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ABSTRACT 
 
 
Unmanned Aerial Vehicles (UAVs) are becoming vital warfare platforms because 

they significantly reduce the risk of human life while accomplishing important missions.  

A UAV can be used for example, as stand-in sensor for the detection of mobile, low-

probability-of-intercept battlefield surveillance and fire control emitters.  With many 

UAVs acting together as a swarm, the location and frequency characteristics of each 

emitter can be accurately determined to continuously provide complete battlefield aware-

ness.  The swarm should be able to act autonomously while searching for targets and re-

laying the information to all swarm members. In this thesis, two methods of autonomous 

control of a UAV swarm were investigated.  The first method investigated was the Parti-

cle Swarm Optimization (PSO) algorithm. This technique uses a non-linear approach to 

minimize the error between the location of each particle and the target by accelerating 

particles through the search space until the target is found.  When applied to a swarm of 

UAVs, the PSO algorithm did not produce the desired performance results.  The second 

method used a linear algorithm to determine the correct heading and maneuver the swarm 

toward the target at a constant velocity.  This thesis shows that the second approach is 

more practical to a UAV swarm. New results are shown to demonstrate the application of 

the algorithm to the swarm movement. 
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EXECUTIVE SUMMARY 
 
 

The Unmanned Air Vehicle (UAV) can be applied to more military missions than 

ever before.  The UAV is perfect for military missions that are long and arduous on a 

crew such as surveillance and reconnaissance.   By carrying a small selection of weapons, 

a UAV can perform the same functions as a piloted plane and destroy a target.  The ad-

vantage is that the UAV eliminates the potential loss of human life since it can be sent 

into highly dangerous areas.  Previously these areas were avoided because the risk of 

human life outweighed the potential gains from such a flight.  The success of the UAV 

has encouraged more research and ideas to maximize the advantages of having an un-

manned platform.  The next generation of UAVs will be smaller and part of a collabora-

tive group.  This group will be able to autonomously control their own movements and 

react to the environment.[1]   

A group of UAVs is more capable than a single UAV.  The UAVs can divide the 

workload among the group.  The individual UAVs can be equipped for different func-

tions in the mission whether it be surveillance and reconnaissance, strike, or battle dam-

age assessment.  Surveillance missions can be completed quickly by covering more 

search area when the group is spread out.  They also offer redundancy to ensure that the 

mission is completed.  If one UAV is destroyed by the enemy or drops out because of 

mechanical failure, the rest of the group will fill in and carry out the mission.  By having 

more than one UAV assigned to a mission, the probability of success dramatically in-

creases.[1]   

The UAV’s airframe will be designed and fitted with the appropriate technology 

to carry out the given mission.  The initial design aspect is the software required to pro-

gram the UAVs to act autonomously.  Responding to a central command structure with 

human control is relatively simple.  When given a command, the UAV reacts according.  

Without human control, the group will need to gather data from the environment, inter-

pret the data, and take appropriate actions to continue on the mission.  The UAVs will 

need to communicate with each other to share information in order to decide when the 
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mission is completed.  Behavior algorithms are necessary in order to act in a decentral-

ized manner and self-organize to complete the mission.  The concept of a group of UAVs 

under autonomous control closely resembles the ideas of swarms and swarm intelligence, 

which is similar to the concept used by insects and birds. [1]  

The swarm must have a realistic and practical method for completing the required 

mission of finding and ‘attacking’ a target.  Two autonomous UAV control methods were 

analyzed:  the Particle Swarm Optimization (PSO) algorithm and a linear control method.  

The PSO algorithm was simulated using MATLAB.  The actual program is training a 

neural network to solve a problem, but the concept is analogous to UAVs searching for a 

target.  

Through flock simulation and the derivation of PSO, scientists discovered that a 

synchronous flock is not essential.[2]  The simulated synchronized flock limits the scope 

of the group because it does not allow of individual exploration of the area.  The flock 

has to tightly travel together; so in order to search the area thoroughly, the entire flock 

would have to go over all possible locations.  By allowing individuals to travel slightly 

outside the group, the group covers a larger search area at one time.  As they identify in-

dividual best found positions thus far, the group is able to discover the target faster.  For a 

group to cooperate and achieve goals such as finding a target, the group must communi-

cate.  Therefore, communication, rather than synchronization, is necessary for success.[2]   

The current PSO algorithm applies to weightless particles in multiple dimensions.  

The PSO algorithm can offer the advantage of finding the pattern in almost any problem 

space to reach a solution, but the current sequence can dead end and restart in a new posi-

tion.  It is a waste of computation time and resources to create an algorithm that would 

have a swarm of UAVs pursue a direction only to find it is the wrong path.  If the target 

cannot be reached from the current path of the swarm, the PSO algorithm’s solution is to 

start over.  The swarm needs more guidance and a process to get out of a dead-end situa-

tion and back on track.  With further research and improvements, the PSO algorithm can 

be applied to real objects limited to three dimensions.  
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PSO is focused on minimizing error between the particles and the target.  In addi-

tion to changing the particle’s direction to head toward the target, the algorithm acceler-

ates the particles.  When applying PSO to real flying objects, the constant speed changes 

are the main drawback.  Actual UAVs should maintain a constant velocity to operate in a 

stable and controlled manner to prevent chaos and collisions.  The constant velocity will 

also increase fuel efficiency and decrease strain on the platform.  Although the PSO 

method is not practical, the central idea of minimizing error is completely applicable to 

UAVs.  When the target location is known, error minimization is a valuable tool.   

Since the first method investigated did not perform realistically, a second method 

using a linear model for UAV movement was investigated.  The program used to model 

the linear method was initially designed by a student at North Dakota State University 

[3].  The simulation focuses on three simple maneuvers for UAV motion.  Although the 

simulation has limited abilities, the concept is easily applicable to real UAVs missions.  

The program was modified in this thesis to incorporate more realistic mission scenarios.     

Compared to the PSO, the linear algorithm produces the most realistic results.  

The linear algorithm incorporates the ideas that have performed well in the PSO.  The 

swarm does not have to move synchronously, and the UAVs move toward the target by 

minimizing the error in their position from the target.  The error is minimized in a linear 

fashion since the velocity of the UAV remains constant.  Linearity produces great results, 

and the simulated UAVs are able to find the target quickly and efficiently.  The program 

also handles the UAVs as objects that occupy space.  Each UAV has a threshold bound-

ary distance, so they will avoid each other if they get too close.  These movements allow 

the swarm to move toward a destination in space without collisions. 

Since the swarm does not travel in formation, the UAVs need to regroup once a 

target is found.  The orbit stations around the target provide organization before the at-

tack.  While orbiting, the UAVs can communicate and coordinate when the attack will 

occur.  The orbit circles are also far enough from possible dangerous areas surrounding 

the target.  The simulation shows the distance to be small relative to the size of the target 

and UAVs, but the radius of the circle is adjustable.  Overall the linear algorithm can be 

more easily simulated and applied to realistic missions on a larger scale.  
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I. INTRODUCTION  

A. SWARM OF UAVS  
The Unmanned Aerial Vehicle (UAV) can be applied to more military missions 

than ever before.  The UAV is perfect for military missions that are long and arduous on 

a crew such as surveillance and reconnaissance.  By carrying a small selection of weap-

ons, a UAV can perform the same functions as a piloted plane and destroy a target.  The 

advantage is that the UAV eliminates the potential loss of human life since it can be sent 

into highly dangerous areas.  Previously these areas were avoided because the risk of 

human life outweighed the potential gains from such a flight.[1] 

The success of the UAV has encouraged more research and ideas to maximize the 

advantages of having an unmanned platform.  The next generation of UAVs will be 

smaller and part of a collaborative group.  This group will be able to autonomously con-

trol their own movements and react to the environment.  Currently two or more people 

are required to control a single UAV while it is in flight.  The military is hoping to de-

crease the man-power required to operate the UAV.  A UAV controlled by a group of 

people can complete the mission, but a large number of UAVs would require an even lar-

ger group of people.  Such a large number of operators will be unpractical and inefficient 

compared to the idea of autonomous control.[1] 

A group of UAVs is more capable than a single UAV.  The UAVs can divide the 

workload among the group.  The individual UAVs can be equipped for different func-

tions in the mission whether it be surveillance and reconnaissance, strike, or battle dam-

age assessment.  Surveillance missions can be completed quickly by covering more 

search area when the group is spread out.  They also offer redundancy to ensure that the 

mission is completed.  If one UAV is destroyed by the enemy or drops out because of 

mechanical failure, the rest of the group can fill in and carry out the mission.  By having 

more than one UAV assigned to a mission, the probability of success dramatically in-

creases.[1]   

The UAV’s airframe is designed and fitted with the appropriate technology to 

carry out the given mission.  The initial design aspect is the software required to program 
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the UAVs to act autonomously.  Responding to a central command structure with human 

control is relatively simple.  When given a command, the UAV reacts according.  With-

out human control, the group will need to gather data from the environment, interpret the 

data, and take appropriate actions to continue on the mission.  The UAVs will need to 

communicate with each other to share information in order to decide when the mission is 

completed. Behavior algorithms are necessary in order to act in a decentralized manner 

and still self-organize to complete the mission.   The concept of a group of UAVs under 

autonomous control closely resembles the ideas of swarms and swarm intelligence, which 

is similar to the concept used by insects and birds.[1]   

B. PRINCIPAL CONTRIBUTIONS 
The goal of this thesis was to create a detailed simulation of a swarm of UAVs 

that has autonomous control.  The swarm must have a realistic and practical method for 

completing the required mission of finding and ‘attacking’ a target.  The attack will be 

simulated by occupying the same point location as the target.  Whether each UAV 

launches a missile or takes pictures while over the target is dependent upon the given 

mission. 

Two autonomous UAV control methods were analyzed:  the Particle Swarm Op-

timization (PSO) algorithm and a linear control method.  The PSO algorithm was simu-

lated using MATLAB.  The actual program is training a neural network to solve a prob-

lem, but the concept is analogous to UAVs searching for a target.  

Since the first method investigated did not perform realistically, a second method 

using a linear model for UAV movement is investigated.  The program used to model the 

linear method was initially designed by a student at North Dakota State University [3].  

The simulation focuses on three simple maneuvers for UAV motion.  Although the simu-

lation has limited abilities, the concept is easily applicable to real UAVs missions.  The 

program is modified in this thesis to incorporate more realistic mission scenarios.     

C. THESIS OUTLINE 
Chapter II provides a background for swarms and swarm intelligence.  The swarm 

algorithms that have emerged are briefly described.  Since swarm algorithms are an effi-

cient method for training neural networks, the concept of neural networks is briefly re-

viewed.   
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Chapter III describes the concept of PSO from theories of flocks of birds to train-

ing neural networks to applications for a swarm of UAVs.  A MATLAB program simu-

lates a particle swarm using the PSO concept, and the PSO algorithm is compared to the 

backpropagation algorithm for training a neural network to solve an XOR problem.[4]   

Chapter IV describes a linear control approach to organizing a swarm of UAVs.  

The linear concept is displayed in a program demonstrating a swarm of UAVs attacking a 

target.   

Chapter V summarizes the practicality of using PSO and a linear algorithm for 

UAV control along with future work with a UAV swarm. 

Appendix A describes the PSO function in MATLAB, created by Brian Birge in 

[4].  Birge also creates a ‘demotrain’ file to use and illustrate the capabilities of the new 

PSO function while comparing PSO to backpropagation. 

Appendix B demonstrates a neural network backpropagation example through the 

‘demotrain’ file. 

Appendix C demonstrates a neural network PSO example through the ‘demotrain’ 

file. 

Appendix D demonstrates the linear approach program created by Chin Lua from 

North Dakota State University.[3] 

Appendix E demonstrates a modified program from [3].   
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II. BACKGROUND 

A. SWARMS 

1. Origin 
Gerado Beni began using the term ‘swarm’ to describe his work with cellular ro-

bots.  It was casually mentioned to him by Alex Meystel at a conference, and Beni found 

that ‘swarm’ accurately described cellular automata.[5]  The group of cells in robots ex-

hibit similar characteristics found in biological swarms, like insects, such as decentraliza-

tion, no synchronization, and simplicity in the members.  Swarm correctly describes a 

robotic system, but while roboticists focus on performing tasks with the swarm, biologists 

take the swarm concept and analyze the social behavior of insects as they perform a func-

tion.[5]   

2. Self-Organization 
Biologists investigate the idea that the swarm will identify a pattern in their sys-

tem and self organize to find the optimal means of reaching the goal.   Roboticists are try-

ing to create patterns in the behavior so that the cells will self-organize.  Communication 

is a key parameter in allowing the members to interact and self-organize their tasks.  The 

characteristics of a swarm are extended from decentralization, no synchronization, and 

simplicity to include communication among the members.[5]  In real swarms, such as 

bees and ants, members of a group can use direct communication with each other or indi-

rect communication, referred to as stigmergy, to interact through the environment.[6]   

a.  Positive and Negative Feedback 
 Bees and ants are constantly pursuing food sources for their colonies to 

sustain their existence, therefore, location of a food source is a common example of so-

cial behavior and easy to demonstrate through experimentation.  Their ability to establish 

paths to a food source illustrate one level of self organization.[6] 

 Bees directly communicate the location of a food source through dancing.  

