

fair of

~

5/11

12251/B

u_b

PRITCHARD, A.

(.

•

.

Digitized by the Internet Archive in 2018 with funding from Wellcome Library

https://archive.org/details/b29343562

GENERAL HISTORY

0 F

ANIMALCULES.

ILLUSTRATED

ВY

FIVE HUNDRED ENGRAVED DRAWINGS.

BEING

PART I. OF "A HISTORY OF INFUSORIA, LIVING AND FOSSIL."

 $\mathbf{B}\mathbf{Y}$

ANDREW PRITCHARD, M.R.I.

,

LONDON:

WHITTAKER AND CO. AVE-MARIA LANE.

1843.

PREFACE.

THE following pages—part of *A History of Infusoria*—are offered to the public in the hope that they, together with the engravings, may extend and advance the study of this subject, by presenting a general outline of the History of Animalcules to those persons who do not feel disposed to enter into the minutiæ contained in the body of the work from which they are taken.

In no branch of Natural History are drawings of the subjects more necessary. With this impression, the Author not only gave a greater number than is contained in any previous volume, but devoted much time and expense in the introduction of accurate details. This augmented the cost: many persons have been thereby prevented from obtaining that work. In the present tract this is obviated, the price being reduced to the utmost.

The kind patronage of those who appreciate works of this elass is therefore respectfully solicited in its favour.

162, Fleet Street, London, January, 1843. Mr. PRITCHARD, having been for several years engaged as Patent Agent, offers his assistance to Patentees, Inventors, and others, in the various branches connected with the Patent Business, especially *either* of the following:—

In giving opinions on cases of Infringement;
In ascertaining the novelty of Inventions;
In fixing the Titles of Patents;
In procuring Patents for England, Scotland, Ireland, France, Belgium, Holland, the German States, or America;
In making Mechanical Drawings;
In preparing Specifications for Patents.

Caveats entered. New Designs for Articles of Manufacture registered.

LONDON, 162, Fleet Street.

CONTENTS.

			LAGE
General remarks, and Dr. Ehrenberg's summary	•••		i.
SECTION I. Localities and appearance of Infusoria in	masses		8
II. External forms, coverings, members, &c.			13
III. Of the eyes			19
IV. Distinctions			21
V. Method of capturing, selecting, and exar	nining		24
VI. Effects of temperature			29
VII. Effects of air, chemical mixtures, and po	isons		30
VIII. Effects of electricity, &c.	•••		31
IX. On the resuscitation of Infusoria			33
X. Supposed manufacture of Infusoria			34
XI. The evolution of light	•••		36
XII. Relative number of different species			37
XIII. Method of feeding			37
XIV. Drying and preserving			39
XV. Infusoria in flints	•••		40
XVI. Microscopes for examining Infusoria			41
XVII. Micrometers			46
XVIII. and XIX. Apparatus			47
XX. On viewing by polarized light			-18
XXI. Illumination			49
XXII. Classification			49
XXIII. to XXXIV. Internal organization, &c.			64
List of 732 species of Infusoria, arranged into gener	a, famil	ies,	
and classes, with references to the engravings			- 73

ERRATA.

Pag	e.	Line		For-	Read-
1		. 11	•••	diminitive	diminutive.
15	••	. 18	•••	filaform	filiform.
15	•••	. 21	•••	purpeying	purveying.
16		. 15		filaform	filiform.
45	••	. 12	••	${\it noth with standing}$	notwithstanding.

PART I.

GENERAL HISTORY

0F

INFUSORIAL ANIMALCULES.

AMONG the arguments deducible from the natural world, in support of the existence and superintending Providence of an Almighty Intelligence, none can earry a stronger conviction home to a reasoning and philosophic mind, than those which are drawn from that portion of it which falls under consideration in the present treatise. Interspersed throughout this world of nature, designed and formed by a gracious and All-wise Creator—if, with no other intention, still, with that of yielding evidence indisputable of His own Omnipotence—exists a world within a world, of beings so diminitive, as to have provoked man's utmost ingenuity to bring them within the range of his perceptive powers.

"In the clearest waters, and also in the troubled, strongly acid, and salt fluids of the various zones of the earth; in springs, rivers, lakes, and seas; in the internal moisture of living plants and animal bodies, and, probably, at times, carried about in the vapour and dust of the whole atmosphere of the carth, exists a world, by the common senses of mankind unperceived, of very minute living beings, which have been called, for the last scventy years, INFUSORIA. In the ordinary pursuits of life, this mysterious and infinite kingdom of living creatures is passed by without our knowledge of, or interest in, its wonders. But, to the quict observer, how astonishing do these become, when he brings to his aid those optical powers by which his faculty of vision is so much strengthened. In every drop of dirty stagnant water, we are generally, if not always, able to perceive, by means of the microscope, moving bodies, of from 1-1150th to 1-25,000th of an inch in diameter; and which often live packed together so closely, that the space between each individual scarcely equals that of their diameter."

The wisdom and goodness of Providence have endowed these living creatures with all that can be needed for their happy existence. A reference to the drawings, generally, will afford some idea of their beautiful and varied forms. What, for instance, can be more admirable in structure than the Infusoria of the family Volvocina? (See *Plate I. figs.* 34 to 57.) In what class of animals are its members so curiously and so symetrically associated together? In the Volvocina, innumerable beings are colonized within a simple, delicate, crystal-like shell, whose form, sometimes spherical, at others quadrangular, presents us with examples of perfect harmony and proportion. Who can behold these hollow living globes, revolving and disporting themselves in their native element, with as much liberty and pleasure as the mightiest monster of the deep:—and, to carry our views a step further, to speak in detail of series of globes, one within another, alike inhabited, and their occupants alike participating in the same enjoyment —who can behold such evidences of creative wisdom, and not exclaim with the Psalmist, "How wonderful are thy works, O Lord, *sought out* of all them that have *pleasure therein*!"

Again, take an example from the most minute of living beings to which our knowledge at present extends, such as the Monas crepusculum (see Part II.), and compute the number which could occupy the bulk of a single grain of mustard seed, the diameter of which does not exceed the tenth of an inch: it is hardly conceivable that within that narrow space *eight millions* of active living creatures can exist, all richly endowed with the organs and faculties (as hercinafter fully described) of animal life! Such, however, is the astonishing fact. Again, to take an example from those families of Infusoria, who posses the power of changing their forms at pleasure, and yet confine it to the drawings of the first plate (although the second would furnish protean phenomena of a more extraordinary character), take the figures of the family Astasiaa (groups 68 to 82), and you have creatures capable of assuming all the various forms there depicted, in the short interval of a few seconds, and that under the observer's eye. In the beautiful little creatures of the genus Euglena, you may also perceive a distinct visual organ, by which they can

в 2

steer their course with unerring rectitude. Many of the Infusoria do not possess this organ. But, mark the all-wise dispensation of Providence in this respect !---those which have it live, for the most part, near the surface of the water, whilst those which have it not, as the Bacillaria, locate near the bottom. This circumstanee in their economy has not hitherto been noticed.

Lastly,—still restricting our observations to the drawings of the first plate, look at the graceful forms of the small family Closterina (*fig.* 63 to *group* 67), which have long rivetted the attention of the most eminent naturalists of modern times, and which have hitherto defied all their powers of investigation, aided by all the refined and searching means which human ingenuity can supply, to determine whether they are animals or plants ! No characteristic, at present known, has been found sufficient to satisfy both the zoologist and botanist.

In short, there is not one species, out of the seven hundred and thirty-two described in the second part of this work, but offers ample scope for the exercise of our deepest reflection, at the same time that it affords an admirable proof of the adaptation and design of Creative Wisdom.

For the eonvenience of reference, it is proposed to divide this part into sections; and, although the subjects treated of may not, as respects some few of them, have received all that careful investigation which they deserve, yet it is presumed that sufficient has been done to lead the minds of the more curious inquirer to a further research. Previous to which, I present the reader with Dr. Ehrenberg's summary of the subject:— 1. All the Infusoria are organized, and the greater part of them (probably all) are *highly* organized bodies.

2. The Infusoria constitute two very natural classes of animals, according to their structure, which classes admit of subdivision, upon the same principle.

3. The existence of the Infusoria in the four quarters of the globe, and the sca, is proved; as also that of individuals of the same species in the most opposite ends of the world.

4. The geographical distribution of the Infusoria upon the earth follows the laws observed regulating that of other natural bodies.

5. Most of the Infusoria are invisible to the naked eye; many are visible as moving points; and the size of the body does not exceed, in any case, the 1-12th of an inch.

6. The minute invisible Infusoria, in consequence of their immense and swarming numbers, colour large tracts of water with very remarkable hues.

7. They give rise to one kind of phosphorescence of the sea, though in themselves invisible.

8. They compose (though singly invisible) a sort of mould, through living in dense and crowded masses.

9. In a cubic inch of this mould, more than 41,000 millions of single animals exist, and constitute, most likely, the chief proportion of living bodies upon the face of the earth.

10. The Infusoria are the most reproductive of organised bodies.

11. From one of the known propagative modes of the Infusoria—that is, of self-division—a continual destruction, beyond all idea, of the individual, and a similar interminable preservation and extension of it, in air and water, ensues, which, poetically, borders upon eternal life and growth.

12. The copulation of gemmæ, which perhaps includes the hitherto unsolved poly-embryonate riddle of the seeds of all plants and vegetable formations, is solved in the family Closterina.

13. The Infusoria, in consequence of their siliceous shells, form indestructible earths, stone, and rocky masses.

14. With lime and soda we can prepare glass, and swimming bricks, out of invisible animalcules; use them as flints; probably prepare iron from them; and use the *mountain meal*, composed of them, as food in hunger.

15. The invisible Infusoria are sometimes hurtful, by eausing the death of fish in ponds, deterioration of elear water, and boggy smells; but not, as has been supposed, in giving rise to malaria, plague, and other maladies.

16. The Infusoria appear to be (as far as is yet known) sleepless.

17. The Infusoria partly decompose (zerfliessen) by egg laying, and through that change passively, and manifold their form.

18. The Infusoria form invisible intestinal worms in many animals and in man, even if the Spermatozoa are excluded from amongst them.

19. The invisible Infusoria have also *lice* and *intestinal* worms themselves.

20. The Infusoria possess a comparatively long life.

21. As the pollen of the Pine falls yearly from the clouds, in the form of *sulphur-rain*, so do the much smaller

animalcules appear (from being passively elevated with the watery vapour) floating in a live state in the atmosphere, and sometimes, perhaps, mixed with the dust.

22. In general, the Infusoria maintain themselves pretty uniformly against all external influence, as do larger organized bodies. It is true that they sometimes consume strong poisons without *immediate injury*, but not without an after effect.

23. The weight of the invisible Infusoria, light as it is, is yet ealculable, and the most gentle eurrent of air or draught can play with their bodies as with the vapour of water.

24. The evident and great quickness of the motion of Infusoria, is reducible as follows: Hydatina senta, 1-12th of an inch in four seconds; Monas punctum, 1-12th in forty-eight seconds; Navicula gracilis, 1-12th in six minutes twenty-four seconds.

25. Linneus said, omnis calx e vermibus :---either to maintain or deny omnis silex omne ferrume vermibus, would be, at the present moment, unjust.

26. The direct observations as yet known upon the theory of *generatio primitiva* are wanting in necessary strictness. Those observers, who profess to have seen the sudden origin of the minutest Infusoria from elementary substances, have quite overlooked the compound structure of these organic bodies.

27.

28. The power of infusorial organization is instinctively shown by the strong enewing apparatus, with teeth, which they possess, and their evincement, likewise, of a complete mental activity. 29. The study of the Infusoria has led to a more distinct and conclusive notion of animal organization generally, and the limits which circumscribe the animal form; from which all plants and minerals, that want the animal organic system, are strongly and distinctly separated.

30. Finally,—it results from these inquiries, that experience shows an unfathomableness of organic creations, when attention is directed to the smallest space, as it does of stars, when reverting to the most immense.

SECTION I.—Localities and Appearance of Infusoria in Masses.

In investigating most branches of practical science, especially those relating to Natural History, the subjects to which our observations are to be directed are generally difficult of attainment, and the inquiry cannot be prosecuted without considerable inconvenience. This, however, is not the case with respect to the *Infusorial Animalcules*. We can examine them in our chamber, at any leisure moment we like, and at any time or season; and we can procure them, at least the ordinary kinds, such as the Paramecium, Kolpoda, &c., with the utmost facility, —for they abound in most waters wherein the stalks of flowers have been a few days steeped—whilst many of the more beautiful kinds, such as the Volvocina, Astasiæa, Hydatinæa, &c., are to be found in pools of clear standing water.

Many remarkable species, and some of the most elegant

I have ever examined, have been taken in meadowtrenches, in the slowly running water, after a summer shower, and especially about the period that the first crop of hay was mown. Among healthy water plants, such as the Chara, Cerotophyllum, Confervæ, Lemna, &c., the various kinds of Vorticellina and Rotatorial animalcules may be sought for with success. The stems of aquatic plants, particularly those of the description just mentioned, have often the appearance, to the naked eye, of being encased with mouldiness or mucor, which, on being examined under the microscope, proves to be an extensive colony of arborescent animalcules. Whenever this appearance is of a bluishmilky hue, the species will mostly be those of the Vorticella or Epistylis. (See the Engravings.) If you observe little dark bristle-like bodies standing out among the stems, you may expect them to be the Melicerta; and the little yellow gelatinous balls upon the Ceratophillum are, probably, the Megalatrocha. In clear shallow pools, the Volvox globator (fig. 55) may be met with in vast numbers in the spring of the year; and, when these are found amongst Lemna, by examining them under a deep magnifying power, you may often discover, within their hollow spheres, the Notomata parasita, like so many white specks. The dustlike stratum we frequently notice on the surface of stagnant ponds, is often composed almost entirely of species of the most beautiful colours, such as the Euglena, Chlorogonium, Pandorina, Gonium, and Bursaria. The thin shining film, which sometimes covers plants in pools of water, assuming the varied hues of red, brown, yellow, green, and blue, is made up also of infusorial animalcules. For example-those objects, which under water appear to

be coated with a thick green matter, abound with the different species of the Euastra and Closterium, the Arthrodesmus quadricaudatus and pectinatus, the Stentor polymorphus, and Vorticella chlorostigma; and those objects which have a bright orange-coloured coating, derive it from the presence of the Stentor aureus.

The abode of animalcules is not, however, confined to the clear fresh water of lakes, rivers, pools, springs, and trenches, but extends even to the briny ocean, to strong acids, tannin, and the fluids contained in the animal and vegetable creation. In moist earth, the species of Bacillaria and other shelled animalcules may also be found; and even the very air we breathe may teem with them and their germs, whilst the gentlest breeze will be sufficient to waft them in myriads over the distant waters, and to transport these living atoms throughout the face of Nature. So that, in short, whether we descend into the deepest mines, where darkness ever reigns, or climb the lofticst mountains, whose summits glow with almost perpectual sunshine, there shall we find them located alike.

Although the colouring of water is sometimes derived from the oxides of iron and other mineral or earthy substances over which it flows, or from the Oscillatoria and other minute algæ which it contains, an intensity of colouring will also be given it by the presence of infusorial animalcules. Thus the Astasia imparts a blood-red colour, as also the Euglena ruber; the Gallionella, Navicula, and Gomphonema, impart an ochreous hue. Blue proceeds from the Stentor ceruleus. Masses of water assume an intense green from Monas bicolor, Uvella bodo, Glenomorum tingens, Phacelomonas pulvisculus, Cryptomonas glauca, Cryptoglena coniea, Pandorina morum, Gonium peetorale, Chlamidomonas pulv., Volvox glob., Astasia and Euglena sang., when young; Euglena viridis, Chlorogonium enehylis, and Ophrydium versatile: yellow from the Astasia flavicans; a milky tint from the Polytoma uvella, and Ophryoglena atra, when they are numerous. A bright orange eoating is given by Stentor aureus.

The rapid and mysterious transition of eolour which is observable in lakes, and which has often ereated an alarm in the timid minds of the superstitious inhabitants on their borders, the microscope has shewn to arise from eertain ehanges in the condition of Infusoria. Thus, a lake of clear transparent water will assume a green colour in the course of a day; nay, more, it will become coloured and turbid in the middle of the day, when the sun brings these ereatures to the surface, and rapidly develops them, or causes their dead bodies to ascend, whilst in the morning and evening it will again be clear.

The phosphorescence of the sea appears to be oceasioned, in many instances, by the presence of animaleules, which, although individually imperecptible, often render luminous many miles of water by the immensity of their numbers.

In the same manner, large arborescent figures, resembling Fuei and Algæ, are formed by the Micromega; and masses of great extent by the Epistylis and Schizonema.

The Bacillaria, or their shell-like coverings (Loricæ) are often spread over many miles of the earth's surface, deseending also to a considerable thickness, the remains of which, when they become inducated and mixed with argillaceous and other earths, contract the forms of siliceous slate, porphoretic rocks, &c., present us with geological facts recorded by the Divine truth, the investigation of which, by the aid of the microscope, unlike the records of human wisdom, biassed by prejudice or alloyed by error, leaves not the shadow of a doubt upon our mind of their prior existence in another condition.

We should not omit to mention a very common mistake with respect to seeking after Infusoria. Some persons imagine that if they procure a portion of fetid ditch water, or take a few flowers and immerse them in a flower glass full of water, they will be furnished in a few days with all the varieties they may desire; the fact, however, is very different from this. It is true, that in such cases, Infusoria will be found, but they will be only of the most ordinary kinds. Those of high interest, either as regards their structure, form, or colour, like all the other masterworks of Nature and of Nature's God, are not so easily attained. Some degree of skill must be exercised for the purpose. But as we shall fully explain this matter in the section on the method of procuring and selecting Infusoria, we need not proceed further with the subject here.

