

. DKAAN

AUG 051988
11. STATE EECOBAICA

Digitized by the Internet Archive in 2012 with funding from University of Illinois Urbana-Champaign

BULLETIN No. 22

THE OIL FIELDS

OF

Crawford and Lawrence Counties

B Y
RAYMOND S. BLATCHLEY

URBANA
University of Illinois
1913

STATE GEOLOGICAL COMMISSION.

Edward F. Dunne, Chairman, Governor of Illinois.

Thomas C. Chamberlin, Vice-Chairman.
Edmund J. James, Secretary, President of the University of Illinois.

Frank W. DelWolf, Director: Fred H. Kay, Ass't. State Geologist.

CONTENTS

Chapter I.
 Historical, Theoretical, and Geological Aspects of the Illinois Fields.

Page.
Object of report 11
Methods of study 11
Acknowledgments 12
Historical review of oil developments in Illinois 12
Original and accumulation of oil 16
Origin of oil 16
The inorganic theory 16
The organic theory 17
Circulation and accumulation of oil 18
General considerations 18
The porous stratum 21
Impervious cover 22
Geological structure 22
Water saturation 24
General geology of Illinois relating to oil and gas 24
Introduction 24
Stratigraphy 25
Areal extent of the formations and oil sands. 27
Structure 32
Stratigraphy of Crawford and Lawrence counties 32
General statement 32
Crawford county 32
Logs 33
Stratigraphy 52
Pleistocene 52
Pennsylvanian. 53
McLeansboro formation 53
Carbondale formation 53
Pottsville formation 54
Lawrence county 54
Logs. 54
Stratigraphy 82
Pleistocene 82
Pennsylvanian 82
McLeansboro and Carbondale formations 82
Pottsville formation 82
Mississippian 83
Birdsville and Tribune formations (upper portion of Chester group) 83
Ste. Genevieve formation 84
St. Louis formation. §コ
Chapter II.
General Description of Features of the Main Oil Fields.
Introduction 86
Field work 86
Topographic surveys of the area 86
Levelsin the oil fields 87
Hardinville quadrangle 87
Sumner quadrangle 89

Contents-Continued.

Field work-Concluded.Geographic positions of quadrangles91
Hardinville quadrangle 91
Sumner quadrangle 93
Vincennes quadrangle 93
Elevations of oil wells 94
Collection of well records 94
Geological aspects 95
General statement 95
Local names of sands 95
Correlation of sands 95
Altitudes of sands 95
Tables of well data 96
Contour maps 96
Cross-sections 96
Chapter III
Detailed Geology of the Crawford County Field.
General features of the oil field. 97
Detailed structure of the district. 99
Relations of structure to oil and gas 100
Relations of salt water to structure. 103
Conclusion 104
Chapter IV
Detailed Geology of the Lawrence County Field.
General features of the oil field 105
Detailed structure of the district 106
The "shallow" sand 106
Bridgeport sand 106
Buchanan sand. 107
Detailed structure 107
"Gas" sand 108
Detailed structure 109
Kirkwood sand 109
Detailed structure 110
Tracey sand 111
Detailed structure 112
McCloskey sand 112
Detailed structure 113
Cross-sections 114
General statement 114
Cross-section A-A 114
Logs 115
Cross-section B-B 123
Logs 123
Cross-section C-C 125
Logs. 125
Cross-section D-D 130
Logs 130
Relations of structure to oil and gas 135
Oil 135
Petty township 136
Bridgeport township 137
Lawrence township 137
Dennison township 137
Gas 138
Petty township 139
Bridgeport township 139
Lawrence township 140
Dennison township. 140

Contents-Concluded.

Page.
140
Relations of structure to salt water 140
Petty township. 140
Lawrence township 140
Dennison township. 141
Chapter V.
General Summary of Geological Conditions in Crawford and Lawrence Counties.
General statement 142
General structure of the region of the LaSalle anticline 142
Detailed features of the fields 143
Prospective pools 144
Chapter VI.
Economic Features of the Illineis Fields.
Introduction 145
Development of oil properties 146
Forenote 146
Leasing 147
Choosing a well-site 151
Drilling 151
Shooting a well 155
Lease equipment 157
Cleaning out and tubing the well 157
Tanks 157 157
Loading racks 158
Power and boiler houses. 158
Pull-rods and pumping dises 159
Pumping jacks 159
Removal of salt water and steaming oil 159
The approximate cost of oil wells 160
The cost of operating a lease 161
Investmentsin oil properties 162
Buying, transporting, and storing oil. 163
Buying oil 163
Transport'ng the oil 164
Storing the oil. 165
Independent oil companies 166
Prices and pipe-line runs of Illinois oil 167
Prices of Illinois oil 167
Pipe-line runs and stocks of Illinois oil 169
Summary tables 169
Natural gas in Illinois 181
Tables of well data (appendix) 185

ILLUSTRATIONS.

Plate. Page.
1A. Map showing the oil and gas fields of Southeastern Illinois and the quadrangles cov- ered by this report. Frontispiece
1B. Section across southern Illinois through, Monroe, Clinton and Lawrence counties 32
II. Columnar sections in Crawford county 34
IIIA. Columnar sections in Lawrence county 54
IIIB. Diagram showing correlation of the Robinson and Bridgeport sands 84
IV. Base map of the Crawford county oil field-Southern half-showing developments to Jan. 1, 1909 Pocket
V. Crawford county oil field showing structure contours on top of the Robinson sand- first lens Pocket
VI. Base map of the Lawrence county oil field showing development to July 1, 1911.... Pocket
VII. Lawrence county oil field showing structure contours on top of the Buchanan sand. Pocket
VIII. Lawrence county oil field showing structure contours on top of the "Gas" sand..... Pocket
IX. Lawrence county oil field showing structure contours on top of the Kirkwood sand. Pocket
X. Lawrence county oil field showing structure contours on top of the Tracey sand Pocket
XI. Lawrence county oil field showing structure contours on top of the McClosky sand. . Pocket
XII. A-A longitudinal section, Lawrence county, along the crest of the LaSalle anticline and through the center of the field. 116
XIII. B-B cross-section, Lawrence county, across the northern end of the oil field 124
XIV. C-C cross-section, Lawrence county, across the structural dome in Petty township.. 126
XV. D-D cross-section, Lawrence county, across the southern end of the oil field 132
XVI. The standard derrick 146
XVII. The steel derrick 148
XVIII. A-A nitroglycerine plant 150
B A storage magazine for nitroglycerine 150
XIX. A-Oil tanks under shed 152
$B-$ A pumping disc 152
XX. A-A modern tank-car loading rack 154
B-An early tank-car loading rack 154
XXI. A-A power or pumping house 156
B-A boiler house 156
XXII. A-The standard pumping jack 158
B-The steel pumping jack 158
XXIII. A - A third type of pumping jacks 160
$B-$ A town lot well in Bridgeport, Ill 160
XXIV. A-A waste pit for burning waste oil 162
B-The effect of fire from waste oil on streams 162
XXV. A-The Ohio Oil Company's pumping station, Stoy, Ill 164
B-The Tidewater Pipe Line Company's pumping station, Stoy, Ill 164
XXVI. The Ohio Oil Company's pumping station, Bridgeport, Ill 166
XXVII. $A-\mathrm{A}$ portion of the Ohio Oil Company's tank farm, Stoy, Ill 168
$B-$ A cleaning rig. 168
XXVIII A $35,000 \mathrm{bbl}$., tank fire 170
XXIX. The tank after the fire 172
XXX. A supply yard in Bridgeport 174
XXXI. A-A gas well 176
$B-A$ gas well with water retainer 176

LETTER OF TRANSMITTAL.

State Geological Survey, University of Illinois, January 30, 1913.

Governor E. F. Dunne, Chairman, and Members of the Geological Commission:
gentlemen-I submit herewith a report on the oil fields of Crawford and Lawrence counties, Illinois, and recommend that it be published as Bulletin No. 22.

The author, Mr. Raynond S. Blatchley, has been on the staff of the survey since 1908 and has devoted a large part of three years to the studies presented here.

The colored maps which accompany the report present information of great commercial value in locating future wells in the district. The kindness of property owners and oil operators who have contributed information freely to the survey is hereby acknowledged, and confidence is expressed that they will find the report almost invaluable.

Tery respectfully,
Frank W. DeWolf, Director.

THE OIL FIELDS OF CRAWFORD AND LAWRENCE COUNTIES, ILLINOIS.

By Raymond S. Blatchley.

CHAPTER I.

Historical, Theoretical, and Geological Aspects of the Illinois Fields

OBJECT OF REPORT.

This report presents the results of a study of the geologic conditions in the southern half of the eastern Illinois oil fields. The specific area of inrestigation lies in the southern half of Crawford and the northern portion of Lawrence counties, in portions of the Hardinville, Sumner, and Tincennes quadrangles (See Plate IA.) The object is to discuss the control of the accumulation of oil and gas in these fields and to present facts which further confirm the anticlinal or structural theory for the concentration of oil and gas in raised formations. It is also possible that additional proof is added to support the theory of the origin of oil from organic remains buried in limestone and shales. The report also discusses the stratigraphy and describes the commercial features peculiar to this territory, including production, costs, methods of transportation and storage, field operations, leasing, etc. It is desired to preserve in printed form all arailable records of the territory, particularly for use in future stratigraphic and structural studies and for reference by the operators.

METHODS OF STUDY.

The method of study was to map by means of contour lines, or lines through points of equal altitude, the geologic structure of the producing sands. The contours were made upon the positive altitudes of the sands above a datum plane 1,500 feet below mean sea level. These maps show the oil sand as if everything above it had been removed. The undulations, slopes, basins, etc., are clearly defined. In this way the oil, gas, and water relations to the structure are studied. In addition to the contour maps cross-sections were made along the crest of the anticline and crosswise to it. These graphic sections are intended merely to make
clearer the contour maps. The records along the selected lines are plotted on a uniform scale and are placed in their proper positions along the section, with regard both to the elevation of the wells above sea level and to their linear distance from one another. The points at which the crosssection lines cut the contours are measured and marked on the section. All points representing a particular horizon are connected. Thus, a mechanical means of ascertaining structural features was developed and significant facts were revealed.

ACKNOWLEDGMENTS.

The taking of elevations and logs of the wells within the portion of the oil fields covered by this report began in the summer of 1908. The writer was assisted in this work by Douglas Wright in the Crawford county portion of the Hardinville quadrangle and by J. C. Jones in the Lawrence county division. The leveling in the Sumner and Vincennes quadrangles was completed the following summer with the assistance of W. E. Deuchler, levelman, and Douglas Wright and H. H. Johnson, rodmen. A final review of the Lawrence county fields was made in 1911 with the assistance of D. G. Thompson. The report would not have been possible except for the hearty coöperation of all operators who furnished well records, maps, and other information. Much help was given in the stratigraphic studies by Dr. J. A. Udden who made an intimate examination of well samples from eleven wells within the investigated area. Special thanks are due the officials of the Ohio Oil Company, Marshall, Ill., for samples from a number of wells in the region. These were saved at much trouble and expense. Dr. Stuart Weller of the University of Chicago gave helpful consultation relative to the stratigraphy of the Mississippian rocks. To all of these individuals the writer expresses his appreciation and thanks.

HISTORICAL REVIEW OF OIL DEVELOPMENTS IN ILLINOIS.

In the main fields of Illinois, exclusive of producing areas elsewhere, there have been Arilled, during the past seven years, over 20,000 wells in a producing territory which covers about 250 square miles. The following notes sketch the history of drilling from the earliest days:

In the earlier part of the "sixties" the first oil excitement spread over the eastern United States and extended westward to Illinois. In 1865 the first wild-catting took place in Clark county about 8 miles north of Casey, in Parker township. Here, several holes were put down in attempts to locate oil and gas but the work was abandoned. The small amount of oil found in the wells perhaps would have been greater had proper casing been used. This would have shut off the salt water, which, as a matter of fact, probably drowned out the oil and prevented an earlier discovery of the present immense field.

About this time, oil and gas were found accidentally in Montgomery county, near Litchfield. Coal prospecting from the floor of one of the mines led to deeper drilling and the discovery of a strong flow of salt water which threatened for a time to flood the mine. Another coal pros-
pect near the mine discorered a small quantity of oil and gas. The oil and water from this drill hole leaked into a sump in the mine, where for many years oil was skimmed from the top of the water and utilized.

During the "eighties," when new prospecting was taking place at rarious points in Illinois, the previous finding of oil at Litchfield led to renewed drilling which brought in several gas wells in that vicinity. In 1882 a well was drilled about 2 miles south of Litchfield, which was reported to show about 400 pounds gas pressure. This well was apparently first drilled to 580 feet without success. Two years later it was drilled 200 feet deeper, where water-bearing sand was tapped. The gas was secured at 640 feet and had exceptional pressure. The flow of salt water, however, was too strong to be plugged successfully and, consequently, drowned out the gas. In 1886 a number of wells that yielded both gas and oil were drilled in the vicinity of Litchfield, to an average depth of about 650 feet. In all, between the years of 1882 and 1889, about thirty wells were drilled. ${ }^{1}$ The majority of them were of short life but five or six produced a small amount of oil up to the year 1903. All are abandoned at the present time.

Gas was discovered in Pike county in 1886 while drilling for water in the N. W. $1 / 4$ S. E. $1 / 4$ section 1, Derry township. It was found at a depth of 186 feet. ${ }^{2}$ This destroyed chances of a good water supply so a second well was drilled on the same farm a short while afterwards. Gas was secured in this well at the lesser depth of 168 feet. Both wells were abandoned because of lack of facilities for taking care of the gas. Drilling was then suspended in this part of the State for 15 years, or until 1905. In that year Mr. William Irick drilled a well for water on his farm and, as in the previous cases, met a strong flow of gas. He, however, piped it to his house for domestic use. . There immediately followed a development of this area, which, in a little over a year, brought in over thirty wells. All but six of these produced gas, but no oil was found. The gas horizons are between 75 and 350 feet below the surface. The field at the present time covers an area about 10 miles long and 4 miles wide. The gas accumulation is governed by a small fold in the Niagara limestone.

Similar prospecting took place in 1888 near Sparta in Randolph county. Home capital was enlisted and a well that yielded a good pressure of gas 3 was drilled to a depth of 850 feet. This encouraged further drilling and up to the year 1894, 22 wells were put down. Of these, over twelve yielded gas, and four of them had initial pressures between 150 and 250 pounds to the square inch. The average life of the wells was about seven years.

The next recorded wild-catting took place in 1900, and indirectly resulted in the discovery of the main oil field. A company styled the Crawford County Oil, Gas and Coal Company drilled a well in the S. E. $1 / 4$ section 35 , Robinson township, Crawford county. ${ }^{4}$ The well reached a depth of 820 feet where it was abandoned because of the caving of the strata and the tapping of a strong vein of salt water. The same company shifted operations in the following year, 1901, to the D. C.

[^0]Jones farm, in the southwest quarter of section 22 of the same township. A well drilled here to a depth of 1,040 feet secured a small amount of gas. Thus, the efforts of the company to locate "fuel" were rewarded slightly and with further hope, they drilled to 1,190 feet. At this point they met a strong rein of salt water and abandoned the well. The company attempted other wells on the same farm in the years 1901, 1902 and 1903, but, in each case, lost their tools. The sixth attempt was rewarded, in 1904, by the finding of small amounts of oil and gas between 900 and 1,200 feet. The bore was carried to 1,330 feet but was abandoned. It was but eighteen months after this that the main productive field was opened up within a few miles of this area.

The suggestion of an oil field in the ricinity of Casey prompted by the earlier prospecting of the "sixties," led Col. L. D. Carter of Oakland, Ill., to secure the services of J. J. Hoblitzel \& Son, of Pittsburgh, Pa., in re-drilling this area. A large block of lease was gathered up, and early in the spring of $190 t$ a well was started on the Young farm near Oilfield. This well produced a good pressure of gas and some oil. The gas was cased off and used for field operations but the oil yield was insignificant and was discarded. A second well was completed in the same year on the J. S. Phillips farm in the northeast quarter of section 18, Parker township. It produced 35 barrels of oil. Other wells were started in the same year in this vicinity and in 1905 about 100 square miles of territory was being drilled. Of this about 60 square miles were eventually found productive. These fields are called the "shallow" area because the oil comes from a depth of between 400 and 600 feet. Drilling was active until 1909, when the boundaries of the productive territory for this section of the oil fields were pretty well established. In 1909 there was a decreasing derelopment and at the present time it has practically ceased. A great many of the original wells are yielding so poorly that they are rapidly being plugged and abandoned.

Added vigor was given to the development of the eastern Illinois fields on February 6, 1906, when D. T. Finley, of Pittsburgh, drilled a well on the J. W. Shire farm in the northwest quarter of section 15, Oblong township, Crawford county. The oil was obtained at 890 feet, and the initial production was 250 barrels per day. This well opened up the Robinson pool, which is the largest in the oil area and covers, in all, about 110 square miles of productive territory. The oil is found in sands ranging from $\% 50$ to 1,000 feet in depth. There is one general sand made up of three or more generally parallel lenses. There are, however, small areas where only two or even one lens are noted.

The year 190% brought an extension of development in a small isolated pool about three miles to the southeast of the large Robinson pool. The new pool was known first as the Honey Creek district and originally covered but six or seven square miles. It has later been associated with the Flat Rock district to the east and the two are now joined, so as to comprise about 25 square miles of area. To the north of the Flat Rock area the small Duncanville pool was developed. The area covered is between two and three square miles. The oil is from about the same horizon as that of the Honey creek, Flat Rock, and Robinson sands but has a much lower gravity. It is used almost exclusively for fuel.

The Lawrence county field began to be developed actively in 190\%1908. It has been the most promising, in that seren sands are attracting the attention of operators. The sands occur between depths of 800 and 1,900 feet and are known as follows:

1,2 and 3 . Bridgeport, upper lens, middle lens and lower lens.
4. Buchanan.
5. Kirkwood.
6. Tracey.
7. McClosky.

Within this area, which corers about 40 square miles, there has been developed a larger per cent of big wells than in all other pools in Illinois combined.

After the Clark county fields was brought in miscellaneous drilling was stimulated throughout the State. A second attempt was made to discover oil in the vicinity of Sparta, Ill. by J. J. Hoblitzell \& Son, who began drilling in 1906. As a result of this work, two or three wells that produced oil in small quantity were completed in the following year. In 1908 a total of sixteen wells had been drilled, but of these only six or seven yielded oil. The amounts were small, except in the case of two wells, one on the Foster farm that yielded about twenty barrels of oil per day, and one on the McIlroy farm that had an initial production of about 100 barrels. All the wells have since declined and the field is now abandoned.

In 1906 an attempt was made to locate oil at Tolono in Champaign county. The drilling revealed oil, but only in slight quantity. Apparently it was the intention to prospect the LaSalle anticline which gives rise to the production area to the southeast.

Early in the year 1908, oil was reported as seeping through a fault into a coal mine near Centralia, Marion county. The attention of oil operators was excited and several shallow wells were drilled. These yielded small amounts of oil, but were of slight commercial value. Wildcatting was prompted in the winter of 1909 in the vicinity of Sandoval, five miles north of the Centralia shallow wells. Late in Narch, a deep well, which yielded about thirty barrels per day, was completed upon the Stein farm, one mile north of Sandoval. A second well was finished in July on the Benoist farm, adjoining the Stein land. This well proved to be a valuable producer of both oil and gas. Its success stimulated wholesale leasing and drilling in all directions in Marion county, with the result that a small, but rich, isolated, field of about three-fourths of a square mile was defined. This field is still credited with a good production.

A new gas area was opened in 1909 near Carlinville, Macoupin county, by the Impromptu Exploration Company. Several wells have been drilled south of the town. The gas comes from a sandstone, probably the Pottsville, immediately abore the Mississippian limestones. So far, two wells have produced about six barrels of oil per day. The pressures of gas are not large enough to warrant an extended development for commercial purposes.

A small gas area, similar to that of Carlinville, was also opened in the spring of 1910 several miles east of Jacksonville, Ill. The wells were small in quantity. Late in 1911 two other small oil wells were added to the field.

In April of 1911 wild-catting developed an oil field about three miles northwest of Carlyle, Ill., which has since been defined within an area of about $11 / 2$ square miles. The governing structure of the field seems to be an elongated dome interrupting the gentle trend of the broad western flank of the Illinois basin. The initial production of the first wells was excellent and caused a rush to the territory. High bonuses were paid for leases many miles from proven territory which later proved barren. The area was suggested as promising by the State Geological Survey previous to exploitation. ${ }^{1}$

Various other attempts have been made to find oil at widely separated points. Small amounts of oil or gas have been observed in such localities as Mascoutah, Marissa, Waverly, Greenville, Decatur, Iola, Eldorado, Old Ripley, Patton, Bartelso, Ridgeway, Campbell's Hill, and Denny. Barren wells have been put down at Herrick, Cobden, the American bottoms eąst of St. Louis, Trenton, Aviston, Iuka, Olney, Sumner, Albion, Carmi, Duquoin, Pinckneyville, Coulterville, Vandalia, Marshall, Thomasboro, Grafton, Jerseyville, Kane, Richview, Nashville, Omaha, Waterloo, Hansen, Pocahontas, and at a number of other places.

ORIGIN AND ACCUMULATION OF OIL.

Origin of Oil.

The origin of oil and gas has been a puzzling problem for many years, especially since petroleum has come into world-wide use. Chemists and geologists have attacked the problem from their respective points of view and have presented plausible theories, none of which, however, have explained satisfactorily the broad distribution of petroleum in all kinds of sedimentary rocks of various ages.

The chemist has produced many of the component parts of petroleum in the laboratory; he has broken down certain substances into constituents, some of which have properties resembling those of crude petroleum; and he even reproduced certain isometric forms of hydrocarbons peculiar to petroleum-yet the theories arising from these results fail to meet certain geological conditions that prohibit their acceptance.

Geologists have met the problem from a different point of view. Some, on the one hand, have considered the conditions of deposition of sedimentary rocks and have concluded that oil and gas originate from animal and plant life buried in the sediments. Others have conjectured on the internal conditions of the earth during its stages of cooling and settling and have concluded that oil originated from mineral substances. This attitude is closely allied to the chemist's point of view. The geologist's views are not wholly acceptable and hence the origin of petroleum remains uncertain. The whole problem has resolved itself into two general theories styled the inorganic and the organic.

THE INORGANIC THEORY.

The inorganic theory was promoted by the discovery that the carbides of certain metals may be broken up into hydrocarbons by the action of water and that alkaline metals produce hydrocarbons if brought into con-

[^1]tact with water saturated with carbon dioxide gas. It was claimed that volcanoes, geysers, and hot springs indicate heat within the interior of the earth sufficient to have formed carbides; and that these were broken up by percolating waters into migrating gases. The presence of hydrocarbons in volcanic gases may thus be explained. Such migrating gases on passing from hot formations to higher, cooler, strata would naturally be condensed into petroleum.

It is claimed that granitic rocks are full of joint planes and other minute cracks, and thus it is impossible for the gas and oil to remain in them because of the ease with which they travel and diffuse. When the shales are reached the oil "simplifies" itself or, in other terms, it leaves more or less of its more viscuous constituents behind. It is claimed that the oil of various American fields, with exception of those like the California and Texas fields, has migrated from a distance to the localities in which they now are found. The fact that all oil fields are confined to sedimentary strata and that below the oil-bearing horizons there frequently are unproductive strata of the same nature makes it difficult to understand how the inorganic theory can apply to our larger fields. It is difficult to understand how the oil of such fields as those of Pennsylvania and Illinois can have migrated long distances and not left traces of travel in the intervening rocks. It is apparent that the inorganic theory of the origin of oil and gas is open to many criticisms. The theories derived from chemical reactions are ingenious, and, no doubt, may explain the origin of some petroleum; they do not, however apply to the conditions of our many oil fields as readily as the organic theories.

THE ORGANIC THEORY.

The organic theory advocates that oil and gas originate from the decomposition of vegetable or animal matter, which may have occurred in the bed which now yields oil or gas, or in adjoining beds from which they have migrated.

Chemists have shown that when the body of an animal or a plant is distilled in a closed retort or is allowed to undergo decay in the absence of air, certain gaseous or liquid products are obtained, which resemble petroleum and natural gas. Much the same results are obtained by bacteriological putrefaction of organic matter, without aid of heat. Natural decomposition of animal and vegetable matter in the sedimentary rocks through the periods of geologic time is thought to explain the origin of petroleum.

Shale is held to be the source of petroleum by some supporters of the organic theory. All shale beds are of sedimentary origin and are composed of fine particles of clay. The clay is inorganic and was deposited in water with plants and marine animal life. This decomposition was varied by the deposition of sand, and limey material. The completed stratified rocks comprise a succession of sandstone and limestone, interlain with shale beds. In some fields, as California, diatoms embedded in shale are regarded as the source of the oil. Elsewhere regetable remains, even of delicate type, like algae, render the enclosing shale highly bituminous and oily. It is thought that all stratified beds contained water
in some degree and that the shales, because of their compactness, had less water than the sands. The presence of water in the formations may have aided in the later migration of the oil from the shales to the sands, by providing a ready medium through which the oil could rise under the influence of gravity to the highest possible position in the sand strata. The shale and sand oils are usually classified as "sweet" oils in contradistinction to the natural petroleums of the limestone beds.

The limestone theory of the origin of oil differs from the last by supposing that marine animal life, peculiar to limestone formations was the source of oil in the sedimentary rocks. The limestone oils of Ohio, Indiana, and parts of 1llinois are often known as "sour" oils, because their suphur and nitrogen content is greater than that of oils found in sand formations. They have a ranker odor than other oils and are often much lighter in color; in fact, they are sometimes designated as "green" oils.

The oil of the Mississippian formations or the Tracey and McClosky sands have undoubtedly originated from marine animals, because the producing zones are highly calcareous sands or oolitic limestones and the oil contains much sulphur. Some of the oil from the upper Pennsylvanian beds in Clark county is sour and comes from calcareous sandstones.

Of the two organic theories of the origin of oil, the shale theory is the more applicable to the pools in the Pennsylvanian or "Coal Measures" sands of the Illinois fields, since the sands seem to bear few or no fossils and are consequently barreu in animal organic remains. There was, however, undoubtedly a great abundance of plant life in the waters of the basin of southern and central Illinois. The aquatic plants were algae and various types of sea weeds. In addition to these, land plants were washed down by streams and also marsh plants, such as ferns, ground-pine, etc. Plants from both sources were deposited in the muds and silts of the accumulating deposits of centuries. These, with possibly some marine life, were shut off from the oxygen of the air and other destructive agents and were trapped within the shale deposits, where eventually, through the lapse of geologic time a peculiar, slow, distillation took place, wherein the protoplasm, cellulose, and other constituents of the once living matter, were converted into oils and gases. The distillation and migration were probably a matter of ages. Natural gas is the volatilized, lighter portion of the oil which originated according to the process mentioned. The difference of gravity between gas, oil, and water caused the two former substances to seek the highest places in the rock strata. The presence of natural gas in any area is generally accompanied by oil at some point along the structure in which accumulation has taken place.

Circulation and Accumulation of Oil.

GENERAL CONSIDERATION.

A problem of special importance is the circulation of oil from its source and its mode of accumulation in porous rocks. The matter is being investigated by laboratory methods by various scientists. The cir-
culation is accomplished by capillarity, gravity, and gas or rock pressure. The accumulation of oil requires a porous reservoir with an impervious corer or roof. Certain features, of geologic structure and conditions of water saturation are important factors in determining the localities at which the accumulation takes place. The circulation must also be affected by the physical properties and relations of the oil and salt water, and the rocks in which they occur. One of the potent forces in directing the circulation is doubtless capillarity, since both the shales and the sands are porous formations.
Capillary action is the physical phenomenon consequent upon the attraction or repulsion of liquids along the sides of very fine passages.

If a liquid of low specific gravity is brought into contact with a very fine hair-like tube it will seemingly pull itself along the passages; while a liquid of high specific gravity, such as mercury, will exhibit the reverse tendency. Capillary attraction is accompanied by concave liquid surfaces and capillary repulsion by convex liquid surfaces. Prof. A. W. Duff, of the Worcester Polytechnic Institute of Massachusetts, discusses the effect of capillary repulsion and attraction as follows: "When the effect (of capillary action) is a depression (mercury), the depressed surface is curved downward and the tension in the surface provides a pressure. When the effect is an elevation, the stretch on the upward curved surface tends to draw the liquid in the surface layer away from the liquid below and so produces a state of tension or diminution of pressure below the surface." If a difference of capillarity exists between water and oil in small tubes, the different elevations to which they are raised will be dependent upon the differences in their surface tensions and specific gravities, and the size of the tubes.

Shales and sandstones are porous formations containing infinite numbers of minute spaces capable of holding liquid. The spaces or pores may be likened to capillary tubes and may be assumed under proper conditions to promote capillary action. William Forstner ${ }^{1}$ has the following to say of the classification of sand interstices: "The interstices can be divided into three classes: openings larger than those of capillary size, capillary openings, and openings smaller than those of capillary size, sub-capillary openings. Supercapillarity openings are found in bedding and joint planes, in coarse sandstones, and in conglomerates. In these openings the flow of liquids is controlled by the ordinary laws of hydrokinetics, modified by the viscosity of the fluid, and the regularity, size, and length of the openings. Capillary openings include the great majority of the interstices between the grains of sands and sandstones, many of those in conglomerates, and many of the openings caused by fracture. In these openings the relocity of flow depends upon the area and cross-section of the opening, its length, and the viscosity of the fluid. The movement is so slow that the friction of the moving fluid over the sedimentary film is very small, especially in long openings. Sub-capillary openings include part of the interstices in coarser sediments having capillary openings and nearly all the interstices between the grains of clays, shales, and slates. The morement of the fluid in these openings is excessively slow, under the hydrostatic pressures generally occurring

[^2]in these strata the movement will be reduced to such an extent, that the fluid may be considered as [existing in] fixed films held by molecular attraction."

Capillarity was perhaps effective upon the included water of shales long before the distillation of oil began in them, and may have caused the expulsion of water into the sands. The action extended to the oil which began to originate and find its way into the pores of the shale. Its production was exceedingly minute, yet it was acted upon by capillarity, and caused to ascend toward the sand. The relation of specific gravity of oil and water caused the oil to rise to the top of the water in the sandstones. It is assumed that this action continued as long as distillation took place, until eventually the oil had left the shales to a large degree and had accumulated in the sandstones. The action may have been further aided by various compressions of the formations and other unknown physical phenomena until the shales had given up most of their oil to adjoining porous sandstones.

It is probable that the gaseous hydrocarbons and petroleums of various specific gravities were not separated until the more porous beds were reached. Under the stress of earth movements and different degrees of heat and pressure, changes in the composition of the petroleums must have occurred. Again the oil may have been affected chemically by water in the sandstones and altered from its original condition.

It is apparent that the distribution of petroleum is greatly influenced by the presence of water and it is a fact that there is abundant water in the Illinois oil sands. Oil is lighter than water. If both are present the oil rests upon the surface of the water and is to that extent controlled by the latter. If oil and water are not associated, the petroleum moves downward along bedding planes and through coarse, porous strata under force of gravity. In such a case it may occur in pores at the bottom of a syncline.

A third theoretical agent of the circulation of oil from its source of distillation to its present position is perhaps that of gas pressure or "rock pressure." This pressure is always noticeable when a new oil or gas area is opened up. The oil generally rises far up into the casing of the new well and often above its mouth. If gas is present and the casing is closed so that the product cannot escape into the air, a pressure is developed inside the pipe. The gas may accumulate instantly and thus indicate a very porous reservoir beneath, or it may take considerable time to gather and thus show a less porous one. The two conditions have often occurred in the same locality and yet the same pressures were eventually secured. It is thought that gas pressure may help to promote movement of oil through the containing rocks.

New lines of investigation have been carried on recently by Dr. D. T. Day, J. Elliot Gilpin, and Oscar E. Bramsky of the United States Geological Survey in an effort to find the cause of the differences between such oils as those of Pennsylvania and Illinois and those of Ohio and Indiana, or rather the Trenton limestone oils. ${ }^{1}$ The question reverts to the cause of the difference between "sweet" and "sour" oils, assuming that all petroleum, no matter what its source is, is a definite substance;

[^3]the product of one field differing from another only in the proportion of its series and members of hydrocarbons. The Pennsylvanian and Illinois "sweet" oils are found to contain a larger proportion of paraffin hydrocarbons and less benzine, unsaturated hydrocarbons, sulphur and nitrogen than the Ohio and some California oils. It is concluded that the first mentioned oils were migratory, because the sands in which they are found bear little evidence of containing a source for the petroleum, while the oils of Ohio and perhaps the McClosky oil of the Illinois fields are thought to have originated in the limestone beds in which they are found. If such is the case and petroleum is everywhere the same substance except for the lack of certain hydrocarbons, the difference in the two grades of oil must be the result of migration through filtrating materials, or, in other words, of a "selective activity" of shale or clay. It may be true that some of the Pennsylvania and Illinois oils now reposing in sands were originally of animal origin and they have lost some of their original ingredients by migration. These conclusions led to experiments upon the diffusion of petroleum through Fuller's earth, which is a good type of shale for purposes of investigation. It was found by Day that oil such as the Illinois oil could be produced by this method from crude Trenton limestone oil. Glass tubes packed with dry Fuller's earth were placed in vessels containing crude Illinois oil. The oil, in the course of some time, began to move upward in the tubes by force of capillarity. Examination of the tubes at the conclusion of the migration showed that light oils were found at the top, and low grade, heavy oils, sulphur, and other heavy constituents at the bottom of the tube. Continued filtrations of the oil removed the sulphur compounds entirely.

It was concluded from these experiments, "that the Illinois oil at some time in its history diffused through porous media, which exercised a selective action upon it, removing a large part of the unsaturated and sulphur compounds and probably the benzine and nitrogen compounds."

THE POROUS STRATUM.

Petroleum was valueless as a commercial product when it was originally formed, because its diffusion was so complete that a bore into the containing rock could scarcely have obtained a showing of oil. Its accumulation in pools of commercial value first demands more porous beds than the shales in which it is supposed to have originated. The strata of sand interlain with the shales are suitable reservoirs because in most cases they are much more porous than the compact shales. Exceptionally, the sands themselves contain portions which are extremely compact and impervious. These non-porous areas may act as retaining covers and effect the concentration of underlying oil where structure is favorable. They may be extensive enough to separate adjoining pools, or they may be small enough in extent to cause mere local "dry spots" in the midst of very productive territory, in which the sands are otherwise highly porous. The presence of small streaks of shale within the sandstones is frequent in Illinois formations. Often two or three averaging \bar{j} to 15 feet in thickness may occur in a thickness of 50 to 80 feet of sand. The driller terms these "breaks." The sand and the
"break" merge into one another in most cases and oil is not often found where sand and shale are thus mixed.

IMPERTIOUS COTER.

An important requirement for the accumulation of oil and gas is an impervious corer. or retaining roof, which will hold the oil and gas captire in the porous stratum. In Illinois there is almost invariably a corer of hard, compact, shale orer the oil sands. This is particularly true of the sands in the Pemnsylvanian formations. The producing sands in the Mississippian formations are orerlain in some instances by limestone. The impertious covers hare doubtless caused the retention of the oil in the sands during the periods of earth movements which caused structural folds in the rock. If an oil pool did not have an impervious corer between it and the surface, the lighter portions of the oil would long-since have rolatilized and passed off as natural gas, while only the heary oil or asphalt-like residue would remain. Where a thin cover lies over a productive oil sand some of the lighter portions of the petroleum have escaped and heary, lubricating oil is generally found. This is of low grarity and consequently of low grade, and generally serres as fuel oil. The abundance of shales within the "Coal Measures" and the upper Mississippian rocks of Illinois hare prevented an extensive rolatilization and consequently the oils are of good grade, areraging about 33° in gravity.

GEOLOGICAL STRUCTURES.

Another rery important necessity for the accumulation of oil and gas in pools is the presence of certain types of structural features in the rocks. The sedimentary strata were deposited under water horizontally, or practicalle so, and the natural distillation of oil probably took place primarily while the beds were in that position. Subsequent disturbances took place causing the strata to be folded, forming as it were, arches, or domes, in some places, and corresponding troughs or basins in others. The arches are known as anticlines while the troughs are called synclines. When these undulations took place, the water, petroleum, and gas within the sand formations were forced to move and distribute themselves according to the laws of gravitation and hence according to their specific gravities. The water was the heariest of the three fluids, and, therefore, sought the synclines as far as possible, depending, of course, upon the porosity of the sands. Its tendency was to displace the oil and gas, forcing the oil to float on the water and the gas to rise still higher. The oil was enabled to rise as far as the water extended up the slopes of the syncline, while the gas was able to free itself from the fluids and rise to the highest place in the porous bed, usually the crests of the anticlines.

The earth disturbances effecting the changes in the positions of the strata may be responsible also for minor irregularities which occur on the anticlines and synclines themselres. The surface of an oil sand on the anticline may be pitted or undulating. This condition may affect an extensire area or only a few acres of ground. The general accumulation of oil and gas is governed by the anticline proper, corering many miles, and the segregation of pools may possibly be caused by smaller folds on
the large one. Coupled with this intricate system of synclines and arches on the parent fold, there is variation in the porosity of the sands; the trwo conditions greatly affect the distribution of oil and gas. It is readily recognized that either factor may, locally, explain the presence of dry holes within productive territory. Some question has arisen as to whether these minor arches are true anticlinals of deformational character or whether they represent merely original thickening and thinning of particular beds or, again, whether they result from unequal settling during the consolidation of the sediments. Locally, any or all of these factors may account for the conditions.

Another important type of geologic structure in which an accumulation often occurs, is the "terrace" or flattened area upon the flanks of a syncline or anticline. The terrace, strictly speaking, is an interruption in the uniform dip of the sides of a basin, where the rocks are approximately horizontal. Such terraces are to be found upon the sides of the great structural basin in southern and central Illinois. A segregation of oil takes place upon a favorable terrace much in the same manner as in the anticlines and the svnclines. The water of the basin enables the oil to rise to the terrace, where it may be trapped by friction. But the oil, originally in the sloping sand above the terrace, may migrate farther up the general incline so as to float on the water surface. The gas follows its usual course in freeing itself from the oil and accumulates in the terrace head or continues up the general dip to the adjacent anticline or to some impervious barrier.

Frederick G. Clapp has classified oil pools according to their geological structure, because all known fields have shown their accumulations to be due primarily to definite structures. His classification is as follows: ${ }^{1}$

1. When anticlinal and synclinal structure exists.

Strong anticlines standing alone.
Well defined alternating anticlines and synclines.
Monoclines with change in rate of dip.
Structural terraces.
Broad geanticlinal folds.
2. Quaquaversal strucíures.

Anticlinal-bulge type:
Saline dome type.
Volcanic neck type.
3. Along sealed faults.
4. Oil and gas sealed in by asphaltic deposits.
5. Contact of sedimentary and crystalline rocks.
6. In joint cracks of sedimentary rocks.
7. In crystalline rocks.

Investigations of the main fields in Lawrence county, Illinois, reveals an additional member to Clapp's arrangement. This is a double plunging anticline or a combination of a strong anticline standing alone and a dome or quaquaversal structure. This may fall under Class I or it may necessitate subdivision of Class 2 as follows:
2. Quaquaversal structures.
(a) Anticlinal-bulge type.
(b) Saline dome type.
(c) Double-plunging anticline type.
(d) Volcanic neck type.

[^4]
WATER SATURATION.

One of the most important factors, if not the greatest, in the concentration of oil in raised structures, is the presence or absence of water in the oil-bearing stratum. Mr. W. T. Griswold offers some very interesting observations upon this subject with reference to the Appalachian region. ${ }^{1}$ The theories are more or less applicable to the Illinois rocks, inasmuch as they are of similar age and character. His conclusions are as follows:
"In dry rocks the principal points of accumulation of oil will be at or near the bottom of the syncline or at the lowest point of the porous medium, or at any point where the slope of the rock is not sufficient to overcome the friction, such as structural terraces or benches. In porous rocks, completely saturated, the accumulation of both oil and gas will be in the anticlines or along level portions of the structure. Where the area of porous rocks is limited, the accumulation will occur at the highest point of the porous stratum; and where areas of impervious rocks exist in a generally porous stratum the accumulation will take place below such impervious stop, which is really the top limit of the porous rock. In porous rocks that are only partly filled with water the oil accumulates at the upper limit of the saturated area. This limit of saturation traces a level line around the sides of each structural basin, but the height of this line may vary greatly in adjacent basins and in different sands of the same basin.
"Partial saturation is the condition most generally found, in which case accumulations of oil may occur anywhere with reference to the geologic structure. It is most likely, however, to occur upon terraces or levels, as these places are favorable to accumulation in both dry and saturated rocks.
"Under all conditions the most probable locations for the accumulation of gas are on the crests of anticlines. Small folds along the side of a syncline may hold a supply of gas, or the rocks may be so dense that gas may not travel to the anticline, but will remain in volume close to the oil."

The above observations were found applicable in the Illinois oil fields, as described under the relations of structure to salt water, oil and gas. The Illinois wild-cat areas have not offered sufficient data as to water saturation to warrant conclusions with reference to it. It is hoped that in the future the operators in Illinois will note with as much exactness as possible the wet condition of the sands they encounter. It will then be possible for the geologist or engineer to offer better suggestions as to the probable conditions in prospective oil areas.

GENERAL GEOLOGY OF ILLINOIS RELATING TO OIL AND GAS.

Introduction.

In order that the reader may have a general view of the oil and gas conditions of the State, a brief elementary review of its geology is presented.

[^5]Those who have observed the ledges exposed at quarries or in the banks of streams appreciate that the rocks occur in rather definite layers of varying thickness. Well drillers, especially, realize that sandstone, shale, limestone and combinations of these rocks underlie the State as alternating strata of considerable regularity. The study of these relations constitutes stratigraphic geology or stratigraphy.

A rock stratum may underlie a large or a small area. Thus, a coal bed or an oil sandstone, or "sand," may be present in one locality but absent in the adjoining region. The areal extent of oil sands therefore is a matter of importance to operators.

The rock layers exposed to view appear to be flat-lying or horizontal. Detailed study may show gentle pitching or dipping of the strata. Thus, a sandstone may lie 300 feet below sea level in a particular area, but dip so as to be 500 feet below sea level in an adjoining county. Exceptionally, the rocks lie in gentle folds. The attitude or "lie" of the strata constitutes, broadly, their "structure;" and the determination of this is of utmost importance in the discovery and development of an oil field.

The geology of the State is described elsewhere ${ }^{1}$ in a more detailed manner ; it will be sufficient in this report to discuss its significant features, briefly, under the headings just mentioned.

Stratigraphy.

The accompanying sections indicating the order and character of the strata were first published by Bain ${ }^{2}$ in 190%. They are modified by the writer to agree with later data and conclusions.

Overlying the consolidated rocks of the State except in the extreme southern and the northwestern counties, there is a varying thickness of glacial deposits or "drift." These clays, sands, gravels, etc., are commonly encountered in drilling before hard rock is reached. Locally, they contain gas and Bain says:
"Natural gas is found in these deposits in small quantity at a number of points throughout the State. Such wells are, or have been, known near Champaign, Princeton, Colchester, Wapella, Heyworth, and elsewhere. The pressure is usually slight and the life of the individual wells is usually short. While it is not possible in every case to absolutely exclude the possibility of these wells representing leakage from lower reservoirs, a sufficient explanation of them is believed to be found in the decay of woody material buried in the drift itself. These wells are characteristically difficult to maintain owing to sand clogging the pipes."

The section for southern Illinois is most important in the present study. The formations yielding oil and gas production are indicated by italic and occur chiefly in the Carboniferous system. Possible oil "sands" are suggested also in the Ordovician and Silurian systems, especially in central and northern Illinois.

[^6]
Northern Illinois section.

This section is intended to be representative for that portion of the State lying north of Rock Island, LaSalle, and Kankakee.

Pennsylvanian.	```McLeansboro. Limestones and nodular calcareous shales in upper part and sand- stone at the base. Thickness 300 feet. Carbondale. Coal, shale, sandstone and limestone. Thickness 200 feet. Pottsville. Shale. Thickness 2 to 20 feet. Unconforn ity.```
D	Limestone. Thickness 125 feet. Unconformity.
Silurian	$\left\{\begin{array}{l} \text { Niagara. Dolomite. Thickness } 20 \text { to } 400 \text { feet. Contains frequent seepages of bitumen } \\ \text { in the vicinity of Chicago. } \\ \text { Unconformity. } \end{array}\right.$
Ordovician.	Cincinnatian (Maquoketa). Shales and limestone. Thickness 50 to 225 feet. Unconformity. Galena-Trenton. Mainly dolomite; a little limestone and shale at the base. Thickness 230 to 450 feet. A very persistent "oil "rock or petroliferous shale in the lower portion. St. Peter. Sandstone, friable. Thickness 100 to 220 feet. Heavily water-bearing. Lower Magnesian. Dolomitic limestone. Penetrated to 845 feet. All but upper part known from well records; rests on Potsdam sandstone, known only from well records.

Central Illinois section.

For the region south of Rock Island, LaSalle, and Kankakee, and north of the Missouri river and Marshall, Clark county.

McLeansboro. Shales, sandstones, thin limestones and coals. Rocks between top of Herrin (No. 6) coal and bed rock. Thickness 125 to 700 feet.
Carbondale. Coals, shales and sandstones. Rocks between the base of the Murphysboro (No. 2) coal and the top of the Herrin Coal. Thickness 100 to 300 feet.
Pottsville. Sandstones, thin shales and coals. Thickness 150 to 200 feet. Carlinville oil-sand, Macoupin county; small amounts of oil and gas reported but position not ccrtain.
Unconformity.
Birdsville and Tribune (Chester). Irregular thickness of sandstone, shale and limestone, recognized in a few borings; generally absent in this territory. Thickness 0 to 50 feet.

Mississippian...
Ste. Genevieve, St. Louis, and Salem. Limestone, non-magnesian, partly cherty and partly oolitic. Thickness 225 to 400 feet.
Osage (Burlington, Keokuk and Warsaw). Shales and limestone, the latter often cherty. Thickness 100 to 400 feet. Crude petroleum in geodes near top of the Keokuk. Kinderhook. Shales, limestones, and sandstones. Thickness 40 to 120 feet. Unconformity.
Devonian...... $\left\{\begin{array}{l}\text { Upper Devonian. Shale. Thickness } 0 \text { to } 130 \text { feet } \\ \text { Hamilton. Limestones. Thickness } 0 \text { to } 100 \text { feet. } \\ \text { Unconformity. }\end{array}\right.$
Silurian \qquad Niagara. Dolomite. Thickness 50 to 150 feet. Gas at Pittsfield, Pike county and oil seepage in Calhoun county.

Cincinnatian (Maquoketa). Shales. Thickness 40 to 200 feet.
Or Unconformity.
Galena-Trenton. Dolomite. Thickness 200 to 400 feet. Oil seepage in Calhoun county. St. Peter. Sandstone. Thickness 120 to 170 feet. Lower Magnesian. Dolomitic limestone. Penetrated to 700 feet.

Southern Illinois section.

For the area lying south of a line drawn eastward from the mouth of the Missouri river to Marshall, Illinois, and the State line.

Quaternary.... $\left\{\begin{array}{l}\text { Glacial till, sand, and gravel; loess and alluvium. Present as surface rocks every- } \\ \text { where except in northwest and extreme south. }\end{array}\right.$ where except in northwest and extreme south. Thickness, 30 to $225+$ feet.

Tertiary \qquad $\{$ Lafayette, LaGrange and Porters Creek. Clays, sands, gravel, and ferruginous conglomerate. Occurs only in extreme south. Thickness 250 feet.

Cretaceous
\{ Ripley. Clay and sand. Occurs only in extreme south. Thickness 20 to 40 feet.

Southern Illinois Section-Concluded.

Richmond (Cincinnatian). Orchard Creek, shale, Thebes sandstone, Fernvale limestone. Thickness about 100 feet.
Galena-Kimmswick. Non-dolomitic limestone. Thickness 510 feet recorded. St. Peter. Sandstone. 120 feet recorded.
Lower Magnesian. Mostly dolomitic limestone with occasional thin layers of sand and shale. 545 feet recorded.

Areal Extent of the Fornations and Oil Sands.

The extent of the main geologic systems in Illinois is suggested by the map already published. ${ }^{1}$ Of particular interest here is the extent of the formations which are, or may be, productive of oil and gas. Passing from the youngest to the oldest or lowest rocks, by far the most important are the Pennsylvanian and Mississippian formations; although the Silurian and Ordovician rocks deserve brief mention. The Carboniferous include the Pennsylvanian ("Coal Measures") series and the underlying Mississippian.

The Pennsylvanian rocks occupy 42,000 square miles in the heart of Illinois. They are absent from that part of the State lying north of an irregular line drawn eastward from Rock Island. The boundary swings southward from near the mouth of Kankakee river to a point west of Paxton, thence northeast to the State line near Watseka. South of this line the Pennsylvanian rocks continue from Illinois into Indiana and Kentucky. The southern and western margins of the area follow the trend of the Ohio and the Mississippi at a distance of 10 to 25 miles. The Pennsylvanian rocks of the southern area are thickest and most

[^7]complete. They are thinner in the central section, chiefly because of the thinning away of the Pottsville formations with their included oil sands. North and northwest of Springfield these rocks are essentially absent but they are present eastward from Decatur. A thin layer occurs also in the vicinity of Rock Island. The lowest beds of the Pennsylvanian are lacking along the western boundary of the State from Randolph county northward to Rock Island. It thus appears that the oil sands of the Pottsville are most promising in the central and southeastern parts of the State. Even there, the Pottsville may be limited to areas from which the upper Chester formations have been eroded. The higher sands may be found present practically anywhere except at the thin edge of the Pennsylvanian area. The horizontal extent of the various sands is not known accurately, even within the drilled areas, because of lack of good well records and consequent difficulty of identifying the sands.

The Pennsylvanian rocks above the Pottsville are subdivided into upper and middle parts, the Pottsville constituting the basal portion. The upper part is specifically known as the McLeansboro and the middle part, the Carbondale.

The McLeansboro formation includes all the rocks between the top of the Herrin or No. 6 coal and the top of the Pennsylvanian series. A thin layer of shale usually overlies the Herrin coal followed by a very persistent limestone. The limestone contains a small fossil known as the Fusulina, which is about the size of a large grain of wheat. It tapers at both ends and a cross-section has the appearance of concentric circles. Dr. Udden has been able to distinguish fragments of the fossil in a quantity of chopped, or ground, well samples taken from a churn drill hole. A red shale is often found from 40 to 200 feet above the Herrin coal. This red bed has been noted in Peoria county by Dr. Udden; in Fulton, Sangamon, and Clark counties by T. E. Savage; in LaSalle county by Gilbert Cady, and in White, Gallatin, and Saline counties by F. W. DeWolf. It occurs high up in many well records in Crawford and Lawrence counties but low in other sections of the State. The Fusulina limestone, red shale, and top of the No. 6 coal are the most important beds in the McLeansboro and the absence of any two of them still leaves a possible means of determination for the base of this division. There are usually 300 feet of shale, clay, some sand, local coal beds, etc., between the Fusulina limestone and the Shoal Creek limestone. The maximum thickness of the formation in southeastern. Illinois is about 1,000 feet.

The Carbondale includes the rocks from the Murphysboro (No. 2) coal to the top of the Herrin (No. 6) coal. Shale constitutes the major part of the division with much micaceous sandstone in the basal portion. There are several beds of limestone underlying the Herrin coal. The shales are soft and cavy and often very sandy, so closely are they associated with the massive Pottsville sandstones beneath. The sandstones are sometimes coarse above the Murphysboro coal. This coal is oftenabsent and a thin limestone and more often shale, separates the Carbondale and Pottsville. There is a good bed of sand usually under the Herrin coal. The productive oil-sand north of Centralia is thought to correspond to this and therefore lies in the Carbondale. The most important heds of this division are the Herrin coal at the top, the Murphys-
boro coal at the base and the Harrisburg (No. 5) coal between. These coals are widely distributed and give good opportunity of interpreting this division. The formation is about 225 feet thick in the northern part of the coal area of Illinois, and 300 to 450 feet in southern counties.

The Casey sands, or the shallow sands of Clark, Coles, Cumberland, and Edgar counties and the 400 -foot sands of the Robinson pool in Crawford county, occur well up in the Pennsylvanian. They are interbedded with coals, thin limestones, and prevailing shales. They have been widely drilled along the LaSalle anticline and have been found productive of oil and some gas. Their shallowness and the ease of drilling through the overlying formations has caused their thorough exploitation. These sands are fairly widespread over the southern and central portions of Illinois but have been found commercially productive in but one other locality beyond the LaSalle fold. The original oil seep in the mine north of Centralia, which gave impetus to the development of the Marion county oil field, is from a sand immediately underlying the Herrin coal. This sand was found productive in several wells north of Centralia. As soon as the position of the Herrin coal is definitely learned in the main oil territory, it will perhaps be possible to identify and correlate this sand.

The Pottsville sands at the base of the Pennsylvanian have been studied in Illinois along their outcrop by David White. From the fossils they are believed to correspond in age to the Pottsville rocks of the Appalachian region. The oil and gas sand of Litchfield apparently belongs in the Pottsville. This is perhaps the only instance in which these formations are productive of oil outside the Buchanan sand of the southeastern Illinois fields. The Pottsville sandstones of the central and southern portions of the State, especially in the deeper part of the Illinois basin and over the LaSalle anticline, are conspicuous for their massiveness. Since they are interbedded with shales, however, the top of the formation is difficult to identify, owing to the merging of the sands with overlying shaley rocks. The correlations in this report were based, for the most part, upon the top of the thick sand immediately underlying the conspicuously shaley rocks. These sands are fairly well saturated with salt water wherever they have been encountered. They commonly lack conspicuous limestone strata, thus differing distinctly from the underlying Mississippian rocks. In the southern part of the State the Pottsville rocks are as much as 700 feet thick.
The Mississippian series lying in the Carboniferous, next below the Pennsylvanian ("Coal Measures") contains important oil sands whose exact extent is not accurately known. The outcrops of the Mississippian rocks occur around the southern and western borders of the State, and exposures show that the full thickness is not everywhere present. The thickest development occurs in the southern area. It wedges out to the north so its edge is overlapped and concealed by the Pennsylvanian rocks. The Mississippian oil sands, as shown by the table, occur in the upper or Chester members. They are the most productive sands and have produced most of the oil from the eastern Illinois fields.

The top of the Chester is not positively recognized in drill records. The correlations in this report were based upon the limestone immediately underlying the massive Pottsville sandstone. It is succeeded by
other limestones interlain with strata of sandstones and red shales. Weller says: ${ }^{1}$

From most of the literature on the subject one gains the impression that the Chester is dominantly a limestone formation, but in working over the area occupied by the beds in the field, one is impressed with the fact that it is in a large part sandstone. Nowhere in that part of Illinois occupied by these beds, is the limestone element in the formation the most conspicuous feature, except along the Mississippi river bluffs above Chester, from that city to the point where the Cypress sandstone outcrop begins. It is probable that where the limestone has its greatest development, not more than one-third of the total thickness is calcareous, and over a large part of the area the thickness of the limestones probably does not exceed one-fifth of the entire thickness.

The best region in which to study the succession of beds in the Chester, is in the Mississippi river bluffs above and below the city of Chester. This section shows an aliernation of chiefly calcareous and arenaceous formations, there being three conspicuous limestones and three sandstones. The limestones are frequently interbedded with calcareous shales, and the sandstones frequently become arenaceous shales or at times clay shales.

The lowest member of the "group," above the Cypress sandstone, is a limestone and shale formation attaining a maximum thickness of approximately 250 feet at and above Chester. In its lower portion it includes considerable beds of calcareous and clay shales, a bed of variegated red and blue shale being commonly present near the base. In the upper part of this member is a great limestone ledge about 100 feet in thickness, with occasional thin shaly partings, which furnishes the quarry rock at the Southern Illinois penitentiary, at Menard. The great mass of the fauna of the "Chester group" in Illinois has been described from this lower, calcareous member of the formation as a whole.

The second member of the "group" is a sandstone or shale, the shale being most conspicuous in the more northern part of the area, while to the south it is almost wholly a sandstone similar to the Cypress in character, but usually thinner bedded and not infrequently more or less of an arenaceous shale. This division attains a thickness of about 80 feet. The third is again a limestone which is apparently more impure than most of the beds of the lower division. It is much less fossiliferous than the lower division and the fossils are such as to give it definite faunal characiers which can be recognized over wide areas. Its thickness near Chester is about 60 feet. The fourth member is again a sandstone similar to the earlier sandstone beds, and attains a thickness of 65 feet. The fifth member is a limestone similar to limestone No. 2, in lithologic characters, and is usually almost or quite unfossiliferous. Its thickness is about 35 feet.

It seems to be altogether probable that these three limestone beds of the Chester "group" can be differentiated and mapped throughout the faulted area in the southern part of the State, and that by means of them the structure can be worked out in much detail. In the final work upon these beds it will probably be found to be expedient to distinguish each of these six members of the Chester by distinct formation names, just as the Cypress sandstone is now distinguished.

Dr. Weller has kindly furnished the following general section of the Chester rocks from the exposures along the Mississippi bluffs in Randolph and Monroe counties, Illinois:

[^8]General section of the Chester (above the Cypress sandstone).
Formations. Thickness

Birdsrille: ${ }_{\text {Rockwood sandstone }}$	100
Rockwood sandstone	20
Arenaceous shale or shaly sandstone	47
Sandstore	10
Arenaceous shale or shaly sandstone	33
Limestone (No. 2)	54
Shale	
Limestone (persistent bed)	8
Shale (in some places a bed of sa variable thickness from 0-20 feet)	6
Limestone .	4
Shale	4
Tribune:	
Limestone (No. 1), heavy bedded	80
Interval of uncertain character, lowe part limestone	30
Limestone (fossils)	49
Probably shale-not exposed	38
Variegated red and green shales	5
Not exposed	
Limestone (fossils)	0
Shale, thin streak	
Limestone	15
Shale, thin strata	
Unknown	25
Cypress sandstone	134
Total depth to bottom of Cypress	769

The thinning away of the Chester beds to the north causes the absence of important oil and gas sands in that part of the State. No Chester has been found present west of a line from Decatur to O'Fallon. Probably there is little Chester north of a line between Decatur and Springfield.

Pre-Chester sands of the Carboniferous or those below the rocks just described are not present in the main fields. These rocks have been very little prospected elsewhere and are not known to be productive in other sections of the State. Regardless of its close association with the Chester proper, its wide extent and porous character, the Cypress sandstone is not looked upon as holding much promise.

The Chester group is limited to the Tribune formation because of upper and lower erosion periods in which the Birdsville or upper division and the Cypress or lower sandstone member have entirely disappeared.

The Ste. Generieve limestone underlies the Cypress and is found to be highly productive of oil in Lawrence county. This bed is mostly limestone but conspicuously oolitic and soft, which appears to be a recurrence of the same phase of the lower Salem limestone. Its maximum thickness in the oil fields is $8 \check{0}$ feet while Weller gives 100 feet for Monroe county. The McClosky sand corresponds to the Ste. Generieve. Below that, in the Carboniferous, are no known beds that are either encouraging or discouraging as possible sources of oil. A very recent report, however, describes the finding of oil 300 feet below the top of the St. Louis limestone on the Hardacre farm, N. E. 1/4 Sec. 10, T. 3 N., R. 12 W., Lawrence township, Lawrence county. This may indicate an oil horizon at this position in the series. Petroleum has also been found in the geode bed of the Keokuk. This is not beliered, howerer, to be especially significant.

The Silurian includes the Niagara limestone formation, which in northern Illinois is dolomitic, and locally contains bituminous deposits. It offers some slight chance of oil production.

The Ordovician system includes the Galena-Kimmswick limestone, along with others of little importance in this connection. Over it lie the Richmond-Maquoketa shales which, in the northwest counties, are rich in disseminated oil. The Galena-Kimmswick is known to be 300400 feet thick in the north; 250 feet thick in Calhoun and Jersey counties ; at least 100 feet in southern Illinois. It doubtless underlies the younger rocks of the Illinois basin.

Structure.

Throughout the central portion of Illinois there is a spoon-shaped basin with its long axis extending from the north line of Stephenson county past LaSalle, Lovington, and continuing to the southwest county of Indiana. The deepest part of the basin lies in the vicinity of Wayne, Hamilton, Edwards, and White counties, where the rocks are comparatively flat. Towards this basin, with local exceptions, all the rocks of Illinois and of western Indiana dip gently. The sides of the "spoon" show some minor longitudinal folds. The most important is the LaSalle anticline (See Plate IB) which runs from Freeport to a point just east of LaSalle, and continues in a southeasterly direction through the oil field and into Indiana. From western Illinois the rocks dip gently eastward until the Duquoin anticline is reached but then dip much more rapidly to the axis. They rise from this line to the LaSalle anticline, decline gently, and then rise again into Indiana. The dips of the southern rocks into the basin are locally 100 feet or more to the mile. The anticlines and other minor irregularities influence the accumulation of oil and gas as explained in a previous discussion, and, therefore, are of special importance. They become less conspicuous towards northern Illinois; consequently that part of the State does not offer as promising structural features, for the accumulation of oil as the southern part and it moreover, entirely lacks the Pennsylvanian and Mississippian oil sands. Oil if present must be found in the older formations.

STRATIGRAPHY OF CRAWFORD AND LAWRENCE COUNTIES.

General Statement.

The stratigraphy of Crawford and Lawrence counties is revealed by the study of two sets of columnar sections comprising the most representative borings in the two counties. Three of the records, 2, 5, and 10 of the Lawrence county and all of the logs of the Crawford county sections are precise studies of well samples collected by the writer and examined by Dr. J. A. Udden.

Crawford County.

All the penetrated rocks in the producing areas of Crawford county belong to the Pennsylvanian series. These rocks are overlain by a varying thickness of drift. The Pennsylvanian series are represented by about 480 feet of the McLeansboro, 300 feet of the Carbondale, and about 100 feet of the Pottsville formations. The rocks are all of sedi-
mentary origin being principally shales with variable intergradations of sandstones, limestones and coal. The columnar section of Crawford county is made up of logs from several localities, several of which are outside the area covered by this report. They are plotted in order from

[^9]The Ordovician system includes the Galena-Kimmswick limestone, along with others of little importance in this connection. Over it lie the Richmond-Maquoketa shales which, in the northwest counties, are rich in disseminated oil. The Galena-Kimmswick is known to be 300-
 coun the J

Tr
basin
count
of In
Ham
tively
Illinc
show
antic
of Le
field
ward
idly t
gentl
into t
and 0
as ex]
porta
quent
featur
over,
if pre

The
the st
sentat
of the
tions
exami:

All
belong to the Pennsylvanian series. "These rocks are overlain by a varying thickness of drift. The Pennsylvanian series are represented by about 480 feet of the McLeansboro, 300 feet of the Carbondale, and about 100 feet of the Pottsville formations. The rocks are all of sedi-
mentary origin being principally shales with variable intergradations of sandstones, limestones and coal. The columnar section of Crawford county is made up of logs from several localities, several of which are outside the area covered by this report. They are plotted in order from south to north in Plate II. The top of the limestone over the Herrin coal, which may be called the "Fusulina" limestone for the lack of a geographical name, is used as a key line for the columnar section. All the records are plotted with respect to this line and are presented herewith, corresponding by number to those printed on Plate II. All of the following logs were compiled by Dr. J. A. Udden from a detailed examination of well samples saved by the Ohio Oil Company.

LOGS.

No. 1.-M. Shiltz, No. \%.
Location-SE. $1 / 4$ sec. 7, T. 7 N., R. 14 W., Oblong Township. Elevation-485 feet.

Logs-Continued.

	$\begin{aligned} & \text { Depth } \\ & \text { From } \end{aligned}$	$\begin{aligned} & \text { feet. } \\ & \text { To } \end{aligned}$
Sandstone, fine in texture, micaceous, shaly light	425	44
Gray shale of fine texture, greenish, only very slightly micaceous	440	445
Sandy shale, gray, micaceous, with bits of vegetation.	445	450
Light gray shale, stony	450	455
Shale, greenish gray, micaceous	455	470
Dark greenish gray shale, of fine, even tex	470	475
Coal and fine gray shale or fire clay	475	480
Limestone, some dark and compact with very slow effervescen		
some light, calcareous, crystalline cleavage like that in crinoid		
stems. Also some limestone and shale, with small spherules of		
clay iron stone, magnetic after fusion, $1 / 8-1 / 2 \mathrm{~mm}$. in diameter.		
Wood in coaly pyrite	480	485
Shaly sandstone of light gray color	485	495
Dark gray stony micaceous shale	495	50
Gray sandstone and shale	500	505
Gray shale, stiff, of fine texture	505	510
Dark gray micaceous shale	510	515
Gray dark shale, stiff, micaceous	515	520
Gray limestone and coal, limestone is organic fragmental. Crinoid		
joints noted	0	525
Coal and some gray fire ciay	525	530
Gray sandstone with a little micaceous sh	530	540
Gray sandstone with sandy shale	540	545
Gray sandstone, fine	545	550
Gray micaceous stony, (sandy) shale	550	570
Gray shaly fire clay or shale	570	575
Dark shale and a little coal. Shale, fine an	575	580
Dark shale, coal and fire clay	580	585
Black limestone (almost), effervescing slowly, with imbedded		
organic fragments and pyrites, yellow. Green grains or fillings		
in limestone, crinoid stems, fragments of shells, and spines, fusulina fossils	585	590
Dark gray stiff micaceous shale	590	595
Gray micaceous shaly sandstone and shale	595	600
Shaly sandstone, gray, micaceous	600	605
Dark calcareous limestone, with Athyris, crinoid stems, spines, in		
copious small fragments, and coal in coarse and fine fragments	605	610
Black shale, gray shale, fire clay and coal	610	615
Gray sandstone and black shale	615	620
Gray sandy shale	620	625
Sandstone, light gray, of fine texture thinly laminated, some yellow concretionary material	625	630
Gray shaly sandstone, micaceous	635	640
Gray sandy shale and fire clay	640	645
Gray sandy shale	645	650
Gray shale of fine texture	650	660
Gray sandy shale with straight laminations	660	665
Black shale, with gray blotches, laminated, "Miners' slate"	665	670
Black shale and dark gray shale	670	675
Light greenish gray shale of fine texture	675	685
Black shale, almost slaty	685	690
Black stiff shale of fine texture	690	695
Dark gray shale	695	700
Gray sandy shale	700	705
Gray stiff shale, and some earthy shale	705	710
Dark gray earthy shale and light gray sandstone	710	715
Dark gray laminated shale	715	725
Dark gray, laminated, micaceous shale, with imprints of leaves and bits of vegetation	725	730
Gray shale, sandy and micaceous, with imprints of fragments		
of leaves	730	735
Dark, very dark shale, micaceous,	735	740
Black shale, short "miner's slate"	740	745
Black shale, short "miner's slate, with pyrites	745	750
Gray sandstone with some coal	750	755
Sandstone, shale, laminated, dark gray	755	760
Dark gray shale	760	765
Shale, dark gray, some dark fire clay, coal	765	770
Coal, hardly anything else, large sample	770	775
Light gray sandy fire clay and coal	775	780
Light gray micaceous pyritiferous sandstone and some dark shale	780	785
Light gray micaceous sandstone	785	790
Micaceous light gray sandstone (and shale)	790	795
Sandy gray shale and fire clay, dark, and showing slickensides..	795	800
Dark gray shale, fine in texture, with some slickensided pieces...	800	805
Black "miners' slate"	805	810
Black coaly shale, with a light gray rock composed of clay and containing small spherules of clay iron stone $1 / 4-1 / 2 \mathrm{~mm}$. in diameter	810	815

$\underset{\text { Gr }}{\mathrm{Sa}}$
Sa
Li
Sh
Da
Co Li1
h.
$\underset{\mathrm{Gr}}{\mathrm{Da}}$
Gr.
Da
$\stackrel{\mathrm{Gr}}{\mathrm{Gr}}$
${ }^{\mathrm{j}}$
Gr:
Gr:
Gr:
Gr
Gr
Gr
Gr:
Da
Da
Ble
i
Da
Gr:
Sh:
Da
Ble
Gr:
Gra
Sa1
Gre
Gre
Grz
Gre
Bla
Bla
Lig
Bla
Bla
Das
Gre
Gré
Da!
Daı
Daı
Gra
0
Das
Bla
Bla
Gra
San
Dar
Sha
Coa
Lig
Lig
Lig
Mic
San
Dar
Bla
Bla

Logs-Continued.

