1975 Report of RANDOM SAMPLE EGG PRODUCTION TESTS

United States and Canada

Two-Year Combined Summary, 1973-74 and 1974-75 Range Group Rankings, 1974-75

ARS-NE-21-3

March 1976

AGRICULTURAL RESEARCH SERVICE . U.S. DEPARTMENT OF AGRICULTURE

PREFACE

Egg production tests are designed to provide poultrymen, hatcherymen, and breeders with a reliable guide to the performance of poultry stocks offered for sale. This publication contains information on many egg production traits that are of economic importance to the trade. The data were compiled from the records of official Random Sample Egg Production Tests conducted in the United States and Canada. The data resulting from these tests have been analyzed statistically by the Animal Improvement Programs Laboratory, Animal Physiology and Genetics Institute, Agricultural Research Service, USDA, Beltsville, Maryland.

The publication of this report is based on recommendations of the National Committee on Random Sample Poultry Testing and the Council of American Official Poultry Tests. The information was compiled by the Poultry Improvement Staff, Animal Improvement Programs Laboratory, Agricultural Research Service, from data furnished by Test supervisors.

The publication of this report does not imply approval or endorsement by the U.S. Department of Agriculture of any of the stocks mentioned.

CONTENTS

Page

Two-year combined summary for test years 1973-74 and 1974-75	1
How to tell if differences among stocks are real	2
Explanation of income figures	3
Stocks should be compared for all traits	3
Definition of terms used and abbreviations	3
Definition of traits	4
Tests and supervisors	5
Procedures used for computing combined summary values	10
Statistical methods	10
Definition of statistical terms	11
Range group ranking based on 1974-75 tests	18
How group rankings were determined for each trait	18
Tabular listing of stock entered in tests	18
Management and environmental conditions at tests	18
Random Sample Egg Production Test entries and conditions, 1974-75	26

TABLES

1.	Two-year combined summary: Regressed means and 80% confidence limits for traits by stocks entered	6
2.	Analytical data for the traits measured, 1973-74 and 1974-75	12
3.	Factors used to adjust for test differences	13
4.	Upper and lower limits for each range group by traits and tests, 1974-75	19
5.	Range group ranking for stock entered in 1974-75 Random Sample Egg Production Tests	22
6.	Stock entered in 1974-75 tests	26
7.	Management, rations, laying house environment, and vaccination provided in tests, 1974-75	28

This report is divided into four sections:

1. A two-year combined summary of the data obtained in the 1973-74 and 1974-75 Random Sample Egg Production Tests. These data were treated by acceptable statistical procedures that allow the reader to compare directly the stock entered in the various egg production tests in the United States and Canada.

2. An explanation of statistical procedures that were used in computing the regressed means and confidence limits of egg production traits evaluated in the two-year combined summary.

3. A range group ranking for stock that was entered in 1974-75 Random Sample Egg Production Tests. The ranking shows the performance of each stock by traits compared with that of other stocks in the same test.

4. List of stocks entered in 1974-75 tests and some of the management conditions at the test during the 1974-75 test year.

TWO-YEAR COMBINED SUMMARY FOR TEST YEARS 1973-74 AND 1974-75

Entries in the various tests start with a random sample of hatching eggs or chicks of the stock to be tested. Samples are drawn according to prescribed methods to ensure that each entry is typical of the stock it represents. All entries within a test are treated alike with respect to housing, feeding, management, and disease control in order to avoid differences in performance that would be due to environment.

All tests are conducted according to these basic principles. However, even the most carefully designed and conducted tests are influenced by errors of two kinds. The first kind of error is the chance deviation or unavoidable "sampling error" made when a small sample of eggs or chicks represents an entry. The other kind of error is due to uncontrolled or unknown environmental differences between entries that occur in spite of all efforts to treat all entries within a given test as nearly alike as possible. The differences between the results for two entries in a single test for a single year may be due to these chance variations rather than to a real difference in the performance capabilities of the two stocks. The effect of such errors in comparing stocks can be materially reduced by basing comparisons on the combined results of several tests over two or more years.

If all entries compared were entered in the same tests in both years, the simple averages could be compared directly without adjustment. However, differences among tests and between years and those caused by climatic conditions and other environmental factors affect the results. As a consequence, a direct comparison of the test results of two stocks in different tests or in different years may be misleading. Therefore, to present test results in a manner that will allow sound evaluation of all stocks tested, the results were combined by stocks and by years, and were adjusted by accepted statistical procedures for test and year differences and for variation in amount of information per stock. The results of these computations are published as the "regressed mean" for each trait for each stock that was tested (table 1).

The performance data (regressed means) reported in this summary are derived from the results reported by the individual tests for each of the past two years. It is unlikely, however, that the means for any stock, even though entered in only one test each year, will coincide precisely with the two-year average performance data as published by the test. The variations are due to adjustments for test differences, year difference, the number of tests and of years entered, and the number of replicates per test. These statistical adjustments allow predictions of what the average performance would have been for each stock had all stocks been entered in all tests each year.

The statistical treatment applied to the test data is designed to reduce the influence of nongenetic variations. This cannot be accomplished perfectly, and consequently, estimates or predictions of performance cannot be made with absolute precision. However, reliable predictions, within prescribed limitations, can be made as to whether a difference in the reported performance of stocks represents a real difference in their performance. These predictions involve the use of the confidence limit values that have been computed for each trait or performance factor reported.

A brief explanation of the statistical procedures used in computing the regressed means and confidence limits is provided in the section entitled "Procedures Used for Computing Combined Summary Values." The following example illustrates the compilation of the two-year combined summary. This and the related explanation will help the reader to use and interpret the data in table 1.

			FEED	PER	E	GG	LARG	EAND	ALBU	MEN		BLOOD	SPOTS	
sтоск	BO WEI	DY GHT unds)	PROD	GS UCED	WEI (02)	GHT	EXTRA EG	LARGE GS cent)	QUAI (Haugh	_ITY	1/8 I OR M	NCH MORE	LESS 1/8 I	THAN NCH
CODE	RE- GRESSED MEAN	80%* CONF. LIMITS	RE- GRESSED MEAN	80%* CONF. LIMITS	RE- GRESSEO MEAN	80% [*] CONF. LIMITS	RE- GRESSEO MEAN	80% [*] CONF. LIMITS	RE- GRESSEO MEAN	80%* CONF. LIMITS	RE- GRESSEO MEAN	80% [*] CONF. LIMITS	RE- GRESSEO MEAN	80% [*] CONF. LIMITS
		5.4	1	2.95		25.7		75.2		77.1		0.9		2.2
995	5.6	5.8	3.02	3.09	26.0	26.3	77.5	79.8	77.9	78.7	1.1	1.4	2.7	3.2
		4.0		2.77		25.0		69.0		80.1		0.6		0.8
996	4.2	4.4	2.83	2.89	25.2	25.4	71.0	72.8	80.9	81.7	0.7	1.0	1.1	1.4
		4.5		2.86		24.6		65.5		73.3		1.0		1.5
997	4.7	4.9	2.94	3.02	24.9	25.2	68.0	70.3	74.1	74.9	1.2	1.4	1.9	2.4
		3.7		2.73		24.9		69.2		75.5		0.9		1.2
998	4.0	4.3	2:84	2.95	25.3	25.7	72.4	75.6	76.6	77.7	1.0	1.2	1.5	1.9
		3.9		2.47		25.0		67.6		82.3		0.6		0.7
999	4.2	4.5	2.56	2.65	25.4	25.8	70.3	73.0	83.0	83.7	0.8	1.0	1.1	1.4

(Illustration of regressed means and 80 percent confidence limits as they might appear for a few traits)

*If the confidence limits for two regressed means overlap, the two means are not significantly different at the 5% level.

The range of the confidence limits represents the amount of difference in the performance of two stocks that may be due to chance. If the confidence limits for two regressed means <u>overlap</u>, the two means are not significantly different at the 5 percent level of probability. If the confidence limits for two regressed means <u>do not overlap</u>, the odds are at least 19 in 20 that a real difference exists in the performance of the two stocks.

The use of the above data as a means of evaluating different stocks and traits can be illustrated as follows:

For the trait "Body Weight," the confidence limits of Stock 995 (5.4 to 5.8 lbs.) <u>do not</u> overlap the confidence limits of any of the other stocks. Therefore, Stock 995 has a <u>significantly higher</u> body weight than the others. However, the confidence limits of Stock 996 (4.0 to 4.4 lbs.) <u>overlap</u> the confidence limits of Stock 998 (3.7 to 4.3 lbs.) and Stock 999 (3.9 to 4.5 lbs.). The body weights of these three stocks are, therefore, <u>not significantly</u> different.

Using the trait "Feed per Pound of Eggs Produced" as another example, the confidence limits of Stock 995 (2.95 to 3.09 lbs.), Stock 997 (2.86 to 3.02 lbs.), and Stock 998 (2.73 to 2.95 lbs.) all overlap each other. Thus there is no significant difference in the feed conversion of these three stocks. When comparing the feed conversion of Stock 999 (2.56 lbs.) with that of the other stocks, we see that the range of its confidence limits is from 2.47 to 2.65 lbs. Since this range does not overlap the confidence limits of the other four stocks, Stock 999 has a significantly lower feed conversion than the other stocks listed.

Another example can be shown by using the trait "Albumen Quality." The confidence limits of Stock 995 (77.1 to 78.7) <u>overlap</u> the confidence limits of Stock 998 (75.5 to 77.7). Therefore, there is no significant difference in the albumen quality of these two stocks, even though the regressed mean of Stock 995 is 77.9 Haugh Units and Stock 998 is 76.6 Haugh Units. When Stock 995 is compared with Stocks 996 and 999, we see that the confidence limits of these two stocks <u>do not</u> overlap those of Stock 995. Thus, these two stocks have a <u>significantly higher</u> albumen quality (80.9 and 83.0 Haugh Units, respectively) than the 77.9 Haugh Units of Stock 995. In comparing Stock 995 with Stock 997, the confidence limits <u>do not</u> overlap. In this case, the albumen quality of Stock 997, expressed as a regressed mean of 74.1 Haugh Units is <u>significantly lower</u> than the regressed mean of Stock 995.

The range of the confidence limits will not necessarily be the same for two different stocks that have the same regressed mean. The number of locations in which a stock is entered, the number of replicate pens per location, the number of years entered, and the accuracy involved in adjusting for location and year effects all have a bearing on the range of the confidence limits for each individual regressed mean. The "Income Over Feed and Chick Cost" figures reported in table 1 represent the sales value of the eggs produced and of the hens at the end of the test minus the cost of the chicks and the feed used during the growing and laying periods. These figures may be useful in comparing the overall performance of stocks, but they should not be considered as predictions of "profit" to be obtained under commercial operations. The "income" figures should be reduced by other costs, such as labor, building and equipment depreciation, vaccination, litter, interest, taxes, and insurance, to approximate profits that might be expected under range from \$1 to \$2 per pullet housed.

Although the average chick price is reported for each stock, this value cannot be appropriately used to convert the "Income Over Feed and Chick Cost" figure to an income over feed cost figure. The average chick price shown is a simple unadjusted average of the prices reported by the entrant for his entries in the various tests and is not directly comparable to chick cost included in "Income Over Feed and Chick Cost."

Stocks Should be Compared for all Traits

All traits should be considered when using this report to evaluate the overall performance of the various stocks. The values reported for "Income Over Feed and Chick Cost" represent a composite of several traits combined as determined by the economic conditions of the areas in which the tests are located. The conditions under which the stock is expected to perform in commercial production may differ from those prevailing at the tests, and such differences should be taken into consideration. For example, a poultryman whose local market pays unusually high premiums for large and extra large eggs should place more emphasis on egg size in his evaluation of stock than poultrymen located in areas where such premiums are not available. The local market preference for brown or white shells should also be taken into account. Traits related to interior egg quality that affect the grade are of greatest importance in areas where prices are based on quality standards.

Each person should study his local needs and conditions and then place appropriate emphasis on the performance traits that are of greatest importance to his situation. A productive and profitable stock for one poultryman under one set of conditions may not fit the needs of another poultryman under a different set of conditions.

Definition of Terms Used and Abbreviations

Stock:	A term used to identify a combinations may include combinations thereof. Kind	specific pure strain s of stock a	breeding combination or s, strain crosses, br and breeding methods are	f chicke eed cro	ens. These breeding sses, incrosses, or
	BPR Barred Plymouth Rock	BX	Crossbred	IN.	Incross
	NH New Hampshire	WL	White Leghorn	PS	Pure Strain
	RIR Rhode Island Red	WPR	White Plymouth Rock	SX	Strain Cross
	Syn. Synthetic				
Tests:	Canada Central (C. C.) Florida (Fla.) Missouri Cage (MoC.) Missouri Floor (MoF.)		New Hampshire Floor (N. North Carolina (N.C.) Peunsylvania (Pa.) Tennessee (Tenn.)	HF.)	
	New Hampshire Cage (N.HC.)	Tennessee (Tenn.)		

Test Year: A period beginning during the first year stated in a double-year designation and ending approximately 500 days later. See management summary shown in table 7.