A bee’s dance will show the distance and direction of the food source to the others.   

When one food source is superior in quality, the bees take advantage of the better source 

as more bees dance to indicate that location.   Experiments indicate that differences in the 

rate of dancing and abandonment create positive feedback and cause more bees to follow 
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the best quality path.  Not all bees will congregate to the superior food source.  A small 

population will continue to go to the alternate food source or elsewhere as a response to 

negative feedback in the system.  Negative feedback is generated through saturation, ex-

haustion, crowding, and competition at the food source.  These realistic limits stabilize 

the system so all bees are not on one track. [6] 

 Ants are most well known for communicating through the environment 

with pheromones to indicate the quality of a path.  These pheromones provide a positive 

feedback method for the colony to reinforce the trail.  The constant amplification of the 

trail persuades the other ants to continue along the same path, providing positive feed-

back.  Negative feedback is introduced through the same general complications as bees:  

saturation, exhaustion, crowding, and competition at the food source.[6]   

b.  Randomness  
 Both bees and ants rely on the randomness of individuals in the group.  It 

may seem counterintuitive to believe that self-organization is created among randomness, 

but randomness allows the introduction of new ideas into the group.  It can provide sim-

ply new paths to a food source or more general new methods and solutions that allow for 

growth of the colony.  Randomness is also a source of optimization.  For example, two 

food sources that are identical in quality and equal distance from the bee hive should be 

utilized symmetrically.  Experimentally, the deviation of a few bees will cause a swing to 

one source because those few bees recruit more bees and those continue to recruit even 

more.  The same principle applies to ants.  As more ants go along a path the pheromone 

strength becomes greater.  One path is amplified and becomes the optimal path.[6] 

 Multiple interactions occur throughout the group, causing more actions 

and reactions.  System characteristics of positive feedback, negative feedback, and ran-

domness provide the balance needed to keep the group responsive to an ever-changing 

environment.[6] 

3. Swarm Intelligence  
The self organization of the group into ordered patterns is an intelligent character-

istic.  For a swarm to form ordered patterns, it needs to ‘analyze’ patterns while finding 

the optimal method.  This characteristic could allow the swarm to have ‘intelligence.’[5]   
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Beni struggled with the definition of swarm intelligence since the word intelli-

gence has also been so loosely used.  One preliminary definition of an intelligent swarm 

according to Beni is “a group of ‘machines’ capable of ‘unpredictable’ material computa-

tion.” He has to revisit the definition of a machine as “an entity capable of mechanical 

behavior, i.e., of transferring and/or processing matter/energy.” Unpredictability is also 

difficult to define, but Beni links it to the computational power of the system.  He is look-

ing for “a system (the intelligent swarm) which cannot be predicted in the time it takes to 

form a new material pattern (of its own components).”  In his paper clarifying definitions 

related to swarms, he finally settles on “Intelligent swarm:  a group of non-intelligent ro-

bots (‘machines’) capable of universal material computation.”[5]   

Hundreds and even thousands of non-intelligent machines can comprise an intel-

ligent swarm.  There are advantages of having simple components in a group over having 

complex centralized components.  Through self-organization and pattern identification, 

the individual machines working together as a swarm can accomplish tasks that could not 

have been possible by a single machine.  Logistically, the individual members of the 

swarm are easier to design and build, so these simple components potentially can be 

cheaply replaced, interchanged, or disposed of.[5]   

The unpredictable function of a swarm comes from the method that it ‘learns.’  

The concept of universal material computation allows for the creativity of the designer.  

There are numerous algorithms in existence allow the swarm to compute a possible proc-

ess to complete various tasks.   

B. SWARM ALGORITHMS 

1. Ant Colony Optimization 
The behavior of ants within a colony inspired experiments and eventually algo-

rithms to mimic the ants.  The fundamental task of an ant colony is to find food sources.  

While performing this task, the ants are able to find the shortest path to that food source.  

This natural optimization is tested by Deneubourg through the bridge experiments.[6]  

The binary bridge experiment consists of two paths of equal length from their nest to the 

food source, so initially all ants choose a random path.  As they continue to choose at 

random, ants travel on one path, the pheromone intensity increases on that path.  As few 

more ants break the 50-50 chance, they attract more ants, until the majority is on one 
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path, such as explained for randomness.  Two equal length paths can be branched out to a 

longer path and a shorter path. Deneubourg also created a bridge from the nest to the food 

with two longer branches, shown in Figure 1. 

 
Figure 1.   Bridge Experiment 

 

 Again, all paths are initially chosen at random.  The ants that take the shortest 

path to the food source and back to the nest obviously make it back to the nest first.  

Their route is twice as intensified by pheromones than other options because the other 

ants on the longer paths have only passed over their route once.  This initial difference is 

amplified until the majority of the ants are on the shortest path.[6]   

 The ant colony optimization concept stimulated numerous more experiments and 

research.  A few algorithms such as the Traveling Salesman Problem (TSP), Ant System 

(AS), Ant Colony System (ACS), and AntNet can be found in [6].  Overall the algorithms 

have limited success with performance for the problems originally intended.  They are 

instead applied to combinatorial optimization, communications network routing, and 

packet-switching communications networks.  Since they offer a more promising future in 

this area, other directions were taken for swarm theories.[6] 

2. Evolutionary Computation 
Genetic and evolutionary algorithms are two examples of algorithms that use a 

population set to evolve to a solution.  These algorithms are similar in concept but exe-

cuted differently.  The differences are becoming undecipherable in most cases, and ge-

Nest Food 
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netic and evolutionary algorithms are almost interchangeable in meaning.  Both mimic 

natural evolution by using survival of the fittest and allowing manipulation of the popula-

tion.  Each individual in the population is assigned a fitness value based on the problem.  

By collecting the individual with higher fitness, the population will progress toward the 

solution to a given problem.  The difference lies in the reproduction, crossover, and muta-

tion process.  The fitness values for the problems indicate where they are in a problem 

‘space.’  They represent how ‘close’ the individual is to the goal, so the population is 

‘searching’ the problem space for the solution.[6] 

a. Genetic Algorithm 
The genetic algorithm follows the general pattern of initializing the popu-

lation, calculating each individual’s fitness in the population, reproducing the selected 

individual to create a new population, imposing crossovers and mutations on the popula-

tions, and repeating the process over again until the desired population is reached.  The 

population size is typically between 20 and 200 since it directly affects the computation 

time.  Larger populations can search more of the entire solution ‘space,’ but the computa-

tional cost is too great.  The initial population can be randomly chosen or contain a few 

‘seeded’ individuals with selected ‘traits.’  The deserved initial population should cover a 

wide variety of ‘traits’ to avoid limiting the algorithm from the start.[7]   

Calculating the fitness function of each individual can be a complex proc-

ess, but the idea is simply to sort out the best individuals that satisfy the solution.  Vari-

ous processes for calculating the fitness function exist.  Each individual is assigned a 

fraction of a roulette wheel to correspond with the fitness value.  The fraction on the rou-

lette wheel indicates the probability of an individual being selected.  There are also nu-

merous variations of the probability assignment procedure.  The basic idea remains the 

same:  a higher level of fitness has better chance of being chosen on the wheel.  For ex-

ample, individual A has a fitness value of 0.4 and individual B 1.2.  Individual B will oc-

cupy three times more space on the roulette wheel and is three time more likely to be se-

lected than individual A.  Once all the individuals have been chosen, they proceed to the 

main step of genetic theory.[7] 

The population experiences crossover to model the results of sexual repro-

duction.  The probability of crossover and type of crossover are specified for each prob-
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lem.  The probability typically ranges for 0.6 to 0.8, causing 60 to 80 percent of the popu-

lation to experience crossover.  The basic crossover type is one-point and easily described 

using binary bits.  Take two individuals with the following characteristics: 

 
11010111
01010001.

 

They experience crossover at a randomly chosen point indicated by the vertical line be-

low: 

 
11010 |111
01010 | 001.

 

The bits to the right of the vertical line will be exchanged.  The two resulting individuals 

after crossover are: 

 
11010001
01010111.

 

Mutation is introduced after crossover.  Mutation has a much lower probability of occur-

rence, generally down to 0.001.  Mutation simply involved the flipping of a random bit.  

Since the probability is extremely low, it may only occur to one individual in the entire 

population each generation.[7] 

b.  Evolutionary Algorithm 
Evolutionary approaches focus on frequent mutations to change the popu-

lation rather than genetic recombination.  The general pattern for an evolutionary algo-

rithm is initializing the population, exposing the population to the environment, calculat-

ing each individual’s fitness in the population, mutating individuals at random, recombin-

ing to create a child population, reevaluating the entire population of parents and chil-

dren, selecting individuals to create a new population, and repeating the process over 

again until the desired population is reached.  Mutating the parent population before the 

reproduction phase is similar to individuals being altered by the environment growing up 

in life.  This early mutation can be more successful than mutating the child population.  

The individuals also recombine in a specified manner in the algorithm rather than swap-

ping randomly selected bits.  The child then becomes a combination of both parents, even 

with their mutations.  Overall, both genetic and evolutionary algorithms are similar and 

help inspire new ideas for modeling social behavior.[7] 
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C. NEURAL NETWORKS 

1. Basics 

An Artificial Neural Network (ANN), or commonly referred to as simply a Neural 

Network (NN), is modeled after neurons and synapse connections in the brain.  The de-

sign of a neural network will help simulate artificial behavior by establishing patterns 

when exposed to a situation.  The multi-layer perceptron neural network has proven to be 

an excellent approximator of most non-linear functions.  This neural network entwines 

three key components:  an input layer, one or more ‘hidden’ layers, and an output 

layer.[8]  Figure 2 illustrates how the elements are connected.   

 
Figure 2.   Multilayer Perceptron Neural Network Architecture with Two Hidden Layers 
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The circles represent the ‘neurons,’ or nodes, which are individual perceptions.  

The inputs range from 1 to i , the first hidden layer nodes from 1 to j , second hidden 

layer nodes from 1 to k , and so forth.  The arrows represent the weighted connections 

between neurons.  The weights in the first hidden layer will be referred to as ,i jw , to rep-

resent the weight from the i -th input to the j -th node of the first hidden layer.  The 

weight values determined the established pattern of the neural network.  The output re-

sponse is dependent upon the weighted connections.[8] 

 
 
 
 
 

 
Figure 3.   Illustration of Weight Connections for Two Inputs 
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a.  Single-Layer Perceptrons 
A single-layer perceptron has the ability to handle linear functions and to 

act as binary logic such as AND, OR, or NOT, demonstrated in Figures 4 through 6.  

These binary logic units are evaluated using a hard-limited non-linear activation function:  

 
1 0

.
0 0HL

v
f

v
>

=  ≤
 (1) 

The connection from the input to the perceptron is given a weight, and the perceptron can 

also have a bias value to satisfy the desired pattern.  The values inside the triangles repre-

sent the values of the weighted connections.[8]   

 

 
X1 X2 v u
0 0 -0.75 0
0 1 -0.5 0
1 0 -0.5 0
1 1 0.25 1

 
 
Figure 4.   Single-Layer Perceptron as an AND Binary Logic Unit 
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X1 X2 v u
0 0 -0.25 0
0 1 0.25 1
1 0 0.25 1
1 1 0.75 1

 
Figure 5.   Single-Layer Perceptron as an OR Binary Logic Unit 

 

 

X1 v u
0 0.25 1
1 -0.25 0

 

Figure 6.   Single-Layer Perceptron as an NOT Binary Logic Unit 
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b. Multi-layer Perceptrons 
There are three requirements for a multi-layer perceptron neural network.  

The neural network must have one or more hidden layers, meaning more than simply an 

input and output layer.  The hidden layers are what allow the network to respond to more 

complex patterns.  The second requirement is that the network must have a high degree of 

connectivity, so each node from one layer will be connected to all the nodes in the fol-

lowing layer.[8] 

The third requirement for the perceptrons in a multi-layer perceptron neu-

ral network is that they must use a differential nonlinear activation function.  The sigmoid 

nonlinearity is a differentiable function and also provides values between 0 and 1.  The 

advantage is that the values from 0 to 1 are analogous to probability distribution and pro-

vide easier pattern recognition.  The sigmoid function is defined as follows: 

 ( ) 1
1sigmoid vf v

e β−=
+

 (2) 

where β  is the gain.[8]  As shown in Figure 7, as β  increase, the slope of the sigmoid 

function becomes steeper. 

