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The gastrointestinal tract (GIT) consists of connected structures
that vary in function and physiology, and different GIT sections
potentially provide different habitats for microorganisms. Birds
possess unique GIT structures, including the oesophagus,
proventriculus, gizzard, small intestine, caeca and large
intestine. To understand birds as hosts of microbial
ecosystems, we characterized the microbial communities in
six sections of the GIT of two shorebird species, the Dunlin
and Semipalmated Sandpiper, identified potential host species
effects on the GIT microbiome and used microbial source
tracking to determine microbial origin throughout the GIT.
The upper three GIT sections had higher alpha diversity and
genus richness compared to the lower sections, and microbial
communities in the upper GIT showed no clustering. The
proventriculus and gizzard microbiomes primarily originated
from upstream sections, while the majority of the large
intestine microbiome originated from the caeca. The
heterogeneity of the GIT sections shown in our study urges
caution in equating data from faeces or a single GIT
component to the entire GIT microbiome but confirms that
ecologically similar species may share many attributes in GIT
microbiomes.
1. Introduction
The gastrointestinal tract (GIT) consists of connected structures
that are involved in different aspects of digestion, energy
metabolism, immunity and endocrinology [1–3]. The variety of
functions, structures and physiologies of GIT sections potentially
provide different habitats for microorganisms, which collectively
form the GIT microbiome. To understand vertebrates as hosts of
microbial ecosystems, a detailed description of these different
habitats is essential.

The avian GIT is the structure that connects the bill to the
cloaca, and includes the oesophagus, crop (functions in food
storage), proventriculus (chemical digestion), gizzard (physical
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digestion), small intestine (nutrient absorption), caeca (fermentation), large intestine (nutrient and water

absorption) and cloaca (terminus of digestive, reproductive and urinary tracts). Several factors, such as
pH, oxygen concentration and availability of nutrients, can potentially influence microbial
communities along the avian GIT. For example, the pH in the GIT decreases from the oesophagus to
the gizzard, where mechanical digestion of food particles occurs. In vultures, the extremely low pH in
the stomach was hypothesized to result in selective filtering of the incoming microbial community, to
retain a microbial community specialized to digest their scavenger diet [4].

After lagging behind mammalian microbiome research [5,6], avian microbiome studies are finally
rising in numbers. However, our knowledge of the diversity and distribution of microbes in the GIT
of most bird species is still virtually non-existent. A thorough mapping of microbiomes within bird
hosts would allow for estimating gamma diversity as well as documenting intra and inter-individual
variation in GIT microbiome. Insight into spatial distribution of the GIT microbiome within hosts is
also essential to inform future microbiome sampling, and help narrow the place of origin and niche
specialties for bacterial species.

Here, we sample six distinct GIT sections (oesophagus, proventriculus, gizzard, small intestine, caeca,
large intestine) from adults of two species of shorebird, the Dunlin (Calidris alpina) and Semipalmated
Sandpiper (Calidris pusilla). These shorebirds were collected during the two to three weeks in May
that they stage in Delaware Bay on their way to the Arctic breeding grounds. During this period, they
double in body mass [7] while foraging in mixed species flocks on a near exclusive diet of horseshoe
crab (Limulus polyphemus) eggs [8]. Investigating microbiome composition in different sections of the
GIT from two host species experiencing similar environmental and dietary conditions provides a
relatively well-controlled in situ comparison of the two species and the six GIT sections. To elucidate
the microbial ecology and spatial biogeography of the shorebird GIT microbiome, we (i) characterize
the microbial communities in different sections of the shorebird GIT, (ii) identify potential effects of
host species on the GIT microbiome, and (iii) use microbial source tracking to determine microbial
origin throughout the GIT.
2. Methods
2.1. Sampling
Shorebirds used in our study consisted of capture fatalities in Delaware Bay, and were obtained from the
Delaware Museum of Natural History, Wilmington, DE. No birds were euthanized for our study. All
carcasses belonged to adult birds and were collected on the same day in May 2018 within 5 min of
death, and were frozen at −20°C for four weeks prior to dissection.