Growing mortality Percentage of birds that died on or before the time they were 150 days old or subsequent age at housing. Laying mortality Percentage of birds that died after they were 150 days old or sebsequent age at housing. Age at 50 percent Days of age computed from the first day of the first two consecutive days of 50 production percent production for living birds in the entry at that time. Hen-housed egg Number of eggs laid per pullet housed computed from time of housing to the end of the production test. Hen-day egg Percent hen-day production from the time birds reached 50 percent production to end production of test. (to end of test) Hen-day egg Percent hen-day production during the last 30 to 60 days of the test. Length of time production involved varies according to the record keeping system of each individual test. (last 30 to 60 days) Feed per pound Pounds of feed per pound of eggs produced, computed from bulk weighing of the eggs at of eggs least one day, every two weeks or two days a month at equal intervals during the laying period of the test. Feed per 100 Average pounds of feed consumed per day per 100 birds, calculated over the entire birds per day test period. The weight of a dozen eggs computed from bulk weighing of the eggs at least one day Egg weight every two weeks or two days a month during the laying period of the test. Large and extra Percentage of large and extra large eggs as determined by egg-size distribution large eggs computed from all eggs laid one day each week. Albumen quality Haugh units, computed from egg weight and albumen height of broken-out egg measured on one day's eggs per quarter, at equal intervals. The greater the Haugh units the higher the albumen quality. Large blood spots Percentage of eggs with one or more large blood spots (1/8 inch or more in diameter), computed from at least three days' eggs per quarter, broken-out basis. Small blood spots Percentage of eggs with one or more small blood spots (less than 1/8 inch in diameter), computed from at least three days' eggs per quarter, broken-out basis. Large meat spots Percentage of eggs with one or more colored large meat spots (1/8 inch or more in diameter), computed from at least three days' eggs per quarter, broken-out basis. Small meat spots Percentage of eggs with one or more colored small meat spots (less than 1/8 inch in diameter), computed from at least three days' egg per quarter, broken-out basis. Specific gravity Eggs are given the specific gravity score that corresponds with the specific gravity score of the solution in which they will float. Eggs that do not float in 1.100 solution are given a nine score. The specific gravity of an egg is closely correlated with shell thickness; therefore, the higher the specific gravity score, the thicker the shell. Tabulation of specific gravity solutions and the corresponding specific gravity scores follow:

Solution Score	Solution Score
1.068 0	1.088 5
1.072 1	1.092 6
1.076 2	1.096 7
1.080 3	1.100 8
1.084 4	

Body weight

Average weight of birds alive at end of test.

Income over feed Inco and chick cost hat

Income over feed and chick cost per pullet housed, with chick cost in 1,000 lots at hatch date adjusted for mortality (accidental deaths, sexing errors, and missing chicks not included). Canada Central Egg Production Test W. K. Barr, Poultry Production Section, Canada Department of Agriculture, Ottawa, Ontario, Canada Phone 613/994-9571

- Florida Poultry Evaluation Center R. B. Christmas, Chipley, Fla. 32428 Phone 904/638-0588
- Missouri Random Sample Egg Production Test (Cage) Charles W. McElyea, (Deceased) Poultry Department T-14, University of Missouri, Còlumbia, Mo. 65201 Phone 314/882-6649
- Missouri Random Sample Egg Production Test (Floor) Charles W. McElyea, (Deceased) Poultry Department T-14, University of Missouri, Columbia, Mo. 65201 Phone 314/882-6649
- New Hampshire Egg Production Test (Cage) W. C. Skoglund, Department of Poultry Science, University of New Hampshire, Durham, N. H. 03824 Phone 603/862-2130
- New Hampshire Egg Production Test (Floor) W. C. Skoglund, Department of Poultry Science, University of New Hampshire, Durham, N.H. 03824 Phone 603/862-2130
- North Carolina Random Sample Egg Laying Test, Salisbury G. A. Martin, Poultry Extension Department, North Carolina State University, Raleigh, N. C. 27607 Phone 919/755-2621
- Pennsylvania Random Sample Laying Test Edgar V. Hammers, Pennsylvania Furnace, Pa. 16865 Phone 814/692-8446

Tennessee Random Sample Laying Test H. V. Shirley, Jr., Animal Science Department, University of Tennessee, Knoxville, Tenn. 37916 Phone 615/974-7374

Copies of the final report for any of the Random Sample Egg Production Tests listed above can be obtained by writing to the test supervisor.

			STOCK		MOR	TALITY						EGG PR	ODUCTH	NO		FEED	ER DAY
BREEDER'S NAME AND ADDRESS BREEDING OR	S BREEDING OR	STRAIN OR		GR (/)	DWING PVING	(); L	VING (treat)	PROI	E AT 50% DUCTIO (dajus)	U HEN	HOUSED mber)	HEN (TO ENG (pe	- DAY OF TEST reent)	HEN (LAST 30 (pc)	HDAY -60 DAYS (cent)	LAYIN (po	R 100 IG HENS unds)
1 RADEVAME	TRADENAME	TRADENAME		RE. GRESSE MEAN	B CONF.	RE- GRESSE MEAN	0 CONF.	RE- GRESS MEA	EO CON	* RE- F. GRESSE	80% + CONF	GRESSEC MEAN	80% * CONF.	RE- GRESSED MEAN	80% * CONF. LIMITS	RE- GRESSEO MEAN	80% * CONF. LIMITS
Animal Research Institute WL PS Kentville R.B. Ottawa, Ontario, Canada	WL PS Kentville R.B.	PS Kentville R.B.	C	5 • 0	б. 6. 6. 6.	0°8	6.2 10.1	17	16	9 206	215	63°8	61.7 65.9	51.5	48.6 54.4	22。9	22.1
Anthony, George M. & Sons WL SX Anthony	WL SX Anthony	X Anthony		3 ° 8	2.9 4.9	13.1	11.1	17	3 17	6 2 19	212	69.3	67.8 70.8	61.1	59.1 63.1	22.7	22°1 23°3
Babcock Poultry Farm, Inc. WL IN Babcock B-300 Ithaca, N.Y. 14850	WL IN Babcock B-300	N Babcock B-300		en en	2.6 4.2	7.5	6.2 8.R	16	16 17	2 240	234	72.6	71.5 73.7	63.2	61.6 64.8	23.8	23.2
Babcock Poultry Farm, Inc. RIRxSYN BX Babcock B-380- Ithaca, N.Y. 14850	RIR _{xSYN} BX Babcock B-380-	X Babcock B-380-		2 - 0	1.3 2.8	5 ° tt	4.2 6.8	17	117	9 227	220	69.6	68.2 71.0	ی 66	57.5 61.5	25.3	24°6 26°0
Canada Dept. of Agriculture WL SYN P.D. 58 Ottawa, Ontario, Canadá	WL SYN P.D. 58	N P.D. 58		4 • 2	3.1 5.4	7.6	5.8 9.7	168	16 3 17	2 233	225	70.8	68.7 72.9	61.0	58.2 63.8	22.7	22.0 23.4
Carey Farms WL IN Carey Nick 310 Marion, Ohio 43302	WL IN Carey Nick 310	N Carey Nick 310		ດ. ສ	3°4 10°5	9°8	6.8 10.5	17	117	9 236	229	73.0	74.4 74.6	68.1	65.8 70.4	24.2	23.6 24.8
Colonial Poultry Farm, Inc. BPR PS Colonial BPR- Pleasant Hill, Mo. 54080	BPR PS Colonial BPR-	S Colonial BPR-		e e	2.5 4.2	11.5	9.3 14.0	18(17 18	1 1 2 2	178	58.7	56.2 61.2	48.6	45.3 51.9	23.8	23.0 24.6
Colonial Poultry Farm, Inc. RIR PS Colonial RIR- Pleasant Hill, Mo. 64080	RIR PS Colonial RIR-	S Colonial RIR		6° €	2.9	3.6	6.6 10.8	181	+ 18	191	181 201	60.4	57.9 62.9	53.4	50. 1 56. 7	23.5	22.7
Colonial Poultry Farm, Inc. WL IN True-Line 365 Pleasant Hill, Mo. 64080	WL IN True-Line 365	N True-Line 365	B	3.2	2 • 2 4 • 3	6.5	5.0 8.2	16	7 17	3 229	222	69.7	68.1 71.3	58.4	56.1 60.7	21.7	2 1.1 22.3
Colonial Poultry Farm, Inc. WL IN True-Line 365 Pleasant Hill, Mo. 64080	WL IN True-Line 365	N True-Line 365	K	5 . 8	1.9 3.8	7.1	5.3 9.2	170	16	216	207 225	65.9	63.7 68.1	54.3	51.1 57.5	* * *	**
Colonial Poultry Farm, Inc. WL IN True-Line 365 Pleasant Hill, Mo. 64080	WL IN True-Line 365	IN True-Line 365	S	en en	2 • 5 4 • 2	9.5	8.0 11.1	17(16(516	210 222	6 6 9 9	65.6 68.2	56.4	54. E 58. 2	21.8	2 1 .2
Davis, Joe K., Hatchery RIRxBPR BX Davis Combinet Earl, N.C. 28038	RIRxBPR BX Davis Combine:	XX Davis Combiner		3.7	2.7 4.7	6.9	7.6 11.2	179	17	3 202	195 209	63.0	61.4 64.6	55.5	53.3 57.7	25.1	24.4 25.8
DeKalb-Warren, Inc. SYNxRIR BX DeKalb Amber I North Brookfield, MA 15350	SYN×RIR BX DeKalb Amber I	XX DeKalb Amber I	ink	2.6	3.6 3.6	2 * 8	8°9	18	18	3 225	215	71.2	68.9 73.5	59.9	56.7 63.1	24.5	23.3
DeKalb-Warren, Inc. North Brookfield, MA 15350	RIRXRIW BX Sex Sal Link-F	X Sex Sal Link-F		1.7	1.0 2.6	ф.б	3.2 6.3	-	17	9 220	212 228	68.3	66.4 70.2	60°8	58.3 63.5	24.5	23° 23°
Euribrid, B. V. WL SX Hisex White Boxmeer, Holland	WL SX Hisex White	X Hisex White		1.4	0.8 2.1	7.3	00°00 00°00	161	16:17	3 245	239 251	74.5	73.0 76.0	65.9	КЗ.8 К. В. 0 К. В. 0	23.5	22.9
Fisher Poultry Farm, Ltd. WL SX Fisher 107 Ayton, Ontario, Canada	WL SX Fisher 107	XX Fisher 107		2.3	1.7 3.1	9° t	7.8 11.0	170	17	7 221	215 227	68.5	67.1 69.9	60.0	58.1 61.9	23.5	22.9 24.1

Table 1.- - Two-year combined summary: Regressed means and 80% confidence limits for traits by stocks entered

E OVER	k CHICK IST lars)	80%* CONF. LIMITS	2.24 2.92	3.29 3.81	3.85 4.29	3.10 3.62	3.40 4.10	3.57 4.23	1.75 2.53	1.93 2.69	3.97 4.65	3,39 4,11	3 • 4 9 3 • 9 9	2.17 2.73	2.84 3.60	2.88 3.54	ц.00 ц.62	3.18 3.68
INCOMI	FEED 8 CO	RE- GRESSEO MEAN	2.58	3°22	4.07	3.36	3.75	3.90	2.14	2.31	4.31	3.75	3.74	2.45	3.22	3.21	4.31	3.43
	DY GHT nds)	80%* CONF. LIMITS	4 . 07 4 . 37	3.82 4.00	4.02 4.18	4 .82 5 .00	3.83 4.13	ц.06 ц.28	5 • 5 0 5 • 8 8	4 ° 94 5 ° 30	3.42 3.64	3.37 3.69	3.59 3.59	5.48 5.70	4.87 5.21	4.96 5.22	3.90 4.10	3.99 4.17
	WE10	RE- GRESSEO MEAN	4.22	3.91	4.10	4.91	3,98	4.17	5.69	5.12	3,53	3. 53	3.51	5.59	5 - 04	5.09	4 .00	4.08
(L	1TY RE	80%* CONF. LIMITS	3.35 3.65	2.77 3.01	3 . 59 3 . 79	3.03 3.27	3.71. 4.03	3.47 3.73	3.38 3.76	3.17 3.53	3.41 3.67	3.60 3.96	3.60 3.82	2.99 3.25	3.08 3.44	3.17 3.47	3.25 3.51	3.51 3.73
	GRAV	RE- GRESSEO MEAN	3.50	2.89	3.69	3.15	3.87	3.60	3.57	3°32	3 • 5 4	3.78	3.71	3.12	3 °26	3 . 32	3°38	3.62
	HAN VCH ent)	80%* CONF. LIMITS	0.1	0.1	0.2	13.7 18.9	0.5 2.6	0.1	25.6 36.3	20.2 30.3	0.9	0.1	0.3 1.3	13.9 19.5	9.0	9.0 15.0	0.2	0. 4 1. 6
SPOTS	LESS T 1/8 11 (perc	RE- GRESSEO MEAN	0.6	0.2	0.5	16.2	1.3	0°2	30.8	25.1	0°3	0 • 8	0 • 6	16.6	12.3	11.8	9 ° 0	б° О
MEATS	ICH ORE ent)	80%* CONF. LIMITS	1.0	0.1	0.1	4.3 6.4	0.7	0.1	4.6 8.6	3.0 6.5	0.1	0.1 0.8	0.1	4.6 7.1	0.4 1.8	4.2 7.1	0°.2	0.1
	1/8 IN OR MIO (perce	RE- GRESSEO MEAN	0.4	0.3	0.1	د. 1	0 * 3	0 3	6.5	tt • 6	0°3	0°3	0.2	5.8	1.0	5.6	0 ° t†	0°3
	THAN NCH ent)	80% [*] CONF. LIMITS	1.3	1.0	0.6	0.9	0.8 1.6	0.8 1.6	1.1 1.8	1.0	0.6	1.4	1.6	1.0	1.2	1.2	1.0	0.8 1.5
SPOTS	LESS - 1/8 1 (perc	RE- GRESSEO MEAN	1.7	1.4	6°0	1.2	1.2	1.1	1.4	1.4	0*0	1.8	1.2	1.4	1.6	1.6	1. 4	1.1
BLOOD	NCH NORE (ent)	80%* CONF. LIMITS	0.8 1.3	0 ° ° °	0.6	0°8	0.4 0.8	0.5	0.4	0°.4 8	17°0	0.4 0.8	0.6	0.7	0.4	0.5	0.6	0.7
	1/8 1 OR N (<i>perc</i>	RE- GRESSEO MEAN	1.1	1.0	0.8	0.6	0.6	0.7	0.5	0°6	0.6	0.6	0 . 8	6°0	0.6	0.7	0°0	0.5
MFN	ITY units)	80% [°] CONF. LIMITS	74.1 76.1	78.2 80.0	75.5 77.1	77.8 79.6	79.1	75.2 77.2	72.2 74.8	77.5 80.1	75.9 77.9	75.3 77.7	75.5 77.3	75.6 77.4	80.6 83.2	80 ° 0 82 ° 4	75.6 77.6	75.8 77.6
	QUAL (Haugh	RE- GRESSEO MEAN	75.1	19.1	76.3	78.7	80.2	76.2	73.5	78.8	; 76 • 9	76.5	76.4	76.5	81.9	81.2	76.6	76.7
E AND	LARGE GS cent)	80%* CONF. LIMITS	57.0 63.4	69.8 74.4	73.7 77.5	79.2 83.8	59.4 65.8	70.2	66.8 74.6	68.7 76.3	67.5 72.7	67.2 73.8	64.7 69.1	79.5 84.5	71.7 78.7	80.4 86.4	70.1	74 ° N 78 • 4
LARG	EXTRA EG (per	RE- GRESSEO MEAN	60.2	72.1	75.6	81.5	62.6	72.7	70.7	72.5	70.1	70.5	66.9	82.0	75.2	83 . 4	72.6	76.2
5	GHT 'doz.)	80% [°] CONF. LIMITS	23.9 24.7	24.6 25.4	25.1 25.7	25.9 26.5	24.1 24.9	24.7 255	24.5 25.3	24.5 25.3	24.4 25.0	24.4 25.2	24.4 25.0	25.9 26.7	25.1 25.9	26.6 27.4	24.7 25.5	25.1
Ĕ	WE1 (oz.)	RE- GRESSED: MEAN	24.3	25.0	25.4	26.2	24.5	25.1	24.9	24.9	24.7	24.8	24.7	26.3	25.5	27.0	25.1	25.4
PER	UCED UCED	80% [°] CONF. LIMITS	2.94 3.14	2.71 2.83	2.59 2.69	2.86 2.98	2.58 2.76	2.67 2.81	3.67 3.91	ຕີ ເມື່ອ ເມື່ອ	2.47 2.63	2.48 2.68	2.54 2.66	3, 24 3, 38	2.79 3.01	2.78 2.96	2.48 2.62	2. 70 2. 82
FEEL	PROD (pou	RE- GRESSEO MEAN	3 . 04	2.77	2.64	2.92	2.67	2 . 74	3.79	3 . 44	.2 ° 55	2.58	2.60	3 . 31	2.90	2.87	2.55	2.76
	TOCK		570	10	307	442	982	437	453	439	289	431	432	309	456	305	447	607

