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ABSTRACT

A three dimensional primitive equation model based on

the Boussinesq equations is developed and applied to the

mesoscale. The model is tested with one dimensional flow in

a balanced state and with two cases of gravity waves, which

are forecast for 30 minutes and compared with the analytic

solutions.
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I. INTRODUCTION

Several recent attempts to understand the complex

dynamic interaction of the thunderstorm and its environment

have been made using the dynamical thunderstorm model pre-

sented by Newton and Newton (1959) . The model proposes that

strong vertical drafts within the thunderstorm create an

effective barrier to the environmental flow. The analysis

by Browning (1964) concerning airflow near and within severe

thunderstorms provides valuable additional knowledge about

the character of the vertical motion. Convective storm mass

and water budget assessments such as the one conducted by

Newton (1966) substantiate the concept of upper level

entrainment of cool, dry air first recognized by Normand

(1946) .

Radar determined chaff trajectories were used success-

fully by Fankhauser (1968) to follow the motion of air

parcels in and around a thunderstorm. Further use of chaff

will undoubtedly make possible a good understanding of the

paths taken by environmental parcels from all positions

around a local storm.

As noted by Lilly (1962) , the evolution of convective

motions with relatively large amplitudes can best be

described through the combined application of conventional

analytic methods and numerical experimentation. Ogura (1963)

discussed the possible use of the primitive equations as a

basis for forecasting small scale dynamical features. He
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suggested that interaction between convective elements and

the prevailing wind field could thus be investigated numeri-

cally. The results of such efforts, correlated with the

subjective modeling, should produce verifying as well as

augmenting information for the subjective products.

A numerical study of turbulent flow conducted by

Deardorff (1970) makes use of a three dimensional primitive

equation model. The forecast procedure he uses is similar

to the procedure used in this study.

The numerical model presented here is a three dimen-

sional primitive equation model based on the Boussinesq

equations. Forecasts are made for the wind components and

potential temperature after imposing initial conditions on

these same parameters.

The grid used for computations is 25 by 25 in the

horizontal, with 15 levels in the vertical. Grid interval

in all directions is 1 kilometer. A mean latitude of 35°

is used to determine the Coriolis parameter, which is

treated as a constant.

Predictions are made using the IBM OS/360 computer of

the W. R. Church computer center. A one minute time step

was chosen to conform to computational stability require-

ments.
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II. DEVELOPMENT OF THE MODEL

A. THE FORECAST EQUATIONS

The pressure term in the equation of motion may be

expressed as

1 « RT „
P V

3
P = T V

3

5 1/V

i/fc

*>V
3 j3 ,

where

and

& = c
t

1 k

o

= T
o
P

Using this result in the component equations of motion

yields

du
dt

= - ©
a/3

X
+ fv + ]/V

3
u, (1)

dv
dt

= - © a/3 - fu + VV
3

v, (2)

dw
dt

= _ AfL _ g + yv 2
W. (3)

Forming the perturbation expressions

/S = /5 (z) + /3' (x,y,z,t)

and
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e = $ + (x,y,z,t)

where

[

£'| « /5o
and

|
o \«e '

and substituting into (1) yields

# = - O -M* + fv + V V
3

u , (4)
ox

ofi'where the relatively small product rr — is neglected.
o x

Similarly,

dv
. * _§JL _ f

u

+ v Vo
2

v. (5)— — ft _ -r — x u -r f v o
dt "° dv 3

For the vertical component equation the substitution yields

& =-*o!f - •o-H" -•£ -9+ VV 3

2
v,

Since /S and are related by the hydrostatic equation

oflo = _ JL
d z #o

the vertical component equation may be written

*Z= - -Ml + i? + W * w. (G)
dt *o a z O

3

Defining
<t>

= $ jS ' an<^ substituting into (4), (5) and

(6) results in the system of equations
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— = -£(u) - —— + fv + W, u (7)dt ox 3 x

Al = -£(v) - -|^ - fu + W, v (8)
at ^y 3

^ . _£(w) _A£ + 2i_ + vv 2 w (9)
ot dz fl 3

-f£ = -£ (0) (10)
dt

v
3

• v
3

=0 (11)

where £ ( S) = -v
3

V3 5,8= u,v,w, 0. Equation (11) is the

continuity equation. In order to eliminate sound waves,

incompressible flow is assumed. Ogura and Phillips (1962)

have shown that this system of equations, which they call

the anelastic equations, is quite accurate for shallow con-

vection.