We dissected out the whole GIT from six Semipalmated Sandpipers and six Dunlin after tying off the
oesophagus and cloaca with cotton string to retain all GIT content and prevent outside contamination.
We cleaned the exterior of the GIT by rinsing it with a 10% bleach solution prior to sampling
individual GIT sections. GITs were separated into six sections (figure 3): oesophagus, proventriculus,
gizzard, small intestine, caeca and large intestine. Tissue and content from the large intestine and
oesophagus that touches the cotton string was discarded to prevent contamination. Hereafter, we
defined the ‘upper GIT’ to include the first three sections (oesophagus, proventriculus, gizzard), and
the ‘lower GIT’ to include the posterior three sections (small intestine, caeca, large intestine).

2.2. Extraction and sequencing
DNA was extracted using the Qiagen PowerFecal extraction kit (Qiagen, Hilden, Germany) following
manufacturer’s protocols with the exception of DNA being diluted in 50 µl instead of 100 µl in the
final step. The oesophagus, proventriculus, caeca and large intestine were added to the extraction
bead tube. For the gizzard, its content and a subsection of the gizzard internal wall was added to the
bead tube, and for the small intestine, a two-inch section from the middle of the organ was added to
the extraction bead tube. The V4 region of the 16S rRNA gene was sequenced at the UConn Microbial
Analysis, Resources, and Services facility. The Quant-iT PicoGreen kit was used to quantify DNA
concentrations, and 30 ng of extracted DNA was used as the template to amplify the V4 region of the
16S rRNA gene. V4 primers with Illumina adapters and dual barcodes were used for amplification
(515F and 806R) [9,10]. PCR conditions consisted of 95°C for 3.5 min, 30 cycles of 30 s at 95.0°C, 30 s
at 50.0°C and 90 s at 72.0°C, followed by final extension at 72.0°C for 10 min. PCR products were
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normalized based on the concentration of DNA from 250 to 400 bp and pooled. Pooled PCR products

were cleaned using the Mag-Bind RxnPure Plus (Omega Bio-tek) according to the manufacturer’s
protocol, and the cleaned pool was sequenced on the MiSeq using v2 2 × 250 base pair kit (Illumina,
Inc., San Diego, CA). Additionally, three negative extraction controls and two PCR controls were
sequenced.

2.3. Sequence analyses
The DADA2 (v. 1.12.1) pipeline [11] in R v. 3.6.0 [12] was used to process sequence data. DADA2 calls
operational taxonomic units (OTUs) from sequence-based microbial communities by performing
stringent quality control steps and subsequently calling each unique amplicon sequence variant (ASV)
an OTU. After quality assessment, sequences were trimmed to remove low quality read areas, paired-
end sequences were merged and chimeras removed. Sequences were assigned taxonomically using
RDP’s Naive Bayesian Classifier [13] with the Silva reference database (v. 128) [14]. Sequences
identified as chloroplast and mitochondria were removed from the dataset. Likely sequence
contaminants were identified and removed using the decontam package (v. 1.4.0) in R [15], which
identified contaminant ASVs using the negative field control and PCR control. For phylogenetic
analysis, a multiple sequence alignment was generated using the DECIPHER package (v. 1.12.1) in R
[16], and a phylogenetic tree of all remaining ASVs was constructed with the phangorn package
version 2.4.0 [17].

2.4. Statistical analyses

2.4.1. Alpha diversity

Two measures of alpha diversity were calculated: the observed number of ASVs and the Shannon
diversity index [18], using the phyloseq package (v. 1.28.0) [19]. Samples were rarefied 10 times to a
depth of our lowest sample (3637 sequences) prior to alpha diversity analysis, to confirm repeatability
of results after rarefaction. Repeated measures analysis of variance (rANOVA) was used to determine
whether alpha diversity of GIT sections differed from each other and among host species.

2.4.2. Beta diversity

Microbiome community analysis was conducted using the phyloseq package and results were visualized
using the ggplot2 package (v. 3.2.1) [19,20]. Relative abundances of bacterial taxa were calculated per GIT
section for Dunlin and Semipalmated Sandpipers. To assess beta diversity, non-metric multidimensional
scaling (NMDS) analysis was applied to Bray–Curtis, unweighted UniFrac and weighted UniFrac
distances [21]. Beta dispersion of Bray–Curtis, weighted UniFrac and unweighted UniFrac distance
matrices were statistically compared among all samples from different GIT sections and host species,
using the betadisper and permutest function from the vegan package (v. 2.5.6) [22]. To determine which
metadata variables (i.e. host species, GIT section, host sex) were correlated with microbiome
composition, permutational multivariate analysis of variance (perMANOVA) was applied using the
adonis function from the vegan package.

