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Features of forward π N scattering from a Reggeized model
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Charge exchange process π−p → π 0n and elastic scatterings π±p → π±p are investigated within the
Regge framework where the relativistic Born amplitude is Reggeized for the t-channel meson exchange. The
charge exchange cross section is featured by single ρ exchange. Additional corrections by Regge cuts, ρ-f2

and ρ-Pomeron, agree with differential cross sections, and a new trajectory for the ρ ′(1450) exchange is
attempted to reproduce polarization data. For the description of elastic scattering data up to pion momentum
PLab ≈ 250 GeV/c, Pomeron exchange of the Donnachie-Landshoff type is newly constructed and applied in
this work. Elastic cross section data are well reproduced with the dominance of f2 and Pomeron exchanges in
intermediate and high energies. Analysis of nucleon resonances is presented to test the validity of the present
Regge framework below W � 2 GeV.
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I. INTRODUCTION

A πN system is one of the fundamental objects for un-
derstanding strong interaction with its origin from QCD. The
πN scattering near threshold offers a testing ground for the
chiral dynamics of QCD in terms of soft pion interaction [1].
On the other hand, the rich structure of nucleon resonances
� and N∗ in πN scattering below the reaction energy 2 GeV
strongly supports the quark model prediction for the baryonic
spectrum and its properties [2–4]. Over the resonance region
up to hundreds of GeV the reaction provides information
on various meson exchanges and the nonresonant diffractive
scattering that could be a manifestation of quark and gluon
degrees of freedom rather than hadronic degrees of freedom
[5]. Therefore, though not listing a long history of theoreti-
cal development and experimental activities initiated by πN
scattering, the reaction should be regarded as an important
source for understanding the dynamics of QCD in the isospin
symmetry sector.

Recently, Mathieu et al. [6] of the Joint Physics Analysis
Center (JPAC) studied πN scattering to construct a new set
of Regge amplitudes by matching the low-energy partial wave
analysis with high-energy data via the finite energy sum rule.
Nys et al. of JPAC also analyzed world data of KN charge ex-
change reactions with beam energy above 5 GeV/c [7]. Huang
et al. [8] investigated πN charge exchange scattering by using
the Regge-cut model to provide high-energy constraints above
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2 GeV for the analysis of baryon resonances. The primary
interest of these works is in the knowledge of πN and KN
scatterings at high energy in order to provide a supplementary
method for an extraction of properties of nucleon resonances
in the low-energy region. However, the information obtained
from these analyses is less straightforward for current model
calculations based on the effective Lagrangian approach, such
as the standard baryon pole model [9], because the residues
in the t-channel helicity Regge poles fitted to empirical data
in Refs. [6–8] cannot communicate with coupling strengths of
hadron interactions in the Lagrangian formalism.

Therefore, it is desirable to investigate πN scattering
with hadron models that can utilize the effective Lagrangians
for the description of the reaction beyond resonances up to
the pion momentum PLab ≈ 250 GeV/c, the highest energy
where a data point exists. Unfortunately, however, there is no
theory, and no model calculations at present are available for
such a purpose.

In this paper, we investigate πN charge exchange and
elastic scatterings for the analysis of the reaction mechanism
by the peripheral process. To accomplish this, we construct
the Born amplitude to be Reggeized for the meson exchange,
with our interest being to establish the reaction amplitude up
to such high momentum with the interaction Lagrangians and
the coupling constants shared with other hadron reactions.
Another issue to be addressed here is to provide the Pomeron
exchange that could be well suited for the reaction amplitude
thus constructed. The quark-Pomeron coupling picture is in-
troduced to πN elastic scattering, similar to the case of pho-
toproductions of neutral vector mesons [5,10–13]. Therefore,
complementary to previous findings in Refs. [6–8], the result
of this work may serve to complete of our understanding the
reaction mechanism of πN scattering beyond resonances.

The paper is organized as follows. In Sec. II we begin with
a statement of phenomenological features of charge exchange
scattering π−p → π0n to construct the Regge amplitude for
the t-channel ρ-meson exchange. To account for the dip in
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the differential cross section we introduce Regge cuts [14],
and to reproduce polarization asymmetry we consider a new
trajectory ρ(1450). Section III follows steps similar to those in
the preceeding section. Features of elastic scattering process
π±p → π±p are introduced and the Regge pole amplitudes
relevant to these reactions are fully constructed. The imple-
mentation of the Pomeron exchange from the quark picture
[5,10,11,15,16] is presented. We present numerical results in
experimental data at high energies for total and differential
cross sections as well as polarization asymmetry. Section IV
is devoted to an incorporation of nucleon resonances with the
Regge poles in the t channel in the πN scattering. We discuss
the Breit-Wigner form of the nucleon resonance in the multi-
pole expansion of the scattering amplitude, for application to
the energy region below W � 2 GeV. In Sec. V we discuss
our findings and give a summary with conclusions.

II. CHARGE EXCHANGE SCATTERING

A. General features

By charge conservation and isospin symmetry the charge
exchange reaction π−p → π0n allows only the single ρ
exchange in the t channel. Thus, it is natural to expect that
differential cross sections would show a dip structure at
the nonsense wrong signature zero (NWSZ) of ρ trajectory
−t ≈ 0.5 (GeV/c)2 from αρ (t ) = 0. Moreover, polarization
asymmetries in this process should appear to be vanishing,
because the polarization asymmetry P (θ ) is defined as the
interference between the spin nonflip and flip amplitudes, i.e.,

P (θ ) = 2 Im[M++M+−∗
]

|M++|2 + |M+−|2 , (1)

and the single ρ exchange, which gives a dominant contri-
bution to the spin flip amplitude, cannot produce nontrivial
phase interference between them. Therefore, the reaction
needs more theoretical consideration, such as Regge cuts and
other meson exchanges in the t channel, to reproduce the
differential cross section data and polarization asymmetry at
small angles.