 
 

 
Figure 7.   Graph of Sigmoid Nonlinearity Function 
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c. Exclusive OR (XOR) Problem 
The XOR problem is an example of problem that must use a multi-layer 

perceptron because a nonlinear pattern is required to solve an XOR equation.[8]  The two 

inputs to an XOR equation will produce an output according the values in Table 1. 

X1 X2 Output
0 0 0 
0 1 1 
1 0 1 
1 1 0 

Table 1. Binary XOR Table 

When drawing the unit hypercube, no line exists that would separate cor-

rectly (0,0) and (1,1) from (0,1) and (1,0), therefore XOR requires a nonlinear solution.  

A single-layer perceptron has a linear decision boundary, so it cannot be used to solve 

this problem.  Touretzky and Pomerleau designed the XOR solution in 1989 to have one 

hidden layer with two nodes.[8]  Figure 8 represents the architecture of the design. 

 
Figure 8.   Architecture of XOR Problem 
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The activation function for their model is the linear threshold function, where 0T = , as 

shown in Figure 9.  It is similar to a sigmoid function with a large β  value. 

 

 

 

Figure 9.   Graph of Linear Threshold Function 
 

The weights and biases can be any combination of values.  The following values are 

commonly chosen because of their simplicity and are already published in [8].  The 

weights ,i jw  and biases jb  are defined for the input layer as follows: 
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The weights ,j kw  and biases kb  are defined for the hidden layer as follows: 
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The signal flow diagram in Figure 10 illustrates the network with the nu-

meric weights and biases.  The outputs at each stage are computed below. 

 
X1 X2 v1 v2 u1 u2 v1,output Output 
0 0 -1.5 -0.5 0 0 -0.5 0 
0 1 -0.5 0.5 0 1 0.5 1 
1 0 -0.5 0.5 0 1 0.5 1 
1 1 0.5 1.5 1 1 -1.5 0 

 
Figure 10.   Signal Flow Diagram of XOR Problem 

 

2. Backpropagation 
The multi-layer perceptron neural network has the ability to ‘learn’ or create a 

pattern to minimize the mean-squared error between the generated output and the desired 

output.  There are other training algorithms, but the backpropagation algorithm is the 

most commonly demonstrated.[8]  The backpropagation algorithm relies on the simple 

difference equation of the desired output ( )desiredy  and the actual output ( )y  to find the 

error of the network output ( )ye , 
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As shown in Figure 11, the neural network produces the output values after each 

iteration, and each iteration is referred to as an epoch.  After each epoch, the mean-

squared error of the network is evaluated to see if it has reached a minimum.  The learn-

ing process continues on epoch by epoch until an arrangement of weights and biases pro-

duce the minimal error for a problem.  By correlating the data and creating a pattern in 

the network through training, when the network is presented with input data outside the 

training set, the network will produce reasonable output values for the patterned func-

tion.[8] 

 
Figure 11.   Error of the Network Output 

 
a. Forward Path 
Since there can be multiple hidden layers, the output y  is generated at the 

end of the forward path, as shown in Figure 11 and derived in [8].  One hidden layer is 

illustrated in Figure 12.  The first term jv  is the collection all inputs and weights on the 

node, where m  is the total number of inputs (for simplicity, bias values are not included) 
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 ( ) 1 .
1 jsigmoid j vf v

e β−=
+

 (5) 

Any value of β  can be used.  But once β  is defined for a neural network, it will not be 

changed.  The same process can be continued for all cascaded layers where ( )sigmoid jf v  

will be multiplied by the next layer of weights until the final layer.  The output of the 

network is  

 , ( ).sigmoid final finaly f v=  (6) 

 
Figure 12.   Forward Path 

 
b. Backward Path 
The backward path shown in Figure 13 is a result of the backpropagation 

algorithm.  For each epoch, the error signal is propagated back through the network.  By 

following the backward path, the weights of each connection will change according to 

 ( ), .i j y sigmoid i jw e f v yη∆ =  (7) 

The degree of changes in the weight value depend on a value referred to as the learning 

rate η .[8]  The learning rate is directly related to the response time of the neural network 

in identifying a pattern.  If η  is too small, the network will require more iterations to con-
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verge on a pattern.  If η  is too large, the weights will adjust significantly, typically over-

shooting the desired pattern, causing the network to diverge rather than converge.[9] 

 
Figure 13.   Backpropagation 

 

The backpropagation algorithm is effective when solving the non-linear 

neural networks problems.   

D. BACKGROUND CHAPTER SUMMARY 

A swarm is a group of simple individuals that display characteristics such 

as decentralization, no synchronization, and communication amongst the group.  A 

swarm is able to self-organize to complete tasks as a group.  For artificial swarms, behav-

ioral algorithms have been created to model the real swarm characteristics of bees and 

ants.  The genetic algorithm and evolutionary algorithm are two methods for finding a 

solution in a search space.  Both algorithms perform well, so the algorithms continue to 

be improved upon.  The focus of Chapter III is PSO, which is an emerging evolutionary 

algorithm. 
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Artificial neural networks are another method for simulating artificial be-

havior.  Backpropagation is the most common method for finding the arrangement of 

weights and biases needed to solve a problem.  Backpropagation is often compared to 

other evolutionary algorithms such as PSO.  PSO is described in Chapter III, and its per-

formance is compared to backpropagation. 
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III. PARTICLE SWARM OPTIMIZATION ALGORITHM  

The PSO algorithm is similar to evolutionary algorithms but altered to model 

flocks of birds.  A flock of birds displays more desirable behavioral characteristics than 

the previous insect swarms.  Therefore, the PSO algorithm incorporates more desirable 

movements than the previous evolutionary algorithms.  The PSO equation determines the 

velocity of individual in the swarm.  A simulated flock can locate a target while moving 

according to the PSO equation.  The PSO algorithm also applies to neural networks, and 

it performs better than backpropagation. 

A. THEORY 

1. Flocks 
Scientists are attempting to model the intriguing actions in bird flocking.  The 

synchronous motions of the flock can be observed as they quickly change directions si-

multaneously, scatter, and regroup.  The flock’s social behavior is similar to swarms of 

insects, schools of fish, and herds of animals.  Behaviors are stimulated through environ-

mental factors.  Whether finding food, avoiding predators, or pursuing better environ-

mental conditions such as temperature, the groups typically move with a purpose.  Their 

dynamic behavior in a flock appeared to be related to the distances between each bird in 

the flock.  The initial simulations of flocks of birds were based on modeling these dis-

tances.  The theory was that birds try to maintain an optimum distance between 

neighbors, which results in the synchronous movement.[2] 

The initial theories are lacking realism.  They are lacking any avoidance meas-

ures, so the simulated birds will collide on the screen.  Since two real objects cannot oc-

cupy the same space, another approach had to be taken.  Another consideration is an evo-

lutionary algorithm.  In evolutionary algorithms, the positions of the population change 

because the current population creates another child population with similar positions.  

This position change is dependent upon the recombination of parent positions.  The child 

does not occupy the same position as either parent, but the child’s position is nearby.[7]  

The positions changes are abrupt, and there is not a smooth transition from one genera-

tion to the next.  The evolutionary algorithm needs to be modified. 
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To provide a realistic algorithm, the population of a flock has to remain the same 

without ‘reproducing.’  Real flocks of birds do not reproduce during mid-flight.  To reach 

all the desired locations in the space, the population needs to physically move to the new 

position rather than simply relocate.  The individual members of the population will 

move from position to position by an assigned velocity.  To move together as a flock, the 

original concept of maintaining an optimum distance difference gave way to velocity 

matching.  The velocity of an individual is changed to match the velocities of their 

neighbors.  The agents, the common term for the individuals in the simulated flock, will 

begin to synchronize their movements by having the same velocity vectors.  The initial 

simulations also lack stimulants to trigger changes in behavior.  Once the simulated flock 

joins together in formation, it continues in one direction uninterrupted.  To cause change, 

‘craziness’ is implemented, so a random variable is added to the matched velocities in 

order to create variations in the flock movement.[2]   

Frank H. Heppner, a zoologist at the University of Rhode Island, created simula-

tions that involve a flock being attracted to a ‘roost.’[2]  The roost is a selected position 

on the screen to give the flock a target.  After each iteration, the agents can determine 

their distances from the roost by using a two-dimensional XY  distance equation referred 

to as the ‘cornfield vector,’ where 

 ( ) ( )2 2100 100distance presentx presenty= − + −  (8) 

for an agent at point ( ),presentx presenty  and a roost at the point ( )100,100 .  Each agent 

is allowed memory so that it can remember its best distance achieved.  The best position 

distance for each agent i  will be referred to as [ ]pbest i  and separated into components 

[ ]pbestx i  and [ ].pbesty i   Each agent can easily adjust the velocity components to move 

toward .pbest   The degree of adjustment is limited by a predetermined value called 

_ .p increment   Variation is still added to flock by randomizing the velocity adjustment 

from 0  to _ .p increment   The new velocity vectors are: 

 

if [ ] [ ], then [ ] [ ] rand( )* _
if [ ] [ ], then [ ] [ ] rand( )* _
if [ ] [ ], then [ ] [ ] rand( )* _
if [ ] [ ], th

presentx i pbestx i vx i vx i p increment
presentx i pbestx i vx i vx i p increment
presentx i pbesty i vy i vy i p increment
presentx i pbesty i

> = −
< = +
> = −
> en [ ] [ ] rand( )* _ .vy i vy i p increment= +

 (9) 
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Another advantage of a flock, or any group from insects to herds, is the communi-

cation within the group.  Sharing information allows the group to benefit from one indi-

vidual’s discovery.  The group can collectively achieve the goal, whether it is finding 

food or another desired object.  Incorporating this social behavior into the artificial flock 

meant each agent had to retain the value of the best position out of the entire flock, the 

global best position.  The array index gbest  is used to indicate this global position, so 

[ ]pbestx gbest  is the X  component global best position and [ ]pbesty gbest  is the Y  

component global best position.  The array of agent values and gbest  is updated every 

iteration to reflect the most recent positions and the global best position.  The following 

equations update the agent velocity vectors: 

 

if [ ] [ ], then [ ] [ ] rand( )* _
if [ ] [ ], then [ ] [ ] rand( )* _
if [ ] [ ], then [ ] [ ] rand( )* _
if [ ] [ ], th

presentx i pbestx i vx i vx i g increment
presentx i pbestx i vx i vx i g increment
presentx i pbesty i vy i vy i g increment
presentx i pbesty i

> = −
< = +
> = −
> en [ ] [ ] rand( )* _ ,vy i vy i g increment= +

 (10) 

where _g increment  serves the same purpose as _p increment  earlier.  When 

_g increment  is a large value, the velocities are over-adjusted.  The flock quickly clus-

ters around the roost within a few iterations.  When _g increment  is smaller, the flock 

circles around the target.  The flock has time to demonstrate synchronized movement as it 

approaches and lands on the roost.  This simulation proves to be realistic, and it works 

without the original concepts such as velocity matching and craziness.[2]   

 To further improve performance, the velocity change needs to be more propor-

tional to the distance of the agent from the targeted object.  Instead of classifying all tar-

gets either greater than or less than the best position, the distance and direction of the pre-

sent position from the personal best position can be incorporated into the equation: 

 ( )[ ] [ ] rand( )* _ * [ ] [ ] .vx i vx i p increment pbest i present i= + −  (11) 

Further testing shows that the values of _p increment  and _g increment  are irrelevant 

after adjusting the algorithm for acceleration.  To incorporate both the personal best posi-

tion and the global best position, the random terms are multiplied by 2 to give a mean 

value of 1.[2]  The final equation is settled upon: 
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( )
( )

[ ] [ ] 2*rand( )* [ ] [ ]

2*rand( )* [ ] [ ] .

vx i vx i pbestx i presentx i

pbestx gbest presentx i

= + −

+ −
 (12) 

Other versions of the equation have been tested, but Equation (12) is the most ef-

fective.  Thoroughly derived in [12], it is known as the Particle Swarm Optimization 

(PSO) equation, credited to James Kennedy and Russell Eberhart in 1995.  Kennedy and 

Eberhart decided that a swarm of particles was a more appropriate name for the flock of 

agents since the simulations began to take on the swarm and swarm intelligence charac-

teristics previously outlined. 