SECTION II.—General External Forms, Coverings, Organs, and Members of Infusoria.

Before entering on the classification of infusorial animalcules, as determined by their internal structure, it will be well to make a few remarks upon their general appearance and external characters, as exhibited by the microscope. The forms and members of large animals may be said, in one respect, to differ but little from each other; the comparative anatomist being enabled to trace, by easy gradations, one common type throughout the whole, the varieties being occasioned by a greater development of certain parts, and the suppression of others. Such, however, is not the case with Infusoria. The general forms of Infusoria will be best conceived by a reference to the drawings, inasmuch as words would be found insufficient to convey an idea of the vast varieties which they assume. Some are egg-shaped; others resemble spheres; others, again, different kinds of fruit, eels, serpents, and many classes of the invertebrated animals, funnels, tops, cylinders, pitchers, wheels, flasks, &c. &c.

The covering, or outer tunic, of Infusoria, is of *two* kinds; the *one* soft and apparently membraneous, yielding to the slightest pressure, and accommodating itself to the state of repletion or otherwise of the animalcule, and thus resembling the tunic of the naked molusca and annelida, as slugs, leeches, &c.; the *other*, stiff, rigid, and hard, having the appearance of a shell, though, from its flexibility and transparent nature, it is more like horn. The creature identified with the former of these is termed the naked, shell-less, or *illoricated* Infusoria, whilst the latter denotes the *loricated*. I shall, therefore, adopt the terms *loricated* and *illoricated* in this work, because they appear to be the least objectionable; for, although, in etymological strictness, *lorica* simply means a shell, yet, as we commonly attach the idea of a certain composition to the word shell, it may be as well to avoid the use of it, for the following reasons:—

The Lorica differs greatly as to its composition in different species. In some cases it is composed entirely of silica; in others, of lime, with a portion of the oxide of iron. In some, it is combustible; in others, not so. There is a difference also as to the proportion of envelopement of the ereature within the lorica. Some Infusoria are entirely encased, as in a box or pitcher; whilst others are only so in part, having merely a shield or carapace over them. In the latter, the covering resembles that of the Chilonia or turtle tribe.

As, in very minute genera, it is often difficult to ascertain, by a mere inspection, whether they are enclosed within a lorica or not, it will not be deemed uninteresting to point out the manner in which this may be determined. Having obtained some specimens of the Infusoria, we will suppose of the family Cryptomonas (*figs.* 21 to 33), place a drop of water containing them in an aquatic live-box, compressor, or erush-box, mixing a little colouring matter with the water, according to the directions given in the section "On feeding Animalcules with coloured Materials," when, if loricated, a clear transparent ring will be observed, encircling the animalcules, and keeping them separate from the fluid in which they are immersed :— should this test, however, be deemed unsatisfactory, press down the cover of the aquatie live-box, so as to erush the specimens, when the coloured fluid will enter and surround their bodies, and by a proper management of the illumination of your microscope, the broken edges of the loriea will be visible, as seen in *fig.* 33, which is a representation of the Trachelomonas volvoeina similarly eireumstaneed.

Until recently, many of the genera of the smaller kinds of animaleules were supposed to be devoid of any external organs whatever; but the feeding on coloured substances, and introduction of achromatic glasses, has proved the incorrectness of this conclusion, even as respects the Monads. The simplest external member, observable in the Infusoria, is a single, delicate, hair-like filament, situate near the oral orifice or mouth, and which has, consequently, been designated the proboscis. When this member is of an uniform appearance, it is said to be filaform, or thread-like; but, when it tapers toward the extremity, like an eye-lash, or cilium, it is denoted flagelliform. This organ is used by the animalcule both for locomotive and purpeying purposes. When the creature is in rapid motion through the water, this instrument aets as an oar or paddle, in facilitating a progressive movement, whilst, at the same time, a current is created in the direction of its mouth, for the procuration of food. This member is not easily seen, inasmuch as considerable skill in the use of the microscope is required to shew it, nor will even that, in all eases, succeed. The employment of finely-divided indigo or earmine affords the surest proof of its existence. When, by this means, its action has been detected, allow the water to evaporate, and you may notice

a streak or mark, as it dries, left upon the glass, thus giving conclusive evidence of the presence of this organ. Sometimes the mouth is furnished with two of these probosces, or cilia, nearly of equal length with the body, as in the genera Chlorogonium. Other Infusoria have their oral orifices completely encircled with cilia, in which case they are usually shorter than when only one or two are perceptible, rarely exceeding one-fourth of the length of the body. Others, again, have their bodies wholly covered with cilia, which are often arranged in longitudinal rows, as with the Uroleptus. (See *Drawing*, &c.)

When these cilia are disposed in clusters, as with some of the larger polygastric animalcules, their structure may be more correctly ascertained. In the family Oxytrichina (see *Engraving*), the different modifications of these filaform organs constitute excellent characteristics of the genera; as, however, they are not limited to that particular family, I shall make a few general observations respecting them.

Cilia may be described as hairs seated upon a bulb. They perform a rapid vibratory motion, the point of each describing a comparatively large circle, whilst the base merely turns round upon its articulating surface, or part of the bulb to which it is affixed. Dr. Ehrenberg is of opinion that there are two kinds of cilia, viz. *Cilia continua*, in which the bulb is a continuation, or merely enlarged termination of the cilium; and *Cilia articulata*, in which there is a joint or articulation of the cilium to the bulb. Examples of the former may be observed in the Stylonchia mytillus; and of the latter in the Paramecium aureli, (fig. 330.)

17

It may be remarked here, that naturalists have been greatly divided in opinion with respect to the functions performed by the cilia, more especially those belonging to the Rotatoria. It has been contended by some, that these organs form the chief instrument for respiration; nor is it at all improbable that such is the case, as we find that similar oncs are placed round the gills or beard of the oyster, muscle, &c., to produce currents in the water, and bring a fresh supply to the creatures. The disposition of the bundles or clusters of cilia in the Rotatoria, and their appearance when in motion, may be considered as one of the most interesting and curious spectacles in the animal Their strong resemblance to toothed-wheels, creation. and their continual revolution, have been most fertile subjects for the exercise of the imagination; indeed, there are few, if any other, which can excite more astonishment in the beholder. Let the reader turn to the various plates representing the Rotatoria, and mark the great variety of design, and exquisite beauty of execution, there displayed in the forms and dispositions of these wheel-like organs, and his mind can hardly be restrained from reverting, in the profoundest admiration, to that Divine Intelligence by which such wonders could alone have been called into existence.

Setæ, or bristles, are a kind of rigid hairs or cilia, used as organs for the support of the body, and for climbing, but without having the power of vibrating like real cilia. These organs are sometimes devoid of the thickened base or articulation, as with the genus Actinophrys (fig. 266); whilst others possess a true articulation, as exemplified in the posterior three of the Stylonchia mytillus. Some are subulate; others have a knob at the extremity, and hence termed capitate.

Styles are thick straight setæ, usually seated on the under side of the body, posteriorly, and resembling the tail feathers of birds. These never vibrate; neither have they a bulbous base, nor are their extremities bent or hooked. They are used for the support of the body, and for elimbing.

Uncini are eurved hook-like processes, like thick short hairs. They emanate from the under surface of the body, and resemble the feet of larger animals. These organs do not vibrate, have neither bulb nor articulation, but sometimes possess considerable latitude of motion.

Variable processes are another description of external members, which perform the function of locomotion in a very complete manner. In the family Amoebaea, the animaleule appears to have the power of protruding, at pleasure, any portion of its body, to form these processes; a qualification which has not inaptly obtained for it the designation of protean. In the lorieated family Areellina, the variable processes are definite, the protrusion being restricted to those parts of the body which are situated near the opening in the shell, designed for that purpose. These processes, like the protean ones, are soft or membraneous, and resemble, though on a small scale, those of the Molusca, of which the horns of the eommon snail are a familiar example. The Infusoria, however, have a greater eommand than the snails, &e. have over these processes, and a more extended action, in proportion to their size.

In the Infusoria of higher organization, such as the Rotatoria, there are definite processes, of a *toe* or *claw-like* description, which are mainly used as organs for prehension. These are generally at the extremity of a certain prolongation of the body, which may be designated a footlike member. To the inexperienced observer, this process has generally been supposed to be the tail; but, not being placed dorsally, with respect to the discharging orifice, it must be considered as occupying the position of the foot. In these creatures, there is a large development also of those parts of the body to which the rotatory organs are attached; and, in the case where two only of these organs are seen, a projection may be noticed on each side of the anterior portion of the animalcule, such as to have obtained for them the appellation of *ears*. For example, see *fig.* 416.

SECTION III.—Of the Eyes, or Visual Organs of Infusoria.

Our knowledge of the existence of these organs is wholly attributable to the invention of the achromatic microscope. In F. O. Muller's work, which contains drawings of the larger number of the animalcules, lately figured by Dr. Ehrenberg, and several of them made with much exactness, though on a very small scale, there is not one of the Polygastrica given as possessing the visual organ, and but one species of the Rotatoria, in which he considered the existence of it as established. By referring to our engravings, however, it will be seen that nearly all the Rotatoria have eyes, and that many of the genera of the Polygastrica are also furnished with them. If no other proof than this could be obtained, therefore, of the existence of a nervous system in these animated atoms, this might still be taken as a sufficient evidence of the fact.

Commencing, then, with the smallest, and apparently the simplest, as to organization, of the Infusoria, in which the eye is perceived, the first genera is that of the Microglena, in which instance, as in the greater number of others, the colour or pigment of it is *red*. When we reflect that in a living ereature, often less than the one-thousandth part of an inch in diameter, so beautiful an organ as this exists, the inference is almost certain that there must be systems also for the performance of various other functions, but which, by their very nature, we are necessarily precluded from discerning.

By taking a glance at the tabular distribution of the genera of each family in this work—a part which is of the utmost value to the zoologist, and on which I have bestowed great pains—the reader will notice, at once, that numbers of the genera of the Polygastrica are furnished with one eye; and, in some cases, which however are more rare, with two.

In the Rotatoria, the number and position of these organs may be regarded as excellent characteristics of the genera. In the greater proportion of these, as before stated, the animalcules have two, and, in some instances, three cyes; whilst, in one genus, the Theorus, as many as seven or eight have been distinctly recognized on each side of the head. When the eyes are situated in front of the œsophagal bulb, to which the teeth are attached, they are termed *frontal eyes*; and when behind this bulb, *cervical eyes*. They are sometimes disposed in a line, side by side, as in the Triophthalmus; and at others, arranged triangularly, as in the Eosphora. In the Cycloglena, they form a circle; and, in the Theorus, a cluster on each side.

SECTION IV.—Distinction between the Infusoria and other Minute Animals, &c.

In our present state of knowledge, with respect to organic bodies, there are many difficulties in the way of determining on such boundaries as may reduce them to well defined groups. Even the line of demarcation between animals and plants, which, at the first blush, might be supposed to be so very broad and distinct, upon a more minute consideration, is not easily settled. The plan of this work will comprehend a description of those creatures which are generally to be found in animal or vegetable infusions, and such as agree with them in their general structure and habits.

In Die Infusionsthierschen, the author has occasionally introduced animals which have been classed under other divisions of the animal kingdom. As examples, we may take the family Dinobryonia, the members of which are classed as zoophites by other naturalists. Again, in the genus Bodo, some of the species are proper Entozoa, and, therefore, ought to be excluded. Having, however, taken that work as the basis of my arrangement, all the species described therein will be found here.

With regard to the spermatozoa of animals, our knowledge of them is but scanty and confused, arising principally from their extreme minuteness, which, even with the assistance of our most perfect microscopes, places them at the very limit of our vision. The great importance of this subject, especially to the medical professor, has obtained for it, from several distinguished naturalists, long and laborious researches; but, on the whole, the results have been so contradictory, as by no means to justify the introduction of them into this manual. It will be sufficient, therefore, to say, that since the time of their discovery (1676), up to the present period, all that we know of the *true* Spermatozoa of animals, is, that they are not distinguishable from the Cerearia found in the liver of snails, the animal organization of which has been made out by Bauer, Wagner, and Ehrenberg.

The recent discoveries of Dr. Unger on the spermatozoa of plants is a subject of such deep interest, and so little known in this country, that I have introduced a description of them under the genus Spirillum; while original drawings of them will be found in *Plate* XII.

It has been said that the line of demarcation between many species of animals and plants—the transition from the one kingdom to the other—is not easily defined. Indeed, so close is the connection between them, that some members of the families Clostcrina, Vibrionia, and Baeillaria, which are considered by Ehrenberg to be animals, are, by many eminent botanists, set down as belonging to the vegetable kingdom, and classed with the minute aquatic algæ of the genera Oscillatoria, Spyrogyra, &c. The true species of the two genera just named, it must be admitted, are not of animal structure; and Dr. Ehrenberg has given us the following reasons why they are not included with the Infusoria :—1. They have no oral aperture. 2. They never propagate by direct self-division, but by the mere dissolution of the gemmæ. 3. They increase in size onlyby the growth of the gemmæ. 4. They have both the external and internal rigidity of vegetable organization. 5. The impregnation of the Spyrogyra resembles that of some of the species of Fungi. 6. They develope acicular erystals within themselves, like some well-known plants. 7. Their motion is not perceptibly voluntary. For further particulars, see remarks on the Closterium, Part II.

Spontaneous Generation. - Many of my readers may expect to find some notice of this subject, as the Infusoria are considered to have a generatio primitiva, or, in other words, are produced by some fortuitous combination of circumstances from inorganic matter. That such a statement is untenable, most persons will be inelined to admit, who have perused the description contained in the Second Part of this work. All the observations that can be depended upon tend to show that infusions of vegetable or animal matters, whether natural or artificial, only offer food for the nourishment of these living atoms, whose germs are almost everywhere present, but are only developed in situations congenial to their natures. It is now well ascertained that the old notions of certain vegetable infusions producing a definite species of Infusoria is an error; that, in general, we have, in all artificial infusions, only common species, and that these invariably making their appearance, we may fairly presume their eggs are more generally dispersed and more readily developed. On the other hand, the Rotatoria, and more beautiful species of Polygastrica, are confined to localities more open to the fresh air. Ehrenberg, for many years, has experimented with simple spring water, with distilled water, and rain water, and these both boiled and cold, as also with and without vegetable matter; that in open vessels, after a longer or shorter time, depending upon temperature and other circumstances, he invariably found the Infusoria; while, in closed vessels, they were rarely to be met with; so that, I think, we may consider *generatio æquivoca*, even in Infusoria, as an unphilosophical hypothesis; and that the same fixed laws of Creative Wisdom, which regulates and governs the smallest satellite and the largest starry world through boundless space, has established the same law for the developement of a living atom, as is manifested to us in the largest animal that inhabits this planet.

SECTION V.—On the Method of Capturing, Selecting, and Placing Infusoria for Examination under the Microscope.

Having provided yourself with a number of clean glass wide-mouthed phials—those containing about four ounces a-piece will be found most suitable—let them be fitted with proper corks, and not with glass stoppers. If it be required to have all the tackle neatly arranged, they may be put into a small case, expressly constructed for the purpose, and each bottle separately marked. In place of phials, however, cylindrical glass vessels, from three to five inches long, may be substituted with advantage, as they will lay better in the case, which need not exceed the dimensions of a common sandwich-box. A good walking-stick, with a
hook at the end of it, and a piece of twine, should always form part of the equipment. As the margin of small ponds is sometimes difficult of near approach, I have contrived a spring-hook, which is attached to a moveable ferule, and made to fasten to the end of the walking-stick. This lays hold of the neck of the phial, and enables you to charge it from the surface of the water, in the immediate vicinity of the stalks of water-plants, a situation generally abounding with Infusoria. Take with you, also, a pocket magnifier, of shallow power. This may be mounted in various ways; but the onc I prefer is the triple, having the lenses arranged in the same plane; the convenience of which is, that you will have three different powers always ready for use, without the necessity of moving them; and that, the mounting being flat, it will be very suitable for the waistcoat pocket. Sling this, with a piece of ribbon, about the neck, and there will be no danger of losing it. The magnifying powers usually sclected are those from five to fifty diameters; the first, or largest, serving to distinguish the masses; the intermediate, to show the general movements, so as to determine pretty nearly whether the water you have collected is worth retaining or not; and the smallest, or most powerful, for examining the contents with more minuteness. This latter power will not so frequently be called into use abroad as at home; because, with a little practice, the middle and shallow powers will be found to answer every purpose.

