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ABSTRACT

A satellite to be used as a testbed for experiments such as the Configurable Fault
Tolerant Processor (CFTP) was designed at the Naval Postgraduate School. This
processor consists of a Field Programmable Gate Array (FPGA), which may be
reprogrammed by receiving a signal from a source external to the satellite.
Experimentation of a high-speed pipelined and fault tolerant Fast Fourier Transform
(FFT) was conducted for use within the CFTP. In this thesis, we detail the development
and testing of a high-speed pipelined FFT in which fault tolerance can be applied at a
later opportunity. Xilinx Vivado ISE® was utilized to synthesize behavioral Verilog to
program an FPGA. Xilinx Vivado ISE’s® simulation suite produced waveforms to
demonstrate functionality. Launch of CFTP is planned for FY 18 aboard NPSat-1.
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l. INTRODUCTION

The Naval Postgraduate School (NPS) worked with government sponsors to design
and build a small satellite that is scheduled to be launched into space in June 2018. Because
of radiation effects, computer systems that are utilized in space must be able to detect and/
or correct digital bit errors. The Configurable Fault-Tolerant Processor (CFTP) experiment
is a field-programmable gate array (FPGA) implementation of a digital processor to test

means for correcting radiation-induced faults in digital processors.

In 2005, Coudeyras [1] tested and demonstrated that radiation in the space
environment can cause single-event upsets (SEU) that can have unknown, sometimes
unrecoverable, effects on electrical systems. A fast Fourier transform (FFT) that can be
used to implement Parseval’s theorem in a way that corrects single bit errors [2] is designed
and will be implemented on the CFTP as a space experiment on the Naval Postgraduate
School Satellite One (NPSAT-1). This implementation will detect and correct SEUs caused

by radiation in space.

Specifically, in this thesis, we detail the development and testing of a high speed
pipelined FFT. Caleb Humberd performed similar research during his time at NPS in 2011
[2]. His research differed in that he implemented a proprietary Xilinx Integrated Synthesis
Environment® (ISE) designed FFT that was based on proprietary intellectual property [2].
The FFT code developed in this thesis is open source, easily modified, and documented,
which has important pedagogical utility. Sample data was processed through the FFT code

to verify functionality.

A OBJECTIVES

In thesis, we expand upon the engineering of the fault-tolerant FFT design,
implementation, and execution. The FFT can be utilized to compress radio signals to reduce
buffer memory and downlink bandwidth. Use of Parseval’s theorem enables the FFT to
perform error detection and correction as shown in Figure 1, increasing the reliability of

the signal.



A sequence x[n] flows into identical and parallel FFT A and FFT B, and the power
is calculated in the frequency-domain. In addition, the sequence x[n] has the power
calculated from the time-domain. Parseval’s theorem states that the FFT’s frequency-
domain power must equal the time-domain power. The output signal defaults to FFT A
unless the FFT A power differs from the reference time-domain power by a threshold
deviation. If the threshold deviation is detected, FFT B becomes the output signal. Detailed
within Table 1 are the output options that may result based on the results of implementing
Parseval’s theorem. This will eventually be an experiment on the memory of the CFTP-1

at launch.

2NlogN Redundant FFT

|1‘cf - ul < thresh? | (a)
1 2 1
a2l
— FFT - i
) @
] NED
FFT T
(b,
e | |
"~ : 1
Ly
‘11{/’— bl < thresh? (B)
20)

(ref)
if [|ref —a| < thresh | then {X[k]|=FFT,} else {X[k]=FFT,}

Figure 1. Implementation of Parseval’s Theorem with
Two Duplicate FFTs. Source: [2].



Table 1. State Diagram for Parseval’s Theorem

Implemented with Two Redundant FFTs as Pictured in Figure 1.

ref FFT (A) | FFT (B) (@) (b) [ref — | [ref — b Output
X[K]

Correct Correct Correct Correct Correct Zero Zero FFT (A)
Correct Correct | Incorrect | Correct | Incorrect Zero Not Zero FFT (A)
Correct | Incorrect | Correct | Incorrect | Correct | Not Zero Zero FFT (B)
Correct | Incorrect | Incorrect | Incorrect | Incorrect | Not Zero Not Zero FFT (A)
Incorrect | Correct Correct Correct Correct | Not Zero Not Zero FFT (A)
Incorrect | Correct | Incorrect | Correct | Incorrect | Not Zero Not Zero FFT (A)
Incorrect | Incorrect | Correct | Incorrect | Correct | Not Zero Not Zero FFT (B)
Incorrect | Incorrect | Incorrect | Incorrect | Incorrect | Not Zero Not Zero FFT (A)

In this thesis, a behavioral Verilog definition of a pipeline eight-point FFT was
developed, simulated, and implemented in a Xilinx Kintex-7 FPGA. This FFT is the basic
element for a test of the Parseval’s theorem-protected SEU-tolerant FFT.

B. DEFINING THE PROBLEM

The discrete Fourier transform (DFT) is an integral component in digital signal

processing (DSP). Understanding signals is important due to their prevalence everywhere.

Social communications between people, physical communications between people
and machines, or machine to machine communications are done through signals. Signals
present themselves in nature as continuous-time analog quantities. Once digitized and
converted by sampling to discrete time they become sequences. A sequence is “a
continuous or connected series such as a set of elements ordered so that they can be labeled
with positive integers” [3]. Discrete-time samples are roughly comparable to digital signals
and are treated the same in our case. The system produces outputs at the same rate at which
the continuous signal is sampled, producing a real-time system. The Fourier transform of
the sampled signal gives the frequency-domain representation of the time-domain
sequence. The DFT is a representation of the Fourier transform that is bounded in time and

is defined by the Fourier-transform-pair [4]



N-1 _j(zi]kn N
N =
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is known as a twiddle factor, X, is the

1)

calculated time to

frequency, X, is the calculate frequency to time, Nis the current sample, and ks a

constant.

The DFT calculation requires N2 calculations where N is the sample size. The DFT

is one of the most important equations for DSP. It is useful in an orthogonal frequency-

division multiplexer (OFDM) demodulators and modulators. Long-Term Evolution (LTE)

signal processing, WIFI, and Worldwide Interoperability for Microwave Access (WiMax)

signals are examples of signals that the DFT is utilized to analyze. Efficient algorithms

have been developed to calculate the DFT. The fast Fourier transform is the signal

processing algorithm that is used to reproduce to perform signal processing in this research.

The FFT requires N log, N multiply-add operations [4]. To demonstrate the efficiency of

the FFT over the DFT, Table 2 is provided.

Table 2. Comparison of DFT Calculation Size to FFT Calculation Size to
Demonstrate Efficiency of Algorithm

N 1000 106 10° 1012
DFT N2 10° 1012 1018 1024
Calculation
FFT Nlog, N 10* 20 30 x 10° | 40 x 102
Calculation x 10°

The FFT is loaded into an FPGA as part of the Configurable Fault Tolerant

Processor (CFTP) for operation within the space environment. Since electronics in space

4



must be able to produce the correct calculations in spite of the risk of SEUs, protection of

the FFT is accomplished by implementing Parseval’s theorem.

C. ORGANIZATION

Background on Configurable Fault Tolerant Processor research performed at NPS
is covered in Chapter Il. First, an introduction of Academic Advisors that have facilitated
the research is given, following with a review of literature. In Chapter 111, we discuss the
implementation of the FFT. In addition, the design methodology of the FFT is also included
in Chapter Ill. In Chapter IV, we discuss the test vectors that were utilized to confirm
proper operation of the FFT. In Chapter V, we summarize and draw conclusions from the

thesis research as well as provide recommendations for future work.

D. ADDITIONAL DOCUMENTATION

The Verilog source code for the FFT is included in appendixes.
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II. BACKGROUND AND PRIOR WORK

The United States Navy (USN), United States Air Force (USAF), and Department
of Defense (DoD) agencies have been designing, purchasing, manufacturing, launching,
and operating space systems since 1957. These systems are designed and operated to
support the warfighter and strategic decision makers. The acquisition life cycle time and
cost for a constellation of proprietary and military specification satellites is greater than
DoD leadership likes. In addition, space and the aerospace industry have been
commercialized enough to allow the U.S. government to decrease risk and cost by
purchasing entire systems or constructing custom systems utilizing commercial-off-the-
shelf (COTS) components. The utilization of an FPGA to perform signal processing is
becoming routine. The use of a reconfigurable processor, an antenna, a demodulator, an
analog-to-digital convertor, and a modulator can be utilized as one system named a
software-defined radio (SDR). In short, a SDR is a reconfigurable signal processor.

The reprogrammable nature of an SDR makes it convenient for utilization in space.
Satellite operators and engineers now have the ability to add or change capability by
uploading software while a satellite is on orbit as long as the receiving antenna, analog-to-
digital converter, FPGA, and downlink antenna are installed prior to launch. The control

module also needs a connection to load the FPGA.

Space is a challenging environment for electronics to operate. The space
environment can cause digital bits to flip, thus being read in error. Coudeyras confirmed
this through research on FPGAs at Crooker Research Laboratory [1]. Prior research has
been performed to allow an FPGA to detect errors and/or correct errors. Triple modular
redundancy (TMR) and reduced precision redundancy (RPR) are two techniques that

accomplish error correction. This is discussed in the literature review.

A. CFTP HISTORY
1. Midshipmen Space Technology Applications Research-1

The U.S. Naval Academy designed Midshipmen Space Technology Application

Research-1 (MidSTAR) to incorporate a test bed for fault-tolerant techniques applied to
7



FPGAs developed by NPS. This consisted of two FPGAs, which were called the
Configurable Fault-Tolerant Processor (CFTP). In September 2006, the United States Air
Force launched CFTP into Low Earth Orbit (LEO) onboard the host Space Test Program
(STP-1) satellite. CFTP detected seven single-event upsets, mainly while flying through
the south-Atlantic Anomaly, during its 492 km, 46 degree inclination orbit [1]. The location
of CFTP is displayed in Figure 2.

Figure 2.  External View of MidStar-1 Showing the Location of CFTP-1.
Adapted from [6].

2. Naval Postgraduate School Satellite-1

NPS’s effort on CFTP-7, which is currently in production, makes MidSTAR CFTP-
1 obsolete. CFTP-7 is designed to be fault tolerant due to the use of TMR techniques. Its
increased capability includes memory and processor improvements. The utilization of
partial reconfigurations also increases capability. Four experiments will be preloaded into
CFTP-7 at launch. This research project details one of the four experiments. Naval
Postgraduate School Satellite-1 (NPSat-1) is scheduled to fly at 560 km at 35.4 degrees
inclination and is scheduled to launch in FY18. An expanded view of the satellite is

displayed in Figure 3.
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Dr. Alan A. Ross and Dr. Herschel H. Loomis have been the primary advisors for
the CFTP project, completing a combined total of twenty theses and three dissertations.
Dr. Ross (Lt. Col., USAF, retired) earned his PhD from the University of California, Davis,
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in 1978 and recently retired as a professor in computer engineering. Dr. Loomis earned his
PhD from Massachusetts Institute of Technology (MIT) in 1963. Dr. James H. Newman,
chair, Space Systems Academic Group (SSAG), has participated as an advisor recently on
CFTP projects. He earned his PhD from Rice University in 1984 and served as an astronaut
from 1990-2008.

2. Research History

In June 2003, Dean Ebert researched the design trade offs for CFTP-1’s initial
concepts. In 2005, James Coudeyras completed his research in partnership with the Crocker
Nuclear Laboratory in Davis, California in which he executes his radiation test plan
utilizing their proton radiation beam [1]. He proved that space radiation has an impact on
electronics, and these errors are known as SEUs. Also in December 2005, Peter Majewicz
completed his research of a fault-tolerance technique called Triple Modular Redundancy.
TMR instantiates three modules in parallel. They utilize a majority voter to correct errors
in, at most, one component [8]. In December 2006, Gerald Caldwell completed his research
on the design challenges present while utilizing two FPGAs [9]. In September 2008, David
Dwiggins, Jr., redesigned the X1 control FPGA to be fault tolerant and added a

microcontroller to manage internal components [10].

In December 2008, Margaret Sullivan completed her research implementing and
analyzing a new method of fault tolerance called Reduced Precision Redundancy (RPR)
[11]. She concluded that “RPR provided very good recovery from errors caused by SEU in
spacecraft systems” [11]. To be clear, RPR protects a satellite’s arithmetic module from
SEU just like TMR. In addition, RPR has a lower power cost than TMR. RPR was
developed by PhD student Josh Snodgrass in September 2006. He performed research on
fault tolerance by means of reducing the precision of the redundant copies of a precise
number used for error detection and correction. He named this method RPR. RPR applies
only to arithmetic operations, and he proved this technique as viable using live proton
radiation testing [12].

In December 2009, Jeremy Livingston completed his design to compress a

wideband radio signal into a narrowband signal [13]. In December 2011, Caleb Humberd
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completed his research on a FFT based compression algorithm and discovered a way to use
Parseval’s theorem to correct single-component errors in an FFT. In March 2016, Andrew
Jackson completed his design of a TMR embedded MIPS processor architecture with a

majority-output voter to combat single-event upsets for NPSat-1 on orbit [14].

The most important prior works directly related to this thesis are a thesis written by
Michael Zimmer and a dissertation by Raymond Bernstein. Zimmer designed a radix-4
FFT that operated at 45 MHz, had a floating point multiplier and adder, and consisted of
20-bit words [15]. Bernstein utilized a FFT to design a vector-processing computer. He
discovered that the structure of the memory system for a vector-based computer favored
the butterfly machine (BFM) operation [3]. The BFM is a visible representation of the FFT

computation and is described in detail in Chapter IlI.

The FFT described in this thesis is a product of 20 years of space and computer
research. As we continue to operate complex electronics in space, the understanding of the
impact of space radiation, how to mitigate those impacts in a cost effective manner, and to
continue to improve every aspect of a computer system means research like this will
continue to build on itself. In Chapter Ill, the FFT development and design choices are

presented and matured.
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I11. DESIGN AND IMPLEMENTATION

Chapter 111 is organized into three major sections. Specifications are given in
Section A for the end system. The FFT is described from a mathematical perspective in
Section B. The architecture that must be implemented to realize the specified FFT is
detailed in Section C. This algorithm was coded in the Verilog design language utilizing
the Xilinx Vivado® design suite. It builds on known block diagrams and structures to

realize the code.

A SYSTEM SPECIFICATIONS

The FFT design consists of the 18-bit signed two’s complement number system, a
fixed point rational number representation with the binary point between the 16" and 17™
bits. In addition, two 18-bit words representing the real and imagery part of a complex
number system are utilized. Sample size N is equal to 8. Sub-sections are organized to

elaborate on these details.

1. Two’s Complement

Two’s complement is a popular number system because it allows for the
representation of negative numbers within a binary adder which may perform addition or
subtraction. For an N —bit word, the range of values can be represented as —2"* to
2" —1.Commonly, the most significant bit (MSB) is utilized to determine if the number
IS positive or negative. A “0” in the MSB represents a positive number, and a “1” in the
MSB represents a negative number. The value of an N —bit word when utilizing two’s

complement can be determined as [15]

Vs = (_bN—l) (2N71) + NZ_Z b 2
T @

A simpler way to compute the two’s complement of a number is to invert all bits in

a binary number and then add 1. This converts a positive number to a negative number

representation. An example of how this operation works is shown in Figure 4.
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0101 ( 5)
1010
+ 1
1011 (-5)

Figure 4. Demonstration of Two’s Complement Operation

2. Fixed-Point

When utilizing a fixed-point rational number representation, the binary point is
established by the user to satisfy a design goal. Unlike the integer representation where,
the binary point is to the right of the least-significant bit (LSB) [15], the binary point is
located anywhere to the left of the LSB. Within this design, the binary point is after bit 0
as shown in Figure 5. This bounds values to be less than two and equal to or greater than

negative two.

Figure 5.  Fixed-Point Signed Binary Representation.
Binary Point Place After Bit 0

The formula to determine a value when a fixed point two’s complement

representation is used is given by

B N-2 _
V ixedPoint — -b 2N_l + bi 2N_l_i !
FixedPoint ( 0)( ) le b. e{0,13}, ©)

where b, represents the value of the i numbered bit, b, represents the value of the 0™ bit,

N represents the total number of bits. Examples of equivalent radixes are shown in Table
3.
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Table 3. 18-Bit Fixed-Point Binary Number with a 16-bit Radix Point Examples

Binary Hex | Integer Fixed-Point Actual | Exponential
Binary

011111111111111111 | 1FFFF | 131071 1.99998474121 <2 -

010000000000000000 | 10000 | 65536 1.00000000000 1 21

001000000000000000 | 8000 32768 0.50000000000 1/2 271
000100000000000000 | 4000 16384 0.25000000000 1/4 272
000010000000000000 | 2000 8192 0.12500000000 1/8 273
000001000000000000 | 1000 4096 0.06250000000 1/16 274
000000100000000000 | 0800 2048 0.03125000000 1/32 27>
000000010000000000 | 0400 1024 0.01562500000 1/64 276
000000001000000000 | 0200 512 0.00781250000 1/128 277
000000000100000000 | 0100 256 0.00390625000 1/256 278
000000000010000000 | 0080 128 0.00195312000 1/512 279
000000000001000000 | 0040 64 0.00097656000 1/1024 2710
000000000000100000 | 0020 32 0.00048828125 1/2048 2711
000000000000010000 | 0010 16 0.00024414062 1/4096 2712
000000000000001000 | 0008 8 0.00012207031 1/8192 2713
000000000000000100 | 0004 4 0.00006103515 1/16384 2714
000000000000000010 | 0002 2 0.00003051757 1/32768 2715
000000000000000001 | 0001 1 0.00001525878 | 1/65536 2716
000101010101010110 | 2AAB | 10923 0.33334351 33333 -

001011010011111110 | 5A7F 23167 70700073 \/E/z -

000000000000010100 | 000A 10 .00030518 i1 2714

+ 2—16
3. Complex Numbers

In implementing the arithmetic to compute the discrete Fourier transform, there is

need to represent complex numbers. When transposing from the time domain to the
frequency domain, W, introduces an imaginary component. A complex number is a+ jb
where a is the real component of a complex number, jb is the imaginary component of a
complex number, and J-1= Jj . In performing complex multiplication, two complex

numbers can be expanded to produce

(a+ jb)(c+ jd)=(ac—bd)+(ad +bc)_ @
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B. FAST FOURIER TRANSFORM ALGORITHMS

DSP progressed greatly when Cooley and Tukey discovered the FFT algorithm in
1965 [4]. The simplified BFM computation demonstrated in Figure 6 is a visual
representation of the smallest element of a decomposed FFT calculation [4] and is in fact
the two-point DFT. This element is used to construct the constant geometry decimation-in-
time algorithm this research implements [4]. The twiddle factor, WNkn , Seen in equation
(1), is within this diagram. Simply, the twiddle factor is a predictable multiplier needed to

correctly calculate the FFT that is factor of sample size, time, and BFM stage. The twiddle

j(27/Nkn

W." can be expanded to e’ [4]. In addition, odd samples are multiplied by the

twiddle factor.

