## 1975 Report of

## Random Sample EgG PRODUCTION TESTS

## United States and Canada

Two-Year Combined Summary, 1973-74 and 1974-75
Range Group Rankings, 1974-75


## PREFACE

Egg production tests are designed to provide poultrymen, hatcherymen, and breeders with a reliable guide to the performance of poultry stocks offered for sale. This publication contains information on many egg production traits that are of economic importance to the trade. The data were compiled from the records of official Random Sample Egg Production Tests conducted in the United States and Canada. The data resulting from these tests have been analyzed statistically by the Animal Improvement Programs Laboratory, Animal Physiology and Genetics Institute, Agricultural Research Service, USDA, Beltsville, Maryland.

The publication of this report is based on recomendations of the National Committee on Random Sample Poultry Testing and the Council of American Official Poultry Tests. The information was compiled by the Poultry Improvement Staff, Animal Improvement Programs Laboratory, Agricultural Research Service, from data furnished by Test supervisors.

The publication of this report does not imply approval or endorsement by the U.S. Department of Agriculture of any of the stocks mentioned.

## CONTENTS

Page
Two-year combined summary for test years 1973-74 and 1974-75 ..... 1
How to tell if differences among stocks are real ..... 2
Explanation of income figures ..... 3
 ..... 3
 ..... 3
Definition of traits ..... 4
Tests and supervisors ..... 5
Procedures used for computing combined summary values ..... 10
 ..... 10
Definition of statistical terms ..... 11
Range group ranking based on 1974-75 tests- ..... 18
How group rankings were determined for each trait ..... 18
Tabular listing of stock entered in test ..... 18
Management and environmental conditions at tests ..... 18
Random Sample Egg Production Test entries and conditinns, 1974-75 ..... 26
TABLES

1. Two-year combined summary: Regressed means and $80 \%$ confidence limits for traits by stocks entered ..... 6
2. Analytical data for the traits measured, 1973-74 and 1974-75 ..... 12
3. Factors used to adjust for test differences- ..... 13
4. Upper and lower limits for each range group by traits and tests, 1974-75 ..... 19
5. Range group ranking for stock entered in 1974-75 Random Sample Egg Production Tests------ ..... 22
 ..... 26
6. Management, rations, laying house environment, and vaccination provided in tests, 1974-75 ..... 28

This report is divided into four sections:

1. A two-year combined summary of the data obtained in the 1973-74 and 1974-75 Random Sample Egg Production Tests. These data were treated by acceptable statistical procedures that allow the reader to compare directly the stock entered in the various egg production tests in the United States and Canada.
2. An explanation of statistical procedures that were used in computing the regressed means and confidence limits of egg production traits evaluated in the two-year combined summary.
3. A range group ranking for stock that was entered in 1974-75 Random Sample Egg Production Tests. The ranking shows the performance of each stock by traits compared with that of other stocks in the same test.
4. List of stocks entered in 1974-75 tests and some of the management conditions at the test during the 1974-75 test year.

TWO-YEAR COMBINED SUMMARY FOR TEST YEARS 1973-74 AND 1974-75

Entries in the various tests start with a random sample of hatching eggs or chicks of the stock to be tested. Samples are drawn according to prescribed methods to ensure that each entry is typical of the stock it represents. All entries within a test are treated alike with respect to housing, feeding, management, and disease control in order to avoid differences in performance that would be due to environment.

All tests are conducted according to these basic principles. However, even the most carefully designed and conducted tests are influenced by errors of two kinds. The first kind of error is the chance deviation or unavoidable "sampling error" made when a small sample of eggs or chicks represents an entry. The other kind of error is due to uncontrolled or unknown environmental differences between entries that occur in spite of all efforts to treat all entries within a given test as nearly alike as possible. The differences between the results for two entries in a single test for a single year may be due to these chance variations rather than to a real difference in the performance capabilities of the two stocks. The effect of such errors in comparing stocks can be materially reduced by basing comparisons on the combined results of several tests over two or more years.

If all entries compared were entered in the same tests in both years, the simple averages could be compared directly without adjustment. However, differences among tests and between years and those caused by climatic conditions and other environmental factors affect the results. As a consequence, a direct comparison of the test results of two stocks in different tests or in different years may be misleading. Therefore, to present test results in a manner that will allow sound evaluation of all stocks tested, the results were combined by stocks and by years, and were adjusted by accepted statistical procedures for test and year differences and for variation in amount of information per stock. The results of these computations are published as the "regressed mean" for each trait for each stock that was tested (table 1).

The performance data (regressed means) reported in this summary are derived from the results reported by the individual tests for each of the past two years. It is unlikely, however, that the means for any stock, even though entered in only one test each year, will coincide precisely with the two-year average performance data as published by the test. The variations are due to adjustments for test differences, year difference, the number of tests and of years entered, and the number of replicates per test. These statistical adjustments allow predictions of what the average performance would have been for each stock had all stocks been entered in all tests each year.

The statistical treatment applied to the test data is designed to reduce the influence of nongenetic variations. This cannot be accomplished perfectly, and consequently, estimates or predictions of performance cannot be made with absolute precision. However, reliable predictions, within prescribed limitations, can be made as to whether a difference in the reported performance of stocks represents a real difference in their performance. These predictions involve the use of the confidence limit values that have been computed for each trait or performance factor reported.

A brief explanation of the statistical procedures used in computing the regressed means and confidence limits is provided in the section entitled "Procedures Used for Computing Combined Summary Values."

The following example illustrates the compilation of the two-year combined summary. This and the related explanation will help the reader to use and interpret the data in table 1.
(Illustration of regressed means and 80 percent confidence limiss as they might appear for a few traits)

| STOCK CODE | BODY WEIGHT (pounds) |  | FEED PER POUND OF EGGS PRODUCED (pounds) |  | $\begin{aligned} & \text { EGG } \\ & \text { WEIGHT } \\ & \text { (oz./doz.) } \end{aligned}$ |  | LARGE AND EXTRA LARGE EGGS (percent) |  | ALBUMEN QUALITY <br> (Haugb units) |  | BLOOD SPOTS |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $1 / 8 \mathrm{HNCH}$ OR MORE (percent) | $\begin{aligned} & \text { LESS THAN } \\ & 1 / 8 \text { INCH } \\ & \text { (percent) } \end{aligned}$ |  |  |  |  |  |
|  | $\left\lvert\, \begin{gathered} \text { RE- } \\ \text { GRESSEO } \\ \text { MEAN } \end{gathered}\right.$ | $\begin{aligned} & 80 \% * \\ & \text { CONF. } \\ & \text { LIMITS } \end{aligned}$ |  |  | $\begin{gathered} \text { RE- } \\ \text { GRESSED } \\ \text { MEAN } \end{gathered}$ | $\begin{gathered} 80 \% \%^{*} \\ \text { CONF. } \\ \text { LIMITS } \end{gathered}$ | RE- GRESSEO MEAN | $\begin{aligned} & 80 \% * \\ & \text { CONF. } \\ & \text { LIMITS } \end{aligned}$ | $\begin{aligned} & \text { RE. } \\ & \text { GRESSEO } \\ & \text { MEAN } \end{aligned}$ | $\begin{aligned} & 80 \% * \\ & \text { CONF. } \\ & \text { LIMITS } \end{aligned}$ | $\begin{aligned} & \text { RE- } \\ & \text { GRESSEO } \\ & \text { MEAN } \end{aligned}$ | $80 \%{ }^{*}$ <br> CONF. <br> LIMITS | $\begin{aligned} & \text { RE. } \\ & \text { GRESSEO } \\ & \text { MEAN } \end{aligned}$ | $\begin{aligned} & 80 \%{ }^{*} \\ & \text { CONF. } \\ & \text { LIMITS } \end{aligned}$ | $\begin{gathered} \text { RE- } \\ \text { GRESSEO } \\ \text { MEAN } \end{gathered}$ | $80 \%{ }^{*}$ CONF. LIMITS |
| 995 | 5.6 | $\begin{aligned} & 5.4 \\ & 5.8 \end{aligned}$ | 3.02 | $\begin{aligned} & 2.95 \\ & 3.09 \end{aligned}$ |  |  | 26.0 | $\begin{aligned} & 25.7 \\ & 26.3 \end{aligned}$ | 77.5 | $\begin{aligned} & 75.2 \\ & 79.8 \end{aligned}$ | 77.9 | $\begin{aligned} & 77.1 \\ & 78.7 \end{aligned}$ | 1. 1 | $\begin{aligned} & \hline 0.9 \\ & 1.4 \end{aligned}$ | 2.7 | $\begin{aligned} & 2.2 \\ & 3.2 \end{aligned}$ |
| 996 | 4.2 | 4.0 4.4 | 2.83 | 2.77 2.89 | 25.2 | 25.0 25.4 | 71.0 | 69.0 72.8 | 80.9 | 80.1 81.7 | 0.7 | 0.6 1.0 | 1.1 | 0.8 1.4 |
| 997 | 4.7 | 4.5 4.9 | 2.94 | 2.86 3.02 | 24.9 | 24.6 25.2 | 68.0 | 65.5 70.3 | 74.1 | 73.3 74.9 | 1.2 | 1.0 1.4 | 1.9 | 1.5 2.4 |
| 998 | 4.0 | 3.7 4.3 | 2:84 | 2.73 2.95 | 25.3 | 24.9 25.7 | 72.4 | $\begin{aligned} & 69.2 \\ & 75.6 \end{aligned}$ | 76.6 | $\begin{aligned} & 75.5 \\ & 77.7 \end{aligned}$ | 1.0 | 0.9 1.2 | 1.5 | 1.2 1.9 |
| 999 | 4.2 | $\begin{aligned} & 3.9 \\ & 4.5 \end{aligned}$ | 2.56 | 2.47 2.65 | 25.4 | $\begin{aligned} & 25.0 \\ & 25.8 \end{aligned}$ | 70.3 | $\begin{aligned} & 67.6 \\ & 73.0 \end{aligned}$ | 83.0 | 82.3 83.7 | 0.8 | $\begin{aligned} & 0.6 \\ & 1.0 \end{aligned}$ | 1.1 | $\begin{aligned} & 0.7 \\ & 1.4 \end{aligned}$ |

*If the confidence limits for two regressed means overlap, the two means are not significantly different at the $5 \%$ level.
The range of the confidence limits represents the amount of difference in the performance of two stocks that may be due to chance. If the confidence limits for two regressed means overlap, the two means are not significantly different at the 5 percent level of probability. If the confidence limits for two regressed means do not overlap, the odds are at least 19 in 20 that a real difference exists in the performance of the two stocks.

The use of the above data as a means of evaluating different stocks and traits can be illustrated as follows:

For the trait "Body Weight," the confidence limits of Stock 995 (5.4 to 5.8 1bs.) do not overlap the confidence limits of any of the other stocks. Therefore, Stock 995 has a significantly higher body weight than the others. However, the confidence limits of Stock 996 ( 4.0 to $4.4 \mathrm{lbs}$. ) overlap the confidence 1 imits of Stock 998 ( 3.7 to 4.3 lbs .) and Stock 999 ( 3.9 to $4.5 \mathrm{lbs)}$. . The body weights of these three stocks are, therefore, not significantly different.

Using the trait "Feed per Pound of Eggs Produced" as another example, the confidence limits of Stock 995 (2.95 to $3.09 \mathrm{lbs}$. ), Stock 997 ( 2.86 to $3.02 \mathrm{lbs}$. ), and Stock 998 (2.73 to 2.95 lbs.) all overlap each other. Thus there is no significant difference in the feed conversion of these three stocks. When comparing the feed conversion of Stock $999(2.56 \mathrm{lbs}$. ) with that of the other stocks, we see that the range of its confidence limits is from 2.47 to 2.65 lbs . Since this range does not overlap the confidence limits of the other four stocks, Stock 999 has a significantly lower feed conversion than the other stocks listed.

Another example can be shown by using the trait "Albumen Quality." The confidence limits of Stock 995 (77.l to 78.7) overlap the confidence limits of Stock 998 (75.5 to 77.7). Therefore, there is no significant difference in the albumen quality of these two stocks, even though the regressed mean of Stock 995 is 77.9 Haugh Units and Stock 998 is 76.6 Haugh Units. When Stock 995 is compared with Stocks 996 and 999 , we see that the confidence limits of these two stocks do not overlap those of Stock 995. Thus, these two stocks have a significantly higher albumen quality ( 80.9 and 83.0 Haugh Units, respectively) than the 77.9 Haugh Units of Stock 995 . In comparing Stock 995 with Stock 997, the confidence limits do not overlap. In this case, the albumen quality of Stock 997 , expressed as a regressed mean of 74.1 Haugh Units is significantly lower than the regressed mean of Stock 995.

The range of the confidence iimits will not necessarily be the same for two different stocks that have the same regressed mean. The number of locations in which a stock is entered, the number of replicate pens per location, the number of years entered, and the accuracy involved in adjusting for location and year effects all have a bearing on the range of the confidence limits for each individual regressed mean.

The "Income Over Feed and Chick Cost" figures reported in table 1 represent the sales value of the eggs produced and of the hens at the end of the test minus the cost of the chicks and the feed used during the growing and laying periods. These figures may be useful in comparing the overall performance of stocks, but they should not be considered as predictions of "profit" to be obtained under commercial operations. The "income" figures should be reduced by other costs, such as labor, building and equipment depreciation, vaccination, litter, interest, taxes, and insurance, to approximate profits that might be expected under commercial conditions. Surveys conducted among commercial producers indicate that such other costs may range from \$1 to \$2 per pullet housed.

Although the average chick price is reported for each stock, this value cannot be appropriately used to convert the "Income Over Feed and Chick Cost" figure to an income over feed cost figure. The average chick price shown is a simple unadjusted average of the prices reported by the entrant for his entries in the various tests and is not directly comparable to chick cost included in "Income Over Feed and Chick Cost."

Stocks Should be Compared for all Traits

All traits should be considered when using this report to evaluate the overall performance of the various stocks. The values reported for "Income Over Feed and Chick Cost" represent a composite of several traits combined as determined by the economic conditions of the areas in which the tests are located. The conditions under which the stock is expected to perform in commercial production may differ from those prevailing at the tests, and such differences should be taken into consideration. For example, a poultryman whose local market pays unusually high premiums for large and extra large eggs snould place more emphasis on egg size in his evaluation of stock than poultrymen located in areas where such premiums are not available. The local market preference for brown or white shells should also be taken into account. Traits related to interior egg quality that affect the grade are of greatest importance in areas where prices are based on quality standards.

Each person should study his local needs and conditions and then place appropriate emphasis on the performance traits that are of greatest importance to his situation. A productive and profitable stock for one poultryman under one set of conditions may not fit the needs of another poultryman under a different set of conditions.

## Definition of Terms Used and Abbreviations

Stock: A term used to identify a specific breeding combination of chickens. These breeding combinations may include pure strains, strain crosses, breed crosses, incrosses, or combinations thereof. Kinds of stock and breeding methods are:

| BPR | Barred Plymouth Rock | BX | Crossbred | IN. | Incross |
| :--- | :--- | :--- | :--- | :--- | :--- |
| NH | New Hampshire | WL | White Leghorn | PS | Pure Strain |
| RIR | Rhode Island Red | WPR | White Plymouth Rock | SX | Strain Cross |

Syn. Synthetic
New Hampshire Floor (N.H.-F.)
$\begin{array}{ll}\text { Canada Central (C. C.) New Hampshire Floor ( } \\ \text { Florida (Fla.) } & \text { North Carolina (N.C.) }\end{array}$
Missouri Cage (Mo.-C.) Pennsylvania (Pa.)
Missouri Floor (Mo.-F.)
Tennessee (Tenn.)
New Hampshire Cage (N.H.-C.)

