the coast of Peru, but is, in fact, formed in the Tasman Sea in a similar manner as in the formation of Peru Surface Water. This Pseudo Peru Surface Water has been for numerical calculations classified under Pseudo Peru Surface Water.

Figures 8 and 9 illustrate the water masses found along the two latitudinal cross sections.

D. THE CIRCULATION OF THE SOUTH PACIFIC

The surface circulation of the South Pacific Ocean consists of two large anticyclonic gyres. One is centered in the eastern South Pacific in the neighborhood of 30°S; the second gyre of smaller diameter is in the Tasman Sea between New Zealand and Australia. Cold low salinity water at the higher latitudes flows to the east as the Antarctic Circumpolar Current, and driven by strong northwesterly winds, moves to the eastern Pacific. There it is deflected to the north as the Peru Current, and also to the South Atlantic via

the Drake passage. The Peru Current flows along the west coast of South America picking up subsurface water through upwelling as the Coriolis force deflects water to the left. The Peru Current, upon entering the tropics, turns west becoming the South Equatorial Current, where there is exchange with intertropical water. Eventually, the waters turn poleward along the east coast of New Zealand, and along the east coast of Australia as the East Australia Current. There is evidence that this anticyclonic gyre may extend to depths of 2000 meters (Reid, 1973).

In the Tasman Sea, water cycles in a counterclockwise (anticyclonic) path. It travels north along the west coast of New Zealand, then west to join the East Australia Current for its trip south where it links up with the Antarctic Circumpolar Current for an eastward journey.

Intermediate waters originate in the higher latitudes, between 45°S and 55°S, (Newmann and Pierson, 1966) which flow north in an anticyclonic cycle. Muromtsev (1963) wrote concerning the South Pacific intermediate water that its anticyclonic gyre is larger than that of the surface water as it starts at 60°S and crosses the Equator where it involves North Pacific intermediate water. The combined intermediate waters spread out through the entire ocean.

Below the intermediate water is the deep water, composed of Pacific Ocean water and deep Indian Ocean water of high salinity entering south of Australia.

This wide deep current moves north with some water ascending at the equator and returning south, while the remainder may move all the way north to the Aleutians before ascending and returning south. This southward spreading of Deep Water in the South Pacific was supported by Deacon (1927), while Neumann and Pierson (1966) attributed to Sverdrup <u>et al</u>. (1942) the statement of a Pacific deep water exchange between the two hemispheres, with a northern current to the west and southern current to the east.

The deepest water is the bottom water which forms in the high southern latitudes by sinking cold surface and subsurface waters along the continental slope of Antarctica. Perry and Walker (1977) state that the Weddell Sea is the primary production area of Antarctic Bottom Water which is the lowermost mass of water in the Indian, Atlantic and Pacific Oceans, extending well north of the equator.

The circulation between the surface and about 2000 meters in the South Pacific is anticyclonic. There is some evidence (Warren, 1973) and at least one theory (Stommel, 1958) that the circulation below 2000 meters and extending to the sea floor is cyclonic (Figure 10).

To paraphrase Muromtsev (1963), the overall plan of circulation of Pacific water shows that the principal source from which the waters of this ocean are derived is located in the high southern latitudes. From here the water spreads at all depths through the southern part of the ocean and enters the northern part by deep and bottom currents. Here the

Figure 10. Bottom Water Circulation Theory

deep water, along with the overlying intermediate and subsurface waters, wells up and forms the top water, while surface water sinks into deep southward flowing upper/deep currents. Eventually this water exits the Pacific via the Drake Passage to the South Atlantic.

E. DETERMINATION OF UPPER, INTERMEDIATE AND DEEP/BOTTOM WATER CIRCULATION

As discussed in the previous section, the 14 South Pacific Ocean water masses described by Muromtsev (1963) were compared against the station measurements. This resulted in ten water masses being identified. Next the mass, salt and heat transports were determined within each station pair for each water parcel. Then the transports were attributed to each of the ten water masses plus an unknown mass. That unknown water mass, different from the Pseudo Peru Surface Water, was usually a coastal surface sample with slightly lower salinity than defined, and in any event, it was a negligible quantity.

The ten water masses identified were:

Peru Surface Water Pseudo Peru Surface Water South Central Subtropic Surface Water Surface Water of South Temperate Latitudes South Subtropical Subsurface Water South Pacific Intermediate Water South Pacific Upper Deep Water Underlying Deep Water Antarctic Bottom Water Pacific Bottom Water

In determining a net transport, a negative sign indicates southward transport, while a positive sign indicates northward transport. Once the net transport for each water mass of each station pair was calculated, these values were summed, resulting

in an overall coast-to-coast net transport of mass, salt and heat by water mass type.

In order to be compatible with Jung (1955), Baker (1978) and Mason (1978), the ten water masses were grouped into Upper, Intermediate and Deep/Bottom categories. As will be seen later, for the South Pacific Ocean, this may not be the most appropriate scheme.

The Upper category was composed of Peru Surface Water, South Central Subtropic Surface Water, Surface Water of South Temperate Latitudes, South Subtropical Subsurface Water, the Pseudo Peru Surface Water and Unknown Water.

The intermediate layer was composed solely of South Pacific Intermediate Water; and the Deep/Bottom level was made up of South Pacific Upper Deep Water, Underlying Deep Water, Antarctic Bottom Water and Pacific Bottom Water.

An attempt was then made to examine general circulation information available based on only two zonal tracks separated by approximately 15[°] of latitude. One procedure here, which was unsuccessful, was to plot the absolute velocity both in a vertical cross section and on a horizontal plan view.

Current velocities at certain selected levels (0, 100, 250, 500, 1000, 2000, 2500, 3000, 3500, 4000 and 5000 meters) were calculated. These were geostrophic velocities between station pairs calculated at the selected depths. These depths were chosen as they essentially covered the depth of the water column and represented portions of each identified water mass. The tabulated data will be found in Appendix C.

Another attempt to determine the general circulation pattern was based on the net mass transport values between stations in each of the three (Upper, Intermediate, and Deep/ Bottom) layers. Appendix B has the tabulated net mass transport data for each layer, with subdivisions by water mass.

The circulation pattern composed of station pairs along each track consisted of a series of opposing north/south flows of various magnitudes. The eddy circulation was apparent in the pattern made up of selected geostrophic velocities as well as in net mass transports. Even with station pairs approximately two degrees of longitudinal distance apart, opposing flows [as were found also by Warren (1973)] from one pair to the next occurred. These opposing flows are probably associated with mesoscale eddies.

V. DISCUSSION OF RESULTS

A. THE LEVEL OF NO MOTION

The objective of this study was to determine a constant depth motionless level across the entire Pacific. This objective differed from the level of no motion determination method of Baker (1978) in which each level between station pairs was selected individually in an attempt to achieve a net mass and salt balance. Near the ends of each latitude section the motionless layer was selected at the ocean floor. Tables II and III illustrate the net transports at various levels. The trans-oceanic levels for 28°S and 43°S are illustrated in Figures 8 and 9 respectively. The chosen levels of no motion were approximately 762m (28°S) and 1203m (43°S) and were the dominant levels used, Tables IV and V.

B. MASS AND SALT TRANSPORT

As was stated earlier, the criterion of approximately zero mass transport was considered to be the primary factor for continuity. Zero net salt transport was of secondary importance. As shown in Tables II and III, very small values of mass and salt were obtained at different depths very close to each other. The level which gave the smallest net mass transport across 28°S was 762 meters, which was selected as the level of no motion for the section. Across 43°S, the

TABLE II

LEVEL OF NO MOTION 28⁰S

DEPTH OF LEVEL OF	NET MASS TRANSPORT	NET SALT TRANSPORT	NET HEAT (TRANSPORT
NO MOTION	(10 ¹² gm/sec)	(10 ^{12 0} /00/sec)	(10 ¹² cal/sec)
700	-3.8738	-131.708	-1034.07
750	-0.7893	- 24.9648	- 181.296
760	-0.1488	- 2.8013	- 4.2565
761	-0.0831	- 0.5269 *	13.8967
762	-0.0166*	1.7732	32.5682
763	0.0447	3.8953	49.2305
764	0.1090	6.1189	66.9985
770	0.5032	19.7583	175.920
780	1.1329	41.5422	350.021
790	1.7586	63.1833	523.032

* Minimum net value

TABLE III

LEVEL OF NO MOTION 43⁰S

DEPTH OF LEVEL OF	NET MASS TRANSPORT	NET SALT TRANSPORT	NET HEAT TRANSPORT (
NO MOTION	(10 ¹² gm/sec)	(10 ^{12 0} /oo/sec)	(10 ¹² cal/sec)
1050	-12.7767	-444.146 ,	-3478.68
1150	- 4.0488	-142.408	-1069.35
1180	- l.7864	- 64.2029	- 443.930
1200	- 0.1418	- 7.3359	12.0479
1202	- 0.0004*	- 2.4490	51.0940
1203	0.0800	- 0.0301*	70.3159
1204	0.1408	2.4334	90.1206
1206	0.2812	7.2849	128.897
1208	0.4214	12.1323	167.628
1210	0.5613	16.9695	206.275
1212	0.7003	21.7734	244.668
1220	1.2492	40.7502	396.283
1250	4.809	164.078	1390.62
1280	6.6521	227.805	1899.19
1301	7.8318	268.624	2224.56

* Minimum net value

.

TABLE IV

LEVELS OF NO MOTION USE %

28[°] South Pacific (99 pairs of stations)

Level of No Motion	No. of Times Used/Section	% Total Station Pairs
100	2	2.0%
762	97	98.0%
	99	100%

TABLE V

LEVELS OF NO MOTION USE %

43[°] South Pacific (77 pairs of stations)

Level of No Motion	No. of Times Used/Section	% Total Station Pairs
250	2	2.6%
300	1	1.3%
350	3	3.9%
400	3	3.9%
450	2	2.6%
650	1	1.3%
1100	1	1.3%
1203	64	83.1%
	77	100%

effects of net salt transport entered into choice of the level of no motion at 1203 meters, selected as the level best for minimizing both mass and salt transport. This author doubts that stating the levels to be 762 and 1203 meters is without some error. As can be seen by the tabulated results of Tables II and III, the calculated balance is very sensitive to changes in levels of no motion. It is doubtful that even the accuracy of the initial depth, salinity and temperature measurements, although very acceptable in their own right, justify the precise levels offered. The level of no motion should in reality be considered in the neighborhood of these depths.

The net mass transport across the $28^{\circ}S$ and $43^{\circ}S$ latitudinal sections associated with the selected levels of no motion was -0.02 and 0.08 times 10^{12} gm/sec with the net salt transport of 1.8 and -0.03 times 10^{12} °/00/sec as shown in Tables VI and VII.

C. HEAT TRANSPORT

Latitudinal net meridional transport of heat may be ex-

$$C_{ps}(T_n - T_s) \rho_s V_{ns}$$

If the specific heat at constant pressure of sea water, C_{ps} , is assumed to be one (cal/g ^OC), the above expression reduces to
TABLE VI

TOTAL NET TRANSPORT

28 S Pacific Ocean	Mass		
Water Mass	Transport	Salt	Heat
Peru Surface Water	2.16	75.17	628.53
Pseudo Peru Surface Water	-0.14	-5.06	-41.83
South Central Subtropic Surface Water	-1.10	-38.72	-328.21
Surface Water of South Temperate Latitudes	0.18	5.46	52.39
South Subtropical Sub- surface Water	2.87	100.73	826.45
Unknown	0.62	21.19	178.74
South Pacific Inter- mediate Water	-3.45	-118.88	-945.01
South Pacific Upper Deep Water	-17.44	-604.15	-4800.14
Underlying Deep Water	-5.42	-187.73	-1489.94
Pacific Bottom Water	10.51	388.62	3068.35
Antarctic Bottom Water	11.19	365.17	2883.24
Net	-0.02	1.8	32.57

 $(10^{12} \text{ gm/sec}) (10^{12} \text{ o}/\text{oo/sec})(10^{12} \text{ cal/sec})$

TABLE VII

TOTAL NET TRANSPORT

43⁰S Pacific Ocean

Water Mass	Mass <u>Transport</u>	Salt	Heat
Peru Surface Water	0.0	0.0	0.0
Pseudo Peru Surface Water	0.37 ,	13.00	105.52
South Central Subtropic Surface Water	0.0	0.0	0.0
Surface Water of South Temperate Latitudes	2.20	75.10	619.15
South Subtropical Sub- surface Water	0.59	21.15	170.20
Unknown	-0.02	-0.79	-6.75
South Pacific Inter- mediate Water	7.78	267.01	2166.92
South Pacific Upper Deep Water	-6.83	-236.74	-1880.73
Underlying Deep Water	-9.13	-316.75	-2509.00
Pacific Bottom Water	2.65	92.11	727.47
Antarctic Bottom Water	2.47	85.88	677.54
Net	0.08	-0.03	70.32

 $(10^{12} \text{ gm/sec}) (10^{12} \text{ o/oo/sec})(10^{12} \text{ cal/sec})$

The meridional mass transport is $\rho_s V_{ns}$ and T_n is the northward moving water temperature, T_c(^OC) the southward moving water temperature. Mass continuity requires the mass transport $\rho_{s}V_{ns}$ (north) and $\rho_{s}V_{ns}$ (south) to cancel each other for a mass balance to be present across the section. This is not necessarily the case for heat transport as was evident by the results. The temperatures of the water being transported across the section differ, thereby producing the net meridional transport. Measurement of that heat flux was a prime objective of this study. Of the two latitudinal sections, the more poleward section, at 43⁰S, will be discussed first. Ten separate water masses were identified and their respective net heat transports calculated (Table VIII). Peru Surface Water accounted for a net northward transport of heat. Pseudo Peru Surface Water in the western Pacific had a net southern heat flow. Surface Water of the South Temperate Latitudes had a net northward flow of heat. There was also a net northward heat transport attributed to the South Subtropical Surface Water. The unknown surface water quantity had a small net heat transport to the south. Summarizing these separate surface or near surface water masses resulted in a net northward flow in the Upper level of approximately 888 x 10^{12} cal/sec.

The Intermediate level consisted solely of South Pacific Intermediate water which had a net northward transport of 2166×10^{12} cal/sec.

There were two deep water masses identified: South

TABLE VIII

NET HEAT TRANSPORT

Water Mass	28 ⁰ S	43 ⁰ S
Peru Surface Water	628.5	0.0
Pseudo Peru Surface Water	-41.8	105.5
South Central Subtropic Surface Water	-328.2	0.0
Surface Water of the South Temperate Latitudes	52.5	619.2
South Subtropic Subsurface Water	826.6	170.1
Unknown	178.7	-6.8
South Pacific Intermediate Water	-945.0	2166.9
South Pacific Upper Deep Water	-4800.0	-1880.7
Underlying Deep Water	-1489.9	-2509.0
Pacific Bottom Water	3068.4	727.4
Antarctic Bottom Water	2883.2	677.4
	33.0	70.0

Units are 10¹² cal/sec

Pacific Upper Deep Water and Underlying Deep Water. These two deep water masses had a combined southward net transport of approximately 4390 x 10^{12} cal/sec. The bottom waters, Antarctic Bottom Water and Pacific Bottom Water transported heat to the north with a combined net transport of 1405 x 10^{12} cal/sec. When the deep and bottom net heat transports were combined, the resultant net was a southward flow of 2985 x 10^{12} cal/sec.

Along the more equatorward section of 28° S there were some general consistencies with the results of 43° S section and also some differences. Again the Peru Surface Water had a net northward transport while the Pseudo Peru Surface Water had a southward transport. A new water mass, the South Central Subtropic Surface Water, was identified and found to have a net southward transport. Surface Water of South Temperate Latitudes again had a northward transport, along with the South Subtropical Surface Water and the minor amount of unknown surface water. The combined total was calculated to be a net northward flow of 1316 x 10^{12} cal/sec.

As with the poleward section, the sole water mass found in the Intermediate level was South Pacific Intermediate Water. At this latitude it had a net southward transport of 945 x 10^{12} cal/sec rather than a northward transport as was the case at 43° S.

The Deep and Bottom waters (South Pacific Upper Deep Water, Underlying Deep Water, Pacific Bottom Water and Antarctic Bottom Water) had a much larger amount of net heat transported per water mass or even totaled as Deep Water (net southward

- -

flow of 6290 x 10^{12} cal/sec) and Bottom Water (net northward transport of 5952 x 10^{12} cal/sec). However when combined into the Deep and Bottom level, the net transport was 338 x 10^{12} cal/sec to the south.

A comparison of the Upper, Intermediate and Deep/Bottom net transports of the two latitudes is as shown in Table IX.

TABLE IX

LAYER HEAT TRANSPORTS

LEVEL	<u>28°S</u>	43°S
Upper	1316	888
Middle	-945	2167
Deep/Bottom	-338	-2985
	33 x	70 x
	10 ¹² cal/se	ec 10 ¹² cal/sec

There is larger net northward flow $(70 \times 10^{12} \text{ cal/sec})$ along 43° S than along 28° S $(32 \times 10^{12} \text{ cal/sec})$. However the attempt to combine the effects of various water masses causes their respective effects to be smoothed over. Table VIII which shows the net heat transport of each individual water mass is much more informative.

