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ABSTRACT

This implementation of a Legendre-Gauss-Lobatto Pseudospectral (LGLP) al-

gorithm takes advantage of the MATLAB Graphical User Interface (GUI) and the

Optimization Toolbox to allow an efficient implementation of a direct solution tech-

nique. Direct solutions techniques solve optimal control problems without solving for

the optimality conditions. Using the LGLP method, an optimal control problem is

discretized into a Nonlinear Program (NLP) and solved using an NLP solver, avoid-

ing the problems of deriving the conditions of optimality and solving the resulting

boundary value problem. The MATLAB GUI implementation solves optimal control

problems without requiring knowledge of the specific implementation of the LGLP

method. The GUI completes the discretization of the problem and solves the resulting

NLP using a Sequential Quadratic Programming Algorithm. The GUI will convert

any optimal control problem with fixed, free or optimal final time, a Mayer, Lagrange

or Bolza cost function, constrained or unconstrained controls, with or without state

inequalities, and point inequalities into a parameter optimization problem and re-

turns a solution. The GUI creates a function file, output file, binary save file, and

optimization script to allow full access to the strength of the LGLP method from the

GUI or the command line. No prior knowledge of the LGLP algorithm is assumed or

necessary.
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I. INTRODUCTION

Optimal Control Theory is one of the modern applications of the Calculus

of Variations. Motivated by the development of modern computers and the space

program during the 1960s, the theory of the calculus of variations has been used

to create methods for designing modern systems. In 1962 Pontryagin's minimum

principle gave the theoretical basis for solving optimal control problems. [Ref. 2]

The calculus of variations was developed to describe situations that nature had

already optimized. The theory seeks to minimize or maximize the value of integrals.

A classic example, known as the brachistochrone problem [Ref. 1], is to minimize

the time a bead takes to slide down a wire between two points. In this problem,

the shape of the wire can be directly changed to decrease the time the bead requires

to move along the wire. In this type of problem, the physical states can be directly

altered. The system can be represented as finding y, the shape of the wire, so that the

time, expressed as an integral of the physical states, can be minimized. The following

expression

J(x,y)= /

6

f(x,y,y)<ix (1.1)
J a

represents the cost function to be minimized. 1

Optimal Control Theory is a generalization of the calculus of variations, but

the control problems have unique characteristics that identify this class of problem.

Optimal Control problems select from available controls to optimize the performance

of a dynamic system. These problems focus on altering forces at our disposal to

control a process and optimize some performance measure of the system [Ref. 1].

The controls can be altered, but the state of the system may not be directly altered.

If y = u is used as a state equation and substituted into equation (1.1), the calculus

throughout this thesis boldface notation will be used to distinguish nxl vectors or functions

of n x 1 vectors.



of variations problem can be converted into the following optimal control problem,

J(x,y,u) = / f(x,y,u)<ix. [Ref. 1] (1.2)
J a

The emphasis in optimal control problems is on the controlling process. The ad-

justable variables are the control variables, not the state variables.

Optimal control problems also add constraints to the calculus of variations.

Controls might have physical limitations, such as the force from an aircraft engine

or the length of a robotic arm, and these constraints are modelled into the dynamic

system that must be optimized. These types of problems in applied mathematics

lead to engineering applications where controlling devices can be used to guide the

state equations in an optimal way. The historical motivations for the field were the

space and rocket programs and problems, such as the lunar landings. As the field

developed, it has been applied to financial, robotic, artificial intelligence and other

engineering applications.

Optimal Control Theory seeks to control a system while minimizing or maxi-

mizing a cost function. The cost function will reflect the change in some state of the

system, some measurable amount of time, or the amount of control effort required

for the system to reach a desired end state. Finding optimal functions is the goal of

optimal control theory. This differs from standard parameter optimization because

with optimal control theory, optimization is performed over a continuous function

space.

In optimal control problems, dynamic constraints are added to the cost func-

tion to be optimized. The state equations and inequality constraints on the controls

and states are adjoined to the cost function through the use of Lagrange multipliers.

The Hamiltonian is used to simplify the equations used in this minimization. The

Hamiltonian represents the sum of potential and kinetic energies used in a dynamic

system. The first variations of the cost function components are set to zero to ensure

a local minimization of the cost function. The equations that result are the necessary

conditions for optimality and are referred to as the Euler-Lagrange equations. An



example of an augmented cost function, Ja, is

J^ = <
?
i)(x(^)J / ) + |

/

{r(x,u,0 + AT [f(x,uJ)-x] + /x
rg(u,0}^, (1.3)

with a dynamic constraint of x = f(x, u,i), initial condition of x(t )
= x , and

equality constraints of g(u,i) = 0. This augmented Bolza cost function has a final

time cost, <f>(x(tj),tj), and an integral cost, fto
f £(x, u,£), which are adjoined by the

state constraints. The variables A and ft are Lagrange multipliers. The augmented

Hamiltonian is defined as

H = £ + \T
f + ti

T
g. (1.4)

The optimality conditions are2

\(tf ) = d<f>

dx
(1.5)

t=t,

d£\ /df
x

A - -s-i»
©

(1.7)

The solutions to the derived optimality conditions often rely on numerical methods

for solving two point boundary value problems.

Optimal control algorithms can be divided into two types, direct and indirect

methods. Most texts on optimal control theory, [Ref. 1], [Ref. 2], [Ref. 6], [Ref. 14],

focus on indirect numerical techniques. Indirect methods rely on the necessary op-

timality conditions derived from the minimum principle. The necessary conditions

are developed and then solved to find an optimal trajectory. The solution normally

2The gradient and Jacobian used to develop the optimal conditions will be defined in the next

section.



requires solving a nonlinear two point boundary value problem (BVP), and solving for

the Lagrange multipliers and costates. Nonlinear BVPs normally do not have a closed

form solution and theorems do not exist that guarantee existence and uniqueness for

all BVPs. This lack of an analytic solution requires the use of numerical methods

to solve the BVP. The most common indirect method in use today is an indirect

shooting algorithm [Ref. 3]. Direct methods discretize the continuous problem into

a parameter optimization problem and then solve the resulting nonlinear optimiza-

tion problem. Direct methods do not explicitly employ the necessary conditions for

optimality, but the results can be checked using the optimality conditions from the

calculus of variations.

An advantage of indirect methods is that they directly solve the adjoint dif-

ferential equations for the conditions derived from the minimum principle and the

transversality conditions to ensure optimality. The first derivative of the Hamilto-

nian is set to zero and the resulting system of ordinary differential equations is solved.

This advantage leads to several nontrivial problems:

1. Necessary conditions must be derived analytically.

2. Region of convergence for root finding algorithms required to solve the BVP
may be very small requiring a very "good" initial guess.

3. Path inequalities may require solving for constrained and unconstrained sub

arcs before each iteration begins.

4. When setting the gradient to zero, analytic expressions for the gradient must

be calculated.

There are several indirect numeric methods for optimal control problems. One

such method is the neighboring extremal method or shooting method [Ref. 6]. Starting

values for the state vector, £(t ),
and adjoint vector A(io), are guessed and then the

state equations

x(*)=f(x,u,*) (1.8)



and costate equations

• r att(x.u,A,o
X{t) --[

Shi

are integrated from t to tj with the control history

(1.9)

du
= 0. (1.10)

The optimal trajectory that results from the solution of the differential algebraic

equation does not necessarily satisfy the end conditions. The starting values of the

adjoint variable, A, can be perturbed in various ways to meet the end conditions.

Generally, shooting methods are very sensitive to variations in the initial guess.

A second indirect method is a gradient method, the method of steepest descent.

With gradient methods the dynamic system equations are solved exactly at each

iteration and the control is slightly perturbed. The control history is adjusted at

each step to further reduce the cost. The state equation (1.8)

x(*)=f(x,u,<) (1.11)

is integrated from t to tj to obtain x(t) for a guessed u(i), t G [*o, */]• The cost

sensitivity matrices and Lagrangian gradients are then evaluated. The adjoint vector

is integrated backwards to obtain \{t), thus determining 7iu . %u may not start close

to zero, but approaches zero with each iteration. This method of convergence makes

stopping criteria very important to this method.

Direct methods have been developed to avoid solving the optimality condi-

tions. Instead of starting by solving for the optimality conditions, direct methods

begin by discretizing the problem. The states, controls or both are discretized and

the continuous problem changes into a discrete problem before the cost function is

optimized. This reduces the optimal control problem to a parameter optimization

problem that can be solved by Nonlinear Programming (NLP) solvers. The accuracy

of the solution depends on the discretization producing a problem that accurately

represents the continuous problem. With the current advances in NLP solvers, a



properly discretized problem will result in solutions that are increasingly more accu-

rate. In the 1960s, Newton's method was used to solve direct problems and the size of

the problems was limited to n = m = 10, with n states and m controls. In the 1970s,

the use of quasi-Newton methods and reduced gradient methods increased the size

to n = m < 100. Current advances in computing with sparse matrices in Numerical

Linear Algebra have allowed solving problems with n = m = 10,000 [Ref. 3]. These

advances have resulted in continued interest and research in direct methods.

This thesis focuses on a direct method of solving optimal control problems.

It relies on a Legendre-Gauss-Lobatto Pseudospectral (LGLP) algorithm which was

first utilized in [Ref. 4] for solving problems in optimal control theory. This algorithm

discretizes the problem and converts the problem into an NLP. Further developments

by Professor Fahroo and Professor Ross [Ref. 5], implemented the algorithm and

performed costate estimation in MATLAB.

The original research in this project involved creating a Graphical User Inter-

face (GUI) in MATLAB that allows optimal control problems to be solved using the

LGLP method without requiring a thorough understanding of the method. The end

state of this project is a GUI that only requires understanding of the basic optimal

control problem formulation to allow solution of a wide variety of problems. The

LGLP code relies on codes developed by Professor William Gragg to solve Numerical

Linear Algebra problems associated with the algorithm. In addition to a knowledge

of MATLAB and Numerical Linear Algebra, a basic understanding of the Calculus

of Variations and Optimal Control Theory is required for this thesis.



II. OPTIMAL CONTROL PROBLEMS

A dynamic system that represents an optimal control problem is mathemat-

ically described by a system of ordinary differential equations. The optimal control

problem is defined by state equations, boundary conditions on the state variables,

equality constraints and/or inequality constraints on the state variables, constraints

on the controls, and a cost function to be optimized.

Definition: Let s(y) be a scalar function of y = [yi • yn ]

T
- The gradient of s

with respect to y is defined as the n x 1 vector:

dy'(y)

ds

(2.1)

Definition: If a(y) is an n x 1 vector function of y (an m x 1 vector), the

Jacobian matrix is defined as the n x m matrix:

<9[a(y)] _

dy

9y"(y) 9yt(y)

dym W)

dym W'

dymW

'

(2.2)

A. COST FUNCTIONS
The cost function to be optimized is a function of the states, controls and final

time. There are three types of cost functions: Mayer, Lagrange and Bolza. A Mayer

cost function is of the form:

J(u,^tf ) = M{x,t f ).

