1974 Report of

RANDOM SAMPLE EGG PRODUCTION TESTS

United States and Canada

Two-Year Combined Summary, 1972-73 and 1973-74
Range Group Rankings, 1973-74

PREFACE

Egg production tests are designed to provide poultrymen, hatcherymen, and breeders with a reliable guide to the performance of poultry stocks offered for sale. This publication contains information on many egg production traits that are of economic importance to the trade. The data were compiled from the records of official Random Sample Egg Production Tests conducted in the United States and Canada. The data resulting from these tests have been analyzed statistically by the Animal Improvement Programs Laboratory, Animal Physiology and Genetics Institute, Agricultural Research Service, USDA, Beltsville, Md.

The publication of this report is based on recommendations of the National Committee on Random Sample Poultry Testing and the Council of American Official Poultry Tests. The information was compiled by the Poultry Improvement Staff, Animal Improvement Programs Laboratory, Agricultural Research Service, from data furnished by Test supervisors.

The publication of this report does not imply approval or endorsement by the U.S. Department of Agriculture of any of the stocks mentioned.
Page
 1
 2
 3
Stocks should be compared for all traits 3
Definition of terms used and abbreviations 3
Definition of traits 4
Tests and supervisors 5
Procedures used for computing combined summary values 12
Statistical methods 12
 13
 20
How group rankings were determined for each trait 20
 20
Management and environmental conditions at tests 20
Random Sample Egg Production Test entries and conditions, 1973-74 30
TABLES

1. Two-year combined summary: Regressed means and 80% confidence limits for traits by stocks entered 6
2. Analytical data for the traits measured, 1972-73 and 1973-74 14
 15
 21
3. Range group ranking for stock entered in 1973-74 Random Sample Egg Production Tests--- 24
 30
4. Management, rations, laying house environment, and vaccination provided in tests, 1973-74 32

This report is divided into four sections:

1. A 2-year combined sumary of the data obtained in the 1972-73 and 1973-74 Random Sample Egg Production Tests. These data were treated by acceptable statistical procedures that allow the reader to compare directly the stock entered in the various egg production tests in the United States and Canada.
2. An explanation of statistical procedures that were used in computing the regressed means and confidence limits of egg production traits evaluated in the 2 -year combined summary.
3. A range group ranking for stock that was entered in 1973-74 Random Sample Egg Production Tests. The ranking shows the performance of each stock by traits compared with that of other stock in the same test.
4. List of stocks entered in 1973-74 tests and some of the management conditions at the test during the 1973-74 test year.

TWO-YEAR COMBINED SUMMARY FOR TEST YEARS 1972-73 and 1973-74

Entries in the various tests start with a random sample of hatching eggs or chicks of the stock to be tested. Samples are drawn according to prescribed methods to ensure that each entry is typical of the stock it represents. All entries within a test are treated alike with respect to housing, feeding, management, and disease control in order to avoid differences in performance that would be due to environment.

All tests are conducted according to these basic principles. However, even the most carefully designed and conducted tests are influenced by errors of two kinds. The first kind of error is the chance deviation or unavoidable "sampling error" made when a small sample of eggs or chicks represents an entry. The other kind of error is due to uncontrolled or unknown environmental differences between entries that occur in spite of all efforts to treat all entries within a given test as nearly alike as possible. The differences between the results for two entries in a single test for a single year may be due to these chance variations rather than to a real difference in the performance capabilities of the two stocks. The effect of such errors in comparing stocks can be materially reduced by basing comparisons on the combined results of several tests over two or more years.

If all entries compared were entered in the same tests in both years, the simple averages could be compared directly without adjustment. However, differences among tests and between years and those caused by climatic conditions and other envirommental factors affect the results. As a consequence, a direct comparison of the test results of two stocks in different tests or in different years may be misleading. Therefore, to present test results in a manner that will allow sound evaluation of all stocks tested, the results were combined, by stocks and by years, and were adjusted by accepted statistical procedures for test and year differences and for variation in amount of information per stock. The results of these computations are published as the "regressed mean" for each trait for each stock that was tested (table 1).

The performance data (regressed means) reported in this sumary are derived from the results reported by the individual tests for each of the past two years. It is unlikely, however, that the means for any stock, even though entered in only one test each year, will coincide precisely with the two-year average performance data as published by the test. The variations are due to adjustments for test differences, year difference, the number of tests and of years entered, and the number of replicates per test. These statistical adjustments allow predictions of what the average performance would have been for each stock had all stocks been entered in all tests each year.

The statistical treatment applied to the test data is designed to reduce the influence of nongenetic variations. This cannot be accomplished perfectly, and consequently, estimates or predictions of performance cannot be made with absolute precision. However, reliable predictions, within prescribed limitations, can be made as to whether a difference in the reported performance of stocks represents a real difference in their performance. These predictions involve the use of the confidence limit values that have been computed for each trait or performance factor reported.

A brief explanation of the statistical procedures used in computing the regressed means and confidence limits is provided in the section entitled "Procedures Used for Computing Combined Summary Values."

The following example illustrates the compilation of the two-year combined summary. This and the related explanation will help the reader to use and interpret the data in table 1 .
(Illustration of regressed means and 80 -percent confidence limits as they might appear for a few traits)

STOCK CODE	BODY WEIGHT (pounds)		FEED PER POUNDOF EGGS PRODUCED (pounds)		EGG WEIGHT (oz./doz.)		LARGE AND EXTRA LARGE EGGS (percent)		ALBUMEN QUALITY (Haugb units)		BLOOD SPOTS					
			$1 / 8 \mathrm{INCH}$ OR MORE (perceme)	LESS THAN $1 / 8$ INCH (perce'nt)												
	$\begin{gathered} \text { RE- } \\ \text { GRESSEO } \\ \text { MEAN } \end{gathered}$	$\begin{aligned} & 80 \%{ }^{*} \\ & \text { CONF. } \\ & \text { LIMITS } \end{aligned}$			RE- GRESSED MEAN	$\begin{aligned} & 80 \%^{\circ} \\ & \text { CDNF, } \\ & \text { LIMITS } \end{aligned}$	$\begin{array}{\|c} \text { RE. } \\ \text { GRESEED } \\ \text { MEAN } \\ \hline \end{array}$		$\begin{array}{\|c\|} \hline \text { RE. } \\ \text { GRESSED } \\ \text { MEAN } \\ \hline \end{array}$	$\begin{gathered} 80 \%{ }^{\circ} \\ \text { CONF. } \\ \text { LIMITS } \end{gathered}$	RE- GRESSED MEAN		$\begin{array}{c\|} \hline \text { RE- } \\ \text { GRESSED } \\ \text { MEAN } \\ \hline \end{array}$	$\begin{aligned} & 80 \%{ }^{8} \\ & \text { CONF. } \\ & \text { LIMITS } \end{aligned}$	$\begin{array}{\|c\|} \hline \text { RE- } \\ \text { GRESSED } \\ \text { MEAN } \end{array}$	$\begin{gathered} 80 \%{ }^{\circ} \\ \text { CONF. } \\ \text { LIMITS } \end{gathered}$
		5.4		2.95				25.7		75.2		77.1		0.9		2.2
995	5.6	5.8	3.02	3.09	26.0	26.3	77.5	79.8	77.9	78.7	1.1	1.4	2.7	3.2		
		4.0		2.77		25.0		69.0		80.1		0.6		0.8		
996	4.2	4.4	2.83	2.89	25.2	25.4	71.0	72.8	80.9	81.7	0.7	1.0	1.1	1.4		
		4.5		2.86		24.6		65.5		73.3		1.0		1.5		
997	4.7	4.9	2.94	3.02	24.9	25.2	68.0	70.3	74. 1	74.9	1.2	1.4	1.9	2.4		
		3.7		2.73		24.9		69.2		75.5		0.9		1.2		
998	4. 0	4.3	2.84	2.95	25.3	25.7	72.4	75.6	76.6	77.7	1.0	1.2	1.5	1.9		
		3.9		2.47		25.0		67.6		82.3		0.6		0.7		
999	4.2	4.5	2.56	2.65	25.4	25.8	70.3	73.0	83.0	83.7	0.8	1.0	1.1	1.4		

*If the confidence limits for two regressed means overlap, the two means are not significantly different at the 5% level.
The range of the confidence limits represents the amount of difference in the performance of two stocks that may be due to chance. If the confidence limits for two regressed means overlap, the two means are not significantly different at the 5-percent level of probability. If the confidence limits for two regressed means do not overlap, the odds are at least 19 in 20 that a real difference exists in the performance of the two stocks.

The use of the above data as means of evaluating different stocks and traits can be illustrated as follows:
For the trait "Body Weight," the confidence limits of Stock 995 (5.4 to 5.8 lbs.) do not overlap the confidence limits of any of the other stocks. Therefore, Stock 995 has a significantly higher body weight than the others. However, the confidence limits of Stock 996 (4.0 to 4.4 lbs.) overlap the confidence limits of Stock 998 (3.7 to $4.3 \mathrm{lbs}$.) and Stock 999 (3.9 to 4.5 lbs .). The body weights of these three stocks are, therefore, not significantly different.

Using the trait "Feed per Pound of Eggs Produced" as another example, the confidence limits of Stock 995 (2.95 to $3.09 \mathrm{lbs}$.), Stock 997 (2.86 to 3.02 lbs .) , and Stock 998 (2.73 to 2.95 lbs.) all overlap each other. Thus there is no significant difference in the feed conversion of these three stocks. When comparing the feed conversion of Stock $999(2.56 \mathrm{lbs}$.) with that of the other stocks, we see that the range of its confidence limits is from 2.47 to 2.65 lbs. Since this range does not overlap the confidence limits of the other four stocks, Stock 999 has a significantly lower feed conversion than the other stocks listed.

Another example can be shown by using the trait "Albumen Quality." The confidence limits of Stock 995 (77.1 to 78.7) overlap the confidence limits of Stock 998 (75.5 to 77.7). Therefore, there is no significant difference in the albumen quality of these two stocks, even though the regressed mean of Stock 995 is 77.9 Haugh Units and Stock 998 is 76.6 Haugh Units. When Stock 995 is compared with Stocks 996 and 999, we see that the confidence limits of these two stocks do not overlap those of Stock 995. Thus, these two stocks have a significantly higher albumen quality (80.9 and 83.0 haugh Units, respectively) than the 77.9 Haugh Units of Stock 995. In comparing Stock 995 with Stock 997 , the confidence limits do not overlap. In this case, the albumen quality of Stock 997 , expressed as a regressed mean of 74.1 Haugh Units is significantly lower than the regressed mean of Stock 995.

The range of the confidence limits will not necessarily be the same for two different stocks that have the same regressed mean. The number of locations in which a stock is entered, the number of replicate pens per location, the number of years entered, and the accuracy involved in adjusting for location and year effects all have a bearing on the range of the confidence limits for each individual regressed mean.

The "Income Over Feed and Chick Cost" figures reported in table 1 represent the sales value of the eggs produced and of the hens at the end of the test minus the cost of the chicks and the feed used during the growing and laying periods. These figures may be useful in comparing the overall performance of stocks, but they should not be considered as predictions of "profit" to be obtained under commercial operations. The "income" figures should be reduced by other costs, such as labor, building and equipment depreciation, vaccination, litter, interest, taxes, and insurance, to approximate profits that might be expected under commercial conditions. Surveys conducted among commercial producers indicate that such other costs may range from $\$ 1$ to $\$ 2$ per pullet housed.

Although the average chick price is reported for each stock, this value cannot be appropriately used to convert the "Income Over Feed and Chick Cost" figure to an income over feed cost figure. The average chick price shown is a simple unadjusted average of the prices reported by the entrant for his entries in the various tests and is not directly comparable to chick cost included in "Income Over Feed and Chick Cost."

Stocks Should be Compared for all Traits

All traits should be considered when using this report to evaluate the overall performance of the various stocks. The values reported for "Income Over Feed and Chick Cost" represent a composite of several traits, combined as determined by the economic conditions of the areas in which the tests are located. The conditions under which the stock is expected to perform in commercial production may differ from those prevailing at the tests, and such differences should be taken into consideration. For example, a poultryman whose local market pays unusually high premiums for large and extra large eggs should place more emphasis on egg size in his evaluation of stock than poultrymen located in areas where such premiums are not available. The local market preference for brown or white shells should also be taken into account. Traits related to interior egg quality that affect the grade are of greatest importance in areas where prices are based on quality standards.

Each person should study his local needs and conditions and then place appropriate emphasis on the performance traits that are of greatest importance to his situation. A productive and profitable stock for one poultryman under one set of conditions may not fit the needs of another poultryman under a different set of conditions.

Definition of Terms Used and Abbreviations

Stock: A term used to identify a specific breeding combination of chickens. These breeding combinathereof. Kinds of stock and breeding methods are---

BPR	Barred Plymouth Rock	BX	Crossbred	IN	Incross
NH	New Hampshire	WL	White Leghorn	PS	Pure Strain
RIR	Rhode Island Red	WPR	White Plymouth Rock	SX	Strain Cross

Syn. Synthetic

```
New Hampshire Cage (N.H.-C.)
New Hampshire Floor (N.H.-F.)
North Carolina (N.C.)
Pennsylvania (Pa.)
Tennessee (Tenn.)
```

Test Year: A period beginning during the first year stated in a double-year designation and ending approximately 500 days later. See management summary shown in table 7 .