It is evident from Table VIII that the net water mass transport directions appear reasonable when associated with their respective water masses (i.e. Peru Surface Water and Pacific Bottom Water, north; Underlying Deep Water, south). The net northward transport of heat is the surprising factor.

A change of only 1 or 2% of the heat attributed to deep and bottom transport could easily have negated this northward transport. When one considers the initial assumptions upon which this study is based, this slight northward transport value is probably within the range of error for this study.

D. OCEANIC EDDY CIRCULATION

The calculated transport components suggest the presence of oceanic eddies. Appendix C illustrates the reverse pattern of point depth geostrophic velocities both vertically within a station pair and horizontally from one station pair to another.

Along the east coast of Australia, Harmon (1970) wrote that surface currents are complex, variable and strong. Water is transported south by large anticyclonic eddies, some of which may be 250km in diameter. These eddies may be formed when the main East Australia current bulges to the south and becomes unstable, causing the bulge to separate as an eddy. Along both transits near the coast of Australia eddies were apparent.

One example is offered here. Figure 11 illustrates the surface circulation around New Zealand. Attention is directed to the anticyclonic eddy off the eastern coast which was studied by Burns (1972). The coastal currents are derived from Stanton (1972). The geostrophic current directions are in approximate agreement with those of Burns and Stanton.

Figure 11. New Zealand Surface Circulation with Eddy

E. CALCULATED CIRCULATION PATTERN

The calculated circulation pattern is derived from mass transports and geostrophic current velocities. Fine scale interpretation was made using individual station-pair rates of mass transport along with geostrophic current velocities. Because of numerous direction and magnitude fluctuations between station pairs, the station pairs were first combined in 20° longitude segments. This proved to be too large a grouping scale as too many details were averaged out. Therefore 5° longitude segments were tried and found to be more ideal as pictured in Figures 12, 13, 14 and 15. The net flow of the deep waters (South Pacific Upper Deep Water and Pacific Bottom Water) was found to be southward while the Bottom Waters (Pacific Bottom Water and Antarctic Bottom Water) were found to have a net flow to the north. For this reason of opposing flow, the Deep/Bottom layer utilized by Jung (1955) and Baker (1978) has been subdivided into Deep layer and Bottom layer. The circulation layers are therefore termed Upper Layer, Intermediate Layer, Deep Layer and Bottom Layer.

1. Upper Circulation

The Upper Layer transport (Figure 16) was found to be anticyclonic with a large anticyclonic gyre between the coast of South America and about the International Date Line. A smaller anticyclonic gyre was also apparent to the west in the Tasman/Coral Sea area. Along the South American Coast, a southward flowing current was detected. The sampling was done in late May and early June in this area; it is proposed

Mass Transport 28^OS (West Section) Figure 12.

Figure 13. Mass Transport 28^OS (East Section)

Figure 14. Mass Transport 43^OS (West Section)

Figure 15. Mass Transport 43^OS (East Section)

that this southward flowing current is the subsurface counter current (Gunther, 1936) which has surfaced immediately adjacent to the coast. On the other side of the South Pacific, the south flowing East Australia current is picked up with velocities in general agreement with Scully-Powers (1972). The Upper level was calculated to have a net northward transport of mass, salt and heat at both 28°S and 43°S with the current directions in agreement with traditional theory (Sverdrup et al., 1942).

2. Intermediate Circulation

The Intermediate Layer was roughly between 500m and 1800m in both latitudinal tracks. Whether or not the circulation was cyclonic or anticyclonic was undetermined (Figure 17). Along the 28°S transit there was a net southward transport of mass, salt and heat. This is contrasted with the 43°S transit which has a net northward transport of mass, salt and heat. In the Tasman/Coral Sea area there were net northward transports in both transits.

3. Deep Circulation

As was mentioned previously in Section IV. p. 42, there is the possibility of cyclonic deep and bottom circulation in the South Pacific. Included in this circulation pattern are strong western boundary currents with weaker broader southern currents to the east. The data as illustrated in Figure 18 could be interpreted to have a cyclonic pattern. The Deep Water along both transits had a net southward transport. The western boundaries seemed to have a stronger net

Figure 18. Deep Layer Mass Transport

northward flow. The Tasman/Coral Sea did appear cyclonic in circulation; however the pattern in the general South Pacific east of that area was not as clear.

4. Bottom Circulation

The Bottom Layer as previously discussed is thought to have a cyclonic circulation with strong western boundary currents (Figure 19). In the bottom water detected along the 28°S track, this cyclonic circulation indeed was the case. Also along the 43°S track, east of the New Zealand Plateau, there was strong geostrophic evidence of this. In the Tasman Sea along 43°S the circulation was not cyclonic, but anticyclonic with a net southward transport. For the total transit along both latitude sections the net mass, salt and heat transport was to the north.

Interest is drawn to the Tonga-Kermadec Trench located along $28^{\circ}S$ at approximately $176^{\circ}W$ and extending to a depth in the neighborhood of 8700m. Gilmour (1972) reported a northward current against the western boundary of the ridge with a southerly counter current over the central trench with a broad northerly current on the eastern side. This was at a depth of 4000m. Reid <u>et al</u>. (1968) wrote, based on the SCORPIO data, of a narrow (70 km wide) northern boundary current flowing between 2500 and 4000m east of the Tonga-Kermadec Ridge (in the trench). Reid (1970) reported a southerly flow at 1000m and a northerly flow at 3000m. The results of this study are in agreement with Reid in that over the trench (station pair 150-149) a southward current was found between

Figure 19. Bottom Layer Mass Tranport

1100m and 3200m with a northward flow below. These results, especially concerning bottom circulation, agree with others which have been mentioned.

VI. CONCLUSIONS

Reid (1961) once wrote that in areas where data is lacking, geostrophic currents can be accepted with some confidence. Using the procedures set forth by Jung (1955), this study attempted to determine: (1) a level of no motion in the South Pacific dependent upon the principles of mass and salt conservation; (2) the direction of heat transport in the South Pacific; and (3) a four-vertically-layered circulation pattern computed by mass transport values under the geostrophic assumption and mass continuity.

Levels of no motion were calculated according to the procedure of Sverdrup <u>et al</u>. (1942) to be about 762m (28 $^{\circ}$ S) and 1203m (43 $^{\circ}$ S).

The current circulation for the Upper Layer was determined to be anticyclonic while the Bottom Layer was cyclonic. The Intermediate and Deep Layer patterns could not be determined with good confidence. The Upper Layer had a net northern transport at both latitudes, while the Intermediate Layer had southern transport at 28°S and a northern transport at 43°S. The Deep Layer had a southern transport along both latitudes. The Bottom Layer had, as expected, a net northern transport. Known eddies off the east coast of Australia and New Zealand were located and deep trench circulation patterns were found.

Along both latitude lines, there was determined a net northward heat flow of 33 and 70 x 10^{12} cal/sec. A change of only 1 or 2% of the heat attributed to deep and bottom transport could easily have negated this northward transport. Given the initial assumptions made, this slight northward transport value is probably within the range of error for this study.

APPENDIX A

OCEANOGRAPHIC STATIONS

The stations are listed West to East along both latitudes.

Station Number	Latitude	Longitude
185 184 183 182 181 180 179 178 177 176 175 174 173 172 171 170 169 168 167 166 165 164 163 162 161 160 159 158 157 156 155 154 152 151 150 149 143	28° 11.4'S 28° 20.0'S 28° 22.0'S 28° 14.6'S 28° 14.3'S 28° 14.2'S 28° 14.2'S 28° 14.9'S 28° 14.9'S 28° 14.7'S 28° 15.2'S 28° 15.2'S 28° 15.3'S 28° 12.1'S 28° 12.2'S 28° 11.6'S 28° 11.3'S 28° 15.4'S 28° 15.4'S 28° 15.4'S 28° 15.4'S 28° 15.4'S 28° 15.4'S 28° 15.5'S 28° 10.0'S 28° 15.5'S 28° 10.0'S 28° 11.6'S 28° 15.7'S 28° 11.6'S 28° 10.0'S 28° 10.6'S 28° 10.0'S 28° 11.6'S 28° 15.7'S 28° 11.6'S 28° 11.6'S 28° 11.3'S 28° 15.7'S 28° 11.6'S 28° 11.6'S 28° 11.3'S 28° 15.7'S 28° 11.6'S 28° 11.6'S 28° 11.3'S 28° 15.7'S 28° 11.6'S 28° 11.6'S 28° 11.6'S 28° 15.7'S 28° 15.7'S 28° 11.6'S 28° 11.6'S 28° 15.7'S 28° 11.6'S 28° 11.6'S 28° 15.7'S 28° 11.6'S 28° 11.6'S 28° 15.7'S 28° 11.6'S 28° 11.6'S 28° 15.7'S 28° 11.6'S 28° 15.7'S 28° 11.6'S 28° 11.6'S 28° 11.6'S 28° 15.7'S 28° 11.6'S 28° 11.6'S 28° 11.6'S 28° 11.5'S	$\begin{array}{c} 153^{\circ} 50.0'E\\ 154^{\circ} 03.4'E\\ 154^{\circ} 20.5'E\\ 154^{\circ} 45.6'E\\ 155^{\circ} 15.2'E\\ 155^{\circ} 50.7'E\\ 155^{\circ} 50.7'E\\ 155^{\circ} 01.2'E\\ 158^{\circ} 07.0'E\\ 159^{\circ} 02.5'E\\ 160^{\circ} 55.4'E\\ 160^{\circ} 55.4'E\\ 161^{\circ} 55.4'E\\ 162^{\circ} 51.4'E\\ 163^{\circ} 50.0'E\\ 164^{\circ} 43.6'E\\ 165^{\circ} 44.8'E\\ 166^{\circ} 45.4'E\\ 166^{\circ} 36.3'E\\ 168^{\circ} 38.5'E\\ 168^{\circ} 28.7'E\\ 171^{\circ} 06.0'E\\ 172^{\circ} 56.2'E\\ 174^{\circ} 47.4'E\\ 175^{\circ} 46.0'E\\ 176^{\circ} 37.6'E\\ 177^{\circ} 33.5'E\\ 178^{\circ} 26.9'E\\ 179^{\circ} 21.0'E\\ 179^{\circ} 32.0'W\\ 178^{\circ} 38.9'W\\ 177^{\circ} 44.0'W\\ 177^{\circ} 26.7'W\\ 178^{\circ} 38.9'W\\ 177^{\circ} 44.0'W\\ 177^{\circ} 26.7'W\\ 176^{\circ} 10.0'W\\ 176^{\circ} 10.0'W\\ 175^{\circ} 49.5'W\\ 174^{\circ} 50.7'W\\ 174^{\circ} 50.7'W\\ 173^{\circ} 58.0'W\\ 173^{\circ} 07.3'W\\ 171^{\circ} 36.0'W\\ 170^{\circ} 14.8'W\\ 168^{\circ} 49.5'W\\ 178^{\circ} 10.0'W\\ 178^{\circ} 10.0'W\\ 178^{\circ} 14.8'W\\ 168^{\circ} 49.5'W\\ 178^{\circ} 10.0'W\\ 178^{\circ} 14.8'W\\ 168^{\circ} 49.5'W\\ 178^{\circ} 10.0'W\\ 178^{\circ} 14.8'W\\ 168^{\circ} 49.5'W\\ 178^{\circ} 10.0'W\\ 178^{\circ}$
	20 10.0 0	10/ 2/.0 1

141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 100 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88	280 13.9'S 280 12.6'S 280 17.1'S 280 12.5'S 280 13.4'S 280 13.4'S 280 13.8'S 280 14.2'S 280 15.0'S 280 14.1'S 280 13.6'S 280 17.6'S 280 17.6'S 280 14.1'S 280 15.5'S 280 14.1'S 280 15.0'S 280 14.1'S 280 14.1'S 280 15.5'S 280 14.1'S 280 15.5'S 280 14.2'S 280 14.2'S 280 14.2'S 280 14.2'S 280 14.6'S	$\begin{array}{c} 1650 & 42.4'W \\ 1630 & 51.2'W \\ 1610 & 59.0'W \\ 1500 & 12.0'W \\ 1560 & 16.0'W \\ 1520 & 36.0'W \\ 1520 & 51.0'W \\ 1480 & 47.0'W \\ 1480 & 51.5'W \\ 1450 & 01.9'W \\ 1430 & 20.3'W \\ 1370 & 26.8'W \\ 1350 & 46.4'W \\ 1310 & 56.5'W \\ 1300 & 02.8'W \\ 1280 & 06.9'W \\ 1240 & 21.5'W \\ 1200 & 31.7'W \\ 1280 & 50.0'W \\ 1240 & 21.5'W \\ 1200 & 31.7'W \\ 1280 & 56.4'W \\ 1200 & 39.8'W \\ 1140 & 56.4'W \\ 1130 & 00.5'W \\ 1140 & 56.4'W \\ 1070 & 25.6'W \\ 1050 & 28.7'W \\ 1030 & 39.2'W \\ 990 & 54.8'W \\ 970 & 59.3'W \\ 920 & 990'W \\ 900 & 35.5'W \\ 840 & 46.9'W \\ 840 & 59.7'W \\ 840 & 59.7'W \\ 710 & 39.4'W \\ 710 & 30.4'W \\ 710 & 30.4'W \\ 710 & 30.4'W \\ 710 & 30.4'W \\ 7$
	/0	

28 ⁰	15.0'S	71 ⁰	18.3'W
28 ⁰	15.8'S	71 ⁰	15.0'W
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	15.1'S 16.5'S 17.0'S 15.0'S 15.0'S 15.0'S 15.0'S 14.0'S 17.2'S 14.0'S 17.2'S 14.0'S 17.2'S 14.0'S 17.2'S 14.0'S 17.2'S 14.0'S 14.0'S 15.0'S 14.0'S 15.0'S 14.0'S 15.0'S 15.0'S 14.0'S 15.0'S	0 4 8 0 0 0 0 0 0 0 0 0 0 0 0 0	12.8'EE 239.50'28.3'228.20'28.

.

43 ⁰ 12.7'S 43 ⁰ 15.8'S 43 ⁰ 15.2'S 43 ⁰ 15.3'S 43 ⁰ 16.3'S 43 ⁰ 15.0'S 43 ⁰ 17.9'S 43 ⁰ 18.4'S	132 ⁰ 1290 1270 1250 1230 1200 1200 1180 116	14.6'W 53.6'W 36.0'W 19.8'W 02.8'W 40.2'W 23.8'W 05.1'W
43° 14.8'S	1090	12.1'W
43° 15.5'S	1060	54.4'W
43° 15.1'S	1040	34.0'W
43° 15.0'S	1020	19.0'W
43° 15.4'S	990	59.0'W
43° 13.8'S	970	38.0'W
43° 18.6'S	950	34.1'W
43° 14.2'S	930	24.3'W
43° 16.5'S	900	49.5'W
43° 15.0'S	880	31.0'W
43° 14.0'S	860	11.0'W
43° 15.0'S	830	52.6'W
43° 15.0'S	810	40.9'W
43° 14.7'S	800	02.0'W
43° 19.0'S	790	01.5'W
43° 15.6'S	780	01.2'W
43° 16.6'S	770	01.3'W
43° 12.8'S	760	04.2'W
43 15.0'S	75°	30.0'W
43 ⁰ 17.0'S	75°	24.1'W
43 ⁰ 15.6'S	75°	07.2'W

,

APPENDIX B

GEOSTROPHIC DATA

The following pages contain the net mass, salt and heat transports for each of the Upper, Intermediate, and Deep and Bottom Layers (combinations of water masses) between each pair of stations observed along the two latitudes of this study. Each water layer is further subdivided by water mass. All mass transport values are expressed in terms of 10^{12} gm/sec. The salt transport units are 10^{12} $^{\circ}$ /oo/sec and the heat transport units are 10^{12} cal/sec.