The Lagrange type of cost function has an integral cost. It has the form:

J(u,x,tj) = f
' £{x,u)dt.

(2.3)

(2.4)



The Bolza cost function incorporates both the Mayer and Lagrange forms:

J(u, x,tf ) = M(x, if) + /
' £(x, u)dt. (2.5)

It can be shown that the three types of cost functions are equivalent and any type of

cost function may be transformed into either of the other types [Ref. 6].

B. STATE EQUATIONS AND CONSTRAINTS
The solution of the problem is found by determining the control function u(i),

and the corresponding state trajectory x(i), that minimizes the cost function. The

problem has a state vector x 6 Rn and a control vector u € Rm . The dynamic

equations for the states are expressed as:

x(t) = f(x(i),u(*)), te[t ,tf] (2.6)

with initial and final boundary conditions:

i/> [x(to)M = 0, (2.7)

if> f
[x(t f ),t f ]

= 0, (2.8)

where ^ 6 i?p with p < n and tpj £ Rq with q < n. The problem may have inequality

constraints on the controls which are formulated as

g[u(<)]<0
, (2.9)

where g 6 Rr and ^ has full rank.

C. THE ADJOINT DIFFERENTIAL EQUATIONS
Once the problem is mathematically formulated, the principles from calculus

of variations are used to derive necessary and sufficient conditions for optimality. We

adjoin the state equations and constraints to the cost function to create an augmented

cost function. For simplicity in the presentation of the adjoint differential equations

and the following optimality conditions, we make the simplifying assumption that

g[u(*)] = 0. (2.10)

8



For a complete treatment of the inequality case, reference [Ref. 14]. The augmented

cost function is

JA = J + ATf + M
T
g + ^o + "fyf (2.11)

Using Lagrange multiplier theory, \(t) £ Rn
, fi(t) G Rr

, fo(0 € Hp
, with p < n,

and i^/(i) € #9
, with q < n, are the Lagrange multipliers. The variable f repre-

sents the state equations, 7p represents initial time constraints, g represents control

constraints, and iff* represents final time constraints. Since the state equation is

we adjoin the constraint

to the cost function resulting in

x = f(x,u),

f(x,u)-x =

(2.12)

(2.13)

Ja = J + AT (f(x, u) - x) + /*
rg(u) + i/JVo + i/JV, (2.14)

Using a Bolza cost function, the augmented cost function is

JA = M(x, tf ) + i/J^o + i/JV, + /
' [£(x, u) + Ar (f(x, u) - x) + ^

T
g(u)] dt.

J to

(2.15)

Using the Hamiltonian in the cost function will simplify the equations. The Hamil-

tonian is defined as

K(x, A, u, fi) = £(x, u) + ATf(x, u) + /x
T
g(u). (2.16)

Thus by expanding the cost function,

JA = M(x, * / )+i/JVo+ I/TV>/+ /
' £(x, u) dt+ I '

fi
T
g dt+ f

' ATf(x, u) dt- I ' ATx
Jto Jt Jt Jt

dt.

(2.17)

and substituting the Hamiltonian, we have

JA = M(x, t f ) + i/JVq + vTt1>s + f^ ^(x >
A

>
u

> M) dt - f
tf

ATx rf*. (2.18)
Jt Jto



For simplicity, the augmented Bolza cost function is expressed as

JA = Af [•] + v$ir + vTf ijf
f +

[*' %[] dt - f' \Txdt.
J to Jto

Using integration by parts in the second integral we have

f

tf

XTxdt = \Tx
tf
- f

tf

\
T
xdt.

Jt *o Jto

This allows simplification of the cost function to

J = Af[•] + i/J^o + "l 1>j
~A x + A x

t f

(2.19)

(2.20)

+ f
tf

H[-]dt+ [
tf

\
T
xdt. (2.21)

./to Jt

D. NECESSARY OPTIMALITY CONDITIONS
The minimum of the functional, J , for the optimal control u* occurs when

J(u)-J(u") = AJ>0

for all controls u close to u*. Let u = u* + Su and

(2.22)

AJ(u*,8u) = 8J(u*,5u) + higher order terms. (2.23)

SJ is linear in Su and the higher-order terms approach zero as the norm of Su

approaches zero. The increment of J is

AJ(u\Su) =
dM
dx f

«*/),*/) + uf - \(tf )

1 T

dxi

Sx,

+ «(x(*/ ) 7
u(*/),A(</ ),/i(*/),</) + v + ic-W*/).*/)

dt f

dM
dtf

St,

+ /"
Jto

dU -\T

A(t) + -^(x(t),u(*J,A(i), #*(*), t) Jx(t)

+

+

dl-L—(x[i),u(t),A(*),M*),*)

a^
(x(*),u(*),A(*),MW»*)

+ higher order terms.

(Ju(<)

<£/*(*) > <ft

(2.24)

10



By setting the coefficients of the differentials equal to zero, various state and control

constraints are obtained. 1
If the state equations are satisfied, and the constraints on

control are satisfied

dl-L
0-(x(*),u(*),A(*),#*(*),*) =0, (2.25)

then \(t) is selected so that

dl-L
A(*>+—(x(*),u(*),A(*), **(*),*) = 0, (2.26)

and the final time conditions are

dM
dx W*/)''/)

+(|jf)
^/- A('/)

+ «(x(*/ ),u(«/ ),A(*/ ),/i(t/)»</) +

<Jx7 (2.27)

St f = 0.

For final state specified and final time free, Sxj = and Stj is free. For final state

free and final time specified, Sxj is free and 8tj = 0. For more complicated examples

refer to [Ref. 2].

The increment of J simplifies to

Jta

dn
du

(x(o,u(o,a(<),m(0»0 Su(t) } dt + higher order terms.

(2.28)

This integral is the first order approximation of the change in "H due to the control u,

— (x(0,u(0,A(t), /*(*),*) H(x{t), U*{t) + Jll, \(t), fJL(t), t)

-«(x(*),n*(*),A(*), #»(<),*). (2.29)

Simplifying, the increment of J is

AJ(u\ Su) = f
f

{H{x{t),u
m
{t) + <Su, A(i), **(*), t)

Jtn
(2.30)

— [H(x(<), u*(t), X(t),fi(t), t)]} dt + higher order terms.

1
ln our notation the gradient of a scalar is a n x 1 vector and the Jacobian of an n x 1 vector of

m variables has dimension n x m. The variational Sx is also n x 1.

11



If u* + Su is in a suitably small neighborhood of u*, (\\Su\\ < /3), the higher order

terms may be neglected and the necessary condition for optimality is

H(x(t), u*(t) + Su, A(t), /*(*)» " ^(x(0, u"(t), A(t), /*(*)» t) > (2.31)

or

H(x(*), u*(<) + £u, A(*), **(*)>*) ^ ^(x(0, u* (*), A(*), /*(<)> 0- (
2 -32

)

The necessary condition

ft(x(0,u*(t),A(*),/i(*),*) < W(x(*),u(0,A(t),M(0,*)
(
2 -33)

is Pontryagin's minimum principle. The minimal principle states that an optimal

control must minimize the Hamiltonian. [Ref. 2]

In summary, the optimal control problem is formulated as follows: find con-

trols, u* € U, the set of all possible controls, that cause the system described by Equa-

tions (2.6 -2.8) and (4.7) to follow a feasible trajectory to minimize the cost function,

Equation (2.5). The necessary conditions for optimality are Equations (2.25-2.28)

and Pontryagin's minimum principle Equation (2.33).

E. NUMERICAL SOLUTIONS
Once the necessary conditions have been derived, an indirect numerical method

may be used to solve the resulting system. The derivation of the problem is essential

to the understanding of the problem, but is only required in the indirect solution

techniques. Solving the nonlinear BVP problem that is described by this system of

equations can be very difficult. To avoid this computational difficulty, we will focus

on direct methods. The use of a direct method allows the solution of the optimal

control problem by use of existing NLP solvers and does not require solving for the

optimality conditions.

12



III. DIRECT METHODS

Direct methods are more recent developments when compared with their in-

direct method counterparts. All direct methods involve deciding upon a finite set of

variables and then iterating by Newton's method or another zero finding algorithm to

numerically solve the resulting problem. The essential difference between direct and

indirect methods lies in the direct methods converting the optimal control problem

into an NLP and directly solving the NLP, instead of deriving the optimality condi-

tions and solving the resulting BVP. The two most commonly used direct methods

are direct shooting and direct transcription algorithms [Ref. 3]. Differential inclusion,

a technique for reducing the size of the NLP is also included in this thesis.

In direct methods, the Karush-Kuhn-Tucker conditions from NLP theory are

solved during the optimization instead of solving for the optimal control necessary

conditions. It is not surprising that when the discrete conditions are taken to the

limit, determining the NLP active set is equivalent to finding the constrained subarcs

and junction points in the continuous optimal control problem.

The first step in a direct method is to select a method to discretize the problem

and convert it into a parameter optimization problem. The problem is discretized by

dividing the time interval into subintervals whose endpoints are called nodes. These

nodes will define the variables for the NLP problem. The unknowns are the values

of the controls, states, and problem parameters at the nodes. These variables are

the state and control parameters for the new parameter optimization problem. When

the state equations and cost function are expressed in terms of these parameters, the

optimal control problem is reduced to an NLP. [Ref. 7]

The second selection that defines a direct method is the choice of an inter-

polation scheme to interpolate the values or time histories of the control and state

variables between the discrete nodes. Either an explicit or implicit scheme will be

chosen to describe the equations of motion. An explicit scheme solves the ordinary

13



differential equations (ODE) to develop the time histories between the nodes. An

implicit scheme uses integration rules to create formulas for the integrals and then

adds these equations as constraints to the NLP. Many implicit interpolation schemes

use orthogonal polynomials to interpolate the state and control values between the

nodes. One advantage of using orthogonal polynomials is their close relationship to

Gauss integration rules, which results in highly accurate quadrature rules.

For explicit integration the value of x, the state variable, is needed to evaluate

the value of the function at each discretization point. Explicit integration allows

integration of the state equations from initial to final time in one pass. With implicit

integration, the values of x are not known in advance and as a result a predictor-

corrector approach must be used.

It is desirable for all integration rules to be of the highest order possible.

The higher the order of an integration scheme, the smaller the error from a single

integration step taken with a step size 8. For example, with a step size of S = 0.1, and

using Euler's quadrature rule whose local error is 0(5
2
), the error would be RJ 0.01.

For a higher order rule, such as Simpson's rule with a local error of 0(S5
), the error

would be « 0.00001 for the same step size. This error dependence on step size and

integration rule is shared by all the direct methods.

Inequality constraints make optimal control problems increasingly difficult and

efficiency of handling such constraints is very important. Constrained arcs are often

not known a priori and the junction points from constrained to unconstrained arcs

may also not be known. These discontinuities of the control and adjoint variables at

the junction points are essentially boundary conditions and transform the problem

into a multi-point BVP.