B. Regge description

For the reaction π (k) + N (p) → π (q ) + N (p′) process,
we denote the incoming and outgoing pion momenta by
k and q, and the initial and final nucleon momenta by p
and p′, respectively. Then, conservation of four-momentum
requires k + p = q + p′, and s = (k + p)2, t = (q − k)2,
and u = (p′ − k)2 are the invariant Mandelstam variables.
The total energy W is related with the pion momen-
tum in the laboratory system, PLab, by the equation W =√
M2 + m2

π + 2M
√
P 2

Lab + m2
π with M and mπ the nucleon

and pion masses. The relevant expressions for the momenta
in the laboratory frame and c.m. frame are defined as

PLab =
√(

s − M2 − m2
π

2M

)2

− m2
π , (2)

Pc.m. = 1√
2s

√
(s − (M + mπ )2)(s − (M − mπ )2), (3)

respectively.

π−

ρ

p

π0

f2, P

n

π0

n
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ρ + ρ
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FIG. 1. Reaction process for π−p → π 0n in the t channel. (a)
ρ(775) and ρ ′(1450) Regge pole exchanges. (b) Elastic cuts ρ-f2

and ρ-Pomeron.

Let us begin with the scattering amplitude simply given by
the single ρ exchange,

M(π−p → π0n) = −
√

2Mρ, (4)

and the Born amplitude in Fig. 1 relevant to the t-channel
ρ-meson exchange, written as

Mρ = �μ
ρππ (q, k)

�ρ
μν (Q)

t − m2
ρ

�ν
ρNN (p′, p), (5)

with Q = q − k the t-channel momentum transfer. The cou-
pling vertices with spin polarization �μν

ρ are expressed as

�μ
ρππ (q, k) = gρππ (q + k)μ, (6)

�ν
ρNN (p′, p) = ū(p′)

[
gv

ρNNγ ν + gt
ρNN

4M
[γ ν,Q/ ]

]
u(p), (7)

�μν
ρ (Q) = −gμν + QμQν/m2

ρ, (8)

from the Lagrangians for ρππ and ρNN interactions,

Lρππ = gρππ �ρμ · ( �π × ∂μ �π ), (9)

LρNN = N̄

[
gv

ρNNγν − i
gt

ρNN

2M
σμν∂

ν

]
(τa )ρνN. (10)

In order to describe the reaction at high energies up to tens
of GeV, we make the above Born amplitude Reggeized by
replacing the Feynman propagator with the Regge one,

1

t − m2
ϕ

→ Rϕ (s, t ), (11)

where the Regge propagator is written as

Rϕ (s, t ) = πα′
J × phase

�[αJ (t ) + 1 − J ] sin[παJ (t )]

(
s

s0

)αJ (t )−J

(12)

for the ϕ meson of spin J and s0 = 1 GeV2. ϕ stands for ρ
here, and ω, σ, and f2 collectively for later use. The trajectory
of spin-J meson is denoted by αJ (t ). The phase factor is,
in general, taken to be 1

2 [(−1)J + e−iπαJ (t )] for the exchange
nondegenerate meson exchange.

From Eq. (6) the decay width is evaluated as

�(ρ → ππ ) = g2
ρππk3

6πm2
ρ

, (13)
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FIG. 2. Differential cross section dσ/dt for π−p → π 0n scat-
tering at PLab = 20.8 GeV/c. The cross section from the single ρ

exchange with κρ = 3.7 and 0.9 t + 0.46 is given by the dashed
curve, while the case with the Regge cuts, ρ + (ρ-f2 + ρ-P), is
denoted by the solid curve. For comparison we present cross sections
from the single ρ exchange with κρ = 3.7 and 0.8 t + 0.55 (red
dotted) and with κρ = 6.2 and 0.9 t + 0.46 (blue dash-dotted). Data
are taken from Ref. [19]. The additional contribution of ρ(1450) does
not alter the above results.

which leads to gρππ = 5.95 from �(ρ → π+π−) = 147.8
MeV reported by the Particle Data Group (PDG). For the
ρNN coupling constants, we use gv

ρNN = 2.6 throughout this
work for consistency with our previous works on photopro-
ductions of hadrons. We choose gt

ρNN = 9.62 to be consistent
with the vector meson dominance (VMD) for the anomalous
magnetic moment κρ = 3.7. However, the universality of the
ρ meson coupling constant is not exact between gρππ and
2gv

ρNN , the latter of which is estimated from the ρ meson
decay width �(ρ0 → e+e−).

Given the coupling constants above we take αρ (t ) =
0.9 t + 0.46 from the Regge analyses of charged ρ photopro-
ductions [17,18] together with the exchange nondegenerate
phase for the ρ Regge pole to reproduce the differential cross
section at PLab = 20.8 GeV/c. The result is presented in Fig. 2
by the dashed curve.

In modeling hadron reactions involved in the ρ-meson cou-
pling to the nucleon there is another option for κρ = 6.2 from
the analysis of NN potential. Also the trajectory αρ = 0.8 t +
0.55 is frequently employed with a stronger coupling constant
2gv

ρNN ≈ gρππ in Regge model calculations [20]. Without any
model parameters such as cutoff masses of form factors in
this work, the model dependence lies in the Regge trajectories
and meson-baryon coupling constants chosen. Thus, by taking
the advantage of the single ρ dominance of the reaction, it is
interesting to ask what are the proper choices for the ρ-meson
coupling constants and trajectory. For comparison we show
the (red) dotted curve resulting from the case of ρ trajectory
0.8 t + 0.55 with κρ = 3.7 and the (blue) dash-dotted one
from 0.9 t + 0.46 with κρ = 6.2. It is clear that both cross
sections are overestimating experimental data. Moreover, the
dip position at the NWSZ, −t ≈ 0.69 (GeV/c)2 in the case
of 0.8 t + 0.55 = 0, deviates from data. These findings in the

π−p → π0n reaction support the validity of αρ = 0.9 t +
0.46 with κρ = 3.7 as much as in our previous study on the
charged ρ photoproductions [17,18].