2.4.3. Community composition

We characterized the GIT microbiome of Dunlin and Semipalmated Sandpipers per GIT section using
relative abundance of multiple taxonomic levels. We identified differential abundance of genera in
different GIT section using the DeSeq2 package (v. 1.24.0) in R [23]. p-Values were corrected with the
Benjamini and Hochberg false discovery rate for multiple testing [24] and genera were identified as
differentially abundant if the corrected p-values < 0.01.

2.4.4. Microbial source tracking and random forest modelling

To determine the potential origin of the bacteria found in GIT sections, we used the microbial source-
tracking method FEAST in R [25]. FEAST uses an expectation-maximization based method that
estimates which fraction of the microbial community in the input microbial community was derived
from which potential source environment. Data were structured following the multiple sinks protocol
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Figure 1. Alpha diversity (Shannon Diversity Index) of gut microbiomes of Dunlin (a) and Semipalmated Sandpipers (b), divided by
six gut sections: oesophagus, proventriculus, gizzard, small intestine, large intestine and caeca. Letters represent significance at
α = 0.05.
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from https://github.com/cozygene/FEAST. Per bird, each GIT section was identified as a sink, starting
with the large intestine, with all anterior sections as sources.

To test whether microbiomes can predict host species and GIT section of origin, random forest
classification and regression models [26] were applied using packages randomForest, plyr, rfUtilities and
caret in R [27–30]. The 5% lowest abundance ASVs were removed and data was Z-transformed prior
to performing classification and regression analyses to allow comparison across samples. Both
analyses were run with 10 000 random trees, and regression analysis was run with 10 000
permutations. As our dataset was insufficient to generate a test set, random forest models were
conducted with 71-fold cross-validation, withholding one sample per cross-validation.
3. Results
After quality control, we retained 2 586 814 high-quality 16S rRNA gene sequences in 71 samples with an
average of 36 434 ± 2406 s.e. sequences/sample. One sample from the small intestine of the Dunlin
(sample ID: D2SB02) did not amplify or sequence and was removed from further analyses.

3.1. Alpha diversity
Alpha diversity results did not differ among 10 rarefactions performed (ANOVA: F1,708 = 0, p = 0.990).
Shannon’s alpha diversity did not differ between host species (ANOVA: F1,69 = 0.829, p = 0.366) and
sexes (ANOVA: F1,69 = 0.05, p = 0.944). Overall, alpha diversity significantly differed among GIT
sections in both Dunlin (rANOVA: F5,20 = 5.74, p = 0.002) and Semipalmated Sandpipers (rANOVA:
F5,25 = 5.82, p < 0.001). Alpha diversity was significantly different between the small intestine and the
upper GIT organs in Dunlin (adj. p = 0.001–0.012; figure 1). In Semipalmated Sandpipers, the lower
GIT organs differed significantly in alpha diversity from the oesophagus (adj. p = 0.005–0.04), but not
from the proventriculus and gizzard (adj. p = 0.07–0.99; see table 1 for all results).

3.2. Beta diversity
We visually detected clustering in samples from the large intestine and caeca, and to a lesser extent in
samples collected from the small intestine (figure 2). Samples collected from the upper GIT clustered
together and did not cluster by GIT section. Beta dispersion significantly differed among GIT sections
using weighted (F5,65 = 2.58, p = 0.04) and unweighted UniFrac (F5,65 = 15.59, p≤ 0.001) distances, but

https://github.com/cozygene/FEAST
https://github.com/cozygene/FEAST


Table 1. TukeyHSD Pairwise comparison of alpha diversity (Shannon) among GIT sections in Dunlin and Semipalmated
Sandpipers. Shannon’s diversity estimates averages and standard error (s.e.) per gut section are shown in parentheses after
section. Significance was assigned at adjusted p < 0.05. Significant results are italicized.