Table I illustrates a basic algorithm for a direct method to convert an optimal

control problem into a parameter optimization problem, equivalent to an NLP [Ref. 7].

The direct methods mentioned here, direct shooting and direct collocation, both dif-

fer in their choice of variables for the NLP. The direct shooting method discretizes

14



1. Divide the time interval.

2. Choose variables to be calculated by interpolation.

3. Integrate the state equations explicitly or implicitly.

4. Solve the NLP.

Table I. Direct Method Algorithm

the control history, and direct collocation discretizes both states and controls. This

difference tends to make a direct collocation NLP larger than the resulting systems

from the other methods. The following summaries of direct methods are taken from

John Betts "Survey of Numerical Methods for Trajectory Optimization" [Ref. 3].

A. DIRECT SHOOTING
In a direct shooting method the variables for the NLP are chosen from the

initial conditions, final conditions and problem parameters. Phases are chosen at

points where the problem is discontinuous and at boundaries between constrained

and unconstrained arcs. The control history will be represented by a finite set of

parameters. For each phase, k, the NLP variables are defined as

XW = {x(t )Mtf),to,tf,p} (3.1)

where the x represents the state equations and p represents a set of parameters.

[Ref. 7]

The control u can be explicitly or implicitly represented by p as in the following

examples

u= Pl +p2 t (3.2)

or implicitly as

= Pl u{t) + sm\p2u{t)}. (3.3)

15



The total set of NLP variables will be

xe{I (1U (2),..,I(w)
}. (3.4)

Solving for the constraints at the end points of each phase provides constraints

g(x) = {^
(1)

(x(*o), to, P), V>
(2)

(x(*i), *i, P), • • • , V>
(N)

(x(*/), */, p)} (3.5)

where ^r ' denotes a function that describes the boundary conditions. [Ref. 3]

The Program to Optimize Simulated Trajectories (POST) developed by Mar-

tin Marietta and the Generalized Trajectory Simulation (GST) program by the Aerospace

Corporation are both implementations of this method. The flight avionics on the

space shuttle also incorporate a direct shooting algorithm for steering. [Ref. 3]

The direct shooting algorithm has advantages for launch vehicle and orbit

transfer problems. These types of problems result in an NLP represented by a small

number of variables. The direct shooting algorithm with a large number of variables

tends to lose accuracy due to propagation of early errors throughout the procedure.

Another disadvantage is the cost of computing the gradient functions. The system

equations must be integrated forward numerically in direct shooting methods. Nor-

mally, finite difference codes are used to solve for the gradients. In addition to the

numeric complexity involved with solving for the gradient of a large system, there are

also problems with the accuracy of the gradient information. Using forward difference

methods to calculate the gradients involves an error of the order of the step size, 0(5).

Using central difference methods to calculate the gradients is twice as expensive as

forward difference methods, but the error is 0(52
).

A direct shooting algorithm is contained in Table II. Within Table II, x

represents the state equations, u represents the control, and ip describes the boundary

conditions.

Direct shooting methods are very efficient when a detailed mathematical model

is not required. In many modern problems, such as problems using current rockets

which do not have variable rate thrusters and have a very high weight to force ratio,
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1. Divide the problem into k number of phases based upon arc constraints and
inequalities.

2. Generate the control u implicitly or explicitly from a finite set of parameters

P-

3. Compute initial conditions, ifj

k
[x

k
(t ), p

k
,to], for each phase numerically.

4. Solve initial value problem for the subarcs.

5. Compute final conditions, ip
k
[x

k
(tf), p

k
,tf], for each phase numerically.

6. Solve the resulting NLP.

Table II. Direct Shooting Algorithm

detailed mathematical models are unnecessary [Ref. 3]. The small number of variables

in the NLPs developed by the direct shooting method speed up convergence to a

solution. When a large time interval is used, the conversion from a single integration

step to multiple integration steps to cover the time interval converts the standard

direct shooting method to a multiple direct shooting method.

B. DIRECT COLLOCATION
A direct collocation method discretizes both the control and the state equa-

tions. The values will be known exactly at the nodes of the discrete time intervals.

The integration is completed by defining the residuals for each integration step and

then driving the residuals to zero during the solution of the NLP [Ref. 7]. The NLP

variables are exactly the values of the state and control equations evaluated at the

collocation points. When low order rules are used, the method is called transcription.

When higher order rules are used, the method is termed collocation. Euler and trape-

zoidal rules are used with transcription methods while Simpson's rule, Gauss- Lobatto,

and other higher order rules are used in collocation methods.

A direct collocation method's strength lies in not requiring prior knowledge

or specification of the arc sequence for path inequalities. Singular arcs arise when
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the control derived is not uniquely defined by the optimal conditions. Whenever

the second partial of the Hamiltonian with respect to the control is equal to zero,

H ull = 0, the optimal solution computed will not be unique.

The direct collocation method results in very large NLPs, but the Jacobian

and the Hessian matrices that result are sparse, allowing for efficient codes from recent

advancements in numerical linear algebra to exploit these matrix structures. It is not

uncommon for the matrices involved in the solution of a direct collocation problem

to have only one percent non-zero entries.

In addition to the efficient codes used with collocation methods, the high order

quadrature rules used in the implicit integration of the state equations allow for a

larger step size with an equally high degree of accuracy when compared with the other

methods listed here. Using Simpson's rule the local error is 0(55
) and with Gauss

Lobatto the local error is 0(S8
).

The implicit integration rules are added to the NLP as nonlinear constraint

equations. The piecewise smooth interpolating polynomials used with direct colloca-

tion will satisfy the ODEs exactly at the collocation points of each interval. With

collocation, the states are unknown and therefore the equations of motion must be

integrated implicitly at each node, with each node representing one integration step.

The size of the step dictates the number of integration steps required. A balance is

desired between a small step size and increasing the number of integrations. A direct

collocation algorithm is shown in Table III. [Ref. 3]

Direct collocation methods have been used to efficiently solve low thrust orbit

transfer, commercial aircraft mission analysis, chemical process control and robotics

problems. The Optimal Trajectories by Implicit Simulation (OTIS) program was de-

veloped for NASA and the U. S. Air Force, and has been widely distributed [Ref. 3].

OTIS uses a direct collocation method with Simpson's quadrature rule and Hermite

cubic polynomial approximation of the state equations [Ref. 8]. The OTIS library im-

plements a sparse nonlinear programming algorithm using NPSOL as the NLP solver.
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1. Select number of discretization points, k.

2. Evaluate constraints at each node.

3. Calculate the integral residual for each step.

4. Compute initial conditions tjj .

5. Solve the resulting NLP.

Table III. Direct Collocation Algorithm

In addition, the Advanced Launch Trajectory Optimization Software (ALTOS) pro-

gram developed for the European Space Agency uses many of the same features as

OTIS.

C. DIFFERENTIAL INCLUSION
Differential inclusion is very effective on problems that have linear controls.

Like collocation, differential inclusion uses implicit integration rules to formulate non-

linear constraint equations that are used in the NLP formulation [Ref. 8]. Unlike col-

location, however, differential inclusion has only been successfully implemented with

Euler's method. The linear controls allow the controls to be represented explicitly

in terms of the states and their rate of change (derivative). The method eliminates

the controls from the system of equations by explicitly solving for the controls, and

then discretizing only the state equations to reduce the number of NLP variables.

This is effective only when an explicit formula for the controls in terms of the states

can be found. Since in NLP problems, the central processing unit (CPU) usage in-

creases geometrically with the number of variables, eliminating the controls simplifies

the problem and speeds convergence to a solution. This reduced problem size is the

advantage to differential inclusion.

Low order quadrature rules are used to integrate the state equations. Euler's

rule, the most common quadrature rule that has been implemented with differential
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inclusion, has local error 0(S2
). Low order rules are required to effectively isolate

the state and system variables at each node as a function of only the discrete states.

The low order of the integration rules used in this method require selection of an

increasingly smaller step size to increase accuracy. While decreasing the local error,

decreasing the step size also increases the total number of integration steps required,

as one step is required for each node.

Another disadvantage is that if the control histories are required, they must be

solved for after the optimization. Differential inclusion also requires gradient informa-

tion during the optimization process and requires prior knowledge of arc inequalities.

Prior knowledge of the arc inequalities limits the robustness of this approach and

calculating the gradients analytically for differential inclusion can be complicated

[Ref. 8].

An algorithm using differential inclusion is shown in Table IV [Ref. 7]. One

effective use of differential inclusion is to attempt to solve a problem for which collo-

cation has failed to converge. The decreased problem size may allow the new NLP to

converge [Ref. 8].

1. Solve for controls explicitly in terms of states and their derivatives.

2. Eliminate control variables from the system.

3. Discretize the resulting constraints and inequalities at the nodes.

4. Compute initial conditions, ip .

5. Solve the resulting NLP.

6. Solve for the resulting control histories (if required).

Table IV. An Algorithm using Differential Inclusion
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D. SUMMARY OF DIRECT METHODS
Each of the direct methods contain a mix of advantages and disadvantages

based upon their discretization and solution methodology. All direct methods share

the advantage of not requiring the solution of, or solving for the optimality condi-

tions. Direct shooting and differential inclusion both tend to result in smaller XLPs

than those derived through collocation. Direct Shooting is very efficient when simple

mathematical models suffice to control the system. Differential inclusion works very

well when the controls are linear and can be solved for explicitly in terms of the state

equations and their rate of change.

Collocation effectively takes advantage of high order integration rules. The

advantages of high order integration rules allowing a larger step size with high accu-

racy make collocation very robust and effective. The combination of the accuracy of

discretizing both the states and controls, and the higher order rules available, often

outweigh the larger NLP formulations, especially for complicated systems. We chose

to use a collocation method in this thesis.
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IV. A PSEUDOSPECTRAL METHOD

The Legendre-Gauss-Lobatto Pseudospectral method (LGLP) is a direct col-

location method that incorporates spectral methods adapted from work in Computa-

tional Fluid Dynamics (CFD) [Ref. 9]. LGLP is a direct collocation method that uses

a high order integration rule, Legendre-Gauss-Lobatto, and discretizes the time his-

tories for both the states and controls. The use a of high order integration rule helps

to limit the number of variables required for the NLP to achieve sufficient accuracy

by allowing a large step size.

