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General expressions for the unpolarized differential cross section and for various polarization observables
in coherent pseudoscalar meson photo- and electroproduction on a deuteron target have been obtained in the
one-photon-exchange approximation. The spin structure of the matrix element is explicitly derived in terms of
structure functions. The correspondence with the helicity amplitudes is given. The polarization effects have
been investigated for the case of a longitudinally polarized electron beam and a vector or tensor polarized
deuteron target. The polarization (vector or tensor) of the scattered deuteron for the case of an unpolarized
or a longitudinally polarized electron beam is also considered. In the case of the photoproduction reaction, we
consider a linearly, circularly, or elliptically polarized photon beam. Numerical estimations have been done for
the unpolarized differential cross section and for some polarization observables.
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I. INTRODUCTION

The complete characterization of meson photo- and
electroproduction on nuclei requires measurements on the
bound neutrons from light nuclei, which is best investigated
in quasifree production. The well known nuclear structure
of the deuteron makes it the most suitable nuclear target,
in comparison to other nuclei. Experiments with deuteron
targets have been done and are being performed. Motivations
for the study of meson photoproduction can be found in the
review [1]. Most importantly, photo- and electroproduction on
the nucleon allow one to study nucleon resonances and access
their properties. Precise measurements of the mass, decay
width, spin, and couplings are essential for understanding the
nature of the strong interaction, through the comparison of
hadron models in the nonperturbative regime of QCD. Light
nuclear targets, in particular the deuteron, allow disentangling
the isospin structure of the electromagnetic excitation of the
nucleon.

Besides experiments on the electromagnetic production of
isovector mesons (π mesons), a series of precise measure-
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ments of breakup and coherent isoscalar meson (η meson)
photoproduction from a deuteron target have been performed
during the last few years at MAMI (Mainz), Elsa (Bonn),
GRAAL (Grenoble), and Jefferson Lab (USA). The inclu-
sive cross section of the reactions d (γ , η)X are presented
in Refs. [2,3]. The exclusive reaction with detection of the
recoil nucleons was also investigated for the deuteron target
[3–5]. The data on coherent η-meson photoproduction off the
deuteron are given in Refs. [4,6].

The combination of 4π detectors (a capability recently
acquired in Bonn and Mainz) with linearly and circularly
polarized photon beams as well as polarized targets will
provide the measurement of various polarization observables.
These new observables give us additional information on
the resonance properties and on the details of the reaction
mechanism.

In the last decade the progress in the investigation of meson
production by electromagnetic probes has been substantial,
bringing progress in the understanding of nucleon resonance
properties.

The differential cross sections of coherent and incoherent
π0-meson photoproduction from reactions on the deuteron
have been measured at MAMI (Mainz) in the energy range
140 < Eγ < 306 MeV [7]. Earlier, the total and differential
cross sections covering the full angular range were obtained
for coherent and incoherent single π0-meson photoproduc-
tion from the deuteron in a second resonance region (200 <

Eγ < 792 MeV) at Mainz [8]. It was found that final-state
interaction effects for the incoherent process are much more
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important than for coherent reaction. In the latter case these
effects are not very large, and different models disagree about
the main final-state interaction mechanism. Therefore, no final
conclusion about these mechanisms can be reached. While
the NN final state interaction (FSI) is implicitly taken into
account in the deuteron wave function, the πd FSI is neglected
in this work as well as in the existing literature. This is
corroborated by previous estimations [9].

The data on pion production in coherent electron-deuteron
collisions are scarce. The experimental study of this reaction
is now possible, at Mainz and JLab, due to the high duty cycle
of the electron machines. Threshold π0-meson electroproduc-
tion on protons and deuterons has been investigated by the
A1 Collaboration at Mainz [10,11] at small four-momentum
squared transferred by the virtual photon, −k2 � 0.1 GeV2.
The first experimental results for the coherent π0-meson
electroproduction off the deuteron at large |k2|, 1.1 < −k2 <

1.8 GeV2, from the threshold to 200 MeV excitation energy
in the dπ0 system, are reported in Ref. [12]. The data were
collected during the t20 experiment, the primary aim of which
was the measurement of the deuteron tensor polarization in
elastic electron-deuteron scattering [13].

A general theoretical study of pion electroproduction on
deuterons was first developed in Ref. [14] for the unpolarized
case. The reaction e + d → e + d + π0 involves the study of
the deuteron structure and of the reaction mechanism, and
requires knowledge of the neutron and proton elementary
amplitudes, γ ∗ + n, p → n, p + π0.

The experimental investigation of the nucleon resonance
properties by means of the meson production processes can
be used to verify and constrain the models of the hadron
structure. The production of neutral mesons by real or virtual
photons is of special interest since, in these reactions, the
background contributions are suppressed due to the weak
coupling of the photon with neutral mesons.

In this work, we follow the formalism of Ref. [14]. We fo-
cus on the polarization observables, giving the general expres-
sions for the case of a longitudinally polarized electron beam
and vector or tensor polarized deuteron target (or scattered
deuteron), in the one-photon exchange approximation and
neglecting the lepton mass. In the case of the photoproduction
reaction, we consider a linearly, circularly, or elliptically
polarized photon beam. As an example, numerical application
and illustration of the observables is shown, on the basis of the
impulse approximation and the elementary model previously
developed in Ref. [14].

Not only high intensity polarized electron beams are avail-
able, and vector and tensor polarized targets are currently
used, but also the principle of measuring the vector and tensor
deuteron polarization in the GeV range from backward elastic
scattering has been proved to be feasible [15].

II. MATRIX ELEMENT AND DIFFERENTIAL
CROSS SECTION

The general structure of the differential cross section for
the reaction

e−(k1) + d (p1) → e−(k2) + d (p2) + π0(q) (1)

(the four-momenta of the corresponding particles are indi-
cated in the brackets) can be written in the frame of the one-
photon-exchange mechanism. The formalism in this section is
based on the most general symmetry properties of the hadron
electromagnetic interaction, such as the gauge invariance (the
conservation of the hadronic and leptonic electromagnetic
currents) and P invariance (the invariance with respect to
the space reflections) and does not depend on the deuteron
structure and on the details of the reaction mechanism.

In the one-photon-exchange approximation, the matrix ele-
ment for the process of coherent π0-meson electroproduction
on the deuteron can be written as

M(ed → edπ0) = e2

k2
jμJμ, (2)

with

jμ = ū(k2)γμu(k1), Jμ = 〈dπ0|Ĵμ|d〉, (3)

where k = k1 − k2 is the virtual-photon four-momentum and
Jμ is the electromagnetic current describing the transition
γ ∗ + d → d + π0 (γ ∗ is the virtual photon).

The electromagnetic structure of nuclei, as probed by
elastic and inelastic electron scattering by nuclei, can be
characterized by a set of response functions or structure func-
tions [16,17]. Each of these structure functions is determined
by different combinations of the longitudinal and transverse
components of the electromagnetic current Jμ, thus providing
different pieces of information about the nuclear structure or
possible mechanisms of the reaction under consideration.

The formalism of the structure functions is especially
convenient for the investigation of polarization phenomena for
the reaction (1).

Using the conservation of the leptonic jμ and hadronic Jμ

electromagnetic currents (k · j = k · J = 0), one can rewrite
the matrix element (2) in terms of the space components of
these currents only,

M(ed → edπ0) = e2

k2 �e · �J, �e = �j · �k
k2

0

�k − �j, (4)

where k = (k0, �k) and k0(�k) is the energy (three-momentum)
of the virtual photon in the center-of-mass system (CMS)
of the γ ∗ + d → d + π0 reaction. All observables are deter-
mined by bilinear combinations of the space components of
the hadronic current �J: Hab = JaJ∗

b . As a result, we obtain the
following general structure of the differential cross section for
the reaction (1), when the scattered electron and π0 meson
are detected in coincidence, and the electron beam is longitu-
dinally polarized (the polarization states of the deuteron target
and scattered deuteron can be any):

d3σ

dE ′d�ed�P
= N

[
Hxx + Hyy + ε cos(2ϕ)(Hxx − Hyy)

+ ε sin(2ϕ)(Hxy + Hyx ) − 2ε
k2

k2
0

Hzz

−
√−k2

k0

√
2ε(1 + ε) cos ϕ(Hxz + Hzx )
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−
√−k2

k0

√
2ε(1 + ε) sin ϕ(Hyz + Hzy)

∓ iλ
√

(1 − ε2)(Hxy − Hyx )

∓ iλ

√−k2

k0

√
2ε(1 − ε) cos ϕ(Hyz − Hzy)

± iλ

√−k2

k0

√
2ε(1 − ε) sin ϕ(Hxz − Hzx )

]
,

N = α2

64π3

E ′

E

| �q|
MW

1

1 − ε

1

(−k2)
,

|�k| = 1

2W

√
(W 2 + M2 − k2)2 − 4M2W 2,

| �q| = 1

2W

√(
W 2 + M2

P − M2
)2 − 4M2

PW 2,

ε−1 = 1 − 2
�k2

Lab

k2
tan2

(
θe

2

)
. (5)

The z axis is directed along the virtual photon momentum �k;
the momentum of the detected P meson �q lies in the xz plane
(reaction plane); E (E ′) is the energy of the initial (scattered)
electron in the deuteron rest frame [laboratory (“Lab”) sys-
tem]; θe is the electron scattering angle (the angle between the
momenta of the initial and scattered electrons) in the labora-
tory system; d�e is the solid angle of the scattered electron
in the laboratory system; d�P(q) is the solid angle (value of
the three-momentum) of the detected P meson in the Pd-pair
center-of-mass system (CMS); MP, M are the masses of the P
meson and deuteron, respectively; ϕ is the azimuthal angle
between the electron scattering plane and the plane where
the detected P meson lies (xz); k0 = (W 2 + k2 − M2)/2W
[kLab

0 = (W 2 − k2 − M2)/(2M )] is the virtual photon energy
in the Pd-pair CMS (laboratory) system, W is the invariant
mass of the final hadrons, W 2 = M2 + k2 + 2M(E − E ′); λ

is the degree of the electron longitudinal polarization; ε is the
degree of the linear polarization of the virtual photon. The
upper (lower) sign in this formula corresponds to the electron
(positron) scattering. This expression is valid for zero electron
mass. Below we will neglect it wherever possible.