*If the confidence limits for two regressed means overlap, the two means are not significantly different at the 5% level.

			STOCK		MORT	ΑLITY					ш	GG PRO	DUCTIO	z		FEED PER	DAY
STOCK CODE	BREEDER'S NAME AND ADDRESS	BREEDING	STRAIN OR	GROW (perce	ING nt)	(perc	ING ent)	PRODU (da)	T 50% CTION	нем но (лит		TO END C	DAY FTEST) (11)	HEN-E LAST 30-6 (perce	0 DAY 0 DAYS) 2nf)	PER 1 LAYING I (pouna	00 HENS
			TRADENAME	RE- GRESSED MEAN	80% * CONF. LIMITS	RE- GRESSED MEAN	80% * CONF. LIMITS	RE- GRESSED MEAN	80% * CONF. LIMITS	RE- GRESSED MEAN	80% + CONF. LIMITS	RE- BRESSED MEAN	80% * CONF. LIMITS	RE- GRESSED MEAN	80% * CONF. C	RE- RESSED MEAN	80% + CONF. LIMITS
608	Fisher Poultry Farm, Ltd. Ayton, Ontario, Canada	SYN SYI	4 Fisher 505	7.8	0.0 0.0	12.9	10.3 15.4	171	167 175	214	204 224	68 . 5	66.3	57.9	54.9 60.9	24.5	23.3
66	Garber Poultry Breeding Farm Modesto, Calif. 95351	ML S1	(Garber C200	t) • 11	տ Մ • • տ Մ·	10.2	8.5 12.0	171	168 174	217	210 224	67.3	66.0 68.6	58.6	56.7 60.5	22 . 6	223 3.2
86	Hardy, C. Nelson & Son Essex, Mass. 01929	RIR×BPR BJ	<pre>{ Deluxe Sex Link</pre>	2.9	2°2 3°3	8.6	6.8 10.8	176	172 180	209	198 220	64°6	62.0 67.2	57.7	54.3 61.1	**	**
378	Hubbard Farms, Inc. Walpole, N.H. 03608	SYN×N.H. B	(Golden Comet	2.1	1.4 2.9	5.8	4.4 7.3	167	163	224	217 231	67.1	65.5 68.7	55.8	53.5 58.1	24.5	23.9 25.1
356	Ideal Poultry Breeding Farms Cameron, Texas 76520	SYN×WL, B	<pre> Ideal 236 </pre>	3.6	2.7 4.6	9*6	8.1	170	166 174	231	225 237	71.2	70.0 72.4	64.0	62.3 65.7	23.4	22.9
234	Indiana Farm Bureau Coop. Indianapolis, Ind. 46204	ML S	Duchess 60	3.1	2.2	11 . 5	9.6 13.6	169	165 173	229	223 235	70.9	69.4 72.4	61.7	59.6 63.8	23.2	22°6 23°8
598	Nelson, George F. Truro, N.S., Canada	RIR× (LS×RII BJ	<pre>Nelson Sex Link</pre>	2.8	2 . 1 3 . 6	7, 2	5.5 9.2	170	166 174	221	210 232	65.8	63 .1 68.5	55.2	51.8 58.6	* * *	**
37	N. Cent. Reg. Plty. Br. Lab. Lafayette, Ind. 47907	ML PS	8 Reg. Cornell Contr	1.5	а. 5 9 9	11.8	9.6 14.2	184	180 188	197	189 205	62.0	60.3 63.7	54.4	51.6 57.2	23.0	22.2 23.8
352	Parks Poultry Farm Altoona, Pa. 16601	ML S1	Keystone B-1	ц.1	3.2 5.2	в.2	6.7 9.8	171	16.7 175	226	220 232	69.6	68.3 70.9	58.0	56.2 59.8	23.2	223°6 33°6
382	Parks Poultry Farm Altoona, Pa. 16601	RIR×WPR B	(Sil-Go-Links	2.7	э Э Э	9.9	6.9 11.0	180	175 185	199	190 208	62.4	60.5 64.3	53.0	50.1 55.9	23.6	22.9 24.3
181	Shaver Poultry Breeding Farm Cambridge, Ontario, Canada	WL S1	<pre>{ Starcross 288</pre>	en en	2°6 4°2	5.1	4.1 6.2	169	165 173	249	243 255	75.2	74.0 76.4	65.6	63.9 67.3	24.4	23.8 25.0
566	St. Augustin Coop. Hatchery . St. Augustin, Quebec, Canada	ML S	<pre>Corvette A 1</pre>	5.0	3°9 6°3	12.0	9.8 14.5	172	167	214	205 223	68.4	66.3 70.5	60.8	58.0 63.6	22.5	23.20
401	Tatum Farms Dawsonville, Ga. 30534	WL SY	(Tatum T-100	2.8	2.0 3.6	11.1	9.5 12.9	170	167 173	225	219 231	69.2	68.0 70.4	61.8	60.1 63.5	23.5	22.9
6 11 11	Tatum Farms Dawsonville, Ga. 30534	RIR×SYN B	[Tatum T-173	0.7	0.3	6.1	4.8 7.6	174	170 178	215	20 R 2 2 2	65,3	63.8 66.8	53 . tt	51.3 55.5	24.0	23.4 24.6
440	Welp's Poultry Breeding Farm Bancroft, Lowa 50517	RIR SJ	Welp Line 650 N	2.1	а . 1.0	6° ti	5.0° 0°	169	164 174	226	217 235	67.0	65.0 69.0	54.4	51.6 57.2	24.1	23.4 24.8
448	Welp's Poultry Breeding Farm Bancroft, Iowa 50517	ML II	Welp Line 973	3.7	2.8 4.8	15.2	13. 2 17.4	170	166 174	189	182 196	59 . 4	58.0 60.8	46.1	44.1 48.1	21.3	21:9

Table 1.---Two-year combined summary: Regressed means and 80% confidence limits for traits by stocks entered (continued)

OVER	CHICK ST ars)	80%* CONF. LIMITS	2.21 2.93	3.23 3.85	2.50 3.26	3。28 3。86	3.79 4.29	3.61 4.15	2.99 3.77	2.07	3.23 3.79	2.12	4.10 4.56	2.97 3.65	3.41 3.93	2.86 3.38	3.04 3.72	2.23 2.89
INCOME	FEED & CO (doll	RE. GRESSED MEAN	2.57	3.54	2.88	3.57	ф. О 4	3.98	3 * 38	2.39	3.51	2.46	4,33	3.31	3.67	3.12	3°38	2.56
	DY SHT nds)	80% [*] CONF. LIMITS	5.11 5.43	4.00 4.18	5.16 5.64	ц.65 ц.87	4.33 4.49	4.02 4.22	4.91 5.39	4.46 4.68	3.91 4.07	5 • 24 5 • 50	4.16 4.32	3.99 4.29	4.09 4.25	4.89 5.07	4 .78 5.08	4.01 4.19
	BOI WEIG	RE- GRESSED MEAN	5.27	4.09	5.40	4 . 76	4.41	u.12	5.15	ц.57	3,99	5.37	4.24	4.14	и.17	4°08	4.93	4.10
(L	RE RE	80%* CONF. LIMITS	3.51 3.85	3 .71 3.93	2.83 3.21	3 ° 04 3 • 30	3.25 3.47	3.56 3.82	а. 01 а. 39	3.21 3.51	3.46 3.68	3 .11 3.43	3.58 3.78	3.74 4.06	2.97	2.91 3.15	2.87	3 36 3 58
	GRAV	RE- GRESSEO MEAN	3.68	3.82	3.02	3.17	3 • 36	3.69	3.20	3.36	3.57	3.27	3°68	3.90	3.07	3°03	3.04	3.47
	'HAN VCH ent)	80% [*] CONF. LIMITS	6.1 12.0	0.2	6.5 14.9	12.7 18.0	0.2	0.1	3.3 10.0	0.1 1.6	0.2	10.7	0.2	0.4	0.2	12.0	22.8 31.5	0.1
SPOTS	LESS 7 1/8/1 (perc	RE- GRESSEO MEAN	8 8	0.6	10.3	15.2	0 • 5	0.3	6.2	0.6	0.6	13.6	0.5	1.1	0.5	14.3	27.1	0 - 4
MEAT :	VCH ORE ent)	B0%* CONF. LIMITS	3.9	0.1	2.7	5.9 8.6	0.1	0.1	0.7	1.5	0.1	2.6	0.1	0.9	0.1	3.3	4.6 8.1	0.1
	1/8 IN OR Mi (perce	RE- GRESSEO MEAN	2.6	0.3	η° η	7.2	0.2	0*3	1.7	0 ° 8	0.2	3.7	0.1	0.3	0.3	u .2	6.3	ن ° 2
	rhan Nch ent)	80% [*] CONF. LIMITS	2.4 3.6	0.6	1.6	0.9	0.7	0.8 1.5	1.5	1.5	1.1	1.2	0.7	0.9	1.1	2.5	0.8	1.1
SPOTS	LESS ' 1/8 L	RE- GRESSEO MEAN	о З	0.9	1.9	1.2	1.0	1.1	1.8	2.0	1.5	1.6	1.0	1.3	1.5	3.1	1.2	1 • 5
BLOOD	NCH NORE Cent)	80% [*] CONF. LIMITS	00°0	0.2	0.1	0.5	0.3	0°,0 0,0	98 00	0.7	0.3	0.5	0.5	0°6 0.6	0.8 1.3	0°9	0.4	0.6
	1/8 1 OR M (perc	RE- GRESSEO MEAN	0.7	0*3	0.8	0.7	0.5	t) ° (†	0.7	0.9	0.5	0.7	0.4	1,°0	1.1	1.1	0.5	0 • 8
N	ITY units)	80% [*] CONF. LIMITS	74.1 76.5	78.1 79.9	74.0 77.0	76.1 77.9	73.7 75.5	82 .1 83 . 9	75.4 78.4	74.7 76.9	79.0 80.6	78.4 80.6	78.9 80.7	79.0 81.0	78.3 80.1	7.9 79.7	75.4	75.0 76.8
1 B I A	QUAI (Haugh	RE- GRESSEO MEAN	75.3	79.0	75.5	77.0	74.6	83.0	76.9	75.8	79.8	79.5	79.8	80.0	79.2	78.8	76.5	75.9
E AND	LARGE GS cent)	80% [*] CONF. LIMITS	65.2 72.2	61.4 65.6	77.6 85.6	78.8 83.8	74.7 78.7	64.1 68.9	74.5 82.5	56.7 61.9	62.9 67.1	81.5 87.3	76.7 80.7	62.3 68.9	71.0 75.0	76.7 81.3	71.9 78.3	65.7 70.1
LARG	EXTRA EG (pen	RE- GRESSEO MEAN	68.7	63.5	81.6	81.3	76.7	66.5	78.5	59 . 3	65.0	84.4	78.7	65.6	73.0	0.67	75.1	67.9
50	(GHT /doz.)	80%* CONF. LIMITS	24.4 25.4	23.8 24.6	25.2 26.2	25.8 26.6	25.3 25.9	24.2 25.0	25.2 26.4	23.7 24.3	24.3 24.9	27.0 27.8	25.4 26.0	24.2 25.0	24.8 25.4	25.7 26.5	25.0 25.8	24.3 25.1
Ĕ	WE1 (<i>o</i> 2	RE- GRESSED MEAN	24.9	24.2	25.7	26.2	25.6	24.6	25.8	24.0	24.6	27.4	25.7	24.6	25.1	26.1	25.4	24.7
D PER	uceD nds)	80% [°] CONF. LIMITS	2. 72 3. 14	2.78 2.90	3, 09 3, 35	2.75 2.89	2.59	2.63 2.77	2.88 3.14	3.16 3.32	2.71	2.98 3.16	2.56 2.68	2.65 2.83	2.71 2.83	2.86 2.98	2.97 3.15	2.91 3.03
FEE	PROD PROD	RE- GRESSED MEAN	3.03	2.84	3. 22	2.82	2.65	2.70	3.01	3.24	2.77	3.07	2.62	2.74	2.77	2.92	3.06	2.97
	STOCK		608	66	86	378	356	234	598	37	352	382	181	566	401	449	440	11 11 8

*If the confidence limits for two regressed means overlap, the two means are not significantly different at the 5% level.