Pseudospectral implies that the method has spectral accuracy. Spectral ac-

curacy refers to the property of orthogonal series, especially Fourier Series, that the

kth coefficient of the expansion decays faster than any inverse power of k when the

function is smooth and the derivatives are periodic. This gives the Fourier Series, and

other orthogonal expansions, the property that the truncated series, with a few more

terms, gives an exceedingly good approximation of the function, assuming proper

smoothness of the function. [Ref. 9]

We use orthogonal Legendre polynomials to approximate the state and control

variables. One advantage of using orthogonal polynomials is their close relationship to

Legendre-Gauss-Lobatto integration rules. This is exploited with the integral portion

of the cost function and in the implicit integration of the state equations to transform

the optimal control problem into a system of algebraic equations. Polynomial approx-

imations of the state and control variables are used where Lagrange polynomials are

the trial functions and the coefficients are the values of the state and control variables

at the Legendre-Gauss-Lobatto (LGL) points. The cost function is discretized using

Legendre-Gauss-Lobatto quadrature rules.
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A. DISCRETIZING THE PROBLEM
The LGLP method can be used for solving optimal control problems formu-

lated as in Chapter II. The polynomial approximations for the state and control func-

tions are calculated in terms of their values at the LGL points lying in the interval

[—1,1]. We use a transformation to express the problem for r € [—.1, 1]:

t =
(tj - t )r + (t f + t

)

which is equivalent to

r =
2t -"' + <°>

. (4.2)
tf — t

As a result of the transformation i->rwe must adopt new symbols for the variables

x,u,A,a*,i/

and the maps

J(-),C(-),M(-)J(-),M-)^f(-)-

Using the following changes of variables

x -» y, u -» v, A -> A, fi -» C, v -*> rj,

and the following change of mappings

J it) -» J(r), C{t) -> L(r), M(t) -» M(r)

f(t) -+ T{T)^ {t) -> V (T),tPf (t)
-+ Vf (T).

It follows that by using Equation (4.1), Equations (2.5-2.9) and (2.16)can be replaced

by

J(y(-),v(.),*/) = M[y(l),tf ] +i^ j\[y(T),v(r)]dr (4.3)

y(r) = (^^)[^(y(r),v(r))], (4.4)

^o(y(-l),*o) = (4.5)

*f (y{l),t f ) ^H (4.6)

g(v(r)) < (4.7)

W(x,A,v) = (^£)A^ + (^) L + C
T
g (4.8)
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B. LEGENDRE POLYNOMIALS
There are three main classes of classic orthogonal polynomials, Jacobi, Laguere

and Hermite polynomials [Ref. 10]. Legendre and Chebyshev polynomials, both used

in collocation schemes for direct methods, are of the Jacobi polynomials class. One

advantage of using orthogonal polynomials is that their derivatives also form a set

of orthogonal polynomials [Ref. 10]. The polynomials are bounded in every proper

subinterval of (
— 1, 1), which allows a transformation to Z/2[— 1, 1], to ensure the states

and controls will be bounded.

The Rodriguez formula is commonly used to express Jacobi polynomials

(1 - xf(l + xfP^\x) =^^ [(1 - x)
n^{\ + x)^} [Ref. 10]. (4.9)

Pn (x) represents the orthogonal polynomial of the nth degree evaluated at the point

x. The variables j3 and 7 are parameters which define the type of polynomial defined

by the Rodriguez formula. When #,7 > — 1, the polynomials expressed by the for-

mula are Jacobi polynomials. The weight function that characterizes the orthogonal

polynomial, (1 — x) /3
(l + x)"1

, is also incorporated in Equation (4.9). The Legen-

dre Polynomials are defined by /3 = 7 = resulting in a weight function w(x) = 1

[Ref. 11]. The Rodriguez formula for Legendre polynomials simplifies to

^M-sbs^- 1 '"- (4I0)

Thus, Ln (x) is the Legendre polynomial of degree n with leading term ^r( n J-
The

Legendre Polynomials may be generated by the three term recurrence relationship

2k + 1 k
L k+i{x) =

~

k i

xL k {x) - -j——L k. 1 {x) (4.11)

with

Lo(x) = 1 and L\(x) = x.

The orthogonal polynomials have a close relationship with the theory of real

tridiagonal matrices. This relationship allows new numerical linear algebra codes that
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exploit the matrix structure to find the zeros of the Legendre polynomials. The roots

Xi , i = 1, 2, . .
.

, n are the eigenvalues of the tridiagonal matrix

Jn —

Si 72

72 s2
'"•

'
,

In

In Sn

(4.12)

The unique orthogonal properties of the Legendre polynomials allow us to

exploit their boundedness and structure by transforming the original problem space

into [—1,1]. The Legendre polynomials satisfy the ODE

(1 - x2)Ln - 2xLn + n(n + l)y = [Ref. 11]. (4.13)

With Legendre polynomials we have the properties that

/ Lm (x)Ln (x)dx = m ^ n (4.14)

f
1 2

/ Lm {x)Ln (x)dx = -——
- m = n. (4.15)

J-i In + 1

This allows us to neglect cross terms in the expansions of the state and control vari-

ables. When a function is expanded with Legendre polynomials, the approximation

formulas are
oo

f(x) = J2*nLn {x) (4.16)

n=0

and

2n + 1 y 1

«n = / f(x)Ln (x)da (4.17)

C. APPROXIMATING THE STATES AND CONTROLS
Let Ljv(t) be the Legendre polynomial of degree N on the interval [—1,1].

In the Legendre collocation approximation of (4.3)-(4.8), we use the LGL points,

r/, / = 0, 1, . .
.

, TV which are given by

Tb = -1
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Ti,T2 , . ..r,v_i,

the zeros of Ljv, the derivative of the Legendre polynomial L_\. and

75V = 1.

For approximating the continuous equations, we seek polynomial approximations for

the state and control equations. We define

Y
N
(r) = £y(r,)<Mr), (4.18)

/=o

viV
(r) = £>(r,)<Mr), (4.19)

i=o

where, for / = 0, 1, ..., iV,

.m 1 (T*-l)jN (r)
*' (T) = Af(JV+ !)!„(*) ,-„ '

(4 -20)

are the Lagrange polynomials of order N. Notice that the Lagrange polynomials

require our previous calculation of Ln and L n . It can be shown that

1 if / = k
<t>l{Tk) = $lk = <

if / ^ k.

From this orthogonal property of <pi it follows that

y
N
(r

l )
= y(r

l ) (4.21)

vN (n) = v(ti). (4.22)

Thus the value of the interpolating polynomial at the LGL points is exactly the value

of the continuous state and control functions evaluated at the LGL points.

To facilitate the NLP formulation, we use the notation

a/ := y(r/), b, := v(tj),

to rewrite (4.18)-(4.19) in the form:

y
N
(r) = 2>*,M, (4.23)

1=0

vA'(r) = £Mi(t). (4.24)
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D. CALCULATING DERIVATIVES
To express the derivative y

N
{r) in terms of y

N (r) at the collocation points

77, we differentiate (4.18). This differentiation of the approximating polynomial is

accomplished by a matrix multiplication of the following form:

N

£
/=o

y"(^) = £^yh), (4.25)

where Dki are entries of the (JV -f 1) x (N + 1) differentiation matrix D

Ln(Ti) Tk -T[ I

D := [Dkl ]
:=

{

N{N+1)

N(N+1)
4

k = l =

k = l = N

otherwise

(4.26)

An example of the Legendre polynomial and the differentiation matrix for a

fixed ./V is illustrative of this technique. Letting N = 4, we have the resulting 4th

order Legendre polynomial,

L4 = i(35x4 -30x 2 + 3).
8

(4.27)

Dividing the interval into four time periods and solving for the Lobatto points, the

zeros of L4 , results in r = —1, T\ = —.6547, r2 = 0, r3 = 0.6547, r4 = 1. The

differentiation matrix results in a matrix of the following form

-5 6.7565 -2.6667 1.4102 -0.5

-1.2410 1.7457 -0.7638 .2590

0.3750 -1.3366 1.3366 -0.3750

-0.2590 0.7638 -1.7457 1.2410

0.5 -1.4102 2.6667 -6.7565 5

(4.28)
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For the derivative of the state vector y(r), collocated at the points rk , we rewrite

(4.25)

N
Ck = y

N
(Tk ) = ^2Dkiai. (4.29)

1=0

E. DISCRETIZING INTEGRALS
Next, the integral (4.3) is discretized. Substituting (4.23) and (4.24) in (4.3)

and using the Gauss-Lobatto integration rule, we obtain

J'W,) = M (y
N
(l),t,) +

t-^£L(yN,vN)dr

1 k=0 V 1=0 1=0 /

t - 1
N

= M(aN ,tf ) + ^--^J2 L(ak,bk )™k (4.30)
1 k=0

The last equality is obtained from <f>i(tk) = Sik. The coefficients are a = (ao, a i7 . .
.

, a
i
v),and

b = (bo, bi, . .
.

, bjv)- The weights are given by

F. THE PARAMETRIC OPTIMIZATION PROBLEM
The state equations and the initial and terminal state conditions are discretized

by first substituting (4.23)-(4.24) in (4.8) and collocating at the LGL points, Tf.. Using

the notation for a and b, the state equations are transformed into the following

algebraic equations

AA(a,b) = ^^^(ajt,b fc)-cfc
= 0, fc = 0,1,...,W, (4.31)

where c* is as denned in (4.29), and the initial conditions are

^o(y
A
'(-l),*o) = or (4.32)

#o(ao,*o) = 0. (4.33)
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The terminal state conditions are

*f(y
N
(l),tf ) = or (4.34)

9f(BNy tf ) = (4.35)

The control inequality constraints are approximated by

g(v ;v
(r

fc ))<0, fc = 0,l,...,tf, or (4.36)

g(b*)<0,* = 0,l,...,tf. (4.37)

To summarize, the optimal control problem (4.3)-(4.8) is approximated by the

following nonlinear optimization problem: Find the coefficients

a = (ao,ai,...,ajv) (4.38)

b = (b ,bli ...,bJV) (4.39)

and possibly the final time £/, to minimize the cost function

N
J"(a,b) = M(aN ,tf ) + ^—^ J2 L(*k,bk)wk (4.40)
rTV/ ix _ kai-- * \ .

tf-to

2 k=0

subject to

A fc (a,b) = (iLZJo)^(a
fc| bJfc

)-c
Jfc
= 0, k = 0,i,...,N, (4.41)

Bib(b) = g(b fc)<0, fc = 0,l,...,JV, (4.42)

^o(ao,<o) = 0, (4.43)

&f{aN ,tf )
= 0. (4.44)

The LGLP method relies upon a simple conversion that maintains much of

the structure of the original problem. By collocating at the LGL points the functions

are evaluated without any dependence on neighboring points. Once the conversion

to a parameter optimization problem is complete, the system may be solved by using

an NLP solver.

30



V. THE LGLP GRAPHICAL USER
INTERFACE

The implementation of the LGLP algorithm in MATLAB, using the opti-

mization toolbox, requires a function file containing the state equations, constraints

and cost function as input. Each state equation must be transformed and recorded

in the input file. This requires a detailed knowledge of the algorithm to compute

the transformation to [—1,1], a familiarity with MATLAB function construction, file

input/output (I/O), and constr .m from the optimization toolbox. Although a MAT-

LAB knowledge base may be assumed, and the published algorithm may be learned,

we desire to provide an interface that allows a user to input information about an

optimal control problem in the standard form and have the program transform and

solve the problem.

A. MATLAB GUIS

GUI design has almost become synonymous with windows programming. With

programming for Windows, UNIX or Apple, the operating system provides the user

with a familiar point and click interface to most system functions. Most operating

systems (OS) provide access to a command line interface, but as each succeeding gen-

eration of computers increasingly relies upon GUIs, portability to multiple platforms

and accessibility to wide audiences will only be achieved through GUIs.

