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PREFACE.

The substance of the following pages has already ap-

peared, partly in the Philosophical Magazine, 1871, 1872,

and the Quarterly Journal of Mathematics, 1872, and

partly in Rermathena, 1882. Hitherto correct statements

about the Tides have been confined to treatises which

employ the resources of the higher mathematics. Other

works almost without exception* repeat such erroneous

statements as that the place of high water without

friction would be under the moon, and that high water

is retarded by friction. No apology then is needed for

the publication, in a more accessible form, of the present

Essay, in which the fundamental theorems are deduced

from elementary physical principles without the use of

mathematics, except for quantitative calculations. The

problem of the influence of the Tides on the length of

the day is discussed in a similar method.

* The only exception with which I am acquainted is Stubbs' edition of

Brinkley's Astronomy, in which the reasoning of this Essay is adopted.



IV PREFACE.

For the benefit of readers who may wish to see the

latter problem analytically treated, I have given in an

Appendix the substance of Sir George Airy's investi-

gation.

In this second edition, I have introduced some correc-

tions and further elucidations, but have omitted the

Appendix. The subject of the first part of this Essay

has been treated with more detail by the late Dr. Samuel

Haughton in a paper entitled " Mathematical Principles

of Tidal Theory and Observation," published in Her-

mathena, 1879, p. 663. The present Essay has been

translated into Italian by Professor Edoardo de Ferrari,

of Empoli.



ELEMENTAEY THEOEY OF THE TIDES.

The attractive force of the sun or moon on the solid mass

of the earth is the same as if the latter were concentrated

at the centre. But the attractive force, on movahle par-

ticles at the surface, is greater than this on the side nearest

to the moon (or sun), and less on the opposite side. This

excess and defect constitute the tide-producing force.

Confining ourselves to the moon :

—

T'he direction of the tide-producing force is alivays tangen-

tial, and towards the line joining the centres of the Earth

and moon.

The following (Newton's) construction represents this

force in direction and magnitude.

Fig. 1.

Let xl (fig. 4) be perpendicular to EM, and let Im = mn

= El. Then if ME represent the attractive force of

the moon at the centre E, xn will represent the whole

B



2 THE TIDES.

disturbing force in magnitude and direction. The proof

is as follows :

—

Let it be borne in mind that ME is about sixty times

the radius of the earth. Hence, if we consider Ml = Mm,

the error cannot exceed — = ;^7r7r7rth part. For the
2 . 60 . oO 7200

error is greatest when x coincides with D (fig. 2). But
in that case MD' = ME' + r^ = {GOtf +r' = 3601 r'

.-. ilfj) = r./3601 = r (eO + —-\ nearly. Therefore

r MEl/i)-i!/^=^=^^^ nearly.

Again, Mn, Mm, Ml, ME, being arithmetical proportionals

with a difference varying from to pT^th, may be regarded

as geometrical proportionals ; the greatest possible error

being about the same as before. Hence, Mn : Ml or Mx :

:

MP or Mx^ : ME', i.e. as the moon's force at E : force at x
;

therefore, if Mx represent the moon's force at x, Mn will

represent the force at E in magnitude and direction, and

the difference or disturbing force will be represented in

magnitude and direction by xn. In order to have a fixed

scale we must represent the force at the centre by ME.
On this scale xn is in the nearer hemisphere too small,

and in the more remote too large, in the proportion of

3 1
Mn to ME. This error is at most Trxths = 7r?:th. This will

60 20

be considered by-and-by, but for the present it may be

overlooked.

The vertical component of xn is xh. The tangential
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component of xn is equal and parallel to «/», the

perpendicular on the radius, and is, therefore, pro-

portional to lA; which is one-third of nh. Note that

Ik =m sin MBK= Ex cos MEi sin MEJi= !'• sin 2 MEi,
that is to say, the tangential force is proportional to sin 2

(angle from moon). The same reasoning applies to the

dotted letters in the further hemisphere.

The vertical component being in the same line as gravity

(either in the same or an opposite direction) cannot directly

produce any motion. In fact, it could not do so unless it

actually exceeded the force of gravity. And, as mil he

seen by-and-by, it is too minute to produce any indirect

effect.

The tide-producing force then always acts towards EM
(in the direction of the arrows in fig. 2). From this we

can deduce theorems relating to the place of high and low

water, &c., without requiring to determine the magnitude

of the force, which will be hereafter taken into account.

At present we need only observe that it is very small

compared with gravity.

First, then, let us consider the case of water limited to

an equatorial csmal. The moon being supposed in the

equator, we shall establish the following theorems :

—

I. If there were no fiiction it would be low water

under the moon, and high water in quadratures.

II. Friction accelerates the times of high and low water.

in. In addition to the oscillatory motion of the water

there is a constant current produced by the action of the

moon.

IV. The effect of friction on this is to increase the

length of the day.

B2



THE TIDES.

I.— Without friction it would be low ivater under the moon,

and high xcater in quadratures.

I suppose the moon to be fixed, and the earth rotating

in the direction ^5 CD, carrying the ocean with it. That

the ocean is so carried is a fact of experience.

Now, in the course of one lunar day every particle of

the ocean is suhjected to precisely the same forces, acting

in the same order of succession and for the same periods,

being accelerated for about one quarter of a day, viz.,

while passing from ^ to C ; then retarded for a quarter,

from C to J), and so on. The variation in the amount of the

force does not concern us, being the same for every particle.

This being so, it is obvious that those particles will be

moving faster which have been for a longer time acted

on by an accelerating force, and the velocity will be a

maximum when the accelerating force has acted during

its full period, viz. through one quadrant. On the other

hand, those particles will be moving slower which have

been longer acted on by a retarding force, and the

absolute velocity will be a minimum when the retarding

force has acted during its full period, or through one

quadrant. The maximum velocity is therefore at A and

C, the minimum at B and D.

