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Nazartinib (EGF816, NZB) is a promising third-generation
human epidermal growth factor receptor (EGFR) tyrosine
kinase inhibitor. This novel irreversible mutant-selective EGFR
inhibitor targets EGFR containing both the resistance mutation
(T790M) and the activating mutations (L858R and Del19), while
it does not affect wild-type EGFR. However, the metabolic
pathway and bioactivation mechanisms of NZB are still
unexplored. Thus, using liquid chromatography–tandem mass
spectrometry, we screened for products of NZB metabolism
formed in vitro by human liver microsomal preparations and
investigated the formation of reactive intermediates using
potassium cyanide as a nucleophile trap. Unexpectedly, the
azepane ring was not bioactivated. Instead, the carbon atom
between the aliphatic linear tertiary amine and electron-
withdrawing system (butenoyl amide group) was bioactivated,
generating iminium intermediates as reactive species. Six NZB
phase I metabolites, formed by hydroxylation, oxidation and
N-demethylation, were characterized. Moreover, two reactive
iminium ions were characterized and their corresponding
bioactivation mechanisms were proposed. Based on our results,
we speculate that bioactivation of NZB can be blocked by small
sterically hindering groups, isosteric replacement or a spacer.
This approach might reduce the toxicity of NZB by avoiding
the generation of reactive species.

http://crossmark.crossref.org/dialog/?doi=10.1098/rsos.190852&domain=pdf&date_stamp=2019-08-14
mailto:mzeidan@ksu.edu.sa
http://orcid.org/
http://orcid.org/0000-0002-1147-4960
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


royalsocietypublishing.org/journal/rsos
R.Soc.open

sci.6:190852
2
1. Introduction

Non-small-cell lung cancer (NSCLC) encompasses a heterogeneous group of lung cancer subtypes [1–5],
which affects 90% of patients with lung cancer [6]. This class of lung cancer is associated with several
mutations, such as those in human epidermal growth factor receptor (EGFR). Tyrosine kinase
inhibitors (TKIs) regulate the activity of human EGFR and have become the standard treatment for
patients suffering from advanced EGFR-mutant NSCLC. The first-generation EGFR TKIs (e.g. gefitinib
and erlotinib) bind reversibly and competitively to the ATP-binding site of the EGFR tyrosine kinase
(TK) domain, which improves the outcome of NSCLC patients bearing EGFR-activating mutations
(L858R and Del19) [7,8]. However, after satisfactory responses for a period, patients’ tumours acquired
resistance to first-generation TKIs because of the development of a T790M mutation, which affects the
ATP-binding site of the human EGFR [9–12].

Thus, second-generation EGFR TKIs (e.g. avitinib and dacomitinib) were designed to target
tumours with T790M mutation and EGFR-activating mutations. These compounds showed
promising anti-T790M activity in laboratory experiments. However, their clinical activity towards
T790M-associated NSCLC was limited because of their inhibitory effects on wild-type EGFR,
which resulted in toxicity and a narrow therapeutic index [13–15]. More recently, third-generation
EGFR TKIs (e.g. osimertinib and nazartinib (NZB)) were developed. They irreversibly and
selectively target EGFR with T790M and other mutations, whereas they have little effect on wild-
type EGFR activity [13,14]. Third-generation EGFR TKIs were developed to overcome EGFR
T790M-mediated resistance to first- and second-generation EGFR TKIs with minor toxicity. Third-
generation EGFR TKIs combine effectiveness against NSCLC that is resistant to both first- and
second-generation EGFR TKIs [16,17]. Osimertinib, for example, is approved by both the
American and European regulatory agencies for the management of patients with metastatic
EGFR T790M NSCLC [18]. Pre-clinical data show that NZB, another third-generation EGFR TKI
[19], does not affect wild-type EGFR activity and presents selectivity against mutated EGFR,
similar to other third-generation EGFR TKIs. Nevertheless, it presents some side effects, such as
diarrhoea, pruritus and rash [20].