MATLAB at its core provides a command line interface to allow a C-like

code to be easily written and quickly interpreted to solve mathematical problems,

especially in the fields requiring numerical linear algebra. The creation of a GUI

within MATLAB allows access to the strength of the command line interface while

providing a dynamic interface to the solution of a problem.

MATLAB GUI design, and GUI design in general, center on several principles

presented in the MATLAB Graphics and GUIs manual [Ref. 15]. A GUI should have
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the characteristics shown in Table V.

1. Simple

2. Consistent

3. Familiar

4. Dynamic

Table V. GUI Design Characteristics

The GUI must be simple to use, as the goal is to create an interface within

MATLAB which makes solving a problem easier than using the command line inter-

face. The project must be consistent to prevent confusion as the problem is solved.

A familiar interface used throughout the GUI will accelerate the learning curve, al-

lowing a user to quickly accomplish new tasks by mimicking completed ones. Lastly,

the interface must be dynamic, to allow the user to efficiently maneuver through the

solution process, changing incorrect values, and providing feedback for actions while

solving the problem. A GUI must also allow the user to directly access the input files.

Direct file access is required for advanced users who might not want to wade through

several layers of point and click interface to change a single variable or parameter

before rerunning an optimization.

The hierarchy of control for MATLAB graphics provides the starting point for

manipulation of GUIs, Figure 1. Each object, figure, user interface control (uicontrol),

axes, and user interface menu (uimenu) have properties and callbacks that control

its appearance arid function. The GUIDE, Figure 2, simplifies access to the handle

graphics objects and allows creation of a GUI by clicking and dragging the desired

components off of a visual menu. The GUIDE control panel provides the building
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Screen/Root

Figure 1. Hierarchy of MATLAB Graphics

blocks of the GUI and allows control of the current figures. Figures are the objects

that contain all other MATLAB graphics objects.

Each of the objects will have a unique graphics handle, represented by an

integer or a float. Before an object is manipulated, it must be grabbed, much like

a cup must be grabbed before its contents may be drunk. Several reserved words in

MATLAB make manipulating the handle graphics very simple. The abbreviations

gcf, gca, and gco are used to refer to the active figure, axes and object respectively.

The object that initiates a callback is referred to as gcbo. In windows programming,

handles are used to control objects. To agree with convention, graphics handles are

referred to as handle graphics. Handle graphics are covered in detail in the MATLAB

documentation and In Graphics and GUIs with MATLAB [Ref. 13].

The alignment tool allows easy alignment of the controls of the GUI. The

menu editor provides access to the figure's user defined menus, and the callback

editor controls the functions that will be executed by each of the figures and the

GUI controls. The property editor provides access to every property of the figure,

its uicontrols and its axes. The property editor accesses each of the properties of the
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Figure 2. MATLAB Guide

objects. Their size, color, and functionality can all be edited from within the property

editor.

The callback editor is the tool that creates the true functionality for the GUI.

The callbacks associated with each object are shown in Table VI.

The create function works efficiently to provide default values for variables,

editable fields, and other uicontrols. Each time a figure or handle graphic is created,

the create callback function is executed. A simple create function call from a text

edit box of set(gcbo, 'String' ,Names_States) allows a variable, Names_States, to

be written into the text edit box that had just been created and called the create

callback.
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1. Callback Function

2. Buttondown Function

3. Create Function

4. Delete Function

Table VI. GUI Callbacks

This usage of the create function places the current states names in the window

so the user can provide initial guesses for the states and control variables. This

enhances the dynamic nature of the interface by incorporating current values and not

requiring redundant input of values while still clearly illustrating the current values.

The callback function executes when a button is pushed, a slider slid, a box

checked or field edited. A simple callback is illustrated by the State Equations button

on the Function File GUI, Figure 5. The code StatesEquationsFile is executed

and the State Equations figure is displayed. Another call back, close (gcbo) , closes

the State Equations box and returns to the Function File GUI.

The delete function may be used to clear the workspace when an object is

closed. This can keep the workspace from becoming cluttered with variables that are

no longer needed. The buttondown function activates code when the cursor is located

over the edge of any object. This differs from the callback function, as the mouse

does not click on the object, but only needs to rest over the object to activate the

function call. These basic tools of the GUIDE allow for the rapid development of

a GUI and provide a framework that can be edited by hand to further optimize or

tailor the code.

Several usability features and design considerations are necessary when cre-

ating large MATLAB GUIs. Creaiefunctions, callback functions, and file operations

form the backbone of the GUI. Designing the callbacks involves deciding to use a

script, function, or in-line code for all the executable code. In-line code has the
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disadvantage that long sections of code are very difficult to read in the GUIDE en-

vironment and are not stored in the GUI m-file (ASCII), but instead in the mat-file

(binary). This makes the code editable only within the GUIDE environment and pre-

vents editing the code by hand. Function calls execute code the fastest, but require

proper parameter passing to ensure the proper variables are passed into the function

workspace. A function space is created each time a function is executed. This pro-

vides safety from overwriting variables in the main workspace, and ensure that all the

necessary variables will be available when the function is executed. Writing individual

functions can require a large number of files to be associated with the GUI. Scripts

are slower than functions, but by using a switch statement in a script, numerous

callbacks can be made through a single file to reduce the number of files included in

the implementation. A switch statement could also be used with a function call, but

the parameter passing becomes increasingly difficult as different calls are made to

a function with different parameters. MATLAB does not have strict type checking,

so generic parameters may be used with a function, but the code is very cryptic as

the variable names will not be named according to their function. For example, a

MATLAB function could take three parameters,

function switcher(paral, para2, type);

and have a switch statement within the function that evaluated the value of the

parameter type. For one value of type, the other two parameters, paral , para2,

could be strings. For another value, the parameters could be floats. Neither of the

parameter names, paral , para2, provide any insight into their values.

B. GUI DESIGN
The creation of a GUI for the LGLP algorithm makes the method accessible

to a wider audience of engineers and applied mathematicians. The mathematics

required to perform the transformation of the problem into [—1,1], the derivation

and application of the differentiation matrix, and the implicit integration all provide
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potential stumbling blocks to easy access to the strength of the LGLP algorithm.

These stumbling blocks are removed by an efficient GUI.

A GUI must have unity of purpose. The purpose of this interface is to solve

optimal control problems. The interface must be simple and consistent to allow easy

solution of problems and prevent the interface from distracting from the solution

process. The original implementation required writing a function file outlining the

states, constraints and cost functions, and then creating a function or script to set

the proper variables in the main workspace and invoke the NLP solver. For simplicity

we kept this two step process in the design of the GUI, Figure 3.

The first design task for the new GUI for the LGLP algorithm was to sketch

the interface. The two main tasks, creating the file, and setting the variables, should

be separated for clarity. Also, once the function file has been created the optimization

window must allow for repeated runs in multiple sessions without recreating the file

code.

Main

File Optimize

Figure 3. Initial GUI Design

Figure 4 serves as the starting point for the GUI. Typing opt at the command

line will execute the GUI. In Figure 5, the Function File figure creates the input files
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Figure 4. LGLP GUI Welcome Figure

necessary for NLP solver, constr.m [Ref. 16]. The GUI must be able to convert

an optimal control problem, with fixed or free final time, all of its state equations,

control constraints, equality and inequality constraints, and parameters into an NLP.

Figure 6 solves the optimization problem. The optimization of the input file

requires the parameters for constr.m to be selected. Also, the interval size for the

discretization must be selected, the values for any parameters must be set, and the

initial guesses must be provided for each of the states, controls, and final time.

Another design decision was to ensure that default values would be created

to prevent errors if not all of the possible inputs were selected. By limiting the

callbacks executed by the main figure's children to merely receiving input, the main

computation could be isolated to the main GUI figures. This ensured that if all of

the variables had been input, then the GUI would run properly.

The main input for the constr.m optimization algorithm is a file that contains

38



1
v Function File IB E3

File Edit Window Help

. F3enamej~~

1

State Equations

&- ''. Controls

Initial Conditions

Fnal Time Conditions

InequaRy Constrarits

Parameters

Cost Function

DeateFfe
"

"/] Reset

r\. Frushed

Figure 5. Function File Creator Figure

the state equations, constraints, and cost function. This requires MATLAB to create

and manipulate a file through use of file I/O that mirrors ANSI C or C++. A second

MATLAB file feature that simplified the GUI was the mat-file constructs which saves

the values of the variables used during the optimization. Every time an m-file was

created, a sister mat-file was created with the variables declarations. This allowed

all of the variables associated with a function file to be loaded into the workspace

with create functions. Once a filename has been selected, the GUI attempts to load

a corresponding mat file. A flag returned by MATLAB when the mat function does

not exist, which occurs the first time a function is created, prompts the initialization
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of all the variables required by the GUI. The diary function was also used to create

an output file after the optimization without requiring redundant file I/O. The diary

file captures all the optimization results that display in the MATLAB workspace,

creating a record of each optimization run. By choosing the append option for file

I/O, each optimization run is appended to the same diary file. The clock function is

used to record the date and time of day of optimization in the diary file to distinguish

between runs in the file, see Appendix A,B, and C.

Every editable textbox in a GUI takes a string as input. MATLAB does not

allow a particular textbox to be declared as a float. This convention of all inputs

being declared as strings motivates a style of coding that takes advantage of this
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structure. Utility functions designed to work with strings and accomplish simple,

repetitive tasks can streamline the coding of a GUI. A multiline input box returns

a matrix of string variables. In a GUI with two multiline textboxes. we assign the

strings in one box as variable names and use the inputs from the other box for values

of these variables. The function declare. m is a simple utility function that takes two

matrices of strings and combines the strings into code that will assign the names of

the variables to the values, see Appendix A. The eval command is used in MATLAB

to execute the commands contained in a string variable. The eval is used to execute

the string matrices that are returned from declare. m.

Two other utility functions were created with this GUI, opt call .mand cost call . m.

Both accept parameters as input to create function calls to be evaluated by the GUI.

The function opt call .m creates a function call for constr.m, and costcall .m eval-

uates the cost function for the files created with the File Creator GUI.

Creating help files for a GUI is an important part of the design. MATLAB

has two features for creating help, comments within an m-file and the Contents.

m

file. The declare. m code in Appendix A illustrates the MATLAB comment help

convention. The initial comments in an m-file after the function header are included

by MATLAB as help for the function. When help declare is typed at the command

line the initial commented lines of code in the file is displayed. MATLAB displays

the comments until the first line after the function header that does not include the

comment character.

The second convention is the Contents .mfile. The comments in the Contents .m

file, are displayed when the help command is called with a directory as its input argu-

ment. When a directory does not include a Contents .mfile. the first help line (HI) of

each m-file in the directory is displayed. Creating a Contents .m file provides another

method for the user to get help on a GUI, see Appendix B. All GUI files may have

comments and help lines built into their code. However, when a GUI is edited with

the GUIDE, any comments are erased and a standard comment explaining that this
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code is a computer generated object is inserted. This severely limits the usefulness

of adding any comments lines within the GUI. By placing the comments that would

be included within the GUI in the Content s.m file, the comments will be preserved

regardless of the number of times a GUI is modified.