Secondly, it is clear that the tide will be rising where
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each portion of water is moving faster than that just in

advance of it ; or, in other words, where water is flowing in

faster than it flows out. Where this process has gone on

for the maximum time the tide will he highest. On the

other hand, the tide will be falling where the water is

moving slower than that in advance of it—or, in other

words, is flowing out faster than it flows in. Where this

has continued for the maximum time the tide is lowest.

Now consider any point s in the quadrant BO. The
water now passing s has been suhjeet to an accelerating

force during the whole time since it passed B, longer

therefore than any particles behind it, as at r. It is there-

fore moving faster ; and as the water in the space r s is

ihus flowing out faster than it flows in, the tide is falling.

This is the case through the whole quadrant BC.

At C the force changes and becomes a retarding force.

The particle at y has been subject to this retarding force

longer than one behind it, as at..*, and is therefore moving

slower. Here, therefore, water is flowing in faster than it

flows out, and the tide is rising ; and this holds through

the quadrant CD. What is said of these quadrants holds

also of those opposite to them ; the tide is falling all

through DA and rising through AB. Hence it is highest

at B and D, lowest at A and C. Where will the tide be

falling fastest ? Clearly where the difference of velocity

between r and s is greatest, i.e. where the amount of force

to which the water at s has been subject since it passed »

is greatest—in other words, where the force is at its

maximum, viz. at / (fig. 3), 45° from C. Similarly it

will be rising fastest at that point in the quadrant CD
where the force is greatest, viz. at g, 45° from C.
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On the whole, then, the water in the supposed equatorial

canal assumes the form of an ellipse ; and as it is the earth

that is rotating, this ellipse does not change its absolute

position except with the moon's motion ; only the water

accompanying the rotating earth moves fastest at A and

C, and is there lowest; and slowest at B and D, and

is there highest. Relatively to the earth it is moving

westward from e to /and from g to h; eastward from/to

g and from h to e. At A, B, C, D, the particles are in

their mean places ; at e,f, g, h, they are farthest from their

mean places, and change the direction of their relative

motion. This is represented in fig. 3, where the inside

BD
egf c J '"~

AC
Eig. 4.

arrows show the direction of the earth's motion ; the out-

side arrows that of the relative motion of the water. The
path of any one particle may be represented by fig. 4,

where the letter A indicates the position of the particle

when its mean place is at A in fig. 3.



FRICTION ACCELERATES HIGH WATER. ""'"ElSiry

II.

—

Friction accelerates the times of high and low water.

The theorem that the effect of friction is to accelerate

tlie time of high and low water admits of an equally

simple proof. As the water approaches C, the tangential

force diminishes gradually to zero at C. Therefore it

must have been equal to the force of friction at some point

n (fig. ^), after which friction prevails and the velocity

diminishes. It is therefore low water at n. Approach-

ing D, the ocean is moving slower than the earth ; there-

fore here friction tends to accelerate it, while the retarding

force is decreasing to zero. The two forces, then, must be

equal at same point o, after which the velocity again

increases. It is high water therefore at o.

It sounds paradoxical to say that friction " accelerates
"

high water. The paradox is only apparent. Friction

checks the motion, so that the water stops rising or falling

sooner than it otherwise would ; and thus we may speak

of the phase of high or low water being accelerated.

The preceding proof assumes that the ocean is carried

round by the earth in its rotation. This amounts to

supposing that it has not assumed a position of equili-

brium.*

*- It is important to obserTe that we are not entitled to assume that when

the tide is rising fastest the water is flowing in from both sides. This is

by no means evident. The rate of rise depends on the difEerence in velocity

between two successive parts of the ocean, and this may be greater when

the two velocities have the same sign than when they have different

signs. Taking into consideration the rotation of the earth, the assumption

amoimts to this—that the tide is rising fastest where the velocity of the

ocean is just equal to that of the earth. This is certainly not evident : in

fact it would not be true if the tangential force did not decrease at the same

rate on both sides of each of the four maxima. It ought not, therefore, to

be assumed, but deduced.
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It is a priori an admissible suggestion that the ocean is

in a state of equilibrium under the moon's action, i.e. that

it is absolutely at rest (relatively to the moon), while the

earth rotates. But this would imply an apparent move-

ment of the whole body of water with a velocity equal and

opposite to that of the earth's rotation, i.e. at the equator

there would be an apparent current of about 1000 miles

per hour. As this does not correspond to the fact, the

hypothesis is practically inadmissible ; but when friction

is considered it appears- theoretically inadmissible also.

For in this case friction would continually act in the

same direction, and its effect would be to make the east-

ward forces preponderate ; so that although the ocean

should be supposed at rest at first, it would ultimately be

dragged round by the earth. The actual form of the

earth, moreover, in which the equatorial ocean is inter-

rupted by continents, would render this equilibrium of the

ocean impossible.

III.

—

There is a constant current westward produced by

the moon's disturbing force.

This occurs from two causes. First, the water in the

supposed equatorial canal has now taken the form of an

ellipse ; and, in consequence of friction, the places of

greatest elevation are not at B and D, but somewhere

in the quadrants BA, CD. Now, the moon's tangential

force, hn, is, cmteris paribus, proportional to Ex the distance

of the particles attracted from the centre of the earth. It

follows that it is greater in the quadrants BA, CD,
than in the other two ; but in the former the force is
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retarding ; in the latter it is accelerating ; therefore the

retarding force exceeds the accelerating, and produces a

permanent westward motion.

