Data Quality Days

8-15 September 2021

Bibliometric-Enhanced Information Retrieval: A new alternative for the validation and enrichment of Wikidata Statements

Houcemeddine Turki

Medical Student, Faculty of Medicine of Sfax
Research Assistant, Data Engineering and Semantics Research Unit
Member, Wiki Indaba Steering Committee
Vice-Chair, Wikimedia Tunisia User Group
Board Member, Wikimedia and Libraries User Group

About Us

Data Engineering and Semantics Research Unit and Wikimedia Tunisia

University of Sfax

Located in Tunisia, North Africa (270 km from Tunis)

Major University in Tunisia

Among the best universities in Africa in Computer Science Research

Team

- Research Assistant
- Medical Student

» Mohamed Ali Hadj Taieb

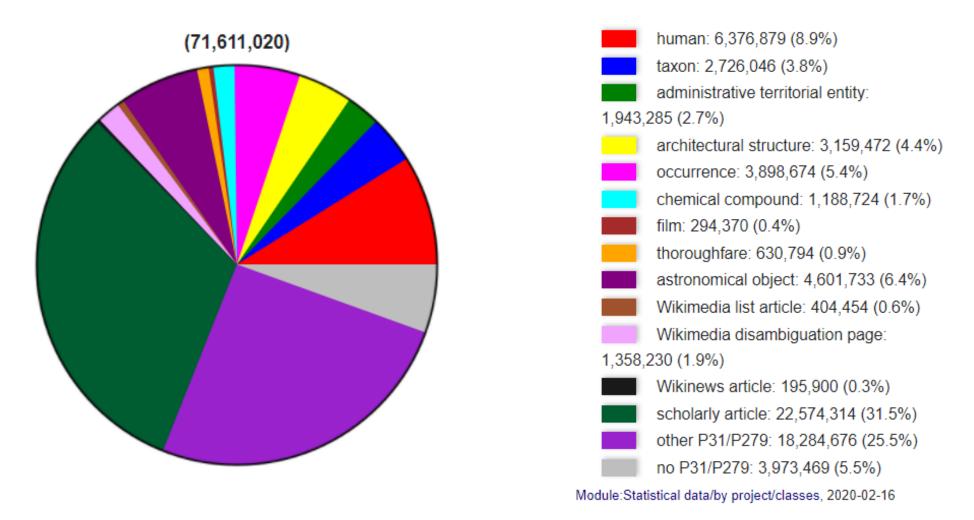
- Senior Researcher
- Assistant Professor

» Mohamed Ben Aouicha

- Head of Research Unit
- Associate Professor

Wikimedia Tunisia

- » Wikimedia Regional User Group from Tunisia
- » Created in May 2014
- » Tries to enhance and diversify the Wikimedia Movement in Tunisia
- » Organizes campaigns and initiatives about Tunisia-related topics



Introduction

The State of Wikidata

Wikidata items

Biomedical Knowledge in Wikidata as of March 2019

Biomedical entity	Number of items	ems Number of properties		Number of properties per item		Percentage of
(P31)		With references	Without references	With references	Without references	referenced data
Drugs	2713	75,259	35,302	27.7	13.0	68.1%
Drug classes	1043	16,855	10,537	16.2	10.1	61.5%
Human enzymes	89	1234	386	13.9	4.3	76.2%
Diseases	11,447	152,622	57,689	13.3	5.0	72.6%
Human genes	58,691	671,282	12,949	11.4	0.2	98.1%
Human proteins	25,482	265,684	27,825	10.4	1.1	90.5%
Human muscles	351	1690	2136	4.8	6.1	44.2%
Pains	171	725	858	4.2	5.0	45.8%
Syndromes	72	173	350	2.4	4.9	33.1%
Human arteries	418	964	2383	2.3	5.7	28.8%
Human joints	67	151	535	2.3	8.0	22.0%
Human bones	102	233	1119	2.3	11.0	17.2%
Human nerves	335	738	1738	2.2	5.2	29.8%
Human veins	220	478	1081	2.2	4.9	30.7%
Medical specialties	248	512	2069	2.1	8.3	19.8%
Therapies	487	931	2312	1.9	4.7	28.7%
Human ligaments	46	56	201	1.2	4.4	21.8%
Surgical procedures	244	261	1099	1.1	4.5	19.2%
Overall	102,226	1,189,848	160,569	11.6	1.6	88.1%

