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ABSTRACT 

For computer network infiltration and defense training 

within the Department of Defense, the use of Red Teams 

results in the most effective, realistic, and comprehensive 

training for network administrators. Our thesis is meant to 

mimic that highly trained adversary.  We developed a 

framework that would exist in that operational network, that 

mimics the actions of that adversary or malware, that 

creates observable behaviors, and that is fully controllable 

and configurable. 

The framework is based upon a client-server 

relationship.  The server is a Java multi-threaded server 

that issues commands to the Java client software on all of 

the hosts of the operational network.  Our thesis proved 

that commands could be sent to those clients to generate 

scanning behavior that was observable on the network, that 

the clients would generate or cease their behavior within 

five seconds of the issuance of the command, and that the 

clients would return to a failsafe state if communication 

with the command and control server was lost. 

The framework that was created can be expanded to 

control more than twenty hosts.  Furthermore, the software 

is extensible so that additional modules can be created for 

the client software to generate additional and more complex 

malware mimic behaviors. 
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I. INTRODUCTION 

Department of Defense (DoD) use of information systems 

connected by networks continues to expand, as it arguably 

does for every enterprise level organization in the world 

today. The threats on the Internet—viruses, botnets, hackers 

and the like—form the basis for enormous vulnerability, both 

to the machines of the networks, and to the Department of 

Defense mission that those machines support: protecting the 

security of the United States of America. 

Network administrators perform a vital role in both 

administering and protecting our networks.  They carry out 

the myriad tasks essential to the function of the network, 

ranging from the routine to the tremendously complex—

configuring the host machines, the network hardware, the 

firewalls, interfacing with the system users—the list 

continues ad infinitum.  Network administrators form the 

bulwark of our defense, which is referred to as “Information 

Assurance.”   

The traditionally accepted “threat equation” states 

that risk is equal to threats multiplied by vulnerabilities—

mitigated only by safeguards [1].  Since the safeguards of 

DoD networks, indeed any network, is most fundamentally 

influenced by the skill of its administrators, the primary 

mitigation of risk to DoD networks (indeed the DoD on the 

whole and ipso facto, the security of the entire nation) 

rests on the quality of training provided to our network 

administrators.  When we consider that the threat to our 

networks are ever increasing, as is our usage of them and 

the concomitant increase in vulnerability, it becomes that 
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much more imperative that we provide the best and most 

effective training possible to our network administrators.   

A. TRAINING NETWORK ADMINISTRATORS 

DoD training of its network administrators relies on a 

wide variety of different methods.  Classroom instruction is 

standard, as are mentors performing on-the-job training.  

Instructed laboratory environments are also commonplace.  

Still, the most significant training of DoD network 

administrators in the area of information assurance is 

performed by the use of red teams.  These red teams are 

composed of highly-trained, specifically-tasked personnel 

that act as adversaries in order to test the networks and 

their administrators by emulating the threats that the 

administrators currently face. 

B. SHORTCOMINGS OF THAT APPROACH 

While classroom training of network administrators is 

essential, it is often considered unsatisfactory for the 

sorts of robust evaluations required in the military 

environment.  Laboratory training can be more robust, but 

the training does not evaluate the strengths and weaknesses 

of the actual network of the organization.  The red team 

approach is superior in both these areas; the training is 

both robust, and often performed on the operational network 

of the organization.  Still, the DoD red teams that perform 

this training are not an unlimited asset.  They consist of 

personnel with specialized training requirements, limited 

funding and operational tempo, etc.  Reliance on red teams, 

thus, restricts the amount of training available to DoD  
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network administrators.  This in turn impacts DoD networks 

on the whole, and is therefore a matter of national 

security.   

C. OBJECTIVES 

Our objective is to design a network training tool to 

help train administrators—one that can integrate the network 

evaluation into the highly complex training events typical 

of U.S. military training exercises.  Towards this, we seek 

to construct a system with the following characteristics: 

• The system must be safe enough for use on the 

operational network, and not constrained for use 

in the laboratory.  Towards this, it must be 

inherently benign, externally controllable, and 

include a tested failsafe condition for rapid 

neutralization and/or retraction (rollback) from 

the impacted network. 

• The system must emulate threat behaviors rather 

than duplicating the threats themselves, i.e., the 

system must be constructed of malware mimics, not 

actual malware. 

• The system must be distributed, allowing the 

trainer to be geographically distinct from the 

network and the network administrators undergoing 

training.  

D. ORGANIZATION 

Chapter I provides a brief treatment of the motivation 

for this thesis: mainly, the defense of the United States 
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through improved training for the administrators of DoD 

networks.  This goal we propose achieving through the use of 

a distributed software system.  

Chapter II gives a more formal definition of red teams, 

as well as usage examples of red teams in DoD environment.  

Chapter II also gives a brief overview of the current 

threats to networks and enumerates some of their behaviors.   

Chapter III covers the design considerations of our 

proposed software solution.  We formally define the 

interested parties in training, as well as the training 

objective, and give an example of how the proposed system 

could be used in an actual training exercise.  We give 

further treatment of our stakeholders in training, and 

specifics on what behaviors might be desired that a software 

solution perform. 

Chapter IV has discussion of the actual software 

implementation of the system, to include the Graphical User 

Interface (GUI).  It also discusses the complex test-bed on 

which we tested our implementation.   

Chapter V presents results from our testing of the 

system, to include graphical representation of system 

performance.  It shows that the software system we have 

implemented does indeed generate externally observable 

network behaviors that are remotely controllable.   

Chapter VI is the summary of the thesis, with 

conclusions regarding the outcome.  It also enumerates 

future work that could be done on this project, to include 

some of the areas that will require more refinement before 

the system is ready for a production environment.   
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II. BACKGROUND 

This chapter gives more specific treatment of red teams 

used in a DoD setting, to include employment.  Additionally, 

some of the threat signatures and behaviors used by red 

teams are discussed, to include bots, worms, and viruses.   

A. RED TEAM 

Red teams are “specially selected groups designed to 

anticipate and simulate the decision-making and behaviors of 

potential adversaries.” [2] The red team forces an 

organization to examine itself critically.  No organization 

is perfect, no weapon system is perfect, and no idea is 

perfect.  The red team examines whatever it is that needs to 

be evaluated, uncovers its flaws, and finds potential 

weaknesses that can be exploited.  Sun Tzu said, “If you 

know your enemy and know yourself you need not fear the 

results of a hundred battles.” [3]  Complete knowledge of 

the enemy may be impossible, but through the use of red 

teams, a more thorough knowledge can definitely be gained 

about one’s own organization.   

Red teams are used in all aspects of military planning.  

They are used at the tactical level in mock battles using 

infantry, mechanized, and/or aerial units acting as a real, 

opposing, red force.  The two-week, high intensity, Red Flag 

training exercise held at Nellis Air Force Base (AFB), 

Nevada (on occasion at Eielson AFB, Alaska) was created to 

simulate realistic combat missions against a credible and 

live opposing force.  Red teams, typically led by staff 

Intelligence Officers, are used in staff planning of future 
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maneuvers to foresee possible reactions or resultant 

movements of the enemy.  They are utilized in the creation 

of new weapons or new national or military guidance 

publications, such as the National Security Strategy, Joint 

Strategy Review, and the Maritime Strategy.  One example was 

the led by the Naval War College.  Most notably, the Global 

War Games from 1984-1988 resulted in many significant 

conclusions that helped to define the Maritime Strategy at 

that time [4]. By having red team think tanks and war gaming 

scenarios, the actions of forecasted adversaries can be 

identified.  This information could then sway the future 

actions of the entire DoD. 

From the aspect of cyber-security, red teams are vital 

in the training of the government and military network 

operators.  The term operators can be as broad as the entire 

staff, which will include managers and officers, 

administrators, engineers, help desk, and response 

technicians.  The term operators in this thesis will limit 

its scope to the administrators, help desk personnel, and 

technicians. 

B. RED TEAM DURING CYBER DEFENSE EXERCISE (CDX)   

One of the two red team examples will come from the 

annual Cyber Defense Exercise (CDX) that is held between the 

United States Service Academies, other military academic 

schools (Air Force Institute of Technology and Naval 

Postgraduate School), and on occasion, other nations’ 

military schools (e.g., in 2010, the Royal Military College 

of Canada was part of the competition). The tenth annual CDX 

sponsored by the National Security Agency (NSA) was in 2010 

[5]. 



 7

In the CDX, it is each school’s mission to design a 

network from scratch, build it in its entirety, fortify it 

and then defend it for an entire week against external and 

internal attack.  The network must meet a certain baseline 

such as providing a Web service, domain name service, active 

directory, e-mail, bulletin board, and more.  The students 

must research what are the most effective and secure 

operating systems to use.  Then, the applications and 

services must be identified, installed, and properly 

configured.  These computers and services must then be 

joined to a network which is then linked into the entire 

game network via a Virtual Private Network connection which 

logically removes the game network from the rest of the 

internet.  The NSA red team is situated in its own network 

with access to the entire game network where it can launch 

attacks against all of the competing schools.  In the 2010 

competition, the red team had an agent on the inside of each 

school’s network, along with a cluster of five improperly 

configured computers. The agent, acting the part of the 

“ignorant user” could be persuaded to visit malicious 

websites and click on dubious e-mail attachments.   

Getting the entire exercise network researched, built, 

and operational takes a great deal of effort by students.  

Further efforts are required to harden the computers, 

operating systems, services, and the entire network.  

Getting the entire network operational is merely the ante to 

compete in the CDX.  For the participants, the real work and 

concomitant training value comes from the competition week 

when the NSA red team begins their attacks. 
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 As delineated in the Certified Ethical Hacking Manual, 

there are five phases in which an intruder advances the 

attack [6].  The red team followed these typical five 

phases: reconnaissance, scanning, gaining access, 

maintaining access, and covering their tracks.  Some steps 

were shortened (reconnaissance, since some information is 

already known) or skipped (covering of tracks, since the 

students need to identify what was compromised).  This is 

done so that the students of the competing schools can 

experience what it is like to be scanned, infiltrated, and 

exploited.  The detection of the infiltration or the 

witnessing of unintended actions must be noticed, steps 

taken to neutralize the problem, corrective actions taken to 

restore impacted systems, and further research and steps 

taken to prevent that problem from happening again.  The red 

team would do their best to infiltrate as many systems as 

possible and leave their mark for the schools to find. 

 The red team was limited in what they were allowed to 

use in their attacks.  Common hacking software suites, e.g., 

Backtrack and Metasploit, were utilized along with a host of 

other easily available tools that anyone with access to 

hacker sites on the internet could obtain.  Current exploits 

and vulnerabilities could also be used if they were present 

on the networks.  This encouraged the competing schools to 

review the current literature and download and install the 

current applicable patches for their systems.  The red teams 

were not allowed to generate their own malicious code or 

exploits. 

 The red team presented a live, thinking opponent to all 

of the competing schools.  Automated tools and other 
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software were utilized, but the red team members took the 

data that was returned and formulated strategies of what to 

attack next.  The intelligent enemy could probe further, 

find out what is installed, and run attacks against known 

vulnerabilities of the running software or installed 

operating systems.  Furthermore, the inside red team agent 

was another vector of attack.  These two facets taught the 

students to look for attacks from outside and within, how to 

effectively place and use sensors, to research and 

constantly update their systems, and if anything was 

breached, how to investigate, limit the extent of the 

damage, and restore the system to operation with the 

vulnerability removed. 

 The only negative aspect of this exercise is that it is 

done on an exercise network.  As mentioned previously, the 

point of the exercise is to build and defend a network.  

Therefore, all of the decisions were made with security as 

the top priority.  This is not true for every organization 

and every network.  Having this exercise done on a true, 

operational network, with all of the requirements and needs 

of the user-base met, and with hundreds or thousands of 

constant users, would make this exercise even more 

realistic. 

C. RED TEAM DURING COMPOSITE TRAINING UNIT EXERCISE 

An example of an exercise that does use the operational 

network is the Composite Training Unit Exercise (COMPTUEX). 

It is the culminating exercise for the qualification of a 

strike group.  A strike group of usually five to seven ships 

spends nearly a year in the predeployment workup cycle and 

upon successful conclusion of COMPTUEX, the battle group is 
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assessed to determine its readiness for deployment and for 

battle. The COMPTUEX is an intense exercise that is 

developed to stress the entire group: the staff, the ship’s 

officers, the ship’s crew, the Marines, (if embarked), the 

joint component, and the Air Wing, to name a few. 

COMPTUEX is the time when the onboard computer networks 

are attacked by the red team from the Navy Cyber Defense 

Operational Center.  As previously mentioned, COMPTUEX is 

the final exercise for the strike group.  The cyber attacks 

are only a small portion of all the attacks that will be 

directed toward these ships.  The ships have multiple 

objectives to complete every day.  Some events are specific 

to one ship, others to some subset or all of the ships.  

These events affect every person onboard.  With the increase 

in workload, the computer networks, communication systems, 

and combat systems are heavily utilized to accomplish the 

many missions set forth by the examiners.  It is during this 

tumultuous time that the red team also attacks these vital 

networks. 

All of the events of COMPTUEX are scripted by the 

evaluators at the Center for Surface Force Training Atlantic 

or Tactical Training Group Pacific.  Since they are scripted 

and all actions must be graded, there are breaks given so 

that vital systems or groups that must be graded will have 

the tools normally available to them to accomplish their 

task.  Therefore, the red team will not usually target vital 

systems during the war-fighting phases of the training.  The 

red team will usually attack during the quieter times of the 

whole exercise. This is difficult for the network 

administrators and technicians: following manning their 
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battle stations during simulated combat operations, they 

must then man their normal shipboard watch stations and 

continue defending from attacks by the red team.  

Purposefully, some of the attacks on the computer networks 

and communication systems are linked to the battle.  There 

are specific training objectives designed to take down vital 

communication channels during attacks or evolutions so that 

the ships and watch teams can be evaluated on their 

response. This is to allow the assessment of such questions 

as: “Can the ship fight without their normal complement of 

communication options?”   

In this context, the red team of COMPTUEX performs 

similar functions to the red team of the CDX.  The red team 

attempts to scan the system, breach it, and then exploit it.  

Since this training is done on an operational network, 

certain behaviors are desired without the exact malware 

being introduced to the network.  Therefore, the red team 

simulates the effects of some of the more nefarious attacks.  