Secondly, the water having reached its mean place at n,

and passed it with its greatest eastward velocity, it is, when
it reaches C, eastward of its mean place, i.e. it is nearer to

g. On the whole way before reaching g it is nearer to

that point than if there were no friction ; but on passing g

it begins to move westward ; but its eastward excursion

having been shortened by friction, it begins this motion to

the west of where it would otherwise be. At o it again

arrives at its mean place, which, without friction, it would

not reach until D. Thus, in the whole quadrant CD, the

particles are nearer to g than if friction had not operated.

But the tangential force is greater the nearer the particles

are to g, being proportional to sin 2 (angle from moon)

= cos 2 (angle from/ or g) ; hence the force in the quadrant

CD, which is a retarding force, is increased. After passing

its mean place at o, the water going westward is, on arriv-

ing at D, west of its mean place ; and until it reaches A

it continues to be west of the place which it would have

occupied had friction not operated, i.e. friction withdraws

it from h.' At h its westward excursion is stopped, and it

begins to return eastward. But now from /* to A it is east-

ward of the place due to it without friction. Thus through-

out this quadrant the particles are brought farther from h

by friction. But here the force is accelerating. Therefore

the force in the accelerating quadrants is diminished, while

that in the retarding quadrants is increased, and hence

again a balance of retarding force, and therefore a current

westward. Or thus :—Without friction, the quadrant
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fg, throughout which the water is moving faster than

the earth, has its middle point at C ; and the following

quadrant in which it is slower has its middle point at J).

These quadrants are, therefore, equally divided between the

aecelerating and the retarding quadrants. With friction,

the middle points being displaced to n and o respectively,

the water is moving faster than the earth throughmore tlian

half the quadrant BC, and slower through more than half

the quadrant CD; and similarly in the opposite quadrants.

But BC, BE are the aecelerating quadrants, and CB, AB
the retarding quadrants. Therefore the water is exposed

for a longer time to the retarding than to the accelerating

force.

We have here, therefore, a vera causa which may pos-

sibly be effective in retarding the earth's rotation. An
attempt will presently be made to estimate the maximum
amount of this eiiect.

On the Quantitative Valuation of the Tidal Bintiirbance.

To determine more precisely the magnitude of the dis-

turbing force :

—

The moon's attraction at x : force of gravity : :

moon's mass earth's mass
, 1 _, , ,,

j^^i
= -^ > or nearly = g^ : 81^; there-

fore the whole attraction of the moon (represented in fig. 1

by ME) = oj-j—^j. But on the same scale the greatest

tide-producing force is represented by -^r (the greatest value
A/
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of Ik being - r), i.e. by -j^. (This we shall call H. ) The

greatest tangential force then is

g g 1

40 X 81J X 60'' 11,736,000 365,000'

nearly. The tangential force at any given point is

= - -ETsin 2a) (w being the angle from the moon) . Neglect-

ing the effect of pressure, the effect of the moon's action

through one quadrant : the effect of this maximum con-

tinued for the same period : : 1 : ^tt (this appears from the

construction in fig. 5).

The number of seconds in the mean lunar day being

89432, the velocity generated in one-fourth of this time is

22358 1 , , .

365000-x-^ = 26
^''^ '^^^^^y-

This is the difference between the greatest eastward

and the greatest westward velocity ; therefore the greatest

eastward velocity is —, and the greatest westward velocity

52

As the same amount of water passes through a given

section in a given time, the increase in height : total

depth of the sea : : relative westward velocity of the

water : earth's velocity of rotation (relatively to the

moon). The last is about 1470 feet per second. Hence

depth of sea 1 depth of sea
the rise of the tide = ^^ x - = _^g-^—

.

For a sea of three miles in depth this would give for the-

22
lunar tide 2*4 inches. The solar tide is about -^7: of this.

50
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TJie following is a geometrical construction for the velocity

and height at any place:—
Round the radius OB describe a circle. Since the angle

at BcO is right, 5c is equal to the perpendicular from CE,

i.e. to xl in fig. 1, and cp equal to Ik ; so that the tangential

disturbing force at a is proportional to the perpendicular cp.

I'ig. 5.

If aa' he the space passed over in the rotation of the earth in

one second, the force acting on the water maybe supposed

unchanged while it passes from a to a' ; and its effect during

that interval {i.e. in this quadrant, the retardation) will

also be proportional to ep or its double cf and to the

time : that is, to aa', or the angle at 0, aOa'. Calling H
the moon's greatest tide-producing force, r the earth's

radius, and t the angular velocity = 1—:

—

—
° seconds in lunar day

2n
;, the retardation

Ecf aOa'
Now the angle at

89432' r

= the angle at/, being in the same segment; and this

angle multiplied by cf= the small perpendicular cd, or pp',
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which, is parallel and equal to it. Therefore the whole

retardation since leaving B is proportional to the sum of

all the ahscisssB pp'—that is, to Bp'. It is H -^ —tz—

.

r air

This represents the defect from the greatest eastward Telo-

city ; and after passing its mean value at the middle point

s it represents a velocity which, relatively to the earth, is

westerly. The velocity of the current relatively to the

earth is represented by ps.

We shall now show that the height of the tide at a'

above its lowest point is also proportional to Bp'.

If at any point in the supposed canal a thin section be

taken, the quantity of water entering this section in a given

time is proportional to the product of the depth and the

velocity. If the water flows in a little more rapidly than

•it flows out, it is clear that the increase in the quantity

contained in the section, and therefore the increase in depth,

will be proportional to the difference between these two

1 1 1 J j.1.
/diff- of vel, X depthX

velocities and to the whole depth
(^ length of section j"

This holds as long as the change is small compared with

the whole depth. If this be supposed uniform throughout

the canal, the increase in it (that is, in the height of the

tide) at a' is therefore proportional to the retardation

;

and since the tide began to rise at B, where the velocity

began to diminish, it follows that Bp' is also proportional

to the height of the tide at a' above its lowest point.