Statistical Methods

The two-year combined summary includes performance data on 25 stocks that were entered in both the 1973-74 and 1974-75 tests and on 6 stocks that were entered only in the 1974-75 tests. Birds were tested at 21 locations in 1973-74 and at 19 locations in 1974-75. Table 3 lists the locations. Certain traits were not measured at some of the locations. These are identified with an NR (not reported) in the appropriate columns in table 3.

Replicate data were reported by 20 locations in 1973-74 and by 19 locations in 1974-75. The number of pens and the number of stocks tested at each location for the two years are given in table 3.

The percentage data for both years for the six traits--growing mortality, laying mortality, large blood spots, small blood spots, large meat spots, and small meat spots--were converted to angles with the arcsin transformation prior to analysis. However, the test-year adjustment factors shown in table 3 and the regressed means and confidence limits shown for these traits in table 1 are given in percent.

The replicate data were analyzed by least-squares procedures to obtain the test-year adjustment factors shown in table 3 and the repeatability estimates and the correlations among pens within tests shown in table 2. The test-year adjustment factors were then used to adjust the simple stock average for test and year effects. The adjusted stock averages (the least-squares stock means) were then regressed toward the overall mean ($\hat{\mu}$) to account for variations in number of tests entered, number of years entered, and number of replicates per test. The formula used to compute the regressed mean is:

Regressed Mean =
$$\hat{\mu} + \frac{r_2/c}{1+(k_3-1)x_1+(k_1-k_3)x_2+(k_2-k_3)r_1+(1/c)-k_1-k_2+k_3}r_2^{(s)}$$

where:

 $\hat{\mu}$ = the average of the test and year adjusted stock means.

- r₁ = repeatability within year.
- r₂ = repeatability from year-to-year.
- x_1 = the correlation among replicates within year and test.
- x_2 = the correlation among pens of the same stock from year-to-year for the same test.
- k_1 = an average of the number of pens per test (averaged over years).
- k_{2} = an average of the number of pens per year (averaged over tests).
- k_2 = an average of the number of replicates per test-year subclass.
- C = the diagonal inverse element for that stock. The reciprocal of C, i.e., $\frac{1}{C}$, is equal to nk₃ if the assumption is made that the adjustments for test-year effects are made without error; where n is the number of test-year subclasses in which that stock is entered.
- s = the test-year adjusted stock average minus the overall mean $\hat{\mu}$.

The correlations used in computing the regression coefficient were obtained from estimates of the variance components for stocks ($\hat{\sigma}_s^2$), the stock-X-test interaction ($\hat{\sigma}_{st}^2$), the stock-X-year interaction ($\hat{\sigma}_{sy}^2$), and the random error ($\hat{\sigma}_e^2$). The variance component estimates were obtained by equating the computed mean squares for these effects to their expectations. The mean squares for stocks were adjusted for the test-year subclass effects and the mean squares for the stock-X-test interaction and the stock-X-year interaction were adjusted by least-squares procedures for the effects of stocks and the test-year subclasses. The three-factor interaction was assumed to be non-existent. Ratios of the variance component estimates that were used to compute the correlations follow: Correlation Among = $\mathbf{x}_1 = \frac{\hat{\sigma}_s^2 + \hat{\sigma}_{st}^2 + \hat{\sigma}_{sy}^2}{\hat{\sigma}_s^2 + \hat{\sigma}_{st}^2 + \hat{\sigma}_{sy}^2 + \hat{\sigma}_{e}^2}$ Correlations from Year-to-Year (same test) = $\mathbf{x}_2 = \frac{\hat{\sigma}_s^2 + \hat{\sigma}_{st}^2 + \hat{\sigma}_{sy}^2 + \hat{\sigma}_{e}^2}{\hat{\sigma}_s^2 + \hat{\sigma}_{st}^2 + \hat{\sigma}_{sy}^2 + \hat{\sigma}_{e}^2}$ Repeatability from Test-to-Test (within year) = $\mathbf{r}_1 = \frac{\hat{\sigma}_s^2 + \hat{\sigma}_{st}^2 + \hat{\sigma}_{sy}^2 + \hat{\sigma}_{e}^2}{\hat{\sigma}_s^2 + \hat{\sigma}_{st}^2 + \hat{\sigma}_{sy}^2 + \hat{\sigma}_{e}^2}$ Repeatability from Test-to-Test (between years) = $\mathbf{r}_2 = \frac{\hat{\sigma}_s^2}{\hat{\sigma}_s^2 + \hat{\sigma}_{st}^2 + \hat{\sigma}_{sy}^2 + \hat{\sigma}_{e}^2}$

An approximate standard error (SE) was computed for each regressed mean as follows:

SE = b
$$C(\hat{\sigma}_e^2 + k_1 \hat{\sigma}_{st}^2 + k_2 \hat{\sigma}_{sy}^2)$$

where b is the regression coefficient given above in the formula for the regressed mean. Confidence limits were then computed for each regressed mean as follows:

Regressed Mean + 1.3 SE

The constant 1.3 was selected in order that the probability of the confidence limits overlapping by chance alone between any two means would be about 0.03. This makes the test of significance among regressed means almost comparable to using Duncan's range test at the 0.05 level of probability.

Definition of Statistical Terms

The following definitions will help the reader interpret the analytical procedures:

Overall mean The average of the test-year adjusted means for all stocks. This is an estimate of what the overall average would have been had all stocks been entered in all tests in both years. The range represents the difference between the expected maximum and minimum Range performance among the 60* stocks, based on the regressed means. Common stocks Stocks that are being tested at more than one location. Test-year The amount added to or subtracted from the actual performance of the stocks at a given adjustment location in a given year to bring them to the average of all the location-year subclasses that had complete data. These factors were determined on an intrastock basis with a least-squares analysis, and they are given in table 3. factor. An intraclass correlation that measures the tendency for common stocks to rank the Repeatability within year same from test-to-test within year. Theoretically, it can vary from 0.00 to 1.00. Repeatability A correlation which measures the tendency for common stocks to rank the same from testbetween years to-test from one year to another. The difference between the repeatability within year and repeatability between years indicates the relative importance of the stockby-year interaction. Correlation This correlation measures the repeatability among replicates of the same stock in the same test and year. The higher the correlation among replicates the less need there among replicates is for replication of stocks within test and year. Correlation from A correlation which measures the tendency for common stock to rank the same from yearyear-to-year to-year when tested at the same location. The difference in the repeatability within tests between years and in the correlation from year-to-year within tests indicates the relative importance of the stock-by-test interaction. Confidence limits The confidence limits for each regressed mean are computed so that the probability is about 0.80 that the "true" stock mean lies within the interval. They are presented in this report, however, for the purpose of providing approximate tests of significance for differences among stocks.

*Includes 28 experimental stocks.

Table 2.--Analytical data for the traits measured 1973-74 and 1974-75

				Dence		Correlation	ns within
Traits				Within	Vear-to-	tes	Vearatoa
114165	Overal1	Regress	ed means	vear	vear	replicates	vear
	means	Min.	Max.	(r1)	(r2)	(X1)	(×2)
							· · · · · ·
Crossing most ality poreant	2 8	0.68	10 17	0 25/6	0 2075	0 25/6	0 2075
Growing mortalitypercent-	2.0	0.00	12.1/	0.2346	0.2075	0.2040	0.2075
Laying mortalitypercent-	7.6	3.03	15.24	.2272	.1960	.2802	.2490
Age at 50% productiondays-	170	165	189	.6009	.4421	.7423	.5835
Hen-housed egg productionnumber-	227.3	184	249	.5888	.5425	.6758	.6295
Hen-day egg production to							
end of testpercent-	70.0	58.7	76.9	.5874	.5574	.6964	.6665
Hen-day egg production last							
30 to 60 dayspercent-	60.3	46.1	70.6	.4706	.4416	.5883	.5593
Feed per 100 birds per daypounds-	23.5	21.3	25.3	.5543	.4451	.7108	.6106
L L L							
Feed per pound of eggspounds-	2.71	2,50	3.79	.6629	.6384	.7453	.7208
1000 p-1 p-00+ p-00+							
Egg weightounces/dozen-	25 3	24 0	27 4	7901	7392	8637	8128
	-310		-/.				10120
Terror and outro large coord nerveent	7/ 3	50.2	96 3	7155	6671	930/	7910
Large and extra large eggs-percent-	74.5	19.5	.00*2	./1))	.0071	.0394	.7910
Albumen qualityHaugh units-	/8.8	/3.5	83.0	.6394	.5609	.6506	.5722
Large blood spotspercent-	, 8	.27	1.18	.1204	.0773	.1824	.1392
Small blood spotspercent-	1.5	.85	3.48	.1422	.1113	.2326	.2017
Large meat spotspercent-	.3	0.00	7.20	.6334	.5942	.7286	.6895
Small meat spotspercent-	1.1	0.00	30.81	.8498	.8012	.9022	.8536
charry where the percent							
Creatific energity	4 1	3 01	2 80	5125	4710	6222	5976
specific gravityscore-	4.1	J. 71	2.09		. 4719	.0255	. 5020
Body weightpounds-	4.25	3.51	5.69	.8711	.8587	.9219	.9096
Income over feed and chick	0.15			1.0.4.0	0.01.0	FP < 1	
costdollars-	3.62	2.09	4.55	.4369	. 3940	.5/94	.5365

NOTE: The values for these factors are based on the 32 commercially available stocks as well as the 28 experimental stocks that were tested. The individual performance data for the experimental entries were analyzed but not published in this report.

Test	Pe	ens	Stocks	tested		Mort (per	ality cent)	
	1974	1975	1974	1975	1974	1975	1974	1975
Central Canada No. 6 - (2/cage)	48	48	12	12	+0.40	+0.11	+0,22	+0.76
Central Canada No. 7 - (2/cage)	48	48	12	12	+ .08	+ .12	+ .06	+ .58
Florida No. 1 - Floor	24		12		+ .31		+ .03	
Florida No. 7 - Floor		24		12		÷.05		+ .51
Florida No. 2 - Floor	48		12		+ .31		+ .27	
Florida No. 8 - (2/cage)		48		12		+ .05		÷.58
Florida No. 6 - Floor	24		12		+ .07		+ .03	
Florida No. 9 - Floor		24		12		÷ .05		+2,29
Florida No. 5 - (2/càge)	48		12		+ .07		+ .44	
Florida No. 10 - (2/cage)		48		12		+ .05		+ .81
Minnesota No. 1 - Floor	10		10		÷ .10		+ .04	
Minnesota No. 4 - (3/cage)	33		11		+ .10		+2.11	
Missouri Cage - (8/cage)	28	54	14	9	+ .01	+ .07	+ .67	+ .02
Missouri Floor	54	56	27	14	+ ,21	+ .62	+ .09	+1.15
New Hampshire No. 7 - (3/cage)	135	138	17	17	+ .01	+ .01	+ ,08	+ .97
New Hampshire No. 4 - Floor	24	24	8	8	+ .72	+ .28	+ .01	+ .06
North Carolina No. 3 - Floor	20	20	10	10	+ .34	+ .54	+ .16	+ .52
North Carolina No. 4 - (2/cage)	40	40	10	10	+ .19	+ .29	+ .23	+ .24
North Carolina No. 5 - (7/cage)	20	20	10	10	+ .21	+ .24	+1,35	+ .66
Pennsylvania No. 1 - Floor	48	48	24	24	+1.01	+ .45	+ .08	+ .13
Pennsylvania No. 2 - (3/cage)	48	48	24	24	+1.01	+ .45	+ ,20	+ .37
Tennessee No. 5 - (2/cage)	28	24	14	12	+ .73	+1.71	+ .09	+ .23
Tennessee No. 6 - (2/cage)	28	24	14	12	+ .73	+1.71	+ .20	+1.07
Tennessee No. 7 - (2/cage)	28	24	14	12	+.73	+1.71	+ .04	+ .32
Tennessee No. 8 - (2/cage)	28	24	14	12	+ .73	+1.71	+ .01	+ .10