Test Year: A period beginning during the first year stated in a double-year designation and ending approximately 500 days later. See management summary shown in table 7 .

Growing mortality

Laying mortality

Age at 50 percent production

Hen-housed egg production

Hen-day egg production (to end of test)

Hen-day egg production (1ast 30 to 60 days)<br>Feed per pound of eggs

Feed per 100
birds per day
Egg weight

Large and extra large eggs

Albumen quality

Large blood spots

Sma11 blood spots

Large meat spots

Small meat spots

Specific gravity score

Body weight
Income over feed and chick cost

Percentage of birds that died on or before the time they were 150 days old or subsequent age at housing.

Percentage of birds that died after they were 150 days old or sebsequent age at housing.

Days of age computed from the first day of the first two consecutive days of 50 percent production for living birds in the entry at that time.

Number of eggs laid per pullet housed computed from time of housing to the end of the test.

Percent hen-day production from the time birds reached 50 percent production to end of test.

Percent hen-day production during the 1 ast 30 to 60 days of the test. Length of time involved varies according to the record keeping system of each individual test.

Pounds of feed per pound of eggs produced, computed from bulk weighing of the eggs at least one day every two weeks or two days a month at equal intervals during the laying period of the test.

Average pounds of feed consumed per day per 100 birds, calculated over the entire test period.

The weight of a dozen eggs computed from bulk weighing of the eggs at least one day every two weeks or two days a month during the laying period of the test.

Percentage of large and extra large eggs as determined by egg-size distribution computed from all eggs laid one day each week.

Haugh units, computed from egg weight and albumen height of broken-out egg measured on one day's eggs per quarter, at equal intervals. The greater the Haugh units the higher the albumen quality.

Percentage of eggs with one or more large blood spots ( $1 / 8$ inch or more in diameter) , computed from at least three days' eggs per quarter, broken-out basis.

Percentage of eggs with one or more small blood spots (less than $1 / 8$ inch in diameter), computed from at least three days' eggs per quarter, broken-out basis.

Percentage of eggs with one or more colored large meat spots ( $1 / 8$ inch or more in diameter), computed from at least three days' eggs per quarter, broken-out basis.

Percentage of eggs with one or more colored small meat spots (less than $1 / 8$ inch in diameter), computed from at least three days' egg per quarter, broken-out basis.

Eggs are given the specific gravity score that corresponds with the specific gravity of the solution in which they will float. Eggs that do not float in 1.100 solution are given a nine score. The specific gravity of an egg is closely correlated with shell thickness; therefore, the higher the specific gravity score, the thicker the shell. Tabulation of specific gravity solutions and the corresponding specific gravity scores follow:

$$
\begin{array}{cc}
\frac{\text { Solution }}{} & \frac{\text { Score }}{} \\
1.068-- & 0 \\
1.072--- & 1 \\
1.076--- & 2 \\
1.080--- & 3 \\
1.084--- & 4
\end{array}
$$

| $\frac{\text { Solution }}{1.088}---\frac{\text { Score }}{5}$ |  |
| :---: | :---: |
| 1.092 | --- |
| 1.096 | 6 |
| 1.100 | 7 |
| $1 .--$ | 8 |

Average weight of birds alive at end of test.
Income over feed and chick cost per pullet housed, with chick cost in 1,000 lots at hatch date adjusted for mortality (accidental deaths, sexing errors, and missing chicks not included).

```
Canada Central Egg Production Test
    W. K. Barr, Poultry Production Section, Canada Department of Agriculture, Ottawa, Ontario, Canada
        Phone 613/994-9571
Florida Poultry Evaluation Center
    R. B. Christmas, Chipley, Fla. .32428
        Phone 904/638-0588
Missouri Random Sample Egg Production Test (Cage)
    Charles W. McElyea, (Deceased)
        Poultry Department T-14, University of Missouri, C`lumbia, Mo. 65201
        Phone 314/882-6649
Missouri Random Sample Egg Production Test (Floor)
    Charles W. McElyea, (Deceased)
        Poultry Department T-14, University of Missouri, Columbia, Mo. 65201
        Phone 314/882-6649
New Hampshire Egg Production Test (Cage)
    W. C. Skoglund, Department of Poultry Science, University of New Hampshire, Durham, N. H. 03824
            Phone 603/862-2130
New Hampshire Egg Production Test (Floor)
    W. C. Skoglund, Department of Poultry Science, University of New Hampshire, Durham, N.H. 03824
            Phone 603/862-2130
North Carolina Random Sample Egg Laying Test, Salisbury
        G. A. Martin, Poultry Extension Department, North Carolina State University, Raleigh, N. C. 27607
            Phone 919/755-2621
Pennsylvania Random Sample Laying Test
        Edgar V. Hammers, Pennsylvania Furnace, Pa. }1686
            Phone 814/692-8446
Tennessee Random Sample Laying Test
        H. V. Shirley, Jr., Animal Science Department, University of Tennessee, Knoxville, Tenn. 37916
            Phone 615/974-7374
```

Copies of the final report for any of the Random Sample Egg Praduction Tests listed above can be obtained by writing to the test supervisor.
Table 1.-- Two-year combined summary: Regressed means and $80 \%$ confidence limits for traits by stocks entered


Tabje 1.-. Two-year combined summary: Regressed means and $80 \%$ confidence limits for traits by stocks entered (Continued)

| STOCK CODE | breeder's name and adoress | stock |  |  | MORTALITY |  |  |  | AGE AT 50\% PRODUCTION (days) |  | EGG Production |  |  |  |  |  | FEED PER DAY PER 100 LAYING HENS (pounds) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | breeding | $\begin{gathered} \text { STRAIN } \\ \text { OR } \\ \text { TRADENAME } \end{gathered}$ |  | GROWING (percent) |  | Laying <br> ipercent) |  |  |  | HEN HOUSED (number) |  | $\begin{array}{\|c\|} \hline \text { HEN - DAY } \\ \text { (TO END OF TEST) } \\ \text { (percent) } \\ \hline \end{array}$ |  |  |  |  |  |
|  |  |  |  |  | $\begin{array}{\|c\|c\|} \text { REE. } \\ \text { GRESED } \\ \text { MEAN } \end{array}$ |  | $\begin{array}{\|c\|} \text { RE. } \\ \text { GRESSEO } \\ \text { MEAN } \\ \hline \end{array}$ | $\begin{aligned} & \text { Bo\% } \\ & \text { con, } \\ & \text { CIMITS } \\ & \hline \end{aligned}$ | RE. GRESSED MEAN | $\begin{aligned} & 80 \% \\ & \text { coNF, } \\ & \text { CIMITS } \end{aligned}$ | RE. <br> GRESEO <br> MEAN | $\begin{aligned} & 80 \%{ }^{80 \%} \\ & \text { CONF. } \\ & \text { LIMITS } \end{aligned}$ | $\left.\begin{array}{\|c\|} \hline \text { REE } \\ \text { GRESED } \\ \text { MEAN } \end{array} \right\rvert\,$ | $\begin{gathered} \text { 80\% } \\ \text { conf } \\ \text { comis. } \\ \hline \end{gathered}$ | $\begin{gathered} \text { RE- } \\ \text { GRESSED } \\ \text { MEAN } \end{gathered}$ | $\begin{aligned} & \text { Bo\%, } \\ & \text { con, } \\ & \text { LOMITS } \end{aligned}$ | $\begin{aligned} & \text { RE- } \\ & \text { GRESSED } \\ & \text { MEAN } \\ & \hline \end{aligned}$ | $\begin{aligned} & 80 \%{ }^{80 \%} \\ & \text { CNMITS } \\ & \text { Limits } \\ & \hline \end{aligned}$ |
| 608 | Fisher Poultry Farm, Ltd. Ayton, Ontario, Canada | SYN SY |  | Fisher 505- | 7.8 | $\begin{aligned} & 5.3 \\ & 9.5 \end{aligned}$ | 12.9 | $\begin{aligned} & 10.3 \\ & 15.4 \end{aligned}$ | 171 | $\begin{aligned} & 167 \\ & 175 \end{aligned}$ | 214 | $\begin{aligned} & 204 \\ & 224 \end{aligned}$ | 68.5 | $\begin{array}{r} 66.3 \\ 70.7 \end{array}$ | 57.9 | $\begin{aligned} & 54.9 \\ & 60.9 \end{aligned}$ | 24.5 | $\stackrel{23}{23} \cdot 7$ |
| 66 | Garber Poultry Breeding Farm Modesto, Calif. 95351 | wL |  | Garber C200-- | 4.4 | 3.3 5.5 | 10.2 | 8.5 12.0 | 171 | 168 174 | 217 | 210 224 | 67.3 | 66.0 68.6 | 58.6 | 56.7 60.5 | 22.6 | 22:0 |
| 86 | Hardy, C. Nelson \& Son Essex, Mass. 01929 | RIRxBPR B |  | Deluxe Sex Link----- | 2.9 | $\begin{aligned} & 2.2 \\ & 3.8 \end{aligned}$ | 8.6 | 6.8 10.8 | 176 | 172 180 | 209 | $\begin{aligned} & 198 \\ & 220 \end{aligned}$ | 64.6 | $\begin{aligned} & 62.0 \\ & 67.2 \end{aligned}$ | 57.7 | $\begin{aligned} & 54 \cdot 3 \\ & 61.1 \end{aligned}$ | **** | $\underset{* * * * *}{* * * *}$ |
| 378 | Hubbard Farms, Inc. Walpole, N.H. 03608 | SYNxN. H . |  | Golden Comet-- | 2.1 | 1.4 2.9 | 5.8 | 4.4 7.3 | 167 | 163 171 | 224 | 217 231 | 67.1 | 65.5 68.7 | 55.8 | 53.5 58.1 | 24.5 | 23.19 |
| 356 | Ideal Poultry Breeding Farms Cameron, Texas 76520 | SYNxWL B |  | Ideal 236---- | 3.6 | $\begin{aligned} & 2.7 \\ & 4.6 \end{aligned}$ | 9.6 | 8.1 11.1 | 170 | $\begin{aligned} & 166 \\ & 174 \end{aligned}$ | 231 | $\begin{aligned} & 225 \\ & 237 \end{aligned}$ | 71.2 | 70.0 72.4 | 64.0 | 62.3 65.7 | 23.4 | 22.9 |
| 234 | Indiana Farm Bureau Coop. Indianapolis, Ind. 46204 | WL |  | Duchess 60-- | 3.1 | 2.2 4.1 | 11.5 | 9.5 13.6 | 169 | 165 173 | 229 | 223 235 | 70.9 | 69.4 72.4 | 61.7 | 59.6 63.8 | 23.2 | 23.8 |
| 598 | Nelson, George F. <br> Truro, N.S., Canada | RIRx (LS×RT |  | Ne1son Sex Link | 2.8 | 2.1 3.6 | 7.2 | 5.5 9.2 | 170 | $\begin{aligned} & 166 \\ & 174 \end{aligned}$ | 221 | $\begin{array}{r} 210 \\ 232 \end{array}$ | 65.8 | 63.1 68.5 | 55.2 | 51.8 58.6 | **** | $\underset{* * * * *}{* * *}$ |
| 37 | N. Cent. Reg. Plty. Br. Lab. Lafayette, Ind. 47907 | WL |  | Reg. Cornell Contr.- | 1.5 | 0.8 2.3 | 11.8 | 9.6 14.2 | 184 | 180 188 | 197 | 189 205 | 62.0 | 60.3 63.7 | 54.4 | 51.6 57.2 | 23.0 | 23288 |
| 352 | Parks Poultry Farm Altoona, Pa. 16601 | WL S |  | Keystone B-1- | 4.1 | $\begin{aligned} & 3.2 \\ & 5.2 \end{aligned}$ | 9.2 | 6.7 9.8 | 171 | $\begin{aligned} & 16.7 \\ & 175 \end{aligned}$ | 226 | $\begin{aligned} & 220 \\ & 232 \end{aligned}$ | 69.6 | 68.3 70.9 | 58.0 | 56.2 59.8 | 23.2 | 22.8 |
| 382 | Parks Poultry Farm Altoona, Pa. 16601 | RIRxWPR |  | Sil-Go-Links-- | 2.7 | 1.8 3.8 | 8.9 | 6.9 11.0 | 180 | 175 | 199 | 190 | 62.4 | 60.5 64.3 | 53.0 | 50.1 55.9 | 23.6 | 22.9 |
| 181 | Shaver Poultry Breeding Farm Cambridge, Ontario, Canada |  |  | Starcross 288- | 3.3 | 2.6 4.2 | 5.1 | 4.1 6.2 | 169 | 165 173 | 249 | 243 255 | 75.2 | 74.0 76.4 | 65.6 | 63.9 67.3 | 24.4 | 23.80 |
| 566 | St. Augustin Coop. Hatchery St. Augustin, Quebec, Canada | wL |  | Corvette A 1-1 | 5.0 | $\begin{aligned} & 3.9 \\ & \epsilon .3 \end{aligned}$ | 12.0 | 9.8 14.5 | 172 | 167 177 | 214 | 205 | 68.4 | 66.3 70.5 | 60.8 | 58.0 63.6 | 22.5 | 213:\% |
| 401 | $\begin{aligned} & \text { Tatum Farms } \\ & \text { Dawsonville, Ga. } 30534 \end{aligned}$ |  |  | Tatum T-100 | 2.8 | 2.0 3.6 | 11.1 | 9.5 12.9 | 170 | 167 173 | 225 | 219 231 | 69.2 | 68.0 70.4 | 61.8 | 60.1 63.5 | 23.5 | 22:9 |
| 449 | Tatum Farms Dawsonville, Ga. 30534 | RIRxSYN |  | Tatum T-173-1 | 0.7 | $\begin{aligned} & 0.3 \\ & 1.2 \end{aligned}$ | 5.1 | 4.8 7.6 | 174 | 170 178 | 215 | 208 | 65.3 | 63.8 66.8 | 53.4 | 51.3 55.5 | 24.0 | 23.4 |
| 440 | Welp's Poultry Breeding Farm Bancroft, Iowa 50517 | RIR S |  | Welp Line $650 \mathrm{~N}-$ | 2.1 | $\begin{aligned} & 1.3 \\ & 3.1 \end{aligned}$ | 4.9 | 3.5 6.5 | 169 | 164 174 | 226 | 217 235 | 67.0 | 65.0 69.0 | 54.4 | 51.6 57.2 | 24.1 | 23.4 |
| 448 | Welp's Poultry Breeding Farm Bancroft, Iowa 50517 | \|WL |  | Welp Line 973----- | 3.7 | $\begin{aligned} & 2.9 \\ & 4.8 \end{aligned}$ | 15.2 | $\begin{aligned} & 13.2 \\ & 17.4 \end{aligned}$ | 170 | $\begin{aligned} & 166 \\ & 174 \end{aligned}$ | 189 | $\begin{array}{r} 182 \\ 196 \end{array}$ | 59.4 | $\begin{aligned} & 58.0 \\ & 60.8 \end{aligned}$ | 46.1 | $\begin{aligned} & 44.1 \\ & 48.1 \end{aligned}$ | 21.3 | 22:7 |


