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Recent wildfire events, in the United States (USA) and around
the world, have resulted in thousands of homes destroyed and
many lives lost, leaving communities and policy makers, once
again, with the question as to how to manage wildfire risk.
This is particularly important given the prevalent trend of
increased fire frequency and intensity. Current approaches to
managing wildfires focus on fire suppression and managing
fuel build-up in wildlands. However, reliance on these
strategies alone has clearly proven inadequate. As such, focus
should be shifted towards minimizing potential losses to
communities. Achieving this goal, however, requires detailed
understanding of the factors that contribute to community
vulnerability and the interplay between probability of ignition,
vulnerability and calculated risk. In this study, we evaluate
wildfire risk for four different communities across the USA for
the duration of May to September to communicate a different
perspective of risk assessment. We show, for the first time, that
community risk is closely related to wind speed and direction,
pattern of surrounding wildland vegetation, and buildings
layout. The importance of the findings lies in the need for
exploring unique viable solutions to reduce risk for every
community independently as opposed to embracing a
generalized approach as is currently the case.
1. Introduction
Wildfire events around theworld in the last few years have resulted
in astronomical social and economic losses. In the USA alone, the
year 2018 has experienced the most catastrophic wildfire season
on record in California, resulting in 7579 fires that burned a total
of 1 667 855 acres (674 957 ha), the largest amount of burned
acreage recorded in a fire season. The fires have caused more than
$2.975 billion (2018 USD) in damages, including $1.366 billion in
fire suppression costs. The year 2017, exhibited similar pattern of
events both in frequency and intensity. An example is the Tubbs
fire, which was named the most destructive fire before the Camp
fire of 2018, and the Thomas fire, which caused over $2.2 billion
in damages and $230 million in suppression costs. These events
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are just a few examples of the level of destruction observed in wildfire events in the last couple of years.

There are numerous other wildfire events that have left their mark on the world, including the Attica
wildfires in Greece [1] and the 2019–2020 Australian fire, among others. The most surprising of all are
the multiple fires in Jokkmokk, a small Swedish town in Lapland, which lies in the Arctic circle [2]. The
recent devastating nature of these events is a testimonial to the fact that not only the intensity of
wildfires are on the rise [3–5] but also the fire season is elongating as well [6,7]. The collective damages
incurred in the USA due to wildfires in the year 2017 amounted to approximately US $18 billion. The
United Nations (UN) Intergovernmental Panel on Climate Change (IPCC), comprising 192 nations,
recently released the landmark report that forewarns the immediate need to take action to curb the rise
in climate change. Within a few years, an overall 2°C rise in temperature is expected, which will result in
a rise in wildfire events as well [8]. Therefore, there is a present need to devise mitigation strategies to
reduce the impact of wildfires on communities.

Suppression andmanagement of fuel build-up inwildlands has been one of themain tactics for lowering
wildfire risk to communities, which alone has proven to be insufficient [9–12]. Wildfire mitigation is
primarily focused on fire suppression and control [13]. However, other factors such as climate change,
increase in community development near wildland–urban interface (WUI) areas [14], and rise in wildland
density have resulted in a significant spike in high-intensity wildfires [10,15] and the associated
expenditures [16,17]. Emphasis on managing public lands within and adjacent to communities provides
some relief but falls short of the level of mitigation required to impact the susceptibility of communities to
fire events [16]. Focusing on wildlands alone, without considering factors contributing to home ignition
susceptibility, does not provide a complete picture of community vulnerability and risk to WUI fire.

At the community level, several wildfire protection programmes, such as Firewise, are aimed at
informing residents of useful fire protection measures. These commonly include managing defensible
spaces around houses, using fire retardant materials, and employing automatic fire suppression systems.
While significant efforts are placed every year on increasing population awareness towards fire
mitigation practices, no clear standardized policies exist. Current management practices focus primarily
on control of wildfires in the wildlands, instead of focusing on the susceptibility of communities to the
inevitability of wildfire exposure and establishing decisions based on calculated risks. In recognizing the
major factors contributing to wildfire risk, a paradigm shift in wildfire management is required such that
mitigation efforts are geared towards communities as well as the wildlands [10,18].