Several inconsistencies in Wikidata

```
SELECT ?disease ?diseaseLabel ?drug ?drugLabel WHERE {
  ?disease wdt:P2176 ?drug.
  ?disease wdt:P31 wd:Q12140.
  SERVICE wikibase:label { bd:serviceParam wikibase:language "[AUTO_LANGUAGE],en". }
}
```

disease	diseaseLabel	drug	drugLabel
Q wd:Q422482	gentamicin	Q wd:Q217519	bubonic plague
Q wd:Q481757	aceclofenac	Q wd:Q474959	myalgia
Q wd:Q481757	aceclofenac	Q wd:Q683498	arthralgia
Q wd:Q7335107	Rintatolimod	Q wd:Q209733	chronic fatigue syndrome

Projects for the validation of Wikidata

- » Shape Expressions
- » SHACL
- » Logical Constraints in SPARQL
- » Reference Island
- » Property Constraints
- » ORES

Bibliographic Metadata

Introduction to Citation Indexes

Comparisen le Rapid Antigen Tests for COVID-19

, Michiko Koga ^{2 3}, Osamu Akasaka ⁴, Ichiro Nakachi ⁵, Hidefumi Koh ⁶, Kenji Maeda ⁷, Eisuke Adachi ³, Makoto Saito ^{2 3}, Hiroyuki Nagai ³, Kazuhiko Ikeuchi ^{2 3}, Takayuki Ogura ⁸, Rie Baba ⁵, Kensuke Fujita ⁸, Takahiro Fukui ⁶, Fumimaro Ito ⁶, Shin-Ichiro Hattori ⁷, Kei Yamamoto ⁹, Takato Natara ¹, Michiko Ujie ¹, Shinya Yamada ¹, Mutsumi o ¹, Hiroaki Mitsuya ⁷, Norio Omagari ⁹, Hiroshi Yotsuyanagi ^{2 3}, Kiyoko Iwatsuki-Hori oto ¹, Mauthors

Affiliations – collapse

Affiliations

- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan.
- 2 Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan.
- 3 Department of Infectious Diseases and Applied Immunology, IMSUT Hospital of Institute of Medical Science, the University of Tokyo, Tokyo 108-8639, pan.

Affiliations

- 4 Emergency Medical Center, Fujisawa City Hospital, Kanaga
- 5 Pulmonary Division, Department of Internal Medicine, Sais 321-0974, Japan.
- 6 Division of Pulmonary Medicine, Department of Internal Medicine, Tachikawa Hospital, Tokyo 190-8531, Japan.

References

- 1. Zhu N., Zhang D., Wang W., Li X., Yang B., Song J., Zhao X., Hang B. References Coronavirus from Patients with Pneumonia in China, 2019. N doi: 10.1056/NEJMoa2001017. DOI PMC PubMed
- Sethuraman N., Jeremiah S.S., Ryo A. Interpreting Diagnostic Tests for SARS-CoV-2. JAMA. 2020;323:2249–2251. doi: 10.1001/jama.2020.8259. - DOI - PubMed
- Nagura-Ikeda M., Imai K., Tabata S., Miyoshi K., Murahara N., Mizuno T., Horiuchi M., Kato K., Imoto Y., Iwata M., et al. Clinical Evaluation of Self-Collected Saliva by Quantitative Reverse Transcription-PCR (RT-qPCR), Direct RT-qPCR, Reverse Transcription-Loop-Mediated Isothermal Amplification, and a Rapid Antigen Test to Diagnose COVID-19. J. Clin. Microbiol. 2020;58:e01438-20. doi: 10.1128/JCM.01438-20. - DOI - PMC - PubMed

ACTIONS

SHARE

PAGE NAVIGATION

◀ Title & authors

Abstract

Conflict of interest statement

Figures

PMID: 33322035 PMCID: PMC7764512 DOI: 10.3390/v12121420

Free PMC article

Abstract

Abstract

External ID

Reverse transcription-quantitative PCR (RT-qPCR)-based tests are widely used to diagnose codisease 2019 (COVID-19). As a result that these tests cannot be done in local clinics where RT

testing capability is lacking, rapid antigen tests (RATs) for COVID-19 based on lateral flow immunoassays are used for rapid diagnosis. However, their sensitivity compared with each other and with RT-qPCR and infectious virus isolation has not been examined. Here, we compared the sensitivity among four RATs by using severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) isolates and several types of COVID-19 patient specimens and compared their sensitivity with that of RT-qPCR and infectious virus isolation. Although the RATs read the samples containing large amounts of virus as positive, even the most sensitive RAT read the samples containing small amounts of virus as negative. Moreover, all RATs tested failed to detect viral antigens in several specimens from which the

virus was isolated. The current RATs will likely miss some COVID-19 patients who are shedding

Keywords: COVID-19; SARS-CoV-2; diagnosis; rapid antigen test.