TABLE 3.--Factors used to adjust for test differences

Test	Ag 50 p prod (d	e at ercent uction ays)	Hen-I (nu	noused mber)	Hen (to end (perc	-day of test) cent)	Hen (last 30 (per	-day -60 days) cent)
	1974	1975	1974	1975	1974	1975	1974	1975
Central Canada No. 6 - (2/cage)	+13.04	+10.15	+02.82	-03.89	+0,96	-2.06	-5.40	+00.82
Central Canada No. 7 - (2/cage)	+ 8.04	+ 8,55	60	- 7.14	48	-3.32	-7.09	- 1.31
Florida No. 1 - Floor	- 1.10		- 2.41		-1.40		14	
Florida No. 7 - Floor		+ 4.29		- 9.03		-2.55		+ 1.64
Florida No. 2 - Floor	14		+ 2.42		+ .19		-1.11	
Florida No. 8 - (2/cage)		+ 4.42		-10.32		-3.01		+ 1.01
Florida No. 6 - Floor	-18.48		+ 4.48		+ .45		-5.82	
Florida No. 9 - Floor		+ 4.84		-16.84		-4.14		78
Florida No. 5 - (2/cage)	-16.08		+ 3.86		+1.12		-5.87	
Florida No. 10 - (2/cage)		+ 4.38		- 6.43		-1.85		+ 2.92
Minnesota No. 1 - Floor	+ .55		-11.69		-3.13		-1.73	
Minnesota No. 4 - (3/cage)	+ 4.65		-12.14		-2.50		-2.74	
Missouri Cage - (8/cage)	-20.72	-10.59	+ 3.28	+ 1.30	+5.91	+1.05	NR*	- 2.30
Missouri Floor	- 5.43	- 5.77	- 4.14	- 2.50	-3.13	33	NR*	- 2.55
New Hampshire No. 7 - (3/cage)	93	+ 7.54	+ 6.63	-11.12	+1,98	-5.37	+2.67	- 2.28
New Hampshire No. 4 - Floor	+ 8.28	+ 6.89	+18.20	+16.19	+6.38	+4.20	+9.08	+14.98
North Carolina No. 3 - Floor	- 3.92	- 4.41	-25,50	-23.05	-8.35	-8.18	-7.01	- 1.71
North Carolina No. 4 - (2/cage)	- 9.44	- 7.54	- 7.24	-12.09	-4.83	-5.67	-2.53	- 3.52
North Carolina No. 5 - (7/cage)	-10.82	-11.36	+ 7.68	+ 4.19	-2.48	-3.56	-2,69	- 3.49
Pennsylvania No. 1 - Floor	- 9.31	+ 6.91	+ 5.76	- 7.07	75	-1.59	+2.60	+ 3,20
Pennsylvania No. 2 - (3/cage)	- 5.98	+ 2.60	- 1.37	+ 1.32	-1.92	+1.85	44	+ 1.81
Tennessee No. 5 - (2/cage)	+ 2.30	+ 6.09	+10.99	- 1,33	+3.13	+3.65	+1,86	- 1.93
Tennessee No. 6 - (2/cage)	+ 2.30	+ 6.13	+13,98	- 3.79	+3.94	+3.90	+2.57	- 2.21
Tennessee No. 7 - (2/cage)	+ 2.30	+ 6.50	+12.90	- 4.18	+4.22	+3.13	+4.29	- 2.73
Tennessee No. 8 - (2/cage)	+ 2.30	+ 6.34	+13.01	- 3,23	+4.14	+3.60	+1.95	- 1.52

	. Feed per pound	Feed per 100		Large and extra
Test	of eggs (pounds)	(pounds)	(oz./dozen)	(percent)
	1974 1975	1974 1975	1974 1975	1974 1975
Central Canada No, 6 - (2/cage)	+0.28 +0.22	+2.54 + 0.87	+0.97 +1.29	+23.93 +24.27
Central Canada No. 7 - (2/cage)	+ .28 + .22	+2.38 + .64	+ .95 +1.14	+24.37 +22.45
Florida No. 1 - Floor	+ .15	91	+ .02	- 7.71
Florida No. 7 - Floor	 + .25	 + .24	+ .21	05
Florida No. 2 - Floor	+.30	+ .28	77	-14.77
Florida No. 8 - (2/cage)	+ .39	+ .92	33	7.66
Florida No. 6 - Floor	+ .10	-1.27	45	-14.52
Florida No. 9 - Floor	+ .27	28	+ .10	1.68
Florida No. 5 - (2/cage)	+ .27	+ .01	-1.09	-19.07
Florida No. 10 - (2/cage)	+ .37	+ 1.14	33	7.49
Minnesota No. 1 - Floor	+.32	+3.13	+ .12	- 7.93
Minnesota No. 4 - (3/cage)	+.46	+4.11	19	- 9.75
Missouri Cage - (8/cage)	0105	NR* NR*	6650	-19.26 -18.26
Missouri Floor	4236	NR* - 1.47	+.2306	- 8.56 - 9.74
New Hampshire No. 7 - (3/cage)	24 + .07	NR* NR*	+ .71 + .80	+ 6.36 +16.24
New Hampshire No. 4 - Floor	2827	NR* NR*	+ .55 +1.01	+ 7.95 +18.94
North Carolina No. 3 - Floor	+.34 +.32	91 - 1.19	69 -1.05	- 9.31 -13.98
North Carolina No. 4 - (2/cage)	+.33 +.26	07 - 1.20	-1.39 -1.60	-13.64 -16.31
North Carolina No. 5 - (7/cage)	+.19 +.20	3773	-1.44 -1.49	-13.89 -16.36
Pennsylvania No. 1 - Floor	3304	-4.26 - 3.69	-1.0561	- 4.34 + .59
Pennsylvania No. 2 - (3/cage)	1607	-2.67 - 2.13	3046	+ .43 + 1.18
Tennessee No. 5 - (2/cage)	1201	+1.72 + .83	+ .60 + .25	+ 3.45 - 4.29
Tennessee No. 6 - (2/cage)	1406	+1.98 + .56	+ .65 + .34	+ 3.24 - 2.72
Tennessee No. 7 - (2/cage)	16 + .06	+1.69 + 1.04	+ .71 + .19	+ 2.35 - 4.86
Tennessee No. 8 - (2/cage)	12 + .04	+1.83 + 1.15	+ .50 + .42	+ 2.04 - 2.24

			Blood	spots	Blood	spots	Meat	spots
Test	Albumen	quality	1/8 inch	or more	less than	1/8 inch	1/8 inch	or more
	1974	<u>units)</u>	1974	l 1975	1974	1975	(per	cent)
	1774	1775	1774	1979	1774	1975	1974	1975
Central Canada No. 6 - (2/cage)	- 0.29	+1.65	+0.16	+0.16	+0.22	+0.40	+0.10	+0.05
Central Canada No. 7 - (2/cage)	- 1.19	+1.18	+ .21	+ .13	+ .11	+ .31	+ .04	+ .06
Florida No. 1 - Floor	- 2.64		+ .01		+ .13		+ .14	
Florida No. 7 - Floor		48		+ .02		+ .02		+09
Florida No. 2 - Floor	- 4.76		+ .09		+ .01		+ .14	
Florida No. 8 - (2/cage)		+ .32		+ .01		+ .09		+ .12
Florida No. 6 - Floor	- 4.92		+ .07		+ .04		+ .08	
Florida No. 9 - Floor		-1.87		+ .01		+ .08		+ .15
Florida No. 5 - (2/cage)	- 6.51		+ .03		+ .01		+ .11	
Florida No. 10 - (2/cage)		-1.21		+ .11		+ .06		+ .10
Minnesota No. 1 - Floor	-10.77		+ .02		+1.10		+ .15	
Minnesota No. 4 - (3/cage)	- 9.92		+ .01		+ .40		+ .16	
Missouri Cage - (8/cage)	- 3.48	+3.73	NR*	+ .02	NR*	+ .96	NR*	+ .09
Missouri Floor	NR*	16	NR*	+ .01	NR*	+ .67	NR*	+ .17
New Hampshire No. 7 - (3/cage)	- 1.40	-2.43	+ .06	+ .15	+1.04	+ .21	+ .01	+ .01
New Hampshire No. 4 - Floor	+ .94	+1.00	+ .12	+ .82	+ .78	+ .21	+ .03	+ .02
North Carolina No. 3 - Floor	+ 1.00	+2.19	+ .06	+ .05	+ .01	+ .01	+ .41	+ .50
North Carolina No. 4 - (2/cage)	+ 1.83	-2.06	+ .20	+ .03	+ .06	+ .01	+ .39	+ .32
North Carolina No. 5 - (7/cage)	+ 1.49	-2.44	+ .06	+ .01	+ .01	+ .01	+ .55	+ .35
Pennsylvania No. 1 - Floor	- 3,11	-1.91	+ .02	+ .04	+ .01	+ .01	+ .44	+ .50
Pennsylvania No, 2 - (3/cage)	- 3.75	-1.94	+ .10	+ .15	+ .01	+ .03	+ .47	+ .33
Tennessee No. 5 - (2/cage)	19	+2.76	+ .22	+ .01	+ .01	+ .06	+ .03	+ .05
Tennessee No. 6 - (2/cage)	- 1.75	+2.72	+ .22	+ .07	+ .20	+ .01	+ .16	+ .04
Tennessee No. 7 - (2/cage)	22	+2.78	+ .26	+ .08	+ .11	+ .36	+ .08	+ .04
Tennessee No. 8 - (2/cage)	74	+3.60	+ .10	+ .02	+ .04	+ .03	+ .04	+ .01

							Incom	e over
	Meat	spots	Genetifi		Dede		feed	and
Test	less that	1/6 inch	Specific	gravity	Body	weight	chick	cost
	1974	1975	1974	1975	197/	1975	197/	1975
	1)/4	1075	1974	1 1979	1_17/4	<u> </u>	1)/4	
Central Canada No. 6 - (2/cage)	+0.15	+0.13	+0.53	+0.84	+0.13	+0.22	+1,10	+0.30
Central Canada No. 7 - (2/cage)	+ .09	+ .10	+ .60	+ .79	+ .18	+ .27	+ .98	+ .15
Florida No. 1 - Floor	+ .39		-1.87		+ .17		NR*	
Florida No. 7 - Floor		+ .23		-1.34		+ .16		NR*
Florida No. 2 - Floor	+ .39		-2.34		+ .04		NR*	
Florida No. 8 - (2/cage)		+ .36		-1.57		+ .11		NR*
Florida No. 6 - Floor	+ .39		-1.92		+ .15		NR*	
Florida No. 9 - Floor		+ .33		-1.44		+ .17		NR*
Florida No. 5 - (2/cage)	+ .39		-2,40		+ .16		NR*	
Florida No. 10 - (2/cage)		+ .33		-1.85		+ .11		NR*
Minnesota No. 1 - Floor	+ .76		92		30		+2.01	
Minnesota No. 4 - (3/cage)	+ .42		91		24		+2.08	
Missouri Cage - (8/cage)	NR*	+ .31	59	60	20	+ .17		+1.02
Missouri Floor	NR*	+ .17	NR*	51	+ .15	+ .17	04	+1.12
New Hampshire No. 7 - (3/cage)	+3.57	+3.17	+ .41	+1.55	16	+ .19	-1.04	-2.09
New Hampshire No. 4 - Flocr	+1.50	+3.02	+ .22	+1.15	03	02	56	88
North Carolina No. 3 - Floor	+ .14	+ .09	+ .80	+ .71	09	32	+ .33	27
North Carolina No, 4 - (2/cage)	+ .09	+ .28	+ .79	+ .52	21	23	+ .74	+ .35
North Carolina No. 5 - (7/cage)	+ .11	+ .41	+ .76	+ .36	+ .06	05	+1.25	+ .84
Pennsylvania No. 1 - Floor	+ .06	+ .15	-1.78	-1.98	31	17	+ .13	+ .28
Pennsylvania No. 2 - (3/cage)	+ .11	+ .26	-1.82	-2.05	22	18	53	+ .52
Tennessee No. 5 - (2/cage)	+ .03	+ .53	39	09	+ .12	+ .10	57	13
Tennessee No. 6 - (2/cage)	+ .22	+ .71	42	+ .09	+ .13	+ .18	53	14
Tennessee No. 7 - (2/cage)	+ .21	+ .45	35	+ .24	+ .02	+ .02	48	16
Tennessee No. 8 - (2/cage)	+ .13	+ .19	40	+ .16	+ .05	+ .05	59	09

How Group Rankings Were Determined for Each Trait

The information in this section deals only with the test data obtained during the 1974-75 test year.

The performance of each entry in the 9 Random Sample Egg Production Tests conducted during 1974-75 is reported as the Range Group Rank of the entry for the trait measured. These rankings were determined in the following manner. For each trait the entries in each test were alined in descending order of performance from the most desirable to the least desirable. The "mean" or average performance for the trait was then determined. All entries above the mean are in range group 1 or 2, and those below the mean are in range group 3 or 4. The dividing point for the entries above or below the mean is the midpoint of the range between the mean and the top or bottom entry. An illustration follows:

Stocks entered in the Missouri Floor test had a mean, or average, of 3.253 pounds of feed consumed to produce a pound of eggs. The lowest amount of feed consumed per pound of eggs was 2.760 pounds and the highest amount was 4.430 pounds. To arrive at the dividing point between the first and second range groups, the lowest, or best feed conversion, (2.760 pounds) was subtracted from the mean (3.253 pounds). The result, 0.493 pounds, was divided by two to get the midpoint of the range (0.247 pounds). This was added to the lowest value (2.760 plus 0.247) to arrive at the dividing point (3.007 pounds) between the first and second range groups. To determine the dividing point between the third and fourth range groups, the same procedure was used, except that the mean (3.253 pounds) was subtracted from the highest feed conversion (4.430 pounds). This difference, or range (1.177 pounds) was then divided by two and the result (0.589 pounds) was added to the mean (3.253 plus 0.589) to get the dividing point (3.842 pounds) between the third and fourth range groups. These determinations for ten traits from each test are tabulated in table 4.

