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ABSTRACT 

 A satellite to be used as a testbed for experiments such as the Configurable Fault 

Tolerant Processor (CFTP) was designed at the Naval Postgraduate School. This 

processor consists of a Field Programmable Gate Array (FPGA), which may be 

reprogrammed by receiving a signal from a source external to the satellite. 

Experimentation of a high-speed pipelined and fault tolerant Fast Fourier Transform 

(FFT) was conducted for use within the CFTP. In this thesis, we detail the development 

and testing of a high-speed pipelined FFT in which fault tolerance can be applied at a 

later opportunity. Xilinx Vivado ISE® was utilized to synthesize behavioral Verilog to 

program an FPGA. Xilinx Vivado ISE’s® simulation suite produced waveforms to 

demonstrate functionality. Launch of CFTP is planned for FY18 aboard NPSat-1. 
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I. INTRODUCTION 

The Naval Postgraduate School (NPS) worked with government sponsors to design 

and build a small satellite that is scheduled to be launched into space in June 2018. Because 

of radiation effects, computer systems that are utilized in space must be able to detect and/

or correct digital bit errors. The Configurable Fault-Tolerant Processor (CFTP) experiment 

is a field-programmable gate array (FPGA) implementation of a digital processor to test 

means for correcting radiation-induced faults in digital processors. 

In 2005, Coudeyras [1] tested and demonstrated that radiation in the space 

environment can cause single-event upsets (SEU) that can have unknown, sometimes 

unrecoverable, effects on electrical systems. A fast Fourier transform (FFT) that can be 

used to implement Parseval’s theorem in a way that corrects single bit errors [2] is designed 

and will be implemented on the CFTP as a space experiment on the Naval Postgraduate 

School Satellite One (NPSAT-1). This implementation will detect and correct SEUs caused 

by radiation in space. 

Specifically, in this thesis, we detail the development and testing of a high speed 

pipelined FFT. Caleb Humberd performed similar research during his time at NPS in 2011 

[2]. His research differed in that he implemented a proprietary Xilinx Integrated Synthesis 

Environment® (ISE) designed FFT that was based on proprietary intellectual property [2]. 

The FFT code developed in this thesis is open source, easily modified, and documented, 

which has important pedagogical utility. Sample data was processed through the FFT code 

to verify functionality. 

A. OBJECTIVES 

In thesis, we expand upon the engineering of the fault-tolerant FFT design, 

implementation, and execution. The FFT can be utilized to compress radio signals to reduce 

buffer memory and downlink bandwidth. Use of Parseval’s theorem enables the FFT to 

perform error detection and correction as shown in Figure 1, increasing the reliability of 

the signal.  
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A sequence x[𝑛] flows into identical and parallel FFT A and FFT B, and the power 

is calculated in the frequency-domain. In addition, the sequence x[𝑛] has the power 

calculated from the time-domain. Parseval’s theorem states that the FFT’s frequency-

domain power must equal the time-domain power. The output signal defaults to FFT A 

unless the FFT A power differs from the reference time-domain power by a threshold 

deviation. If the threshold deviation is detected, FFT B becomes the output signal. Detailed 

within Table 1 are the output options that may result based on the results of implementing 

Parseval’s theorem. This will eventually be an experiment on the memory of the CFTP-1 

at launch. 

Figure 1.  Implementation of Parseval’s Theorem with 

Two Duplicate FFTs. Source: [2]. 
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Table 1.   State Diagram for Parseval’s Theorem 

Implemented with Two Redundant FFTs as Pictured in Figure 1. 

ref FFT (A) FFT (B) (a) (b) |ref – a| |ref – b| Output 

X[k] 

Correct Correct Correct Correct Correct Zero Zero FFT (A) 

Correct Correct Incorrect Correct Incorrect Zero Not Zero FFT (A) 

Correct Incorrect Correct Incorrect Correct Not Zero Zero FFT (B) 

Correct Incorrect Incorrect Incorrect Incorrect Not Zero Not Zero FFT (A) 

Incorrect Correct Correct Correct Correct Not Zero Not Zero FFT (A) 

Incorrect Correct Incorrect Correct Incorrect Not Zero Not Zero FFT (A) 

Incorrect Incorrect Correct Incorrect Correct Not Zero Not Zero FFT (B) 

Incorrect Incorrect Incorrect Incorrect Incorrect Not Zero Not Zero FFT (A) 

 

In this thesis, a behavioral Verilog definition of a pipeline eight-point FFT was 

developed, simulated, and implemented in a Xilinx Kintex-7 FPGA. This FFT is the basic 

element for a test of the Parseval’s theorem-protected SEU-tolerant FFT. 

B. DEFINING THE PROBLEM 

The discrete Fourier transform (DFT) is an integral component in digital signal 

processing (DSP). Understanding signals is important due to their prevalence everywhere. 

Social communications between people, physical communications between people 

and machines, or machine to machine communications are done through signals. Signals 

present themselves in nature as continuous-time analog quantities. Once digitized and 

converted by sampling to discrete time they become sequences. A sequence is “a 

continuous or connected series such as a set of elements ordered so that they can be labeled 

with positive integers” [3]. Discrete-time samples are roughly comparable to digital signals 

and are treated the same in our case. The system produces outputs at the same rate at which 

the continuous signal is sampled, producing a real-time system. The Fourier transform of 

the sampled signal gives the frequency-domain representation of the time-domain 

sequence. The DFT is a representation of the Fourier transform that is bounded in time and 

is defined by the Fourier-transform-pair [4]  
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 is known as a twiddle factor, kX is the calculated time to 

frequency, nx  is the calculate frequency to time, n is the current sample, and k is a 

constant. 

The DFT calculation requires 𝑁2 calculations where N is the sample size. The DFT 

is one of the most important equations for DSP. It is useful in an orthogonal frequency-

division multiplexer (OFDM) demodulators and modulators. Long-Term Evolution (LTE) 

signal processing, WIFI, and Worldwide Interoperability for Microwave Access (WiMax) 

signals are examples of signals that the DFT is utilized to analyze. Efficient algorithms 

have been developed to calculate the DFT. The fast Fourier transform is the signal 

processing algorithm that is used to reproduce to perform signal processing in this research. 

The FFT requires N log2𝑁 multiply-add operations [4]. To demonstrate the efficiency of 

the FFT over the DFT, Table 2 is provided. 

Table 2.   Comparison of DFT Calculation Size to FFT Calculation Size to 

Demonstrate Efficiency of Algorithm 

 𝑁 1000 106 109 1012 

DFT 

Calculation 

𝑁2 106 1012 1018 1024 

FFT 

Calculation 

Nlog2𝑁 104 20

× 106 

30 × 109 40 × 1012 

 

The FFT is loaded into an FPGA as part of the Configurable Fault Tolerant 

Processor (CFTP) for operation within the space environment. Since electronics in space 
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must be able to produce the correct calculations in spite of the risk of SEUs, protection of 

the FFT is accomplished by implementing Parseval’s theorem.  

C. ORGANIZATION 

Background on Configurable Fault Tolerant Processor research performed at NPS 

is covered in Chapter II. First, an introduction of Academic Advisors that have facilitated 

the research is given, following with a review of literature. In Chapter III, we discuss the 

implementation of the FFT. In addition, the design methodology of the FFT is also included 

in Chapter III. In Chapter IV, we discuss the test vectors that were utilized to confirm 

proper operation of the FFT. In Chapter V, we summarize and draw conclusions from the 

thesis research as well as provide recommendations for future work. 

D. ADDITIONAL DOCUMENTATION 

The Verilog source code for the FFT is included in appendixes. 
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II. BACKGROUND AND PRIOR WORK 

The United States Navy (USN), United States Air Force (USAF), and Department 

of Defense (DoD) agencies have been designing, purchasing, manufacturing, launching, 

and operating space systems since 1957. These systems are designed and operated to 

support the warfighter and strategic decision makers. The acquisition life cycle time and 

cost for a constellation of proprietary and military specification satellites is greater than 

DoD leadership likes. In addition, space and the aerospace industry have been 

commercialized enough to allow the U.S. government to decrease risk and cost by 

purchasing entire systems or constructing custom systems utilizing commercial-off-the-

shelf (COTS) components. The utilization of an FPGA to perform signal processing is 

becoming routine. The use of a reconfigurable processor, an antenna, a demodulator, an 

analog-to-digital convertor, and a modulator can be utilized as one system named a 

software-defined radio (SDR). In short, a SDR is a reconfigurable signal processor.  