The following number system is used in this appendix:

- 1. = Peru Surface Water
- 2. = South-Central Subtropic Surface Water
- 3. = Surface Water of South Temperate Latitude
- 4. = South Subtropical Surface Water
- 5. = South Pacific Intermediate Water
- 6. = South Pacific Upper Deep
- 7. = Underlying Deep Water
- 8. = Antarctic Bottom Water
- 9. = Pacific Bottom Water

Unknown = Unclassified Water Mass

- Indicates southward flow

-

Station Pair	Upper Total	1	2	3	ц	Unknown
185 - 184	-0.204				-0.061	-0.143
184-183	-6.019		-3.175		-2.844	
183-182	-2.706		-1.319		-1.387	
182-181	5.269		3.213		2.056	1
181-180	-2.626		-1.029		-1.597	
180-179	-1.174		-0.496		-0.678	
179-178	-3.554		-1.586		-1.968	
178 - 177	1.563		0.715	, .	0.848	
177-176	-0.106		-0.048		-0.058	
176-175	1.638		0.831		0.807	
175-174	1.296		0.487		0.809	
174-173	1,988		0.883		1,106	
173 - 172	0.883		-0.052		0.934	
172-171	-2 108	•	-0 407		-1 701	
171-170	-2.396		-0.448		-1 948	
170-169	1 410		0 284		1 127	
169-168	1 767		0 696		1.071	
168-167	3 911		1 374		2 537	
167 - 166	-0.301		1.07 1		-0.301	
166-165	-2 009		-0 760		-1 250	
165-164	<u>_</u> д ц92		-1 520		-2 972	
164 - 163	7.649		2.139		5.510	
163-162	-3 644		-0 545		-3 100	
162 - 161	-2.954		-0.842		-2.112	
161-160	1 1 8 1		0 228		0.953	
160 - 159	0.561		0.281		0.280	
159-158	3.025		0.525		2,500	
158-157	0.013		-0.093		0.106	
157-156	-4.390		-1.524		-2.866	
156-155	3.070		1.217		1.853	
155-154	3.230				3.230	
154-153	0.172				0.172	
153-152	-0.368		-0.074		-0.294	
152-151	-0.032		-0.018		-0.014	
151-150	-0.383		-0.155		-0.227	
150-149	-0.954		-0.127		-0.827	
149-148	-3.162		-1.065		-2.096	
148-147	3.775		1.545		2.230	
147-146	0.673				0.673	
146-145	0.318				0.318	
145 - 144	-2.820		-0.517		-2.303	
144-143	2.117		0.360		1.757	
143-142	-0.446		-0.062		-0.384	
142-141	-3.298		-1.304		-1.995	
141-140	1.598		0.715		0.883	
140-139	4.056		1.451		2.606	
139-138	-0.330		-0.194		-0.135	
138-137	-0.118		0.051		-0.169	

Pair	Upper Total	l	2	3	4	Unknown
137 - 136 136 - 135 135 - 134 134 - 133 132 - 131 131 - 130 130 - 129 129 - 128 128 - 127 127 - 126 126 - 125 125 - 124 124 - 123 123 - 122 122 - 121 121 - 120 120 - 119 119 - 118 118 - 117 117 - 116 116 - 115 115 - 114 113 - 112 112 - 111 111 - 110 100 - 109 109 - 108 108 - 107 107 - 106 106 - 105 105 - 104 104 - 103 103 - 102 102 - 101 101 - 100 100 - 099 099 - 098 098 - 097 097 - 096 096 - 095 095 - 094 094 - 093 093 - 092 092 - 091 091 - 090 090 - 089 089 - 088 088 - 087 087 - 086	$\begin{array}{c} 1.195\\ 2.589\\ 0.883\\ -0.054\\ -0.950\\ 0.167\\ -0.690\\ -2.963\\ -0.782\\ 4.096\\ 0.117\\ -2.296\\ -1.100\\ 1.408\\ -3.160\\ -1.545\\ 3.445\\ -3.521\\ 2.507\\ -2.910\\ 4.202\\ -1.788\\ 3.793\\ 0.149\\ -1.501\\ 0.813\\ 0.737\\ -2.410\\ 1.338\\ 0.561\\ -0.179\\ 0.727\\ 0.823\\ 0.149\\ -1.501\\ 0.813\\ 0.737\\ -2.410\\ 1.338\\ 0.561\\ -0.179\\ 0.727\\ 0.823\\ 0.149\\ -1.501\\ 0.813\\ 0.561\\ -0.179\\ 0.554\\ 2.215\\ 0.157\\ 0.779\\ -2.894\\ 4.423\\ 2.097\\ -0.323\\ -1.823\\ -0.323\\ -1.823\\ -3.335\\ 0.002\\ \end{array}$	$\begin{array}{c} -0.212\\ 0.003\\ -0.590\\ -1.270\\ -0.427\\ 2.101\\ -0.108\\ -0.395\\ -0.224\\ 0.264\\ \end{array}$ $\begin{array}{c} -0.264\\ 0.061\\ -0.274\\ 0.061\\ -0.274\\ 0.061\\ -0.274\\ 0.061\\ -0.274\\ 0.061\\ -0.274\\ 0.061\\ -0.274\\ 0.061\\ -0.274\\ 0.061\\ -0.274\\ 0.061\\ -0.264\\ 0.061\\ -0.264\\ 0.061\\ -0.264\\ 0.061\\ -0.264\\ 0.061\\ -0.264\\ 0.061\\ -0.264\\ 0.061\\ -0.274\\ 0.061\\ 0.061\\ -0.274\\ 0.071\\ 0.870\\ -0.183\\ 0.453\\ 0.453\\ \end{array}$	$\begin{array}{c} -0.315\\ 0.573\\ 0.148\\ -0.169\\ -0.172\\ \end{array}$	0.107 -0.221 0.091 0.401 0.045 0.214 -0.053 0.936 -0.015 0.402 -1.293 2.264 1.197 -0.274 -0.724 -1.131 -1.771 0.002	$\begin{array}{c} -0.880\\ 2.017\\ 0.735\\ 0.115\\ -0.567\\ 0.163\\ -0.100\\ -1.692\\ -0.355\\ 1.995\\ 0.225\\ -0.997\\ -0.354\\ 0.645\\ -1.555\\ -0.723\\ 1.691\\ -1.655\\ 1.223\\ -1.654\\ 2.244\\ -0.827\\ 1.836\\ 0.065\\ -0.643\\ 0.411\\ 0.438\\ -1.288\\ 0.719\\ 0.265\\ -0.643\\ 0.411\\ 0.438\\ -1.288\\ 0.719\\ 0.265\\ -0.645\\ -0.645\\ -0.374\\ 1.365\\ 0.091\\ -0.265\\ -0.374\\ 1.365\\ 0.091\\ -0.265\\ -0.374\\ 1.365\\ 0.091\\ -0.265\\ -0.179\\ 0.440\\ 0.259\\ -0.645\\ -0.374\\ 1.365\\ 0.091\\ -0.024\\ -0.100\\ 0.471\\ 0.029\\ 0.106\\ -1.601\\ 2.159\\ 0.281\\ -0.049\\ -0.513\\ -0.418\\ -1.465\end{array}$	0.619
Total	4.597					

Station Pair	Upper Total	l	2	3	ц	Unknown
185-184 184-183	-7.242 -213.278		-112.900	-:	-2.183 100.378	-5.059
183-182	-96.104		-46.977		-49.127	
182-181	187.109		114.361		72.748	1
181-180	-93.212		-36.672		-56.540	/
180-179	-41.652		-17.692		-23.961	
179-178	-126.326		-56.580		-69.746	
178-177	55.521		25.519		30.002	
177-176	-3.735		-1.720	,	-2.015	
176-175	58.321		29.673		28.647	
175-174	46.024		17.386		28.638	
174-173	70.577		31.486		39.091	
173-172	30.888		-1.838		32.726	
172-171	-74.438		-14.504		-59.933	
171-170	-84.893		-15.978		-68.915	
170-169	50.068		10.124		39.944	
169-168	62.689		24.846		37.843	
168-167	138.958		49.053		89.905	
167-166	-10.733				-10.733	
166-165	-71.387		-27.135		-44.252	
165-164	-159.235		-54.254	-	104.980	
164-163	271.225		76.332		194.893	
163-162	-129.093		-19.463	-	109.629	
162-161	-104.818		-30.026		-74.792	
161-160	41.832		8.135		33.698	
160-159	19.98/		LU.UZ3		9.905	
159 - 150	T07.328		10./31		2 6 2 0	
150 - 157	155 622		-3.320		101 226	
156 - 155	-103.055		-34.407	-	65 618	
155-154	11μ 58 μ		43.430		114 584	
154 - 153	6 066				4.004 6.066	
153 - 152	-13 063		-2 645		-10.418	
152-151	-1.154		-0.637		-0.517	
151-150	-13.736		-5.554		-8.182	
150-149	-33.739		-4.546		-29.193	
149-148	-112.143		-38.031		-74.112	
148-147	134.115		55.139		78.975	
147-146	23.805				23.805	
146-145	11.147				11.147	
145-144	-100.147		-18.460		-81.688	
144-143	75.156		12.852		62.304	
143-142	-15.805		-2.223		-13.582	
142-141	-117.280		-46.571		-70.709	
141-140	56.706		25.526		31.180	
140-139	143.948		51.789		92.159	
139-138	-11.888		-6.930		-4.958	
138-137	-4.104		1.811		-5.915	
137-136	-42.399		-11.197		-31.202	

Station Pair	Upper Total	l	2	3	4	Unknown
136-135 135-134 134-133 133-132 132-131	91.789 31.160 -2.059 -33.600 5.826	-7.512 0.122	20.370 5.273 -6.008 -6.096		71.419 25.887 3.949 -19.992 5.704 -3.530	
130-129 129-128 128-127 127-126 126-125 125-124	-104.594 -27.592 144.527 4.081 -81.199 -38.960	-45.043 -15.140 74.448 -3.830 -14.017 -7.927	-32.138 -18.589	,	-59.551 -12.452 70.079 7.911 -35.044 -12.443	
124-123 123-122 122-121 121-120 120-119 119-118	49.756 -111.714 -54.726 121.814 -124.689 88.794	9.372	$17.719 \\ -57.150 \\ -29.308 \\ 62.528 \\ -66.620 \\ 45.839 \\ -69.000 \\ -29.308$		22.665 -54.564 -25.418 59.286 -58.069 42.955	
118-117 117-116 116-115 115-114 114-113 113-112	-102.882 148.441 -63.250 133.894 5.229 -53.016	-11.334 21.409 2.144 -9.711	-44.886 69.834 -22.953 48.305 0.806 -20.784		-57.996 78.607 -28.964 64.180 2.279 -22.521	
112-111 111-110 110-109 109-108 108-107 107-106	28.741 25.885 -85.015 47.230 19.768 -6.213	2.512 -0.627	14.351 8.164 -40.079 22.122 10.526 0.631		14.390 15.209 -44.936 25.108 9.242 -6.218	
106-105 105-104 104-103 103-102 102-101 101-100	25.449 28.772 29.377 -58.937 19.644 76.602	6.704 12.598 16.708 -29.004 29.387 15.733	3.452	3.702 -7.635 3.152 13.807	15.292 16.174 8.967 -22.297 -12.894 47.062	
100-099 099-098 098-097 097-096 096-095 095-094	5.406 27.145 -3.968 78.345 -5.863 33.038	0.748 20.584 1.269 30.067 -6.339 15.611		1.532 7.393 -1.804 32.059 -0.520 13.769	3.126 -0.832 -3.434 16.219 0.995 3.658	
094-093 093-092 092-091 091-090 090-089 089-088	-99.996 152.745 72.033 -11.141 -42.548 -62.947	-9.473		-44.564 78.104 41.145 -9.436 -24.896 -39.019	-55.432 74.641 9.695 -1.706 -17.652 -14.454	21.194
088-087	-115.659 0.069	-3.414		-61.403 0.069	-50.842	

Station Pair	Upper Total	l	2	3	4	Unknown
185-184	-59.782	0.00			-17.953	-41.829
184-183	-1751.812	-932.054	-932.054		-819.758	-41.829
183-182	-790.568		-388.548		-402.020	
182-181	1538.372		943.312		595.060	
181-180	-764.410		-302.131		-462.279	
180-179	-341.202		-145.522.		-195.680	
1/9 - 1/8	-1035.459		-465.151		-5/0.308	
177 176	455.045		209.702	,	243.201	
176 - 175	-30.314 177 918		-14.132 243 618		-10.301	
175-174	376 586		142 719		233 867	
174 = 173	577 762		258 611		319 151	
173 - 172	251.512		-15.125		266.636	
172 - 171	-608.130		-119.215		-488.915	
171 - 170	-694.034		-131.338		-562.696	
170-169	409.466		83.160		326.306	
169-168	512.715		203.972		308.743	
168-167	1136.044		402.215		733.829	
167-166	-87.722				-87.722	
166-165	-583.327		-222.306		-361.022	
165-164	-1301.005		-445.207		-855.798	
164-163	2214.865		625.692		1589.173	
163 - 162	-1053.420		- 159.435		- 893.985	
162 - 161	-856.662		-246.607		-610.054	
161-160	341.668		66.864		274.804	
160-159	163.728		82.293		81.435	
159-158	876.738		153.590		723.148	
158-157	2.084		-27.232		29.316	
157-156	-1273.071		-446.980		-826.091	
156-155	892.386		356.762		535.625	
155-154	935.169				935.169	
154-153	49.331				49.331 00.000	
153-152	-106.607		-21.639		-84,968	
151 150	-9.43/				-4.224	
150 149	-112.520		-45.541		-00.303	
149-149	-273.408		-312 328		-238.107	
143 - 143 148 - 147	1096 000		-312.320 h52 155		-004.071 600 205	
147-146	194 052		402.100		194 052	
146 - 145	90.724				90.724	
145-144	-817.891		-151.396		-666.496	
144-143	613.629		105.292		508.338	
143-142	-128.940		-18.198	•	-110.742	
142-141	-958.906		-381.726		-577.180	
141-140	463.771		209.391		254.380	
140-139	1176.566		424.568		751.998	
139-138	-97.614		-56.831		-40.783	
138-137	-33.394		14.860		-48.254	

Station Pair	Upper Total	l	2	3	4	Unknown
137-136 136-135 135-134 134-133 133-132 132-131 131-130 130-129	-347.357 751.986 254.675 -17.505 -275.610 47.487 -201.601 -859.335	-62.079 0.918 -172.752 -372.501	-92.075 167.692 43.340 -49.479 -50.229		-255.282 584.294 211.335 31.974 -163.301 46.569 -28.849 -486.834	
129-128 128-127 127-126 126-125 125-124 124-123 123-122	-227.261 1189.068 32.850 -668.687 -321.643 410.355 -920.672	-125.401 615.827 -31.853 -115.284 -65.382 77.380	-266.296 -154.028 146.825 -472.545	,	-101.860 573.242 64.703 -287.106 -102.232 186.150 -448.127	
122-121 121-120 120-119 119-118 118-117 117-116 116-115 115-114	-431.207 1003.824 -1027.494 731.727 -847.038 1222.520 -521.255 1103.503	-93.599 176.766	-242.181 516.353 -549.478 378.167 -369.998 575.896 -189.117 398.088		-209.045 487.470 -478.016 353.560 -477.039 646.625 -238.540 528.650	
114-113 113-112 112-111 111-110 110-109 109-108 108-107	43.142 -436.984 236.777 213.247 -700.104 388.644 162.938 -51 303	17.733 -80.173 20.732	6.665 -171.458 118.241 67.276 -329.812 181.832 86.700 5.204		18.744 -185.353 118.536 125.238 -370.292 206.812 76.238 -51.330	
106-105 105-104 104-103 103-102 102-101 101-100 100-099	210.170 237.952 243.424 -488.411 165.265 631.627 44.894	55.371 104.196 138.396 -240.418 244.008 130.943 6.224	28.476	30.736 -63.446 26.150 114.811 12.749	126.323 133.757 74.292 -184.547 -104.893 385.872 25.922	
099-098 098-097 097-096 096-095 095-094 094-093 093-092 092-091	-32.556 653.104 -49.483 276.185 -821.394 1259.124 599.012	171.401 10.616 252.598 -53.238 131.361		61.545 -15.004 267.535 -4.408 114.861 -368.426 645.471 341.112	-6.766 -28.169 132.972 8.163 29.963 -452.923 613.652 79.160	178.740
091-090 090-089 089-088 088-087 087-086	-91.736 -353.827 -520.306 -949.172 0.578	-79.558 -28.527		-77.805 -206.171 -322.667 -505.227 -0.578	-13.931 -147.656 -118.082 -415.418	

Total 1316.051

Station Pair	Intermediate Total	5
195_194		
184 - 183	0.950	0.950
183-182	2.735	2.735
182-181	0.953	0.953
181 - 180	-0.061	-0.061
180-179	-0.378	-0.378
179-178	2.603	2.603
178 - 177	-2.708	-2.708
177 - 176	L.250 _0.679	_0 679
175-174	-0.603	-0.603
174-173	-0.428	-0.428
173-172	-0.809	-0.809
172-171	0.705	0.705
171-170	6.475	6.475
170-169	-2.651	-2.651
169-168	-1.625	-1.625
167-166	-0.332	-0.332
166-165	1.738	1.738
165-164	5.066	5.066
164 - 163	- 9.265	-9.265
163-162	5.381	5.381
162-161		
161-160	-1.833 0.672	-1.833
159-158	-2.522	-2.522
158-157	-2.341	-2.341
157 - 156	2.473	2.473
156-155	-0.001	-0.001
155-154	-0.193	-0.193
154 - 153	U.U48 _3 154	U.U48 _3 154
152 - 151	0.753	0.753
151-150	0.525	0.525
150-149	-0.334	-0.334
149-148	2.873	2.873
148-147	-2.962	-2.962
14/-146	-0.370	-0.370
145 - 144	-0.195	-0.135
144-143	-0.815	-0.815
143-142	-0.545	-0.545
142-141	1.461	1.461
141-140	-1.432	-1.432
140-139	-1.875	-1.875
139 - 138 138 - 127	-0.415	-U.415
T00-T01	0.330	0.330