In addition to the drug itself, by-products of detoxification pathways may be responsible for such
adverse effects in patients. Detoxification involves metabolic reactions that transform endogenous
compounds and xenobiotics, increasing their polarity to be excreted from the human body. Although
metabolites usually exhibit less toxicity than their parents, in some cases, bioactivation may generate
reactive intermediates that are more toxic than the unmetabolized molecules [21–23]. Reactive
intermediates are unstable and can modify DNA and proteins by the formation of covalent bonds,
which is considered the initial step in drug-induced organ toxicity [24,25]. Thus, the identification of
generated reactive metabolites is crucial for understanding drug-induced toxicity. However, reactive
metabolites are usually generated by phase I metabolic pathways and their identification is hindered
by their transient nature. To overcome this limitation, a nucleophile can be used to capture reactive
intermediates, and the resulting adducts can be characterized and identified by mass spectrometry
technique [26,27].

The chemical structure of NZB (N-(7-chloro-1-{(3R)-1-[(2E)-4-(dimethylamino)-2-butenoyl]-3-
azepanyl}-1H-benzimidazole-2-yl)-2-methyl isonicotinamide; figure 1) contains two tertiary nitrogen
atoms (an azepane ring and a terminal dimethylamino group) that can be bioactivated, generating
iminium ion intermediates [28–31]. The formation of unstable intermediates reveals side effects of
NZB as was approved with similar drugs. Cyclic tertiary amine rings can perform bioactivation by
iminium ion generation [28–31]. These intermediates react poorly with glutathione; however, they can
be trapped using potassium cyanide [21,28,29]. The obtained reactive iminium intermediates trapped
efficiently using cyanide to form cyano conjugates can be characterized by mass spectrometry
[26–28,32,33]. Moreover, although the azepane ring was expected to undergo bioactivation during
NZB metabolism, this does not occur. Instead, the carbon between the aliphatic linear tertiary amine
and the unsaturated conjugated system are bioactivated.

It is hypothesized that these reactive metabolites might be responsible for the side effects of NZB.
However, there are no reports on specific metabolic pathways associated with the bioactivation
mechanism of NZB. Thus, the aim of this work was to use in vitro experiments to characterize the
bioactivation pathways of NZB that form reactive intermediates. To do so, we used a scavenging
molecule (potassium cyanide) to trap reactive intermediates of NZB metabolism. This approach was
used because when reactive metabolites form in vivo, they bind to DNA and proteins via covalent
bonds and hence cannot be detected [24,27,32].
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Figure 1. Chemical structure of NZB showing its building blocks.
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2. Material and methods
2.1. Chemicals
NZB was obtained from MedChem Express (Monmouth Junction, NJ, USA). Formic acid, ammonium
formate, potassium cyanide, pooled human liver microsomes (HLMs, M0567) and acetonitrile were
procured from Sigma-Aldrich (St Louis, MO, USA). High-performance liquid chromatography
(HPLC)-grade water (H2O) was generated by an in-house Milli-Q Plus purification system (Burlington,
MA, USA). All other solvents and chemicals were of analytical grade.
2.2. Chromatographic conditions
Resolution and identification of in vitro NZB metabolites and its related cyano adducts from the HLM
incubation mixtures was performed on an Agilent Triple Quadrupole system comprising an Agilent
rapid resolution liquid chromatography (RRLC) 1200 as an HPLC system and an Agilent 6410 triple
quadrupole (QqQ) as a mass detector (Agilent Technologies, Palo Alto, CA, USA) with an electrospray
ionization (ESI) source. Chromatographic resolution of the metabolic mixtures components was done on
a C18 column (length, 150 mm; internal diameter, 2.1 mm; and particle size, 3.5 µm). The column
temperature was fixed at 22 ± 1°C, and we used a gradient mobile phase at a flow rate of 0.2 ml min−1

and consisting of 10 mM ammonium formate (solvent A; pH 4.2) and acetonitrile (solvent B). The
gradients steps involved solvent B (5%; 0–5 min), solvent B (5–50%; 5–35 min), solvent B (50–90%;
35–50 min) and solvent B (90–5%; 50–60 min), with a post time of 15 min. The sample injection volume
was 10 µl. The run time was 60 min, with the chromatographic and mass parameters preoptimized for
NZB. The generation of daughter ions (DIs) of NZB metabolites and cyano adducts was done in the
collision cell by collision-induced dissociation (CID). Mass analysis was performed on a mass detector
using positive ESI source. Nitrogen (N2) was used as drying gas at a flow rate of 11 l min−1, and as
collision gas at a pressure of 55 psi. Capillary voltage, source temperature, fragmentor voltage and
collision energy were set to 4000 V, 350°C, 140 V and 18 eV, respectively. Agilent Mass Hunter software
was used for controlling instrument and data acquisition.
2.3. Human liver microsomes incubation
We first exposed HLMs to several NZB concentrations (2–30 µM) and found that the composition of
metabolites did not vary within this range. However, the concentration of metabolites increased as the
concentration of NZB increased. Thus, 30 µM was used in all experiments to increase the yield of
metabolites and make their characterization easier. The screening of NZB metabolites was performed
in vitro by incubating NZB (30 µM) with HLMs (1.0 mg ml−1) in phosphate buffer (50 mM at pH 7.4)
and MgCl2 (3.3 mM) for 120 min at 37°C in a shaking water bath. The in vitro metabolization of NZB
was stimulated by the addition of NADPH (1.0 mM) and terminated by the addition of ice-cold
acetonitrile [34,35]. The same HLM incubation experiment was repeated in the presence of potassium
cyanide to capture the reactive intermediates. All reactions were performed in triplicate to verify the
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Figure 2. PI chromatogram of NZB (a) and DIs mass spectrum at 37.21 min (b).
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results. The purification of the incubated solutions was performed by a protein precipitation method
involving: (i) centrifugation at 9000g for 15 min at 4°C, (ii) the transfer of the supernatant into clean
vials, and (iii) concentration of the extracts by evaporation under nitrogen stream, followed by
reconstitution in 0.5 ml of mobile phase. To analyse the composition of each sample, 10 µl was
injected into a liquid chromatography tandem mass spectrometry (LC–MS/MS) [36–38]. Controls were
prepared following the same steps except the addition of the drug or NADPH.
2.4. Identification of NZB reactive intermediates
Full mass spectrometry scans and extracted ion chromatograms of the detected mass to charge ratio (m/z)
peaks were used to identify the in vitro metabolites in the incubation mixtures. Molecular ions were used
as parent ions (PIs) for fragmentation into daughter ions (DIs). The fragmentation behaviour was used to
characterize the reactive metabolites formed during NZB metabolism by HLMs in vitro.
3. Results and discussion
3.1. Fragmentation analysis of NZB
The chemical structure of NZB contains five building blocks (isonicotinamide, benzimidazole, azepane,
tertiary dimethyl amine and butenoyl). The fragmentation of the NZB PI generated qualitative DIs that
were used to identify the metabolic changes in the NZB structure. The NZB PI peak eluted at 37.21 min
(figure 2a). The fragmentation of the PI at m/z 495 generated six DIs at m/z 287, m/z 209, m/z 164, m/z 112,
m/z 84 and m/z 58 (figure 2b). The DI at m/z 287 was used to trace any changes on the isonicotinamide and
benzimidazole groups. The DIs at m/z 209 and m/z 164 were used to trace any changes on the azepane
ring. The DIs at m/z 112 and m/z 84 were used to trace any changes on the butenoyl group. The DI at m/z
58 was used to trace any changes on the dimethyl amine group (scheme 1).
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Table 1. In vitro phase I and reactive metabolites of NZB. MS, mass spectrometry; NZB, nazartinib; RT, retention time.

molecule MS scan most abundant fragment ions (m/z) RT (min) metabolic reaction

original drug

NZB 495 287, 209, 164, 112, 84, 58 37.21 no reaction

phase I metabolites

NZB481 481 287, 195, 98, 44 36.12 N-demethylation

NZB509a 509 301, 209, 112, 84 30.19 oxidation at the methyl

attached to the isonicotinamide group

NZB509b 509 287, 233, 126 36.72 α-oxidation of the dimethyl amine group

NZB509c 509 450, 353, 164, 120, 58 43.49 α-oxidation at the azepane ring

NZB511a 511 287, 225, 180, 112 32.76 α-hydroxylation at the azepane ring

NZB511b 511 303, 209, 112, 84 34.14 hydroxylation at the methyl attached to

the isonicotinamide group

reactive metabolites

NZB520 520 493, 207, 164, 83, 57 47.66 cyano addition at the bioactivated carbon

NZB506 506 287, 220, 120, 98 48.95 N-demethylation and cyano addition at

the bioactivated carbon
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3.2. Characterization of phase I nazartinib metabolites and reactive intermediates
Phase I metabolic reactions (hydroxylation, oxidation and N-demethylation) produced six metabolites. In
addition, we detected two reactive intermediates as cyano adducts (table 1).

3.2.1. Identification of the NZB481 phase I metabolite

The NZB481 PI peak eluted at 36.12 min (figure 3a). The fragmentation of the PI at m/z 481 generated four
DIs at m/z 287, m/z 195, m/z 98 and m/z 44 (figure 3b). In comparison with the NZB fragmentation pattern,
the DI at m/z 287 revealed no metabolic change on the isonicotinamide and benzimidazole groups. The
DIs at m/z 195, m/z 98 and m/z 44 exhibited decreases of 14 m/z units. Thus, the DIs at m/z 98 and m/z 44
indicated that an N-demethylation metabolic change occurred on the dimethyl amine group (scheme 2).

3.2.2. Identification of the NZB509a and NZB509b phase I metabolites

The PI peaks of NZB509a, NZB509b and NZB509c eluted at 30.19, 36.72 and 43.49 min, respectively
(figure 4a). The fragmentation of the PI at m/z 509 generated several DIs (figure 4b–d).

The fragmentation of NZB509a resulted in four DIs at m/z 301, m/z 209, m/z 112 and m/z 84 (figure 4b).
In comparison with the NZB fragmentation pattern, the DIs at m/z 209, m/z 112 and m/z 84 revealed no
metabolic change on the azepane ring, dimethyl tertiary amine group and butenoyl group. The DI at m/z
301 showed an increase of 14 m/z units, indicating that the methyl attached to the isonicotinamide group
was oxidized during metabolism (scheme 3).
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The fragmentation of NZB509b resulted in three DIs at m/z 287, m/z 223 and m/z 126 (figure 4c). In
comparison with the NZB fragmentation pattern, the DI at m/z 287 indicated the absence of any
metabolic change on the isonicotinamide and benzimidazole groups. The DIs at m/z 223 and m/z 126
showed increases of 14 m/z units. Thus, the DI at m/z 126 indicated that an oxidation metabolic
reaction occurred on the carbon α of the dimethyl amine group (scheme 4).

The fragmentation of NZB509c resulted in five DIs at m/z 450, m/z 353, m/z 164, m/z 120 and m/z 58
(figure 4d ). In comparison with the NZB fragmentation pattern, the DI at m/z 58 indicated that no
metabolic change occurred on the dimethyl amine group. The DIs at m/z 450 and m/z 353 (resulting
from a retro-Diels–Alder reaction) revealed the oxidation of the azepane ring, in agreement with the
other DIs at m/z 120 and m/z 58 (scheme 5).
3.2.3. Identification of the NZB511a and NZB511b phase I metabolites

The NZB511a and NZB511b PI peaks appeared at 32.76 and 34.14 min, respectively (figure 5a). The
fragmentation of the PI at m/z 511 produced various DIs (figure 5b,c).
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The fragmentation of NZB511a at m/z 511 resulted in four DIs at m/z 287, m/z 225, m/z 180 and m/z 112
(figure 5b). In comparison with the NZB fragmentation pattern, the DI at m/z 287 revealed the absence of
any metabolic reaction at the isonicotinamide and benzimidazole groups, and the DI at m/z 112 indicated
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the absence of any metabolic reaction on the butenoyl group. The DIs at m/z 225 and m/z 180 showed
increases of 16 m/z units, indicating that hydroxylation occurred on the azepane ring (scheme 6).

The fragmentation of NZB511b resulted in four DIs at m/z 303, m/z 209, m/z 112 and m/z 84 (figure 5c).
In comparison with the NZB fragmentation pattern, the DIs at m/z 209, m/z 112 and m/z 84 indicated the
absence of any metabolic reaction on the azepane ring, the dimethyl amine group and the butenoyl
group. The DI at m/z 303 showed an increase of 16 m/z units, indicating hydroxylation on the methyl
attached to the isonicotinamide group (scheme 7).

3.3. Reactive metabolites
In addition to the metabolites described above, two cyano adducts were characterized, indicating the
generation of reactive intermediates in NZB metabolism by HLMs.
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3.3.1. Identification of the NZB520 cyano adduct

The NZB520 PI peak eluted at 47.66 min (figure 6a). The fragmentation of the PI at m/z 520 produced
five DIs at m/z 493, m/z 207, m/z 164, m/z 83 and m/z 57 (figure 6b). The DI at m/z 493 indicated the
loss of 27 m/z units, representing the neutral loss of a hydrogen cyanide molecule. The DI at m/z 164
revealed the absence of any metabolic reaction on the azepane ring. The DIs at m/z 137 and m/z 83
confirmed that cyanide ion addition occurred on the bioactivated carbon α of the terminal tertiary N
atom (dimethyl amine) (scheme 8).
3.3.2. Identification of the NZB506 cyano adduct

The NZB506 PI peak eluted at 48.95 min (figure 7a). The fragmentation of the PI at m/z 506 generated four
DIs at m/z 287, m/z 220, m/z 120 and m/z 98 (figure 7b). The DI at m/z 287 indicated the absence of any
metabolic reaction on the isonicotinamide and benzimidazole groups. The DIs at m/z 220 and m/z 98
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confirmed the addition of a cyanide ion on the activated carbon α of the terminal tertiary N atom
(dimethyl amine) and N-demethylation of the dimethyl amine group (scheme 9).

3.4. Bioactivation mechanism of NZB
The characterization of the NZB506 and NZB520 cyano adducts revealed the generation of reactive
iminium intermediates in NZB metabolism. The hydroxylation of the bioactivated carbon in NZB
followed by dehydration resulted in the generation of reactive iminium electrophiles that were
captured by a cyanide nucleophile to form a stable cyano adduct (scheme 10). The bioactivation
pathway for the formation of reactive intermediates has been previously studied using drugs
containing cyclic tertiary amines. However, herein, the reactive intermediates were generated by
bioactivation of an aliphatic noncyclic carbon attached to a tertiary amine rather than by azepane
bioactivation [39–44].
4. Conclusion
The current study provided experimental evidence to support further work on NZB toxicity. Six in vitro
NZB phase I metabolites and two cyano adducts were identified (figure 8) and bioactivation mechanisms
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Figure 8. Chemical structure of NZB showing the sites of phase I metabolic reactions responsible for the generation of the detected
metabolites. The main bioactive centre is indicated by an asterisk.
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were proposed. The knowledge on bioactivation mechanisms is crucial for determining the chemical
groups involved in bioactivation. This information may be used for the development of new
molecules containing small sterically hindering groups, isosteric replacement or a spacer to prevent
NZB bioactivation; inhibiting the generation of reactive species in this way would result in reduced
toxicity. The data obtained in this study will contribute towards the development of new drugs with
enhanced safety profiles.
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