The breeders of the stock tested and the Range Group Ranking, by traits, of each entry of the stock are shown in table 5. Each entry is also identified by the abbreviated name of the entrant. If the sample was drawn from a source other than the entrant's hatchery or supply flock, the abbreviated name of the source of the sample is shown in parentheses following the entrant's name.

The listing of the entries in the four range groups, with all entries of each stock in one table, allows the reader to evaluate quickly a stock based on this method of analysis. It should be kept in mind, however, that this method provides just four broad classifications. One-tenth of an egg or one-tenth of a percent difference in mortality could move an entry up or down one Range Group Rank, depending on its place in the range grouping.

Tabular Listing of Stock Entered in Tests

The listing of all stocks entered in the 1974-75 Random Sample Egg Production Tests is given in table 6. This listing will permit the reader to see at a glance the abbreviated name of the breeder of the stock, the strain or trade name of the stock, and the total number of entries of each stock which were tested during 1974-75. The tests in which each stock was entered are also given.

Management and Environmental Conditions at Tests

Some of the more important management and environmental conditions found in the individual tests during the 1974-75 testing year are found in table 7. Other conditions at the various testing stations were undoubtedly different. However, the important consideration is that all entries at a given location were treated as nearly alike as possible.

		Tests	
Traits measured	Central		Missouri
	Canada	Florida	Cage
Income over feed and chick cost:			
Averagedel /ben housed-	3 105		3 150
Renagedor,/nen noused-	4 300 3 749		/ 220 2 7/0
Range group 1	4.550 = 5.748	Not Reported	4.330 = 3.740
Range group 2	3.747 - 3.105	ь. -	3.739 - 3.150
Range group 3	3.104 - 2.443		3.149 - 2.540
Range grcup 4	2.442 - 1.780	1	2,539 - 1,930
Egg production;			
Averagenumber/hen housed-	230.24	239.14	233.23
Range group 1	256.70 - 243.47	263.10 - 251.12	257.90 - 245.57
Range group 2	243.46 - 230.24	251.11 - 239.14	245.56 - 233.23
Range group 3	230.23 - 218.17	239.13 - 217.98	233.22 - 219.67
Range group 4	218,16 - 206,10	217.97 - 196.80	219.66 - 206.10
Age at 50 percent production;			
Averagedavs-	160.4	164.5	179.0
Range group lasses	156.0 - 158.2	159.0 - 161.8	171.0 - 175.0
Range group ?	158 3 - 160 /	$161 \ Q = 164 \ 5$	1751 - 1790
Range group 2	160 5 - 162 2	16/ 6 167 2	170 1 192 0
Range group 5	160.3 = 102.2	104.0 = 107.3	1/9.1 = 102.0
Range group 4	102.5 - 104.0	107.4 = 170.0	102.1 - 105.0
Growing mortality;			
Averagepercent-	9.34	4.38	2.00
Range group 1	3.30 - 6.32	0.30 - 2.34	0.30 - 1.15
Range group 2	6.33 - 9.34	2.35 - 4.38	1.16 - 2.00
Range group 3	9.35 - 18.02	4.39 - 7.59	2.01 - 4.25
Range group 4	18.03 - 26.70	7.60 - 10.80	4.26 - 6.50
Laying mortality;			
Averagepercent-	14.37	5.53	8.20
Range group 1	6.50 - 10.43	2.10 - 3.82	2.90 - 5.55
Range group 2	10.44 - 14.37	3.83 - 5.53	5.56 - 8.20
Range group 3	14.38 - 19.78	5.54 - 8.12	8.21 - 13.05
Range group 4	19.79 - 25.20	8.13 - 10.70	13.06 - 17.90
Egg weight;	· · · · · · · · · · · · · · · · · · ·		
Averageounces/dozen-	23.80	25.19	25.54
Range group 1	25.10 - 24.45	26.20 - 25.70	26.10 - 25.82
Range group 2	24.44 - 23.80	25.69 - 25.19	25,81 - 25,54
Range group 3	23.79 - 23.45	25.18 - 24.85	25.53 - 25.22
Range group 4	23.44 - 23.10	24.84 - 24.50	25.21 - 24.90
Large and extra large eggs:			
Averagepercent-	46.68	76.93	90.61
	65 10 - 55 89	87 50 - 82 22	93 30 - 91 96
Range group 2	55 88 - 46 68	82 21 - 76 93	91 95 - 90 61
Range group 3	46 67 - 40 79	76 92 - 72 37	90.60 - 88.91
Range group /	40.07 = 34.90	72 36 - 67 80	88 90 - 87 20
Range group 4	40.78 - 54.90	12.30 - 01.80	00.90 - 07.20
Average	2 580	0 375	2 657
Papao group 1pounds-	2,300 - 2,400	2,3/3	2.007
Range group 1	2.300 - 2.400	2.240 - 2.308	2.340 - 2.398
Range group 2	2.481 - 2.580	2.309 - 2.375	2.599 - 2.657
Range group 3	2.581 - 2.750	2.3/6 - 2.48/	2.658 - 2.803
Range group 4	2.751 - 2.920	2.488 - 2.600	2.804 - 2.950
Albumen quality;			
AverageHaugh units-	75.48	78.01	73.80
Range group 1	78.60 - 77.04	81.60 - 79.80	80.30 - 77.05
Range group 2	77.03 - 75.48	79.79 - 78.01	77.04 - 73.80
Range group 3	75.47 - 74.04	78.00 - 76.95	73.79 - 72.20
Range group 4	74.03 - 72.60	76.94 - 75.90	72.19 - 70.60
Blood spots, all sizes;			
Averagepercent-	6.12	3.69	4.60
Range group 1	2.30 - 4.21	1.60 - 2.65	1.70 - 3.15
Range group 2	4.22 - 6.12	2.66 - 3.69	3.16 - 4.60
Range group 3	6.13 - 10.06	3.70 - 4.75	4.61 - 5.75
Range group 4	10.07 - 1.00	4.76 - 5.80	5.76 - 6.90

		Tests	
Traits measured	Missouri	New Hampshire	New Hampshire
	Floor	Cage	Floor
Income over feed and chick cost;			
Averagedol./hen housed-	2.432	5,628	4.445
Range group 1	3.910 - 3.171	6.830 - 6.229	7.270 - 5.858
Range group 2	3.170 - 2.432	6.228 - 5.628	5.857 - 4.445
Range group 3	2,431 - 1,216	5.627 - 4.434	4.444 - 3.803
Range group 4	1.215 - (0.070)	4 433 - 3 240	3 802 = 3 160
Egg production:		1.133 3.240	5.002 5.100
Averagenumber/ber housed-	226 24	237 25	210 44
Range group 1	261 10 - 2/3 67	269 10 - 253 17	270.20 - 244.82
Range group 2	201.10 = 243.07	209.10 - 200.17	2/9.20 = 244.02
	243.00 = 220.24	233.10 = 237.23	244.01 - 210.44
Range group 3	220.23 - 200.82	237.24 - 208.77	210.43 - 194.11
Range group 4	200.81 - 175.40	208.76 - 180.30	194.10 - 177.80
Age at 50 percent production;			
Averagedays-	178.9	163.1	165.9
Range group l	161.0 - 169.9	154.0 - 158.5	156.0 - 160.9
Range group 2	170.0 - 178.9	158.6 - 163.1	161.0 - 165.9
Range group 3	179.0 - 191.9	163.2 - 166.5	166.0 - 169.4
Range group 4	192.0 - 205.0	166.6 - 170.0	169.5 - 173.0
Growing mortality;			
Averagepercent-	1.24	2.21	3.49
Range group 1	0.30 - 0.77	0.50 - 1.35	2.20 - 2.84
Range group 2	.78 - 1.24	1.36 - 2.21	2.85 - 3.49
Range group 3	1.25 - 2.97	2.22 - 3.10	3.50 - 4.39
Range group 4	2.98 - 4.70	3.11 - 4.00	4.40 - 5.30
Laving mortality:			
Averagepercept-	13,90	13,69	9.16
Range group 1	210 - 8.00	5 70 - 9 70	1 10 - 5 13
Pape group 2	8 01 - 13 90	9.71 - 13.69	5 14 - 9 16
Range group 3	13.91 - 21.30	1370 - 2300	0.17 - 12.38
	$21 \ 31 \ - \ 28 \ 70$	23 01 - 32 30	12 30 - 15 60
Kange group 4	21.51 - 20.70	25.01 = 52.50	12.39 - 13.00
Egg weight;	25 26	2/ 99	24 05
Averageounces/dozen-	25.30	24.00	24.95
Range group 1	26.80 - 26.08	25.80 - 25.34	25.50 - 25.23
Range group 2	26.07 - 25.36	25.33 - 24.88	25.22 - 24.95
Range group 3	25.35 - 24.83	24.87 - 24.29	24.94 - 24.68
Range group 4	24.82 - 24.30	24.28 - 23.70	24.67 - 24.40
Large and extra large eggs;			
Averagepercent-	84.09	61.34	61.99
Range group 1	93.90 - 88.99	74.10 - 67.72	69.20 - 65.59
Range group 2	88.98 - 84.09	6 7.7 1 - 61.34	65.58 - 61.99
Range group 3	84.08 - 79.19	61.33 - 51.72	61.98 - 57.54
Range group 4	79.18 - 74.30	51.71 - 42.10	57.53 - 53.10
Feed per pound of eggs;			
Averagepounds-	3.253	2.784	3.188
Range group 1	2.760 - 3.007	2.370 - 2.577	2.440 - 2.814
Range group 2	3,008 - 3,253	2.578 - 2.784	2.815 - 3.188
Range group 3	3 254 - 3,842	2.785 - 2.992	3.189 - 3.404
Range group 4	3 843 - 4 430	2993 - 3200	3 405 - 3 620
Albumen quality:	3.043 4.430	2.))3 3.200	3.403 3.020
Average	77 65	79.65	76.00
Papao aroun 1-	8/ 20 - 20 02	83 80 . 91 72	79.60 - 77.90
	94.20 = 00.92	03.00 - 01.72	77 70 76 00
Range group 2	00.91 = 11.03	70.64 76.00	75.00 7/.00
Range group 3	7/.04 - 74.93	79.04 - 70.92	73.99 - 74.00
Kange group 4	14.92 - 12.20	/0.91 - /4.20	13.99 - 12.00
Blood spots, all sizes;	0.00	1 71	0 ()
Averagepercent-	3.96	1./1	2.63
Range group 1	2.00 - 2.98	0 - 0.85	0 - 1.32
Range group 2	2.99 - 3.96	.86 - 1.71	1.33 - 2.63
Range group 3	3.97 - 5.03	1.72 - 3.50	2.64 - 4.46
Range group 4	5.04 - 6.10	3.51 - 5.30	4.47 - 6.30