Dunlin Semipalmated Sandpiper

Shannon’s diversity

section 1 ± s.e. | section 2 ± s.e. p

Shannon’s diversity

section 1 ± s.e. | section 2 ± s.e. p

oesophagus—proventriculus 3.88 ± 0.34 | 3.28 ± 0.63 0.868 4.17 ± 0.8 | 3.54 ± 0.67 0.907

oesophagus—gizzard 3.88 ± 0.34 | 3.29 ± 0.42 0.890 4.17 ± 0.8 | 2.71 ± 0.44 0.201

oesophagus—small intestine 3.88 ± 0.34 | 1.17 ± 0.20 0.001 4.17 ± 0.8 | 1.72 ± 0.37 0.005

oesophagus—caeca 3.88 ± 0.34 | 2.57 ± 0.22 0.183 4.17 ± 0.8 | 2.25 ± 0.22 0.042

oesophagus—large intestine 3.88 ± 0.34 | 2.21 ± 0.29 0.046 4.17 ± 0.8 | 2.16 ± 0.28 0.030

proventriculus—gizzard 3.28 ± 0.63 | 3.29 ± 0.42 1.000 3.54 ± 0.67 | 2.71 ± 0.44 0.759

proventriculus—small intestine 3.28 ± 0.63 | 1.17 ± 0.20 0.010 3.54 ± 0.67 | 1.72 ± 0.37 0.061

proventriculus—caeca 3.28 ± 0.63 | 2.57 ± 0.22 0.785 3.54 ± 0.67 | 2.25 ± 0.22 0.314

proventriculus—large intestine 3.28 ± 0.63 | 2.21 ± 0.29 0.388 3.54 ± 0.67 | 2.16 ± 0.28 0.248

gizzard—small intestine 3.29 ± 0.42 | 1.17 ± 0.20 0.009 2.71 ± 0.44 | 1.72 ± 0.37 0.597

gizzard—caeca 3.29 ± 0.42 | 2.57 ± 0.22 0.755 2.71 ± 0.44 | 2.25 ± 0.22 0.973

gizzard—large intestine 3.29 ± 0.42 | 2.21 ± 0.29 0.358 2.71 ± 0.44 | 2.16 ± 0.28 0.943

small intestine—caeca 1.17 ± 0.20 | 2.57 ± 0.22 0.168 1.72 ± 0.37 | 2.25 ± 0.22 0.954

small intestine—large

intestine

1.17 ± 0.20 | 2.21 ± 0.29 0.462 1.72 ± 0.37 | 2.16 ± 0.28 0.979

caeca—large intestine 2.57 ± 0.22 | 2.21 ± 0.29 0.984 2.25 ± 0.22 | 2.16 ± 0.28 1.00
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did not differ using Bray–Curtis distances (F5,65 = 1.12, p = 0.36). Beta dispersion did not differ among
Dunlin and Semipalmated Sandpipers (Bray–Curtis: F1,69 = 1.15, p = 0.31; weighted UniFrac: F1,69 = 0,
p = 0.99; unweighted UniFrac: F1,69 = 0.79, p = 0.36).

All GIT sections differed significantly from each other regardless of distance matrix applied in both
Dunlin and Semipalmated Sandpipers (table 2; PerMANOVA: R2 = 0.26–0.40, p < 0.001). Host species
microbiomes were only significantly different from each other when using Bray–Curtis distance
matrices, and explained only 3% of variation in microbiome compositions (PerMANOVA: R2 = 0.03,
p < 0.002). We did not detect differences in microbiome composition between male and female birds in
either species ( p = 0.051–0.549)

3.3. Community composition
Overall, the dominant phylum detected across most GIT sections and both bird species was
Proteobacteria, followed by Firmicutes and Fusobacteria (figure 3). Combining data for both species,
the upper GIT contained a total of 345 genera as opposed to 164 genera in the lower GIT, of which
133 genera were shared among the upper and lower GIT. The oesophagus contained the most genera,
followed by the next two posterior sections: the proventriculus and gizzard (figure 4). A majority of
genera were unique to the oesophagus in both Dunlin (n = 125) and Semipalmated Sandpipers (n =
71), followed by genera that were detected in all sections of the upper GIT. Thirty-two and 24 genera
were detected in all sections of the GIT in Dunlin and Semipalmated Sandpipers, respectively (figure 4).