The reprogrammable nature of an SDR makes it convenient for utilization in space. 

Satellite operators and engineers now have the ability to add or change capability by 

uploading software while a satellite is on orbit as long as the receiving antenna, analog-to-

digital converter, FPGA, and downlink antenna are installed prior to launch. The control 

module also needs a connection to load the FPGA. 

Space is a challenging environment for electronics to operate. The space 

environment can cause digital bits to flip, thus being read in error. Coudeyras confirmed 

this through research on FPGAs at Crooker Research Laboratory [1]. Prior research has 

been performed to allow an FPGA to detect errors and/or correct errors. Triple modular 

redundancy (TMR) and reduced precision redundancy (RPR) are two techniques that 

accomplish error correction. This is discussed in the literature review. 

A. CFTP HISTORY 

1. Midshipmen Space Technology Applications Research-1 

The U.S. Naval Academy designed Midshipmen Space Technology Application 

Research-1 (MidSTAR) to incorporate a test bed for fault-tolerant techniques applied to 



 

 8 

FPGAs developed by NPS. This consisted of two FPGAs, which were called the 

Configurable Fault-Tolerant Processor (CFTP). In September 2006, the United States Air 

Force launched CFTP into Low Earth Orbit (LEO) onboard the host Space Test Program 

(STP-1) satellite. CFTP detected seven single-event upsets, mainly while flying through 

the south-Atlantic Anomaly, during its 492 km, 46 degree inclination orbit [1]. The location 

of CFTP is displayed in Figure 2. 

 

Figure 2.  External View of MidStar-1 Showing the Location of CFTP-1. 

Adapted from [6]. 

2. Naval Postgraduate School Satellite-1 

NPS’s effort on CFTP-7, which is currently in production, makes MidSTAR CFTP-

1 obsolete. CFTP-7 is designed to be fault tolerant due to the use of TMR techniques. Its 

increased capability includes memory and processor improvements. The utilization of 

partial reconfigurations also increases capability. Four experiments will be preloaded into 

CFTP-7 at launch. This research project details one of the four experiments. Naval 

Postgraduate School Satellite-1 (NPSat-1) is scheduled to fly at 560 km at 35.4 degrees 

inclination and is scheduled to launch in FY18. An expanded view of the satellite is 

displayed in Figure 3. 
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Figure 3.  Expanded View of NPSat-1 That Shows Location of CFTP-7. 

Adapted from [7]. 

B. LITERATURE REVIEW 

1. Academic Advisors 

Dr. Alan A. Ross and Dr. Herschel H. Loomis have been the primary advisors for 

the CFTP project, completing a combined total of twenty theses and three dissertations. 

Dr. Ross (Lt. Col., USAF, retired) earned his PhD from the University of California, Davis, 
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in 1978 and recently retired as a professor in computer engineering. Dr. Loomis earned his 

PhD from Massachusetts Institute of Technology (MIT) in 1963. Dr. James H. Newman, 

chair, Space Systems Academic Group (SSAG), has participated as an advisor recently on 

CFTP projects. He earned his PhD from Rice University in 1984 and served as an astronaut 

from 1990–2008. 

2. Research History 

In June 2003, Dean Ebert researched the design trade offs for CFTP-1’s initial 

concepts. In 2005, James Coudeyras completed his research in partnership with the Crocker 

Nuclear Laboratory in Davis, California in which he executes his radiation test plan 

utilizing their proton radiation beam [1]. He proved that space radiation has an impact on 

electronics, and these errors are known as SEUs. Also in December 2005, Peter Majewicz 

completed his research of a fault-tolerance technique called Triple Modular Redundancy. 

TMR instantiates three modules in parallel. They utilize a majority voter to correct errors 

in, at most, one component [8]. In December 2006, Gerald Caldwell completed his research 

on the design challenges present while utilizing two FPGAs [9]. In September 2008, David 

Dwiggins, Jr., redesigned the X1 control FPGA to be fault tolerant and added a 

microcontroller to manage internal components [10].  

In December 2008, Margaret Sullivan completed her research implementing and 

analyzing a new method of fault tolerance called Reduced Precision Redundancy (RPR) 

[11]. She concluded that “RPR provided very good recovery from errors caused by SEU in 

spacecraft systems” [11]. To be clear, RPR protects a satellite’s arithmetic module from 

SEU just like TMR. In addition, RPR has a lower power cost than TMR. RPR was 

developed by PhD student Josh Snodgrass in September 2006. He performed research on 

fault tolerance by means of reducing the precision of the redundant copies of a precise 

number used for error detection and correction. He named this method RPR. RPR applies 

only to arithmetic operations, and he proved this technique as viable using live proton 

radiation testing [12]. 

In December 2009, Jeremy Livingston completed his design to compress a 

wideband radio signal into a narrowband signal [13]. In December 2011, Caleb Humberd 
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completed his research on a FFT based compression algorithm and discovered a way to use 

Parseval’s theorem to correct single-component errors in an FFT. In March 2016, Andrew 

Jackson completed his design of a TMR embedded MIPS processor architecture with a 

majority-output voter to combat single-event upsets for NPSat-1 on orbit [14].  

The most important prior works directly related to this thesis are a thesis written by 

Michael Zimmer and a dissertation by Raymond Bernstein. Zimmer designed a radix-4 

FFT that operated at 45 MHz, had a floating point multiplier and adder, and consisted of 

20-bit words [15]. Bernstein utilized a FFT to design a vector-processing computer. He 

discovered that the structure of the memory system for a vector-based computer favored 

the butterfly machine (BFM) operation [3]. The BFM is a visible representation of the FFT 

computation and is described in detail in Chapter III. 

The FFT described in this thesis is a product of 20 years of space and computer 

research. As we continue to operate complex electronics in space, the understanding of the 

impact of space radiation, how to mitigate those impacts in a cost effective manner, and to 

continue to improve every aspect of a computer system means research like this will 

continue to build on itself. In Chapter III, the FFT development and design choices are 

presented and matured. 
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III. DESIGN AND IMPLEMENTATION 

Chapter III is organized into three major sections. Specifications are given in 

Section A for the end system. The FFT is described from a mathematical perspective in 

Section B. The architecture that must be implemented to realize the specified FFT is 

detailed in Section C. This algorithm was coded in the Verilog design language utilizing 

the Xilinx Vivado® design suite. It builds on known block diagrams and structures to 

realize the code. 

A. SYSTEM SPECIFICATIONS 

The FFT design consists of the 18-bit signed two’s complement number system, a 

fixed point rational number representation with the binary point between the 16th and 17th 

bits. In addition, two 18-bit words representing the real and imagery part of a complex 

number system are utilized. Sample size N is equal to 8. Sub-sections are organized to 

elaborate on these details.  

1. Two’s Complement 

Two’s complement is a popular number system because it allows for the 

representation of negative numbers within a binary adder which may perform addition or 

subtraction. For an N bit word, the range of values can be represented as 12N  to 

12 1.N  Commonly, the most significant bit (MSB) is utilized to determine if the number 

is positive or negative. A “0” in the MSB represents a positive number, and a “1” in the 

MSB represents a negative number. The value of an N bit word when utilizing two’s 

complement can be determined as [15] 

 

 
2

1

2' 1

0

(2 ) 2
N

N i

s N i

i

V b b








  
. (2) 

A simpler way to compute the two’s complement of a number is to invert all bits in 

a binary number and then add 1. This converts a positive number to a negative number 

representation. An example of how this operation works is shown in Figure 4. 
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Figure 4.  Demonstration of Two’s Complement Operation 

2. Fixed-Point 

When utilizing a fixed-point rational number representation, the binary point is 

established by the user to satisfy a design goal. Unlike the integer representation where, 

the binary point is to the right of the least-significant bit (LSB) [15], the binary point is 

located anywhere to the left of the LSB. Within this design, the binary point is after bit 0 

as shown in Figure 5. This bounds values to be less than two and equal to or greater than 

negative two. 

 

Figure 5.  Fixed-Point Signed Binary Representation. 