2. Parameters  

The Particle Swarm Optimization equation is commonly cast in the form 

 ( ) ( )1 1 2 2( 1) ( ) ( ) [ ( ) ] [ ( ) ]i i i i i i iv k w k v k p x k G x kα γ α γ+ = + − + −  (13) 

in [4].  The PSO equation is to be applied to the position equation of a particle 

 ( 1) ( ) ( 1)i i ix k x k v k+ = + +  (14) 

where:  

i  = the particle index, 

k  = the discrete time index, 

( )iv k  = the current velocity of the i -th particle, 

( 1)iv k +  = the velocity of the i -th particle at the subsequent time index, 

( )ix k  = the current position of the i -th particle, 

( 1)ix k +  = the position of the i -th particle at the subsequent time index, 

ip  = the personal best position of the i -th particle, 

G  = the global best position found by all particles in the swarm, 

1 2,i iγ γ  = different random numbers from 0 to 1, 

( )w k  = inertia weight function to determine the influence of the current velocity  

  on the  subsequent velocity, and 

1 2,α α  = acceleration constants. 
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 All of the parameters of the equation are experimentally evaluated to find optimal 

values.  The acceleration constants 1α  and 2α  are commonly set at 2 to maintain a mean 

value of 1 for the random numbers.  The inertia weight function ( )w k  is typically either a 

constant or a decreasing linear function.  The inertia weight function determines the in-

fluence of the current velocity on the subsequent velocity.  The benefit of having a de-

creasing linear function is that the influence of the current velocity also decreases as the 

training progresses.  This idea will help the overall velocity change decrease as the train-

ing progresses.  As the particles near the target, the decreasing velocity will cause the 

particles to advance more slowly.  The decreasing speed allows a particle to make the 

small adjustments in position required to find the exact location of the target.[9]  

 The swarm will converge on a target, but a gradual paced convergence ensures 

that the space was thoroughly searched before settling on a target.  When the conver-

gence is quick, the swarm is suddenly drawn to the target, and the result would be a dan-

gerous collision of particles.  A maximum velocity maxV  is used to limit ( 1)iv k +  outside 

the PSO equation.  When ( 1)i maxv k V+ < , ( 1)iv k +  will be used to improve the position.  

When ( 1)i maxv k V+ > , maxV  is used instead.  If maxV  is too large, the swarm will gather too 

quickly, limiting potential solutions.[9]   

 Other factors included in the simulation are search space range and population 

size.  The search space range needs to allow enough freedom for a thorough search so 

that the swarm is not restrained from the start.  Any particles outside the designated 

search space range will not find a position close to the target, so they will be directed 

back to their personal best position inside the search area.  The population size is a trade-

off between convergence rate and computational time.  The compromised size is 25 parti-

cles since the performance increase from 20 to 25 particles was greater than 25 to 30 par-

ticles. Any population over 30 particles becomes a computational burden.[9]     

B. RECENT RESULTS 

1. Comparison to Backpropagation  
The two-dimensional examples have been proven to work with PSO.  Since most 

problems are nonlinear and multi-dimensional, the PSO equation is applied to training 

neural networks.  Eberhart continues to apply the PSO concept to become an approxima-
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tor that evolves to solve the problem.[7]  The goal is to train a neural network better than 

previous methods such as training by backpropagation.   

Based on computational requirements in [9], Venu Guidise and Ganesh Venaya-

gamoorthy demonstrate that the PSO is more successful than backpropagation.  They put 

the two algorithms through the neural network to solve the nonlinear quadratic equation 
22 1y x= +  by reaching a goal error of 0.001.  The comparison is based on the total num-

ber of computations required to reach the goal error averaged over 10 trials.  In short, the 

experiment shows that PSO requires fewer computations than backpropagation.  Other 

factors are still important in determining performance, so PSO is not proven to be overall 

better than backpropagation.  They did not adjust the multiple parameters of the PSO 

equation once they settled on the default values for the experiment.  Backpropagation 

also has a greater dependence on bias values than PSO, and that difference is not investi-

gated either.[9] 

2. PSO Toolbox  

Brian Birge created a Particle Swarm Optimization toolbox (PSOt) for the 

MATLAB scientific programming environment.[4]  The toolbox provides additional 

functions that allow an operator to use when programming.  This toolbox is designed to 

work alone or with the already developed neural network toolbox.  In the Neural Network 

toolbox, the neural network is trained through backpropagation.  Birge created functions 

to train the neural networks with PSO.  He outlines the capabilities and a few examples in 

[3].  Other parameters are outlined in Appendix A, but the inertial weight function will be 

described since it has a significant effect on the next velocity.  For ( )w k , Kennedy and 

Eberhart discovered that the best experimental value so far is a linear decrease from 0.9 

to 0.4 over 1000 iterations.[7]  Birge uses a linear decrease from 0.9 to 0.2 over 1500 it-

erations as a default parameter for his PSO function.  The function also evaluates a solu-

tion for the neural network in nine dimensions.[4]  

Birge creates a demonstration that compares backpropagation to PSO in [4].  This 

demo program can train a neural network to solve the XOR function previously dis-

cussed.  The demo program allows the user to select zero, one, or two hidden layers for 

the neural network and whether the network is to be trained by PSO or backpropogation.  
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Appendix B outlines an example for training the neural network with one hidden layer to 

solve the XOR problem using backpropagation.  The sum-squared error is plotted after 

each iteration.  Figures 14 through 16 illustrate how the algorithm is trying to converge to 

a sum-squared mean error of 0.02, represented by the red dotted line in the plots.  If the 

network has not reached the goal error of 0.02 by 1000 epochs or remains at the same er-

ror for an extended period of time, the training starts over with different initial weight 

values.  The equations used for determining of the new initial weights can be found in [4] 

and [7].  This example finds a solution after 2688 iterations.  The first 1000 epochs in 

Figure 14 only reach the error of 0.998464, extremely far from 0.02.  The training is 

started over with different initial weights. 

 
Figure 14.   Plot of First 1000 Epochs of the Backpropagation Algorithm                               

for an XOR Problem 
 

The lowest error at the next 1000 epochs in Figure 15 is 0.542084.  Since these 

1000 epochs in Figure 15 also do not reach the goal error of 0.02, the training is started 

over again with another set of different initial weights. 
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Figure 15.   Plot of Next 1000 Epochs of the Backpropagation Algorithm                              
for an XOR Problem 

 The next set of iterations converges at a faster rate because the initial weights are 

now closer to the desired goal.  After 688 iterations, the algorithm converged to meet the 

goal of 0.02, shown in Figure 16.  By reaching an error of 0.02, the program indicates 

that the neural network is trained for the XOR problem. 

 

Figure 16.   Plot of Final 688 Epochs of the Backpropagation Algorithm                                
for an XOR Problem 
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 Figures 17 through 21 illustrates an example for training the neural network with 

one hidden layer to solve the XOR problem using PSO; the full program output outlined 

in Appendix C.  The PSO program plots the sum-squared error after each iteration (same 

process as in backpropagation).  The additional plot in the PSO demonstration provides 

an illustration of the particle positions, personal best positions, and global best position.  

The first dimension values of the positions are on the x -axis while Birge plots the ninth 

dimension values on the y -axis.[4]  The blue dots represent the particle locations, and 

the black dots represent each particle’s personal best position.  The red crosshair repre-

sents the swarm’s global best position.  The final plot shows a magenta line to represent 

the movement of the global best position around the search space.  This example finds a 

solution after 1340 iterations.  The first 1000 iterations algorithm converged to a sum 

squared error of 0.66687.  Figures 17 through 19 show the progression during the 1000 

iterations at 25, 600, and 1000 epochs.  The location of the global best position barely 

moves throughout the search space. 

 
Figure 17.   Plot of First 25 Epochs of the PSO Algorithm for an XOR Problem 
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Figure 18.   Plot of First 600 Epochs of the PSO Algorithm for an XOR Problem 

 

 

Figure 19.   Plot of First 1000 Epochs of the PSO Algorithm for an XOR Problem 
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 The algorithm has failed to reach a sum-squared error of 0.02 after 1000 epochs, 

so it starts over as indicated in Figure 20.   

 

Figure 20.   Plot of Next 25 Epochs of the PSO Algorithm for an XOR Problem 
 

 As shown in Figure 21, the program reaches a solution by 340 epochs.  The ma-

genta line represents the path of problem solving, which is the path of the global best po-

sition over the 340 epochs.  The blue line also indicates sum-squared error of 0.02.  As a 

result, the neural network is trained by the PSO algorithm to solve the XOR problem after 

1340 epochs.   



34 

 

Figure 21.   Plot of Next 340 Epochs of the PSO Algorithm for an XOR Problem 
 

C. CONCLUSIONS 
These demonstrations are only simple examples of particle swarm abilities.  The 

PSO algorithm performs the same as, if not better than, the backpropagation algorithm.  

The PSO method typically finds the solution faster than backpropagation.  The toolbox 

for MATLAB is helpful because it allows the training of a neural network by the PSO 

algorithm without having to write a new code each time.  The PSO algorithm simulation 

in MATLAB is analogous to UAVs searching for a known target using a non-linear 

method.  Unfortunately, PSO does not apply realistically to large objects such as UAVs 

searching for a target.  Particles are accelerating at all different rates and directions, and 

these maneuvers are not practical when the particle is a real aircraft.  Changing velocity is 

not fuel efficient, especially when it is altered repeatedly.  The smaller UAVs are more 

agile than the larger version, but they are still not designed to handle aggressive changes 

in speed and abrupt changes in direction.  The PSO algorithm requires both aggressive 

maneuvers.  Collision avoidance is an essential concept that is not even considered with 

the particle swarm.  The UAVs would collide with each other because the next velocity 

vectors and positions are unpredictable and calculated without concern for obstacles 

nearby.  A more realistic approach is still needed to maneuver a swarm of UAVs.  A lin-

ear algorithm is presented in Chapter IV. 
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IV. LINEAR ALGORITHM FOR AUTONOMOUS UAV 
CONTROL 

A linear algorithm provides an effective method for maneuvering individuals in a 

swarm.  By keeping velocity constant, the swarm of UAVs are realistically simulated. 

A. THEORY 
Two concepts from the nonlinear approach are applicable to other methods.  First, 

the swarm does not have to travel as a synchronous flock toward a target.[2]  To find a 

known target, the UAV can simply try to find the shortest distance between itself and the 

target.  Second, minimizing error between the particle and the target is an effective proc-

ess for finding the target.[4]  The acceleration of particles around the search space is the 

main concern.  By keeping a constant velocity, a linear algorithm can be used instead of 

the previous non-linear equation.  To find the target, the direction the UAV is heading 

needs to change rather than the velocity.  A linear control approach should be simpler and 

more stable since the UAVs will not quickly change directions and locations.  Maintain-

ing a constant speed while searching and attacking a target will ensure better fuel effi-

ciency.  The linear algorithm has faster computational times, and a straightforward linear 

simulation can be easily scaled for a larger search space.[3] 

Chin Lua, Karl Altenburg, and Kendall Nygard model a group of UAVs as a 

swarm to conduct a synchronous multi-point attack in [3].  A synchronous attack is dif-

ferent from a synchronous swarm.  A synchronous attack means that the swarm will 

reach the target at the same time, but the individual UAVs are moving asynchronously.  

The program uses a linear algorithm to determine how each UAV should move.  Before 

deciding on the next position, it considers other factors besides target location.  In a real 

group, each UAV has the ability to gather and evaluate data from the environment with 

sensors.  Sensors allow communication with the other UAVs and determine distances be-

tween objects.[3]  

1. Sensors 

Each UAV carries various sensors to decipher the surrounding environment.  In 

order to coordinate an attack, each UAV must communicate with the others.  This com-

munication requires a transmitter and receiver.  Communication is a disadvantage when 



36 

conducting operations in an enemy area.  Each communicated signal puts the UAV at risk 

since the signal can be traced by the enemy.  This program keeps communication to a 

minimum.  The necessary low-power transmissions between UAVs are short-range sig-

nals.  The communication is limited to the ‘visual’ range of the sensors.  Typically the 

visual range only includes the immediate neighboring UAVs.  Instead of broadcasting to 

the entire swarm, information is passed from neighbor to neighbor until the whole swarm 

is informed.[3]   

To find the target, the UAV has to be able to receive a long-range signal from the 

target.  Any emissions from the target should be picked up by the receiver.  Since receiv-

ing is a passive function, the UAV experiences less risk of enemy detection when receiv-

ing.  Two receivers are now needed to collect both the short-range signals from the low-

power transmissions of other UAVs and the long-range signals from emitting targets.[10]   

Sensors are also required to determine the direction and distance of the received 

signals.  From the long-range signal, the UAVs need to constantly identify the location of 

the target to allow for heading corrections.  From a short-range signal, UAVs can deter-

mine distances.  Each UAV can maintain a threshold distance so that they will avoid each 

other and obstacles that cross that boundary.  From the gathered information, the mem-

bers of the swarm can decide which function to perform.  These movements of the swarm 

can be broken down into three basic maneuvers described in the following section.[10]  

The simulated sensors provide the correct distances between objects because all 

object locations are globally known in the program.  In the program, any information 

transmitted is globally communication, but a UAV is limited to transmitting under the 

correct circumstances. 