Having now mentioned all the needful apparatus, proceed to the nearest ponds of water in the neighbourhood, and should there be healthy Lemmæ on their surface, or Confervæ, or other aquatic plants, you will be almost

certain to meet with animalcules. If there be any drains, however, communicating with them, the chances are that they contain only the common species, which will, by a little practice, be readily distinguished by their motion, general appearance, and colour. The indications of the presence of Infusoria are specks moving about in the water, or an apparent mouldiness around the stalks of the Lemnæ, &c. Should these appearances not be discerned under the middle power of your magnifier, throw away the water, and repair to some more favoured pool. Be careful to take only a small portion of the vegetable matter in your vessel, as its decay, and consequent evolution of gas, may soon kill all your animalcules. This must be constantly borne in mind. Clear pools of water, in the spring of the year, are the favourite places of resort for the Volvox globator; clear water, slowly running in clay or chalky soils, for the Bacillaria and Arcellina. House gutters, and tubes placed to receive the rain water, often contain a rich supply. In the winter, you may search for them in water among dead leaves, reeds, &c., which may be taken out, and their contents shaken off into some clear water; while the species which attach themselves firmly to these objects may be examined without their being removed from them. Dr. Ehrenberg states that he has met with good success in the winter under bridges, around the piers and outworks, and even in frozen ditches beneath the icc. When you have filled your vessels, cork them carefully, so as to exclude the air, for the shaking of the carriage, when a quantity of air is left in the vessels, will often destroy them before you arrive at your place of destination. In this respect, my mode of proceeding differs from that of

Dr. Ehrenberg, who always leaves a small proportion of air in the vessel; judging, therefore, from my own experience, I should conclude that he is more careful than myself as to their conveyance. The only inconvenience I have experienced from keeping the vessels entirely filled with water, during the short time of transporting them home, has arisen from those creatures which appear to live on the surface, attaching themselves to the cork, and remaining so when required to be taken out. Remove the corks as soon as you get home, and place the vessels upright; for which a mahogany stand, furnished with a number of holes adapted for the vessels, will be very convenient. A gauze covering, fitted to the frame, will keep out the dust and blacks, without obstructing the free ingress of air.

We now proceed to the mode of investigating these minute creatures under the microscope. If the kind to be examined are those which swim freely, and are visible to the naked eye, as the Volvox, Bursaria, and other large Polygastrica, and also the free Rotatoria, take a small open glass tube, such as is described in the Microscopic Ca-

binet, p. 236, and select the specimens with it in the manner there recommended. figure of the tube I here insert from that work. The diameters of these tubes may vary from one-eighth to one-twelfth of an inch, and their length from four to six inches. It may be useful occasionally to draw out and slightly bend the extremitics which are to be immersed in the water.

When the creatures are more minute than

those above mentioned, pour a little water from the vessel containing them into a watch glass, and place it upon a piece of cardboard, rendered half *black* and half *white*. The white ground will make the dark specimens apparent, and *vice versd*; thus, the required specimens may be taken out singly with one of the tubes, and placed in the aquatic live-box for observation. The observer will derive much assistance in this operation from the use of the pocketmagnifier before mentioned, or from a watchmaker's eyeglass.

When the Infusoria are extremely minute, they usually congregate at the edge of the water over the white portion of the cardboard, and may be removed from thence with the point of a quill, or of a small wedge-shaped pencil. If a quantity of the Chara, or other aquatic plants, be put into a glass jar with the Infusoria, in the course of a few days, more or less depending upon the temperature of the season, the surface will be covered with a thin pellicle, formed by the decomposition and extrication of gas, causing the small detached pieces of vcgetable matter to float upon the water, and with them the Infusoria. Let a small portion of this film be taken from the surface, by means of the feeding pin, described in the Microscopic Cabinet, p. 235, and examined under the microscope, and you will hardly fail of being highly gratified. Among the most intcresting genera collected from the surface of these infusions, in the manner just stated, are those belonging to the families Arcellina and Astasiaa. After the film has remained some days upon the water, many of the abovementioned genera disappear, and are succeeded by those of the family Vibrionia, especially the Bactcrium. These,

however, may be easily overlooked; for they merely resemble, even under a power of 250 diameters, seintillations, or the vibrations of eilia, among the vegetable matter. But, when earefully examined under a deeper power, they will appear like so many small short rods, each rod, or ehain, having a distinct movement of its own.

SECTION VI.-Effects of Temperature on Infusoria,

As vitality in these ereatures is not destroyed by the ordinary cold of winter, most of the common Polygastrica may be found at that season in ponds under the iee. The Vortieella mierostoma will live after being exposed to 8° of Fah., and the iee gradually thawed; although the number in this case may not exceed one in a hundred. Below this temperature they will not survive. The same may be said of the Monas termo and spirillum, the Parameeium aurelium, Cyelidium glaueoma, Glaueoma seintillans, and Kolpoda eueullus. When Infusoria are destroyed by the cold, no rupture or injury will be apparent on their bodies, excepting with the Chilodon eucullus, and some few others, which, under these eircumstances, will often become dissipated. The Stentor polymorphus and mulleri will not live many hours in a temperature of 9° Fah.; and arboreseent Vortieella, when subjected to that degree of cold, fall from the stalks and die.

The Rotatorial animaleules eannot endure so low a temperature as those above named.

When a small quantity of water, having animaleules

in it, becomes frozen, and is placed under a microscope, in a cold situation, Dr. Ehrenberg states that if the ice be clear, each animalcule or group will evidently be surrounded by an exceedingly small portion of water, which that naturalist supposes to be occasioned by the superior temperature or animal heat of the creatures preventing congelation; and he is of opinion, that in all cases where this portion of the water freezes, the animalcule necessarily dies.

If the water containing polygastric Infusoria be gradually raised to a temperature of even 125° of Fah. these creatures will live; and Dr. E. observes, that some of the Chlamidomonas pulvisculus existed, on one occasion, in water at 200° of Fah. If the increase of temperature be sudden, the animalcules die at 140°, notwithstanding it be kept up for only half a minute.

SECTION VII.—Effects of Air, Chemical Mixtures, and Poisons, on Infusoria.

That animalcules, like every other part of the animal creation, continually require fresh supplies of atmospheric air for their support, may be deduced from a variety of experiments. If a thin pellicle of oil be spread over the surface of the water in which they are retained, they very soon die from exhaustion; and indeed, it must have often happened to those who are in the habit of collecting Infusoria, that when the cork has been left, by accident, too long in a phial full of water, they have experienced this mishap. This is especially the ease with respect to the large Rotatoria: whenever experiments have been made with these creatures under an exhausted receiver, the result has invariably been that vitality ceases soon after the air has been expelled. Dr. E. states, that they exist much longer in an atmosphere of nitrogen than in carbonic acid or hydrogen. The vapour of sulphur soon puts a period to their existence.

Poisons, which only mix *mechanically* with water, do not appear to affeet them materially, but those which are soluble, or combine *chemically* with it, speedily destroy their lives. Many of the Infusoria can accommodate themselves to different fluids, provided that the transition be not too sudden. Thus, similar species may be found in rivers, at their source, where the water is perfectly fresh, and at their very mouths or junction with the salt water of the ocean. Hydatinea have been fed upon powdered rhubarb without being sensibly affected by it; nor does calomel or corrosive sublimate kill them; at least they live some time after these have been mixed with the water. Strychnia causes instant death.

SECTION VIII. — Effects of Electricity, Galvanism, and Magnetism, on Infusoria.

All the experiments on record, which have been made upon animalcules with these powerful agents, appear to me to have been conducted without a due regard having been paid to their diminutive size; and hence, as might be expected, the results have proved fatal to their existence. We have, therefore, yet to learn what effects might be produced under proper modifications. To render this proposition more intelligible, suppose, for instance, that we wished to ascertain the temperature in which fish would live, we should not expect to arrive at the desired information by plunging them suddenly into boiling water. Dr. E. has remarked that a shock from a leaden jar, charged with twenty sparks from an Electrophorus, having a resinous plate seven and a half inches square, and a collector five and a half inches, suddenly killed the Volvox globator, Stentor niger and aurcus, Ampileptus moniliger, Chalamidomonas and Euglena viridis. The bodies of the Ophryoglena atra and Stentor polymorphus were entirely dissipated by it, and also those of the Epistylis flavicans, after having been first thrown from their stalks. It generally required two such shocks to kill the Paramecium aurelia. When the electrical current passes near, and not through them, their movements appear to be unsteady, in the same manner as when the mental faculties in the larger animals are disturbed. Electricity, slowly produced, has a more powerful effect than when it is accompanied with rapid sparks. If water, containing animalcules, be placed between the poles of a galvanic battery, so as to be decomposed, of course, the creatures die; and a like termination will be occasioned by magnetic currents.

For a description of an apparatus for electrifying Infusoria, see *Tracts*.

SECTION IX.—On the Resuscitation of Infusoria.

In almost all ages of the world there has been evinced a restless desire within us to pry into the nature or principle of life, and the precise conditions on which it is retained; and, notwithstanding that our bodies, its present abiding place, are confessedly frail and perishable, the unravelling of an invisible and immaterial agent has been sought for by a reference to them. Hence, each succeeding generation has occupied itself in proving the fallacy of preceding theories on this mysterious subject, and in forming new ones of their own. Even in modern times we have been told that dead matter, under certain circumstances, becomes spontaneously alive, such as horse-hair under water, &c. Too true it is, however, that, let our researches be what they may, unless our views are directed upwards to a higher principle than anything that we can argue upon, in what we see around us, our labours must end in nought but "vanity and vexation of spirit."

What, perhaps, has tended to awaken our inquisitiveness on this subject, more than anything else, has been that death-like condition of sleep, or suspended animation, in which human beings and other animals have been known to remain for a great length of time, during which the body is motionless, and apparently unsustained by any nourishment whatever. In 1701, Lecüwenhoek observed these appearances in the Rotatorial Infusoria; and to such an extent did his observations proceed, that

33

hc dcclares they were capable of being removed from their native element, dried up, and preserved in this condition for months, and even years, and then resuscitated on being again moistened with water. That Rotatorial Infusoria will revive, after remaining a day or two, apparently in a dry state, I have particularly mentioned in the Natural History of Animalcules. The distinguished author of Die Infusionsthierchen, after many illustrations and comparisons made with reference to this subject, affirms, that wherever these creatures are completely desiccated, and their natural heat is gone, life can never again be restored. In this respect, they exactly correspond with animals of a larger kind; like them, for a time, they may continue in a lethargic and motionless condition, but, as it is well known, there will be going on, within them, a consumption, or wasting away of the body, equivalent to so much outward nourishment as would be needed for the sustentation of life.

SECTION X.—On the Supposed Method of Manufacturing Infusoria.

Within the last few years an idea has been prevalent, and many persons have occupied themselves in endeavouring to realize so extraordinary a discovery, that animal life may be produced by means of galvanism. The creatures said to have been thus brought into existence, that have come under my observation, were neither the most minute, nor the most simple, in organization; and evidently belonged to the class Acari. That many scientific men should be more than sceptical upon this point, cannot be wondered at; and were it not that the notion originated with, and the experiments have been conducted by, one who holds a most honourable position amongst us, it would not have been entertained for a moment. That some mistake exists with respect to communicating vitality to matter, by this means, there cannot be a doubt.

It is not surprising that Linneus, with the imperfect microscopes of his day, should mistake Infusorial animalcules for minute drops of oil in the water; but that Dutrochet, so late as 1833, should publish to the world that all the globular and elliptical Infusoria were vesicles set in motion by streams of electricity, and therefore could be artificially produced, is but another exemplification of the fact, that men of the most distinguished talents in one department of science may form very erroneous notions on others, especially where long continued observations, and very accurate perceptions, are indispensable for arriving at right conclusions respecting them.

In 1834, Cagniard Latour made a public declaration, that he had manufactured animalcules by the aid of carburetted hydrogen. This assertion led to an examination, subsequently, of the creatures, by M. Audouin, who ascertained them to be a species of the Entomostracea, and who did not hesitate to pronounce the method, by which they were said to have been produced, to be fallacious.

The most ingenious experiment on the imaginary production of Infusoria is that of Professor Bonsdorffs, which he communicated to the German Naturalists' Asso-

p 2

ciation in 1834. The following is Ehrenberg's account of it:—" If a solution of the chloride of aluminum be dropped into a solution of potassa, by the attenuate precipitation and solution of the aluminum in the excess of alkali, an appearance will be given to the drop of aluminated matter, by the chemical changes and reactions which take place, as if the Amoeba diffluens (see description, Part II.) were actuallypresent, both as to its form and evolutions, and it will seem to be alive. Such appearance is considered, by its able discoverer, as bearing the same relationship to the real animalcule as a doll or a figure moved by mechanism does to a living child."

SECTION XI.—On the Evolution of Light by Infusoria.

Several small animals are known to emit light, apparently phosphorescent, as the female glow-worm, and some species of the Miriapoda, which I have frequently noticed in the gravel walks of a garden, on a dark autumnal evening. This emission of light, whether in the above-named animals, or in Infusoria, is evidently the result of a vital process. In the latter class of creatures, it seems like a single spark, of a moment's duration, but capable of being repeated at short intervals. That this light is electrical, analogy would lead us to infer; as experiments made upon larger creatures have proved it to be such with them.

The phosphorescence of the sea is produced by Infusoria, chiefly belonging to the family Cyclidina; and when we take into consideration the minuteness of these creatures, the largest not exceeding the 1-100th of an inch, whilst some of them are scarcely 1-12th of that size, our ideas of computation are too limited to form any just notion of the number which sometimes illuminate many miles in extent of the ocean's surface.

SECTION XII.—On the Relative Number or Abundance of different Infusoria.

It has been stated that some species of Infusorial animalcules are more commonly met with than others, and occur in greater numbers. In the List of Species, inserted at the end of this part, those marked with a single (*) thus, are common in vegetable infusions, while those with (* *) thus, are more abundant, and those with a greater number of stars attached to their respective names are still more universally found.

The most numerous in animal infusions are those of the Monas crepusculum, Spirillum undula, Vibrio regula, Leucophrys carnium, and Polytoma uvella; in sea water, the Paramecium milium and the Stylonychia.

SECTION XIII.—On the Method of Feeding Infusoria with Coloured Substances.

Select for this purpose such coloured substances as are entirely free from metallic oxides, and not chemically soluble in water. They must, however, be capable of a very minute mechanical division. The bodies generally used are those of carminc, indigo, and sap-green, the first being preferable. This material should be as pure as possible. Take a picce or cake of it, and rub the corner once or twice on the stage-glass, or what perhaps is better, the lower plate of an aquatic live-box, having first moistcned it with a drop of water. The colouring requisite for the purpose is very small-only just sufficient to render it appreciable to the naked eye-for if there be too much, the probability is, that the particles will be too large for the creatures to imbibe. Having thus prepared the coloured food, place a drop of it beside a drop of the water containing the animalcules, but not so that they may come into contact; then put on gently the cover of the live-box, and lower it sufficiently to flatten the two drops of fluid, but not to force them to unite. Now place the live-box under the microscope, and examine the animalcules as closely as you can, and especially so as to ascertain that their stomachs are colourless; then press down the cover until the drops of fluid intermix, which may be done under the microscope, and you will immediately perceive the creatures in great activity, and readily distinguish the cilia, proboscides, and other organs, of those which possess them, and in a few seconds their stomachs will be filled with the coloured substance. Some animalcules, however, take a considerable time to effect this, but it is an exception to the general rule.

SECTION XIV.—On the Mode of Drying and Preserving Infusoria.

Although such exceedingly small creatures as animalcules, when dead, lose many of their characteristic features, especially the soft-bodied ones, yet, for the verification of some parts of their structure, it is absolutely necessary to observe them in a quiescent state; and hence, a method of effectually drying and preserving them must be considered essential. Bacellaria, in this condition, have often been preserved by botanists, in collections of minute Algæ, and with very little management; but other families will require more care. Having selected the creature you wish to preserve, remove it with a fine pointed quill, and put it on a slip of glass, or other convenient receptacle. By this means there will be but a small portion of water surrounding it, which may be extracted by some pointed pieces of ragged blotting paper. When you have withdrawn as much of the water as possible from the specimen, the remaining moisture may be readily evaporated, by placing the glass on the palm of the hand. The Hydatinea may be best preserved when destroyed with strychnia, and then rapidly dried. By what mode soever life may be taken away, it is absolutely expedient that they should be speedily and carefully dried, otherwise their bodies will be dccomposed, gases evolved, and the object will fail.

The best way of mounting for the microscope dried Infusoria will be on slips of plate glass, having a polished circular cavity, in which to deposit the creatures. These may be numbered, or otherwise marked, with a writing diamond, and a large collection of them arranged in a very compact case.

Fossil Infusoria are best preserved in Canada balsam, under thin slips of glass.

Infusoria, when simply dried, may be relaxed again by moisture, and some of them will bear this operation several times—the soft-bodied ones, however, only once. The general colour of Infusoria is retained for a considerable time after they have been dried, but the pigment of the eye is soon lost. It may be well to observe, that when the preserved specimens are intended to illustrate the nutritive system, they should be previously fed with colouring matter; but for observations on their muscular system this is not advisable.

SECTION XV.—On Infusoria contained in Flints and Semi-Opals.

It is hardly possible to take up and examine a dozen flints without discovering species of Infusoria inclosed within them. These may be best seen under the microscope, when very thin sections are made, like those of fossil woods, teeth, coal, &c.: when these are polished and cemented on glass sliders they are permanent objects. Small splinters of flint, broken off, may be used for investigation by the microscope, but such experiments are attended with very considerable danger to the objectglass of your instrument, by its being brought accidentally into contact with their sharp edges, which oftentimes cut and injure it without your being immediately aware of the fact.

SECTION XVI.—On Microscopes for Examining Infusoria.

A good microscope cannot be fully appreciated until it is brought to the examination of living Infusoria. It is true, that we may make use of the scales of insects and other similar objects as tests-we may see with wonder the different markings on the surface of these dust-like atoms, but our admiration will be carried still higher, by the development of those brilliant colours and delicate tints which are discoverable in many species of the minute Infusoria. The criterion of a good microscope, then, will be, that not only the forms of these little creatures, their curious structures, organization, and digestive apparatus, are exhibited with perfect clearness, but that there is also shewn the deep and brilliant colouring of their visual organs, and the delicate tints of their variable, retractile, and locomotive processes. These living points-for the space they individually occupy is hardly conceivable any more than, taking the other extreme, and carrying our views over the vast expanse of the starry heavens, we can scarcely appreciate their magnitudes; and hence our thoughts are alike directed upwards to a Being, whose comprehensiveness knows no limitation or bounds. In this respect, the pursuit of the astronomer and the naturalist may be said to be the same, for both travel very far, but are ultimately lost in that infinity of purpose, to which the human intellect cannot attain. What can be more

wonderful than the contemplation of these atoms, these limits of man's perception, endued with living faculties and instincts, in all respects as perfect as those of any other created being.