| STOCK CODE | FEED PER POUND OF EGGS PRODUCED (pounds) |  | EGG WEIGHT (oz./doz.) |  | LARGE AND EXTRA LARGE EGGS (percent) |  | ALBUMEN QUALITY <br> (laugb units) |  | BLOOD SPOTS |  |  |  | MEAT SPOTS |  |  |  | SPECIFIC GRAVITY SCORE |  | BODY WEIGHT (pounds) |  | INCOME OVER <br> FEED \& CHICK <br> COST <br> (dollars) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $1 / 8$ INCH OR MORE (percent) | $\begin{aligned} & \text { LESS THAN } \\ & \text { 1/8 INCH } \\ & \text { (percent) } \end{aligned}$ |  | 1/8 INCH OR MORE (percent) |  | LESS THAN $1 / 8 \mathrm{INCH}$ (percent) |  |  |  |  |  |  |  |
|  | RE- GRESSED MEAN | $80 \%$. CONF. LIMITS |  |  | RE. GRESSED MEAN | $80 \%$ * CONF. LIMITS |  |  |  | $\begin{aligned} & 80 \%{ }^{8} \\ & \text { CoNF. } \\ & \text { LIMITS } \end{aligned}$ | RE. GRESSEO MEAN | $80 \%{ }^{*}$ CONF. LIMITS | RE. <br> GRESSEO <br> MEAN | 80\% CONF. LIMITS | RE. GRESSEO MEAN | $80 \%$ * CONF. LIMITS | RE. <br> GRESSEO <br> MEAN | $\begin{aligned} & \text { B0\%* } \\ & \text { CONF, } \\ & \text { LIMITS } \end{aligned}$ | RE. GRESSEO MEAN |  | RE- GRESSEO MEAN | $\begin{aligned} & 80 \% * \\ & \text { CONF, } \\ & \text { CIMITS } \end{aligned}$ |  |  | $\underset{\substack{\text { RE. } \\ \text { GRESSED } \\ \text { MEAN }}}{ }$ | $\begin{aligned} & \text { 80\%* } \\ & \text { CONF. } \\ & \text { LIMITS } \end{aligned}$ |
|  |  | L. y 2 |  | 24.4 |  |  |  | 65.2 |  | 74.1 |  | 0.5 |  | 2.4 |  | 1.5 |  | 6.1 |  | 3.51 |  | 5.11 |  | 2.21 |
| 608 | 3.03 | 3. 14 | 24.9 | 25.4 | 68.7 | 72.2 | 75.3 | 76.5 | 0.7 | 0.9 | 3.0 | 3.6 | 2.6 | 3.9 | 8.8 | 12.0 | 3.68 | 3.85 | 5.27 | 5.43 | 2.57 | 2.93 |
|  |  | 2.78 |  | 23.8 |  | 61.4 |  | 78.1 |  | 0.2 |  | 0.6 |  | 0.1 |  | 0.2 |  | 3.71 |  | 4.00 |  | 3.23 |
| 66 | 2.84 | 2.90 | 24.2 | 24.6 | 63.5 | 65.6 | 79.0 | 79.9 | 0.3 | 0.4 | 0.9 | 1.2 | 0.3 | 0.5 | 0.6 | 1.1 | 3.82 | 3.93 | 4.09 | 4.18 | 3.54 | 3.85 |
|  |  | 3.09 |  | 25.2 |  | 77.6 |  | 74.0 |  | 0.7 |  | 1.6 |  | 2.7 |  | 6.5 |  | 2.83 |  | 5.16 |  | 2.50 |
| 86 | 3. 22 | 3.35 | 25.7 | 26.2 | 81.6 | 85.6 | 75.5 | 77.0 | 0.8 | 1.0 | 1.9 | 2.2 | 4.4 | 6.5 | 10.3 | 14.9 | 3.02 | 3.21 | 5.40 | 5.64 | 2.88 | 3.26 |
|  |  | 2.75 |  | 25.8 |  | 78.8 |  | 76.1 |  | 0.5 |  | 0.9 |  | 5.9 |  | 12.7 |  | 3.04 |  | 4.65 |  | 3.28 |
| 378 | 2.82 | 2.80 | 26.2 | 26.6 | 81.3 | 83.8 | 77.0 | 77.9 | 0.7 | 0.9 | 1.2 | 1.7 | 7.2 | 8.6 | 15.2 | 18.0 | 3.17 | 3.30 | 4.76 | 4.87 | 3.57 | 3.86 |
|  |  | 2.59 |  | 25.3 |  | 74.7 |  | 73.7 |  | 0.3 |  | 0.7 |  | 0.1 |  | 0.2 |  | 3.25 |  | 4.33 |  | 3.79 |
| 356 | 2.65 | 2.71 | 25.6 | 25.9 | 76.7 | 78.7 | 74.6 | 75.5 | 0.5 | 0.7 | 1.0 | 1.3 | 0.2 | 0.5 | 0.5 | 1.0 | 3.36 | 3.47 | 4.41 | 4.49 | 4.04 | 4.29 |
|  |  | 2.63 |  | 24.2 |  | 64.1 |  | 82.1 |  | 0.3 |  | 0.8 |  | 0.1 |  | 0.1 |  | 3.56 |  | 4.02 |  | 3.61 |
| 234 | 2.70 | 2.77 | 24.6 | 25.0 | 66.5 | 68.9 | 83.0 | 83.9 | 0.4 | 0.6 | 1.1 | 1.5 | 0.3 | 0.6 | 0.3 | 0.7 | 3.69 | 3.82 | 4.12 | 4.22 | 3.88 | 4.15 |
|  |  | 2.88 |  | 25.2 |  | 74.5 |  | 75.4 |  | 0.6 |  | 1.5 |  | 0.7 |  | 3.3 |  | 3.01 |  | 4.91 |  | 2.99 |
| 598 | 3.01 | 3.14 | 25.8 | 26.4 | 78.5 | 82.5 | 76.9 | 78.4 | 0.7 | 0.8 | 1.8 | 2.1 | 1.7 | 3.1 | 6.2 | 10.0 | 3.20 | 3.39 | 5.15 | 5.39 | 3.38 | 3.77 |
|  |  | 3.16 |  | 23.7 |  | 56.7 |  | 74.7 |  | 0.7 |  | 1.5 |  | 0.3 |  | 0.1 |  | 3.21 |  | 4.46 |  | 2.07 |
| 37 | 3. 24 | 3.32 | 24.0 | 24.3 | 59.3 | 61.9 | 75.8 | 76.9 | 0.9 | 1.2 | 2.0 | 2.5 | 0.8 | 1.5 | 0.6 | 1.6 | 3.36 | 3.51 | 4.57 | 4.68 | 2.39 | 2.71 |
|  |  | 2.71 |  | 24.3 |  | 62.9 |  | 79.0 |  | 0.3 |  | 1.1 |  | 0.1 |  | 0.2 |  | 3.46 |  | 3.91 |  | 3.23 |
| 352 | 2.77 | 2.83 | 24.6 | 24.9 | 65.0 | 67.1 | 79.8 | 80.6 | 0.5 | 0.7 | 1.5 | 1.9 | 0.2 | 0.4 | 0.6 | 1.2 | 3.57 | 3.68 | 3.99 | 4.07 | 3.51 | 3.79 |
|  |  | 2.98 |  | 27.0 |  | 81.5 |  | 78.4 |  | 0.5 |  | 1.2 |  | 2.6 |  | 10.7 |  | 3.11 |  | 5.24 |  | 2.12 |
| 382 | 3.07 | 3.16 | 27.4 | 27.8 | 84.4 | 87.3 | 79.5 | 80.6 | 0.7 | 0.9 | 1.6 | 2.1 | 3.7 | 5.1 | 13.6 | 16.7 | 3.27 | 3.43 | 5.37 | 5.50 | 2.46 | 2.80 |
|  |  | 2.56 |  | 25.4 |  | 76.7 |  | 78.9 |  | 0.2 |  | 0.7 |  | 0.1 |  | 0.2 |  | 3.58 |  | 4.16 |  | 4.10 |
| 181 | 2.62 | 2.68 | 25.7 | 26.0 | 78.7 | 80.7 | 79.8 | 80.7 | 0.4 | 0.5 | 1.0 | 1.3 | 0.1 | 0.3 | 0.5 | 1.0 | 3.68 | 3.78 | 4.24 | 4.32 | 4.33 | 4.56 |
|  |  | 2.65 |  | 24.2 |  | 62.3 |  | 79.0 |  | 0.3 |  | 0.9 |  | 0.1 |  | 0.4 |  | 3.74 |  | 3.99 |  | 2.97 |
| 566 | 2.74 | 2.8 三 | 24.6 | 25.0 | 65.6 | 68.9 | 80.0 | 81.0 | 0.4 | 0.6 | 1.3 | 1.7 | 0.3 | 0.8 | 1.1 | 2.2 | 3.90 | 4.06 | 4.14 | 4.29 | 3.31 | 3.65 |
|  |  | 2.71 |  | 24.8 |  | 71.0 |  | 78.3 |  | 0.8 |  | 1.1 |  | 0.1 |  | 0.2 |  | 2.97 |  | 4.09 |  | 3.41 |
| 401 | 2.77 | 2.83 | 25.1 | 25.4 | 73.0 | 75.0 | 79.2 | 80.1 | 1.1 | 1.3 | 1.5 | 1.9 | 0.3 | 0.5 | 0.5 | 1.0 | 3.07 | 3.17 | 4.17 | 4.25 | 3.67 | 3.93 |
|  |  | 2.86 |  | 25.7 |  | 76.7 |  | 77.9 |  | 0.9 |  | 2.5 |  | 3.3 |  | 12.0 |  | 2.91 |  | 4.89 |  | 2.85 |
| 449 | 2.92 | 2.98 | 26.1 | 26.5 | 79.0 | 81.3 | 78.8 | 79.7 | 1.1 | 1.5 | 3.1 | 3.7 | 4.2 | 5.2 | 14.3 | 16.7 | 3.03 | 3.15 | 4.98 | 5.07 | 3.12 | 3.38 |
|  |  | 2.97 |  | 25.0 |  | 71.9 |  | 75.4 |  | 0.4 |  | 0.8 |  | 4.6 |  | 22.8 |  | 2.87 |  | 4.78 |  | 3.04 |
| 440 | 3.06 | 3.15 | 25.4 | 25.8 | 75.1 | 78.3 | 76.5 | 77.6 | 0.5 | 0.7 | 1.2 | 1.6 | 6.3 | 8.1 | 27.1 | 31.5 | 3.04 | 3.21 | 4.93 | 5.08 | 3.38 | 3.72 |
|  |  | 2.91 |  | 24.3 |  | 65.7 |  | 75.0 |  | 0.6 |  | 1.1 |  | 0.1 |  | 0.1 |  | 3.36 |  | 4.01 |  | 2.23 |
| 448 | 2.97 | 3.03 | 24.7 | 25.1 | 67.9 | 70.1 | 75.9 | 76.8 | 0.8 | 1.1 | 1.5 | 2.0 | 0.2 | 0.4 | 0.4 | 0.9 | 3.47 | 3.58 | 4.10 | 4.19 | 2.56 | 2.89 |

The two-year combined summary includes perfoınance data on 25 stocks that were entered in both the $1973-74$ and $1974-75$ tests and on 6 stocks that were entered only in the $1974-75$ tests. Birds were tested at 21 locations in 1973-74 and at 19 locations in 1974-75. Table 3 lists the locations. Certain traits were not measured at some of the locations. These are identified with an NR (not reported) in the appropriate columns in table 3 .

Replicate data were reported by 20 locations in $1973-74$ and by 19 locations in $1974-75$. The number of pens and the number of stocks tested at each location for the two years are given in table 3 .

The percentage data for both years for the six traits--growing mortality, laying mortality, large blood spots, small blood spots, large meat spots, and small meat spots--were converted to angles with the arcsin transformation prior to analysis. However, the test-year adjustment factors shown in table 3 and the regressed means and confidence limits shown for these traits in table lare given in percent.

The replicate data were analyzed by least-squares procedures to obtain the test-year adjustment factors shown in table 3 and the repeatability estimates and the correlations among pens within tests shown in table 2. The test-year adjustment factors were then used to adjust the simple stock average for test and year effects. The adjusted stock averages (the least-squares stock means) were then regressed toward the overall mean ( $\hat{\mu}$ ) to account for variations in number of tests entered, number of years entered, and number of replicates per test. The formula used to compute the regressed mean is:

Regressed Mean $=\hat{\mu}+\frac{r_{2 / C}}{1+\left(k_{3}-1\right) x_{1}+\left(k_{1}-k_{3}\right) x_{2}+\left(k_{2}-k_{3}\right) r_{1}+(1 / C)-k_{1}-k_{2}+k_{3} r_{2}}(s)$
where: $\quad \hat{\mu}=$ the average of the test and year adjusted stock means.
$r_{1}=$ repeatability within year .
$r_{2}=$ repeatability from year-to-year.
$\mathrm{x}_{1}=$ the correlation among replicates within year and test.
$x_{2}=$ the correlation among pens of the same stock from year-to-year for the same test.
$k_{1}=$ an average of the number of pens per test (averaged over years).
$k_{2}=$ an average of the number of pens per year (averaged over tests).
$k_{3}=$ an average of the number of replicates per test-year subclass.
$C=$ the diagonal inverse element for that stock. The reciprocal of $C$, i.e., $\frac{1}{C}$, is equal to $n k_{3}$ if the assumption is made that the adjustments for test-year effects are made without error; where $n$ is the number of test-year subclasses in which that stock is entered.
$s=$ the test-year adjusted stock average minus the overall mean $\hat{\mu}$.

The correlations used in computing the regression coefficient were obtained from estimates of the variance components for stocks $\left(\hat{\sigma}_{s}^{2}\right)$, the stock-X-test interaction $\left(\hat{\sigma}_{s t}^{2}\right)$, the stock-X-year interaction ( $\hat{\sigma}_{s y}^{2}$ ), and the random error ( $\hat{\sigma}_{\mathrm{e}}^{2}$ ). The variance component estimates were obtained by equating the computed mean squares for these effects to their expectations. The mean squares for stocks were adjusted for the test-year subclass effects and the mean squares for the stock-X-test interaction and the stock-X-year interaction were adjusted by least-squares procedures for the effects of stocks and the test-year subclasses. The three-factor interaction was assumed to be non-existent. Ratios of the variance component estimates that were used to compute the correlations follow:


Repeatability from Test-to-Test $=I_{2}=$


An approximate standard error (SE) was computed for each regressed mean as follows:

$$
S E=b \sqrt{C\left(\hat{\sigma}_{e}^{2}+k_{1} \hat{\sigma}_{s t}^{2}+k_{2} \hat{\sigma}_{s y}^{2}\right)}
$$

where $b$ is the regression coefficient given above in the formula for the regressed mean. Confidence Iimits were then computed for each regressed mean as follows:

Regressed Mean $\pm 1.3 \mathrm{SE}$
The constant 1.3 was selected in order that the probability of the confidence limits overlapping by chance alone between any two means would be about 0.03 . This makes the test of significance among regressed means almost comparable to using Duncan's range test at the 0.05 level of probability.

## Definition of Statistical Terms

The following definitions will help the reader interpret the analytical procedures:
Overall mean The average of the test-year adjusted means for all stocks. This is an estimate of what the overall average would have been had all stocks been entered in all tests in both years.

