
Calhoun: The NPS Institutional Archive

DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2011-03

Malware mimics for network security assessment

Salevski, Paul M.; Taff, William R.

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/5749

Downloaded from NPS Archive: Calhoun

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

MALWARE MIMICS FOR NETWORK SECURITY
ASSESSMENT

by

William R. Taff, Jr.
Paul M. Salevski

March 2011

 Thesis Co-Advisors: Gurminder Singh
 John H. Gibson

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per
response, including the time for reviewing instruction, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington headquarters Services, Directorate
for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188)
Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
March 2011

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE Malware Mimics for Network
Security Assessment
6. AUTHOR(S) Taff, William R and Salevski, Paul M.

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND
ADDRESS(ES)

N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and
do not reflect the official policy or position of the Department of Defense or the U.S.
Government. IRB Protocol number _____N/A___________.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE
A

13. ABSTRACT (maximum 200 words)
For computer network infiltration and defense training within the Department of
Defense, the use of Red Teams results in the most effective, realistic, and
comprehensive training for network administrators. Our thesis is meant to mimic
that highly trained adversary. We developed a framework that would exist in that
operational network, that mimics the actions of that adversary or malware, that
creates observable behaviors, and that is fully controllable and configurable.

The framework is based upon a client-server relationship. The server is a
Java multi-threaded server that issues commands to the Java client software on all
of the hosts of the operational network. Our thesis proved that commands could be
sent to those clients to generate scanning behavior that was observable on the
network, that the clients would generate or cease their behavior within five
seconds of the issuance of the command, and that the clients would return to a
failsafe state if communication with the command and control server was lost.

The framework that was created can be expanded to control more than twenty
hosts. Furthermore, the software is extensible so that additional modules can be
created for the client software to generate additional and more complex malware
mimic behaviors.

15. NUMBER OF
PAGES

129

14. SUBJECT TERMS Malware, Red Team, Computer Network Defense
Training, Network Analysis, Java Multithreaded Server

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

MALWARE MIMICS FOR NETWORK SECURITY ASSESSMENT

William R. Taff, Jr.
Commander, United States Navy

B.S., United States Naval Academy, 1995

Paul M. Salevski
Lieutenant Commander, United States Navy
B.S., United States Naval Academy, 1998

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL

March 2011

Authors: William R. Taff, Jr.

 Paul M. Salevski

Approved by: Gurminder Singh

Thesis Co-Advisor

John H. Gibson
Thesis Co-Advisor

Peter J. Denning
Chair, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

For computer network infiltration and defense training

within the Department of Defense, the use of Red Teams

results in the most effective, realistic, and comprehensive

training for network administrators. Our thesis is meant to

mimic that highly trained adversary. We developed a

framework that would exist in that operational network, that

mimics the actions of that adversary or malware, that

creates observable behaviors, and that is fully controllable

and configurable.

The framework is based upon a client-server

relationship. The server is a Java multi-threaded server

that issues commands to the Java client software on all of

the hosts of the operational network. Our thesis proved

that commands could be sent to those clients to generate

scanning behavior that was observable on the network, that

the clients would generate or cease their behavior within

five seconds of the issuance of the command, and that the

clients would return to a failsafe state if communication

with the command and control server was lost.

The framework that was created can be expanded to

control more than twenty hosts. Furthermore, the software

is extensible so that additional modules can be created for

the client software to generate additional and more complex

malware mimic behaviors.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION ..1
A. TRAINING NETWORK ADMINISTRATORS2
B. SHORTCOMINGS OF THAT APPROACH2
C. OBJECTIVES ...3
D. ORGANIZATION3

II. BACKGROUND ..5
A. RED TEAM ...5
B. RED TEAM DURING CYBER DEFENSE EXERCISE (CDX)6
C. RED TEAM DURING COMPOSITE TRAINING UNIT EXERCISE ...9
D. A RED TEAM APPROACH USING RAD-X12
E. RED TEAM EXPERIENCE13
F. MALWARE ...13

1. Worms ..14
2. Botnets15
3. Viruses17

G. SUMMARY ...18
III. DESIGN CONSIDERATIONS19

A. THE TRAINING OBJECTIVE19
B. THE INTERESTED PARTIES IN TRAINING20

1. The Trainee20
2. The Trainer20
3. The Safety Observer21

C. THE TRAINING ENVIRONMENT21
D. HOW WE CURRENTLY TRAIN22

1. Dependence on Red Teams23
2. Standardization23

E. AN INFORMATION SYSTEM SOLUTION25
F. AN EXAMPLE TRAINING SCENARIO28

1. Pre-exercise (PRE-EX)28
2. Commencement of Exercise (COMEX)30
3. Post Exercise (POSTEX)32

G. CONTINUED DISCUSSION OF THE ENVIRONMENT33
H. CONTINUED DISCUSSION OF THE TRAINER34

1. Expanded Modules34
I. CONTINUED DISCUSSION OF THE TRAINEE35

IV. IMPLEMENTATION AND TEST PLATFORM37
A. BACKGROUND ..37
B. SERVERS AND BOTS37

1. Server Construction38
2. Client Construction39
3. Communication Protocol41

 viii

4. Graphical User Interface for MM-Server43
C. BUILDING THE TEST PLATFORM44
D. EXPERIMENT DESIGN49

1. Operating Systems and Software Utilized49
E. RUNNING THE EXPERIMENT52
F. SUMMARY ...54

V. RESULTS ..55
A. BACKGROUND ..55
B. SETUP ...55
C. TIMELINE ..57
D. DISCUSSION OF RESULTS58

1. Results for MM-Server and MM-Clients58
2. Results for the Physical Servers61

E. SUMMARY ...68
VI. CONCLUSIONS AND FUTURE WORK69

A. CONCLUSIONS69
B. FUTURE WORK71

1. Code Improvement and Extension71
2. More Advanced Modules72
3. Increase Scale of Test Bed73
4. Security Implications74

APPENDIX A. MM-SERVER: CANDCSERVER.JAVA75
APPENDIX B. MM-SERVER: CANDCSERVERMENUUI.JAVA77
APPENDIX C. MM-SERVER: CLIENTCOMMUNICATOR.JAVA83
APPENDIX D. MM-SERVER: CLIENTCOMMUNICATORLISTENER87
APPENDIX E. MM-SERVER: CLIENTDATABASE.JAVA91
APPENDIX F. MM-SERVER: CLIENTRECORD.JAVA97
APPENDIX G. MM-CLIENT: CLIENTPROGRAM.JAVA101
APPENDIX H. MM-CLIENT: CLIENTCONTROLLER.JAVA105
LIST OF REFERENCES ...111
INITIAL DISTRIBUTION LIST113

 ix

LIST OF FIGURES

Figure 1. Proposed use case...............................28
Figure 2. Communication protocol flow diagram.............42
Figure 3. Physical test bed configuration.................48
Figure 4. Virtual test bed configuration..................52
Figure 5. Physical server IP addresses/type/names.........56
Figure 6. Experiment Timeline of Events...................57
Figure 7. Packet Capture between MM-Client and MM-Server..59
Figure 8. CPU Utilization of Physical Server #1...........61
Figure 9. CPU Utilization of Physical Server #2...........62
Figure 10. Network Utilization of Physical Server #1.......64
Figure 11. Network utilization of physical server #2.......65

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF ACRONYMS AND ABBREVIATIONS

AFB Air Force Base

CDX Computer Defense Exercise

COMPTUEX Composite Training Unit Exercise

CSTT Combat Systems Training Team

DHCP Dynamic Host Configuration Protocol

DISA Defense Information Systems Agency

DoD Department of Defense

DNS Domain Name System

GUI Graphical User Interface

HTTP Hyper Text Transfer Protocol

KBps Kilobytes Per Second

ICMP Internet Control Message Protocol

IP Internet Protocol

IRC Internet Relay Chat

MBps Megabytes Per Second

MM-Client Malware Mimic Client

MM-Server Malware Mimic Command and Control Server

NSA National Security Agency

 xii

RaD-X Rapid Experience Builder

TCP Transmission Control Protocol

UDP User Datagram Protocol

VM Virtual Machine

VBS Visual Basic Script

 xiii

ACKNOWLEDGMENTS

This thesis would not have been possible without the

steady guidance and patience of our thesis advisor,

Professor Singh. Thank you for your experience and insight,

and for the opportunity to work with you. Our co-advisor,

Mr. John Gibson, has his hands in so many different projects

here at NPS, we do not know how he managed to tend them all.

But, when we spoke with him, his attention was focused

solely on our project even though many other projects were

demanding this attention at the same time. Thank you.

From Paul: I would be remiss if I did not offer my

thanks to the many fine faculty members here at the Naval

Postgraduate School. I have been in the computer field for

many years, and I thought I had a good grasp of its myriad

of topics. After two years here at NPS, it has been made

clear to me how little I actually knew. I thank the many

professors: Scott Cote, Chris Eagle, John D. Fulp, Ted

Huffmire and so many others that have opened, stretched, and

stuffed my mind full of so many new ideas and possibilities.

Only at the end do I feel like I actually know something:

that there is so much else to learn! To my good friend and

co-partner on this thesis, Will Taff, who has been an anchor

and a beacon to me and this project. He kept this thesis on

track and within proper boundaries. He is truly a scholar

and a gentleman. Finally, to my wife, Allie, and new

daughter, Caitlin Mei, I thank you for keeping the household

in order and all of the other important things in life on an

even keel. While I was off in cyberspace trying to make

little ones and zeroes do my bidding, you took care of

 xiv

things in the real world. You are the epitome of the Navy

wife and as always, you have my love, gratitude and

adoration.

From Will: everything Paul said, plus thanks to the

fine members of not only our own cohort, but the ones up and

down from us. I learned as much from you guys as I did in

the classroom, and that’s saying something. And, to my

thesis partner Paul: thanks for putting up with me. You are

not only a great academic and Naval Officer, but my kind and

patient friend. And lastly, to my favorite redhead and my

rascally boys, thanks for your patience (sometimes!) and

support (all the time). You three continue to give meaning

to everything I do.

 1

I. INTRODUCTION

Department of Defense (DoD) use of information systems

connected by networks continues to expand, as it arguably

does for every enterprise level organization in the world

today. The threats on the Internet—viruses, botnets, hackers

and the like—form the basis for enormous vulnerability, both

to the machines of the networks, and to the Department of

Defense mission that those machines support: protecting the

security of the United States of America.

Network administrators perform a vital role in both

administering and protecting our networks. They carry out

the myriad tasks essential to the function of the network,

ranging from the routine to the tremendously complex—

configuring the host machines, the network hardware, the

firewalls, interfacing with the system users—the list

continues ad infinitum. Network administrators form the

bulwark of our defense, which is referred to as “Information

Assurance.”

The traditionally accepted “threat equation” states

that risk is equal to threats multiplied by vulnerabilities—

mitigated only by safeguards [1]. Since the safeguards of

DoD networks, indeed any network, is most fundamentally

influenced by the skill of its administrators, the primary

mitigation of risk to DoD networks (indeed the DoD on the

whole and ipso facto, the security of the entire nation)

rests on the quality of training provided to our network

administrators. When we consider that the threat to our

networks are ever increasing, as is our usage of them and

the concomitant increase in vulnerability, it becomes that

 2

much more imperative that we provide the best and most

effective training possible to our network administrators.

A. TRAINING NETWORK ADMINISTRATORS

DoD training of its network administrators relies on a

wide variety of different methods. Classroom instruction is

standard, as are mentors performing on-the-job training.

Instructed laboratory environments are also commonplace.

Still, the most significant training of DoD network

administrators in the area of information assurance is

performed by the use of red teams. These red teams are

composed of highly-trained, specifically-tasked personnel

that act as adversaries in order to test the networks and

their administrators by emulating the threats that the

administrators currently face.

B. SHORTCOMINGS OF THAT APPROACH

While classroom training of network administrators is

essential, it is often considered unsatisfactory for the

sorts of robust evaluations required in the military

environment. Laboratory training can be more robust, but

the training does not evaluate the strengths and weaknesses

of the actual network of the organization. The red team

approach is superior in both these areas; the training is

both robust, and often performed on the operational network

of the organization. Still, the DoD red teams that perform

this training are not an unlimited asset. They consist of

personnel with specialized training requirements, limited

funding and operational tempo, etc. Reliance on red teams,

thus, restricts the amount of training available to DoD

 3

network administrators. This in turn impacts DoD networks

on the whole, and is therefore a matter of national

security.

C. OBJECTIVES

Our objective is to design a network training tool to

help train administrators—one that can integrate the network

evaluation into the highly complex training events typical

of U.S. military training exercises. Towards this, we seek

to construct a system with the following characteristics:

• The system must be safe enough for use on the

operational network, and not constrained for use

in the laboratory. Towards this, it must be

inherently benign, externally controllable, and

include a tested failsafe condition for rapid

neutralization and/or retraction (rollback) from

the impacted network.

• The system must emulate threat behaviors rather

than duplicating the threats themselves, i.e., the

system must be constructed of malware mimics, not

actual malware.

• The system must be distributed, allowing the

trainer to be geographically distinct from the

network and the network administrators undergoing

training.

D. ORGANIZATION

Chapter I provides a brief treatment of the motivation

for this thesis: mainly, the defense of the United States

 4

through improved training for the administrators of DoD

networks. This goal we propose achieving through the use of

a distributed software system.

Chapter II gives a more formal definition of red teams,

as well as usage examples of red teams in DoD environment.

Chapter II also gives a brief overview of the current

threats to networks and enumerates some of their behaviors.

Chapter III covers the design considerations of our

proposed software solution. We formally define the

interested parties in training, as well as the training

objective, and give an example of how the proposed system

could be used in an actual training exercise. We give

further treatment of our stakeholders in training, and

specifics on what behaviors might be desired that a software

solution perform.

Chapter IV has discussion of the actual software

implementation of the system, to include the Graphical User

Interface (GUI). It also discusses the complex test-bed on

which we tested our implementation.

Chapter V presents results from our testing of the

system, to include graphical representation of system

performance. It shows that the software system we have

implemented does indeed generate externally observable

network behaviors that are remotely controllable.

Chapter VI is the summary of the thesis, with

conclusions regarding the outcome. It also enumerates

future work that could be done on this project, to include

some of the areas that will require more refinement before

the system is ready for a production environment.

 5

II. BACKGROUND

This chapter gives more specific treatment of red teams

used in a DoD setting, to include employment. Additionally,

some of the threat signatures and behaviors used by red

teams are discussed, to include bots, worms, and viruses.