2. Swarm Movement 
The swarm does not move as a whole unit, but all the individuals in the swarm 

move according to three maneuvers:  avoid, attract, and orbit.[3]  Avoiding other UAVs 

and obstacles in the search space is the foremost function.  Avoidance is crucial so that 

the UAV can survive to carry out the mission.  Each UAV has a threshold boundary dis-

tance, so any UAV entering the threshold distance will cause both UAVs to avoid each 

other.  To avoid an obstacle within a specified visual range, the UAV will turn counter-
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clockwise until the obstacle is not longer in the path of the UAV.  The attraction maneu-

ver is required to direct the heading of the UAV toward the target.  The target is at a 

known location for this simulation.  In a two dimensional simulation, the distance and 

direction of the target is in terms of XY -coordinates.  The UAV is constantly correcting 

its position and heading to minimize the distance to the target.  Attraction is also used to 

create an orbit.  When a UAV wants to orbit a circle, waypoints are mapped out to form a 

circle.  The closest waypoint to the UAV is the reference point, and UAV is attracted to 

the next point counterclockwise.  As the UAV moves, the points update, so the UAV is 

always attracted to the next point.  The control architecture in Figure 22 dictates the hier-

archy in movements.  All five behaviors functions are derived from the three basic ma-

neuvers.[3]  

 
Figure 22.   Control Architecture 

 

 The sequence of events is intuitive.  The UAVs are in a search state unless they 

are required to avoid each other or to begin the attack sequence.  It is important to under-

stand that the UAVs continue to avoid each other during the attack sequence if necessary.  
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The UAVs enter the avoidance state often in the simulation, but the simulation covers 

only a small area.  In reality, the distances are much greater so the UAVs are not operat-

ing in such a close proximity as indicated in the simulation.  The attack sequence is to 

first orbit the target, then to orbit the station, and finally to attack the target.  The attack 

sequence is better described with the example in the following section.[3]   

B. RECENT RESULTS 

The program swarm.java was created by Chin Lua, Karl Altenburg, and Kendall 

Nygard at North Dakota State University [3].  The simulation is a two-dimensional dem-

onstration of a synchronized multi-point attack by UAVs.  The population of UAVs can 

be varied from 1 to 18, but it is 8 for this example.  The UAVs are represented by green 

triangles.  The other parameters that are adjustable are speed, turning ability, repulsion 

range, and visual range.  The display for these parameters is located in the upper left cor-

ner.  Upon initialization, all UAVs will head ‘south’ until a target is located, shown in 

Figures 23 and 24.  Although avoidance is the highest priority, there are no triggers be-

fore the first target to cause any UAV to have to avoid each other or to change direction.   

 
Figure 23.   Swarm.java Program:  UAVs at Initialization 
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Figure 24.   Swarm.java Program:  UAVs Head South 

 

This program requires interaction from the user, so with the mouse, the user can 

place a target (represented by a blue circle) anywhere within the screen.  There are two 

circles, an inner circle and outer circle, around the target that act as guides for the UAVs 

to follow.  The target’s inner and outer circles are predetermined to be safe distances 

from the target.  A safe distance is out of any enemy detection range or counterattack 

range.  Neither circle is illustrated, but the UAVs will head toward the inner circle until 

an orbit circle appears on the outer circle.  In Figure 25, the outline of the inner circle can 

be detected from the circular path that five UAVs are following. 

 
Figure 25.   Swarm.java Program:  UAVs Travel Around Inner Circle 
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The center for an orbit circle is 1 of 18 waypoints spaced 20 degrees apart around 

the outer circle.  The outer circle outline will follow the center of the orbit circles.  The 

first orbit circle is visually displayed in Figure 26.  The orbit circle is represented by a 

black dotted circle.  The location of the first orbit circle around the outer circle is chosen 

at random for the program, but it could also be determined according to the surroundings.  

A UAV will head toward the orbit circle if it is within its visual range.  When the UAV 

color changes from green to purple, the UAV is heading toward an orbit circle or is cur-

rently orbiting the circle.  Once a UAV touches the orbit circle, it becomes a station 

owner.  Through the simulated local communication, the transmitter on the UAV broad-

casts that it is the station owner.  The purpose of the station circles is to collect all the 

UAVs in the same general area to locally communicate in order to coordinate the attack.  

The station circles are out of range of enemy detection, so the time allotted to station 

keeping is adjustable.   

 
Figure 26.   Swarm.java Program:  First Orbit Circle 
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The remaining UAVs search for the successive orbit circles that will appear coun-

terclockwise around the outer circle in Figure 27.  

 
Figure 27.   Swarm.java Program:  5 Orbit Circles 

 

Figure 28 shows that all UAVs will become station owners and continue to orbit 

the circle.   

 
Figure 28.   Swarm.java Program:  8 Orbit Circles 
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The attack is the only synchronized action.  By orbiting around the station circles, 

the UAVs are allowing the other UAVs to reach the target.  The first UAV to complete a 

specified number of orbits around the circle, analogous to the amount of fuel used, will 

issue an order of attack.  The attack order is locally communicated from one UAV to the 

neighboring UAVs.  It is irrelevant to specify which UAV issued the attack order.  Since 

the UAVs travel at a constant velocity, delay is introduced into the program to indicate 

when each UAV should leave the orbit circle.  The goal is to approach the target at the 

same time and from symmetric locations around the target.  Since there are only 8 UAVs, 

the UAVs travel around the inner circle until they are equally spaced by 40 degrees.  

There are still timing errors in the simulation because the location of each UAV around 

the orbiting the circle is not synchronized.  When a UAV leaves the orbit circle, it returns 

to a green color.  Figures 29 and 30 show the UAVs leaving the orbit circle and traveling 

around the inner circle to take attack positions 40 degrees apart. 

 
Figure 29.   Swarm.java Program:  UAVs Begin Attack Sequence 
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Figure 30.   Swarm.java Program:  6 UAVs Are Taking Attack Positions 

 

Once the UAVs have reached the 40-degree spacing around the inner circle, they 

turn toward the target.  When a UAV touches the target, the UAV explodes, which is rep-

resented by light and dark blue pixels in Figure 31.  After the UAV explodes, the orbit 

circle it possessed earlier will disappear from the screen as in Figures 31 and 32.  In these 

figures, the second station keeper hits the target first followed by the rest of the swarm. 

 
Figure 31.   Swarm.java Program:  All UAVs Are In Attack Positions 
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Figure 32.   Swarm.java Program:  Attack Sequence 

 

 In Figure 33, the last UAV has just turned toward the target.  The delayed attack 

is due to timing errors and avoidance maneuvers when traveling to the inner circle from 

the orbit circle. 

 
Figure 33.   Swarm.java Program:  Last UAV Attacks 
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 When the last UAV hits the target in Figure 34, all of the orbit circles are also 

gone, indicating that all station keepers reached the target. 

 
Figure 34.   Swarm.java Program:  Attack Completed 

 

 The program is designed for only one target.  After the attack is completed, the 

target disappears, and the program is over.  Additional targets can be placed around the 

screen, but obviously there are no UAVs left to coordinate an attack.  To simulate another 

attack, the user must press the reset button at the bottom of the screen.   

C. NEW RESULTS 
The program has been modified to allow the UAVs to pass over the target without 

exploding.  Surveying and taking pictures or releasing bombs and missiles are more real-

istic missions than the previous suicide mission.  The goal is to allow the swarm of UAVs 

to seek out and attack the target one after another in a ‘stream raid’ fashion.  Once all of 

the UAVs have passed over the target, the target disappears from the screen.  The UAVs 

are now ready to attack the next target that appears.  The population size is 8 UAVs for 

this scenario.  For the original program, the population sizes of 1 through 18 were ob-

served and the attack sequence was timed.  The results are shown in Table 2. 
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UAV 
Population

Size

Number
of 

Trials 

Average
Attack 
Time 

1 10 34.91 
2 10 39.64 
3 10 41.88 
4 10 43.53 
5 10 43.99 
6 10 46.47 
7 20 48.69 
8 20 47.77 
9 20 51.31 
10 20 50.74 
11 20 51.02 
12 20 50.87 
13 20 50.71 
14 20 50.46 
15 20 50.15 
16 20 48.81 
17 20 51.59 
18 20 52.05 

Table 2. UAV Population Size and Average Time of Attack  
 

The duration of the attack increases with population size up to eight UAVs.  The 

increase in population also increased the number of avoidance maneuvers required 

throughout the simulation, attributing to the longer time required to complete the required 

orbits around the station circle and attack.  After the population size reaches nine UAVs, 

the duration of attack remained relatively constant despite additional UAVs.  A popula-

tion of eight provided an acceptable attack time for the size.  Eight UAVs requires less 

avoidance maneuvers when finding the target.  Eight UAVs also creates only eight orbit 

stations.  Since each orbit station is spaced 20 degrees around the circle, these first eight 

stations occupy almost half of the outer circle from 0 degrees to 160 degrees.  With this 

setup, there are no UAVs directly across the circle from each other.  The heading for the 

targets after passing over the target for this simulation is arbitrary chosen to be south.  

The simulation can also be altered to send the UAVs to any other heading or allow them 

to pass through the target completely and continue on that attack heading without inter-

fering with any UAVs still in the attack sequence.   

 The other parameters that are still adjustable in the program are speed, turning 

ability, repulsion range, and visual range.  The initial, search, and station-keeping actions 



47 

of the UAVs are unaltered from the original program until the attack sequence.  As de-

picted in Figure 35, all UAVs still become station owners and continue to orbit the circle 

until the attack order is issued.   

 
Figure 35.   Modified Swarm.java Program:  8 Orbit Circles 

 

The number of orbits necessary depends upon the time required for all UAVs to 

become station keepers and the amount of fuel allotted for the attack sequence.  The first 

UAV to complete a specified number of orbits around the circle, analogous to the amount 

of fuel used, issues an order of attack.  The attack order is locally communicated from 

one UAV to the neighboring UAVs.  Each UAV leaves the orbit station at delayed inter-

vals to sequentially pass over the target and prevent collisions.  The UAV with the high-

est index number, which is the UAV that became a station keeper last, is the first to at-

tack the target.  When a UAV leaves the orbit circle, it returns to a green color.  Figure 36 

shows the beginning of the modified attack sequence from when the first UAV leaves an 

orbit circle.  
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Figure 36.   Modified Swarm.java Program:  First UAV Heads Towards Target 

 

At the appropriate delayed time, the second UAV leaves the orbit circle and heads 

toward the target as shown in Figure 37. 

 
Figure 37.   Modified Swarm.java Program:  Second UAV Heads Toward Target 
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Each UAV passes over the target in an orderly manner and heads ‘south.’  The di-

rection heading after the attack can be specified by the designer.  Figure 38 and 39 show 

the UAVs passing over the target and turning to head south.  Once a UAV has passed 

over the target, it enters search mode.   

 
Figure 38.   Modified Swarm.java Program:  First UAV Passes Over Target 

 

 
Figure 39.   Modified Swarm.java Program:  UAVs Continue Attack 
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Because the screen recycles UAVs from the bottom to the top, the UAVs going 

south appear again at the top of the screen as in Figure 40.   

 
Figure 40.   Modified Swarm.java Program:  UAVs Continue Attack While                         

Recycled UAVs Appear at the Top of the Screen 
 

Realistically the UAVs would continue south without interfering with the attack.  

The simulated attack does not run smoothly because the attacking UAVs have to avoid 

the recycled UAVs.  Figure 41 reveals that the UAV are in a staggered line because of 

previous avoidance maneuvers. 



51 

 
Figure 41.   Modified Swarm.java Program:  All UAVs Have Passed Over the                    

Target and Head South Until Another Target is Found 
 

 The UAVs continue south until another target is detected (the user must place an-

other target on the screen).  Once the target is placed, the UAVs again head toward the 

inner circle search for the orbit circles as in Figure 42.  In Figure 43, a UAV finds the 

first orbit circle for the second attack sequence. 

 
Figure 42.   Modified Swarm.java Program:  New Target is Detected by the Swarm 
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Figure 43.   Modified Swarm.java Program:  UAV Finds First Orbit Circle  

 

 The UAVs all become station keepers again and carry out the same sequence as 

described for the first attack.  They continuously search and attack targets for the rest of 

the simulation.   