The various methods of managing the microscope, and the different apparatus subsidiary to it, have been so fully expatiated upon by the late Dr. Goring, my much esteemed colleague, and myself, in our joint works, The Microscopic Illustrations, Cabinet, Micrographia, &c., that it will only be necessary here to notice, briefly, a few particulars, which more especially relate to the subject before us, and to refer the reader to those works for all further information. As the expense of instruments, in the commencement of our studies, is often an important consideration, a few words on this head may not be considered inappropriate, on this occasion. Dr. Ehrenberg informs us, that he began his observations with a common microscope, and, although by his superior talent and unwearied labour, thus aided, he was enabled to make some important discoveries, yet he delayed, for some years, the publication of them, until he could verify them with better instruments.

At the period when our first publication was announced (1827) an interest in microscopic science had to be created, to which I may add, that the achromatic microscope was then in its infancy, Dr. Goring having only a short time previous (1824) discovered the conditions on which their efficacy depended, namely, *large angular aperture free from aberration*. That publication aroused the attention of scientific men to the subject, but instruments, even such as those then made, were very difficult to procure. To obviate this difficulty, Dr. Goring and myself determined on presenting the public with detailed methods of constructing and testing achromatic microscopes. I further directed the attention of my workmen to the subject, and gave them, from time to time, such information, as, with their skill and perseverance, might advance them in this branch of art, and I believe, up to the present time, the only successful artists in this country are those who have been in my employ.

In cases where an achromatic microscope cannot be procured, recourse should be had to single lenses or doublets, for the ordinary compound, however well constructed, cannot be depended upon.

With respect to the cost of an effective microscope, with a moderate equipment of apparatus, such for example as the one described in the 6th chap. of the Microscopic Illustrations, which is of the best construction I have seen, the price would now be from 20 to 30 guineas. As there are a great many persons who require only a plain, sound instrument, of more moderate cost, I have deemed it expedicnt to take this also into consideration, and, after much application and repeated experiments, have at length produced one, in every way suitable to the case. Such is my vertical tripod achromatic microscope. It may be stated that nine-tenths of the observations recorded in this work may be repeated and tested by this microscope. On comparing the above instruments with that used by Dr. Ehrenberg, there is no doubt that, in point of mechanical construction, they are greatly superior, whilst the optical part is equal to any with which his researches have been made.

In adverting to this portion of my subject, I am

necessarily obliged to speak of my own productions, and even to praise them, however objectionable it may seem, and repugnant to my own feelings; but I have done so, because firmly persuaded that it will be serviceable to many persons, and this, I am sure, will be received as a sufficient apology for intruding myself into this work. In order to draw a fair comparison between different instruments, I have, at great cost, possessed myself of the best object glasses of all the foreign artists of note, and having most patiently and carefully made trial of their efficiency, no doubt rests upon my mind as to the relative qualities of each. Of the mechanical part of the continental microscopes I have elsewhere expressed an opinion.

The magnifying powers of a *complete* microscope for perfectly examining *all* kinds of Infusoria should range from 50 to 1000 diameters; and as this cannot be obtained with first-rate glasses, without recourse being had to several sets, such an instrument would be necessarily expensive. The microscope first mentioned has two or three sets of glasses, varying from 35 to 500; and the second, one set, from 80 to 300 diameters; so that, as before stated, all the most interesting observations on Infusoria may be conducted with either of these instruments, whilst additional sets may be obtained as occasion requires.

It is important to notice, that in all cases where the magnifying powers of microscopes are spoken of, the standard of sight used in computing them should be known, otherwise very erroneous ideas will be formed. In all my publications, from 1827 up to the present time, reference has been had to a *ten inch standard*, and the enumeration of powers has been in *diameters*, or what are sometimes termed *linear*; thus, what I compute at 100 is often spoken of as 10,000, that being the superficial measurement; ample reasons for the adoption of *linear measure*, and for that standard, are given in my works on this subject.

In demonstrating minute portions of the structures of Infusoria, a power of 800 diameters will sometimes be requisite, unless the sight be exceedingly good. I have invariably observed that aged persons require greater assistance, in this respect, than young ones. Nothwithstanding this, it will be impossible to arrive at an accurate knowledge of the creature you may be studying, even with a power of 800, unless it has been previously examined under a lower one, so that the relations of its several parts may be first clearly understood. Whenever the object in view is merely that of instructive amusement, a power of 250 diameters will be amply sufficient; that power can be managed with ease, and does not fatigue the observer. The greater number of Dr. E.'s discoveries were effected under a power of 380. I am not aware whether he has mentioned in any of his works the siderial focal length of his object-glasses, or the standard of sight. The set which Dr. E. speaks most in praise of is similar to one which I possess, and which has a focus of 1-7th of an inch. He considers that with " a good achromatic microscope and a lamp, our observations may be carried on at night as well as in the day, which, by some, may be esteemed as an additional recommendation."

SECTION XVII.—On Micrometers, and the Method of Measuring Infusoria.

The late Dr. Goring, in the Micrographia, has described the method by which, in various ways, a correct admeasurement may be taken of these minute creatures, as also Mr. Bauer, in a paper in the same publication. I cannot do better than refer the reader to these authorities, for the fullest information attainable on this subject. A few words, however, may be said on the mode of proceeding which I have myself adopted, and which, after much practice, has been productive of very accurate results. It is as follows :- Having set up the microscope and screwed in or adapted the glasses which are intended to be used, take a glass micrometer, and place it on the stage in the same manner as if it were an object to be viewed, then earefully adjust the focus of your instrument, so that the lines on the micrometer may appear quite sharp and distinct. Next, take a common ruler, or a slip of card-board with equal divisions of some known measurement drawn upon it, every tenth division being longer than the rest, and fix it 20 inches from the eye, whilst looking through the microscope; then, whilst one eye is directed to the rule or card-board, and the other to the lines of the micrometer, seen in the microscope, ascertain how many on the card are equal to a given number on the micrometer. If the divisions on the latter be 1-100th of an inch, and one of them be equal to ten on the card, it is clear that every division on the card will represent

1-1000th of an inch. Thus, when the micrometer shall be removed, and an animalcule be put into its place, if the creature subtend five divisions on the eard, its size in linear measure will be 5-1000th of an inch. Note—The glasses must not be changed during the experiment, nor their distances apart; neither must the distance between the eard and the eye be in any way altered.

SECTION XVIII.—On Glass Tubes, &c. for taking Infusoria from the Water, and placing them in the Apparatus for examination.

As these useful little contrivances, which have been before alluded to in this Part, were drawn and described in the *Microscopic Cabinet* more than ten years ago, it will be necessary merely to mention that little or no improvement has been made upon them since that period, excepting perhaps that a *finer* description is found to answer the purpose better than when the larger ones are drawn out at their extremities in the manner there proposed.

SECTION XIX.—On the Compressor, or Crush Box.

The last remark is equally applicable to the Aquaticlive-boxes, which were described in the *Illustrations*, 1828, and subsequently their different modifications. In order to form an idea of a compressor, or erush-box, you must suppose that the cover of the live-box is so adapted

to its box by a screw, or some other convenient means, as that a small body placed under it may receive a certain degree of pressure without its parts being dislocated. In my original live-boxes, this was effected by a screw being attached to the cover; but, in the ordinary way, the cover is made to revolve. In some, a guide-piece has been substituted for the screw, so that the pressure is obtained without the glass-plates sliding one upon the other. The German opticians attach the cover or upper plate to a jointed lever, at the longest end of which a screw is applied, which brings the upper plate connected with the short-arm, in contact with the lower plate. The use of the crush-box is to protrude certain parts of the animalcule for examination by pressing down upon the creature. In this manner, the teeth of the Rotatoria become distinct. Other uses of this apparatus arc given when speaking of the minute loricated Polygastrica.

SECTION XX.—On Viewing Infusoria by Polarised Light.

Having in the last edition of the *Microscopic Illustrations* given a full description of the Polarizing Microscope, and the apparatus necessary for using any microscope for polarising purposes, a very few remarks on the effects produced by viewing Infusoria under this light will be sufficient here.

The siliccous covering of Infusoria is but slightly affected by polarised light: that the effect is only feeble, is attributable to the extreme tenuity of their shells, for could we but contrive the means of magnifying the effect, I feel

48

convinced that some very important results would be obtained. The ribs or striæ on the navicula assume a slight tinge of colouring when the polarizer and analyzer are parallel to each other; but when they are crossed, owing to the few rays which are transmitted, I was unable to perceive it. Isthmia are slightly influenced by polarized light. The larger Infusoria I have not examined, nor am I aware that any information is recorded on this subject.

SECTION XXI.—On Viewing Infusoria by means of the Black Ground Illumination.

The muscular fibres of the Rotatoria, and the markings on the lorica of the Bacillaria, &c. are brought out in a most remarkable manner by this mode of illumination. For an account of the method of examining objects in this way, see *Microscopic Illustrations*, p. 138.

SECTION XXII.—Classification of Infusoria.

AMONG the various arrangements proposed for the distribution of animalcules by different naturalists—and we have not a few, as the minuteness of these creatures and the imperfections of our microscopes, until lately, allowed ample field for the imagination to run wild—two only appear to me to merit particular notice, and these, it is worthy of remark, are the productions of men who have laboured for years in making actual observations on them. The first is by O. F. Müller, whose posthumous work, entitled

49

Animalcula Infusoria Fluviatilia et Marina, appeared in the year 1786. On this arrangement is founded my Natural History of Animalcules, prepared in 1832; between these two periods the additions to this branch of natural history, from actual observation, was not very great; indeed, until the latter work appeared, this subject could not be said to have assumed a definite character, and was unknown to the English reader.

The laborious and long-continued observations of Dr. Ehrenberg, in Germany, have enabled him, after several revisions and amendments, to present us with a classification which, in my opinion, will remain as long our standard, on this subject, as that of Müller's has been. It is curious, however, to observe, that in all the publications, up to the present day (in England at least), professing to give an account of Dr. E.'s classification, they have taken it from his older and I may say abandoned systems.

Dr. Ehrenberg, in his great work entitled *Die Infusionsthierchen*, has not devoted much space in defining the term Infusoria, or in giving a general view of the subject; but he commences almost immediately with the class Polygastrica; hence the Second Part of this work will give the reader some idea of the general arrangement of that splendid work; though the design of the two differing, namely, the latter being a work of reference, this a manual, many alterations, omissions and additions have been made; and hence it will be alike unjust to that distinguished naturalist, as to myself, to consider the one a mere abstract of the other.

Should the reader possess a copy of the Natural History

of Animalcules, and will make a general comparison between the system adopted in that work and the present, he cannot fail to observe that, although the principles of the classification of Müller and Ehrenberg are widely different, yet many of the groups of animalcules occupy, as a whole, similar positions, in the two systems. This analogy I was much struck with in the place of the Vibrio of Müller and the Bacillaria of Ehrenberg, while the commencing and concluding genera in each system are similar.

Dr. E. divides the Infusoria into two grand classes; the animals belonging to the first are called *Polygastrica*, and are distinguished from the second class, named *Rotatoria*, by the function of digestion in the former being carried on by numerous globular vesicles, or stomachs, while the creatures belonging to the latter, like most large animals, have only one stomach for digestion.

POLYGASTRICA .--- The microscopic observer, having procured a number of animalcules, will not fail to observe within the interior of many a number of circular spots; these are often very large in proportion to the size of the creature, and if the water is clear, they are more transparent than the other parts of the animalcule. These vesicles the reader may readily distinguish in many of the drawings contained in the first six plates, and part of the seventh, which represent animals of the class Polygastrica. Like any other division of nature, some of the members composing it exhibit the essential characteristics of the class more prominent than others, and thus the genera Kolpoda and Paramccium contain the largest forms in which these vesicles exist. The reader will do well to refer to the drawings of these genera, which he can readily

Е 2

do by means of the *List of Infusoria* I have furnished at the end of this part.

The older naturalists considered these vesicles as the ova; and Baron Gleichen made many experiments to endeavour to see their expulsion, but without success. This idea of the Baron's respecting the nature of these bodies is the more remarkable, as it is to him we owe the original experiments of feeding animalcules with coloured food; and the fact of these parts becoming immediately coloured, while the surrounding portions remain transparent, could scarcely have escaped his notice.

From the observations of Dr. E., these globular vesicles appear to be distinct stomachs, of which a single animalcule belonging to this class possesses many, as noticed in another place. When one of these stomachcells, or sacs, has been filled with coloured food, and its situation carefully noted, in a short time the coloured spot will have changed its locality, and hence some naturalists will not admit of separate and distinct sacs or cavities, but maintain that the interior of the creature is one large digestive cavity, and that the globular mass of coloured particles has merely changed its position. To this objection, Dr. E. remarks, that he has distinctly observed a sac to fill, and then the particles to pass singly into another, and so on, until the nutritive portions having been imbibed by each cell in succession, the refuse is expelled by the animalcule. That few observers have noticed this process is not remarkable, as it requires stedfast and incessant observation of a particular animalcule for some time, while a contraction of them, or a turning upon their axis, may mislead, or even a slight pressure or

other injury loosening these cells, may occasion a voluntary change of place. Another objection to their being separate sacs or cells for the purpose of digestion is, that observers have not seen the canal or tube connecting them together; this Dr. E. admits is the case in many species, owing to its extreme tenuity. Also, that from its peculiar office, namely, the transmission of the food from one cell to another only, like the oesophagus in large animals, the tube possesses a contractile action, so that the difficulty of detection is augmented. Dr. E. affirms he has distinctly seen their canals while the food has been passing from one stomach cell to another; and in all his works, except Die Infusionsthierchen, has presented us with drawings of them, and the manner in which they connect all the cells together. For observations of this kind, it will be advisable to select a large specimen of either of the following species :- Chilodon cucullulus, Trachelius ovum, Vorticella chlorostigma, or convallaria, Opercularia articulata, or Stylonychia mytilus.

Again, the position of the discharging orifice has assisted in the erroneous supposition of the excluded substance being ova, for this orifice is not situated in any certain relation to the mouth; for sometimes one orifice is common to both purposes, as in the fresh water Polype, and some other large creatures. In other Polygastrica, it is either situated anteriorly, posteriorly, or laterally, and this again may be either on the superior or inferior side. On this character, Dr. E. has founded the subdivision of the class into families, as given in Part II. of this work.

Anxious to lay before the reader an impartial statement of this question, I shall, before proceeding with any general remarks on the Polygastrica, introduce here translations of the observations of the most distinguished German botanist of the day, and likewise those of a celebrated French naturalist, while the observations of Professor Rymer Jones, the only Englishman that has given an opinion on this subject, will be found in his work, and those of naturalists relating to particular families, I have inserted under those divisions.

OBSERVATIONS ON THE DIGESTIVE ORGANS OF INFUSORIA. By F. J. MEYEN, M.D.

"All naturalists are aware that Gleichen, in 1781, tried to make certain Infusoria eat carmine, and observed next day that they had several large red granules in the interior of their bodies. He thence concluded that they had swallowed the colouring matter. He likewise noticed that these coloured granules afterwards made their escape by another opening. Gleichen has figured these red granules very accurately; each of them is in the centre of a particular circle, the nature of which he does not explain. At a later period, M. Ehrenberg made the same remark, and he thence concludes that the Infusoria have several stomachs, which, in one section, are destitute of an intestinal canal, while in others they not only possess canals, by which they communicate with each other, but lateral appendages, which besides terminate in a coecum. In consequence of these discoveries, these Infusoria were designated by the name of Polygastric animals. M.

54

Ehrenberg believes that he has proved that their stomachs are filled one after another, and he has figured, more or less completely, the intestines which form the communication between the different stomachs.

"Many observers have already questioned these assertions of M. Ehrenberg (see the memoir of M. Dujardin, on this subject, in the 10th volume of the Annales des Sciences Naturelles). For my own part, I never admitted them, because, in the first place, I never could see the intestines which form the communication between the stomachs, and likewise because I have observed, many years since, that these supposed stomachs were moving in the interior of the body of many species with great rapidity, in the same manner as the granules which circulate in the joints of the chara. I have often seen vorticelles with nine or ten large globules of indigo in the belly, which always moved round a centre, and thus shewed, in the most evident manner, that they could not have a communicating canal between the stomachs, provided with an oral orifice and an extremity directed to the mouth.

"But it will be asked, what are these vesicles and balls of the same diameter existing in the bodies of the Infusoria, and which have been taken for stomachs? This question I have continued to ask myself, till an attentive and long-continued investigation has enlightened me as to their origin.

"The true Infusoria are vesicular beings, whose interior are filled with a mucous substance; the thickness of the membrane forming the vesicle can easily be ascertained in some of these animals; and in many species I have noticed in this membrane an obvious spiral structure, which establishes a complete analogy between it and cellular vegetables. In the large Infusoria, a cylindrical canal (the ocsophagus) obliquely traverses the membrane which forms the animal. The lower extremity of this canal dilates, more or less, when the animal has taken food, even till it attains the dimensions of the balls which are found in the interior of these same Infusoria.