Xm (p) xm-ﬂ(p)

W
xm [q)c— "‘N xm+1{q)

Figure 6. Flow Graph of Simplified Butterfly Machine Computation
Requiring Only One Complex Multiplication. Source: [4].

1. Bit Reversal

The first step to utilizing the FFT within a DSP algorithm is to perform a bit reversal
on the sample data. Bit reversal is a misnomer. Nothing is being done to the internal bits
of the data; however, the data is being stored within alternating working buffers with the

index transformed by reversing its bits as demonstrated in Figure 7.
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Xo/000] = x[000] = x/p] Xof0] = x[0]

Xof001] = x[100] = ¥a[q] Xof1] = x[4]
Xo/010] = x[010] = xfp] Xof2] = x/2]
Xo[011] = x[110] = xnfq] Xo[3] = x[6]
Xo/100] = x[001] = xn[p] Xo[4] = x[1]
Xo[101] = x[101] = ¥afq] Xof5] = x[3]
Xo/110] = x[011] = xfp] Xo[6] = x[3]
Xo[111] = x[111] = xnfq] Xol7] =x[7]

Figure 7.  Bit Reversed Demonstration

2. The 8-Point DFT

Once the equation for the FFT is decomposed into odd and even sets, Figure 6 can
be utilized to create Figure 8 to yield an algorithm for an 8-point DFT, which shows the
bit-reversal applied to the input sequence. This algorithm is detailed in depth within
Discrete-Time Signal Processing by Oppenheim and Schafer [4]. To accommodate the
needs of satellite-based DSP, a high speed pipelined FFT is desired. Constructing an FFT
for pipelined operation is demonstrated in Figure 8. Data is loaded sequentially into the

butterfly machine (BFM) computation alternating between Xm(p) and xm(q).

x(2) o— - - X (2)

X (3)

x(4)

X (5}

x(3) o % (6)

» X(7)

K 7) O

Figure 8. Flow Graph of 8-point DFT Using the Butterfly Machine Computation.
Source: [4].
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The algorithm being implemented is detailed in Figure 9. The constant geometry
FFT is organized to take advantage of repeating patterns from stage to stage within the FFT

structure. These patterns ease construction of a pipelined algorithm.

Figure 9. Rearrangement of Figure 1 to Allow Each Stage to Have a
Constant Geometry Permitting Sequential Data Accessing and Storage.
Source: [4]

C. HIGH-SPEED PIPELINED FFT ARCHITECTURE

A high speed pipelined FFT is demonstrated in Figure 10. Specifically, the image
depicts a digit-reversed block, alternating memory buffers, and the BFM computations.

There are three memory buffer/BFM pairs within a N=8 FFT.

}7 1 stages ——

—|BFM || Buffer | _ _{pppnp || Buffer | |

Digit Bu Ei'l'er
Reversal [~

Figure 10. Basic Pipelined FFT Structure. N= 2/, Where N
Is the FFT Word Size. Adapted from [15].
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Although similar to Figure 10, Figure 11 has added timing details to ensure that
x(i) is placed into the correct slot of the output BFM ping-pong buffer. While the first
buffer is filled according to the bit reversed ordering discussed in this chapter, successive
buffers are filled to allow for efficient pipelined operation. They are filled according to
k=0,%,1,5+12,5+2353+34%+1...,N-1[15]. ForN=8,k=0,4,1,5,2,6, 3, 7.
This order allows x(i) to be fully utilized in both calculations in which it is involved before

moving on to x(i+1).

2¢=N —point Pipeline FFT

i=0---N-1
k=07.1.7+L..N-1
© X0 X, (k Xy Xya(k)
i Bit-
T revé-tﬁe Pingpong| | Level-l | _[Pingpong| _ _ _ | Level-N | _|Pingpong| _
w‘r; switch Radix-2 switch Radix-2 switch
| | Pipeline | | Pipeline | |
Buiterfly Buiterfly
I+1
an.  N-word
Ping-pong ="
buffers

Figure 11. Detailed High Speed Pipelined FFT Structure.
Adapted from [15].

1. Radix-2 Pipeline Butterfly Machine Architecture

A BFM that can be coded utilizing smaller blocks is displayed in Figure 12. It
depicts two memory delays one clock-cycle long, two 2-input multiplexers, one memory
delay dm + 1 cycles long, a complex multiplier, and a complex adder / subtracter.
Additionally, timing details and twiddle factors are calculated within the image. This entire
circuit is made complex by utilizing separate registers for the real and imaginary portion

of the complex number.
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g+l ] [
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X, () @t=i+d, +Li+d, +2
X, 0 LT, @ =i+ ,
" | BT del——— +
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odd Xg(-f"'l) @rt=i+1i+2 Subt;actor —
a
2-Stage % +/-
Complex Subtract
Multiply
Ay
Wil @t=i+1i+2 t=evenifd iseven

WieX (i+D)@t=i+d, +Li+d +2

Figure 12. Pipeline Radix-2 Butterfly Machine (BFM)
Architecture, Level q. Adapted from [15].

2. 2-Stage Pipelined Complex Multiplier Architecture

A one-stage pipeline real multiplier and a one-stage pipeline real adder is utilized
to implement a two-stage pipeline complex multiplier. This is depicted in Figure 13. The
multiplication must be performed on unsigned positive numbers. A module is inserted to
perform a two’s complement computation on negative numbers and strip off the sign bit,
reducing numbers within the multiplier to 17 bits. After multiplication, there is an
expansion to 34 bits, and a truncation is required to strip off the 17 least significant bits
(LSBs). The truncated output has the sign added back and is two’s complemented into a
negative number if the exclusive-or of the signs of the multiplicand represent a negative
product. An addition or subtraction is required to complete the complex product formation

as a signed two’s complement representation of the real and imaginary parts of the product.
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Detailed Complex Multiplier

(a +jb)(c +jd) = (a*c — b*d) +j(a*d + b*c)

iy ' g
a =
_f_,..)_f_} Unsigned Truncate &
C b | b-1 Multiplication 1 scale +
—_— —>
b

e
a*c g ] 2b-2 b-1 b
b-1
I’ i 1-Stage Real | g Xq("'l'l){real}
- . Subtractor | &
b 1
—t—>|2c| Unlsiglnetli R Truncate & -
d b b1 Multiplication 2 1% scale
— >z f——> b*d g) 202 ot °
b -
a
—f—,--)—f—) Unsigned R Truncate &
d b i b1 Multiplication | ® % scale +
—r > a*d g] b2 b1 b
_l ]
_ R Xq(""'l)l{imag)
F 1-Stage Real |
: Adder g b
- : R
—f—) Un.5|g.net‘:| Truncate &
c b b-1 Multiplication J® % scale *
—>f]——> btc g] 2 b1 o
b b1

Figure 13. Two-Stage Complex Multiplier

Timing is important throughout the development of this design. Accessing a
memory element, in this case a register, requires one clock cycle. This results in a one clock
cycle delay in which the data is available for use. Testing must be done to ensure that
multiplication and addition occur among the proper data elements. The delay of the
multiplier dm is equal to two clock cycles. The delay of the adder da is equal to one clock
cycle. Timing is analyzed with simulation throughout the testing of the algorithm. This

gives a visual depiction of where specific data elements align with the clock-cycle.

This design was instantiated in a Xilinx Artix-7 FPGA with Verilog hardware

description language (HDL). The implementation and testing are discussed in Chapter 1V.
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IV. TESTING AND EVALUATION

Three major concepts are presented in Chapter 1V. Planning and managing the
testing of the FFT is in Section A. Here we find visual testing plans and major interfaces
within the FFT that were tested. Sample inputs that were tested are listed in Section B.
They showed up in hexadecimal, binary, and signed decimal throughout testing. Finally,
the testing that was performed is demonstrated and displayed. The code that produced the
test is described in detail, and simulations that were produced are analyzed. Verification of
the code confirms that what was designed in Chapter 111 was produced and is usable for the

intended space experiment purpose.

A TESTING PLAN

This section is divided into three sub-sections. The test plan for the FFT is detailed
in Sub-section 1. Here the FFT was considered as an entire system. Interfaces between
code blocks, henceforth known as “modules,” were labeled to allow for correlation within
simulations. The BFM module within the FFT is detailed in Sub-section 2. Being a smaller
portion of the larger system FFT, it was labeled a component due to it consisting of multiple
modules itself. This component performs multiplication on two signed binary numbers.
The timing associated with this clocked systems is described and analyzed within Sub-
section 3. Timing analysis ensures that data arrives for processing at the right time and

location.

1. System Test Plan

A systematic approach to software testing was important due to the complex nature
of the project. A system level test plan can be seen in Figure 14. Test points for simulation
inputs and outputs are marked by numbers. Boxes represent the aforementioned
components of the FFT. Test point SO yields the initial vector that was sent to get digit
reversed and stored. Test point S2 gives the output. Test point S3 is the outcome of the first

stage BFM computation. Test point S4 is located at the end of stage 1.
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Basic Architecture for N= 32 FFT

System Level Test Points 1¥ Stage 2 Srage

+B Delay Aﬂ Delay +8 Df—-"lav
i Vping pc,,.,E P“"E.' Pﬂl‘tﬂ ng Pang-
Digt | puffe BFM BFM uffer
Reversal
& )
()
A

| Ping P‘on.g.
W@ aufer
h _'

l :
l

3 Stage

Figure 14. System Level Test Plan for N =8 FFT

2. Component Test Plan

The component-level test plan for the BFM can be seen in Figure 15. The numbers
on the BFM diagram represent input/output points that were examined to verify results and
timing against expected values. Point CO allows the observation of inputs into the BFM.
From C1, we get the result of the data after a one clock-cycle delay. Point C2 allows us to
observe the result of a 2-to-1 multiplexer (mux) that was selected on even time, and C3
allows us to observe the results of a 2-to-1 mux selected on odd time. Points C4 and C6
allow observation of the result of a shift right by one operation which results in a scale-by-
half operation necessary to prevent the overflow in the BFM output adder / subtracter. This

effectively divides the fixed-point binary number by two. Point C5 allows observation of
the result of d +1, where d is the delay of the multiplier and is equal to two. Point C7

allows observational of the result of the multiplication between Point C4 and the twiddle
factor discussed earlier. Point C8 allows observation of the result of addition or subtraction
of Points C5 and C7.
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The operand was chosen by a selector set by the time. Subtraction occurred on even

time if d_ was even. The results were sent to the first, second, and third ping pong buffer

respective to the BFM stage as shown in Figure 14, S3, S5, and S7, respectively. Those
ping pong buffers satisfy the constant-geometry reordering seen in Figure 9.

Component Level Test Points

Pipeline Radix-2 Butterfly (BFM) Structure, Level ¢

@t=i+d,+d,+1 |

X, (k) 4 .
i=0--N-1 = even 1 (8) |for k=0,4,1¥+1,_ . N-1]

\LL\® X, () @t=i+d, +Li+d, +2
X, @ VWL () @ t=1i+1 ,
P EE 3 il +
o A © )
@b 4odd X (G+)@t=i+1i+2 Slfl?:tllc‘::t:m‘ _G_.
xl}\ a ,=f : d, b
. 2-Stage 7 +/-
—E=1k—en - Complex C :: )| Subtract
IO Multiply
ag dm
W2 @t=i+1i+2 r=evenifd  iseven
FieX ((+D) @t=i+d, +Li+d, +2

Figure 15. Component Level Test Plan for N =8 BFM.
Adapted from [15].

3. Component Timing

The FPGA is connected to an internal clock running at 100 MHz. Variable
CLK100MHZ was used to reflect this within the FFT code and waveforms. This physical
clock was reduced to a 50 MHz clock and seen as clk 50 within the FFT code and
waveforms. This 50 MHz clock drives multiple code snippets. Registers are triggered to

load on the rising edge of the clock. This is where the clock transitions from a binary 0 to
binary 1.

The processor operates in a pipelined fashion as demonstrated in Figure 16 and 17.

This means that multiple processing elements occur in parallel. The first eight samples

processed through the BFM are displayed in Figure 16 with a generic X (t)
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Butterfly Timing Diagram

FFT B+word biock #0

Ck 0 1 0 1 ] 1 b 1

Xal ] D 1 2 3 ] 5 8 7

Top Mux_C2 sy wam|  xam|  xan|  xem|  xa|  xgml gl

T = aven 1 0 1 0 1 0 1 0

Bottom Mux €3 sty xg| x| vad|  xgm| xS xem| xa@

T=odd 1 0 1 0 1 0 1 0

whgl ) 1 1 3 3 5 5 7 7

Mult Cutput =W [ JxXg(.) (-:,E.: 1 1 3 3 ] 5 7 7

Top Adder InC_ €5 ) g0l %ol  KaR)| Kol %ol  Xqi)|  XalE ko)

Mg+l NpEl0)| Wageli)| Werl(l)]  Ngrl3)]  Nael(Z)] MerliE)|  Ngelis) }:q»lml
gm=2 N=4
da=1

Figure 16. Butterfly Machine Timing Diagram Part A.

Adapte

d from [15].

The next eight samples that are processed through the BFM are displayed in Figure

17. Within X, (t), t is less than 8 and greater than or equal to 0. The W (t) listed here

was for test purposes only and is not a real value. Each successive N-word block was

processed by the BFM and generated corresponding N-frequency components.

Butterfly Timing Diagram (continued)

FFT 8-word biock & 1
Ck 0 1 0 1 1 Y 1
Xal ) 0 1 2 3 [ 5 5 7
TopMux €2 A xao| gol| g o]  xg)  wge| gl )
T = even 1 0 1 0 1 0 1 D
Bottom Mux ¢ c2 o] oy  weF| e  wom]  wom]  dam] W
T=odd 1 0 1 o 1 0 1 0
Wagl . ) 1 1 3 3 5 5 7 7
Mult Cutput =Whg [ JxXq(.) ':-1_.3..:) 1 1 3 3 E 5 7 7
Top Adder In €5 glll %o xeR)| o) 4| Xo®)|  Xale)|  ais)
Xg+1 Xl el el doelis)| Xoel] el deelE doeld)]
dme2 N=§
da=1

Figure 17. Butterfly Timing Machine Diagram Part B.
Adapted from [15].
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Figures 16 and 17 were integral to the analysis of the FFT timing. Timing was
synchronized by staggering the initialization of each BFM to accommodate the pipelined

delays in the data input to the FFT.

B. TEST INPUTS

To verify outputs, there needs to be a known input for which expected outputs can
be calculated. Starting with fixed point number 1.0, 27*° was subtracted from each iteration
to generate identifiable inputs. During some of the simulations, we see a hexadecimal

representation. Figure 18 shows displays in binary within the simulation environment.

Figure 18. Injected X (t) Inputs in Binary

Injected inputs have been listed in Table 4 in three possible formats to enhance
readability. The stream continues without repeating; however, only the first sixteen have
been listed.
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Table 4. X, (t) Inputs Injected into FFT

Xq (t) Binary Fixed-Point Binary Hexadecimal
X, (0) 010000000000000000 1.0 10000
001111111111111111 99998474 Offff
Xa(3)
001111111111111110 99996948 Offfe
X4(2)
X, (3) 001111111111111101 .9999542236 Offfd
Xq (4) 001111111111111100 9999389648 Offfc
Xq (5) 001111111111111011 9999237060 Offfb
X, (6) 001111111111111010 .999908447 Offfa
001111111111111001 9998931 0fff9
X(7)
001111111111111000 999877929 Offf8
Xq(8)
X (9) 001111111111110111 .9998626708 Offf7
q
X 001111111111110110 999847412 Offf6
(2)
X (b 001111111111110101 99983215 Offf5
(D)
X (c) 001111111111110100 .999816894 Offf4
q
X (d) 001111111111110011 9998016357 Offf3
q
X 001111111111110010 99978637 Offf2
(8)
X (f) 001111111111110001 99978484 Offfl
q

C. FFT SYSTEM AND COMPONENT TESTING

In this section, we detail each portion of the FFT code in snippets. The FFT is coded
in behavioral Verilog. Vivado ISE’s® simulation tool was utilized to provide the
simulation waveforms that demonstrated the functionality of the major components of
Figures 11 and 12. Xilinx Vivado ISE® synthesized the behavioral Verilog into a hardware
definition that detailed the interconnections of gates and registers. The Xilinx Vivado
synthesizer produced a realization that was instantiated in an FPGA to perform successive

8-point FFTs in a pipelined fashion on 18-bit signal samples. Timing challenges as a result
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of the pipelined nature of the design were present; however, timing diagrams were utilized

within the testing process to ensure synchronization of data and verification of results.

1. Bit Reversed Ping-Pong Buffer

The Bit-Reversed Ping-Pong Buffer provides internal storage for the data to be
delivered in bit-reversed order to the BFM and allows data to flow in “blocks” based on
the FFT’s designed N. This Bit-Reversed Ping-Pong Buffer receives inputs in a sequential
fashion, stores in a shuffled order, and outputs in a sequential order after N =8 clock-
cycles. A switch then occurs. The other half of the buffer receives inputs in a sequential
fashion, while the previously filled buffer outputs in sequential order for N =8 clock-

cycles. This cycle repeats indefinitely.