1. ρ cuts

As discussed above, we now find a way to fill up the
deep dip in the differential cross section in Fig. 2. Similar to
neutral pion photoproduction γp → π0p [14,21], the ρ cuts
are introduced for this purpose, and the reaction amplitude in
Eq. (4) is now extended to be [13]

Mρ = �μ
ρππ (q, k)�ρ

μν (Q)�ν
ρNN (p′, p)

×
[
Rρ (s, t ) +

∑
ϕ

Cϕedϕt e−iπα
ϕ
c (t )/2

(
s

s0

)α
ϕ
c (t )−1

]
,

(14)

where ϕ = f2 and P are the subsequent Regge pole exchanges
following the ρ exchange in the elastic cut, as shown in
Fig. 1(b). The cut parameters Cϕ and dϕ represent the strength
and range of the cut to be fitted to experimental data. The cut
trajectory for ρ-ϕ is given by a composite of two trajectories,
i.e.,

αϕ
c = α′

ρα
′
ϕ

α′
ρ + α′

ϕ

t + [αρ (0) + αϕ (0) − 1] (15)

with its slope and intercept consisting of each slope and
intercept. Here we use the tensor meson f2 trajectory αf2 (t ) =
0.9 t + 0.53, sharing with the ω trajectory. The Pomeron
trajectory is determined as αP(t ) = 0.12 t + 1.06 by the fit
of elastic scattering data at high momenta PLab = 100 and
200 GeV/c. We shall discuss this point in Sec. III later.

In Fig. 2 the differential cross section shows the cut effect
to fill up the dip by the ρ exchange with parameters Cf2 =
1.0 GeV−2, df2 = 2 GeV−2 for ρ-f2, and CP = 0.1 GeV−2,
dP = 5 GeV−2 for ρ-P. Such an agreement with experimental
data as can be seen in Fig. 2 appears repeatedly in differential
cross sections at other momenta at the same level of quality.

Polarization asymmetry P in the πN scattering is the ob-
servable that could validate the accuracy of model predictions.
As defined in Eq. (1), it arises via the interference between
exchanges of different mesons. It is obvious that the ρ cuts
could give rise to no interference, though they are added
because they share the same interaction vertices with the
single ρ as in Eq. (14). Thus, we consider another isovector
exchange in the t channel to find that ρ(1450), with the same
quantum number 1+(1−−) as ρ(775) but with higher mass,
could be a candidate to produce nonvanishing polarization.

2. Daughter trajectory ρ ′(1450)

To induce the phase interference between two different
Regge poles, we consider the daughter trajectory of a ρ meson
of higher mass mρ ′ = 1450 MeV [22], with the ππ decay
mode evident but not measured yet. [For distinction we denote
ρ(1450) by ρ ′.] Therefore, no information is available for the
ρ ′ coupling to π or to the nucleon. We treat these coupling
constants as parameters to fit to polarization data. The tra-
jectory relevant to ρ ′(1450) is calculated from the relativistic
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FIG. 3. Polarizations for π−p → π 0n scattering versus −t at
PLab = 3.5 and 5 GeV/c. Dotted curves are the polarizations from
ρ + cuts without ρ ′(1450). The dashed curve is from ρ + ρ ′ without
cuts. Data are taken from Ref. [24].

quark model in Ref. [23] to be αρ ′ (t ) = t − 1.23, which is
different from that of ρ(775). Thus, the amplitude in Eq. (4)
is extended to include the amplitude Mρ ′ of the same form
as in Eq. (5) in addition to Eq. (14). In the calculation we use
both the ρ and ρ ′ trajectory exchanges nondegenerate. Since
the intercept of the ρ ′ trajectory is very low, the ρ ′ exchange
gives no contribution, significantly altering the differential
cross section at high momentum as in Fig. 2. Nevertheless, the
interference of phases between ρ ′ and ρ cuts could reproduce
the polarization data to a good degree.

Figure 3 shows the polarization measured at PLab = 3.5
and 5 GeV/c in the range 0.2 � −t � 1.8 (GeV/c)2, where
the solid curve is prediction by the full amplitude

−
√

2[ρ + ρ − cuts + ρ ′(1450)]. (16)

At the choice of ρ ′(1450) coupling constants, Gv
ρ ′ = 40 and

Gt
ρ ′ = −75 with Gv

ρ ′ = gρ ′ππgv
ρ ′NN , Gt

ρ ′ = gρ ′ππgt
ρ ′NN , we

obtain a quite good fit of the polarization data. Of course,
adjusting these values leads to some change of the polarization
in magnitude around −t ≈ 0.5 (GeV/c)2, but not in shape,
unless the signs of coupling constants are changed. The dotted
curves are from the single ρ(775) showing null polarizations
as discussed. The dashed curve results from the ρ(775) with
ρ ′(1450), but without ρ cuts. Though dependent on the cou-
pling constants Gv

ρ ′ and Gt
ρ ′ , we recognize the implication

of the ρ cuts and daughter ρ ′ which result in an agreement
with vanishing of the polarization at −t ≈ 0.7 (GeV/c)2 and
a slow increase as the −t becomes larger.

We present the total cross section in Fig. 4 for comparison
with experimental data from threshold up to W = 10 GeV.
The single ρ exchange is given by the dotted curve and the
case of ρ(775) + ρ ′(1450) by the dashed curve. The cross
section from the full amplitude ρ + ρ ′ + ρ cuts is depicted
by the solid curve.
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FIG. 4. Total cross section for π−p → π 0n as a function of
invariant energy W . Data show the resonance peaks below W ≈
2 GeV. Theory and experiment coincide over the resonance region.
Data are taken from Refs. [8,25].