Let us introduce, for convenience and simplification of
the following calculations of the polarization observables, the

orthonormal system of basic unit vectors �m, �n, and �̂k, which
are built from the momenta of the particles participating in the
reaction under consideration:

�̂k = �k
|�k| , �n = �k × �q

|�k × �q| , �m = �n × �̂k.

The unit vectors �̂k and �m define the γ ∗ + d → d + π0

reaction xz plane (the z axis is directed along the three-
momentum of the virtual photon �k, and x the axis is directed
along the unit vector �m), and the unit vector �n is perpendicular
to the reaction plane.

First of all, let us establish the spin structure of the ma-
trix element for the γ ∗ + d → d + π0 reaction without any
constraint on the kinematical conditions. This two-particle

*(k)γ

(q)π

)
1

 d(p
θ

CMS

)
2

 d(p

FIG. 1. Illustration of the reaction γ ∗ + d → d + π 0 in the γ ∗ +
d CMS.

reaction is illustrated in Fig. 1 in its CMS. The amplitude spin
structure can be parametrized by different (and equivalent)
methods, but for the analysis of the polarization phenomena
the choice of the transverse amplitudes is sometimes prefer-
able. Taking into account the P invariance of the hadron
electromagnetic interaction, the dependence of the γ ∗ + d →
d + π0 amplitude on the virtual-photon polarization vector
and polarization three vectors �U1 and �U2 of the initial and final
deuterons is given by [14]

F (γ ∗d → dP)

= �e · �m(g1 �m · �U1�n · �U ∗
2 + g2 �̂k · �U1�n · �U ∗

2

+ g3�n · �U1 �m · �U ∗
2 + g4�n · �U1 �̂k · �U ∗

2 )

+ �e · �n(g5 �m · �U1 �m · �U ∗
2 +g6�n · �U1�n · �U ∗

2 +g7 �̂k · �U1 �̂k · �U ∗
2

+ g8 �m · �U1 �̂k · �U ∗
2 + g9 �̂k · �U1 �m · �U ∗

2 )+�e · �̂k(g10 �m · �U1�n · �U ∗
2

+ g11 �̂k · �U1�n · �U ∗
2 + g12�n · �U1 �m · �U ∗

2 + g13�n · �U1 �̂k · �U ∗
2 ),

(6)

where gi (i = 1–13) are the scalar amplitudes, depending on
three variables k2, W , and ϑ (ϑ is the angle between the
virtual photon and π0-meson momenta in the γ ∗ + d → d +
π0 reaction CMS), which completely determine the reaction
dynamics. If we single out the virtual-photon polarization
vector �e, we can write the amplitude F as

F = Fiei

and the hadronic tensor can be written in terms of Fi as

Hi j = FiF
∗
j .

The process γ ∗ + d → d + P is described by a set of nine
amplitudes for the absorption of a virtual photon with trans-
verse polarization and four amplitudes for the absorption of a
virtual photon with longitudinal polarization. These numbers
are dictated by the values of the spins of the particles and by
the P invariance of hadron electrodynamics. Let us mention in
this respect a specific property of polarization phenomena for
inelastic electron-hadron scattering: in exclusive e− + d →
e− + d + P processes the virtual photon has a nonzero linear
polarization, even for the scattering of unpolarized electrons
by an unpolarized deuteron target.
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III. POLARIZED DEUTERON TARGET

Let us consider the dependence of the observables on the
polarization state of the deuteron target, which is described
by the spin density matrix. We use the following general ex-
pression for the deuteron spin density matrix in the coordinate
representation [18,19]:

ρμν = −1

3

(
gμν − p1μ p1ν

M2

)
− i

2M
εμναβsα p1β + Sμν, (7)

where sα is the four-vector describing the vector polariza-
tion of the target, s2 = −1, s · p1 = 0, and Sμν is the tensor
describing the tensor (quadrupole) polarization of the target:
Sμν = Sνμ, p1μSμν = 0, Sμμ = 0 (due to these properties the
tensor Sμν has only five independent components). In the
laboratory system all time components of the tensor Sμν are
zero and the tensor polarization of the target is described by
five independent space components (Si j = S ji, Sii = 0, i, j =
x, y, z). The four-vector sα is related to the unit vector �ξ of the
deuteron vector polarization in its rest system by

s0 = −�k�ξ/M, �s = �ξ + �k(�k�ξ )/M(M + E1), (8)

where E1 is the deuteron-target energy in the γ ∗ + d → d +
π0 reaction CMS.

The hadronic tensor Hi j (i, j = x, y, z) depends linearly on
the target polarization and can be written as

Hi j = Hi j (0) + Hi j (ξ ) + Hi j (S), (9)

where the term Hi j (0) corresponds to the case of unpolarized
deuteron target, and the term Hi j (ξ ) [Hi j (S)] corresponds to
the case of a vector (tensor) polarized target.

A. Unpolarized deuteron target

The general structure of the part of the hadronic tensor
which corresponds to the unpolarized deuteron target has the
following form:

Hi j (0) = h1mimj + h2nin j + h3k̂ik̂ j

+ h4{m, k̂}i j + ih5[m, k̂]i j, (10)

where {a, b}i j = aib j + a jbi, [a, b]i j = aib j − a jbi, and the
real structure functions hi depend on three Lorentz invariant
variables: the total energy, s = W 2 = (k + p1)2; the trans-
ferred momentum from the initial to the final electron, k2;
and the transferred momentum to the pion, t = (k − q)2. The
structure functions h1–h4 determine the cross section for the
e− + d → e− + d + P reaction with unpolarized particles.
The scattering of longitudinally polarized electrons by an
unpolarized deuteron target allows one to determine the h5

contribution.
In the chosen coordinate system, the different hadronic

tensor components, entering in the expression of the cross
section (5), are related to the structure functions hi (i = 1–5)
by

Hxx ± Hyy = h1 ± h2, Hzz = h3, Hxz + Hzx = 2h4,
(11)

Hxz − Hzx = 2ih5, Hxy ± Hyx = 0, Hyz ± Hzy = 0.

The expressions for the structure functions hi (i = 1–5)
in terms of the reaction amplitudes gi (i = 1–13) are given
in the Appendix. The expressions of the reaction amplitudes
gi (i = 1–13) in terms of the kinematical variables depend on
the underlying model. Their explicit form as functions of the
deuteron inelastic form factors in the impulse approximation
can be found in Ref. [14].

In the one-photon-exchange approximation, the general
structure of the differential cross section for the reaction
d (�e, e′P)d (in the case of longitudinally polarized electron
beam and unpolarized deuteron target) can be written in terms
of five independent contributions,

d3σ

dE ′d�ed�P
= N[σT + εσL + ε cos(2ϕ)σT T

+
√

2ε(1 + ε) cos ϕσLT

+ λ
√

2ε(1 − ε) sin ϕσ ′
LT ′], (12)

where the individual contributions are related to the structure
functions hi of the spin-independent hadronic tensor, Eq. (10),
by

σT = h1 + h2, σP = h1 − h2, σL = −2
k2

k2
0

h3,

σLT = −2

√−k2

k0
h4, σ ′

LT ′ = −2

√−k2

k0
h5. (13)

One can see from Eq. (12) that there exists a single-spin
asymmetry due to the longitudinal polarization of the electron
beam, and it is defined as

�e(ϕ) = dσ (λ = +1) − dσ (λ = −1)

dσ (λ = +1) + dσ (λ = −1)

= sin ϕ
√

2ε(1 − ε)σ ′
LT ′

σT + εσL + ε cos(2ϕ)σT T + √
2ε(1 + ε) cos ϕσLT

.

(14)

Due to the ϕ dependence, this asymmetry has to be measured
in noncoplanar geometry (out-of-plane kinematics).

For the case of unpolarized particles, one can determine the
so-called left-right asymmetry

ALR = dσ (ϕ = 00) − dσ (ϕ = 1800)

dσ (ϕ = 00) + dσ (ϕ = 1800)
=

√
2ε(1 + ε)σLT

σT + ε(σL + σT T )
.

(15)

We see that the �e(ϕ) asymmetry is determined by the struc-
ture function h5, which is defined by the interference of the
reaction amplitudes characterizing the absorption of virtual
photons with nonzero longitudinal and transverse components
of the electromagnetic current corresponding to the process
γ ∗ + d → d + π0. One finds that h5 ∼ sin ϑ (ϑ is the angle
between three-momenta of the virtual photon and the P me-
son in the CMS of the γ ∗ + d → d + π0 reaction) for any
reaction mechanism of the considered reaction. It vanishes
in collinear kinematics, i.e., at π0-meson emission angles
ϑ = 0◦ and ϑ = 180◦ due to the conservation of the total
helicity of the interacting particles. The structure function h5

is nonzero only if the complex amplitudes of the γ ∗ + d →
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d + P reaction have nonzero relative phases. This is a very
specific observable, which has no counterpart in the process
of the P-meson photoproduction on the deuteron, γ + d →
d + π0.

The study of the single-spin asymmetry �e was first sug-
gested for the pion production in electron-nucleon scattering,
e + N → e + N + π [20]. Later this asymmetry was dis-
cussed for the hadron production in the exclusive processes of
the type A(�e, e′h)X , where A is a nucleus and h is the detected
hadron [21,22]. A number of experiments have measured the
asymmetry �e [23–25].