Station Pair	Intermediate Total	5
137-136 136-135 135-134 134-133 133-132 132-131 131-130 130-129 129-128 128-127 127-126 126-125 125-124 124-123 123-122 122-121 121-120 120-119 119-118 118-117 117-116 116-115 115-114 114-113 113-112 112-110 110-109 109-108 108-107 107-106 106-105 105-104 104-103 103-102 102-101 101-100 109-099 098-097 097-096 096-095 095-094 098-097 097-096 096-095 095-094 091-090 099-088 088-087 087-086	$\begin{array}{c} -0.001\\ -0.211\\ -0.320\\ -0.428\\ -0.273\\ -1.339\\ 0.786\\ 0.540\\ -0.792\\ 0.361\\ -0.898\\ 1.596\\ -1.107\\ 0.222\\ 0.059\\ 0.062\\ -0.679\\ 0.107\\ 1.112\\ -0.697\\ -1.020\\ 0.873\\ -0.991\\ -0.177\\ 0.167\\ 0.181\\ -1.688\\ 0.514\\ -0.038\\ -0.179\\ 0.116\\ -0.144\\ -0.256\\ -0.806\\ 0.289\\ -0.125\\ -0.605\\ -0.806\\ 0.289\\ -0.125\\ -0.605\\ -0.572\\ 0.034\\ -0.877\\ -0.307\\ 0.165\\ -0.665\\ 2.386\\ -1.747\\ -1.869\\ 1.787\\ 0.907\\ 2.208\\ -0.376\\ \end{array}$	$\begin{array}{c} -0.001\\ -0.211\\ -0.320\\ -0.428\\ -0.273\\ -1.339\\ 0.786\\ 0.540\\ -0.792\\ 0.361\\ -0.898\\ 1.596\\ -1.107\\ 0.222\\ 0.059\\ 0.062\\ -0.679\\ 0.107\\ 1.112\\ -0.697\\ -1.020\\ 0.873\\ -0.991\\ -0.177\\ 0.167\\ 0.181\\ -1.688\\ 0.514\\ -0.038\\ -0.179\\ 0.116\\ -0.144\\ -0.256\\ -0.806\\ 0.289\\ -0.125\\ -0.605\\ -0.806\\ 0.289\\ -0.125\\ -0.605\\ -0.572\\ 0.034\\ -0.572\\ 0.034\\ -0.572\\ 0.034\\ -0.572\\ 0.034\\ -0.572\\ 0.034\\ -0.572\\ 0.034\\ -0.572\\ 0.034\\ -0.572\\ 0.034\\ -0.572\\ 0.034\\ -0.572\\ 0.034\\ -0.572\\ 0.034\\ -0.572\\ 0.034\\ -0.572\\ 0.037\\ 0.165\\ -0.665\\ 2.386\\ -1.747\\ -1.869\\ 1.787\\ 0.907\\ 2.208\\ -0.376\end{array}$

Total

-3.44

Station	Intermediate	
Pair	Total	5
185-184		
184-183	32.766	32.766
183-182	94.625	94.625
182-181	32.991	32.991
181-180	-2.092	-2.092
180-179	-13.072	-13.072
179-178	89.943	89.943
178-177	-93.616	-93.616
1//-1/6	43.492	43.492
1/6 - 1/5	-23.465	-23.465
1/5 - 1/4	-20.851	-20.851
1/4 - 1/3		-14.//4
173 - 172	-27.049	-27.049
1/2 - 1/1	24.200	24.200
170 169	223.900	223.900 Q1 609
169 - 168	-56 198	-56 198
168 - 167	3 567	3 567
167-166	-11 457	-11 457
166 - 165	60.039	60.039
165-164	175.054	175.054
164-163	-320.065	-320.065
163-162	185.808	185.808
162-161	38.349	38.349
161-160	-63.321	-63.321
160-159	23.186	23.186
159-158	-87.084	-87.084
158-157	-80.845	-80.845
157-156	85.120	85.120
156-155	-0.041	-0.041
155-154	-6.636	-6.636
154-153	1.648	1.648
153-152	-109.077	-109.077
152-151	26.035	26.035
151 - 150	18.107	18.107
150-149	-11.552	-11.552
149 - 148	33.185	33.T82
140-147	-102,355	-102.355
146-145	- 12.740	- £ 699
145-144	-0.035 54 367	-0.055 54 367
144-143	-28,144	-28.144
143-142	-18,801	-18.801
142-141	50,430	50.430
141-140	-49.405	-49.405
140-139	-64.661	-64.661
139-138	-14.301	-14.301
138-137	11.581	11.581
Station Pair	Intermediate Total	5
--	--	--
<pre>137-136 136-135 135-134 134-133 132-131 131-130 130-129 129-128 128-127 127-126 126-125 125-124 124-123 123-122 122-121 121-120 120-119 119-118 118-117 117-116 116-115 115-114 114-113 113-122 112-111 111-110 110-109 109-108 108-107 107-106 106-105 105-104 104-103 103-102 102-101 101-100 109-098 098-097 097-096 096-095 095-094 094-093 093-092 092-091 091-090 090-089 088-087 087-086</pre>	$\begin{array}{c} -0.033 \\ -7.269 \\ -11.029 \\ -14.781 \\ -9.406 \\ -46.181 \\ 27.096 \\ 18.628 \\ -27.321 \\ 12.455 \\ -30.972 \\ 55.077 \\ -38.178 \\ 7.627 \\ 2.035 \\ 2.153 \\ -23.441 \\ 3.748 \\ 38.332 \\ -24.050 \\ -35.176 \\ 30.098 \\ -34.184 \\ -6.098 \\ 5.750 \\ 6.247 \\ -58.287 \\ 17.753 \\ -1.345 \\ -6.168 \\ 4.012 \\ -4.962 \\ -8.861 \\ -27.839 \\ 9.986 \\ -4.271 \\ -20.962 \\ -19.735 \\ 1.173 \\ -30.297 \\ -10.654 \\ 5.687 \\ -23.030 \\ 82.544 \\ -60.443 \\ -64.654 \\ 5.687 \\ -23.030 \\ 82.544 \\ -60.443 \\ -64.654 \\ 61.826 \\ 31.419 \\ 76.380 \\ -12.956 \\ \end{array}$	-0.033 -7.269 -11.029 -14.781 -9.406 -46.181 27.096 18.628 -27.321 12.455 -30.972 55.077 -38.178 7.627 2.035 2.153 -23.441 3.748 38.332 -24.050 -35.176 30.098 -34.184 -6.098 5.750 6.247 -58.287 17.753 -1.345 -6.168 4.012 -4.962 -8.861 -27.839 9.986 -4.271 -20.962 -19.735 1.173 -30.297 -10.654 5.687 -23.030 82.544 -60.443 -64.654 61.826 31.419 76.380 -12.956

,-

Station Pair	Intermediate Total	5
Station Pair 185-184 184-183 183-182 182-181 181-180 180-179 179-178 178-177 177-176 176-175 175-174 174-173 173-172 172-171 171-170 170-169 169-168 168-167 167-166 166-165 165-164 164-163 163-162 162-161 161-160 160-159 159-158 158-157 157-156 156-155 155-154 154-153 153-152 151-150 150-149 149-148 148-147 147-146 145-144	<pre>Intermediate Total 263.562 755.656 263.393 -16.916 -104.651 720.120 -748.827 348.113 -187.809 -166.640 -118.945 -224.707 195.964 1789.362 -732.697 -449.296 28.970 -93.008 480.973 1400.453 -2562.264 1488.644 307.375 -506.477 185.725 -697.062 -647.250 689.142 -0.305 -53.862 13.364 -870.377 207.858 145.120 -92.245 793.647 -817.954 -102.711 -53.799 435.331</pre>	5 263.562 755.656 263.393 -16.916 -104.651 720.120 -748.827 348.113 -187.809 -166.640 -118.945 -224.707 195.964 1789.362 -732.697 -449.296 28.970 -93.008 480.973 1400.453 -2562.264 1488.644 307.375 -506.477 185.725 -697.062 -647.250 689.142 -0.305 -53.862 13.364 -870.377 207.858 145.120 -92.245 793.647 -817.954 -102.711 -53.799 435.331
144-143 143-142 142-141 141-140 140-139 139-138 138-137	-225.018 -150.496 403.450 -395.384 -517.744 -114.376 92.485	-225.018 -150.496 403.450 -395.384 -517.744 -114.376 92.485

Station Pair	Intermediate Total	5
137 - 136 136 - 135 135 - 134 134 - 133 132 - 131 131 - 130 130 - 129 129 - 128 128 - 127 127 - 126 126 - 125 125 - 124 124 - 123 123 - 122 122 - 121 121 - 120 120 - 119 119 - 118 118 - 117 117 - 116 116 - 115 115 - 114 114 - 113 113 - 112 112 - 111 111 - 110 100 - 109 109 - 108 108 - 107 107 - 106 106 - 105 105 - 104 104 - 103 103 - 102 102 - 101 101 - 100 100 - 099 099 - 098 098 - 097 097 - 096 096 - 095 095 - 094 094 - 093 093 - 092 091 - 090 090 - 089 088 - 087 087 - 086	-0.014 -58.420 -88.115 -117.669 -75.838 -369.677 217.186 148.881 -219.077 100.146 -247.876 440.609 -305.658 61.348 16.155 16.809 -186.898 28.727 307.278 -192.859 -281.343 241.140 -273.082 -48.719 45.917 49.789 -465.416 141.460 -10.235 -49.019 31.652 -39.318 -70.448 -222.765 79.439 -35.790 -165.202 -157.878 9.378 -242.507 -83.919 45.667 -182.606 656.704 -480.336 -515.086 492.901 249.374 608.284 -105.954	-0.014 -58.420 -88.115 -117.669 -75.838 -369.677 217.186 148.881 -219.077 100.146 -247.876 440.609 -305.658 61.348 16.155 16.809 -186.898 28.727 307.278 -192.859 -281.343 241.140 -273.082 -48.719 45.917 49.789 -465.416 141.460 -10.235 -49.019 31.652 -39.318 -70.448 -222.765 79.439 -35.790 -165.202 -157.878 9.378 -242.507 -83.919 45.667 -182.606 656.704 -480.336 -515.086 492.901 249.374 608.284 -105.954

Total -945.001

-

		Mass	Transport	28° 15.'S	
Station Pair	Deep/ Bottom Total	6	7	8	9
185-184 184-183 183-182 182-181 181-180 180-179 179-178 178-177 177-176 176-175 175-174 174-173 173-172	6.887 9.163 3.963 -3.671 6.198 -1.990 0.724 -0.772	6.887 1.815 1.038 -0.366 1.956 -1.990 0.724 -0.772	2.025 1.552 -0.834 1.850	,	5.323 1.373 -2.471 2.392
172-171 171-170 170-169 169-168 168-167 167-166 166-165 165-164 164-163 163-162 162-161 161-160 160-159 159-158 158-157 157-156	-6.917 -4.109 2.169 5.057 -5.374 5.019 3.168 -7.460 2.130 -7.425 -4.330	-6.917 -4.109 2.169 5.057 -5.374 5.019 3.168 -7.460 2.130 -5.440 -4.330	-1.984		
155 - 154 154 - 153 153 - 152 152 - 151 151 - 150 150 - 149 149 - 148 148 - 147 147 - 146 146 - 145 145 - 144 144 - 143 143 - 142 142 - 141 141 - 140 140 - 139 139 - 138 138 - 137	3.551 9.468 5.568 23.584 -20.513 -0.245 -0.787 13.389 -7.424 0.537 11.170 -6.072 -24.599 -2.767 1.171	2.067 1.076 -0.805 6.565 -6.073 0.131 -0.859 3.007 -2.439 -0.618 2.832 -2.832 -2.832 -4.890 -1.065 0.511	1.484 2.584 -0.196 3.274 -6.574 -0.288 -0.083 3.452 -2.862 -0.093 2.972 -3.352 -8.259 -1.040 0.392	5.785 10.740 -0.347 4.433 -1.126 0.912 3.845 0.191 -11.450 -0.662 0.268	5.808 0.784 3.005 -7.866 -0.088 0.502 2.497 -0.996 0.336 1.522 -0.078

Station Paîr	Deep/ Bottom Total	6	7	8	9	
<pre>137-136 136-135 135-134 134-133 132-131 131-130 130-129 129-128 128-127 127-126 126-125 125-124 124-123 123-122 122-121 121-120 120-119 119-118 118-117 117-116 116-115 115-114 114-113 113-112 112-111 111-100 109-108 108-107 107-106 106-105 105-104 104-103 103-102 102-101 101-000 109-098 098-097 097-096 096-095 095-094 094-093 093-092 092-091 091-090 099-088 088-087 087-086</pre>	5.609 -6.598 -3.520 -5.782 4.839 -13.116 5.262 2.332 -1.549 -0.754 -2.283 8.191 -7.174 0.576 1.435 1.878 -5.650 3.584 2.925 -2.039 -4.513 2.490 -3.935 -1.028 0.140 1.978 -5.244 1.978 -5.244 1.978 -5.244 1.978 -5.244 1.978 -5.244 1.978 -5.244 1.978 -5.244 1.978 -5.244 1.978 -5.244 1.978 -5.244 1.978 -0.628 -0.670 -1.364 1.729 0.371 -3.310 1.277 0.789 -0.827 -0.101 -2.896 11.643 -6.670 -12.418 12.196 6.111 7.804	0.999 -1.215 -0.391 -1.707 0.990 -3.892 1.677 1.385 -1.010 0.127 -1.924 2.713 -2.039 0.123 0.487 0.583 -1.979 1.237 1.266 -0.918 -2.509 1.096 -2.202 -1.028 0.140 1.343 -5.244 1.932 -1.712 -0.030 1.185 -0.114 -0.208 0.123 0.140 1.343 -5.244 1.932 -1.712 -0.030 1.185 -0.114 -0.208 -0.592 0.592 0.592 0.592 0.592 0.592 0.592 0.592 0.592 0.592 0.592 0.592 0.592 0.972 -4.357 4.568 1.504 3.638	1.419 -2.135 -2.174 -2.111 2.403 -6.628 2.386 0.947 -0.539 -0.882 -0.359 5.478 -5.135 0.454 0.948 1.295 -3.671 2.347 1.658 -1.121 -2.003 1.395 -1.733 0.636 -0.375 1.961 -0.514 -0.462 -0.687 0.928 0.104 -1.508 0.685 0.738 -0.212 -2.789 0.099 -1.688 6.765 -3.698 -8.061 7.628 4.166	3.192 -3.248 -0.524 -1.497 0.683	-0.431 -1.963 1.446 -1.100 0.516	

Salt Transport 28⁰ 15.0'S

Station Pair	Deep/ Bottom Total	. 6	7	8	9	
185-184 184-183 183-182 182-181 181-180 180-179 179-178 178-177 177-176 176-175 175-174 174-173 173-172	239.030 318.244 137.609 -127.491 215.173 -68.977 25.101 -26.785	239.030 62.999 36.023 -12.711 67.849 -68.977 25.101 -26.785	70.360 53.895 -28.955 64.242	,	184.885 47.691 -85.825 83.081	
172-171 171-170 170-169 169-168 168-167	-239.842 -142.484	-239.842 -142.484				
167-166 166-165 165-164 164-163 163-162 162-161 161-160 160-159 159-158 158-157 157-156 156-155	75.159 175.249 -186.190 173.856 109.826 -258.680 73.860 -257.401 -150.082	75.159 175.249 -186.190 173.856 109.826 -258.680 73.860 -188.577 -150.082	-68.825			
153-154 154-153 153-152 152-151 151-150 150-149 149-148 148-147 147-146 146-145 145-144 144-143 143-142 142-141 141-140 140-139 139-138 138-137	123.159 328.723 193.382 818.291 -711.262 -8.530 -27.255 464.597 -257.494 18.696 387.501 -210.515 -853.450 -95.953 40.595	71.650 37.279 -27.871 227.476 -210.385 4.526 -29.771 104.193 -84.515 -21.398 98.100 -98.122 -169.417 -36.893 17.689	51.509 89.721 -6.814 113.631 -228.097 -9.992 -2.883 119.776 -99.312 -3.235 103.100 -116.296 -286.561 -36.089 13.601	200.846 372.827 -12.052 153.882 -39.093 31.669 133.472 6.618 -397.472 -22.971 9.305	201.723 27.221 104.357 -273.145 -3.064 17.450 86.746 -34.574 11.661 52.830 -2.715	