A. RED TEAM

Red teams are “specially selected groups designed to

anticipate and simulate the decision-making and behaviors of

potential adversaries.” [2] The red team forces an

organization to examine itself critically. No organization

is perfect, no weapon system is perfect, and no idea is

perfect. The red team examines whatever it is that needs to

be evaluated, uncovers its flaws, and finds potential

weaknesses that can be exploited. Sun Tzu said, “If you

know your enemy and know yourself you need not fear the

results of a hundred battles.” [3] Complete knowledge of

the enemy may be impossible, but through the use of red

teams, a more thorough knowledge can definitely be gained

about one’s own organization.

Red teams are used in all aspects of military planning.

They are used at the tactical level in mock battles using

infantry, mechanized, and/or aerial units acting as a real,

opposing, red force. The two-week, high intensity, Red Flag

training exercise held at Nellis Air Force Base (AFB),

Nevada (on occasion at Eielson AFB, Alaska) was created to

simulate realistic combat missions against a credible and

live opposing force. Red teams, typically led by staff

Intelligence Officers, are used in staff planning of future

 6

maneuvers to foresee possible reactions or resultant

movements of the enemy. They are utilized in the creation

of new weapons or new national or military guidance

publications, such as the National Security Strategy, Joint

Strategy Review, and the Maritime Strategy. One example was

the led by the Naval War College. Most notably, the Global

War Games from 1984-1988 resulted in many significant

conclusions that helped to define the Maritime Strategy at

that time [4]. By having red team think tanks and war gaming

scenarios, the actions of forecasted adversaries can be

identified. This information could then sway the future

actions of the entire DoD.

From the aspect of cyber-security, red teams are vital

in the training of the government and military network

operators. The term operators can be as broad as the entire

staff, which will include managers and officers,

administrators, engineers, help desk, and response

technicians. The term operators in this thesis will limit

its scope to the administrators, help desk personnel, and

technicians.

B. RED TEAM DURING CYBER DEFENSE EXERCISE (CDX)

One of the two red team examples will come from the

annual Cyber Defense Exercise (CDX) that is held between the

United States Service Academies, other military academic

schools (Air Force Institute of Technology and Naval

Postgraduate School), and on occasion, other nations’

military schools (e.g., in 2010, the Royal Military College

of Canada was part of the competition). The tenth annual CDX

sponsored by the National Security Agency (NSA) was in 2010

[5].

 7

In the CDX, it is each school’s mission to design a

network from scratch, build it in its entirety, fortify it

and then defend it for an entire week against external and

internal attack. The network must meet a certain baseline

such as providing a Web service, domain name service, active

directory, e-mail, bulletin board, and more. The students

must research what are the most effective and secure

operating systems to use. Then, the applications and

services must be identified, installed, and properly

configured. These computers and services must then be

joined to a network which is then linked into the entire

game network via a Virtual Private Network connection which

logically removes the game network from the rest of the

internet. The NSA red team is situated in its own network

with access to the entire game network where it can launch

attacks against all of the competing schools. In the 2010

competition, the red team had an agent on the inside of each

school’s network, along with a cluster of five improperly

configured computers. The agent, acting the part of the

“ignorant user” could be persuaded to visit malicious

websites and click on dubious e-mail attachments.

Getting the entire exercise network researched, built,

and operational takes a great deal of effort by students.

Further efforts are required to harden the computers,

operating systems, services, and the entire network.

Getting the entire network operational is merely the ante to

compete in the CDX. For the participants, the real work and

concomitant training value comes from the competition week

when the NSA red team begins their attacks.

 8

 As delineated in the Certified Ethical Hacking Manual,

there are five phases in which an intruder advances the

attack [6]. The red team followed these typical five

phases: reconnaissance, scanning, gaining access,

maintaining access, and covering their tracks. Some steps

were shortened (reconnaissance, since some information is

already known) or skipped (covering of tracks, since the

students need to identify what was compromised). This is

done so that the students of the competing schools can

experience what it is like to be scanned, infiltrated, and

exploited. The detection of the infiltration or the

witnessing of unintended actions must be noticed, steps

taken to neutralize the problem, corrective actions taken to

restore impacted systems, and further research and steps

taken to prevent that problem from happening again. The red

team would do their best to infiltrate as many systems as

possible and leave their mark for the schools to find.

 The red team was limited in what they were allowed to

use in their attacks. Common hacking software suites, e.g.,

Backtrack and Metasploit, were utilized along with a host of

other easily available tools that anyone with access to

hacker sites on the internet could obtain. Current exploits

and vulnerabilities could also be used if they were present

on the networks. This encouraged the competing schools to

review the current literature and download and install the

current applicable patches for their systems. The red teams

were not allowed to generate their own malicious code or

exploits.

 The red team presented a live, thinking opponent to all

of the competing schools. Automated tools and other

 9

software were utilized, but the red team members took the

data that was returned and formulated strategies of what to

attack next. The intelligent enemy could probe further,

find out what is installed, and run attacks against known

vulnerabilities of the running software or installed

operating systems. Furthermore, the inside red team agent

was another vector of attack. These two facets taught the

students to look for attacks from outside and within, how to

effectively place and use sensors, to research and

constantly update their systems, and if anything was

breached, how to investigate, limit the extent of the

damage, and restore the system to operation with the

vulnerability removed.

 The only negative aspect of this exercise is that it is

done on an exercise network. As mentioned previously, the

point of the exercise is to build and defend a network.

Therefore, all of the decisions were made with security as

the top priority. This is not true for every organization

and every network. Having this exercise done on a true,

operational network, with all of the requirements and needs

of the user-base met, and with hundreds or thousands of

constant users, would make this exercise even more

realistic.

C. RED TEAM DURING COMPOSITE TRAINING UNIT EXERCISE

An example of an exercise that does use the operational

network is the Composite Training Unit Exercise (COMPTUEX).

It is the culminating exercise for the qualification of a

strike group. A strike group of usually five to seven ships

spends nearly a year in the predeployment workup cycle and

upon successful conclusion of COMPTUEX, the battle group is

 10

assessed to determine its readiness for deployment and for

battle. The COMPTUEX is an intense exercise that is

developed to stress the entire group: the staff, the ship’s

officers, the ship’s crew, the Marines, (if embarked), the

joint component, and the Air Wing, to name a few.

COMPTUEX is the time when the onboard computer networks

are attacked by the red team from the Navy Cyber Defense

Operational Center. As previously mentioned, COMPTUEX is

the final exercise for the strike group. The cyber attacks

are only a small portion of all the attacks that will be

directed toward these ships. The ships have multiple

objectives to complete every day. Some events are specific

to one ship, others to some subset or all of the ships.

These events affect every person onboard. With the increase

in workload, the computer networks, communication systems,

and combat systems are heavily utilized to accomplish the

many missions set forth by the examiners. It is during this

tumultuous time that the red team also attacks these vital

networks.

All of the events of COMPTUEX are scripted by the

evaluators at the Center for Surface Force Training Atlantic

or Tactical Training Group Pacific. Since they are scripted

and all actions must be graded, there are breaks given so

that vital systems or groups that must be graded will have

the tools normally available to them to accomplish their

task. Therefore, the red team will not usually target vital

systems during the war-fighting phases of the training. The

red team will usually attack during the quieter times of the

whole exercise. This is difficult for the network

administrators and technicians: following manning their

 11

battle stations during simulated combat operations, they

must then man their normal shipboard watch stations and

continue defending from attacks by the red team.

Purposefully, some of the attacks on the computer networks

and communication systems are linked to the battle. There

are specific training objectives designed to take down vital

communication channels during attacks or evolutions so that

the ships and watch teams can be evaluated on their

response. This is to allow the assessment of such questions

as: “Can the ship fight without their normal complement of

communication options?”

In this context, the red team of COMPTUEX performs

similar functions to the red team of the CDX. The red team

attempts to scan the system, breach it, and then exploit it.

Since this training is done on an operational network,

certain behaviors are desired without the exact malware

being introduced to the network. Therefore, the red team

simulates the effects of some of the more nefarious attacks.

The mission of the red team is to test the vigilance of the

network administrators, technicians and, to an extent, the

users of that network. Some of the attacks are only

detectable by the administrators, and then only by reviewing

the logs of the firewall, intrusion detection systems, and

other sensors and services. Some of the attacks the users

will see in malicious emails, odd things happening on their

work computers, or even strange printouts on networked

printers. The attacks are varied and thorough, testing all

equipment, sensors, and people.

By having a red team attack an operational network, the

training and evaluation are much more realistic. The actual

 12

network administrators, technicians, help desk, and users

are tested on the computers and equipment they use every

day. This is the environment with which they are most

comfortable. More importantly, these are the networks that

will be used prior to and during the battle. Upon

completion of the associated training and evaluations, the

IT professionals on the ship now know the strengths and

weaknesses of their own network. They know how to use their

sensors and know what the sensors can and cannot reveal.

Also, they may find that their network has some derived

vulnerabilities due to the other systems with which it must

interface. These are the residual risks that exist within

all organizations.

The major downside to the training is that the full

repertoire of attacks may not have been used because it is

an operational network. The risk of corrupting or

destroying the operational network could cripple the ship

for days, weeks, or more depending on the attack. Such cases

would be detrimental to the strike group readiness, likely

preventing the on-time deployment of the strike group

(COMPTUEX is usually immediately prior to the end of the

workup cycle). Therefore, attacks of such intensity must

either be avoided or simulated to some extent. The red team

may not use them, but a true adversary would likely have no

restrictions on what is or is not allowed.

D. A RED TEAM APPROACH USING RAD-X

An example of an interesting approach using red-team

methodologies is the Defense Information Systems Agency’s

(DISA) use of the Rapid Experience Builder (RaD-X) training

tool. RaD-X is essentially a portable network training

 13

laboratory, isolated from the operational network and the

Internet, allowing for its use as a “sandbox” for network

administrator students to observe network exploits as they

occur. With this tool, users can observe many of the

threats discussed below—worms, botnets, viruses and the

like—by use and analysis of intrusion detection and

intrusion prevention systems organic to the system. RaD-X

includes instructional courseware and formal laboratory

exercises that complement the training the students receive

while utilizing the laboratory network. Though portable,

the footprint is significant: the system includes a large

number of laptop computers and concomitant network hardware,

as it is a self-contained training network [7].

E. RED TEAM EXPERIENCE

Exercises verses a red team is the pinnacle of a unit’s

training. It is utilized in the capstone evaluation of this

country’s deploying forces. The red team provides training

that is as realistic as possible. It can produce an

experience like no other.

As mentioned in the previous sections, the red team can

attack from a multitude of vectors. Only a small subset of

the attacks that the red team utilizes will be examined. The

attacks that are examined are some of the most dangerous and

disruptive to network security today.

F. MALWARE

A computer is a tool that executes instructions, or

programs, at a very rapid pace. For the most part, a benign

program does productive work, safely interacting with the

 14

components of computer, such as the processor, the files on

the hard drive, and other processes and data in memory.

Malicious programs perform work or actions that the user

does not want and ends with results that are insulting,

frustrating, and/or damaging. Spam e-mail fits into all of

those categories. Virus logic bombs that destroy critical

files are incredibly damaging. Denial of Service attacks on

e-commerce sites can be frustrating for the customer and

potentially damaging for the business, normally resulting in

lost business and revenue. Root-kits that allow unauthorized

access to other people’s or organization’s computer

resources are a significant security risk, and usually

causing some form of loss or damage.

“Malware” is the overarching term used to describe the

programs that force the computer to execute these

misbehaving tasks. The types of malware that will be

considered herein are: worms, botnets and viruses.

1. Worms

A worm is stand-alone malicious code that propagates

across the hosts of a network, with or without human

assistance—no interaction on the part of a user is required.

According to Gu (et al.), there are three characteristics of

an Internet worm:

• Internet worms generate a substantial volume of

identical or similar traffic. This can be

detected by passive listening on the network, as

performed by protocol analyzers like Wireshark or

Intrusion Detection Systems like Snort.

 15

• They use random scanning to probe for vulnerable

hosts, which can also be detected by those passive

listeners.

• Compromised hosts exhibit predictable signatures:

an uninfected host would have “normal” traffic,

but when infected, the host begins random scanning

looking for other vulnerable hosts on the network.

In addition to propagating itself by finding additional

vulnerable hosts, worms typically have some other malicious

function. It may direct users to certain websites or it may

collect information from the infected host and report it

back to some central computer. It could also be malicious

and try to destroy key files on the host computer [8].

Some examples of worms include the Morris worm (1988)

[9], the first known instance of a worm, as well as the

Nimda and the Code Red worms [10].

2. Botnets

Bots and networks of bots (“botnets”) are emerging as

the most significant threat facing online ecosystems and

computing assets [11]. Like viruses and worms, a bot is a

self-propagating application (code) that infects vulnerable

hosts through exploit activities in order to expand the

reach of the Bot network [11]. Bots can use worms or other

bots to propagate to other computers on the network.

Bots can be distinguished from viruses and worms by

their command and control characteristic: bots will normally

include facilities that allow for control by some sort of

Command and Control structure, be it a single server or some

 16

type of distributed system. Since bots can be controlled by

a single entity, they can be remotely directed towards a

single purpose. A typical use for a bot is a Distributed

Denial of Service (DDOS) attack, where a massive number of

bots can coordinate their traffic in order to overwhelm a

network server [11].

Bot behaviors include those of worms outlined above,

with the addition of command and control traffic that rides

within different protocols: commonly Hyper Text Transfer

Protocol (HTTP) and Internet Relay Chat (IRC). In actual

bots, this traffic may or may not be encrypted. Detection

of bots through passive packet monitoring (as above—with

protocol analysis by tools such as Snort or Wireshark) of

data streams can be useful, as bots will often exhibit

typical signatures or behaviors. Like worms, the scanning

behaviors used for propagation can also be detected

passively and the results used for bot (and worm)

identification [11]. Bots will often remain hidden until

they receive instruction from the command and control server

to execute some action, which is typically a denial of

service attack as described above [12],[13].

Perhaps the most widely known example of a bot is

“Conficker,” which is still active at the time of this

writing. One estimate of Conficker held it responsible for

8.9 million infections, and it appeared in a variety of

different networks, including those of the German and

British Armed Forces [14].

 17

3. Viruses

In Peter Czor’s The Art of Virus Research and Defense,

he defines a computer virus as “…code that recursively

replicates a possibly evolved copy of itself. Viruses

infect a host file or system area, or they simply modify a

reference to such objects to take control and then multiply

again to form new generations.” [15]

Viruses can be classified by many categories. These

include what computer architectures they target, such as

processor types or operating systems; file systems and file

formats; interpreted environments such as scripts (PHP,

Jscript, Batch and Shell scripts) and macros; and more.

They can also be classified as to how they infect, such as

boot records, files, and in-memory. They could be

classified as to their defensive mechanisms, like tunneling,

armored, retroviruses, morphing and encrypting. Finally,

they could be classified according to their payload, whether

it is intended to be benign and non-destructive,

destructive, data-stealing, or denial of service.