In both shorebird hosts, we detected an increase in Bacteroidia classes after the small intestine, which
was accompanied by a drop in Sphingobacteria. The Bacteriodes genus included a majority of the
Bacteroidia sequences (68.5%). Within the Deferribacteres class, all sequences belonged to
Mucispirillum schaedleri, which is the only species in the Deferribacteres phylum [31]. A majority of
differentially abundant genera belonged to the Proteobacteria phylum (figure 5). The oesophagus and
proventriculus differed the least in significantly different genera (n = 11), followed by the
proventriculus and gizzard (n = 17). The largest number of genera were differentially abundant in the
small intestine compared to the gizzard (n = 66). The caeca contained nine genera that were



Table 2. PerMANOVA (adonis) tests for relative contribution and significance of three factors to variation in Bray–Curtis, and
weighted and unweighted UniFrac Distance Matrices constructed from gut microbiomes of Dunlin and Semipalmated Sandpipers.
Results are shown as R2/p-value.

Dunlin Semipalmated Sandpiper

Bray W. UniFrac U. UniFrac Bray W. UniFrac U. UniFrac

speciesa 0.03/0.002 0.02/0.092 0.02/0.086 0.03/0.002 0.02/0.092 0.02/0.086

GI section 0.27/0.001 0.33/0.001 0.40/0.001 0.26/0.001 0.35/0.001 0.38/0.001

sex 0.04/0.104 0.05/0.128 0.03/0.549 0.04/0.051 0.03/0.362 0.03/0.311
aTest statistics are the same for both species.

−0.05

0

0.05

−0.04 0 0.04 0.08

oesophagus
proventriculus
gizzard
small intestine
caeca
large intestine

Dunlin
Semipalmated Sandpiper

Figure 2. Non-metric Multidimensional Scaling ordination constructed from Bray–Curtis distance matrix of gut microbiomes in
different gut sections collected from Dunlin and Semipalmated Sandpipers. Shapes represent host species, and colours represent
gut section.
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significantly higher in abundance compared to the adjacent sections: the small intestine and the large
intestine (table 3). In the other sections, only the genus Anaerobispirillum had a higher abundance in
the gizzard than in the adjacent sections (figure 5).

The caeca and large intestine showed an increase in Fusobacteria, Deferribacteres and Bacteroidetes
compared to the anterior sections, especially the small intestine, in both hosts (figure 3). All sequences
within the Fusobacteria belonged to the class Fusobacteriia; 87.2% of Fusobacteriia were classified as the
genus Fusobacterium, and the remaining 12.8% of sequences belonged to the Cetobacterium genus. The
Bacteroidetes phylum consisted of five classes, and was dominated by the Bacteroidia (79.9%) and the
Flavobacteriia (15.6%) classes (figure 6).

Dunlin had lower relative abundances of Firmicutes in their gizzards and small intestines (30.2%)
compared to Semipalmated Sandpipers (43.2%), but showed higher abundances of Fusobacteria in the
caeca and large intestines (21.4%) than Semipalmated Sandpipers (12.6%).

3.4. Microbial source tracking and random forest modelling
In both Dunlin and Semipalmated Sandpipers, microbial source tracking revealed that the large
intestine microbiome was predominantly sourced from the caecal microbiome, followed by the small
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intestine (figure 7). The caecal microbiome did now show clear microbiome sourcing from any anterior
GIT sections (unknown source = 95.4%), indicating a unique microbiome within the caeca. In most
hosts, the gizzard microbiome was sourced from the anterior GIT sections: the proventriculus and
oesophagus.

Random Forest modelling did not confidently assign our samples to the correct host species or GIT
section. The average out-of-the-bag (OOB) error validating our model was 19.7%, and the OOB for the
regression analysis of the mean prediction of individual decision trees was 54.9%, both with 22
variables tried at each split. Classification OOB error in our regression model ranged from 27.3% for
the small intestine to 91.7% for the proventriculus.
4. Discussion
The gastrointestinal tract of a host includes many microhabitats that contain distinct and diverse
microbial communities. The variation in the communities across individual hosts is poorly understood
and not quantified for most species. Here we have described the microbial communities in six distinct
segments of the GIT in two wild shorebird species under extremely similar environmental and
ecological conditions to understand the biogeography of the shorebird microbiome. We detected
similar patterns in diversity and community structure among different sections of the GIT in the
Dunlin and Semipalmated Sandpiper. The three upper GIT sections showed higher diversity than the
lower sections, and differed in their microbiome composition. Higher alpha diversity in the upper GIT
is likely due to the influx of a larger diversity of microorganisms that are associated with environment
and diet.
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Our alpha diversity results are similar to those reported from other bird species. For example, higher
bacterial diversity and distinct microbial communities are found in the proventriculus and gizzard of
Taihu geese (Anser cygnoides spp.) [32]. Contrary to our results, Canada geese (Branta canadensis)
harboured a higher bacterial diversity in their lower than upper GIT [33]. However, we did detect a
similar low diversity in the small intestine in our study as in the duodenum of Canada geese [33] and
in the ileum of Ostriches (Struthio camelus) [34]. The small intestine is thought to be the gut section
that supports the least microorganisms, due to its high concentration of enzymes [35] and the low pH
in the anterior section: the gizzard [36].