Range The range represents the difference between the expected maximum and minimum performance among the 60* stocks, based on the regressed means.

Common stocks
Stocks that are being tested at more than one location.
Test-year The amount added to or subtracted from the actual performance of the stocks at a given adjustment factor. location in a given year to bring them to the average of all the location-year subclasses that had complete data. These factors were determined on an intrastock basis with a least-squares analysis, and they are given in table 3 .

Repeatability within year

Repeatability between years

Correlation among
replicates
Correlation from year-to-year within tests

Confidence limits The confidence limits for each regressed mean are computed so that the probability is about 0.80 that the "true" stock mean lies within the interval. They are presented in this report, however, for the purpose of providing approximate tests of significance for differences among stocks.

[^0]| Traits | Overal1 <br> means | Regressed means Min. Max. |  | Repeatability |  | Correlations within test |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Within year (r1) | $\begin{gathered} \text { Year-to- } \\ \text { year } \\ \text { (r2) } \\ \hline \end{gathered}$ | $\qquad$ | $\begin{gathered} \text { Year-to- } \\ \text { year } \\ (\times 2) \\ \hline \end{gathered}$ |
| Growing mortality---------percent- | 2.8 | 0.68 | 12.17 | 0.2546 | 0.2075 | 0.2546 | 0.2075 |
| Laying mortality----------percent- | 7.6 | 3.03 | 15.24 | . 2272 | .1960 | . 2802 | . 2490 |
| Age at 50\% production--------days- | 170 | 165 | 189 | . 6009 | . 4421 | . 7423 | . 5835 |
| Hen-housed egg production---number- | 227.3 | 184 | 249 | . 5888 | . 5425 | .6758 | . 6295 |
| Hen-day egg production to end of test---------------percent- | 70.0 | 58.7 | 76.9 | . 5874 | . 5574 | . 6964 | . 6665 |
| Hen-day egg production last 30 to 60 days-------------percent- | 60.3 | 46.1 | 70.6 | .4706 | . 4416 | . 5883 | . 5593 |
| Feed per 100 birds per day--pounds- | 23.5 | 21.3 | 25.3 | . 5543 | . 4451 | . 7108 | .6106 |
| Feed per pound of eggs-----pounds- | 2.71 | 2.50 | 3.79 | .6629 | .6384 | . 7453 | .7208 |
| Egg weight-----------ounces/dozen- | 25.3 | 24.0 | 27.4 | . 7901 | . 7392 | . 8637 | . 8128 |
| Large and extra large eggs-percent- | 74.3 | 59.3 | 86.3 | . 7155 | . 6671 | . 8394 | .7910 |
| Albumen quality-------Haugh units- | 78.8 | 73.5 | 83.0 | . 6394 | . 5609 | . 6506 | . 5722 |
| Large blood spots---------percent- | . 8 | . 27 | 1.18 | . 1204 | . 0773 | . 1824 | .1392 |
| Sma11 blood spots--------percent- | 1.5 | . 85 | 3.48 | . 1422 | . 1113 | . 2326 | . 2017 |
| Large meat spots----------percent- | . 3 | 0.00 | 7.20 | . 6334 | . 5942 | . 7286 | . 6895 |
| Small meat spots----------percent- | 1.1 | 0.00 | 30.81 | . 8498 | . 8012 | . 9022 | . 8536 |
| Specific gravity------------score- | 4.1 | 3.91 | 2.89 | . 5125 | .4719 | . 6233 | . 5826 |
| Body weight---------------->- | 4.25 | 3.51 | 5.69 | . 8711 | . 8587 | . 9219 | . 9096 |
| Income over feed and chick cost----------------------dollars- | 3.62 | 2.09 | 4.55 | . 4369 | . 3940 | . 5794 | . 5365 |

NOTE: The values for these factors are based on the 32 comercially available stocks as well as the 28 experimental stocks that were tested. The individual performance data for the experimental entries were analyzed but not published in this report.

| Test | $\begin{gathered} \text { Pens } \\ \text { (number) } \end{gathered}$ |  | Stocks tested (number) |  | Mortality (percent) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Growing period | Laying period |  |
|  | 1974 | 1975 |  |  | 1974 | 1975 | 1974 | 1975 | 1974 | 1975 |
| Central Canada No. 6-(2/cage)--- | 48 | 48 | 12 | 12 | +0.40 | $\div 0.11$ | +0.22 | +0.76 |
| Central Canada No. 7 - (2/cage)--- | 48 | 48 | 12 | 12 | $+.08$ | +. 12 | +. 06 | $+.58$ |
| Florida No. 1 - Floor------------- | 24 | -- | 12 | -- | $\div .31$ | -- | $+.03$ | -- |
| Florida No. 7 - Floor------------- | -- | 24 | -- | 12 | -- | $\pm .05$ | -- | $+.51$ |
| Florida No. 2 - Floor------------- | 48 | -- | 12 | -- | +.31 | -- | $+.27$ | -- |
| Florida No. 8 - (2/cage)---------- | -- | 48 | -- | 12 | -- | $\pm .05$ | -- | $\div .58$ |
| Florida No. 6 - Floor------------- | 24 | -- | 12 | -- | $+.07$ | -- | +. 03 | -- |
| Florida No. 9 - Floor------------ | -- | 24 | -- | 12 | -- | $\div .05$ | -- | +2.29 |
| Florida No. 5 - (2/cage)--------- | 48 | -- | 12 | -- | $+.07$ | -- | $+.44$ | -- |
| Florida No. 10 - (2/cage)--------- | -- | 48 | -- | 12 | -- | $\pm .05$ | -- | $+.81$ |
| Minnesota No. 1 - Floor- | 10 | -- | 10 | -- | $\div .10$ | -- | +. 04 | -- |
| Minnesota No. 4 - (3/cage)-------- | 33 | -- | 11 | -- | $\div .10$ | -- | +2.11 | -- |
| Missouri Cage - (8/cage)--------- | 28 | 54 | 14 | 9 | $+.01$ | +. 07 | $+.67$ | +. 02 |
| Missouri Floor-------- | 54 | 56 | 27 | 14 | $\div .21$ | +. 62 | +. 09 | +1.15 |
| New Hampshire No. 7 - (3/cage)---- | 135 | 138 | 17 | 17 | $+.01$ | +.01 | $+.08$ | + . 97 |
| New Hampshire No. 4 - Floor------- | 24 | 24 | 8 | 8 | $+.72$ | $+.28$ | +. 01 | +.06 |
| North Carolina No. 3 - Floor------ | 20 | 20 | 10 | 10 | $\div .34$ | $+.54$ | $+.16$ | $+.52$ |
| North Carolina No. 4 - (2/cage)--- | 40 | 40 | 10 | 10 | $+.19$ | +. 29 | $+.23$ | $+.24$ |
| North Carolina No. 5 - (7/cage)--- | 20 | 20 | 10 | 10 | +. 21 | +. 24 | +1.35 | $+.66$ |
| Pennsylvania No. 1-Floor------- | 48 | 48 | 24 | 24 | +1.01 | +. 45 | $+.08$ | $+.13$ |
| Pennsylvania No. 2 - (3/cage)----- | 48 | 48 | 24 | 24 | +1.01 | $+.45$ | +. 20 | $+.37$ |
| Tennessee No. 5 - (2/cage)------- | 28 | 24 | 14 | 12 | $+.73$ | +1.71 | +.09 | +. 23 |
| Tennessee No. 6 - (2/cage)-------- | 28 | 24 | 14 | 12 | +. 73 | +1. 71 | $+.20$ | +1.07 |
| Tennessee No. 7 - (2/cage)-------- | 28 | 24 | 14 | 12 | $\div .73$ | +1.71 | +. 04 | $+.32$ |
| Tennessee No. 8 - (2/cage)-------- | 28 | 24 | 14 | 12 | $+.73$ | +1.71 | +. 01 | $+.10$ |


| Test | Age at 50 percent production (days) |  | Hen-housed (number) |  | Hen-day end of test) (percent) |  | $\begin{gathered} \text { Hen-day } \\ \text { (last } 30-60 \text { days) } \\ \text { (percent) } \end{gathered}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1974 | 1975 | 1974 | 1975 | 1974 | 1975 | 1974 | 1975 |
| Central Canada No. 6 - (2/cage)--- | +13.04 | +10.15 | +02.82 | -03.89 | +0.96 | -2.06 | -5.40 | +00.82 |
| Central Canada No. 7 - (2/cage)--- | +8.04 | $+8.55$ | -. 60 | - 7.14 | -. 48 | -3.32 | -7.09 | - 1.31 |
| Florida No. 1 - Floor | - 1.10 | -- | - 2.41 | -- | -1.40 | -- | -. 14 | -- |
| Florida No. 7 - Floor------------ | -- | $+4.29$ | -- | - 9.03 | -- | -2.55 | -- | + 1.64 |
| Florida No. 2 - Floor | - . 14 | -- | $+2.42$ | -- | + . 19 | -- | -1.11 | -- |
| Florida No. 8 - (2/cage)--------- | -- | $+4.42$ | -- | -10.32 | -- | -3.01 | -- | $+1.01$ |
| Florida No. 6 - Floor | -18.48 | -- | $+4.48$ | -- | $+.45$ | -- | -5.82 | -- |
| Florida No. 9 - Floor------------ | -- | $+4.84$ | -- | -16.84 | -- | -4.14 | -- | - .78 |
| Florida No. 5 - (2/cage)--------- | -16.08 | -- | $+3.86$ | -- | +1. 12 | -- | $-5.87$ | -- |
| Florida No. $10-$ (2/cage)-------- | -- | $+4.38$ | -- | - 6.43 | -- | -1.85 | -- | $+2.92$ |
| Minnesota No, 1 - Floor | $+.55$ | -- | -11.69 | -- | -3.13 | -- | -1.73 | -- |
| Minnesota No. 4 - (3/cage)-------- | $+4.65$ | -- | -12.14 | -- | -2. 50 | -- | $-2.74$ | -- |
| Missouri Cage - (8/cage)---------- | -20.72 | -10.59 | $+3.28$ | $+1.30$ | +5.91 | +1.05 | NR* | - 2.30 |
| Missouri Floor | $-5.43$ | - 5.77 | - 4.14 | - 2.50 | -3.13 | -. 33 | NR* | - 2.55 |
| New Hampshire No. 7 - (3/cage)---- | - . 93 | $+7.54$ | $+6.63$ | -11.12 | +1.98 | -5.37 | +2.67 | - 2.28 |
| New Hampshire No. 4 - Floor------ | $+8.28$ | $+6.89$ | $+18.20$ | +16.19 | +6.38 | $+4.20$ | +9.08 | +14.98 |
| North Carolina No. 3 - Floor----- | - 3.92 | - 4.41 | -25.50 | -23.05 | -8.35 | -8.18 | -7.01 | - 1.71 |
| North Carolina No. 4 - (2/cage)--- | - 9.44 | - 7.54 | - 7.24 | -12.09 | $-4.83$ | -5.67 | -2.53 | - 3.52 |
| North Carolina No. 5 - (7/cage)--- | -10.82 | -11.36 | $+7.68$ | $+4.19$ | -2.48 | -3.56 | -2.69 | - 3.49 |
| Pennsylvania No. 1 - Floor------- | - 9.31 | $+6.91$ | $+5.76$ | - 7.07 | -. 75 | -1.59 | +2. 60 | $+3.20$ |
| Pennsylvania No. 2 - (3/cage)----- | - 5.98 | $+2.60$ | - 1.37 | $+1.32$ | -1.92 | +1.85 | -. 44 | $+1.81$ |
| Tennessee No. 5 - (2/cage)------- | $+2.30$ | +6.09 | +10.99 | - 1.33 | +3.13 | $+3.65$ | +1.86 | - 1.93 |
| Tennessee No. 6 - (2/cage)------- | $+2.30$ | $+6.13$ | +13.98 | - 3.79 | +3.94 | $+3.90$ | +2. 57 | - 2.21 |
| Tennessee No. 7 - (2/cage)------- | $+2.30$ | $+6.50$ | +12.90 | - 4.18 | $+4.22$ | $+3.13$ | $+4.29$ | - 2.73 |
| Tennessee No. 8 - (2/cage) ------- | $+2.30$ | $+6.34$ | +13.01 | - 3.23 | +4.14 | $+3.60$ | +1.95 | - 1.52 |

[^1]| Test | - Feed per pound of eggs (pounds) |  | Feed per 100 birds per day (pounds) |  |  | Egg weight(oz./dozen) |  | Large and extra <br> large eggs <br> (percent) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1974 | 1975 | 1974 |  | 1975 | 1974 | 1975 | 1974 | 1975 |
| Central Canada No. 6 - (2/cage)--- | +0.28 | +0.22 | $+2.54$ | + | 0.87 | +0.97 | +1.29 | +23.93 | +24.27 |
| Central Canada No. 7 - (2/cage)-- | +. 28 | +. 22 | +2. 38 |  | . 64 | $+.95$ | +1.14 | $+24.37$ | +22.45 |
| Florida No. 1 - Floor------------ | $+.15$ | -- | -. 91 |  | -- | $+.02$ | -- | - 7.71 | -- |
| Florida No. 7 - Floor | -- | +. 25 | -- | $+$ | . 24 | -- | $+.21$ | -- | - . 05 |
| Florida No. 2 - Floor------------ | $+.30$ | -- | $+.28$ |  | -- | -. 77 | -- | -14.77 | -- |
| Florida No. 8 - (2/cage) | -- | +.39 | -- |  | . 92 | -- | -. 33 | -- | - 7.66 |
| Florida No. 6 - Floor | $+.10$ | -- | -1.27 |  | -- | - . 45 | -- | -14.52 | -- |
| Florida No. 9 - Floor- | -- | $+.27$ | -- | - | . 28 | -- | $+.10$ | -- | - 1.68 |
| Florida No. 5 - (2/cage)--------- | $+.27$ | -- | $+.01$ |  | -- | -1.09 | -- | -19.07 | -- |
| Florida No. $10-(2 / c a g e$ ) | -- | $+.37$ | -- |  | 1.14 | -- | -. 33 | -- | - 7.49 |
| Minnesota No. 1 - Floor- | $+.32$ | -- | +3.13 |  | -- | $+.12$ | -- | - 7.93 | -- |
| Minnesota No. 4 - (3/cage) | $+.46$ | -- | +4.11 |  | -- | -. 19 | -- | - 9.75 | -- |
| Missouri Cage - (8/cage)--------- | -. .01 | -. 05 | NR* |  | NR ${ }^{+}$ | -. 66 | -. 50 | -19.26 | -18.26 |
| Missouri Floor | -. 42 | -. 36 | NR* |  | 1.47 | $+.23$ | -. .06 | - 8.56 | - 9.74 |
| New Hampshire No. 7 - (3/cage)---- | -. 24 | $+.07$ | NR* |  | NR* | $+.71$ | +. 80 | $+6.36$ | +16.24 |
| New Hampshire No. 4 - Floor------ | -. 28 | -. 27 | NR* |  | NR* | $+.55$ | +1.01 | $+7.95$ | +18.94 |
| North Carolina No. 3 - Floor------ | $+.34$ | +. 32 | -. 91 |  | 1.19 | -. 69 | -1.05 | - 9.31 | -13.98 |
| North Carolina No. 4 - (2/cage)--- | $+.33$ | $+.26$ | -. 07 |  | 1.20 | -1.39 | -1.60 | -13.64 | -16.31 |
| North Carolina No. 5 - (7/cage)--- | +. 19 | $+.20$ | -. 37 |  | . 73 | -1.44 | -1.49 | -13.89 | -16.36 |
| Pennsylvania No, 1 - Floor------- | -. 33 | -. .04 | $-4.26$ |  | 3.69 | -1.05 | -. 61 | - 4.34 | + . 59 |
| Pennsylvania No. 2 - (3/cage)---- | -. 16 | -. 07 | $-2.67$ |  | 2.13 | -. 30 | -. 46 | $+.43$ | $+1.18$ |
| Tennessee No. 5 - (2/cage)------- | -. 12 | -. 01 | +1.72 |  | . 83 | +.60 | +. 25 | $+3.45$ | - 4.29 |
| Tennessee No. 6 - (2/cage)------- | -. 14 | -. 06 | +1.98 |  | . 56 | $+.65$ | $+.34$ | $+3.24$ | - 2.72 |
| Tennessee No. 7 - (2/cage)------- | -. 16 | +.06 | +1.69 |  | 1.04 | +.71 | $+.19$ | $+2.35$ | - 4.86 |
| Tennessee No. 8 - (2/cage)-------- | -. 12 | +.04 | +1.83 |  | 1.15 | $+.50$ | $+.42$ | + 2.04 | - 2.24 |