Since all viruses are code and that code must reside

somewhere on the host, the signature-based virus scanner

periodically searches for those classic signatures on a

system. Only new viruses or emerging variants of existing

viruses will cause the scanner to fail to match the stored

signatures and claim that the code is safe.

A canonical example of a virus is the “Anna Kournikova”

virus. Although it did not have a malicious payload, it made

its way through a bulletin board posting, through mass-

mailing capability, and social engineering (enticing people

with a new picture of Anna Kournikova) to spread itself

 18

around the world. The file was a visual basic script:

AnnaKournikova.jpg.vbs. It duped the user into executing

the script, e-mailing itself with the VBS attachment to

everyone in the user’s e-mail address book. Its payload was

nothing except spam e-mails that quickly spanned the world

[16].

G. SUMMARY

In this chapter, we discussed the usage of red teams

used in a DoD setting, and examples of exercises in which

they are employed. We also discussed some of the threat

signatures and behaviors used by red teams, including bots,

worms, and viruses. In the following chapter, we assert

that DoD use of red teams constrains how we train, and

propose a information system solution.

 19

III. DESIGN CONSIDERATIONS

In this chapter, we make a few definitions, namely

those of the “training objective” that we are training to,

the “trainees” that are receiving the training, the

“trainers” that train them, and the “safety observers” that

observe all of the above. We scope our discussion by a

defining the training “environment,” as well as identify the

problems with the DoD’s current approach to network

training. We proposed an information systems solution to

those problems and give a detailed example scenario of its

use. We conclude the chapter with more detailed discussion

of the above elements.

A. THE TRAINING OBJECTIVE

In order to simplify discussion, we make an initial

definition: the training objective. The training objective

is the skill or behavior that we wish to reinforce. We make

no comment on the size, complexity, or specifics of the

training objective—they can range from the simple to the

very complex, e.g., from “pull the trigger” to “win the

war.” We limit our scope of training objectives to the

specific behaviors that result from trainee interaction with

malware/mal-behavior and its accompanying effects. We also

assume that training objectives correspond to specific

threats which have specific behaviors. Further, we do not

discuss any specific training methodology or algorithm, as

it is beyond the scope of this thesis. Below, we include an

example training scenario, with its training objective.

 20

In order to discuss any training tool, we must also

identify the stakeholders. Towards this, we propose three

generalized parties typical in a military training

environment and indeed, most training environments: the

Trainee, the Trainer, and the Safety Observer.

B. THE INTERESTED PARTIES IN TRAINING

1. The Trainee

The “trainee” is a person or group of persons in the

organization that we wish to be trained to the training

objective. Specific examples could include network

operations personnel, or perhaps even further up the stack

of decision making, e.g., network managers.

2. The Trainer

The second participant in training is the “trainer.”

The trainer is the person or organization that presents

specific scenarios of behaviors to the trainee in order to

evaluate the trainee’s performance vis-à-vis the training

objective. Typical examples of trainers in military networks

include “red teams” (who simulate the Tactic, Techniques,

and Procedures (TTP) of adversaries) as well as less

formalized trainers, e.g., the more experienced network

operator training the less experienced. In “high school”

parlance, the trainee is the student, and the trainer is the

teacher, though this relationship is not exclusive, i.e.,

the trainer may or may not be the one giving the

instruction, but the trainer is limited to testing the skill

of the trainee.

 21

3. The Safety Observer

The third participant in training is the safety

observer. In many training scenarios, we need to define a

party separate from the trainer and the trainee that is

responsible for maintaining oversight of the conduct of the

training. For example, during safety critical training,

there is often a safety observer, whose scope of attention

exceeds that of the training activities to include the

impact of the training on the organization as a whole. In

“military training” parlance, this could be members of a so-

called “White Cell.” Note that circumstance will sometimes

dictate that either the trainer or trainee fill this role,

e.g., in those training scenarios where the risk of training

does not warrant the use of a separate party. A specific

example would be that of a senior network administrator

tutoring a junior administrator while utilizing an isolated

(non-networked) host. An example of a needed safety

observer would be training of such complexity that the

trainer and trainee could not effectively train while

simultaneously ensuring their training would not impact the

safety of the organization, e.g., a large scale training

scenario involving integrated operations from multiple major

departments. Network training on an aircraft carrier network

during flight operations and engineering drills would be an

example of this.

C. THE TRAINING ENVIRONMENT

Now that we have discussed the interested parties in

our discussion of training, we must discuss the training

environment. For the purpose of this thesis, we limit

 22

ourselves to training the administrators of military

networks. That said, military networks vary enormously in

terms of size and complexity, ranging from the completely

isolated host in the training laboratory to the entire

Global Information Grid, the military's global

communications backbone comprising 15,000 networks and seven

million computing devices across hundreds of installations

in dozens of countries [17]. Note that DoD networks also

span different classification levels, though we will not

treat the requirements contained in these differences.

Military networks include those of an administrative nature,

e.g., training laboratories for network personnel, as well

as networks of an operational nature, where lives and

mission success literally depend on their effective

utilization.

The differences between these networks also indicate,

ipso facto, greatly varying network infrastructure and

topologies. Some DoD networks have network firewalls, some

have multiple tiers of them, and some have none. Some

networks are completely hidden inside Network Address

Translation realms, and some are outward facing onto the

global Internet. Some networks are connected by high

bandwidth fiber-optic cable, while others are connected by

low-speed, high-latency satellite connections that offer

slightly better connectivity than low-speed telephone

modems.

D. HOW WE CURRENTLY TRAIN

The treatment Aland gives in the International Test and

Evaluation Association Journal gives an excellent and timely

 23

overview of the challenges faced by DoD leadership regarding

Testing and Evaluation of DoD network Information Assurance,

some of which are included below [18].

1. Dependence on Red Teams

One problem that the DoD faces with regards to training

is that we depend heavily on red teams. Red teams are a

resource heavily in demand, provided by agencies that are

faced with increasingly austere fiscal environments. By use

of this constrained resource, we limit the training options

available. An exercise planner simply cannot count on a red

team being available for every exercise.

2. Standardization

Given the complexity of military networks, it is not

hard to imagine that maintaining uniformity in training

throughout a global organization is a difficult task.

Although the DoD continues efforts to centralize network

training, there remain disparate organizations using

disparate tools and methodologies. For example, it is not

uncommon for a single unit to be trained by National

Security Agency (NSA) Red and Blue Teams, for personnel to

be serving as mentors in the same organization as the

trainee, or for organizational training teams to exist at

every echelon within an organization—all using a variety of

different methods. For this reason, it is difficult to

maintain standardization in training across the different

networks in the DoD.

In addition to disparate organizations participating in

the training, there are different organizations managing the

 24

different networks as well. Each of these network management

bodies imposes its own requirements on the trainers in order

to minimize the impact of network training on the operations

of the organization.

It is also possible for the organization to confine

their network training to a laboratory environment, vice the

operational network, in order to minimize the impact of the

training on operations. A great example of this is the

NSA’s annual Computer Defense Exercise (CDX), discussed in

Chapter II: a geographically distributed but logically

isolated exercise network. The DoD keeps much of its

training in the laboratory for good reason; one does not

want to risk network behavior having negative effects on a

unit’s primary operational (non-network) mission. Robust

network training, to a large degree, is considered too risky

for operational units. Some training methodologies, e.g.

the release of a worm along the lines of Morris (discussed

in Chapter II), could have unpredictable results. Consider,

for example, the trainer’s use of a worm whose effects were

intended to be limited to the unit under assessment, but

instead spread over the entire organizational network.

Unfortunately, this deprives the operational units of

the opportunity to observe how collateral network effects

can affect the organization as a whole, e.g., seeing how the

loss of a tertiary air traffic control information system

due to a virus can affect the launching and recovery of

aircraft. For this reason, it is imperative that network

training not be limited to the laboratory, but instead be

integrated into a holistic assessment of the unit.

 25

E. AN INFORMATION SYSTEM SOLUTION

For these problems, we propose the development of a

distributed, software-based training system that can be used

by either simulated adversaries (such as red team) or

trusted agents (such as blue team) to create scenarios and

conditions to which a network management/defense team will

need to react and resolve. This system will be composed of

currently available software packages and/or “homegrown”

(locally generated) packages with the desired functionality.

It will include clients that function as “Malware Mimics,”

that is, software objects that intrinsically demonstrate

externally observable attributes of the malware which it

mimics, to include behaviors and possibly signatures,

without putting the hosting network at risk. The Malware

Mimic Client will be constructed in such a way as to depict

a variety of these behaviors, with sufficient flexibility

for additional behaviors to be “bolted-on” as they are

developed later in the system’s life, resulting in a

sustainable evolution of the product. This Malware Mimic

System must be inherently benign, externally controllable,

and include a tested “failsafe” condition for rapid

neutralization and/or retraction (rollback) from the

impacted network. The tool should be scalable in order to

depict the full range of malware characteristics, from low

sophistication through high sophistication, and adjustable

in real time.

Specifically, we propose that the system be composed of

two types of software packages: Malware Mimic Clients (MM-

Clients), and a central Malware Mimic Command and Control

(MM-Server) Server. The Malware Mimic Clients will be

 26

lightweight software packages that “ride” upon host

operating systems of the information systems (workstations,

etc) of the trainee organization. Each of these clients

will be logically connected to a Malware Mimic Server, which

will deliver commands to the Clients, both individually and

in the aggregate. Malware Mimic Clients will be capable of

generating the behaviors of the malware/mal-behavior that we

wished to emulate.

For example, as discussed in Chapter II, a typical

behavior in Internet worms is that they scan for adjacent

vulnerable hosts. In this case, we wish only to mimic the

behavior of the worm, not the worm itself. The MM-Client,

when commanded by the MM-Server, could perform a port scan

of adjacent hosts, just as if it was an actual worm. To the

observer, the behaviors will be identical, exactly as if a

worm was propagating across a network when in fact, only the

behaviors of the preexisting MM-Clients, commanded by the

MM-Server, will be propagating. In this manner, we greatly

increase the training’s value (we duplicate the behavior of

an Internet Worm on the network) without greatly increasing

the risk to the network (we actually only duplicate the

behaviors, not the malware itself). Additionally, by using

this typical client/server architecture, we can take

advantage of the network property of distribution. The

trainer, operating the Mimic System, need not be collocated

with the trainee of the network.

We can reduce the risk to the network even further.

MM-Clients will have only narrow windows to perform their

behaviors before having to reconfirm their commands with the

MM-Server. This ensures that with a loss of network

 27

connectivity, the clients do not continue “head-less,” i.e.,

operating independently of the trainer’s desires.

Furthermore, using the “two-key” analogy commonly

employed by ballistic missile systems, we can insert an

additional server on the local network which serves as a

local “kill switch.” This second layer of “kill authority”

will ensure that if emergent local conditions required an

immediate halt to training that it could be commanded

without the delay of notifying the trainer.

In this manner, we solve the problems identified above:

namely that we create a distributed training system that can

be consistently and systematically employed across a variety

of networks, safe enough to use on an operational network,

all the while delivering the same training value of reacting

to actual malware used in isolated laboratory environments.

We can increase training value without concomitant increase

in risk.

As discussed, the proposed system will have the

capability to command observable behaviors and signatures on

remote hosts. Additionally, it will include the ability for

the trainer to monitor remote system status, as well as halt

or continue the execution of behaviors as warranted by the

operational situation. The only interaction that the

trainee will have with the system will be to observe

behaviors and signatures generated by the system and react

to them. Finally, we propose to include the capability for

an observer local to the training to have the ability to

halt the execution of behaviors as local circumstances

warrant. All of these functions are summarized in Figure 1.

 28

Figure 1. Proposed use case.

F. AN EXAMPLE TRAINING SCENARIO

Based on the proposed use case of our system, a more

detailed training scenario may proceed as follows. This

example assumes that the training would be formal and

scripted in advance.

1. Pre-exercise (PRE-EX)

Prior to commencement of the exercise (COMEX), training

objectives would be identified and tailored to the

 29

particular trainee and training objective by interested

parties. In this scenario, the trainee would be an

organization: specifically, the network administrators of

all the ships of a Navy Carrier Strike Group, underway off

the coast of Hawaii, performing predeployment training

exercises. The network environment would be an unclassified

administrative network between ships of the Strike Group and

connected to the Global Information Grid. The training

objectives would be promulgated by the agency responsible

for the exercise. Additionally, the training scenario would

be synchronized with other typical predeployment training,

such as the launching and recovery of aircraft, tactical

maneuvering and communications of the ships, etc., which

would be happening simultaneously with the network training.

The training objective to be covered in this example would

be that network administrators correctly identify a botnet

propagating across their network, and report this

information to the higher echelon of command in accordance

with previously established procedures. The ships’ Combat

Systems Training Team (CSTT) would serve as the notional

“white cell,” i.e., safety observers for the exercise.

The Malware Mimic Client software would be installed on

the participating hosts of the strike group network,

distributed throughout the ships of the group via software

push. These hosts would consist of the bulk of user

workstations in the strike group. The software could be

installed significantly ahead of time, as it would not

affect the operation of the workstation prior to COMEX,

remaining effectively dormant in a “sleep state” until the

prescribed exercise time. Additionally, local to each ship

of the group, a simple “kill server” would be initialized by

 30

the CSTT members that could be used to terminate or freeze

the exercise should local conditions warrant such action.

Shortly prior to COMEX, all of the MM-Clients would

establish a network link to the MM-Server co-located with

the trainer, in this case a NSA red team physically located

at Fort Meade, Maryland. The MM-Clients would still not

have any effect on the user’s workstation.

2. Commencement of Exercise (COMEX)

At the commencement of the exercise, the ships of the

trainee (strike group) network, again, underway off the

coast of Hawaii, would enter a Combat Systems Training

Environment. This requires notification be passed throughout

the ships of the group that ship systems were actively being

used to support training and that actual systems casualties

would be announced as such. CSTT members would take their

posts and begin monitoring the system administrators

(trainees). The red team (trainer) members, again located

at their facility in Maryland, would log in to the MM-

Server. They would select from their GUI menu the exercise

trainee (our notional strike group). Per the exercise

script, they would instantiate predefined software behaviors

on the remote workstations of the strike group network.

These particular modules would consist of behaviors to

emulate a botnet propagating across the network. As such,

network hosts would begin to scan the network in search of

other “vulnerable” hosts in order to make network

connections with them, at which point the scanned hosts

would begin to scan the network as well. These scans would

be accompanied by dramatic increases in host network output

as the hosts simulate the sending of information off the

 31

network to a notional botnet command and control server. In

reality, this would be a coordinated, ever-growing amount of

relatively benign scans or inert Internet Protocol (IP)

packets which would cause an increase of network traffic.