It is easy to deduce from this construction the cor-

responding formulae. For, if OB = r, we have

Bp=r{l-oos'w). Bntps=^r-Bp=lr{2oos^b)-l)=}rooB2b).

And since sB is proportional to the mean height, the defect
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from this height is proportional to ps, and therefore to

cos 2a).

The effect of pressure with such a tide will be extremely

small. As it operates to send the water away from its

position of greatest elevation, it will so far assist the moon's

force without changing the place of high water.

To estimate the effect of friction, the moon's force being

= - H sin 2(0, the velocity ®, undisturbed by friction

= V cos 2(1) {V being the greatest velocity). If the dis-

placement caused by friction is very small, we may take

this value of » as a sufficient approximation. The friction,

assumed proportional to velocity = Vf cos 2aj, and the

velocity begins to be checked when py cos 2a) = - fl'sin2aj

, _ Vf 366000. _.. . .

or, tan 2bj = - ^ = ^—/= - 7000/ nearly.

When the displacement (which we shall call S) is sensible!

we shall have as follows : since the velocity is periodic and

is a maximum, positive or negative, when o) = 8 ; and is = 0,

when o) - 8 = ± 45°, ±135°,we may assume v=V cos 2 (o) - S)

.

Then friction = fV cos 2 (o) - S) and the net amount of

force = - ^ sin 2a) - fV cos 2 {w - B). Hence

H cos 2a) fF sin 2 ((u - g)
^~

2r 2r

By hypothesis this reaches its maximum, so that it is high

or low water respectively, when w = S, 8 + 90°, 8 + 180°.

Therefore V= —^ ; and since at these points the

net force = 0, we have sin 2S = - ^: = -/ —-—, and tan 2S

remains as before = - 7000/. The rise of the tide in a sea

three miles in depth, will be 2'4 cos 2S inches.



CASE OF GLOBE COVEEED WITH WATER. 15

The effect of the vertical compouent may be estimated

as follows :

—

As shown above the whole attraction of the moon

= 811760^ = 29M00
°'^"^5^- ^^^' ^' represented in the

figure by ME. The vertical component of the disturbing

force is represented on the same scale by xh which is greatest

when X coincides with 0, and is then

" ^ W " 293650^30 " 8800000'
^®^^^y-

This is the proportion in which the weight of a particle

directly under the moon is diminished. It is less than two

grains in a ton, or equivalent to less than r^jth of an inch

in a depth of three miles with the water at a temperature

of 50° F. ; an increase in temperature of one-tenth of a

degree would produce more than a hundred times this

effect.

In the preceding demonstrations we have supposed the

water to be limited to an equatorial canal, the moon also

being in the equator. It is desirable to consider what

modifications will be introduced, first, by supposing the

earth to be uniformly covered with water ; and secondly,

by taking into account the moon's declination.

It will save repetition if we state once for all certain

general principles which we shall have to employ :

—

1°. First, suppose an accelerating force acts alternately

in opposite directions; the effect (measured by velocity)

increases as long as the force acts in either direction ; and

therefore the velocity in that direction is greatest at the
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moment that the force changes its direction. Thus a

pendulum is moving fastest at the lowest point of its

oscillation.

2°. Secondly, the velocity (diminishing under the coun-

teraction of the force) continues to he in the same direction

until this counter force has undone all the work accom-

plished in that direction by the previous force. If the

circumstances are alike in both directions, this will be

when the force has done half its work. This again is

precisely the case of the common pendulum. For the

present case this will be at efgh, fig. 3.

3°. Thirdly, in the case before us, the water rises when

the particles behind are moving faster than those before.

The rate of rise is greatest when this difference is greatest

;

but as the effect is cumulative, the whole amount of the

rise is greatest at the moment when the difference = 0, and

is about to change to the opposite.

4°. Fourthly, as in 2°, this difference ceases to increase

{i.e. is greatest) when the force (or difference of forces)

producing it ceases to act ; but it is not reduced to until

the opposite force has done half its work. At this moment

the accumulation is greatest.

5°. Fifthly, in the case which we are now considering,

the effective force depends on the form of the surface, and

vice versd. If, then, when this form is spherical the dif-

ference mentioned in 3° were always in the same direction,

it would continue to act until a certain permanent alte-

ration was produced. If the difference were constant,

a state of equilibrium would be attained ; but if it alter-

nately increases and diminishes, then the mean form of
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the surface will be the same as would be produoed by a

constant force equal to the rneau amount of the actual

force. The alternate excess and defect of the latter will

cause a periodical motion, just as if it were an independent

force.*

First, then, the moon being still supposed to be in the

equator, let the earth be uniformly covered with water.

The tangential force may be resolved into two compo-

nents—one touching the pai'allel of latitude {i.e. east and

west), the other meridional. These may be regarded as

giving rise to distinct waves—one east and west, the other

north and south.

The actual amount of these forces may be found as

follows :

—

By the previous construction (fig. 4) {ME being moou's

force at E), the disturbing force at A is represented by

-
I r sin 2AM = - ^ sin 2AM.

Resolved along the parallel of latitude, this is

3r sin AM cos AM sin 6>.

But by the right-angled spherical triangle (fig. 6)

sin AM ^n = sin MB (hour angle from moon),

and cos AM = cos MB cos AB (latitude).

" If the readex n-ishes to apply these consideratious to the case of an

equatorial canal assumed above, it must he observed that there the elevating

foree is the excess of easterly force acting on any particles of water above

that which affects those in advance, t.«. to the east of them. This excess is

positive from 45° west of the moon to 4S° east {i.e. while the moon passes

from 45° east zenith distance to 46° west), then negative for 90°, and so on.

