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ABSTRACT

This thesis presents a ballistic missile defense allo-

cation model for the terminal defense of urban targets of

varied value. The model allocates interceptors in propor-

tion to the value of targets. Defensive missiles have a

probability of interception, offensive re-entry vehicles

are perfect, and the offense knows both the defensive allo-

cation and firing doctrine. The area defended by a single

interceptor farm is considered to be a point target and can

be defended by no other interceptors. For any value of the

offensive payoff in expected value per re-entry vehicle,

the model determines the least cost minmax allocation and

firing doctrine.
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I. INTRODUCTION

This thesis considers the terminal defense of a set of

urban point targets of varied value in which the role of

the defense is to minimize damage during a large attack by

an offensive force of nuclear ballistic missiles. The at-

tack is assumed to be sequential. The offense receives no

information concerning the destruction of any target, and

the defense does not know the size of the attack at any tar-

get. Specifically considered is the minmax allocation of

interceptor missiles based on the assumption that the of-

fense knows both the allocation of interceptors and the in-

terceptor commitment policy at each target. This analysis

ignores interactions with area defenses and assumes a con-

stant single shot kill probability p < 1 associated with

one interceptor against one re-entry vehicle. Branch [1]

considers a similar problem but makes different simplifying

assumptions. Shaver [2] considers a radar defense problem

that is closely related to the defense of urban point tar-

gets. Shaver's objective function for the defense is to

maximize the expected number of re-entry vehicles engaged.

Battle [3] considers city defense and minimizes the maximum

average damage per attacker. He drops the point target as-

sumption but does not consider firing doctrine.

An important concept for ballistic missile defense

studies is that of the price of a target. Price is defined

to be the number of re-entry vehicles r sent against a tar-

get, divided by the probability K that the target is killed:
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price = r/K. One can speak of the price that the offense

"pays" to "buy" the target. The offensive payoff X at a

single target is the value V of the target times the recip-

rocal of price: X = KV/r. X = ^^J"
A proportional defense is one in which the defense
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forces the offense to pay a price that is proportional to

the value of a target. For certain sets of targets, par-

ticularly those in which many defended targets are not

attacked by the optimal offense, proportional defense will

minimize expected target damage for a fixed force of inter-

ceptors. It is assumed that proportional defense is optimal

in this sense for the set of targets under consideration.

The method of requiring price to be proportional to value

will be to allocate interceptors in such a manner that the

offensive payoff is the same at each target. Rather than

allocate a fixed force of interceptors, the model minimizes

the number of interceptors required to force the offensive

payoff to be less than or equal to a fixed payoff X* .





II. THE ALLOCATION PROBLEM

A. OFFENSE

The offense must allocate a fixed force R of re-entry

vehicles (R.V.'s) to a set of N targets of varied value in

such a way as to maximize total expected fatalities. Sup-

pose the damage functions f.(r.)> i = 1,...,N give the ex-

pected fatalities at the i"th target for an attack of r.

R.V.'s. The offensive problem is:

N
Max -Z-, £.(r.)
_ i=l i

v \ J

R

subject to

N
.E, r. = R
1 = 1 l

r. > i = l, . . . ,N

where R = (ri,r2, . .
.
,rN ) , the offensive allocation. It is

assumed that the f. are continuous and differentiable . From
l

the Kuhn-Tucker conditions or directly from Gibb's Lemma,

there exists a X° such that:

df. (r.°)
1 x

= A , r.° >
dr " ' l

<> A . r.° =

where r .° is the optimal attack at the i tn target. That is,

the marginal value is the same at each target that is at-

tacked. Note that A is the slope of £.(r.) at r. = r .

°

.

r i K i J l l





See Figure 1. The optimal offensive solution requires X°

to be the maximum marginal return obtainable subject to

Zr. = R.
1

Suppose a target is defended by I . interceptors with

single shot kill probability of one. The damage function odfacA

fat*
for a defended target is f . (r. -10 f° r r - > !• See '& i^i i J 11
Figure 2. Define

f.(r.) m f.(r.)
-> 11 -, , m i^i^
X . = and X . = max \y
l r . i r

.

l r

.

i
i

Note that X. is the maximum offensive payoff at target i,

in terms of expected fatalities per R.V. This value X. is

the slope of the ray from the origin tangent to f . . See

Figure 2.