B. DETERMINATION OF THE PRESSURE TERMS

Equations (7) , (8) , and (9) may be combined and written

in the vector form

dVo _, _> ^^90^ 2 _
Y£ = -(V

3
- V 3 )V3 - V3 <t> -f (k x v

3 ) + — k + yv 3 V
3

.

(12)

Taking the three dimensional divergence of (12) yields
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(V 3 • V3 )

* =
at

— — T1 [(v3 • v3 ) v3
J

_ v
3

<p

-V
3

• [f(Xx V3 )]
+ ^-

(13)

be

For a limited horizontal scale the Coriolis parameter may be

treated as constant. Thus, (13) becomes

V
3
2<
^ = V

3 ' [ (^3 *
V3^3]~ fo V

3 ' ( * X ^3 ) + _9_ _ze
6Q

az

= - v. [<V3
• V3 ) V3] + fQ C + £-§£ . (14)

which can be solved using relaxation techniques

16





III. FINITE DIFFERENCING

Equations (7) through (10) are solved numerically by

introducing finite differences in x, y, z and t. Solution

for the pressure term can be carried out by applying the

extrapolated Liebmann relaxation technique to evaluate (14)

.

Appendix A shows the development of the relaxation equation.

The procedure used to compute the forcing function is

included in Appendix B.

In order to maintain finite differencing consistency

throughout the entire forecast process, it is necessary to

use the finite difference forms of equations (7), (8) and

(9) to form the finite difference equivalent of equation

(14).

The vertical domain consists of fifteen levels with

values of u, v, w, $, and <p assigned to each grid point.

The space differencing method used is based on a scheme

devised by Arakawa (1966) and is designed to conserve total

energy. The non-linear operator, £(s) , takes the finite

difference form

£(s)
[
(u

i+ i,j,k
+ u

i.j,x) (8i+i.j.* + sij.k'

" {u
i-i,j,*

+ u
i,j.k'

(s
i-i,j,x

+s
i,j,k>]

/4Ax

+
[
(V

i,J + l,*
+ ^.j.k' (S i.j + l,k

+ S i.j,k»

- (Vi,j-l,k+ vijk ) (S ijj .lik+ Sijk )]
/4Ay
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+
[<
wi,j,k+l + w

i,j.k> (si.j.k+l + s i,j,k)

- <wi,j.k-l + w
i.j,k> < s i.j,k-l + s

i.j,k>] /4A:

The linear space derivatives are of the centered form

£3
(S i+l,j,k " s i-l,J,k>

dx 2 Ax

Centered time differencing is used for all forecasts except

the first which employs a forward time step.
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IV. BOUNDARY CONDITIONS

The boundary conditions are selected to enforce mass and

energy conservation within the domain of the grid. Figure 1

illustrates the grid domain and boundary placement in the

horizontal. Boundaries in the vertical are similarly

placed, with bottom and top boundaries at

2+3
fc = = 2.5

and

(KM-1) + (KM-2)

respectively, where KM is the number of grid points in the

vertical.

i=l
j=JM

* «

r—

i=IM
j=JM

North boundary

West i boundary Eas t
J
boundary

4
1

South boundary

i=l
j=l

Figure 1: Horizontal grid

i=IM

Periodicity in the east-west direction ensures cyclic

continuity of all parameters. This condition is imposed by
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applying the relationships

Sl,j,k ~ S IM-3 / j / k '

S2,j,k S
IM-2,j,k '

IM-l,j,k ' 3,j,k

IM, j ,k 4, j , k

where S = u, v, w, and <£. Since values of S at points

in the outer columns are required in solving for the pressure

term and in calculating divergence, a four point periodicity

constraint is necessary.

In order to prevent the flow of mass and energy through

the northern and southern boundaries, a condition of no flux

is imposed on the v component of the wind. This is accom-

plished by

v. o i - -v. o ni, 2,k l, 3,k

and

Vi,JM-l,k
vi,JM-2,k *

The values of v on the outer row are obtained by

V-i i v = v. . n1/ J-/K i,4,k

and v . = v

.

i,JM,K i,JM-3,k
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The u and w wind components and are projected

outward by

i, l,k " i,2,k ' i, 3,k

and s i,JM,k " S
i /JM-l,k " S

i,JM-2,k '

where s = u,w, .