The mission of the red team is to test the vigilance of the 

network administrators, technicians and, to an extent, the 

users of that network.  Some of the attacks are only 

detectable by the administrators, and then only by reviewing 

the logs of the firewall, intrusion detection systems, and 

other sensors and services.  Some of the attacks the users 

will see in malicious emails, odd things happening on their 

work computers, or even strange printouts on networked 

printers.  The attacks are varied and thorough, testing all 

equipment, sensors, and people. 

By having a red team attack an operational network, the 

training and evaluation are much more realistic.  The actual 
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network administrators, technicians, help desk, and users 

are tested on the computers and equipment they use every 

day.  This is the environment with which they are most 

comfortable.  More importantly, these are the networks that 

will be used prior to and during the battle.  Upon 

completion of the associated training and evaluations, the 

IT professionals on the ship now know the strengths and 

weaknesses of their own network.  They know how to use their 

sensors and know what the sensors can and cannot reveal.  

Also, they may find that their network has some derived 

vulnerabilities due to the other systems with which it must 

interface.  These are the residual risks that exist within 

all organizations.  

The major downside to the training is that the full 

repertoire of attacks may not have been used because it is 

an operational network.  The risk of corrupting or 

destroying the operational network could cripple the ship 

for days, weeks, or more depending on the attack. Such cases 

would be detrimental to the strike group readiness, likely 

preventing the on-time deployment of the strike group 

(COMPTUEX is usually immediately prior to the end of the 

workup cycle).  Therefore, attacks of such intensity must 

either be avoided or simulated to some extent.  The red team 

may not use them, but a true adversary would likely have no 

restrictions on what is or is not allowed. 

D. A RED TEAM APPROACH USING RAD-X 

An example of an interesting approach using red-team 

methodologies is the Defense Information Systems Agency’s 

(DISA) use of the Rapid Experience Builder (RaD-X) training 

tool.  RaD-X is essentially a portable network training 
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laboratory, isolated from the operational network and the 

Internet, allowing for its use as a “sandbox” for network 

administrator students to observe network exploits as they 

occur.  With this tool, users can observe many of the 

threats discussed below—worms, botnets, viruses and the 

like—by use and analysis of intrusion detection and 

intrusion prevention systems organic to the system.  RaD-X 

includes instructional courseware and formal laboratory 

exercises that complement the training the students receive 

while utilizing the laboratory network.  Though portable, 

the footprint is significant: the system includes a large 

number of laptop computers and concomitant network hardware, 

as it is a self-contained training network [7].     

E. RED TEAM EXPERIENCE 

Exercises verses a red team is the pinnacle of a unit’s 

training.  It is utilized in the capstone evaluation of this 

country’s deploying forces. The red team provides training 

that is as realistic as possible.  It can produce an 

experience like no other.   

As mentioned in the previous sections, the red team can 

attack from a multitude of vectors. Only a small subset of 

the attacks that the red team utilizes will be examined. The 

attacks that are examined are some of the most dangerous and 

disruptive to network security today. 

F. MALWARE 

A computer is a tool that executes instructions, or 

programs, at a very rapid pace.  For the most part, a benign 

program does productive work, safely interacting with the 
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components of computer, such as the processor, the files on 

the hard drive, and other processes and data in memory.  

Malicious programs perform work or actions that the user 

does not want and ends with results that are insulting, 

frustrating, and/or damaging.  Spam e-mail fits into all of 

those categories.  Virus logic bombs that destroy critical 

files are incredibly damaging.  Denial of Service attacks on 

e-commerce sites can be frustrating for the customer and 

potentially damaging for the business, normally resulting in 

lost business and revenue. Root-kits that allow unauthorized 

access to other people’s or organization’s computer 

resources are a significant security risk, and usually 

causing some form of loss or damage. 

“Malware” is the overarching term used to describe the 

programs that force the computer to execute these 

misbehaving tasks.  The types of malware that will be 

considered herein are: worms, botnets and viruses. 

1. Worms 

A worm is stand-alone malicious code that propagates 

across the hosts of a network, with or without human 

assistance—no interaction on the part of a user is required.  

According to Gu (et al.), there are three characteristics of 

an Internet worm: 

• Internet worms generate a substantial volume of 

identical or similar traffic.  This can be 

detected by passive listening on the network, as 

performed by protocol analyzers like Wireshark or 

Intrusion Detection Systems like Snort.   



 15

• They use random scanning to probe for vulnerable 

hosts, which can also be detected by those passive 

listeners. 

• Compromised hosts exhibit predictable signatures: 

an uninfected host would have “normal” traffic, 

but when infected, the host begins random scanning 

looking for other vulnerable hosts on the network. 

 

In addition to propagating itself by finding additional 

vulnerable hosts, worms typically have some other malicious 

function.  It may direct users to certain websites or it may 

collect information from the infected host and report it 

back to some central computer.  It could also be malicious 

and try to destroy key files on the host computer [8]. 

Some examples of worms include the Morris worm (1988) 

[9], the first known instance of a worm, as well as the 

Nimda and the Code Red worms [10].   

2. Botnets 

Bots and networks of bots (“botnets”) are emerging as 

the most significant threat facing online ecosystems and 

computing assets [11]. Like viruses and worms, a bot is a 

self-propagating application (code) that infects vulnerable 

hosts through exploit activities in order to expand the 

reach of the Bot network [11].  Bots can use worms or other 

bots to propagate to other computers on the network.   

Bots can be distinguished from viruses and worms by 

their command and control characteristic: bots will normally 

include facilities that allow for control by some sort of 

Command and Control structure, be it a single server or some 
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type of distributed system.  Since bots can be controlled by 

a single entity, they can be remotely directed towards a 

single purpose.  A typical use for a bot is a Distributed 

Denial of Service (DDOS) attack, where a massive number of 

bots can coordinate their traffic in order to overwhelm a 

network server [11]. 

Bot behaviors include those of worms outlined above, 

with the addition of command and control traffic that rides 

within different protocols: commonly Hyper Text Transfer 

Protocol (HTTP) and Internet Relay Chat (IRC).  In actual 

bots, this traffic may or may not be encrypted.  Detection 

of bots through passive packet monitoring (as above—with 

protocol analysis by tools such as Snort or Wireshark) of 

data streams can be useful, as bots will often exhibit 

typical signatures or behaviors.  Like worms, the scanning 

behaviors used for propagation can also be detected 

passively and the results used for bot (and worm) 

identification [11].  Bots will often remain hidden until 

they receive instruction from the command and control server 

to execute some action, which is typically a denial of 

service attack as described above [12],[13].   

Perhaps the most widely known example of a bot is 

“Conficker,” which is still active at the time of this 

writing.  One estimate of Conficker held it responsible for 

8.9 million infections, and it appeared in a variety of 

different networks, including those of the German and 

British Armed Forces [14].  
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3. Viruses 

In Peter Czor’s The Art of Virus Research and Defense, 

he defines a computer virus as “…code that recursively 

replicates a possibly evolved copy of itself.  Viruses 

infect a host file or system area, or they simply modify a 

reference to such objects to take control and then multiply 

again to form new generations.” [15]  

Viruses can be classified by many categories. These 

include what computer architectures they target, such as 

processor types or operating systems; file systems and file 

formats; interpreted environments such as scripts (PHP, 

Jscript, Batch and Shell scripts) and macros; and more.  

They can also be classified as to how they infect, such as 

boot records, files, and in-memory.  They could be 

classified as to their defensive mechanisms, like tunneling, 

armored, retroviruses, morphing and encrypting.  Finally, 

they could be classified according to their payload, whether 

it is intended to be benign and non-destructive, 

destructive, data-stealing, or denial of service. 

Since all viruses are code and that code must reside 

somewhere on the host, the signature-based virus scanner 

periodically searches for those classic signatures on a 

system.  Only new viruses or emerging variants of existing 

viruses will cause the scanner to fail to match the stored 

signatures and claim that the code is safe. 

A canonical example of a virus is the “Anna Kournikova” 

virus. Although it did not have a malicious payload, it made 

its way through a bulletin board posting, through mass-

mailing capability, and social engineering (enticing people 

with a new picture of Anna Kournikova) to spread itself 
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around the world.  The file was a visual basic script: 

AnnaKournikova.jpg.vbs.  It duped the user into executing 

the script, e-mailing itself with the VBS attachment to 

everyone in the user’s e-mail address book.  Its payload was 

nothing except spam e-mails that quickly spanned the world 

[16]. 

G. SUMMARY 

In this chapter, we discussed the usage of red teams 

used in a DoD setting, and examples of exercises in which 

they are employed.  We also discussed some of the threat 

signatures and behaviors used by red teams, including bots, 

worms, and viruses.  In the following chapter, we assert 

that DoD use of red teams constrains how we train, and 

propose a information system solution.    
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III. DESIGN CONSIDERATIONS 

In this chapter, we make a few definitions, namely 

those of the “training objective” that we are training to, 

the “trainees” that are receiving the training, the 

“trainers” that train them, and the “safety observers” that 

observe all of the above.  We scope our discussion by a 

defining the training “environment,” as well as identify the 

problems with the DoD’s current approach to network 

training.  We proposed an information systems solution to 

those problems and give a detailed example scenario of its 

use.  We conclude the chapter with more detailed discussion 

of the above elements.   

A. THE TRAINING OBJECTIVE  

In order to simplify discussion, we make an initial 

definition: the training objective.  The training objective 

is the skill or behavior that we wish to reinforce.  We make 

no comment on the size, complexity, or specifics of the 

training objective—they can range from the simple to the 

very complex, e.g., from “pull the trigger” to “win the 

war.”  We limit our scope of training objectives to the 

specific behaviors that result from trainee interaction with 

malware/mal-behavior and its accompanying effects.  We also 

assume that training objectives correspond to specific 

threats which have specific behaviors.  Further, we do not 

discuss any specific training methodology or algorithm, as 

it is beyond the scope of this thesis.  Below, we include an 

example training scenario, with its training objective.  
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In order to discuss any training tool, we must also 

identify the stakeholders.  Towards this, we propose three 

generalized parties typical in a military training 

environment and indeed, most training environments: the 

Trainee, the Trainer, and the Safety Observer.   

B. THE INTERESTED PARTIES IN TRAINING 

1. The Trainee 

The “trainee” is a person or group of persons in the 

organization that we wish to be trained to the training 

objective.  Specific examples could include network 

operations personnel, or perhaps even further up the stack 

of decision making, e.g., network managers.  

2. The Trainer 

The second participant in training is the “trainer.”  

The trainer is the person or organization that presents 

specific scenarios of behaviors to the trainee in order to 

evaluate the trainee’s performance vis-à-vis the training 

objective. Typical examples of trainers in military networks 

include “red teams” (who simulate the Tactic, Techniques, 

and Procedures (TTP) of adversaries) as well as less 

formalized trainers, e.g., the more experienced network 

operator training the less experienced.  In “high school” 

parlance, the trainee is the student, and the trainer is the 

teacher, though this relationship is not exclusive, i.e., 

the trainer may or may not be the one giving the 

instruction, but the trainer is limited to testing the skill 

of the trainee. 
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3. The Safety Observer 

The third participant in training is the safety 

observer.  In many training scenarios, we need to define a 

party separate from the trainer and the trainee that is 

responsible for maintaining oversight of the conduct of the 

training.  For example, during safety critical training, 

there is often a safety observer, whose scope of attention 

exceeds that of the training activities to include the 

impact of the training on the organization as a whole.  In 

“military training” parlance, this could be members of a so-

called “White Cell.”  Note that circumstance will sometimes 

dictate that either the trainer or trainee fill this role, 

e.g., in those training scenarios where the risk of training 

does not warrant the use of a separate party.  A specific 

example would be that of a senior network administrator 

tutoring a junior administrator while utilizing an isolated 

(non-networked) host.  An example of a needed safety 

observer would be training of such complexity that the 

trainer and trainee could not effectively train while 

simultaneously ensuring their training would not impact the 

safety of the organization, e.g., a large scale training 

scenario involving integrated operations from multiple major 

departments. Network training on an aircraft carrier network 

during flight operations and engineering drills would be an 

example of this.   

C. THE TRAINING ENVIRONMENT 

Now that we have discussed the interested parties in 

our discussion of training, we must discuss the training 

environment. For the purpose of this thesis, we limit 
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ourselves to training the administrators of military 

networks.  That said, military networks vary enormously in 

terms of size and complexity, ranging from the completely 

isolated host in the training laboratory to the entire 

Global Information Grid, the military's global 

communications backbone comprising 15,000 networks and seven 

million computing devices across hundreds of installations 

in dozens of countries [17].  Note that DoD networks also 

span different classification levels, though we will not 

treat the requirements contained in these differences.  

Military networks include those of an administrative nature, 

e.g., training laboratories for network personnel, as well 

as networks of an operational nature, where lives and 

mission success literally depend on their effective 

utilization.   

The differences between these networks also indicate, 

ipso facto, greatly varying network infrastructure and 

topologies.  Some DoD networks have network firewalls, some 

have multiple tiers of them, and some have none.  Some 

networks are completely hidden inside Network Address 

Translation realms, and some are outward facing onto the 

global Internet.  Some networks are connected by high 

bandwidth fiber-optic cable, while others are connected by 

low-speed, high-latency satellite connections that offer 

slightly better connectivity than low-speed telephone 

modems.   

D. HOW WE CURRENTLY TRAIN 

The treatment Aland gives in the International Test and 

Evaluation Association Journal gives an excellent and timely 
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overview of the challenges faced by DoD leadership regarding 

Testing and Evaluation of DoD network Information Assurance, 

some of which are included below [18].  

1. Dependence on Red Teams  

One problem that the DoD faces with regards to training 

is that we depend heavily on red teams.  Red teams are a 

resource heavily in demand, provided by agencies that are 

faced with increasingly austere fiscal environments.  By use 

of this constrained resource, we limit the training options 

available.  An exercise planner simply cannot count on a red 

team being available for every exercise.   

2. Standardization 

Given the complexity of military networks, it is not 

hard to imagine that maintaining uniformity in training 

throughout a global organization is a difficult task.  

Although the DoD continues efforts to centralize network 

training, there remain disparate organizations using 

disparate tools and methodologies.  For example, it is not 

uncommon for a single unit to be trained by National 

Security Agency (NSA) Red and Blue Teams, for personnel to 

be serving as mentors in the same organization as the 

trainee, or for organizational training teams to exist at 

every echelon within an organization—all using a variety of 

different methods.  For this reason, it is difficult to 

maintain standardization in training across the different 

networks in the DoD.   

In addition to disparate organizations participating in 

the training, there are different organizations managing the 



 24

different networks as well. Each of these network management 

bodies imposes its own requirements on the trainers in order 

to minimize the impact of network training on the operations 

of the organization.   