[^2]TABLE 3.--Factors used to adjust for test differences--Continued

| Test | Albumen quality <br> (Haugh units) |  | Blood spots$1 / 8$ inch or more(percent) |  | Blood spotsless than $1 / 8$ inch(percent) |  | Meat spots /8 inch or more (percent) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1974 | 1975 | 1974 | 1975 | 1974 | 1975 | 1974 | 1975 |
| Central Canada No. 6 - (2/cage)--- | - 0.29 | +1.65 | +0.16 | +0.16 | +0.22 | +0.40 | +0.10 | +0.05 |
| Central Canada No. 7 - (2/cage)--- | - 1.19 | +1.18 | +. 21 | +. 13 | +. 11 | $+.31$ | $+.04$ | $+.06$ |
| Florida No. 1 - Floor- | - 2.64 | -- | +. 01 | -- | $+.13$ | -- | +. 14 | -- |
| Florida No. 7 - Floor------------ | -- | -. 48 | -- | $+.02$ | -- | +.02 | -- | +. 09 |
| Florida No. 2 - Floor------------ | - 4.76 | -- | +.09 | -- | +. 01 | -- | +. 14 | -- |
| Florida No. 8 - (2/cage)--------- | -- | $+.32$ | -- | $+.01$ | -- | $+.09$ | -- | $+.12$ |
| Florida No. 6 - Floor | - 4.92 | -- | $+.07$ | -- | +. 04 | -- | +. 08 | -- |
| Florida No. 9 - Floor------------ | -- | -1.87 | -- | $+.01$ | -- | +. 08 | -- | $+.15$ |
| Florida No. 5 - (2/cage)--------- | - 6.51 | -- | +. 03 | -- | +. 01 | -- | +. 11 | -- |
| Florida No. 10 - (2/cage)-------- | -- | -1.21 | -- | $+.11$ | -- | +. 06 | -- | $+.10$ |
| Minnesota No. 1 - Floor---------- | -10.77 | -- | +. 02 | -- | +1.10 | -- | +. 15 | -- |
| Minnesota No. 4 - (3/cage)------- | - 9.92 | -- | +. 01 | -- | $+.40$ | -- | +. 16 | -- |
| Missouri Cage - (8/cage)--------- | - 3.48 | +3.73 | NR* | $+.02$ | NR* | +.96 | NR* | $+.09$ |
| Missouri Floor- | NR* | - . 16 | NR* | $+.01$ | NR* | $+.67$ | NR* | $+.17$ |
| New Hampshire No. 7 - (3/cage)---- | - 1.40 | -2.43 | $+.06$ | $+.15$ | +1.04 | +. 21 | +. 01 | $+.01$ |
| New Hampshire No. 4 - Floor------ | + . 94 | +1.00 | +.12 | +. 82 | +.78 | $+.21$ | +. 03 | $+.02$ |
| North Carolina No. 3 - Floor------ | + 1.00 | +2. 19 | +.06 | $+.05$ | $+.01$ | $+.01$ | $+.41$ | $+.50$ |
| North Carolina No. 4 - (2/cage)--- | $+1.83$ | -2.06 | $+.20$ | $+.03$ | $+.06$ | +. 01 | $+.39$ | $+.32$ |
| North Carolina No. 5 - (7/cage)--- | $+1.49$ | -2.44 | $+.06$ | $+.01$ | +. 01 | +.01 | + . 55 | $+.35$ |
| Pennsylvania No. 1 - Floor--------- | - 3.11 | -1.91 | +.02 | $+.04$ | +.01 | +.01 | $+.44$ | $+.50$ |
| Pennsylvania No. $2-(3 /$ cage $)-$--- | - 3.75 | -1.94 | $+.10$ | $+.15$ | +. 01 | $+.03$ | $+.47$ | $+.33$ |
| Tennessee No. 5 - (2/cage)-------- | - . 19 | +2.76 | $+.22$ | +. 01 | +.01 | $+.06$ | $+.03$ | $+.05$ |
| Tennessee No. 6 - (2/cage)------- | - 1.75 | $+2.72$ | +. 22 | +.07 | +.20 | +.01 | $+.16$ | +. 04 |
| Tennessee No. 7 - (2/cage)------- | - . 22 | $+2.78$ | $+.26$ | +. 08 | +.11 | $+.36$ | +. 08 | $+.04$ |
| Tennessee No. 8 - (2/cage)------- | - . 74 | +3.60 | +. 10 | $+.02$ | +. 04 | $+.03$ | +. 04 | +.01 |

[^3]TABLE 3.--Factors used to adjust for test differences--Continued

| Test | Meat spots <br> less than $1 / 8$ inch (percent) |  | Specific gravity score |  | Body weight (pounds) |  | Income over feed and chick cost (dollars) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1974 | 1975 | 1974 | 1975 | 1974 | 1975 | 1974 | 1975 |
| Central Canada No. 6 - (2/cage)--- | +0.15 | +0.13 | +0.53 | +0.84 | +0.13 | +0.22 | $+1.10$ | +0.30 |
| Central Canada No. 7 - (2/cage)--- | $+.09$ | $+.10$ | $+.60$ | $+.79$ | $+.18$ | $+.27$ | +.98 | $+.15$ |
| Florida No. 1 - Floor------------ | $+.39$ | -- | -1.87 | -- | $+.17$ | -- | NR* | -- |
| Florida No. 7 - Floor------------ | -- | +.23 | -- | $-1.34$ | -- | $+.16$ | -- | NR* |
| Florida No. 2 - Floor------------- | $+.39$ | -- | -2.34 | -- | $+.04$ | -- | NR* | -- |
| Florida No. 8 - (2/cage)--------- | -- | $+.36$ | -- | -1.57 | -- | $+.11$ | -- | NR* |
| Florida No. 6 - Floor------------ | $+.39$ | -- | -1.92 | -- | $+.15$ | -- | NR* | -- |
| Florida No. 9 - Floor----------- | -- | $+.33$ | -- | -1.44 | -- | $+.17$ | -- | NR* |
| Florida No. 5 - (2/cage)--------- | $+.39$ | -- | -2.40 | -- | $+.16$ | -- | NR* | -- |
| Florida No. 10 - (2/cage)--------- | -- | $+.33$ | -- | -1.85 | -- | $+.11$ | -- | NR* |
| Minnesota No. 1 - Floor---------- | $+.76$ | -- | - . 92 | -- | -. 30 | -- | +2.01 | -- |
| Minnesota No. 4 - (3/cage)------- | $+.42$ | -- | -. 91 | -- | -. 24 | -- | +2.08 | -- |
| Missouri Cage - (8/cage)--------- | NR* | $+.31$ | - . 59 | -. 60 | -. 20 | $+.17$ | -- | +1.02 |
| Missouri Floor-------------------- | NR* | $+.17$ | NR* | -. . 51 | $+.15$ | $+.17$ | -. .04 | $+1.12$ |
| New Hampshire No. 7 - (3/cage)---- | +3.57 | +3.17 | +. 41 | +1.55 | -. 16 | $+.19$ | -1.04 | -2.09 |
| New Hampshire No. 4 - Flocr------ | +1. 50 | +3.02 | $+.22$ | +1. 15 | -. 03 | -. 02 | -. 56 | -. 88 |
| North Carolina No. 3 - Floor-m--- | +. 14 | +. 09 | +.80 | +.71 | -. 09 | - . 32 | +.33 | -. 27 |
| North Carolina No. 4 - (2/cage)--. | $+.09$ | $+.28$ | +.79 | $+.52$ | -. 21 | -. 23 | +. 74 | $+.35$ |
| North Carolina No. 5 - (7/cage)--- | + . 11 | $+.41$ | $+.76$ | $+.36$ | $+.06$ | -. 05 | +1. 25 | +.84 |
| Pennsylvania No. 1 - Floor------- | $+.06$ | $+.15$ | -1.78 | -1.98 | - . 31 | -. 17 | $+.13$ | $+.28$ |
| Pennsylvania No. 2 - (3/cage)---- | $+.11$ | $+.26$ | -1.82 | -2.05 | -. 22 | -. 18 | -. 53 | $+.52$ |
| Tennessee No. 5 - (2/cage)------- | +.03 | $+.53$ | -. 39 | -. 09 | $+.12$ | $+.10$ | -. 57 | -. 13 |
| Tennessee No. 6 - (2/cage)-------- | $+.22$ | $+.71$ | -. 42 | +.09 | +.13 | $+.18$ | - . 53 | -. 14 |
| Tennessee No. 7 - (2/cage)-------- | $+.21$ | $+.45$ | -. 35 | $+.24$ | $+.02$ | $+.02$ | -. 48 | -. 16 |
| Tennessee No. 8 - (2/cage)------- | $+.13$ | $+.19$ | - . 40 | +. 16 | $+.05$ | $+.05$ | - . 59 | -. 09 |

[^4]
## How Group Rankings Were Determined for Each Trait

The information in this section deals only with the test data obtained during the 1974-75 test year.
The performance of each entry in the 9 Random Sample Egg Production Tests conducted during 1974-75 is reported as the Range Group Rank of the entry for the trait measured. These rankings were determined in the following manner. For each trait the entries in each test were alined in descending order of performance from the most desirable to the least desirable. The "mean" or average performance for the trait was then determined. All entries above the mean are in range group 1 or 2 , and those below the mean are in range group 3 or 4 . The dividing point for the entries above or below the mean is the midpoint of the range between the mean and the top or bottom entry. An illustration follows:

Stocks entered in the Missouri Floor test had a mean, or average, of 3.253 pounds of feed consumed to produce a pound of eggs. The lowest amount of feed consumed per pound of eggs was 2.760 pounds and the highest amount was 4.430 pounds. To arrive at the dividing point between the first and second range groups, the lowest, or best feed conversion, ( 2.760 pounds) was subtracted from the mean ( 3.253 pounds). The result, 0.493 pounds, was divided by two to get the midpoint of the range ( 0.247 pounds). This was added to the lowest value ( 2.760 plus 0.247 ) to arrive at the dividing point ( 3.007 pounds) between the first and second range groups. To determine the dividing point between the third and fourth range groups, the same procedure was used, except that the mean ( 3.253 pounds) was subtracted from the highest feed conversion ( 4.430 pounds). This difference, or range ( 1.177 pounds) was then divided by two and the result ( 0.589 pounds) was added to the mean ( 3.253 plus 0.589 ) to get the dividing point ( 3.842 pounds) between the third and fourth range groups. These determinations for ten traits from each test are tabulated in table 4.

The breeders of the stock tested and the Range Group Ranking, by traits, of each entry of the stock are shown in table 5. Each entry is also identified by the abbreviated name of the entrant. If the sample was drawn from a source other than the entrant's hatchery or supply flock, the abbreviated name of the source of the sample is shown in parentheses following the entrant's name.

The listing of the entries in the four range groups, with all entries of each stock in one table, allows the reader to evaluate quickly a stock based on this method of analysis. It should be kept in mind, however, that this method provides just four broad classifications. One-tenth of an egg or one-tenth of a percent difference in mortality could move an entry up or down one Range Group Rank, depending on its place in the range grouping.

## Tabular Listing of Stock Entered in Tests

The listing of all stocks entered in the 1974-75 Random Sample Egg Production Tests is given in table 6. This listing will permit the reader to see at a glance the abbreviated name of the breeder of the stock, the strain or trade name of the stock, and the total number of entries of.each stock which were tested during 1974-75. The tests in which each stock was entered are also given.

## Management and Environmental Conditions at Tests

Some of the more important management and environmental conditions found in the individual tests during the 1974-75 testing year are found in table 7. Other conditions at the various testing stations were undoubtedly different. However, the important consideration is that all entries at a given location were treated as nearly alike as possible.

TABLE 4.--Upper and lower limits for each range group by traits and tests, 1974-75