No. 2.-O. F. Edwards, No. 15.

Location-SE. $1 / 4$ sec. 7, Oblong Township. Elevation-485 feet.

Loess or silt, with some sand.
Boulder clay, thoroughly leached
Yellow boulder clay, calcareous..
Yellowish gray calcareous boulder clay with limestone pebbles...
Sand and gravel washed from boulder clay............................
Gray boulder clay
Depth in feet. From

0
5

Sand and gravel, washed from boulder clay
To
5
15
15

Mostly sandstone, fairly coarse, with some limestone with frag-
ments of fossils, probably Productus semirecticulatus, Retzia,
Rhomhopora lepidodendroides, Fislulipora, Tubipora, and joints of crinoid stems
Sandstone, gray, micaceous, friable...
Gray shale, slightly micaceous, of comparatively loose consistency
"Dirt bed" material, dark crumbling silt clay, with some coal.
Impure fire clay and shale, much coal, and concretions of lime

Gray shale, micaceous
Gray shale and marly material. The latter contained the pygidium of a small trilohite, fragments of bryozoa, and joints of crinoid stems
Almost black shale, containing small ostracods, one-thirtieth of an inch in length and an impression of some smooth flat objects, having the shape of an equilateral triangle with perfectly straight sides measuring a sixth of an inch.
Black shale with impressions of fucoidal bands a tenth of an inch in width. Part of sample a dark limestone with crinoid stems, a small pentagonal crinoid plate, and a small brachiopod (Ambocoeia umbonata?)
Dark limestone, of characteristic appearance of a "clod", limestone (i. e., small limestone overlying a coal), clay, fissile, shale and coal. The limestone has the same fossils as in the previous number
Dark limestone as above, with irregularly bending Ammodiscus tubes about one-fifth inch in diameter, also coal and some fire clay. The coal probably lies at a depth of about 125 feet and is underlaid by the fire clay.

Micaceous shaly sandstone and sandy shale............................ 140

Logs-Continued.

	Depth in feet. From To	
Micaceous shaly sandstone	145	150
Micaceous shaly sandstone and sandy	150	155
Coal, some "clod" and some shale	155	0
Gray micaceous sandstone	160	165
Gray micaceous sandstone with one large piece of coal and one		
large piece of black shale, containing fragments of some thin		
shells, probably a Lingula.	165	170
Gray sandstone, with some calcareous	170	175
Shaly micaceous gray sandstone, with some small fragments of		
Dark gray sandy shale with large flakes	185	190
Dark gray micaceous shale.	190	195
Gray micaceous shale, with shr	195	200
Limestone, compact, yellowish white and dark gray, containing		
into thin fragments, and has a sort of waxy lustre.............	200	0
Gray shale, somewhat mica	210	215
Fire clay, shale, and sandst	215	220
Mostly sandstone having a calcareous matrix and a few imbedded		
organic calcareous fragments.....................................	22	225
Sandy shale or shaly sandstone, with some black	225	230
Gray sandstone... 23.		
Gray sandstone, laminated, with thin layers of carbonaceous material ...	material ... $235 \quad 240$	
Dark gray sandstone, laminated, micaceous, with thin carbonaceous foliations, and with a calcareous cement.	240	245
Sandstone, dark gray, shaly, biotitic. Some fragments show yel-		
low specks of presumably concretionary iron carbonate, other		
fragments are closely studded with minute grains of pyrit	245	250
Some sandstone like the previous, dark shale and fire clay	250	255
Dark shale and sandstone, both biotitic..................................... $255-260$Black shale and some fragments of a coarse shell breccian con		
taining crinoid stems..	260	0
Gray sandstone, with a brown, slowly effervescing sandstone.....	75	80
Gray sandstone, with a brown, slowly effervescing sandstone, with		
more of the brown rock, which seems to have a concretionary (oolitic) structure and consists of mainly carbonate of iron with		
some calcareous grains.	280	285
Gray sandstone, micaceous.	285	295
Gray sandstone, micaceous, with some sha	295	300
Gray sandstone,	300	310
Gray shale.	310	315
Gray shale with small ostracods, and a spiral Ammodiscus....... 315320		
Gray shale, with narrow, ribbon-shaped impressions of vegetation,ostracods and a sniral Ammodiscus.................................... 320325		
Micaceous sandstone and coarse gray shal	330	335
Coarse sandstone. ... 335 . 340		
Sandstone, with yellow grains (concretionary) of carbonate of iron, larger than the sand grains.	34	45
Gray shale with some very compact fragments of carbonate of		
Faintly yellowish gray limestone, solitting into thin chips, with		
Limestone, like the preceding, with a brachiopod shell fragment,		
a Zaphrentis, and joints of crinoid stems. Also some dark gray		
shale .	360	365
Greenish gray	365	370
Gray micaceous sandstone and shale................................. 370 . 385		
Gray shale of fine textur	385	395
Bluish gray sandstone.. 39.		
Shale, mostly dark gray	400	405
Sandstone and sandy shale....................................... 405 . 410		
Dark gray shale	420	425
Micaceous gray shale, with fragments of concretions of carbonate 435		
Gray shal	445	
Gray shale or fire cla	445	450
Gray shale, ston	0	5
Some gray shale like the above. But mostly a dark, dirty yellow		
heated and loosing much of its weight, probably 30 or		
	455	460

Logs-Continued.

	Depth in feet. From To	
the previous, with much coal .	460	5
Sandstone, gray, micaceous, and some pieces of a black limestone, containing fragments of fossils	465	0
Oily clay, with coal and gray stony shale, some	470	
Like the previous, with much coal and some fossiliferous limestone 475480		
Sandstone, with some yellow limestone containing organic fragments	480	5
Gray shale and some sands	485	
Dark gray shale .		
Dark gray shale with a small Ammodiscus and some narrow		
fucoid markings Gray limestone with imbedded yellow fragments of fossils with		
some black shale and coal	50	0
Mostly fire clay and coal . 51		
Sandstone, some coarse, some	515	0
Sandstone, comparatively coarse . ${ }^{520} 5{ }_{5}{ }^{525}$		
Sandstone of average texture	525	535
Dark arenaceous shale ... 535.		
Shaly sandstone, black shale and coal	540	545
Gray sandstone, with a compact yellowish gray limestone breaking frequently into rectangular fragments, and probably of concretionary origin		
Dark shale and sandy gray shale with fragments of concretions 560 . ${ }_{565}$		
of carbonate of iron	56	565
Gray shaiy sandstone		
Dark "cloddy" shale and coal with some	57	575
Coal, stony fire clay and sandy shale 575.		
Gray sandy shale	580	58
Shaly sandstone . 5850		
Shaly sandstone, greenish sandy shale, coal and concretionary carbonate of iron		
Gray shale	600	605
Dark gray shale, har	05	630
Dark gray shale with a fine textured and compact limestone, in		
part gray, in part yellow, apparently concretionary	630	635
ray shale, with concretionary limestone like that in the above	635	640
Gray sandstone and some black shale .		
Gray fine-grained sandstone, with some black coaly shal	645	65
Like the preceding, but less shale 6. . 650.		
Gray shale and black shale	655	660
Gray shale ... 660 . 665		
Black micaceous shale and gray shale with concretionary material	665	${ }^{67} 0$
Black micaceous shale with concretionary material............... 67		
Gray and black shale and coal	675	0
Coal and gray shale Gray shaly and micaceous sandstone with much carbonaceous		
material, and with imprints of vegetation abundant in some fragments		
Dark gray sandstone of fine texture with thin layers of carbonaceous material		
Dark gray micaceous shale with imprints of fern	695	700
Dark gray shale, micaceous	700	705
Dark gray shale, micaceous, st	705	725
Black shale, hard	725	730
Black shale, with "clod" limestone containing a crinoid stem		
Gray micaceous sandstone, comparatively coarse in text	740	745
Gray sandstone . 7450.		
Shale, almost black . 750.750		
Black shale and coal	755	
Black shale and fragments of "clod" limestone, coal and fire clay 760770		
Gray micaceous sandstone, with brown concretionary material.... 77		
Gray sandstone and black shale	775	780
Like the preceding, with some calcareous materia	79	795
Gray shale, and some fire clay with thin carbonaceous flakes imbedded		
Dark gray shale, micaceous	800	810
Black clayey shale, some coaly shale, some brown and soft con-		830
Dagk bluish shale and some sandstone	830	835

Logs-Continued.

Note-Dr. Udden adds the following statement to the above \log : "The limestone at 360 feet is probably correlative with a limestone horizon which occurs at about 160 feet above Coal No. 6, in the Belleville region. The limestone at 200 feet is most likely an equivalent to the Carlinville limestone about 150 feet higher in the section. Coal No. 6 is believed to be the coal at 510 feet. The several coal seams penetrated are no less than 14 or 15 in number; and fall into three groups. The lower groups, consisting of five coals probably of small size, includes the coals from 670 to 850 feet below the surface. It probably includes coals 1 and 2 of northern Illinois. The middle group comprises the coals from 430 to 580 feet below the surface and no doubt includes Coal No. 6. The uppermost group of coal beds, comprising some small coals of the "Upper Coal Measures" of Worthen, are the coals in the upper 200 feet of the section. The sandy shale in the lower part of the section, which contains the oil sand, exhibit a quite persistent lamination of thin dark and light layers. It is believed that this feature may be useful in their identification in the nearest outcrops."

No. 3.-L. R. Newlin, No. 21.

Location-SW. 1/4 SE. $1 / 4$ sec. 27, T. 6 N., R. 14 W., Martin Township. Elevation-498 feet.

Logs-Continued.

	Depth From	$\begin{gathered} \text { feet. } \\ \text { To } \end{gathered}$
Dark limestone with sand	30	40
Gray sandstone with infiltrated lime	40	45
Gray sandstone, some yellow limestone, and siderite	45	0
Gray sandstone with some yellow limestone. Pyrite	50	60
Coarse gray micaceous sand with iragments of coal.	65	70
Coarse micaceous sandstone	70	75
Coal and some fire clay	75	0
Gray micaceous sand. A little lime in sand	80	110
Dark micaceous shale and sand	110	115
Gray micaceous shale and sand. A few fossil fragmen	115	0
Limestone, fragmental, organic, crinoid fragments and bryozoa noted	120	125
Light gray shale of fine texture	125	130
Limestone, in part fragmental, and some shale	130	135
Gray sandy shale with some crinoidal limestone	135	140
Gray micaceous sandy shale, with some limestone	140	145
Gray micaceous shale	145	150
Gray micaceous sandstone and much darker clay iron stone	150	155
Gray micaceous shaly sandstone, with imbedded shreds of vegetation	155	160
Gray micaceous shaly sandstone	160	170
Fine grained, gray micaceous sandstone with intersticial lim	170	175
Some black fissile shale. Mostly a dark blotched organic breccia limestone, containing many crinoid stems, some small Athyris and some crinoid spines	175	180
Like the preceding, with some sandstone and coal	180	185
Sandstone, limestone and shale	185	190
Micaceous sandstone, with some laminated sandy shale	190	195
Gray sandstone, quite coarse	195	210
Micaceous silty gray shale	210	240
Gray shale, and some dark shale	240	245
Black shale, clay iron stone, crinoid stems, Bellerophon, Athyris, a cyathophylid, two gastropods	245	250
Black shale and coal	250	255
Yellowish and gray concretionary siderite and limestone, with some fire clay and coal	255	260
Gray shale	260	265
Gray sandstone and some dark shale	265	270
Gray micaceous sandstone	270	275
Laminated gray sandstone of fine texture	275	280
Gray shale and fire clay	280	285
Gray sandstone	285	290
White sandstone with siderite concretions	290	295
Laminated sandstone	295	300
Micaceous sandstone and dark shale	300	305
White micaceous sandstone	305	330
Gray sandy shale, micaceous	330	345
Gray micaceous sandy shale and some dark gray	345	350
Like the preceding with some clay iron stone ...	350	355
Mostly coal, some shale and some fragments of concretionary limestone		360
Gray sandstone with siderite	360	365
Gray sandy shale, micaceous	365	375
Gray sandstone, with some limestone, white	375	380
Gray sandstone, with interstical calcareous material and some pure white limestone	380	385
Greenish gray sandstone	385	390
Gray sandstone, with many concretionary spherules about $1 / 2$ millimeter in diameter	390	395
Gray sandstone	395	400
Dark gray sandy shale, stiff	400	405
Dark gray micaceous shale	405	419
Dark gray shale	410	415
Dark shale and limestone, with pyrite calcite with many crinoid stems, and an Estheria (?)	415	420
Coal with some limestone fragments and shale	420	425
Coal and fire clay Gray sandstone, with some yellow fragments or co................................	425	430
$\underset{\text { material }}{\text { max }}$ Sandstone. .	430	435
Wray sandstone	435	440
Yellowish white sandstone	440	445
Dark shale................	450	455
Black shale and coal	455	460
Gray sandstone, micaceous	460	465
Gray limestone and some large quartz grains.	465	470
Gray sandy shale, mizaceous.	470	475

Logs-Continued.

	Depth in From	feet.
Sandstone and some limestone	475	0
Shaly sandstone, with some siderite conc	480	85
Black and dark micaceous shale.	485	490
Black dolomitic limestone, with calcite, Rhombopora, lepidedendroides, crinoid stems.		
Black limestone, with crinoid stems and coal...................	495	500
Gray micaceous sandstone, with some interstical calcareous material	500	510
Gray sandstone and a dirty yellow dolomitic limestone, concre-		
tionary (?)	510	515
Limestone	515	520
Gray silty shale with carbonaceous shreds imbedded	520	525
Gray silty shale with thin layers of shiny coal of silky lustre. Coal layer in one fragment adhering to the shale		
Gray shale of fine texture...............................	525	530
Dark shale of fine texture	535	555
Black shale and coal, mostly	555	560
White sandstone of fine texture	560	565
Light gray shale, with small spherical siderite concretion	565	570
Gray shale, with much siderite, in fragments and in minute spher-		
ical concretions. Some bright red fragments noted, "rusty"	570	575
Shaly sandstone and sandy shale, gray, with siderite as in preceding sample.		8
Sandy shale, gray, with siderite fragmen	580	585
Gray sandstone, some shale and siderite	585	590
Shaley sandstone or sandy shale, gray	590	595
Sandstone, black shale and "clod," with some coal and siderite concretions	595	605
Shale and shaly sandstone, with fragments of siderite concretions		
and coal.	605	610
Greenish fire clay and shal	610	615
Shaly sandstone, gray	615	620
Black miner's slate, with siderite concretio	620	625
Black miner's slate, with sandstone and gray	625	630
Gray sandy shale.	630	635
Dark gray sandy shale, micace	635	645
Gray laminated shaly sandstone	645	650
Dark gray sandy shale	650	655
Black stiff shale, almost miner's	655	665
Black stiff shale and impure coal	665	670
Black shale and black concretionary limestone, with fossils	670	675
Gray sand and gray sandy shale with some coal	675	680
Coal with very bright (black) lustre and fire clay	680	685
Coal of bright lustre and brownish earthy streak and some fire clay	685	690
Gray gritty fire clay and dark sh	690	695
Shale, gray..........	695	705
Shale, gray, and some si	705	710
Dark limestone, some dark shale and pyr	710	720
Dark shale, some dark limestone and spherulitic	720	725
Shale, dark, some coal; a little dark limesto	725	730
Dark shale, some coal, and spherulitic sider	730	735
Gray micaceous shale, and bits of yellow limest	735	740
Gray micaceous shale, and fragments of siderite.	740	745
Dark micaceous shale, some siderite, bits of coal	745	750
Gray micaceous shale and siderite	750	755
Gray micaceous shale, some fire clay, coal and py	755	760
Coarse gray micaceous shale, pyrite, little shale	760	770
Black shale and some coarse sandstone	770	775
Coal and fire clay, and some gray shale	775	780
Coal and fire clay, and some gray fire clay with pyrite	780	785
Black shale, bits of yellow limestone, and spines of brachiopods, and spherulitic siderite.	785	790
White sandstone and shale, black, some yellow limestone and coal, and spherulitic siderite.	790	795
Dark shale, some little sandstone, siderite and limesto	795	800
Black shale and some siderite	800	810
Black shale.	810	820
Gray micaceous shale and some	820	825
Limestone, dark and white; some sandstone with infiltered lime; gray micaceous shale, pyrite and some crinoid joints.	825	830
Dark and white limestone with crinoid stems and pieces of		
shells, and pyrite.	830	835 840
Gray micaceous sandstone, and some dark and white limestone.	835	840
Black micaceous shale, some sandstone, and white limestone.	840	845
Black micaceous sha	845	850
Black micaceous shale, some white sand and siderite	850	860
Gray sandstone and dark shale	860	865
Gray sandstone, some dark shale and siderite	865	870

Some limestone
Shaly sandstone, with some siderite concretions
480
485
490
500
510 515
Gray silty shale with carbonaceous shreds imbedded....................
Gray silty shale with thin layers of shiny coal of silky lustre. Coal layer in one fragment adhering to the shale

525 530
Gray shale of fine texture.
535
555
565 565
White sandstone of fine texture

570
575

580

Gray sandstone, some shale and siderite.
580
585
Shaley sandstone or sandy shale, gray.. concretions

595
605
and
Greenish fire clay and shale.
605
610

Black miner's slate, with siderite concretions
Gray sandy shale.
625
630
645
650
665
670
680
685
695
705
720
725
735
740
750
755
770
775
785
790
00
800
Black shale and some siderite...
Black shale.
820 820
Gray micaceous shale and some-sandstone.............................. gray micaceous shale, pyrite and some crinoid joints............... shells, and pyrite

830
835
Gray micaceous sandstone, and some dark and white limestone...
Black micaceous shale.
840
850
865

Logs-Continued.

Pleistocene:

Depth in feet.
From To

Boulder clay.
Depth in feet
From To
$870 \quad 875$
$875 \quad 885$

885890
$890 \quad 895$
895905
$905 \quad 940$
$940 \quad 950$
$950 \quad 955$

Limestone, with imbedded crinoid stem, a small Spirifer cam
eratus, a small gasteropod, and a piece of a plant stem.
Some roof shale

40

Shale, greenish gray, micaceous.
45

Fine-grained micaceous sandstone with a calcerous matrix.
Arenaceous, gray shale
ธ 0
...
Micaceous, gray shale..
Micaceous, dark gray shale.. bonate of iron.
Sandstone, gray micaceous, calcareous and shaly, with. many fragments of shells of yellowish color.........................
Gray shale and micaceous shaly sandstone, with a small Myalina, and many fragments of shells. Some coal noted.
Some limestone, but mostly shale. The shale is dark gray, micaceous, and marly. It has many minute, apparently concretionary grains, yellow, of carbonate of iron. These appear like coarser grains in a fine textured matrix. The limestone is dark with imbedded flat fragments of Myalina, shells, and one piece was seen with imbedded trenchantly marked tubules, believed to be irregularly curving forms of Ammodiscus, measuring from .1 to .15 mm . in diameter....
Micaceous sandstone or sandy shale, with some brownish limestone brown calcareous coaly fragments................................
Fine-grained sand, micaceous, and with brown and green grains, as above...
Like the previous, but with occasional carbonaceous fragments Gray, micaceous sandstone, with some dark and some green grains, and some shreds of carbonaceous material.
Black fissil "miner's slate" with pryitized fossil shells, one probably being an Aviculopeaten, another like a minute Myalina
Some shaly fire clay and a little coal, but chiefly gray micaceous shale with minute concretions of carbonate of iron of the size of small sand grains
Gray micaceous shaly sand. One large fragment showing lines believed to be wave marks.....................................
ray shale, slightly micaceous shale with a brownish minute
disc-shaped fossil of spiral structure, probably an Ammodiscus
Gray shale, faintly micaceous.. seen on a cleavage plane. Some fragments of coal........
Greenish gray fire clay and shale, with fragments of dark concretionary limestone..
Fine-grained micaceous sandstone or shale, with yellow specks of concretionary siderite

Logs-Continued.

From To
Coal Measures-Continued.
Gray, dark, and compact concretionary carbonate of iron in200205
large fragments.
Dark gray shale, with Ammodiscus (?) 205 210
Mostly dark concretionary carbonate of iron in large frag- ments, with some dark stony shale 210 215
Dark shale of fine texture215220
Dark shale slightly micaceous, with Ammodiscus (?) and minute shreds of other fossils 225 220
Dark micaceous shale, slightly calcareous
Like the previous, with minute shreds of vegetation230240
Dark micaceous shale, like that in the previous sample, with Ammodiscus (?) and a small ostracod 240 245
Dark micaceous shale, with impressions of fern leaves, andwith a spiral Ammodiscus (?) and one tube of an Ammo-discus (?) only slightly curving. Some kealed impressionswere noted on one fragment and stem joints and spines ofcrinoids were also noted
245 250
Dark gray shale255
 250 260
grains under the lens260
Shale, greenish gray, sandy and micaceous
Greenish gray micaceous sandstone and red clay marl 265 270265270
Greenish gray sandy shale275275
280
Comparatively coarse sandstone, with some green and somepink grains. Also some lumps of fire clay, which containsmall spherical nodules of black oxide of manganese fromone-fourth to one-third mm in diameter Some of theseconcretions are grown together in groups of two and threeComparatively coarse sandstone, with some interlaminated$280 \quad 286$
shaleMostly sandstone, gray and of fine texture, with some shale.286290
Color various 290Sandy gray shale or shaly sandstone295Micaceous pray shole shaly sandstone295
Dark gray shale, not micaceous
Very dark shale, carbonaceous and sandy. Most of it is 308 320302finely laminated and shows shreds of vegetationShaly sandstone or shale, thinly laminated, containingbrownish yellow grains (concretionary?) larger than thegrains of the rock and also some still larger black grains..
320 338Like the previous, with the brown grain least abundant inthe layers of the finest texture, which are carbonaceous...Sandstone, with interlaminated carbonaceous streaks show-ing vegetable tissue338350Coal, shale, and sandstone350356
362
Mostly fire clay368
Mostly concretionary material, carbonate of lime and iron, and some shale 380
Concretionary limestone and carbonate of iron, in shale. 387
Light gray micaceous and sandy shale 394
Micaceous and sandy gray shale-
Micaceous sandstone and gray shale 401407
Dark gray shale
Dark gray limestone, consisting of organic fragments, someblack shale and coal. The limestone contains Chonetesmesolobus (?), crinoid stems and a gasteronod (Bellerophoncarbonaria?!)413
Fire clay, gray and biack shale, and coal 419
Gray shale 426
Gray sandstone of fine texture
Gray sandstone of fine texture 432
438
Shaly sandstone, micaceous and with rusty specks 450
Gray shale, micaceous and sandy 456
Dark gray shale, micaceous and sandy 462Like the above, but darker468
419426432
Almost black dolomitic limestone, uniform in texture, emitssulphurous odors when heated and becomes slightly magneticbefore the blowpipe, and contains joints of crinoid stems,Chonetes mesolobus (?) Rhombopora lepidodendroides (?).fragments of brachiopod shells, and Fusulina of the kindoccurring in the limestone above Coal number 6 .480
492Gray sandy shale and some dark shale492
Gray slightly sandy shale 498 49.8
Soft gray micaceous shale
Gray shale. soft and micaceous, with some dark shale show- 510
ing shreds of vegetation 510516

Logs-Continued.

Depth in feet.
Coal Measures-Continued.
Gray slightly micaceous sandstone, with some large and thin fragments of black dolomitic limestone 522
Gray sandstone, with some limestone like that in the pre- vious sample 528
Dark gray highly micaceous shale, with scales of biotite and on fresh fractures having an appearance like that of Archaen schists 534
Gray sandstone and sandy micaceous shale, with some dark shale and fragments of coal 540
Dark gray sandy shale, micaceous, with some fire clay 40 546
Dark shale of fine clayey texture 552
55
Dark gray shale, micaceous and stony 564
Dark gray shale, of clayey texture 570
Dark gray shale, with narrow fucoid bands in some cleavage planes 576
Black fissile shale 588
Mostly light gray sandstone, some gray shale, with fragments of coal and limestone 59.4
Mostly light gray sandstone with some dark shale 600
Dark micaceous, shaly sandstone 606
Dark micaceous, sandy shale 612Dark, almost black, shale, with fragments from concretionof carbonate of iron624
Gray shale, of clayey texture 636
Gray shale, with some little mica
Like the previous642648Black shale, of fine texture, but with some mica, and withearthly lustreBlack shale, much pyrites of iron, and some coal. The shalehas imbedded calcareous fossils among which a piece oflamellibranch valve and a Bellerophon were noted, andalso impressions of an insect wing (?). In the fragmentsof pyrites was noted a Nucula, a Bellerophon carbonaria(?) in part filled by zinc blende, and a fragment of abrachiopod. In the coal some woody tissue was noted.....664660Light gray sandy fire clay filled with small crystals ofpyrites
$660 \quad 66$
Dark gray micaceous and sandy shale$666 \quad 672$
Dark gray shale of fine texture, with pyrites and coal
Black fissile shale and finely laminated coal with brown67267streak. Woody fibre seen in some pyrite$678 \quad 68$
Shaly fire clay, light gray and stony 684 690
Gray shale and sandstone 690$690^{\circ}$
Sandstone, somewhat coarse, laminated, in alternate layers of white and carbonaceous black material, some layers micaceous 696 70 S
Dark gray shale, stony, sandy and micaceous 708 714
Gray shale, stony, sandy and micaceous714720
Dark shale, with some laminated coal and some fire clay.....
Gray sandstone, shaly and micaceous 720 726 732
Soft gray shale
Some gray shale, and some dark micaceous shale with con-cretionary carbonate of iron738744
Almost black fissile shale, with concretionary carbonate ofiron74
Gray sandstone of fine texture750750
Dark gray shale, arenaceous and micaceous 756 756 762Laminated, gray sandstone, micaceous, alternate layers inblack and carbonacecus, the black layers very thin, thelight layers in several cases measuring one-tenth of aninch in thickness762
Coarse micaceous sandstone, laminated with alternate layersof dark carbonaceous shale768
Like the previous, sandstone coarser and softer 79878
Dark gray shale and some lighter shale 98Almost black shale, fine in texture804Light gray sandy shale, slightly micaceous817
Dark gray and light gray shale of fine texture 830836768
Gray sandstone, of very fine texture8048178383 מ
Dark bluish gray shale of very fine texture with concretionarycarbonate of iron848
Almost black shale, very fine in texture85854
Coarse sandstone86
Almost black shale, fine in texture 866 866
Almost black shale, with biotite 878
Black shale, fine in texture 8888
Gray sandstone, fine grained8908

> Logs-Continued.

	Depth in feet. From To	
Coal Measures-Concluded.		
Gray sandstore	908	914
Black shale of fine texture, with concretions of carbonate 914		
of iron .	914	938
Gray shale and sandstone, with some large and thin chips of coal	938	944
Gray soft sandstone and shale. The rock in this and the		
previous sample appears to be a mixture of alternating		
layers of shale and sandstone	944	950
Gray soft sand, only a single fragment of loosely coherent		
rock, remaining in the sample. Size of grains is about		
one-fourth mm, in diam. Apparently oil sand; the grains float on water		
fray sand, with grains mostly from one-eighth to one-half	950	955
Gray sand, with grains mostly from one-eighth to one-half		
mm . in diameter. The largest grains all have crystalline		
facets resulting from secondary growth. Sand floats on		
water	955	959
Sand like the previous, but faintly brownish yellow	959	963
Sand like that in the three previous samples, except that it is more nearly white in color	963	967

Note-Dr. Udden states that two specimens of a Fusulina were found in a limestone occurring at the depth of 480 to 486 feet from the surface, and this no doubt is the limestone which forms the caprock over Coal No. 6. The rock itself has been altered to a dark dolomite, effervescing very tardily in acid. It has a dark gray color which is evidently due to the presence of iron pyrites in microscopic particles. On heating in a closed tube it gives off sulphurous odors and becomes slightly magnetic. The entire section represented by the two samples studied consists of variations of shales, sandstones, limestones, coals and fire clays, with calcareous concretionary matter, and more frequently concretions of carbonate of iron. They all have the general appearance characteristic of the Pennsylvanian series in this region. About a dozen coal beds were penetrated, which occur in three groups, not counting an evidently thin bed of somewhat shaly coal, which lay at a depth of 904 feet below the surface and only a few feet above the oil sand. The lowest of these groups which presumably includes equivalents of Coals Nos. 1 and 2 in northern Illinois, is represented by three seams at 720, 678 and 660 feet below the surface. The middle group, which includes Coal No. 6 is represented by one coal at 540 feet, by Coal No. 6 at the depth of 485 feet, another coal, overlain by limestone, at 420 feet and a coal overlain by sandstone at 365 feet. The coal beds of the "Upper Coal Measures" of Worthen are represented by an apparently small seam of coal at a depth of 185 feet, one small coal associated with a capping calcareous bed at the depth of 95 feet, and a black shale under a limestone at the very surface of the bed rock under the drift, fifty feet below the surface. The spiral shell of an Ammodiscus was observed in cleavage surfaces of some shales in the "Upper Coal Measures" and presumably the same fossil, in the form of irregularly bending tubes occurred in some limestone at the depth of 100 feet.

$$
\text { No. 5.-C. F. Curtis, No. } 8 .
$$

Location-NE. corner sec. 11, Oblong Township. Elevation-475 feet (estimated).

Depth in	feet.
From	To
1	10
10	15
15	20
20	25

Logs-Continued.

Logs-Continued.

	Depth From	$\begin{aligned} & \text { feet. } \\ & \text { To } \end{aligned}$
Gray micaceous sandy shale, some gray shale and concretionary 435440		
Dark gray shale	440	445
Dark gray shale and concretionary sider	445	455
Dark gray shale, with imprints of vegetation, and som	45	460
Gray shale with imprints of vegetation. Some siderite and some carbonaceous shale		
Gray sandstone and white limestone, some fragments of coal and		
Gray micaceous shale, some yellow concretionary siderite, a little limestone and gray shale.		
Dark gray sandy micaceous shale, some gray shale, concretionary siderite and some gray sandstone.		
Dark micaceous sha		
Dark gray micaceous shale	495	
Black limestone and some black shale, and some siderite. Crinoid stems noted.		
Black limestone, some black shale, some coal and siderite. Crinoid		
gasteropod, and some crinoid spines and stems noted. The lime-		
	51	515
pyrite, some coal and black shale, some siderite and fragments		
Black limestone, a few pieces of coal, pyrite, siderite, white lime-		
stone and crinoid stems.	20	25
Gray micaceous sandstone, some black limestone, coal and gray		
shale with pyrite siderite and white limes	525	530
White micaceous sandstone and coal, with some fire clay, siderite,		
Edmondia nebrascensis (?), Hemipronitus crassus, Chonetes		
punctatus (?), some small gasteropods, several crinoid spines 555		
and stems and a bryozoan like Rhombopora noted	555	560
Gray sandstone and coal, with some white limestone, pyrites, calcite, shale and a few crinoid stems. $560-565$		
Dark gray shale, some coal, sandstone, pyrite and fire clay.		570
Gray micaceous sandstone, with a little fire clay and shale.		
Gray micaceous sandstone, some of which is studded with spherules of pyrite measuring from 1 to 3 mm . in diameter, and		
showing faces of small cubic crystals on the	5	585
Gray micaceous shale	585	610
Gray micaceous shale and som	610	615
Dark gray shale.	615	-
Gray shale and some yellow limestone, concretionary siderite in		
large fragments and in minute spherules, coal and some sandstone	620	625
Gray micaceous shale, a little yellow limestone, siderite, pyrite		
	625	0
Gray micaceous sandstone and shale with siderite, fire clay and coal		
Gray micaceous sandstone and	635	640
Gray micaceous	640	645
Gray micaceous sandstone, with some	645	650
Gray micaceous shale and some yellow limestone, and	65	5
Dark gray shale, some fire clay and concretionary si	655	0
Dark gray micaceous shale and a little yellow limestone and 660		
siderite	660	675
Dark gray micaceous	675	68
Dark gray and some micaceous black shale, with a little siderite. . 6806685		
Dark shale, with imprints of vegetation, and some fire cla	685	690
Dark shale and concretionary siderite................................ 690.6		
Dark micaceous shale and some side	695	700
Gray laminated sandistone anderite and a little sandstone......................... 730 , 735		
Hard black shale	735	740
Black shale, some coal and sandstone and a little siderite..........		
Gray micaceous shale, some yellow limestone, some black shale		
Black shale and a few fragments of yellow limestone and coal.....	750	755
Black micaceous shale..	755	760
Coal and a few pieces	60	65

Logs-Continued.

	Depth in feet. From To
Coal and black shale, some white limestone, a little sandstone	
siderite and bits of pyrite	$765 \quad 770$
Gray sandstone, some dark shale, bits of coal and limes	$770 \quad 775$
Gray micaceous sandstone and a little yellow limestone.	$775 \quad 790$
Dark micaceous shale and a little siderite.	$790 \quad 795$
Black shale and a little coal. A little gray limestone	795800
Black shale, a little coal and a little sandstone.	800805
Dark pyritiferous shale and some gray sandsto	805815
Gray micaceous shale..	815820
Gray micaceous shale and a few bits of coa	820825

No. 6.-J. M. Drake, No. 23.

Location-NE. $1 / 4$ sec. 9, Oblong Township.
Elevation-490 feet (estimated).

	Depth in From
Gray limest	200
White and yellow limestone, concretionary siderite, some gray	
Sandstone and a piece of quartz............................. ${ }^{\text {a }}$	$205 \quad 210$
d some dark sha	$210 \quad 215$
Gray sandstone, some yellow sandstone, siderite, quartz fragmen	
yellow limestone and a few nieces of bright green sandstone..	$215 \quad 220$
ellow limestone, some siderite, shale	
quartz (from drift?)	$5{ }^{225}$
White limestone....	
Very fine micaceous	$250 \quad 270$
Dark gray micaceous sandy sh	$270 \quad 275$
Dark micaceous shal	5
Black shale and gray sandstone, with a little lim	90
Dark limestone, some yellow limestone and bits of coal.	${ }_{295}^{290}{ }^{295}$
Black shale, a little yellow limestone and a few fragments of coal Gray shale, some yellow limestone and coal....................	95 0 305 305
Gray shale, some yellow imestone	
Gray shale	310 315
Gray sha	5
Gray shale	30
Gray sha	330 335
Gray micaceous shale and some micace	5
	340 350
Concretionary siderite with a little yellow limestone and shale. A	
Crav shale and a	
Gray shale, yellow limestone and some sandstone. The shale	
contains shreds of vegetation.	
ray shale and concretionary	
Gray limestone and some	
White limestone. A crinoid stem	$375 \quad 380$
White limestone, some greenish sandstone and a few bits of coal	380 385
Gray micaceous sandstone and white	0
Fray shale and a little limestone	5
White limestone and some gray	395400
Gray shale and some limestone	$400 \quad 405$
Concretionary siderite, some dark shale	405410
Gray sandy shale and siderite. Some yell	$410 \quad 415$
Dark gray shale, some siderite and yellow	0
Fray sandy shale and some side	$420 \quad 425$
Fray sandy shale, black shale and som	425435
Gray micaceous sandstone and a few bits of yell	- 440
Gray micaceous sandstone.	5
Gray micaceous sandstone with shreds of vegetation. A few small pieces of siderite.	445460
Gray micaceous sandstone and a few small pieces of white lime-	
	$460 \quad 465$
ray micaceous sands	$465 \quad 470$
Gray micaceous sandstone, some dark shale, a few bits of and nyrite showing woody tissue..................................	470 475
Gray micaceous sandstone and white limestone. A little dark	
	0
	5
Sandstone with infiltrated lime, white limestone, and a few small spherical siderite concretions.	$490 \quad 495$

Logs-Continued.

	From	$\begin{aligned} & \text { feet. } \\ & \text { To } \end{aligned}$
Gray micaceous sandy shale, some yellowish limestone, white sandstone and a little. dark shale.		
White sandstone, some dark		
	515	0
	520	-
Dark limestone, some dark shale, crinoid stems and some other organic material noted. Tuberculated-crinoid spine noted like		
Dark limestone, coal, some yellow limestone and several crinoid stems noted.		
Gray micaceous sandstone and a few pieces of	545	550
Gray micaceous sandstone, a few bits of coal and siderite.......... $550 \quad 555$		
Gray micaceous shaly sandstone, some siderite and a little limestone		0
Gray shale............... 560 . 565		
Dark gray sh	565	0
Gray shale, some siderite and bits of pyrite.......................... 570.0		
Gray shale and a		
Black shale and gray micaceous shale............................... 580		
Black micaceous shale and gray	58	0
Gray micaceous sandy shale and a little black shale................ ${ }^{\text {a }}$. 600 605 605		
Gray shale.. 635.		
Gray shale.................................. 6. . 660 . 670		
Gray sandstone, a few bits of pyrite and	670	
Gray sandstone..................... 680.		
	685	
Dark gray shale.. 710.6.		
Dark shale and some siderit	715	
Dark shale, and a little siderite................................... 72.		
Dark shale, a little white sandstone		
Dark shale and concretionary siderite............................... $745{ }^{45} 755$		
Black shale and some sandstone.................................. 76.		
Gray micaceous sandstone and a little	770	
Gray shale and micaceous sandstone................................ $775{ }^{\text {a }}$. 780		
Coal and gray shale.. 785		
Gray shale, some fre clay, a little coal and bits of pyrite......... ${ }^{\text {a }}$. 790 . 795 . 795		
iray micaceous sandy shale and some gray shale............................ 800 . 810		
Coal . 830 . 830 . 835		
White sandstone and a little white limestone..................... 8458850		
Dark shale and some white sandstone with infiltrated lime....... 8508860		
Dark shale, white sandstone, with infiltrated lime, some small		
Dark shale, white micaceous sandstone, and bits of coal		870
Dark shale and micaceous sandstone... 875Black micaceous shale, a little white limestone and a few bits 880		
tions		
Gray sandstone and black shale. Small spherical siderite concre- 095		
Black shale.		
of coal Black micaceous shale and a little limestone	910	915
	91	0
White sandstone and dark shale..................................... 920.90		

Logs-Continued.

	Depth in feet. From
White micaceous sandstone containing carbonaceous shreds and a little black shale	
Dark shale and some white micaceous sand	935955
Like the preceding with a few bits of coal	955960
Dark micaceous shale	960965
White micaceous sandstone, some shale and a few bits of lime- 965	
Gray micaceous shale, black shale and some sa	975980
Gray shale and some sandstone	980985
White micaceous sandstone and some dark shal	$985 \quad 995$
Gray micaceous sandy shale and a few pieces of white limesto	995 1,005
Gray shale and some sandstone.	1,005 1,010.
Gray shale.	1,010 1,020
Dark shale and a little sa	1,045 1,050
Dark sha	1,050 1,055
Yellow micaceous san	1,055 1,060
Yellow micaceous sand and some dark shale.	1,060 1,065

No. 7-J. E. Wilson, No. 21.
Location-W. $1 / 2$ NW. $1 / 4$ sec. 17, T. 7 N., R. 12 W., Robinson Township. Elevation-490 feet (estimated).

	Depth in feet. From To
Dark gray shale, fine	200205
Gray shale, fragments of concretions and coal	205210
Shale, sandy, micaceous, light gray	210215
Micaceous sandstone, light gray and of fine te	$215 \quad 220$
Gray micaceous sandy shale	220 225
Laminated, dark and light gray micaceous shale	$225 \quad 230$
Gray, stony shale	$230-245$
Elack shale and some gray shale	$245 \quad 250$
Gray shaly sandstone with infiltrated lime	250255
Gray sandstone and shale	$255 \quad 260$
Gray sandstone, some limestone	260265
Gray sandy shale, some limestone	$265 \quad 270$
Gray sandy shale and concretionary siderite, so	270275
Dark gray shaie	$275 \quad 280$
Gray sandstone and yellowish sandstone with infiltrated lime	280285
Coarse white sandstone, yellow micaceous sandstone and some gray shale ...	285290
Coarse white sandstone and gray shale	$290 \quad 295$
White sandstone, some micaceous sandstone, little dark shale and limestone	295300
Gray micaceous sandy shale, some gray shale	300305
Gray micaceous sandy shale	305310
Gray micaceous shale	310320
Gray micaceous shale, some fragments of limestone	$320 \quad 325$
Dark gray shale, few bits of limestone	$325 \quad 330$
Dark gray shale and a few fragments of limestone and siderite.	330 335
Gray shale, siderite concretion, some bits of limestone and pyrite..	335340
Dark gray and black shale	$340 \quad 345$
Gray shale, limestone and siderite concretions, some quartz grains	345350
Gray micaceous sandy shale and black micaceous shale, a few bits of limestone	$350 \quad 355$
Gray micaceous sandy shale	$355 \quad 360$
Dark gray shale	$360 \quad 370$
White organic limestone, brecciated, crinoid stems. Rhombopora, lepidodendroides, ethyris, (?), and fragments of other brachiopods noted. One fragment with peculiar finely reticulate structure noted	370
Yellowish gray limestone, organic breccia	$\begin{array}{ll}370 & 375 \\ 375 & 380\end{array}$
Red shale and gray shale, with some black shale	$380 \quad 385$
Fire clay, some fragments, of coal and green shaie	$385 \quad 390$
Greenish gray shaly sandstone	$390 \quad 395$
Like the preceding, with some limestone	395400
Light gray micaceous shale	$400 \quad 405$
Light gray sandy shale	405 - 410
Dark gray stony shale	410 - 425
Micaceous gray sandy shale, with a few fragments of coal	$425 \quad 430$
Micaceous sandy shale and shaly sand, laminated, showing shreds of vegetation	43043

Logs-Continued.

	Depth From	feet. To
Laminated sandstone, shaly, carbonaceous	435	440
Micaceous sandy gray shale, with bits of carbonaceous shreds	440	445
Gray shaly sandstone with carbonaceous laminae	445	450
Dark and light sandy shale, laminated	45	0
Gray shaly sandstone, coal and some calcite from a joint in the coal	460	465
Greenish gray shaly limestone of compact texture	465	470
Sandy shale, gray and yellow limestone	470	475
Gray micaceous sandstone, with some limestone	475	480
Sandstone with concretionary impregnations of yellow limestone.	480	485
Dark, almost black, stiff shale	485	490
Black limestone, organic	490	495
Coal	495	500
Black shale, with imprints of leaves	500	505
Coal, some shale	505	510
Limestone and some micaceous shaly sandstone	510	515
Coarse white sandstone, and pyrite and some white brecciated limestone	515	520
Micaceous coarse sa	520	525
Micaceous, coarse sand, with some gray shale and limestone	525	530
White micaceous sandstone	530	535
White micaceous sand, and some coal and limes	535	540
Dark blotchy brown limestone, with chonetes, productus, Fusulina, Rhombopora, Fistulipora, crinoid stems, some coal and some black carbonaceous shale	540	545
Micaceous and carbonaceous gray shale	545	550
Dark blotchy limestone with crinoid joints	550	555
Coal	555	560
White sandstone, specked with minute crystals of pyrite and some dark shale	560	565
White, micaceous and pyritiferous sandstone. Some black "clod" with Athyris valve	565	570
No sample	570	575
Gray sandstone with concretions of siderite and limestone	575	580
Gray shale, with concretionary material as in preceding sample	580	585
Dark gray shale	585	590
Dark gray shale, some sand	590	595
Black shale	595	605
Dark shale of fine texture	605	610
Black calcareous stony shale	610	615
Black shale of finest texture	615	620
Greenish gray shaly sandstone, with pyrite crystals	620	625
Greenish gray shale, sandy	625	630
Gray sandy shale and fire clay, with bituminous films in thin joints	630	635
Greenish shale, pyritiferous	635	640
Light greenish gray shale, soapstone	640	645
Gray shale and micaceous sandstone	645	650
Sandstone, gray, soft	650	655
Shaly, micaceous and laminated sandstone, and black shale	655	660
Dark gray sandy shale	660	670
Dark shale	670	675
Black shale	675	680
Laminated sandy shale	680	685
Greenish gray, stony shale	685	0
Black shale, with coal, considerable pyrite and frequent fragments of pyritized woody tissue	690	695
Black and gray shale, stony and sandy	695	700
Gray sandy shale	700	705
Dark shale of fine texture	705	715
Gray sandy rock, with some coal, some pyrite and minute spherical concretions of siderite	715	720
Black carhonaceous shale and coal, some dark limestone. Some		
pieces of coal show woody structure	720	725
Dark limestone and black shale, crinoid stems and pieces of pyrite	725	730
Black shale	730	735
Dark sandy shale, little fire clay and limestone (yellow)	735	740
Black sandy micaceous shale	740	745
Coal, some black sandy shale, pyrite showing woody structure	745	750
White micaceous sand, coal and some fire clay	750	755
No sample \quad.. .	755	760
White sand, bits of yellow limestone	760	765
Gray sandstone, some yellow limestone and black shale	765	770
Dark gray shale and limestone, some sandstone and bits of pyrite	770	775
Black shale, some dark limestone and pyrite fragments...........	775	780
Black shale, some pyrite	780	785
Dark gray shale	785	790
Gray sandy shale, few pieces of siderite concretion	790	795
Gray sandstone and bits of siderite	795	800
Gray sandy micaceous shale	800	805

Logs-Continued.

	Depth in feet. From To
White micaceous sandstone, gray micaceous sandy shale, little limestone and oxidized red fragments	
	805810
White micaceous sandstone, some gray sandy shale, and oxidizedfragments	
	$810 \quad 815$
White sandstone, some dark shale	815 825
White sandstone, some dark shale, and oxidized red ma	825830
White micaceous sandstone, some dark shale	830 835
	835840
White micaceous sandstone, with a little gray shale and oxidizedred material	
Dark sandy shale	845850
Black micaceous shale, with some yellow coarse grained sandstone	850855
Yellow sandstone, coarse grained and some black shale	$855 \quad 860$
Gray sand, little black micaceous shale	$860 \quad 870$
Black micaceous shale and some gray sand	870885

No. 8.-C. T. Cochran, No. 9.
Location-NE. corner SW. $1 / 4$ sec. 21, Montgomery Township. Elevation-Unknown.

	Depth in feet.
Yellow sandstone, disintegrated	6
Yellow sandstone	2
Yellow sandstone with infiltrated lime and oxidized siderite concretions	$12 \quad 19$
Yellow sandstone, and sandstone concretions	19 24
Yellow sandstone, siderite concretions, and some black crinoidal limestone	2438
Yellow sand, dark calcareous limestone and siderite concretions..	$38 \quad 45$
Brown coarse sandstone, dark limestone, siderite concretions, spherical, one-half inch in diameter	$45 \quad 51$
Gray sandstone with infiltrated lime and siderite concretions.... .	$51 \quad 58$
Gray sandstone with infiltrated lime, and siderite concretions	$58 \quad 64$
Dark gray shale	64 78
Black shale	78 85
Gray micaceous sandy shale	8591
Gray micaceous shaly sandstone	$91 \quad 98$
Gray shale	98104
Gray shale, siderite, a few fragments of coal	104 111
Gray shale and siderite	111
Black shale	$117 \quad 124$
Gray sandy shale, fragments of coal	$124 \quad 130$
Gray micaceous shale	$130 \quad 137$
Fine gray laminated sandstone, black shale	$137 \quad 143$
Gray sandstone, black shale and brown limestone	143150
Gray sandstone, brown limestone and black shale	$150 \quad 156$
Brown limestone, gray shale and gray sandstone	156
Gray shale, gray sandstone, and fragments of siderite concretions	163170
Gray laminated micaceous sandstone, and siderite concretion	$170 \quad 176$
Coarse gray micaceous sandstone	176223
Coarse gray micaceous sandstone, a few pieces of coal, pyrite and siderite	223 231
Coarse gray micaceous sandstone, with infiltrated lime	231237
Coarse gray micaceous sandstone with infiltrated lime and fragments of black shale	237
Coarse gray micaceous sandstone with infiltrated lime, and fragments of impure coal	244250
Gray shaly sandstone, and concretions of brown limestone	$250 \quad 257$
Gray sandy shale	257270
Greenish gray shale with infiltrated lime	270276
Gray micaceous sandstone	276296
Coarse gray sand	296309
Coarse gray sand with carbonaceous folia	309315
Coarse gray sand	315328
Coal and fire clay, a few fragments of mottled limestone	328 335
Gray sandstone	335 341
Gray sandstone and limestone	341348
Gray calcareous limestone	348 361
Greenish gray sandstone and gray calcareous limestone	361 367
Gray shale and calcareous limestone	$367 \quad 374$
Gray micaceous shale, with some gray calcareous limestone	374380
Gray micaceous sandstone and gray shale	380 387
Gray shale	387 - 413
Gray sandy shale	413419
Gray sandy micaceous shale	419 - 432

Logs-Concluded.

	Depth in From	$\begin{gathered} \text { feet. } \\ \text { To } \end{gathered}$
Coarse gray sandstone with carbonaceous folia	432	439
Gray shale	439	445
Gray shale, micaceous	445	45
Coal, siderite concretions, pyrite crystals and a few white gypsum crystals	452	465
Gray micaceous shaly sanastone	465	471
Gray micaceous sandstone with infiltrated lime	471	478
Gray shale, gray sandistone	478	497
Coal. gray shale, dark limestone, pyrite and a few crinoid stems noted	497	504
Coal, pyrite, and a few crinoid stems noted	504	510
Coarse gray micaceous sandstone with infiltrated	510	523
Coarse gray micacecus sand	523	530
Gray micaceous sandy shale	530	536
Gray shale, fragments of coal and pyrite	536	543
Black shale, some limestone, and numerous crinoid stems noted.	543	549
Gray micaceous sandstone	549	556
Dark limestone with Chonetes punctatus. Rhombopora lepidodendroides and showing some intensely green specks. Presence		
of Fusulina uncertain .	556	562
Coal, some limestone	562	569
Gray sandy shale, some pyrite	569	575
Gray sandy micaceous shale	575	582
Coarse gray sand with fragments of black	582	588
Gray sandstone with some limestone	588	595
Gray shaly sandstone	595	608
Gray shale and sandstone	608	621
Gray shale	621	666
Black and gray shale	666	673
Black shale	673	679
Brown limestone, greenish and reddish, dolomitic, shaly limestone, and black gray shale	679	686
Gray limestone, some gray shale and fragments of brown limestone, two small gasteropods	686	692
Coal, some gray and and brown limestone	692	699
Gray sandy micaceous shale	699	705
Gray shale	705	712
Gray sandy micaceous shale	712	725
Gray shale	725	731
Black shale	731	737
Black and gray shale	737	743
Black stiff shale	743	750
Coal, some gray shale	750	756
Coarse gray sandstone with infiltrated lime, fragments of coal, and gray shale	756	763
Gray sandy micaceous shale	763	769
Black shale, coarse gray sandstone, fragments of coal	769	775
Gray sandy shale, black shale	775	781
Gray micaceous shale, gray sandstone with infiltrated	781	787
Gray shale and gray micaceous shale	787	793
Gray shale	793	806
Black stiff shale	806	813
Coal, and fire clay	813	820
Gray shale	820	834
Gray micaceous sand and shale	834	840
Yellow micaceous sand	840	846
Gray shale	846	862
Gray shale with frasments of gray sandstone	862	873
Gray and black shale	873	884
Glack shale	884	895
Gray shale	895	906
Grav sandstone with shreds of vegetation and a few fragments of coal	906	912
Gray sandstone with shreds of vegetation	912	923
Gray micaceous sandstone	923	928
White micaceous sand with fragments of shale	928	934
Gray laminated sandstone	934	940
Gray laminated sandstone, brown sandstone	940	952
Brown sandstone (note on sack "Oil 952 to 973 "), gray sandstone	952	958
Brown sandstone, some gray sandstone	958	964
Brown sandstone, some gray sandstone, pyrite	964	970
Brown sandstone, some gray sand	970	975

Stratigraphy.

Pleistocene.

The records in Plate II give an idea of the difference in thickness of the drift overlying the hard rocks. Some records show it to be thin, due
to conditions of erosion and deposition. The drift, measures from 25 to 110 feet in the examined logs; while a number of logs over the field show an average of 75 feet to the bed rock, on which the drive-pipe is set.

Pennsylvanian.

The Pennsylvanian or "Coal Measures" rocks are separable into three divisions; an upper part, the McLeansboro formation, middle part, the Carbondale formation, and a basal part, the Pottsville formation.
McLeansboro Formation-The rocks of the McLeansboro formation lie between the top of Herrin (No. 6) coal and bed rock near the surface. From measurements and estimates of logs in the section the average thickness of the formation is found to be about 485 feet. Shales and sandstones dominate in this division and are accompanied by several streaks of limestone and many coals. One well reports seven beds of coal. The most conspicuous bed of these rocks is the limestone used as a key line in the section. Dr. Udden describes it as a dark limestone containing Fusulina fossils. All of the records show notations of Fusulina except Nos. 2 and 3. The position of the bed is estimated in No. 2 by comparison with No. 1 and is thought to lie at a depth of about 560 feet. The black limestone at 490 feet in No. 3, although no Fusulina are reported, seems to correlate with other logs of the section and is designated as that horizon. An effort is being made by geologists to determine this bed over Illinois by its fossils and thus procure a definite marker for the Herrin (No. 6) coal immediately underneath.

The two limestones noted at 200 and 300 feet by Dr. Udden, in well No. 2, page 35; and alluded to as possibly equivalent to the limestone 160 feet above No. 6 coal at Belleville and the Carlinville limestone, suggest their possible correlations through the columnar section. The interval between the two limestones is about 130 feet. The interval between the upper or Carlinville (?) limestone and the "Fusulina" limestone is about 365 feet and the interval between the lower limestone and the key bed is about 220 feet. In other sections of the State, the Carlinville limestone is about 250 feet above the overlying limestone of the Herrin coal. The red shale spoken of elsewhere as lying in the McLeansboro is reported only in logs No. 4 and 7 at depths of 270 and 380 feet respectively. The intervals between the red bed and the "Fusulina" limestone are respectively 210 and 160 feet.

Carbondale Formation-The rocks of the Carbondale formation lie between the tops of Herrin (No. 6) and Murphysboro (No. 2) coals. The Herrin coal is the first beneath the "Fusulina" limestone. The Murphysboro coal lies above the Pottsville sandstones and is usually separated from these by shales or a thin limestone. The Carbondale formation is mostly shale, with sandy shales at the bottom. There are either three or four coals noted in each record. The columnar section shows much irregularity between the Herrin and the lowest coal. The thickness of the division varies from 200 to 450 feet. Logs 1, 2, 3, 7 and 8 show an average interval of 310 feet between the Herrin coal and the Pottsville. In type localities of other sections of Illinois, the interval is between 300 and 350 feet.

Pottsville Formation-The Pottsville rocks are the lowest members of the Pennsylvanian and are essentially coarse sandstones merging into sandy shales at the top and occasionally split with lenses of shale. The lower portions of the records used in the columnar section are predominantly sandstones and in position correspond with Pottsville beds. These rocks lie below the Murphysboro (No. 2) coal. The sandstone at the base of the sections is known as the Robinson sand. There are as many as four distinct lenses of this sand interbedded with shale. The upper portion of the sand rocks are oil-bearing but lower down they yield much salt water.

Lawrence County.

The explored rocks of Lawrence County lie in the Pennsylvanian and Mississippian series. These major divisions are overlain with unequal thicknesses of drift. The Pennsylvanian rocks are from 800 to 1,300 feet thick. This great variation in thickness is due to the unconformity at the top of the Mississippian, accentuated by preexisting structure and preglacial erosion. The Mississippian rocks are not completely penetrated but they have been well explored to a depth of 475 feet below their top.

The columnar section, Plate IIIA, is made up of logs from all sections of Lawrence county. They are plotted in order from south to north. The top of the wide-spread Ste. Genevieve limestone, known locally as the McClosky sand, is used as a key bed through the columnar section. All records are plotted with respect to this line. The section is made up of the following records, which correspond by number to those printed on Plate 3.

LOGS.
No. 1.
Operators-Snowden Bros.
Farm and well-Laughlin, No. 1.
Location-SE. $1 / 4$ sec. 32, Lukin Township.
Elevation-469 feet.

Logs-Continued.

	Thickness Feet	Depth Feet
Sandy slate, white	21	626
dimestone shell ..		632
Shale, brown	58	690
Cimestone shell	17	693 710
Slate, white . Shale brown, hard	20	730
slate, white, soft.	50	780
cimestone shell, white	$\stackrel{2}{8}$	782
slate, white	48	830
Jand, white, (salt water, 830 feet)	42	872
Broken lime, black, loose		8878
Shale, black		880
Limestone shell, white	55	848
Slate, black, soft Sand, brown, bridged	5	945
Slate, white	35	980
Slate and shale, black	96	1,076
Limestone and sand, (water, 1,086 feet)	10	1,086
Shale, black	10	1,096
Limestone, white	29	1,125
Slate, black	31	1,156
Sand and broken limestone, white, soft Sandy slate, white	24	1,180
Sandy slate, white		1,215
Slate, white, soft Sandy shale	20	1,235
Sandy shale Limestone, white, hard	65	1,300
Sand, white, soft	11	1,315
Sandy clay, brown	23	1,338
Limestone, white	7	1,345
Slate, black	95	1,440
Limestone, white	10	1,450
Slate, white, soft	56	1,506
Sand, brown, (show of oil, 1,506 to 1,514		1.514
Limestone, white	100	1,614
Sand, (water) (show of oil, 1,705 to 1,732	118	1,732
Limestone	13	1.745
Slate	5	1,750
Sand, (hole full of water, 1,775 feet)	25	1,775
Slate	57	1,832
Limestone	18	1,850
Slate	15	1,865
Red rock	5	1,870
Limestone shell	5	1,875
Slate	20	1,895
Limestone	5	1,900
Slate	20	1,920
Red rock	10	1,930
Slate	55	1,985
Sand, (oil show, 1,985 to 2,000 feet)	15	2,000
Shale, hard, black	12	2.012
Slate	18	2,030
Limestone	70	2,100
Slate	30	2,130
Limestone	22	2,152
Sand, (show of oil)	4	2,156
Slate	4	2,160
Limestone	5	2,165
Total depth		2,165

No. 2.

Operators-Ohio Oil Company.
Farm and well-W. H. Snyder, No. 7.
Location-SW. $1 / 4$ NW. $1 / 4 \mathrm{sec} .25$, Dennison Township.
Elevation-495 feet.
(This record was compiled by Dr. J. A. Udden from an examination of well samples.)

	Depth in feet. From To
Loess	15
Loess, silty	20
Gray sandy limestone and micaceous and calcareous sand. Spher-	
ules of pyrite noted, measuring from $1 / 4$ to 1 mm . in diameter. Micaceous gray sandstone with occasional shreds of carbonaceous	20
Micaceous gray sandstone with occasional shreds of carbonaceous material	$25 \quad 35$
Sandy shale.	3540

Logs-Continued.

	Depth in feet.	
Gray shale	40	45
Gray sandstone, coal, black shale and pieces of gray limestone.		
There were crinoid stems, one crinoid plate from a calyx and an		
	45	0
Light gray shale of fine texture. No effervescenc	50	55
Gray calcareous and sandy rock, with much concretionary calcare-		
ous material. One large fragment was black concretionary		
limestone with imbedded minute white shells and tubes, appar-		
ently small gasteropods or formanifera	55	60
Shaly sandstone, some shale, white and yellow limestone of con- 60		
cretionary appearance, and some coa	60	65
Sandy shale of very light gray color	65	70
Dark gray micaceous shale	70	90
Dark shale and black shale, fragments of concretionary limestone,		
Nucula beyrichi (?) crinoid stems, tubes of Ammodiscus, and		
fragments of concretionary limestone	90	100
Black shale.	100	105
Black shale, black calcareous "clod," occasional pieces of coal,		
crinoid stems, "mineral charcoal" showing woody structure,		
pyrite and calcite.	10	0
Gray sandy micaceous	110	120
Gray micaceous sandstone	120	140
Gray sandy shale, black shale and coai, with some calcareous		
	140	5
Fine gray sand.....	145	155
	155	165
Fine gray shaly	165	170
Fine gray shaly sand with dark shaly	170	175
Laminated shaly sandstone	175	180
Laminated gray sandy shal	180	185
Dark micaceous and sandy	185	195
Dark shale, micaceous	195	200
Sandy shale and sandstone.	200	205
	205	215
Micaceous gray shale.........	215	225
Dark shale of fine texture.. 225 dind 230		
Dark shale, black shale, some sandstone, impure coal, and fragments of limestone, yellow. Crinoid stems and a small gasteropod noted.	23	35
Fire clay, sandy shale, and concretionary yellow limestone, which is fossil-bearing. A few fragments of coal noted.................		
	235	240
Gray shale.	240	245
Gray stony shale	245	250
Dark micaceous sh	250	255
Gray micaceous shale	255	260
Dark micaceous shale	260	265
Gray shaly sandstone and sandy sha	26	270
Gray micaceous sand of fine texture.. $270 \quad 310$		
Gray sand and some lumps of light fire clay or shale containing imprints of leaves.	310	315
	315	320
Minute spherules of siderite present in the fire clay.	335	340
Cream-white limestone of fine granular homogeneous texture, with		
fragments .	340	5
White limestone of fine uniform texture. Some fragments show a fine reticutale, clastic (?) structure. Some greenish shale and		
pyrite	345	350
Brownish red marly clay and limeston	350	355
Red marl, greenish marl, and white limestone.................... 355 . 360		
of gray shaly limestone Gray sandstone biotitic and impregnated with irregular kernels	360	365
Gray sandstone, biotitic and impregnated with irregular kernels and layers of yellow limestone.	365	370
Some sandstone, some white limestone, yellow lime and some fragments of a slowly effervescing material \qquad	370	375
Dirty dark marl and limestone, with some fragments of bright redmarl, and some black fragments..............................		
	375	380
Gray sandstone........	380	385
	385	390
Dark, almost black, sandy micaceous	390	400
	400	405
Gray micaceous shaly sandstone and som	405	410
	410	415
Dark mray shale of fine texture and	415	425
	42	430

Logs-Continued.

	Depth From	$\begin{gathered} \text { feet. } \\ \text { To } \end{gathered}$
Dark gray shale and some brown clay	430	435
Dark gray sandstone with layers of carbonate of iron	435	440
Dark gray micaceous shale, and dark gray sandstone with layers of carbonate of iron.	440	445
Dark gray micaceous shale; dark gray sandstone with layers of carbonate of lime, and a few fragments of limestone.	445	450
Dark gray shale, siderite and pyrite..................................	450	455
Dark gray shale of fine texture and some sid	45	460
Dark gray micaceous shale, and gray sandstone with layers of carbonate of iron.	460	70
Dark gray shale, sandstone, and sandstone with carbonate of iron	470	475
Dark gray shale of fine texture and some side	475	480
Dark gray micaceous shale, and some siderite	480	485
Dark gray shale, dark micaceous shale, and sid	485	495
Dark gray shale, white and dark limestone	495	500
Siderite concretions showing cracks filled with calcite, gray limestone and shale.	500	505
Gray shaly sandstone, siderite concretions and some gray limestone	505	510
Gray shaly sandstone, fragments of white and gray limestone.	510	515
Gray sandy shale, siderite and fragments of gray limestone....	515	520
Dark gray shale, some greenish shale, siderite, and fragments of gray limestone.	520	5
Dark gray micaceous shale, and some siderite	525	530
Dark gray shale, some greenish shale and some	530	535
Dark shale, siderite and some brown limestone.	535	540
Dark shale, siderite, fragments of limestone, and a part of a crinoid stem noted..	540	5
Dark shale and fragments of limestone	545	560
Black shale with organic calcareous fragments. Crinoid stems and Rhombopora lepidodendroides noted. Spherules of siderite present. Spines of Productus (?)	560	565
Black shale with organic calcareous material, limestone, fragments of gray micaceous sandstone, numerous crinoid stems noted, also siderite. Hustedis, Chonetes punctatus, Rhombopora lepidodendroides, gasteropods and crinoid stems noted, as also spines of Productus (?)	565	570
Black shale with calcareous material, fragments of limestone and sandstone, small gasteropods, numerous crinoid stems, and spines of producti noted.	570	575
Coal, gray shale, limestone, numerous crinoid stems and pyrite noted	575	580
Brownish dark limestone, gray shale, and fragments of coal. Considerable pyrite, fossil wood in fragments.......................	580	585
Brownish dark limestone, gray shale, some crinoid stems and Chonetes noted.	585	590
Gray micaceous shale, gray shale, gray limestone and brown	590	595
Gray sandy shale, fragments of brown and gray limeston	595	600
Dark gray shale of a fine texture and some pyrite	600	605
Dark gray shale of a fine texture, some gray micaceous shale, pyrite and fragments of coal.	605	610
Dark gray shale of a fine texture	610	620
Dark gray micaceous shale	620	625
Dark gray shale and fragments of limest	625	630
Dark gray micaceous shale and some pyrite	630	635
Dark gray shale, fragments of coal and lime	635	645
Dark gray shale, fragments of limestone and some pyrite	640	645
Light gray sandstone of fine texture, and fragments of black shale	645	650
Light gray sandstone, and some fragments of black shal	650	660
Dark gray shale and light gray sandstone.	660	665
Light gray micaceous fine sand.	665	680
Fine white micaceous sand with infiltrated	680	685
Fine white micaceous sand and some dark gray sha	685	695
Fine gray micaceous sand with infiltrated lime.	695	700
Dark gray shale and gray sandstone.	700	705
Gray micaceous laminated sandsto	705	710
Coal, some gray shale, and a few fragments of limeston	710	715
Gray micaceous laminated sandstone and some coal.	715	720
Micaceous sandstone.	720	725
Dark gray shale.	725	730
Black shale of fine textu	730	735
Very dark stony shale of fine texture.	735	740
Gray micaceous sandstone, some black shale and fragments of white limestone.	740	745
Gray micaceous sandstone, soft and containing calcareous material	745	750

Logs-Continued.