It is also possible for the organization to confine 

their network training to a laboratory environment, vice the 

operational network, in order to minimize the impact of the 

training on operations.  A great example of this is the 

NSA’s annual Computer Defense Exercise (CDX), discussed in 

Chapter II: a geographically distributed but logically 

isolated exercise network.  The DoD keeps much of its 

training in the laboratory for good reason; one does not 

want to risk network behavior having negative effects on a 

unit’s primary operational (non-network) mission.  Robust 

network training, to a large degree, is considered too risky 

for operational units.  Some training methodologies, e.g. 

the release of a worm along the lines of Morris (discussed 

in Chapter II), could have unpredictable results.  Consider, 

for example, the trainer’s use of a worm whose effects were 

intended to be limited to the unit under assessment, but 

instead spread over the entire organizational network.   

Unfortunately, this deprives the operational units of 

the opportunity to observe how collateral network effects 

can affect the organization as a whole, e.g., seeing how the 

loss of a tertiary air traffic control information system 

due to a virus can affect the launching and recovery of 

aircraft.  For this reason, it is imperative that network 

training not be limited to the laboratory, but instead be 

integrated into a holistic assessment of the unit.  
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E. AN INFORMATION SYSTEM SOLUTION 

For these problems, we propose the development of a 

distributed, software-based training system that can be used 

by either simulated adversaries (such as red team) or 

trusted agents (such as blue team) to create scenarios and 

conditions to which a network management/defense team will 

need to react and resolve.  This system will be composed of 

currently available software packages and/or “homegrown” 

(locally generated) packages with the desired functionality.  

It will include clients that function as “Malware Mimics,” 

that is, software objects that intrinsically demonstrate 

externally observable attributes of the malware which it 

mimics, to include behaviors and possibly signatures, 

without putting the hosting network at risk.  The Malware 

Mimic Client will be constructed in such a way as to depict 

a variety of these behaviors, with sufficient flexibility 

for additional behaviors to be “bolted-on” as they are 

developed later in the system’s life, resulting in a 

sustainable evolution of the product.  This Malware Mimic 

System must be inherently benign, externally controllable, 

and include a tested “failsafe” condition for rapid 

neutralization and/or retraction (rollback) from the 

impacted network.  The tool should be scalable in order to 

depict the full range of malware characteristics, from low 

sophistication through high sophistication, and adjustable 

in real time.   

Specifically, we propose that the system be composed of 

two types of software packages: Malware Mimic Clients (MM-

Clients), and a central Malware Mimic Command and Control 

(MM-Server) Server.  The Malware Mimic Clients will be 



 26

lightweight software packages that “ride” upon host 

operating systems of the information systems (workstations, 

etc) of the trainee organization.  Each of these clients 

will be logically connected to a Malware Mimic Server, which 

will deliver commands to the Clients, both individually and 

in the aggregate.  Malware Mimic Clients will be capable of 

generating the behaviors of the malware/mal-behavior that we 

wished to emulate.   

For example, as discussed in Chapter II, a typical 

behavior in Internet worms is that they scan for adjacent 

vulnerable hosts.  In this case, we wish only to mimic the 

behavior of the worm, not the worm itself.  The MM-Client, 

when commanded by the MM-Server, could perform a port scan 

of adjacent hosts, just as if it was an actual worm.  To the 

observer, the behaviors will be identical, exactly as if a 

worm was propagating across a network when in fact, only the 

behaviors of the preexisting MM-Clients, commanded by the 

MM-Server, will be propagating.  In this manner, we greatly 

increase the training’s value (we duplicate the behavior of 

an Internet Worm on the network) without greatly increasing 

the risk to the network (we actually only duplicate the 

behaviors, not the malware itself).  Additionally, by using 

this typical client/server architecture, we can take 

advantage of the network property of distribution.  The 

trainer, operating the Mimic System, need not be collocated 

with the trainee of the network. 

We can reduce the risk to the network even further.  

MM-Clients will have only narrow windows to perform their 

behaviors before having to reconfirm their commands with the 

MM-Server.  This ensures that with a loss of network 
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connectivity, the clients do not continue “head-less,” i.e., 

operating independently of the trainer’s desires.   

Furthermore, using the “two-key” analogy commonly 

employed by ballistic missile systems, we can insert an 

additional server on the local network which serves as a 

local “kill switch.”  This second layer of “kill authority” 

will ensure that if emergent local conditions required an 

immediate halt to training that it could be commanded 

without the delay of notifying the trainer.   

In this manner, we solve the problems identified above: 

namely that we create a distributed training system that can 

be consistently and systematically employed across a variety 

of networks, safe enough to use on an operational network, 

all the while delivering the same training value of reacting 

to actual malware used in isolated laboratory environments. 

We can increase training value without concomitant increase 

in risk. 

As discussed, the proposed system will have the 

capability to command observable behaviors and signatures on 

remote hosts.  Additionally, it will include the ability for 

the trainer to monitor remote system status, as well as halt 

or continue the execution of behaviors as warranted by the 

operational situation.  The only interaction that the 

trainee will have with the system will be to observe 

behaviors and signatures generated by the system and react 

to them.  Finally, we propose to include the capability for 

an observer local to the training to have the ability to 

halt the execution of behaviors as local circumstances 

warrant.  All of these functions are summarized in Figure 1.  
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Figure 1.   Proposed use case. 

F. AN EXAMPLE TRAINING SCENARIO 

Based on the proposed use case of our system, a more 

detailed training scenario may proceed as follows.  This 

example assumes that the training would be formal and 

scripted in advance.    

1. Pre-exercise (PRE-EX) 

Prior to commencement of the exercise (COMEX), training 

objectives would be identified and tailored to the 
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particular trainee and training objective by interested 

parties.  In this scenario, the trainee would be an 

organization: specifically, the network administrators of 

all the ships of a Navy Carrier Strike Group, underway off 

the coast of Hawaii, performing predeployment training 

exercises. The network environment would be an unclassified 

administrative network between ships of the Strike Group and 

connected to the Global Information Grid.  The training 

objectives would be promulgated by the agency responsible 

for the exercise.  Additionally, the training scenario would 

be synchronized with other typical predeployment training, 

such as the launching and recovery of aircraft, tactical 

maneuvering and communications of the ships, etc., which 

would be happening simultaneously with the network training.  

The training objective to be covered in this example would 

be that network administrators correctly identify a botnet 

propagating across their network, and report this 

information to the higher echelon of command in accordance 

with previously established procedures.  The ships’ Combat 

Systems Training Team (CSTT) would serve as the notional 

“white cell,” i.e., safety observers for the exercise.     

The Malware Mimic Client software would be installed on 

the participating hosts of the strike group network, 

distributed throughout the ships of the group via software 

push.  These hosts would consist of the bulk of user 

workstations in the strike group.  The software could be 

installed significantly ahead of time, as it would not 

affect the operation of the workstation prior to COMEX, 

remaining effectively dormant in a “sleep state” until the 

prescribed exercise time.  Additionally, local to each ship 

of the group, a simple “kill server” would be initialized by 
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the CSTT members that could be used to terminate or freeze 

the exercise should local conditions warrant such action.  

Shortly prior to COMEX, all of the MM-Clients would 

establish a network link to the MM-Server co-located with 

the trainer, in this case a NSA red team physically located 

at Fort Meade, Maryland.  The MM-Clients would still not 

have any effect on the user’s workstation.   

2. Commencement of Exercise (COMEX) 

At the commencement of the exercise, the ships of the 

trainee (strike group) network, again, underway off the 

coast of Hawaii, would enter a Combat Systems Training 

Environment. This requires notification be passed throughout 

the ships of the group that ship systems were actively being 

used to support training and that actual systems casualties 

would be announced as such.  CSTT members would take their 

posts and begin monitoring the system administrators 

(trainees).  The red team (trainer) members, again located 

at their facility in Maryland, would log in to the MM-

Server.  They would select from their GUI menu the exercise 

trainee (our notional strike group).  Per the exercise 

script, they would instantiate predefined software behaviors 

on the remote workstations of the strike group network.  

These particular modules would consist of behaviors to 

emulate a botnet propagating across the network. As such, 

network hosts would begin to scan the network in search of 

other “vulnerable” hosts in order to make network 

connections with them, at which point the scanned hosts 

would begin to scan the network as well.  These scans would 

be accompanied by dramatic increases in host network output 

as the hosts simulate the sending of information off the 
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network to a notional botnet command and control server.  In 

reality, this would be a coordinated, ever-growing amount of 

relatively benign scans or inert Internet Protocol (IP) 

packets which would cause an increase of network traffic.   

The first indication of the emulated botnet on the 

trainee network would be a slowing of network traffic due to 

the congestion induced by the network scans and generated 

traffic.  User logins would take longer due to the slow 

connection to the Active Directory server.  Web traffic 

would slow down as well, as DNS queries are also delayed due 

to the congestion.  Our trainees, busy with other duties 

assigned to them, would not yet notice the increase of 

network activity, the slowing of network traffic, or that 

the network monitoring systems of their network were 

indicating that the system was being scanned internally.   

As the botnet behavior “propagates” across the hosts of 

the network, the network would continue to slow; e-mail 

traffic would now be affected as the volume of network 

traffic increased.  Administrative work on the network 

workstations become affected as e-mail and chat traffic are 

affected.  It can be expected that the help desk switchboard 

would “light-up” with complaints from users.  Expectantly, 

the system administrators would be notified. 

Upon inspection by the now alerted network 

administrators, the network would be determined to be under 

duress.  Network management systems would show alerts 

related to the volume of traffic on the network; protocol 

analyzers would show unusual network connections between 

hosts of the network, and log files would show that systems 
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were being probed by internal scanning. The network trouble-

call logs would be full of complaints by annoyed users. 

The network administrators should correctly identify 

the problem with the network as a botnet-based attack.  In 

accordance with established procedures, network 

administrators would notify the higher echelon that the 

network was infected by a botnet, who would in turn notify 

the NSA red team.  Red team members would note that the 

training objective had been completed as the botnet had been 

identified and that the higher echelon had been properly 

notified.  The CSTT would have Local Kill Authority.  Once 

the training was complete, and in light of the complaints of 

the many users of the network, the CSTT would activate the 

“local kill” function of the system.  The MM-Clients, no 

longer receiving the “go ahead” signal from the local kill 

server, would cease scanning and quickly revert to the pre-

exercise inert state.   

3. Post Exercise (POSTEX)  

POSTEX (following the exercise), the MM-Clients would 

signal to the MM-Server, located in Maryland, that they had 

been stopped.  The server operators (the red team) would 

note that the exercise had been halted locally, and confirm 

via out-of-band communication that the exercise had 

terminated normally.  Trainers, assessors, and the trainees 

would then compile their individual notes on the exercise, 

and debrief the exercise via conference call once local 

conditions permitted.  
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G. CONTINUED DISCUSSION OF THE ENVIRONMENT 

This was a both a simple and contrived example of the 

Malware Mimic’s function, but it gives insight into a basic 

architecture from which to discuss, in further detail, the 

different features of the system.  In the above example, we 

assume an unclassified, geographically remote, and tactical 

network.  In reality, the Malware Mimic should scale well 

enough for administrators of any sized network to be 

trained, be it as small as a subset of a tactical network, 

or span multiple Autonomous Systems.  The only limitation 

should be the management of the software packages that need 

to be pushed to the individual hosts of the trainee network, 

and limitations inherent in the architecture of the Command 

and Control structure of the Malware Mimic System. 

In our example, we assumed an administrative network, 

but by use of both remote and local kill capability, as well 

as nearly instantaneous “roll-back” of the behaviors to a 

pre-exercise state, the Malware Mimic would be appropriate 

on networks where mission critical services are located.  

Note that in our example, the network behaviors are not 

performed on a network that is isolated in an air-gapped 

laboratory—the intent of the Malware Mimic is to get the 

training out of the lab and classroom, and into the actual 

operating environments of the trainees.  Obviously, the more 

critical the systems (risk), the more care in the 

implementation of the emulated behaviors will have to be 

taken (controls/safeguards).   
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H. CONTINUED DISCUSSION OF THE TRAINER 

Trainers on the system need not be geographically 

removed from the training environment. The power of the 

network allows the trainer to be located anywhere on the 

network, either remote or local.  In our example, the 

trainer was in Maryland and the trainee was underway off the 

coast of Hawaii, but in reality, the location of the two 

parties could be any location linked together by the 

network.   

Additionally, trainers need not be formalized, e.g., 

red team members.  Assuming that a MM-Server is installed on 

the network and that a properly training operator of the 

server exists, training could be accomplished locally by the 

trainees themselves; that is, the “trainer” and “trainee” 

could be the same person or persons.   

1. Expanded Modules 

In our example, the threat was modeled as a botnet with 

the specific behavior of port scanning emulated.  Modules 

could be created that generate the effects of any category 

of malware discussed in Chapter II.  Any degree of 

complexity could be undertaken.  In our example, only one 

stage of botnet propagation was emulated.  Combinations of 

behaviors might be used to emulate specific threats.  For 

example, the Malware Mimics on one host could be commanded 

to first scan for vulnerable hosts (behavior one), then 

“appear” on another host (behavior two), then the new host 

begin its scan (behavior three) and make a link with a 

remote host, ostensibly to pipe information offsite 
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(behavior four).  This emulates in greater detail and 

complexity the lifecycle of a bot in a botnet.   

We are not limited to the behaviors of bots.  The 

Malware Mimics could just as easily be programmed to exhibit 

behaviors associated with a machine infected by a virus.  

Mimic-client host-machines could “pop-up” warning messages 

to users, asking them to contact system administrators to 

inform them of a mock “system infection.”  Host workstations 

could generate virus signatures identifiable by virus 

scanners.  Hosts offsite to the network could even be 

programmed to perform the same functions that a malicious 

hacker would perform on the trainee’s network.  

I. CONTINUED DISCUSSION OF THE TRAINEE 

In our example, our trainee was the network 

administration team of an entire Carrier Strike Group.  

Indeed, the “trainee” could be an individual, a team, or 

even an organization.  Further, we need not limit ourselves 

to network administrators.  The network effects generated by 

the Malware Mimic System, just as the effects of actual 

malware, can affect users, operators, managers, and decision 

makers further removed from the operation of a network.  

Their actions can be assessed using the Malware Mimic 

System, just as those of the network administrator. Consider 

the case involving the havoc created during flight 

operations by the loss of an entire mission critical 

information system; the response of system users or 

administrators in such a situation may have a profound 

impact on the mission as a whole.  In this way, we can begin  
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to answer a question growing ever more important in modern 

combat operations: “How do the network operations impact the 

entire operational unit?” 