Station Pair	Deep/ Bottom Total	6	7	8	9
Station Pair 137-136 136-135 135-134 134-133 132-131 131-130 130-129 129-128 128-127 127-126 126-125 125-124 124-123 123-122 122-121 121-120 120-119 119-118 118-117 117-116 116-115 115-114 114-113 113-112 112-111 111-110 100-109 109-108 108-107 107-106 106-105 105-104 104-103 103-102 102-101 101-100 109-098 098-097 097-096 096-095 095-094 094-093	Deep/ Bottom Total 194.610 -228.902 -122.107 -200.495 167.813 -454.757 182.421 80.810 -53.662 -26.177 -79.082 283.958 -248.739 19.987 49.745 65.108 -195.876 124.229 101.363 -70.684 -195.876 124.229 101.363 -70.684 -156.379 86.306 -136.342 -35.617 4.832 68.560 -181.709 66.937 -59.356 -14.051 109.032 -21.779 -23.236 -47.278 59.943 12.841 -114.719 44.264 27.369 -28.640 -127.325 -3.479 -10.421 403.729	6 34.599 -42.094 -13.542 -59.156 34.304 -134.788 58.072 47.976 -34.958 4.411 -66.632 93.972 -70.645 16.879 20.189 -68.557 42.855 43.863 -31.805 -86.912 37.947 -76.270 -35.617 4.832 46.521 -181.709 66.937 -59.356 -1.046 41.046 -3.952 -7.209 -23.463 27.769 9.234 -62.417 20.497 -21.304 -30.591 -6.905 -41.860 16.9027	7 49.211 -74.055 -75.409 -73.225 83.345 -229.866 82.736 32.834 -18.703 -30.588 -12.450 189.987 -178.094 15.739 32.866 44.919 -127.319 81.374 57.500 -38.879 -69.467 48.359 -69.467 48.359 -69.467 48.359 -69.467 48.359 -69.467 48.359 -60.073 22.039 -13.005 67.986 -17.827 -16.027 -23.815 32.174 3.608 -52.301 23.767 25.612 -7.336 -96.735 3.426 -58.561 234.703	8 110.800 -112.754 -18.198 -51.949 23.697	9 -14.958 -68.114 50.163 -38.155 17.916
094-093 093-092 092-091 091-090 090-089 089-088 088-087 087-086	403.729 -231.256 -430.559 422.898 211.917 270.538	169.027 -102.974 -150.965 158.290 52.100 126.065	-128.282 -279.594 264.608 159.816 144.473		
Total	-38.10				

Heat Transport 28⁰ 15.0'S

Station Pair	Deep/ Bottom Total	6	7	8	9
185-184 184-183 183-182 182-181 181-180 180-179 179-178 178-177 177-176 176-175 175-174 174-173 173-172	1896.185 2516.485 1089.193 -1008.104 1703.581 -548.469 199.612 -212.584	1896.185 499.619 285.808 -100.834 538.513 -548.469 199.612 -212.584	556.537 426.439 -229.124 508.338,		1460.329 376.945 -678.146 656.729
172-171 171-170 170-169 169-168 168-167	-1903.480 -1130.584	-1903.480 -1130.584			
167-166 166-165 165-164 164-163 163-162 162-161 161-160 160-159 159-158 158-157 157-156 156-155 155-154 154-153	596.999 1391.913 -1480.598 1382.610 871.637 -2052.181 586.085 -2042.877 -1191.515	596.999 1391.913 -1480.598 1382.610 871.637 -2052.181 586.085 -1497.168 -1191.515	-545.709		
153-152 152-151 151-150 150-149 149-148 148-147 147-146 146-145 145-144 145-144 143-142 142-141 141-140 140-139 139-138 138-137	976.953 2599.808 1525.971 6476.836 -5638.027 -67.325 -216.736 3676.781 -2040.084 146.594 3068.235 -1670.021 -6755.918 -760.498 321.826	568.955 296.123 -221.479 1806.919 -1671.904 36.019 -236.526 827.863 -671.386 -170.045 779.411 -779.534 -1345.923 -293.030 140.527	407.998 710.059 -54.031 899.727 -1806.719 -79.124 -22.898 948.551 -786.677 -25.685 816.825 -921.308 -2269.410 -285.874 107.734	1586.402 2945.276 -95.188 1215.387 -308.776 250.156 1054.373 52.283 -3140.589 -181.594 73.566	1593.627 215.080 824.917 -2159.408 -24.220 137.876 684.980 -273.244 92.167 417.626 -21.462

	Deep/				
Station	Bottom	6	7	Q	٩
Pall	IOLAL	0	/	0	3
137 - 136	1540,247	274,765	389,809	875.673	
136 - 135	-1812.118	-334.243	-586.627	-891.247	
135 - 134	-967.218	-107.576	-597.405	-143.899	-118.339
134-133	-1589.171	-469.864	-580.233		-539.074
133-132	1329.830	272.423	660.457		396.950
132-131	-3605.163	-1071.137	-1821.249	-410.902	-301.875
131-130	1446.225	461.429	655.524	187.488	141.784
130-129	641.569	381.285	260.284		
129-128	-426.198	-277.936	-148.262		
128-127	-207.185	35.113	<u>-</u> 242.299,		
127-126	<u>-</u> 628.447	-529.621	-98.825		
126-125	2251.876	746.694	1505.181		
125 - 124	-1972.116	-561.273	-1410.843		
124 - 123	158.409	33.774	124.635		
123-122	394.485	134.088	260.397		
122-121	516.306	160.419	355.887		
121 - 120	-1553.504	-544.576	-1008.928		
120-119	985.250	340.395	044.855 UEE 7U7		
119-118	804.240 560 970	348.300	400./4/		
117-116	-1241 326	-690 633	-550 693		
116 - 115	684.906	301.534	383.373		
115-114	-1082.375	-606.038	-476.337		
114-113	-282.955	-282.955			
113-112	38.422	38.422			
112-111	544.278	369.463	174.815		
111-110	-1442.935	<u>-</u> 1442.935			
110-109	531.512	531.512			
109-108	-471.042	-471.042			
108-107	-111.401	-8.268	-103.133		
107 - 106	865.099	325.927	539.172		
106 - 105	-1/2./35	-31.359	-141.3//		
103 - 104	-104.392	-186 393	-127.000 -188 845		
103 - 102	475.648	220.533	255.117		
102-101	101.970	73.364	28.606		
101-100	-910.525	-495.846	-414.679		
100-099	351.199	162.756	188.443		
099-098	216.927	13.914	203.012		
098-097	-227.486	-169.272	-58.213		
097-096	-1009.742	-243.057	-766.685		
096-095	- 27.700	- 54.828	27.128		
095-094	-796.449	-332.406	-464.042		
094-093	3201.949	1342.333	1859.616		
093-092	-1834.374	-817.910	-1016.464		
092-091	-3415.600	-1199.580	-2216.020		
000 000	3333.8/3	LZ50.95L	2090.922		
089-089	1000.293 2142 952	472.83T	1144 A47		
088-087	2173.332	553.505	TT44.04/		
-				,	

Total -338.492

Mass Transport 43⁰ 15.0'S

Station Pair	Upper Total	l	2	3	4	Unknown
001-002 002-003 003-004	0.248 -3.281 -3.813 8 227			-0.331	0.014 -2.522 -2.983 6.661	0.234 -0.428 -0.830
005-006 006-007 007-008 008-009	-1.921 0.336 1.093 -0.659			-0.696 0.105 0.670 -0.345	-1.225 0.231 0.423 -0.314	1.007
009-010 010-011 011-012 012-013	-0.557 -3.413 3.870 -0.446			-0.464 -1.432 1.130 -0.177	-0.093 -1.640 2.405 -0.259	-0.341 0.334 -0.010
013-014 014-015 015-016	0.458 -0.048 -0.533			0.194 -0.063 -0.045	0.203 0.015 -0.298	0.061
017-018 018-019 019-020	-0.549 0.584 0.036			-0.337 -0.356 0.547 0.036	-0.042 0.037	-0.133
020-021 021-022 022-023 023-024	0.116 -0.657 -0.042 0.132			0.069 -0.413 -0.104 0.131	-0.030 -0.032 0.025	0.042 -0.214 0.084 -0.024
024-025 025-026 026-027 027-028	-0.194 -1.012 1.428 0.553			-0.121 -0.451 0.822 0.279	-0.074 -0.424 0.346 0.231	0.001 -0.136 0.260 0.043
028-029 029-030 030-031	-0.134 0.730 -0.488			-0.067 0.473 -0.263	-0.067 0.257 -0.146	-0.079
032-033 033-034 034-035	-0.789 0.811 0.232			-0.605 0.633 0.232	-0.185 0.178	
035-038 036-037 037-038 038-039	0.151 0.069 0.121 0.440			0.151 0.069 0.121 0.440		
039=040 040=041 041=042 042=043	-0.394 0.430 -0.161 0.101			-0.394 0.430 -0.161 0.101		
043-044 044-045 045-046 046-047	0.331 -0.069 0.432 -0.598			0.331 -0.069 0.432 -0.598		
047-048 048-049	-0.073 0.372			-0.073 0.372		

Station Pair	Upper Total	1	2	3	4	Unknown
Pair 049-050 050-051 051-052 052-053 053-054 054-055 055-056 056-057 057-058 058-059 059-060 060-061 061-062 062-063 063-064 064-065 065-066 066-067 067-068 068-069 069-070 070-071 071-072 072-073 073-074 074-075	Total 0.149 0.193 -0.249 0.671 0.462 -0.841 0.775 -0.138 -0.314 -0.208 0.272 0.430 -0.069 0.453 0.287 0.290 0.035 -0.132 -0.019 0.510 -0.614 -0.039 0.562 -0.452 -0.235	1	2	3 0.149 0.193 -0.249 0.671 0.462 -0.841 0.775 -0.138 -0.314 -0.208 0.272 0.430 -0.069 0.453 0.287 0.290 0.035 -0.132 -0.019 0.510 -0.316 -0.614 -0.039 0.562 -0.452 -0.191	ų -0.043	Unknown
075-076 076-077 077-078	0.025 -0.058 0.021			-0.027 0.000 -0.006	0.051 -0.059 0.027	

Total

3.128 .

Salt Transport 43⁰ 15.0'S

Station	Upper	_				
Pair	Total	1	2	3	4.	Unknown
001-002	8.772				0.490	8,282
002-003	-114.684			-11.587	-87.945	-15.151
003-004	-133.689				-104.316	-29.383
004-005	288.554				233.15-2	55.402
005 - 006	-66.955			-24.396	-42.559	
006 - 007	11.676			3.679	7.998	
007 - 008	38.083			23.415	14.669	
008-009	-22,939			-12.040	-10.899	
009 - 010	-19,446			-16.210	-3,236	
010-011	-119.026			-50.108	-57.008	-11.910
011-012	135.073	•		39,615	83.767	11.691
012-013	-15.548			-6.203	-8.997	-0.348
013-014	15.936			-6.781	7.032	2.123
014-015	-1.685			-2.202	0.517	
015-016	-18.646			-1.571	-10.483	-6.592
016-017	17.055			11.793	0.648	4.615
017-018	-19.154			-12.444	-1.468	-5.242
018-019	20.344			19.078	1.266	
019-020	1.260			1.260		
020-021	3.860			2.399		1.461
021-022	-22.845			-14.364	-1.026	-7.456
022-023	-1.444			-3.609	-1.129	3.293
023-024	4.602			4.566	-0.877	-0.842
024-025	-6.750			-4.212	-2.569	0.032
025-026	-35.287			-15.792	-14.725	-4.770
026-027	49.750			28.664	12.014	9.071
027-028	19.187			9.697	8.002	1.487
028-029	-4.652			- 2.325	-2.326	
029-030	25.334			16.449	8.885	
030-031	-16.937			-9.138	-5.037	-2.763
031-032	-9.529			-5.331	-4.198	
032-033	-27.381			-20.986	-6.396	
033-034	28.094			21.946	6.148	
034-035	8.024			8.024		
035-036	5.209			5.209		
036-037	2.391			2.39I		
037-038	4.181			4.181		
038-039	15.159			15.159		
039-040	-13.5/2			-13.572		
040-041	14.819			14.819		
041-042	-5.54/			-5.54/		
042-043	3.486					
	LL.4UZ			11.4UZ		
045-045	-2.384			-2.304 14 950		
046-040	_20 550			-20 552		
047_049	-20.002			-20.002		
048-048	10 771			-2.434 12 771		
	±< • / / ⊥					

Station Pair	Upper Total	1	2	3	4	Unknown
Pair 049-050 050-051 051-052 052-053 053-054 054-055 055-056 056-057 057-058 059-060 060-061 061-062 062-063 063-064 064-065 065-066 066-067 067-068 068-069 069-070 070-071 071-072 072-073 073-074 074-075 075-076 076-077	Total 5.112 6.630 -8.538 22.980 15.835 -28.801 26.508 -4.713 -10.744 -7.091 9.288 14.654 -2.336 15.438 9.809 9.893 1.220 -4.509 -0.625 17.339 -10.740 -20.881 -1.316 19.101 -15.340 -7.967 0.798 -1.945	1	2	3 5.112 6.630 -8.538 22.980 15.835 -28.801 26.508 -4.713 -10.744 -7.091 9.288 14.654 -2.336 15.438 9.809 9.893 1.220 4.509 0.625 17.339 -10.740 -20.881 -1.316 19.101 -15.340 -6.510 -0.926 0.030	4	Unknown 1.457 1.724 -1.975
0//-0/8	U.68/			-0.227		0.914

Total

108.452

Heat Transport 43⁰ 15.0'S

Station Pair	Upper Total	1	2	3	4	Unknown
001-002 002-003 003-004 004-005 005-006 006-007 007-008 008-009 009-010	71.664 -932.820 -1087.272 2345.615 -544.725 94.955 310.611 -186.937 -158.889			-198.571 29.851 191.225 -98.262 -132.563	3.984 -714.964 -847.584 1893.429 -346.153 65.104 119.386 -88.675 -26.325	67.680 -123.775 -239.688 452.187
010-011 011-012 012-013 013-014	-970.212 1100.436 -126.594 130.071	-98.086 -96.342 -2.874 17.582		-408.330 322.755 -50.507 55.263	-463.797 681.338 -73.213 57.227	-98.086 96.343 -2.874 17.582
014-015 015-016 016-017 017-018 018-019	-13.650 -152.733 139.771 -157.112 166.915	-54.627 38.303 -43.383		-17.861 -12.763 96.197 -101.750 156.589	-85.343 5.271 -11.969 10.326	-54.627 38.303 -43.393
019-020 020-021 021-022 022-023 023-024	10.301 31.804 -187.893 -11.388 37.444	12.126 -61.840 27.209 -6.933		10.301 19.678 -117.697 -29.402 37.234	-8.356 -9.195 7.144	12.126 -61.840 27.209 -6.933
024-025 025-026 026-027 027-028 028-029	-55.003 -288.061 406.792 156.643 -37.798	0.260 -39.289 74.883 12.322		-34.341 -128.872 234.072 79.161 -18.851	-20.922 -119.900 97.838 65.161 -18.947	0.260 -39.289 74.883 12.322
029-030 030-031 031-032 032-033 033-034 034-035 035-036 036-037 037-038 038-039 039-040 040-041 041-042 042-043 043-044 044-045 045-046	206.969 -138.520 -77.792 -224.162 230.121 65.720 43.092 19.297 34.448 124.565 -111.860 122.110 -45.707 28.929 93.442 -19.429 122.009			134.613 -74.629 -43.596 -172.071 180.041 65.720 43.092 19.287 34.448 124.565 -111.860 122.110 -45.707 28.929 93.442 -19.429 122.009	72.356 -41.018 -34.196 -52.091 50.080	-22.872
046-047 047-048 048-049	-169.482 -20.643 105.489			-169.482 -20.643 105.489		

Station Pair	Upper Total	l	2	3	4	Unknown
049-050 050-051 051-052 052-053 053-054 054-055 055-056	41.982 54.848 -71.170 190.263 130.556 -238.046 219.013			41.982 54.848 -71.170 190.263 130.556 -238.046 219.013		
056-057	-38.878			-38.878	v	
057-058	-88.853			-88.853		
058-059	-58.830			-58.830		
060-061	121.595			121.595		
061-062	-19.544			-19.544		
062-063	128.080			128.080		
063-064	80.911			80.911		
064-065	82.182			82.182		
065-066	9.183			9.183		
066-067	-37.292			-37.292		
067 - 068	-5.834			-5.834		
	144.029 99 659			144.029 00 650		
000 = 070	_17L NL9			-174 A49		
071 - 072	-11.074			-11.074		
072-073	159.270			159.270		
073-074	-128.323			-128.323		
074-075	-66.385			-53.957		-12.427
075 - 076	7.217			-7.489		14.707
076-077	-16.803			0.037		-16.840
077-078	6.026			-1.781		7.807
Total	888.124					

-

,

Station Pair	Intermediate Total	5
001-002 002-003 003-004 004-005 005-006 006-007 007-008 008-009 009-010 010-011 011-012 012-013 013-014 014-015 015-016 016-017 017-018 018-019 019-020 020-021	1.442 -0.155 0.865 -0.864 0.091 0.114 -0.104 -0.419 -0.308 0.582 -0.284 0.505 0.073	1.442 -0.155 0.865 -0.864 0.091 0.114 -0.104 -0.419 -0.308 0.582 -0.284 0.505 0.073
021-022 022-023 023-024 024-025 025-026 026-027 027-028 028-029 029-030 030-031 031-032 032-033 033-034 034-035 035-036 036-037 037-038 038-039 039-040 040-041 041-042 042-043 043-044 044-045 045-046 046-047 048-049 049-050	$\begin{array}{c} -0.613\\ 0.303\\ 0.717\\ 0.302\\ 0.041\\ -0.258\\ -0.454\\ -0.137\\ -0.095\\ 0.791\\ -0.476\\ 0.394\\ 0.053\\ 0.271\\ 0.158\\ -0.187\\ -0.155\\ -0.038\\ 0.661\\ -0.206\\ 0.485\\ -0.488\\ 0.131\\ 0.288\\ 0.032\end{array}$	-0.613 0.303 0.717 0.302 0.041 -0.258 -0.454 -0.137 -0.095 0.791 -0.476 0.394 0.053 0.271 0.158 -0.187 -0.155 -0.038 0.661 -0.206 0.485 -0.488 0.131 0.288 0.032