III. ELASTIC SCATTERING PROCESS

A. General features

Elastic scatterings π±p → π±p proceed via the s-channel
� and N∗ excitations to show the prominent resonance struc-
tures around W ≈ 1.2 and 1.6 GeV, respectively. Over the
resonances the peripheral scattering of the t-channel meson
exchange dominates the reactions to gradually exhibit a slow
increase as the reaction energy increases, i.e., the diffraction
scattering which is a manifestation of the Pomeron exchange
in hadron elastic reactions. Differential cross sections have
smooth t dependence and no dips there. The sign of nucleon
spin polarization at very small angle is consistent with the sign
of pion charge in the π±p reactions.

B. Regge description

Previous studies of the πN reaction were devoted to the
analysis of total cross section, which includes all the inelastic
subprocesses in addition to the elastic one [6,26,27]. In the
conventional approach where the residues are fitted to scat-
tering data in the t-channel helicity Regge poles, the role of
ρ exchange was expected to account for the difference of
total cross sections between the π+p and π−p reactions in
addition to the Pomeron and the second vacuum exchange at
high energy [26]. Recent models of JPAC [6,7] improved the
Regge amplitude to include tensor meson f2 exchange instead
of the second vacuum exchange.

In contrast to these works, however, the exclusive elastic
reactions for π±p → π±p are the main topics of the present
section to be investigated in the Reggeized Born term model,
as in the previous section. The Lagrangian formulation of
hadron interactions in the model requires those mesons that
are decaying to ππ in the t-channel exchange. In this respect
exchanges of scalar meson and vector meson ω are further in-
cluded in the present work. The Pomeron exchange is viewed
from the quark-Pomeron coupling picture and we construct a
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new amplitude, which is of Donnachie and Landshoff (DL)
type rather than the original version by Pichowsky [5].

As advertised, the reaction amplitude that contains all the
mesons decaying to two pions is written as

M(π±p) = Mσ ∓ Mω ∓ Mρ + Mf2 + MP, (17)

where the vector mesons of C parity odd change sign in
accordance with pion charge. Thus, the two channels with
opposite charges π+p and π−p are distinguished by the roles
of the ω- and ρ-meson exchange. For the sake of consistency
we share the meson-baryon coupling constants and the Regge
trajectories in the πN scattering with those used for meson
photoproduction.

1. Vector mesons ρ and ω exchanges

Given the ρ Regge pole in the previous section, we in-
clude the Reggeized ω exchange in the same form as in
Eq. (5) with the propagator in Eq. (12). The ωππ cou-
pling is estimated to be gωππ = ±0.18 from the decay width
with �(ω → π+π−) = 0.13 MeV taken from PDG. We use
gv

ωNN = 15.6 and κω = 0 for the ωNN couplings. The trajec-
tory αω(t ) = 0.9 t + 0.44 constitutes a degenerate pair with
the f2 trajectory so that both the ω and f2 Regge poles share
the exchange degenerate phase in common. For a phenomeno-
logically better description we adopt the constant phase for
both reactions π±p → π±p.

2. Scalar meson σ exchange

The mass and full width of scalar meson σ are reported to
be mσ = 400–550 MeV and � = 400–700 MeV in the PDG.
The scalar meson σ is the lightest meson to exchange, so it
could contribute to the threshold behavior of reaction cross
sections for π±p elastic scattering.

The interaction Lagrangians relevant to the coupling of σ
meson to hadrons are given by

LS = − 1
2gσππmπσ �π · �π − gσNNσN̄N, (18)

LV = fσππ

2mπ

σ∂μ �π · ∂μ �π + gσNNσN̄N, (19)

where the scalar and vector couplings are considered for σππ
coupling in a manner consistent with the scalar meson σ as the
two-pion s-wave correlation. However, the uncertainty in the
broad decay width makes our estimate of the σππ coupling
constant very model dependent. A naive estimate of gσππ by
taking �(σ → ππ ) = 400 MeV, for instance, from the decay
width

�(σ → π+π−) = 2

3
�(σ → ππ ) = g2

σππm2
πk

12πm2
σ

, (20)

yields the value gσππ = ±20.37, which is larger than the
value 7.91–16.54 extracted from the J/ψ decay [28,29].
Here, the factor 2/3 is taken into account for charged channels
in the isospin space.

We now write the Born amplitude for σ exchange as

Mσ = �S/V
σππ (q, k)

1

t − m2
σ

�σNN (p′, p), (21)

where the scalar and vector coupling vertices are given by

�S
σππ (q, k) = gσππmπ, (22)

�V
σππ (q, k) = fσππ

mπ

q · k, (23)

and

�σNN (p′, p) = gσNN ū(p′)u(p), (24)

for the σ -meson nucleon coupling vertex.
The σ -meson exchange as the two-pion correlation in the

s state with a broad width was studied in the ππ → NN̄
reaction [30]. In the πN scattering, as a result, the t-channel
σ pole derived from the dispersion relation is expressed as

Mσ = ū(p′)gσ (t )
t − 2m2

π

m2
σ − t

u(p), (25)

which corresponds to

gσ (t ) = gσNNgσππmπ

2q · k
, (26)

gσ (t ) = gσNNfσππ

2mπ

, (27)

for the scalar and vector couplings in Eq. (21), respectively.
These results imply that the σ pole with the large decay
width term, 1/(t − m2

σ + i�σmσ ), in the pole model can be
equivalently expressed as in Eq. (25) from the dispersion
relation. In Eqs. (26) and (27), while the latter term remains
constant, the former has the energy dependence 1/(q · k),
which is singular at threshold. Therefore, we favor to adopt
the vector coupling scheme for σ exchange in Eq. (21) with
the coupling constant fσππ properly chosen to describe cross
section data near threshold. In the calculation we use gσNN =
14.6 for consistency with the photoproduction of neutral
vector mesons [12,13].