C



18 THE TIDES.

Honee the component parallel to equator

= - ff cos lat. sin 2 (hour angle)

(-H" being the greatest disturbing force). This is less than

the force in the equatorial canal in the proportion of cos

lat. : 1. But the velocity of rotation is less in the same

proportion ; hence the rise of the tide will be the same. If

this force were alone (that is, if the water moved in canals

N

M-

Fig. 6.

parallel to the equator), the ocean in every circle of latitude

would take the form of an ellipse with its short axis towards

the moon. But these ellipses would not be similar unless

the depth of the sea varied as cos lat.

The effect of the meridional component is of a different

kind. Its value is

- H sin 2AM cos = - 23" cos ^ilf sinAM cos d.

But sin AM cos = sin AB cos MB,

and cos AM = cos MB sin AB (as above).

Therefore this component

= -2R sin AB cos AB cos" MB
= - ^ sin 2 lat. cos* (hour angle)

JT JT
= - -y sin 3 lat. + -^ sin 2 lat. cos 2 (hour angle).

The mean value of this is the first term, the effect of which

is to cause a permanent accumulation at the equator.
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The second term, which is the variahle part, represents

the tide-produoing part of the force. This is positive as

long as the hour angle from the moon is less than 45° on

either side ; and in that case from the equator to lat. 45°

this is an elevating force, being greater as the particles are

further from the equator : from 45° to the poles it is

depressing. In the remaining quadrants this term is

negative. Hence, by 5° and 4°, the elevation at the

equator (and up to lat. 45°) will be greatest [i.e. it will be

high water), 90° from the moon. Beyond lat. 45° the

depression will be greatest under the same circumstances.

In these latitudes, therefore, the effect of the former com-

ponent would be partially counteracted. It is easy,

however, to see that the variation in the meridional force

(and it is only the variation that affects the tide) is in any

latitude less than that in the force parallel to the equator

in the proportion of sin lat. : I ; for the latter varies from

H cos lat. to - ^ cos lat. and the former from H sin lat.

cos lat. to - .B" sin lat. cos lat. Hence while the height of

the tide would be lessened, the place of high water would

be as before. The actual magnitude of the tide may be

ascertained as follows :

—

The force being - -^ sin 2\ cos 2m (\ being lat., and m

hour angle).

In order to apply the same method of summing as in

fig. 5, we write this

- Jsin2Xsin2(45°-»»)-

C2
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Then, as in fig. 5,

velocity = j- sin 2X cos 2(45° - m).

(r being as in p. 12 the angular velocity relatively to the

moon).

Now, this increase in the height of the water depends on

the difference in velocity at two points, of vsrhioh the lati-

tude is X and X + a where o is very small. In fact the

difference in the amount of the water entering the section

and leaving it is equal to the area of the section multiplied

by the difference of velocity, and the decrease or increase

of height is equal to this difference of amount divided by

the area of the surface, i.e.

_ p , • 1 . depth X increase of velocity
Decrease oi height = —= —

ra

(the height increasing when the velocity is diminishing,

and vice versd).

But a being small,

sin 2(X + a) - sin 2X = 2a cos 2X

;

jnjT
.•. decrease of height = -— cos 2X sin 2m {D being depth),

and total rise or fall = -r-^— cos 2m,
r 4t^

This is = cos 2X x half the total rise or fall in the equa-

torial canal with the moon in the equator.

After passing 45° latitude, the decrease in the circles of

latitude becomes important. If we assume our meridional

canal to be of uniform width, then the canals will gradually

overlap, the tide thus diminishing until at the pole, as is

obvious, there will be no tide.
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Let us now consider the case of the moon having a

declination, which for simplicity I shall suppose less than

22° 30'. This limitation will not affect our results. We
shall, as before, take the two components separately.

"With respect, then, to the component which acts parallel

to the equator. Near the equator itself the considera-

tions previously applied still hold good. Next consider

a place a, whose polar distance is less than the moon's

declination, to which therefore the moon is circumpolar,

and (with the assumed declination) alternately north and

Fig. 7.

south of the zenith. If abed be the ciicle of rotation of

such a place, the distance of the moon from any point in

this cii'cle is less than that from the earth's centre. If)

then, the direction of the rotation be abed it is obvious

that the water will be accelerated through the whole semi-

circle, abc, and retarded through eda. The same reasoning

as already employed will show that it will be low water

at c and high water at a. Now take an intermediate place

whose circle of rotation is Imno. Here the water is retarded

and rising from I to m and from ntoo; and accelerated
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and falling from m to n and from o to I, and the interval

olm is less than mno. Hence the tide is lowest at n and

not so low at I, and it is high water at m and o. Hence

we have a diurnal tide in addition to the semi-diurnal,

this diurnal tide becoming of more importance as we recede

from the equator until the co-latitude = moon's declination,

when the semi-diurnal tide disappears.

At the equator the meridional component acts during half

a rotation towards the equator, and during the other half

from it, and in each case is an elevating force, which, as

before, has its greatest effect 90° from the moon. At all

places whose latitude is not greater than the moon's declina-

tion there is a permanent accumulation. In the circle abed

this component is directed towards the north at a and

towards the south at c, the points of change being where

the great circles from M touch abed. This gives rise to

a north and south oscillation. The southerly force being

the greater, there will be a residual depression of the water

in this region. The depressing force, however, varies,

being greatest at a and at c* while the elevating force

is greatest where the great circle tangents from M
meet the circle. Hence, by 4° and 5° the tide will be

lowest at the latter points and high at the former, and

there will be a diurnal tide, as in the former case. Com-

bining this with the former result, the effect of both

components together will be to give high water at a.

•^ If the moon's declination were greater than 22° 30', e might be less than

45° from M, in which case the force there would be an elevating one.