In this chapter, we enumerated the participants in 

training, as well as scoped our training environment to that 

of a military network. We proposed an information systems 

approach to the problem and give a detailed example scenario 

of its use.  In the following chapter, we give specifics on 

the construction of our solution, as well as the test bed 

used to evaluate its performance.     
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IV. IMPLEMENTATION AND TEST PLATFORM 

A. BACKGROUND 

This chapter will describe the creation of the MM-

Server and MM-Clients. It will discuss the design features 

built into the software and how the implementation of the 

client-server relationship.  In the first half, we will 

discuss the design of the modules that the MM-Clients will 

run, while the second half will discuss the creation of the 

test platform for this experiment.  Finally, the 

experiment’s goals will be defined and an explanation of how 

the experiment will be setup to accomplish those goals will 

be provided. 

B. SERVERS AND BOTS 

The architecture outlined in Chapter III was largely 

paralleled in our implementation, which includes a single 

command and control server (the MM-Server) that has a one-

to-many cardinality relationship with our remote client 

nodes (the MM-Clients). For both the MM-Server and the MM-

Client, we chose Java as the implementation language. The 

primary reason was portability; since we make no assumption 

on the physical architecture of the network, it was prudent 

to select a language that would run on a multitude of 

different platforms, to include Microsoft Windows and Linux.   

The functions provided by our implementation also 

parallel the architecture outlined in Chapter III.  A 

trainer gives commands via a user interface to the MM-

Server, which then commands the individual remote MM-Clients 
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to perform an externally-observable, network behavior.  The 

MM-Server commands that modules, consisting of the 

behaviors, on the remote MM-Clients be executed; MM-Clients 

receive the instruction to execute the module, and execute 

the preprogrammed function that performs the commanded 

behavior.   

1. Server Construction 

The MM-Server consists of six Java classes, including 

the data structure that maintains information on the client 

nodes of which the server is aware and the user interface.  

The MM-Server functions similarly to a Web server in that it 

spawns handlers to handle incoming connections from the MM-

Clients.  The server is multi-threaded to allow for multiple 

simultaneous Transport Control Protocol (TCP) connections 

and full-duplex communications with its MM-Clients.   

The data structure utilized to track connections 

between the server and remote MM-Clients is a Java 

Synchronized Sorted Map. The Synchronized Sorted Map offers 

built-in handling for the multi-threaded environment, and 

its use simplified the coding requirements significantly, 

i.e., it inherently handled issues of thread 

synchronization.  For larger (in terms of numbers of MM-

Clients) implementations, a database, such as MySQL should 

be used, though it will come at the cost of added 

complexity.   

In order to keep implementation as simple as possible 

(with an eye on scalability), the data structure maintains a 

traditional “mail box” model for MM-Client/Server 

communications; within the data structure, MM-Clients have 
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inboxes (orders) and status boxes.  Inboxes are set only by 

the server; status boxes are first initialized by the 

server, and then written to exclusively by the MM-Client. In 

this manner, synchronization issues with multiple MM-Clients 

are avoided.  The data structure is keyed uniquely by a 

concatenation of the host node’s machine name and a node 

name given at invocation.  The data structure also includes 

a field for explicitly declaring the exercise in which the 

node is participating, e.g., a specific strike group 

COMPTUEX.   

2. Client Construction 

On initialization, MM-Clients attempt to establish a 

TCP connection with the remote server whose socket pair 

address is declared in the invoking command-line parameters.  

If the remote server is not available, the MM-Client will 

continue to attempt contact every 10 seconds until the 

connection succeeds.   

Once the connection is established, the MM-Client 

requests the contents of its “inbox” from the MM-Server, 

then calls the appropriate module based on the response.  

Modules contain preprogrammed sets of behaviors.  Currently, 

there are three modules of behaviors.  Module Zero is an 

instruction for the MM-Client to cease commanded behaviors, 

and to return to an idle state.  In the idle state, the MM-

Client continues to request its inbox contents from the MM-

Sever at five-second intervals.  Module One commands five 

icmp “pings” of the MM-Server.  This module is used for 

connection troubleshooting.  Module Two commands a “SYN 

scan” of 10 random ports of the MM-Server.  This module is 

use to demonstrate the feasibility of a remotely-commanded, 
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externally observable, network behavior from the MM-Client.  

This behavior is intentionally modeled on the scans 

performed by the bots of a botnet, as discussed in Chapter 

II.     

Module Two’s complex scanning behavior is not native to 

Linux or to any of the Microsoft Operating Systems.  For 

these scans, we utilized Salvatore Sanfilippo’s “hping” 

software, available at www.hping.org under the GNU General 

Public License v2.  Use of hping on Microsoft Windows 

platforms additionally requires the use of CACE Technology’s 

WinPcap library (specifically, we used version 4.1.0.2001), 

whose license is currently available for viewing at 

www.winpcap.org/misc/copyright.htm.  Additionally, we had 

problems using hping version 3 on XP; reverting to version 2 

was required.  This version is currently available at 

http://sourceforge.net/projects/sectools/. 

Unfortunately, the use of hping clients on Linux hosts 

requires the use of raw sockets, which are not available 

without administrator privilege.  This can be overcome by 

appending the command for hping to the sudoers list of the 

Linux client, e.g., %admin ALL = NOPASSWD: /sbin/hping3.    

MM-Clients are not multi-threaded.  This is an 

intentional design feature incorporated for safety; MM-

Clients only execute limited amounts of code before blocking 

for a continuation confirmation from the MM-Server, and in 

the future, a “kill server” on the local network.  If at any 

point MM-Client connection with the MM-Server is lost, it 

ceases any commanded behaviors and reverts back to its 

initialization behavior, i.e., entering an “idle” loop, 

attempting to reconnect every ten seconds until successful.    
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3. Communication Protocol 

The communication protocol between the MM-Server and 

the MM-Client is shown in the flow chart shown in figure 

two.  The flow chart assumes that the MM-Server has a 

preexisting session established between one or more MM-

Clients.  When first initialized, the MM-Clients are in an 

idle state, as discussed above.  When the trainer inputs a 

module command to be executed into the user interface, that 

command is written by the server to the inbox of the MM-

Client.  The MM-Client periodically (currently set to every 

five seconds) retrieves its inbox, then confirms the command 

with the “local kill” server.  (The kill-switch feature is 

not yet implemented.)  If it receives a “continue,” the MM-

Client updates its status on the MM-Server, and executes one 

iteration of the commanded behavior.  At this point, it 

loops back to checking its inbox, and continues as above.   

Behavior iterations are, and shall be, kept at an 

acceptably small duration, in order to allow the trainer or 

local kill server to cease behaviors in a reasonable amount 

of time, currently set to 10 seconds.  As above, the MM-

Client blocks while checking its remote inbox or confirming 

its command with the local kill server.  If a halt is 

received in either situation, the MM-Client ceases 

behaviors, and reverts to an idle state.   
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Figure 2.   Communication protocol flow diagram. 
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The communications between the MM-Server and the MM-

Client are passed in clear text, vice the host of other 

message passing facilities available in Java.  The reason 

for this design decision was two-fold. First, the observable 

plain-text is much easier to troubleshoot.  Second, the 

client-server session could utilize port 80, encapsulating 

the commands in Hypertext Markup Language, and in this way, 

be less likely to be flagged by any intrusion detection 

system that might be at a point between the MM-Server and 

MM-Client. This encapsulation feature is not yet implemented 

in the code.   

4. Graphical User Interface for MM-Server 

It was desired for this program to have a Graphical 

User Interface (GUI) as well.  Once the MM-Server is adopted 

and is utilized to control hundreds to thousands of 

computers, then a GUI may be essential to ease the 

administrative tasks of monitoring the status of the MM-

Clients, and controlling their behavior by issuing tasks to 

individual or groups of MM-Clients on the network. 

The GUI was designed using the NetBeans Integrated 

Development Environment (IDE) 6.9.1.  NetBeans provides an 

efficient and user-friendly design tool for developing rapid 

prototypes of graphical user interfaces.  The tool also does 

a great deal of the coding of the layout; as the user 

establishes the look-and-feel of the interface by 

instantiating the frames, panes, and the locations of the 

fields, buttons, and labels, the coding is done in the 

background for the layout and format of all these items. 

This relieves the developer of much of the tedious tasks 
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associated with layout development and enables him to remain 

focused on the functionality to be provided.  

The initial GUI design contains three different views: 

an icon-based view, a tree-based (or folder) view, and a 

tabular view.  The tree-based view was implemented in this 

thesis, while the icon and tabular views are left for 

further study.  The tree-based view is very similar to the 

file management tools in Windows, Macintosh, and Linux 

environments. 

Each MM-Client is a node within a tree.  By clicking on 

those nodes, the status of that MM-Client is displayed along 

with the ability to give new orders to the MM-Client.  In 

time, the ability to select multiple MM-Clients and submit a 

batch order to the group will be implemented. Such a 

capability will enhance the controller’s ability to rapidly 

manage the training or evaluation scenarios.  

C. BUILDING THE TEST PLATFORM 

For our test, we built a small network of 20 nodes. In 

a real case of deployment, since our system is envisioned to 

be running as a distributed system, the MM-client software 

should be installed on many, if not all, devices in an 

organization connected to a MM-server.  Therefore, it must 

be shown that the MM-server can handle the communication 

between multiple networked devices and that there would be a 

minimal delay from the time the command is given to a subset 

of MM-clients to the actual execution of that command. This 

delay should be dominated by the network-dependent 

characteristics of the messages, such as transmission, 



 45

propagation, and queuing delays, and not their processing by 

the MM-Server of MM-Client applications.  

We designed a test platform based on virtualization for 

evaluating the MM-server and MM-clients. This test 

environment allows for greater flexibility in the types of 

operating systems utilized, minimal footprint taken up by 

equipment and cable runs, and for general expansion of the 

number of MM-clients run. 

VMware’s products were utilized in our thesis, in 

particular VMware View and VMware Workstation. These 

products will hereafter be referred to as a VMware Player.  

VMware allows many different Operating Systems to run as 

Virtual Machines on a single host platform. A Virtual 

Machine is essentially a complete, logical, computing 

machine.  The user perceives the VM (Virtual Machine) as an 

entire computer solely running a particular Operating System 

and software.  The VM is actually just another program being 

run by the host computer’s Operating System (OS) with memory 

requirements.  The file manager installed with the host OS 

allocates a large file on the hard drive which is accessed 

as a virtual disk from the VM.  The VMware Player 

virtualization layer maps the actual physical resources of 

the host computer to the virtual machine’s resources.  

Device driver support is inherited from the host OS.   As 

such, activity inside the VM is handled by the host OS, 

device drivers, or directly by the hardware. 

The VMware View or VMware Workstation program serves as 

a translator between the virtualized OS and the host 

computer.  VMware translates desired commands into commands 

that must be scheduled and performed by the host’s processor 
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and other resources.  This translator is referred to as the 

hypervisor.  A hypervisor is a piece of software that is 

closely tied to the host OS or to the host computer’s 

hardware.  Each VM is entirely encapsulated and must make 

all processor, resource, and device driver calls through 

this hypervisor.  The hypervisor is in charge of 

coordinating all of these requests to the host OS or host 

computing machinery. 

The host computer must have adequate hard drive space 

for a large file that will contain the VM’s virtualized hard 

drive and sufficiently large physical memory (RAM) to be 

allocated to the VM’s running process. The greater the 

number of virtualized hosts on a given platform the greater 

the demands for hard-drive space and RAM. A common and 

current computer can run the host OS and one or two VMs 

simultaneously. To do more requires a much more powerful 

computer. 

Virtualization can be leveraged further—instead of 

using desktop computers, more powerful servers were 

utilized.  The test platform was built utilizing two Dell 

PowerEdge 2950 Servers (eight 32-bit processors, 4 GB of 

main-memory (RAM), and 131 GB hard drive storage).  These 

servers provide the capacity and performance required to run 

more than just a few VMs at once.  Similar to the VMware 

View/Workstation program, a hypervisor is required to 

coordinate the use of the hardware’s resources by the 

running VMs.  VMware vSphere Hypervisor is a rebranding of 

what was previously known as VMware ESX and ESXi.  The  
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vSphere Hypervisor runs on the “bare metal,” meaning that no 

host OS must be installed on the server in order to support 

the hypervisor.   

Besides the two physical servers, a Dell Latitude E6510 

laptop with an Intel i7 Core, 64-bit processor, and 8 GB of 

RAM was required.  The laptop was our tool for creating VMs, 

converting them for use with the hypervisor, and 

transferring them to the physical servers.  Once the VMs 

were transferred, the laptop was our means for controlling 

which VMs were active on the server, and for accessing 

inside each individual VM as if it were a separate computer 

awaiting our commands.   

VMware View allowed us to create the VMs that would be 

installed onto the servers.  Using the iso images of the 

Ubuntu 10.10, Ubuntu Server 10.10, and Windows XP Service 

Pack (SP) 3 Operating Systems, we created three individual 

VMs. Once the installation was complete, each VM was 

accessed and the additional software was installed: Java 

Runtime Environment, MM-Client, MM-Server, Wireshark, and 

hping. 

VMware Converter allowed us to transport the VMs from 

the laptop to the servers.  VMware Converter can take many 

different VM types and create a VM that is compatible with 

the hypervisor.  These VM types include other VMware-based 

VM, Microsoft VMs, and other third party images, such as 

Norton Ghost images.  The VMs and/or images must be loaded 

onto the servers hosting the hypervisor with VMware 

Converter.  Failure to do so will result in VMs that do not 

work and that may possibly corrupt VMs previously loaded 

onto the server.   
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Once the VMs are loaded via the VMware Converter, the 

last required piece of software is used: VMware vSphere 

Client.  This software is the management that that allows us 

to coordinate the actions of all the loaded VMs on the 

servers.  Through the vSphere Client, all of the loaded VMs 

can be accessed.  Similar to the VMware View program, these 

VMs can be started, stopped, suspended, or restarted.  Once 

running, a console window can be accessed which allows the 

user to fully utilize the hosting system just as if it was 

on the controlling laptop.  Furthermore, vSphere Client can 

provide statistics on each individual running VM or the 

entire physical server.  Figure three shows the physical 

layout of the test platform along with the installed 

software.   

 

Figure 3.   Physical test bed configuration. 
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D. EXPERIMENT DESIGN 

The overarching goal of the experiment was to have a 

single running MM-Server with approximately 20 MM-Clients 

connected to it.  Once all the machines were connected, we 

wished to show that the machines could be controlled in a 

timely fashion and that MM-Clients would generate an 

externally observable network behavior.   