Growing mortality

Laying mortality

Age at 50 percent production

Hen-housed egg production

Hen-day egg production (to end of test)

Hen-day egg
production (last 30 to 60 days)

Feed per pound
of eggs

Egg weight

Large and extra large eggs

Albumen quality

Large blood spots

Small blood spots

Large meat spots

Small meat spots

Specific gravity score

Body weight
Income over feed and chick cost

Percentage of birds that died on or before the time they were 150 days old or subsequent age at housing.

Percentage of birds that died after they were 150 days old or subsequent age at housing.

Days of age computed from the first day of the first two consecutive days of 50 percent production for living birds in the entry at that time.

Number of eggs laid per pullet housed computed from time of housing to the end of the test.

Percent hen-day production from the time birds reached 50 percent production to end of test.

Percent hen-day production during the last 30 to 60 days of the test. Length of time involved varies according to the record keeping system of each individual test.

Pounds of feed per pound of eggs produced, computed from bulk weighing of the eggs at least one day every two weeks or two days a month at equal intervals during the laying period of the test.

The weight of a dozen eggs computed from bulk weighing of the eggs at least one day every two weeks or two days a month during the laying period of the test.

Percentage of large and extra large eggs as determined by egg-size distribution computed from all eggs laid one day each week.

Haugh units, computed from egg weight and albumen height of broken-out egg measured on one day's eggs per quarter, at equal intervals. The greater the Haugh units the higher the albumen quality.

Percentage of eggs with one or more large blood spots ($1 / 8$ inch or more in diameter), computed from at least three days' eggs per quarter, broken-out basis.

Percentage of eggs with one or more small blood spots (less than $1 / 8$ inch in diameter), computed from at least three days' eggs per quarter, broken-out basis.

Percentage of eggs with one or more colored large meat spots (1/8 inch or more in diameter), computed from at least three days' eggs per quarter, broken-out basis.

Percentage of eggs with one or more colored small meat spots (less than $1 / 8$ inch in diameter), computed from at least three days' egg per quarter, broken-out basis.

Eggs are given the specific gravity score that corresponds with the specific gravity of the solution in which they will float. Eggs that do not float in 1.100 solution are given a nine score. The specific gravity of an egg is closely correlated with shell thickness; therefore, the higher the specific gravity score, the thicker the shell. Tabulation of specific gravity solutions and the corresponding specific gravity scores follow:

Solution	Score	Solution	Score
1.068	0	1.088	5
1.072	- 1	1.092	6
1.076	- 2	1.096	7
1.080	3	1.100	8
1.084			

Average weight of birds alive at end of test.
Income over feed and chick cost per pullet housed, with chick cost in 1,000 lots at hatch date adjusted for mortality (accidental deaths, sexing errors, and missing chicks not included).

```
Canada Central Egg Production Test
    W. K. Barr, Poultry Production Section, Canada Department of Agriculture, Ottawa, Ontario, Canada
        Phone 613/994-9571
Florida Poultry Evaluation Center
    R. B. Christmas, Chipley, Fla. }3242
        Phone 904/638-0588
Minnesota Random Sample Egg Production Test
    Robert E. Moehrle, Department of Agriculture, Division of Poultry Industries, 530 State Office Building,
        St. Paul, Minn. }5510
        Phone 612/296-2861
Missouri Random Sample Egg Production Test (Cage)
    Charles W. McElyea, P. O. Box 530, Mountain Grove, Mo. 65711
        Phone 612/296-2861
Missouri Random Sample Egg Production Test (Floor)
    Charles W. McElyea, P. O. Box 530, Mountain Grove, Mo. 65711
        Phone 417/926-4151
New Hampshire Egg Production Test (Cage)
    W. C. Skoglund, Department of Poultry Science, University of New Hampshire, Durham, N. H. 03824
                Phone 603/862-2130
New Hampshire Egg Production Test (Floor)
    W. C. Skoglund, Department of Poultry Science, University of New Hampshire, Durham, N.H. 03824
        Phone 603/862-2130
North Carolina Random Sample Egg Laying Test, Salisbury
    G. A. Martin, Poultry Extension Department, North Carolina State University, Raleigh, N. C. 27607
        Phone 919/755-2621
Pennsylvania Random Sample Laying Test
    Edgar V. Hammers, Pennsylvania Furnace, Pa. }1686
        Phone 814/692-8446
Tennessee Random Sample Laying Test
    H. V. Shirley, Jr., Animal Science Department, University of Tennessee, Knoxville, Tenn. }3791
        Phone 615/974-7374
```

Copies of the final report for any of the Random Sample Egg Production Tests listed above can be
obtained by writing to the test supervisor.

	$\begin{aligned} & \text { 咅 } \\ & \text { 曾 } \end{aligned}$	

	$\underset{\sim}{\infty} \underset{\sim}{\sim} \dot{\sim}$
0	
	号
	キْi
	Nَ
	产

Table l.--Two-year combined summary: Regressed means and 80% confidence limits for traits by stocks entered (Continued)

stock code	Breeder's Name and address	stock		$\begin{aligned} & \begin{array}{l} \text { NO. } \\ \text { PENS } \end{array} \\ & \hline \text { NO. } \\ & \text { LOCA- } \\ & \text { TIONS } \end{aligned}$	Avg. CHICK PRICE (cents)	mortality				AGE AT 50\% PRODUCTION (days)		EGG PRODUCTION					
		breeding	$\begin{gathered} \text { Strain } \\ \text { or or } \\ \text { TROENAME } \end{gathered}$			growing (percent)		laying (percent)				HEN HOUSED (number)		(TO END OF TEST)(percent) (percent)\qquad		$\begin{gathered} \text { HEN-DAY } \\ \text { (LAST 30-60 DAYS) } \\ \text { (percent) } \\ \hline \end{gathered}$	
						$\begin{aligned} & \text { RE- } \\ & \text { GRESSED } \\ & \text { MEAN } \end{aligned}$	$\begin{gathered} \text { so\% } \\ \text { conf, } \\ \text { comits } \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { RE. } \\ \text { GRESSEO } \\ \text { MEAN } \\ \hline \end{array}$	$\begin{gathered} \text { 8o\%** } \\ \text { conf, } \\ \text { LOMITS } \\ \hline \end{gathered}$	$\begin{array}{c\|} \text { RE- } \\ \text { GRESEO } \\ \text { MEAN } \end{array}$	$\left[\begin{array}{c} 80 \%{ }^{2} \\ \text { coNF. } \\ \text { LOMITS } \end{array}\right.$	$\begin{array}{\|c\|} \hline \text { RE. } \\ \text { GRESSEO } \\ \text { MEAN } \\ \hline \end{array}$	$\begin{aligned} & 800^{\circ} \\ & \text { conf } \\ & \text { LIMiTs } \end{aligned}$	$\begin{array}{\|c\|} \hline \text { RE- } \\ \text { GRESSEO } \\ \text { MEAN } \end{array}$	80%. conf. LIMITS	$\begin{array}{\|c\|} \hline \text { RE- } \\ \text { GRESEO } \\ \text { MEAN } \\ \hline \end{array}$	$\begin{aligned} & \text { 8o\%* } \\ & \text { con. } \\ & \text { LוMITS } \\ & \hline \end{aligned}$
339	Davis, Joe K., Hatchery Earl, N.C. 28038	$\begin{array}{r} \text { RIR×BPR } \\ B X \end{array}$	Davis Combiner -	$\begin{array}{r} 38 \\ 6 \end{array}$	33.5	2.9	2.4 3.4	8.9	7.2 10.7	184	1.80 188	196	$18 n$ 203	63.6	61.9 65.3	53.4	$\begin{aligned} & 51.4 \\ & 55.4 \end{aligned}$
447	Euribrid, B. V. Boxmeer, Holland	WL SX	Hisex White	$\begin{array}{r} 14 \\ 4 \end{array}$	35.3	2.1	1.7 2.4	8.0	6.3 10.0	179	175 183	242	233 251	75.2	73.2 77.2	62.0	$\begin{aligned} & 59.6 \\ & 64.4 \end{aligned}$
607	Fisher Poultry Farm, Ltd. Ayton, Ontario, Canada	WL SX	Fisher 107	$\begin{aligned} & 56 \\ & 11 \end{aligned}$	32.1	2.4	1.9	10.8	9.1 12.6	176	173 179	218	212	68.1	66.7	57.6	55.8 59.4
66	Garber Poultry Br. Farm Modesto, Calif. 95351	WL SX	Garber G200 -	$\begin{aligned} & 41 \\ & 10 \end{aligned}$	28.4	3.1	2.6 3.6	8.1	6.6 9.7	174	171 177	2?1	215 227	68.1	66.7 69.5	61.7	$\begin{aligned} & 60.1 \\ & 63.3 \end{aligned}$
225	Harco Farms South Easton, Mass. 02375	RIR×BPR	Harco Sex Link--	$\begin{array}{r} 22 \\ 2 \end{array}$	32.0	2.5	2.1 2.9	5.4	3.9 7.0	178	174 182	225	$\begin{aligned} & 217 \\ & 233 \end{aligned}$	68.6	66.5 70.7	57.7	55.2 60.2
86	Hardy, C. Nelson \& Son Essex, Mass. 01929	$\begin{array}{r} \text { RIR×BPR } \\ B X \end{array}$	Deluxe Sex Link -	$\begin{aligned} & 6 \\ & 1 \end{aligned}$	30.0	2.0	1.7 2.3	5.4	4.0 7.1	177	173 181	207	197	62.2	60.0 64.4	53.7	51.2 56.2
378	Hubbard Farms, Inc. Walpole, N. H. 03608	Syn.xN.H.	Golden Comet	$\begin{array}{r} 32 \\ 6 \end{array}$	30.0	2.1	1.7 2.5	5.0	3.8 6.4	171	168 174	223	$\begin{aligned} & 216 \\ & 230 \end{aligned}$	69.2	67.6 70.8	53.8	$\begin{aligned} & 51.9 \\ & 55.7 \end{aligned}$
356	Ideal Poultry Br. Farms Cameron, Texas 76520	$\begin{array}{r} \text { Syn. } x W L \\ B X \end{array}$	Ideal 236-	$\begin{aligned} & 71 \\ & 17 \end{aligned}$	27.0	3.2	2.6 3.7	7.9	6.6 9.3	171	168 174	230	224	70.6	69.4 71.8	63.3	61.9 64.7
234	Indiana Farm Bureau Coop. Indianapolis, Ind. 46204	WL SX	Duchess 60	$\begin{aligned} & 37 \\ & 11 \end{aligned}$	32.0	3.5	2.9 4.1	12.3	10.4 14.2	172	169 175	224	218 230	70.7	69.3 72.1	60.0	58.3 61.7
589	Kath Line of Canada Aldergrove, Br. Sol., Can.	WL SX	Kath Line H 63	$\begin{array}{r} 16 \\ 2 \end{array}$	39.0	2.5	2.0	11.9	9.8 14.2	172	169 175	212	204	68.3	66.4 70.2	59.6	57.3 61.0
117	Lawton Farms Foxboro, Mass. 02035	RIRxWPR BX	Buff Sex Link -	$\begin{aligned} & 6 \\ & 1 \end{aligned}$	32.0	2.7	2.4 3.1	3.7	2.5 5.0	177	173 181	213	204	64.0	61.7 66.3	52.6	50.1 55.1
450	Missouri Valley Hatchery Marshall, Mo. 65340	WL SX	Valley Queen	$\begin{aligned} & 2 \\ & 1 \end{aligned}$	30.0	2.4	2.2 2.7	7.9	6.4 9.6	181	177 185	213	203	69.5	67.0 72.0	63.1	60.8 65.4
409	N. Cen. Reg. Plty. Br. Lab. Lafayette, Ind. 47907	WL SX	Kentville-Cornell--	$\begin{array}{r} 24 \\ 7 \end{array}$	30.0	2.3	1.9 2.8	9.8	8.0 11.7	175	$\begin{aligned} & 171 \\ & 179 \end{aligned}$	203	197	65.9	64.3 67.5	54.6	52.8 56.4