A simple example problem will illustrate the use of the GUI. The GUI was

laid out to encourage all text boxes to have values entered before the various buttons

were pushed. All the buttons are designed to be executed from top to bottom, with

a familiar Finished button in the bottom of each figure.
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VI. A GUI TUTORIAL-THE CART
PROBLEM

In a recent paper by Conway and Larson, "Collocation Versus Differential In-

clusion in Direct Optimization", the following problem was posed [Ref. 8]. A cart is

placed on a track initially at rest. An external force u(t) is applied to the cart of unit

mass. The cart is subject to drag depending linearly on the velocity. The system

equations are

%\ = x 2 (6.1)

x 2 = —x-2 + u. (6.2)

The force u(t) is to be applied so as to satisfy a terminal constraint at the final time

tf which is a combination of position and velocity

ipj = axi(tj) + bx 2 (t/) - c =

while minimizing the integral of the square of the control

I ' u
2
dt. (6.3)

Jtn
J

Jta

With the values of the constants chosen as a = 1.0. b = —2.694528, and c = —1.155356,

and // = 2. the value of the objective function is J = 0.577678 [Ref. 8]. This problem

provides an easy tutorial as the analytic solution is known and the problem is quickly

optimized by constr.m.

A. FILE CREATION
Typing opt at the command line starts the GUI and allows access to Create

Optimization File button. Pressing this button starts the input file creation process.

The implementation begins with the creation of a file that contains the constraints,

state equations, and cost function for the problem. The first step is always to enter a

43



filename for the file; see Figure 7. Entering the filename will set the current filename

and will also check to see if a MATLAB data file exists for this filename. If a file

exists, the file will be loaded. This loads all the variables associated with the problem

into the MATLAB workspace.

1 -4 Function File -l°M
fte r£t» iifndow Help

;

:^ename
j
cartjunction

Slek&Eqjetxrts

/Controls :

:
Initial Conditions

\

Fund Time ConcBJorw

Inequafty Comtiairit^

' Parameters

Cost Function

\

:CreateFte

\

, '?Re$et

1 Finished;'

\ .

Figure 7. Cart Problem File Creator - GUI

After the filename for the input file to constr.m has been chosen, buttons

execute additional figures to collect the necessary variables and parameters for the

problem. Next the state variables, Xi and X2, are entered into the GUI implementation

of our method. Pressing the State Equations button will open a window for inputting

the state equations for X\ and x 2 , see Figure 8. The state equations are entered with
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Figure 8. Cart Problem State Equations - GUI

the x assumed as the left hand side of the equality. Here we must make a transition

into MATLAB numerical notation. All entries must be legal MATLAB expressions.

Of special note is the difference between matrix multiplication and element-by-element

array multiplication or dot multiplication. Dot multiplication requires the use of the

.* construct to ensure dimensional agreement within MATLAB. The states. Xi and x 2 ,

are both n x 1 vectors. Each component corresponds to a discrete time step between

the initial and final times. A simple system of equations arises from choosing to use

three LGL points for this example. The state equations, (6.1 -6.2), can be expressed

as a systems of six equations of scalar variables:

ii(l) = *2 (1)

*i(2) = x 2 (2)

ii(3) = *2 (3)

x2(l) = -x2(l) + u{l)

(6.4)

(6.5)

(6.6)

(6.7)

45



x2(2) = -x2 (2) + ti(2) (6.8)

i 2 (3) = -x2 (3) + u(3). (6.9)

This form of the systems of equations illustrates that the operations are con-

ducted component-wise. A slightly different equation illustrates dot multiplication.

Let the second state equation be

x 2 = —x2Xi + u. (6.10)

The second state equation can be expressed as

x2 (l) = -a- 2 (l)x 1 (l) + u(l) (6.11)

x2 (2) = -ar2 (2)x 1 (2) + u(2) (6.12)

ia (3) = -x2(3)x!(3) + u(3). (6.13)

The operations are component-wise in this system of equations. To properly represent

this system in MATLAB we use dot multiplication,.*. The proper MATLAB input

for the GUI would be -x2(n) . *xl(n)u(n) . MATLAB's dot multiplication performs

the necessary component-wise operations on the state and control vectors without

requiring that the continuous equations be converted into a system of discrete equa-

tions.

When using the Windows OS, a CTRL ENTER must be used to record a

multi line input. MATLAB only distinguishes between single and multi-line inputs

and the CTRL ENTER tells MATLAB the user has finished with the text edit box.

Extra lines should not be added between the values or after the values. The UNIX

OS does not require a CTRL ENTER, but if a standard ENTER is used after the

last entry, and extra empty entry will be added to the input vector.

After closing the state equations window, the Controls variable button is

pressed and the control u is entered in the Control Variables window, see Figure

9. To set the variables X\ and x 2 to the initial value of x x
= and x 2 = 0, the first
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discrete value of the x x and x 2 vectors must be set to zero. This is accomplished by

writing the equation in a standard NLP form with the equation set equal to zero.

x
x
- = xl(l)

a-2 = = x2(l).

For a slightly different initial condition, x x
= 1, we enter

xl(l) - 1.

(6.14)

(6.15)

(6.16)

It is assumed (6.16) is set equal to zero. This format is standard for XLP formulations

and will be used for all the constraints entered into the GUI. The two initial conditions

for the cart problem, X\ = and x 2 = 0, are entered in the Initial Conditions window

in Figure 10.

Next, the final time boundary conditions are entered along with a selection

of fixed or free final time, see Figure 11. The discretized final time variables are

represented as the last component of the state vectors, in this example xl(n) and

x2(n). Within the GUI final time constraints and initial time constraints are both
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Figure 10. Cart Problem Initial Conditions - GUI

treated as scalar constraints. The boundary conditions are input in two figures for

clarity only. The difference between boundary conditions is transparent to the NLP.

Next, the three parameters a, 6, and c are entered in the parameters window,

see Figure 12. Values needed by the function while is it being optimized must be

passed through the parameters window. The values of the parameters are free at the

time of the file creation. The values are set in the Optimization figure, allowing for

easy manipulation of the constants while solving the problem.

Finally, the cost function is entered. The type of cost function is selected,

in this case Lagrange. The cost function requires raising the control to the second

power, see Figure 13. This is accomplished by component wise multiplication or

exponentiation. As explained earlier, the equation requires the . " construct to

square the control. These operations are done element-by-element and are expressed

in MATLAB as u.~2oru.*u.

The selection of a type of cost function controls the number of inputs allowed

to the Cost Function. If either the Mayer or Lagrange type are entered, only one

input is allowed. When the Bolza type cost function is selected, two inputs are
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expected. With a Bolza cost function, the first line input is the integral portion of

the cost function, and the second line of the input is the scalar portion. The proper

operation, addition or subtraction, must be included before the scalar portion of a

Bolza cost function. The proper input of the Bolza cost function ft

s

o
u 2

dt + 1 would

be

u."2

+1.

For the Mayer cost function tj the equivalent Lagrange cost function would be

ones(l,n) to allow for the numeric integration from to tj. The MATLAB code

ones(l,n) creates an n dimensional vector with each component equal to one. The

integrand in the integral portion of the cost function must always be a vector quantity,

both for the Lagrange and the Bolza cost functions.

After all values have been entered the file is ready to be created. When the

i Cost Function

'* F^'rfO^Fi»ictibn'' ;

£7*5*:'; E7^S1 £**£'

mmm

u. 2

Rnishedi

Figure 13. Cart Problem Cost Function - GUI

Create File button is pushed the input file is created and a status window indicates

the task completion, see Figure 14.

50



Figure 14. Cart Problem File Creation Status - GUI
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B. OPTIMIZATION
Once the file has been created, the optimization window is used to enter the

optimization parameters. The name of the file to be optimized is entered along with

the number of LGL points to be used in the optimization, see Figure 15. The larger

the number of LGL points the finer the discretization. Once again, fill in the blanks

before pushing any buttons. The intuitive flow for the GUI is from top to bottom,

and the first two tasks completed need to be the selection of the File Function Name

and the Number of LGL points. The number of LGL points may be changed at any

time. However, changing the name of the function will load the MATLAB data file

associated with the new function and overwrite the current variable values.

;

-J Optimize

.15- f; "-£-: .*";-
;

•
.""•' •"•'

*'''

jfjgE3|

:\'Fmd6on Name

Number erf LBL pomts

cartjunction h
9M

MSB!
| 1
1 1
1 1

mEmm
;

Figure 15. Cart Problem Optimization - GUI
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After pressing the Initial Guess button the initial guess for the states and the

controls can be entered. The cart problem is very robust, so we use a random number

generating function to provide a random initial guess. A value for final time. //, is

entered along with the initial guesses. If tj is free, this is an initial guess. If tj is

fixed, the value for tj is entered. In this case, the fixed final time value is tj = 2. see

Figure 16.

v Initial Guess

States and Controls

x2

u

Final Time

Initial Guess

rand{1 ,n)

rand(1 jr\]

[andfl.n)

2.0

nus

Figure 16. Cart Problem Initial Guess - GUI

The options for the constr.m function are changed by the Options button.

This allows us to set upper and lower bounds, number of iterations, and number of

output parameters. We can also check the number of equality constraints generated

for the problem, see Figure 17. There are four groups of output parameters. The

listbox allows the selection of the desired set. The most common output selection is

only Xopt because the addition of output parameters slows the optimization. Xopt is

the vector of optimization variables: the states, controls, and tj for a free final time
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problem. The value of the MATLAB output parameter vector, the problem's Hessian,

and lambdas are the additional output parameters. If the lambdas were the Lagrange

multipliers for the NLP, they would be very useful for costate estimation. Unfortu-

nately the lambdas returned by constr .m after the optimization are not the Lagrange

multipliers necessary for costate estimation. The display intermediate results check

box toggles the display of the intermediate steps during the optimization process.

The upper and lower bound can be left blank and are then passed to constr. m as

empty.

v Options

;; t
Constr.m Options

UPflfff oouno

io^bound

Number of Equal? Confeaints 21
I

. . .„» . ....._, .... . . . .. ... •.-, ,.t- -. .,- -

Numbec pf.function evaluations 1800

; ODispJay 'tntemiedate Resufcsjst '

.

Output Options
Iggjgg Hi
JklIJ'JjBB He

i-
Figure 17. Cart Problem Options - GUI

Lastly, we input the values for the parameters designated during the file cre-

ation, see Figure 18. The Direction Vector option allows designation of the initial

search vector direction. The default is set to empty. The Final Time figure shows a

set of radio buttons to check the status of the final time, Figure 19. If this button
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does not agree with the desired value, the function file should be recreated to ensure

the proper restriction on final time.