	$\begin{aligned} & \text { Depth } \\ & \text { From } \end{aligned}$	
	75	755
Dark shale, sandstone, coal, with some	755	76
Fire clay, black shale, coal, sandstone, a few fragments of lime-		
stone, yellow siderite, spherical concretions, measuring from 1/8		
		770
micaceous clay, with coal, sandstone, and		
Dark clayey shale and some micaceous and	775	
Gray clayey shale of fine texture with some stony and micaceous shale		
Dark gray shale, in part sandy, in part of fine texture. Much		
pyrite, some pyritized wood coal and "mineral charcoal".........		
Light gray shale or fire clay	795	
Light gray fire clay, white sandstone, coal and some fragments		
of white and yellow limeston		
Gray clay shale or fire clay, coal, and white sandstone.............		
Fire clay, sandy gray shale, black shale, coal and brown siderite..	810	815
Soft gray micaceous sandstone, with thin carbonaceous laminae black shale brown siderite, pyrite and some frasments of		
black shale, brown siderite, pyrite and some fragments of		
sandstone containing thin layers of shaly material, pyrite and		
spherules of gray lime measuring about $1 / 2 \mathrm{~mm}$. in diameter	820	
Dark shale and greenish gray sandy fire clay	825	30
Gray micaceous sandstone, fire clay and black shale with white		
limestone. Crinoid stems noted.	30	840
Black shale and gray micaceous sandstone, brown siderite and		
white limestone and partly pyritized mineral charcoal...........	840	845
Laminated dark shale and sandstone, with a few fragments of		
Gray sandstone and sandy shale, with black shale, impure coal		
Like the preceding but with some pure coal	860	865
Gray shale, fire clay, gray sandstone, and coaly bla	865	870
Fire clay, gray shale, coal, brown siderite, white limestone, frag-		
on the water when wash	87	875
Gray clayey shale, and coal, with some calcareous	875	880
Like the preceding. Crinoid joints noted........................		
Gray clayey shale, containing fragments of coal and of limestone,		
and also some mica	85	900
Mostly fire clay, greenish gray, some gray sandstone, black shale, a little coal, and much pyrite. Fragments of shells and of		
limestone noted. In the fire clay a joint was filled with a		
Gray laminated micaceous sandston	905	91
Dark gray, sandy and micaceous	915	920
Gray micaceous sandstone and dark shale...................................		
Gray laminated sandstone, black shale, some pieces of acreous		
Sandstone, from dark to light gray, and showing streaks of car-		
bonaceous material, together with black coaly sha	935	940
Greenish gray fire clay, containing spherules of fire clay from		
1/4 to $1 / 2 \mathrm{~mm}$. in diameter, and having thin joints filled wit		
shale noted	940	945
Greenish gray fire clay,	945	950
Gray coarse sand with a faint odor of petroleum. It floats onwater .. $955 ~$960		
Black and dark shale, with some carbonaceous		
Dark and black shale and concretionary siderite and white lime-		
stone	965	970
Tinutely black and light gray	970	975
Minutely blotched dark gray limestone and som	975	980
Dark clayey shal	980	990
Black shale and gr	990	995
Black coaly shale with brownish streak and containing streaks		
of brown flaky siderite, greenish gray fire clay, gray limestone		
and stony fire clay filled with minute spherules of sid	995	1,000
Black and gray shale and a fragment of coa	1,000	1,005
Coarse quartz sandstone with fragments	1,005	1,010
Gray sandstone with siderite	1,010	1,015
Gray sandstone with many grains of	1,015	1,020
Fairly coarse gray sand	1,020	1,030
Fine pray sand having the odor	1,030	1,035

Logs-Continued.

	Depth From	0			
Fine gray and with some black and gray shale, white limestone, some yellow and brown siderite...............................					
	1,035	1,040			
Gray sandstone, some coarse with black and brown grains, some					
laminated, alternating with black micaceous sh	1,040	1,045			
lack shale, some sandstone, and some white lime	1,045	1,050			
Black stiff shale, some clayey shale and white limeston	1,050	1,060			
Black shale and fire clay with a few fragments of coa	1,060	1,065			
Black shale, and some white limestone	1,065	1,075			
Black shale, some pyrite and white	1,075	1,080			
Black shale and some pyrit	1,080	1,085			
Gray sandstone with imbedded siderite spherules and shreds of					
Gray sandstone of fine textu	1,090	1,100			
Gray sandstone of fine texture with some dark gray	1,100	1,105			
Gray sandstone of fine textur	1,105	1,110			
Gray sandstone with some fragments of	1,110	1,115			
Laminated shaly sandstone, consisting of layers of dark sandyshale and light gray sandstone.............................. 1,1151,120					
Laminated sandstone and shal	1,120	1,130			
Greenish blotchy very dark fire clay, with siderite concretions in in 1,130 1,140					
large fragments, and some very red clay lumps with green core					
ery dark, almost black, fire	1,145	1,150			
Very dark, almost black, fire clay, or a greenish tinge, some bright red clay showing green streaks, some white limestone					
and some foal or bituminous	,155	1,155 1,160			
Dark fire-clay-like	1,160	1,165			
Black stiff shale and fragme	1,165	1,170			
Black shale.	1,190	1,195			
Black shale with some fragmen	1,195	1,200			
Dark gray shale of fine clay-like texture	1,200	1,205			
Laminated white and black sandstone.	1,205	1,215			
Dark shale	1,215	1,220			
Dark shale with some	1,220	1,225			
Dark shale	1,225	1,235			
Dark sandy shale and	1,235	1,240			
Dark sha	1,24	1,245			
Dark sandy shale and white, fine-grained sandstone, apparently					
Gray shale, greenish fire clay, some coal and a little nodular limestone	,24	,255			
	,255	260			
Gray shale and a few fragments of coal. Bituminous joints...					
	1,260	,270			
Gray shale, black shale, white sandstone of fine texture and white limestone.	1,270	80			
Gray shale, considerable white limestone, and white sandstone of fine compact texture..					
	$\begin{array}{ll}\text { Black shale and white fine-grained sandstone with some limestone } & 1,285 \\ \text { Fine-grained, hard white sandstone, gray, sandy shale and white } & 1,290\end{array}$				
Micaceous gray sandstone, black shale, and some pieces of white					
Dark gray shale, white fine-grained sandstone, and some fragments of white limestone.	1.300	,305			
Light gray micaceous sandstone, gray shale and some fragments of white limestone.					
	1,305	1,31!			
Dark gray shale, laminated sandstone and some limesto	1,310	1,315			
White, fine-grained sandstone, gray shale, white limestone and some pyrite.	1.315	1,320			
Sand, fairly coars	1,320	1,325			
Yellow rusty sand	1,325	1,34n			
Cellow rusty sand with som	1,340	1,345			
Laminated gray sandstone of fine	1.345	1,355			
Fine sand, with some shale and calcareous m	1.355	1.360			
Fine sand and shale, with some carbonate	1,360	1,365			
Fine sand and	1,365	1,370			
Dark gray shale and	1,370	1,380			
Sand, gray shale and black	1,380	1,405			
Greenish gray fire clay, sonne dark shale, considerable pyrite, and sand (from above)	1,405	1,410			
Greenish gray fire clay, much pyrite, a few fragments of rock containing organic calcareous fragments and some sand.........	1,410	1,415			
Dark greenish gray shale, some fragments of black shale and pyrite	1,415	1,42			

Logs-Continued.

Sand of fine texture and dark greenish gray shale or fire clay with much pyrite.. of coal, evidently from a thin seam...................................
Dark greenish gray fire clay, pyrite and fragments of impure coal
Dark green fire clay and dark shale with some coal..
Very dark shale, thin splitting and dark green fire clay.
Very dark shale, dark green fire clay, a little coal and py
Dark green fire clay and dark shale, pyritiferous
.....................
Dark green fire clay-like shale
Dark green fire clay-like shale, with much pyrite, and some coal in thin seams.

Depth in From	feet. To
1,420	1,425
1,425	1,430
1,430	1,435
1,435	1,440
1,440	1,445
1,445	1,470
1,470	1,480
1,480	1,495
1,495	1,500
1,500	1,510
1,510	1,515
1,515	1,520
1,520	1,535
1,535	1,540

Dark green fire clay-like shale .. thin laminae of coal, and with pyrite.
Dark green fire clay-like shale, dark gray shale, "Coal Measure"like, with pyrites.
Dark green fire clay-like shale, and dark gray shale with pyrite. .
Brownish red marl, some fire clay-like greenish shale, some pyrite and some fragments of white limestone. The red marl and the limestone have the aspect of the Chester.
$\begin{array}{ll}1,535 & 1,540 \\ 1,540 & 1,545 \\ 1,545 & 1,565 \\ 1,565 & 1,570 \\ 1,570 & 1,590 \\ 1,590 & 1,595 \\ 1,595 & 1,615\end{array}$
Brownish red shale, pyrite and fragments of white limestone....
Red marly shale, gray marly shale and white limestone.
Dark gray shale and marl.
Dark gray stony marl and fragments of white limestone, with crinoid stems.
Gray marl and red marly shale with fragments of white limestone
Gray, green and red shale, white limestone, sandy limestone, pyrite and crinoid stems.
$1,615 \quad 1,635$
1,635 1,640
$1,640 \quad 1,645$
Dark green, stony calcareous shale..
Dark gray shale, organic, fragmental limestone, dirty specked gray

1,645 1,650
Shale and limestone..
Gray marly shale and organic fragmental limestone Oily.........
Organic fragmental limestone and some shale. Oily...................
Dark gray shale, green shale, red shale and organic fragmental limestone. Oily.
$\begin{array}{ll}1,650 & 1,655 \\ 1,655 & 1,660\end{array}$
$1,660 \quad 1,665$
Like the preceding with less limestone
1,665 1,680
Red marly shale and green laminated shale............................
Red marly shale and dark green shale.
$\begin{array}{ll}1,680 & 1,685 \\ 1,685 & 1,695\end{array}$
Gray marly shale, gray sandstone of fine texture and some organic fragmental limestone.
Gray marly shale.
Fine gray quartz sand showing a few mica scales (and effervescing)
Fine-textured gray sand with some shale.
Fine-textured gray sand with some gray shale
Gray marly shale and sand.
Fine-textured gray sand, dark gray shale, with some fragments of limestone showing joints filled with black bituminous films..
Gray marly shale and fine sand.
Earthy black marly shale filled with bitumen.
Partly like the preceding, partly gray stony marl
Gray marly shale and fine sand.
Like the preceding with some very thin-splitting black shale.
Black shale and fine gray sand.
Gray marly shale, and some black bituminous material shining on conchoidally fractured surfaces Fractures and fuses in flame..
Gray marly shale.
Gray marly shale, with a black bitumen showing conchoidal, shiny cleavage.
Gray marly shale with a few small fragments of bitumen...
Gray marly shale... black streaks.
Gray marly shale... ing red streaks, and a dark greenish sand of fine texture. Mica noted. Oily
Dark, greenish gray fire clay-like shale Oily.........................
Dark greenish-gray shale and sandy rock, and some red shale appearing earthy, from bitumen.
Green and red shale, with some fragments of sandstone and some organic limestone. Oily.

1,885 1,890
$1,890 \quad 1,910$
Oolitic limestone, and green shale... A small Dielasma noted. The dark green shale splits into very thin fragments.

Logs-Continued.

	Depth From	$\begin{aligned} & \text { feet. } \\ & \text { To } \end{aligned}$
Green shale, dark shale, red shale,	1,920	1,930
Green shale, red shale, and some dirty looking limestone and olite Crinoid stem noted		45
mostly iron rust from bit or casing	1,945	1,950
Limestone with a great deal of rust	1,950	1,955
Granular limestone with some well-rounded quartz sand, and some oolitic grains.	1,955	1,960
Granular limestone, gray	1,960	1,965
Coarse oolitic limestone, with some quartz grai	1,965	1,970
An organic breccia, with imbedded oolitic grains, and some quartz grains	1,970	1,980
Organic fragmental limestone, with oolitic spherules, and with a few fragments of chert.	1,980	1,995
Limestone, fragmental, oolitic.	1,995	2,000

No. 3

Operators-Snowden Bros.
 Farm and well-H'. K. Seed, No. 3.
 Location-NW. $1 / 4$ sec. 29 , Bridgeport Township.
 Elevation-513 feet.

	Thickness Feet	Depth Feet
Soil, yellow	23	23
Slate, dark	17	40
Sand, white (12 bailers of water, 75 feet)	35	75
Slate, dark	65	140
Limestone, white	6	146
Slate, dark	90	236
Sand, white	49	277
Slate, dark	6	283
Limestone shell	,	288
Coal	6	294
Slate, dark	36	330
Limestone, light	15	345
Slate, light	63	408
Sand, light	31	439
Limestone, light	10	449
Red slate, light	6	455
Slate, light	155	610
Sand, light, hard	13	623
Slate, dark	17	640
Sand, light	15	655
Slate, dark	20	675
Limestone, dark	12	687
Slate, light	33	725
Slate, dark	57	782
Sand, light, hard	13	795
Slate, light	13	808
Coal	4	812
Slate, light	38	850
Slight. dark	12	862
Limestone, dark	4	866
Slate, dark (bo.......................	24	890
Sand, light (hole full of water, 905 feet)	35	925
Limestone and sand, light, hard	15 20	940 960
Slate, light	45	1,005
Limestone, light	5	1,010
Slate	30	1,040
Sand	50	1,090
	40	1,130
Slate, dark	252	1.382
Sandy limestone, light	41	1,384
Slate, black	2	1,427
Limestone, light	23	1,450
Sand and coal	17	1,467
Sand and shells	2	1,469
Slate, dark	48	1,478
Sand, light, hard (water)	73	1,591
Slate, dark, soft	17	1,608
Sandy limestone light, hard (hole fuil of water, 1.640	32	1,640
Sand, light, hard (hole full of water, 1,640	47	1,687

Logs-Continued.

	Thickness Feet	Depth Feet
Slate, dark	16	1,703
Sand, dark	22	1,725
Limestone, light		1,729
Red rock	5	1,734
Slate	31	1,765
Limestone	21	1,786
Slate		1,793
Limestone	10	1,803
Red slate	7	1,810
Sand (water, 1,823 feet)	13	1,823
Slate	10	1,833
Limestone	20	1,853
Slate	12	1,865
Sand (water, 1,872 feet)	7	1,872
Red slate	6	1,878
Slate	12	1,890
Red slate	4	1,894
Sand (water, 1,916 feet)	22	1,916
Slate	6	1,922
Sand (hole full of water, 1,947 feet)	25	1,947
Slate	33	1,980
Limestone	${ }^{2}$	1,982
Sand (oil pay, 1,982 to 1,995 feet)	19	2,001
Total depth		2,001

No. 4.
Operators-Snowden Bros.
Farm and well-O'Donnell, No. 28.
Location-SE. $1 / 4$ sec. 17, Bridgeport Township.
Elevation-498 feet.

Logs-Continued.

	Thickness Feet	Depth Feet
Limestone, white	35	1,560
Slate, dark	25	1,585
	32	1,695
Slate, dark .	13	1,638
Sand, light	12	1,650
Slate, dark	26	1,676
Sand, light	54	1,730
Slate, dark Limestone, light	15	1,742
Sand and. limestone	8	1,765
Red slate	3	1,768
Limestone, light	10	1,778
Slate, dark	12	1,790
Red rock		1,798
Slate, light		1,813
Limestone (?), cavy	22	1,835
Limestone	20	1,855
Limestone, gray, hard, (show of oil, 1,860 feet)	20	1,875
Limestone, gray, soft .	15	1,890
Limestone, dark, hard	333	2,223
Total depth		2,223

No. 5.
Operators-Ohio Oil Company.
Farm and well-W. B. Gray, No. 2.
Location-SW. $1 / 4$ sec. 7, Bridgeport Township.
Elevation-486 feet.
(This record was compiled by Dr. J. A. Udden from the study of well samples.)

	Depth From	feet. To
Yellow micaceous sandstone, with some quartz pebbles	${ }_{10}^{1}$	10
White micaceous sandstone, with shreds of carbonaceous matter.	0	30
White micaceous sandstone, with some fragments of siderite and		
pyrite	30	35
Gray sandstone, with shreds of vegetation	35	40
Gray sandy shale	40	45
Black shale and some gray micaceous sandstone	45	50
Black micaceous shale	50	55
"Clod," with numerous crinoid stems	55	60
Black shale and "clod"	60	65
Coal and "clod"	65	70
Coal, fragments of siderite concretions, limestone and some gray sandstone	70	5
Gray sandy shale	75	80
Black shale, "clod," some coal and some pure ca	80	90
Dark micaceous shale and coal with calcite	90	95
Dark gray micaceous shale	95	100
Black shale, with a few crinoid joints	100	105
Black shale	105	110
Black shale with some limestone	110	115
Black shale	115	120
Hard black shale	120	130
Black shale	130	135
Black micaceous shale	135	140
Gray micaceous sand, with some black shale	140	145
Gray micaceous sandstone, with infiltrated lime, and shreds of carbonaceous matter		155
Gray micaceous sand	155	205
Gray sandstone, some black shale, and a little limeston	205	210
Black shale and gray sandstone, with a little limestone.	210	215
Dull bluish green shale, with some yellowish limestone from concretions	215	220
Like the preceding, with fossils in the concretionary limestone	220	225
Shale, light, green gray unctions, shale	225	240
Greenish gray micaceous shale	240	245
Light greenish gray shale, unctuous	245	250
Light greenish gray micaceous shale	250	265
Gray micaceous sandy shale	265	270
Gray, rather coarse sandstone with occasional red, pink, green and black grains	270	275
Like the preceding, all crushed	275	280
Fire clay, fragments of concretions, sandstone	280	285

Logs-Continued.

	Depth From	$\begin{gathered} \text { feet. } \\ \text { To } \end{gathered}$
Fine clay and some shreds of carbonaceous material	285	290
Greenish blue shale, with concretionary yellow limestone	290	295
Black shale, with some bits of coal	295	300
Gray micaceous sandstone, with infiltrated lime, with some black shale and coal	300	305
Gray sandstcne, in part laminated, with small siderite concretions	305	310
Gray micaceous sandstone with small siderite concretions........	310	315
Gray sandstone with some black shale	315	320
Dirty white limestone, and some sand. Pyrite, crinoid joints, and spine of a Productus noted	320	325
Limestone and some shale	325	330
Limestone of light color, some gray shale and pyrite. Limestone seems to be concretionary	330	335
Gray shale and black shale with yellow concretionary limestone.	335	350
Dark gray shale and some yellow concretionary limestone	350	355
Dark gray shale with some pyrite	355	360
Dark gray shale, some white limestone and pyrite	360	365
Dark gray shale	365	380
Dark shale with some fragments of siderite concret	380	390
Sandstone, shale and coal	390	395
Shale, with some sandstone and coal	395	400
Greenish gray shale	400	405
Olive colored shale	405	410
Laminated sandy shale	410	415
Sandy gray shale	415	420
Shale, stony, olive colored	420	425
Gray shale	425	430
Dark shale, almost black	430	435
Gray shale	435	460
Gray shale, coal and concretion frag	460	465
Gray fire clay, coal and shale	465	470
Gray shale, and gray concretionary limestone, impure, with iron carbonate and with pyrite		
Limestone, concretionary and	475	480
Gray shaly fire clay and concretionary limestone, effervescing slowly	480	
Gray concretionary siderite	485	490
Gray shale, with much concretionary impure limestone or siderite	490	515
Gray sandy shale, and siderite	515	520
Gray micaceous shale, some coal and siderite	520	535
Gray sandstone, laminated and with minute spherules of siderite.	535	540
Gray shale, with some sandy shale and some black shale.	540	545
Dark stony shale	545	550
Dark micaceous shale with some limestone with crinoid stem	550	555
Dark gray shale	555	560
Dark micaceous shale and clod with a Productus	560	565
Gray shale	565	570
Very dark shale and "clo	570	575
Black clay shale with "clod"	575	580
Greenish gray micaceous sandy shale	580	590
Gray micaceous shale	590	605
Greenish gray clayey	605	615
Black stony shale and some red clay shale	615	620
Very dark stony shale ..	620	625
Dark checky shale or fire clay	625	630
Dark gray micaceous shale ..	630	635
Dark shale or fire clay, with imprint of leaf	635	640
Dark hard shale, slightly micaceous	640	645
Gray shale, with some siderite	645	650
Gray shale	650	655
Gray shale and some gray sandstone	655	660
Hard gray shale, with a few pieces of sandstone	660	665
Hard gray shale, with a few pieces of siderite.	665	670
Dark and hard shale	670	675
Dark hard shale	675	685
Coal and dark shale. with some siderite and pyrite	685	690
Coal, with some shale and some siderite	690	695
Dark shale and some siderite, coal, and pyrite, bit of sholl noted.	695	700
Gray shale and coal, with concretions of siderite, and black shale, with leaf imprints, calcareous	700	705
Gray shale, fire clay and coal, calcareous	705	710
Gray shale and fire clay calcareous	710	715
Like the preceding. with wood in pyrite	715	720
Gray clay shale, fine in texture ...	720	725
Black shale, sandstone, and coal	725	730
Gray sandstone and dark gray sandy shale	730	740
Gray sandstone, and shale	740	755
Black miner's slate	755	760
Dark shale, carrying much fine pyrite	760	765

Logs-Continued.

	Depth From	feet. To
Gray shale, impregnated with small pyrite crysta	765	770
Gray shaly sandstone and black shale	770	775
Coal, sandstone and some yellow limestone (apparently from ledge)	775	780
Gray micaceous and sandy shale, some red clay	780	785
Gray shale, coaly shale and shaly coal, with gray limestone and fragments of concretionary siderite	785	790
Gray clay shale, with some concretionary fragments	790	795
Gray shale, some black shale and siderite concretion	795	800
Gray shale, some black carbonaceous shale and some fire clay	800	805
Gray shale, some black coaly shale, a few bits of white limestone and minute concretionary spherules	805	810
Gray shale containing many minute spherules of siderite and		
some white limestone	810	815
Dark shale and fire clay	815	830
Dark shale, with some imprints of vegetation	830	835
Dark shale and some sandstone, with some minute spherules of siderite	835	840
Black shale and gray shale, with some sandstone, some minute spherules of siderite and a few bits of limestone		
spherules of siderite and a few bits of limestone	840	5
Black shale, some sandstone and some pieces of sider	845	850
Gray micaceous shale	850	855
Black hard shale, with pyrite, shell of Retzia (?), some spicules		
and a few bits of white limestone	855	860
Black stony shale, with pyrite	860	865
Black shale, with pyrite and pieces of sid	865	875
Black shale, and white fine grained sandstone, laminated with		
few small pieces of very white limestone	875	880
Gray laminated sandstone and black shale	880	890
Black shale and laminated sandstone, with some grayish soft		
material and a few bits of white limestone	890	895
Coal, with some gray limestone	895	900
Gray sandy shale and fragments of concretionary siderite, with some coal	900	905
Black shale and gray shale, with some fragments of yellow lime-		
stone and concretionary material	905	910
Dark gray shale, with a little limestone, and some green serpen-tine-like shale	910	915
Dark gray shale and greenish shale with red blotches, with a few		
fragments of limestone	915	920
Dark gray shale and gray sandy shale	920	925
Gray sandy shale with minute crystals of pyrite	925	930
Dark gray shale and gray sandstone, with shreds of veget	930	935
Dark gray shale and some sandstone	935	940
Gray shaly sandstone and sandy shale	940	945
Dark gray sandy shale, pyritiferous	945	950
Dark gray sandy shale	950	955
Gray clay shale	955	960
Gray shale and limestone. The limestone is white, and consists of rounded fragments which are invested with an oolitic incrus-		
	960	965
Dark and stony thin splitting shale and light sandstone	965	970
White and gray sandstone and dark gray shale. Sandstone occasionally with interstitial pyrite	970	
Dark gray shale and white sandstone	975	985
Dark greenish gray shale.	985	1,000
Black shale of fine texture	1,000	1,005
Dark gray shale, with siderite partly in fragments, partly as spherules		
Dark gray sandstone and dark shale	1,010	1,015
Dark shaly sandstone and black shale	1,015	1,020
Black shale, with many fragments of siderite	1,020	1,025
Black shale	1,025	1,030
Black shale, and gray limestone which contains a tangle of tubes of Ammodiscus		
Dark gray and black shaie with limestone as	1,035	1,040
White and gray sandstone and gray shale	1,040	1,045
White, slightly micaceous sandstone and gray shaie	1,045	1,050
Gray laminated shaly sandstone	1,050	1,060
	1,060	1,080
Laminated gray sandstone and white sandstone	1,080	1,100
Yellow sandstone	1,100	1,105
Coarse white san	1,105	1,115
Red sand.	1,115	1,125
White sand, finer	1,135	1,135
Reddish sand.	1,165	1,175
Gray sand.....	1,165	1,185

Logs-Continued.

Logs-Continued.

	$\begin{aligned} & \text { Depth } \\ & \text { From } \end{aligned}$	$\begin{aligned} & \text { feet. } \\ & \text { To } \end{aligned}$
Black shale and gray sandy shale, with bits of red shale.	1,635	1,640
Gray shale	1,640	1,645
Black shale, greenish shale and sandsto	1,645	1,650
Greenish gray shale and some white sa	1,650	1,655
Gray and green shale with sand. One fragment of bitumen noted, which burned when ignited.	1,655	1,660
Black and gray shale and sand in about equal qua	1,660	1,665
Slickensided greenish gray shale and fine sa	1,665	1,670
Sandstone and dark shale	1,670	1,675
Sandstone, dark shale and some calcareous	1,675	1,685
Gray fine sand.	1,685	1,695
Sand and da	1,695	1,700
White limestone, dark gray shale and sand	1,700	1,710
Fine yellow sand	1,710	1,715
Fine gray sand.	1,715	1,740
Black and dark gr	1,740	1,750
Dark gray shale and some gray limestone, oolitic grains (?	1,750	1,760
Grayish white fine sand.	1,760	1,765
Grayish white sand and some shale, effervescing	1,765	1,775
Dark gray and black shale with some	1,775	1,780
Calcareous limestone with slow effervescence and dark gray and red shale oolitic grains $1 / 2-1 / 4 \mathrm{~mm}$. in diameter.	1,780	1,785
Gray calcareous limestone with bits of brachiopod shells, spines, occasional oolitic grains, and dark gray and dull red shale. Oolites frequently oval	1,785	1,795
Like the preceding, with more sand and more oo	1,795	1,800
Dark shale, some oolitic limestone	1,800	1,805
Dark shale, oolitic limestone and some red	1,805	1,810
Dark shale, red shale, oolitic limestone and lobster colored limestone	1,810	1,815
Like the preceding but with less limestone	1,815	1,825
Dark greenish gray shale, and dark red shale with limestone, organic	1,825	1,830
Like the preceding, with a few limestone fragments of "lobster" red color.	1,830	1,835
Dark gray, gray and red shale with organic limestone, with slow effervescence	1,835	1,855
Oolitic limestone effervescing slowly and black and red shal	1,855	1,865
Ooolitic white calcareous limestone	1,865	1,890
Gray limestone effervescing slowly	1,890	1,895
Fine gray sand, pure, grain, measuring about 1-6 mm. in diameter	1,895	1,900
Gray limestone, effervescing slowly with acid	1,900	1,905
Gray limestone, ca	1,905	1,949
Gray calcareous limestone with a few bits of chalcedonic chert....	1,940	1,945
Gray limestone, with slow effervescence, with some fragments of chert	1,945	1,950
Gray oolitic calcareous lim	1,950	1,965
Gray oolitic limestone effervescing slowly, fragments of ribbed lamellibranch noted.	1,965	1,970
Gray oolitic limestone, effervescing	1,970	1,975
Gray marl	1,975	1,980
Gray marl and som	1,980	1,985
Gray very finely granular dolomitic and oolitic limestone, with chalcedonic chert	1,985	2,000

No. 6.

Operators-Bridgeport Oil Company.
Farm and well-McPherson, No. 3.
Location-SE. $1 / 4$ sec. 11, Lawrence Township.
Elevation-429 feet.

		Thickness Feet	Depth Feet
Limestone		9	90
Slate		65	155
Sandy lime		45	200
Slate	. .	15	215
Coal		5	220
Slate		15	235
Limestone		15	250
Slate		150	400
Limestone		40	440
Slate		100	540
Limestone		8	548
Slate		52	600

Logs-Continued.		
	Thickness Feet	Depth Feet
Limestone	5	605
Sand, (hole full of water, 625 feet)	95	700
Slate	45	745
Sand	30	775
Slate	115	890
Limestone	6	896
Slate	44	940
Sand	50	990
Slate.	5	995
Sandy limestone	35	1,030
Sand (water) .	30	1,060
Slate	165	1,225
Limestone	55	1,280
Sand	52	1,332
Limestone	10	1,342
Red rock	23	1,365
Slate	7	1,372
Limestone	3	1,375
Slate	35	1,410
Limestone	20	1,430
Red rock	10	1,440
Slate ...	20	1,460
Limestone	20	1,480
Slate ...	10	1,490
Red rock	15	1,505
Slate (first oil, 1,520 feet ; best oil, 1,543 fee	13	1,518
Limestone	23	1,590
Slate	55	1,645
Sand	15	1,660
Limestone	10	1,670
Slate ...	15	1,685
Limestone	77	1,762
Sand (water, 1,766 feet)	6	1,768
Total depth		1,768
No. 7.		
Operators-Bridgeport Oil Company. Farm and well-McPherson, No. 4. Location-SW. $1 / 4$ sec. 12, Lawrence Township. Elevation-425 feet.		
	$\underset{\text { Feet }}{\text { Thickness }}$	Depth Feet
Gravel and quicksand	85	85
Sand	25	110
Slate	28	138
Limestone		145
Slate	55	200
Sand ...	30 5	230 235
Limestone	5 5	235 240
Limestone	10	250
Slate ...	140	390
Limestone	5	395
Coal	5	400
Limestone	40	440
Slate	90	530
Limestone	10	540
Slate ${ }^{\text {S }}$ (water)	95	585
Sand (water)	15	690
Sand	35	725
Slate	65	790
Sand	15	805
Slate	65	870
Sand	10	880 900
Limestone	5	905
Slate	50	955
Sand (water)	45	1,000
Slate	63	1,065
Limestone	10	1,075

Logs-Continued.

No. 8.
Operators-Bridgeport Oil Company.
Farm and well-R. M. Kirkwood, No. 7.
Location-NE. $1 / 4$ sec. 14, Lawrence 'Township.
Elevation-435 feet.

	$\underset{\text { Feet }}{\text { Thickness }}$	$\begin{aligned} & \text { Depth } \\ & \text { Feet } \end{aligned}$
Sand and gravel	83	83
Limestone	10	93
Slate	32	125
Limestone	15	140
Slate	70	210
Sand (water)	25	235
Slate	10	245
Limestone	5	250
Slate	45	295
Limestone	5	300
Slate	25	325
Limestone	20	345
Slate	95	440
Sand	10	450
Slate	180	630
Sand (water)	87	717
Slate	38	755
Limestone	8	763
Slate	10	773
Sand	27	800
Limestone	20	820
Slate	40	860
Sand	20	880
Slate	20	900
Sand	20	920
Slate	40	960
Sand (water)	90	1,050
Slate	120	1,170
Sand	10	1,180
Slate	50	1,230
Limestone		1,236
Slate	8	1,244
Limestone	21	1,265
Slate	11	1,276
Limestone	$\begin{array}{r}9 \\ \hline\end{array}$	1,285 1,370

Logs-Continued.

	Thickness Feet	Depth Feet
Slate	30	1,400
Limestone	20	1,420
Slate.	15	1,435
Limestone	30	1,465
Slate	30	1,495
Limestone	25	1,520
Red rock	15	1,535
Slate	5	1,540
Sand (oil, 1,551	40	1,580
Slate	5	1,585
Sand (water)	5	1,590
Slate	5	1,595
Sand	10	1,605
Slate		1,610
Limestone	20	1,630
Slate	20	1,650
Sandy limestone	25	1,675
Slate	20	1,695
Limestone	10	1,705
Red Rock.	5	1,710
Limestone	57	1,767
Sand	- 8	1,775
Total depth		1,775

No. 9.

Operators-Snowden Bros.
Farm and well-Cummings, No. 12.
Location-NE. $1 / 4$ sec. 6, Bridgeport Township.
Elevation-516 feet.

	Thickness Feet	Depth Feet
Soil	25	25
Slate	102	127
Limestone, gray, soft	8	135
Sand, white.	45	180
Slate, dark.	12	192
Sand, light.	80	272
Slate, dark	20	292
Limestone, light, ha	13	305
Slate, light, soft	18	323
Slate, dark.	257	580
Limestone, light	9	589
Slate, dark.	311	800
Limestone, light, hard	4	804
Slate and limestone shells, dark,	126	930
Sand, light (little oil, 940 feet).	40	970
Slate and limestone shells.	15	985
Sand, light.	15	1,000
Slate, light (water, 1,006 feet)	20	1,020
Slate and limestone shells.	45	1,065
Slate, white.	70	1,135
Sand, light, soft	15	1,150
Slate, black.	15	1,165
Sand, white (water, 1,175 feet)	50	
Slate, white....................	5	1,220
Limestone, white, soft	20	1,240
Slate, white, hard.	30	1,270
Sand		1,275
Slate, light, soft	5	1,280
Limestone, white	14	1,294
Slate, dark.....	21	1,315
Limestone, gray	16	1,331
Slate, dark.	14	1,345
Sand, gray (gas, 1,347 feet)	18	1,363
Slate, light...................	3	1,366
Limestone, white.	19	1,385
Slate, dark.	4	1,389
Sand, gray.	,	1,396
Slate, light.		1,415
Red slate.	10	1,425
Sand, light (oil, 1,428 feet)	15	1,445

Logs-Continued.

No. 10.
Operators-Ohio Oil Company.
Farm and well-S. G. McCleave, No. 4.
Location-Center of section 31, Bridgeport Township.
Elevation-520 feet.

Thickness	
Feet	Depth
Feet	

Loess .. and numerous crinoid stems..
Coal, yellow sandstone, some crinoidal limestone and a few pieces of calcite and red marl. Numerous crinoid stems.................
Coal, yellow sandstone, some crinoidal limestone and a few pieces of calcite and red marl. Numerous crinoid stems..................
Gray micaceous sandstone with in
stone, bits of coal and calcite.
1 - 15

Coal, some yellow and white sandstone, some pieces of crinoidal limestone
$15 \quad 20$

Gray micaceous sandstone, some dark shale and fire clay...
Coal. Some crinoidal limestone, a little red oxidized material. A small Athyris shell noted, also a piece of crinoid calyx (?)..
White micaceous sandstone, a few pieces of fire clay and coal...
Gray micaceous laminated sandstone, some fragments of yellow

Gray micaceous sandstone, a few fragments of yellow limestone and coal.. she of gypsum. Two Ambocoelia planoconvexa and a crinoid stem

Black shale, some dark limestone, and a few pieces of sandstone. A crinoid stem noted.
2530

Gray micaceous shale..
Yellow limestone, some gray sandstone, and bits of siderite...........
Yellow limestone and gray sandstone, some siderite concretions and shale
Gray shale and fire clay..
Dark shale, some siderite concretions, and bits of white limestone.
Gray pyrite.. shate shale
Gray micaceous simestone and fire clay................................

Gray micaceous shale and sandstone, some siderite concretions, a few bits of white limestone.
Gray micaceous shale and a few bits of siderite concretions.

145	150
150	155

Gray Siderite, concretionary, some gray micaceous shale.......
Coal and gray sandstone, some concretionary siderite, some bits of 160 limestone and pyrite. A crinoid stem noted..........................

Fine gray micaceous sand with infiltrated lime, some gray shale gray sand with infiltrated lime
Fine gray sand with infiltrated lime.. 190

Logs-Continued.

	$\underset{\text { Feet }}{\text { Thickness }}$	Depth Feet
White micaceous sand...................	210	5
Sand, with infiltrated lime, and so	225	0
Coal, some white limestone and black shale, some	230	5
Gray micaceous shaly sandstone, some bits of coal, pyrite, and siderite	235	240
Yellow sand with infiltrated lime; the smaller grains fioat on water	240	
Gray micaceous sandstone, some small spherules of siderite concretions, a few pieces of pyrite and white limestone.	245	250
Gray sandstone, some siderite concretions (spherules), some dark shale, and bits of white limestone.	0	5
Dark sandy micaceous shale, some gray sandstone, and	255	5
White sandstone	265	0
Gray micaceous sandstone, some pieces of laminated sa	280	310
White micaceous san	310	
White limestone, indistinctly fragmental, a little sand and some gray shale.	320	5
White limestone like the above, a little dark shale. A crinoid		
	325	330
White, indistinctly fragmental limestone. Some bits of pyrite, and a crinoid stem noted.	330	5
Greenish compact limestone, and micaceous sandstone, with some shale		
Gray shale, some sandsto	34	345
Gray micaceous sandy	345	350
Gray micaceous shale, some yellow limestone, and one piece containing woody fibre (?)	350	355
Gray sandy shale, some yellow limestone, and a few siderite concretions		
Gray shale, micaceous sandy shale, and some yellow limeston	360	365
Gray sandstone, some laminated yellow sandstone, some yellow limestone, fragments of siderite		
Gray shale and sandstone, some siderite con	370	375
Gray sandy shale, some siderite concretions. Carbonaceous shreds noted in shale		
Siderite concretions, some sandy	380	385
Gray sandy shale, some concretionary siderite and bits of gray sandstone	385	990
Gray sandstone and sandy shale. A few pieces of black carbonaceous shale, coal, some sandstone with infiltrated lime, and some crinoid stems. Retzia punctulifera noted	390	395
Gray sandstone, dark shale, some white limestone, concretionary siderite. A crinoid stem and Athyris noted. A little coal noted	395	40
Gray shale and some sandstone, concretionary siderite, bits of pyrite, and a few pieces of sandstone with infiltrated lime.....	400	5
Gray sandy shale, and some concretionary siderite	405	41
White brexiated limestone, with cracks filled with yellow calcite, some yellow limestone, some siderite, a little gray shale, and sandstone with bits of pyrite	410	415
White limestone, cracks filled with yellow calcite, some concretionary siderite	415	20
White limestone, having cracks filled with yellow calcite, some		
yellow limestone, some gray soft shale, and a few bits of coal	420	430
sandstone and a few pieces of black shale..	430	435
Gray shale and concretionary siderite	435	450
Dark gray shale an	450	475
Gray sandy shale, some gray sandstone, siderite, and a few fragments of yellow limestone	475	480
Gray sandy shale, some pieces of which have layers of siderite, yellow limestone and bits of pyrite	480	485
Gray micaceous shale, some gray sandstone, few small fragments of yellow limestone	485	490
Gray micaceous shale	490	495
Dark shale, some siderite concretions, a few pieces of white limestone and pyrite	495	500
Dark shale, some coal and concretionary siderite, and a few pieces of dark limestone. A crinoid stem noted, also some oolitic black concretionary material	500	505
Dark shale and some siderite, a few bits of white limestone, coal, and pyrite. Crinoid stem and closely tuberculated crinoid spine moted, also a spiral Ammodiscus. Rhombopora, lepidodendroides, and black shale with fucoidal traversions	505	510
Dark shale, some siderite, white limestone, fragments and bits of coal and pyrite. Crinoid stems and a small Syntrielasma hemiplicate noted	510	51
ay micaceous shale, some gray sandstone and yellow limeston	515	2

Logs-Continued.

	Thickness Feet	Depth Feet
Gray micaceous shale, some sandstone, some pieces of yellow		
imeston	520	525
ray micaceous	25	0
Gray micaceous shale, and some sandsto	53	5
	53	0
Gray micaceous shale, some siderite, and a few bits of yellow		
Gray sandy shale, some yellow sandstone, bits of yellow limestone		
and pyrite	545	550
Black shale with streaks of pyrite, some siderite concretions, andbits of white limestone \ldots............................... 550		
bits of white limestone	550	555
Crinoid stem noted .. $555 \quad 560$		
Black shale and a few siderite concretions s......................... 560 siderite. 565Yellow concretionary limestone and black shale. Some sider		
	565	0
White and yellow concretionary limestone, some dark shale and gray sandstone, bits of pure calcite, and pyrite. More shale		
Black carbonaceous shale and coal, some white limestone and		
siderite, and some bits of pyrite		
ark shale, some pieces of yellow	580	5
Dark shale, few pieces of yellow limestone and white sandstone,		
Dark micaceous shale, some yellow limestone, with layers of calcite and some sandy shale	600	5
Gray sandy shale, some yellow limestone, bits of white sand-		
Gray sandy shale, some pieces of dark limestone, and bits of	610	615
Dark sandy shale, some pieces of pyrite $615 \quad 620$ Dark gray micaceous shale, some pieces of yellow limestone,		
Dark gray shale, some pieces of yellow limestone and siderite.		
Gray shale	630	635
Gray shale, a few siderite concretions, and	635	640
Gray sandy shale, some yellow limestone, and concretionary car-		
	640	
Gray shale, some coal and sid	645	650
Soft gray shale, some yellow limestone,	650	655
hite limestone, some "clod" and san	655	660
Black "clod," some yellow limestone, and soft	660	665
"Clod,", with little white limestone and crinoid stems	665	0
"Clod," crinoid stems, and Edmondia (?), with some white		
	675	680
Gray shale, yellow limestone and some "clod	680	
Yellow limestone and gray sandstone, some concretionary siderite		
and gray shale	685	590
Soft gray shale, yellow limestone, and some sa	690	695
Gray micaceous sandy shale, yellow and white limestone, some		
Gray micaceous shale, some siderite, some white limestone, and		
Gray, sandy shale, some black shale, and siderite with a few pieces of coal		
Gray sandy shale, some coal, and siderite	710	715
Gray sandstone and some black carbonac	715	720
Coal and some fire clay	720	725
Black shale	725	735
Hard black sha	735	740
Black shale, a little	7	745
Gray sandstone, some black pyritiferous shale, and yellow lime-		
		750
Gray micaceous sandstone, some pieces laminated, and bits of		
Gray shale and sandstone, some imprints of leaves in	5	5
Dark shale, some sandstone, laminated and micaceous, bits ofyellow limestone		
Gray micaceous sandstone and dark shale, some yellow limestone	770	780
Gray micaceous sandstone, some dark shale, a few bits of lime- 780		
Gray micaceous sandstone and some da	785	790
Dark gray micaceous shale, bits of yellow limestone, and siderite	790	795
Black micaceous shale	795	800
Gray shale and some black micaceous	800	805
Gray shale, with some imprints of vegetation	805	810
Dark micaceous shale and some pieces of yello	810	815
Dark shale, some fragments of yellow lime	815	820

Logs-Continued.

	Thickness Feet	Depth Feet
Gray micaceous sandstone, some shale, bits of yellow limestone (small)	820	
Gray micaceous sandstone, a little shale and limestone.	825	835
Gray sandstone, with concretionary yellow limestone.	835	840
Gray sandstone, some yellow limestone, and white limestone, with some pieces of dark limestone	840	845
Gray micaceous sandstone, some gray shale, and a few pieces of yellow limestone	845	850
Dark gray shale, some gray sandstone, few pieces of yellow limestone, and yellow calcite. Crinoid stems and a piece of shell noted	850	5
Black shale and a little white limestone. Crinoid stems and a piece of brachiopod shell noted	855	860
Black shale and a little yellow limestone. Piece of shell and crinoid stem noted	860	865
Black shale, few pieces of yellow and white limestone	865	870
Black shale, some concretionary siderite, and bits of yellow limestone		75
Black shale and some gray shale	875	880
Black shale, some siderite and gray sandstone	880	885
Gray micaceous sandstone and few pieces of sh	885	890
Gray sandstone, few pieces of yellow limestone, an	890	895
Gray micaceous shale, some sandstone	895	900
Gray micaceous shale	900	905
Gray micaceous shale and some dark shale	905	910
Dark and gray micaceous shale	910	915
Dark gray shale and a few pieces of white lime	915	920
Dark gray shale, bits of limestone, and pyrite	920	925
Black shale	925	930
Black shale and some fire clay, bits of sandston	930	935
Gray sandstone and some dark sandy shale	935	940
Dark sandy shale and sandstone, bits of yellow	940	945
Dark sandy shale and sandstone	945	950
Dark shale, some sandy shale	950	955
Gray micaceous shaly sandstone	955	960
Gray micaceous sandy shale and sandston	960	970
Gray micaceous shaly sandstone, some black shale	970	975
Gray micaceous sandy shale, bits of yellow lime	975	980
White micaceous sand, a little dark shale	980	985
White micaceous sand, some dark laminated shale	98	990
Gray sandstone and some dark micaceous shade. Sandstone with infiltered lime, some pieces of laminated sandstone	900	95
White micaceous sand, some dark shale	95	1,000
White micaceous sand, little dark shale	1,000	1,005
Gray micaceous sand	1,005	1,010
Gray micaceous sandstone, some dark shale	1,010	1,015
Gray micaceous sandst	1,015	1,025
Gray shale	1,025	1,035
Dark gray shale	1,035	1,040
White micaceous sand, grains mostly from $1 / 8$ to $1 / 4 \mathrm{~mm}$. in diameter	1,040	1,045
White micaceous sand	1,045	1,065
White micaceous sand with a little infiltered lime	1,065	1,070
White micaceous sand with some infiltered lime, a little dark shale	1,070	1,080
Gray micaceous sandstone and sha	1,080	1,085
White micaceous sand with some infiltered lime	1,085	1,090
Yellow micaceous sand	1,090	1,125
Yellow sa	1,125	1,130
Yellow sand, showing secondary enlargement of grai	1,130	1,135
Yellow sand	1,135	1,140
Yellow sand and some dar	1,140	1,145
Gray sand with some secondary enlargement of	1,145	1,150
White sand, very fine	1,150	1,155
White sand	1,155	1,160
Fine white sand	1,160	1,165
White sand and some gray shale	1,165	1,170
Fine white sand	1,170	1,175
Fine white sand with some infiltrated lime	1,175	1,180
Yellow sand .	1,180	1,190
Yellow sand with infiltrated lime	1,190	1,210
White sand, grains mostly from $1 / 8$ to $1 / \pm \mathrm{mm}$. in diameter	1,210	1,215
Fine white sand	1,215	1,230
White sand, some grains show secondary enlargement	1,230	1,235
White sand	1,235	1,280
Yellowish sand	1,280	1,290
Yellow sand and some white limestone	1,290	1,300
White limestone and sand	1,300	1,305
Like the preceding, but with more lime	1,305	1,310
Greenish shale with some flakes of mica, some white and dark limestone. Some imprints of leaves	- 1,310	1,315

Logs-Continued.

	Thickness Feet	Depth Feet
Greenish shale, or a fire clay, some limestone, and bits of pyrite. Imprints of vegetation \qquad		
ray sandstone, some pieces of pyrite, and greenish shale like in		
the preceding	1,320	1,325
Gray sandstone with	1,3	1,330
A tangled organic oolitic limestone, breccia and some sandstone. A tangle of organic oolitic limestone, effervescence, brisk. Some		
greenish shale and sand, bits of py	1,33	,345
and red shale ... 1,345 . 1,350		
Oolitic limestone, some dark shale, bits of green and red shale		
and two pieces of chert	,35	,355
A tangled organic oolitic limestone, breccia, some black, greenish and brown shale ... 1,355 1,370		
Black shale and limesto	1,370	1,375
Black shale and some oolitic limestone, effervescence	1,375	1,380
Black and green shale, white lim	1,380	1,390
Black shale and some sandstone	1,390	1,395
Black shale and a little sandsto	1,395	1,400
Greenish and red shale, some limestone, effervescence brisk. Bits		
Dark shale and some reddish colored limestone, effervescence brisk	k 1,405	1,410
Dark and reddish brown shale, some gray limestone	1,410	1,415
Dark shale and some gray limestone, a little	1,415	1,420
Black marly shale and some white limestone. Bits of pyrite and		
White limestone, some black marly shale and red shale, numerous crinoid stems		
Black shale, some marly shale and white limestone, crinoid stems and pieces of shells		
White limestone and dark shale	1,445	1,450
Grayish yellow sandstone with infiltered lime, some dark shale and white limestone		
Gray sandstone, some black sha	1,470	
Red shale, some greenish sandstone with infiltered lime and little		
gray sandstone	1,475	1,480
Dark sandy calcareous shale, some white limestone and red shale	e 1,480	1,485
Coarse gray sand and some black sh	1,485	1,490
Coarse gray sand	1,490	1,500
White sandstone with infiltered lime and	1,500	1,515
Gray sandstone and a little dark shale	1,515	1,535
Black shale	1,535	1,550
Black shale, some yellowish sandstone with infilt	1,550	1,560
Black shale and white limestone. A few fragmen	1,560	1,565
Black shale and white sandstone, little limestone	1,565	1,585
Black shale, white limestone, effervescence brisk, and some sa		
Black shale and some white fragmental limestone, crinoid stem		
noted	1,590	1,595
Black shale	1,595	1,600
Black shale and a little	1,600	1,605
Black shale and some sandstone	1,605	1,610
Gray sand, white limestone, (éffervescence brisk), and a little		
White limestone and dark	1,620	1,625
Black shale and a little lim	1,625	1,645
Black shale and some limestone. A	1,645	1,650
Black shale and some limestone	1,650	1,660
Black shale	1,660	1,665
Black shale, some red shale and oolitic limestone, (effervescence brisk)	. 1,670	1,680
Greenish and reddish shale some oolit	1,680	1,685
Greenish shale, some red shale, and some oolitic li	1,685	1,690
Oolitic limestone, a little sand and greenish shale	1,690	1,710
Oolitic limestone	1,710	1,740
Oolitic limestone, little greenish shale and bits	1,740	1,745

No. 11.
Operators-Snowden Bros.
Farm and well-Perkins, No. 19.
Location-SW. $1 / 4$ sec. 32, Bridgeport Township.
Elevation-529 feet.

Logs-Continued.		
	Thickness Feet	Depth Feet
Slate	15	200
Sand	75	275
Slate	30	305
Limestone	10	315
Slate	20	335
Slate and shale	106	441
Sandy shale	10	451
Slate	95	536
Limestone	8	544
Slate	96	640
Limestone	5	645
Slate ...	70	715
Limestone	6	721
Slate	79	800
Limestone	5	805
Slate	43	848
Sandy limestone	6	854
Slate, white	10	864
Slate, brown . ${ }_{\text {S }}$	46	910
Sand (show of oil, 930 to 950 feet)	46	956
Slate, brown	10	966
Slate, gray	84	1,050
Sand (water, 1,075 feet)	115	1,165
Slate	40	1,205
Sandy limestone	10	1,215
Slate	15	1,230
Limestone	${ }^{7}$	1,237
Slate Red rock	23 10	1,260 1,270
Slate	24	1,294
Limestone	22	1,316
Slate	17	1,333
Sand	12	1,345
Limestone	22	1,367
Shale	29	1,396
Red rock	11	1,407
Sand	30	1,437
Red rock	12	1,449
Slate	43	1,491
Limestone	3	1,494
Slate ${ }_{\text {S }}$	21	1,515
Sand (oil, 1,520 feet)	18	1,533
Slate Limestone	13	1,554
Shale	7	1,574
Limestone	8	1,582
Slate	16	1,598
Limestone	11	1,605 1,616
Limestone (gas, 1,654 feet)	70	1,616
Sand (oil, 1,686 to 1,696 feet)	10	1,686
Limestone	106	1,696 1,802
Total depth	.	1,802
No. 12.		
Operators-Bridgeport Oil Company. Farm and well-Willey, No. 4. Location-SE. $1 / 4 \mathrm{sec}$. 30, Petty Township. Elevation-517 feet.		
	Thickness Feet	Depth Feet
Mud and slate	22	22
Sand	10	32
Slate	128	160
Sand	20	180
Slate	65	245
Limestone	5	250
Slate	25	275
Limestone	10	285
Red rock	${ }^{5}$	290
Slate	110	400
Limestone	5	405
Shale	25	430

Logs-Continued.

No. 13.

Operators-Snowden Bros
 Farm and well-A. Pepple, No. 7.
 Location-NW. $1 / 4$ sec. 30, Petty Township.
 Elevation-430 feet.

	Thickness Feet	Depth Feet
Soil and slate	15	15
Sand, white	90	105
Slate and shells	90	195
Sand, white	25	220
Slate and shells	80	300
Limestone, gritty, hard	10	310
Slate, white	40	350
Slate and limestone shells	80	430
Sand	12	442
Slate	108	550
Sand	20	570
Shale, black	20	590
Slate	30	620
Sand, white (hole full of water, 660 feet)	85	705
	79	784
Limestone, white		786
Slate, black	29	815
Sand, white (hole full of water, 895 feet)	115	930
Slate, black	45	975
Sand, dark, hard	50	1,025
Slate, black, soft	25	1,050
Sand, white, hard	32	1,082
Sandy limestone, dark, hard	33	1,115
Slate, dark	5	1,120
Sand, white (water)	53	1,173

Logs-Continued.

	Thickness Feet	Depth Feet
Slate, black	27	1,200
Sand, white	10	1,210
Slate, black	8	1,218
Red rock	7	1,225
Slate, black	13	1,238
Limestone shells, white	10	1,248
Slate, black	12	1,260
Limestone, white	8	1,268
Slate, black	10	1,278
Red rock	6	1,284
Slate and shale	14	1,298
Limestone, white	7	1,305
Sand, white	13	1,318
Slate, black	20	1,338
Red rock	22	1,360
Sand, white (oil, 1,365 to 1,380 feet)	40	1,400
Limestone, gritty, black	5	1,405
Slate, black	25	1,430
Sand, white	10	1,440
Limestone. gray	10	1,450
Slate, white ...	20	1,470
Limestone, white	16	1,486
Slate, black	17	1,503
Sandy limestone, white (gas, 1,513 to 1,515 feet)	15	1.518
Sand, white .	32	1.550
Sandy limestone	7	1,557
Limestone, white	5	1.562
Limestone, brown	18	1,580
Sandy limestone, white (green oil, 1,603 feet)	26	1,606
Limestone, white .	13	1,619
Total depth		1,619

No. 14.

```
Operators-Snowden Bros.
Farm and well-Vanatta, No. 2.
Location-NE. \(1 / 4\) sec. 23, Petty Township.
Elevation-430 feet.
```


No. 15.

Logs-Continued.

No. 16.

```
Operators-Bridgeport Oil Company.
Farm and well-Wood, No. 13.
Location-NW. \(1 / 4\) sec. 20, Petty Township.
Elevation-430 feet.
```

	Thickness Feet	Depth Feet
Gravel and quicksand	90	90
Limestone	10	100
Sand	20	120
Slate	115	235
Limestone shells	5	240
Red rock	10	250
Slate	20	270
Sand	30	300
Slate and limestone	390	690
Salt sand	35	725
Slate and limestone	150	875
Sand, broken	30	905
Limestone and slate		
Sand	75	
Slate and limestone sh	55	1,130
Sand		
Limestone, hard	15	
Slate Lime....	25 5	1,270 1,275
Limestone	5	1,275
Sand	19	1,294
Limestone	4	1,298
Red rock	10	1,308
Slate	12	1,320
Limestone	5	1,325
Slate Limestone	15 25	1,340

No. 17.

Operators-Snowden Bros. Farm and well-Vanatta, No. 1.
 Location-NE. $1 / 4 \mathrm{sec} .15$, Petty Township.
 Elevation-475 feet.

	Thickness Feet	Depth Feet
Sand, dark	10	23
Slate	400	423
Slate and limestone shells	50	473
Limestone shell, white	8	481
Red slate	12	493
Slate	125	618
Sand (little water, 633 feet)	15	633
Shell and slate	100	733
Slate	150	883
Sand, white	20	903
Shale, dark	100	1,003
Sand, white (water, 1,023 feet)	20	1,023
Slate and limestone shells, dark	72	1,095
Sand, white (water, 1,115 feet)	20	1,115
Slate, dark	77	1,192
Sand, light	18	1,210
Limestone, gray	20	1,230
Slate, white Sand, white	85	1,315
Slate	60	1,430
Limestone, light	20	1,450
Slate, dark	60	1,510
Limestone, light	5	1,515
Slate, dark		1,520
Sand, light	76	
Slate, dark	7	1,603
Limestone, light	10	1,613
Slate, dark .	22	1,635
Sand, gray	13	
Red slate	12	1,660
Slate, white	18	1,678
Limestone shell	7	1,685
Slate, white	3	1,688
Limestone, light	22	1,710
Slate, light . ${ }^{\text {a }}$.		
Limestone, light	20	1,763
Sand, white	99 6	1,862 1,868
Slate, dark Limestone, light	5	1,868 1,873
Slate, dark	23	1,896
Limestone, light	41	1,937
Sand, white ...	8	1,945
Slate	13	1,958
Limestone, gray	12	1,970
Sandy limestone (water, 1,970 fe	15	1,985
Limestone, gray	10	1,995
Slate, dark	8	2,003

Logs-Continued.

No. 18.

Operators-Snowden Bros.
Farm and well-Piper, No. 10.
Location-SE. $1 / 4$ sec. 2, Petty Township.
Elevation-439 feet.

	$\underset{\text { Thickness }}{\text { Feet }}$	$\begin{aligned} & \text { Depth } \\ & \text { Feet } \end{aligned}$
Soil, dark	25	25
Gravel, light	10	35
Mud, dark .	35	70
Limestone, light	8	78
Slate, light	172	250
Sand, light (water, 295 feet)	75	325
Limestone, light	7	332
Red rock	13	345
Sand, white	30	375
Slate, dark	98	453
Limestone shell, light	2	455
Slate, dark	25	480
Coal	3	483
Slate, black	57	540
Limestone, light	80	620
Sand, light (5 bailers of water, 625	20	640
Slate and limestone shelis	25	665
Sand	20	685
Slate	65	750
Sand, light.	25	775
Limestone, light	20	795
Red shale	5	800
Shells and slate	30	830
Slate, light	28	858
Sand, light	17	875
Slate, dark	35	910
Sand, white (water, 931 feet)	21	931
Limestone, dark		940
Slate, light	20	960
Sand, white	120	1,080
Slate, black	70	1,150
Sand, light	40	1,190
Slate and limestone shells	70	1,260
Sand, light	10	1,270
Slate and limestone shells	30	1,300
Slate, light	60	1,360
Limestone, light	15	1,375
Slate and shells, light	50	1,425
Limestone	20	1,445
Slate	5	1,450
Sand	25	1,475
Red rock	6	1,481
Sand, light (show of oil, 1,481 feet)	20	1,501
Slate, dark .	10	1.511
Sand, dark	19	1,530
Slate, dark	20	1,550
Limestone, light	5	1,555
Slate, light ${ }_{\text {Limestone, }}$	5 4	1,560

Logs-Concluded.

	Thickness Feet	Depth Feet
Slate, dark	27	1,591
Sand, light	29	1,620
Slate, light	10	1,630
Limestone shells and sand	25	1,655
Limestone shells and slate	40	1,695
Limestone	13	1,708
Total depth	1,708

STRATIGRAPHY.

Pleistocene.

There is a varying thickness of glacial deposits over the Lawrence county oil fields. The drift is from 100 to 115 feet thick in the northern part of Petty township. It thins very rapidly toward the south boundary of Petty and the northern limit of Bridgeport townships, which is the area of a conspicuous uplift of the LaSalle anticline. The drift over this structure is only 20 to 40 feet thick. South of the uplift, in the lower part of Bridgeport and over the Dennison and Lawrence fields, the drift is 50 to 80 feet thick. It thickens perceptibly westward toward the Illinois basin.

Pennsylvanian.

The Pennsylvanian rocks of Lawrence county include the shallow producing sand of lower Dennison township, probably of McLeansboro age; the Bridgeport sands in the upper part of the Pottsville; and the Buchanan sand in the basal portion of the Pottsville rocks.

McLeansboro and Carbondale Formations.

It is impossible to find the top of the Herrin coal or the dividing line between the McLeansboro and Carbondale formations in this county. No Fusulina fossils were found by Dr. Udden in the samples of wells 2, 5 and 10. The rocks of the McLeansboro and Carbondale formations are similar to those of Crawford county. They are represented mostly by shales, numerous sandstones, and a few widely separated beds of limestone and coal. Owing to the impossibility of tracing individual horizons through the section, no correlations were attempted. A casual study of the Bridgeport sands immediately beneath the Carbondale reveals a mild uplift and shows them to be influenced by the LaSalle anticline, though much less in extent than the lower producing formations. Owing to the impossibility of wide correlation, through confusion with lower Pottsville sand beds, only local studies could be made. The sharply defined structure of the Mississippian rocks, the unconformity between the Pennsylvanian and Mississippian, and the milder folding of the Pennsylvanian beds, suggests a secondary disturbance in this region. The Pennsylvanian rocks are thinner over the major uplift of the anticline which is probably due to a preexisting fold in the Mississippian and to erosion before becoming drift covered.

Pottsville F'ormation-The Pottsville rocks are mostly the massive sandstones of the basal part of the Pennsylvanian. The sandstone beds
are often separated by lenses of shale and contain no limestone. Through the section they are from 290 to 600 feet thick with an average of 395 feet. They are very much thinner over the uplift of the LaSalle anticline than along less disturbed areas. The Pottsville rocks rest uncomfortably upon the Mississippian and therefore show much irregularity in thickness. Additional irregularity of the uppermost sands suggest a slight uncomformity between the Pottsville and Carbondale. The Pottsville is a prominent salt water horizon over most of Illinois and the main oil fields.

Records 8, 3 and 7 of Plate II and 2,5 and 18 of Plate IIIA, in addition to that of well Pet. Sec. 36, S. W. No. 8 presented in the A-A crosssection of Lawrence county, page 116, were assembled and plotted in Plate IIIB to show the relations of the Robinson and Bridgeport sands to each other. The logs are arranged in order from south to north and are plotted with respect to the top of the Pottsville which is the key line. The coal-bearing rocks of the McLeansboro and Carbondale lie above the line. The upper Bridgeport sands lie immediately below the line in the first four and the upper Robinson sands in the last three logs. Both the Robinson and Bridgeport lenses are portions of conspicuous sandy zones, belonging to the Pottsville.

Mississippian.

The Mississippian rocks underlie the Pennsylvanian and contain the most important oil sands. The upper portion, known as the Chester group, ${ }^{1}$ is limited by erosion to the Tribune formation. Below the Chester in succession are the Ste. Genevieve and St. Louis formations. The Chester beds include the "Gas," Kirkwood, and Tracey sands, and the Ste. Genevieve contains the rich McClosky sand.

Tribune formation (upper portion of the Chester group)-The Tribune formation is characterized by a succession of limestones interlain with numerous strata of sand, and red shales. The top of the Chester is considered to be the first limestone underlying the Pottsrille sandstones or separated from them by a stratum of shale. The top limestone varies in its depth from the surface through the region, which is attributed to pre-Pennsylvanian erosion. The uplift in southern Petty and northern Bridgeport townships exposed much of the upper portions of the Chester to effective erosion. The average thickness of the Tribune formation in this region is 365 feet with a range of 295 to 440 feet. The Chester rocks in southwestern Illinois, in comparison, are about 700 feet thick. There are two extreme thicknesses of about 440 feet in logs 14 and 10. The wells yielding these logs are some distance down the western limb of the anticline where the formations thicken as they descend into the Illinois basin.

There are usually three strata of limestone interlain with shales which are penetrated before the first distinct sand is encountered in the Chester of Lawrence county. This sand is known as the "Gas" sand and is present over the northern half of the county. The average interval between the top limestone of the Chester and the "Gas" sand in logs 11, $12,13,15$, and 19 is 125 feet. The next sand below the "Gas" sand is

[^10]the Kirkwood, 192 feet beneath the top of the Chester. The Kirkwood sand is the most widespread of all producing horizons in Illinois. It usually lies about the middle of the Chester beds of the main fields. This sand is often divided into two or even three lenses.

The red shales are prominent horizon markers over most of central and southern Illinois and the oil fields. These shales are usually very soft and tend to discolor the water in drilling and thus indicate their presence. Most of the complete records in Lawrence county show at least three red shales in the Chester. Two of these usually occur over the Kirkwood and one beneath. The second red bed is often found immediately over the Kirkwood sand. The highest red shale of the Chester is about 50 feet below the top limestone in the northern portion of the field but is very irregular in the southern division.

The Tracey sand is about 31% feet and the McClosky of the Ste. Genevieve is 446 feet lower than the top of the Chester rocks. The lowest wells on the western flank of the anticline (Nos. 14 and 17) show larger intervals between the top limestone of the Chester and the lower beds than other wells over the crest of the fold.

The Tracey sand probably corresponds to one of the lower sand members of the Tribune in southwestern Illinois. The formation is quite uniform in character, a moderately fine-grained, yellowish-brown sandstone, rather heavily bedded in its lower portion, becoming more thinly bedded above. Its thickness varies from 80 feet or less ta 150 feet or more.

Ste. Generieve-The Ste. Genevieve limestone underlies the Chester rocks. Stuart Weller says of the Ste. Genevieve: ${ }^{1}$ "The Ste. Geneviere limestone has usually not been distinguished from the St. Louis, and in its lithologic characters, especially in its variability, it closely resembles the St. Louis. In it, however, oolitic beds, which are absent in the St. Louis, appear, and it is, perhaps, less cherty than the St. Louis. The main distinction is a faunal one, there being a recurrence of the types of life which were abundant in the Salem, but absent from the St. Louis

Three members of the Ste. Genevieve limestone have been recognized by Ulrich, ${ }^{2}$ the Fredonia member below, the Rosiclare sandstone member in the middle, and the O'Hara member, consisting of limestone and shale, at the top. It is nowhere possible to draw a sharp line between the St. Louis limestone and the base of the Fredonia.
...... but the line between the Ste. Genevieve and the superjacent Cypress sandstone is a distinct stratigraphic break marked by an erosion unconformity.

Dr. Weller has further observed that the Ste. Genevieve of western Illinois is more oolitic than the average in its lower member and is conspicuously cross-bedded. Its maximum thickness in Monroe county is 100 feet with an average of about 80 feet. He thinks it is possible that the Illinois Ste. Genevieve may represent only the Fredonia limestone of Ulrich's interpretation.

The top of the Ste. Genevieve is used as a key line for the columnar section of Lawrence county, because of its persistance over the oil field. The records of wells and observations of oil men show this limestone

[^11]to be particularly soft in comparison with the underlying St. Louis limestone. It merges into the St. Louis and the only possible distinction between them in this district is one of hardness. The Ste. Genevieve has an average thickness of R.. font non tho finld witl.ers to 120
the Kirkwood, 192 feet beneath the top of the Chester. The Kirkwood sand is the most widespread of all producing horizons in Illinois. It usually lies about the middle of the Chester beds of the main fields.

The r
and sou
very sof
their pre
at least
over the
immedia
Chester
of the fi
The I]
vieve is
wells on
intervals
than otl
The J
bers of
uniform
stone, r :
bedded
more.
Ste.
rocks.
limestor its litho the St.
Louis, \&
main di
of life v
been res
sandstor
limestor
line bet
Cypress unconfc

Dr. 1
Illinois
spicuous
100 fee 1
the Illi
Ulrich's
The
section
The res

[^12]to be particularly soft in comparison with the underlying St. Louis limestone. It merges into the St. Louis and the only possible distinction between them in this district is one of hardness. The Ste. Geneviere has an average thickness of 85 feet over the field, with a range of 56 to 120 feet.

Dr. Udden studied samples from wells 2, 5, and 10 of the columnar section and makes note of oolites at the top of the Ste. Genevieve. This strongly corroborates Mr. Weller's idea that the Ste. Genevieve of Illinois and particularly this portion of the State represents the basal Fredonia.

The Ste. Genevieve contains the McClosky sand, which has proven the most prolific oil horizon in Illinois. The wells have not only produçed an exceptionally large initial flow but they have maintained a steady yield. They have been instrumental in upholding the Illinois production when other sections of the field were declining. The range of depth for the productive McClosky sand is 1,550 to 1,850 feet. The oil is found 20 to 50 feet in the limestone.

St. Louis Formation-The St. Louis limestone underlies the Ste. Generiere and is characterized by extreme hardness, and a blue-gray color. It is often very cherty. This bed, with subjacent limestone members of the Mississippian are over 900 feet thick in this locality. The St. Louis was penetrated in wells $4,7,9,11,14$, and 17. There were 680 feet of St. Louis and lower members recorded in No. 14 and 890 feet in No. 17. Well No. 17 of the columnar section is the deepest bore in Lawrence county. It is 2,936 feet deep. The next deepest is No. 14, 2.590 feet.

CHAPTER II.

General Description of Features of the Main Fields.

INTRODUCTION.

It is not the object of this report to outline new prospective oil areas but to present the geological facts observed in the developed fields, that will corroborate certain laws governing the genesis and accumulation of oil and gas. Certain facts are presented showing the relation of the quantities of oil, salt water, porosity of the sand, etc., to the structural features of the sand. The structure of individual sands is plotted in detail by use of contours and cross-sections; these show the vertical amplitude of the arches.

FIELD W.ORK.

Topographic Surveys of the Area.