Again, at a place whose latitude was greater than 22° 30', and less than the

moon's declination, the moon's least nadir distance (= llfj would be greater

than 46°, and the force depressing.
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It is not necessary to enter into a detailed examination

of the state of things at intermediate places. It is not

difficult to see that, as long as the moon's declination is

small, there will be an accumulation effected by the me-

ridional component extending from the equator to about

lat. 45°, and that, as the moon's declination increases, the

accumulation becomes less at the equator and greater

towards 45°, until the declination reaches 46°. With a

declination greater than 45° there would be an accumu-

lation at the poles; and obviously, if the moon were at

the pole, the ocean would take the form of a prolate

spheroid.

The place of high water at any latitude, as far as

this is due to the meridional component, would be easily

found ; but the proportionate effect of the meridional

and equatorial components depends partly on the latitude

and partly on the moon's declination ; and it does not

come within the scope of the present essay to solve this

problem. It is sufficient to observe that the importance

of the meridional component increases with the declination

as well as with the latitude. If the moon were at the

pole this force would be alone ; and, whatever the declina-

tion, it alone produces an efEect at the pole.

The same reasoning applies, mutatis mutandis, to the

solar tide.

It was remarked, on p. 10, that the disturbing force is

slightly greater on the side nearer the moon than on the

remoter side. The effect of this inequality is to produce

a small diurnal tide.
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On the Effect of the Tides on the Length of

THE Day.

§ 1.

—

Historical.

In the year 1754 the Berlin Academy proposed, as the

subject for a prize essay, the question, "Does any Cause

exist tending to Retard the Rotation of the Earth ? " What
the result of the competition was I do not know ; but the

question led to the publication by Kant of a short essay,

in which he suggested that such a retarding cause existed

in the tides. He worked out this suggestion in a rough

way, there being, as he truly said, no ascertained data on

which any trustworthy calculation could be built.

Laplace examined the question from the historical side,

with the help of the records of ancient eclipses, and came to

the conclusion that the period of rotation had not altered.

Recently, in consequence of the improvement of the

lunar tables, astronomers have seen reason to re-open the

question. It has been inferred from the records of ancient

eclipses that the day is lengthening at the rate of one

second in two hundred thousand years. At first sight

this may seem to be an amount too small to leave any

trace in history. It must be remembered, however, that

in calculating what part of the earth's surface came into

the shadow of a given total eclipse, say 2500 years ago, we

have to "unwind" 2500 times 365i(= 913,125) rotations,

and a difference amounting to an eightieth of a second

between the first and last of these would in the whole

period have a very considerable effect.* M. Delaunay

* About 100 minutes: see Ball, "Elements of Astronomy," p. 377.
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attributes the retardation to the moment of the moon's

disturbing force on the tidal prominences. He started

from the assumptions that without friction it would be

high water under the moon and anti-moon, and that friction

retards the time of high water. Both these assumptions

were erroneous ; but they so far counteracted one another

as to leave the place of high water in the same quadrants

as the true theory, viz. in the quadrants east of the

moon and anti-moon, in which the moon's force is

retarding.

Sir George Airy corrected these errors, and working out

the equations, found two terms wliioh indicate a constant

current westward—one term (the smallest) depending on

the vertical, and the other on the horizontal, displacement

of the water.*

In my own Essay on the Theory of the Tides {Quarterly

Journal of Mathematics, 1872, a.nd Philosophical Magazine),

the effect of friction was indicated, but there was no at-

tempt to estimate it quantitatively. I am not aware that

any attempt has been made to solve this problem ;t and

indeed it would be absurd to pretend to do so with any

degree of accuracy. What I propose to do is to estimate

the effect so far as to enable us to form a judgment as to

the actual importance of the tides as a cause retarding the

earth's rotation.

It will be convenient first to prove the following propo-

sition respecting the effect of obstacles :

—

* Monthly Notices of the Royal Astronomical Society, 1866, p. 221.

t See, howeyer, Lord Kelvin, Philosophical Journal, 1866, p. 533.

He mentions also a Paper by Wm. Femel, Astronomical Journal of

Cambridge, U.S.A., December 8, 1853, which I have not seen.
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§ 2.

—

Obstacles which check the motion of the water towards

a certain point retard the time of high water, and

increase the height.

If the obstacle is a complete barrier, the tide will rise as

long as the motion of the water is towards it, and will fall

as long as the motion is from it. Hence, at 45° east of

quadratures it will be high water on the east of such an

obstacle, and low water on the west of it. The influence

of this on the time of high water at other places will

extend as far as the pressure is felt.

An obstacle not sufficient to stop motion altogether

will produce a similar efPect, but of course much smaller,

in consequence of the continuity of the surface. If the

obstacle be such as to destroy half the velocity of the water,

then high water on its east side would be 30° after quadra-

tures. In both cases the height would obviously be

increased.

It appears from this that the eifect of such obstacles is

in both respects the reverse of that of friction.

§ 3.

—

Effect of the moment of the moon's attraction on the

tidal prominences in an equatorial canal with the

moon in the equator.

This is the way in which the retardation was supposed

by Delaunay to be produced, and Thomson and Taithave

adopted the same view.*

* The statement that the earth rotates in a "friction collar," -which

seems to put the matter in a nutshell, obviously assumes that the passage of

the tidal wave is the passage of a mass of water. But this is true only so

far as there is a residual westward current, which is certainly not self-

evident.
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Now, in order to estimate tlie greatest effect possible,

let us suppose that the greatest elevation is in the middle

of the quadrant, i.e. 45° before quadratures ; and further

that the elevation is not diminished by friction.

Let H= the moon's greatest liorizontal force.

ID = angle from the moon.

e = greatest elevation.