B. Vector polarized deuteron target

The part of the hadronic tensor depending on the deuteron
vector polarization has the following general structure:

Hi j (ξ ) = �ξ �m(h6{m, n}i j + h7{k̂, n}i j

+ ih8[m, n]i j + ih9[k̂, n]i j )

+ �ξ �n(h10mimj + h11nin j + h12k̂ik̂ j

+ h13{m, k̂}i j + ih14[m, k̂]i j )

+ �ξ �̂k(h15{m, n}i j + h16{k̂, n}i j

+ ih17[m, n]i j + ih18[k̂, n]i j ), (16)

where one can see that the dependence of the polarization
observables on the deuteron vector polarization is determined
by 13 structure functions. The expressions for these structure
functions in terms of the reaction amplitudes gi (i = 1–13) are
given in the Appendix. On the basis of this formula one can
reach the following general conclusions:

(1) If the deuteron is vector polarized and the polariza-
tion vector is perpendicular to the γ ∗ + d → d + P
reaction plane, then the dependence of the differential
cross section of the e− + d → e− + d + P reaction on
the ε and ϕ variables is the same as in the case of the
unpolarized target, and the nonvanishing components
of the Hi j (ξ ) tensor are

Hxx(ξ ) ± Hyy(ξ ) = (h10 ± h11)�ξ �n,

Hzz(ξ ) = h12�ξ �n,

Hxz(ξ ) + Hzx(ξ ) = 2h13�ξ �n,

Hxz(ξ ) − Hzx(ξ ) = 2ih14�ξ �n. (17)

(2) If the deuteron target is polarized in the γ ∗ + d → d +
π0 reaction plane (in the direction of the vector �k or �m),
then the dependence of the differential cross section
of the e− + d → e− + d + π0 reaction on the ε and ϕ

variables is
(1) for deuteron P-meson production by an unpolar-

ized electron beam,

ε sin(2ϕ),
√

2ε(1 + ε) sin ϕ, (18)

(2) for deuteron P-meson production by a longitudi-
nally polarized electron beam,

±iλ
√

1 − ε2, ∓iλ
√

2ε(1 − ε) cos ϕ. (19)

(3) The differential cross section of the reaction
�d (�e, e′P)d , where the electron beam is longitudinally
polarized and the deuteron target is vector polarized,
can be written as follows:

d3σ

dE ′d�ed�P
= σ0

[
1 + λ�e + (

Ad
x + λAed

x

)
ξx

+ (
Ad

y + λAed
y

)
ξy + (

Ad
z + λAed

z

)
ξz

]
,

(20)

where σ0 coincides with the fivefold unpolarized dif-
ferential cross section, Eq. (5); �e is the beam ana-
lyzing power (the asymmetry induced by the electron-
beam polarization); Ad

i (i = x, y, z) are the analyzing
powers due to the vector polarization of the deuteron
target; and Aed

i (i = x, y, z) are the spin-correlation
parameters. The target analyzing powers and spin-
correlation parameters depend on the orientation of
the deuteron polarization vector. The expressions of
the Ad

i and Aed
i asymmetries can be explicitly writ-

ten as functions of the azimuthal angle ϕ, of the
virtual-photon linear polarization ε, and of contri-
butions of the longitudinal (L) and transverse (T )
components (relative to the virtual-photon momentum
�k) of the hadron electromagnetic current of γ ∗ +
d → d + π0 :

Ad
x σ0 = N sin ϕ

[√
2ε(1 + ε)A(LT )

x + ε cos ϕA(T T )
x

]
,

Ad
z σ0 = N sin ϕ

[√
2ε(1 + ε)A(LT )

z + ε cos ϕA(T T )
z

]
,

Ad
y σ0 = N

[
A(T T )

y + εA(LL)
y +

√
2ε(1 + ε) cos ϕA(LT )

y

+ ε cos(2ϕ)Ā(T T )
y

]
,

Aed
x σ0 = N

[√
1 − ε2B(T T )

x +
√

2ε(1 − ε) cos ϕB(LT )
x

]
,

Aed
z σ0 = N

[√
1 − ε2B(T T )

z +
√

2ε(1 − ε) cos ϕB(LT )
z

]
,

Aed
y σ0 = N

√
2ε(1 − ε) sin ϕB(LT )

y , (21)

where N is defined in Eq. (5) and the individual
contributions to the considered asymmetries in terms
of the structure functions hi are given by

A(T T )
x = 4h6,

A(T T )
y = h10 + h11,

Ā(T T )
y = h10 − h11,

A(T T )
z = 4h15,

A(LT )
x = −2

√−k2

k0
h7,

A(LT )
y = −2

√−k2

k0
h13,

A(LT )
z = −2

√−k2

k0
h16,

A(LL)
y = 2

−k2

k2
0

h12,
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B(T T )
x = 2h8,

B(T T )
z = 2h17,

B(LT )
x = −2

√−k2

k0
h9,

B(LT )
y = −2

√−k2

k0
h14,

B(LT )
z = −2

√−k2

k0
h18. (22)

C. Tensor polarized deuteron target

The component of the hadronic tensor Hi j (S), which de-
pends on the deuteron tensor polarization has the following
general structure:

Hi j (S) = Sabmamb(h19mimj + h20nin j + h21k̂ik̂ j

+ h22{m, k̂}i j + ih23[m, k̂]i j )

+ Sabnanb(h24mimj + h25nin j + h26k̂ik̂ j

+ h27{m, k̂}i j + ih28[m, k̂]i j )

+ Sabmak̂b(h29mimj + h30nin j + h31k̂ik̂ j

+ h32{m, k̂}i j + ih33[m, k̂]i j )

+ Sabmanb(h34{m, n}i j + h35{k̂, n}i j

+ ih36[m, n]i j + ih37[k̂, n]i j )

+ Sabk̂anb(h38{m, n}i j + h39{k̂, n}i j

+ ih40[m, n]i j + ih41[k̂, n]i j ). (23)

In this case, the dependence of the polarization observables on
the deuteron tensor polarization is determined by 23 structure
functions. The expressions for these structure functions in
terms of the reaction amplitudes gi (i = 1–13) are given in
the Appendix.

From this expression one can conclude the following:

(1) If the deuteron is tensor polarized so that only Szz, Syy,
and (Sxz + Szx ) components of the quadrupole polar-
ization tensor are nonzero, then the dependence of the
differential cross section of the e− + d → e− + P + d
reaction on the parameter ε and on the azimuthal angle
ϕ must be the same as in the case of the unpolarized
target (more exactly, with similar ε- and ϕ-dependent
terms).

(2) If the deuteron is polarized so that only the (Sxy + Syx )
and (Syz + Szy) components of the quadrupole polar-
ization tensor are nonzero, then
(a) for P-meson production with unpolarized electron

beam the typical terms follow sin ϕ and sin(2ϕ)
dependencies;

(b) for P-meson production with longitudinally polar-
ized electron beam the terms do not depend on ε,
ϕ, and cos ϕ.

In polarization experiments it is possible to prepare
the deuteron target with definite spin projection on some

quantization axis. The corresponding asymmetry is usually
defined as

A = dσ (λd = +1) − dσ (λd = −1)

dσ (λd = +1) + dσ (λd = −1)
, (24)

where dσ (λd ) is the differential cross section of the e− +
d → e− + P + d reaction when the quantization axis for the
deuteron spin (in the Pd-pair CMS) coincides with its momen-
tum, i.e., the deuteron has helicity λd . From an experimental
point of view, the measurement of an asymmetry is more
convenient than a measurement of a cross section, as most
of systematic experimental errors and other multiplicative
factors cancel in the ratio.

The general form of the hadron tensor Hi j (λd ), which
determines the differential cross section of the process under
consideration for the case of the deuteron with helicity λd , can
be written as

Hi j (λd = ±1) = δ1k̂ik̂ j + δ2mimj + δ3nin j

+ δ4{k̂, m}i j + iδ5[k̂, m]i j

± δ6{k̂, n}i j ± iδ7[k̂, n]i j

± δ8{m, n}i j ± iδ9[m, n]i j . (25)

Assuming the T invariance of the hadron electromagnetic
interactions, we can make the following statements, according
to the deuteron polarization state:

The deuteron is unpolarized. Since, in this case, the
hadronic tensor Hi j (0) has to be symmetric (over the i, j
indices), the asymmetry in the scattering of longitudinally
polarized electrons vanishes.

The deuteron is vector polarized. Since, in this case,
the hadronic tensor Hi j (ξ ) has to be antisymmetric, then
the deuteron vector polarization can manifest itself in the
scattering of longitudinally polarized electrons. The perpen-
dicular target polarization (normal to the γ ∗ + d → d + π0

reaction plane) leads to a correlation of the following type:
±iλ

√
2ε(1 − ε) sin ϕ. The longitudinal and transverse (along

or perpendicular to the virtual-photon momentum) target po-
larization (lying in the γ ∗ + d → P + d reaction plane) leads
to two correlations of the following types: ∓iλ

√
1 − ε2 and

∓iλ
√

2ε(1 − ε) cos ϕ.

The deuteron is tensor polarized. The hadronic tensor
Hi j (S) is symmetric in this case. In the scattering of lon-
gitudinally polarized electrons the contribution proportional
to λSab vanishes. If the target is polarized so that only the
(Sxy + Syx ) or (Syz + Szy) components of the quadrupole po-
larization tensor are nonzero, then in the differential cross
section only the following two terms are present: ε sin(2ϕ)
and

√
2ε(1 + ε) sin ϕ. For all other target polarizations the

following structures are present: a term which does not depend
on ε and ϕ variables as well as terms with the dependencies
2ε, ε cos(2ϕ), and

√
2ε(1 + ε) cos ϕ.