Most studies on wildfires are biased towards wildlands. There is paucity of literature on understanding
wildfire propagation behaviour inside communities. Many researchers believe more attention should be
paid to fire regulation needs, in addition to wildland management, for communities to coexist with
nature. Calkin et al. [10] discussed this paradigm for controlling wildfire risk. Other researchers
[13,16,19,20] have found that the characteristics of a home determine the ignition potential to a great
extent as compared to its immediate surroundings. In addition, it has also been found that the housing
arrangement within a community layout is a critical factor governing the likelihood of house ignition
[21]. There are other factors as well, pertaining to built environment properties, such as housing density,
fuel load and moisture, weather and some others [22]. As such adequate metrics are required to quantify
the ignition potential, vulnerability and risk of fire damage to individual homes within a community so
that informed mitigation decisions can be made, both by the authorities and home owners.

Determining vulnerability and risk of wildfire damage to homes and providing better understanding of
the factors governing wildfire behaviour requires the use of suitable analytical and numerical tools.
Computational fluid dynamics (CFD) models have been found to be the most effective for modelling
wildfire propagation, since they are based on physics of the problems as opposed to semi-physics or
empirical methods. However, CFD models are computationally very expensive and their use in very
large problems (i.e. community-level analysis) is currently not feasible. With advances in computational
infrastructure, in the near future, the use of CFD models will become a reality. However, with the risk of
WUI fires on an astronomic rise each year, communities cannot afford to wait for the computational
technology to match the complexity of the problem. With this in mind, the pressing need lies in
exploring alternative directions for quantifying and studying wildfire risk to communities. In a previous
paper [23], we proposed and showed that application of traditional graph theory concepts can provide a
good understanding of the complexities involved in WUI fires.

Every natural hazard has certain characteristics, based on which their risk is quantified and
communicated. For earthquakes, risk is communicated through magnitude of the shaking, hurricanes
by wind velocity and storm surge, floods by measured depth of water and so on. For wildfires,
researchers have developed detailed frameworks to quantify the potential of fire spread in wildlands;
however, there is currently no standardized method of risk assessment or communication that can be
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applied nationwide to WUI communities [24]. Wildfires are a natural phenomenon, similar to other

natural hazards. Only recently (spring 2018), the Wildfire Disaster Funding Act (H.R. 2862) passed by
Congress has classified wildfires as a natural hazard just like hurricanes, floods and earthquakes [25].
An abundance of knowledge exists on risk quantification of other hazards. In the case of earthquakes,
we understand the underlying factors that govern infrastructure damage potential quite well. For
instance, the depth of focus from the epicentre, the fault rupture mechanism, and the proximity of the
infrastructure to fault lines are all factors that affect the damage potential. Damage potential from
wildfires lack the same level of details as other hazards.

Even though wildfires can be classified as a natural disaster, they do not necessarily behave in a similar
fashion as other hazards. Wildfire is the only natural hazard in which the intensity of the hazard increases
with time in proportion to the volume of damage caused. The ignitable structures act as fuel to the ongoing
fire and result in an increase in spread. In addition, embers from burning vegetation and combustible
materials contribute substantially to fire initiation and spread in communities. Wildfire propagation is
indeed complex and devising effective policies to reduce fire damage in communities requires shift in
research attention towards addressing an unanswered question—have we quantified the underlying
factors involved in wildfire events and do we understand their importance relative to each other? In this
study, we attempt to answer this question using a graph model by carefully studying the factors
contributing to vulnerability and risk to WUI fires in four distinct communities in the USA. We conduct
the analysis for the months of May to September, representing a typical fire season, based on information
collected from existing wildfire and weather databases. Using the analysis results, we draw out
meaningful correlation patterns between wildfire risk and other underlying factors. We clearly show that
risk depends on the community being evaluated and therefore should be communicated as such.
2. Material and methods
2.1. Risk framework
Several researchers have looked into quantifying risk of communities to wildfires [26–29]; however,
comprehensive theoretical frameworks are lacking. Available frameworks only account for risk from
the perspective of wildlands and do not take into consideration the susceptibility of communities
based on their individual characteristics. A comprehensive definition of wildfire risk entails
assessment of two key components—(i) probability of a wildfire event, and (ii) susceptibility of highly
valued resources and assets to wildfire [10]. Under the framework devised in this study, community
risk is reclassified into three stages of wildfire—(i) probability of wildland ignition (P(Z(t))), (ii)
probability of wildfire that started in wildland to reach a specific WUI (P(Y(t)|Z(t))), and (iii)
susceptibility of community provided that a wildfire reached the WUI (P(X(t)|Y(t))). Using these
three stages, the net risk of a community (R(t)) for a particular day t can be assessed using equation (2.1).