Another goal was to verify the MM-Server and MM-Client 

software could work on Windows and Linux environments.  Most 

of the computers used by DoD commands are running Microsoft 

OS’s: primarily Windows XP.  For example, the Navy and 

Marine Corps Infrastructure and the shipboard IT-21 program 

also typically use Windows XP.  Other OS’s used within the 

DoD are Linux or Solaris based.  It was mandatory that we 

verify that our code worked on the common platforms within 

the DoD and to prove the MM-Client’s portability between the 

various OS’s. 

One obstacle identified in the setup of the experiment 

was the licensing limitations of the VMware vSphere Client.  

The VMware vSphere Client license is limited to ten 

activated VMs at any one time.  Due to licensing 

restrictions, utilizing two servers, only twenty VMs can be 

running simultaneously.   The physical servers can have more 

VMs installed, but only ten of those installed VMs can be 

activated at once.  One VM was configured as the MM-Server.  

The other 19 ran the MM-Client software. 

1. Operating Systems and Software Utilized 

Each host, less one, was running the MM-Client 

software.  One client was designated as the MM-Server; it 
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ran the MM-Server software. For each to run, the Java 

Runtime Environment (JRE) was installed on each machine.  

The JRE was downloaded from Java’s website for the Windows 

XP SP3 VMs. The package openjdk-6-jre-headless was 

downloaded and installed on the Ubuntu and Ubuntu Server 

images.  The operating systems utilized on the VMs were 

Microsoft Windows XP Service Pack (SP) 3, with all updates 

installed; Ubuntu 10.10; and Ubuntu Server 10.10.  Section 

B.2 above has information about the software that was 

utilized for each of the modules.  Again, Microsoft XP was 

selected, as it runs upon the preponderance of DoD 

workstations.  

The MM-Server was run on an Ubuntu host VM.  The MM-

Server also served as the network monitor; towards this, MM-

Client nodes were configured to direct network behaviors at 

the MM-Server.  Utilizing the MM-Server’s Module 0 (the 

initial and idle state for all of the MM-Clients), the MM-

Client query the mailbox at the MM-Server for commands.  In 

Module 1, the MM-Client sends a series of ICMP pings to the 

MM-Server.  In Module 2, the MM-Client utilizes performs a 

SYN-scan of the MM-Server.  All of the traffic was destined 

for the MM-Server whose computer would also be running 

Wireshark, a protocol analyzer.  Finally, the MM-Server was 

also configured as a Dynamic Host Configuration Protocol 

(DHCP) server so that all of the VMs would not have to be 

assigned static IP addresses during test-bed startup. 

It was desired for all traffic to be targeted to the 

MM-Server so that all communications and results of the 

running modules could be captured and analyzed.  The 

experiment’s goals were verification that the system worked, 



 51

verification of the timeliness with which the MM-Clients 

obeyed the commands, verification of correct behaviors of 

the MM-Clients running the modules. 

Specifically, the test bed was set up as such: 

• Command and Control Server 

 Ubuntu Operating System 

 MM-Server 

 DHCP Server 

 Wireshark  

• Nineteen (19) Hosts 

 MM-Client receiving commands from the MM-

Server 

 Assigned IP addresses from the DHCP server 

 Five (5) hosts running Ubuntu Desktop OS 

 Five (5) hosts running Win XP SP3 OS 

 Nine (9) hosts running Ubuntu Server OS 

This is represented graphically in figure four. 
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Figure 4.   Virtual test bed configuration. 

E. RUNNING THE EXPERIMENT 

The VM that hosts the MM-Server, DHCP server, and 

Wireshark must be started first.  Then, all of the other VMs 

may be started and the MM-Client software executed.  While 

the MM-Clients connect to the MM-Server, status messages on 

the MM-Clients and MM-Server should be monitored to verify 

the connection made between the MM-Server and each MM-

Client.  Furthermore, Wireshark can be used to monitor the 

externally observable network behavior of MM-Clients 

querying their mailbox on the MM-Server for updated 

commands. 
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For purpose of our experiment, once all VMs and 

programs were started, we would verify that all programs 

respond to the changes of the requested running module by 

the MM-Server.  Data would be analyzed using Wireshark to 

examine the change in network traffic directed at the MM-

Server.  Once all changes between module states zero to two 

were verified, each module would be run for up to five 

minutes to allow the system to reach a steady-state.  

Finally, the MM-Server would be stopped and Wireshark used 

to assess the changes in behavior of the MM-Clients as they 

changed from a running module to a failsafe state. 

During all of the above, performance data would be 

captured about the server, to include CPU utilization, 

memory allocation, disk activity, network capacity used, and 

other statistics.  The purpose of this data collection was 

to support an analysis of the strain under which the two 

servers are operating during this test. 

The overarching purpose of this experiment would be to 

verify the system functions as designed.  It would also be 

to verify that the MM-Server could handle multiple 

connections and that there would be timely changes in 

requested behavior by the MM-Clients.  Finally, it would 

assess whether there was any strain upon the MM-Server or 

the physical servers themselves due to operation all of the 

virtual machines (this would indicate a scalability issue 

for a small deployment venue). As such, the experiment would 

serve to establish a benchmark for the performance of the 

Malware-Mimic System in a benign environment. 
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F. SUMMARY 

This chapter discussed the system infrastructure 

consisting of the command and control MM-Server and the 

remote MM-Clients.  The protocol’s design was examined, 

specifically in relation to how the MM-Clients would receive 

the orders from the MM-Server.  The protocol was designed 

with safety as the paramount feature.  The MM-Clients must 

have guidance in order to start the modules.  That guidance 

must persist for a new iteration of behavior to occur.  

The test platform and the general design of the 

experiment were discussed.  The test platform relies heavily 

upon virtualization. Virtualization allows for a varying 

number of systems to be activated, a variety of operating 

systems that can be utilized, and various network 

configurations, so that the MM-Server and MM-Client software 

can be fully vetted.  It also forms a platform for further 

expansion in the formulation and testing of new modules, new 

operating systems, and more complex networks. The next 

chapter will provide the results of the experiment. 
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V. RESULTS 

A. BACKGROUND 

This section provides details about the implementation, 

as well as the results of the experiment delineated in 

Chapter IV.  The results demonstrated the viability of this 

novel training and evaluation tool.  The protocol functioned 

as it was designed, with feedback between the MM-Server and 

the MM-Clients. The safety features were adequate in 

restoring the MM-Clients to their failsafe state during 

interruptions in network connections with their respective 

MM-Sever. Observable network traffic was positively 

identified which can fulfill training and analysis 

objectives.  Finally, it was verified that the test platform 

is a suitable testing environment prior to deployment on a 

live network. 

B. SETUP 

The two servers began the experiment in steady state 

with all VMs shutdown.  On the laptop, we connected to each 

Physical Server utilizing vSphere. The Ubuntu VM that would 

run the MM-Server on Physical Server 2 was the first VM 

started.  This was needed because that VM had a fixed IP 

address (10.19.61.123) and also hosted the DHCP server that 

would allocate IP addresses to all of the other VMs as they 

started up.  Once the DHCP service was operating, all 

nineteen of the other VMs were started.  Figure 5 shows 

which types of VMs were running along with their respective 

IP addresses on each physical server. 
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Figure 5.   Physical server IP addresses/type/names. 

The specific IP addresses of the Physical Servers were 

not relevant for the experiment.  The IP addresses 

facilitated connections via the laptop running the VMware 

vSphere Client software in order to control all of the VMs 

running on the servers.  The controlling laptop was given an 

IP address of 10.19.61.235. 

Physical Server 1 had five MM-Clients running on the 

Windows XP Professional Service Pack 3 (WINXP SP3) Operating 

System VMs, and five MM-Clients running on the Ubuntu 10.10 



 57

Operating System VMs.  Physical Server 2 had nine MM-

Clients, one per Ubuntu Server 10.10 VM, and the one MM-

Server running on the Ubuntu 10.10 VM.  All MM-Clients 

connected to the MM-Server at the IP address 10.19.61.123.  

The IP addresses were required so that the Wireshark packet 

capture could be analyzed in order to ensure all of the MM-

Clients were executing the correct module and to get a 

measurement on how quickly each responded to the change in 

commands. 

C. TIMELINE 

 

Figure 6.   Experiment Timeline of Events.  

The timeline (Figure 6) shows the order and times of 

specific events during the entire experiment.  This helped 

us correlate the information in all of the packets displayed 

in Wireshark with the events that occurred.  Furthermore, 

this timeline is meant to be used in conjunction with 

Figures 8 and 9 (showing CPU utilization per physical 

server).  The alphabetical labels on Figures 8 and 9 

correspond to the same labels in the left hand column in the 

timeline shown in Figure 6. 
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D. DISCUSSION OF RESULTS 

Overall, the entire experiment verified system 

performance per the architecture set forth in Chapter II.  

All VMs functioned as configured, and all MM-Clients 

connected to the MM-Server performed the desired actions and 

responded to the changes in commands in less than ten 

seconds.  The MM-Server had no dropped packets on the 

Network Interface Card and Wireshark showed all of the 

traffic between the MM-Clients and the MM-Server. 

1. Results for MM-Server and MM-Clients 

The MM-Server performed according to specification.  

All MM-Clients connected to the MM-Server as designed.  The 

Ubuntu VM hosting the MM-Server operated with no degradation 

in performance under the load of the nineteen TCP sessions 

of the MM-Clients.  The Linux “top” command showed that the 

Java process of the MM-Server utilized approximately 0.3% of 

the CPU time.  It also showed that the percent of memory 

utilized by the same process started at 2.5% when no MM-

Clients were connected and only grew to 2.9% when all 

nineteen MM-Clients were connected.   

An example of the time it takes to transition between 

states for the MM-Client is given below.  Since the MM-

Server does not actively send a command to a MM-Client, the 

responsiveness between a typed command at the MM-Server and 

the MM-Client receiving that command, updating the MM-

Client’s status and then executing that command is somewhat 

slower than it could be.  However, as seen in Figure 7, it 

takes approximately 5-6 seconds for a MM-Client to cease the 

current running module, access and process the new order 
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from its mailbox in the MM-Server, update its status with 

the MM-Server and begin exhibiting the correct behavior of 

the newly ordered module.  This delay can be attributed to 

many different processes: physical, programmable, and 

virtual.  The physical realm deals with the actual signal 

propagating through the physical wires and switch.  Within 

the programs, the command is placed within the MM-Client’s 

inbox on the MM-Server and there is a delay depending on 

when the MM-Client “checks back in” with the MM-Server 

following a single iteration of the current ordered module.  

Finally, since there are two physical servers running twenty 

VMs, there are additional delays due to the non-

deterministic scheduling of the VMs, as well as the overhead 

of the hypervisor. 

 

Figure 7.   Packet Capture between MM-Client and MM-Server. 

The MM-Clients were designed for safety and the ability 

to be controlled remotely. Figure 7 is a sample of the 

latter, utilizing a Wireshark packet capture between the MM-

Client hosted on the WINXP_08_Client (10.19.61.67) and MM-
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Server (10.19.61.123).  To test the former, the experiment 

ended with an abrupt termination of the MM-Server with all 

nineteen MM-Clients having active TCP sessions.  The ensuing 

network traffic from the MM-Clients to the host which had 

been previously running MM-Server at 10.19.61.123 was 

captured by Wireshark.  Within seven seconds, all of the MM-

Clients that were running Module 2 entered their failsafe 

behavior.  All MM-Clients performed as expected, which 

suggests that the built-in safety mechanism performed as 

planned.  That is, if the MM-Server is no longer present to 

give orders, the MM-Clients will terminate all previous 

behaviors, revert to a benign, failsafe mode, and attempt to 

reestablish a connection with the MM-Server. 
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2. Results for the Physical Servers 

 

Figure 8.   CPU Utilization of Physical Server #1.  
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Figure 9.   CPU Utilization of Physical Server #2. 

The performance of physical servers one and two (IP 

addresses (10.19.61.236 and 10.19.61.237, respectively) 

running the hypervisor and all of the VMs matched 

expectations.  According to the CPU utilization graphs 

(Figures 8 and 9), the large spikes in CPU utilization were 
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the actual starting and stopping of the VMs (points D and 

E).  The other large spikes occurred at points G and H, when 

all of the MM-Client software and Java Runtime Environment 

was activated. 

After the MM-Clients were started and connected to the 

MM-Server, CPU utilization of the actual physical servers 

was negligible.  The initialization and idle state (Module 

0) had the MM-Clients communicate once every ten seconds to 

the MM-Server in order to check for messages in their 

respective queue (Module 0 began at Labels I and L in 

Figures 8 and 9).  This activity had a negligible effect on 

the CPU, even though the CPU is “serving” both the MM-Server 

and the MM-Client entities.  Module 1 is not CPU-intensive, 

calling only a series of five pings back to the MM-Server 

per MM-Client instantiation for the module cycle of ten 

seconds (Module 1 began at Label J in Figures 8 and 9). 

Module 2 activated another process, hping, in order to 

perform a SYN scan of the MM-Server.  This shows an increase 

of about 15-20% CPU utilization on both physical servers 

(Module 2 began at Label K in Figures 8 and 9).  The 

physical servers handled the swapping between the ten VMs 

and the network traffic between the MM-Server and MM-Clients 

as expected. 
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Figure 10.  Network Utilization of Physical Server #1.   
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Figure 11.  Network utilization of physical server #2.  

Hard disk activity of the physical servers was 

negligible.  Main memory (RAM) usage by each of the physical 

servers was as expected when running all of the VMs:  

approximately half of the onboard memory was utilized.  Each 

physical server had 4 GB of main memory.  Upon startup of 

all the VMs, memory peaked to almost full utilization.  Once 

all the VMs were fully booted up, logged into, and the MM-

Server and all MM-Clients activated, memory usage was 
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approximately 25-50% in steady state.  It is to be noted 

that for future work, if more VMs are to be run 

concurrently, the onboard memory should be increased to 8 or 

16 GB. 

Network activity of the physical servers due to the 

Malware Mimic system is harder to isolate and assess.  As 

seen in Figures 10 and 11, overall network traffic was well 

within the Gigabyte Ethernet capability of the server 

Network Interface Cards and the switch.  However, there are 

some large spikes in network traffic that must be explained.    