D. CONCLUSIONS 
The linear approach to an attack sequence allows for a smoother operation.  The 

swarm of UAVs proceeds in a realistic manner.  The UAVs maintain a constant velocity, 

and the simulation incorporates the aerodynamic capabilities of the UAV by setting a 

maximum turn angle.  Most importantly, they avoid each other to prevent collisions 

which would compromise their ability to complete a mission.   

The modified program still needs more improvement because it only works with 

one stationary target at a time.  Other attacking scenarios need to be considered such as 

attacking a moving target.  The swarm should be able to handle more than one target.  It 

would be beneficial to attack the targets by dividing the swarm for the attack sequence 

and regrouping afterward.  If the swarm does not divide, then it should also have the abil-

ity to decide which target is more important.  The swarm could then pursue the most im-

portant target first and then reevaluate the situation after the attack to determine if the 

other target should be attacked.  A three-dimensional version of the program could be 

created to include elevation changes.  The program could also include the simulated loss 
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of a UAV.  On a real battlefield, a UAV will only drop out of the swarm if it is damaged 

by the enemy or if it encounters mechanical problems. 

The program could also include adjustments to the computational ability of the 

UAVs.  Obviously a real UAV will have a distance and time limit because of fuel, but it 

can at least remain airborne for more than one attack sequence.  The simulated swarm 

should have the ability to monitor fuel levels to have control over determining when the 

swarm should return to base.   

Overall, the linear algorithm performed well, and the program allows for more 

flexibility in design.  In the next chapter, the linear algorithm is compared to the PSO al-

gorithm, and conclusions and future work are presented. 
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V. SUMMARY  

A. PSO VERSUS LINEAR ALGORITHM 
Through flock simulation and the derivation of PSO, scientists discovered that a 

synchronous flock is not essential.[2]  The simulated synchronized flock limits the scope 

of the group because it does not allow of individual exploration of the area.  The flock 

has to tightly travel together; in order to search the area thoroughly, the entire flock 

would have to go over all possible locations.  By allowing individuals to travel slightly 

outside the group, the group covers a larger search area at one time.  As they identify the 

individual best found positions thus far, the group is able to discover the target faster.  

For a group to cooperate and achieve goals such as finding a target, the group must com-

municate.  Therefore, communication, rather than synchronization, is necessary for suc-

cess.[2]   

The current PSO algorithm applies to weightless particles in multiple dimensions.  

The PSO algorithm can offer the advantage of finding the pattern in almost any problem 

space to reach a solution, but the current sequence can dead end and restart in a new posi-

tion.  It is a waste of computation time and resources to create an algorithm that would 

have a swarm of UAVs pursue a direction only to find it is the wrong path.  If the target 

cannot be reached from the current path of the swarm, the PSO algorithm’s solution is to 

start over.  The swarm needs more guidance and a process to get out of a dead-end situa-

tion and back on track.  With further research and improvements, the PSO algorithm can 

be applied to real objects limited to three dimensions.  

PSO is focused on minimizing error between the particles and the target.  In addi-

tion to changing the particle’s direction to head toward the target, the algorithm acceler-

ates the particles.  When applying PSO to real flying objects, the constant speed changes 

are the main drawback.  Actual UAVs should maintain a constant velocity to operate in a 

stable and controlled manner to prevent chaos and collisions.  The constant velocity will 

also increase fuel efficiency and decrease strain on the platform.  Although the PSO 

method is not practical, the central idea of minimizing error is completely applicable to 

UAVs.  When the target location is known, error minimization is a valuable tool.   
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Compared to the PSO, the linear algorithm produces the most realistic results.  

The linear algorithm incorporates the ideas that have performed well in the PSO.  The 

swarm does not have to move synchronously, and the UAVs move toward the target by 

minimizing the error in their position from the target.  The error is minimized in a linear 

fashion since the velocity of the UAV remains constant.  Linearity produces great results, 

and the simulated UAVs are able to find the target quickly and efficiently.  The program 

also handles the UAVs as objects that occupy space.  Each UAV has a threshold bound-

ary distance, so they will avoid each other if they get too close.  These movements allow 

the swarm to move toward a destination in space without collisions. 

Since the swarm does not travel in formation, the UAVs need to regroup once a 

target is found.  The orbit stations around the target provide organization before the at-

tack.  While orbiting, the UAVs can communicate and coordinate when the attack will 

occur.  The orbit circles are also far enough from possible dangerous areas surrounding 

the target.  The simulation shows the distance to be small relative to the size of the target 

and UAVs, but the radius of the circle is adjustable.  Overall the linear algorithm can be 

more easily simulated and applied to realistic missions on a larger scale.   

B. FUTURE WORK 

The linear algorithm simulation can be improved according to the suggestions in 

the conclusion of Chapter 4.  The simulation focuses on the swarm’s motions, so it does 

not include all aspects needed for autonomous control.  A major part of autonomous con-

trol is movement, but the maneuvers are in response to the situation surrounding the 

UAV.  The simulation only includes three inputs that affect movement:  the location of 

the target, whether another UAV has crossed the threshold boundary distance, and the 

predetermined attack sequence of finding orbit circles.  The simulation does not include 

how the location of the target is determined by the receiver, how the distance between 

UAV is determined, and how the first orbit station is determined.  The ability to attack a 

target is dependent on the UAV’s ability to detect and locate the target.   

The sensors on the UAVs need to be incorporated into the design of the swarm.  

Sensors are needed for target classification or identification and threat evaluation.  The 

swarm is attempting to find targets that are difficult to locate with simple sensors.  The 

sensors on each UAV can create a sensor network used to find the low-probability-of-
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intercept (LPI) emitters.  The UAVs will have the computational capacity to process the 

signals from LPI emitters to determine their location. 

Another issue not addressed in the linear method simulation is swarm communi-

cation while in a search mode.  The main advantage of a swarm is the sharing of informa-

tion.  This swarm passes along information such as which UAV is on which orbit circle 

and when they should leave the orbit circles to attack.  Since the swarm is concerned with 

excess communication, they do not communicate during the search mode.  The swarm 

does not travel in formation, so if one UAV does not recognize that a target is found, the 

others are not programmed to relay the information.  This problem is not illustrated in the 

simulation because the target location is assumed to found by all UAVs through sensors.  

The UAVs should be able to communicate when a target is identified so that the entire 

swarm can begin the attack sequence.   

The simulation demonstrates the movement capabilities of a swarm at a funda-

mental level.  Improvements can be made to the swarm movements and coordinated 

strikes along with individual swarm capabilities.  Since maneuvers are based off of the 

information the UAV has gathered, the best data available to the UAV will produce the 

best movements for the situation.  The sensor and communication technological im-

provements will offer more performance advantages to the swarm. 
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APPENDIX A.  MATLAB PSOT TOOLBOX 

The MATLAB PSOt toolbox was developed by Brian Birge while at North Caro-

lina State University.[2]  The zipfile can be downloaded at: 

http://www4.ncsu.edu/~bkbirge/PSO/PSOt.exe 

The PSO function is described below: 
  PSO.M 
  a generic particle swarm optimizer 
  to find the minimum or maximum of any  
  MISO matlab function 
  
  Brian Birge 
  Rev 1.0 
  1/1/3 
  
  Usage: 
     [optOUT]=PSO(functname,D) 
    or: 
     [optOUT,tr,te]=PSO(functname,D,VarRange,minmax,PSOparams) 
  
  Inputs: 
     functname - string of matlab function to optimize 
     D - # of inputs to the function (dimension of problem) 
  
  Optional Inputs: 
     VarRange - matrix of ranges for each input variable, default -100 
to 100, of form: 
        [ min1 max1  
          min2 max2 
             ... 
          minD maxD ] 
  
     minmax - if 0 then funct is minimized, if 1 then funct maximized, 
default=0 
  
     PSOparams - PSO parameters 
       P(1) - Epochs between updating display, works with P(13), de-
fault = 25. 
       P(2) - Maximum number of iterations (epochs) to train, default = 
2000. 
       P(3) - population size, default = 20 
       P(4) - maximum particle velocity, default = 4 
       P(5) - acceleration const 1 (local best influence), default = 2 
       P(6) - acceleration const 2 (global best influence), default = 2 
       P(7) - Initial inertia weight, default = 0.9 
       P(8) - Final inertia weight, default = 0.2 
       P(9)- Iteration (epoch) by which inertial weight should be at 
final value, default = 1500 
       P(10)- randomization flag (flagg), for PSO conforming to litera-
ture = 2, default = 2: 
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                 flagg = 0, same random numbers used for each particle 
(different at each epoch - least randomness) 
                 flagg = 1, separate randomized numbers for each parti-
cle at each epoch 
                 flagg = 2, separate random #'s at each component of 
each particle at each epoch (most randomness) 
       P(11)- minimum global error gradient, if abs(Gbest(i+1)-
Gbest(i)) < gradient over  
                  certain length of epochs, terminate run, default = 
1e-9 
       P(12)- epochs before error gradient criterion terminates run, 
default = 50 
                  i.e., if the SSE does not change over 50 epochs, quit 
program 
       P(13)- plot flag, shows progress display if =1, nothing other-
wise, default = 1 
  
  Outputs: 
     optOUT - optimal inputs and associated min/max output of function, 
of form: 
         [ bestin1 
           bestin2 
             ... 
           bestinD 
           bestOUT ] 
  
  Optional Outputs: 
     tr    - Gbest at every iteration, traces flight of swarm 
     te    - epochs to train, returned as a vector 1:endepoch 
  
  Example:  out=pso('f6',2) 
  
  See Also: TRAINPSO 
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The ‘DemoTrainPSO’ file is from the toolbox and is an example of how to train the neu-

ral network to an XOR function.  All functions used within the demo can be found in the 

toolbox.  Minor changes such as making the variable ‘tr’ a global variable were added to 

adjust for the different versions of MATLAB.   
% DemoTrainPSO.m 
% little file to test out the pso optimizer for nnet training 
% trains to the XOR function 
% 
% note: this does *not* minimize the test set function 
% rather it tries to train a neural net to approximate the  
% test set function 
% 
% Brian Birge 
% Rev 1.0 
% 1/1/3 
 
clear all 
close all 
clc 
help demotrainpso 
global tr 
% Training parameters are: 
%    TP(1) - Epochs between updating display, default = 100. 
%    TP(2) - Maximum number of iterations (epochs) to train, default = 
2000. 
%    TP(3) - Sum-squared error goal, default = 0.02. 
%    TP(4) - population size, default = 20 
%    TP(5) - maximum particle velocity, default = 4 
%    TP(6) - acceleration constant 1, default = 2 
%    TP(7) - acceleration constant 2, default = 2 
%    TP(8) - Initial inertia weight, default = 0.9 
%    TP(9) - Final inertia weight, default = 0.2 
%    TP(10)- Iteration (epoch) by which inertial weight should be at 
final value, default = 1500 
%    TP(11)- maximum initial network weight absolute value, default = 
100 
%    TP(12)- randomization flag (flagg), default = 2: 
%                      flagg = 0, same random numbers used for each 
particle (different at each epoch - least random) 
%                      flagg = 1, separate randomized numbers for each 
particle at each epoch 
%                      flagg = 2, separate random #'s at each component 
of each particle at each epoch (most random) 
%    TP(13)- minimum global error gradient (if SSE(i+1)-SSE(i) < gradi-
ent over  
%               certain length of epochs, terminate run, default = 1e-9 
%    TP(14)- epochs before error gradient criterion terminates run, de-
fault = 200 
%               i.e., if the SSE does not change over 200 epochs, quit 
program 
 
nntwarn off 
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epdt=25; 
maxep=1000; 
reqerr=0.02; 
maxneur=30; 
popsz=20; 
maxvel=4; 
acnst1=2; 
acnst2=2; 
inwt1=.9; 
inwt2=0.2; 
endepoch=1500; 
maxwt=100; 
cnt=0; % counter for neuron architecture 
 
% Training parameters, change these to experiment with PSO performance 
% type help trainpso to find out what they do 
TP=[epdt,maxep,reqerr,popsz,maxvel,acnst1,acnst2,inwt1,inwt2,endepoch,m
axwt,2,1e-9,200]; 
 
disp('-----------------------------------------------------------------
----------------------------------'); 
disp(' '); 
disp('1. 1 hidden layer'); 
disp('2. 2 hidden layers'); 
disp('3. no hidden layers'); 
arch=input('  Pick a neural net architecture >'); 
disp(' '); 
disp('1. Particle Swarm Optimization'); 
disp('2. Standard Backprop'); 
meth=input('  Pick training method >'); 
disp(' '); 
disp('-----------------------------------------------------------------
----------------------------------'); 
disp(' '); 
 