R(t) ¼ P(Z(t)> Y(t)> X(t)) ¼ P(Z(t)):P(Y(t)jZ(t)):P(X(t)jY(t)): (2:1)

Susceptibility of a community can be defined as the mean probability of fire reaching a house and
causing ignition from the boundary of surrounding WUI. Therefore, the risk can be defined as the
mean probability of fire reaching a house from the initial ignition point in the wildlands. The general
definition of risk for any hazard is characterized by three components—(i) hazard, which is defined
as the temporal probability of occurrence for a hazard of a particular intensity, (ii) vulnerability, which
is defined as the degree of exposure, and (iii) amount of elements at risk, which is the quantification
of exposed elements. The terms vulnerability and elements at risk are coupled to form the
vulnerability term. This is because for other hazards, a typical prototype structure has a distinct value
for vulnerability (probability of failure, obtained from fragility functions). For example, a moment
frame on soil type D subjected to specific earthquake excitation will perform the same way regardless
of its location (i.e. as long as the building is the same and the load is the same, it does not matter
where the building is placed). For wildfire, the vulnerability of a specific type of building will vary
depending on its location and orientation within the community.

Since the focus of this study is towards community-specific risk, the probability of fire reaching the
interface, once initiated, is assumed to be one for all cases (P(Y(t)|Z(t)) = 1). This also provides a more
conservative value of risk. The probability of ignition for each community is derived based on
the National Fire Danger Rating System (NFDRS), as discussed in subsequent sections. The
susceptibility of a community is defined as the mean vulnerability of all ignitable components within
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Figure 1. Sample graph representation of a community showing different types of propagation (Map data Copyright ©
OpenStreetMap contributors [35]).

royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.7
4

the community. The mean is an acceptable performance metric for the scope of this study; however, it can
be replaced by a weighted mean such that the weights for each ignitable component corresponds to its
importance in a community.
 :201183
2.2. Community wildfire propagation model
When a wildland fire enters a community it is referred to as a WUI fire. The underlying propagation
mechanisms for these fires are identical to wildland fires; however, the difference in topographic features
creates explicit differences in behaviour. Computationally, efficient models for fire propagation have been
explored in the past using concepts of graph theory, both for wildlands [30–32] and urban settings
[33,34]. The urban fire problem can be formulated analogous to a network flow problem in graph theory.
In a previous study [23], a quasi physics-based graph model (AGNI-NAR: Asynchronous Graph Nexus
Infrastructure for Network Assessment of Wildfire Risk) was used to evaluate vulnerability of Oakland,
California to wildfire. The use of the model is extended in this study to assess risk of different
communities to wildfires. A graph network is developed based on the geographical data of each
community. The ignitable areas of a community are first identified then classified based on their intrinsic
susceptibility to ignition. The ignitable areas are identified based on the list of classification shown in
electronic supplementary material, table S1. A suitable directed graph is developed using propagation
probabilities of different modes of heat transfer between ignitable ways of the community. There are four
different modes of heat transfer considered in this study—(i) conduction, (ii) convection, (iii) radiation,
and (iv) embers. Each ignitable component of a community is defined by a set of nodes that define its
boundary. This boundary is referred to as a ‘way’, as shown in figure 1. The figure shows how each way
(house) is segregated into a set of nodes to represent its outer boundary, followed by edges between the
nodes to represent the interaction between them. The interaction between nodes is classified into two
types, based on the nature of source and target nodes, as (i) internal, and (ii) external propagation, such
that the internal propagation is defined by heat transfer within nodes of the same way and external as
the heat transfer between nodes of different ways.