Values of pressure on the outer rows are obtained by using

the geostrophic relationship

30 = -fu
Sy

The upper and lower boundaries are treated in the same

manner as the north and south boundaries, with the no-flux

condition being imposed on w by

w. . = -w
±,3,2 - w i,J,3 *

W
i, j,KM-l " ~W

i,j,KM-2 ,

w. . , = w. . . ,

and w. — Wj j VM o
i,j,KM i,j,KM-i

Values of u and v on the top and bottom levels are

obtained by

S
i,j / 1

= S i,j,2
= S i,j,3

21





and
Si,j,KM "

Si,j/KM-1
: S

i,j,KM-2 '

where s = u, v.

The hydrostatic relationship,

d z o

is used to determine values of and <j> above the top and

below the bottom boundaries. The application of proper

boundary conditions was found to be critical. Appendices C

and D show the development of these conditions in detail.
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V. INITIAL CONDITIONS

Initialization of the u,v,w and Q fields was

accomplished according to the experiment being prepared.

During the check-out phase of programming the model, a

steady-state, geostrophic, zonal flow was used to provide a

check on computational stability. Subsequent tests were

initialized to include gravity waves, both stable and

unstable.

A. ZONAL FLOW CASE

Stability of the balanced state was tested by inserting

a 10 m sec" wind throughout the u field. Initial v

and w fields were set to zero. Standard atmospheric

values of pressure were introduced and, by using an adia-

batic lapse rate of temperature, the equation

$ = T
po

provided the initial field. Since the relaxation

technique used to obtain the initial <f> field proved to be

extremely efficient, choosing the initial guess <t> field as

an arbitrary constant was convenient.

B. GRAVITY WAVE CASES

Linearized gravity wave solutions, accurate for small
w

scale perturbations only, were used to test the model. For

the stable gravity wave the following relationships describe

the initial conditions.
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u = — A m W \
-o r sin Ax cos n y cos mz
A
2

+ n
2 "

v = — fj m W
-5 — cos Ax sin IJy cos itiz

a
2

+ \x
2

w = W cos Ax cos [X y sin mz

* VI b 9 • \
Q = .—- -^-^ sin Ax cos i/y sm mz

Ac d z

Phase speed may be calculated from the relationship

N
c = — A

2
+ /i

2

A * A2 + /i
2 + m2

(15)

For the gravity wave associated with unstable stratifi-

cation, the initializing relationships are

u =

v =

m

m

1 +

1 +

N

n'

N'

n'

W sin Ax cos fA Y cos mz

W cos Ax sin JJy cos mz

w = W cos Ax cos Uy sin mz

=~¥L ..

?"
. cos Ax cos fjiy sin mz ,

n d

where

N2 =|- -M
^O ^Z
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and

„2 _ f*\+i* , as)

where n is the growth rate of the disturbance.

The </> field may be initialized for the gravity waves

exactly as in the zonal flow case.
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VI. RESULTS

The balanced state introduced for the one dimensional

flow case as a check on the computational stability and

forecast capability of the model should remain indefinitely,

subject to the validity of the approximations in the basic

equations, round-off error in the computer, accuracy of the

assumptions at the boundaries, and stability requirements.

The use of proper boundary conditions was the most important

factor in determining the length of the forecast produced.

Until the combination of boundary conditions shown in

section IV and Appendix C was utilized, the forecasts were

valid for no longer than 5 minutes. Longest forecasts of

the balanced flow were obtained by applying the boundary

conditions that are periodic in x, geostrophic in y, and

hydrostatic in z.

Accuracy of forecasts was monitored through the calcula-

tion of the three dimensional divergence, which should have

remained very small throughout the prognosis. The smallest

possible relaxation tolerance consistent with single preci-

sion mode capability of the computer was found to allow the

least amount of divergence. When larger tolerances were

allowed, a substantial amount of divergence developed on the

north and south boundaries at mid-levels and increased with

height.

A test was conducted to determine the optimum relaxation

coefficient for the grid interval and grid domain which the
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model employs. The value selected did not appear too

critical, as long as it was between 1.5 and 1.7.

For the first experiment that produced a relatively long

prognosis, an adiabatic lapse rate of temperature and

standard atmospheric values of pressure were used to ini-

tialize the potential temperature field. This produced a

slightly unstable average lapse rate of potential tempera-

ture, with two thin stable layers included near the bottom.