Keywords

Publication types

infectious SARS-CoV-2.

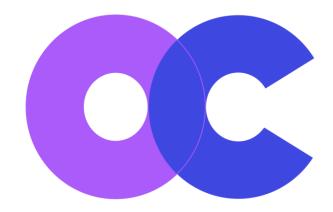
- > Comparative Study
- > Research Support, N.I.H., Extramural
- > Research Support, Non-U.S. Gov't

Publication Type

MeSH terms

- > Antigens, Viral / analysis*
- > COVID-19 / diagnosis*
- > COVID-19 Serological Testing / methods*
- > False Negative Reactions
- > Humans
- > Immunoassay
- > Point-of-Care Systems*

Controlled Keywords



Bibliographic Databases

» OpenCitations

» DBLP

» PubMed

Multiple ways for parsing bibliographic databases

Find

Advanced Search Clinical Queries Single Citation Matcher

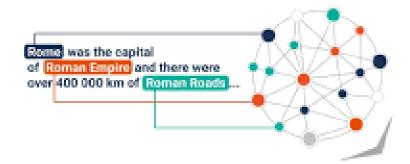
Download

E-utilities API FTP Batch Citation Matcher

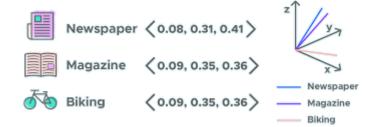
Explore

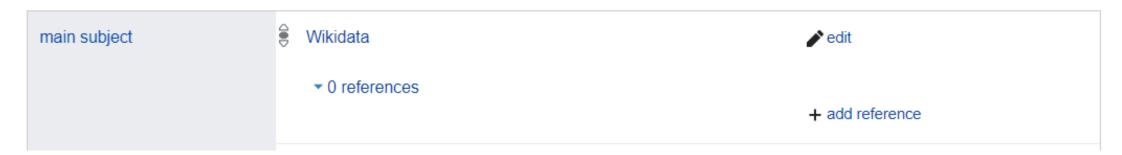
MeSH Database Journals

Usefulness of Bibliographic Information


Usage in Knowledge Graph Enrichment and Validation

Title and Abstract


» Topic Modelling


» Semantic Annotation

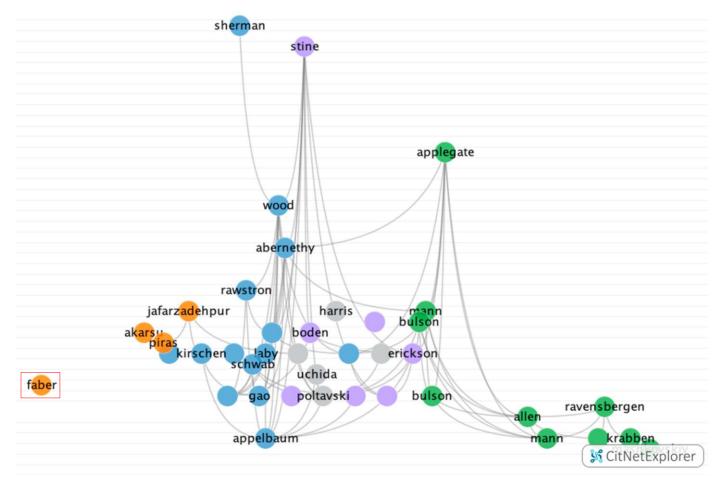
» Word and Graph Embeddings

Useful Resources to generate *main subject* (P921) statements Adding References to unsupported Wikidata Statements

Keywords and Controlled Keywords

- » Simply used for generating *main subject* (P921) statements.
- » Co-word analysis can be useful to generate statements in the form of triples reflecting facts about the scholarly publication.
- » Can be used alongside titles and abstracts to validate Wikidata statements.

 Extract unreferenced



MeSH terms

- > Antiviral Agents / adverse effects
- Carbamates
- > Hepacivirus / genetics
- > Hepatitis C* / complications
- > Hepatitis C* / drug therapy
- > Hepatitis C, Chronic* / complications
- > Hepatitis C, Chronic* / drug therapy
- > Heterocyclic Compounds, 4 or More Rings
- > Humans
- > Liver Cirrhosis / complications
- > Liver Cirrhosis / drug therapy
- > Sofosbuvir / adverse effects
- > Sustained Virologic Response
- > Taiwan
- > Treatment Outcome

Citation and Co-citation Analysis

- » Citation Links: An article includes another article as a reference.
- » **Co-citation Links:** Two articles are included as references of another research article.
- Scholarly Publications not included in the citation or cocitation network of a given topic
 Not likely to deal with this given topic