Both internal and external propagation are governed by different modes of heat transfer [20,36]. When
nodes i and j belong to the same way, the ignition transfer probability is given by conduction probability
only, P(i,j)

cond [ {0, 1}. The focus of this study is primarily on the community level, hence modelling of
internal propagation is simplified. A test is conducted to show that the effect of modelling internal
propagation on the community as a whole would be minimal. The results of the test for the four
communities are shown in electronic supplementary material, figure S1. Internal probabilities are
assumed to be one P(i,j)

int ¼ 1 for all cases to obtain the most conservative estimates from the analysis.
External propagation comprises primarily three components—(i) convection, P(i,j)

conv [ {0, 1}; (ii) thermal
radiation, P(i,j)

rad [ [0, 1]; and (iii) ember spotting, P(i,j)
ember [ [0, 1], which accounts for majority of fire

damage in WUI fires [19]. The total probability of external propagation is defined by equation (2.2) and
the effective probability of transfer between nodes is defined by equation (2.3). More details on the
different propagation mechanisms can be found in [23].

P(i,j)
total ¼ (P(i,j)

conv < P(i,j)
rad < P(i,j)

ember) (2:2)
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and

P(i,j)
tr ¼ min (P(i,j)

total, 1) if {j [ W(m): i � W(m)}m[Z

P(i,j)
int if {j [ W(m): i [ W(m)}m[Z:

(
(2:3)

Once the weights of each edge (P(i,j)
tr ) are defined for the formulated directed graph, the vulnerability

of each way is calculated as the mean probability of most probable paths (MPP) from a particular ignition
source (s). The ignition source is defined as the first node in the graph to be activated by fire in the
wildland. The position of this node can be on the WUI or even inside the community. The mean
probability P(s)

m of propagation along a MPP is defined as the product of the edge weights (equation (2.4)).

P(s)
m ¼ 1

K

XK
x¼1

� Y
(i!j)[M(x)

P(i,j)
tr

�
, (2:4)

where, M(x) is the adjacency list of x MPP given by M(x) ¼ {(n(1) ! n(2)), . . . , (nN(M(x) )
�1 ! nN(M(x) )

)}, NM(x)

is the total members in adjacency list M(x). The mean probability P(s)
m is averaged over K MPPs (equation

(2.4)). In this study, K = 10 for all analysis, since such value was sufficient to achieve convergence.
Parts of four different communities—(i) Austin (Texas), (ii) Jackson (Wyoming), (iii) Oakland

(California), and (iv) Steamboat Springs (Colorado), from the USA, are chosen for conducting the
risk analysis. The layouts of the four communities are shown in figure 2. The communities are selected
due to their close proximity to wildlands and differences in their layouts. The number of nodes and
ways identified in each community to formulate their corresponding graph networks are shown in
electronic supplementary material, table S2. Each community has a unique footprint attributing to
structure density, community layout, and vegetation distribution. Since the focus of this study is to draw
out a comparison between the selected communities, certain assumptions are considered. All houses
(referred to as ‘ways’) in each community are assumed to be identical in nature i.e. possess same
material properties. Furthermore, the vegetative fuel present in each community is assumed to be of the
same type.

2.3. Wildland ignition probability
For this study, the Wildland Fire Assessment System (WFAS), also known as the National Fire Danger
Rating System (NFDRS), developed by the United States Forest Service (USFS) [37] is used. The
WFAS performs daily fire danger forecasts with data from the National Digital Forecast Database for
different locations across the USA. The fire danger forecasts result in rating levels that take into
account current and antecedent weather, fuel types, and both live and dead fuel moisture. It primarily
uses two performance indices—(i) burning index (BI) and (ii) energy release component (ERC).
Assigning the fire danger index reflects staffing levels and climatological class breakpoints. Staff class
represents the max/min fire danger rating of a location by assigning percentile values for the
performance index selected (i.e. BI or ERC) for a specific day. This fire danger rating is then used to
calculate an ignition probability. Specifically, linear interpolation is used to determine probability of
ignition (P(Z )), as given by equations (2.5), (2.6) and (2.7).