% XOR function test set 
 P=[0,0;0,1;1,0;1,1]'; 
 T=[1;0;0;1]'; 
 minmax=[0,1;0,1]; 
 l1=0; 
 l2=1;  
tr(1)=99; % arbitrary choice of initial error just used to update # of 
neurons 
 
if arch==3 
   [w1,b1]=initff(minmax,1,'tansig'); 
   if meth==1 
      [w1,b1,te,tr]=trainpso(w1,b1,'tansig',P,T,TP);       
   elseif meth==2 
      [w1,b1,te,tr]=trainbp(w1,b1,'tansig',P,T);       
   end    
elseif arch==1 
   while tr(end)>reqerr 
    l1=l1+1; 
 
    [w1,b1,w2,b2]=initff(minmax,l1,'tansig',1,'purelin'); 
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    if meth==1 
      
[w1,b1,w2,b2,te,tr]=trainpso(w1,b1,'tansig',w2,b2,'purelin',P,T,TP); 
    elseif meth==2 
      [w1,b1,w2,b2,te,tr]=trainbp(w1,b1,'tansig',w2,b2,'purelin',P,T);    
    end     
    if l1>maxneur 
       break 
    end   
   end 
elseif arch==2 
   while tr(end)>reqerr   
    if l1>l2 
       l2=l2+1; 
    else 
       l1=l1+1; 
    end     
     
    
[w1,b1,w2,b2,w3,b3]=initff(minmax,l2,'tansig',l1,'logsig',1,'purelin'); 
     
    if meth==1 
      
[w1,b1,w2,b2,w3,b3,te,tr]=trainpso(w1,b1,'tansig',w2,b2,'logsig',w3,b3,
'purelin',P,T,TP); 
    elseif meth==2 
      
[w1,b1,w2,b2,w3,b3,te,tr]=trainbp(w1,b1,'tansig',w2,b2,'logsig',w3,b3,'
purelin',P,T); 
    end          
    if l1>maxneur 
       break 
    end   
   end 
end 
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APPENDIX B.  EXAMPLE OF BACKPROPAGATION TRAINING 

From Birge’s program in [4], this example trains a neural network with one hid-

den layer for the XOR problem by using backpropagation.  It illustrates how the algo-

rithm is trying to converge to a sum mean squared error of 0.02, represented by the red 

dotted line in the plots.  If the network has not reached the goal error of 0.02 by 1000 ep-

ochs or remains at the same error for an extended period of time, the training will start 

over with different initial weight values.  For this example, the network was trained in 

2688 epochs. 
  DemoTrainPSO.m 
  little file to test out the pso optimizer for nnet training 
  trains to the XOR function 
  
  note: this does *not* minimize the test set function 
  rather it tries to train a neural net to approximate the  
  test set function 
  
  Brian Birge 
  Rev 1.0 
  1/1/3 
 
 
 
-----------------------------------------------------------------------
---------------------------- 
  
1. 1 hidden layer 
2. 2 hidden layers 
3. no hidden layers 
  Pick a neural net architecture >1 
  
1. Particle Swarm Optimization 
2. Standard Backprop 
  Pick training method >2 
  
-----------------------------------------------------------------------
---------------------------- 
  
TRAINBP: 0/1000 epochs, SSE = 5.08251. 
TRAINBP: 25/1000 epochs, SSE = 1.51519. 
TRAINBP: 50/1000 epochs, SSE = 1.1085. 
TRAINBP: 75/1000 epochs, SSE = 1.03817. 
TRAINBP: 100/1000 epochs, SSE = 1.01752. 
TRAINBP: 125/1000 epochs, SSE = 1.00871. 
TRAINBP: 150/1000 epochs, SSE = 1.00436. 
TRAINBP: 175/1000 epochs, SSE = 1.00212. 
TRAINBP: 200/1000 epochs, SSE = 1.00095. 
TRAINBP: 225/1000 epochs, SSE = 1.00034. 
TRAINBP: 250/1000 epochs, SSE = 1.00001. 
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TRAINBP: 275/1000 epochs, SSE = 0.999834. 
TRAINBP: 300/1000 epochs, SSE = 0.999734. 
TRAINBP: 325/1000 epochs, SSE = 0.999674. 
TRAINBP: 350/1000 epochs, SSE = 0.999633. 
TRAINBP: 375/1000 epochs, SSE = 0.999603. 
TRAINBP: 400/1000 epochs, SSE = 0.999576. 
TRAINBP: 425/1000 epochs, SSE = 0.999552. 
TRAINBP: 450/1000 epochs, SSE = 0.999528. 
TRAINBP: 475/1000 epochs, SSE = 0.999503. 
TRAINBP: 500/1000 epochs, SSE = 0.999478. 
TRAINBP: 525/1000 epochs, SSE = 0.999451. 
TRAINBP: 550/1000 epochs, SSE = 0.999423. 
TRAINBP: 575/1000 epochs, SSE = 0.999393. 
TRAINBP: 600/1000 epochs, SSE = 0.999361. 
TRAINBP: 625/1000 epochs, SSE = 0.999327. 
TRAINBP: 650/1000 epochs, SSE = 0.999292. 
TRAINBP: 675/1000 epochs, SSE = 0.999254. 
TRAINBP: 700/1000 epochs, SSE = 0.999214. 
TRAINBP: 725/1000 epochs, SSE = 0.999171. 
TRAINBP: 750/1000 epochs, SSE = 0.999126. 
TRAINBP: 775/1000 epochs, SSE = 0.999077. 
TRAINBP: 800/1000 epochs, SSE = 0.999026. 
TRAINBP: 825/1000 epochs, SSE = 0.998971. 
TRAINBP: 850/1000 epochs, SSE = 0.998912. 
TRAINBP: 875/1000 epochs, SSE = 0.99885. 
TRAINBP: 900/1000 epochs, SSE = 0.998783. 
TRAINBP: 925/1000 epochs, SSE = 0.998711. 
TRAINBP: 950/1000 epochs, SSE = 0.998635. 
TRAINBP: 975/1000 epochs, SSE = 0.998553. 
TRAINBP: 1000/1000 epochs, SSE = 0.998464. 
  
TRAINBP: Network error did not reach the error goal. 
  Further training may be necessary, or try different 
  initial weights and biases and/or more hidden neurons. 
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TRAINBP: 0/1000 epochs, SSE = 4.52412. 
TRAINBP: 25/1000 epochs, SSE = 1.54958. 
TRAINBP: 50/1000 epochs, SSE = 0.990459. 
TRAINBP: 75/1000 epochs, SSE = 0.850558. 
TRAINBP: 100/1000 epochs, SSE = 0.805685. 
TRAINBP: 125/1000 epochs, SSE = 0.785602. 
TRAINBP: 150/1000 epochs, SSE = 0.772436. 
TRAINBP: 175/1000 epochs, SSE = 0.761228. 
TRAINBP: 200/1000 epochs, SSE = 0.750545. 
TRAINBP: 225/1000 epochs, SSE = 0.739974. 
TRAINBP: 250/1000 epochs, SSE = 0.729421. 
TRAINBP: 275/1000 epochs, SSE = 0.718898. 
TRAINBP: 300/1000 epochs, SSE = 0.708459. 
TRAINBP: 325/1000 epochs, SSE = 0.698172. 
TRAINBP: 350/1000 epochs, SSE = 0.688107. 
TRAINBP: 375/1000 epochs, SSE = 0.67833. 
TRAINBP: 400/1000 epochs, SSE = 0.668894. 
TRAINBP: 425/1000 epochs, SSE = 0.659843. 
TRAINBP: 450/1000 epochs, SSE = 0.651204. 
TRAINBP: 475/1000 epochs, SSE = 0.642992. 
TRAINBP: 500/1000 epochs, SSE = 0.635211. 
TRAINBP: 525/1000 epochs, SSE = 0.627857. 
TRAINBP: 550/1000 epochs, SSE = 0.620916. 
TRAINBP: 575/1000 epochs, SSE = 0.614372. 
TRAINBP: 600/1000 epochs, SSE = 0.608203. 
TRAINBP: 625/1000 epochs, SSE = 0.602386. 
TRAINBP: 650/1000 epochs, SSE = 0.596897. 
TRAINBP: 675/1000 epochs, SSE = 0.591712. 
TRAINBP: 700/1000 epochs, SSE = 0.586805. 
TRAINBP: 725/1000 epochs, SSE = 0.582153. 
TRAINBP: 750/1000 epochs, SSE = 0.577734. 
TRAINBP: 775/1000 epochs, SSE = 0.573526. 
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TRAINBP: 800/1000 epochs, SSE = 0.569508. 
TRAINBP: 825/1000 epochs, SSE = 0.565661. 
TRAINBP: 850/1000 epochs, SSE = 0.561966. 
TRAINBP: 875/1000 epochs, SSE = 0.558407. 
TRAINBP: 900/1000 epochs, SSE = 0.554966. 
TRAINBP: 925/1000 epochs, SSE = 0.551628. 
TRAINBP: 950/1000 epochs, SSE = 0.548378. 
TRAINBP: 975/1000 epochs, SSE = 0.545201. 
TRAINBP: 1000/1000 epochs, SSE = 0.542084. 
  
TRAINBP: Network error did not reach the error goal. 
  Further training may be necessary, or try different 
  initial weights and biases and/or more hidden neurons. 
 

 
 
TRAINBP: 0/1000 epochs, SSE = 9.65683. 
TRAINBP: 25/1000 epochs, SSE = 1.6681. 
TRAINBP: 50/1000 epochs, SSE = 1.07482. 
TRAINBP: 75/1000 epochs, SSE = 0.968458. 
TRAINBP: 100/1000 epochs, SSE = 0.926412. 
TRAINBP: 125/1000 epochs, SSE = 0.897892. 
TRAINBP: 150/1000 epochs, SSE = 0.872191. 
TRAINBP: 175/1000 epochs, SSE = 0.845454. 
TRAINBP: 200/1000 epochs, SSE = 0.815634. 
TRAINBP: 225/1000 epochs, SSE = 0.781185. 
TRAINBP: 250/1000 epochs, SSE = 0.740582. 
TRAINBP: 275/1000 epochs, SSE = 0.692221. 
TRAINBP: 300/1000 epochs, SSE = 0.634751. 
TRAINBP: 325/1000 epochs, SSE = 0.567952. 
TRAINBP: 350/1000 epochs, SSE = 0.493859. 
TRAINBP: 375/1000 epochs, SSE = 0.417085. 
TRAINBP: 400/1000 epochs, SSE = 0.343367. 
TRAINBP: 425/1000 epochs, SSE = 0.277244. 



69 

TRAINBP: 450/1000 epochs, SSE = 0.220864. 
TRAINBP: 475/1000 epochs, SSE = 0.174358. 
TRAINBP: 500/1000 epochs, SSE = 0.136771. 
TRAINBP: 525/1000 epochs, SSE = 0.106777. 
TRAINBP: 550/1000 epochs, SSE = 0.0830447. 
TRAINBP: 575/1000 epochs, SSE = 0.0643837. 
TRAINBP: 600/1000 epochs, SSE = 0.0497819. 
TRAINBP: 625/1000 epochs, SSE = 0.0384025. 
TRAINBP: 650/1000 epochs, SSE = 0.0295648. 
TRAINBP: 675/1000 epochs, SSE = 0.0227212. 
TRAINBP: 688/1000 epochs, SSE = 0.0198019. 
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APPENDIX C.  EXAMPLE OF PARTICLE SWARM 
OPTIMIZATION TRAINING 

From Birge’s program in [4], this example trains a neural network with one hid-

den layer for the XOR problem by using Particle Swarm Optimization.  It can be com-

pared to the backpropagation example.  It illustrates how the algorithm is trying to con-

verge to a sum mean squared error of 0.02, represented by the red dotted line in the plots.  

If the network has not reached the goal error of 0.02 by 1000 epochs or remains at the 

same error for an extended period of time, the training will start over with different initial 

weight values.  The blue dots represent the particle locations, and the black dots represent 

each particle’s personal best position.  The red crosshair represents the swarm’s global 

best position.  The final plot will show a magenta line to represent the movement of the 

global best position around the search space.   