		Tests	
Traits measured	North		
	Carolina	Pennsylvania	Tennessee
Income even food and objek cost:	odrorind	i child y i vanita	Tennessee
Income over reed and chick cost,	2 2 2 7	2 1/0	2 705
Averagedol./nen noused-	3.23/	3.148	3.705
Range group 1	4.300 - 3.769	4.980 - 4.064	4.690 - 4.198
Range group 2	3.768 - 3.237	4.063 - 3.148	4.197 - 3.705
Range group 3	3.236 - 2.739	3.147 - 2.209	3.704 - 2.908
Range group 4	2.738 - 2.240	2.208 - 1.270	2,907 - 2,110
Egg production:			
Average === number/hen housed=	234 41	226 26	227 55
Rence aroun 1	267 00 251 16	262 50 244 99	250 20 220 02
Range group 1	207.90 - 231.10	203.30 - 244.00	230.30 - 238.93
Range group 2	251.15 - 234.41	244.87 - 226.26	238.92 - 227.55
Range group 3	234.40 - 225.71	226.25 - 204.98	227.54 - 210.48
Range group 4	225.70 - 217.00	204.97 - 183.70	210.47 - 193.40
Age at 50 percent production;			
Averagedays-	178.2	171.2	174.6
Range group 1	168.0 - 173.1	153.0 - 162.1	168.0 - 171.3
Range group 2	1732 - 1782	162 2 - 171 2	171 4 - 174 6
Range group 2	178.3 - 184.6	171.2 - 190.1	177.7 - 177.0
Range group S	1/0.3 = 104.0	1/1.5 - 10/.1	1/4./ = 103.0
Range group 4	104.7 - 191.0	109.2 - 207.0	103.9 - 193.0
Growing mortality;			
Averagepercent-	1.54	1.22	8.82
Range group 1	0.40 - 0.97	0 - 0.61	2.30 - 5.56
Range group 2	.98 - 1.54	.62 - 1.22	5,57 - 8,82
Range group 3	1.55 - 2.27	1.23 - 3.21	8.83 - 13.41
Range group 4	2 28 - 3 00	3 22 = 5 20	13 42 = 18 00
Laving montality	2.20 5.00		19.42 - 10.00
Laying morearity,	0 71	7 0/	7 1 6
Averagepercent-	0./1	7.96	7.40
Range group 1	2.20 - 5.46	1.10 - 4.53	2.90 - 5.18
Range group 2	5.47 - 8.71	4.54 - 7.96	5.19 - 7.46
Range group 3	8.72 - 13.76	7.97 - 12.83	7.47 - 11.88
Range group 4	13.77 - 18.80	12.84 - 17.70	11.89 - 16.30
Egg weight:			
Averageounces/dozen-	27 09	26 01	24 98
Pango group lassa	28 70 - 27 90	27.80 - 26.01	25 00 - 25 44
Range group 1	20.70 - 27.90	27.00 - 20.91	25.50 - 25.44
Range group 2	27.09 = 27.09	20.90 - 20.01	23.43 = 24.90
Range group 3	27.08 - 20.25	26.00 - 25.16	24.97 - 24.39
Range group 4	26.24 - 25.40	25.15 - 24.30	24.38 - 23.80
Large and extra large eggs;			
Averagepercent-	93.96	73.63	76,94 -
Range group 1	98.10 - 96.03	88.80 - 81.21	84.80 - 80.87
Range group 2	96.02 - 93.96	81.20 - 73.63	80.86 - 76.94
Range group 3	93 95 - 90 63	73 62 - 64 01	76 93 - 69 72
Pango group (90.62 - 87.30	64 00 - 54 40	60 71 - 62 50
Range group 4	90.02 - 07.50	04.00 - 04.40	09.71 = 02.90
reed per pound of eggs;	0 5 6 0	0.000	0 775
Averagepounds-	2,362	2.838	2.115
Range group 1	2.340 - 2.451	2.460 - 2.649	2.560 - 2.668
Range group 2	2.452 - 2.562	2.650 - 2.838	2.669 - 2.775
Range group 3	2.563 - 2.756	2.839 - 3.009	2.776 - 3.038
Range group 4	2.757 - 2.950	3.010 - 3.180	3.039 - 3.300
Albumen quality			0,000
AveraceHauch units-	70 / 2	80 40	74 78
Average haugh united	00 (0 01 01	00.40	74.70
kange group 1	82.00 - 81.01	85.20 - 82.80	79.40 - 77.09
Range group 2	81.00 - 79.42	82.79 - 80.40	//.08 - /4./8
Range group 3	79.41 - 77.51	80.39 - 78.25	74.77 - 71.44
Range group 4	77.50 - 75.60	78.24 - 76.10	71.43 - 68.10
Blood spots, all sizes;			
Averagepercept-	2.30	3.20	5.48
Range group 1	1.20 - 1.75	90 - 2.05	1.30 - 3.39
Range group 2	1 76 - 2 30	2.06 = 3.20	3 40 - 5 49
Range group 2	2.20 - 2.30	2.00 - 3.20	5 40 0 40
kange group 3	2.31 - 2.70	3.21 - 4.70	5.49 - 9.64
Kange group 4	2./1 - 3.10	4./1 - 6.20	9.65 - 13.80

ENTRY IOENTIFICATION	TEST	BREE	DING	STRAIN OR TRAOENAME	COST SOVER FEED INCOME	C (Hen housed)	D AGE AT	S MORTALITY	С ЕСС	й weight LARGE AND КАТАВ LARGE	EEED DEE	С ОЛАГІТҮ З АГВИМЕИ	© BLOOD
Animal Research Institute, Central Experimental Farm, Ottawa, Ontario, Canada KlA OC6. A.R.I., OntAnthony, George M. & Sons, Strausstown, Peanswithania 19559	c. c.	ĨM	PS	Kentville, R.B.C	4	4	4	5	5	+	4	47	en en
<pre>reunsylvania 1900%. Anthony, Pa</pre>	MoF. Pa. Tenn.	ML WL WL	SX SX SX	Anthony Anthony	0 0 0	നനന	nun	5 9 5	m 4 4		5 5 5	535	4 6 6
New FORK 140200. Babcock, N.Y. (Bartey, Ont.)	С.С. Fla. MoС. MoF. N.HС.	TM TM TM TM	N N N N N N N N N N N N N N N N N N N	Babcock B-300 Babcock B-300 Babcock B-300 Babcock B-300 Babcock B-300		1 1 3 3 5	0 0 0 1 1	$\omega \vdash \omega \land \omega$	0 → 0 0 H	3 5 5 5 5	н г 2 2 н	M 4 M M M	0 0 4 M M
Babcock, N.Y. (Harrold's, Ga.) Babcock, N.Y. (Babcock, Pa.) Babcock, N.Y	N.C. Pa. Tenn.	TM TM	NI NI NI	Babcock B-300 Babcock B-300 Babcock B-300	7 1 2	2 1 2		たった	3 2 2	1 2 3	5 5 5	(n 4 m	144
Babcock, N.Y	MoF. N.HC. N.C. Pa. Tenn.	RIR×SYN RIR×SYN RIR×SYN RIR×SYN RIR×SYN RIR×SYN	BX BX BX BX	Babcock B-380 Babcock B-380 Babcock B-380 Babcock B-380 Babcock B-380	m M m m m	0 0 0 0 M	a 1 4 4 3		2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	00000	\square \square \square \square \square \square
Canada D.A., Ont Canada D.A., Ont Carey Farms, 3252 Mt. Olive-Agosta Rd., Marion, Ohio 43302. Carey Ohio	C.C. Fla.	TM TM	Syn. IN TM	P.D. 58 Carey Nick 310	0 10	5 5 5	o to 1	ot 1	e ec	t 0.0	- I 1	o † 1	- ec
Colonial Poultry Farm, Inc., Pleasant Hill, Missouri 64080. Colonial, Mo	га. МоF	ML WL	IN	uarey wick Jun True-Line 365 B		7 7	n –	0 0	v e	n 4	7 7	n m	п 7
Colonial, Mo	MoC.	ML	IN	True-Line 365 K	ŝ	4	2	-	2	3	1	ŝ	4

TABLE 5.--Range group ranking for stock entered in 1974-75 random sample egg production tests

ī.

ENTRY IDENTIFICATION	TEST	BREEC	BNIC	STRAIN OR TRADENAME	CO2L EAD CHICK OVEK FEED INCOME) (Her porzed) S DUCTION EGG PRO-	€ 80% PR0+ 80% PR0+ 80% DUCTION	омімояо 8 Утілатяом (8	DNIYAJ S	K WEIGHT	CIAR SUPERIA	LECCS	VEMUALA 2	S SPOTS
Colonial Poultry Farm, Inc., Pleasant Hill,														
Missouri 64080. Colonial Morennesserencesserences	0.0	WT.	ΝL	True-Line 365 S	сл !	4	ć	-	4	4	7		7	-
Colonial, Mo	Fla.	ML.	IN	True-Line 365 S	1	r m	n m	- m	r en	4	r en		r en	- m
Colonial. Mo	MoC.	ML	IN	True-Line 365 S	- 2	e	2	m	2	ŝ	i m	. –	i m	i m
Colonial, Mo	MoF.	ML	IN	True-Line 365 S	-	2	ę	c	2	4	4	1	e	4
Colonial, Mocontent Mo	N.HC.	WL	IN	True-Line 365 S		4	4	2	e	4	4	Ļ	e	m
Colonial, Mo	Pa.	WL	IN	True-Line 365 S	2	e	1	-	2	e	\tilde{c}	1	e	С
Colonial Poultry Farm, Inc., Pleasant Hill,	Tenn.	ML	IN	True-Line 365 S	~	с С		2	n	4	4	-	ŝ	2
Missouri 64080. Colonial, Mo	MoF.	RIR	PS	Colonial RIR	4	4	4	4	2	3	Э	4	2	2
Colonial Poultry Farm, Inc., Pleasant Hill, Missouri 64080.														
Colonial, Mo	MoF.	BPR	PS	Colonial BPR	4	4	4	Ċ	4	c	Ś	4	4	2
Davis, Joe K., Hatchery, P.O. Box 27, Earl, North Carolina 28038.														
Davis, N.C	MoF.	RIRXBPR	ΒX	Davis Combiner	4	4	4	1	2	1	1	4	S	4
Davis, N.C	N.HC.	RIRXBPR	ВХ	Davis Combiner	- 3	ć	4	4	\sim	1	-	4	4	2
Davis, N.C	N.HF.	RIRXBPR	ΒX	Davis Combiner	4	4	4	сл -	4	Ļ	Ļ,	4	4	-
Davis, N.C	N.C.	RIR×BPR	ВХ	Davis Combiner	4	4	4	4	n	2	_	4	m	4
DeKalb-Warren, Inc., 229 Main St., North Rrookfield. Massachusetts 15350.														
DeKalb-Warren, Ma	N.C.	RIR×RIW	ВХ	Sex Sal Link F	- 3	ć	4	1	1	1	1	e	1	2
DeKalb-Warren, Ma	Pa.	RIR×RIW	ВХ	Sex Sal Link F	- 3	ŝ	4	,	1	1	1	e	l	С
DeKalb-Warren, Inc., 229 Main St., North Brookfield, Massachusetts 15350.														
DeKalb-Warren, MaEuribrid B. V. Boxmeer, Holland	Pa.	SYN×RIR	ΒX	Amber Link		2	4	ï	2	2	2	ŝ	1	2
Euribrid, Holland	Fla.	ΜĽ	SX	Hisex White	1	1	ī	1	ŗ	e	2	1	4	4
Euribrid, Holland (Euribrid, Belgium)	MoC.	ML	SX	Hisex White				2 -	2 0	ന്ന	5	1	с С с	~ ~
Euribrid, Holland	N.HF.	ML	XS	Hisex White	5	- 62			7 7	1 4	4	- 2	7 -	ה, ר
Euribrid, Holland	Pa,	ML	SX	Hisex White	- 1	I	1	2	2	ć	3	1	3	С
Fisher Poultry Farm, Ltd., Ayton, Ontario, Canada NOG 100														
Fisher, Ont	c.c.	ML	SX	Fisher 107		2	4	1	2	2	2	ŗ	ľ	Ļ
Fisher, Ont	MoC.	WL	SX	Fisher 107	4	4	4	l	2	l	2	4	4	2
Fisher, Ont	N. II C.	ML	SX	Fisher 107	с с !	с С	с с	2	с с	2	2	с с	2	2
Fisher, Ont.	Pa,	ML	SX	Fisher 107	.7 0	.7 0	n c	2 -	N -	с. r		2 -	ء ري	c
Fisher, Ont Ltd., Ayton, Ontario, Canada	Tenn.	ML	SX	Fisher LU/	7	7	ت.		_	_	-		_	7
NOG ICO Tribut Out	C C	C 17M	4420	mishor 505	4	γ	¢	c	1	c	~	7	41	4
Fl.Sher, Unc		. II Y C	• 11 A C	LISUEL JUJ	†	3	2	h	Ĵ	n	h	t	t	r

TABLE 5.--Range group ranking for stock entered in 1974-75 random sample egg production tests--Continued

									Э			
ENTRY IDENTIFICATION	TEST	BREEOING	STRAIN OR TRAOENAME	COZL BAD CHICK ONEK LEED INCOWE) (Hew porzed) C DUCTION C EGG PRO-	D АGE АТ В 50% РКО- б DUCTION	SWING XTIJATAOM	© EGG	EGGS	C EECS (P FOUND OF (FEED PER	, олагітү (, агармей (, агармей	STORS () BLOOD
arber Poultry Breeding Farm, 4255 Hammett Rd., fodesto, California 95351. Garber, Calif	Fla. Pa.	ML SX ML SX	Garber G 200 Garber G 200	1 0	3	3	5 4	3 4 4	4 4	m m	5 5	
Hardy, Mass Wardy, Mass	N.HF.	RIRXBPR BX	Deluxe Sex Link	4	4	4	e	3 2	1	4	4	4
Hubbard, N.H	N.HC. N.C. Pa.	SYN×N.H. BX SYN×N.H. BX SYN×N.H. BX	Golden Comet Golden Comet Golden Comet	3 2 1	n n 2	1 2 1	2 2 1	1 2 1 4 2 2	1 7 7	m 2 2	m m m	5 7 1
Ideal, Texas	Fla. MoC. MoF. Pa. Tenn.	X8 THYNAS X8 THYNAS X8 THYNAS X8 THYNAS X8 THYNAS X8 THYNAS	Ideal 236 Ideal 236 Ideal 236 Ideal 236 Ideal 236	- M H M M	2 2 1 2 3	5 1 1 5 4	6 6 H 6 4	4 2 3 3 1 1 2 3 3 2 1 1 2 3 3 2 1 1	1 2 2 1 1	$\infty \infty$	ヤヤヤヤ	5 7 7 7 3
Indiana Farm Bureau, Ind	MoC. MoF. Pa.	WL SX WL SX WL SX	Duchess 60 Duchess 60 Duchess 60	5 - 7	2 1	л 7 M	9 M M	44 3 7 3 7 4 7 3	5 7 M	5 7 3		3 2 1
Nelson, Nova Scotiabereast Nelson, Nova Scotia	N.HF.	RIR(LSxRIR) BX	Nelson Sex Link	e	ŝ		, 5	2	ς.	Ś	ŝ	5
Purdue University, Lafayette, Indiana 47907. N.C. Reg. Plty., Ind	Tenn.	ML PS	Reg. Cornell Contr.	4	4	4	Ţ	4	4	4	ŝ	3
Parks, Pa Parks, Pa Parks, Pa	Fla. Tenn.	WL SX WL SX	Keystone B-l Keystone B-l	1 01	5 3	5 3	3	2 4 1 4	44	3 2		5 5
Parks, Pa.	Pa.	RIR×WPR BX	Sil-Go-Links	С	3	e	2	1 1	1	e	2	2

TABLE 5.--Range group ranking for stock entered in 1974-75 random sample egg production tests--Continued

ī.