| Traits measured | Tests |  |  |
| :---: | :---: | :---: | :---: |
|  | Central Canada | Florida | $\begin{gathered} \text { Missouri } \\ \text { Cage } \\ \hline \end{gathered}$ |
| Income over feed and chick cost; |  |  |  |
| Average-----dol./hen housed- | 3.105 |  | 3.150 |
| Range group 1--------------- | 4.390-3.748 | Not Reported | 4.330-3.740 |
| Range group 2--------------- | 3.747-3.105 | Not Reported | $3.739-3.150$ |
| Range group 3--------------- | 3.104-2.443 |  | 3.149-2.540 |
| Range grcup 4--------------- | $2.442-1.780$ |  | $2.539-1.930$ |
| Egg production; |  |  |  |
| Average---number/hen housed- | 230.24 | 239.14 | 233.23 |
| Range group 1-------------- | 256.70-243.47 | 263.10-251.12 | 257.90-245.57 |
| Range group 2--------------- | 243.46-230.24 | 251.11-239.14 | 245.56-233.23 |
| Range group 3--------------- | 230.23-218.17 | 239.13-217.98 | 233.22-219.67 |
| Range group 4--------------- | 218.16-206.10 | 217.97-196.80 | 219.66-206.10 |
| Age at 50 percent production; |  |  |  |
| Average---------------days- | 160.4 | 164.5 | 179.0 |
| Range group 1--------------- | 156.0-158.2 | 159.0-161.8 | 171.0-175.0 |
| Range group 2--------------- | 158.3-160.4 | 161.9-164.5 | 175.1-179.0 |
| Range group 3--------------- | 160.5-162.2 | 164.6-167.3 | 179.1-182.0 |
| Range group 4--------------- | 162.3-164.0 | 167.4-170.0 | 182.1-185.0 |
| Growing mortality; |  |  |  |
| Aver age------------percent- | 9.34 | 4.38 | 2.00 |
| Range group 1--------------- | $3.30-6.32$ | 0.30-2.34 | $0.30-1.15$ |
| Range group 2--------------- | $6.33-9.34$ | $2.35-4.38$ | 1.16-2.00 |
| Range group 3 | 9.35-18.02 | $4.39-7.59$ | $2.01-4.25$ |
| Range group 4--------------- | 18.03-26.70 | 7.60-10.80 | $4.26-6.50$ |
| Laying mortality; |  |  |  |
| Aver age------------percent- | 14.37 | 5.53 | 8.20 |
| Range group | $6.50-10.43$ | $2.10-3.82$ | $2.90-5.55$ |
| Range group 2 | 10.44-14.37 | $3.83-5.53$ | $5.56-8.20$ |
| Range group 3 | 14.38-19.78 | 5.54-8.12 | 8.21 - 13.05 |
| Range group 4--------------- | 19.79-25.20 | $8.13-10.70$ | 13.06-17.90 |
| Egg weight; |  |  |  |
| Average--------ounces/dozen- | 23.80 | 25.19 | 25.54 |
| Range group 1 | 25.10-24.45 | 26.20-25.70 | 26.10-25.82 |
| Range group 2 | 24.44-23.80 | 25.69-25.19 | 25.81-25.54 |
| Range group 3 | 23.79-23.45 | 25.18-24.85 | 25.53-25.22 |
| Range group 4--------------- | $23.44-23.10$ | 24.84-24.50 | 25.21-24.90 |
| Large and extra large eggs; |  |  |  |
| Average-------------percent- | 46.68 | 76.93 | 90.61 |
| Range group 1 | 65.10-55.89 | 87.50-82.22 | 93.30-91.96 |
| Range group 2 | 55.88-46.68 | 82.21-76.93 | 91.95-90.61 |
| Range group 3 | 46.67-40.79 | 76.92-72.37 | $90.60-88.91$ |
| Range group 4--------------- | 40.78-34.90 | 72.36-67.80 | $88.90-87.20$ |
| Feed per pound of eggs; |  |  |  |
| Average------------- pounds- | 2.580 | 2.375 | 2.657 |
| Range group | $2.380-2.480$ | 2.240-2.308 | 2.540-2.598 |
| Range group 2 | 2.481-2.580 | $2.309-2.375$ | 2.599-2.657 |
| Range group 3 | $2.581-2.750$ | $2.376-2.487$ | $2.658-2.803$ |
| Range group 4---------------- | $2.751-2.920$ | $2.488-2.600$ | $2.804-2.950$ |
| Albumen quality; |  |  |  |
| Average---------Haugh units- | 75.48 | 78.01 | 73.80 |
| Range group 1-------------- | 78.60-77.04 | 81.60-79.80 | 80.30-77.05 |
| Range group 2--------------- | 77.03-75.48 | 79.79-78.01 | $77.04-73.80$ |
| Range group 3---------------- | 75.47-74.04 | $78.00-76.95$ | 73.79-72.20 |
| Range group 4--------------- | 74.03-72.60 | 76.94-75.90 | $72.19-70.60$ |
| Blood spots, all sizes; |  |  |  |
| Average------------percent- | 6.12 | 3.69 | 4.60 |
| Range group 1--------------- | $2.30-4.21$ | 1.60-2.65 | 1.70-3.15 |
| Range group 2--------------- | $4.22-6.12$ | 2.66-3.69 | $3.16-4.60$ |
| Range group 3---------------- | 6.13-10.06 | $3.70-4.75$ | 4.61-5.75 |
| Range group 4---------------- | 10.07-1. 00 | $4.76-5.80$ | $5.76-6.90$ |

TABLE 4.--Upper and lower limits for each range group by traits and tests, 1974-75--(Continued)

| Traits measured | Tests |  |  |
| :---: | :---: | :---: | :---: |
|  | $\begin{gathered} \text { Missouri } \\ \text { Floor } \\ \hline \end{gathered}$ | New Hampshire Cage | New Hampshire <br> Floor |
| Income over feed and chick cost; |  |  |  |
| Average-----dol./hen housed- | 2.432 | 5.628 | 4.445 |
| Range group | $3.910-3.171$ | 6.830-6.229 | 7.270-5.858 |
| Range group 2--------------- | $3.170-2.432$ | 6.228-5.628 | 5.857-4.445 |
| Range group 3--------------- | 2.431 - 1.216 | 5.627-4.434 | 4.444-3.803 |
| Range group 4--------------- | $1.215-(0.070)$ | 4.433-3.240 | $3.802-3.160$ |
| Egg production; |  |  |  |
| Average---number/hen housed- | 226.24 | 237.25 | 210.44 |
| Range group l-------------- | 261.10-243.67 | 269.10-253.17 | 279.20-244.82 |
| Range group 2-m------------- | 243.66 - 226.24 | 253.16-237.25 | 244.81-210.44 |
| Range group 3--------------- | 226.23-200.82 | 237.24-208.77 | 210.43-194.11 |
| Range group 4--------------- | 200.81-175.40 | 208.76-180.30 | 194.10-177.80 |
| Age at 50 percent production; |  |  |  |
| Average----------------days- | 178.9 | 163.1 | 165.9 |
| Range group 1 | 161.0-169.9 | 154.0-158.5 | 156.0-160.9 |
| Range group 2--------------- | 170.0-178.9 | 158.6-163.1 | $161.0-165.9$ |
| Range group 3 | 179.0-191.9 | 163.2-166.5 | 166.0-169.4 |
| Range group 4--------------- | 192.0-205.0 | 166.6-170.0 | 169.5-173.0 |
| Growing mortality; |  |  |  |
| Average------------percent- | 1.24 | 2.21 | 3.49 |
| Range group | 0.30-0.77 | 0.50-1.35 | $2.20-2.84$ |
| Range group 2 | . $78-1.24$ | 1.36-2.21 | $2.85-3.49$ |
| Range group 3 | $1.25-2.97$ | $2.22-3.10$ | $3.50-4.39$ |
| Range group 4--------------- | $2.98-4.70$ | $3.11-4.00$ | $4.40-5.30$ |
| Laying mortality; |  |  |  |
| Average------------percent- | 13.90 | 13.69 | 9.16 |
| Range group 1-------------- | $2.10-8.00$ | $5.70-9.70$ | $1.10-5.13$ |
| Range group | $8.01-13.90$ | 9.71-13.69 | 5.14-9.16 |
| Range group 3 | 13.91 - 21.30 | $13.70-23.00$ | $9.17-12.38$ |
| Range group 4--------------- | 21.31-28.70 | 23.01-32.30 | 12.39-15.60 |
| Egg weight; |  |  |  |
| Average--------ounces/dozen- | 25.36 | 24.88 | 24.95 |
| Range group | 26.80-26.08 | 25.80-25.34 | 25.50-25.23 |
| Range group 2--------------- | 26.07-25.36 | 25.33-24.88 | 25.22-24.95 |
| Range group 3--------------- | 25.35-24.83 | 24.87-24.29 | 24.94-24.68 |
| Range group 4--------------- | $24.82-24.30$ | 24.28-23.70 | 24.67-24.40 |
| Large and extra large eggs; |  |  |  |
| Average------------percent- | 84.09 | 61.34 | 61.99 |
| Range group 1 | 93.90-88.99 | 74.10-67.72 | 69.20-65.59 |
| Range group 2 | 88.98-84.09 | 67.71-61.34 | 65.58-61.99 |
| Range group 3--------------- | 84.08-79.19 | 61.33-51.72 | 61.98-57.54 |
| Range group 4--------------- | $79.18-74.30$ | 51.71-42.10 | 57.53-53.10 |
| Feed per pound of eggs; |  |  |  |
| Average-------------- pounds- | 3.253 | 2.784 | 3.188 |
| Range group | $2.760-3.007$ | $2.370-2.577$ | $2.440-2.814$ |
| Range group 2--------------- | $3.008-3.253$ | $2.578-2.784$ | $2.815-3.188$ |
| Range group 3--------------- | $3.254-3.842$ | $2.785-2.992$ | $3.189-3.404$ |
| Range group 4--------------- | $3.843-4.430$ | $2.993-3.200$ | $3.405-3.620$ |
| Albumen quality; |  |  |  |
| Average---------Haugh units- | 77.65 | 79.65 | 76.00 |
| Range group 1--------------- | 84.20-80.92 | $83.80-81.72$ | 79.60-77.80 |
| Range group 2---------------- | 80.91-77.65 | 81.71-79.65 | $77.79-76.00$ |
| Range group 3--------------- | $77.64-74.93$ | 79.64-76.92 | 75.99-74.00 |
| Range group 4--------------- | 74.92-72.20 | 76.91-74.20 | 73.99-72.00 |
| Blood spots, all sizes; |  |  |  |
| Average-------------percent- | 3.96 | 1.71 | 2.63 |
| Range group 1 | $2.00-2.98$ | 0-0.85 | $0-1.32$ |
| Range group 2--------------- | $2.99-3.96$ | . $86-1.71$ | 1.33-2.63 |
| Range group 3--------------- | $3.97-5.03$ | 1.72-3.50 | 2.64-4.46 |
| Range group 4--------------- | $5.04-6.10$ | $3.51-5.30$ | $4.47-6.30$ |

TABLE 4.--Upper and lower limits for each range group by traits and tests, 1974-75--(Continued)

| Traits measured | Tests |  |  |
| :---: | :---: | :---: | :---: |
|  | North Carolina | Pennsylvania | Tennessee |
| Income over feed and chick cost; |  |  |  |
| Average-----dol./hen housed- | 3.237 | 3.148 | 3.705 |
| Range group 1 | $4.300-3.769$ | 4.980-4.064 | 4.690-4.198 |
| Range group 2--------------- | $3.768-3.237$ | 4.063-3.148 | 4.197-3.705 |
| Range group 3--------------- | $3.236-2.739$ | $3.147-2.209$ | 3.704-2.908 |
| Range group 4--------------- | $2.738-2.240$ | $2.208-1.270$ | $2.907-2.110$ |
| Egg production; |  |  |  |
| Average---number/hen housed- | 234.41 | 226.26 | 227.55 |
| Range group 1-------------- | 267.90-251.16 | 263.50-244.88 | $250.30-238.93$ |
| Range group 2 | 251.15-234.41 | 244.87-226.26 | 238.92-227.55 |
| Range group 3- | 234.40-225.71 | 226.25-204.98 | 227.54-210.48 |
| Range group 4--------------- | $225.70-217.00$ | 204.97-183.70 | 210.47 - 193.40 |
| $\overline{\text { Age at } 50 \text { percent production; }}$ |  |  |  |
| Average---------------days- | 178.2 | 171.2 | 174.6 |
| Range group | 168.0-173.1 | 153.0-162.1 | 168.0-171.3 |
| Range group 2 | 173.2-178.2 | 162.2-171.2 | 171.4-174.6 |
| Range group 3 | 178.3 - 184.6 | 171.3 - 189.1 | 174.7-183.8 |
| Range group 4--------------- | 184.7-191.0 | 189.2-207.0 | 183.9 - 193.0 |
| Growing mortality; |  |  |  |
| Average------------percent- | 1.54 | 1.22 | 8.82 |
| Range group | 0.40-0.97 | $0-0.61$ | $2.30-5.56$ |
| Range group | . $98-1.54$ | . $62-1.22$ | $5.57-8.82$ |
| Range group 3 | 1.55-2.27 | 1.23-3.21 | $8.83-13.41$ |
| Range group 4--------------- | $2.28-3.00$ | $3.22-5.20$ | 13.42-18.00 |
| Laying mortality; |  |  |  |
| Average-------------prent- | 8.71 | 7.96 | 7.46 |
| Range group | $2.20-5.46$ | 1.10-4.53 | $2.90-5.18$ |
| Range group | 5.47-8.71 | $4.54-7.96$ | $5.19-7.46$ |
| Range group 3 | $8.72-13.76$ | 7.97-12.83 | 7.47-11.88 |
| Range group 4--------------- | $13.77-18.80$ | $12.84-17.70$ | 11.89-16.30 |
| Egg weight; |  |  |  |
| Average--------ounces/dozen- | 27.09 | 26.01 | 24.98 |
| Range group 1 | 28.70-27.90 | 27.80-26.91 | 25.90-25.44 |
| Range group | 27.89-27.09 | 26.90-26.01 | 25.43-24.98 |
| Range group | 27.08-26.25 | 26.00-25.16 | 24.97-24.39 |
| Range group 4--------------- | 26.24-25.40 | 25.15-24.30 | $24.38-23.80$ |
| Large and extra large eggs; |  |  |  |
| Average-------------percent- | 93.96 | 73.63 | 76.94 |
| Range group | 98.10-96.03 | 88.80-81.21 | $84.80-80.87$ |
| Range group 2 | 96.02-93.96 | 81.20-73.63 | 80.86-76.94 |
| Range group | 93.95-90.63 | 73.62-64.01 | 76.93-69.72 |
| Range group 4--------------- | $90.62-87.30$ | $64.00-54.40$ | 69.71-62.50 |
| Feed per pound of eggs; |  |  |  |
| Average-------------pounds - | 2.562 | 2.838 | 2.775 |
| Range group | 2.340-2.451 | $2.460-2.649$ | $2.560-2.668$ |
| Range group 2 | $2.452-2.562$ | 2.650-2.838 | $2.669-2.775$ |
| Range group | 2.563-2.756 | $2.839-3.009$ | $2.776-3.038$ |
| Range group 4--------------- | $2.757-2.950$ | $3.010-3.180$ | $3.039-3.300$ |
| Albumen quality; |  |  |  |
| Average---------Haugh units- | 79.42 | 80.40 | 74.78 |
| Range group 1--------------- | $82.60-81.01$ | $85.20-82.80$ | 79.40-77.09 |
| Range group 2--------------- | $81.00-79.42$ | $82.79-80.40$ | 77.08-74.78 |
| Range group 3----------------- | 79.41-77.51 | $80.39-78.25$ | 74.77-71.44 |
|  | $77.50-75.60$ | 78.24-76.10 | 71.43-68.10 |
| Blood spots, all sizes; |  |  |  |
| Average------------percent- | 2.30 | 3.20 | 5.48 |
| Range group 1--------------- | $1.20-1.75$ | . $90-2.05$ | 1.30-3.39 |
| Range group 2----------------- | $1.76-2.30$ | $2.06-3.20$ | $3.40-5.48$ |
| Range group 3----------------- | $2.31-2.70$ | $3.21-4.70$ | 5.49-9.64 |
| Range group 4----------------1 | $2.71-3.10$ | $4.71-6.20$ | $9.65-13.80$ |