stock code	FEED PER OUND OF EGGS PRODUCED (pounds)		EGG WEIGHT (oz./doz.)		LARGE ANDEXTRA LARGEEGGS(percent)		albumen quality (Ilaugb wits)		blood spots				MEAT SPOTS				SPECIFIC GRAVITY SCORE		body weight (pounds)		INCOME OVER FEED \& CHICK cost (dollars)					
			$1 / 8$ INCHOR MORE (percent)	LESS THAN $1 / 8 \mathrm{INCH}$ (percent)		$1 / \mathrm{INCH}$ OR MORE (percent)		LESS THAN $1 / \mathrm{B}$ INCH (percent)																		
	$\begin{array}{\|c\|} \hline \text { RE. } \\ \text { GRESSED } \\ \text { MEAN } \end{array}$	$\begin{gathered} \text { во\%* } \\ \text { conf, } \\ \text { LOMITS } \end{gathered}$			$\underset{\substack{\text { RE. } \\ \text { GRESSEO } \\ \text { MEAN }}}{ }$	$\begin{aligned} & \text { Bo\% } \\ & \text { comf. } \\ & \text { comits } \end{aligned}$			$\begin{array}{\|c\|} \hline \text { RE. } \\ \text { GRESEO } \\ \text { MEAN } \end{array}$	$\begin{gathered} \text { Bo\%**, } \\ \text { conf, } \\ \text { LiMITT } \end{gathered}$	$\underset{\substack{\text { RE. } \\ \text { ORESEO } \\ \text { MEAN }}}{\text { R. }}$	$\begin{array}{\|l\|} \hline 80 \%{ }^{8} \\ \text { conf, } \\ \text { LiMits } \end{array}$	$\begin{array}{\|c\|} \hline \text { RES } \\ \hline \text { GRESED } \\ \text { MEAN } \\ \hline \end{array}$	$\begin{gathered} \text { 80\%** } \\ \text { conf. } \\ \text { LOMITST } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { RE- } \\ \hline \text { GRESEO } \\ \text { MEAN } \end{array}$	$\begin{aligned} & \text { 80\%** } \\ & \text { CONF. } \\ & \text { LIMITS } \end{aligned}$	$\begin{array}{\|c\|} \hline \text { RE. } \\ \hline \text { GRESSEO } \\ \text { MEAN } \\ \hline \end{array}$	$\begin{gathered} \text { Bo\% } \\ \text { comf. } \\ \text { CIMITS } \end{gathered}$	$\begin{gathered} \text { RE- } \\ \text { GRESSEO } \\ \text { MEAN } \end{gathered}$	$\begin{aligned} & \text { 8o\%* } \\ & \text { cow. } \\ & \text { cimits } \end{aligned}$	$\begin{array}{c\|} \hline \text { RE. } \\ \text { ORESSEO } \\ \text { MEAN } \end{array}$		$\begin{array}{\|c\|} \text { RE } \\ \text { GRESSEO } \\ \text { MEAN } \end{array}$	$\begin{aligned} & \text { Boo. } \\ & \text { con., } \\ & \text { Climits } \end{aligned}$	$\left.\begin{array}{\|c\|} \hline \text { RE } \\ \text { GRESSEO } \\ \text { MEAN } \end{array} \right\rvert\,$	$\begin{aligned} & \text { 80\%* } \\ & \text { CONF. } \\ & \text { LIMIT' } \end{aligned}$
		3.23		26.3				84.6		75.6		1.1		1.8		4.3		8.3		2.89		5.59		1.99		
309	3.31	3.39	26.7	27.1	87.3	90.0	76.5	77.4	1.4	1.7	2.3	2.9	5.7	7.3	9.5	10.9	3.02	3.15	5.73	5.87	2.23	2.4?				
		2.63		24.9		71.6		78.3		0.8		1.2		0.1		0.3		4.85		4.12		3.12				
447	2.73	2.83	25.4	25.9	74.9	78.2	79.6	80.9	1.0	1.3	1.6	2.1	0.1	0.4	0.7	1.3	5.03	5.21	4.30	4.48	3.46	3.80				
		2.74		24.7		71.3		74.9		1.0		1.3		0.1		0.8		3.25		4.14		2.72				
607	2.81	2.88	25.0	25.3	73.8	76.3	75.6	76.3	1.2	1.5	1.7	2.2	0.2	0.5	1.1	1.4	3.37	3.49	4.26	4.38	3.07	3.42				
		2.66		23.9		69.0		81.2		0.4		0.9		0.1		0.1		4.78		3.90		2.96				
66	2.73	2.80	24.3	24.7	71.6	74.2	81.9	82.6	0.6	0.8	1.2	1.6	0.1	0.3	0.2	0.4	4.89	5.00	4.03	4.16	3.31	3.66				
		3.03		26.1		87.9		80.4		0.6		1.0		0.7		17.1		3.04		5.60		3.13				
225	3.13	3.23	26.5	26.9	91.1	94.3	81.8	83.2	0.7	1.0	1.4	1.8	1.6	2.8	19.9	22.9	3.21	3.38	5.78	5.96	3.31	3.49				
		3.19		25.4		83.8		74.9		0.6		1.4		0.4		18.5		3.54		5.50		2.18				
86	3.30	3.41	25.8	26.2	87.2	90.6	76.6	78.3	0.8	0.9	1.7	2.1	1.1	2.2	22.3	26.3	3.75	3.96	5.72	5.94	2.50	2.82				
		2.65		26.5		79.5		77.3		1.0		1.7		4.9		10.1		3.67		4.74		2.86				
378	2.73	2.81	26.9	27.3	82.2	84.9	78.1	78.9	1.3	1.6	2.2	2.8	6.2	7.8	11.3	12.6	3.80	3.93	4.88	5.02	3.13	3.40				
		2.51		25.2		77.9		75.5		0.4		0.8		0.1		0.2		4.03		4.29		3.42				
356	2.57	2.63	25.6	26.0	80.4	82.9	76.1	76.7	0.6	0.1	1.0	1.3	0.1	0.2	0.3	0.4	4.14	4.25	4.41	4.53	3.68	3.94				
		2.66		24.6		70.1		81.0		0.6		1.3		0.1		0.3		3.94		4.07		3.25				
234	2.73	2.80	25.0	25.4	72.7	75.3	81.7	82.4	0.8	1.1	1.7	2.1	0.1	0.2	0.4	0.7	4.05	4.18	4.20	4.33	3.45	3.65				
		2.78		24.5		65.1		75.4		0.8		1.4		0.1		0.9		2.81		4.24		2.59				
589	2.87	2.96	24.9	25.3	68.1	71.1	76.5	77.6	1.1	1.4	1.0	2.4	0.3	0.7	1.4	2.2	2.96	3.11	4.41	4.58	2.93	3.27				
		3.16		25.3		83.2		76.3		0.6		1.4		0.8		23.1		3.64		5.34		2.35				
117	3.27	3.38	25.7	26.1	86.6	90.0	78.0	79.7	0.8	1.0	1.7	2.1	1.7	2.9	27.2	31.5	3.84	4.04	5.55	5.76	2.69	3.03				
		3.05		24.6		73.1		****		****		****		****		****		****		3.87		2.74				
450	3.17	3.29	25.0	25.4	76.8	80.5	****	****	****	****	****	****	****	****	****	****	****	****	4.11	4.35	3.06	3.38				
		3.04		23.8		63.1		75.0		1.0		1.3		0.1		0.6		3.44		4.45		2.33				
409	3.12	3.20	24.2	24.6	65.8	68.5	75.8	76.6	1.3	1.6	1.7	2.2	0.1	0.4	0.9	1.3	3.56	3.68	4.59	4.73	2.63	2.93				

Table l..-Two-year combined summary: Regressed means and 80% confidence limits for traits by stocks entered (Continued)

stock CODE	breeder's Name and address	stock		$\begin{gathered} \text { NO. } \\ \text { PENS } \\ \hline \text { NO. } \\ \text { LOCA- } \\ \text { TIONS } \end{gathered}$	AVG. CHICK PRICE (cents)	MORTALITY				AGE AT 50\% PRODUCTION (days)		EGG PRODUCTION					
		breeding	$\begin{gathered} \text { STRAIN } \\ \text { TRADR } \begin{array}{l} \text { ORAME } \end{array} \end{gathered}$			growing (percent)		laying (percent)				HEN HOUSED (number)		$\begin{array}{\|c\|} \hline \text { HEN-DAY } \\ \text { (TO END OF TEST) } \\ \text { (percent) } \end{array}$		$\begin{gathered} \text { HEN-DAY } \\ \text { (LAST } 30.60 \text { DAYS) } \\ \text { (percent) } \\ \hline \end{gathered}$	
						$\begin{gathered} \text { RE- } \\ \text { GRESSED } \\ \text { MEAN } \end{gathered}$	$\begin{aligned} & 80 \%{ }^{8} \\ & \text { CONF. } \\ & \text { LIMITS } \end{aligned}$	$\begin{gathered} \text { RE- } \\ \text { GRESSED } \\ \text { MEAN } \end{gathered}$	$\begin{aligned} & \text { 80\%** } \\ & \text { CDNF, } \\ & \text { CIMITS } \end{aligned}$	$\begin{array}{\|c\|} \hline \text { REE- } \\ \text { GRESSED } \\ \text { MEAN } \\ \hline \end{array}$	$\begin{gathered} \text { Boo } \\ \text { cone, } \\ \text { COMITS } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { RE. } \\ \text { GRESSED } \\ \text { MEAN } \end{array}$	$\begin{gathered} 800^{\circ} \\ \text { conf. } \\ \text { LIMIT } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { RE- } \\ \text { GRESSED } \\ \text { MEAN } \\ \hline \end{array}$		$\begin{array}{\|c\|} \hline \text { REE- } \\ \text { GRESSED } \\ \text { MEAN } \\ \hline \end{array}$	
37	N. Cent. Reg. Plty. Br. Lab. Lafayette, Ind. 47907	WL PS	Reg. Cornell Contr.	$\begin{array}{r} 13 \\ 2 \end{array}$	30.0	2.9	$\begin{aligned} & 2.5 \\ & 3.3 \end{aligned}$	12.4	$\begin{aligned} & 10.2 \\ & 14.7 \end{aligned}$	179	$\begin{aligned} & 175 \\ & 192 \end{aligned}$	215	207 223	64.9	62.9 66.9	54.7	$\begin{aligned} & 52.3 \\ & 57.1 \end{aligned}$
352	Parks Poultry Farm Altoona, Pa. 16601	WL SX	Keystone B-1	$\begin{aligned} & 63 \\ & 17 \end{aligned}$	33.8	3.1	2.6 3.7	6.3	5.1 7.6	174	171 177	233	227 239	72.0	70.7 73.3	60.2	58.6 61.8
382	Parks Poultry Farm Altoona, Pa. 16601	RIRxWPR BX	Sil-Go-Links	$\begin{array}{r} 10 \\ 3 \end{array}$	34.0	2.2	1.8 2.6	7.5	5.8 9.3	179	175 133	195	187	62.7	60.8 64.6	53.2	50.8 55.6
181	Shaver Poultry Br. Farm Galt, Ontario, Canada	WL SX	Starcross 288-----	$\begin{array}{r} 105 \\ 18 \end{array}$	31.2	2.5	2.0 3.0	5.6	4.5 6.8	173	170 175	2.45	239 251	75.2	73.9 76.5	64.8	63.4 66.2
451	Shaver Poultry Br. Farm Galt, Ontario, Canada	RIR SX	Starcross 579	$\begin{array}{r} 10 \\ 3 \end{array}$	35.0	3.1	2.6 3.6	8.1	6.3 10.0	173	169 177	211	203	66.5	64.5 68.5	54.0	51.6 56.4
566	St. Augustin Coop. Hatchery St. Augustin, Quebec, Can.	WL SX	Corvette A l------	$\begin{array}{r} 16 \\ 2 \end{array}$	31.0	2.7	2.3 3.2	11.3	9.3 13.5	176	172 180	216	208	69.3	67.4 71.2	63.7	61.4 66.0
401	Tatum Farms Dawsonville, Ga. 30534	WL SX	Tatum T-100	$\begin{aligned} & 64 \\ & 16 . \end{aligned}$	30.1	2.2	1.8 2.7	9.5	8.1 11.1	172	169 175	225	219 231	70.3	69.0 71.6	63.6	62.2 65.0
449	Tatum Farms Dawsonville, Ga. 30534	$\begin{gathered} \text { RIRxSyn. } \\ \text { BX } \end{gathered}$	Tatum T-173-.---	$\begin{array}{r} 25 \\ 9 \end{array}$	30.0	1.0	0.7 1.3	5.6	4.2 7.2	171	$\begin{aligned} & 168 \\ & 174 \end{aligned}$	226	218 234	69.0	67.3 70.7	54.3	52.1 56.5
407	Thornbers Plty. Br. Dept. Halifax, Yorkshire, Eng.	WL SX	'Thornber 808 -.--	$\begin{aligned} & 54 \\ & 16 \end{aligned}$	30.0	2.7	2.2 3.2	9.3	7.7 11.0	177	174 182	220	214 226	70.3	68.9 71.7	62.3	60.7 63.9
443	Welp's Poultry Breeding Fm. Bancroft, Iowa 50517	RIR SX	Welp Line $650 \mathrm{~N}--{ }^{\text {- }}$	$\begin{array}{r} 15 \\ 2 \end{array}$	30.0	2.2	1.9	4.6	3.3 6.1	175	$\begin{aligned} & 170 \\ & 180 \end{aligned}$	229	220 238	69.7	67.5 $i 1.9$	56.5	54.0
430	Welp's Poultry Breeding Fm. Bancroft, lowa 50517	WL IN	Welp Line 971-----	$\begin{aligned} & 47 \\ & 13 \end{aligned}$	29.0	3.9	3.4 4.6	9.9	8.3 11.7	188	164 172	214	208	66.4	54.9 67.9	53.7	52.1 55.3
448	Welp's Poultry Breeding Fm. Bancroft, Iowa 50517	WL IN	Welp Line 973	$\begin{array}{r} 22 \\ 9 \end{array}$	29.0	2.7	2.3 3.2	13.0	10.9 15.3	173	$\begin{aligned} & 169 \\ & 177 \end{aligned}$	190	182	60.3	58.6 62.0	50.4	48.4 52.4