Dissimilar to our results, Japanese Quail (Coturnix japonica) have highest bacterial diversity in the
caeca, and no clear differences among other GI sections with regards to diversity [37]. However, in
Ostriches the ileum contained a different microbial community than the other GIT sections they
investigated [34], which matches our results for the small intestine in shorebirds.

A majority of avian studies that investigate different GIT sections were conducted in broiler chickens.
Chicken caeca are markedly different from other GIT sections, but, similar to studies above, no other
sections appeared to contain distinct microbiomes [38]. However, chicken data may be difficult to
extrapolate to wild birds, due to conditions of captivity differing from natural environments and the
limited genetic variation among broiler chickens.

4.1. Host filtering
The ecological filtering model posits that microbes in the gut are selectively filtered from the environment
based on host traits that they are adapted to [39]. Selective passage of microbes through the GIT has been
documented in a number of host taxa, including bumblebees (Bombus terrestris) [40], vultures [4],
juveniles of freshwater fish species [41] and a number of mammalian species [42]. Stomach acids in
humans with a pH of 1–3.5 are able to degrade nucleic acids [43], and the same is likely for birds,
which have a pH of 1–3 in their stomachs [44]. Therefore, our detection of decreased alpha diversity
and community complexity in the lower GIT could be the result of host filtering of bacteria in the
upper GI sections.

We observed a microbial trickle-down effect from the oesophagus to the proventriculus, gizzard and
small intestine, which could indicate a decreasing influence of environmental and dietary microbes on
the GIT microbiome. Although no studies have addressed this topic, physiological changes in oxygen
concentration and pH along the GIT likely limit the passage of environmental microorganisms [44,45].
There appeared to be a separation in microbial sources between the proventriculus, gizzard, and small
intestine, and the caeca and large intestine. Interestingly, the caecal microbiome did not show
substantial sourcing from any of the anterior GIT sections, but provided a substantial portion of the
large intestine microbiome. Previously, the caeca were shown to have microbiomes different from
other sections of the GIT [38,46–48]. In our study, the caeca microbiome differed from all GIT sections,
except from the large intestine. Similarities between the caeca and large intestine are not surprising, as
there is bi-directional flow of digesta between these two organs [49]. The lack of microbial
connectivity with the anterior sections could indicate that the caecal microbiome could be established
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Table 3. Significantly differentially abundant bacterial genera in GIT sections of shorebirds. Genera mentioned were significantly
higher than compared to their two adjacent sections. Significance was assigned if adjusted p-values < 0.01.

GIT section

significant differentially abundant genera

count genus

proventriculus 0

gizzard 1 Anaerobiospirillum (Proteobacteria)

small intestine 0

caeca 9 Planctomycetes (Planctomycetes)

Persicirhabdus (Verrucomicrobia)

Blastopirellula (Planctomycetes)

Bythopirellula (Planctomycetes)

Bacteroides (3 ASVs; Bacteroidetes)

Lacibacter (Bacteroidetes)

Roseimaritima (Planctomycetes)

Mesorhizobium (Proteobacteria)

Altererythrobacter (Proteobacteria)
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prior to our sampling and is stable over age. An alternative, non-exclusive explanation of our findings
could be that host filtering in shorebirds is especially rigid in the caeca, which would prevent
recruitment from incoming microorganisms.

4.2. Interspecific differences
We did not detect significant differences in microbiome composition and diversity indices between
Dunlin and Semipalmated Sandpipers. These species co-occur on the beaches in Delaware Bay, DE,
and rely nearly exclusively on diets of horseshoe crab eggs during this staging period [8]. The
similarity in environment and ecology should reveal species-specific microbial associations, and the
lack thereof implies similar processes occurring in both hosts. This result is not unexpected as both
Dunlin and Semipalmated Sandpipers belong to the genus Calidris and share most life-history
characteristics, such as breeding area, migration flyway and parental care system [50,51]. However, we
are limited in our conclusions by our sample size, which includes six GIT samples from six
individuals per species. It is possible that we currently lack the resolution to reveal more subtle
differences in microbiomes among hosts that are driven by underlying traits. A phylogenetically
informed comparative study or experimental manipulation of captive animals would better elucidate
the role of host genetics on the microbiome.