"The inner surface of this part of the intestinal canal is provided with cilia, which turn round not only the alimentary substances, but also foreign bodies, till they have acquired a spherical form. During the formation of this ball, the stomach (for it is evident we must distinguish this organ by that name) has a free communication with the oesophagus, and by means of the ciliary apparatus found at the exterior, new alimentary substances are introduced into this canal, and pushed as far as the stomach, but I could not satisfy myself whether the ocsophagus was likewise beset with cilia in the part which separates the stomach from the buccal orifice. When the ball has acquired the size of the stomach, it is expelled by its other extremity and pushed into the cavity of the animal. It then forms a new ball, if any solid substances exist in the surrounding liquid. This second ball is itself pushed into the interior of the eavity of the animal, and drives before it the first ball along with the mucosities between the two; the successive formation of similar balls, by the matter received into the animal, continues in the same manner, without interruption. It is the simultaneous existence of many of these balls that made M. Ehrenberg believe that these animals were polygastric. If solid substances do not exist in the surrounding liquid, then the balls are less solid, and they appear in the forms which they present in the Infusoria plunged in colourless liquids. In this case, the balls are composed of a small number of particles, and principally of a considerable mucous mass, which unites them. Sometimes two balls of this kind are so pressed against each other by the contractions of the animal, that they at last unite.

" If you wish to follow the formation of these balls, it is necessary to commence these observations at the moment when the Infusoria are plunged into the coloured liquid. The deglutition of the coloured particles takes place very quickly, often in about half a minute, and the coloured balls issue one after another from the stomach, and are pushed downwards along the internal wall of the cavity of the animal. In the genera Paramecium, Kerona, and Vorticella, the new ball pushes the preceding before it, along with the mucosities between them, in such a manner that the first rises along the opposite wall, returns to the other extremity of the cavity, and is pushed downwards on the other side. The balls thus accumulate in succession till they are expelled one after the other by the anus. The number of these balls is often so considerable, as to fill the whole cavity of the animals, and so close together, that they form a large mass, which turns slowly upon itself, as among the Vorticella.

"This rotation is the result of the force with which the newly-formed ball is pushed from the stomach into the cavity, and moves along the under side of the preceding ball. In other cases, where there are not yet many balls, we likewise remark the circular rotation alluded to, but I cannot, in this instance, say what is the cause of it.

"Thus, in the true Infusoria, the substances which they absorb are introduced into the abdominal cavity in the form of balls, and from these the stomach extracts the nutritive substances. The residue remains in these same balls, the mucosities interposed are re-absorbed, and even in the interior of the stomach the particles of the ball are disintegrated, although this happens but seldom.

"What is the nature of those vesicular cavities, of such great numbers, and so variable in size, which appear in the interior of the Infusoria? They are not stomachs, they possess nothing in common with the balls of which we have spoken, although the latter may get into them singly, but this can only be considered as accidental.

"We may trace the formation of these cavities, and perceive their sudden and complete disappearance, with as much ease as the formation of the balls. Nay, more, it is sometimes possible to see how one of these cavities moulds itself over a ball, and speedily afterwards disappears. The microscope shows that these cavities are not lined with a particular membrane, but are mere excavations of the pulpy substance. They likewise often appear very near the inner surface of the membrane which forms the skin of the animal, and some of them increase to such a size that their diameter is equal to the third or the half of that of the entire cavity of the Infusoria. The slight refraction which the rays of light undergo at their circumference proves that these cavities are not filled with air, but by a liquid; and in the large Infusoria, it is easy to satisfy ourselves that they do not open on the exterior. Similar cavities are formed in the mucus of true cellular plants, particularly in certain aquatic Cryptogamia.

"My botanical labours prevent me from carrying these researches farther, but enough has been said to induce the naturalist to pursue them. They require a great degree of perseverance, for it is not easy to establish these facts in all Infusoria, but they are of high importance, since the order Polygastrica has already been admitted into many modern treatises on Zoology."—(Ed. Phil. J. vol. xxviii.)

Resumé of " Du Jardin sur les Infusoires dans les Annales des Sciences Naturelles."

"The Infusoria (leaving out of the question the Systolides or Rotateurs, which are much more elevated in the scale of animals, and the Bacillaria, which, along with the Closteria, are more nearly related to the vegetable kingdom) have their origin, for the most part, from unknown germs, in artificial and natural infusions, stagnant water, and rivers, or such portions as rest over vegetable remains—no other mode of propagation, except selfdivision, being well ascertained. The fleshy substance of their bodies is dilatable and contractile, like the muscular flesh of the superior animals, but present no absolute trace of fibres or membrane, appearing, on the contrary, homogeneous and diaphanous, save in the cases where the surface appears reticulated from contraction.

"The fleshy substance of the Infusoria, isolated by tearing, or by the death of the animalcule, appears in the liquid as lenticular discs or globules, which refract light but slightly, and are capable of forming spontaneously, in their substance, spherical cavities, analagous, in appearance, to the vesicles of the interior. The vesicles formed in the interior of the Infusoria are destitute of a proper membrane, and can contract even to so great an extent as to disappear, or many amalgate or incorporate, as it were, together. Some are produced at the base of a sort of mouth, and are destined to contain the water swallowed with the aliments; they run a long, a certain course, in the interior, and contract and leave nothing in the middle of the fleshy substance except those particles not digested, or they can evacuate their contents externally, by a fortuitous opening, which may be reproduced several times, although not identical towards the same point, and which may lead to the belief of the presence of an anus.

"The vesicles containing the aliments are independent, and neither communicate with an intestine nor with each other, save in those cases where two vesicles incorporate together.

"The other vesicles, which contain nothing but water, are formed much nearer the surface, and appear to be able to receive and expel their contents through the meshes of the tegument.

"We may consider them, along with Spallanzani, as respiratory organs, or at least as intended to multiply the points of contact of the interior substance and the surrounding fluids.
"The external organs of motion arc flagelliform filaments, or vibratile cilii, or cirri, more or less voluminous, or fleshy prolongations, which (except those which are more or less consistent) appeared formed of the same living substance, and are contractile themselves, throughout the whole of their extent. None are dermoid or corneaceous, nor secreted by a bulb, except some siliceous or horny capsule or shells, and the bundles of horny spiculi which invest the mouth of certain species. All portions of the Infusoria decompose almost immediately in water, after the death of the animal.

"The eggs of the Infusoria, their generative organs, their organs of sense, their nerves and vessels, cannot be exactly determined, and every thing inclines one to believe that these animalcules, although endowed with a degree of organization, in accordance with their mode of life, cannot possess the same systems of organs as do the superior animals."

Having presented the reader with the opponents' own arguments to the classification I have adopted, I shall proceed at once to take a general survey of this class, remarking that whatever be the fate of the Polygastrica (and some portions are certainly objectionable), I am convinced an arrangement is yet to be discovered that will supersede it.

The Polygastrica constitute a natural group of animals, and are as satisfactorily distinguished as any other class. Touching their dimensions, none exceed the 1-12th of an inch in length, and some of the smaller species (belonging to the genera Monas, Bodo, Bacterium, and the single individuals of the Vibrio,) even when full grown, are

but the 1-2000th part of that measure; indeed, so minute must be many of the young of these Infusoria, that they cannot be recognised by our microscopes. The genera Stentor and Spirostonum, on the other hand, contain species as large as the greater wheel animalcules (Rotatoria), and are easily to be distinguished by the naked eye. Again, others, individually so small as to be almost invisible, form, when aggregated, green, red, yellow, blue, brown, and black-coloured masses of great extent. Thus, the clusters of some species in the families Vorticella and Bacillaria increase to such an extent that they attain a size of several inches, resembling Polypi. The Micromega forms cartilaginous arborescent masses, which have been looked upon by some as Fuci, Algæ, &c.; Gallionella and Setrizonema, as also Epystilis grandis, often form masses scveral feet in length.

The greater number of animalcules belonging to this class are found in fresh water; numbers inhabit the salt water of the ocean; and some live in astringent solutions, even those containing much tannin. They are found in fluids produced by animal secretions; moist earth, too, is another situation in which some members of this class are to be found. As an instance of the later habitat, there has been recently found some earth near Newcastle almost entirely composed of living species of the genus Bacillaria, and other loricated Infusoria. It is highly probable that some kinds reside in the vapour of the atmosphere, in which, from their light weight, they may be raised in countless multitudes, and blown about by the wind in invisible cloud-like masses.

It is remarkable, that one-half the families belonging to

this class are loricated, and the other half illoricated. Of the former, the most curious discovery, of late, is that by M. Fischer, of the siliceous or glass-like covering of
many species, who, although the creatures to which they belong may have been dead for thousands of years, yet these remains inform us of the local conditions of the soil at the time they existed.

These shell-like coverings are often found in large masses, covering many miles of the earth's surface, and occur, when indurated and mixed with argillaceous and other earths, in the form of siliceous slate-rocks, &c. These remains of the primeval inhabitants of our globe are records in the pages of history, penned by Infinite Truth, unbiassed by ignorance or prejudice, and form some of the first-fruits of the effective application of achromatic glasses to our microscopes.

Some of these shell-like coverings have been preserved without any admixture of other matters, and form masses of delicate white powder (*Berg-Mehl*), with which the cupidity of man, in situations where it can be procured, as Lapland, has induced him to adulterate the material which is so truly said to constitute the staff of lifc.

The antiquarian has also brought the microscope to bear in his researches, and by the discovery of the existence of these shelly remains in various ancient articles of pottery, and the remains of similar species in the clay in the vicinity in which they occur, has proved that they were made on the spot, and not imported from the higher civilized nations of that day, as had been previously supposed.

SECTION XXIII.—Reproduction of Polygastrica.

Monas vivipara is the only species of this class that is viviparous, though some moving granules observed amongst the Bacillaria have been supposed to extend this condition. With this exception, they may be termed oviparous, though besides the formation of eggs, which is a very fertile mode of increase, they also propagate, by means of a self-division of the body of the animalcule, into two or more individuals; also, by the growth of gemmules, or buds, upon the parent. These various modes of propagation account for their almost incomprehensible increase of number in a very short space of time, and which has often astonished observers.

In the genus Closterium, the curious formation of double gems has been observed by Ehrenberg, and is figured in plate I. *fig.* 67. That observer remarks, that this accounts for "the astonishing great fertility or capacity of increase of microscopic animals, according to which an imperceptible corpusele can become, in four days, one hundred and seventy billions, or as many single individual animalcules as contained in two cubic fect of the stone from the polishing slate of Bilin. This increase takes place by voluntary division, and this is the character which separates animals from plants. It is true that the gemmation in plants, especially, in very simple cells, is at times very similar to the division in animals; but this relates to the form, not the formation. A vegetable cell, apparently capable of self-division, always became one, or contemporaneously many exterior warts (gems), without any change in its interior. An animal, which is capable of division, first doubles the inner organs, and subsequently decreases exteriorly in size. Self-division proceeds from the interior towards the exterior, from the centre to the periphery; gemmation, which also occurs in animals, proceeds from the exterior towards the interior, and forms first a wart, which then gradually becomes organized."—(Annals Nat. Hist. v. ii.)

SECTION XXIV.—Vascular System.

In no creature of this class can a vascular system be satisfactorily demonstrated :—that thought to have been such in Paramecium aurelia was merely clusters of ova.

SECTION XXV.—Organs of Sensation.

Of these, the presence of eyes are all that are demonstrated, though there can be no doubt those of touch, sensation, &c., exist.

In forty-eight species, included under the families Monadina, Cryptomonadina, Volvocina, Astasiæa, Dinobryina, Peridinaea, and Kolpodea, eyes are observable, and the colour of the pigment is red in all cases, except one (Ophryoglena), in which it is almost black. In connection with the visual organs of Amblyophis and Euglena, nervous ganglia have been seen, which constitute the only traces of the evidence of a nervous system.

F

SECTION XXVI.—Digestive System of Polygastrica.

The most remarkable feature in this class of beings is the reception of food. In most creatures it enters one common cavity, and therefore forms one mass. In the Nais (see *Notes on Natural History*, plate 7), and some other animals, the alimentary canal is enlarged at intervals, so that it may be termed a percurrent digestive organ; but in the Polygastrica, it appears to be a very compound organ, sometimes consisting of upwards of two hundred cavities or sacs, as in the Paramecium, while the smallest number is four, and this occurs in the genus Monas.

The manner in which these sacs are arranged is various, though all may be disposed under two grand divisions, namely:—

Anentera, or those without a true alimentary canal, in which the refuse of the food is regurgitated, as in the Zoophites, of which the fresh water Polypi (Notes on Nat. Hist. pl. 6) may be taken as an example. It will appear, that the Infusoria belonging to the first twelve families include the Anentera; these possess but one orifice for the reception and expulsion of food; and although the mode in which the stomach cells are attached together is not satisfactorily determined (and this I infer from the omission of illustrative figures of structure in Die Infusionsthierchen), yet observation leaves little doubt that no true alimentary canal exists.

Enterodela, or those Polygastrica possessing a true alimentary canal, constitute the ten remaining families. In this division, the alimentary canal, during its course, sends forth, at intervals, short branches, each of which is terminated by a digestive sac. In the families Vorticellina and Ophrydina, the two ends of the alimentary canal approach each other, and form but one external opening. In the Enchelia and Colepina, the orifices are at the opposite extremities of the body; in Trachelina, Ophryocercina, and Aspidiscina, they terminate obliquely with respect to each other; and the remaining families are distinguished from the preceding by both openings being situated on the under side of the animalcule.

SECTION XXVII.—Geographical Distribution of Polygastric Infusoria.

This is the most universal of the Animal Kingdom. It is known to extend over the whole of Europe, the north of Africa, the west and north of Asia, and species have also been observed in America. The largest and most generally-distributed family of this class is the Bacillaria, its species equalling one-fourth of the whole.

Fossil states of this curious family are known in Europe, Africa, the Isle of Bourbon, the Isle of Lucan, amongst the Philippines, and America. These remains enter into some of the new sand-stone formations; also into the layers of flints of the secondary formations, certain porphyritic structures, &c.

Some objections have been made by a few eminent naturalists to certain families of Dr. E.'s Infusoria. The most important of these I have inserted under their several heads in Part II. Those of Dr. Meyen, which arc unknown to the English reader, contain many important remarks, and arc worthy of special notice.

67

 F_2

SECTION XXVIII.-Class ROTATORIA.

This tribe of beings possess so complete an organization, that in a correct arrangement of the animal kingdom, it would take its station far above many others, whose members are of much larger magnitude.

The comparatively large size of the Rotatoria, the definite situation of the ova, and the simplicity of their digestive system, has enabled the microscopic observer to ascertain with certainty, in many cases, every part of their internal structure. As a tribe, it appears to me more natural than that of the Polygastrica; at least there are no such doubtful families as we find in the latter, namely, the Closterina, Bacillaria, &c. Indeed, the only exception that I think can be taken is the genus Stephanoceros, which some naturalists class along with the zoophites.

The Rotatoria mostly inhabit water; but immersion in that element does not appear to be essential to their existence. They often reside in damp or moist earth; and the Rotifer vulgaris, and some other species, are known to inhabit the cells of Mosses and Algæ.

SEECTION XXIX.—Muscular System.

In this class of Infusoria, a muscular system subservient to the functions of locomotion, nutrition, &c., is well developed, and the integuments being transparent, render their structure and situation distinctly visible under the microscope, without dissection. The principal muscular

member is a foot-like non-articulated process, situated at the ventral surface of the posterior part of the body. This member is usually called the tail; but being situated anterior to the discharging orifice, is not properly such. It has usually the faculty of being able to slide one part within another, and presents to the observer the same effect as the moving of the sliding tubes of an opera-glass, or telescope. The extremity is often formed in such a manner that the creature can cause itself to adhere to any substance, by forming an exhausted cavity within the disc-like extremity, as is the case with the leech and some parasitical acari found on beetles. Sometimes the termination of this false foot has two or more toe-like processes. By the construction of this member, the creature is enabled to attach itself, while the anterior part is moving about in search of provender, and likewise to employ it as an instrument of progression, by alternately contracting and elongating it, and fixing itself by it and the mouth. Muscles for moving the body, and also the rotatory organs, are mostly visible; these are known by their thickening during contraction, and dilating when elongated.

SECTION XXX.—Nutritive System.

The alimentary canal is mostly simple in all the Rotatorial Infusoria. It is sometimes expanded near the middle, in which case it may be said to have a true stomach, the constricted commencement being an oesophagus, and the long narrow termination a rectum.

The manducatory, or chewing apparatus, situated at the

commencement of the oesophagus, consists of a hard bulb, somewhat resembling the gizzard of birds; it is composed of two parts, the inner surface of each being, in 48 genera, furnished with teeth, which, by pressure, can be detached. Their number and arrangement form excellent characters for the systematist, and therefore I have introduced figures of them, with the oesophagal bulb, to illustrate several of the genera possessing them. This bulb, it is worthy of notice, is the first part of the young that is visible within the egg. Beneath this bulb, and attached to the oesophagus, or upper part of the stomach, is a pair of glands, usually of an oval form, sometimes, though rarely, cylindrical, or forked ; these are considered as the pancreas. In some genera, gall ducts are also seen (Enteroplea). The stomach in some genera (Notommata) is furnished with biliary glands.

SECTION XXXI.—The Reproductive System.

This, in most respects, resembles that of birds, but both sexes are united in the same individual. They deposit only a few eggs at a time. The size of the egg is about 1-36th that of the parent, and the young of those in which incubation is completed before expulsion is sometimes two-thirds.