stock CODE	FEED PER POUND OF GGS PRODUCED (pounds)		EGG WEIGHT (oz./doz.)		$\begin{aligned} & \text { LARGE AND } \\ & \text { EXTRA LARGE } \\ & \text { EGGS } \\ & \text { (percent) } \\ & \hline \end{aligned}$		albumen QUALITY (Haugb units)		BLOOD SPOTS				MEAT SPOTS				SPECIFIC GRAVITY SCORE		body weight (pounds)		income over FEED \& CHICK cosT (dollars)					
			$1 / 8 \mathrm{INCH}$ OR MORE (percent)	LESS THAN $1 / 8$ INCH (percent)		$1 / 8$ INCH OR MORE (percent)		LESS THAN $1 / 8 \mathrm{INCH}$ (percent)																		
	$\begin{aligned} & \text { RE. } \\ & \text { GRESSED } \\ & \text { MEAN } \end{aligned}$	$\begin{aligned} & 80 \%{ }^{80} \\ & \text { con. } \\ & \text { cimits } \end{aligned}$			$\begin{array}{c\|} \text { RES- } \\ \text { GRESSED } \\ \text { MEAN } \end{array}$	$\begin{aligned} & \text { 80\%* } \\ & \text { comp. } \\ & \text { CIMITST } \end{aligned}$			$\begin{array}{\|c\|} \hline \text { RE. } \\ \hline \text { GRESED } \\ \text { MEAN } \end{array}$	$\begin{gathered} \text { 80\%** } \\ \text { cont, } \\ \text { LiMITS } \end{gathered}$	$\begin{aligned} & \text { RE. } \\ & \text { GRESSED } \\ & \text { MEAN } \end{aligned}$	$\begin{aligned} & 80 \%{ }^{\circ} \\ & \text { CONF. } \\ & \text { LIMITT } \end{aligned}$	$\begin{array}{\|c\|} \hline \text { RESE } \\ \hline \text { GRESEED } \\ \text { MEAN } \\ \hline \end{array}$	$\begin{aligned} & 80 \%^{*} \\ & \text { CONF, } \\ & \text { LOMITS } \end{aligned}$	$\begin{array}{\|c\|} \hline \text { RE- } \\ \hline \text { GRESED } \\ \text { MEAN } \end{array}$	$\begin{aligned} & \text { 80\%" } \\ & \text { cone. } \\ & \text { LOMTTT } \end{aligned}$	$\begin{array}{\|c\|} \hline \text { RE. } \\ \hline \text { GRESSED } \\ \hline \text { MEAN } \\ \hline \end{array}$	$\begin{aligned} & 80 \% \% \\ & \text { CONF. } \\ & \text { LIMITS } \end{aligned}$	$\begin{array}{\|c\|} \hline \text { RE- } \\ \text { GRESED } \\ \text { MEAN } \end{array}$	$\begin{aligned} & 80 \%{ }^{80} \\ & \text { conf. } \\ & \text { LIMITS } \end{aligned}$	$\begin{gathered} \text { RE. } \\ \text { GRESSED } \\ \text { MEAN } \end{gathered}$	$\begin{gathered} \text { soo * } \\ \text { cons, } \\ \text { COMITS } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { RE. } \\ \text { GRESSED } \\ \text { MEAN } \end{array}$	$\begin{aligned} & \text { 80\%* } \\ & \text { CONF. } \\ & \text { LIMITS } \end{aligned}$	$\begin{gathered} \text { RE. } \\ \text { GRESSED } \\ \text { MEAN } \end{gathered}$	$\begin{aligned} & \begin{array}{l} 80 \% \%^{\circ} \\ \text { conf. } \\ \text { Limit's } \end{array} \end{aligned}$
		3.09		23.7				68.0		68.0		1.1		2.6		0.1		0.4		3.10		3.97		2.18		
37	3.19	3.29	24.1	24.5	71.3	74.6	69.3	70.6	1.5	1.6	3.2	3.8	0.3	0.9	0.9	1.6	3.27	3.44	4.15	4.33	2.41	2.64				
		2.56		24.9		73.3		80.9		0.3		0.6		0.1		0.1		4.25		4.02		3.16				
352	2.62	2.68	25.2	25.5	75.7	78.1	81.5	82.1	0.5	0.6	0.9	1.2	0.1	0.3	0.2	0.3		4.47	4.14	4.26	3.37	3.58				
		3.10		26.9		75.8		80.9		0.6		1.1		0.3		13.0		5.18		5.14		1.74				
382	3.19	3.28	27.3	27.7	78.7	81.6	82.1	83.3	0.8	1.1	1.5	1.9	0.9	1.9	15.1	17.5	5.34	5.50	5.30	5.46	1.94	2.14				
		2.52		25.3		77.8		79.3		0.3		1.1		0.1		0.2		3.93		4.15		3.41				
181	2.58	2.64	25.7	26.1	80.2	82.6	79.9	80.5	0.5	0.6	1.3	1.6	0.1	0.2	0.3	0.5	4.04	i. 15	4.26	4.37	3.73	4.05				
		2.98		25.8		78.1		76.5		0.9		3.4		0.7		7.0		1.7u		3.07		こ.3ヶ				
451	3.38	3.18	26.3	26.8	81.4	84.7	77.7	78.9	1.2	1.6	4.1	4.9	1.5	2.7	9.4	11.4	1.87	2.04	5.25	5.43	2.70	3.06				
		2.65		24.1		59.8		80.0		0.5		1.2		0.1		0.8		3.22		4.07		2.87				
566	2.75	2.85	24.5	24.9	62.8	65.8	81.1	82.2	0.8	1.0	1.6	2.1	0.4	1.0	1.3	2.1	3.36	3.50	4.24	4.41	3.22	3.57				
		2.58		24.8		75.3		82.0		0.7		1.1		0.1		0.1		3.90		4.07		2.98				
401	2.65	2.72	25.2	25.6	77.8	80.3	82.6	93.2	0.6	1.	1.5	1.8	0.1	0.2	0.2	0.3	4.01	4.12	4.18	4.29	3.32	3.66				
		2.86		26.1		82.5		78.6		0.9		2.2		1.3		20.1		3.52		4.86		2. 84				
449	2.94	3.02	26.5	26.9	85.6	88.7	79.5	80.4	1.2	1.6	2.8	3.4	2.2	3.4	21.9	23.7	3.67	3.82	5.02	5.18	3.19	3.54				
		2.73		24.7		69.3		76.0		0.4		0.7		0.1		0.1		3.47		4.17		3.00				
407	2.80	2.87	25.0	25.3	72.1	74.9	76.7	77.4	0.6	0.8	1.0	1.3	0.1	0.3	0.3	0.4	3.59	3.71	4.30	4.43	3.26	3.52				
		3.10		25.0		68.6		78.3		0.7		1.9		0.6		10.7		3.09		4.49		2.89				
440	3.21	3.32	25.5	26.0	72.1	75.6	80.0	81.7	0.8	1.0	2.3	2.7	1.3	2.4	13.9	17.6	3.30	3.51	4.68	4.87	3.21	3.53				
		2.70		24.3		71.2		76.0		0.4		1.6		0.1		0.1		3.39		3.84		2.75				
430	2.77	2.84	24.7	25.1	73.9	76.6	76.6	77.2	0.6	0.8	2.1	2.5	0.2	0.4	0.3	0.4	3.51	3.63	3.97	4.10	3.10	3.45				
		2.83		24.5		73.0		77.9		0.5		1.1		0.1		0.1		4.23		3.87		2.07				
448	2.91	2.99	24.9	25.3	76.2	79.4	78.8	79.7	0.8	1.0	1.4	1.9	0.1	0.3	0.2	0.4	4.38	4.53	4.03	4.19	2.41	2.75				

Statistical Methods

The two-year combined summary includes performance data on 31 stocks that were entered in both the 1972-73 and 1973-74 tests and on 7 stocks that were entered only in the 1973-74 tests. Birds were tested at 19 locations in 1972-73 and at 21 locations in 1973-74. Table 3 lists the locations. Certain traits were not measured at some of the locations. These are identified with an NR (not reported) in the appropriate columns in table 3.

Replicate data were reported by 18 locations in 1972-73 and by 19 locations in 1973-74. The number of pens and the number of stocks tested at each location for the two years are given in table 3.

The percentage data for both years for the six traits--growing mortality, laying mortality, large blood spots, small blood spots, large meat spots, and small meat spots-were converted to angles with the arcsin transformation prior to analysis. However, the test-year adjustment factors shown in table 3 and the regressed means and confidence limits shown for these traits in table 1 are given in percent.

The replicate data were analyzed by least-squares procedures to obtain the test-year adjustment factors shown in table 3 and the repeatability estimates and the correlations among pens within tests shown in table 2. The test-year adjustment factors were then used to adjust the simple stock average for test and year effects. The adjusted stock averages (the least-squares stock means) were then regressed toward the overall mean ($\hat{\mu}$) to account for variations in number of tests entered, number of years entered, and number of replicated per test. The formula used to compute the regressed mean is:

Regressed Mean $=\hat{\mu}+\frac{r_{2 / C}}{1+\left(k_{3}-1\right) x_{1}+\left(k_{1}-k_{3}\right) x_{2}+\left(k_{2}-k_{3}\right) r_{1}+\left[(1 / C)-k_{1}-k_{2}+k_{3}\right] r_{2}}(s)$
where: $\quad \hat{\mu}=$ the average of the test and year adjusted stock means.
$r_{1}=$ repeatability within year.
$r_{2}=$ repeatability from year-to-year.
$\mathrm{x}_{1}=$ the correlation among replicates within year and test.
$x_{2}=$ the correlation among pens of the same stock from year-to-year for the same test.
$k_{1}=$ an average of the number of pens per test (averaged over years).
$k_{2}=$ an average of the number of pens per year (averaged over tests).
$k_{3}=$ an average of the number of repilicated per test-year subclass.
$C=$ the diagonal inverse element for that stock. The reciprocal of C, i.e., $\frac{1}{C}$, is equal to $n k_{3}$ if the assumption is made that the adjustments for test-year effects are made without error; where n is the number of test-year subclasses in which that stock is entered. $s=$ the test-year adjusted stock average minus the overall mean $\hat{\mu}$.

The correlations used in computing the regression coefficient were obtained from estimates of the variance components for stocks ($\hat{\sigma}_{s}^{2}$), the stock-X-test interaction ($\left(\hat{\sigma}_{s t}^{2}\right)$, the stock-X-year interaction ($\hat{\sigma}_{\text {sy }}^{2}$), and the random error ($\hat{\sigma}_{\mathbf{e}}^{2}$). The variance component estimates were obtained by equating the computed mean squares for these effects to their expectations. The mean squares for stocks was adjusted for the test-year subclass effects and the mean squares for the stock-X-test interaction and the stock-X-year interaction were adjusted by least-squares procedures for the effects of stocks and the test-year subclasses. The three-factor interaction was assumed to be non-existent. Ratios of the variance component estimates that were used to compute the correlations follow:

$$
\begin{aligned}
& \text { Correlation Among }=x_{1}=\frac{\hat{\sigma}_{s}^{2}+\hat{\sigma}_{s t}^{2}+\hat{\sigma}_{s y}^{2}}{\hat{\sigma}_{s}^{2}+\hat{\sigma}_{s t}^{2}+\hat{\sigma}_{s y}^{2}+\hat{\sigma}_{e}^{2}} \text { Replicates }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Correlations from } \\
& \text { Year-to-Year } \\
& \text { (same test) }
\end{aligned}=x_{2}=\frac{\hat{\sigma}_{s}^{2}+\hat{\sigma}_{s t}^{2}}{\hat{\sigma}_{s}^{2}+\hat{\sigma}_{s t}^{2}+\hat{\sigma}_{s y}^{2}+\hat{\sigma}_{e}^{2}}
$$

$$
\begin{aligned}
& \text { Repeatability from } \\
& \text { Test-to-Test } \\
& \text { (within year) }
\end{aligned}=r_{1}=\frac{\hat{\sigma}_{s}^{2}+\hat{\sigma}_{s y}^{2}}{\hat{\sigma}_{s}^{2}+\hat{\sigma}_{s t}^{2}+\hat{\sigma}_{s y}^{2}+\hat{\sigma}_{e}^{2}}
$$

$$
\begin{aligned}
& \text { Repeatability from } \\
& \begin{array}{l}
\text { (best-to-Test }
\end{array}
\end{aligned}=r_{2}=\frac{\hat{\sigma}_{s}^{2}}{\hat{\sigma}_{s}^{2}+\hat{\sigma}_{s t}^{2}+\hat{\sigma}_{s y}^{2}+\hat{\sigma}_{e}^{2}}
$$

An approximate standard error (SE) was computed for each regressed mean as follows:

$$
\mathrm{SE}=\mathrm{b} \sqrt{\mathrm{C}\left(\hat{\sigma}_{e}^{2}+k_{1} \hat{\sigma}_{s t}^{2}+k_{2} \hat{\sigma}_{s y}^{2}\right)}
$$

where b is the regression coefficient given above in the formula for the regressed mean. Confidence limits were then computed for each regressed mean as follows:

Regressed Mean $\pm 1.3 \mathrm{SE}$
The constant 1.3 was selected in order that the probability of the confidence limits overlapping by chance alone between any two means would be about 0.03 . This makes the test of significance among regressed means almost comparable to using Duncan's range test at the 0.05 level of probability.