In Figure 10, the network traffic for Physical Server 1 

(.236), there were large spikes of approximately 2-3 

megabytes per second (MBps) at the setup and shutdown of the 

experiment and it was mostly steady around 200 kilobytes per 

second (KBps) during the actual running of the different MM-

Client modules.  The large spikes of 2-3 Mbps were due to 

the external connection of the laptop that contained the 

vSphere Client software.  Through vSphere, we utilized the 

remote console window to access every VM.  Once we were 

logged in to each VM and the MM-Client software was started, 

the now unneeded VM remote consoles were closed.   At the 

end of the experiment, the VMs were remotely logged into 

again, in order to stop the MM-Client software and shutdown 

the VMs.  The vSphere Client allowed a remote console 

window, giving full access to each VM as if sitting at a 

normal desktop computer.  All of these live video feeds of 

the running VM to our remote console were sent over the 

network connection from the Physical Servers to the laptop.  

This explains the large spikes at the beginning and end of 

the experiment as seen in Figure 10. 
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The network activity of Physical Server #2 (.237), 

shown in Figure 11 was similar to that of Physical Server 

#1, with the large 900-KBps spike at the startup of all the 

VMs.  This is less because the Physical Server #2 has nine 

Ubuntu Server OS VMs running.  The Ubuntu Server OS is 

accessed from a command prompt.  This interface was text-

based, unlike the graphical interfaces of the Ubuntu Desktop 

OS and WinXP OS.  Therefore, the amount of information sent 

over the network to our remote console was significantly 

less than the graphical environments of Ubuntu and Windows 

XP.  However, during the period when the different MM-Client 

modules were being accessed, Physical Server #2 has about 

twice the network activity.  This can partly be explained by 

the fact that the Ubuntu OS VM (.123), with the MM-Server 

software on Physical Server #2, was the only remote console 

utilized to control all of the MM-Clients.  Therefore, the 

live feed from that VM was sent over the network to the 

external laptop in order to control the flow of the 

experiment.   

To isolate the network traffic resulting solely from 

the VMs, Wireshark statistics from the Ubuntu VM running the 

MM-Server was used.  Wireshark provided an input/output 

graph of the amount of packets (or bytes) per unit time.  

The output was configured for bytes per second.  During the 

test run, with all MM-Clients running Module 0 (idle state), 

traffic to and from the MM-Server was 0.5-3 KBps.  When all 

MM-Clients were running Module 1 (ping), traffic was 1.5-8 

KBps.  When all MM-Clients were running Module 2 (SYN scan), 

traffic was 4.5-8 KBps.  Comparing these numbers to the 

graphs in Figures 10 and 11, we discovered that there is a 

significant amount of network traffic overhead for the 
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virtualization of network traffic as well as the live video 

feed for the remote console capability.  In comparison, if 

the MM-Server and MM-Clients were utilized on a live, 

operational network, the resulting network activity of 0.5-8 

KBps would be relatively insignificant compared to the 10, 

100 or 1000 MBps capacity of today’s networks. 

E. SUMMARY 

The experiment demonstrated that our system performed 

as designed.  All of the test goals were accomplished and 

there was an observable validation for each portion of the 

experiment.  This included the most important of the goals: 

demonstrating the ability to control the MM-Clients in a 

timely manner.  The MM-Clients were all responsive in 

changing to the ordered module, and when communication to 

the MM-Server was severed, all MM-Clients ceased their 

current activity and entered their failsafe mode. 

The results also show that the client-server 

relationship worked correctly, and can likely scale to a 

greater number of MM-Clients operating on differing network 

configurations.  Also, with the exception of possibly 

needing additional onboard memory for the Physical Servers, 

there is plenty of capacity with respect to CPU cycles, hard 

drive space, and network utilization for each of the 

physical test bed servers to accommodate more simultaneous 

VMs, as well as more complex network configurations. 

Next, in Chapter VI, we discuss our conclusions.  We 

also discuss our thoughts on future work in this area of 

study, to include code improvement, expansion, and security 

implications.   
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VI. CONCLUSIONS AND FUTURE WORK 

A. CONCLUSIONS 

In this thesis, we proposed a solution to DoD 

overreliance on network analysis red teams for training and 

evaluation of network administrators by designing a novel 

network training tool.  This tool allows the integration of 

network evaluation into the highly complex training events 

typical of U.S. military training exercises.  The system we 

constructed had the following characteristics: 

• It was safe enough for production or operational 

environments.  Emulated behaviors would cease on 

command and “roll-back” to a pre-exercise state.  

Losses of network connection were treated as 

instructions to cease behaviors.  This would allow 

training to take place on the same network on 

which the trainees perform their mission.   

• Only malware behaviors were constructed, not 

actual malware itself.  Though we demonstrated the 

properties of a notional worm on the network, 

there was no actual malware involved.   

• The system constructed was distributed across the 

network, allowing for the trainer to be located 

anywhere on the network, local or remote.   

We then set out to construct a prototype for such a 

system, which we discussed in detail in Chapter IV.  

Following our treatment of the constructed system, we 

discussed the test bed that we created to test our system 
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concept vis-à-vis the goal we had set for ourselves, and 

proceeded to discuss the specific results acquired after 

establishing the test-bed and conducting a set of tests. 

We discovered that it is certainly possible to 

construct a system with the attributes discussed above.  We 

believe that this has the potential to revolutionize 

training for not only network administrators, but for the 

decision makers that are affected by malicious actions 

against such networks.  We also noted that the system 

performs as expected with regards to safety, namely, that it 

did not perform uncommanded behavior at any point during 

testing.  The system ceased all emulated behaviors within a 

suitable small time upon receipt of the trainer injected 

“cease-action” command—without exception.  This particular 

system quality is essential for its forecasted use on 

operational networks, and in this capacity, the MM-System is 

ready for a validation in an operational or production 

environment. 

We also discovered we essentially built a botnet, as 

discussed in Chapter II, complete with a command and control 

architecture and slave-node functionality without the 

dangerous behavior of actual propagation across the network. 

This, we believe, could form the basis of an existence proof 

for the size to which our Malware Mimic System architecture 

can scale.  Using Conficker as an example (also discussed in 

Chapter II), it is possible that this tool could scale to 

thousands of hosts, with some modification to the code, 

allowing the training and evaluation of the administrators 

of networks on the order of Tier One Internet Service 

Providers.   
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B. FUTURE WORK 

1. Code Improvement and Extension 

As with any software early in its lifecycle, the code 

needs refinement. For example, we found that the keying 

system for our data structure (mapping between keys and 

actual nodes) was unwieldy. It is essential that this key 

uniquely correspond to a MM-Client node, which we 

accomplished by using a combination of the given node’s host 

name and a user assigned name given at invocation.  However, 

this does not scale well, as it requires a unique naming 

system to be created and tracked by those parties 

responsible for instantiating the nodes.  Instead, we would 

suggest using a naming scheme that would allow for unique 

names to be generated and maintained by the hosts 

themselves, without involvement by any human user.  

Furthermore, the Data Structure will, at some point, need to 

be replaced by a robust, industrial grade database that can 

maintain records on the order of thousands, vice the data 

structure we utilized, discussed in Chapter III.   

We described a local “kill server” and its role in the 

communication protocol of the MM-Mimic system in Chapter 

III, but we provided no implementation.  We foresee a 

modification to the MM-Client code that allows for local 

pre-emption or blocking of remote taskings using UDP-based 

requests to local “kill server” located on the trainee 

network.  Construction of this “kill server” could largely 

be modeled on the MM-Server architecture discussed in 

Chapter III; again, using datagram vice stream socket 

connections.   
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There are several improvements that could affect the 

scalability of the software.  As it stands, there is no 

organic capability implemented to remotely “push” MM-Client 

code to machines on the trainee network.  Additionally, 

there is no capability to distribute updates over the 

network. The implication of this is that the MM-Client nodes 

must have all desired behaviors preprogrammed into the MM-

Client software on the host machine.  A more agile solution 

would be to have modules of behaviors sent to MM-Client 

nodes via software push, increasing the flexibility, 

adaptability, and, possibly, security of the MM-Mimic 

system. Such a scheme would require authentication and 

integrity verification to ensure only authorized behaviors 

are distributed. 

2. More Advanced Modules 

The training value in our first iteration of the MM-

System is limited.  That said, there is a rich framework 

laid out upon which more complex modules, with corresponding 

training scenarios, could be developed.  We foresee modules 

that would allow the MM-Client nodes to mimic virus 

behavior, as outlined in Chapter II, including, but not 

limited to host machines showing virus “signatures” that 

would be visible on installed anti-virus systems. Such 

signatures would need to be “hidden,” likely through 

encryption, until the behavior is commanded.  MM-Client 

nodes could show “pop-up” messages that would instruct users 

to contact their system administrators. MM-Clients could 

increase their system resource consumption, increasing the 

discomfort level of human users utilizing the system.  More 

advanced and realistic worm behaviors could be programmed; 
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simulation of worm behaviors propagating across a network, 

or delivering a “payload” would be an example of this.   

We have limited ourselves to discussing the behaviors 

of malware—worms, botnets and the like. However, human-

centric behavior continues to be a critical aspect of system 

hardening. Emulating such behavior to train operators to 

recognize it when it occurs could be beneficial. Determining 

whether or not there exists discernable differences between 

the observable behaviors of a human adversary, a “hacker” in 

popular parlance, and programmatic behaviors of the MM-

System would be a first step to implementing “human” 

behaviors.  We believe that the emulated threat behaviors of 

the MM-System could be expanded to include those of 

“hackers” as well, perhaps through well-scripted “mock” 

user-sessions.   

3. Increase Scale of Test Bed 

Code development is one area for further advancement; 

but the path forward for the project in the whole will rely 

on the system being tested on human users on a scale 

representative of the training networks to which the system 

is destined.  Towards this, expansion of the test bed will 

be required to an appropriate number of clients well beyond 

the twenty used for initial test bed.  Testing of the system 

should also be conducted on networks more complex than the 

single subnet system we utilized, again, to validate the 

system for networks more representative of its anticipated 

use.  Additionally, as discussed in Chapter V, we relied on 

a protocol analyzer to demonstrate our externally-observable  
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network behaviors. We must additionally test our system 

against common intrusion detection systems used in the field 

today, e.g., Snort. 

4. Security Implications 

We made no security assumptions in our architecture, 

nor did we treat security implications in our 

experimentation.  Before the MM-System is ready for field 

use, security analysis must be performed.  The architecture 

should be suitable for this environment, however, as the 

system architecture was conceived with security in mind, 

with an eye on eventual deployment on DoD networks.  Java is 

common on DoD networks.  Host-based network software is 

common on DoD networks.  No mechanism yet exists to prevent 

unauthorized third parties from remotely commanding MM-node 

behavior, but again using existing botnets such as Conficker 

as an example, this too should be possible.  But the 

fundamental approach to the system is its greatest asset: 

only malware behaviors are employed on the trainee network, 

not actual malware.  Therefore, no behavior can happen on 

the network that is not explicitly coded into the MM-

Clients. In this way, the MM-System behaviors can be 

tailored according to the risk tolerance of the trainee 

networks.   
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APPENDIX A. MM-SERVER: CANDCSERVER.JAVA 

/*********************************************************************/ 
/*                                                               */ 
/*      Program:  Malware Mimic Server        */ 
/*                                                               */ 
/*      Top level for the MM-Server.  Interfaces with the user   */ 
/*      via the UI. Handles incoming TCP connections on all      */ 
/*  interfaces on TCP.port == 30000 with remote or local     */ 
/*  MM-Clients.  Maintains and closes TCP sessions with       */ 
/*      MM-Clients.  Translates user instructions to MM-Clients   */ 
/*      and passes the commands to MM-Clients.  Allows input      */ 
/*  from MM-Clients to UI.  Maintains state on MM-Clients.    */ 
/*      FILE:       ClientProgram.java               */ 
/*                                                               */ 
/*      USAGE: ./MM-Server <with no paramters>      */ 
/*                                                               */ 
/*                                                               */ 
/* AUTHORS: W. Taff and P. Salevski                          */ 
/*                                                               */ 
/* DATE: 22 January 2011                      */ 
/*                                                               */ 
/*********************************************************************/ 
 
 
package commandserver; 
 
import java.io.IOException; 
import java.net.*; 
 
/** 
 * The server - top level for program, and listener for connections. 
 * Initializes the database.  Starts the UI.   
 * Sits and listens for connections, spins off CC-Communicators 
 * to handle them and passes off Socket to same, then reset to  
 * listen.    
 *  
 * @author W. Taff and P. Salevski 
 * 
 */ 
public class CandCserver { 
 
 /** 
  * @param args 
  */ 
 public static void main(String[] args) { 
 
 
  /////////////////////////////////////////// 
  //INITIALIZATION 
  /////////////////////////////////////////// 
 
  ClientDatabase dataBase = new ClientDatabase(); 
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  Integer listenPort = 30000; 
 
  Socket clntSock = null;   
 
 
  //start the UI 
  Thread GUIthread = new Thread( 
    new CandCserverMenuUI(dataBase)); 
  GUIthread.start(); 
 
 
 
  try { 

  ServerSocket server = new ServerSocket      
(listenPort); 

 
   System.out.println ("Server Listening on port " 
           
 
 
   while (true){ 
 
    System.out.println ("Waiting"); 
 
    clntSock = server.accept(); 
 

 System.out.println ("Connection Accepted  
from " + clntSock.getInetAddress() ); 

 
Thread thread = new Thread(new 
ClientCommunicator(clntSock, dataBase)); 

 
    thread.start(); 
 
 
   }//end while 
 
  } 
  catch (IOException ioe) { 
   System.err.println (ioe); 
  } 
 
 
 } 
 
} 
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APPENDIX B. MM-SERVER: CANDCSERVERMENUUI.JAVA 

package commandserver; 
//Filename: CandCserverMenuUI.java 
//21 December, 2010 
 
import java.util.Scanner; 
 
/** 
 * Rudimentary command line, console based ui 
 * Used for troubleshooting and functionality verification; will 
 * likely be replaced with graphical version.   
 *  
 * @author W. Taff and P. Salevski 
 * 
 */ 
public class CandCserverMenuUI implements Runnable { 
 
 
 /** need access to db to invoke methods */ 
 private ClientDatabase db;  
 
 
 
 public CandCserverMenuUI(ClientDatabase dbInput){ 
 
  this.db = dbInput;} 
 
 
 
 
 /* (non-Javadoc) 
  * @see java.lang.Runnable#run() 
  */ 
 public void run() { 
 
  uiConsole(); 
 
 
 }//end run 
 
 
 
 
 
 private void uiConsole() { 
 
 //OF FORM: commands, module numbers (if any), and targets 
  // e.g. MOD_0:ALL  or maybe PRINT:ALL 
  // if no target, assume ALL 
 