The differential cross section of the P-meson production in
the scattering of longitudinally polarized electrons by a ten-
sor polarized deuteron target (in a coincidence experimental

025202-6



GENERAL ANALYSIS OF POLARIZATION EFFECTS … PHYSICAL REVIEW C 100, 025202 (2019)

setup) has the following general structure:

d3σ

dE ′d�ed�P

= N
{
σT + AT

xzQxz + AT
xx(Qxx − Qyy) + AT

zzQzz

+ ε
[
σL + AL

xzQxz + AL
xx(Qxx − Qyy) + AL

zzQzz
]

+
√

2ε(1 + ε) cos ϕ
[
σLT + ALT

xz Qxz

+ ALT
xx (Qxx − Qyy) + ALT

zz Qzz
]

+
√

2ε(1 + ε) sin ϕ
(
ALT

xy Qxy + ALT
yz Qyz

)
+ ε sin(2ϕ)

(
AT T

xy Qxy + AT T
yz Qyz

)
+ ε cos(2ϕ)

[
σT T + AT T

xz Qxz

+ AT T
xx (Qxx − Qyy) + AT T

zz Qzz
]

+ λ
√

2ε(1 − ε) sin ϕ
[
σLT ′ + ĀLT ′

xz Qxz

+ ĀLT ′
xx (Qxx − Qyy) + ĀLT ′

zz Qzz
]

+ λ
√

2ε(1 − ε) cos ϕ
[
ĀLT ′

xy Qxy + ĀLT ′
yz Qyz

]
+ λ

√
1 − ε2 cos ϕ

[
AT

xyQxy + AT
yzQyz

]}
, (26)

where the quantities Qi j (i, j = x, y, z) are the components
of the quadrupole polarization tensor of the deuteron in its
rest system (the coordinate system is specified similarly to the
case of the π0d-pair CMS). These components satisfy to the
following conditions: Qi j = Qji, Qii = 0. In the derivation of
this formula we take into account that Qxx + Qyy + Qzz = 0.

Thus, in the general case the exclusive cross section of
the P-meson production in the scattering of longitudinally
polarized electrons by a tensor polarized deuteron target is
determined by 23 independent asymmetries [16 (7) in the
scattering of unpolarized (longitudinally polarized) electrons]
Am

i j (W, k2, ϑ ), where i, j = x, y, z and m = T, T T, L, LT .
These asymmetries can be related to the structure functions
hi which are the bilinear combinations of the 13 independent
scalar amplitudes describing the γ ∗ + d → P + d reaction.
These relations are

AT
xz = γ1(h29 + h30),

AT
xx = 1

2
(h19 + h20 − h21 − h25),

AT
zz = −1

2
(h19 + h20 + h21 + h25),

AL
xz = −2γ1

k2

k2
0

h31,

AL
xx = −k2

k2
0

(h21 − h26),

AL
zz = k2

k2
0

(h21 + h26),

ALT
xz = −2γ1

√−k2

k0
h32,

ALT
xx = −

√−k2

k0
(h22 − h27),

ALT
zz =

√−k2

k0
(h22 + h27),

ALT
xy = −2

√−k2

k0
h35,

ALT
yz = −2γ1

√−k2

k0
h39,

AT T
xy = 2h34, AP

yz = 2γ1h38,

AT T
xz = γ1(h29 − h30),

AT T
xx = 1

2
(h19 − h20 − h24 + h25),

AT T
zz = −1

2
(h19 − h20 + h24 − h25),

ĀLT ′
xz = −2γ1

√−k2

k0
h33,

ĀLT ′
xx = −

√−k2

k0
(h23 − h28),

ĀLT
zz =

√−k2

k0
(h23 + h28),

ĀLT ′
xy = −2

√−k2

k0
h37,

ĀLT ′
yz = −2γ1

√−k2

k0
h41,

AT
xy = 2h36,

AT
yz = 2γ1h40. (27)

One can see from Eq. (26) that the scattering of unpolarized
electrons by a tensor polarized deuteron target with compo-
nents Qxy = Qyz = 0 is characterized by the same ϕ and ε de-
pendencies as in the case of the scattering of unpolarized elec-
trons by the unpolarized deuteron target. If Qxy �= 0, Qyz �= 0,
then new terms of the types

√
2ε(1 + ε) sin ϕ and ε sin(2ϕ)

are present in the cross section. The asymmetries with upper
indices T, T T (L) are determined only by the transverse
(longitudinal) components of the electromagnetic current for
the γ ∗ + d → P + d reaction, while the asymmetries with
upper index LT are determined by the interference of the lon-
gitudinal and transverse components of the electromagnetic
current.

Using the explicit form for the amplitude of the reaction
under consideration it is easy to obtain the expression for the
hadronic tensor Hi j in terms of the scalar amplitudes gi (i =
1–13). The Appendix contains the formulas for the structure
functions hi in terms of the scalar amplitudes, which describe
the polarization effects in the e− + d → e− + P + d reaction
caused by the deuteron polarization.

Let us stress again that the results listed above have a gen-
eral nature and are not related to a particular reaction mech-
anism. They are valid for the one-photon-exchange mecha-
nism assuming P invariance of the hadron electromagnetic
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interaction. Their general nature is due to the fact that the
derivation of these formulas requires only the hadron electro-
magnetic current conservation and the fact that the photon has
spin 1.

IV. RECOIL DEUTERON POLARIZATION

Let us consider the general structure of the polarization ef-
fects related to the recoil deuteron polarization. The scattered
deuteron spin density matrix can be written as

ρs
μν = −

(
gμν − p2μ p2ν

M2

)
+ i

2M
εμναβ s̃α p2β + S̃μν, (28)

where s̃α is the four-vector describing the vector polarization
of the scattered deuteron, s̃2 = −1, s̃ · p2 = 0, and S̃μν is the
tensor describing the tensor (quadrupole) polarization of the
scattered deuteron: S̃μν = S̃νμ, p2μS̃μν = 0, S̃μμ = 0 (due to
these properties the tensor S̃μν has only five independent
components).

In the scattered deuteron rest system all time components
of the tensor S̃μν are zero and the tensor polarization of the
scattered deuteron is described by five independent space
components (S̃i j = S̃ ji, S̃ii = 0, i, j = x, y, z). The four-vector
s̃α is related to the unit vector �ζ of the scattered deuteron
vector polarization in its rest system by s̃0 = −�q�ζ/M, �̃s =
�ζ + �q �q · �ζ/M(M + E2); E2 is the scattered deuteron energy
in the γ ∗ + d → d + P reaction CMS.

The hadronic tensor Hi j (i, j = x, y, z) has a linear depen-
dence on the scattered deuteron polarization parameters and it
can be represented as follows:

Hi j = Hi j (0) + Hi j (ζ ) + Hi j (S̃), (29)

where the term Hi j (0) corresponds to the case of the unpo-
larized deuteron target and scattered deuteron, and the term
Hi j (ζ ) [Hi j (S̃)] corresponds to the case of the vector (tensor)
polarization of the scattered deuteron provided that target is
unpolarized.

(1) The scattered deuteron is unpolarized. The structure of
the tensor Hi j (0) is given by Eq. (10) with the same
structure functions hi, i = 1–5.

(2) The scattered deuteron is vector polarized. The struc-
ture of the tensor Hi j (ζ ) is given by Eq. (16) where
it is necessary to do the change �ξ → �ζ and the struc-
ture functions must be also changed as hi → h̄i, i =
6–18. Therefore, the dependence of the polarization
observables on the vector polarization of the scattered
deuteron is also determined by 13 structure functions.
The expressions for the structure functions h̄i in terms
of the reaction amplitudes gi (i = 1–13) are given in
the Appendix. The differential cross section of the
reaction d (�e, e′P) �d , where the electron beam is lon-
gitudinally polarized and the scattered deuteron has
vector polarization, can be written as follows:

d3σ

dE ′d�ed�P
= σ0

[
1 + λ�e + (

Pd
x + λT ed

x

)
ζx

+ (
Pd

y + λT ed
y

)
ζy + (

Pd
z + λT ed

z

)
ζz

]
,

(30)

where Pd
i (i = x, y, z) are the components of the vector

polarization of the scattered deuteron, and T ed
i (i =

x, y, z) are the coefficients of the polarization transfer
from the longitudinal polarization of the electron beam
to the vector polarization of the scattered deuteron.

The expressions of the Pd
i and T ed

i polarization
observables can be also explicitly written as functions
of the azimuthal angle ϕ, of the virtual photon linear
polarization ε, and of the contributions of the longi-
tudinal (L) and transverse (T ) components (relative to
the virtual photon momentum �k) of the hadron elec-
tromagnetic current of the γ ∗ + d → d + P reaction.
These expressions can be obtained from Eqs. (21)
and (22) with the following substitutions: Ad

i → Pd
i ,

Aed
i → T ed

i , A(IJ )
i → P(IJ )

i , and B(IJ )
i → C(IJ )

i , where
I, J = L, T .

The individual contributions to the components of
the vector polarization and polarization transfer coef-
ficients in terms of the structure functions h̄i are given
by Eq. (22), where it is necessary to change hi → h̄i.

At this stage, the general model-independent anal-
ysis of the polarization observables in the reaction
d (�e, e′P) �d , for the case of the vector-polarized scat-
tered deuteron, is complete. To proceed further in the
calculation of the observables, one needs a model for
the reaction mechanism and for the deuteron structure.

(3) The scattered deuteron is tensor polarized. The general
structure of the tensor Hi j (S̃) is the same as given by
Eq. (23), where it is necessary to do the changes Sab →
S̃ab and hi → h̄i, i = 19–41 for the structure func-
tions. Therefore, the dependence of the polarization
observables on the tensor polarization of the scattered
deuteron is also determined by 23 structure functions.
The expressions for the structure functions h̄i in terms
of the reaction amplitudes gi (i = 1−13) are given in
the Appendix.