The first indication of the emulated botnet on the

trainee network would be a slowing of network traffic due to

the congestion induced by the network scans and generated

traffic. User logins would take longer due to the slow

connection to the Active Directory server. Web traffic

would slow down as well, as DNS queries are also delayed due

to the congestion. Our trainees, busy with other duties

assigned to them, would not yet notice the increase of

network activity, the slowing of network traffic, or that

the network monitoring systems of their network were

indicating that the system was being scanned internally.

As the botnet behavior “propagates” across the hosts of

the network, the network would continue to slow; e-mail

traffic would now be affected as the volume of network

traffic increased. Administrative work on the network

workstations become affected as e-mail and chat traffic are

affected. It can be expected that the help desk switchboard

would “light-up” with complaints from users. Expectantly,

the system administrators would be notified.

Upon inspection by the now alerted network

administrators, the network would be determined to be under

duress. Network management systems would show alerts

related to the volume of traffic on the network; protocol

analyzers would show unusual network connections between

hosts of the network, and log files would show that systems

 32

were being probed by internal scanning. The network trouble-

call logs would be full of complaints by annoyed users.

The network administrators should correctly identify

the problem with the network as a botnet-based attack. In

accordance with established procedures, network

administrators would notify the higher echelon that the

network was infected by a botnet, who would in turn notify

the NSA red team. Red team members would note that the

training objective had been completed as the botnet had been

identified and that the higher echelon had been properly

notified. The CSTT would have Local Kill Authority. Once

the training was complete, and in light of the complaints of

the many users of the network, the CSTT would activate the

“local kill” function of the system. The MM-Clients, no

longer receiving the “go ahead” signal from the local kill

server, would cease scanning and quickly revert to the pre-

exercise inert state.

3. Post Exercise (POSTEX)

POSTEX (following the exercise), the MM-Clients would

signal to the MM-Server, located in Maryland, that they had

been stopped. The server operators (the red team) would

note that the exercise had been halted locally, and confirm

via out-of-band communication that the exercise had

terminated normally. Trainers, assessors, and the trainees

would then compile their individual notes on the exercise,

and debrief the exercise via conference call once local

conditions permitted.

 33

G. CONTINUED DISCUSSION OF THE ENVIRONMENT

This was a both a simple and contrived example of the

Malware Mimic’s function, but it gives insight into a basic

architecture from which to discuss, in further detail, the

different features of the system. In the above example, we

assume an unclassified, geographically remote, and tactical

network. In reality, the Malware Mimic should scale well

enough for administrators of any sized network to be

trained, be it as small as a subset of a tactical network,

or span multiple Autonomous Systems. The only limitation

should be the management of the software packages that need

to be pushed to the individual hosts of the trainee network,

and limitations inherent in the architecture of the Command

and Control structure of the Malware Mimic System.

In our example, we assumed an administrative network,

but by use of both remote and local kill capability, as well

as nearly instantaneous “roll-back” of the behaviors to a

pre-exercise state, the Malware Mimic would be appropriate

on networks where mission critical services are located.

Note that in our example, the network behaviors are not

performed on a network that is isolated in an air-gapped

laboratory—the intent of the Malware Mimic is to get the

training out of the lab and classroom, and into the actual

operating environments of the trainees. Obviously, the more

critical the systems (risk), the more care in the

implementation of the emulated behaviors will have to be

taken (controls/safeguards).

 34

H. CONTINUED DISCUSSION OF THE TRAINER

Trainers on the system need not be geographically

removed from the training environment. The power of the

network allows the trainer to be located anywhere on the

network, either remote or local. In our example, the

trainer was in Maryland and the trainee was underway off the

coast of Hawaii, but in reality, the location of the two

parties could be any location linked together by the

network.

Additionally, trainers need not be formalized, e.g.,

red team members. Assuming that a MM-Server is installed on

the network and that a properly training operator of the

server exists, training could be accomplished locally by the

trainees themselves; that is, the “trainer” and “trainee”

could be the same person or persons.

1. Expanded Modules

In our example, the threat was modeled as a botnet with

the specific behavior of port scanning emulated. Modules

could be created that generate the effects of any category

of malware discussed in Chapter II. Any degree of

complexity could be undertaken. In our example, only one

stage of botnet propagation was emulated. Combinations of

behaviors might be used to emulate specific threats. For

example, the Malware Mimics on one host could be commanded

to first scan for vulnerable hosts (behavior one), then

“appear” on another host (behavior two), then the new host

begin its scan (behavior three) and make a link with a

remote host, ostensibly to pipe information offsite

 35

(behavior four). This emulates in greater detail and

complexity the lifecycle of a bot in a botnet.

We are not limited to the behaviors of bots. The

Malware Mimics could just as easily be programmed to exhibit

behaviors associated with a machine infected by a virus.

Mimic-client host-machines could “pop-up” warning messages

to users, asking them to contact system administrators to

inform them of a mock “system infection.” Host workstations

could generate virus signatures identifiable by virus

scanners. Hosts offsite to the network could even be

programmed to perform the same functions that a malicious

hacker would perform on the trainee’s network.

I. CONTINUED DISCUSSION OF THE TRAINEE

In our example, our trainee was the network

administration team of an entire Carrier Strike Group.

Indeed, the “trainee” could be an individual, a team, or

even an organization. Further, we need not limit ourselves

to network administrators. The network effects generated by

the Malware Mimic System, just as the effects of actual

malware, can affect users, operators, managers, and decision

makers further removed from the operation of a network.

Their actions can be assessed using the Malware Mimic

System, just as those of the network administrator. Consider

the case involving the havoc created during flight

operations by the loss of an entire mission critical

information system; the response of system users or

administrators in such a situation may have a profound

impact on the mission as a whole. In this way, we can begin

 36

to answer a question growing ever more important in modern

combat operations: “How do the network operations impact the

entire operational unit?”

In this chapter, we enumerated the participants in

training, as well as scoped our training environment to that

of a military network. We proposed an information systems

approach to the problem and give a detailed example scenario

of its use. In the following chapter, we give specifics on

the construction of our solution, as well as the test bed

used to evaluate its performance.

 37

IV. IMPLEMENTATION AND TEST PLATFORM

A. BACKGROUND

This chapter will describe the creation of the MM-

Server and MM-Clients. It will discuss the design features

built into the software and how the implementation of the

client-server relationship. In the first half, we will

discuss the design of the modules that the MM-Clients will

run, while the second half will discuss the creation of the

test platform for this experiment. Finally, the

experiment’s goals will be defined and an explanation of how

the experiment will be setup to accomplish those goals will

be provided.

B. SERVERS AND BOTS

The architecture outlined in Chapter III was largely

paralleled in our implementation, which includes a single

command and control server (the MM-Server) that has a one-

to-many cardinality relationship with our remote client

nodes (the MM-Clients). For both the MM-Server and the MM-

Client, we chose Java as the implementation language. The

primary reason was portability; since we make no assumption

on the physical architecture of the network, it was prudent

to select a language that would run on a multitude of

different platforms, to include Microsoft Windows and Linux.

The functions provided by our implementation also

parallel the architecture outlined in Chapter III. A

trainer gives commands via a user interface to the MM-

Server, which then commands the individual remote MM-Clients

 38

to perform an externally-observable, network behavior. The

MM-Server commands that modules, consisting of the

behaviors, on the remote MM-Clients be executed; MM-Clients

receive the instruction to execute the module, and execute

the preprogrammed function that performs the commanded

behavior.

1. Server Construction

The MM-Server consists of six Java classes, including

the data structure that maintains information on the client

nodes of which the server is aware and the user interface.

The MM-Server functions similarly to a Web server in that it

spawns handlers to handle incoming connections from the MM-

Clients. The server is multi-threaded to allow for multiple

simultaneous Transport Control Protocol (TCP) connections

and full-duplex communications with its MM-Clients.

The data structure utilized to track connections

between the server and remote MM-Clients is a Java

Synchronized Sorted Map. The Synchronized Sorted Map offers

built-in handling for the multi-threaded environment, and

its use simplified the coding requirements significantly,

i.e., it inherently handled issues of thread

synchronization. For larger (in terms of numbers of MM-

Clients) implementations, a database, such as MySQL should

be used, though it will come at the cost of added

complexity.

In order to keep implementation as simple as possible

(with an eye on scalability), the data structure maintains a

traditional “mail box” model for MM-Client/Server

communications; within the data structure, MM-Clients have

 39

inboxes (orders) and status boxes. Inboxes are set only by

the server; status boxes are first initialized by the

server, and then written to exclusively by the MM-Client. In

this manner, synchronization issues with multiple MM-Clients

are avoided. The data structure is keyed uniquely by a

concatenation of the host node’s machine name and a node

name given at invocation. The data structure also includes

a field for explicitly declaring the exercise in which the

node is participating, e.g., a specific strike group

COMPTUEX.

2. Client Construction

On initialization, MM-Clients attempt to establish a

TCP connection with the remote server whose socket pair

address is declared in the invoking command-line parameters.

If the remote server is not available, the MM-Client will

continue to attempt contact every 10 seconds until the

connection succeeds.

Once the connection is established, the MM-Client

requests the contents of its “inbox” from the MM-Server,

then calls the appropriate module based on the response.

Modules contain preprogrammed sets of behaviors. Currently,

there are three modules of behaviors. Module Zero is an

instruction for the MM-Client to cease commanded behaviors,

and to return to an idle state. In the idle state, the MM-

Client continues to request its inbox contents from the MM-

Sever at five-second intervals. Module One commands five

icmp “pings” of the MM-Server. This module is used for

connection troubleshooting. Module Two commands a “SYN

scan” of 10 random ports of the MM-Server. This module is

use to demonstrate the feasibility of a remotely-commanded,

 40

externally observable, network behavior from the MM-Client.

This behavior is intentionally modeled on the scans

performed by the bots of a botnet, as discussed in Chapter

II.

Module Two’s complex scanning behavior is not native to

Linux or to any of the Microsoft Operating Systems. For

these scans, we utilized Salvatore Sanfilippo’s “hping”

software, available at www.hping.org under the GNU General

Public License v2. Use of hping on Microsoft Windows

platforms additionally requires the use of CACE Technology’s

WinPcap library (specifically, we used version 4.1.0.2001),

whose license is currently available for viewing at

www.winpcap.org/misc/copyright.htm. Additionally, we had

problems using hping version 3 on XP; reverting to version 2

was required. This version is currently available at

http://sourceforge.net/projects/sectools/.

Unfortunately, the use of hping clients on Linux hosts

requires the use of raw sockets, which are not available

without administrator privilege. This can be overcome by

appending the command for hping to the sudoers list of the

Linux client, e.g., %admin ALL = NOPASSWD: /sbin/hping3.

MM-Clients are not multi-threaded. This is an

intentional design feature incorporated for safety; MM-

Clients only execute limited amounts of code before blocking

for a continuation confirmation from the MM-Server, and in

the future, a “kill server” on the local network. If at any

point MM-Client connection with the MM-Server is lost, it

ceases any commanded behaviors and reverts back to its

initialization behavior, i.e., entering an “idle” loop,

attempting to reconnect every ten seconds until successful.

 41

3. Communication Protocol

The communication protocol between the MM-Server and

the MM-Client is shown in the flow chart shown in figure

two. The flow chart assumes that the MM-Server has a

preexisting session established between one or more MM-

Clients. When first initialized, the MM-Clients are in an

idle state, as discussed above. When the trainer inputs a

module command to be executed into the user interface, that

command is written by the server to the inbox of the MM-

Client. The MM-Client periodically (currently set to every

five seconds) retrieves its inbox, then confirms the command

with the “local kill” server. (The kill-switch feature is

not yet implemented.) If it receives a “continue,” the MM-

Client updates its status on the MM-Server, and executes one

iteration of the commanded behavior. At this point, it

loops back to checking its inbox, and continues as above.

Behavior iterations are, and shall be, kept at an

acceptably small duration, in order to allow the trainer or

local kill server to cease behaviors in a reasonable amount

of time, currently set to 10 seconds. As above, the MM-

Client blocks while checking its remote inbox or confirming

its command with the local kill server. If a halt is

received in either situation, the MM-Client ceases

behaviors, and reverts to an idle state.

 42

Figure 2. Communication protocol flow diagram.

 43

The communications between the MM-Server and the MM-

Client are passed in clear text, vice the host of other

message passing facilities available in Java. The reason

for this design decision was two-fold. First, the observable

plain-text is much easier to troubleshoot. Second, the

client-server session could utilize port 80, encapsulating

the commands in Hypertext Markup Language, and in this way,

be less likely to be flagged by any intrusion detection

system that might be at a point between the MM-Server and

MM-Client. This encapsulation feature is not yet implemented

in the code.

4. Graphical User Interface for MM-Server

It was desired for this program to have a Graphical

User Interface (GUI) as well. Once the MM-Server is adopted

and is utilized to control hundreds to thousands of

computers, then a GUI may be essential to ease the

administrative tasks of monitoring the status of the MM-

Clients, and controlling their behavior by issuing tasks to

individual or groups of MM-Clients on the network.

The GUI was designed using the NetBeans Integrated

Development Environment (IDE) 6.9.1. NetBeans provides an

efficient and user-friendly design tool for developing rapid

prototypes of graphical user interfaces. The tool also does

a great deal of the coding of the layout; as the user

establishes the look-and-feel of the interface by

instantiating the frames, panes, and the locations of the

fields, buttons, and labels, the coding is done in the

background for the layout and format of all these items.

This relieves the developer of much of the tedious tasks

 44

associated with layout development and enables him to remain

focused on the functionality to be provided.

The initial GUI design contains three different views:

an icon-based view, a tree-based (or folder) view, and a

tabular view. The tree-based view was implemented in this

thesis, while the icon and tabular views are left for

further study. The tree-based view is very similar to the

file management tools in Windows, Macintosh, and Linux

environments.

Each MM-Client is a node within a tree. By clicking on

those nodes, the status of that MM-Client is displayed along

with the ability to give new orders to the MM-Client. In

time, the ability to select multiple MM-Clients and submit a

batch order to the group will be implemented. Such a

capability will enhance the controller’s ability to rapidly

manage the training or evaluation scenarios.

C. BUILDING THE TEST PLATFORM

For our test, we built a small network of 20 nodes. In

a real case of deployment, since our system is envisioned to

be running as a distributed system, the MM-client software

should be installed on many, if not all, devices in an

organization connected to a MM-server. Therefore, it must

be shown that the MM-server can handle the communication

between multiple networked devices and that there would be a

minimal delay from the time the command is given to a subset

of MM-clients to the actual execution of that command. This

delay should be dominated by the network-dependent

characteristics of the messages, such as transmission,

 45

propagation, and queuing delays, and not their processing by

the MM-Server of MM-Client applications.