Binary Point Place After Bit 0 

The formula to determine a value when a fixed point two’s complement 

representation is used is given by 

 

  
2

1 1

int 0

1

2 2 ,
N

N N i

FixedPo i

i

V b b


  



  
 {0,1}ib  , (3) 

where ib  represents the value of the i numbered bit, 0b represents the value of the 0th bit,

N represents the total number of bits. Examples of equivalent radixes are shown in Table 

3. 
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Table 3.   18-Bit Fixed-Point Binary Number with a 16-bit Radix Point Examples 

Binary Hex Integer Fixed-Point 

Binary 

Actual Exponential 

011111111111111111 1FFFF 131071 1.99998474121 <2 - 
010000000000000000 10000 65536 1.00000000000 1 21 
001000000000000000 8000 32768 0.50000000000 1/2 2−1 
000100000000000000 4000 16384 0.25000000000 1/4 2−2 
000010000000000000 2000 8192 0.12500000000 1/8 2−3 
000001000000000000 1000 4096 0.06250000000 1/16 2−4 
000000100000000000 0800 2048 0.03125000000 1/32 2−5 
000000010000000000 0400 1024 0.01562500000 1/64 2−6 
000000001000000000 0200 512 0.00781250000 1/128 2−7 
000000000100000000 0100 256 0.00390625000 1/256 2−8 
000000000010000000 0080 128 0.00195312000 1/512 2−9 
000000000001000000 0040 64 0.00097656000 1/1024 2−10 
000000000000100000 0020 32 0.00048828125 1/2048 2−11 
000000000000010000 0010 16 0.00024414062 1/4096 2−12 
000000000000001000 0008 8 0.00012207031 1/8192 2−13 
000000000000000100 0004 4 0.00006103515 1/16384 2−14 
000000000000000010 0002 2 0.00003051757 1/32768 2−15 
000000000000000001  0001 1 0.00001525878 1/65536 2−16 
000101010101010110 2AAB 10923 0.33334351 .33333 - 

001011010011111110 5A7F 23167 .70700073 √2 2⁄  - 

000000000000010100 000A 10 .00030518 π 2−14

+ 2−16 

 

3. Complex Numbers 

In implementing the arithmetic to compute the discrete Fourier transform, there is 

need to represent complex numbers. When transposing from the time domain to the 

frequency domain, 
kn

NW  introduces an imaginary component. A complex number is a jb  

where a is the real component of a complex number, jb is the imaginary component of a 

complex number, and 1 j  . In performing complex multiplication, two complex 

numbers can be expanded to produce 

 
      a jb c jd ac bd ad bc     

.  (4) 
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B. FAST FOURIER TRANSFORM ALGORITHMS 

DSP progressed greatly when Cooley and Tukey discovered the FFT algorithm in 

1965 [4]. The simplified BFM computation demonstrated in Figure 6 is a visual 

representation of the smallest element of a decomposed FFT calculation [4] and is in fact 

the two-point DFT. This element is used to construct the constant geometry decimation-in-

time algorithm this research implements [4]. The twiddle factor, , seen in equation 

(1), is within this diagram. Simply, the twiddle factor is a predictable multiplier needed to 

correctly calculate the FFT that is factor of sample size, time, and BFM stage. The twiddle 

can be expanded to 
 2j N kn

e


 [4]. In addition, odd samples are multiplied by the 

twiddle factor. 

 

Figure 6.  Flow Graph of Simplified Butterfly Machine Computation 

Requiring Only One Complex Multiplication. Source: [4]. 

1. Bit Reversal 

The first step to utilizing the FFT within a DSP algorithm is to perform a bit reversal 

on the sample data. Bit reversal is a misnomer. Nothing is being done to the internal bits 

of the data; however, the data is being stored within alternating working buffers with the 

index transformed by reversing its bits as demonstrated in Figure 7.  

kn

NW

kn

NW
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Figure 7.  Bit Reversed Demonstration 

2. The 8-Point DFT 

Once the equation for the FFT is decomposed into odd and even sets, Figure 6 can 

be utilized to create Figure 8 to yield an algorithm for an 8-point DFT, which shows the 

bit-reversal applied to the input sequence. This algorithm is detailed in depth within 

Discrete-Time Signal Processing by Oppenheim and Schafer [4]. To accommodate the 

needs of satellite-based DSP, a high speed pipelined FFT is desired. Constructing an FFT 

for pipelined operation is demonstrated in Figure 8. Data is loaded sequentially into the 

butterfly machine (BFM) computation alternating between xm(p) and xm(q).  

 

Figure 8.  Flow Graph of 8-point DFT Using the Butterfly Machine Computation. 

Source: [4]. 
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The algorithm being implemented is detailed in Figure 9. The constant geometry 

FFT is organized to take advantage of repeating patterns from stage to stage within the FFT 

structure. These patterns ease construction of a pipelined algorithm.  

 

Figure 9.  Rearrangement of Figure 1 to Allow Each Stage to Have a 

Constant Geometry Permitting Sequential Data Accessing and Storage. 

Source: [4] 

C. HIGH-SPEED PIPELINED FFT ARCHITECTURE 

A high speed pipelined FFT is demonstrated in Figure 10. Specifically, the image 

depicts a digit-reversed block, alternating memory buffers, and the BFM computations. 

There are three memory buffer/BFM pairs within a N=8 FFT. 

 

Figure 10.  Basic Pipelined FFT Structure. N = 2l, Where N 

Is the FFT Word Size. Adapted from [15]. 
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Although similar to Figure 10, Figure 11 has added timing details to ensure that 

 x i  is placed into the correct slot of the output BFM ping-pong buffer. While the first 

buffer is filled according to the bit reversed ordering discussed in this chapter, successive 

buffers are filled to allow for efficient pipelined operation. They are filled according to 

2 2 2 2 2
0, ,1, 1,2, 2,3, 3,4, 1, , 1N N N N Nk N       [15]. For N = 8, k = 0, 4, 1, 5, 2, 6, 3, 7. 

This order allows x(i) to be fully utilized in both calculations in which it is involved before 

moving on to x(i+1). 

 

Figure 11.  Detailed High Speed Pipelined FFT Structure. 

Adapted from [15]. 

1. Radix-2 Pipeline Butterfly Machine Architecture 

A BFM that can be coded utilizing smaller blocks is displayed in Figure 12. It 

depicts two memory delays one clock-cycle long, two 2-input multiplexers, one memory 

delay dm + 1 cycles long, a complex multiplier, and a complex adder / subtracter. 

Additionally, timing details and twiddle factors are calculated within the image. This entire 

circuit is made complex by utilizing separate registers for the real and imaginary portion 

of the complex number. 
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Figure 12.  Pipeline Radix-2 Butterfly Machine (BFM) 

Architecture, Level q. Adapted from [15]. 

2. 2-Stage Pipelined Complex Multiplier Architecture 

A one-stage pipeline real multiplier and a one-stage pipeline real adder is utilized 

to implement a two-stage pipeline complex multiplier. This is depicted in Figure 13. The 

multiplication must be performed on unsigned positive numbers. A module is inserted to 

perform a two’s complement computation on negative numbers and strip off the sign bit, 

reducing numbers within the multiplier to 17 bits. After multiplication, there is an 

expansion to 34 bits, and a truncation is required to strip off the 17 least significant bits 

(LSBs). The truncated output has the sign added back and is two’s complemented into a 

negative number if the exclusive-or of the signs of the multiplicand represent a negative 

product. An addition or subtraction is required to complete the complex product formation 

as a signed two’s complement representation of the real and imaginary parts of the product. 
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Figure 13.  Two-Stage Complex Multiplier 

Timing is important throughout the development of this design. Accessing a 

memory element, in this case a register, requires one clock cycle. This results in a one clock 

cycle delay in which the data is available for use. Testing must be done to ensure that 

multiplication and addition occur among the proper data elements. The delay of the 

multiplier dm is equal to two clock cycles. The delay of the adder da is equal to one clock 

cycle. Timing is analyzed with simulation throughout the testing of the algorithm. This 

gives a visual depiction of where specific data elements align with the clock-cycle. 

This design was instantiated in a Xilinx Artix-7 FPGA with Verilog hardware 

description language (HDL). The implementation and testing are discussed in Chapter IV.   
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IV. TESTING AND EVALUATION 

Three major concepts are presented in Chapter IV. Planning and managing the 

testing of the FFT is in Section A. Here we find visual testing plans and major interfaces 

within the FFT that were tested. Sample inputs that were tested are listed in Section B. 