4.3. Microbial function in the shorebird microbiome
In birds, the caeca and large intestine are involved in fermentation of dietary compounds, electrolyte and
water reabsorption, and nutritional uptake [6]. The bacterial communities of the caeca and large intestine
were markedly different from the anterior sections with respect to relative increases in the Deferribacteres
and Bacteroidetes phyla. Within the Deferribacteres phylum, the Mucispirillum genus consisted solely of
Mucispirillum schaedleri [31], and Deferribacteres were largely absent in upstream GIT sections.
Mucispirillum schaedleri is a known colonizer of the mucus layer in the mammalian GIT [52–54], and
has been previously detected in chickens [55,56], vampire finches (Geospiza septentrionalis; Michel et al.
[57]) and turkeys [58]. In chickens, caecal M. schaedleri was significantly positively associated with fat
deposition [55]. At time of sampling, Dunlin and Semipalmated Sandpipers were rapidly gaining
weight and depositing fat in preparation for migration, indicating a potentially similar role for M.
schaedleri in shorebirds.

Bacteroides are among the most common microorganisms detected in animal GITs [59,60]. Their
metabolism is mainly based on degradation of dietary and mucus glycoproteins, which are known to
play a role in immune system regulation [61]. In chicken caeca, Bacteroides were the main microbes



0

0.25

0.50

0.75

1.00

E P G S C L

GIT section

class
Bacteroidetes_Incertae_Sedis

Bacteroidia

Cytophagia

Flavobacteriia

Sphingobacteriia

0

0.25

0.50

0.75

1.00

E P G S C L

GIT section

re
la

tiv
e 

ab
un

da
nc

e

(a) (b)

Figure 6. Relative abundances per GIT section of classes within the Bacteroidetes phylum in Dunlin (a) and Semipalmated
Sandpipers (b). GIT section is depicted in order of ingestion through the oesophagus (E), proventriculus (P), gizzard (G), small
intestine (S), caeca (C) and large intestine (L).

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

other

caeca
small intestine
gizzard
proventriculus
esophagus 

proventriculus gizzard small intestine caeca large intestine

Figure 7. Relative contributions of GIT sections to their posterior section. The first six bars per section represent Dunlin, and the
second six bars per section represent samples from Semipalmated Sandpipers.

royalsocietypublishing.org/journal/rsos
R.Soc.open

sci.7:191609
11
involved in the degradation of non-starch polysaccharides and monosaccharides [62,63]; a function that
could translate to shorebird caeca.
5. Conclusion
We detected immense variation in the microbiomes of six sites of the GIT in two species of shorebird.
Faecal samples are often used as a proxy for gut microbiomes, and show the most similarity to the
microbiome of the large intestine [34]. Although faecal samples are unlikely to capture the entire GIT
microbiome community and variety, it is often the only non-invasive method available for
investigating the microbiomes of wild animals. Therefore, we advise authors that use faecal samples
to clearly define which microbiome their samples represent. Our results show that the microbiomes of
the upper and lower GIT differ markedly in diversity, community composition and sources but that
adjacent organs are less distinct. The heterogeneity of the GIT sections shown in our study urges
caution in equating data from faeces or a single GIT component to the entire GIT microbiome but
confirms that ecologically similar species may share many attributes in GIT microbiomes.

Ethics. Samples were collected with permission from the Delaware Division of Fish and Wildlife-Department of Natural
Resources and Environmental Control (2018-WSC-031 to K.G.), and the Federal Bird Banding Permit (23332 to
Delaware Division of Fish and Wildlife-Department of Natural Resources and Environmental Control).
Data accessibility. Sequences and metadata are available at Figshare (www.figshare.com/articles/Spatial_heterogeneity_
of_the_shorebird_gut_microbiome/9792668), and sequences are also available at the NCBI SRA under BioProject ID:
PRJNA580479. R scripts for analyses are deposited on Github at: https://github.com/KCGrond/shorebird_gut_
heterogeneity.git.
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