The United States Geological Survey and the State Geological Survey in coöperation, have been making topographic surveys in and near the oil fields. The Hardinville quadrangle survey was completed in 1908. It covers an area 17 miles long by $131 / 2$ miles wide, south of the Illinois Central Railroad. The southern half of the Crawford county oil fields and the northern portion of the Lawrence county fields, namely that portion in Petty township, lie within the Hardinville area. The Sumner quadrangle adjoins the Hardinville area on the south and includes a small portion of this field in its northeast corner. The survey and topographic work was completed during the field season of 1911. The Vincennes quadrangle adjoins the Sumner area on the east and extends into Indiana. It includes a large portion of the Lawrence county fields in its northwest corner. The primary control has been made for the quadrangle but the secondary leveling and topographic work of the Illinois portion of the area are planned for the season of 1912. The levels established in the Hardinville and Sumner quadrangles serve as a basis of the work incidental to this report.

The coöperative work of both surveys has been further extended north of the Hardinville sheet, in the survey and study of over-flowed lands along North Fork of Embarrass river. This covers a narrow strip along the west side of the proposed Moonshine quadrangle, adjoining the Har-
dinville area in the north. The survey parallels the west side of the oil fields of Crawford county and will probably serve as a basis for future work in that area. The proposed Oilfield quadrangle is the second north of the Hardinville, and the first north of the Moonshine quadrangles. It is planned to survey this area soon. This will then serve as a basis for geological study of the shallow fields of Clark county.

The work of computing the altitudes of wells and tops of the various producing sands would not have been possible had not bench marks been scattered advantageously over the fields, particularly along highways. There were usually one-half dozen or more elevations painted on telegraph poles and fences along each section, which enabled the field men to run levels to the wells with a reasonable degree of accuracy and at the same time to check with other levels on adjoining roads or in other sections.

LEVELS IN THE OIL FIELDS.

The primary levels of the U. S. Geological Survey are the most important in the oil fields, as alsewhere, since they are based upon precise levels from a mean sea level and hence are of th highest order. They are usually carried in circuits and thus check upon themselves. The benches of these levels are usually the permanent iron posts planted, two in each township, and not more than six miles apart. The secondary or "flying" levels are carried from the permanent bench posts and are spread generally over local areas. The level figures are painted on fences, culverts, bridges, telephone posts, etc., in order to aid the topographer and geologist in contouring and detailed leveling.

The limit of error in primary leveling is about six inches in 100 miles circuit. There is no prescribed limit of error in secondary leveling although it usually is one foot, which can be easily adjusted between permanent bench marks.

The results of precise and primary leveling in the Hardinville and Sumner quadrangles are given as follows: ${ }^{1}$

Hardinville quadrangle.

The elevations in the following list are based upon bench mark B^{3} of the Coast and Geodetic Survey at Olney, Ill., a square cut at the base of one of the columns of the north face of the court house. Theelevation now accepted is 486.117 feet above mean sea level as determined by the 1907 adjustment.

The leveling was done in 190% by Mr. Henry Bucher, levelman.
The work was done in coöperation with the State and the bench marks are stamped with the State name.
HICKORY POINT SCHOOL ALONG HIGHWAYS NORTH, TO T. 6 N., R. 14 W., NORTHEAST CORNER SECTION 10 , THENCE EAST, TO T. 6 N., R. 12 W., NORTHEAST CORNER SECTION 7, THENCE NORTH, TO INDIANAPOLIS SOUTHERN RAILROAD AND EAST ALONG latter 2 miles. to robinson.

Feet.
T. 4 N., R. 14 W., 0.25 mile south of northwest corner of section 27 , southeast corner of T road, on east side of road, 1.3 feet west of fence, 15 feet south of fence corner; iron post stamped " 510 ADJ"
510.502

[^13]T. 4 N., R. 14 W., southwest corner of section 3, northeast corner of crossroads, east side of road, 1.1 feet west of fence, 11 feet north of fence corner; iron post stamped " 508 ADJ"
T. 5 N., R. 14 W., northeast corner of section 34, at southwest corner of crossroads, on west side of road, 1.1 feet east of fence, 7 feet south of fence corner; iron post stamped " 496 ADJ"
509.121
T. 5 N., R. 14 W., southwest corner of section 15, northeast corner of crossroads, on north side of road near old rail fence, about 14 feet east of north and south fence line, on east side of north and south road (New Light Christian Church (?) is at southeast corner of crossroads; iron post stamped " 457 ADJ"
457.555
T. 5 N., R. 14 W., southeast corner of section 3, northwest corner of crossroads, west side of road, 6 feet east of fence and 4 feet north of fence corner; iron post stamped " 462 ADJ"
463.263
T. 6 N., R. 14 W., northeast corner of section 27, southwest corner of crossroads, west side of road, 1.2 feet east of fence, 5.6 feet south of fence corner; iron post stamped " 483 ADJ"
483.969
T. 6 N., R. 14 W., 0.25 mile east of southwest corner of section 2 , T road (the branch to west is very dim), outside of road at T, 1.3 feet south of fence, 15 feet east of north and south fence at fence corner (north of center of T) ; iron post stamped " 478 ADJ"
478.367
T. 6 N., R. 13 W., northeast corner of section 7, at southwest corner of T road, on west side of road, 1.2 feet east of fence, 7.5 feet south of fence corner; iron post stamped " 483 ADJ"
483.298
T. 6 N., R. 13 W., southwest corner of section 2, (crossroads) 0.75 mile south of Stoy, on small bank by pipe line, 1 foot east of fence, 76 feet north of east and west fence line on north side of east and west road; iron post stamped " 475 ADJ"
476.261
T. 6 N., R. 12 W., northeast corner of section 7, T road, on south side of road opposite the Wilson Schoolhouse, 0.7 foot north of fence, 12 feet east of fence corner, on edge of lane to south; iron post stamped "581 ADJ" 531.481
from point 0.75 mile south of stoy south along highways to t. 4 к., r. 13 w. near southeast corner of section 29.
T. 6 N., R. 13 W., northwest corner of section 23, T road, on bank on south side of road at T, 1.5 feet north of fence, 34.5 feet east of north and south section line fence; iron post stamped "484 ADJ"

Feet
485.269

Hardinville, section 34, T. 6 N., R. 13 W., on east side of main north and south road jusi north of Christian Church, 500 feet south of crossroads, 4.2 feet north of fence line between McCarty (south side) and Newman (north side), 6.8 feet west of an old fence line north in correct position; iron post stamped " 510 ADJ"

$$
510.903
$$

T. 5 N., R. 13 W., 0.25 mile north of southwest corner of section 4, southeast corner of Troad, at T, on south side of road, 0.9 leet north of fence, 39 feet east of north and south fence line, on east side of north and south road; iron post stamped " 463 ADJ".
463.826

Chauncey, southwest corner of section 28, T. 5 N., R. 13 W ., at northeast corner of crossroads, on east side of road, 1.2 feet west of fence, 6.6 feet north of fence corner; iron post stamped " 488 ADJ"
488.708
T. 4 N., R. 13 W., 0.25 mile north of southeast corner of section 8, northwest corner of T road, north side of road between 2 walnut trees, 1.2 feet south of fence, 28 feet west of north and south fence line on west side of north and south road; iron post stamped "492 ADJ"
492.990

FROM T. 6 N., R. $12 \mathrm{~W} .$, NORTHEAST CORNER OF SECTION 29 , ALONG HIGHWAYS SOUTH, TO FAIRVIEW CHURCH.
T. 6 N., R. 12 W., quarter corner east side of section 29 , T road at southwest corner, on south side of road, 1.1 feet north of fence 7 feet west of 2 -foot oak tree at fence corner; iron post stamped "512 ADJ"

Feet.
T. 5 N., R. 12 W., northwest corner of section 9 , at southeast corner of crossroads, on east side of road, 0.8 foot west of fence, 5 feet south of fence corner; iron post stamped " 523 ADJ"
512.750
. 5 N., R. 12 W., 0.25 mile east of northwest corner of section 28 , southeast corner of crossroads, 0.8 foot west of fence, 6 feet south of fence corner; iron post stamped " 442 ADJ"
442.767

Westport, section 32, T. 5 N., R. 12 W., iron truss bridge over Embarrass river at southwest corner, in highest part of masonry support, 1. 1 feet from east edge, 0.3 feet from south edge; aluminum tablet stamped " 437 ADJ"
437.339
T. 4 N., R. 12 W., northeast corner of section 18, southwest corner of crossroads, south side of road, 1.3 feet north of fence, 22 feet west of north and south fence line on west side of north and south road; iron post stamped " 436 ADJ"
436.534
T. 4 N., R. 12 W., northwest corner of section 29 , at crossroads, on south side of road at T, 2.1 feet north of fence line, 23 feet east of north and south fence line at fence corner; iron post stamped "455 ADJ"
523.318

ADJ" \therefore..
455.678

Sumner quadrangle.

The leveling was done mostly by H. G. Lowe and in part by H. Bucher in 190%.
froni point 4 miles east of olney east along baltimore and ohio southwestery railroad, to clareniont, thence along highways north, to hickory point school.
(Mean of Direct and Reverse Leveling.)
Claremont station, 0.36 mile west of, south end of small artificial
fromi crossroads 0.93 yile xorth of claremont east along highway to t road 0.25 mile east of xortheast corner section 5, t. 3 र., r. 13 w., thence north 1 mille.

Feet.
T. 4 N., R. 14 W., southwest corner of section 36, at northeast corner of crossroads, on east side of road, 0.7 foot west of fence, 22 feet north of fence corner; iron post stamped " 509 ADJ"
510.263
T. 3 N., R. 13 W., 0.25 mile east of northwest corner of section 4, at T road, 0.7 foot north of fence, 24.5 feet east of telegraph pole, about 11 feet east of center line of north and south road; iron post stamped "483 ADJ"
484.085
T. 4 N., R. 13 W., 0.25 mile east of northwest corner of section 33, at T road, on west side of road, 2.2 feet east of fence, in concrete post flush with ground; aluminum tablet stamped "Prim. Trav. Sta. No. 10, 489 ADJ"

FROM T. 3 N., R. 13 W., SEC. $5,0.25$ MILE EAST OF NORTHEAST CORNER, EAST TO T. 4 N., R. 12 W., NORTHEAST CORNER SECTION 32, THENCE NORTH, TO FAIRVIEW CHURCH.Feet.
T. 4 N., R. 13 W., southwest corner of section 36, opposite U. B. Union Chapel, at northeast corner of crossroads, on east side of road, 1.1 feet west of fence, 62 feet north of fence; iron post stamped " 570 ADJ"
571.168
T. 3 N., R. 12 W., northwest corner of section 4, at crossroads, State road east to west, on south side of road, on bank a little east of center of road to north, 0.9 foot north of fence, 18.5 feet east of telegraph pole; iron post stamped " 457 ADJ"
Feet.
457.461

from point 2 miles north of bridgeport south, to grant school, thence west 5.6 miles, thence north, to sumner.

Bridgeport, 100 feet north of railroad, on front face of southeast
corner of yellow brick building owned by F. W. Cox, about 3 feet
above sidewalk; aluminum tablet stamped "449 1908"

448.591

T. 3 N., R. 12 W ., corner of sections 20, 21, 28 and 29 , at north-
west corner of crossroads; iron post stamped " 4891908 " $1 . \ldots .{ }^{2} 489.774$

Grant School, corner of sections 4, 5, 8 and 9, T. 2 N., R. $12 \mathrm{~W} .$,
at northwest corner of crossroads, in southeast corner of school
yard, iron post stamped " 4461908 ".......................................446.892

T. 2 N., R. 13 W., quarter corner between sections 4 and 9 , at south
west corner of crossroads, 3 fee ε west of corner of John White's
yard; iron post stamped "476 1908"

477.274

Sumner, on Main street, 250 feet south of railroad, at northeast cor-
ner of street crossing in brick building owned by Mart Wagner,
in south face on foot from southwest corner and 3 feet above
ground; aluminum tablet stamped "461 ILLINOIS 1908 "........ 462.148

Sumner, railroad crossing on Main street; top of rail 460.5
from point 5.6 miles west of grant school west, to brownsville, thence north, to claremont.

T. 3 N., R. 13 W. , at corner of sections $21,22,27$ and 28 , at south-
west corner of crossroads, by picket fence; iron post stamped
" 506 1908" ... 505.920

Claremont, in front of station; top of rail 509.7
grant school south, to near patton.
Feet.
T. 2 N., R. 12 W., quarter corner between sections 20 and 21 , at northeast corner of crossroads, in southwest corner of school yard; iron post stamped "445 1908"
445.641
T. 1 N., R. 12 W., corner sections 8, 9, 16 and 17, at northwest corner of crossroads, by picket fence; iron post stamped " 462 1908"

FROM POINT 5.6 MLES WEST OF GRANT SCHOOL SOUTH AND EAST, VIA FRIENDSVIILE, TO NEAR PATTON.

Feet.

Lancaster, 400 feet east by 400 feet south of middle of section 4 , T. 1 N., R. 13 W., in west face of Lutheran church directly under window south of entrance, about 2.5 feet above ground; aluminum table stamped " 494 ILLINOIS 1908"
494.584

Stoeltz Schoolhouse, quarter corner between sections 20 and 21, T. 1 N., R. 13 W., at southwest corner of crossroads, in northeast corner of school yard; iron post stamped "459 1908"
459.431

Friendsville, quarter corner between sections 23 and 24, T. 1 N., R. 13 W., in east side of brick house of Dr. C. S. Couch, near southeasi corner, about 3 feet above ground; bronze tablet stamped "482 VIN" 481.722

FROM STOELTZ SCHOOL WEST, TO PINHOOK, THENCE NORTH, TO BROWNSVILLE.

* Feet.
T. 1 N., Rs. 13 and 14 W., 0.25 mile north of quarter corner between
sections 19 and 24 , in front of and about 20 feet, south of center
line of T road east; iron post stamped " 4091908 "............. 409.460

Pinhook, quarter corner between sections 21 and 22, T. 1 N., R. 14 W., at northeast corner of T road north; iron post stamped " 435 1908"
435.611
T. 1 and 2 N., R. 14 W., about 0.1 mile east of quarier corner between sections 4 and 33 , at northwest corner of crossroads, opposite small white house; iron post stamped "458 1908"
458.416

Red Head Schoolhouse, quarter corner between sections 16 and 21, T. 2 N., R. 14 W., at southwest corner of crossroads, in northeast corner of school yard; iron post stamped " 462 1908"
462.584

Preston School, corner of sections 3, 4, 9 and 10, T. 2 N., R. 14 W., in front of T road east, 600 feet south of T road west, in southeast corner of school yard; iron post stamped "456 1908"
456.244

GEOGRAPHIC POSITIONS OF QUADRANGLES.

The following are the geographical positions of points in the three quadrangles covered by this report:

Hardinville quadrangle.

Crawford, Jasper, Lawrence and Richland Counties-The following geographic positions were determined by primary traverse run in July, 1907 , by Mr. J. R. Ellis, assistant topographer. The line starts from Claremont triangulation station and follows highways along south and east edges of quadrangle to Robinson, thence westerly along the Illinois Central Railroad to Oblong triangulation station, thence westerly along railroad to Willow Hill, thence southerly along railroad and highways on west edge of quadrangle to Claremont triangulation station:

Geographic Positions Along Highways Near South Border of Quadrangle.

Stations.	Latitude.			Longitude.		
Claremont triangulation station of the U. S. Lake Survey and U. S. C. \& G. S., in section 29, T. 4 N., R. 14 W., German township, 3 miles northwesterly from town of Claremont a station on Ohio and Mississippi Railroad, on land of Brinkley heirs. Station mark: Twostone posts, one above the other in the usual manner. Reference marks. One north $67^{\circ} 33^{\prime}$ west, distant 23.1 meters. One north 0 . 39^{\prime} west, distant 7.8 meters. One north $71^{\circ} 45^{\prime}$ east, distant 24.6 meters from station mark. Northwest corner of section 29 bears						
		45	28.5	87	59	0.8
T. 4 N., R. 14 W., corner sections 28, 29, 32 and 33 , 20 feet south to corner fence post.						
		44	49.1	87		03.2
T. 4 N., R. 14 W., corner sections $27,28,33$ and 34 , T road west at school house, 10 feet east to rail fence.		44	48.8	87	57	35.4
T. 4 N., R. 14 W., quarter corner between sections 26 and 27 , crossroads, 15 feet north to center of bridge.						
		45	15.1	87	56	17.2
T. 4 N., R. 14 E., quarter corner between sections 25 and 26 , center of crossroads.						39.3
T. 4 N., R. 13 and 14 W., quarter corner between sections 25 and 30 , center of crossroads, Richland and Lawrence county line..			14.7	87		31.4
Sumner, 2.25 miles north by 0.25 mile west of; on west side of road at Troad east, 2 feet west to fence, 25 feet east to center of T road east, in top of concrete block $8 \times 8 \times 20^{\prime \prime}$ in ground. aluminum tablet stamped Prim. Trav. Sta. No. 10, 1907, ILLINOIS'						
						58.4
T. 4 N., R. 13 W :, corner sections $27,28,33$ and 34,25 feet south to corner fence post						06.9
T. 4 N., R. 13 W., east corner sections 27 and 34, stone, T road west at church						
			47.5			58.9
T. 4 N., R. 13 W., corner sections $25,26,35$ and 36 , center of T road south.						55.7
T. 4 N., R. 12 and 13 W., corner sections $25,30,31$ and 36 , crossroads, 10 feet west to center of small bridge						
T. 4 N., R. 12 W., stone corner sections 29, 30, 31 and 32 , T road south Westport, 5.75 miles due south of; on east side of T road west at Fairview church, in top of concrete block $8 \times 8 \times 20^{\prime \prime}$ inches, aluminum tablet stamped "Prim. Trav. Sta. No. 11, 1907, ILLINOIS"						8
						35.3
T. 4 N., R. 12 W ., corner sections $28,29,32$ and 33 , center of \dddot{T} road west.						35.5

Geographic Positions Along Highways Near East Border of Quadrangle.

Stations.	Latitude.			Longitude.		
			"	-		"
T. 4 N., R. $12 \mathrm{~W} .$, corner sections $20,21,28$ and 29, T road wes	38	45	39.2	87	45	35.4
T. 4 N. , R. $12 \mathrm{~W} .$, stone corner scctions $16,17,20$ and 21 , fence east and west..	38	46	32.2	87	45	35.4
Center of T road east	38	46	44.2	87	46	38.5
T. 4 N., R. 12 W., corner sections 7, 8, 17 and 18, center of crossroads	38	47	23.4	87	46	41.8
Westport, 0.75 mile east of; intersection at T road west	38	49	40.2	87	44	42.8
T. 5 N., R. 12 W., corner sections 21, 22, 27 and 28, center of county line road at north and south fence	38	51	00.0	87	44	26.0
Crawford, 1 mile north of; Lawrence county lin	38	51	54.8	87	43	52.1
T road east, southeast corner, 7 feet north and 4 feet west to maple tree, 35 feet north and 20 feet west to center of T road east, in concrete block, aluminum tablet stamped "Prim. Trav. Sta. No. 12, 1907, ILLINOIS"	38	52	57.9	87	43	52.7
Quarter corner between sections-_, center of cros	38	. 53	40.5	87	43	53.1
T. 5 and 6 N., R. 12 W., corner sections 3, 4, 33 and 34, stone, 1,340 feet east of; T road east on T. S. line	38	54	41.6	87	44	10.4
T. 6 N., R. 12 W., corner sections 27, 28, 33 and 34, T road west, 25 feet due east to corner fence post	38	55	34.0	87	44	27.5
Road west at Indian boundar	38	56	19.8	87	44	51.8
New Hebron, T road just northeast of; 10 feet northeast to large black oak trec	38		31.1	87	44	35.8
Lane east at turn of road.			19.1	87		30.2
T. 6 N., R. 12 W., corner sections $3,4,9$ and 10 , T road west at school house, 12 feet cast to corner yard fence.	38	58	59.3	87	44	19.2
T. 6 N., R. 12 W., north corner sections 3 and 4, center of T road south, just east of entrance to Robinson Fair Grounds.		59	54.5	87	44	19.8
Robinson court house, in stone post at south entrance to grounds, aluminum tablet stamped "Prim. Trav. Sta. No. 13, 1907, ILLINOIS"			18.2	87	44	21.6

Sumner quadrangle.

Edwards, Lawrence, Richland and Wabash Counties-The following geographic positions on U. S. Standard datum were determined by primary traverse in 1908 by J. R. Ellis, assistant topographer. The line starts from Claremiont triangulation station of the U. S. Lake Survey and Coast and Geodetic Survey and follows south along public highways to Parkersburg triangulation station, thence to southwest corner of Sumner quadrangle, thence east to point near Patton and north along border of quadrangle to primary traverse station No. 11, 190\%, Illinois:

Geographic Positions Along Highways.

Station.	Latitude.			Longitude.		
St. James chur	38	44	49.2	87	59	54.4
T. 1 N., R. 14 W., $\frac{1}{4}$ corner between secs. 20 and 21, center of cross roads	38	30	15.3	87	59	05.2
Mills Prairie school house No. 13, at northeast corner of T road north, 0.25 mile east of, 25 feet south and 25 feet west to $\frac{1}{4}$ corner between secs. 21 and 22, T. 1 N., R. 14 W., elevation 435; iron post stamped 'Prim. Trav. Sta. No. 13, 1908, Illinois"	38	30	15.2	87	57	57.8
Edwards-Wabash county line, center of bridge over Bonpas creek.........................	38	30	18.4	87	56	53.2
T. 1 N., R. 14 W., $\frac{1}{4}$ corner between secs. 23 and 24 , center of T road south	38	30	14.6	87	55	48.1
T. 1 N., R. 13 and 14 west, $\frac{1}{4}$ corner between secs, 19 and 24 , center of T road west.	38	30	14.5	87	54	41.2
Barney Prairie church, stone at T road	38	30	10.0	87	47	55.0
Harmony school house, in southwest corner of yard at; 35 feet south and 30 feet west to $\frac{1}{4}$ corner between secs. 20 and 31, T. 2 N., R. 12 W., cross roads; elevation 445; iron post stamped "Prim. Trav. Sta. No. 17, 1908, Illinois	38	35	26.0	87	45	34.1
T. 2 N., R. 12 W., $\frac{1}{4}$ corner between secs. 20 and 21, center of cross roads	38	35	25.7	87	45	34.5
T. 2 N., R. 12 W ., corner secs. 16, 17, 20 and 21.	38	35	52.0	87	45	34.0
T. 2 N., R. 12 W., corner secs. 8, 9, 16 and 17.	38	36	44.6	87	45	33.4
Grant school house, in southeast corner of yard at; elevation 446; iron post stamped "Prim. Trav. Sta. No. 18, 1908, Illinois"	38	37	38.2	87	45	33.4
T. 2 N ., R. 12 W ., corner secs. $4,5,8$ and 9 , center of cross roads.......	38	37	37.5	87	45	33.1
T. 2 N., R. 12 W ., corner secs. 4 and 5 (north corner), T road	38	38	34.6	87	45	33.0
T. 3 N., R. $12 \mathrm{~W} .$, corner secs. 32 and 33 (south corner), T road north..	38	38	34.6	87	45	34.6
Bridgeport, at northeast corner of cross roads about 3 miles south of; iron post stamped "Prim. Trav. Sta. No. 19, 1908, Illinois".	38	39	28.0	87	45	33.8 34.0
T. 3 N., R. 12 W., corner secs. 28, 29,32 and 33, cross roads..	38	39	27.7	87		34.0
Bridgeport, at northwest corner of cross roads 2 miles south of, elevation 489; iron post stamped "Prim. Trav. Sta. No. 20, 1908, Illinois"	38	40	20.7	87	45	34.3
T. 3 N., R. 12 W ., corner secs. $20,21,28$ and 29 , center of cross roads...	38	40	20.4	87	45	33.9
T. 3 N., R. 12 W. , corner secs. $16,17,20$ and 21 , center of T road west..	38	41	13.2	87	45	33.5
T. 3 N., R. 12 W., corner secs. 8, 9,16 and 17	38	42	06.2	87	45	33.3
Bridgeport, Main street crossing Baltimore \& O	38	42	19.2	87	45	35.3
T. 3 N., R. 12 W ., corner secs. $4,5,8$ and 9 , center of cross roa	38	42	59.3	87		33.1
T. 3 N., R. 12 W., corner secs. 4 and 5 (north corner), 20 feet north to T road south	38	43	52.6	87	45	33.0
Westport 5.75 miles due south of; on east side of T road west at Fairview church, in top of concrete block 8 by 8 by 20 inches; aluminum tablet stamped "Prim. Trav. Sta. No. 11, 1907, Illinois"	38	44	46.0	87	45	35.3

$$
\text { Magnetic Declination of east border of quadrangle } 3^{\circ} 50^{\prime} \text { east. }
$$

Magnetic Declination of south border of quadrangle $3^{\circ} 47^{\prime}$ east.
Magnetic Declination of west border of quadrangle $3^{\circ} 36^{\prime}$ east.
Vincennes quadrangle.
Geographic Positions Along Highways Near West Border of Quadrangle.

| Station. | Latitude. | Longitude. | |
| :---: | :---: | :---: | :---: | :---: |
| | | | |

Geographic Positions Along Highways Near South Border of QuadrangleConcluded.

Stations.	Latitude.			Longitude.		
	。	,	"	-	,	"
T. 1 N., R. 12 W ., corner secs. 3, 4, 9 and 10 , center of T road west, at school house	38	32	20.0	87	44	32.6
T. 1 N., R. 12 W. , stone corner secs. 3 and 4 (north corner)..	38	33	14.9	87	44	33.4
T. 2 N., R. $12 \mathrm{~W}_{\text {. }}$, stone corner secs. 33 and 34 (south corner)..........	38	33	14.9	87	44	29.3
T. 2 N., R. 12 W., corner secs. 27, 28, 33 and 34, Lawrence-Wabash county line.	38	34	06.8	87	44	28.5
Harmony school house, 1 mile east of, center of cross roads		35	25.4	87	44	27.0

Magnetic Declination west border of quadrangle $3^{\circ} 50^{\prime}$ east.

Elevations of Oil Wells.

The elevation of most of the oil wells in the area studied were secured by means of a Locke or hand-level. The secondary bench marks served as bases for the work, and levels were run from them to the wells. The limit of error in this work was about two feet, although it was probably less because of the check with previously determined elevations and other bench marks. Elevations of about 5,200 wells were determined in the two counties. The leveling in the Hardinville quadrangle was done wholly by use of the Locke level while the elevations of the wells in the Sumner quadrangle were determined by use of a Y level in charge of W. E. Deuchler. As no leveling had been done in the Vincennes quadrangle it became necessary to run secondary levels through the active oil fields from the Sumner quadrangle. About 24 square miles of secondary levels were made in this fashion.

Collection of Well Records.

Records were collected from about 95 per cent of the wells in the area although about 94 per cent of these were skeleton logs or simply notations of the depth and thickness of the producing sands. The scarcity of detailed logs is probably due to rapidity of early development, and the lack of appreciation of their importance. Many detailed records are indispensable in a geological study of any area, especially such as Illinois, which is so covered with drift as to conceal the sequence of formations and practically all evidence of folding. Too .little attention is paid to the formations above the oil producing sands, which may often prove excellent key horizons, or widespread formations, that may enable a geologist to interpret future records more readily. All operators and drillers are urged to note the positions of all formations in their wells, as a matter of possible value to themselves in drilling in other areas in the State, and as an assistance to the survey whose duty it is to work out the geological problems connected with the oil industry of the State.

The vast number of records collected for study necessitated a compact and efficient method of readily locating desired logs. A loose-leaf system was established for collecting records in the field and later filing these permanently in the office in suitable binders. The records are arranged by township binders and in earh of these by section, farm name, operator and well number.

GEOLOGICAL ASPECTS.

General Statement.

It is particularly valuable if an area whose oil resources are under investigation has a persistent key horizon at or near the surface, from which may be determined the interval to the producing sands and the geologic structure. Coals, such as the Pittsburg coal of the Appalachian region or the Herrin (No. 6) coal of western Illinois, serve as excellent key horizons. Limestones of peculiar lithological characteristics are also good horizons for these purposes. Unfortunately, the formations along the eastern boundary of Illinois, as over most of State, are concealed with drift and have been studied but little. Morever, there are no coal mines in this section of the State and the wells of the main fields have offered little or no help toward recognizing persistent horizons close to the surface. Under these conditions it became necessary to resort to altitudes of the sand with respect to sea level in the determination of structure and sand relations.

Local Names of Sands.

The productive horizons in the several pools of Lawrence county were given the names of the land owners upon whose farms oil was first found in these particular horizons, except for the lenticular Bridgeport sands, first discovered in the county. These were named after the town of Bridgeport. The producing sands of Crawford county are also lenticular and are called the Robinson sands, after the city of Robinson. The operators were able to follow and distinguish the sands in their development from the shallow to the deeper fields and in computing their records, designated the names of the sands with fair accuracy. Where the names were missing, the sands were later found to fit their particular horizons on the structure maps and cross-sections.

Correlation of Sands.

Strip plotting was resorted to in correlating sands. The record of the wells were plotted to uniform scale, and with the same symbols, on long narrow strips of cross-section paper. The strips were compared, and by shifting one at the side of the others, the relations of the logs to one another were found. The interpretation and correlation of logs, especially those of wells in the Pennsylvanian beds, requires much work and the results are not always satisfactory.

Altitudes of Sands.

The method used to ascertain the altitudes of the tops of the producing sands was to subtract the elevation of the mouth of the well from the depth to the sand. The altitudes were usually below sea level and therefore were negative. In drawing a contour map under these conditions the high numbers would signify low places and reversely, low numbers high places. In order to avoid confusion in studying contouring an assumed plane 1,500 feet below sea level was chosen, and from this the negative altitudes were subtracted. The resulting high
figures then correspond to high places in the structure and the low numbers to low places.

Tables of Well Data.

The desire to present the vast amount of data from wells in the studied area resulted in the compact tables presented on page 185. In order to show reference from well to table it became necessary to adopt a system of well numbers that would not crowd the map. Each section is, therefore, divided into quarters which serve as units for numbering. The total number of wells for each quarter-section is thus kept below 100. References to wells in the text are abbreviated as follows, Pet. sec. 30, SE., No. 60, which signifies well No. 60 in the southeast quarter of section 30 , Petty township, Lawrence county, and the record of which may be found in the tables of well data. Other abbrèviations are as follows: Ob., Oblong township; Rob., Robinson township; H. C., Honey creek township; Mar., Martin township, all of Crawford county; Bport., Bridgeport township; Law., Lawrence township, and Den., Dennison township, all of Lawrence county.

Countour Maps.

The structure of the producing sands is graphically presented by use of contours or lines defining the elevation, horizontal form, and slope of the top of the sand. The elevation of the contour is designated by the large number which is set in, or at the end of, the line. The slope, or dip and rise of the sand, is expressed through numbers on consecutive contour lines.

The contour maps were drawn on a key or base map which shows the position and reference numbers of all the wells drilled in the area and also additional culture such as towns, streams, roads, pumping stations, etc. All wells that furnished data for a given sand were plotted in position on a skeleton map on which the culture was omitted. The positive altitudes of the sands, with respect to the assumed datum plane 1,500 feet below mean sea level, were contoured between wells. These constitute the structure maps.

Cross-sections.

The structure of the several producing sands is further shown by the use of cross-sections. They portray graphically the rise and the fall of the oil sands along chosen lines and are intended to make clearer the mental picture of the contour idea to those who are not familiar with contouring. At the same time the sections show the relation of the structure of one sand to that of another. The only cross-sections presented in this report are those of Lawrence county.

CHAPTER III.

Detailed Geology of the Crawford County Fields.

GENERAL FEATURES OF THE OIL FIELD.

The shape and extent of the Crawford county pools within the Hardinville quadrangle, are shown on Plate IV, the base map of the area. The map shows the development up to January 1, 1909. The Robinson pool is about 7 miles wide between Oblong and Robinson, but it narrows to about $31 / 2$ miles at the southern limit of the county. The western boundary of the oil field trends northwest and southeast and is distinctly abrupt. Its eastern edge is very irregular and the oil zone appears to have pinched out here and there as shown by light producing wells and many dry holes.

A barren area about 3 miles wide separates the Robinson and Honey creek pools in Crawford county and continues south and southwest in a Y shape, separating the Lawrence county pools from those of Crawford county. Detailed data are not at hand to account definitely for the break. It is probably due to a series of undulations transverse to the major axis of the dominant anticline, since the Honey creek sands lie lower structurally than those of the Robinson pool and the Lawrence county sands, higher than those in Crawford county.

Other conspicuous gaps in the Robinson pool are the Hardinville gas dome and an irregular break from east to west directly south of the Illinois Central Railroad. The area just east of Hardinville, namely section 35. Martin township, is barren of oil, except in the northwest corner and along the south line, but shows evidence of fair gas pressures. The producing sands indicate a structural dome. The narrow barren area through sections $2,3,4,8,9,10$ and 16, T. 6. N., R. 13 W., is due to noticeable thinning of the sand which, elsewhere. varies between 2 and 15 feet in thickness. In some instances the sands are entirely absent. This condition is probably accompanied by a lack of sufficient porosity in the sands to allow oil diffusion; at any rate, there is more regularity in the position, thickness, and production of the sands on both sides of the break:

The Crawford county pools are distinctive for possessing one general oil producing zone, known as the Robinson sand. This sand is so broken
and lenticular that it offers little opportunity for structural study. In fact, the sand shows innumerable streaks, tongues, and detached portions and so prohibits correlation and contouring. In some portions of the field, however, the sand is regular in its distribution. It is split into two or three persistent lenses that show average depths of about 850,900, and 940 feet with an average interval between the tops of the sands of about 50 feet. The thickness of the sand lenses varies between 2 and 50 feet with an average of about 25 feet. The average thickness of the lenses is difficult to estimate because a great many wells merely penetrate the pay sand and consequently its total thickness remains unknown. Beyond the confines of these areas the sand lenses merge into one another and become even consolidated in the wells listed below:

List of Wells in Which the Robinson Sand is Exceptionally Thick.

Township.	Section.	Quartersection.	Well number.
Martin.	1.	NW.	
	1.	SW.	16
	22.	SW.	13, 18
	23.	NE.	
	26.	SE.	8, 13
	27.	SW.	30
	28.	$\begin{aligned} & \text { SE. } \\ & \text { NE. } \end{aligned}$	18
	34.	NW.	1, 2, 5, 33
Honey Creek.		NW.	2, 5
	10.	SW.	
Oblong.	29......	SE.	3
	2.	SE.	1
	5.	NW.	20
		NE.	${ }_{2}^{6}$
	15	NW.	31
	16.	SW.	12

The maximum thickness of the consolidated sand lenses is 122 feet. In other sections of the field either one, two, or even all the lenses are absent. Those wells in which there is no sand, are as follows:

List of Wells From Which the Robinson Sand is Absent.

The wells in which one or two lenses are absent are too numerous to mention.

There are additional lenses of sand both above and below the zone which includes the three persistent lenses. One above is known as the
"gas" or "stray" sand. It is usually from 6 to 20 feet thick and about 20 to 50 feet above the topmost lens of the Robinson sand. This sand produces small quantities of gas in portions of the field, particularly in the northern part of the Hardinville quadrangle. The sand lens lower than the oil zone may belong to the Robinson sand as a fourth lens, so closely is it related to the upper lenses. It is not productive. There are other minor streaks of sand even in the producing zone that add further confusion to correlation.

There is a shallow sand that is productive of oil in section 27, Martin township that may be comparable to one of the shallow Clark county sands: Its extent is very limited.

DETAILED STRUCTURE OF THE DISTRICT.

Owing to the irregular deposition of sands and shales it was found impossible to correlate and contour any sand beds definitely except the top lens of the Robinson sand which is somewhat persistent over the area. Even this work loses much of its scientific value because parts of it are suppositional through the overlapping and wedging out of this sand bed, as well as those above and below it.

The altitudes of the top lens are assembled and contoured in Plate 5. The general structure of the Robinson pool reveals a broad and gentle arch which is divided into two parts by a transverse basin. The northern part shows the arch to be about 6 miles wide with its crest 95 feet above the lowest explored portions of its limbs. This portion of the arch is subdivided into two crests of the same height. One lies in section 5 and the other in section 10, Oblong township. The southern portion of the arch is about four miles wide and 110 feet high. The crest of this portion lies in section 35, Martin township. The two arches merge into a depressed or synclinal area through sections 13, 14, 15 and 21, T. 6 N., R. 13 W., the bottom of which is 65 feet lower than the crest of the northern arch and 105 feet lower than that of the southern arch. The 1,100-foot contour follows the limits of the pool in a general way and seems to include most of the productive zone.

The contours on the portion of the Honey creck pool shown on the map indicate a lower productive level than the Robinson pool. The heart of the production lies along the 1,080 -foot lerel which is equivalent to the lowest productive levels on the arch of the Robinson pool. This pool is a continuation of the Robinson pool and the difference in oil levels seems to indicate an intervening depression.

The western boundary of the productive field in Crawford county is sharply defined and is marked by an abundance of salt water. It is also worthy of note that there are at least seven wells along this line that show an absence of sands. The western limb of the arch is much the steeper, which fact corroborates previous observations of the LaSalle anticline in its exposure near LaSalle, Ill. ${ }^{1}$ It would then follow from the general knowledge of the Illinois basin ${ }^{2}$ that the Robinson sands assume a much steeper dip a short distance west of the oil field. The tendency of the sands to remain locally flattened on the east side

[^14]of the arch is in keeping with the slope of the arch at LaSalle. The Duncanville and Flat Rock pools lie at about the same general levels as the Honey creek pool and add further evidence to the mild nature of the eastern limb of the anticline.

Relations of Structure to Oil and Gas.

The Robinson sands have proved rich in their yield of oil. Of the $2,3 \% 0$ wells mapped in this area but 206 or 8.7 per cent were barren of oil or gas. The range of initial production lies between 1 and about 1,600 barrels. The lower lenses have been slightly more productive than the top lens. The distribution of oil has not been even over the area because of the following factors:

1. The porosity of the sands is variable and in many places they are impervious. The drillers have reported the sands hard and dry and thus incapable of containing oil.
2. The sands thin and thicken commonly and in some localities pinch out altogether. Non-porosity usually accompanies such condition. The light producing and barren streak through sections 2, 3, 4, 9, 8 and y Martin township offered evidence supporting this.
3. The sandstones are so closely interbedded and related to the shales along the producing zone that cemented mixtures of the two probably prohibit extensive diffusion of oil, gas, or water in some areas.
4. The best productive areas are attended with thicknesses between 20 and 40 feet of sand and are usually free from large amounts of salt water.
5. Local dry spots in the midst of very productive territory cannot be attributed to small depressions or knolls in the sand bodies but they are explained as due to the thinness and non-porosity of the bed. The following few wells illustrate this fact:
Mar. sec. 26, NW. No. 4.
Mar. sec. 36, SW. No. 5.
Ob. sec. 15, SE. No. 8 and 19.
Ob. sec. 10, NW. No. 12.
Rob. sec. 1, NE. No. 7.
H. C. sec. 6. NE. No. 11.

The top lens of the Robinson sand is especially rich in section 9 of Oblong, section 6 of Honey creek, and sections 1 and 2 of Martin townships. The lower lenses are prolific in sections 21, 22, 23, 34, and particularly 26 and 27 , Martin township; 10, 14, 15 and 16 , Oblong township, and 6, 10 and 15, Honey creek township. Only about half of the records collected furnished information of the initial yield. Enough data, however, was gathered to indicate the distribution of oil in the various sections of the area. The following table shows the number of wells that furnished data of the production. These are listed under headings of townships, sections, No. 1 and lower lenses, and initial production. The gas and dry wells are also given:

List of Wells in Crawford County, With Initial Productions.

List of Wells in Crawford County, With Initial Productions-Continued.

List of Wells in Crauford County, With Initial Productions--Concluded.

In general throughout the field gas occurs with oil, but not in large quantities. The wells yielded enough for use on the leases and often for drilling but not for commercial use. The thin stray lens above the No. 1 yielded abundant gas, particularly in the northwest corner of Honey creek township. The quantities were from $1,000,000$ to $4,000,000$ cubic feet daily and under pressures from 200 to 400 pounds to the square inch. These wells are connected to large mains and furnish gas to nearby towns. This same lens is productive of less quantities of gas in sections 2 and 35, Oblong township and 36 and 1, Robinson township.

The contours of the No. 1 lens reveals a small dome on the anticline in section 35, Martin township. Several small gas wells lie about 25 feet down from the crest of the arch or within the 1,160 -foot contour. It is true that in Crawford county, as well as in Lawrence county, the best gas wells are not necessarily found on the highest points of the arch but are located on its slopes. Since the oil lies lower structurally than the gas, the same would follow for the oil accumulation. This would perhaps suggest that where the crests of anticlines are known in unproven areas, drilling should be started slightly to either side of the highest point.

Relations of Salt Water to Structure.

The oil field shows salt water at many points, but particularly along its western limit. Water does not uniformly fill the rocks of the region,
as there are many dry strata, of which some are capable of containing water. Great quantities of salt water occur upon the limbs of the anticline and in the Illinois basin beyond the productive area and at its sharply defined boundaries. All the lenses of the Robinson sand are well saturated along this line, but the upper lenses are generally barren of water within the oil pool. The lower lenses reveal water across the fold and in some portions under the oil. Drilling has proven that the oil lies near the top of the lower sand lenses and consequently but few wells pass through the oil stratum and into the water for fear of drowning out the oil. The water is generally very abundant and seems to be under pressure. Its release from the sand sets up a very rapid flow that is difficult to stop.

The basin which divides the major arch in the Robinson pool is barren of water but is productive of oil. This corroborates the theory as to the accumulation of oil in dry rocks. The first lens, however, is less productive than the lower ones through this basin.

The trough that separates the Honey creek and Robinson pools shows salt water in the scattered dry wells drilled into it. Most of the wells in the portion of the Honey creek pool included in this report were only drilled into the oil pay. The wells that penetrated beneath the pay tapped the salt water zone which would indicate that the water controls the accumulation of the oil and instrumental in holding it captive in its present position.

The eastern side of the oil field also shows abundant water in the lower lens but apparently not so much as at the corresponding level on the steeper limb of the arch. Both water and oil are irregularly distributed on the east limb of the anticline.

Conclusion.

It is obvious from the position of the water and oil along the LaSalle anticline that the water has controlled the accumulation of oil in the arch. The water probably has been a means of originally collecting and causing the oil to migrate from long distances up the slope of the arch and into its crest. This is effective for all lenses of the Robinson sand. The degree of saturation is variable over the crest of the arch. The lower lenses are frequently reported saturated with water through the field whereas, for the most part, the upper lens shows little saturation.

CHAPTER IV.

Detailed Geology of the Lawrence County Field.

GENERAL FEATURES OF THE OIL FIELD.

The shape and extent of the oil field in Lawrence county is shown in Plate VI, the base map of the area. The development is indicated to July 1, 1911. The field has a northwest and southeast trend with its northern limit exactly on the Lawrence-Crawford county line and its southern-most extremity in sections 11 and 12, T. 2 N., R. 12 W . The pool is continuous for 17 miles, although it is thinly developed at both ends. It is about $21 / 2$ miles wide from the county line to about 9 miles south. It then broadens and includes the Dennison township fields in a width of about 5 miles and narrows again at the extreme southern end to about 3 miles. The field changes its course on the vicinity of Bridgeport from about north 24 degrees west to north 44 degrees west, or 20 degrees.

The western edge of the oil field is similar in character to that of Crawford county, in that it is almost abrupt and uniform, except for a small detached area in sections 20, 29 and 30, Bridgeport township. This extension of the field is due to a small terrace on the western slope of the anticline, indicated later in one of the cross-sections. The eastern edge of the field, like that of Crawford county, is very irregular and is probably due to the flattening of that side.

The Lawrence county field is the richest of the eastern Illinois fields. It has produced more large wells than the rest of the fields combined and its wells have maintained steadier production than those of any other locality in the State. This field is prominent because of its large number of producing sands ranging in depth from 800 to 1,900 feet, or from the top of the Pottsville rocks in the Pennsylvanian series to the top of the hard and thick St. Louis limestone of the Mississippian series. There is a shallow sand at about 450 feet that produces oil but its distribution is limited to a very small area in sections 2 and 3, Dennison township. The other producing sands are in order of depth, the three Bridgeport lenses, Buchanan, "'ras," Kirkwood, Tracey and McClosky sands.

DETAILED STRUCTURE OF THE DISTRICT.

> The "Shallow" Sand.

A shallow sand is productive in sections 2 and 3, T. 2 N., R. 12 W . It lies at a depth of from 444 to 485 feet or from 25 feet above sea level to about 17 feet below. The initial production was light, averaging about 12 barrels per day. This sand is thought to be the equivalent of a shallow sand in section 27, Martin township, Crawford county and possibly of one of the Clark countr sands. Further details of the sand are found in the tables of well data.

Bridgeport Sand.

The Bridgeport sand derived its name from the town of Bridgeport near the middle of the Lawrence county field. The first well in this field and in this sand was drilled by the Big Four Oil Company in July, 1906, on a narrow strip of land north of the Baltimore, Ohio and Southwestern Railroad and south of the public road in Bridgeport. At the same time that the well was drilled the land belonged to the town of Bridgeport.

The Bridgeport sand is widely developed both north and south of the town. The initial productions of the sand are good. This fact, together with the shallow depth at which the oil is found, attracted attention to the field as a very promising area for exploration. The sand is found over the whole field but is especially productive of oil in sections 31, 32, 5, 6, 7, 8 and 17, Bridgeport township. It is productive of good pressures of gas and some oil in sections 34, 35, 3 and 2, Dennison township.

The Bridgeport sand is lenticular and closely resembles the Robinson sand. In fact it seems to correspond to that sand in position and physical features as shown in the discussion of the stratigraphy of the two counties, page 83. This sand comprises three general lenses and some smaller ones in several parts of the oil field. The depths of the sands vary between 600 and 1,000 feet. Thus a range of depth is due to a sharp uplift of the LaSalle anticline and to the irregularity in the surface. It is impossible to average the thickness of the lenses for the whole of the county, so great is their variability. Some of the lenses are but a few feet thick and others are over 300 feet through. North of Bridgeport they average about 35 feet. In the other areas of good production, the pay lenses have a wide range of thickness. It is also impossible to average the interval between lenses because of the wide difference over the field. The records in many instances show that the lower lenses of the Bridgeport sand merge into the massive sandstone that is characteristic of the Buchanan or basal portion of the Pottsville rocks.

No attempt was made to show the structure of this horizon by means of contours or cross-sections because of the uncertainty of correlation. Moreover the lack of sufficient detailed logs also prohibited any general conclusions as to the distribution of the sand. The oil and salt water relations are discussed later.

Buchanan Sand.

The Buchanan sand is the next producing sand lower than the Bridgeport. It was first discorered in September, 1906, by the Ohio Oil Company on the R. O. Buchanan farm in the S. $1 / 2 \mathrm{~S}$. E. $1 / 4$ Sec. 16, Lawrence township. The pay was found at 1,332 feet. The type area for the sand lies in sections 15 and 16 Lawrence township; sections 21 and a portion of 22, Dennison township; and sections 18 and 20 of Bridgeport township. Data of the sand are very scattered over the rest of the field. There are enongh facts known, however, to show the general structure up to and including sections 24, 19 and 20, Petty township. The information north of these sections is scant and unreliable because of the association of the Buchanan sand with the upper Bridgeport lenses.

The Buchanan sand comprises the basal part of the Pottsville rocks and is characterized by thick or massive sandstones over most of Illinois. These rocks mark the lowest portion of the Pennsylvanian series and lie unconformably on the Chester or upper division of the Mississippian rocks. Most of the well data in the tables indicate shallow penetration into this sand, which was tapped and entered a short distance in order to provide for a sufficient and safe shot. The oil zone is usually underlain with salt water, which, if tapped, offers danger of drowning the oil. In some localities of the State this sand is called the "Salt sand" because saturated with salt water. This sand has been one of the most prolific producers of oil in the Illinois fields. Its wells have yielded large quantities of oil and but little gas.

DETAILED STRUCTURE.

The altitudes of the top of the Buchanan sand were assembled and contoured in Plate VII. In some localities of the field wells giving data were so far apart that it was not justifiable to draw definite contour lines. The dashed lines were substituted to indicate the approximate structure.

The general structure of the Buchanan sand reveals a very irregular surface. The type area of the sand is the most completely drilled. Data from this locality shows two small, symmetrical, domes, one in section 17, Bridgeport township and the other in sections 15 and 16, Lawrence township and section 21, Dennison township. The west dome (section 1\%) is 10% feet high. It is enclosed by the 640 -foot contour line and covers about $11 / 4$ square miles. The crest of the dome lies in the SW. cor., NE. $1 / 4 \mathrm{sec}$. 1%. The second dome is 99 feet high and is also enclosed by the 640 -foot contour. It covers about 2 square miles of area. Its crest lies along the W. $1 / 2 \mathrm{SW} .1 / 4$ sec. 15 , Lawrence township.

The sand dips rapidly from the first dome in the type area toward the southwest. From the crest of this dome to Bport., sec. 30 SE., No. 3, the dip is 262 feet in about $21 / 2$ miles or at the rate of 105 feet per mile. This rapid dip merges into a minor terrace in the lower sands in the NW. cor., sec. 29, but is not shown for the Buchanan sand.

The structure is very irregular east and south of the type area of the Buchanan sand. The contours range from 600 to $\gamma 60$ feet. They show
a general dip to the east. The west side of this part of the field is high structurally but unproductive.

The Buchanan sand dips sharply north of the type area and then gradually rises into an uplift of the main axis of the LaSalle anticline that has the appearance of a narrow double plunging anticline. The apex of this dome-like structure lies near the center of section 30 , Petty township. The rise to the north from Bport., sec. 17, NE., No. 15 to Pet. sec. 30, SE., No. 66 is 368 feet in $33 / 8$ miles, or at the rate of 108 feet per mile. The sides of the dome dip very steep to the west and east from its apex, with the steeper slope to the west. The dip along the C-C cross-section from Pet. sec. 30, SE., No. 66 to Bport. sec. 36, SE., No. 3 is 328 feet in $11 / 8$ miles, or at the rate of about 290 feet per mile. The dip east from the crest of the dome to Pet. sec. 20, SE., No. 7 along the same cross-section is 223 feet in $11 / 4$ miles, or at the rate of 178 feet per mile. The western side of the dome dips 112 feet more per mile than the eastern side. This is in keeping with the nature of the LaSalle fold exposed near LaSalle. The structure contours reveal a rapid plunge of the sand from the dome to the north and then a rise into a second dome with a crest 22 feet lower than the major uplift. The dip from the crest of the first dome to Pet. sec. 30, NE., No. 22, at the bottom of the basin, is 123 feet in about one-half of a mile. The rise from the bottom of the basin to Pet. sec. 19, SE., No. 38, the crest of the second dome, is 101 feet in about three-fourths of a mile. The contours indicate a uniform dip northward from the second dome. The dip of this sand along the western side of the anticline is uniform.

A small though conspicuous terrace interrupts the long sweeping rise from the type area of the Buchanan sand into the dome in Petty township. It lies in sections 7 and 8, Bridgeport township along the 700-foot contour. The area covers about one-half of a square mile. The wells yielded good intial productions of oil.
"Gas" Sand.

The "Gas" sand is so named because it produces small amounts of gas wherever encountered, though in some instances it is productive of oil. The sand underlies the Buchanan sand and is usually the first or second sand in this district penetrated in the Mississippian or, specifically, the Chester rocks. There are 36 wells in the area that furnish data for both Buchanan and "Gas" sands and from these the average interval between these sands is found to be 198 feet.

The sand is definitely correlated from section 36, Petty township to sections 5 and 6, Bridgeport township. Without detailed knowledge of the plunging anticline in section 30, Petty township or the stratigraphy of the area, the oil men have confused the "Gas" sand with the upper sands, particularly with the Buchanan bed, and in some instances with the Kirkwood sand beneath. The relations of this sand to the others of the region are geographically shown in cross-sections A-A, $\mathrm{B}-\mathrm{B}$, and $\mathrm{C}-\mathrm{C}$.

The average thickness of the "Gas" sand estimated from data furnished by 245 wells is 16 feet with a range from 1 to 68 feet.

The "Gas" sand produces gas over most of the contoured area. The amounts were not reported.

DETAILED STRUCTURE.

The altitudes of the top of the "Gas" sand were assembled and contoured in Plate VIII. The structure of this sand is the most regular of any in this field, with the exception of the Kirkwood. The contours indicate a uniform dip of the sand along the east and west flanks of a strongly defined anticline. Whe structure further confirms the double plunging of the major fold both to the north and south. The highest point of the anticlinal dome is in Pet., sec. 30, NE., No. 5. The dip to the north from this point to Pet., sec. 36, NW., No. 12, is 232 feet in slightly over 5 miles or at the rate of about 46 feet per mile. The decline to Bport., sec. 17, NE., No. 39, is 246 feet in $43 / 8$ miles or at the rate of about 56 feet per mile. The western dip from the crest to Bport., sec. 36, SE., No. 8, is 321 feet in $13 / 4$ miles or at the rate of 183 feet per mile. The dip eastward from the crest to Pet., sec. 29, NE., No. 7 , is 210 feet in seven-eighths of a mile.

The two lowest points along the western flank of the anticline conform to the 440 -foot contour. The field is bounded by the 500 -foot contour on the west and the 600 -foot contour on the east. The contours south of the north line of sections 5 and 6, Bridgeport township, were broken because the data was scattered and somewhat indefinite.

Kirkwood Sand.

The Kirkwood sand was first developed in 190% by the Burton Bros. Oil Company on the Thomas Kirkwood farm in the E. $1 / 2$ NE. $1 / 4$ sec. 14, Lawrence township, now known as the R. M. Kirkwood farm and operated by the Bridgeport Oil Company. This sand is the most widely developed and productive of any in the Lawrence county field. It extends from section 36, Petty township, to section 8, Dennison township and spreads into all outlying pools, thus indicating the shape and extent of the Lawrence county field.

The Kirkwood sand is the most widespread sand that is productive of oil in the Illinois basin. It is the equivalent of the Sparta sand of Randolph county, the Lindley gas sand of Greenville, the Carlyle oil sand of Clinton county, the Benoist sand of Marion county, and the Oakland City sand of Pike county, Indiana. This sand lies low in the Chester series and is usually overlain by a succession of shales, limestone, some sandstone, and at least two and often three red shales. The second red shale usually serves as its horizon marker as the red rock is easy to distinguish because it discolors the water used in drilling.

The Kirkwood sand is lenticular in some portions of the field. It is subdivided into two and often three thin lenses. The surface of the top lens, however, is uniform over the county and is taken as a basis of contouring.

The sand shows excellent initial productions and has promise of being long lived and steady in its yield. It is the most reliable of all the sands. There is little or no gas yield from it except close to the
northern limits of the county. The oil is a "sweet" oil containing a small percentage of sulphur and has about 36° gravity, Beaume.

There are three areas in the field where this sand is especially productive. The type locality includes sections 11, 12, 14, 15, Lawrence township and sections $22,23,25,26$ and 36, Dennison township. The next important area lies about the anticlinal dome spoken of under the discussion of the upper sand beds of the field, page 10\%. This area includes sections 19, 20, 29 and 30, Petty township, and sections 6, 31,32 and 36 , Bridgeport township. A less important area is well developed in parts of sections 7, 8, and 17, Bridgeport township.

Data from 220 wells in the Lawrence county field indicate an average interval of 6% feet between the Kirkwood and "Gas" sands in the upper part of the field, and 243 wells indicate an average interval of 265 feet between the Kirkwood and Buchanan sands in its lower part, where the "Gas" sand is not correlated. The average interval between the Kirkwood and "Gas" sands in 157 wells in Petty township is 63 feet. There are 63 wells in the northern part of Bridgeport township that show an average interval of 78 feet between the two sands. The range of interval lies between 26 and 134 feet.

The intervals between the Kirkwood and Buchanan sands were calculated for that portion of the field south of Petty township. Those in Petty township were not averaged because of the uncertainty of correlation of the Buchanan sand.

There are 85 wells in Bridgeport township that show an average interval of 255 feet between the two sands; 5% wells in Lawrence township with an interval of 244 feet; and 101 wells in Dennison township with an average interval of 28% feet. The interval therefore seems to increase toward the southern end of the field. There are eight wells on the terrace in sections 20, 29 and 30, Bridgeport township that show an average interval of 450 feet between the sands. This seems to indicate a rapid thickening of the formations as they dip west into the Illinois basin, adjacent to the LaSalle anticline. The wells in the eastern extension of the field in sections 11 and 12 of Lawrence township indicate a lessening of interval between the sands and an average of about 200 feet.

The thickness of the Kirkwood sand is very irregular over the field. It is found to average about 30 feet in those wells that pass through the sand.

DETAILED STRUCTURE.

The altitudes of the top lens of the Kirkwood sand were assembled and contoured in Plate IX. The contours on this sand gire a most complete and satisfactory idea of the structure of the LaSalle fold. The information was abundant and widely distributed.

The upper part of the field from sections 35 and 36 , Petty township, to and including sections γ and 8 , Bridgeport township, shows an clongated dome or double plunging anticline. The actual top of the dome lies around Pet. sec. 30, SE., No. 55. The sand dips in four directions from this well. The general crest lies within the 680 -foot
contour and has an areal extent of about 80 acres. A part of it overlaps into section 29, Petty township. The sand dips ¿40 feet northward along the $\mathrm{A}-\mathrm{A}$ cross-section, between the crest and Pet. sec. $35, N E$. , No. 2 , a distance of $53 / \pm$ miles. The rate of dip is 41 feet per mile. The dip to the east along the C-C cross-section to Pet. sec. 20, SE., No. 10, is 219 feet in $11 / 8$ miles or 194 feet per mile. The dip to the west along the same cross-section to Bport. sec. 36 , SE., No. 8 , is 342 feet in $11 / 2$ miles or at the rate of 228 feet per mile. The southward dip of the sand through the center of the field to Den. sec. 22, NW., No. 5 , is 335 feet in $51 / 4$ miles or at the rate of 63 feet per mile.

The dome-like structure merges into a mild trough in rections 4, 9, 10, Lawrence township, and sections 21 and 22, Dennison township. The sand then lies flat to the south through Lawrence and Dennison townships forming a broad plateau-like crest of the major fold. The sand lies at a uniform level at about the 400 -foot contour. The sands on both sides of the field and to the south dip toward the limbs of the major fold. The southern limits of the field seem to gradually drop lower than the producing zone of the sand. Whether the major fold continues to drop, until it merges into the southeastern side of the eastern interior coal basin or whether the drop is local, as seems to be the case between Crawford and Lawrence counties, is not known. At any rate the anticline loses much of its identity as a structural fold, thus suggesting its mergence into the rim of the basin.

The terrace in sections 20, 29 and 30, Bridgeport township, previously spoken of, is prominently shown by the Kirkwood sand contours. It seemingly covers an areal extent of about 240 acres and lies between the 100 and 120 -foot contours. This is about 300 feet lower than the producing sand in the Kirkwood area of Dennison township, three miles east. Further drilling will possibly extend production until the area will cover several times its present extent.

Tracey Sand.

The Tracey sand was first developed in 1908 by Busch and Everett in the R. J. Tracey farm in the NW. $1 / 4$, NE. $1 / 4$, sec. 13, Lawrence township. This sand is not found widely productive of oil. The type localities lie in sections 11 and 14, Lawrence township; sections 25 and 26, Dennison township; and sections 19 and 30, and sections 25, 26, 35 and 36 , Petty township.

This sandstone is soft and calcerous. It overlies the Ste. Genevieve and massive St. Louis limestones, which the oil men often call the "big lime." The Tracey sand lies in the basal portion of the Tribune formation and does not correspond to the Cypress sandstone, as has been suggested by the author in his earlier studies of the stratigraphy of the area. ${ }^{1}$

Data from 194 wells over the entire field indicate an average interval of 114 feet between the Kirkwood and the Tracey sands. The average interval for each of the townships is shown in the following table:

[^15]Intervals Between Kirkwood and Tracey Sands.

Township.	$\begin{gathered} \text { Number } \\ \text { of ills giving } \\ \text { data. } \end{gathered}$	Average interval between the Kirkwood and Tracy sands in feet.
Dennison.		105
Lawrence..	21	111
Bridgeport.	30	118
Petty.	78	120

The interval seems to widen as the sands dip into the limbs of the anticline. The interval in Pet. sec. 15, NE., No. 1, is 160 feet and in Pet. sec. 23, NE., No. 1, 210 feet. The intervals lessen to the north to about 40 feet. This fact is borne out by the A-A cross-section.

The Tracey sand yields excellent pressures of gas in the northern half of the field. The gas has a rank odor in consequence of its large sulphur content, and the oil is "sour." This sand is so closely associated with the underlying limestones that its oil and gas probably had its origin from them.

DETAILED STRUCTURE.

The altitudes of the top of the Tracey sand were assembled and contoured on Plate X. The data were too scattered to warrant well defined contouring, hence many of the contour lines are broken to indicate merely the general trend of the structure. Only the type localities mentioned above justified continuous contour lines. The structure of the sand closely resembles that of the overlying Kirkwood except that the dips are not so pronounced. As with the other sands, the Tracey conforms to the dome-like structure in Petty township. The crest of the dome lies at Pet. sec. 30, SE., No. 63. The dip northward to Pet. sec. 26 , NE., No. 2, is 247 feet in $65 / 8$ miles or at the rate of 37 feet per mile. The sand appears very flat in parts of sections 12, 13 , and all of 18 , about $11 / 2$ miles north of the apex of the dome. The fold dips equally about 240 feet to both sides of this flat. The dip south from the apex of the dome to Law. sec. 10, SW., No. 1, is 283 feet in $37 / 8$ miles or at the rate of 73 feet per mile. The Tracey, like the Kirkwood horizon, assumes a plateau-like nature on the crest of the anticline to the south of the last mentioned well.

McClosky Sand.

The McClosky sand was developed by the International Oil and Gas Company on the M. McClosky farm in the NW. 1/4 SE. $1 / 4$ section 25, Dennison township. The type locality for this sand lies in sections 25 and 36, Dennison township. It is also productive at the same level in sections 11, 12, 13 and 14, Lawrence township. This formation is extensively developed in a long narrow strip beginning in the NE. $1 / 4$ section 6, Bridgeport township and extending through the middle of the field into section 19, Petty township. The McClosky sand is widely developed in the northern end of the field in sections $1,7,11$, $12,13,18,25,35$ and 36 , Petty township.

The McClosky sand is a soft oolitic limestone known as the Ste. Genevieve. This limestone underlies the Cypress and Chester rocks and overlies the massive and hard St. Louis limestone. The contact between the overlying Chester and the Ste. Genevieve in Lawrence county is well defined but the lower portion of the Ste. Genevieve merges into the St. Louis. In many places the two limestones can be distinguished only by the difference in their hardness and the presence of oolites in the Ste. Genevieve.

Data from 150 wells in the Lawrence county field show an average interval of 104 feet between the McClosky and Tracey sands. The average interval in each of the townships is shown in the following table:

Intervals Between Tracey and McClosky Sands.

	Township.	$\begin{gathered} \text { Number } \\ \text { of } \\ \text { wells giving } \\ \text { data. } \end{gathered}$	Average intervals between the Tracey and McClosky sands in feet.
Dennison.		43	113
Lawrence		14	118
Bridgeport		15	105
Petty......		78	96

The interval widens perceptibly as the sand dips into the limbs of the anticline. The interval in Pet. sec. 15, NE. No. 1, is $1 \% 4$ feet and in Pet. sec. 23, NE., No. 1, is 175 feet.

The McClosky sand has yielded the largest initial productions of any of the producing sands in Illinois. It is not widely developed because of the large expense incurred in drilling. The wells in the northern section of the field have been good producers and have yielded some gas. The oil and gas have a large sulphur content. The southern part of the field has yielded several oil gushers and but one or two gas wells. The oil has a much smaller sulphur content than that from the northern portion of the field.

DETAILED STRUCTURE.

The altitudes of the top of the McClosky sand were assembled and contoured in Plate XI. The contours reveal one major and three minor domes along the crest of the anticline. The first dome lies at the northern boundary of the county, in sections 25 and 36 , Petty township. It falls within the 320 -foot contour. The top of the dome covers about three-fourths of a square mile.

The sand dips from this dome into a basin about 90 feet deep and then gradually rises into a terrace through sections $12,13,18$ and 19, Petty township. The terrace merges rapidly into the major dome of the fold in section 30, Petty township. The top of the dome lies at Pet. sec. 30, SE., No. 59. The dip from the apex eastward to Pet. sec. 20 , SE., No. 10 , is 164 feet in $11 / 8$ miles, or at the rate of 145 feet
per mile. The dip westward to Bport. sec. 31, SW., No. 5, is 218 feet in $11 / 8$ miles, or at the rate of 193 feet per mile. The west dip of the fold is 45 feet greater than the east dip for the same distance. There are two very small domes or sharp pinnacles in the sand immediately south of the major uplift. The crests of these lie at Pet. sec. 32, SW., Nos. 10 and 1\%. The sand lies at 413 and 418 feet respectively above the asssumed datum plane of 1,500 feet below sea level or only 27 feet below the top of the largest dome.

The data are scanty along the sides of the main anticline and therefore the contours are dashed. They show strong dips to both sides of the field and a long gentle dip to its southern end. The structure of the sands in the southern half of the field is very similar to that of the Kirkwood and Tracey sands. The crest of the anticline merges from the major dome into an extensive flat area which lies uniformly around the 160 -foot contour.

CROSS-SECTIONS.

General Statenfent.

Four cross-sections were constructed along lines that pass through and across the Lawrence county field. They were chosen especially with respect to the structure of the area, as it is desired to show the nature of the crest of the LaSalle anticline as well as the flanks. The sections were also chosen along lines that pass through or near a large number of wells.

The cross-sections were constructed by plotting records with respect to sea level. A line representing sea level was drawn, and another representing an ideal surface 500 feet above it. This is marked off to correspond with the points where the line crosses section or township lines. The names of the townships are placed in their proper positions. The records of the wells were located with respect to their position along the line and above sea level. They were then plotted with uniform symbols and scale. Wherever the cross-section line cut a contour line the altitude of the contour was marked with a cross and set in its proper position. Correlation lines were then drawn through all crosses representing the altitude of a particular sand and between similar formations in detailed records. Since a datum plane 1,500 feet below sea level was used to make the contouring read positive this line is drawn on the sections merely to emphasize its use. The position of any sand can be measured directly above the datum plane line and the figures thus obtained should correspond with those obtained from the structure maps and those recorded in the tables of well data.

Cross-section A-A.

The A-A cross-section, Pl. XII, presents the structure of the sands along the crest of the anticline and through the middle of the entire Lawrence county field. As a whole the section is especially valuable since it shows the double plunging anticline, the crest of which lies in section 30, Petty township, the convergence of the sands at the northern end, and the dip from the dome into the flat at the southern end of the
field. The sands are shown to be generally parallel with local irregularities that seem due, in most cases, to the thinning and thickening of the sand. All sands conform to a mild basin at the foot of the elongated dome in sections 9 and 16, Lawrence township.

LOGS.

The section is made up from many skeleton logs which are found in the tables of well data. The detailed logs are presented below.

The records of the following wells are found in the tables:
List of Wells in Lawrence County Furnishing Data for Cross-Section A-A.