They showed up in hexadecimal, binary, and signed decimal throughout testing. Finally, 

the testing that was performed is demonstrated and displayed. The code that produced the 

test is described in detail, and simulations that were produced are analyzed. Verification of 

the code confirms that what was designed in Chapter III was produced and is usable for the 

intended space experiment purpose. 

A. TESTING PLAN 

This section is divided into three sub-sections. The test plan for the FFT is detailed 

in Sub-section 1. Here the FFT was considered as an entire system. Interfaces between 

code blocks, henceforth known as “modules,” were labeled to allow for correlation within 

simulations. The BFM module within the FFT is detailed in Sub-section 2. Being a smaller 

portion of the larger system FFT, it was labeled a component due to it consisting of multiple 

modules itself. This component performs multiplication on two signed binary numbers. 

The timing associated with this clocked systems is described and analyzed within Sub-

section 3. Timing analysis ensures that data arrives for processing at the right time and 

location.  

1. System Test Plan 

A systematic approach to software testing was important due to the complex nature 

of the project. A system level test plan can be seen in Figure 14. Test points for simulation 

inputs and outputs are marked by numbers. Boxes represent the aforementioned 

components of the FFT. Test point S0 yields the initial vector that was sent to get digit 

reversed and stored. Test point S2 gives the output. Test point S3 is the outcome of the first 

stage BFM computation. Test point S4 is located at the end of stage 1. 
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Figure 14.  System Level Test Plan for 8N   FFT 

2. Component Test Plan 

The component-level test plan for the BFM can be seen in Figure 15. The numbers 

on the BFM diagram represent input/output points that were examined to verify results and 

timing against expected values. Point C0 allows the observation of inputs into the BFM. 

From C1, we get the result of the data after a one clock-cycle delay. Point C2 allows us to 

observe the result of a 2-to-1 multiplexer (mux) that was selected on even time, and C3 

allows us to observe the results of a 2-to-1 mux selected on odd time. Points C4 and C6 

allow observation of the result of a shift right by one operation which results in a scale-by-

half operation necessary to prevent the overflow in the BFM output adder / subtracter. This 

effectively divides the fixed-point binary number by two. Point C5 allows observation of 

the result of 1md  , where md  is the delay of the multiplier and is equal to two. Point C7 

allows observational of the result of the multiplication between Point C4 and the twiddle 

factor discussed earlier. Point C8 allows observation of the result of addition or subtraction 

of Points C5 and C7. 
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The operand was chosen by a selector set by the time. Subtraction occurred on even 

time if md  was even. The results were sent to the first, second, and third ping pong buffer 

respective to the BFM stage as shown in Figure 14, S3, S5, and S7, respectively. Those 

ping pong buffers satisfy the constant-geometry reordering seen in Figure 9. 

 

Figure 15.  Component Level Test Plan for 8N   BFM. 

Adapted from [15]. 

3. Component Timing 

The FPGA is connected to an internal clock running at 100 MHz. Variable 

CLK100MHZ was used to reflect this within the FFT code and waveforms. This physical 

clock was reduced to a 50 MHz clock and seen as clk_50 within the FFT code and 

waveforms. This 50 MHz clock drives multiple code snippets. Registers are triggered to 

load on the rising edge of the clock. This is where the clock transitions from a binary 0 to 

binary 1. 

The processor operates in a pipelined fashion as demonstrated in Figure 16 and 17. 

This means that multiple processing elements occur in parallel. The first eight samples 

processed through the BFM are displayed in Figure 16 with a generic  .qX t  
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Figure 16.  Butterfly Machine Timing Diagram Part A. 

Adapted from [15]. 

The next eight samples that are processed through the BFM are displayed in Figure 

17. Within  qX t , t  is less than 8 and greater than or equal to 0. The  qW t  listed here 

was for test purposes only and is not a real value. Each successive N-word block was 

processed by the BFM and generated corresponding N-frequency components. 

  

Figure 17.  Butterfly Timing Machine Diagram Part B. 

Adapted from [15]. 
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Figures 16 and 17 were integral to the analysis of the FFT timing. Timing was 

synchronized by staggering the initialization of each BFM to accommodate the pipelined 

delays in the data input to the FFT. 

B. TEST INPUTS 

To verify outputs, there needs to be a known input for which expected outputs can 

be calculated. Starting with fixed point number 1.0, 162  was subtracted from each iteration 

to generate identifiable inputs. During some of the simulations, we see a hexadecimal 

representation. Figure 18 shows displays in binary within the simulation environment. 

 

Figure 18.  Injected  qX t  Inputs in Binary 

Injected inputs have been listed in Table 4 in three possible formats to enhance 

readability. The stream continues without repeating; however, only the first sixteen have 

been listed. 
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Table 4.    qX t  Inputs Injected into FFT 

 qX t  Binary Fixed-Point Binary Hexadecimal 

 0qX  010000000000000000 1.0 10000 

 1qX  001111111111111111 .99998474 0ffff 

 2qX  001111111111111110 .99996948 0fffe 

 3qX  001111111111111101 .9999542236 0fffd 

 4qX  001111111111111100 .9999389648 0fffc 

 5qX  001111111111111011 .9999237060 0fffb 

 6qX  001111111111111010 .999908447 0fffa 

 7qX  001111111111111001 .9998931 0fff9 

 8qX  001111111111111000 .999877929 0fff8 

 9qX  001111111111110111 .9998626708 0fff7 

 qX a  001111111111110110 .999847412 0fff6 

 qX b  001111111111110101 .99983215 0fff5 

 qX c  001111111111110100 .999816894 0fff4 

 qX d  001111111111110011 .9998016357 0fff3 

 qX e  001111111111110010 .99978637 0fff2 

 qX f  001111111111110001 .99978484 0fff1 

 

C. FFT SYSTEM AND COMPONENT TESTING 

In this section, we detail each portion of the FFT code in snippets. The FFT is coded 

in behavioral Verilog. Vivado ISE’s® simulation tool was utilized to provide the 

simulation waveforms that demonstrated the functionality of the major components of 

Figures 11 and 12. Xilinx Vivado ISE® synthesized the behavioral Verilog into a hardware 

definition that detailed the interconnections of gates and registers. The Xilinx Vivado 

synthesizer produced a realization that was instantiated in an FPGA to perform successive 

8-point FFTs in a pipelined fashion on 18-bit signal samples. Timing challenges as a result 



 

 29 

of the pipelined nature of the design were present; however, timing diagrams were utilized 

within the testing process to ensure synchronization of data and verification of results. 

1. Bit Reversed Ping-Pong Buffer 

The Bit-Reversed Ping-Pong Buffer provides internal storage for the data to be 

delivered in bit-reversed order to the BFM and allows data to flow in “blocks” based on 

the FFT’s designed N. This Bit-Reversed Ping-Pong Buffer receives inputs in a sequential 

fashion, stores in a shuffled order, and outputs in a sequential order after 8N   clock-

cycles. A switch then occurs. The other half of the buffer receives inputs in a sequential 

fashion, while the previously filled buffer outputs in sequential order for 8N   clock-

cycles. This cycle repeats indefinitely. 

The variables that are needed to code the Bit-Reversed Ping-Pong buffer are 

presented in Figure 19. XqPing_Real, XqPing_Imag, XqPong_Real, and XqPong_Imag are 

two-dimensional arrays consisting of eight-eighteen bit words with the MSB in the left-

most digit. Variables transpose and indexbr are both three bits wide, and the MSB is the 

left-most digit. Variables declared as reg, register, are not loaded with data until after a 

low-to-high clock-cycle. Variables declared as wire are placed immediately, but there is 

no storage mechanism for data. 

 

Figure 19.  Bit-Reversed Ping-Pong Buffer Variables and Arrays 

To implement the bit reversal, an indexed value was created, shown as variable 

indexbr in Figure 20. Variable indexbr was used to transpose {transpose[2], transpose[1], 

transpose[0]} into {transpose[0], transpose[1], transpose[2]}. Indexbr was then used to 

address the arrays XqPing_Real, XqPing_Imag, XqPong_Real, and XqPong_Imag to direct 

the input stream  qX t  into the correct memory element. Bit counter[3], which is the MSB 
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of a four-bit counter, switched between even and odd every eight clock-cycles and 

triggered the if/else statement to load the Bit-Reversed Ping-Buffer or the Bit-Reversed 

Pong-Buffer. Variables ping_loading or pong_loading are set to high to indicate the active 

storage buffer on the simulations. A code snippet of the Bit-Reversed Ping-Pong Buffer 

loading into memory is shown in Figure 20. 