Station Pair	Intermediate Total	5
050-051 051-052 052-053 053-054 054-055 055-056 056-057 057-058 058-059 059-060 061-062 062-063 063-064 064-065 065-066 066-067 065-068 068-069 069-070 070-071 071-072 072-073 073-074 074-075 075-076 076-077 077-078	$\begin{array}{c} 0.217\\ 0.930\\ -0.028\\ 0.438\\ -0.838\\ 0.968\\ -0.252\\ -0.127\\ -0.321\\ 0.780\\ 0.465\\ -0.154\\ 0.516\\ 0.654\\ -0.232\\ 0.680\\ -0.183\\ 1.901\\ -1.017\\ -0.062\\ -0.387\\ -0.165\\ 0.952\\ -0.011\\ -0.497\\ -0.081\\ 0.363\end{array}$	$\begin{array}{c} 0.217\\ 0.930\\ -0.028\\ 0.438\\ -0.838\\ -0.838\\ 0.968\\ -0.252\\ -0.127\\ -0.321\\ 0.780\\ 0.465\\ -0.154\\ 0.516\\ 0.654\\ -0.232\\ 0.680\\ -0.183\\ 1.901\\ -1.017\\ -0.062\\ -0.376\\ -0.165\\ 0.952\\ -0.011\\ -0.497\\ -0.081\\ 0.363\end{array}$

Total

7.771

,

,-

Station Pair	Intermediate Total	5
001-002 002-003 003-004 004-005 005-006 006-007 007-008 008-009 009-010 010-011 011-012 012-013 013-014 014-015 015-016 016-017 017-018 018-019 019-020 020-021	50.029 -5.302 29.689 -29.686 3.092 3.862 -3.508 -14.480 -10.584 20.028 -9.782 17.419 2.514	50.029 -5.302 29.689 -29.686 3.092 3.862 -3.508 -14.480 -10.584 20.028 -9.782 17.419 2.514
021-022 022-023 023-024 024-025 025-026 026-027 027-028 028-029 029-030 030-031 031-032 032-033 033-034 034-035 035-036 036-037 037-038 038-039 039-040 040-041 041-042 042-043 043-044 044-045 045-046 046-047 047-048 048-049 049-050	$\begin{array}{c} 0.004 \\ -21.162 \\ 10.448 \\ 24.719 \\ 10.436 \\ 1.335 \\ -8.894 \\ -15.589 \\ -4.639 \\ -3.352 \\ 27.271 \\ -16.459 \\ 13.555 \\ 1.815 \\ 9.245 \\ 5.530 \\ -6.522 \\ -1.840 \\ -1.313 \\ 22.680 \\ -7.049 \\ 16.599 \\ -16.718 \\ 4.550 \\ 9.893 \\ 1.016 \end{array}$	0.004 -21.162 10.448 24.719 10.436 1.335 -8.894 -15.589 -4.639 -3.352 27.271 -16.459 13.555 1.815 9.245 5.530 -6.522 -1.840 -1.313 22.680 -7.049 16.599 -16.718 4.550 9.893 1.016
Station Pair	Intermediate Total	5
---	--	--
050-051 051-052 052-053 053-054 054-055 055-056 056-057 057-058 058-059 060-061 061-062 062-063 063-064 064-065 065-066 066-067 067-068 068-069 069-070 070-071 071-072 072-073 073-074 074-075 075-076 076-077 077-078	7.442 32.048 -1.051 15.000 -28.686 33.123 -8.591 -4.309 -11.016 26.790 15.835 -5.237 17.646 22.400 -4.623 23.262 -6.243 65.189 -35.031 -2.083 -12.879 -5.699 32.613 -0.382 -17.043 -2.760 12.481	7.442 32.048 -1.051 15.000 -28.686 33.123 -8.591 -4.309 -11.016 26.790 15.835 -5.237 17.646 22.400 -4.623 23.262 -6.243 65.189 -35.031 -2.083 -12.879 -5.699 32.613 -0.382 -17.043 -2.760 12.481
Total	267.046	

.

Station Pair	Intermediate Total	5
001-002 002-003 003-004 004-005 005-006 006-007 007-008 008-009 009-010 010-011 011-012 012-013 013-014 014-015 015-016 016-017 017-018 018-019 019-020	389.663 -47.113 253.564 -247.554 27.281 33.843 -31.617 -116.469 -88.535 165.800 -80.009 141.211 20.415	389.663 -47.113 253.564 -247.554 27.281 33.843 -31.617 -116.469 -88.535 165.800 -80.009 141.211 20.415
020-021 021-022 022-023 023-024 024-025 025-026 026-027 027-028 028-029 029-030 030-031 031-032 032-033 033-034 034-035 035-036 036-037 037-038 038-039 039-040 040-041 041-042 042-043 043-044 044-045 045-046 046-047 047-048 048-049 048-049	$\begin{array}{c} 0.036\\ -171.659\\ 84.928\\ 199.804\\ 83.462\\ 14.062\\ -72.562\\ -129.096\\ -41.556\\ -23.244\\ 220.943\\ -131.512\\ 110.185\\ 15.136\\ 78.302\\ 42.093\\ -49.786\\ -16.304\\ -10.298\\ 185.570\\ -58.030\\ 137.060\\ -137.110\\ 36.133\\ 80.490\\ 10.510\end{array}$	0.036 -171.659 84.928 199.804 83.462 14.062 -72.562 -129.096 -41.556 -23.244 220.943 -131.512 110.185 15.136 78.302 42.093 -49.786 -16.304 -10.298 185.570 -58.030 137.060 -137.110 36.133 80.890

Station Pair	Intermediate Total	5
050-051 051-052 052-053 053-054 054-055 055-056 056-057 057-058 058-059 059-060 060-061 061-062 062-063 063-064 064-065 065-066 065-066 065-066 066-067 067-068 068-069 069-070 070-071 071-072 072-073 073-074 075-076 076-077	60.642 257.513 -5.802 122.895 -234.712 271.226 -70.603 -36.036 -89.106 217.004 130.578 -43.352 144.362 182.507 -35.930 189.470 -50.863 527.735 -281.222 -17.673 -104.921 -45.716 264.941 -3.209 -138.545 -22.736 100.882	60.642 257.513 -5.802 122.895 -234.712 271.266 -70.603 -36.036 -89.106 217.004 130.578 -43.352 144.362 182.507 -35.930 189.470 -50.863 527.735 -281.222 -17.673 -104.921 -45.716 264.941 -3.209 -138.545 -22.736 100.882
0//-0/8		

Total

2166.966

Mass Transport 43⁰ 15.0'S

Station Pair	Deep/ Bottom Total	6	7	8	9
001-002 002-003 003-004 004-005 005-006 006-007 007-008 008-009 009-010 010-011 011-012 012-013 013-014 014-015 015-016 016-017	2.918 -7.541 7.319 -4.738 -6.659 5.178 -0.020 4.918 -3.165 -0.206	1.972 -7.541 7.319 -1.632 -1.685 1.142 -0.241 1.019 -0.990 0.158	0.946 -1.115 -1.340 1.481 -0.137 1.039 -0.786 0.038	-1.000 -2.881 2.064 0.373 1.872 -0.250 -0.234	-0.991 -0.752 0.481 -0.015 0.989 -1.139 -0.169
018 - 019 019 - 020 020 - 021 021 - 022 022 - 023 023 - 024 024 - 025 025 - 026 026 - 027 027 - 028 028 - 029 029 - 030 030 - 031 031 - 032 032 - 033 033 - 034 034 - 035 035 - 036 036 - 037 037 - 038 038 - 039 039 - 040 040 - 041 041 - 042 042 - 043 043 - 044 044 - 045 045 - 046 046 - 047 047 - 048	0.171 0.392 -1.375 0.711 5.073 7.862 -5.850 5.882 2.332 0.993 -3.300 -2.991 0.991 -6.189 0.762 0.800 -2.556 -7.312 0.482 6.771 -0.847 0.109	0.171 0.392 -1.375 0.711 0.943 2.065 -1.860 0.823 -0.349 -0.157 -0.719 -1.259 0.482 -2.024 0.361 0.123 -0.626 0.001 -1.039 1.027 0.121	0.974 1.217 -0.977 0.956 0.324 0.239 -1.092 -0.777 0.077 -1.463 0.121 0.291 -0.800 -2.908 -0.334 1.504 -0.486 -0.996	3.178 -1.985 2.785 1.755 0.545 -0.734 -0.506 0.276 -2.181 0.279 0.386 -1.130 -4.405 1.855 4.240 -0.482 0.272	3.157 1.403 -1.028 1.318 0.603 0.366 -0.755 -0.449 0.156 -0.521

Station Pair	Bottom Total	6	7	8
049-050 050-051 051-052 052-053 053-054 054-055 055-056 056-057 057-058 058-059	-6.022 0.457 2.877 -4.714 -2.529 3.775 -4.227 1.125 1.565 -0.047	-1.239 0.031 0.906, -1.625 -0.875 1.303 -1.959 1.125 1.565 -0.047	-2.864 0.184 1.390 -3.089 -1.654 2.472 -2.269	-1.918 0.242 0.581
060 - 061 061 - 062 062 - 063 063 - 064 064 - 065 065 - 066 066 - 067 067 - 068 068 - 069 069 - 070 070 - 071 071 - 072 072 - 073 073 - 074 074 - 075 075 - 076 076 - 077	$\begin{array}{c} -4 & .211 \\ 2 & .155 \\ -0 & .520 \\ -0 & .102 \\ -3 & .579 \\ 1 & .917 \\ -0 & .181 \\ 0 & .583 \\ -2 & .719 \\ 0 & .782 \\ 0 & .508 \\ -0 & .039 \\ -1 & .321 \\ 0 & .826 \\ -0 & .908 \\ 1 & .341 \\ 0 & .287 \end{array}$	-1.801 0.503 -0.372 -0.308 -1.132 0.152 -0.102 -0.003 -2.719 0.782 0.361 -0.256 -0.562 0.397 -0.312 0.633 0.287	-1.298 0.877 -0.070 0.037 -1.172 0.768 -0.079 0.587 0.147 0.217 -0.760 0.429 -0.596 0.708	-1.112 0.775 -0.079 0.169 -1.275 0.997

1

Total -10.838

D

Salt Transport 43⁰ 15.0'S

Station Pair	Deep/ Bottom Total	6	7	8	9
001-002 002-003 003-004 004-005 005-006 006-007 007-008 008-009 009-010 010-011 011-012 012-013	101.292 -261.756 254.134 -164.513 -231.203 179.788 -0.688 170.745 -109.857 -7.170	68.442 -261.756 254.134 -56.641 -58.508 39.648 -8.358 35.346 -34.334 5.490	32.850 -38.745 -46.551 51.786 -4.747 36.078 -27.300 1.328	-34.700 -100.029 71.658 12.947 64.987 -8.662 -8.120	-34.426 -26.116 16.696 -0.531 34.333 -39.561 -5.869
014-015 015-016 016-017 017-018 019-020 020-021 021-022 022-023 023-024 024-025 025-026 026-027 027-028 028-029 029-030 030-031 031-032 032-033 032-033 033-034 034-035 035-036 036-037 037-038 038-039 039-040 040-041 041-042 042-043 043-044 044-045 045-046 046-047 047-048 048-049	5.936 13.589 -47.709 24.660 176.132 272.934 -203.054 204.203 81.006 34.504 -114.558 -103.765 34.373 -214.759 26.417 27.780 -88.695 -253.798 16.807 -234.980 -29.422 3.780	5.936 13.589 -47.709 24.660 32.686 71.638 -64.533 28.557 -12.097 -5.431 -24.947 -43.648 16.707 -70.170 12.511 4.257 -21.689 0.041 -36.000 35.609 4.185 -2.330	33.815 42.273 -33.921 33.206 11.252 8.288 -37.934 -26.984 2.671 -50.791 4.214 10.115 -27.775 -100.916 -11.595 52.181 -16.870 -3.316	$110.318 \\ -68.888 \\ 96.669 \\ 60.919 \\ 18.926 \\ -25.467 \\ -17.551 \\ 9.575 \\ -75.703 \\ 9.692 \\ 13.408 \\ -39.221 \\ -152.924 \\ 64.401 \\ 147.190 \\ -16.737 \\ 9.426 \\ \end{array}$	109.631 48.707 -35.713 45.771 20.931 12.721 -26.210 -15.581 5.419 -18.095

Station Pair	Deep/ Bottom Total	6	7	8	
049-050 050-051 051-052 052-053 053-054 054-055 055-056 056-057 057-058 058-059 059-060	-208.895 15.874 99.768 -163.464 -87.697 130.914 -146.575 38.996 54.256 -1.625 40.475	-42.940 1.076 31.382 -56.299 -30.325 45.172 -67.891 38.996 54.256 -1.625 40.475	-99.370 6.395 48.211 -107.165 -57.372 85.741 -78.684	-66.585 8.403 20.176	/
039-080 060-061 061-062 062-063 063-064 064-065 065-066 066-067 067-068 068-069 069-070 070-071 071-072 072-073 073-074 074-075 075-076 076-077 077-078	-146.113 -74.760 -18.044 -3.525 -124.186 66.534 -6.268 20.236 -94.239 27.102 17.614 -1.324 -45.815 28.654 -31.473 46.507 9.926	-62.438 17.449 -12.896 -10.665 -39.247 5.263 -3.544 -0.119 -94.239 27.102 12.527 -8.858 -19.466 13.758 -10.803 21.953 9.926	$ \begin{array}{r} -45.065 \\ 30.426 \\ -2.416 \\ 1.282 \\ -40.689 \\ 26.656 \\ -2.724 \\ 20.354 \\ \\ 5.088 \\ 7.534 \\ -26.349 \\ 14.895 \\ -20.671 \\ 24.554 \end{array} $	-38.610 26.886 -2.731 5.858 -44.251 34.615	

Total -375.511

Heat Transport 43⁰ 15.0'S

Station Pair	Deep/ Bottom Total	6	7	8	9
001-002 002-003 003-004 004-005	802.839 -2075.417	542.818 -2075.417	260.021		1
005-006 006-007 007-008 008-009	2013.921 -1301.956 -1828.863 1422.347 -5.794	2013.921 -449.215 -463.850 314.528 -66.328	-306.515 -368.234 409.727 -37.563	-274.125 -790.326 566.115 102.292	-272.102 -206.453 131.977 -4 195
010-011 011-012 012-013 013-014	1351.058 -869.827 -56.446	280.502 -272.548 43.588	285.576 -216.105 10.519	513.529 -68.445 -64.163	271.450 -312.728 -46.390
014-015 015-016 016-017 017-018 018-019					
019-020 020-021 021-022 022-023 023-024					
024-025 025-026 026-027 027-028 028-029	47.246	47.246			
029-030 030-031 031-032 032-033	-378.454 195.516 1393.207 2158.650	-378.454 195.516 259.483 568.402	267.594 334.354	871.057	866.130 384.837
033-034 034-035 035-036 036-037 037-038	-1606.615 1614.388 639.520 272.486 -906.618	-512.073 266.522 -96.198 -43.145 -198.032	-268.312 262.695 89.043 65.570 -300.213	-544.031 763.466 481.224 149.525 -201.215	-282.199 361.705 165.446 100.537 -207.159
038-039 039-040 040-041 041-042 042-043	-821.997 272.388 -1700.459 209.363 219.851	-346.577 132.753 -557.143 99.392 33 792	-213.586 21.136 -402.063 33.381 80.091	-138.676 75.662 -598.194 76.590 105.968	-123.159 42.837 -143.059
043-044 044-045 045-046 046-047	-702.257 -2007.232 131.017 1859.363	-172.351 0.363 -286.042 282.769	-219.926 -798.991 -91.935 413.178	-309.981 -1208.604 508.994 1163.416	
047-048 048-049	-232.583 29.735	33.314 -18.507	-133.573 -26.283	-132.323 74.525	

Station Pair	Bottom Total	6	7	8	9
		•			-
049-050	-1654.737	-341.085	-787.111	-526.541	
050-051	125.656	8.539	50.648	66.470	
051-052	790.819	249.278	381.897	159.644	
052 - 053	-1296.164	-447.234	-848.930		
	-090.3TO	-240.834	-454.482		
054-055	-1162 630	-539 093	-623 537		1.
056 - 057	309.491	309.491	-020.007		
057-058	430.695	430.695			
058-059	-12.916	-12.916			
059-060	321.575	321.575	,		
060-061	-1157.760	-495.572	- 356.789	-305.398	
061-062	592.057	138.569	240.944	212.544	
062-063	-143.128	-102.411	-19.137	-21.580	
063-064	-28.238	-84.713	10.148	46.327	
064-065	-983.341	-311.601	-322.104	-349.636	
065 - 065	526.16U	41./13	211.012	2/3.436	
060 - 067	-49.713	-20.134	-21.579 161 170		
068-069	-748 361	-748 361	101.170		
069-070	215.251	215.251			
070 - 071	139.785	99.450	40.335		
071-072	-10.704	-70.427	59.723		
072-073	-363.380	-154.505	-208.875		
073-074	227.270	109.189	118.080		
074-075	-249.677	-85.795	-163.882		
075-076	368.917	174.278	194.639		
076-077	79.033	79.033			
0//-0/8					