Definition of Statistical Terms

The following definitions will help the reader interpret the analytical procedures:

Overall mean	The average of the test-year adjusted means for all stocks. This is an estimate of what the overall average would have been had all stocks been entered in all tests in both years.
Range	The range represents the difference between the expected maximum and minimum performance among the 68* stocks, based on the regressed means.
Common stocks	Stocks that are being tested at more than one location.
Test-year adjustment factor.	The amount added to or subtracted from the actual performance of the stocks at a given location in a given year to bring them to the average of all the location-year subclasses that had complete data. These factors were determined on an intrastock basis with a least-squares analysis, and they are given in table 3.
Repeatability within year	An intraclass correlation that measures the tendency for common stocks to rank the same from test-to-test within year. Theoretically, it can vary from 0.00 to 1.00 .
Repeatability between years	A correlation which measures the tendency for common stocks to rank the same from test-to-test from one year to another. The difference between the repeatability within year and repeatability between years indicates the relative importance of the stock-by-year interaction.
Correlation among replicates	This correlation measures the repeatability among replicates of the same stock in the same test and year. The higher the correlation among replicates the less need there is for replication of stocks within test and year.
Correlation from year-to-year within tests	A correlation which measures the tendency for common stock to rank the same from year-to-year when tested at the same location. The difference in the repeatability between years and in the correlation from year-to-year within tests indicates the relative importance of the stock-by-test interaction.
Confidence limits	The confidence limits for each regressed mean are computed so that the probability is about 0.80 that the "true" stock mean lies within the interval. They are presented in this report, however, for the purpose of providing approximate tests of significance for differences among stocks.

[^0]| Traits | Overall means | Regressed means | | Repeatability | | Correlations within test | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | Within year (${ }^{r} 1$) | $\begin{gathered} \text { Year-to- } \\ \text { year } \\ \text { (r2) } \end{gathered}$ | $\begin{gathered} \text { Among } \\ \text { replicates } \\ \left(x_{1}\right) \end{gathered}$ | $\begin{gathered} \text { Year-to- } \\ \text { year } \\ \left(x_{2}\right) \end{gathered}$ |
| | | Min. | Max. | | | | |
| Growing mortality--------percent- | 3.5 | 1.9 | 3.9 | 0.1696 | 0.0851 | 0.2276 | 0.1432 |
| Laying mortality---------percent- | 15.3 | 2.9 | 13.7 | . 2093 | . 1761 | . 2864 | . 2532 |
| Age at 50\% production ------ days- | 12.4 | 164 | 191 | . 5631 | . 5032 | . 7232 | . 6632 |
| Hen-housed egg production-number- | 226.2 | 190 | 253 | . 5314 | . 4855 | . 6447 | . 5988 |
| Hen-day egg production to end of test------------------percent- | 70.4 | 60.3 | 77.8 | . 5478 | . 5100 | . 6650 | . 6271 |
| Hen-day egg production last 30 to 60 days---------------percent- | 61.0 | 50.4 | 70.4 | . 3530 | . 3367 | . 4991 | . 4828 |
| Feed per pound of eggs ---- pounds- | 2.66 | 2.08 | 3.31 | . 6052 | . 5608 | . 7590 | . 7146 |
| Egg weight-------- ounces/dozen- | 25.3 | 24.0 | 27.3 | . 7590 | . 6439 | . 8453 | . 7301 |
| Large and extra large eggs-percent- | 76.5 | 55.3 | 91.1 | . 6913 | . 5741 | . 8050 | . 6878 |
| Albumen quality------ Haugh units - | 79.5 | 69.3 | 86.5 | . 6257 | . 6242 | . 6727 | . 6712 |
| Large blood spots--------percent- | . 8 | . 3 | 1.7 | . 1271 | . 1151 | . 2385 | . 2265 |
| Small blood spots --------percent- | 1.4 | . 7 | 4.1 | . 1246 | . 1212 | . 2527 | . 2494 |
| Large meat spots --------percent- | . 5 | . 1 | 5.7 | . 7144 | . 6644 | . 8144 | . 7644 |
| Small meat spots---------percent- | 1.3 | . 0 | 27.2 | . 8176 | . 8149 | . 8635 | . 8609 |
| Specific gravity---------- score- | 4.0 | 1.87 | 5. 72 | . 6373 | . 5908 | . 6783 | . 6318 |
| Body weight ------------- pounds - | 4.45 | 3.46 | 5.88 | . 8418 | . 8008 | . 9308 | . 8898 |
| Income over feed and chick cost--------------------- dollars- | 3.28 | 1.67 | 4.96 | . 4650 | . 4350 | . 5800 | . 5500 |

NOTE: The values for these factors are based on the 38 commercially available stocks as well as the 30 experimental stocks that were tested. The individual performance data for the experimental entries were analyzed but not published in this report.

Test	$\begin{gathered} \text { Pens } \\ \text { (number) } \end{gathered}$		Stocks tested (number)		Mortality (percent)					
			Growing period	Laying period						
	1973	1974			1973	1974	1973	1974	1973	1974
Central Canada No. 6 - (2/cage)---	48	48	12	12	-3. 50	+01.83	+3.71	+2. 29		
Central Canada No. 7 - (2/cage)---	48	48	12	12	+3.95	+ 2.96	-3. 20	-3.01		
Florida No 1 - Floor---	--	24	--	12	=-	$\div 2.69$	--	$\div 1.38$		
Florida No. 2 -(2/cage)------m-	48	48	12	12	-. 94	+ 1.21	-. 74	+1.89		
Florida No. 6 - Floor	- -	24	--	12	--	$\div 3.74$	--	+3. 34		
Florida No. 5-(2/cage)--me-----0	48	48	12	12	+. 13	+ 50	-1.31	-. 01		
Minnesota No. 1 - Floor-	14	10	14	10	-1.00	$+438$	- .87	$\pm .98$		
Minnesota No. 4 - (3/cage) ----om-	39	33	13	11	-3 43	+ 4.05	-3.08	+1. 74		
Missouri Cage - (8/cage) -0-0-0.0-0	111	28	16	14	$\div 1.31$	+ 28	+8. 22	+ 7.70		
Missouri Floor	88	54	22	27	+1.34	+ . 28	+2.96	-1.75		
New Hampshire No. 7 - (3/cage)--	120	135	15	17	+3.79	+ 2.62	-1.06	+. 86		
New Hampshire No. 4 - Floor-----	24	24	8	8	+3.12	+ . 91	-3.00	-1. 71		
North Carolina No. 3 - Floor -----	40	20	20	10	+2.68	$+1.32$	+3.70	+5.34		
North Carolina No. 4 - (2/cage)---	80	40	20	10	+3.78	$+2.08$	-. 12	+1.39		
North Carolina No. 5-(7/cage)---	40	20	20	10	$+3.49$	- 1.78	-1.94	+1.68		
Pennsylvania No. 1-Floor-.-.---	48	48	24	24	+. 04	+1.78	+3.66	-1.45		
Pennsylvania No. 2 - (3/cage)---...	48	48	24	24	-2.07	+ 1.36	-8.41	-7. 51		
Tennessee No. 5 - (2/cage)------	26	28	13	14	$+.11$	- 5.92	-. 10	+. 22		
Tennessee No. 6 - (2/cage)-...---	26	28	13	14	-. 38	- 6.40	+4.73	+. 73		
Tennessee No. 7 - (2/cage)-------	26	28	13	14	+. 04	- 5.99	-3.39	-. 97		
Tennessee No. 8 - (2/cage)-------	26	28	13	14	+ . 04	-17.89	-5.43	-2. 78		

TABLE 3.--Factors used to adjust for test differences--Continued

Test

[^1]TABLE 3.--Factors used to adjust for test differences--Continued

Test	Feed per pound of eggs (pounds)		Egg weight(oz./dozen)		Large and extra large eggs (percent)		Albumen quality (Haugh units)	
	1973	1974	1973	1974	1973	1974	1973	1974
Central Canada No. 6-(2/cage)---	+0.32	+0. 23	-0.58	-0.62	-06.27	-09.95	+00.61	-3.65
Central Canada No. 7-(2/cage)	+. 06	+. 24	-. 63	+1.05	- . 69	+28.02	- . 02	+. 93
Florida No. 1 - Floor -	--	$+.22$	--	-. 93	--	- 8.92	--	-2.04
Florida No. 2 - (2/cage)	+. 25	$+.27$	-1.37	-1.24	-15.26	-10.99	+ 7.02	+3.74
Florida No. 6-Floor-----------	--	-. 03	--	-. 04	--	- 2.23	--	-2.31
Florida No. 5 - (2/cage)	-. 15	-. 23	+. 11	-. 15	+10.58	+ 4.48	+ 1.61	-2.96
Minnesota No. l - Floo	. 10	+. 28	+1.00	-. 82	+ 4.08	-12.09	+ 2.51	-4.17
Minnesota No. 4 - (3/cage)	-. 21	-. 40	-. 43	-. 82	$+5.75$	+ . 55	- . 48	-1.77
Missouri Cage - (8/cage)	+. 01	+. 41	-. 67	+. 01	-10.10	- 4.40	-13.32	-8.79
Missouri Floor	-. 06	$+.27$	-. 21	+. 31	- 4.03	- 2.58	-10.33	NR*
New Hampshire No. 7 - (3/cage) --	+. 08	-. 35	$+.17$	+ . 78	+14.75	+12.46	$+3.57$	+1.78
New Hampshire No. 4 - Floor-----	+. 04	+. 23	-. 72	+1.03	- 2.50	+28.47	- . 54	$+.03$
North Carolina No. 3 - Floor -----	-. 03	-. 04	-. 36	-. 55	-15.38	-15.33	- 1.89	-1.76
North Carolina No. 4 - (2/cage)-2	+.31	+. 29	-. 19	-. 54	-10.20	- 6.66	+ 5.45	+2.91
North Carolina No. 5-(7/cage)	-. 04	-. 29	$+.61$	+ . 95	+15.48	+10.45	$+2.92$	-. 17
Pennsylvania No. 1-Floor -	-. . 06	-. 48	$+.68$	+. 41	- 7.08	- 4.46	- 2.62	+. 12
Pennsyivania No. 2 - (3/cage)	+. 04	$+.13$	-. 97	-1.29	-14.99	-11.24	+ 4.84	+3.40
Tennessee No. 5 - (2/cage)	$+.04$	+. 03	-. 31	- . 44	- 9.92	-11.71	- 1.42	-4.82
Tennessee No. 6 - (2/cage)------	+. 22	+. 29	-. 67	-. 97	- 9.20	-13.30	- 2.26	-3.95
Tennessee No. 7 - (2/cage)--.-.--	-. 15	-. 19	+ . 94	$+.79$	+11.15	$+6.93$	+ 3.81	+1.43
Tennessee No. 8 - (2/cage)-------	-. 27	-. 99	+1.04	+4.65	+10.11	+45.01	+ . 68	+7.23

[^2]TABLE 3.--Factors used to adjust for test differences--Continued

Test	Blood spots 1/8 inch or more (percent)		Blood spots less than $1 / 8$ inch (percent)		Meat spots 1/8 inch or more (percent)		Meat spots less than $1 / 8$ inch (percent)	
	1973	1974	1973	1974	1973	1974	1973	1974
Central Canada No. 6 - (2/cage)---	+0.08	-01.21	+1.39	+0.74	+1.15	+1.04	+03.17	+03.16
Central Canada No. 7 - (2/cage)---	-3.35	- 1.70	-1.82	-2. 21	-2.44	-2.45	-3.51	-3.25
Florida No. 1 - Floor-0---------	--	-1.87	--	+2. 48	--	-1.14	--	- 1.63
Florida No. 2 - (2/cage)---m------	-2.81	- 2.64	-1.81	-. 52	-1.41	-3.52	$+1.54$	- . 14
	--	- . 46	--	-. 07	--	+. 28	--	+ . 25
	$+.28$	- 1.80	+1.00	+. 54	+2. 71	+2. 34	$+2.04$	$+1.85$
Minnesota No. 1 - Floor----m----	$+3.26$	- 2.75	$+.02$	+4.02	$+2.15$	$+.67$	$+5.05$	$+1.32$
Minnesota No. 4 - (3/cage)-------	-. 03	+ .99	+. 05	+1. 15	$+2.52$	+2. 54	$+3.07$	$+1.37$
Missouri Cage - (8/cage)-..------	+1.45	NR*	+3.25	NR*	+1.38	NR*	$+2.99$	NR**
	+1. 52	NR*	+4.05	NR*	+1.50	NR*	$+3.63$	NR*
New Hampshire No. 7 - (3/cage) --	$+2.39$	$+2.89$	+6.93	+5.96	+1.34	-1.02	-11.03	- 7.76
New Hampshire No. 4 - Floor-----	-3.84	- 2.06	-1.89	-1.35	-2.45	-1. 76	- 3.60	- 2.80
North Carolina No. 3 - Floor -----	-1.79	- 2.33	-3.89	-3.30	-. 69	-. 26	$+.80$	$+.82$
North Carolina No. $4-(2 /$ cage $)-$ -	-2. 22	- 1.39	-. 71	+. 51	-2.00	-3.61	+ . 98	$+.31$
North Carolina No. 5 - (7/cage)---	$+2.31$	$+1.95$	+2. 52	+7.36	$+2.62$	-. 55	-11.62	-12.34
Pennsylvania No. 1 - Floor-m-----	$+.37$	+ . 07	-5.84	-2.04	$+.28$	+. 30	-. 03	$+1.26$
Pennsylvania No. 2 -(3/cage)-----	-2.67	- 1.45	-. 61	$+.31$	-1.03	-4.19	$+1.78$	$+.06$
Tennessee No. 5 - (2/cage)-------	-1.16	- 1.11	-1.89	-. 07	+1.30	+. 43	$+3.32$	$+3.06$
Tennessee No. 6 - (2/cage)-------	-. 13	+ 1.14	+1.88	-. 13	$+.84$	+1.24	$+2.90$	$+3.61$
Tennessee No. 7 - (2/cage)-m-----	$+2.93$	$+2.74$	-3.49	+3.27	$+.38$	+.34	$+.71$	$+1.49$
Tennessee No. 8 - (2/cage)-------	$+2.88$	+12.16	+. 70	-6.78	$+.63$	+2. 57	$+2.90$	$+9.59$

* Data for this trait not reported.