We designed a test platform based on virtualization for

evaluating the MM-server and MM-clients. This test

environment allows for greater flexibility in the types of

operating systems utilized, minimal footprint taken up by

equipment and cable runs, and for general expansion of the

number of MM-clients run.

VMware’s products were utilized in our thesis, in

particular VMware View and VMware Workstation. These

products will hereafter be referred to as a VMware Player.

VMware allows many different Operating Systems to run as

Virtual Machines on a single host platform. A Virtual

Machine is essentially a complete, logical, computing

machine. The user perceives the VM (Virtual Machine) as an

entire computer solely running a particular Operating System

and software. The VM is actually just another program being

run by the host computer’s Operating System (OS) with memory

requirements. The file manager installed with the host OS

allocates a large file on the hard drive which is accessed

as a virtual disk from the VM. The VMware Player

virtualization layer maps the actual physical resources of

the host computer to the virtual machine’s resources.

Device driver support is inherited from the host OS. As

such, activity inside the VM is handled by the host OS,

device drivers, or directly by the hardware.

The VMware View or VMware Workstation program serves as

a translator between the virtualized OS and the host

computer. VMware translates desired commands into commands

that must be scheduled and performed by the host’s processor

 46

and other resources. This translator is referred to as the

hypervisor. A hypervisor is a piece of software that is

closely tied to the host OS or to the host computer’s

hardware. Each VM is entirely encapsulated and must make

all processor, resource, and device driver calls through

this hypervisor. The hypervisor is in charge of

coordinating all of these requests to the host OS or host

computing machinery.

The host computer must have adequate hard drive space

for a large file that will contain the VM’s virtualized hard

drive and sufficiently large physical memory (RAM) to be

allocated to the VM’s running process. The greater the

number of virtualized hosts on a given platform the greater

the demands for hard-drive space and RAM. A common and

current computer can run the host OS and one or two VMs

simultaneously. To do more requires a much more powerful

computer.

Virtualization can be leveraged further—instead of

using desktop computers, more powerful servers were

utilized. The test platform was built utilizing two Dell

PowerEdge 2950 Servers (eight 32-bit processors, 4 GB of

main-memory (RAM), and 131 GB hard drive storage). These

servers provide the capacity and performance required to run

more than just a few VMs at once. Similar to the VMware

View/Workstation program, a hypervisor is required to

coordinate the use of the hardware’s resources by the

running VMs. VMware vSphere Hypervisor is a rebranding of

what was previously known as VMware ESX and ESXi. The

 47

vSphere Hypervisor runs on the “bare metal,” meaning that no

host OS must be installed on the server in order to support

the hypervisor.

Besides the two physical servers, a Dell Latitude E6510

laptop with an Intel i7 Core, 64-bit processor, and 8 GB of

RAM was required. The laptop was our tool for creating VMs,

converting them for use with the hypervisor, and

transferring them to the physical servers. Once the VMs

were transferred, the laptop was our means for controlling

which VMs were active on the server, and for accessing

inside each individual VM as if it were a separate computer

awaiting our commands.

VMware View allowed us to create the VMs that would be

installed onto the servers. Using the iso images of the

Ubuntu 10.10, Ubuntu Server 10.10, and Windows XP Service

Pack (SP) 3 Operating Systems, we created three individual

VMs. Once the installation was complete, each VM was

accessed and the additional software was installed: Java

Runtime Environment, MM-Client, MM-Server, Wireshark, and

hping.

VMware Converter allowed us to transport the VMs from

the laptop to the servers. VMware Converter can take many

different VM types and create a VM that is compatible with

the hypervisor. These VM types include other VMware-based

VM, Microsoft VMs, and other third party images, such as

Norton Ghost images. The VMs and/or images must be loaded

onto the servers hosting the hypervisor with VMware

Converter. Failure to do so will result in VMs that do not

work and that may possibly corrupt VMs previously loaded

onto the server.

 48

Once the VMs are loaded via the VMware Converter, the

last required piece of software is used: VMware vSphere

Client. This software is the management that that allows us

to coordinate the actions of all the loaded VMs on the

servers. Through the vSphere Client, all of the loaded VMs

can be accessed. Similar to the VMware View program, these

VMs can be started, stopped, suspended, or restarted. Once

running, a console window can be accessed which allows the

user to fully utilize the hosting system just as if it was

on the controlling laptop. Furthermore, vSphere Client can

provide statistics on each individual running VM or the

entire physical server. Figure three shows the physical

layout of the test platform along with the installed

software.

Figure 3. Physical test bed configuration.

 49

D. EXPERIMENT DESIGN

The overarching goal of the experiment was to have a

single running MM-Server with approximately 20 MM-Clients

connected to it. Once all the machines were connected, we

wished to show that the machines could be controlled in a

timely fashion and that MM-Clients would generate an

externally observable network behavior.

Another goal was to verify the MM-Server and MM-Client

software could work on Windows and Linux environments. Most

of the computers used by DoD commands are running Microsoft

OS’s: primarily Windows XP. For example, the Navy and

Marine Corps Infrastructure and the shipboard IT-21 program

also typically use Windows XP. Other OS’s used within the

DoD are Linux or Solaris based. It was mandatory that we

verify that our code worked on the common platforms within

the DoD and to prove the MM-Client’s portability between the

various OS’s.

One obstacle identified in the setup of the experiment

was the licensing limitations of the VMware vSphere Client.

The VMware vSphere Client license is limited to ten

activated VMs at any one time. Due to licensing

restrictions, utilizing two servers, only twenty VMs can be

running simultaneously. The physical servers can have more

VMs installed, but only ten of those installed VMs can be

activated at once. One VM was configured as the MM-Server.

The other 19 ran the MM-Client software.

1. Operating Systems and Software Utilized

Each host, less one, was running the MM-Client

software. One client was designated as the MM-Server; it

 50

ran the MM-Server software. For each to run, the Java

Runtime Environment (JRE) was installed on each machine.

The JRE was downloaded from Java’s website for the Windows

XP SP3 VMs. The package openjdk-6-jre-headless was

downloaded and installed on the Ubuntu and Ubuntu Server

images. The operating systems utilized on the VMs were

Microsoft Windows XP Service Pack (SP) 3, with all updates

installed; Ubuntu 10.10; and Ubuntu Server 10.10. Section

B.2 above has information about the software that was

utilized for each of the modules. Again, Microsoft XP was

selected, as it runs upon the preponderance of DoD

workstations.

The MM-Server was run on an Ubuntu host VM. The MM-

Server also served as the network monitor; towards this, MM-

Client nodes were configured to direct network behaviors at

the MM-Server. Utilizing the MM-Server’s Module 0 (the

initial and idle state for all of the MM-Clients), the MM-

Client query the mailbox at the MM-Server for commands. In

Module 1, the MM-Client sends a series of ICMP pings to the

MM-Server. In Module 2, the MM-Client utilizes performs a

SYN-scan of the MM-Server. All of the traffic was destined

for the MM-Server whose computer would also be running

Wireshark, a protocol analyzer. Finally, the MM-Server was

also configured as a Dynamic Host Configuration Protocol

(DHCP) server so that all of the VMs would not have to be

assigned static IP addresses during test-bed startup.

It was desired for all traffic to be targeted to the

MM-Server so that all communications and results of the

running modules could be captured and analyzed. The

experiment’s goals were verification that the system worked,

 51

verification of the timeliness with which the MM-Clients

obeyed the commands, verification of correct behaviors of

the MM-Clients running the modules.

Specifically, the test bed was set up as such:

• Command and Control Server

 Ubuntu Operating System

 MM-Server

 DHCP Server

 Wireshark

• Nineteen (19) Hosts

 MM-Client receiving commands from the MM-

Server

 Assigned IP addresses from the DHCP server

 Five (5) hosts running Ubuntu Desktop OS

 Five (5) hosts running Win XP SP3 OS

 Nine (9) hosts running Ubuntu Server OS

This is represented graphically in figure four.

 52

Figure 4. Virtual test bed configuration.

E. RUNNING THE EXPERIMENT

The VM that hosts the MM-Server, DHCP server, and

Wireshark must be started first. Then, all of the other VMs

may be started and the MM-Client software executed. While

the MM-Clients connect to the MM-Server, status messages on

the MM-Clients and MM-Server should be monitored to verify

the connection made between the MM-Server and each MM-

Client. Furthermore, Wireshark can be used to monitor the

externally observable network behavior of MM-Clients

querying their mailbox on the MM-Server for updated

commands.

 53

For purpose of our experiment, once all VMs and

programs were started, we would verify that all programs

respond to the changes of the requested running module by

the MM-Server. Data would be analyzed using Wireshark to

examine the change in network traffic directed at the MM-

Server. Once all changes between module states zero to two

were verified, each module would be run for up to five

minutes to allow the system to reach a steady-state.

Finally, the MM-Server would be stopped and Wireshark used

to assess the changes in behavior of the MM-Clients as they

changed from a running module to a failsafe state.

During all of the above, performance data would be

captured about the server, to include CPU utilization,

memory allocation, disk activity, network capacity used, and

other statistics. The purpose of this data collection was

to support an analysis of the strain under which the two

servers are operating during this test.

The overarching purpose of this experiment would be to

verify the system functions as designed. It would also be

to verify that the MM-Server could handle multiple

connections and that there would be timely changes in

requested behavior by the MM-Clients. Finally, it would

assess whether there was any strain upon the MM-Server or

the physical servers themselves due to operation all of the

virtual machines (this would indicate a scalability issue

for a small deployment venue). As such, the experiment would

serve to establish a benchmark for the performance of the

Malware-Mimic System in a benign environment.

 54

F. SUMMARY

This chapter discussed the system infrastructure

consisting of the command and control MM-Server and the

remote MM-Clients. The protocol’s design was examined,

specifically in relation to how the MM-Clients would receive

the orders from the MM-Server. The protocol was designed

with safety as the paramount feature. The MM-Clients must

have guidance in order to start the modules. That guidance

must persist for a new iteration of behavior to occur.

The test platform and the general design of the

experiment were discussed. The test platform relies heavily

upon virtualization. Virtualization allows for a varying

number of systems to be activated, a variety of operating

systems that can be utilized, and various network

configurations, so that the MM-Server and MM-Client software

can be fully vetted. It also forms a platform for further

expansion in the formulation and testing of new modules, new

operating systems, and more complex networks. The next

chapter will provide the results of the experiment.

 55

V. RESULTS

A. BACKGROUND

This section provides details about the implementation,

as well as the results of the experiment delineated in

Chapter IV. The results demonstrated the viability of this

novel training and evaluation tool. The protocol functioned

as it was designed, with feedback between the MM-Server and

the MM-Clients. The safety features were adequate in

restoring the MM-Clients to their failsafe state during

interruptions in network connections with their respective

MM-Sever. Observable network traffic was positively

identified which can fulfill training and analysis

objectives. Finally, it was verified that the test platform

is a suitable testing environment prior to deployment on a

live network.

B. SETUP

The two servers began the experiment in steady state

with all VMs shutdown. On the laptop, we connected to each

Physical Server utilizing vSphere. The Ubuntu VM that would

run the MM-Server on Physical Server 2 was the first VM

started. This was needed because that VM had a fixed IP

address (10.19.61.123) and also hosted the DHCP server that

would allocate IP addresses to all of the other VMs as they

started up. Once the DHCP service was operating, all

nineteen of the other VMs were started. Figure 5 shows

which types of VMs were running along with their respective

IP addresses on each physical server.

 56

Figure 5. Physical server IP addresses/type/names.

The specific IP addresses of the Physical Servers were

not relevant for the experiment. The IP addresses

facilitated connections via the laptop running the VMware

vSphere Client software in order to control all of the VMs

running on the servers. The controlling laptop was given an

IP address of 10.19.61.235.

Physical Server 1 had five MM-Clients running on the

Windows XP Professional Service Pack 3 (WINXP SP3) Operating

System VMs, and five MM-Clients running on the Ubuntu 10.10

 57

Operating System VMs. Physical Server 2 had nine MM-

Clients, one per Ubuntu Server 10.10 VM, and the one MM-

Server running on the Ubuntu 10.10 VM. All MM-Clients

connected to the MM-Server at the IP address 10.19.61.123.

The IP addresses were required so that the Wireshark packet

capture could be analyzed in order to ensure all of the MM-

Clients were executing the correct module and to get a

measurement on how quickly each responded to the change in

commands.

C. TIMELINE

Figure 6. Experiment Timeline of Events.

The timeline (Figure 6) shows the order and times of

specific events during the entire experiment. This helped

us correlate the information in all of the packets displayed

in Wireshark with the events that occurred. Furthermore,

this timeline is meant to be used in conjunction with

Figures 8 and 9 (showing CPU utilization per physical

server). The alphabetical labels on Figures 8 and 9

correspond to the same labels in the left hand column in the

timeline shown in Figure 6.

 58

D. DISCUSSION OF RESULTS

Overall, the entire experiment verified system

performance per the architecture set forth in Chapter II.

All VMs functioned as configured, and all MM-Clients

connected to the MM-Server performed the desired actions and

responded to the changes in commands in less than ten

seconds. The MM-Server had no dropped packets on the

Network Interface Card and Wireshark showed all of the

traffic between the MM-Clients and the MM-Server.

1. Results for MM-Server and MM-Clients

The MM-Server performed according to specification.

All MM-Clients connected to the MM-Server as designed. The

Ubuntu VM hosting the MM-Server operated with no degradation

in performance under the load of the nineteen TCP sessions

of the MM-Clients. The Linux “top” command showed that the

Java process of the MM-Server utilized approximately 0.3% of

the CPU time. It also showed that the percent of memory

utilized by the same process started at 2.5% when no MM-

Clients were connected and only grew to 2.9% when all

nineteen MM-Clients were connected.

An example of the time it takes to transition between

states for the MM-Client is given below. Since the MM-

Server does not actively send a command to a MM-Client, the

responsiveness between a typed command at the MM-Server and

the MM-Client receiving that command, updating the MM-

Client’s status and then executing that command is somewhat

slower than it could be. However, as seen in Figure 7, it

takes approximately 5-6 seconds for a MM-Client to cease the

current running module, access and process the new order

 59

from its mailbox in the MM-Server, update its status with

the MM-Server and begin exhibiting the correct behavior of

the newly ordered module. This delay can be attributed to

many different processes: physical, programmable, and

virtual. The physical realm deals with the actual signal

propagating through the physical wires and switch. Within

the programs, the command is placed within the MM-Client’s

inbox on the MM-Server and there is a delay depending on

when the MM-Client “checks back in” with the MM-Server

following a single iteration of the current ordered module.

Finally, since there are two physical servers running twenty

VMs, there are additional delays due to the non-

deterministic scheduling of the VMs, as well as the overhead

of the hypervisor.

Figure 7. Packet Capture between MM-Client and MM-Server.