Once the optimize button has been pushed, the values of the states and con-

trols will be output to the MATLAB command window, along with the time elapsed

to run the optimization, and the final value of the cost function. In addition, an

output file named to agree with the input file is created. In this example the

output file is cart.function, out. Four files are created during the optimization:

cart_function. m, cart_functionopt .m, cart_function. mat and cart_function. out.

Cart _function. m is the m-file that contains the constraints, state equations and the

cost function. The cart_functionopt .mis a script that will declare variables and call

the NLP solver. The cart _function. mat is the binary file that saves the values of

the variables used in the optimization. The cart .function, out file is the output file

that captures the diary of the output of the optimization to the MATLAB workspace.

The GUI implementation's results agree with the published results [Ref. 8]. The

cart_function. m and cart _function. out are included in Appendix A.
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VII. THE ORBIT TRANSFER PROBLEM

This maximum radius orbit transfer problem is taken from the text by Bryson

and Ho [Ref. 14]. Given a constant-thrust rocket engine. T = thrust, operating for

a given length of time. tj. find the thrust direction history. ${t). to transfer a rocket

vehicle from a given initial circular orbit to the largest possible circular orbit. The

variables are defined as

r = radial distance of spacecraft from attracting center

u = radial component of velocity

v = transverse component of velocity

m = mass of spacecraft

m = fuel consumption rate (constant)

$> = thrust direction angle

[i = gravitational constant of attracting center

The problem can be stated as finding $(r) to maximize r(tj) subject to the state

equations

r — u ("•!)

u = ^7+ r^-77 (7.2)
r r2 mo — \m\t

uv TcosQ

r mo — \Tn\t

uv TcosQ ,-.,+ rrr: (
7 -3

)

with initial conditions

r(0) = r

u(0) =

v(0) =M
V ro
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and final time conditions

u{t f ) =

This problem can be solved with fixed final time as a maximum orbit distance prob-

lem, or with free final time to find the minimum time to a specified final orbit. Solving

the problem as a maximum radius orbit transfer problem with fixed final time, the

cost function in Mayer form is

J = -r(tf ). (7.4)

Equation 7.4 represents maximizing the radius by minimizing the negative of the

radius. Before finding the optimal solution, we must set values for the parameters or

constants in the problem. Let

m = 1

m = -0.0749

T = 0.1405

H = 1

r = 1.

A. FILE CREATION
The implementation for this problem mirrors the cart problem of Chapter VI.

The state equations are more complex than those required for the cart problem.

r = u

u = (v.~2)./r -(mu) ./(r.~2) +T*sin(phi) ./(mO-ml*t)

v = (-u.*v./r + T*cos(phi) . /(mO-ml*t)

are entered as the state equations into the State Equations GUI, see Figure 20. All

the variables in the state equations will be defined in the creation of the GUI, with

one exception. The variable t is predefined within the GUI to represent time. The
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V State Equations

Stale Equations

(v.~2)Vr -mu./(r."2) + T"$in(phi)V(mO-mrt)

{v.*u}./t + T*cos(phi)V(mO-m1
x
t)

.Fte^resetve-Aevanabteuoi anybmei : in Ihe state equations.

v- •*&*

Figure 20. Maximum Radius State Equations - GUI

values of t are the LGL points scaled to the interval [t ,tf]. After entering the

controls and the initial conditions, see Figures 21 and 22. the final time conditions

are entered. Figure 23 shows the final time boundary conditions when final time

is fixed. This problem also has inequality constraints which must be entered. The

inequality constraints are restrictions on the allowed valued for the control, o. The

values for
<f>

are limited to —it < O < ~. Since constr.m only allow inequalities of

the form g(n) < 0, the expression must be transformed into the normal form before

it mav be entered into the Gl I.

59



v Control Variables

Controls^

Figure 21. Maximum Radius Controls - GUI

:'

;
'
iriia! CondrJons

:

.
:

;

r(1}-1

u(1)

v(1]-1

wBsm

Figure 22. Maximum Radius Initial Conditions - GUI
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-4 Final Conditions
i—i— - - •-• '-'•'•

&g1& -•

Fral Condfcons

u(n)

v(n)-sqrt(1 A(n))

@ finalTine Fixed

Ofinaf Time Free

I 1

Figure 23. Maximum Radius Final Conditions - GUI
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—pi <
<f>

<h> $ — pi < and (7.5)

pi >
<f>

<-> - pi < (7.6)

see Figure 24. The constants are entered in the parameters GUI, Figure 25. The

v Inequality Constraints iZEJES.
;'

•
.**" ^CV5-v. iU^j /

iriequafltp Cbristraints :

VectorConstraints •

phi-pi

-phi-pi

• Point Constraints

warn

Figure 24. Maximum Radius Inequality Constraints - GUI

final step is the creation of the cost function as shown in Figure 26. The discrete cost

function for the Mayer form of the cost function is

J = —r(n).

The optimization file created and the output from the optimization for the maximum

radius problem are located in Appendix B.
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J Parameters SB IS

[££KTC?r
Parameters

:

mO

.

ml
T

mu

Figure 25. Maximum Radius Parameters - GUI

Form d Cost Function

(* MayerS C Lagrange C Bofca

Figure 26. Maximum Radius Cost Function - GUI
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B. OPTIMIZATION
Before optimizing the problem, the initial guesses must be entered, Figure 27,

The initial guess for each of the states and controls may be a column or row vector,

State? and Controls

r

u

V

phi

•

':":

.'~ :

..-'•v.

FrtaTTime

Initial Guess

linJntptU. 525.1 ,n)

0.0001 *ones(n.1)

lin_intp(1 ,0. 8098,1 ,n)

0.001 "ones(n.l)

3.32

Figure 27. Maximum Radius Initial Guess - GUI

but they must all agree in dimension. The lin_intp function input as the initial

guess for r, outputs a linear guess with values in [1,1.525] as an n x 1 row vector.

Once the first initial guess is input as a row vector, all others guesses must be row

vectors also. The parameters are set to their constant values, see Figure 28. The

Options button can be used to check the number of equality constraints and increase

the number of iterations allowed. The Final Time button can be used to check for

the correct time characteristics, Figure 29. The number of equality constraints in the

NLP must be equal to the number of state equations and boundary conditions.
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V Parameters ——^

Parameters

mO
ml
T

mu

Values

1

-0.0749

01405
1

Figure 28. Maximum Radius Problem Parameters - GUI
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V Options

l-'M.,- a-y. - -.*.;.'. t*is,> .' -
'.'

Constr.m Options

', . ' f
.

'<

upper bound

towerbound

Number of Equafty Oantrainte 38 [.,•

Number of function evaluations 3300

£ Display IntermecSate Resufcs 1
I

u^upbons gsdugggm

Figure 29. Maximum Radius Problem Options - GUI
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Having chosen 11 LGL points, the number of equality constraints are

'in — 33 state equations

3 initial/boundary conditions

2 final/boundary conditions

38 equality constraints

Often the default number of function evaluations will be too small for the

problem to converge. The number displayed in the Options GUI is the default for

constr.m. It is easily increased by adding zeros to the displayed number. The

optimize button is pressed to begin the optimization. A diary file, bho.out. resulting

from the optimization run with 11 LGL points is included in Appendix B.
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C. CHANGING THE FILE

Changing the problem to a free final time problem, where the final radius

is fixed and the objective function switches to optimizing time, is accomplished by

several simple changes to the function file. By pressing the Final Conditions button,

adding r(n) - radius as a final time condition, and changing the final time to

free, the problem has been slightly modified to the new variant, see Figure 30. The

> Final Conditions

Rrid.Cbndtecsis:/ :

v(n)-sqrt(1 /r(n))

r(n]-radius

(j Faiaj Tim© Fixed

;

(5. Final Time Free .

.

Figure 30. Optimal Time Problem Final Conditions - GUI

Inequality Constraints must be modified to include a non-negativity constraint on tj,

see Figure 31.

After adding the parameter radius to the parameter list, Figure 32, and

changing the cost function to tj, Figure 33, the new problem has been formulated.

Pressing the Create Function button creates the new m-file and the problem is ready

to be optimized. The m-file generated is included in Appendix C.
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i Inequality Constraints
rtmmywha.*HSi

[nequaitj? Constraints

:

Vector ConsfraaTts

phi-pi

-phi-pi

Point Constraints'
'

' ; /

-Tf

f^*i.-J-;si*

-

Figure 31. Optimal Time Problem Inequality Constraints - GUI
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v Parameters

Parameters .

mO
ml

T
\:r , :.;

mu

1

radius

A-

Figure 32. Optimal Time Problem Parameters - GUI

-i Cost Function

§ Mayer"

. Form of CoWFuhcfon:-

CxLagrange ;•; O Boba s

Tf

^RBBHraBM

Figure 33. Optimal Time Cost Function - GUI
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D. A SECOND OPTIMIZATION
Suppose we want to use the data from the last optimization as the initial guess

for solving this slightly modified problem. Enter the values from the last optimization

run into the Initial Guess figure, see Figure 34. Choose a value for the parameter

radius, radius = 1.345, and enter the value in Figure 35. Check the Final Timt

V Initial Guess

States and Controls

r

u

v

phi

Final Time;

Initial Guess

r

u

v

phi

3.32

BHaJE?

Figure 34. Optimal Time Problem Initial Guess - GUI

button for correctness and the problem is ready for optimization. Pressing the op-

timize button optimizes the problem and appends the results to the last results, see

Appendix D. The function file created for a free final time problem no longer has tj

as a parameter passed into the function, but rather assigns the value during run-time.

Comparing the two files created for the orbit transfer problem illustrate the subtle

differences between the two types, fixed and free final time problems.
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Parameters Vdues

1

-0.0749

0.1405

1

1.345

Figure 35. Optimal Time Problem Parameters Values - GUI
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VIII. CONCLUSION

The MATLAB GUI for the Legendre-Gauss-Lobatto Pseudospectral algorithm

makes solving optimal control problems easier. The GUI has been tailored to solve

optimal control problems in MATLAB using the Optimization Toolkit. This provides

a wide audience of potential users. Other NLP solvers can be used to solve trajectory

optimization problems, such as NPSOL. One of the strengths of MATLAB is its ability

to use codes written in non-MATLAB languages such as FORTRAN. C. or C++ .

The first step to adapting this GUI to a different XLP solver is to understand the

inputs that the solver requires. Once the input parameters have been determined, the

GLT
I code can be modified to create different inputs. As most of the code is run from

functions, the GUI figures themselves would require little modification. The standard

form of an optimal control problem will not change with the addition of additional

solvers. The Optimization figure would require the most visual modification to add

parameters specific to each solver. The GUI could be easily modified to create several

input files from the file figure and then allow the user to choose from several solver

options.

The GUI can be used to allow students to rapidly solve problems in this area

of mathematics. The tool can also be used to provide initial guesses for numerical

indirect methods that require very good initial guesses. The GUI has been beta

tested by two students from the Aeronautics and Astronautics Department. LT Bryan

Schlotman, USN, and Cpt Lawrence Halbach, USAF. Further research using the GUI

will be conducted by these two officers here at the Naval Postgraduate School. This

GUI will also be used in the Spacecraft Performance and Optimization (AA4850)

class in the fall quarter.