Township.	Section.	Quartersection.	Well number.
Petty.............			
	26......	NE.	1
	35......	NE.	2
	36.	NW.	11
	36. .	SW.	5
	36....	SW.	6
	12....	NE.	4
	12...	NE.	5
	12.	NE.	6
	12.	NE.	14
	12.	NE.	12
	12..	SE.	10
	12...	SE.	9
	18.....	NW.	17
	18...	NW.	16
	18...	NW.	15
	18...	SW.	1
	18.....	SW.	3
	19....	NW.	3
	19....	NW.	4
	19....	NW.	5
	19.....	NW.	6
	19............	SW.	21
	19.	SE.	19
	19	SE.	16
		SE.	14
	30.....	NE	13
	30.	NE.	15
	30.....	NE.	26
	30....	SE.	60
	30.	SE.	59
	30..	SE.	69
	30......	SE.	76
Bridgeport.	32....	NW.	35
	32...	NW.	33, 34
	32-......	SW.	23
	32-...............	SW.	$9 \begin{array}{r}26 \\ 9 \\ 10\end{array}$
	5-...............	NW.	9, 10
	5.........................	$\begin{aligned} & \text { NW. } \\ & \text { NE. } \end{aligned}$	4 10
	5........	NE.	9
	5...	SE.	15
Lawrence.	9.	SW.	15
	9.	NE.	4
	$15 .$.	NW.	12
	15-........	NW.	11
	15........	NW.	7
	$15 .$.	SW.	22
	15........	SW.	20
	15............	SE.	1
Dennison.	22........	NE.	4
	22. . .	NE.	8
	23...	SW.	1
	23........	SW.	5
	26......	NW.	1
	26.	NE.	14
	26.	NE.	10
	26.......................	SE.	15

List of Wells in Lawrence County-Concluded.

Township.	Section.	Quartersection.	Well number.
Dennison-Concluded..		SW.	
		SW.	3
		NW.	2 1.3
		$\begin{aligned} & \text { NE. } \\ & \text { SE. } \end{aligned}$	1.3 19
		SE.	16
		SE.	9
		NW.	
		$\begin{aligned} & \text { NW. } \\ & \text { SE. } \end{aligned}$	4
		NW.	1
		NW.	

The following logs are those shown in detail in the cross-section and briefly referred to in the tables:

$$
\text { Pet. sec. } 36, \text { SW., No. } 8 .
$$

Operator-Snowden Bros.
Farm and well-Petty, No. 1.
Elevation-436 feet.

	Thickness Feet	Depth Feet
Sand and gravel, loose	112	112
Slate, blue, soft	68	180
Limestone, gray, hard (3 bailers water, 190 feet)	10	190
Slate, brown, soft	110	300
Limestone, yellow, hard	6	306
Slate, blue	10	316
Slate, brown, hard	124	440
Slate, black, soft	10	450
Coal	4	454
Shells	15	469
Slate, white, hard	55	524
Shell, blue, hard		529
Coal	5	534
Slate, blue, soft	56	590
Shale, white, hard	15	605
Shale, brown, soft	85	690
Slate, black, soft	10	700
Slate, blue, soft	10	710
Slate, brown, hard .	15	725
Limestone, white, hard	10	735
Shale, white, soft ...	10	745
Limestone, blue, hard	20	765
Shells, hard	15	780
Limestone, red, soft	5	785
Slate, blue, soft	10	795
Limestone, blue, hard (2 bailers water, 800 feet)	5	800
Slate, blue, soft. .	15	815
Limestone shells, gray, hard	20	935
Slate, black.	35	870
Sand, white (10 bailers water per hour, 885 feet)	15	885
Slate and shells, blue.. .	35	920
Sand (hole full of water, 980 feet)	60	980
Slate, blue, soft..................	25	1,005
Sandy shale, brown	90	1,095
Sand, white, soft. .	8	1,103
Slate, black.	10	1,113
Sand, gray, hard.	62	1,175
Slate, black.	10	1,185
Sand, white	35	1,220
Slate, brown, soft.	20	1,240
Sand, loose.	15	1,255
Slate, light brown, soft	5	1,260
Limestone, hard.	5	1,265
Sand, white, hard	10	1,275
Limestone, gray, hard	10	1,285
Slate, blue, soft.	13	1,298
Sandy limestone	28	1,326
Oil sand............	10	1,336

Logs-Continued.

Pet. Sec. 36, SW., No. 10.

Operator-Snowden Bros.
Farm and well-Petty, No. 3.
Elevation-435 feet.

	$\underset{\text { Feet }}{\text { Thickness }}$	Depth Feet
Sand, white, soft	100	970
Slate, blue, soft	130	1,100
Limestone, light, hard	15	1,115
Sand, white, hard.	100	1,215
Slate, blue, soft.	10	1,225
Limestone, gray, ha	5	1,230
Sand, white, hard.	15	1,245
Slate, white, soft	5	1,250
Limestone, light, ha	30	1,280
Slate, white, soft.	5	1,285
Limestone, light, hard.	20	1,305
Slate, light brown, soft	5	1,310
Sand, hard (oil 1,328 to 1,332 feet)	22	1,332
Slate, light brown.	15	1,347
Limestone, gray, hard	17	1,364
Slate, blue, soft	3	1,367
Sand, white, soft (oil 1,3.75 to 1,387	20	1,387
Slate, blue, hard.	5	1,392
Limestone, hard.	10	1,402
Sand, white, soft.	12	1,414
Limestone, blue, hard.	21	1,435
Total depth..		1,435

Pet. sec. 1, NW., No. 3.
Operators-Snowden Bros.
Farm and well-Drole, No. 7.
Elevation-435 feet.

	Thickness Feet	Depth Feet
Clay, soft.	18	18
Sand and gravel, soft.	96	114
Slate, soft.	108	232
Sand, hard.	10	242
Shell, hard (water)	23	265
Slate, white, hard.	95	360
Slate, dark, hard.	60	420
Shell, hard.	5	425
Coal	6	431
Slate, light, soft.	269	700
Shell, light, hard..	25	725
Slate, light, dark, red and blue, soft	90	815
Sand, hard (water).	25	840
Slate, light, soft...	10	850
Sand, white, loose.	45	895
Slate, light, soft..	5	900
Sand, white, hard	63	963
Slate, light, soft.	50	1,013
Slate, dark, hard.	40	1,053
Limestone, gray, hard	7	1,060
Slate, light, soft.	50	1,110
Sand, gray, loose (water, 1,150 to 1,240 feet)	40	1,150
Sand, white, hard.	90	1,240
Limestone, gray, hard	30	1,270

Logs-Continued.

	Thickness Feet	Depth Feet
Slate, dark	20	1,290
Slate, light, loose	28	1,318
Oil sand, gray, loose	8	1,326
Slate, dark, hard.	12	1,338
Limestone, gray, har	25	1,363
Sand, white, loose.	12	1,375
Slate, black, hard.	9	1,384
Sand, white, hard.	18	
Oil sand.	10	1,412
Slate, dark, hard.	2	1,414
Limestone, gray, hard	17	1,431
Total depth		1,431

Pet. sec. 1, SW., No. 5.
Operators-Snowden Bros.
Farm and well-Piper, No. 9.
Elevation- 435 feet.

	Thickness Feet	Depth Feet
Soil	18	18
Mud, blue, soft	4	22
Slate, light, soft.	34	56
Sand, white, soft (water	2	58
Slate, light, soft.	57	115
	2	117
Slate, light, soft	123	240
Limestone, white, soft	6.	246
Slate, white, soft.	59	305
Slate, black.	20	325
Slate, white	30	355
Limestone, white, hard	8	363
Slate, white, soft.	15	378
Slate, black.	32	410
Slate, light	10	420
Coal	3	423
Limestone, white, hard	3	426
Slate, black, soft.	42	468
Sand, white, soft.		475
Coal	4	479
Slate, white.	21	500
Slate, brown	52	552
Slate, white.	20	572
Sand, white, hard	6	578
Slate, white, soft.	17	595
Slate, brown.	45	640
Slate, black.	12	652
Slate, light.	33	685
Limestone, white, hard		
Sand, white, hard.	10	700
Slate, white, loose.	10	710
Slate, brown, loose....	40	750
Limestone, white, hard	10	760
Slate, white, soft.	5	765
Slate, black....	30	795
Limestone shell, hard	10	805
Sand, brown, ope	11	816
Shale	8	824
Sand, white.	15	839
Limestone, gray	12	851
Siand, white.	122	
Slate, black........d	41 5	1,014.
Slate	120	1,139
Sand, white, soft	68	1,207
Limestone shell, hard	28	1,235
Red rock.	10	1,245
Slate, black.	7	1,252
Limestone, white, hard	23	1,275
Slate, black...........	25	1,300
Sand, gray.	12	1,312
Slate, black	14	1,326
Total depth		1,326
Initial production, 90		

Logs-Continued.

Pet. sec. 30, NE., No. 9.
Operators-Bridgeport Oil Company.
Farm and well-Boyd, No. 11.
Elevation-452 feet.

Pet. sec. 30, SE., No. 50.

Operators-Curtis and Akin.
Farm and well-Fitch, No. 17.
Elevation-475 feet.

	Thickness Feet	Depth Feet
First water at.		120
Red rock at.		217
Sand at.		612
Bottom of san	78	690
Slate	34	724
Limestone shells	4	728
Sand (show of oil, 773	124	852
Slate $\ldots \ldots \ldots . .$.	53	905
Sand (oil, 945 feet)	90	995
Slate	65	1,060
Sand	45	1,105
Sand and limestone	20	1,125
Red rock.	1,159	to 1,166
Slate		1,170
Limestone	20	
Slate	34	1,224
Sand (gas)	4	1,228
Limestone	16	1,244
Slate	41	1,285
Red rock	15	1,300
Sand (oil, 1,340 feet)	40	1,340
Slate	28	1,368

Logs-Continued.

Bport. sec. 32, NW., No. 23.

Operators-Snowden Bros. Farm and well-Perkins, No. 28. Elevation-511 feet.

	Thickness Feet	Depth Feet
Clay	20	20
Slate	80	100
Sand	60	160
Slate	109	269
Shate	6	275
Slate and shells.	75 50	350
Slate	50 100	500
Limestone	10	500
Slate	72	580
Limestone	4	584
Slate	132	716
Limestone shells	4	720
Slate ${ }^{\text {S }}$	45	765
Limestone shells	6	771
Slate	23	794
Sand	26	820
Slate.	17	837
Limestone	10	847
Slate and shells.	8	855
Sand and limestone (oil, 890 feet)		
Sand	25	
Slate	60	975
Limestone	17	992
Sand	21	1,013
Shells	11	1,024
Sand	66	1,090
Slate	6	1,096
Limestone	29	1,125
Limestone	15	1,140
Slate	16	1,163
Limestone	14	1,177
Slate.	33	1,210
Red rock	6	1,216
Slate	20	1,236
Shells	24	1,260
Limestone	4	1,264
Slate	19	1,283
Limestone (little gas, 1,290 feet)	32	1,315
Slate sand (gas, 1,322 feet)	6	1,321
Gas sand (gas, 1,322 feet) Slate....................$~$	${ }_{15}^{9}$	1,330
Red rock	15	1,345
Slate	15	1,351
Oil sand (oil, 1,370 to 1,384 feet)	22	1,386
Slate	12	
Sand	12	1,412
Slate	50	1,462
Oil sand (oil, 1,468 to 1,482 feet)	28	1,490
Slate ...	7	1,497
Limestone	8	1,505
Total depth.		1,505

Bport. sec. 32, NW., No. 19.
Operators-Snowden Bros.
Farm and well-Perkins, No. 22.
Elevation-488 feet.

Logs-Continued.

Bport. sec. 32, SW., No. 5.
Operators-Snowden Bros.
Farm and well-Perkins, No. 17.
Elevation- 479 feet.

Logs-Concluded.

Bport. sec. 32, SW., No. 13.

```
Operators-Snowden Bros.
Farm and well-Perkins, No. 16.
Elevation-494 feet.
```

Sand (water)	130	125 to	255
Limestone shęll, very hard. .	10	270 to	280
Red rock.	7	285 to	292
Coal	6	430 to	436
Coal	5	500 to	505
Limestone shell	7	710 to	717
Sand	5	720 to	725
Sand (show of oil, 805 feet)	26	800 to	826
Oil sand (water, 880 feet).	75	840 to	915
Sand, hole full of water....	96	1,060 to	1,150
Slate and shells.......	9	1,156 to	1,165
Limestone	15		1,180
Slate	30		1,210
Red slate	5		1,215
Slate	20		1,235
Limestone	8	,	1,243
Slate	4		1,247
Limestone	11		1,258
Slate	14		1,272
Red slate	6		1,278
Slate	2		1,280
Sand (gas, 1,285 feet)			
Slate ...			1,305
Limestone	6 3		1,311
Slate.	6 6		1,344 1,350
	6		1,356
Sand (oil, 1,378 and 1,398 feet)	54		1,410
Slate	33		1,443
Sand (pay, 1,445 to 1,450 feet)	17		1,460
Slate .	19		1,479
Sand	14		1,493
Slate	10		1,503
Limestone	5		1,508
Total depth.			$1,5 \mathrm{C}$ 8

Cross-section B-B.

The B-B crsos-section, Pl. XIII, shows the structure of the northern end of the field. It crosses the field diagonally between Pet. sec. 15, NE., No. 1, and Pet. sec. 30, SW., No. 1. The sands above the "Gas" sand were not correlated because of their irregularity. The lower sands show the major arch of this region to be about 250 feet high and three miles wide. The section is made up of the following records.

LOGS.

The records of the following wells are found in the tables of well data:

List of Wells in Lawrence County Furnishing Data for Cross-Section B-B.

Township.	Section	Quartersection.	Well number.
Petty..		$\begin{aligned} & \text { SE. } \\ & \text { SE. } \\ & \text { SEE. } \\ & \text { NE. } \\ & \text { SWW. } \\ & \text { SWE. } \\ & \text { NE. } \\ & \text { SWW. } \end{aligned}$	2 7 5 6 13 1 7 6 1

Pet. sec. 15; NE., No. 1.
Presented in the stratigraphic discussion, page 80.
Pet. sec. 2, SW.. No. 6.
Operators-Snowden Bros.
Farm and well-Armitage, No. 2.
Elevation-445 feet.

Logs-Continued.

	Thickness. Feet	Depth Feet
Red rock.	10	829
Limestone, white, ha	15	844
Sand, white.	25	869
Slate, dark, soft.	40	909
Limestone, white, ha	15	924
Sand, white	12	936
Slate, dark, soft	15	951
Sand, white.	13	964
Sandy limestone, white	30	994
Slate and shells.	146	1,140
Sand (hole full of water, 1,140 feet)	30	1,170
Slate, black............................	5	1,175
Limestone shells and sand	20	1,195
Slate, dark, soft.	45	1,240
Limestone shells, light.	3	1,243
Slate and shells, light.	42	1,285
Sandy limestone.......		1,300
Slate and shells	15	1,315
Limestone, light, har	5	1,320
Slate and shells.	115	1,435
Limestone, light, hard	5	1,440
Slate	18	1,458
Limestone, light, ha	22	1,480
Slate, white, soft.	15	1,495
Red rock.	10	1,505
Sand, light (show of oil, 1,505 feet)	6	1,511
Slate and shells....................	24	1,535
Sand (oil, 1,555 feet)	30	1,565
Slate	12	1,577
Limestone and sand (oil, 1,578 to 1,58	20	1,597
Slate	13	1,610
Total depth.		1,610

Pet. sec. 2, SE., No. 10.
Presented in the stratigraphic discussion, page 81.
Pet. sec. 1, NW., No. 3.
Presented in the discussion of the A-A cross-section, page 117.
Pet. sec. 36, SW., No. 10.
Presented in the discussion of the A-A cross-section, page 117.
Pet. sec. 36. NE., No. 10.
Operators-Snowden Bros.
Farm and well-Nutall, No. 5.
Elevation-435 feet.

Red rock...
Limestone, w
Sand, white.
Slate, dark,
Limestone, \bar{W}
Sand, white
Slate, dark,
Sand, white
Sandy limest
Slate and sh
Sand (hole
Slate, black
Limestone s
Slate, dark,
Limestone s
Slate and s
Sandy limes
Slate and s
Limestone, 1
Slate and st
Limestone,]
Slate
Limestone,
Slate, white
Red rock.
Sand, light
Slate and
Sand (oil,
Slate
Limestone :
Slate
Total d

Present

Present

Present

Operatc
Farm a
Elevati

Gravel, y
Slate, bla،
Limeston
Sand, wh
Red rock
Slate, wh
Limeston
Sand, wh
Slate, wl
Slate, bla
Slate anc
Slate, bl:
Sand, wr
Slate, wl
Sand (hc
Limeston
Sand, w

Logs-Concluded.

	Thickness Feet	Depth Feet
Sand, slate, and shells, dark.	50	1,210
Slate, white, hard............	50	1,260
Sand, white, hard.	35	1,295
Limestone, white, hard	15	1,310
Rimestone, white, hard	100	1,415
Slate, black, soft.....	19	1,435
Oil sand, gray...	9	1,444
Slate, black....	11	1,455
Sand, white (4 bailers of water, 1,465 feet	10	1,465
Slate .	25	1,490
Limestone, white, soft.	60	
Limestone, yellow, hard (oil, 1,564 feet)	15	1,565
Sandy limestone, white, soft...........	4	1,569
Sand, green oil, hard (first showing, 1,612	53	1,622
Slate, black, soft. .	15	1,637
Total depth.		1,637

Cross-section C-C.

The C-C cross-section, Pl. XIV, is chosen along a line crossing the crest of the large dome in section 30, Petty township. This cross-section presents the extreme structure of the Lawrence county field. It shows the arch to be about 400 feet high and three miles wide. Correlation lines of five sands are drawn over the dome and reveal some irregularities of interval, particularly between the Kirkwood and Tracey sands and the Buchanan and "Gas" sands.

The section is made up of the following records:

LOGS.

The records of the following wells are in the tables of well data:
List of Wells Affording Data for Cross-Section C-C.

The remaining detailed logs of the section are presented as follows:

Bport. sec. 36, SE., No. 8.
Operators-Bridgeport Oil Company.
Farm and well-Stoltz, No. 13.
Elevation-523 feet.

Bport. sec. 36, SE., No. 2.
Operators-Snowden Bros.
Farm and well-E. Fyffe, No. 9
Elevation-506 feet.

Logs-Continued.

Bport. sec. 31, NW., No. 14.
Operators-Central Refining Company.
Farm and well-Perry King, No. 5.
Elevation-487 feet.

Logs-Continued.

	Thickness Feet	Depth Feet
Slate	12	1,052
Sand	83	1,135
Slate	10	1,145
Sand	145	1,290
Slate	15	1,305
Sand	35	1,340
Slate	10	1,350
Red rock	12	1,362
Limestone	53	1,415
Red rock.	6	1,421
Sand	15	1,436
Limestone	29	1,465
Slate	14	1,479
Red rock	15	1,494
Sand (oil)	30	1,524
Total		1,524

Pet. sec. 30, SE., NO. 26.
Operators-Bridgeport Oil Company.
Farm and well-Willey, No. 11.
Elevation-507 feet.

	Thickness Feet	Depth Feet
Soil	6	6
Quicksand	9	15
Slate	85	100
Sand	25	125
Limestone, hard	7	132
Sand	18	150
Slate and limestone.	85	235
Sand	5	240
Coal	3	243
Slate and limestone.	12	255
Red rock...........	20	275
Limestone and slate	85	360
Sand	30	390
Slate and limestone.	84	474
Coal ...	2	476
Slate and limestone	134	610
Sand	28	638
Slate and limestone	67	705
Salt sand.	45	750
Slate and limestone.	45	795
Sand (oil, 820 feet).	35	830
Limestone	10	840
Slate	15	855
Limestone	103	958
Slate	5	963
Sand, broken.	26	989
Sand (show of oil, 1	16	1,005
Slate	10	1,015
Sand	25	
Slate	10	1,050
Limestone	15	1,065
Sand ..	40	1,105
Limestone	10	1,115
Salt sand.	57	1,172
Limestone		1,178
Slate.	21	1,199
Sand	9	1,208
Slate	7	1,215
Red rock.	10	1,225
Limestone	5	1,230
Slate	20	1,250
Limestone	15 2	1,265
Limestone	8	1,275
Slate	15	1,290
Sand (gas)	10	1,300
Limestone	18	1,318
Slate	36	1,354
Sand (oil, 1,358 feet	8	1,362
Slate		1,362
Total depth.		1,362

Logs-Continued.

Pet. sec. 29, NW., No. 39.

Operators-Silurian Oil Company.
Farm and well-J. D. Bowers, No. 7.
Elevation-443 feet.

	Thickne Feet	Depth Feet	
Sand (oil, 920 feet)	75	910 to	985
Sand (salt water).	40	1,060 to	1,100
Slate	38		1,138
Red rock	4		1,142
Slate	32		1,174
Limestone	12		1,186
Slate	39		1,225
Limestone	15		1,240
Slate	25		1,265
Red rock	5	1,275 to	1,280
Slate	8		1,288
Sand	32		1,320
Slate	35		1,355
Limestone	15		1,370
Slate	50		1,420
Sand (gas, 1,427 feet)	15	1,425 to	1,440
Total dept			1,440

Gas well, 520 pounds rock pressure.

Pet. sec. 29, NW., No. 8.
Operators-Bridgeport Oil Company.
Farm and well-Eshelman, No. 16. Elevation-438 feet.

	Thickness Feet	Depth Feet
Soil	25	25
Sand	47	72
Slate	53	125
Sand	20	145
Slate	10	155
Sand	10	165
Slate	5	170
Limestone	5	175
Slate	60	235
Limestone	10	245
Slate ...	15	260
	40	300
Limestone	5	305
Slate	45	
Sand	15	365
Slate	42	407
Coal	3	410
Slate	90	500
	20	520
Slate	55	575
Limestone, hard	5	
Slate	5	585
Sand, broken	81	666
Slate, soft. .	24	690
Limestone	10	700
Slate	60	760
Limestone	15	775
Sandy limestone		
Slate, black.....	58	860
Sand (oil).	10	870
Broken sand.	52	922
Sand (some oil,	58	980
Slate	7	987
Limestone	11	998 1,005
Limestone, hard	10	1,015
Slate ...	10	1,025
Limestone	10	1,035

$-9 \mathrm{G}$

Logs-Concluded.		
	Thickness Feet	Depth Feet
Slate	15	1,050
Sand (salt water).	55	1,105
Limestone	5	1,110
Slate	6	1,116
Sandy limestone.	13	1,129
Limestone	15	1,144
Red rock.	2	1,146
Slate ...	34	1,180
Limestone	18	1,198
Slate	12	1,210
Red rock.	13	1,223
Slate	4	1,227
Sand (gas)	13	1,240
Limestone, hard.	10	1,250
Slate	23	1,273
Red rock.	12	1,285
Sand (oil pay, 1,298 to 1,330 feet)	63	1,348
Slate .	25	1,373
Limestone	14	1,387
Slate	33	1,420
Limestone	6	1,426
Total depth..	. -	1,426

Pet. sec. 20, SE., No. 7.
Operators-E. N. Gillespie.
Farm and well-Smith, No. 24.
Elevation-435 feet.

	Thickness Feet	Depth Feet
Sand (salt water)	25	725
Slate and shells..	251	976
Sand	5	981
Sand (water)	94	1,075
Slate	95	1,170
Sand, salt.	86	1,256
Slate and shells	41	1,297
Red rock.	13	1,310
Slate	10	1,320
Limestone	30	1,350
Slate	35	1,385
Shells and slate	52	1,437
Sand, broken...	27	1,465
Sand (oil)	10	1,475
Slate	8	1,483
Sand	56	1,539
Limestone	5	1,544
Slate	17	1,561
Total depth		1,561

Cross-section D-D.

The D-D cross-section, Pl. XV, is drawn across the southern end of the field. It shows the flattened nature of the LaSalle anticline in this region and the small terrace on the western limb of the fold. The "Gas" sand is not noted in this portion of the field. The remaining producing sands are essentially flat but locally irregular. The section is made up of the following records:

LOGS.

The records of the following wells are in the tables of well data:

Logs-Continued.

List of Wells Affording Data for Cross-Section D-D.

The remaining detailed logs of the section are presented below and elsewhere in this report:

Bport. sec. 30, NE., No. 2.
Operators-Snowden Bros.
Farm and well-McOrr, No. 1.
Elevation-503 feet.

Logs-Continued.		
	Thickness Feet	Depth Feet
Slate, dark, loose.	19	1,687
Sand, dark, soft (8 bailers of water, 1,708 feet)	21	1,708
Slate	5	1,713
Limestone, white, hard.	2	1,715
Red rock.	10	1,725
Slate, light	13	1,738
Limestone	2	1,740
Slate, dark, very soft.	14	1.754
Limestone	10	1,764
Slate, dark, very soft	26	1,790
Sand, light, hard....	10	1,800
Slate	8	1,808
Limestone	20	1,828
Slate	37	1,865
Sand (4 bailers of water, 1, 880 feet)	71	1,936
Slate	22	1,958
Sand (pay, 1,962 to 1,972 feet)	14	1,972
Total depth		1,972
Bport. sec. 29, NW., No. 2.		
Operators-Snowden Bros. Farm and well-H. K. Seed, No. 2. Elevation-490 feet.		
	Thickness Feet	Depth Feet
Soil	18	18
Sand, slate and shells	332	350
Sand, white, soft..	50	400
Slate and shells.	300	700
Slate, white.	50	750
Slate, dark.........	81	831
Sand, white (salt water, 851 feet)..........	129	960
Slate, sand, and shells (salt water, 1,165 feet).	205	1,165
Sand, white. Slate dark	105 25	1,270 1,295
Sand	25	1,320
Limestone, white.	25	1,345
Slate, dark......	80	1,425
Sand, white.	187	1,612
Slate . . .	8	1,620
Sand, white (salt water, 1,650 feet)	30	1,650
Red slate...	25	1,675
Limestone shells	55	1,730
Sand	20	1,750
Slate and shells	35	1,785
Red rock.	6	1,791
Slate	11	1,802
Sand, white.	26	1,828
Slate ...	17	1,845
Sand, white (salt water, 1,860 feet)	20	1,865
Slate ${ }_{\text {Shells, }}$ hard. .	14	1,879 1.881
Shells, hard. Sand, brown.	17	1,881 1,898

Bport. sec. 29, NW., No. 1.

Operators-Snowden Bros.
 Farm and well-H. K. Seed, No. 1.
 Elevation-476 feet.

	Thickness F'eet	Depth Feet
Red rock.	5	415
Sand, dry	14	610
Slate	150	760
Sand	15	775

Slate, dar Sand, dar
Slate ...
Limestone
Red rock
Slate, lig]
Limestone
Slate, dar
Limestone
Slate, dar
Sand, ligh
Slate
Limestone
Slate
Sand $(4 \ddot{b}$
Slate
Sand (pay
Total

Operato
Farm a
Elevatic

Soil
Sand, slat ϵ
Sand, whit
Slate and
Slate, whit
Slate, darl
Sand, whit
Slate, sand
Sand, whit
Slate, dart
Sand
Limestone,
Slate, dark
Sand, whit
Slate
Sand, whit
Red slate.
Limestone
Sand
Slate and
Red rock.
Slate
Sand, whit
Slate
Sand, white
Slate
Sand, brow
Total
Initial pr

Operator
 Farm an
 Elevatior

Red rock.
Sand, dry
Slate
Sand

Logs-Continued.

Law sec. 11, SE., No. 6.
Presented in the stratigraphic discussion, page 67.

Law. sec. 12, SW., No. \%.
Presented in the stratigraphic discussion, page 68.

Law. sec. 12, SW., No. 4.

Operators-Bridgeport Oil Company.
 Farm and well-Henry, No. 1.
 Elevation-440 feet.

Logs—Concluded.

	Thickness Feet	Depth Feet
Red rock.	- 5	1,549
Sand (oil, 1,556 and 1,568 feet)	31	1,580
Slate	10	1,590
Sand (show of oil)	5	1,595
Slate ………	5	1,600
Sand (oil pay).	10	1,610
Limestone shell.	90	1,700
Red rock, cave.	10	1,710
Limestone.	77	1,787
Sand	1	1,791
Limestone	91	1,882
McClosky sand.	-	1,888
Total depth.		1,889

Law. sec. 12, SE., No. 2.
Operators-Bridgeport Oil Company.
Farm and well-Tracey Heirs, No. 1.
Elevation- 455 feet.

RELATIONS OF STRUCTURE TO OIL AND GAS.

Oil.

The oil sands of Lawrence county have proven the richest in Illinois. They show remarkable stability in their yield and have promise of long life. The shallower sands have declined rapidly, but the Kirkwood, Tracey and McClosky sands are still prolific. Of the 2,810 wells mapped in this county, but 156 , or $51 / 2$ per cent were dry. There are 890 wells mapped in Petty township, 860 in Bridgeport, 349 in Lawrence, and 711 in Dennison. The range of initial production is between one and 2,400 barrels per day. The Kirkwood sand has shown the best general production while the McClosky sand yielded the greatest number of gushers. The Bridgeport sand is the second best general producing sand. It has declined rapidly, however, and is giving way to the development of steadier sands beneath. There are 1,835 of the 2,654 producing wells, or about 70 per cent, that furnish information of the initial yield. This is sufficient to indicate the nature of distribution of oil in this field with respect to structural conditions. The following table shows the number of wells that furnished data of initial productions for each sand. They are liṣted by townships, sands, and extent of yield. The gas and dry wells are also given:

Table Showing Initial Productions of Various Sands in the Lawrence County Field.

Lawrence county.		Number of wells classified according to their initial production.							
Township.	Producing sand.	$\begin{aligned} & 0-10 \\ & \text { bbls. } \end{aligned}$	$\begin{aligned} & \text { 10-50 } \\ & \text { bbls. } \end{aligned}$	$\begin{aligned} & 50-100 \\ & \text { bbls. } \end{aligned}$	$\begin{aligned} & \text { 100-200 } \\ & \text { bbls. } \end{aligned}$	$\begin{gathered} 200-500 \\ \text { bbls. } \end{gathered}$	$\begin{gathered} \text { Over } \\ 500 \\ \text { bbls. } \end{gathered}$	Gas.	Dry.
Petty........	Bridgeport. Buchanan. "Gas" Kirkwood. Tracey. McClosky	4 \cdots 4 2 8	$\begin{gathered} 27 \\ \cdots \\ 13 \\ 71 \\ 20 \\ 52 \end{gathered}$	$\begin{gathered} 19 \\ \cdots 6 \\ 87 \\ 15 \\ 35 \end{gathered}$	21 3 3 63 7 23	15 $\ldots .$. 10 10 4	4 6	1 $\cdots \cdots$ 8 8 22 5	44
Bridgeport...	Bridgeport Buchanan. "Gas" Kirkwood Tracey. McClosky	6 -9	48 4 7 60 1 5	$\begin{array}{r} 100 \\ 8 \\ 2 \\ 74 \\ 1 \\ 13 \end{array}$	47 30 3 47 1 3	3 38 1 19 $\cdots 6$	3 8 4 4 4		22
Lawrence....	Bridgeport Buchanan. "Gas" Kirkwood. Tracey McClosky	3 1 1	1 7 44 8 8 2	1 11 27 1 4	4 51 21 1 4	22 $\ldots 6$ \cdots	1		25
Dennison....	Shallow Bridgeport. Buchanan "Gas" Kirkwood Tracey McClosky	5 1 10 12 3	4 50 1 65 5 5 4	51 3 76 4 5	54 22 3 38 2 7	9 10 711 1 6	16	9 1 1 1	65
Total for field.	Shallow Bridgeport Buchanan. "Gas".... Kirkwood. Tracey McClosky .	$\begin{array}{r} 15 \\ 1 \\ \hdashline 3 \\ 5 \\ 9 \end{array}$	$\begin{array}{r} 4 \\ 126 \\ 12 \\ 20 \\ 240 \\ 34 \\ 63 \end{array}$	171 22 8 264 21 57	126 103 6 169 10 37	27 70 1 46 2 21	3 9 $\cdots \cdots \quad 8$ $\cdots \cdots$	10 $\cdots \cdots$ \cdots 9 9 24 13	156

PETTY TOWNSHIP.

The oil in sections $25,26,35$ and 36 , at the extreme northern end of the county, comes from the McClosky and Tracey sands. The initial yield per well does not exceed 200 barrels. The oil in both sands is found under a small dome on the top of the fold, which is separated from the elongated dome farther south by a narrow barren depression across the field. The McClosky sand is highly productive along a narrow strip north and south through the center of the field, especially in sections 18 and 30 . The largest initial productions of Lawrence county were found in this sand in section 18. The oil is crowded into a small dome, similar in height, extent, and altitude to the arch in the extreme northern end of the field. The same sand is productive at a like altitude on the western flank of the dome-like structure in section 30. The productive strip is very narrow through this section but becomes broader in sections 31 and 6, Bridgeport township.

The Kirkwood sand shows the greatest number of producing wells in the remaining sections of the field, especially along the eastern dip of the anticline in sections 20 and 29. The wells in this region reported excellent initial productions. The Kirkwood sand is also highly productive in section 30, between 30 and 80 feet lower than the crest on the west side of the dome.

The "Gas" sand primarily produces gas but is productive of oil in the following wells:

List of Wells Producing Oil From the 'Gas' Sand; Lawrence County.

- Township.	Section.	Quartersection.	Number of well.	Initial production in bbls.
Petty..............	1...	NE.	9	20
	7.	NW.	9	40
	7..........	SW.	1	45
	7...........	SW.	4	35
	7..	SW.	17	15
	12.	NE.	2	65
	12........	SW.	9	75
	12.............	GE.	6	135
	12.....	SE.	7	110
	13....	SE.	- 2	75
	17	SW.	5	35
	$17 .$	SW.	6	25
	$20 .$	NW.	1	25
	24......	NE.	2	40
	24..................	SE.	7	20
	5......................	NW.	9	170
Bridgeport.........	6.-. .-.	NE.	19	70
	6........	NE.	22	30
	6.....................	NE.	23	45
	8....................	NE.	9	60
	8. .-. -	NW.	26	50
	8................	NW.	27	30
	31.	NE.	55	100
	31...........	NE.	56	100
	31.............	NE.	59	250
	31........	SE.	4	50
	32.	NE.	5	105
	32.	NE.	18	20
	32...	SW.	6	25

The Buchanan sand appears unproductive in Petty township. It is not correlated in this region because of possible confusion with the Bridgeport lenses. In fact, it may be possible that some of the lower
productive lenses of the Bridgeport sand are mistaken for the Buchanar.
The Bridgeport sand is especially productive in sections $18,19,20,29$ and 30 . The initial yields are between 30 and 300 barrels.

BRIDGEPORT TOWNSHIP.

The Bridgeport, Buchanan, and Kirkwood sands are the most productive in Bridgeport township. The Bridgeport and Kirkwood sands have the largest number of average size wells, while the Buchanan sand has the larger number of gushers.

The Bridgeport sand is especially productive in sections 32,5 and 8 , which lie structurally along the southern slope of the double plunging anticline. The average yield in these sections is between 50 and 150 barrels.

The Buchanan sand has its type area in section 1\%. The wells are very rich in their initial yield, varying between 100 and over 500 barrels. There are a number of gushers recorded from this locality. The oil is crowded into a small dome on the crest of the anticline; the structure is discussed on page 10%.

The Kirkwood sand yields the best wells in sections 6, 31 and 32, which lie along the western flank of the arch and the south-western slope of the largest dome.

The McClosky sand is productive in sections 6 and 31. This is an extension of the narrow productive area through Petty township. Several gushers are reported from section 31.

LAWRENCE TOWNSHIP.

The Kirkwood and Buchanan sands are the most productive in Lawrence township. This locality is the type area for the Kirkwood and a portion of the Buchanan sands.

The Buchanan sand is especially productive in sections 15 and 16. The average yield is 100 to 200 barrels. Several large wells are reported from this area. The oil is crowded into a dome similar in height and altitude to the one in section 17, Bridgeport township.

The type locality for the Kirkwood sand lies in sections 13 and 14 and extends southward into Dennison township. The wells are not highly productive. The oil lies in an extensive flat in the sand which spreads southward through the remainder of the field. The McClosky sand shows a number of excellent wells in section 14.

DENNISON TOWNSHIP.

The Bridgeport, Kirkwood and McClosky are the prominent producing sands of Dennison township. The Kirkwood sand, as in Bridgeport and Petty townships, is the most widely productive. The Bridgeport sand closely follows the Kirkwood sand in yield but is spotted in its distribution. The McClosky formation has furnished the best producing wells.

The Bridgeport sand is especially productive in sections $2,26,34$ and 35 . This area lies along the southwestern edge of the field. The wells average 50 to 150 barrels initial yield.

The Buchanan sand is notably productive only in section 21, which is an extension of the small dome lying in sections 15 and 16, Lawrence township. The wells are exceptionally large in their initial yield.

The Kirkwood sand shows many wells in sections 22, 23, 25, 26, 35 and 36. The initial yield averages 100 barrels. The oil lies over a broad flat in the sand that covers most of Dennison township.

The Tracey sand shows a light production in sections 25 and 26.
The McClosky sand has its type area and best production in section 25. There are many gushers from the McClosky sand in this section, the highest reporting 1,860 barrels for the first day. The productive areas of this sand lie at an altitude of about 160 feet above the datum plane.

> Gas.

There are about 70 gas wells in Lawrence county. Gas is reported incidentally in over half of the records and is widely distributed in all the sands. The Kirkwood, Tracey and McClosky sands have yielded the most gas, particularly in Petty township where the field is governed by an elongated dome. The following table shows the locations and all available production data of the gas wells in Lawrence county:

Locations of Gas Wells in Lawrence County, and Sources of Gas,

Locations of Gas Wells in Lawrence County-Concluded.

PETTY TOWNSHIP.

The greatest number of gas wells of the Lawrence county field lie in Petty township. They are scattered along the flanks of the anticline. The "Gas" sand yields gas in small quantities over Petty township and abundantly in section 30 . The gas does not occur at the apex of the large dome centering in this section but lies about 60 feet below on its western flank. The Kirkwood sand is especially productive of gas in sections 1 and 2 in the northern end of the field. The gas seems to be arrested along the steep western flank of the anticline. The Tracey sand shows the greatest productions of gas in this township, and, indeed, over the entire area. The best yield is in the northern portion of the township and through the middle of the broad fold. Several wells also yield gas about 120 feet below the apex of the dome in section 30. The McClosky sand shows an excellent yield of gas on the crest of the same dome.

Bridgeport Township.

The "Gas" and McClosky sands yield the best pressures of gas in the northern end of the township. The McClosky sand shows several good wells in section 31, about 70 feet lower than the crest of the dome. The two smaller domes in sections 31 and 32 contain gas. The "Gas" sand yields abundant gas in sections 6 and 31, but it lies between 100 and 140 feet below the crest of the dome. The Buchanan sand usually possesses little or no gas, but it reports it in several wells in sections 7 and 8. The type locality of this sand, section 17, does not report any gas. The Kirkwood sand shows a scattered record of gas in its many wells, but particularly in section 1%.

Lawrence Township.

The Kirkwood sand shows gas in most of the wells in Lawrence township. The Bridgeport and Buchanan sands show no gas while the McClosky gives data from about six wells. There are no commercial gas wells in the township.

Dennison Township.

The Bridgeport sand shows a number of gas wells in sections 1, 2, 34 and 35. Most all the wells penetrating the Bridgeport lenses record gas in them. The Kirkwood sand gives numerous records of gas over the township but particularly in sections 22,23 and 36 . The McClosky sand shows abundant gas in sections 25 and 36 . The gas would be marketable from this sand but for the enormous yield of oil.

RELATIONS OF STRUCTURE TO SALT WATER.

The sands of Lawrence county show abundant water along the flanks of the anticline and but little through the center of the field except in the lower Bridgeport and Buchanan sands. The Pottsville rocks appear well saturated with water over the entire field and into the limbs of the LaSalle fold. The Chester sands are not uniformly saturated with water but seem to have limit lines of saturation along the limbs of the fold, more particularly along the western side. The McClosky sand similarly shows abundant water on the western slope of the fold and in parts of Petty township.

Petty Township.

There is but little water shown in the record of wells in the producing sands of Petty township. The Bridgeport and Buchanan sands are closely associated and show abundant water in sections $1,2,19,20$, 29, 30 and 36. The Kirkwood sand shows some saturation beneath the oil in sections 12 and 36. The McClosky sand shows some water content in sections $12,13,15,24$ and 25.

Bridgeport Township.

All the sands in sections 1, 18 and 36, Bridgeport township dip low on the western limb of the anticline and show much water. The upper Bridgeport lenses, like those of the Robinson sand of Crawford county, are generally barren of water within the oil pool in this region. The lower lenses are widely saturated in sections $6,7,8,31$ and 32 . The Buchanan sand is completely saturated with water in sections 6 and 31 , but water underlies the oil zone in its type locality, section 1\%. The Kirkwood and McClosky sands are usually free from water in this region, except along their outer edges.

Lawrence Township.

The Bridgeport sands contain abundant water in Lawrence township. The Buchanan sand is water-bearing in sections 2, 11, 12 and 14, but
contains less water and is oil-bearing in section 16. No water is reported for this sand in section 15. The bottom of the Kirkwood sand contains water in sections 1 and 13. The Tracey sand, in several cases, shows abundant water in section 10 . The McClosky sand is reported waterbearing only in section 1.

Dennison Township.

The lower Bridgeport lenses and Buchanan sand contain water over most of Dennison township. The upper lenses are productive at the southern end of the field and show some water beneath the oil in section 2. The Kirkwood sand shows water beneath the oil in sections 1, 5, 6, 7, 24 and 30. The McClosky sand is wet in sections 19, 24, and in the northern part of 25 .

CHAPTER V.

General Summary of Geological Conditions in Crawford and Lawrence Counties.

GENERAL STATEMENT.

The features of the structure maps of the different sands, and their individual oil, gas, and salt water relations just described, are sufficiently similar to permit general conclusions as to the accumulation of oil and gas in Crawford and Lawrence counties. These conclusions add to the general fund of evidence confirming the accumulation of oil and gas in folded rocks.

GENERAL STRUCTURE OF REGION OF THE LA SALLE ANTICLINE.

The greater portion of Illinois lies within the Eastern Interior Coal Basin, which is, broadly speaking, an extensive spoon-shaped basin, with its long axis extending along a line through Cerro Gordo, Lovington and Olney and with its deepest part in Wayne, Hamilton and Edwards counties. The east side of the basin rises into a strong longitudinal fold known as the LaSalle anticline, which extends from the vicinity east of LaSalle in a southeastern direction to Sadorous in Champaign county. From thence it passes near Tuscola and enters the oil territory of Clark county near Westfield. It continues in a direct line through the oil fields in Clark, Crawford and Lawrence counties until the vicinity of St. Francisville in the latter county is reached. The identity of the fold is lost beyond Lawrence county but it is thought to cross the Wabash into Indiana and possibly merges into the eastern flank of the Illinois basin. The writer has compiled several structure sections ${ }^{1}$ which illustrate these facts.

The formations ascend from the axis of the basin into the Crawford and Lawrence county oil fields at the rate of about 50 feet per mile. The ascent becomes more rapid in Lawrence county because of the presence here of the very sharp apex of the anticlinal dome.

The sands of the Illinois basin have been thoroughly tested immediately west of the oil fields and found full of salt water. The lower

[^16]flanks of the fold are known to yield abundant salt water in all the sands which are productive in the main fields. The conditions for the accumulation of oil and gas in the fields are ideal because of the presence of the following governing factors:

1. There is an extensive anticline with a marked basin on at least one side.
2. The depressions on both sides of the fold, showing abundant water; comprise extensive "feeding areas" for the arch.
3. The sands are commonly porous and hence form suitable reservoirs for the storage of oil.
4. There are abundant shales and limestones overlying the sandstones which originally furnished the oil and now probably serve as impervious covers to the reservoirs.
5. The sands in both limbs of the anticline are abundantly saturated with salt water which is probably instrumental in holding the oil and gas captive in its present position. This consideration is highly important because of the relations of water and oil and the resultant concentration of oil in folded structure.
6. The portion of the arch containing oil is six to seven miles in its extreme breadth and one or two miles wide in the narrowest places. The large amplitude and breadth of the arch offered an enormous reservoir capacity.

DETAILED FEATURES OF THE FIELDS.

The detailed discussion of the structure in the Crawford and Lawrence county field proves conclusively the presence of a major fold governing the accumulation of oil and gas in this region. The crest of the fold, however, is shown to be rery irregular. It is interrupted by numerous minor domes and transverse depressions, which perhaps have been instrumental in segregating the pools. The succession of irregularities culminates in a very extensive uplift of the axis of the anticline north of Bridgeport, Lawrence county, which has the appearance of an elongated dome. Other portions of the anticline show a flattened crest or minor domes.

With one exception the best collection of oil was found over the extensive flat areas along the crest of the parent fold. The large dome in the Lawrence county field shows an exceptional accumulation of oil around its flanks but not at the crest. The domes over the entire area investigated are logical gas reservoirs. The gas, however, does not lay at the apexes of the domes but a short distance below. The best gas and oil wells on the dome in Petty township, Lawrence county, are from 50 to 100 feet lower than the apex. The smaller domes in Lawrence county show good accumulations of oil.

The uppermost part of the flanks of the major fold contain abundant oil. The oil decreases in quantity toward the outer boundaries of the field. The western limit is abrupt and the wells along this boundary produce abundant water. Enough data are at hand to conclude that this is a line of water saturation and that above this line and over the fold most of the sands are wholly oil-bearing. The Pottsville rocks are exceptional in that they contain water in the lower portions and in
some cases are wholly saturated over the fold. These rocks are widely distributed over Illinois and are conspicuous for their yield of salt water. The sands lower than the Pottsville and the upper Bridgeport and Robinson lenses do not show much saturation over the crest of the anticline. There are one or two spots in the field that show isolated patches of water-bearing sand, particularly in the Kirkwood and Mc-- Closky sands.

Some of the non-producing wells in the producing areas owe their condition to impervious sands or thinning out of producing sands. Lack of porosity will perhaps explain the position of dry wells often occurring at or near the very minor domes or small pits that occasionally exist along the crest of the fold.

Prospective Pools.

It is probable that the high spots along the crest of the major fold, especially the one in section 30, Petty township, Lawrence county, represents cross folding or buckling. This condition would suggest that the territory east of the fold would be similarly affected, particularly in the lower producing formations. New pools are then possible to the east of the fold in positions and directions perpendicular to the trend of the field and parallel to the raised portions of the anticline. The presence of oil in Honey Creek and Montgomery townships of Crawford county seem to bear out this relation. The chief raised portions of the fold occur in section 1, the northwest corner of section 18, and section 30 of Petty township; sections 10 and 14, Lawrence township and sections 23, 26 and 35 Dennison township, all of Lawrence county.

The western side of the Crawford and Lawrence county oil fields, with one exception, is sharply defined and is bounded by a line of water saturation. In addition to this, the dip of the strata into the Illinois basin is so pronounced that the only possibility for new pools lies along unknown terraces, similar to the one occurring in section 29, Bridgeport township.

The extension of the south end of the field is problematical and almost impossible to forecast with the present development, owing to the lack of data and the uncertain character of the anticline. It is also likely that the gap between the Lawrence and Crawford county fields will remain barren as it seems to represent a large transverse basin on the fold.

Possibilities for the production of oil in sands in Crawford county, corresponding to the deep producing formations of Lawrence county, are slight because of the established fact that these formations gradually pinch out to the north of Lawrence county.

CHAPTER VI.

Economic Features of the Illinois Fields.

INTRODUCTION.

The discovery of profitable quantities of oil in Clark county in $190 \pm$ and 1905 led to a remarkably rapid derelopment of the oil fields in the State. The development is all the more surprising when it is noted that in the short period of six years a production of such proportions reached its zenith. Other great fields of America required as high as 30 years to attain such a position. Besides, the Illinois production comes from the smallest areal extent of oil producing territory of the first seren ranking states:

Rank.
1
2
3
4
5
6
7

State.
California
Oklahoma
Illinois
West Virginia
$\square \quad 570$
Ohio 650
Texas 400
Pennsylvania 2,000
Illinois gained ninth place for production and value of oil in 1906 and third place for both in 1907. Since 1907 the State has held third place for production and second for value and has been exceeded only by California and Oklahoma. Up to January 1, 1912, about 19,982 wells had been drilled for oil and gas in the State, of which 15.7 per cent were barren. The remaining 84.3 per cent have produced since 1905 about $157,905,084$ barrels of oil, valued at about $\$ 101,666,473$. The extent of the fields, the grade of the oil, and the efficiency of production, place them among the greatest of the world from an economic point of view.

The successful growth of the Illinois fields may be attributed particularly to the quiet efficiency of experienced and capable oil men. The Appalachian fields supplied the greatest influx of operators, and these, through many years of training, determined the trend of development. They soon established the limits of the field and thus prevented useless explorations.

After oil has been found in commercial quantities in the shallow Casey pool, the operators began to drill in all directions. They were, however, soon limited east and west of Casey by boundaries which were defined by barren wells that either failed to show oil or yielded large quantities of salt water. This caused a shifting of the development inward and along a north and south direction. The discovery of oil in deeper sands in Crawford county led to the same tactics of development, and eventually the long narrow strip of oil country in Clark county approached the broader pool of Crawford county. Similarly, the movement continued from the deeper productive fields of Lawrence county.

The Illinois fields are somewhat different from others because of local conditions and the necessity of properly and economically caring for enormous quantities of oil. The business is divided into many branches, each of which, from the first step of leasing to that of an established production, requires careful and systematic attention. The Ohio Oil Company (Standard) controls most of the production and under its management, there have sprung up various departments necessary to cope with the rapidly increasing yield of oil. This has been done remarkably well and as has been truthfully said, "there never has been an oil field so well taken care of in so short a time as that of Illinois."

The following general discussion of the several phases of the oil business is made with a view of enlightening those readers who are not familiar with the business. It is not intended to be an authoritative explanation of the methods used in developing an oil field or of the details of drilling a well.

DEVELOPMENT OF OIL PROPERTIES.

Forenote.

The first step necessary to the development of any oil field is a busi-ness-like lease of the land, conveying distinct rights to both the landowner and the lessee. The successive steps of choosing well sites, drilling, shooting wells, and equipping oil properties involve activities separate from each other, yet so connected that each is a necessary part of the whole. In fact, the largest oil companies in Illinois have separate branches for leasing, drilling, buying, pipe-line discharging, telegraphing, and engineering.

The first step of the oil operator after learning of an "oil strike," is to lease as near as possible to the producing wells. If he has sufficient knowledge of the geological structure of the area, he follows the trend of the anticline or terrace, as the case may be. If he feels that his properties are within the limits of possible producing territory, he makes his locations and starts his drilling.

It is regrettable that many inexperienced operators are attracted by the rush to newly proven areas and by lack of knowledge of both the nature of the business and underground conditions, are led to failure. It is often the case that such novices open up a field. Any observer of the oil business will soon note, however, that the larger companies and operators do but little "wildcatting," preferring to profit by the ex-

The standard derrick.
perience of the novice. It is true also, that field limits of many proven areas are established only by these indiscriminate test holes.

Leasing.

In contrast with the oil territories of the mountainous Appalachian regions and of the far west, Illinois is a drift-covered plain. All of it is either in cultivation or devoted to pasture. The land divisions are simple and uniform and are based on the civil township of thirty-six sections. Each section usually is sub-divided into tracts of the multiple of twenty acres. The leasing of properties then starts upon a simple basis.

There are no set rules concerning leasing as this is necessarily dependent upon local conditions. The oil men deal entirely with individual land-owners, and leases are private bargains. While some of the territory is developed by land-owners, it is more often leased to operators for a period of five years, with option of further lease as production continues. If adjoining property is untested at the time of leasing, the farmer usually receives a royalty of from one-eighth to onesixth of the future production, with the further stipulation that drilling is to begin within six months to two years, or that a stated rental per acre will be paid until the first well is drilled. If, on the other hand, the desired property lies near producing territory, the land assumes added value and a bonus is demanded in addition to the royalty and the reservation of the fee. The closer the farm is to good oil properties, the higher the bonus becomes; it averages from $\$ 10.00$ to $\$ 40.00$ per acre, but sometimes reaches $\$ 200.00$ or more per acre.

The land-owner retains all surface rights of the land, except on the portion necessarily used by the operator for his equipment, including a full quota of wells, power house, boiler house, tankage, waste pit, and pull rods. Upon an 80 -acre tract not more than six acres are necessary for this. A large portion of the land in the oil district is not considered especially valuable from an agricultural point of view and consequently but little restriction is placed upon the operations.

In certain portions of the field, industrious farmers till their ground and at the same time derive a good income from oil. If a large storage of oil is contemplated it is customary to buy the land outright for a so-called tank-farm.

Stipulations are usually made regarding the use of gas by the landowner and of payment by the lessor for active gas wells. This generally averages from $\$ 100.00$ to $\$ 200.00$ per well per year. There are but few large gas wells in the Illinois fields and the income is insignificant as compared with that derived from the vast production of oil.

The lessee further agrees not to drill wells closer than 200 feet to any dwelling or barn, except in the case of town lots. (See Pl. XXIII, B.) This may be made optional with the land-owner and merely serves as a protection to his perishable property.

It is also agreed that the lessee shall be responsible for all damages caused to growing crops, provided there is enough in amount to warrant complaint. Oftentimes when a well is shot and a good flow is secured, the wind will spray the oil over a considerable area of growing grain
and will thus render it unfit for use. Again careless driving over cultivated ground will destroy a portion of the crop and so warrant complaint. All pipe lines are buried below plow depth.

After production is established, the lease becomes the most valuable part of the oil property. It is often sold, the price depending mainly on the number of producing wells and their average daily yield. A transfer of lease often takes place even though no wells have been drilled on the tract. The price of this is dependent upon the distance from proven property. In fact, lease speculation has become a very lucrative business, particularly in newly opened areas. The speculator watches the prospecting and upon the first news of the oil strike, rushes to the locality and leases what he can without a great amount of expense. The demand for land "close up" to the active wells soon outstrips the supply and the unfortunate operator who is late or who really wishes to drill, is forced to pay the speculator's price. A good example of this type of traffic was shown in the recent Carlyle, Illinois excitement.

The following form of lease is in common use in Illinois:

The steel derrick.

$$
\cdot \text { อч7 }
$$

A.

B.
A. A nitroglycerine plant.
B. A storage magazine for nitroglycerine.

Choosing a Well Site.

When the lease is secured and the operator is ready to drill, he must choose the site for his first well. This is governed by one or two generally recognized rules or courtesies and many local circumstances. It is usually the custom to place wells about 210 feet inside the property line. This varies, however, with different depths of sand. Wells in the shallow fields are often placed 100 feet, or perhaps less, from the property lines. The drilling is usually inexpensive and many wells are drilled in the eager demand for the oil, with the result that such a field is quickly drained. The location lines in Crawford county are almost always maintained at the regular interval of 210 feet from the line but in the deep Lawrence county pools the distance is from 250 to 300 feet. The distance between wells on the same lease depends on expense and other factors. In the Clark and Crawford county fields they are generally placed 450 feet apart, but in Lawrence county, wells to the deeper sands are located 660 feet apart.

An unwritten law among operators in most fields requires the lessee to drill opposite producing wells on adjoining property. This is called "offsetting" and is done to protect property lines and prevent drainage of oil from the lease. It has been legally determined that a landowner can bring suit to make a lessee "offset" wells or else secure the surrender of the lease. It is the custom to offset all adjoining wells on the neighboring leases and leave the centers to be drawn upon. The free space in an 80 -acre tract thus measures 900 by 2,250 feet. The line wells then draw to good adrantage, and unnecessary center wells are avoided. It is a difficult matter to estimate the acreage drawn upon by oil wells. This is dependent upon the thickness and porosity of the sand, the area of the pool, and the location distances of the wells. It is estimated that about five acres are drawn upon by the Clark county wells, eight in Crawford county, and ten to twelve in Lawrence county. Without considering center wells, twelve to fourteen are drilled on an 80 -acre tract in Clark and Crawford counties and from eight to ten in the Lawrence county field.

The choosing of a site may be affected, furthermore, by sudden dips in the sand about a regular location, thus breaking up the regularity of location lines. Further irregularity may be caused by the presence of buildings, permanent power houses, or unfavorable topographic features. It may seem advisable to even shift wells from a drift covered valley to the side of a hill where less expense is incurred in placing the drive-pipe. Well locations are often chosen in prospective areas with respect to the water and fuel supply. The advance of oil operators into active coal fields of the State may necessitate selection of well sites so as not to endanger mines and their employees.

Drilling.

The third step in the devesupment of oil properties is a contract between the operator and the drilling contractor. An agreement is drawn up between the two for the drilling at a certain price per foot, dependent upon the locality and the depth of the desired sand. A uniform rate is usually established by the supply houses in an active oil field. Drilling
in "wildcat" areas usually costs more than in a proven area because of the distance from railroads and the lack of material, fuel, water, etc. Deep sands and peculiar formations also affect the cost per foot of drilling.

Stipulations are made in the contract for drilling a specified depth and the contractor is held responsible for the well to that depth, or possibly to the extent of reaching the desired sand and determining its productivity. The agreement states that drilling shall begin within a specified time.

The contractor is responsible for the purchase and construction of the derrick. He furnishes boiler, string of tools, fuel, water, drillers and tool-dressers, and is held responsible for accidents. The contractor must replace the casing after a successful shot; clean out the well and pump it for a specified time free of charge, and tube the well. Should further cleaning be necessary after the time stated, a charge is usually made by the contractor for this service at the rate of $\$ 15.00$ per day and the operator furnishes fuel and water. A rate of $\$ 2.50$ per day is usually made for extra pumping. The contractor is permitted to use any oil or gas as fuel for drilling that he may find during the progress of his well. If the contractor experiences trouble in setting his casing, he is usually paid a reasonable amount for labor. In case a dry hole is secured the contractor must pull all the casing possible and in the event of a producing well he must draw that casing which is not desired in the well. In all events the contractor must put the well in order for pumping.

The operator, on his part, usually agrees to furnish conductor, drivepipe, casing, tubing, and rodding. He provides for hauling the pipe and necessary accessories other than the driller's string of tools and rig. The operator is responsible for the plugging of a dry well and the filing of the affidavit thereto.

When the contract for drilling is signed, the operations pass into the hands of the contractor, who in turn contracts with the rig-builder. Nearly all rigs in the Illinois fields, outside of the Clark county pools and portions of Crawford county, are of the Standard type. (See Pl. XVI.) They are constructed of timber and consist of four strong uprights held in the shape of a pyramid by ties and braces, and resting on strong wooden sills. This derrick is used as a support for the sheave or crown pulley, which must be of sufficient height- 66 feet in the shallow fields and 72 feet in the deeper fields-to swing the long, heary, drilling tools free from the derrick floor. A second pulley is fastened to the top to swing the bailer free.
Connected with the derrick are principally the bull-wheel and shaft on which is wound the cable supporting the drilling bit; the walking beam, giving vertical motion to the tools; the band wheels, transmitting power from the engine to the movable parts; and the sheds to protect the engine, bull-wheel, and shaft from inclement weather. When these main portions of the derrick with necessary minor details are complete, the rigbuilder has fulfilled his part of the contract. The contractor then sets his boiler in place, adjusts his engine; winds his cables; places his swinging cranes for lifting the drilling bits; and does many trivial things necessary to facilitate his work.

A.

B.
A. Oil tanks under shed.
B. A pumping disc.

The construction of the standard rig requires about three days and costs about $\$ 500.00$. The same derrick can be used about twelre times, at an extra cost of about $\$ 100.00$ each time for tearing down and rebuilding and for additional repairs and materials.

The steel derrick (see Plate XVII) is used in some portions of the field, though not extensively. The uprights are of steel and the braces and ties are of wire, cable or thin steel rods. The sheds, shaft, and bull-wheels are of wood. The steel derrick can be torn down easily and mored indefinitely but its original expense is much greater than the standard derrick. The leading objection to the steel derrick is the probability of breaking or twisting pieces of the frame work during transportation and causing delay in expense and repair.

In the shallow fields a portable drilling rig is more often used than a permanent one. The whole outfit is mounted on a heavy wagon and includes a single high timber, fitted up as a derrick, while the remaining necessary parts are assembled in a compact manner back of it. This rig is not practical for deep sands or hard formations. There are two types of portable rigs, known as the "Star" and the "Parkersburg." Their cost, including all equipment, is about $\$ 2,300.00$. A larger type of portable drilling rig has been perfected recently that is suitable for deeper sand pools. The cost of this rig is about $\$ 10,000.00$.

The costs of drilling wells in Illinois has gradually declined since the opening of the Casey field in 1906. At that time the cost was $\$ 1.00$ per foot when fuel and water were not included, and 90 cents per foot when they were supplied. The following costs of drilling are representative for the various pools:

Cost of Drilling in Illinois Oil Fields.

Pools. Depth.
Clark county, 400 to 500 feet. \$0 80
Crawford county, 750 to 1,000 feet, 1907 100
Crawford county, 750 to 1,000 feei, 1908 090
Crawford county, 750 to 1,000 feet, 1909-1910. 080
Crawford county, 750 to 1,000 feet, 1911 070 to 085
Lawrence County-Bridgeport sands, 800 to 950 feet, with 10 -inch drive-pipeand $65 / 8$-inch casing... 080
Bridgeport sands, with 16 -inch drive-pipe and $81 / 4$-inchcasing135
Buchanan sands, 1,250 to 1,400 feet 135
Kirkwood sands, 1,450 to 1,650 feet 150
Tracey sands, 1,700 to 1,750 feet 150
McClosky sands, 1,775 to 1,875 feet 150
The approximate time required to drill, shoot, clean, an put inorder a well in the different pools is as follows:
Pool.Clark county, or Shallow sands... 4 to 5
Crawford county 10 to 12
Lawrence County-Bridgeport sands10 to 12
Buchanan sand 20 to 25
Kirkwood sand 35 to 45
Tracey sand 60 to 75
McClosky sand 60 to 100

The Bridgeport sands were the first developed in Lawrence county and were drilled with the small sized pipe similar to that used in the Robinson sand of Crawford county which is at the same depth. Later when the deeper sands were discovered and found more prolific, it became impracticable to use $61 / 4$ inch casing. To secure production from all sands, therefore, a larger size drive-pipe and $81 / 4$ inch casing were introduced. The operators found it profitable to drill new wells with larger size pipe rather than redrill the older ones. The old wells were allowed to produce until abandonment and, indeed, there are many that are still producing. These lie close to the town of Bridgeport.

The drilling crew consists of two drillers and two tool-dressers, who work by pairs in shifts or "tours" of twelve hours each. It is the duty of the driller to stay close to the mouth of the bore, regulate the cable and temper screw when necessary, control the machinery, etc. The tool-dresser acts as an assistant, fires the boilers, attends to the engines, dresses or sharpens the bits, assembles the small tools, switches the bull-wheel cable, etc. The average daily wages of drillers is $\$ 5.00$ and of tool-dressers $\$ 4.00$.
The first process in the drilling of oil well is that of "spudding" -a method used in drilling the first 75 to 150 feet through what is known as the drift, and usually stopping at bed rock. The drift is composed of soil, sub-soil, clay, gravels, and sands, and is usually soft. A short cable is fastened by a shoe to the crank of the band wheel and to the general cable extending from the bull-shaft over the crown pulley and to the spudding drill in the well. As the band wheel turns, the short cable jerks the tools up and down. The bull-shaft is clamped while the spudding is going on and when it is released the cable and spudding drill are fed downward into the hole.

The hole is usually started in a large size conductor and the spudding apparatus is guided by hand. The regular drilling bit and stem are too long and heavy to manipulate for spudding.

When the spudding has been completed the stem and bit are substituted and are connected to the walking-beam and temper screw which lift the tools and cable at a varying rate of speed, dependent upon the depth of the well and the condition of the formations. The walkingbeam rocks back and forth on an upright post independent of the derrick and so gives vertical motion to the cable and drill. The temper screw is fastened to the end of the walking-beam. The cable is clamped to the lower end of the screw and as it is necessary to lower the drill, a handle is turned and the tools are fed downward. The driller determines the lowering of the cable by the feel of the rope or its tension, and the temper screw is adjusted accordingly.

The temper screw varies in size from four to seven feet, the average screw-depth measuring five feet. The difference in length is due to the spring of the hemp cable. After a screw-depth of drilling has been accomplished the tools are withdrawn and a bailer is lowered in the hole. The bailer or sand bucket is a long section of hollow tubing with a ball and tongue valve at the bottom. As this is lowered into the thin mud and liquid at the bottom of the well, the valve opens and allows the bailer to fill. The weight of the liquid closes the valve as the bailer

A.

B.
A. A modern tank-car loading rack.
B. An early tank-car loading rack.
is lifted. When the bailer touches the ground at the mouth of the well, the valve releases and the slush pours out.

It is customary to place drive-pipe through the drift to bed rock. A square hammer is usually fitted to the top of the stem. The stem rests inside the pipe as the hammer strikes the top of it. When a section is driven its length into the hole, a second section is then coupled to the first and the driving is continued. The driving of the pipe is manipulated with the same apparatus used for spudding. The first casing is usually driven through the first salt water sand and, in the event of a bad cave, also through the caved material. Casing is never driven until it becomes necessary to do so. In case the driving of the pipe is difficult, a sharp heavy shoe is attached to the bottom.

Shooting the Well.

When the oil-bearing stratum has been tapped and found productive the work is continued slowly until within a few feet of the bottom of the sand or until evidence of salt water appears. The driller notifies the operator who in turn arranges with the agent of a nitroglycerine company to bring the explosive and shoot the well. After the shooter has measured the sand accurately with a steel-line tape, he pours the nitroglycerine into tin shells $51 / 2$ inches wide by 5 feet long, holding from 10 to 20 quarts each; and by means of a lowering line, pulley, and special releasing device, lowers them to the producing sand. The shells are conical at the lower end and concave at the upper, so as to fit snugly together. The top shell bears a water-proof percussion cap connected by a wire to an electric hand-battery above ground. A "Jacksquib" is often used to explode the shot. This is a tin tube, about 3 feet long containing a dynamite cap packed around with sand. A fuse is extended from the squib and is lighted and lowered. This is used when the hole is clean and not caving and when the casing is not pulled before the shot. In some cases the squib may contain a small quantity of nitroglycerine and be arranged to explode with a time fuse. The explosion opens a large cavity in the producing sand and cracks the bed for a wide radius, thus allowing the contained oil and gas to flow to the well. The greatest care is used in placing the shot in order not to disturb the overlying shales or the underlying sand, which usually contains salt water. If the shales are loosened to any extent they fill the cavity with debris and make the work of cleaning the well difficult. In case it is known that the lower sand does not contain salt water, drilling is carried through the sand and a pocket is made by the explosive to catch the caving material. If the salt water sand is tapped, a flow is often started that is difficult to control and which often drowns out the oil. In such a case the well is usually abandoned, although instances are known where the salt water head has been pumped off and a production of oil secured later. If it is desired to shoot the sand some distance from the bottom, an anchor, or supporting tube for the shot is placed at the bottom of the sand. If there are two producing sands close together two charges are set and an anchor, loaded with nitroglycerine, is placed between the sands. The explosion of the upper shot transmits the force to the second through the anchor.

The size of the shot depends upon the texture and thickness of the producing sand., It has been found that 30 feet of sand requires about 60 quarts of nitroglycerine. A charge of 80 to 100 quarts is sufficient for all sands in the Illinois fields. It is usually the custom to leave the 8 and 10 -inch casing in the well and pull the casing near the producing sand previous to the shooting. This eliminates danger of collapsing or mangling. The casing is lowered later in cleaning the well.

About ten seconds after the shooter has discharged the explosive there is a quick jar of the earth, followed by a muffled report. With a roar the gas pours forth from the well in a bluish-white streak, followed, shortly, by a column of oil and water. This rises slowly to above the top of the derrick, where it sprays out in the direction of the wind. The rattling pebbles against the derrick, and the heavier thuds of large fragments on the ground are heard for several minutes. The column of oil subsides in a short time and the drillers cap the well or turn the flow into emergency tanks.