Section and Source Title

3. COVID-19 pathology and immune response to SARS-CoV-2

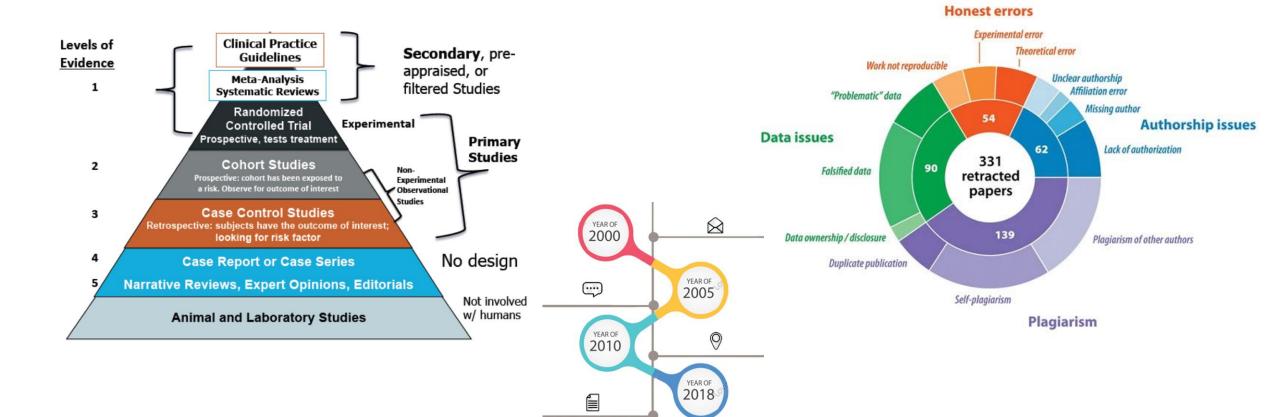
Go to: ☑

The lungs are exposed to thousands of liters of air daily, creating vast opportunities for airborne pathogens to enter the body [59]. Therefore, the immune system within the lungs has evolved to be highly sensitive and constantly active [$^{[60]}$, $^{[61]}$, $^{[62]}$]. Mucus, a protective barrier in the lungs, coats the epithelial layers and entraps small particles and pathogens which are easily cleared from the body by coughing [63]. However, respiratory viruses such as coronavirus are able to permeate through this barrier. The virus infects the lung cells and triggers an immune response by recruiting cells that release inflammatory cytokines and prime T and B cells for immune response [64]. This process is intended for viral clearance; however, in some cases dysfunctional immune response occurs, causing severe damage to the lungs and eventually leading to systemic inflammation. Knowledge of the host immune response to SARS-CoV-2 is still not fully understood despite continuing research. However, clinical data obtained from SARS-CoV and MERS-CoV allows for some fundamental understanding and prediction of how the immune system will respond [65].

Section Titles can reflect the types of semantic relations that can be retrieved from the part, particularly when the publication type is review.

published in

8


Journal of Biomedical Informatics

▶ 1 reference

Source Titles can be added to Wikidata as *published in* (P1433) statements. They can also reflect the topic of papers.

Publication Type, Publication Year and Status

Conclusion

« Bibliographic metadata provide useful information about scholarly publications in a nutshell: Findable and Reusable. This can be consquently used to enrich and validate Wikidata»

References:

- Turki, H., Shafee, T., Hadj Taieb, M. A., Ben Aouicha, M., Vrandečić, D., Das, D., & Hamdi, H. (2019). Wikidata: A largescale collaborative ontological medical database. Journal of biomedical informatics, 99, 103292.
- Turki, H., Hadj Taieb, M. A., Ben Aouicha, M., Fraumann, G., Hauschke, C., & Heller, L. (2021). Enhancing Knowledge Graph Extraction and Validation From Scholarly Publications Using Bibliographic Metadata. Frontiers in research metrics and analytics, 6, 36.
- Turki, H. (2018). Citation analysis is also useful to assess the eligibility of biomedical research works for inclusion in living systematic reviews. *Journal of clinical epidemiology*, 97, 124-125.
- Turki, H., Hadj Taieb, M. A., & Ben
 Aouicha, M. (2018). MeSH qualifiers,
 publication types and relation
 occurrence frequency are also useful for
 a better sentence-level extraction of
 biomedical relations. Journal of
 biomedical informatics, 83, 217-218.

Thank You

E-mail: turkiabdelwaheb@hotmail.fr

Phone: +21629499418

Twitter: @Csisc1994

https://dblp.org/pid/176/1531.html

https://www.researchgate.net/profile/Houcemeddine_Turki