Consider a ray from the origin with slope A . See

Figure 3. Given the value of X°, the offense finds the op-

timal attack size against each target by finding r. to

max (f.(r. - 10 - X° r.l . Thus after having found A
,

the

i

offense can find an optimal solution to the overall problem

by suboptimizing at each target.

B. DEFENSE

Since the defense assumes that the offense knows the

target damage function f.(r.) and the interceptor allocation

T = (Ii,...,IN), the defensive problem for a fixed intercep-

tor stockpile I is :

Min { Max Z £
.
(r.l

>

T R
x
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subject to 2 r. = RJ
. 1
1

EI. "I
l

l

I. , r. > i=l, . . .
,N .

i ' i ' *

Recall that for fixed I the offense was able to Max

Ef.(r.) by suboptimization,

Max (f.(r. - I.) - X° r.)

.

* i v i i J
i

J

r

.

i

The corresponding defensive suboptimization is

Min { Max ff.fr. - I.) - X° r.) } .

T
v i v i 1/ \ J

I . r

.

l l

It is not generally true, however, that suboptimization will

yield an optimal allocation for problems in which minmax >

maxmin (see for example, [Ref. 4]), but if many defended

targets are not attacked the suboptimization yields the op-

timal allocation. A proportional defense, in which X. is

equal to a fixed X* for all i, accomplishes the suboptimiza-

tion. Such a defense forces X° = X. = X*, and then
i '

Max (f
.
(r. - I.) - X* r.) = 0.

r
i

The remainder of this thesis develops a model for de-

termining a proportional allocation of interceptors for the

defense of point targets when the interceptor single shot

kill probability is less than 1.

11





III. THE DEFENSIVE MODEL

Recall that p is the interceptor single shot kill

probability and define q = 1 - p, the probability that a

re-entry vehicle (R.V.) survives an encounter with a single

interceptor. Define i = the number of interceptors sentr m r

against the mth R.V. Thus the probability that the mth r.v.
i

is killed is (1-q ) and the probability that the target is

killed for an attack of size r is:

r i

K = 1 - n, (1-q
m

)

.

m=l v H J

Recall the offensive payoff A at a single target is X = KV/r

It is assumed that at each city the offense desires to max
r

KV/r.

The method used to arrive at proportional defense is to

minimize the number of interceptors I allocated to a target,

subject to X £ X*. Suppose that the defense fires against

some number M of R.V.'s, so that the problem at each target

is :

M •

Min I = St im=l m

s.t. KV/r < X* r = 1,2, . .

.

An offensive strategy is a choice of r, and a defensive

strategy is a choice of a sequence of i 's called the firing

doctrine and denoted FD = (i i , i 2 , . . • , ij • It is assumed for

convenience that the defense never fires more than three in-

terceptors at an R.V. Thus the defense must choose a number

12





B such that i =3, m=l,2,...,B: a number A such that
m '

i = 2 , m = B+1.....A: and an M such that i = 1, m =

A+1,...,M. Of course A and B may be zero. Notice that for

a fixed firing doctrine K depends only on r. Since the of-

fense knows the defensive firing doctrine, the defense must

determine the firing doctrine that minimizes I and such that

min {max KV/r} < A*.
FD r

13





IV. ANALYSIS

A. INTRODUCTORY CONCEPTS

A special case will serve to introduce some basic con-

cepts. Consider a target of value V. Suppose that I, the

number of interceptors at the target, is arbitrarily large

but that the firing doctrine calls for firing only one in-

terceptor at each R.V. The firing doctrine is not optimal,

but illustrative due to its simplicity. Define the payoff

curve , L to be L = KV. Notice that since FD and p are fixed,

K and hence L depend only on r. See Figure 4. The offen-

sive payoff for an attack of size r is the slope of the ray,

called the A-line, from the origin to the curve L(r). The

slope of the A-line is KV/r and thus corresponding to each

r there is a A-line, designated A(r). Note that A(r) is not

the expected value obtained by the r tn R.V. but is the av-

erage expected value per R.V. for an attack of size r:

r 1
m.

A(r) = KV/r. Now note that K = 1 - U
±

(1-q ) is strictly

concave in r for i constant. Thus L(r") = K(r)V is strictly

concave and A(r) > A(r+1). That is, the offense receives

decreasing marginal and average returns for increasing r

when i is constant. Thus to maximize KV/r the optimal at-
m ' r

tack r° for the target and firing doctrine described is to

fire one R.V. Thus r° = 1 and A(r°) = KV/r where K = 1 - p.