The variables that are needed to code the Bit-Reversed Ping-Pong buffer are
presented in Figure 19. XgPing_Real, XgPing_Imag, XqPong_Real, and XqPong_Imag are
two-dimensional arrays consisting of eight-eighteen bit words with the MSB in the left-
most digit. Variables transpose and indexbr are both three bits wide, and the MSB is the
left-most digit. Variables declared as reg, register, are not loaded with data until after a
low-to-high clock-cycle. Variables declared as wire are placed immediately, but there is

no storage mechanism for data.

req [17:0] EgPing Real [7:0]; register for Ping real component
reg [17:0] EqPing Imag [7:0]; register for Ping imag component
reg [17:0] EgqPong Beal [7:0]; register for Pong real component
reg [17:0] EqPong Imag [7:0]; register for Fong J COmMpOoneE
wire [2:0] tranpose; vire used to trampose counter
reg [2:0] indexbr: index ntilized for bit reversal

Figure 19. Bit-Reversed Ping-Pong Buffer Variables and Arrays

To implement the bit reversal, an indexed value was created, shown as variable
indexbr in Figure 20. Variable indexbr was used to transpose {transpose[2], transpose[1],
transpose[0]} into {transpose[0], transpose[1], transpose[2]}. Indexbr was then used to
address the arrays XgPing_Real, XgPing_Imag, XqPong_Real, and XgPong_Imag to direct

the input stream X (t) into the correct memory element. Bit counter[3], which is the MSB
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of a four-bit counter, switched between even and odd every eight clock-cycles and
triggered the if/else statement to load the Bit-Reversed Ping-Buffer or the Bit-Reversed
Pong-Buffer. Variables ping_loading or pong_loading are set to high to indicate the active
storage buffer on the simulations. A code snippet of the Bit-Reversed Ping-Pong Buffer

loading into memory is shown in Figure 20.

-

always( (posedge clk)
; begin

-1 o

1
o

indexbr <= [tranpose[0],tranposs[l],tranpese[2]);

O

(ts]

CoCO CD D CD
W= Ll O

if {counter[3] == 1'bl} bkegin
¥gPing Real[indexbr] <= XgIn_PingPong_Real;
XKqPing Imag[indexbr] <= Xqln PingPong Imag:
ping loading <= 1'bl;

[ QO o o« [ o
0o o 1 &

[re

Ys
L = O w

T ]

93 pong_loading <= 1'b0;

94 - end

95 [ else begin

1] KgPong_Real [indexbr] <= Xgln_FingPong_Real;
a7 XqPong Imag[indexbr] <= Xqln PingPong Imag:
498 pong_loading <= 1'bl;

45 ping loading <= 1'b0;
100 end
101 ¢ end

Figure 20. Bit-Reversed Ping-Pong Buffer Loading, Code Snippet

The Bit-Reversed Ping-Pong buffer outputs the reordered Xq(t) in variables

XqOut_PingPongw_Real and XqOut_PingPongw_Imag. A conditional statement triggered
on the MSB of the four-bit counter controls which buffer loads. Synthesized designs
connect wires from the data of the Bit-Reversed Ping buffer or Bit-Reversed Pong buffer
to the output variables depending on the result of the conditional statement. A low signal
connects the Bit-Reversed Ping buffer, and a high signal connects the Bit-Reversed Pong
buffer. The code snippet in Figure 21 displays the Bit-Reversed Ping-Pong buffer output

process.
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o4 gassicjn Xgqlut_PingPongw_Real = (counter[3]==1"bl} ? KgPing Real[counter[2:0]] : XqPong Real[counter([Z:0]];
65 éassicjn Xgqlut_PingPongw_Imag = (counter[3]==1"bl} *? XgPing_Imag[counter[2:0]] : XqPong Imag[counter[Z:0]];

Figure 21.  Bit-Reversed Ping-Pong Buffer Output X (t)

The bit-reversed index, seen as indexbr within Figure 22, displays the bit reversal.
Variable indexbr is a reversal of the transpose bits. The display is listed in binary; however,

a conversion to decimal reveals the relationship discussed in Figure 7.

Figure 22. Variable Indexbr transposed from Counter[2:0]

Next, simulation waveforms were used to demonstrate the proper function of the
code. Clock-cycles, buffer-memory, and data values can be observed producing the
expected results in Figure 23. In this image Pong was loaded in the sequential order

indicated by the binary high bit in the pong_loading register. In addition, Figure 23

contains the successful Bit-Reversed Pong-Buffer instantiation and displays the Xq(t)

{10000, Offff, Offfe, Offfd, Offfc, Offfb, Offfa, Offf9} being stored into the two-dimensional
memory element as {10000, Offfc, Offfe, Offfa, Offff, Offfb, Offfd}. This is the expected bit

reversed order. Eight clock-cycles after Xq(t) was received as an input into the Bit-

Reversed Ping-Pong Buffer, the input sequence outputs in the bit-reversed order.
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Pong Buffer loa

Figure 23. Pong Buffer Loading in Bit Reversed Order, Ping Empty

The Bit-Reversed Pong-Buffer load required the eight clock-cycles shown in Figure

24 to get the first X (t) block of data to the BFM. This startup-delay only occurs once. It

is required for every BFM stage.

Figure 24. Startup Delay Between Bit-Reversed Ping-Pong Buffer
Output and BFM

The Bit-Reversed Ping-Pong buffer switched loads as shown in Figure 25. The Bit-
Reversed Pong buffer was filled as shown in Figure 23 and simultaneously outputted data

in a sequential order, while Bit-Reversed Ping buffer was filled in bit reversed order. Input

data, known as X, (t), holds the values of {0fff8, 0fff7, Offf6, Offf5, 0fff4, Offf3, Offf2,

Offf1} and is stored in the two-dimensional Bit-Reversed Ping buffer as {Offf8, 0fff4, Offf6,
Offf2, Offf7, Offf3, Offf5, Offf1}. These values represent the second block of data outputted
to the first BFM.
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Pong Buffer full

Figure 25. Ping-Buffer Loading in Bit Reversed Order, Pong Full

2. Radix-2 Pipeline Butterfly Machine Sub-Component Testing

The BFM is the primary processing element of the FFT. BFMs operate on blocks
of data and are designed specifically for the N-block they are processing. This BFM is
operating on N =8 clock-cycles. Variables for the BFM were declared as wires with
exception of the registers needed to introduce required delays as shown in Figure 26. These
delays are needed for data synchronization within the BFM. All needed variables are 18
bits wide with the MSB to the left. VVariables are paired to form the real and imaginary

portions of a complex number.

34 {* dont_touch = "true" *)reg [17:0] TopMuxCutDelayl Real, TopMuxOutDelay2 Real, TopMuxOutDelay3_Real;
35 {* dont_touch = "true" *)reg [17:0] TopMuxOutDelayl Imag, TopMuxOutDelay2 Imag, TopMuxOutDelay3_Imag:
36 {* dont_touch = "true" *)wire [17:0] TopMuxOutw Real, BottomMuxOutw Real;

37 {* dont_touch = "true" *)wire [17:0] TopMuxCOutw Imag, BottomMuxOutw Imag;

38 {* dont_touch = "true" *)wire [17:0] TopMuxOutw halfscale Real, BottomMuxOutw _halfscale Real;

39 {* dont_touch = "true" *)wire [17:0] TopMux{utw halfscale_Imag, BottomMuxOutw_halfscale Imag;

40 {* dont_touch = "true" *)reg [17:0] XgDelayl Real;

41 {* dont_touch = "true" *)reg [17:0] XgDelayl_ Imag;

42 {* dont_touch = "true" *)wire [17:0] MultOutw Real;

43 {* dont_touch = "true" *)wire [17:0] MultOutw_ Imag;

44 {* dont_touch = "true" *)wire [17:0] Adderfutw_Real;

45 {* dont_touch = "true" *)wire [17:0] Adderfutw_Imag;

Figure 26. Butterfly Machine Variable Declaration Code Snippet

Two multiplexers are needed. One multiplexer, visibly the “top’ multiplexer within

the architecture diagram (Figure 15), selects on X, (t) or X, (t—1)based on even time
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while the “bottom” multiplexer selects X, (t) or X, (t—1)based on odd time. This results

in data falling on even time slots passing through the “top” multiplexer and data falling on
odd time slots passing through the “bottom” multiplexer. Within the code, a single module
is instantiated for both “top and “bottom” multiplexer; however, the input for the clk are
opposed between multiplexers. Specifically, when the “top” multiplexer receives a high
clk signal, the “bottom” multiplexer receives a low clk signal. Both continue to cycle
between low and high clk signals. The code snippet for both multiplexers are shown in
Figure 27.

=
-1
I
|
|
1l
t
t
t
1
1
t

two2oneMux twoloneMux Top

{

o
Yol e«

.inl_real (g Real),
.inl_imag(Xq_Imag),

.in2_ real (XgDelayl Real),
.in2_imag(XgDelayl_ Imag),
.Clk {~counterw([0]}),
.out_real (TopMuxOutw_Real),
cout_imag (TopMuxOutw Imag)

(R T T I T S BT I ]
[ T T T R I ]

twodoneMux twoloneMux Bottom

{

o o
am T < R
|
|
|
|
|
|
|
T
T
|
|
|
|
|
|

o
— oo

.inl_real (¥q Real),
.inl_imag(Xq_Imag),

.in2_real (¥qDelayl_ Real),
.1n2_imag(XgDelayl_Imag),

.Clk {counterw[0]),

.out_real (BottomMuxOutw_Real),
-out_imaqg(BottomMuxliutw Imag)

=] o N = Lo [

L= = = V= VI« VR = VR = 1
o

)

Figure 27. “Top” and “Bottom” Multiplexer Code Snippet

The delay producing Xq(t—l) into both multiplexers is coded by sending the

signal into a register. By loading after a clock-cycle, we introduce a delay into the data.

This is an expected, and required, delay and is shown coded in Figure 28.
111 | XqDelayl Real <= Xq_Real:
112 E Eqbhelayl Imag <= Eg_Imag;

Figure 28. Delay into Both Multiplexer Code Snippet
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a. Top Multiplexer, Half Scale, and 3-Cycle-Delay Sub-Component Test

The internals of the multiplexer is a conditional statement selecting on even and

odd time. If time is even, selection is on X (t—1). If time is odd, selection is on X, (t)

Variables are 18 bits with the MSB to the left. The code snippet for the internals of the

multiplexer is shown in Figure 29.

L b ]
Lk

-

[ Y % O S T % TR N T % I
=] & A = e

LN g ]

La L L L
= W M =T

:m:dule twoZoneMux

input
input
input
input
input
cutput
cutput
)

assign
assign
endmcdule

wire
wire
wire
wire
wire
wire
wire

out_real
out_imag

3igned
signed
signed
signed

3igned
3igned

Figure 29.

[17:0]
[17:0]
[17:0]
[17:0]

[17:0]
[17:0]

inl_real, =i
inl_imag,

in2 real,

in2 imag,

clk,

out_real, C or =i
out_imag Jd or

(clk==1"k0} ? in2_real : inl_real: Real Component

(clk==1"k0} ? in2 imag : inl_imag; Imag Component

Internal Multiplexer Code Snippet

An arithmetic shift right by one moves the binary point one bit to the left. When

performed on the data, outputs of the “top” multiplexer” are reduced by a factor of-one-

half. The code in Figure 30 was utilized for this shift operation.

W
oo

as3ign TopMuxOutw _halfscale Real
assign TopMuxOutw halfscale Imag

TopMuxOutw Real >> 1;
TopMuxOutw _Imag >> 17

Figure 30. Top Multiplexer Half Scale

Half-scaled data from the “top” multiplexer was then delayed by three clock-cycles.

Implementation of this was performed utilizing registers. Each register store operation

introduces a one clock-cycle delay. The code can be seen in Figure 31.
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105 TopMuxOutDelayl Real <= TopMuxOutw halfscale Real;
10& TopMuxOutDelayl Imag <= TopMuxOutw _halfscale Imag;
107 TopMuxOutDelay2 Real <= TopMuxOutDelayl Real;
108 TopMuxOutDelay2 Imag <= TopMuxOutDelayl Imag;
108 TopMuxOutDelay3_Real <= TopMuxCutDelay2 Real:
110 TopMuxCutDelay3 Imag <= TopMuxCutDelay2 Tmag:

Figure 31. Top Multiplexer Three-Clock-Cycle Delay

BFM test point CO indicates the input of the BFM. The delay into the multiplexer
can be read at test point C1. Test point C2 presents the output of the “top” multiplexer, C4
shows the data after the half-scale operation, and C5 displays the output to the top
multiplexer after a three clock-cycle delay. Half-scaling data results in a loss of
significance while truncating. The multiplexer and the delayed outputs are shown in
Figures 32, 33, and 34. Functionally, they are the same waveform; however, the radix has
been changed to support readability from different perspectives. Hexadecimal, fixed-point
binary, and binary views are present. The delay being observed was needed to synchronize
data with the bottom multiplexer due to the multiplier delay. Registers store data internal
to the multiplier operation resulting in a two clock-cycle delay. Test point C5 demonstrates

the delay of C2 after the half-scale operation seen in C4.

Figure 32. Top Multiplexer Output, Hexadecimal

A simulation view for fixed-point binary, 16-bit radix notation can be seen in Figure
33. This allows the decimal number to be read. Recall that values have been normalized to

—2< X, (t)<2.
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Figure 33. Top Multiplexer Output, Fixed-Point Binary

A binary view has also been provided and can be seen in Figure 34. Each view has

utility based on what information is desired.

Figure 34. Top Multiplexer Output, Binary

b. Bottom Multiplexer Sub-Component Test

The “bottom” multiplexer utilizes the same module call to two2oneMux. The input

change representing odd time, binds odd data points to this multiplexer as shown in Figure

35.
23 input
24 input
25 input
26 input
27 input
28 cutput
25 cutput
30 i+
=1
32 assign
33 assign
34 Cendmodule

wire
wire
wire
wire
wire
wire
wire

out_real

“module twoloneMux {

signed
signed
signed
3igned

signed
signed

out_imag =

[17:0]
[17:0]
[17:0]
[17:0]

[17:0]

inl_real,
inl_imag,
ind real,
ind imag,
clk,

out_real,
out_imag

{clk==1"k0) ? iniZ real : inl real; Real Component

{clk==1"k0) ? ini imag : inl_ imag; Tmag

Figure 35. Multiplexer Internal Code Snippet
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Data in the “bottom” multiplexer is half scaled utilizing the same methodology as
the “top” multiplexer. The output to the multiplexer is shifted right by one binary place
utilizing the code in Figure 36.

BottomMuxCutw _Real >> 1;
BottomMuxlutw Imag >> 1;

100 é a33ign BottomMuxOutw _halfscale Real
10l E assign BottomMuxCutw halfscale Imag

Figure 36. Bottom Multiplexer Half-scale Code Snippet

The bottom multiplexer simulation is displayed in Figure 37 and outputs its X, (t)

at odd ts. We can see this at test point C3. Test point C6 is the half-scale. Test point C7 is
the output of the multiplier. The multiplier in this instance is viewed via a black box

analysis. This means that only the inputs and outputs are analyzed.

Figure 37. Bottom Multiplexer Output with Multiplier as a Black Box

C. Rate_OneHalf_complex_Multiply Sub-Component Test

In section, we provide insight into the internal workings of the multiplier.
Performing complex multiplication is not a trivial operation, and this code consists of many
module calls. Each module call added interfaces and processing elements that had to be
tested.

As part of performing multiplication within hardware, data manipulation is required
to get the data into a format that behavioral Verilog can process. To start, negative binary
numbers are stored in signed two’s complement. The multiplication operation produces the
anticipated result if operating on unsigned magnitude numbers; thus, signed two’s

complement numbers are first converted to unsigned magnitude. Unsigned multiplication
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is performed utilizing a behavioral operator. The sign is operated on separately and

appended to the final resultant.

The final number must add the negative or positive sign that resuls from normal
multiplication of signed numbers. The signs of the multiplicands are exclusive-or’d with
each other to produce the correct sign. The new sign triggers a two’s complement operation
on the output of the truncated multiplication if the sign results in a negative number. The
sign bit is then concatenated as the MSB to the truncated result. The multiplier test plan is
provided in Figure 38 to guide a systematic way to test the multiplier and create common
nomenclature for testable points.

Detailed Complex Multiplier

(a +jb)(c+jd) = {r::*c— b*d) +j(a*d + b*c)

af
o > @ 7>
— _)_ _f_} Unsigned R Ti ate &
C b - Multiplication [® r‘laJ%n:-:a:F +
_p_}._,\_} ate g
b b-1
I @ 1-5tage Real | 5 Xq{‘;"'l}[reall
g Subtractor 8
b ) g > :
—— Unsigned Truncate &
d b b-1 Multiplication J© ¥ seale 2'c -
— | |—— b*d g) 2 b1 o
] I
=§.|g|'| ;.
a
—f—""‘—l‘——} Unsigned " Truncate &
b | b1 Multiplication | ® % scale E +
-—f_)- a*d g ] 282 -1 b —
—1-—)b .
R J3{1:1"[”'1:‘[ir'nag:]
] 1-5tage Real r: —
Adder g b
sugn )
b : - [
—.\'—') .—f—}- M"-:?S‘IE_F'E::_I : Truncate & 2] +
ultiplication 1 2'c
—> -ﬁ_b b*c g) =2 | PFE e b

Figure 38. Test Plan for Multiplier and Sub-Component testing
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The wire and register variables required for the multiplier coding are listed in Figure
39. Registers sign_mult_left Real, sign_mult_right_Real, sign_mult_left Imag, and
sign_mult_right_Imag are utilized to store the result of complex multiplication on signed
data. Four wires, one bit wide, indicate the sign of each portion of the complex number.
Four wires, 18 bits wide, hold the concatenated 17-bit wide unsigned_a, unsigned_jb,

unsigned_c, and unsigned_jd and their respective 1-bit signs.