With these conditions the model forecast for 47 minutes.

The time step was then decreased from 1 minute to 40

seconds, with the result that the forecast proceeded for 72

time steps, which was essentially the same length as the

previous forecast. In an effort to improve the initial

balance, pressure values which would lead to a nearly neutral

lapse rate of potential temperature were inserted in the

first experiment. The forecast continued for 56 minutes.

Returning again to the conditions used in experiment one,

the lapse rate of potential temperature was modified to

include stable layers across the top and bottom boundaries.

With these conditions the model produced a forecast for 69

minutes.

Introduction of a small perturbation in the form of a

gravity wave provided another method of observing the model

behavior. The gravity wave in stable stratification should

propagate in the x direction only, without growing. With

unstable stratification the wave should not propagate, and

should grow at a rate given by equation (16)

.
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The wave inserted for the stable case was forecast for

30 minutes, after which a comparison was made between the

initial and forecast values of u, v, w and . With this

comparison it was possible to observe the amount of spurious

growth and the speed of propagation. The relationship of

the initial and forecast wave forms in x for the line j=8,

k=6 is shown in Figures 2a, 2b, 2c and 2d. The exact solu-

tion of equation (15) indicated that the phase speed for the

case shown was 10.2 m sec . Phase speeds calculated from

the plotted values were 10.5 m sec , 10.4 m sec -1 ,

9.5 m sec and 10.3 m sec" for u, vr w and $ respec-

tively. The difference in phase speeds between w and

was in no doubt related to the fact that the wave grew. The

wave forms in y illustrated in Figures 3a, 3b, 3c and 3d

show that the wave grew in the y direction but did not

propagate. Figures 4a, 4b, 4c and 4d show that no propaga-

tion of the wave occurred in the z direction, but that the

growth was not smooth.

For each combination of initial conditions applied to

the wave, growth was apparent. By modifying the lapse rate

of potential temperature toward adiabatic conditions, the

growth decreased.

The gravity wave with unstable stratification was

compared in the same manner as was the stable case. Figures

5a, 5b, 5c and 5d show that the wave did not propagate.

Furthermore, the growth that was experienced by the wave was

very close to that which was expected. The amplification
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factor based on the computed growth rate of .1376 x 10~^

sec was determined to be 11.9 at 30 minutes, and amplifi-

cation factors of 11.8, 12 o 0, 12.4 and 11.3 were noted for

u, v, w and $ respectively.

29





CO
II

CN

o
CM

U

m
c
o
•H

U
<u

u
-H

X

O
CD

O O o
CN

o o o O
CN <tf <£> 00

1 1 1 1

<U

£1P
C
•H

in e
rH X ^

<D

Tj m
C
•H

>
•H rd

5
o
r-H

omponent

of

le

case

m
-P

3 w

(D *£>

|
1

rd

CN

•

CP
•H
P>4

(^_0T *
T
.39S in) n

30





1 1 1 1 1 1 1 1 1

o o o o o o o o o
CO kO "tf CN

I 1 1

00
1

CO
II

LO
(N U

m
c
oH
-P

U
01

uo •H
<M 'O

X

1)

rC
-P

C
LD X •H
rH a;

tJ c
c M
•H

•H

>

•->

at

O A
-H

in

Fig.

2b

-

The

v

component

of

t

k=6,

stable

case

(^-OT X D9S LLI) A

31





CO
II

m
CN

O

— U~)

0)

- ir>

o
CN

o
00

o o
I

o
CO

I

o
CN

I

U
o

c
o
•H
-P

U
0)

u
•H

X

CD

•H

B
u
om
cu

>
rd

0)

m

+j

c CD

<U U)

c rd

u
0-,

b CD

o rH

u ^
rd

-p

> W

«.

QJ O

1

1!