The MM-Clients were designed for safety and the ability

to be controlled remotely. Figure 7 is a sample of the

latter, utilizing a Wireshark packet capture between the MM-

Client hosted on the WINXP_08_Client (10.19.61.67) and MM-

 60

Server (10.19.61.123). To test the former, the experiment

ended with an abrupt termination of the MM-Server with all

nineteen MM-Clients having active TCP sessions. The ensuing

network traffic from the MM-Clients to the host which had

been previously running MM-Server at 10.19.61.123 was

captured by Wireshark. Within seven seconds, all of the MM-

Clients that were running Module 2 entered their failsafe

behavior. All MM-Clients performed as expected, which

suggests that the built-in safety mechanism performed as

planned. That is, if the MM-Server is no longer present to

give orders, the MM-Clients will terminate all previous

behaviors, revert to a benign, failsafe mode, and attempt to

reestablish a connection with the MM-Server.

 61

2. Results for the Physical Servers

Figure 8. CPU Utilization of Physical Server #1.

 62

Figure 9. CPU Utilization of Physical Server #2.

The performance of physical servers one and two (IP

addresses (10.19.61.236 and 10.19.61.237, respectively)

running the hypervisor and all of the VMs matched

expectations. According to the CPU utilization graphs

(Figures 8 and 9), the large spikes in CPU utilization were

 63

the actual starting and stopping of the VMs (points D and

E). The other large spikes occurred at points G and H, when

all of the MM-Client software and Java Runtime Environment

was activated.

After the MM-Clients were started and connected to the

MM-Server, CPU utilization of the actual physical servers

was negligible. The initialization and idle state (Module

0) had the MM-Clients communicate once every ten seconds to

the MM-Server in order to check for messages in their

respective queue (Module 0 began at Labels I and L in

Figures 8 and 9). This activity had a negligible effect on

the CPU, even though the CPU is “serving” both the MM-Server

and the MM-Client entities. Module 1 is not CPU-intensive,

calling only a series of five pings back to the MM-Server

per MM-Client instantiation for the module cycle of ten

seconds (Module 1 began at Label J in Figures 8 and 9).

Module 2 activated another process, hping, in order to

perform a SYN scan of the MM-Server. This shows an increase

of about 15-20% CPU utilization on both physical servers

(Module 2 began at Label K in Figures 8 and 9). The

physical servers handled the swapping between the ten VMs

and the network traffic between the MM-Server and MM-Clients

as expected.

 64

Figure 10. Network Utilization of Physical Server #1.

 65

Figure 11. Network utilization of physical server #2.

Hard disk activity of the physical servers was

negligible. Main memory (RAM) usage by each of the physical

servers was as expected when running all of the VMs:

approximately half of the onboard memory was utilized. Each

physical server had 4 GB of main memory. Upon startup of

all the VMs, memory peaked to almost full utilization. Once

all the VMs were fully booted up, logged into, and the MM-

Server and all MM-Clients activated, memory usage was

 66

approximately 25-50% in steady state. It is to be noted

that for future work, if more VMs are to be run

concurrently, the onboard memory should be increased to 8 or

16 GB.

Network activity of the physical servers due to the

Malware Mimic system is harder to isolate and assess. As

seen in Figures 10 and 11, overall network traffic was well

within the Gigabyte Ethernet capability of the server

Network Interface Cards and the switch. However, there are

some large spikes in network traffic that must be explained.

In Figure 10, the network traffic for Physical Server 1

(.236), there were large spikes of approximately 2-3

megabytes per second (MBps) at the setup and shutdown of the

experiment and it was mostly steady around 200 kilobytes per

second (KBps) during the actual running of the different MM-

Client modules. The large spikes of 2-3 Mbps were due to

the external connection of the laptop that contained the

vSphere Client software. Through vSphere, we utilized the

remote console window to access every VM. Once we were

logged in to each VM and the MM-Client software was started,

the now unneeded VM remote consoles were closed. At the

end of the experiment, the VMs were remotely logged into

again, in order to stop the MM-Client software and shutdown

the VMs. The vSphere Client allowed a remote console

window, giving full access to each VM as if sitting at a

normal desktop computer. All of these live video feeds of

the running VM to our remote console were sent over the

network connection from the Physical Servers to the laptop.

This explains the large spikes at the beginning and end of

the experiment as seen in Figure 10.

 67

The network activity of Physical Server #2 (.237),

shown in Figure 11 was similar to that of Physical Server

#1, with the large 900-KBps spike at the startup of all the

VMs. This is less because the Physical Server #2 has nine

Ubuntu Server OS VMs running. The Ubuntu Server OS is

accessed from a command prompt. This interface was text-

based, unlike the graphical interfaces of the Ubuntu Desktop

OS and WinXP OS. Therefore, the amount of information sent

over the network to our remote console was significantly

less than the graphical environments of Ubuntu and Windows

XP. However, during the period when the different MM-Client

modules were being accessed, Physical Server #2 has about

twice the network activity. This can partly be explained by

the fact that the Ubuntu OS VM (.123), with the MM-Server

software on Physical Server #2, was the only remote console

utilized to control all of the MM-Clients. Therefore, the

live feed from that VM was sent over the network to the

external laptop in order to control the flow of the

experiment.

To isolate the network traffic resulting solely from

the VMs, Wireshark statistics from the Ubuntu VM running the

MM-Server was used. Wireshark provided an input/output

graph of the amount of packets (or bytes) per unit time.

The output was configured for bytes per second. During the

test run, with all MM-Clients running Module 0 (idle state),

traffic to and from the MM-Server was 0.5-3 KBps. When all

MM-Clients were running Module 1 (ping), traffic was 1.5-8

KBps. When all MM-Clients were running Module 2 (SYN scan),

traffic was 4.5-8 KBps. Comparing these numbers to the

graphs in Figures 10 and 11, we discovered that there is a

significant amount of network traffic overhead for the

 68

virtualization of network traffic as well as the live video

feed for the remote console capability. In comparison, if

the MM-Server and MM-Clients were utilized on a live,

operational network, the resulting network activity of 0.5-8

KBps would be relatively insignificant compared to the 10,

100 or 1000 MBps capacity of today’s networks.

E. SUMMARY

The experiment demonstrated that our system performed

as designed. All of the test goals were accomplished and

there was an observable validation for each portion of the

experiment. This included the most important of the goals:

demonstrating the ability to control the MM-Clients in a

timely manner. The MM-Clients were all responsive in

changing to the ordered module, and when communication to

the MM-Server was severed, all MM-Clients ceased their

current activity and entered their failsafe mode.

The results also show that the client-server

relationship worked correctly, and can likely scale to a

greater number of MM-Clients operating on differing network

configurations. Also, with the exception of possibly

needing additional onboard memory for the Physical Servers,

there is plenty of capacity with respect to CPU cycles, hard

drive space, and network utilization for each of the

physical test bed servers to accommodate more simultaneous

VMs, as well as more complex network configurations.

Next, in Chapter VI, we discuss our conclusions. We

also discuss our thoughts on future work in this area of

study, to include code improvement, expansion, and security

implications.

 69

VI. CONCLUSIONS AND FUTURE WORK

A. CONCLUSIONS

In this thesis, we proposed a solution to DoD

overreliance on network analysis red teams for training and

evaluation of network administrators by designing a novel

network training tool. This tool allows the integration of

network evaluation into the highly complex training events

typical of U.S. military training exercises. The system we

constructed had the following characteristics:

• It was safe enough for production or operational

environments. Emulated behaviors would cease on

command and “roll-back” to a pre-exercise state.

Losses of network connection were treated as

instructions to cease behaviors. This would allow

training to take place on the same network on

which the trainees perform their mission.

• Only malware behaviors were constructed, not

actual malware itself. Though we demonstrated the

properties of a notional worm on the network,

there was no actual malware involved.

• The system constructed was distributed across the

network, allowing for the trainer to be located

anywhere on the network, local or remote.

We then set out to construct a prototype for such a

system, which we discussed in detail in Chapter IV.

Following our treatment of the constructed system, we

discussed the test bed that we created to test our system

 70

concept vis-à-vis the goal we had set for ourselves, and

proceeded to discuss the specific results acquired after

establishing the test-bed and conducting a set of tests.

We discovered that it is certainly possible to

construct a system with the attributes discussed above. We

believe that this has the potential to revolutionize

training for not only network administrators, but for the

decision makers that are affected by malicious actions

against such networks. We also noted that the system

performs as expected with regards to safety, namely, that it

did not perform uncommanded behavior at any point during

testing. The system ceased all emulated behaviors within a

suitable small time upon receipt of the trainer injected

“cease-action” command—without exception. This particular

system quality is essential for its forecasted use on

operational networks, and in this capacity, the MM-System is

ready for a validation in an operational or production

environment.

We also discovered we essentially built a botnet, as

discussed in Chapter II, complete with a command and control

architecture and slave-node functionality without the

dangerous behavior of actual propagation across the network.

This, we believe, could form the basis of an existence proof

for the size to which our Malware Mimic System architecture

can scale. Using Conficker as an example (also discussed in

Chapter II), it is possible that this tool could scale to

thousands of hosts, with some modification to the code,

allowing the training and evaluation of the administrators

of networks on the order of Tier One Internet Service

Providers.

 71

B. FUTURE WORK

1. Code Improvement and Extension

As with any software early in its lifecycle, the code

needs refinement. For example, we found that the keying

system for our data structure (mapping between keys and

actual nodes) was unwieldy. It is essential that this key

uniquely correspond to a MM-Client node, which we

accomplished by using a combination of the given node’s host

name and a user assigned name given at invocation. However,

this does not scale well, as it requires a unique naming

system to be created and tracked by those parties

responsible for instantiating the nodes. Instead, we would

suggest using a naming scheme that would allow for unique

names to be generated and maintained by the hosts

themselves, without involvement by any human user.

Furthermore, the Data Structure will, at some point, need to

be replaced by a robust, industrial grade database that can

maintain records on the order of thousands, vice the data

structure we utilized, discussed in Chapter III.

We described a local “kill server” and its role in the

communication protocol of the MM-Mimic system in Chapter

III, but we provided no implementation. We foresee a

modification to the MM-Client code that allows for local

pre-emption or blocking of remote taskings using UDP-based

requests to local “kill server” located on the trainee

network. Construction of this “kill server” could largely

be modeled on the MM-Server architecture discussed in

Chapter III; again, using datagram vice stream socket

connections.

 72

There are several improvements that could affect the

scalability of the software. As it stands, there is no

organic capability implemented to remotely “push” MM-Client

code to machines on the trainee network. Additionally,

there is no capability to distribute updates over the

network. The implication of this is that the MM-Client nodes

must have all desired behaviors preprogrammed into the MM-

Client software on the host machine. A more agile solution

would be to have modules of behaviors sent to MM-Client

nodes via software push, increasing the flexibility,

adaptability, and, possibly, security of the MM-Mimic

system. Such a scheme would require authentication and

integrity verification to ensure only authorized behaviors

are distributed.

2. More Advanced Modules

The training value in our first iteration of the MM-

System is limited. That said, there is a rich framework

laid out upon which more complex modules, with corresponding

training scenarios, could be developed. We foresee modules

that would allow the MM-Client nodes to mimic virus

behavior, as outlined in Chapter II, including, but not

limited to host machines showing virus “signatures” that

would be visible on installed anti-virus systems. Such

signatures would need to be “hidden,” likely through

encryption, until the behavior is commanded. MM-Client

nodes could show “pop-up” messages that would instruct users

to contact their system administrators. MM-Clients could

increase their system resource consumption, increasing the

discomfort level of human users utilizing the system. More

advanced and realistic worm behaviors could be programmed;

 73

simulation of worm behaviors propagating across a network,

or delivering a “payload” would be an example of this.

We have limited ourselves to discussing the behaviors

of malware—worms, botnets and the like. However, human-

centric behavior continues to be a critical aspect of system

hardening. Emulating such behavior to train operators to

recognize it when it occurs could be beneficial. Determining

whether or not there exists discernable differences between

the observable behaviors of a human adversary, a “hacker” in

popular parlance, and programmatic behaviors of the MM-

System would be a first step to implementing “human”

behaviors. We believe that the emulated threat behaviors of

the MM-System could be expanded to include those of

“hackers” as well, perhaps through well-scripted “mock”

user-sessions.

3. Increase Scale of Test Bed

Code development is one area for further advancement;

but the path forward for the project in the whole will rely

on the system being tested on human users on a scale

representative of the training networks to which the system

is destined. Towards this, expansion of the test bed will

be required to an appropriate number of clients well beyond

the twenty used for initial test bed. Testing of the system

should also be conducted on networks more complex than the

single subnet system we utilized, again, to validate the

system for networks more representative of its anticipated

use. Additionally, as discussed in Chapter V, we relied on

a protocol analyzer to demonstrate our externally-observable

 74

network behaviors. We must additionally test our system

against common intrusion detection systems used in the field

today, e.g., Snort.

4. Security Implications

We made no security assumptions in our architecture,

nor did we treat security implications in our

experimentation. Before the MM-System is ready for field

use, security analysis must be performed. The architecture

should be suitable for this environment, however, as the

system architecture was conceived with security in mind,

with an eye on eventual deployment on DoD networks. Java is

common on DoD networks. Host-based network software is

common on DoD networks. No mechanism yet exists to prevent

unauthorized third parties from remotely commanding MM-node

behavior, but again using existing botnets such as Conficker

as an example, this too should be possible. But the

fundamental approach to the system is its greatest asset:

only malware behaviors are employed on the trainee network,

not actual malware. Therefore, no behavior can happen on

the network that is not explicitly coded into the MM-

Clients. In this way, the MM-System behaviors can be

tailored according to the risk tolerance of the trainee

networks.