11 (* dont_touch = "true" *) reg sign mult left Real, sign mult right Real, sign mult left Imag, sign mult right Imag;
12 {* dont_touch = "true" *) wire sign a;

13 {* dont_touch = "true" *) wire sign jb;

14 {* dont_touch = "true" *) wire sign c;

15 (* dont_touch = "true" *) wire sign_ jd;

16 {* dont_touch = "true" *) wire [16:0] unsigned_a;

17 (* dont_touch = "true" *} wire [16:0] unsigned_jb;

18 (* dont_touch = "true" *) wire [16:0] unsigned c;

19 (* dont_touch = "true" ¥} wire [1€:0] unsigned jd:

20 {* dont_touch = "true" *) wire [16:0] trunc_left Real; fate
21 {* dont_touch = "true" *) wire [16:0] trunc right Real;

22 {* dont_touch = "true" *) wire [16:0] trunc_left Imag;

23 {* dont_touch = "true" *) wire [16:0] trunc right_ Imag;

24 {* dont_touch = "true" *) wire [17:0] signed_left_Real;

25 {(* dont_touch = "true" *) wire [17:0] signed_right Real;

26 {* dont_touch = "true" *) wire [17:0] signed_left Imag;

27 {* dont_touch = "true" *) wire [17:0] signed_right Imag;

Figure 39. Multiplier Variables Code Snippet

This code segment details four calls to twoComp module. Each portion of the
complex number is individually passed into the module as an 18-bit binary number. A 17-
bit unsigned magnitude number was returned as an output and connected to a wire as seen

in Figure 40.

e e,

52 2'c gperator prior to multiplication. @ retur 1 1
53 twoComp insta({.In{a),.0ut{unsigned aj): a

o4 twolomp insth({.In(jb),.0ut{unsigned_jb))}; 7

5 | twolomp instc{.In{c),.0ut{unsigned cj});

1] twoComp instd({.In(jd),.0ut{unsigned jd)): T

Figure 40. Code Snippet for twoComp Module Call

Internal to the twoComp module is a conditional statement that selects an output
based on the value of the MSB. If the MSB is a digital high, the input is inverted and
incremented by one bit; while a digital low returns a copy of the input. This can be seen

40



coded in Figure 41. The MSB was truncated off so an unsigned magnitude number could

be returned to the parent module.

L= VI ) B SR |

| ST S T % I o ]

Figure 41,

E:utput wire [l&:0]

! assign Out

im:dula twolomp (
i input wire [17:0] Im,

Out) ;

In[l7]2~In+l:In;

Code Snippet for twoComp Module Internals

The MSB that was truncated within the twoComp module was also stored for use

later within the multiplier module. The coding for the multiplier module store operation is

displayed in Figure 42.

Lr
(LY s B

assign

assign
assign

(== VI = VR
=

Lol

assign

Figure 42.

sign_a all7]s extracts sign of
sign_jb = jb[17]; extracts sign of b
sign_c c[1l7]: extracts sign of ¢

sign_jd = j4d[17]; extracts sign of jd

Sign Bit Extraction Code Snippet

Unsigned numbers in the one’s complement form can successfully pass through a

behavioral multiplier and produce expected results. A module was called to perform

behavioral multiplication on the 17-bit binary numbers seen in Figure 43. Four 17-bit

binary numbers are returned.
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34 multldxld unsigned maltiply

35 {

36 .clk{clk),

37 .a{unsigned_aj,

38 .Jb{unsigned jb},

34 .c{unsigned cj,

40 Jd{unsigned jd),

41 .0ut_left Real (trunc left Real),
42 .Out_right Real (trunc_right Real),
43 .Out_left Tmag(trunc left Tmag),
44 .Out_right Imag({trunc_right Imag)):

Figure 43. Module Call for Behavioral Multiplication on Four Unsigned Complex
Numbers Code Snippet

The unsigned multiplier module creates registers to store the output of the
multiplication. Registers mult_left Real, mult_right Real, mult_left Imag, and
mult_right Imag are declared as 35-bit registers. Storage must be available to
accommodate the largest possible multiple. The coding of these variables is displayed in
Figure 44.

34 Complex Multiplier

35 Real Imag

36 {a+3b} {c+3d)= (atc - bid) + j(bic + atd

37 {* dont_touch = "true" *)reg [34:0] mult left Real;

38 {(* dont_touch = "true" *)reg [34:0] mult right Real;
359 {* dont_touch = "true" *)reg [34:0] mult left Imag;

410 {(* dont_touch = "true" *)reg [34:0] mult right Imag;

Figure 44. Unsigned Multiplication Module Code Snippet

Complex multiplication can be seen coded in Figure 45. This code snippet is within
the unsigned multiplier module. Multiplications are performed at the positive edge of every
clock-cycle, and the results are stored within one of the four 35-bit registers. When two 17-

bit binary numbers multiply, they produce one 34-bit binary number.
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a0 : alwayal (poasdgs clk)

51k begin

52 Calculate real portion

53 malt_left_Real <= a ¥ cy

54 malt_right Beal <= jb * jd:
55

=1 Calculate 1mag portion

a7 mult left Tmag <= a * jd;
S8 mult right Tmag <= Jjb * c;

S5 end

Figure 45. Behavioral Multiplication Code Snippet

The parent module functions with 17-bit binary numbers. The 17 leading bits
contain the relevant data. The trailing 17 bits add precision to the binary number; however,
truncation is required to return product to the original 17-bit binary number format. The

truncation code snippet is displayed in Figure 46.

42 E assign Out left Beal [16:0] = mult left Real[32:16€];: fatc

43 é a33ign Out_right Real[l&:0] = mult_right Real[32:16]; {7b*3d
44 E a3aign Out_left Imag[lé:0] = mult_left Tmag[32:16]; fatyd

45 é a3aign Out_right Imag[lé:0] = mult_right Imag[32:16];

Figure 46. Output Truncation Code Snippet

The exclusive-or operation is performed on the sign bits within the multiplier parent
module on the rising edge of the clock-cycle to compute the new sign. This can be seen
coded in Figure 47. If the sign of the product is negative, the result is a concatenation of
the computed sign and the two’s complement of the magnitude of the product. If the sign
of the product is positive, the result is a concatenation of the computed sign and the

unsigned magnitude of the product.
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T4 _always@{p:sadga clk)

75 [ kegin

3ign mult left Beal <= 3ign_a *~ s3ign_c;
sign_mult_right Real <= sign_jb *~ sign_jd:

T8 sign mult left Imag <= sign_a ~ sign_3jd:
74 sign_mult right Tmag <= sign_jb *~ sign_c;
g0 end

Figure 47. Exclusive-Or of Sign-Bit Code Snippet

Module twoCompRedo receives the new sign bit and the truncated output of the
multiplier and produces the two’s complement 18-bit numbers. The code snippet for the

module call is displayed in Figure 48.

twolompRedo twol leftReal(.signbit(sign mult 1

- ft_Real), .number (trunc_left Real), .sign number (signed_left Real));
twolompRedo twol rightReal(.signbit(sign_mult_ right Real),.number (trunc_right_Real),.sign number(signed_right_Real)):

twolompRedo twol leftImag(.signbit(sign mult left_Imag),.number(trunc left_Imag),.sign_number(signed left_Imag)):

50 twolompRedo twol rightImag(.signbit({sign_mult right Imag),.number(trunc_right_Imag),.sign number(signed_right_Imag)):

Figure 48. Code Snippet for twoCompRedo Module Call

Peering inside of twoCompRedo, we see that module twoCompRedo consists of a
conditional statement selected with the sign bit. If the sign bit is a binary one, every bit in
the binary number is inverted and then one bit is added. That binary number is then
concatenated with the sign-bit before being sent to a wire for output. If the sign bit is zero,
the original binary number is outputted after being concatenated with the sign bit. The

twoCompRedo module code snippet is displayed in Figure 49.

23 Cmodule twolompRedo |

24 : input wire signbkit,

25  input wire [16:0]| number,

26 : output wire [17:0] sign_number

AT

28

29 : g33ign sign_number = signbit?{signbit,~number+l}:{signbit,number}:
30 £ endmodule

Figure 49. Module twoCompRedo Code Snippet
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The final stage consists of adding or subtracting the signed multiplier output. The
real component of the complex number is subtracted to get the final real number. The
imaginary component of the complex number is added to get the final imaginary number.
Both numbers are sent to a wire for output to the BFM module and the code is displayed

in Figure 50.

assign Eqout_real = signed left Real - signed right Real;
a33ign Eqout_imag = signed left Imag + signed right Imag;

(== i1
LA I =

Figure 50. Adder/Subtracter for Complex Multiplication Code Snippet

Two sets of complex numbers were tested through simulation. The input and output

of (1+.5j)(0.25+0.125j) and (-1-0.5j)(1+ j) is shown in Figure 51 as a simulation

output.

Figure 51. Complex Multiplication Module Testing

As mentioned previously, behavioral multiplication functions correctly on
unsigned numbers. The seventeenth bit of data is the sign bit and must be stripped off. The
circles within Figure 52 highlights the signal for the sign bit. Also, all negative numbers
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must be two’s complemented to return to their magnitude in preparation for multiplication.

Inputs can be viewed against outputs in Figure 52. Point M2 demonstrates the magnitude.

Figure 52. Conversion of Multiplier Inputs to Signed Magnitudes

Once all negative numbers are two’s complemented, seen as test point M2, a
behavioral multiplier multiplies the magnitudes. The multiplier produces a 34-bit unsigned
number that is displayed as test points M3 and M4. The data we need are in the upper 17-
bits of the data. The data was truncated to extract what was needed and the rest discarded.
Test points M5 and M6 show the truncated data.

The original signs of the data were exclusive-or’d and can be seen at test point M1.
The new sign was appended to the truncated multiplication output. If the sign indicates a
negative number, the multiplication output is inverted and one bit is added. This is reflected
as test points M7 and M8. Prior to being sent as an output to the adder / subtracter, test
point M9 can be used to view the resultant value. The simulation labeled with applicable

test points is displayed in Figure 53.
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Figure 53. Multiplier Test Points. Fixed Point

d. Adder / Subtracter Component Sub-Component Test

The adder / subtracter combines the common results of the multiplication. The

variables needed consist of two registers, out_real and out_imag, both 18 bits wide, and

can be seen coded in Figure 54.

33 (* dont_touch = "true" *) reg [17:0] out_real;
34 (* dont_touch = "true" *) reg [17:0] out_imag;
35

36 plex A t tract:

37 R=al Ima

38 a+3b}+ (c+] =a + 7 (b+

20 3+7b) - (c+3d) = a - r J(Bb-

40 assign Xgout_real = out_real; Real ponent
41 as33ign Xgout_imag = out_imag; Ima ponent

Figure 54. Adder / Subtracter Variables Code Snippet

The adder / subtracter is the last component of the BFM. On the positive edge of

every clock-cycle, a selection was made to either add or subtract. This selection is based

on the value of counter. A digital high results in addition, while a digital low results in

subtraction as seen in Figure 55.
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43 jalﬁirs@{pcsadga clk)

44 kegin

45 é out_real <= (counterw==1'bl) ? TopIn_real + BottomIn real : TopIn_real - BottomIn real; Real
48 E out_imag <= (counterw==1'bl) ? TopIn_imag + BottomIn imag : TopIn_imag - BottomIn_ imag; Tma
47 ¢ end

Figure 55. Adder / Subtracter Code Snippet

The simulation for the adder / subtracter is displayed in Figure 56. The top
multiplexer input, seen as M7, was delayed by d  +1. The inputs were added on even clock

cycles and subtracted on odd clock cycles, with the results being viewed at test point M9.

Figure 56. Adder / Subtracter Adds on Even Clock-Cycles

e. 2nd Stage Ping Pong Buffer Sub-Component Test

Four two-dimensional registers are utilized to store the real and imaginary
components of the First-Stage Ping-Pong buffers. Variables XgPing_Real, XgPing_Imag,
XgPing_Real, and XgPing_Imag are declared as 18-bit wide words. In addition, a 4-bit
register buffer_counter was utilized to count. These can be seen in Figure 57.

w
(=]

{* dont_touch
(* dont_touch
(* dont_touch
{* dont_touch
{* dont_touch

"true" *) reg [17:0] XqPing Real [7:0];
"true" *) reg [17:0] XgPing Imag [7:0];
[
[

o

"true" *) reg [17:0] XgPong_Real [7:0];
"true" *) reg [17:0] XgPong Imag [7:0];
"true" *) reg [3:0] buffer counter;

[=XI=Y = I |
[V 3

Figure 57. First-Stage Ping-Pong Buffer Variables Code Snippet

The 4-bit buffer_counter was utilized to produce sixteen timeslots. Eight timeslots
are needed for the First-Stage Ping buffer and eight timeslots are needed for the First-Stage
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Pong buffer to fill according to k=0,5,1,3+1,2,3+2,33+3,4,%+1...,N-1. Since
N =8, the fill orderisk =0, 4, 1, 5, 2, 6, 3, 7 and can be seen in Figures 58 and 59.

114 ¢ 3'palon: Kep (4

115 begin

118 XqPing Real[0] <= EqIn_FingPong Real;
117 XqPing Imag[0] <= XqIn PingPong Imag:;
112 buffer counter = 4'40;

ALl end

120 [ 3'b0101: Xqg(&

121 & begin

122 XqPing Real[4] <= EqIn_FingPong Real:
123 XqPing Imag[4] <= EqIn PingPong Imag;
124 buffer counter = 4'dl;

125 [ end

126 3'b0110: Xg (&

127 E begin

128 XqPing Real[l] <= EqIn_FingPong Real;
129 EqPing Imag[l] <= XqIn PingPong Imag;
130 buffer counter = 4'd2;

A=Al end

132 3'h0OL111: Xg(7

133 kegin

134 XqPing Real[5] <= XqIn_ PingPong Real:
135 XqPing Imag[5] <= EqIn PingPong Imag;
1386 buffer counter = 4'd3;

137 ¢ end

138 £ 4'B1000:

139 ¢ begin

140 XaqPing Reall[2] <= EgqIn_ PingPong Real:
141 XqPing Imag[2] <= EqIn_FingPong_ Imag;
142 buffer counter = 4'd4;

143 £ end

Figure 58. First-Stage Ping Buffer Input Code Snippet

4'B1001:
kegin
EqPing Real[6] <= Eqln_PingPong Real;
EqPing Imag[6] <= XqIn_ PingPong Imag:
buffer counter = 4'd5;

end

4'B1010: Xq(l0
begin
EqPing Real[3] <= XqIn_ PingPong Real:
EqPing Imag[3] <= Eqln_PFingPong Imag;
buffer counter = 4'dd;
end

4'k1011: Xqg(11
begin
EqPing Real[7] <= Eqln_PFingPong Real;
EqPing Imag[7] <= XqIn_FingPong Imag:
buffer counter = 4'd7;

end

Figure 59. First-Stage Ping Buffer Input Code Snippet (Continued)
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Component level testing of the First-Stage Ping-Pong buffer demonstrates that
inputs flow into the appropriate location at the desired time. The loading process of both
the First-Stage Ping buffer and the First-Stage Pong buffer is annotated in Figure 60. The
Pong buffer is filled prior to filling Ping buffer, which then alternates every eight clock-

cycles. All subsequent stages of Ping-Pong buffer are identical and consistent with the

k=0,%3,15+12,5+2335+34,%+1...,N -1 loading scheme seen in Figure 59.

Figure 60. First-Stage Ping-Pong Buffer Simulation

The code of the FFT and simulations to verify operation at a component and sub-
component level was described in this chapter. The integration of the FFT as a whole

system is discussed in Chapter V.
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V.

END TO END TESTING / INTEGRATION TESTING

The operability of the Fast Fourier transform as a system is confirmed in this

chapter. The four test vectors seen in Table 5 are utilized. How real X, (t) inputs into a

FFT produce both real and imaginary outputs is shown in Table 5. Separate columns exist

for real and imaginary portions of the complex number.

Table 5. Test Vector Input and Expected Output

Real Input Real Output Imaginary Scaled Scaled
Output Real Output Imaginary Output
{1,1,1,1,1, {{8,0,0,0,0,0, |{0,0,0,0,0, {1,0,0,0,0, {0,0,0,0,0,0,0, 0}
1,1, 1} 0, 0} 0,0, 0} 0,0, 0}
{1,0,0,0,0, {{1,1,2,1,1,1, |{0,0,0,0,0, 114141 1{0,0,0,0,0,0,0,0}
0,0, 0} 1,1} 0,0, 0} e
81808}
{Oa Oa Oa Oa Oa {01 01 01 01 01 01 {01 01 01 01 01 { 1 1 Oa Oa Oa {Oa Oa Oa Oa Oa Oa Oa 0}
0,0,0} 0, 0} 0,0, 0} 0,0, 0}
{0,0,0,1,0 |{1,-0.707,0, {0,-0.707, 1, - {é, ol 0, {0, —om 2,
0,0, 0} 0.707, -1, 0.707, | 0.707, 0, ol 1 Do o om
0,-.707} 0.707, -1, 8 ' 8 8 'Y T8 1
0.707} B0y | —h

Three major sections are present in this chapter. A higher level perspective that

shows an analysis utilizing the constant geometry FFT architecture is provided in Section

A. The detailed analysis of the first test vector in Table 5 is detailed in Section B. The flow

of data is demonstrated through annotated simulations. The results of integration and a

hypothesis as to why are captured in Section C.

A. ALL TEST VECTOR ANALYSIS

The generic FFT architecture utilized to implement the coding is being reinserted

as Figure 61. Numbers in sequence multiply with each other, and numbers that are in

parallel add where paths converge. Unlabeled arrowheads imply a multiplication by one.

In addition, scaling is not displayed within the butterfly diagram.
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Figure 61. Generic Constant Geometric FFT. Adapted from [4].

Twiddle factors have been inserted in the form of their complex number equivalent.
Starting with {1, 1, 1, 1, 1 ,1, 1, 1}, after first stage processing {2, 2, 2, 2, 0, 0, 0, 0}
resulted. This was a result of the 1s on the top half of the FFT adding with the 1s on the
bottom half of the FFT and alternating with the 1s of the top half of the FFT subtracting
with the 1s of the bottom half of the FFT. Continuing with this trend, we find {4, 4, 0, 0,0,
0, 0, 0} outputted after the second stage. The third stage produced {8, 0, 0, 0, 0, 0, 0, 0}
after processing, which is scaled result of {1, 0, 0, 0, 0, 0, 0, 0}.
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Figure 62. Test Vector-1{1,1,1,1,1,1, 1, 1}. Adapted from [4].