^4

u
CN

tP
•r-

fc

(T7-0T T-
39S HI) M

32





on
II

P

o
II

4J

o
1

o
1

o
1

o
1

o
1

o
1

o
1

o
1

o
1

O
in o in o in in o in o
<N <N -H rH H H CN

To
m
CN

01

W
in r«

CN u

01

3
•P
w

VO
II

o .*
CN

CO
II

u

m

in
iH X •H

01 -p

T3 u
C 01

H u
•H

•H 'O

o
rH

in

X

oi

•P

O

0)

>
rd

0)

73
CN

H

( q
_0T x m o ) e

33





in

o
CM

ID X

O
H

IT)

O
00

o
I

o a
i

o
I

o
M 1

O
I

o
00

I

II

•H

U

m
c
o
•H
P
U
0»

H

>i

01

c
•H

E

O
<-!-)

>

5
m
o

•p

c
0)

c
o

e
O en

U rd

U

3 QJ

H
9

at rs

l

•H
fa

at

( oi x Das ui) n

34





o
in
CM

o
o
CM

I

o
in

o o
o in

o o
in
(

o
o

T
o
in

•in

5-1

4-1

C

•H
4J

U
(L»

u

>i

CD

o &
ON -P

CH
e
M
o

<4-l

(U

>
in rd

r-i £

0)

X ,C
(D -P
H3 0)

c M-l 03

•H rt

u
•—

\

4J

C (LI

O 0) <H
.H C rQ

rd

P-.4J

e w

u -

kO
II

> X

(LI ^Q
m Si

1
1

ro

•

tT>H
En

o
o

I

( 01 *
T
_D9S UI) A

35





in

On
II

O

— in

QJ

C
H

O

-m

v.0

II

u
o

o
•H
P
u
0)

n
•H

QJ

+J

c
•H

e

o
m
(U

>
rd

(Li

&
-P

m
o

-p

c
(U w

rd

uo
p.
e o
o -i

U ,Q
rd

-P

o
in

o
o

o
m o

m
i

o
o

o
in

( 01 x t_33S IU) A\

OJ *.o

Si
I

u

•H
Em

36





o
CN

iH QJ

O

_m

1

o
1

o
1

o
1

o
1

O
I

o
1

o
1

o
1

o
1

om <tf m r\j rH
1

CM
1 I i

(fr-OT
x Mo )

QJ

W
«5

u

QJ

.H

«
-P
ra

II

II

•H

H

<P

C
o
H
-P

U
qj

u
•H

GJ

rCP

•H

E

om

>

QJ

T3

-H

37





o

X
(D

C
•H

II

•H

U
Om
c
o
•H
-P
U
QJ

5-1

•H
03

N

OJ

+J

c
H
E

o
"4-!

>

£

<D

,G
4->

M-l

o

-p

C CD

d) W
C «3

O U
cu
E QJ

O H
u 3

-P
3 CO

QJ CO
rC II

I

a

(,_0T x T
_D9S ui) n

en
•H
En

38





o
oo

II

-P

i- ro

_r^

o o
I

O

•.H

cn

LT>

-CO

O
CM

I

O
I

(^_0T *
T
_^s uj) a

II

•H

U
om

o
•H
+J

U
<U

H
•H
T3

<U

+̂>

X c
(LI •H
TJ
C e
•H p

* m
0)

>
fO

£

(D

M-t

o

-p

c CD

CD W
c rtj

U
a
fc (D

rH
u ,1

rd

-P
> w

*•

a; CO
rC II

H •r-
i

1

fl
<tf

«

tn
•H
n.

39





o
ro

II

-P

i— ro

-(J\

•H

- r-

— in

— m

Om
C
O
•H
•P

O
QJ

•H

N

0)

-u

c
•H

e

o

>

0)

-M

»W

O

-P

c .Q
O rd

ft-p
£ u
o
u -

CO
II

CD

rd

u

(U UD

£H

O
CO

o o
I

o
CO

I

u

U-OT *
T
_D3S III) M

•H
fa

40





ro

_ rH

-CT>

•H

-r^

-u~>

_fO

o
•H
-p

u
(LI

U
•H

T3

N

0)

•H

01

w
d
u

aj

B
u
o -h
m o

0) 4->

> 00

1X5

•> *

CO
II

0) ^
II

•H£,'

-H
P4

o
o o

o
CM

o
o

( C_0T * v
)

41





I

o

I

U
<D

W

30-i

t = 30

20-

10-

o-

-10-

-20-

-30-

t =

10 15

i index

20
1
25

Fig, The u component of the wave form in the x
direction for j=8, k=6, unstable case

42





I

o
H

r-A

I

U

w

160

80-

0-

-80-

-160-

5
~i r~
10 15

i index
20

-

1

25

Fig. 5b - The v component of the wave form in the x
direction for j=S, k=6, unstable case