 75

APPENDIX A. MM-SERVER: CANDCSERVER.JAVA

/***/
/* */
/* Program: Malware Mimic Server */
/* */
/* Top level for the MM-Server. Interfaces with the user */
/* via the UI. Handles incoming TCP connections on all */
/* interfaces on TCP.port == 30000 with remote or local */
/* MM-Clients. Maintains and closes TCP sessions with */
/* MM-Clients. Translates user instructions to MM-Clients */
/* and passes the commands to MM-Clients. Allows input */
/* from MM-Clients to UI. Maintains state on MM-Clients. */
/* FILE: ClientProgram.java */
/* */
/* USAGE: ./MM-Server <with no paramters> */
/* */
/* */
/* AUTHORS: W. Taff and P. Salevski */
/* */
/* DATE: 22 January 2011 */
/* */
/***/

package commandserver;

import java.io.IOException;
import java.net.*;

/**
 * The server - top level for program, and listener for connections.
 * Initializes the database. Starts the UI.
 * Sits and listens for connections, spins off CC-Communicators
 * to handle them and passes off Socket to same, then reset to
 * listen.
 *
 * @author W. Taff and P. Salevski
 *
 */
public class CandCserver {

 /**
 * @param args
 */
 public static void main(String[] args) {

 ///
 //INITIALIZATION
 ///

 ClientDatabase dataBase = new ClientDatabase();

 76

 Integer listenPort = 30000;

 Socket clntSock = null;

 //start the UI
 Thread GUIthread = new Thread(
 new CandCserverMenuUI(dataBase));
 GUIthread.start();

 try {

 ServerSocket server = new ServerSocket
(listenPort);

 System.out.println ("Server Listening on port "

 while (true){

 System.out.println ("Waiting");

 clntSock = server.accept();

 System.out.println ("Connection Accepted
from " + clntSock.getInetAddress());

Thread thread = new Thread(new
ClientCommunicator(clntSock, dataBase));

 thread.start();

 }//end while

 }
 catch (IOException ioe) {
 System.err.println (ioe);
 }

 }

}

 77

APPENDIX B. MM-SERVER: CANDCSERVERMENUUI.JAVA

package commandserver;
//Filename: CandCserverMenuUI.java
//21 December, 2010

import java.util.Scanner;

/**
 * Rudimentary command line, console based ui
 * Used for troubleshooting and functionality verification; will
 * likely be replaced with graphical version.
 *
 * @author W. Taff and P. Salevski
 *
 */
public class CandCserverMenuUI implements Runnable {

 /** need access to db to invoke methods */
 private ClientDatabase db;

 public CandCserverMenuUI(ClientDatabase dbInput){

 this.db = dbInput;}

 /* (non-Javadoc)
 * @see java.lang.Runnable#run()
 */
 public void run() {

 uiConsole();

 }//end run

 private void uiConsole() {

 //OF FORM: commands, module numbers (if any), and targets
 // e.g. MOD_0:ALL or maybe PRINT:ALL
 // if no target, assume ALL

 Scanner adminInputScanner = new Scanner(System.in);

 78

 String inputString = "";

 int cmdDelimValue;

 String command = null;

 String target = null;

 int moduleNumber = 999;

 while (inputString.compareTo("QUIT")!=0){

 inputString = adminInputScanner.next();

 inputString = inputString.toUpperCase();

 cmdDelimValue = inputString.length();

 try {
 if (inputString.contains(":")){

cmdDelimValue =
inputString.indexOf(":");

 command = inputString.substring(0,

 cmdDelimValue);

target =
inputString.substring(cmdDelimValue

 + 1); }

 else {

 command = inputString;

 target = "ALL";

 }

 if (inputString.contains("_")){

int modDelimValue =
inputString.indexOf("_") + 1;

moduleNumber =
Integer.parseInt(inputString.
substring(modDelimValue,
cmdDelimValue));

command = command.substring(0,
modDelimValue -1);

 79

 }

 } catch (Exception e) {

 e.printStackTrace();

 System.out.println("ERROR ON PARSE OF
INPUT");

 }

 System.out.println("Command is:"
 + command);

 System.out.println("Target is:"
 + target);

 System.out.println("Module Number is:"
 + moduleNumber);

 //THE COMMANDS

 if (command.compareTo("PRINT") == 0){

 print(target);

 }

 else if (command.compareTo("HALT") == 0){

 halt(target);

 }

 else if (command.compareTo("MOD") == 0){

 mod(moduleNumber, target);

 }

 else {

// db.getRecord(command).getCC().
//

 80

 sendMessage2Client(value);

 }//end else

 }//end while

 System.out.println("Got quit command");

 System.exit(0);

 }

 private void mod(int moduleNumber, String target) {

 System.out.println("Running MOD_" + moduleNumber);

 db.run_module(moduleNumber);

 }

 private void halt(String target) {

 if (target.compareTo("ALL")==0){

 System.out.println("Halting All!");

 db.halt_module();

 }

 }

 /**
 * Print records in the database.
 * @param target
 */
 private void print(String target) {

 81

 if (target.compareTo("ALL")==0){

 String printBuffer = db.getAllrecordsFromDB();

 System.out.println("Host, Exercise, Inbox,
Status");

 System.out.println(printBuffer);

 }//endif

 }//END print()

}//end class

 82

THIS PAGE INTENTIONALLY LEFT BLANK

 83

APPENDIX C. MM-SERVER: CLIENTCOMMUNICATOR.JAVA

// Filename: ClientCommunicator.java
// 21 December, 2010

package commandserver;

import java.net.*;
import java.io.IOException;
import java.io.PrintStream;

/**
 * A handler that maintains the session between server and client.
 * Runs as a thread that is started by server. On run, spins off
 * a threaded Client Listener to accept input, and calls MM-node
 * for Name and Status.
 *
 * @author W. Taff and P. Salevski
 */
public class ClientCommunicator implements Runnable{

 /** Socket passed to CC by the SocketServer */
 private Socket ccSocket;

 /** The output stream use to push our messages onto the wire */
 private PrintStream outPrintStream;

 /** the location of the db, so we can call it's methods */
 private ClientDatabase db;

 /** the keyname of the host that the CC relates to */
 private String keyname;

 // CONSTRUCTOR
 public ClientCommunicator(Socket passedSocket,
 ClientDatabase db) {

 this.ccSocket = passedSocket;

 this.db = db;

 //make the output stream. input stream made in run()
 try {

 this.outPrintStream = new PrintStream(
 ccSocket.getOutputStream());

 } catch (IOException e) {

 e.printStackTrace();

 84

 }

 }//end constructor ClientCommunicator()

 /* (non-Javadoc)
 * @see java.lang.Runnable#run()
 */
 //@Override
 public void run() {

 ccListenerStarter() ;

 outPrintStream.println("#GETNAME");

 }//end run()

 /**
 * Starts the ccListener.
 * Use the ccListener for input from the MM-node. */
 private void ccListenerStarter(){

 try {

 //spin off new ccListener

Thread listenerThread = new Thread(
new ClientCommunicatorListener(
ccSocket.getInputStream(), db, this));

 listenerThread.start();

 } catch (IOException e) {

 e.printStackTrace();

 }

 }//end ccListenerStarter()

 85

 /**
 * Externally callable session terminator-closes socket.
 * Also updates the status of the MM-Client in the db.
 */
 public void terminateSession(){

 sendMessage2Client("Session Terminated");

 db.getRecord(keyname).setClientStatus("TERMINATED
");

 try {

 ccSocket.close();

 } catch (Exception e) {

e.printStackTrace();
db.getRecord(keyname).setClientStatus("LO
ST");

 }

 }//end terminateSession()

 /**
 * Pushes any input string down to MM-Client
 * @param msg
 */
 public void sendMessage2Client(String msg){

 outPrintStream.println(msg);

 }

 /**
 * @return the keyname
 */
 public String getKeyname() {
 return keyname;
 }

 86

 /**
 * @param keyname the keyname to set
 */
 public void setKeyname(String keyname) {
 this.keyname = keyname;
 }

}//end class

 87

APPENDIX D. MM-SERVER: CLIENTCOMMUNICATORLISTENER

package commandserver;
//Filename: ClientCommunicatorListener.java
//21 December, 2010

import java.io.*;

/**
 * @author W. Taff and P. Salevski
 * Handles input from MM-node.
 * Parses MM-node messages and makes appropriate system calls.
 *
 */
public class ClientCommunicatorListener implements Runnable{

 ///
 //DATA MEMBERS
 ///

 /** passed - will bolt on top a BufferedReader */
 private InputStream inStream;

 /** use for reading incoming messages from MM-Client */
 private BufferedReader inBufferedReader;

 /** gives ability to call ClientDatabase fns */
 private ClientDatabase db;

 /** gives ability to call back to the calling CC */
 private ClientCommunicator parentCC;

 ///
 //METHODS
 ///

 //CONSTRUCTOR
 public ClientCommunicatorListener(InputStream inputStream,
 ClientDatabase db, ClientCommunicator callingCC) {

 this.db = db ;

 this.inStream = inputStream;

 this.inBufferedReader =
 new BufferedReader(new InputStreamReader(inStream));

 88

 this.parentCC = callingCC;

 }

 public void run() {

 //Need try/catch to make severed sessions graceful
 try {

 listenLoop();

 } catch (NullPointerException e) {

 e.printStackTrace();

 }

 catch (Exception e) {

 e.printStackTrace();

 }

 finally {

 System.out.println("Connection Lost to " +
 parentCC.getKeyname());

 parentCC.terminateSession();
 db.getRecord(parentCC.getKeyname()).setClientStatus("LOST");

 }

 }//end run()

 /**
 * Main loop of CCListener.
 * Blocks on readlines from MM-Client. Calls appropriate db
 * methods based on input passed up from MM-Client.
 * @throws Exception
 *
 */
 private void listenLoop() throws Exception {

 Boolean keepGoing = true;

 String textReceived = "";

 89

 while (keepGoing) {

 textReceived = inBufferedReader.readLine();

 if (textReceived.compareTo("QUIT")==0){

 parentCC.terminateSession();

 keepGoing = false;

 }

 else if (textReceived.contains("GETINBOX")){

 parentCC.sendMessage2Client(db.getRecord(
 parentCC.getKeyname()).getClientInbox());

 }

 else if (textReceived.contains("=")){

 setVariableValue(textReceived);

 }//end if

 //RESET THE TEXT OR WE SPIN
 textReceived = "";

 } // end while

 }

 /**
 * Set a db key/value pair based on input from MM-client
 *
 * @param textReceived
 */
 private void setVariableValue(String textReceived) {

 int delimValue = textReceived.indexOf("=");

 String key = textReceived.substring(0, delimValue);

 String value = textReceived.substring(delimValue + 1);

 90

 if (key.compareTo("NAME")==0) {

 parentCC.setKeyname(value);

 db.createRecord(value, parentCC);

 }

 else if (key.compareTo("STATUS")==0) {

 //with key, set the status
 db.getRecord(parentCC.getKeyname()).setClientStatus(value);

 }

 else if (key.compareTo("EXERCISE")==0){

 db.getRecord(parentCC.getKeyname()).setExercise(value);

 }

 }

}

 91

APPENDIX E. MM-SERVER: CLIENTDATABASE.JAVA

package commandserver;
// Filename: ClientDatabase.java
// 21 December, 2010

import java.util.TreeMap;
import java.util.SortedMap;
import java.util.Collections;

/**
 * The database of ClientRecords.
 * Uses a TreeMap (for now) as the data structure,
 * and ClientRecords as the nodes.
 *
 * @author W. Taff and P. Salevski
 *
 */
public class ClientDatabase {

 ///
 //DATA MEMBERS
 ///

 /**the database data structure of ClientRecord*/
 private SortedMap< String, ClientRecord > dbase =
 Collections.synchronizedSortedMap(
 new TreeMap< String, ClientRecord >());

 ///
 //METHODS
 ///

 /**
 * Constructor for ClientDatabase
 *
 * */
 public ClientDatabase () {

 }

 92

 /**
 * Creates a record in the database.
 * @param hostID - uid_host of the host we are creating (used as
key)
 * @param ccIn - the calling Client Communicator
 * @return True if successfully created
 * */
 public Boolean createRecord(String hostID, ClientCommunicator ccIn){
 ClientRecord newRecord = new ClientRecord(ccIn, this);

 try {

 dbase.put(hostID, newRecord);

 System.out.println("Added record for " + hostID);

 }

 catch (ClassCastException cce) {

 System.err.println(cce);
 }

 catch (NullPointerException npe) {

 System.err.println(npe);
 }

 return true;

 }

 /**
 * get a client record from the database.
 * Pulls an instance of ClientRecord from the database, for use as
 * a helper function for class functions.
 * @param hostID - uid_host of the host of interest
 * @return ClientRecord
 *
 * */
 public ClientRecord getRecord(String hostID) {
 // gets the record from the TreeMap that has the hostID key
 ClientRecord tempClientRecord = null;
 try {
 tempClientRecord = dbase.get(hostID);
 }
 catch (ClassCastException cce) {

 93

 System.err.println(cce);
 }
 catch (NullPointerException npe) {
 System.err.println(npe);
 }
 return tempClientRecord;
 }

 /**
 * Returns String of all database inbox and status for all MM-C.
 * Typically used for console troubleshooting.
 *
 * @return returnString, a string of all db parameters by client
 */
 public String getAllrecordsFromDB(){

 String returnString = "";

 for (String keyString : dbase.keySet()) {

 returnString += keyString + "," +
 dbase.get(keyString).getUID_ExerciseNetwork() +"," +
 dbase.get(keyString).getClientInbox() + "," +
 dbase.get(keyString).getClientStatus() +"\n" ;

 }//end for-loop

 return returnString;

 }

 /**
 * deletes a client record from the database.
 * Will attempt to remove a client record from the database,
 * based on the host UID provided.
 * @param hostID - uid_host of the host of interest
 * @return True of record and deleted, False if record not found
 *
 * */
 public Boolean deleteRecord(String hostID) {

 // tries to delete the record
 Boolean deleteSuccess;

 ClientRecord tempClientRecord = null;

 try {

 tempClientRecord = dbase.remove(hostID);

 94

 }

 catch (ClassCastException cce) {

 System.err.println(cce);
 }

 catch (NullPointerException npe) {

 System.err.println(npe);

 }

 if (tempClientRecord == null)

 deleteSuccess = false;

 else {

 deleteSuccess = true;
 }

 return deleteSuccess;

 }

 /////////////////////////////
 // UPDATE (SET) METHODS
 /////////////////////////////

 /**
 * Halts running module - OVERLOADED METHOD.
 * Called without arguments, halts running module in all
 * modules. Simple iteration over dbase, setting client
 * inboxes to HALT.
 */
 public void halt_module(){

 for (String keyString : dbase.keySet()) {

 dbase.get(keyString).setClientInbox("HALT");

 }//end for-loop

 }//end halt_running_mods()

 95

 /**
 * Starts running module - OVERLOADED METHOD.
 * Called without target arguments, starts running module in all
 * modules. Simple iteration over dbase, setting client
 * inboxes to MOD_X, where X is the module number.
 *
 * @param moduleNumber
 */
 public void run_module(int moduleNumber){

 for (String keyString : dbase.keySet()) {

 dbase.get(keyString).
 setClientInbox("MOD_" + moduleNumber);

 }//end for-loop

 }// end run_module()

}

 96

THIS PAGE INTENTIONALLY LEFT BLANK

 97

APPENDIX F. MM-SERVER: CLIENTRECORD.JAVA

package commandserver;
// Filename: ClientRecord.java
// 21 December, 2010

/**
 * ClientRecord - the records in the database.
 * Includes all fields associated with a single client, except for
 * it's uid, which the record is keyed by in the database.
 * @author W. Taff and P. Salevski
 *
 */
public class ClientRecord {