TABLE 3.--Factors used to adjust for test differences--Continued

Test	Specific gravity score		Body weight (pounds)		Income over feed and chick cost (dollars)	
	1973	1974	1973	1974	1973	1974
Central Canada No. 6 - (2/cage)---	-1.08	-1.85	+0.25	+0.10	+1.56	+0.80
Central Canada No. 7 - (2/cage)---	$+.74$	+1.02	-. 23	$+.22$	+1.57	$+.68$
Florida No. 1 - Floor m-ッ--m------	--	-. 07	--	-. 11	--	NR *
Florida No. 2 - (2/cage)---------	$+1.65$	+1. 14	-. 25	-. 08	NR*	NR*
Florida No. 6 - Floor-----------	--	-. 26	\cdots	-. 07	-	NR*
	-. . 64	-1.65	+. 02	-. 16	NR*	NR*
	-. 91	-1.66	$+.02$	$+.29$	$+.35$	+1.73
Minnesota No. 4 -($3 /$ cage)-------	-. 84	-1.33	$+.04$	- . 24	$+.56$	+1.80
Missouri Cage - (8/cage)--------	-. 86	-. 39	-. 42	-. 13	-. 22	NR*
	-. 48	NR *	-. 34	-. 18	-1.21	-. 39
New Hampshire No. 7 - (3/cage) --	$+.89$	+. 58	-. 21	$+.02$	-2. 14	-1.33
New Hampshire No. 4 - Floor-m---	$+.85$	+1.09	-. 16	$+.28$	-2.82	-. 71
North Carolina No. 3 - Floor ---m	$+.21$	-. 09	-. 04	-. 10	$+.56$	$+.03$
North Carolina No. 4 - (2/cage)---	+1.20	+1.15	-. 19	+. 04	+1.03	$+.44$
North Carolina No. 5 - (7/cage)---	+1.38	$+.81$	-. 12	-. 08	+1.68	$+.95$
Pennsylvania No. 1 - Floor------.	$+.23$	+. 59	$+.11$	$+.23$	-2.08	-. 27
Pennsylvania No. 2 - (3/cage)----	+1.35	+1.11	-. 02	$+.18$	-1.93	-. 92
Tennessee No. 5 - (2/cage)------	-1.28	-1.41	-. 03	$+.30$	$+.87$	-. 90
Tennessee No. 6 - (2/cage)---m-m	-1. 55	-1.29	$+.26$	$+.34$	$+.97$	-. 86
Tennessee No. 7 - (2/cage)---m---	$+.28$	-. 01	-. 14	$+.22$	$+.74$	-. 82
Tennessee No. 8 - (2/cage)------	$+.09$	+. 49	-. 13	+.33	+1.02	-. 92

[^3]
How Group Rankings Were Determined for Each Trait

The information in this section deals only with the test data obtained during the 1973-74 test year.
The performance of each entry in the 10 Random Sample Egg Production Tests conducted during 1973-74 is reported as the Range Group Rank of the entry for the trait measured. These rankings were determined in the following manner. For each trait the entries in each test were alined in descending order of performance from the most desirable to the least desirable. The "mean" or average performance for the trait was then determined. All entries above the mean are in range group 1 or 2 , and those below the mean are in range group 3 or 4 . The dividing point for the entries above or below the mean is the midpoint of the range between the mean and the top or bottom entry. An illustration follows.

Stocks entered in the Pennsylvania test had a mean, or average, of 224.40 eggs for the trait "Egg Production per Hen Housed." The highest average number of eggs laid by an entry in this test was 251.20 and the lowest average number laid by an entry was 170.70 eggs. To arrive at the dividing point between the first and second range groups, the mean (224.40) was subtracted from the highest number of eggs (251.20). The result, 26.80 eggs, was divided by two to get the midpoint of the range (13.40 eggs). This was then subtracted from the highest number of eggs (251.20 minus 13.40) to arrive at the dividing point (237.80 eggs) between the first and second range groups. To determine the dividing point between the third and fourth range groups, the same procedure was used, except that the lowest average number of eggs (170.70) was subtracted from the mean (224.40) This difference, or range, (53.70 eggs) was then divided by two, and the result (26.85 eggs) was subtracted from the mean (224.40 minus 26.85) to get the dividing point (197.55 eggs) between the third and fourth range groups. These determinations for ten traits from each test are tabulated in table 4.

The breeders of the stock tested and the Range Group Ranking, by traits, of each entry of the stock are shown in table 5. Each entry is also identified by the abbreviated name of the entrant. If the sample was drawn from a source other than the entrant's hatchery or supply flock, the abbreviated name of the source of the sample is shown in parentheses following the entrant's name.

The listing of the entries in the four range groups, with all entries of each stock in one table, allows the reader to quickly evaluate a stock based on this method of analysis. It should be kept in mind, however, that this method provides just four broad classifications. One-tenth of an egg or one-tenth of a percent difference in mortality could move an entry up or down one Range Group Rank, depending on its place in the range grouping.

Tabular Listing of Stock Entered in Tests

The listing of all stock entered in the 1973-74 Random Sample Egg Production Tests is given in table 6. This listing will permit the reader to see at a glance the abbreviated name of the breeder of the stock, the strain or trade name of the stock, and the total number of entries of each stock which were tested during 1973-74. The tests in which each stock was entered are also given.

Management and Environmental Conditions at Tests

Some of the more important management and environmental conditions found in the individual tests during the 1973-74 testing year are found in table 7. Other conditions at the various testing stations were undoubtedly different. However, the important consideration is that all entries at a given location were treated as nearly alike as possible.

TABLE 4.--Upper and lower limits for each range group by traits and tests, 1973-74

Traits measured	Tests			
	Central Canada	Florida	Minnesota	$\begin{gathered} \text { Missouri } \\ \text { Cage } \end{gathered}$
Income over feed and chick cost;				
Average----dol. /hen housed-	2.430		1.731	
Range group 1--------------	$3.270-2.850$		$2.370-2.050$	
Range group 2---------------	$2.849-2.430$	Not Reported	$2.049-1.731$	Not Reported
Range group 3---------------	$2.429-1.725$		1.730-1.390	
	$1.724-1.020$		1. $389-1.050$	
Egg production;				
Average --number/hen housed-	223.17	228.18	239.02	222.96
Range group 1--------------	244.00-233.58	248.60-238.39	264.20-251.61	247.00-234.98
Range group 2----------------	233.57-223.17	238.38-228.18	251.60-239.02	234.97-222.96
Range group 3---------------	223.16-211.08	228.17-206.34	239.01-229.01	222.95-208.08
Range group 4--------------	211.07-199.00	206.33-184.50	229.00-219.00	208.07-193.20
Age at 50 percent production;				
Average --------------- days-	159.6	177.3	168.2	191.6
Range group 1----------------	156.0-157.8	172.0-174.7	162.0-165.1	183.0-187.3
Range group 2--------------	157.9-159.6	174.8-177.3	165.2-168.2	187.4-191.6
Range group 3--------------	159.7-161.8	177.4-179.7	168.3-175.1	191.7-196.8
Range group 4---------------	161.9-164.0	179.8-182.0	175.2-182.0	196.9-202.0
Growing mortality;				
Average------------ percent-	3.22	3.06	2.29	2. 12
Range group 1--------------	$1.40-2.31$	$1.70-2.38$	$1.00-1.65$	$0 \quad 1.06$
Range group 2---------------	2. $32-3.22$	$2.39-3.06$	1.66-2.29	1.07-2.12
Range group 3---------------	3.23-5.11	$3.07-4.73$	$2.30-3.15$	2.13-3.31
Range group 4---------------	5.12-7.00	$4.74-6.40$	$3.16-4.00$	$3.32-4.50$
Laying mortality;				
Average-----------percent-	11.71	7.33	4.92	5.71
Range group 1---------------	$6.10-8.90$	$3.30-5.32$	$1.40-3.16$	$1.30-3.51$
Range group 2---------------	$8.91-11.71$	$5.33-7.33$	$3.17-4.92$	$3.52-5.71$
Range group 3---------------	$11.72-15.40$	7.34-11.47	$4.93-8.51$	$5.72-11.01$
Range group 4 --.----------.--	15.41-19.10	$11.48-15.60$	$8.52-12.10$	$11.02-16.30$
Egg weight;				
Average -------ounces/dozen-	24.18	25.66	25.32	25.64
Range group 1	26.20-25.19	26.40-26.03	26.30-25.81	$27.30-26.47$
Range group 2---------------	25.18-24.18	26.02-25.66	25.80-25.32	26.46-25.64
Range group 3---------------	24.17-23.69	25.65-25.13	25.31-24.76	25.63-24.97
Range group 4---------------	23.68-23.20	25.12-24.60	24.75-24.20	24.96-24.30
Large and extra large eggs;				
Average------------- percent-	47.27	86.15	81.65	
Range group 1	72.10-59.68	91.30-88.73	86.30-83.98	97.40-93.68
Range group 2--.-.---.------	59.67-47.27	$88.72-86.15$	$83.97-81.65$	93.67-89.95
Range group 3--------------	47.26-40.13	86.14-82.28	81.64-76.63	89.94-82.38
Range group 4 ---------------	$40.12-33.00$	82.27-78.40	$76.62-71.60$	$82.37-74.80$
Feed per pound of eggs;				
Average ------------- pounds-	2.483	2.483	2.262	2.722
Range group 1	2.320-2.402	2.330-2.406	2.080-2.171	2.500-2.611
Range group 2---------------	2. $403-2.483$	2.407-2.483	$2.172-2.262$	2.612-2.722
Range group 3--------------	$2.484-2.677$	$2.484-2.596$	2.263-2.341	$2.723-2.981$
Range group 4--------------1-	$2.678-2.870$	2.597-2.710	$2.342-2.420$	2.982-3.240
Albumen quality;				
Average--------Haugh units-	77.75	82.76	87.54	
Range group 1---------------	81.80-79.78	$84.70-83.73$	90.50-89.02	
Range group 2	79.77-77.75	83.72-82.76	89.01-87.54	Not Reported
Range group 3	77.74-76.23	82.75-81.43	$87.53-86.17$	
Range group 4--------------1	76.22-74.70	$81.42-80.10$	86.16-84.80	
Blood spots, all sizes;				
Average------------percent-	4.31	2.88	1.69	
	$1.60-2.95$	1. 30-2.09	$0-0.85$	
Range group 2	$2.96-4.31$	2.10-2.88	. $86-1.69$	Not Reported
Range group 3--------------	$4.32-8.20$	2.89-4.24	$1.70-3.25$	
Range group 4----.-----------	8.21-12.10	$4.25-5.60$	3.26-4.80	

TABLE 4.-- Upper and lower limits for each range group by traits and tests, 1973-74--(Continued)

Traits measured	Tests		
	Missouri Floor	New Hampshire Cage	New Hampshire Floor
Income over feed and chick cost;			
Average-------dol. /hen housed-	3.501	4.713	3.596
Range group 1-----------------	5.580-4.541	$5.730-5.221$	5.390-4.493
Range group 2	$4.540-3.501$	5.220-4.713	4.492-3.596
Range group	$3.500-2.406$	4.712-4.071	3.595-2.838
Range group 4-----------------	$2.405-1.310$	4.070-3.430	$2.837-2.080$
Egg production;			
Average---- ${ }^{\text {ammber / }}$ hen housed-	224.37	222.48	199.33
Range group 1---	270.10-247.24	246.80-234.64	236.10-217.71
Range group 2	247.23-224.37	234.63-222.48	217.70-199.33
Range group 3	224.36-206.69	222.47-209.54	199.32-186.11
Range group 4------------------	206.68-189.00	209.53-196.60	186.10-172.90
Age at 50 percent production;			
Average---------------- -- ${ }^{\text {days- }}$	178.7	173.9	171.0
Range group	169.0-173.9	157.0-165.4	152.0-161.5
Range group 2	174.0-178.7	165.5-173.9	161.6-171.0
Range group	178.8-183.4	174.0-185.4	171.1-175.5
Range group 4-----------------	183.5-188.0	185.5-197.0	175.6-180.0
Growing mortality;			
Average --------------percent-	1.66	3.52	1.75
Range group	. $30-0.98$	$0-1.76$	0-0.88
Range group 2	. $99-1.66$	$1.77-3.52$. $89-1.75$
Range group	1.67-2.68	$3.53-8.91$	1.76-3.88
Range group 4-----------------	$2.69-3.70$	$8.92-14.30$	$3.89-6.00$
Laying mortality;			
Average --------------percent-	11.35	6.12	5.68
Range group	$2.50-6.92$	1.60-3.86	$2.20-3.94$
Range group 2	$6.93-11.35$	$3.87-6.12$	$3.95-5.68$
Range group 3	11.36-17.57	$6.13-9.31$	5.69-10.04
Range group 4-----------------	17.58-23.80	$9.32-12.50$	10.05-14.40
Egg weight;			
Average---------ounces/dozen-	25.04	24.93	25.68
Range group l---------------	27.40-26.22	26.50-25.71	26.50-26.09
Range group 2	26.21-25.04	25.70-24.93	26.08-25.68
Range group 3	25.03-24.17	24.92-24.46	25.67-25.29
Range group 4-----------------	24.16-23.30	24.45-24.00	25.28-24.90
Large and extra large eggs;			
Average ------------- percent-	82.07	69.61	75.61
Range group 1	94.40-88.24	87.70-78.66	83.40-79.51
Range group 2	88.23-82.07	78.65-69.61	79.50-75.61
Range group 3	82.06-72.99	69.60-62.21	' $75.60-69.16$
Range group 4------------------	72.98-63.90	62.20-54.80	$69.15-62.70$
Feed per pound of eggs;			
Average --------------- pounds-	3.249	3.028	3.335
Range group 1	2.810-3.029	2.660-2.843	2.680-3.008
Range group 2	$3.030-3.249$	$2.844-3.028$	$3.009-3.335$
Range group 3	$3.250-3.659$	3.029-3.149	$3.336-3.598$
Range group 4------------------	$3.660-4.070$	$3.150-3.270$	$3.599-3.860$
Albumen quality;			
Average ---------- Haugh units-		79.74	78.29
Range group 1------------------		84.60-82.17	$82.70-80.49$
Range group 2	Not Reported	82.16-79.74	80.48-78.29
Range group 3------------------		79.73-78.07	78.28-76.64
Range group 4-----------------		78.06-76.40	76.63-75.00
Blood spots, all sizes;			
Average --------------percent-		0.99	2.36
Range group 1------------------		$0-0.49$	$0-1.18$
Range group 2-----------------	Not Reported	. $50-.99$	1.19-2.36
Range group 3-		1.00-2.59	2.37-5.38
Range group 4-----------------		$2.60-4.20$	$5.39-8.40$