The differential cross section of the P-meson pro-
duction in the scattering of longitudinally polarized
electrons by an unpolarized deuteron target, when the
tensor polarization of the scattered deuteron is mea-
sured (in a coincidence experimental setup), has the
following general structure:

d3σ

dE ′d�ed�P

= N
{
σT + PT

xzQ̃xz + PT
xx(Q̃xx − Q̃yy) + PT

zz Q̃zz

+ ε
[
σL + PL

xzQ̃xz + PL
xx(Q̃xx − Q̃yy) + PL

zzQ̃zz
]

+
√

2ε(1 + ε) cos ϕ
[
σLT + PLT

xz Q̃xz

+ PLT
xx (Q̃xx − Q̃yy) + PLT

zz Q̃zz
]

+
√

2ε(1 + ε) sin ϕ
(
PLT

xy Q̃xy + PLT
yz Q̃yz

)
+ ε sin(2ϕ)

(
PT T

xy Q̃xy + PT T
yz Q̃yz

)
+ ε cos(2ϕ)

[
σT T + PT T

xz Q̃xz

+ PT T
xx (Q̃xx − Q̃yy) + PT T

zz Q̃zz
]
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+ λ
√

2ε(1 − ε) sin ϕ
[
σLT ′ + P̄LT ′

xz Q̃xz

+ P̄LT ′
xx (Q̃xx − Q̃yy) + P̄LT

zz′ Q̃zz
]

+ λ
√

2ε(1 − ε) cos ϕ
[
P̄LT ′

xy Q̃xy + P̄LT ′
yz Q̃yz

]
+ λ

√
1 − ε2 cos ϕ

[
PT

xyQ̃xy + PT
yzQ̃yz

]}
, (31)

where the quantities Q̃i j (i, j = x, y, z) are the compo-
nents of the quadrupole polarization tensor of the scat-
tered deuteron in the Pd-pair CMS. These components
satisfy to the following conditions:

Q̃i j = Q̃ ji,

dQ̃zz + uQ̃xx + γ 2
2 Q̃yy − 2z(1 + γ2)Q̃xz = 0, (32)

where d = cos2 ϑ + sin2 ϑγ 2
2 , u = sin2 ϑ +

cos2 ϑγ 2
2 , z = (γ2 − 1) cos ϑ sin ϑ , γ2 = E2/M.

Eq. (31) takes into account the last condition.

Thus, in the general case the exclusive cross section of
the P-meson production in the scattering of longitudinally
polarized electrons by an unpolarized deuteron target, when
the tensor polarization of the scattered deuteron is measured
(in the coincidence experimental setup), is determined by
23 independent functions [16 (7) in the scattering of un-
polarized (longitudinally polarized) electrons] Pm

i j (W, k2, ϑ ),
where i, j = x, y, z, m = T, T T, L, LT . These asymmetries
can be related to the structure functions h̄i which are the
bilinear combinations of the 13 independent scalar amplitudes
describing the γ ∗ + d → P + d reaction. These relations are

rPT
xz = r(h̄29 + h̄30) − 2z(1 + γ2)(h̄19 + h̄20 + h̄24 + h̄25),

rPT
xx = u(h̄24 + h̄25) − γ 2

2 (h̄19 + h̄20),

rPT
zz = d (h̄19 + h̄20 + h̄24 + h̄25),

rPL
xz = 2

−k2

k2
0

[rh̄31 − 2z(1 + γ2)(h̄21 + h̄26)],

rPL
xx = 2

−k2

k2
0

(
uh̄26 − γ 2

2 h̄21
)
,

rPL
zz = 2

−k2

k2
0

d (h̄21 + h̄26),

rPLT
xz = −2

√−k2

k0
[rh̄32 − 2z(1 + γ2)(h̄22 + h̄27)],

rPLT
xx = −2

√−k2

k0

(
uh̄27 − γ 2

2 h̄22
)
,

rPLT
zz = −2

√−k2

k0
d (h̄22 + h̄27),

PLT
xy = −2

√−k2

k0
h̄35,

PLT
yz = −2

√−k2

k0
h̄39,

PT T
xy = 2h̄34,

PT T
yz = 2h̄38,

rPT T
xz = r(h̄29 − h̄30) − 2z(1 + γ2)(h̄19 − h̄20 + h̄24 − h̄25),

rPT T
xx = u(h̄24 − h̄25) − γ 2

2 (h̄19 − h̄20),

rPT T
zz = d (h̄19 − h̄20 + h̄24 − h̄25),

rP̄LT ′
xz = −2

√−k2

k0
[rh̄33 − 2z(1 + γ2)(h̄23 + h̄28)],

rP̄LT ′
xx = −2

√−k2

k0

(
uh̄28 − γ 2

2 h̄23
)
,

rP̄LT ′
zz = −2

√−k2

k0
d (h̄23 + h̄28),

P̄LT ′
xy = −2

√−k2

k0
h̄37,

P̄LT ′
yz = −2

√−k2

k0
h̄41,

PT
xy = 2h̄36,

PT
yz = 2h̄40, (33)

where r = −(u + γ 2
2 ).

The results listed above have a general nature and are not
related to a particular reaction mechanism. They are valid for
the one-photon-exchange mechanism assuming P invariance
of the hadron electromagnetic interaction. Their general na-
ture is due to the fact that derivation of these results requires
only the hadron electromagnetic current conservation and the
fact that the photon has spin 1.

In principle, one may consider triple polarization observ-
ables, where the electron beam and the deuteron target are
both polarized, and polarization of the the recoil deuteron is
measured. These experiments are experimentally very diffi-
cult: the deuteron polarimetry requires a secondary scattering,
which implies huge beam luminosity. On the other hand, high
beam intensity warms up a polarized target, destroying the
degree of polarization.

V. COHERENT PRODUCTION OF PSEUDOSCALAR
MESON IN DEUTERON PHOTODISINTEGRATION

PROCESS

Let us consider the particular case of the coherent photo-
production of a pseudoscalar meson on a deuteron target,

γ (k) + d (p1) → P(q) + d (p2), (34)

where the four-momenta of the particles are given in the
parentheses. Of course, all observables for this reaction can
be obtained using the formulas presented above for the case
of the virtual photon, but it is rather tedious procedure. So,
it is worthwhile to have the expressions for the differential
cross section and various polarization observables which are
suitable for the analysis of the data on this reaction.

The matrix element of this reaction can be written as

M = eAμJμ = −eAiJi, (35)

where Aμ is the photon polarization four-vector and we use
the transverse gauge: �k · �A = 0 (�k is the photon momentum),

025202-9



G. I. GAKH, A. G. GAKH, AND E. TOMASI-GUSTAFSSON PHYSICAL REVIEW C 100, 025202 (2019)

The differential cross section in the CMS (not averaged
over the spins of the initial particles) can be written as

dσ

d�
= α

8π

q

W

1

W 2 − M2
ρi jHi j, (36)

where ρi j = AiA∗
j and hadronic tensor is determined as Hi j =

JiJ∗
j . The quantities which are not redefined in this section

have the same meaning as in the previous sections.
In the reaction CMS, the quantity Ji can be represented as

Ji = miA + niB, (37)

where

A = g1 �m · �U1�n · �U ∗
2 + g2 �̂k · �U1�n · �U ∗

2

+ g3�n · �U1 �m · �U ∗
2 + g4�n · �U1 �̂k · �U ∗

2 ,

B = g5 �m · �U1 �m · �U ∗
2 + g6�n · �U1�n · �U ∗

2 + g7 �̂k · �U1 �̂k · �U ∗
2

+ g8 �m · �U1 �̂k · �U ∗
2 + g9 �̂k · �U1 �m · �U ∗

2 .

In this case the nine scalar amplitudes depend on two vari-
ables, W and ϑ (energy and scattering angle), instead of
three for the case of the pseudoscalar meson electroproduction
(k2 �= 0).

The hadronic tensor Hi j (i, j = x, y, z) can be also repre-
sented in the form given by Eq. (9) where each term corre-
sponds to the definite polarization state of the deuteron target,
provided that the scattered deuteron is unpolarized.

Let us consider the polarization observables of the γ +
d → P + d reaction which correspond to each contribution
of the hadronic tensor Hi j .

(1) The deuteron target is unpolarized. The general struc-
ture of the hadronic tensor for the case of unpolarized
deuteron target has the following form:

Hi j (0) = h1mimj + h2nin j, (38)

where the structure functions hi, for the case of the
photoproduction of the P meson on the deuteron, can
be expressed in terms of the γ + d → P + d reaction
scalar amplitudes gi (i = 1–9) using the expressions
in the Appendix, where it is necessary to cancel the
four amplitudes gi (i = 10–13), since they correspond
to the absorption of a virtual photon with longitudinal
polarization.

Then the differential cross section of the γ + d →
P + d reaction for the case of unpolarized particles can
be written as

dσun

d�
= N (h1 + h2),

N = α

16π

q

W

1

W 2 − M2
. (39)

(2) Let us consider the case when the photon beam is
polarized. The general expression of the photon polar-
ization vector is determined by two real parameters β

and δ, and it can be written as [26]

�A = cos β �m + sin β exp(iδ)�n. (40)

If the parameter δ vanishes, δ = 0, then this photon
polarization vector describes the linear polarization

state of the photon at an angle β with respect to the x
axis. The parameters β = π/4 and δ = ±π/2 denote
circular polarization of the photon. Arbitrary β and δ

correspond to the elliptic polarization of the photons.
The differential cross section when only the photon

beam is polarized has the following form:

dσ

d�
= dσun

d�
(1 + A⊥ cos 2β ), (41)

where A⊥ is the asymmetry due to the linear polariza-
tion of the photon beam. It is defined as

A⊥ = dσ/d�(β = 0◦) − dσ/d�(β = 90◦)

dσ/d�(β = 0◦) + dσ/d�(β = 90◦)
, (42)

and it has the following form in terms of the structure
functions:

dσun

d�
A⊥ = N (h1 − h2) or A⊥ = h1 − h2

h1 + h2
. (43)

Note that the circular polarization of the photon beam
does not contribute to the differential cross section
due to the P invariance of the hadron electromagnetic
interaction.