  Scanner adminInputScanner = new Scanner(System.in); 
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  String inputString = ""; 
 
  int cmdDelimValue; 
 
  String command = null; 
 
  String target = null; 
 
  int moduleNumber = 999;   
 
  while (inputString.compareTo("QUIT")!=0){ 
 
   inputString = adminInputScanner.next(); 
 
   inputString = inputString.toUpperCase(); 
 
   cmdDelimValue = inputString.length(); 
 
 
   try { 
    if (inputString.contains(":")){ 
 

cmdDelimValue = 
inputString.indexOf(":");  

 
  command = inputString.substring(0, 

      cmdDelimValue); 
 

target = 
inputString.substring(cmdDelimValue 

     + 1); } 
 
    else { 
 
     command = inputString; 
 
     target = "ALL"; 
 
    } 
 
 
    if (inputString.contains("_")){ 
 

int modDelimValue = 
inputString.indexOf("_") + 1;  

 
 

moduleNumber = 
Integer.parseInt(inputString. 
substring(modDelimValue, 
cmdDelimValue) ); 
 
command = command.substring(0, 
modDelimValue -1 ); 
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    } 
 
 
   } catch (Exception e) { 
 
    e.printStackTrace(); 

 
   
 System.out.println("ERROR ON PARSE OF 
INPUT"); 

 
 
   } 
 
 
   System.out.println("Command is:"  
     + command ); 
 
 
   System.out.println("Target is:"  
     + target ); 
 
 
   System.out.println("Module Number is:"  
     + moduleNumber ); 
 
 
   //THE COMMANDS 
 
 
   if (command.compareTo("PRINT") == 0){ 
 
    print(target); 
 
   } 
 
 
   else if (command.compareTo("HALT") == 0){ 
 
    halt(target); 
 
   } 
 
   else if (command.compareTo("MOD") == 0){ 
 
    mod(moduleNumber, target); 
 
   } 
 
   else { 
 
//    db.getRecord(command).getCC(). 
//       
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 sendMessage2Client(value); 
 
   }//end else 
 
 
 
  }//end while 
 
  System.out.println("Got quit command"); 
 
  System.exit(0); 
 
 } 
 
 
 
 
 
 
 
 
 private void mod(int moduleNumber, String target) { 
 
  System.out.println("Running MOD_" + moduleNumber); 
 
  db.run_module(moduleNumber); 
 
 } 
 
 
 
 
 
 private void halt(String target) { 
 
  if (target.compareTo("ALL")==0){ 
 
  System.out.println("Halting All!"); 
 
  db.halt_module(); 
 
  } 
 
 } 
 
 
 
 
 
 
 /** 
  * Print records in the database.   
  * @param target  
  */ 
 private void print(String target) { 
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  if (target.compareTo("ALL")==0){ 
 
   String printBuffer = db.getAllrecordsFromDB(); 
 
   System.out.println("Host, Exercise, Inbox, 
Status"); 
 
   System.out.println(printBuffer); 
 
  }//endif 
 
 
 }//END print() 
 
}//end class 
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APPENDIX C. MM-SERVER: CLIENTCOMMUNICATOR.JAVA 

// Filename: ClientCommunicator.java 
// 21 December, 2010 
 
package commandserver; 
 
import java.net.*; 
import java.io.IOException; 
import java.io.PrintStream; 
 
/** 
 * A handler that maintains the session between server and client. 
 * Runs as a thread that is started by server.  On run, spins off  
 * a threaded Client Listener to accept input, and calls MM-node 
 * for Name and Status.   
 *  
 * @author W. Taff and P. Salevski 
 */ 
public class ClientCommunicator implements Runnable{ 
 
 
 /** Socket passed to CC by the SocketServer  */ 
 private Socket ccSocket; 
 
 /** The output stream use to push our messages onto the wire  */ 
 private PrintStream outPrintStream; 
 
 
 /** the location of the db, so we can call it's methods */ 
 private ClientDatabase db; 
 
 /** the keyname of the host that the CC relates to */ 
 private String keyname;  
 
 
 // CONSTRUCTOR 
 public ClientCommunicator(Socket passedSocket,  
   ClientDatabase db) { 
 
  this.ccSocket = passedSocket;  
 
  this.db = db; 
 
  //make the output stream.  input stream made in run() 
  try { 
 
   this.outPrintStream = new PrintStream(  
   ccSocket.getOutputStream() ); 
 
  } catch (IOException e) { 
 
   e.printStackTrace(); 
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  } 
 
 
 }//end constructor ClientCommunicator() 
 
 
 
 
 
 
 
  /* (non-Javadoc) 
   * @see java.lang.Runnable#run() 
   */ 
  //@Override 
  public void run() { 
 
   ccListenerStarter() ; 
 
   outPrintStream.println("#GETNAME"); 
 
  }//end run() 
 
 
 
 
 
 
 
  /** 
   * Starts the ccListener. 
   * Use the ccListener for input from the MM-node. */ 
  private void ccListenerStarter(){ 
 
   try { 
 
    //spin off new ccListener 
 

Thread listenerThread = new Thread( 
new ClientCommunicatorListener( 
ccSocket.getInputStream(), db, this)); 

 
    listenerThread.start(); 
 
 
 
 
   } catch (IOException e) { 
 
    e.printStackTrace(); 
 
   } 
 
 
  }//end ccListenerStarter() 



 85

 
 
 
 
 
 
 
  /** 
   * Externally callable session terminator-closes socket.  
   * Also updates the status of the MM-Client in the db.   
   */ 
  public void terminateSession(){ 
 

 sendMessage2Client("Session Terminated"); 
 
  
 db.getRecord(keyname).setClientStatus("TERMINATED
"); 

 
   try { 
 
    ccSocket.close(); 
 
   } catch (Exception e) { 
 

e.printStackTrace(); 
db.getRecord(keyname).setClientStatus("LO
ST"); 

 
   } 
 
 
  }//end terminateSession() 
 
 
 
 
  /** 
   * Pushes any input string down to MM-Client 
   * @param msg 
   */ 
  public void sendMessage2Client(String msg){ 
 
   outPrintStream.println(msg); 
 
  } 
 
 
 
  /** 
   * @return the keyname 
   */ 
  public String getKeyname() { 
   return keyname; 
  } 
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  /** 
   * @param keyname the keyname to set 
   */ 
  public void setKeyname(String keyname) { 
   this.keyname = keyname; 
  } 
 
 
 
}//end class 
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APPENDIX D. MM-SERVER: CLIENTCOMMUNICATORLISTENER 

package commandserver; 
//Filename: ClientCommunicatorListener.java 
//21 December, 2010 
 
 
import java.io.*; 
 
/** 
 * @author W. Taff and P. Salevski 
 * Handles input from MM-node.   
 * Parses MM-node messages and makes appropriate system calls. 
 * 
 */ 
public class ClientCommunicatorListener implements Runnable{ 
 
 /////////////////////////////////////////// 
 //DATA MEMBERS  
 /////////////////////////////////////////// 
 
 
 /** passed - will bolt on top a BufferedReader */ 
 private InputStream inStream; 
 
 /** use for reading incoming messages from MM-Client */ 
 private BufferedReader inBufferedReader;  
 
 /** gives ability to call ClientDatabase fns  */ 
 private ClientDatabase db; 
 
 /** gives ability to call back to the calling CC */ 
 private ClientCommunicator parentCC; 
 
 
 
 
 /////////////////////////////////////////// 
 //METHODS  
 /////////////////////////////////////////// 
 
 
 //CONSTRUCTOR 
 public ClientCommunicatorListener(InputStream inputStream, 
   ClientDatabase db, ClientCommunicator callingCC) { 
 
  this.db = db ; 
 
  this.inStream = inputStream; 
 
  this.inBufferedReader =  
   new BufferedReader(new InputStreamReader(inStream)); 
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  this.parentCC = callingCC; 
 
 } 
 
 
 public void run() { 
 
  //Need try/catch to make severed sessions graceful 
  try { 
 
   listenLoop(); 
 
  } catch (NullPointerException e) { 
 
   e.printStackTrace(); 
 
  } 
 
  catch (Exception e) { 
 
   e.printStackTrace(); 
 
  } 
 
  finally { 
 
   System.out.println("Connection Lost to " +  
     parentCC.getKeyname()); 
 
   parentCC.terminateSession(); 
      db.getRecord(parentCC.getKeyname()).setClientStatus("LOST"); 
 
  } 
 
 
 }//end run()  
 
 
 
 
 
 
 
 /** 
  * Main loop of CCListener. 
  * Blocks on readlines from MM-Client.  Calls appropriate db 
  * methods based on input passed up from MM-Client.   
  * @throws Exception  
  *  
  */ 
 private void listenLoop() throws Exception { 
 
  Boolean keepGoing = true; 
 
  String textReceived = ""; 
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  while ( keepGoing ) { 
 
   textReceived = inBufferedReader.readLine(); 
 
   if ( textReceived.compareTo("QUIT")==0 ){ 
 
    parentCC.terminateSession(); 
 
    keepGoing = false; 
 
   } 
 
   else if ( textReceived.contains("GETINBOX")){ 
 
    parentCC.sendMessage2Client(db.getRecord( 
      parentCC.getKeyname()).getClientInbox() ); 
 
   } 
 
 
   else if ( textReceived.contains("=") ){ 
 
    setVariableValue(textReceived); 
 
 
   }//end if 
 
   //RESET THE TEXT OR WE SPIN 
   textReceived = ""; 
 
 
  } // end while 
 
 
 } 
 
 
 
 
 
 
 
 /** 
  * Set a db key/value pair based on input from MM-client 
  *   
  * @param textReceived 
  */ 
 private void setVariableValue(String textReceived) { 
 
  int delimValue = textReceived.indexOf("=");  
 
  String key = textReceived.substring(0, delimValue); 
 
  String value = textReceived.substring(delimValue + 1); 
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  if (key.compareTo("NAME")==0) { 
 
   parentCC.setKeyname(value); 
 
   db.createRecord(value, parentCC); 
 
  } 
 
  else if (key.compareTo("STATUS")==0) { 
 
   //with key, set the status 
   db.getRecord(parentCC.getKeyname()).setClientStatus(value); 
 
  } 
 
 
  else if (key.compareTo("EXERCISE")==0){ 
 
   db.getRecord(parentCC.getKeyname()).setExercise(value); 
 
  } 
 
 } 
 
} 
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APPENDIX E. MM-SERVER: CLIENTDATABASE.JAVA 

package commandserver; 
// Filename: ClientDatabase.java 
// 21 December, 2010 
 
 
import java.util.TreeMap; 
import java.util.SortedMap; 
import java.util.Collections; 
 
/** 
 * The database of ClientRecords. 
 * Uses a TreeMap (for now) as the data structure,  
 * and ClientRecords as the nodes.   
 *  
 * @author W. Taff and P. Salevski 
 * 
 */ 
public class ClientDatabase { 
 
 
 /////////////////////////////////////////// 
 //DATA MEMBERS  
 /////////////////////////////////////////// 
 
 
 /**the database data structure of ClientRecord*/ 
 private SortedMap< String, ClientRecord > dbase = 
  Collections.synchronizedSortedMap(  
    new TreeMap< String, ClientRecord >() ); 
 
 /////////////////////////////////////////// 
 //METHODS  
 /////////////////////////////////////////// 
 
 
 /** 
  * Constructor for ClientDatabase 
  *  
  * */ 
 public ClientDatabase () { 
 
 } 
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 /** 
  * Creates a record in the database.  
  * @param hostID - uid_host of the host we are creating (used as 
key) 
  * @param ccIn  - the calling Client Communicator 
  * @return True if successfully created 
  * */ 
 public Boolean createRecord(String hostID, ClientCommunicator ccIn){ 
  ClientRecord newRecord = new ClientRecord(ccIn, this);  
 
 
  try { 
 
    dbase.put(hostID, newRecord); 
 
    System.out.println("Added record for " + hostID); 
 
  } 
 
  catch (ClassCastException cce) { 
 
    System.err.println(cce); 
  } 
 
  catch (NullPointerException npe) { 
 
    System.err.println(npe); 
  }   
 
  return true; 
 
 } 
 
 
 
 
 
 
 
 
 
 /** 
  * get a client record from the database. 
  * Pulls an instance of ClientRecord from the database, for use as  
  * a helper function for class functions.    
  * @param hostID - uid_host of the host of interest 
  * @return ClientRecord 
  *  
  * */ 
 public ClientRecord getRecord(String hostID) { 
  // gets the record from the TreeMap that has the hostID key 
  ClientRecord tempClientRecord = null; 
  try { 
   tempClientRecord = dbase.get(hostID); 
  } 
  catch (ClassCastException cce) { 
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    System.err.println(cce); 
  } 
  catch (NullPointerException npe) { 
    System.err.println(npe); 
  }  
  return tempClientRecord; 
 } 
 
 
 
 /** 
  * Returns String of all database inbox and status for all MM-C. 
  * Typically used for console troubleshooting.  
  *  
  * @return returnString, a string of all db parameters by client 
  */ 
 public String getAllrecordsFromDB(){ 
 
  String returnString = ""; 
 
  for (String keyString : dbase.keySet() ) { 
 
   returnString += keyString + "," +  
    dbase.get(keyString).getUID_ExerciseNetwork() +"," + 
    dbase.get(keyString).getClientInbox() + "," + 
    dbase.get(keyString).getClientStatus() +"\n" ; 
 
  }//end for-loop 
 
 
  return returnString; 
 
 } 
 
 
 
 
 /** 
  * deletes a client record from the database. 
  * Will attempt to remove a client record from the database,  
  * based on the host UID provided.    
  * @param hostID - uid_host of the host of interest 
  * @return True of record and deleted, False if record not found 
  *  
  * */ 
 public Boolean deleteRecord(String hostID) { 
 
  // tries to delete the record 
  Boolean deleteSuccess; 
 
  ClientRecord tempClientRecord = null; 
 
  try { 
 
   tempClientRecord = dbase.remove(hostID); 
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  } 
 
  catch (ClassCastException cce) { 
 
    System.err.println(cce); 
  } 
 
  catch (NullPointerException npe) { 
 
    System.err.println(npe); 
 
  }  
 
  if (tempClientRecord == null) 
 
   deleteSuccess = false; 
 
  else { 
 
   deleteSuccess = true;  
  } 
 
  return deleteSuccess; 
 
 } 
 
 ///////////////////////////// 
 // UPDATE (SET) METHODS 
 ///////////////////////////// 
 
 
 