Test Vector-2 inputs {1, 0, 0, 0, 0, 0, 0, 0}. After the first stage processing, {1, 0,
0,0, 1,0, 0, 0} resulted. Second stage processing produced {1, 0, 1, 0, 1, 0, 1, O}. Third

stage processing results in {1, 1,1, 1,1, 1,1, 1} and isscaled as {3, %, 3, 3, 3+ 3+ 3/

+}. Test VVector-2 can be seen in Figure 63.

Figure 63. Test Vector-2 {1, 0, 0, 0, 0, 0, 0, 0}. Adapted from [4].
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Test Vector-3 is displayed in Figure 64. Inputs of {0, 0, 0, 0, 0, 0, 0, 0} result in {0,
0,0,0,0,0,0, 0} being processing through all three stages with a final output of {0, 0, 0,
0,0, 0, 0, 0} and a scaled result of {0, 0, 0, 0, 0, 0, 0, 0}.

Figure 64. Test Vector-3 {0, 0,0, 0, 0, 0, 0, 0}. Adapted from [4].

Test Vector-4 began with {0, 0, 0, 1, 0, 0, 0, 0}. First stage processing resulted in
{0,0,0,1,0,0,0, 1,}. Second stage processing produced {0, 1, O, -j, 0, -1, O, j}. Third
stage processing resulted in {1, —2 — jo2 j 2 jd2 9 2 g2 g 2o 2y Thig
is the only test vector which yields a non-zero imaginary component. Test Vector-4 can be
seen in Figure 65.
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Figure 65. Test Vector-4 {0, 0, 0, 1, 0, 0, 0, 0} Displayed after Bit-Reversed to {0,
0,0,0,0,0,1, 0}. Adapted from [4].

B. TEST VECTOR ANALYSIS

A detailed analysis of annotation simulations on Test Vector-1 is given in this
section. This is done by looking at the simulation of each component of the FFT and
following how the test data is processed throughout. Each BFMs require a counter
initialization to zero. Each stage has been synchronized on an individual counter to allow

for proper execution of the FFT at a system level.

1. Bit Reversed Ping Pong Buffer

Test Vector-1 was received as an input into the FFT algorithm. The test vector was
driven from a test bench. In a real-life application, the signal is received from an analog-
to-digital converter after receipt by an antenna, and the first half of the Bit-Reversed Ping-
Pong buffer loads the data. The second half of the Bit-Reversed Ping Pong buffer will not
yet have valid data as demonstrated in Figure 66.
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Figure 66. Bit-Reversed Ping-Pong Buffer Initializing

The Bit-Reversed Ping-Pong buffer outputted {1,1,1,1,1,1, 1, 1} asseenin Figure
67. Since this is a pipelined algorithm, the first stage BFM receives data while
simultaneously processing data. Four clock-cycles are required for the BFM to completely

process the data. The startup delay is equivalent to initialization of the BFM.

Figure 67. Bit-Reversed Ping-Pong Buffer Output
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2. First-Stage BFM and Ping Pong Buffer

After a four clock-cycle initialization, the First-Stage BFM outputs {1, 1,1, 1, 0, O,
0, 0} as can be seen in Figure 68. These outputs were sent into the First-Stage Ping-Pong
buffer. No valid outputs were present from the First-Stage Ping-Pong buffer until after

initialization.

Figure 68. First-Stage BFM Output and First-Stage Ping-Pong Buffer Initialization

Outputs can be seen leaving the First-Stage Ping-Pong buffer in Figure 69. Also

shown is the Second-Stage BFM initialization. Variable counter2 drove the Second-Stage

BFM; although, seen to be on count 16, the BFM interprets this as 16 mod (8) which is

interpreted as zero.
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Figure 69. First-Stage Ping-Pong Buffer Outputting and Second-Stage BFM
Initializing

3. Second-Stage BFM and Ping-Pong Buffer

Variable counter2 was drove the Second-Stage BFM and Ping-Pong buffer.
Starting at 20mod8, which equates to four, the Second-Stage BFM outputted {1, 1, O, O,
0, 0, 0, 0}. Logically, values are released and rearranged as explained in Chapter IlI,
Paragraph C to maintain a constant geometry FFT. See Figure 70 for a demonstration.

2nd-Stage-PingHidng-buffe

Figure 70. Second-Stage BFM Outputting and Second-Stage Ping-Pong Buffer
Initializing
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The Second-Stage Ping-Pong buffer outputted {1, 1, 0, 0, 0, 0, 0, 0}, and the Third-
Stage BFM took four clock-cycles to initialize and process the values as displayed in Figure
71. Variable counter3 was initialized to zero to synchronize with the Third-Stage BFM
operation.

Figure 71. Second-Stage Ping-Pong Buffer Outputting and Third-Stage BFM
Initializing

4. Third-Stage BFM and Ping-Pong Buffer

The Third-Stage BFM outputted {1, 0, 0, 0, 0, 0, 0, 0}. This is the expected result
for Test Vector-1 and is demonstrated in Figure 72. Also note that this came four clock-
cycles after the data was received into the BFM and twelve clock- cycles after this block
of data was loaded into the Third-Stage Ping-Pong Buffer. Since the Forth-Stage Ping-
Pong Buffer is loading its initial data, it does not output valid yet data in Figure 72
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Figure 72. Third-Stage BFM Outputting and Third-Stage Ping-Pong Initializing

A test vector of {1, 1, 1,1, 1, 1, 1, 1} should have a scaled result of {1, 0, 0, 0, O,
0, 0, 0}. Shown in Figure 73 the correct result is demonstrated for Test Vector-1 processed
through the designed FFT.

Figure 73. Third-Stage Ping-Pong Buffer With Final Scaled Result {1, 0, 0, 0, 00,
0,0}
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The FFT was demonstrated successfully with Test Vector-1 in Chapter V. Timing
was key to successful synchronization. Multiple counters were utilized to synchronize the
stages of the FFT.

C. TIMING ERROR WHILE INTEGRATING

An analysis of Test Vector 3 proved unsuccessful. While individually analyzing the
processing elements of the FFT proved successful, synchronizing the timing between the
three levels of the BFM failed. Highlighted in Figure 74 are a few locations where incorrect
timing can skew processing of data. This improperly processed data then replicates through
the successive stages. With the error being localized to within a timing element,
initialization of the BFM and setting the selectors on the multiplexer or adder / subtracter
can be as simple as a one-bit inversion; however, isolating the exact bit has proven to be a
challenge. A complete overhaul of the timing within the FFT is the recommended
corrective action. This has the greatest chance of success while also producing a code that

is usable by others.

@r=i+d,+d,+1 |

Xr_r—ll:k:] N N
X(@t=i+d +li+d +2

E\Xa(sj@rzf;3+l
% 25 L 57
L 5oT) 2 =l =d,r i +
=lig—r- Adder/
& t= od LD @ t=i+Li+2 Subtractor ——
‘x\ , d,
pi E-_E | 2-Stage 51 +/-
g2 ==l s
° A= P % Complex Subtract
s L Multiply

A dm

WhX,(+D)@t=i+d, +Li+d, +2

Figure 74. Highlighted Timing Variables within the BFM. Adapted from [15].
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VI. CONCLUSION

With 20 years of research into satellite development, in this thesis research we are
closer to creating a rapidly deployable and reconfigurable signal processor that is space
capable. Signal processing may be the basis for a mission element or an enabling

component of a larger objective. It also has utility in every day communications.

A ACADEMIC VALUE

An understanding of many academic areas was required for this research. A
foundation in digital signal processing required a solid foundation in the Fast Fourier
Transform theorems, principles, and mathematics. In addition, to conceptualize the final
product, an understanding of the electronics needed to digitize an analog signal is required.
With space being the intended application of the end product, knowledge of the space
environment and its impact on electronics is also fundamental. A working knowledge of
producing software code and an additional knowledge specifically in Verilog HDL was

acquired throughout this research.

B. THESIS SUMMARY

The objective of this thesis was to give access to an open source signal processing
algorithm that could eventually be implemented in an error detecting / error correcting
algorithm for use within the space environment. Success was achieved in programming
major portions of the highspeed pipelined FFT. The major modules needed to instantiate
the FFT have been designed and tested. The FFT fails to integrate correctly. Timing and
synchronization of data is the suspected cause. Once timing and synchronization is

corrected, implementing Parseval’s theorem will make this code space capable.

C. RECOMMENDATIONS FOR FUTURE WORK

Follow on work should consist of synchronizing the timing within the FFT and then
utilization of the FFT to implement Parseval’s theorem. Parseval’s theorem makes this
code space capable and is required before loading on to the FPGA for launch. Parseval’s

theorem is illustrated once more in Figure 75.
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2NlogN Redundant FFT

‘rej - a[ <thresh?| (a)
1 2
a2
— Frr | | & -
(A) !
x[n] N\ K]
FFT T
(b;

e | |
a2l

| ‘I‘Lff—}7|< thresh? | ®

X0

(ref)
if [|ref —a| < thresh | then {X[k|=FFI,} else {X|k|=FFT,}

Figure 75. Parseval’s Theorem Implementation Illustration. Source: [2].

In addition, capability can be added to the FFT by increasing the sample size from
N =8 to N =32. This will allow a more granular level of processing. This FFT will also
need to be loaded onto NPSat-1’s FPGA with operability testing to follow.

D. CLOSING REMARKS

In clocked systems, timing and synchronization of data is mandatory. Processing
elements must have the right data at the right time to produce the correct results. When
debugging software, have a plan and work in a systematic process. This research project
was built on 20 years of work. A literature review was helpful and there are many

documents to educate oneself.
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APPENDIX A. FILE STRUCTURE

top_level (top_level.v)
clk_mod — clk_module (clk_module.xci)
clk_module (clk_module.v)
inst — clk_module_clk_wiz (clk_module_clk_wiz.v)
PingPong_SwitchLevell — pingpong (pingpong.v)
BFMlevelOne — Radix2_BFM (Radix2_BFM.v)
two2oneMux_Top — two2oneMux (two2oneMux.v)
two2oneMux_Bottom — two2oneMux (two2oneMux.v)
ComplexMultiply2Stage — multiply_complex (multiply_complex.v)
Unsigned_multiply — mult18x18 (mult18x18.v)
twoC_leftReal — twoCompRedo (twoCompRedo.v)
twoC_rightReal — twoCompRedo (twoCompRedo.v)
twoC_leftimag — twoCompRedo (twoCompRedo.v)
twoC_rightlmag — twoCompRedo (twoCompRedo.v)
insta — twoComp (twoComp.v)
instb — twoComp (twoComp.v)
instc — twoComp (twoComp.v)
instd — twoComp (twoComp.v)
AdderandSubtractor1Stage — addsub18x18 (addsub18x18.v)
PingPong_SwitchLevel2 — pingpongK (pingpongK.v)
BFMlevelTwo — Radix2_BFM (Radix2_BFM.v)

... as shown above

PingPoﬁd_SwitchLeveB — pingpongK (pingpongK.v)
BFMlevelThree — Radix2_BFM (Radix2_BFM.v)

... as shown above

PingPoﬁé_SwitchLeveM — pingpongK (pingpongK.v)
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APPENDIX B. SOURCE CODE

********************TOP LEVEL V********************

module top_level(
input wire CLK100MHZ

(* dont_touch = "true" *)wire clk 50, clk 200, clk 400;
(* dont_touch = "true" *)reg counter, counterl, counter?, counter3;

(* dont_touch = "true" *)reg :0] driver;

(* dont_touch = "true" ‘)reg INIT, reset;

(* dont_touch = "true" *)reg [17:0] Xq Toplevel;

(* dont_touch = "true" *)wire [17:0] Xqout_PingPong LvLlw Real, XgOut PingPong LvLlw Imag:
(* dont_touch = "true” f)wire [1 Xqout_PingPong LvL2w Real, Xqout PingPong LvLZw Imags

(* dont_touch = "true" *)wire [17:0] Equt_PingPong LvL3w_Real, XgOut PingPong LvL3w_Imag;
(* domt_teuch = "true" *)wire [L7:0] ¥qout_PingPong_LvLdw_Real, Xq0ut_PingPong_LvLdw_Imags
(* dont_touch = "true" *)wire [17:0] EqOut_BFM LvLlw Real, XqOut BFM LvLlw Ima

(* dont_teuch = "true" *)vire [17:0] XqOut_BEM_LvLIw_Real, Xqout_BFM_LvL2w_Ima
(* dont_touch = "true" *)wire [17:0] EqOut_BFM LvL3w Real, XqOut BFM LvL3w_Imag;
(* dont_touch = "true" *)reg [L7:0] W_lvll_Real, W_1vll_Imag;
(* dont_touch = "true" *)reg [17:0] W_lv12 Real, W _lvlZ Imag;
(* dont_touch = "true" *)reg [L7:0] W_1v13_Real, W_1vl3_Imag;

{

.clk_50(clk_50),
.elk_200{clk_200),
.clk_400(clk_400),

.reset (reset),
. locked (locked)

pingpong PingPong_SwitchLevell
(
.XqIn_PingPong_Real(Xq_Toplevel),
.XqIn_PingFong Imag(l),
_clk{elk_50),
.counter (counter) ,
.¥qOut_PingPongw_Real (KqOut_PingPong_LvLlw Real),
.XqPut_PingFongw_Imag (XqOut_PingPong LvLlw Imag)

Radix2_BFM BFMlevelCne
{
.¥q_Real {Eg0ut_PingPong_LvLlw Real),
-Xg_Imag(XqOut_PingPong_LvLlw_Imad),
.clk{elk S0},
W_Real(W_Lvll Real),
W_Imag(W_lv1ll_Imag),
~counterw{counterl),
.Radix2_BFMOut Real (EgOut_BFM LvLlw Real),
.Radix2_BFMOut_Imag(XqOut_BFM LvLlw_Imag)

pingpong¥ PingPong_SwitchLevell
{
.Xqln_PingPong_Real (EqOut_BFM LvLlw Real),
.XgIn_PingPong_Imag (XqOut_BFM LvLlw_Imag),
.elk(clk_S0),
.counter(counterl),
.XqOut_PingPongw_Real (EqOut_PingPong LvLlw Real),
«XgOut_PingPongw_Imag (XqOut_PingPong LvLIw_Imag)

Radix2_BFM BfMlevelTwo
{
.¥q_Real (¥q0ut_PingPong_Lvl2w_Real),
.%q_Imag (£q0ut_PingPong_LvL2w_Inag),
.clk(e1k_50),
.W_Real (W_lv1Z_Real),
5_Imag (W_1v12_Imag],
.counterw (counterz),
.Radix?_BFMOut_Real (¥qOut_BFM_LvL2w Real),
.Radix2_BFMOUT_Imag (Xqout_BFM_LvL2w_Imag)
)i
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97
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55
100
101
102
103
104
105
106
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108
110
111
112
113
114
115
116
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121
122
123
124
125
126
127
128
129
130
131
132 €
133
134
135
136
137
138
139
140
141
142
143
144
115
146 ¢
147
148
148

150 ¢

E g sw I
pingpongK PingFong SwitchLevell
(
.XqIn_EingPong Real(¥q0ut BFM LvLlw Real),
.XqIn_PingPong Imag(XqOut BFM LvL2w _Imag),
.clk(clk_S0),
.counter {counterz),
-XqOut_PingPongw_Real (Hg0ut_PingPong_LvL3w_Real),
.XqOut_PingPongw_Imag (XqOut_PingPong LvL3w_Imag)

Radix?

(

.¥q Real (KqOut_PingPong_LvL3w Real),
.¥q_Imag (Xqout_PingPong_LvL3w_Imag),
.clk{elk 50),

.W_Real (W_1v13_Real),

.W_Imag(W_1v13_Imag),

.counterw(counter3),

.RadixZ BFMOut Real {£q0ut_BFM LvL3w Real),
.Radix? BFMOut_Imag(KqOut_BFM LvL3w_Imag)

- Begin Pi 5w b
pingpongK PingPong_ SwitchLevels
(
.¥qIn_PingPong Real(¥gOut_BFM LvLiw Real),
.¥gIn_PingPong_Imag(¥qout_BFM LvL3w_Imag),
.clk{elk 50,
.counter (counter3),
.¥gOut_PingPongw_Real (Xg0ut_PingPong LvLdw Real),
-Xqout_PingPongw_Imag (XgOut_PingPong_LwvL4w_Imag)

initial begin
counter =

counterl

counter: = -6;

counter3
INIT = 0;
reset = 07
%q_Toplevel = 18'b010
W_1vll Real = 17
W_1vll_Imag
W_1v12_Real
W_1vl2 Imag = 17
W_1v13_Real = 17
W_1v13_Imag

always@(posedge clk_50)

151 ¢
152§
153

begin
case (counter(4:0])
57D
begin
Xq_Toplevel 1

begin
18'b010

begin
Eq_Toplevel <= 13'b010

begin
<= 18'b0

begin

Eq_Toplevel <= 18'b010
end
12
begin
Eq_Toplevel <= 18'b010
end
10
begin
Xq_Toplevel
end
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P

2;
2,
2;
2,
2;
2,
2;
2
2;
2
2;
2
2;
3
2;
3
2

2
2]
2
2]
2
2]
2]
3
g
3.
3
3
3
3
3
3
3
4
4.
4.
4.
4
tt
4
4
it
4
S
s.
s:
5:
s.
5!
S
5
5
5!
&
6.
6:
6:
&
6!
&
6
6
6!
7

BESoolaailadbic oo dome o
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T
£

288
T

begin
18"b

begin
¥q Toplevel <= 18'b
end
01z
begin
¥q Toplevel <= 18'b

5"b0l!