43





80 -j

60

40 -

I

o

u
0)

w

20 -

-

-20

-40-

60-

-80-
~i r
10 15

i index
20

"I
25

Fig 5c - The w component of the wave form in the x
direction for j=8 / k=6, unstable case

44





60-n

40-

20-

m
l

o

o

CO

0-

-20-

-40-

-60-

5 10 15

i index

Fig Q 5d - The 6 wave form in the
j=8, k=6, unstable case

20

x direction for

"I
25

45





VII. SUMMARY AND CONCLUSIONS

A multi-layer primitive equation model was applied to

a mesoscale grid for two test situations. First, a one

dimensional, balanced, steady state current was initialized

to check the computational stability and finite difference

form of the equations of motion,, Then an initial gravity

wave perturbation was introduced for both stable and

unstable stratification.

The stable stratification case yielded a reasonably

accurate phase speed of propagation but some undesirable

growth of the disturbance was observed, as was discussed in

the previous section.

The unstable stratification case produced nearly correct

growth rates but some difference in the w and growth

rates may be an indication that a problem exists similar to

that in the stable case, where w and waves were propa-

gated at slightly different speeds Apparently, some small

error still exists in the program.

The fact that the growth of the propagating gravity

wave can be decreased by inserting a more nearly adiabatic

lapse rate of potential temperature can be explained by

observing that the buoyancy term in the Boussinesq equations

becomes increasingly inaccurate with increased height. By

assigning to $ a value of potential temperature from a

middle level, the error introduced in the buoyancy term is

minimized.
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Since the Boussinesq equations are accurate only for a

shallow atmosphere , the model could be expected to forecast

more accurately if the depth were decreased. In such a case

the problem with the buoyancy term would be further mini-

mized.

Further studies using this model should have a provi-

sion for including vertical compressibility. Additionally,

since a primary source of the energy in a thunderstorm-type

cloud is latent heat, application to cumulus scale convec-

tive activity would be incomplete without the inclusion of

moisture Q
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APPENDIX A

EXTRAPOLATED LIEBMANN RELAXATION SCHEME FOR

THREE DIMENSIONAL APPLICATION

The equation to be solved by relaxation is

2
V
3

<t>
- F = (A-l)

where

F = - V • |(V, • V-)V, + fn f +[^3 ' V3^3
]3 |_

v 3 3 3
I

° eo az

Writing (A-l) in finite difference form and expanding yields

<t>. . ~ . , -20. . . + <f>. . ,i+2,j,k ri, J,k T ^i-2, j,k

(2 Ax) 2

<*>i,j +2,k -2<fti,j,k + fti,j-2,k

(2 Ay) 2

<*>i,j,k+2 ~2 ^i, j,k +
^i, j,k-2

- F. . , =
(2Az) 2 i ' j ' k

Rearranging terms leads to

*i,j,k
=

[
(2A ^)2 (2 AZ)2 <*i+2,j,k + <*>i-2,j,k>

+ (2Ax) 2 (2Az) 2 (0 i/j +2/k + 0i,j-2,k>

+ (2Ax) 2 (2Ay) 2
(<*>i/j/k+2 + *i,JfM >

- (2 Ax) 2 (2Ay) 2 (2Az) 2 Fi#J J A
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where A is the fraction

1

2 (2Ay) 2 (2Az) 2 + (2Ax) 2 (2Az) 2 + (2 Ax) 2
(2 Ay) 21

old

Adding and subtracting produces
i, j,k

new old
r

<*>.
. . = <t>

. . _ + A (2Ay) 2 (2Az) 2
( 0. + )

+ (2Ax) 2 (2Az)2(«?».
(

.

+2/k+ 0.
/

._2/k )

+ (2Ax) 2 (2Ay) 2 («. ij/k+2+
<?>

i/jjk_ 2
)

i^-* - (2Ax)2(2Ay)2(2A Z )

2Fi/j/J

For successive over relaxation the coefficient (X is

included, which results in the final form

new old

*i.j.k = ( 1-a>*i,
j , k

+ aA [(2A^
2

(2Az >
2 (*i+ 2,j, k

+
*i-2.J.k>

+ (2Ax) 2 (2Az) 2
(0.

ij +2/k+ ±/j _2/k )

+ (2Ax) 2 (2Ay)2(^>iij/k+2 +0 i/j/k_ 2 )