(3) The deuteron target is vector polarized. In the case
of the pseudoscalar meson photoproduction, the part
of the hadronic tensor which depends on the deuteron
vector polarization is determined by six structure func-
tions. It can be written as

Hi j (ξ ) = �ξ �m(h6{m, n}i j + ih8[m, n]i j )

+ �ξ �n(h10mimj + h11nin j )

+ �ξ �̂k(h15{m, n}i j + ih17[m, n]i j ). (44)

Therefore, for the γ + d → P + d reaction, the de-
pendence of the polarization observables on the
deuteron vector polarization is determined by six
structure functions.

The part of the differential cross section of the γ +
d → P + d reaction which depends on the deuteron
vector polarization, for the case of arbitrarily polarized
photon, can be written as

dσv

d�
= dσun

d�

[
Ayξy + Cl

y cos 2βξy

+ sin 2β cos δ
(
Cl

xξx + Cl
zξz

)
+ sin 2β sin δ

(
Cc

x ξx + Cc
z ξz

)]
, (45)

where Ay is the asymmetry due to the vector polariza-
tion of the deuteron target, provided that the photon
is unpolarized (the so-called single target asymmetry).
This asymmetry is due to the normal (to the reaction
plane) component of the polarization vector �ξ describ-
ing the vector polarization of the target. The quantities
Cl

x,y,z (Cc
x,z ) are the correlation coefficients due to the

vector polarization of the deuteron target when the
photon is linearly (circularly) polarized. The correla-
tion coefficients Cl

x,y,z are zero when the amplitudes are
real. The correlation coefficients Cc

x,z are determined
by the components of the polarization vector lying in

025202-10



GENERAL ANALYSIS OF POLARIZATION EFFECTS … PHYSICAL REVIEW C 100, 025202 (2019)

(q)0π(k)γ

)
1

d(p )
2

d(p

nn

p

(q)0π(k)γ

)
1

d(p )
2

d(p

(q)0π(k)γ

)
1

d(p )
2

d(p

)
N

p(p’)
N

p(p

n

= +

FIG. 2. Illustration of the reaction γ ∗ + d → d + π 0 in the impulse approximation.

the reaction plane and these coefficients are nonzero,
in general, for real amplitudes. All these polarization
observables can be expressed in terms of the structure
functions hi, and they are

dσun

d�
Ay = N (h10 + h11),

dσun

d�
Cl

y = N (h10 − h11),

dσun

d�
Cl

x = 2Nh6,

dσun

d�
Cl

z = 2Nh15,

dσun

d�
Cc

x = 2Nh8,

dσun

d�
Cc

z = 2Nh17. (46)

(4) The deuteron target is tensor polarized. The part
of the hadronic tensor which depends on the tensor
(quadrupole) polarization of the deuteron target is
determined by ten structure functions for the case of
real photons, and its general structure is

Hi j (S) = Sabmamb(h19mimj + h20nin j )

+ Sabnanb(h24mimj + h25nin j )

+Sabk̂amb(h29mimj + h30nin j )

+ Sabmanb(h34{m, n}i j + ih36[m, n]i j )

+ Sabk̂anb(h38{m, n}i j + ih40[m, n]i j ). (47)

Thus, for the γ + d → P + d reaction, the depen-
dence of the polarization observables on the deuteron
tensor (quadrupole) polarization is completely deter-
mined by ten structure functions.

For the case of arbitrarily polarized photons, the part
of the differential cross section which depends on the
deuteron tensor polarization can be written as

dσt

d�
= dσun

d�

{
AzzQzz + Axx(Qxx − Qyy) + AxzQxz

+ cos 2β
[
Cl

zzQzz + Cl
xx(Qxx − Qyy) + Cl

xzQxz
]

+ sin 2β cos δ
(
Cl

xyQxy + Cl
yzQyz

)
+ sin 2β sin δ

(
Cc

xyQxy + Cc
yzQyz

)}
, (48)

where Azz, Axx, and Axz are the asymmetries due to
the tensor polarization of the deuteron target when
the photon is unpolarized. The quantities Cl

zz, Cl
xx, Cl

xz,
Cl

xy, and Cl
yz are the correlation coefficients due to

the tensor polarization of the deuteron target when
the photon is linear polarized. The quantities Cc

xy and
Cc

yz are the correlation coefficients determined by the
tensor polarization of the deuteron target and the cir-
cular polarization of the photon. All these polarization
observables can be expressed in terms of the structure
functions hi, and they are

σAzz = −N

2
(h19 + h20 + h24 + h25),

σAxx = N

2
(h19 + h20 − h24 − h25),

σAxz = Nγ1(h29 + h30),

σCl
zz = N

2
(h29 + h25 − h19 − h24),

σCl
xx = N

2
(h19 + h25 − h20 − h24),

σCl
xz = Nγ1(h29 − h30),

(a)

π*γ

N N

)ω,ρV(
0π*γ

N N
Δ

π*γ

N N π

*γ

N

N

(e)

(b) (c)

(d)

π*γ

N N
N

FIG. 3. Considered Feynman diagrams for the reaction γ ∗ +
N → N + π 0: (a) s-channel nucleon exchange, (b) t-channel π ex-
change, (c) u-channel nucleon exchange, (d) s-channel � exchange,
(e) t-channel ρ, ω exchange.
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FIG. 4. From left to right, Dependence of the functions Hxx + Hyy (a),(e),(i),(m), Hxx − Hyy (b),(f),(j),(n), Hzz (c),(g),(k),(o), and Hxz + Hzx

(d),(h),(l),(p) for total energy W = 2.5 GeV, as a function of the CMS pion angle, ϑ . From top to bottom the plots correspond to −k2 =
0.5 GeV2 (a)–(d), 1 GeV2 (e)–(h), 1.5 GeV2 (i)–(l), and 2 GeV2 (m)–(p). The corresponding laboratory energies of the virtual photon are
kLab

0 = 0.86 GeV (a)–(d), 0.99 GeV (e)–(h), 1.13 GeV (i)–(l), and 1.26 GeV (m)–(p). The different lines illustrate the considered contributions
for π 0 production: � (green, dotted line), � + Born (blue, dash-dotted line), and � + s + u + ω (black, solid line).

σCl
xy = 2Nh34,

σCl
yz = 2Nγ1h38,

σCc
xy = 2Nh36,

σCc
yz = 2Nγ1h40, (49)

with

γ1 = W 2 + M2

2MW
, σ = dσun

d�
= N (h1 + h2).

VI. HELICITY AMPLITUDES

Sometimes it is more convenient to use the helicity am-
plitudes formalism. Let us introduce the set of helicity am-
plitudes fλλ′ (k2,W, ϑ ) [where λ and λ′ are the helicities of
the initial (γ ∗ + d) and final (d + P) states] and define the
amplitudes

hλλ′ = 〈λ′
d |T |λγ , λd〉, (50)

where λγ , λd , λ
′
d are the helicities of the virtual photon and the

initial and scattered deuterons respectively, with λ = λγ − λd

and λ′ = λ′
d . We choose the following convention:

f1 = 〈+|T |++〉
= i

2
√

2
[g1 + g6 + cos ϑ (g5 − g3) + sin ϑ (g4 − g8)],

f2 = 〈−|T |++〉
= i

2
√

2
[g1 + g6 − cos ϑ (g5 − g3) − sin ϑ (g4 − g8)],

f3 = 〈0|T |++〉
= i

2

E2

M
[sin ϑ (g5 − g3) + cos ϑ (g8 − g4)],

f4 = 〈+|T |+−〉
= i

2
√

2
[g6 − g1 − cos ϑ (g3 + g5) + sin ϑ (g4 + g8)],

f5 = 〈−|T |+−〉
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FIG. 5. From left to right, ϑ dependence of the functions A(T T )
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(d),(h),(l),(p). From top to bottom the plots correspond to −k2 = 0.5 GeV2 (a)–(d), 1 GeV2 (e)–(h), 1.5 GeV2 (i)–(l), and 2 GeV2 (m)–(p).
Notations are as in Fig. 4.

= i

2
√

2
[g6 − g1 + cos ϑ (g3 + g5)

− sin ϑ (g4 + g8)],

f6 = 〈0|T |+−〉
= − i

2

E2

M
[sin ϑ (g3 + g5) + cos ϑ (g4 + g8)],

f7 = 〈+|T |+0〉 = i

2

E1

M
[g2 − sin ϑg7 + cos ϑg9],

f8 = 〈−|T |+0〉 = i

2

E1

M
[g2 + sin ϑg7 − cos ϑg9],

f9 = 〈0|T |+0〉 = i√
2

E1E2

M2
[cos ϑg7 + sin ϑg9],

f10 = 〈+|T |0+〉 = − i

2

k0√−k2
[g10 − cos ϑg12 + sin ϑg13],

f11 = 〈−|T |0+〉 = − i

2

k0√−k2
[g10 + cos ϑg12 − sin ϑg13],

f12 = 〈0|T |0+〉 = i√
2

E2

M

k0√−k2
[cos ϑg13 + sin ϑg12],

f13 = 〈+|T |00〉 = − i√
2

E1

M

k0√−k2
g11. (51)

where E2 = (W 2 − M2
P + M2)/2W is the energy of the scat-

tered deuteron in the reaction CMS.
At this stage, the general model-independent analysis of

the polarization observables for pseudoscalar meson photo-
production is completed. To proceed further in the calculation
of the observables, one needs a model for the reaction mecha-
nism and for the deuteron structure.

VII. MODEL, KINEMATICS, AND RESULTS

In order to illustrate the derived formalism with numerical
results it is necessary to calculate the elementary ampli-
tudes in frame of a model describing the structure of the
involved hadrons. Following Ref. [14] we use the impulse
approximation for the deuteron, and consider a model for
the interaction of the virtual photon with the nucleon; see
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Notations are as in Fig. 4.