(3}

(10)

begin
Xq_TopLevel <= 12'bi
end

begin
Xq_TopLevel <= 12'bi
end
5'BOL1C
begin
Xq_Toplevel <= 13'hi
end
5'b01101:
begin
Xq_Toplevel <= 18'bl
end
01111z
begin
Xq_Toplevel <= 18'bl

Degin
¥q Toplevel <= 18'b
end

5'b100¢
begin
¥q_Toplevel <= 18'b
end

5'b100 /
begin
¥q_Toplevel <= 18'b
end

5'bl0ll: 19)
begin
¥q_Toplevel <= 18'b
end

5'b101
begin
Xq_Toplevel <= 18'b
end

S'bl0l0l:  //H(21)
begin
Xq_Toplevel <= 18'b
end

5'D10110: q(22)
begin
g Toplevel <= 18'b
end

5'Dl0111: q(23)
begin
g Toplevel <= 18'b
end

5Bl q(24)
begin
g Toplevel <= 18'b
end

5'b110 q(2
begin
g Toplevel <= 18'b
end

5'D11010: q(28)
begin
g Toplevel <= 18'b
end

5'B11011:
begin
g Toplevel <= 18'b
end

5'b11100 q(28)
begin
g Toplevel <= 18'b
end

5'b11101: q(28)
begin
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71 ¥q Toplevel <= 0
272 & end

273 5'b11110:

274 [ begin

275 ¥q Toplevel <= 0
276 & end

2797 & 5'b1111

278 L, begin

278 ¥q Toplevel <= 1
280 (£ end

281 [ endcase

282

283 1 Twidd

284 [, case (counterl[2:01)

285 & 3'b! (0)

286 L, begin

287 W_lvll Real <= 18'b

288 W_lvll_Imag <= 18'b

289 [

290 T

291 &

292 W_1vll_Real <= 18'b010 1
293 W_lvll Imag <= 18'b

294 1

295 & /

296 L, Legin

301C begin

302 W_1v1l Real <= 18'b010 1
303 W_1vll Imag <= 18'b

304 end

305 3'bloo:

306 begin

307 W_1vll Real <= 18'b010

ELES W_1vll_Imag <= 18'b

308 ¢ end

310F 3'bl0l:

311 begin

312 W_lvll Real <= 18'b

313 W_1vll Imag <= 18'b

314 end

315 ¢ 3'b110:

316 begin

317 W_1vll Real <= 18'b010 1
31e W_1vll Imag <= 18'b0

319 ¢ end

320 € 3'blll: (7)

321 & begin

322 W_lvll Real <= 18'b

323 W_1vll Imag <= 18'b

324 end

325 ¢ endease

326

327 2 Tvidd

328 C case (counter2[3:0])

328 4'b|

330 € begin

331 W_1v1Z Real <= 18'B0

332 W_1v12_Imag <= 18'BI11,

333 end

3341 1:

335 begin

336 W_1v12 Real <= 18'B0L 0
337 W_1v12_Imag <= 18" 0
338 (-

339C

340 F

301 W_1v12_Real <= 18"

322 W_1v12_Imag <= 18"

303 ¢ end

3440 1z

345 ¢ begin

316 W_1v1Z_Real <= 18'B0L 1
317 W_1vl2_Imag <= 18" -5
348 ¢

329 &

350 [ begin

351 W_1vlZ Real <= 18"

352 W_1v12_Imag <= 18"

353 end

354 F 1:

355 begin

356 W_1v12 Real <= 18'B0

357 W_1v12_Imag <= 18'bLL

358 (- end

359 4'B0110:

360 begin
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W_1vl2 Real <= 13'bi)
W_1v1Z Imag <= 18'bll
end

4'b0111:
begin
W_1v1Z Real <= 12'bi
W_1vl2 Imag <= 18'bll

begin

W_1vl2 Real <= 18"
W_1v12_Imag <= 12'bll
end

1:

begin

W_1v1Z_Real <= 18'b0l
W_1vl2_Imag <= 18"

4'bi
begin
W_1vlZ Real <= 18"
W_1v12_Imag <= 18"
end

4'b1011:
begin
W_1v12_Real <= 18"
W_1v12_Real <= 18"
W_1v12_Imag <= 18'B0
end

4'bl10l:
begin
W_1v1Z_Real <= 18'B0
W_1vl2_Imag <=
end

4'b1110:
begin
W_1vl2 Real <
W_1v12_Imag <=
end

4'p1111:
begin
W_1vl2 Real <=
W_1v12_Imag <= 18'bLL
end

endcase

begin
W_1v13 Real <= 18'Bl1, 1
W_1v13_Imag <= 18'B110100101100
end

1:

begin

W_1v13_Real <= 18'B0L
W_1v13_Imag <= 18"

begin
W_1v13 Real <= 18'b0l0
W_1v13_Imag <= 18'b00
end

1:

begin

W_1v13_Real <= 18"
W_1v13_Imag <= 18'b110

begin
W_1v13 Real <= 18"
W_1v13_Imag <= 18'b110L
end

4'b010L:
begin
W_1v13 Real <= 18'b00
W_1v13_TImag <= 18'bl10
end

4'b0110:
begin
W_1v13_Real <= 18"
W_1v13_Imag <= 18'bl1C
end

4'b0111:
begin
W_1v13 Real <= 13'b1101

1/-Feqre(2) /2

jsqrt
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as1
452 ¢
453 €
454 ¢
455
456
457 ¢
458 ¢
459 €
260
261
462 ¢
463 ©
264 ©
165
166
467 ¢
268 L
469 ©
270
a71
272 ¢
473§
474k
475
176
281
482 ¢
283 E
484 L
185
426
487 ¢
28 [
289 L
4350
291
492 ¢
493 ¢
454
195
496
197
498
499 ¢

W_1vl3_Imag

begin
W_1vl3 Real
W_1vl3_Imag

begin
W_1vl3 Real
W_1v13_Imag
end

4'blolo:
begin
W_1vl3 Real
W_1vl3_Imag
end

4'bl0l
begin
W_1vl3 Real
W_1v13_Imag
end

&'bll

begin
W_1v13_Real
W_1v13_Imag
W_1v13_Imag
end

4'b111
begin
W_1v13 Real
W_1v13_Imag
end

4'bl111:
begin
W_1v13_Real
W_1v13_Imag
end

endease

counter <= counter

<=
<=

<=
4=

<=
<=

<= 18'b0
<= 18'bllC

<= 18'blld
<= 18'bllI

+ 1

counterl <= counterl + 1;

counters <
counter3 <
end

500 (£ endmodule

counter2 + 1;
counter3 + 1;
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********************C L K M O D U L E V********************

FAFAFAFRAXXH© Copyright 2008 — 2013 Xilinx, Inc. All rights reserved

[16] *khkhkikhkhkkkkk

timescale lps/lps

module clk module

1
clk_module_clk_wiz inst

.clk_50{clk_50),
.elk_200 (clk_200),

.clk_400 (clk_400),

d cont:

.reset{reset),
-locked (locked)
1:

endmodule

CORE_GENERATION_INFO = "clk_module,clk_wiz v5_3_1,[component_name—clk_module,use phase_alignment=true,use min_o_jitter—false,use _max_i_jitter=false,use_dyn _phase shift=false,use_
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********************C L K M O D U L E C L K W I Z -V********************

FAFAFAAFAXXH© Copyright 2008 — 2013 Xilinx, Inc. All rights reserved

[16] *khkhkikhkhkkkkk

contains nd propr ; information

and

22

ility) for any

SRR IR R S e K )

w w
(=

e W LW W
S e dmae

-
i

COPYRIGET NOTICE AND DISCLAIMER MUST BE RE

F THIS

E AT ALL TIMES.

[ LI i O S,
PoeaSa&Ed

o«
0

0o oo
R

59

& “timescale lps/lps
70 | module clk_module_clk_wiz

in ports
clk_inl,

out ports
clk_s0,
clk_200,
clk_400,
control
reset,
locked

24 wire clk_inl_clk_modul
85 | wire clk in2 clk module;
26 IBUF clkinl ibufg

87 (.0 {elk_inl clk module),
88 LI (clk_inl));

89

50
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100
101
102
103
104
105
106
107
108
108
110
111
112
113
114
115
116
121
122
123
124
125

127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
1456
147
148
143
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
120

wire clk_S0_clk module;
wire clk_200_clk_module;
wire clk_400_clk_module;
wire clk_outd_clk module;
wire clk_out5_clk_modul

wire clk_outé_clk module:
wire clk_out?_clk module;

wire [15:0] do_unused;

wire drdy_unused;
wire psdone_unused;

wire locked_int;

wire clkfbout_clk module;
wire clkfbout_buf_clk_module;
wire clkfbouth_unused;

wire clkoutOb_unused;
wire clkoutlh_unuse:
wire clioutzb_unuseds
wire clkout3 unused;

wire clkfbstopped_unussd;

wire clkinstopped_unused;

wire reset_high;

MMCHEZ_ADV

# (.BANDWIDTH ("OPTIMIZED"),
.CLKOUT4_CASCADE ("FALSE"),
. COMPENSATION ("ZHOLD"),
.STARTUR_WAIT ("FALSE"),
.DIVCLK_DIVIDE 1,
.CLKFBOUT_MULT_F (8.000),
.CLKFBOUT_PHASE (0.000),
.CLKFBOUT_USE_FINE PS ("FALSE"),
.CLKOUTO_DIVIDE_F (16.000),
.CLKOUTO_PHASE (0.000),

.CLKOUTO_DUTY_CYCLE  (0.500),
.CLKOUTO_USE_FINE PS ("FALSE"),
.CLKOUT1_DIVIDE 41,
.CLKOUT1_PHASE (0.000),
.CLKOUTL_DUTY CYCLE  (0.500),
.CLKOUTL_USE_FINE PS ("FALSE"),
.CLKOUTZ_DIVIDE ),
CLKOUT2_PHASE (0.000),
.CLKOUTZ DUTY_CYCLE  (0.500),
.CLKOUT2_USE_FINE PS ("FALSE"),
.CLKIN1_PERICD (10.0))
mmem_adv_inst

(clkfbout_clk module),
(clkfbouth_unused),
(clk_S0_clk_module),
(clkoutOb_unused),
(clk_200_clk_module),
(clkoutlh unused),
(elk_400_clk_module),
(clkoutZb_unused),
(elkout3_unused),
(clkout3b_unused),
(elkoutd_unused),
(clkoutS_unused),
(elkouté_unused) ,

(elkfbout_buf_clk_module),
(clk_inl_clk module),
1vpiy,

{1'pl),

i
(do_unused),
(drdy_unused),

_BSCLK
.BSEN .
- PSINCDEC 10y,
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184
185
186
187
188
129
150
191
152
193
194
135
196
197
198
139
200
201
202
203
204
205
206
211
212
213
214
215
216
217
218

{locked_int),

.CLKINSTOPPED {clkinstopped_unused),
.CLKFBSTOPPED {clkfbstopped_unused) ,
- EWRDWH (b0,

.BST {reset_high));

assign reset_high = reset;

assign locked = locked int.

BUFG CLEKf_buf
(.0 {clkfbout buf clk module),
.I (clkfbout_clk_module)):

BUFG clkoutl buf
(.0 ({clk_50),
.I {clk_50_clk module));

BUFG clkout3_buf
(.0 (elk_400),
.1 (clk_400_clk module));

endmodule
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********************P I N G PO N G _V********************

“timescale 1n3 / lps

2

23
24
25
26
27
28
29
30

w oW

©ow W

e w

-

-

44 ['module pingpong(

45 input wire [17:0] XqIn PingPong Real,
46 input wire [L7:0] XgIn_PingPong_Imag,

47 input wire clk, /

48 input wire [3:0] counter,

45 ocutput wire [17:0] HqOut_PingPongw Real,

50 cutput wire [17:0] EqOut_FingPongw Imag

51 1

52

53 reg [17:0] XqPing Real [7:0];

54 reg [17:0] XqPing Imag

55 reg [17:0] XqPong Real

56 reg [17:0] XqFong Imag

57 wire [2:0] tranpose;

58 reg [2:0] indexbr;

55

&0 wire pingpongstatuss

€1 reg ping_loading;

62 reg pong_loading:

€3

€4 ' assign Xqour FingFongw Real = (counter([3]==1"h0) 2 XgPing Real[counter[2:0]] : XgPong Real[counter([2:0]];
€5  assign XqOut_PingPongw Imag = (counter[3]==1'b0) 2 XqPing Imag[counter[2:0]] : XgPong_Imag[counter([2:0]];

66 | assign piNgPORgStatus = counter[3]:

73 indexbr = 0;
T4 end

75

76 [ always@(posedge clk)
77 ¢

if {counter[3] == 1'bl) begin
¥gPing_Real[indexbr] <= ¥gIn_PingPong_Real;

I
S e Smn oL
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91
92
93
94
95

a7
EE]
100
101
102

end
endmodule

¥qPing_Imag[indesbr] <= Xqln PingPong_Imag;
ping_loading <= 1'bl:

pong_loading <=
end

=ls= begin
XqPong_Real[indexbr] <= ¥qln_PingPong_Real:
¥qPong_Imag[indesbr] <= Xqln PingPong_Imag;
pong_loading <= 1'bl:

ping loading <= 1'b
end
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********************RAD |X2 B F M 'V********************

1 | “timescale Ins / lps
2
3
4
5
3
7
E]
10
11
12
13
14
15
16
17
18
15
20
21
22
23 Emodule Radix2 BEM{
24 input wire [17:0] Xq Real,
25 input wire [17:0] Xq_Imag,
26 input wire clk,
27 input wire [17:0] W_Real,
28 input wire [17:0] W_Imag,
29 input wire [2:0] counterw,
30 output wire [17:0] Radix? BFMCut Real,
31 cutput wire [17:0] Radix2 BFMOut_Imag
3z ;
33
34 (* dont_touch = "true" *Jreg [17:0] TopMuxOutDelayl Real, TopMuxOutDelay2 Real, TopMuxOutDelay3_Real;
35 (* dont_touch = "true" *lreg [17:0] TopMuxOutDelavl Imag, TopMuxOutDelay2_Imag, TopMuxOutDelay3_Imag:
36 (* dont_touch = "true" *]wire [17:0] TopMuxOutw_Real, BottomMuxOutw_Reals
37 (* dont_touch = "true” *}wire [L7:0] TopMuxOutw_Imag, BottomMuxOutw_Imag:
] (* dont_touch = "true" *]wire [17:0] TopMuxOutw_halfscale Real, BottomMaxOutw_halfscale Real;
39 (* dont_touch = "true” *)wire [17:0] TopMuxutw_halfscale Imag, BottomMuxOutw_halfscale_Imag;
10 (* dont_touch = "true" *jreg [17:0] XgDelayl Real;
41 (* dont_touch = "true” *Jreg [17:0] XgDelayl_Imag;
42 (* dont_touch = "true" *jwire [17:0] MultOutw Real;
43 (* dont_touch = "true” *)wire [L7:0] Multoutw_Imag;
44 (* dont_touch = "true" *)wire [17:0] AdderOutw Real;
45 {* dont_touch = "true" *)wire [L7:0] AdderOutw_Imag:
I
47 I X
8 twoZoneMux twoZoneMux_Top
45 {
s0 .inl_real(¥q Real),
s1 .inl_imag{%q Imag),
52 .in2_real(¥qDelayl_Real),
53 .in?_imag{¥qDelayl Imag),
54 .elk(~counterw(0]),
55 .out_real {TopMuxOutw _Real),
& -out_imag{TopHuxOuty_Imag)
57 )i
59 - 2 I
&0 twoZoneMux twoZonsMux Bottom
&1 i
62 .inl_real {Kq Real),
& .inl_imag(Xq_Imag),
(71 .in2 real {XqDelayl Real),
s .in2_imag (XgDelayl_Imag),
.clk{counterw[0]),
-out_real (BortorMuxOutw_Real),
.out_imag {BottorMuxCutw_Imag)
1
multiply complex ComplexMultiply2Stage
{
.clk{counterw[0]),
.2 (BottomMuxOutw_halfscale_Real),
.ib (BottomMuxCuty_halfscale Imag),
.c{W_Real),
.34 (W_Imag),
.¥gout_real (MultOutw_Real),
.Xgout_imag (MultOutw_Imag)
82 :
83 ar
84
85 (
86 .TopIn_real (TopMuxOutDelay3 Real),
87 .TopIn_imag(TopMuxOutDelay3 Imag),
88 .BottomIn_real (MultOutw Real),
a9 .BottonIn_imag(MultCutw_Imag),
a0 -clk(elk),
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91
92
93
94
95
EH
97
98
EE]
100
101
102
103
104
105
106
107
108
108
110
111
112
113
114

.counterw{counterw(d]),
.Eqout_real (AdderCutw_Real),
.Eqout_imag (Adderouty_Imag)

assign Radix2 BFMOut Real = AdderCutw Real;
2ssign Radix2 BFMOut Imag = Adderoutw Imag:

assign TopMuxOutw halfscale Real = TopMusOutw Real >> 1;
2ssign TopMuxQutw halfscals Imag = TopMuxQutw Imag >> 17
assign BottomMuxOutw halfscale Real = BottomMuxOutw Real >> 1;
assign BottomMuxOutw halfscale Imag = BortomduxOutw Imag >>

2lvaysé (posedge clk)
bagin
TopMuxutDelayl Real <= TopMuxOutw halfscals Real;
TopMuxOutDelayl Imag <= TopMuxOutw halfscale Imag:
TopMuxOutDelay? Real
TopMuxOutDelay? Imag <= .
TopkuxOutDelay3 Real <= TopMusOutDelayZ Rea
TopMuxOutDelay3 Imag <= TopMuxOutDelay? Ima
HqDelayl Real <= Xq Real;
¥qDelayl Imag <= Xq Imag:
=nd

endmodule
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********************TWOZON E M UX V********************

“timescale lns / Ips

2

module twolonsMux (
input wire signed [17:0] inl_real, :
input wire signed [17:0] inl imag,
input wire signed [17:0] in2_real,
input wire signed [17:0] in2 imag,
input wire clk,
cutput wire signed [17:0] out_real,
cutput wire signed [17:0] our_imag

I

R LR DL DD e

it

32 assign out_real = {clk==1'b0) > in2_real : inl real:
assign out_imag = {clk==1'b0) ? in2_imag : inl_imag:
endmodule

=0
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********************M U LT I P LY CO M P LEX.V********************

module multiply complex{

input wire clk,
input wire [17:0] &,
input wire [17:0] Jb,
input wire [17:0] ¢,
input wire [17:0] 3d,
output wire [L7:0] Xgout_real,
output wire [17:0] Xgout imag