The shooters hold responsible positions and are chosen by the explosive manufacturers for their cool-headedness and skill. They receive salaries from $\$ 100$ to $\$ 125$ per month and usually a bonus for successful work and good behavior.

The torpedo company, through its shooter, is held responsible for the well from the moment of taking charge, and, if a premature shot takes place through carelessness or neglect, must arrange to drill another well immediately near the same location or pay for the ruined well. When the shot is successful the contractor resumes charge of the well and completes it by cleaning out and putting it in order for pumping. In all cases the shooter is required to know that the well is in perfect condition before shooting. It often occurs that after his explosive is partially set, the overlying formations cave and cover the shot. The shooter and drillers coöperate and clean out the well very cautiously to the top of the shot. Several days of the shooters time are thus required before he can complete his task, at an extra cost to the company.

The torpedo companies maintain manufacturing plants in isolated spots in each main field (see Pl. XVIII, A). Small storage magazines are built in other out-of-the-way places, usually one-half mile from any dwelling, so as to distribute the supply and avoid large loss in case of accident (see Pl. XVIII, B).

Special transportation is necessary to distribute the nitroglycerine. Large stock wagons supply the magazines and lighter wagons make distribution to the wells. The nitroglycerine wagon is built on strong but flexible springs, and is easily recognizable because of the height of the bed above ground. The bed of the wagon is fitted with square padded cells for each 10 -quart can of liquid. The words "Nitroglycerine, Dangerous," are printed on the outside of each wagon and serve to notify the public of the nature of the rehicle. The shooter usually drives along unconcerned over bumps and ruts, confident of the security of his peculiar wagon. Accidents are rare, but they, sometimes, may be caused by collision or carelessness in pouring the liquid into the cans. A drop on the side of a can may be exploded by friction. The viscous liquid is safely poured by a steady hand.

A.

B.
A. A power or pumping house.
B. A boiler house.

Both liquid and solid nitroglycerine have been used in the field. The liquid explosive is a definite chemical compound, known as tri-nitro-cellulose. Glycerine is treated with a mixture of concentrated sulphuric and nitric acids at a temperature below 30° centigrade to prevent explosion. During the nitrating process water is given off and is absorbed by the sulphuric acid. The temperature of 30° centigrade is kept uniform and is effected by blown air during the mixing. The rate of mixing is slow and regular. After mixing the product is washed with water to remove the surplus acid. The solid nitroglycerine is made into cylindrical forms and has the appearance of a yellowish transparent jelly. It has the consistency of rubber and can be readily handled without danger, both during transportation and at the well.

The process and product are patented. The liquid explosive is preferred because of its efficiency. The standard prices for the explosive are as follows:

Other charges include 2 cents per foot for electric wiring, and in case of delay, an extra charge of $\$ 15.00$ per day for the time of the shooter.

Lease Equiparent.

cleaning out and tubing the well.

After the well has been shot and a production of oil assured, the drillers clean it out in a manner similar to the original drilling. The bit is worked through any accumulated debris and the bailer brings up the slush. The pocket or cavity is emptied and thus serves as a reservoir. A two-inch tubing, containing a $5 / 8$ inch sucker rod and cup, usually placed in the casing to the sand and is connected to the pumping machinery. If the well is the first one, the rod is set to pumping directly from the walking beam. If the well is one of several, it is connected to the power-house by a pumping jack. A three-inch tubing is often used if the well is a large one or large quantities of salt water are encountered. The cost of tubing is $111 / 2$ cents per foot. During the life of the well cups often become worn or loose and are repaired by the use of a portable cleaning rig. (See Pl. XXVII, B.)

TANKS.

The oil from the first well is sent to emergency tanks and from later wells to the lease tanks. The tanks are usually low cylinders, built of wooden staves and steel bands. They range from 100 to 1,600 barrels capacity. The smaller tanks are transported to a well when oil is found and are used to receive the supply until the permanent lease tanks are located and built. The usual 250 -barrel tank measures $21 / 2$ barrels of oil to the inch or 25 barrels to ten inches of depth. The cost of this
size tank is about $\$ 90$, and of the 1,600 -barrel tank about $\$ 450$. Secondhand 250 -barrel tanks cost about $\$ 50$ and are preferred because they are saturated with oil and less liable to leakage. When several tanks have been built on a lease, sheds are placed over them for protection from evaporation and to prevent their warping by the sun's heat. (See Pl. XIX, A.) The average cost of these is about $\$ 60$, although the cost is dependent upon the size.

LOADING RACKS.

The oil from a new field is generally sent by donkey-pump to the nearest railway loading-rack (see Pl. XX, B) and is shipped by tankcar to the refineries or to manufacturing companies who have use for crude oil. The racks are usually composed of upright tubing of about two or three inches in diameter with swinging ends that fit into the mouths of the tank cars. They are connected direct to the pipe lines from the lease. The loading racks that are maintained in the fields at present are provided with facilities for measuring the exact amounts of oil shipped (see Pl. XX, A). Loading racks are installed at Bridgeport and Lawrenceville on the Baltimore and Ohio railroad; Lawrenceville, Birds, Flat Rock, and Robinson, on the Big Four railroad; Robinson, Stoy, Bakers Lane, and Oblong on the Illinois Central railroad; Casey and Oilfield on the Cincinnati, Hamilton and Dayton railroad; and Casey and Martinsville on the Vandalia railroad.

POWER AND BOILER HOUSES.

With four or five wells on a lease it becomes practicable to build a centrally located power-house for pumping them. The walls of the building are constructed of wood or corrugated sheet-iron, and the floors of cement (see Pl. XXI, A). A gas engine is installed at one end of the building, and at the other end an oscillating pull-wheel to give horizontal movement to the surface rods radiating from it to the different wells. The pull-wheel draws the surface rod toward the power and the weight of the sucker rod in the well assists in pulling it back, thus providing the necessary balance of work. A boiler-house is built close to the power house for emergency use and for steaming the oil (see Pl. XXI, B). The average cost of the power-house and boilerhouse is about $\$ 1,200$. The $25-\mathrm{H}$. P. gas engines cost $\$ 425$; the $35-$ H. P. engines, $\$ 585$; the Mascot power, $\$ 320$, and the boiler, $\$ 385$. One equipment serves as many as 40 wells, but usually only 25 to 30 . The power man in charge can not look after more than this number and accomplish his daily work. The power man makes the rounds of inspection, cares for his engine, boiler and oil tanks, and makes a daily report. It often becomes necessary on the larger leases to employ a helper. He is called the "roust-a-bout" and assists the power man in looking after the wells. The power fuel is usually gas and is generally piped from the wells in the lease. Some leases do not produce gas and it is then bought from another lease or from a nearby gas line. Steam is used if the lease is isolated or gas cannot be secured.

A.

B.
A. The standard pumping-jack.
B. The steel pumping-jack.

PULL-RODS AND PUMPING DISCS

The surface pull-rods are generally made of steel or wire cable. They are supported in a level line to the well by posts of various lengths, depending upon the undulations of the farm. Notches are cut in the top of the posts for guiding the lines, and are greased occasionally to minimize the friction of the rod. Wells may be pumped in spite of intervening buildings or two wells may be attached to one general leadline by the use of suitable angle-knees. Large flat, oscillating pumping discs are often used to overcome surface irregularities or obstructions, and for pumping across highways (see Pl. XIX, B). They are placed in the open field and are connected to the power by large pull-rods, which move alternately and turn the disc through an arc of about onefifth of a circle. Surface rods radiate from the disc to the wells.

PUMPING JACKS.

The standard wooden jack, steel jack and "home-made" wooden jacks are used in Illinois. The standard jack is substantially mounted over the well on heavy wooden sills. (See Pl. XXII, A.) The workable portions resemble a right triangle, with the right angle pivoted, the upper acute angle fastened to the sucker rod, and the lower acute angle to the surface rod. The pull-wheel draws the lower angle outward and at the same time raises the upper angle and sucker rod. When the stroke is made the weight of the sucker rod pulls the jack to its normal position. The steel jack is similar to the standard wooden jack except for materials and weight. (See Pl. XXII, B.) With the home-made jack the angles are reversed and the action is one of pushing. (See Pl. XXIII, A.) Light weight jacks cost about $\$ 10.00$ and heavy ones about $\$ 17.00$. Sometimes wells are so arranged that the working balance between sucker and surface rods is uneven. In this case adjustment is made by weights upon the jack to push the sucker rod down or by weights at other points to aid the pull-rod.

REMOVAL OF SALT WATER AND STEAMING OIL.

Salt water often accompanies the oil into the tanks and by difference in weight finds its way to the bottom where it is withdrawn by opening a bung-hole. It is the usual practice to run the oil into separating tanks where a siphon is so set that the oil runs one way into the lease tanks and the water flows in another direction into nearby streams. The oil often roils and assumes a yellowish color when it is pumped too hard. This is due to a suspension of sulphur which interferes with refining. The removal of the sulphur and other impurities is accomplished by precipitation with steam, usually for three hours in a 250-barrel tank. The sediment is piped away from the bottom of the tank to a shallow pit some distance from the buildings, where it is burned and prevented from polluting the streams. (See Pl. XXIV, A.) The waste pit is a shallow hole in the ground surrounded by a small dike. It is usually constructed at a lower elevation than the tanks in order to provide a flow by gravity. A recent investigation by federal officials has put a stop to running waste oil into streams. It is claimed that
the waste has killed many fish and contaminated the water in the Embarrass and Wabash rivers. During freshets, it has saturated the foliage and underbrush along their tributaries, and in several cases, this was later destroyed by fire. (See Pl. XXIV, B.) The pollution of the streams is not only unsightly but the waste becomes offensive after having stood through the heat of a summer. It is true, however, that the streams cannot be freed entirely from waste because the surplus salt water must be taken care of. The present system of burning has greatly minimized the problem.

The Approxinlate Cost of Oil Wells.

The following table presents the approximate cost of the first wells and the lease equipment in the various Illinois pools:

Cost of Wells and Their Equipment in Illinois.

Items.			Lawrence county.				
			产				位
	$\begin{array}{r} 360 \\ 80 \\ 950 \\ 90 \\ 150 \\ 1,220 \\ 1200 \\ 100 \\ 100 \end{array}$	- 500		\$ 500	\$ 500	\$ 500	8 500
${ }^{\text {Drilling... }}$ Drive-pipe		90800	750900900	$\begin{array}{r} 90 \\ 1,700 \end{array}$	$\begin{aligned} & 90 \\ & 2,800 \end{aligned}$	$\begin{aligned} & 90 \\ & 3,400 \end{aligned}$	$\begin{aligned} & 2,800 \\ & 90 \\ & 3,800 \end{aligned}$
Casing...							
Shooting..		${ }_{90}$	90	${ }^{1} 100$	2,100	, 100	
Tubing and pumping out		($\begin{array}{r}150 \\ 1,200 \\ 200\end{array}$	$\begin{array}{r}150 \\ 1,200 \\ \hline 200\end{array}$	- 2000	1,200	1,200	1,200
Power and boiler-house e							
Belting and lead lines.		250 100	250 100	100100	100100100	250100100	200100100
Incidentals.		100	100				
Total.	\$2,580	33,980	\$4,130	\$5,990	\$7,655	\$8,490	\$9, 190

The above figures may be increased considerably if trouble is encountered in drilling the well or if the well is situated at a considerable distance from transportation. The second and succeeding wells cost less than the first one by about $\$ 1,700.00$ in Clark county, $\$ 2,400.00$ in Crawford county, $\$ 2,300.00$ for those in the Bridgeport sand, $\$ 2,800.00$ for those in the Buchanan sand, $\$ 2,900.00$ for those in the Kirkwood sand, $\$ 3,500.00$ for those in the Tracey sand, and $\$ 3,800.00$ for those in the McClosky sand. The rig, drive-pipe, a portion of the casing, tanks and power and boiler-house equipment serve for several wells. The incidentals include the expenses of the operator and the cost of teaming, which is dependent upon available teamsters and the amount of work being done, but which averages $\$ 4.50$ per day. The weights of the various sizes of casing most commonly used are,

The general cost of drive-pipe, casing, tubing and rodding is as follows:

A.

B.
A. A third type of pumping-jack.
B. A town-lot well in Bridgeport, ill.

Cost of Well Supplies in Illinois.

	Diameterinches.	Cost per foot.
Drive-pipe.	16	\$3.25
Casing (No.50)	$12 \frac{1}{2}$	2.15
Casing (St'd)..	12	1.24 1.09
Casing.	$8 \frac{1}{4}$	0.728
Casing.	$6 \frac{5}{8}$	0.5195
Tubing.	$5_{1}{ }_{1}^{36}$	0.407 0.12
Oilline.	2	0.098
Gasline.	2	0.885
Sucker-rods	䂸	*4. ${ }^{4} .54$

* Per hundred feet.

An idea of the enormous amount of casing and supplies used in the Lawrence county district is presented in Plate XXX.

The Cost of Operating a Lease.

The cost of operating a lease does not vary noticeably in the several Illinois pools and indeed is often negligible when compared with the earning power of the wells. The high cost of development, the interest on the investment, and the expense of plugging wells are the barriers to be overcome, particularly in the deep sand areas of Lawrence county before profits accrue to the operators. The shallow fields of Clark county have been among the most profitable in the world because of the low cost of development and the high returns. On the other hand the deep wells of Lawrence county have been just as profitable perhaps, but the expense of development has been very high. This was overcome by a high and steady production. The Crawford county area has been a valuable and safe field because of the steady yield of the wells and a rather low cost of development. The first wells in any field usually hold up better than later wells and naturally produce more oil, probably because the openings were made permanent under stress or pressure, etc. The essential feature in operating is to overcome first cost and the interest on the investment. In the shallow fields eight wells steadily making two and even one barrel per day are found to be profitable. One company has operated 100 old wells for two years that yielded totally, 150 to 300 barrels per day. The total cost of operation was $\$ 600.00$ per month. The yield of oil gave an average net income of $\$ 3,000.00$ per month, with a maximum of $\$ \%, 000.00$ per month. The minimum cost of operating a lease should average about $\$ 120.00$ per month while the maximum should be about $\$ 160.00$. The pumper receives $\$ 66.00$ for care of a light lease and about $\$ 72.00$ for two small leases or a large one. The sum of $\$ 20.00$ is required for fuel, although the gas cost is usually low or nothing, and $\$ 30.00$ for teaming and supplies.

In a declining field, after the cost of development has been met, it has been found profitable to pump three or four wells of 5-barrel capa-
city. The monthly output from four 5 -barrel wells, after deducting a royalty of one-sixth, is 500 barrels. At the current price of 67 cents per barrel January 1, 1912, the income is as follows:
Five hundred barrels at 67 cents
$\$ 33500$
Cost of operating. 14000
Net income
$\$ 17000$
The net income from ten 5 -barrel wells or five 10 -barrel wells would be about $\$ 700.00$ per month.

INVESTMENTS IN OIL PROPERTIES.

Investments in oil properties fall naturally into two classes-those in the wild-cat, or unproven territory, and those in developed fields. One deals with chance and the other is largely a definite business venture.

An investment in a wild-cat scheme is at all times uncertain because there is no assurance of finding oil. Wild-cat work is necessary for the development of any oil territory, but it should be left, if possible, to those large companies which have a reserve fund for such purpose. These companies are in a position to drill several wells before oil is found or the venture abandoned. The basis of wild-cat work may be a geological study, surface seepage or a previous exploitation of some kind. The area in consideration is then leased, often in lots as much as 40,000 acres, which in case oil is found, would naturally protect the interests of the active operators. The only definite knowledge the prospecting company might have in unproven territory would be the result of the work of a competent geologist. This knowledge should lead the company from drilling in the basins, which would probably be full of salt water and afford little promise of the presence of oil, to raised structures where conditions for the accumulation of oil are more favorable. The drilling bit alone will give evidence of the actual presence of oil or its absence. The man of small means should, for his own protection, beware of venturing into new territory but should, if possible, join a responsible oil company that intends to purchase a proven property and develop it as such. He could lease and drill only in a limited area and one or two unsuccessful attempts would force him to abandonment. It has happened, however, that in some instances the small operator has been successful and has opened up a field, but experience proves that, generally, the case is otherwise.

Investments in developed fields are matters of calculation and judgment. A usual custom of a purchasing company is to send representatives into a field to carry on a ten-day gauge on those properties the buying of which is under consideration. At the end of this time the value of the property is rated at a definite amount per barrel of the average daily yield of the lease. The usual price per barrel for future production is about $\$ 400$, though it often reaches $\$ 500$ or more, if a property is particularly desirable. If a 40 -acre lease produces steadily 500 barrels of oil per day, the buying price would be 500×400 or $\$ 200,000.00$. Under this investment a property with a reasonable decline should pay for itself in about three years. There is some opportunity

A.

B.
A. A waste pit for burning waste oil.
B. The effect of fire from waste oil on streams.
of failure even in producing areas through a sudden drain of the sands or a flooding of the area with salt water.

The actual amounts of oil won per acre are variable. Some portions of the field have yielded 6,000 barrels per acre and are still producing, though not extensively. Other portions with wells equally good in initial production have yielded only 500 barrels or less per acre. One tract produced 10,000 barrels per acre and from another of 20 acres over a million barrels of oil were taken. The last was only possible because the owner built his own storage tanks and pumped constantly. It is evident that this shrewd gentleman secured some oil which would have gone to his neighbors had they been similarly provided with storage.

The deeper and more prolific sands of Lawrence county have yielded much greater quantities of oil and perhaps will continue to do so, because of the several producing sands and the remarkable staying qualities of the wells. This area will probably be productive for a good many years, as has been the case in the Appalachian region. The shallower fields to the north with one sand, or two or more lenses of the same sand, are already showing signs of decline. The combined daily output of the Clark, Cumberland and Edgar county wells on January 1, 1912, was about 9,000 barrels as against about 40,000 barrels in 190%. The Crawford county yield reached about 20,000 barrels daily, as against 100,000 barrels in 190%. The Lawrence county production has steadily increased since the first development and at the present time produces more than the rest of the counties combined and about double that of Crawford county.

Since the Illinois fields were discovered, many men wishing to invest have found that the field was completely leased and that the only opportunity to share in the business was to join an established company or to organize a new company to buy partially or wholly developed tracts. Even this has been difficult because of the enormous prices asked for good leases and the scarcity of stocks of organized and prosperous companies.

The transfer of oil properties has been common in the last two years and has comprised dealings in both developed and undeveloped leases. The Ohio Oil Company, the producing agent of the Standard Oil Company, has been the most active purchaser of producing properties in Illinois. It has recently bought out many large companies such as the Jennings Oil Company, Parker and Edwards, Riddle Oil Company, Brown and Hogue, The Lee Oil Company, The North Fork Oil Company, and other smaller companies. Before these purchases it owned and operated leases to the amount of about 40 per cent of the fields. Its total holdings now are probably more than 70 per cent of the total development. This company buys and stores more than 90 per cent of the oil of the State. How much of the production comes from its own leases is not known, but certainly not less than half.

BUYING, TRANSPORTING AND STORING OIL.

Buying Oil.

When the oil is steamed and ready ta be sold, the power man notifies the gauger of the Ohio Oil Company or the Indian Refining Company,
who determines the quality and quantity of oil on each lease. A report or "ticket" is made and signed by the gauger and lease man and copies are retained by each while an additional one is sent to the purchasing company's office. The purchasing company enters the report on its books and in a short time checks are made out individually to all parties interested in the transaction under what are termed division orders. A division order is a tabulated form including signed and sworn statements that the operator has a certain interest in a producing company or in a lease and that the landowner has a royalty, usually one-eighth of the oil. The division order is kept on file with the purchasing company. A producer can hold his oil in storage for two months, and at the expiration of that time checks are sent at the prevailing price. The purchasing company pro-rates its own leases as it does those of individual operators and issues royalty checks directly to the farmer. In all reports 3 per cent of the gauged oil is deducted for leakage, sediment and evaporation, which goes on continually until the oil reaches the refinery. This is a natural loss and is borne by all interested in the production.

The auditing department of the Ohio Oil Company, Marshall, Ill., has one of the most complete systems of its kind. The amount of work done by it is enormous, and its thoroughness is attested by the scarcity of complaints from either landowner or operator.

Transporting the Oil.

The Ohio Oil Company is not a common carrier of oil, but is a buyer. The old system of carrying oil at a certain rate in addition to storage has disappeared. During 190\% and 1908 the Ohio Oil Company built an extensive system of gravity pipe-lines for collecting oil from the greater part of the field. E. C. Bolton, chief engineer, made thorough detailed surveys of all the leases and all the stream courses through or near the field. Advantage was taken of the slope of the streams and pipe-lines were laid along them. Branch lines were run to each lease so that the oil, when released from the lease tanks, flows by its own weight into the general stream main, and down its course to a substation, where it is caught and pumped back through a larger main to the head pumping station at Martinsville, Ill. There are thirteen substations in the main fields and one at Sandoval,. Ill., located as follows:

Location of the Ohio Oil Company's Pumping Stations in Illinois. ${ }^{1}$

Order	Station-name.	Section.	Township.	County.
1	Martinsville.	7	Martinsville	Clark.
2	Stoy...	2	Oblong...	Crawford (see Pl X X V A)
3	Bridgeport	9	Lawrence	Lawrence (see Pl. XXVI).
4	Casey.....	17	Casey.	Clark.......
5	Cumberland.	20	Union.	Cumberland
7	North Fork.	1	Licking.	Crawford.
8	Martinsville Tank Farm	13	Casey..	Clark.
9	Bailey...	29	Martin.	
10	Muchmor	14	Oblong..	.do.....
11	Tracey.. Ackman.	13	Lawrence	Lawrence
13	Shipman.	11	Martin...	Crawford
14	Sandoval.	- 7	Sandoval.	Marion

[^17]
A.

B.
A. The Ohio Oil Company's pumping station, Stoy, Ill.
B. The Tidewater Pipe Line Company's pumping station, Stoy, 111.

Each station controls the area north of it to the next station. From the head station at Martinsville; the oil is pumped through one 12 -inch and two 8 -inch pipes across Indiana and Ohio to eastern refineries, and through one 8 -inch to Alton, Ill. The inter-state pipe-lines are pumped in relays, with sub-stations at Jamestown and Montpelier, Ind., and at Lima, Ohio. Oil is pumped at about 600 pounds pressure in the lines.

Gravity has displaced the old donkey pump that was formerly required on each lease, except in the extreme northern end of the field. The gravity lines extend northward within $21 / 2$ miles south of Casey. The donkey pump is still used in this area. The Ohio Oil Company pays one cent per barrel to the producers for steam used. The efficiency of the gravity system is twice as great as with steam and the cost is onethird as great. The cost of transfer by the gravity system is borne by the Ohio Oil Company. A regular force of men, aside from the company's corps of surveyors is kept at work improving and repairing the lines. The company keeps apace with new development and supplys new lines at fast as they are needed.

The Ohio Oil Company maintains engineering and surveying, discharge, and telegraph departments in its general offices at Marshall, Ill. The engineering and surveying department surveys and outlines sites for pipe-lines, pumping stations, tank farms, power-houses, district supply-houses, etc. It makes all field, farm, tank-farm, road and pipeline maps. In fact, this branch of the work covers completely all the phases of work connected with civil engineering. It is occasionally called upon to make plans of specially needed machinery, or the construction of some special type of building. As yet these departments have done little toward determining structural relations of the formations and working out geological problems dependent upon this phase of work.

The discharge department has charge of the pumping of oil. This division merely regulates and checks the pumping of the oil into and through the interstate lines. The telegraph department of the company consists of a complete system of telegraph lines to all portions of the field, thus bringing its large force of employees into close touch with headquarters. Wires are also maintained and operated to eastern offices.

Storing the Oil.

The production of the Illinois fields so far exceeds the capacity of pipe-lines that storage tanks have been established. Permanent tank farms are maintained at Martinsville, Stoy and Bridgeport. (See Pl. XXVII, A.) The sub-stations discharge the surplus oil to these tanks, where it lies until it can be pumped to the refineries. The Ohio Oil Company has 471 storage tanks which hold about 35,000 barrels each. These tanks are distributed in the oil producing counties of Illinois as follows:
Clark 235
Crawford 43
Lawrence 192
Marion 1
Total 471

The cost of each tank, including a circular dike for catching the oil in case the tank bursts or catches fire, is about $\$ 9,000.00$. The tanks are made of riveted steel plate, measuring $1 / 2$ inch thick at the bottom and on the floor, and 3-16 inch thick at the top. They are 95 feet in diameter and 28 feet $71 / 2$ inches high. The floor space is 7,200 square feet. The total investment in tank-farms and equipment is about $\$ 5,000,000.00$. Other large companies maintain tanks, but they are scattered singly over the field.

Lightning has occasional heavy losses on tank farms. At least one dozen tanks have been destroyed in the last two years. (See Pl. XXVIII.) Lightning pierces the tanks easily and sets fire to the gases and oils. In a short time the top of the tank drops in and the flames send up dense, black, curling smoke, which presents a most unusual and startling spectacle. It requires about 24 hours for the entire contents of a tank to boil over its sides and 50 hours for the fire to burn out. At the time of boiling the smoke and danger are greatest. If the wind should be blowing strongly, any buildings, timber, or nearby tanks would probably be destroyed. The Ohio Oil Company always rushes a large force of men to the scene of a fire and takes every precaution to minimize the loss by strengthening the dike and removing inflammable material. The nearest pumping station is called upon to connect with the burning tank and draw out as much oil as possible with safety, usually about half the amount in the tank. The loss by fire of a tank full of oil is about $\$ 20,000.00$. The heat thrown off from a tank fire is intense and the effect on the tank is disastrous. (See Pl. XXIX.)

Independent Oil Companies.

The independent operators and oil companies have been forced to rely on tank-cars for oil shipments until recently, or to sell to the Ohio Oil Company. Most of them have preferred the latter plan. The Tidewater Pipe Line Company, with the Associated Producers Oil Company, however, has recently built an 8 -inch line into the field and constructed a pumping station near Stoy, Crawford county, with a capacity of about 25,000 barrels daily. (See Pl. XXV, B.)

The Pure Oil Company which has been a large producer in this field, is said to have bought right of way for a second independent pipe-line. The Indian Refining Company of Cincinnati and New York has over 500 tank cars and 30 distributing stations, with refineries at Georgetown, Ky., Lawrenceville, and East St. Louis, Ill. ; a combined capacity of about 8,000 barrels per day. The Sun Oil Company ships by tank cars and sells its oil for fuel. The Missouri-Illinois Oil Co. operates in St. Louis, Mo. The Central Refining Company has a refinery at Lawrenceville and secures oil from its own leases. The other companies that make shipments from the fields are the Cornplanter Refining Company, W. F. Watson of Bridgeport, Ill., and Rogers and Dibble of Oil City, Pa. It is estimated that the independents are handling between 9,000 and 12,000 barrels of oil per day. The Robinson Oil Refining Co. maintained a small plant at Robinson until the latter part of 1908, when it fell into the hands of a receiver and has since been idle.

PRICES AND PIPE-LINE RUNS OF ILLINOIS OIL.

Prices of Illinois Oil.

The price of Illinois oil increased steadily from the opening of the field in 1905 to July of 1906. From 1907 to November, 1909, the decline was gradual. The price then remained steady for 18 months and since May, 1911, has begun to increase. From 1905 to 1907 inclusive all oil sold at one price, varying from 60 to 83 cents per barrel. A grading and division in price took place in 1908. The better grades of oil were found to lie between 30 and $35^{\circ} \mathrm{B}$, while that of the Duncanville pool lies between 22 and $23^{\circ} \mathrm{B}$. The Duncanville oil is sold only for fuel. The development of the Tracey and McClosky sands in Lawrence county gave still higher grades of oil, varying from 35 to $39^{\circ} \mathrm{B}$. The difference of gravities necessarily caused a division of price and since 1908, oil above $30^{\circ} \mathrm{B}$ has commanded one price while that below $30^{\circ} \mathrm{B}$ has commanded another. The following table gives the average monthly prices paid for Illinois petroleum from 1905 to 1910 , inclusive, as reported by Dr. D. T. Day and to January 1, 1912, the date of completion of this report, as supplied by the writer:
Average Monthly Prices of Illinois Petroleum, 1905-1911, Per Bbl. ${ }^{1}$

Month.	Year.										
	1905.	1906.	1907.	1908.		1909.		1910.		1911.2	
				Above $30^{\circ} \mathrm{B}$.	Below $30^{\circ} \mathrm{B}$.	$\begin{aligned} & \text { Above } \\ & 30^{\circ} \mathrm{B} . \end{aligned}$	$\begin{aligned} & \text { Below } \\ & 30^{\circ} \mathrm{B} . \end{aligned}$	Above $30^{\circ} \mathrm{B} \text {. }$	$\begin{aligned} & \text { Below } \\ & 30^{\circ} \mathrm{B} . \end{aligned}$	Above $30^{\circ} \mathrm{B}$.	$\begin{aligned} & \text { Below } \\ & 30^{\circ} \mathrm{B} \end{aligned}$
January		\$. 79	\$0.64	\$0.68	\$0.60	\$0.68	\$0.60	\$0.60	\$0.52	\$0.60	\$0.52
February		. 79	. $65 \frac{1}{1}$. 68	. 60	. 68	. 60	. 60	. 52	80.60	80.52
March.		. 79	. $67 \frac{1}{2}$. 68	. 60	. 68	. 60	. 60	. 52	. 60	. 52
April..		.805	. 68	. 68	. 60	. 68	. 60	. 60	. 52	. 60	. 52
May.		. 83	. 68	. 68	. 60	. 68	. 60	. 60	. 52	. 63	. 55
June.	30.60	. 83	. 68	. 68	. 60	. $67 \frac{1}{2}$. $59 \frac{1}{2}$. 60	. 52	. 65	. 55
July 60	. 823	. 68	. 68	. 60	. 63 3	. 55 尔	. 60	. 52	. 65	. 55
August....	. 60	. $71 \frac{1}{8}$. 68	. 68	. 60	. 62	. 54	. 60	. 52	. 65	. 55
September.	. 61	. 64	. 68	. 68	. 60	. 62	. 54	. 60	. 52	. 67	. 57
November.	. 64	. 64	. 68	. 68	. 60	. $61{ }^{1 \times 1}$. 531	. 60	. 52	. 67	. 57
December.	. 70	. 64	. 68	. 68	. 60	. 60	. 52	. 60	. 52	. 67	.57 .57
Average.	\$0.644	\$0.745	\$0.67375	\$0.68	\$0.60	\$0.64625	\$0.56625	\$0.60	\$0.52	\$0.6383	\$0.5466

[^18]
B.

A.
A. A portion of the Ohio Oil Company's tank farm, Stoy, Ill.
B. A cleaning rig.

The Princeton, Indiana, Sandoval and Carlyle, Illinois oils are above 30° B. and are controlled by the market price of the better Illinois grades.

Pipe-Line Runs and Stocks of Illinois Oil.

The annual statistics of the production of petroleum in Illinois are compiled by Dr. D. T. Day of the U. S. Geological Survey and comprise the pipe-line runs of the Ohio Oil Company, Tidewater Pipe-line Company, and the Indian Refining Company, and the tank-car shipments of the Sun Oil Company, Cornplanter Refining Company, Indian Refining Company, Missouri-Illinois Oil Company, Central Refining Company, W. F. Watson of Bridgeport, Illinois, and Rogers and Dibble of Oil City, Pa. The actual production of oil is the amount which has been run from the producers tanks into the tanks of the transportation company, whether it is a railroad company or pipe-line, and from thence discharged through general pipe-lines to various refineries. The shipments recorded in the oil journals each month are used merely as a check to make accuracy more certain. The federal survey has in contemplation the collection of oil and gas statistics directly from the producer, thus placing a check on the general figures.

SUMMARY TABLES.

The total amount of oil produced previous to 1905, when the main fields were opened up, is almost negligible in comparison with the present annual production. The following brief table gives the yearly production from 1889 to 1911 inclusive: ${ }^{1}$

Annual Production of Oil From Illinois Fields, 1889-1911.

[^19]The two following tables present the ranks of the various petroleumproducing states for the years 1905-1910:

Rank of petroleum-producing States, with quantities and percentages produced by each, from 1905 to 1911, in barrels.

[^20]

A 35,000 -barrel tank fire.

Table-Continued.

	State.	R ank.	Quantity.	Percentage.
	1908.1			
Oklahoma.		1	45, 798,765	25.65
California.		2	44, 854,737	25.13
Illinois.		3	33, 686, 238	18.87
Texas.		4	11, 206, 464	6.28
Ohio.		5	10, 858, 797	6.08
West Virgini		6	9, 523, 176	5.33
Pennsylvania		7	9, 424, 325	5.28
Louisiana...		8	5,788, 874	3.24
Indiana....		9	3,283, 629	1.84
Kansas		10	1,801, 781	1.01
New York		11	1, 160, 128	. 65
Kentucky		12	727, 767	. 41
Colorado..		13	379,653	. 21
Wyoming.		14	17,775	. 01
Utah....		14	17,75	. 01
Missouri. Michigan		15	15,246	. 01
Total.			178,527,355	100.00
	1909.1			
California.		1	55, 471, 601	30.28
Oklahoma		2	47, 859, 218	26.13
Illinois.		3	30, 898, 339	16.87
West Virgini		4	10,745, 092	5.87
Ohio..		5	10,632, 793	5.80
Texas.		6	9,534,467	5.21
Pennsylvania		7	9, 299, 403	5.08
Louisiana...		8	3, 059, 531	1.67
Indiana.		9	2, 296, 086	1.25
Kansas.		10	1, 263, 764	. 69
New York		11	1,134,897	. 62
Kentucky.		12	639,861	. 35
Colorado..		13	310,861	. 17
W yoming.		14		
Michigan.		15		
Missouri.		16	25,806	. 01
Utah..		17		
Total			183, 170, 874	100.00
	1910.2			
California.		1	73,010, 560	34.84
Oklahoma		2	52, 028, 718	24.83
Illinois.		3	33, 143, 362	15.82
West Virgini		4	11,751, 871	5.61
Ohio.......		5	9,916, 370	4.73
Texas.		6	8,899, 266	4.25
Pennsylvania		7	8,794,662	4.20
Louisiana.		8	6,841, 395	3.26
Indiana.		9	2,159,725	1.03
Kansas		10	1,128,668	. 54
New York.		11	1,053, 838	. 50
Kentucky.		12	468, 774	. 22
Colorado..		13	\} $\begin{aligned} & 239,794 \\ & 119,045\end{aligned}$. 12
W yoming		14		
Utah....		15		05
Michigan Missouri.		16	$\int 119,045$	
		17		
Total.			209,556, 048	100.00
	1911. ${ }^{3}$			
California		1	81, 134, 391	36.80
Oklahoma.		2	56, 069, 637	25.44
Illinois..		3	31, 317, 038	4.21
Louisiana.		4	10,720,420	4.86
West Virgini		5	9,795,464	4.44
Texas...		6	9,526, 474	$\begin{aligned} & 4.32 \\ & 4.01 \end{aligned}$
Ohio..	7	8,817, 112	

[^21]
Table-Concluded.

Rank of petroleum-producing States, with value of production and percentage of each, from 1905-1191.

	State.	Rank.	Value.	Percentage.	
	1905.1				
Ohio.		1	\$17, 054, 877	20.27	
West Virginia.		2	16, 132,631	19.17	
Pennsylvania.		3	14,653, 278	17.41	
Indiana..		5	9, 404, 909	11.18	
California.		5	8, 201, 846	9.74	
Texas..		6	7, 552, 262	8.97	
Ind an Territor		7	6,546,398	7.78	
Oklahoma.					
Louisiana.		8	1,601,325	1.90	
New York		9	1,557,630	1.85	
Kentucky		10	943, 211	1.12	
Colorado..		11	337,606	. 40	
Illinois.		12	116, 561	. 14	
Wyoming.					
Michigan.		13	54,865	. 07	
Total.			\$84, 157, 399	100.00	
	1906.1				
Ohio..			\$16, 997, 000	18.39	
Pennsylvania.		2	16, 596, 943	17.95	
West Virginia.		3	16,170, 293	17.49	
Kansas.......					
Indian Territor		4	9,615, 198	10.40	
California.		5	9, 553, 430	10.34	
Indiana..		6	6,770, 066	7.32	
Texas.....		8	6,565, 578	7.10	
Louisiana.		8	3, 557, 838	3.85	
Illinois..		9	3,274,818	3.54	
New York		10	1,995, 377	2.16	
Kentucky..		11	1,031,629	1.12	
Tennessee.		12	262,675	. 28	
Michigan.		13	53,890	. 06	
Total.		-	\$92,444, 735	100.00	
1907. ${ }^{2}$					
Oklahoma.					15.38
Kansas.....		2	17, 579, 706	14.64	

[^22]

Table-Continued.

[^23]
Table-Concluded.

The total production in Illinois, by months, for the last six years is given in the following table: ${ }^{2}$

Production of petroleum in Illinois, 1905-1911, by months, in bbls.

Month.	Year.						
	1905.	1906.	1907.	1908.	1909.	1910.	1911. ${ }^{3}$
January		55,680	781, 812	2, 703, 973	2, 668, 607	2,640, 303	2,578, 579
Februar		65, 208	956,399	2, 572,115	2, 510,548	2, 353, 684	2, 373, 229
March		19,352	1,547, 323	2,825, 491	2, 757, 794	2, 865,055	2,790,515
May.		267, 746	2,138,918	3,223, 515	2, 829, 277	2,860,760	2,731,965
June.	6,521	410, 655	1, 879,362	3,081, 848	2, 670,549	2, 746, 620	2, 634,521
July.	17,306	610,401	2, 422, 192	2,693, 288	2,728, 857	3, 229,787	2,740,654
August.	23,827	778, 464	2,446,042	2, 808, 667	2,719, 958	3, 007, 151	2,770,946
Septemb	26,586	722, 168	2,605,663	2, 675, 385	1,902,197	2, 850, 119	2,615,120
October	27,589	463, 819	2, 863,812	2, 709, 913	2, 560, 072	2, 768, 750	2, 638, 927
Novemb	34,611	350,985	2,510,146	2,479, 926	2, 497, 847	2,629, 132	2,400,670
Dece	44,644	549, 710	2, 255, 839	2,662, 427	2, 490, 418	2, 615, 201	2, 480, 949
Total.	181, 084	4,397, 050	24, 281, 973	33, 686, 238	30, 898, 339	33, 143, 362	31,317, 038

The following table shows the value of Illinois oil produced from 1905-1911:

[^24]

Production and value of petroleum in Illinois, 1905-1911, in bbls.

The following table presents kind and amount of petroleum produced in Illinois from 1909 to 1911, in barrels: ${ }^{1}$

The following table shows the pipe-line runs of the Ohio Oil Company in Illinois from 1905-1911, by months, in barrels:

Pipe-line runs. ${ }^{2}$

Month.	1905.	1906.	$19,7$.	1908.	1909.	1910.	1911.3

The table below gives the gross stocks held by the Ohio Oil Company, and the eastern lines operating in Illinois from 1907 to 1911, by months, in barrels:

[^25]Stocks of the Ohio Oil Company and Eastern lines in Illinois, 1907-1911, by months, in bbls.

Months.	Gross stocks.								
	$-\frac{1907 .}{\substack{\text { Ohio Oil } \\ \text { Co. } 1}}$	1908		1909.		1910.		1911.	
		$\underset{\text { Co. } 1}{\substack{\text { Ohio Oil } \\ \text { O. }}}$	Eastern lines. ${ }^{2}$	$\underset{\text { Co. }{ }_{\text {O }}^{\text {Ohio }} \text { Oil }}{ }$	Eastern lines. ${ }^{2}$	Ohio Oil Co. ${ }^{1}$	Eastern lines. ${ }^{2}$	$\begin{aligned} & \text { Ohio Oil } \\ & \text { Co. }{ }^{2} \end{aligned}$	Eastern lines. ${ }^{2}$
January .	2, 509, 598	14, 129, 954							
February	3, 040, 111	15, 069, 278		26, 203,238	3,389,803	28, 2856,243	$3,138,018$ $3,637,610$	$25,635,245$ $23,997,496$	$3,998,278$
March....	$4,117,635$ $5,528,759$	$15,975,633$ $17,420,534$	$2,919,608$ $3,189,075$	$26,630,509$ $26,856,675$	$3,726,418$ $3,580,142$	$28,373,855$ $28,593,365$	$3,637,610$ $3,210,907$	$23,997,496$ $24,005,010$	$3,941,079$ $3,141,490$
April...	7,117,033	19,077,020	2, 912,737	27,593,494	2,894,212	29,025,647	3,148,509	24,129, 388	3, 193,449
June...	8,448, 344	20,456, 387	3,049, 094	27, 899,220	2, 922,182	29, 106,098	3,724,919	23, 195, 749	3,744,088
July.	9,387, 999	21,036, 143	3, 452, 404	27,627,086	3,408,835	29, 198, 965	4,187, 362	22,714, 183	4,076,403
August	10, 355, 000	22, 267, 197	3, 203, 173	27,683, 334	4,071,808	29, 177, 382	4, 141, 713	22, 265, 928	3, 986, 160
September	12,557, 522	23,485, 690	2, 726, 5988	28, 399,427	3, 646,595	28, 879,676	4, 066, 122	21, 904, 719	3, 558, 641
October.	13, 724, 691	24, 396,787	2, 852, 588	28, 535, 636	2, 913,877	28, 492, 136	3, 455, 197	21, 359,482	2, 444,909
November	14, 275, 036	24,905, 168	3, 297, 260	28, 373, 985	2, 854,051	28,086,619	2,996,608	20, 211, 934	2,657,620
December	15, 571, 305	25, 252, 468	3,572, 263	28,671, 543	3,351,947	27,348, 358	3,240,387	19, 131, 678	

[^26]
A.

B.
A. A gas well.
B. A gas well with a water retainer.

The following table shows the quantity of petroleum shipped by railroad from the Illinois oil fields, 1906 to 1911, by months. The amounts were estimated by Dr. D. T. Day of the U. S. Geological Survey, on the basis of 7.16 pounds to the gallon in 1906, and from 296.476 to 321.17 pounds to the barrel in 1907 to 1911:

Rail shipments of oil from Illinois, 1906-1911, by months.

Month.	1906.1	1907.2	1908,3	1909,4	1910.5	1911.3

${ }^{1}$ Shipments were made from loading racks at Bridgeport, Oilfield and Stoy. The railroads were the Vandalia; the Baltimore \& Ohio; the Cincinnati, Hamilton \& Dayton; and the Indianapolis Southern.
${ }^{2}$ Shipments were made from loading racks at Duncansville, Lawrenceville, Stoy, Robinson, Bridgeport, Oilfield and Casey. The railroads were the Vandalia; the Baltimore \& Ohio; the Cincinnati, Hamilton \& Dayton; the Indianapolis Southern and the Cleveland, Cincinnati, Chicago \& St. Louis.
${ }_{3}$ Shipments were made from Duncansville, Lawrenceville, Stoy, Robinson, Bridgeport, Sparta and Casey. The railroads were the Vandalia; the Baltimore \& Ohio; the Illinois Southern; the Indianapolis Sou thern; and the Cleveland, Cincinnati, Chicago \& St. Louis.
${ }^{4}$ Shipments were made from Duncansville, Flat Rock, Lawrenceville, Stoy, Robinson, Bridgeport. Casey, and Sparta, the same railroads shipping in 1909 as in 1908. The number of tank cars shipped in 1909 was 11,820 .
${ }_{5}$ Shipments were made from Duncansville, Flat Rock, Lawrenceville, Stoy, Sandoval, Bridgeport, Casey and Sparta, the same railroads shipping in 1910 as in 1908 and 1909. The number of tank cars shipped in 1910 was 17,049.

The following table gives the statistics of field operations since 1905:
Number of wells completed and the total and average initial petroleum of new wells in Illinois, 1906-1911, by counties. ${ }^{1}$

1 Day, D. T., Mineral Resources of the U. S. for 1910, Part II, U. S. Geol. Survey, 1911, pp. 387-388.
${ }_{2}$ Compiled from files of Oil City Derrick. ${ }_{4}^{3}$ Includes 75 gas wells.
Numbcr of Wells Completed-1906-1.911-Concluded.

County.	Total initial production.						Average initial production per well.					
	1906.	1907.	1908.	1909.	1910.	1911.1	1906.	1907.	1908.	1909.	1910.	1911.
Bond.					25						25.0	
Clark..	31,060	20,385	6,953	3,219	1,802	811	26.5	20.9	23.3	24.0	22.8	19.7
Clinton Coles.						11,681 10	5.5					94.9
Crawford.	59, 204	84,163	46,694	44,379	26,382	9,802	5.5 66.1	7.0 34.2	23.5	10.6 25.5	16.2 27.8	5.0 26.5
Cumberland.	15,115	3,612	303	558	162	125	29.9	26.0	9.8	24.3	12.4	17.8
Edgar..	101	118	45	10			4.8	10.7	6.4	5.0	12.4	17.8
Jackson.				3						3.0		
Jasper.....				50	40	20				7.1	10.0	6.6
Mawrenein.	7,230	30,543	24,793	41,056 5	61,015	40, 432	50.6	49.2	36.2	61.5 5.0	102.7	86.7
Madison...				10		,				5.0 10.0		
Marion.				223	3, 760	4,025				37.2	110.6	91.4
Randolph....				145						72.5		
Saline $\mathrm{Miscellaneous}$.				3						3.0		
Miscellaneous.	23	28	50		5	6	5.8	5.6	10.0		5.0	3.0
Total	113, 012	139, 163	78,960	89, 756	93, 256	66,919	40.5	32.7	26.2	34.6	55.5	63.3

1 Compiled fiom files of Oil City Derrick.
Number of wells completed in Illinois, 1906-1911, by months. ${ }^{1}$

Number of dry holes drilled in Illinois, 1906-1911, by months. ${ }^{1}$

${ }^{1}$ Loc. cit.

Petroleum field report in 1910, by counties.

County.	Wells.			Acreage.		
	Productive, Dec. 31.	Abandoned	Drilling, Dec. 31 .	Fee.	Lease.	Total.
Clark.	2,341	124		1,065	58,515	59, 580
Coles...		1		140		715
Crawford.	6,652	217	15	913	102, 737	103,650
Eumberian	677 6	4		530	6,221 80	6, ${ }_{610}$
Jersey...						
Lawrence	2,411	38	30	329	80,615	80,944
Macoupin			1		23, 793	23, 793
Madison.					11,486	11,486
Randolph.	15		4	407	35,920	35, 920
Miscellaneous (undevel'd).					84,760	84,760
Total.	12,171	385	50	3,384	405, 195	408,579

On January 1, 1912, it was estimated that 19,982 wells had been drilled in Illinois. Of these 3,152 or 15.7 per cent were barren. There were 84 wells abandoned in 1910 and 198 in 1911. The abandonment of wells in the shallow fields has been under way since 1909 and is gradually growing as the sands are exhausted. Unless new wells from deeper pay sands or the extension of portions of the area are developed this field will probably be completely abandoned by the close of 1913. The deeper field of Crawford county is showing a decline, but its life will be much longer.

NATURAL GAS IN ILLINOIS.

Illinois produces a very small amount of natural gas in proportion to the immense quantities of petroleum. Her rank is eighth among gas producing states with the following preceding her in order: 1, West Tirginia; 2, Pennsylvania; 3, Ohio; 4, Kansas; 5, Oklahoma; 6, New York; 7, Indiana. The principal gas areas lie within the oil fields and the supply is used, chiefly, for field operations. Gas is used for domestic purposes in the towns within the oil belt and in several others near the fields. Gas is sold in Lawrenceville, Bridgeport, Pinkstaff, Birds, Flat Rock, Oblong, Palestine, Robinson, New Hebron, Porterville, Stoy, Hutsonville, Annapolis, Casey, Westfield and Martinsville, all being in or near the oil fields. Outside towns, such as Marshall, Vincennes, Indiana, Olney, and Sumner, are connected by direct mains with the fields. The majority of active oil wells produce small amounts of gas, which is collected in gas tanks on each lease. There are, however, sereral areas within the fields that yield high pressure gas wells, and these serve the commercial demand for the fuel. (See Pl. XXNI.) Such areas lie near Bellair, Hardinville in Honey Creek township, and north of Bridgeport. The gas comes, seemingly, in each case, from raised portions of the oil horizon. The following brief table shows the approximate depths of gas sands and the accompanying pressures:

List of gas-sands in Illinois fields, with depths and gas pressures.

County.	Depth in feet.	Pressure in pounds per square inch.	
		1908.	1910.
Bureau.	105-330	0-30	0-23
Champaign	80-130		
Crawford.	500-1000	25-400	20-225
Cumberland.	500-575	15-35	
DeWitt.	94-120		25-50
Edgar...	${ }_{900-1850}^{265-600}$		75-127
Lee.......	175-280	500-600	200-28
Pike.	100-893	$3-10$	4-10

Natural gas was found at a depth of 1,528 feet in Marion county during 1909-1910, at the time the Sandoval field was opened up. The original pressure was about 370 pounds to the square inch. Several wells adjoining the first one developed also produce gas at high pressures and the product of all of them is used for field operations and for domestic use in Sandoval.
A new gas area was tapped early in the year 1910, near Greenville, Bond county. The sand is found between 950 and 1,000 feet and is correlated with the Benoist sand of Sandoval and the Kirkwood sand of Lawrence county. Three wells yielded from 1,250,000 to $2,000,000$ cubic feet of gas daily. Several light-pressure gas wells were drilled near Jacksonville, Morgan county, during the year 1910. The yield came from a sand overlying the St. Louis limestone, at a depth of about 300 feet. The gas is odorless, colorless, and burns with a very hot, blue flame.

A gas area similar to the Jacksonville field was tapped in 1908, near Carlinville. Good pressures were secured. A gas, called "drift gas," has been obtained from the Pleistocene deposits over portions of northerncentral Illinois and used for the past 25 years. The pressure is usually slight and the lives of the individual wells are short. The depths, from which the gas comes, vary from 50 to 250 feet. Wells of this type have been drilled near Champaign, Princeton, Colchester, Wapella, Heyworth and elsewhere.

The following table records the natural gas development in Illinois from 1906-1910, according to B. Hill: ${ }^{1}$

Record of natural gas industry in Illinois, 1906-1910.

Year.	Gas produced.		Gas consumed.			Wells.		
		Value.	Number of consumers.		Value.	Drilled.		
			Domestic.	Industrial.		Gas.	Dry.	
1906.	66	\$ 87, 211	1,429	2	\$ 87, 211			200
1907.	128	143, 577	2,126	61		94	41	283
1908.	185	446, 077	27, 377	${ }^{2} 204$	446,077	121	42	400
1909.	194	644, 401	28,458	2518	644,401	56	11	414
1910.	207	613, 642	${ }^{2} 10,109$	2479	613,642	64	31	435

[^27]The following table prepared by Mr. Hill ${ }^{1}$ shows the total estimated value of natural gas in Illinois from 1885 to 1910, inclusive:

Production of natural gas in Illinois, 1885-1910.

[^28]Record of consumption of naturat gas from Illinois, 1908 to 1910.

APPENDIX-TABLES OF WELL DATA.

INDEX TO TABLES.

	Pages	
	From	To
Crawford county	186	283
Honey Creek township	186	196
Martin township	197	238
Oblong township	239	277
Robinson township	277	283
Lawrence county	283	436
Bridgeport. township	283	331
Christy township	331	332
Dennison township	332	364
Lawrence township	364	380
Lukin township		381
Petty township	382	436

Crawford County-Honey Creẹk Township.

			 10000						
：80			:ஜ:			:			
：＇／	$\begin{aligned} & \text { Oig } \\ & -1 \end{aligned}$:ঙ্めু			:			

命 12 Treat，Crawford \＆Treat 13 Treat，Crawford \＆Treat 14 Treat，Crawford \＆Treat Crawford \＆Treat

[^29]\qquad 1 Ohio． 22 Ohio． 3 Ohio．． le \％
0
0
0
0
H
0
＊Barrels per hour．
Crawford County-Honey Creek Township-Continued.

$\begin{aligned} & \text { Section } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Map } \\ & \text { No. } \end{aligned}$	Name of oil company.	Name of well.	Sur-faceele-va-tion-feet.	Sand.								Remarks.
					Name.								
N. W..													
	11	Ohio.	G. Kersey, No. 1.	464 \{	Robinson-1. Robinson-3.	$\begin{array}{r}814 \\ 885 \\ \hline\end{array}$	26 17	350 421	1,150	820 890		50	
	12	Ohio	G. Kersey, No. 2	462	Robinson-2.	855 885 88	11 15	393	1,107	860			Gas, 855 feet
		Riddle.....................			Robinson-3	8885	15 6	435	1,135	890		25	
			Mann, No.	48	Robinson-2.	885	30	415	1,085				
	14	Riddle.	Mann, No. 15	477	Robinson-1.	851 918 88	32 28	374 441	1,059			Show	
	15	Riddle.	Mann, No. 10	488 \{	Robinson-1.	864 925 868	19 10	376 437	1,124	869			
	16	Riddle	Mann, No. 9	496 \{	Robinson-1. Robinson-3.	866 958	10 28	370 462	1,130 1,038			40	
S. W..	1	Ohio	Frost, No. 1	484		1,203	28	719	1781		1,203	Dry	Salt wate
		Devonian		481	Robinson-1. Robinson-2.	845 920	5	364 439	1,136				
			Frost		Robinson-3.	945	13	464	1,036	951	1,212	Dry	Salt water, 958 feet
		Devonian	Frost, No	497 \{	Robinson-1. Robinson-2.	845 934	$\stackrel{22}{46}$	348 437	1,152		982		Gas, 845 feet Gas, 938 feet
		Devonian	Frost, No. 2.	487 \}	Robinson-1.	859	12	372	1,128			Show	
				492	Robinson-2 Robinson-1	876 857	43 7	388	1,111		929		
		Devonian.................	Frost, No. 3.		Robinson-2	869	148	377	1,123		1,017	Light	
S. E...		Treat, Crawford \& Treat. Treat, Crawford \& Treat			Robinson-1	863	40	380	1,120	870	. 914		
		Treat, Crawford \& Treat. Treat, Crawford \& Treat.	Boyd, No. 9 Boyd, No. 5.	506 494	Robinson-1	864	46	370	1,130	864	914		No sands. Well abandoned
		Treat, Crawford \& Treat.	Boyd, No. 4	481	Rodo......	855	55	374	1,126	864		${ }_{20}$	Well abanuoned
		Ohio.......................	Boyd, No. 1.	481 \{	-do-......	845 920		364 439	1,136				Gas, 845 f
			Boyd, Hrs. No. 2		Robinson-1	860	15	439	1,128	862		Dry	Salt wate
		Ohio	Boyd, Hrs. No. 3	482	Robinson-2.	887	13	405	1,095			25	

		Oon		
주ㄱㅜㅜㄱ	：			
± 12	－			
为家家	M్ఞ్రీ		Kan	

Crawford County-Honey Creek Township-Continued.

 -

Crawford County-Honey Creck Township-Continued.

T. Parker, No. 1 Johnson, No. 6.
J. Frost, No.
M. Frost, No. 1...
Davis, No. 2.....
Davis, No. 1. Reinochl, No. 3
A. Frost, No. 1......
M. Frost, No. 1.......
Purcell, No. 1........ Van Winkle, No. 1..
Sears, No. 1..
Clark, No. 6.........
Miller, No. 2.......
Miller, No. 1.......
Miller, No. 3..........
Doucommon, No. 2. Kennedy, No. 1......
Kennedy, No. 3..... Kennedy, No. 4......
Purcell, No.

${ }_{2} \mid$ Murphy. 3 Murphy. 4 Red Bank.	
1	Unknown.
1	Red Bank..
2	Crescent..
1	Ohio.
	Ohio
1	Shaffer
	Shaffer.
3	Shaffer.
1	Ohio.
2	Crescent.
1	Ohio
2	Associated P
3	Associated P
1	Red Bank..
1	Ohio
3	Red Bank
	Red Bank.
1	Red Bank..
	Ohio
	Ohi
	Ohio
3	Ohio
4	Ohi
5	Ohio
	Treat, Craw

Crawford County－Honey Creek Township－Continued．

Section No．	$\begin{aligned} & \text { Map } \\ & \text { No. } \end{aligned}$	Name of oil company．	Name of well．	Sur－faceele－va－tion－feet．	Sand．					Oil depth-feet.			Remarks
					Name．		す す． H． © © 						
$31-$ S．W．．．													
		Treat，Crawford \＆Treat．	Purcell No． 2	457 \｛	Stray．．．．．．．． Robinson－1．	816		359 406	1，141			G 10	
		Treat，Crawford \＆Treat．	Purcell，No． 1	455	Robinson－3．	900	67	445	1，055	925		10	Well abandoned
	9	Treat，Crawford \＆Treat．	Purcell，No． 3	470 \｛	Robinson－1． Robinson－4．	864	22	394	1，106	953		10	
	10	Leeper Bros．	Sparks，No． 7	455	Ropinson－1．	817 849	27	362 394	1，138	825		10	
	11	Leeper Bros．．．．．．．．．．．．．．	Sparks，No． 11	460	Robinson－1．	819	15	394 359	1，141		892		
	12	Leeper Bros．．．．．．．．．．．．．．	Sparks，No． 3	456	．．do．．．．．．．	822	9	366	1，134				
	13	Leeper Bros	Sparks，No	456	Stray	882		372 386	1，128	833			Gas
					Robinson－2	865	5	409	1，091		933		
	14	Leeper Bros．．．．．．．．．．．．	Sparks，No． 2	456	Robinson－1	823 837	12 18	$\begin{array}{r}367 \\ 377 \\ \hline\end{array}$	1，133		933	Dry	Salt water， 933 fee
	15	Ohio．	Reinochl，No． 3	460 \｛	Robinson－2．	888	14	428	1，072			35	Salt water， 945 fee
	16	Ohio	Reinochl，No．	454	Robinson－1	860 967	$\begin{array}{r}5 \\ 14 \\ \hline\end{array}$	406 513	1，094 987	967		15	
	17	Ohio	Reinochl，No． 5	453	Robinson－1．	835	55	382	1，118	838		60	Gas， 838 feet
	18	Ohio	Reinochl，No． 2	455	Robinson－3	941		486		954		25	Salt water， 975 fee
	19	Ohio	Reinochl，No．	457	-. do	930	40	473	1，027	940		56	$\begin{aligned} & \text { Gas, } 935 \text { feet, salt } \\ & 968 \text { feet.......... } \end{aligned}$
			Reinochl，No． 7										
	21	Ohio	Reinochl，No．	452	Robinson－4	945	22	493	1，007	948			Gas． 945 feet；sal 967 feet．
S．E．．．		Ohio	Clark，No． 4	459	Robinson－2	908	24	449	1，051	920		25	Gas， 908 feet．．．．．．．
		Ohio	Clark，No 5	458	．．do．	900	31	442	1，058	910		15	Gas， 900 feet
		Ohio	Clark，No． 3	466	．．do．．	919 890	36 22 22	$\begin{aligned} & 453 \\ & 419 \end{aligned}$	1，047	928		60	Gas， 924 feet．
		Ohio．	Clark，No． 1	471 \｛	Robinson	890 943	22	472	1，028	951		45	Gas， 895 leet
		Ohio．	Clark，No． 2	468	－．do．．	947		479	1，021	963		15	
	6	Ohio．	Clark，No． 7	469	．．do．	943	12	474	1，026	950		15	$\begin{aligned} & \text { Gas, } 944 \text { feet. Sal } \\ & 978 \text { feet......... } \end{aligned}$

:N

ब్नస్न

Crawford County-Honey Creek Township-Concluded.

Crawford County-Martin Township

Crawford County－Martin Township－Continued．

$\begin{aligned} & \text { Section } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Map } \\ & \text { No. } \end{aligned}$	Name of oil company．	Name of well．	$\begin{array}{\|c} \text { Sur- } \\ \text { face } \\ \text { face- } \\ \text { ele- } \\ \text { tion- } \\ \text { feet. } \end{array}$	Sand．					$\begin{aligned} & \stackrel{\otimes}{0} \\ & \text { I } \\ & \text { a } \\ & 0.0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$			Remarks．
					Name．	$\begin{aligned} & \stackrel{\leftrightarrow}{0} \\ & \stackrel{0}{0} \\ & 0 \\ & \stackrel{0}{0} \\ & \stackrel{0}{0} \\ & \stackrel{0}{0} \end{aligned}$							
${ }^{1-}$ N．E．．．				$\left.\begin{array}{l} 465 \\ 466 \\ 467 \end{array}\right\}$	$\begin{aligned} & \text { Robinson-1 } \\ & \text { Robinson-2 } \\ & \text { Don } \end{aligned}$	$\begin{aligned} & 818 \\ & 850 \\ & 820 \end{aligned}$		$\begin{aligned} & 353 \\ & 385 \end{aligned}$	1，147	820		400	Gas， 818 feet
	20		A．Kersey，No． 3										
	21	Ohio	E．Kersey，No． 2		Robinson－1 Robinson－2				1,136 1,116	835 880			Gas， 832 feet．．．．．．．．．．．．．
	22	Ohio．	E．Kersey，No． 3		Stray	800		${ }_{33} 3$	1，167				
	23	Ohio	E．Kersey，No． 1	464 \｛	Robinson－2． Robinson－3．	826 888	${ }_{13}^{7}$	${ }_{424}^{362}$	1,138 1,076 1	${ }_{890} 828$		30	Gest production， 8280 feet．
	24		A．Kersey，No．	465	Robinson－2．．	828	34	${ }^{463}$	1,137	850			
					Robinson－3 Robinson－1	$\begin{array}{r}894 \\ 806 \\ \hline\end{array}$	${ }_{8}^{8}$	${ }_{345}^{429}$	1，071	${ }_{812} 89$			Gas， 806 feet
			A．K	461	Robinson－3	881	19	420	1，080				Best production， 885 feet．
	26	Oh	J．Hudson，No． 1	473 \｛	Robinson－2．．	800 895	30 3	${ }_{422}^{327}$	1，173	820			G as， 800 feet．${ }^{\text {Salt water，}} 898$ feet．
	27	Ohi	M．Kersey，No． 6.	466 \｛	Stray ．．．．．．	785 890 80	5 ${ }^{5}$	312 424	1,181 1,076	890			
	28	Hazelwood	Wilson，No． 2	450	Robinson－1．．． Robinson－2．．	785 921	23 11	335 371	1,165 1,129		849		
					Stray	${ }_{7} 92$	5	321	1，179				
	29	Hazelwood．	Wilson，No． 4	451	Robinson－1． Robinson－2．	800 840	18 58	349 389	1，151	878			
					Robinson－2．	840	58	389		888	825		Gas， 840 ret．Salt water， 900 feet．．．．．．．．．．．
	30	Hazelwood．	Wilson，No． 3 ．	445	Robinson－1	782 782	33 18	${ }_{327}^{337}$	${ }_{1}^{1,173}$		825		
	31	Hazelwood．	Wilson，No． 5.	455 \｛	（exay．．．．．	858	${ }^{18}$	403	1.097	860	894		
N．W．．				$\begin{aligned} & 442 \\ & 442 \end{aligned}$	Robinson－1．	783 767	23	341 325				150	
		Reb Bank Ohio	F．Frost，No． 4	442	$\begin{aligned} & \text {..do.... } \\ & \text {.do... } \end{aligned}$	775	12	${ }_{332}^{325}$	1，168	770			Siate， 787 to 789 feet．
		Ohio．	F．Frost，No． 2	443	Stray	789		346	1，154		862		
		Oh	F．Frost，		Robinson－1． Robinson－3．	795 887		350 442				Dry	No second lens

2

Crawford County-Martin Township-Continued.

융 : : : :

Crawford County-Martin Township-Continued.

涊	号:	
	G్ర్ఠా	
		¢\%\%N
	:\%	
		¢

[^30]
Crawford County-Martin Township-Continued.

Crawford County－Martin Township－Continued．

Section No．	$\begin{aligned} & \text { Map } \\ & \text { No. } \end{aligned}$	Name of oil company．	Name of well．	Sur－faceele－va－tion－feet．	Sand．								Remarks．
					Name．				－E		Total depth－feet．		
$21-\overline{\mathrm{S} . \mathrm{E} . . .}$								404	1，096	856		800	Gas， 854 feet．Salt water，
								395	1，105	870		150	Gas， 850 feet，Salt water．
								392	1，108	850		1，000	Gas， 870 feet．．．．．．．．．．．．．．．．．．．
								397	1，103	865		800	Gas， 860 feet．Salt water，
								393	1，107	855		200	Gas， 850 feet．．．．．．．．．．．．．．．．．
								412	1，088	865		1，100	Gas， 865 feet．Salt water 870 feet．
							20	390	1，110	862	904		
							50 31	402	1，098		915		
							31 28		1，077				
							41	420	1，080				
$\begin{gathered} 22- \\ \text { N. E. } \end{gathered}$								374	1，126			Gas	Gas， 858 feet． $1,500,000$ cu．ft．gas from this wel
							68	416 371	1，084				Gas， 900 feet．．．．．．．．．．．．．．
								391	1，109				
								459	$\begin{aligned} & 1,041 \\ & 1,140 \end{aligned}$	943			
							20	395	1，105	890			
							10	445	1，055	925		35	
							27	403	1，097	873		50	
								384	1，116	882			
							－ 24	$\begin{array}{r}+86 \\ 374 \\ \\ \\ \hline\end{array}$	1，586				
							－	404	1，096	$\left\{\begin{array}{l}902 \\ 920\end{array}\right.$			

Cruwford County-Martin Township-Continued.

§ ：MNo

宅宅 号 운
$\begin{array}{ll}10 & 0 \\ 0 & 0 \\ \square & 0\end{array}$

13	Ohio	J．Birch，No． 3.
14	Ohio	J．Birch，No． 4
15	Ohio	J．Birch，No． 2
16	Morrison	A．\＆E．Birch，No． 3 ．
17	Morrison	A．\＆E．Birch，No．
18	Morrison	A．\＆E．Birch，No． 6.
19	Morrison	A．\＆E．Birch，No．
20	McArthur	Wasson，No． 13.
21	McArthur	Wasson，No． 14
22	McArthur	Wasson，No． 15
23	Morrison	A．\＆E．Birch，No． 5.
24	Morrison	A．\＆E．Birch，No． 2.
25	Morrison	Tohill，No． 7.
26	Morrison	Tohill，No． 6
27	Morrison	Tohill，No． 5
28	Morrison	Tohill，No． 4.
29	Morrison	Tohill，No． 1.
	Morrison	Tohill，No． 2
31	Morrison	Tohill，No． 3
	Brown \＆Hogue．	Wasson，No． 1
	Parker \＆Edwards	Tohill，No． 7
	Parker \＆Edwards	Tohill，No． 6
	Parker \＆Edwards	Tohill，No． 8
	Parker \＆Edwards	Tohill，No． 2
	Parker \＆Edwards	Tohill，No 1
	Parker \＆Edwards	Tohill，No． 3
	Parker \＆Edwares	Tohill，No． 4.
9	Parker \＆Edwards	Tohill，No． 5
10	Ohio	Tohill，No． 1
11	O2	Tohill，No． 2
12		Tohill，No．
13	Ohio．	Tohill，No． 3.
14	Ohio	Tohill，No． 4
15	Ohio	Tohill，No． 6
	Ohio	Tohill，No． 10

Crawford County-Martin Township-Continued.

Crawford County-Martin Township-Continued.