Although the Rotatorial Infusoria are not endowed with the various faculties of reproduction possessed by the Polygastrica, yet their vast increase by eggs only would astonish most persons who have not considered this subject. Dr. Ehrenberg informs us that he insulated a single specimen of Hydatina senta, and kept it in a separate vessel for eighteen days, that during this interval it laid four eggs per day, and that these young, at two days old, lay a like number, so that, when circumstances are favourable, one million individuals are obtained from one specimen in 10 days; that, on the eleventh day, this brood will amount to four millions, and on the 12th day to sixteen millions. Although the fecundity of this Rotatoria is the greatest that has been tested by direct experiment, yet in the large Polygastrica, as the Paramecium aurelia, a single specimen in one day is ascertained to increase to eight, by simple transverse division of the body only; so that, if we take into this account the other modes of the increase of this creature, namely, by eggs, often in masses like the spawn of fish, and again by buds growing from the sides of the body, it is clear, in a very few days, all attempt at an expression of their number must fail.

SECTION XXXII.-Vascular System.

In several of the Rotatorial Infusoria are observed transverse vessels, which have the appearance of articulalations. In others, these vessels resemble a net work (see pl. ix. *fig.* 419), which is more or less distinct, below the edges of the mouth, and connected by free longitudinal ones to the interior ventral surface of the body.

Oval tremulous little bodies are in some species observed attached to a free filament-like tube (Notommata, *fig.* 416), generally disposed longitudinally within the body of the animalcules. Sometimes these little bodies are attached to the two sexual glands (Hydatina). Dr. Ehrenberg considers their function analagous to gills, and that the tremulous motion is occasioned by the laminae, or leaflets, which compose them. For the reception of water into the interior of the body, for these organs to act upon, there is an opening at the anterior part of the body, while some species effect this purpose by means of one or two spur-like processes or tubes, emanating from the neck (see *fig.* 487), and by which water for the purpose of respiration may be admitted or rejected.

SECTION XXXIII.—Organs of Sensation and Nervous System.

The Infusoria are not considered to possess a true nervous system, but in many of the species having eyes there appears one or two masses attached to them, which Dr. E. thinks are similar to nervous ganglia and nervous fibrillae. The eyes vary in number; they are usually of a red colour; in some, they are placed upon a ganglion, and are freely moveable beneath the transparent superficial envelope of the body.

SECTION XXXIV.—Geographical Distribution of Rotatorial Infusoria.

So far as observation extends, they do not appear to be confined to any particular part of Europe, and they have been found in the north of Africa, the north and west of Asia, and in Carolina in America.

72

A LIST

0F

THE INFUSORIA

DESCRIBED IN

PART II.

SHOWING THE ORDER OF ARRANGEMENT OF THE SEVERAL FAMI-LIES, GENERA, AND SPECIES, AND THE DRAWINGS ILLUSTRATING THEM.

The Number preceding the Name refers to that under which it is described; the Numbers following refer to the Drawings of them in the Plates; and the stars (*) indicate those species most common in infusions.

CLASS I. POLYGASTRICA. FAMILY I. MONADINA.

	I. MONAS Plate I.	1	II. UVELLA	Plate I.
1	crepusculum (**), group 1	27	virescens	
2	termo (***)	28	chamaemor	um
3	guttula (*)	29	uva	
4	vivipara	30	atomus	
5	grandis	31	glaucoma (*	**), cluster 3
6	bicolor		and fig. 4	1. 5. 6
7	ochracea	32	hodo	., 0, 0
8	erubescens	0.2		
9	vinosa		III. POLYTOMA	
10	kolpoda	33	nvella, <i>fig.</i> 7	. 8. 9. 10. 11
11	enchelys			, , , , , , , , , , , , , , , , , , , ,
12	umbra		IV. MICROGLEN	A
13	hyalina	34	punctifera	
14	gliscens (*)	35	monadina.	fia. 12, 13, 14
15	ovalis			
16	mica	· ·	V. PHACELONON	VAS
17	punctum, group 2	36	pulvisculus	
18	cylindrica		1	
19	Ökenii	·	VI. GLENOMORU	M
20	deses	37	tingens, fia	. 15, 16, 17
21	socialis			,,
22	flavicans	· ·	VII. Doxococci	US
23	simplex	38	globulus	<i></i>
24	inanis	39	ruber, aroun	2
25	scintillans	40	pulvisculus	
26	Dumalii	41	inaequalis	
			THUCH CHIN	

VIII	. CHILOMONAS	Plate I.	Воро	Plate I.
42	volvox	47	didymus didymus	
43	parameeium (*),	group 19 48	saltans (*)	
44	destrucns	49) grandis	
		50) intestinalis,	group 20
IX	. Воро	51	ranarum	
45	socialis (**)	52	2 viridis	
46	vorticellaris	53	3 oystea	

FAMILY II. CRY	PTOMONADINA.
X. CRYPTOMONAS 54 curvata 55 ovata, fig. 21, 22, 23 56 erosa 57 cylindrica 58 ? glauca 59 ? fusca 60 lontiaularia	XIII. LAGENELLA 63 cuchlora, fig. 26, 27, 28 XIV. CRYPTOGLENA 64 conica, group 29 65 pigra 66 carulescens
XI. OPHIDOMONAS 61 jenensis XII. PROROCENTRUM 62 micans, fig. 24, 25	XV. TRACHELOMONAS 67 nigricans 68 volvocina, <i>fig.</i> 30 to 33 69 cylindrica

	FAMILY III.	VOLI	VOCINA.
	XVI. GYGES		XX. SYNURA
70	granulum, <i>fig</i> . 34	81	uvella, fig. 50, 51
71	bipartitus	-	
72	sanguineus, [plate xii.		XXI. UROGLENA
	group 532]	82	volvox, $fig. 53, 54$
	XVII PANDORINA		XXII. EUDORINA
73	morum fig 35 36 37	83	elegans, fig. 47
74	? livalina		
11	. nyumu		XXIII. CHLAMIDOMONAS
	XVIII. GONIUM	84	pulvisculus (**), group 52
75	pectorale, fig. 38 to 42		XXIV. SPHAEROSIRA
76	punctatum	85	volvox. fig. 48, 49
77	? tranquillum, fig. 43		1011011, 5191 10, 10
78	? liyalinum		XXV. Volvox
79	? glaucum	86	globator, fig. 55, 56, 57
	XIX. SYNCRYPTA	87	aureus
80	volvox, fig. 44, 45, 46	88	stellatus
	FAMILY IV.	VIBR	TONTA
	XXVI. BACTERIUM		XXVIII. SPIROCHAETA
89	triloculare (*), aroup 58	98	plicatilis, fig. 60
90	? enchelys		phononic, y of oo
91	? punctum		XXIX SPIRILUM
· -	. 1	90	tenno
	XXVII. VIBRIO	100	undula (**) fia 61
92	lincola (**)	101	volutaus (*)
93	tremulans (*)	102	hryozon [plate vii] fig
94	subtilis	102	520 to 531
95	rugula (***)		02010001
96	prolifer		XXX. Spirodiscus
97	bacillus (*), group 59	103	fulvus, fig. 62

- bacillus (*), group 59 103 fulvus, fig. 62

74

FAMILY V. CLOSTERINA. XXXI. CLOSTERIUM Plate I. CLOSTERIUM lunula 112 ? cylindrus moniliferum 113 margaritacen

104

105	moniliferum	113	margaritaceum	
106	Dianae	114	turgidum, fig. 66	
107	acerosum, fig. 63, 64, 65	115	lineatum	
108	trabecula	116	striolatum	
109	digitus	117	setaceum, group 67	
110	attenuatum	118	rostratum	
111	cornu	119	? inaequale	
			*	

FAMILY VI. ASTASIAEA.

	XXXII. ASTASIA	Et	UGLENA
120	haematodes, fig. 68	133	longicauda, fig. 75, 76
121	flavicans	134	triquetra, 77
122	pusilla, fig. 69	135	acus, group 78
123	? viridis	136	rostrata
124	navalis, [plate xii.] fig. 533	137 X.	XXV. CHLOROGONIUM euchlorum, group 79
125	XXXIII. AMBLYOPHIS viridis, fig. 70	138 X	XXVI. COLACIUM
	XXXIV. EUGLENA	130	stentorinum
126	sanguinea, fig. 71, 72, 73	100	stentormun
127	hvalina	XXX	VII. DISTIGMA Plate II.
128	deses	140	? tenax
129	viridis	141	proteus, group 81
130	spirogyra	142	viride
131	pyrum, group 74	143	planaria
132	pleuronectes	144	dinobryina

FAMILY VII. DINOBRYONIA.XXXVIII. EPIPYXIS Plate II.XXXIX. DINOBRYON145utriculus, group 82146147? sociale

FAMILY VIII. AMOEBAEA. XL. AMOEBA AMOEBA 148 princeps, fig. 85, 86, 87 150 diffluens 149 verrucosa 151 radiosa, fig. 88, 88'

FAMILY IX. ARCELLINA.

	XLI. DIFFLUGIA	ARCELLA
152	proteiformis, fig. 89 to 91	157 aculeata, fig. 92, 93, 94
153	oblonga	158 dentata
154	acuminata	159 ? hyalina
155	enchclys	
	XLII AUCELLA	XLIII. CYPHIDIUM
156	vulgaris	160 aureolum, fig. 95 to 98
	'FAMILY X.	BACILLARIA.
	XLIV. DESMIDIUM	DESMIDIUM
161	Swartzii	166 apiculosum
162	orbiculare	
163	hexaceros, group 99	XLV. STAURASTRUM
164	bifidum	167 dilatatum, fig. 100, 101
165	aculcatum	168 paradoxum, fig. 102, 103

Plate I.

LIST OF INFUSORIA.

XI	VI. PENTASTERIAS Plate II.	LVI	GALLIONELLA Plute III.
160	margaritzeea fig 101	911	lineate f_{ij} 198
100	margarnacca, Jay. 101	919	nummulaidas
	XLVII. TESSARARTHRA	212	nummulolacs
170	moniliformis, fig. 105, 106	213	varians, group 131
	WY TITLY O	214	moniliformis
	ALVIII. SPHAERASTRUM	215	aurichaleea
171	pietum	216	ferruginea, [plate ii.] fig.
172	quadrijugum		129, 130
	VIIV VANDUIDIUM	217	distance
	himmetum fulgto wiil fig	918	sulanta [mlata jij] araun
173	misutum [piace xii.] j ag.	~10	
	512		191
174	aculeatum, fig. 109	т т т т	
175	fasciculatum		II. ACTINOCYCLUS
176	furcatum, fig. 110	219	senarius, group 132
177	? ramosum, fig. 511, 515	220	octonarius
178	? difforme, fig. 111, 513, 514	.	
170	erassines		I. NAVICULA Plate III.
100	tubiforum	221	Phoenicenteron, group 139
100		222	gracilis
	L. ARTHRODESMUS	223	? pellucida, group 140
181	quadricaudatus	224	acus. aroup 147
182	pectinatus	995	umbonata
183	acutus	996	fulva
184	convergens, <i>fig.</i> 112, 113		omphicheone group 11
185	octocornis	000	amphisoaena, group141
186	truncatus	228	platystoma, <i>fig.</i> 142
100	TT Operations	229	nodosa, <i>jug</i> . 143
	LI. ODONTELLA	230	trochus
187	desmidium, fig. 108	231	follis
188	? filiformis, fig. 107	232	trinodis
189	? unidentata	233	cari
	LII. MICRASTERIAS	234	? quadricostata
190	tetras	235	baltica, fig. 144
191	coronula	236	hippocampus, group 145
192	Napoleonis (heveetis)	237	sigma, aroun 146
100	$f_a 117 118$	238	scalnum
109	hoptoetic fa 114	930	ourvula
100	Portactis, Jug. 114	240	Cui vuia
104	boryana, <i>ng</i> . 115, 116	240 041	arcus
195	anguiosa	241	sigmoidca, group 148
196	rotula	242	vindis, <i>fig.</i> 133 to 136
197	tricyclia	243	macilenta
198	elliptica	244	viridula
	LIII. EUASTRUM	245	inaequalis, group 154
199	rota, fig. 121, 122, 123	246	gibba
200	aniculatum	247	? crux
201 ·	crux melitensis fig 194	248	? glans
	neeton	249	capitata
002 000	vermeen fr 195	250	dicephala
200 004	verrucosum, jrg. 125	251	lauccolata
204	ansatum	959	? librile group 155
205	margaritherum fig. 126	959	? splendide for 150 to 150
206	botrytis	954	2 hitroux
207	integerrimum	204	strictulo 6-107 100
	LIV. MICROTHECA	200	Striatulai, jug. 137, 138
208	octoceros, fia. 119, 120	256	undulata, fig. 149
	IV DUNDARY	257	? constricta
900	LV. LYXIDICULA	258	? amphora, fig. 153
209	operculata, group 127	259	? lincolata
210	globator, [plate xii.] fig.		
	506 to 510.		

	LIX EUNOTIA Plate III.		LXV. ISTIMIA Plate IV.
960	turgida, fig. 156 to 161.	302	obliquata
-00	except in group 157,	303	enervis, fig. 183
	those marked by a		
	eross		LXVI. SYNEDRA
261	Westermanni, in group	304	ulna, group 184
~01	157, those figures	305	eapitata, group 185'
	marked by a eross	306	gallionii
262	zebra	307	faseieulata
263	granulata, fig. 165	308	lunaris, <i>group</i> 185
264	? faha	309	bilunaris
265	areus		IVIII Dependent
266	diodon		LAVII. PODOSPHENIA
267	triodon, aroup 164	310	graems, <i>fig.</i> 180
268	tetraodou	311	abbreviata
260	nentodon	312	euneata
200	diadema	313	? nana
271	serra		LXVIII. GOMPHONEMA
~ • • •		314	truneatum, fig. 187 to 19
	LX. COCCONEIS	315	eapitatum
272	seutellum, fig. 162, 163	316	graeile
273	undulata	317	aeuminatum
274	plaeentula	318	minutissimnm
275	pedieulus	319	elavatum
276	? finniea	320	rotundatum
277	? elypeus [plate xii.] fig.	321	diseolor
	516 to 518	322	? olivaecum
	LYL BACILLARIA		T X T X
978	paradoxa, fig. 166, 167		LXIX. ECHINELLA
270	vnlgaris, fia, 168	323	flabellata, fig. 191 to 19:
	neetinalis	324	spiendida
280	elongata, fig. 169	325	? paradoxa
0201	euneata, fig. 170	326	eapitata
- 283	Cleonatrae	327	abbreviata
284	? tabellaris	328	fulgens
985	floeeulosa	1	LXX. COCCONEMA
286	seriata	329	Boeekii
287	Ptolemaei	330	laneeolatum, fig. 194, 19
201		331	eistula, <i>fiq</i> . 196 to 198
	LXII. TESSELLA	332	eymbiforme
288	eatena, fig. 180 to 182	333	? gibbum
289	areuata	334	? fusidium
290	interrupta		TYVI A GHAN ANTING
	LXIII. FRAGILARIA	0.005	LAAL ACHNANTHES
991	grandis, fig. 171	300	huering fr. 100 to 903
500	rhabdosoma, fig. 173, 174	000	mbagailia
202	turgidula, group 172	001	subsessins
994	multipunetata	990	exilis
201	bipunetata, fig. 175	910	2 incocuelic
296	angusta	040	; macquans
297	scalaris		LXXII. STRIATELLA
298	diopthalma	341	arenata, <i>fig</i> . 203, 204
299	pectinalis, fig. 176		
200	F C C C C C C C C C C	0.10	LAXIII. FRUSTULIA
	LXIV. MERIDION	342	appendiculata
300	vernalc, <i>fig.</i> 177 to 179	343	maritima
301	? panduriforme	344	sahna

L	XXIV. SYNCYCLIA Plate IV.		Plate IV	•
345	salpa, group 206		LXXVII. SCHIZONEMA	
	1 / 5 /	352	? Agardhi, fiq. 208	
	LXXV. NAUNEMA	00.	·	
346	simplex		LXXVIII. MICROMEGA	
347	Dillwynii	353	corniculatum	
348	Hoffmanni			
349	arbuscula		LXXIX. ACINETA	
350	balticum, fig. 207	354	lyngbyi	
	70 0	355	tuberosa	
	LXXVI. GLOEONEMA	356	mystacina, <i>fig</i> . 205	
351	paradoxum			
	EAMILY YI	eve	TDTNA	
	TAMILI AI.	CIU		
957	LAAA, CYCLIDIUM	969	PANTOTRICHOM	
051	glaucoma, <i>Jug.</i> 209 to 211	002	voivox la menuela	
308	margaritaceum	303	lagenula	
359	f planum		LXXXII CHAETONONAS	
360	? lenthorme	964	globulus fa 913	
	IXXXI PANTOTRICHUM	365	constricts	
961	onabolus fa 919	000	constructa	
001	encherys, jug. 212	I		
	FAMILY XII.	PERI	DINAEA.	
	LXXXIII. CHAETOTYPHLA		PERIDINIUM	
366	armata, fig. 214, 215	374	? delitiense	
367	aspera	375	acuminatum	
368	? pyritae	376	cornutum	
000	- F J	377	tripos, fig. 219, 220	
	LXXXIV. CHAETOGLENA	378	Michaelis, fig. 221	
369	volvocina, fig. 216 to 218	379	fusus, fia, 222, 223	
		380	furea	
	LXXXV. PERIDINIUM	500		
370	einetum		LXXXVI. GLENODINIUM	

381

382

383

395

396

397

398

399

400

40I

402

403

404

405

406

FAMILY XIII. VORTICELLINA.

cinctum

XC. VORTICELLA

citrina

hamata

pieta

XCI. CARCHESIUM

XCII. EPISTYLIS

anastatica

galea

nebulifera.

campanula

chlorostigma

patellina (*)

microstoma (**)

tabulatum

apiculatum, fig. 224 to 226

convallaria, [plate v.] fig.

polypinum, fig. 240 to 245

237, 238, 239

78

371

372

373

384

385

386

387

388

389

390

391

392

393

394

pulvisculus

? pyrophorum

LXXXVII. STENTOR

235, 236

LXXXVIII. TRICHODINA?

fig. 227

grandinella (*)

LXXXIX. UROCENTRUM

turbo, fig. 232, 232

tentaculata, [plate iv.]

pediculus, fig. 228 to 230

polymorphus

Roeselü, fig. 233, 234

cacrulcus, [plate v.] fig.