 ///
 //DATA MEMBERS
 ///

 /**unique identifier of the exercise network */
 private String uid_ExerciseNetwork;

 /**status of the client, set by the client, read by server */
 private String status;

 /**inbox of the client, set by server, read by client */
 private String clientInbox;

 /**where the ClientCommunicator lives */
 private ClientCommunicator cc;

 98

 ///
 //METHODS
 ///

 /**
 * Constructor for a ClientRecord - called by ClientDatabase.
 * Gets passed hostID, exerciseID and a socket. Initializes
 * the class with the passed params, and makes empty for those
 * params that it does not yet have.
 * @param hostID - uid_host of host we are creating (used as key)
 * @param exerciseID - the UID of the exercise
 * @param passedCC - the ClientCoummincator for the client.
 * @param db - the database of clients
 */
 public ClientRecord (ClientCommunicator passedCC, ClientDatabase
db){ this.cc = passedCC;

 this.uid_ExerciseNetwork = "NOT_SET";

 this.status = "INITIALIZED";

 this.clientInbox = "INITIALIZED";

 }

 /////////////////////////////
 // GET METHODS
 /////////////////////////////

 /**
 * returns the content of the client's inbox
 * The client inbox is set by the server, but read by
 * the client. Consists of a plain text string value.
 * @return clientInbox - the contents of the client's inbox
 */
 public String getClientInbox(){

 return clientInbox;

 }

 public ClientCommunicator getCC(){

 return this.cc;

 }

 99

 /**
 * for the commandServer to get status of the individual client
 * @return status - the contents of the client's status box
 */
 public String getClientStatus(){
 return status;
 }

 /**
 * return the UID of the exercise network
 * @return uid_ExerciseNetwork
 */
 public String getUID_ExerciseNetwork() {
 return uid_ExerciseNetwork;
 }

 /////////////////////////////
 // SET METHODS
 /////////////////////////////

 /**
 * Allows server to write message to client inbox.
 * Only servers shall write to the client inbox.
 * @param hostID - uid_host of the host of interest
 * @param message - String of message FROM server TO client.
 * */
 public void setClientInbox(String message){

 clientInbox = message;

 }

 100

 /**
 * Allows client to set their status in status box of record.
 * Only clients shall write their status to their status box.
 * Read by the server to ascertain status of the client.
 * @param message - String of status FROM client.
 *
 * */
 public void setClientStatus(String message){

 status = message;

 }

 /**
 * Allows client to set exercise in exercise field of record.
 * Only clients shall write their exercise to their exercise
 * field. Read by the server to ascertain exercise of the client.
 * @param message - String of exercise FROM client.
 *
 * */
 public void setExercise(String message){

 uid_ExerciseNetwork = message;

 }

} // end of ClientRecord class

 101

APPENDIX G. MM-CLIENT: CLIENTPROGRAM.JAVA

/**/
/* */
/* Program: Malware Mimic Client */
/* */
/* Handles client side communications. Controls session */
/* with remote server. Executes commands from server on */
/* local machine. */
/* */
/* FILE: ClientProgram.java */
/* */
/* USAGE: ./MM-Client hostname exerciseId srvrName srvrPort*/
/* */
/* hostname name of host */
/* serverName IP addr of server, in dotted quad */
/* serverPort Integer port number of remote server */
/* */
/* AUTHORS: W. Taff and P. Salevski */
/* */
/* DATE: 22 January 2011 */
/* */
/* */
/**/

package mimicClient;

/**
 * The MM-Client software for remote host.
 * Handles both sides of communication with the remote server
 * (up and down) as well as local execution of remotely (server)
 * commanded methods.
 *
 * @author W. Taff and P. Salevski
 *
 */
public class ClientProgram {

 102

 /**
 * Top level main() for program.
 * Loops, starting clientController with each iteration. If
 * clientController dies, handles that exception, and restarts.
 * So far, is self perpetuating - i.e., will loop until killed
 * externally.
 *
 * @param args hostName, exercise Id, server IP.addr, server port
 */
 public static void main(String[] args) {

 while (true) {

 try {

 new ClientController(args[0], args[1], args[2], Integer
 .parseInt(args[3])).run();

 } catch (NumberFormatException e) {

 e.printStackTrace();

 System.out.println("Check your parameters!\n" +
 "Expect hostId exerciseID serverIP.addr " +
 "serverIP.port");

 System.exit(2);

 }

 catch (ArrayIndexOutOfBoundsException e) {

 e.printStackTrace();

 System.out.println("Check your parameters!\n" +
 "Expect hostId exerciseID serverIP.addr " +
 "serverIP.port");

 System.exit(2);

 }

 catch (NullPointerException f) {

 f.printStackTrace();

 }

 catch (Exception e) {

 e.printStackTrace();

 }

 103

 finally {

 try {

 Thread.sleep(10000);

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

 }

 }//end while

 }// end main()

}//end Class

 104

THIS PAGE INTENTIONALLY LEFT BLANK

 105

APPENDIX H. MM-CLIENT: CLIENTCONTROLLER.JAVA

package mimicClient;

import java.io.*;
import java.net.InetAddress;
import java.net.Socket;
import java.util.Random;

/**
 * Controller class for the Malware Mimic client.
 * Started by ClientProgram. IPC code based on code by
 * John Yeary.
 *
 * @author W. Taff and P. Salevski
 *
 */
public class ClientController {

 ///
 //DATA MEMBERS
 ///

 private String hostName;

 private String os_name;

 private String exerciseID ;

 private Runtime localRuntime;

 private String status;

 private InetAddress localMachine;

 private Socket socket;

 private String textReceiveBuf;

 private BufferedReader inBufferedReader;

 private PrintStream outPrintStream;

 private String serverAddr;

 private int serverPort;

 106

 ///
 //METHODS
 ///

 /**
 * Constructor for ClientController
 * @param serverPort the port of the remote server to use
 * @param serverAddr the string dotted-quad server address
 * @param hostName the hostname of local machine; will append
 * @param exerciseID
 * @throws Exception
 *
 */

 public ClientController(String hostName, String exerciseID,
 String serverAddr, int serverPort) throws Exception {

 super();

 os_name = System.getProperty("os.name");

 localRuntime = Runtime.getRuntime();

 status = "READY";

 localMachine = InetAddress.getLocalHost();

 socket = new Socket(serverAddr,serverPort);

 this.hostName = hostName + localMachine.getHostName();

 this.serverAddr = serverAddr;

 this.serverPort = serverPort;

 this.exerciseID = exerciseID;

 }

 /**
 * Main body of the clientController.
 * Loops until receives a halt command, checking the inbox
 * located on the remote server, and executing any commands.
 *
 * @throws Exception
 */
 public void run() throws Exception {

 initializeConnection();

 //and then start looping and keep checking inbox
 while (textReceiveBuf.compareTo("HALT")!=0){

 107

 outPrintStream.println("GETINBOX");

 Thread.sleep(5000);

 textReceiveBuf = inBufferedReader.readLine();

 System.out.println(textReceiveBuf);

 if (textReceiveBuf.compareTo("MOD_0")==0) mod_0();

 if (textReceiveBuf.compareTo("MOD_1")==0) mod_1();

 if (textReceiveBuf.compareTo("MOD_2")==0) mod_2();

 }//end while

 //CLOSE CONNECTION
 outPrintStream.println("CLOSING...");

 Thread.sleep(1000);

 socket.close();

 }//end run()

 /**
 * Initializes the connection with the remote host.
 * Called by run(), connects with the remote host, and upon
 * connection, sends initialization parameters to the server.
 *
 * @throws Exception
 */
 private void initializeConnection() throws Exception {

 System.out.println("Connected ... waiting for #GETNAME") ;

 outPrintStream = new PrintStream(socket.getOutputStream());

 inBufferedReader = new BufferedReader(
 new InputStreamReader(socket.getInputStream()));

 //GIVE TIME FOR INITIAL COMMAND TO ARRIVE

 108

 Thread.sleep(1000);

 if (inBufferedReader.ready()) {

 textReceiveBuf = inBufferedReader.readLine();
 System.out.println(textReceiveBuf);

 }

 //if server says getname, tell it

 if (textReceiveBuf.compareTo("#GETNAME")==0){

 outPrintStream.println("NAME=" + hostName);
 outPrintStream.println("STATUS=" + status);
 outPrintStream.println("EXERCISE=" + exerciseID);

 }

 }// end initializeConnection()

 /**
 * A hping scan of 10 sequential ports from a random start port.
 * Scans server in range of 1 to 1024.
 * @throws InterruptedException
 */
 private void mod_2() throws InterruptedException {

 status=("MOD_2");

 outPrintStream.println("STATUS=" + status);

 int randomPort = new Random().nextInt(1014) + 1;

 try {

 Process p = null;

 if (os_name.contains("Linux")) {

 p = localRuntime.exec("/usr/bin/sudo " +
 "/usr/sbin/hping3 -c 10 -s 1 -p "+
 randomPort + " -S " + serverAddr);

 109

 randomPort++;

 System.out.println(randomPort);

 }

 else { //is windows

 p = localRuntime.exec("hping -c 10 -s 1 -p "
 + randomPort +" -S "+serverAddr);

 System.out.println(randomPort);

 }

 } catch (IOException e) {

 e.printStackTrace();

 }

 System.out.println("Mod 2 Iteration Complete");

 }//end mod_2()

 /**
 * A 5 ping module.
 * Pings server 5 times then stops.
 */
 private void mod_1() {

 status = "MOD_1";

 outPrintStream.println("STATUS=" + status);

 try {

 Process p;

 if (os_name.contains("Linux")) {

 p = localRuntime.exec("/bin/ping -c5 " + serverAddr);

 }

 else { //is windows

 110

 p = localRuntime.exec("ping -n 5 " + serverAddr);

 }

 BufferedReader buffRdr = new BufferedReader(
 new InputStreamReader(new BufferedInputStream(
 p.getInputStream())));

 String line;

 while ((line = buffRdr.readLine()) != null) {

 System.out.println(line);

 }

 try {
 if (p.waitFor() != 0) {

 System.err.println(
 "exit value = " + p.exitValue());
 }
 }
 catch (InterruptedException e) {
 System.err.println(e);
 }

 } catch (IOException e) {

 e.printStackTrace();

 }

 System.out.println("Mod 1 Iteration Complete");

 }//end mod_1()

 /**
 * Sends a status update message to the server.
 * Equivalent to an idle command.
 *
 */
 private void mod_0() {

 status=("MOD_0");

 outPrintStream.println("STATUS=" + status);

 } //end mod_0()

}// end class

 111

LIST OF REFERENCES

[1] J. D. Fulp, “Training the cyber warrior,” Norwell, MA,
USA: Kluwer Academic Publishers, 2003, pp. 261–273.

[2] J. F. Sandoz, “Red Teaming: A Means for

Transformation,” Joint Advanced Warfighting Program,
Institute for Defense Analysis, Alexandria, VA, Rep. P-
3580, January 2001, http://www.dtic.mil/cgi-
bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=ADA388176.
[Accessed: 09-Feb-2011].

[3] “If you know the enemy and... at BrainyQuote.”

[Online].
http://www.brainyquote.com/quotes/quotes/s/suntzu15575
2.html. [Accessed: 09-Feb-2011].

[4] R. H. Gile, “Global War Game: Second Series,” 1984-

1988, Naval War College, Newport Papers, Newport, RI,
2004.

[5] “NSA's boot camp for cyberdefense | Geek Gestalt -

CNET News.” [Online]. http://news.cnet.com/8301-
13772_3-20003203-52.html. [Accessed: 10-Feb-2011].

[6] Certified Ethical Hacker: Ethical Hacking and

Countermeasures, Courseware Guide v6.1 Volume 1, EC-
Council USA, Albuquerque, NM, 2010, pp. 1-30.

[7] “2010 Customer and Industry Forum.” [Online].

http://www.disa.mil/conferences/cif/. [Accessed: 10-
Feb-2011].

[8] G. Gu, M. Sharif, X. Qin, D. Dagon, W. Lee, and G.

Riley, “Worm detection, early warning and response
based on local victim information,” in Computer
Security Applications Conference, 2004. 20th Annual,
pp. 136-145, 2004.

[9] “Morris worm - Wikipedia, the free encyclopedia.”

[Online]. http://en.wikipedia.org/wiki/Morris_worm.
[Accessed: 09-Feb-2011].

 112

[10] S. Fei, L. Zhaowen, and M. Yan, “A survey of internet
worm propagation models,” in Broadband Network
Multimedia Technology, 2009. IC-BNMT '09. 2nd IEEE
International Conference on, pp. 453-457, 2009.

[11] M. Feily, A. Shahrestani, and S. Ramadass, “A Survey

of Botnet and Botnet Detection,” in Emerging Security
Information, Systems and Technologies, 2009. SECURWARE
'09. Third International Conference on, pp. 268-273,
2009.

[12] Z. Zhu, G. Lu, Y. Chen, Z. J. Fu, P. Roberts, and K.

Han, “Botnet Research Survey,” in Computer Software
and Applications, 2008. COMPSAC '08. 32nd Annual IEEE
International, pp. 967-972, 2008.

[13] H. R. Zeidanloo and A. A. Manaf, “Botnet Command and

Control Mechanisms,” in Computer and Electrical
Engineering, 2009. ICCEE '09. Second International
Conference on, vol. 1, pp. 564-568, 2009.

[14] G. Lawton, “On the Trail of the Conficker Worm,”

Computer, vol. 42, no. 6, pp. 19-22, Jun. 2009.

[15] P. Szor, “The Art of Computer Virus Research and

Defense.” 1st ed., Upper Saddle River, NJ: Addison-
Wesley, 2005, pp. 26-38.

[16] “Anna Kournikova (computer virus) - Wikipedia, the free

encyclopedia.” [Online]. Available:
http://en.wikipedia.org/wiki/Anna_Kournikova_(computer_
virus). [Accessed: 10-Feb-2011].

[17] W. J. Lynn III, "Defending a New Domain Subtitle: The

Pentagon's Cyberstrategy," Foreign Affairs, pp. 97,
September 2010—October 2010.

[18] D. J. Aland, “Towards Better Control of Information

Assurance Assessments in Exercise Settings.” Wyle
Research Labs Arlington VA, 2008.

 113

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Captain David Aland, USN, (Ret.)
Office of the Director, Operational Test & Evaluation
Washington, D.C.

4. Dr. Gurminder Singh
Naval Postgraduate School
Monterey, California

5. Commander Joe Sullivan, USN
Naval Postgraduate School
Monterey, California

6. Mr. John H. Gibson
Naval Postgraduate School
Monterey, California

7. Mr. Scott Cote
Naval Postgraduate School
Monterey, California

8. Mr. Steve Gates
Net-Centric & Space Systems
Office of the Director, Operational Test & Evaluation
Washington DC