P(Z) ¼ 1
100

(m(d):I(d)þ c(d)) (2:5)

m(d) ¼ (vku(d)� vkl (d))
(pku(d)� pkl (d))

(2:6)

and c(d) ¼ vku(d)�m(d):pkl (d), (2:7)

where pku(d) and pkl (d) are appropriate upper and lower percentiles allotted on a daily basis by station
managers and vku(d) and vkl (d) are the performance indices values corresponding to the percentiles selected.

2.4. Effect of wildlands
Wildfires enter communities from the wildlands primarily through—(i) the WUI and (ii) embers
generated from trees and vegetation in the wildland travelling by wind and landing inside the
community. These two different mechanisms result in multiple ignition source nodes at the boundary
and inside the community [36,38,39]. By considering fire paths from all possible source nodes, the
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Figure 2. Community layout maps for (a) Austin (Texas), (b) Jackson (Wyoming), (c) Oakland (California) and (d ) Steamboat
(Colorado) (Map data Copyright © OpenStreetMap contributors [35]).
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effect of wildlands on community vulnerability is accounted for. The total vulnerability (V(z)) of
destination node z [ W(m) is calculated by equation (2.8).

V(z) ¼ max
�
P(s)
i :P(s)

m

�
{s[S}

, (2:8)

where WðmÞ is the way m, P(s)
i is the ignition probability of source node s, and NS is the total number of

source nodes in node set S. The probability of ignition for each source is correlated to wind
conditions and wildland vegetation in the vicinity of the community. The probability of ignition P(s)

i is
defined by equation (2.9) and is function of wind direction (θ), edge angle (ϕ(b,s)) and distance (d(b,s))
between nodes b and s, where node b is one of the boundary nodes of the adjacent wildland. The
function is based on the ember model developed by Martin and Hillen [40], which follows the
concept of birth-jump processes and has been studied in the context of wildfire spotting [41].

P(s)
i ¼ f(d(b,s), f(b,s), u): (2:9)
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2.5. Modelling vegetative fuel
Each community has certain amount of vegetative fuel presentwithin its vicinity. Vegetation around houses
tend to increase the exposure to ignition, as also shown in recent studies [42,43]. To account for this effect in
the vulnerability calculations for each house in a community, the vegetation is modelled exclusively into the
fire propagation framework. The GIS data for community layouts is derived from Openstreetmap in this
study; however, it does not provide details on locations of discrete vegetation within communities.
Satellite images from Google Earth are therefore used to fill the information gap on vegetation. To
incorporate the effects of vegetation into the wildfire model, individual vegetation are introduced into
the framework in the form of separate nodes. These nodes are added to the graph networks formulated
for each community. However, by adding these additional nodes the computational requirements for the
analysis increases substantially. From the satellite image of each community it is clear that the vegetation
in each case is almost uniformly distributed close to the houses. In light of this observation, it can
be hypothesized that effect of vegetation can be modelled without the additional nodes by combining
the volume of vegetative fuel with that of houses (or ways) in close vicinity. An array of analysis is
conducted on all four communities to test the hypothesis.

Two approaches are tested in this study for modelling vegetation within a community—(i) explicit
vegetation modelling, and (ii) simplified vegetation modelling. The first method pertains to modelling
vegetative fuel as a set of explicit nodes, while the latter pertains to modelling vegetation by combining
their fuel volume with other ways. Satellite images for the four selected communities are taken from
Google Earth to obtain spatial information of vegetative fuel within the selected communities. An
example image for the community of Oakland is shown in figure 3. Vegetation inside the community is
modelled as a collection of individual nodes with each node representing an individual vegetation
entity. Using the satellite images of each community, the mean vegetation per unit square area is used
to formulate uniform distributions of vegetation for the communities. The distributions are used to
generate vegetation nodes on layout of each community. The ignitable ways within community of
Oakland along with randomly generated vegetation is also shown in figure 3.