3. Tensor meson f2 exchange

For the f2 tensor meson exchange, we use the following
interaction Lagrangian:

Lf2ππ = 2gf2ππ

mf2

∂μ �π · ∂ν �πf μν (28)

for the f2ππ coupling, with f μν the spin-2 tensor meson field.
This gives the coupling vertex

eμν�
μν
f2ππ = gf2ππ

mf2

(k + q )μ(k + q )ν eμν (29)

with eμν the spin-2 polarization tensor. The decay width for
f2 → ππ is given by

�(f2 → π+π−) = 2

3
�(f2 → ππ ) = 4g2

f2ππ

15π

p5

m4
f2

, (30)

where p =
√
m2

f2
/4 − m2

π is the momentum of the π meson.

From the full width in the range 121 � �(f2) � 240 MeV in
PDG with the branching fraction 84.2% for the f2 → ππ ,
the coupling constant is estimated to be in the range 4.76 �
gf2ππ � 6.71 in units of m−1

f2
.
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TABLE I. The physical constants and Regge trajectories with the
corresponding phase factors for π±p → π±p. The symbol ϕ stands
for σ , ω, f2, and ρ. For the σ couplings gϕππ should be understood
as the vector coupling constant fσππ .

Meson Trajectory (αϕ) Phase factor gϕππ g1
ϕNN

(
g2

ϕNN

)
ρ 0.9 t + 0.46 (−1 + e−iπαρ )/2 5.95 2.6 (9.62)
σ 0.7(t − m2

σ ) (1 + e−iπασ )/2 0.5 14.6
ω 0.9 t + 0.44 1 − 0.18 15.6 (0)
f2 0.9 t + 0.53 1 4.5 6.45 (0)

The reaction amplitude for the f2 exchange is written as

Mf2 = �
μν
f2ππ (q, k)

�
f2
μν;αβ (Q)

t − m2
f2

�
αβ
f2NN (p′, p), (31)

where the tensor meson-nucleon coupling vertex and the
polarization tensor for spin-2 propagation are given by

�
αβ
f2NN (p′, p)

= ū(p′)
[

2g
(1)
f2NN

M
(P αγ β + P βγ α ) + 4g

(2)
f2NN

M2
P αP β

]
u(p),

(32)

and the spin projection operator for a spin-2 particle

�
μν;αβ
f2

(Q) = 1
2 (ḡμαḡνβ + ḡμβ ḡνα ) − 1

3 ḡμνḡαβ (33)

with

ḡμν = −gμν + QμQν/m2
f2

. (34)

The tensor-meson nucleon coupling constants extracted
from the tensor meson dominance were g

(1)
f2NN = 2.12 and

g
(2)
f2NN ≈ 0. But the phenomenological information extracted

from the dispersion relation as well as the partial wave analy-
sis for πN scattering suggested rather the scattered values for
the f2NN coupling constants as discussed in Ref. [20], which
showed 2.12 � g

(1)
f2NN � 7.93 and g

(2)
f2NN ≈ 0. In those meson

photoproductions involving the tensor meson exchange we
used g

(1)
f2NN = 6.45 and g

(2)
f2NN = 0 [31] to agree with empir-

ical data. For the elastic scattering of the πp → πp reaction
we resume using these values for the sake of consistency, and
make a list of the coupling constants and trajectories with the
corresponding phase factors in Table I.

4. Pomeron exchange

The quark-Pomeron coupling model, as depicted in Fig. 5,
is based on the factorization of the exclusive πN scattering
amplitude in terms of the product of the π → q + q̄ fluc-
tuation, the scattering of the qq̄ system by the proton, and
finally the qq̄ hadronization into a pion. From the observation
of total cross sections for pp, πp, and Kp reactions at high
energies, Donnachie and Landshoff stated that the Pomeron
couples to the separate valence quark inside a hadron rather
than to the hadron as a whole, and the strength of the Pomeron
coupling to a hadron is determined by the radius of the hadron.
Therefore, assuming a quark-Pomeron coupling strength of

π(k) π(q)

p(p) p(p′)

l

l + k l + q

P (Q)

fπqqγ5 fπqqγ5

μ

μ

FIG. 5. Quark diagram for the Pomeron exchange in π±p elastic
scatterings. Pseudoscalar coupling πq̄iγ5q with the coupling con-
stant fπqq is assumed at the πqq̄ coupling vertex. Momenta for
quark loops are denoted by l, l + k, and l + q. The quark loop of
momentum l + k is off mass shell. Vector coupling γ μ is used for
the couplings of the Pomeron-quark and Pomeron-proton currents.

Fh(t )βqγ
μ with the hadron form factor Fh(t ) for its size, the

Pomeron contribution to the πN cross section can be simply
written as [10]

dσ

dt
= 1

4π
|[2βqFπ (t )](−iα′

Ps)αP(t )−1[3βq ′F1(t )]|2 (35)

with the nucleon isoscalar form factor and pion form factor
given by

F1(t ) = 4M2 − 2.8t

(4M2 − t )(1 − t/0.71 GeV2)2
, (36)

Fπ (t ) = (1 − t/�2)−n, (37)

and the Regge-type propagator

RP(s, t ) = (α′
Ps)αP(t )−1e−i π

2 [αP(t )−1]. (38)

Here αP(t ) is the Pomeron trajectory of the form

αP(t ) = α′
P t + α0

P. (39)

A more rigorous treatment of the Pomeron exchange in
the πN elastic scattering can be found in Ref. [5] where
the quark-meson coupling vertices in the incoming and out-
going states should be the Bethe-Salpeter amplitudes with
the quark propagation arising from the Dyson-Schwinger
equation for the bound state of the QCD. However, in the
large-momentum limit, the current quark propagation could
be replaced by the free quark (constituent quark) propagation
with the constituent quark masses mu(d ) ≈ 330 and ms ≈ 490
MeV. Hence, the on-shell approximation for the quark loops
of l and l + q for the outgoing pion, with the quark loop of
l + k considered to be off shell with the hadron form factor at
the Pomeron-ππ vertex, is a good approximation to perform
the loop integral [11]. In this work we follow the on-shell
approximation as the Donnachie-Landshoff ansatz [32] for
vector meson photoproduction [33], and use the pseudoscalar
coupling

fπqq q̄iγ5qπ (40)

for the πqq vertex with the coupling strength fπqq in Fig. 5.
The on-shell approximation leads to the loop integral sim-

plification, and the trace calculation in the loop results in the
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following expression:

Tr[(l/ + mq )γ5((l/ + k/) + mq )γμ((l/ + q/) + mq )γ5]

= −4l · q kμ − 4l · k qμ + 4k · q lμ,

= m2
π (kμ + qμ). (41)

In the quark loop in Fig. 5 the two quarks in the outgoing
pion state share the equal pion momentum l = −q/2, with
the assumption that they are nearly on shell. Then, the other
quark loop of momentum l + k in the figure is off shell and
the propagator turns out to be

1

(l + k)2 − m2
q

= −2

2m2
q − m2

π/2 − t
(42)

with l = −q/2.
For the πN elastic scattering, therefore, the Pomeron ex-

change is written as

MP = i2Fπ (t )βq

2m2
πf 2

πqq

2m2
q − m2

π/2 − t
FPqq (t )

× 3F1(t )βq ′ ū(p′)(k/ + q/)u(p)RP(s, t ), (43)

where Fπ (t )βq ′γ μ and F1(t )βq ′γμ with βu = 2.07 GeV−1 and
βd = βu are the Pomeron couplings to a quark in the pion and
in the nucleon as discussed in Eq. (35). The form factor [32]

FPqq (t ) = 2μ2
0

2μ2
0 + 2m2

q − m2
π/2 − t

(44)

is included to ensure the convergence of the off-shell quark
loop with the cutoff mass μ2

0 = 1.1 GeV2 fixed to experimen-
tal data [34].

Another newly included quantity is the coupling constant
fπqq , which is expected to obey the Goldberg-Treiman rela-
tion at the quark level as

fπqq

2mq

= 1

2fπ

3

5
gA. (45)

Given the nucleon axial charge gA = 1.25, pion decay con-
stant fπ = 93.1 MeV, and by using the quark mass mq =
330 MeV we determine fπqq = 2.65.

It is worth noting in Eq. (42) that (t/2 + k2/2 −
q2/4 − m2

q )−1 becomes singular near −t ≈ 0 as k2 = q2 =
m2

π for the pion elastic scattering when mπ = 2mq is assumed.
For a better convergence of the quark loop in addition to the
form factor FPqq (t ), therefore, we utilize the pion form factor
Fπ (t ). Moreover, in order to adjust the range of the Fπ (t ) it is
convenient to use the cutoff mass in Eq. (37), having an energy
dependence as

�(k) = k

μ
(W − Wth), (46)

where k is the incident pion momentum in the c.m. system, μ
is the parameter of mass unit, and Wth is the total energy at
threshold.

Figure 6 shows the divergence of the Pomeron exchange
depending on the quark mass, for instance, mq = 140 MeV
used without the form factor Fπ (t ). Dotted, dash-dotted, and

10-2 10-1 100 101 102 103

PLab [GeV/c]

10-4

10-2

100

102

σ 
[m

b]

Fπ(1)=1; mq=140 MeV
Fπ(t)=1; mq=330 MeV
μ=mπ; n=1
μ=mπ; n=2
μ=1 GeV; n=2

Pomeron Exchange 

FIG. 6. Dependence of Pomeron exchange on Fπ (t ). Given
the physical pion mass mπ and Pomeron trajectory in Eq. (47),
the red dashed curve shows the divergence for mq = 140 MeV in the
absence of Fπ (t ). fπqq = 1.32 is used for a coincident with others
for comparison. The rest of curves are resulting from the change of
mass parameter μ and power n with mq = 330 MeV fixed.

dash-dot-dotted curves are the cases of the Pomeron converg-
ing in the lower energy region due to the role of Fπ (t ) with
the parameter μ and power n as designated in the figure.

Figure 7 presents differential cross sections for π+p and
π−p elastic scatterings. In each reaction those cross sections
at high momenta PLab = 100 and 200 GeV/c in the upper two
panels are used to determine the Pomeron trajectory, while all

10-2
100
102
104

dσ
/d

t [
μb

/G
eV

2 ]

10-2
100
102
104

10-2
100
102
104

10-2
100
102
104

10-4

10-2

100

dσ
dt

 [m
b/

G
eV

2 ]

10-4

10-2

100

0 0.5 1 1.5 2 2.5
-t [GeV2]

10-4

10-2

100

0 0.5 1 1.5 2 2.5
-t [GeV2]

10-4

10-2

100

π+ p π− p PLab=200 GeV/c

PLab=100 GeV/c

PLab=8.5 GeV/c

PLab=6 GeV/cPLab=6 GeV/c

PLab=8.5 GeV/c

PLab=100 GeV/c

PLab=200 GeV/c

FIG. 7. Differential cross sections dσ/dt for π+p (left) and π−p

(right) elastic scattering at PLab = 200, 100, 8.5, and 6 GeV/c,
respectively. Dashed and dash-dotted curves in the lower two panels
are the contributions of f2 and Pomeron. Data at 100 and 200 GeV/c

pion momenta are taken from Ref. [35] and data at 6.0 8.5 GeV/c

are from Refs. [36,37].
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10-1 100 101 102 103

PLab [GeV/c]

10-2

10-1

100

101

102

103

σ 
[m

b]

π+ p
π− p
π− p
π+ p

P

f2

ρ

ω

σ

FIG. 8. Total cross section σ for elastic reactions π+p (red) and
π−p (black). Notations for f2 and Pomeron are the same as in Fig. 7
for both processes. The difference between π+p and π−p cross
sections is due to the roles of ρ + ω exchanges. Dominance of f2

+ Pomeron exchanges is apparent. World data are taken from the
PDG [38].