TABLE 5．－－Range group ranking for stock entered in 1974－75 random sample egg production tests

| ENTRY IOENTIFICATION | TEST | BREEO | ING | STRAIN OR TRAOENAME |  |  |  |  |  |  |  | $\stackrel{\sim}{4} \stackrel{1}{0}$ 0 ロマに山つ 40.4 （lbs） |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Animal Research Institute，Central Experimental |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Farm，Ottawa，Ontario，Canada KlA 0C6． <br> A．R．I．，Ont． | C．C． | WL | PS | Kentville，R．B．C．－ | 4 | 4 | 4 | 2 | 2 | 4 | 4 | 4 | 4 | 3 |
| Anthony，George M．\＆Sons，Strausstown， Peansylvania 19559. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Anthony，Pa． | Mo．-F ． | WL | SX | Anthony－－－－－－－－－－ | 3 | 3 | 3 | 2 | 3 | 3 | 3 | 2 | 2 | 4 |
| Anthony，Pa． | Pa． | WL | SX | Anthony－－－－－－－－－－ | 2 | 3 | 5 | 3 | 4 | 3 | 3 | 2 | 3 | 3 |
| Anthony，Pa． | Tenn． | WL | SX | Anthony－－－－－－－－－－－ | 2 | 3 | 3 | 2 | 4 | 3 | 3 | 2 | 2 | 3 |
| Babcock Poultry Farm，Inc．，P．O．Box 280，Ithaca， New York 14850. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Babcock，N．Y．（Bartey，Ont．）－－－－－－－－－－－－－－－－－－ | C．C． | WL | IN | Babcock B－300－－－－－ | 2 | 2 | 1 | 3 | 2 | 2 | 2 | 1 | 3 | 2 |
| Babcock，N．Y． | Fla． | WL | IN | Babcock B－300－－－－－ | － | 2 | 1 | 1 | 1 | 2 | 2 | 2 | 4 | 2 |
| Babcock，N．Y．（Ballew，Mo．） | Mo．－C． | WL | IN | Babcock B－300－－－－－ | 3 | 2 | 3 | 3 | 3 | 2 | 1 | 2 | 3 | 4 |
| Babcock，N．Y | Mo．－F． | WL | IN | Babcock B－300－－－－－ | 1 | 1 | 2 | 2 | 3 | 2 | 2 | 1 | 3 | 3 |
| Babcock，N．Y． | N．H．－C． | WL | IN | Babcock B－300－－－－－ | 1 | 1 | 2 | 3 | 1 | 3 | 3 | 1 | 3 | 3 |
| Babcock，N．Y．（Harrold＇s，Ga．） | N．C． | WL | IN | Babcock B－300－－－－－ | 2 | 2 | 1 | 4 | 2 | 3 | 3 | 2 | 3 | 4 |
| Babcock，N．Y．（Babcock，Pa．） | Pa ． | WL | IN | Babcock B－300－－－－ | 1 | 1 | 1 | 2 | 2 | 3 | 2 | 2 | 4 | 4 |
| Babcock，N．Y．－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－ | Tenn． | WL | IN | Babcock B－300－－－－－ | 2 | 2 | 1 | 4 | 3 | 2 | 1 | 2 | 3 | 1 |
| Babcock Poultry Farm，Inc．，P．O．Box 280，Ithaca， New York 14850. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Mo．－F． | RIRxSYN | BX | Babcock B－380－－－－－ | 3 | 3 | 3 | 1 | 2 | 1 | 1 | 3 | 2 | 1 |
| Babcock，N．Y | N．H．－C． | RIRxSYN | BX | Babcock B－380－－－－－ | 2 | 3 | 4 | 4 | 3 | 2 | 2 | 3 | 2 | 3 |
| Babcock，N．Y | N．C． | RIRxSYN | BX | Babcock B－380－－－－－ | 3 | 2 | 4 | 1 | 1 | 2 | 1 | 3 | 2 | 2 |
| Babcock，N．Y． | Pa ． | RIRxSYN | BX | Babcock B－380－－－－－ | 3 | 2 | 1 | 1 | 3 | 2 | 1 | 4 | 3 | 1 |
| Babcock，N．Y．－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－1－1 | Tenn． | RIRxSYN | BX | Babcock B－380－－－－－ | 3 | 2 | 3 | 1 | 1 | 1 | 1 | 3 | 2 | 3 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Canada D．A．，Ont．－－－－－－－－－－－－－－－－－－－－－－－－－－－－ | C．C． | WL | Syn． | P．D．58－－－－－－－－－－ | 2 | 2 | 1 | 1 | 3 | 4 | 4 | 1 | 1 | 1 |
| Carey Farms， 3252 Mt．O1ive－Agosta Rd．，Marion， Ohio 43302. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Carey，Ohio | Fla． | WL | IN | Carey Nick 310－－－－ | － | 2 | 4 | 4 | 3 | 2 | 2 | 3 | 4 | 3 |
| Carey，Ohio | Pa． | WL | IN | Carey Nick 310－－－－ | 2 | 2 | 3 | 3 | 2 | 3 | 3 | 2 | 3 | 2 |
| Colonial Poultry Farm，Inc．，Pleasant Hill， Missouri 64080. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Colonial，Mo． | Mo．－F． | WL | IN | True－Line 365 B－－－ | 1 | 2 | 1 | 2 | 3 | 4 | 4 | 1 | 3 | 1 |
| Colonial Poultry Farm，Inc．，Pleasant Hill， Missouri 64080. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Colonial，Mo．－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－ | Mo．－C． | WL | IN | True－Line $365 \mathrm{~K}-$－－ | 3 | 4 | 2 | 1 | 2 | 3 | 3 | 1 | 3 | 4 |

TABLE 5．－－Range group ranking for stock entered in 1974－75 random sample egg production tests－－Continued

| entry ioentification | TEST | breeca | ang | STRAIN OR tradename |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Colonial Poultry Farm，Inc．，P1easant Hi11， Missouri 64080. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | c．c． | WL | IN | True－Line 365 S－－－ | 3 | 4 | 3 | 1 | 4 | 4 | 4 | 1 | 4 | 1 |
| Colonial，Mo | Fla． | WL | IN | True－Line 365 S－－－ | － | 3 | 3 | 3 | 3 | 4 | 3 | 1 | 3 | 3 |
| Colonial，Mo． | Mo．－C． | WL | IN | True－Line 365 S－－－ | 2 | 3 | 2 | 3 | 2 | 3 | 3 | 1 | 3 | 3 |
| Colonial，Mo． | Mo．－F． | WL | IN | True－Line 365 S－－－ | 1 | 2 | 3 | 3 | 2 | 4 | 4 | 1 | 3 | 4 |
| Colonial，Mo． | N．H．－C． | WL | IN | True－Line 365 S－－－ | 3 | $4$ | 4 | 2 | 3 | 4 | 4 | 1 | 3 | 3 |
| Colonial，Mo． | Pa ． | WL | IN | True－Line 365 S－－－ | 2 | 3 | 1 | 1 | 2 | 3 | 3 | 1 | 3 | 3 |
| Colonial，Mo． | Tenn． | WL | IN | True－Line 365 S－－－ | 2 | 3 | 1 | 2 | 3 | 4 | 4 | 1 | 3 | 2 |
| Colonial Poultry Farm，Inc．，Pleasant Hill， Missouri 64080. <br> Colonia1，Mo．－－－－－－－－－－－－－－－－－－－－－－－－－－－－ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Mo．－F． | RIR | PS | Colonial RIR－－－－－－ | 4 | 4 | 4 | 4 | 2 | 3 | 3 | 4 | 2 | 2 |
| Colonial Poultry Farm，Inc．，Pleasant Hill， Missouri 64080. <br> Colonial，Mo． |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Mo．－F． | BPR | PS | Colonial BPR－－－－－－ | 4 | 4 | 4 | 3 | 4 | 3 | 3 | 4 | 4 | 2 |
| Davis，Joe K．，Hatchery，P．o．Box 27，Earl， North Carolina 28038. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Davis，N．C．－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－ | Mo．－F． | RIR×BPR | BX | Davis Combiner－－－－ |  | 4 | 4 | 1 | 2 | 1 | 1 | 4 | 3 | 4 |
| Davis，N．C．－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－ | N． H. | RIRxBPR | BX | Davis Combiner－－－－ | 3 |  | 4 |  | 3 | 1 | 1 | 4 | 4 | 2 |
| Davis，N．C． | N，H．-F ． | RIRxBPR | BX | Davis Combiner－－－－ | 4 | 4 | 4 | 3 | 4 | ， | 1 | 4 | 4 | 1 |
|  | N．C． | RIR×BPR | BX | Davis Conbiner－－－－ | 4 | 4 | 4 | 4 | 3 | 2 | 1 | 4 | 3 | 4 |
| DeKalb－Warren，Inc．， 229 Main St．，North Brookfield，Massachusetts 15350. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| DeKalb－Warren，Ma． | N．C． | RIRxRIW RTRxRIW | BX BX | Sex Sal Link F－－－－ Sex Sal Link F－－－－ | 3 3 | 3 3 | 4 | 1 | 1 | 1 | 1 | 3 3 | 1 | 2 3 |
| DeKa1b－Warren，Ma．－－－－－－－－－－－－－－－－－－－ | Pa ． | RIRxRIW |  | Sex Sal Link F－－－－ | 3 |  | 4 | 1 | 1 | 1 | 1 |  | 1 | 3 |
| DeKalb－Warren，Inc．， 229 Main St．，North Brookfield，Massachusetts 15350 ． DeKalb－Warren，Ma． |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Pa ． | SYNXRIR | BX | Amber Link－－－－－－－－ | 3 | 2 | 4 | 1 | 2 | 2 | 2 | 3 | 1 | 2 |
| Euribrid B．V．Boxmeer，Holland |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | F1a． | WL | SX | Hisex White－－－－－－－ | － | 1 | ， | 1 |  | 3 | 2 | 1 | 4 | 4 |
| Euribrid，Holland（Euribrid，Belgium）－－－－－－－－ | Mo．－C． | WL | SX | Hisex White | 1 | ， | I | 2 | 2 | 3 | 4 | 2 | ， | 2 |
| Euribrid，Holland－－－－－－－－－－－－－－－－ | N．H．－C． | WL | SX | Hisex White－－－－－－－ | 1 |  | 1 | 1 | 2 | 3 | 3 | 1 | 2 | 3 |
| Euribrid，Ho1land | N．H．－F． | WL | SX | Hisex White－－－－－－－ | 2 | 2 | 1 | 1 | 4 | 4 | 4 | 2 | 1 | 1 |
| Euribrid，Holland－－－－－－－－－－－－－－－－－－－－－－－－－－－－ | Pa ． | WL | sx | Hisex White－－－－－－－ | 1 | 1 | 1 | 2 | 2 | 3 | 3 | 1 | 3 | 3 |
| Fisher Poultry Farm，Ltd．，Ayton，Ontario，Canada NOG 1 Co |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Fisher，Ont．－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－ | C．C． | WL | SX | Fisher 107－－－－－－－－ |  | 2 | 4 | 1 | 2 | ， | 2 | 1 | 4 | 1 |
| Fisher，Ont． | Mo．－C． | WL | SX | Fisher 107－－－－－－－－ | 4 | 4 | 4 | 1 | 2 | 1 | 2 | 4 | 4 | 2 |
| Fisher，Ont．－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－ | N．II．－C． | WL | SX | Fisher 107－－－－－－－－ | 3 | 3 | 3 | 2 | 3 | 2 | 2 | 3 | 2 | 2 |
| Fisher，Ont． | Pa ． | WL | SX | Fisher $107-$ | 2 | 2 | 3 | 2 | 2 | 1 | 3 | 2 | 3 | 1 |
| Fisher，Ont．－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－ | Tenn． | WL | SX | Fisher 107－－－－－－－－ | 2 | 2 | 3 | 1 | 1 | I | 1 | 1 | 1 | 2 |
| Fisher Poultry Farm，Ltd．，Ayton，Ontario，Canada NOG 1CO <br> Fisher，Ont |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | c．c． | Syn． | Syn． | Fisher 505－－－－－－－－ | 4 | 4 | 3 | 3 | 4 | 3 | 3 | 4 | 4 | 4 |

TABLE 5.--Range group ranking for stock entered in 1974-75 random sample egg production tests--Continued

TABLE 5.--Range group ranking for stock entered in 1974-75 random sample egg produetion tests--Continued

| ENTRY IDENTIFICATION | TEST | breed |  | STRAIN OR TRADENAME |  |  |  |  |  | $\begin{aligned} & \frac{I}{I} \\ & 0 \\ & \text { OV } \\ & \text { Wi } \\ & \text { wis } \\ & \text { (ox) } \end{aligned}$ |  | $\stackrel{a}{6}$ ${ }^{\circ} \mathrm{a}$ 은 wo $4 \mathrm{~L} . \mathrm{w}$ (lbs) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Shaver Poultry Breeding Farms, Ltd., Box 400, Cambridge, Ontario, Canada N1R 5V9. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Shaver, Ont | C.C. | WL | SX | Starcross 288- | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 1. | 1 |
| Shaver, Ont | F1a. | WL | SX | Stareross 288- | - | 1 | 2 | 4 | 1. | 1 | 1 | 1 | 1 | 2 |
| Shaver, Ont. | Mo.-C. | WL | SX | Stareross 288 | 1 | 1 | 3 | 2 | 2 | 2 | 1 | 1 | 2 | 4 |
| Shaver, Ont. | Mo. -F . | WL | SX | Stareross 288- | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 |
| Shaver, Ont. | N. II. -C. | WL | SX | Stareross 288- | 2 | 1. | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 1. |
| Shaver, Ont | N. H. -F . | WL | SX | Stareross 288- | 1 | 1 | 1 | 2 | 1 | 3 | 3 | 1 | 1 | 2 |
| Shaver, Ont | N.C. | WL, | SX | Stareross 288-- | 1 | 1 | 2 | 3 | 2 | 3 | 2 | , | 2 | 1 |
| Shaver, Ont | Pa . | WL | SX | Stareross 288-- | 1 | 1 | 1 | 3 | 2 | 2 | 1 | 2 | 2 | 2 |
| Shaver, Ont | Tenn. | WL | SX | Starernss 288-- | 1. | 1 | 1 | 3 | 1 | 1 | 1 | 1 | 1 | 1 |
| St. Augustin Coop. Hatehery, St. Augustin, Quebec, Canada. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | C.C, | WL | SX | Corvette A 1-- | 3 | 4 | 3 | 2 | 3 | 3 | 3 | 2 | 1 | 1 |
| Tatum Farms, Route 3, Dawsonvi11e, Ceorgia 30534.Tatum, Ca.Tatum, Ca,Tatum, Ga. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Fla. | WL, | SX | Tatum T-100-- | - | 3 | 3 | 1 | 4 | 2 | 2 | 3 | 1 | 3 |
|  | Pa. | WL, | SX | Tatum T-100-- | 3 | 3 | 1 | 2 | 3 | 3 | 3 | 4 | 3 | 4 |
|  | Tenn. | WL | SX | 'Tatum 'T'-100-- | 2 | 3 | 1 | 3 | 3 | 3 | 3 | 3 | 2 | 2 |
| Tatum Farms, Route 3, Dawsonvi11e, Georgia 30534. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | N. H. -C. | RIRxSYN | BX | Tatum T-173-- | 3 | 3 | 4 | 2 | 2 | 3 | 3 | 3 | 2 | 3 |
| Tatum, Ca. | N. H. -F. | RIRxSYN | $B X$ | Tatum T-173- | 4 | 4 | 4 | 2 | 3 | 3 | 4 | 4 | 3 | 2 |
| Tatum, Ca. | Pa . | RIRxSYN | BX | Tatum T-173-- | 3 | 4 | 4 | 1 | 2 | 1. | 1 | 3 | 1 | 2 |
|  | Tenn. | RIRxSYN | BX | 'Tatum T-173-- | 4 | 4 | 3 | 1 | 1. | 2 | 2 | 3 | 1. | 4 |
| Welp's Poultry Breeding Farm, Box 366, Baneroft, Iowa 50517. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| We1p, Iowa | Mo. - ${ }^{\text {P }}$ | RTR | SX | Welp Line 650 N | 3 | 3 | 2 | 1 | 3 | 3 | 3 | 3 | 3 | 1 |
| We1p, Iowa------------------------------------- | N. H. -C. | RTR | SX | Welp Line 650 N | 2 | 2 | 2 | 1 | 1 | 2 | 3 | 4 | 3 | 1 |
| Welp's Poultry Breeding Farm, Box 366, Baneroft, Iowa 50517. <br> Welp, Iowa---------------------------------------- |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Fla. | WL | IN | Welp Line 973-- | - | 4 | 2 | 2 | 1 | 4 | 4 | 4 | 4 | 4 |