 

Figure 20.  Bit-Reversed Ping-Pong Buffer Loading, Code Snippet 

The Bit-Reversed Ping-Pong buffer outputs the reordered  qX t  in variables 

XqOut_PingPongw_Real and XqOut_PingPongw_Imag. A conditional statement triggered 

on the MSB of the four-bit counter controls which buffer loads. Synthesized designs 

connect wires from the data of the Bit-Reversed Ping buffer or Bit-Reversed Pong buffer 

to the output variables depending on the result of the conditional statement. A low signal 

connects the Bit-Reversed Ping buffer, and a high signal connects the Bit-Reversed Pong 

buffer. The code snippet in Figure 21 displays the Bit-Reversed Ping-Pong buffer output 

process. 
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Figure 21.  Bit-Reversed Ping-Pong Buffer Output  qX t  

The bit-reversed index, seen as indexbr within Figure 22, displays the bit reversal. 

Variable indexbr is a reversal of the transpose bits. The display is listed in binary; however, 

a conversion to decimal reveals the relationship discussed in Figure 7. 

 

Figure 22.  Variable Indexbr transposed from Counter[2:0] 

Next, simulation waveforms were used to demonstrate the proper function of the 

code. Clock-cycles, buffer-memory, and data values can be observed producing the 

expected results in Figure 23. In this image Pong was loaded in the sequential order 

indicated by the binary high bit in the pong_loading register. In addition, Figure 23 

contains the successful Bit-Reversed Pong-Buffer instantiation and displays the  qX t

{10000, 0ffff, 0fffe, 0fffd, 0fffc, 0fffb, 0fffa, 0fff9} being stored into the two-dimensional 

memory element as {10000, 0fffc, 0fffe, 0fffa, 0ffff, 0fffb, 0fffd}. This is the expected bit 

reversed order. Eight clock-cycles after  qX t  was received as an input into the Bit-

Reversed Ping-Pong Buffer, the input sequence outputs in the bit-reversed order. 
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Figure 23.  Pong Buffer Loading in Bit Reversed Order, Ping Empty 

The Bit-Reversed Pong-Buffer load required the eight clock-cycles shown in Figure 

24 to get the first  qX t  block of data to the BFM. This startup-delay only occurs once. It 

is required for every BFM stage. 

 

Figure 24.  Startup Delay Between Bit-Reversed Ping-Pong Buffer 

Output and BFM 

The Bit-Reversed Ping-Pong buffer switched loads as shown in Figure 25. The Bit-

Reversed Pong buffer was filled as shown in Figure 23 and simultaneously outputted data 

in a sequential order, while Bit-Reversed Ping buffer was filled in bit reversed order. Input 

data, known as  qX t , holds the values of {0fff8, 0fff7, 0fff6, 0fff5, 0fff4, 0fff3, 0fff2, 

0fff1} and is stored in the two-dimensional Bit-Reversed Ping buffer as {0fff8, 0fff4, 0fff6, 

0fff2, 0fff7, 0fff3, 0fff5, 0fff1}. These values represent the second block of data outputted 

to the first BFM. 
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Figure 25.  Ping-Buffer Loading in Bit Reversed Order, Pong Full 

2. Radix-2 Pipeline Butterfly Machine Sub-Component Testing 

The BFM is the primary processing element of the FFT. BFMs operate on blocks 

of data and are designed specifically for the N-block they are processing. This BFM is 

operating on 8N   clock-cycles. Variables for the BFM were declared as wires with 

exception of the registers needed to introduce required delays as shown in Figure 26. These 

delays are needed for data synchronization within the BFM. All needed variables are 18 

bits wide with the MSB to the left. Variables are paired to form the real and imaginary 

portions of a complex number.  

 

Figure 26.  Butterfly Machine Variable Declaration Code Snippet 

Two multiplexers are needed. One multiplexer, visibly the “top” multiplexer within 

the architecture diagram (Figure 15), selects on  qX t  or  1qX t  based on even time 



 

 34 

while the “bottom” multiplexer selects  qX t  or  1qX t  based on odd time. This results 

in data falling on even time slots passing through the “top” multiplexer and data falling on 

odd time slots passing through the “bottom” multiplexer. Within the code, a single module 

is instantiated for both “top and “bottom” multiplexer; however, the input for the clk are 

opposed between multiplexers. Specifically, when the “top” multiplexer receives a high 

clk signal, the “bottom” multiplexer receives a low clk signal. Both continue to cycle 

between low and high clk signals. The code snippet for both multiplexers are shown in 

Figure 27. 

 

Figure 27.  “Top” and “Bottom” Multiplexer Code Snippet 

The delay producing  1qX t   into both multiplexers is coded by sending the 

signal into a register. By loading after a clock-cycle, we introduce a delay into the data. 

This is an expected, and required, delay and is shown coded in Figure 28. 

 

Figure 28.  Delay into Both Multiplexer Code Snippet 
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a. Top Multiplexer, Half Scale, and 3-Cycle-Delay Sub-Component Test 

The internals of the multiplexer is a conditional statement selecting on even and 

odd time. If time is even, selection is on  1qX t  . If time is odd, selection is on  qX t . 

Variables are 18 bits with the MSB to the left. The code snippet for the internals of the 

multiplexer is shown in Figure 29. 

 

Figure 29.  Internal Multiplexer Code Snippet 

An arithmetic shift right by one moves the binary point one bit to the left. When 

performed on the data, outputs of the “top” multiplexer” are reduced by a factor of-one-

half. The code in Figure 30 was utilized for this shift operation. 

 

Figure 30.  Top Multiplexer Half Scale 

Half-scaled data from the “top” multiplexer was then delayed by three clock-cycles. 

Implementation of this was performed utilizing registers. Each register store operation 

introduces a one clock-cycle delay. The code can be seen in Figure 31. 
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Figure 31.  Top Multiplexer Three-Clock-Cycle Delay 

BFM test point C0 indicates the input of the BFM. The delay into the multiplexer 

can be read at test point C1. Test point C2 presents the output of the “top” multiplexer, C4 

shows the data after the half-scale operation, and C5 displays the output to the top 

multiplexer after a three clock-cycle delay. Half-scaling data results in a loss of 

significance while truncating. The multiplexer and the delayed outputs are shown in 

Figures 32, 33, and 34. Functionally, they are the same waveform; however, the radix has 

been changed to support readability from different perspectives. Hexadecimal, fixed-point 

binary, and binary views are present. The delay being observed was needed to synchronize 

data with the bottom multiplexer due to the multiplier delay. Registers store data internal 

to the multiplier operation resulting in a two clock-cycle delay. Test point C5 demonstrates 

the delay of C2 after the half-scale operation seen in C4.  

 

Figure 32.  Top Multiplexer Output, Hexadecimal 

A simulation view for fixed-point binary, 16-bit radix notation can be seen in Figure 

33. This allows the decimal number to be read. Recall that values have been normalized to 

 2 2qX t   . 
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Figure 33.  Top Multiplexer Output, Fixed-Point Binary 

A binary view has also been provided and can be seen in Figure 34. Each view has 

utility based on what information is desired. 

 

Figure 34.  Top Multiplexer Output, Binary 

b. Bottom Multiplexer Sub-Component Test 

The “bottom” multiplexer utilizes the same module call to two2oneMux. The input 

change representing odd time, binds odd data points to this multiplexer as shown in Figure 

35. 

 

Figure 35.  Multiplexer Internal Code Snippet 
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Data in the “bottom” multiplexer is half scaled utilizing the same methodology as 

the “top” multiplexer. The output to the multiplexer is shifted right by one binary place 

utilizing the code in Figure 36. 

 

Figure 36.  Bottom Multiplexer Half-scale Code Snippet 

The bottom multiplexer simulation is displayed in Figure 37 and outputs its  qX t  

at odd ts. We can see this at test point C3. Test point C6 is the half-scale. Test point C7 is 

the output of the multiplier. The multiplier in this instance is viewed via a black box 

analysis. This means that only the inputs and outputs are analyzed. 

 

Figure 37.  Bottom Multiplexer Output with Multiplier as a Black Box 

c. Rate_OneHalf_complex_Multiply Sub-Component Test 

In section, we provide insight into the internal workings of the multiplier. 

Performing complex multiplication is not a trivial operation, and this code consists of many 

module calls. Each module call added interfaces and processing elements that had to be 

tested. 