Total -2984.729

APPENDIX C

GEOSTROPHIC POINT DEPTH CURRENT VELOCITIES Latitude 28° 15.0'S

Station Pair	185/184	184/183	183/182	182/181	181/180
Depth(m)		Units	cm/sec		
$\begin{array}{c} 0\\ 100\\ 250\\ 500\\ 762\\ 1000\\ 2000\\ 2500\\ 3000\\ 3500\\ 4000\\ 5000 \end{array}$	-11.7 0.0	-84.1 -70.0 -34.3 -8.3 0.0 4.7	-20.6 -19.9 -11.3 -1.8 0.0 1.0 13.0	52.8 40.2 14.3 2.8 0.0 0.5 5.0 7.4 8.4 8.3 8.3	$ \begin{array}{r} -19.5 \\ -14.9 \\ -7.4 \\ -2.0 \\ 0.0 \\ -0.03 \\ 1.9 \\ 4.2 \\ 6.3 \\ 8.0 \\ 8.6 \end{array} $
	180/179	179/178	178/177	177/176	
0 100 250 500 762 1000 2000 2500 3000 3500 4000 5000	$\begin{array}{c} -2.3 \\ -5.7 \\ -2.5 \\ -1.0 \\ 0.0 \\ -0.3 \\ -0.6 \\ -1.6 \\ -2.9 \\ -3.0 \\ -2.1 \end{array}$	-17.4 -16.6 -10.5 -2.6 0.0 2.4 5.0 5.4 6.1	5.5 4.9 2.4 1.2 0.0 -1.0 -4.2	-0.2 -0.4 0.3 -0.4 0.0 0.4	

<i>(n</i> –
<u> </u>
<u> </u>
~
5
9
-
~
G
Ч.
~
8
in .
<u> </u>
8
Ó
<u> </u>
5
\geq
റ
9
с.
-
05
9
-H
>
0
2
• 7
L-L
\circ
~
<u>-</u>
~
\sim
- L
-
\sim
-
7
5/1.
2/1
72/1
172/1
172/1
2 172/1
12 172/1
.72 172/1
172 172/1
/172 172/1
3/172 172/1
73/172 172/1
173/172 172/1
173/172 172/1
173/172 172/1
3 173/172 172/1
73 173/172 172/1
173 173/172 172/1
/173 173/172 172/1
+/173 173/172 172/1
4/173 173/172 172/1
74/173 173/172 172/1
174/173 173/172 172/1
174/173 173/172 172/1
4 174/173 173/172 172/1
74 174/173 173/172 172/1
[74 174/173 173/172 172/1
174 174/173 173/172 172/1
/174 174/173 173/172 172/1
5/174 174/173 173/172 172/1
75/174 174/173 173/172 172/1
175/174 174/173 173/172 172/1
175/174 174/173 173/172 172/1
175/174 174/173 173/172 172/1
5 175/174 174/173 173/172 172/1
75 175/174 174/173 173/172 172/17
175 175/174 174/173 173/172 172/1
/175 175/174 174/173 173/172 172/1
5/175 175/174 174/173 173/172 172/1
76/175 175/174 174/173 173/172 172/1

167/166		-1.05 -1.18 -0.5 0.51	157/156		-11+.9 -5.5 -3.1 0.0
168/167		18.1 14.2 1.0 0.0	158/157		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
169/168		1 8 F 6 0 2 3 4 F	159/158	,	+ 5 2 2 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
170/169			160/159		
171/170	sm/sec	+ +	161/160	:m/sec	223290000000000000000000000000000000000
172/171	Units o		162/161	Units o	0 t l t 4 0 0 1 0 4 t 0 0 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1
173/172		- 1. 0.2 1. 0.0 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	163/162		
174/173			164/163		1133 1037 1037 1037 1037 1037 1037 1037
175/174			165/164		ми ми ми ми ми ми ми ми ми ми ми ми ми м
176/175		6.5 .1 .1 .0 .1 .0 .1 .0 .1 .0 .1 .0 .1 .0 .1 .0 .1 .0 .1 .0 .1 .0 .1 .0 .1 .0 .1 .0 .1 .0 .1 .0 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1	166/165		- 10.5 - 11.1 - 11.1 2.8 2.8
	Depth (m)	100 250 500 1000 1000 2500 2500 2500 250		Depth (m)	100 250 500 1000 2500 1000 2500 35000 4000 5000

G
<u> </u>
-
~
-
_
-
• •
-
5
_
<u> </u>
5
ω
_
Ē
• •
œ
_
<u> </u>
2.1
<u>б</u>
+
<u> </u>
-
σ
+
1
<u>_</u>
>
0
10
<u> </u>
Ч
\circ
2
ш <u>у</u>
-
>
ഹ
Ч.
Ę.
51
151
/151
1151
2/151
52/151
152/151
152/151
152/151
2 152/151
52 152/151
152 152/151
152 152/151
/152 152/151
3/152 152/151
53/152 152/151
153/152 152/151
153/152 152/151
153/152 152/151
3 153/152 152/151
53 153/152 152/151
53 153/152 152/151
153 153/152 152/151
/153 153/152 152/151
+/153 153/152 152/151
54/153 153/152 152/151
54/153 153/152 152/151
154/153 153/152 152/151
154/153 153/152 152/151
+ 154/153 153/152 152/151
54 154/153 153/152 152/151
54 154/153 153/152 152/151
154 154/153 153/152 152/151
/154 154/153 153/152 152/151
5/154 154/153 153/152 152/151
5/154 154/153 153/152 152/151
55/154 154/153 153/152 152/151
155/154 154/153 153/152 152/151
155/154 154/153 153/152 152/151
5 155/154 154/153 153/152 152/151
55 155/154 154/153 153/152 152/151
55 155/154 154/153 153/152 152/151
155 155/154 154/153 153/152 152/151
/155 155/154 154/153 153/152 152/151
3/155 155/154 154/153 153/152 152/151
<pre>56/155 155/154 154/153 153/152 152/151</pre>
.56/155 155/154 154/153 153/152 152/151

	2 + 0 + 0 0 7 2 8 + 0 0 - 7 2 8 + 0 0 - 0 0 - 0 0 - 0 - 0 0 - 0 - 0 - 0	137/136		мила мила мила мила мила мила мила мила
	20.9 14.0 1.4.0 1.4.0 1.4.0 1.0.0 1.0.0 1.0.0 1.0.1	138/137		, , , , , , , , , , , , , , , , , , ,
		139/138	,	+ 0 2 0 2 3 3 0 + 0 - 0 0 0 0 0 0 + 0 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
		140/139	cm/sec	
cm/sec	- 11. 2.9 2.9 2.3 2.9 2.3 2.3 2.3 2.1 2.1 2.1 2.1 2.2 1.1 2.2 2.3	141/140		ь+ м / / л м о 0 2 5 4 0 005 5 7 7 0 0 0 2 5 4 0 1 1 1 1 1 1 0 0 0 5 7 4 0 0 0 5 7 4 0 0 0 5 7 4 0 0 0 5 7 4 0 0 0 5 7 4 0 0 5 7 4 0 0 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7
Units o	.00 3 3 3 3 3 3 3 4 4 5 5 5 5 5 5 5 5 5 5 5	142/141	Units o	н 700 7 700 00 20 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0
		143/142		
		144/143		+ 8 5 0 2 0 0 2 4 2
	114.8 5.8 0.0 0.0	145/144		00+++0+0000000000000000000000000000000
	лт. 1 1 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2	146/145		
Depth (m)	0 100 550 500 1000 2500 25000 3500 4000 5000		Depth (m)	100 250 500 2500 2500 25000 35000 35000 4000 5000

28/127 127/1			-0.4	18/117/11/11/11	-4.0 -4.7 -3.3.3 -3.3.3 -0.7 -0.7 -0.7 -0.7 -1.1
129/128 1		H 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	· · · · · · · · · · · · · · · · · · ·	1 811/911 `	, , , , , , , , , , , , , , , , , , ,
130/129		××××××××××××××××××××××××××××××××××××××	0.7	120/119	
131/130	cm/sec	0.10 0.00 1.0 0.0 0.0 0.0 0.0 0.0 0 0.0 0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		121/120	888622 111100000000000000000000000000000000
132/131	Units c	20000000000000000000000000000000000000	2 . 8	122/121	222 2000 2000 2000 2000 2000 2000 2000
133/132		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		123/122	+ M M + M O O M M M M M M M M M M M M M
134/133		× 500 30 40 20 30 30 30 30 30 30 30 30 30 30 30 30 30		124/123	+ 2 1 0 1 3 0 0 0 1 3 2
135/134		E 7 3 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0		125/124	
136/135		8 2 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		126/125	80000000000000000000000000000000000000
	Depth (m)	100 250 500 762 1000 2000	2000 3000 4000 5000		100 100 5500 5000 1000 25000 35000 4000 5000 5000

116/115 115/114 114/113 113/112 112/111 111/110 110/109 109/108 108/107 107/106

		н о о о о о о о о о о о о о о о о о о о	061/060		
		ч 1 - 0 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5	098/097		-99.3 143.3 -206.1 -61.0 -61.0 -61.0 -61.0 -61.0 -12.5 -120.9
		72th0327t	860/660	,	2001201722 00.12017227 00.12017227
		8 6 8 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	100/039		л+00000 1+000000 1 - 1 1
	m/sec	1.6 0.9 0.6 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	001/101	m/sec	
	Units c		101/201	Units c	3.0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0
		3. 2 - 1. 6 0. 0 0. 0 0. 1 0. 1	103/102		+ 22 00000000000000000000000000000000000
		0.01 0.01 1 0.00 1 1	104/103		ччооотитт»
			105/104		++
	∝ α α α α α α α α α α α α α α α α α α α	106/105			
	Depth (m)	100 250 500 2500 2500 2500 3500 4000 5000 5000		Depth (m)	100 250 2500 2500 2500 2500 1000 1000 10

	096/095	095/094	094/093	093/092	092/09T	060/T60	080/060	089/088	088/087	087/086
Depth (m)					Units o	cm/sec				
0	-1.2	2.3	0.6	10.3	15. 2	н. 0-	-11.5	-12.3	0.0	1.4
100	-0.6	2.1	-1.9	13.8	8.2	-1.7	-5.6	-13.9	-23.4	
250	0.2	0.7	-5.7	15.1	3.8	-1.5	-2.0	-11.6	-27.2	
500	0.0	0.6	-2.2	5.3	1.1	-0.5	-1.0	-3.4	-10.1	
762	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
1000	0.2	+0-	1.1	-2.6	-1.5	1.4	0.6	3.8		
2000	-0.1	-0.6	2.6	-4.0	-5.8	5.3	1.9	9.1		
2500	-0.1	-0.7	2.9	-4.1	-6.6	6.7	1.6	7.8		
3000	-0.1	-0.7	3.2	-4.6	-6.7	7.5	1.6	6.5		
3500	0.1	-0.9	3.2	-4.6	-5.9	7.2	2.5			
4000							3.8 .8			
5000										

.

Point Depth Geostrophic Velocities Latitude 43° 15.0'S

Station Pair	001/002	002/0	03 003/	004 00	4/005 (005/006
Depth(m)		Un	its cm/s	ec		
0 100 250 500 1000 1203 2000 2500 3000 3500 4000 5000	8.1 11.5	-14. -23. -29. -27. -7. 0.	5 -14 7 -14 7 -10 3 -7 5 -2 0 0 3 4 4	.3 .1 .9 .8 .5 .0 .1 .6 .4	16.6 16.4 14.8 12.9 4.3 0.0 -7.2 -8.4	-1.0 -1.8 -3.0 -3.9 -1.5 0.0 2.9 3.7
	006/007 0	07/008	008/009	009/010	010/01	1 011/012
0 100 250 500 1000 1203 2000 2000 2500 3000 3500 4000 5000	-0.4 0.3 0.5 0.7 0.2 0.0 -0.9 -1.1 -1.2 -1.0 -0.9	1.9 1.5 1.1 0.8 0.3 0.0 -0.9 -1.2 -1.4 -1.7 -1.8	-0.7 -0.9 -0.6 -0.9 -0.3 0.0 1.0 1.1 1.1 1.0 1.0	-1.8 -0.9 -0.6 -0.2 0.0 -0.3 -0.2 -0.1 0.0 0.2	-3.6 -3.9 -3.5 -2.1 -0.3 0.0 0.8 1.1 1.1 1.0 0.9	3.2 4.0 3.7 2.7 0.6 0.0 -0.9 -0.8 -0.8 -0.8 -0.8

021/022			031/032	
020/021		0.0 .5	030/031	, , , , , , , , , , , , , , , , , , ,
019/020		- 0 - 1 - +	029/030	н 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
018/010		0 0 0 0 0 0	028/029	- 0. 7 - 0. 8 - 0. 3 1. 0
017/018	Cec	- 1 - 1 - 1 - 1	027/028	0007738 0007738 0007738
016/017	.ts cm/s	1.0 0.6 0.2	026/027	00200 001300 001300
015/016	inu	- 3.9 - 1.7 - 0.5	025/026	
014/015		0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	024/025	0 - 0 - 0 - 2 - 0 - 2 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0
013/014		0011111	023/024	- 00 - 4 - 00 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4
012/013		0.0 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	022/023	6.10
	Depth (m)	0 100 500 1203 1203 2500 25000 4000 4000 5000		100 250 2500 2500 2500 2500 33000 25000 44000 5000

733/040 040/047 T 47/047		-1.4 1.7 -0.6	-0.8 0.8 -0.3	-0.5 0.6 -0.2	-0.3 0.4 -0.3	0.1 -0.1 -0.1	0.0 0.0 0.0	0.6 -1.0 0.3	0.2 -1.0 0.2	0.0 -1.0 0.1	0.1 -1.0 0.0	0.2 -1.1 0.1	0.2 -1.2 0.2)49/050 050/051 051/052	·0.1 1.0 -1.9	0.4 0.4 -0.7	0.4 0.2 0.4	0.3 0.2 0.3	0.2 0.1 -0.1	0.0 0.0 0.0	-0.9 0.0 0.7	-1.0 0.0 0.6	-1.2 0.1 0.6	-1.2 , 0.1 0.6	-1.2 0.2 0.7	
030/033		1.0	0.9	0.8	0.7	0.3	0.0	-0.6	-0.7	-0.6	-0.5	-0.5		048/049 (1.1	0.8	0.4	0.3	0.1	0.0	-0.1	-0.1	-0.1	0.0	0.2	
U3//U38	с a	0.5	0.3	0.1	0.1	0.0	0.0	-0.2	-0.4	-0.6	-0.8	-0.8		047/048	-0.2	-0.3	0.0	0.0	-0.1	0.0	0.2	-0.1	-0.2	-0.3	-0.3	
U30/U3/	ts cm/se	-0.8	0.3	0.4	0.3	0.0	0.0	-0.1	-0.1	0.0	0.2	0.4		046/047	-1.8	-1.4	-0.7	-0.6	-0.1	0.0	0.5	0.6	0.7	0.8	1.0	
U 3 5 / U 3 6	uni	1.2	0.3	0.0	0.0	0.1	0.0	-0.5	-0.2	0.2	0.5	0.8		045/046	0.6	1.0	0.8	0.7	0.2	0.0	-0.7	-0.8	0.0	0.1	0.2	0.4
U 34 / U 35		0.3	0.5	0.5	0.4	0.2	0.0	0.2	4.0	0.8	1.2	1.4		044/045	0.4	-0.3	-0.3	-0.3	-0.1	0.0	0.1	-0.2	-1.4	-1.6	-1.6	-1.7
U 33/U 34		1.7	1.4	1.0	0.7	0.4	0.0	-0.8	-1.0	-1.0	-1.0	-1.1		043/044	-0.2	1.0	6 . 0	0.7	0.3	0.0	+.0-	+-0-	-0.4	-0.4	-0.5	-0.3
U 32/U33		-3.1	-2.7	-2.1	-1.6	-0.9	0.0	1.7	2.3	2.5	2.7	3.2		042/043	1.2	-0.1	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.2	0.2	0.1
	Depth (m)	0	100	250	500	1000	1203	2000	2500	3000	3500	4000	5000		0	100	250	500	1000	1203	2000	2500	3000	3500	4000	5000
2																										

06																										
5																										
90																										
61																										
0/																										
00																										
0																										
0																										
06																										
6																										
5.0																										
0																										
59																										
0/																										
8																										
05																										
8																										
0																										
~																										
57																										
0																										
57																										
Ő																										
6																										
05																										
G																										
5																										
X																										
55																										
0																										
55																										
õ																										
÷																										
05																										
-+																										
151																										
/0																										
53																										
0																										
33																										
0																										
2/																										
05																										
-																										

		071/072	-1.0
	7+180037000 111100000000	120/020	-2.5
	000000000000000000000000000000000000000	069/070	-1.4
	001324	068/069	2.0
cm/sec		067/068	-0.8
Units	0.000.000.000.0000.00000000000000000000	066/067	-0.1
	9.0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	065/066	-1.0
		064/065	1.2
		063/064	0.2
		062/063	1.7
Depth (m)	100 250 2500 1203 3500 1203 1203 1203 1203 1203 1203 1200 1203 1203		0

0	1.7	0.2	1.2	-1.0	-0.1	-0.8	2.0	-1.4	-2.5	-1.0
100	0.8	0.8	0.7	0.0	-0.4	-0.2	1.2	<u>-</u> 0.8	-2.0	0.2
250	0.7	0.7	0.3	0.7	-0.3	0.7	0.3	-0.2	-1.0	-0.2
500	0.6	0.6	0.1	0.6	-0.2	0.9	0.0	-0.2	-0.5	-0.1
1000	0.2	0.3	0.3	0.0	-0.1	1.7	-1.4	-0.1	-0.1	0.0
1203	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2000	-0.2	-0.3	-0.6	-0.1	0.0	0.0	-1.0	0.5	0.2	-0.6
2500	-0.2	-0.2	-0.7	0.2	-0.1	0.0	-1.3	4.0	0.3	0.0
3000	-0.1	0.0	-0.8	4.0	-0.1	0.2			0.3	0.3
3500	0.0	4. 0	-1.0	0.7	0.0	0.6				
4000			-1.6	0.9					1	
5000										

.