the physical constants we use for fπqq , βu, βd , and μ2
0 are fixed

as before. Nevertheless, there is no criterion for what value
we have to choose for the parameter μ at present, because the
existing data are insensitive to a change of μ. In this work we
choose μ = 1 GeV and n = 2 for illustration purposes. Then,
by leaving the slope and intercept of the Pomeron trajectory
αP(t ) free parameters to fit to high-energy data, we obtain a
good agreement with the energy and t dependence of the cross
sections at the choice of

αP(t ) = 0.12 t + 1.06 (47)

for Eq. (39). We note that the slope in the πN scattering is
consistent with Ref. [8], but by the factor of 1/2 slower than
that of the Pomeron αP(t ) = 0.25 t + 1.08 fitted to the total
cross section of the πN reaction [27]. Note that the slope of
the total cross section at high energies given as the energy
to the power ∼s0.0808 [thus, α(0) = 1.08 by σ 
 sα(0)−1] is by
far different from that of the elastic cross section of the present
case, as can be seen in Fig. 8.

In Fig. 8 we present total elastic cross sections for π+p
and π−p, where the contributions of the meson exchange
as well as that of the Pomeron are shown. A few remarks
are in order on the features of meson exchanges. The vector
mesons ρ and ω are responsible for the difference between
π+p and π−p cross sections, as shown from threshold up
to PLab ≈ 2 GeV/c. At high momenta, the exchanges of f2

and the Pomeron in the isoscalar channel are dominant over ρ
and ω so that the two cross sections coincide with each other,
which should be distinguished from the difference between
the total cross sections at high energy as in Refs. [6,26,32].
Thus, the reaction mechanisms of π±p elastic reactions are
characterized by the dominance of the natural parity exchange
in the isoscalar channel.

Polarization of the target proton is the observable that could
verify the accuracy of model predictions for the experimental

-0.4

-0.2

0

0.2

0.4

P

-0.4

-0.2

0

0.2

0.4

0 0.5 1 1.5 2
-t [GeV2]

-0.2

-0.1

0

0.1

0.2

P

0 0.5 1 1.5 2
-t [GeV2]

-0.2

-0.1

0

0.1

0.2
PLab=14 GeV/c PLab=14 GeV/c

PLab=100 GeV/cPLab=100 GeV/c

π+ p π− p

FIG. 9. Polarization asymmetry P (t ) for π+p (left) and π−p

(right) elastic scattering at PLab = 14 and 100 GeV/c. Predictions
from the model are in good agreement with data. Data are taken from
Refs. [39,40].

measurement. To show the validity of the present model
we present the polarization for π±p reactions in Fig. 9 at
intermediate and high momenta PLap = 14 and 100 GeV/c.
In these results the mirror symmetry between π+p and π−p,
which is a feature of polarizations of opposite charge, is well
reproduced in any momentum range. In particular, polariza-
tions are sensitive to the contribution of f2 exchange with the
coupling constant g

(2)
f2NN = 0, for better agreement with data.

IV. BARYON RESONANCES BELOW W � 2 GeV

In this section we present the nucleon resonances in the
energy dependence of the cross section based on the t-channel
exchanges as discussed in previous sections. More data from
the angular distributions and spin polarizations could make
the resonance parameters more precise. The most updated
analysis for the nucleon resonances can be found in the
SAID program of Ref. [41]. However, such a fine-tuning is
beyond the scope of the present work and our aim here is
to demonstrate how the Regge poles are well suited for the
nucleon resonance of the Breit-Wigner form in the reaction
amplitude,

M = (MRegge + MP) + MR. (48)

By the conventional definition of the nonrelativistic scat-
tering amplitude as in the Appendix, we write the scattering
amplitude as

MR = 8πW√
4MM ′

√
k

q
[F (s, θ ) + iσ · n̂ G(s, θ )], (49)
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1 1.2 1.4 1.6 1.8 2 2.2 2.4
W [GeV]
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102

σ 
[m

b]

Hoehler
World data
World data
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ρ(775)+ρ(1450)+cuts

π− p → π0 n
1232

1440

1650

1905
1720

1535

FIG. 10. Nucleon resonances in the π−p → π 0n reaction.

with n̂ = k̂ × q̂/ sin θ , and consider the spin nonflip and flip
amplitudes to be of the form [42]

F (s, θ ) = 1

k

∑
R

cR (JR + 1/2)

εR − i
e−dε2

RPl (cos θ ), (50)

G(s, θ ) = 1

k

∑
R

cR (−1)JR−l+1/2

εR − i
e−dε2

R
dPl (cos θ )

d cos θ
, (51)

with the d in the Gaussian type of the damping factor to
adjust the width of the resonance. Here, cR = IRXR is a sort
of coupling strength of the resonance R originating from the
product of the Clebsch-Gordon coefficient for isospin and
elasticity. εR = (M2

R − s)/MR�R is the s-channel pole with
the mass and full width of the resonance R. k and θ are the
momentum and scattering angle in the c.m. system. JR is the
spin of the resonance.

Figure 10 shows the total cross section for π−p → π−n,
in which case the t-channel meson exchanges in Eq. (16)
constitute a background contribution upon which nucleon
resonances are mounting. Nucleon resonances �(1232),
N∗(1440), N∗(1535), N∗(1650), N∗(1720), and �(1905)
are introduced with their parameters fitted to the total cross
section data as in Table II. Note that, unlike in Ref. [43], the
contributions of the t-channel exchanges in the present calcu-
lation are not passing through the average of the cross section
on the energy interval below W ≈ 2 GeV, and we expect that
the problem of double counting should be insignificant.