As part of performing multiplication within hardware, data manipulation is required 

to get the data into a format that behavioral Verilog can process. To start, negative binary 

numbers are stored in signed two’s complement. The multiplication operation produces the 

anticipated result if operating on unsigned magnitude numbers; thus, signed two’s 

complement numbers are first converted to unsigned magnitude. Unsigned multiplication 
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is performed utilizing a behavioral operator. The sign is operated on separately and 

appended to the final resultant. 

The final number must add the negative or positive sign that resuls from normal 

multiplication of signed numbers. The signs of the multiplicands are exclusive-or’d with 

each other to produce the correct sign. The new sign triggers a two’s complement operation 

on the output of the truncated multiplication if the sign results in a negative number. The 

sign bit is then concatenated as the MSB to the truncated result. The multiplier test plan is 

provided in Figure 38 to guide a systematic way to test the multiplier and create common 

nomenclature for testable points. 

 

Figure 38.  Test Plan for Multiplier and Sub-Component testing 
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The wire and register variables required for the multiplier coding are listed in Figure 

39. Registers sign_mult_left_Real, sign_mult_right_Real, sign_mult_left_Imag, and 

sign_mult_right_Imag are utilized to store the result of complex multiplication on signed 

data. Four wires, one bit wide, indicate the sign of each portion of the complex number. 

Four wires, 18 bits wide, hold the concatenated 17-bit wide unsigned_a, unsigned_jb, 

unsigned_c, and unsigned_jd and their respective 1-bit signs. 

 

Figure 39.  Multiplier Variables Code Snippet 

This code segment details four calls to twoComp module. Each portion of the 

complex number is individually passed into the module as an 18-bit binary number. A 17-

bit unsigned magnitude number was returned as an output and connected to a wire as seen 

in Figure 40.  

 

Figure 40.  Code Snippet for twoComp Module Call 

Internal to the twoComp module is a conditional statement that selects an output 

based on the value of the MSB. If the MSB is a digital high, the input is inverted and 

incremented by one bit; while a digital low returns a copy of the input. This can be seen 
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coded in Figure 41. The MSB was truncated off so an unsigned magnitude number could 

be returned to the parent module. 

 

Figure 41.  Code Snippet for twoComp Module Internals 

The MSB that was truncated within the twoComp module was also stored for use 

later within the multiplier module. The coding for the multiplier module store operation is 

displayed in Figure 42. 

 

Figure 42.  Sign Bit Extraction Code Snippet 

Unsigned numbers in the one’s complement form can successfully pass through a 

behavioral multiplier and produce expected results. A module was called to perform 

behavioral multiplication on the 17-bit binary numbers seen in Figure 43. Four 17-bit 

binary numbers are returned.  
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Figure 43.  Module Call for Behavioral Multiplication on Four Unsigned Complex 

Numbers Code Snippet 

The unsigned multiplier module creates registers to store the output of the 

multiplication. Registers mult_left_Real, mult_right_Real, mult_left_Imag, and 

mult_right_Imag are declared as 35-bit registers. Storage must be available to 

accommodate the largest possible multiple. The coding of these variables is displayed in 

Figure 44. 

 

Figure 44.  Unsigned Multiplication Module Code Snippet 

Complex multiplication can be seen coded in Figure 45. This code snippet is within 

the unsigned multiplier module. Multiplications are performed at the positive edge of every 

clock-cycle, and the results are stored within one of the four 35-bit registers. When two 17-

bit binary numbers multiply, they produce one 34-bit binary number. 
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Figure 45.  Behavioral Multiplication Code Snippet 

The parent module functions with 17-bit binary numbers. The 17 leading bits 

contain the relevant data. The trailing 17 bits add precision to the binary number; however, 

truncation is required to return product to the original 17-bit binary number format. The 

truncation code snippet is displayed in Figure 46. 

 

Figure 46.  Output Truncation Code Snippet 

The exclusive-or operation is performed on the sign bits within the multiplier parent 

module on the rising edge of the clock-cycle to compute the new sign. This can be seen 

coded in Figure 47. If the sign of the product is negative, the result is a concatenation of 

the computed sign and the two’s complement of the magnitude of the product. If the sign 

of the product is positive, the result is a concatenation of the computed sign and the 

unsigned magnitude of the product. 
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Figure 47.  Exclusive-Or of Sign-Bit Code Snippet 

Module twoCompRedo receives the new sign bit and the truncated output of the 

multiplier and produces the two’s complement 18-bit numbers. The code snippet for the 

module call is displayed in Figure 48. 

 

Figure 48.  Code Snippet for twoCompRedo Module Call 

Peering inside of twoCompRedo, we see that module twoCompRedo consists of a 

conditional statement selected with the sign bit. If the sign bit is a binary one, every bit in 

the binary number is inverted and then one bit is added. That binary number is then 

concatenated with the sign-bit before being sent to a wire for output. If the sign bit is zero, 

the original binary number is outputted after being concatenated with the sign bit. The 

twoCompRedo module code snippet is displayed in Figure 49. 

 

Figure 49.  Module twoCompRedo Code Snippet 
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The final stage consists of adding or subtracting the signed multiplier output. The 

real component of the complex number is subtracted to get the final real number. The 

imaginary component of the complex number is added to get the final imaginary number. 

Both numbers are sent to a wire for output to the BFM module and the code is displayed 

in Figure 50. 

 

Figure 50.  Adder/Subtracter for Complex Multiplication Code Snippet 

Two sets of complex numbers were tested through simulation. The input and output 

of   1 .5 0.25 0.125j j   and   1 0.5 1j j    is shown in Figure 51 as a simulation 

output. 

 

Figure 51.  Complex Multiplication Module Testing 

As mentioned previously, behavioral multiplication functions correctly on 

unsigned numbers. The seventeenth bit of data is the sign bit and must be stripped off. The 

circles within Figure 52 highlights the signal for the sign bit. Also, all negative numbers 

  Negative 

Negative 
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must be two’s complemented to return to their magnitude in preparation for multiplication. 

Inputs can be viewed against outputs in Figure 52. Point M2 demonstrates the magnitude. 

  

Figure 52.  Conversion of Multiplier Inputs to Signed Magnitudes 

Once all negative numbers are two’s complemented, seen as test point M2, a 

behavioral multiplier multiplies the magnitudes. The multiplier produces a 34-bit unsigned 

number that is displayed as test points M3 and M4. The data we need are in the upper 17-

bits of the data. The data was truncated to extract what was needed and the rest discarded. 

Test points M5 and M6 show the truncated data. 

The original signs of the data were exclusive-or’d and can be seen at test point M1. 

The new sign was appended to the truncated multiplication output. If the sign indicates a 

negative number, the multiplication output is inverted and one bit is added. This is reflected 

as test points M7 and M8. Prior to being sent as an output to the adder / subtracter, test 

point M9 can be used to view the resultant value. The simulation labeled with applicable 

test points is displayed in Figure 53. 
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Figure 53.  Multiplier Test Points. Fixed Point 

d. Adder / Subtracter Component Sub-Component Test 

The adder / subtracter combines the common results of the multiplication. The 

variables needed consist of two registers, out_real and out_imag, both 18 bits wide, and 

can be seen coded in Figure 54. 

 

Figure 54.  Adder / Subtracter Variables Code Snippet 

The adder / subtracter is the last component of the BFM. On the positive edge of 

every clock-cycle, a selection was made to either add or subtract. This selection is based 

on the value of counter. A digital high results in addition, while a digital low results in 

subtraction as seen in Figure 55. 
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Figure 55.  Adder / Subtracter Code Snippet 

The simulation for the adder / subtracter is displayed in Figure 56. The top 

multiplexer input, seen as M7, was delayed by 1md  . The inputs were added on even clock 

cycles and subtracted on odd clock cycles, with the results being viewed at test point M9. 

 

Figure 56.  Adder / Subtracter Adds on Even Clock-Cycles 

e. 2nd Stage Ping Pong Buffer Sub-Component Test 

Four two-dimensional registers are utilized to store the real and imaginary 

components of the First-Stage Ping-Pong buffers. Variables XqPing_Real, XqPing_Imag, 

XqPing_Real, and XqPing_Imag are declared as 18-bit wide words. In addition, a 4-bit 

register buffer_counter was utilized to count. These can be seen in Figure 57. 