Mülleri

igneus

niger

vorax

fuscum

	EPISTYLIS Plate V.		EPISTYLIS Plate V.
407	plicatilis	415	? parasitica
408	grandis	416	arabica
409	flavicans		XCIII. OPERCULARIA
410	leucoa	417	articulata
411	digitalis	717	alticalata
412	? nutans, fig. 245, 246		XCIV. ZOOTHAMNIUM
413	botrytis	418	arbuscula, <i>fig</i> . 247, 248
414	? vegetans	419	niveum
	FAMILY XIV.	OPH	RYDINA.
	XCV. OPHRYDIUM	1	VAGINICOLA
420	versatile, fig. 249 to 254	424	tincta
	XCVI TINTINIC	425	decumbens, group 256
491	inquilinua group 955		
400	mulatus, group 200		XCVIII. COTHURNIA
422	subulatus	426	imberbis, group 257
	XCVII. VAGINICOLA	427	maritima
423	crystallina	428	havniensis
	FAMILY XV.	ENC	HELIA.
	XCIX. ENCHELYS		TRICHODA
429	pupa, <i>fig.</i> 258, 259	443	asiatica
430	farcimen, fig. 260 to 265	444	pyrum
431	infuscata		OV LIGDWALLDY!
432	nebulosa	445	Drotona fr 074 075
		440	proteus, <i>jug.</i> 274, 275
	C. DISOMA	440	guita
433	vacillans, 265'	447	rugosa
	CI. ACTINOPHEYS		CVI. LEUCOPHRYS
434	ol ol	448	patula, <i>fig</i> . 276, 277
435	viridia <i>fa</i> 266	449	spathula fig. 278
436	difformis	450	sanguinea, <i>fig.</i> 279, 280
100	GIROTINIS	451	pyriformis (**)
	CII. TRICHODISCUS	452	carnium (**)
437	m sol, fig.~267, 268	453	? anodontae
	CIII PODOBURYA		CWIT HOLODUDYA
438	fixe f_a 960 970	454	OVII. HOLOPHRYA
400	iixa, jig. 200, 210	404	diagolar
	CIV. TRICHODA	400	discolor
439	pura (*) <i>fig</i> .271 to 273	400	coreps
440	nasamonum		CVIII. PRORODON
441	ovata	457	nivcus
442	? aethiopica	458	teres, <i>fig.</i> 282, 283
	FAMILY XVI	$\cdot COL$	LEPINA.
	CIX. Coleps		COLEPS
459	hirtus (*) fig. 284 to 286	462	amphacanthus
460	viridis	463	incurvus
461	elongatus		
			(1777) 7 737 /
	FAMILY XVII.	TRA	CHELINA.
	CX. TRACHELIUS		TRACHELIUS
464	anas, fig. 287, 287', 288,	470	? globulifer
	289	471	ovum <i>, fig.</i> 290
465	vorax		
466	meleagris		CXI. LOXODES
467	lamella (***)	472	rostrum, fig. 291 to 293
468	anaticula	473	cithara

? trichophorus

LIST OF INFUSORIA.

	LOXODES Plate VI.	1	SPIROSTOMUM Plate	VI.
474	bursaria	491	ambiguum, fig. 297, 29	8
475	plicatus		annoig a anny j.g. 2019 20	
			CXIV. PHIALINA	
100	CAIL BURSARIA	492	vermicularis	
476	truncatella	493	viridis, <i>fig</i> . 299	
477	vorticella, fig. 294			
478	vorax		CXV. GLAUCOMA	
479	entozoon	494	scintillans (*) fig. 30	0,
480	intestinalis		301, 302	
481	? cordiformis		OVUL O	
482	lateritia	105	CAVI. CHILODON	
483	vernalis	495	cucullulus (***) fig. 30	3
484	leucas, <i>fig</i> . 295	100	to 309	
485	pupa, <i>fïg</i> . 296	496	uncinatus	
486	flava	497	aureus	
487	nucleus	498	ornatus	
488	ranarum		CXVII NASSULA	
489	? aurantiaca	400	ologans fig 310 311	
	CXIII SPIROSTONUM	500	ormata	
400	virone $f_a = 206'$	501	onnata	
400	virens, <i>J.y.</i> 200	001	aurea	
	FAMILY XVIII. O	PHR	YOCERCINA	
	CXVIII. TRACHELOCERCA		TRACHELOCERCA	
502	olor. $fig.$ 317, 318.	503	viridis	
002	319	504	bicens fa 390	
	010	001	Sicepo, Jig. 620	
	FAMILY XIX.	ASPI	DISCINA.	
	CXIX. ASPIDISCA		ASPIDISCA Plate VI	I.
505	lynceus	506	denticulata, fig. 321, 32	2.
	<i>.</i>		000 100 1	
			323	
		ļ	323	
	FAMILY XX.	KOL	323 PODEA.	
	FAMILY XX. CXX. Kolpoda		323 PODEA. Amphileptus Plate V	п.
507	FAMILY XX. CXX. Kolpoda cucullus(***) fig.324 to 328	KOL 521	323 <i>PODEA</i> . Amphileptus <i>Plate</i> V viridis	ч.
507 508	FAMILY XX. CXX. Kolpoda cucullus(***) fig.324 to 328 ? ren	KOL 521 522	323 APODEA. AMPHILEPTUS Plate V viridis fasciola, fig. 314, 315, 3	П. 16
507 508 509	FAMILY XX. CXX. KOLPODA cucullus(***) fig.324 to 328 ? ren ? cucullio	KOL 521 522 523	323 PODEA. AMPHILEPTUS Plate V viridis fasciola, fig. 314, 315, 3 melcagris	Т. 16
507 508 509	FAMILY XX. CXX. Kolpoda cucullus(***) fig.324 to 328 ? ren ? cucullio	KOL 521 522 523 524	323 <i>PODEA</i> . AMPHILEPTUS <i>Plate</i> V viridis fasciola, <i>fig</i> . 314, 315, 3 meleagris longicollis	п. 16
507 508 509	FAMILY XX. CXX. Kolpoda cucullus(***) fig.324 to 328 ? ren ? cucullio CXXI. PARAMECIUM	KOL 521 522 523 524 525	323 <i>PODEA</i> . AMPHILEPTUS Plate V viridis fasciola, fig. 314, 315, 3 meleagris longicollis papillosus	Ч. 16
507 508 509 510	FAMILY XX. CXX. KOLPODA cucullus(***) fig.324 to 328 ? ren ? cucullio CXXI. PARAMECIUM aurelia(***) fig. 329 to 332	<i>KOL</i> 521 522 523 524 525	323 APODEA. AMPHILEPTUS Plate V viridis fasciola, fig. 314, 315, 3 mcleagris longicollis papillosus	-1. 16
507 508 509 510 511	FAMILY XX. CXX. KOLPODA cucullus(***) fig.324 to 328 ? ren ? cucullio CXXI. PARAMECIUM aurelia(***) fig. 329 to 332 caudatum	KOL 521 522 523 524 525 C	323 APODEA. AMPHILEPTUS Plate V viridis fasciola, fig. 314, 315, 3 mcleagris longicollis papillosus XXIII. UROLEPTUS Plate	TI. 16 VII.
507 508 509 510 511 512	FAMILY XX. CXX. KOLPODA cucullus(***) fig.324 to 328 ? ren ? cucullio CXXI. PARAMECIUM aurelia(***) fig. 329 to 332 eaudatum chrysalis (***)	KOL 521 522 523 524 525 C 526	323 APODEA. AMPHILEPTUS Plate V viridis fasciola, fig. 314,315, 3 mcleagris longicollis papillosus XXIII. UROLEPTUS Plate piscis	71. 16 VII.
507 508 509 510 511 512 513	FAMILY XX. CXX. KOLPODA cucullus(***) fig.324 to 328 ? ren ? cucullio CXXI. PARAMECIUM aurelia(***) fig. 329 to 332 eaudatum chrysalis (***) kolpoda (*)	KOL 521 522 523 524 525 C 526 526 527	323 APODEA. AMPHILEPTUS Plate V viridis fasciola, fig. 314,315, 3 mcleagris longicollis papillosus XXIII. UROLEPTUS Plate piscis musculus, fig. 333	71. 16 VII.
507 508 509 510 511 512 513 514	FAMILY XX. CXX. KOLPODA cucullus(***) fig.324 to 328 ? ren ? cucullio CXXI. PARAMECIUM aurelia(***) fig. 329 to 332 caudatum chrysalis (***) kolpoda (*) ? sinaiticum	KOL 521 522 523 524 525 C 526 526 527 528	323 APODEA. AMPHILEPTUS Plate V viridis fasciola, fig. 314, 315, 3 meleagris longicollis papillosus XXIII. UROLEPTUS Plate piscis musculus, fig. 333 hospes	'I. 16 VII.
507 508 509 510 511 512 513 514 515	FAMILY XX. CXX. KOLPODA cucullus(***),fig.324 to 328 ? ren ? cucullio CXXI. PARAMECIUM aurelia(***),fig. 329 to 332 caudatum chrysalis (***) kolpoda (*) ? sinaiticum ? ovatum	KOL 521 522 523 524 525 C 526 526 527 528 529	323 <i>PODEA</i> . AMPHILEPTUS <i>Plate</i> V viridis fasciola, <i>fig</i> . 314, 315, 3 meleagris longicollis papillosus XXIII. UROLEPTUS <i>Plate</i> piseis musculus, <i>fig</i> . 333 hospes ? lamella	'I. 16 VII.
507 508 509 510 511 512 513 514 515 516	FAMILY XX. CXX. KOLPODA cucullus(***) fig.324 to 328 ? ren ? cucullio CXXI. PARAMECIUM aurelia(***) fig. 329 to 332 eaudatum chrysalis (***) kolpoda (*) ? sinaiticum ? ovatum compressum	KOL 521 522 523 524 525 C 526 526 527 528 529 530	323 PODEA. AMPHILEPTUS Plate V viridis fasciola, fig. 314, 315, 3 melcagris longicollis papillosus XXIII. UROLEPTUS Plate piscis musculus, fig. 333 hospes ? lamella filum	'I. 16 VII.
507 508 509 510 511 512 513 514 515 516 517	FAMILY XX. CXX. KOLPODA cucullus(***) fig.324 to 328 ? ren ? cucullio CXXI. PARAMECIUM aurelia(***) fig. 329 to 332 eaudatum chrysalis (***) kolpoda (*) ? sinaiticum ? ovatum compressum milium (**)	KOL 521 522 523 524 525 C 526 527 528 529 530	323 PODEA. AMPHILEPTUS Plate V viridis fasciola, fig. 314, 315, 3 meleagris longicollis papillosus XXIII. UROLEPTUS Plate piseis musculus, fig. 333 hospes ? lamella filum	'I. 16 VII.
507 508 509 511 512 513 514 515 516 517	FAMILY XX. CXX. KOLPODA cucullus(***) fig.324 to 328 ? ren ? cucullio CXXI. PARAMECIUM aurelia(***) fig. 329 to 332 caudatum chrysalis (***) kolpoda (*) ? sinaiticum ? ovatum compressum milium (**)	KOL 521 522 523 524 525 C 526 526 527 528 529 530	323 AMPHILEPTUS Plate V viridis fasciola, fig. 314, 315, 3 melcagris longicollis papillosus XXIII. UROLEPTUS Plate piscis musculus, fig. 333 hospes ? lamella filum CXXIV. OPHRYOGLENA	'I. 16 VII.
507 508 509 510 511 512 513 514 515 516 517	FAMILY XX. CXX. KOLPODA cucullus(***) fig.324 to 328 ? ren ? cucullio CXXI. PARAMECIUM aurelia(***) fig. 329 to 332 caudatum chrysalis (***) kolpoda (*) ? sinaiticum ? ovatum compressum milium (**) CXXII. AMPHILEPTUS	KOL 521 522 523 524 525 C 526 527 528 520 530 530	323 AMPHILEPTUS Plate V viridis fasciola, fig. 314, 315, 3 melcagris longicollis papillosus XXIII. UROLEPTUS Plate piscis musculus, fig. 333 hospes ? lamella filum CXXIV. OPHRYOGLENA atra	'I. 16 VII.
507 508 509 510 511 512 513 514 515 516 517	FAMILY XX. CXX. KOLPODA cucullus(***) fig.324 to 328 ? ren ? cucullio CXXI. PARAMECIUM aurelia(***) fig. 329 to 332 caudatum chrysalis (***) kolpoda (*) ? sinaiticum ? ovatum compressum milium (**) CXXII. AMPHILEPTUS anser, fig. 312, 313	KOL 521 522 523 524 525 C 526 527 528 529 530 530	323 AMPHILEPTUS Plate V viridis fasciola, fig. 314, 315, 3 melcagris longicollis papillosus XXIII. UROLEPTUS Plate piscis musculus, fig. 333 hospes ? lamella filum CXXIV. ОРИКУОБLЕМА atra acuminata, fig. 334, 33	71. 16 VII.
507 508 509 510 511 512 513 514 515 516 517 518 519	FAMILY XX. CXX. KOLPODA cucullus(***) fig.324 to 328 ? ren ? cucullio CXXI. PARAMECIUM aurelia(***) fig. 329 to 332 eaudatum chrysalis (***) kolpoda (*) ? sinaiticum ? ovatum compressum milium (**) CXXII. AMPHILEPTUS anser, fig. 312, 313 margaritifer	KOL 521 522 523 524 525 C 526 527 528 529 530 530 531 532 533	323 AMPHILEPTUS Plate V viridis fasciola, fig. 314, 315, 3 meleagris longicollis papillosus XXIII. UROLEPTUS Plate piscis musculus, fig. 333 hospes ? lamella filum CXXIV. OPHRYOGLENA atra acuminata, fig. 334, 33 flavicans	71. 16 VII.
507 508 509 510 511 512 513 514 515 516 517 518 519 520	FAMILY XX. CXX. KOLPODA cucullus(***) fig.324 to 328 ? ren ? cucullio CXXI. PARAMECIUM aurelia(***) fig. 329 to 332 eaudatum chrysalis (***) kolpoda (*) ? sinaiticum ? ovatum compressum milium (**) CXXII. AMPHILEPTUS anser, fig. 312, 313 margaritifcr moniliger	KOL 521 522 523 524 525 C 526 527 528 529 530 530 531 532 533	323 AMPHILEPTUS Plate V viridis fasciola, fig. 314,315, 3 meleagris longicollis papillosus XXIII. UROLEPTUS Plate piscis musculus, fig. 333 hospes ? lamella filum CXXIV. OPHRYOGLENA atra acuminata, fig. 334, 33 flavicans	71. 16 VII.
507 508 509 510 511 512 513 514 515 516 517 518 519 520	FAMILY XX. CXX. KOLPODA cucullus(***), fig.324 to 328 ? ren ? cucullio CXXI. PARAMECIUM aurelia(***), fig. 329 to 332 caudatum chrysalis (***) kolpoda (*) ? sinaiticum ? ovatum compressum milium (**) CXXII. AMPHILEPTUS anser, fig. 312, 313 margaritifer moniliger	KOL 521 522 523 524 525 C 526 527 528 529 530 530 531 532 533	323 AMPHILEPTUS Plate V viridis fasciola, fig. 314, 315, 3 meleagris longicollis papillosus XXIII. UROLEPTUS Plate piseis musculus, fig. 333 hospes ? lamella filum CXXIV. OPHRYOGLENA atra acuminata, fig. 334, 33 flavieans	71. 16 VII.
507 508 509 511 512 513 514 515 516 517 518 519 520	FAMILY XX. CXX. KOLPODA cucullus(***), fig.324 to 328 ? ren ? cucullio CXXI. PARAMECIUM aurelia(***), fig. 329 to 332 caudatum chrysalis (***) kolpoda (*) ? sinaiticum ? ovatum compressum milium (**) CXXII. AMPHILEPTUS anscr, fig. 312, 313 margaritifer moniliger FAMILY XXI.	KOL 521 522 523 524 525 C 526 527 528 529 530 530 531 532 533	323 <i>PODEA</i> . AMPHILEPTUS <i>Plate</i> V viridis fasciola, fig. 314, 315, 3 meleagris longicollis papillosus XXIII. UROLEPTUS <i>Plate</i> piseis musculus, fig. 333 hospes ? lamella filum CXXIV. OPHRYOGLENA atra acuminata, fig. 334, 33 flavicans	71. 16 VII.
507 508 509 510 512 513 514 515 516 517 518 519 520	FAMILY XX. CXX. KOLPODA cucullus(***), fig.324 to 328 ? ren ? cucullio CXXI. PARAMECIUM aurelia(***), fig. 329 to 332 caudatum chrysalis (***) kolpoda (*) ? sinaiticum ? ovatum compressum milium (**) CXXII. AMPHILEPTUS anscr, fig. 312, 313 margaritifer moniliger FAMILY XXI. CXXV. OXYTRICHA	KOL 521 522 523 524 525 C 526 527 528 529 530 531 532 533 0XYZ	323 <i>PODEA</i> . AMPHILEPTUS <i>Plate</i> V viridis fasciola, fig. 314, 315, 3 meleagris longicollis papillosus XXIII. UROLEPTUS <i>Plate</i> piseis musculus, fig. 333 hospes ? lamella filum CXXIV. OPHRYOGLENA atra acuminata, fig. 334, 33 flavicans <i>PRICHINA</i> . OXYTRICHA	71. 16 VII.
507 508 509 511 512 513 514 515 516 517 518 519 520 534	FAMILY XX. CXX. KOLPODA cucullus(***) fig.324 to 328 ? ren ? cucullio CXXI. PARAMECIUM aurelia(***) fig. 329 to 332 caudatum chrysalis (***) kolpoda (*) ? sinaiticum ? ovatum compressum milium (**) CXXII. AMPHILEPTUS anser, fig. 312, 313 margaritifer moniliger FAMILY XXI. CXXV. OXYTRICHA rubra cullien(!) (**)	KOL 521 522 523 524 525 C 526 527 528 529 530 531 532 533 OXY7 540	323 <i>PODEA</i> . АмрниLEPTUS <i>Plate</i> V viridis fasciola, fig. 314, 315, 3 melcagris longicollis papillosus XXIII. UROLEPTUS <i>Plate</i> piscis musculus, fig. 333 hospes ? lamella filum CXXIV. OPURYOGLENA atra acuminata, fig. 334, 33 flavicans <i>PRICHINA</i> . OXYTRICHA cicada	ч. 16 VII.
507 508 509 510 512 513 515 514 515 516 517 518 519 520 534 535	FAMILY XX. CXX. KOLPODA cucullus(***) fig.324 to 328 ? ren ? cucullio CXXI. PARAMECIUM aurelia(***) fig. 329 to 332 eaudatum chrysalis (***) kolpoda (*) ? sinaiticum ? ovatum compressum milium (**) CXXII. AMPHILEPTUS anser, fig. 312, 313 margaritifer moniliger FAMILY XXI. CXXV. OXYTRICHA rubra pellionella (**)	KOL 521 522 523 524 525 C 526 527 528 529 530 531 532 533 OXY7 540 541	323 <i>PODEA</i> . AMPHILEPTUS <i>Plate</i> V viridis fasciola, <i>fig</i> . 314, 315, 3 melcagris longicollis papillosus XXIII. UROLEPTUS <i>Plate</i> piscis musculus, <i>fig</i> . 333 hospcs ? lamella filum CXXIV. OPHRYOGLENA atra acuminata, <i>fig</i> . 334, 33 flavicans <i>'RICHINA</i> . OXYTRICHA cicada lepus	71. 16 VII.
507 508 509 510 511 512 513 514 515 516 517 518 519 520 534 535 536	FAMILY XX. CXX. KOLPODA cucullus(***), fig.324 to 328 ? ren ? cucullio CXXI. PARAMECIUM aurelia(***), fig. 329 to 332 eaudatum chrysalis (***) kolpoda (*) ? sinaiticum ? ovatum compressum milium (**) CXXII. AMPHILEPTUS anser, fig. 312, 313 margaritifer moniliger FAMILY XXI. CXXV. OXYTRICHA rubra pellionella (**) caudata	KOL 521 522 523 524 525 C 526 527 528 520 530 531 532 533 OXY7 540 541	323 AMPHILEPTUS Plate V viridis fasciola, fig. 314, 315, 3 melcagris longicollis papillosus XXIII. UROLEPTUS Plate piscis musculus, fig. 333 hospes ? lamella filum CXXIV. OPHRYOGLENA atra acuminata, fig. 334, 33 flavicans "RICHINA. OXYTRICHA cicada lepus CXXVI. CERATIDUM	71. 16 VII.
507 508 509 511 512 513 514 515 515 515 517 518 519 520 534 535 536 537	FAMILY XX. CXX. KOLPODA cucullus(***), fig.324 to 328 ? ren ? cucullio CXXI. PARAMECIUM aurelia(***), fig. 329 to 332 caudatum chrysalis (***) kolpoda (*) ? sinaiticum ? ovatum compressum milium (**) CXXII. AMPHILEPTUS anser, fig. 312, 313 margaritifer moniliger FAMILY XXI. CXXV. OXYTRICHA rubra pellionella (**) caudata platystoma	KOL 521 522 523 524 525 C 526 527 528 529 530 531 532 533 0XY7 540	323 AMPHILEPTUS Plate V viridis fasciola, fig. 314, 315, 3 melcagris longicollis papillosus XXIII. UROLEPTUS Plate piscis musculus, fig. 333 hospes ? lamella filum CXXIV. OPHRYOGLENA atra acuminata, fig. 334, 33 flavicans 'RICHINA. OXYTRICHA cicada lepus CXXVI. CERATIDIUM cuncatum, fig. 338–339	-1. 16 VII. 5
507 508 509 510 511 512 513 514 515 515 516 517 518 519 520 534 535 536 537 538	FAMILY XX. CXX. KOLPODA cucullus(***) fig.324 to 328 ? ren ? cucullio CXXI. PARAMECIUM aurelia(***) fig. 329 to 332 caudatum chrysalis (***) kolpoda (*) ? sinaiticum ? ovatum compressum milium (**) CXXII. AMPHILEPTUS anscr, fig. 312, 313 margaritifer moniliger FAMILY XXI. CXXV. OXYTRICHA rubra pellionella (**) caudata platystoma gibba, fig. 336, 337	KOL 521 522 523 524 525 C 526 527 528 529 530 531 532 533 OXYZ 540 542	323 AMPHILEPTUS Plate V viridis fasciola, fig. 314, 315, 3 melcagris longicollis papillosus XXIII. UROLEPTUS Plate piscis musculus, fig. 333 hospes ? lamella filum CXXIV. OPHRYOGLENA atra acuminata, fig. 334, 33 flavicans 'RICHINA. OXYTRICHA cicada lepus CXXVI. CERATIDIUM cuncatum, fig. 338, 333	т. 16 VII. 5
507 508 509 511 512 513 514 515 515 516 517 518 519 520 534 535 536 537 538 539	FAMILY XX. CXX. KOLPODA cucullus(***) fig.324 to 328 ? ren ? cucullio CXXI. PARAMECIUM aurelia(***) fig. 329 to 332 caudatum chrysalis (***) kolpoda (*) ? sinaiticum ? ovatum compressum milium (**) CXXII. AMPHILEPTUS anser, fig. 312, 313 margaritifer moniliger FAMILY XXI. CXXV. OXVTRICHA rubra pellionella (**) caudata platystoma gibba, fig. 336, 337 pullaster	KOL 521 522 523 524 525 C 526 527 528 520 521 526 527 528 529 530 531 532 533 OXYZ 540 542	323 AMPHILEPTUS Plate V viridis fasciola, fig. 314, 315, 3 melcagris longicollis papillosus XXIII. UROLEPTUS Plate piscis musculus, fig. 333 hospes ? lamella filum CXXIV. OPHRYOGLENA atra acuminata, fig. 334, 33 flavicans 'RICHINA. OXYTRICHA cicada lepus CXXVI. CERATIDIUM cuncatum, fig. 338, 339	-1. 16 VII. 5