The resonance structures in π−p → π−p and π+p →
π+p reactions are presented in Figs. 11 and 12. It is worth
remarking that the scalar meson coupling constant fσππ =
−0.5 is used with its sign reversed, because it is advantageous
to alleviate the problem of double counting by reducing the
contribution of the σ meson, which may overlap with a
resonance. On the other hand, we have to neglect the threshold
divergence of the � pole in Figs. 10 and 11 which are not
covered up by the Gaussian damping factor in the multipoles.
In practice, this is a drawback of the present model calcula-
tion of the resonances, formulated as in Eqs. (50) and (51).
Moreover, in the case of the π+p → π+p reaction where we

TABLE II. � and N∗ resonances in πN scatterings. Mass and
width in units of MeV are taken at the Breit-Wigner fit in the PDG.
Process I stands for π−p → π 0n, II for π−p → π−p, and III for
π+p → π+p, respectively.

Process Resonance MR �R cR d

I �0(1232) P33 1232 125 0.5 0.3
N∗(1440) P11 1440 400 0.6 0.7
N∗(1535) S11 1510 150 0.4 0.5
N∗(1650) S11 1650 125 0.7 0.4
N∗(1720) P13 1720 250 0.3 0.4
�0(1905) F35 1900 300 0.2 0.1

II �0(1232) P33 1232 125 0.35 0.4
N∗(1440) P11 1420 400 − 0.5 2.2
N∗(1535) S11 1510 150 0.6 0.5
N∗(1650) S11 1650 125 0.75 0.4
N∗(1720) P13 1720 250 0.3 0.4
�0(1905) F35 1900 300 0.2 1

III �++(1232) P33 1235 120 2 0.03a

�++(1905) F35 1900 400 0.5 0.9

aIn III, in addition to the Gaussian damping factor with the parameter
d , the cutoff function in Eq. (37) with n = 1 and μ = mπ is applied
to the �++ multipole.

have to reproduce the �++(1232) pole with such a wide width
that amounts to 500–600 MeV as can be seen in Fig. 12, the
threshold divergence is even worse. In order to suppress the
strong divergence near threshold, we apply the cutoff function
in Eq. (37) for the �++(1232) pole with n = 1 and μ = mπ

in Eq. (46), in addition to the Gaussian damping factor.

V. SUMMARY AND CONCLUSIONS

In this work we have investigated π−p → π0n charge
exchange and π±p → π±p elastic reactions up to incident
pion momentum PLab ≈ 250 GeV/c to provide a theoreti-
cal framework that could validate a consistency of the cou-
pling strengths and forms of interaction Lagrangians between

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
PLab [GeV/c]

100

101

102

σ 
[m

b]

π− p
t-ch. Regge+Pomeron

1232

1440

1535
1650

1720
1905

FIG. 11. Nucleon resonances in the π−p → π−p reaction. The
respective contributions of nucleon resonances are presented.
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PLab [GeV/c]
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101

102

103

σ 
[m

b]

π+ p
t-ch. Regge+Pomeron1232

1905

FIG. 12. Nucleon resonances in the π+p → π+p reaction. Res-
onances �(1232) + �(1905) reproduce the peaks.

hadrons at low and high energies. For a description of
the reaction in the Regge realm we utilize the relativistic
Born amplitude for the Reggeization of the t-channel meson
exchange. Through the reproduction of reaction cross sec-
tions, the reaction mechanisms by the t-channel meson and
Pomeron exchanges are analyzed, with the coupling constants
for hadron interactions shared with other hadron reactions,
e.g., photoproductions of vector mesons.

A unique role of vector meson ρ(775) in the charge ex-
change reaction is investigated. Given the single ρ exchange
with the deep dip at the NWSZ point −t = 0.51 GeV2, the
dip-filling mechanism for the differential cross section needs
ρ-f2 and ρ-Pomeron cuts. In order to reproduce the spin
polarization a second ρ(1450) Regge pole is called for, with
the trajectory predicted from the relativistic quark model,
though the coupling constants of the ρ(1450) are treated as
free parameters. These theoretical entities yield the Regge
description of the charge exchange process to a good degree.

The exchange of a soft Pomeron is newly constructed from
the quark-Pomeron coupling picture and applied successfully
for π±p elastic scatterings with a trajectory quite different
from that from the total cross sections for the πN reaction.
The difference between the π+p and π−p elastic cross sec-
tions is insignificant because of the minor roles of ρ + ω
exchanges, while f2(1275) and Pomeron exchanges are domi-
nant in the overall range of pion momentum. Polarizations are
well reproduced with the mirror symmetry reflected between
the two reactions of opposite charges.

Nucleon resonances below W � 2 GeV are repro-
duced in three channels, π−p → π0n, π+p → π+p, and

π−p → π−p, and they are consistent with existing data
within the masses, widths, and branching fractions re-
ported in the PDG. These findings illustrate how the t-
channel Regge poles in the present framework do well for
the analysis of nucleon resonances in the low-energy re-
gion as well as the description of the reactions at high
energies.
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APPENDIX: PARTIAL WAVE EXPANSION
FOR NUCLEON RESONANCE

The scattering amplitude in the πN c.m. system is defined
by

√
4MM ′

8πW
M = χ †[F (s, θ ) + iσ · n̂ G(s, θ )]χ (A1)

with our convention for the normalization constant N =√
E+M

2M
for the Dirac spinor. Here χ is the 2 × 1 Pauli spinor

with spin and isospin indices understood.
The differential cross section is calculated by the equation

dσ

d�
= q

k

∣∣∣∣∣
√

4MM ′

8πW
M

∣∣∣∣∣
2

= |F |2 + sin2 θ |G|2. (A2)

The spin nonflip and flip parts of the scattering amplitude are
expanded with the orbital momentum l and the total angula
momentum J ,

F (s, θ ) =
∑
l=0

[(l + 1)fl+(s) + lfl−(s)]Pl (cos θ ), (A3)

G(s, θ ) =
∑
l=1

[fl+(s) − fl−(s)]
dPl (cos θ )

d cos θ
. (A4)

Each partial wave of α(= l±) is related to the phase shift by

fα (s) = 1

2ik
(e2iδα − 1). (A5)

The energy dependences of the partial wave for the spin non-
flip and flip amplitudes in Eqs. (A3) and (A4) are parametrized
as in Eqs. (50) and (51).
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