Fig. 2. The neutron and proton structure is parametrized in
terms of electromagnetic form factors and deuteron wave
functions. The Bonn [27] and the Paris [28] nucleon-nucleon
potentials were considered in Ref. [14] as they give the most
different values for the observables. It was shown that other
recent potentials based on the Argonne [29] and Reid [30]
potentials give intermediate values. The photon interaction is
described in frame of an effective Lagrangian model, consid-
ering nucleon and � exchange in the s channel [Figs. 3(a)
and 3(d)], nucleon exchange in the u channel [Fig. 3(a)] and
π -, ρ-, and ω-meson exchange in the t channel [Figs. 3(b)
and 3(e)]. The details of the model are given in Ref. [14].
In principle, in the near-threshold region, for γ (γ ∗) + d →
d + π0, rescattering effects may play an important role in
pion S-state electroproduction. However, it has been shown in
a model independent way based only on the Pauli principle
that the main rescattering contribution from the two-step
process γ + d → p + p + π− (and n + n + π+) → d + π0

vanishes, when the two nucleons in the NNπ intermediate
state are on mass shell [31]. Due to the isovector nature
of the electromagnetic current in γ ∗ + d → d + π0, the ρ0

contribution to γ ∗ + N → N + π0 is exactly canceled.

As stated in the Introduction, the main purpose of this
paper is the general and model independent derivation of
polarized and unpolarized observables for pion electro- and
photoproduction on the deuteron. Therefore, we give an ex-
ample of the behavior of some of the observables and do not
extensively discuss their dependence on the ingredients of the
model.

The experimental detection of the pion and the scattered
electron, for a definite beam energy, allows one to fully de-
termine the kinematics of the e + d → e + d + π0 reaction,
i.e., γ ∗ + d → d + π0, that depends on three kinematical
variables. Let us choose

(1) k2: the four-momentum squared of the γ ∗;
(2) s = W 2 = (k + p1)2 = (q + p2)2: the total energy in

CMS of the γ ∗d system;
(3) ϑ : the π0 emission angle in the CMS of the reaction

γ ∗ + d → d + π0.

As shown above, there are 13 independent amplitudes for
the reaction γ ∗ + d → d + π0, gi(k2,W, ϑ ), i = 1–13, that
are functions of these three variables.
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(p)–(t). Notations are as in Fig. 4.

In the assumption of the impulse approximation, the γ ∗
interacts on the bare nucleon inside the deuteron, either the
proton or the neutron, while the other nucleon stays as a
spectator. There are six amplitudes for the reaction γ ∗ + N →
N + π0, depending also on three variables that can not be
connected in a unique way to the previous set. The problem is
that one has to make an assumption how the momentum −k2

is transferred to one of the nucleons inside the deuteron, while
this nucleon itself has a Fermi momentum. Fermi motion
effects are not considered here, as they require modeling of
nucleon resonances in momentum space. They do modify the
kinematics but may cancel in polarization observables, and
in general in amplitude ratios. A recent study on quasielastic
scattering can be found in Ref. [32].

It seems reasonable to calculate these amplitudes at the
same values of the two variables k2 and t . The choice is
open for the total energy, s = (k + p1)2 �= s1 = (k + pN )2.
The value of the π0 emission angle in the CMS of the reaction
γ ∗ + N → N + π0, θπ , calculated from s1 may fall outside
the kinematical limits. However, one can increase s1, which
can be physically understood by taking into account the Fermi
motion of the nucleon in the deuteron (see the discussion in
Ref. [14], p. 11).

Therefore the six independent amplitudes for
γ ∗ + N → N + π0 depend on three kinematical variables:
f N
i (k2,WN , θπ ), i = 1–6, where s1 = W 2

N is the total energy
of the γ ∗N (or π0N).

In Ref. [14] the structure functions and the observables
have been calculated as a function of these last variables,
because it was straightforward to implement the nucleon elec-
troproduction model. However, experimentalists will measure
the electron, deuteron and pion in the laboratory system. They
will have access to t , W , and cos ϑ but not s1, and in general
to the variables related to the participant nucleon.

Therefore we choose to fix s1 = (k0 + m)2 in a near
threshold kinematics, where all phase space is available for
the proton; W = 2.5 GeV, 0.5 � (−k2) � 2.0 GeV2, and
we calculate the structure functions and some polarization
observables as a function of the pion angle in the CMS of the
γ ∗d system, cos ϑ . These conditions do not violate the energy
and momentum conservation in the γ ∗d and γ ∗ p systems in
the kinematical range of all the variables considered here,
and they correspond to a CMS energy of the Nπ system
�1500 MeV.

Let us stress that this application is given as an example.
The general formalism derived in this paper allows one to
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FIG. 8. From left to right, ϑ dependence of the functions AT
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Notations are as in Fig. 4.

calculate the observables for any energy and for any kinemat-
ics, in the frame of the one-photon exchange approximation,
implementing any suitable model for the deuteron structure
and for the reaction.

A. Numerical results

The results are illustrated as functions of cos ϑ , at the
total energy W = 2.5 GeV for four values of the momentum
transfer in the range 0.5 � −k2 � 2 GeV2. The numerical
calculations are done for the Paris potential, for the dipole
parametrization of the proton form factor, whereas the electric
neutron form factor is set to zero.

B. Unpolarized structure functions

The four structure functions that define the unpolarized
cross section, Hxx + Hyy, Hxx − Hyy, Hzz, and Hxz + Hzx, are
shown in Fig. 4. From top to bottom each plot corresponds to
−k2 = 0.5, 1, 1.5, and 2 GeV2. The corresponding laboratory
energy of the virtual photon is kLab

0 = 0.86, 0.99, 1.13, and
1.26 GeV. The different lines illustrate the considered contri-
butions to π0 production: � (green, dotted line), � + s + u
(blue, dash-dotted line), � + s + u + ω (black, solid line).

C. Observables for a polarized deuteron target

The asymmetries for a vector polarized target can be
expressed as a function of longitudinal and transverse com-
ponents, as in Eq. (22). In Fig. 5 the transverse components,
i.e., the functions A(T T )

x , A(T T )
y , Ā(T T )

y , and A(T T )
z (respectively

from left to right) are illustrated in terms of the π0 angle in
the CMS of the γ ∗d system, and the longitudinal components,
A(LT )

x , A(LT )
y , A(LT )

z , and A(LL)
y are shown in Fig. 6. In Fig. 7 the

ϑ dependence of the functions B(T T )
x , B(T T )

z , B(LT )
x , B(LT )

y , and
B(LT )

z is shown.
As an example of tensor observables, the ϑ dependence of

the functions AT
zz, AL

zz, ALT
zz , AT T

zz , and ĀLT
zz (from left to right)

is shown in Fig. 8.
We can see that all observables have a strong angular

dependence: they become smaller when k2 increases and they
may change shape and also the sign.

VIII. CONCLUSIONS

This work give general expressions for various polariza-
tion observables in coherent pseudoscalar meson photo- and
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electroproduction on a deuteron target, assuming the one-
photon-exchange approximation. It completes and generalizes
a previous work on the unpolarized differential cross section.
The spin structure of the matrix element is explicitly derived
in terms of structure functions. The correspondence with the
helicity amplitudes is given. The polarization effects have
been investigated for the case of a longitudinally polarized
electron beam and a vector or tensor polarized deuteron
target. In the case of the photoproduction reaction, we con-
sider a linearly, circularly, or elliptically polarized photon
beam. The asymmetries arising from the polarization of the
particles in the initial state have been discussed as well as
the measurable observables related to the scattered deuteron
polarization.

Numerical estimations for the unpolarized differential
cross section and for some polarization observables have been
done in the frame of the simple model developed in Ref. [14].

The purpose of this paper is the derivation of model
independent expressions for the observables, as functions of
the elementary amplitudes. This formalism is applicable to
all phenomenological models developed in frame of a definite
picture of the deuteron, and is useful to bridge the experimen-
tal information and the theoretical description.

The specific interest of using a deuteron target in photo-
and electroproduction of light mesons is the possibility to
scan the isospin structure in the full resonance region, dis-
entangling isovector and isoscalar contributions. Polarization
phenomena contain essential information on the reaction
amplitudes and on the reaction mechanism. Moreover, for
this particular reaction, polarization phenomena when the
deuteron is polarized in the initial or in the final state bring
different information.
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APPENDIX: EXPLICIT EXPRESSIONS
FOR THE AMPLITUDES h

We present here the expressions for the structure functions
hi and h̄i (i = 1–41) in terms of the scalar amplitudes gi (i =
1–13) describing the γ ∗ + d → d + P reaction.

The structure functions hi describe the polarization observ-
ables in the γ ∗ + d → d + P reaction for the case of different
polarization states of the deuteron target.

(1) The deuteron target is unpolarized. The stfructure
functions h1–h5 corresponding to the interaction of the
virtual photon with an unpolarized deuteron target can
be written as

h1 = 1

3
[|g1|2 + γ 2

1 |g2|2 + a|g3|2

+ b|g4|2 + 2c Re g3g∗
4],

h2 = 1

3

[|g6|2 + a
(|g5|2 + γ 2

1 |g9|2
)

+ b
(|g8|2 + γ 2

1 |g7|2
) + 2c Re

(
g5g∗

9 + γ 2
1 g7g∗

9

)]
,

h3 = 1

3

[|g10|2 + γ 2
1 |g11|2 + a|g12|2

+ b|g13|2 + 2c Re g12g∗
13

]
,

h4 = Re A1,

h5 = Im A1,

A1 = 1

3

[
g1g∗

10 + γ 2
1 g2g∗

11 + ag3g∗
12

+ bg4g∗
13 + c(g3g∗

13 + g4g∗
12)

]
,

γ1 = E1

M
,

a = 1 + �q2

M2
sin2 ϑ,

b = 1 + �q2

M2
cos2 ϑ,

c = �q2

M2
cos ϑ sin ϑ, (A1)

where �q(E1) is the P-meson momentum (energy) in
the γ ∗ + d → P + d reaction CMS and ϑ is the angle
between the pseudoscalar meson and virtual photon
momenta in this system, E1 = (W 2 − k2 + M2)/2W.