Then A = A(r°) = (l-p)V is the payoff at this target.

Define the A*-line to be a ray from the origin with

slope A*. Now recall that the defense's constraint is to

14
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force A < A*, i.e., KV/r < A*. Graphically, the defense

must force the slope of the A-line to be less than A* for

any size attack. Alternatively, the defense will be satis-

fied if L(r) is always below the A*-line. That is,

L(r) < A*r. In Figure 2, L i is a feasible payoff curve

since Li(r) < A*r and L2 is not feasible since there are

values of r such that the offensive payoff is greater than

A*.

Leaving the special case, consider the criterion for

defending a target. Note that if a target has value

V < A*, r > 1 yields A < A* and thus the target will not be

defended. A target of value greater than A* must be de-

fended since if undefended, r = 1 yields a payoff greater

than A*.

Consider the situation at any defended target. Define

R = V/A* where V is the value of the target. See Figure 5.

For an attack of size r > R, the value of the A*-line is

A*r > V. Since maximum value of L(r) is V, it is clear that

for r > R the constraint is always satisfied, i.e.,

L(r) < A*r. Thus the defense will never fire at more than

R - 1 R.V.'s. If the defense were to fire at fewer than

R - 1 R.V.'s, the R - l s "t (or an earlier one, since the of-

fense does not have shoot-look-shoot capability) would de-

stroy the target. Then A = KV/r where K=l,r=R-l, and

R > 1 since V > A*. Thus

:

\
v - V

. 1* V s .*
A

iR^iy " ((V/A*)-!] " A
' V^ A

16
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For feasibility the defense must fire against at least R - 1

R.V.'s and for optimality it must fire at exactly R - 1 R.V.'s

An attack of size r = R is called exhausting . For an exhaust-

ing attack, the offense will receive a payoff of A*. Since

the defense will choose a firing doctrine such that the of-

fense never receives more than A*, an optimal offensive

strategy must be to exhaust the interceptor supply; r° = R.

However, since fractional interceptors or R.V.'s are not

allowed, R must be integer valued, but V/A* is not generally

integer. Integer considerations are ignored during the

analysis for ease of exposition, but numerical calculations

use R = [(V/A*) + .999] where [x] is the largest integer in

x.

In summary, note that the offense receives decreasing

marginal returns for constant i , targets are defended ift> m' 6

and only if V > A*, M = (V/A*) - 1, and an optimal offen-

sive strategy is r° = V/A*. At any defended target, the

only remaining problem is to determine a firing doctrine

such that A <, A*.

Three classes of targets will be considered: small

targets, for which A = B = 0, that is it suffices to send

one interceptor against each R.V. ; medium targets, which

require A > 0; and large targets, which require B > and

A > 0.

B. SMALL TARGETS

Consider a target of small value in relation to p and

A* so that; (l-p)V < A* < V. Then FD° = (i ! ,

i

2 , . . .
,

i

R _ x
)

;





R-l
i = 1 , m = 1,2,. ...R-l is optimal with I = .E- i = R - 1.
m ' ' ' '

r i=l m

This is shown by noting that FD° is feasible since r = 1

yields X = (l-p)V which is less than or equal to X* by as-

sumption, and the offense receives decreasing returns for

r < R - 1. Since all i =1, FD° is certainly least costm J

and the defense must fire at R - 1 R.V.'s. Thus FD° is

optimal. Figure 6 shows the payoff curve for this example.

The offense may be considered to be facing this payoff

curve when making an allocation of R.V.'s to targets, and

it is clear graphically that the optimal attack is r° = R.

If (l-p)V = X* an alternate offensive optimum is r° = 1.

In either case, r° yields X*.

C. MEDIUM TARGETS

In the example above the firing doctrine or commitment

rule was to fire one interceptor at each of the first R-l
R.V.'s. Consider another target (or a different X* or p)

such that (l-p) 2 V < X* < (l-p)V. If the defense maintains

the same firing doctrine, the resulting payoff curve is

shown in Figure 7. Now the offense receives X > X* for

r < ri, and the optimal attack is r° = 1, yielding

X = (l-p)V > X*. The value of this target is too high in

relation to X* for the defense to fire only one interceptor

at the first R.V. Recall that the defense must still fire

at exactly R-l R.V.'s. Suppose the firing doctrine

FD = (ii,...,i n , ) i = 2, m = 1,2,. ...A; i = 1, m =
v i

> 'R-l' m ' ' ' ' ' m

A+1,...,R-1. Consider the case A = 1. If (l-p)V is only

slightly greater than X* this doctrine would be feasible,

19
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but in general the payoff curve is as shown in Figure 8.