ENTRY IDENTIFICATION	TEST	BREEDIN	U T	STRAIN OR TRADENAME	COST ENO CHICK OVER FEEO	C (Hen housed)	C AGE AT	ЭИІМОЯЭ (%) УТІЛАТЯОМ (%)	VIIAL (%)	R MEICHT	LARGE ANO	(14 S) EGGS	, ольгітү С ольгітү	(%) SFOTS
shaver Poultry Breeding Farms, Ltd., Box 400, Cambridge Ontario Canada N1R 509		altere -												
Shaver, Ont	с.с.	ML	SX	Starcross 288	ļ	1	2	1	1	Ĩ	Ţ	1	Ĺ	_
Shaver, Ont Ont	Fla.	WL	SX	Stareross 288	ı	1	2	4	1	1	Ĺ	Ţ	ĩ	2
Shaver, OntShaver	MoC.	WL.	SX	Stareross 288	1	į	ŝ	2	2	2	1	1	2	4
Shaver, Ont	MoF.	WL	SX	Stareross 288	1	1	-	Ļ	Ţ	1	Ī	Ţ	2	2
Shaver, Ontserverses	N.HC.	WL	SX	Stareross 288	2	-i	2	2	2	2	2	2	Ч	Ţ
Shaver, Ont,serversessessessessessessessessessessessesse	N.HF.	WL	SX	Stareross 288	ŗ	Ţ	Ţ	2	-	ŝ	ŝ	1	1	2
Shaver, Ont	N.C.	WL	SX	Stareross 288	Ţ	Ţ	2	ŝ	2	ŝ	2	-	2	1
Shaver, Ont	Pa.	WL	SX	Stareross 288	1	1	ļ	e	2	2	1	2	2	2
Shaver, Ont	Tenn.	WL.	SX	Stareross 288	1	,i	I	ŝ	ï	ľ		I	ľ	1
st. Augustin Coop. Hatehery, St. Augustin,														
Quebec, Canada.														
Couvoir Coop., Quebee Quebee	c.c,	WL	SX	Corvette A 1	3	4	ŝ	2	ŝ	č	ę	2	-	-
latum Farms, Route 3, Dawsonville, Ceorgia 30534.														
Tatum, Ca	Fla.	WL	SX	Tatum T-100	I	ŝ	m	Ļ	4	2	2	ŝ	1	ŝ
Tatum, Ca	Pa.	WT.	SX	Tatum T-100	ŝ	ŝ	1	2	ŝ	ŝ	ŝ	4	č	4
Tatum, Ga	Tenn.	WL.	SX	Tatum T-100	2	ć		ŝ	c	ĉ	ŝ	ຕ	2	2
latum Farms, Route 3, Dawsonville, Georgia 30534.														
Tatum, Ca	N.HC.	RIRXSYN	ВΧ	Tatum T-173	e	ć	4	2	2	с	ć	ŝ	2	Ś
Tatum, Ca	N.HF.	RIRXSYN	ΒX	'Tatum 'T-173	4	4	4	2	e	ć	4	4	ć	2
Tatum, Ca	Pa.	RIR×SYN	ΒX	Tatum T-173	c	4	4	, _ (2	Ļ	Ĭ	ŝ	ľ	2
Tatum, Ga	Tenn.	RIRXSYN	ΒX	'Tatum T-173	4	4	с	ļ		2	2	3	ĩ	4
Welp's Poultry Breeding Farm, Box 366, Baneroft,														
Iowa 50517.														
Welp, Iowa	MoF.	RIR	SX	Welp Line 650 N	0	ć	2	-	ŝ	ŝ	ŝ	ŝ	ĉ	-
Welp, Iowa	N.HC.	RTR	SX	Welp Line 650 N	2	2	2	_	_	2	m	4	ć	
Velp's Poultry Breeding Farm, Box 366, Baneroft,														
Iowa 50517.							c	(,					
Welp, Iowa	Fla.	ML	IN	Welp Line 973	ı	4	2	2	-	4	47	47	4	47

TABLE 5.--Range group ranking for stock entered in 1974-75 random sample egg production tests--Continued

		Stock Strain or	Number				Ē	ate onter	-			
Breeder	Code	trade name	entries	C.C.	Fla.	MoC.	MoF.	N.HC.	N.HF.	N.C.	Pa.	Tenn.
Animal Res. Inst	570	Kentville R.B.C	1	Х								
Anthony	10	Anthony Leghorn	e				Χ				Χ	Х
Babcock	307	Babcock B-300	ŝ	Χ	Χ	Χ	Χ	Х		Х	Χ	Х
Babcock	442	Babcock B-380	Ŋ				Χ	Χ		Х	Χ	X
Canada Dept. of Agri	982	P.D. 58	1	Χ								
CareyCarey	437	Carey Nick 310	2		Χ						Χ	
Colonial	453	Coloníal BPR	1				Х					
Colonial	439	Colonial RIR	1				Χ					
Colonial	289	True-Line 365 B	1				Χ					
Colonial	431	True-Line 365 K	1			Χ						
Colonial	432	True-Line 365 S	7	Χ	Х	Χ	Х	Х			Х	Х
Davis	309	Davís Combiner	4				Х	Х	X	X		
DeKalb-Warren	456	Amber Link	1								Х	
DeKalb-Warren	305	Sex-Sal-Link F	2							Х	Х	
Euribrid	447	Hisex White	5		Х	Х		Х	Х		Х	
Fisher	607	Fisher 107	5	Х		X		Х			X	Х
Fisher	608	Fisher 505	1	Х								
Garber	99	Garber G 200	2		Х						Х	
Hardy	86	Deluxe Sex Link	1						Х			

RANDOM SAMPLE EGG PRODUCTION TEST ENTRIES AND CONDITIONS, 1974-75 TABLE 6.--Stock entered in 1974-75 tests

		Stock	Number									
Breeder	Code	Strain or trade name	of entries	C.C.	Fla.	MoC.	Tes! MoF.	N.HC.	N.HF.	N.C.	Pa.	Tenn
Hubbard	378	Golden Comet	3	-				X		X	X	
Idea1	356	Ideal 236	Ŋ		Х	Х	Х				Х	Х
Indiana Farm Bureau	234	Duchess 60	ć			Х	Х				Х	
Nelson	598	Nelson Sex-Link	ч						Х			
N. Cent. Reg. Lab	37	Reg. Cornell Control-	Т									Х
Parks	352	Parks Keystone B-1	2		Х							Х
Parks	382	Parks Sil-Go-Link	1								Х	
Shaver	181	Shaver Starcross 288-	6	X	Х	Х	Х	Х	Х	Х	Х	Х
St. Augustin	566	Corvette A-1	Т	X								
Tatum	401	Tatum T-100	ŝ		Х						Х	Х
Tatum	449	Tatum T-173	4					Х	Х		Х	Х
Welp	440	Welp Line 650 N	2				Х	Х				
Welp	448	Welp Line 973	1		Х							

TABLE 6.--Stock entered in 1974-75 tests--Continued

			Length	Ent-	Replications			Sa.		
Teet	Ustabod	Age at	of	ries	Birds		Hous	feet		
iest	Hatched	housing	test	(num-	Num-	per			1/	per
		(days)	(days)	ber)	ber	rep.	Brooding	Rearing	Laying-'	bird
Central Canada	4/30/74	147	497	12	8	65	Cage	Cage	Cage-2	0.45
Florida	5/27/74	150	486	12	4	24	Litter	Litter	Cage-2	.4
					8	50	Litter	Litter	Litter	1.92
Missouri Cage	9/ 8/73	150	500	9	2	40	Litter	Litter	Cage-2	.67
					4	40	Litter	Litter	Cage-8	.58
Missouri Floor	3/ 2/74	151	500	14	4	60	Litter	Litter	Litter	1.6
New Hampshire Cage	4/ 3/74	150	500	17	8	24	Litter	Cage	Cage-3	.5
New Hampshire Floor-	5/ 3/74	150	500	8	3	30	Litter	Litter	Litter	3.2
North Carolina	3/22/74	150	499	10	2	50	Litter	Litter	Litter-slat	1.7
					2	50	Colony cage	Colony cage	Colony cage-7	.5
					4	26	Colony cage	Colony cage	Cage-2	.6
Pennsylvania	4/25/74	150	501	24	2	48	Litter	Litter	Cage-3	. 5
					2	50	Litter	Litter	Litter	1.7
Tennessee	3/26/74	140	500	12	8	30	Litter	Litter	Cage-2	.45

1/ The numerals after the word "cage" refer to the number of birds per cage.

_	Entries brooded	Minimum oz./doz.	Protein (percenț)			Metabolizable energy2/ (calories/pound)			Metabolizable Calories Crude Protein ^{3/}		
Test	inter-	for large									
	mingled	eggs	Start	Grow	Lay	Start	Grow	Lay	Start	Grow	Lay
Central Canada	No	24	17.6	14.5	16.2	1270	1290	1300	58.0	79.1	76.9
Florida	Yes	23	22.0	9.1 15.3	16.5	1340	1480 1371	1313	60.9	162.6 78.8	77.7
Missouri Cage	No	23	20.0	16.0	18.2 15.1	1318	1266	1250 1224	63.7	78.1	68.7 81.1
Missouri Floor	No	23	20.7	16.0	15.1	1318	1266	1281 1305	63.7	78.1	75.3 86.4
New Hampshire	Yes	23.5	20.9	16.0	17.0 15.0	1340	1319	1255 1337	64.0	82.0	72.0 81.0
North Carolina	No	23	20.0	16.0	20 16	1249	1238	1303 1335	62.4	77.4	71.2 80.9
Pennsylvania	Yes	24	21.0	17.0	18.0	1300 <u>4</u> /	1357 <u>4</u> /	1354 <u>4</u> /	61.9	79.8	75.2
Tennessee	No	23	20.8 20.8	16.5 9.0	16.9 <u>5</u> / 16.9 <u>5</u> /	1365 1365	1382 1443	1305 1305	65.6 65.6	84.0 159.0	77.3 77.3

2/ Metabolizable energy is the maximum quantity of feed energy that possibly may be used by the chicken.

3/ Metabolizable calories divided by percent crude protein.

4/ Approximate metabolizable energy computed from productive energy, using 70 percent as the conversion factor.

5/ See Tennessee Test Report for complete ration combinations.

	Lighting		Artificial					
Test	Rearing Laying		heat	R Value of insul	ation			
	(hours)	(hours)	used	material ^{6/}		Ventilation		
Central Canada	(<u>7</u> /)	(8/)	Yes	Ceiling Walls	27.9 15.1	Exhaust fans in roof and in east wall		
Florida	Natural	15	No	Cage Summer House Winter	13.0 8.0	Natural rid <mark>g</mark> e vents		
Missouri Cage	10	16	No	Ceiling Walls	5.8 None	Ridge vents		
Missouri Floor 	Natural	14	No	Ceiling Walls	15.0 15.0	Exhaust fans in ceiling		
New Hampshire	14	14	No	Ceiling Walls	15.0 15.0	Exhaust fans		
North Carolina	Step down	Step up to 17	No	Ceiling Walls	7.3 1.5	Natural via windows		
Pennsylvania	8	12 to 17	Yes	Ceiling Walls	15.5 15.5	Exhaust		
Tennessee	Natural	14	No	Ceiling Walls	13.0 None	Winter, Positive pressure Summer, Exhaust fans		

 $\underline{6}/$ Due to variations in type of construction, R Values will be approximate for some tests.

<u>7</u>/ At day old--18-1/2 hr.; light decreased 15 minutes per week to meet at 15-1/2 hr. at longest day, then natural decrease until 13-1/2 hr.

 $\frac{8}{13-1/2}$ hr. until natural increase takes light hours to 15-1/2 hr. in mid-June, then light held at 15-1/2 hr. until end of test.

Tect	Newcastle		Infectious bronchitis		Fowl Pox		Encephalo- myelitis		Coccidiosis control		Marek's
IESL	±3700	Age	There a	Age		Age		Age		Age	Disease
	Lype	(WK.)	Type	(WK.)	Туре	(wk.)	Туре	(wk.)	Туре	(wk.)	Age
Central Canada	Spray Spray	1.5 19	Spray Spray	1.5 12	Wing web.	8	Water Water	8 15			l day
Florida	Water Water	1,3,10 16,32	Water Water	1,3 10,16	Wing web.	8	None		Poly-stat	0-15	l day
Missouri Cage-	Water Water Water	2 6 12	Water Water Water	2 6 12	None		None		Poly-stat	0-11	l day Bio-Vac
Missouri Floor	Water Water Water	2 4 14	Water Water Water	2 4 14	None		None		Poly-stat	0-8	l day Bio-Vac
New Hampshire-	Dust Dust	2 20	Dust Dust	2 20	None		None		Cocci-Vac	1	l day
North Carolina	Occular Water Water +Every 90 day	1 day 5 16 75	Occular Water Water	1 day 5 16	Wing web.	12	Water	14	None (cages) 6 Spcs. Cocci	1	1 day M & E
Pennsylvania	Water Water Water	4 8 16	Water Water Water	4 8 16	Wing web.	8	None		Amprol	0-20	l day
Tennessee	Occular Occular Occular	1 day 10 20	Occular Occular Occular	1 day 10 20	Wing web.	10	None		Amprol	0-20	l day

.

U. S. DEPARTMENT OF AGRICULTURE AGRICULTURAL RESEARCH SERVICE HYATTSVILLE, MARYLAND 20782

OFFICIAL BUSINESS PENALTY FOR PRIVATE USE, \$300 POSTAGE AND FÉES PAID U. S. DEPARTMENT OF AGRICULTURE AGR 101