TABLE 4. --Upper and lower limits for each range group by traits and tests, 1973-74--(Continued)

Traits measured	Tests		
	North Carolina	Pennsylvania	Tennessee
Income over feed and chick cost;			
Average------ dol. /hen housed-	2.710	3.908	4.069
Range group 1-----------------	$3.520-3.115$	5.550-4.729	4.790-4.430
Range group 2------------------	3.114-2.710	$4.728-3.908$	4.429-4.069
Range group 3	$2.709-2.205$	$3.907-2.774$	4.068-3.420
Range group 4-----------------	2.204-1.700	$2.773-1.640$	$3.419-2.770$
Egg production;			
Average---- number/hen housed-	229.18	224.40	208. 77
Range group l------------------	258.50-243.84	251.20-237.80	228.00-218.39
Range group 2	243.83-229.18	237.79-224.40	218.38-208.77
Range group 3	229.17-214.99	224.39-197.55	208.76-188.99
Range group 4-----------------	214.98-200.80	197.54-170.70	188.98-169.20
Age at 50 percent production;			
Average-----------------days-	177.1	181.0	168.2
Range group 1------------------	166.0-171.6	173.0-177.0	165.0-166.6
Range group 2	171.7-177.1	177.1-181.0	166.7-168.2
Range group 3	177.2-187.1	181.1-187.5	168.3-172.6
	187.2-197.0	187.6-194.0	172.7-177.0
Growing mortality;			
Average--------------- percent-	2.28	0.93	7.75
Range group	1.10-1.69	$0-0.47$	$0-3.88$
Range group 2	1.70-2.28	. 48 - . 93	$3.89-7.75$
Range group 3	2.29-3.39	. $94-1.67$	7.76-11.38
Range group 4-----------------	$3.40-4.50$	$1.68-2.40$	11.39-15.00
Laying mortality;			
Average-------------- percent-	10.55	6.57	11.30
Range group l	$5.20-7.88$	$1.50-4.03$	$5.00-8.15$
Range group 2	7.89-10.55	$4.04-6.57$	$8.16-11.30$
Range group 3	10.56-14.68	6.58-10.68	11.31-14.00
Range group 4------------------	14.69-18.80	10.69-14.80	14.01-16.70
Egg weight;			
Average---------ounces/dozen-	26.49	26.18	24.51
Range group l------------------	27.80-27.15	28.80-27.49	26.00-25.25
Range group 2	27.14-26.49	27.48-26.18	25.24-24.51
Range group	26.48-25.50	26.17-25.24	24.50-23.75
Range group 4------------------	25.49-24.50	25.23-24.30	23.74-23.00
Large and extra large eggs;			
Average ------------- percent-	88.27	77.12	69.71
Range group 1	95.80-92.04	90.00-83.56	82.10-75.91
Range group 2	92.03-88.27	83.55-77.12	75.90-69.71
Range group 3------------------	88.26-83.19	77.11-65.81	69.70-60.16
Range group 4------------------	83.18-78.10	65.80-54.50	$60.15-50.60$
Feed per pound of eggs;			
Average--------------- pounds-	2.573	3.015	2.914
Range group 1	2.320-2.447	2.560-2.788	2.730-2.822
Range group	$2.448-2.573$	2.789-3.015	2.823-2.914
Range group 3	2.574-2.832	3.016-3.223	2.915-3.127
Range group 4-----------------	$2.833-3.090$	$3.224-3.430$	3.128-3.340
Albumen quality;			
Average---------- Haugh units-	76.13	82.43	78.58
Range group 1	79.10-77.62	86.40-84.41	85.00-81.79
Range group 2	77.61-76.13	$84.40-82.43$	81.78-78.58
Range group 3-----------------	76.12-74.72	82.42-80.01	78.57-76.59
Range group 4------------------	74.71-73.30	$80.00-77.60$	76.58-74.60
Blood spots, all sizes;			
Average-------------- percent-	3.36	3.19	4.64
Range group 1	1.50-2.43	1.40-2.29	$1.30-2.97$
Range group 2------------------	2.44-3.36	$2.30-3.19$	$2.98-4.64$
Range group 3-----------------	$3.37-4.33$	3.20-4.89	4.65-9.82
Range group 4------------------	$4.34-5.30$	$4.90-6.60$	$9.83-15.00$

TABLE 5. --Range group ranking for stock entered in 1973-74 random sampie egg production tests

TABLE 5.--Range group ranking for stock entered in 1973-74 random sample egg production tests--Continued

TABLE 5. - Range group ranking for stock entered in 1973-74 random sample egg production tests--Continued

TABLE 5.--Range group ranking for stock entered in 1973-74 random sample egg production tests--Continued

entry identification	TEST		Ing	Strain or tradename				$\begin{aligned} & \text { k } \\ & 0 \\ & 0 \end{aligned}$						
Indiana Farm Bureau Coop., 2435 Kentucky														
Avenue, Indianapolis, Indiana 46204.														
Indiana Farm Bureau, Ind.	-C.	WL	SX	Duchess 60------	-	4	2	4	4	3	3	3	-	-
Indiana Farm Bureau, Ind.	-F.	WL	SX	Duchess 60------	2	2	2	3	2	4	3	1	-	-
Indiana Farm Bureau, Ind.		WL	SX	Duchess 60------	1	1	2	1	3	4	4	2	1	1
Indiana Farm Bureau, Ind.		W L	SX	Duchess 60------	2	2	1	2	4	3	3	2	1	1
Kath Line of Canada, Box 415, Aldergrove,														
British Columbia, Canada Kreigers, B. C.		WL	SX	Kath Line H 63 --	3	4	3	1	4	2	2	3	3	2.
Lawton Farms, 70 North Street, Foxboro, Massachusetts 02035.														
Lawton, Mass.	H. -F.	RxW P		Buff Sex Link---	4	4	4	4	1	2	1	4	2	2
Missouri Valley Hatchery, Marshall, Missouri 65340.														
Missouri Valley, Mo.	-F.	W L	SX	Valley Queen----	3	3	4	2	3	3	3	2	-	-
North Central Regional Poultry Breeding Lab.,														
Purdue University, Lafayette, Indiana 47907.														
N. C. Reg. Plty., Ind.-----		W L	SX	Kentville-Cornell	4	4	3		3	4	4	4	4	4
N. C. Reg. Plty., Ind.-----		WL	SX	Kentville-Cornell	4	3	4	2	2	4	4	4	3	3
North Central Regional Poultry Breeding Lab.,														
Purdue University, Lafayette, Indiana 47907.														
N. C. Reg. Plty., Ind. -	- C.	W L	PS	Reg. Cornell Contr	. -	4	4	3	3	4	4	4	-	-
N.C. Reg. Plty., Ind.	-F.	W L	PS	Reg. Cornell Contr	3	3	4	3	2	4	4	3	-	-
Parks Poultry Farm, Route 4, Box 118 , Altoona, Pennsylvania 16601.														
Parks, Pa.		W L	SX	Keystone B-1----	-	2	3	4	3	1	1	3	1	3
Parks, Pa.		WL	SX	Keystone B-1----	3	2	3	4	2	4	4	3	1	1
Parks, Pa.	H. -C.	W L	SX	Keystone B-1-..-	3	3	3	1	3	4	4	3	1	1
Parks, Pa.		W L	SX	Keystone B-1----	3	3	1	4	2	4	4	3	2	3
Parks Poultry Farm, Route 4, Box 118 , Altoona, Pennsylvania 16601.														
Parks, Pa.----------------------------- Mo. F. FIRxWPR Parks, Pa.----------------------------- Pa. RIRxWPR				Sil-Go-Links ----	4	4	4	1		1	1	4	-	-
				Sil-Go-Links ----	4	4	4	1	4	1	1	4	2	3

entry identification	TEST	bree	ding	STRAIN OR tradename										
Shaver Poultry Breeding Farm, Box 400, Galt-Cambridge, Ontario, Canada.														
Shaver, Ont. -----	C.C.	WL	SX	Starcross 288--	1	1	3	1	1	2	2	1	1	1
Shaver, Ont.	Fla.	WL	SX	Starcross 288-	-	1	2	1	2	1	1	1	1	2
Shaver, Ont.	Mo. -C.	WL	SX	Starcross 288--	-	-	2	2	1	1	1	1	-	-
Shaver, Ont.	Mo. -F.	WL	SX	Starcross 288	1	1	2	2	1	2	1	1	-	-
Shaver, Ont.	N. H. -C.	WL	SX	Starcross 288-	2	2	2	1	3	2	2	3	3	1
Shaver, Ont. (Delta, Fla.)	N.C.	WL	SX	Starcross 288-	1	1	2	1	1	2	1	1	2	2
Shaver, Ont.--------------------------		WL	SX	Starcross 288	1	1	3	3	2	3	3	1	3	1
Shaver, Ont.---------------------------	Tenn.	WL	SX	Starcross 288----	1	1	2	3	1	2	2	1	2	1
Shaver Poultry Breeding Farm, Box 400, Galt-Cambridge, Ontario, Canada.														
Shaver, Ont.---------------------1	C.C.	RIR	SX	Starcross 579----	4	4	4	3	2	1	1	4	2	4
Shaver, Ont.--------------------------	Mo. -F.	RIR	SX	Starcross 579----	2	2	2	2	1	1	1	2	-	-
Quebec, Canada. Couvoir Coop., Quebec	C.C.	W L	SX	Corvette A l-----	3	4	3	3	4	4	4	2	1	1
Tatum Farms, Route 3, Dawsonville, Georgia$30534 .$														
Tatum, Ga.---------------------------		WL	SX	Tatum T-100	-	3	3	1	4	3	2	3	1	4
Tatum, Ga.	Minn.	WL	SX	Tatum T-100	3	2	1	3	2	3	1	3	1	4
Tatum, Ga.---------------------------	Mo.-F.	WL	SX	Tatum T-100	2	2	2	3	2	3	3	1	-	-
Tatum, Ga. ---------------------------		WL	SX	Tatum T-100----	2	1	2	4	2	3	2	2	3	3
Tatum, Ga.---------------------------	Tenn.	WL	SX	Tatum T-100-.-	2	1	2	2	3	2	2	2	2	3
Tatum Farms, Route 3, Dawsonville, Georgia 30534.														
Tatum, Ga.---------------------------	Mo. -F.	RIRxSYN	BX	Tatum T-173--	2	2	2	1	1	1	1	2	-	-
Tatum, Ga.	N. H. -C.	RIRxSYN	BX	Tatum T-173 .-.	3	3	1	1	3	2	3	3	4	1
Tatum, Ga.	N.H. -F.	RIRxSYN	BX	Tatum T-173	1	2	1	1	4	2	3	1	3	3
Tatum, Ga.		RIRxSYN	BX	Tatum T-173-	4	3	2	1	3	2	1	4	3	2
Tatum, Ga.----------------------------	Tenn.	RIRxSYN	BX	Tatum T-173 -..	3	2	1	1	1	1	1	3	3	4
Thornbers Poultry Breeding Department, Mytholmyroyd, Halifax, Yorkshire, England														
Thornber, England (Durance, Ont.)-----	C. C.	WL	SX	Thornber 808----	2	1	2	1	2	3	4	2	4	1
Thornber, England (Wilpstra, Ont.)-----	Mo. - C.	WL	SX	Thornber 808	-	1	3	2	1	3	3	2	-	-
Thornber, England (Durance, Ont.)	Mo. -F.	W	SX	Thornber 808----	2	2	4	4	3	3	3	2	-	-