(2) The deuteron target is vector polarized. The structure
functions h6–h18 which describe the effects of the vec-
tor polarization of the deuteron target can be written
as

h6 = −γ1

2
Im A2,

h7 = −γ1

2
Im A3,

h8 = γ1

2
Re A2,

h9 = −γ1

2
Re A3,

A2 = g2g∗
6 − ag3g∗

9 − bg4g∗
7 − c(g3g∗

7 + g4g∗
9),

A3 = −g6g∗
11 + ag9g∗

12 + bg7g∗
13 + c(g9g∗

13 + g7g∗
12),

h10 = −γ1 Im g1g∗
2,

h11 = γ1 Im[−ag5g∗
9 + bg7g∗

8 − c(g5g∗
7 + g8g∗

9)],

h12 = −γ1 Im g10g∗
11,

h13 = −γ1

2
Im(g1g∗

11 − g2g∗
10),

h14 = γ1

2
Re(g1g∗

11 − g2g∗
10),

h15 = −1

2
Im A4,

h16 = −1

2
Im A5,

h17 = 1

2
Re A4,
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h18 = −1

2
Re A5,

A4 = −g1g∗
6 + ag3g∗

5 + bg4g∗
8 + c(g3g∗

8 + g4g∗
5),

A5 = g6g∗
10 − ag5g∗

12 − bg8g∗
13 − c(g5g∗

13 + g8g∗
12).

(A2)

(3) The deuteron target is tensor polarized. The structure
functions h19–h41 which describe the effects of the ten-
sor polarization of the deuteron target can be written as

h19 = |g1|2 − γ 2
1 |g2|2,

h20 = a|g5|2 + b|g8|2 + 2c Re g5g∗
8 − γ 2

1 [a|g9|2
+ b|g7|2 + 2c Re g7g∗

9],

h21 = |g10|2 − γ 2
1 |g11|2,

h22 = Re
(
g1g∗

10 − γ 2
1 g2g∗

11

)
,

h23 = Im
(
g1g∗

10 − γ 2
1 g2g∗

11

)
,

h24 = a|g3|2 + b|g4|2 + 2c Re g3g∗
4 − γ 2

1 |g2|2,
h25 = |g6|2 − γ 2

1 [a|g9|2 + b|g7|2 + 2c Re g7g∗
9],

h26 = a|g12|2 + b|g13|2 + 2c Re g12g∗
13 − γ 2

1 |g11|2,
h27 = Re A6,

h28 = Im A6,

A6 = ag3g∗
12 + bg4g∗

13 + c(g3g∗
13 + g4g∗

12) − γ 2
1 g2g∗

11,

h29 = 2 Re g1g∗
2,

h30 = 2 Re[ag5g∗
9 + bg7g∗

8 + c(g5g∗
7 + g8g∗

9)],

h31 = 2 Re g10g∗
11,

h32 = Re(g2g∗
10 + g1g∗

11),

h33 = Im(g2g∗
10 + g1g∗

11),

h34 = Re A7,

h35 = Re A8,

h36 = Im A7,

h37 = − Im A8,

A7 = ag3g∗
5 + bg4g∗

8 + c(g3g∗
8 + g4g∗

5) + g1g∗
6,

A8 = g5g∗
12 + bg8g∗

13 + c(g5g∗
13 + g8g∗

12) + g6g∗
10,

h38 = Re A9,

h39 = Re A10,

h40 = Im A9,

h41 = − Im A10,

A9 = ag3g∗
9 + bg4g∗

7 + c(g3g∗
7 + g4g∗

9) + g2g∗
6,

A10 = ag9g∗
12 + bg7g∗

13 + c(g9g∗
13 + g7g∗

12) + g6g∗
11.

(A3)

The structure functions h̄i describe the polarization
observables in the γ ∗ + d → d + P reaction for the
case of the polarized scattered deuteron.

(4) The scattered deuteron is vector polarized. The struc-
ture functions h̄6–h̄18 which describe the effects of the
vector polarization of the scattered deuteron can be

written as

h̄6 = 1
6

[
x Im

(
g4g∗

6 − g1g∗
8 − γ 2

1 g2g∗
7

)
− z Im

(
g1g∗

5 − g3g∗
6 + γ 2

1 g2g∗
9

)]
,

h̄7 = − 1
6

[
z Im

(
g6g∗

12 − g5g∗
10 − γ 2

1 g9g∗
11

)
− x Im

(
g8g∗

10 − g6g∗
13 + γ 2

1 g7g∗
11

)]
,

h̄8 = 1
6

[−x Re
(
g4g∗

6 − g1g∗
8 − γ 2

1 g2g∗
7

)
+ z Re

(
g1g∗

5 − g3g∗
6 + γ 2

1 g2g∗
9

)]
,

h̄9 = − 1
6

[
z Re

(
g6g∗

12 − g5g∗
10 − γ 2

1 g9g∗
11

)
− x Re

(
g8g∗

10 − g6g∗
13 + γ 2

1 g7g∗
11

)]
,

h̄10 = 1
3γ2 Im g3g∗

4,

h̄11 = 1
3γ2 Im

(
g5g∗

8 − γ 2
1 g7g∗

9

)
,

h̄12 = 1
3γ2 Im g12g∗

13,

h̄13 = 1
6γ2 Im(g3g∗

13 − g4g∗
12),

h̄14 = − 1
6γ2 Re(g3g∗

13 − g4g∗
12),

h̄15 = − 1
6

[
z Im

(
g4g∗

6 − g1g∗
8 − γ 2

1 g2g∗
7

)
− y Im

(
g1g∗

5 − g3g∗
6 + γ 2

1 g2g∗
9

)]
,

h̄16 = − 1
6

[
z Im

(
g8g∗

10 − g6g∗
13 + γ 2

1 g7g∗
11

)
− y Im

(
g6g∗

12 − g5g∗
10 − γ 2

1 g9g∗
11

)]
,

h̄17 = 1
6

[
z Re

(
g4g∗

6 − g1g∗
8 − γ 2

1 g2g∗
7

)
− y Re

(
g1g∗

5 − g3g∗
6 + γ 2

1 g2g∗
9

)]
,

h̄18 = − 1
6

[
z Re

(
g8g∗

10 − g6g∗
13 + γ 2

1 g7g∗
11

)
− y Re

(
g6g∗

12 − g5g∗
10 − γ 2

1 g9g∗
11

)]
, (A4)

where

x = cos2 ϑγ2 + sin2 ϑ,

y = sin2 ϑγ2 + cos2 ϑ,

z = (γ2 − 1) cos ϑ sin ϑ,

γ2 = E2

M
.

(5) The scattered deuteron is tensor polarized. The struc-
ture functions h̄19–h̄41 which describe the effects of
the tensor polarization of the scattered deuteron can
be written as

h̄19 = 1

3d
(d|g3|2 − u|g4|2),

h̄20 = 1

3d

[
d
(|g5|2 + γ 2

1 |g9|2
) − u

(|g8|2 + γ 2
1 |g7|2

)]
,

h̄21 = 1

3d
(d|g12|2 − u|g13|2),

h̄22 = 1

3d
Re(dg3g∗

12 − ug4g∗
13),

h̄23 = 1

3d
Im(dg3g∗

12 − ug4g∗
13),

h̄24 = 1

3d

[
d
(|g1|2 + γ 2

1 |g2|2
) − γ 2

2 |g4|2
]
,
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h̄25 = 1

3d

[
d|g6|2 − γ 2

2

(|g8|2 + γ 2
1 |g7|2

)]
,

h̄26 = 1

3d

[
d
(|g10|2 + γ 2

1 |g11|2
) − γ 2

2 |g13|2
]
,

h̄27 = 1

3d
Re

[
d
(
g1g∗

10 + γ 2
1 g2g∗

11

) − γ 2
2 g4g∗

13

]
,

h̄28 = 1

3d
Im

[
d
(
g1g∗

10 + γ 2
1 g2g∗

11

) − γ 2
2 g4g∗

13

]
,

h̄29 = 2

3d
[d Re g3g∗

4 + (1 + γ2)z|g4|2],

h̄30 = 2

3d

[
d Re

(
g5g∗

8 + γ 2
1 g7g∗

9

)
+ (1 + γ2)z

(|g8|2 + γ 2
1 |g7|2

)]
,

h̄31 = 2

3d
[d Re g12g∗

13 + (1 + γ2)z|g13|2],

h̄32 = 1

3d
Re[d (g4g∗

12 + g3g∗
13) + 2(1 + γ2)zg4g∗

13],

h̄33 = 1

3d
Im[d (g4g∗

12 + g3g∗
13) + 2(1 + γ2)zg4g∗

13],

h̄34 = 1

3
Re

(
g3g∗

6 + g1g∗
5 + γ 2

1 g2g∗
9

)
,

h̄35 = 1

3
Re

(
g6g∗

12 + g5g∗
10 + γ 2

1 g9g∗
11

)
,

h̄36 = 1

3
Im

(
g3g∗

6 + g1g∗
5 + γ 2

1 g2g∗
9

)
,

h̄37 = −1

3
Im

(
g6g∗

12 + g5g∗
10 + γ 2

1 g9g∗
11

)
,

h̄38 = 1

3
Re

(
g4g∗

6 + g1g∗
8 + γ 2

1 g2g∗
7

)
,

h̄39 = 1

3
Re

(
g6g∗

13 + g8g∗
10 + γ 2

1 g7g∗
11

)
,

h̄40 = 1

3
Im

(
g4g∗

6 + g1g∗
8 + γ 2

1 g2g∗
7

)
,

h̄41 = −1

3
Im

(
g6g∗

13 + g8g∗
10 + γ 2

1 g7g∗
11

)
, (A5)

where d = cos2 ϑ + γ 2
2 sin2 ϑ, u = sin2 ϑ +

γ 2
2 cos2 ϑ.
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