(* dont_touch = "true" *) reg sign _mult_left_Real, sign mmlt_right_Real, sign_mult left Imag, sign_mult_right Imag;

(* dont_touch = "true" ) wire sign a
(* dont_touch = "true" *) wire sign jb;

(* dont_touch = "true" ) wire sign

(* dont_touch = "true" *) wire sign jd;

(* dont_touch = "true" #) wire [16:0] unsigned a;
(* dont_touch = "true" *) wire [16

(* dont_touch = "true" ) wire [16

(* dont_touch = "true" *) wire [16
(* dont_touch = "true" ) wire [16:0] trunc_left Real:
(* dont_touch = "true" *) wire [1€:0] trunc_right Real;

(* dont_touch = "true" ) wire [16
(* dont_touch = "true" *) wire [16:
(* dont_touch = "true" *) wire [17:
(* dont_touch = "true" *) wire [17:
(* dont_touch = "true" *) wire [17:
(* dont_touch = "true" +) wire [17:

trunc_left_Imag:;

trunc_right_Imag;
signed_left_Real;
signed_right Rea
signed_left_Imag;
signed_right_Imags

multl8xl8 unsigned multiply

.elk{clk),

.a{unsigned a),

.3k (unsigned_ib),

.clunsigned c),

.jd (unsigned_id),

.Out_left_Real (trunc_left Real),
.Out_right_Real (trunc_right_Real),
.Out_left_Imag(trunc_left_Imag),
.Out_right_Imag(trunc_right_Imag)):

twoCompRedo twoC_leftReal(.signbit (sign_mult_left_Real),.number(trunc_left_Real),.sign_number(signed_left Real)):
twoCompRedo twoC_rightReal(.signbit(sign mult_right_Real), .number (trunc_right Real),.sign_number (signed right_Real));
twoCompRedo twoC_leftImag(.signbit (sign mult_left_Imag),.number(trunc_left_Imag),.sign_number(signed_left_Imag)):
twoCompRedo twoC_rightImag(.signbit(sign mult_right_Imag), .number (trunc_right_Imag),.sign_number (signed _right_Imag));

twoComp insta{.In(a},.0ut{unsigned a))
twoComp insth(.In(jb),.0ut(unsignzd _jb)):
twoComp inate(.In(c),.0ut(unsigned c));

twoComp instd(.In(jd),.0ut(unsignzd _3d)):

assign sign_a = a[17];
assign sign_jb = JB[17]:
assign sign c = c[17]; .
assign sign_3d = 3d[17];

assign Xqout_real = signed_left_Real - signed_right_Real;
assign Xqout_imag = signed left Imag + signed right_Imag;

initial
begin

always@ (posedge clk)

begin
sign mult_left Real <= sign a * sign_c;
sign mult_right Real <= sign jb * sign jd;
sign_mult_lefr_Imag <= sign a ~ sign_jd:
sign mult_right_Imag <= sign jb * sign _ci
end

| endmodule
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*hkhkkhkhkhkkkhkhkkkhkhkkkihkhkiikik M U LT18X18 'V********************

1 | “timescale lns / 1ps

2

3

4

5

5

7

E

10

11

12

13

14

15

16

17

18

15

20

21

22

23 Cimodule maltlexl@(

24 input wire clk,

25 input wire [16:0] a,

26 input wire [1€:0] 1B,

27 input wire [16:0] ¢,

28 input wire [16:0] 3d,

28 output wire [16:0] Cut_left Real,

30 output wire [16:0] Out_right_Real,

31 cutput wire [16:0] Out_left Imag,

3z output wire [16:0] Out_right_Imag):

33

34

35 I

36 e+ d) ) + 3 (bic

37 (* dont_touch *jreg [3£:0] mult left Real;
38 (* dont_touch = "true" *)reg [34:0] mult right Real:
38 (* dont_touch = "true” *)reg [34:0] mult left Imags
40 (* dont_touch = "true" *)reg [34:0] mult right Tmag:
a1

42 assign Cut_left Real[16:0] = mult left Real[32:16]; /.
43 assign Out_right Real[16:0] = mult_right_Real([32:161;
44 assign Cut_left Imag[16:0] = mult left Imag[32:16]; /.
45 assign Out_right_Imag[l6:0] = mult_right_Imag[32:161;
46

47 Uinitial begin

48 (fend

43 |

50 ¢ always@(posedge clk)

510 begin

52 (= p:

53 mult_left Real <= a * c;

54 mult right Real <= jb * jdi

55

56

57 malt left Imag <= a * jd;

58 mult_right_Imag <= ib * c;

59 end

60 ¢

61 ( endmodule

83



********************TWOCO M P R EDO .V********************

“timescale lns / lps

module twoCompRedo {

input wire signbit,

input wire [16:0] number,
cutput wire [17:0] sign_number
)i

assign sign mumber = signbit?[signbit,-number+l}:[signbit,number};
enamodule
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********************TWOCO M P V********************

“timescale lns / lps

module twoComp(
input wire [17:0] In,
output wire [16:0] Out);

assign Out = In[17]2~In+l:In;

endmodule
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SRR R ]

it

********************A D D S U B 18X 18 . V********************

“timescale lns / lps

module addsublaxls(
input wire [17:0] Topln real,

input wire [17:0] Topln_imag, /3
input wire [17:0] BottomIn real, c
input wire [17:0] BottemIn_imag, /

input wire clk,
input wire counterw,
output wire [17:0] Xqout_real,
ocutput wire [17:0] Xgout_imag )

(* dont_touch = "true" *) reg [17:0] out_real;
(* dont_touch = "true" %) reg [17:0] out_imag:

assign Xgout_real
assign Xgout_imag =

always@ (posedge clk)
begin
out_real <= {counterw==1'bl) ? TopIn_real + BottomIn_real : TopIn_real - BottomIn_real; /.
out_imag <= (counterw==1'bl) ? TopIn_imag + BottomIn imag : TopIn_imag - BottomIn_imag;

end
endmodule
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********************P I N G PO N G K V********************

“timescale lns / lps

2

f

m
e d
4

P N TR A T

w

32
33
34
35
36
37
e
39
40
41
42
43
4
45
46
47
48
45 Cmodule pingpongK(

50 input wire [17:0] EqIn_PingPong Real,
51 input wive [17:0] ¥qln_PingPong_Imag,
52 input wire clk,

53 inmput wire [3:0] counter,

54 output wire [17:0] EqOut_PingPongw Real,
55 output wire [17:0] XqOut_PingPongw_Imag
56 )

57
58 (* dont_touch =
59 (* dont_touch
&0 {* dont_touch
€1 {* dont_touch
€2 {* dont_touch
€3 |/ (*+ dont_|
64
€5
€€ | assign XqOut_PingPongw Real = (buffer_counter([3]==1'bl} 2 ¥qPing Real[buffer_counter([2:0]] : ¥qPong_Real[buffer_counter[2:01];
(buffer_counter [3]==1'bl) ? XqPing_Imag[buffer_counter(2:0]] : EqPong_Imag[buffer_counter[2:0]];

[17:0] EqPing Real [7:0
[17:0] XqPing_Imag [7:0
[17:0] EqPong Real [7:0
1 XgPong_Imag [7:0
buffer_counter;

1
1
1
1

"true” *) reg
"true' ) reg

€7 ' assign
e v

]
70
71
72 Dinitial

73k begin

74

75 ¢ end

76

77 [ always@{posedge clk)
78 € begin

@ 2
v

o mmmm oo

SwmSmm e

5 case (counter)
[ £ /
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91
92
93
94
95

a7

98

EE]
100
101
102
103
104
105
106
107
108
108
110
111
112
113
114
115
116
117
118
113
120
121

123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
143
150

151 F

152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
165
170
171
172
173
174
175
176
177
178
178
180

begin
XqPong_Real[2]
¥qPong_Imag[Z]
buffer_counter

begin
XqPong_Real[6]
XqPong_Imag[6]
buffer_counter

end

3'bO010:
begin
XqPong_Real[3]
XqPong_Imag[3]
buffer_counter

end

3'bO011:
begin
XqPong_Real[7]
XqPong_Imag[7]
buffer_counter

end
3'B0100:
begin
XqPing_Reall0]
¥qPing Imag[0]
buffer_counter
end

Dbegin
XgPing_Real[4]
XqPing Tmag[4]
puffer_counter
end

3'b0110:
Dbegin
XgPing_Real[l]
XgPing Tmag[l]
puffer_counter
end

3'bO1Ll:
Dbegin
XgPing_Real[s]
¥qPing Imag[s]
puffer_counter
end

4'bI
Dbegin
XgPing_Real[Z]
XqPing Tmag[2]
puffer_counter
end

4'bI
Dbegin
XqPing Realle]
XqPing Imag[6]
puffer_counter
end

4'bl010:

begin
KgPing Real[3]
XqPing Imag([3]
buffer_counter
end

4'bl0ll:
begin
XqPing_Real[7]
XqPing Imag[7]
buffer_counter
end

4'bl100:
begin
KqPong_Real[0]
XgPong_Imag[0]
buffer_counter
end

4'b1101:
begin
HgPong Real[4]
KqPong_Tmag[4]
buffer_counter
end

4'bl1110:
begin
XgPong_Real[l]
XqPong_Imag[l]
buffer_counter
end

4'b1111:

<= XqTn_PingPong Real:
<= XqIn_PingPong Imag:
= 4rdiz;

<= XqTn_PingPong Real:
¥qIn PingPong_Imag:
= 4'd13;

<= XqTn_PingPong Real:
<= XqIn_PingPong Imag:
= 4'dl4;

<= XqTn_PingPong Real:
<= XqIn_PingPong Imag:
= 4'd15;

<= XqTn_PingPong Real:
<= XqIn_PingPong Imag:
= 4'd0;

<= XqIn_PingPong Real:
<= XqTn_PingPong Tmag;
= 4val;

<= XqIn_PingPong Real:
<= XqTn_PingPong Tma

<= XqIn_PingPong Real:
<= XqTn_PingPong Tma
=4a3

<= XqIn_PingPong Real:
<= XqTn_PingPong Tmag;
= 4vaa;

¥qIn PingPong Real:
¥qIn PingPong_Imag;
= 4vas;

<= ¥qln_FingPong Reals
ZqIn_PingPong Imagy
=g

<= HqIn_PingPong Realr
<= Eqln_FingPong Imags
= 4vd1;

<= XqIn_PingPong Rea
<= Xqln_PingPong_Ima

<= ¥qln_FingPong Reals
<= ¥qIn_PingPong Imag:
= q4ras;

<= ¥qIn_PingPong_Real;
<= XqlIn_PingPong_Imag;
= ard1;
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end
l endmodule

begin
XqPong_Real[S] <= XqIn_PingPong Real:
XqPong_Imag[5] <= XqIn_PingPong Imag:
buffer_counter = 4'dll;

end
endcase
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1 ##

37
4 #4
5

6 ¢

APPENDIX C. HARDWARE CONSTRAINTS FILE

********************N EXYS4 D D R MASTE R 'X DC********************

his file is a general .xdc for the Nexysé DIR Rev. C

To use it in

- uncemment
- rename the used ports

rresponding to used pins
cach line, after get ports) a

ording to the top level signal names in the projsct

Clock signal

7 set property -dict [PACKAGE_PIN E3 IOSTANDARD LVCMOS33} [get ports CLELOOMHZ]
& create_clock -add -name sys_clk pin -period 10.00 -waveform [0 5] [get_ports [CLKLOOMEZ]];

9
10

11 ##5%1

1z

13 #s=t_property
12 #set_property
15 #sst_property
16 #s=t_property
17 #s=t_property
18 #sst_property
19 #s=t_property
20 #s=t_property
21 #set_property
22 #sst_property
23 #s2t_property
24 #s=t_property
25 #sst_property
26 #3ct_property
27 #s=t_property
28 #sst_property

29
30

9

PACKAGE PIN
PACRAGE F:
PACKAGE |

PACKAGE PIN
PACKAGE F:
PACKAGE |

PACKAGE PIN
PACKAGE F:
PACKAGE |
PACKAGE PIN
PACKAGE F:
PACKAGE |

PACKAGE PIN
PACKAGE P:
PACKAGE |
PACKAGE PIN

IVEMDS33 )
LVEMOS33
LVEMDS33
IVeMDS33
LVCMOS33
LVEMDS33
IVEMDS33 )
LVCMOS33
IVEMDS18
IVEMDS1E )
LVCMOS33
LVEMOS33
IVEMDS33
IVCMOS33
LVEMOS33
IVEMOS33 }

[g=t_ports

]: #I0 124N T3 RS0 15
#I0 L3N _T0_DOS EMCCI
#10_LeN_T0_DOg.
#I0 L13N T2

[get_ports

[get_ports ) Dog_|
[g=t_ports
[get_ports
[get_ports

S54994

8

[get_ports
[get_ports
[get_ports

9

8

[get_ports
[get_ports
[g=t_ports

d849

[get_ports
[get_ports
[g=t_ports

€5

; #I0 L13N T3 A09 D
L21P T3 DOS 1

R R R

[get_ports

31 ## LEDs

32

33 #set_property -dict { PACKAGE PIN H17  IOSTANDARD LVCMOS33 } [gst ports #I0 L18P T2 AZ:
34 #set_property PACKAGE_PIN K15  IOSTANDARD LVCMOS33 } [get ports : #I0 L24P T3 R
35 ¢set_property PACKAGE_PTN J13  TOSTANDARD LVMOS33 } [get ports
36 #55t_property N14  IOSTANDARD LVCMOS33 } [gst ports
37 #set_property R TOSTANDARD LVCMOS33 ) [get_ports

38 #s=t_property
39 #52t_property
40 #s=t_property
41 #s=t_property
42 #5=t_property
43 #s=t_property
44 #s=t_property
45 #s=t_property
46 #s=t_property
47 #s=t_property
48 #s=t_property

L]

50 #5=t property
51 #s=t_property
52 $sst_property
53 #set_property -di
54 #s5t_property -di
55 #sst_property -di

56
57

58 ##7 seqment display

59

€0 #5=t _property -dict {
€l #s=t_property
€2 fsst_property
€3 #s=t_property
64 #s=t_property
€5 #sst_property
€6 #s=t_property

&7

€8 #s=t_property

&9

70 #3ct_property
71 #s=t_property
72 #sst_property
73 #3ct_property
74 #s=t_property
75 #sst_property
76 #s=t_property
77 #s=t_property

78
79

IOSTANDARD LVCMOS33
IOSTANDARD LVCMOS33
IOSTANDARD LVCMOS33
IOSTANDARD LVCMOS33
IOSTANDARD LVCMOS33
IOSTANDARD LVCMOS33
IOSTANDARD LVCMOS33
IOSTANDARD LVCMOS33
IOSTANDARD LVCMOS33
IOSTANDARD LVCMOS33
IOSTANDARD LVCMOS33

[g=t_ports
[gst ports
[gst_ports
[g=t_ports
[gst ports
| [gst_ports
PACRAGE PIN

[g=t_ports
[g=t_ports
[gst_ports
[g=t_ports

B LR
B e s e =]
BEREREEEEEEEEERER

[g=t_ports

IOSTANDARD LVCMOS33
IOSTANDARD LVCMOS33
IOSTANDARD LVCMOS33
IOSTANDARD LVCMOS33
IOSTANDARD LVCMOS33
IOSTANDARD LVCMOS33

[g=t ports
[g=t_ports

[get_ports
[get ports

[g=t_ports

Goaoa e
B
HEEEEE

[gst_ports

PACKAGE PIN T1

TOSTANDARD LVCMOS33 } [get ports {
PACRAGE FIN R
PACKAGE_PIN
PACKAGE PIN
PACRAGE_F:
PACKAGE_PIN
PACKAGE_PIN

IOSTANDARD LVCMOS33 }
IOSTANDARD LVEMOS33

0
0 [g=t_ports
£

3 IOSTANDARD LVCMOS33

5

1

s

[get_ports
[g=t_ports

IOSTANDARD LVCMOS33
IOSTANDARD LVEMOS33
IOSTANDARD LVEMOS33 )

[get_ports #10 L13P T2 |
#10 L19P T3 A10

[g=t_ports > 13 .
#10_1.4P_T0_DO.