Now for ri < r < r 3 the offense receives A > A* and r° = r 2 .

Consider the firing doctrine with A = R - 1. This

firing doctrine must be feasible since K(l) = 1- (1- (1-p) 2
)
=

(1-p) 2 and A(l) = (1-p) 2V < A* by assumption, and the of-

fense receives decreasing returns for i constant. That is,6 m '

A(m) > A(m+1) , m = l,2,...,R-2. Thus some A < R - 1 is

feasible and it is obvious that the minimum feasible A dic-

tates the least cost firing doctrine. Then

R-l
I = E, im=l m

and

I = 2A + R-1-A = A+R-1.

The payoff curve facing the offense is shown in Figure 9.

Thus the optimal attack is r° = R with possible alternate

optima at r° = 1 and r° = r^ . In any case, r° yields A*.

D. LARGE TARGETS

Now suppose (1-p) 3 V < A* < (1-p) 2 V. Reasoning as above,

note that this city is too valuable in relation to A* for

the defense to fire only two interceptors at the first R.V.

Notice that if ii = 2 then r = 1 yields A = (l-p) 2 V > A*.

Thus the defense must use the firing doctrine FD = (i i , . . .

i

R _ , )

;

i = 3, m = 1,2, ...,B; i = 2, m = B +1,...,A; i = 1, m =

A+1,...,R-1. Notice that B = R - 1 is feasible since against

this doctrine; r = 1 yields A = (1-p) 3 V < A* and the offense

receives decreasing returns. Thus there is some B < R - 1

that is feasible. It is appealing to think that the minimum

22
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B that is feasible is optimal. It can be shown that this

is in fact the case. Also, for a fixed B, there is some

A £ R - 1 that is feasible and the minimum A that satisfies

the constraint must be least cost. Thus the defense fires

three interceptors at the first B R.V.'s, where B is as

small as possible; then fires two interceptors at the next

A - B R.V.'s, where A is as small as possible; and then

fires one interceptor up to the (R - l) s t R.V. at which

point the interceptor supply is exhausted. Values of A and

B can be easily computed. Then

R-l
I = E, i = 3B + 2(A-B) +R-1-A-B=B+A+R-1

m=l m K J

Figure 10 illustrates this last case. It is clear that again

the optimal offense strategy is r° = R, with three alternate

optima. And of course r° yields A*.

25





>

26





V. NUMERICAL PROCEDURES

The determination of the firing doctrine for small tar-

gets is trivial, and the firing doctrine for medium targets

is a special case of that for large targets. The large tar-

get algorithm is shown in Figure 11. The algorithm is sim-

ple and quite fast. The simplicity of the determination

depends upon the fact that the minimum B that allows a fea-

sible solution minimizes I. This can be shown by letting

B° be the smallest value of B such that feasibility can be

maintained. Given B° , let A be the smallest feasible

value of A. Denote the firing doctrine determined by B and

A by F(B,A).. Suppose B* = B° + 1 allowed us to reduce I

and be feasible. Then F(B*,A*) is feasible, where A* =

A - 2. It can be shown that if F(B°,A°) and F(B*,A*) are

feasible, then F(B*-1,A*+1) = F(B°,A°-1) is feasible. But

F(B°,A°-1) can't be feasible since A was defined to be the

minimum A which maintains feasibility. Thus F(B*,A*) is not

feasible. The proof is similar for B* = B° + c.

27
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VI. AN EXAMPLE

For any level of allowable offensive payoff, targets

of value close to A* will be allocated only a few intercep-

tors. Considering costs of land, radar, etc., it is not an

efficient policy to set up a defensive complex for the pur-

pose of defending against a small number of re-entry vehicles

One way to "solve" this problem is to arbitrarily agree to

defend a certain number of targets, or equivalently to de-

fend targets above a certain value. The defense is of

course no longer exactly proportional.