	Oh	Sparks, No. 4
21	Ohio	Sparks, No. 5
1	Red Bank	Mitchell, No. 3
	Red Bank	Mitchell, No. 2
3	Red Bank	Mitchell, No. 1
4	Ohio	. do
5	Ohio	Mitchell, No. 2
6	Ohio	Mitchell, No. 3
7	Ohio	McColpin, No. 7
8	Ohio	McColpin, No. 9
9	Ohio	McColpin, No. 13
10	Ohio	McColpin, No. 19
11	Ohio	McColpin, No. 15
12	Pure	Stewart Heirs, No.
13	Pure	Stewart Heirs, No. 4
14	Pure	Stewart Heirs, No.
15	Pure	Stewart Heirs, No.
16	Pure	Stewart Heirs, No. 2.
17	Pur	Stewart Heirs, No. 1
18	Peoples Oil and Gas Co..	Hopkins (lower 40), No. 4..
19	Peoples Oil and Gas Co..	Hopkins (lower 40), No.3..
20	Peoples Oil and Gas Co..	Hopkins (lower 40), No. 5..
21	Peoples Oil and Gas Co..	Hopkins (lower 40), No. 2..
22	Peoples Oil and Gas Co..	Hopkins (lower 40) No. 1 ..
	Smith, Neely \& Kerr	Shipman, No. 1
2	Smith, Neely \& Kerr	Shipman, No.
3	Crescent	Hooker, No. 3.
4	Crescent	Hooker, No. 2
5	Crescent	Hooker, No. 1
	Crescent	H

Crawford County-Martin Township-Continued.

:
:
:

Crawford County-Martin Township-Continued.

$\begin{aligned} & \text { Section } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Map } \\ & \text { No. } \end{aligned}$	Name of oil company.	Name of well.	Sur-faceele-va-tion-feet.	Sand.								Remarks.
					Name.								
$\stackrel{25-}{\mathrm{N}} \mathrm{~W} . .$	10	Mahutska..................	H. Weirich, No. 4...........	508 \{									
					Robinson-1.. Bobinson-2.		15	358	1,142				
	11	Mahutska.	H. Weiric	503	Robinson-1..	835	25	332	1,168			150	
			H. Weir	503	Robinson-2.	89	28	417	1,083				
		Mahut	H. Weirich, No. 9	484	Robinson 2..	${ }_{903}$	35	419	1,081	832			
	13	Mahutska	H. Weirich, No. 1	498	Robinson-1	842	13	344	1,156				
	14	Mahutska	H. Weirich, No. 7.	479	Robinson-1.	924	14	416	1,084			150	
		Red Bank	Smith, No. 3	493	Robinson-2	888	60	409	1,091			150	
		Red Bank	Smith, No. 2 " ${ }^{\text {" }}$	473 \{	Robinson-1.	815	11	342	1,158				
				473 \}	Robinson-2.	902	25	429	1,071			50	
		Red Bank	Smith, N	473 \}	Robinson-1	842	32	369	1,131				
		Red Bank	Maxwell, No. 3.	486	Robinson-1.	830	10	344	1,156				
					Robinson-2.	${ }_{785}^{912}$	15 24	426	1,074	912		10	
		Re		490	Robinson-1	852	12	362	1,138			25	
		Bed Bank	Maxwell, No. 2.	490	Stray......	815	15	325	1,175	820		25	
		Red Bank.		488	Robinson-2.	906 830	10 8	416 342	1,084				
		Ohio		$\left.\begin{array}{l}488 \\ 469\end{array}\right\}$	Robinson-3	918	18	430	1,070			50	
				469	Robinson-2	885	22	416	1,084				
	10	Ohio. Ohio.	Smith, No. 2 Maxwell, No.	480	Robinson-3	902	23	422	1,078			100	
	11	Ohio	Maxwell, No. 2	484 \{	Robinson-1	906 820	26	${ }_{336}^{423}$	1,077	832			
					Robinson-2	895	9	411	1,089				
		Ohi	Maxwell, No.	$483\{$	Robinson-1		18	${ }_{427} 31$	1,124 1,073				

	葴	：		：88
융앙				
宗守				¢

Crawford County-Martin Township-Continued.

OR:O
央国

4	Craw ford \& Milligan
5	Craw ford \& Milligan
6	Craw ford \& Milligan
7	Crawford \& Milligan
8	Crawford \& Milligan
9	Crawford \& Milligan
10	Crawiord \& Milligan.
1	Crawford \& Milligan.
12	Craw ford \& Milligan.
13	Craw ford \& Milligan.
14	Ohio
15	Ohio
16	Parker-Edwards
17	Parker-Edwards.
18	Parker-Edwards
19	Ohio
20	Ohio
1	Ohio
22	Ohio
23	Ohio
24	Ohio
25	Ohio
1	Morrison
2	Morrison
3	Morrison
4	Morrison
5	Morrison
	Morrison

Crawford County-Martin Township-Continued.

Crawford County－Martin Township－Continued．

$\begin{aligned} & \text { Section } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Map } \\ & \text { No. } \end{aligned}$	Name of oil company．	Name of well．	Sur－faceele－va－lion－feet．	Sand．					$\begin{aligned} & \stackrel{\oplus 0}{0} \\ & \text { I } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$			Remarks．
					Name．								
$26-$S. E..	22		Doucummen，No．4．．．．． Doucummen，No． 3.	． 487	Shallow．．．．．	$\begin{aligned} & 475 \\ & 998 \\ & 921 \end{aligned}$	$\begin{array}{r}5 \\ \hdashline-\quad 33\end{array}$	+1241434	1，512				
		Whitaker			Robinson－2．．				1,089 1,066				
					Robinson－3			${ }_{4}^{434}$	1，091	921			
					Robinson－3 Robinson－2	89	20	408	1，092		940		Quit in san
		Whitaker	D	487	Robinson－3．．	${ }_{82}^{91}$	26 10	431 334	1，069	918	944		sa
		Whitaker	Doucummen，No．	486	Robinson－3．．．	92	20	334 436 3	1，066	920	940		Quit in sand
		Ohio	Fry，No． 1	482	Robinson－1．	88	${ }_{22}^{20}$	${ }_{414}^{336}$	1，086				
		Ohio	Fry，No． 2		Robinson－1． Robinson－3	${ }_{91}^{82}$	14	338 438	1,162 1,070	920			
		Oh	Fry，No． 3	$488\}$	Robinson－1 Robinson－3	${ }_{92}^{83}$	27 12	${ }_{432}^{347}$	1，153			100	
		Ohi	Fry，No．	$\left.{ }_{488}^{485}\right\}$	Robinson－1． Robinson－3	829	12 25	335 410	1,165 1,090	900		128	Gas， 820 feet
		Ohio	Fry，No． 5	，	Robinson－3．	830	15 13 13	349 418	1，151	900			Gas， 830 feet
		Red Bank	Fry，No． 2 ＂R	484	R Robinson－1	81	3	326	1，174				
		Red Ban	Fry No． 2 ＂${ }^{\text {c }}$＂	477 \}	Robinson－1	83	1	355	1，145				
		Red B	Fry，No． 1 ＂${ }^{\text {B }}$		Robinson－1	82	3	337	1,163				
				487 \}	Robinnon－2 Robinson－1	90 81 81				902		75	
				478	Robinson－2 Rohinson－1	88	38	${ }_{346}^{410}$	1，090			100	， 830 fee
${ }^{27} \overline{\mathrm{~N}} . \mathrm{E} . . .$		Ohio Ohio \qquad	Fry	479 \｛		9083849484	$\begin{array}{r} r \\ \hline \\ 59 \\ 32 \\ 39 \end{array}$	184	22	$\cdots{ }^{\text {－}}$ 915		100	
			McColpin，No． 16.	$\left.\begin{array}{l} 489 \\ 482 \end{array}\right\}$	Robinson－ Robinson－3 Robinson－2				1， 1 1， 146	946			Gas， 946 feet

P\%	

Crawford County-Martin Township-Continued.

倧め : ్ㅐㅇ

\qquad

Crawford County-Martin Township-Continued.

Crawford County-Martin Township-Continued.

๓ ล ค

桼: :

Crawford County-Martin Township-Continued.

Crawford County-Martin Township-Continued.

 -

Crawford County-Martin Township-Continued.

앙	

Crawford County-Martin Township-Continued.

${ }_{18}^{17}$ Ohio.

Crawford County-Martin Township-Concluded.

Crawford County-Oblong Township.

Crawford County-Oblong Township-Continued.

		ㅅ్లㅇ	\%్ర్ర్ర్రు	¢్లㄲ్స్
:్mすJ		¢		N

Crawford County-Oblong Township-Continued.

$\begin{aligned} & \frac{3}{8} \\ & \frac{1}{0} \end{aligned}$	12∞	$\stackrel{\text { A }}{\text { A }}$
灰 ：응 ® 8	:er	¢
の	Ψ_{∞}	$\stackrel{18}{\infty}$

is
is
Crawford County-Oblong Township-Continued.

! !iN历

滑:	

Crawford County-Oblong Township-Continued.

Crawford County-Oblong Township-Continued.

:N尺尺

Crawford County-Oblong Township-Continued.

$\begin{aligned} & \text { Section } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Map } \\ & \text { No. } \end{aligned}$	Name of oil company.	Name of well.	Sur-faceele-va-tion-feet.	Sand.					$\begin{aligned} & \stackrel{ \pm}{0} \\ & 0 \\ & 0 \\ & \stackrel{0}{0} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$			Remarks.
					Name.								
N. E...		Wabash..................	Wekeman, No. 5....... Wekeman, No. 4	$\left.\begin{array}{l} 480 \\ 484 \end{array}\right\}$	Robinson-2 Robinson-3 Stray	921948858		$\begin{aligned} & 441 \\ & 468 \\ & 374 \end{aligned}$					
									1,126 1 1 1				
		Red Bank.	Sibley, No. 1 "B",		Robinson-1 Robinson-1 Robinson-2	$\begin{aligned} & 900 \\ & 938 \\ & 938 \end{aligned}$		415	1,085			50	
		Red Bank.	Sibley, No. 2 "B" ${ }^{\text {S }}$ "				3		1,044	940			
		${ }_{6}{ }^{\text {Red Bank }}$ Red Bank.	Sibley, No. 1 "R. B Sibley, No. 2 "R. B		Robinson-2 . do		3	465	1,044	${ }_{953}^{94}$		20	
		Ohio.	\|sibley, No. 1.	483 \{	Robinson-1.......	$\begin{aligned} & 987 \\ & 975 \\ & 945 \\ & 952 \end{aligned}$	6	445	1,055			330	Salt water, 995G a as 950 feet..
		Ohio.	Edwards, No. 10	481					$\begin{array}{\|} 1,008 \\ 1,036 \\ 1,032 \\ 1,032 \end{array}$	$\cdots 955$			
		Ohio.	Edwards, No. 2										$\begin{aligned} & \text { Gas } 955 \text { feet. Salt water, } \\ & \text { G90 feet } \\ & \text { Gas, } 975 \text { feet.......................... } \end{aligned}$
			Edwards,		Robinson-3 Robinson-4 Robinson-3 -do. o.	$\begin{aligned} & 973 \\ & 987 \\ & 978 \\ & 988 \\ & 980 \end{aligned}$			$1,005$	975	 5	
N. W..		Ohio.	Edwards, No. 6	483482485			$\begin{array}{r}12 \\ 12 \\ 9 \\ \hline\end{array}$	$\begin{gathered} 495 \\ \left.\begin{array}{c} 506 \\ 495 \\ 495 \end{array}\right\} \end{gathered}$	$\begin{aligned} & 1,005 \\ & 994 \\ & 1,005 \end{aligned}$	$\begin{aligned} & 980 \\ & 992 \\ & 984 \\ & 98 \end{aligned}$			$\begin{aligned} & \text { s, 980 feet............... } \\ & \text { s, } 990 \text { feet.. } \\ & \text { s, } 882 \text { feet. Salt water, } \\ & 90 \text { feet............... } \end{aligned}$
		Ohio.	Edwards, No.									123510	
		Ohio	Edwards, No								$\cdots .$		
		Ohio	Edwards, No. 9	382	Robinson-2 Robinson-3 Robinson-4	$\begin{array}{r} 980 \\ 960 \\ 990 \\ 1,003 \end{array}$	12	498	1,002	986			
		Mcbride	Berryhill, No. 9	492			${ }^{8}$	49814	$\begin{array}{cc} 1,00 & 990 \\ 1,002 & 990 \\ 1089 & 1,003 \end{array}$			Salt water Salt water
			Berryhill, No.		Robinson-2 Robinson-3 Robinson-3 Robinson-4	$\begin{array}{r} 1,003 \\ 965 \\ 992 \\ 967 \\ 996 \end{array}$	12		1,002			\cdots	
		7 McBride	Berryhill, No. 5.	477 \{			30	519	1, ${ }_{981} 101$				
		8 McBride	Berryhill, No. 10..	488	(eabins	$\begin{array}{r} 993 \\ 998 \\ 1,013 \\ 1, \end{array}$		$\begin{array}{r} 482 \\ 507 \\ 522 \\ 520 \end{array}$	$\left.\begin{gathered} 1,018 \\ 993 \\ 978 \end{gathered} \right\rvert\,$				ter
		9 McBride	Berryhill, No. 8	491						$\begin{array}{r} \cdots 98 \\ 1,013 \\ \ldots \ldots \end{array}$			
													$\text { ter, } 1$

Crawford County-Oblong Township-Continued.

骨：：\％

 ్సずす

[^31]

Crawford County-Oblong Township-Continued.

Crawford County-Oblong Township-Continued.

ন్సৃ్స
 -

Crawford County－Oblong Township－Continued．

$\begin{aligned} & \text { Section } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Map } \\ & \text { No. } \end{aligned}$	Name of oil company．	Name of well．	$\left\|\begin{array}{c} \text { Sur- } \\ \text { face } \\ \text { fece- } \\ \text { ca- } \\ \text { tion- } \\ \text { feet. } \end{array}\right\|$	Sand．								Remarks．	
					Name．									
10－ S．E．．． 11	21	Ohio．．．．．．．．．．．．．．．．．．．	Taylor，No． 2	$\left.\begin{array}{l} 480 \\ 482 \\ 487 \end{array}\right\}$		$\begin{aligned} & 803 \\ & 919 \\ & 921 \\ & 962 \\ & 927 \end{aligned}$								
					Stray． Robinson－3 Robinson－3 Robinson－4． Robinson－3 ．			${ }^{439}$	1，061	924	…			
								439 480	1，061	1－${ }^{\text {a }}$－ 930		30	Gas， 930 feet．	
	23	Ohio	Taylor，No． 3					440	1，060					
$\overline{\mathrm{N}}$ ．E．．．		Benedum \＆Trees．．．．．．	York，No． 1	506	Robinson－1．	916	28	410 1，090		938		Gas	Gas， 920 feet． $2,000,000$ cu．ft．gas	
				$493\{$	tray\qquad Robinson－3					$\cdots \cdots \cdot$				
			Meserv										10	
		Ohio	Meserve，No． 12	501	Robinson－3．	950	17	449	$\begin{aligned} & 135 \\ & \hline 132 \\ & 1292 \\ & \hline 1251 \end{aligned}$	$\begin{array}{r}961 \\ \times 954 \\ \hline 9\end{array}$		$\begin{gathered} \cdots i 0 \\ \cdots \\ \cdots \end{gathered}$	Gas， 954 feet Gas， 930 feet	
		Ohio．．．．．．．．．．．．．	Meserve，No． 1	$\left.\begin{array}{l}479 \\ 503\end{array}\right\}$	Robinson－1 Robinson－3	860 925		${ }_{4}^{381}$	1,119 1,054	930				
		Ohio	Meserve，No． 1 İ		Robinson－1 Robinson－3	8886 952 9	15 14 14	383 449	l， $\begin{aligned} & 1,117 \\ & 1,051\end{aligned}$			18		
		5 Ohio	Meserve，No． 10		Robinson－1．	998988898	191212	3733	1,127			r10150150		
		Ohio．	Meserve，No． 9		Robinson－3 Robinson－1			${ }_{379}^{433}$	1,067 1,121	$\begin{array}{r} \cdots 34 \\ 860 \\ 934 \\ 879 \\ 890 \end{array}$			Gas， 942 feet Gas， 859 feet Gas， 934 feet Gas， 874 feet alt water Gas， 890 feet G as， 940 feet	
		Ohio．	Meserve，No． 4		Robinson－3．	${ }^{934}$		${ }^{460}$	1，040					
		8 Ohio．	Meserve，No． 3	498 \｛	Robinson－1． Robinson－3．	970 885		${ }_{472}$	1，128					
		Ohio	Meserve，No． 8	$\begin{aligned} & 504 \\ & 500 \end{aligned}$	Robinson－1 ．．do．			381	1，119	$\begin{array}{r} 890 \\ 995 \\ 940 \\ 940 \end{array}$				
			Meserve，M					389						
		Ohio	Meserve，No． 6	491	Robinson－4		16	490	1，010				Gas， 940 feet Salt water Gas， 877 feet	
				499	Robinson－1 Robinson－3 Robinson－3	1,87976960939939		${ }_{3} 372$						
				$\left.\begin{array}{\|l\|l\|} 499 \\ 494 \end{array}\right\}$			$\left\|\begin{array}{c} \cdots_{15} \\ \cdots \\ \cdots \end{array}\right\|$	$\begin{aligned} & 377 \\ & 461 \\ & 366 \\ & 445 \end{aligned}$	$\begin{aligned} & 1,123 \\ & 1,059 \\ & 1,134 \\ & 1,055 \end{aligned}$		969	\ldots		
		E．Thomas	Griswold，No．											

！ஜ゙ ：：
：

 $\begin{array}{ll}0 \\ 0 & 0 \\ 0 & 0 \\ 0 & -1\end{array}$
Crawford County-Oblong Township-Continued.

$\begin{aligned} & \text { Section } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Map } \\ & \text { No. } \end{aligned}$	Name of oil company.	Name of well.	Sur-faceele-va-vion-feet.	Sand.					$\begin{aligned} & \stackrel{\circ}{0} \\ & \stackrel{1}{I} \\ & \stackrel{\rightharpoonup}{0} \\ & 0 \\ & \ddot{0} \end{aligned}$			Remarks.
					Name.								
${ }^{14}-\mathrm{N} \text { E... }$		2 Ohio......................	G. Taylor, No. 8.	497	Robinson-3..	961	29	464	1,036			100	Gas, 967 feet. Well aban- doned..............
				496	Robinson-	885		354	${ }^{1,104} 1$	893			Gas, 892 feet..............
N. W...		reat, Crawford \& Treat.		498	Robinson-1	900		411	1,098 1 1	900		25	
		reat, Crawford \& Treat.	Birch, No. 8	499	R obinson-4	990		491	1,009			Dry	
		3 Treat, Crawford \& Treat.	Birch, No. 7	500	Stray.......	${ }_{900}^{85}$		400	1,148	900			
					Robinson-2.	930	20	430	1,070	930		100	
		4 Treat, Crawford \& Treat.	Birch, No. 4	499	Stray.....	888		${ }_{38}^{359}$	1,113	886			
					Robinson-2.	925	21	${ }_{358}^{426}$	1,074	925		70	
		5 Treat, Crawford \& Treat.	Birch, No. 3.	500	Robinson-1	${ }^{895}$	${ }_{20}^{12}$	${ }_{4}^{395}$	1,105	${ }_{8}^{89}$		700	
		6 Treat, Crawford \& Treat.	Birch, No	496	Stray.....	${ }_{86} 93$	${ }_{369}$	1,131			0	The Stray sand in this vicinity varies from 3 to 7 feet in thickness
		Treat, Crawford \& Treat			Robinson-1.	890 850	67	${ }_{365}^{394}$	1,106	910			
		Treat.	B	485	Robinson-1	88	79	${ }_{362}^{382}$	cher 1118	914		750	
		8 Treat, Crawford \& Treat.	Birch, No. 5	500	Robinson-1	88		380	1,120	880			
					Robinson-2.	${ }_{86}^{91}$	30	${ }_{374}^{418}$	1,082	918		700	
		9 Treat, Crawford \& Treat.	Birch, No 6	495	(ex	880 890 98	26	381 385 425	1,126 1,075 1	8880			
		Treat, Crawford \& Treat.	Birch, No.	499		${ }^{863}$		${ }_{364}^{436}$	1,136			100	
		11 Treat, Crawford \& Treat.			Robinson-	888		381	1,119 1,125		950	50	
		-			Robinson-2	925	28	425	1,075	925			

Miller, No. 1 "RB" Miller, No. 1.. Miller, No. 2. Miller, No. 4
Miller, No. 6 P. Miller, No. 10 P. Miller, No. 6. P. Miller, No. 3. P. Miller, No. 1. P. Miller, No. 11 J. Taylor, No. 1 J. Taylor, No.
J. Taylor, No. $1 .$.
Hamilton, No.
 J. Taylor, No. 6.
J. Taylor, No. 2. Hamilton, No. 5. Hamilton, No. 4. P. Miller, No. 1. Hamilton, No. 3. Hamilton, No. 9. 14 Red Bank......................
 16 Wabash.. 18 Red Bank. 9 Ohio . 20 Ohio. ㅇ 23 tska. 25 Mahutska. 26 Mahutska. 27 Mahutska.

 का $\circ \circ$
000
000 $\frac{0}{0}$ 1 Ohio.
 $\frac{0}{0}$ 6 Ohio. 7 Ohio
Crawford County-Oblong Township-Continued.

Crawford County-Oblong Township-Continued.

Crawford County-Oblong Township-Continued.

Crawford County-Oblong Township-Continued.

Section No.	$\begin{aligned} & \text { Map } \\ & \text { No. } \end{aligned}$	Name of oil company.	Name of well.	$\begin{gathered} \text { Sur- } \\ \text { face } \\ \text { ele- } \\ \text { va- } \\ \text { tion- } \\ \text { feet. } \end{gathered}$	Sand.					$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \text { I } \\ & \text { a } \\ & 0.0 \\ & 0 \\ & 0 \end{aligned}$			Remarks.
					Name.								
$\begin{array}{r} 16-\mathrm{N} . \mathrm{E} . . \\ . \mathrm{W} . . \end{array}$		Ohio.	Haskins, No. 4.	450	Stray	814	18	364	1,136	818		200	Gas, 815 feet.
	10	Ohio......................	Haskins, No. 3 .	445	..do.	820	12	375	1,125	824		30	G as, 821 feet
		Treat, Crawford \& Treat.	Connett, No. 3	457	..do.	840	30	383	1,117			100	
		Treat, Craw ford \& Treat.	Connett, No. 4	457	.-do.	835		378	1,122		1,029	10	
	3	Treat, Crawford \& Treai.	Connett, No. 5	465	Robinson-1.	847 879	6	382	1,118				
		Treat, Crawford \& Treat.	Connett, No. 1	468 \{	Robinson-1.	879 1,062		411	1,089		1062	Dry	
	5	Treat, Crawford \& Treat.	Connett, No. 2	469	Robinson-2.	899		430	1,070			Dry	
	6	Featzer \& Copeland.	Good, No. 5	472	Robinson-1. Robinson-2.	871 900	$\begin{array}{r}7 \\ 15 \\ \hline\end{array}$	399 428	1,101				
					Robinson-3.	939	12	467	1, 033	945			Salt water, 946 feet
		Featzer \& Copeland......	Good, No. 2.	472	-. do..	922	32	450	1,050	930			Salt water, 950 reet
	9	Featzer \& Copeland.......		472	-.do..	942	19 26	474	1,026	935			Salt water, 954 feet Salt water, 950 feet
	10	Featzer \& Copeland.......	Good, No. 3	467	-do	932	18	465	1,035				
	11	Treat, Crawford \& Treat.	J. Good, No. 9	469	Robinson-2.	905	33	436	1,064	908		50	
	12	Treat, Crawford \& Treat.	J. Good, No. 12	471	Robinson-1.	890	78	419	1,081	943		50	
	13	Treat, Crawford \& Treat.	J. Good, No. 11	468	Robinson-2.	902	56	434	1,066	932		150	
	14	Treat, Crawford \& Treat.	J. Good, No. 13	468	Robinson-	917 978	18	449	1,051 989			100	
S. E...		Treat, Crawford \& Treat. Treat, Crawford \& Treat.	J. Good, No. 10 J. Good, No. 7.	465	Robinson-2. Robinson-1.	900	42	435	1,065 1,074	910		300	
	3	Treat, Crawford \& Treat.	J. Good, No. 4	469 \{	Robinson-	891 912	35	442	1,078	912		100	
		Bruner....................	Dewey, No. 6	470	Robinson-1	896	38	426	1,074	899		10	
		Bruner	Dewey, No. 7		S-do.	894	46	421	1,079	897	947		
		Bruner	Dewey, No. 2	475	Stray.....	821	25 39	346	1,154	886			
		Bruner. .	Dewey, No. 3.			881	56	417	1,083	884			

:os on

:

:\%iscrand wa్g
岗: : :
: : : : ix m

Crawford County-Oblong Township-Continued.

Crawford County-Oblong Township-Continued.

Crawford County-Oblong Township-Continued.

Fimp －ージーシ

13	Liberty Oil \＆Gas Co．．	Houghton，No．11．．
14	Liberty Oil \＆Gas Co．．	Houghton，No．10．．
15	Liberty Oil \＆Gas Co．．	Houghton，No．6．．
16	Liberty Oil \＆Gas Co．．	Houghton，No． 13.
17	Liberty Oil \＆Gas Co	Houghton，No． 9
18	Liberty Oil \＆Gas Co．	Houghton，No． 8
19	Liberty Oil \＆Gas Co．．	Houghton，No． $7 .$.
	Ohio	Woodworth，No． 11
2	Ohi	Woodworth，No． 10
3	Ohio	Woodworth，No． 19
	Ohi	Woodworth，No． 1.
	Ohio	Woodworth，No． 3
	Ohio	Woodworth，No．
7	Oh	Woodworth，No．
8	Ohio	Woodworth，No．
9	Ohio	Woodworth，No．
10	Ohio．	Woodworth，No． 9
11	Ohio．	Woodworth，No． 12
12	Ohio	Woodworth，No． 1.
13	Ohio．	Woodworth，No． 6.
	Ohio	J．H．Wood，No． 3.
2	Oh	J．H．Wood，No
3	Ohio	J．H．Wood，No． 2
4	Ohio	R．Wood，No． 15.

Crawford County-Oblong Township-Concluded.

Crawford County-Robinson Township-Continued.

9	Red Bank	Cortelyou, No. 1 "B".
10	Red Bank.	Cortelyou, No. 2 "B".
11	Red Bank	Cortelyou, No. 1 "R. B".
12	Red Bank	Cortely ou, No. 2 "R. B".
13	Ohio	Cortelyou, No. 1
14	Ohio	Cortelyou, No. 4
15	Ohio	Cortelyou, No 2.
16	Ohio	Cortelyou, No. 3.
17	Leeper	Furman, No. 1.
18	Leeper	Furman, No. 2.
19	Leeper	Furman, No. 3.
20	Leeper	Furman, No.
1	Davis	Dean, No. 1.
2	Davis	Dean, No. 2.
1	Leeper	C. Jones, No.
1	Davis	Dean, No. 2.
2	Davis	Dean, No. 1.
1	Ohio	G. Jones, No. 1..........
1	Ohio	Griswold, No. 1
1	Unknown	Griswold, No. 1.
1	Unknown	Combs, No. 1
	Central Oil \& Gas Co.	Dean, No. 1
2	Central Oil \& Gas Co.	Dean, No. 2....
3	Ohio	W. Jones, No. 1
	Ohio	W. Jones, No. 2
2	Ohio	W. Jones, No. 3
3	Superior	Richart, No. 1
4	Superior	Richart, No. 2
1	Jennings	Meserve, No. 1
2	Ohio	W akefield, No. 1
1	Ohio.	Wakefield, No. 2.

Črawford County-Robinson Township-Continued.

틍

[^32]Crawford County-Robinson Township-Concluded.

$\begin{gathered} \text { Section } \\ \text { No. } \end{gathered}$	$\begin{aligned} & \text { Map } \\ & \text { No. } \end{aligned}$	Name of oil company.	Name of well.	Sur-faceele-va-tion-feet.		Sand.								
					Name.	$\begin{aligned} & \dot{\oplus} \\ & \stackrel{0}{0} \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \text { व } \\ & \stackrel{0}{\circ} \\ & \AA \end{aligned}$				$\begin{aligned} & \stackrel{\oplus}{0} \\ & \stackrel{0}{1} \\ & \frac{1}{5} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$			Remarks.	
36- S. W..	10	Ohio.......................	W. Jones, No. $2 \ldots$	$506\{$	tray...........Robinson-3....	$\begin{aligned} & 888 \\ & 970 \end{aligned} .$	$\begin{aligned} & 382 \\ & 464 \end{aligned}$		$\begin{aligned} & 1,118 \\ & 1,036 \end{aligned}$	970			Gas, 968 feet. Salt water, 980 feet	
	11	Ohio	W. Jones, No. 1	486 \{	Stray......	858		372		1,128	953		15	
	12	Ohio	W. Jones, No. 7	513	Robinson-2	960	6	447	1, 053	960		20		
	13	Ohio	W. Jones, No. 3	486	Robinson-3	925		439	1,061 1,016	932		60	Gas, 925 feet	
	14	Ohio	W. Jones, No. 6	513	Robinson-1	929	4	416	1,084				Gas, 932 feet	
				513	Robinson-1	932	21 6	419	1,081	950		6		
			W. Jones, No.	488	Robinson-2	949	12	436	1,064	954		30	G as, 949 feet...	
	16	Ohio	W. Jones, No. 4	488	Robinson-1	898		410	1,090	900		75	Gas, 898 feet. Salt 922 feet	
	17	Ohio.	Warnock, No. 3	486						890			No record.	
	18	Ohio.	Warnock, No. 4 Warnock, No. 2							896			. .do.......	
	20	Ohio	Warnock, No. 1	496						891			..do.	
	21	Ohio	Walters, No. 13	522	Stray	889	15	377 365	1,123	901		75		
S. E...	1	Ohio. Ohio	Walters, No. ${ }^{2}$ Walters, No. 10	522		887	15	365	1,135			Dry	Salt water, 929 feet No record.	
		Ohio.	Walters, No. 5	522 \{	Robinson-1	940	25	418	1,082					
		Ohio.	Walters, No. 16	505	Stray.......	865 900	12	360 395	1,105	900		40		
		Ohio.	Walters, No. 9		Stray........	887	15	365	1,135					
		Ohio	Walters, No. 20	526	Robinson-2	973	10	447	1,053	973		20	Salt water, 986 feet	
			Walters, No. 18		Stray	874 877	26	371 359	1,129	874		60		
		Ohio.	Walters, No. 23	518 \}	Robinson-1	877 945 8	22	359 427	$\begin{aligned} & 1,141 \\ & 1,073 \end{aligned}$					
		Ohio	Walters, No. 22,	521		889 895 954	7 16	374 433	$\begin{aligned} & 1,013 \\ & 1,126 \\ & 1,067 \end{aligned}$	954		2	Gas, 898 feet	

$\begin{gathered} \text { Section } \\ \text { No. } \end{gathered}$	$\begin{aligned} & \text { Map } \\ & \text { No. } \end{aligned}$	Name of oil company.	Name of well.		Sand.								
				Sur- face ele- va- tion- feet.	Name.	Depth to top-feet.						Intial product-barrel	Remarks.
$1-\mathrm{N} . \mathrm{E} . . .$	1	$\left\lvert\, \begin{aligned} & \text { Snowden Bros........... } \\ & \text { Snowden Bros.......... }\end{aligned}\right.$	E. Fyffe, No. $2 \ldots$. E. Fyffe, No $5 \ldots$	524	Kirkwood... Bridgeport.. Buchanan "Gas"........ Kirkwoodi-1. Kirkwood-2. Kirkwood-3.	1,644 870 1,360 1,475 1,668 1,682 1,712	34 $\ldots \ldots$. $\cdots \cdots$. $\cdots \cdots$ 19 15	1,116 346 836 951 1,144 1,158 1,188	384 1,154 664 549 356 342 312	$\begin{gathered} 1,644 \\ \cdots \cdots \\ \cdots \cdots \\ \hdashline \cdots \cdots \\ 1,682 \end{gathered}$	$\begin{gathered} 1,678 \\ \cdots \cdots \cdots \\ \cdots \cdots \cdots \\ \cdots \cdots \\ \hdashline 1,727 \end{gathered}$		Salt water, 870 feet Salt water, 1,360 feet Salt water, 1, 475 fee Salt water, 1,668 feet

Lawrence County-Bridgeport Township-Continued.

Lawrence County-Bridgeport Township-Continued.

 テー～
© ©

Lawrence County-Bridgeport Township-Continued.

Lawrence County-Bridgeport Township-Continued.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{$$
\begin{aligned}
& \text { Section } \\
& \text { No. }
\end{aligned}
$$} \& \multirow[t]{2}{*}{$$
\begin{aligned}
& \text { Map } \\
& \text { No. }
\end{aligned}
$$} \& \multirow[t]{2}{*}{Name of oil company.} \& \multirow[t]{2}{*}{Name of well.} \& \multirow[t]{2}{*}{Sur-
face
ele-
va-
tion-
feet.} \& \multicolumn{5}{|l|}{Sand.} \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{Remarks.}

\hline \& \& \& \& \& Name. \& $$
\begin{aligned}
& \stackrel{\oplus}{0} \\
& \stackrel{0}{0} \\
& \stackrel{4}{4} \\
& \stackrel{0}{0} \\
& \stackrel{5}{0} \\
& \stackrel{\circ}{0}
\end{aligned}
$$ \& \& \& \& \& \& \&

\hline \multirow[t]{4}{*}{$6-$

N. E..} \& \multirow[t]{15}{*}{110} \& \multirow[t]{7}{*}{Snowden Bros.} \& \multirow[t]{7}{*}{Cummings, No. $9 .$.} \& \multirow[t]{7}{*}{496} \& \& \& \& \& \& 837 \& \& Show \&

\hline \& \& \& \& \& Bridgeport....... \& ${ }_{920}^{920}$ \& 12
30
20 \& ${ }_{4}^{324}$ \& 1,076 \& \& \& \&

\hline \& \& \& \& \& Bridgeport anci \& 976 \& 29 \& \& 1,020 \& \& \& \& Salt water, 990 feet.......

\hline \& \& \& \& \& Buchanan-1... \& 1,025
1,190 \& 145
25 \& 529
694 \& ${ }_{806}^{971}$ \& \& \& \& Hole full water, 1,065 feet.

\hline \multirow[t]{11}{*}{N. E..} \& \& \& \& \& Kirkwood-1...... \& - $\begin{aligned} & 1,412 \\ & 1.428 \\ & 1\end{aligned}$ \& \& \& 584
568 \& 1,428 \& \& Show \&

\hline \& \& \& \& \& Kirkwood-3... \& 1,460 \& \& \& 536 \& \& \& \&

\hline \& \& \& \& \& MeClosky \& 1,626 \& 36 \& 1,130 \& ${ }_{370}^{417}$ \& 1,650 \& 1,662 \& 400 \& Lime and sand. Gas,

\hline \& \& \multirow[t]{8}{*}{Snowden Bros..........} \& \multirow[t]{4}{*}{Cummings, No. 4.} \& \multirow[t]{4}{*}{501} \& Bridgeport-1. \& \& \& \& \& \& \& \& 1,638 feet.............

\hline \& \& \& \& \& Briageport-2..... \& ${ }^{955}$ \& 40 \& 444 \& 1,056 \& ${ }^{985}$ \& \& \&

\hline \& \& \& \& \& Bridgeport-3.... \& | 990 |
| :--- |
| 815 | \& 17

30 \& 489
384
3 \& ${ }_{1}^{1,186}$ \& - 835 \& 1,007 \& Show \&

\hline \& \& \& \& \& -.do.............. \& 880
930 \& 10
56 \& ${ }_{42}^{379}$ \& 1,1271 \& \& \& \&

\hline \& \& \& \multirow[t]{4}{*}{Cummings, No. 10.} \& \multirow[t]{4}{*}{501} \& Stray... \& 1,172 \& 15 \& 671 \& 829 \& \& \& \& alt water, 1,020 feet.......

\hline \& \& \& \& \& "Gas". \& 1,351 \& 22 \& \& 650 \& 1,351 \& \& Show \& Show of gas, 1,351 feet Salt water, 1,365 feet

\hline \& \& \& \& \& Stray........... \& 1,393
1,460 \& 25 \& \& ${ }_{5}^{641}$ \& \& \& \&

\hline \& \& \& \& \& MeClosky........ \& 1,675 \& 50 \& \& 326 \& 1,700 \& 1,752 \& \&

\hline
\end{tabular}

Lawrence County-Bridgeport Township-Continued.

 चiनiनiniनiनiनiनin̄iनiテi नiनi

べージーi
－जn－ \qquad

 ：
\vdots
\vdots
$\vdots 0$
0
0
0
0
0
0
10 0
1
0
0
0
0
0
0
0
0
$i n$ 0
\vdots
\vdots
0
0
0
0
0
0
0

 Buchanan．．．
Kirkwood．． Bridgeport－3 －do．．．．．．． E
末
E
亿
B
m Kirkwood． Buchanan．．
 $\left(\begin{array}{l}\text { Buchanan } \\ \text { Kirkwood－1 }\end{array}\right.$

 080
$0=0$
30
z
$=0$ 10
60
6
6
$\frac{4}{4}$
$\frac{4}{4}$

	Cullison，No． 1
	Cullison，No． 4
	M．L．Cooper，No． $2 . .$.
	M．I．Cooper，No．3．．．．．
	M．E．Cooper，No．3．．．．．
	M．L．Cooper，No． 4
	M．L．Cooper，No． 1
	J．W．Highfield，No．1．．．
	M．E．Cooper，No．
	M．E．Cooper，No． 2
	J．King，No． 24.
	J．King，No． 25.
	J．King，No． 23.
	J．King，No． 13.
	J．King，No． 12.
	J．King，No． 30.
	J．King，No． 9.
	J．King，No． 20.
	J．King，No． 32.
	J．Highfield，No． 2.
	J．King，No． 29
	W．King，No． 1
	W．Klng，No． 2
	J．R．King，No． 31
	J．R．King，No． 14.
	Lawson Lo
	Buchanan Hrs．，No．
	Buchanan Hrs．，No． 6
	Buchanan Mrs．，No．12．．
	W．R．King，No．
	W．Gray，No． 1.
	S．Bouchie，No．
	A．Griggs，
	Long，No． 1
	W．Finley，No． 33

$\dot{\omega}$	$\dot{1}$
$\dot{\omega}$	

寝

3 寝
Lawrence County-Bridgeport Township-Continued.

						Sand.							
$\begin{aligned} & \text { Section } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Map } \\ & \text { No. } \end{aligned}$	Name of oil company.	Name of well.	Sur- face ele- va- tion- feet.	Name.					$\begin{aligned} & \stackrel{0}{0} \\ & 0 \\ & 1 \\ & \stackrel{0}{0} \\ & 0 \\ & \ddot{0} \end{aligned}$			Remarks.
$7_{\mathrm{S}}^{\mathrm{S}} . \mathrm{E} . \ldots$		Shaffer \& Smathers...... Allshouse \& Son	W. Finley, No. 35..	$\left.\begin{array}{l}485 \\ 487 \\ 480 \\ 478\end{array}\right\}$	Kirkwood..	1,550	35	1,065	435	1,552	1,596	100	
	5		Long, No. 3		Kirkw ood-1.	1,549 1,615	38 15	1,062 1,128	${ }_{372}^{438}$				
	6	Allshcuse \& Son	Long, No. 2		Kirkwood-1..	1,556	41	1,076	424				
		Allshouse \& Son..........	Long, No,		Kirkwood-1.	1,565	45	1,087	413				
		Allshouse \& Son..........			Kirkwood-2.	1,631	43	1,153	347				
	8		Long, No. 8................	471	Kirkwood-2.	1,631	9	1,160	340 310				
					McClosky.	1,734	17	1,263	237		1,757		
		Allshouse \& Son	Long, No. 9		Kirkwood-2.	1,643	13	1,183	317				
	9				Stray..	1,685	5	1,225	275				
					Tracey....	1,747	19	1,287	213		1,766		
		Allshouse \& Son.........	Long, No. $11 ~$	460	Kirkwood-1	1,580	38	1,120	380				
	10				Tracey....	1,676	19	1,216	${ }_{2} 184$				
					McClosky.	1,762	10	1,302	198		1,783		
	11	Allshouse \& Son.........	Long, No. 7.................		Kirkwood-2	1,623	21	1,137	363				
					Kirkwood-3	1,662 1,734	$\begin{array}{r}8 \\ 14 \\ \hline\end{array}$	1,176	324				
	12	Allshouse \& Son.........	Long, No		Kirkwood-1.	1,563	37	1,074	426				
			Long, No. 6................		Kirkwood-2	1,619	13	1,130	370				
	13	Allshouse \& Son.........			Tracey....	1,730	8	1,230	270		1,860		
					Kirkwood-1	1,600	16	1,105	395				
	14	Allshouse \& Son.........	Long, No. 10...............		Kirkw00d-2	1,651 1,690	9	1,156	344 305				
					Tracey	1,712	8	1,217	283		1,732		

路 $\vdots \vdots \vdots$

Lawrence County-Bridgeport Township-Continued.

	Salt water， 960 feet．
	Salt water， 1,349 feet
	No． 2 redrilled
Show	Salt water， 820 feet．
Show	
80	
	Gas， 1,230 feet
75	Weli abandoned
125	Gas，1，244 feet．．
50	
60	
Show	Salt water，1，076 feet．．．．．
	Gas， 1,326 reet．．．．．．．．．．．．．．．
	Salt water， 960 feet 1，000，000 cubic feet gas daily．
	Gas， 1,258 feet， $100,000 \mathrm{cu}$ bic feet gas daily．
10	

\qquad

$\begin{aligned} & 0 \\ & 10 \\ & \end{aligned}$	تु	$\begin{aligned} & 0 \\ & \text { O } \\ & \text { O } \end{aligned}$	$\frac{8}{6}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	กis	$\begin{aligned} & \pi \\ & \hline 8 \end{aligned}$	$\hat{6}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\underset{\sim}{8}$	$\underset{\sim}{\infty}$	Sᄋ	${ }_{2}^{20} \underset{7}{-1}$	$\frac{0}{\pi}$	$\underset{H}{\mathbb{N}}$	$\underset{\sim}{N}$	$\stackrel{0}{7}$
：	；	；	；	；	；	，	；	，	；	：	！	；	：	；	：	，
：	：	：	：	：	，	：	：	：	！	：	：	：	：	：	：	
：	，	：	：	：	：	；	：	：	；	：	：	：	：	：	：	
：	：	：	；	：	：	：	：	：	：	；	：	：	：	：	：	，
，	，	，	，	，	；	，	：	：	；	：	：	，	：	，	，	
：	：	：	；	；	：	\therefore	；	；	；	：	；	；：	；	：	：	
，	：	：	；	；	；	：	；	，	，	，	：	：	；	：	；	
：	，	：	，	，	N	－			：	：		\cdots	：	：	：	
＋		๕్		0°	N	∞	ล	ヘ	\cdots	\cdots	＝－	ㄷ．10	ง	：	：	
\cdots	N	\cdots	\cdots										－1	co	20	∞
$\stackrel{\circ}{\circ}$	\bigcirc	$\stackrel{\circ}{\circ}$	\bigcirc	Z	Z	$\not Z_{1}^{\circ}$	$\begin{aligned} & \circ \\ & \text { Z } \end{aligned}$	$\not{ }^{\circ}$	z	Z	名名	Z Z	$\stackrel{\circ}{\circ}$	$\stackrel{\circ}{\circ}$	0°	0°
7	Z	Z	7										Z	7	Z	＇z
$\begin{aligned} & \text { Ẽ } \\ & \text { En } \\ & \text { ค } \end{aligned}$	$\begin{aligned} & \text { ぞ } \\ & \text { ต゙ } \end{aligned}$	ジシ	気		$\begin{aligned} & \text { B } \\ & \text { A } \\ & \stackrel{y}{n} \end{aligned}$	$\begin{aligned} & \text { 들 } \\ & \stackrel{1}{2} \\ & \dot{\circ} \end{aligned}$			$\begin{aligned} & \stackrel{8}{玉} \\ & \underset{\sim}{\sim} \\ & H \end{aligned}$	$\begin{aligned} & \text { B0 } \\ & \text { A } \\ & \text { - } \\ & \text { n } \end{aligned}$			$\underset{\sim}{\infty}$	E.	$\begin{gathered} \text { ² } \\ \text { n } \\ \text { ค } \end{gathered}$	会
，		，	－	＊	，	，	－	，	，	，	－！	，	，	！	，	
：	：	：	！	；	：	：	：	：	：	！	：：	：	：	！	，	
，	；	：	：	：	：	；	：	；	：	：	：	，	，	；	：	
：	！	：	：	：	：	！	：	：	：	！	：	：	：	：	：	
：	：	：	：	；	：	；	；	：	：	：	：：	；	，	：	：	
：	：	：	；	；	：	；	：	；	：	：	！：	：	！	：	：	
：	：	：	：	；	：	：	：	：	：	；	：	：	：	：	：	
：	：	：	：	：	：	：	：	：	：	：	：：	：	：	：	；	
：	：	；	：	：	：	：	：	：	：	：	：	：	：	：	：	
：	：	；	；	：	：	：	：	：	：	：	：	：	：	：	：	
，	！	！	！	：	：	：		：		：	：	：	，	：	：	
N	N	N												N		N
¢	$\underset{\sim}{\square}$	\％	¢	E	－	－．	］	－	－	d		ב	E	E	\square	ํ．
\downarrow	\square		\cdots	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc					\cdots	\cdots	$\stackrel{\square}{1}$
$\stackrel{9}{9}$	\pm	12	$\stackrel{1}{9}$	$\underset{\sim}{N}$	∞	9	ค	T	ก	ก	ホN¢	$\begin{gathered} \infty \\ \mathrm{N} \\ \hline \end{gathered}$	∞	¢	ल	\cdots

Lawrence County-Bridgeport Township-Continued.

		\％\％우웅						O		盛滑
:N :Nowipinil		\％	！	¢0\％	픙					：
통융응 겅 븐운윲		）으웅융	\％	倞品			Mig ix			Oisoig
		：	等	Pof						
		주역	18	¢			ర్రుగ్లర			－2\％

皆 気

Lawrence County-Bridgeport Township-Continued.

SectionNo.	$\begin{aligned} & \text { Map } \\ & \text { No. } \end{aligned}$	Name of oil company.	Name of well.	$\begin{array}{\|c} \text { Sur- } \\ \text { face } \\ \text { ele- } \\ \text { van- } \\ \text { vion- } \\ \text { feet. } \end{array}$	Sand.								Remarks.
					Name.								
$\begin{gathered} \text { S. W.. } \\ \text { S. E... } \end{gathered}$	34351	Lantz.	Zeller, No. 9...............	$481\}$	Bridgeport-3 Kirkwood Bridgeport-2 Bridgeport-3 Kirkwood-1. Bridgeport.	$\begin{aligned} & 972 \\ & 1,916 \\ & 1,944 \\ & 1,000 \\ & 1,515 \\ & 1,570 \\ & 1,895 \end{aligned}$	$\begin{array}{r} 116 \\ 54 \\ 46 \\ 179 \\ 38 \\ 20 \\ 25 \end{array}$	$\begin{array}{r} 491 \\ 1,035 \\ 475 \\ 531 \\ 1,046 \\ 1,101 \\ 451 \end{array}$	$\begin{array}{r} 1,009 \\ 465 \\ 1,025 \\ 969 \\ 454 \\ 399 \\ 1,049 \end{array} .$	i,534	1,577	50	Salt water, 1,012 feet Salt water, 1,000 feet
		5 L											
			Zeller, No. 10.............	$469\{$						1,520			
		1 Shaffer \& Smathers 2 Shaffer \& Smathers 4 Big Four 3 Shaffer \& Smathers								1,570	1,609	300	
				$\begin{aligned} & 444 \\ & 444 \\ & 441 \end{aligned}$						$\begin{array}{r}909 \\ \cdots \\ \hline-89 \\ \hline\end{array}$		$\begin{array}{r}45 \\ \hline-75 \\ \hline\end{array}$	
			$\begin{aligned} & \text { P. Finley, No. } 8 ~ \\ & \text { Lanterman Park, No. } \end{aligned}$		Bridgeport-2	$\begin{array}{r} 902 \\ 1,471 \\ 1,506 \end{array}$		$\cdots 444$		- ${ }^{89} 9$		75	No record............
		Big Four		${ }_{439}^{441}\{$	Kirkwoodi			$\begin{aligned} & 1,030 \\ & 1,065 \end{aligned}$	$\begin{array}{r} 1,0.56 \\ 1,0,039 \\ 1,039 \end{array}$	$\begin{array}{r} 1,47 i \\ 1,506 \end{array}$		$\begin{aligned} & \underset{\text { Show }}{\text { Show }} \end{aligned}$	
		Unknown..	Town Lot						${ }^{435}$				Red rock $1,1,460$ feee Well abandoned No record
		Rig Four.........	Lanterman Park, No. 2 P. Finley, No. 4		Bridgeport-2. -. do............	$\begin{array}{\|} \hline 888 \\ 881 \\ 888 \end{array}$	$\begin{array}{r} 32 \\ 35 \\ 35 \end{array}$	$\begin{array}{r} 450 \\ 439 \end{array}$	$\begin{aligned} & 1,050 \\ & 1,061 \end{aligned}$		$\begin{gathered} \cdots \cdots \\ \cdots \\ \cdots i 6 \\ \cdots \end{gathered}$ 75	
		Shafier \& Smathers.	P. Finley, No. 15.........	447	Bridgeport-2....		19	460	,040	915	936	40	
		Shaffer \& Smathers.	P. Finley, No. 13	440441448		907				$\begin{array}{r} 887 \\ 874 \\ 907 \\ 890 \end{array}$			
		Shaffer \& Smathers	P. Finley, No. 9		..do	$\begin{array}{r}873 \\ 872 \\ 902 \\ 885 \\ 887 \\ \cdots \quad .7 \\ \hline\end{array}$	$\begin{array}{r} 40 \\ 41 \\ 24 \\ 34 \\ 27 \end{array}$	$\begin{array}{r} 433 \\ 431 \\ 454 \\ 445 \\ 448 \\ \ldots \ldots \\ \ldots \end{array}$	$\begin{aligned} & 1,067 \\ & 1,069 \\ & 1,045 \\ & 1,055 \\ & 1,052 \end{aligned}$		$\begin{aligned} & 913 \\ & 912 \\ & 922 \\ & 919 \end{aligned}$	100 80	No record
		Shaffer \& Smathers.	P. Finley, No. 1	448	.-do.							100	weil abandoned........
		Big Four........	Lanterman Park,	438	..do.............								
		Unknown.	Lot.								$\begin{gathered} \text { Dry } \\ \text { Dry } \end{gathered}$	
		Ohio.	Booe, No. 6	${ }_{440}^{442}$	Briagaport-2....-.do........		41	42.	1.073	$\begin{aligned} & 876 \\ & 886 \\ & 886 \\ & 880 \\ & 902 \\ & 902 \end{aligned}$	$\begin{array}{r}916 \\ 926 \\ 932 \\ 922 \\ 935 \\ \hline 2000\end{array}$		
		Ohio.	Booe, No.				4554474442426	4254194334534534531,105	1,0751,0811,0671,0471,0471047395			125150Water$\cdots \cdots$	
		Ohio.	Booe, No. 9	442	-.do............								
		Ohio.	Booe, No. 2										
		Ohio	Booe, No.	$447\{$								-7ry	

 ○○ Z $^{\circ} 0^{\circ} 0^{\circ} 0^{\circ}+\vec{Z}$

 Thorn, No. No. 11

 욱
 -

 IZ ON 'unoqul

园
$d^{\text {z }}$
Lawrence County-Bridgeport Township-Continued.

[^33]Lawrence County-Bridgeport Township-Continued.

$\begin{gathered} \text { Section } \\ \text { No. } \end{gathered}$	MapNo.	Name of oil company.	Name of well.	$\begin{array}{\|c} \text { Sur- } \\ \text { face } \\ \text { ele- } \\ \text { va- } \\ \text { tion- } \\ \text { feet. } \end{array}$	Sand.								Remarks.
					Name.						$\begin{aligned} & \stackrel{0}{0 ँ} \\ & \text { T } \\ & \text { an } \\ & 0 \\ & 0 \\ & 0 \\ & \stackrel{\rightharpoonup}{0} \\ & \text { H. } \end{aligned}$		
$\text { 17- } \overline{\mathrm{N}} . \mathrm{W} .$		Ohio	Diver, No. 3.	469									No record.
	33	Ohio	Diver, No. 10.	464	Buchanan	1,272	68 20	808 827	692		1,341		
	34	Ohio	Diver, No. 8.	464	-.do.	1,291	88		6784		1,311		Salt water, 1,320
	35	Ohio.	Diver, No. 14	464	Kirkwood	1,537	72	1,073	427	1,545	1,626	150	
	36	Ohio.	Diver, No. 7	455	Kuchanan	1,284	43 19	829 1,071	471		1,545		
	37		Diver, No. 1	462	Buchanan.	1,276	72	, 814	686				
			I)iver, No. 5.	453	Kirkwood	1,526	28 27	1,064 817	438		1, 1297	300	
	39	Ohi	Diver, No. 2.....	464									No record
	40	Ohio.	Diver, No. 12.	464	Buchanan	1, 1,510	88 35	1,046	454	1,515	-1,553		
		1 Shaffer \& Smathers.....	W. E. Finley, No. 13	480	Buchanan	1,324	25	-844	656	1,326	1,349		
S. W..		2 Shaffer \& Smathers......	W. E. Finley, No. 10.	483	-.do....	1,320	30 105	837 839	$\begin{gathered} 663 \\ 661 \end{gathered}$	1,327	1,355 .1.		
		3 Shaffer \& Smathers.......	W. E. Finley, No. 14.	489 \{	Kirkwood-2.	1, 1,648	105 12	1, 8159	661	1, 1,648	1,706		No "Finley" san
		Shaffer \& Smathers.....	W. E. Finley, No. 11.			1,322	25	840	660		1,357		
		Shaffer \& Smathers..... Shaffer \& Smathers.	W. E. Finley, No. 21. W. E. Finley, No. 15	502 504	. . do.......	1,357	9 24	855 847	645		1,366		
		7 Shaffer \& Smathers.	W. E. Finley, No. 12	495	. do.	1,336	20	841	659		1,356		
		8 Ohio.......................	Clark, No. 6	508	. do.	1,365	18	857	643	1,370	1,383	150	
		9 Ohio.	Clark, No. 3.	515	- do.	1,355	${ }_{25}^{28}$	840 83	660	1,374	1,383	300	
	10	Ohio 1 Ohio.	Clark, No. 2.	505	-.do.	1,385	20	836 860	640	1,397	1, 1,405	400	
	12	2 Ohio.	Clark, No. 5	517	. do.	1,360		843	657	1,381	1,387	250	
	13	3 Ohio.	Clark, No. 1.	527	. do	1, 400	9	873	627	1,405	1,409	225	
	14	4 Ohio	Rogers, No. 8	512	- do	1,370	10	858	642	1,373	1,380	200	
		5 Ohio.	Rogers, No. 15 Rogers,	508 510		1,350		842 827	673	1,346	1,352	250	
			Rogers, No. 10	509	. do	1,325	15	816	684	1,328	1,340	200	
		8 Ohio.	Rogers, No. 14.	487	...do	1,317		830	670	1,325	1,329	300	

密

Lawrence County-Bridgeport Township-Continued.

Lawrence County-Bridgeport Township-Continued.

Lawrence County-Bridgeport Township-Continued.

 NN్二에

Lawrence County-Bridgeport Township-Continued.

Lawrence County-Bridgeport Township-Continued.

- - - -

祭ल

4్రిణ్ల్ల్ -iनin riniri

i -
जन नiनinininin

Lawrence County-Bridgeport Township-Continued.

 - - -ーテ

Lawrence County－Bridgeport Township－Continued．

						Sand．							
$\begin{aligned} & \text { Section } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Map } \\ & \text { No. } \end{aligned}$	Name of oil company．	Name of well．	$\begin{gathered} \text { Sur- } \\ \text { face } \\ \text { ele- } \\ \text { va- } \\ \text { tion- } \\ \text { feet. } \end{gathered}$	Name．								Remarks．
31－ S．W．． S．E．．．	16	Ohio．	Kimmel，No． 15.	539	Kirkwood．	1，550	38	1，011	489	1，552	1，597	75	Gas，1，555 feet．
			Kimmel，No． 18.		．．do．．．	1，555	31	1，018	482	1，558		75	
	18		Kimmel，No． 9.		－do．．．．．．．	1，543	20	${ }_{9}^{995}$	501	1，545	1，569	25	
		Ohi	S．Abernathy，No． 3	550 \｛	Kirkwood－1	1，545	16	995 1,013	505 487	1，551	1，786	25	
	$2{ }_{3}^{2}$	McAuliff Ohio．．．． Ohio．．．．	Cullison，Lot No． 1. Kimmel，No． 10 E．Combs，No． 5.	552 556 561	Kirkwood ＂Gas＂	1， 1,422	（？） 100	966	534	1，540	1,567 1,528	55	No recor
	4	Ohio	E．Combs，No． 4	546 \｛	Bridgeport．	1,860 1,458	$\begin{array}{r}20 \\ 5 \\ \hline\end{array}$	314 912	1， 188	860 1,458		25	
	5			546	Bridgeport．	1，995	15	449	1，051	1，000			
	6		Comb	546	＂Gas＂．．．．	1，375	11	829	671			G as	Gas，1，375 fee
		Ohio	E．Combs，No． 7.	546 亿	McClosky－2	1，699	9	1，153	347	1，699	1，717	300	
	8 9 10	D．Quinlan．	A．Combs，No． 1.	525									No record ．do．．．．
		D．Quinlan．	A．Combs，No． 2		McClosky－1		4						
	11	Ohio．	E．Combs，No． 8	520 \}	McClosky－2	1，642	4	1， 140	360		1，664	Gas	
	12	Ohi	E．Combs，No． 3	526	＂Gas＂．．．．	1,340 1,440	10	814 914	686	1，440		17	Gas，1，340 fee
	13	Ohio	E．Combs，No． 6	525	Kirkwood－1	1，439	11	${ }_{9}^{914}$	586	1， 439		140	Gas， 1,340 feet
			E．Combs，No． 1	526	＂Gas＂．．．．	1，345	${ }_{25}^{11}$	9819 819	681		1，370	Gas	Gas， 1,355 feet
	15	Ohio	E．Combs，No 9		Kirkwood．	1,450 1,685	10	914 1,149	586	1，690	1，700	75	Gas，1，685 feet
	16				McClosky－2	1， 450	125	1，916		1，090	1，	1	Gas，1，085
		Ohio．．．．．．．．．．．．．．．．．．．．	Kimmel，No． 16		Kirkwood－2	1，480	120	1,146 1,148					
					McClosky．	1,682 1,418	12	1,148 893		1， 1,483	1,692 .1 .1	80	$\begin{aligned} & \mathrm{G} \text { as, } 1,680 \text { feet } \\ & \mathrm{G} \text { as, } 1,418 \text { feet } \end{aligned}$
			Kimmel，No		Kirkwood－2．	1， 432	20	907			1，452		

 नiन नiन iनiनiन -

Lawrence County-Bridgeport Township-Continued.

 －

ーデーシーデーシージー

문 जिन்～i चinininin
 i नiniनin जनininini

๙	$=$	สั่	$\%$	12	\bigcirc	$\stackrel{\sim}{\sim}$	ฐ	ล่
\bigcirc	\bigcirc	$\stackrel{\circ}{8}$	$\stackrel{\circ}{\square}$	$\dot{8}$	\％	$\stackrel{\circ}{8}$	$\stackrel{\circ}{8}$	$\stackrel{\circ}{8}$
						$\begin{aligned} & \text { 部 } \\ & \text { 2 } \\ & \hline \end{aligned}$		

$\begin{gathered} \dot{\Delta} \\ \stackrel{y}{\omega} \end{gathered}$	$\begin{aligned} & \text { bu } \\ & \text { ó } \end{aligned}$	$\begin{aligned} & \dot{\sim} \\ & \stackrel{y}{0} \end{aligned}$	$\begin{gathered} \dot{\sim} \\ \stackrel{y}{0} \\ \hline \end{gathered}$	$\stackrel{\dot{\sim}}{\substack{0}}$	$\begin{gathered} \vdots \\ \stackrel{y}{\circ} \\ \stackrel{y}{c} \end{gathered}$	它	$\begin{aligned} & \dot{\omega} \\ & \stackrel{y}{L} \\ & \hline \end{aligned}$	
$\underset{\oplus}{\Xi}$	$\underset{-1}{\square}$	$\underset{=}{F}$	E	E	E	\％	\％	E
0	重	\％	\％	\％	O	\％	若	E
	an	唇	尔	．${ }^{\text {a }}$	\％		冎	$\underset{\sim}{6}$
$\stackrel{1}{-1}$	$\stackrel{\sim}{\sim}$	$\stackrel{9}{1}$	สิ	$\stackrel{\square}{\sim}$	สิ	¢	\cdots	$\stackrel{\text { ® }}{ }$

Lawrence County-Bridgeport Township-Continued.

Lawrence County-Bridgeport Township-Continued.

\%	궁	12	\%	$\stackrel{\infty}{13}$	\cdots	战	\%	$\stackrel{1}{2}$	กี
					$\begin{aligned} & \text { à } \\ & \text { o } \\ & \text { Z } \\ & \text {. } \\ & \vdots \\ & \vdots \\ & \hline \end{aligned}$		$\begin{aligned} & 7 \\ & 0 \\ & 0 \\ & \vdots \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		
				$\stackrel{\circ}{\square}$	$\stackrel{\circ}{3}$	亿	$\begin{gathered} \vdots \\ 0 \\ 0 \\ \hline \end{gathered}$	\%	$\stackrel{\circ}{0}$
$\stackrel{10}{1}$	$\stackrel{\square}{\square}$	$\stackrel{\sim}{7}$	$\stackrel{\infty}{\sim}$	9	\%	त	$\mathfrak{\sim}$	तี	\%

Lawrence County-Bridgeport Township-Continued.

Lawrence County-Bridgeport Township-Continued.

						Sand.							
$\begin{aligned} & \text { Section } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Map } \\ & \text { No. } \end{aligned}$	Name of oil company.	Name of well.	Sur- face ele- va- tion- feet.	Name.								Remarks.
32-	8	Ohio.......................		470 \{	Bridgeport..					785			
			Johnson, No. 5..............		. do.........	780 939 780	15 27	469	1,031	940 785		100	
		Ohi	Johnson, No. 1	472	..do..	782 890	18	310 418	1,190 1,082	785 895		50	
	10	O	Johnson, N	461	. do	865	21	404	1,096				
					-.do.	925 775	$\stackrel{25}{25}$	464	1, 1,187	930 780		75	
	11	Ohio.......................	Johnson, No		do.	927	18	465	1,035				
	12	Ohio	Griggs, No. 14.	458 \}	Kirkwood-1.	1,417	3	959 999	541 501	1,450		50	
	13	Ohio	Griggs, No. 20	457	Kirkwood-1.	1,431	7	974	526	1, 431			
	14	Ohio	Griggs, No. 11.	461	Kirkwood-2. Kirkwood..	1,464	8	1,007	493	1,464		100	
	15	Ohio.	Griggs, No. 21	458 \{	Bridgeport.	-867	23	409	1,091	${ }^{867}$		1	
	16			473	\because do- ${ }^{\text {Gas }}$ "......	910 1,358	17 24	4525	1,048	1,358		50	58 fee
			gs,		Kirkwood.	1,432	26	959	541	1, 437	1,467	100	
	17	Ohio	Griggs, No. 22.	463 \}	Bridgeport.	861 916	42 3	398 453	1,102	861		65	feet.
	18	Ohio	Griggs, No. 17.	468	-.do.....	881	13	413	1,087	881		170	
		Ohio	Griggs, No. 23.	467	..do..	786	125	319	1,181	$\left\{\begin{array}{l}790 \\ 890\end{array}\right.$		85	feet
	20	Ohio. Ohio.	Griggs, No. 10. Griggs, No. 24	465 474	Kirkwood.	1,432	37 22		533 1,076	1,432		200 80	
$36-\text { N. E... }$	21	Bridgeport	\|intolt, No. $2 .$.	498	Bridgeport.	898 1,558	22 30	1,060	1,076 440	898 1,560	1,589	80	

| ：$:$ ： |
| :--- | :--- | :--- |

 ージーシ ージ

응	$\frac{0}{10}$	$\overrightarrow{0}$	$\begin{array}{lll} \infty_{0}^{\infty} & 10 \\ \text { of } \\ \hline \end{array}$	$\underset{\sim}{\infty}$	잉ㅇㅇㅇ엉	표	8
$\begin{aligned} & \text { İ } \\ & \dot{\circ} \\ & \text { Z } \\ & \text { N } \\ & \dot{0} \\ & \text { in } \end{aligned}$	$\begin{gathered} \vdots \\ \dot{0} \\ 7 \\ 7 \\ N \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & \text { y } \\ & \text { N } \\ & 0 \\ & 0 \\ & \text { in } \end{aligned}$				$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & Z \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	
	3 0 0 0 0 0 0 0 0 0 0	\vdots \vdots \vdots \vdots \vdots 0 0 0 0 0 0		$\begin{array}{r} \vdots \\ \vdots \\ \vdots \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$		$\begin{aligned} & \vdots \\ & \vdots \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 001 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	Snowden Bros．．
\cdots	\bigcirc	\square	150 N	∞	の日ご	\square	\cdots

Lawrence County-Bridgeport Township-Concluded.

Lawrence County-Christy Township.

Lawrence County-Dennison Township.

Lawrence County-Dennison Township-Continued.

 -i~~

[^34]
Lawrence County-Dennison Township-Continued.

にi！－i゙ー

Lawrence County-Dennison Township-Continued.

Section No.	$\begin{aligned} & \text { Map } \\ & \text { No. } \end{aligned}$	Name of oil company.	Name of well.	Sur-faceele-va-tion-feet.	Sand.					$\stackrel{\rightharpoonup}{\otimes}$I范000			Remarks.
					Name.								
$3-\text { S. E... }$		Wheeler \& James. Ohio	Leighty, No. 2. Clark, No. 3.	$\begin{aligned} & 462 \\ & 454 \end{aligned}$	Shallow Stray	$\left\|\begin{array}{r} \cdots 00 \\ 750 \end{array}\right\|$			$\begin{aligned} & 1,454 \\ & 1,204 \end{aligned}$	- $\quad 300$	$\left.\begin{array}{\|c\|} \\ \ldots \ldots . . \\ \cdots \\ 1,031 \end{array} \right\rvert\,$	15	No record
5- N. W..			L. Jenner, No. 2	410	Kirkwood...	1,557	44				$\begin{aligned} & 1,602 \\ & 1,579 \end{aligned}$	$\begin{array}{r} \text { Dry } \\ 65 \end{array}$	G as, 1,548 feet
		Ohio.	L. Jenner, No. 1	409	-.do.......	1,540	39	1,131	369	$\begin{gathered} 1,548 \\ 1,554 \\ \hline \end{gathered}$			
		Jennings	A. Jordan, No. 1	411	Kirwood-2	1,548 1,604	19	1, 137	363 304		1,598		
S. W..	1	Ohio	E. Meagher, No.	419	Kirkwood.	1,578	32	1,159	341	1,584	1,615	Dry	Gas, 1,580 feet. Salt water, 1,612 feet. Salt water, 1,637 feet.
S.E...	1	Ohio	Murphy, N	412	..do.	1,541		1,129	371				
${ }^{6-}$ N. E...			Ackman, No. 3.................	412	..do.............	$\begin{aligned} & 1,537 \\ & 1,538 \end{aligned}$	$\begin{aligned} & 43 \\ & 41 \end{aligned}$	1,125	375		$1,612$	Dry	Salt water, 1,598 feet..... Gas, 1,542 feet.
	2			409	-do..........			1,129	371	$\mathfrak{1}, 642$	$\begin{aligned} & 1,612 \\ & 1,579 \\ & 1,577 \end{aligned}$		
	3		Shuey, No. 3.	410	-.do			1,138	362				
			Shuey, No. 4	418	.do	1,582	51	1,164	336	$\left.\begin{aligned} & 1,549 \\ & 1,612 \end{aligned} \right\rvert\,$	$\begin{aligned} & 1,577 \\ & 1,633 \end{aligned}$	$\stackrel{30}{\text { Dry }}$	Salt water, 1,631 feet Gas 1,612 feet
		Ohio	Shuey, No. 1.	410	. do.	1,550	29	1,140	360	1,550	1,579	150	G as, 1550 feet..............
		Ohio	Ackman, No.	412		1,552		1,140	360	1,552	1,587	75	G as, 1,552 feet............
		Ohio	Ackman, No. 5	413	. do	1,532	38	1, 119	381	1,548	1,570	130	G as, 1,547 feet..............
			Ackman, No.	415	..do	1,537	43	1,122	378	1,572	1,612	20	$\text { G as, } 1,572 \text { feet. Salt }$
N. W..	12	Ohio \qquad	Jordan, No. 2	$\begin{aligned} & 425 \\ & 423 \end{aligned}$		$\begin{aligned} & 1,548 \\ & 1,557 \\ & \hline \end{aligned}$	$\begin{aligned} & 50 \\ & 68 \end{aligned}$	$\left.\begin{aligned} & 1,123 \\ & 1,134 \\ & 1,131 \end{aligned} \right\rvert\,$	$\begin{aligned} & 377 \\ & 366 \end{aligned}$	$\begin{aligned} & 1,564 \\ & 1,565 \end{aligned}$	$\begin{aligned} & 1,600 \\ & 1,630 \end{aligned}$		G as, 1,567 feet.............
		Ohio	Jordan, No. 3 . . .	423			68		366 369				
			E. Leighty, No. 2	423 \{	Mcclosky	1,554	64	1,131	369 181 1		1,783	Dry	Salt water, 1,570 feet.....
		Ohio	E. Leighty, No. 1	424	Kirkwood.	1,565	20	1,141 476	359 1,024		1,816	Dry	
		Ohio	E. Leighty	424	Buchanan.	1,235	105 23	861 1,127	639 373 3				
					Kirkwood-1	1, 602	18	1,178	322	1,604	1,620	100	G as, 1, 602 feet
		6 Ohio	Shuey, No. 2.	422								Dry	Salt water, 1,562 fee

Lawrence County-Dennison Township-Continued.