Multiple random spatial configurations of vegetation layout are generated for each community layout.
The vegetation nodes are then assigned individual properties separately. For each configuration, properties
of individual vegetation nodes, such as diameter and height, are decided by the distributions given in
electronic supplementary material, table S3. To assess the difference in accuracy between the two
methods, both are tested on the four selected communities. The wind speed and direction for the tests
are chosen based on wind conditions of 1 May 2007 for each location. For the explicit vegetation
modelling method, a total of 100 different vegetation configurations are generated for each community
layout. The mean vulnerability is evaluated for each configuration using the wildfire propagation model.
To account for the additional vegetation nodes, no changes are made to the propagation model
framework. For the simplified modelling method, the mean vegetative fuel volume per unit area is
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calculated from the satellite images and added to each of the houses (orways). Vulnerability analysis for the

twomethods shows strikingly similar results. The difference in vulnerability values for the twomethods are
observed to bewithin 10%bounds. The results are shown in electronic supplementarymaterial, table S4. For
all analysis in this study, the vegetation are not separately included in the vulnerability calculations to keep
the processing time manageable. This does not necessarily mean that the proposed hypothesis would hold
true always. In the case of communities with non-uniform layout and fuel density, the vegetation might
have to be modelled separately.
ing.org/journal/rsos
R.Soc.Open

Sci.7:201183
2.6. Modelling fire intervention
The effect of active and passive fire mitigation is incorporated into the graph model using a static
intervention framework. The intervention framework is incorporated to model the resistance provided
by the communities, which entails fire mitigation efforts by firefighters and private home owners. An
intervention strength μ is first selected, which represents a percentage of ways (or houses) affected by
mitigation measures in a community. Based on the strength factor, a percentage of the total ignitable
ways present in the community m:NW are chosen at random, assuming a uniform distribution. A new
set is created {WMjS � WM}, where S is the set of source nodes. The set WM is formulated such that
it does not contain any source nodes. The inflow and outflow for each node of the ways in the
formulated set WM are altered by changing the indegree and outdegree to modify the original graph
(G), as given by equation (2.10), where a(v,j ) is the weight of the edge between nodes v and j.

a(v,j) ¼ a:a(v,j) a(j,v) ¼ b:a(j,v) 8 {v [ W(l)
Mjl ¼ 1:NWM , j ¼ 1:n}, (2:10)

where α and β are mitigation scaling factors that are assumed to be 0.10 and 0.75. α represents the scaling
factor for outflow from node v, which would be affected by factors such as sprinkler systems, among
others. β represents the scaling factor for inflow to node v, which would be affected by individual
house properties such as roofing, siding material, among others. The value of α is assumed based on
the fire mitigation capacity of sprinklers [44]. Depending on the location of ways chosen for
intervention, the vulnerability of community changes [23]. Some details on the parameters controlling
the scaling factor and its role in formulating the fire intervention framework is discussed in electronic
supplementary material, S4. For this study, only one configuration (chosen at random) is used for each
community and the intervention strength is kept a constant at 50%, i.e. for only half the houses in
each community intervention is applied.
3. Results
For all four communities, an intervention strength of m ¼ 50% is used for all cases, which indicates 50% of
all ways in the communities are altered to introduce the effect of fire mitigation. The risk of each test
community is calculated each day for the months of May to September. Figures 4–7 show the daily
risk values for each of the five months for the years 2007, 2012 and 2017, for the four selected
communities. Mean risk values (Rm) for each month are shown in the figures, which are defined as
the average of risk for each day (R(t)), as given by equation (3.1).