072/073 073/074 074/075 075/076 076/077 077/078

	-16.3 -2.7 -1.2 -1.2 -2.0 -0.0
m/sec	
Units c	8 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	3.7 2.7 1.8 0.6 1.1 1.0 .3
Depth (m)	100 100 250 2500 1203 3500 3500 44000 5000

APPENDIX D

	Mass,	END Salt	POINT and H	'DATA leat T	'ranspoi	rts	
28 ⁰ 15'S West End							
Cross Section (Beach to Sta	al Area tion 185)	=	1,900	,000	m ²		
Cross Section (Station 185-	al Area 184)	Ξ	2,707	,000	m ²		
Mass Transpor (Station 185-	t 184)	= -	.0.204	x 10	12 gm/s	sec	
Salt Transpor (Station 185-	t 184)	= -	.7.242	2 x 10	12 °/oc	o/sec	
Heat Transpor (Station 185-	t 184)	= -5	59.782	2 x 10	12 cal/	/sec	
Mass,Salt,Hea (Beach-S185)	t = Mas (Sl	s,Sal 85-Sl	t,Hea 84)	^{it} x	Area Area	(Beach-S (S185-S1	185) 84)
Mass Transpor (Beach-S185)	$\leq -0.$	143 x	× 10 ¹²	gm/s	ec		
Salt Transpor (Beach-S185)	^t <u><</u> - 5.	083 x	× 10 ¹²	°/00	/sec		
Heat Transpor (Beach-S185)	^{∙t} <u><</u> -41.	960 x	: 10 ¹²	cal/	sec		
East End							
Cross Section (S86-Beach)	al Area	= 30	00,000	m ²			
Cross Section (S87-S86)	al Area	= 55	59,000	m ²			
Mass Transpor (S087-S086)	rt	= .0	002 x	10 ¹²	gm/sec		
Salt Transpor (S087-S086)	't	= .0)69 x	10 ¹²	⁰ /oo/se	ec	
Heat Transpor	rt	= .5	578 x	10 ¹²	cal/sec	2	

Area (S86-Beach) Mass,Salt,Heat Mass, Salt, Heat = x (S86-Beach) (S87-S86) Area (S87-S86) Mass Transport $.001 \times 10^{12} \text{ gm/sec}$ < (S86-Beach) Salt Transport .037 x 10¹² °/oo/sec < (S86-Beach) \leq .310 x 10¹² cal/sec Heat Transport ٢ (S86-Beach) 43⁰15'S West End Cross Sectional Area = 3,000,000 m² (Beach-S001) Cross Sectional Area $3,610,000 \text{ m}^2$ = (S001-S002) Mass Transport $0.248 \times 10^{12} \text{ gm/sec}$ = (S001-S002) Salt Transport 8.772 x 10¹² °/00/sec = (S001-S002) Heat Transport = 71.664×10^{12} cal/sec (S001-S002) Mass, Salt, Heat Mass,Salt,Heat Area (Beach-S001) = x (Beach-S001) (S001-S002) Area (S001-S002) Mass Transport 0.206 x 10¹² gm/sec < (Beach-S001) Salt Transport $7.290 \times 10^{12} \circ /00/sec$ < (Beach-S001) Heat Transport < 59.554 x 10¹² cal/sec (Beach-S001) East End Cross Sectional Area = 7,400,000 m² (S078-Beach) Cross Sectional Area $5,750,000 \text{ m}^2$ = (S077 - S078)

Mass Transport $= 0.021 \times 10^{12} \text{ gm/sec}$ (S077 - S078)Salt Transport $0.687 \times 10^{12} \circ /00/sec$ Ξ (S077 - S078)Heat Transport 6.026×10^{12} cal/sec Ξ (S077 - S078)x Area (S078-Beach) Mass, Salt, Heat Mass, Salt, Heat = Area (S077-S078) (S077 - S078)(S87-Beach) $0.027 \times 10^{12} \text{ gm/sec}$ Mass Transport < (S078-Beach) Salt Transport 0.884 x 10¹² °/00/sec < (S078-Beach) Heat Transport 7.755 x 10^{12} cal/sec < (S078-Beach)

The end section values are assumed suspect in that the conditions of the closest station pair to the beach are assumed to continue to the shore. The transports are believed to be between 50% and 90% of the calculated values due to the unknown decrease in velocity toward the shore line which was not taken into account. These values have not been included in the overall transoceanic calculations.

BIBLIOGRAPHY

- Angstrom, A. K., "Evaporation and precipitation at various latitudes and the horizontal eddy convectivity of the atmosphere," <u>Arkiv for Matematik</u>, Astronomi och Fysik, v. 20, 12 pp., 1925.
- 2. Baker, T. L., <u>Mass, Salt and Heat Transport Across Seven</u> Latitude Circles in the North Atlantic Ocean: A Description of the General Circulation Based on Geostrophic Calculations from International Geophysical Year and Adjacent Data, Master's Thesis, Naval Postgraduate School, Monterey, 1978.
- Bjerknes, V. F. K., J. Bjerknes, H. S. Solberg and T. Bergeron, Physicalische Hydrodynamik. Julius Springer, Berlin, 797 pp., 1933.
- 4. Bryan, K., "Measurements of Meridional Heat Transport by Ocean Currents," J. Geophys. Res., v. <u>67</u>, no. 9, p. 3403-3414, 1962.
- 5. Budyko, M. I., <u>The Heat Balance of the Earth's Surface</u>, translated by N. A. Stepanova, 1958, U. S. Department of Commerce, Washington, D. C., 259 pp., 1956.
- 6. Burns, D. A., "The latitudinal distribution and significance of calcareous nannofossils in the bottom sediments of the South-West Pacific Ocean (Lat. 15-55°S) around New Zealand," <u>Oceanography of the South Pacific 1972</u>, New Zealand National Commission for UNESCO, Wellington, New Zealand, p. 221-228, 1972.
- 7. Coker, R. E., <u>This Great and Wide Sea</u>, p. 168, Harper and Brothers, 1962.
- Deacon, G. E. R., "The Hydrology of the Southern Ocean," Discovery Report, v. 15, p. 1-123, 1937.
- 9. Deacon, G. E. R., "The Southern Ocean," <u>The Sea: Ideas</u> and Observations on Progress in the Study of the Seas, v. 2, p. 281-296, Wiley-Interscience, 1963.
- 10. Defant, A., "Die absolute Topographie des physisikalischen Meeresniveaus und der Druckflachen, sowie die Wasserbewegungen im Atlantischen Ozean. Wiss. Ergebn. D. Deutschen Atlantischen Exped. auf d. Forschungs - u. Vermessungsschiff 'Meteor', 1925-1927," v. VI (2 Teil., 5 Leif.), Walter De Gruyter and Co., 1941.

- 11. Defant, A., Physical Oceanography, v. 1, Pergamon Press, 1961.
- 12. Dietrich, G., "Aufbau and Bewegung von Golfstrom und Agulhasstrom," Naturwissenschaften no. 15, 1936.
- 13. Dietrich, G., <u>General Oceanography</u>, An Introduction, p. 171, Wiley, 1963.
- 14. Ferrel, W., <u>A Popular Treatise on the Winds</u>, p. 163-164, Wiley, 1890.
- 15. Fomin, L. M., The Dynamic Method in Oceanography, p. 117-148, Elsevier Publishing Co., 1964.
- 16. Gilmour, A. E., "Temperature variations in the Tonga-Kermadec Trench," <u>Oceanography of the South Pacific 1972</u>, New Zealand National Commission for UNESCO, Wellington, New Zealand, p. 25-34, 1972.
- 17. Greeson, T. D., <u>Mass, Salt and Heat Transport across 40^ON</u> Latitude in the Atlantic Ocean Based on IGY Data and Dynamic Height Calculations, Master's Thesis, Naval Postgraduate School, Monterey, 1974.
- Gunther, E. R., "A report on oceanographic investigations in the Peru Current," <u>Discovery Report</u>, <u>14</u>, p. 109-278, 1936.
- 19. Harmon, B. V., "Western Boundary Currents in the South Pacific," <u>Scientific Exploration of the South Pacific</u>, National Academy of Sciences, Washington, D. C., p. 50-59, 1970.
- 20. Helland-Hansen, B. and Sandström, J. W., "Uber die Berechnung von Meereströmungen," Report on Norwegian Fishing and Marine Investigations, v. 2, no. 4, 1903.
- 21. Hidaka, K., "Depth of motionless layer as inferred from the distribution of salinity in the ocean," <u>Trans. Am</u>. Geophys. Union, v. 30, no. 3, 1940.
- 22. Iselin, C. O'D., <u>A Study of the Circulation of the Western</u> <u>North Atlantic</u>, Pap. Phys. Ocean. and Meteor., <u>4</u>, (4), 101 pp.
- 23. Jacobsen, J. P., "Contribution to the hydrography of the Atlantic," <u>Medd. Komm. Havundersgelser</u>, Ser. Hydrografi, v. 2, 1916.
- 24. Jung, G. H., "Note on meridional transport of energy by the oceans," J. Marine Res., v. 11, no. 2, p. 139-146, 1952.

- 25. Jung, G. H., "Heat transport in the Atlantic Ocean," Ref. 53-34T, Dept. of Oceanography, A. and M. College of Texas, College Station, 1955.
- 26. Knox, G. A., "Biological Oceanography of the South Pacific," <u>Scientific Exploration of the South Pacific</u>, National Academy of Sciences, Washington, D. C., p. 155-182, 1970.
- 27. Maury, M. F., <u>The Physical Geography of the Sea</u>, 6th ed., Harper, 1856.
- Mason, J. R., Master's Thesis in progress, Naval Postgraduate School, Monterey, 1978.
- 29. Muromtsev, A. M., The Principal Hydrological Features of the Pacific Ocean, Office of Technical Services, U. S. Dept. of Commerce, Washington, D. C., 417 pp., 1963.
- 30. Neumann, G. and Pierson, W. J., Jr., Principles of Physical Oceanography, Prentice-Hall, p. 244-247, 1966.
- 31. Parr, A., "Analysis of current profiles by a study of pycnomeric distortion and identifying properties," Journal of Marine Research, v. 4, 1938.
- 32. Perry, A. H. and Walker, J. M., <u>The Ocean-Atmosphere</u> System, Longman, 160 pp., 1977.
- 33. Radzikjovskaya, M. A., "Volumes of main water masses in the South Pacific," <u>Oceanology</u>, v. <u>5</u>, no. 5, p. 29-32, 1965.
- 34. Reed, R. K., "Geopotential topography of deep levels in the Pacific Ocean," Journal of Oceanographic Society of Japan, v. 26, no. 6, p. 331-339, 1970.
- 35. Reid, J. L., "On the geostrophic flow at the surface of the Pacific Ocean with respect to the 1,000-decibar surface," Tellus, 13, p. 489-502, 1961.
- 36. Reid, J. L, Stommel, H., Stroup, E. D., and Warren, B. A., "Detection of a deep boundary current in the western South Pacific," Nature, v. 217, p. 937, 1968.
- 37. Reid, J. L., "Transpacific hydrographic sections at Lats. 43°S and 28°S: the SCORPIO Expedition-III. Upper water and a note on southward flow at mid-depth," <u>Deep-Sea</u> Research, v. 20, no. 1, p. 39-50, 1973.
- 38. Rossby, C. G., "Dynamics of steady ocean currents in the light of experimental fluid dynamics," <u>Papers Physical</u> Oceanography and Meteorology, v. 5, no. 1, 1936.

- 39. Scully-Power, P. D., "Oceanography of the Coral Sea: the Winter Regime," <u>Oceanography of the South Pacific 1972</u>, New Zealand National Commission for UNESCO, Wellington, New Zealand, p. 129-138, 1972.
- 40. Sellers, W. D., Physical Climatology, University of Chicago Press, 1965.
- 41. Stepanov, V. N., "Basic types of water structure in seas and oceans," <u>Oceanology</u>, v. <u>5</u>, no. 5, p. 21-28, 1965.
- 42. Stanton, B. R., "Circulation along the eastern boundary of the Tasman Sea," <u>Oceanography of the South Pacific</u> <u>1972</u>, New Zealand National Commission for UNESCO, Wellington, New Zealand, p. 141-148, 1972.
- 43. Stommel, H., "On the determination of the depth of no meridional motion," <u>Deep-Sea Research</u>, v. <u>3</u>, p. 273-278, 1956.
- 44. Stommel, H., "The Circulation of the Abyss," <u>Scientific</u> American, July 1958.
- 45. Stommel, H. and Schott, F., "The Beta spiral and the determination of the absolute velocity field from hydrographic station data," <u>Deep-Sea Research</u>, v. <u>24</u>, p. 325-329, 1977.
- 46. Sverdrup, H. U., M. W. Johnson and R. H. Fleming, The Oceans, Prentice-Hall, New York, 1087 pp., 1942.
- 47. Sverdrup, H. U., <u>Oceanography</u>, <u>Handbuch</u> der Physik, Springer Verlag, Berlin, 1957.
- 48. Vander Haar, T. H. and Oort, A., "New estimates of energy transport by northern hemisphere oceans," Journal of Physical Oceanography, v. 3, no. 2, p. 169-172, 1973.
- 49. Von Arx, W. S., <u>An Introduction to Physical Oceanography</u>, Addison-Wesley, p. 245, 1962.
- 50. Warren, B. A., "Transpacific hydrographic section at Lats. 43°S and 28°S: the SCORPIO Expedition-II. Deep water," Deep-Sea Research, v. 20, no. 1, p. 9-38, 1973.
- 51. Woods Hole Oceanographic Institution, Physical and Chemical Data from the SCORPIO Expedition in the South Pacific Ocean aboard USNS ELTANIN, Cruises 28 and 29, 12 March-31 July 1967, WHOI Reference 69-56.
- 52. Wyrtki, K., "Oceanography of the eastern Equatorial Pacific," Oceanogr. Mar. Biol., v. 4, p. 33-68, 1966.

INITIAL DISTRIBUTION LIST

		No.	Copies
1.	Defense Documentation Center Cameron Station Alexandria, Virginia 22314		2
2.	Library, Code 0142 Naval Postgraduate School Monterey, California 93940		2
3.	Dr. Glenn H. Jung, Code 68Jg Department of Oceanography Naval Postgraduate School Monterey, California 93940		3
4.	Lieutenant L. Sherfesee III, USN 1105 South Street Portsmouth, New Hampshire 03801		3
5.	Lieutenant T. L. Baker, USN 12318 Overcup Houston, Texas 77024		1
6.	Commander Naval Oceanography Command National Space Technology Laboratories Bay St. Louis, Mississippi 39520		1
7.	Dean of Research, Code 012 Naval Postgraduate School Monterey, California 93940		l
8.	Department of Oceanography, Code 68 Naval Postgraduate School Monterey, California 93940		3
9.	Department of Oceanography Library University of Washington Seattle, Washington 98105		l
10.	Department of Oceanography Library Oregon State University Corvallis, Oregon 97331		l
11.	Director of Defense Research and Engineerin ATTN: Office, Asst. Director (Research) Office of the Secretary of Defense Washington, D. C. 20301	g	l

12. Dr. Kern Kenyon A-030 University of California Scripps Institution of Oceanography La Jolla, California 92093

1

1

1

1

1

1

1

1

1

1

- Lieutenant J. R. Mason, USN 104 Moran Circle Monterey, California 93940
- 14. NODC/NOAA Rockville, Maryland 20882
- 15. NORDA Bay St. Louis, Mississippi 39520
- 16. Officer in Charge NWSED, Box 6357 APO San Francisco 96610
- 17. Dr. Abraham H. Oort Geophysical Fluid Dynamics Lab/NOAA Princeton University P. 0. Box 308 Princeton, New Jersey 08540
- 18. Prof. J. L. Reid, Jr. A-030 University of California Scripps Institution of Oceanography La Jolla, California 92093
- 19. SIO Library University of California, San Diego P. O. Box 2367 La Jolla, California 92037
- 20. Dr. Robert E. Stevenson Scientific Liaison Office, ONR Scripps Institution of Oceanography La Jolla, California 92037
- 21. Dr. J. J. von Schwind, Code 68Vs 1 Department of Oceanography Naval Postgraduate School Monterey, California 93940