The real strength of the LGLP algorithm involves costate estimation from

the Lagrange multipliers returned from the NLP solver. The major disappointment

with the MATLAB constr.mis that is does not return correct Lagrange multipliers.
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Adaption of this GUI to use the NPSOL solver will allow the LGLP method to be

easily used and evaluated against other methods using the de facto standard sequential

quadratic programming solver.
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APPENDIX A. CART PROBLEM
OPTIMIZATION FILES

This appendix contains one of the files created while solving the simple cart

problem of Chapter 6. The following file is the CONSTR.M input file which con-

tains the function to be minimized, costfn, and the constraint function, g. The

file cart _functi on. m follows:

function [costfn, g] = cart_function(xopt ,Dn,x,w,n,t ,Tf ,a,b,c)

;

'/.Define the variables

xl=xopt( 0*n+l:n* 1) '

x2=xopt( l*n+l:n* 2)

'

u =xopt( 2*n+l:n* 3)

'

'/.Set up the State Constraints

g( 0*n+l:n* 1)=(2/Tf )*(Dn*xl)-(x2 );

g( l*n+l:n* 2)=(2/Tf )*(Dn*x2)-(-x2+u)

;

'/Set up the initial conditions

g( 2*n+ l)=xl(l);

g( 2*n+ 2)=x2(2);

'/.Set up the final time conditions

g( 2*n+ 3)=a*xl(n)+b*x2(n)-c;

'/.Set up the inequality conditions

'/.Set up the cost function

costfn=(Tf/2)*(w'*(u.-2))

;
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APPENDIX B. MAXIMUM RADIUS
PROBLEM OPTIMIZATION FILES

This appendix contains two of the files created while solving the maximum

radius orbit transfer problem of Chapter 7. The first file is the CONSTR.M input file.

The file bho .m follows:

function [costfn,g] = bho(xopt ,Dn,x,w,n,t ,Tf ,mO,ml ,T,mu) ;

'/.Define the variables

r =xopt( 0*n+l :n* 1)
'

;

u =xopt( l*n+l:n* 2)
'

;

v =xopt( 2*n+l:n* 3)
'

;

phi=xopt( 3*n+l:n* 4) '

;

'/.Set up the State Constraints

g( 0*n+i:n* 1)=(2/Tf )*(Dn*r )-(u )

g( l*n+l:n* 2)=(2/Tf )*(Dn*u )-((v."2)./r -mu./(r
.

~2) + T*sin(phi) ./(mO-ml*t))

g( 2*n+l:n* 3)=(2/Tf )* (Dn*v )-(-(v. *u) ./r + T*cos(phi) ./(mO-ml*t) )

'/.Set up the initial conditions

g( 3*n+ l)=r(l)-l

g( 3*n+ 2)=u(l)

g( 3*n+ 3)=v(l)-l

'/.Set up the final time conditions

g( 3*n+ 4)=u(n) ;

g( 3*n+ 5)=v(n)-sqrt(l/r(n)) ;

'/.Set up the point inequality constraints

'/.Set up the inequality constraints

g( 3*n+ 6:n* 4+ 5)=phi-pi ;

g( 4*n+ 6:n* 5+ 5)=-phi-pi;

'/.Set up the cost function

costfn=-r(n)

;
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The bho.out file resulting from an optimization run follows:

Filename_Fi le =

bho

date =

1999 6

timer =

50.5900

r =

Columns 1 through 7

1.0000 1.0003 1 .0033

Columns 8 through 11

1.3198 1.3397 1 .3446

u =

Columns 1 through 7

-0.0000 0.0046 .0251

Columns 8 through 11

0.0821 0.0316 .0085

v =

Columns 1 through 7

1.0000 1.0143 1 0418

Columns 8 through 11

0.8209 0.8320 8533

phi =

Columns 1 through 7

0.6707 -0.0314 5439

Columns 8 through 11

-1.1302 -0.5989 -0 7030

cost =

-1.3450

17

1.0260 1.0898

1.3450

0.1034 0.1709

-0.0000

1.0651 1.0028

0.8622

0.4999 -3.1416

•0.6172

56

1.1794

0.1871

0.8547

20

1.2660

0.1553

0.8158

2.3196 -0.2570
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APPENDIX C. OPTIMAL TIME PROBLEM
OPTIMIZATION FILES

This appendix contains two of the files created while solving the optimal time

orbit transfer problem of Chapter 7. The first file is the CONSTR.M input file. The file

bho . m follows:

function [costfn,g] = bho(xopt ,Dn,x,w, n,mO, ml ,T,mu, radius)

;

Tf = xopt (length(xopt) )

;

t = (Tf/2)*(x+l);

'/.Define the variables

r =xopt( 0*n+l:n* 1)
'

;

u =xopt( l*n+l:n* 2)
'

;

v =xopt( 2*n+l:n* 3)
'

;

phi=xopt( 3*n+l:n* 4)';

7Set up the State Constraints

g( 0*n+l:n* 1)=(2/Tf )*(Dn*r )-(u );

g( l*n+l:n* 2)=(2/Tf )*(Dn*u )-((v.~2)./r -mu./(r.~2) + T*sin(phi) ./(mO-ml*t) )

;

g( 2*n+l:n* 3)=(2/Tf )*(Dn*v )-(-(v . *u) ./r + T*cos(phi) ./(mO-ml*t) );

'/.Set up the initial conditions

g( 3*n+ l)=r(l)-l

g( 3*n+ 2)=u(l)

g( 3*n+ 3)=v(l)-l

'/.Set up the final time conditions

g( 3*n+ 4)=u(n) ;

g( 3*n+ 5)=v(n)-sqrt(l/r(n)) ;

g( 3*n+ 6)=r(n)-radius ;

'/.Set up the point inequality constraints

g( 3*n+ 7)=-Tf

;

'/.Set up the inequality constraints

g( 3*n+ 8:n* 4+ 7)=phi-pi ;

g( 4*n+ 8:n* 5+ 7)=-phi-pi;
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'/.Set up the cost function

costfn=Tf

;

The bho . out file resulting from an optimization run follows:

Filename_File =

bho

date =

1999

timer =

30.6500

r =

Columns 1 through 7

1.0000 0.9998

Columns 8 through 11

1.3237 1.3408

u =

Columns 1 through 7

0.0000 -0.0003

Columns 8 through 11

0.0708 0.0288

v =

Columns 1 through 7

1.0000 1.0101

Columns 8 through 11

0.8102 0.8318

phi =

Columns 1 through 7

-1.2427 0.5160

Columns 8 through 11

-0.5805 -0.6466

cost =

3.1685

18

1 .0035 1 .0245

1 .3447 1 .3450

.0335 .0899

.0059 .0000

1 0346 1 0540

8520 8623

6096 5087

5589 -0 3357

13 58 27

1.0835 1.1868 1.2781

0.1884 0.2294 0.1488

1.0153 0.8723 0.7967

1.9920 3.1416 -0.9890
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APPENDIX D. UTILITY FUNCTIONS

This appendix contains the utility function declare .m. This file is used within

the LGLP GUI.

function [valstring, count] = declare(vars,vals)

;

'/.DECLARE creates variables with the values provided in the

7.MATLAB workspace (HI line)

7

'/declare.

m

- A utility function for the LGLP GUI

X

7, [valstring, count] = declare (vars,vals)

X

'/input vars - A vector of strings containing the names of variables

X

'/ vals - A vector of strings containing the values to be assigned

'/, to the input variables

X

'/output valstring - A vector of strings that when executed declare variables
'/ in the the MATLAB workspace. The command ' eval (valstring) '

'/, will execute each string in the vector.

7, count - A counter for the number of strings or size of valstring

7.

X

'/.written by Andrew 0. Hall, CPT, US Army, June 1999, at the

'/Naval Postgraduate School

equal _ ' — '

count = 1

;

valstring = [] ;

for index = vars'

vstring = strcat (vars (count ,:) , equal)

;

vstring = strcat (vstring, vals (count ,:))

;

vstring = strcat (vstring, semi)

;

valstring = strvcat (valstring, vstring)

;

count = count + 1

;

end

count = count - 1

;
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APPENDIX E. CONTENTS FILE

This appendix contains the Contents .m file for the LGLP GUI. A file like this

needs to be placed within a directory to allow the file to be accessed through the

MATLAB help menus.

*/, LGLP Toolkit for Optimal Control Problems

7. written by Andrew 0. Hall, Naval Postgraduate School

7, version 1.0 June 1999

7.

'/. This directory contains a GUI for solving optimal control problems.

7. There are three files that execute the GUI. Typing 'opt' at the command

7, line will start the GUI.

7.

7. GUI Files

7.

7. OPT.M - Welcome screen for the GUI interface

7.

7. FILE.M - File creation GUI. Creates an NLP formulation for input to

7. CONSTR.M (see OPTIMIZATION TOOLKIT)

7.

7. OPTIMIZE. M - File to optimize an optimal control problem. This

7, function sets all input parameters for CONSTR.M.

7.

7.

7. Utility Files

7.

7. costcall.m - Creates a function call to compute the value the cost

7. function

7.

7. declare. m - Creates a function call to create variables with the values

7, provided in the MATLAB workspace

7.

7. optcall.m - Creates a function call for CONSTR.M

7.

7.

7, Example Files - see A0Examples.ps in this directory

7.

7. carttest.m - Simple cart problem, linear constraints with quadratic

7. controls, from Chapter 6 of Hall's Thesis
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7. bh.m

7.

7. bho .m

%

7. Faculty Codes

%

7.

7. diffmat .m

7. lin_intp .m

7. lobatto .m

7.

7. mxt .m

7. mxtj .m

7. sgn .m

7.

7.

7. tqr.m

Maximum Radius Orbit Transfer problem from Chapter 7

of Hall's Thesis

Optimal Time Orbit Transfer problem from Chapter 7

of Hall's Thesis

Codes written by Professors Bill Gragg and Fariba Fahroo,
Naval Postgraduate School

creates a differentiation matrix for the LGLP algorithm
creates a linear guess vector

Computes abscissa and weights for the n-point
Gauss-Jacobi-Lobatto quadrature formula
creates a tridiagonal matrix

creates a Jacobi matrix

For z a complex number we define sgn z, the SIGNUM of z,

as z/|z| if z ~= and + 1 if z =
. Thus sgn z is the

same as matlab's sign z except when z = 0.

Tridiagonal QR algorithm

7. Postscript Files

7.

7. A0Examples.ps - PS file that includes Chapters 5, 6, and 7 from Hall's Thesis
7. A0Thesis.ps - Hall's Naval Postgraduate School Thesis (Applied Mathematics

7. written by Andrew 0. Hall, CPT, US Army, June 1999, at the
7. Naval Postgraduate School

7. Questions? Email: AndrewOHall@msn.com
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