Rm ¼ 1
t

ðt
0
R(t) dt: (3:1)

The risk values for each dayof themonths are calculated based on the dailywind and ignition probability
data (electronic supplementary material, S5). The calculated daily ignition probability values are shown in
electronic supplementary material, figures S8–S11 and the daily vulnerability values are shown in
electronic supplementary material, figures S12–S15 for each community. Based on the risk patterns
observed for all communities (figures 4–7), it is evident that even if the chance of a wildfire ignition is
high enough it may not necessarily result in high risk for communities. In several cases, however, high
vulnerability, caused by unfavourable wind, is shown, leading to higher risk. Some of the most
destructive wildfires in history were accompanied by strong seasonal winds—(i) the Oakland wildfire
(1991) by El Diablo winds [45], (ii) the Thomas fire (2017) by Santa Ana winds [46], and (iii) Australia
bushfires by Foehn winds [47]. The graph model is formulated in a way so as to allow for incorporating
all types of wind conditions ranging from mild to extreme events. For a given spatial resolution, the
effective nodal probabilities (Ptr(i, j)) can be updated based on the wind field pattern observed.
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Figure 4. WUI fire risk in months May–September for years 2007, 2012 and 2017 for Austin (Texas) (Map data Copyright ©
OpenStreetMap contributors [35]).
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For varyingwind events no changes are required in themodel formulation; however, the temporal resolution
of the analysis would have to be increased. For instance, hourly wind data could be used instead of daily
wind data. Based on the mean risk observed for different months of each community, Jackson is observed
to have the highest overall risk (figure 5) and Steamboat to have the lowest (figure 7), while Austin
(figure 4) and Oakland (figure 6) showed intermediate risk relative to the other communities.

Steamboat exhibited both lower ignition probabilities (electronic supplementary material, figure S11)
as well as lower community vulnerability (electronic supplementary material, figure S15). The latter is
specifically lower for Steamboat due to the absence of significant wildland vegetation in the vicinity
of the community, which limited the entry points for the wildfire. The discontinuous layout of the
community further reduced the vulnerability. As noted before, wildfire risk is function of both
wildland ignition probability and community vulnerability. To understand the correlation of risk with
these two key parameters, the Pearson correlation coefficient is calculated for each community
separately (table 1). For all communities, except Jackson, the correlation is observed to be stronger
between risk and community vulnerability than risk and wildland ignition. This suggests that wildfire
risk can be better regulated for these communities by controlling the community vulnerability.
However, in the case of Jackson the correlation between risk and wildland ignition is higher, which
suggests that risk in this case is primarily governed by the wildlands. A different perspective would
be that it would require much more effort to bring down the risk for Jackson below a certain
threshold, since it is situated in a high fire vulnerability region. Hence, the risk can be quantified
based on two types—communities where wildfire risk can be regulated with more measures in the
community and those where wildlands should be the focus.

As discussed earlier, wind conditions have a severe effect on the vulnerability of communities. Wind
speed has a direct correlation to wildfire intensity, as observed from wildfire cases over the years. The
effect of wind direction, on the other hand, is not so straightforward as it depends on the community
layout. There might be multiple favourable directions of wind that might accentuate wildfire intensity.
Polar fragilities for the test communities are calculated to show their respective sensitivity to
wind direction (figure 8). These fragilities are formulated by varying the wind direction at an interval of
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30° and calculating the mean vulnerability of the community. Wind direction is measured anticlockwise
from the positive x-axis, such that a N–S wind is represented by θ = 270° and S–N wind by θ = 90°. The
individual data points in the polar fragilities represent the mean probability of fire reaching a house in
the community from the WUI for a particular wind direction. For each wind direction, a new graph is
formulated by updating the nodal probabilities, followed by the MPP calculation to determine mean
community vulnerability. Similar fragility curves for different communities suggest uniformity across
community layout, both in terms of fuel density and material property. Dissimilar fragility curves would
suggest bias in certain directions. For each community, the dominant wind directions are observed to be
different, which is to be expected given the different layouts of the four communities tested (figure 2).
Jackson is observed to have the least effect of wind direction, while Oakland is observed to have the most.