For this example, the network was trained in 1340 epochs. 
  DemoTrainPSO.m 
  little file to test out the pso optimizer for nnet training 
  trains to the XOR function 
  
  note: this does *not* minimize the test set function 
  rather it tries to train a neural net to approximate the  
  test set function 
  
  Brian Birge 
  Rev 1.0 
  1/1/3 
 
 
 
-----------------------------------------------------------------------
---------------------------- 
  
1. 1 hidden layer 
2. 2 hidden layers 
3. no hidden layers 
  Pick a neural net architecture >1 
  
1. Particle Swarm Optimization 
2. Standard Backprop 
  Pick training method >1 
  
-----------------------------------------------------------------------
---------------------------- 
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TRAINPSO: 25/1000 epochs,  gbest SSE = 0.7533507925 
  mv  = 4,  iwt = 0.8831831832 
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TRAINPSO: 50/1000 epochs,  gbest SSE = 0.6794204617 
  mv  = 4,  iwt = 0.8656656657 
TRAINPSO: 75/1000 epochs,  gbest SSE = 0.6794204617 
  mv  = 4,  iwt = 0.8481481481 
TRAINPSO: 100/1000 epochs,  gbest SSE = 0.6713955825 
  mv  = 4,  iwt = 0.8306306306 
TRAINPSO: 125/1000 epochs,  gbest SSE = 0.6713955825 
  mv  = 4,  iwt = 0.8131131131 
TRAINPSO: 150/1000 epochs,  gbest SSE = 0.6713955825 
  mv  = 4,  iwt = 0.7955955956 
TRAINPSO: 175/1000 epochs,  gbest SSE = 0.6713955825 
  mv  = 4,  iwt = 0.7780780781 
TRAINPSO: 200/1000 epochs,  gbest SSE = 0.6713955825 
  mv  = 4,  iwt = 0.7605605606 
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TRAINPSO: 225/1000 epochs,  gbest SSE = 0.6699003323 
  mv  = 4,  iwt = 0.743043043 
TRAINPSO: 250/1000 epochs,  gbest SSE = 0.6699003323 
  mv  = 4,  iwt = 0.7255255255 
TRAINPSO: 275/1000 epochs,  gbest SSE = 0.6696477244 
  mv  = 4,  iwt = 0.708008008 
TRAINPSO: 300/1000 epochs,  gbest SSE = 0.6696477244 
  mv  = 4,  iwt = 0.6904904905 
TRAINPSO: 325/1000 epochs,  gbest SSE = 0.6696477244 
  mv  = 4,  iwt = 0.672972973 
TRAINPSO: 350/1000 epochs,  gbest SSE = 0.6680743326 
  mv  = 4,  iwt = 0.6554554555 
TRAINPSO: 375/1000 epochs,  gbest SSE = 0.6673640869 
  mv  = 4,  iwt = 0.6379379379 
TRAINPSO: 400/1000 epochs,  gbest SSE = 0.6669632271 
  mv  = 4,  iwt = 0.6204204204 
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TRAINPSO: 425/1000 epochs,  gbest SSE = 0.6669562435 
  mv  = 4,  iwt = 0.6029029029 
TRAINPSO: 450/1000 epochs,  gbest SSE = 0.6669562435 
  mv  = 4,  iwt = 0.5853853854 
TRAINPSO: 475/1000 epochs,  gbest SSE = 0.6669559919 
  mv  = 4,  iwt = 0.5678678679 
TRAINPSO: 500/1000 epochs,  gbest SSE = 0.6669559918 
  mv  = 4,  iwt = 0.5503503504 
TRAINPSO: 525/1000 epochs,  gbest SSE = 0.6669556083 
  mv  = 4,  iwt = 0.5328328328 
TRAINPSO: 550/1000 epochs,  gbest SSE = 0.6669555494 
  mv  = 4,  iwt = 0.5153153153 
TRAINPSO: 575/1000 epochs,  gbest SSE = 0.666955536 
  mv  = 4,  iwt = 0.4977977978 
TRAINPSO: 600/1000 epochs,  gbest SSE = 0.6669555279 
  mv  = 4,  iwt = 0.4802802803 
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TRAINPSO: 625/1000 epochs,  gbest SSE = 0.6669555202 
  mv  = 4,  iwt = 0.4627627628 
TRAINPSO: 650/1000 epochs,  gbest SSE = 0.6669554313 
  mv  = 4,  iwt = 0.4452452452 
TRAINPSO: 675/1000 epochs,  gbest SSE = 0.6669305226 
  mv  = 4,  iwt = 0.4277277277 
TRAINPSO: 700/1000 epochs,  gbest SSE = 0.6669208268 
  mv  = 4,  iwt = 0.4102102102 
TRAINPSO: 725/1000 epochs,  gbest SSE = 0.6669160247 
  mv  = 4,  iwt = 0.3926926927 
TRAINPSO: 750/1000 epochs,  gbest SSE = 0.6669147554 
  mv  = 4,  iwt = 0.3751751752 
TRAINPSO: 775/1000 epochs,  gbest SSE = 0.6669146701 
  mv  = 4,  iwt = 0.3576576577 
TRAINPSO: 800/1000 epochs,  gbest SSE = 0.6669106043 
  mv  = 4,  iwt = 0.3401401401 
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TRAINPSO: 825/1000 epochs,  gbest SSE = 0.6669098761 
  mv  = 4,  iwt = 0.3226226226 
TRAINPSO: 850/1000 epochs,  gbest SSE = 0.6669083356 
  mv  = 4,  iwt = 0.3051051051 
TRAINPSO: 875/1000 epochs,  gbest SSE = 0.6669082001 
  mv  = 4,  iwt = 0.2875875876 
TRAINPSO: 900/1000 epochs,  gbest SSE = 0.666883728 
  mv  = 4,  iwt = 0.2700700701 
TRAINPSO: 925/1000 epochs,  gbest SSE = 0.6668833307 
  mv  = 4,  iwt = 0.2525525526 
TRAINPSO: 950/1000 epochs,  gbest SSE = 0.6668832896 
  mv  = 4,  iwt = 0.235035035 
TRAINPSO: 975/1000 epochs,  gbest SSE = 0.6668776723 
  mv  = 4,  iwt = 0.2175175175 
TRAINPSO: 1000/1000 epochs,  gbest SSE = 0.6668762357 
  mv  = 4,  iwt = 0.2 
TRAINPSO: Network error did not reach the error goal. 
*************end of training 
*************************************************** 
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TRAINPSO: 25/1000 epochs,  gbest SSE = 0.6800321701 
  mv  = 4,  iwt = 0.8831831832 
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TRAINPSO: 50/1000 epochs,  gbest SSE = 0.6119237022 
  mv  = 4,  iwt = 0.8656656657 
TRAINPSO: 75/1000 epochs,  gbest SSE = 0.6022325759 
  mv  = 4,  iwt = 0.8481481481 
TRAINPSO: 100/1000 epochs,  gbest SSE = 0.6022325759 
  mv  = 4,  iwt = 0.8306306306 
TRAINPSO: 125/1000 epochs,  gbest SSE = 0.5813485776 
  mv  = 4,  iwt = 0.8131131131 
TRAINPSO: 150/1000 epochs,  gbest SSE = 0.1790156652 
  mv  = 4,  iwt = 0.7955955956 
TRAINPSO: 175/1000 epochs,  gbest SSE = 0.1790156652 
  mv  = 4,  iwt = 0.7780780781 
TRAINPSO: 200/1000 epochs,  gbest SSE = 0.1790156652 
  mv  = 4,  iwt = 0.7605605606 
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TRAINPSO: 225/1000 epochs,  gbest SSE = 0.1549225367 
  mv  = 4,  iwt = 0.743043043 
TRAINPSO: 250/1000 epochs,  gbest SSE = 0.0813382016 
  mv  = 4,  iwt = 0.7255255255 
TRAINPSO: 275/1000 epochs,  gbest SSE = 0.07992175607 
  mv  = 4,  iwt = 0.708008008 
TRAINPSO: 300/1000 epochs,  gbest SSE = 0.07975230164 
  mv  = 4,  iwt = 0.6904904905 
TRAINPSO: 325/1000 epochs,  gbest SSE = 0.06562753669 
  mv  = 4,  iwt = 0.672972973 
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*************************************** Reached Goal ****************** 
TRAINPSO: 340/1000 epochs,  gbest SSE = 0.01429604301 
  mv  = 4,  iwt = 0.6624624625 
************************************** end of training **************** 
 
 

 
 
Zoom in on the final plot.  The magenta line represents the movement around the search 
space of the best global position from 0 to 340 iterations.   
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APPENDIX D.  ORIGINAL SWARM.JAVA SIMULATION 

The program swarm.java was created by Chin Lua at North Dakota State Univer-

sity [3].  The simulation is a two dimensional demonstration of a synchronized multi-

point attack by UAVs.  The population of UAVs is 8 for this example.   

 

The parameters that are adjustable in the program are speed, turning ability, repul-

sion range, and visual range.   
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The UAVs continue to head ‘south’ until a target is added to the screen.   
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There are two circles around the blue target, an inner circle and outer circle.  The 

UAVs head toward the inner circle until an orbit circle appears on the outer circle.   
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The location of the first orbit circle is chosen at random.  A UAV heads toward 

the orbit circle if it is within its visual range.  When the UAV color changes from green 

to purple, the UAV is heading toward an orbit circle or is currently orbiting the circle.  

The orbit circle is represented by a black dotted circle.  
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Once a UAV touches the orbit circle, it becomes a station owner.  The remaining 

UAVs search for the orbit circles that appear counterclockwise around the outer circle. 
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All UAVs become station owners and continue to orbit the circle.   
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The attack is the only synchronized action.  The first UAV to complete a specified 

number of orbits around the circle, analogous to the amount of fuel used, will issue an 

order of attack.  The real attack order is locally communicated from one UAV to the 

neighboring UAVs, but simulated attack order is globally known.  Since there are only 8 

UAVs, the UAVs travel around the inner circle until they are equally spaced by 40 de-

grees:  360 / 8 40= .  When a UAV leaves the orbit circle, it returns to a green color. 
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Because the UAVs travel at a constant velocity, delay is introduced into the pro-

gram to indicate when each UAV should leave the orbit circle.  The goal is to approach 

the target at the same time.  There are still timing errors in the simulation because the lo-

cation of each UAV around the orbiting circle is not synchronized. 
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Once the UAVs have reached the 40-degree spacing around the inner circle, they 

turn toward the target.  When a UAV touches the target, the UAV explodes, which is rep-

resented by light blue and dark blue pixels.  After the UAV explodes, the orbit circle it 

possessed earlier disappears from the screen.  In the following figure, the second station 

keeper hits the target first.   
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More UAVs hit the target. 
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The remaining UAV has just turned toward the target.  The delayed attack is due to tim-

ing errors and avoidance maneuvers. 

 

 

 

 

 

 

 

 

 

 

 



94 

The last UAV just hit the target. 
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The target disappears, and the program is over.  Additional targets can be placed around 

the screen, but obviously there are not any UAVs left to coordinate an attack.  To restart 

the program, press the reset button at the bottom of the screen.   
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APPENDIX E.  MODIFIED SWARM.JAVA PROGRAM 

The program swarm.java was created by Chin Lua at North Dakota State Univer-

sity [3].  The original simulation is a two-dimensional demonstration of a synchronized 

multi-point attack by UAVs.  The program has been modified to allow the UAVs to pass 

over the target without exploding.  Once each UAV has passed over the target, target dis-

appears from the screen.  The UAVs are now ready to attack the next target that appears.  

The population of UAVs is 8 for this example.  The parameters that are adjustable in the 

program are speed, turning ability, repulsion range, and visual range.  The parameter dis-

play is located in the upper left corner.  The actions of the UAVs are unaltered from the 

original program until the attack sequence.  Upon initialization, the UAVs continue to 

head ‘south’ until a target is added to the screen.   

 

 

 



98 

There are two circles around the target, an inner circle and outer circle.  The UAVs head 

toward the inner circle until an orbit circle appears on the outer circle.   
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The location of the first orbit circle is chosen at random.  A UAV heads toward 

the orbit circle if it is within its visual range.  When the UAV color changes from green 

to purple, the UAV is heading toward an orbit circle or is currently orbiting the circle.  

The orbit circle is represented by a black dotted circle.  
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Once a UAV touches the orbit circle, it becomes a station owner.  The remaining 

UAVs search for the orbit circles that appear counterclockwise around the outer circle. 
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All UAVs become station owners and continue to orbit the circle.   
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The first UAV to complete a specified number of orbits around the circle, analo-

gous to the amount of fuel used, issues an order of attack.  The real attack order is locally 

communicated from one UAV to the neighboring UAVs, but the simulated attack order is 

globally known.  There is a delay introduced so each UAV leaves the orbit station at dif-

ferent time.  The UAV with the highest index number, which is the UAV that became a 

station keeper last, is the first to attack the target.  When a UAV leaves the orbit circle, it 

returns to a green color.  They pass over the target in an orderly manner and head ‘south.’  

The direction heading after the attack can be specified by the designer.  Once the UAV 

has passed over the target, it enters search mode.  Because the screen recycles UAVs 

from the bottom to the top, the UAVs going south appear again at the top of the screen.  

Realistically the UAVs would continue south without interfering with the attack.  The 

attack does not run smoothly because the attacking UAVs have to avoid the recycled 

UAVs.  The following figures show the attack sequence. 
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