RANDOM SAMPLE EGG PRODUCTION TEST ENTRIES AND CONDITIONS, 1974-75 TABLE 6.--Stock entered in 1974-75 tests

| Breeder | Stock |  | ```Number of entries``` | Tests entered |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Code | Strain or trade name |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  | C.C. | Fla. | Mo.-C. | Mo. - F. | N.H.-C. | N.H. -F. | N.C. | Pa . | Tenn. |
| Animal Res. Inst.----- | 570 | Kentville R.B.C.---- | 1 | X |  |  |  |  |  |  |  |  |
| Anthony---------------- | 10 | Anthony Leghorn------ | 3 |  |  |  | X |  |  |  | X | X |
| Babcock---------------- | 307 | Babcock B-300-------- | 8 | X | X | X | X | X |  | X | X | X |
| Babcock-------------------- | 442 | Babcock B-380-------- | 5 |  |  |  | X | X |  | X | X | X |
| Canada Dept. of Agri.- | 982 | P.D. 58-------------- | 1 | X |  |  |  |  |  |  |  |  |
| Carey------------------- | 437 | Carey Nick 310------- | 2 |  | X |  |  |  |  |  | X |  |
| Colonial-------------- | 453 | Colonial BPR--------- | 1 |  |  |  | X |  |  |  |  |  |
| Colonial--------------- | 439 | Colonial RIR--------- | 1 |  |  |  | X |  |  |  |  |  |
| Colonial--------------- | 289 | True-Line 365 B------ | 1 |  |  |  | X |  |  |  |  |  |
| Colonial---------------- | 431 | True-Line 365 K------ | 1 |  |  | X |  |  |  |  |  |  |
| Colonial-------------- | 432 | True-Line 365 S------ | 7 | X | X | X | X | X |  |  | X | X |
| Davis----------------- | 309 | Davis Combiner------- | 4 |  |  |  | X | X | X | X |  |  |
| DeKalb-Warren--------- | 456 | Amber Link----------- | 1 |  |  |  |  |  |  |  | X |  |
| DeKalb-Warren--------- | 305 | Sex-Sal-Link F------- | 2 |  |  |  |  |  |  | X | X |  |
| Euribrid-------------- | 447 | Hisex White---------- | 5 |  | X | X |  | X | X |  | X |  |
| Fisher------------------ | 607 | Fisher 107------------- | 5 | X |  | X |  | X |  |  | X | X |
| Fisher------------------ | 608 | Fisher 505------------ | 1 | X |  |  |  |  |  |  |  |  |
| Garber----------------- | 66 | Garber G 200--------- | 2 |  | X |  |  |  |  |  | X |  |
| Hardy------------------- | 86 | Deluxe Sex Link------ | 1 |  |  |  |  |  | X |  |  |  |

TABLE 6.--Stock entered in 1974-75 tests--Continued


TABLE 7.--Management, rations, laying house environment, and vaccination provided by tests, $1974-75$

| Test | Hatched | Age at housing (days) | ```Length``` | $\begin{gathered} \text { Ent- } \\ \text { ries } \\ \text { (num- } \\ \text { ber) } \\ \hline \end{gathered}$ | Replications |  | Housing management |  |  | Sq. feet per bird |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Number | $\begin{gathered} \text { Birds } \\ \text { per } \\ \text { rep. } \\ \hline \end{gathered}$ |  |  |  |  |
|  |  |  |  |  |  |  | Brooding | Rearing | Laying ${ }^{\text {- }}$ |  |
| Central Canada------ | 4/30/74 | 147 | 497 | 12 | 8 | 65 | Cage | Cage | Cage-2 | 0.45 |
| F1orida------------- | 5/27/74 | 150 | 486 | 12 | 4 | 24 | Litter | Litter | Cage-2 | .4 |
|  |  |  |  |  | 8 | 50 | Litter | Litter | Litter | 1.92 |
| Missouri Cage------ | 9/8/73 | 150 | 500 | 9 | 2 | 40 | Litter | Litter | Cage-2 | . 67 |
|  |  |  |  |  | 4 | 40 | Litter | Litter | Cage-8 | . 58 |
| Missouri Floor------ | 3/ $2 / 74$ | 151 | 500 | 14 | 4 | 60 | Litter | Litter | Litter | 1.6 |
| New Hampshire Cage-- | 4/3/74 | 150 | 500 | 17 | 8 | 24 | Litter | Cage | Cage-3 | . 5 |
| New Hampshire Floor- | 5/3/74 | 150 | 500 | 8 | 3 | 30 | Litter | Litter | Litter | 3.2 |
| North Carolina------ | 3/22/74 | 150 | 499 | 10 | 2 | 50 | Litter | Litter | Litter-slat | 1.7 |
|  |  |  |  |  | 2 | 50 | Colony cage | Colony cage | Colony cage-7 | . 5 |
|  |  |  |  |  | 4 | 26 | Colony cage | Colony cage | Cage-2 | . 6 |
| Pennsylvania-------- | 4/25/74 | 150 | 501 | 24 | 2 | 48 | Litter | Litter | Cage-3 | . 5 |
|  |  |  |  |  | 2 | 50 | Litter | Litter | Litter | 1.7 |
| Tennessee---------- | 3/26/74 | 140 | 500 | 12 | 8 | 30 | Litter | Litter | Cage-2 | .45 |

1/ The numerals after the word "cage" refer to the number of birds per cage.

TABLE 7.--Management, rations, laying house environment, and vaccination provided by tests, 1974-75--Continued

| Test | Entries brooded intermingled | ```Minimum oz./doz. for large eggs``` | Protein (percent) |  |  | Metabolizable energy2/ (calories/pound) |  |  | Metabolizable Calories Crude Protein ${ }^{3 /}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Start | Grow | Lay | Start | Grow | Lay | Start | Grow | Lay |


| Central Canada----- | No | 24 | 17.6 | 14.5 | 16.2 | 1270 | 1290 | 1300 | 58.0 | 79.1 | 76.9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Florida- | Yes | 23 | 22.0 | $\begin{array}{r} 9.1 \\ 15.3 \end{array}$ | 16.5 | 1340 | $\begin{aligned} & 1480 \\ & 1371 \end{aligned}$ | 1313 | 60.9 | $\begin{array}{r} 162.6 \\ 78.8 \end{array}$ | 77.7 |
| Missouri Cage------ | No | 23 | 20.0 | 16.0 | $\begin{aligned} & 18.2 \\ & 15.1 \end{aligned}$ | 1318 | 1266 | $\begin{aligned} & 1250 \\ & 1224 \end{aligned}$ | 63.7 | 78.1 | $\begin{aligned} & 68.7 \\ & 81.1 \end{aligned}$ |
| Missouri Floor | No | 23 | 20.7 | 16.0 | 15.1 | 1318 | 1266 | $\begin{aligned} & 1281 \\ & 1305 \end{aligned}$ | 63.7 | 78.1 | $\begin{aligned} & 75.3 \\ & 86.4 \end{aligned}$ |
| New Hampshire | Yes | 23.5 | 20.9 | 16.0 | $\begin{aligned} & 17.0 \\ & 15.0 \end{aligned}$ | 1340 | 1319 | $\begin{aligned} & 1255 \\ & 1337 \end{aligned}$ | 64.0 | 82.0 | $\begin{aligned} & 72.0 \\ & 81.0 \end{aligned}$ |
| North Carolina- | No | 23 | 20.0 | 16.0 | $\begin{aligned} & 20 \\ & 16 \end{aligned}$ | 1249 | 1238 | $\begin{aligned} & 1303 \\ & 1335 \end{aligned}$ | 62.4 | 77.4 | $\begin{aligned} & 71.2 \\ & 80.9 \end{aligned}$ |
| Pennsylvania-------- | Yes | 24 | 21.0 | 17.0 | 18.0 | $13004 /$ | 13574/ | 13544/ | 61.9 | 79.8 | 75.2 |
| Tennessee--------- | No | 23 | $\begin{aligned} & 20.8 \\ & 20.8 \end{aligned}$ | $\begin{array}{r} 16.5 \\ 9.0 \end{array}$ | $\begin{aligned} & 16.9 \frac{5}{/} \\ & 16.95 / \end{aligned}$ | $\begin{aligned} & 1365 \\ & 1365 \end{aligned}$ | $\begin{aligned} & 1382 \\ & 1443 \end{aligned}$ | $\begin{aligned} & 1305 \\ & 1305 \end{aligned}$ | $\begin{aligned} & 65.6 \\ & 65.6 \end{aligned}$ | $\begin{array}{r} 84.0 \\ 159.0 \end{array}$ | $\begin{aligned} & 77.3 \\ & 77.3 \end{aligned}$ |

2/ Metabolizable energy is the maximum quantity of feed energy that possibly may be used by the chicken.
3/ Metabolizable calories divided by percent crude protein.
4/ Approximate metabolizable energy computed from productive energy, using 70 percent as the conversion factor.
5/ See Tennessee Test Report for complete ration combinations.

TABLE 7.--Management, rations, laying house environment, and vaccination prqvided by tests, 1974-75--Continued

| Test | Lighting |  | Artificialheatused | R Value of insulation material ${ }^{6 /}$ |  | Vertilation |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Rearing (hours) | Laying <br> (hours) |  |  |  |  |
| Central Canada------ | (7) | (8/) | Yes | Ceiling <br> Walls | $\begin{aligned} & 27.9 \\ & 15.1 \end{aligned}$ | Exhaust fans in roof and in east wall |
| F1orida------------- | Natural | 15 | No | Cage Summer <br> House Winter | $\begin{array}{r} 13.0 \\ 8.0 \end{array}$ | Natural ridge vents |
| Missouri Cage------- | 10 | 16 | No | Ceiling Walls | $5.8$ <br> None | Ridge vents |
| Missouri Floor------ | Natural | 14 | No | Ceiling <br> Walls | $\begin{aligned} & 15.0 \\ & 15.0 \end{aligned}$ | Exhaust fans in ceiling |
| New Hampshire------- | 14 | 14 | No | Ceiling Wa11s | $\begin{aligned} & 15.0 \\ & 15.0 \end{aligned}$ | Exhaust fans |
| North Carolina------ | Step down | Step up to 17 | No | $\begin{aligned} & \text { Ceiling } \\ & \text { Walls } \end{aligned}$ | $\begin{aligned} & 7.3 \\ & 1.5 \end{aligned}$ | Natural via windows |
| Pennsylvania-------- | 8 | 12 to 17 | Yes | Ceiling Walls | $\begin{aligned} & 15.5 \\ & 15.5 \end{aligned}$ | Exhaust |
| Tennessee----------- | Natural | 14 | No | $\begin{aligned} & \text { Ceiling } \\ & \text { Walls } \end{aligned}$ | $13.0$ <br> None | Winter, Positive pressure <br> Summer, Exhaust fans |

6/ Due to variations in type of construction, $R$ Values will be approximate for some tests.
7/ At day old--18-1/2 hr.; light decreased 15 minutes per week to meet at $15-1 / 2 \mathrm{hr}$. at 1 ongest day, then natural decrease until 13-1/2 hr.

8/ $13-1 / 2 \mathrm{hr}$. until natural increase takes light hours to $15-1 / 2 \mathrm{hr}$. in mid-June, then light held at $15-1 / 2$ hr. until end of test.

TABLE 7.--Management, rations, laying house environment, and vaccination provided by tests, 1974-75--Continued

| Test | Newcastle |  | Infectious bronchitis |  | Fowl Pox |  | Encephalomyelitis |  | Coccidiosis control |  | Marek's <br> Disease |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | type | $\begin{gathered} \text { Age } \\ \text { (wk.) } \end{gathered}$ | Type | $\begin{gathered} \text { Age } \\ \text { (wk.) } \end{gathered}$ | Type | $\begin{gathered} \text { Age } \\ (w k .) \end{gathered}$ | Type | Age (wk.) | Type | $\begin{gathered} \text { Age } \\ (\text { wk. }) \end{gathered}$ |  |


| Central Canada | Spray Spray | $\begin{aligned} & 1.5 \\ & 19 \end{aligned}$ | Spray Spray | $\begin{aligned} & 1.5 \\ & 12 \end{aligned}$ | Wing web. | 8 | Water <br> Water | $\begin{aligned} & 8 \\ & 15 \end{aligned}$ |  |  | 1 day |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Florida------- | Water Water | $\begin{array}{r} 1,3,10 \\ 16,32 \end{array}$ | Water Water | $\begin{aligned} & 1,3 \\ & 10,16 \end{aligned}$ | Wing web. | 8 | None | -- | Poly-stat | 0-15 | 1 day |
| Missouri Cage- | Water <br> Water <br> Water | $\begin{aligned} & 2 \\ & 6 \\ & 12 \end{aligned}$ | Water <br> Water <br> Water | $\begin{aligned} & 2 \\ & 6 \\ & 12 \end{aligned}$ | None | -- | None | -- | Poly-stat | 0-11 | $\begin{aligned} & 1 \text { day } \\ & \text { Bio-Vac } \end{aligned}$ |
| Missouri Floor | Water <br> Water <br> Water | $\begin{aligned} & 2 \\ & 4 \\ & 14 \end{aligned}$ | Water Water Water | $\begin{aligned} & 2 \\ & 4 \\ & 14 \end{aligned}$ | None | -- | None | -- | Poly-stat | 0-8 | $\begin{aligned} & 1 \text { day } \\ & \text { Bio-Vac } \end{aligned}$ |
| New Hampshire- | Dust <br> Dust | $\begin{aligned} & 2 \\ & 20 \end{aligned}$ | Dust <br> Dust | $\begin{aligned} & 2 \\ & 20 \end{aligned}$ | None | -- | None | -- | Cocci-Vac | 1 | 1 day |
| North Carolina | Occular <br> Water <br> Water <br> +Every 9 | $\begin{aligned} & 1 \text { day } \\ & 5 \\ & 16 \end{aligned}$ | Occular <br> Water <br> Water | 1 day 5 <br> 16 | Wing web. | 12 | Water | 14 | None (cages) 6 Spcs. Cocci | $1$ | 1 day <br> M \& E |
| Pennsylvania-- | Water Water Water | $\begin{aligned} & 4 \\ & 8 \\ & 16 \end{aligned}$ | Water <br> Water <br> Water | 4 8 16 16 | Wing web. | 8 | None | -- | Amprol | 0-20 | 1 day |
| Tennessee----- | Occular Occular Occular | 1 day 10 20 | Occular Occular Occular | 1 day 10 <br> 20 | Wing web. | 10 | None | - | Amprol | 0-20 | 1 day |

U. S. DEPARTMENT OF AGRICULTURE

AGRICULTURAL RESEARCH SERVICE
HYATTSVILLE, MARYLAND 20782

## OFFICIAL BUSINESS

PENALTY FOR PRIVATE USE, $\$ 300$

POSTAGE AND FEEES PAID
U. S. DEPARTMENT OF AGRICULTURE

AGR 101


[^0]:    *Includes 28 experimental stocks.

[^1]:    * Data for this trait not reported.

[^2]:    * Data for this trait not reported.

[^3]:    * Data for this trait not reported.

[^4]:    * Data for this trait not reported.