Then the tangential force at any point = fl'sin 2to, and the

elevation = e sin 2«j. For it is proportional to the velocity,

which as we have seen (p. 14) = Fcos 2 (w - S), and if

S = 45° this = Fsin 2w. Multiplying by the element of

the equator, and the unit of width, we get the moment
= jffe sin' 2(1) x rdw x r. Now sin- 2qj is always positive,

varying from to 1 and from 1 to 0. Substituting its

equivalent ^•(l - cos 4a)) we divide the moment into a

periodical part ^ Ser^ cos 4wd(o which varies from -^Her'^dui

to + ^ Her'dtD, and therefore produces no permanent effect,

and a constant part which is = -j- Her'^dw.

Summing this round the circle, and multiplying by the

coefficient of friction, we have for the whole moment Heirr^f.

Taking the density of the earth as 5, the moment of
K

inertia of the equatorial section of the earth is jj irr*.

Dividing the former by the latter, we have for the angular

(negative) acceleration -^- •

,-r „ 1 , depth of sea
^°^' ^=365000^"'^^ = - 76440 '

If we assume the depth of the sea to be 3 miles, the angu-

/
lar (negative) acceleration becomes nearly = ^„ ^ .„. .

93 billions X )•
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Multiplying by the number of seconds in 100,000 years

1 /
(about 3 billions), we obtain ^ - nearly.

Now, the velocity of the earth's surface at the equator

relatively to the moon is about 1470 ; the angular velocity

,, , . 1470
thererore is

r

TT 1 „ earth's velocity ,

^'''''' 31-^= 45570 -^-

If the earth's velocity is diminislied in this propor-

tion, the length of the lunar day will be increased by

89432
j^^^ / seconds = nearly 1-96 / seconds. To find the

effect on the actual (solar) day we must take the angular

velocity =
, when the last fraction will become ^ /

or, approximately, 1.836 seconds. The solar tide need

not here be taken into account since its effect on the pro-

minences due to the moon is alternately positive and

negative. If the displacement instead of being 45° is

= 8 then the elevation will be (as a first approximation)

e sin 28 and the retardation 1-7 /sin 28 seconds.

Now, in the case supposed, /is exceedingly small, the

friction being ultimately that of water on water. Hence we
conclude that in an unobstructed equatorial canal the

effect of tlie moon's attraction on the tidal prominences in

retarding the rotation would be quite insignificant, even

on the supposition above adopted, that the place of high

water is 45° before quadratures. If this place were affected

only by friction, the displacement could never reach 45°,

for tan 28 = 7000 /and/must be less than unity. The
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elevation also is diminislied by friction in the proportion

of cos 28 to 1. Remembering this, it is easy to see that

the figure just given should be multiplied by ^ sin 48, so

that withthe greatest possible displacement, the resultwould

be practically 0. In order that 8 should be = 22^°, since

tan 28 = 7000 /, / should be =
^

(which is far beyond

itsvalue). We should thenhave l"83/^sin 48 =^^, nearly.

The retardation in this case would therefore be less than

one second in 700 million years. It will be seen here-

after that /is millions of times less than this.

There is another way of viewing the matter, which

does not introduce /. The following consideration explains

this :

—

§ 4.

—

Of the effect of the residual current westioard due

to the change in the time of high water.

The constant force found above, = \He sin 28, produces

an accumulating westward tendency in the water. This

once impressed will continue to increase until the increase

is checked by friction, that is, until friction becomes equal

to this constant force. This occurs when

^Ee sin 28 x < x/= \He sin 28,

that is, when t = -. After this the velocity of this west-

ward current is constant, the constant force being expended

on counteracting friction. Therefore when we take a

sufficiently long time we may assume that the total moment
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(of the water) is ultimately not affected by the ooeffioient

/. In fact the retarding force fo is then = \IIe sin 2S.

This being premised, I shall now examine the question

from the point of view suggested by Airy.

§ 5.

—

Effect of the changes in the disturbing force due

to the displacement of the water.

By substituting, in the expression for the disturbing

force, the altered value of the ordinate of the water for the

original value {x+ X, for x), Airy finds that the expres-

sion contains a constant term dependent on the distance

of high water from quadrature. The source of this con-

stant term may be understood from the following observa-

tion :

—

The particles are in their mean place at the moment of

high water and at that of low water ; at the former they

are travelling W. with their greatest velocity; at the

latter they are travelling E., also with their greatest

velocity. Now, the place of high water being W. of

quadrature, and the water moving W., it follows that

when the water reaches quadrature, approaching the moon,

it is behind, or west of the place which, without friction, it

would have occupied. On the other hand, at syzygy it is

in advance, or B. of its place. In both cases the disturb-

ing force is diminished by this displacement, the force being

greater the nearer the particles are to the middle point of

the quadrant. In other words, H sin 2(u is diminished

throughout, id being increased when over 45°, and dimi-

nished when less than 45°. In the following quadrant,

i.e. after passing the moon, the opposite change takes
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place, since the particles enter it E. of the place they

would otherwise occupy, and leave it W. of their place.

Now, the former quadrant is that in which the moon's

force is accelerating, the latter that in which it is retarding.

The same observation applies to the other two quadrants.

Thus the accelarating and retarding forces are no longer

in equipoise, the latter predominating.

To calculate the effect :—The maximum excursion of

the water without friction in the case of a canal three miles

deep would be about 136 feet. For the greatest velocity

= ^jr (feet per second). Now if this continued for one-

22356
fourth of a day the space passed over would be —^^r— = 480

nearly. With the varying velocity ^ cos 2(d the space

traversed is less than this in the proportion of 1 to ^tt (as

in the calculation of the velocity in p. 11). It is therefore

= 272 feet nearly. This is the double excursion. There-

fore the maximum excursion on either side is 136 feet.