3	\geqslant	A	宔
\dot{z}	$\dot{\sim}$	$\dot{\square}$	12

Lawrence County-Dennison Township-Continued.

Irwin, No. 2..	
Irwin, No. 5........	
Irwin, No. 3	
Irwin, No. 1......... T. Gillespie, No. 5. T. Gillespie, No. 19 T. Gillespie, No. 16.	
T. Gillespie, No. 13.	
T. Gillespie, No. 11.	
Ryan, No. 8......... Ryan, No. 9.........	
Ryan, No. 12.	
Ryan, No. 13.	
Ryan, No.3........	
Ryan, No.1....... School House Lot G. Ryan, No. 4.....	
G. Ryan, No. 11....	
$\text { G. Ryan, No. } 10 \ldots$	
G. Ryan, No. 7\qquad G. Ryan, No. 6..... G. Ryan, No. 5.....	
G. Ryan, No. 2.....	
T. Gillespie, No. 3. T. Gillespie, No. 6.	
	T. Gillespie, No. 23.

Lawrence County-Dennison Township-Continued.

200 G as, 1,526 feet.	
260	G as, 1,538 feet.
250	G as, 1,556 feet.
	Gas, 1,568 feet. Well abandoned.
25	G as, 1,574 feet............
35	G as, 1,561 feet.
15	
$\begin{array}{r} 35 \\ 125 \end{array}$	G as, 1,585 feet.
	G as, 1,539 feet.
35	Gas, 1,537 feet.
Dry	No record
	30
$\begin{array}{ll} & 20 \\ \text { Show } \end{array}$	Gas, 1,584 feet. Tracy sand absent.
	Salt water, 1,900 feet.
$\begin{array}{r} 7 \mathrm{Ory} \\ 50 \end{array}$	
45	Gas, 1,565 feet
200	G as, 1,595 feet.
Show	
Dry	Salt water, 2,070 feet
Dry	No record
	\mid
20	
30	Gas, 1,600 feet
	Dry weli
Dry	Salt water, 2,004 feet.
	Salt water, 1,615 feet Salt water, 925 feet
	Salt water, 925 feet.
	Salt water, 1,875 feet.
	Gas, 1,855 feet. Well abandoned.

- - - = - -		-i

OOO O

$\frac{000}{01-\infty 0}$
0
0
0 3
$=$
$=$ \% ${ }^{\circ}$ \vdots
\vdots
0
0
0
0
0
0
0
0
0
0 1 Central Refining Co © $\frac{}{3}$
$\frac{0}{6}$ 0
0
0 윽
Lawrence County-Dennison Township-Continued.

 न

Lawrence County-Dennison Township-Continued.

8	苛		$\stackrel{10}{20}$	E	$\stackrel{\sim}{\square}$	\％	$\stackrel{\otimes}{7}$	号	8
			$\text { V andermark, No. } 14 .$			$\begin{aligned} & 0 \\ & \dot{0} \\ & z \\ & \dot{x} \\ & \frac{x}{0} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$			－
$\frac{0}{5}$.							¢	\％
\cdots	\checkmark		\bigcirc		～	\cong	\pm	$\stackrel{10}{7}$	

Lawrence County-Dennison Township-Continued.

Lawrence County-Dennison Township-Continued.

 $\rightarrow x+\cdots \rightarrow+x$

[^35]Lawrence County－Dennison Township－Continued．

	＇spureq－ұonpoud［equi	$\%$			ล		¢om＇diad	洨
				：	哭			：＇9\％
		88 \％		（\％）9080	ㅇ：10			
				od	욱증ํํ		국	落
						W"tion		
			¢	Toun\％o	!o		প্র !ল্ল্ল:-	
登			，			OROM	चininn	
		柔 点	吕	$\stackrel{\text {＊}}{+}$	产	\％		
			$\begin{aligned} & \dot{1} \\ & 0.1 \\ & \hline 0 \end{aligned}$	O	Bi	응		Oٍ
	gigiz	13	\pm	$\stackrel{\sim}{\sim}$				
		$\frac{1}{\sigma} \stackrel{a}{\omega}$					$\begin{aligned} & \dot{=} \\ & z \end{aligned}$	

	윰

1
$\dot{1}$
in
$\underset{\sim}{\underset{\sim}{z}}$ 安
Lawrence County-Dennison Township-Continued.

$55 . \mathrm{G} \mathrm{as}, \mathrm{1,010} \mathrm{feet}. \mathrm{}. \mathrm{}. \mathrm{}. \mathrm{}. \mathrm{}. \mathrm{}. \mathrm{}. \mathrm{}. \mathrm{}$.	
20	Gas，1，000 feet．
20	
60	Gas，1，000 feet．
	Salt water
135	Gas，1，600 feet．Quit in sand
45	Gas， 995 feet．
125	G as， 999 feet．
50	G as， 990 feet．
	Gas，well abandoned
60	Gas， 978 feet．．．．．．．．．
100	G as， 965 feet．
50	G as， 953 feet
35	Gas， 948 feet
35	Gas， 981 feet．Quit in white sand．
60	G as，1，005 feet．
100	G as，1，001 feet
30	
90	Gas， 990 feet．Quit in sand．
90	G as， 993 feet
45	G as，1，010 feet．
	Salt water
Dry	
	No record
150	G as， 975 feet
65	G as， 995 feet
75	
150	G as， 972 feet
200	Gas， 985 feet
60	Gas， 965 feet
10	Gas， 962 feet
75	Gas， 975 feet．
50	Gas，1， 019 feet
Dry	
60	Gas， 992 feet
15	Salt water，1，035 feet． Well abandoned．．．．．．．
	Gas，1，572 feet
	G as，1，685 feet．
1，440	Gas，1，806 feet
	22 f

NM M M	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	엉	Nㅜㅇ웅		
		$1510 \div$	$\rightarrow \operatorname{Hin}_{4}^{\infty}$		

$0 \cdot$	．		O．0．0	O．	．	O－O 0 O 0 O	
	\％			コ่コ	I		
0000	\bigcirc	000000000	0000	00	\bigcirc	200000000000000	
－\％o			Nアザ		\cdots		

Lawrence County-Dennison Township-Continued.

$\begin{aligned} & \text { Section } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Map } \\ & \text { No. } \end{aligned}$	Name of oil company.	Name of well.	Sur-faceele-va-tion-feet.	Sand.								Remarks.
					Name.								
$35-\text { N. E... }$	4	Ohio.	Ryan, No. 1	465	Bridgeport.	904	52	439	1,061	925	956		Gas, 904 feet. Gas, 2,000,
		Ohio.	Ryan, No. 2	472		925	58	453		940	983	150	G as, 931 feet............
	6	Ohio.....	Ryan, No. 3.....	505 487	-	982	33	477	1,023	988	1,021	125	No record
	8	Big Four	L. Gillespie, No. 17	487									Drilling..
	9	Big Four	L. Gillespie, No. 6	477	Bridgeport	91.5	54	438	1,062	938			
	10	Big Four	L. Gillespic, No. 5.	468	..do....	904	51		1,064	923			
		Big Four	L. Gillespie, No. 3. L. Gillespie, No. 16	472	. do.	934	42	462	1,038	947	976		Gas, 958 feet No record
	13	Big Four	L. Gillespie, No. 14	474	Bridgeport	947	34	473	1,027	954	981	60	
	14	Big Four	L. Gillespie, No. 15	479	. do.....	947	33	468	1, 032	955	980	75	
	15	Ohio..	W. Gould, No. 7..	489	. do.	952	26	463	1,037	953	978		G as, 952 feet
	16	Ohio	W. Gould, No. 6	474	- do	910	63 49	436	1,064	939	973	200	G as, 928 feet
	17		W. Gould, No. 2	463	- do	909 895	49 65	446	1,054	920 920	958	200	G as, 909 feet.
	19	Ohio	L. Leighty, No. 12	466	-.do.	895	59	429	1,071	915	954	150	G as, 895 feet
	20		L. Leighty, No. 13	466	..do	933	42	467	1,033	945	975	75	G as, 940 feet
	21	Ohio.	L. Leighty, No. 10		Kirkwood	-955	29	491	1,009				
N. W..		Ohio.	L. Leighty, No. 2.	476	Kirkwood.	1,542	36 87	1,078	1,065	1,554	1,578	100	G as, 1,552 feet. G as, 912 feet.
		Ohio.	L. Leighty, No. 19	471	Bridgepor								G as, 912 feet
		Ohio.	L. Leighty, No. 17	479	Bridgepor	954	30	475	1,025	964	1984	125	G as, 955 feet.
		Ohio. Ohio.	L. Leighty, No. 18	493	-.do.	975	25	482	1,018	976	1,001	125	G as, 976 feet.
		Ohio.	L. Leighty, No. 11	524		950 956	73 39	426	1,074	${ }_{9}^{983}$	1,023 995	200	G as, 963 feet.
		Ohio.	L. Leighty, No. 1	521	-.do.	945	14	424	1,076		999	G as	G as, 9648 feet.
		Ohio	H. Gould, No. 1	520	..do.	934	10	414	1,086		944	Gas	G as, 939 feet.
		Ohio	H. Gould, No. 4	511	.-do	946	84	435	1,065		1,050	Dry	Salt water, 1,020 feet
			W. Gould, No. 8	${ }^{503}$			25				1,002	100	G as, 982 feet...............
S. W . -	1	Ohio	H. Gould, No. 5	498	..do	956	52	458	1,042	967	1,008	40	Gas, 956 feet. Quit in sand.

的

 Buchanan.
Kinkwood.
Bridgeport.
.- do.........
 3
0
0
0
80
0
0
0
0 Brid.
Bridgeport

 Bridgepor
.-do.....

Lawrence County-Dennison Township-Continued.

পা পা

Lawrence County-Dennison Township-Continued.

Lawrence County-Dennison Township-Concluded.

$\begin{aligned} & \text { Section } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Map } \\ & \text { No. } \end{aligned}$	Name of oil company:	Name of well.		Sand.								
				Sur- face ele- va- tion- feet.	Name.					$\begin{aligned} & \stackrel{\rightharpoonup}{\otimes} \\ & \stackrel{\pi}{1} \\ & \tilde{5} \\ & 0 \\ & 0 \\ & 0 \\ & \ddot{0} \end{aligned}$			Remarks.
$36-$ S. E...	24	Gee.	Dining, No.4....	464 \{	Kirkwood-1.	1,565 1,603 1,620	32 12 8	1,101 1,139 1,156	399 361 344	1,566 1,605 1,621	1,629	100	Salt water, 1,582 fee

Lawrence County-Lawrence Township.

					Sand.								
$\begin{aligned} & \text { Section } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Map } \\ & \text { No. } \end{aligned}$	Name of oil company.	Name of well.	Sur- face ele- va- tion- feet.	Name.	$\begin{aligned} & \stackrel{\oplus}{0} \\ & ! \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 9 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$				$\begin{aligned} & \stackrel{\rightharpoonup}{\otimes} \\ & \stackrel{0}{1} \\ & \frac{4}{0} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$			Remarks.
$\begin{aligned} & 1-\text { N. W.. } \\ & \text { S. W.. } \end{aligned}$		11 $\begin{array}{l}\text { Donnel, Agent } \\ 1\end{array}$ Gillespie. 2	E. Martin, No. $1 . .$. Stanfield, No. $2 . .$. R. Kirkwood, No. 2. Stanfield, No. $4 . . .$.	445 439 440 440	Kirkwood.. McClosky... Kirkwood... Bridgeport. Kirkwood..	1,597 1,882 1,564 1,000 1,565	11 8 64 100 35	$\begin{aligned} & 1,152 \\ & 1,437 \\ & 1,125 \\ & 560 \\ & 1,125 \end{aligned}$	348 63 375 940 375	1,882	$\begin{array}{r} 3,000 \\ 1,628 \\ \hdashline 1,610 \end{array}$	$\begin{gathered} \dddot{\text { Dry }} \\ \ldots \ldots . \\ \hdashline \text { Dry } \end{gathered}$	Salt water, 1,882 feet Salt water Drilling

Lawrence County-Lawrence Township-Continued.

¢					우궁율			안응్ㅓ
פ,	和1-xyy	ర్రిల్లR				-		

Lawrence County-Lawrence Township-Continued.

Lawrence County-Lawrence Township-Continued.

గ్జ	N్	$\begin{aligned} & 8 \\ & 4 \\ & \hline \end{aligned}$	$\underset{10}{12}$	$\underset{7}{10}$	¢	$\underset{~}{i}$	$\begin{aligned} & 0 \\ & \text { लु } \end{aligned}$	군	$\begin{aligned} & \infty \\ & \ldots \end{aligned}$	$\stackrel{N}{\sim}$	$\begin{aligned} & 10 \\ & \text { भิ } \end{aligned}$	¢
＇	；	！	；	；	，	，	＇	，	；	；	；	＇
：	：	：	：	；	：	：	；	：	！	：	：	！
，	，	，	，	，	，	，	，	，	，	，	，	，
：	！	；	！	：	：	；	；	：	！	：	：	：
，	＇	，	，	＇		－	，	，	，	，	，	，
；	：	，	：	：	$=$	∞	0	：	；	：	：	；
：	，	：	\cdots	，		－	－	；	：	，	：	；
，	15	：	$\stackrel{\square}{0}$	：	\bigcirc	\bigcirc	\bigcirc	：	，	，	：	：
：	$\stackrel{\circ}{0}$	\sim	\bigcirc	：	Z	Z	7	：	，		；	
ง่	Z	\bigcirc	Z	\cdots		－	－	：			：	
－	Z	Z	－	\square	\％					\cdots	स	20°
$\stackrel{\circ}{\circ}$	®1	Z	\pm	0	O	8	8	\cdots	－	๓	＋	20
Z	－	¢0	江	Z	3	3	3	\bigcirc	$\stackrel{\circ}{0}$	\bigcirc	\bigcirc	\bigcirc
	${ }^{2}$	$\stackrel{\square}{\square}$	－	－	，	，	，	7	7	7	Z	Z
O	O	E	d	i	．	．$=$	．	4	4		－	a
0	0	3	O	O	－	号	込	－8	－＇	．${ }^{-1}$	．\ddagger	．
0	－		त	ci				d	d	8	3	3
$\stackrel{\rightharpoonup}{\circ}$	E	\sum	E	E－1	0	H_{4}	A	O	O	灾	シ	\pm
，	，	，	，	，	，	－		，	，	，	，	，
：	：	：	：	：	：	＊	；	；	＇	；	；	－
，	，	，	，	，	，	；	，	，	，	，	，	，
：	：	：	：	：	：	：	：	：	：	：	：	：
：	：	＇	，	，	，	，	，	，	，	，	，	；
，	，	，	，	，	，	：	：	：	：	，	；	：
	，	，	；	，	：	：	，	：	，	，	：	，
$\stackrel{\rightharpoonup}{*}$	！	：	：	\pm	：	：	；	\pm	：	\pm	\pm	$\stackrel{\rightharpoonup}{\square}$
©	，	；	，	9	，	，	，	0	，	c	c	d
00	\pm	，	\cdots	¢	\cdots	$\stackrel{\sim}{*}$	$\stackrel{\sim}{*}$	¢	＋	80	00	00
4	\％	5	5	7	\％	¢	3	$\stackrel{7}{7}$	\％	4	4	4
\cdots	9	9	O	［15	8	0	0	－1	0		\cdots	\cdots
品	80	80	8	$\frac{1}{3}$	8	$\begin{aligned} & 0 . \\ & 0 . \end{aligned}$	8		80	©	O	$\underset{\Xi}{\mathbf{D}}$
	\％	B	？	$\begin{aligned} & 0 \\ & 0 \\ & = \end{aligned}$		00	？	$\begin{aligned} & \text { D } \\ & \text { On } \end{aligned}$	？	B	E	붕
\bigcirc	－	$\underset{\sim}{0}$	雨	$\underset{\sim}{0}$	E	－	E	0	E	0	0	
0	F	\cdots	N	\cdots	\cdots	Co	∞	4	20	ω	\square	N

Lawrence County-Lawrence Township-Continued.

 $=$

荘

Lawrence County-Lawrence Township-Continued.

NO

Lawrence County-Lawrence Township-Continued.

 デニ゙ー

సה

Ko্রo Mr ocaike	

Lawrence County-Lawrence Township-Continued.

is

\mathfrak{m}

ఇ゙

-

억N ニ00~M M M

Lawrence County-Lawrence Township-Concluded.

Lawrence County-Lukin Township.

Lawrence County-Petty Township.

$\begin{aligned} & 15 \\ & 5 \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{4}{2} \end{aligned}$	$\begin{aligned} & 10 \\ & \frac{10}{4} \end{aligned}$	$\begin{aligned} & 17 \\ & \underset{4}{2} \end{aligned}$	$\begin{aligned} & 10 \\ & \underset{4}{2} \end{aligned}$	$\begin{aligned} & \infty \\ & \end{aligned}$	$$	$\begin{aligned} & \text { c10 } \\ & \text { Fix } \end{aligned}$	$\begin{aligned} & 10 \\ & \underset{7}{10} \end{aligned}$	$\begin{aligned} & 10 \\ & \sqrt[3]{4} \end{aligned}$	$\begin{aligned} & e \\ & \underset{4}{2} \end{aligned}$	$\begin{aligned} & \stackrel{10}{4} \\ & \underset{y}{2} \end{aligned}$	$\underset{\sim}{\underset{F}{4}}$	$\underset{\sim}{\underset{\sim}{2}}$	$\stackrel{\infty}{4}$
；	：		；	；	＇	，	，	；	；	，	；	，	＇	；
：	：	：	：	：	：	：	：	：	：	：	；	；	：	：
：	：	：	：	：	：	，	：	：	：	：	，	，	：	：
：	：	！	：	：	：	！	：	：	：	：	，	！	：	：
：	；	：	；	：	；	：	！	；	：	：	，	：	：	：
，	，	，	，	，	，	－	，	，	，	，	，		，	，
！	：	：	：	：	：	：	：	：	：	：			：	：
－	，	，	，	，	，	，	，	，	，	，	，		，	
，	；	，	，	：	：	：	：	：	：	，	：	－1	N	\cdots
			＋	0	－	！	，	－	\therefore		－	0		
N	∞	20	\square	$=$	1	0	N－1	0	－	0	10	\bigcirc	$\stackrel{\circ}{Z}$	o
$\stackrel{\circ}{\circ}$	$\stackrel{\circ}{\circ}$	$\stackrel{\circ}{\circ}$	\bigcirc	$\stackrel{\circ}{\circ}$	$\stackrel{\circ}{0}$	\bigcirc	00°	$\dot{0}$	0	$\stackrel{\circ}{0}$	$\stackrel{\circ}{0}$	\％	Z	
Z	7	Z	Z	\％	Z	7	7＇2	Z	Z	Z	又	B	A	今
		0	0		0	0	大上゙	F－	5－1	\cdots	＊	O	\bigcirc	］
\bigcirc	0	0	\bigcirc		$\stackrel{1}{0}$	0	\bigcirc	\bigcirc	\bigcirc	¢	¢	$\stackrel{\square}{5}$	1	5
\％	\％	은	\％	\％	${ }_{3}$	O	은	．	．	．	\％		\bigcirc	
－	Q	A	A	A	A	A	AO	A	－	0	A	$\underset{\sim}{2}$	$\stackrel{\square}{2}$	\sim_{2}^{2}
	；	＇	；	，	；	；	－：	；	；	＇	：	，	，	
，	，	，	，	，	，	，	：	，	，	，	；	，	，	－
：	：	：	；	：	：	：	：	：	：	；	：	：	；	：
，	：	：	，	，	，	，	，	，	，	，	，	，	；	，
，	，	，	，	；	，	；	，	，	，	，	，	，	，	，
：	－		：	：	：	：	：	：	，	：	，	！	：	：
		∞						$\dot{\square}$	\％	¢	ம	：	：	；
\bigcirc	O	0	${ }_{6}^{\circ}$	o	0	\bigcirc	O	\bigcirc	\bigcirc	O	\bigcirc	：	：	：
0	\oplus	\oplus	\oplus	\oplus	\oplus	\oplus	ค円	∞	\oplus	∞	\cdots	，	！	
														，
$\underset{8}{0}$	0		E	0	0	O-0	0	$\underset{\sim}{-0}$	O	－	－	：	：	
3	\％	安	）	3	3	3	3	3	B	3	\％	0	0	0
\bigcirc	0	O	\bigcirc	0	－	－	60	0	0	\bigcirc	\bigcirc	－	－1	\cdots
							ジv					\bigcirc	\bigcirc	\bigcirc
\bigcirc	＊	15	\bigcirc	\cdots	－1	©	63	10	Γ	N	∞	$\stackrel{ }{+}$	15	\bigcirc

\qquad
Lawrence County-Petty Iownship-Continued.

$\begin{aligned} & \text { Section } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Map } \\ & \text { No. } \end{aligned}$		Name of well.	Sur-faceele-va-tion-feet.	Sand.								Remarks.
		Name of oil company.			Name.								
1-													
S. E...		Ohio.	R. Judy, No. 4.	436 \{	"Gas".....				624				Salt water, 1,660 to 1,670 feet..........................
					McClosky	1,660	10	1,224	276		1,700	Dry	Well abandoned.........
	8	Ohio.	R. Judy, No. 5.	436	Kirkwoo	1,408	10	1,129 1 1	${ }_{3} 281$	1, 1,565		10	Gas, 1,408 to 1,413
		9 Ohio			"Gas"	1,330	13	, 986	604				
			M. Martin, No. 1	434	McClosky	1,640	45	1, 206	294		1,685	Dry	
	10	Ohio	M. Martin, No. 3	434 ,	Tracey	1,590	1,600	1,156	344		1,634	Show	Black oil
					"Gas"	1,300	20	866	634				
		O	N. Martin, No		McClosky .	1,662	10	1,228	272	1,665	1,674	25	
N. E...					"Gas".	1,360	10	927	573				
	1	1 Ohio.	Poland, No. 1		Kirkwood-1.	1,386	8						
					Kirkwood-2	1,470 1,433	30 13	1,037 1,000	463 500	1,473	1,507	50	Gas, 1,470 feet.............
		2 Ohio.	Poland, No. 2	433 \{	Kirkwood-2.	1, 497	16	1,064	436		1,513	Gas	Gas, 1,497 to 1,513 feet.
		3 Ohio.	Poland, No. 3										$4,000,000$ cubic feet daily Drilling
		4 Snowden Bros...........	Piper, No. 8.	435								Gas	Gas well. No record.....
		5 Ohio.......................	D. Stoltz, No.		McClosky	1,649 1,419	11	1, 216	2816	1,649	1,661	20	Gas, 1,450 to 1, 475 feet...
		6 Ohio	Waggoner, No. 5		Kirkwood-2.		15	1,050	450				Gas, 1,450 to 1, 475 feet...
			Waggorer, No. 5	2	McClosky..	1,650	16	1,215	285		1, 1,66	Gas	$2,500,000$ cubic feet daily.
		Ohio	Waggoner, No. 1 Rigall, No. 1		Kirkwood	1,440	34	1,002	498	1,442		Gas	Gas, 1,442 feet. Gos 1,546 to 1550 feet
N. W..		$\begin{aligned} & 1 \\ & 2 \end{aligned} \text { Ohio }$	Rigall, No. $1 . .$.	450	$\begin{aligned} & \text {-.do........ } \\ & \text { i- do..... } \end{aligned}$	1,546	18	1,096 1,146	404		$\begin{aligned} & 1,710 \\ & 2,001 \end{aligned}$	Dry	Gas, 1,546 to 1,550 feet.... Water, 1,583 to 1,600 feet.
S. W..		1 Ohio			Kirkwood-1	1,500	10	1,060	440				
		Ohi	Waggoner		Kirkw.ood-2	1,548	10	1,108	392	1,548	1,825	30	
		Ohio..	Waggoner, No. 3.	450	Tracy....-	1,582 1,582	10	1,137 1,132	363 368	1,585	1,600 1,610	200	

					¢్¢응	
	ర్ర¢్ర\％	A	8눙ㄱㅇㅇㅇㅇ잉ㄱㄱ	\％	ఫ్రై\％	－
\cdots	－				ーiデが	ーiデデ－iテi
					∞	O，miow

Lawrence County-Petty Township-Continued.

Lawrence County-Petty Township-Continued.

Lawrence County-Petty Township-Continued.

[^36]| A. R. Applegate, Tr. No. 1. | 436 | $\left\lvert\, \begin{aligned} & \text { Buchanan } \\ & \text { Tracey.... }\end{aligned}\right.$ |
| :---: | :---: | :---: |
| A. R. Applegate, Tr. No. 13 | 436 | Kirkwo |
| C. Thorn, No. $3 \ldots \ldots . .$. | 437 | |
| C. Thorn, | 442 | K |
| | | $\begin{aligned} & \text { " Kirkw } \\ & \text { Kis } \end{aligned}$ |
| C. Thorn, No. 4 | 448 | Stray |
| A. R. Applegate, Tr. No. 15 | 437 | Kirkw |
| A. R. Applegate, Tr. No. 12 | 436 | . do. |
| A. R. Applegete, Tr. No. 14 | 436 | "Kirkwo |
| A. R. Applegate, Tr. No. 1. | 436 | "Gas" Trace |
| A. R. Applegate, No. 9 | 436 | McClosk |
| A. R. Applegate, | 436 | "Gas". Kirkwo |
| A. R. Applegate, | 435 | "Gas". Kirkwoo |
| A. R. Applegate, Tr. No. 10 | 435 | Tracey... McClosky Kirkwood |
| A. R. Applegate, Tr. No. 6. | 435 | Tracey. McClosk |
| A. R. Applegate, No. 3 | 433 | "Gas". Kirkwo |
| A. R. Applegate, No. 4. | 436 | |
| A. R. Applegate, Tr. No. 19 | 433 | |
| A. I | 428 | Bridgeport. Kirkwood. |
| A. | | McClosk |
| Pepple, No. 3 | 436 | "Gas" |
| Pepple, No. 10 | 435 | McClosky |
| Pepple, No. 7 | 435 | Kirkwood |
| Pepple, No: 5 | 435 | Kirkwood-1
 Kirkwood-2 |
| Pepple, No. 4 | 433 | McClosk |
| Pepple, No. 9 | | McClosky-1 |
| Pepple, No 8 | 435 | McClosk y - 2 |
| Gray, No. 3 | | K |
| Gray, No. | | Kirkwood |

1 Ohio...

1	Ohio................
3	Morrison.

2
2

2 0. 0 | 0 |
| :---: |
| 0 |
| 0 | --

 0
0
0
0 Ohio.

Ohio. ? 4 Ohio. $\stackrel{0}{0}$ 7 Ohio. | 8 | Craig \& Lowrie |
| :--- | :--- |
| 9 | Craig \& Lowrie |

住
Lawrence County-Petty Township-Continued.

2 Ohio.
$\underbrace{\substack{\text { ® } \\ 0}}_{\text {ल }}$ 4 Ohio. Ohio Ohio.
Ohio.
Ohio.
Ohio.
Ohio..
Ohio..
Ohio..
Haywo 1 Haywood..

1 Craig \& Lowri

B
\dot{y}
$\dot{8}$ \square
12
1
Lawrence County-Petty Township-Continued.

Lawrence County-Petty Township-Continued.

+ - - ¢ న-	

Lawrence County-Pctty Township-Continued.

引
:R్N్

Lawrence County-Petty Township-Continued.

 ーシーデーシ ージーシ －iデ \qquad जiनi i －

＂ZI ©ON＇（0t）dumio

 Hazel，No． 14.
Hazel，No． 13.

 Hazel，No． 24. ～
 Hazel，No． 1. Hazel，No． $3 .$.
Hazel，No． 18. Lathrop，No 3
Lathrop，No． 4 Lathrop，No． 5.

范 \＃
$\frac{\pi}{3}$
$=$ $\frac{\text { En }}{\substack{3 \\ 5}}$ $\frac{\stackrel{5}{E}}{\stackrel{5}{5}}$

 \circ
$\frac{3}{3}$
3 0 $\stackrel{0}{0}$ 응
응 $\stackrel{0}{\square}$ 0
3
3

4 | -1 |
| :--- |
| 0 |
| 8 | $\stackrel{\circ}{7}$ 0 OO 32 Ohio

Lawrence County-Petty Township-Continued.

Lawrence County-Petty Township-Continued.

 \qquad

Lewis, No. 7.
Lewis, No. 16
Lewis, No. 15
Lewis, No. 8.

 $\begin{array}{ccc}\therefore & 0 & \infty \\ 0 & 0 & 0 \\ Z & Z & Z \\ \dot{0} & \infty & \text { n } \\ \text { हो } & \text { ह } & \text { ह } \\ 0 & 0 & 0\end{array}$

13 Bridgeport.
 15 Bridgeport

 18 Bridgeport. L
0
0
80
B
क
Q

帚
器

Lawrence County-Petty Township-Continued.

Lawrence County-Petty Township-Continued.

[^37]Lawrence County-Petty Township-Continued.

a	i
๗	i

Lawrence County-Petty Township-Continued.

答

Lawrence County-Petty Township-Continued.

12 Bridgeport.
14 Ohio.
$\begin{array}{ll}0 \\ 0 & 0 \\ 0 & \\ 0 & \\ 0\end{array}$
$\stackrel{0}{3}$ 0
Lawrence County—Petty Township-Continued.

 －－-1 ーiनiनiनiन नiनiनiनiन ージデ －i

Lawrence County-Petty Township-Continued.

	Ohio.	Lewis, No. 22.....
20	Ohio	Lewis, No. . 5.
21	Ohio	Lewis, No. $20 . .$.
22	Ohio.	Lewis, No. 3......
1	Silurian.	Neal No. 1........
2	Silurian.	Neal, No. 4........
3	Silurian.	Neal, No. 8.......
4	Silurian.	Neal, No. 7.
5	Silurian.	Neal, No. 6.......
	Silurian.	Neal, No. 5.......
7	Silurian.	Neal, No. 2.......
8	Silurain.	Neal, No. 3........
9	Ohio	Middaugh, No. 4.
10	Ohio	Middaugh, No. 6..
11	Ohio	Middaugh, No. 7.
12	Ohio	Middaugh, No. 5. .
13	Ohio	Middaugh, No. 3.
14	Ohio	Middaugh, No. 8..
15		Middaugh, No. 2..
16	Ohio.	Middaugh, No. 1..

Lawrence County-Petty Township-Continued.

撸
:

O-

Lawrence Courty-Petty Township-Continued.

Sait water 910 foet
Salt water.

Slate, 1,411 to 1,412 foet. -

a as, 1,575 foet.....................
Greon oil, 1,685 feot. Lime-
stone, 1,682 to 1,702 feet.
 Red slate, 1,254 foet Gas, 1,574 foet. ...
Hole full water, 895 foet

Sandy lime water, 1,250 feet. Gas, 1,513 feet
Sandy lime
Salt water, 1,2 8

2N2N1
 i

Lawrence County-Petty Township-Continued.

 i

 ージージ न゙デ -

Lawrence County-Petty Township-Continued.

 i－ \qquad ㄱir
 \qquad ！：！！！！ $\vdots!$

9	10°	\cdots	\cdots	∞	$=$	\bigcirc	\sim	ล
$\dot{8}$	\dot{B}	$\dot{8}$	$\dot{\Delta}$	$\dot{8}$	$\dot{8}$	$\dot{8}$	$\stackrel{\circ}{z}$	$\dot{\mathrm{z}}$
$\stackrel{\text { è }}{3}$	气	$\frac{5}{3}$	气。	$\stackrel{0}{3}$	气	$\frac{3}{3}$	－	气̀
			$\stackrel{\square}{*}$		$\stackrel{\square}{5}$	¢ \vdots \vdots \vdots \vdots	\pm	＋
	范	茲	皆				年	1 0 0 0 0 0 0 0 0
$\stackrel{\rightharpoonup}{\sim}$	ถิ	蜽	$\stackrel{\square}{\square}$	ลิ	$\stackrel{\sim}{\sim}$	ล	－	ลิ

Lawrence County-Petty Township-Continued.

Red rock， 1,170 and 1,29
fe日t．．．．．．．．．．．．．．．．．．．．．．．．．．．．．

 Broken sand， 935 to 980
feet．．．．．．． Red rock， 1,330 feet．．．．．．．
Sand broken， 953 to 997

$: \frac{3}{0}$
黄

 べデテ デーデデー ーデー ーシーデー \rightarrow－

\％	$\stackrel{10}{4}$	18	18	\％	－	\＆	$\underset{\sim}{\infty}$	年	\％	\％

\cdots	ล่	$\stackrel{\infty}{\sim}$	\bigcirc	$\stackrel{\square}{\circ}$	\square	ล่	Ξ	ม่	∞
$\stackrel{\circ}{8}$	$\dot{8}$	$\stackrel{\circ}{8}$	8	$\dot{8}$	\％	8	8	$\stackrel{\circ}{8}$	$\stackrel{\circ}{8}$
⿹̃ㅊ	发	$\underset{\sim}{\text { E. }}$	$\begin{aligned} & \text { ⿹ㅡㄹ } \\ & \text { it } \end{aligned}$	気	تِ	$\begin{aligned} & \text { Ẽ } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { 巳్ } \\ & \text { 部 } \end{aligned}$	気	$\begin{aligned} & \text { N } \\ & \text { n } \end{aligned}$

Lawrence County-Petty Township-Continued.

Lawrence County-Petty Township-Continued.

 	$: 9.12$		：120	N	앙	
			－ィiデデ	－		

$\begin{array}{lll}\dot{Z} & \dot{y} & \dot{x} \\ \dot{\sim} & \dot{x}\end{array}$
Lawrence County- \bar{P} etty Township-Continued.

$\begin{aligned} & \text { Section } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Map } \\ & \text { No. } \end{aligned}$	Name of oil company.	Name of well.	Sur-faceele-va-tion-feet.	Sand.								Remarks.
					Name.								
N. E..	910	Snowden Bros		436	Bridgeport.	915	105	479	1, 021				Hole full of water, 1,010 feet................
					Buchanan-1.	1,050	125	614	886				
			Nutall, No. 4........		Buchanan-2. Stray.......	1,240 1,379	60 4	804 943	$\begin{aligned} & 696 \\ & 5 \end{aligned}$	1,383		Show	
					Kirkwood.	1,444	8	1,008	492	1,444			Salt water, 1,447 feet.
					Tracey....	1,481 1,613	39 17	1,045	455 323	1,615			Gas, 1,489 feet.
					Bridgeport.	1,785	215	1, 350	1,150				Hole full of water, 1,000 feet
		Snowden Bros..........		435	Buchanan-1.	1,095	65	660	840				
			Nutall, No. 5........		Buchanan-2. Kirkwood-1.	1,260 1,434	35 11		$\begin{gathered} 675 \\ 501 \end{gathered}$	1,434		Show	Red rock, 1,310 feet.......
					Kirkwood-2.	1,455	10	1,020	480	1,434		Show	Salt water, 1,465 feet.....
					Tracey-1..	1,569	34	1,134	366	1,564		Light	Sat watr, 1 , 6 ret....
		Ohio. Ohio.			McClosky.	1609	13	1,174	326	1, 612			
N. W..	1		S. Updike, No. 3.	${ }_{437}^{438}$	-. do.....	1,606 1,613	32 23	1,168		1,611	1,640 1,653	75	
			S. Updike, No. 5	437	Kirkwood.	1,613 1,495	23 15	1,176 1,057	324	1,618	1,653	50	
		Haywood	D. Updike, No. 2	438	McClosky.	1, 608	17	1170	330		1625	30	
	4	Haywood.	D. Updike, No. 3	438	Kirkwood	1,488	17	1,050	450				Gas
		Haywood................	D. Upaike, No.		Tracey...	1,532	30	1,094	448		1,557	75	
	5		D. Updike, No. 1	438	Tracey...	1,534	10	1,096	404			30	
		Ohio......................			McClosky	1,601 1,518	36	1,163	${ }_{420} 3$		1,690		Gas,
			S. Updike, No. 4	438	McClosky	1, 617		1,179	321	1,617	1,653	75	,
		Ohio.	S. Updike, No. 2	438	Kirkwood	1,485 1,603	25	1,047	453 335 3				
	8	Ohio.	Walters, No. 1..	438	McClosky	1,603 1,605	32 30	1,165	335 333	1, 1,605	1,635 1,651	175	
		Ohi	Walters, No. 2	438 \{	Tracey....	1,525 1,600	15	1,087 1,162	413 338	1, 600	1,650	Gas	

[^38]Lawrence County-Petty Township-Concluded.

Section No.	$\begin{aligned} & \text { Map } \\ & \text { No. } \end{aligned}$	Name of oil company.	Name of well.	Sur-faceele-va-tionfeet.	Sand.								Remarks.
					Name.								
$\stackrel{36-}{\text { S. E... }}$		2 Ohio 3 Ohio 4 Ohio 5 Ohio 6 Ohio 7 Ohi	Longnecker, No. 3. Longnecker, No. 1 E. Smith, No. 1 E. Gray, No. 1. E. Gray, No. 3. E. Gray, No. 2.	$\begin{aligned} & 435\{ \\ & 436 \\ & 435 \\ & 435 \\ & 436 \\ & 438 \end{aligned}$	$\left\{\begin{array}{l}\text { Kirkwood. } \\ \text { McClosky. } \\ \text { do...... } \\ \text { Kirkwood. } \\ \text { McClosky. } \\ \text { Kirkwood. } \\ \text { McClosky. } \\ \text { do..... } \\ \text { Kirkwood. } \\ \text { McClosky. }\end{array}\right.$								
						1,611	7	1,176	324	1,611	1,647	${ }_{85}$	Gas, 1,450 leet.
						1,602	43	1,166	334	1, 1	1,952	Dry	Gas, 1,602 feet.
						1,498	22	1,063 1,181	3 + 319 319	1,621	1,657	75	Gas, 1,498 feet
						1, 495	20	1,060	440				
						1,609	12	1,173	${ }_{327} 31$		1,645	40	
						1,445	15	1,007	493				
						1,606	10	1,168	332			35	Gas, 1,61

INDEX

A	
ndonment of wells in Illinois	
Accumulation of oil..........................16, 18	
Under impervious	22
On LaSalle anticline......................... 143	
In Robinson pool	104
Ackman, pumping station at.................. 164	
Acknowledgments	12
Albion, prospecting near...................... 16	
Altitude of sands, method of determ	
American bottoms, prospecting on............ 16	
Annapolis, gas sold to.......................... 181	
Effect of..................................... 83	
In "Gas sand"................................... $10.10 .10{ }^{\text {In }}$	
In Kirkwood san	110
Anticlinal theory, confirmation of............ 11	
Arches in Robinson pool	
Areal extent of oil........................12, 25, 27	
Of oil land in state	145
Production of oil............................ 163	
Armitage No. 2 well, record of. ${ }^{\text {a }}$............ 123	
Associated Producers Co., pipe lines of......... 166 A viston, prospecting near	
B	
Bailer, description of........................... 154	
Bailey pumping station	64
Bain, H. Foster, general sections by 26	
Bakers Lane, loading racks	
Band wheels, use of............................ 152	
Bartelso, prospecting n	
Barren wells in Illinois......................... 145	
Base map, use of.	
Bellair, pas areas near-............................ 181	
Benoist farm, prospecting	
Sand, correlation of......................109, 182	
Birds, gas sold to. 181	
Loading racks at	
Boiler house, use of.............................. 158	
Bond County sand , correlation of................ 109	
Bonus for oil leases............................ 147	
Bowers, J. D., No. 7 well, record of 129Boyd No. 11 well, section of................. 119	
Bridgeport gas areas............................. 181	
Loading racks.. 164	
Tank farm Bridgeport Oil Co., development of Bridgeport sand by	
Bridgeport sand..................................... 15.15	
Cost of drilling to.............................. 153	
Depth of...................................... 106	
Development of.. 106 , 106	
Drilling of.................................. 154	
Production, rank of.............................. 135	

Production of, in Bridgeport Township PAGE
In Dennison Township 137
In Lawrence County 106
In Petty Township. 137
Salt water of, in Dennison Township 141
In Lawrence Township 140
Stratigraphy of 106 106
Thickness of 106
Type area of 137
Bridgeport Township, wells in Kirkwood sand 137
Gas in 8, 139
Gushers in Buchanan sand 137
Production 135, 137
Salt water.
140
140
Structural relations of 137
Type area of Bridgeport and Buchanan sands. 13
Wells in 135
Brown \& Hogue, purchased by Ohio Oil Co. 163
Buchanan, R. O., farm 107
Buchanan sand. 15
Anticlinal dome of 108
Cost of drilling to 153
Discovery of 107
Gas in Bridgeport Township 139
In Lawrence County 107 136
In Petty Township.
In Petty Township. Production of, in Bridgeport Township 137
In Dennison Township 138
Salt water 107
In Bridgeport Township 140
In Lawrence Township 140
Structure of 107
Type area of 107,137
Bull wheel, use of
152
152
Bureau County, gas in. 182 182
Burton Bros. development of Kirkwood sand by 109
Busch and Everett, derelopment of Tracey sand by 111
Cady, Gilbert, work of 28
California oil land 145
Campbell Hill, prospecting near. 16
Capillary action. 19, 20
Carbondale formation in Crawford County 53
Stratigraphy of 28 28
Carlinville, gas near 183
Prospecting near. 15
Carlinville limestone, correlation of 53
Carlyle oil field, description of. 16
Oil prices in. 169
Carlyle sand correlation of 109
Carter, L. D., prospecting by 14
Carmi, prospecting near 16
Casey, gas sold to 181
Loading rack at 158
Pumping station at 164
Casey pool, development from 146
Casey, sand, position of 29
Casing, use of 155
Weight of per foot. 160
Central Refining Co., Perry King No. 5 well. 129
Refinery at Lawrenceville 16

Index-Continued.

Duncanville pool, development ofDay Dr David T investigations of
Oil statistics compiled by14
Decline in shallow fields 167 167
In Illinois fields 181 18
Decatur, prospecting near
Dennison Township, best wells in McClosky
Dennison Township, best wells in McClosky sand. 137
Drift in 82
Gas in. 139, 140
Kirkwood sand, most productive 137
Production in 135
Production of Bridgeport sand 137
Of Buchanan sand 138
Of Kirkwood sand 138
Of Tracey sand 138
Salt water in. 141
Structural relations in. 137
Type area of Buchanan sand. 107
Wells in. 135
Denny, prospecting near 16
Derricks 152,153
Derry Township, prospecting in. 13
Deuchler, W. E., work of 12,94
Development of oil properties 146
DeWitt County, depth of gas and gas pressure 182 DeWolf, F. W., work of. 28
Diatoms as the origin of oil. 17
Diffusion of oil through rocks 17
Through Fuller's earth 21
Dip of Buchanan sand 107
Of Kirkwood sand 111
Of McClosky sand on LaSalle anticline 114
In Petty Township 113
ome Structure 83
Of Buchanan sand 108
Of "Gas" sand 109
Of Kirkwood sand 110
Drake, J. M., No. 23 well, record of 47
Drift gas 26, 183
Drilling, method of 154
Cost of 153 153 155, 160
Drive pipe
Drive pipe
Drole No. 7 well, record of. 117
Dry spots in Robinson pool 100
Dry holes in Illinois, table of 180 180
Duncanville pool, general level of 100
Price of oil 167 167
DuQuoin, prospecting near 16
East St. Louis, refineries at 166
Economic features of Illinois field. 145
Edgar County, daily production in 163
Depth of gas and gas pressure. 182
Edwards County, in Illinois basin 142
Edwards, O. F., No. 15 well 35
Of Illinois operators 145
Efficiency of gravity system
Efficiency of gravity system 165 165
Eldorado, prospecting near
91, 93
91, 93
Ellis, J. R., work of............... 129
No. 16 well, record of 129
Finley, D. T., early work of 14
Fitch No. 17 well, record of. 119
Flat Rock, gas sold to. 181
Flat Rock pool, correlation of 14
General level of 100
Fuller's earth, diffusion through 21
Fusulina fossil as a marker. $\begin{array}{r}28,33,44,53 \\ \hline126\end{array}$

Index-Continued.

G

PAGE
Gas, areas of 118, 182
Depths of. 182
Gravitation of 22
In, at or near:
Bridgeport sand. 140
Bridgeport Township 139
Buchanan sand 139
Carlinville 183
Dennison Township 140
Drift formations 26
"Gas sand" 139
Jacksonville 183
Kirkwood sand 139
Lawrence Township 140
LaSalle anticline 143 143
McClosky sand 139
Morgan County. 183
Petty Township 138, 139
Robinson pool 99, 103
Tracey sand 139
Pressure of 20, 182
Production of in Illinois 181
Gas, sold to
Annapolis 181
Birds. 181
Bridgeport 181
Casey
Casey 181 181
Flat Rock 181
Hutsonville. 181
Marshall 181
Martinsville 181
New Hebron 181
Oblong 181
Olney. 181
Palestine 181
Pinkstaff 181
Porterville 181
Robinson. 181
Stoy 181
Sumner 181
Vincennes 181
Westfield 181
Structural relations of 138
Use of 147,181
"Gas sand," absent along D-D cross-section 130
Anticlinal dome of 109
Correlation of 108
In, at or near:
108, 139
Bridgeport Township 83, 108
Lawrence County 108
182
189
Marion County. 139
Sandoval 182
Structure of 109
Thickness of 108
Gas wells, price of per year 147
Geological sections of central Illinois 26
Of southern Illinois 26 26
Geologic structures 22 22 166
Georgetown, Ky., Indian Refining Co., at..
Georgetown, Ky., Indian Refining Co., at..
Gillespie, E. N., record of Smith No. 24 well 130
Gilpin, J. Elliot, investigations of 20
Grades of oil 167
Grafton, prospecting near 16
Gravitation of oil, gas and water 22
Gravity lines to leases 164
Gray, W. B., record of No. 2 well 63
Greenville, correlation of sand 109
Gas area near 182
Prospecting near 16
Griswold, W. T., theories of oil accumulation 24
135
Gushers from McClosky sand
Gushers from McClosky sand
Hamilton County, Illinois basin in 142
Hansen, prospecting near 16
Hardinville, gas areas near 97,181
Hardinville quadrangle, description of $\quad 86$
Heyworth, drift gas near. 183 183
Henry No. 1 well, record of
Herrick, prospecting near 133
18
Herrin coal and Carbondale formation
Hoblitzell, J. J., work of. 28
Honey Creek pool, opening of 14
Structure of 99
Hutsonville, gas sold to 181
I
Illinois, natural gas in 181
Wells drilled in 145,181
Rank as a gas state 181
As an oil state 145
Stratigraphy of 25
Structure of 32
Illinois basin, axis of
142
142
Illinois oil fields, efficiency of 146
Extent of 145
Saturation theories for 24
Impromptu Exploration Co., prospecting of. 13
Independent oil companies
Independent oil companies
163
Indian Refining Co., operations of 163
Of Kirkwood sand 109
Of Robinson sand. 101
International Oil and Gas Co., development by 112
Interval between:
Buchanan sand and "Gas sand" 108
Chester and "Gas sand" 8
Kirkwood sand and "Gas sand" 110
Kirkwood and Tracey sands 111
Tracey sand and Chester 81
Investments in oil properties. 162, 163
Iola, prospecting near. 16
Irick, William, wells of 13
Iuka, prospecting near. 16
J
Jacksonville, oil and gas wells near 18.3
Jamestown, Ind., pumping station at 165
Jennings Oil Co., purchase of 163
Jerseyville, prospecting near 16
Johnson, H. H., work of 12
Jones, J. C., work of 12
Jones, D. C., wells on farm of 13
K
Kane, prospecting near 16
Kirkwood, Thomas, development of Kirk- 109
wood sand
wood sand
Kirkwood, R. M., No. 7 well, record of 69
Kirkwood sand 15
Anticlinal dome in 110
110
Correlation of.
Development of. 109 109, 182 109, 182
Drilling costs 153
Dips of.. 111
In Bridgeport Township $.137,139$
Chester formations.
$137,140,141$
Dennison Township
109, 135, 138
Lawrence County.

Index-Continued.

L

PAGELaSalle anticline
.. 32
Course and extent of142, 144
In, at or near:
Champaign County................................ 15
Clark County.. 142
Sadorus.. 142
St. Francisville................................... . . . 142
Tuscola.. 142
Oil and gas on... 143
Prospective pools on. 144
Lawrence County, acreage drawn on by oil wells.
151
Bridgeport sand of.................................... 106
Buchanan sand of................................. 107
Chester rocks of.. 83
Cost of drilling in . 153
Development of... 15
Drilling timein.. . . . 153
Gas, depth of 182
"Gas sand" in... 83,108
Gas wells in ... 130
Geology of . $82,83,105,142$
Importance of $135,143,161$
Kirkwood sand of ... 109
McClosky sand of.. 112
Production, initial. 135 , 136
Production of sands. $105,135,163$
Prospective pools in. 144
Salt water in. 140
Storage tanks in................................... . . . 165
Stratigraphy of 84
Structure of. 106, 114, 138, 140, 143
Tracey sand of. 84,111
Wells drilled in.. 135
Lawrence Township, Buchanan sand in .. 107, 137
Gas in.
140
Kirkwood sand, type area in................... 137
McClosky sand in.................................. 137
Productions, initial.. 135
Salt water in. 140,141
Structural relations in. 137
Wells in.. 135
Lawrencerille, gas sold to.................................... 181
Loading racks at. 158
Refinery at. 166
Lease, cost of operating. 161
Equipment. 147, 157
Use of . 146
Leasing of oil properties.................... 146, 147, 148
Lee County, gas in...................................... 182
Lee Oil Co., purchased by Ohio Oil Co 163
Lenses of oil sands 98, 109
Levels in the oil field
Lima, oil pumped to.. 165
Limestone as the source of oil.................... 18
Lindley, correlation of Kirkwood sand........ 109
Litchfield oil and gas sands................. 12, 13, 29
Loading racks, construction of..................... 158
Locke level, use of... 94
Logs of cross-section A-A.. 115
B-B . 123
C-C. 125
.......................... 130
Lovington, axis near.................................. . . . 142

M

Macoupin County, prospecting in.............. 15
Marion County, correlation of Benoist sand .. 109
"Gas sand" in
18
Prospecting in
15
Storage tanks in... 165
Marissa, prospecting near............................. 16
Martin Township, dome in. 103
Marshall, gas sold to..................................... 181
Prospecting near.. 16
Martinsville, gas sold to.
PAGE
Loading racks at. 181
158
Pumping station at 164
Mascoutah, prospecting near. 16
McCleave, S. G., No. 4 well, record of 71
McClosky, M., farm 112
McClosky sand 15
At, in or near: 139
Bridgeport Township 137, 140
Lawrence County $112,135,138$
Lawrence Township 137
139
Petty Township 31, 85
Description of 85,113
Dips in Petty Township 113
153
Drilling, cost of 153
Extent of 112
Origin of oil from. 18
Production in Bridgeport Township 137
Production, initial. 113, 135
Salt water of 140, 141
rmation 32, 53
McIlroy, prospecting by 15
McOrr No. 1 well, record of 131
McPherson No. 3 well, record of 68
Migration of oil 18
Mississippian rocks, oil sands in 29
In Lawrence County
166,169
Missouri-Illinois Oil Co., shipments o 12
Montpelier, pumping station at 165
Morgan county, gas wells in 164
Muchmore, pumping station at 164
164
Muddy Creek, pumping station at.
Nashville, prospecting near 16
Natural gas in Illinois. 181, 183
Origin of 18
New Hebron, gas sold to 181
Newlin, L. R., No. 21 well, record of 38
Niagara limestone, oil in 13
Nitroglycerine, use of $155,156,157$
Northern Illinois, geologic sections of 164
North Fork, pumping station at 164
North Fork Oil Co., purchased by O
Nutall, S. B., No. 5 well, record of. 124
Oakland, prospecting near 14
Oblong, gas sold to 181
O'Donnel No. 28 well, record of 62
Ohio Oil Co., acknowledgment to 12, 33
Discovery of Buchanan sand by 107
Operations of $146,163,164,165,166,169,175$
Oil, accumulation of 18
Amount of in Illinois. 145
Circulation of 18
12
Development of, in Illinois
17
17
Diffusion of 24,95
Gravitation of 31
In St. Louis limestone 16, 18
Origin of 20
100
Structural relation of 100
Storage of $147,157,164$
Sulphur in 145

Index-Continued.
PAGE
Oil fields, description of 97, 143
Levels in
87
87
Oilleases, specifications of 148
Oil sands, extent of. 27
In Mississippian rocks 29
Oil tanks, use of 157
Oil wells, acreage drawn on
Oil wells, acreage drawn on 151 151
Elevation of
13
Near Litchfield 13
Oilfield, loading racks at 158
Prospecting near
14
145
14
145
Oklahoma, extent of petroleum land
16
16 142
Old Ripley, prospecting near
Old Ripley, prospecting near
Gas sold to 181
Prospecting near 16
Omaha, prospecting near 16
Ordovician system 32
Origin of oil and gas. $16,17,18$
P
Palestine, gas sold to 181
Parker \& Edwards, purchased by Ohio Oil Co. 163
Parker Township, prospecting in 12, 14
Patton, prospecting near16
Pennsylvania, extent of petroleum land in. 145
Pennsylvania rocks, extent of $\begin{array}{r}147 \\ \hline\end{array}$
In Crawford County 53
In Lawrence County82
77
Pepple, A., No. 7 well, record of 77
Perkins No. 16 well, record of 122
No. 17 well
75
75
No. 19 120
No. 28 120
Perry King No. 5 well, Cen. Refin. Co., record of. 128
Petty No. 1 well, record of 116
No. 3 well, record of 117
Petty Township, Bridgeport sand in 137
Buchanan sand in. 136
Drift in
138,139
138,139
"Gas sand" in 108, 110, 136
Kirkwood sand in 110, 136, 139
McClosky sand in 113
Oilin.
135, 136
Production, initial yield
Salt water in
113, 136
Structural features in.
139
139
Structural relations of oil and gas
139
139
Wells in 135
Phillips, J. S., prospecting of 14
Pike County, gas in $13,16,182$
Pinkstaff, gas sold to 181
Pipe-lines, use of, in Illinois 148, 167, 169
Piper No. 9 well, record of. 118 No. 10 well, record of
81
Pleistocene in Crawford County 52
In Lawrence County 82
Pocahontas, prospecting near 16
Pollution of streams by waste oil 160
Porosity of sands 23
Portable drilling rigs, use of 153
Porterville, gas sold to. 181
Pottsville formation, description of 29
In Crawford County 54
In Lawrence County 82 29, 140
In Macoupin County.
In Macoupin County.
Salt water in 40
Structure 29
Thickness of 29
Pressure of drift gas 183
Of gas in Robinson pool. 103
Of oil in pipe lines 165
Princeton, Ind., prices of oil at. 169Prospective pools of Crawford and Lawrence
counties.144
Pull rods, use of. 159
Pumper, wages of. 161
Pumping equipment. 159
Pumping stations in Illinois 164,165
Pure Oil Co., pipe lines of. 166
Randolph County, correlation of sand 109
Prospecting in. 13
Rank of Illinois as gas state. 1S
Rank of producing states 170, 171
Red shale, distribution of 28, 84, 109
Richview, prospecting near. 16
Riddle Oil Co., purchased by Ohio Oil Co. 163
Robinson, gas sold to. 181
Loading racks at $15 S$
Refinery at.
Refinery at. 166 166
Robinson Oil Co., refinery at Robinson, Ill. 166
Robinson pool, accumulation in. 104
Anticlines in 99
Development of. 14 14
tent of 101
Production of $.100,103$
Salt water in $.103,104$
Structure of 99
syncline in. 99
Robinson sand, absence of 98
Correlation of
7,98
Description of 99
Gas in
100
100
Production of 100
Thickness of $.98,100$
Robinson Township, prospecting in 13
Gas in 103
Rock pressure, effect of 20
Roger and Dibble, shipments of 166, 169
Royalty, payment of 147
S
Sadorus, anticline near 142
St. Francisville, anticline near 142
Salt water in:
104
104
Bridgeport sand 140, 141
Bridgeport Township 140
Buchanan sand 107 107
Dennison Township. 141
Kirkwood sand. 140, 141
Lawrence County 140
Lawl ence Township 140,141
Petty Township 140
Pottsville formations 29, 140
Synclines. 103, 104, 140
Tracey sand 141
Salt water, siphoning of 159
Sandoval, "Gas sand" near. 182
Oil prices at. 169
Prospecting near. 15
Sands, correlation of 95
Names of. 95
Porosity of 23
Saturation line of sands 143

Index-Concluded.

PAGE Shipman, pumping station at 164
Shire, J. W., farm of 14
Shooting oil wells 157
Siler, C. E., No. 4 well, record of 41
Silurian formations. 31
Smith No. 24 well, record of 130
Snyder, W. H., No. 7 well, record of. 5.5
Southern Illinois, geological sections of 26
Sparta oil field. 15
Sparta sand, correlation of 109
Specific gravity, effect of 20
specifications of oil leases 148
Spudding, method of 154
Ste. Genevieve limesto 113
In Lawrence County
In Monroe County
Tt Muis limestone 85 84 84
t. Louis limeston
113
113
Distinguished from Ste. Genevieve
Distinguished from Ste. Genevieve
In Lawrence County
In Lawrence County 31
Standard rig, use of 152, 153
Statistics, method of compiling 169
Steel derrick, use of 153
Stein farm, oil on 15Stoltz No. 13 well, Bridgeport Oil Co., record of 125
Storage tanks... 166166
Stoy, gas sold to 181
Loading racks at 158
Pumping station at 164,166
Tank farm at 165
Stratigraphy, definition of 2.
Of Bridgeport sand 106
Of Chester rocks 31
Of Crawford County 32, 53, 54
Of Illinois
32, 54, 82
Of Lawrence County 82
Of Pottsville formations
Of Pottsville formations 31
Stream pollution by oil 160
Structure, definition of 25
Of Buchanan sand 107
Crawford County 99
"Gas sand" 109
Illinois 32
Kirkwood sand 110
LaSalle anticline 142
McClosky sand 113
Pottsville sand 29
Tracey sand. 112
Shown by cross-sections 12
Relation to oil, gas and salt water 100, 103
Sulphur in McClosky oil 113
Method of removal 159
Sumner, gas sold to 181
Prospecting near 16
Sumner quadrangle, description of $86,89,93$
Sun Oil Co., shipments of $.166,169$
Syncline, definition of 22T
Terrace structure 23
166
Tanks, for storage $147,158,165$
Tank-cars of Indian Refining Co. 166
Theory of origin of oil 11
Of water saturation. 24
Thomasboro, prospecting near 16
Thompson, D. G., work of: 12
Tidewater Pipe Line Co., p 169
Tolono, prospecting near 15
Topographic surveys of oil areas 86
Townships, abbreviation of 96
Tracey, pumping station at 164

[^0]: ${ }^{1}$ Mineral Resources of the United States for 1889 , p. 353.
 ${ }_{2}$ Savage, T. E., Pike County gas field: Bull. Ill. Geol. Survey No. 2, 1906, p. 83.
 ${ }^{3}$ Report Illinois Board World's Fair Commissioners, 1893, p. 183.
 ${ }^{4}$ Blatchley, W. S., Oil Developments in Illinois to 1c04: Bull. Ill. G Gol. Survey No. 2, 1906, p. 14.

[^1]: ${ }^{1}$ Blatchley, R. S., Ill. State Geol. Survey, Bull. No. 16, pp. 87 and 167.

[^2]: ${ }^{1}$ Forstner, William, The Occurence of Oil and Gas in the South Midway Field, Kern County, California. Economic Geol., Vol. VI, 1911, p. 140.

[^3]: ${ }^{1}$ Gilpin, J. Elliott, and Bramsky, Oscar E., The Difficsion of Crude Petroleum through Fuller's Earth, Bull. U. S. Geol. Survey No. 475, 1911.

[^4]: ${ }^{1}$ Clapp, Frederick G., The Occurence of Oil and Gas Deposits Associated with Quaquaversal Structure. Economic Geology, Vol. VII, No. 4, 1911, p. 364-381.

[^5]: ${ }^{1}$ Griswold, W. T. and Munn, M. J., Geology of Oil and Gas Fields in Steubenville, Burgettstown and Claysville Quadrangles, Ohio, West Virginia and Pennsylvania. Bull. U. S. Geol. Survey No. 318, 1907, p. 15.

[^6]: ${ }^{1}$ Weller, Stuart, The Geological Map of Illinois: Bull. Ill. State Geol. Surrey No. 6, 1907.
 ${ }^{2}$ Bain, H. Foster, Petroleum Fields in Illinois in 1907: Bull. Ill. State Geol. Survey No. 8, pp. 273-312.

[^7]: 1 Loc. cit.

[^8]: 1 Weller, Stuart, The Geological Map of Illinois. Bull. Ill. State Geol. Survey No. 6, 1907.

[^9]: unx biay sull shaie, nne texture with many fragments of coal

[^10]: ${ }^{1}$ By some geologists the Ste. Genevieve is also included in the Chester group.

[^11]: ${ }^{1}$ Ibid, p. 26.
 ${ }_{2}$ Ulrich, E. O., and Smith, W. S. T. The lead, zinc and flourspar deposits of Western Kentucky. Prof. Paper U. S. Ge 1. Surrey, No. 36, 1905, p. 38.

[^12]: 1 Ibid, p
 2 Ulrich
 Prof. Pape

[^13]: ${ }_{1}$ Herron, W. H. Report of the Cooperative Topographic Survey of Illinois, Bull. Ill. State Geol. Survey, No. 14, 1909, pp. 31-182.

[^14]: 1 Weller, Stuart, The, geological map of Illinois: Bull. Ill. State Geol. Survey, No. 6, 1907, p. 12.
 2 Oil resources of Illinois with special reference to the area outside the Southeastern fields: Bull. Ill. State Geol. Survey, No. 16, 1910, pp. 48-51.

[^15]: ${ }^{1}$ Economic Geology, Vol. VII, No. 6, September, 1912, p. 579

[^16]: ${ }^{1}$ Ill. State Geol. Sur rey, Bull. No. 16, 1910, pls. 7 and 11.

[^17]: ${ }^{1}$ Kindly furnished by D. Roach, chief of pipe-line department, Ohio Oil Co., Marshall, Ill.

[^18]: Mineral Resources of the U. S., 1910, Part II, U. S. Geol. Survey, 1911, p. 387.

[^19]: ${ }^{1}$ Day, D. T., Mineral Resources of the U. S. for 1910, Part II, U. S. Geol. Survey, 1911, p. 331.
 ${ }^{2}$ Day, D. T., Mineral Resources of the U. S., calendar year 1911, advance chapter, 1912, p. 64.

[^20]: ${ }^{1}$ Griswold, W. T., Mineral Resources of the U. S.f or 1906, U. S. Geol. Survey, 1907, p. 830.
 ${ }^{2}$ Day, D. T., Mineral Resources of the U. S. for 1907, Part' II, U. S. Geol. Survey, 1908, p. 348.

[^21]: ${ }^{1}$ Dav, D. T., Mineral Resources of the U. S. for 1909, Part II, U. S. Geol. Survey, 1911, p. 304.
 ${ }^{2}$ Day, D. T., Mineral Resources of the U. S.f or 1910, Part II, U. S. Geol. Survey, 1911, p. 329.
 ${ }^{3}$ Day, D. T., Mineral Resources of the U. S. for 1911, advance chapter, 1912, U. S. Geol. Survey, p. 10.

[^22]: 1 Griswold, W. T., Mineral Resources of the U. S., 1906, U. S. Geot. Survey, 1907, p. 830.
 ${ }^{2}$ Day, D. T., Mineral Resources of the U. S. 1907, Part II, U. S. Geol. Survey, 1908, p. 349.

[^23]: ${ }^{1}$ Day, D. T., Mineral Resources of the U. S., 1909, Part II, U. S. Geol. Survey, 1911, p. 306.
 ${ }^{2}$ Day, D .T., Mineral Resources of the U. S., 1910, Part II, U. S. Geol. Survey, 1911, p. 330.

[^24]: ${ }_{1}^{1}$ Day, D. T., Mineral Resources of the U. S., 1911, advance chapter, U. S. Geol. Survey, 1912, p. 10.
 ${ }_{2}$ Mineral resources of the U. S. for 1910, Part II, U. S. Geol. Survey, 1911, p. 385.
 ${ }^{3}$ Day, D. T., Mineral Resources of the U. S. for 1911, advance chapter, 1912, U. S. Geol. Survey, p. 64.

[^25]: 1 Loc. cit.
 ${ }^{2}$ Day, D. T., Mineral Resources of the U. S., 1910, Part II, U. S. Geol. Survey, 1911, p. 385 .
 ${ }^{8}$ Mineral Resources of the U. S., 1911, advance chapter, 1912, U. S. Geol. Survey, p. 65.

[^26]: 1
 ${ }^{1}$ Day, D. T., Mineral Resources of the U. S. for 1910, Part II, U. S. Geol. Survey, 1911, p. 386.

[^27]: ${ }^{1}$ B. Hill, Natural Gas, Mineral Resources, U. S. for 1910, U. S. Geol. Survey, 1911, p. 317.
 ${ }^{2}$ Includes number of consumers and value of gas consumed in Vincennes, Indiana.

[^28]: ${ }^{1}$ Idem, pp. 300-301.

[^29]: 18 Ohio．．

[^30]:

[^31]:

[^32]: F．Burner，No． 2.

 8 Samuels \＆Booth

[^33]:

[^34]: \%
 0
 0

 \qquad

[^35]: \geq
 E
 52
 $\dot{2}$

[^36]:

[^37]: 3
 $\dot{0}$

 ## 住
 0

 9

[^38]:

