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ABSTRACT

We model attacks against computer networks in the cyber domain from the attacker’s point
of view. We consider an attacker with limited resources and time, whose goal is to maximize
the expected reward earned by exploiting infected computers, while considering the risks. A
computer network is represented as a graph consisting of computers or routers, where each
computer has unknown expected reward and the routers connect sub-networks of computers.
At time zero the attacker starts from an infected computer, called the “home computer,” while
all the other computers in the network are not infected. In any given period, the attacker can
try to earn a reward by exploiting the subset of infected computers, or can choose to expand
by infecting adjacent computers and routers, which does not accrue any reward. However,
each infected computer must be connected through other infected computers all the way
to the “home computer” for the attacker to be able to exploit it (but this connectivity may
be lost when attacks are detected). For the linear network model, which is a worst-case
scenario from the attacker point of view, we find that the optimal number of nodes to attempt
to infect is of the order square root of the time when the network is sufficiently large. Also,
we determine a critical relationship between the attacker’s probability to infect a new node
and the probability of detection. When this critical condition is met, the attacker should not
try to infect any additional nodes.
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Executive Summary

This research deals with modeling attacks against computer networks in the cyber domain.
This problem received considerable attention recently, as computer networks became ubiq-
uitous in government and industry, and as cyber attacks became more common [1]. As a
consequence, considerable investments are being made in developing defensive and attack
capabilities, the latter mostly driven by government agencies [2] and criminal syndicates.

This work offers a framework for an attacker to plan his or her operation given a limited
prior knowledge on the target network. As a result, this thesis gives the attacker a set of
rules of thumb to guide his decision making towards a policy that is close to optimal. We
present qualitative operational insights that apply in generality.

We study in detail the linear network configuration, where computers are linked in a single
chain. A linear network is a worst-case scenario from the attacker’s point of view because
it is hard to expand within the network, and detection of an attack eliminates access to the
rest of the network. We suggest a policy for an attacker with limited time (to exploit or
expand) and information on the network: infect a precise number of computers before any
exploitation takes place, stop infecting, and exploit for the rest of the time. We analytically
derive the optimal number of computers to infect, which depends on the attacker’s time
horizon. Also, we find theoretical guarantees for the performance of this policy, and verify
them by simulation.

We compare our policy to an oracle who knows the real values of all the computers in
the network in advance. This allows the oracle to achieve an optimal expected reward by
solving a dynamic program. The measure of performance for the recommended policy is
the gap between the oracle’s expected reward and that of the proposed policy by the end of
the time horizon. We find that the optimality gap decreases to zero at a rate slightly larger
than one over square root of the time horizon. When detections are not possible, the attacker
should be indifferent to the value of the probability of successful attack (i.e., probability of
infecting a node when attacking it), and in general should not invest his resources in that
manner.

When introducing risk of attack detection, we find a critical relationship between attack

xi



capability and detection probability, for which the attacker should decide to avoid any
attempt to attack at all. In general, under the suggested model, the attacker should invest
in improving the attack capabilities, rather than on detection avoidance. This result also
yields a tool for the decision maker to capture the trade-off between investments in attack
and evasion capabilities

Last, we offer preliminary work for more advanced and realistic models, leaving the details
for further research.
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CHAPTER 1:
Introduction

This chapter provides the background and themotivation for our problem. The novel aspects
of our work and contribution are presented as well.

1.1 Background and Motivation
This research deals with modeling attacks against computer networks in the cyber domain.
This problem has received considerable attention recently, as computer networks became
ubiquitous in government and industry and as cyber attacks became more common [1].
As a result, considerable investments are being made in developing defensive and attack
capabilities, the latter mostly driven by government agencies [2] and criminal syndicates.

In the recent years, cyber warfare (either offensive or defensive in nature) became common
for different government agencies. This work offers a framework for an attacker to plan his
operation given a limited prior knowledge on the target network. (For convenience, for the
rest of this work we refer to the attacker as a male.) As a result, this will give the attacker a
set of rules of thumb to guide his decision making toward a policy that is close to optimal.
We aim to get qualitative operational insights that apply in generality.

From a broader perspective, this research is applicable to any sequential decision problem in
amulti-armed bandit (MAB) settingwith similar characteristics of risk, stochastic outcomes,
cost for expanding, and a graph structure.

1.2 Model and Approach
The attacker starts from a single infected node under his control; for example, a secretary’s
computer with a password known to the attacker. This node is the attacker’s “home node." At
each turn, the attacker can gather intelligence from this node or try to expand to an adjacent
node. Only infected nodes that are connected to the “home node" can be exploited and
yield reward. Our meaning of reward is generic, and depends on the attacker’s individual
utility. Since our original motivation for the model is intelligence collection with respect
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to a request for information, we often talk about an item being relevant (in which case the
reward is one), or irrelevant (with a zero reward).

We assume that the attacker has some prior knowledge on a part of the network structure
(topology and some characteristic parameters, such as probability of being detected while
attacking a node), and also a prior distribution for the value of the intelligence assets on
the nodes. That is, there is a prior for the probability µ that a node yields a 1 (meaning,
relevant item) or a 0 (meaning, irrelevant item). Specifically, we assume a Beta prior for
the collection of parameters µi for each node i; this assumption makes the model tractable
because the Beta distribution is conjugate for the Bernoulli distribution.

A risk for the attacker is to be detected while trying to infect a new node; the risk of
detection while exploiting an infected node typically is very small, and assumed to be
zero. If detected, the source node from where the attack was launched and all its edges are
removed from the graph. Given that, the attacker tries to maximize the expected number of
relevant items collected from the network nodes, taking into account the risk of his actions,
over some finite time horizon determined by the attacker.

We use anMAB framework for a policy that allows learning, and incorporate a methodology
to consider the opportunities and risks associated with expanding the network under the
control of the attacker.

1.3 Novelty
The novelty of our approach is in applying an MAB framework to a network whose arms
need to be acquired: in a given period, the attacker can choose between exploring/exploiting
the part of the network under his control (and thus earning a random reward) or expanding
the infected sub-network amenable to exploration/exploitation. Another novelty is that
we force the attacker to have connectivity back to his entrance node in order to retrieve
information. These two problem conditions make the model much more realistic, and under
some reasonable assumptions it is analytically tractable. From a more general perspective,
in relation to the exploration and exploitation phases classical inMAB settings, we introduce
a novel phase: infection.

2



1.4 Research Questions
The main operational issues we address in this work are:

• What are the characteristics of a good policy for the attacker? Can an optimal policy
be found?

• How far should an attacker expand into the network? What parameters might affect
the attacker’s behavior?

• What is the value of information about the network for the attacker?
• How sensitive should the attacker be to the risk of detection and his capabilities to
infect new computers?

3
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CHAPTER 2:
Background and Literature Review

In this chapter, we give the reader a brief overview of the theoretic background to this thesis
and guidance to relevant sources of information.

2.1 Multi-armed Bandit Problem
The multi-armed bandit problem is a model for a gambler standing in front of several slot
machines, who needs to decide on the sequence of arms to be played (i.e., a sequential
sampling policy). Each slot machine generates prizes from a distribution that is unknown
to the gambler. For each coin played, the gambler chooses a specific machine to play.
The gambler needs to decide at each turn which machine to play in order to maximize
the expected sum of rewards earned through the sequence of trials. Without any prior
knowledge on the arms’ distributions, the gambler needs to balance “exploiting" the best
machine so far and “exploring" new machines that might be better. The idea is that without
exploring every arm, and just focusing on the arm that appears to be the best, the gambler
can get stuck in a bad arm due to a sequence of prizes that favors the sub optimal arm.
Essentially, the MAB is a learning problem through sequential trials. The key in the MAB
setting is to balance the exploration of the bad arms against the exploitation of the arm that
appears to be the best.

2.1.1 Formulation
Next, we discuss the main aspects of the classical MAB problem. Let us denote:

• K as the number of bandits (slot machines). The bandits can be seen as a set of
distributions. Each of the distributions has an expected value for the reward given to
the gambler.

• µ1, µ2, ...µK as the distributions’ means (unknown to the gambler, and finite).
• n as the time horizon; that is, the number of turns played (equivalent to the gambler’s
number of coins).
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• R(n) as the regret, which is the difference between the reward obtained by always
playing the best arm, and the sum of the collected rewards by the gambler. Letting
µ∗ = max{µk} and r(t) be the reward collected at time t, the regret by time n is given
by R(n) = nµ∗ −

∑n
t=1 r(t).

• E[R(n)] = nµ∗ − E
[∑n

t=1 µIt
]
as the expected regret by time n, where It is the arm

played at time t, and the expectation is with respect to the distribution of rewards up
to time t and, possibly, of the arms selected before time t.

A special case is when the rewards are binary, 1 or 0, and reward distributions are Bernoulli
with parameter µk (hidden to the gambler). For a reward distribution F with support over
(0, 1) with mean µ̃, we can define a Bernoulli random variable X with parameter µ̃ (and
hence with the same mean since E(X) = P(X = 1) = µ̃). It follows that the Bernoulli MAB
has the same expected performance as the MAB for rewards drawn from F, so the Bernoulli
reward setting includes as a special case any distribution with support over [0, 1].

2.1.2 Lower Bound
Lai and Robbins [3], and later Burnetas and Katehakis [4], established the lower bound on
the number of sub optimal draws for any sampling policy to be

lim inf
n→∞

E[Nn( j)] ≥
1

KL(µk .µ∗)
log(n), (2.1)

where Nn( j) is the number draws for the sub optimal arm j after n turns, and KL is the
Kullback-Liebler divergence between probability distributions of arm k and the best arm
under consideration. This result means that the best expected regret achievable for a gambler
is of order log n/KL(µk .µ

∗) plus other terms that are sub-logarithmic (i.e., o(log n)).

Setting the stage for Chapter 3, in this thesis we deal with Bernoulli distributions with
parameter µ j for arm j, and µ∗ is the best available parameter (i.e., µ∗ > µ j for all j,
and there is a single best arm). As the distributions are Bernoulli, the only two possible
outcomes are 0 and 1, and the KL divergence is:

KL(µ j ; µ∗) = µ j log
µ j

µ∗
+ (1 − µ j) log

1 − µ j

1 − µ∗
. (2.2)

The KL divergence in Equation (2.2) equals zero for µ j = µ∗, and is non-negative and
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convex when viewed as a function of µ j . Also, it approaches infinity as µ j goes to zero or
one. We use these facts later in Chapter 3.

As a closing remark, the lower bound for the expected regret in Equation (2.1) is very
important because it can be used as a baseline to evaluate candidate policies; that is, a
policy is considered good if its expected reward is close to the right-hand side in Equation
(2.1).

2.2 Literature Review for Multi-armed Bandits
MAB problems have been extensively researched in the last several decades; see [5] and [6],
and references therein. The research in this thesis is using some findings and notions from
the following papers.

Auer, Cesa-Bianchi and Fischer [7] suggest policies for finite-time analysis ofMABprob-
lems based on upper confidence bounds (UCB). As in the MAB, the measure of per-
formance is the expected regret (i.e., the expected difference in cumulative rewards 
between the suggested policy and the optimal course of action if the parameters 
were known). They suggest several different policies for K-armed problem, where 
the K machines have an arbitrary reward distribution with support in [0, 1], and for 
the Gaussian reward case. They prove an upper bound on the expected regret that 
matches (up to the leading term) the best possible lower bound shown in Equation 
(2.1). Their policy for random rewards with support in [0, 1], labeled UCB1 by the 
authors, is shown next.

7



1. Initialization: Play each machine once.

2. Loop:
For each machine calculate

Rj = x̄ j +

√
2 log n

n j
,

where
n - overall number of plays done so far.
x̄ j - the average reward obtained from machine j.
n j - the number of times machine j has been played.

3. Pull: machine j that with the biggest Rj .

4. Return to step 2.

The authors of the paper prove an upper bound for the expected regret under this
policy

E[Rn] ≤

[
8

∑
i:µi<µ∗

(
log n
∆i

)]
+

(
1 +

π2

3

) ©­«
K∑

j=1
∆ j

ª®¬ , (2.3)

where ∆ j = µ
∗ − µ j is the difference between the expected reward of the best arm to

the j’th arm.

Two items are of notice: First, the expected regret achieves the logarithmic growth
mentioned earlier, albeit with a coefficient that is larger than one over the KL di-
vergence; second, the upper bound is a function only of the expected regret values
(µ1, . . . , µK) of the K different machines. We will use the second fact in our work.
Several other researchers take the same upper confidence bound of the UCB1 al-
gorithm, and improve the constant and additive coefficients that appear in Equation
(2.3). However, none of these approaches result in a log n/KL(µ j, µ

∗) finite time
convergence.

Kaufman, Cappe and Garivier [8] further investigate the ideas presented in [7], by apply-
ing a Bayesian framework using a prior distribution for the reward of the K machines.
Specifically, they consider Bernoulli distributed rewards in a Bayesian setting where

8



each arm has a Beta prior for the Bernoulli parameter µk .
In their algorithm, at time t the gambler plays the arm with largest 1 − 1/t posterior
quantile,

max
k=1,...,K

{
Q(1 − 1/t;αk,t, βk,t)

}
.

For an arm k the value of Q(1 − 1/t;αk,t, βk,t) is the value of x that solves

1 − 1/t = FBeta(x;αk,t, βk,t), (2.4)

where FBeta(x;αk,t, βk,t) is the Beta cumulative distribution function with parameters
(αk,t, βk,t). Equation (2.4) is solved numerically.

This approach performs very well in relation to UCB methods in terms of expected
regret; see the numerical section in [8]. Also, it is especially tractable because the
posterior for µk is Beta distributed with parameters αt = α0+ I1(t), and βt = β0+ I0(t),
where I1(t) and I0(t) are the number of collected prizes up to time t that were equal to
1 and 0 respectively, and Beta(α0, β0) is the initial prior. That is, the Beta distribution
is a conjugate prior for the Bernoulli distribution.

Why is the term 1/t in the posterior quantile? Motivated by the lower bound on
the expected regret in Equation (2.1), we want the probability of sampling from a
suboptimal node to be of order 1/t by stage t, so that the expected number of pulls
from that arm is of order log n over a time horizon n. Sampling from the arm with
largest 1−1/t posterior quantile leads to P(sampling a sub optimal arm) of order 1/t;
see [8] for the details.

The algorithm is presented next.

9



1. Require: n (horizon), Π0 (initial prior), c (parameters of the quantile).
2. For t = 1 to n do:
3. For each machine j calculate:

q j(t) = Q
(
1 −

1
t(log n)c

;α j,t−1, β j,t−1

)
.

4. Draw a sample from arm j∗ with the biggest q j(t),

X j∗ ∼ Ber(µ j∗).

5. Update
α j∗,t = α j∗,t−1 + X,

β j∗,t = β j∗,t−1 + 1 − X .

In their paper, the horizon-dependent term (log n)c is said to be an artifact of the the-
oretical analysis that guarantees finite-time logarithmic regret bound for c ≥ 5. It is
emphasized that in simulations, the choice of c = 0 is proved to be the most satisfying.

For a binary reward bandit problem, they proved an upper bound for the maximum
number of draws for each sub optimal machine for binary reward bandit problem
(which can be easily converted to an upper bound on the expected regret). For any
ε > 0 and c ≥ 5, the authors show that

E[Rn] ≤

K∑
k=1,µk,µ∗

µ∗ − µk

KL(µk, µ∗)
(1 + ε) log(n) + oε,c(log(n), (2.5)

where KL(µ j, µ
∗) is the Kullback-Leibler divergence (see Section 2.1.2), and

oε,c(log(n)) means a term that is dominated by log(n) asymptotically for any given ε
and c.

By using the lower bound of sub optimal draws given by Lai and Robbins in [3] (see
2.1.2), the leading term in this result is the same as the lower bound and hence UCB
Bayes is leading-order optimal.
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Wang, Audibert and Munos [9] suggest a formulation for the so-called infinitely many-
armed bandits problem (i.e., the number of arms is larger than the possible number
of experiments), where the expected reward for each arm is random. They suggest
an optimal number of arms (K) to be randomly drawn from the set of arms, and then
apply UCB-V exploitation policy on this set. (UCB-V is an extension on UCB1 that
includes a variance estimator, rather than using a worst case bound on the variance).
The expected regret is affected by the number of arms K in two opposite ways:

• Term I: The expected regret caused by not having the best arm in the set of K

randomly chosen arms. This term is a function of chosen number of arms K ,
the parameters of the distribution, and a linear term corresponding to the time
horizon. This term decreases as the player chooses a bigger set of arms (bigger
K).

• Term II: The expected regret caused by exploring sub optimal arms among the
K arms drawn. This term is the cost of learning until finding the best arm among
the chosen K arms, and depends on the specific sampling algorithm (UCB-V
in this paper), the time horizon, and the number of arms. This term increases
linearly with the number of arms.

Wang et al. employ UCB-V on a set of K arms policy as exploitation method:

1. At time t, play an arm in the set maximizing Bk,Tk,(t−1),t where:

• Bk,Tk,(t−1),t , X̄k,s +

√
2Vk,sEt

s + 3E
s .

• Number of times arm k was chosen by the policy during the first t plays: Tk(t).
• The mean reward estimator: X̄k,s ,

1
s
∑s

j=1 Xk, j .
• The variance estimator: Vk,s ,

1
s
∑s

j=1(Xk, j − X̄k,s)
2.

• Et is a non-decreasing sequence of nonnegative real numbers (typically log t).
2. Set t = t + 1 and go back to 1.

The authors prove an upper bound for the regret as a function of the number of arms
K ,

E[Rn] ≤ C
{
(log K)nK−1/β + K(log n)E

[
(
V(∆)
∆
+ 1) ∧ (n∆)

]}
,

where n is the time horizon, ∆ = µ∗− µ is the difference between the expected reward
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of an arbitrary arm (µ) and the best one available (µ∗), C is a positive constant, and
β is a parameter that depends on the prior distribution for the rewards.

The authors determine an optimal (in terms of expected regret) number of arms to
draw, and then apply an exploitation policy (UCB-V) on this set. In Chapter 3,
we extend these ideas to include the acquisition of arms (i.e., infection of arms via
Bernoulli trials) in a linear network setting, with the exploration of arms done using
Bayesian UCB [8].

2.3 Literature Review for Cyber Models
In this section we comment on several recent papers devoted to cyber security. The literature
on this area is vast and dynamic, so we make no claim of completeness. The three papers
below not only deal with “cyber," but also employ MAB techniques.

Liu and Zhao [10] consider a large-scale cyber network, with components that are either
in a normal or abnormal state, evolving over time according to an arbitrary stochastic
process. The defender can select a fixed number of components to probe and fix
if they are in the abnormal state. The authors describe and analyze a policy that
minimizes the infinite horizon cost incurred by the components in abnormal states.
The methodological technique is rooted in restless MAB.

Zheng, Shroff, and Mohapatra [11] model a defender again so-called advanced persistent
threats that pose two types of cost: security updates, and cost of being attacked. The
authors develop upper confidence bound techniques that produce low regret in relation
to the policy that assumes knowledge of the attack times distribution.

Qian, Zhang, Krishnamachari, and Tambe [12] study the problem faced by a defender
of a number of assets subject to attack. The issue is that the defender cannot protect
all the assets simultaneously. In their model, the attack intensity in the unprotected
assets changes according to a Markov process with unknown transition matrix, while
the attack intensity follows a Markov process with different transition matrix for the
assets protected by the defender. The issue for the defender is to learn the transition
matrices over time, so as to optimally allocate the finite resources at his disposal. The
authors use restless MAB ideas to formulate and solve the problem.

Elderman, Pater, Thie, Drugan, and Wiering [13] examine an attacker-defender stochas-
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tic zero-sum game, where the goal of the attacker is to reach a specific node located
in a known place in the network. The attacker and defender allocate resources along
the intermediate nodes that lie between the starting node and the node targeted by
the attacker. The authors discuss several strategies for both the attacker and defender,
rooted in approximate dynamic programming, that are suitable when the game is
played repeatedly.
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CHAPTER 3:
Problem Formulation and Methodology

In this chapter we present the problem formulation, our approach to the problem, and the
theory behind it. We consider a conscious attacker in the cyber domain whose goal is
to maximize the intelligence yield from a computer network, given that he has access to
only a single computer – the “home node.” The attacker can infect new computers and
network devices (routers) for exploring the network, and can exploit each infected computer
to yield intelligence. The intelligence yield from each infected computer is random, with a
distribution not known to the attacker. Routers don’t provide any intelligence, but give some
information about the expected intelligence value contained in the computers connected to
it.

Our baseline is a multi-armed bandit (MAB) model. We adapt the basic MAB framework
to our setting by introducing uncertainties, risks, graph structure, network devices, and the
fact that in order to exploit an infected computer the attacker has to have a path from the
home node.

This chapter is organized as follows. In Section 1we provide background for linear networks
comprised uniquely of computers. Section 2 deals with the best-case scenario – a perfect
attacker who knows the expected reward in each computer. In Section 3 we discuss the
model when the attacker has a uniform prior for the reward distribution parameters. In
Section 4 we analyze the case when failed attacks may be detected. Section 5 extends the
linear network case to include network devices (routers). In the last section we analyze the
case when the prior on the reward distribution parameters is not uniform.

3.1 Background
We study a linear network comprising M nodes – meaning M nodes connected in a chain
topology. All of the nodes are computers with expected reward µ1, . . . , µM which are
generated from a Beta distribution when the network is created. We assume that the
attacker knows the parameters of the generating Beta distribution, because it symbolizes
intelligence about his target network. As discussed in Chapter 2, when the rewards have
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a Bernoulli distribution we end up with a Beta posterior for the reward probabilities, thus
making the problem analytically tractable.

The attacker always starts with an infected computer. This is the “home node”, which
enables the attacker access to the network and allows sending the gathered intelligence back
to the attacker’s headquarters. A linear network is illustrated in Figure 3.1. In the figure,
the attacker has only one infected node (in red) – the “home node.”

Figure 3.1. Linear Network Illustration.

We consider two special cases:

• The prior parameters of the Beta distribution are α0 = β0 = 1, meaning that µi’s have
a uniform distribution U(0, 1).

• At least one of the prior parameters is not equal to one, so the prior distribution for
the µi’s is no longer U(0, 1).

Several Beta probability density functions for different parameter combinations are shown
in Figure 3.2.

As it turns out, the two special cases above result in different optimal attack policies, so we
study them separately in later sections. In the rest of this section we explore the aspects
they share in common.

The attacker wishes to maximize the expected total reward derived from sampling the
computers under his control, over a discrete time horizon n. The linear network case is
relatively easy to analyze because the subnetwork connected to the home node is linear,
implying that in any epoch the attacker has two main alternatives:

• Explore or exploit:
The attacker draws a single random reward – a zero or one, drawn from a Bernoulli
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Figure 3.2. Beta Distribution with Various Parameters.

distribution with unknown parameter µ – from one of the computers already infected.
By exploring we mean that the attacker attempts to cast a wider net and gain infor-
mation about computers that have not been sufficiently sampled so far. The exact
meaning of “sufficiently” depends on the specific algorithm but it typically is of order
log(time). Conversely, exploiting refers to sampling from one of the computers that
appear to be the best so far (i.e., that have the largest posterior mean). The attacker
evaluates each computer i via the posterior distribution for its expected reward

µi ∼ Beta(α0 + # of 1’s so far, β0 + # of 0’s so far).

As the number of observations for a computer gets large, the posterior distribution
becomes approximately Gaussian, centered at the posterior mean

α0 + # of 1’s so far
α0 + β0 + # of observations so far

,

with a variance of order one over the number of observations so far. For example, when
(α0 = 40, β0 = 40) the maximum difference with respect to a Gaussian probability
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density function with matching mean and variance is 0.0017. Hence, as the number
of observations gets large, the attacker gains a degree of certainty about the reward
he can expect to obtain by sampling from each computer.

• Attack:
The attacker attempts to infect a computer connected to the infected subnetwork, so
that it can be explored/exploited in the following periods. Due to the linear network
structure, there is only one uninfected computer connected to the infected subnetwork
(see Figure 3.1), the one connected to the right-most infected computer. Attacks
succeed with a constant probability s, and are independent of each other. Failed
attacks are detected with a constant probability d (those probabilities are assumed
to be the same for all the computers in the network). If a failed attack is detected,
then the attacker loses access to the computer from which he attacked, and to the
uninfected part of the network. In the linear network case, this means that,
? The attacker ends up with control over the original infected subnetwork minus

the rightmost infected computer (from where the attack was launched).
? The attacker only can explore/exploit the computers that remain under his control

for the duration of the operation. Infecting other computers is no longer possible.
In particular, when d = 0 it follows that the number of trials to infect a new com-
puter has a Geometric distribution with parameter s (known to the attacker), so its
expectation is 1/s. Intuitively, when the attack probability is low in relation to the
remaining time horizon, the attacker is better off staying put, and explores/exploits
the computers under his control.

A judicious policy balances exploration, exploitation, and infection; the latter is the main
methodological contribution of our work. The main operational questions we wish to
answer are:

1. How far out should the attacker infect computers in the network?
2. What is the expected performance of a smart attacker in relation to an attacker who

knows all the µi values? This is a measure of the learning that takes place.
3. What are the effects of the successful attack probability s and of the detection proba-

bility d?
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3.2 Perfect Attacker
A perfect attacker has full and precise information about the network, meaning that the
values of all computers µ1, . . . , µM are known in advance, and there is no need to do any
exploration (no learning). At each turn, the attacker decides whether to stay and exploit the
computers he already has, or try to infect the next computer in the network (which involves
uncertainty regarding the success of infection and possible detection). An illustration of a
linear network from the perfect attacker’s point of view is shown in Figure 3.3.

Figure 3.3. Linear Network for a Perfect Attacker.

Knowing the values of the computers, a perfect attacker can act optimally by solving a
dynamic program to handle the randomness of each attack success or failure. Let V∗

(n,K)

be optimal value function from the attacker’s point of view given n remaining turns and K

infected computers; that is, V∗
(n,K) is the maximum expected reward that the attacker might

hope to obtain by time n. The problem can be formulated recursively as

V∗
(n,K) = max

µ
∗
1:K + V∗

(n−1,K)︸            ︷︷            ︸
stay

,

sV∗
(n−1,K+1) + (1 − s)(1 − d)V∗

(n−1,K) + (1 − s)d(T − 1)µ∗1:K−1︸                                                                         ︷︷                                                                         ︸
expand


, (3.1)

where µ∗1:K is the best computer in the subnetwork consisting of the first K computers,
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µ∗1:K = max
j=1,...,K

µ j . (3.2)

The attacker’s dilemma is between staying and exploiting the current best computer for the
next n turns, or try to infect the next one – including the possibility of a failed attack (a
wasted turn) and the possibility of detection (the right-most infected computer vK will be
removed and so will his the access to the rest of the network).

An optimal decision can be made by solving the full dynamic program. The stopping step
is when there is only one turn to go – then it is obvious that a “stay” decision is superior
(because the attacker does not have enough turns to infect a new computer and explore it).
An efficient implementation of the above dynamic programming approach is possible by
storing the previous results instead of recalculating them.

3.2.1 Properties
We summarize the analysis of the perfect attacker scenario next. Later in this chapter
we compare our suggested policy for attackers who do not know the rewards parameters
µ1, . . . , µM to the perfect attacker.

Proposition 3.2.1 V∗
(n,K) is non-decreasing with respect to n.

Proof By the definition of V∗
(n,K) and the max operator:

V∗
(n,K) ≥ µ

∗
1:K + V∗

(n−1,K),

since µ∗1:K ≥ 0 ∀x.

Proposition 3.2.2 V∗
(n,K) is a threshold policy – once decided to stay, the attacker will not

attack any more. The dynamic programming recursion is,
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V∗
(n,K) = max


nµ∗1:K︸︷︷︸
stay

, sV∗
(n−1,K+1) + (1 − s)(1 − d)V∗

(n−1,K) + (1 − s)d(n − 1)µ∗1:K−1︸                                                                         ︷︷                                                                         ︸
expand


. (3.3)

Proof Let assume that at n turns to go and at location K the attacker decided to exploit and
not attack. Hence,

V∗
(n,K) = µ

∗
1:K + V∗

(n−1,K) ≥ sV∗
(n−1,K+1) + (1 − s)(1 − d)V∗

(n−1,K) + (1 − s)d(n − 1)µ∗1:K−1

implies
µ∗1:K ≥ sV∗

(n−1,K+1) + (sd − s − d)V∗
(n−1,K) + (1 − s)d(n − 1)µ∗1:K−1.

Now at the next turn, where there are T − 1 turns to go,

µ∗1:K + V∗
(n−2,K) ≥ sV∗

(n−1,K+1) + (sd − s − d)V∗
(n−1,K) + (1 − s)d(n − 1)µ∗1:K−1 + V∗

(n−2,K).

We already showed that V∗
(n,K) is non-decreasing with respect to n, so V∗

(n−1,K) ≥ V∗
(n−2,K),

and

µ∗1:K + V∗
(n−2,K) ≥ sV∗

(n−2,K+1) + (sd − s − d)V∗
(n−2,K) + (1 − s)d(n − 2)µ∗1:K−1 + V∗

(n−2,K).

Therefore,

µ∗1:K + V∗
(n−2,K) ≥ sV∗

(n−2,K+1) + (1 − s)(1 − d)V∗
(n−2,K) + (1 − s)d(n − 2)µ∗1:K−1.

The attacker will choose again to stay and not attack.

Proposition 3.2.3 V∗
(n,K) is non-decreasing with respect to K .

Proof We will prove separately for each case of the max argument.

21



If V∗
(n,K) = nµ∗1:K , then using the fact that µ

∗
1:K is a non decreasing function of K ,

V∗
(n,K+1) ≥ nµ∗1:K+1 ≥ nµ∗1:K = V∗

(n,K).

In case V∗
(n,K) = sV∗

(nT−1,K+1) + (1 − s)(1 − d)V∗
(n−1,K) + (1 − s)d(n − 1)µ∗1:K−1, we prove the

statement by contradiction. Let’s assume that V∗
(n,K) is a decreasing function in K . Hence,

V∗
(n,K) ≤ sV∗

(n−1,K) + (1 − s)(1 − d)V∗
(n−1,K) + (1 − s)d(n − 1)µ∗1:K−1.

By Proposition 3.2.2, V∗
(n,K) is non decreasing in n,

V∗
(n,K) ≤ sV∗

(n,K) + (1 − s)(1 − d)V∗
(n,K) + (1 − s)d(n − 1)µ∗1:K−1,

so that
V∗
(n,K) ≤ V∗

(n,K)(1 − d + sd) + (1 − s)d(n − 1)µ∗1:K−1.

Hence V∗
(n,K) ≤ (n − 1)µ∗1:K−1. But, from our assumption,

V∗
(n,K) ≥ T µ∗1:K > (n − 1)µ∗1:K−1.

The last inequality is greater and not greater-equal because µ∗1:K > 0, ∀K . We have contra-
diction.

Proposition 3.2.4 Once the attacker infects the computer with the best value he will decide
to stay.

Proof Without loss of generality, we assume the µK = µ∗1:M and the attacker infected all
the computers up to computer vK . Now we prove that the attacker will always decide to stay.

By Proposition 3.2.3, V∗
(n,K) ≤ V∗

(n,M). Clearly, after infecting the entire network (all M

computers), the only possibility is to “stay” and exploit. Hence:

V∗
(n,K) ≤ V∗

(n,M) = nµ∗1:M = nµ∗1:K .

From the other side, by definition V∗
(n,K) ≥ nµ∗1:K . So V∗

(n,K) = nµ1:K , meaning that it’s
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optimal for the attacker to “stay.” Thus, by Proposition 3.2.2, the attacker will not try to
attack any more.

From the operational standpoint, the main take away from these results is that the optimal
policy is threshold-type: The attacker attempts to expand without any exploitations and,
once the expansion phase ceases, the attacker exploits the best arm under his control for the
duration of the operation.

The perfect attacker model presents a best-case scenario for the attacker, because he knows
the real values of all the computers in the network and does not need to do any learning
for finding the best one. In the next sections we study the more realistic case when an
attacker only has a prior for the reward parameters µ1, . . . , µM , and develop algorithms
whose performance approaches that of the perfect attacker. Why should a wise attacker
invest in perfect information when systematic learning is good enough?

3.3 Uniform Prior Scenario
In this scenario we consider an attacker who controls the first K computers by time t, and
whose prior distribution for the expected reward of each computer isU(0, 1) D

= Beta(α0, β0),
with α0 = β0 = 1. As discussed above, the attacker can explore/exploit an infected
computer, or attack the next uninfected computer in the chain. Typically, the number of
computers in the network M is larger than the time horizon n; so, for all practical purposes,
the attacker views the network size as infinite. The case when M ≤ n is a special scenario
of our analysis below, and is discussed at the end of Section 3.3.2. We initially assume that
attacks cannot be detected (i.e., d = 0); this assumption is relaxed in Section 3.4.

3.3.1 Exploration and Exploitation of Computers
Let K be the number of infected computers out of M computers in the network. In the
explore/exploit case, the attacker samples from the computer with largest 1 − 1/t posterior
quantile, Q(1 − 1/t;αv,t, βv,t); see Equation (2.4).

As discussed in Chapter 2, the main result of the Bayesian UCB approach is that an upper
bound (c.f., Equation (2.5)) on its expected regret is of the same order as the lower bound

23



for the Bernoulli reward setting (recall Equation (2.1)),

log n
K∑

i=1,µi,µ∗1:K

µ∗1:K − µi

KL(µi, µ
∗
1:K)

, (3.4)

where µ∗1:K is defined in Equation (3.2), and KL(x, p) is the KL divergence for Bernoulli
random variables with parameters p and x (c.f., Equation (2.2)). Hence, Bayesian UCB is
considered “optimal,” as its expected regret is sandwiched between two bounds with the
same leading order.

Since each µi is U(0, 1) distributed, stopping attempts to infect other computers and explor-
ing/exploiting leads to an expected regret of order

E


K∑
i=1,µi,µ∗1:K

µ∗1:K − µi

KL(µi, µ
∗
1:K)

 log n,

where the expectation is with respect to K independent standard uniform distributions (on
the section (0, 1)).

In order to study the expectation above, without loss of generality, we write µ(1) ≥ µ(2) ≥

· · · ≥ µ(K) for the ordered statistics of the µi values. Then, we have

K∑
i=2

E


µ(1) − µ(i)

µ(i) log(µ(i)/µ(1)) + (1 − µ(i)) log( 1−µ(i)1−µ(1) )

 ≤ .5
K∑

i=2
E

[
1

µ(1) − µ(i)

]
, (3.5)

by Pinkser’s inequality (essentially, it is a quadratic lower bound on the KL function). The
random variable µ(1)− µ(i)

D
=Beta(i−1,K − i+2); this can be seen by putting K +1 uniforms

on a circular rope of length 1, and choosing one of them as the baseline (call it µ(K) and set
it to 0). Then,

µ(1) − µ(i)
D
= µ(i−1) − µ(K)

D
= µ(i−1) − 0 D

= Beta(i − 1,K − i + 2),

where the last equality is a well-known result that relates a Beta random variable to the
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order statistics of U(0, 1) samples; see, for example [14]. Therefore, Equation (3.5) equals

.5
K∑

i=2
E

[
1

Beta(i − 1,K − i + 2)

]
= .5

K∑
i=2

K
i − 2

≈ .5K log K,

the first equality holds since one over a Beta random variable also is a Beta with inverted
parameters (this can be shown by direct integration), and the ≈ is justified by approximating
the sum by

∫
1/x. The division by zero in the last approximation can be resolved by a

finer analysis of Pinkser’s inequality (see [15]). While numerical results via Monte Carlo
simulation (discussed in the next chapter) suggest that the upper bound is conservative, the
conservatism does not have a significant impact on the attacker’s optimal policy because
the approximation does not affect the leading order term (this also is illustrated in Chapter
4).

In conclusion, the expected regret due to not attempting to infect any more computers when
K computers already are infected, and n − t turns remain, is bounded above by

.5K log K log(n − t). (3.6)

The expression in Equation (3.6) is equivalent to a bound on the price in performance the
attacker expects to pay for finding the best computer out of the K he has already infected.
If he knew a priori the best computer out of computers 1, . . . ,K , then this price would be
zero, because there is no need for a learning process and the attacker will always exploit the
best computer within the K infected computers.

As we will see momentarily, the attacker attempts to infect arms non-stop up to a point, and
from there he just exploits/explores the acquired arms. Hence, the Bayesian UCB algorithm
is run over the set of “unexplored” infected arms, all of them with a uniformly distributed
prior for the Bernoulli parameter µ.

3.3.2 Infecting Computers
Next we study the infection aspect of the attacker’s problem. The benefit of infecting more
computers is that it increases the chance of acquiring a computer with high value. The
negative side of the coin is that, due to the uncertain success/fail nature of the attacks, the
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attacker has less time to explore/exploit the computers he already controls.

To study the problem we consider an attacker who wishes to minimize his cumulative
expected regret, given by

E[Rn] =

n∑
t=1
(best possible reward at t − E[reward at t]), (3.7)

where we choose the best possible reward at time t, to be the maximum of M uniforms. As
mentioned before, we work in the scenario where the length of the network M ≥ n, so the
attacker can infect at most n computers. Hence, we choose the best possible reward to be
the maximum of n uniforms. Regarding the second term in Equation (3.7), the expected
reward of the attacker’s action at time t is 0 if he decides to attack a new computer.

If the attacker attempts to infect K computers one after the other, then Equation (3.7) is
bounded above by

K − 1
s︸︷︷︸

expected time to acquire K−1 computers

+

(
n −

K − 1
s

)
(E[µ∗1:n] − E[µ∗1:K])︸                                     ︷︷                                     ︸

expected regret of ending up with the best of K computers

(3.8)

+ .5K log KE
[

log(n − (K − 1) − Negative Binomial(K − 1; 1 − s))
]

︸                                                                                   ︷︷                                                                                   ︸
bound on expected regret of finding the best computer out of K computers

.

We compute the expected rewards of the best computer out of K computer E[µ∗1:K] next,

E[µ∗1:K] =

∫ 1

0
P(µ∗1:K > x)dx =

∫ 1

0
(1 − FK

U(0,1)(x))dx = 1 −
∫ 1

0
xK dx

= 1 −
1

K + 1
, (3.9)

where FU(0,1) is the cdf of aU(0, 1) random variable. Hence, an upper bound on the expected
regret is

E[Rn] ≤
K − 1

s
+

(
n −

K − 1
s

) (
1

K + 1
−

1
n + 1

)
+ .5K log K log n (3.10)
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=
K − 1

s

(
1 +

1
n + 1

−
1

K + 1

)
+ n

(
1

K + 1
−

1
n + 1

)
+ .5K log K log n

≤
K
s
+

n
K
+ .5K log K log n

≤
n
K
+ K max

(
log K log n,

2
s

)
.

Therefore, for K ≥ 3 > exp(1) and log n ≥ 2/s (both realistic since K ≥ 1 at time 0 and
typically s > 1/2), the attacker solves the optimization problem

min
1≤K≤n

g(K, n), (3.11)

where
g(K, n) =

n
K
+ K log K log n.

Rather surprisingly, the attack success probability plays no role in how deep the attacker
should go into the network. The operational implication of this insight is immediate: the
attacker should not invest significant resources in increasing the probability of successful
attacks (as long as log n ≥ 2/s). As we will see later in this chapter, this conclusion is no
longer valid when failed attacks are detected with positive probability.

The optimization problem in Equation (3.11) can be solved numerically for any n given. In
more generality, we have the bounds

n
K
+ K log n ≤ g(K, n) ≤

n
K
+ CK1+γ log n, (3.12)

for γ > 0 arbitrarily small and C > 0 finite, since CKγ > log K for any K ≥ 1. Optimizing
the bounds in Equation (3.12) leads to

K∗(n) = O
(

n
log n

)1/2
. (3.13)

With this value of the number of computers to infect, the expected regret (c.f., Equation
(3.7)) becomes

E[R(n)] = O (n log n)1/2 . (3.14)
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From this analysis, we conclude that, for n ≥ e2/s:

• The number of computers to infect grows roughly like the square root of the time
horizon; see Equation (3.13).

• The expected regret grows like the square root of time times the logarithm of time;
see Equation (3.14).

These insights are supported by the numerical examples in the next chapter.

To close this section we consider the scenario where the total number of computers in
the network M is smaller than the time horizon n. In this case, the attacker infects
every computer in the network as the time horizon n gets large (specifically, larger than
(M/log M)2). In particular, the second term in Equation (3.8) disappears, and the expected
regret is of order M log M log n. Hence, when the computer network is sufficiently small
in relation to the time horizon, the attacker achieves the best possible regret rate (recall
Equation (2.1) in Chapter 2).

3.3.3 Bayes UCB-I Algorithm
The analysis in Section 3.3.2 was done under the premise that the attacker tries to infect one
computer after another, leaving the exploration/exploitation of the computers acquired till
the end. In this subsection we explain why such threshold policy is optimal for the attacker
and offer the Bayes UCB-I algorithm (I for ”infect”).

Suppose the attacker controls K computers and that n turns remain. If the attacker tries to
infect one more computer, then (c.f., Equation (3.10)) his expected regret would be upper
bounded by

expand(K, n) =
(
n −

1
s

) (
1

K + 1
−

1
n + 1

)
+

1
s
+ .5(K + 1) log(K + 1) log n. (3.15)

On the other hand, if the attacker explores/exploits for the remaining n turns, then his
expected regret is

stay(K, n) =
n
K
+ .5K log K log n. (3.16)

If expand(K, n) ≥ stay(K, n), so that the attacker is better off staying, then it follows from
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a contradiction argument that expand(K, t) ≥ stay(K, t) for all t = 1, . . . , n − 1. This
means that the attacker “stays” forever. On the other hand, if expand(K, n) < stay(K, n), so
that expanding out to the next node is preferable, then an attack takes place, the value of
expand(K̃, n−1) is updated depending to the results (i.e., K̃ = K or K +1), and the situation
is re-evaluated. These ideas are summarized in the algorithm below.

Bayes UCB-I Algorithm

1. Require: n (horizon), K = 1 infected computers, uniform initial prior, s > 0
probability of successful attack

2. Stay = False
3. While n > 0
4. Evaluate E[R(n,K)] by Equation (3.15–3.16).
5. If decision is Expand:
6. Attack
7. If success : update K = K + 1; n = n − 1
8. If failed : update n = n − 1
9. Else decision is Stay

10. Execute Bayes-UCB algorithm on the K infected computers until the end of
remaining time

An attacker with incomplete information who follows the Bayes UCB-I algorithm is hence-
forth called a “rational attacker.”

The rational attacker will reach an optimal K value (given the time horizon) because the
expression in Equation (3.16) is convex in K . It can be shown by taking the second
derivative:

∂

∂K
expand(K, n)) =

−n
K2 + log K log n + log n,

and
∂2

∂2K
expand(K, n)) =

2n
K3 +

log n
K

.

One can see that the second derivative exists and is positive for any n > 1, hence this
function is convex. See Figures 3.4 and 3.5 for an illustration.
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This theoretic analysis indicates that a rational attacker attempts to expand non-stop and,
when he stops expanding, spends the remaining time turns exploring/exploiting from the
infected computers.

Figure 3.4. Regret vs. K Infected Computers for Time Horizon 500
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Figure 3.5. Regret vs. K Infected Computers for Time Horizon 2000

3.3.4 Performance Analysis
In this section, we compare the performance of a rational attacker who follows the Bayes
UCB-I algorithm, against that of the perfect attacker, who knows the exact µi values in the
network.

Recall from Equation (3.13) that the best number of computers to infect for a rational
attacker is

K∗(n) = O
(√

n
log n

)
.

The expected regret for a perfect attacker emanates from two sources: the time spent
infecting computers, and the expected regret of ending up with the best of K computers
(vice the best of n computers). The perfect attacker does not need to do any learning, so he
avoids the extra log n regret term caused by the learning process. On average (over many
instances of networks), a perfect attacker infects up to K∗perfect computers to minimize his
expected regret. The expected regret for the perfect attacker as a function of K and n is
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upper bounded by

E[Rperfect(n,K, s)] ≤
K − 1

s
+

(
n −

K − 1
s

) (
1

K + 1
−

1
n + 1

)
. (3.17)

Numerical experiments (shown in Chapter 4) indicate that the upper bound is tight, so we
optimize in K the expression above to obtain the best number of computers for the perfect
attacker to infect, leading to

K∗perfect = O(
√

ns), (3.18)

so that

E[Rperfect(n,K∗perfect, s)] = O
(√

n
s

)
. (3.19)

We define the optimality gap as the gap between a rational attacker’s (Bayes UCB-I algo-
rithm) and a perfect attacker’s end reward:

Gap(n, s) =
E[Rewardperfect] − E[Rewardrational]

E[Rewardperfect]

≈

(
nE[µ∗1:n] −

√
n/s

)
−

(
nE[µ∗1:n] −

√
n log3 n

)
nE[µ∗1:n] −

√
n/s

,

where (recall Equation (3.9)) E[µ∗1:n] = 1− 1/(n+ 1). Therefore, as the time horizon n gets
large we get:

Gap(n, s) = O ©­«
√

s
log3 n

n
ª®¬ . (3.20)

In summary, our analysis suggests that,

• The rational attacker’s infection depth is proportional to
√

n
log n where n is the time

horizon, without any dependency on the probability of attack (for big n).
• The perfect attacker infects computers to a depth of order

√
sn into the network.
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• The optimality gap decays to 0 as n increases at a rate of order O
(√

log3 n
n

)
.

• For big n, the rational attacker can expect a very small optimality gap without depen-
dency on the probability of attack.

The practical implication is important for the attacker: If the time horizon is sufficiently
large, there is no need to invest any intelligence resources to learn where is the highest value
computer.

3.4 Model with Detection of Attacks
In this section we consider the case where a detection may occur after a failed attack with
probability d (constant and the same for all the computers in the network). When a detection
occurs, the origin of the attack (the right-most infected computer) gets removed from the
network. Thus the attacker does not have access to any new computers.

An attacker who tries to attack node vk+1 from the right-most infected node vk with n turns
remaining, faces one of the following three outcomes:

• Success, with probability s: the attacker infects node vk+1, losing one turn.
• Detection, with probability (1− s)d: the attacker loses computer vk and remains only
with the set v1, v2, ..., vk−1 for the remaining n − 1 turns.

• Nothing, with probability (1 − s)(1 − d): the attacker just loses one turn.

In this section we analyze the effect of detections on the behavior and performance of a
perfect attacker. We leave the analysis of the d > 0 scenario corresponding to the rational
attacker for future work.

3.4.1 Perfect Attacker
On average, the perfect attacker stops expanding when the expected regret from expanding
equals that of staying, so we solve for

E[Rp(n,K)] = sE[Rp(n−1,K +1)]+ (1− s)(1−d)E[Rp(n−1,K)]+d(1− s)Rp(n−1,K −1),
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where E[Rp(n,K)] is defined in Equation (3.17) as Rperfect(n,K)). After simplifications we
get the following:

n
K(K + 1)(K + 2)

[
K(s − d(1 − s)) + sd − 2d

]
= 1. (3.21)

The term sd − 2d can be neglected when sd − 2d � K(s − d(1 − s)); this can be made
rigorous by controlling the approximation error in a neighborhood of the exact root in
Equation (3.21). In the worst case K = 1, and then the inequality is equivalent to s + d > 0,
which is always true. Thus, we ignore it and solve:

K∗perfect =
√

n(s − d(1 − s)). (3.22)

For d = 0, this result coincides with Equation (3.13). For d > 0, there is a discount factor
of d(1 − s) inside the square root when comparing to the original expression in Equation
(3.13).

More interesting, a critical value of d with respect to s exists, for which there is no feasible
solution. Meaning, for a given s value, there exists a level of risk dc that the attacker will
prefer to stay at the home node and will not infect any computer at all.

dc =
s

1 − s
(3.23)

Plugging Equation (3.22) into E[Rperfect(n,K)]:

E[Rperfect] =
√

n
(2s − d(1 − s))

s
√

s − d(1 − s)
. (3.24)

The result coincides with the former result as well when d = 0 (see Equation (3.19)). We
expect the regret to increase rapidly as d gets closer to the critical value dc. In Figures
3.6 and 3.7 we show the trends in Equation (3.22) for different values of probability of a
successful attack.

One can see that the factor to the regret is infinite when d approach dc. At this value, the
attacker will tend to stay at the home node.
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Figure 3.6. Enhancement Factor to the Regret vs. Probability of Detection,

with s = 0.4.

3.5 Linear Network with Routers
In this section, we study network devices (routers), that don’t contain any intelligence but 
can provide a value (for the attacker) by revealing information on the computers connected 
to them. The idea is that if the attacker acquires a router and explores it, he can “sniff” 
the traffic being transmitted by the computers within its subnetwork. To put things into our 
model framework, exploring a router yields no rewards, but allows the attacker to update the 
posterior distribution for the µ parameters of the computers that lie in its subnetwork. Hence, 
exploring a router might be desirable because it could shorten the exploration phase versus 
the alternative, which is to try to infect and then explore the computers in its subnetwork.

To keep the router model as simple as possible, we consider a star topology where the
router lies at the center of the star, and M computers are connected to it (but the computers
are disconnected with each other). We assume that at time zero the attacker controls
the router but none of the computers are infected. Also, the attacker has a U(0, 1) prior
for the expected Bernoulli rewards of each computer, and each exploration of the router
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Figure 3.7. Enhancement Factor to the Regret vs. Probability of Detection,

with s = 0.9.

yields ` (with 0 < ` < ∞) samples out of each computer connected to it (representing the
information “packets" generated by each computer’s network traffic). Typically, ` � 1,
which complicates the posterior updates. To overcome this issue without loss of generality,
we set the time scale so that each turn yields 1/` (integer) samples out of each computer
that could be individually explored. The key operational question for the attacker is: What
are the characteristics of a good policy (in sense of total reward collected) to explore the
router, and to attack, explore, and exploit the computers in its subnetwork?

Suppose initially that all the computers connected to a router are infected. From the proof of
the Bayesian UCB [8] algorithm, in a first phase the attacker samples suboptimal computer
k at most log n/KL(µk, µ

∗) times. In a second phase, the probability that a suboptimal
computer has the largest index is very small, because there are enough samples drawn from
each computer in the first phase, so the chance that a bad computer has larger index than the
best one is low. Hence, after the initial

∑M
k=1,µk,µ∗ log n/KL(µk, µ

∗) turns, bad computers
are sampled a few more times (up to logarithmic in n; see [8]).
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Essentially, the first log n/KL(µk, µ
∗) samples for each suboptimal computer k are wasted,

meaning that the Bayesian UCB algorithm behaves as if each computer was a router (i.e.,
update the posterior without earning). The difference is that the router gives ` samples
of each computer in its subnetwork each time it is sampled. Hence, the idea is that the
router also should be sampled for

∑M
k=1,µk,µ∗ log n/KL(µk, µ

∗) turns. Then, the regret
accrued over the first phase becomes `−1 log n

∑
k ∆k/KL(µk, µ

∗), which is smaller than
log n

∑
k ∆k/KL(µk, µ

∗) for ` sufficiently large. In other words, the router collapses all the
bad computers into roughly 1/` computers.

From the implementation standpoint, there is the issue that KL(µk, µ
∗) is unknown (even

µ∗ is unknown). To overcome it, we know from the developments in Section 3.3.1 that

1
KL(µ(2), µ(1))

≤
1

2(µ(1) − µ(2))2
,

and that µ(1) − µ(2) is Beta distributed with parameters (1, M + 1). From here we can
find (numerically) any τ-quantile of the random variable .5/(µ(1) − µ(2))2. By choosing
the quantile large (i.e., τ close to 1), then we end up with a bound that holds with high
probability. Intuitively, the quantile should be such that the probability of underestimating
.5/(µ(1)−µ(2))2 is of the same order of one over time, so that the contribution to the expected
regret of the unlucky instances is constant.

These ideas suggest the following algorithm.

Algorithm with all computers already infected:

1. Sample the router the first `−1c log n times, where c is the 1 − 1/n quantile of
.5/(µ(1) − µ(2))2.

2. Find the computer with the largest average reward, and sample only from it for the
remaining time horizon.

The ideas above apply if all the computers connected to a router are infected. If none of
them are infected, and failed attacks can be detected (d > 0), then the algorithm would be
as follows.

Algorithm with detections:
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1. Sample the router the first `−1c log n times, where c is the 1 − 1/n quantile of
.5/(µ(1) − µ(2))2.

2. Find the computer with the largest average reward.
3. Try to infect it and sample only from it for the remaining time horizon.

A benefit of this algorithm is that only one computer needs to be infected, so less time is
wasted infecting computers and the risk of detection is lessened.

3.6 Non-uniform Prior Scenario
In this section, we consider the more realistic scenario where the attacker has a Beta(α, β) 
prior for the expected rewards of the computers in the network. We follow the developments 
of Sections 3.3.1 and 3.3.2, and our goal is to find the number of computers to attack that 
minimize expected regret, in terms of the time horizon n. For simplicity we assume that 
the number of computers M < n, but the M ≥ n case easily follows along the lines in the 
last paragraph of Section 3.3.2.

Our starting point is Equation (3.8), where three terms make up a bound on the expected
regret. The first term captures the expected number of turns that it takes the attacker to infect
K − 1 extra computers, and remains unchanged in the non-uniform setting. The second
term corresponds to the expected regret accrued by not infecting the best computer in the
network, (

n −
K − 1

s

)
(E[µ∗1:n] − E[µ∗1:K]).

The (n − (K − 1)/s) part remains unchanged, while the E[µ∗1:n] − E[µ∗1:K] term is affected
by the non-uniform prior assumption. Classical results from extreme value theory (see p.
137 of [16]) indicate that a suitably scaled maximum of K IID Beta(α, β) random variables
converges in distribution to aWeibull distribution, as K becomes large. The specific scaling
leads to

E[µ∗1:n] − E[µ∗1:K] = O

((
βB(α, β)

K

)1/β
)
, (3.25)

where
B(α, β) =

Γ(α)Γ(β)

Γ(α + β)
(3.26)

is the incomplete beta function (and Γ(·) is the Gamma function). Monte Carlo simulations
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indicate that the right-hand side in Equation (3.25) is a close upper bound for E[µ∗1:n] −

E[µ∗1:K] for all reasonable combinations of parameters α, β, n, and K .

The last term in Equation (3.8) captures the effect of finding out the best computer out of
those infected by the attacker. From Equations (3.5) and (3.8), we now have

.5 log n
K∑

i=2
E

[
1

µ(1) − µ(i)

]
, (3.27)

where µ(i) is the i’th order statistic out of K IID Beta(α, β) random variables. The Monte
Carlo simulations we ran suggest that .5K log K log n remains a conservative upper bound
for Equation (3.27) (even more so than for a uniform prior).

As in Equation (3.12), the attacker finds the value of K that solves

min

{
n
(
βB(α, β)

K

)1/β
+ .5K log n

}
, (3.28)

where the log K term is dropped from the optimization, due to a sandwich argument as
in the discussion surrounding Equation (3.12). Optimizing Equation (3.28) leads to the
optimal number of computers to infect being of order

K∗(n) = O

(
B(α, β)

(
n

log n

) β
1+β

)
. (3.29)

Several conclusions follow from Equation (3.29),

• The uniform case, β = 1 gives the same result as in Equation (3.13).
• As β increases (i.e., the probability that a computer has low expected reward gets
larger), the attacker has to spread further out in the network; the converse is true in
the other direction.

• The expected regret, obtained by substituting K∗(n) for K in Equation (3.29), is of
order

E[R(n)] = O
(
n

β
1+β (log n)1+β

)
,

meaning that the attacker does not perform well for β large.
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• In particular, the expected regret approaches linear growth with the time horizon n as
β increases, so that learning does not take place. This is due to a catch-22 situation
faced by the attacker: stopping the attack too soonmay result in a bad set of computers,
while expanding deeper into the network does not leave time to explore/exploit the
computers acquired.

• Last, we mention the effect of the parameter α, which is manifested only through the 
Beta function in Equation (3.29). From Equation (3.26) we see that B(α, β) is largest 
when α ≈ β and α + β is large; that is, when the prior is approximately Normal with 
variance of order (α + β)−1 (i.e., small). Conversely, B(α, β) → 1 as α and β become 
dissimilar. The operational implication is that the attacker has to spread deeper into 
the network in the first scenario, and less so in the second scenario (for the same value 
of β).

Since most computers do not contain valuable intelligence, computer networks within our
model framework would tend to have high β parameter values; for example, for α = 3 and
β = 10, only 1% of the computers have a µ value larger than .54. In light of this, the bullet
points above suggest that a smart attacker would find it challenging to extract intelligence
from the most valuable computers. We leave for future work the optimality gap comparison
with the perfect attacker.
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CHAPTER 4:
Analysis and Results

In this chapter, we present numerical illustrations of the policies suggested in Chapter 3, 
and verify analytic results. In particular, we compare the rational attacker, who has a 
uniform prior on the expected rewards µ1, . . . , µM , to a perfect attacker who has full and 
accurate information about these parameters.

We focus on two metrics:

Infection index – K – how deep into the network each of the policies infect (perfect attacker
and the rational attacker applying the Bayes UCB-I algorithm). This is useful to verify
the rules of thumb presented in Chapter 3.

Optimality gap – Gap – comparing the average end reward of rational attacker to a perfect
attacker’s end reward. This gives the bottom line for how good our algorithm is and
what is the equivalent cost of perfect information.

We verify analytic results for those metrics as a function of the time horizon (n), probability
of attack (s), and probability of detection (d). Each replication of theMonteCarlo simulation
consists of the following steps.

1. Randomly generate the µ1, . . . , µM values from M IID U(0, 1) random variates.
2. Generate IID S ∼ Ber(s) random variates, and apply them to

(a) a perfect attacker who solves the dynamic program in Equation (3.1),
(b) a rational attacker who follows the Bayes UCB-I algorithm.

For each setting, the pseudo-code above is repeated 200 times. In the model with detec-
tions, the second step above includes the generation of IID Bernoulli(d) random variates
corresponding to the detections.

This chapter follows the structure of Chapter 3. We start with numerical examples of
linear networks with a uniform prior, followed by the perfect attacker, rational attacker, and
concluding with the model with detections. Numerical examples for the linear network with
routers and non-uniform prior are left for future work.
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4.1 Perfect Attacker
As defined in Chapter 3, we use the term “perfect attacker” for an attacker who knows the
exact values of the rewards parameters µ1, . . . , µM of all computers in the network, and can
execute the optimal policy suggested in Chapter 3 (i.e., solving a dynamic program).

In this subsection, we demonstrate the behavior of a perfect attacker and the effect of
different parameters on his policy. We are interested in how far into the network a perfect
attacker is expected to infect.

We define our nominal base line case as:

{s = 0.9, d = 0, α0 = 1, β0 = 1}.

The characteristics of this baseline case are as follows.

• High success probability (s = 0.9): the attacker can infect easily new computers.
• No risk (d = 0): there is no risk of being detected.
• Infinite network; we assume an effectively infinite network, meaning that the time 
horizon is not sufficient to infect the entire network: M ≥ n. In hindsight, the perfect 
attacker will not tend to infect the entire network, because on average, the best cost-
effective computer (in sense of µ value versus how deep it is in the network) will not 
be at the end of the network. It is sufficient to assume M = 200 for any time horizon 
n < 10, 000 (significant in reducing running time).

• Uniformly distributed µ values: µi ∼ Beta(α0 = 1, β0 = 1) for i = 1, . . . , M .

4.1.1 Mean Infection Index
For example, for specific time horizon of n = 200, a histogram of final infection index
(which is how deep the attacker infects) is shown in Figure 4.1. The histogram is based
on the result of playing the perfect attacker on 200 randomly generated networks. The
estimated infection index was approximately 9 computers (shown as a red vertical line in
Figure 4.1).
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Figure 4.1. Histogram of Infection Index � Perfect Attacker with n = 200.

We repeated this experiment for different values of time horizon (i.e., playing a perfect
attacker on 200 randomly generated networks on each value of time horizon). Figure 4.2
shows the estimate and 95% confidence band for the mean infection index K as a function
of time horizon.
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Figure 4.2. Mean Infection Index vs. Time Horizon for Perfect Attacker.

The result in Figure 4.2 fits the analytic result in Equation (3.18) from Chapter 3: the perfect
attacker’s infection index is proportional to square root of the time horizon.

For a constant A = 0.584, the fit f (n) = A
√

n is showed in Figure 4.2 as a black dashed line.

Conclusion: For a linear network with U(0, 1) distributed µ values and without possible
detections, a perfect attacker will infect on average proportionally to the square root of the
time horizon.

4.1.2 Effect of Attack Capability
Here, we examine the effect of the probability of successful attack s. As shown in Chapter
3 (see results from Equation (3.17)), we expect the mean infection index to be a function of
the square root of s for a fixed time horizon. Each data point in Figure 4.3 is the estimated
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infection index achieved by a perfect attacker playing 200 randomly generated networks.
The result in Figure 4.3 matches the expected dependence in

√
n.

Figure 4.3. Mean Infection Index vs. Probability of Attack s.

For constants
A600 = 13.91; B600 = 1.05

A200 = 8.89; B200 = 0.34

A100 = 7.24; B100 = −0.25

we get the fits f (s) = A
√
(s) + B as shown in Figure 4.3 — as expected, the infection index

depends on
√

s. We verified that the estimated infection index for a perfect attacker behaves
as O(

√
sn). Hence, result for (n = 600, s = 0.2) should be the same as (n = 200, s = 0.6) or

(n = 100, s = 1). This fact can be seen in Figure 4.3.

Conclusion: For a linear network with uniform distributed µ values and without possi-
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ble detections, a higher probability of attack will cause a perfect attacker to infect more
computers, proportionally to the square root s.

4.2 Rational Attacker
In this section we show the performance of the Bayes UCB-I algorithm, and compare it to
a perfect attacker as a measure of performance.

4.2.1 Mean Infection Index
According to the theory from Chapter 3, the Bayes UCB-I algorithm’s infection index is
expected to be of order of K∗ = O(

√
n/log n) (see Equation (3.13)), while the perfect

attacker’s infection index is expected to be K∗perfect = O(
√

n) (see Equation (3.18)).

In Figure 4.4, one can see both trends.

Figure 4.4. Mean Infection Index vs. Time Horizon for UCB-I Algorithm vs.

a Perfect Attacker.
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For constants
Aperfect = 0.579; Bperfect = 0.384

Arational = 0.689; Brational = −0.136

we get the fits fperfect(n) = A
√
(n) + B and frational = A

√
n

log n + B as shown in Figure 4.4 —

as expected, the rational attacker’s infection index depends on
√

n
log n .

In Figure 4.4 there are no confidence interval lines for the rational attacker. This is because
the standard deviation of the final infection index was 0. The rational attacker always
stopped at the same number of infected computers. Because there are no detections in this
section (i.e., d = 0), the attacker can always reach his desired number of infected computers
if time allows.

4.2.2 Optimality Gap
From the theory in Chapter 3 (see Equation (3.20)), the optimality gap is:

Gap(n, s) = O ©­«
√

s
log3 n

n
ª®¬ .

The optimality gap as a function of the time horizon is shown in Figure 4.5 (for a nominal
case of s = 0.9, as defined earlier).
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Figure 4.5. Optimality Gap vs. Time Horizon for s = 0.9.

For a constant A = 0.254, we get the fit A
√

log3 n
n in Figure 4.5, verifying the expected

behavior given by Equation (3.20).

Conclusion: For a linear network with uniform distributed values µ1, . . . , µM , an attacker
who follows the Bayes UCB-I algorithm will do as well as 90% of a perfect attacker’s
performance, given a time horizon bigger than 1000.

4.2.3 Effect of Attack Capability
Similar to the section about a perfect attacker, we show the effect of the parameter s on the
expected infection index for a rational attacker, and then we show the optimality gap as a
function of s. According to Equation (3.13) from Chapter 3,

K∗ ≈
√

n
log n

.
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Hence, a rational attacker’s infection index is indifferent to the probability of successful
attack s given large n and s not extremely small. This finding is shown in Figure 4.6.

Figure 4.6. Rational Attacker � Infection Index vs. s.

There are no confidence intervals in Figure 4.6, because the standard deviation of the final
infection index is 0. As explained before, without detections, the rational attacker will seek
to infect the same number of computers (the optimal number).

From Equation (3.20), the optimality gap is proportional to√
s log3 n

n
.

Hence, for small values of time horizon, we expect to notice a significant difference with
respect to s values, but for large n, we expect to see a near constant gap with respect to
different values of s. Results that verify Equation (3.20) are shown in Figure 4.7.
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Figure 4.7. Optimality Gap vs. Time Horizon for Di�erent s Values.

For the reader’s convenience, the confidence interval lines in Figure 4.7 were omitted (the
behavior is the same as in Figure 4.5).

As expected, the gap is significantly bigger for s = 0.9 than for s = 0.1 when the time
horizon is small (less than 500). For n > 1000, the optimality gap is almost constant with
respect to different s values.

These observations match the theoretical derivation for the effect of s values that are not
particularly small (such as s = 0.1). For small s values, the lower order terms (see
the derivation of Equation (3.20)) cannot be neglected and hence the deviation from our
expected values.

Conclusion: For a linear network with uniform distributed values µ1, . . . , µM and without
possible detections, a rational attacker is indifferent to changes in the probability of suc-
cessful attack, when the time horizon is bigger than 1000. For smaller time horizons, the
rational attacker can expect a bigger optimality gap by a factor of

√
s.
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4.3 Effect of Detections on the Perfect Attacker
From Equation (3.22), we expect on average that the perfect attacker’s infection index will
be a function of s and d. For a given s value, we expect the infection index to decrease when
d increases, up to the critical value dc, where the attacker should not infect any computer.

Figure 4.8. Mean Infection Index vs. Probability of Detection d, when

s = 0.9.

In Figure 4.8, one can see the decreasing trend as the probability of detection increases.

As shown in Equation (3.23), there is a critical d value for each s value that causes the
attacker to avoid any infection. The observed critical d for each s value is shown in Figure
4.9. A fit according to the theory was added.
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Figure 4.9. Mean Infection Index vs. Probability of Detection d, when

s = 0.9.

We conclude that our analytical result is a very good approximation and can be used as a
rule of thumb.

Conclusions:

• For a linear network with uniform distributed µ values, for a given s value, the perfect
attacker can determine the maximum risk to operate as

dc =
s

1 − s
d.

Above this value, the attacker should not attack at all.
• If a perfect attacker can achieve a probability of successful attack bigger than 0.7,
than he should consider the option of infecting for any probability of detection.
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According to our method, one can create equal-reward contour plots. This can be done by
partial derivatives of the regret with respect to s and d. We show in Figure 4.10 the exact
contour lines for time horizon 600. The shapes of the lines should be the same for any time
horizon, just the values on them will differ.

Figure 4.10. Mean Infection Index vs. Probability of Detection d, when
s = 0.9.

From Figure 4.10 the reader can notice the relative low expected reward from the low-
success high-detection scenario. One can notice the shape of the critical d value as a
divider between the high expected reward region and the low expected reward region.
In general, the attacker can use this result to quantify the trade-off between attack and
detection-avoidance capabilities.
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CHAPTER 5:
Conclusions

In this chapter we present a summary of our main results. These were derived analytically
in Chapter 3 and verified numerically in Chapter 4.

The following conclusions apply to the worst-case scenario for an attacker – a linear network
– because it makes it difficult to spread deep into the network, and a single detection of
an attack is enough to divide the network permanently, thus preventing the attacker from
acquiring new computers.

We defined the perfect attacker as an oracle who knows in advance the probability that
each individual computer contains relevant intelligence. This attacker can execute an
optimal policy by solving a dynamic program. We also recommend a policy for attackers
who have a uniform prior for the network parameters, without knowing their exact values.
These rational attackers should infect computers sequentially, without gathering intelligence
contained within the infected nodes, followed by a second phase devoted to exploring the
infected computers.

When attacks cannot be detected, the oracle infects computers in proportion to the square
root of the available time. On the other hand, the rational attacker with incomplete informa-
tion should infect up to time over log of time computers. A surprising result is that, while
the oracle tends to infect deeper into the network as his probability of successful attack
increases, the limited-information attacker is indifferent to the probability of a successful
attack. We found that the difference in total expected reward between the oracle and the
attacker with incomplete information quickly decreases to zero, without dependence in the
probability of successful attack. This result means that if there is no risk of detection and
the time horizon is large, an attacker should not invest resources in increasing his attack
capabilities. In other words, the penalty for not knowing the exact parameter values is small.

When attacks can be detected, we determined a critical relationship between the probability
of successful attack and the probability of detection for which the attacker avoids any
attempt to expand. We found that, once the probability of successful attacks is at least
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0.7, the oracle should always operate in the network for any given probability of detection.
Furthermore, we showed how to balance investments in attack and stealth capabilities, in
order to maximize expected performance.

Last, we did a first pass on extending the basic model to include network devices (routers)
and non-uniform priors on the network parameters (without detections). Our analysis
suggests that the attacker should explore the routers up to log of time and, thereafter, infect
the computer with the largest posterior mean, among those that lie within the router’s
subnetwork. When the prior on the network parameters is Beta with arbitrary parameters,
we found that the attacker should spread further into the network as the average intelligence
of the computers decreases. Numerical experimentation of these two aspects of the problem
is left for future work.
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