Assume that this is undiminished ; and assume, as before,

that it is high water 45° W. of quadratures. Then we

may assume the displacement at each point to be 136 cos 2&)

;

and the moon's force being ff siu 2w, the change in the

disturbing force due to this displacement

136
= 2S cos 2ix) X cos 2(0 per second.

r

136
The constant part of this = H"— •

i r

Putting for H its value qgennn » ^^^ calculating the
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effect continued for one lunar day (89280 seconds), we

have

11 136 100
,

-tt: X ) or -^^—rrr > nearly.
46 r ' 65 millions

'

This acts on the whole mass of the canal. Introducing

the moments, as in p. 27, we have as the acceleration for

one day

200 mass of canal
y ^

65 millions mass of equatorial section of earth x r

With the assumed depth of sea, the latter factor = „„.,^ .
' ooOO X r

Hence the daily angular acceleration

_ 1 1

" 325000
""

3300 x r

'

Multiplying hy the lunar days in 100,000 years (about

33 millions) we have nearly as before ^^ . This gives a

retardation of about 1*83 seconds in 100,000 years. Adding

the solar tide we have as the total 2'6 seconds. This is

on the hypothesis that the elevation is not diminished.

Introducing the necessary correction we have, as in p. 28,

2-6 I sin 4g.

For the reason before stated, it is unnecessary to multiply

this by the coefficient of friction.

There is a third way of viewing this cause. Owing to

the displacement of the place of high water, since that is

the point where the water is moving fastest westward, the

water is a longer time in the retarding quadrants than in

the others, e.g. on the previous hypotheses it is 136 feet

behind its place on entering the accelerating quadrant.
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and 136 feet in advance on leaving it. It is, therefore, in

272
that quadrant about

^ ^
seconds = about -18" short of a

quarter of a lunar day. This would give a result similar

to that already found.

The preceding calculations are obviously applicable to the

ease of a globe uniformly covered with water, since each

section parallel to the equator would give the same results.

The meridional wave would have no effect on the rotation.

It is not worth while to extend our calculation to the

case of the moon not being in the equator. The nett

result would be to diminish the retardation.

§ 6.

—

Application to the actual state of the earth's

surface.

In attempting to apply the preceding results to the

actual condition of things on the earth's surface, the fol-

lowing points must be noted :

—

First.—On the earth as it actually is the effect of friction

proper on the tides is trifling compared with that of ob-

stacles. Against these the tidal current impinges, and in

addition the increased elevation gives the moon an in-

creased pull, which, if acting towards the obstacle, exerts

its full moment on the earth, but only for a fraction of a

day.

Secondly.—The existence of a retarding influence de-

pends, as we have seen, on the place of high water being

in what I have called the retarding quadrants, i.e. less

than six hours in time later than the moon's meridian

passage. If this condition is violated, the influence might
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be accelerating. Suppose a continent whose coasts run

N. and S. (as those of America may be roughly said to do)

;

then if it is high water on the east coast less than six

hours after the moon, the effect of the pull just mentioned

is retarding ; if it is high water on the west coast more

than six hours after the moon, the effect is to accelerate.

In other cases the direct effect is nil.

Now, owing to the great irregularity of distribution of

land and water, theory will not help us in determining the

times of high water ; but on consulting the Tables founded

on observation we find, for example, the following re-

sults :

—

In the open part of the Pacific Ocean high water is

about 30° before quadratures ; farther from the equator at

both sides it is at quadratures ; farther still it is 30° after

quadratures.

[Confining ourselves to the direct effect of the moon's

action on the tidal prominences)

The effect on

—

East coast of China, ....
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the sea begins sensibly to diminish in approaching the

coast, but this we are unable to do for want of data.)

These instances are sufficient to show the difficulty (per-

haps amounting to impossibility) of determining whether

there is any preponderance of retardation at all. At all

events, however, it is clear that the retardation, if any,

must fall very far short of the maximum.

It is to be remembered, further, that in the case con-

sidered above of a globe uniformly covered with water,

each section of the globe parallel to the equator has its

own tidal current to encounter its own inertia, and hence

the result in the ease of the equatorial canal was applicable

to the entire globe. But in the ease of the earth it is

not so, and this would still further diminish the retar-

dation.

On the whole, it would appear that no certain conclusion

as to the amount of retardation of the earth's rotation by

the tides can be drawn from theoretic considerations.

I am not aware that any estimate of the value of the

coefficient / has been published.' The following has

been kindly communicated to me by the late Professor

Fitz Gerald:—

Let fi = the coefficient of viscosity of water.

Then x being the ordinate of the water, let

d^V dV
fi
-— = ({, .-. fi

— =^x; fiV= i^x- ; fijVdx = fiv/i,

{h being the depth in centimetres)

= - ^*^ = g <ph^ = ^Jfh' (since i>=Jv)
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With a depth of 3 miles, h = 483000 nearly .-. A= = 233000

millions nearly. The value of /u at a temperature of

10° 0. =50°F. is= •013257,

15° 0. = 59°F. . . . -Oil 503,

20° C. = 68°F. . . . -010164.

If we take the third of these V9.1ues, we find

/ nearly = „ „., , .,,.
•' 3-82 bilhons

Then siu 28 = tan 2g = 7000/ =

546000 millions

If we introduce this value into the formulae for the

retardation given above, we arrive at the result that if

the displacement is due to friction alone, the consequent

retardation would be in fact nil. Supposing, liowever,

that from whatever cause the displacement amounted to

15° (and we have seen on p. 34 that over a certain limited

region it reaches 30°), the formula on p. 32 would give

1"15 seconds in 100,000 years. When we consider how

far the actual state of things is from the hypothesis of

a globe uniformly covered with water 3 miles deep, witli

the moon always in the equator, the fact that the retar-

dation deduced from eclipses is about two-fifths of this

is certainly curious. But we cannot attribute much im-

portance to this coincidence.

(With the value of / here given it would take about

12,000 years to produce the effect described in § 4 so as to

make this formula applicable)

.