During the 1991 Oakland wildfire, the situation was worsened by the seasonal Diablo winds which
entered Oakland from the dominant direction shown in fragility curve (θ = 240°). The mean vulnerability
for the 1991 wildfire is calculated to be 0.79. In September 2017, a fire ignited in the same location in
wildlands of Oakland as it did in the infamous 1991 Tunnel fire [48]. However, this time the fire agencies
were able to suppress the fire before it reached the internal parts of the community due to the controlled
wind conditions and prompt actions of the firefighters. The risk is observed to be 0.25, which represents
68:3% reduction in vulnerability just due to the absence/presence of certain wind conditions. Ideally, the
difference in building material used for reconstructing Oakland after the 1991 wildfire would also have
an impact on reducing the vulnerability of the community. However, due to data unavailability, it is
assumed that the materials for all homes are the same as those used prior to the 1991 wildfire. Hence,
the analysis presented does not account for reduction in risk due to changes in materials.
4. Discussion and conclusion
It has been more than a decade since the devastation caused by the 1991 Oakland fire; yet even today, we
lack the means to manage such an event. In 2017 and 2018 alone, similar wildfire incidents have plagued
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Figure 6. WUI fire risk in months May–September for years 2007, 2012 and 2017 for Oakland (California) (Map data Copyright ©
OpenStreetMap contributors [35]).

Table 1. Pearson correlation values between risk (R), vulnerability of community (V) and probability of wildland ignition (Pi), for
each community

correlation Austin Jackson Steamboat Oakland

R and Pi 0.5886 0.8304 0.5158 0.3075

R and V 0.8407 0.3601 0.9534 0.8572

V and Pi 0.0878 − 0.1781 0.2409 −0.14
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different parts of the world. Given the rise in temperature due to climate change, among other factors, this
trend of wildfires is expected to increase, both in frequency and severity. In light of the rising potential risk
to communities, effective strategies for wildfire management are required. Current strategies mainly entail
fire suppression and fuel management in wildlands. Mitigation strategies geared towards complete
containment of wildfires within the wildlands are nothing short of unrealistic. Limited information exist
regarding the interplay of communities and wildfires. Unlike other hazards, for which there exists
significant knowledge base, quantification of WUI fires is still a question for us. To better understand
what factors govern the impact of WUI fires, tools to assess and quantify the risk to communities are
required. We recognize that a move towards devising community-level mitigation strategies has been a
recent focus, as evident by the International Wildland-Urban Interface Code (IWUIC), which pertains to
minimum standards and requirements for location of buildings as well as defensible space, and
materials and methods of construction. Further refinements of such code, or any other similar code,
require detailed quantitative assessment of risk of vulnerable communities.

In this study, we evaluated wildfire risk for four different communities around the USA. Using local
wind data, community buildings layout and the probability of ignition in the wildland, we calculated
risk for every community. We showed that risk is community-specific and is a function of different
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environmental, location, and layout parameters. A recently published study [49] found that California,
Texas and Colorado experienced highest building losses due to wildfires among all states in the USA
Interestingly, Wyoming is observed to have received significantly reduced losses. The analysis
presented in this study based on certain communities selected in the mentioned states present an
antithesis to this observation. This leads to the conclusion that a generalized viewpoint of risk cannot
be formulated for all communities. Each community has a unique footprint, as each is featured with
unique characteristics, especially pertaining to their distinctive layout. Several valuable studies have
provided insightful information on the general trends of wildfire risk, but specific analysis of
individual communities is also required such that custom intervention measures can be developed,
which could aid in the development general policies related to fire mitigation. The results presented
in this study highlight the importance of individual community risk analysis.

Certain assumptions and limitations are made in this study. For instance, the analysis does not
include the presence of fences in backyards that have been shown to have occasional impact on fire
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propagation. Due to the complexity of the wildfire problem it was necessary to keep the scope of the

study limited. Before the proposed framework can be used for practical purposes it might require
certain modifications based on intended use. The purpose of this study is to lay the foundation for
future possibilities in such an approach. We believe that a generalized quantification framework for
overall risk of communities is necessary to determine critical parameters for different types of
communities such that leaders, policy makers and urban planners can make informed decisions
regarding intervention measures in the future.
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