[get_ports

PACKAGE FIN H15  IOSTANDARD LVCMOS33 } [get ports
PACKAGE PIN
PACKAGE |
PACKAGE_PIN
PACKAGE_F:
PACKAGE |
PACKAGE_PIN
PACKAGE_P:
PACRAGE_FIN

IOSTANDARD LVEMOS33 ) [g=t ports
IOSTANDARD LVCMOS33 } [g=t perts
IOSTANDARD LVCMOS33 } [get_perts
IOSTANDARD LVCMOS33 }
TOSTANDARD LVCMOS33
TOSTANDARD LVCMOS33 }
TOSTANDARD LVCMOS33 }
IOSTANDARD LVCMOS33 }

[get_ports
[g=t_ports

[get_ports

[g=t_ports

[get_ports

80 ##Buttons

a1

82 §set_property -dict { PACKAGE PIN C12

83

84 #s=t_property
85 #sst_property -
86 #55t_property
87 #s=t_property -d
88 #sst_property -

L]
90

TOSTANDARD LVCMOS33 } [get ports ( CPU RESETN }]; #I0 L3P T0 DS ADIP 15

PACKAGE FIN I IOSTANDARD LVEMOS33 }
IOSTANDARD LVEMOS33 }
IOSTANDARD LVEMOS33
IOSTANDARD LVEMOS33 }
IOSTANDARD LVEMOS33 }

[g=t_perts { BINC }]

[get_ports
[get_ports
[g=t_ports

G888 e

[get_ports

91

cpu_resstn



91 ##Pmod Headers

82

23

94 ##Pmod Header JA

95

96 #55t property -dict { PACKAGE PIN C17  IOSTANDARD LVCMOS33 } [get ports { JA[1] }]; #I0 LZON T3 419 15 Sch=ja(1]

97 #set_property -dict { PACKAGE PIN D18  TOSTANDARD LVCMOS33 J [get ports { JA[2] }]; #I0 L21N T3 DOS A18 15 Sch=ja[Z]
98 #sst_property -dict { PACKAGE PIN E18  TOSTANDARD LVCMOS33 } [get ports { JA[3] }]; #10 L21P T3 DQS 15 Sch=ja[3]

99 gset property -dict { G17  TOSTANDARD LVCMOS33 } [get ports { JA[4] }]; #I0 L18N T2 A23 15 Sch=ja[4]

100 #set_property -dict { D17  IOSTANDARD LVCMOS33 } [get ports { JA[7] }]; #I0 L16N T2 A?7 15 Sch=ja(7]

101 #set_property -dict { PACKAGE PIN E17  IOSTANDARD LVCMOS33 ) [get_perts { JA[S] }]; #I0 L16P T2 A28 15 Sch=ja[8]

102 #set_property -dict | F1§  TOSTANDARD IVCMOS33 } [get_ports { JA[S] }]; #T0_L22N T3 A16 15 Sch=ja[d]

103 #set_property -dict { G182  IOSTANDARD LVEMOS33 )} [get ports { JA[10] }]; #I0 L22P T3 A17 15 Sch

104

105

106 ##Pmod Header JB

107

108 #set_property -dict { TOSTANDARD LVCMOS33 ) [get_perts { JB[1] }]; #I0 L1P T0 ADOP 15 Sch=jb{1]

108 #set_property -dict | TOSTANDARD IVEMOS33 } [get_ports { JB[2] }]; #I0_L14N T2 SRCC 15 Sch=jb[Z]

110 #set_property -dict { IOSTANDARD LVCMOS33 ) [get ports { JBI3] }J:; #I0 L13N T2 MRCC 1§ Sch=jb[3]

111 #set_property -dict { TOSTANDARD LVCMOS33 ) [get_ports { dB[4] }]; #I0 L15P T2 DOS 15 Sch=jb{<]

112 #set_property -dict { TOSTANDARD LVCMOS33 |} [get_ports { JB[7] }]; #I0_L11N_Ti SRCC 15 Sch=jb[7]

113 #set property -dict { IOSTANDARD LVCMOS33 } [get ports { JB[8] }]; #I0 LSP TO ADIP 15 Sch=ib(8]

114 #set_property -dict { | TOSTANDARD LVCMOS33 ) [get_ports { JB[8] }]; #I0 0_15 Sch=jb(8]

115 #set_property -dict { PACKAGE PIN H16  IOSTANDARD LVCMOS33 ) [get_perts { JB[10] }]; #I0 L13B T2 MRCC 15 Sch=jb[10]
116

121 #set_property -dict { PACKAGE PIN F6  IOSTANDARD LVCMOS33 } [get ports { JC[2] }]; #I0 L13N T3 VREF 35 Sch=jc[Z]

122 #set_property -dict { PACKAGE PIN J2  IOSTANDARD LVCMOS33 } [get ports { JC[3] }]; #10 L22N T3 35 Sch=jc(3]

123 #set_property -dict { IOSTANDARD LVCMOS33 } [get ports { JC[4] }]; #10 L1SP T3 35 Sch=jc[4]

124 #set_property -dict { TOSTANDARD LVCMOS33 } [get_ports { JC[7] }]; #10 LEP_TO 35 Sch=jc[7]

125 #set_property -dict | TOSTANDARD LVCMOS33 | [get_ports { JC[8] }]; #10_L22P T3 35 Sch=jc[8]

126 #set_property -dict { | IOSTANDARD LVCMOS33 } [get ports { JC[2] }]; #10 L21P T3 DOS 35 Sch=jc[9]

127 #set_property -dict { PACKAGE PIN E6  IOSTANDARD LVCMOS33 } [get ports { JC[10] }]; #I0 L&P T0 AD13P 35 Sch=jc[10]
128

129

130 ##Fmod Header JD

131

132 #set_property -dict { PACKAGE PIN H{  IOSTANDARD LVCMOS33 } [get ports { JD[1] }]; #I0 L2iN T3 DOS 35 Sch=jd[1]

133 #set_property -dict { IOSTANDARD LVCMDS33 } [get ports { JD[2] }]; #10 L17P T2 35 Sch=jd[Z]

134 #set_property -dict | TOSTANDARD LVCMOS33 } [get_perts { JD[3] }]; #10 L17H T2 35 Sch=jd[3]

135 #set_property -dict [ TOSTANDARD LVEMOS33 } [get ports { JD[4] }]; #10 L2GN T3 35 Sch=jd[]

136 #set_property -dict { IOSTANDARD LVCMOS33 } [get ports { JD[7] }]; 410 L16P T2 DOS 35 Sch=jd[7]

137 #set_property -dict | TOSTANDARD LVEMOS33 } [get_perts { JD[8] }]; #10 L20P T3 35 Sch=jd[§]

138 #set_property -dict | | TOSTANDARD LVEMOS33 } [get_ports { JD[9] }]; #I0 L15N T2 D@5 35 Sch=jd[3]

139 #set property -dict { PACKAGE PIN F3  IOSTANDARD LVCMOS33 } [get ports { JD[10] }]; #I0 L13N T2 MRCC 35 Sch=jid[10]
140

141

142 ##Pmod Header JEADC

143

144 #set_property -dict | PACKAGE PIN A1¢  TOSTANDARD LVDS } lget_ports { XA N{1] }]; #I0 LON Ti DOS AD3N 15 Sch=xa n[1]
145 #set property -dict { PACKAGE PIN Al3  IOSTANDARD LVDS } [get_ports { XA P(1] }]; #I0 LOP T1 DOS AD3P 1§ Sch=xa pl1]
146 #set_property -dict { PACKAGE PIN Al6  IOSTANDARD LVDS } [get_ports { XA N[2] }]; #I0 LN T1 ADION 15 Sch=xa n[2]
147 #set_property -dict | PACKAGE PIN A15  IOSTANDARD LUDS } [get_ports { XA P[2] }]; #I0 L8P Ti_AD10P 15 Sch=xa p[2]
148 #set property -dict { PACKAGE PIN B17  IOSTANDARD LVDS } [get_ports { XA N(3] }]; #I10 L7N T1 ADZN 15 Sch

148 #set_property -dict { PACKAGE PIN B16  IOSTANDARD LVDS } [get_ports { XA P[3] }]; #I0 L7F T1 ADZE 15 Sci

150 #set_property -dict | PACKAGE PIN Al§  TOSTANDARD LVDS } [get_ports { XA N[<] }]; #I0 L10N T1 AD11N 15 Scl

151 #set_property -dict { PACKAGE PIN B1§ I VDS } [get_ports { XA P[] }]; #10 L10P T1_AD11P 15 Sch=xa p[<]
152

153

154 ##VGA Connector

155

156 #set property -dict { PACKAGE PIN A3 IOSTANDARD LVCMOS33 } [get ports { VGA R[0] }]; #I0 L8N T1 AD14N 35 Schevga r[0]
157 #set_property -dict { PACKAGE PIN B¢  IOSTANDARD LVCMOS33 ) [get ports { VEA R[1] }]; #I0 L7H T1 ADéN 35 Sch=vga r(1]
158 #set_property -dict { PACKAGE PIN €5  IOSTANDARD LVCMDS33 ) [get ports { VEA R[2] }]:; #I0 L1N T0 ADSN 35 Sch=vga r(2]
159 #set_property -dict { PACKAGE PIN A¢  TOSTANDARD LVCMOS33 } [get_ports { VGA R[3] }]; #I0 L8P T1 ADI4B 35 Schevga r{3]
160

161 #set_property -dict { PACKAGE PIN C6  IOSTANDARD LVCMOS33 ) [get ports { VEA G[0] }]; #I0 L1P T0 ADSE 35 Sch=vga g[0]
162 #set_property -dict { PACKAGE PIN A5  TOSTANDARD LVCMOS33 } [get ports { VGA G[1] }]: #10 L3N T0 DOS ADSN 35 Sch=vga g(1]
163 #set_property -dict { PACKAGE PIN B6  TOSTANDARD LVCMOS33 } [get ports { VGA G[2] }]; #I0 L2N T0 ADIZN 35 Schevga g[2]
164 #set property -dict { PACKAGE PIN A6  IOSTANDARD LVCMOS33 ) [get ports { VEA G[3] )1 #I0 L3P T0 DOS ADSP 35 Sch=vga gi3]
165

166 #set_property -dict { PACKAGE PIN B7  TOSTANDARD LVCMOS33 } [get ports { VGA B[0] }]; #I0 L2P T0 ADI2B 35 Sch=vga b[0]
167 #set property -dict { PACKAGE PIN C7 IOSTANDARD LVCMOS33 } [get ports { VGA B[1] }]; #I0 L4N T0 35 Sch=vga b[1]

168 #set_property -dict { PACKAGE PIN D7  IOSTANDARD LVCMOS33 ) [get ports { VEA B[2] }]; #I0 LéN T0 VREF 35 Sch=vga b[2]
169 #set_property -dict { PACKAGE PIN D§  IOSTANDARD LVCMOS33 ) [get ports { VGA B[3] J]:; #10 L4P T0 35 Sch=vga b[3]

170

171 #set property -dict { PACKAGE PIN B11  IOSTANDARD LVCMOS33 } [get ports { VGA HS }]; #I0 L¢P T0 15 Sch=vga hs

172 #set_property -dict { PACKAGE PIN B1Z  IOSTANDARD LVCMOS33 J [get ports { VEA V5 }]; #I0 L3N _T0 DOS ADIN 15 Sch=vga vs
173

174

175 #4Micro SD Connector

176

177 #set_property -dict { PACKAGE PIN E2  TOSTANDARD LVCMDS33 } [get ports { SD_RESET }]; #I0 L1¢P T2 SRCC 35 Sch=:

178 #set property -dict { PACKAGE PIN A1 IOSTANDARD LVCMOS33 } [get ports { SD CD }]; #I0 L9N T1 DQS ADIN 35 Sche=sd
178 #set_property -dict { PACKAGE PIN B1  IOSTANDARD LVCMOS33 ) [get ports { SD SCK }]; #I0 L92 T1 DOS ADTP 35 Sch=sd sck
180 #set_property -dict { PACKAGE PIN €1  IOSTANDARD LVCMDS33 ) [get ports { SD_CMD }]; #I10 L16N T2 35 Sch=sd cmd

92



181 #set_property -dict { PACRAGE PIN €2  TOSTANDARD LVCMOS33 | [get _ports { 5D DAT[0] }]; #I0 L16P T2 35 Sch=sd dat[0]

{ } {
182 #set property -dict { TOSTANDARD LVCMOS33 } [get ports { SD DAT[1] }]; #I0 L18N T2 35 Sch=sd dat{l]
183 #s=t_property -dict { . TOSTANDARD LVCMOS33 } [get ports { SD DAT[2] }]; #I0 L18P T2 35 Sch=sd dat(2]
184 #set_property -dict { PACKAGE PIN D2  TOSTANDARD LVCMOS33 ) [get ports { 5D DAT[3] }]: #I0 L14N T2 SRCC 35 Sch=sd dat(3]
185
186
187 ##accelerometer
188
189 #set property -dict { PACKAGE PIN E16  IOSTANDARD LVCMOS32 ) [get ports { ACL MISO }]; #I0 L11P T1 SRCC 16 Sci
190 #set_property -dict { PACKAGE PIN F1¢  IOSTANDARD LVCMOS33 ) [get ports { ACL MOSI }]; #I0 LGN T ADSN 15 Sck
191 #set_property -dict { PACKAGE PIN F15  TOSTANDARD LVCMOS33 ) [get ports { ACL SCIK }]; #10 L14B T2 SRCC 15 Scl
192 #set_property -dict { D15  IOSTANDARD LVCMOS33 } [get ports { ACL CSN }]; #I0 L12P T1 MRCC 15 Sch
193 #s=t property -dict { 2 PIN B13  IOSTANDARD LVCMOS33 | [get ports { ACL INT[1] }]; #I0 LIP T0 ADEP 15 Sch=acl int[1]
194 #set_property -dict { PACKAGE PIN C16  IOSTANDARD LVCMOS33 } [get ports { ACL INT[2] }]; #10 L20B T3 A20 15 Sch=acl int[2]

195

196
197 ##Temperature Sensor

198

199 #set property -dict { PACKAGE PIN C1¢  IOSTANDARD LVCMOS33 ) [get ports { IMP SCL }]; #I0 LN T0 ADON 15 Sch=tmp scl
200 #set_property -dict { PACKAGE PIN C15  IOSTANDARD LVCMOS33 ) [get ports { TMP SDA }]; #I0 L12ZN T1 MRCC 15 Schetmp sda
201 #set_property -dict { PACKAGE PIN D13  IOSTANDARD LVCMOS33 } [get ports { TMP_INT }]: #I0 L6N TO VREF 15 Schetmp int
202 #set property -dict { PACKAGE PIN B14  IOSTANDARD LVCMOS33 ) [get ports { IMP CT }]; #I0 LZN T ADSN 15 Sch=tmp ct
203

204 #fomnidirectional Microphone

205

206 #set provertv -dict { PACKAGE PIN J5  IOSTANDARD LVCMOS33 | fgst ports ¢ M CLK }1: #I0 25 35 Sch=m clk
211 ##PAM Audio Amp.
212
213 #set_property -dict { PACKAGE PIN A11  TOSTANDARD LVCMOS33 } [get ports { AUD PWM }]; #10 LN T0_15 Sche=aud pvm
214 #5et property -dict { PACKAGE PIN D12  IOSTANDARD LVCMOS32 } [get ports ( AUD SD }]; #I0 LéP T¢ 15 Sch=aud sd
215
216
217 ##USB-RS232 Interface
218
219 #set_property -dict { PACKAGE PIN C¢  TOSTANDARD LVCMOS33 ) [get ports { UART TXD IN }]; #I0 L7P Ti ADEP 35 Sch=uart txd in
220 #set property -dict { PACKAGE PIN D¢  TOSTANDARD LVCMOS32 } [get ports { UART RXD OUT }]: #I10 Li1N Ti SRCC 35 Schenart rxd out
{ } {
{ } {

TOSTANDARD LVCMOS33 ) [get ports { UART CTS }]; #I0 L12N T1 MRCC 35 Scheuart cts
TOSTANDARD LVCMOS33 |} [get ports { UART RTS }]; #10 LSN T0 AD13N 35 Scheuart rts

221 #set_property -dict

222 #set_property -dict

223

224 ##USB HID (PS/2)

225

226 #set_property -dict { PACKAGE PIN F¢  TOSTANDARD LVCMOS33 } [get ports { PS2_CLK }]; #I0 L13P T2 MRCC 385 Scheps2 clk

227 #set property -dict { PACKAGE PIN B2  IOSTANDARD LVCMOS33 } [get ports { PS2 DATA }]; #1C L1ON T1 ADISN 35 Sch=psZ2 data

228

228

230 ##SMSC Ethernst PHY

231

232 #set_property -dict {

233 #set_property -dict {

234 #set_property -dict {

235 #set_property -dict {

236 #set_property -dict {
{
{
{
{

PACRAGE PIN €9  TOSTANDARD LVCMOS33
TOSTANDARD LVCMOS33
TOSTANDARD LVCMOS33

[gst_ports
[g=t_ports

{ ETH MDC }]; #10_L11P_T1_SRCC 16 Sch=sth mdc
{ ETH MDTO }]; 410 L14N T2 SRCC 16 Sch=eth mdio
[get ports { ETH RSTN }]; #I0 L10P T1 ADISP 35 Sch=sth rstn
TOSTANDARD LVCMOS33 ) [get ports { ETH CRSDV }]; #10 LeN T VREF 16 Scheeth crsdv
€10  TOSTANDARD LVCMOS33 } [get ports { ETH RXERR }]; #I0_L13N_TZ MRCC 16 Sch=eth rxerr
f
{
f
f

237 #set_property -dict
238 #set_property -dict

}
}
}
}
}
€11  IOSTANDARD LVCMOS33 ) [get ports { ETH RKD[0] }]:; #I0 L13P T2 MRCC 16 Sch=sth rxd[0]
D10  IOSTANDARD LVCMOS33 ) [get ports { ETH RKD[1] }]; #10 L13N T3 VREF 16 Sch=eth rad[1]

}

}

}

}

}

238 #set_property -dict S PIN B9 TOSTANDARD LVCMOS33 | [get_ports { ETH TXEN }]; 410 L1IN Ti_SRCC_16 Sch=sth_txen
240 #set property -dict { PACKAGE PIN A10  IOSTANDARD LVCMOS33 } [get ports { ETH TXD[0] }]: #I0 L14P I2 SRCC 16 Sch=eth txd[0]
241 #set property -dict ¢ PACHAGE PIN A2 IOSTANDARD LVCMOS33 } [get ports { ETH IXD(1] }]; #I10 L12N T1 MRCC 16 Schesth txd[1]
242 #s=t_property -dict { PACKAGE PIN D5 IOSTANDARD LVCMOS33 } [get ports { ETH REFCLK }]; #10 L11P T1 SRCC 35 Sch=sth refclk
243 ¢set_property -dict { PACKAGE PIN B8  IOSTANDARD LUCMOS33 } [get_ports { ETH INTN }]: #I0 L12P T1i MRCC 16 Sch=sth intn
244

245

246 ##Quad SET Flash
247

248 #s=t_property -dict
249 #set_property -dict
250 #set_property -dict
251 #s=t_property -dict
252 ¢set_property -dict

PACKAGE PIN K17  IOSTANDARD LVCMOS33 } [get_ports { QSPI DO[0] }]; #I10 L1P T0 D00 MOSI 14 Sch=gspi_dg[0]
PACKAGE PIN K18  IOSTANDARD LVCMOS33 } [get ports { QSPI DO[1] }]; #I10 LN T0 D01 DIN 14 Sch=qspi_dg[1]
PACKAGE PIN 11¢ IOSTANDARD LVCMOS33 ) [get ports { QSPI DQ[2] }]: #10 LZP T0 DOZ 14 Sch=gspi dg(2]
} {
} {

PACRAGE PIN Mi¢  IOSTANDARD LVCMOS33 ) [get ports { OSPI DO[3] }]; #I0 LZN T0 D03 14 Sch=gspi_dq(3]
PACRAGE PIN 113  TOSTANDARD LVCMOS33 } [get_ports { QSPI CSN }]: #I0 L6P TO FCS B 14 Sch=gspi_csn
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