 /** 
  * Halts running module - OVERLOADED METHOD.   
  * Called without arguments, halts running module in all  
  * modules.  Simple iteration over dbase, setting client  
  * inboxes to HALT.   
  */ 
 public void halt_module(){ 
 
  for (String keyString : dbase.keySet() ) { 
 
   dbase.get(keyString).setClientInbox( "HALT" ); 
 
  }//end for-loop 
 
 
 }//end halt_running_mods() 
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 /** 
  *  Starts running module - OVERLOADED METHOD.   
  * Called without target arguments, starts running module in all  
  * modules.  Simple iteration over dbase, setting client  
  * inboxes to MOD_X, where X is the module number.  
  *  
  * @param moduleNumber 
  */ 
 public void run_module(int moduleNumber){ 
 
  for (String keyString : dbase.keySet() ) { 
 
   dbase.get(keyString). 
    setClientInbox("MOD_" + moduleNumber); 
 
  }//end for-loop 
 
 }// end run_module() 
 
 
 
 
 
} 
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APPENDIX F. MM-SERVER: CLIENTRECORD.JAVA 

package commandserver; 
// Filename: ClientRecord.java 
// 21 December, 2010 
 
/** 
 * ClientRecord - the records in the database. 
 * Includes all fields associated with a single client, except for  
 * it's uid, which the record is keyed by in the database.   
 * @author W. Taff and P. Salevski 
 * 
 */ 
public class ClientRecord { 
 
 /////////////////////////////////////////// 
 //DATA MEMBERS  
 /////////////////////////////////////////// 
 
 
 
 /**unique identifier of the exercise network */ 
 private String uid_ExerciseNetwork; 
 
 
 /**status of the client, set by the client, read by server */ 
 private String status; 
 
 
 /**inbox of the client, set by server, read by client */ 
 private String clientInbox; 
 
 /**where the ClientCommunicator lives */ 
    private ClientCommunicator cc; 
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 /////////////////////////////////////////// 
 //METHODS  
 /////////////////////////////////////////// 
 
 
 
 /** 
  * Constructor for a ClientRecord - called by ClientDatabase. 
  * Gets passed hostID, exerciseID and a socket.  Initializes 
  * the class with the passed params, and makes empty for those  
  * params that it does not yet have.   
  * @param hostID - uid_host of host we are creating (used as key) 
  * @param exerciseID - the UID of the exercise 
  * @param passedCC - the ClientCoummincator for the client. 
  * @param db - the database of clients 
  */ 
 public ClientRecord (ClientCommunicator passedCC, ClientDatabase 
db){ this.cc = passedCC; 
 
  this.uid_ExerciseNetwork = "NOT_SET"; 
 
  this.status = "INITIALIZED"; 
 
  this.clientInbox = "INITIALIZED"; 
 
 } 
 
 
 
 ///////////////////////////// 
 // GET METHODS 
 ///////////////////////////// 
 
 
 /** 
  * returns the content of the client's inbox 
  * The client inbox is set by the server, but read by 
  * the client.  Consists of a plain text string value.    
  * @return clientInbox - the contents of the client's inbox 
  */ 
 public String getClientInbox(){ 
 
  return clientInbox; 
 
 } 
 
 
 public ClientCommunicator getCC(){ 
 
  return this.cc; 
 
 } 
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 /** 
  * for the commandServer to get status of the individual client 
  * @return status - the contents of the client's status box 
  */ 
 public String getClientStatus(){ 
  return status; 
 } 
 
 
 
 
 
 
 
 /** 
  * return the UID of the exercise network 
  * @return uid_ExerciseNetwork 
  */ 
 public String getUID_ExerciseNetwork() { 
  return uid_ExerciseNetwork; 
 } 
 
 
 
 
 ///////////////////////////// 
 // SET METHODS 
 ///////////////////////////// 
 
 
 
 
 /** 
  * Allows server to write message to client inbox.  
  * Only servers shall write to the client inbox.   
  * @param hostID - uid_host of the host of interest 
  * @param message - String of message FROM server TO client.   
  * */ 
 public void setClientInbox(String message){ 
 
  clientInbox = message; 
 
 } 
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 /** 
  * Allows client to set their status in status box of record.  
  * Only clients shall write their status to their status box.   
  * Read by the server to ascertain status of the client.   
  * @param message - String of status FROM client.   
  *  
  * */ 
 public void setClientStatus(String message){ 
 
  status = message; 
 
 } 
 
 
 
 
 
 
 
 /** 
  * Allows client to set exercise in exercise field of record.  
  * Only clients shall write their exercise to their exercise  
  * field.  Read by the server to ascertain exercise of the client.   
  * @param message - String of exercise FROM client.   
  *  
  * */ 
 public void setExercise(String message){ 
 
  uid_ExerciseNetwork = message; 
 
 } 
 
 
} // end of ClientRecord class 
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APPENDIX G. MM-CLIENT: CLIENTPROGRAM.JAVA 

/****************************************************************/ 
/*                                                              */ 
/*      Program:  Malware Mimic Client    */ 
/*                                                              */ 
/*      Handles client side communications.  Controls session   */ 
/*      with remote server.  Executes commands from server on   */ 
/*   local machine.                                         */ 
/*                                                             */ 
/*      FILE:       ClientProgram.java    */ 
/*                                                              */ 
/*      USAGE: ./MM-Client hostname exerciseId srvrName srvrPort*/ 
/*                                                              */ 
/*          hostname      name of host                          */ 
/*          serverName    IP addr of server, in dotted quad     */ 
/*          serverPort   Integer port number of remote server   */ 
/*                                                              */ 
/*   AUTHORS: W. Taff and P. Salevski                       */ 
/*                                                              */ 
/*   DATE: 22 January 2011    */ 
/*                                                              */ 
/*                                                              */ 
/****************************************************************/ 
 
package mimicClient; 
 
 
/** 
 * The MM-Client software for remote host. 
 * Handles both sides of  communication with the remote server 
 * (up and down) as well as local execution of remotely (server) 
 *  commanded methods.     
 *  
 * @author W. Taff and P. Salevski 
 * 
 */ 
public class ClientProgram { 
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 /** 
  * Top level main() for program.   
  * Loops, starting clientController with each iteration.  If 
  * clientController dies, handles that exception, and restarts. 
  * So far, is self perpetuating - i.e., will loop until killed  
  * externally.    
  *  
  * @param args hostName, exercise Id, server IP.addr, server port 
  */ 
 public static void main(String[] args) { 
 
 
 
  while (true) { 
 
   try { 
 
    new ClientController(args[0], args[1], args[2], Integer 
      .parseInt(args[3])).run(); 
 
   } catch (NumberFormatException e) { 
 
    e.printStackTrace(); 
 
    System.out.println("Check your parameters!\n" + 
      "Expect hostId exerciseID serverIP.addr " + 
      "serverIP.port" ); 
 
    System.exit(2); 
 
   }  
 
   catch (ArrayIndexOutOfBoundsException e) { 
 
    e.printStackTrace(); 
 
    System.out.println("Check your parameters!\n" + 
      "Expect hostId exerciseID serverIP.addr " + 
      "serverIP.port" ); 
 
    System.exit(2); 
 
   } 
 
   catch (NullPointerException f) { 
 
    f.printStackTrace(); 
 
   } 
 
   catch (Exception e) { 
 
    e.printStackTrace(); 
 
   } 



 103

 
   finally { 
 
    try { 
 
     Thread.sleep(10000); 
 
    } catch (InterruptedException e) { 
 
     e.printStackTrace(); 
 
    } 
 
   } 
 
  }//end while 
 
 }// end main() 
 
}//end Class 
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APPENDIX H. MM-CLIENT: CLIENTCONTROLLER.JAVA 

package mimicClient; 
 
import java.io.*; 
import java.net.InetAddress; 
import java.net.Socket; 
import java.util.Random; 
 
/** 
 * Controller class for the Malware Mimic client.   
 * Started by ClientProgram. IPC code based on code by 
 * John Yeary.   
 *  
 * @author W. Taff and P. Salevski 
 * 
 */ 
public class ClientController { 
 
 
 
 /////////////////////////////////////////// 
 //DATA MEMBERS  
 /////////////////////////////////////////// 
 
 private String hostName; 
 
 private String os_name; 
 
 private String exerciseID ;  
 
 private Runtime localRuntime; 
 
 private String status; 
 
 private InetAddress localMachine; 
 
 private Socket socket; 
 
 private String textReceiveBuf; 
 
 private BufferedReader inBufferedReader; 
 
 private PrintStream outPrintStream; 
 
 private String serverAddr; 
 
 private int serverPort; 
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 /////////////////////////////////////////// 
 //METHODS  
 /////////////////////////////////////////// 
 
 /** 
  * Constructor for ClientController 
  * @param serverPort the port of the remote server to use 
  * @param serverAddr the string dotted-quad server address 
  * @param hostName the hostname of local machine; will append 
  * @param exerciseID  
  * @throws Exception  
  *  
  */ 
 
 public ClientController(String hostName, String exerciseID,  
   String serverAddr, int serverPort) throws Exception { 
 
  super(); 
 
  os_name  = System.getProperty("os.name"); 
 
  localRuntime = Runtime.getRuntime(); 
 
  status = "READY"; 
 
  localMachine = InetAddress.getLocalHost(); 
 
  socket = new Socket(serverAddr,serverPort); 
 
  this.hostName = hostName + localMachine.getHostName(); 
 
  this.serverAddr = serverAddr; 
 
  this.serverPort = serverPort; 
 
  this.exerciseID = exerciseID; 
 
 } 
 
 
 
 
 /** 
  * Main body of the clientController. 
  * Loops until receives a halt command, checking the inbox  
  * located on the remote server, and executing any commands.  
  *  
  * @throws Exception 
  */ 
 public void run() throws Exception { 
 
  initializeConnection(); 
 
   //and then start looping and keep checking inbox 
   while ( textReceiveBuf.compareTo("HALT")!=0 ){ 
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    outPrintStream.println("GETINBOX"); 
 
    Thread.sleep(5000); 
 
    textReceiveBuf = inBufferedReader.readLine(); 
 
    System.out.println(textReceiveBuf); 
 
 
    if ( textReceiveBuf.compareTo("MOD_0")==0 ) mod_0(); 
 
    if ( textReceiveBuf.compareTo("MOD_1")==0 ) mod_1(); 
 
    if ( textReceiveBuf.compareTo("MOD_2")==0 ) mod_2(); 
 
 
   }//end while 
 
 
   //CLOSE CONNECTION 
   outPrintStream.println("CLOSING..."); 
 
   Thread.sleep(1000); 
 
   socket.close(); 
 
 
 }//end run() 
 
 
 
 
 
 
 
 
 
 
 /** 
  * Initializes the connection with the remote host. 
  * Called by run(), connects with the remote host, and upon 
  * connection, sends initialization parameters to the server. 
  *  
  * @throws Exception 
  */ 
 private void initializeConnection() throws Exception { 
 
  System.out.println("Connected ... waiting for #GETNAME") ; 
 
  outPrintStream = new PrintStream(socket.getOutputStream() ); 
 
  inBufferedReader = new BufferedReader( 
     new InputStreamReader(socket.getInputStream())); 
 
  //GIVE TIME FOR INITIAL COMMAND TO ARRIVE 
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  Thread.sleep(1000); 
 
 
  if (inBufferedReader.ready()) { 
 
   textReceiveBuf = inBufferedReader.readLine(); 
   System.out.println(textReceiveBuf); 
 
  } 
 
  //if server says getname, tell it 
 
  if (textReceiveBuf.compareTo("#GETNAME")==0 ){ 
 
   outPrintStream.println("NAME=" + hostName); 
   outPrintStream.println("STATUS=" + status);  
   outPrintStream.println("EXERCISE=" + exerciseID); 
 
  } 
 
 
 }// end initializeConnection() 
 
 
 
 
 
 
 
 
 
 /** 
  * A hping scan of 10 sequential ports from a random start port. 
  * Scans server in range of 1 to 1024.   
  * @throws InterruptedException 
  */ 
 private void mod_2() throws InterruptedException { 
 
  status=("MOD_2"); 
 
  outPrintStream.println("STATUS=" + status);  
 
  int randomPort = new Random().nextInt(1014) + 1; 
 
 
 
  try { 
 
   Process p = null; 
 
   if (os_name.contains("Linux")) { 
 
     p = localRuntime.exec("/usr/bin/sudo " + 
       "/usr/sbin/hping3 -c 10 -s 1 -p "+  
       randomPort + " -S " + serverAddr); 
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     randomPort++; 
 
     System.out.println(randomPort); 
 
   } 
 
   else { //is windows 
 
 
     p = localRuntime.exec("hping -c 10 -s 1 -p " 
       + randomPort +" -S "+serverAddr); 
 
     System.out.println(randomPort); 
 
   } 
 
 
  } catch (IOException e) { 
 
   e.printStackTrace(); 
 
  } 
 
  System.out.println("Mod 2 Iteration Complete"); 
 
 
 }//end mod_2() 
 
 
 
 
 
 
 
 /** 
  * A 5 ping module. 
  * Pings server 5 times then stops.   
  */ 
 private void mod_1() { 
 
  status = "MOD_1"; 
 
  outPrintStream.println("STATUS=" + status); 
 
 
  try { 
 
   Process p; 
 
   if (os_name.contains("Linux")) { 
 
    p = localRuntime.exec("/bin/ping -c5 " + serverAddr); 
 
   } 
 
   else { //is windows 
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    p = localRuntime.exec("ping -n 5 " + serverAddr); 
 
   } 
 
   BufferedReader buffRdr = new BufferedReader( 
     new InputStreamReader(new BufferedInputStream( 
       p.getInputStream()))); 
 
   String line; 
 
   while ((line = buffRdr.readLine()) != null) { 
 
    System.out.println(line); 
 
   } 
 
   try { 
    if (p.waitFor() != 0) { 
 
     System.err.println( 
       "exit value = " + p.exitValue()); 
    } 
   } 
   catch (InterruptedException e) { 
    System.err.println(e); 
   } 
 
 
  } catch (IOException e) { 
 
   e.printStackTrace(); 
 
  } 
 
  System.out.println("Mod 1 Iteration Complete"); 
 
 
 }//end mod_1() 
 
 
 /** 
  * Sends a status update message to the server.   
  * Equivalent to an idle command.   
  *  
  */ 
 private void mod_0() { 
 
  status=("MOD_0"); 
 
  outPrintStream.println("STATUS=" + status);  
 
 } //end mod_0() 
 
 
}// end class 
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