CXXVIII. UROSTYLA Plate VII.	STYLONY	CHIA Plate VII.
544 grandis, fig. 342	547 silu	irus
CYNIX STRIONNCHIA	548 apı	pendiculata
545 metilus (*)	549 his	trio
546 pustulata (**)	550 lan	ccolata, fig. 343, 344

FAMILY XXII. EUPLOTA.

	CXXX. DISCOCEPHALUS	EUPLOTES		
551	rotatorius, fig. 345, 346	555	charon (**) fig. 350 to 353	
	CXXXI HIMANTOPHOPUS	556	striatus	
559	sharop fa 217 348	557	appendicutalus	
00%	charon, jig. 547, 548	558	truncatus	
	CXXXII. CHLAMIDODON	559	monostylus	
553	mnemosync, <i>fig</i> . 349	560	aculcatus	
	CXXXIII. EUPLOTES	561	turritus	
554	patella	562	cimex	

CLASS II. ROTATORIA.

FAMILY XXIII. ICHTHYDINA.

CXXXIV. PTYGURA	CHAETONOTUS
563 melicerta, fig. 354, 355	566 larus, fig. 357, 358
CXXXV. JCHTHYDIUM	567 brevis
564 podura (*) fig. 356	CXXXVII. GLENOPHORA
CXXXVI. CHAETONOTUS	568 trochus, <i>fig.</i> 359, 360

565maximus

OVITV

FAMILY XXIV. OECISTINA.

crystallinus, fig. 361 to 364 570 volvox. fig. 365 to CXXXVIII. OECISTES 569 volvox, fig. 365 to 370

	FAMILY XXV. MI	EGALOTROCHAEA.
	CXL. CYPHONAUTES	Plate VIII.
571	compressus, [plate viii.]	CXLII. MEGALOTROCHA
	fig. 373	573 albo flavicans, $fig. 374$,
	CXLI. MICROCODON	375, 376, 377
572	clavus, fig. 371, 372	

FAMILY XXVI. FLOSCULARIA.

CXLIII. TUBICOLARIA	CXLVI. LACINULARIA
574 najas, fig. 379 to 382	577 socialis, fig. 378
CXLIV. STEPHANOCEROS 575 Eichlornii, fig. 383, 383*	CXLVII. MELICERTA 578 ringens, fig. 386, 387
CXLV. LIMNIAS	CXLVIII. FLOSCULARIA
576 ceratophylli, fig. 388 to 392	580 ornata, fig. 384, 385

FAMILY XXVII. HYDATINAEA.

581 hydatina, fig.	393 C.	LI. PLEUROTROCHA
CL. HYDATINA	584	gibba, <i>fig.</i> 395, 396
582 senta, fig. 394	585	constricta
583 brachydaetyla	586	leptura

LIST OF INFUSORIA.

	Plate IX.		Plate IX.	
	CLII. FURCULARIA	1	CLVI. SCARIDIUM	
587	gibba	625	longicaudum, fig. 423, 424	
588	Reinhardti, fig. 397, 398			
589	forficula	1	CLVII. POLYARTHRA	
590	gracilis	626	trigla, fig. 400, 401, 425	
	0	627	platyptera fig. 402	
	CLIII. MONOCERCA		CLULL Deservite 9	
591	rattus	0.00	CLYIII. DIGLENA!	
592	bicornis, fig. 399, 417	028	lacustris, <i>fig.</i> 403	
593	? valga	029	grandis, <i>fig.</i> 404, 405	
	5	030	forcipata	
	CLIV. NOTOMMATA	631	aurita	
594	myrmelco, fig . 418 to 420	032	catellina	
595	syrinx	633	conura	
596	hyptopus	634	capitata	
597	parasita	635	caudata	
598	granularis	1	CLIX. TRIARTHRA	
599	petromyzon	636	longiseta fig. 406 to 408	
600	lacinulata	637	invstacina	
60I	forcipata	0.5.		
602	collaris	0.00	CLX. RATTULUS	
603	Wcrneckii	638	lunaris, group 409	
604	najas		CLVI DISTEMMA	
605	aurita	630	forficula fig 410 411	
606	gibba	640	sotigerum	
607	ansata	641	? marinum	
608	decipicns	649	? forcingtun	
609	? felis	012	. Ioreipatum	
610	? tigris,		CLXII. TRIOPTHALMUS	
611	longiseta fig. 421	643	dorsualis, fig. 412 to 414	
612	aequalis		CLYHI EOSPHORA	
613	clavulata	644	naias fig A15	
614	tuba	645	digitata	
615	brachionus	646	elonosta	
616	tripus		Cronguta Cronguta	
617	saccigera	0.17	CLAIV. OTOGLENA	
618	copeus, fig. 416	647	papillosa	
619	centrura		CLXV. CYCLOGLENA	
620	brachyota	648	lupus, [$plate$ x,] fig. 425.*	
			426	
	CLV. SYNCHAETA	649	? elcgans	
621	pectinata fig. 422	0.10		
622	baltica		CLXVI. THEORUS	
623	oblonga	650	vernalis $fig.$ 427 to 429	
624	tremula	651	uncinatus	
	FAMILY XXVIII.	EUC	HLANIDOTA.	
	CLXVII. LEPADELLA	E.	CLXIX. MASTIGOCERCA	
652	ovalis (**) fig. 430 to 433	658	carinata, <i>fig.</i> 438 to 440	
653	emarginata			
654	? salpina		CLXX. EUCHLANIS	
		659	? triquetra, fig. 441 to 444	
0.5	CLXVIII. MONOSTYLA	660	? Hornemanni	
655	cornuta	661	luna	
656	quadridentata, fig. 434 to	662	macrura	
	437	663	dilatata	
657	? lunaris	664	lyncens, fig. 445, 446	

.

	CLXXI. SALPINA Plate X.		Colurus	Plate X.
665	mucronata, fig. 447 to 453	677	? bicuspidatus	5
666	spinigera	678	caudatus	
667	ventralis	679	deflexus, fig	1. 460 to 462
668	redunca		0-1111 NF	
669	brevispina		CLXXV METOPI	DIA
670	bicarinata	680	lepadella, fig	g. 463 to 465
		681	acuminata	
	CLXXII. DINOCHARIS	682	triptera	
671	pocillum, <i>fig</i> . 454 to 456		•	
672	tetractis		CLXXVI. STEPH	IANOPS
673	paupera	683	lamellaris, f	ig. 466, 467
	OT VITT Measure :	684	? muticus	•
	CLAAHI, MONURA.	685	cirratus	
674	colurus			
675	dulcis, $fig.$ 457 to 459		CLXXVII. SQUA	MELLA
	CLYNIV COLURUS	686	bractea	
020	2 mainetue (**)	687	oblonga, fie	1. 468, 469
076	: unematus (~~)	1		

FAMILY XXIX. PHILODINAEA.

	CLXXVIII. CALLIDINA		Plate X1.
688	elegans, $fig. 470$ to 473	CI	XXXII. ACTINURUS
	CLXXIX. HYDRIAS	696	Neptunius, fig. 481 to 484
689	cornigera, [plate xi,] fig.	CI	LXXXIII. MONOLABIS
	474	697	conica <i>fig.</i> 485, 486
		698	gracilis
690	CLXXX. TYPHLINA viridis, group 475	CI	XXXIV. PHILODINA
		699	erythropthalma
	CLXXXI. ROTIFER	700	roseola, fig. 490
691	vulgaris, fig. 476 to 480	701	collaris
692	? citrinus	702	macrostyla
693	? erythraeus	703	citrina
694	macrurus	704	aculeata, fig. 487 to 489
695	tardus	705	megalotrocha

FAMILY XXX. BRACHIONAEA.

	CLXXXV. Noteus	l C	LXXXVII. BRACHIONUS
706	quadricornis, fig. 491 to 494	721	pala
	CLXXXVI. ANURAEA	722	amphiceros
707	? anadridentata	723	urceolaris
708	souperpuls for 495 to 497	724	Rubens
700	folculato	725	Mülleri
709		726	brevispinus
710	hinomia	727	Bakeri
711	offenns	728	polyacanthus, fig. 499 to
712	striata		501
713	incrinis	729	militaris
714	acuminata		mmuans
715	foliacea		
716	stipitata, fig. 498		IVVVIII DEPRODENTS
717	testudo	600	LAAAVIII. PTERODINA
718	serrulata	730	patina, Jig. 502 to 504
719	aculeata	731	elliptica
720	valga	732	clypeata, fig. 505

THE MICROSCOPE has, by the recent application of Achromatic Lenses, become a standard instrument for investigation. That it is deservedly so, the results obtained by it in the Sciences and Useful Arts, and the daily increasing discoveries in the Animal and Vegetable Worlds, fully confirm. Hence it is desirable to reduce the cost of its production, so that its usefulness may be extended. This Mr. PRITCHARD has successfully effected in his new Vertical Tripod Achromatic Microscope, which is a steady efficient Instrument, and capable of alfording an endless source of instruction and amusement. In that Instrument Mr. P. has adopted the principles so fully laid down in the "Microscopic Illustrations;" no difficulty, therefore, can arise from want of ample printed instructions for using it.

Printed Descriptions may be had with each of the following Instruments, constructed by Mr. PRITCHARD.

	~	0.	u.
Pocket Microscope, with rack adjustment, in Case	1	18	0
Vertical Tripod Achromatic Microscope, with one Set of Lenses, no Case	7	18	0
Jointed Tripod-stand Achromatic ditto, in Case	12	12	0
Jointed Tripod-stand Achromatic ditto, with two Sets of Lenses, in Cabinet	18	18	0
Jointed Tripod-stand Achromatic ditto, with Apparatus for Polarization	26	5	0
Jointed Tripod-stand Achromatie ditto, best Mounting, full Sets of Lenses,			
and Apparatus	63	- 0	0
New Garden Frame Thermometer	0	15	0
New Thermo-Hygrometer	0	18	0
New Set of Slides, for Illustrating Geology by the Magic Lanthorn, with above			
100 Figures	3	16	0

NAVAL, MILITARY, AND ASTRONOMICAL TELESCOPES.

Drawing, Mathematical, and Philosophical Instruments of all kinds.

MICROSCOPIC, POLARIZING, AND INTERFERENCE APPARATUS.

MICROSCOPIC OBJECTS.—Thin sections of Recent and Fossil Woods, Coal, Jet, Charcoal, Oolites, Flint, Teeth, Bone, recent and fossil.—Insects and Dissections preserved in Balsam.—Zoophites, Ferns, Algæ, Fuci, Mosses, Shells, Scales, Ditto in Flint; FOSSIL INFUSORIA; Crystals, Madrepores, Sponges, Tests, &c.

Spectacle and Optical Instrument Manufactory, 162, Fleet Street, London.

J Clegharn sc

Andrew Pritchard 1 . Inquist. 18.11

1. Cleanorn se

Indrew Pritchard I August 18.11

J. Clephorn se.

^{1 ,} it have to an

.

•