- <2Ax)2(2Ay)2(2Az)2 Fi/JjkJ
(A-2)
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Note that if Ax = Ay = Az, equation (A-2) reduces to the

more familiar

new old

i-2, j,k

new o±a

+ <*>

i,j + 2,k
+

M., j-2,k
+ C*)

i / j,k+2
+ ^ijj,!^

- < 2 *x >

2
F
i.j,J -
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APPENDIX B

DEVELOPMENT OF THE FORCING FUNCTION

In order to maintain consistent finite differencing

between the prognostic equations and the forcing function of

the Liebmann relaxation equation, a procedure which was

recommended by Dr. R c T. Williams (personal communication)

is used to develop the forcing function. The process is

carried out in 6 steps for each point in the grid. The

6 steps required to build F
5 5 5 , the forcing function

at 1=5, j=5 / k=5, are

pi ^ (W)
5.5.4

5/5,5 2 Az

2
-G(v) 5 /4/ 5 x

5,5,5 2Ay 5,5,5

-G(u) 4 5 5 y

5,5,5 2 Ax 5,5,5

p
4 __

G <">6,5,5
p
3

5,5,5 2 Ax 5,5,5

p5
G(V) 5,6,5

F
4

5,5,5 2 Ay 5,5,5

F
6 =

0(w) 55 ,6
+ F5

5,5,5 2Az 5,5,5

where
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G (w) = - £ (W ) +
<30

2

G(v) = - £( v ) - fu + y v v,

and G(u) = - £ ( u ) + fv + y v u.
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APPENDIX C

BOUNDARY CONDITIONS AT THE WALLS

For the plane described by j=3, the equations of motion

may be written

1, 3,k i, J/ k

d v „ b<P-- £(v)
i,3 /k -r; - fuif3fk (c-2)

at i,j,k ay
i/3,k i,3,k

^ - - tf(w) lf3f]c
-22 +

g *i,3,k
. Cc-3)

dt ' ' dz 6
i, 3,k i,3,k o

Forming the time derivative of divergence from (C-l) , (C-2)

,

and (C-3) and using finite differencing yields

du du
^ t i+l,3,k dt i-l,3,k

= —
2 Ax

d v dv

^ t i,4,k
ht i,2,k

2 Ay

d w aw
ht i,j,k+l ^t j,j,k-l

2 A z
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m^educing ^e
condition Cc-5)

vi,2.*
- - v i,3,*

^icn i^lie!

dt if 2,^

cc.4)
^^ ^3

o «=

(C-6)

of CC-6) V
ields

2 * ,
^^ * SCVU.3JJ.

_. £.^4-1,3.* - —-^ ~~2

. ^UiS^i + ---- ***
£ l*> 1,3.*!*. x) ^

. + ui,3^ +

2 &y

2 A z a
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Applying the conditions

ui,2,k = ui,3,k ' (c"8 >

*i,3, k -*i,l.k
=

"2Ay£ui,2,k '
<C"9 >

and

i.4.k- *i,2, k
=-2AyfUi,3,k '

<C-10 >

produces

^ 2

*i,3, k
= Fi.3,k •

which is the equation to be solved by relaxation.

Thus, the conditions for the southern boundary must

include the relationships given by (C-5) , (C-8) , (C-9) and

(C-10)

.

A similar approach produces corresponding conditions

at the northern boundary. These conditions are

vl,JM-l,k = " vi,JM-2,k * (C-ll)

ui,JM-l,k = ui,JM-2,k ' (C-12)

<t>. _. . -
<f>. n = -2Ayf u- _. , . , (C-13)l,JM,k ^i,JM-2,k x l f JM-l f k '

v '

and

*i.jM-i,k - *i, JM-3,k
-2Ayf u

i, JM-2,k • <
c-14)
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For the plane described by k=3, the same process can

be carried out to develop boundary conditions at the top and

bottom , which are

W
i,j # 2

= -Wi,j,3 < (c"15 >

tu ^ 2Azg .

*i.j.4- *i, J<2
=i

|f •i.j.a - <
c"17 >

and

Wi,j,KM-l ~ -wi,j,KM-2 ' (C-18 >

2 Azg
^i,j,KM-" *i,j,KM-2 "

Q
~ ^i # j,KM-l (C-19)

^4 I ™ , - ^.
2 Azg

i,j,KM-l ^i,j,KM-3 o
v i,j,KM-2 #

(C-20)
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