 

Figure 57.  First-Stage Ping-Pong Buffer Variables Code Snippet 

The 4-bit buffer_counter was utilized to produce sixteen timeslots. Eight timeslots 

are needed for the First-Stage Ping buffer and eight timeslots are needed for the First-Stage 
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Pong buffer to fill according to 
2 2 2 2 2

0, ,1, 1,2, 2,3, 3,4, 1, , 1N N N N Nk N      . Since

8N  , the fill order is k = 0, 4, 1, 5, 2, 6, 3, 7 and can be seen in Figures 58 and 59. 

 

Figure 58.  First-Stage Ping Buffer Input Code Snippet 

 

Figure 59.  First-Stage Ping Buffer Input Code Snippet (Continued) 
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Component level testing of the First-Stage Ping-Pong buffer demonstrates that 

inputs flow into the appropriate location at the desired time. The loading process of both 

the First-Stage Ping buffer and the First-Stage Pong buffer is annotated in Figure 60. The 

Pong buffer is filled prior to filling Ping buffer, which then alternates every eight clock-

cycles. All subsequent stages of Ping-Pong buffer are identical and consistent with the 

2 2 2 2 2
0, ,1, 1,2, 2,3, 3,4, 1, , 1N N N N Nk N       loading scheme seen in Figure 59. 

 

Figure 60.  First-Stage Ping-Pong Buffer Simulation 

The code of the FFT and simulations to verify operation at a component and sub-

component level was described in this chapter. The integration of the FFT as a whole 

system is discussed in Chapter V.   
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V. END TO END TESTING / INTEGRATION TESTING 

The operability of the Fast Fourier transform as a system is confirmed in this 

chapter. The four test vectors seen in Table 5 are utilized. How real  qX t  inputs into a 

FFT produce both real and imaginary outputs is shown in Table 5. Separate columns exist 

for real and imaginary portions of the complex number. 

Table 5.   Test Vector Input and Expected Output 

Real Input Real Output Imaginary 

Output 

Scaled  

Real Output 

Scaled  

Imaginary Output 

{1, 1, 1, 1, 1, 

1, 1, 1} 

{8, 0, 0, 0, 0, 0, 

0, 0} 

{0, 0, 0, 0, 0, 

0, 0, 0} 

{1, 0, 0, 0, 0, 

0, 0, 0} 

{0, 0, 0, 0, 0, 0, 0, 0} 

{1, 0, 0, 0, 0, 

0, 0, 0} 

{1, 1, 1, 1, 1, 1, 

1, 1} 

{0, 0, 0, 0, 0, 

0, 0, 0} 
{

1
8

, 1
8

, 1
8

, 1
8

, 1
8

,

1
8

, 1
8

, 1
8 } 

{0, 0, 0, 0, 0, 0, 0, 0} 

{0, 0, 0, 0, 0, 

0, 0, 0} 

{0, 0, 0, 0, 0, 0, 

0, 0} 

{0, 0, 0, 0, 0, 

0, 0, 0} 

{0, 0, 0, 0, 0, 

0, 0, 0} 

{0, 0, 0, 0, 0, 0, 0, 0} 

{0, 0, 0, 1, 0 

,0, 0, 0} 

{1, -0.707, 0, 

0.707, -1, 0.707, 

0, -.707} 

{0, -0.707, 1, -

0.707, 0, 

0.707, -1, 

0.707} 

{
1
8

,
 

0.707
8

,
 
0,

 
0.707

8
,
 

1
8
,
 

.707
8

,
 
0, .707

8 } 

{
0,

 
0.707

8
,
 

1
8

,
 

0.707
8

,
 
0,

 
0.707

8
,
 

1
8
,
 

0.707
8  } 

 

Three major sections are present in this chapter. A higher level perspective that 

shows an analysis utilizing the constant geometry FFT architecture is provided in Section 

A. The detailed analysis of the first test vector in Table 5 is detailed in Section B. The flow 

of data is demonstrated through annotated simulations. The results of integration and a 

hypothesis as to why are captured in Section C. 

A. ALL TEST VECTOR ANALYSIS 

The generic FFT architecture utilized to implement the coding is being reinserted 

as Figure 61. Numbers in sequence multiply with each other, and numbers that are in 

parallel add where paths converge. Unlabeled arrowheads imply a multiplication by one. 

In addition, scaling is not displayed within the butterfly diagram. 
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Figure 61.  Generic Constant Geometric FFT. Adapted from [4]. 

Twiddle factors have been inserted in the form of their complex number equivalent. 

Starting with {1, 1, 1, 1, 1 ,1, 1, 1}, after first stage processing {2, 2, 2, 2, 0, 0, 0, 0} 

resulted. This was a result of the 1s on the top half of the FFT adding with the 1s on the 

bottom half of the FFT and alternating with the 1s of the top half of the FFT subtracting 

with the 1s of the bottom half of the FFT. Continuing with this trend, we find {4, 4, 0, 0 ,0, 

0, 0, 0} outputted after the second stage. The third stage produced {8, 0, 0, 0, 0, 0, 0, 0} 

after processing, which is scaled result of {1, 0, 0, 0, 0, 0, 0, 0}. 
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Figure 62.  Test Vector-1 {1, 1, 1, 1, 1, 1, 1, 1}. Adapted from [4]. 

Test Vector-2 inputs {1, 0, 0, 0, 0, 0, 0, 0}. After the first stage processing, {1, 0, 

0, 0, 1, 0, 0, 0} resulted. Second stage processing produced {1, 0, 1, 0, 1, 0, 1, 0}. Third 

stage processing results in {1, 1, 1, 1, 1, 1, 1, 1} and is scaled as { 1
8

,  1
8

,  1
8

,  1
8

,  1
8

,  1
8

,  1
8

,  

1
8

}. Test Vector-2 can be seen in Figure 63. 

 

Figure 63.  Test Vector-2 {1, 0, 0, 0, 0, 0, 0, 0}. Adapted from [4]. 
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Test Vector-3 is displayed in Figure 64. Inputs of {0, 0, 0, 0, 0, 0, 0, 0} result in {0, 

0, 0, 0, 0, 0, 0, 0} being processing through all three stages with a final output of {0, 0, 0, 

0, 0, 0, 0, 0} and a scaled result of {0, 0, 0, 0, 0, 0, 0, 0}. 

 

Figure 64.  Test Vector-3 {0, 0, 0, 0, 0, 0, 0, 0}. Adapted from [4]. 

Test Vector-4 began with {0, 0, 0, 1, 0, 0, 0, 0}. First stage processing resulted in 

{0, 0, 0, 1, 0, 0, 0, 1,}. Second stage processing produced {0, 1, 0, -j, 0, -1, 0, j}. Third 

stage processing resulted in {1, 2 2

2 2
j   , j, 2 2

2 2
j , -1, 2 2

2 2
j , -j, 2 2

2 2
j  }. This 

is the only test vector which yields a non-zero imaginary component. Test Vector-4 can be 

seen in Figure 65. 
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Figure 65.  Test Vector-4 {0, 0, 0, 1, 0, 0, 0, 0} Displayed after Bit-Reversed to {0, 

0, 0, 0, 0, 0, 1, 0}. Adapted from [4]. 

B. TEST VECTOR ANALYSIS 

A detailed analysis of annotation simulations on Test Vector-1 is given in this 

section. This is done by looking at the simulation of each component of the FFT and 

following how the test data is processed throughout. Each BFMs require a counter 

initialization to zero. Each stage has been synchronized on an individual counter to allow 

for proper execution of the FFT at a system level. 

1. Bit Reversed Ping Pong Buffer 

Test Vector-1 was received as an input into the FFT algorithm. The test vector was 

driven from a test bench. In a real-life application, the signal is received from an analog-

to-digital converter after receipt by an antenna, and the first half of the Bit-Reversed Ping-

Pong buffer loads the data. The second half of the Bit-Reversed Ping Pong buffer will not 

yet have valid data as demonstrated in Figure 66. 
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Figure 66.  Bit-Reversed Ping-Pong Buffer Initializing 

The Bit-Reversed Ping-Pong buffer outputted {1, 1, 1, 1, 1, 1, 1, 1} as seen in Figure 

67. Since this is a pipelined algorithm, the first stage BFM receives data while 

simultaneously processing data. Four clock-cycles are required for the BFM to completely 

process the data. The startup delay is equivalent to initialization of the BFM. 