TABLE 5．－－Range group ranking for stock entered in 1973－74 random sample egg production tests－－Continued

entry ioentification	test	breeding	strain or tradename										（
Welp＇s Poultry Breeding Farm，Box 366， Bancroft，Iowa 50517.													
Welp，Iowa	Mo．－F．	RIR SX	Welp Line 650 N －	3	2	1	1	3	2	2	3	－	－
Welp，Iowa	N．H．－C．	RIR SX	Welp Line 650 N －	3	2	2	1	1	2	2	4	3	1
Welp＇s Poultry Breeding Farm，Box 366，													
Bancroft，Iowa 50517.													
Welp，Iowa	Mo．－F．	W L IN	Welp Line 971－－－	3	3	1	3	4	3	3	3	－	－
Welp，Iowa	Tenn．	WL IN	Welp Line 971－－－	3	3	2	3	3	3	3	23	3	2
Welp＇s Poultry Breeding Farm，Box 366，													
Bancroft，Iowa 50517.													
Welp，Iowa	Fla．	WL IN	Welp Line 973－－－	－	4	3	4	4	3	3	4	4	4
Welp，Iowa	Mo．－F．	WL IN	Welp Line 973－－－	3	4	2	4	4	3	3	3	－	－
Welp，Iowa	Tenn．	WL IN	Welp Line 973－－－	4	4	1	2	4	3	3	4	＋	1

RANDOM SAMPLE EGG PRODUCTION TEST ENTRIES AND CONDITIONS, 1973-74

Breeder	Stock		$\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { entries } \\ & \hline \end{aligned}$	Tests entered									
	Code	Strain or trade name		C. C.	Fla.	Minn.	Mo. -C.	Mo. -F.	N. H. -C.	N. H. -F.	N. C.	Pa.	Tenn.
Animal Res. Inst.---	570	Kentville, R.B.C.	1	X									
Anthony--------------	10	Anthony Leghorn--	4				X	X				X	X
Babcock ------------	307	Babcock B-300 --	10	X	X	X	X	X	X	X	X	X	X
Babcock ------------	443	Babcock B-303 ---	1				X						
Babcock-------------	442	Babcock B-380	4					X	X		X	X	
Canada Dept. of Agri. -	982	P. D. 58 -------	1	X									
Carey --------------	446	Carey Nick 300-	1			X							
Carey	437	Carey Nick 310--	2					X				X	
Colonial -------------	289	True-Line $365 \mathrm{~B}-$ -	4		X		X	X				X	
Colonial -------------	392	True-Line 365 H--	1				X						
Colonial ------------	431	True-Line $365 \mathrm{~K}-$ -	2				X	X					
Colonial ------------	432	True-Line 365 S--	5	X		X		X	X				X
Colonial ------------	439	True-Line RIR ---	1					X					
Davis--------------	309	Davis Combiner -	4					X	X	X	X		
Euribrid------------	447	Hisex White----	3				X		X			X	
Fisher---------------	607	Fisher 107------	6	X		X	X	X	X				X
Garber -------------	66	Garber G 200-.---	5		X	X	X	X				X	
Harco --------------	225	Harco Sex Link---	2						X	X			
Hardy --------------	86	Deluxe Sex Link -	1							X			

TABLE 6.--Stock entered in 1973-74 tests--Continued

Breeder	Stock		$\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { entries } \\ & \hline \end{aligned}$	Tests entered									
	Code	Strain or trade name		C. C.	Fla.	Minn.	Mo. -C.	Mo. - F	N. H. -C.	N. H. -F.	N. C.	Pa.	Tenn.
Hubbard ----------	378	Golden Comet ------	3						X		X	X	
Ideal ---------------	356	Ideal 236------------	5		X	X		X				X	X
Ind. Farm Bureau ----	234	Duchess 60----------	4				X	X				X	X
Kath --------------	589	Kath-Line H-63-------	1	X									
Lawton-------------	117	Buff Sex Link--------	1							X			
Missouri Valley -----	450	Valley Queen--------	1					X					
N. Cent. Reg. Lab. --	409	Kentville-Cornell-----	2								X		X
N. Cent. Reg. Lab.---	37	Reg. Cornell Control--	2				X	X					
Parks---------------	352	Parks Keystone B-1---	4		X	X			X				X
Parks --------------	382	Parks Sil-Go-Link----	2					X				X	
Shaver-------------	181	Shaver Starcross 288--	8	X	X		X	X	X		X	X	X
Shaver---------------	451	Shaver Starcross 579--	2	X				X					
St. Augustin---------	566	Corvette A-1--------	1	X									
Tatum--------------	401	Tatum T-100---------	5		X	X		X				X	X
Tatum-------------	449	Tatum T-173---------	5					X	X	X		X	X
Thornber -----------	407	Thornber 808---------	3	X			X	X					
Welp----------------	440	Welp Line 650N ------	2					X	X				
Welp---------------	430	Welp Line 971-------	2					X					X
Welp---------------	448	Welp Line 973--------	3		X			X					X

TABLE 7.--Management, rations, laying house environment, and vaccination provided by tests, $1973-74$

Test	Hatched	Age at housing (days)	$\begin{gathered} \text { Length } \\ \text { of } \\ \text { test } \\ \text { (days) } \\ \hline \end{gathered}$	Ent ries (number)	Replications		Housing management			Sq. feet per bird
					Number	$\begin{array}{r} \text { per } \\ \text { rep. } \\ \hline \end{array}$	Brooding	Rearing	Laying $1 /$	
Cent. Canada----	$3 / 27 / 73$	147	497	12	4	65	Litter	Litter	Cage-2	0.45
					4	65	Litter	Litter	Cage-2	. 45
Florida ---------	$6 / 3 / 73$	150	486	12	4	24	Litter	Litter	Cage-2	
					8	75	Litter	Litter	Litter	1.92
Minnesota -------	3/27/73	150	500	11	3	99	Litter	Litter	Cage-3	. 33
				10	1	100	Litter	Litter	Litter	1.5
Missouri Cage ---	9/9/72	151	500	14	2	40	Litter	Litter	Cage-2	. 67
					4	40	Litter	Litter	Cage-8	. 58
Missouri Floor ---	3/3/73	151	500	27	4	60	Litter	Litter	Litter	1.6
New Hampshire Cage										
	5/1/73	150	502	17	8	24	Litter	Litter Cage	Cage-3	. 5
New Hampshire										
Floor	5/1/73	150	502	8	3	30	Litter	Litter	Litter	3.2
North Carolina----	3/23/73	150	500	10	2	50	Litter	Litter	Litter-slat	1. 7
					2	50	Colony cage	Colony cage	Colony cage-7	. 5
					4	26	Colony cage	Colony cage	Cage-2	.6
Pennsylvania ----	4/23/73	150	500	24	2	48	Litter			$.5$
					2	50	Litter	Litter	Litter	1.7
Tennessee-------	3/27/73	140	500	14	8	30	Litter	Litter	Cage-2	. 45

1/ The numerals after the word "cage" refer to the number of birds per cage.

TABLE 7. --Management, rations, laying house environment, and vaccination provided by tests, 1973 -74 Continued

2/ Metabolizable energy is the maximum quantity of feed energy that possibly may be used by the chicken.
3/ Metabolizable calories divided by percent crude protein.
4/ Approximate metabolizable energy computed from productive energy, using 70 percent as the conversion factor.

5/ See Tennessee Test Report for complete ration combinations.

TABLE 7. -- Management, rations, laying house environment, and vaccination provided by tests, $1973-74$ Continued

Test	Lighting		Artificial heat used	R Value of insulation material $6 /$		Ventilation
	Rearing (hours)	Laying (hours)				
Cent. Canada----	(7/)	(8/)	Yes	Ceiling Walls	$\begin{aligned} & 27.9 \\ & 15.1 \end{aligned}$	Exhaust fans in roof and in east wall.
Florida --------	Natural	15	No	Cage Summer House Winter	$\begin{array}{r} 13.0 \\ 8.0 \end{array}$	Natural ridge vents
Minnesota Cage---	12	12 to 16	No	Ceiling Walls	$\begin{aligned} & 15.8 \\ & 12.1 \end{aligned}$	Positive pressure
Minnesota Floor --	Natural	12 to 16	No	Ceiling Walls	$\begin{aligned} & 15.0 \\ & 13.0 \end{aligned}$	Exhaust fans
Missouri Cage---	10	16	No	Ceiling Walls	5.8 None	Ridge vents
Missouri Floor --	Natural	14	No	$\begin{aligned} & \text { Ceiling } \\ & \text { Walls } \end{aligned}$	$\begin{aligned} & 15.0 \\ & 15.0 \end{aligned}$	Exhaust fans in ceiling
New Hampshire---	14	14	No	$\begin{aligned} & \text { Ceiling } \\ & \text { Walls } \end{aligned}$	$\begin{aligned} & 15.0 \\ & 15.0 \end{aligned}$	Exhaust fans
North Carolina---	Step down	Step up to 17	No	Ceiling Walls	$\begin{aligned} & 7.3 \\ & 1.5 \end{aligned}$	Natural via windows
Pennsylvania ----	8	12 to 17	Yes	$\begin{aligned} & \text { Ceiling } \\ & \text { Walls } \end{aligned}$	$\begin{aligned} & 15.5 \\ & 15.5 \end{aligned}$	Exhaust
Tennessee-------	Natural	14	No	Ceiling Walls	13.0 None	Winter, Positive pressure; Summer, Exhaust fans

6/ Due to variations in type of construction, R Values will be approximate for some tests.
7/ At day old--18-1/2 hr.; light decreased 15 minutes per wk. to meet at $15-1 / 2 \mathrm{hr}$. at longest day, then natural decrease until $13-1 / 2 \mathrm{hr}$.

8/ 13-1/2 hr。until natural increase takes light hours to $15-1 / 2 \mathrm{hr}$. in mid-June, then light held at $15-1 / 2 \mathrm{hr}$. until end of test.

TABLE 7.--Management, rations, laying house environment, and vaccination provided by tests, 1973-74 Continued

Test	Newc astle		Infectious bronchitis		Fowl Pox		Encephalomyelitis		Coccidiosis control		Marek's Disease
	Type	$\begin{gathered} \text { Age } \\ \text { (wk.) } \end{gathered}$	Type	$\begin{gathered} \text { Age } \\ \text { (wk.) } \\ \hline \end{gathered}$	Type	$\begin{gathered} \text { Age } \\ \text { (wk.) } \end{gathered}$	Type	$\begin{gathered} \text { Age } \\ \text { (wk.) } \end{gathered}$	Type	$\begin{gathered} \text { Age } \\ \text { (wk.) } \end{gathered}$	Age
Central Canada	Spray Spray	$\begin{aligned} & 1.5 \\ & 19 \end{aligned}$	Spray Spray	$\begin{aligned} & 1.5 \\ & 12 \end{aligned}$	Wing web.	8	Water Water	$\begin{array}{r} 8 \\ 15 \end{array}$			1 day
Florida	Water Water Water	1,3,10 16, 32 48,64	Water Water	$\begin{aligned} & 1,3 \\ & 10,16 \end{aligned}$	Wing web.	8	None	--	Poly-stat	0-8	1 day
Minnesota	Water Water	$\begin{aligned} & 5 \\ & 14 \end{aligned}$	Water Water	$\begin{aligned} & 5 \\ & 14 \end{aligned}$	Wing web.	9	None	--	Amprol	0-20	1 day
Missouri Cage	Water Water Water	$\begin{aligned} & 1 \\ & 7 \\ & 16 \end{aligned}$	Water Water Water	$\begin{aligned} & 1 \\ & 7 \\ & 16 \end{aligned}$	None	--	None		Poly-stat	0-11	1 day
Missouri Floor	Water Water Water	$\begin{aligned} & 1 \\ & 4 \\ & 10 \end{aligned}$	Water Water Water	$\begin{aligned} & 1 \\ & 4 \\ & 10 \end{aligned}$	None	--	None		Poly-stat	0-8	1 day
New Hampshire	Dust Dust	$\begin{aligned} & 2 \\ & 20 \end{aligned}$	Dust Dust	$\begin{aligned} & 2 \\ & 20 \end{aligned}$	None	--	None	--	Cocci-Vac	1	1 day
North Carolina	Occular Water Water +Every	$\begin{gathered} 1 \\ 5 \\ 16 \\ \text { days } \end{gathered}$	Occular Water	$\begin{aligned} & 1 \\ & 5 \end{aligned}$	Wing web.	12	Water	14	None (cages) 6 Spcs. Cocci	$\text { i }{ }^{--}$	1 day
$\begin{aligned} & \text { Pennsyl- } \\ & \text { vania } \end{aligned}$	Water Water Water	$\begin{aligned} & 4 \\ & 8 \\ & 16 \end{aligned}$	Water Water Water	$\begin{aligned} & 4 \\ & 8 \\ & 16 \end{aligned}$	Wing web.	8	None	--	Amprol	0-20	1 day
Tennessee	Occular Occular Occular	$\begin{aligned} & 1 \text { day } \\ & 10 \\ & 20 \end{aligned}$	Occular Occular Occular	$\begin{aligned} & 1 \text { day } \\ & 10 \\ & 20 \end{aligned}$	Wing web.	10	None	--	Amprol	0-20	1 day

U. S. DEPARTMENT OF AGRICULTURE AGRICULTURAL RESEARCH SERVICE

NORTHEASTERN REGION
AGRICULTURAL RESEARCH CENTER WEST
BELTSVILLE, MARYLAND 20705
POSTAGE AND FEES PAID
U. S. DEPARTMENT OF agriculture AGR 101

[^0]: *Includes 30 experimental stocks.

[^1]: * Data for this trait not reported.

[^2]: * Data for this trait not reported.

[^3]: * Data for this trait not reported.