The defense of 100 targets of various values is con-

sidered in the example. The target list used approximates

the target structure of the United States, with all cities

over 150,000 being defended and large cities broken into

several targets. No consideration is taken of overlapping

interceptor coverage or of target vulnerability, population

values are approximate, and population is the only measure

of value.. Parametric studies of A* and p were conducted to

determine changes in the firing doctrine and allocation of

interceptors to targets, and to investigate total offense

and defense requirements.

Table I shows the firing doctrine for 10 selected combin-

ations of target value A*, and single shot kill probability p

Table II shows the total defensive interceptor requirement

for various values of A* and p. Table II also shows, for

various values of A*, the total number of re-entry vehicles

29





TABLE I

ALLOCATION AND FIRING DOCTRINE FOF. SELECTED TARGETS

TARGET VALUE «10

A

B

C

D

E

F

G

H

I

J

K

-3
UE'IO P *t**10

2647 .80 22

26A7 .90 22

1424 .80 48

8C0 .90 22

647 .80 22

647 .90 22

450 .92 24

422 .90 24

422 .92 24

410 .90 24

380 .80 26

,-3 Fire 3 Fire 2 Fire 1

at first at next at next

71

3

1

1

40

93

20

16

20

11

2

3

2

3

6

R

9 302 121

24 219 121

8 51 30

20 52 37

8 51 30

18 40 30

16 20 19

14 20 18

15 19 18

14 20 18

8 20 15

TABLE II

DEFENSIVE AND OFFENSIVE REQUIREMENTS FOR 100 TARGET PROBLEM

.
x* ZR p= .8 .9 .92 .94 .96

22 2211 3778 2895 2735 2554 2364

26 1879 3040 2355 2229 2085 1943

30 1630 2537 1969 1862 1754 1644

40 1231 1727 1373 1310 1244 1178

50 997 1296 1048 1001 957 918

TOTAL DEFENSIVE INTERCEPTOR REQU IREMENT
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ER required by the offense to attack all 100 targets with

exhausting attacks of size r = R.

Since R is now required to be an integer, A(R) is typ-

ically less than X*, and it is no longer the case that the

optimal offensive strategy is to use r = R. For example

at target K (see Table I) , R = 15 but the optimal attack

has been computed to be r° = 10. The payoff for the exhaust

ing attack is A(R) = 25,330 and the payoff for the optimal

attack is A(r°) = 25,960. The attack r = 10 is equivalent

to r = r 4 in Figure 6. Notice however that the payoff with

r = r° is less than A* as required and is only slightly

greater than A(R). Furthermore, if the defense desired

that only exhausting attacks be optimal (so that the of-

fense must attack fewer targets) , only small increases in A

and B will be required to force the offense to set r = R

at all targets.
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VII. GAME THEORY

The assumption that the offense knows the defensive

firing doctrine has been useful to easily derive an inter-

ceptor allocation and firing doctrine. The offense however

will generally not have this knowledge. The usefulness of

the model then depends upon how closely the minmax model

approximates the game theoretic model. Everett [5] shows

that for a fixed allocation of interceptors at a target,

the minmax approach allows an offensive payoff that is typ-

ically no more than 10% greater than the mixed strategy

payoff

.

Note that those targets where i =1 for all m the game6 m &

theoretic solution has been attained: minmax = maxmin. At

targets where A > however, game theory solutions can be

used to reduce the allocation of interceptors at the target.

The game is a simple, but large, matrix game.
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VIII. CONCLUSIONS

The proportional minmax allocation model minimizes the

number of interceptors required to force the offensive pay-

off (in terms of expected value per re-entry vehicle) to be

less than or equal to a fixed payoff A*. Under the assump-

tion that many defended targets will not be attacked, such

an allocation will minimize the total value destroyed by

the offense. By appropriate choice of A* the model deter-

mines the defensive allocation which minimizes total expec-

ted damage for a fixed number of interceptors.

The model has several attractive features. First, it

allocates interceptors so that price is proportional to

value. This type of defense is attractive since each city

is equally defended. That is, the proportional allocation

forces the offense to be indifferent as to which subset of

defended targets he will attack. Furthermore, the minmax

assumption allows the defense to easily generate interceptor

allocations for various values of p and A*. Finally, the

conceptual simplicity of the proportional defense model pro-

vides insight into the way costs vary in relation to levels

of defense and defensive missile effectiveness.
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