 

Figure 67.  Bit-Reversed Ping-Pong Buffer Output 
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2. First-Stage BFM and Ping Pong Buffer 

After a four clock-cycle initialization, the First-Stage BFM outputs {1, 1, 1, 1, 0, 0, 

0, 0} as can be seen in Figure 68. These outputs were sent into the First-Stage Ping-Pong 

buffer. No valid outputs were present from the First-Stage Ping-Pong buffer until after 

initialization. 

 

Figure 68.  First-Stage BFM Output and First-Stage Ping-Pong Buffer Initialization 

Outputs can be seen leaving the First-Stage Ping-Pong buffer in Figure 69. Also 

shown is the Second-Stage BFM initialization. Variable counter2 drove the Second-Stage 

BFM; although, seen to be on count 16, the BFM interprets this as  16mod 8 , which is 

interpreted as zero. 
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Figure 69.  First-Stage Ping-Pong Buffer Outputting and Second-Stage BFM 

Initializing 

3. Second-Stage BFM and Ping-Pong Buffer 

Variable counter2 was drove the Second-Stage BFM and Ping-Pong buffer. 

Starting at 20mod8 , which equates to four, the Second-Stage BFM outputted {1, 1, 0, 0, 

0, 0, 0, 0}. Logically, values are released and rearranged as explained in Chapter III, 

Paragraph C to maintain a constant geometry FFT. See Figure 70 for a demonstration. 

 

Figure 70.  Second-Stage BFM Outputting and Second-Stage Ping-Pong Buffer 

Initializing 
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The Second-Stage Ping-Pong buffer outputted {1, 1, 0, 0, 0, 0, 0, 0}, and the Third-

Stage BFM took four clock-cycles to initialize and process the values as displayed in Figure 

71. Variable counter3 was initialized to zero to synchronize with the Third-Stage BFM 

operation.  

 

Figure 71.  Second-Stage Ping-Pong Buffer Outputting and Third-Stage BFM 

Initializing 

4. Third-Stage BFM and Ping-Pong Buffer 

The Third-Stage BFM outputted {1, 0, 0, 0, 0, 0, 0, 0}. This is the expected result 

for Test Vector-1 and is demonstrated in Figure 72. Also note that this came four clock-

cycles after the data was received into the BFM and twelve clock- cycles after this block 

of data was loaded into the Third-Stage Ping-Pong Buffer. Since the Forth-Stage Ping-

Pong Buffer is loading its initial data, it does not output valid yet data in Figure 72 
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Figure 72.  Third-Stage BFM Outputting and Third-Stage Ping-Pong Initializing 

A test vector of {1, 1, 1, 1, 1, 1, 1, 1} should have a scaled result of {1, 0, 0, 0, 0, 

0, 0, 0}. Shown in Figure 73 the correct result is demonstrated for Test Vector-1 processed 

through the designed FFT. 

  

Figure 73.  Third-Stage Ping-Pong Buffer With Final Scaled Result {1, 0, 0, 0, 0 0, 

0, 0} 
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The FFT was demonstrated successfully with Test Vector-1 in Chapter V. Timing 

was key to successful synchronization. Multiple counters were utilized to synchronize the 

stages of the FFT. 

C. TIMING ERROR WHILE INTEGRATING 

An analysis of Test Vector 3 proved unsuccessful. While individually analyzing the 

processing elements of the FFT proved successful, synchronizing the timing between the 

three levels of the BFM failed. Highlighted in Figure 74 are a few locations where incorrect 

timing can skew processing of data. This improperly processed data then replicates through 

the successive stages. With the error being localized to within a timing element, 

initialization of the BFM and setting the selectors on the multiplexer or adder / subtracter 

can be as simple as a one-bit inversion; however, isolating the exact bit has proven to be a 

challenge. A complete overhaul of the timing within the FFT is the recommended 

corrective action. This has the greatest chance of success while also producing a code that 

is usable by others. 

 

Figure 74.  Highlighted Timing Variables within the BFM. Adapted from [15]. 
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VI. CONCLUSION 

With 20 years of research into satellite development, in this thesis research we are 

closer to creating a rapidly deployable and reconfigurable signal processor that is space 

capable. Signal processing may be the basis for a mission element or an enabling 

component of a larger objective. It also has utility in every day communications.   

A. ACADEMIC VALUE 

An understanding of many academic areas was required for this research. A 

foundation in digital signal processing required a solid foundation in the Fast Fourier 

Transform theorems, principles, and mathematics. In addition, to conceptualize the final 

product, an understanding of the electronics needed to digitize an analog signal is required. 

With space being the intended application of the end product, knowledge of the space 

environment and its impact on electronics is also fundamental. A working knowledge of 

producing software code and an additional knowledge specifically in Verilog HDL was 

acquired throughout this research. 

B. THESIS SUMMARY 

The objective of this thesis was to give access to an open source signal processing 

algorithm that could eventually be implemented in an error detecting / error correcting 

algorithm for use within the space environment. Success was achieved in programming 

major portions of the highspeed pipelined FFT. The major modules needed to instantiate 

the FFT have been designed and tested. The FFT fails to integrate correctly. Timing and 

synchronization of data is the suspected cause. Once timing and synchronization is 

corrected, implementing Parseval’s theorem will make this code space capable. 

C. RECOMMENDATIONS FOR FUTURE WORK 

Follow on work should consist of synchronizing the timing within the FFT and then 

utilization of the FFT to implement Parseval’s theorem. Parseval’s theorem makes this 

code space capable and is required before loading on to the FPGA for launch. Parseval’s 

theorem is illustrated once more in Figure 75.  
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Figure 75.  Parseval’s Theorem Implementation Illustration. Source: [2]. 

In addition, capability can be added to the FFT by increasing the sample size from 

8N   to 32N  . This will allow a more granular level of processing. This FFT will also 

need to be loaded onto NPSat-1’s FPGA with operability testing to follow. 

D. CLOSING REMARKS 

In clocked systems, timing and synchronization of data is mandatory. Processing 

elements must have the right data at the right time to produce the correct results. When 

debugging software, have a plan and work in a systematic process. This research project 

was built on 20 years of work. A literature review was helpful and there are many 

documents to educate oneself.  
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APPENDIX A. FILE STRUCTURE 

 
top_level (top_level.v) 

 clk_mod – clk_module (clk_module.xci) 

  clk_module (clk_module.v) 

   inst – clk_module_clk_wiz (clk_module_clk_wiz.v) 

 PingPong_SwitchLevel1 – pingpong (pingpong.v) 

 BFMlevelOne – Radix2_BFM (Radix2_BFM.v) 

  two2oneMux_Top – two2oneMux (two2oneMux.v) 

  two2oneMux_Bottom – two2oneMux (two2oneMux.v) 

  ComplexMultiply2Stage – multiply_complex (multiply_complex.v) 

   Unsigned_multiply – mult18x18 (mult18x18.v) 

   twoC_leftReal – twoCompRedo (twoCompRedo.v) 

   twoC_rightReal – twoCompRedo (twoCompRedo.v) 

   twoC_leftImag – twoCompRedo (twoCompRedo.v) 

   twoC_rightImag – twoCompRedo (twoCompRedo.v) 

   insta – twoComp (twoComp.v) 

   instb – twoComp (twoComp.v) 

   instc – twoComp (twoComp.v) 

   instd – twoComp (twoComp.v) 

  AdderandSubtractor1Stage – addsub18x18 (addsub18x18.v) 

 PingPong_SwitchLevel2 – pingpongK (pingpongK.v) 

 BFMlevelTwo – Radix2_BFM (Radix2_BFM.v) 

  … 

  … as shown above 

  … 

 PingPong_SwitchLevel3 – pingpongK (pingpongK.v) 

 BFMlevelThree – Radix2_BFM (Radix2_BFM.v) 

  … 

  … as shown above 

  … 

 PingPong_SwitchLevel4 – pingpongK (pingpongK.v) 
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APPENDIX B. SOURCE CODE 

********************TOP_LEVEL.V******************** 
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********************CLK_MODULE.V******************** 

*************© Copyright 2008 – 2013 Xilinx, Inc. All rights reserved 

[16]*********** 
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********************CLK_MODULE_CLK_WIZ.V******************** 

*************© Copyright 2008 – 2013 Xilinx, Inc. All rights reserved 

[16]*********** 
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 76 
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********************PINGPONG.V******************** 
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